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PREFACE TO VOL. II.

FROM one point of view the present volume consists essentially

of a detailed development of the mathematical theory of the

propagation of plane electromagnetic waves in conducting

dielectrics, according to Maxwell's theory, somewhat extended.

From another point of view, it is the development of the

theory of the propagation of waves along wires. The con-

nection of the two subjects was thoroughly explained in

Chapter IV. of Volume I., which should be understood. But

on account of the important applications, ranging from

Atlantic telegraphy, through ordinary telegraphy and tele-

phony, to Hertzian waves along wires, I have usually

preferred to express results in terms of the concrete voltage

and current, rather than the specific electric and magnetic

forces belonging to a single tube of flux of energy. The

translation from one form to the other is quite easy, when

understood. As far as space would permit, I have tried to

develop the theory as thoroughly as possible, considering

every kind of wave, and including the calculation of the waves

produced by multiple reflections. Even the theory of the

latest kind of so-called wireless telegraphy (Lodge, Marconi,

etc.) has been somewhat anticipated, since the waves sent

up the vertical wire are hemispherical, with their equatorial

bases on the ground or sea, which they run along in ex-

panding. (See 60, Vol. I.; also 393 in this volume.)

The investigations are based upon those in my "Electrical

Papers," with considerable extensions. My old predictions

relating to skin conduction, and to the possibilities of long-

distance telephony have been abundantly verified in advanc-

ing practice ;
and my old predictions relating to the behaviour
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of approximately distortionless circuits have also received

fair support in the quantitative observation of Hertzian waves

along wires. The reader need not therefore fear that he may
be muddling himself over fantastic theories void of practical

significance, whatever the scienticulist may say.

The mathematical methods employed are those which have

proved themselves to me by practice to be those best suited to

obtaining new results and advancing natural knowledge. The

general idea is to make the differential equations themselves

perfectly definite, so that the differential equation of a prob-

lem is actually its full solution, the operational or differential

solution, though it may not be in obvious quantitative form.

The process of algebrisation, or conversion from differential

to algebraical form admitting of numerical treatment is, of

course, very important. Though it may be easy when the

proper way of treatment has been found, yet there has been a

good deal of exploring work which makes no appearance.

In Chapter VIII, I have given a condensed account of my
researches on generalised differentiation and series, a subject

that grows naturally out of .the operational way of working.

Although I think this subject has a large future, yet I must

warn the reader that there is no pretence of logical rigour, and

that much of the matter was rejected some years ago by

persons who ought to be good judges.

The several appendices relate to electromagnetic waves in

general, save the one on rational units. There is some pro-

gress to report. Of the three stages to Salvation, two have

been safely passed through, namely the Awakening and the

Repentance. I am not alone in thinking that the third stage,

the Reformation, is bound to come.

I have good reason to be satisfied with the reception given

to the first volume of this work. Nearly all parts of it, the

outline of general theory, the nomenclature, the rational

units, the vector analysis, and the waves and their applica-

tion, have been approved in this and other countries. But I
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regret that I have been able to make so little impression upon
British official science as expressed by its late leader. It is

true that the " K.E. law," which set such unnecessary and

unwarrantable restrictions upon telephony, is not much heard

of now. With advancing practice it became so ridiculously

wrong (say 1,000 per cent.) that it was impossible to save

appearances by any manipulation of figures. But a dangerous
and alarming official error has been pressed forward, even

to the extent of experimentation with the public funds. I

refer to Mr. Preece's proposal to increase the capacity of

telephone cables, with a view to Atlantic telephony, by

bringing the twin conductors as close together as possible.

It is, indeed, very true that by Mr. Preece's ingenious plan of

flattening the wires on one side, and bringing the flat sides

closely together, the capacity may be considerably, and even

greatly increased. But it is not the working capacity that is

increased, but the electrostatic capacity ! Faraday knew that

much.

And this blundering is so unnecessary. For if it be beneath

the dignity of one who sat at the feet of Faraday and

afterwards rose to be the leading authority on electrical

matters (according to Answers), to consult the works of an

insignificant person, still there are other ways. Why not ask

someone else ? It may be too late to consult the family

doctor; but there are many young gentlemen going about

who have been to technical colleges and are quite competent
to give information concerning the capacity of condensers.

It is to be hoped and expected that the late important

removals in the British Telegraph Department will lead to

much improvement in the quality of official science. The

above two examples show how much improvement has been

needed. Others could be given. This volume may help.

APRIL 10, 1899.
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CHAPTER V.

MATHEMATICS AND THE AGE OF THE EARTH,

Mathematics is an Experimental Science.

223. That the study of the theory of a physical science

should be preceded by some general experimental acquaintance

therewith, in order to secure the inimitable advantage of a

personal acquaintance with something real and living, will

probably be agreed with by most persons. After, however,

the general experimental knowledge has been acquired, accom-

panied with just a sufficient amount of theory to connect it

together and render its acquisition easier and more interesting,

it becomes possible to consider the theory by itself, as theory.

The experimental facts then go out of sight, in a great mea-

sure, not because they are unimportant, but because they

become subordinate to the theory in a certain sense, and, we

might also add, because they are fundamental, and the foun-

dations are always hidden from view in well-constructed

buildings. So it comes about that a great theoretical work
like Maxwell's treatise on Electricity and Magnetism contains

so little explicit information regarding the experimental facts

of the science. Theory always tends to become abstract as

it emerges successfully from the chaos of facts by the pro-

cesses of differentiation and elimination, whereby the essentials

and their connections become recognised, whilst minor effects

are seen to be secondary or unessential, and are ignored

temporarily, to be explained by additional means.

VOL. n. B
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There is the same tendency in the most abstract and

logical of all sciences pure mathematics. Geometry, for

instance, has most certainly an experimental foundation, like

any other science. We make our geometry, in the first place,

to suit the state of things in which we are born and live. We
all make our acquaintance with geometry first through our

senses, and become saturated, so to speak, with the essence

of the geometry of nature, even though this be unaccompanied

by any intelligent comprehension and expression. Now take

a hint from nature, and we can see plainly how much it is to

the advantage of the learner that he should continue, in the

first place, to acquire geometrical ideas through his senses

though now, of course, with his attention specially directed

to the subject freely assisted by models, solid and skeleton,

before being set to work upon the more intellectual theory on

a formal basis. For, disguise it as we may, no strictly formal

basis, apart from experience, can ever be possible. There is

always something very considerable to start with of an ex-

periential nature in the background, besides the formal

axioms and definitions and postulates which would be unintel-

ligible without it. A straight line can never be intelligibly de-

fined per se. One must actually know the practical straight line

before any definition of the abstract straight line can be under-

stood. Then our understanding and acceptance of the de anition

is a recognition that it states what we knew already, in accu-

mulated experience, though we may have never openly thought

about it. As regards an axiom, such as the one that asserts

that two straight lines cannot enclose a space, its acceptance

involves the existence of a very extensive experience of the

geometry of nature as it is found to be. How impossible, then,

must it be to prove anything rigorously as absolute truth,

independent of nature. We come down to axioms, definitions,

and postulates at last, and these are only understandable by

experience.

There is also no self-contained theory possible, even of geo-

metry considered merely as a logical science, apart from

practical meaning. For a language is used in its enunciation,

which implies that developed ideas and complicated processes

of thought are already in existence, besides the general experi-

ence associated therewith. We define a thing in a phrase,
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using words. These words have to be explained in other

words, and so on, for ever, in a complicated maze. There is

no bottom to anything. We are all antipodeans and upside

down.

It is by the gradual fitting together of the parts of a dis-

tinctly connected theory that we get to understand it, and by
the revelation of its consistency. We may begin anywhere, and

go over the ground in any way. Some ways will be preferable

to others, of course, since they may be easier, or give broader

and clearer views, but no strict course is necessary. It may
not even be desirable. It may be more interesting and

instructive not to go by the shortest logical course from

one point to another. It may be better to wander about,
and be guided by circumstances in the choice of paths, and

keep our eyes open to the side prospects, and vary the route

later to obtain different views of the same country. Now it is

plain enough when the question is that of guiding another

over a well-known country, already well explored, that certain

distinct routes may be followed with advantage. But it is

somewhat different when it is a case of exploring a compara-

tively unknown region, containing trackless jungles, mountains

and precipices. To attempt to follow a logical course from one

point to another would then perhaps be absurd. You should

keep your eyes and your mind open, and be guided by circum-

stances. You have first to find out what there is to find out.

How you do it is quite a secondary consideration. Later on,

no doubt, much easier and perhaps better ways will be found,

so that a crowd can push along. It is obvious, I think, that

complaints of the want of perfection of the ways and manners
of work of explorers on the part of men who are accustomed

to more rigorous methods have a considerable element of the

ludicrous in them. However harmless in intention, they may
operate unfairly in effect, if they lead, as sometimes happens

(of which a case was quite lately brought to my notice), to the

rejection of honest work which failed to be appreciated by the

judges, who had no doubt different ways of working and think-

ing, and different experiences. When this result arises, it has

the effect of putting a learned society in the unfortunate posi-

tion of appearing to exist not merely for the encouragement of

research along established lines, but also for the active dis-
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couragement of work of a less conventional character. That

this is the case in reality it is impossible to believe. But then,

papers are so cheap, and one more or less does not matter.

Again, the probable fact that the judges were animated by
benevolent motives, and only desired to turn the misguided
author from the error of his ways into more rigorous paths

approved by themselves, does not make the matter any the

better for the author. He has his own ways, and must follow

them, even though he be told (virtually) that his work is

valueless, and not worth printing, and of course, by inference,

that he must not continue to send more of it.

Rigorous Mathematics is Narrow, Physical Mathematics

Bold and Broad.

224. Now, mathematics being fundamentally an experimen-
tal science, like any other, it is clear that the Science of Nature

might be studied as a whole, the properties of space along
with the properties of the matter found moving about therein.

This would be very comprehensive, but I do not suppose that

it would be generally practicable, though possibly the best

course for a large-minded man. Nevertheless, it is greatly

to the advantage of a student of physics that he should pick

up his mathematics along with his physics, if he can. For

then the one will fit the other. This is the natural way, pur-

sued by the creators of analysis. If the student does not pick

up so much logical mathematics of a formal kind (common -

sense logic is inherited and experiential, as the mind and its ways-

have grown to harmonise with external Nature), he will, at any
rate, get on in a manner suitable for progress in his physical

studies. To have to stop to formulate rigorous demonstrations

would put a stop to most physico-mathematical inquiries.

There is no end to the subtleties involved in rigorous demon-

strations, especially, of course, when you go off the beaten

track. And the most rigorous demonstration may be found

later to contain some flaw, so that exceptions and reservations

have to be added. Now, in working out physical problems
there should be, in the first place, no pretence of rigorous

formalism. The physics will guide the physicist along some-

how to useful and important results, by the constant union of

physical and geometrical or analytical ideas. The practice-
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of eliminating the physics by reducing a problem to a purely
mathematical exercise should be avoided as much as possible.

The physics should be carried on right through, to give life and

reality to the problem, and to obtain the great assistance

which the physics gives to the mathematics. This cannot

always be done, especially in details involving much calcula-

tion, but the general principle should be carried out as much
as possible, with particular attention to dynamical ideas. No
mathematical purist could ever do the work involved in Max-

well's treatise. He might have all the mathematics, and

much more, but it would be to no purpose, as he could not put
it together without the physical guidance. This is in no way
to his discredit, but only illustrates different ways of thought.
There have been enormous advances made in pure mathematics

in the last half century, as is right and proper to match the

advance in physical science. But along with this has come
a tendency for purists to object to the introduction of physical
ideas in mathematics, with a possible lack of rigour as result.

It may be that there is no lack of rigour sometimes, but an

increased generality and sirnpliBed treatment. Maxwell was

severely taken to task by a distinguished purist for his use of

Green's Theorem in Spherical Harmonics, a method which is

excellently to the purpose, and which commends itself to the

electrician, and it is probably quite rigorous. But no doubt

there is frequently a lack of rigour. I have seen with much

pleasure some remarks on this point in the Preface to the

recently-published second edition of Lord Rayleigh's treatise

on Sound, which I cannot do better than reproduce :

In the mathematical investigations I have usually employed such

methods as present themselves naturally to a physicist. The pure mathe-

matician will complain, and (it must be confessed) sometimes with justice,

of deficient rigour. But to this question there are two sides. For, how-

ever important it may be to maintain a uniformly high standard in pure

mathematics, the physicist may occasionally do well to rest content with

arguments which are fairly satisfactory and conclusive from his point of

view. To his mind, exercised in a different order of ideas, the more severe

procedure of the pure mathematician may appear not more but less demon-

strative. And further, in many cases of difficulty to insist upon the

highest standard would mean the exclusion of the subject altogether in

view of the space that would be required.

Particularly notice the words " not more but less demon-

strative." This is exceedingly true, especially in the subject
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of the expansion of functions in series of other functions,

which occupies so large a part of the treatise in question.

And I would add that if the physicist does sometimes get

carried too far, the proper time to find out the reservations

and corrections is later on, in order not to interrupt his work.

But this purification is more especially suitable for the purist

to undertake. If one sort of work is as necessary as the

other, it is certain that the physicist would get very little

work done by trying to do both, having the fear of the

rigourists before him. What is more hateful than a physical

work done in propositions and corollaries ? It is bad enough
in pure mathematics, and I wish purists would take a lesson

from Fourier, Thomson and Tait, Maxwell, or Rayleigh, and

tell their tale differently and make it interesting by letting in

a little imagination. I have had occasion to go through a

considerable part of a very big Theory of Functions in search

for what I did not find. The work is most admirably pains-

taking and severely rigorous, but how different from physical

mathematics, how hard to read from its severe formalism, and

how narrow it seems from the want of physical illustration.

Perhaps the subject might be greatly lightened by having a

physical theory to rest upon or to illustrate.

When mathematics is cleared away from physics it becomes

set in logical form. But it is to be remembered that the men
who have in the past initiated great advances in mathematics

have usually been men who were employed in working out

physical questions. They supplied the purists with raw

material to be made coherent and elaborated. The expansion

of functions in series, already mentioned, arose physically.

It is an enormous and endless subject, and there is a striking

difference in the ways in which it is regarded by the physicist

and the rigourist, with the peculiarity that the former is far

in advance of the latter. To understand this, consider that a

physicist can have practical certainty that a certain expan-

sion is possible, because his physical problem tells him so,

when he seeks and finds the solution, even though he has not

investigated the properties of the functions used in the expan-

sion. He does not arrange long and severely disagreeable

demonstrations to prove what he knows
; although it be a

fallible kind of knowledge, it only differs in degree from most
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mathematics in this respect. But eliminate the physics, and

put it simply as a question of functions. Given certain func-

tions, can an arbitrary function be expressed in terms of them?

"What a pretty piece of work there must be to answer this ques-

tion ! This is true even in the case of circular functions in

the particular case rigorously treated by purists. But by

changes in the conditions the physicist gets an endless number

of expansions of one and the same arbitrary function in cir-

cular functions, and what becomes of the rigorous demonstra-

tion then ? Then there is an endless number of other sorts of

functions, every one of which can represent an arbitrary func-

tion in an endless number of ways, as is perfectly clear from

physical considerations. It is evident that for comprehensive

rigorous demonstrations (not special) we need enlarged ideas

about functions, and perhaps the purist would obtain the

necessary broadness of view by a study of the physics in which

such comprehensiveness of expression is found. Certainly the

purist is bound to complete the logical treatment some day, but

the hard-bound rules of the purist make it difficult. Thus at

present, although the purist carries his mathematical develop-

ments so far in some directions as to be far beyond physics,

out of sight in fact, yet in other respects the purist lags

behind. And this is true in other matters than that men-

tioned. For a physicist may use daily with success, and as a

matter of course, methods which he knows work usefully to

his assistance, but which are logically unintelligible to a purist,

and which have to wrait for a proper development.
The best result of mathematics is to be able to do without

it. To show the truth of this paradox by an example, I would

remark that nothing is more satisfactory to a physicist than to

get rid of a formal demonstration of an analytical theorem

and to substitute a quasi-physical one, or a geometrical one

freed from co-ordinate symbols, which will enable him to set

the necessary truth of the theorem, and make it be practically

axiomatic. Contrast the purely analytical proof of the Theorem
of Version well known to electrical theorists, with the common-
sense method of proof by means of the addition of circuitations.

The first is very tedious, and quite devoid of luminousness.

The latter makes the theorem be obviously true, and in any
kind of co-ordinates. When seen to be true, symbols may be
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dispensed with, and the truth becomes an integral part of

one's mental constitution, like the persistence of energy.

Physical Problems lead to Improved Mathematical Methods.

225. There is a curious analogy to be found between exten-

sions of mathematical ideas and extensions of electrical theory.

Take, for instance, Maxwell's theory in the form presented in

Vol. I. of this work, Chapter II. If we do not inquire too

minutely into the consequences, we may easily be temporarily
under the impression that the two circuital equations and

their accessories express the dynamics of a quite self-contained

system. But when we go to the very verge of the system,
and find that mechanical forces of the ordinary kind are in-

volved when electromagnetic disturbances pass through the

suppositional ether which supports them, we come to a stop.

Now, there is nothing impossible or incredible in the result.

It is simply unintelligible at present. The plain meaning to

be given to it without introducing additional data is that the

ether, as regards electromagnetic disturbances traversing it,

should be regarded like any other dielectric
; that is, as having

a substantial existence. To complete the matter evidently

requires a theory of the ether itself, and the suggestion is that

it should not be regarded as an elastic solid (generalised) in

which the actual displacements in bulk represent the electro-

magnetic disturbances. But, however this may be (and the

matter is difficult and speculative), the point here is that on

the outskirts of the theory we come to matters needing inter-

pretation and a larger theory.

So it is in mathematics. The fundamental notions are so

simple that one might expect that unlimited developments
could be made without ever coming to anything unintelligible.

But we do, and in various directions. To say nothing of the

interpretation of negative quantity (which is a sort of

imaginary), there is the imaginary, which has only become

understood and its properties developed comparatively recently.

But, besides these, there are much more obscure and ill-

understood questions, such as the meaning and true mani-

pulation of divergent series, and of fractional differentiations

or integrations, and connected matters. It is customary to

keep to convergent series and whole differentiations and regard
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divergent series and fractional differentiations as meaningless
and practically useless, or even to ignore them altogether, as

if they did not exist. The latter is the usual attitude of

moderate and practical mathematicians, for obvious reasons.

If they can be ignored, why trouble about them at all ?

But when these things turn up in the mathematics of

physics the physicist is bound to consider them, and make
the best use of them that he can. I am thinking more par-

ticularly here of the solution of the differential equations to

which physicists are led by quasi-algebraical processes. The
reader will see to what I refer by reference to 203, Vol. L,
when I allude to the definiteness of meaning of the operator
E" in the equation E = R"C, E" being a complicated function

of a differentiator. See also 221 later on. When C is ex-

plicitly given as a function of the time we have to find E to

match through the operator E", and when it is E that is

given, then C has to be found by the operation on E of the

inverse of E". It is in the carrying out of these processes in

the investigation of various electromagnetic problems that we
are obliged to regard certain kinds of divergent series as re-

presenting fully significant functions, and the execution of the

processes involved in E", which assumes various algebraical

forms, as being legitimate and feasible, however ill-understood

may be the theory involved therein.

Xor is the matter an unpractical one. I suppose all workers

in mathematical physics have noticed how the mathematics

seems made for the physics, the latter suggesting the former, and

that practical ways of working arise naturally. This is really

the case with resistance operators. It is a fact that their use

frequently effects great simplifications, and the avoidance of

complicated evaluations of definite integrals. But then the

rigorous logic of the matter is not plain ! Well, what of that '?

Shall I refuse my dinner because I do not fully understand the

process of digestion ? No, not if I am satisfied with the result.

Now a physicist may in like manner employ unrigorous pro-
cesses with satisfaction and usefulness if he, by the application
of tests, satisfies himself of the accuracy of his results. At

the same time he may be fully aware of his want of infalli-

bility, and that his investigations are largely of an experi-
mental character, and may be repellent to unsympathetically
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constituted mathematicians accustomed to a different kind

of work.

There is another point of view. Convergent mathematics

is often excessively unpractical in the labour it involves in

the numerical interpretation of results. I have noticed this

particularly in spherical harmonic expansions, where the

labour is sometimes prohibitive. Under these circumstances

the substitution of equivalent divergent series which may be

readily calculated becomes a matter of great practical import-

ance. If the example fails, others may readily be given. But

what about the theory of functions which deliberately ignores

the treatment of divergent series ? Can it really be the theory

of functions ? Is not a more comprehensive theory needed,

including both convergent and divergent functions in a

harmonious whole ?

"Mathematics and Mathematics." Remarkable Phenomenon.

226. If it should ever come to pass that there prevailed in

this world a so-called religion in which the minor virtues of

mercy, charity, meekness, resignation, and so forth, were unduly
exalted at the expense of the supreme virtue of justice, and if

this religion were carried into practice generally, it would be

a very bad thing for the world. For such a religion would be

a snivelling religion, only fit for the weakminded of both sexes
;

and if the strong-minded and the just allowed it to prevail,

then would the liars, rogues, hypocrites, slanderers, and other

wicked people have it all their own way, and the just would

be crushed along with the meek and lowly. But just men are

better than their religions, and in self-defence would assert

the paramount importance of justice, in tacit defiance of the

nominal religion in which it was made a secondary virtue.

Let us above all things try to be just. Even Cambridge
mathematicians deserve justice. I cannot join in any general

attack upon them.* I regret exceedingly not to have had a

Cambridge education myself, instead of wasting several years

of my life in mere drudgery, or little more. It is to Cam-

bridge mathematicians that we are indebted for most of the

mathematico-physical work clone in this country. Do not

most mathematical physicists hail from Cambridge ? Are not

*
See article in The Electrician, November 23, 1894, p. 100.
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Thomson and Tait, Maxwell and Eayleigh Cambridge mathe-

maticians, to say nothing of the large crowd of other and

mostly younger men whose names will suggest themselves ?

We must take the good with the bad, in this as in other

matters ;
and though legitimate and serious objection may be

raised to the distressing and soul-destroying style in which

some Cambridge mathematicians do their work, and to the

unpractical conservative tendency that exists (conserving the

bad as well as the good, and resisting innovations), we should

also bear in mind the great volume and value of the work done,

and not unduly depreciate or make invidious comparisons. As

regards their want of sympathy with less conventional men,
it is not sympathy that is particularly wanted perhaps it

would be unreasonable to expect any at all. What one has a

right to expect, however, is a fair field, and that the want of

sympathy should be kept in a neutral state, so as not to lead to

unnecessary obstruction. For even men who are not Cam-

bridge mathematicians deserve justice, which I very much fear

they do not always get, especially the meek and lowly, and those

who long suffer under slig-ht.

On this question of " Mathematics and Mathematics," I

may mention a somewhat remarkable phenomenon which has

lately occurred. Orthodox mathematicians, when they cannot

find the solution of a problem in a plain algebraical form, are

apt to take refuge in a definite integral, and call that the solu-

tion. It is certainly one form of the solution. But it may
be just as hard, or harder, to interpret than the differential

equation of the problem in question, from the difficulty of

evaluating the integral, and so finding out what the solu-

tion means. In such cases we might as well keep to the

differential equation, and be just as wise. Now, it has come
to my knowledge that a man who is not a Cambridge mathe-

matician, and who does not pretend to be much of any sort of

mathematician, but who is a practical physicist, capable of

discussing with proper judgment such a question as the age
of the earth, a higher limit to which he finds (and with good

reason) to be very likely hundreds of times greater than the

most probable previous estimate (which conclusion has

obviously important interest to geologists and astronomers),

recently made the discovery that a certain unconventional
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mode of treating the mathematics of the question (explained
to him by myself) conducted him immediately to the exact

solution of the problem he had in hand, in a few lines in

fact
;
whereas by the methods generally employed he might

have spent days over it, without any final success beyond

obtaining a definite integral of too complicated a nature to

be practically discussed or obviously evaluated.

It has naturally given me much pleasure to find that the

method in question, which professes to obtain the solution in

plain language directly from the differential operator, and, so

to speak, to evaluate the definite integral without the trouble

of finding it, should receive such ready appreciation from a

practical physicist. Of course, he has no prejudices of the

rigorous kind
;
but makes use of what he finds useful, as soon

as he has got to know how to go to work. It is the fact that

he is a practical physicist, without mathematical pretensions,

that constitutes the importance of the phenomenon. For
this reason, I shall have no further hesitation in making use

of the method in question occasionally in the course of the

rest of this work, at least in such simple cases as the above

experience shows are fairly and without much trouble within

the reach of practical physicists and electricians
; not mathe-

maticians of the Cambridge or conservatory kind, who look

the gift-horse in the mouth and shake their heads with solemn

smile, or go from Dan to Beersheba and say that all is barren
;

but of the common field variety, who take the seasons as they
come and go, with grateful appreciation. It is really not a

question of high mathematics at all, in these diffusion problems
at least, but of the substitution of simpler and more direct pro-
cesses for the indirect and complicated processes of the highly
cultivated mathematician with too rigorous proclivities,

The Age of the Earth. Kelvin's Problem.

227. Now Prof. John Perry has suggested to me that I

should write something on the subject. Therefore, as he has
made the matter of the age of the earth interesting at the

present time, I give some particulars regarding simple solu-

tions. They are not so much out of place as may appear at

first, for they all represent electrical problems of interest, as

we shall see later.
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The main problem is : Given the earth initially at a constant

temperature V throughout, find its way of cooling, and, in

particular, find the gradient of temperature in the earth's

crust, for that is the observed datum. It can then be deduced

how long it takes to arrive at its present state. In accordance

with general practice, much simpler problems are substituted,

and approximations made with various data. Lord Kelvin,*"

who started this branch of inquiry in his celebrated paper on<

the Age of the Earth, substituted for the earth an infinite

body of uniform capacity and conductivity, the same as those

in the crust, with a plane boundary kept at zero temperature.

Now consider first the converse problem. The earth is

initially at zero temperature, and by means of surface source?

its skin is thereafter maintained at constant temperature V .

Find the temperature gradient in the skin which results. Let

V be the temperature at distance x from the plane face
;
the

well-known characteristic of V is

where c is the capacity per unit volume, k the conductivity,

and p means the time-differentiator. Therefore,

V = e-^V (2)

gives V in terms of V . This is easily integrated, but we

only want the surface gradient, say g. Thus,

So, between (2) and (3) we get

9 = <lVo, (4)

which is the solution.

To turn it to algebraical form, we have

and p*l = (irt)->, (5)

so that (4) is the same as

Since the final state due to our source is V everywhere in

the earth, it follows that in the subsidence problem, starting

* " On the Secular Cooling of the Earth," Trans. R. S. Edin., 1862
;
or

App. D., Thomson and Tait's
" Natural Philosophy."
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from a uniform temperature V ,
the gradient has the same

value, only reversed in direction, so that (6) is still the

required solution. This is the formula, due to Fourier, used

by Lord Kelvin. Taking

V.=4.000C., ff
=

,
-

which are data used by Perry, we find that t is 103 million

years. That is, it takes about 100 million years for the gradient
in the skin to fall to its present value, under the assumed

circumstances. The correction necessary for the finite size

of the earth, other data being the same, is not large. I find

that the time requires to be reduced by -^ part.*

.Perry's Modification. Remarkable Result.

228. The next step, due to Perry, f is to assume that the

capacity and conductivity are higher in the earth than in its

skin. That this will prolong the time of subsidence may not

be difficult to understand in the case of an infinite block with

a plane face
;
but the result is most distinctly not an obvious

one in the case of a sphere, for it may be readily shown that

the time of cooling may be either less or greater, according to

circumstances. But we want numerical results. So take a

distinct case. Let the skin be so thin that its capacity may
be ignored, whilst its conductance per unit of surface, which

is kjl, where /^ is the conductivity, and I the depth, is finite.

Then the current of heat inwards through the skin equals that

entering the inner earth. This gives the condition that at

#=0 we have

if V is the temperature outside the skin, Y! that just in-

side. So

* This may be proved by formula (39) below, or by the same investiga-

tion simplified to meet the present case.

t John Perry,
" On the Age of the Earth," privately circulated in MS.

October 14, 1894
;
further circulated with additions in pamphlet form in

November, and published in revised form with other matter ill Nature,

January 3, 1895, p. 224.



MATHEMATICS AND THE AGE OF THE EARTH. "15

is the solution for Va in terms of V impressed. B is the

resistance of unit area of the skin.

There are two ways of converting (8) to algebraical form,

one convergent, the other divergent. The latter is most

useful. Thus, by division,

Vl
= [l-Ekq+(EkqY-(EkqY + . .

.]
V

, (9)

which, by the use of (5), is turned to

from which the subsidence solution, due to V constant all

over initially, is*

Here a = c&R2
. The gradient is got by dividing by I, so that

the first term, which is sufficient when t is big enough, is

rt/

So, with the same ^ in the skin, the value of t varies as the

value of ck in the earth when t is big enough, which is an

important conclusion.

Now (11) is unsuitable when t is small, on account of the

divergency. Then apply an alternative method to (8), viz.,

V,=

which by means of p-^l = t
n
j ,n, is turned to the algebraical

form

+ V (l-c'/
a
). (14)

*
I am informed that this is Riemann's solution for the surface tem-

perature of an infinite block with a plane face, cooling from an initially

uniform temperature ;
the boundary condition being constancy of ratio of

the rate of loss of heat to the temperature. The problem is formally the

same as Perry's problem of a resisting skin, because the boundary con-

dition on the inside of the skin is formally the same as in Riemann's case.

Perfectly free escape of heat means R= 0.
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So the subsidence solution due to initial V is

The equivalence of (11) and (15) is merely an example of the

generalised exponential, but it is interesting to see how it

arises.

The solution for the temperature at any distance x may be

similarly obtained and without difficulty, but we need not

consider that here.

Cooling of an Infinite Block composed of Two Materials.

229. Going a step further, let us examine the influence

of the capacity of the skin itself. This was done by Perry

immediately on receipt of the above, so far as the beginning
and most important part of the solution was concerned. The
skin may now be of any depth, and is treated in the same

way as the inner earth, but with different constants. Let

c, k, V belong to the earth, and cv kv v to the skin. Measure

x in the earth from the inside of the skin, and z in the skin

also from its inside. Then we have

V= c-^V1 , (16)

t;= '
fl*C + e*

lZ
D, (17)

where Vi is the temperature at x = and C, D are unknown,
and to be eliminated. The boundary conditions are v = V at

z= /, and v = Vi at z = 0, besides continuity of current at the

interface of skin and earth, or

L c'v
i
dV n o\

"^ =-'"-/.-
(18)

at = 0, x = 0. These find C and D, and lead us by ordinary

algebraical work, which need not be given, to the following

expression for the gradient of temperature at the outside of

the skin :

where s y=r. (20)-
1 + (c^/cky

Notice that s = when cJi = c^\. That is, the flow of heat in

the skin due to applied V on its outside is the same for any
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material inside, provided ck = c1k1 ,
which reduces (19) to the

elementary form (4) first considered.

The approximate solution involving the first power of I may
be got at once from (19), and it leads to the former results

when I is small. To get the complete solution, expand the

fraction in (19) by division. Thus,

g = (1 + 2sy +2y +2y + . . .)fcV . (21)

Only one term needs transformation, since they are formally
alike. We have

VVo=(?i-2^
+l^- ...)V

0) (22)

by (20), using the ordinary exponential expansion. Inte-

grating by (5) we obtain a series which also belongs to the

exponential kind, being

(23)
7rh\t

Here n has to be 0, 1, 2, 3, &c., in the successive terms of

(21), so we obtain

+ 2*9A4 + 2*"A9 + . . .
J, (24)

where A=

In fact (21) expresses the initial effect ofV in the first term

on the right, and of an infinite series of images due to the

change of medium.

Although (24) is a very neat form of solution, we may want
a solution arranged in inverse powers of **, as in (11) for

example. We may get this by picking out the coefficients

properly from the expansions of A and its powers in (24).

Or, from the operational equation (21) itself, which becomes

.

JL 3

W)l . 26- (1 + 22
s + 3V + 4%

2

. 2* (1 + 23
s + 3V + 4V +...) + &c.fcV , (25)

E
when arranged in powers of qlt Here the even powers of qt

are ignorable, as they involve whole differentiations. So the

VOL, II. C
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<?!
term gives the factor of ~-, the q^ term that of t~2, and so

on. It is easily seen by inspection that the functions of s that

occur in (25) are derivable in succession from one another by
the operator s(d/ds), the first one being 2*/(l s). So they

may be written finitely if we like. Or,

where A is short for d/ds, is the complete solution, of which

the first part is the same as

where R = l/ki as before. Comparing with (11), we can see

the effect of the capacity of the skin.

Large Correction for Sphericity in Perry's Problem.

230. The next step would be to go on to consider the case

of a spherical earth, first with no surface resistance to the

escape of heat, next with a resisting skin, and, thirdly, with a

skin of any depth, the capacity being allowed for. But these

are too complicated for the present purpose, and would frighten

timid readers, and perhaps some Cambridge mathematicians

as well. At the same time, I may remark that the solutions

can be got through the operators in the form of Fourier series

with much less work than by Fourier's way.
Prof. Perry has examined Fourier's solution for a homo-

geneous sphere with constant surface emissivity (equivalent to

a resisting skin) and a very interesting result comes out, viz.,

that the plane solution gives much too big a result with the

same data as regards conductivity and capacity, internal and

external.

Thus, according to Perry, take the radius of the earth at

6380G
,
and the depth of the skin at 405

centim., or 4 kilom.,

the initial temperature as 4000C., the present surface gradient

1 in 2743 centim., and c = 2-86, k = -47, ^ = -507, A-x
= -00595,

so that k in the earth is 79 times that of surface rock, and kjc

in the earth is 14 times that of surface rock. Then the time

of subsidence to the present state is 960s

years, or 96 times the

estimate of 108

years given with the same data except that the
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earth has the same c and k throughout as in the skin, when
calculated by the plane theory, or the linear diffusion of heat.

But, according to the plane theory adapted to meet the

case of a plane slab of skin instead of a spherical shell, the

time of subsidence would, by (12) above, be ck/ofa times as

great as the estimate without the increased c and k inside,

or about 4630s

years. So the effect of having an infinite con-

ductor with a plane face to represent the earth is to increase

the time of subsidence from 9608
to 46308

years. Perhaps it

does not matter in very rough estimates ;
but it is interesting

to note the difference made by the finite size of the earth, and

that it lessens the time of subsidence in the ratio 463 ; 96, or

4-7 to 1.

In order to ascertain whether the objection made to Perry's

neglect of the capacity of the skin had any serious basis, I

have worked out the corresponding formula with the capacity

allowed for. There is very little difference numerically. Thus,

Perry found two terms in the Fourier expansion to be neces-

sary. But the first term is a large multiple of the second, so

we may take it alone for our comparison. By the first term of

Perry's formula, the time of subsidence comes to 90207

years.

Allowing for the capacity of the skin, I find it comes to

9030 7

years. But I have not taken special pains to get the

third figures right.

Remarks on the Age of the Earth.

231. Now a few remarks (which I make with much

diffidence) on the practical outcome of Prof. Perry's investiga-
tions. It is known that geologists demand long ages of time

for the earth's evolution in its geological aspect. Physicists,

on the other hand, have offered them what geologists con-

sider the miserable allowance of from 20 to 400 million years.
Prof. Tait, I believe, offers them only 20. They want more.*

There are two evident ways of getting more. The first is

by not requiring so much, by allowing that the earth's evolu-

tion went on at a far more rapid pace in former times than

at present, wholly apart from catastrophes. This seems to

*
It is to be remarked, however, that geologists have come down in

their demands remarkably, and probably in consequence of Lord Kelvin's

work.
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be a reasonable view. The other is Prof. Perry's way. He
advances arguments to show that it is reasonable to suppose
that the earth's effective capacity and conductivity, especially

the latter, may be even at present much greater in the earth's

interior than in its skin, so that the time of subsidence to the

present skin gradient is prolonged. But it is not a mere ques-

tion of the present state of the earth's interior. The state

during the whole period of geological evolution has to be con-

sidered, and Prof. Perry's argument seems to me to apply with

greater and greater force the further we go back in time. I

presume that the earth's birth, for geological purposes, should

be reckoned from the time when it became encrusted, or when
the crust attained some notable thickness to give some sort of

stability. Is it necessary to solidify the earth all through
before beginning its life ? If we allow it to solidify gradually

by the natural increase of depth of its solid crust, consequent

upon its cooling, it is evident that the age of the earth may
possibly be much extended.

As for the origin of life upon this planet, the only reason-

able view seems to me to be Topsy's theory. She was a true

philosopher, and " she spekt she growed." Any other theory
is of the elephant and tortoise kind, a sort of evasion, which

explains nothing, whilst it increases one's difficulties. Prof.

Tyndall was of Topsy's persuasion. So am I, as I firmly
believe (subject to correction) in the truth of his view as to the

"promise and potency
"

of life in so-called dead matter under

the influence of the forces of nature.

Peculiar Nature of the Problem of the Cooling of a

Homogeneous Sphere with a Resisting Skin.

232. In connection with the above problems in cooling by
diffusion and escape of heat at the surface of bodies there are

a number of incidental matters of great interest, some of the

most noteworthy of which may be briefly noticed. In the

first place, as was remarked in 228, the prolongation of the

time of cooling of a sphere from a given uniform initial tem-

perature until a given gradient of temperature is reached at

the surface of escape, produced by augmentation of the con-

ductivity and capacity of the inner portion only, is not by any
means an obvious result, though not difficult to understand in
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the case of an infinite block with a plane boundary when

there is a similar augmentation of conductivity and capacity

within its skin. In fact, we can easily make it be either a

retardation or an acceleration at pleasure, when it is a sphere

that is in question. To show this, let the conductivity be

made infinitely great as an extreme case, except in the skin,

where it remains finite, without changing the capacity

either in the skin or body of the sphere. The theory

of the cooling of the sphere is then like that of the

discharge of a condenser through a resistance. The re-

sistance here is the resistance of the skin, and the

capacity is that of the inner body. Now by reducing the

depth of the skin, and therefore the resistance, we may
accelerate the discharge as much as we please. Thus, with

the skin conductivity as in 230, or 0-006, and the internal

capacity per unit volume also the skin value, or 0'5, the time

taken to fall from an initial uniform temperature of 4000C.

until the present gradient of temperature is reached in the

skin is 1608

years when the skin's depth is 10 kilometres, but

only 3307

years when it is 1 kilometre. If it is 4 kilometres,

as in Prof. Perry's example, the result is 9207
years, which is

only 9 times the standard result of 108

years found by Lord

Kelvin. It is raised to 960R

years, as Perry has shown, by

reducing the internal conductivity from infinity to 79 times

that of the skin, whilst at the same time increasing the internal

capacity to 5'7 times that of the skin. To obtain the stan-

dard result, 10s

years, with infinite internal conductivity and

with internal capacity as in the skin, requires the skin to be

only J kilometre in depth, or a little less. When made thinner

still, the time required falls off to any extent. These examples
will show the danger of over-hasty generalisations regarding
the effect of varying the internal conductivity and capacity.

It is a general principle that increasing the conductivity

accelerates the subsidence of a normal system, or a distri-

bution of temperature which will subside according to the

condenser law, and Prof. Perry's case is no exception. But

there are other considerations, and the case is considerably

mixed. If, in Prof. Perry's 9608

years problem, we raise the

internal conductivity to infinity, making no other change, we
reduce the time to 5208

years. Here the internal capacity is
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still 5-7 times that in the skin. Now reduce it to the same

value as in the skin, and the time falls to 9207

years, as just

mentioned. Lastly, reduce the internal conductivity to the

skin value, and it falls to 108

years, being now Lord Kelvin's

case.

Cooling of a Body of Variable Conductivity and Capacity

but with their Product Constant.

233. After these illustrations of the curious nature of the

problem, consider another matter. It was mentioned in 229

that the flux of heat into an infinite homogeneous block due

to sources maintaining its plane face at the constant tempera-

ture V was not altered by changing the material under the

skin to another having the same value of the product cJc. Or

thus, by equations (2) and (3), the flux of heat, say C, per

unit area, is

(28)

This is unaltered by a change of material not altering the

value of ck.

The result may be extended to include any number of slabs

of different materials put together to make a block, provided
ck is the same for all

; or, in the limit, to a continuously

heterogeneous material in which ck is constant, with, how-

ever, homogeneity in every slice parallel to the plane face.

Conversely, since the final temperature due to the impressed
V is a state of uniform temperature V everywhere, if we start

with V everywhere constant, and let it subside by internal

diffusion and free escape at the surface, the flux of heat at the

surface will be unaltered by any change of material, provided

every plane stratum is homogeneous in itself, and ck is the

same for all.

A similar result applies to a sphere, with concentric shells

instead of plane slabs, provided the correction for sphericity,

due to the finite size of the sphere, be insensible : or if it be

sensible, then we may have approximately the same result.

Magnitude of the Correction for Sphericity in Various Cases.

234. Another interesting point is the magnitude of the

correction for sphericity. As mentioned in 230, this is very
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large in Perry's 9,600 millions problem of a shell of depth

4 kilom., surrounding a homogeneous sphere of greater capa-

city and very much greater conductivity. The time for the

corresponding infinite block is then 4-7 times that for the

sphere. This was so remarkable that I suspected and sug-

gested to Perry an error in his calculation of Fourier's formula.

But I confirmed the result, and also obtained very nearly the

same result from an entirely different formula which allowed

for the capacity of the skin.

On the other hand, when the surface values of c and k extend

all through the earth, as in Lord Kelvin's problem, the cor-

rection for sphericity is quite small, as mentioned in 227.

It only reduces the time of cooling by -^th part of the 108

years which belongs to the infinite block.

Now in Perry's case we have a large increase in c and a

very large increase in k beginning at a moderate depth. But
if we increase them gradually, so as only to become very big
near the centre, we do not get the Perry effect. To illustrate

this I have calculated a few cases of continuously hetero-

geneous material.

When c and k both vary inversely as the distance from the

centre of the earth, with the same values at the surface as

before, I find that the correction is reduced to -! part.

That is, the 108
years of the infinite homogeneous block is

reduced by J- part to represent the new case of variable c

and k in the earth, instead of by ^ part, as when they are

constant.

Also, to accentuate this effect, let the c and k in the earth

vary inversely as the square of the distance from the centre.

Then I find that the correction vanishes. That is, the time

of subsidence from the initial state of 4,000C. to the given

gradient of temperature at the surface is 108
years, the same

as for the infinite homogeneous block.

Similar results occur in other cases of gradual variation,

with, it may be, very large changes in c and k near the centre,

but very little near the surface, or between the surface and

half-way down ; and clearly great latitude in the law of varia-

tion is permissible, provided we do not introduce great changes
in c and k near the surface.
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Explanation of the last.

235. We may get an insight into the meaning of these

corrections by dividing the sphere into a series of shells of

unit depth. Since the flow of heat is radial, it is like the

diffusion of heat through a series of flat plates of variable

conductivity and capacity. Now the total conductance of a

shell is proportional to its area, and so is its total capacity.

Therefore, if the c and k in the sphere be constant, the con-

ductance and capacity of a shell vary as the square of the

distance from the centre, being zero at the centre, very small

round it, and greatest and increasing most rapidly at the sur-

face. So we see that large variations in c and k near the

centre may make only trifling differences in the state of things
at the surface, as the conductance and capacity of the inner-

most shells are naturally low. Besides that, they are so far

away from the surface where the escape takes place that their

c and k may become of little moment in the practical problem

concerning the gradient of temperature in the skin. These

considerations may help one to understand why, when c and k

vary as the first or as the second inverse power of the distance

from the centre, so little difference is made in the time of cool-

ing to the present gradient.

Also, by substituting a block for the sphere, say a block of

length equal to the radius of the sphere, and of cross-section

equal to the surface of the sphere, this block to be insulated at

its sides and open at its ends, we see that to represent the

sphere of uniform c and k, the c and k in the block must vary

directly as the square of the distance from the far end (corres-

ponding to the centre of the sphere) where they are zero

(equivalent to insulation). On the other hand, when c and k

in the sphere vary inversely as the distance from the centre, c

and k in the block must vary directly as the distance from the

far end. Finally, when c and k in the sphere vary inversely

as the square of the distance from the centre, c and k in the

block must be uniform. That is, we have a homogeneous

block, only it is of finite depth instead of infinite.

We now see why the correction in the last case disappears,

the time for the sphere being the same as for the block. It is

not asserted that the complete solution of the problem is the
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same in both cases, but that the problem is reduced to one of

linear diffusion in a homogeneous medium, and that under the

circumstances the finiteness of depth of the block does not

influence the result sensibly, the secondary waves to and fro

along the block due to its finite depth being of insensible

effect because the depth is so great.

Investigation by the Wave Method of the Cooling of a

Homogeneous Sphere with a Resisting Skin. Effect of

Varying the Constants.

236. In contrast with the above results with continuously

varying c and k, Prof. Perry's case involves so large a correc-

tion for sphericity as to deserve an independent confirmation

by a method not requiring the use of the Fourier expansion.
For it is by the consistency of results obtained in different

ways that a conviction of the accuracy of the results of com-

plicated processes may best be obtained. It is very easy to make
mistakes in calculating Fourier series of complicated forms.

Fortunately, in this case, I find that my operational method
leads straight to the solution by a simple process.

We found in 228, equation (8), that

expresses the temperature Vx just inside the skin due to V
impressed on its outside, when R is the resistance of unit area

of the skin, k the internal conductivity, and q
=

(cp/k)*. This

is in the plane problem.
Now get the corresponding solution for the sphere. Let V

be the temperature at distance r from the centre of a sphere
of radius a and of uniform c and k due to V impressed on

the outside of an enveloping skin. Then V is given by

a shin gr

r shin qa

l- + Ekqcoihga
a

To prove this, note that in the first place V satisfies the

spherical characteristic

* -**' (31)
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next, that it is finite at the centre
; and, lastly, that at the

inside of the skin, where r = a, it satisfies the condition of

continuity of the flux of heat there, or

This is complete. But what we want is Yx. So put r = a

in (30). This makes, if s = Ek/a,

y __YO_ (33^
I-8 + Ekqcothqa

which gives Vx in terms of V . Comparing with (29) we see

that 1 becomes 1 - s (which is a trifle less) and Ekq receives

the factor coth qa, which brings in an infinite series of

secondary diffusive waves between the centre and boundary.
To show them explicitly, we may develop (33) by long

division to the form

Y! = (a + aft + a$* + . .
.)
Y

, (34)

where y = ~^a
. (35)

Here r/ V is the result of the primary wave from the source

V outside the skin, as modified by sphericity ;
the second

term is the result of the first wave reflected from the centre,

the third term results from the weaker second reflected wave,
and so on.

But all these secondary waves are of insensible effect in our

problem, as we know by the solutions previously given when
the proper numbers for c and k, &c., are put in. The

significant solution is merely the first part independent of y.

This amounts to the same as making a infinite in the coth

function, when it reduces to 1. So, by (33),

is the practical solution in operational form. We see that it

is equivalent to (29), only with a changed constant.

We also know, by (11) and (12), 228, that only the first

power of q is significant in the earth problem. This makes

(36) become

<>
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which, by (5), is converted to the algebraical form

the required result. The subsidence solution is got by sub-

tracting the right member from V . This makes

- v"

(1-8)1 fcx(l-

if Vj= gl, where g is the gradient of temperature in the skin

of depth I. We may write (39) thus,

(40)

if -(l-,)'l + _ZlA (41)
g \ (l-s)lgJ

Now (40) is of the same form exactly as (12), with a changed
value of the gradient. The effect of the sphericity is, there-

fore, the same as changing the gradient in the plane problem
from g to g.

Now put in the numerical values as in 230. That of s is

0-0495, I is 405
,
and V is 4000. So

g'
= 2-1819 g, (42)

which is to be used in (40). This increased value of g requires
t to be reduced as its square. So the time required to make g
be -rrrs ig (2-1819)

2
,
or 4-76 times as long for the infinite

block as for the sphere. Q.E.D.
If desired, the full expression for the secondary waves can

be developed from (34), but all we wanted was a direct cor-

roboration of the result got from the Fourier expansion. The
method followed is an example of the theory of 12 of my
paper

" On Operators in Physical Mathematics," Proc. E. S.
9

Vol. LIL, 1893, which is of very general application.

The formula (39) allows us to see readily the effect of

varying the constants. The time of cooling varies directly as

c and as the square of V
,
so these may be dismissed at once.

There are left / and k. Varying k only, I find that t has a

maximum and a minimum when I is under 7 kilometres. The
minimum is of no consequence. With Z = 4 kilom., c = 2-86,
the maximum occurs when^ = 73, and is = 95-5, the unit

being 108

years. That Perry should have spotted the maximam
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so closely is (unless he is a witch) one of the most remarkable

coincidences in ancient or modern history. But the hump is

so flat-topped that much smaller values of k will do for big t.

Thus &/&!
= 30 makes t be about 90.

Another (and perhaps physically better way than increasing

k) of getting big t is to increase the depth of the crust. Then
a smaller k will do. Thus with I = 20 kilometres we get t = 68-5

when k/k^
= 15-95 only. Aad I = 30 kilometres allows us to have

= 53-4 when k/k is only 10-65, and = 95 when k/h is 21-3.

These results altogether favour Perry's view, and are better

than his own example.

Importance of the Operational Method.

237. We now leave heat problems, and pass to the theory
of electrical matters involving diffusion. Pure diffusion, as of

heat, comes in principally in two different ways. There is,

first, Lord Kelvin's electrostatic diffusion in a submarine

',
cable when perfectly insulated and free from self-induction.

, Secondly, there is Maxwell's diffusion of magnetic induction

in electrical conductors. There are also two comparatively

unimportant cases, viz., diffusion in a cable or other circuit,

when it is the self-induction and the leakage that control

matters, and a kind of diffusion in a magnetic conductor. Of

these, the electrostatic diffusion involves the simplest funda-

mental ideas, and will therefore occupy us first. After that,

diffusion in electrical conductors will naturally follow.

How these diffusive propagations arise from the general

theory of electromagnetic waves has been explained in Chap-
ter IV. in considerable detail, including the more difficult case

of elastic diffusion. What we have now to do is to consolidate

the knowledge by actual exemplification. We shall then be

able to explain the meaning of the operational mathematics

above employed, as it turns up naturally. The physics itself

will serve to guide us along to useful methods and results.

At present the above illustrations from the theory of heat

diffusion will serve a double purpose. First, to illustrate Lord

Kelvin's theory of the age of the earth and its recent exten-

sion by Prof. Perry, the practical import of which, however,
remains to be discovered, as very uncertain and speculative

data are involved. Next, to show that my operational method
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of dealing with these and similar more advanced problems is

of importance. I assert that by its means problems can be

attacked and successfully solved with greater power than by

any other known method. Furthermore, that it is essentially

simple in operation ;
so that, although it goes deeper, yet it

requires less work and less mathematics of the complicated

kind. And, finally, that it is for the above reasons and

others quite practical. It is rather disagreeable to have to

be self-assertive and dogmatic (especially when one thinks of

the always possible risk of error); but there may be times

when it becomes a duty e.g., when mathematical rigourists

are obstructive.*

*
[March 21, 1895.] After writing the above, Prof. Perry wrote asking

about the case of capacity and conductivity functions of the temperature,

saying, "X. says he can't do it, doesn't know anyone who can, and is sure you
can't." The general case is perhaps hard (I did not try it), but I found at

once that when c and k vary together, according to any power, integral or

fractional, of the temperature, the solution was quite easy, the characteristic

becoming linear. This is obvious when done. I sent Perry some solutions

of this kind. He then himself extended the matter by taking c and k to be

any similar functions of the temperature. This is also obvious when done

(Perry, Nature, Feb. 7, 1895, p. 341). He finds that if c and k increase

s per cent, per lOOdeg., then Lord Kelvin's age is multiplied (l + s/5)
2

times
; e.g., by 121 if s 50. His data were due to Dr. K. Weber, and

indicated a large increase in c and k with temperature. If correct, Prof.

Perry would be fully justified, though to an uncertain extent. But Dr.

E. Weber has supplied fresh data which do not show any notable increase

in k; whilst that in c is much less than Perry assumed. So Lord Kelvin

(Nature, Mar. 7, 1895, p. 438) concludes that Perry is wrong. He is also

inclined to reduce the initial temperature, and so bring down the age even

to 10 million years ; or, allowing for other things, to about 24 millions, in

agreement with Mr. Clarence King's conclusion in comparing the calcu-

lations of Helmholtz, Newcomb, and Kelvin on the age of the sun. It will

be interesting to see whether the geologists will continue their downward
course to 24 or 10 millions (Sir A. Geikie, Nature, Feb. 14, 1895, p. 367, is

quite satisfied with only 100), or whether mathematical physicists will, by
fresh data, be obliged to go up to meet them. Prof. Perry said (Nature,
Jan. 3. 1895, p. 224) that his conclusions were independent of the cor-

rectness of R. Weber's results (the old onesj.
" Lord Kelvin has to prove

the impossibility of the rocks inside the earth being better conductors

(including convective conduction in case of liquid rock in crevices) than

the surface rocks."
" The rocks at 20 miles deep are not merely at a high

temperature, but also under great pressure." In any case, however, it

must be difficult to come to a reliable estimate as to how far Prof. Perry's

important principle is really operative.



CHAPTER VI.

PUKE DIFFUSION OF ELECTRIC DISPLACEMENT.

Analogy between the Diffusion of Heat in a Rod and the

Diffusion of Charge in a Cable.

238. In order that the problem of the propagation of

electrical disturbances along a telegraphic or telephonic circuit

shall reduce practically to that of the diffusion of the electric

displacement after the manner of heat in the celebrated theory
of Fourier, it is necessary for the self-induction to be ignor-

able, and that the external disturbances to which circuits are

liable should be removed. It would not be at all desirable to

bring a practical telegraph circuit to such a state closely,

because it is a state of relative inefficiency, accompanied by
the greatest possible distortion in transit, and is therefore

a state to be avoided by, as before explained,* making
self-induction be of importance, if efficient rapid signal-

ling with little distortion be required. The nearest approach
to the theory of diffusion being in slow signalling through
a long cable, we make believe now that this case is truly

represented by the reduced forms of the more general

equations appropriate to elastic diffusion.

On this understanding the two circuital equations, when

suitably transformed as explained in 200-202, reduce to

- d
-BpV, -f=KC, (1)dx ax

*
215-218, Chap. IV., Vol. L



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 81

where R and S are the resistance and permittance per unit

length of line, whilst V and C are the transverse voltage and

the circuital gaussage of the more general theory, but which

may now be called the potential difference of the wires and

the current in them, if there be a pair of wires. Or, if we
have a cable in question, using only one wire, then we may
call V simply the potential and C the current.

From (1) we derive the characteristic

g-B8pY-/ly. (2)

In order to translate to heat problems, perhaps the easiest

way is to consider the longitudinal conduction of heat in a

rod. Then V is the temperature and C the flux of heat,

whilst R-1 and S are the conductance and capacity for heat

per unit length of rod. But the rod should be insulated

laterally. It is easy to insulate a rod electrically ;
but it is

much harder, if not impossible, to insulate it thermally to an

equivalent extent. So, if the flow of heat in a real rod be

rejected for want of a sufficiently close similarity to the elec-

trical problem, we may imagine an infinite number of rods

fitted together in contact side by side. Just as jerry-built

houses in a street mutually support one another, and prevent
the collapse that would occur were they separated, so will

the rods prevent the lateral escape of heat from their

neighbours, so that a longitudinal flux of heat is possible in

the same way as in a perfectly insulated rod. This is the

case of the linear flow of heat in an infinite homogeneous
conductor. These remarks are to enable the reader to

translate from electrical to heat problems readily. On
the whole, the cable is preferable in the study of diffusion,

on account of the facility with which terminal and other

auxiliary arrangements can be imagined, and, if need be,

practically realised. The beat problems are not so con-

venient in this respect. On the other hand, there is no

doubt greater scientific interest in heat problems when they
concern such stupendous questions as the age of our

common mother earth
;

but since this is primarily an

electrical work, I cannot go on further with that question,

but leave it to David and Goliath.
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The Operational Method assists Fourier.

239. We have now to consider a number of problems

which can be solved at once without going to the elaborate

theory of Fourier series and integrals. In doing this, we

shall have, preliminarily, to work by instinct, not by rigorous

rules. We have to find out first how things go in the mathe-

matics as well as in the physics. When we have learnt the

go of it we may be able to see our way to an understanding of

the meaning of the processes, and bring them into alignment

with other processes. And I must here write a caution. I

may have to point out sometimes that my method leads to

solutions much more simply than Fourier's method. I may,

therefore, appear to be disparaging and endeavouring to

supersede his work. But it is nothing of the sort. In a

complete treatise on diffusion Fourier's and other methods

would come in side by side not as antagonists, but as

mutual friends helping one another. The limitations of

space forbid this, and I must necessarily keep Fourier series

and integrals rather in the background. But this is not to

be misunderstood in the sense suggested. No one admires

Fourier more than I do. It is the only entertaining mathe-

matical work I ever saw. Its lucidity has always been

admired. But it was more than lucid. It was luminous.

Its light showed a crowd of followers the way to a heap
of new physical problems.
The reader who may think that mathematics is all found

out, and can be put in a cut-and-dried form like Euclid, in

propositions and corollaries, is very much mistaken; and if

he expects a similar systematic exposition here he will be

disappointed. The virtues of the academical system of

rigorous mathematical training are well known. But it

has its faults. A very serious one (perhaps a necessary

one) is that it checks instead of stimulating any originality

the student may possess, by keeping him in regular grooves.

Outsiders may find that there are other grooves just as

good, and perhaps a great deal better, for their purposes.

Now, as my grooves are not the conventional ones, there is

no need for any formal treatment. Such would be quite

improper for our purpose, and would not be favourable to
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rapid acquisition and comprehension. For it is in mathe-

matics just as in the real world
; you must observe and

experiment to find out the go of it. All experimentation
is deductive work in a sense, only it is done by trial and

error, followed by new deductions and changes of direction to

suit circumstances. Only afterwards, when the go of it is

known, is any formal exposition possible. Nothing could be

more fatal to progress than to make fixed rules and conven-

tions at the beginning, and then go on by mere deduction.

You would be fettered by your own conventions, and be in the

same fix as the House of Commons with respect to the despatch
of business, stopped by its own rules.

But the reader may object, Surely the author has got
to know the go of it already, and can therefore eliminate

the preliminary irregularity and make it logical, not experi-

mental? So he has in a great measure, but he knows better.

It is not the proper way under the circumstances, being an

unnatural way. It is ever so much easier to the reader to

find the go of it first, and it is the natural way. The
reader may then be able a little later to see the inner

meaning of it himself, with a little assistance. To this ex-

tent, however, the historical method can be departed from to

the reader's profit. There is no occasion whatever (nor
would there be space) to describe the failures which make

up the bulk of experimental work. He can be led into

successful grooves at once. Of course, I do not write for

rigourists (although their attention would be delightful) but

for a wider circle of readers who have fewer prejudices,

although their mathematical knowledge may be to that of

the rigourists as a straw to a haystack. It is possible to

carry waggon-loads of mathematics under your hat, and yet

know nothing whatever about the operational solution of

physical differential equations.

The Characteristic Equation and Solution in terms of

Time-Functions .

240. Now, consider the characteristic equation (2) above.

If q were a constant, its solution would obviously be

V = e^A + c-^B, (3)

VOL. II. D
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where A and B are any constants. That is, there are two

independent functions of x which satisfy (2). The constancy

of A and B means independence of x.

It is equally true that (3) is the solution in the same

sense when <f has the operational meaning RSjj, because

the formal satisfaction by test is the same. The con-

stants are still constants with respect to x, but they

are now any functions of t. That is, (3) is a form of the

general solution of the characteristic. To go further, wo

have to find A and B to suit special cases, and then by
the execution of the processes implied by the exponen-

tial operators convert the solutions from operational to

algebraical form. There is a lot of assumption here; for

example, that the operations can be effected, as they in-

volve preliminarily unintelligible ideas. The best proof is

to go and do it.

The easiest solutions are those relating to the effects pro-

duced at a given spot by causes acting there. Those pro-

duced at a distance can be easily deduced later. So, now we

take some special cases to begin the treatment. Let an

infinitely long cable be laid in any depth of water. It need

not be laid straight, so by winding it about, even the finite

size of the seas of the earth might be sufficient to contain a

sufficient length for our purpose, which is, that the near end of

the cable is to be freely at our disposal to operate on, whilst

the far end is so very far off that it cannot react sensibly on

the near end, and to a great distance therefrom, in a large

interval of time.

Let the cable be initially free from charge, and be then

operated upon by a battery of voltage e and no resistance at

its beginning, where x = 0. That is, one end of the battery is

put to line, and the other to earth, the absence of resistance

being merely a practical simplification. The impressed volt-

age e may be regarded as any function of the time t (real,

of course, but not necessarily continuous). The effect is

to raise the potential at the beginning to V =
e, and V

may be regarded as the sole cause of disturbance in the

cable itself further away. Then A = and B = V in (3),

making
V = -*V

, (4)
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for the characteristic is satisfied, and V =V at x = 0, and there

is no other imposed condition. Other cases, in which A is not

zero, will come later.

By (4), and the second of (1),

C =
-|V=|r"V ; (5)

the first equation giving C in terms of V at the place, the

second in terms of V , We also have

(6)

if C is the current at x =
;
and also

The last equation is the simplest in general, because V
can be made simple. The operator j/R turns potential to

current. It is, therefore, the conductance operator of the

cable. Similarly,

So the resistance operator is

We see at once from (7) that the current entering the cable

depends only upon the ratio of S to R. Its propagation in

the cable itself depends on their product.

Steady Impressed Force at Beginning of Cable. Fractional

Differentiation. Simply Periodic Force.

241. Now let V be such a function of the time as to be

zero before and constant after t = 0. What is C ? To find it,

we require to know the meaning of p*V . Now the problem
stated is a well-known one in Fourier's theory of heat con-

duction
;

and when by Fourier's methods we develop the

solution we find that it is

Comparing with (7), we see that we require to have, on
removal of unnecessary constants,

1*1 =Wr*, (A)
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a fundamental formula. The 1 means that function of the

time which is zero before and unity after t = 0. We are only
concerned with positive values of the time. This way of find-

ing the meaning of a fractional differentiation of a given
function is purely experimental. Any problem involving p*\

in the operational form of solution will do for the determina-

tion of its value, by comparison with the solution by Fourier's

method. On the other hand, the result is a simple funda-

mental one in fractional differentiation, and does not need

Fourier. But the reader presumably cannot take in the idea

of a fractional differentiation yet. So, for the present, let it

be taken as a fact that the value of p*l is
(irt)-*. We can

make use of this fact extensively in Fourier mathematics with

much advantage, without necessarily going a step further in

the direction of fractional differentiation.

By (9) we see that the current entering the line is infinite

at the first moment (because of the absence of self induction),
and then falls, according to the inverse square root of the

time, to zero. At first, the slope of V in the line is infinite at

its beginning, and so is C . But as the cable gets charged the

slope gets smaller. Finally, the potential is V everywhere
and the current is zero. Or we may say that the final cur-

rent is zero, because the resistance is infinite. There can

only be current when the charge is increasing. It really

never stops increasing, but the potential near the beginning gets

to be so nearly V ,
as to prevent the very distant parts of the

cable receiving their charge except at an insensible rate.

Mathematically speaking, we say that V = V everywhere,
when t = oo .

The final states of V and C may also be seen from (4) and

(5). Put p = in them and they reduce to V = V
,
and = 0.

This process is general. Putting p = in an operator destroys
time-variation, and gives the ultimate steady form, when there

can be a steady state.

Another way of looking at the matter is to consider how wo

get the simply periodic solution out of an operational solution,

when the impressed force is simply periodic. If the frequency
is n/27r, we put p = ni in the operator. Now p = is equivalent

to w = 0, or an infinitely prolonged period, which means a

steady state.
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In the present case, the simply periodic solution is, by (7),

Here i means p/n ; that is, differentiation with respect to nt
;

so (10) is complete when V is given in amplitude and phase.

Say it is e siunt, then

\smnt + cosnt)e. (11)

It should be understood, though, that time must be allowed

to enable this state to be arrived at.

Effect of a Terminal Arrangement. Two Solutions in the

Case of a Resistance.

242. Still keeping to the beginning of the cable, let us

examine the effect of a terminal arrangement. Let V = ZC be

its equation per se, so that Z is its resistance operator. Now,
that of the cable is (B/S^)

1
,
as before seen

;
so if Z is put

between the cable and earth with the impressed voltage acting,
we have

to express the current through Z and entering the cable. This

is because the operators are additive like resistances. Also,
we have V = (B/S^) C as before ; consequently by (12)

B
This finds V , the potential at the beginning of the cable, in

terms of e.

The operational solution (13) may be readily algebrized (or

converted to algebraical form) in various cases of Z, practical
and unpractical. One case will do to begin with to illustrate

the conversion.

\
i

Let Z be the resistance operator of a coil, say

(14)
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where r is its resistance and I its inductance. Then

\r e~
/S?A* (

15
)

"I / 7 \ / ^/^ \

is the operational solution giving V in terms of c.

This may be algebrized as follows. By division,

I-...}*
(16)

Here in Z we have only complete differentiations, therefore in

union with the even powers of (Sp/R)* we still have complete

differentiations. All these terms may be ignored when e is,

as we shall suppose, constant after t=0, having previously

been zero, and Z is a mere resistance. The cases of a per-

mittance and an inductance will follow. So (16) reduces to

?*2?* )(*)>
We know p ll already, so the solution is found by complete

differentiations performed upon it. Thus, in the case of no

self-induction, when it is a mere resistance that is concerned,

This makes a series in descending powers of t\ Thus,

When t is big enough, the only significant term is e, the final

value. When t is smaller, the next becomes significant. When
smaller still another term requires to be counted, and so on.

But we must never pass beyond the smallest term in the series.

As t decreases, the smallest term moves to the left. As it

comes near the beginning of the series, the accuracy of

calculation becomes somewhat impaired. When it reaches

the first t term, so that the initial convergency has wholly

disappeared, then we can only roughly guess the value of the

series. So (19) is unsuitable when t is small enough to make
the initial convergency be insufficient.

It is said that every bane has its antidote, and some

amateur botanists have declared that the antidote is to be
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found near the bane. We have an example here. The

antidote is got by algebrizing (15) in a different way. Keep-

ing for the present to the simple case of a resistance only

1 = in (15) we may write

R

(20)

l+(_^_)
\>*SpJ

or, by division,

This we may split into two series, viz. :

-{*<)*>
In the second line we have complete integrations to perform

on e. This is done by

which is obvious enough, when, as at present, n is integral ;

viz., 1, 2, 3, &c. In the first line we have to make the same

complete integrations upon the function p*l. This is also

done at sight by (B), when the matter of fractional differentia-

tion is understood. But at present we can do without it, and

integrate directly thus :

r-r*-*

jr-rt-JL,
i-t

and so on, which is easy enough. So, by using (A) in the

first line of (22) we obtain the complete solution in the form

We see now that we can calculate V conveniently when t

is small. But (23) is bad when t is big. Then we may con-

sider (23) the bane, and (19) the antidote. They are comple-

mentary, though not mutually destructive.
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Theory of a Terminal Condenser.

243. There is another simple case in which substantially

the same process obtains as in the last example. Superficially

considered, the problem of the effect of a terminal condenser

in modifying the action of an impressed force en a cable is

entirely different from that of the effect of a terminal resist-

ance. Yet there is a very close analogy. Thus, let the

terminal arrangement be a condenser of permittance s. Its

equation is C = spV, so its resistance operator is
(s/>)

-1
. Put

this for Z in equation (13). Then

TTT/BJM rrr (24)
1 +

(
1 I +

sjt \ R / aq

if a = s/S, or that length of cable whose permittance equals

that of the condenser, and q is as before.

Now, to show the analogy with the effect, of a terminal

resistance, put Z = r in (12), making

g 1 =-'
(24A)

r + 1 4-

q bq

if b = r/'R, or that length of cable whose resistance is the same

as the terminal resistance in the changed problem.

Comparing (24) with (24A), we see that the operational

solutions are of the same form, only differing in the changed

constant, a becoming b. So, if they are equal, we see that the

potential at the beginning of the cable due to the impressed
force runs through the same course when the condenser is

interposed as the current (multiplied by r) does when a

resistance is interposed.

To obtain the effect at a distance requires in both cases the

introduction of the same operator
~QX

. Consequently, we
know that the course of the potential throughout the whole

cable in the condenser problem is the same as that of the

current in the resistance problem, due to the same impressed

force, which may be any function of the time. And, we do

not need to algebrize the solutions in order to predict this

result.
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Perhaps some people will say (as usual) that they do not

like "algebrize" ;
that it is un-English, &c., &c. People are

always saying something. What is more important is that a

word to express the idea of conversion from operational to

algebraical form is much wanted, and that "
algebrize

"
seems

to answer the purpose very well. Similarly we might say

that we logarize a number when we take its logarithm, and

delogarize it when we find the number whose logarithm it is ;

and so on.

When e is a steady force, beginning when = 0, we may
algebrize (24) in two ways as before, and I will do it rather

fully now, merely remarking that the work can be done at

sight after a little practice by using equations (A) and (B),

extended in the latter case to fractional degrees, a matter to

be considered later. Thus, to obtain a convergent solution,

expand the operator in descending powers of ay by division,

makin

(
25

)

Here the even powers of q involve complete integrations, to be

done by (B) at sight. The odd powers involve complete in-

tegrations performed upon p~il, with limits and t. Thus,

- -
lip A-y A3

//

where A = ESa2
,
which is a time constant. Also, we know

already that /;~*1
=

2(0r)*, so (26) is converted to

This is complete, and answers well, except when t is big. so

that many terms have to be used.

To get the alternative solution, expand the operator in (24)

in rising powers of qa. Thus,

V = -^L_=
(1

-
qa + <f? -

'f* + 2<w- (28)
1 +
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Here the even powers of q contribute nothing (which is not so

simple a matter as it looks), so

V =
(1 + fa

9 + 2
4a4 + 2

G
rt
G + . . .

) qae. (29)

Here we have to find qa 1, which is known, and then execute

complete differentiations upon it. Thus,

7Tt

This formula answers well for big t, and also when t is not so

small as to render the initial convergency insufficient.

The condenser acts like a short-circuit at the first moment,
so that the potential at the beginning >pf the cable acquires

the full value e instantly. It then falls to zero as the con-

denser gets charged, in accordance with (27) and (31). Of

course, the cable receives the same charge as the condenser ;

that is, the current is continuous through the condenser into

the cable, according to Maxwell's now orthodox theory. But

as the charge spreads itself over a condenser of infinitely great

permittance, its density attenuates to nothing, so that V = is

the final state of the cable, although the total charge is finite.

That the final V is zero is also to be seen by the operational

solution (24), when we put p = in it.

Theory of a Terminal Inductance.

244. As a third example, let the terminal arrangement
be an inductance coil. For simplicity, let its resistance be

zero. If really small the resistance may be merged in that

of the cable itself without much error, and this is allowable

when we desire to exhibit the effect of the inductance alone,

which is materially different from that of a resistance or a

permittance.
The terminal Z is now lp, so that, by (13), we have

'+"'
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if f3 = Z/R
2

S, a constant. It is quite easy to obtain the con-

vergent algebraical solution. Expand in rising powers of fq,

thus

-...}. (33)

Here the even powers of q involve complete integrations on 1,

and the odd powers complete integrations performed upon

(fg)-
1

,
so there is no new difficulty. To ease matters, put g

for KS/
a
. It is a time constant. Thus (33) is the same as

Vfl -('
1 +J-+ J_+...

>

)^-*; ^T,^-r
J(fjpy

i +
i

+...)* (34)

So, using (B) in the second line, and the known value of

p~ll in the first line, we obtain

(35)

I 5.7.9 5.7.9.11.13.15

It is not laborious to calculate the curve of V from this

formula, at least up to t = 5 or 6 times g. I get the results

in the following table :

t/ff
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the string be first in equilibrium. Then apply a force e close

to the fixed end. The string will at once be transversely dis-

placed to a distance V , say, proportional to e, and the rest of

the string will follow suit in time, but without any vibration,

owing to the absence of inertia. This illustrates the case of

no terminal inertia in the cable problem, V becoming e imme-

diately, and V becoming e everywhere in the cable later.

Bub next attach a mass to the string at the place of appli-

cation of the force, close to the fixed end. When the force is

applied it will now take time to fully displace the mass, which

will then swing past its equilibrium position and oscillate

about it. The attached mass corresponds to the coil in the cable

problem. The table on the preceding page shows the initial rise

of V and its passage beyond the value e to its first maximum,
and back again to a little below the equilibrium position.

The alternative formula is more difficult to obtain, and as

its derivation from the operational solution involves more

advanced ideas than have yet presented themselves, I will

merely give the result here. It is

-..., (86)

which is useful in the later oscillatory part of the pheno-
menon. The period is 4?n// J3. The descending series must
be counted up to the smallest term

; but, of course, when it is

close to the beginning of the series, and the accuracy of cal-

culation becomes impaired to the possible extent of the size

of the smallest term, or, more likely, to the extent of half its

size, the previous convergent series should be employed. The

oscillatory function in (86) arises from the infinite series of

even powers of q in the operator when expanded in rising

powers of q, a matter to be returned to.

The General Nature of Electrical Operators.

245. I have worked out the above examples (except the

end of the last one) in a manner suited to one who has not

done any work of the kind before, with a considerable amount
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of detail in the transformations. But when the go of it is

perceived, the transforming work may be simplified by atten-

tion to certain rules which are obeyed. So now, before pass-

ing to problems of an elementary kind, concerning the propa-

gation of effects to a distance, I interpolate some explanatory

remarks about operators in general. Later on, we may be

concerned with the theory of fractional differentiation.

Observe, in the above, that we first obtain the operational

solution, and that this is usually easily got and is of simple

form at least in the examples used, which admit of generali-

sation. Now, the operational solution is got by algebraical

processes, of the same nature as if we were dealing with

merely conductive circuits, only replacing the resistances con-

cerned by the appropriate resistance operators, though treat-

ing them as if they were still resistances ;
that is, constants.

Thus, in getting (24) for example, if the condenser were a

a resistance, say Z, and the cable also a resistance, say z,

then the current due to e would be

<V= (37)

obviously, and the potential on the right side of Z would be

Now, in the real problem, we work in the same way, with

different meanings attached to Z and z. They become the

resistance operators. They are the functions of p, the time-

differentiator, which take the place of resistance in the equa-
tion V = RC

; viz., Ohm's law applied to a simple conductor,
which connects the V and C thereof, V being the fall of poten-
tial through R in the direction of C, the current. If this

becomes V = ZC when there is stored electric and magnetic

energy concerned, we call Z the resistance operator, because

it replaces resistance, and reduces to resistance in steady states.

That the Z's may be treated as resistances may be seen by

considering the nature of the well-known problem of a con-

ductive net of wires. We have an equation V = RC for every

branch, or, more generally,

+ V^RC, (39)
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if e is an additional impressed force therein. If, then, we sum

up along any path in the net, we get

2* + 2V = 2RC. (40)

But 2 V is zero in any circuit, so we have

2<? = 2RC (41)

for every circuit in the net. This being the case, or, more

generally, (40) being true for any particular path in the net,

there is only one thing more required to determine C in all

the branches dut to all the e's, and that is the circuital nature

of the current itself, which connects together the values of all

the C's meeting at a junction, and makes 2 C = there. The

problem is now determinate, and the algebra of simple equa-
tions enables us to write down the expression for the current

in any branch due to the impressed force in the same or

in any other branch. When it is a very complicated net

determinants are useful
;
but in most practical problems they

are a useless complication, and the work is easier without

them, and is more instructive from the physical point of view.

Now, instead of the branches of the net being simple con-

ductors following Ohm's law in the above way, let them be

arrangements storing electric and magnetic energy that is,

arrangements of condensers and coils
;
but still such that the

current in any branch is the same at both ends, and such that

there is no mutual action between one branch and another,

though there may be mutual action between the constituents

of a branch. Clearly, then, the currents, though now variable

with the time when the forces are steady, are subject to identi-

cally the same conditions of continuity. But the equations of

voltage are changed. We now have

6 + V= ZC (42)

in any branch, where Z has to be found from its detailed struc-

ture. Also

2*+2V=2ZC (43)

along any path in the net, and, 2V being zero in a circuit,

2=2ZC (44)

in any circuit in the net. There is, therefore, a complete
formal similarity between the problem of merely conductive
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circuits and the general one involving stored energy. Every

R becomes a Z. The equations which find the C's in terms

of the e'a are, therefore, identically the same, only with the

R's replaced by Z's. These equations are the operational

solutions. So the rule is, work out the given problem as if

the independent branches were mere resistances ;
then give to

the Z's their actual functional expressions in terms of p
and constants ;

the result is the operational solution. It

follows that anybody can work out electrical problems of an

advanced nature so far as the operational solutions are con-

cerned, by common algebra, assisted by electrical ideas. Nor

need he stop there, for the very important case of simply

periodic variations can be fully investigated by a continuation

of the algebra from the operational solution to the algebraical.

For, when a single simply periodic impressed e acts with fre-

quency w/27T, the power of _p
2 in the operators is - ri*

; so, by

putting p = ni, we obtain an algebraical solution which may
be reduced to the simple form (a + bi) e, where the i signifies

p/n or d/d(nt). It is then fully realised.

Geometrical methods are sometimes used, involving the

rotation of vectors in a plane. Their value seems to me to be

principally illustrative. Their drawback is the great compli-

cation of the diagrams that arise when we depart from very

simple problems, and the hard thinking and labour required

to work out results. The algebraical method, on the other

hand, works with admirable simplicity, even in complicated

problems. It is, however, only a special case of resistance

operators, in the general use of which we are not confined to

simply periodic variations, the e's being any functions of the

time in the operational equations. The application of these

operators is not confined to condensers and coils, but extends

to electromagnetism in general, with waves in conductors

and dielectrics, and dissipation in space, the ultimate reason

being the linear nature of the equations. Nor is it confined

to electrical problems, but applies generally to the mathe-

matical sciences involving linear equations, and can be used

with advantage therein.

Returning to the network before considered, if a branch is

itself complex, its Z must be got by properly eliminating all

the internal V's and C's, so as to lead to a resultant equation
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V= ZC, where V is the voltage on and C the current in the

branch as a whole that is, at the terminals. But should

there be mutual influence between a branch and some other

one, a further generalisation is required, which presents no

difficulty save in the extra work involved, which, however, is

still of the same nature in treating p and functions of p as

constants for the time.

A remark should be made here about the figure in 242.

The impressed force is put between the Z and earth. It is

therefore necessary that the current should be the same at

both ends of Z. But if we put the e between Z and the

cable, which will make no difference in the state of the cable

in the examples above, we can attack more general problems.
For Z may now have many branches

;
for example, a com-

plicated arrangement of condensers and resistances like the

cable itself. Thus we shall have

(45)

Bp

when e is put between two cables, Ej and Si being the constants

of the new one, on the left side. If Rj/Si^B/S, the current

is halved by the substitution of the second cable for direct

earth. To find V , multiply by the resistance operator of the

first cable, viz., by (B/Sj?)*. To find V1} the potential of the

beginning of the second cable, multiply by the negative of

(Bj/Sijp)*,
the resistance operator of the second cable. The

changed sign is necessary on account of the current being

from one cable to the other. If E1/Sl
= E/S, the potentials are

\e and - \e. But in general they will not have the same

numerical value, though V - Vl=e always.
It should be understood that these potentials have nothing

indeterminate about them, like the electrostatic potential, for

they are really transverse voltages in the dielectric of the

cables. They are proportional to the displacement, and to

the charge, so that the diffusion of V in the cables is repre-

sentative of the diffusion of the charge on the wires. No
constant can be added to this kind of V, of course, in our

problems, as it would introduce extra energy, having no con-

nection with our impressed force.
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The Simple Waves of Potential and Current.

246. Let us now pass to some simple cases concerning
effects produced at a distance. I remarked before that the

solutions concerning the effects produced on the spot by an

impressed force were the easiest to investigate. This is true

when the constraint on the spot (or terminal condition) is not

too complicated. But some cases of the effects produced at a

distance are quite easily examined operationally, provided the

terminal conditions are of the simplest kind.

Go back to 240. To find V at a; due to V at #=0, we
have the operational solution

V= e-"V . (1)
This expands to

= (cosh qx shin qx)V . (2 )

Here we have even and odd powers of q, so there is nothing
new in the way of operations. Taking V =

<?, constant, be-

ginning when t = 0, we may discard the even powers of
^/,

and

write

V =
(1 shin qx)e

and since this involves complete differentiations performed

upon ql, which is known, the full algebraical result follows at

once :

_+ '

This is an exceedingly important formula in diffusion, both

in itself and as the basis of other formula, so we may as well

give some details about it.

If we differentiate to x we shall obtain the formula for the

current. Thus

e

VOL. II.
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Here we recognise the exponential formula, so we may write

it finitely, thus,

which is another important formula in diffusion.

We got (5) by differentiating (4) to x. But if we please we

may get it in the same way from any of the previous opera-
tional forms. For example, from (3) we obtain

(7)

which gives rise to (5) or (6) on development.
Or we may start from the initial operational solution for

C, viz.,

EC = <r^KC =
<r**ge. (8)

On expansion, this makes

BC= (cosh qx
- shin qx)qe. (9 )

In developing V we rejected the cosh function, excepting

the constant term 1. But now we must reject the shin func-

tion, because (on account of the q factor) the even powers of

q go with it. So we get

EC = cosh qx . qe, (OA)

which is equivalent to (7). I give these variations to let the

reader see that the solutions do not arise by fortuitous acci-

dent, but that there is a consistent fitting together.

That these solutions for V and C are the solutions may be

tested by their satisfying the necessary conditions : (1), the

characteristic ; (2), the terminal condition ; (3), the time con-

dition, that V and C are zero initially everywhere except at

the origin. The last, however, is troublesome numerically, on

account of the very slow convergence when t is small. But

the functions are well known, so there is no need to be

frightened.

The Error Function. Short Table.

247. The V/* formula (4), observe, is a function of RSit-
2
/4*

= y
2

, say. So we may write it

e * 3 5
II 711
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which is the same as

= l-erf y.

(11)

(12)

A comparison of (11) and (12) defines the function which

is sometimes called the error function, and denoted by erf y.

A pretty full table was given by De Morgan in the Ency.

Met.,
**

Theory of Probabilities," going by steps of 0-01 from

y = to 2. This table is reproduced by Lord Kelvin in his

"
Physical Papers," Vol. III., p. 434. But a much briefer

table is all that is needed for general purposes, and for curve

tracing, say with step 0*05. Perhaps even step O'l would be

enough.

y-
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equal steps 0-05 in y itself. They therefore serve to plot
the curve of the derivative, that is, the curve of current,,

represented by formula (6), which may also be used directly.

The Way the Charge and Current Spread.

248. In Fig. 1 is represented the way the potential (or the

charge) extends itself into the cable when the potential at its

beginning is raised to and maintained at a steady value. The
abscissa is length from the beginning, and the ordinate is the

potential. The curve 1 is got by making KS = 4tf, and vary-

ing x. Or if t' = 4/RS, then curve 1 represents the state oi

things when t' = 1. We may use any unit of length we please,.

so that the base line may be 2 centim. or 2 kilom., or 2,000
kilom. if we like.

Now V/e is unchanged by altering x2 in the same ratio as t'.

So when t' = 4 we have the same values as before with doubled

values of x. This is shown by curve 4, representing the

potential distribution when ' = 4. Doubling x again for

the same values of V/e, we get the curve 16, showing the

potential when
' = 16. Similarly, by halving x in the curve 1,

we obtain the curve J, showing the potential when t' = \ ; and

halving x again brings us to the curve f$, showing the

potential when t' = T\-. The initial potential curve is simply
the vertical line OV (up and down) and the base line 012.

The final potential curve is the vertical OV and the horizontal

line V A.
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We may imagine the curves to represent the shapes assumed

by a rope resting initially on the base, when the end of it is

lifted from to V ,
there being enough friction or as little

inertia as will stop oscillations. But the exact mechanical

analogy before employed requires an elastic massless string,

moving in a medium which resists its transverse motion with

a force varying as its velocity. The string should be fixed at

0, and be initially along 012. Then a force applied close to

FIG. 2.

the fixed end should stretch it (like a piece of "
elastic") to V .

The string will then move through the different forms shown.

On removing the impressed force, we have the shape given

by OV A, and the shapes which follow are to be seen by invert-

ing the diagram and looking at it from behind.

The curves of current may be got by plotting the A's in the

table. When t' = l, 4, and 16, we have the curves marked
with these numbers in Fig. 2. It will be seen by (6) that by
doubling x and quadrupling t we get a halved C. So curve

4 is got from curve 1 by halving the ordinates and doubling
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the abscissae. Similarly as regards the other curves. The
unnumbered one, with the top cut off, belongs to t'= J. These

curves all bound the same area, that is, the area bounded by
the curve and the vertical and horizontal axes is constant.

In another form, the line-integral of the current is constant,

the reason being that

Vo-V-fRCda (13)
J

by Ohm's law, and V = at x = oo . That is, when we apply
the impressed force we generate instantly a definite amount of

magnetic momentum at the beginning of the cable, which then

diffuses itself along the cable and attenuates to zero density
without alteration of total amount. It is true that the

magnetic momentum is zero in amount, because we have

assumed L = in the theory. But that is nothing in the way
of the use of the idea of magnetic momentum, because we

may suppose L to be finite, although so small that the diffusion

law of propagation is followed practically.

Theory of an Impulsive Current produced by a Continued

Impressed Force.

249. An exceedingly interesting and instructive case arises

when the impressed force at the beginning of the cable, in-

serted between it and earth, is variable with the time in a

certain way. For a purpose to be seen presently, let the im-

pressed force be given by

<">

where Q is a constant. Before = the cable is to be under-

stood to be uncharged. The potential V is raised to the

value e, of course. It is the same as

V = ^Q/S, (15)
by (A), 241.

Now find the current entering the cable due to the im-

pressed force. By (5), 240, it is

where the second equation arises by (15), and the third by the

definition of f. Since Q is constant for any finite value of

time, the result is zero. That is, there is no current entering
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the cable under the action of the continuously-present im-

pressed force at any finite value of the time.

Is this nonsense ? Is it an absurd result indicating the un-

trustworthy nature of the operational mathematics, or at least

indicative of some modification of treatment being desirable ?

Not at all. It is the fact under the circumstances stated, and

the principal remarkability is the instantaneous arrival at the

result. For the above details concerning (14), (15), (16) are

not wanted by an experienced worker
;
the operational solu-

tion BC = qV of 240 being sufficient to show that if V is ql 9

then C vanishes.

We have to note that if Q is any function of the time, then

pQ is its rate of increase. If, then, as in the present case, Q
is zero before and constant after t=0, pQ is zero except when
t= 0. It is then infinite. But its total amount is Q. That

is to say, pi means a function of t which is wholly concentrated

at the moment t=Q, of total amount 1. It is an impulsive

function, so to speak. The idea of an impulse is well known
in mechanics, and it is essentially the same here. Unlike the

functional, the functional does not involve appeal either to

experiment or to generalised differentiation, but involves only
the ordinary ideas of differentiation and integration pushed to

their limit. Our result C =pQ therefore means that an

impulsive current, that is a charge, is generated by the

impressed force at the first moment of its application ; that

the amount of the charge is Q, and that there is no subsequent
current. It is the same as saying that the charge Q is instan-

taneously given to the cable at its beginning, which charge
then spreads itself without loss anywhere.

Next work out the solutions for V and C anywhere in the

cable. We have, by (15),

(17)

This was algebrized before, equations (8) and (6), so the

result is

(18)

By differentiation to x, the current is

r _ _ 1 dV _Qx /BS\* -RS^""
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It will also be useful to obtain the current formula directly.

We have, by (16),

C = c~^
xC

~ <*xvQ (20)

Here reject the even powers of q, and we get

which expands to

C=-p(l + M\(3*f+...\qxQ, (22)
v

li li
;

involving only complete differentiations upon ql. Thus

which leads directly to the formula (19) above or, rather, its

full expansion.
We may also note that (20) or (21) gives C by a time differen-

tiation upon the function 6-9*1, already obtained, (1) and (4)

above. This again leads to the result (19).

That the previous special results for V and C are con-

tained in the general formulas for V and C anywhere is clear

enough that is, they make V =0 and C at x=Q. We
have now only to explain why there is no current after the

initial charge. It is for the same reason as why there is no

current in the galvanometer in Poggendorff's way of compar-

ing two battery voltages. If there be current in a network of

conductors, and two points A and B thereof be joined through
an external conductor, there will be a derived current in the new
wire usually that is, if there be any voltage between A and

B due to the original arrangement. But if we introduce in

the new wire an impressed voltage equal to and acting against

the former voltage, there will be no current, and everything
will be the same as if A and B remained insulated.

Applying this to the cable, we see that the impressed force

in the above case is so artfully graduated in its strength as to

be exactly equal to the potential at the beginning of the cable

due to the charge Q when redistributing itself without ter-

minal loss that is to say, if we remove e and insulate the

beginning of the cable, everything will go on as before. Of

course, the removal must be done after its initial effect in

charging the cable.



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 57

So, dismissing the impressed force altogether, we see that

if we suddenly communicate a charge Q to the beginning of a

cable, and then immediately insulate it, the potential and

current which result will be given by (18) and (19) above.

The potential (or the charge) redistributes itself in the same

way as the current in the previous problem of a steady

impressed force, that is, according to the curves in Fig. 2, p. 53.

It has been mentioned already that areas are conserved in that

diagram. In the present case this means that the electrifica-

tion is conserved.

Diffusion of a Charge initially at One Point. Arbitrary

Source of Electrification.

250. If the cable be infinitely long both way, and have a

charge 2Q suddenly introduced at # = 0, the resulting V and C
will still be given by (18) and (19) on the right side of the origin,

where x is positive, because the charge 2Q will split into two

equal charges, one of which will go to the right and the other

to the left, and obviously in a symmetrical manner, so that

there is no current at the origin. On the left side, V will be

the same, and C the same negatived as at the corresponding

points on the right side. We shall also obtain these results

hi another way, without the use of e. Thus, let a doubly
infinite cable have an auxiliary wire attached at the point
.i* = 0, through which current is artificially sent into the

cable. Let 27* be this current. It is equivalent to a source

of electrification of strength 2h
; that is, electrification is

generated at z = at the rate 2k per second. This splits

equally right and left, so that C
Q
=h may be taken to be the

terminal datum for the positive half of the cable. Con-

sequently C = e-^
(23)

gives the current at distance x, and since EC= aV,

(24)

is the corresponding V. Here h may be any function of the

time.

Now, if h is impulsive, acting only at the moment t = 0, we
shall have ^^

'
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where Q is the time-integral of h. Putting this in (23) and

(24) we obtain the expressions (17) and (20) for V and C.

This proves formally the previous statements about the

behaviour of e, so far as the general electrical property of

balancing voltages entered into the explanation.

The Inversion of Operators. Simple Examples.

251. We have hitherto usually supposed that the potential

at the beginning of the cable is produced by an impressed

force there, and the potential and current anywhere have

been derived from ifc. We may, however, regard the matter

differently ; as, given V ,
find C (and V and C) ; or, given C

,

find V (and V and C) ;
in all cases on the understanding

that the state of the cable depends entirely upon the state afe

the origin due to a cause acting there. This dependence upon
the state at the origin implies that V and C are initially zero

except at the origin, and that the cable is not subjected to

impressed force or allowed to receive electrification anywhere
else. The state at the origin need not, however, be due to an

impressed force there, but may result (for instance) from its

connection with a continuation of the cable on the other side

of the origin, this continuation being initially charged. Thus,

the case of a steady impressed voltage e between line and

earth at the origin may be imitated by having the whole

of the imagined continuation on the negative side initially

charged to the uniform potential 2e, and allowing it to

discharge freely into the cable on the positive side. For the

assumed distribution is equivalent to the combination of two

distributions, one expressed by V = e constant all over, and

therefore not subject to change, whilst the other consists of

V = e on the negative and V= - e on the positive side of the

origin, with a node between them at the origin itself. So

the potential at the origin will be made permanently equal

to e, and the current is uncontrolled save by its natural

connection with the potential, therefore the result on the

positive side must be the same as that due to e considered as

an impressed force acting at the origin between the line and

earth.

But suppose it is the current at the origin that is controlled

and led through a sequence of values. Then we may find the
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potential that results there and elsewhere. Thus, we have in

general
(26)

at the origin. So, by taking C conveniently, we can imme-

diately find V . If, for example, C is proportional to ql,

that is, to -*, the q in the denominator of (26) is cancelled,

and V comes out constant. We found before that V con-

stant made C vary as t~*. So now we solve the inverse

problem ;
that is, if C is zero before t = Q, and is then made

to vary as t
-
1, the potential V will be suddenly raised to and

be maintained at a constant value. Furthermore, since

and V are derived from C and V by the operator t-*1*, we see

that the state of things everywhere is determined as well by
the condition C oc t~ as by the other condition V = constant.

They are equivalent under the circumstances mentioned.

Again, suppose C varies as
</

2
l. Then C is impulsive, as

before seen, so that we may call it pQ, where Q is constant,

being the charge in the impulse. The V that results is

therefore

This is the inversion of the problem beginning 249, equations

(14) to (16), which was, given V varying as t~t, to find C .

The result was that C was initially impulsive, and zero later.

Next, suppose that V is impulsive, say

V.-p/, (28)

where / (when regarded merely as a constant) is the measure

of the impulse, that is, the time-integral of V . The result is

(29)

which indicates the current coming out of the cable after its

initial charging.

The reader may have noticed in the above, and perhaps

previously, that we change the order of operations at con-

venience, as in f(p)<f>(p)l
= <(p)/0p)l, and that it goes. But

I do not assert the universal validity of this obviously sug-

gested transformation. It has, however, a very wide appli-

cation, and transforms functions in a remarkable manner.
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Reservations should be learnt by experience. The present

example is, of course, elementary.
Observe that the current due to impressed e when it is

made impulsive is got by writing pf for e, f being the time-

total of e. This process is general. If we have worked out

the solution arising from a steady impressed force, or a steady

source, we obtain that for a momentary force or source by

differentiating the former solution to the time, and substituting
the strength of the impulse for the intensity of the former

force or source. Or, in another form, if C = Ye is the primary

operational solution, giving C in terms of any e through the

operator Y, then C = Yp/ is the operational solution when e is

impulsive, of total/, the moment of time of the impulse being
* = 0.

It is generally better to work out a solution due to e constant

than that due to an impulse, because the former leads, as

above, to the latter by a simple differentiation, whereas there

might be some trouble in rising from the developed impulsive
solution by integration to that for a steady force. But, know-

ing the developed impulsive solution, either directly, or by
derivation from the other, the solution for a continued force

varying anyhow with the time is at once expressible by a

definite integral, because the continued force may be regarded
as consisting of an infinite series of successive infinitesimal

impulses. The definite integral, however, is of little use unless

the integration can be readily effected in the case of the special

function of the time that e is chosen to be. Moreover, it is

not uncommon for the result of the integration to be obtain-

able more easily directly from the operational solution itself.

The simply periodic solution is an obvious example, and others

may be given.

The Effect of a Steady Current impressed at the Origin.

252. Returning to the mutual dependence of C and V and

the inversion of operators, let C be made constant. That is,

there is to be no current before, and a steady current after

e = 0, at the origin. Clearly this would be impossible were

it not for the permittance of the cable, which allows of any
amount of electrification being sent in, practical limitations

arising from the finite strength of the dielectric being nowhere
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in a theoretical discussion. Of course the potential rises

infinitely, if sufficient time be allowed. The potential at the

origin is

by using the known value of jy~H.

Inversely, we may put it thus : Given that there is an

impressed force at the origin between line and earth varying

as ti, what is the resulting current ? The answer is, the

current is steady. This contrasts well with the case of a

steady e, which leads to zero final current, though it is

initially infinite, varying intermediately as *-*. For in our

present case we get a steady current from the first moment by
an e rising from zero to infinity according to $.

As a typical example, it is worth while algebrising fully

the solutions when the current at the origin is steady. From

C = r^C , (31)

we see that C follows the same law as was worked out for V
due to steady e, as was exemplified in Fig. 1. Those curves

now show how C distributes itself in the cable. From there

being initially no current anywhere save at the origin, where

it is C ,
the final state that is tended to is a constant current

everywhere. The formula being the same, it is unnecessary
to repeat it. The operational form (31) is fully explicit and

understandable.

As regards Y, we have to develop

V = --<*C . (82V
9

Here reject, as in* previous cases, the even powers of q, and

we get

V- - IfcC + cosh qx . C
, (33)

9

where the term involving the first power of x comes from

the term in the previous equation which is independent of q\

that is, it would partly express the final steady state were

such a state possible, which is obviously not the case in the

present problem, since the next term is (R/g)CQ,
which tends-
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to infinity. There is nothing new in the way of operations

in equation (33). Written fully, it is the same as

...) g<y2Co , (84)
L_ \b7T/

which only requires the complete differentiations to be effected

to give the full development, namely,

3|o \ I Q 7 i A
I & O O / I tt

where y
J -BSz?

/4t, as before. This formula shows the

infinitely great ultimate increase of V, and how it spreads
into the cable. As a check, obtain the current by differentia-

tion to x. We get

o;

Comparing with (10), we confirm the previous statement about

the law followed by C now being the same as that followed by
Y when e is steady.

If, on the other hand, we should start with the last formula

for C, and attempt to obtain that for V by integration with

respect to x, there might be some difficulty initially. The
indefinite integral is the formula (35) without the term

independent of x. Now

y - ( *ECdx. (37)
J x

so to get the missing term (that involving ti
)
we require to

evaluate a series for an infinite value of the argument, which

is inconvenient. But instead of that we may note that

(38)

so by this formula we get what we want from the value of

V at the origin, which is already known. That is, it is known

by the operational method
; otherwise it would have to be

specially obtained. The operational method usually avoids

auxiliary evaluations of this kind, as we may see by the way (35)

was got. The work is done automatically, as it were, and V is

made to vanish at x = oo for any t, and also when t = at any x.
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Fig. 1 serving to show how the current spreads, the new
formula (35) requires calculating to show how the charge

spreads. Without making a fresh table fully, like that for

the "error function," the following special results which I

have calculated may be quite sufficient to allow the reader to

draw the curves roughly, should he care to do so. Write (35)
in the form

where

-
II N/2 + -

<

Then z is a function of the former 7/

2 = RSz2
/4, and the

values of z corresponding to some of those of ?y

2 are as

follows :

1

y
2

z
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as before examined, 250, equations (23), (25). Now, if this

impulse be followed at time At later, by the impulse ->Q,
the negative of the former, it will nearly undo the effect of

the first one. If Q be finite, the differential effect will

decrease with At, and become zero when it does. But if,

whilst decreasing At, we simultaneously increase Q in the

same ratio, the differential effect is maintained of finite size,

and in the limit, where At vanishes and Q is infinite, whilst

their product QAt is finite, the result takes a special simplified
finite form.

It is like the old way of making the magnetic force of a

magnetised molecule out of the combined magnetic forces of

two equal poles of positive and negative magnetism. If the

poles are kept of finite strength, their joint effect vanishes

when they are brought to coincidence. But if the product of

strength of pole into distance apart, or the magnetic moment,
be maintained finite, the resultant magnetic force is finite,

and takes a special form in the limit. This is the way to

form a solid harmonic distribution of potential, and Maxwell
showed how to carry on the process with multiple poles, so as

to generate solid harmonics of any order.

In our present case, however, it is not a space distribution

of poles that we are concerned with, but a time distribution.

The " moment" of the differential impulse is QAt, where Q
is the strength of the poles (or impulses), and At is their

distance apart in time. The finally resulting C is

where At is infinitesimal. Or, if Q,
= QAt,

C = ~VQi (42)

is the current due to a differential impulse of the first degree.
It is clear that we may extend the above to impulses of any
degree, say

&c.,

but at present let us keep to the middle one.

The potential corresponding to (42) is obtained in the usual

way by multiplying by the operator B/.?. This makes

(43)



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 65

from which we see that the impressed force at the origin

between line and earth required to produce the same effect is

given by

This, however, needs close and literal interpretation. Let

Qj/S = 1 for simplicity, then, by algebrising pql we get

Now this merely represents the dregs of e, acting when t is

finite, and, as before explained with respect to the impressed
force e = ql, serving (in Poggendorff's way) to prevent current

at the origin. But we must understand pql more literally.

Thus, ql is the function of the time which is zero before t =

and is (B8/*)* later. So pql, which is its rate of increase, is

zero before = 0, then jumps to oo, then jumps through zero

to - oo, and lastly rises to zero again gradually. Of course it

is only the last part that is explicitly represented by the

developed time-function in (45). On the other hand, pql

represents it all. Similarly, p*ql is to be interpreted as the

rate of increase of pql just considered ;
and so on. And,

going back to the impulses without any residual effect,^Q has

been already interpreted as a simple impulsive current ; next,

^Q! we see is the time-rate of increase of ^Q!, and is therefore

a double impulse, first positive and then negative ; and so on.

As regards the charge in the cable produced by the impulse

p
2Ql5 just after the first moment it is confined practically to the

region close to the origin, and consists of a positive wave followed

by a negative one. These tend to neutralise and do neutralise

one another by mutual diffusion to a large extent. But since at

the same time the positive charge in front diffuses itself forward

into the cable, there cannot be a complete neutralisation.

The result is that the region occupied by the charge is con-

tinuously enlarged, the node between the positive and negative

charges advancing along the cable, all to the right thereof

being positive and to the left negative, whilst the density

rapidly attenuates to zero. Since the formulae (43) and (42)

for V and C are derivable from previous formula by simple
time differentiation, viz. (43) from (8) or (6), and (42) from

(20) or (19), it is unnecessary to write the full developments.
VOL. n. F
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Moreover, since the operator KSp is equivalent to a double

differentiation to x, as is indicated by the characteristic of the

potential and current, the new curves of V and C may be

found by making their ordinates be proportional to the curva-

tures of the old ones. Similar remarks apply to multiple

impulses of higher degrees, as regards their development by
differentiation

; so, as we do not want them at present, it is

sufficient merely to point out, as above, how they may be got.

Convenient Way of denoting Diffusion Formulae.

254. Our results, so far, depend upon the fundamental

function ql, where g is the square root of a differentiator.

From it follow various other results, notably the functions
~qxl and^e~sxl. Since they represent the elementary waves

of potential and current due to a steady impressed force, they
are of particular importance ;

and since they form the elements

in more advanced problems that the preceding, their meanings
should be carefully noted. Thus, collecting some formulas for

reference, let

for shortness. Then we have

1 -erf y

which gives the V/V curves, and

which gives the C/V curves, when V is steady, beginning at

the moment = 0. Equation (1) belongs to Fig. 1, and

equation (2) to Fig. 2, 248.

Most solutions of problems in mathematical physics are

in the form of infinite series. Finite solutions are quite

exceptional. When of fundamental importance and of a

relatively simple nature, the series functions receive special

names and have conventional short expressions. Mathema-
ticians get so accustomed to working with the short expressions
that when they get solutions in terms of one or a finite number
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of such functions they sometimes say that they have got the

solution in a finite form. But if the functions were such as

had not received special names, the case would be substantially
the same. The difference is merely conventional. Compare

(1) and (2) above, for example. In (2) we have a case of the

familiar exponential function; in (1) a relatively unfamiliar

function which seems a great deal more transcendental than

the other, which is its slope. The name erf?/ for the deficit

of e"5*! from unity was invented by Glaisher, and by using erf

we have a condensed empirical form for the functions we are

concerned with.

Now, granting the desirability of having special short ways
of representing important functions, we may remark first that

(Tqxl and e~vxql may be themselves regarded as the special

short ways, shorter than the other ways, in fact. This would

be an undesirable deviation from common practice were no

advantage gained. But in the present case the forms in

question are actually indicative of the functions themselves in

their structural meaning, through the operators generating
them. Moreover, they are the forms which present themselves

naturally in the mathematics. Furthermore, they are the

proper forms for the easy and immediate performance of

operations on the functions far more easily than upon either

the fall series or the exp and erf forms. Lastly, when we pass

to more complicated cases, we shall see that they are made up
of the e~9Z l and e-qx

ql functions, occurring in these particular

forms. Considering all these things, we see that there may
be great advantages in using these forms in their naked

simplicity, serving not merely as empirical abbreviations, but

as structural formulae. Practice confirms this conclusion, as

will be evident in the following.

Reflected Waves. Cases of Simple Reflection.

255. When we employ an infinitely long line we do away
with reflected waves, and exhibit the essentials in the simplest

manner feasible. The conditions prevailing are the same all

along, so no change occurs in the behaviour of the V and C
waves generated at a source. Now, passing to more practical

cases, the easiest are those in which there is only one reflected

wave. Let, for example, the impressed force e be situated at

F2
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the point x= a, and the beginning x = be earthed, whilst the

end of the line is at an infinite distance.

The potential V generated by e is

V1= + je-*"-**, on the right, (3)

V2
= -

It-^-^e, on the left, (4)

because there is a rise of potential to the amount e at the

place of e, and the two potentials +^e and -\e are the

sources of elementary V waves, Vi to the right, and Y2 to the

left. The currents, however, are the same at equal distances

from e on either side, viz.,

Ed = i?e-^-<% RC2
=
\qt-*

a
-*e, (5)

which follow from (3) and (4) by space-differentiation, or by

using the operator q on the right side of e, and -
q on the

left, because C is reckoned + from the source e on the right

side and to the source on the left side.

The positive wave Vi to the right suffers no change, except

what is involved in its known expression. But with the

negative wave V2 it is different. When it reaches the origin it

has gone through the length a, and is, therefore, attenuated to

-
\^-

qa
e. But the potential is constrained to be zero at the

origin. This requires + ^c~
qae to be superposed on the negative

wave at the origin. Taken by itself, this would mean that

the line is raised to potential + \ .~qae at the origin, which, by
the previous, means a wave

V3
= -^x Je-^. (6)

This is the reflected wave, and is positive, or from left to

right. Since it suffers no further reflection, the complete

potential is

on the right side of the source, and

V = V, + V3
= -i e-^-*WK*(a+a;)

' (8)

on the left side. These waves are of the former kind precisely,

only the constants being different. The emay be any function

of the time. If e is steady, we may employ the developed
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formula (1) above. The final result in this case (by 2 = in

(7) and (8) )
is V = e on the right side, and V = on the left

side.

Note that when e is shifted up to the origin (by making
rt = 0), the two positive waves are made equal and coincident,

whilst the negative vanishes. That is, the case of e at

the origin (earthed) previously treated may be regarded as the

case of instantaneous generation of a reflected wave of iden-

tically th3 same nature as the primary wave to the right, their

co-existence making a single wave of doubled size.

Another easy case is when the line is cut at the origin.

This makes C= there. The initial waves "V^ and V2 from e

a.tx= a are the same as before, but the reflected wave differs.

It is the negative of the former reflected wave, because it has

to cancel the current due to the primary wave V2 . So

V= + J
-*--

j

- fl

+*, (right) (9)

V= - je-*"-*^- J-*
fl+a!)

*, (left) (10)

are the potentials when the line is cut at the origin. The
final state when e is steady is V = - e on the left and V = on

the right side of the source. The final current is zero.

These steady results are obvious.

An Infinite Series of Reflected Waves. Line Earthed at

Both Ends.

256. After the above easy cases in which only one reflected

wave is generated, pass to a case more nearly allied with

practice, in which we have an infinite series of reflected waves

all of the same type. Let the line be of length I, and be

earthed at both beginning x = and at the end x = I. Call

these A and B for descriptive convenience. Have e on at A.

We will first build up the result in a physical manner. The
initial wave from A is

VX--*, (11)

and there would be no other if the line were infinitely long.

But when Vl reaches the end B, and has attenuated to ~^<?, it

would raise the potential there to that value, were it not

for the constraint forcing V to be zero. So V2
= - c^e has to

be superposed to cancel the effect of the first wave. This is
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the value at B of the reflected wave starting from B, and

going towards A. At distance x from A it has traversed the

distance I - x, and therefore has attenuated to - r^ff
~x) x c^e ;

so the second wave is

V2=-e-^-*V (12)

When this wave reaches the origin A, it has attenuated to

- ~
Zgle. It would lower the potential there to that extent.

But the potential is kept constant. So we have the same

kind of reflection as at B, viz., with reversal of potential.

The third wave is therefore + e~z<jle at A, so that, generally,

expresses the third wave. It is positive, like V^ When it

reaches B, it becomes e~3<2
^, and (in the same way as the first

wave) generates a fourth wave with the potential reversed.

The fourth wave is therefore - ~*qle at B, and becomes

V4
= - -*-*>* (14)

at x. It is unnecessary to elaborate further, because the

process is the same for all the succeeding waves. The

complete potential is therefore

V=y1+ v2+v3+v4 + ...

The current to correspond is given by

RG = (qt-
x + qt-

<*W- x
) + ge-

(

lW+^+...)e, (16)

where it should be noted that all the signs of the waves are + .

That is, if the initial wave produces positive Vlf
the reflected

waves are alternately and + as regards potential, but the

currents to correspond are all the same way.
If e is steady, (15) gives V in a series of elementary waves

of the kind (1) above, and (16) gives C in terms of the

functions (2) above. The successive waves are smaller and

smaller, of course. But the above reasoning is the same

whether e be steady or be any function of the time, so the

above results are fully expressive of the solutions in general,
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understanding that the waves will have different meanings

quantitatively in different cases.

We may readily transform the above solution to a compact
form. The odd terms in (15) make one geometrical series,

and the even terms make another. So, summing up, we get

.-_,-(->._, -

!--* Shin,yZ

This is the condensed and most convenient form of the opera-

tional solution.

Putting g = in (17), we see that a steady e gives the final

steady state

as is obvious by Ohm's law when the cable has become

permanently charged. The potential is kept down by the

reflections, whilst at the same time they allow the current to

rise to a steady value.

The above way is instructive, and should certainly be

followed sometimes. But when understood, much of it may
be taken for granted, because the operational method gives the

waves automatically and easily. Thus, to obtain (17), we

have the general solution

V = e**F + -<*G, (19)

where F and G are time functions (constants as regards x) to

be determined. We should not call them "
indeterminate,"

as is sometimes done in similar cases, because they are deter-

minate, or deterniinable, and in fact have to be determined.

They are determined by the terminal conditions V = e at x = 0,

and V = at x = I, which give

e=F + G, = *F + - zG. (20)

Finding F and G from these, and inserting them in (19), we
obtain the solution (17) at once.

Expand it by division, and the developed wave solution (15)

results. This is the practical way to work in more complicated
cases. We arrive easily and speedily at the condensed form, and

may then develop it if we like. That the development of the
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operator in (17) into elemei<tary wave operators by division is

legitimate, is obvious from the above.

If the simply periodic solution be got from (15) by the pro-

perty p
2 = - n2

, orp = ni, we obtain an infinite series of simply

periodic trains of waves. It may be that only the first, or the

first two or three, are wanted. If so, this way may be useful.

We have
e-** sin nt = e-ra: sin (nt

-
Vx) (21)

when p = ni, the value of P being

P = (JRSn), by using i'=-.

Equation (21) shows the wave train in an infinitely long
cable. When of finite length, it is the type of the individual

members of the infinite series of wave trains, x having to

receive the series of values indicated in (15).

We may sum up this infinite series if we please, and obtain

a resultant formula in a complicated way. But if this

resultant be wanted, it can be got much more easily by making
p = ni in the condensed operational solution, because the

summation has been already effected in it.

The Method of Images. The Waves are really Successive.

257. There is another way of regarding the matter. It is

usual in heat problems involving reflections, to consider the

extra terms to be due to images. In our present problem, it

would work out thus. Let the straight line represent part of

an infinitely long cable without any external connections. Let

the dots divide it into equal lengths I. At every second point531246
I i I ! ! ! ! I

A B

let impressed forces, each of strength 20, act simultaneously
and in the same direction, say from left to right. Then the

potential at A, due to the pair of forces at 2 and 3, is zero. So
is that due to the pair 4 and 5, and so on. The potential at

A is therefore that due to the 2e there only ; that is, e on the

right and e on the left of A. Now consider B. The forces

at 1 and 2 produce no potential at B. Nor do the forces at 3
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and 4, and so on. The result is that between A and B, the

potential is the same as if the line were AB only, but earthed

at both A and B, and with an impressed force e inserted at A.

This is a mathematical equivalence.

But the way previously followed is, I think, preferable. It

is as easy to follow, if not easier. But more importantly, it

represents the true physics of the matter. We take the line

as it is, and do not leave it, but introduce the reflected waves

just as they arise at the terminals. The order of the waves

is 1, 2, 3, 4, 5, &c. In the figure these mark the places of the

source and its imagined images. But the real sources are at

A and B.

It will also be noted that I described these waves as if they

came into existence one after the other. The formula (15) or

(17), on the other hand, says that they are contemporaneous.

This is right enough for the formula, but is only a mathe-

matical fiction in reality. The waves are successive, in the

way described. The speed of propagation of disturbances is

i< = (^c)-* or (LS)-* approximately, where L is the inductance

per centimetre. Our ignoration of L makes v be infinite. This

accounts for the contemporaneity of the waves in the diffusion

formula.

But give L a finite value, no matter how small, and v is

finite, and the waves are successive. By taking L small

enough, they will differ as little as we please from the above

waves in type, whilst being successive. So we are justified in

using the above natural way of description.

All diffusion formula (as in heat conduction) show instanta-

neous action to an infinite distance of a source, though only

to an infinitesimal extent. It is a general mathematical

property ;
but should be taken with salt in making applica-

tions to real physics. To make the theory of heat diffusion

be rational as well as practical, some modification of the

equations is needed to remove the instantaneity, however little

difference it may make quantitatively in general.

Of course, to rationalise the theory in our immediate prob-

lem, we have merely to take L into account. We then change
the type of the waves as well. The change may be little or

great. It is very great in some telephone circuits, and, of

course, with Hertzian waves. In the more advanced treat-
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ment of the subject, including L (and K the leakance as

well), we have just the same kind of wave analysis as above,

though q has a different meaning, and the waves are of

another kind.

There is only one exception to the rule that an infinite

series of waves results from terminal electrical arrangements
made up of a finite number of parts, and that is in the

theory of the distortionless circuit. It is possible to com-

pletely absorb an arbitrary wave by means of a suitable

terminal resistance. Then there are no reflected waves.

Reflection at an Insulated Terminal.

258. If the line is insulated at the far end B, instead of

being earthed, as in 256, other things remaining the same,

namely, earth at the beginning A, where the impressed force

e is situated, the change made in the waves is very easily

settled.

The initial wave (11) from A is the same as before, but it

must now be reflected positively at B, or without reversal of the

sign of the potential, in order that the current may be main-

tained zero. So the second wave V2 differs from the old one of

equation (12) in sign only, being now positive. This V2 is

reflected negatively at A. Therefore V3 is negative, and since

it is reflected positively at B, V4 must be negative too. This

makes a cycle of signs. So we now have the following
series :

V= + + -- + + -- + + - -&c.,

writing down only the signs of the waves, which are otherwise

identically the same as in equation (15), where they make the

arrangement H h - &c.

Summing up as before, by the law of geometric series, we
obtain

- -

which is the condensed form of the solution. The final V is e

all over, and the final C is zero, as is obvious. To test (22)

generally, observe that it makes V = e at x = 0, and C *= at

x= l
t
which are the two terminal conditions.
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General Case. Effect of an Impressed Force at an Inter-

mediate Point, with any Terminal Conditions.

259. When the impressed force is not at the terminal A,

but is at some intermediate point, say at x = a, the case is a little

more complicated, because there are two series of waves. The

primary wave is double, going both ways, and each of its

members suffers reflection at A and B. At an earth, the

reflection of V is positive ; at a disconnection it is negative.

By means of these considerations it is easy to write down

without further calculation the full solution in terms of the

waves for any case in which the terminal conditions are earth

or insulation, as two earths, or two insulations, or one earth

and one insulation (two cases) ;
and these solutions are fully

realised algebraically by the functions e-^l and
~qx

qi when
the impressed force acts steadily. As there is no difficulty in

this process, it will be as well to take a more comprehensive
case for illustration.

Let the terminal conditions be unstated except that it is

given that if v is a wave incident at B, then /3v is the reflected

wave
;
and that if v is a wave incident at A, then av is the

reflected wave. Here a and /3 are the terminal operators

defining the nature of the reflection, the coefficients ot

reflection, so to say.

Now let there be an impressed force e at x = a, and let us

find its effect at a point x on the right side,

A a x B

or between the impressed force and B. The wave from e

going to the right is

Vi = -<K*-a)
J tf> (23)

In this put x = I to obtain its value at B. Then multiply by
(3 to obtain the value of the reflected wave r2 at B. Finally,

multiply by e-^-z) to obtain the value of the last at distance

I - x from B, that is, at x from A. The result is

-
>

J*, (24)

which shows the second wave, going towards A.



78 ELECTROMAGNETIC THEOEY. CH. VI.

Put x= to get the value of vz at A. Then multiply by a to

produce the value of the reflected wave v3 at A. Finally,

multiply by
~qx to get its value at x. The result is

f-a
= e-^a/3e-<

M-0)

J*
=

a/3e-
ffl
- a+a!)

J*, (25)

showing the third wave.

Put x = I to get its value at B. Multiply by /3 to get value

of the reflected wave i\ at B. Then multiply by e~q(l̂ x} to get

its value at x. The fourth wave is therefore

ViL
= C-* z-*)ae-^-a)le = ajSV-*

41

-*-*^. (26)

After this, it is the same over and over again. So we have

the series

i\
= e-tf*-^ J, fa = /Sr-^^iv

(27)3 ,

]

and so on. The first wave is given explicitly, and the rest

are obtained in succession by multiplying by one or the other

of two factors in turn. So, by the law of geometric series,

the sum of the v waves is

which represents the potential at x so far as it arises from the

initial wave to the right.

But there is also the initial wave to the left to be con-

sidered. It is -~q(a-x]
^e between a and A; becomes - ~qa

^e
at A; generates the new wave - ae~ aft

j<? by reflection, which

becomes - ae- (a+z)
Je when it reaches x. After that, we have

a succession of reflections at B and A precisely in the former

manner. So, if this new set of waves be called w
t
we have

(29)

=
/3e-**

(l-*hc5 ,

and so on. The total is

, (so)
1 - a^e-

2*

showing the part of the potential at x due to the initial wave

going to the left. The real potential is, therefore, the sum of

the f's and w's.
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But when the point x lies between A and the impressed

force, the case is somewhat different. If we consider the

effect at x of the initial wave to the right, making allowance

for the fact that it only gets to x by producing a reflected

wave at B, we have the series of waves

and so on, whose sum is

2f.gr^gH^9 K (32)

Similarly, the initial wave to the left and its consequences
are represented by the series

8|J

and so on, whose sum is

Finally, denote by V1 the potential on the right side of e,

and by V2 the potential on the left side. The former is the

sum of (28) and (30), and the latter the sum of (32) and (34).

That is to say,

represent the complete solution in compact form, equivalent

to the previous development in terms of waves.

Four Cases of Elementary Waves.

260. There are several casea in which these solutions are

reducible to the elementary waves of the kind before con-

sidered. These occur when a and /3 are + 1 or - 1, or zero, or
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constants lying between the limits - 1 and + 1. Under these

circumstances the reflected waves are copies of the incident

either full-sized or reduced, with or without reversal of sign.

Thus, a or fi being 1 makes four important cases.

(1.) Both ends earthed. The V waves are reflected

negatively, so a = - 1 = /?, and

v +
cosh i

a
ghln (l

_
x) (37)

shin ql

y _shmga sh g(S-a).g . (3g)
shin ql

(2.) Both ends cut. The V waves are reflected positively,

so a = 1 = /?, and

aQ.g, (39)
shin ql

shin ql

(3.) Earth at A, and cut at B. Then a= -
1, /?

= 1, and

cosh ql

(4.) Earth at B, and cut at A. Here a = 1, /?= -
1, and

cosh

These solutions and the more general cases may be easily

converted to Fourier series, if required, by a method to be

explained later. In the meantime it may be noted that the

general solutions (35), (36) may be got by assuming

(45)

and determining the four time functions by the two inter-

mediate conditions

Vx-V, = *, C^C,, (46)
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&ix = a, and by two terminal conditions. In the case of

equations (37) to (44) these terminal conditions are simply

either V = or C = at A and B, as may be readily tested.

What the terminal conditions are in general, in relation to

the reflection coefficients a, /?, will now be pointed out.

The Reflection Coefficients in terms of the Terminal

Resistance Operators.

261. The reflection coefficients are usually operators them-

selves. There is no difficulty in finding them. Let 7 = 2^
at B. This says that Z x is the resistance operator of the

terminal arrangement at B. Now let i^ be a wave incident

upon B, and r2 be the reflected wave. Their sum is the real

potential. So
Z 10. (47)

Also, we multiply by g/R to get the current belonging to vlt

and by -
j/R to get that belonging to va ,

because the first is a

positive and the second a negative wave, going to and coming
from B respectively. So

q(v1 -v,)
= EG. (48)

Eliminating C between (47), (48) by division, we get

*
,

therefore ft
= VJ = iz/?, (49)

giving ft in terms of Z^

Similarly, if Z is the resistance operator of the terminal

arrangement at A, we shall have

Vl + r2=-Z C, (50)

if t\ is the incident and r2 the reflected wave. Now Vj is a

negative wave, to be multiplied by
-
R/j to get the current to

correspond, whilst v2 is a positive wave, to be multiplied by

R/0; so
-

?(r1 -i,) = RC. (51)

Eliminating C, we obtain

*
therefore .--*=*, (52)
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giving a in terms of Z . Using these expressions for a and (3

in the solutions (35), (36), they are made completely ex-

pressive. The terminal conditions they satisfy are V = - Z G

at x = and V = ZjC at x = I.

Cases of Vanishing or Constancy of the Reflection

Coefficients.

262. By inspection of (49), we see that fB vanishes when

Zj = R/#. This is because R/<? is the resistance operator of an

infinitely long cable line. To say that it equals Z 1? asserts

that the cable either does not stop at j3, but goes on to infinity;

or else that if it does stop, there is a terminal arrangement
which is exactly equivalent to the infinitely long continuation,

so far as the real cable itself is concerned.

In this case /?
= reduces (35) (36) to

Vx
=

(t
qa -

ae-^e-^le, (53)

V2
= - (* + a-*x

)-
n

e, (54)

showing two waves only, for there is no reflection at B, and

therefore can be but one reflection at A.

Again, if Z = R/g then a = 0. There is no reflection at A,

because either the cable is continued past A indefinitely, or

else there is a terminal arrangement copying the continuation.

We now have

Vj= (<- + j8r-<
l>|-flB>

)J, (55)

V2
= -

e**(e-
ffl -

/?<r*
2Z-a

')e, (56)

showing two waves again, the reflection being at B.

Finally, if Il/j
= Z = Z 1 ,

both a and /3 vanish, and we
reduce to

Vi-'r**-^ (57)

V.--W*fc (58)

which are simply the primary waves from the source, without

subsequent interference.

It will be observed that the expressions for a, (3 contain q,

involving p}
. In order, therefore, to have the coefficients

freed from p* (besides in the previous ways), we must intro-

duce p* in Z x and Z . Say, for example, .

z,= (A-y, WAV. (59)



PUKE DIFFUSION OF ELECTRIC DISPLACEMENT. 81

These mean that the cable AB is put between two other

cables of different types ;
of the type B ,

S on the left of A,

and of the type E 15 8j on the right of B. The differentiator p
then disappears from a and /3, which reduce to

(B /So) + (R!5)

These are constants, and may evidently have any values

between (and including) -1 and +1. We can get rid of the

reflection at A by having R /S = R/S, and of that at B by

RJ/SI
= R/S. This is somewhat more general than the previous

way of having continuations of the same type as the real

line.* If we do not abolish the reflections, the whole series

of waves summed up in (35), (36) are in action, only with

a and /3 constants instead of, as in the general case, operators

containing p.

General Case of an Intermediate Source of Electrification

subject to any Terminal Conditions.

263. In conection with the preceding, the other kind of

source should be mentioned. The treatment is similar when

the source at as = a is not impressed force, which creates a

discontinuity in the potential, though not in the current, but

is a source of current, creating a discontinuity in the current,

though not in the potential. Thus, let h be the strength of

a source of current at x = a (say led to the cable by an

auxiliary wire), then the current in the line increases by the

amount h in passing from left to right past the source. This

case has been already briefly considered (250). The primary

waves are

Cl
= r-**- '

J/i,
on the right, (61)

c2
= -e-5

'"-*^, on the left, (62)

* But it is not necessary for the terminal cables to be homogeneous.

For example, if we want R/S = Ri/S 1} we may make it go by having any
number of cables in sequence, in which the value of Ri/Si is constant,

so far as the reaction on the real cable is concerned. Compare with the

corresponding property in the diffusion of heat, as described in 233.

VOL. n. G
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and the potentials to correspond are

Vi = e-a(*-a)
BA

on the right>

v,= e-(-*>
, on the left. (64)

2q

When h is steady or impulsive we have already indicated the

results. The point at present in question is the extension to

include terminal influences. Have the same reflection co-

efficients as above, and apply them to the present case. The
initial wave to the right is made the same as in 259,

equation (23), by substituting ~Rh/q for e, whilst the initial

wave to the left is made the same by writing ~R>h/q for e.

There is no other difference. So we may employ the previous

results fully. In particular, the solutions (35), (36) become

(66)

which express the potentials Vx on the right side and V2 on

the left side of the source h. Test that

V! = Va> and - dV.* +
dV* = m, (67)

dx dx

at x = a.

Take h =pQ when the source is impulsive. Then (65), (66)

represent the potential due to a charge Q which is initially all

at the point x = a, as modified by the terminal influences.

The conversion to a Fourier series of this result leads to the

expansion of an arbitrary function in all sorts of Fourier

series, not merely the periodic case which rigourists have

tried so hard* to demonstrate, but to the numberless other

expansions which occur naturally in the physics of the matter,

associated with different forms of the coefficients a, /? regarded
as functions of p. It is no easy matter from the restricted

*
I do not mean that they have not succeeded, but that the rigorous

demonstrations are, from a physical point of view, hard to follow and not

very convincing.
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rigorous mathematical point of view to answer the question,

Why should an arbitrary function be capable of expansion in

such or such a series ? But from the physical point of view,

the question is rather, Why shouldn't it ? This matter, how-

ever, must come later.

The Two Ways of expressing Propagational Results, in terms

of Waves, or of Vibrations.

264. Having accumulated a stock of formulae in the last

few sections, it becomes necessary to explain their connection

with Fourier series. Given an electromagnetic operational

equation, say e = ZtC. Here C is some particular effect due to

a cause e, as, for instance, the current in one part of an elec-

trical system due to an impressed force in another part, though
it is not necessary to restrict their meanings in this way. The

operator Z is to be constructed in the way previously explained

in 245 (or in any equivalent way), that is, in the same way as if

the elements of the combination were mere resistances subject

to Ohm's law, to be generalised in the final result to the

functions of p, the time differentiator, which are appropriate to

the real nature of the elements.

Some ways of algebrising such operational equations have

been already given, especially applicable to diffusion problems,

though they have a wider application. One way in particular

should be noted and remembered, namely, the resolution of

the operator Z by algebraical division into wave operators.

This is a very simple and powerful method, which applies

very generally in physical problems concerning continuous

media. The effect is to express the solution in the form oi

the sum of a series of waves. These may be either simul-

taneous or successive, according to circumstances. There may
be but one wave, or two, or an infinite number. If the

method had no other recommendation, it would have this

important one that in considering the effect due to a source

it imitates nature by directly expressing the course of events

in the way it happens in actual fact, whereas an alternative

and equivalent formula might completely disguise it.

But there is another very different way of resolving an

operator into other more elementary ones, which leads to a

strikingly different functional expression of the developed
G2
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solution. The results are so entirely unlike the wave results

that their equivalence produces algebraical identities which
are rather astonishing at first. Only by the familiarity with

them, which their universal existence in physical problems

involving propagation (subject to certain restrictions) makes

possible, do they become commonplace. We may express our

results either in terms of the waves or in terms of the vibrations

of normal systems of disturbances. Or, in the latter case, if

the vibrations be frictionally resisted, in terms of the

subsidences or decadences of the normal systems. We may
compare the two developments to the branches and the roots

of a tree. They are widely separated, but have a common
bond in the trunk which joins them. The trunk corresponds,
of course, to the operational solution. No doubt the analogy
will fail if pushed much further. A perfect analogy in every

respect would require an identity for nothing is wholly like

anything but itself and an identity would be useless for an

analogy. The present one is good enough as far as it goes here.

It is not a matter of indifference which way of development
is employed. It may be that in some particular problem one

of the two is far more manageable than the other, or more

amenable to numerical calculation. Apart from this, it

depends upon circumstances which of the two ways is to be

preferred by its natural recommendations. Take, for instance,

the case of a long stretched cord, fixed at its ends. If we

disturb it so as to make a hump or a number of humps run along

the string, that is, if we produce evident and visible progressive

waves, it is natural to express the mathematical results in the

form of waves. Again, if we displace the whole cord to the

form of a sine curve, and let it go, it will vibrate in the same

form over and over again, whether the sine curve be only half

a complete wave length, or have intermediate nodes. Here it

is obviously natural to express mathematically the visibly

evident simple vibrations as vibrations simply.

But in the former case the progressive wave may be

expressed entirely in the form of normal vibrations, and in

the latter the vibrations may be expressed entirely in the form

of progressive waves. The methods are perfectly equivalent

quantitatively. We see at once, however, that it is not natural

to express the simple progressive wave in the form of normal
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vibrations, or the normal vibration in the form of progressive

waves, because the results would disguise the reality. The

examples used here are extreme. In intermediate cases it

may be quite difficult to say which way is preferable, owing
to both ways being complicated. There may, however, be

numerical advantage in using one form ; or, more likely, one

form may be useful in one part of the history of events, and the

other form later, of which there are many examples in diffu-

sion problems. The normal vibrations may involve much
labour in calculation for some particular value of the time,

when, under the same circumstances, the waves are easily

done
;
and conversely.

We should remark, however, that in pure diffusion problems
we are not concerned with true vibrations, as of a string. The

resistance stops the vibrations, so the disturbances simply
subside or decay. Thus, if the potential in a submarine cable,

imagined to be quite free from self-induction, be distributed

according to a sine curve, say V = V sin ax, with nodes at

beginning and end, if earthed terminally, and be left to itself,

the curve of potential will preserve its sine form, though con-

tinuously falling to equilibrium. But self-induction will make

it pass through the equilibrium position, and the potential will

vibrate, though decaying at the same time. This is oscilla-

tory subsidence. By reducing the resistance, or increasing

the self-induction, or in both ways together, we make the

vibrations last longer, and resemble those of a stretched cord.

The limit would be reached if there were no resistance. The
vibrations would continue for ever, without loss of intensity,

like those of the string in acoustical theory, when friction

is ignored. The stretched cord makes by far the best

analogy for a telegraph circuit when it is desired to

have a simple analogy, because every one knows something
about how a cord vibrates, and how pulses are transmitted

along it, and reflected, and so on until finally killed by friction.

They are visibly evident. Now all these things have their

close representatives in a telegraph circuit, wrhich makes the

simple analogy be very useful. Of course, it is an entirely

different matter when the etherial theory is in question ;
then

suitable analogies are of a different nature, which may,

perhaps, be as difficult to follow as the electromagnetic theory
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itself, as, for instance, the continuous medium first imagined

by MacCullagh, in which rotational elasticity is involved. In

one respect, however, the stretched cord fails. It does not, at

least in any simple manner, represent the effect of leakage on

a telegraph circuit. Prof. FitzGerald,* however, by employing
the vibrations of air in a pipe in the analogy, was able to

include leakage. But the pipe analogy is not so easily followed

in most respects as the stretched cord, since compressions and

condensations of the air are less easily pictured than the

motions of a cord.

In speaking of the diverse modes of representation as being
in terms of waves and of vibrations, of course progressive

waves are referred to, whether undistorted or distorted as they

progress. Progression is the essence of a wave. "
Standing

Ir

waves are somewhat deceptively so called, if simple normal

vibrations be included therein. Now the reader must be

cautioned against supposing that every operational equation is

convertible, as described, into waves or normal vibrations.

Some operational equations refuse to go more than one way,,

save perhaps by artificial expedients. They make waves only,

or vibrations only, but not both. Why these failures occur is

evident in practice by physical considerations. Mathema-

tically, it is due to peculiarities in the form of the Z operator.

As an example of waves only, there can be at most only two

waves from one source situated in an infinitely long cable, as

in 255. Then we cannot have a vibrational form of solution

(if we include subsiding normal systems under vibrations),

except artificially. And, of course, when there is only a

limited number of degrees of freedom in an electrical arrange-

ment, as in the theory of condensers and coils, we have

vibrations or vibrational subsidences or pure subsidences of

normal systems in limited number which do not admit of

expression in the form of continuous waves, except perhaps

very artificially. Generally speaking we may have both, when
there is a continuous medium for propagation in some part

of the system. The distinction is usually connected with the

presence or absence of boundaries. If we create a disturbance

in an elastic medium which is quite homogeneous and is

* The Electrician, May 25, 1894, p. 106.
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unbounded, the disturbance goes out to infinity in wave

fashion, and no free vibrations in definite and separate modes
are possible. But if the medium is bounded, the wave cannot

dissipate itself freely, but is reflected and re-reflected any
number of times. We can now express the disturbance in terms

of the vibrations of definite normal systems of a complicated

nature, depending upon the nature of the medium and on the

form, &c., of the boundary. The possibility arises from the

superposition of an infinite number of progressive waves,
and we may express our results either in terms of waves or of

vibrations.

This brings us to the reservation made about an artificial

way of representing a progressive wave by vibrations. If in

the last case we imagine the boundary shifted further and

further away, however far we go the normal systems remain

distinct and separate, and the two modes of representation are

in force. Now, in the limit, when the boundary is removed

to an infinite distance, the expression for the sum of the

normal systems becomes a definite integral. Thus a single

progressive wave may be expressed by a definite integral as

the sum of vibrations of infinitely numerous normal systems

differing infinitely little from one to the next. Instead of a

definite sequence of separated periods, the periods run into one

another. Of course it is simpler to think of the progressive

wave tban of the vibrations in the definite integral which

equivalently expresses it, though not in a desirable manner,
and to derive it directly from the operational solution when

possible, instead of through the integral.

After these general remarks about the chief peculiarities, we
must proceed to show practical methods of manipulating the

Z operator so as to convert operational solutions to vibrating

or subsiding normal systems. It is not difficult by the general
method to be explained. Perhaps it is too easy. That is, too

easy hi execution, for the theory thereof is more difficult. As,

however, it applies to all sorts of normal systems besides those

concerned in Fourier series, it will perhaps be best at first

to show the connection of Fourier series with the operational

forms in more special ways, which, though longer, may be

more immediately intelligible to the unpractised in operational

methods.
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Conversion of Operational Solutions to Fourier Series by

Special Ways.

(1). Effect due to e at A, when earthed at A and B.

265. Take, to begin with, an interesting special case,

namely, the effect due to steady impressed force e at A, where
x = 0, when earth is on at both A and B, where x = l. As
before shown, the operational solution is

shiuql

The conversion to a Fourier series in this and many other

simple cases can be done by using well-known trigonometrical

identities, assisted by an elementary operational result. Thus,
we have

-1- M
qlJ

by trigonometry. Here noting that means ESp, we see

that we have merely to algebrize (1+P/^)-
1
!, where P is a

constant. Thus, in full,

,..

1+
P p p \p (2 [8

P
or, in the usual brief expression of the exponential function,

rt

P
This result should be noted, as it often turns up. Applying
it to (2), we obtain

where the constants plt p^ &c., are given by

Pn = - fiV/KSZ
2
. (5)

Comparing (1) with (4), we see that V will be found by

operating on (4) by

ql
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This is a function of ff also, so involves only complete
differentiations. They may be carried out at length if desired,
but that is unnecessary. For the power of p in the operator (6)
on e

pt
is simply P. It is therefore zero on the first constant

term on the right of (4), then p1 on the second term, and so

on. That is, these values are to be put in (6) for p to express
its effect. So (1) is converted to

V =

where the q's are the constant values corresponding to the p's,

through <?

2
RSp. Equation (7) is the full solution, but for

trigonometrical convenience, since the values of <f are negative,
it is best to put q

2 = - s2 . This makes

or, since sinsZ = for every s,

(9)A
)

where the s's are the roots of sin si = 0, which is the same as

saying that the p's are the roots of shingZ = 0. In the

customary form (9) is the same as

(10)
I/ r n I

This is the equivalent of the wave solution before got.

"When t = x
,
the time factors vanish, and there is left the

final state expressed by the outside term. On the other hand,
when t = 0, the time factors are unity, and

(11)
L J TT n I

We know that V is initially zero everywhere except at A,

where it is e. Therefore

l-^ZJ-Isin^, (12)
I

~ l
n I

V '

except at x = 0, where the right member gives zero. That is,

ihe steady state, which is e(l
-

x/l), has become expanded in a
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series of sines. But we have got more than we wanted. For

the Fourier series is periodic, with period 21. So the right

member represents 1 - x/l between and 21
;
then the same

values are repeated from 21 to 4Z
;
and so on. Similarly on

the left side of the origin. Equation (11) is, in fact, the

solution of the problem of finding V due to an infinite

number of equal impressed forces of strength 2e acting all

the same way at the points 0, 21, 4:1, &c., - 21,
-

4:1, &c., in an

infinitely long cable. This was shown before as regards the

operational and wave solutions.

(2). Modified Way of doing the Last Case.

266. There is another similar way of getting (9) which IB

worth noticing. Use the trigonometrical identity

+ . . .,(13)

differing from (2) on the right side only in the signs of the

terms. Let the operand, as before, be 1 in the usual manner,
and we obtain

ql coth ql . e = e(l + 2epl
* + 2<?* + 2e^ +...), (14)

instead of (4) above, with the same values of them's.

Now (1) is the same as

V = (coshqx
- coth ql shin qx) e

= cosh gx.e-
shingaXl +2^ + 2<?* + ...), (15)

ql

by (14). Here the power of p is zero in the cosh function,
and also in the other so far as the constant term goes, and pl

on ePi*, &G. So, putting q
2 = - s2

,
we get

.*, (16)U si

which is the same as (9).

Since circular functions are finally to be employed, we may
put q

2 = - s2 at the beginning if we like, and write

sins(/
-

x)^

siusl
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instead of (1). Here of course s
2
is a differentiator, namely,

-
RS/>. It finally takes the meaning of a constant, or rather

of an infinite series of constants, merely because p has the

power of a constant on the exponential function.

The determinantal equation shin ql
= 0, or, more strictly,

(shin ql)/ql
= 0, is really the equation finding the admissible

values of p in the normal systems. To every p belongs an s\
so if we choose to consider the determinantal equation in the

form (sinsZ)/s
= as finding the values of s, we need only

attend to the positive values.

Notice also that the operator in (1) does not contain p
}
,
but

only the complete p. The elementary waves which make up
the solution (1) do depend on p*l, but the union of all the

wave operators to make the solution (1) causes p* to be

eliminated. The determinantal equation for a cable of finite

length that is, bounded both ways by some restraint, is always
a rational equation in p, provided the terminal arrangements
themselves are finite* combinations whose resistance operators
are themselves rational functions of p.

(3). Earth at Both Terminals. Initial Charge at a Point.

Arbitrary Initial State.

267. A more comprehensive case than the last, bringing
a fresh peculiarity into view, is that of the effect due to an

initial charge at a single place when the cable is earthed at

both ends. There are two solutions in terms of waves, one

for the region to the left, and the other for that to the right

side of the source. To find them put a= - 1 =/3 in (65), (66),

263, and also h=pQ, as there described. Then we obtain

on the right side of the source, which is a charge Q initially

at the place x = y. To obtain V2 , the potential on the left side,

interchange y and x in the last equation.

We see that we have the same denominator shingZ as

before. This is clearly because the terminal conditions, earth

* There is an exception to finiteness in the case of a distortionless

circuit used for a terminal arrangement, because it behaves like a mere
resistance when it is infinitely long.
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on at both ends, are unchanged. The denominator sums up
the reflective action of the ends. But it is not to be supposed

that changing the terminal conditions necessarily changes the

determinantal equation. For that depends upon both terminal

conditions, and a change in one may be balanced by a change
in the other. Thus, if both ends were cut, the denominator

would be unaltered, since the signs of both a and ft would be

reversed. It is their product that determines the subsidence

rates, as we see by (65), (66), 263, which show that, in the

general case,
2" = a/3 (19)

is the determinantal equation.

Returning to (18), and using the result (4), we get

V, = siring shin 2(l
-
x)

-
(1

- 2^ + 2e^ -...), (20)
bt

with the same values of p as before. The final steady V is

zero obviously, so there is no outside turn, and we get at once

by putting <f
= - s2

,

V = sins?/
S

or, since sin si = 0,

. ('22)
ol

We have in the last two equations written V for V
15

because

the interchange of x and y makes no difference. That is, (22)

represents V at a; due to Q initially at y, whether x be to the

right or left of the source. Only one Fourier series is required

to represent the essentially different results to the right and

left of the source.

Putting t = and dismissing constant factors, we see that if

(23)
L Li

the summation including all integral values of n from 1 to oo
,

then u represents everywhere between A and B, except at

the point y = x, where it is infinite. But its space total is 1,

because the space total of SV in (22) is Q at the first moment,
before any of the charge has left the cable.
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The function u therefore expresses an impulsive function,

like the p\ with which we were concerned before, only now the

variable is x instead of t, or the function is distributed in

length instead of time. Such functions can be represented in

various ways. Every Fourier series involves one form.

If we multiply a continuous function of ?/, say/(y), by u, an

impulsive function which exists only at the point y = x, the

product is obviously zero except at that point, where it is infinite.

But if we take the space total of the product ttf(y), the result

is /(#). For u only exists at #, and its total is 1. Thus,

if the limits include the point x. If not, the result is zero.

This is the property made use of in Fourier and other series

when employed to express arbitrary functions. The function

u, in the above or other special form, spots a single value of

the arbitrary function in virtue of its impulsiveness.

Suppose, however, that the given function f(y) had no

definite value at a particular place, as happens when there is

a discontinuity, or sudden jump from one value to another.

Here/(//) has any value between the two extremes. Under
these circumstances, what should we expect the impulse to do,

if it can only, through (24), lead to one value ? To be quite

fair, it should show the mean value. This is an excellent

reason why it ought to do so, though not a proof that it does.

Why it must may become clear later on.

Applying (24) to the problem in hand, with u as in (23),

we see that

/(*)-*Z^^/Msfe^ (25)

expands the arbitrary function f(x) in a series of sines, so as

to vanish at x = and I (where, of course, if /(x) does not

vanish, the formula fails). We also see that

gin!!!^ (23)
i

represents the potential at x at time t after the moment when
the potential was represented by V . The former Q is repre-

sented now by S\V///, that is, the charge on the clement of

length <hj.
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The formula (25) may, as we have seen, fail either at the

terminals or intermediately at a discontinuity. But the

formula (26) does not fail at all for any finite value of the

time. Initially it is the same as (25), and may fail

then. But the presence of the time functions makes V
continuous. No matter how small t is taken, if not actually

zero, there is no discontinuity. Sharp corners in V are

instantly rounded off by the time factors, though if graphi-

cally represented there might be no observable difference.

We may take t so small that the time functions differed from

1 insensibly for millions of terms, yefc go far enough, and

we must come to time-functions differing insensibly from

with the same value of t. So V is necessarily made con-

tinuous in the smallest interval of time after the first

moment, if it be initially discontinuous.

Another way of getting (22) is by using the coth function.

Thus, by (18),

Vx
=

ql shin gy (cosh qx
- shmga?

ql coth ql)
Q

(27)
\ gl / bt

Noting that the first part is inoperative, the result (13) turns

the last to

V = - shin qx shin qy .

(1 + 2e^ + 2ep2
'

+...); (28)
St

and now, noting that the power of p is in the first term, p^

in the second, and so on, and putting <f= -s2
,
we make

V= ?5 2 sins* sins*/ *, (29)
S

as before.

Finally, a third way. We have, by (18),

Now the part after the x was algebrized in 265 ;
see equations

.(1)
and (9) there. Therefore

l-f)-
2

*}
; (31)

and now, on effecting the differentiations, which is done al

sight by the power of p being constant hi every term, we
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obtain (29) again. These variations will, if practised, enable

the reader to operate quickly and safely.

(4). Line Cut at Both Terminals. Effect of Impressed Force.

268. Next, in further illustration of simple cases, let the

line be cut at both ends. First, with an impressed force e at

the point x = y. Then, by equations (39), (40), 259, we have

To convert to Fourier series, put <f= - s
2 in (32), and reject

the part involving sin&r. Then

. (si)
Si

In this use (14), making

Si

which finally makes, by the power of p being a constant in

every term,

Vx
= y +2 ?! sinsy cosftv e*. (35)

6 6*6

"This is on the right side of e. On the left side, (33) makes

V2
= - * + * (1 + 2e^ + 2c* + . .

.) (36)
si

= _ e + _ +2 sinsy cos &* cP*, (37)
^ N

which only differs from (35) in the outside term expressing
the steady state. The values of s are as before, but the

expansion is in cosines, not sines. The summation repre-

sents the negative of the final state, which is discontinuous.

As regards the final state, we have two condensers in

sequence, of permittances S?/ and S(Z
-

y), with the impressed
force between them. The effective permittance is the

reciprocal of the sum of the reciprocals of the separate

permittances that is, Si/(l
-

y/l). Multiplying by e we
obtain the charge, and then dividing by S(J-?/), we obtain
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ey/l, the final potential on the right side of the force. On
the left side it is lower by the amount e.

(5). Line Out at Terminals. Effect of Initial Charge.

269. We may do the effect of a single charge at y in the

same way. Let it be Q, then

by (65), 263, with h=pQ. This is on the right side of Q,
and on the left side the formula is obtained by interchanging
x and y. Put q

z = s
2
,
and reject the part involving sin sx.

Then

Vi = cos sy cos sx . si cot si ^ (89)
bt

= Q. cos sy COS sx (1 + 2ePl
* + 2ep2

* + . .
.) (40)

S

= Q
{1 + 2Zcoss2/ cos sx e*"

}. (41)
bt

In passing from (39) to (40) the result (14) is used, and the

further passage to (41) involves only a formal change by the

power ofp being a constant, as in former cases.

By the last formula we see that

t^i +^cos^cos^ (42)Li I I

is a unit impulsive function existing at the point y = x, like

(23) in fact, so that the formula (24) applies, and an arbitrary

function may be expanded hi cosines thus :

cos cos dy. (43)

The introduction of the time factor *", where p= -w
in the summation will, by the preceding, represent what the

initial potential f(x) becomes at time t later by diffusion in

the cable with its ends insulated. The final state is a uniform

mean potential.

(6). Earth at A and Cut at B. Effect of Initial Charge.

270. Next take a case involving a different determinantal

equation. Say there is earth on at A and disconnection at B.
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Then a = -
1, /?

= 1. So, with an initial charge Q at x = y, we

have, by (65), 263,

in which the interchange of x and y will give V2 . Or, putting

q
=

si,

Y!= si sin sy (cos sx + sin sx tan si) -*-. (45)

The first part is inoperative as regards a Fourier series. So

sinsx)(sl tansZ) M. (46)

Here we see that we have a different operator to produce
the series of exponentials, viz., si tan si or ^than^. The

trigonometrical expansion of this function is

Remembering the meaning of q
z

, namely, RSp, this makes

gl than ql . 1 = 2ePl
< + 2ep2

* +W* + . . . , (48)

in the way (14) was got, only now the p's are a different set,

namely, the roots of

cosh<?Z = 0, or cossZ = 0; (49)

say sl= ir, ITT, TT, &C.

So, by (46),

Vi= ^ sinsy sin sxZ P
', (50)

bt

which is at once transformable to

V = -^ 2 sin sy sin sx **, (51)
bt

by making s be constant instead of a differentiator. In this

example the normal functions of the type sins# vanish

at A only. At B they have maxima, so that their slopes

vanish. This is to make the current vanish at B, where there

is insulation. The change in the first normal function is very

great. Being sin (irx/2l), it is just one half of the first normal

vov ii. n
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function for a line twice as long, earthed at both ends. The

corresponding p is the same as that for the line of double

length, so that the subsidence of the first normal system in

the present case of insulation at B takes four times as long to

reach a given stage, as the subsidence of the first normal

system of the same line does when it is earthed at both

ends.

The first normal system is, of course, the most important.

When t is big it is practically the only one worth counting.

When t is smaller, the second one acquires significance, then

the third, and so on, up to the first moment, when the whole

series is required. But these Fourier series are frequently

very unpractical for numerical purposes when t is taken small

on account of the slow convergency.

Periodic Expression of Impulsive Functions. Fourier's

Theorem.

271. The above examples are sufficient to show the con-

nection between the operational solutions and the corre-

sponding Fourier series in the simple cases of terminal direct

earth connection and complete disconnection, at least so far

as the particular method employed is concerned, bearing in

mind that principles are often as well illustrated by simple as

by more complicated problems, if not better. The above

process consists in first converting the reciprocal of the deter-

minator shin^Z or cosh ql, &c., to the sum of partial fractions

by using known trigonometrical formulae. These are easily

algebrized, and the result is to give V or C or other quantity

at some particular place. Thirdly, we operate on this result

directly by whole differentiations, which merely means giving

p a constant value in any term, and the result is the solution

at any place in the form of a Fourier series.

Before passing on to another way of considering Fourier

series operationally, some remarks about the functions called

u above may be useful. They were considered merely as

expressing unit impulsive functions located at a point x y
situated between and I. So far as that goes, they are quite

similar. But in other respects they differ. They are both

periodic, however. Every time x is increased by the amount

2Z, the sines u and the cosines u repeat themselves. But the



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 99

sines u is an odd function of x, whilst the cosines u is an even

function. So the sines u is negatived by changing xio - x.

The complete meaning of the sines u is therefore an infinite

row of positive unit impulses at the points y=x, x + 2l, x + M,
&c.,x- 21, x - 1, &c. ; together with an infinite row of negative
unit impulses at the points y= -x, -x + 2l, -x + 4l, &c.,

-x -21, -x-4:l, &c. On the other hand, the cosines u

represents positive unit impulses at all the above places.
Neither of the U'B is a periodic repetition of a single impulse.
But if we take half the sum of the sines u and the cosines

u, the negative impulses will be cancelled. There is left

simply an infinite row of positive unit impulses at the points

y = x 2nl, where n is any integer. The diagram will serve

to fix this plainly :

T T T T T
1.1 1.1 i.i 1,1 i.Cosines

Both
-21 Q

x
21 u

The horizontal straight line is divided into equal lengths

21, and the vertical lines at x and x2nl, -x and -x2nl
represent the distribution of the impulses in the three cases

of the sines u, the cosines u, and half their sum. By (23)
and (42), the new u is represented by

<52)

and its meaning for our purpose is a function of y which is

zero everywhere except at x 2nl, where it is infinite, but so

that its total is unity. This u is the periodic impulsive
function concerned in the periodic form of Fourier's theorem.

For, using (52) in (24), we have

f(x)
=

,

1 + 22
"
cosT (y

~

which expands an arbitrary function f(x) whose values are

given between the limits and 21 into the sum of a series of

H2
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sines and cosines with constant coefficients, and with a constant

term expressing the mean value. Besides that, it makes the

given values repeat themselves over and over again, with the

period 2Z. That is, the impulse operator fu... dy, in virtue

of its periodic nature, makes f(x) periodic as well.

When the period is infinitely long, if we puts = W7r/Z, we
have ds=7r/l to represent the step from one s to the next,

which is infinitely small in the limit, when the impulsive
function becomes

-ifTTJ cos s(y
-

x) . ds, (54)

and its meaning is a unit impulse at the point y=x only.

So, applying it through (24) to a function of y, we get

(*)
= -fTry-*

(55)

which is the form of Fourier's theorem applicable to any
function given between

- oo and + oo . The mean value, should

it be finite, may be considered separately.

Fourier Series in General. Various Sorts Needed even when
the Function is Cyclic and Continuous. Expansions of

Zero.

272. Fourier's theorem as exhibited by equation (53)

applies to the diffusion of charge in a cable in two cases only.

First, let the cable be infinitely long, all in one piece, and let

it be charged initially in a periodic manner, say arbitrarily

between x = and 21, and with repetitions of the same state in

all the other sections of length 21. Then the expansion (53)

is obviously the proper one. The function /(a?) represents the

initial state of potential. The state at any time t later is got

by introducing the time factor cpt
,
as in previous cases, in the

summation on the right side. This allows the harmonic

terms to subside or decay, leaving only the mean value of the

initial state behind finally.

But, secondly, it answers the purpose equally well to have

a finite cable, of length 21, with the ends joined to make a

closed circuit. We may take the origin (x
=

0) anywhere, and
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x = 2l, 4/, &c., mean the same as a? = 0. Equation (53) is the

appropriate expansion to employ, with the time factor intro-

duced to indicate the resulting state at any time.

The action of the time functions is always to make the later

terms in the expansion insignificant compared with the earlier,

so that we may generally say that the successive terms

of the summation, not counting the outside constant term,

are of regularly decreasing importance. And, indeed, in

making practical applications, it will be found that this is

usually true for the initial state itself. We usually find that

the natural order of the harmonic terms hi the expansion of

a function is the order of their relative importance inversely.

But this property is by no means a necessary one. One or any
number of terms may be wholly absent, or if not absent may
be very small, and followed by bigger ones. There is then an

exceptional state at the first moment, and for a certain time

after. But when the decadence has progressed sufficiently

we must arrive at a state of things in which the order of

the terms that exist at all is also the order of their mag-
nitude.

When a cable is closed upon itself, say as described above, the

real potential, whatever it may be, is necessarily a periodic

function of x. Now Fourier's theorem in the form (53) is the

fully periodic form. It might therefore seem that the mere
fact of the periodic character of the potential in the case of a

closed circuit made the periodic form of Fourier's theorem

obligatory. But this is only accidentally true, as it were. The

expansion (53) is only one of an infinity of expansions appli-

cable to a closed cable, each in its proper place. For (53) to

be applicable, it is not only necessary for the cable to be

closed, but also for it to be self-contained that is, there must
be no external connections imposing some restraint upon the

potential or the current at a particular place. The " terminal"

conditions are that V at x = and V at x= 21 are identical,

and that C is also continuous at those places, because they are

united, and in such a manner as not to interfere with the con-

tinuity of V and C. We may, indeed, choose the initial

state to violate these conditions. But the violation is only

momentary, for continuity is instantly established by the

action of the time functions.
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But suppose we put a simple leak on at the place x = 0,

everything else being unchanged. The charge in the cable

will redistribute itself now in an entirely different manner. For

one thing, it will all leak out of the cable, instead of settling

down to a state of uniform distribution. It is obvious that

the periodic form of Fourier's expansion of the initial state is

unsuitable, although the real potential of the line is periodic.

There is no difficulty in obtaining the proper series, though it

would be too great an interruption of continuity to give it just

now. The peculiarity is that although V is continuous at

# = and 2 (except, it may be, at the first moment), C is not

continuous. The discontinuity in C at the joined terminals is

proportional to the potential there, by Ohm's law applied to

the leak. The proper Fourier series must be found to satisfy

this condition as well as that of continuity of V in order that

it shall, when the time factors are introduced, represent the

potential at any moment. The initial state may be chosen

arbitrarily and so as to violate the conditions stated, but this

is of no consequence at all in the complete solution for V at

any time.

The simple leak may be generalised to any combination

having a definite resistance operator, by substituting the

latter for the resistance of the leak. Thus we obtain any
number of Fourier series for a closed circuit, which may
represent one and the same arbitrary function (the initial

state). All are continuous as regards V, but discontinuous

at the junction x = Q as regards C according to the special

law imposed by the nature of the leak. That is, when t is

finite
; for, going right back to the moment t = 0, there may

be failure then, viz., by choosing the arbitrary initial state so

as to fail to comply with the conditions.

Instead of a discontinuity in the current (or in the deriva-

tive of the potential), we may make it be a discontinuity in the

potential inself. Thus, we may put a coil in circuit with

the cable, doing away with the leak. And, as before, this

may be variously generalised. Or we may have the potential

and the current both discontinuous at the junction of the

beginning and end of the cable by suitable electrical devices.

In every case there is one and only one appropriate Fourier

series, and there is no difficulty (save complication in
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detail) in finding it by seeking the solution of the physical

problem of decadence of an initial state subject to the imposed
conditions. On the other hand, if we eliminate the physical

ideas and also the time variation, and look at the matter from

a purely mathematical point of view, there are serious diffi-

culties introduced.

The initial state may be one of equilibrium, say V = every-

where. That is, we may expand zero in any number of ways
in a Fourier series. To do this, we require an external source

of electric or magnetic energy. We may, for example, insert a

charged condenser and coil in sequence between earth and the

cable at the junction of x = Q and x = Zl. Let the initial state

be a charge in the condenser, but none in the cable. The initial

arbitrary function to be expanded in a F. series of a very

special kind is zero. The time factors make the series be

finite, and express the potential at time t due to the condenser's

charge. Finally, if the condenser is leaky, we come to zero

potential again in the cable.

We may also require to determine a Fourier series not merely
so as to express /(x) (including zero as a special case) between

certain limits, but also so that certain functions of the

Fourier series may have special values in addition. And then

connected systems of Fourier series are sometimes required,
as when the line is divided into connected sections, with

external conditions imposed at the junctions. Or we may
have a network of cables, of the same type or different,

with imposed conditions, and have to find a set of Fourier

series (or other kind of series if a cable varies in its resis-

tance, &c.), to satisfy all the conditions. And so on to any
extent.

There is no difficulty in obtaining the operational solutions

by the method of resistance operators in a clear and definite

manner, and when that is done we are virtually in possession
of the real algebraical solutions in the cases of simply periodic

impressed forces, and steady and impulsive forces, and arbi-

trary initial states, for the conversion from operational to

algebraical form involves only formal transformations. But
we must now return to Fourier's theorem. The above remarks

originated in the departures from Fourier's theorem required
even when the function under consideration is everywhere
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continuous and periodic. In the treatment of Fourier series

to be found in certain works, the reader can hardly find a

glimmer of a notion of the subject in its general and compre-
hensive aspect.

Special Forms of Fourier Integrals. Interchangeable

Property. Use in Transforming Definite Integrals.

273. There are two special forms of Fourier's theorem in

the form of a double integral which should be noted.

Eeferring to the diagram of impulses, 271, we see that

when I is oo the sines u, say u2 ,
is reduced to represent merely

a positive unit impulse at y = x, and an equal negative one at

y = x. The cosines u, say ult on the other hand, represents a

positive impulse both at y and at y. The formulae are

2 r

^= _l cossycossxds, (56)
7TJ

2 f
*

u^=-\ sinsysins#c?s. (57)
7TJ

So, if we use these in the fundamental formula (24), or

the result on the left side, which is f(x) when u is a single

impulse within the limits as before stated, will depend upon
the limits employed. If the limits in (58) are complete, viz.,

oo to oo
,
and we use ult we shall obtain f(x) +/( #). But

if we use u^, we shall obtain f(x)f( x). For the impulses
are double, and positive or negative as described.

We may, of course, choose the limits so as to exclude both

x and -x. Then the result is zero. Or we may include just

one of them, and get either f(x) or f(-x). The most

useful way is to exclude the whole of the negative values of x.

Then (58) applied to Uj_ and u2 makes

Q /-co /-oo

f(x)
= _ I f(y) cos sy cos sx dsdy, (59)

7TJ J

2 [* f

f(x)
= -\ \ f(y)smsysmsxdsdy. (GO)

TTJ J
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These are very useful in the mathematics of physics,

perhaps more so than the complete formula (55). The

following way of looking at them is interesting. Given that

Then the symbols F and /are interchangeable. That is, we
also have

(62)

There is a corresponding interchangeability in the other case.

That is, if

{68)

then g(x)
=
(?)*f*G(y)*uixydy.

(64)

The corresponding property connected with the zeroth Bessel

function is that if

F(*)=f/fr)Jo(ay)ydy, (65)
Jo

then the symbols F and / are interchangeable. To prove

them, put say (62) in (61), and we get (59). That is, we get
an equivalent, the notation being changed. We have dy
both in (61) and (62), but of course in the double integral it

is desirable to have them different.

The above is the way Fourier's theorem often turns up in

practice. We have an integral of the form (61) say, and we
can at once deduce another one. It is not necessary to go

through the work of making up the double integral, and so

using Fourier's theorem explicitly. But it may not be conve-

nient to have the (2/7r)* coefficient. Then, partially sacrificing

the perfect interchangeability, we may put it thus. If

(66)
TTJ

then it follows that

(67)
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Similarly when we write sin for cos in these formulae. Examples
are numberless. One or two will suffice here to illustrate. Say
that we know that

It follows that

(69)

Observe that the limits in (68) are not complete. From y to

y = s, the f(y) function integrated has no existence that is,

y must be greater than s. Consequently, in (69), y must be

greater than s. If y is less than s in (69) the value of tho

integral is zero. (We have assumed that x is positive in (68).

If negative, the -
sign must be inserted.)

If we reversed the process and passed from (69) to (68), we

should require to know that the (69) integral is true as given

when y>s, but is zero when y<s. This will exclude the

region to s from the first integral (68).

Similarly, if GQ (sx) is the companion function to 3Q (sx), the

second kind of oscillating function, and we know that

MU

I G (sx) cos xy dx, (70)
J o

when y is greater than s, but that it is zero when y is less than

s then we deduce

the region from y= to y = s being excluded. This is like

going from (67) to (66). Reversing the process, we observe

that the condition y>siu (71) has to be preserved in (70).

Else we get zero.

As an extreme case of (61), if we take /(//) to be a single

unit impulse at the point y = z
t
we obtain F(#) = (2/7r)*cos xz.

Next, using this function in (62), we come back to the impul-
sive function, in accordance with (56) above. There is a

similar property involved in all normal functions, since they
are capable of expressing arbitrary functions, and, therefore, a

single impulse. Observe that the (69) integral contains two
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normal functions, so that we may not only deduce (68) from

it, but also another integral, by employing the interchangeable

property involved in (65).

Continuous Passage from Wave Series to Fourier Series,

and its Reversion.

274. Now, a few words on the reversibility of the process

of getting Fourier series operationally. Given a Fourier

series, say f(x)
= 2 A sin sx, can we find its meaning opera-

tionally ? Of course, its immediate meaning is given by the F.

series itself. But what the resultant meaning of the sum of the

harmonic functions may be is not evident, and it may be rather

a serious matter to find it by numerical calculation, though
after all the meaning may be quite simple, a straight line, for

example. There is matter for regret here, for whilst the

solution of problems by F. series may be easily elaborated, the

ease is confined to the formulae, not to their calculation,

which gets more and more difficult.

One way of finding the meaning may be briefly mentioned

here. By the introduction of a time-factor to every term of

the F. series we may make it (if of a suitable kind) represent a

real physical problem in diffusion. Then /(a-) means the

initial state. Now I have already pointed out the identity of

the wave solutions and F. series. It will have been observed

that we can pass continuously from the waves to the F. series.

For we can construct the wave solution of a diffusion problem

expressing the effect due to a given source, subject to terminal

reflections, by writing down the waves themselves in opera-

tional form, first the initial waves and then their consequences
in order, as done in 255 to 260. Adding these together, we
obtain the condensed operational solution, which may be inde-

pendently obtained without thinking out the waves in detail.

Finally, wf. 2an convert the result to a F. series, as explained
in 265 to 270 in special cases, and in a general way that will

come later.

Is this process reversible ? It is certainly reversible on one

side, for we convert the operational solution to the wave form

by algebraical division. It is not only in the simple cases of

terminal earth or disconnection that the meaning of the indi-

vidual waves can be ascertained, though I have not given any
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advanced examples in detail yet. As regards the other side,

we can plainly pass from the diffusion solution in a F. series

to the operational solution by simply reversing all the steps.

Keferring to examples before given first, the constancy of

power of the time-differentiator on e
pt enables us to put the

circular function occurring in the F. series outside the sum-

mation sign, by taking s
2
to mean ES(d/dt). Then the sum-

mation that is left, or 2ep
', may be converted to the operational

form 2(1 P/7?)"
1

. This series of fractions may then be summed.

The final result is an operational formula with unit operand.

But if the reader will apply this reversed process to the

examples in detail hitherto given, he will find that he will not

be able to do it safely with his eyes shut. This is because in

going from the operational equation to the F. series, certain

operations are impotent, and are omitted. So in the reversed

process, they should be restored. This can only be done by
careful inspection of the problem, and is a question of expe-

rience and judgment. The terminal conditions satisfied by
the solution in F. series should be examined. They must be

satisfied all the way through, and this will enable the complete
reversal to be effected. But, though there may be troubles of

the above kind to be surmounted, it is not a useless way of

transforming from the F. series to waves when the sources

are of a simple nature. On the other hand, should the sources

be not simple, as in the case of subsidence from an "
arbitrary"

state, the case is altered, on account of the integration which

is involved in the determination of the coefficients of the F.

series, which complicates the matter considerably. We may
therefore leave this question on one side.

How to find the Meaning of a Fourier Series Operationally.

275. Another way of regarding F. series operationally
will be conveniently introduced by considering an elementary

example. Given

,-(*)
=
?Srlsin^. (72)

Find what f(x) means, without numerical calculation, and

also without introducing time functions to make a diffusion

problem. We see that /(x) is an odd function of x
t
and that
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it is periodic. It is therefore sufficient if we know its meaning
from x= to x = I.

Regard the right member of (72) opera lionally as a function

of x in the same way as our previous functions of t . Let A stand

for djdx. This replaces the former />, the time-differentiator.

Then first we have to convert the series to operational form

as a function of A. This is easy. For we have

11

_ _
A y i+(s/A

Similarly, in passing, we see that cossx = same with 1 for

numerator.

Next, using (78) in (72) we produce

n-.21 IK l 2 ,

We have already had occasion to employ this formula,

equation (13), with gl instead of /A. So

/-(*)
= cothZA--!, (75)

with unit operand understood. That is, hi getting (73), we

imagine the operand to start at # = 0, and be 1 afterwards.

Next, expand the coth function in (75) by division. Thus,

+ 2
-

+ 2
-

+ ..., (76)

where we have also algebrised the (ZA)-
1 1 in (75).

Now this equation (76) expresses the full algebraical mean-

ing off(x) on the assumption made, namely, that it begins at

x = 0. The value of f(x] is explicitly represented by (76) from

z = up to # = x . It is l-x/l from x= Q to x = 2l. All the

following terms are then zero. From x = 2l to x = 4Z, the

first auxiliary term exists. Its value is 2, and makes f(x)
= 3 - x/l. From x = 4Z to 6Z, the second auxiliary exists as

well as the first. This adds on another 2, and makes

f(x)
= 5 - x/l, and so on regularly. How these jumps come

about through the auxiliary terms will be explained next.
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Taylor's Theorem in its Essentials Operationally Considered.

276. Imagine any wave form to be transmitted at a con-

stant speed undeformed, as, for instance, a hump running

along a flexible cord. Let it be as in the figure, narr*ely, a

triangular hump whose position at the moment of time t= Q

is A, and at some later time t is B. It is to be imagined to

travel at uniform speed v from left to right, so that the dis-

tance AB is vt, increasing uniformly with the time. If the

base line is the axis of x, the travelling form is our " function

of x" its value being the ordinate of the waveform.

Let f(x) represent the function when at A, and let it become

F(x) at B. They only differ in the change of origin. Their

relation to one another is

F(*)=/(*-rt); (77)

that is, the value of F at x at the moment t is, by definition,

the same as the value of / at a distance vt to the left. Equa-
tion (77) expresses the characteristic property of an undistorted

and unattenuated wave when the speed is constant. It is a

positive wave. When it goes the other way, it is a negative

wave, and the minus sign must be changed to plus.

Differentiate equation (77) with respect to x and t separately
and compare them. We see that

a* i. (78)
dx v dt

This is the characteristic partial differential equation of a

solitary undistorted wave. It is easily understood by watch-

ing the transit of a particular part of the wave past a fixed

point, and considering how the speed v of transit combined

with the slope determines the time rate of increase of F at the

fixed spot. Equations (78) and (77) have practically the
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same meaning. Thus, given (78), its solution is (77), under-

standing that / expresses an arbitrary function of x.

Now write (78) in the form

^=-"AF, (79)

where A stands for d/dx, and solve it as an ordinary linear

equation. This makes

F = e~
r'A

/, (80)

where /is a constant with respect to t. In our present case

it is any function of x. That (80) is the solution is verifiable

by its satisfying (79). What / is may be seen by putting t = 0.

Then F =/. So / is the initial state of F, and is therefore

the same as the former/. Comparing (80) with (77), we see

that the operator e
" vt^

is the translation operator, so that

This is the universal property of the operator e^
A when h is

a constant. "What it does, when applied to a function of ar,

is to translate it bodily through the distance h to the left.

Applying (81) to the result (76) which gave rise to these

remarks about uniform motion of a function, we found that

a certain F. series, when considered to exist only on the posi-

tive side of the origin, was identical with

(l_z//) + 2( e
-'2'A +

- 4/A + e
- 6ZA + ...)l, (82)

where the operand 1 is only positively existent. Denoting
this operand by f(x), the auxiliary terms in (82) are equiva-

lent to

2/(*-2J) + 2/(tf-4/)+ 2/(z-6/) + ... . (83)

The value of every one of these functions is 2 when it exists.

But the first one only begins to exist when x reaches 2, the

next when x reaches 4Z, and so on. The result is that the

constant 2 is added on every time the variable as passes the

points #=2J, 4Z, 6/, &c. The function (l-x/l) therefore,

which falls down to 1 when x= 2l, and which would by
itself go on decreasing to - oo

,
is lifted up by the first auxi-

liary to its starting value +1. The same series of values is

then repeated between x= 2l and 4Z. Then the second auxiliary

begins and lifts up the function to its initial value for another
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repetition. The F. series therefore represents (1 xjl) between
and 2Z, followed by unending repetitions of the same series

of values of the function.

If we allow the F. series to exist on the negative side also,

it is sufficient to note that it is an odd function of x, to see its

nature there. The negative side may be done operationally

by itself by ignoring the part already done, and reckoning x

positively the other way ; but this is quite unnecessary,
since the work has been already done equivalently on the

positive side.

Equation (81), or, which is the same,

is the well-known so-called "
symbolical" form of Taylor's

theorem. For it is merely the condensation of the form
obtained by expanding the exponential, viz. :

(85)

The form (84) is much more convenient. It is the form that

always occurs naturally in operational mathematics. That

is, we get solutions of the form c^A acting upon something
or other, and the meaning is simply a bodily translation

performed upon it.

The way followed above is not the usual way of leading to

Taylor's theorem, for which see works on the Calculus. It is

a quasi-physical way, by which its truth becomes obvious in

a general sense. It only involves the idea of translation of a

form so far as the essential part goes. But now comes the

question of failures. In fact, the proofs of Taylor's theorem

are largely devoted to the discussion of modified forms with

remainders occurring when there is some discontinuity,

involving an infinite differential coefficient. When mathe-

maticians come to an infinity they are nonplussed, and hedge
round it. They would, for example, stick at the three sharp
corners in the function above used, which involve discon-

tinuity in the slope, or infinite curvature.

But there is no difficulty of the kind in the physical way of

looking at the matter, so far as the act of bodily translation

is concerned. One shape of the function is just as easily
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conceived as another, and we are not limited to the angeli-

cally perfect function which is finite and continuous itself, and

has all its derivatives finite and continuous. It was long ago
remarked by Sir G. Stokes that it is important for physical

mathematicians to conceive of functions wholly apart from

their possible symbolical expression. The remark is particu-

larly important in the discussion of waves and their propaga-

tion, when discontinuous functions have frequently to be dealt

with.

Now (77) is unexceptionable, and requires no special inter-

pretation involving infinities. If f(x) makes a jump suddenly
at any place, so does F(#) precisely at a corresponding place.

(The translation of the form should be thought of, not merely
that of a value. If the curve is upright, the upright piece

behaves just like the rest.) But (78), which is taken to be

equivalent to (77), inasmuch as it utilises differential coeffi-

cients, may require interpretation. We should not say that

the whole thing breaks down if the slope is infinite, because

(78) becomes meaningless. It requires interpretation, but is

not uninterpretable. The variations in dF/dx and those in

dF/dt keep pace together precisely, and this tie does not

break when they are momentarily infinite.

Although, of course, in a popular sense, infinities are

immeasurable, they are not necessarily unmeasurable. A
suitable standard is required to measure an infinity. Consider,

for example, the case of electrification. Starting with a finite

volume density, if we imagine it condensed on a surface, we
have infinite volume density. But that causes no trouble. It

is now to be measured by its surface density. Again, imagine
it condensed from finite surface electrification to linear elec-

trification. This means infinite surface density, and therefore

doubly infinite volume density. But we now have a finite

linear density, so there is no difficulty in measurement, or at

any rate in the conception of the suitable way of measuring.

Again, the notion of impulses in dynamics is exceedingly

useful, though it involves the idea of an infinite force. We
must not be afraid of infinity. If suitably measured, it may
be no bigger than zero, or else quite small.

Now I think that similar ideas may with advantage be

introduced into pure mathematics, to enlarge the scope of the

VOL. n. i
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mathematicians' investigations, and enable them to tackle

infinities, instead of evading them. However, we are not

concerned with the real or supposed failures in Taylor's

theorem,, perhaps rather to be considered failures in the

mathematical machinery. In the operational mathematics

is the translational operator, no matter how many discon-

tinuities may be in the way. We do not have to consider the

infinite values, but just jump over.

In physical applications, say to waves, the subject of opera-

tion is real and single valued, though it need not be finite and

continuous. But I do not see any reason why the translational

idea should not be carried further. Let it be applied to any
definite series of values, or of multiple values, or perhaps to

the case of a multiple pole, involving a collection of infinities.

A Fourier Series involving a Parabola interpreted by

Taylor's Theorem.

277. Since the investigation in 275 shows one the work-

ing of the inner mechanism of a Fourier series in an interest-

ing way, it will be worth while to consider another example of

the same sort. We may put it thus :

coth/A . f(x)
=

(1 + 2e
~ 2/A + 2e

~ 4 ^A + . . .)/(*) (86)

= + 2_ _ /M I (87)' A '

and if we like to confine ourselves to the region to 2, we

may omit the translational auxiliaries, and write

Take f(x)
= 1 to make up the expansion of 1 - x/l considered

in 275.

Next take /(a) =x. Then (88) becomes

since z Ar1

!, |a:
2 = A~2

l. Continuing the algebrisation we
obtain

(90)
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or, which is the same,

TThis is true between x = and 2Z.

But the full meaning, according to (86), (87), including the

auxiliaries, is

where the terms with square brackets are the auxiliaries.

They are to be understood in this way. In (86), f(x) is to be

x, so the auxiliary functions (not doubled) are/(#
-
2l),f(x

-
4Z),

&c., and these are the same as x 21, x 1, &c., when they exist.

Now/(#) is born when a = 0, and is positively existent. So

f(x-2l) is born when # = 2Z, and so on. The final result is

simple enough, namely, that in (92), with a particular value

of x, just as many of the auxiliaries exist as have positive

values. The rest are not yet born ; they are zero.

In the region x = to 2/ we have the curve

The ordinate y is J at x = Q and 2/, and has its minimum,
namely, i, midway between. After x = 2l, it would rise up
to infinity by itself, but the first auxiliary is now existent.

Adding it on, we get
a-
2 Sx 13

* = 2T*-T
+
ir (94)

This is the same as

-^-(^-H (95)

Comparing the last with (93), we see that they have the same

form, only x in (93) becomes x - 2Hn (95). So the values of

y between a; = and 21 repeat themselves between x = 2l and

x = 4l. Then the second auxiliary comes into play, and causes

another repetition of the same series of values of y. And so

on to infinity.

The above refers to the positive side of the x axis. On
the negative side we see the meaning of the Fourier series by

.observing that it is an even function of x.

i2
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The reader who is curious in this matter will find it useful

to treat various simple Fourier series in the manner of 275,

to discover their meaning. Thus, given

(96)

This may be converted at sight to

,

by the use of (73) and its cosine companion formula. Now
sum up the partial fractions, if you can. The coefficients-

are supposed to be known functions of n. The summations

may be effected by the formulae for the expansion of coth JA,

(shin /A)-
1

, &c., in partial fractions, or by formulae derivable

from them. When this is done, comes another important

step. The trigonometrical functions of /A may be expressed

in series exponentially (e.g., likee" , &c.), and then Taylor's

theorem, in its general translational sense, comes into play,

and the full meaning of the F. series becomes evident. We
determine it to represent a certain function between certain

limits, and endless repetitions of the same values caused by
the existence of the auxiliary terms involving the translational

operators. The example in 275 is fully descriptive in a

general way, combined with the explanation in 276, and the

application may be made to a variety of formulas. But the

method is not meant for general use, because the summation
of the partial fractions may be a troublesome matter.

The question arises whether a Fourier series with its con-

stants given numerically can be done in the same way.

Probably it can, by some extension of the process. But it

may be necessary to discover first the law followed by the

coefficients, so that they may be regarded as functions of n.

Representation of a Row of Impulses by Taylor's Theorem,

leading to Fourier's.

278. By equation (86), we see that the operator coth /A,

applied to a positively existent function of x, turns it into the

sum of f(x) and of twice the sum of its values at the points-

x-2l
t
x- 41, &c.
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From this, we conclude that if f(x) exists only between

and 21, meaning thereby that it is zero outside those limits,

the series coth/A .f(x), as in (86), represents f(x) first, in its

proper place, and then an infinite series of repetitions of the

values of the same function doubled. For example, iff(x) is

a2
,
we get first #2

,
next 2(x

- 21f, then 2(x
- 4)

2
,
and so on, in

regions of length 21, every one by itself.

Therefore

(98)

represents f(x) and periodic repetitions of the same (not

doubled), from x = to oo , still understanding that f(x) is

zero except between and 21.

And by a slight extension we see that if

then F(#) represents f(x) and periodic repetitions to right and

left through the whole range of x from negative to positive

infinity. Only one term exists (or is finite) at a time. But

if f(x) be so chosen that its initial and final values do not

agree, there is a jump in the manner before alluded to.

The periodic property F(x + 2l)
=

F(.r) is momentarily violated

as regards a single value of the function unless we repre-

sent the vertical part of the curve by the mean value.

Now, the reader may amuse himself by considering the

exponential expansions of other trigonometrical functions of

a differentiator, as than ZA, and the reciprocals of shin A and

cosh JA, and their powers as operators on a function. It will

be sufficient here to derive Fourier's theorem in its general

form from the above.

Go back to (99). By construction the series F(x) has the

.same meaning as Fourier's

(100)

where -l +2Seos". (101)

Here u is expressive of a unit impulse at the points x 2nl, as

before explained, and (100) shows how a single value of the

function is isolated.
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Now Al is a unit impulse at the origin of the variable. Let

the variable be y - x. Then Al signifies a unit impulse at the

point y = x, and nothing anywhere else. So, by (99), we have

._(i+-a*+ e
-a+ .. .+**+*+. . .)Ai. (102)

Since, by construction, this u represents the periodic unit

impulse, like (101), we see that (102) must be the operational

form of (101) itself.

But to algebrise (102) it is convenient to consider the

positive and negative regions separately. Split u into halves,

thus :

Wl
= i(l + 2e- 2?A + 2e

- 4ZA + . . .)A1, (103)

^
2
=

i(l + 2
2'A + 2

4 'A
+. . .)A1, (104)

Here u^ is for the positive side, and u
2
for the negative, u^

meaning half a unit impulse at the origin y = x, and whole ones

at y = x + 21, x + 1, &c. ; whilst u
2
means half a unit impulse

at y = x, and whole ones at x 21, x - 1, &c.

Now (103) is equivalent to

% = coth/A . /A. (105)
fJL

This is equivalent in partial fractions to

(106>

Finally, the algebrisation is immediate, making

This result shows the same expression identically as Fourier's-

u in (101). But it has not the same meaning. Eemeniber
the reservation that y-x ranges from to oo only in

connection with ur In (105), (106) the positively existent

unit operand is understood. So (107) is limited to the positive

side.

Similarly, from the symmetry of the complete u in (102)
with respect to the origin y = x, or by reckoning y-x positively
the other way, so that uz is represented formally by ult we find
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that w2 is given by the same expression (107) as wr Only in

this case y has to be not greater than x.

So, removing the restriction, we see that the sum of w
x
and

2 has the same expression as either. No change is needed in

the trigonometrical formula because it is an even function of

y - x. In its use to represent w
x
or it.2 alone, we merely restrict

the range of its application. When unrestricted, we find that

the u of (101) means the same as that in (102), the impulse

periodic both ways.
It seems somewhat unnatural to consider the right and left

halves separately. And yet it is necessary. This becomes
evident at a discontinuity. Suppose f(y] is zero on the left

side of y = x, and finite instantly on the right side. Evidently

Wa is inoperative, and u
r
alone works. It gives only /(#),

that is, J the value on the right side.

Again, if at y = x, the function is A on the left and B on the

right side, w
x
will give JB, and uz will give JA. The complete

u will therefore spot the mean value.

Poisson's demonstration is interesting in this connection.

Instead of u he used the function

(108)

It becomes the same as u when h = l. Now when h is < 1,

this v function is continuous. Its total between and 2Z is 1,

and it has a hump at the point y = x. The closer h is made to

approach to unity, the more the v function is heaped up at and
close round the point y = x. In the limit it is all there, like u.

Now the curve of v is symmetrical with respect to y = x
;
half

its area is on one side, and half on the other. So, if h is very
close to 1, and we use v in the formula (91) instead of %, we
shall obtain i (A + B) approximately, and the more closely we
make h approach unity the closer the approximation. I know
no reason why a failure should occur just as perfection is

reached.

Laurent's Theorem and Fourier's.

279. I have said rather more about Fourier's theorem

than I meant at first. That is a good enough reason for

adding one more about it, in order to have done with it.
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The way Fourier's theorem presents itself in the theory of

functions that is, in the theory so-called thereof, which is

manifestly confined to limited notions of a function is

worthy of notice. The complex variable has a double

variability, and may be represented by the position of a

point in a plane. But a circuital journey round the origin

in the plane brings us back to the starting point. In this

process the variable 9 increases by the amount 2?r. So we
have necessary periodicity of functions of the position of the

point, in the manner of Fourier's theorem, which is therefore

essentially involved in the expansion of complex functions of

position in integral powers of the variable denoting the

position of a point in the plane.

Thus, there is Laurent's theorem for the expansion of a

holomorphic function. Let /() be the function, where z is

the complex re^, r and 9 being the polar co-ordinates.

Assume that/ is capable of representation in integral powers
of z, positive and negative, say

f(z)
= A + Aj

=ZAn3
B

. (109)
oo

Then we may easily determine the coefficients. The mean
value of zm

, regarded as a function of 0, round a circle centred

at the origin, is zero when m is any integer, except zero. In

that exceptional case the result is 1. So, multiplying equa-
tion (109) by z~n

,
and integrating with respect to 0, round

a circle centred at the origin, we get

(,)
5-^ = An . (110)

That is, the value of An is the mean value of f(z)z-* with

respect to 9. So, by (109) and (110), we have

's
<D

(*,)-co \ Z /
(in)

This is Fourier's theorem generalised by the introduction of

the powers of r. To obtain it explicitly, make r = r', so as to

be concerned only with a function of 9. Then we get Fourier's

theorem :
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-
0'). (112)

The substitution of the cosine for the exponential function

occurs because the imaginary part of the latter contributes

nothing to the result. The nth term cancels the - wth in this

respect. But the imaginary part must not be omitted in the

more general result (111).

For a rigorous demonstration of Laurent's theorem see

works on the theory of functions. The line of integration

may be any circle within the holomorphic region, so Laurent's

theorem is the natural sequence to Fourier's when the dis-

tance from the origin is not invariable, and when the function

is controlled by the restricted functional notions. The varia-

tions with r and with are not independent. The values of

the function on one circle control those on another.

It would be of some interest to know how the function

theorists would treat the subject of Fourier series in general,

referred to the complex. In the above, the expansion is the

rudimentary one in integral powers of the variable. In

general, fractional powers are required, the n's following some

special law. Say, for example, that f(z) is given on the circle

of z'. Then we require to have

/W-ZA,*", (113)

so as to be right for the given circle, and, in addition, to

satisfy certain boundary conditions. For example, make a

radial slit in the plane at 6 = 0, and let the function have to

satisfy a given linear differential equation between it and its

derivatives with respect to on one side of the slit, where

6 = 0, and another similar equation on the other side, where
= 2-. This case corresponds to that of a cable subject to

terminal but not to extra intermediate conditions. The infinite

series of n's, which may be real or imaginary, will follow a

law depending upon the conditions at the slit
;
and the deter-

mination of the coefficients A may be effected by a definite

conjugate property, not that of the vanishing of the mean
value of zn round a circle as before mentioned, but of a more

general character determined by the conditions at the slit. I
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have looked into Forsyth's work to see if there is anything

about these expansions in fractional powers of the variable, but

without success. If the matter has not been investigated,

there is room for much expansion of the subject of the deter-

mination of functions, especially when one thinks of the various

extensions that may be given by the introduction of inter-

mediate differential conditions. Matters of this sort da

not present much difficulty in strictly physical problems,

and the corresponding cases in the function theory would,

perhaps, involve little more than formal changes. At the

same time, I must say that a matter which may be

sufficiently clear in physical mathematics may become much
obscured by a deliberate removal of the physical ideas, which

is, perhaps, the reason of the existence of such elaborate

and disagreeable demonstrations for the sake of rigour, of

supposed or real necessity. It is a serious question whether

the study of the theory of functions ought to be taken up by

any ordinary physical student. Of course, some useful know-

ledge of the complex is necessary, and no one could fail to

pick up some as he goes along by ordinary algebra ;
but that

is quite different from the theory of functions as elaborated,

the general tone of which is quite unlike that of the usual

physical mathematics. The frame of mind required is not

one that is conducive to progress in mathematical analysis in

its physical aspect. A man would never get anything done if

he had to worry over all the niceties of logical mathematics

under severe restrictions
; say, for instance, that you are

bound to -go through a gate, but must on no account jump
over it or get through the hedge, although that action would

at once bring you to the goal.

On Operational Solutions and their Interpretation.

280. After this little excursion to the borders of the realms

of duplicity and fearful rigour, we may return to the proper

subject. We have to see how the general operational solu-

tions must be treated in order to convert them to the appro-

priate Fourier series, by which (in one way) they become
amenable to numerical calculation. It may be remembered

that I have insisted upon the definiteness and fulness of

meaning of an operational solution, and that it contains within
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itself not only the full statement of the problem, but also its

solution. No external aid is therefore required to algebrise it

fully; no assumption, for instance, of a special type of solu-

tion, and that the solution is the sum of a number of that

type, with subsequent determination of the constants required

to complete the matter. The work of satisfying the imposed
conditions has been done already.

The conversion to algebraical or quantitative form may be

easy or hard, self-evident or very obscure. But in any case it

is possible, by the prior construction of the operational solu-

tion. Thus, the conversion furnishes a distinct subject of

study which is of great practical value from the physical

standpoint. As regards finding out how to effect the conver-

sion, that is a matter principally of observation and experi-

ment, and is in a great measure independent of logical

demonstrations. It is the How, rather than the Why, with

which we are mainly concerned in the first place ; though, cf

coarse, parts of the Why cannot fail to be perceived in the

course of examination of the How. A complete logical under-

standing of the subject implies the existence of a full theory
to account for why certain ways of working are successful, and.

others not. It is important to note that it is just the same in

mathematical research into unknown regions as in experi-

mental physical research. Observation of facts and experiment,

come first, with merely tentative suggestions of theory. As
the subject opens out, so does the theory improve. But

it can only become logical when the subject is very well known

indeed, and even then it is bound to be only imperfectly

logical, for the reasons mentioned at the beginning of this

volume. I feel inclined to be rather emphatic on the matter

of the use of experiment in mathematics, even without proper

understanding. For there is an idea widely prevalent (though
it may not receive open expression) that in mathematics,
unless you follow regular paths, you do not prove anything ;

and that you are bound to fully understand and rigorously

prove everything as you go along. This is a most pernicious

doctrine, when applied to imperfectly explored regions. Does

anybody fully understand anything ?

Three of the pernicious results of overmuch rigour may be-

mentioned here. First, its enfeebling action on the mind, suffi-
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-ciently indicated by the analogy at the end of 279. Secondly
it leads to the omission from mathematical works of the most

interesting parts of the subject, because the authors cannot

furnish rigorous proofs. Thirdly, it leads to an inability to

recognise the good that may be in other men's work, should it

be unconventional, and be devoid of rigorous pretence.

It may not be necessary to algebrise an operational solution.

It may not even be desirable to do so, if the meaning is suffi-

ciently plain in operational form, and the algebrisation

produces complication. This is very often true when the

-operations are merely direct ones, as, for example, (a + bp

+ cp
1 + . .

.)e,
where e is the operand and p the time differen-

tiator. But it is also true, up a certain point, in more

advanced forms. Consider, for instance (XY)*0, or (X/Y)*<?, or

Bm0, where X and Y, or K, are operators of the form a + bp.

If the operand e is a simply periodic function of the time, we
do not require to algebrise these forms in order to see their

meaning. We can do that by geometrical construction in the

now well-known manner founded upon the property p
2 = - ?i

2
,

or p = ni, representing X and Y by rotations of vectors in a

plane. But if we desire close calculation of the results, it is

desirable to have the full algebraic formulae. Again, I see

that Mr. Kennelly has lately dispensed with the use of the

full development in the more complicated cases of the shin

and cosh of a complex (the complex corresponding to

a + bp), by means of a specially constructed diagram. I do

not doubt that certain cases in which e is impulsive or steady
can be done by diagram. It is best, however, to do the work

analytically first, in general, at least as far as the opera-

tional solution itself, and then see if, in a reasonable time,

a geometrical method of representing it is suitable for calcu-

lation. For geometry by itself is rather a heavy and clumsy
machine. Remember its history, and how it went forward

with great bounds when algebra came to its assistance. Later

on, the assistant became the master.

Sketch of Way of extending Fourier's Method to Fourier

Series in General.

281. The special ways which I have so far given of turning

operational solutions of the diffusive kind to Fourier series
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have all been applied to elementary examples, the terminal

conditions being such that the roots of the determinantal

equation have been equally spaced, as TT, 27r, &c., or JTT, Ij7rr

c. Algebraic simplicity is thereby attained, and we are

allowed to use well-known trigonometrical expansions. But,

in general, the roots of the determinantal equation
-ql

af3,

where a and ft are functions of p depending on the terminal

conditions, are not equally spaced, and they may not be all of

the same kind that is, they may be (as regards s in the

circular functions) real or imaginary. The elementary expan-
sion formula are useless. There are now three ways that

present themselves of attacking the question.

First, to follow up Fourier's way by natural extensions of

the kind to be found by experience. Assume the existence of

a normal solution of the form

v= A sin (ax + 1) e
pt

.

Apply it to the actually stated problem. Find the connec-

tion between P and a so as to satisfy the characteristic equation
of diffusion. Next find, by applying the terminal conditions

to the above assumed solution, what relation exists between

a and I. Then find the law followed by the a's, and find

their values. We thus get an elementary type solution fully

determined except as regards size, and we know that every

admissible value of a gives a solution.

Next, assume that

where the summation includes all the values of an , is the form

of the solution of the special problem, namely, the sum of any
number of the type solutions. Only the A's are arbitrary. To
find them, observe that t= Q makes

The summation on the right therefore represents the initial

state. Given the initial state Y as a function of #, we require-

to determine the A's in accordance therewith.

This may be done by finding the conjugate property

possessed by the normal functions. When known, it allows us

to operate on V by quadratures in such a way as to isolate any
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single coefficient and determine its value. Finally, introducing
the time factor, we arrive at the complete solution as regards
the effects due to a given initial state, provided the effects are

entirely due thereto. And the effect due to an impressed force

may be done similarly by considering the final state it produces,
and allowing that to discharge itself in the above manner.

The process of finding A,v is, when the terminal conditions

are of the simple kind previously considered, sufficiently

obvious. The integral of the product of two normal systems
vanishes save when they are alike. But with terminal

conditions in general, with energy involved in the terminal

apparatus, it is quite another thing. The conjugate pro-

perty is not the same, and although fundamentally simple
in meaning, works out more difficultly. The determination

of the A's may become a complicated process, requiring
careful investigation of the terminal arrangements them-

selves. It depends upon the vanishing of the excess of the

electric over the magnetic mutual energy of a pair of different

normal systems (with different values of j), that is to say).

In doing this, the two terminal arrangements have themselves

.to be included, if any part of the energy is located therein.

The Expansion Theorem. Operational Way of getting

Expansions in Normal Functions.

282. As a second way, we may follow up the special ways of

operationally working already given in connection with simple
terminal conditions. First, find the operational solution.

Next investigate the proper expansions in partial fractions of

the reciprocal of the determinator (e
2<2Z -

a/3) which occurs in

the operator, wherein p has to have all the values which make
it (the determinator) vanish. The integration of the partial

fractions follows. Complete the solution by carrying out

what may be left in the way of direct operations. The expan-
sions required are analogous to those of coth^ and other

functions already used. But this process may be rather

difficult, since the theory of partial fractions may lead one

into obscure regions of the complex.

Finally, there is a third and very general way of converting

operational solutions to the form of the sum of normal solu-

tions. It does not require special investigation of the pro-
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perties of the normal functions. It is very direct and uniform

of application. It avoids, in general, a large amount of

unnecessary work. The investigation of the conjugate pro-

perty, and of the terminal apparatus in detail in order to apply

it to the determination of the coefficients, is wholly avoided.

It applies to all kinds of series of normal functions, as well

as to Fourier series. And it applies generally in electro-

magnetic problems, with a finite or infinite number of variables ;

or, more generally, to the system of dynamical equations used

by Lord Eayleigh in the first volume of his treatise on

Sound, which covers the rest of the work, and upon which

he bases his discussion of general properties.

The method may be briefly (though imperfectly) stated as

follows : Let e = ZG be the operational solution of an electro-

magnetic problem ; say, for definiteness, that C is the current

at a certain place due to an impressed force, e, at the same or

some other place. Let the form of Z be such as to indicate

the existence of normal solutions for C. Then, when e is

steady, beginning at the moment t = 0, the C due to e is

expressed by

dp
to be understood thus:

In the first place, the Z in the operational solution is an

operator, a function of p the time differentiator. But in

equation (1), Z is entirely algebraical. Thus, Z is the

algebraical function obtained by putting p = Q in Z. It is the

effective steady resistance to e when, as supposed, e is a,

voltage, and it is at the place of C. Otherwise it is more

general. Then, in the summation, dZ/dp is the ordinary
differential coefficient of Z with respect to p as a quantity.

Lastly, the summation ranges over all the roots of the

algebraical equation Z = 0, which is, in this respect, the

determinantal equation, though Z itself is much more.

These special values of p are to be used in dZ/dp as well

as explicitly.

Instead of a C due to an e, it may be V due to e, or V or C
due to an initial charge at a point, and many other variations

might be mentioned. But it must not be inferred that equa-
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tion (1) expresses a general mathematical property independent

of the form of Z. Dynamical conditions restrict the form in

certain ways, for one thing. But it is not even true that the

expansion theorem above holds good in strictly dynamical

problems. I have already pointed out that we require barriers

or boundaries to produce definite and finitely separable vibrating

normal systems. Also that in the cable problem, subject to

terminal conditions, the determinator e-ql - a/3 which occurs

as a denominator in the general operational solutions arises

from the coexistence of successively (though apparently simul-

taneously) generated waves. So all sorts of problems are

immediately excluded from the expansion theorem, at least

in the form of equation (1). Inspection of the operational

equations will show this, or else physical considerations.

Again, the real Z may be the sum of two operators, to one

of which the expansion theorem applies fully, whilst the other

requires a different treatment. It may involve direct opera-

tions of an obvious nature.

Now it would be useless to attempt to state a formal enun-

ciation to meet all circumstances. Even supposing that an

absolutely perfect knowledge of the subject made it possible to-

do so, it would be very unpractical. It would be worse far

worse than that very lengthy enunciation of a theorem in the

5th Book of Euclid, which may be read and re-read fifty

times without properly grasping its meaning, which is not.

much, afcer all
; only something in compound proportion that

the modern schoolboy does in a minute or two. It is better

to learn the nature and application of the expansion theorem

by actual experience and practice. A theorem which has so>

wide an application is a subject for a treatise rather than a

proposition.

So, to begin with, I will give a few elementary cases con-

cerning one or two degrees of freedom, just to show how the

expansion theorem goes, and how to discriminate different

forms of Z. After that, we can apply it to diffusion problems
in the same way. Other than diffusion problems coming
under the same theorem may occur later. And when the

reader knows how to work the theorem, it may be possible to

see its inner meaning. At present all that need be said is

that in its theory it contains the first method of evaluating the
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coefficients by the conjugate property, and also the second

method involving partial fractions. Only it jumps over most

of the difficulties connected with both.

Examples of the Use of the Expansion Theorem :

(1). Inductance Coil and Condenser separately.

283. Start with the characteristic equation of a coil, being
the form taken by the second circuital law when applied to a

linear circuit of constant resistance. Say
= (R + Lp)C, (2)

where R is the resistance and L the inductance of the circuit,

C the current and e the impressed voltage.

First, let it be given that C is steady from the initial

moment, and zero previously. What is the corresponding e ?

The answer is immediate. We want two impressed forces,

namely, el
= RC to keep up the current, and e

2
= LpC to start

it. Since pi is a unit impulse, e2 is an impulsive force of

total LC. First we require the impulsive force establishing
the momentum LC instantly, and then the steady force RC
to keep it up against the resistance.

Now this is an example, not of the working of the expansion
theorem, but of its failure. But the treatment is sufficiently
clear without it. If we tried to force it into the expansion
theorem we should want the root of (R + L/?)-

1 = 0, which has

no finite root.

But now find the C due to steady e, which is quite a different

problem. By (2) the answer is

TO
which is of a proper form for the expansion theorem. Here
Z is R ; p is - R/L ; dZ/dp is L ; so, by (1),

showing the gradual rise of C to its steady value.

Since this case is fundamental, the operational way of

getting the result may also be indicated. We have

_e_ e _ \ f R
R + Lj. LX1 + B/Lp) R \Lp

VOL. n.
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This is got by expanding the fraction by division. The rest is

done by

^-| (6)

which makes, applied to (5),

e fB*_l/Be\ l/By_ B
\

(rj}

&1L [2_U/ (3VL/ j'

which is the expansion of (4), by the meaning of the exponen-

tial function. The steps (5) and (7) to obtain (4) may look

cumbrous. But there is deception here, for it is, perhaps, a

shorter and more direct way than any other. The deception

comes in in the customary use of the short expression of the

exponential function to denote a certain infinite series, and in

taking its properties for granted. However, once done, of

course there is no further need for the intermediate work. It

will be observed that the case is that of equation (3), 265,

slightly modified. To obtain it as in the equation referred to,

let e be impulsive, say = pE, where E is the impulse total.

Then equation (3) above makes

Q_ >E _ E = E _R,t/L /gx~
B + Lp

~
L (1 + R/Lp) L

as in (3), 265. The impulse E produces the equivalent

momentum E = LC. There is no impressed voltage to keep
it up, so it decays according to (8).

In doing (8) by the expansion theorem, notice that p=
makes C= 0, so there is no steady term. The rest is as in

equation (4), only multiplying by p or R/L. Thus, by (1),

where 'p has the special value which makes

Next consider another fundamental case, that of a leaky

condenser; that is, a conducting leyden or condenser, or one

made conducting (equivalently) by a shunt. We have

C= (K + Sp)e,

'

(10)

"Where K is the conductance and S the permittance. The form

is the same as for a 'coil, but current and voltage are inter-

^changed,
as well as conductance and resistance, and inductance

and permittance.
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In order that the voltage e should be instantly raised from

zero to constancy, and maintained constant, we require the

steady current ~Ke, and an initial impulsive current of total

S<? ;
that is, first the charge Se must be impulsively estab-

lished, and then it must be maintained constant by the steady

current Ke, which goes through the shunt K, of course. With-

out the steady current the charge of the condenser would

disappear.

Now invert the problem. Say

and inquire what e is required to make C jump from zero to

constancy. Here the expansion theorem applies. It is like

equation (3) above. So

answers the question, either by translation of symbols or inde-

pendently.
In another form, if the voltage be made to rise from zero

to constancy in the way indicated by (12), the current will be

constant, viz., C, during the whole time. This current is the

current, the total current in the condenser and shunt. The

part hi the shunt is I\e
; the rest is in the condenser. For

convenience we assume that the conductance is supplied

externally.

The Treatment of Simply Periodic Cases.

284. As regards the simply periodic solutions in these

cases, the working is perfectly simple, by means of the pro-

perty i>
2= n* which obtains in simply periodic states, or,

which is the same, p = ni, applied to reduce the resistance or

conductance operator to the standard form a + lp. The case

e = (R + Lp)C, (13)

when it is C that is given as a simply periodic function, say,

G=csm(nt + 6), is obvious, for (13) is in the standard form

already.

In the other case, when e is given instead of C, we have
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That is, we bring C to the standard form by multiplying the

numerator and denominator by the operator conjugate to

R + Lp, that is (B
- Lp) , This realises the denominator.

Whether this is done by^>
2 = -ri2

,
or by p = ni, is indifferent.

Only, it should be noted that i is not the imaginary of algebra,

but, as I have pointed out before, the differentiator d/d(nt) ;.

that is, p/n. It is a specialised differentiator, which may be

treated like the imaginary because p*
= - n2 in simply periodic

cases. But it must be finally interpreted correctly, as a

differentiator, of course. There is sometimes, perhaps often,

some confusion or indistinctness of ideas on this point.

Another point which may not be always understood is the

assumption involved that both operand and resultant are

simply periodic. This is essential. But it by no means
follows that a simply periodic e produces a simply periodic C.

It does practically, because there is resistance. But if it be

given that there is no resistance, so that e = ~LpC ; then if e is-

given, we obtain, by p = ni,

C= '

=--^-. (15)
Lj9 L/i2

This is the solution if G is simply periodic, as well as e. But
it would never reach this state without resistance. That is,

given a little resistance, e would, in a long time, lead to the

state (15) approximately ; but if e= ~LpC is rigidly true, and &

starts when t 0, the resulting C is, if e = eQ sin nt,

, (16)
Lp Lin

which is quite different. Here, of course, the reciprocal of

p signifies integration from to t.

We may easily show the complete establishment of the

simply periodic state from (5), by taking e = eQ smnt, but not

assuming C to be simply periodic. Then the powers of p~l are

successive integrations from to t ; and the result is

(-'* )-()'(!?-* )*
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where the functions of t in the brackets are the successive

integrals of sin nt, which are obtainable at sight, or verifiable

by differentiation.

By collection of terms, (17) may be put in the form

p_ Rsinn-Lncosn Lnc" ^
,~n\

~TF+LV~~
H 'B2 + L27/

Here the second part cancels the first initially, though it

ultimately vanishes and leaves the first in full play. But

when R is zero we never arrive at the simply periodic state,

but have the state (16) instead, which is the beginning part

of (17), independent of R . As regards the establishment of

(18), however, it is quite sufficient to first write down the

final periodic state, and then add on a term to cancel it

initially and subside at the proper rate. The above way oi

successive integration shows the internal working.
That p specialises itself to ni when there is simple periodicity

of e and C rests upon p
l = -n~. That the transformation

used in (14) is fully valid without escape may be seen thus :

Operate on (13), which is general, by R - Lp, making

(R -
1ip)e

= (R
2 - LyjC, (19)

which is also general. Now specialise, by letting C be simply

periodic, and therefore, by (13), e also, though the converse is

not necessarily true. We now have
_//

2C= -n?C, and (19)

becomes

(20)

which is (14) slightly changed in form.

In the case of a complicated operational solution, if we
choose to clear it of fractions, we can generally bring it to the

usual form of a differential equation, say

A* = BC, (21)

where A and B are operators involving only direct operations

that is, integral positive powers of p. Then, by specialising

and C to be simply periodic, we make the power of pn be con-

stant when n is even, and be p x constant when odd. So we
reduce (21) to the form

(22)
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where the A's and B's are constants. A similar treatment

applies in the case of irrational operators, as regards their

reduction to the standard form.

Finally, if want e in terms of C, multiply by Ax
- A2_p. If

C in terms of e, then by Bx
- B.2p instead. This work is just

as well, and it may be much better done in the operational

solution itself, without preliminary conversion to the usual

stretched-out form of a differential equation, by either p*= n*

or p = ni. Of course, the structure of the formulae is plainer

and simpler in the operational form. This is a very important

matter, especially to the electrician, as he can use electrical

ideas throughout rather than purely mathematical.

(2). Coil and Condenser in Sequence. Also in Parallel.

285. In the above cases of a coil or of a condenser, there

is but one degree of freedom. To make two, we may put the

coil and condenser in sequence. The resistance operators are

additive, so

l_c (23>

is the equation of voltage, e being impressed on the complete

arrangement. We need say nothing here about the simply

periodic case. By inspection of (23) we see that the operator
is peculiar, as the expansion theorem applies to one part of it,

though not to the other. If C is zero before, and steady after

the initial moment, we see that the corresponding e consists

of three parts, namely, an impulsive voltage of total LC to-

generate the current instantly ;
a steady voltage EC to keep it

up against B ;
and the variable voltage

(l-*-
K </3

). (24>

The impulsive voltage, and the steady C(R + K~1
) are clear

enough. The exponential term is required to keep the total

current constant in the condenser and shunt. The initial

impulse does nothing to the condenser. It is merely operative

on the coil.

The case K = is interesting. Then, by (24), or much
more simply by (23), the voltage on the condenser is Ctf/S,,

increasing uniformly with the time.
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Only one root is concerned in the above. But if we inquire

into the C produced by a steady e, then two roots come into

play. Thus, by (23),

C =

Taking the denominator to be Z, and applying the expansion

theorem, equation (1), we see first that Z is R + K"1
, and next

that

pf^-Lp _S^_. (27)
clp (K + JSpf

So, if pl and _p2 denote the two roots of Z = 0, the expansion
of C is

c=

where, instead of (K + Sp)~
a

,
we have written (R + Lp)

2
,
because

Z = makes them equal. Into a discussion of (28) in detail

it is unnecessary to enter, the object here being merely the

application of the expansion theorem. The theory of circuits

in detail would need a chapter to itself.

Another way is to convert (26) to

This will give the same result by the expansion theorem,
first as regards the steady state, and next as regards the

terms variable with the time. In the numerator, p has to

receive the two values in succession which make the denomi-

nator vanish. That is, if C = (Y/Z)e, and the subsidence con-

stants of the normal systems depend upon the vanishing of

Z, then

C =
|?.

+,2^J (30)
/o rfz

dp

expresses the expansion theorem, being equivalent to equation

(1). Putting it in another form, it is on the infinities of Y/Z
that the terms involving the time depend.

In (14), with the specialised meaning of p, the algebrisation
was effected by introducing a common factor into the

numerator and denominator. Comparing (29) with (26), we
see that a common factor is also introduced, though
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unnecessarily. It does not alter the roots of the denomi-

nator. Suppose, however, that it did. Suppose, for instance,

we multiply numerator and denominator in (26) by r + lp,

thus introducing a fresh root p= -r/l to the modified Z. It

will make no difference in the working of the expansion
theorem. The new term is of size zero, and is, therefore,

automatically excluded.

There is an important principle involved here, which may
be referred to in passing. Let C = */Z be the operational
solution of an electromagnetic problem, say, involving a com-

plicated combination of coils and condensers. If Z = has m
roots, there are m degrees of freedom, and m terms in the C

expansion, besides possibly an outside steady term. Now, by

introducing special relations amongst the resistances, induc-

tances, &c., concerned in Z, we may be able to reduce it to a

simpler form, involving a smaller number of roots, even down
to one root, it may be. This means that the combination

behaves, towards the impressed force, under the circumstances,

just as though it were some simpler combination. So far as

the expansion of C = ejTi goes, there is no loss of generality by
the simplification of Z mentioned. The reduced form used in

the expansion theorem will give the proper result. The same

applies to simply periodic solutions. Nevertheless, the com-

bination does possess a greater generality than the simplified

equivalent in other respects, as regards a differently situated

impressed force for instance, or as regards free subsidence

from an arbitrarily given initial state. It is very convenient

to be able to eliminate simply the unessential and inoperative

parts of the work, and the Z operators allow us to do this.

We also see, by reversing the reasoning, that when we alter

C = e/Z to C = Y0/YZ, and introduce thereby a number of new
roots of the denominator, viz., those (if any) of Y = 0, we are

really enlarging the problem, for YZ belongs to a larger com-

bination. But then it is done in such a way that the larger

combination is equivalent, as regards the relation between

e and C, to the smaller. The extra terms in the expansion of

C are of zero size. Thus, with unit operand,
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where the accent means differentiation to p. Now, with the

roots of Y = only, the vanishing numerators make the

terms be zero ; but this does not happen with those of Z = 0.

"We therefore get the original form of equation (1).

Returning to the condenser and coil, put them in parallel,

and subject them to the same impressed force. The conduc-

tance operators are now additive, and therefore

C = {(K + Sp) + (B + L^)-
1

}* (32)

is the equation of current.

To have e steady after the initial moment, we require an

impulsive current of total S0, a steady current Ke, and a

.gradually rising current

by what has preceded. Only one time function is concerned.

On the other hand, if the current is steady after the initial

moment, we have to expand
n

=
-'

Comparing with (26), and its expansion,-we see that the

result in the present case is

c
.

c^< . c^
(34)

The roots pl} p2 ,
are as before, in (28).

(3). Two Coils under Mutual Influence.

286. As another example of two degrees of freedom, con-

sider two linear conductive circuits. The second circuital law

applied to them makes

E = (R + Lp)C + Mpc, (35)

e = (r + lp)c + MpC, (36)

using big letters for one circuit, small for the other, except in

the case of M, the mutual inductance, which is common to

both. This is "ironless mathematics," of course. Young
investigators need not be discouraged by the contempt
which is too often poured upon "ironless mathematics" in
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engineering journals. It is fundamental, and very useful.

Sometimes the contemners only indicate their own ignorance.

If both C and c are to suddenly become steady, we require

the voltages indicated explicitly, viz., the steady EC in one

and re in the other circuit, following the initial impulses

LG + Me and Ic + MC respectively.

If c is to be kept zero, put c = 0, making

E = (B + Lp)C, e = MpG. (37)

That is, we require the voltage MpC in the second circuit to

prevent current in it. At the same time, the equation and

behaviour of the first circuit are the same as if the second were

taken away. The principle of the destruction of mutual

induction by a suitable impressed force is a useful one in

theoretical reasoning.

When, on the other hand, the forces are given, we should

solve for the currents. Thus, by cross multiplication, we may
eliminate C or c in turn between (35) and (36). The equation

of C is

C = -M2

/'

which, by (1), or (30) more conveniently, expands to

E -

E
+
L^(r + tPl ) + lPl(E + lPl )

- 2MV
+ ditto with Pa-

Here P) and p2
are the roots of the denominator in (38).

The above examples, going only as far as two degrees of

freedom, are sufficient to show how the expansion theorem is

to be applied. They are not particularly good examples, but

are chosen rather to show how to readily discriminate different

operators, and see when the expansion theorem applies, and
when it does not.

(4). Cable Earthed at A and B. Impressed Force at A.

287. Passing to the consideration of the application of

the expansion theorem to diffusion problems, take first what
is one of the simplest cases, as well as one of the most
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interesting. Let a cable be earthed at both ends, and a

steady impressed force e be inserted at # = 0. The potential

produced is given by (17), 256, namely

_
string siusl

where <f= -s2 = KS/>. The practical way of getting this

operational solution was described on the same page. Being
an easy case, we can see that it is right by noting that it

makes V = at x /, and V = e at x = 0.

Take the form (30) of the expansion theorem. Take Y to-

be the numerator, and Z the denominator. The roots of

are those of shin ql. But not the zero root, because to

rationalise shiuql, which is an odd function of ql (and therefore

of j)*), we must exclude it. This may be formally done by

making Z be (shin ql)/ql ;
but it is unnecessary, for by omitting

the zero root from shin ql
= Owe come to the same result.

Noting this, we may use either of the forms given in (40).

The first gives the result in terms of the values of p. But

these are negative, therefore the second form is more con-

venient. So we have

p
d
^L = i//Z = kl cos si. (11>
dp ds

Also, putting p = 0, the final steady state is e(l
-

x/l). So the

expansion theorem (30) gives

/., x\ ^ sms(l-x}tpt
> 1-

T )+
\ I J ^sl cos si

where the summation ranges over the finite roots of sin si =
;.

that is, sl = 7r, 27T, STT, &c.
; and^> in the exponential function

is given by RS/j= -s2
. Owing to the dependence of p on the

square of s, we see that only the positive roots of sin si = 0-

need be counted. That is, it is really the values of p that

control matters. Equation (42) may be at once reduced to

', (43>
/ r

which wa.3 obtained before.
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(5). Cable Earthed at A and Cut at B. Impressed Force at A.

288. Next take the same case as last with the sole

change made of insulating instead of earthing at x = I. Then,

by (22), 258, the potential is given by

y _ cosh q(l
-
x)e _ cos s(l

-
x)e

^

cosh gl cos si

which, as before, we see to be correct by the formula making
V = e at # = 0, and C = at x = l. Now in this case, the

denominator is rational, as a function of p, that is to say, so

no reservation is needed, and the expansion theorem (30)

makes

V = , + e2
cosst^; (45)

l cossl
%dt

ranging over the positive roots of cos si =
; or, si = JTT, 1JTT,

&Q. Effecting the differentiation in the denominator, and

simplifying the numerator by the vanishing of cossZ, we
reduce (45) to

V = 0-2?2
si--ep

', (46)
si

which is the expansion required. The summational part is

of the same form as in (43). But of course there is a different

series of values of si, and also of the p's. There is no con-

fusion between 2> the differentiator, and its specialised alge-

braical value denoted by the same symbol. The latter only
occurs in algebraical summations

; the former in operational
solutions.

(6). Earth at A, Cut at B. Impressed Force at y.

289. The above two cases being sufficiently illustrative

when the impressed force is situated terminally, and the

terminal conditions are of the simplest type, making either

the potential or the current vanish, take next the case of an

intermediate impressed force, though still with the simple
terminal conditions. Say that there is earth on at x = Q,

insulation at x = I, and an impressed force e at x = y. Then,
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by (41), (42), 260, the resulting potentials, putting ^= -sa

for convenience in the expansions to be found, are given by

cos si

V2
=^lsin S(Z-7/).*, (48)

cos si

Vj being the potential when x is on the right side of y t
and

V2 when on the left side. Here, of course, s2 is the differen-

tiator - RSjj.

First, putting s = 0, we see that the final steady state is

Vi = , Va
= 0. So applying (30), we obtain

Vx
= e - e^

COS *V cos s(l
-

x) . 4*, (49)

V2
= - *2 sin S

(Z
-
y) . <, (50)

-frslsiusl

subject to cossZ = 0, as in the last case, or sl = (n J)TT, where

n is a positive integer. We may now simplify by means of

cos si = 0, leaving

Vi = e - 2*2
C SSy sin sx . e* (51)
Si

V2
= -2*Zsina?.* (52)M

the simplest form of the expansions.
The transition from the operational solutions (47), (48) to-

the expansions (49), (50) involves two formal processes, viz.,

the change in the denominator, done by the differentiation

which occurs when the summational sign and the time factor

are introduced, and the addition of the outside term. In

going further, we reach (51), (52), by the omission of terms

which vanish in the preceding equations. The same occurs

in the previous examples. Now this omission may be done

in the act of applying the expansion theorem, thereby deriving

(51), (52) directly from (47), (48) without the more compli-
cated intermediate equations. And, in fact, so far as arriving
at (51), (52) is concerned, through the expansion theorem, we-

may make the omission in the operational solution. But the
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steady part of the solution must be extracted first
;
and in any

case, the operational solution is made nonsense of (considered

as a general operational solution) by the too early omission.

So the omission is properly done in the act of conversion to

the expanded series.

(7). Earth at A and B. Impressed Force at y.

290. If both terminals are earthed, whilst the impressed
force is intermediate, at the point y, we have, by (37), (38),

. 260, the results

Vx=+???? sin s(Z- a?). , (53)
smsl

Vsin soc / 1 \ / 1* A \

2
= --. -COS *(*-#).*> (54)

on the right and left sides of the impressed force respectively.

So the expansion theorem makes

Vl = e l - - 2,2 *, (55)
I / Si

(56)

where we first write down the outside terms got by putting
s = in the previous equations, and then write the summational

general term, changing the denominator by the operator

^s(d/ds), which is equivalent to p(d/dp), and omitting terms

which, in virtue of sins = 0, vanish from the result with

changed denominator.

The determinantal equation depends only upon the nature of

the terminal conditions apart from impressed force, There

may be any distribution of impressed force, intermediate 01

at the terminals as well, but unless we change the terminal

arrangements, there will always be the same set of normal

systems. In (55), (56), for example, e is entirely at the point y.

But make it be a function of y, representing a distributed

impressed force. Then the integration of (55), (56) with

respect to y, so as to include all the impressed forces, will

give the resulting potential. The outside terms are altered,
and likewise the size of the normal systems in the summation,
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but the type of the normal systems, say sins^e''', is not

changed, and the same series of s's and p's remain in force.

(8). General Terminal Conditions. Impressed Force at A.

291. Owing to the equidistant spacing of the roots of the

determinantal equation in the above cases, which arises from

the fact that the terminal reflection coefficients are of size

+ 1 or-1, as the case may be, the expanded solutions are

readily calculable numerically at once. It is somewhat diffe-

rent when we depart from the simplicity of terminal earth or

insulation, as the roots become unequally spaced, and require

preliminary determination from trigonometrical tables before

the formulae can be subjected to calculation. The process of

expansion is, however, the same. Let, for a first case, the

impressed force be at the beginning, x = 0. Then we only
want the formula on the right side of the force. This is (35),

259, in which put a = 0, making

which shows the potential at x due to e at # = 0, when the

terminal reflection coefficients are a and ft, at x = Q and I

respectively. In terms of the terminal resistance operators

Z and Zj, we have

(58)

by 261, equations (49) and (52). Here Zx is such that

V = ZjC is the equation of voltage for the terminal arrange-

ment at x = I, and V = - Z C for that at x = 0.

When the terminal arrangement is a mere resistance, we
have Z = R say, and Z 1

= R1 ,
these being constants. Notice,

in passing, the singular case a = l. By (57) it makes V = ;

that is, the cable cannot be charged at all. This happens
when Z is infinite, which needs an infinite terminal resistance

at every moment, and no terminal permittance.

Going farther, let us expand (57). The best way is, by
means of the given expressions for a and ft, to convert it to

circular form first, before applying the expansion theorem,

although it will come to the same thing in the end if we
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expand (57) as it stands, and then change to circular func-

tions. Adopting the former course, put q
= si in (57) and (58),.

and reduce by ordinary algebra. The result is

y =___{sin + (Z 1.s/R)cos}s(?-^) g>
(1
- Z Z lS

2

/R
2

)
sin si + (Z + ZiXs/R) cos si

'

This is, by its construction, only another form of the opera-
tional solution itself, the meaning ofs2

being -ESp. Observe,

also, that although Z and Zx are unspecified, no further

reductions of the kind just made are required for them in any
case allowing of the application of the expansion theorem,.

because they are then rational functions of p, and therefore of

s
2
. So (59) is the operational solution in a form which is

convenient for the immediate application of the expansion
theorem.

Put s = to find the steady state. Practically, put 1 for cos si

and cos sx, and si or sx for sin si and sin sx. The result is

V =_Bg-oQ + fr_ ,. (60)

Now if the terminal arrangements are mere resistances, say R
and Bj, this becomes

which is obviously right, because the denominator is the total

resistance of the circuit, and the numerator is that part of it

which lies to the right of the point x. Similarly, if the

terminal arrangements, though not simple resistances them-

selves, have finite steady resistances, then s = in Z and Z^

produces them, and (61) is still the result, where R and Ra

denote the effective steady resistances. But it may happen
that the term containing s

2 in (60) does not vanish. It may
be infinite, so caution is needed when the effective terminal

resistance is infinite. Thus, (60) may be written

V =

in terms of p. Now suppose the terminal arrangement at A
is a condenser, making Z =

(Sop)"
1
. The p is cancelled. But
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at the same time the denominator is made infinite, E beino-

infinite. So if R! is finite, the result is V = 0. That is, the
cable settles down to a neutral state ultimately when charged
through a condenser, provided there is not infinite resistance
at the further end. On the other hand, when the condenser
is at B, making Z = (S^)-

1
, say, the result is V = e, the full

value, provided the resistance at A is finite. Lastly, if both
R! and BO are infinite, by having condensers at both ends,
say Z1

=
(SI/?)-

1
,
Z =(S ^)-

1
, the result of putting = in

(62) is

This result may be verified by the law of displacement in con-
densers. On one side of the impressed force is the elastance

So-
1
, and on the other side (Si + SZ)-

1
. So the total displace-

ment is

(64)

Divide by SI + Slf the permittance on the right side of e, and
the result is V

, as in (63), the final steady potential of the

cable and further condenser. On the other side of the

impressed force that is, on the side of the condenser at A
which is next the cable the potential is negative, being lower

than the above V by the amount e. It is the side of the con-

denser at A next the earth that is charged positively. The
reverse is the case in the dielectric of the cable and the B con-

denser. The simplest mental realisation is obtained by the

use of Maxwell's displacement current.

If we compare these cases with the formula (61), under-

standing that R and Rj are the steady terminal resistances,

we see that they are in agreement, except that when R and

R! are both infinite, the result (61) is ambiguous. In such a

case we must go back to the more complete formula (60), or

(62), and interpret it instead.*

Having thus settled VQ, the outside term to express the

steady state when there is one, we may apply the expansion

* Of course condensers may occur terminally in other ways than the

above, but in any case s = in (59) will lead to the required result.

VOL. II. L
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theorem to (59), or to any form of the same that may be more
convenient. Another form is

_ cos sx (tan si + Z^/R) + sin sx (tans? . ZjS/R 1)

obtained from (59) by expanding the numerator, and then

dividing the numerator and denominator in that equation by
cos si.

The determinantal equation is

or, which is the same,

tan^-J^f^. (67)
("0 4)^i(5

This simplifies to

tanl.--&( (G8)
iU

when Zi = 0, and to

tansZ=-|isZ, (69)
JL\tt

when Z = 0. In these equations the Z's are functions of

(sl)
z in virtue of being functions of p in general.

In the case of the terminal arrangements being mere

resistances, producing a constant ratio of the potential and

current at the terminals, we have the simple terminal condi-

tions considered by Fourier. Z or Z 15 or both, as the case

may be, are constants. The values of si are then very easily

determined by means of a table of tangents. This kind of

terminal condition, which includes the extreme cases of

terminal earth and insulation, is the only one that admits

of the expansion of an arbitrary function after the manner of

Fourier that is to say, by the use of the property of the

vanishing of the integral of the product of any two different

normal systems. The reason is because there is no energy in

the terminal arrangements that can by itself affect the state

of the cable. It is true that there is waste of energy in the

terminal resistances, but that does not count at all. It is

wasted and done for. So the specification of the initial state

merely requires a statement of the .potential in the cable
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itself; that implies electric energy, upon which the later

state of the cable when left to itself depends, in the absence
of an impressed force to introduce fresh energy. But when-
ever the terminal arrangement departs from the above simple

type, involving merely a waste of energy from the cable,

Fourier's method fails. The integral of the product of two
normal systems along the cable is no longer zero. The
initial state may or may not include any energy in the

terminal arrangements. If it does, this terminal energy
must be allowed for by widening the conjugate property, or

in other ways. But even if it does not, the energy in the

cable itself will set up energy in the terminal arrangements
in a reversible manner, not by mere waste, so the complete
normal systems must include the terminal arrangements as

well as the cable. Now if the terminal arrangements consist

only of condensers and resistances (or equivalently), however

complicated in detail, we only introduce electric energy. This

is like that in the cable (its self-induction being ignored here),

viz., the energy of electric displacement. The conjugate pro-

perty which has to take the place of Fourier's is then substan-

tially the same, with a wider range, however. It is the

property of the vanishing of the total mutual energy of a pair

of complete normal systems. But should we introduce mag-
netic energy into either or both of the terminal arrangements,
the last property breaks down. We have to go to a still wider

one, viz., that the mutual potential energy (or electric, here),

of a pair of normal systems equals the mutual magnetic

energy of the same, the terminal arrangements being included.

This may work out in a complicated manner.

But the expansion theorem goes straight to the final simpli-

fied result, irrespective of the absence or presence of energy
or of the power of receiving and storing energy in the terminal

arrangements, and of the kind of conjugate property required

to effect the expansion after the manner of Fourier extended.

Thus, applying it to (65), following the formula (30), and

using is (dlds) instead of p(dldp), we obtain

V = V + cos sx

(70)
L2



148 ELECTROMAGNETIC THEORY. CH. VI.

by performing one differentiation upon the denominator in

(65). We cannot carry it further profitably without specifying

what the natures of Z and Z x really are. Since, however, the

values of si in the summation are fixed by the equation (66),

that is, by the vanishing of the denominator in (65), we may
substitute the right member of (67) for tansZ in (70), and

similarly put sec2
s in terms of the Z's. But there is no par-

ticular advantage in doing so, unless the Z's are given, and

we desire to make possible simplifications of expression.

In obtaining (70) by the expansion theorem, no notice was

taken of the factor (1 ZoZ^/R'
2

)
in the denominator in (65).

It has its roots truly, but they are inoperative. They lead to

nothing. The factor may therefore be regarded as belonging
to the numerator of (65), if we please. Or, keeping it in the

denominator, we see that its vanishing does not make the

denominator vanish, and therefore its roots are out of the

question.

(9). General Case of an Intermediate Impressed Force.

292. When the impressed force is intermediate, say at the

point x = y, the treatment is quite similar, so that very little

detail need be given. We have the operational solutions

(35), (36), 259, in which put y for a. Now circularise the

functions by putting q
= si. Remember in doing so that this

is not really a complex transformation, because the operators

are rational functions of p already, and therefore of s
2

. This

fact makes the transformation easy, by the cancelling of terms

that occurs. The result is that

y _ (Rcos- Zossin)gy. (Z^cos + Rsin).s(7
-

a?)

cos si (R
2- ZoZjS

2

) ftan si +
B*< zo+Zi)

J '

expresses the potential due to e at a point x on the right
side of y, where e is situated. To obtain the corresponding

expression for V2 , when x is on the left side of y, refer again
to (35), (36), 259, and observe that V2 is got from Vj by
interchanging a and /?, x and l-x,y and I - y, and then nega-

tiving the result. So, doing the same to (71), we get

y = _ (Rcos - Z^sinX^ y) . (Zpscos + BskQac
same denominator
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Now apply the expansion theorem. The outside terms for

the steady state may be perhaps most easily got by elementary
considerations by Ohm's law and the condenser law, that is

to say. When the steady terminal resistances (effective) are

finite, say R and R 1} we shall have

(

by Ohm's law. But when R and R! are both infinite, and

there are terminal condensers concerned, we must go further,

and apply the condenser law, say as in 291, equation (64),

which is a special case of the present. In general, however,

should the terminal arrangements include several condensers,

it is the effective steady permittances of the combinations that

are to be regarded as S and Si in the place referred to. Or,

we may get the steady states directly out of (71) and (72) by

seeking their limiting values when s = 0. However the work

be done, denoting the steady states by t\ and v2,
and applying

the expansion theorem to (71), we obtain at once

y = t< y;
c(& cos ~ Z s sin) sy . (Z :s cos + R sin) s (I

-
x)

by introducing the summation sign, the time factor, and

changing the denominator by the operation ^sl(d/d(sl)).

As regards V2 ,
we may get its formula by making the inter-

changes already indicated, in getting (72) from (71). But

this is quite unnecessary. For, by inspection of the original

operational formulae (35), (36), 259, we may see that when
the denominator vanishes Vx and Ya become identical in those

equations. That is, identical for all the values of p given by
the determinantal equation, though not in the case of^? = 0,

which finds the steady states on the two sides of e. So the

V2 formula is to be got from (74) by changing Vj to V2 and

^ to r.2 . The expansional part is the same, in virtue of the

special values of si. Of course, we may use the alternative

formula if we like, making the interchanges before described.

And when the Z's are explicitly given, simplifications of form

may be readily carried out. This is not a matter of indiffer-

ence, if numerical calculation is wanted, because, of two
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equivalent forms, one may be much more manageable than

the other.

The Determinantal Equation.

293. The determinantal equation is (66) or (67). Say,

(75),

Here <(sZ) is a rational function of si. Draw the curves

2/i^tan**, yz
=

<j>(sl)', (76)*

the abscissae being si, and the ordinates yl or yz . The inter-

section of these curves indicates the admissible values of si.

It is sufficient to draw them very roughly, just to find the

general situation and rough values of the roots. Only a few

at the beginning are wanted, except for very small values of

the time. I mentioned before that when the Z's are mere

resistances, tangent tables readily find the roots. Use the-

graphically-obtained values as a first approximation. Say-

it is the first root, which is the most important in general.

The tables may show that the roiun value is several degrees

wrong. Estimate the correction by rule of three. Apply
the revised value to the tables. It will be nearly right, and a

second revision may bring it right to a minute, and a third to

a second.

Another easy case is that of terminal condensers. Also the

case of condensers and resistances does not trouble much.

And it may be remarked here that when the terminal arrange-
ments involve only electric energy, without magnetic, the

roots are always real, so that the above described process can

be followed. But it is not so easy when magnetic energy is

involved. There may then be complex roots as well. This

occurs even when a single coil is concerned at either terminal,

if the inductance be of a suitable value. Of course, in slow

cable working, the inclusion of the effect of the self-induction

of the coils is not an important matter, and the coils may be

treated as resistances. The trouble with complex roots sets

a limit to the desirability of elaborating formulae beyond the

point of ready systematic calculation. The formulae, neverthe-

less, have an interest of a scientific kind, as showing what.

may be done if the necessary trouble be taken.
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The dcterminantal equation may be written

tan si + tan (tan-
1^- + tan-1^ = 0, (77)

\ K h> /

which makes

ntr = si + tan-1^ + tan"1^. (78)
HI rU

This form shows how the difference between si and the stan-

dard value mr, n being a positive integer, depends upon the

terminal operators. Equation (78) may be readily converted

to a power series, perhaps with occasional advantage. Special

formulae may also be constructed exhibiting the roots explicitly

to any desired degree of accuracy, but it is questionable

whether they repay the labour of obtaining them, when tables

of circular functions are so useful. General principles may
become smothered by overmuch detail.

The original form of the determinantal equation, as it

shows itself in the operational solutions (35), (36), 259, and

(65), (66), 253, maybe written

& l = ap, or ae- z

/?-
l = l. (79)

If the left-hand operator be applied to a wave originated at

a point, say at .r = 0, the resultant would represent what it

became after a journey to x = l, reflection there, according to

P, followed by a journey to x=0, and reflection there accord-

ing to a. The right-hand member would show that the effect

of the cycle of operations was to restore the disturbance to its

original state. This is impossible, of course. But it is

apparently done on a normal solution. Thus

apc-*
l
c
vt = ltt

, (80)

if the constant P is chosen to be any one of the values given

by the determinantal equation. This equation does not imply

any use of p*, but only abbreviates a rational equation. Clear

it of fractions, and we get

where the operator is an even function of q, and is therefore

rational.
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Subsidence of Special Initial States.

293a. In the above equation (74) we have not only solved

the question of the establishment of a certain state by an

impressed force, but also the connected question of the

subsidence of that state to equilibrium when the force is

removed. For, if we write (74) and its companion thus,

V = - 2 M *, (81)

where v has to be ^ or v.2 as the case may be, we have,

initially,
v = ^u. (82)

That is, the state of potential v is expanded in the special

Fourier series concerned. If, then, v is left to itself, unsup-

ported by impressed force, the state at time t later will be

given by
i-ZtU*, (83)

where v is what v then becomes.

There is this remark to be made about (82). It cannot be

called without limitation the expansion of the function v in a

Fourier series, subject to the terminal differential conditions,

for it may be only one of many expansions expressing the

same functions v, and subject to the same differential condi-

tions. This is quite clear in the physics of the matter. For

consider what the impressed force does in the act of setting

up the state v. It energises the terminal arrangements as

well, electrically and magnetically, except when only mere

resistances are concerned. Now the same state of potential

v in the cable may be accompanied by various states of energy

terminally, and all due to the same impressed force. So when

we take off the impressed force we not only let the charge
redistribute itself, but also let the terminal energy act on the

cable, and in various manners according to circumstances.

Equation (83) exhibits the potential at time t due to the

initial state u in the cable, and to the accompanying initial

states of the terminal arrangements. This is true even when
the Z's are only given by formula!, and we do not analyse
them to see what particular arrangements are really repre-

sented thereby, and what the terminal energies are.
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It will be seen that the expansion theorem is a labour-saving

agent of a remarkable character. For it is not from formulae

representing the expansion of an arbitrary initial state that

we can most readily learn the general course of events in the

physical problems concerned. We should rather prefer to

examine the result of some special initial state, or the result

of a disturbance initiated at a single spot, as an impulsive or

a continued source. Now it is just in these cases that the

expansion theorem shows to best advantage. We obtain our

formulas in a very ready manner, without the circumbendibus

connected with arbitrary initial states and the conjugate pro-

perty of the normal functions. We shall see presently how to

apply the expansion theorem to arbitrary initial states. In

connection therewith, it may be noted here that an integration

applied to (74) and its companion enables us to express the

effect due to an arbitrary distribution of impressed force along
the line, all starting at the same moment in the simplest

case. Put edy for e, and let e be a function of y. Then

integrate with respect to y from to I, using one or other

formula, according as x is to right or left of the elementary

impressed force concerned. But this is a mathematical

development which is useless for our present purpose.

(10). General Case of an Arbitrary Initial State

in the Cable.

294. The expansion of an arbitrary function of x between

the limits and I naturally rests upon the expression of the

function for a single point. That is, we require to find how
a charge Q, initially all at the point r, diffuses itself when
controlled by given terminal conditions. As was before pointed

out, the construction of the operational solution for a point

charge is like that for an impulsive impressed voltage, with a

difference. The latter produces a jump in the potential, the

former in the current, at the place of application. A continued

impressed force e at a point has its analogue in a continued

source of current, led in by an auxiliary wire. The operational
solutions to right and left of the source are given by (65), (66),

263, in which h is the current introduced, to be given as a

function of the time. Taking h=pQ makes the source impul-

sive, and the case is then that of an initial charge Q. So, by
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(65), 263, the potential Vj at x, on the right side of the point

y, where Q is impulsively introduced, is given by

On the left side of y the potential V2 is to be got by simply

interchanging x and y in the last formula.

Converting (84) to circular functions, by means of q
=

si,

makes the equivalent formula

y _ _ (Z S cos + R sin)sy . (Zjs cos + E sin).s(Z
-

x) sQ

The final state must be either zero or constant. It must be

zero if there is conductive connection with earth at either

terminal that is, when at least one of E and E1 is not

infinite
;
and it must be finite when both are infinite, so that

the charge Q cannot be got rid of. In the former case, the last

equation shows the result at once, on account of the s which

occurs as a factor. In the latter case, it is the permittance
that controls matters. The charge Q is finally either uniformly
distributed along the cable, if there is no terminal permittance,
or is divided between the cable and the terminal condensers.

Thus, the potential of the cable is

, (86)

if S and B! are the effective permittances of the terminal

combinations. This result may be dug out of (85), but is

sufficiently clear without doing that, which is, however, a

useful test.

Applying the expansion theorem to (85), we obtain

-x) 2Q pt
,.

coss

where <f>(sl)
is as in (75) and

<f>'(sl)
is its derivative. We have

the same form of determinantal equation. This formula

applies on both sides of the point y, both as regards the

steady v and the summation. For the steady state is con-

stant, and the original operational solutions (65), (66), 263,

become the same when the denominator vanishes. We may,
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however, exchange x and y in (87), and make other changes
controlled by the determinantal equation.

Put Q/S = 1 and t = 0. Let u be the result. Then

v0 . j- -
x) /QQ\+ 2" 2 '

where u is the value of v with Q/S = 1 . Here it represents the

initial state. Therefore u is the expansion of the unit impul-
sive function of x concentrated at the point y. It represents

a great deal more than that, outside the limits and I, for

there are periodic repetitions, though not periodic in the

usual sense, except in the elementary cases of total reflection

at the terminals, when we have the usual Fourier series with

regularly spaced roots.

Given, then, a function /(a?) representing an initial state, its

expansion is

using the previous expression for u\ and, by introducing the-

time factor in the summation, we find what the potential /(.*}

becomes at time t. The ultimate result is a state of uniform

potential viz., the total initial charge divided by the total

permittance, including the effective terminal permittances.
As regards the meaning of the expansion for V outside the

limits for <e, viz., and I, which are imposed in the physical

problem, we get some knowledge from the determinantal

equation. If V is the potential at x at time t in the cable,.

free from impressed force, its general characteristic is

(A
2 -

rf]V = 0, where A is the space differentiator and <f is

RS x the time differentiator. Also, when the terminal reflec-

tion coefficients a and $ are introduced, we make V satisfy

where in the operator on V we write A for q. Compare with

(80A). It is to be understood that in the two Z's the same-

change is made, or A2

/BS substituted for^. So, if V is f(x) t

we have, by Taylor's theorem, 276,
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This is the equation showing the functional connection

between the values at points distant 2Z from one another.

When the Z's are zero, it reduces tof(x + 1) =f(x
-

I), showing
the primary kind of periodicity. Further examination of (91)
to see how this is modified by the terminal operators, would

lead us too far away from the proper subject.

{11). Auxiliary Expansions due to the Terminal Energy.
Case of a Condenser

295. The expansion (89), subject to (88), has some right
to be termed the expansion of /(a?) in the Fourier series

in question, because it is the one that depends only upon the

initial state of the cable. It gives the potential at any later

time on the understanding that the terminal arrangements are

initially unenergised. Unless, therefore, the Z's are mere

resistances, the Fourier series (89), (88), may not be the

proper one to use in the physical problem. It will still

represent the initial state, but will fail later, should the

terminal arrangements be initially energised. So there are,

independently of the above expansion, others which represent

zero initially, and which only come into operation when t is

finite. The number of such auxiliaries is determined by the

number of independent ways in which the terminal arrange-

ments may be energised. It may, therefore, be finite or

infinite. If, for example, there is a coil at A and a condenser

at B, there are just two auxiliary expansions. For the full

specification of the initial state must include not merely the

state of charge in the cable, but also the charge of the

condenser and the current in the ceil. After the first moment,

they are all connected. Initially, they are independent.
A case in which there is an infinite number of auxiliaries is

got by letting the terminal arrangement at either end be a

second cable, of finite length. Another one is got by putting
a piece of metal inside a coil. Without the metal the coil

would introduce one auxiliary. The metal, however, which

will produce a quit 3 determinate rational terminal operator,

will introduce an infinite number of auxiliaries, because the

initial state will require a specification of the magnetic force

in all parts of the metal, and this initial state may be arbi-

trary. This case may seem fearfully complicated, but can be
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worked out (in the case of a round core), without great diffi-

culty, by the operational method.

To show the action of a single auxiliary, let there be a

terminal condenser. Say that Z = (S p)~
l and Zj = 0. Then

the cable is earthed direct at B, and through a condenser of

permittance S at A. So, by (85) above,

_-_ cos - sinW . sins(Z
-
x)

(92}

cosdftand- JL
\ S s

represents the potential at x on the right side of y, due to the

impulsive introduction of Q at y. And this expands to

. a \

j

cos - s sin
Jsy

. sins(Z
-
x)

v-s^- -r- -arT-g^ (93>

lslcossl(sec?sl+
2L

}\ b()S C /

which is valid on both sides of y. There is no outside term.

The determinantal equation is

tansZ = S/SoS, (94)

and an integration according to (89) constructs the potential

due to an arbitrarily given state in the cable, with no initial

charge in the condenser.

Now as regards the condenser, put y= in (92). Then

V = sim(i-ar) Q
1

represents Vj in the cable due to Q at it.3 beginning. That is,

to an initial charge Q of the condenser. Or, if V is its initial

potential, we may substitute it for Q/S . So

represents the potential V at time t in the cable due to V<>

alone. Initially we have

0=V 2 -- =_ (97)
same denominator

for any finite x in the cable. This exhibits the auxiliary

expansion, V being any constant. The complete expansion,
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showing V due to the initial V of the condenser and V =/(#)
in the cable, is therefore

V + I

l

f(y) (| cos - s
sin) sij dy

This case is peculiar, inasmuch as the same operational

solution serves for the elementary charge in the cable and for

the terminal charge. The distinction is that Q is finite in one

case and infinitesimal in the other. It is true that in (92) Q
may be finite, but when we pass to an initial finite distribu-

tion of potential, it is replaced by Q dy, the charge on the

element dy, which is therefore infinitesimal. On the other

hand, the Q for the condenser is finite.

Points of Infinite Condensation. Exceptions to Fourier's

Theorem.

296. Another consideration presents itself here. It is a

common error that only finite functions can be expanded in

Fourier series. That this is wrong may be seen by the above

investigation. Go back to (88). Let there be initially QX/S
at y } , QJ8 at 7/2 >

and so on up to QU/S at yn ,
these points

being separate. Then

v= 2,Qn un (99)
b

-will, by (88), represent the initial state of the potential at

time t due to the n point charges. Initially, v is zero except
at the n points, but there it is infinite, with finite space totals,

however. Combine with (98). If f(x) is finite and con-

tinuous, V + v is initially finite and continuous, except at

the n points, where finite charges exist.

Nor need these condensations be themselves finite. The

Q's may be infinite. It is, indeed, true that an infinite charge

suddenly introduced at a point y would in an infinitely short

time raise the potential of the whole cable infinitely. In this

respect the solution would be of a useless nature. But we may
combine the infinities so as to have finite results. The simplest

case is first to have two finite point charges Q and - Q at

distance s apart. Then bring them closer, increasing Q in

the same ratio, so that Qz is finite. In the limit we have a
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point source involving a double infinity in Q, and a corres-

ponding expansion of the potential in a F. series. Similarly
as regards poles of higher multiplicity.

Nor does the matter end here. If the self-induction of the

line be included, the initial state must include a specification

of the initial current, as well as of V. Fourier series are

involved, and such a series has to express the initial potential,

whilst a connected series expresses the initial current. There

may be points of initial infinite condensation in both series.

Another common error is that the expansion of a function

in a series of sines and cosines of mrx/l, n being integral, is

uniquely determined by Fourier's theorem. There are other

expansions. To show this (in one way), let Z
t
= - Z in (85).

Then tan si = 0, or si = mr, as in Fourier's theorem. But now
R2 - Z^s2 = also, or R2 =

Zjfo
2

,
determines a distinct set of

extra normal systems, of the type **, where h is constant.

So we can expand a given function in terms of the usual

sin sx and cos sx, and the extra functions. The result is,

therefore, to represent another function of x expanded in

terms of the usual sines and cosines, with equally-spaced

roots. But it is not the expansion got by Fourier's theorem,

though it is equally true. I will give one or two examples in

illustration of this.

Abnormal Fourier Series.

297. When a cable is earthed at its ends the type of the

normal function for the potential is sin sx, vanishing termi-

nally, s being fixed by sin si = 0. Left to itself, a distribution

of potential of this type becomes reduced to sin sx . tpt at time

t later, p being negative, fixed by RS/> = - s
2

. If the ends are

both insulated, the normal function is cos sx for the potential,

but with the same series of values of s, with the addition of a

zero value, making 1 a special normal function. The roots of

the determiriantal equation are equally spaced.

Now, if one end be earthed and the other insulated, the

normal functions are sin sx or cos sx, as the case may be, with

$l = (n- J)TT, n being integral. The roots of the deterrninantal

equation are equally spaced in this case also.

In all other cases whatsoever, so far as I know, of real

practical problems, the series of s's in the general 'normal
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function cos sx + a sin sx, where a is a constant, which are

permissible and necessary in order that real and practical

terminal conditions may be satisfied, differ from those given

by sin si = or cos si = 0, and are unequally spaced. It does

not seem to be possible for any two arrangements of real

condensers, resistances, and coils, acting at the terminals, to-

act in concert in such a way as to bring the determinantal

equation back to the original simple type. It is perhaps for

this reason, or rather for similar reasons in other physical

problems involving Fourier series, that it has apparently

escaped notice that Fourier's theorem, in which the s in the

normal functions is mr/l, n being integral, does not uniquely
determine expansions of functions. It is, indeed, said to do

so, but that is another story. It seems natural, for the above-

stated reason, that mathematical physicists should not come

across exceptions. On the other hand, pure mathematicians

would, perhaps, not arrive at them, owing to the peculiar way

they have of regarding the subject of the expansion of functions.

They would be concerned with professedly rigorous proofs of

Fourier's theorem, and of the convergency, rather than with

the discovery of exceptions.

Guided, however, by physical ideas, though applied to-

entirely unpractical arrangements, involving instability, to be

produced by latent impressed forces, set going by the real

electrical mechanism, it is quite easy to adjust matters so that

the terminal arrangement at one end of the cable shall com-

bine with that at the other in such a way as to bring the roots

of the determinantal equation back to the original simple

kind. We come back to sl = mr, or (n- J)TT, with, however,

the important and essential fact that there are extra normal

functions of an abnormal kind. And so we come to violations

of Fourier'3 theorem regarded as a unique expansion.

Origin of Two Principal Abnormal Cases.

298. Tims, equation (85) shows the potential at x on

the right side of
//,

due to Q initially at y, subject to the ter-

minal conditions V= - Z C at A, and V = ZiC at B. We
may write it

y _ (Z .s cos + R sin) sy . .(Zrs cos + R sin) s(l
-

x) sQ

(Z Z 1

sl -B' i

)Bin*/ + Es (Z + ZJ cos si S
'
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In general, with practical resistance operators, the denomi-

nator only vanishes by the sum of the terms in it vanishing ;

then we have the determinantal equation (75), with unequally

spaced roots, save in the limiting cases of terminal earth or

disconnection.

But let Zo + Z^O. (101)

Then (Z ZlS
2 - R2

)
sin.s-Z = (102)

is the determinantal equation. So sins = 0, giving sl = n~, n

being integral ; and also,

Zfo
2 = R2

, (103)

where #
2 = -s2 = RSp. Here, when Z is a real resistance

operator, the left member is an odd function of p. So there is

an odd number of extra special normal functions.

Thus, in case of a resistance R at A, we get

R 2 = R=RS/>, (104)

showing one root, positive. In case of a condenser at A, or

R2S^ = RS; (105)

again one root, positive. In case of a coil at A, with

Z^Rb + L^, we get

R2 = (R + LoP)

2
RS^. (106)

There are now three roots, and three extra normal functions.

But two of them combine to make an oscillatory function of a

mixed kind. In general, the number of extras is unlimited.

The physical interpretation will be considered a little later.

If, instead of (101) as the fundamental relation connecting
the Z's, we substitute

Z Zrs
2 =R2

,
or Z^-^L-, (107)

'/A
the determinantal equation becomes

0. (108)

So cos sl= 0, or sl = (n- J)TT for the regulars, just as if one end

of the cable were earthed and the other insulated ; and, in

addition,
Z2

7
2 = R2

(109)
VOL. II. M
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for the extras. So, with the same Z
,
there are the same

extras as in the former case. But now, if Z is a resistance,

Z x is a negative permittance, and if Z is a permittance, Zj is

a negative resistance.

First General Case: Z = - Zr
299. We cannot consider both cases at once very well.

Therefore first examine the case Z = - Z x . Equation (100)
reduces to

y _ (R sin + Z s cos) sy . (Rsin - Z scos)s( -x) sQ

(Zfo
2 - Resins/ ""S"

Apply the expansion theorem. This had better be done sepa-

rately for the regulars and the extras. Say V = vi + v2 , where

i?! is for the regulars, and i\2 for the extras. Then, working as

in many previous cases, we find

_Q , 2Q (Rsin + Z cos) j/. (Rsin + Z .scos)s# pt nin
'~S/

+
SI
2 ~

R' + Zfr*

where si = nir. The outside term represents the mean poten-
tial that is, Q/(SZ + S + SJ, where S and Si are the

effective terminal permittances, which, however, cancel one

another. But the outside term is only required when the

terminal resistance is infinite at A, or x = 0.

For the extra terms, we may transform (110) to

_ (Rshin + Z gcosh)yy . (Rshin - Z ?cosh)g(l
-
x)

in which it is to be noted that the _p's determine the normal

systems. We have

d
1 \ "i / I ,y | l \ /
dp \ Z dp /

when R2 = Z^2
. Hence, using (113), and putting R = Z ^ in

the numerator of (112), it, so far as the extras are involved,

expands to

(114)

ranging over the roots of Z^2 = R2
.
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Finally, as before said, V = v
l + v

2
is the complete expansion.

The unit impulsive function is got by dividing by Q/S, and

omitting the time factor, making

_"~ 1 2 (R sin + Z s cos)sy . (Rsin + Z s cos)sx

+2

where the extras are in the second line alone. Herein Z

may be any rational resistance operator. It follows that

(116)

is the expansion of an arbitrary function /(x).

Equation (115) being general, has the failings as well as

the merits of general results. But we can easily interpret

specially simplified cases.

Equal Positive and Negative Terminal Resistances.

300. The simplest case of all is that of a positive resistance

nit A, and an equal negative resistance (to be interpreted

later) at B. There is but one extra, as per (104). Denote the

extra q by h for distinctness. Then h = R/R , the reciprocal

of the effective length of the terminal resistance R in terms

of the cable. Therefore, since dZ
Q/dp = Q,

_^ + ? 2(5 s*n + s cos
)
sy '

('
i s^n + s c s

)
5a; /i

shin/^ 7 y^ + s
2

expresses the unit impulsive function.

Let f(x)
= 1 for example ; that is, start with a uniform

potential in the cable. Thus an easy integration gives us the

following expansion :

O,/uc O 7,

-where sl= ir, ZTT, STT, &c., the terms with even multiples having
.zero coefficients. The introduction of the time factor to every
normal function shows the result later as usual. The summa-
tional part ultimately vanishes. The outside extra term
increases with the time.

ii 2
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We may write (118) thus, if sl/ir is confined to the odd

integers :

2e7ia: _ i
4y A2sin&g 4 As cos sx~ '

The function on the left side is apparently expanded in a

Fourier series. But it is not a Fourier series in the ordinary
sense. It absolutely violates the conditions settling the size

of the coefficients according to Fourier's theorem. It is only
one example in a million, however. It illustrates a property

of the wonderful function e*.

We may verify (118) by the conjugate property of normal

systems. This is an absolutely sound method, provided we
have all the normal functions at command. One normal

function is e**, the type of the rest is (h sin + s coa)sx. That

the extra one is conjugate to the rest" we see thus :

Pepsin + scos)sx . dx = P (t^siusx) dx = 0. (120)
/ o J o dx

Also, if MI and wz denote any two of the regulars, we may
verify that

I ivnv2 dx= 0. (121)
J o

If, therefore, we assume that

we can isolate any coefficient by quadratures. Thus

**rf.r
2

finds A
,
and any one of the rest is found by

ri

A -./o

Comparing with (118), we verify that result. The quantity
h may be positive or negative. Changing its sign merely makes
the positive and negative resistances change places. Between
the two, witk 7t = 0, we have the case of terminal disconnec-
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tion. The conjugate property may be readily applied to the

unit impulsive function (117) itself, FO as to verify that

formula.

As regards the expand m of the left member of (119), if

done according to Fourier's theorem, the physical assumption
would be such as to make the normal systems be cos so; and

sins^, and this would correspond to an entirely different state

of things. Out of physics came the subject of expansion in

normal functions. Unto physics should we return for fresh

inspiration.

Equal Positive and Negative Terminal Permittances.

301. The next simplest case is that of a terminal con-

denser. Say that Z = (S^)"
1 at A. There is but one extra q.

Denoting it by h, its value is S/S . Also, by using the new Z
in (113), we see that the result is - R2 instead of +B2

,
as in

the last case. So, by (111) and (114), we find that the new
unit impulsive function is

_ 1 2
y, (R

sin + Z s cos)*// . (R sin + Z s cos)sx _
~l I R- + Z V2 shinW

(125)

where the extra function is the last term. Here sZ /R = -
h/s,

and we may write (125) more simply,

_ 1 2 _, (ssin
- /i cos)*// . (ssin

-
hcos)sx _ h<?lx+y

-
l)

/^Q)
I I A- + 6

2 shin/i//

Ap; 'lying this u to the special initial state /(#) = !, we
obtain

which gives another expansion of c** not conforming with

Fourier's theorem. In (127) sZ has the values TT, 2?r, STT, &c.;

and the coefficients of the terms belonging to 2-, 47r, &c., vanish

as before. The formula fails at the terminals, on account of

the condensers.

The normal functions are now **, the sole extra function,

and an infinite series of the type (s sin - /tcos) sx, including

the case s = 0, or a constant term. But to verify (127) by the
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conjugate property, we must take count of the terminal con-

densers. Thus, if

w = (s sin
- 7i co$)sx (

1 23)

be taken as the normal function along the cable it must be

supplemented by
w

n
= -

h, Wi = - h cos si, (129)

at the terminals. Similarly, the normal function .** must be

supplemented by 1 at A and ehl at B. The mutual energy of
hx

, &c., and iv, &c., is therefore

Soi^o'S^rrte + Sic"^, (130)

which, by the previous two equations, may be seen to vanish,

thus proving the independence of the system e
hx

, &c., and any
one of the iv systems.

Similarly, we may show that the mutual energy of two w

systems is zero. That is,

= S H-
lll
tPB +/o

l

S'P,w V^ + Si"V,>, (131)
(1=0) (X=l}

if u-m and wn are any two different regular normal functions.

I have not done it, but have no reason to doubt it. Then, all

the normal systems being proved to be independent, quadra-
tures find the coefficients when we assume

/(a ?

)
= A + 2AH irn + B**. (132>

But there are different ways of doing it, according to whether

/(a?) is the complete initial state, or whether the condensers

are initially charged as well. In the latter case, if V and Vj
are their initial potentials, we find the coefficient of any
normal system by forming the expression for the mutual

energy of the initial state and the particular normal state,

using (130) or (131) to isolate the coefficient. Thus

A ^ S

finds An ,
if WQH and wln are the terminal values of wn . And

V 1
^

y

finds B. The formula for An also answers for A
,

if it be

taken to mean the coefficient of -
/*, which is what w reduces

to when s = 0.
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Now, in the case of (127), f(x) alone is existent, and we
must make V and Vt zero in (133), (134). Doing this, and

developing the results, we shall arrive at (127), and verify it.

We may also use (133) to obtain the effects due to V and V^
Initially we must have zero expansions that is to say,

expansions which represent zero, except at the terminals.

To find the proper expansion to represent V in the cable

due to the initial charge S V of the real condenser at A, and

the charge S^ at B, put/(#) = in (133), (134), and evaluate.

The results are

I f + l? hi

to be used in (132). The result is therefore

=2pV* + L_l + 2 (V, cosa -
V.)

1 III I

(136)

The on the left side expresses /(#), the potential of the cable

everywhere, except at the terminals, where, on account of the

condensers, special interpretation is needed.

If we assume V^V^ the mean term disappears, and we
reduce the last result to

= - Z
-

(1
- cos ri), (137)

where only the odd values of n in s = mr/l are effective. This

corroborates (127).

If we multiply (127) by V , it expresses V all along the

cable. Adding the result to (137), we obtain 1 = 1. This is

obvious by arithmetic. But it means more than that here

namely, that if the initial state is V constant in the cable and

both condensers as well, it will remain constant, because there

is nothing to disturb it.

Physical Interpretation of the Abnormal Case of 300.

302. If we say that the equation to be obeyed at one end

of the cable, say at B, is "V^RiC, and further say that Rx is

a positive constant, the most obvious interpretation is that

R! is a mere resistance. The equation then asserts Ohm's
law simply. But this is not necessarily the interpretation.
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What the equation asserts is that the ratio of V to C is positive

and constant. There may therefore be any electrical arrange-

ment that will produce this result. A distortionless circuit will

do it, and in many ways. Electric and magnetic energy are

then involved, either with or without waste of energy by con-

ductive resistance. The distortionless circuit will behave to

an impressed force precisely like a resistance.

Similarly, if we say that the terminal condition is V = - RiC,

where R! is still a positive constant, we do not assert that

R! stands for a negative resistance. That would make

nonsense, according to the commonly understood electrical

law. Any arrangement that will, when acted upon by an

impressed voltage, compel the current to obey the law

V = - RiC, is what is implied by that equation of condition.

We are not obliged to enter any further into detail as to how
it is to be done. A source of energy is involved, of course,

which, however, does not require any specialisation, since the

resultant effect is embodied in the law.

To save circumlocution, it is obviously convenient to speak
of a negative resistance, to be understood as above. Now put
a positive resistance at one end of a cable, say at A, and an

equal negative resistance at B, and let the cable be initially

charged at one place, say with a charge Q at y. This charge

instantly begins to spread, and raises the potentials at A and

B slightly. There is, therefore, a current from the cable at A,

but into the cable at B. The former is normal, the latter

abnormal, due to the terminal resistance being negative at B.

The B end of the cable therefore becomes charged faster than

the A end, and the higher its potential is raised the stronger
becomes the current into the cable. At the A end, on the

other hand, where things are normal, the current due to the

initial charge would first rise to a maximum and then fall

slowly to zero. But the continuous entry of fresh charge at

B alters matters. It spreads all along the cable, from B to A,

raising the potential of the whole cable. The ultimate result,

therefore, when the normal effects due to the initial charge
have subsided, is a state of positive charge increasing con-

tinuously with the distance from the A end, and increasing

continuously with the time. This is the meaning of the extra

normal function e
/ix for the potential. The current to match
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is directed from B to A. Both are associated with the time

factor c*, where p = hz

/RS.
The equilibrium state of zero potential is accordingly

unstable. An infinitesimal charge arriving at B is sufficient

to disturb the equilibrium. Which way the current will set in

at B will depend on the sign of the initial point charge. If V
becomes positive current will enter the cable, and continue to

do so. If negative, current will leave the cable at B, and the

cable will become charged negatively.

An arbitrary initial state of electrification in the cable, left

to itself, will in time either wholly disappear, or will be

replaced by the distribution e**e'* x constant. Equation (117)

determines the behaviour fully, when applied to the initial

state. An initial state of the type

w = (h sin 4- s cos)sx

subsides to equilibrium, as may be readily seen by its satis-

fying the abnormal terminal condition at B, the current and

the potential having opposite signs there. Similarly, the sum
of any number of such distributions, of any sizes, will subside to

equilibrium. But they cannot make up an arbitrary distribu-

tion, because the abnormal distribution is left out. An initial

distribution of the type e'
tx

,
instead of subsiding, increases

with the time. In order that no term of this sort should

enter, the initial state must be specialised so as to exclude

it. Thus, the first equation in (123) settles the coefficient

of **. It is zero if the integral of the product of the initial

state and e^ is zero. This is the case when the initial state

is the sum of a number of systems of the regular type w.

The simplest case, however, is to have two point charges,
one positive, the other negative, with their sizes suited to

their distances from B. Thus, if

Q x
and Q2 being the charges, at yl

and yz respectively, the

expression for u in (117) shows that the abnormal term c**

does not exist.

After so much detail concerning this simple abnormal case,

others of a similar character may be very briefly treated. As
for why they are considered at all, an anecdote about Dr.

Elliotson comes in useful. One of his students said he did
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not see the use of studying morbid physiology ;
it was so

unnatural. The doctor told him he was a blockhead, adding,
" It is only by studying the morbid that the true conditions

of health can be ascertained."

Positive Terminal Resistance and Negative Terminal

Permittance.

303. In the other way of simplifying the general deter-

minantal equation described at the close of 298, we reduce it

to the form (108), which indicates that we have the set of

normal systems corresponding to si = (n
-

^)TT, and in addition,

the set corresponding to (Z ?)
2 = R2

. So (100), the solution.

for a point charge, is reduced to

in + Z scos)sy . (R cos + Z s siu)s(l
-
x) ,

qft
>

showing the potential at x on the right of // due to Q initially

at y itself. Let V = U + W, where U is the regular part, anl

\V the extra part. Then by the expansion theorem (30), we

obtain

U = ?Q.2 ept
^ s*n +

subject to cos sl = 0. And, by the same process, we find

ranging over the roots of Li*=(Z Qq)*. The sum of U and W
is the expression for the potential at time t on either side of

the source.

As an example, take Z = R
,
a mere resistance. Then there

is just one extra q, of value R/R =
/t, say. To balance the

resistance R at x = 0, there is a permittance of amount -
B/h

at x = I.

Now, if we put Q/S = 1, and = 0, in U + W, it represents

w, the appropriate unit impulsive function. It need not be

written out, as its form is obvious. Integrating the product
of u and f(y) with respect to y therefore expands /(a?) in the
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normal functions in question. In particular, if
/(a-)

= l, we
obtain the expansion

in which the + sign is to be used in the odd terms, and the -

in the evens. Introducing the time factors, as usual, shows

what the initial uniform state changes to later on.

The expansion (141) may be verified by the conjugate

property of the normal systems. Remember that there is one

terminal condenser. So, assuming

1 = Aoe** + 2 A(/< sin + scos)sx, (142)

we must have the identity

+ S^1 x =A*s& + Sx, (143)

which gives A ,
and also

S|i?.i-
+ Sj/isinaZ x = A/S /-'.,;+

S^sin^j, (144)

which finds A. Here w stands for the general normal func-

tion in (142). The which occurs stands for the initial

potential of the terminal condenser. Si is its permittance,
= -

S//t. Carrying out (143), (144), we shall arrive at the

coefficients in (141), and verify that expansion.
An interesting modification may be mentioned. Put a

real condenser at A, and a negative resistance at B. Say
Z = (Sort"

1

,
which makes the one extra q be h = S/S . Then,

instead of the above-used unit impulsive function, we shall

find that-

2 (ssin
-

7tcos).va? . (ssin
-
7*cos)sy /-.

,
~x* " ~~~

is the proper one to use.

Equal Positive and Negative Terminal Inductances.

304. E. turning to the more interesting case in which

Z = Zi, treated in 299, where (115) shows the proper unit

impulsive function, let Z be L p, indicating an inductance

coil without resistance. The determinantal equation of the
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extras is a cubic, and the assumption of no resistance makes it

manageable. Thus, (106) shows that

P
s= - = /, say, (146)

finds the three extra JD'S that is, p=y, f/i, and //.,, where

9*
= 9(

-
i
- * VI)-

Also, in virtue of (146), we may write E/L p for q. So, by

(115), the part of the unit impulsive function depending upon
the extras is given by

R TZ L(}ff

+ (same with g^) + (same with y.2). (147)

shin _
L

o'/

The time factors to be introduced later are e7

*, t
0lt

,
e^. The

part of u depending on the regulars is given by the first line

in (115), omitting the 1 jl term, however, because there is

terminal earth connection.

Of the three terms in (147) only the first increnses with the

time. The other two unite to make a real function indicating

oscillatory subsidence, but it is of a complicated mixed kind,

because it depends on two inductances separated by the

permittance of the cable. 1 he full development need not be

given.

Impressed Force in the Case Z = - Z^

305. The same extra functions are, of course, concerned

when the source is an impressed force. For example, let it

be e at # = 0. Equation (59), 291, shows the V that results.

Put Z = -Ziin it. Then

v =
-

-_O- _-

gives V in terms of e.

Specialise, by making Z =K
,
a resistance. Then

where h denotes R/R .
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Put s = to get the part independent of the time, and then

develop by the expansion theorem (30), as in previous cases.

The result is

*cos)g (
. .

' (150>

without the time factors. That is, it is the initial state,.

representing V = everywhere between x= and Z, and at the

terminals as well. This is because there is terminal resistance.

In the summation, we have si = rnr.

We may verify the result by the conjugate property..
Assume that

(151)

Multiply by
** and integrate along the cable to find A<,.

Multiply by (h sin + s cos) sx and integrate to find A. The-

results are as in (150).
I give this case for the sake of a result which will be useful

a little later. It is got by differentiating (150) to x. We
obtain

ju-x) = l
(7

t g cos + si sin) sx Q 2
.

shin A J hi
(A/)

8 + (/)*

which will be used in another problem.

Singular Extreme Case of Z or -Zj being a Cable

equivalent to the Main One.

306. It will be seen from the preceding that the subject of

abnormal Fourier series is quite a large one. We find that

we require to use series that look like Fourier series, inasmuch
as the wave lengths are the same as in real Fourier series, but

that the complete set of normal functions includes extra func-

tions of the type **, where h is a constant, real or complex, as

the case may be, the number of such functions depending upon
the terminal conditions. These abnormal series are merely
special cases of the general series got previously by leaving
Z and Z

x independent of one another. If any one of the

electrical constants involved in these operators, which con-

stants are real and positive in real problems, be made negative,
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we introduce something abnormal, because there is a reversal

of Ohm's law, or of the law of displacement, or of induction,

in some part of the electrical system concerned, and, as a

result, time functions, as ep<
,
occur in which p is positive.

.Some cases of this kind were considered by me in 1882, and

earlier (" Electrical Papers," Vol. I.). The peculiarity of the

cases above treated lies in the simplicity produced by reducing
.the wave lengths of the regular normal functions to be the

same as in the original Fourier series. I think I have given
sufficient information to enable any competent person to

follow up the matter in more detail if it is thought to be

desirable. It is obvious that the methods of the professedly

.rigorous mathematicians are sadly lacking in demonstrative-

ness as well as in comprehensiveness.
But it would be out of place to elaborate further in this

work. I will therefore conclude the present remarks on

;abnormal series with the consideration of a very singular case

indeed. In none of the previous cases did we cause the

terminals to be nodes of the regular normal functions, or

make "V = terminally in them. In the following we shall do

this.

Go back to (59), 191, and make Z = - Z x . This produces

(148) above. So far it expresses V due to e at x= Q with any
terminal Z

, provided there is its negative at x = I.

Next, let

Z =-tans-/. (153)
s

This says that Z is a cable identical with the one in question,
or equivalent thereto, earthed at its end. We have therefore

Z e i__5
$

I i

4,
x--l x=Q x=l x=2l

three cables in sequence, two of which are alike, extending
from I to + 1, with a negative cable added from x = I to 2Z,

that is, a cable in which the permittance and resistance are

negative, without other change. This arrangement being in

-equilibrium, e is started and maintained constant. It is of

little consequence to follow up the later effects. It is just at
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the beginning that we require the behaviour, so as to obtain

the proper expansion of the initial state. The condition (153)

-reduces (148) to the very simple result

(154)
tan si

which makes V permanently zero at #= 0. This is highly

anomalous. Expand (154) by the expansion theorem. The

.result is apparently

V = - - - 2 - sin** e*, (155)
(/ SL

where sin *l = 0. Now this is incorrect, because the initial state

is - ?, according to (155). There is something missing.

But there is some sense in it. For it makes the final

-current be C = <?/R/. By continuity, this, if existent, should

be the current through all three cables. The corresponding
.state of potential would be then as in the figure.

The zero potential at # = is accounted for. We may
corroborate this by calculating the rise of potential in the

cable Z due to e, regarding the rest as a mere terminal

arrangement. It will be found that the resistance operator of

the two cables* from x = to 2Z, reckoned at # = 0, is zero,

which is equivalent to a short circuit, so far as the cable Z is

concerned. So e establishes V in the Z cable just as if there

were an earth on the other side (the right side) of e.

After this partial explanation return to (154) and (155),

where the state of the middle cable is in question. The
resistance operator to the right is zero, but then the potential

at x = is zero, so there is compensation. According to (155)
a complete normal system of potential would consist of sin sx

* To find this operator we may use (59), 291. It is the ratio V/C at

x= 0, when Z is zero, and Zi is -
(R/s) tan si.
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from x = I up to x *=
Z, combined with - sin sx from x = I up

to 21. But it is easily to be seen that we cannot expand an

arbitrary function in terms of these systems alone. For

instance, let V =f(x) (any function) from to Z, zero from

to -
1, and V =/(2Z

-
x) from I to 2Z. The energy is zero, so

the result of expansion by quadratures is zero.

It is certain that (155) is incomplete. And, in fact, we

may ask, where are the abnormal functions necessitated by
the negativeness of resistance and permittance in Z x ? The
answer is to be found by seeing how tan si in (154) arose. It

represents sec si x sin si, and sec si = is the equation belonging
to the extra functions. But the roots of secsZ, infinite in

number, are at infinity. The normal functions to correspond
are therefore unmanageable from being ungetatable. Their

influence, however, is in full operation. For the failure of

(155) proves that the sum of the whole of the missing
functions required to make it represent the initial state truly

is e. That is, we should have, initially,

= e - -e - e 2 sin sx, (156)
I Si

where the first e is the sum of the missing terms.

More General Case to Elucidate the Last. Terminal Cable-

Z not equivalent to Main One.

307. But to make this conclusion plainer, we should bring

the roots at infinity to a measurable distance (like the aboli-

tion of that fraud 4?r which has been purblindly inserted in

the electrical equations), so that we can manipulate them.

Take, then,

(157)

instead of (153). The cable Z is no longer an exact or

equivalent copy of the middle one. Then (148) makes

Vfsin
- c~ 1

tan,sn? cos)s(^ x}= i '- i '-
e,

(
1 + c~~ tan'

2
6- ^

)
sin .9^

instead of (1 54). Here c = Es /EQs or (RS /R S)*. The abnor-

mal roots are now finite.
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Let V = U + W, U being the part of V depending upon
sin si = 0, and W the extra part. Develop U in the usual way

by the expansion theorem. We get (with t = 0)

<159>

where / is the constant (RS/YR S Z
2

)*.
This U evidently

reduces to the right member of (154) when c = !,/=!.
The development of W requires more care. The extra roots

are given by

tan2
s Z = -c2

; or than'yA-c*. (160)

Whether we take c or - c to be than gQlQ is indifferent, provided
we work consistently. Say, then, that

ihwqQlQ
=

c, (161)

or, which is the same,

**-
j

=/, say, (162)

which makes

3<fo
= ^ + inTr, tf * = log0, (163)

provided c is less than 1. But if c is >1, then

q l =X + i(n-%)7r (164)

instead, where X is the same real constant. The form assumed

by W when expanded is, therefore, quite different in the two
cases. At the point c= l there is a jump, and special care is

required.

Let us use (161), with c<l. Then

p tan2

Vo = Vo tan S 1 . (1 + tan\Z )

'
2

)- (165)

The application of the expansion theorem to (158), so far as

the extras are concerned, therefore makes

W- ^-

In this, the relation between q and <?
is ql=fqQ

l
Q ,
and in (163)

n has to receive all integral values, positive and negative,

including zero. The nih term of (166) pairs with the - 71th

to make a real function. But, owing to the exponential
VOL. n. N
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function in the denominator of (166), the resultant takes a

rather complicated form, which need not be given. It is

sufficient for our purpose to see that if / is an integer, the

denominator simplifies. We then get

W =^ *

Z4*; (167)l_ cy/_l qj,o
that is, by (163),

w _ Zee e fl ^ 9V , .

TTpr^vrr-jx A2 + (wr)
2

j'

where the summation is with respect to n, which has all posi

tive integral values from 1 to oo .

Comparing the last equation with (152), we see that lil

becomes A and x becomes fx. The quantity in the big
brackets in (168) is therefore

by (163). This reduces W to

2
.

]

provided / is an integer.

Let it be 1, i.e., RS a = R S L2
,
then

(169)

(170)

W = l. (171)

Finally, c = 1 makes W =
e, as was to be proved.

We have proved that in the singular case of identity or

equivalence between the terminal cable Z and the middle one,

when the extra normal functions apparently go out of exis-

tence, by the roots of the determinantal equation becoming
infinite, they are nevertheless virtually existent, and must be

allowed for in the expansion of the initial state.

In the more general case, in which there is not the

equivalence mentioned, no such straining of the expansion
theorem is needed. For instance, W in (168) may be tested

in other cases in which/ is integral, and be found to represent

the negative of the U in (159). There is, therefore, no reason

to doubt the equivalence of U with the more general form W
in (166).
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Arbitrary Initial State when Z or Z
x

is a Cable.

Singular Case.

308. If there is no impressed force, but the middle cable

is initially charged arbitrarily instead, there is a similar

curious limiting case when the terminal cable Z and the

middle cable are equivalent. The general solution (100),

through (110), reduces to

indicating the potential at x, on the right of y, due to Q
initially at y. When on the left side, interchange x and y to

get the formula. The Z operator is (R/s)tansZ, as in 306.

Developing by the expansion theorem, according to the

roots of sin si = 0, and denoting the result by U, we obtain

U =^2 sin sy sin sx 4*. (173)
&v

Now this is exactly the same as if the cable were earthed at

x = Q and I. See (22), 267, for example.

But the latent auxiliary normal functions, which we know
to exist in general, have not been considered. The con-

clusion from the above result is, therefore, that in the

complete expansion of the initial state, the sum of all the

extra terms is zero. Only when t is finite can they be

quantitatively existent in the total. They may be infinite

then, should the p in ep
* be infinite for the extra terms ;

but that is of no consequence as regards the initial state.

To verify the above, we may proceed as in 307. Let Z
be not equivalent to the middle cable in the first place.

Then Z is as in (157), and Zj is its negative. The general

equation (110) is now

V = (
c gm + tan S(A cos) sy (c sin

- tan sQlQ cos) s(l- x) sQ
'

instead of (172) above.

Developing this by the expansion theorem, let U be the

regular part, and W the extra part. Then we get

TT
'

ST
a
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in which sin si = 0, or si = TT, 27r, &c. And, in addition,

w =
s
2

(i-
' (176)

the notation being as in 307, equations (161) or (163)

finding the values of qQ . The unit impulsive function is the

sum of U and W, with t = 0, and Q/S = 1. The U part
subsides to equilibrium, whilst the W part increases with

the time.

Simplify by taking /=!, making RS/2 = E S ^, and ql
=

qQlQ .

The unit impulsive function becomes

<x

(177)

Here the first part expresses the unit function concentrated

at the point x = y t
with repetitions outside the limits con-

cerned, which do not count. We conclude that the rest

represents zero between the same limits. The verification is

easy, because the simplification made by assuming/= 1 allows

of the reduction of the extra part to a recognisable form. The
extra part of u, say u^, is

where n has all integral values, positive, negative, and zero.

Or, which is the same,

osT (x + y}
}-

(179)

This, by 271, represents a row of impulses (not of unit size)

outside the limits in question. Within the limits, therefore,

u.2 is zero, as required.

Let u become v when t is finite. Then

^-|2-rfn55rin^.- (180)
I Li

where H is nV/RSZ
2

,
and the summation is with respect to

n. And for the extras, we have

= exp ^ + inw + (
x> _ nV + 2mirA) , (181)

I
"
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which makes

Va =
J^_ |l

+ 22rcosrG.e-
H
'}

, (182)

where H is as before, and, for brevity, additional letters F, G
are introduced, given by

_ + +

Whilst i\ subsides to zero, ra augments. In the singular case

of failure, real or apparent, which occurs when c = l, the

extra part va jumps from zero to infiniteness instantly.

Real Terminal Conditions. Terminal Arbitraries. Case of

a Coil. Two Ways of Treatment.

309. Returning now to real electrical conditions, one of

the minor matters that remains to be considered is the

influence of the terminal arrangements on the state of the

cable, when they are initially energised. The existence of

auxiliary functions, one for every independent kind of energi-

sation, has been pointed out. Also how, by means of the

conjugate property of complete normal systems, their size

may be determined. But the example given in 295, relating

to a terminal condenser, and the later examples, were not

sufficiently general to illustrate the matter fully. So now
take some other arrangements.

Say the x l end of the cable is earthed. Then Z1
= 0, and,

by (85), 294,

*- -smsV-*^^^^ (184)
'(Rsin + Z scos)sZ S

is the potential at x (>y) due to Q at y. Interchanging x and

y makes the potential at x (<y) due to Q at y. Differentiating

the new expression with respect to x and dividing by - R
produces the expression for the current on the left side of y.

Put x = in it. The result is

A)
S

This is, therefore, the total current in Z due to Q, reckoned

from left to right.

C =
-

. (185)
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We conclude, by reciprocity, that a current momentarily
established in Z

ft
will produce potential at y, determined by the

same operator as is concerned in (185), when there is magnetic
inertia in Z . This is easily corroborated. Put an impressed

voltage e at x = 0. The C due to it, on the spot, that is, in Z ,
is

(186)

because the denominator is the sum of the resistance operators

to right and left of e. This expands, when e is steady, to

O-Z^. (187)

(and a steady term), ranging over the roots of Z = 0.

But let e be impulsive, say = ;?L C ,
so that L C is the

momentum generated. Then

C =|L C = L C 2^~. (188)

Putting t= makes the initial state. So

<189)

must be the expansion of C
, regarded as initially given to be

the current in Z .

Also, the potential at x due to e is got by putting L ^>C for

e in (59), and Z
1
= 0. This makes

operationally, or

-j
9QQ68l(dZ/dp)

'

by the expansion theorem. From this, again, (189) may be

derived. It will be convenient to consider Z to be E + L p

in the above, meaning a coil of resistance K and inductance

L . At the initial moment, therefore, (191) is the zero

expansion required to suit the case of an energised coil, an

expansion in a Fourier series representing zero within the

limits, such that V shows what it becomes at time t later, as

the coil discharges itself into the cable.
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Next consider the same matter from another point of view,

viz., that of independent normal systems. Put

r = sin s(/-#) c=-eoss(l-x). (192)R

Since v = at x= I, these are the proper normal functions for

V and C in the cable, provided s is suitably determined to

satisfy v/c
= - Z at x = 0. That is,

Z + ?tansZ=0 = Z (193)
s

is the determinantal equation. Provided, then, we include

every possible normal system subject to the last equations,

we see that the initial state is fully specifiable by

V = 2 Av = 2 A sin s(l
-

a), (194)

C =2 Ac =2 A1 cos si, (195)B
where A is a constant. Given V and C , the conjugate

property finds A. That property asserts that

^-L emcn = 0, (196)
o

where vm ,
vn are any two normal systems of potential, and cm1

cn the currents to match at x = 0, because there is magnetic

energy in the coil, and electric in the cable. It follows that

A _ S/V t;<te - L C c-

finds the coefficient A belonging to any system v, c when V
is given as a function of x, and C has any value we like.

Attending only to the part dependent upon C , the result is

(
198

)

which, used in (194), completes the solution so far as C is

concerned, since the state at time t is deducible by the intro-

duction of the time factor. It will be found that the solution

thus got agrees with the former one, viz. (191), on expanding

dZ/dp. Also, that (195) agrees with (189). As regards the
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conjugate property (196) which has been used, its proof is to

be found in testing that it is true, when the proper expressions

for v and c are used. This remark applies in all expansions
in normal functions. I shall, however, give later a general

proof of the property.

In the numerical execution of the above case, it may be as

well to remark that there is sometimes a pair of irnaginaries

concerned in the determinantal equation, which might be

overlooked, if we merely drew the curves

yi
= tanrf, 2/2

= (-s/R)Z , (199)

and determined the roots by their intersections.

Terminal Coil and Condenser in Sequence.

310. Now take a case in which both kinds of terminal

energy are concerned. Say

ZO-BO+LOP+* z1= o, (200)
b p

so that there are a coil and a condenser in sequence at x = 0.

The determinantal equation is

Z=0 = 5tan^ + B + LoP + -L, (201)
s b p

where p = s
2
/RS, as usual. Taking the normal functions

as before, equation (192), the current at # = is the current in

the coil. Therefore (195) is the expression for one of the

terminal arbitraries viz., the initial current in the coil. The

other arbitrary is the charge (or the potential) of the condenser.

Say that the condenser is next the earth, and that its potential

is v
1
in a normal system and Vx altogether. We have

^-^(Ro + Lo^c, (202)

where v and c belong to the terminal of the cable, and also

*!---. (203)
OOP

these being the equations of voltage for the coil and condenser

respectively. So

!
=* sin si + (R + Ljp)

... cos si (204)B
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is the normal function for vr This may, by (201), or directly

by (203), be simplified to

r1==JLcosaZ. (205)
80S

The initial state is therefore fully expressible by

V = ZA*, C = 2 Ac, V
T
=ZAVl , (206)

where A is a constant, the same constant for every three

connected functions, but differing in the different complete

systems. Given, then, V as a function of x, and C and Vj

arbitrarily, we evaluate any coefficient A by

A = s

because the conjugate property is

= 8fcmvndx + Svln
- L cmcn, (208)

the terminal energies being of different kinds. When L =0,
the value of C ceases to have any influence on the value of A,

as we see by (207), although the expression

C = 2Ac p'

(209)

gives the coil current for any finite value of the time.

Coil and Condenser in Parallel

311. If the condenser and the coil are in parallel, the case

is somewhat different. We now have

(210)

because the resistance operator Z is the reciprocal of the

sum of the reciprocals of the resistance operators of the coil

and condens2r ;
or the conductance operator is the sum of the

separate conductance operators.

The potential v at the terminal of the cable in a normal

system is the potential i\ of the condenser, so

V
1
=2Ar= ZAsinsZ (211)

expresses one of the terminal arbitraries.

But only a part of the cable current enters the coil, so it

is not the full current c that is concerned in the other arbitrary.
We have
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if c is the proper function to associate with v. Therefore

(213)

is the expression for the current in the coil initially.

But to determine A to suit the initial circumstances, we

may still use the formula (207), taking care, however, to use

the proper expressions of the present case for v, v
l
and c.

The last has now become the CQ in (212), whilst v
l
is to be the

v in (211).

Two Coils in Sequence or in Parallel.

312. If the terminal arrangement consists of two coils in

sequence, there is but one auxiliary function, because the

current is constrained to be the same in both coils. Suppose
e is an impressed voltage, and there is mutual inductance m
between the coils rlf ^ and ra ,

lz . The equation of voltage is

e =
(
ri + IIP)CI + mpc2 + (ra + Izp)c2 + mpcu (214)

where c and c2 are the currents. Both being equal to c, say,

this reduces to
= (n + r2)c + fa + Z2 + 2m)pc, (215)

the same as for a single coil. So there is nothing new here.

But if the coils are in parallel, there are two arbitraries.

For we shall now have

e = (n + ty)^ + mpc2, (216)

e -
(ra + I2p)c2 + mp^ ; (217)

from which the resistance operator of the combination and
the separate ones have to be deduced. Solve for the currents

thus :

These are the conductance operators separately. Their sum is

the conductance operator of the combination. Its reciprocal
is the resistance operator. Therefore

Z ^fa + Mfo + ^-roV /oio\

is the required Z ,
to be u?el in the determinantal equation.

Also, the previous equations for Cj and c2 give the proper
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normal functions for them in terms of e, which becomes

v, the normal function for the potential at the cable end.

Thus determined, the two arbitraries are ZAcj and ZAc2 ,

to be associated with ZAr, expressing the potential in the

cable.

In determining A by the conjugate property, m must not

be forgotten. Twice the energy of cx and ca is

IA + Z2cl + Zmc^= F, say, (220)

or fa + MC^C! + (lcz + mcjcz ; (221)

and the mutual energy of C^ Ca and clf c2 is

(Ic^ + wic2) G! + (lc.2 + mcj G2
= G, say. (222)

Consequently, given V along the cable, and also the values

of C and G! initially, the value of A is

which renders the solution of the problem complete, when
the normal potential function v for the cable is properly

determined to suit Z
,
as in (219). The principle underlying

these determinations is quite a simple one, and may be

applied to the most complicated cases.

A Closed Cable with a Leak. Split into Two Simpler

Cases.

313. The last examples sufficiently indicating the connec-

tion between the main solution for the cable itself and the

terminal arbitraries, we may pass on to another minor matter.

If the cable ends A and B are joined, either directly or through

apparatus, with or without an earth connection at the same

place, the two conditions expressing V/C at the terminals

independently of one another are replaced by two conditions

of a different kind. Some difference in the treatment is, there-

fore, needed. It is not great, and may be readily inferred

from the preceding.

Take an explicit example. Let the length of the cable be

2Z. At B, where x= I, there is simple continuity, without
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imposed condition. At A, where x = or 2Z, there is a shunt

or leak to earth. It is any sort of leak, defined by a resistance

operator Z . We have to see how this arrangement will

*1

behave. We may consider three sorts of problems: the

diffusion of a point charge initially at y, which will give, by

integration, the effect of any initial state of the cable; the

effect of an impressed force anywhere ; and the effect of

terminal energisation, when Z is of a suitable kind. The last,

however, may be inferred from the solution for an initial state

in the cable, so we need not consider it specially.

As regards Q at y. By inspection of the above diagram,
and a little thought, we may split the problem into two, of

which the solutions are already known. Split Q into halves.

Pair one of them with an equal charge at the corresponding

point 2 -
y. Pair the other with an equal charge of the

opposite sign at the corresponding point. The sum of Ihe

four charges is simply Q at y, so the solution is the same 'or

the four as for the original Q.

Consider the positive pair alone, that is, JQ at y and JQ at

2Z - y. By symmetry they cause no current at B, and behave

similarly in the upper and lower cables. At A the currents

going to Z are equal. They therefore unite and leak out

through Z . Thus, each member of the positive pair dis-

charges in its own cable in the same way as if it were insulated

at B, and were earthed at A through the arrangement whose

resistance operator is 2Z . This case has been already con-

sidered. 2Z may be constructed by putting Z in sequence
with another Z

,
or in other ways.

The positive and negative pair, on the other hand, produce
no potential at either A or B. There is no leakage current in

Z
,
and consequently continuity of current between the upper

and lower cables. So the JQ in the lower cable discharges as

if it were earthed at A and B, and so does the - JQ in the

upper cable. This part of the complete solution is also known.
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Putting these together, we obtain the complete result, and can

use pr2vious formulas without more work.

In the case of the positive pair we have this arrangement

w
diagrammatically. Use (85), 294. Put Zx

= oo
, and 2Z for

Z
,
and iQ for Q. Then

$m)sy ?

. sQ
(C<3^" a) '

expresses the potential at x, on the right of y, in the lower

cable. Interchange x and y when x<y.
In the case of the positive and negative pair we have this

arrangement,

-JQ

1Q

and we may use the quoted formula with Zx = = Z
, or the

special formula (18), 267. The result is that

expresses the potential at x on the right of y in the lower

cable.

In the upper cables the potentials are the same at corre-

sponding points in the first case, and their negatives in the

second. Uniting the two formulae, we see that

Vl
= vl + wl (8)

is the potential at x in the lower cable, when greater than y,

and the same with x and y interchanged when x is less than y.

The same formula is valid all the way from y to # = 2/, as

we may see by altering x to 2f - x, and observing that vl is

unchanged, whilst va is negatived.
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The conversion to Fourier series is to be done as usual by
the expansion theorem. Doing it in the most simple case of

Z = E
,
a constant, we obtain

V =Q 2 sin sy sin sx ep*

bt

Q^ -y(2R s cos +E sin).s?/. cos s(l
-
x) pt

,.*

$1
*~ 2B s cossl + (R + 2R //) sin si

*
'

which is now valid on both sides of y. In the first summa-
tion sin si = 0. In the second, we have

(5)

for determinantal equation. The result for the upper line need

not be written separately, being the same formula.

When we make R = oo
,
we have the two cables connected

together without external constraint. We then reduce the

above to Fourier's periodic formula. Notice the way the

constant term arises. The last equation has a very small root

when B is big, and the corresponding p is very small. In the

limit the root is zero, and the result is a constant term showing
that the final effect is a uniform state of potential in the com-

plete cable.

Closed Cable and Leak. Another Way.

314. If we should not notice that the problem admitted of

splitting into two in the above way, we would proceed thus.

Start with Q at y. This is an impulsive external source of

current pQ = h, as explained before. Then let

where V
x
is the potential at x when on the right side of Q, and

V
2
when on the left side. There are four time functions to

be determined, and four conditions which find them.

(1). Continuity of potential at A makes

(2). Continuity of potential at y makes

'I. (8)
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(3). Discontinuity in the current at A makes

(9)
at* = 0. Or

(10)

(4). Discontinuity in the current at y (regarding h as a

function of the time) makes

h-C^C^pQ, (H)
at# = /. Or

i . (12)

These four conditions determine the time functions and make,

finally,
T>

07- sin s(2Z
-
y) sin s# + s sin sZ cos s(Z + x -

y)
V ziQ~ ~~ ~~

\

(14)

That the determinantal equation splits into two distinct

equations is shown by the denominator in (13), and it may be

readily shown that the operator in (13) may be represented

as the sum of two operators, one having the denominator

sin si, the other the bracketed part of the denominator in (13).

One of these partial operators produces vt and v2 ,
the other

W7
X
and w

2
. The expanded solution in Fourier series is the

same as before got, of course.

The difference between Vx and V2 is operationally exhi-

bited in equation (14). It is equivalent to exchanging y and x

in the preceding formula, and taking the difference. But
this difference has no existence in the Fourier series. We
can see that by putting the extra part of (14) in the nume-

rator, when it becomes multiplied by the denominator, and

therefore gives zero terms when the expansion theorem is

applied. We also see the same by observing that only
even powers of p are involved in the extra operator in (14).

But this extra operator is not of no moment hi general. If,

instead of the impulsive source of current ^Q, we have h
t any
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function of the time, the solutions to left and right of the

source are got by writing h/p for Q in (13), (14), and the

difference between the forms of Vj and V2 cannot be neg-
lected in general ;

for example, when h is simply periodic,

and the algebrisation is effected by p* = - ri*.

When we have an impressed force e at y instead of h or pQ,
we can treat the matter similarly by either of the above ways,

noting now that C is continuous and V discontinuous at y.

Since \e at yt together with -J0at the corresponding point

in the upper cable, produce zero current at B, or else zero

potential, with similar effects at A, we see that the problem

splits into two connected simpler cases.

Closed Cable with Intermediate Insertion. Split into Two
Simpler Cases.

315. In the above, Z produced a discontinuity in the

current, though none in the potential. But if we introduce

Z in circuit with the double cable, and have no earth connec-

tion, it is the current that is continuous, and the potential

discontinuous at A. The question arises whether the problem

Zo

admits of splitting. It clearly does when Z is a resistance,

because equal similar charges at y and 21 y will produce no

current either at B or A, that is, in Z
;
whilst equal unlike

charges will produce no potential at B or in the middle of Z .

So the problem splits into two, in one of which there is insu-

lation at both A and B, whilst in the other there is earth at B,
and earth through resistance JR at A.

That a similar split takes place when Z is a condenser is

also evident on consideration. The same may be said of any

simple electrical arrangement which is divisible into similar

halves. But it is not immediately evident that a split

is possible when Z is any electrical arrangement, which

may have no sort of symmetry with respect to the

cable terminals. It is sufficient to think of a coil and
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a condenser in sequence. Given a charge at //, and an equal

charge at the corresponding point. If it be said that if the

charges are unlike there is zero potential in the middle of Z
,

it may be asked, Where is the middle ? The condenser and

coil are not comparable in the way suggested. At the same

time, the property must be true in a certain sense, because

the combination of condenser and coil behaves to external

voltage as a single whole. The same is true of any regular

combination. It may be symbolised by an operator, without

entering into its detailed structure in the form of coils and

condensers.

The proper interpretation is to substitute for the combina-

tion symbolised by Z two combinations in sequence, each

symbolised by JZ . This is easily done. The condenser and

coil may be replaced by two condensers and two coils, all in

sequence. Then one of the new condensers and one of the

new coils in sequence makes JZ , provided the resistance,

inductance, and elastance of the original coil and condenser

are all halved. Similarly as regards the remaining new
condenser and coil. Z has now a middle in reality, as well

as in imagination. A similar process is applicable to any
combination. So, without actually doing it in detail, we may
say that equal unlike charges at y and the corresponding

point redistribute themselves in the same way as if earth were

on at B, and earth on in the middle of Z ; or, without

speaking of the middle, as if we substitute for Z two arrange-

ments each equivalent to JZ ,
and then put on earth between

them.

So let there be a charge JQ at y and |Q at 21 -y. They
move as if the ends A, B were insulated. If v: is the resulting

potential at x on the right of y, we have

either by (85), 294, with Z = oo =Zi and |Q instead of Q ;

or by the elementary theory in 269.

Also, if w: is the potential at x on the right of y due to |Q
at y and - JQ at 21 - y, we have

sms(t -x]
(2Ksin + Zi .scos)sJ

VOL. n.
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by the same formula (85), with Zj = 0, JZ instead of Z ,
and

JQ instead of Q.

It follows that if there is initially only Q at y, the resulting

potential Vj at x on the right of y is

Vj-^+ufc (17)

The expansions of i\ and w
l
are to be effected as usual. I

have given so many examples that it is unnecessary to exhibit

the special expansions required here. The expansion theorem

(30) is very easy to remember and to apply when required.

On the other hand, the operational formulae are much easier

to manipulate. Note in the present case that there is a con-

stant term in Vr It arises from vlt and its value is Q/2S,
the mean potential which is finally existent because there is

no leak anywhere.

Same as last without Initial Splitting.

316. But as the above reasoning about the splitting of Z

may not be wholly convincing, we may justify its accuracy by
a direct investigation. Say there is initially Q at y. Let

. G (18)

at x on the right of y, that is, from y up to x = %l. Also, let

V
2
= Vl + sms(x-y).'K (19)

on the left of y, V1 meaning the expression in the previous

equation.
The condition of continuity of the potential at y is already

satisfied. We also require

jjQ^-Cj, (20)

at y, Cj and C
2 being the currents corresponding to Vj and V

2 ,

obtained by the operation -
(d/dx)/H>. Doing this, we get

(21)

making C
2
= Cx

-
coss(x

-
y) . }>Q, (22)

and V2
= V1 -sms(x-y).-. (23)b
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There are now only the two time functions F, G to be

found. The condition of continuity of current at the ends of

Z gives

JL(sin 2sl. F - cos 2s/ . G) = -^ - cossy .pQ ; (24)
R -tv

and the condition

Vi-V^ZoC, (25)

which is the equation of voltage for Z , gives

(26)

These equations find F and G by the usual algebraical

work. Using the results in (18) and (23), we obtain

2 sin si cos s(l
- x + y) + (Z s/B) cos sy cos s(2l

-
x) _sQ ^-j)

. Z s/R) 2S

^.sQ/S. '28)

These are the complete operational solutions without initial

splitting. We see that the determinantal equation does split

into two, giving

sin si - 0, and tan si = - Z s/2R, (-29)

proving definitely the validity of the previous reasoning.

Now, if we expand the above Vj. by the expansion theorem,

attending only to sin si = 0, we shall obtain the expansion of

the i\ in (15). And if we expand according to the other

condition in (29) we shall obtain the expansion of w
1
in (16).

Thus ^71 = v1 + u'
1 ,
when in the fully expanded form.

But the equivalence is also true in the operational form.

To prove this, add together the vi and w1 of (15) and (16),

uniting the two fractions to make one with a denominator

which is the product of the former ones. The result is (27),

as required.

The expanded formula for V
2

is the same as for V^ The

complete solution for the whole cable from x = to 21 is there-

fore given by a single Fourier series, although it is separable

into two of different types. The same is therefore true for

any initial state of the cable. The reason is that there is not

(except at the initial moment of the instantaneous introduction

o2
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of the charge) any sort of constraint all the way from x = to

21. If there were, say a constraint at x = z, we should want

two distinct Fourier series, one for each side of z. The deter-

minantal equation would be the same for both sides, but there

would be a break in the normal systems.

Closed Cable with Discontinuous Potential and Current.

317. We have done one case involving a discontinuity in

the current, and another involving a discontinuity in the

potential. But in general both will be discontinuous. Let,

for example, the connection between x = and x = 2 be made

through Z
1
+ Z 2

in sequence, with a shunt to earth put on at,

4-

their junction. Let V be the potential at the junction. Then

we have these voltage equations to satisfy :

Vj-Vo-Z^, V -V
2
= Z,C2 ,

V = Z
3(C1 -C2); (80>

and therefore have the two terminal conditions

V1
= (Z 1 + Z3)C 1 -Z 3

C
2 , (31>

V
2
= Z

3
C

l -(Z 2 + Z
3)C2

. (32)

In these equations V x
and C

t
mean the potential and current

at x = 21 ;
V

2
and C

2
those at x = 0.

If, then, there is an initial charge Q at y, we can obtain the

operational solution by means of equations (18) and (23) above,,

applied to (31), (32), to determine F and G. The result is,,

as before, a single Fourier series to represent both V
T
and V

2
.

It sometimes divides into two sets. For example, if Z
x
and

Z
2
are equivalent, we get symmetry.

A Cable in Closed Circuit without Constraint.

318. The case of a cable forming a closed circuit in itself

without external constraint deserves some notice. Fourier's

periodic theorem is involved, of course, but it has a somewhat

different application to the one before made. If we have an
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infinitely long cable containing an infinite series of uniformly

spaced point sources of equal size, we produce periodicity by

symmetry. Every source produces a double wave, diffusing

to the right and left respectively ;
and the effect produced

at any point is the sum of the effects due to the individual

sources.

But in the closed cable, in the corresponding case, there is

one source only, and only two waves. The apparent multi-

plicity arises from overlapping. The matter is best under-

stood by introducing self-induction to such a small extent as

not to alter sensibly the shape of the waves, whilst making
the speed of propagation be finite, say v. Then, if there is

initially a charge Q at the point y, it splits into halves, and

two diffusive waves result, one to the right and the other to the

left, each containing JQ of electrification. The manner of

this diffusion has been described before. The point here is

that the two waves have fronts, which are at distance rt from

the source, and which therefore rush round and round the

cable in opposite directions. There is no reflection anywhere,
so that the effect at any point x is the resultant of the

overlapping of the right wave on itself, and of the left

wave on itself. The potential at x makes a very little jump
when either of the wave-fronts passes the place. There are

two jumps in every interval of time equal to 2Z/f, the time

of transit of a wave-front round the circuit. Between the

jumps, the potential changes slowly (relatively) by the natural

diffusive process. As time goes on, the jumps decrease

infinitesimally, and the steady state is approximated to. This

is SV = Q/2/, the mean value.

If we remove the self-induction, v becomes infinite. The
initial waves therefore overlap instantly, and the little jumps
disappear. We now have continuous variation of the potential,

which is that due to the initial waves in reality, but with the

proper allowance made for the overlapping.

The contrast with the behaviour in a distortionless circuit

is striking. After the initial splitting, the two half-charges
would go on travelling round and round at constant speed
without any diffusion, though attenuating by leakage.

But keeping to the diffusion problem, the charge Q repre-

sents the result of an impulsive current pQ at y, which divides
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equally to the right and left. Therefore

(33)

represent the current and potential at x, on the right of y, in

the initial wave. To allow for overlapping, the factor for a

circuital journey is e- 2QZ
. That is, the second term in Vj is

j, the third is e^fy, and so on. The total is

representing V at x so far as the wave to the right is con-

cerned.

Now, the same points is distant Zl-x + y from y, when
reckoned the other way round. Otherwise it is the same. So

-
/5

-

1-c-sai -ty

represents V at x so far as the wave to the left is concerned.

Tiie complete potential V is Vx + V.2 . That is,

y = cosli7(Z-a; + y) RpQ = coas(l-x + y) sQ
shin

ijl 2q sin si 28*

Algebrising this by the expansion theorem, we obtain

(37>

where we recognise the unit impulsive function of Fourier's

theorem, when we put t = 0. There is only one such function

now, instead of an infinite row
;
because x and x %nl mean-

the same point.

Theory of a Leak. Normal Systems.

319. Passing now to a third minor matter, something;
should be said about the treatment of cases in which there are

two or more connected Fourier series concerned. These

cases can be constructed to any extent by means of inter-

mediate conditions, and by combinations of cables. But a

whole book would be required for a full treatment, and there

are more interesting matters to be considered. So all that
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will be done here will be to take two or three cases of the

kind, to be suggestive of what is necessary in other cases, and
to exhibit matters of principle as well as practical working.

Say there is a leak at 2. It may be any sort of leak, to be

denoted by its resistance operator r. Let the

V"

cable be earthed at x = and I.

There is one thing that can be done at once viz., to write

down the determinantal equation. For the sum of the cur-

rents leaving the point z is zero, and each current is the

potential at z multiplied by the conductance operator of the

path concerned. Therefore

= (Y1 + Y2 + Y3)Vz (38)

is the differential equation of the potential at z, where the

three conductance operators are

*), Y3
= . (39)

r K r

If there are terminal arrangements at # = and I, Y t and Y2

must be suitably modified. It follows that

Y3 (40)

is the general differential equation of the complete combination

satisfied by all subsidence solutions, and the values of p satisfy-

ing it, when regarded algebraically, are the values of p in the

time function pt of the normal systems. That is, the solu-

tions are of the form 2 aep
', where the /s are known. But the

a's are functions of #, and require further investigation.

The above process of finding the determinantal equation

applies when any number of circuits of any kind meet at a

point. But it is important to note that any point in the

combination may be taken for origin. The difference may be

very great in the form of the resulting equation, which may
be simple at one place and complicated at another

; but all

the forms are intrinsically the same in containing a common
factor whose vanishing determines the p's in the time func-

tions.
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Going further, consider the normal systems of potential.

Let

V=2AV
,

V9
= ZAw, (41)

on the left and right of z. Here v and w are the normal

functions. Since V vanishes at x = and Z, we require

x). (42)

To find B, make continuity, or v = w at z. Then

sins(l- x) /.m
iv = smsz -r-.-^. (43)

sms(t z)

Two things remain namely, s and A. To find 5, we have the

final condition

d-Ca
= V/r (44)

at z. Applying this to a normal system makes

sinsz si . coss(lz}\ fi ~\- =--5 (cossz + smss -r - --
{), (45)

r B\ sms(/ z)J

or

R . sin si A / tn\_ sms2 +- = 0. (40)
rs

This is the determinantal equation, and is equivalent to (40)

above, subject to (39), in a changed form.

Lastly, to find the A's to suit any initial state, this requires

the construction of A in the case of a point charge. Say
there is Q at y, less than z. Then, by the conjugate property,

The numerator is the mutual energy of Q and the normal

system, that is, Q multiplied by the potential of the normal

system at Q. The denominator is twice the excess of the

electric over the magnetic energy of the complete normal

system itself. The part for the cable is explicitly shown.

The part for the leak is denoted by X, to be found as before

explained in special examples.
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But X vanishes when r is a mere resistance. Then A
becomes

A. (2Q/S)Biny
(48)

sin 2ss / sin
2
sz \ /

7
sin 2s(/

-
z)\

-*r *W^-V \
~

~~^ /

This completes the problem so far as any initial state of V
from to z is concerned, by an integration. But when Q is

on the other side of z, we must use w
y
instead of vv in the

numerator. Else it is the same.

Theory of a Leak. Operational Solution.

320. It will be seen that there is considerable facility in

obtaining the normal systems, and also in evaluating A,

provided that there is no allowance to be made for the leak

itself, which may be a troublesome matter by the above

process. But there is another way, whereby the evaluation of

the energy difference is done by a differentiation without

detailed examination of r. This will be explained presently.
The same remarks about facility and the reservation apply in

more complicated cases. But there is, nevertheless, a rather

bad failing. We cannot, from the above normal systems,

safely deduce the general operational solutions. If, on the

other hand, we get the operational solutions first, we can at

once deduce the Fourier series, and other sorts of solutions as

well.

We may, therefore, now exhibit the more general way. Put

a charge Q at y, and see the effect.

Start at x = 0. First, we have

Vj-sinftr.A, (49)

satisfying the terminal condition. Next, as there is to be

continuity in V at y, we require

V
8
= V1 + sin(a?-y).B. (50)

Here B is found by
Co-C^Q (51)
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at y, and makes

V^V^ sms(x - y) . sQ/S. (52)

Then there is to be continuity in V at z, so

V2
= V3 + sins(^-c).D, (53)

and V2
= at x I finds D, and makes

V _v VV 2 v
3 V

3Z
-

77
-

r-t \

sms(l-z)

where V
3f
means V

3
at x = I. Finally, we have the discon

tinuity in the current at z
t
or

V s V_?.= _ 3 *

r

~

B sins(/-z)'

This finds A definitely, and makes

V1= - sins* _ . (56)
sr sins/ S

sms2 + -
B sin s(l

-
z)

This is the complete operational solution. Q is
lijp, where

h is an externally introduced source of current, which may in

general be any function of the time. It is made impulsive

specially to suit the treatment of an initial state.

As regards V8 ,
it is found by (52). It will usually differ

from Vi, though not in the Fourier series solution for an

initial state. It will be found that V3 differs from Vl5 com-

paring (52) with (56), merely in the interchange of x and y.

Finally, we may use the modified V8 in (54), and obtain

sr sin s(l
-
x)

V2
= -

sin,-/ -
S "*"<*-) ?Q

(57)

rintt +g sins* S

B sin
s(l

-
z)

There are two distinct expansions, one for Vi and V8 , the

other for V2 . They follow from (56), (57), in the usual

way, by the expansion theorem. But, denoting the common
denominator sin sz + ... by D, so that D = is the deterrni-
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nantal equation, we can simplify the numerators by use of

this relation. Then the expansion theorem makes

2Qs .-
QTo sin sx sin sy

V.andV^S--j-^ ----
y (58)

sin sz-( + -Cotsz + -cots(l-z)}
ds\r R K /

Similarly for V2 . The form of the denominator was first

changed in order to bring the relation (40) above into view.

It may be verified that (58) agrees with (48) when the leak is

a mere resistance. But (58) is far more general. The leak

may be of any kind, r being a rational function of p, and

therefore of s
2

. When r is not a rational function of^, the

expansion (58) fails. A definite integral is required. But the

operational solution (56) remains true.

Evaluation of Energy in Normal Systems.

321. The object of altering the form of the denominator of

(57), so as to make the function in the big brackets in (58) be

the active determinantal factor, as in (38), (40), was to intro-

duce a point not noticed in the previous. According to (58),

the value of the coefficient A is given by

(59)v '
.

., Us d /I
sm2 szx ---r (-

2s (Is \r

This is the same as

(60)

if Yz is the conductance operator at the point z, i.e., the sum
of the conductance operators of the three paths meeting there.

Now the general formula to find A from the conjugate pro-

perty goes thus. Let there be selected any two normal

systems, belonging to pl
and p.2, say; let U12 be their mutual

electric, and T 12 their mutual magnetic energy. Then

Ula
- 1^ =

(61)

expresses the conjugate property. From which it follows that

A, = H (62)
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is the coefficient for the term involving p^ ;
if U01 is the mutual

electric, and T
01 the mutual magnetic energy of the given

initial state and the normal state in question, whilst Uu and

Tn are double the electric and magnetic energy of the normal

state itself.

The numerator in (60) agrees with (62), of course, because

of the confinement of Q to a point, and because there is no

mutual magnetic energy. There would be, if the initial state

involved magnetic energy in the leak r. The denominator of

(60), therefore, represents the denominator in (62). That is,

On-*n-?* 168)

for any normal system, which is here the first one. We need

not use the suffixes, which may confuse, but, keeping to one

normal system, write

U-T = *2

, (64)
dp

understanding that Y is reckoned at the place of v. Now,
this property is general ;

z may be any point in the system,
v its potential there, and Y the corresponding conductance

operator. The variations in v will be exactly compensated

by those in Y.

To illustrate, divide Y into its three members ; then

TJ-T =^(Y1 + Y2 + Y3). (65)
djp

Here Yx is the ratio (conductance operator) c/v for the first

path, Y2 for the second, Y3 for the third, all with the same v,

but with different c's. And

d c dc dv 9 d v
ir = v - c - - = t- . (66)
dp v dp dp dp c

We may therefore write

-(U-T) =^ + rffi + ,H''p, (07)
dp dp dp

if Zj, &c., are the resistance operators.

At the point z that is, at the leak, there are three c's and

Z's to be allowed for. But the last two c's may be expressed in

terms of the first, bringing us to a result of the form
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If, however, any other point in the cable be taken, there are

only two c's, two Y's, or two Z's, and the c's are equal. Then

_(U-T) = c'^, (68),
dp

where Z is the sum of the resistance operators to right

and left of the point in question, which may be any point.

dZ/dj> is an inductance operator, and dY/dp a permittance

operator.

It will be as well to illustrate these remarkable, though
somewhat abstruse, properties explicitly. Take then the

simple case of terminal earth connection and no intermediate

Z l Z2

condition, so that the normal system is simply

v = sin sx, c = - A cos sx, (69)*n

s having any value making sin si = 0. Here

Zj-^tanaz, Za
=5 tan *(*-*),- (10)

s s

are the resistance operators to left and right of the point zt .

and their sum is

Z.I- (71)-
S COS SZ COS 8(1

-
Z)

so that e/Zi would be the current there due to e on the spot.

Also d/dp= -
(RS/2s>//f/s, since RSp = -s2

; so

dZ R2S/ cos si R2Sl 1

dp 2s2 cos 55 cos s(2 2s
2 cos2

sz

because sin si = 0. Therefore

2 rfZ s
2 R2

SZ SI
C ^

=
K2 ^-

=
2-

Consequently, if there is initially Q at y, it expands to

v = y Qsinsysin&r

,,



206 ELECTROMAGNETIC THEORY. CH. VI.

which we know to be right. Of course the best place for * is

at a terminal. Then only one resistance operator is concerned,
and it goes simply.

Again, do it in terms of the conductance operators. Here

dp I 2s ds\n~~
"" K" Vj

7

which also works out to the result JSZ, independent of the

position of z. Here Y is the sum of the two conductance

operators to left and right of *.

The practically useful point is this. If the evaluation of

U - T by integration is troublesome, which is particularly the

case when there is externally connected energy to be allowed

for, we can avoid it altogether by means of the identity (64),

choosing the point of reference so as to make the work as

nimple as possible. We do not, therefore, need to form the

operational solutions and apply the expansion theorem, if the

only object is to develop the proper Fourier series.

It may be objected in the above that in taking v = sins#,

and assuming v to be potential, or the transverse voltage, we
are violating dimensional properties. The objection is valid,

though rather superficial. To be very particular, we may let

Asin& be the normal system of potential, A being the same

as above, and so have a symbol to put the dimensions in

(though they are not known, by the way). But this will make

no difference in the end, and will complicate the formulas

somewhat. Or we may let asinsx be the normal system, and

let a be represented by a unit factor. For unity, though
constant in a certain sense, may have any size and any
dimensions.

A more important objection is that I have given no proof of

the general properties used, except what may be contained in

the actual verification in the examples used, which is suffi-

cient as far as they are concerned. But the fact is, that the

expansion theorem, and the conjugate property, and the

equivalence of the integration and the differentiation ways of

working it, being general matters, are best proved in a general

manner, out of the general equations of dynamics, which,

in their application to electromagnetics, will be considered

separately.
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Initial States in Combinations.

322. The following way of regarding the matter is useful

in combinations. It has the advantage of compactness. Imagine
any combination to be disturbed by the impression of a current

upon it. Let the current be h, and its point of entry be denoted

by y. Then

A = Y,V, f
or V *

(76)
rt

is the connection between 7* and V
y , the resulting potential at

y, if Y
y

is the conductance operator there, or the sum of the

conductance operators of the paths open to the impressed
current. The path of entry is not counted.

If Y
y is known, (76) may be algebrised as it stands. But

to represent an initial state of charge or electrification, let

h=pQ, where Q is constant. Then

V, =f (77)X
y

expresses the potential at y due to the impulsive entry of the

charge Q ; and its expansion is

V, = 2 + steady term, (78)*

ranging over the roots of Y = 0, the accent meaning differentia

tion to p. There is a steady term if
_p/Yy

is finite when p = 0.

This is exceptional.

Xow to find Va ,
the potential at some other point x in the

combination, we require to multiply Vy by the operator VZ/VV ;

as in

But in a normal state, such as the general term of the

expansion refers to, we must multiply by ux/uyt
if ?/ is the

normal function. This makes

Vx
= 25^ tpt = 2 Awx

*
(80)u

l
*

/

Xow, the coefficients A are subject to the conjugate property,



208 ELECTROMAGNETIC THEORY. CH. VI.

and determined by (62). The numerator Qi^ agrees. So the

denominator is U T. Or

V.-Stf 1

. (81)

But U T represents an integration extended over the whole

system. It is fixed when u is fixed at any point, and has>

nothing to do with the value of y, the position of Q. There-

fore the alternative form of U-T shown in (80) must be

independent of the position of y, so that

V.-SL-*-, (82)

where z is any point, and Yg the conductance operator there,

(But do not choose a place where u vanishes, as that will

require a compensating infinity.) Lastly, if there are only
two paths meeting at 2, we have the equivalent form

V.-S-^, 188)

by (66), (G8), where cf is the normal current at z, correspond-

ing to uz , and Z 2 the resistance operator there. This form is-

perhaps more generally useful.

An integration over the whole combination will determine

the value of A so far as it depends upon initial charge. If

further, there is initial magnetic energy, it must be allowed for

as in (62). It is important to think of the normal function u

as a single function. It may, indeed, have various forms of

algebraical expression in different parts of the combination,,

but that is of no consequence in the present connection.

Two Cables with different Constants in sequence, with

an insertion.

323. Example should supplement precept, if it does not

precede it, which may be better still. Therefore, let us apply

the above to the case of two cables of different types joined

V "NV

x= Q x=z x= l

in sequence, with an intermediate insertion. Let r be the

resistance operator of the insertion (containing no leak), which
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is made at the distance z from x = 0. The resistance operator
of the combination, reckoned at z, is

Z = r + 5-1 tanv + * tan s
2(l

-
z), (84)

S1 S2

the cables having different E and S. Here Z is such that

e/Z is the current at z due to e there.

Now put Q at y, less than z. If the normal potential

function u of the last section is v in the first cable and w in the

second, and the resulting potentials are V and W, we have

V-Zf*, W =2u* (85)

But if Q is in the second cable, then

(86)

In these, v, w, V and W refer to the variable point a?, whilst

Q refers to y.

We have next to specify the nature of v, w. Since the first

cable is earthed at x = 0, and the second at x = I, we may put

v = sin $!#, iv = a sin s.2(l
-

x) , (87)

provided a is settled so as to harmonise them. This is to be

done by the continuity of the current at z ; that is,

at "" <88>

This makes

.--f*_S!** rfn*(l-*> (89)
RjS-2 coss2(Z z)

The normal function being complete, it remains to evaluate

U - T for it. Since we know Z at the point z, the shortest

way is by - c
2
Z'. Thus

sinssins

(90)/
Z-

(
-1 cos s:z }

VB, ) dp

is the potential at x due to Q at ?/, when both x and y are in

the first cable, Z being given by (84). The summation ranges
over the roots of Z = 0. There is no steady term, because of

VOL. n. p
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the earth connection. For d/dp may be substituted differen-

tiation to Sj or s2 for trigonometrical convenience, and so we

come to the fully-developed formula, suitable for calculation

if required. In general r is a function of p. But we do not

need to allow for that unless there is initial energy in r itself.

If x is in the second cable, y being still in the first, we must

put w for v in (90). If x and y are in the second cable, use

wx and w
y
in the numerator. If y is in the second cable and

x in the first, use iv
y
and vx . In short, follow (85), (86).

If the effect of a localised impressed voltage is wanted, we

may use the resistance operator at the place. Thus, when e

is at Z, then

where Z is as in (84), and Z is the steady resistance. To find

C at any other place x, introduce the factor cx/cz in the general

term. It is the ratio of the normal current functions at x and

z
t
and is known.

If e is at x = 0, a different Z is needed. We may regard it

as the resistance operator of the first cable with a terminal

arrangement, say Z1? given by

Z^r + 5:2 tans
2 (Z-*). (92)

S
2

It is then a special case of (59), 291. Again, if e is at x=
l,

we may bring the case under the same formula by treating it

as a cable (the second one) with a terminal arrangement

Z 2
= _J tan S-.Z. (93)

1

It may also be noted that the same formula allows us to

construct the resistance operator of any number of cables of

the same or different types put in sequence, with intermediate

insertions. For instance, we know the resistance operator at

i 1 1

,c 3 6 2 a, 1 y Z|

a of cable 1 with Z
2 at its end. Call it Z2 . It is

R
, (98x)

s (Rcos-Zjssin^
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using the proper B and s for the first cable. Then, by the

same formula, we know the resistance operator at b of cable 2

with Z2 at its end. Call it Z3 . Then we know the resistance

operator at c of cable 3 with Z 3 at its end. That is, we know
the resistance operator at c of the complete combination.

This process may be continued to any extent, and results in a

continued fraction, which soon assumes gigantic size. There

may be intermediate insertions {without leaks), without essen-

tial change. But leaks require a little change of treatment.

Say there is a leak at a, then Z2 is to be the resultant resist-

ance operator of the leak and that of the cable 1 with Zx at

its end ; that is, the reciprocal of the sum of their reciprocals.

Using this modified Z 2 ,
we may proceed as before till we

come to the next leak, say at b, where we make a similar

modification.

If an intermediate resistance operator is wanted, that is

merely the sum of the resistance operators to right and left,

to be got by the same process, which applies when the cables

are not each of uniform resistance and permittance, and when
the inductance and leakance are not ignored. Of course,

however, when B and S vary in any one cable, its resistance

operator requires special investigation.

Cable involving the zeroth Bessel function,

324. Still keeping to two cables in sequence, for simplicity

of illustration of broad principles, let one be an ordinary cable,

the other with R and S varying in such a way as to produce
another kind of normal function. In passing, it may be

observed that by causing B and S to change gradually from

uniformity of distribution to various other arrangements of

the same total resistance and permittance, we can continuously
deform the simple normal function (sin sx + a cos sx) so as to

make it assume the shape of any other kind of normal function.

In case of two kinds of cables, the results will be exhibited in

two series, say a Fourier series for one cable, and a Bessel

series for the other, properly harmonised.

In order to have the zeroth Bessel normal function, we need

only let the conductance and permittance per unit length of

cable both vary directly as the distance from x= Q. There
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are other ways, but this is the simplest. Thus, the circuital

equations

_^ = EC, ---BpV, (94)
dx dx

unite to make the characteristic

without assumption of constancy of R and S. Therefore, if

1=
, S = S *, (9

K
, S being constant, we produce the characteristic

sJV, (07)idx

where RS is the constant R S .

The proper solution for our purpose is

(98)'

where V is a time function, and I is denned by the expansion-

given. The corresponding C is

where Ij is the derivative of I .

The meaning of V is clearly the potential at x itself,

given as a function of the time. But we do not want that

a;=0 x x=\

particularly. In fact, since the conductance is zero at x = 0,

there is no current there due to any finite impressed voltage,

and we should avoid the point x = Q for our immediate

purpose. We have

(100)

at x. Therefore, if e is impressed at A, the resistance

operator is
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if we now reckon the current positive from \ to 0. That is,

/Z is the current entering at A, if there is earth on the other

side of e. Or, more generally, V/Z is the current at A when

the potential there is V variable anyhow, due to sources on the

side of A beyond the cable in question.

The formula for the potential at x is simply got by (98),

observing that it must reduce to e at x = A. Thus,

(102)

from which C follows by a differentiation according to

Ohm's law.

By (102), we see that

Io(<7 A)
= 0, or J (* A) = 0, (103)

is the determinantal equation, if g*= -S
Q
Z

. Here J is an

oscillating function analogous to the cosine. Why we should

have it so will be seen on remembering that there is no

current at x = 0, so that, if B and S were constant, the normal

function would be cos sx.

Applying the expansion theorem to (102), when e is steady,

expands to

v\ =

-<-

if Jj is the negative of the derivative of J . This shows the

manner of establishment of the final state of V, which is

V = e all over, owing to the vanishing conductance at the

far end.

We can, of course, put on any terminal Z in place of earth

on the other side of e, and solve in a similar way, but that

would be premature at present.

A Fourier and a Bessel Cable in sequence.

325. Pass to the matter immediately in question namely,
the harmonisation of the solutions for two cables of different

natures. Let the cable on the left be of the regular kind, and
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that on the right be of the kind considered in the last section.

Earth is on at xQ in the first cable, but the z= Q end of the

second cable is virtually insulated, if that is the point of

vanishing conductance. We measure x from left to right in

x=o v Lc\ iX
z

vT" r '

the left cable, in which the potential is V, and z from right to

left in the other, where the potential is W. Between them,,

at x=-l in one and = A. in the other cable, is inserted any
combination r without leakage. The complete resistance

operator at r is

Z = r + - tan si + _- y ^,
(105)

by (101), using the notation of the last section for the Bessel

cable, except that x is now 2, to distinguish it from x in the

first cable. So the impressed voltage e at r produces tha

current

Cx = - = +21 (106>

subject to Z = 0, with the form of Z shown by (105).

This being merely a special case, let us examine the result

of charging both cables initially in any given way, and leaving

them to themselves. The formulae are (85) and (86), provided
we harmonise v and ic, and evaluate U - T. The form of v ia

obvious, so

v = sinsx, w= bI
Q(qoz), (107)

where b has to be found so as to make w fit v properly. This-

may be done by the voltage equation at the junction, or

v-w= rc, (108)

where x = l in v and z= A in iv, and c is the current corres-

ponding to v. It is also the current corresponding to w, and

their equalisation produces the determinantal equation (105)

already found. Now (108) is the same as

sin si - H
Q(q X) =-~ cos si, (109)

which gives b
}
and makes

-$4S ainrf + L'ooBrf . (110)
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This w is the other part of the normal system u, for v and w
together make it complete, except as regards the internal

variation in r itself, which we do not want.

There is only left the evaluation of U T. As before, the

resistance operator at r being known, we may employ the

-c 2Z' form, and therefore get, subject to Z = in (105),

_ Qainaesimy
(

when x and y are in the -first cable
; it being vxvy that is used

in the numerator. Substitute w,wy when they are in the

Bessel cable, using (110) ; and vxwy or v
y
w

t when z or 2 is in

one and y in the other cable. Also, instead of Lofez), use

When the initial state is given to be that the potential is

U, the coefficient of the normal function is got by an integra-

tion, thus :

A _/SUM dx _ /SVt- dx +/S AY ic dz ma ,
"

U-T U-T

where in the first form u is the complete normal function,

whilst in the second it is separately exhibited for the two

cables, the initial U becoming the initial V and W respectively.

Construction of a Normal System in General.

326. The above case of two cables of the ordinary kind

having different uniform resistance and permittance, and more

particularly the case in which one cable is uniform whilst the

other is of a variable type, are meant to lead easily to a broad

understanding of a normal distribution in general. It should

be regarded as a single function of position in the combina-

tion, no matter how many forms it may assume in different

parts. To illustrate this, imagine any number of cables put
in sequence, with any terminal arrangements, any way of

variation of resistance and permittance, and any number of

intermediate insertions or leaks. A normal system of potential

is one which, when left to itself, preserves its form when sub-

siding. To find it, we may first divide the whole cable into

sections containing no intermediate insertions or leaks. Then,
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if R, S vary in any section each according to a single formula, it

may be treated by itself. But if there are two or more formulas

concerned, we must subdivide into smaller sections. So we

come down to a section having a single characteristic. It is

equation (95) above. Regarding p as a constant, there are two

independent solutions, say u = av + bw, a and b being any con-

stants, v and iv the two solutions, functions of x. Every section

has its u of this kind, with its own special v and w. They have

next to be fitted together. This is to be done by the intermediate

and the terminal conditions, introducing all the necessary

continuities and discontinuities. The result is a single normal

function u, represented by wx in the first section, u
2

in the

second, and so on, but of arbitrary size. At the same time

the conditions furnish a general determinantal equation. It

is the characteristic of the whole combination, say Z = 0, and

the values of p satisfying it are the values of p permissible.

Thus Awep
*, where A is a constant, represents a complete

normal system at time t, so far as the cable is concerned, and

therefore 2 A?6 tpt
, including all the normal systems corre-

sponding to the different >'s, represents the solution arising

from any initial state. The normal u may, if we please, be

continued over all the intermediate and terminal insertions

and leaks, to make it fully complete. The size of the normal

systems is then settled by their conjugate property, which

leads to the formula (62), and other forms. If any part of the

combination contain no energy initially, its detailed considera-

tion may be omitted, and its influence on the rest allowed for

by a resistance operator. This applies to parts of the cable

itself as well as to insertions and leaks.

The characteristic of the whole combination, whose vanish-

ing settles the admissible rates of subsidence, may be taken

to be the conductance operator at any point, specialised by

regarding p as a constant, all other forms being derivable

from it. The normal functions are always entirely real when
electric energy alone is concerned, and also when magnetic

energy alone is concerned, though the latter does not occur

in the above diffusive applications. In intermediate cases,

the p's may be either real or complex. There is more to be

said about these things in other electrical applications, but

the present remarks are sufficient for the immediate purpose.
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There is no material alteration when, by means of cross

connections, we convert the above arrangement of cables

entirely in sequence into a network of cables, of any degree

of complication. To make the normal system complete, it

must be continued over all the branches. We may use

different symbols to indicate position, or we may use the

same symbol with a different range. These things are

immaterial. We still have to regard the normal system,

though made up of many parts, as a single system, self-

contained. At the same time, as before, any parts thereof

may be left out, provided the proper operators are employed
to sum up their reaction upon the retained parts.

Construction of Operational Solutions in a Connected

System.

327. We should now point out how a normal solution,

as above specified, differs from what I have usually called

the operational solution. There are likenesses and differences.

Let the electrical arrangement be the same, either a single

circuit of cables or a network; but now consider how to

find the operational solution expressing the effect all over

the combination due to impressed force at any point therein.

It may be impressed voltage e, or impressed gaussage h. The

former will create a discontinuity in the potential, the latter

in the current, and these constitute the effective sources of

disturbance, whereby energy is brought into the combination.

We have here a difference from the self-sufficiency of a normal

system.
We have to find V (and C) all over due to e or 7i

; say
V = Xe, for example. The form of X is wanted. Since e is at

a definite point, whilst V is anywhere, X is a function of .r,

specifying position in the combination. It is not the same
function (in its expression) in different branches, but since all

the different forms have to be harmonised, we may still

regard X as a whole, changing its form of expression as we

pass over the combination. In this respect it is like the

normal function. But at the same time, it is a function of p,

the time differentiator, and varies in form as concerns p as well

as .y, because p enters along with the electrical constants.
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To find X fully, we proceed as in the case of a normal

function, to divide the combination into sections involving

only one characteristic. But we do not assume that p is con-

stant in the characteristic. It remains what it is fundamentally,

a differentiator. So, in the general solution of any section,

say V = av + bw, the a and b are not now constants, but time

functions, and v, w are not merely algebraical functions, but

differential operators. We may write V = va + wb, if we wish

to explicitly indicate that a and b are operated upon by u and w.

But this is a matter of convention. A cart may be pulled or

pushed. Another form is V = (v +jw) a. Here there is but

one time function explicitly. The other is ja, where j is an

operator.

Now supposing we have found the general solutions

of V for every one of the sections, we have next to har-

monise them by the conditions at the junctions. This

process is, up to a certain point, formally like that of

harmonising the different parts of a normal function. The

difference comes in when, say finally (though it may be done

initially) we treat the section containing the impressed force.

There is nothing special there in a normal solution. But in

the operational case we have an additional split. The section

is made two sections, and there are two
'

auxiliary con-

ditions, as, continuity in C, and a jump in V produced by e+

The result is that all the time functions in all the branches

become known in terms of e. Or, in another form, in V = X<?,

we know the operator X completely throughout the combina-

tion, and there is nothing left over to be fixed by extra data.

In the case of the normal system, on the other hand, its

size is left quite indefinite. Apart from this, the normal

system constitutes a succession of values making it be a

numerical function of x. It is one of a set, for the constant^

in it may have any one of a particular series of values. It ia

different in an operational solution. The operand e is any
function of the time, and X by itself is not numerical. But the

determinantal equation is implicitly involved. For if we put

e = 0, producing = X^V, the latter is the general characteristic

of the solutions when free from impressed force. If it is, as in

most of our applications, a rational equation, then X-1 = finds

special solutions, of the type #*/(*) This brings us to
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the normal functions again. I have shown how to expand

Y^tf/X"
1 in normal functions when they are appropriate.

From the examples given, it will be seen that the operator X
itself may be regarded as expressing the type of the normal

function (apart from size), viz., by making p in it become

constant and assume one of the critical values. It then also

simplifies in form, in virtue of the determinantal equation.

The greater generality of the form of X is essential. The

normal system cannot be more than it is. The other has to

cover all possible cases, and is constructed to do it.

Similar remarks apply when the source is h, impressed

gaussage, equivalent to an external source of current. This

brings us to the normal functions again from another point of

view, viz., when there are no impressed forces given whose

effect is required, but the data consist in the specification of an

initial state of V and C, from which the subsequent states arise.

We convert this general problem to a special case of the

former by the use of impulses. There are two sorts. Let

e =pP and h=pQ, where P and Q are constants, or, more

strictly, constant functions of the time when is positive, and

zero when t is negative. Then e is merely the impressed

voltage in an impulse at the moment t = 0, the total of the

impulse being P. Similarly, h is the impressed gaussage in

an impulse of total Q. That is, as before explained, the

charge Q is instantly introduced, and then left to itself.

Similarly as regards P. It represents magnetic momentum.
The analogue of Q = SV, where S is the concrete permittance

connecting the charge Q and the voltage V, is P = LC, where

L is the concrete inductance connecting the momentum P and

the current C. But in the case of a cable, if S and L belong
to unit length, Q and P are the length integrals of SV and

LC. Now the initial state is fully specified by V and C.

That is, P and Q are given, or which is the same thing,
e and h. In our diffusion problems, we do not require to

know C at all, that is, e equivalently, because the assumption
L = destroys the momentum. That is why only h = pQ has

been employed in discussing initial states, and the expansions

required to represent them. But, in general, when L is

included, we must use both e and h to obtain the proper

expansions. The addition of the impulsive e is important
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because it enables us to treat the electromagnetic problems
with generality as regards initial states, and from the opera-

tional standpoint.

Remarks on Operational and Normal Solutions. Connection

with the Simply Periodic.

328. The object of the mathematical investigation of

physical matters being to ascertain what happens under given

circumstances, and map out the field of knowledge, so to

speak, the method of normal functions, or modes of vibration,

or of subsidence, or of time variation in more mixed manners,
is one of the most important ways of working to the desired

end. But whether it should be used, and if so, how it should

be used, depends upon circumstances. There are other

methods. It may be that only very partial knowledge is

wanted e.g., the general nature of normal modes and then

it may be quite unnecessary to resort to operational methods,

though their use will often settle matters which are obscure

without them. On the other hand, operational ways are

much the best in dealing with the effects of localised impressed

forces, and the study of such cases is often most instructive.

The most serious drawback to the method of analysis into

normal systems is that, beyond a certain point, the numerical

examination of general results becomes impossible in any
reasonable time. This is of no consequence in theory, but

is a great practical objection. We should go to the opera-

tional solutions for information. We may turn them to

normal systems if we want to, and if we do not, we can

apply other methods to them. The most important is

usually the simply periodic, from the wide application

possible, involving the reduction of V = Xe to V = (X + X^)0,
where e is simply periodic and i is the differentiator d/d(nt).

Some other special ways of working have been given, and I

will give more later on. The discovery of practical methods

of manipulating operators is a matter of importance to the

future of physical analysis. Objections founded upon want

of rigour seem to be narrow-minded, and are not important,
unless passive indifference should be replaced by active

obstructiveness. In making them rigorists make confes-

sion of ignorance. It would be more useful for them to
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try to extend the matter, and remove the want of rigour,

if they want to. But this is merely parenthetical.

Returning to the simply periodic solution just mentioned,

it may be worth while to point out two ways of connecting it

with solutions in series of normal functions. Suppose we
have a telegraph line of any sort, and desire to express the

current C at the distant end (or anywhere else) in terms of e

at its beginning. We may do this operationally, of course.

Say we come to C = Ye. Now, given that e is impulsive, we
can convert the result to a series of normal functions. Next,

observing that if e is given variable in any way with the time,

it may be regarded as made up of a succession of infinitesimal

impulses, we see that the last solution in normal functions, by

being used as the element of a time integral, enables us to-

express C when e is variable. Lastly, by choosing e to be

simply periodic, the result must be equivalent to that which

may be obtained directly from C = Ye, by the transformation

l>
= ni. The method described is a very complicated way of

getting the simply periodic solution, but its execution and

verification is quite feasible in some cases.

The process is reversible, if we are in possession, of all the

steps. But if not, if we only know the simply periodic solu-

tion, obtained directly from the operational, there is another

and much shorter way of passing to the solution when e

varies anyhow namely, by analysing an impulse into simply-

periodic variations. Thus, the impulsive voltage e=pE is

equivalent to

cosntdn, (113)

by (54), 271. The simply periodic solution for the element-

(E/TT) cos nt dn is obtained by operating on it by Y. So

C =AfY cos nt dn = 2Lf (YO +^ A.} cos nt dn (114)
TT J o

- J o \ d nt/

expresses C due to an impulsive voltage, and therefore, by a

time integration, as before, we express C due to any varying e

by the second method. This process can also be practically
carried out, in some cases, by the evaluation of the integral.
But I am afraid that, in general, the evaluation of the definite
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integral will present much difficulty. Considering the extreme

complication introduced into normal systems by the inclusion

of gradual propagation into the wires as well as along them,
the process (114) seems at first sight rather enticing. It looks

so simple. So it is, in idea
; but if we cannot effect the

integration, the integral does not tell us any more than the

operational solution itself. So I found it some years ago,

when I desired to trace the progress of an elastic wave along
a resisting wire. The integral was unmanageable. But the

operational solution itself was amenable to treatment by a

specially-invented process, which had its foundation in the

physical ideas involved, and which proved to be relatively

simple in execution. In connection with this matter, the

converse process should be noticed, viz., the transformation

of definite integrals to operational form, with a view to their

evaluation by any means that may then present itself. This

is often a very useful practice.

But the transformation from C = YpE to (114) requires to

be done writh caution. It may be the case that the physics is

such as to show that the process is legitimate. But the

legitimacy cannot be asserted when Y is an arbitrary operator,
of unknown meaning. The resulting integral may not be

equivalent, or may be equivalent only within a certain range.
That there should be failures in this application of (113) will

be understood, at least partly, by considering the application

or misapplication of Fourier's theorem in the definite integral

form (55), 271, to a function which does not vanish at

infinity, particularly if it is infinite itself there.

A Bessel Cable with one Terminal condition. Two Bessel

Cables in Sequence.

329. There is little more to be said about the submarine

cable without self-induction, which has been principally useful

as a convenient basis upon which to rest the theory of

x=0 x=\

diffusion. The application, however, of the zeroth Bessel

function may be continued in a generalised form, since the
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Bessel functions are of great importance in mathematical

physics, and have many applications in electromagnetism.

Take the problem of 324, but now put a terminal arrange-

ment Zj at jc = A, instead of having a short-circuit there. The

resistance operator at the point A. is now

(115)

by (101), using the same notation, and it follows that if the

initial state is Q at the point y, the resulting potential is

by the formula (83), 322, applied to the present case, Z

being given by (115), and Z=^0 being the determinantal

equation.

Now choose Zx to be another Bessel cable exactly like the

first, but turned the other way, so that the zero conductance

is at the far end. Then we make a single cable ABC, whose

conductance and permittance are greatest at B, and fall off

linearly to zero at A and C. The solution (16) relates to the

left one, the right one being uncharged. The resistance

operator at B is twice that of either cable, or

n .

This is such that e/Z is the current produced by e at the

point B.

But it is clear on consideration that if this Z be used in

(116), that result is erroneous, if limited to the roots of lo(^)
= 0. For every normal system then has a node at B. This

is perfectly right as regards the normal systems concerned

when e is at B, because it charges the two cables symmetrically
but oppositely, so that V = at B when e is removed. But it

cannot be right in general, for the cables may be charged
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symmetrically so as to produce no current at B. Besides

IQ(qQ\)
= 0, we require another condition giving nodes to the

current at B in a set of normal systems.

In fact, if in (115) we let Z
1
be nearly, but not quite, the

same as the other term, say by the length of the right cable

being slightly different from that of the left one, it will be

found that the roots of Z divide into two sets, approximately
those of the sum of the operators and of their difference. In

the limit, the first lot lead to Io(q \)
= 0, with potential nodes

at B, and the second lot to I
1 (^ A)=0, with current nodes at

B, the Ii function being the derivative of I . The first set of

normal systems is solely concerned when the initial state is

such as to produce no potential at B, and the second set when

such as to produce no current there.

I have introduced this example to illustrate the need of

caution in the treatment of normal systems in peculiar cases.

It is a necessity for the validity of the expansion of an arbitrary

initial state in normal systems that every possible normal

system should be included. But it usually happens in these

peculiar cases that the peculiar results can be foreseen. It

may be noticed that in the denominator in (116), representing
- c2Z', the quantity c vanishes at the point B for all the

missing normal functions. The reader has already been

cautioned not to choose a point where v vanishes in the alter-

native form v2Y. If we chose Z at some other point, between-

B and A or C, there would be no failure.

In the treatment of this problem by the operational solution,

there is no room for hesitation. Put Q at p in the left cable,,

and find the resulting V in the usual way. We require, of

course, to use the second solution, K (^), along with I (qx).

The result is, writing q instead of qQt
for convenience, and R

instead of B ,

(118)

at x, on the right side of y ;
and the same expression with x,

y interchanged serves when x is on the left side. This result

is explicit in making

be the determinantal equation when (118) is expanded in a,
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series of the normal functions I (gx), and shows the two sets.

The K (2z) function, though required in general, then dis-

appears altogether. Developing (118) by the expansion

theorem, we get

v v yV2~ V0~^

where the first summation is subject to I (^A)
= 0, and the

second to IjfeA)
= 0. The accent means differentiation to qX.

There is a steady term V because there is no earth connection.

It is obtained as usual by making p = in the operational
solution (118). The result is

v__9_ Q
n c- \ >

S/Y
2

total permittance'

if the permittance per unit length is S# in the first cable, and

symmetrically in the second. The change to the oscillating

functions J
G (SJJ)

and J^s-r) by means of f= s
2

is obvious.

But this is a special case of the next investigation, so it is only
needful to record the results as above.

General Solutions for Sources in a Bessel Cable with two
Terminal conditions.

330. Passing now to the general case involving the zeroth

Bessel functions of both kinds we can obtain our results very

shortly and symmetrically by the operational method. Let
terminal arrangements Z and Zx be put on at the points
# = A and I, in a cable subject to the circuital laws

(/./ x
'

dx

V and C being the voltage (transverse) and current at z, where

the resistance and leakance operators per unit length are Z/#
and Y.r. Here Z and Y are independent of x, and are

preferentially of the forms

Y-E + Sp, Z = R + L^, (2)

R, L, K, and S being constants, being the values at the point
x = \ of the resistance, inductance, leakance and permittance

per unit length. It is merely the introduction of variation

VOL. II. Q
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with x in the manner specified that introduces Bessel functions.

Zp V, V2 . Zl

^ ' ^x=\ y xl

The characteristic of V, obtained by eliminating C from

(1), is

Ij?^ = YZV = 2
2V. (3)

x dx dx

Later on, we can give different meanings to q, according to

those assumed for Y and Z.

The two solutions of the characteristic are

')
2

(qxY . (ga)
6

,

2 2242 22
4'262

*

2*4*6*

,2.2

|- +(1

where 7 = 0*5772 is a certain constant introduced to make
K.Q(qx) vanish at infinity. That these are solutions of the

characteristic is easily verified ;
and since they are not in

constant ratio, it follows that they are sufficient to express all

solutions directly or indirectly. That is,

V={I (^)-/K (^)}A, (5)

where A and./A are any time functions, is the general solution

of the characteristic, j being any operator.

When qx is numerical and positively real the I function is

like eqx
,

finite at the origin and increasing continuously to

infinity at infinity. The K function, on the other hand, is

like <rqx
,
in falling continuously to zero at infinity. It is, how-

ever, not finite, but infinite at the origin. Both I and K are

always positive when qx is positive.

Now construct the operational solutions for e and h at the

point y. The characteristic fails at that point, so we have

two forms, say

(6)

(7)

where V\ holds when x is on the left, and V
2
when on the right

side of y.
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In the case of e, we have

e = V2
-V1} C^Cj, (8)

at the point y. These conditions, applied to (6), (7) determine

A and B, and produce

v _~ iy
- aK

j y)~

which are quite general, as due to the source e. The operators

a and /3 enable us to introduce terminal conditions. Say

V = Z
1
C at x = l, V=-Z C at z = 0, (11)

These determine a and ft, thus,

KoV
-

(<?AZ /Z)KlX

5 '

Equations (9), (10) are now made fully explicit in terms of

the terminal operators, and may be developed in Bessel series.

As regards the notation, ^ and K! are the derivatives of ID

and K ; and, to ease matters, I (qx) is denoted by 1^, and

similarly for the rest.

When h is the source, we still use (6), (7), but instead of (8)

we have the conditions

V1
= V

25 Ca-Cx-ft, (13)

at y. These find A and B, and make

V, = fr-Zfe
*
"

_"
y
"

(14)

V =

The expressions for a and J3 are the same as before. The
determinantal equation of normal systems is

=
/? (16)

The h solutions are required to represent initial states of

potential, and the e solutions those of current. In obtaining
them use was made of the identity

=-, (17)
TTZ

which often turns up in these investigations.

Q2
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Conjugate Property of Voltage and Gaussage Solutions.

331. It is often to be observed that a property, first

noticed in a special case, then in others, if it be really a

general property, admits of simple proof. Perhaps the more

general the property the simpler the proof. The last equa-

tion is an example. It is a particular case of the known

conjugate relation between the two solutions of the ordinary

equation of the second order. The proof is simplest in terms

of V and G. Thus, let

<Ar n dC T7 ,-, Q \- = PC,
- =K\, (18)

dx dx

be the connections. Here p and K are, in the simplest case,

the resistance of the wires and the conductance of the insu-

lator, per unit length of circuit. They may be any functions

of x. More generally they are operators, functions of p the

time- differentiator, when variable states are concerned, as well

as functions of x. The characteristic of V is

.

K dx p dx

Now let vlt (?! and r.
2) c.2 be any two solutions subject to (18).

Then, since

d , N dc9 di\

we have, by (18), _d_M =wc^ (20)

Similarly, __i
(,/l) =

dx

Now if we make p be a constant, and the same constant in

the two systems, K and p become identical functions of x in

the last two equations, so that the right members are the

same. Therefore

l(^2
- Vl )

= 0, (22)
djo

and consequently

where m is constant. This is the conjugate property.
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If the two systems coexist, making v=v1 + vst and G= C! + c.2

be the voltage and current, the product vc is the total energy

flux, and its rate of decrease with x is its leakage, or the

activity per unit length of circuit. It consists of the sum of

the leakages from tyi, v.^, i\c% and r^ ; and the reciprocal

property in the form (22) asserts that the parts depending on

cross products are equal. When p is real, the systems are real,

and their energy, &c. When p is imaginary, the best way is

to imagine it to be real, for the sake of the electrical argument.
It is easy to generalise the property by extension to space dis-

tributions of electric and magnetic force, but we do not want

that at present.

That p is to be the same constant in the two states, limits us

to any two solutions of the ordinary equation which the charac-

teristic (19) becomes, when the differentiator p is replaced by a

constant. For example, tqx and e"9*, or combinations ;
I

(<?2)

and K (<?z),
or combinations ;

and so on to other kinds. In

terms of the r's only, the conjugate property is

*v'2
-

*y-;
= -

p, (24)

where the accent indicates differentiation to x
; and, in terms

of the c's only, it is

<*4 -</! = "< (25)

Thus (24) relates to the two solutions of (19), and (25) to

those of the corresponding characteristic for c, which is not the

same. If the two v solutions taken specially are in constant

ratio, m vanishes, of course. When not in constant ratio,

they are said to be independent. The independence is, how-

ever, of a limited nature, since, when one is given, another

can be deduced by the conjugate property.

Operational Solutions for Sources in the General Case.

332. By means of the conjugate property we are enabled

to obtain the operational solutions for sources e and h. It

will be convenient to denote two independent solutions by
u and tr, instead of i\ and i?

2 ,
so that the property is

u iv - fc u = mp. (26)
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Now there is a discontinuity at a source, so two forms of

solution for the potential are required, say

Vx = (MS
- awx)A, V2

=
(ut

- pwxjB, (27)

where Vj is on the left side of the source and V2 on the right.

These are operational, p meaning the time-differentiator, a and

ft unknown operators, A and B unknown time-functions.

Specialise the source to be h at y. This makes Vl
= V2 ,

and

h= C2
- Ci at y. Applying these conditions to (27), using the

conjugate property (26), we produce

V = i
u*^?*l&, ~_fei h (28)

m(a-ft)

V^k^'^fa-^'lh, (29)
m(a-p)

which are explicit when a and /3 are known.

When the source is e at y, which makes C^C.^ and

e = Va Vj at y, we similarly produce the results

V -K ~ alc*)K ~ #f
ir) e ro>\!--- ----- -- e

t ("<-')

mp(a
-
ft

V =K
mp(a-()

The value of the constant m depends upon the standardisa-

tion of the functions u,w. It can be found as soon as they

are given, by inserting them in the conjugacy equation.

Only the commencement of the series need be used.

The operator a is determined by V/C at any point on the

left of the source, and /3 similarly by V/C at any point on the

right. Say V/C = Z at A, and = Zj at I, then

/QON

By means of Z and Z x ,
we allow for the reaction of all the parts

of the electrical system beyond the limits upon the part between

them. That is to say, the operational solutions are complete
for the region between X and I, so far as the source e or h is
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concerned. The conversion to series of normal solutions is

to be done in the usual way, and initial states of potential

and current bye=joP, h=pQ, as before described.

Comparing the present investigation with that in 330, we
see that u is represented by I (qx) and w by K^a?), and that

the constant m is 2/7rZ. It is constant as regards x. It

contains p (or may do so).

Conversion of Wire Waves to Cylindrical Waves.

Two Ways.

333. Returning to the Bessel investigation of 330, which

contains most of the fundamental formulae involving the

zeroth Bessel functions of both kinds, by means of certain

equivalent transformations we can develop the whole body of

results, ordinary and extraordinary. But before doing that,

it is desirable to point out that the formulae are not merely
those concerned in the theory of a telegraph line of a variable

nature, of no practical use, but belong to cylindrical electro-

magnetic waves in general. Moreover, they do not do so by
mere analogy, but, by proper interpretation of symbols, the

two theories may be seen to be one and the same essentially.

Thus, I have shown in 206, Vol. I., how, in the trans-

mission of plane electromagnetic waves through a conducting

dielectric, any tube of energy flux may be isolated from the

rest and made independent, by enclosing it in a conducting
tube made of two materials. The electric displacement in the

tube must terminate perpendicularly upon perfect electric

conductors forming two sides of the tube, and the magnetic
induction upon perfect magnetic conductors forming the other

two sides of the tube. Also, the electric force is tangential to

the two magnetic conductors, and the magnetic force to the

two electric conductors, whilst the two forces cross one

another perpendicularly within the tube. Under these

circumstances the internal plane waves are made self-,

supporting, guided by the tube. The internal state is like

a beam of light, with lateral spreading prevented.
We may conveniently take the tube to be of square section

for plane waves. Then the lines of force are straight. But
in the present application, the tube must be imagined to be of

the shape of a wedge. It increases in section regularly as we
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pass along it, but two of its flat sides remain equidistant,

whilst the other two separate. Looking at the tube in section

along its length, AB and AC represent the traces of the

separating sides, to be called the top and bottom, whilst the

others are parallel to the plane of the paper, and may be

called simply the sides.

Now let straight lines of H join the sides, or be perpendicular

to the plane of the paper. The E lines must then join the top

and bottom, and be circular, centred at A, as at E in the

diagram. Also, let E and H, the intensities of E and H, be

each the same at the same distance from A. Under these

circumstances we shall have propagation of electromagnetic

waves in the tube according to the formulae given.

For, consider how the inductance and permittance of the

tube vary. The current C is the same as H x depth of tube,

being the transverse gaussage. The "
potential" V, with an

enlarged meaning of potential, is E x by length of arc con-

cerned, or the transverse voltage. The inductance (per unit

length of tube) varies directly as x, the distance from A,

because the section of the tube of induction belonging to

unit length of the tube of energy flux varies as x, whilst its

length is constant. On the other hand, the permittance

varies inversely as x, because the section of the corresponding
tube of displacement is constant, whilst its length varies as

x. The circuital equations are therefore

d\ -r r\ dC S -vr /oo\-_=L^C, -
Tx

--pV, (33)

if L# and S/o? are the inductance and permittance per unit

length of tube, L and S being constants, the values of the

same at # = 1. The above makes no allowance for any

conductivity within the tube, which is itself merely a guide.

Next, let the medium in the tube be uniformly conducting,

both electrically and magnetically. Then the magnetic con-

ductance will vary like L, that is, as x\ and the electrio
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conductance will vary like S, or as arl
. We shall therefore

make the circuital equations take the form

-JJ_(B
+ L/.)*0, -fg

= (K + S/>)lv, (34)

if Ex and I\/x are the magnetic and electric conductances per

unit length of tube. So far is an exact theory. The reader

should study Chapter IV., or the part relating to the trans-

formation of the circuital equations in general to the special

forms for plane waves along wires, and the interpretation of

the quantity called magnetic conductivity. It is the same theory

now, only applied to a tube of energy flux of variable section.

If we remove R from the inside of the tube, and substitute

equivalent electric resistance in its top and bottom, the

equations remain approximately true when the angle of the

wedge is small, and the distance x not too great. It is

now the theory of waves along a pair of finitely resisting

electric conductors through an electrically conducting dielectric

medium. If we remove K too, we must substitute equivalent

magnetic resistance in the other pair of, conductors, the side

pair. But since K expresses a really existent property, it is

no use doing that. Therefore retain K within the tube.

The depth of the wedge is immaterial. Make it infinite,

and do away with the side magnetic conductors altogether.

The wedge now consists of two planes (top and bottom)
inclined at an angle. The magnetic flux is endless, which is

equivalent to being circuital. If, now, in addition R is zero,

the angle of the wedge becomes immaterial. This is also the

case when R is not zero, provided it be in the tube of energy

flux, and not at top and bottom. Increase the angle until it

becomes 360deg. We may then remove the top and bottom

plates altogether. The result is complete cylindrical waves in

a conducting dielectric, the conductivity being of either kind

or of both kinds, as we please. The voltage V is now circuital,

and finite. The measure of C, on the other hand, is infinite.

We need only, however, deal with a finite depth along the axis,

when C will be finite too.

But in 330 the resistance of the wires varied as x~l
,
and

the permittance as x. To obtain this case, we have merely to

interchange the electric and magnetic forces in the above.
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The magnetic force must be in the plane of the paper in the

figure, and parallel thereto, and be circular. The electric

force must be straight and perpendicular to the paper. So, to

begin with, the sides of the tube must be perfect electric con-

ductors, and the top and bottom perfect magnetic conductors.

Then, if the medium in the tube is uniformly conducting in

both ways, the quantities K and S will vary as x, and the

quantities R and L as or1
.

The same substitutions of resistance in the bounding con-

ductors for the internal conductance may be made as before,

allowing for the change in position of the electric and

magnetic forces. Also, the bounding conductors may be

wholly removed, leaving complete cylindrical waves in a

homogeneous dielectric, conducting in either or both ways.
The gaussage C is now reckoned once round the circle of

magnetic force. To make V finite we may consider only a

finite depth along the axis.

We see that the problem of a telegraph circuit has real

application to electromagnetic waves of much greater gene-

rality than plane waves, by letting the " constants" of the

circuit be variable. The process employed is not confined in

its application to cylindrical waves. Spherical waves may be

similarly treated, by employing a tube whose section varies as

#2
,
both pairs of sides separating. Both E and H will be

along arcs of circles, centred at the axis. In fact, the theory
of this case is much simpler than the other, but we must not

run away from the matter immediately in hand.

Special Cases of Zeroth Bessel Solutions.

334. After the enlargement of ideas of the last section, we

may partially discuss some of the operational results. Notice

first that the results for e in 830 are produced from those for

h, by substituting eqy(d/dqy) for Z/t. We may keep at present

to the h set. Thus, take equation (14), or

Q*\ (35)
a-fl

giving Vi at x<y due to h at y. Interchange x and y when
Va is wanted.



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 235

If / is infinity, Koz
is zero, and p is infinite, by (12). This

reduces (35) to

-aKJKo,. (36)

We see that the terminal condition at I becomes impotent,
and disappears.

Again, if /X = 0, KoX is infinite, and <x = 0, by (12). So

(37)

Thus the terminal condition at A. becomes impotent and

disappears by shifting it to the origin. Also note that

in the region reaching to the origin, K^. does not appear.

It is usual to consider that we cannot have the K function hi

solutions extending to the origin (the axis of the cylinder in

cylindrical waves), unless there is a source at the origin,.

because to do so would make V infinite there. That this-

reason is inadequate and unsatisfactory will be evident if it

be allowed that V can be infinite at the origin without having-

a source there, of which I will give examples. That is, we-

obtain infinite results at the origin without using K^.. Never-

theless, there is no doubt that the K function is excluded

unless there is a source at the origin, as we saw above, unless

there can be something very peculiar about the Z operator,

making a, which is given by

,_ V-(,AZ /Z)I,X , .

'

be finite when A = 0.

If both X = and I = oo
,
then a = 0, p = oc . Both terminal

conditions are impotent, and

(39)

which represent an important fundamental solution.

If y = A, we have only the V2 solution under control, and

(I x-aKoX). (40)

If y = A = 0, we reduce the last to

(41)
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The source is at the origin, and the Z condition is

impotent.

Finally, if I = oo
, /?

= oo
,
and (41) reduces to

V = j7rZAK0;c
. (42)

Thus, with the source at the origin,' we have the K func-

tion alone if there is no reflection, but the I function as well

when there is reflection at a finite distance, as in (41).

Similarly as regards e. By (9),

Z = oo makes V^^qye^-aK^K^ (43)

A = makes V1== J *qyeI0x(Kly-/^I^, (44)

^=oo,A = make Vx
= ^qyel^Kiy, (45)

</
= A = make V2

= 0. (46)

In the last case the finite e produces no disturbance beyond
the origin, because of the vanishing conductance there. In

(42), on the other hand, h is given to be finite. That it needs

infinite impressed voltage is immaterial.

Numerical Interpretation of Formulae. The Divergent Series.

335. The above results are usually operational. But

they are strictly numerical results in certain cases, without

change of form, or perhaps with only nominal change. Thus
when the source gives rise to a steady state we can use the

above at once. Putting p= makes <f
= EK, which is con-

stant. Then 1^, &c., are all algebraical functions and are

numerical when x is given. So, knowing the general nature of

the curves I and K
,
we can see by inspection in some cases

the nature of the steady states on both sides of the source.

We have, of course, when a and /? are concerned, to make Z
and Zj represent the steady resistances terminally at A and I.

In these direct numerical applications, use the formulae (4)

when qx is small. But they are quite unsuitable when qx is

big. Then use the approximate formulae
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which show plainly how the functions behave ultimately. The

quantity 8qx should be several times unity to make (47) be

practically true. More generally, use the formulae

(48)

(49)

The first terms represent (47). These are divergent formulae,

and, to obtain the proper values, stop when you reach the

bottom, and ignore the rest. That is, seek the point of con-

vergence of the series you are calculating, or the place where

the smallest term occurs. The error is limited by the size of

the smallest term, and may be far less, especially if half the

smallest term is counted. The above are the practical formulae

except when qx is so small that the smallest term may be big

enough to introduce a large error. Even when qx is as small

as 1, the error is not very great. It is when the point of

convergence, which is at a distance along the series when qxis

big, comes to the beginning of the series, that we are obliged
to go to the convergent formulae (4). The difference between

the divergent and convergent series is, for numerical calculation,

only one of degree, and the degree varies. In the convergent

series, the point of convergence is always at the end of the

series, which cannot be reached. But the terms at the

end tend to zero in size, so that by taking enough
trouble we may reduce the error to be smaller than any

quantity that can be named. But then, when qx is big,

a very large number of terms must be counted before we
come to the convergent region, so the convergent formulae are

unpractical. On the other hand, if 8qx is greater than 1, the

divergent formulae are convergent from the very beginning,
and allow of rapid calculation with an accuracy which i&

practically unexceptionable when qx is a large number, and
of fair approximativeness so long as the point of convergence
is not too near the first term. It is a question of practice

which formulae to use. The connections between the conver-

gent and divergent formulae will be given in Chapter VII., as

well as their connections with other formulae. There is &
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iable of the I and Ix functions (and others) in Gray and

Mathew's work on Bessel functions, p. 282, going up to

qx=5-l. After that (48) may be used, or even (47), noting
that Ii is the derivative of I . But I cannot find any table of

the important K function, and therefore use (49) myself, or

else (4), to get rough values.

Since, as has been said, the above formula become numerical

when steady states are concerned, it is not necessary to rewrite

them, with *JRK substituted for q, to indicate the special

results. Observe, however, that should either B or K vanish,

or both vanish, the formulae simplify considerably, when

steady states are concerned, and it will not be a bad thing
for the reader to look into a few cases in detail, both with q

finite first, and then with q
= 0, by the vanishing of K or K,

Look at (39) for example. The constant impressed current

h at y produces V as there given, with <f
= RK in the I and

K functions, and Z = E. Now, ifR is zero, V is zero on both

sides. The corresponding current is C
x
= 0, on the left, and

C2
=

ft, on the right side of the source. That is, when Z = Lp
and Y = S/>, representing the case of no waste of energy by

resistance, h all goes to the right ultimately, and there is no

electrification. The absence of electrification is the striking

point. It is really a case of statics, or of motional statics.

The setting up of the steady state involves electromagnetic

waves, of course, but they disappear ultimately. [Not by
actual cessation, but by transference to a great and con-

tinuously increasing distance of the variable state. Details

later.]

The divergent Formulae are fundamental. Generation of

Waves in a Medium whose Constants vary as the nih

power of the distance.

336. The next thing to be done is to show how the Bessel

solutions in general are generated by waves. This was done

before in the case of a uniform cable, leading to Fourier series.

We take a source at a point, and construct the double wave it

generates, going to right and left. Then we add on, one after

another, terms representing the reflected waves generated at

the terminals by the incident first waves and their successors

and overlappers. The complete set of waves, when in opera-
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tional form, makes a geometric series, which, when summed,

expresses the operational solution in condensed form. Con-

version to series of normal functions then follows by the

expansion theorem. So we prove that the series of waves and

the series in terms of normal functions are equivalent.

To do this for the Bessel series is not a useless mathematical

complication, but is of fundamental importance, both from the

physical and the mathematical side. From the physical side

because in Maxwell's theory all disturbances of electric or mag-
netic force are propagated at a speed v settled by the induc-

tivity and permittivity, which property is not interfered with

by the simultaneous existence of conductivity (electric or

magnetic). All solutions involving change are, therefore,

ultimately of wave nature. This is also true when, by artificial

restrictions, we make v be infinite. In such limiting cases

we do not see any succession of waves in time, for they are

made simultaneous, but there is no essential difference in the

principle. The waves are there, all the same. Also, from

the mathematical side, the question is important in casting

light upon the connection between the two kinds of Bessel

formulae, the convergent and the divergent.

The wave analysis and synthesis is nearly as easily done for

the Bessel waves of mih order as for the zeroth, and is made

plainer by the extension. Therefore, let

(1)
dx Xn dx

be the circuital connections of voltage and current, Y and Z

being preferentially K + Sp and R + Lp, so that the resistance

and inductance per unit length of circuit vary as orn
, and the

leakage and permittance as xn. The characteristic of V is

I^-^V, or f^ + f = 2*V, (2)xn dx dx dx* x dx

where 2 = YZ.
This is the theory of the propagation of plane waves in a

medium whose specific properties vary as the nih or - nth
power

of the distance from a fixed plane ; or of cylindrical waves

when the variation is as the (n
-

l)
th
power, and so on to other

dimensions. But n is not restricted to be an integer ;
it may

be fractional if we like.
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The first step is to find the wave operators. Let

These are to define the functions H and K. It may be readily

tested that x-mRm(qx) and arm'Km(qx) satisfy the characteristic

(2), provided n = 1 + 2m, or m = J (n
-

1).

Now H and K are divergent series, that is, when qx is

numerical. They are, nevertheless, actually the fundamental

Bessel formulae, because they are the wave generators. It is

not difficult to see this. Suppose there is no waste of energy by
resistance. Then q pjv, and qx is a mere translation operator,

turning t to t + x/v in any time function on which it works.

Similarly
~qx turns t to t - x/v. Therefore, by 276, the H

operator belongs to an inward wave, and the K operator to an

outward wave, if there is nothing else to interfere with this

property. Now, in the case of a homogeneous medium n = 0,

and m = -
J. Then H is simply proportional to tqx and K to

e- flx
, indicating propagation at constant speed without distor-

tion. In other cases, H is tqxF, and K is e- qxG, where F, G are

as in (3). The translation is still done by the exponential

operators, but the operand is altered first by F or G. So

these operators do the distortion, or deformation of the

waves.

When there is resistance, q is not p/v. But the exponential

operators may still be reduced to eP*/17 / and t-Px/v
g, when/

and
cj

are other operators also concerned in producing distor-

tion. Thus, from the fundamental fact that disturbances

travel at speed v, the forms of H and K prove that they are

the wave operators, H for an inward, and K for an outward

wave. If this general reasoning is not convincing, I may add

that the algebrisation of (3), (4) with an operand added is

quite easily effected in various simple cases (and the extension

to the general case is only a matter of complication) with

the results as above described. Some cases will be given in

Chap. VII.
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Having settled this point, use H and K to show the primary
waves generated by a source. Let there be a source h at y.

Then

V^-Z&ls??"* V-^-Z/il"*??, (5)
4 xm y

mt 2
4 y

m xm

show the waves, Vx
to the left of y, and V

2
to the right. To

prove this, note first that the proper operators containing x

are used for the waves. Next, that V
1
=V

2 at?/. Thirdly,
that C

2
- C1

= h at y. The last is done by the conjugate pro-

perty of the H, K functions, which is

(HK'-H'K),--i, (G)
TTOG

if the accent means differentiation to x.

In (5) the operand is h, which may be any function of the

time, but if we take it to be constant, beginning at the

moment t = 0, then Vx and V2 represent waves of V starting

from y at that moment, and travelling to right and left at

speed v.

Construction of General Solution by Waves.

337. If there are no terminal impositions that is, if the

characteristic is valid (except at the source) all the way from

x = to oo
,
the V2 wave goes on to infinity. But the Vi

wave, when it reaches the origin, generates a reflected wave,

which also travels out to infinity. There are no more waves

than these. But should there be a boundary on the right of

y, say at Z, both the outward waves, primary and secondary,

generate reflected waves there, and both these inward waves

generate outward waves when they reach the origin, and so on

for ever. It is the same when the origin is not in question,

but the place of inner reflection is at x = A, on the left of

T and y. It is now easy to construct the wave series.

VOL. n. R
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Let # = A and I be the boundaries, and the point x where V
is wanted be on the left side of the source h at y. The first

wave is

^.'a^-rS- (?)
4 y

m xm

by the first of (5). Put x = \ to produce its value at A.

Multiply by a reflection coefficient, say a', to produce the

value of the reflected wave at the same place. Then multiply

by (or Kwa;)/(A-
w KTOX) to express the reflected wave at any

point, because this operator is 1 at A, and has the right x

function in it. The result is

, (8)Kmx/ *'
rt 4 y

m
&'

'

if di is the operator in the brackets.

Put x = I to give the value of v2 at I. Then multiply by a

reflection coefficient, say &', to give the value at the same

place of the third (inward wave) generated by v.2 . Finally,

multiply by (x~
m

~H.mx)/(l~
mHmZ)

to produce the complete third

wave anywhere. The result is

mZ
(9)

if \ is the operator in the second brackets. After this, it is

the same over and over again. Thus,

V
6
==v

4
afv &c -

(10)

r

.rhe sum of all these waves is

which expresses V at x (less than y), so far as it arises

from Vi.

But there is also the initial wave to the right to be con-

sidered. It does nothing at x itself directly, but only by
reflection at 1. Initially the primary wave is the V2 in (5).

Put x = l, and multiply by V(x-
mHmx )l(l-

mRml), to produce the

first inward reflected wave, say w1} which can act at x. It is

(12)^ }
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After this it is to be treated in the same way as v
l was, for both

vl and Wi are inward waves. Therefore

(12A)
4 y

m xm

is the next outward wave, and the rest are

w8
=

'iai&i, W4
= w2o161 ,

tF = ir8a161 , &c., (13)

Consequently the sum of the w waves is

2^ = ^Jl^, (14)
1 -aA

and the complete Vj at x is 2> + Zw ;
that is

Vl
1 - aA V a a;

It only remains to find a
1
and b

lt
or a' and &', the reflection

coefficients. Let V = ZjC at Z, and consider any outward
wave and the reflected wave superposed. They are represented

by

multiplied by a factor not containing a?. The corresponding
currents are

\
+1, x

~^Hm+1> x \
, (17)

by the first of (1), and using these properties of the functions,

_ =__
q dx xm xm

'

q dx xm xm
'

which are easily verified by the definition of H and K above.
The ratio of (16) to (17) is therefore Zj when x= l. So

Z, =__K,, i; + bJ3.ml

(Pg/ZKl^-bJI^)'
and therefore

(20)

R2
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In a similar manner, let V = - Z C be the condition at the

other boundary A, then we shall find by the proper change of

symbols that

A n r/
Zi-fl

,
u A/.

We may therefore write (15) symmetrically thus :

y _ vZh

where a stands for av as in (21), and b for the reciprocal of

6
X
in (20), so that a is derived from b by turning I to A and

Zj to Z . We have only to interchange x and y to obtain

V2 on the right side of the source, and the results are explicit

in terms of the terminal resistance operators. They are

derived entirely from the initial waves from the source, by
the addition of the reflected waves. The divergent series are

therefore essential to a proper understanding of the matter.

Construction of General Solution by the Convergent
Formulae.

338. Now consider a radically different way of viewing the

subject. Besides the divergent series there are convergent
series satisfying the characteristic. Thus x~m lmx and x~ml_jnx

are convergent solutions of the characteristic (2), if

and L^ or I_m(qx) is got by turning m to - m. These I

functions are always finite at the origin when m is positive or

zero, and infinite when m is negative. It follows that

Vi = -A.
lt

V2
=

m -Bp (24)

are general solutions, and represent V on left and right of a

source h provided r, s, Ax
and Bj are properly found.

First, Vx
= V2 at y, the place of the source h, makes

(25)
my T *- my
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so B
T

is eliminated. Next, Ax
is to be found by Ca

-
Cj = h

at y. Now the C's corresponding to (24) are

Ci= -

(26)
C

2
= -

because

Int-fl 1 <f I_m ^I_m _! .

"*
' m m '

* }

as may be quickly tested by the series (23). So, applying the

h condition just mentioned, we find

A =
- S

at the point y. In the denominator a conjugate property is

involved of voltage and current, in the manner of 331, and

the value of the quantity in the second brackets in the deno-

minator is easily seen to be x~l x constant. To find the constant,

use the series (23), writing down the first terms of Im ,
I-m-i t

&c. ; and pick out the terms involving or1
. There is only one.

The result is 21 2
I I_ ?n _i-I-,HI l+i =--

j

-T= -- sinmTT, (29)
qx \tn\-m- ^ irqx

because

j-m= -m\ -m-1, and m
\

- m = m7r
(30)

1- - sinwiTT

are elementary properties of the
\m^ function, which we shall

come across again in Chapter VII., to be there proved. Thus

A = \^ mv "*~ - y
1

y
m '

(s
-

r) siuiinr'

and therefore, finally,

-my) (S^\
xmym(s

-
r) sin mir

in a symmetrical form, is another way of expressing Vr If

we determine s and r by the same terminal conditions as

before, namely V = Z
1
C at I, and V = - Z C at A, we find

(33)
-m-l, X
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where A and B are as before, (20) and (21) above. So now
the solution is, like the old one, explicit in terms of the ter-

minal operators.

Comparison of Wave and Vibrational Solutions to deduce

Relation of Divergent to Convergent Bessel functions.

339. We have thus, in (22) and (32), obtained two entirely

different forms of solution of the same problem. In one way
we built it up with the primary waves and their reflections

and it is certainly right (barring possible working errors).

The other way ignores waves altogether, or indeed any sort of

elementary component solutions, but is entirely operational,

using formulas which are convergent, when numerical. But
the form (32) may be expanded by the expansion theorem

into a series of normal functions of the subsiding or vibrating

kind. We may therefore for the present regard (32) as repre-

senting this normal expansion, in the same way as we may
regard (22) as representing the series of waves, for every wave

given in operational form may be algebrised if we like. We
therefore prove the strict equivalence of the series of normal

solutions and the series of waves, arising out of (32) and (22)

respectively.

But, besides that, we may regard the investigations alge-

braically and numerically. For q may be a positive constant,

namely, when Z = B and Y= K. It is then the steady state

due to h that is in question throughout, which is instantly

assumed when h varies, because the speed v is infinite, and

there are no time differentiations concerned in the various

operators, which become constants or functions of x. So we

prove the numerical equivalence of (22) and (32), when qx is

positive number, apart from their equivalence as operational
formulae. What are then the relations between the divergent
functions H, K and the convergent functions Im and I_m ?

They are involved in (22) and (32) of course, but it is not

clear at first how they are to be exhibited. We must either

rearrange (32) to show identically the same form as (22), or

else the other way. But a trial with the sum and difference

of Im and I_m used in (22) shows the way. Thus, keeping

entirely to (22) at present, let

= Imx + I_7Jl,, Kmx = ^-:J=?. (84>sm WTT
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These are merely to define H and K, without present

reference to the former meanings. Then (32) becomes

^^

mi,}, (35)

which is expressible as

Zfr (H
4sinm7r

'

(37)

in the numerator of (36). Here r and s are given in (33),

according to which (37) become

Next, there is the denominator in (36). Putting it in terms

of a and b in (37), we find its value is 2(& a). So

_ iirZh (H
b - a

This being merely a modification of (32), compare it with

(22). They are identical; for the present a, b given by (38)

are identical with the a, b of the divergent investigation, viz.,

! in (21) and the reciprocal of bt in (20). But in (22), H
and K are defined by the divergent series, whilst in (39) they
are defined in terms of the convergent series, through (34).

It follows apparently that (34) express the equivalence between

the divergent and convergent formulae.

But it is not a rigorous proof. For there is just this pos-

sibility in a proof by comparison. However improbable it

may be, it is possible (unless proved to be impossible) for

some other combination of the functions Im and !_, to behave

in the same way as regards reducing (32) to identically the

form (22). If it did, we should soon find out something
anomalous by the impossibilities which would arise on further

pursuit. However, I may mention here that in Part 3 of my
Paper on "

Operators in Physical Mathematics "
(May, 1894),
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I have given an investigation which transforms the Im and I _m
functions to Hm and Km functions according to (34). It is an

entirely different process to the above, effecting the trans-

formation by algebra alone, without any differentiations or

integrations. Of this I will give some account in Chapter VII.

The above suggested ambiguity does occur. For if we put
Hm = 2Im instead of Im + I_m ,

and still use the second of (34),

we shall arrive at the same result, equation (39).

Going further, if we use

Im = pRm + a- sin IIITTKm , (40)

leaving />
and <r arbitrary, in place of the first of (34), still

using the second, the result is that the right member of (39)
is multiplied by 2/>, so we require p = \ to harmonise the con-

vergent and divergent formula. As for cr, it does not appear
in the result at all, so it looks at first as if it were indeter-

minate, and that

Hm = 2ITO-2o-simmrKm, (41)

with any value of a-. But there is another consideration. The
last formula must not contradict the second of (34). Now
Hm and Km are even functions of m, so the last equation
makes

Hm= 2I_ ?n + 2o- sin mTr . Km . (42)

By addition, we obtain the first relation in (34) ; and by sub-

traction the second relation, provided a- = -
J, and only then.

So the matter is made square.

Nature of Algebraical Transformation from Divergent to

Convergent Formulae.

339. But I have previously given an investigation which

covers the case of integrality of m. I have shown that the opera-

tional solution of a certain physical problem, when algebrised

in one way leads to the convergent form of the zeroth Bessel

function, and in another way leads to the divergent form;

thus, H = 2I . Now, given a Bessel function of any order,

all those differing from it in order by an integer may, as is

known, be derived by complete differentiations, as in (18) and

(27) above. Therefore Hm = 2ITO ,
when m is any integer.

To see what the rigorous mathematicians have to say on

this matter, I have referred to the latest treatise (Gray and
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Mat-hews). On p. 68, equation (142) is a result given, which,

allowing for the difference in notation, harmonises with the

second of (34). But the other result given, equation (143), is

discordant. It is equivalent to Hmx = ^-mx in my notation, and

is therefore true only when m is an integer, in which case the

functions Ini and I_TO become identical, as (23) shows. No

proof is given in either case.

As regards the algebraical transformation from the diver-

gent to the convergent series, it goes thus. Let

Bfo*r)~
\m + r-l \r-I \m + r\r [m + r + l \r+l

+ ....' (43)

This Bm function is the generalised Bessel function of the

mth order. In it, r is any number positive or negative. If we
increase r by 1 it reproduces itself, so it is a periodic function

of r. The series is to be continued both ways, unless it stops.

Now in the H, K formulae, put for qx and e~qx the following

generalised expressions,

.., (44)
|r Jr+1

(qx)
r+1

,.-\

\r-l r -^+r
"

where r is as before. In (44) the signs are all + ; in (45)

they are alternately + and -
. On performing the multipli-

cations, the H, K functions are turned into B functions

according to the following :

Change the sign of m to obtain a second formula. The two

formulae then give Hm andKm in terms of Bm and B_ OT .

"When r is zero or any integer, Bm reduces to lm , and we
obtain (34) above. In the generalised formulae (43) to (46),

qx should be a real positive quantity, except in special cases.

The identity of Im and I_^ when m is integral, makes the

second of (34) assume the 0/0 form. Then take the limit.

Thus,

K.. =-! 1

7TCOS W7T
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when m is integral. Or, by (23),

[0 Q^
mf(-) +(M-m+*f(-m+i) + i

(48>

if /(m)= ([m)-
1 and /'(m) is its derivative. The convergent

formula before given for K0x is a special case of this. The

general case presents no difficulty, but requires /(m) to be

explained, which belongs to Chapter VII., along with related

matters concerning the development of wave formulas.

The reader should be cautioned against concluding that

equivalence, as of a divergent and a convergent formula,

means identity. The fact that they are different shows that

they are not alike in all respects, and cannot be interchanged
under all circumstances. I am inclined to think that this is

true even when the equivalence exists between two conver-

gent formulae of different types, in fact, what rigorous mathe-

maticians call an identity. Or there may be equivalence when
the argument is real, but not when it is imaginary or even

negative. The extent to which equivalence persists is an

interesting matter, but is better observed in the practical

concrete examples than theorised about upon incomplete data.

Experience and experiment must precede theory.

Rationality in p of Operational Solutions with two Boundaries.

Solutions in terms of Im and Km.

341. In order to convert the operational solution to a

series of Bessel normal functions we naturally use in tha

first place the form (32), involving the convergent functions

We are virtually in possession of the unit impulsive function,

that is, by putting hpQ, and developing by the expansion

theorem, the result is a formula showing how the charge Q,

initially at y, subsequently behaves. But to allow of this

development, (32) should be a rational differential equation.

Two necessary failures are obvious. First, if Z = oo, which

does away with the infinite series of reflections, leaving in

general only two waves, these waves themselves constitute

the practically significant result. The set of normal functions

with distinctly separated periods or rates of subsidence no-
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longer exists, although the series of normal functions appro-

priate when I is finite has its ultimate representative in a

definite integral, the limit of the series. Secondly, if either

of the terminal operators be irrational, we have a similar

failure, and a similar resulting definite integral.

But, assuming that I is finite, and that both the terminal

operators are rational (as well as Y, Z in the circuital equa-

tions), we may confidently expect that the operational

equation (32) contains p the time differentiator rationally, in

spite of the presence in the functions concerned of q
m

,
where

m may be fractional, or of log q in some cases. As a matter

of fact, such irrationalities are inoperative by appearing in a

suitable manner for cancellation. Thus, in (32) it will be

found that r and s both have the factor <f
m

, whilst Im has q
m

,

and I_m has q~
m

. So the numerator and denominator in

(32) both have the factor q*
m

, and, therefore, (32) is a rational

function of $
2

, itself a rational function of p.

This being true for any value of m, it follows that in the

case of m being integral, when we need to employ the 0/0

form of the Km function, which brings in the logarithm of q,

there is a similar elimination of this logarithm. It goes out

in this fashion : log \ql
-
log \q\ = log //A. In the results

we have only logarithms of numbers.

The alternative form of C32), in terms of Im and Km instead

of IOT and I_m, is got by using the second of (3-1), or

I- m = Im + Km sinwr (49)

in (32). This brings us to

V _ j^ZA (Iwx -/Kins) (I??/
-

1 xmym f_ g

where /= *""-^W* , (51)

and g is got by turning A to I and A to - B. Here the con-

vergent Km function may be understood, though the same
result is true with the divergent form.

If I is made infinite, it will be found, by using the divergent

series, that g becomes either + oo ,
or oo according to the

nature of Zr In either case Z
1
is impotent, and (50) reduces to
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showing just the primary wave and a reflected one. This is

the form suitable for simply periodic states when fully estab-

lished, as to which more later.

The conversion of (50) to normal functions is merely a

formal one by the expansion theorem, but there may be

a good deal of work needed sometimes to bring the result to

a form suitable for calculation by such tables as exist. In

general, the roots of the determinantal equation f=g are

complex. That is too bad. But there are important cases of

a relatively simple nature. Say L = 0, retaining E, S, K
finite. Then only electric energy is concerned in the

"medium," whether with wires or not. If also there is

only electric energy concerned at the terminals, the roots

(for p) of the determinantal equation are all real and negative.

In like mannei, if S = 0, retaining R, L, K finite, only mag-
netic energy is concerned in the medium

;
and if this is also

the case terminally, we have again roots of the same nature.

These are two ext.reme cases of diffusion, with infinite speed v

of propagation, though the practical result may be slow

enough. Also, if R, K are zero, and L, S finite, we have

finite speed of propagation without waste by resistance ;

therefore undamped vibrations can occur. In this case the

roots are p = 0i, where 6 is real, and corresponding terms

can be paired to make real vibrations. To this may be added

that if R and K are not zero, but are properly balanced, we
have the last case again, with attenuation due to R and K
superimposed. This nearly exhausts all the applications of a

relatively simple nature; though if we do away with the

terminal considerations, by taking Z and Z : to be either zero

or infinity, which makes either the current or the potential

vanish terminally, we can extend the matter further.

The convergent Oscillating Bessel functions, and Operational

Solutions in terms thereof.

342. In all such cases, it is convenient to convert the func-

tions from Im and Km to the oscillating functions Jm and Gm,or

perhaps to Jm and J_m instead. The cases of integrality of

m are perhaps more common ;
then it is better to use Km or

Gmt and ignore I_m and J_m .
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The oscillating functions are got by putting q
= si. Thus,

U<F) = (**), I-m(^) = ^J-mOw), (53)
where

and J_m is the same with w put for??i. When the argument
sx is real, this is an oscillating function, the original Bessel

function in fact. But the functions involving q are more

primitive.

Now as regards J m . Use the second of (34), with q = si.

Then,

(55>

Here i
2 =

(cos + i sin) imr. So we may write

Km(qx) =*-{GU0 - i3m(*x)} 9 (56)

where Gm is denned by

snmir

Or, if we expand i~m in (55) as well, we get

g _ J-m-Jm-m _

But the form (56) is the one to take note of.

So now, by the use of (53), we convert the equation (32) ta

y _ &rZ/t
(Jmx - pj _mx) (Jmy

- o-J _ my)

where
-l.X A' ^nsZ

/ftn\
,

A= = , (bO)
-m\- . -m-l,\

and o- is got by turning A to I and A' to B' in p. We have

Also, by the use of (56), we convert the alternative equation

(50) to the form

V
1 xmym a-

where a= J^ +
^-^, (62)

\im\ + A ljm+l,\

and /? is got by turning A, to J and A' to B' in a.
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Observe, comparing the forms of (50) and (61), and of a and

/, that the transformation is the same in effect as turning

In to Jm and KTO to G,H ,
with the change from A to A'

in the denominator, and to - A' in the numerator of/, to turn

it to a. Similarly, as regards the transformation from (32) to

(59). The symbol i does not appear in (50), but when we put

q = si, it appears in Km through (56), and therefore in /and g.

It cancels out on further reduction, and then the strikingly

similar form (61) results. That i ought to cancel out is clear

enough, because since (50) is rational in
<?

2
> (61) must be

rational in s
2

. Nevertheless the way the symbol i goes out is

somewhat remarkable, depending, as it does, upon the

existence of two boundaries. It will not take place when
there is only one. Say I = oo

,
then g~

l is zero, and the form

(52) results. Put q= si, and we do not get a result rational

in s
2
,
and we ought not.

In connection with this, there is sometimes a bit of hocus

pocus. If we like we may make the functions Jm and Gm the

primary objects of attention, so that

V^J^-aG^X (63)

is the initial form of operational solution, s2 having the

meaning - YZ. Determining a and X by the conditions as

regards h and terminally, we shall arrive at the result (61).

This may, in fact, be the best way to work, when the ultimate

results are to be simply periodic or normal solutions, and the

development of waves is not in question. But there is a

curious irreversibility sometimes concerned. We can always

pass from the primitive Im and Km to Jm and Gm ,
but we

cannot always go the other way. For instance, (61) leads to

(50), by substituting ^~ 1

^ for s, only when there are two

boundaries. It fails when I = oo .

For example, suppose that the condition at I is that Y
2
= 0.

Then 3mx -f3Gjnx must vanish at /, and this shows that ft

must be J,nZ/Grml . Introduce some other kind of terminal

condition, and we get some other form of (3. But how find

its value when l=cc? If we have worked entirely with

JTO and Gm ,
and know nothing of Im and Km ,

there is appa-

rently nothing to show what /3 should be. For J,M/GMl ,
the

ratio of two real oscillating functions when the argument is
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real, has no particular limiting value when I is infinite.

Nevertheless, if we write J^/G^ = -
i, we shall come to the

proper result. For it is the same as /?= -
i, which is correct.

The explanation has been already virtually given. It is the

Km function that is concerned alone when I is oo ; when q = si,

then (Gm -iJm)i~
m takes its place ; that is, -ifim + iGm)^",

or ft
= - i. But, quite independently of this determination of

/?, a physicaUy-minded man, who was working in terms of

J /rt and Gm for convenience in the practical application, would

arrive at the correct result by considering the flux of energy.
In a simply periodic state produced between the source at y
and infinity, with no reflection, the flux of energy must be

outward. This necessitates fi
= -i.

The divergent Oscillating Bessel functions.

343. We know that the operational solution in terms of the

divergent Hm and Km is equivalent to that in terms of Im and

I_m or of Im and Km . Therefore, the same transformation

q = si in the divergent operational formula should lead to a

result equivalent to that in terms of Jm and Gm . For dis-

tinctness, put a bar over the divergent functions. Then,

q= si in H,n ,
Km produces

(sx)
- m(8x)}, (64)

w(iO
- i3m(sx)}, (65)

when 5,,i and G OT are given by

*

3m(sx) = (}* (P cos + QsinW -
Jir

-
Im*), (66)

\ TTSX/ \ /

5,() = (^)*(
- p sin +

Qcos)(
S2 - J*

-
iiw), (67)

in which P and Q are the divergent functions

p _ (I
2 - 4m2

) (3
2 - 4??i

2

) (^ _ (5
2 - 4m2

) (I
2- 4m2

)
/

_
1.28a? a \

"

3.48s 2 l ~ ' ' '
'

2(8a?)
a

(68)

^ _ (7
2 -4m2

)(9
2
-4?/t-

2

)"

l.(8taj)

(69)

The Gm formula is obtained from the Jm one by turning sin

to cos and cos to - sin. When x is large, P = 1 and Q = 0, so
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COS SX ~ 71
" ~ W?r

' >

Gm(sx)
= - (--Y sin (aj

-
JTT

-
J^TT), (71)

\ 7T SOC/

show the ultimate nature of the oscillating functions at a con-

siderable distance from the origin. They behave just like

cossx and sins#, but with amplitudes varying inversely as

the square root of the distance from the origin.

Jm and Jm are equivalent when sx is real, and so are Gm
and Gm - The first was proved by Sir G. Stokes ;

the second

I find in Gray and Mathew also, though somewhat difficult to

recognise, owing to the use of several forms of the second

function. It has been standardised in different ways, some of

which are very inconvenient.

If in the Hm ,
Km formula (22) we make the changes

according to (64), (65), we shall arrive at (61) above precisely,

only with Jm instead of Jm ,
and Gm instead of Gm . This

alone would not prove the equivalence of the convergent and

divergent oscillating functions. For example, if we put

Hm= 2*mJ,n in (22), instead of the proper form (64), we shall.

still arrive at the same result (61).

There is, in fact, an essential difference between the two

divergent functions Hm and Km . Say w = 0, for instance.

This is an important case. We do have Hm = 2Im when gx is

real and positive. But it is not an equivalence when q = si,

and sx is real. One makes J - iG . The other makes 2J .

On the other hand, K = G - iJ
,
and K = G - iJ

; and we

have K = K
,
both when q is real positive, and when s is real

positive.

Physical reason of the unlikeness of the two divergent
functions Hm,

Km.

344. I have given elsewhere* an algebraical explanation of

the distinction. But it will be more satisfactory here to regard

the matter physically. We ought to have the one agreement,

and we ought to have the other discrepancy, by consideration

of the physics. Go back to (5), for example, expressing the

initial waves, and suppose that the source h is simply periodic,.

*
0. in P.M., Part 2.
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and that there is no waste of energy by resistance. This
makes q = p/v, so that if the frequency of the source is H/ZTT,
then q

=
nijv y and s = n/v. The wave to the right is then

(72)

when E and e are simply periodic functions of the time. Or,
if e = eQsiuntj then

- Jmxcosnt /f
_Q v

This represents the ultimate result of the periodic source, and
the corresponding current is

(74)

Here q/Z = (Y/Z)* = constant. These solutions indicate a train

of waves travelling outwards. The flux of energy is V2C2
.

Its mean value over a period is

(V2C2)me,n
= \el (JmGTO+1

- GmJm+l)x . (75)

This is constant, on account of the conjugate property of

JOT and Gm ,
which is (if the accent is d/dsx)

-JmGm + j;Gm=A. (76)
TTSX

That is to say, there is a steady average flux of energy from

the source out to infinity, and this is as it should be, because

there is no barrier.

In a similar manner, the potential on the left side is

f
/>

where F and / are simply periodic, and this represents a

wave train travelling to the left. The flux of energy will

again be found to be constant on the average, and to be

directed to the left. But this state of things is an im-

s



258 ELECTROMAGNETIC THEORY. CH. VI.

possible one, regarded as the ultimate state, like the other.

It can only exist approximately initially. Say that h is at

a great distance, and the frequency is so great that very many
wave lengths can exist between h and the left barrier before it is

reached. Then the above solution may be nearly true in a

great part of the region occupied by the disturbance. But,

whereas there is no barrier on the right side, there must be one

on the left side, either at A, as before, or at the origin itself.

When the barrier is reached a new state of things will begin to

prevail, first at the barrier, and then travelling out to infinity.

Its nature will depend upon the kind of condition imposed at

the barrier. It is then generally necessary to consider the

second wave equation (8) as well as the first, equation (7), and

superimpose them properly.

If the barrier should be such as not to take in energy con-

tinuously, the result between the barrier and the source must
be a stationary vibration, involving no average flux of energy.
The case m = is peculiar, when the barrier is at the origin.

There can be no current there, and no flux of energy. So to

the inward wave H^.0 or (J0a;
iG0x)e, add the outward wave

(G0x-iJ0x)ie.
The result is 2J0ze, that is, 2I

ox
e. Here 2J

0a
. . e

represents the ultimate stationary vibration which replaces the

preceding state
(
J

0a;
- iGQx)e.

The operator H0;c
is valid at

first,

and then, later, the equivalent 2I
0a; ,

as soon as the origin is

reached. We see that we have no right to expect that the

property Hm = Im+ I_m should be true when s is real as well as

when q is real.

The matter is made plainer by considering h to be steady,

beginning at the moment t = 0. The inward wave from h at

y is calculable from H0a. until the origin is reached. The
result is convergent. But after that, that is, after the

moment t = y/v, it is only a partial solution, valid between y
and the front of the return wave. In the region occupied by
the return wave and the primary, we can calculate the wave

by 2I0x instead of H0x . The two forms of solution become
identical at the junction. This matter will be made plainer

by one or two special examples. The present remarks are

directed to the cause of the failure of Hm = Im + I_m when

q = si and s is real, a cause which is not operative when the

Km function is in question.
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Electrical Argument showing the Impotency of Restraints at

the origin, unless l>?i> - 1.

345. So long as the barrier at A. is at a finite distance from

the origin, there is no interference with the power of imposing

any terminal condition V= - Z C of the usual nature, because

the functions concerned have finite values. But when A. = 0,

there are some noteworthy peculiarities. We know that in

one special case (viz., n = Q, or m= -
J), that of plane waves

in a homogeneous medium, we may impose any condition at

the origin. We have also observed that in another case

'(n
= l, or wi= 0), that of cylindrical waves in a homogeneous

medium, or of plane waves in a medium in which the constants

vary as the first (or inverse first) power of the distance from

a fixed plane, the Z condition is impotent, because there

can be no current at its place of application under any finite

voltage. We have, therefore, to inquire when in general the

Z condition is potent, and when impotent. This is to be

done by examination of the limiting form assumed by a in

(22), or by r in (32) or by /in (50), when A. is made zero, under

different circumstances. This is rather tedious mathemati-

cally, from the absence of luminosity. But we can throw

some light upon the matter physically, and see that the

mathematical results are justifiable.

Under what circumstances can there be a current at the

origin when under an impressed voltage ? Plainly the

resistance must not be infinite. Now the resistance per unit

length is ~Rx~n
,
which is infinite or zero at the origin accord-

ing as 7i is + or . But the resistance per unit length is not

(under the circumstances) the same as the resistance of unit

length at the origin. The resistance of the length from to a?

is f xEx-ndx. This is finite when n is negative, and also when
it is positive, up to = 1, when it becomes infinite, and

remains infinite for all greater values of n. Here the distance

to # may be a very little bit at the origin. So we see that

there can be no current there when n is 1 or > 1 . This is

true also as regards the source h. The terminal condition, if

applied, must be impotent when n is 1 or >1.

Next, consider the permittance of a little bit from to # at

the origin. This is f xSxndx, which is finite when n is positive,

and also when n is negative, down to n= -
1, when it becomes

s2



260 ELECTROMAGNETIC THEORY. CH. VI.

infinite, and remains infinite for greater negative values of n*.

If, then, n is - 1 or < -
1, no finite charge can raise the

potential at the origin above zero. The terminal condition

must be again impotent.

Thirdly, when n is between - 1 and + 1, both the resistance

and the permittance of the little bit at the origin are finite ; V
and C may then have any ratio, and the Z condition of the

usual kind is operative if applied.

In the first case, we require to use Imx only, when m is or

+ , or tt = or >1. This makes C be zero at the origin. In the

next case, when n is - 1 or < 1, we must use I.mx,m being
- 1 or < - 1. This makes V be zero at the origin. In the

intermediate case both functions will or may occur, according
to the nature of Z ; that is, both Im and I_m ,

or Im and Km ,

or Jm and Gm ,
if we use the oscillating functions. The last is

rather remarkable, it leads not only to expansions of the form

2AJma; ,
but also the form 2C(Jma;-aGma;),

when the origin

is one of the barriers.

Reduced Formulae when one Boundary is at the Origin.

346. The preceding electrical reasoning will enable us to-

understand the results produced in the formulae when the

inner boundary is shifted to the origin. At the same time

it does not absolve us from making the examination, because

without it we cannot say what special form is assumed when
the terminal condition is potent.

In the original formula (22) put A. = 0. There are three

results. If n is not less than 1, we get a - sin irnr. Ifn is-

not greater than 1, we get a=+sinm7r. In the inter-

mediate case, when n is between - 1 and + 1, we get

where -ggj(gV
'-

. (78).
+ u Z V -m-l

That is, in the first case the x function in (22) reduces tc-

2Ima.; but in the second case to 2I_ m:r ; whilst in the inter-

mediate case Z remains potent, and a has the special value

shown in the last equation.

From the above may be derived the changes in the other

formulae, or they may be done separately. Thus, in ttie-
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alternative formulae (32) and (50), which are connected by

__ ,_ r sin imr _ (
_s sin mir

,~Q^
1 + r

' T+T'
we have r = when n>l; r=oo when n< -1, and r = url

intermediately, u being as in (78). Therefore s = 0, or # = 0,

is the reduced form of the determinantal equation when n>l,
or b + sin mir = 0, or

(Im + BIm+1 ) t
= 0, or (Jm -B'Jm+1) z

= 0. (80)

Also, when n< -
1, the determinantal equation is s = oo, or

g + sin nnr = 0, or b - sin imr ; or

(!- + 31.^)^0, or (J_TO + B'J_^1) l
= 0. (81)

As regards a in (61) when A = 0, first we have a = when
n > 1. Then a = tan imr, when w< - 1. Intermediately

_ - Pin imr

COS imr + v

So, in the first case, we have

(82)

(88)

and ft = is the determinantal equation of normal systems ;

the same as (80).

In the second case the x function is J.^/COSTWTT, and

v =l r-sL zj
(
W = or<-l) (84)7"

COSTTITT

whilst the determinantal equation is equivalent to (81).

Intermediately, using a as in (82), the determinantal equation
a = fi is represented by

(J .m + B'J _m _ 0, + (
Jw - B'Jm+1),

= 0, (85)

where v is as in (82), and B' is ZjS^/Z, as before.

As a test of avoidance of error in the way of wrong factors,

make n = 0, or m= -
J in the last equation. It reduces to

tan */ (1
- Z Z

lS
2
/Z

2
) + ZjS/Z + Z s/Z = 0. (86)

Comparing with (75), 293, we find proper agreement, allow-

ing for the present generalised meanings of Z and s compared
with their meanings in that place.
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The peculiarities of infinite resistance or permittance at the

origin with suitable values of n place restrictions upon the

restraints possible. The source at ?/ cannot raise the potential
at the origin above zero when n equals or is less than- 1.

We may, however, also have the potential zero there when n-

is greater, namely, up to just less than + 1, but then it must
be done by external restraint, through Z = 0, being equivalent
to a short circuit if a pair of conductors be in question. But
when n= or >1 it is no use trying to make the potential

vanish.

Similarly, the current at the origin due to the source at
\j

vanishes naturally when n = or > 1 . We can also make it vanish

there when n is less, down to just over 1, by external restraint,

through Z = x . It is equivalent to a disconnection in the case

of wires. But it is no use trying to make the current vanish

when n equals or is less than - 1.

Equation (85) only applies when n is between- 1 and + 1,

but it harmonises with the proper forms outside those limits.

Thus v vanishes when Z
rt does, which makes the potential

be zero terminally, provided n is intermediate, and then (85)

reduces to (81). Also, if Z is infinite (85) reduces to (80),

the other form.

If we impose the condition V
2
= at I, thenB' = 0, and (85)

becomes

(J- + J)i = 0, (-l<w<0). (87)-

If, in addition, Vi = at origin by external restraint, (Z =
0),.

then J_7ni
= is the determinantal equation. This is re-

placed by JmZ = if the current is zero at the origin by
external restraint, (Z = oo

).

The Expansion Theorem and Bessel Series. The Potential

due to initial Charge.

347. The development in Bessel series when h is steady or

impulsive is to be done in just the same way as for Fourier

series, which department has been somewhat elaborated. So-

little need be said about it. First find the final steady state,

when there is one, as is nearly always the case in practical

problems. Let this be V . Then apply the p(d/dp) operation

to the denominator a-/? (or other form) in the operational

solution, according to the expansion theorem. Thus, using.
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(61), and supposing h to be steady, beginning when t = 0, we
expand it to

The values of p being the roots of a = /3, over which the

summation ranges, we see that either a or /? may be eliminated

from the numerator. The interchange of x and y makes no
difference. Therefore the formula for V

2 ,
on the right side of the

source at y is just the same as for V
x
as far as the summation

goes. It can only differ in the expression of the steady part V .

In passing, it may be remarked that cases may arise in

which there is no tending to a steady state. For instance,

if the above refers to a circuit consisting of a pair of parallel

wires, and the insulation is quite perfect intermediately and

terminally, then the effect of h accumulates incessantly, and

Vj rises to infinity. The outside term then contains t. But
such exceptional cases need not delay us here, but can be

treated when they arise. At present assume that there is a

steady state tended to. There must be one when the source

is impulsive, and there is waste of energy in some part (no
matter how limited) of the connected system, and there must

be one with a steady source unless there is perfect insulation

in the way mentioned.

Now in (88) the J and G functions concerned have sx for

argument, and the values of s are settled by the determi-

nantal equation. Also s2 is a function ofp, and so is Z. The

further development therefore rests upon the nature of Y and

Z in the original circuital equations, for we naturally want to

have the result entirely in terms of s. It ^ = R, and Y = Sp,

we have diffusion, with one value of p for one of s2. Then

** = -
BSj>, and = - ?.A. (89)

dp 2s ds

This brings us to

V -V V ^Q* (
Jm - aGm)x(Jm -

ffGTO) y fVt /amV "*5w5
<rf/*)(-fl

'

where the value oip in the time function is-s2
/RS.

If \ = 0, and a = 0, which occurs naturally when n is 1 or

more, the last reduces to
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where /3
= finds the values of s2 and p. If the potential is

constrained to be zero at I, then B' = in /?, making Jml = be

the determinantal equation. Also V = now. So

V = "X
7?"Qs vmx myGml fpt _ V _ ^ ^mx^my ^t ($%}*

"S^/T ^T "
W(xy)

m
(3'na )

2

if the accent denotes differentiation to the argument si. The

second form is derived by the conjugate property

, (98)

remembering that JOTZ
= 0. Equation (92) expands an arbitrary

function of x to suit the conditions stated. Put Q = Sy*Wy,
and integrate with respect to y from to I. The result is the

V arising from the initial distribution of potential v. This

also applies when n is smaller, down to just over 1, provided

Z = oo is imposed terminally.

But if n is - 1 or less, the solution takes a different form,

as before explained. We get, by (84) and (57),

with any Zr So Zj = 0, making B' = 0, makes

where /? is JmZ/Grwj,
which makes V

2
= at I, V2 being got by

interchanging x, y. The last expands to

subject to 1-^= 0. The cases in which m is integral had

better be kept in terms of Jwl and Grm . The connection is

J -m = Jw cos m:r + Gm sin WITT, (97)

A companion formula is

G-m=Gm cosm7r- Jm sinw7r. (98)

See equations (66), (67), (70), (71).

Equation (96) does not look right. But we have the con-

jugate property,
2= ~ -sin?7T= - J_mJ'm + JwJ'_m , (99)

TTA't
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which may be derived from (29). So, since J_ mZ=0 at

present, J* maybe eliminated from (96). This brings it to

that is, the same form as (92), except in the reversal of the

sign of m in the J functions. It is valid when m is - 1 or less, but

the range may be extended up to just under m = by a terminal

restraint making Vj = at the origin, (Z =
0).

Tune Function when Self-induction is allowed for.

348. In the more general case in which R, L, K, S, are

all finite, and

q*
= - s2 = (R + L/>) (K + 879), (101)

there are two ^'s for every single s2
; thus,

K\
7

I, /R K\ 2 RK + s2)* /nnox

s> HH +
s) --LS-J,

(102)

^ = - = S(R + Lp) + L(K + Sp) = 2LS^. (103)
dp tip

The sum of the two time functions of the form Zfpt
/(dq

z
/dp) t

got by using the above two values of p, is therefore

-. (104)
k Jo

To show the application, take the simple case of the poten-
tial constrained to vanish both at A and I. Then in (88)
V = 0. Also,

d
(

d/3mx JmA 2/1 1\
(a -^)= - = -

(105)

ty using the conjugate property (93), with argument sA or si,

as the case may be, and remembering that a = /?.

Therefore (88) takes the special form

mv ~ a y(f) n 06)
-(Gm,)-

2

where a is 3m},'Gm\, and <^() is the time function in (104).
Its value is 1 when t = 0, so we can expand any initial state U
of potential by (106), by putting Q = Si/

n
Urfy, and integrating.
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The Potential due to initial Current.

349. The inclusion of the self-induction in the last

makes the magnetic energy operative. The specification of

the initial state is therefore incomplete if the potential alone

is given. We require to know the initial current as well.

Instead of the above h, let the source at y be e, producing a

jump in the potential, thus, e = V2
- Vx at y, but with con-

tinuity of current, or C2
= C^ To find the result, we need not

go through the work in detail, but generalise the former result

when the zeroth Bessel function was concerned, 330. We
shall now have

a, b-a

V =
- aKm+i)y .

b-a

Vi being on the left, V2 on the right of y. We turn Vx to Va

not by interchanging x and y, but by interchanging a and b

and negativing the result.

The operation
- xn7r\dldx) finds the current. So

C,= -
l^f-e (Hro+1 - aIim+lUBm+l - bKm+1),, (109)

and now C2 is got by interchanging x and y.

It is easy to test that these satisfy the conditions at y and

terminally, a and b being the same as before, by the conjugate

property

HmKm+ i + KmHm+ i =A = K )HH'W - HmK'M , (110)

the argument being qy, and the accent denoting differentiation

to it.

Similarly, to find the solution in terms of JOT and Gm ,
we

may derive the results from the last, putting H, K in terms of

J and G ;
but this is tedious, and the results are easily got

independently. Thus,

V= T
rzc

?/ *
~ a x m+i ~ m+i y

^ (111)1
.

ju
m a- (3

V - i-?/m+1 (Jm-^GJ a!

V ~ -
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show V due to e at y. The current on the left of y is

C] = _
2Z a -

and interchanging x and ?/ produces C
2

. In deriving this

we use

s rfj; #' #m s </ xm xm

the argument being s.r. The continuity in C at ?/ is obvious.

The discontinuity in V is easily tested, for we get

V2
- v

i
= &'!/<JmGOTM - GmJm+1)

= *. (115)

Since a, j8 are as before, the same limitations mentioned apply
when A = 0.

The development in Bessel series is similar. For an initial

state of current, let e be impulsive, say e = pP, where P is the

momentum generated, as explained in 327.

Then we get

V = -

-
dp d*

Here we see that if the potential is made to vanish termi-

nally, and s
2
is as in the last section, making two/>'s to ones2

,

the two time functions to be added are not the same as before.

The time function is now erjt + (<l*
2
/Jp). The sum of the two

is - (LSA-)-
1*'* shin 7rt. So, using this, and (103) and (105)

again, we convert (116) to

V, =2 ^vJL^l
1 (J-qVJ- t-i-Q^i), r* shin ht,

LbA x' (G.x)-
>
-(tt^)-

t

(117)

showing the potential due to the initial momentum P at y.

Put P = "Ly-
n
ct1y, and integrate from A to I to show the potential

due to the initially given state c of current.

In finding the current due to the initial current, say by the

operational solution (113), the presence of Z in the denomi-

nator should not be overlooked. Its vanishing sometimes

introduces another term, depending upon p = - B/L (see the

next Section). The interpretation is that if the initial state

is c = constant, and we have also V = imposed terminally,
the result is a current c- Rt/L at time t.



268 ELECTROMAGNETIC THEORY. CH. VI.

Uniform Subsidence of Induction and Displacement in

combinations of Coils and Condensers.

349A. When formulae become somewhat intricate, there is a

natural tendency to treat them mathematically only, so that the

avoidance of error rests upon the mechanical accuracy of work-

ing, which can only be effectively confirmed by repetition and

by the harmony of results obtained in varied ways. Under

these circumstances it is satisfactory to be able to utilise some

simple physical property of wide generality to test the formulae .

Such a property can be applied to the preceding formulas with

advantage.
When a simple coil, whose time-constant is L/R, has a cur-

rent in it, say C at time t = 0, and is left to itself on short

circuit without impressed force, the current subsides in such a

way that C = C - R*/L is its value at time t. It is the elemen-

tary case of the destruction of momentum by a resisting force

varying as the velocity. Any number of coils of different

II and L, but with the same time-constant, will behave in the

same way when on short circuit separately, and without mutual

influence. The same is true when they are all connected in

series to make a closed circuit. If the initial current is C in

the same sense in all, then the current in all subsides as if

they were short circuited. There is no difference of potential

generated between any of the terminals. There is, it is true,

usually some difference of potential between parts of any one

coil ; but that is a residual effect, arising from the inductance

not being quite the same for every turn of wire. This residual

effect does not occur in the application to be made. Anyway,
the terminals are at the same potential. They may therefore

be joined together through any unenergised arrangement of

coils and condensers (without introducing mutual influence

across the air), and the current in the original circuit will

behave in the same way as before described. Every coil

wastes its energy against its own resistance independently of

the rest. (It is also possible for the external combination to

be energised in special ways without interference, but we do

not want that at present.)

The above being a purely magnetic property, there is a

similar one concerning electric displacement. A leaky con-

denser (or a condenser with a shunt), if initially charged to
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potential V
,
and then left to itself, discharges itself so that

V=V e- K */s is the potential at time t. Here S/K is the time-

constant of subsidence, the ratio of the permittance of the

condenser to its conductance. The same is true of any
number of condensers separately : if they have the same time-

constant, the discharges will be alike. They may be put in-

parallel without any alteration if their potentials are the same,,

and no difference will be made by joining the various positive

terminals together through any (usually unenergised) elec-

trical arrangements, and also the negative terminals. Every
condenser will still discharge itself through its own conduct-

ance, and waste its energy therein.

The two properties may be co-existent in one combination

in many ways. The particular way we want now is this.

First, have a long series of coils of any resistances, but all with-

the same time-constant L/R. Then put their junctions to

earth through condensers of any permittances, but all with the

same time-constant S/K. The result is a generalised telegraph,

circuit, in which the resistance, inductance, permittance, and

leakance are collected in lumps, so to speak. But the actual

distribution may be continuous, if we like, and is, in any
case, quite arbitrary, subject to the constancy of the magnetic
and electric time-constants.

Two rows of similar coils may be employed. Then the

condensers are to be joined across from one row to the other.

But this somewhat complicates the description. One series

is enough.

By the preceding, it follows that if the initial state is

V = V
, constant, and C = 0, where V is the voltage of the

condensers, and C the current in the conductor consisting of

the series of coils, then the state at time t later is simply
V = V e- Kt/s

,
and C = 0. The waste of energy is in the

leakage conductance, and is quite local. There is no develop-
ment of magnetic force. The true current (in Maxwell's

sense) is the sum of the conduction and displacement current,

and this is zero for every condenser, little or big.

The circuit may be infinitely long. But if it be only of

finite length, we must take care that the terminal arrange-
ments obey the same law. Either the ends must be insulated,

making C = 0, or we may put the ends to earth through-
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condensers having the same time-constant S/K, and have

them initially charged to the same voltage V .

Similarly, if the initial state is C = C , a constant current,

and V =
0, the state at time t will be C = C c-lL

,
and V = 0.

The energy starts magnetic and remains magnetic. The waste

of energy is in the conductor of the circuit, and is quite local.

In order to complete the analogy as regards
" true current

"

in a physical manner, that is, by making a possible case of

electromagnetic wave propagation in a conducting medium,
we require to introduce the idea of magnetic conductance to

replace the real electric resistance of the circuit, as explained
in Chapter IV. In default of that, the analogy is partly only
a mathematical one. Leaving out the completion of the

analogy physically, it is to be further noted that if the circuit

is not infinitely long, the terminal arrangements must be

suitably chosen. We require either a dead earth at the ends,

making V = 0, or else terminal coils possessing the same time-

constant L/E., and initially charged with the same current as

the rest of the circuit.

It follows further, that if in the first case, where the initial

energy is wholly electric, the initial state be not one of con-

stant V
,
there must still usually be a term involving the time

factor -K/S in the resulting potential, unless the mean value

of the initial potential should be exactly zero. Also, in the

second case, concerning magnetic energy only initially, there

must be a term involving e
- Kt/L in the resulting current when

C is not constant to begin with, unless its mean value should

also be zero. How to reckon the mean values will appear

presently. Moreover, the determinantal equation must con-

tain the isolated factor Y or K + S/> in one case, and Z or

R + Lp in the other, when the above conditions are complied
with.

Uniform Subsidence of Mean Voltage in a Bessel Circuit.

349 B. The Bessel results previously given come under

the last Section, because they involve constancy of the electric

and magnetic time-constants in spite of the variation of the

resistance, &c., per unit length of circuit. We may therefore

test the results, and exhibit the solitary terms concerned. If

the source is h =pQ at y, that is, a charge Q initially at y, we
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may write the operational solution for the potential which

results thus,

V-^pQ, (118)

and the values ofp which make <jr
lp infinite are the constants

p in the time factor ep*. If v is the partial solution for any p t

then

where <f>* means d<f>/dp. Now, if we know that Y = gives an

isolated root of
<j>
= 0, we can write </>

= Y0, where & does not

vanish with Y. Then

Y'0 = S0 , (120)

if is the value of 9 when Y = 0. So

is the partial solution. The denominator S0 is evidently the

permittance concerned.

The full operational solution in this case is (61), 342,
in terms of J and G functions, but it is easier to evaluate

in terms of Jm and J_m . So use the equivalent form (59),

342, or

V =2^^ (Jn ~ PJ -m) (
Jn ~ ^-m)y /-, QO\

1

(p-<r)smm7r

where - + m+1 A< =
_o, (123)

J_m - A J_m_1
Z

;

and a- is got by turning A to I and A' to - B' in p; B
1
also con-

taining I instead of A and Z
l
instead of Z .

It does not look as if Y = were involved in (122). But
then it has to be remembered that Jm has the factor s

m
. So,

put JTO
= s

mPm ,
and balance the powers of s in the numerator

against those in the denominator of (122), on the under-

standing that

Y = Zr1 =m (K + Ejp), Yx
= iw^K + Sp), (124)

where m^ and m^ are positive constants, so that there are

terminal condensers with the proper time-constant. We
shall then obtain, not the factor Z shown in (122), but Z/s

2
;

that is,
- Y"1

,
as required, making Y = give a root of the
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determinantal equation. Remember that #nY and ar*Z are

the leakance and resistance operators of the circuit per unit

length.

The evaluation of is now easy, because Y = makes s = 0,

and reduces the J functions to their first terms, or the P
functions to constants free from s. The result is that (121)
becomes

showing that the mean value of the potential that is, the

charge divided by the total permittance of the circuit, in-

cluding the terminal condensers subsides in the proper way.
In case of terminal insulation, w = 0, or ^ = 0, or both,

These are included in (125), and give finite v. At the other

extreme we have mQ oo
,
or m1

= cc
,
or both, and v = 0. But

the term v will still exist finitely if the initial state includes

charge of one of the terminal condensers to a finite potential,

for then the mean potential will be finite. Practically, how-

ever, a short circuit will mean simply K = oo at the terminal,

and no condenser. Then v = 0. The special term does not

exist.

Observe that if m
Q
and ml are defined to be Y /Y and Yj/Y,

and if it be assumed (with or without warrant) that Y =

gives a root, we shall obtain v = usually, because m and m^

are made infinite. The exception is when Y and Yj vanish

when Y does; the above case, in fact. Then Y = really

gives a root.

Uniform Subsidence of Mean Current in a Bessel Circuit.

349c. In the other case, if the source is e=pP t or the

momentum P initially at y, we may write

C = <-^P, (126)

using the proper $, not the same as before, of course. Then
if we know that Z =0 gives a root of

</>
= 0, we have $= %$,

not the same as the last. Also, if c is the partial solution

depending upon Z = 0, we have

C=e'*=e ~ 1"'1
' <127>
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and now we have only to evaluate ,
the value of 6 or <f>/p

when s = 0, because Z = makes s = 0.

The potential and current solutions are (111), (113). In

terms of Jm and J_m and the previous p and o-, they are

xm (p-cr) sin WITT

C, = m^ (
J H+i + pJ-m-i)x(Jm+i +<rJ_m_ 1)y

(/>
-

o-) sin m?r

This is on the left of y. The C2
on the right side is got by

interchanging x and y in Cr The V
2
is got by interchanging

p and o- in the numerator only of (128). The signs of p and a-

have to be carefully attended to. The formula of derivation

used is the first of (114) for Jm in Vr But it is different with

J_m . The companion formulae to (114) are

1 d J_m orG_m J. or G.^.,
s dx xm xm

Applying (127) to (129), we see first that Z"1 does not show
itself. But as before, put J7n

= 8
mPtn . The factor Y then

becomes Ys~ 2
,
that is, Z"1

, showing that Z = gives a root,

provided

Z = B + L p = * (B + Lp), Z
x
= B! + Ljp = ^(B + L/>), (131)

so that there are terminal coils having the proper time-constant.

Lastly, evaluating by the first terms of the J functions

as before, we obtain

where 2m = n-l. The denominator is the total inductance

of the circuit, including that of the terminal coils, and c

expresses the mean value of the current throughout the whole

circuit at every moment.

When n = 0, or n^
= 0, or both, we have one or more ter-

minal earths or short circuits. If either of nQ or n is infinite,

it expresses more than a disconnection, for L (for instance) is

also infinite. The result is c = 0, but c can be finite if the

initial state includes a finite current in the terminal coil.

Practically, a disconnection produces c = in another way.
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There is no terminal coil as a reservoir for magnetic energy,
and the special term involving Z = does not exist.

It will be observed in the above evaluations that the quan-
tities A' and B' which occur in p and or, equation (123), are

reduced to s x constant or s~ l x constant by the special terminal

conditions. This makes p
-

cr, (apart from the special factor

Z or Y above considered), become a function of s
2

. In general

it is not a function of s2 but of p. So now in concluding

this part of the subject it may appropriately be pointed out

that this property can be generalised in many ways by appro-

priate terminal conditions involving electric and magnetic

energy. We have merely to make<Z /Z and Zj/Z be functions

of s
2

. It is sufficient to illustrate by an easy example. Let

Z = R + L p + (K +S 2>)-i, (134)

This says that Z is a coil and a condenser in sequence

between the terminal and earth. Divide by Z ; then, if

E + LO?J
= ?i Z and K + S p = m Y, we obtain

|o
= ra --A- (135)Z w .s

2

To be a function of s2
,
n and HI

O
must be constants

,
that is,

w = R /R = L /L, and m = K /K = S /S. Similarly we may
make Z

X/Z a function of s2 .

In all such cases p a- is made a function of s
2
(with the

possible extra factor), and its roots are calculable by tables of

Bessel functions. Then there are two p
j

s to every s
2 in a

known manner, so that the time functions are known, and a

complete development can be obtained.

[NOTE. In 330 and 334, the function K^qx) is defined

to be the derivative of J^.
Q(qx). But there are good reasons

for the later notation, in 336 and after, which makes K^qx)
be the negative of the derivative of K (^). See equations

(3), (4), p. 240, and (18), p. 243. The function ~Km(gx) is

always positive.

The Gm(sx) function has the opposite sign to that employed
in my " Electrical Papers," for good reasons. I have en-

deavoured to smooth matters, and from 336 to the end have

employed that standardisation which experience in the com-

plicated relations of Bessel functions has shown me to be the

best and the easiest to follow.]
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APPENDIX C. RATIONAL UNITS.

In 1891 I endeavoured, to the best of ray ability, to revive an old

labour by directing attention to the irrational nature of the B. A.

system of units (once so much praised), and advanced arguments to

show that not merely should the presentation of theory be altered,

but that the practical units should be reformed. (See Vol. I.,

Chapter II.
,
and the Preface). In 1892 Prof. Lodge wrote asking

me if I had any practical proposal to make. The following letters

resulted :

THE POSITION OF 4?r IN ELECTEOMAGNETIC UNITS.

[Xaturt, July 28, 1892, p. 292.]

There is
,
I believe, a growing body of opinion that the present system of

electric and magnetic units is inconvenient in practice, by reason of the

occurrence of 4?r as a factor in the specification of quantities which have

no obvious relation with circles or spheres.

It is felt that the number of lines from a pole should be m rather than

the present Qirm, that "
ampere turns

"
is better than 47rnC, that the

electromotive intensity outside a charged body might be <r instead of 4,
and similar changes of that sort

; see, for instance, Mr. Williams's recent

paper to the Physical Society.

Mr. Heaviside, in his articles in The Electrician and elsewhere, has

strongly emphasised the importance of the change and the simplification

that can thereby be made.

In theoretical investigations tliere seems some probability that the

simplified formulae may come to be adopted

fj. being written instead of 4n>c, and Tc instead of ~
;

Iv

but the question is whether it is or is not too late to incorporate the prac-
tical outcome of such a change into the units employed by electrical

engineers.

For myself I am impressed with the extreme difficulty of now making
any change in the ohm, the volt, &c., even though it be only a numerical

change ;
but in order to find out what practical proposal the supporters of
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the redistribution of 4?r had in their mind, I wrote to Mr. Heaviside to-

inquire. His reply I enclose
;
and would merely say further that in all-

probability the general question of units will come up at Edinburgh for

discussion. OLIVER J. LODGE.

MY DEAR LODGE, I am glad to hear that the question of rational

electrical units will be noticed at Edinburgh if not thoroughly discussed.

It is, in my opinion, a very important question, which must, sooner or

later, come to a head and lead to a thoroughgoing reform. Electricity is

becoming not only a master science, but also a very practical science. Its-

units should therefore be settled upon a sound and philosophical basis. I

do not refer to practical details, which may be varied from time to time-

(Acts of Parliament notwithstanding), but to the fundamental principles

concerned.

If we were to define the unit area to be the area of a circle of unit

diameter, or the unit volume to be the volume of a sphere of unit

diameter, we could, on such a basis, construct a consistent system of

units. But the area of a rectangle or the volume of a parallelepiped would

involve the quantity IT, and various derived formulae would possess the

same peculiarity. No one would deny that such a system was an absurdly
irrational one.

I maintain that the system of electrical units in present use is founded

upon a similar irrationality, which pervades it from top to bottom. How
this has happened, and how to cure the evil, I have considered in my
papers first in 1882-83, when, however, I thought it was hopeless to expect
a thorough reform

; and again in 1891, when, in my
"
Electromagnetic

Theory," I adopted rational units from the beginning, pointing out

their connection with the common irrational units separately, after giving
a general outline of electrical theory in terms of the rational.

Now, presuming provisionally that the first and second stages to Salva-

tion (the Awakening and Repentance) have been safely passed through r

which is, however, not at all certain at the present time, the question

arises, How proceed to the third stage, Reformation? Theoretically,
this is quite easy, as it merely means working with rational formula?

instead of irrational
; and theoretical papers and treatises may, with great

advantage, be done in rational formulae at once, and irrespective of the

reform of the practical units. But taking a far-sighted view of the matter, it

is, I think, very desirable that the practical units themselves should be
rationalised as speedily as may be. This must involve some temporary in-

convenience, the prospect of which, unfortunately, is an encouragement to

shirk a duty ; as is, likewise, the common feeling of respect for the labours

of our predecessors. But the duty we owe to our followers, to lighten
their labours permanently, should be paramount. This is the main reason

why I attach so much importance to the matter
;

it is not merely one of

abstract scientific interest, but of practical and enduring significance ; for

the evils of the present system will, if it continue, go on multiplying with

every advance in the science and its applications.

Apart from the size of the units of length, mass and time, and of the

dimensions of the electrical quantities, we have the following relations
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between the rational and irrational units of voltage V, electric current C,

resistance R, inductance L, permittance S, electric charge Q, electric force

E, magnetic force H, induction B. Let x2 stand for 47r, and let the

suffixes r and i mean rational and irrational (or ordinary). Also let the

presence of square brackets signify that the " absolute
"
unit is referred to.

Then we have

[[V][[B,.][C
i]_[Q ]

[CrJ~[Qr]
;

The next question is, what multiples of these units we should take to make
the practical units. In accordance with your request I give my ideas on

the subject, premising, however, that I think there is no finality in things

of this sort.

First, if we let the rational practical units be the same multiples of

the " absolute
"
rational units as the present practical units are of their

absolute progenitors, then we would have (if we adopt the centimetre,

.gramme, and second, and the convention that ^=1 in ether)

[Rr] x 109 =new ohm =x? times old.

[LjJxlO
9 =new mac = x2

[S;] x 10- 9=new farad= a:-
2

[CJ x 10~1=new amp x~l

[Vr] x 108 =new volt --x

107 ergs = new joule = old joule.

107
ergs per sec = new watt = old watt.

I do not, however, think it at all desirable that the new units should

follow on the same rules as the old, and consider that the following system
is preferable :

[Rr] x 108 =new ohm = x old ohm.

[Lr] x 108 =new mac = -- x old mac.

[Sr]
x 10- 8 =new farad = i? x old farad.

[Cp] x 1 = new amp = x old amp.

[VyJxlO
8 =new volt = x x old volt.

108 ergs= new joule= 10 x old joule.

108 ergs per sec.=new watt= 10 x old watt.

It will be observed that this set of practical units makes the ohm, mac,

amp, volt, and the unit of elastance, or reciprocal of permittance, all

larger than the old ones, but not greatly larger, the multiplier varying

roughly from 1\ to 3i.



278 ELECTKOMAGIs'ETIC THEORY. CH. VI.

What, however, I attach particular importance to is the use of one-

power of 10 only, viz., 108
,
in passing from the absolute to the practical

units
;
instead of, as in the common system, no less than four powers, 101

,

107
,
10s

,
and 10. I regard this peculiarity of the common system as a

needless and (in my experience) very vexatious complication. In the 108

system I have described, this is done away with, and still the practical

electrical units keep pace fairly with the old ones. The multiplication of

the old joule and watt by 10 is, of course, a necessary accompaniment. I

do not see any objection to the change. Though not important, it seems

rather an improvement. (But transformations of units are so treacherous,

that I should wish the whole of the above to be narrowly scrutinised.)

It is suggested to make 1C9 the multiplier throughout, and the results

are :

[Rr]xl0
9 = new ohm = 2 x old ohm.

rL r]
x 109 =ne\v mac x- x old mac.

[S r]xlO-
9 =ne\v farad =x~- x old farad.

[C,.~| x 1 = new amp = __ x old amp.
x

[Vr ] x 109 = new volt =lQx x old volt.

109
ergs = new joule =10- x old joule.

109
ergs p. sec. =new watt =102 x old watt.

But I think this system makes the ohm inconveniently big, and has some
other objections. But I do not want to dogmatise in these matters of

detail. Two things I would emphasise : First, rationalise the units.

Next, employ a single multiplier, as, for example, 108
.

Paignton, Devon, July 18, 1892. OLIVER HEAVISIDB.

Nothing particular seemed to result. I do not know that thsre

was any discussion of the matter at the Edinburgh meeting. The

development was apparently only in its first stage, the Awakening.
The B. A. Committee, so far as I know, took no formal notice of

a serious matter in which they should be so much interested.

About 1894-5 too, they were so ill-advised (in my opinion) as to

persist in their errors and announce that there did not appear to be

any reason why their practical units should not be legally adopted

(I have not the document by me to give the exact words). Thia

was accordingly done, by proclamation, so to speak, under the

Royal Arms, as may be seen in contemporary journals. The ques-
tion of rationalisation was apparently nowhere.

In the meantime, however, between 1891 and 1895, a remarkable
diffusion of knowledge on this subject, and consequent change of

opinion and formation of opinion, had taken place, as some of the

following will show. The discussion arose out of Prof. Lodge's

Report on Magnetic Units, which was printed and circulated

amongst members of the B. A. Committee and others, including,

myself, for opinions. It was reprinted in The Electrician, August
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2, 1895, p. 449, along with letters from Mr. F. G. Bailey and Prof.

J. D. Everett. It was not considered proper to circulate my own
opinions of the Report amongst the members of the Committee.
Hence their separate publication in The Electrician, August 16, 1895,

p. 511-12, in the form of the following two letters to Dr. Lodge :

MAGNETIC UNITS.

Paignton, January 28, 1395.

DEAR LODGE : I bad some idea of marking your paper all through,
in the way of simplifying it mainly, but I gave it up when you got im-

mersed in the 4?r muddle. You (the B. A. Committee I mean) are in a

beautiful state of muddle by reason of refusing to complete your work

properly. You cannot say you did not know you were wrong till after the
"
legalisation

"
; you cannot put it on to International Conferences ; you

began it, and the blame is yours all the more so from your refusal to put
it right, or even to make the beginning of an attempt to put it right, by

open admission of error, and recommendation of a revision, and by properly

discussing it at your B. A. meetings and at Chicago. There is no way out

of the muddle than by my radical cure, I believe. When practicians get
to be a little more enlightened than they are, the B. A. system will be

something for them to laugh at and damn, if it is not already. Even in

pure theory, it has been the cause of much mischief, of which I could give

examples in the theories of eminent men. Swinburne has suggested in

Nature that I am very likely wrong in this matter. What is more sugges-

tive is that Magnus Maclean, of Glasgow, who wrote on Units in the

Electrical Engineer lately, had the assurance to dismiss my reform with

the condemnation that my reasons were unwarranted. The geographical

suggestiveness is obvious, though perhaps equally unwarranted. But then

you are a rationalist, and so is FitzGerald, and Larrnor, and perhaps many
more. Perhaps a majority on the B. A. Committee are rationalists. Then

why do they not do the proper thing, and complete their work properly ?

You cannot get out of the muddle in any other way.

Voltage and gaussage. I dare say practicians will not like them.

Gaussage especially. (Sausage !)
I do not admire them myself very much,

on account of the
"
age," but I took voltage as I found it, and extended

the meaning. (How about voltation and gaussation ?) Accepting these

words voltage and gaussage, however (or others), it should be noted that

they stand for E.M.F. and for M.M.F., not for falls of potential (electric or

magnetic), because the latter are exceptional, and in fact often become

meaningless and quite wrong. Practicians are quite up to circuitation ;

the E.M.F. in a circuit, for instance, is the sum of the elementary effective

parts of the real electric force. I think, then, that they should speak of

the gaussage or the voltage in a circuit, or along a line, or from a to b,

&c.; not gaussfall, which I do not like at all.

I think "
intensity of

"
may be dropped altogether. I maintain that

E and H are forces, dynamically (generalised, of course) ; specify them as

the electric force and the magnetic force, and you are all right, and dyna-
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mically sound. Their factors D and B in the energy density are the

corresponding fluxes.

I think your opening part could be simplified a good deal. After that,

when you bring in ATT and 10~ x and 10/4ir, and so forth, I would not pre-

sume to criticise. I would rather not concern myself with such a bad job.

About the meaning to be given to inductance, permeance, &c., when you
take in iron and do not keep to very small forces or small variations in big

forces. Here the practical requirements of the practician have to be con-

sulted undoubtedly, but if they are let alone they may do it in some way
that they will be sorry for afterwards. The difficulty seems to me to be

that there is no definite connection between H and B. In 192 of
" Elec-

tromagnetic Theory
"

I have tried to indicate how we may perhaps come to

a good magnetic theory, in which, however, it would be necessary to discri-

minate
; thus, H=F+h ;

F only to be free, such that the curl of F is

the current density.

But as regards the extended meaning of ft : suppose we do take a defi-

nite connection between H and B, ignoring hysteresis, and that we have

-curlE= B.

How put B in terms of H ? It seems to me that the best theoretical way
would be

B=*! *?=/*
dB (It

so that /A
= and B=//idH. (Similarly D=/cdE.) (This is like saying

clH

that the volumic heat capacity of a body is

c= ^5, so that H=fcdv, and H=c-V,

dv dt

H being the heat per unit volume, v the temperature. It goes well in the

diffusion of heat.)

Then, similarly, we should have in a circuit, (N = total induction),

dC dt

- =andN=
4/LdC.

dC
would give

so that L= - =andN=
4/LdC. The activity HB per unit volume

dC

T=HB or T=/HdB
= EACH, =/Hf?dH = fu

rfH

and by volume integration, we should get for a coil,

T=/C - dt =/CdN =fCLdC.

But whether this is likely to be convenient for the iron people, I would

not presume to say. Perhaps they do not want any of these quasi-scientific

ways of trying to represent facts which are not definite in themselves
;

i.e., <2B/c?H is not a mere function of H.
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Paignton, February 3, 1895.

DEAR LODGE : In my last, commenting on your report, I had doubts as to

whether the dB/dH=fi definition would be convenient for practicians. It

is obviously theoretically recommendative. On consideration, I again

doubt it. Further than that, I do not think that quasi-official or confer-

ential decisions are desirable on moot points involving unsettled theory.

(That, however, is not a new opinion.) For the case is peculiar. There is

no theory of magnetism, but only the beginnings of one. It is an

excellent theory, too, only the application is limited. Now the effect of

iron on the magnetic field is in general theory only a side matter, a

secondary phenomenon, like many others. Commercially, it assumes

exaggerated importance, so much so, that one is apt to overlook other and

more important considerations in general theory. Practicians swallow

camels in their "predetermination
"
work. It is based on theory, in fact

on the precise theory, but is modified empirically by characteristic curves,

percentage allowances for waste by hysteresis and leakage (which is a big

camel). They do their swallowing with complacency, so I suppose they do

not suffer ill effects. If I were a practician, I would swallow camels too,

if I found that they agreed with me, and sacrifice rigour to expediency. Not

being a practician, though, I should very_jmuch_ like to see a
goodjjiegry

of magnetism with variable yu, and leave practicians to work any way they

like, with fictitious make-believe permeances and reluctances, and lumping

together of independent variables.

Hysteresis is the theoretical trouble. Along with this, waste of energy.
Now it is not enough to know how much waste there is in a cycle ; I want
to know how the waste comes in in different parts thereof, and on what it

depends. Is it invariably associated with a change of the intrinsic magne-
tism (intrinsic pro tern.}, or only accidentally, as a secondary matter ?

There is a curious case in last week's Electrical Er><jine.er, in a paper by
Mavor. The stuff is called steel, but is said to be chemically pure iron. It

gives relatively small waste, but large hysteresis, and large p in the ordinary
ssnse. Say as in the figure. It is imaginable that quite pure iron would

make the loop become of insensible area. As it is, It is suggested to ignore
the loop, and take the median curve

;
but if we do that we have B vanish-

ing with H, a regular p= dB/dH. system, with energy stored and no waste.

But owing to the extreme steepness of the curves we see that there is a very

large intrinsic B when H is zero or small, and this will be so even when the

loop is made of smaller and smaller area. It seems quite absurd to take

B/F to represent permeability, or dB,'dF either. Here F is what the prac-
ticians call H

; it belongs to the coil
;
curl F= C

;
not curl H. But say

H=h + F. so that curl (H -h) = curl F= C. We must allow for distinction

between H and F in theory. As B is not a function of F only, we must
have at least one other variable quantity. Perhaps h would be enough for

a practical theory under limitations. But we need to know how h varies

with F, or how much of B at any moment is connected with F and how
much is independent pro tern. I think this is the right way to look at it,

because, first, this way satisfies Poisson's old theory (greatly simplified in

expression) of induced magnetisation, and also the more modern view of the
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same.induced and intrinsic together (intrinsic constant though) (also simpli-

fied in expression), and if h could be considered given (as a function of the

time for instance) with a given connection between B and H, we should

still have, a workable theory, a generalisation of the present. But practi-

cally we do not have A as a given datum (constant or variable). It comes

in through the aqtion of F, and it seems, not in a regular or constant way.
For the symmetrical loop is only got after many reversals, putting the iron

into a peculiar state. If there were no waste (or it were insensible) it might
be the same, but I am inclined to think there must be waste in the initial

settling, even if there is none finally (in a suggested pure iron).

L should think Ewing ought to have the material at his disposal, and the

proper realisation of the facts, to be able to discriminate between B total

and intrinsic, and to get a sort of normal true inductivity curve (quite

different from the commonly assumed) and so come to a sort of theory.

The Report and above letters were followed by an interesting

discussion in TJte Electrician (summer and autumn of 1895), of

which I give a few notes. Prof. Lodge's report mainly consisted of

an attempt to systematise magnetic relations and units without em-

ploying rational units
;
and the discussion was mainly upon it, and

not about rational units. Of course, I hold that Prof. Lodge's pro-

cedure was wrong, and that the units should be rationalised first. I

therefore only notice (in general) the opinions on the question of

rationalisation. I condense.

Mr. J. A. KINGDON said engineers would be dismayed by the Report.

Prof. S. P. THOMPSON encountered the great 47r, but did not overcome it.

Mr. SYDNEY EVERSHED was apparently put in a state of fever by the

Report, and seemed to be amazed at my audacity in actually proposing to

abolish ATT. He also misused words.

Prof. EWING discussed the Report. Also, he thought it impossible to
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formulate a theory of magnetic induction, thus practically declining my
invitation.

Mr. W. B. ESSON was thoroughly unsympathetic with Prof. Lodge. A*

for me, he called me a "
ringleader," and said I ought to be both proud and

happy that my work (which, he says, will endure) would never be degraded

by the practician by application to things useful.

Mr. H. W. EAVENSHAW thought, with regard to the 4?r question, it was

not generally known that 2H = ampere turns per inch within 2 per cent.

He also thought
"
practician

" was offensive !

Mr. F. V. ANDERSON remarked that the C. G. S. is not a rational system.

Prof. LODGE said the reluctance to extend to magnetic units the same

sort of treatment as had proved successful for electrical units was somewhat

surprising. [Xot at all, remembering the two objections, that most

practicians or engineers only -want to be let alone
; whilst more scientific

persons want to go further still, and do it rationally. See below.]

Mr. W. E. SUMPNEU said 4?r/lO can't be got rid of. No importance to

practical men. Used to it. He asked whether my system was ever likely

to be adopted. [There seems to be something brain-paralysing in the

dynamo and transformer, producing a feeling of helplessness.]

Mr. L. B. ATKINSON said he thought it was too late to djscuss whether

the B. A. system was best or not
; thought the new units, an unmitigated

nuisance ;
and added that we were threatened with another complication in

the adoption of a "
system in which air or ether is not to be the standard

subtance." [This is quite new.]

Mr. A. T. SNELL thought 47T/10 was really of little importance in dynamo
work.

Mr. W. B. SAYEES did not remark on it.

Prof. G. F. FITZGERALD entirely agreed with me that it is a great mis-

fortune that the units have been wrongly based, but did not at all agree

that a change is possible, and discouraged men from wasting their time in

endeavouring to bring it about when there are so many other things better

worth doing. [Truly there is much to do, but there are many men to do

it. And Prof. FitzGerald's argument agaiust doing this little matter

seems weak. Besides, it is not such a little matter in the long run, but a

very important one.]

Mr. G. L. ADDENBROOKE agreed with me thoroughly on the 4n- question.

Said that in 10 or 15 years it will probably be found advisable to start

with a complete new set of units on a rational basis. [Much easier now.

if the inclination prompts to action.]

Prof. LODGE, referring to the above discussion, and before the B. A. dis-

cussion, called attention to some aspects of the matter of magnetic units

which might be overlooked.

The Electrician summed up in a leader. The practical man holds up his

hands in horror at my proposal, and says, No ;
it shall not be, it must not

be. At the same time, the writer was not sure that I am not right after all,

even though it be H. v. Mundurn ;
and that some day we shall wonder how

the B. A. system -was ever blundered into, and turn to the man who tried

to save us from ourselves.
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The reader of the above cannot fail to notice the gradual change
in tone. It is getting quite favourable. Then came the B. A.

discussion, when more progress was made. "One of the most

striking features was the leaning shown by many of the speakers
towards rational units."

Prof. SILVANUS THOMPSON was impressed by the importance of rational

units, physically and practically. Moreover, in his opinion, the change
would not be very difficult. But because we might soon have to remodel

the whole system was a very strong reason for taking a minimum of action

now. [I think he meant as regards the proposals in the Report, without

doing it rationally.]

Prof. W. E. AYRTON considered the question was not what ought to have

been done 30 years ago, but what would be best under present circum-

stances. [Exactly so
;
rationalise now, or make preparations.]

Dr. JOHNSTONE STONEY'S printed remarks do not bear on the matter.

Dr. FEDERICK BEDELL said it was too soon. Not quite ready to take up
the rationalisation question yet.

Prof. J. D. EVERETT agreed with me iu theory, but objected that the

harmony between astronomical and other [so-called] absolute systems of

units would no longer hold. [So much the worse for the astronomical

units ;
but I am unable to see that there is much contact at present

between astronomical and electromagnetic quantities. They are practi-

cally independent.]

Prof. PERRY was sorry to think that the Committee did not boldly face

a difficulty which became greater by delay, and adopt at once my sugges-

tions as to rational units. He thought it was quite possible to make the

change now.

Mr. TREMLETT CARTER did not think posterity would admire the present

system.
" All agreed

"
that the rational system was better, and should be

adopted. No more difficult than to introduce the metric system of weights
and measures. [Much easier. Consider what heaps of old weights and

measures there are, and that they enter into the daily life of the multitude !]

Dr. LODGE feared it was too late for so radical though desirable a change,
but was interested in seeing how many seemed to favour it. If done at all,

it should be done thoroughly, and applied to electric and magnetic and

astronomical units. Perhaps the best time would be when the real nature

of the ethereal constants became understood. [This is cold water indeed.

It may mean the Greek Kalends. But I don't see why astronomy should

be brought in. It is not necessary, if astronomers object.]

This finished the B. A. discussion. There was a little more in

The Electrician.

Mr. W. H. PREECE, F.R.S., said some object to the presence of TT, and

would relegate it,
"
by mere artificialism," to a less intrusive place. [This

reminds me of the member of the B. A. Committee who objected to E=RC
and said it should be C= E/R. He. and Prof. Maxwell, and the other

members of the Committee, had so arranged the units that it should be so,

without any arbitrary and unnecessary constant].
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Prof. A. GRAY thought the inconvenience of 4?r, though sensible, had been

exaggerated.
Prof. JOHN PERRY had no doubt whatever. The change must come, and

" Better soon than syne." [Bravo !]

Mr. F. G. BAILY proposed yLc=47r/10
9 for air, and thought that the sim-

plest way out of the 4ir trouble.

Mr. C. G. HAWKINS expressed his belief in the ultimate and perhaps not

very far distant victory of my "radical cure." Nothing required to be

added to the reasons adduced by me. He also sketched lightly his idea

of the way the change should come, beginning with an international

agreement. [But that is a very doubtful point. I differ. I think the

original sinner should reform first. Then matters would be greatly
smoothed for the others.]

Mr. W. WILLIAMS pointed out an auxiliary argument in favour of the

rational system, based upon his dimensional views.

Mr. W. B. SAYERS asked whether the distinction between H and B is not

a relic of the action at a distance idea, and also whether it should not be

M = in air.

That is about all, and it is instructive as well as somewhat

amusing to see how rapidly the three stages to Salvation were run

through, from initial ignoration to the consideration of details

of Reformation. Now, is the matter to end here ? Surely not. I

would say to all and sundry, do not let the matter drop after such

a successful beginning, but keep pegging away till the actual

demand for the reform is pressing. It is not likely that an old.

institution like the B. A. Committee will do anything without

pressure. It meets every year.

Of course, there have been many other expressions of opinion,
than the above on the question of rational units. Prof. J. J.

Thomson, for example, has commended the simplicity of the-

rational way of displaying the electromagnetic relations
; but I

doubt whether Cambridge men are favourable to a change. One-
of them advanced this argument, "But, after all, 4;r must come in

somewhere." As if it didn't matter where! It is also curious to

note the action of the dynamo and transformer. Dr. Fleming,
however, is a marked exception. He was an early convert, 1.

believe.

Of the progress of rationalistic principles outside the United

Kingdom, I have next to no knowledge.
It is difficult to advance any new argument. But the following

may put the rationalisation question in a new light for some people.
There is a natural tendency for theory and practice to diverge. To

keep this divergence within bounds, the same ideas should be in.

action in both cases. This can only be secured by the rational

system. There may then be identity of ideas, and parallel modes *

of expressing them. See Chap. II., Vol. I.
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CHAPTER VII.

ELECTROMAGNETIC WAVES AND GENERALISED
DIFFERENTIATION.

Determination of the Value of p$l by a Diffusion Problem.

350. At the very beginning of the treatment of the subject

of diffusion there presented itself to our consideration the

execution of a differentiating operation which, according to

ordinary notions of differentiation, was unintelligible. This

was the operation concerned in the function ;;*!, where p is

the time differentiator, and 1 is the special function of t which

is zero before and unity after the moment t = 0. Instead of

the operand being 1, it may be any function of the time. The

square, root of a differentiator occurs in the fundamentals

of the physical subject, namely, the generation of a wave of

diffusion. It is necessary and inevitable
; also, when studied,

it is found to facilitate working.
In order to avoid introducing the idea of fractional differen-

tiation from the theoretical standpoint, I took the value of pU
as known experimentally, 241, equation (A). There is no

question as to its value ; that is settled by Fourier's investiga-

tions in the theory of the diffusion of heat in conductors.

But, without this reference to a known result, we should be

justified by the consistency of the results obtained by the

assumption that the function j&*l was of the form employed.
For the general formulae for diffusive waves were obtained, and

then series of reflected waves, and finally these were converted

to series of normally subsiding states. The same process was

also carried out for Bessel waves and normal series.
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There will be a good deal of use made occasionally of

fractional differentiation in the following, when it turns up^

The theory of the matter, also, will not be overlooked. But

the primary object of the chapter now beginning is electro-

magnetic waves, and the generalisations will take a subsidiary

place as they are suggested. Those who may prefer a more

formal and logically-arranged treatment may seek it else- . i

where, and find it if they can ; or else go and do it themselves. C
At present, merely for the sake of comple eness, I intro-

duce one example cf the experimental discovery of the meaning
of />*!, founded upon the old diffusive methods. We found in

240, equation (7), that when an infinitely long cable, with

constants R, S (resistance and permittance per unit length),

is subjected at its beginning to impressed voltage e, the current

produced on the spot was expressed by

C = (S^/R)^. (1)

If e is constant, we have to find what p\\ means. Now, we
can work out this problem in Fourier series, first for a finite

cable, and then proceed to the limit. Thus, let the cable be

of length /, and be earthed there. Then, if s
2 = - RSp,

siusl

is the potential V at Z due to e, as in 265, equation (1), since

it makes V = e at the beginning and V = at the end. The

algebrisation by the expansion theorem
( 287, equation (43),

or in any equivalent way) makes

s-f/RS /Q\
(O)

where, in the summation, s has the values
ir/l,

2-
/I, 3?r//, &c.

Observing that the step from one s to the next is
TT/I, and

that it becomes infinitely small when / is made infinitely

great, we see at a glance that L = cc converts (3) to

v *
77 J

That is, there is a conversion of the Fourier series to a

definite integral, the previous finite step ir/l becoming the
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infinitesimal step ds. The current at the beginning, x = 0, is

got by C = - R-l
(dV/dx), and then putting x = 0. This makes

--
(5),

o

Comparing with (1), and removing unnecessary constants, we

see that

(6)

which is a well-known integral. Perhaps the easiest way to

evaluate it (by an ingenious device, also well-known), is thus :

*2 < dx x
o Try o

(7)
T*

So, taking the square root, we arrive at the required result,

2>'l
= (*)-'. (8)

The above is only one way in a thousand. I do not give

any formal proof that all ways properly followed must neces-

sarily lead to the same result.

It should be noticed, in passing, that the operator C/e

which is rational when / is finite, reduces to the irrational form

in (1) just when the Fourier series passes into the definite

integral, by making I infinite. At the same time the infinite

series of waves involved in the Fourier series reduces to a

single wave.

Elementary generalised differentiation. Value of p
ml when

m is integral or midway between.

351. On the basis of the result just obtained, we are in

possession of the value ofpm+*l, when m is any integer, posi-

tive or negative. Thus, when m is positive, we have whole

differentiations to perform upon p*l. For example,

(9)1.8 r* T. 1.3.5
, 79*1 =

2.2 **
P &
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and so on. When m is negative we must perform integra-

tions from to t. Thus,

l
i>- - 1 =-i, - 1,

1.3 TT" 1.8.5 IT*

and so on.

We also know the value of p
m+-tn

,
where n is integral, or is

an integer + J. Say it is integral and positive. Let the

operand be t
n
j n where \n is the factorial function 1.2.3. . . . n.

Then
if. jn 1 / /n

*----=, ?- = !, *>-"!=-; (11)
|w 1

7i 1
|>i \n

and now introducing the index
,
we get

pm+|^ = tfii-K+J J = !-_!_ (12)

(

n (*ty

Here ?w - n is integral, so we have the former cases again, as

in (9) and (10). Now the fundamental property of
\n

is

|w
=wp-l, (13)

with the addition that its value must be fixed for any one

value of n, for instance, |1
= 1. It follows that

|0
= 1 also, and

that n is oo for all negative integral values of n. Consequently

(11) and (12) are also valid when n is negative. For example,

y>l
= 0, provided t is positive. It is really an impulse at the

moment t = 0. Also pi = t~ 1
/

1

-
1, and this is zero, unless t is

also zero.

Comparing results, it will be observed that if we use the

formula (13) when n is an integer + J, as well as when it is

an integer, and introduce the datum that

the above results in generalised differentiation are valid with

the extended meaning of n. Thus,

|f-f|s-*, &c.l

-._*, tAic i,&4 (15)

We shall now have

(16)
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when n is any integer, or is midway between two consecutive

integers ; and the same as regards m.

The extension to the case of n being any real number,

positive or negative, is not difficult, but we do not want it at

present. The above can be applied to numerous electromag-

netic problems without going further into the meaning of

generalised differentiation. That
|j-J

is TT\ is, as far as the

above is concerned, merely a convention or definition, the

factorial notation being convenient for showing the system

involved, and for the expression of results.

Cable Problem : C = (K + Sj*j*(R +L^p
(1). Elementary Cases by Inspection.

352. After the above little mathematical excursion we may
return to the physical problem out of which it arose, but

generalised to include self-induction and leakage. Let the

cable have the four constants R, K, L, S, in the notation pre-

viously employed, the additional L and K being the inductance

and leakance per unit length. Then the current produced by
e impressed at the beginning of an infinitely long cable is

that is, E is generalised to R + L and Sp to K + S/>. See

Vol. I, 221, equation (12).

Now this is a far more developed case than the former. Ways
of algebrising it have to be found. The previous mode of

attack will be found to be enormously complicated. But we
can find what (17) means pretty straight out from itself, with-

out the circumbendibus involved in evaluating complicated

integrals by rigorous methods.

Notice some special cases first. If only R and S are finite

we have the former case. But if R and S are zero, whilst L
and K are finite, we have a similar case. Thus

C = (K/Lp) =
2(K*/Lir), (18)

by using the value of p~~*l. The current increases to infinity

according to the square root of the time. This is a curious

case of leakage conductance and inductance only, and is purely
a magnetic problem.
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Next, all four constants being finite, p = in (17) produces

the steady ultimate state C = (K/R)*. Here (R/K)* is the

effective steady resistance reckoned at the beginning of the

circuit. In the extreme case R = 0, no steady state is reached,

of course.

Further, let R/L = K/S. Thenp goes out from (17), which

again reduces to C = (K/R)*e. This is the distortionless case,

| 209. It now holds good always, whether e is steady or not,

the cable behaving towards the impressed voltage as though it

were a mere resistance.

Again, puttingp = ni in (17) will produce the simply periodic

current that results when e is simply periodic, by reducing it

to the form C = (K' + &p)e. The developed formula was given
in 221, Vol. I., and need not be repeated.

Finally, p = x in (17) gives the initial value of C when e

suddenly jumps from zero'to a finite value, viz.,

if ? is the speed of propagation, or (LS)~*
In the theory of a plane electromagnetic wave the equation

corresponding to (17) is

^-(T^V, (20)

where E and H are the electric and magnetic forces, c and /*

the permittivity and inductivity, k and g the conductivities,

electric and magnetic respectively. It can be treated in the

same way, and, in fact, it represents the same problem

physically, except as regards the constant g. This was

-explained in Chapter IV.

(2). Algebrisation when e is constant and K zero. Two
ways. Convergent and divergent results.

353. Now let e be constant after t = 0, and zero before,

and consider the case in which K is the only constant that

vanishes. Then

_, (21)

ifa = R/2L.
The suggestion to employ the binomial theorem is obvious

It will expand the operator in powers of p, and so substi-
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tute a series of easy operations for an unintelligible one.

Thus, expanding in rising powers of a/p,

" 1 - <">

Here we have only whole integrations. So the immediate

result is, by the third of equations (11) above,

a convergent solution in rising powers of the time. The

straightforward and rapid way of getting the result is

remarkable.

But the binomial theorem furnishes another way of expand-

ing the operator in (21), viz., in rising powers of p. Thus,

_ i

~Lv

Here we know already the value of (j?/2a)fe, viz., e/(Barat)l.

We have, therefore, merely to perform whole differentiations

upon it to produce the solution with the same directness in

this form :

Gmf _ 1+ .

I 28a

J_ f1+
I 2

.

Lv {fcraft)*. I Sat 2((8a)
a

|8(8tt*)

This is a divergent series. So much the better. It is easier

to calculate except when at is so small as to bring the point

of convergence too near the beginning.

Equations (23) and (25) are equivalent. Comparing (25 y

with (3) 336, we see that (25) is the same as

C = ^U-<H (0, (26)

where H (af) is the divergent zeroth Bessel function which was

shown to be numerically equivalent to 2I (<). Therefore (23) r

being convergent, should represent

C= c-*J r*). (27).
JUt!
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That it does may be verified by multiplying together the

ordinary series for the exponential and the convergent Bessel

function ; (27) then becomes (23).

Besides the very direct way of getting the results (which, I

may remark, are quite correct*), there are several points to be

noticed. Thus, we find the use of the binomial theorem is

justifiable, to substitute an infinite series of separate integra-

tions or differentiations for the operator involving the radical.

Next, that the convergency of the series in powers of p
obtained does not enter into the question at all. Either (24)

or (22) is divergent when a/p is numerical. But both are

valid, though one gives rise to a convergent final result, the

other to a divergent one. As regards the practical use of the

latter, see 335 for the present. The question will arise again.

Notice further that we obtained (23) from (21) through

(22) without any use of fractional differentiation. But if we

take the special case of the same got by making L = 0, we
reduce (21) to the form (1), and cannot now escape from pi.

This is curious. The lesser seems to contain more than the

greater. The explanation is to be seen in the other way of

expanding the operator. The reduced form of (24) is (1), and

both involve 7>i It still remains remarkable, however, that

we can escape from ;/*!, and so evaluate it by generalising the

problem involved in (1).

(3). Third way. Change of Operand.

354. Observing that in the form (27) we have an expo-
nential factor, a third mode of algebrising (21) is suggested

viz., by putting in the exponential factor at the beginning.
This is the way. We have

, (28)

obviously. Now, here t
at
may be shifted to the right, pro-

vided we simultaneously change p to p -a. This makes the

last become

*-)*<-.
(29)+ /

* How know that (27) is right ? Because, when t is turned to

'
2
)i iu the I function, the result is the complete wave of current

entering the cable. The partial characteristic is satisfied, as well as the

terminal condition. This generalisatiou will occur further on.
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and now it is e
atl or e

a* that is the operand, not 1. (If an operand
is always understood to be at the end, the unit operand may
be omitted in general, just as in arithmetical and algebraical

operations, and it is sometimes an advantage to omit it.) So
far only makes a pretty change ;

but we can go further. For

<---_, (30)
p-a

with unit operand understood. Compare with (3), 265.

Substituting (30). in (29), reduces it to

with unit operand again. Now expand by the binomial

theorem and algebrise. We get

as required. See (23), 338. Introduce the omitted factor

e/liv into equations (28) to (32) to produce the working of the

electrical problem.
Here again, there are points to notice. The transformation

from (28) to (30) depends upon the property p
n

e
a< = an t

at
.

That is, the potence of p is, under the circumstances, simply

a, when n is integral. So

p(u**) = **(p + a)*u, (33)

if u is a function of t. Thus e
at
may be shifted to the left by

increasing p to p + a. Similarly

f(p)(u**) = e*f(p + a)u, (34)

if / (p) is a rational integral function of p. We find that this

process is justifiable (by results) in the case of the irrational

functions of p we have had in question.

Having changed the operand and obtained (29), we then

change it to unity again, through (30). This is expressed by

f( P)
I = <r"f(p - ay* = -*Pf(P- a

)i. (35)
p - a

The result is to come to an entirely different kind of operator.
Instead of the first power of p under the radical sign, we have
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the square of p in (31). The subsequent expansion and

correct algebrisation in (32) are obvious.

But there is another thing to be noticed. Previously we
had p with the + sign under the radicals. Now it has the

sign. Furthermore, it will be found that the alternative

method of expanding (31) fails. This point will be noticed

again.

Collecting results as regards ^(at), disconnected from

unnecessary constants, we have

The operand is e
f(t or c-"' when at the end. At the beginning

they are factors only. The operand is 1, when no time func-

tion is written at the end.

So far there is only one constant essentially concerned along
with p, viz., a. But in the general case, when K is not

neglected, there are two constants involved. To this develop-

ment I now proceed.

(4). V due to steady C when R = 0. Instantaneous

Impedance and Admittance.

355. A case which is similar to that of 353 occurs when
B is zero, making

(87)

The form is the same as (21). So the developed solution is

the same for V due to C impressed as for C due to V impressed,

provided we interchange the electric and magnetic quantities

S and L, R and K. For instance, if the source is the current

A, steady after ( = 0, and zero before, then (27) is transformed

to A

(38)
Dl?

which shows the voltage required to produce the steady
current.

The Sv that occurs here is the instantaneous admittance.

It is the reciprocal of LP, the instantaneous impedance. In
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the distortionless circuit the impedance remains ~Lv always

(that is, in common units, 30 ohms x the number representing

the inductance per centim., say from 10 to 80 usually, accord-

ing to the size of the wires and distance apart), unless

interfered with by reflection. But Lv is the instantaneous

impedance always, that is, whatever values E and K may have.

In the corresponding plane electromagnetic waves, E = /u-H,

when undistorfced, and the impedance is
fj.v. It is only a

different way of reckoning, using the elements of V and C
instead of the totals. That is, pv is the impedance for a unit

tube of flux of energy, and ~Lv is the total effective impedance
for the total flux. But if R and K (y and k in the proper

wave problem) are not balanced, the impedance immediately

begins to alter by reflection due to the unbalanced action of

g and k upon the magnetic and electric fluxes.

(5). C due to steady V when S = 0. The error

function again.

356. If R and L are both zero, then V/C is 0, and C/V is

OD, obviously. But if K and S are both zero instead, then

C/V is 0. In this case no finite voltage can produce a current,

because the resistance of the conductor is infinite, and the

leakage is stopped, both elastic and conductive.

If S is alone zero, then

,

This is for a leaky circuit in which the permittance is of

insensible effect compared with the other influences. The
initial admittance is zero, the final is (K/R)*, the effective

steady conductance, as we see by putting p = oo and in turn.

As regards the state at time t, when V is steady, observe

that the method of expanding in rising powers of p appears to

fail. We get a constant term, plus an infinite series of zeros.

Now there are zeros and zeros. An absolute zero is like the

point in geometry, which you cannot see even when you use a

magnifying glass, as the schoolboy said. But some zeros can

be magnified, and an infinite number of them might make
finiteness. I do not think that is the explanation here, though.
But we can pass the matter over at present, because the other
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way of expanding by the binomial theorem, viz., in descending

powers of p, presents no difficulty. Thus,

_ /2K\t ((at)!, _ (ai)? 1.3 (at)t _ 1 . 3 . 5 (atM \ ,.,.

vffv
" "

"* '

ii r n
1

." '

This is complete, the integrations being done at sight by

p-
nl = t

n
/\n, as explained in 351. Or, in terms of the error

function, before used,

It is curious in how widely different a manner this function

arises now. See 247.

(6). V due to steady C when L=0. Two ways.

357. There is a similar case when L is alone zero. Then

when C is steady, as we see by comparing with (39) and (43),

and interchanging symbols. But it will be more instructive to

vary the method. We have, when C is constant,

by changing the operand from 1 to e-
6(

,
and then to 1 again,

in the manner of 354. Or

'"'

showing the result in terms of the product of an exponential
and another series. Multiplying them together, we shall

obtain the result (44) again.
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(7). V due to steady C when S is zero. Two ways.

358. Connected with the last examples is the inversion of

the same. Say,

By the process of 856, we obtain

B(YB\-i ,/B\l 1.1/B\! 1.1.3/R

.
rt L 3(2\L/ 5[8L/ 7l4\L

(48)
This is straightforward enough, but there is a simpler way
still. For

V B+IW K V R+IWKV r/RA*
-0" -TT^BTir

=

-K-(S)
erf
(r) '

by using (43), which is the solution of (39). Only one diffe-

rentiation is now concerned. When executed, the result is

(48). But it is not a general truth that we may introduce

(R + L/>)/(R-"Li>) and consider it to represent 1. We did

the integration represented by the denominator first. If

we do the differentiation first, it will make a difference.

Thus pp~
l l = pt = l, but p~

l
pl =pO = 0, unless we say p~

lpl
f 1 ()

=p~!- = - = 1. This property has to be remembered some-

times.

(8). All constants finite. C due to V varying as e~P*.

359. Now let all four electrical constants be finite. Then

O _/K+SP\*
i

V

where there are only two effective constants, a and b, or p and a-,

connected thus,

a = R/2L, 6 = K/2S, p = a + b, cr= a-b. (51)

When (r = we have the distortionless case, and when o-=
/>

we have the case of no leakage, 353.

Now we can expand each of the two radicals in (50) in

powers of p-
1

; their product is then a series in rising powers
of p"

1
. The algebrisation is then immediate, by integrations
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according to p~*l = t
n
/'
n. But this is a mechanical and com-

plicated process, without illumination, and the resulting series

contains p and a- in a way that does not show plainly how to

simplify it. So vary the method.

Introduce el* into the operand, by simultaneously intro-

ducing the factor e~^, and turning^? to p + p. Follow (35).

Then (50) becomes

f
-P/

E_,

if e = VtP* . If e is constant, or the voltage is the special one

~^, we can solve at once. Thus

by (36). Here one integration upon I
(<rt) is wanted. The

result is

The initial current is */I>. The final current is zero, of

course, because the voltage falls to zero.

(9). C due to V varying as e
- K'/3

. Discharge of a charged
into an empty Cable.

360. A more significant case is got by letting the voltage

decay in a different way. Say V = e- Ktl*e, where e is constant.

Then the first of (52) becomes

O-lL^^Y^.J..-"^), (55)Lv \p + or/ Liv

by (36). Here we have a compact solution, differing from (27)
in having p and o- instead of both o-. When K = 0, we fall

back upon the case (27).

This solution is important thus. Imagine a cable which is

infinitely long both ways, to be charged initially to transverse

voltage 2e on the left side and zero on the right side of the

origin. V will instantly fall to e at the origin, and its later

value will be V = ee- Kf/3
,
as in the above. This is, therefore,

the voltage impressed upon the initially empty cable to the

right. The resulting current is (55). It will be generalised
later to represent the complete wave of current.
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Notice, in passing, that in the course of the transformations

employed we are engaged incidentally upon other problems
than those under discussion. For example, (52) shows that if

C = e
e, then V - 1" " (5V,, (56)

Lv \p
- a-/

which shows the voltage needed to make the current vary
ase-P*.

(10). C due to steady V, and V due to steady C.

361. Now let the impressed voltage V itself be constant.

Then we have

This can, by what has been done, be reduced to a single

integration. First, we have

P ^*-pt P-P
1

P ^*-pt P
(58)

{(P + P)
2 ~^ (P*

~ -2
)* P-P (P

2~ o-'
2
)

3
'

by the process (35) ; or, by (36)

-pt
(59)

Using this in (57) we obtain

TT \ nf-
pt IQ(<rt). (60)

Thus the C due to V constant, when all four electrical

properties are active, is expressed in terms of a known

function, and its time-integral, the residual p~ l
meaning

integration from to t.

Similarly, ^ = 1-
(l
+^ )

-<* I
(<rt) (61)

C bv \ L;J /

is the V when C is constant (always understanding that 2 =

begins the operand). We get the last by interchanging

symbols E and K, L and S. The symbol p does not change,

but o- is negatived, though this makes no difference in I (at).

(11). C due to impulsive V, and V due to impulsive C.

362. If V = joP, where P is a constant, the case is that of

an impulsive voltage, total P, generating the momentum P,

the space integral of LC.
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Then, by (60)..

C =(;;> +Lv

Or, executing the differentiations,

C=(p + P
-

a-)

-
P I crt = (*>

-
cr) Io(crO. (62)

Ltv Ltv

(63)

This shows the current due to the impulsive voltage. It is

negative when o- is positive, and positive when a- is negative.

That is, if R is in excess, the current following the impulse

is back from the cable ;
if in deficit, it is forward, into the

cable.

Similarly,

V = t -rt(p + <r)lJ<rt)
=

c-<*<r{I,(<^) -f y<rt)}, (64)
ov by

obtained from (62), (63), by interchanges, represents V due to

the sudden injection of the charge Q, followed by insulation.

That is, C = pQ is the datum, and V follows. It is positive

when o- is positive and negative when o- is negative.

From these we conclude that if the cable is infinitely long

both ways, and the charge Q or the momentum P be suddenly

introduced at the origin, then

V = -c
-

(p + .r)]^), C = --c -"'-(p
-
a)I (<rt) (65)

represent the resulting V at the origin in one case, and G in

the other. If the line is not infinitely long, these are still

true for a time, until in fact the first reflected wave arrives at

the origin. The halving is done because P and Q immediately

split into halves which separate. It should be noted that (65)

represent V or C in the middle of the tail connecting the two-

heads or waves at distance vt from the origin. See 208.

The complete wave formulas will follow.

Cubic under radical. Reversibility of Operations.

Distribution of Operators.

363. Observe that we have algebrised (p
z + Ap + B)-^?.l.

For it is the same as (59) above, if A = 2/a and B = p-
- o-2 .

That is,

(66)
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The extension to a cubic under the radical sign is therefore

suggested, say

u=-*-r. (67)

(p
3 + ap* + bp + c)

f

We can reduce it to a quadratic by making the operand be

"**, where x is one of the roots of the cubic. Turn p to p x,

and put e* at the beginning and r-** at the end, or (1 + x/p)-
1

at the end, or earlier. Thus

= J1 _P_ (68)
p + x {p* + (Sx + a)p + 3#2 + 2ax + &}*

that is,

(69)

when F and G are known, by (63). This may be carried

further, but it would be out of place here, having no imme-

diate relation to the matter in hand.

The following is more to the point, concerning the reversi-

bility of the operations used. That

IoK> = rir^i (70)
(p

8 - cr
2
)*

is clear by inspection of the form of the T function, and then

putting it in terms of powers of p~*. We get a series which

the binomial theorem allows us to write in the form (67), pro-

vided we understand that in expanding it, we are to employ

integrations, not differentiations.

But it is also true that

)-!. (71)

Expand by the binomial theorem again in rising powers of

p~\ and execute the work on I (<r). The coefficient of every

power of t vanishes save the zeroth, leaving the result 1.

In connection with this, and with some of the preceding

work, it is to be noted that if we have an operator which is

the product of any number of others, say,

w= 01 = &&&!, (72)

and if the type of
</>x is

<l>1
= a1 + b

1p-
1 + c&-* + . . .

, (73)

that is a series in rising powers of p~
l
,
and if all the <'s are

of this kind, then the same is true for the resultant 0, and in
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whatever order the <'s are written. So there are all sorts of

ways of algebrising (72), which are bound to lead to the same

function, if properly followed, though intermediately we may
be led to all sorts of functions. We may regard u as

(< 1c.,)( 3l, or
(< 2<&j)<il &c - The utility of such changes

is to bring operational solutions to more convenient forms

for algebrisation, by changes in the operand and operator.

The matter is not so limited as it was just now stated. It

is not always necessary to keep to positive powers of p-
1

,
that

is to integrations. Sometimes a series of differentiations may
equivalently replace a series of integrations. But sufficient

of theory now. Practice is more important, and the final

integration involved in (60) remains to be done.

(12). Development of Equation (60). C due to steady V.

364. There are several ways of obtaining a full development
of the solution (60), one or two of which may be done here,

with side matters. We have to find the time integral of

c-PeI (o-), and a first way is to shift the exponential to the

left, thus

say. (74)
P P P-P P

Here the operation (p
-
p)~

l
to find u must be done by integra-

tions, like the p'
1 from which it arose. So

This is integrable at sight, making

u = pt\ i + + ^ + . . . ) + P"H _ + _! !__ + _ + ...)
22425 . 6 /

(76)

where the law of the coefficients is obvious, every set being
the integral of the preceding one. Therefore, by (60),

expresses the complete development in one form, showing the

C due to steady V when all four properties of the circuit are

in operation. The part involving u goes out when there is

no leakage.
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As a check upon (77), another way may be indicated. We
have

by the first of (52). Here write out the operand e^ in full,

then operate on it by (1 <r
2

/>
2

)~* expanded in rising powers
of p~*, and then operate on the result by (1

-
<r/p). We shall

obtain (77), after a little rearrangement of terms. There is

nothing particular to notice in the process, so the details need

not be given.

(13). Another Development of Equation (60).

365. But with a view to finding possible better forms of

the function u, do (78) without expanding e^ first, so that the

result is in terms of e^ and its integrals. We then get

where en is the sum of the first n + 1 terms of the series for eP*

Now, in (79) the inside exponential is cancelled by the outside

one. The part of C not containing t may therefore be exhi-

bited separately. Thus,

(80)LA p/\ v / L*\ p/\ A
2 / ' ( '

by the definition of p and a-. So (79) becomes

*?*)} <">

Another modification is got by arranging the function u as

it appears in (79) in powers of pt. We get

where fn is the sum of the first n + 1 terms in the expansion
of (1

- o-
2

//o

2

)

"* in rising powers of
a-'/p by the binomial theorem,
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and the coefficients of the fa are the successive terms, in

pairs, of the expansion of eP*. It is a curious form. It can

be seen to be correct in the two cases cr = and <r = p.

Comparing (82) with (77), we require this identity,

*('->{ (

or, which is the same,

(f
+f)/,+ ff

+f>,
+ ...

This may be verified by means of (76), rearranging terms

therein.

(14). Third Development of Equation (60).

Integration by Parts.

366. Lastly, compare the results with those got by the

process of integration by parts. We have

f* i (<rt)rf*=rtili HT+ fL^pi^dt. (85)
L -/> _| J o P

Repeat this process again and again, and we get

-p

It is to be understood here that (1 -p/p)~
l
is done by differ-

entiations. We therefore make (78) or (60) become

(87)
p -pp

This agrees with (81), provided that

and this may be verified by carrying out the differentiations

on the left side. Now we also know that

_fifc_If(ot) = u, as above in (76), (89)

this being done by integrations.
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So, adding the results (88) and (89), this mathematical

result follows :

p p

the summation including all integral values of m, including

zero.

The results are all consistent. But it is unfortunate that

the additional terms brought in by leakage do not seem to be

reducible to a single known simple function. If it could be

so, then the result could be readily generalised to express the

complete wave of current. If not, then we must rest satisfied

with one or other cumbrous form of series.

(15). Generalisation. The Complete Wave of C due to V

at the origin varying as e- K*/s
.

367. Having now got full results as regards V/C and C/V
at the origin under different circumstances, we can go on

to generalise them in certain cases. Consider (55) for ex-

ample. Say,

C =
e~^Io(o-t). (91)

This is the current produced at the origin (#
=

0) when the

voltage there is V = e e- K'/s
,
e being constant, beginning when

= 0. If the cable is short-circuited at the origin, V may be

regarded as a variable impressed voltage inserted. If infi-

nitely long both ways, then the impressed voltage must be

2V . But we may also regard V as being produced not by

impressed voltage but by an initial state, namely, V = 20 initially

on the whole of the left side of the origin.

Now, at distance x, we have

= -*
Co, where q

= ^{(p + p)
2 -^. (92)

The current must be the same at the same distance on the

negative side as on the positive. We may therefore put

cosh qx for .~qx . So

C = cosh 2* e-<*Io(<rt). (93)
Lt
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Shift e-P* to the left. Then

C = cosh (? - o-
2

)* . I
(<rt). (94)

Liv v

This gives C by direct differentiations, since only the integral

powers of (p
2 - o-

2

)
are involved. Now

(o-
2

-p*) I
(<rt)

= rWrt) =
o^i^, (95)

and generally,

(96)V '

(97)^ '

This general property is proved by the differential equation
of .i-

mlm(a?), 336, equation (2) ;
see also (18), 337. Apply-

ing (96) to (94), we obtain

I, (98)

and, if we use (97) we get

!

where P,n(o-^) is the function got by dividing Im(o-) by its first

term, so that the first term of P,n itself is unity. Of course

the convergent formula is used, equation (23), 338. Thus

Now (99) is nothing more than the expanded form of

(101)

as may be seen by arranging its expansion in a series of

powers of .i-
2

. Therefore, the last equation is the generalisa-

tion required. Comparing with (91), we see that vt is turned

io (v-t*
-

X-)* in the I function.

x2
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At the time t the region occupied by the current extends-

only to the distance vt from the origin. Beyond that distance

the current is zero. Equation (101) therefore expresses a

wave, whose front travels at speed v. At the wave front the-

current is (e/LvJe-P*. Since the I function has been tabu-

lated, the shape of the current curve along #, at successive

moments of time, can be readily calculated.

(16). Summary of Work showing the Wave of C due to V
at origin varying as

~ K^ S
.

368. The above is by far the simplest way of obtaining

the wave solution, without prior knowledge. Of course, if it

is already known that the formula satisfies the characteristic

partial differential equation of C, there is no difficulty in-

finding the nature of the problem of which it is the solution.

But it would not be reasonable to expect people to possess the-

prior knowledge.

Seeing that the preceding portion of this Chapter contains

the treatment of various other cases than this important one,

it is desirable to exhibit collected separately the various steps

in the process of deduction. First, from the connections of

voltae and current,

(102).
;Af

we deduce the characteristic

/72V11 = (R + L/))(K + S^)V = ^V; (108),

from which we conclude that

V = 9*A + -*B, (104)'

is the type of solution required in general when A and B are

time functions, and that the e~ qx part is the only one wanted

when we send disturbances into an empty cable
; so that

-*V , 0--K3
,

C =
, (105)

express V and C in terms of V and C at the origin, which

are themselves connected by the third equation. So
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by making the operand be V ^. Then let PtVQ
= ff

Tte
t
where

e is constant; or V = ee-K '/3 . This makes

^_ = e_L-I (^), (107)
./> + CT/ p - CT LlV

fully realised. Finally, generalise for the complete wave,

C = 6-o'Co
= cosh qx C = e

r̂
- cos -(o-

2 -
p*? . I (<rt), (108)

which develops to

If we do not make use of the property of equality of the

current at x and - ar, without discontinuity at the origin, we

have
C = cosh qx .CQ- shin qx . C

,

instead of as in (108), but the additional part will not bring

in any new terms, because its first term will involve

(j?-<j*)*i (<rt)=Pi, (no)

by (71), and the rest involve complete differentiations upon
the first term.

(17). Derivation of the Wave of V from the Wave of 0.

369. To obtain the formula for the V wave corresponding
to (109), there are many ways of working. First, we may use

the C formula itself, and the second circuital law. We have

ax

-
v

by (109).

Therefore V is the negative of the x integral of the right

member, provided it is standardised properly, to have the

value 6~ K'/3 at the origin. Now, looking at the expansion (99),

we see that its x integral will vanish at the origin, So the

real value at the origin must be added on. We therefore get

o
- +

' \V 2*8
^y

*
_____i i

ave Jj
(112)
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for a complete development of the V wave. There is one time

differentiation concerned. We have

by (100). From this,

/

(<rt)
m

Using this in (112), we obtain the equivalent form,

The argument of all the I functions is a-t.

This is not so compact as the C formula. But there is a

similar peculiarity in the corresponding formulae in pure

diffusion, the current being given by an exponential formula,
the voltage by the error function. See 246, 247.

(18). The Wave of V independently developed.

370. Another way of getting the V formula is more

primitive. Do not use the developed C formula, but work
from the beginning. Thus,

V-r^Vo-srW'-'* (116)

because the voltage at the origin is e ^ ff ~ p^. Now for r-* put

(cosh
-

shin)jar, and shift ~P* to the left. Then

V = e e
-
P*(cosh

- shm)*V - a-
2

)* . &*. (117)
v

Here the cosh part involves only complete differentiations^

upon e "*, and the potence of p
1 - o-

2
is zero. Only the first

term of the cosh function does anything. So we get

shin5(/ - o-
2

)*
1

_

J^^ (^-o*)VrtJ.
(118)

But here

by (36). So

V =,-/*" -
?(p + r)l -

(a- -F) + ... o^). (120)
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Now carry out the differentiations
(o-

2 -^2
), once, twice,

thrice, &c., upon I ((rt), according to the formula (97) above.

and the development (112) immediately results. This is the

most direct way of obtaining the V formula. And, just as

we derived it from the C formula by the second circuital law,

so we may derive the C formula from that for V by a similar

process, using the first circuital law.

(19). The Waves of V and C due to Initial Charge or

Momentum at a Single Place.

371. We are now in virtual possession of the complete
tail formulae arising when electrification spreads and when
momentum spreads. First, let there be the charge Q initially

at the origin, which may be any point in a cable continuous

both ways. Then, at time t later, the voltage and current are

V = -e
- *

(p + or)
I V*2 - 38), (121)

(122)

Similarly, let there be initially momentum P at the origin.

Then at time t later the current and voltage at x are

C =^fp\P ~
)
Io|j

(***
~ a8

)
1

],
(123)

V = JPir-**
- I 2

*
2 - *)T (124)

The last pair can be written down from the first pair, by

interchanging V and C, P and Q, L and S, R and K.

Observe that the spreading of current due to initial charge
and the spreading of charge due to initial current take place in

precisely the same way, (122) and (124). But the charge due

to initial charge and the current due to initial current do not

behave similarly, because of the change of sign of <r in passing
from (121) to (123).

If we superimpose two distributions of electrification, one

given by V = V ft ,
constant on the whole of the left side of the

origin and up to distance x = la on the positive side, the other

given by V = - V on the whole of the left side except from

the origin to the distance x = -
\a, the result is simply V *= V
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along distance a at the origin itself, or the charge SV a.

Keeping the last constant, say Q, and decreasing a indefinitely,

the result is a finite charge Q at the origin only. The waves

of voltage and current which arise from it are therefore given
on the positive side by the difference of the waves arising from

the two uniform distributions of V before described, which

neutralise one another save at the origin. In this way the

solutions (121), (122) for a point-charge are derived from

(109) and (111), or (115).

But the following way is interesting. We know that

= c" QXC
,
if C is the current impressed at the origin. Take

C == JpQ ;
then C is due to the charge Q impulsively intro-

duced and dividing into two equal parts at the origin. Therefore

(125)
qv dx

This is done by introducing qv/qv, and then noting that the

fir-t q is equivalent to -
djdx.

Now the function in the brackets is already known. For

Z^e-^Vo-O, and e-^^e-^o^-ajs/flS)*}, (
126)

qv qv

by (59) and its extension in 367, before done, equation (91)

leading to (101), or (105) to (109). So (125) produces (122).

The voltage formula to match may be derived thus,

qv

which is (121).

Knowing the voltage and current due to initial charge or

momentum at a single point, we can at once write down the

integrals expressing the voltage and current arising from any

given initial states of voltage and current. But we do not

want them at present.

The Waves of V and C due to a Steady Voltage Impressed
at the Origin.

372. Now let us tackle the more difficult problem of the

waves of voltage and current generated by a steady voltage

impressed at the origin. It is the combination of resistance
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with leakage that makes this case complicated. But it must
be done, to complete the investigation. If e is the steadily-

impressed voltage, started at the initial moment, we have

V = e -*! = e e
-
^(cosh

-
shin) (x/r) (p

2- cr
2

)* . Pf

, (128)

by making ^ the operand, and separating even and odd

powers of x. Here the cosh operator contains only integral

powers of p, and the potence of p is therefore p. So

V = e -*(oosh (*/r) tf-jy - skinQE/W-O'y _ ^,1
<

_

I (jr-o*y )

(129)

A part has been algebrised. In the rest, the shin operator
divided by the radical involves even powers of p only. Also

(130)

by the binomial theorem. Algebrising, we get

-where en
= sum of first n + 1 terms of e^- A point to be noticed

in the above that in (ISO) we introduce pp~
l

. The differen-

tiation should be done afterwards, as in (131). Let

-then by (130), (131),

(/ _
a*)* <Pt & &'. v

(KK)i + pU . (133)

Now when the shin operator works on this, the potence of

p is p again on the first term in (133) on the right side. So a

second part is algebrised. Putting the two algebrised parts

together we shall obtain e e~ rx
,
where r = (RK)*. Therefore

(129) becomes

; (134)

or, in a more convenient form,

(XS5)
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where the U's are time functions, of which the first is as in

(132), whilst the rest are derived from it by

Un = (o-
2 -^2)U . (136)

It is quite easy to derive Un ,
because p*en = p*en_v Thus, to

illustrate, first
(o-

2 -
/>

2

)

nl = o-
2 '1

,
and then,

(cr
2 - p*)\ = 0-%

(o-

2 -
pje, = <r*e2

- 3o-y , (tr
2 -

jPfe<
= o-<V4

- S^e, + 8<rV,

&c., &c. So we have

o-
2 1 . 1 o-

2
, o 1 . 1 . 3 o-

4

and so on. I regret that the result should be so complicated.

But the only alternatives are other equivalent infinite series,

or else a definite integral which is of no use until it is evalu-

ated, when the result must be the series (135), or an equivalent

one. In it, the term e e~ rx
represents the steady state, all the

rest ultimately vanishing.

As regards the wave of current, there are several ways of

obtaining it. The one analogous to the above goes thus :

C =

=
^-P\P

~
-)(cosh

-
shin)V - cr

2

)*.
(̂ r^, (137)

by first making e/>* the operand, and then introducing

(/>-<r)/(p-<r).
We now have the potence of p in the shin

operator divided by the radical equivalent top. This algebrises

a part. For use with the cosh operator, we have

(
138>
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Using (138) in the previous equation (137), we see that the

potence of p in the cosh operator on the first part is again p ;

and as regards the rest, we have a series of functions derived

from W according to

Wn
= (o-2-^)W . (HO)

So, finally, putting together separately the parts independent
of the time, we obtain

'
--

As before with the U functions, the W functions are easily

developable.

Analysis of Transmission Operator to Show the Deforma-

tion, Progression and Attenuation of Waves.

373. I shall now explain another way of algebrising the

operational solutions, which is, perhaps, the simplest possible

in the ideas concerned, and also sometimes in the execution

thereof. Say we require to find the wave of voltage generated

by impressed voltage at the origin ;
that is, V = ~ qx

e, where e is

a given function of the time. Practically, e is suitably selected

to ease the work. As an example, in passing, take

= * e-/*Io(<rt), (142)

where e
Q

is constant (zero before, steady after t= Q). We can

see at once that

because we have already found the effect of t~qx on the function

in (142). See (126) above.

Now, in the distortionless case, when <r = 0, if also R = 0,

K = 0, we have q
=

pjv. Therefore, if e =/(*), we have

V = r**/"/W -/( -
x/v), (144)

by Taylor's theorem operationally considered. That is, the

voltage impressed at the origin travels out at speed v without

any change whatever.

But if there is resistance, and also leakage to balance, so

that cr = still, then qv=>p+p, and

V = t-Ve = -P*l'<-P*l'e = t-Pxlvf(t-x/v), (145)
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Thus the disturbances impressed at the origin now travel

out at speed v and attenuate according to -& in the interval,

because t = x/v is the time of transit from the origin to x.

At the same time the wave of current is C = V/Li?, the current

and transverse voltage being in the same phase and in con-

stant ratio. This is the beginning of the theory of the dis-

tortionless circuit, which I recommend every electrician to study
in full detail, as an introduction to electromagnetic waves in

general, since it casts light in the most obscure places. It

allows us to understand electromagnetic waves mathemati-

cally not merely as a collection of formulae, sometimes dis-

agreeably complicated, but in terms of physical ideas of

translation, attenuation, distortion, absorption, reflection, and

so on. I beg to refer again to the portions of Chapter IV.,

Vol. I., which are devoted to the subject of waves along wires.

It is obvious that an electrician who aims at telephony through

very long cables by methods which violate the conditions

under which it is possible, is only wasting his labour.*

There are only two ideas concerned in (145), viz., the pro-

gression of the wave, and the uniform attenuation which

occurs by absorption in transit. If o- is not zero, there must

be a third process involved. This is the partial reflection that

occurs to every part of a wave in transit, whereby its parts are

redistributed, or the wave shape is deformed or distorted. It

follows from the distortionless theory that when o- is not zero,

we still have propagation at speed v, and still have the attenu-

ation factor e
-
P l

. It therefore suggested itself to me that in

-*** r*-*
-

te
2 -"-2)-^A, (146)

the operator containing p should be expressed thus,
_^ _

ff^x/v = -rxivY(p-*) 9 (147)
* This refers to the proposal of Mr. W. H. Preece, in his paper at the

Liverpool (1896) meeting of the B. A.,
"
Electrical Disturbances in Sub-

marine Cables," printed in full in The Electrician, September 25, 1896,

p. 689. Mr. Preece seriously proposes, for the furtherance of long cable

telephony, to bring the two conducting leads as near together as possible,

separated by a piece of paper, in fact. This will reduce the inductance to

a minimum, and increase the permittance to a maximum. Both results

are entirely antagonistic to telephonic transmission in long cables. Is

there a single electrician, theoretical or practical, who will support Mr.

Preece ? However, the paper is not more remarkable than some of his

previous ones on the subject.
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where F(-J

)
is a series in rising powers of p-

1

, having unity
for its first term, because when <r = 0, F=l. Say,

F = 1 + F^cr/p) + F.2(o
2 + F,(<r/p)' + . . . , (148)

so that

V = c*e = e-P*e -F* (l + F> T + F2
^ + . . .}j*e. (149)

If this is possible, the algebrisation will be immediate.
First carry out the operation F. This will effect the rear-

rangement of parts. Then carry out c -**/*. This will do the-

translation. Finally, the factor e~P* will attenuate properly.
It does not appear from the operator in (146) that the

expansion in inverse powers of p is a natural one. But it

goes well. The F's are simple functions of #, of which the

first three are

o-x oV <rx <rV

How to obtain these will be explained separately. Supposing
them known at present, we can show the working of (149).

Three Examples. The Wave of V due to impressed

Voltage, varying as e~^
f
f""^8

,
or steady.

374. The simplest case is eef* = eQ , or e = e e~ pt
. Then-

(<r//>)
nl is the same as (o-t)

n
/n, so the F series is algebrised.

Then the next operator turns t to *lf if ^ means t-x/c.

Therefore,

(151)

expresses the complete wave of voltage. Or,

f/2r [2

Observe that V has the same value at the wave front as at

the origin, at any moment. This is because we have chosen

V at the origin so that it shall be so. The natural attenua-

tion from origin to wave front is e
~
P 1

,
when t = x/v, and this

is just the law assumed for the variation at the origin. In

the distortionless case the curve of V is a straight line all the

way up to the front, where V drops to zero suddenly. But it
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is not generally a straight line, even when V is the same at

the extremes. It is easy to see that if e subsides faster than

*~ pt
,
the voltage at the wave front will be greater than at the

origin ; and conversely, less.

Next, let e be constant, zero before, steady after t = 0, then

we have to integrate d* once, twice, &c., according to (149).

Thus,

where we have put ^ for t, as before explained. Collect

together the terms involving ^ ;
that is, <& e

~
?xlv

. Then-*>
--<><

F^+F+F^^ ..., (154)

where e'n means the sum of the first n + 1 terms of cptl .

This is an alternative form of the solution (135) above. We
conclude that

-rx = -
px/v{l + Y^lp + F2o-

2

//)

2 + ...}, (155)
so (154) may be simplified to this extent. When cr =

/>,
then

r = 0; therefore,

As a third case, let etP* = e e
fft

,
where eQ is constant. Then

.0 = <?

-K'/3
, subsiding according to the natural leakage law.

We have now to integrate t
fft in (149), instead of e^. That

is, instead of (153) we have the following :

V-^er^c^^P^
-

1) + Fa (
^ - 1 - o-tj +

...};
(157)

or, collecting the terms involving e
ff\

where e"n is now the sum of the first n + 1 terms of e "^.

But use (156). Then in the first portion of (158) we have

and therefore

V = .oC
- Kt

''
s -^-^{F1 + F2

.1
" + F3 .2

" + ...}. (159)

This is an alternative form of the solution (115) of the same

problem.
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An important reduced case is cr = />, or no leakage. Then

< =
e, and is steady. We get

V = e - ee
~
^{F, + F^" + F/2

" + ...}. (160)

If we desire the expansions to be entirely in rising powers

of 1 -
xjvt, like (152) in fact, then the operand fPt or t

fft should

be expanded first, and integrated term by term. Thus instead

of (153) and (154) we shall get

Now rearrange in powers of tv and we obtain

This is when e is constant. And in the other case, instead

of (157) or (159) we obtain

where <? is constant. It follows from the previous equation

by changing e to e
Q ,
and putting p = a- inside the square brackets.

Expansions of this sort, which are so easily obtained, and
in a variety of cases, are useful in calculating the initial stages
of the development of waves, whether due to impressed force

or to an initial distribution of charge or current. It is not

desirable, then, to exhibit the e~
rz

term separately.

Expansion of Distortion Operators in Powers of p~
l
.

375. In the method of 374 we require the expansion of

the operator e
~

(P
2 ~

*?)**/ in powers of p~
l
. This is obtainable

by expanding it in powers of o-
2
. Simplify by removing the

-signs. Put -x/v = y, and-o-2 = s
2

. Then, by Taylor's

Theorem,
A =^.^ _ fD^+rt (164)
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if D means d/ds* t
and we put s = in the differential coefficients

after they are developed. This process will be found to be

very laborious, owing to the rapid elongation of the expres-

sions for the differential coefficients, several of which are

required before the law of the expansion can be recognised.

But the waste work can be avoided by observing that differen-

tiation to p
z
produces the same result as differentiation to s

2
;.

that is, D may signify d/dp*. Then we see that s
2

may be

put = in the operand before the differentiations. That is,

s
a d

,

1 s
2

il s
2 d 1-++-- (164A>

There is now no waste work, and the result is

+ i(OYi-L
2/> [2\2^/\ yp

where the function in the
{ }

contains p inversely only.

If we interchange s and p we shall obtain another expansion
of A. Numerically considered, if one is convergent, the other

is divergent. But we are not guided in our choice of the form

(164B) by that consideration, but by its havingp in the denomi-

nators, so that the integrations can be at once carried out as

in 374. Besides, we cannot use the other form of expansion
in our application, because s

2 has to be negative then, which

causes failure. What is important here is to recognise the

law of formation of the coefficients of the powers of s
2

y/2p.
We obtain the rule by observing how a differentiation with

respect to p derives any term in the expansion from the

preceding one. So if we write

A = ^ll s2// -i/^Yr 1
(
s
*

y\r \
X 2/? [2\2p/

*

|3 \2/?/

' 2 +
'"/'

we shall obtain ?'3 ,
?'4 , &c., by this simple process :

ra 133
3 12

1
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It almost explains itself. We start with the coefficients in ra,

and multiply them by 3, 4, 5 respectively, producing the

second line, and add them as shown to produce the coefficients

in /g. These, again, multiplied by 4, 5, 6, 7 and added on,

produce the coefficients in r
4

. And so on. Thus

r=l- + - r =1- 10
+ -^ - 105 105

py PY W py

c., &c. Guided by this rule, we can see that the expansion

(164c) is really a series of Hm functions. See equation (3)

* 336. For, by that formula,

(164D)

and so on. This makes

(165)
But the above numerical process is sufficient.

We also require the expansion of A/(/r + s
8
)*. Call this B.

Then working in the same way, we shall get B by (164A), pro-
vided we use the operand yp

/p instead of yp
. The result is

As a verification, derive the A series (164c) from the B series by
differentiation to y. Comparing the two series, we see that

the series for B/> is obtained from that for A by shifting all

the r functions one term to the left.

Now, in the application, for y put -x't v and for s
2

put -o-'
2
.

Then A and B are expressed by

.
(T

2X 1

2 V2/W '3 V'A

(167)

+44^1 IT,
+-...},

(Ittj
P * 2/' _

where

'i- 1** '.-+=*- '3
= l +

6^^ +^, (1G9)
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&c. All signs are now positive in the r functions. Finally,

if we arrange in powers of o-/p, so that

p p

(170)
p p F

then the F's and G's are functions of x only, given by

F =

2*{8

3

.

, -, 2 ^-, 3
2

e. (172)
_

where the coefficients are picked out from the r functions.

Example. The Current Wave due to Impressed Voltage

<? e~ Ki/s at the Origin.

376. It is with the expansion B that we are concerned

when dealing with the wave of current generated by impressed

voltage. For the current due to e at the origin is

(173)

q Lv qv

f -pt .- (p"
- v^xlv pt

This is developable by the B expansion in the same way as

the wave of V in 374. One case will do to illustrate. Take

etfi = e c.

ffi

,
where e is constant, so that the voltage impressed

at x = Q is e- Kf/s
, such as would arise from the initial distri-

bution of transverse voltage V = 2^ on che whole of the left

side of the origin. Then we may put pl(p a) for
fft in the

operand, and produce

(174)
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-which develops at once to

Gs .K..; (175)

or, in terms of x and t,

(176)

This is an alternative form of the compact solution (101).

\Ye conclude that

1 + o-^G, +^G2+ . . . = U<r(<?
- *>*)}. (177)

Since the sign of x may be changed, the coefficients of all the

odd powers of x must vanish in (176) and previous equations.

^Ye might, in fact, have started using cosh gar instead of -9*.

We may also interchange cr 2 and - o-V/v
2 in (177), or <rt

and zoM'/i'. This makes o-^ become icr(t + a:/v). But for the

reason just mentioned in-(t
-

x/v) will do as well. That is ia-t^

So by (177),

/2 -|...., (178)

where the G's are known functions of x, as above, whilst the

g's are functions of t instead. They are obtained from the

functions of x by turning a/i-
to t/i,

and then multiplying by

i, i
2

, &c., for
fflt y.2 ,

&c. Thus, by (172),

So in the expansion (175) we may substitute these g functions

of t for the functions G of x. This is a very curious change.
The modified form of solution arises directly in another way
of developing solutions, which will be referred to later.

To put connected matters in one place, it may be mentioned
here that if we arrange the solution (175) in terms of powers
of

o-jc/v as they occur in the G functions, we shall obtain the

form
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Compare with the expansion (99), 367. That is also

arranged in powers of o-.r/v, though only even powers. But

it is the ? functions of crt that occur there, whilst now we

have the I functions of vtr or <r(t
-

,r/r).

Collecting identities conveniently for memory, writing t for

a-t and x for
<r.i-/t>,

we have

-
.T) + -I.,(-a-) + ... (179c)

(f

and in these the signs of x and t may be changed. Also, by

interchanging t and .n,

P,H + .. (170B)-

t

^(t
+ x) + ...

9 (179F)

in terms of oscillating functions, where the signs of x and t

may be changed.

Value of (p
2 - <r

2
)

nI
(<rt) when n is a Positive or Negative

Integer. Structure of the Convergent Bessel Functions.

377. In the method of developing the complete wave of

current from the formula for the current at the origin followed

in 367, we had occasion to use the expression (yr
- -'2

)

M1 I
(<rt),.

and its result in terms of Pm (<rt),
m being positive and integral..

It may be asked how things work out when m is negative and

integral ? It happens that a comparison between two of the

formulae previously obtained furnishes the answer, so that it

is worth while indicating the result in passing. We found

in 367 that

and previously, equation (36), 354, that

r^-ra
= IoH). (181)

(p-
-

<r)-

Now in the last, turn o-
2 to o-'

2

(l aP/vH
2

). Thus,
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Comparing the last with (180), we see that the resultant

functions are the same. Oi: course, on the left side of (182),

t explicit is treated as a constant. Now we can easily make the

operand on the left side of (182) be I (cr), as in (180). Thus,

P

f 1 , ^Y!?\*
^_^/ \ ~V-<r*J

by using (181) again. So

(184;
jr

- o-- J

where we put cosh for exp because the resultant function is

even as regards ..-. Now expand. Then

^ (185)

So, comparing similar powers of .r, we see that

I (fft) ' (186)

which shows the relation required. For we know already that

, (187)

this being equivalent to (97). Therefore, equating the right

members of the last two equations, we obtain

(p*
- O-PoOrt) = - PH(<r*), (188)

Alt

when w is a positive integer. Thus, w'.ilst (jf-o
2
)" leads to

Pn ,
its reciprocal leads to *

2KP n , being positive in both cases.

There are very likely easier ways of getting (188). The

interesting thing in the above is the way it comes out from

such very dissimilar operational solutions as (180), (182). To
verify our constants, take n = l. Then

This is easily developed in tli3 way done before many times,

and the result is (<rF/ fflP^o-t),
in accordance with (188). On

the left side of (185) we have differentiations only, on the right

side integrations, only.
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As regards harmonisation with the vanishing of (p
2 -

cr)*P ,.

which seems to assert that a repetition of the operation

(p
2 -o-2

)* will still produce 0, whereas (>
2 -<r2

)P is really

-la-
2
?!, that is easily done. What (p

z

-o*)*P really repre-

sents is the impulse pi ; so a repetition of the operation

produces

(P -o-2)l =^1 -o =- X - -gi- -
i

the third expression being got by algebrising the second

through the binomial theorem.

It is worth pointing out here that these P functions furnish

the readiest way of exhibiting the structure and connection of

the Bessel functions. Thus, let D mean d/dy. Then

Therefore, if y stands for (Jo**)
2

,
we have

I (rt)-P --
1

. (192)

It is now easily to be seen that

D-P = L, D-P.-Jp. (193)

when n is integral. Also

!>*) =^Pn
= 2,KDP = y-lD-P , (194)

when n is integral. But if n is not integral we do not have

equivalence of differentiations and integrations in the way ex-

pressed in (194). Since, however, by (23), 338,

generally, we do have

n(rt ~Y n
~ V '

*
m*

for any value of n from - oo to + oo
, provided that D~nl =

/,"/
n

generally, as well as when n is integral. This matter will

be treated separately.

Analysis Founded upon the Division of the Icstantaneous

State into Positive and Negative Pure Waves.

378. Another way of treating the general characteristic of

V and C is founded upon the division of any initial state into-
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two waves travelling in opposite directions. If V and C be

the initial states of V and C, and

= i(V -Lt-C ), (1)

then U is the positive wave, and W the negative wave, at the

initial moment. If Y = LrC the initial state represents a

positive wave only ;
if V = - LrC ,

then a negative wave only.
If there is no waste of energy, that is, if R = = K, the state

at fc'nie t is got by shifting U through the distance vt to the

right, and W through the same distance to the left. That is,

if U is/(.r) and W is
//(.r),

then

U =/(&-!), W=y(x+vt) (2)

express what U and W become at time t later. Their sum
and difference will show the real V and C.

Going further, if R and K are finite, but balanced, so that

o- = 0, the same division into a positive and negative wave

occurs, but there is, besides the translation, attenuation due to

the waste of energy, so that

U = -
i*f(x

-
vt) ,

W = e
-
*o(x + vt) (3)

express the waves at time t.

If o- is not zero, the theory of the distortionless circuit with

resistances and leaks inserted shows that (3) always represents

the phenomena in the first stage, approximately. How long
it will remain fairly true depends on the amount of distortion

in the interval due to the unbalanced wastes due to R and K
respectively. It is clear, then, that the quantities U andW may
themselves be made the objects of attention in a mathematical

treatment differing from the preceding. At the same time,

instead of x and t we should make x - ct and x + vt be the

independent variables. To show how to do this, go back to

the connections of V and C,

-AV = (R + L/>)C,
- AC = (K + S/>)V, (4)

where A and p are the x and t differentiators. These are the

same as

(5)

(6)

Multiply the second of these by Lr, and then add and sub-

tract these equations to form two new ones,

-
i-A(V + LrC)/* =XV + LrC)^ -

<r(V
-
LrC)e^, (7)
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V)e^ + (r(V + Li-C)^ (8)

or, which are the same,

(^ + rA)U = o-W, (p-i;A)W = crU, (9)

if U = l^(V + LrC), W = |e^(V-LrC), (10)

Going further, let

=
Jcr(* + #/<), w = la-(t-xjv} (11)

be the new independent variables, then

d _p + rA d _p- rA
.- -

,
_----

,

(ill CT AU) OT

consequently the equations (9) become

The third of these is the characteristic of U (or of W) obtained

from the previous two connecting equations.

It is easy to see that the mathematical expression is now

simplified to the uttermost. All solutions have, except at

sources or places of imposition of external influence, to satisfy

the new characteristic. The general solution is easily found.

Let a be the u differentiator and /3 the n- differentiat n*, so that

(a0-l)U=0. (14)
Then

_ 0/a0 _/ x
1 1 \0-~i- L+++ '"

Here O/a/2 is any function of u and which when operated

upon by af3 is made to vanish. This can only be F(u) + G(ir),

the sum of any function of u and any function of w. So

is one form of the general solution. We can now see how it

works out and examine some special cases.

In the same way we can see that the general solution of the

partial differential equation

where the d"s are any number of independent differentiators,

with respect to the variables a*,, xz,...xn , may be written thus,
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if <l stands for the product of the d's, as in (17), and the F's

are arbitrary functions of all the variables save one ; thus F!

a function of all save xlt F.2 of all save x.2 , and so on. If the

operand 2 F is simply 1, we get the fundamental solution

U = l+*4- -+-** + ..., (19)w w
if x is the product of all the variables. But the treatment of

(18), for the derivation of other solutions, will be sufficiently

shown in discussing the case of two variables.

In (15), (16) we apparently generate U out of nothing.

But nothing can really come out of nothing. And, in fact,

the is not absolute zero. It can be seen to represent an

impulsive function. Since there are two variables, a function

which is impulsive as regards both is $/ + cu/, where/ is n

function of u only, and // a function of ,r only. Now if/=aF
and </

= ,3G, this impulsive function is afj(F + G). Inspection

of (15), (16) will show that this is the actual form assumed

there. Similarly, in solving (17), by (d
-
1)U = 0, and therefore

= as above in (18),
{/ 1

the means the impulsive function

Simplest Solutions. Waves of Infinite Length, and of

Length 2-r/o-.

379. Coming to the consideration of the instantaneous

electromagnetic waves U and W, there are a few specially

simple solutions of the characteristic which should be noted.

Suppose that U =
<}>(u + ir),

then a/^U = U shows that
<j>"

= <.

So there are just two cases, U = V
'

f and U = V c~ <rf

,
because

crt = it + n\

Considering the first, we derive the negative wave by
aU = \V. This makes W = U. The waves are identical as

regards V, and oppositely identical as regards C. That is, the

actual C is zero, and the actual V is V = V e~P* e"* = V e- Kts .

This means that the uniform distribution of transverse voltage

V may be regarded as the sum of two electromagnetic waves

whose electric forces are similar and whose magnetic forces

are opposite.
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In a similar way the solution U = Li'C e r fft

gives W = -
U,.

which means V = 0, and C = C e
-

P c
- ^ = C t

- Rf/L . The uni-

form current C is represented by two waves, additive as

regards magnetic force, destructive as regards electric force.

From these we can pass to a case which is equally simple

in expression, though far more developed in theory. Suppose
that U =

<j>(u
-

ic).
Then a/3U = U shows that <" = - <. As

before, there are two independent solutions. Combining them,

we have

U = V sin (o-.r/r + 0), W = V cos (o-ar/c + 0), (20)

where the constant & enables us to include the second solution.

Remember that u - u- = a-x/v.

Now U is a positive pure wave, and W a negative wave.

Their translation in opposite directions at speed v will give

the later state of things, except as regards the distortion.

But the last is very important here. The waves are appa-

rently stationary. This means that with the special wave-

length in question, the distortion due to unbalanced R and K
keeps the instantaneous waves unaltered in form and position.

The voltage and current are

V = -/>'V (sin + cos) (o-jc/r + 6),

Lt'C = e-^V (sin
-

cos) (<rj/c + 0).

The larger o- (and the distortion), the smaller the wave-

length. When a- is quite zero we have uniform V and C

subsiding.

Development of General Solution in ?/
wlPm and <r

wPm
Functions.

380. Now take in hand the general solution (16). Let

the operand F + G be 1
,
then

But here uw = i<r2
(

2 - #2
/^) therefore

U = I {<r(t-*V*
2
)

i

:=Io(0. (23)

The new symbol z is introduced for clearness, because the

quantity it stands for occurs so often. We see that the func-

tion I (z) is the fundamental solution, from which to develop

others, unless we use the operator {1
-

(a/*)-
1

}-
1

directly.
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Similarly, if the operand is um/m, then

u- 1 ,

i

^

-

~"

And if the operand is
'"/
w or /5~

m
l, the result is got by inter-

changing u and
,
and is, therefore,

u
-j

p -

.

<
25>

From the above we see that

a (
2
) (26)

is a comprehensive solution, not itself perfectly general, but

perhaps admitting of the derivation of perfectly general results.

The manipulation of such solutions is made rather easy by
these simple properties :

l3
mP (z)

= l P (")
= ormP (z) (23)

t
*

the truth of which may be seen by inspecting (24)

To illustrate, let operand be e
?<

,
then

.)PoW = Po-HPi + p,+ ..., (29)

showing variations of method. Similarly,

Derivation of C Wave from V Wave, and Conversely, with

Examples. Condition at a Moving Boundary. Expansion
of ^.

$ 381. There are two ways in which the solution (26)

occurs, namely, to represent the effects due to given initial

states, and to represent the waves resulting from actions
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impressed at a certain spot. It is with the latter that we

have been principally concerned, so the treatment may be

applied to these first.

We have

VP*= (1 + a)U, LtfCV = (1
-
a)U, (30)

by the definition of U and W. So

V^ =l_a LrC P, LKV* = }-
a V/ (31)

1 - a 1 + a

The last enable us to find the C wave when the V wave is

known, generated by impressed voltage at the origin, or the V
wave when the C wave is known. Here it is to be understood

that the disturbances are impressed upon an empty cable.

For example, let e be constant, and

l
(2), (32)

This is a known case. What is the expression for the V
wave ? Use the first of (31) to find the answer. It is

+ 2a + 2a2 + 2a3 + . . . )P (s)

+ 2,rP
1
+
2jp,

+
2'Jp8 + .

..)(*),
(33)

by (27). The process is easy enough, but how make sure it is

right, seeing that the fractional operator in (31) might be

otherwise treated ? That the result satisfies the characteristic

is obvious. But it must be correct at the limits as well. To
test this, put x = rt, then iv = Q and P =

l, so we obtain

V = <?e-p. This indicates that the value of V at the origin was
e at the moment t = 0, and nothing more. But also, put x = 0,

then w = %<rt t
and (33) gives

...)(<rt). (34)
But

...)(o-0 (35)

is an identity. Therefore V == ec
~

ptt
fft = et~

Kt/S
. Now we know

that this is the voltage impressed at the origin that does pro-
duce the current wave (32) above. See (101), 367. So (88)
is correct, and is an alternative form of (115), 369. Perhaps

(33) is the best for numerical calculation. There are tables

of the In functions at the end of Gray and Matthews' work on
Bessel functions, and the PH functions are closely related.
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We have made use of the usual principle that the charac-

teristic must be satisfied, and also the boundary conditions,

with this extension, that they have to be satisfied when a

boundary is in motion. The outer boundary, x = vt, is at the

front of the wave, and travels at speed v. But there is no

distortion at the very front of a wave. The disturbance there

consists merely of what has been transmitted, and is known

in terms of the disturbance at the origin.

The easy way in which the V solution is derived from that

for C, as above, might lead us to overlook some other con-

siderations. For it might go thus,

(0 + 1)W, LrCeP* = (/8
- 1)W, (36)

therefore, V^ =
j-~j

LwCcf*. (37)-

Now, if we make ft act by integrations, as shown by

^ip =
r^i

p =(1+2/3
"1+ -)Po ' (88)

we shall come to the same result (33) precisely. But in get-

ting (33) we made a act by differentiations. That is the same

as J3 integrations, we know. But if we, instead of as in (38),

use /? differentiations, we get

This is wrong, not merely because the sign is wrong, but

because we have the factors u, u2
, &c., instead of w, w2

, &c.

Now u does not vanish at the wave front on the + side, but it

does on the side. So (39) belongs to a problem concerning
affairs on the left side of the origin, due to a negative voltage

impressed there. We are not concerned with that. The

practical note to make is that we must use a differentiations

or B integrations, as in (33) or (38), in order to introduce

?r
l and not un

,
when we are concerned with the wave sent from

the origin to the right side.*

* There are two points in question. First, a and /3-
1 are equivalent on

the operand Pm(-) x u
m

or x ?r"
1
- Secondly, which way of expanding the

fractional operators should be employed I Answer, so as to get w
m

factors-

to the Pm(~) functions.



334 ELECTROMAGNETIC THEORY. CH. VjJ.

Nevertheless there is some further interest in the matter.

'.Thus, given (0-l)W = P . What is W? It is clearly

indeterminate in its expression, without further information.

But what is the connection between the two principal solutions,

.say Wx and W3 , got by using ft integrations or /3 differentia-

tions ? Thus,

(40)

W^-JjL = -(l + /i +^ + ...)P0= _(po
+ wP 1 +

"2

p,+ ...

1 p \

(41}

To see the difference between \\\ and W
, expand them,

The result is

U+W / 4Ct\
(42)

and for W2 we obtain the same without the first term. So

Wj - W2
= e

<rt

, or, which is the same,

* = P H + *)PI +^P, +
^P.+

... (43)

This 'is an important identity. The argument of the P
functions is z. When x = Q, we reduce this identity to the

old one, (35). We may also write it thus

^=[l + a + ^ + a2 + /?
2

+...}P =(2a
)t

)POJ (44)

where n has to receive all integral values from - x to x .

See also (29) and (29A) above, which make, combined with (43).

p^- (45)

In connection with (33) we may take note of the effect of

alternating signs. Thus, given

(46)

to represent the V wave. It makes V eP* = ee~ fft
at the origin,
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that is, V = e~ nt;L is the impressed voltage. The correspond-

ing current wave may be obtained by the second of (31), which

makes

= 1 - 2a + 20.2 + . . . 1 - 2a + 2a + . . .P

(47)

Also note that we are not restricted to integral values of m
in Pm solutions. Thus, if

(48)

shows the impressed voltage V ,
then the V wave is

(49)

This is done by simply generalising (48) so as to harmonise

with it and contain powers of w as initial factors.

Deduction of the V and C Waves when V is Constant

from the Case V = *e~
K'/3

. Expansion of 4* in I

Functions. Construction of the Wave of V due to any
Impressed Voltage.

382. Now pass on to a further extension. We know that

when V cP* = ec**, the current wave is CeP* = ePQ(z). From this

deduce the current wave when V =
e, constant. Referring to

368, equations (106), (107), we see that the operand efft
e there

used has to be altered to t&e. This is the same as changing the

operator p/(p
-

<r)
in (107) top/(p

-
/>) ; or the same as operat-

ing on the old solution by (p
-

<r)/p
-

p). That is, when the

impressed voltage is constant, the current wave is

(50)
P-P

First put p in terms of a, /?. Then

p-p -

But if we expand this in rising powers of a + /3, the result

must be a series of Pm functions with um as well as wm factors.

This will not do. Besides, we found before that we should
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employ a differentiations or ft integrations. Do so here,

therefore, substituting or1 for /? in (51). We then get

p- p 1 -
1 2/Hx/o-

- a'
2

)

(58)
p/ V CT (T \ (T

that is, a series in rising powers of (2/m/cr
- a2

).
The result

must now be a proper wMPm series, namely, if c = 2/>/o- for

brevity,

i O ^
I O *

(54)

Though complicated, the law is obvious, since the coeffi-

cients follow the rule of (c
-

a)
11

." There is only one thing

needed now, to verify that it is correct at the origin. This

we can do by comparison with (77), (76), 364, where the

value of C at the origin is expressed in a special form. Put

# = 0in(54). Then

= el + c(l
- -c{l! + cl,

-
I, + c% - 2cI4 + 15

+ c
n
I 4
- 3rl, + 3cI6

- I
7 +...}, (55)

the argument of the I functions being art. In (54) it" is z. If

now we write out the first few terms of the I functions, we
shall obtain the previous result (77), (76), exactly. Therefore

(54) is correct.

Continuing the above, find the V wave due to steady V at

the origin, by deriving it from the case V e/^ = e^. In the

latter case we have the solution (33) above. Operate on it by
the operator (52) expanded as in (53). The result is

^, 1^
p-p 1-a

*(l + 2a + 2a'
2 + 2a3

+... )PQ

- c a + 2a2 + 2a : ' + 2a ! + ..." 4 fa2 + 2a3 + 2a4 + . . .

-
(a

:1 + 2a4 + 2a"> +...) + c'-(a
8 + 2a4 + 2a5 + . . .

)

-
2e'(a

4 + 2a' +...) + (a' + 2a"+ ...) + ...}P . (56)
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Arrange in powers of a, and then turn to wmPm functions.

We get

(57)

This is the complete wave. To verify, at x = it makes

V- l + 2i1 + 2 - ll2 + ...(<rt). (58)

Here V =
e, so we have an expansion of t?1 in I functions. It

is an identity.

Furthermore, in the light of the preceding, this is the

process whereby the complete V wave can be developed when
V is given as any function of the time. Expand V P* in the

form 2 AJn(<rt). Then

VcP^ZA^P^) (59)
\n

is the required result. The process of expansion in the Bessel

series is merely the equation of coefficients of powers of <r,

and can be done specially in special cases. But it will be

more satisfactory now to give the general formula.

Identical Expansions of Functions in In Functions. Formula

for (%x)
n

. Electromagnetic Applications.

383. It is a commonplace in mathematical physics to

require the expansion of an arbitrary function in a series of

functions of a given type. The dynamics indicates that a

certain kind of function represents a normal vibration, for

instance ;
and also shows how to obtain every possible variety

of this normal vibration so as to harmonise with the boundary
conditions. Then, since in the real motion there is no limi-

tation to any particular motion, provided it be consistent with

the conditions imposed, a physically-minded man can at once

conclude that every possible sort of motion is included in the

special normal motions, and therefore that an arbitrary function

can be expanded in a series of normal functions. And so it

always is, of course.

But it is not with these expansions in normal functions

that we have to deal at present, but with something quite
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different. If we have f(x)
= 2 An sin nx, a function of x being

expanded in sine functions, to hold good between certain

limits, and to satisfy some conditions at the limits
;
or if we

have f(x) = 2 AnJ (n#), under similar restrictions ; although
these equations are loosely called identities, they are not real

identities.

An absolute identity is such that the expression upon one

side of the equation expressing it can be converted to that on

the other side by mere rearrangement of parts. After cancel-

lations, it means no more than = 0, or 1 = 1
, or x = x, &c.

Expansions in normal functions are not of this sort
; say that

f(x)
= 2 An sin nx, and f(x) i* expressed by a power series, then

it is not usually the case that the coefficient of x on the left

side is the same as on the right side, or similarly for any
other power of x. If it were so, we should have an absolute

identity. This may sometimes occur, e.g., when f(x)
= sin nx ;

but, in general, the coefficients of powers of x in the normal

series assume infinite values. So we do not have identity,

but merely equivalence, under limitations ; for example, the

form of f(x) must be varied in different ranges of the variable

x in order to preserve the equivalence.

But when we say that f(x)
= 2 Anln(#), where In(x) is not a

normal function (or is one only in a changed sense), it is

with an absolute or true identity that we are concerned. By
mere rearrangement of parts, aided by mutually destructive

additional terms, the function f(x) has to be turned to the

form

f(x)
= A.JX*) +AAW + AA(*) + ..., (60)

where r, s, t, &c., and the coefficients A are determined by
the nature of f(x) alone, without reference to boundary
conditions.

Our physical problem indicates plainly enough that the

expansion is either possible in general, or else is the form

from which to derive other series in cases of primary failure.

And so it works out, without difficulty. As an easy preliminary

example of this sort of expansion, consider the function

where n has any value. We have xn
/[n

= en
- en+i. It follows
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obviously that any power series can be identically expanded in

a series of en functions, whether the n's be integral or frac-

tional, save for failures when n is a negative integer.

Now the Bessel expansions are by no means so simple as

the last, but the same principle is concerned precisely. Say
it is (^x)

n
/\7i

that is to be expanded. This function is the

first term in In(#). So if we equate f(x) to In(#), the right

side is redundant in the other terms of IH(^), which involve

xn+2
,
xn+*, and so on. Therefore introduce In+2 . This will

make, with a proper factor, the coefficient of xn+2 be zero.

Then the addition of In+4 with a proper factor will make the

coefficient of xn+* be zero. And so on. Thus,

(62)

|2[ + 2

&c., so all the coefficients become known. The result is

By the mode of construction, this formula is valid for any
value of n from oo to +00. But it fails, or gives a useless

identity, like In = I_n ,
when n is a negative integer. This case,

and its application to electromagnetic waves, will be done sepa-

rately, as will the case of the logarithm. Examples :

1 = (I -2I
2 + 2I

4
- 2I

6 + 2I
8 -...)(*), (64)

}aj=(I1
-8I

3 + 5I
5
- 7I

7 + 9I
9 -...)(*), (64A)

(^)V|2 = (I2
- 4 I4 + 9 16

- 16 1
8 + 25 1

10 -...)(), (64B)

a)/|8 = (I3
- 5 1

5 + 14 1
7
- 30 1

9 + 55 In -
. .

.) (*), (64c)
-

.) (x). (64D)
z2
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To make no mistake about the application, put a-t for x, then
the last formula shows that if the impressed voltage at the

origin is expressed by VQtpt
=

e(<rt)*/J,
then the wave of voltage

generated is

r

^
12 ^-

"

14-'-
*

J

the function In (crt) being turned to (w
n
j\n) Pn (

2 ).

Since (63) is an identity, it does not matter what xn
,
xn+%,.

&c., mean, provided (ab)x
m = axm hxm

, when a and b are

numbers, and m is any index concerned. For in any case the

cancellations bring us to xn = xn . The formula may be written;

more symmetrically, to show the structure. Thus,

jO '1

(66)

It is now perfectly regular from the beginning, and we see

that it is a complete series, because carrying it backward will

only introduce zero terms, [

- 1. ,
j

-
2, &c., being infinite.

Expansion of any Power Series in IH Functions. Examples.

384. Having got the expansion of xn
, we are in fullpobsession

of the expansion of the series 2 Bn#
n

. There may be any number

of terms in this series, and the indices need have no connec-

tion with one another. But should there be no connection

given, the expansion in I functions will consist merely of (63)

or (66) repeated again and again, with various values given to

w, and with initial coefficients B, and we cannot simplify

further. But practically the indices will follow some law, as

unit step or step 2 from one to the next. Then we can collect

terms and get useful formulas. The most important case is

step 1, with for first index. Thus, let

B + Bjftx) + B2
-

2

+ . . . = (A T + AA + A2I2 + .

..)(*). (67)

Given the B's, find the A's. There are two ways. First

equate the coefficients of the different powers of x. This will

give, first A
,
then A1} then A2 ,

and so on. The other way is
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to use the formula (63), and rearrange terms. Either

come to the result

JS B

841

way we

B T + BJ, + (B2
- 2B )T2 + (B.

- 8BJI,

+ (B4-4B3 + 2B )I4 + (B5
- 5BS + 56^5+ ..., (68)

the argument of the I functions being x throughout. But

this does not go far enough to exhibit the law of the A
coefficients. Nevertheless, it is very simple, and is exhibited

in the following table of the numerical coefficients in the A's,

from A up to A 13 :
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from which come e- x
, shin x and cosh x. Compare with (33),

(35), 381, where the special electromagnetic problem is con-

cerned.

smz = (I1 + I3 + I5 + I
7 +. ..)(&), (70)

sin \x = (Ij
- 4I3 + 11I5

- 29I7 + 76I9
- 199IU + ...) (x), (71)

7
- I8

- 2I9
- I

10 + Iu + 2I12) + . . . . (72)

These are constructed by the table. As an example of

application, if the impressed voltage is given by Jsincrt

=V pt/e, where e is constant, then the wave of voltage,,

according to (70), is given by

P
8 + ^P6 + ...)(). (73)

i3
U>

)

As another example, the formula (58), 382, relating to-

steady impressed voltage, may be referred to. The table will

give the development to any extent required. Another

example is

This will make

1+8P,+8p.+ ... (*), (75>

because it is right at the origin, and at the wave front, and

satisfies the characteristic everywhere between.

In the above the step in the index was 1. This includes

step 2, and other cases, by the vanishing of certain of the B's.

But it is now necessary to give the formula for a power series

when the indices are not integers, but still so that there is unit

step from one to the next. For this purpose use (66). Thus,.

-
(n + 2)IB+8 + (n + 4)IB+4

-
. . .

|0 (1 (2
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Now collect the In terms together, and the In+ 2 terms, and

so on. The result is that the coefficient of In is

A - - -?!^^+ \
-4 12 n - 6 18 ""/m 10 m-2 II to -4 12 \n

- 6 18
~~

This is written symmetrically to show the structure. But

it may be simplified to

-
(n
"
6)(n

-
7)(

-
8)(n

- 9)BU_10 + ..., (78)
(i

which also shows the structure, save near the beginning. This

formula applies to all the A's. That is, changing n to n +m
produces An+m . When n is integral, and the first B is B ,

we

obtain the previous results, in (68) and the table.

The series for An must be continued until it stops, by ex-

haustion of the B's in descending order. But if the B series in

2B.^=2AJ.<*), (79)

does not stop, going backward, or with decreasing n, then the

series for An does not stop either. This occurs when the power
series is endless in the negative direction. It is not assumed

that the B series begins with any particular n. Thus the power
series

f(x)=ax-* + bx-* + cx* + dx* + ..., (80)

which begins with x~*- t
will give a Bessel series expansion in-

volving I_.j, I_j, Ij, &c., on indefinitely, whether the series

f(x) stops or not in the positive direction, and the coefficients

A will in either case be finite series. But the series

(81)

which stops at the term .r?, will make the A's be infinite series

when f(x) is endless in the negative direction. And should

f(x) be endless in both directions, we may expect that the

series for the A's may be divergent. But (79) will be an

identity for all that.
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This matter of the endlessness of the An series, when the

original power series is endless backwards, turns up in a

curious form when integral powers are concerned. One

example will be sufficient. Let f(x)
= 1. We know the proper

result already. See (64) above. Or, in (78), let all the B's

be zero except B =
1, and then give n all values 0, 1, 2, &c.,

to find the A's. But in using (79), we may regard the B
series as being endless in the negative direction, and stopping at

the term B x. For
[

1, I

- 2, &c., are infinite, and therefore

B_ 1} B_2 , &c., may have any Unite values without interfering

with the value of the power series being 1. But if we do this,

we shall obtain endless series for the A's. Will the results be

wrong, then ? Test this.

The formula (78) makes A = 1 as before, and then

A!= -B_1 -B_3 -2B_5 -5B_7 -... ,

A2
= -2-B_2 -2B_ 4 ~5B_ 6 -... .

These are the coefficients of I^ar) and I2(#). The first may have

any value, the second also, although the first term is correct.

The explanation is that in virtue of the inclusion of the

arbitrary B's below B
,
we require to include I-^x), I_ 2(a?),

&c. Doing this, we shall find that A_1= -Alf and

A_2
= - 2 - A2 . But I_j is the same as Ilf and I_2 the same as

I2 . So, joining them together, all the arbitrary B's are elimi-

nated, and the true result already obtained is arrived at. Our
formula rejects all the redundancies. Practically, of course,

(63) should be used, with n = 0, and similarly in other cases.

Expansion of a Power Series in Jn Functions. Examples.

385. In another application, to be made shortly, we shall

require the expansion of a function of x, not in a series

of Ia functions, but of Jn functions. The connection is

In(xi)
=

i*J(a/'),
and this makes 3n(x) be an oscillating function.

The expansions are still of an identical nature, and the ques-
tion now is, how to modify the preceding formulas to suit the

changed circumstances. Say that

ZB-ZAJ^-ZEAM. (82)
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We know the A's in terms of the B's. Now find the E's

in terms of the B's. Put xi for x, then the 6rst equation

becomes

2ByM' =2AH^Jn(z). (83)

fe

In this use (77) or (78). The right side becomes

2/B.i- + 2 Bn_2l
- +

1 (n
-
3)BH _4i- + . . .

}
Jm(a), (84)

since i
2 = 1, i* = 1, &c. Now for B rt

i
w write Bn ,

for Bn_2i"-
2

writo BH_2 ,
&c. The result is

" B
tl_2 + 1 (

-
3)B,,_4 + . .

.]
Jn(z), (85)

the required result. That is,

En
= B H + |

B_ + (*
- 3)Bn_4 + | (n

- 4)(- 5)6^ + . . . .

To expand the function in J,t series, therefore, we have merely
to alter all the -

signs in the formula for An to + signs, to

produce EM .

Thus, when the indices are integers beginning with 0, (68)
above becomes

2 BJM!1 = B J + B!Jj + (B2 + 2B )J2 + (B3 + 8BJJ
3

+ (B4 + 4B2 + 2B )
J4 + (B5 + 5B3 + 5B

: )
J5 + . . . . (87)

The same table is to be used, with all signs taken positively.

Examples :

cos x = (J
- 2J2 + 2J4

- 2Je
-

. ..)(x) (88)

1 = (J + 2J2 + 2J4 + 2J6 + . ..)(x) (89)
* =

(
J + 2Jj + 6J 2 + 14J3 + 34J4 + . . .)() (90)

These are done by the table. E.y*, the 34 in the last formula

is 24 x 1 -f 22 x 4 + 2, by the fourth row of figures.

Sometimes the expansions in I functions and J functions are

quite similar, except in the signs. But this is not general.

Thus,

5 + I
7 -f...)(z), (91)

41J
5 +. ..)(*), (92)

2(J1
- J

3 + J
5
- J

7 + ...)(a?), (93)

2(I1
-7I3 + 41I

5
-. ..)(*). (94)
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In treatises on Bessel functions will be found various expan-
sions of the identical kind in Jw functions. They are usually
derived from definite integrals by trigonometrical processes,

and by the properties of Bessel functions. Perhaps this may
be the best way sometimes

;
but I think, in general, the above

method has the advantage of simplicity of reasoning and of

working, besides being comprehensive. The fractional cases,

for example, are done by the same formulae, and these might
sometimes be very difficult by integrals and trigonometry.

The Waves of V and C due to any Y developed in wm Pm(z)

Functions from the Operational Form of V,,ep*.

386. There is another way of obtaining the waves of

voltage and current generated by a source at the origin in

the form of a series of waves of the type c~**P(*)trt. In-

stead of, as already explained, expanding V e/^ in I functions,

and then generalising, we may operate upon the known funda-

mental solution P (z) in a suitable manner directly. Of this

process a special example was given in 382, relating to VQ.

being constant. It can be generalised thus. We know that

V = -**V
,

or Vp = e-*V e.-, (95)

where r stands for (
2 - o-2

)i/v. Now let the operator which

generates a function out of 1 be denoted by enclosing the func-

tion in square brackets; for example, V^^VoC. *]!, Then

Vrf*-.-TV6 *]. (96)
.Now we know that

. W-yT^r or' i =^W 07)

Put this at the end of (96), then

(98>

But we also know that

therefore (98) reduces to

v

the required result.
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Correspondingly,

= [V ]
P

(*), (101)

by (100).

The advantage of conversion of functions to operational

form is that whereas we cannot shift the order of conjoined

functions and operators, we can do so with operators, if we

work properly. Thus, in passing from (98) to (100), we

shifted e-7** two steps forward ; and in passing to (101), we

shifted the fractional operator one step forward.

The structure of (100) is worth notice. It may be simply

shown thus. Let F and G be two functions of t, and [FJ
and [G ]

their generating operators. Then

F = fFo][G ]-
1 G . (102)

This is obvious, being mere mathematical jugglery. But if

we change G to G, a function of x as well as of t, reducing ta

G when x = 0, then F will also become changed to a function-

of x and t. Thus,

.F
= [F ][G ]-iG. (103)

Now, if G satisfies a certain characteristic partial (variables-

x and t),
so does F, by its construction. Therefore F is the-

.-, t solution produced by F just as G is produced by G .

In our application, equation (100), F is V e^, which is any
function of t, and G is P

(-s),
the special function of x and t,

reducing to IQ (<rt)
at the origin. Put # = in (100), and it

makes V P*=[V ^] 1. When x is not 0, (100) represents the

complete wave.

But time differentiations on P
(2)

are complicated. The

proper simply working differentiators are a and (3. Use them.

Put Jo-(a + /3) for p. We can at once eliminate /?, because

ft-
1 and a are equivalent with operand P (z). So put Jo-(a + a-1

)

for p in (100). This makes

p + a p
Therefore (100), (101) become

(105)
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where, of course, the first operator is to be expressed in terms

of a. When this has been done, if the combined operator

acting on P (z) makes a power series, say,

-then we at once get the full development

V o( = 2 A,,'-!
3
,^). (108)

fe

Remarkable Formula for the Expansion of a Function in In

Functions, and Examples. Modification of 386, and

Example.

$ 387. Incidentally, we get this interesting application of

physical to pure mathematics. Take x = in (107) or (105).

Then we expand V ^ in I functions. That is, F being any
function of the time,

l (109)

is its expansion in I functions, provided an is turned to In(<rt)

in the result. First turn F to [F ]l, [F ] being a function

of /?, then put %<r(a + arl

)
for p. Then multiply by (1 a2

)

x (1 -t-a
2

)-
1

, The result is 2AHa
n

,
and is the expansion of F

in I functions, if an means In (<rt).

The theorem is very striking. It is obviously true by the

method employed, based upon a special use of (103), a simple

property; but by pure rigorous mathematics there seems

nothing whatever about (109) even suggestive of Bessel

functions, let alone the result.

Ry using (109), all the previous results of the kind may be

got. It is only necessary to give one or two examples for the

sake of explicit illustration. Say

F _(icrt) _/<ry_/ a
y. (110)

~~~7/T \2P) VfT^V
'

then (109) makes

(i^) =J^oV> (

|n~ (1 + ay+i'

Expand in rising powers of a by division, or otherwise. The

result is the expansion (63), with the variable vt here instead

of x there.
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Again,

a2

+(l+a
2

)

2

Therefore, by (109),

Expand by division. The result is equation (71) before got.

A modification of (100) is just worth mentioning. Though
not wanted, it will serve as a good example of the treatment

of operators. We have

= [V (p
-

so we may put the last result for [V ep] in (100). [V Qt?
-

p)].

means [V ]
with p -

p put for p. And, using a instead, (100)
becomes

^ (us).

One example, different from the former, will be enough. Say

__.
(116)-

Now turn p to p- p, and then put Jo-(a + a-1

) for p. The
result is

a- {1
-

(2/>/<r)
a + a2

}

2 + S
2

(2a/of

Using this in (115), we get

or, expanding by division just the beginning part,

V^'= ??a/1 + *Ea -
a'(

8 - 1^ +^ + ..>(*). (119).
a- I o- \ . <jr o^/ J

This is correct as far as a3
. For, with x = 0, we get the expan-

sion of tpt sin st in I functions, as can be verified by the formula

(68). It will be seen that this is not so good a way as the

other. That is, it is simpler to make V^ instead of V be

the time function under treatment, as in the former method,.

equation (100).
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Impulsive Impressed Voltages, and the Impulsive Waves and
their Tails generated.

388. Although the development of t
n in I functions fails

to give immediately, by the proper generalisation, the com-

plete wave of voltage generated when the impressed voltage

V varies as e~Phn and nis any negative integer, but requires a

particular treatment which will be given ; yet the formula

may still be employed without change in these exceptional

cases to obtain the waves generated by impulsive voltages,

simple or multiple. Thus, let

(120)

This means that V is an impulsive function, the impulse

being e
fl ,

a^ the moment t = 0, because the variation of ^ does

not count in the no time of an impulse. Expand in I functions

by the formula (63). The result is

^l = A(r(r_1 -I1 ). (121)

Now I
x
and I_j are identical when t is finite, but they are

not absolutely identical. The difference is most important

here, being the impulsive function itself. Generalising (121)

in the usual way, we get

the argument of the P functions being z as usual, instead of

the <rt of the I functions. By inspecting the formula for unPn ,

we see that

-'i
pi - (123)

This is the generalisation of (121). It expresses = for all

finite values of u and iv. In fact, we have

^_ _ -

*for any integral value of n, positive or negative, provided u

and w are finite. The difference is merely impulsive, and

may be quite negligible in general. But not when im-

pulses are actually in question, as now. Using (123) in (122;,

<we get

<125 >
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because u-iv = a-xjv. This expresses the complete wave, in-

cluding the head, which may, in fact, be the most important

part. The first term, which is the same as i<r/?l, only exists

at the place w = 0, that is, at z = vt
y
and its time integral is 1 .

The rest expresses the tail, continuous and finite from the

origin to the wave front.

The meaning may be made plainer thus. Put on V steady

at the origin. The result is a finite wave of V, falling from

V at the origin to V e
~ & at the wave front, and then dropping

suddenly to zero. But if we let V remain on only the very

:short time T, and be followed by V = 0, the effect is the same

as keeping on the steady V ,
but followed by a second impressed

voltage
- V

, starting at the moment t = T. The real V is

then the difference of the two waves, and consists of a head,

of depth VT, at the wave front, consisting of the uncancelled

part of the first wave, and of a tail, resulting from the differ-

ence of the two waves. Shortening t indefinitely, and

increasing V ,
we finally come to an impulsive impressed volt-

age. It generates an impulsive pure electromagnetic wave,

in which V = Li-C = oo
,
but with finite time totals, viz., the

same as the impulsive voltage at the origin, attenuated by

the factor c~P* expressing the effect of absorption in transit.

Behind this impulsive wave is the continuous tail. Both are

represented in (125) and previous formula for V. The corres-

ponding C formula is got by

= (a-
1 - 2 + a)P =

^P_,
+

,y
PI - 2P - (126)

"Using (128), this makes

(127)
- 2P

).
J

expressing the impulsive C at the wave front, and the con-

-tinuous tail of C following it.

Without using the preliminary expansion in I functions,

the same results come out of the operational solution (105).

'We have

, (128)
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which makes, by (105),

expressing the same as (125).

After this detailed notice of a simple impulse, the peculiari-

ties connected with multiple impulses will be readily understood.

They are to be done in the same way as continuous functions,

only the terms which vanish in treating the latter must be

carefully retained. Thus,

by (63). If this is V^' (constant omitted), then

This shows the multiple impulsive wave at the front, followed

by the continuous tail.

Similarly,
3

(132)

which, if representing V p
*, produces

the multiply impulsive wave at the front being shown in the

brackets.*

The next case is

-I2). (134)-4

* Since the terms in the brackets are of different orders of infinities, we
may apparently ignore all except the highest, and consider that w~3

/(-_3

represents the impulsive wave multiplied by e^. It is, in fact, the im-

pulse at the origin shifted in position. The other terms, however, are

needed in order that "W and L?-Ce^ may satisfy their mutual con-
nections. Construct the waves U and W, for example, and see that

oU=W, and /3W= U. Similarly with the other impulses in the text which,
have more than one term in the expression of the impulsive wave.



ELECTROMAGNETIC WAVES. 353

After that we require a condensed notation. Say (n) stands

for I_n In . Then the expansions of (^<rt)~
n/\n are

n = 5, 1(5) + 3(3) + 2(1)

n= 6, 1(6) + 4(4) + 5(2)

w = 7, 1(7) + 5(5) + 9(3) + 5(1)

n = 8, KB) + 6(6) + 14(4) + 14(2)

&c. To develop these to Yd* waves, substitute u?
~nP_n/[-

- wnPn \n for (n), and retain the terms which vanish when 10

is finite, in order to represent the impulsive wave at the front.

Tendency of Distortion to vanish in rapid Fluctuations. Effect

of increased Resistance in rounding off corners and

distorting.

389. The object of using impulses, involving infinite

forces acting for infinitely small periods of time, is to be able

to represent with comparative simplicity effects which, con-

sidered finitely, might be nearly the same in character,but vastly

more complicated in expression. Considered finitely, the effect

of a multiple impulse may be thus stated. Let us operate on

the beginning of a cable by an impressed voltage V . Let us first

send a single impulse. It generates an impulsive wave

followed by a tail. In time, as the head decreases according
to e

~
f*

y
caused by absorption in transit, it is the tail that is

the significant phenomenon, the head having practically

vanished. But instead of a single impulse, send a multiple

one. Let V vary anyhow with extreme rapidity in the small

interval T, and then cease. The result is a nearly pure electro-

magnetic wave of depth vr
t travelling at speed v, in which all

the variations in V are (nearly) faithfully copied, but

attenuated in transit according to f.~Pti

. At any distance,

therefore, if sufficiently sensitive means existed of registering

rapid variations of voltage or current, we could faithfully

receive the complicated
"
message

"
sent by V in its varia-

tions, provided they were fast enough. As for the tail, that

would depend upon the time total of V principally, and might
therefore be serious. But if V consists of fluctuations

about zero, the tail need not be of any importance compared
with the head, the different parts of the head producing

cancelling tails. Then we see that the message need not be a
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short multiple impulse, but may be continuous, and still

travel nearly without distortion. The important point here is

extreme rapidity of fluctuation. There is no distortion at the

very front, and little near the front of the continuous wave due

to V steady, so there is little distortion if we cut it short.

By sufficiently rapid fluctuations we use the heads and destroy

the tails. But the attenuator e ~f>t is a serious factor in a long

cable. Self-induction is salvation.

The tendency for all fluctuations, if sufficiently rapid, to be

transmitted without distortion, naturally includes the simply

periodic train of waves. The variation of the attenuation

with the frequency tends to vanish, and likewise the variation

of phase; so that, as the frequency increases, the distortion

tends to vanish, provided we keep only to rapid fluctuations.

Say that V is /(*), then

V=f(t-x/v)e-P*i\ (135;

which is exactly true in a distortionless circuit, all along the

wave from the origin to the wave front, may still be approxi-

mately true in a circuit in which a- is not zero, under the

circumstances stated as regards the variations of V . And it

is to be borne in mind that (135) is always true, in the theory

propounded, at the wave front itself ; i.e., at the place

momentarily fixed by x vt t provided V commences at the

moment t = Q, the value of V is/(0)e~P*.

But there is a distinction to be drawn between the ideal

perfection of a theory and the reality of which it professes to

be an approximate representation, by the usual process of

ignoration. Theories generally fail in application when pushed
to extremes, owing to the ignored circumstances assuming

importance. It is always desirable to develop a theory exactly

when it can be done profitably (this has no reference to

professedly rigorous methods of working), in order to

know what to expect under given circumstances, without

confusion between an approximation to a definite theory,

and the approximation of that theory to the reality, which

is another matter. This has a distinct application here.

When the constants of a circuit are truly constant, as

imagined, the impression of V steadily at the origin pro-

duces a wave in which V falls from V at the origin to V c
~
Px/v

at the wave front (at distance x), and then drops abruptly
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to zero. It is this abruptness that is impossible in reality.

There are probably no real jumps like this in any physical

phenomenon of wave character, perhaps not even in the ether

itself. What we should expect is the rapid, but not instan-

taneous assumption of the full value, or of most of it, as the wave

front passes a place. This means the rounding off of the two

sharp corners in the abrupt jump. First of all will come a slow

rise, then a very rapid one, nearly to full value
; and, lastly, a

relatively slow assumption of the rest of the full value. The

theory of constancy of p and o- substitutes square corners for

rounded ones. To get the rounded curve we must enlarge the

theory, and allow for the variation of the constants of the

circuit. Now, K and S do not need to have any important

change made in their values at different frequencies, because

the conductivity involved in K is so small; but L has a

sensible variation, and K may have a large one, because the

conductivity involved in R is (relatively) so great. This is

important precisely in this question of the state of things at

the wave front. The resistance increases as we pass from the

origin to the wave front in the case of the continued wave due

to steady V ,
and may be largely increased at and near the

wave front. The reduction in L is relatively a small matter,

unless iron wires are in question. But they are no good. The

penetration of the wires by the magnetic force not being

instantaneous, and augmenting the resistance in the way
described, will have the effect of removing the abruptness at

the wave front. The imperfect penetration is a cause of such

a substantial character that other causes having a similar

effect need not be considered.

In the simply periodic case we can fully trace the effects of

increased R and reduced L, taking count of the wire and

external conducting boundary. As regards the state of things

tended to at a very high frequency, it is represented by equation

(135), but with a changed value of p, which increases with

the frequency, being the same as R/2L -*- K/2S. Consequently,
there is a cause of distortion left uncompensated, unless p

should tend to ultimate constancy. Now R, when calculated

by the magnetic theory, does not tend to constancy, since it

varies as the square root of the frequency. But it is not likely

to follow this law for ever. If we allow for the permittivity
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of the conductors it does not. It tends then to ultimate

constancy, after first following the law just mentioned. The

frequency needed, however, is excessive, trillions per second,

or thereabouts, according to an old calculation of mine. This

does not necessarily put the question entirely on the shelf,

however, because in the production of a wave when V is dis-

continuous, i.e., containing a jump, harmonic analysis involves

the consideration of infinite frequency ; consequently, by the

harmonic integrational method of calculation, we are bound

to take count of the extreme tendencies, so far as they can be

determined.

There is no end to elaborations when we introduce minor

effects, involving other considerations than the four constants

of a circuit, and their variation with the frequency. Keeping
to the latter entirely, it may be inquired whether it is feasible

to tackle the problem of finding the real shape of the V wave

due to V steady (a fundamental case) as modified by imper-
fect penetration. It is feasible, but very complicated. It is

far more difficult than the simply periodic case. It is true

that the expressions for the effective E and L at a given fre-

quency are very complicated themselves in that case. But

then the type of the formula for a train of waves remains the

same when R and L vary with the frequency as when they
are constants ;

and since there is no necessity to write out

their full expressions in the wave formula, there is an effec-

tive reduction to simplicity. But the case is different in

calculating a continued wave like V due to steady V . The
harmonic integrational method is impracticable. In the

operational method, on the other hand, we have V = e~5*V
,

where q is (YZ)*, and Y is K + Sp, whilst Z is R + Lp in the

theory of this chapter. There is no need to alter Y, but for

Z we must use the full resistance operator of unit length of

the wires, derived from magnetic considerations, to allow for

imperfect penetration. It is a known function of p, and we

may either treat the wires as mere conductors, or allow for

their permittivity as well. Consequently V = e~qxVQ becomes
a definite solution in operational form, and may be directly

algebrised by similar ways to those already employed in the

practical case of constancy of R and L. But the work is so

complicated that I have not been able to bring it to a manage-
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able form, so I say nothing more about it now, but return to

the main question.

Wave Due to Impressed Voltage varying as e"^ i- 1
.

390. Let us now tackle the postponed case of V eP* varying

inversely as an integral power of the time. Say V c^x $-*, to

begin with. A difficulty arises at the very beginning. We
know already that when V eP* varies asjpl, or $~V(jii ^ ^ s

impulsive, and generates an impulsive head wave followed by
a finite and continuous tail. Now t' 1 is an infinite multiple
of t~ l

/[
- 1. Therefore, if V eP* varies as t~ l

,
with a finite factor,

the result must be V = oo from the origin up to the wave

front, and zero beyond. Put in this way, the problem is not

physically realisable.

Why is V infinite wherever it exists, however ? The mere

fact that V is initially infinite does not account for it. At

the wave front, of course, V must be infinite, but this is not

necessarily of any importance, The practical value of an

infinity may be zero. The real reason whyV is infinite all along,

although V is only momentarily infinite, is that the momen-

tary infiniteness is infinitely impulsive. That is, the time

integral of V from just before to just after = is infinite.

So there is generated an infinitely impulsive electromagnetic
wave as head, and the mere dregs of it make a tail of infinite

intensity.

We may notice here three kinds of infinity, of different

significance. If V is always finite and varies in any way,
the V wave is always finite. But if V contains momentary
infinities, so does the V wave at corresponding points travel-

ling at speed v. Now if fVQ
dt is zero for the momentary

infinity, it has no importance. The infinity has nothing in it.

But if fV dt is finite, it means a finite impulse, generating
a finite tail. Finally, if fV dt is infinite, the impulsive wave
is infinite, and so is the tail. This will continue for ever, if

V is kept on, though finite save initially. To restore finiteness,

we may send an infinite negative impulse. It can never

catch up the first impulse, of course, so, between the two

impulses, V must be infinite, but it may be finite in the rear

of the second impulse, if of the right sort.
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There are also infinite impulses of higher orders, and

multiple, but one is enough now. In the case of V eP'x t~l
,
to

have finite results we must cut off the first part of V . Say

by having V ^oc
(t + r)-~

l

,
where T is small and positive. The

wave is finite now. But a fresh formula will be wanted.

There is another way which is neater, and which allows us to

use the old formula. Cutting off the beginning is the same

as superposing the beginning infinite part negatively without

cutting off the beginning positively. In the limit this means

sending an infinite negative impulse initially to cancel the

infinite initial impulsiveness of t~l
. The result is finite now,

except at the head.

If

and the series on the right be differentiated with respect to n,

the result is another wave solution having a different gene-

rating V . Similarly, by further differentiations with respect

to n, we generate other solutions. These derived solutions

differ from the original, inasmuch as they are due to impressed

voltages which cannot be expanded in the form 2 AnIn(o-),

but can in series involving In and its differential coefficients

with respect to n.

Thus, differentiate t
n
/ n with respect to n. The result is

(137)

if g(n) means the reciprocal of |, and g'(n) is its derivative.

When n is a negative integer g(n)
= Q, and g'(n) is finite.

Then (137) may be taken to represent a function which is

finite, and varies inversely as a negatively integral power of t,

together with an initial impulse. The function, for our pur-

poses, only begins at t = 0. Say n = - 1
,
then we get

(138)

The initial impulse is infinite, and negative, so it may destroy

the infiniteness of the wave generated by fl alone. It does

so, as W3 may see by developing the wave.
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Use formula (63), or

+ 4)l,l+4 -.... (139)

Differentiate to rc, and then put n= -1. We get

X + (Jo*)-
1 = lU - 1\ -ll + |I3

-
|I5 + jU7

-
.... (140)

where X is the initial auxiliary impulse given by

, (141)-1

and the accent means differentiation to n. Thus, I'_1 means

dljdn, with 71= - 1 after the differentiation.

Consequently, if the left side of (140) represents V eP{
,
the

wave it generates is

(n= 1)

by generalising the I functions in (140) in the usual

way.
Like (139), the derived equation (140) must express an

absolute identity. The terms on the left side must be

repeated on the right side, and the rest on the right side

must come to 0, like life. To verify this, differentiate

In to 7i. Thus,

I'n
= In log ^t + (Jrt)V(n) + (J<rt)

w
+ ..., (143)

from which

I'_! = I_! log Jo-i + ( Jo-0-
1 + (Jo-0^) + (Jo-0

3^ + . . . (144)

l\
=

I, log Jcrt + icr^(l) + (Jo-0
8 + (Jcrt) + .... (145)

!_. c.

Taking the difference, we obtain

!'_,
-
F, -X + (J^)- + (1-0 + J

(-

3

+
5

+ .... (H6)
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Comparing with (140) we see that

Here we have an identity of the original kind, a power series

expanded in I functions. Its truth may be now verified by

the same formula (63) from which we started, or, more easily,

by (68).

But (147) by itself is of no use. The terms omitted from

(140) are vital in the electromagnetic wave problem we started

with. Equation (147) may, of course, be generalised to a

wave, if the left side be taken to represent V eP*
;
but that is

another question. It is (142) that is the generalisation of

(140), and requires development. The differentiated part is

111 C
so the full wave is

Vf^^iog^J+ffp.log*e
(

- 1 w v

-
..., (148)

-^i-ia- ..... (149)

This is complete, and is finite everywhere save at the wave

front. As regards the values of g'(n), they are

r^z, (150)
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when n is a positive integer. Also, on the negative side, it is

easier still, thus,

(151)

Xot being able to do everything at once, I must defer the

proof of these side results. They may be found in treatises,

truly, but the treatment of the subject in high mathematical

works is not of a nature to encourage physical students.

What is necessary for physical purposes can be more simply

given. Taking the constants for granted at present, we may
collect terms involving y, and produce

1-1 w v

3 it* 5u-5

I have given a good deal of detail in this case, in order to show

explicitly how the cases n = -2, 3, &c., may be similarly fully

developed. Particular attention must be paid to the impulsive

terms if real electromagnetic waves are wanted, otherwise the

mathematics is useless. Nothing would be more natural at

first than to omit the impulsive term from both sides of the

equation, and so have apparently a finite wave (except at the

front) arising from V^P* varying as t~
l

. All conditions would

seem to be satisfied, including an apparently identical expan-
sion of t~ l in I and I' functions ;

but the initial momentary
failure of this expansion would be fatal to the electromagnetic

vitality.

Wave Due to V varying as e~Pt
logt.

$391. Another case of "transcendental" character occurs

when the impressed voltage varies as ~Pt

logt. The logarithm
of t cannot be expanded in a convergent power series, and
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therefore also not in a series of I functions. But log t is the

value of the differential coefficient of t
n with respect to n when

n = 0. So if V cP* = e log ^a-t,
the wave generated is

where n is to be put =0 after the differentiation. Now

develop, using the values of g'(n) already given, and we shall

come to a numerically calculable formula.

Or thus. By (137),

^ = log* + y, whenw = 0, (154)
dn

\n

from which we see that logt + y is expansible in I and I'

functions. But 7 is a constant, and expansible in I functions

itself. So we get an expansion of log t in I and I' functions,

which can be generalised to make an electromagnetic wave.

The fundamental expansion is

log Jo-
- -

y(T
- 21.2 + 2I4

- 2I6 + . .
.)

where the coefficient of 7 is equivalent to 1. If then, we
have V e^ = elog|(r, where e is constant, the wave generated is

where in the last line, for example, (w
6P

6)' means (
wnPn)'

with

n = 6. To develop the last line, we have

(157)
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Consequently (156) becomes

5w*p 20if p _ \

lal pjT
[,,'(0) + uwff(l)y(l) + uWg(2)g'(2) 4- ...]

]- &c -> (
158)

in which everything is known.

It is to be observed that there is nothing impulsive about the

logarithm of t. Its initial momentary time integral is zero, so

no impulsive terms occur in the wave, although the value of

V at the wave front is infinite.

Also observe that by differentiating the V wave with respect

to * we can obtain the wave due to the impressed voltage

similarly differentiated. At first sight this looks as though a

finite wave arose when V e^ varied as t~l

,
since ^logi = t~1 by

the differential calculus. But that is not true here. The

function log Jo-t
is zero before and existent after t = 0. So

p(logj<rt . l)
= log J<rf .pl+tr

l
. (159)

This is the true differential coefficient, since it includes the

initial impulse. Therefore we shall by time differentiation be

led to the wave generated by V eP* varying as t~l and the initial

impulse.

Effect of a Terminal Resistance as expected in 1887 and as

found in 1896.

392. Now for a little change, to break the monotony inse-

parably connected with regular developments. It is grievous
that they should be so dry, but it is necessary for some one to

do the work ; though, of course, there are cynics who may
say they do not see the necessity ; and, in fact, it is easy to

become cynical oneself after, say, an attack of influenza, which

is a demoralising disease, itself unnecessary without question.

We need not depart far from the preceding environment to

obtain the change of air and scene desirable for reinvigoration.
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Leaving the subject of the development and progress of waves,
let us consider in some degree what happens to them when

they arrive at the end of the guiding circuit. The proper
treatment will differ materially according as the waves are long
or short. If they are really long without question, as in tele-

graphic and telephonic applications, and further still, we may
sum up the action of terminal "

apparatus
"

in the form of a

terminal condition, say, V = ZC, about which a good deal

was said in the last chapter on diffusion. The treatment is

quite similar when self-induction and leakage are included,

with extended meanings of the symbols and operations. But

we need not go into that now, except to remark that long
waves are essential, because such an equation as V = ZC, when
constructed in the usual way to represent the action of a set

of condensers, resistances and inductive coils, only does so on

the hypothesis of instantaneous action and reaction between

the different parts of the apparatus.

But it may well happen that this procedure is insufficient.

It must certainly become insufficient when the waves are

shortened sufficiently. As an extreme case we may imagine
the wave length to be only a fractional part of the size of

the apparatus, when clearly there is no opportunity for any-

thing like an equilibrium theory (in a certain sense) to be

established by mutual actions, which are really the resultant

of waves transmitted to and fro at finite speed between all

parts of the apparatus. A resultant terminal condition of the

form V = ZC is still obtainable ; but the form of Z will be

quite different, and much more complicated.

Take the very simplest case of all for initial illustration.

I showed in 1887 that electromagnetic waves sent along
a circuit were under certain circumstances completely
absorbed by a terminal resistance. If the circuit is dis-

tortionless, and the amount of the terminal resistance

is Lv, where L is the inductance per unit length of

the circuit and v the speed of light, then the absorp-
tion is complete, or there is no terminal reflection. The
reason is very simple. The relation between V and C in

the circuit in a wave of any sort going in the positive direc-

tion is V = LfC. The relation at the terminal is V = RC, if

B is the terminal resistance. So, if E and Lv are equal, the
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resistance behaves to the circuit itself in the same way as a

continuation of the circuit that is, there is no back effect at

all. The same thing may be approximately true when the

circuit is not distortionless, since distortion takes time, and

is cumulative. With very high frequency, for instance, the

reflection may be nearly destroyed.

But although in the truly distortionless circuit itself thf

consideration of the frequency is unnecessary, this is not

altogether true as regards the terminal resistance, for the

reason given above. The waves must evidently be rather

long waves as regards the terminal resistance. If they are

shortened sufficiently, it is clear that the kind of terminal

resistance requires consideration. There will be a different

theory for every different arrangement of resistance, even

though in the long-wave theory they would be all alike

viz., V = RC, where R is a constant. In another form, R
requires to be generalised to a Z of complicated structure in

order to represent the course of events. Similar remarks

must apply to the numerous experiments with waves along
wires after Hertz and Lodge, when terminal effects are in

question. It is difficult to make more than a rough guess as

to how short waves may be allowed to be before an assumed

mere terminal resistance needs to be studied in detail as

regards its reaction upon arriving disturbances.

It is very interesting, however, to observe that the experi-

ments of Dr. E. H. Barton and Mr. G. B. Bryan (Phil. Mag.,

January, 1897) with waves 8 J metres long, on a circuit of a pair

of parallel copper wires 1-5 mm. in diameter and 8cm. apart

(length of line 116m.), showed that a fair approximation to

complete extinction of the reflected waves could be obtained.

A small coil wound non-inductively was unsatisfactory by
failure of insulation, and its use was abandoned. It is ques-

tionable whether it would behave like a mere resistance apart

from the question of insulation. But when the terminal resist-

ance was constructed by pencil markings on glass, the results

were satisfactory. A terminal resistance of 261 ohms pro-

duced large reflection of one kind. Another of 1,336 to 1,355

ohms produced still larger reflection of a different kind. But

a resistance of intermediate value, of 549 to 560 ohms, about

the value of Lr, produced a quite small reflection in com
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parison with either. At the same time there was far from per-

fect extinction of the reflected waves, though quite as much,
if not more, than I could have ventured to expect with cer-

tainty. The waves of 8| metres are certainly fairly long as

regards the transverse dimensions of the line itself
;
and the

experiments show that they are also fairly long, though pro-

bably not to the same degree, as regards the particular sort of

terminal resistance concerned, viz., pencil markings, forming
an extremely thin sheet. The area covered is not stated, but

it could not have been large.

Having a sort of kindly paternal interest in Dr. Barton's

experiments, or at any rate in the results expected and obtained,

I have sought for and found the exact solution of a case of waves

along a straight wire circuit terminated by a resistance. It

casts some light on the subject, and is fortunately of a kind

admitting of easy description. In the first place it should be

remembered that in order that the V and C theory of waves

along wires may be an exact theory in plane waves, we have

to regard the wires as mere guides, and distribute their

resistance uniformly in the ether outside them, not as elec-

trical resistivity, however, but as magnetic conductivity, as I

have explained in Chapter IV., Vol. I. Having got truly

plane waves in this manner, if there are any intermediate or

terminal influences, they too must be transferred to planes at

the proper places, so as to act evenly on the plane waves.

For instance, an intermediate conducting bridge across the

practical circuit must be transformed to an infinitely extended

and infinitely thin plane sheet of uniform conductance, its

effective conductance from wire to wire being made equal to

that of the practical bridge. Similarly a terminal wire

bridge must be replaced by a transverse plane sheet of the

same effective conductance.

Now, in the case of an intermediate bridge, the reflection

coefficient, or ratio of the reflected V2 to an incident dis-

' turbance V1} is

V
2 = _ ^V = _ Pv n\

See " Electrical Papers," Vol. II., p. 142, for the first form, in

which R is written here for the bridge resistance, The second
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form occurs in the true plane wave theory, L becoming /x, and

R becoming r, which is the resistance of unit area of the bridge
sheet. In the second form we consider a tube of energy flux

of unit cross-section. We cannot make V
2
vanish except by

R = oo or r= x> . This is equivalent to no bridge. The wave

goes right through.

Now, it is vital to the success of formula (1) that the bridge
should be really intermediate i.e., the main circuit must be

continued, however short a distance, on the other side of the

bridge. The formula does not fully apply at a real terminal,

when there is mere ether on the other side of the plane bridge

resistance, because the transmitted wave cannot go on entirely
as a plane wave when it has lost its linear guide. We must
consider the change of type that occurs. It does not look

probable that a cancellation of the reflected wave is even pos-
sible. I shall, however, show that, with a certain value of r,

there is a complete annihilation of the reflected wave' along the

wire itself. The reflected wave runs along the plane instead,

and is virtually lost from the wire.

Reflection at the Free Eiids of a Wire. A Series of Spherical
Waves.

393. In the first volume of this work, 53 to 61, 1 have de-

scribed several cases in which the simplest kind of spherical elec-

tromagnetic wave, published by me in 1888 (" Elec. Papers,"
Vol. II., p. 403), occurs in an instructive manner. For instance,
the sudden stoppage of a charge moving in a straight line at

the speed of light, accompanied by a plane electromagnetic

wave, generates an expanding spherical wave joined on to the

plane wave. It is with this sort of phenomena that we are

concerned when reflection occurs at the free end of a wire.

In fact, it is easy to see that there must be something of the

kind, because the electrification is transferred along a wire at

the speed of light, and is then suddenly stopped and sent back
when it comes to a free end. As regards the wire itself, it

may be regarded as a cone of infinitely small angle, and is

therefore included in the investigations just referred to. An
easy modification enables us to include the effect produced by
a transverse terminal resisting plane plate.
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Let there be a fine straight wire of no resistance. To gene-

rate a spherical wave upon it, it is merely necessary to produce

a voltaic (or electromotive) impulse in the wire at any point,

say A. If the impulse acts from left to right, then the state

of things at time t later is a positive charge at B and an equal

negative charge at 0, the poles of a spherical surface of radius

r = AB = AC. The displacement is joined from B to C in the

simplest way possible in the sheet. By symmetry, no other

way is possible than by following the lines of longitude evenly.

The arrow-heads show this symbolically. In the sheet of dis-

placement put magnetic induction following the lines of latitude,

and the complete wave is represented ;
E =//,vH, or D = rj'B,

is the relation between the intensities of E and H or the

densities of D and B.

Now, let a be the free end of the wire. Then, a little while

after the wave reaches the free end, the state of things is

represented by the two spherical waves FDG and DE. The

first is nothing more than the expanded original wave (a por-

tion only, in the diagram), with its core removed. The elec-

trification, on arriving at the end a, at once reversed its

motion. It has gone back to E. The displacement in the

original spherical wave is joined on to the charge at E by the

secondary wave. That is, the displacement goes along the

small spherical surface from E to D, and then diverges into

the big one. The magnetic induction must be put in as before,

taking care to have its. direction right. It is up through the

paper at the top in the big wave, but down in the small one.

The flux of energy VEH settles the direction of H.

If, instead of an impulsive wave, we generate one of finite

but not great depth, the superposition in the neighbourhood ofD
of the original and secondary waves has the result of practi-
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cally cancelling the sharp corner at D. The displacement
does not go as far as D, save insensibly, but bends round in

curves from one sphere into the other at a little distance from

D. The deeper the original wave, the further off does the

bending occur. Too many diagrams would be needed to show

the various cases, but there is no difficulty in the general idea.

Keeping to the unaltered diagram, the further course of

events is got by expanding the spheres centred at A and a.

If the wire is infinitely long on the left side, nothing more

happens. But if it is of finite length, then a third spherical

wave is generated directly the negative charge (at C in the

first case illustrated) reaches it. A fourth spherical wave will

be generated when the positive charge (at E in the second

case illustrated) reaches the left end of the wire. Two more

waves are generated by the reflection of the last two at the

right end of the wire
;
and so on. It will be seen that any

schoolboy, with a pair of compasses, can follow up the subse-

quent history to any extent. (In fact, there seems no reason

why instruction in electromagnetic waves should not Locome

an elementary subject in the " Board "
schools, as they are

absurdly called.)

This diagram,for instance, shows the state of things due to

an impulsive voltage at A, in the middle of the wire ba, a

little while after the first wave (the big one) reached the ends.

The arrow-heads show the course of the displacement at the

moment in question. It is unnecessary to multiply diagrams
of this sort.

Reflection at the End of a Circuit terminated by a Plane

Resisting Sheet.

394. So far there has been nothing that is not virtually

included in the previous work referred to above. It is, how-
BB
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ever, necessary for preliminary purposes to make the following

relating to a terminal resistance easier to understand. Put a

uniformly resisting plane sheet at the end of the wire, and let

it be struck flush by an incident plane sheet wave. If the

source was, as before, at a point, that point should be a long

way from the end of the wire.

In the diagram, ba is the wire terminating at a, at right

angles to which is the resisting plane sheet. 3^wo parallel

planes are also represented. The one on the right is the

transmitted plane wave sheet (or part of very large spherical

wave) ; that on the left is the reflected plane wave sheet, at

the moment of time when the charge has gone back on the

wire to the point marked + . These two sheets of displace-

ments are joined together by a spherical sheet, and the arrow-

t

SL
SH

heads show the course of the displacement. It is inward tc

the wire in the left plane sheet, then along the lines of longi-

tude of the sphere to the right plane sheet. The resisting

plane is positively electrified on the right side, and negatively

on the left side. That is, there are really two hemispherical
waves. The plane sheets separate, one at speed v to the right,

the other similarly to the left, whilst the connecting spherical

sheet expands so as to keep up with them. It only remains to

specify the intensities in different parts.

If s is the transmission coefficient at the resisting plane,

that is, the ratio Vg/Vj or Eg/Ej of the electric force E
3 trans-

mitted to that incident, then we have

(2)

if r is, as before, the resistance of unit area of the plane.
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The size of s is anything between and 1, being when the

plane is a perfect conductor, and 1 when it is of zero con-

ductance. If, then, E and H are the intensities of electric

and magnetic force in an incident very thin electromagnetic

sheet, sE and sH are the values in the transmitted sheet on the

right, and (s
-

1) E and (1
-

s) H are the values in the reflected

sheet. Observe that H is reflected positively, and there is

persistence of the total induction. On the other hand, E is

reflected negatively, and there is loss of displacement. If g

is the charge in the initial incident wave, the charge reflected

is the sum of the displacements leaving the wire for the

spherical and plane waves at the point + ,
that is,

The displacement in the right plane wave is continuous with

that in the spherical wave. So sq is the total charge on the

right side of the resisting plane (in the complete ring), and
-
sq is the total on the left side.

If the initial wave is not impulsive, but is of finite depth,

then the displacement in the plane wave on the left will turn

round into the spherical wave without going right up to the

wire, save insensibly. Similarly on the right side. But there

is not usually continuity on the left side, on account of the

charge on the wire. It may be positive or negative. When
2r = /xy, there is complete annihilation of the reflected charge.

Then s = J, the two plane waves are alike (except as regards

the directions of the displacement and motion), and there is

perfect continuity at the point + . Practically, then, with a

sheet of finite depth, the displacement runs away from the

wire altogether on the left side, as well as on the right, for the

sphere expands, and its practical junction with the left plane
wave moves away from the wire. That is, the complicated
wave is lost altogether, so far as the wire is concerned.

Instead oir = ^v (or R =
Lv), which is the condition of com-

plete absorption by a terminal resistance in the long wave

theory applied to a condensed resistance, we find that the

condition of no reflection along the wire is r = J/w, when the

terminal resistance is spread over the complete plane wave.

In the former case all the energy is wasted in the terminal

BBS
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resistance. In the present case, only one half is thus wasted,

and this occurs in the act of transmission through the plate.

The other half is wasted in another way. It remains (in our

somewhat ideal state of things) in the spherical and two

plane waves.

Practically, then, from the above considerations, we should

expect the value of the terminal resistance which annulled the

reflection most completely to lie between Lv and %Lv, accord-

ing to its arrangement, these being the extreme values.

But with a pair of wires terminating upon the transverse

resisting terminal plane, the process of development of the

reflected wave is more complicated. Just at the beginning, it

is true, the process is similar, but duplicated, as shown in the

next diagram. A spherical wave of the above kind is gene-

rated at each wire terminal. The course of the displacement

is fully shown by the arrow-heads, assuming that there is a

t

"WT

Wire.

t

t

positive reflected charge on the lower and a negative on the

upper wire. But this state of things only lasts until the

spherical waves reach the opposite wires. A fresh kind of dis-

turbance then begins by reflection from the wires themselves.

It is, of course, not so important as the spherical and plane
waves. These disturbances, originating on the wires, lead to

an infinite series of minor disturbances, because any disturb-

ance from one wire comes into collision with the other.

Whether the resultant of this complicated process of terminal

reflection can be a fully effective and complete annihilation of

the reflection along the wires at a distance from the ends, I

am not prepared to say. There is nothing peculiar to electro-

magnetics in complications of this kind. It is the same in all

mechanics when we go into detail.
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Long Wave Formulae for Terminal Reflection.

395. The only way to make a plane or spherical wave

run clean off the end of a wire without alteration appears to

be to carry forward the charge. For instance, when a thin

plane sheet of displacement reaches the end, let the particle it

is then centred upon be dislodged, and carried forward at the

speed of light. Then it will keep up with the plane wave, and

no auxiliary spherical wave will be generated. Similarly, the

plane wave with carried core can be slipped on to another wire

without disturbance, by simply letting its core impinge on the

free end. The wire will then serve as guide.

In the Hertz-Lodge experiments the reflection at the trans-

mitting end is a much more difficult matter, and can scarcely

be attacked at all in detail. But if the waves can be really

treated as long waves, then the regular procedure for long
waves may be applied, at least to some extent. Say, the

terminal arranement is a condenser and induction coil.

>nd.
Wire.

Wire.
Cond.

Gap

Then the resistance operator of the arrangement is

If the gap is short-circuited, we have only the condenser term,

or Z = (Sop)"
1

,
where S is the effective permittance of the two

condensers. This first term in Z should be generalised to

($Qp)~
l + r+ lp, to allow for the resistance and inductance of

the part between the condensers and the gap. If the gap is

open and non-conductive, but the primary is not closed, then

use the second part as well, E,2 + I^p being the resistance

operator of the secondary. If, in addition, the primary is

closed, add on the third part, involving M, the mutual induct-

ance, and Bj + Ljp the resistance operator of the primary
coil by itself. If the gap is conductive to a definite amount,
then it acts as a shunt to the induction coil. Say its resist-
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ance is r, then (r~
1 + s-1

)-
1

is the resistance operator to be

added to that of the condenser, s being what is added in equa-

tion (4). This r may be generalised to (r-
1 + s p)~

l

,
if the gap

be regarded as a condenser of permittance s and resistance r.

All cases of this kind can be readily developed to show the

reflected wave train in the case of simply periodic waves. The

reflection coefficient for V is

R - ~Lv Z - Ly V,
or '--

the first being with a terminal resistance R, the second with

E turned to Z, the resistance operator of the terminal arrange-

ment, whatever it may be
;
for instance, the Z in equation (4).

Vi is an incident, and V2 the corresponding reflected disturbance

(transverse voltage). We have

V1 + V2
= V, and d + C^C-Y^?, (6)

Liv

if V and C are the actual (resultant) voltage and current.

These equations give complete information.

Thus, let the incident disturbance be Y! = constant, begin-

ning when = 0, and let the gap be short-circuited. Then,

considering only the big condensers,

V, = (Sop)-
1 -!^ ^ l _ 2 _

t/s^v
(rj]

V, (S^ + Lt,"

9V
and V = ZV

i = 2VX1 - *- f/L*s
), (8)

.e., V rises from to 2V
1?

not instantly, but very quickly.

In the simply periodic case, the reflected disturbance in

terms of the incident is got by putting p = ni, where n = ZTT x

frequency ;
thus

showing the relation of V
2
to Vj explicitly.
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As regards the resultant V at the terminal, that is much

simpler. Thus

9V
V -1 (11}"'explicitly. In general

The other cases can be done in the same way ; but I fear

that the inclusion of the induction coil and shunt at the gap
will lead to results of very questionable validity when the

short waves usual in this kind of experiment are employed,

i.e., only a few metres long.

Reflection of Long Waves in General.

396. Passing now to long-wave reflection, without limi-

tation to approximately distortionless transmission on the line

itself, it is to be remarked that there are a few simple cases

where we can develop the complete solutions out of the initial

wave generated, without further investigation. This occurs

when the reflection of an impulse at a terminal is also impul-
sive. Then an incident wave of any sort generates a reflected

wave of the same type. But in general we must allow for a

change of type. This may be done by means of the reflection

coefficients, say, p and plt
at x = Q and I respectively.

Thus, let Vj, V2
be corresponding elements in an incident

and the reflected wave at the terminal x= I. Then

(1)

if V and C are the resultant voltage and current at the ter-

minal. Z is the resistance operator of the line when infinitely

long, and Z
x
that of the terminal arrangement. So

are the reflection coefficients for the voltage. Knowing V 1?

the structure of pj.
or p enables us to find V

2
. All the suc-

cessive waves are therefore developable.
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In the distortionless case, Z is the constant J-iv. The re-

flected waves are then of the same type as the incident if Z

and Zj are also constant that is, mere resistances in the

obvious case, or else equivalent distortionless circuits. But in

the theory of this chapter,

(3)

so we cannot get clean reflection without change of type unless

the terminal resistance operator is a constant multiple of Z,

which means that Z and Z
x may be other lines with suitably

chosen constants, or else practical imitations. In all cases of

this kind, it is sufficient to find the formula for the initial

wave. All the following waves may be obtained from it by

changing the origin and argument suitably.

Let V be voltage impressed at x 0, and V
x
the first wave.

Then

V^r^Vo. (4)

On arrival at x = l, reflection begins. To produce the reflected

wave, put x = l in V,, multiply by pv and then introduce the

attenuator e-^-*'. Thus

V
2
= P1

e-^8-*>V (5)

is the second wave. On its arrival at x = 0, the third wave

begins. Put = in V2 , multiply by /) ,
and then by e~qx

,

producing

V,-*-* V . (6)

Observe that to get V3
from V, we multiply by p p }

e~^1
. In

the same way V4
is got from V

2 ,
and any Vn from Vw_2. So

the total V is

V = (1 +/w-2* + PoV<-4* + - )(V 1 + V2), (7)

or, which means the same,

(2l
~

x)

v

which is the condensed form of solution for V in terms of V .

The latter is not the real voltage at # = 0, except when the line

is infinitely long, when, however, (4) above is sufficient. Also
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the relation between V and e, when e is impressed force pro-

ducing V ,
is

V =Z e
. (9)

Operational solutions of the condensed kind, as (8), and its

modifications, may be developed to Fourier series by means of

the expansion theorem, 282 and after. It is unfortunate

that the results, save in relatively simple cases, should be

unmanageable for numerical calculation. Even to prove

their identity with the wave series by rigorous methods

involves the evaluation of definite integrals of a formidable

nature. But that is hardly the right way to work. When
in mathematical physics we find, by following Fourier's

methods, say, that our solutions involve certain series and

integrals, not recognisable as known forms, the practical way
to evaluate them is to find another way of solving the same

problems, and then equate the results to the former ones. This

may not be rigorous. But it may be better than that

Whole families of new results may
" tumble out

"
of them-

selves, altogether beyond rigorous treatment. But this is an

apisode.

If we write

..., (10)

although we know that only a limited number of terms on the

right side may be in existence, we may do so without ambiguity,
whether the individual waves are represented by algebraical

formulae or by operational formulae. The latter are (4), (5),

(6), &c., the former are their algebrisations. In (8) all the

waves are added, though they may not be in existence. But
there is no metaphysics here. If non-existent they do nothing.
The function V is zero before and begins when t = Q. The
derived wave V1 has the same property, modified by the

operator c qx
. It only exists for positive values of t which are

not less than x/v. Or, more shortly, it begins when t reaches

the value x/v. Similarly V2 begins when t reaches (21
-
x)/v

V3 begins when t reaches (Zl + x)/v, and so on. Before these

epochs they are zero. So, considering the complete formula

(10), whether it be algebraical or operational, we see that the

terms come into existence one after another at the proper
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moments indicated by their structure. Thus, from t = up to

t = l/v, we have V = Vi only, and its range is only from x =
to vt. From t =

l/v up to %l/v, we have V = Vi only, between

x = and 2/ x, but V = V2 + V2 beyond, up to x = I. And so

on to the rest of the waves. It is only necessary to follow the

wave front running to and fro at speed v to see the extent of

operation of the waves.

In the algebrised formulae themselves, the positivity of the

arguments limits the existence of special terms. Thus, if

the first wave involves ^
1

nPn(z1), where

w^Wt-x/v), ^ = o-(*2
_ x

*lv*)\ ; (11)

then the second wave will involve w
2
nPn(z2), where

t
=HJ-(2/-)H ^-^-(ai-aOW; (12)

and the third will involve w
3
nPn(23), where

and so on. In all cases the w's must be positive, or at least

zero, and the same as regards the quantities under the radical.

This consideration makes the formula (10) explicitly correct

all along.

Terminal Reflection without Loss. Wave Solutions.

397. Now, let V be known. Let it be expanded in the

form

Vo-c-P'SAJ.H, (14)

of which I have given numerous examples. Then, as before

explained, the first wave is expressed by

V^-^ZA^P^i), (15)
|n

and the second by

V
2
=

Pl -^2
A;^P

n (*2), (16)

and the third by

^2An Pn(z3), (17)

and so on, introducing the factors p1
and p alternately, and

changing x to 2Z - a?, 2 + a?, 4Z - #, 4.1 + x, &c.
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Thus, the solution is fully completed when pQ and pl
are

constants. When not constants, but operators, then there is

change of type. Equations (15), (16), (17) are still true, but

require the performance of the pQ
and

/>! operations to fully

algebrise them. How to do this will come later. At present

note that there are four practical cases in which the reflection

coefficients are constants (besides the general case of terminal

arrangements having resistance operators constant multiples

of that of the line), namely terminal short-circuit or insula-

tion at either or both ends. There is complete negative
reflection of voltage at a short-circuit, that is, pQ or

/>j
= 1

;

and there is complete positive reflection of voltage at a discon-

nection, that is, pQ
or pl

= + 1. The current is also completely

reflected, but in the opposite sense to the voltage. So, by

letting p or pl
be + 1 or - 1, we can construct the full solu-

tions for a line of finite length. [In this connection the case

of a circuit closed upon itself should be noticed. Here an

impressed force at any part of the circuit generates two waves,

to right and left respectively. They are similar as regards C,

but opposite as regards V. They are also the same as if they
entered infinitely long cables. But they travel round and

round and overlap each other and one another ; so the

resultant V and C are represented by infinite series of waves

just as in cases of terminal reflection. The above description
is sufficient to build up the complete formulae.]

It usually happens that the initial wave is expressed by an
infinite series of the form (15). Then, of course, all the

derived waves are similar infinite series. There is only one

practical case where the waves are expressed by a single term.

If either there be no leakage, and V be steady, which is

thoroughly practical ; or else, next best, if there be leakage,
but V impressed be made to subside according to the leakage

law, i.e., V = e
- Kf

-
/3 where e

Q
is steady ; then, as before seen,

is the first current wave. It follows that if there be short
circuit at both terminals, the complete result due to the

impressed force V at x = is

= 1
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because there is complete positive reflection of the current at

the terminals.

On the other hand, under the same circumstances, the first

voltage wave is, by 381, equation (33),

It follows that the second wave is

f V I

Va
= - e

-
f*\

P
(s2) + 2u>2P1(sa) + 2-^P2(s2) + ... k (

21
)

because there is negative reflection of the voltage. And the

third wave is

Vs
= + e

Q
e
~

/>* P (23) + 2^(33) +2Pa(*8) + . . .
, (22)

and so on.

When a steady V is applied to a distortionless circuit the

curve of V (and C also) is shaped according to e- Ka:/Sw
,
or

e -K/s
}

jf x = vt. If, therefore, we let V decrease with the

time according to the same law, the resulting curve of V will

be a straight line, and V = e-K */s x constant will represent the

wave, extending from x = Q to vt. No doubt this simplicity

is the ultimate reason why the primary wave of C just treated

is represented by one term only.

If the line is insulated at x = l, whilst still short-circuited

at #= 0, we have p = -
1, pl

= +1. The complete C wave is

therefore

f25tt
j

~ ov-1/
~" ow """

ov 8/ * * ov*v ' ***
i \ /

If insulated at x = Q there is negative reflection of the

current. An impressed e produces no C, and therefore no V
either. We must shift e away from the origin, or make some
other change before e can work.

Comparison with Fourier Series. Solution of Definite

Integrals.

398. Now, to show the connection with the Fourier series

form of solution, take the fundamental case of (19), and do it
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by the expansion theorem for normal solutions. The first and

second waves are

C.-.J,
C1
--

ft -*-"J, (24)

therefore the complete C is

Here we must put Po
= - 1 = ? and V = e

~Kt 's = e/
ff
~
P). The

result is

-P\, (26)
shin ql R +

and the corresponding V formula is

y = shmq(l-x)f(<r
-

p)

shin g

We see that the determinantal equation gives ql
= mri in the

case of V, excepting the zero root, but that in the case of C

there is an additional root p = - E/L. But in the expansion

theorem the operand is steady. Here it is a function of the

time. This is easily put right. Shift the exponential time

function to the left, whilst increasing p to p + v-p at the

same time. Then (26) becomes

_ pt
* *'

where the operand is now steady. The expansion theorem

turns it (by the usual work, presenting nothing special) to

<
29

>

where A = {(ion/I)*
-^ = (mV - a-

2

)*, (30)

and in the summation n is integral, ranging from 1 to oo.

This solution (29) is therefore equivalent to (19) above.

In a similar manner the expansion theorem turns (27) to

*)
-

u
sn

n

(31)
which is equivalent to the sum of (20), (21), (22), &c.
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If the line is inBnitely long, the summations become definite

integrals. Put wr/l
= m, then the step dm is

ir/l,
and (29)

becomes
_ n t 2 F sin Xt 7C = eQe
& cos mx dm, (32)
LTTJ o A

where A is as in the second form of (30). At the same time

there is only one wave, viz., (18) above, the rest having no

chance to make a start. So, equating (18) and (32), we obtain

P
o (2l )

= ?!
/"cos wia - dm. (33)

TTj A

Again, equate the C's in (19) and (29). Multiply both sides

by cos (nrx/l) and integrate to x from to I. We obtain

cosmxdx=v . (34)
o A

On the left side the function integrated ranges in the way
before explained. When the line is infinitely long (34)

becomes
SJ^. (35)

Use this in (33). Then follows

shiner*

r

in a-t 2 F sinmv sin At ,= - --_ am. (6b)
o- TTJ o m A

The other formula (31), when Z= oo, reduces to

(37)
7TJ Wi \ A /

and this is equivalent to the first wave, equation (20). So we
obtain

=^ _ 2 I"sin/
og + ^ gi A< _dm _

TTJ o m \ A /

But, with Z finite, equating the sum of the V waves to (31),

multiplying both sides by sin (nvx/l), and integrating to x from

to I, we obtain

!(V* - cos A* - - sinM\
, (39)

m- \ A /
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where F(./-)
= V^/'o = Po(~) + 2/rP^) + ..., (40)

as in (20), the change of argument from x to (2Z x), &c.,

being to introduce the second, third and following waves as

they come on. If, for instance, t is not greater than l/v, the

limits in (39) may be and vt, and then only the first F func-

tion occurs, the rest being zero.

If, in (38), x is greater than vt, all the left side is zero, as

no disturbance has reached x. So we get

m
+ 5gi

v
dm

A /

This is true when x is the least bit greater than vt. But it

is not true when x is actually
= vt

t
because if it is the least bit

less, the left side of (41) should be ^ -
1, for the left side of

(38) is P (0), or 1, when x = vt. So, taking the mean, we
obtain

-

.dm. (42)

Change the sign of or to obtain another formula. This

peculiar behaviour of definite integrals at places of dis-

continuity has to be very carefully remembered, or it may
be a dangerous source of error. In any case, it is very

annoying. In the operational and wave formulas, on the

other hand, there is no puzzling change of formula involved

at the wave front.

From (42) the formula (36) may be derived. Similarly,
it may be noted that in (33) the value of the right member is

zero when x>vt. This is plain by the manner of construc-

tion. But at the wave front itself we must take the mean
value just before and behind the wave front to evaluate the

integral. Thus,

J =
* v

["cos
mvt

S-^dm.
(43)

TT J A

Perhaps, on the whole, it is as well to keep away from the

definite integrals, if we can get formulae clear of them.

When the impressed force is steady, say e itself, under the

same circumstances terminally, i.e., short circuits, then the
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expansion theorem applied to (27) above, without the

exponential operand, gives at once

y = ,Bhin(Z-a?)(RK)*
shin Z(RK)*

and C = -
cos-g _ e
"

where ? is mrjl as before.

Now, in 382, equations (54) (57), I have given the V and C
solutions in wn

~Pn functions for the first wave, and have shown
how to carry on the formulae to any extent in 384 in another

way. The succeeding waves are obtainable by change of argu-

ment, as explained above. Therefore we may equate the wave
solutions to (44) and (45) respectively, and derive a fresh batch

of solved definite integrals if required. Bat, as they are all

included in the equivalence of (44), (45) to the wave formulae,

we need not go far in elaborating them. Considering only
the first wave, I = oo in (44) makes

oos At +BinA( (46A)

equivalent to (57) 382, with

General Way of Finding Second and Following Waves due

to Terminal Reflection.

399. The first wave sent along a circuit when voltage is

applied at its beginning is independent of the nature of the

arrangement at the far end. This follows from the property of

propagation of disturbances at finite speed. It follows, again,

that if we construct, by the expansion theorem for normal

functions generalised, the series which represents the com-

plete solution due to impressed force at the origin, so as to

suit given terminal arrangements, that series will, for a short

period of time, have a known meaning viz., representing
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the first wave only. The series will contain, in every term,

symbols standing for the electrical properties of the terminal

arrangements, but in such a manner that only those in Z
have any effect upon the numerical meaning in the first

wave that is, in the region from x = up to vt, provided
vt<l. But as soon as vt reaches the value I, then the

symbols in Z x become operative, but only in the part of the

circuit occupied by the second wave. In the remainder, next

the origin, the Z l symbols are still inoperative. But after

t = 2l/v, both the Z and Z : symbols are operative, and we
cannot change their values without affecting the numerical

meaning of the formula. Though far-reaching, these con-

clusions are perfectly safe and sound, because the fundamental

reason is sound, and has no exceptions in its application.

Similar conclusions, of a more comprehensive nature, obtain

in all electrical problems involving waves when done in terms

of normal functions.

If, as in a few examples lately given, we know the nature of

the second and succeeding waves, then we have the full inter-

pretation of the Fourier series. But, in more general cases,

from the hidden complex roots involved, it may be of a prac-

tically unmanageable nature. I shall now explain how to

obtain the formulae for the series of waves, one after another,

and illustrate by relatively easy examples. There is this to

be said for the solutions in the Fourier series. They are readily

obtainable, and are comprehensive. Against, they may be

excessively difficult in the interpretation. On the other hand,

the wave formulae are harder to obtain, but when got are

easily calculable. Although the British Association blundered

sadly about the electrical units, I am grateful to that body for

:ables of the In(x) functions. If tables of the K
tt
function

(continuous) and the GK function (oscillating) are in pre-

paration, about which I know nothing, I venture to strongly

recommend that they be standardised as done in this work,

336 and later. Much trouble will be saved in the future,

even though it be not, like 4-, a question of practical import-

ance.

That the calculation of the second and succeeding waves is

feasible may be seen thus. The first and second waves being

Y.-, V
2
=

Plr-*"-"Vol (46)
cc
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the second wave differs from the first in the change from x

to (21 -x) and in the Pl factor. Put 2Z - z-y, then we may

write
V

2
= r^ViV . (

47
)

Comparing now with the first wave, we see that V2
is the wave

sent into an unlimited circuit by the impressed voltage p^Qm

Similarly
, (48)

if z = 2Z + o?. So V3
is the wave sent in by the impressed

voltage pQpiVQ
' And so on. This is not a bad way of looking

at the matter, because it shows that all the waves may be

obtained like the first, every one from its proper impressed

voltage. Thus,

V = c
-

P* 2 AJ7l(^) makes V, = c
-

^A^P^)
-

Therefore, if we write the voltage pjVQ thus :

/^o =^2BHI>0, (49)

the second wave will be

V
2
= ( -ft 2 Bj! ?(*); (50)

I!

and so on. But, though easy to follow in principle, this way
is not convenient in practice, if it be understood to mean the

prior determination of /^Vo, pop^Q, &c., as functions of the

time, and their subsequent expansion in In functions, and then

the generalisation to waves. There is a better way of carry-

ing out the work.

We found that a great simplification arose by the use of the

differentiators a and
/?, instead of d/dx and d/dt, and practically

by using only one of them, with the operand P () throughout.

This can now be followed up.

Knowing that V
1^=/1(a)P (), (51)

where, by (105), 386,

we shall now have

V
2^=/2(a)P (

s
), (53)

where /2(a)
is the modification in/^a) required corresponding
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to the passage from the first of (46) to (47). To find it,

note that

?,-/>,{-/,()?.(*)}. (54)

So, PI being a function of p, turn p to p - p (allowing us to

shift p l
forward to the other side of ~^)> an^ then put

ia-(a + or 1
)
for p. Let the result be ov Then

/2(a)= (r1
/-
1(a). (55)

Similarly V
3e<"=/3(a)P (z), (56)

where /s (a)
= ovr/^a), (57)

O-Q being the function of a obtained from p by turning p to

|o-(a + a"1

)
-

p.

The matter is now reduced to plain algebra. Thus, as

regards V2
. Expand /2() in powers of a

; then, by (53),

V/ = 2 B,X-PoW = 2 B.'P.W (53)

is the fully developed formula. It is only just at the last that

we need think about the proper arguments, as w
2
and z.2

in the

second wave, w3
and ?

3
in the third, and so on.

The successive waves of current may be done in the same

way. See (106), 886 for the first wave. Then introduce
-

o-j
and - OTO as factors, instead of + ar

l
and + <r above, to

obtain the following waves : Say,

Lt-C/ -*,()?(,), 9l
=[V/]y, (59)

(60)

and so on.

Application to Terminal Resistances. Full Solutions with

the Critical Resistances. Second Wave with any
Resistance.

400. The next thing is to show how the above plan works
out. The simplest case is that of a terminal mere resistance,

sayRx ,
atz = L Then

Zrr -L" I- Zj, \p + p
- ^ /

/
,?n ,-

Pi
=
2TZ

=
+ (61)

cc2
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Make the above-described changes in p (or use the middle

formula in (104), 386). We get

__ ^ _Lf(l+q)(l-a)-
1 -B

1
_

C a -
f ^v ! /Q\Or (TI

= - - II c = *

1 + Ca LV + R!

The quantity c varies from -1 to- +1, vanishing when

R! = LV. We may then expect a great simplification. This

terminal condition destroys reflection in the distortionless

case. At present it will destroy a lot of terms. We have

o- = - a. So when the first wave is

(64)

the second wave is

); (65)

if R = "Lv is the similar terminal condition at x = 0, we

have o- = - a also
;
so that the third wave is

. (66)

The complete result is therefore

(67)

arising from any voltage impressed at x = producing

V.-.-KSAJWrt), (68)

with terminal resistances of the critical amount.

Similarly as regards the C waves. Thus, when V = e e- K '/s
,

where e
Q
is constant, the simple case so often used before, we get

(69)

(70)

(71)

C
and so on, wh^n there is the critical resistance "Lv at both ends
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of the line. The reflection coefficients are now - ^ and -
/>, so

the differentiator + a derives any wave from the preceding one

But if there be a short circuit at x = 0, so that -
pQ = 1, and

therefore - <T
O
= 1

,
the operators of derivation are alternately

a and 1
,
and we obtain

Notice in the above that all waves after the first are zero at

their fronts. This is because the front of the first wave travels

without distortion, and since there is no reflection at all of a

pure plane wave when B
a
= Lr in the distortionless case, there

is no reflection of wave front now. Any departure of B
:
from

the value L?- must produce a reflected wave which is finite at

its front. This will also appear in the formulae to follow.

When Bj has any value, then

- c
2
)a(l-ctc + a2c2 -...). (73)

1 + ca 1 + ca

This is the expression for - <r
1}

in rising powers of a. So, when

iV'LKV-Pofo),

as in (69), is the first wave of current, the second is

p
3
-

...). (74)

For distinctness the arguments are omitted. Use w
2
and z

z
.

When c = 1 we reduce to the cases of terminal earth or

insulation. When c = we fall back on the case already con-

sidered. When c is + ,
then Lr>B

1 , and the second wave of

current is + at its front, the terminal resistance being insuffi-

cient to destroy the initial reflection. When c is -
,
B

T >Lv,
and the reflected wave of current is negative.

Similarly, if the first wave is of a complicated type, say

this being a sufficient expression in general, then

!^.2AXP.().
1 +ca
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Here we may use the development (73), and apply it to

every term in the summation by itself, one after another.

This in, in fact, what we must do unless we can bring

2 Ana
n to a simpler form with advantage, which may be done

by specialising it. The part belonging to An is

AB{ra + (1
- c2

) (a+l - ca+2 + CV*+3 -
...)}P (

2
), (77)

the meaning of which is known.

Inversion of Operations. Derivation of First Wave from

the Second.

401. As an illustration, we may reverse operations, and ask

this question : Given the second wave, what was the first one ?

To answer this, operate on the second wave by-0-f
1

,
the

reciprocal operator. Thus, if

^LrC2
^ = P (,2 ), (78)

or the second wave is of the fundamental simplest type, then

the first is such that

(79;
c a c c \ c c

which makes

(80)

in which wl and % must be used. The C impressed at x =
is now obtainable. It is

-
i) (l,

- *

c/\ c
(81)

That this is the proper answer may be verified by taking (80)

as a given primary wave and calculating the second by the

operator
- <rlt i.e., as exhibited in (76). The result is the second

wave (78). But it does not follow that the first wave is a

physically possible one. It might be that the given second

wave is such that no finite first wave could produce it. Now

(81) looks suspiciously divergent when c is < 1, but I think a

further examination (which, this being an episode of curiosity,
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need not be entered upon) will show that the primary wave

obtained is usually quite a fair one. There is, however, one

case of evident failure. When c = we obtain an infinite first

wave. But now the reason is also evident. We know already

that when R
x
== Li? the disturbance must be zero at the front

of the second wave when the first wave is finite. But our pro-

posed second ware is not zero but finite at the wave front. So

the first wave must needs be infinitely intense. Save in this

case, I see no reason for failure. Naturally, when c differs

little from 1, the first wave must be very intense.

Derivation of Third and Later Waves from the Second.

402. In a similar manner we can work back from any wave

to any preceding wave, and determine the possibility by-

examining the result, when the possibility or impossibility is

not evident beforehand. Returning to the main question, the

second wave being exhibited generally by (76), (77), take the

case n = 0. Then

, (82)

= A {c + (1
-

c*) (
a _

with s
2
and w

2
in the second wave. Find the third wave,

when the terminal arrangement at the origin is a mere resist-

ance. We shall have

,

Here <TO and c only differ from o^ and c in the substitution of

B for Br The third wave comes from the second, therefore,

in the same manner precisely as the second came from the

first, with the change mentioned. Thus if the second wave
is of the type (78) or (82), the third is of the type (83), with

C
3 ,
W

B ,
2
3 ,

and c . But taking matters literally as in (82),

(83), namely, that these equations represent the first and
second waves, then, to find the third, we require to expand
<T

Q
CT

I
in powers of a. Here CT

O
is like a-

lt
and is given by

-
O-Q
= c

o + C
1 - ^oX1 - c

o
a + Co

2 2
-.-.) (85)
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This may be applied to (83) directly. The result is, as far

A [cc + a(c + c )(l
- cc )

asP3 ,

+ a3{cc 2(l
- c

2) + coC2(l
- c

)
-

(c + C )(l
- c

2
)(l

- c
*)'<

+ . . .]Pn
-

(86)

This, using u-3 and %, represents the third wave. Remember
that aMP means (w

n
l\n}^n(z) throughout, with the proper w

and z.

Similarly, the fourth wave may be obtained from (86) by

multiplying the right member by -ov, and the result multi-

plied by - o- will give the fifth wave
;
and so on to any extent.

The work is so entirely mechanical and simple in principle,

being Algebra, Chapter II., or thereabouts, on the formation

of products by multiplication, that it is unnecessary to

elaborate the developments unless they are actually wanted.

It will be seen that the full expressions for the successive

waves get mere and more complicated, just as, in fact, the

algebraical expansions of <rlt a-^, o-Qoy
2

, &c., grow complicated.
So it is best to use the condensed forms, and say o- '"o-1"P (^),

after n reflections at x = l, and m reflections at x = Q, under-

standing by o-
, o-j certain known functions of a to be expressed

in power series.

Summarised Complete Solutions.

403. From the above it will be seen that the following is a

convenient way of writing or describing the complete solution

for V :

Vc^ = (1+01 + oi +oW + oV + - -
.)V*

-
(1 +<rx + oooi + (T^ + . . .)2 Ana'

lP
(2), (87)

when "V^ is the first wave, and the summation in the second

line expresses its equivalent to be obtained, in the way already

explained, out of V p
*. After the development of the a- pro-

ducts for any wave the proper z's and w's are to be inserted.

The last equation does not strictly represent the operational
solution in wave form. That contains exponential terms,

along with the
/> , /^ coefficients. But their effect is allowed
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for, along with the change from the p's to the o-'s, in the final

correct choice of w and 2 for any wave.

Similarly,

P
(z) (88)

expresses the complete C in terms of the first wave. But it

is not necessary to go through the whole work twice over.

The C waves can be obtained from the V waves, or conversely.

For we know that

LwC^-Ll^V^, (89)
1 +a

by (101) and (104), 386. This is for the first wave. So

the same operator, taken positively or negatively, as the case

may be, derives any C wave from the corresponding V wave ;

and conversely with the inverse operator.

The just described summary does not apply merely when

/> and plt or o- and o^ after them, have the particular forms

belonging to terminal resistances, but has general application

to arty terminal arrangements. One or two examples of other

arrangements will now be examined.

Reflection by a Condenser.

404. When the reflector is a non-conductive condenser,

its resistance operator is (Si/?)"
1
,

if Si is the permittance.

Therefore we must put

in the previous results. Putting |<r(a + a"1

)
-
p for p, we

obtain <r out of p, thus

1 +a 2o

Clearing of fractions, and arranging in powers of a, makes

-cr,-_ <T " <T
_, (92)

where is the time period SiLr. This a-
l being the reflection

coefficient for the voltage x e/^, only needs developmenc in
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rising powers of a to show its effect upon a given incident

voltage.

The easiest way is by long division, and the result, as far

as a3
,
which is sufficient for illustration, is

a-e

_4/5 V 8 _8P 4 \++ **
So, if the first wave is represented by Vl^= eP (zl) t

e being

constant, the secood wave is

following (93) on to P3 if wanted, and further still to any
extent by carrying on the long division. Use z.2 with the P

functions, of course.

We may readily verify that the last solution reduces

correctly when o- = 0. It is then the case of reflection at a

terminal condenser in a distortionless circuit. The voltage

impressed on the condenser by the first wave is ee~Pt
. So at

the condenser itself

y _ 1-ZJZ y _ 1 -
(0P)-M^ Vl

TTc^p

2_ +
2 \

-
P) P(p-pf '"J

__
6(p- P)

The work is developed in this particular way because we only
want the result as far as p~

3
,
and so far as that all is shown.

Or, collecting terms,

Integrating this, we turn p~* to t
n
/\n. But the initial moment

is l/v after the incident wave left the beginning of the line.

So, instead of t write t - l/v, and we obtain the voltage of the

reflected wave at the condenser.



ELECTROMAGNETIC1 WAVES. 895

To compare with (94), remember that cr = reduces all

the P functions to unity, and that ic
n contains the factor o-'

1
.

The result is that all terms disappear save those in which

n- is divided by o-, ?r
2
by o-

2
,
and so on. What is left is identical

with (97), save that it is more general, since it gives the

voliage all along the reflected wave, as well as its terminal

value. Put x = l in w.
2

to produce exact agreement. The

complete solution in the reduced case may be readily obtained

by remembering that the distortionless circuit behaves towards

disturbances coming from the condenser, just as if it were a

resistance Lr.

Reflection by an Inductance Coil.

405. When the reflector is a coil of inductance L
:
and no

resistance, its resistance operator is L^, and therefore

is the reflection coefficient for the voltage. Turn p to p -
p

to obtain the reflection coefficient for the voltage multiplied

by /*. Lastly, put p in terms of a to obtain the expression
for rrr It is

T l+a T fl+a2 1Ltc- ij, < a--- p V

-.-.
1

:% ;

i

.

2a

. . (. (99)

and, clearing of fractions and re-arranging, this becomes

--(*^M'*M)--
(1001'

where is the time period Lj/Lr. This somewhat resembles

(92), but is essentially different in detail. By division we get

So, the first wave being

the second is, by (101),

^ = ,
o
f "Vpu

_ 1 "V^Pn+1_ JL(
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with % in the P functions instead of z^ I omit fuller

development. A whole book would be wanted to carry it

out in full for various practical terminal arrangements. It is

sufficient to give enough to show how the method works out.

A comprehensive case is that of a conducting condenser in

sequence with a resisting coil, making

Here the fraction corresponding to (92) and (100) goes as far

as a5 in the numerator and denominator, and is too lengthy

to print in one line. Other combinations may be made up

readily by attending to the fundamental property of resistance

operators, that they combine like resistances.

The working of the human mind is slow. I set myself the

above problems 22 years ago, when I first recognised as a

consequence of Maxwell's theory of self-induction, combined

with W. Thomson's theory of the electric telegraph, that all

disturbances travelled at finite speed, and, therefore, that the

Fourier solutions could be broken up into an infinite series of

distinct solutions. But it was not until 10 years later that

1 managed to carry out this analysis in the simple case of

terminal earth or insulation. Another 10 years later, by

following up the previous work, I have extended the method to

any terminal arrangement. And it is remarkable how simply it

goes, excepting, of course, in the complication of the develop-

ment of products of the powers of o- and o^ (see (87), (88),

403.) Perhaps I may have done the work wrongly. If so, I

shall be glad to be corrected.

Initial States. Expression of Eesults by Definite Integrals.

406. It is now desirable to say something about initial

states. To show that a given initial state is transformed

when left to itself, at any time later on, to some other state,

may be regarded as the " classical" way of expressing results.

When, however, it is considered that the formula must involve

an integration applied to the initial state coupled with some

other function, and that the execution of the integration may
be impracticable, it is clear that the only essential part of the

matter is to know how an initial state confined to a single spot

behaves when left to itself. As regards the effects due to
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special initial states, they may, I think, usually be determined

better by other ways than through the integral.

I have shown (in 371, equations (121), (122)) that the V
and C at x due to the charge Q initially at the origin are

where z has the usual meaning o-(
2

a?/t?
2

)
. If Q is at the

point y, then put (x
-

y) for x in s. Now Q = SV</fy, when we
have a distribution of Q, or of V

,
the initial transverse voltage.

Given, then, V as a function of y, the state at time t is

,(*>'</, (4)
W&/

where z' = <r{
2 -

(x
-

y)*/**}

But here P
(3')

is a discontinuous function, and requires

special attention because it is differentiated. Moreover, the

finite speed of propagation makes the practical limits be x + vt

and x rt, that is, at the distance vt on each side of the point
x where V and C are to be found. If y is outside this range,
the V there has had no effect at x.

V V

x-vt y x x + vt

It is just at the new limits that z'= Q, and P
(z

r

) drops from
1 to 0. It results that when y is between the new limits we
do not need any change, but at the limits we want extra terms,

showing the effect of the discontinuity in P
(z'). Considering

the space and time variations separately at the wave front of

PO(^), the operators d/d(vt) and d/dx with unit operands
both represent unit impulses at y = x + vt, whilst d/d(vt) and
+ d/dx represent unit impulses at x - vt. The result is that

if we use the new limits we transform (3), (4) to
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where V01 is the value of V at the lower, and V
02 its value at

the upper limit.

Similarly, the effect of an initial distribution of C is to be
obtained by interchanging V arid C, V and C

,
L and S,

R and K, producing

As the reasoning about the limits is, from the purely mathe-

matical point of view, troublesome, it may be as well to repeat
that the fundamental formulae (1), (2) not only represent con-

tinuous distributions of V and C between the limits vt, but

also impulsive waves at the limits
;
and of course the impulses

must not be overlooked. At x= +vt, (1) indicates that V is

impulsive to the amount (|Q/S)e~^, and (2) that C is

impulsive to the amount (|Qf) ~^- The ratio of the first to

the second is Lt<, showing that there is a pure electromagnetic
wave at the front, x = vt. At the back, where x = vt, V has the

same sign and value, but C is reversed. The impulsive wave

goes the other way.

The Special Initial States J (o-.r/r) and Jn (o-.r/v).

407. Having included the general integrals for the sake of

completeness, to exhibit special cases it will be desirable to

leave them alone, and make use of previously- obtained results.

In all the preceding, when generating waves, the P (z) or

Pn(z) functions have been discontinuous, or only existent

within certain limits. We shall now remove this restriction.

Let

V =
*Jo(^), (9)

where e is constant, represent an initial state. It is an

oscillating function, like the cosine, of amplitude e at the origin,

but decreasing in amplitude as we pass away in either direction,

according to a law which tends ultimately to that of variation

inversely as the square root of the distance. The biggest

hump is in the middle (#
=

0), and it is of extra length also.
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As time passes on, two things happen. First, there is the

attenuation all over according to the time factor -/>*. Besides

that, the function J (a-xlv) is converted to J {o-(#
2

/y
2 -

1'
2

)
1

}.

which is the same as P (z) or I (z). That is,

V-c-P*P (*), (10)

is what arises from the given initial state under certain cir-

cumstances to be considered presently.

There are two regions to be considered. If x<vt (on either

side) we have the original middle hump spread out, without any

oscillation. It represents the ~P
Q(z) solution, z

2
being positive.

But if x2> i-
2
*'
2

,
3
2
is negative, and the function is oscillatory as

at first. As time goes on, all the nodes and humps and

hollows move out to the right on the right side, and to the

left on the left side, leaving behind only the middle hump
attenuated and changed in shape, widely spread and flattened.

This is a rough general description of what occurs. The proof

is that (10) is known to satisfy the characteristic, that it does

so independently of the sign of 2
2
,
and that it, when = 0,

expresses the initial state. What has been omitted is the con-

sideration of the initial and subsequent current.

As regards the speed of motion of the nodes, let ym be a root

ofJ
(//)

= 0. Then

or
" = a + *

and =__
(12)

The initial speed is zero. The ultimate speed is v. The

greater ymt the less the speed. The values of the first three y's

are

2h
= 2-404, ?/2

= 5-520, ys
= 8-653.

It is, no doubt, the big hump in the middle that drives away
the smaller ones.

In a similar manner if the state at time t is

V--(*gp.(.),
(13)

or, in full, as regards w and z,

v- .-
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holding good for all values of x, the initial state may be

V = e3n(o-x/v)x(-l)\ (15)

But for a better understanding, it is necessary to consider

the state of current as well as that of voltage.

The States of V and C resulting from any Initial States,

V and C
, expansible in Jn functions.

408. For this purpose the functionsU and W, expressing the

momentary pure waves, are convenient
( 378). Suppose that

U = B P + (A^ + B^P! + (A2
2 + BX)? + . . . . (16)

2>

Then, since W = all, we have

W =A^ + (Aa* + BoiiOPi + (AX + B^2

)?
2 + . . ., (17)

If

with argument z. In these put t 0, then

U = B J + (
Ax

-
B,)J, + (A2 + B.2)J2 + (A8

- B8)
J3 + ...

, (18)

W = A!J + (A2
-
BO)Ji + (A8 + BOJa + (A4

- B2)
J3 + .... (19)

Now, suppose that W =
(initial state of W). Then all

the A's become known in terms of the B's, and equations

(16, 17) are reduced to

U = [B (l + p) + B,(a
-

/3") + B2(a
2 + (?) + B8(a

- p) + . . . JP ,

(20)

W = [B (o + ft + B^a
9 -

j8) + B2(a
3 + P) + B4(a

4 -
/3

4

) + . . .]P(,

(21)

As a further test, note that /3W = U. We now have a system
of U and W such that W - and

U = B J + B 1J 1 + (B + B2)J2 + (B 1 + B 8)J 3 -}-.... (22)

The argument of the J functions is always crx/v.

Now, I have shown how to expand any power function in

Bessel functions, 385
;
do this for U

; say

U =2 CA(^A<

)
= C .J + C

1
J 1 + ... . (23)

Comparison with (22) finds the B's in terms of C's, and

reduces U to

U = [C(l + /3
2

) + C x(a
-

/3) + (C2
- C )(a

2 + F) + (C8
-
C0(a

-
f?)

+ (C4
- C2)(a

4 + /3
c

)
+ (C3

- C8)(
6 -

/3
7

)
+ ...]P .

(24)
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We have now the complete solution for the initial state U
,

coupled with the initial state W
,
for we may derive W by

ttU = W. I use the convenient notation anP and /3'
1P as pre-

viously, because it simplifies the work. See (27), (28), 380.

We may also rearrange (24) thus :

+ d(a
2 - a" + a6 -... + ft*

-
p> + p> -...)-. ..]P . (25)

Or

or U = (C + ad + a2d + a3C3 + . ..}-^-*
\ /1+a2

+
(co -/3C1+^Ca -^C3

+...)j^;
(27)

of which the full expansion is

+ ............... (28)

To be paired with this is the solution

which expands to

+ &c., &c. (30)

It is now obvious at a glance from the meaning of u and w
that W vanishes initially. So, taking this form (30) as known

(which it was not at the beginning), we can at once derive

U = #W. We can at any rate utilise this knowledge to derive

D D
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the similar solutions for U and W so that U = 0, without the

troublesome work. Thus

+ (C
- da + C

2
a2 - C

3
u' +....)^P (31)

makes U = 0. The corresponding W is all, or

W =
(C.

+ (C
- C,a + a,* - C8 + . .

.)j.. (32)

Remember that aft
= 1 in these workings. The initial

states are

U = 0, W = 2C HJH(a*/). (33)

We have now completed the solution of the problem of the

states of V and C resulting from any initial distributions which

admit of expansion in Bessel integral functions. The frac-

tional cases need not be entered into at present.

Some Fundamental Examples.

409. Here are some illustrative examples :

U = 0, W,, = J (crjr/r), (34)

5 -,., (35)

(36)

In a similar manner we have

U = J (</r), W = 0. (37)

U = P -^P2 +^P4 -..,
.

(88)

+
+ +*p 9 (39)

[8 (6

In the latter case V = ~LvC initially ;
i.e

,
a momentary pure

positive wave of the form 3 (<rx/v) gives rise to (38) (39). At

time , Ye** = U + W, and LuCe** = U - W find V and C. In the

former case the initial state was a pure negative wave, result-

ing in (35) (36).
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Again, we know that

^ = P + (u + if)?! +
'-^'Ps

+ .-., (40)

by (43), 381. If we change o- to o-i, zt becomes ta, w
becomes wi

t
and ztz0 becomes - uw ;

so

H- .... (41)

with argument zi, or crfx
2

/^ *)*.
Now interchange < and

35/1",
then we get

U = sin (crx/v)
=

(i
-

)?!
--P. + ..., (42)

e.

(43)

with argument z as usual.

Here <rx,'v
= u- w. We see that U, W forms a system of

V, C subsiding according to e~Pt without any shifting of the

nodes. Of this an easier proof was given before, 379 ; the

present is an interesting way of exhibiting the independence
of the expansions of sin (<rx/v) and cos

(o-jc/i-) of the time,

although, of course, t occurs in every term.

The General Solution for any Initial State, and some

Simple Examples.

410. Another way of getting solutions of the characteristic

equation of V or C should not be passed over, having interest-

ing connections with the preceding methods. The charac-

teristic of VeP* being

v
2A2

(Ve^) = (p
2 -

(^(VeP*), (1)

by (
5
)> (6)> 378

>
we formerly used the form of solution

B, (2)

where A and B are time functions, and s is the operator
ir-i (p2

_
0-2^. But write (1) in the form

jp2(V p), (3)
DD2
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and we see that another form of solution is

Ve^ = coshrt.A+^^B, (4)
V

where A and B are now x functions, and

i/=(t-
2A'

2 + o-'f. (5)

The form (4) is suitable for the derivation of the results due

to given initial states. Thus, given that V = V and C = C at

the moment t = 0. These data serve to determine A and B, and

therefore V and C, with the assistance of (5), (6), 378. The

results are

+TBhinV. V.-^tc, (6)
V / V D

(7)

Notice that the second of these is derivable from the first

by interchanging V and C, V and C ,
R and K, L and S. If

one solution has been worked out, another having a different

physical meaning is immediately derivable by the interchanges

mentioned. Also notice that the functions of vt are even

functions ; that is, by (5), they are functions of A2
. So the V

due to V is derivable by even differentiations with respect to x,

whilst the V due to C is derivable by odd differentiations.

We have here the means of constructing any number of

solutions, provided V and C are given continuous functions

of x, so that the operations can be carried out by ordinary
rules.

For example, if V = A#. Then A2# = 0, so it is the same as

taking v = o-. The result is

V =e-^A* = A*e- K'/s
. (8)

Here V subsides by leakage, but without change of type.

The corresponding current is

2IV

The current is the same everywhere, and is negative, whether
a- be positive or negative.
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Similarly, if C = Bar, we obtain

C--B* -*'*, v = -Af
- R'/L - - Kf/sY (io)

21So-\ /

It is now V that is negative for any value of a-.

If we combine the two initial states, and make B = A/Lr,
then V = Li-C initially, a positive wave, and

V = A* e
-K^ + ^/e-B^- - Kf/3>

) (11)
2o-\ /

is the resulting V. When <r = 0, we reduce to

V = Li-C = A(a? -)"'* (12)

representing a positive wave.

Similarly, the results due to V = A#2
,
A^3

, &c., may be

developed. They are much more complicated. Passing on

to a complete power series, the simplest is V = Ae**. Here the

potence of A is /<, so the results are

(18)

= - Ac
-
/"shin^ h#*, (14)

where v means the positive constant (W+f)^ by (5).

More important than the last case is the simply periodic.

If V and C are simply periodic functions of x, say of sin mx
and cosw#, the potence of A2 is-m2

,
and (6), (7) represent

the solutions explicitly, provided v has the constant value

(a-
2 - mV)*. Or, if A = (raV - <r

2
)-, which may be more con-

venient, then

(15)

(16)

are the simply periodic solutions. They may also be regarded

as the general solutions, provided
- X2 = t-

2A2 + o-
2 defines A..

A curious case is A = 0, or m =
cr/v.

This we had before,

379. There is no change of type as the time advances,
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Conversion to Definite Integrals. Short Cut to Fourier's

Theorem.

411. All the above solutions labour under the defect that

they are not practical in this respect, that the initial states

extend continuously over the whole range of x. Moreover, if

V is represented by x, #2
, a?, &c., it increases infinitely as we

pass away from the origin. Even V = e^ becomes infinite on

one side. And although the simply periodic solution has no

infinities it does not vanish at infinity. A more practical sort

of initial state would be V = Ae- 7u;2
, vanishing at infinity on

both sides, and by an expedient admitting of concentration at

the origin. But the working out of this case is rather elaborate.

Now since (7), (8) are the general operational solutions they

are true for any V and C , discontinuous as well as continuous.

It is by the consideration of states which are initially discon-

tinuous that we should obtain practical solutions showing the

genesis and progression of waves. So we have to find how to

algebrise (7), (8) for discontinuousV or C . There are two ways.
One is to convert the general solutions to Fourier integrals, and

then evaluate them. The other way is to find a transformation of

the general operational solutions which will allow of their direct

algebrisation. The direct way was the first way I attacked

this problem. My second way was a similar process applied

to an impressed farce. The third way was the indirect pro-

cess of going via Fourier integrals, corroborating the results

got by the previous ways.
Here first do the integrals, to get it over. It is readily

proved in works on plane trigonometry that

, 4 / . TTX n QTTX , STTX \ ,~ _ N
1 = -(sin + Jsm - +ism-_ +

...), (17)
7T \ fc I 6 /

being + 1 when x is between and I and - 1 when between

and - I. So there is a jump at the origin. This is important.
Make I infinite. Denote the coefficient of x in any sine term

by m, then the step dm is 27T/Z, so (17) is converted to

, , 2 f^smmx ,+ l = _j dm, (18)
TTj o m

being + 1 when x is + and - 1 when x is -
. The jump is 2
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at the origin. Next differentiate to x. The result is (dividing

by2)>
irAl = 1 1 cos mx dm, (19)
TTJ o

i.e., an impulsive function of total 1, condensed at the origin.

This is the effective meaning for physical purposes. So

fcos m(x -
y) dm, (20)

JO7T

represents zero, except at x = y, where the total is f(y)dy.

Finally,

''(*)
= -

("VW* ("cos m(x
-

y) dm, (21)
7T./ -z JO

by integrating (20) from y = - oo to + oo .

The above is a short cut to Fourier's theorem. But it is

(19) or (20) we want here. Go back to (6), (7), and let the

initial state be V <7y at the point x = y. Then

cr)g

hm vt ^L ("cos m(x -
y) dm. (22)

V TT J

In this form the v operator can act on the discontinuous

operand by direct differentiations applied to the cosine func-

tion. The potence of A2
is - ni2

,
and the result is

V = -
P<

(p + o-)
Xo^ /"

IsiI
L^cos m(x - y)dm. (23)~

J Q
*

The corresponding C is

ginm
(
,_ )rf

Ll A

by doing the same work for the part of (7) depending on V .

These being the V and C arising from V dy at the point y = x,

integration from y = - oc to + oo will give V and C due to any
initial distributions V , C . So the general solutions (6), (7)

are equivalently expressed by

where v=
(<r

2 -
mV)*, and V,, C are expressed as functions of v,
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The Space Integrals of V and 0, due to Elements at

the Origin.

412. We can evaluate these integrals in any case in which

V and C have been determined, say by the operational solu-

tions (6), (7). For example, we know the results due to

V = constant, or a?, t
hx

,
&c. But these special evaluations do

not help us to evaluate for a discontinuity. Say V is con-

stant on the left, and zero on the right side of the origin.

The full realisation then depends upon evaluating this integral,

which is the fundamental one,

A
-

where A = (m
2v2 - a2

)*.
When this is done we can easily derive

the V and C due to elements of V and C anywhere. Before

solving (27), however, and without knowing the result, we
can get some information out of (23), (24).

Thus, let us find the space-integral of V due to V,//// at the

origin. We have

|
cosmx (cosh +'

r

shin) rt.dm, (28)V
Qdy TT J n V v

and therefore

lJO p /x / v

- = -
/

EE^f
(
cosh + - shin

)
vt . dm. (29)V dy TT Jo m \ v }

This can be evaluated when x = oo . Look back to equation

(18). When x is made infinitely great, the effective meaning
is that the 1 is concentrated at the origin of m. It is the only

place where the infinitely rapid oscillations do not effectively

cancel. So put ??i = in the t function. We make v = <r,

and get ,

Z = !_ _ !T
fft = ie

- Ke/s
. (so)

That is, a charge initially at one spot subsides in amount

according to e~ Kt/s
,
however it may be redistributed, which we

are not supposed to know. The factor shows that half the

charge only goes to the right.

Exactly similarly, if the initial state is C dy, we have

r.
-
Pt r -*<

-Je-Bf/i-. (31)



2
f

siD
""Ycosh + shinV dm, (32)

TTJ Q ))l \ V /
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That the total charge subsides according to e-^/3
,
and the

total momentum according to e- K*/L
, may be proved in an

elementary manner through the properties of the distortion-

less circuit.

Since there s no V beyond x = vt, we may give x in (29)

any value exceeding vt, and still have the result (30), and

therefore

f* = 2

TTJ Q

iix>vt. But if x is less than vt, the value of this integral is

a function of .r in general. Except when x is just under vt.

We then exclude the head of the disturbance, namely, the

wave going to the right, of amount JV f/ye~P*. Deduct

this from / \dx in (30), therefore. This means that the

value of the right number of (32) is c^-l, when a is just

under vt. When .1- is actually vt, take the mean, and say

^-J. See (41), (42), 398, for another arrival at these

results.

The Time Integral of C, due to Elements at the Origin.

413. Next we may find the time-integral of C at any point.

First, we may prove by ordinary integrations that

/ _
pt
sinA* = T _ _

pt
cos;u + (p/X)sin An*

Jo A L *(> + BK) Jo

cos Xt - -sin At I eft

^
j

_T -
pt
-2b cos A + (>?rr

2

where 6 = K/2S. Therefore, if initially we have V dy and
C dy at the origin, we obtain, by (24) for the result due to V

,

and by the companion to (23) for the result due to C
,

/"
CA = *>'

1^
KS-'LC

T
c
f
"* + VQ' ^ ""

rf , (35)JO 7T J JLl-w2 + EK

(36)

Li-2(m2 + RK)

This is a well-known form of integral. It makes
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showing separately how much is due to V and how much to

C . The latter vanishes when there is no leakage, and which

is more striking, increases indefinitely with K at the origin ;

whereas the former is greatest when K =
0, and least (zero) when

K = oo.

If V = LvC
,
so that we start with a positive wave to the

right and Q = SV <fy is the initial charge, then the last

formula makes

All the charge goes to the right when L/R = K/S, and never

returns. But we get only -JQ when there is no leakage.

Though all of Q goes to the right at first, |Q comes back

again. It is the resistance that causes this. When K/S
exceeds R/L, the time integral of the current exceeds Q.

This is abnormal, because R/L is always greater than K/S
practically. But in the application to electromagnetic waves

in general, both cases may have to be considered.

Evaluation of the Fundamental Integral.

414. Next, we have to evaluate the integral u, equation

(27), before progress can be made to complete knowledge by
the Fourier integral method. We may expand the function

(sinA)/A in a series in various ways. For example, the

expansion (166), 375, may be employed, with special

meanings of the symbols, to find evt/v, and c
~ vt

jvt
and there-

fore (sin Az)/A. We may then, if we can, effect the integration

concerned in u term by term. Or other expansions may be

employed in the same manner. But such work is very com-

plicated, and, without guidance, might not be satisfactory.

There is, however, a short cut whereby the complications due

to using a full algebraical expansion of (sinAtf)/A may be

avoided.

Thus, A is a function of o-
2
. So, by Taylor's Theorem,

/(<r
2

) =/(0) + o-
2

/'(0) + ^V(O) + . . . . (38)

t
But it may easily be proved by differentiating e**/v that

r '

=
i*T- (39)
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Therefore -f-,
- =

f\t
*~dt. (40)

t/o-'
2 v J

"
v

The operators d/da-
2 and \p~

l
t are therefore equivalent, and we

may employ the changed operator to obtain the expansion
of vt

/v by integrations to t instead of differentiations to a3 .

The same is true of the function Ar1 sin \t. Thus,

because o- = reduces X to mv. Or, to avoid misunderstanding

of the meaning of p~
l

t,

sinA* = sin met
+^ P smmrt

dt + (jcr
2
)
2

V^^ sinm^^
A ?;ii>

2
yo w?r 2/o Jo mv

+ .... (42)

That this gives a correct expansion of the function concerned

may be verified by comparison with the formula (166), 375,

already referred to. The process here indicated, in fact, pro-

vides an alternative method of finding the expansion of c"*/^

and the connected functions. But the point at present is not

to employ the developed expansion, but the operator which

develops if out of (smmvt)/mv. Thus, by (27) and (41),

=
(l + JoV

1
' +^^>a

+ ...}* foosii*^, (43)
\

[2
/Wo mv

by shifting the operator outside the sign of integration to w?.

Now, since

cos nix sin mvt J sin m(vt + x) + J sin m(vt
-
x) t

we can see, by comparison with (18) above, that the value of

the integral in the last equation multiplied by 2/;r is v"1 when

vt>x, and zero when vt<x. Therefore

t+ + ... (0 or 1). (44)
12 /

That the operand is when t<x/v has the result that if we use

the operand 1 only, the limits of integration must be from xjv
to t instead of from to t. So.

(45)
x/v x/v
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The first term in the brackets is 1
;
the second is

-*/*'); ()
the third is

^)*-^^V-*W; (
47

)

x/v

the fourth

l(l>? I'
t(P

-
a./^V/t -A/^V -aW : (48)

[
/

iC|
O

and so on, the process being to multiply any term by t and

then integrate to obtain the next term. We can see at a

glance now what the complete formula is. It is

u =
2
f

"

Try o

cos mx S^t

dm = 1 1 [<r(P
- aW)*J . (49)

provided t>x/v. And u = 0, if < x/v.

Compare with (33), 398, where this result was arrived at

in another way. Having got it out of the Fourier integral,

we can now if we like proceed to obtain the formulae for the

waves of V and C due to V rfy and C
Qdy. They agree fully

with the previous results, as in 371 for instance, and so need

not be repeated here.

Generalisation of the Integral. Both kinds of Bessel

Functions.

415. The following generalisation of the result is of

importance in some other electromagnetic problems, and may
therefore be conveniently put here for future reference.

Using the notation for Bessel functions explained towards

the end of the last chapter, we have

,, /KAN
i
- dA., (50)

o

?fWo
provided n/v > m. The first of these is equivalent to (49).

The second is its companion, concerning the other Bessel

function. But if n/v < m, then the value of the integral in
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(50) is zero instead of J (...); and instead of G (..)

on the left side of (51) we must write

ig>2-;>V<'
2
)V]. (52)

Also, whether m be greater or less than n/v, we have this

result :

if
rj

x (53)
(r

2 + A2
)*

This formula includes the preceding. [Here p is the time

time differentiator as usual, and the special previous results

depend upon (56), 842].

The C due to initial V . Operational Method, and

Modification.

416. Returning to the investigation in 414, there are

some things about it worth attention in view of understanding
the inner workings of the mechanism of analysis. We con-

verted the original operational solution to a Fourier integral

because we assumed that we did not see how to algebrise it

directly. But then again, not seeing how to evaluate the

integral simply by commonly-employed orthodox methods, we

employed an operational process to avoid the complication of

a full development of the functions concerned. Now, con-

sideration will show that the Fourier integral plays an un-

necessary part in the work. It may be skipped over without

any loss. On the other hand, there will be a gain in simplicity

by making the whole of the work operational.

Thus, given initially V = V ,
constant on the left side, and

zero on the right side of the origin, the current that results,

by (7), is

C-V^T^Al, (54)

because AV = V Al here. Now use the operational expan-
sion (41), or, which is the same,

shin^ = e lo*P-*t shinty (55)
V V&

Then we get

C^-ei^-^shin^A.l. (56)
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Now e^A l is 1 from x= -vt to oo
,
and ~ rtA l is 1 from

x= + rtto oo
, by Taylor's theorem, 276. So their difference

represents 1 from x = - vt to + vt. Therefore

where the 1 means a function of a? existent between the limits

indicated. Now the limits for the time integration are and t

as usual, but since the operand is when x> vt or < -
vt, the

effective limits are x/v and t on the right side of the origin,

and -
x/v and t on the left side. The rest of the work is as

in 414, for the right side, making

'oM*2-
a;K> 5

i. (58)

as before found, 367. It is true on both sides of the origin.

It will be observed that the only troublesome part of this

investigation is the initial recognition of the expansion (55).

Granting that, the rest is plain enough.
The result (58) suggests a modification which did not pre-

sent itself naturally previously. If two operators are strictly

identical, however different in appearance, one may be sub-

stituted for the other in general, perhaps universally, if

worked rightly. But the substitution may also be made

when the operators are not identical, if their effects are the

same under the circumstances considered. Thus, as above,

2 shin^A.l means 1 between x = +vt and vt. The original

operand 1 is a positively existent function of x, and the

operator turns it to a function of x and f. (They are not

functions at all in the limited sense of function theorists, but

that does not matter. Physics is above mathematics, and the

slave must be trained to work to suit the master's con-

venience.) Now compare it with -(*WDl, where D means

the t
2 differentiator. The 1 is now a positively existent

function of 2
,
and the operator destroys the part between

t
2 = and #2

/v
2

. The resulting function is therefore 1 provided
2
is greater than x*/v

2
. So it is the same function of x and t

as before. Instead of (56), therefore, we may write

C = ? I - - aj. (59)
2Li>
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The significance of the change will now appear. For since

,
therefore

and (59) is the same as

-1

(60)

There is now only one differentiator in question, and the

corresponding variable does not appear in the operators. They

may therefore be interchanged, making

C-^'/'VfrWD ^D " 1

1. (61)2Ly

Now we know that

^D " 1

l-I (crO, (62)

as in (19), 377. Or we may verify (62) on the spot. Then
the other operator in (61) turns t? to & -

a,-
2

/*
2

, and brings us to

the result (58) again. It is not necessary to interchange the

operators as above done
;
but it has the result of considerably

simplifying the work. We could not interchange in the form

(56), because the variable t is present in the second operator,

and is acted upon by the corresponding differentiator in

the first.

The V due to initial V .

417. The corresponding treatment of the V due to initial

V is more difficult. We have, by (6)

(68)

if initially V = V , constant on the + side of the origin. Now
use (55). We get

TT ft , ,V = -^_ (p + cr)e (c -e )x, (64)

where the x stands for A~ l
l. It is only positively existent.

Or, V = Vo

"
P

*(p + a)^P- <{ [x + rt]
-

[x
-

vf] }, (65)
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where the functions in the []'s are only positively existent.

That is, when x is less than -
vt, (x being on the negative side),

the operand is zero, and V is zero. And when x between

-vt and +vt. the operand is x + vt. Finally, when x is

greater than vt, the operand is 2>;t. This triple function of

x and t is fully represented either in (64) or in (65) under the

limitation to positivity mentioned.

Now, when x is greater than vt, we know the result by

elementary reasoning. The disturbance has not reached x,

so V there is the original V attenuated by the leakance. It

is V = V - K'/S . We should verify this. The operand is

2vt, and

... <Ko \2t o , o

This makes

- + '
= *~ l

sllin

V
<i
c-<V') (67)

which is the required result.

But when x lies between rt, and the operand is x + vt,

the work is considerably complicated. We found before, by
another method, that an infinite series of Bessel functions

was needed. When x is + ,
or in the region of V

,
as the

time goes from to t, the operand is %vt from t = to x/v, and

is then x + vt from t = xjv to the full t. When x is -
,
the

operand is until the time reaches x/v, and is then x + vt

till the full t is reached. It is not necessary to do both sides.

The side away from V
,
the negative side here, is the easier to

manage. We have to find U, given by

U =
(l + JoV 1*+ ) (x+vt), (68)

the limits in the integrations being x/v and t. The beginning
of the resulting series going only as far as_p-

2
,
is

,

(69)

This is horrid, and need not be pursued further, although
doubtless, by extension and proper arrangement, it can be
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more conveniently exhibited. If the initial V is on the left

side, the corresponding U on the right side is obtained by

changing the sign of a*.

\Ye have already found a concise and convenient way of

developing the C wave when the V wave is known, and con-

versely, 382, 386. In the present case we have (58) for

the C wave, and therefore

V-Vf-fU*), (70)

for the V wave. For distinctness let V be on the negative

side, then we calculate V on the positive side, so as not to be

troubled with the subsiding V . Now use the a, /? differentia-

tors, and we have

, n
l-a'

as explained in 382. This makes

(72)

, + 2
|P2 + . . .

(
Z
). (73)

See also 381. The investigations are practically the same

on the right side of the origin ;
but on the left side there is a

distinction. If the source is an impressed force at the origin,

then C at x and at - x are identical, whilst V at - x is the

negative of V at x, assuming that x is positive. But when

the source is the distribution V above assumed, then we must

add on V c-K*^ to the negative of the V in (73) to obtain V
at -x.

Final Investigation of the V and C due to initial

V and C .

418. We now come to the very last way I shall give of

algebrising the operational solutions for initial states. It has

some historical interest, and had especial value in being the

first way in which I was able to obtain full mathematical

confirmation of the results relating to the generation of posi-

tive and negative tails obtained by a consideration of the distor-

tionless circuit.

1
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For explicitness, say that V = V initially, without any C.

Then, by (6), (7), the resulting states of V and C are

., x shin vt^r /r~ .

V = e
-

P^P + <r)
-V , (Y 4

)

AV .

Now in the distortionless case cvt reduces to e^A, which is

merely a transktional operator, and enables the algebrisation

to be immediately effected. But since when there is distortion

the property of propagation of elementary disturbances at speed

v remains true, if we express v~l
tvt in the form er*A

/(vA),

then we separate the distortion from the translation. Whether

this is useful depends upon the form assumed by/(i'A). If

/(vA)V can be algebrised, then the work is done.

The required expansion may be effected by 375, equation

(166). .Turn y to t, s2 to o-2
, and^? to -yA.

The result is

**] rt +M\*. +Wi + I
(76)

7 A I 2 1 \/2\2/3>/(3
where s = o-/vA, and the r's are fanctions of (vA)"

1
, thus,

as described in 375, only with yp there changed to vtk here.

Since changing the sign of t gives us e
~ vt

/v, it is clear that

the solutions (74), (75) are expanded as required, and since

/(vA) contains A inversely in s and in the r's, the expansion is

suitable for the treatment of discontinuities.

In the practical execution it is perhaps as well, or better,

to rearrange (76) in powers of (vA)-
1

. This is to be done by

inspection of the r functions. The result is

V
(78)

where the #'s are time functions, namely
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being the same as in 376, equation (179), where they turned

up in another way. The next three are

5o-t5_ _
8 IT 2.4.6.8* '""leF 4 2^6 2.4.6.8. 10'

15_
16 16 2.4 2 2.4.6.8 2.4.6.8.10.12*

Similarly we can develop (p + or)
vt

/v, either by differen-

tiating (78), or by using the A series in 375. We get

...), (81 )

where the/'s are also time functions, of which the first six are

cr~ <r*\ ^ / q-A

Jo;
+

2.4.6 8.10 V 12/'16\ 8/ 42"T6

By changing the sign of o-, and also that of t, we get

^-o-) l^ = e-^(l-5/1
+ sy2

- sy3 + ...); (83)

and so, by taking half the sum of (81) and (83), (74) becomes

expanded.
Our original equations (74), (75) are therefore brought to

the forms

+ ^-^-^(1-^+^-^ + ...)^, (84)

L ,C = - j
-

pt^(i + sgi + ig_2 + fffi + , .

.) Vo ,

. . .)V . (85)

The only operations to be performed now, except the trans-

lations to right and left respectively, are the integrations sV
,

s
2V

,
&c. Suppose, for example, V is constant, but exists

only from the point y to + x ,
and we want V outside the V

EE2
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region. Then the second line in (84) is zero, because V is

zero; and in the first line, A-WV is Va(a -y)
n
/\n, when x>y,

and zero on the other side. That is, all these integrals exist

from y to oo . Then c^A turns x to x + vt, and makes (84)

become

where y = x + vt-y. Here yx must be positive. If it be

negative, V is zero. This diagram will illustrate :

Vo

The dotted line shows the beginning of the V wave before it

has attenuated much at its front, without any allowance for

the attenuation of V
,
if there be any. The curve of V is not

a straight line, as mistakenly represented. But later dia-

grams will show the approximate shape under different

circumstances.

Similarly, the other formula (85) makes

1*0- -K^JI+^+^OVC^T?^ } <
87 >

( v \ v / la \ v /
[o J

It gives the current between the limits x = y + vt and y-vt.
It is pretty easy to calculate these formulae when t is not too

big. In fact, to show how the wave begins, they are easier

than the corresponding Bessel formulae.

If the initial V is on the left side of the origin, that is,

from- oo to x = 0, then the proper change in the meaning of

y1 makes

V- iV,-"l + otf l -
*

+ /l - '+... (88)

express V at a on the positive side, from x = to vt\ beyond

which, V is zero. And the corresponding C is given by

(89)
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To obtain the formula for the C due to C change the sign

of a- in (88), explicit and in the /'s, of course also writing C
and C instead of V and V . To obtain the formula for the V
dne to C

, change LvC to St>V, and V to C
,
in (89), without

other change, because reversing the sign of o- leaves <rtglt &c.,

the same.

Comparing different ways of working, we may collect some

of the results thus :

pl

t* - */,!), (91)

2 V r

IT I n
cosw.E

8""'*""' ~\'dm (92)
o (mV - o-

2
)*

(93)

There are several other forms, but these are the principal.

There are also combination formulae, when there is initially

existent both V and C
; for example, to show how an initial

pure wave casts its tail behind. But they do not involve fresh

investigation, and as space is running short, I now bring the

development of these formulae to a conclusion. I have gone
over pretty well all the ground. Another way of attacking

the mathematics of the subject will be found in Webster's

lately published
"
Electricity and Magnetism," 255, due to

Boussinesq, and methods by Poincare and Picard are also

referred to there. In these the reader may revel if he wants

more. I have had enough of it for the present. Naturally,
I prefer my own ways, because I can understand them better.

And best of all I like the distortionless circuit, because every.

thing essential to a general understanding can be foreseen by
its means without any of the complicated mathematics, which

however is of course necessary to complete the matter, and

permit particular people to admit the truth of the conclusions,

and to allow of close calculations being made if desired ("El.
Pa.," Vol. 2, pp. 119 to 155, and pp. 381, 427, 475. &c .).
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Undistorted Waves without and with attenuation.

419. Having in Chap. IV., Vol. I., described pretty fully

the meaning of the theory, in its application to conducting
circuits as well as to plane waves in a uniform medium with

two conductivities, it is unnecessary to repeat the information

here. What follows is supplementary, particularly for the

assistance of those readers who may desire to go into numerical

detail, and draw the curves according to the preceding
formulae.

First take the case of no resistance and no leakage.

Eepresent V by the ordinate erected on the base line which

stands for the circuit. Then let there be two equal waves

travelling towards one another. The one on the left is the

positive wave. In it V = ~LvC. On the right is the negative

wave, in which V = - ~LvG. This being the state at a certain

moment, the subsequent history is got by moving the positive

wave to the right and the negative to the left, at the same
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along the circuit is therefore y = c~^x
^Lv

. Draw it, and then

let an elementary plane wave slide along it at speed v, and

it will correctly represent the transit of the wave as modified

by the resistance and the leakage.

All the elements of a given arbitrary wave, say a positive

wave, travel at the same speed, and attenuate at the same rate.

b y

FIG. 1.

To illustrate, if A, B shows the curve of voltage at a certain

moment, then ,
b will show what it becomes a little later, the

time interval being the distance Aa (or B6) divided by v.

Similarly a circle will shrink to an ellipse. Note that this

shrinkage does not count as distortion at all. The variations

of voltage (and of current, since V = Li-C) as the wave passes

any point #, are identically repeated when it passes y further

on, only reduced in size. If the voltage is impressed at the

left end, according to /(), then it makes f(t -x/v) x e-**/1*

at any later point x.

Now consider the initial state V = 2V constant on the left

side and zero on the right side of the origin, without any C.

.ayo _.

FIG. 2

What results is to be found by dividing the initial state into

two equal parts, one with positive current, making V = Lt-C
,

the other with equal negative current making V = - Lt-C ,

and then moving the first to the right and the second to the

left, at speed r. In the figure, the upper dotted line shows the
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initial state, and the lower dotted line what it attenuates to at

the later time making e- K*/s =
f. The shaded region shows

the electromagnetic wave V = L^C spreading both ways. The

dotted part of the curve of voltage has no magnetic force

associated with it. The voltage is there attenuating by leak-

age only, but at the same rate as the V and C in the wave.

Effects of Resistance and Leakance on an Initial State of

Constant V on one side of the Origin.

420. Next suppose B/L to be increased a little, K/S remain-

ing the same. Then p, or B/2L + K/2S, is made greater than

K/S. New ~
Pt is the wave attenuator, and c-Kt/s the leakage

attenuator. It follows that, with the same initial circum-

stances as in the last case, the attenuation at the wave front

is greater than at the origin of the wave. So, instead of the

FIG. 3.

horizontal straight line of V in the last case, the curve of V
must fall to the right and rise behind. The thick line shows

the curve of voltage at the moment making e- Kt/s =
f, and

-?*=*.. At the origin, V at every moment is equal to half

the V behind the wave
;
at the particular moment in question

this is fV ,
and there is additional attenuation along the wave

to the right, making V at the front be |-V . The general

characteristic as the wave spreads and V attenuates all over

is the greater attenuation at the wave front than at the origin.

The case is quite altered if, instead of increasing B/L, we
reduce it, taking the distortionless case as initial standard.

For we shall now make p less than K/S. The remarkable

result is that the attenuation at the forward wave front, and

in the forward wave generally, is less than at the origin, and

in the region behind the wave occupied by V without any C.

In the diagram, Fig. 4, the same attenuation by leakage alone
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is shown, and the same value at the origin, but at the forward

wave front V is -|V .

FIG. 4.

Next pass to the two extremes partially indicated. One
is K = 0, the other R = 0. If K = 0, we have />

= E/2L = a

as well. With the same initial state there is no attenua-

tion behind the wave region, and the voltage at the origin

FIG. 5.

remains steadily at V = V . In the case illustrated, the

value of ~Pt
is J, and the thick line shows the curve of voltage.

The constancy of V at the origin enables us to regard the

wave proceeding to the right as being impressed by a steady

voltage V .

FIG. 6.

At the other extreme we have B = 0, p = K/2S = - er
;
that is,

there is attenuation by leakage only, and o- is negative. Two
moments of time after the first moment are considered, and the
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corresponding two stages of the voltage curve are shown. When
2V has fallen to |-V ,

the voltage at the origin is |-V ,
and at

the forward wave front fV . And at the later moment, when this

wave front has gone twice* as far, the initial 2V has attenuated

to -|V ,
and at the origin we have iV

,
and at the forward wave

front JV . On the left side of the origin V has become

negative in a portion of the wave. The ultimate limit of this

is easily seen
;
the place of zero voltage moves towards the

origin as the wave spreads and attenuates.

Division of Charge Initially at the Origin into Two Waves

with Positive or Negative Charge between them.

421. From the previous curves may readily be derived those

representing how a charge initially confined to a limited region

splits and spreads. For if upon the state V = V from x = oo

to 0, we superimpose the state V= V from - x to x= +,
the resultant is simply V between x = and a. So shift the

curve of V arising from the full + V , through the distance a

to the right, and take the difference of the new and old curve

to represent the V arising from V in the length a. It may be

any length. If chosen infinitesimal the result will show how
a point charge splits and spreads. Bat then the curve requires

magnification. On the other hand, if a be chosen large, we

a

FIG. 7.

do not get clear representation of the waves, owing to over-

lapping. So take a of a moderate size, as in Fig. 7. This

is the case of no leakage. The difference of the two curves

shows what we want. Bringing it down to the base line,

Fig. 8 arises. It shows the two waves running away from

one another. They are not quite pure waves, because they are

* This is wrong. Not twice, but 2'7 times as far. Enlarge the time
scale to suit in the second curve.
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of finite depth. Between them is the diffused electrification

cast behind by the two heads as they travel ; that is, it is the

double tail formed by the superposition of the tails of the two

waves. The complete area of two heads and the double tail

is the same as the area of the original rectangle, shown dotted.

At any rate, it ought to be so, and by the look of it, is not

HL^*^
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changing their values, then V/V in the first case is the same
as C/C in the second, if the distributions V and C are similar

and equal.

So the V/V curve in Fig. 3, where R is in excess, or o- is

positive, also represents the C/C curve when K is in excess,

making o- negative. Similarly Fig. 4 shows the C/C curve

when R is in excess. And Fig. 8 shows the C/C curve arising

from a central distribution of C
,
when R is zero

(o- negative),

with persistence of mementum now instead of electrification,

whilst Fig. 9 shows the corresponding C/C curve when o- is

positive.

We may make similar interchanges of L and S. The c~P*

factor remains the same when R/L and K/S are transposed,

whereas a- is reversed.

The Current due to Initial Charge on one side of the

Origin.

422. There remain for consideration the curves of C due to

V and of V due to C . These are alike. Not only that, but

they are similar when o- is positive or equally negative. The

FIG. 10.

general type is shown in Fig. 10. Let initially there be 2V
on the left side of the origin. Then

is the formula for C. Here p =- cr
( 1 + K/S<r) , so, taking a-

positive, we require to give p a greater value, unless K is zero.

Say <rt= lj then &~Pt must not be greater than e- 1
. So

-J
is a

good value to take, and in the figure are shown the curves of

C when a-t = l and 2, the corresponding values of e~Pt

being

J and i. The voltage at the origin is V e~ Kt/s
.
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From these curves, by taking differences as before, we can

derive the curves showing the current due to initial Y through

a certain distance. Two stages are shown in Fig. 1 1 . The

current is positive in the wave going to the right, and negative

FIG. 11. -

in the one going to the left, and the diffused current between

them is positive and negative also. The positive wave appears

to have a positive tail ;
the negative a negative tail. This

appears anomalous, but it is a mixed up case. It is the nega-

tive part of the intermediate current that represents (in a

great measure) the tail of the positive wave, whilst the posi-

tive part represents that of the negative wave, as will be more

plainly seen presently.

The After-effects of an Initially Pure Wave. Positive and

Negative Tails.

423. To obtain the formulae showing the tail cast behind

by an initially pure wave in which V = LfC
,
we have merely

to add together the V resulting from V to that resulting from

LyC to find the V due to both, and similarly as regards the

C due to both causes. The expansions in powers of (1
-

xjvt)

are convenient for immediate rough numerical calculation.

But the following Fig. 12 has been obtained by an entirely

different process, namely, by making numerical interchanges. It

would take up too much of the rapidly-decreasing space remain-

ing in this volume to enter into detail concerning this method.

The reader who will study the short account given elsewhere

(" Elec. Pa.," Vol. II., p. 318), and will take it in, will easily

be able to construct tail curves, as well as a variety of others.

The results are rough, but show all the main characteristics

in size and shape. In this method you go behind the scenes,
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as it were, and see the inner workings of the formulae when
time and space vary. Both the voltage and the current curves

are obtained from the same series of numbers.

Supposing there is initially a pure wave of small depth at

the place 0, advancing to the right, Fig. 12 shows the tail of

V when there is no leakage, at moments t = J, 1
, 2, and 3

later, the unit of time being arbitrary here. The remains of

the head are shown for the times t = 2 and 3, on the right

side, but no heads are shown previously, because they would

be too big to get into the diagram without increasing its

vertical dimensions inconveniently. The vertical lines at

0, and at J, 1 on the right merely indicate the position of

the middle of the head
;
on the other hand, its depth as well

as height are shown at 2 and 3.

There are signs of the maximum having been reached in

the curve 1. In the later curve 2 nearly all the electrifica-

tion is in the tail, and the maximum is a long way from the

head. In the later curve 3 the head does not count for much,
the maximum has moved back a little, the curve has become

more symmetrical with respect to the middle point, and the

change of curvature shows itself markedly on the left side, and

perhaps a little on the right side as well. Later on, when the

head disappears, the tail (widely spread) continues to tend to

become symmetrical with respect to 0.

In the next diagram, Fig. 13, is represented the develop-

ment of the tail of current, on the same scale, and at the same
moments of time. The heads 2 and 3 are shown the same as

in Fig. 12. This means that the curve is that of LvC, not C.

The heads for t = 0, J, and 1 are left out as before. At first

the tail is entirely negative, thickest at the tip, and decreases

towards the head. Note in passing that the sloping lines at
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the tips in Figs. 12 and 13 are merely consequences of the

finite depth chosen for the head, which causes overlapping.

These sloping lines are vertical when the head is of infinites-

imal thickness. Going further, at the moment t = l, the

FIG. 13.

negativity of the tail has nearly ceased at its junction with

the head. At the moment = 2, it is positive next the head,

and a long way behind. Remember that the head is greatly

reduced from the original head at 0. At the moment f = 3,

further progress has been made towards symmetry, and the

positive part of the tail has a maximum. After that, there is

a continuation of the progress towards symmetry.*

Figs. 1 to 13 described in terms of Electromagnetic Waves

in a doubly Conducting Medium.

424. In the preceding, nearly all equations and results

have been expressed in terms of V and C (voltage and current),

instead of E and H (the electric and magnetic forces). The

main reason for this is on account of the direct application that

can be made to telegraphic, telephonic and Hertzian waves

along wires. But for plane electromagnetic waves in general

in a conducting medium, it is, of course, more natural to

consider E and H, and think of what goes on within and along

*
I am unable to explain by my theory why the waves at 2 and 3

should lean backwards. We must have recourse to a scienticulistic ex-

planation. Trie spy who drives the cart informed me that the retardation

of the top of the wave with respect to the bottom was indicative of in-

cipient action of
" the KR law," making the speed of the current be less

at the top than at the bottom. Bub the tanner confirmed this, with an

oath. Both are scienticulistically impregnated.
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a single tube of flux of energy of unit section. It is sufficient

here merely to restate how to translate solutions from the con-

crete to the specific. It would scarcely be necessary were it

not for the singular part played by R when we pass from real

wire waves to pure electromagnetic waves.

Turn V and C to E and H. The former are the line inte-

grals of the latter. Then L, the inductance per unit length

becomes /A the inductivity, and S the permittance per u.l.

becomes c the permittivity of the medium through which the

waves are passing. Also, K the leakance per unit length

becomes k, the electric conductivity, and E the resistance per

u.l. of the wires becomes g, the magnetic conductivity

(fictitious) of the medium. The peculiarities connected with

the last should be noted in the following, since if they are not

understood the subject is rather puzzling sometimes.

Referring to Figs. 1 to 13, Fig. 1 shows how plane waves of

E and H of any type would be transmitted in a medium

possessing both conductivities of such amounts as to make

f//fj,
=

k/c. Similarly, in Fig. 2, where the initial state is a

uniform field E on the left side of the plane x = 0. The wave

arising may stand for either E or H, since E =/^'H.

Passing to Fig. 3, here it is the magnetic conductivity that

is in excess, and the wave of E arising from the initial state

E is represented. It equally well represents the wave of H,

arising from a similar initial state H
,
when the electric con-

ductivity is in excess.

In Fig. 4 the curve shows the wave of E arising from E
when k is in excess. Or else, the wave of H arising from H
when gis in excess,

In Fig. 5 we have the wave of E due to E when the con-

ductivity is wholly magnetic. Or else, the wave of H due to

H when the conductivity is wholly electric.

Fig. 6 shows the wave of E due to E when the con-

ductivity is wholly electric. Or else, the wave of H due to

H when it is wholly magnetic. In these examples, if one

case is fictitious owing to the non-existence of g, it may be

turned to a real case by considering E instead of H, or H
instead of E.

Fig. 8 shows how an initial state of E
ft

in a plane slab

divides into two equal plane slabs, which separate and
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attenuate, and leave part of their contents behind and between

them, when & = 0, and g is finite. There is persistence of

total displacement. Or else it shows the division of initial

H
,
when g = 0, and k is finite. It is the induction that now

persists.

Fig. 9 shows how the initial state of E divides and spreads

when
<7
= 0, and k is finite. Or else how a state of H divides

when k = Q, and g is finite.

Fig. 10 shows the wave of H due to initial uniform E on

the left side of the origin. Or else the wave of E due to

similar H .

Fig. 11 shows the wave of H due to a slab of E at the

origin. Or else the wave of E due to a similar slab of H .

Fig. 12 shows the tail of E in different stages of growth

arising from the initial pure wave E = /*vH ,
when the con-

ductivity is wholly magnetic. Or else the tail of H due to

the same initial state when the conductivity is wholly electric.

Finally, Fig. 13 shows the tail of H in different stages due

to the same initial state as last when there is magnetic con-

ductivity alone. Or else the tail of E due to the same when

there is electric conductivity alone.

I am aware of the deficiencies of the above diagrams. Per-

haps some electrical student who possesses the patient

laboriousness sometimes found associated with early manhood

may find it worth his while to calculate the waves thoroughly

and give tables of results, and several curves in every case.* It

should be a labour of love, of course ; for although if done

thoroughly there would be enough to make a book, it would

not pay, and the most eminent publishers will not keep a

book in stock if it does not pay, even though it be a book that

is well recognised to be a valuable work, and perhaps to a

great extent the maker of other works of a more sellable

nature. Storage room is too valuable.

* Webster's "Electricity and Magnetism" contains a fe-v curves, but

not enough for what I refer to. Gray's work, in Vol. II., may perhaps

go further.



CHAPTER VIII.

GENERALISED DIFFERENTIATION AND
DIVERGENT SERIES.

A Formula for
|w-

obtained by Harmonic Analysis.

425. I am reminded that this volume is growing fat.

Therefore 1 come to the last matter to be considered in it.

Omitting some other investigations concerning plane waves,
I must say a few words on the subject of generalised differen-

tiation and divergent series. I have put it off to the last for

several reasons. It is not the main subject for one thing, and

only turns up incidentally. Again, I have asked myself, if in-

vestigations of this matter are not good enough for Another

Place, how can they be good enough for Electromagnetic

Theory ? I really cannot answer such a poser. Then again,
it is not easy to get up any enthusiasm after it has been

artificially cooled by the wet blankets of rigorists. Never-

theless, I have been informed that I have been the means of

stimulating some interest in the subject in certain places.

Perhaps not in England to any extent worth speaking of, but

certainly in Paris it is a fact that a big prize has been offered

lately on the subject of the part played by divergent series in

analysis. Well, that is better than the wet blanket, and sets

a lesson that may or may not be followed in other quarters.

I hope the prize-winner will have something substantial to

say. I wish him success, whoever he may be.

The easiest way out of my difficulty would be to just shove

in here my three papers
" On Operators in Physical Mathe-

matics," Royal Soc. Proceedings (Part I., Dec. 15, 1892
; Part

II., June 8, 1893, and Part III., down for reading June 21,

1894, and not read). But this would take about 120 pages,
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which is out of the question. An account of certain parts of

the papers will be quite sufficient for the present work, and

can be given in a limited space, especially because a good deal

has been given already in one form or another.

So, passing over 1 to 14, Part I., Q.P.M., already given

with large extensions, come at once to the
|n

function in its

relation to fractional differentiations and integrations. Let A
be a differentiator, say with respect to x, then we have had to

consider not only A~
n
l when n is integral, but also when it is

fractional, say J or J. We are obliged to consider such cases,

because our operational solutions involve them. The case

n = ^ also occurs in cylindrical problems, and no doubt other

values turn up in other problems. We want to find what ]n

is in the equation

A-l=|,
(1)

subject to

(n
=

(n-l, (1
=

1, (2)

the last datum being necessary to fix the size of the function,

or to standardise it. We know that there is such a function

as is defined by (2) given in all treatises on the Integral

Calculus (equivalently) under the name of Euler's Gamma
function, though I think most books only treat of it from

n = - 1 to + oo
,
and have nothing to say about the region

from -x to 1, and still less about the application to

generalised differentiation. With a different zero it is also

called Gauss's II. function. But put aside from memory for

the present what may be said about the Gamma function in

books, and consider it in the light of practical work in

operational mathematics.

A formula for
\n,

based upon (1) may be readily found.

Use harmonic analysis. We have

Al
i f

*

= _ I cos mx dm, (3)
TTj

a remarkable formula already used many times. So

A "1 = A -<n+DAl =
A " (n+1)

I"cos mx dm. (4)
7T J

Now with the simply periodic operand cosmx, the potence

FF2
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of A2 is -i2
. That is, A = wi, the sign of equality merely

meaning equivalence under the circumstances, not identity in

general. Or, the algebraic imaginary i is equivalent to A/i. So

2__ _,

mn+!

That is, we assume that the equivalence of A to mi persists

when n is fractional. On this understanding, the final form

in (5) involves only the operator of Taylor's theorem, so (4)

becomes

A~nl = I

e- cos nix dm

mn+ l

This, observe, is a formula evaluating A~
n
l, obtained with-

out any reference to the \n
function. According to (1), then,

we have
> fco r i i . i \n

(7)
\n TTJ o mn+ l

and so, putting x = 1, and denoting the reciprocal of
(n

we have

= d (8)A ^ ' Jo mn+l

Thus it is not \n, but its reciprocal, that should be investi-

gated for our purposes.
Formula (8) is quite correct and intelligible when n lies

between -1 and 0. The integral is then convergent. But

just at the limit n = Q, it fails, giving only half the real value.

It may be readily checked that
[ | = TT*, as before obtained

in another way. The interpretation outside the limits named
need not be considered, because equation (2) finds n all over

when it is known between - 1 and 0.

Algebraical Construction of g(n). Value of g(n)g(
-

n).

426. Although the above way (not 'given in O.P.M.) of

getting a formula for g(n) is very direct and short, the result

is a definite integral, which must be worried to display its
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effective meaning. The curve of g(ri) can be drawn approxi-

mately at once by plotting its known values when n is integral,

viz., for every negative integer, and 1, 1, J, % r T̂ >
&c -> a*

n 0, l
f 2, 3, 4, &c. By the look of it, we see that the curve

has a maximum between and 1, and is oscillatory on the

negative side, whilst continuously positive on the positive side.

This is confirmed by plotting the midway values, also known,
for n= J, f, &c. The range of the oscillations is now approxi-

mately indicated. As n increases negatively, the range
increases.

O.P.M., 17, 18, 19. If we turn right to left, we shall

obtain the similar curve of g(-n), oscillatory on the right

side of the origin, and continuously positive on the left side,

with a maximum between and - 1.

The two curves are remarkably connected. Form the curve

of the product g(n)g( -n). It is oscillatory on both sides. It

has a zero for every integral value of n, positive and negative,

and has the value 1 at the origin. This defines the function

(sin mr)/mr. That is,*

g(n)g( -) = 8
, (9)

for all values of n. The values of #(J), &c., follow at once.

Now (9) is the same as

9(n] 9(
~

n) = (1
- 7i

2
) (1

-
Jn*) (1

-
n*) ..... (10)

therefore, since the zeros of g(n] are known,

0(n)
= X(l+n)(l + i,i)(l+Jn) .....

, (11)

^-fO-X-'Cl-nXl- J)(l- Jn) -i (12)

where X is some function which does not introduce fresh zeros.

Since w = makes #(0)
= X apparently in (11), it might be

thought that X = l. But it is oo instead when n is -
,
and

when n is + ,
as may be easily seen by drawing the curve

with a limited number of products. This is an oscillatory

curve crossing the ?i-axis at the points -
1,

-
2, &c., up to - r.

* There might be an extra factor. But there is not, to harmonise g(n)

and g(
-

n). Or we may regard the value of g(
-
^) as known, to determine

the factor to be 1.
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Now as r is increased, the range of the oscillations gets smaller,

and tends to become infinitely small when r= oo. This is

confirmed by the fact that (13) is identically the same as

viz., the first r + l terms in the expansion of (1
-
l)~

n
by the

binomial theorem. When r is oo, y is zero for all negative
and oo for all positive values of n.

The X multiplier must therefore be oo when n is negative.

There is a radical distinction between the vanishing of y at

n= -
1,
-

2, &c., and the vanishing between these values. In

the first case the zeros are absolute, and cannot be magnified.

The curve crosses the axis at the points named. But the

vanishing of y between can be cancelled by infinite magni-

fication, so as to lift up the curve of y from the zero line to

the g(n) curve. Thus, choose X so that equation (11) shall

be true when there are r products and n is an integer. This

makes

or X-
\r_ [n + r

For example, if n is 10 and r is 100, then

1.2. 3T4 . . .7109 . 110 101 ... 110'

As r is indefinitely increased this becomes r~n
,
so

The limit that is tended to when r is made infinite is the

value of g(n).

By logarising (15) we get

logp= -?iC + -
2

S2
- S

3 + S4
-...

f (16)

where Sw =l +
*

+
*

+ >
= ^ - logr = 0-5772. (17)

A d

From (16) may be derived a formula for g(n) in rising powers

of n, namely

(18)+ (C
4 - 6C2S

2
+ 8CS3 + 3S2

2 - 6S
4)^

+ ----
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Like TT, the value of C has been calculated to a large number
of places of decimals, though I do not know that anything is

gained by it. Something wonderful might however turn up,
for instance, a long succession of O's.

The cosine function may similarly be split into two, making

f(n}f( -n) = cos, and (n
-
J)/(n) =f(n -

1). (19)

But this f(n) is not useful like the g(ri) function.

Generalisation of Exponential Function.

427. Passing on to O.P.M., 20, 21, the usual formula

defining \n_
and expressing Euler's Gamma integral is

equivalent to

(20)

provided n is over - 1. There are two ways of developing the

indefinite integral
"
by parts," say

+ (2
(
+ 2 m + 3

(

rn rn-l
+

i

So [icj between any two limits is equal to
[
- wj between

the same limits. That is, [M?J + w2]
between any two limits, is

zero. Therefore w
1 + iv

2
does not change its value with x. But

does its value depend upon w? No, because if n is > -
1,

we may divide the integral (20) into two, one going from

to x, the other from x tooo. For the first use (21), since

w
l
= when x = ; and for the second use (22), since w

2
=

when x= oo. We get

I = w
1 + w2 , (23)

or, which is the same,

xn-l tfn, xn+l xn

'+IEI (F t*l
s ' (24)

the series to be continued both ways. The assumption was

that n> - 1. But the change of n to n - 1 in (24) makes no
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difference. So (24) is true for all values of n. The series on

the right is a periodic function of n in appearance, since the

change of n to n + l reproduces the series. But as regards

the value, the periodicity is only apparent. It is always e*. In

numerical calculation only the initial convergent part of the

series on its divergent side is to be counted, though all on the

convergent side, as usual.

Note that # is a positive quantity all through. When

negative another formula is needed, to be given later on.

The function w^ may be developed in a rising power series

operationally thus,

W = A -

expanding by the binomial theorem; and now algebrising,

we get

This may be confirmed by (21). But a similar operational

treatment of w
2
fails. So expand w2

in (22) in a power series

by direct multiplication, using the usual formula for
~x

. The
result is

(27)

But MJ + t#
2
=

l, so

1 = 2 -G ^ xn . (28)
(n

This is the result we shall get by developing (24) to a

power series, multiplying it by the usual c~x expansion. A
more general formula including (28) will occur later. The

apparent numerical unintelligibility is no necessary bar to the

use of (28) as a working and transforming formula. It often

turns up. By (1
-

l)
n

is to be understood the expansion

according to the binomial theorem, in powers of the second 1.
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Application of the Generalised Exponential to a Bessel

Function, to the Binomial Theorem, and to

Taylor's Theorem.

428. It is easy to generalise a common stopping series in

which n is integral to another in which n is fractional, but the

result is not to be expected in general to be equivalent to the

stopping series, which is a special case of the generalised series.

Yet there may be apparent equivalence. Thus (O.P.M., 22)

the solution of

in rising powers of as is

3242

by putting y = J#
2

,
and denoting d/dy by D. Substitute the

generalised exponential, and see what we get. The result is

Now is u the same as I
(.r)

? Take M = J, then

By numerical calculation this is I (z), without any fault to

find. When n is not J, I also found fair agreement at first,

with only rough values of \n.
Later on I found that the

assumed equivalence led to wrong results, and in Part 3

found the explanation. This will come later
;
at present it is

enough to say that u is equivalent to I (x) for integral n and

midway between, but is only apparently equivalent otherwise.

Another application of the generalised exponential is to the

binomial theorem. Thus (O.P.M. 23)

a^-c* =e*A-l-S^ (32)

where we use the generalised exponential, and r is the general

exponent, not n, which is constant. So, algebrising, we get

y.n-7-

(33)
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If r = or any integer we have the form

**

If r = n we have the form

(l+ft)
ra

= j x ^!_ + .. (35)
\n [TO [l[w _!_ [2[wj-j2

These are doubly-stopping series when n is integral, and

become identical. When n is fractional they stop only one

way. In general the series (33) does not stop either way.
In the case r = \ we get

(^=> -- +
iilEf

+a& +E^rT+ "- 1 (86)

If =
1, this makes

+-,... (37)

In special cases (O.P.M., 25) we can get fully convergent

formulae for
[n. Thus, take r = J, w = J,r

= lin (33). Then

. (88)

Similarly, r = |, w = J,a;
= 1 in (33) makes

-... . (39)
81 .

4*(^)
3

So we know #(J), #(J), and g(%), without going to the general

formula or to tables.

Applying the generalised exponential to Taylor's theorem,

/(* + A) -."/(*) = 2
*j/(),

(40)

if f(x) is a power series, we should expect the generalised

exponential to apply as well as to the special function xn
/\n.

We get (O.P.M., 24)

_ 1 A

(x). (41)
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The extent of application may be left open.
If f(x)

=
1, then we get

Put h/x
= c and use (9) above in every term, then

1 = 2
sinnr

) }
TTT

where c is to be positive. This is another formula of the

nature of (28) above. In fact (28) may be derived from (43).

Algebraical Connection of the Convergent and Divergent
Series for the Zeroth Bessel Function.

429. Another application (O.P.M., 27, 28) of the gener-
alised exponential is to show the algebraical connection

between the zeroth Bessel function in the usual ascending

series, and the equivalent descending series.

<">

Here A is I (#), and C is an equivalent form. Both come out

of the same operator, as in 353 above. They satisfy the

same differential equation, and are numerically equivalent as

well. They also act equivalently as operators, certainly some-

times. But aside from the extent of equivalence, what is the

algebraic connection between A and C ? How turn one to the

other by mere algebra ? It cannot be done with the usual

form of e* because then we have integral even powers in A and

nothing but fractional powers in C. But use the generalised

*, that is

*-2), (47)
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with the special value r = J, that is, in the representative term,

the others being 1 J, 2J, &c.,
-

J,
-

1J, &c. Then C becomes

an integral power series. But it does not agree with A, for it

contains all integral powers of x, positive and negative.

Evaluating coefficients, we find that

= J(A + B). (48)

Thus C is, on the understanding mentioned about x
,
half

the sum of the usual I
Q(x), and of another form already found

to be equivalent to the same, in 428 above. Later on this

process of algebraical conversion will be extended to any
Bessel function. Remember, however, that x is to be positive,

in general. The common theory of i does not hold in general

in these transformations.

It is noteworthy that if in the differential equation

(
A2 + a~1

A)M =*, . (49)

which is the characteristic of A, B and C, we substitute

u = a + a^x + a
2
#2 + . . . + Z^or

1 + Zyr
2 + . . .

, (50)

we shall obtain the result

u = aA+b'B, (51)

where a and b are independent constants. But A and B are

not independent solutions of the characteristic, but are

equivalent forms of one solution only. There are only two

independent convergent solutions of (49), but any number of

divergent.

The result (O.P.M., 29 and 30)

(52)

by using the generalised binomial expansion, generalises to

()

This is equivalent to I Q (x) when r = and-J, but its full

meaning is considered later.
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Limiting Form of Generalised Binomial Expansion when
Index is -1.

430. (O.P.M., 31, 32.) When the exponent is a negative

integer the generalised binomial expansion becomes ambiguous

by the existence of vanishing factors. In

(If)."=2 -*-
(54)

| pln-r
put n= 1. We get

3 -#-*+.
.)j.

(55)

On the left side there is the vanishing factor g( l). So, on

right side we should have

This asserts the equivalence of the two forms of expansion of

(1 + x)~
l in integral power series.

But if r = as well, (55) takes the form x (1 + x}~
1 = 0x0.

To make plainer, first put n= -1+s in (54), and then let

both r and s be infinitely small, but without any connection.

Using

true when r and s are infinitesimal, (43) becomes

r+l
"

(58)s-r s-r+s-r
Dividing by s, and then putting r = 0, s = 0, r/s

=
c, we have

(l + x)-i
= (l-c)(l-x + x*-...) + c(x-

l -x-* + x- s

-...). (59)

That is, the limiting form of (54) when n is 1 and r = is

indeterminate, as it consists of the two forms in (56) combined
in any ratio, the quantity c having any value.

Remarks on the Operator (1 + A-
1

)".

431. By using the two extreme forms of expansion of

(1+A-
1

)"*, we are led to two equivalent formulas for the



446 ELECTROMAGNETIC THEORY. Ctt. VIII.

function c~ia:I (J.), as done before, 353. This suggested
the examination of the operator (1 + A-

1

)", partially carried

out in O.P.M., 33 to 42. Say

(60)

(61)

with unit operand, making

T n(n-l) 9 n(n - l.}(n
- 2) ql+nx+ V + J---JL-V+..., (62)

(12
'

<">

The suggestion is that u and v may be equivalent. If they

are, and we put A-1 for x in the last equations and use unit

operand again, we shall obtain two new functions which might
be equivalent. This process could be carried on indefinitely.

It is like equating the two forms of the expression

S *
(64)

(\r]
m
(wj-r

which result by putting r = and n in turn.

The results of numerical comparison of (62), (63), are briefly

these. The functions u and v are equivalent when n is - J, as

already considered. Now the case -f J differs by a whole

differentiation, and may be expected to give excellent results.

It does, with x = l, 2, 3. Increasing n to f and T
9
^ also pro-

duces apparent equivalence. There is identity when n = l.

The cases of n = J and -
J also show an apparent equivalence.

So far, then, it is suggested that there is real equivalence all

along, and not merely at n l, J, 0,
-

J. But this is not

made probable by further examination. For if we go down to

n= -
f , the function v for oc = 1 and 2 is rather too small, and

a part of the term following the 1. o, t. (or last convergent

term) must be added to make the value of u. We may
expect n = -

T
9
^ to be worse. It is much worse. Going from

n= -
T
9
^ to -1 accentuates the difference; and finally, when

n= -
1, we have

<
65>

which show no sort of agreement, v being zero.
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Yet even in this case of extreme apparent failure there is a

way of reconciling the two forms of operator. Thus

M = (1-A- 1 + A- 2

~...)1, (66)

v=(A-A2 + A3

-...)l. (67)

That u is e~ x is obvious. Now if we apply harmonic analysis

to the other form, we shall get e~*. Thus,

1=
~

.
- cosmxdm

1+A l-AMo

when x is + ,
and when x is -

. This change from to e~x

is also true of u, since the operand 1 only begins when x = 0.

Two suggestions arise : First, that as the generalised

binomial theorem becomes indeterminate in form when
n is - 1, so we may expect anomalous results, requiring special

interpretation. The other is that, except with special values

of n, u and v are not really equivalent, but that an auxiliary

series is wanted, say u = v + iv, where w is quite zero for the

special values of n but that when n has other values pro-

ducing apparent equivalence, the value of w is too small (with

the values of x tested) to influence the result ; whilst finally,

with the values of n from f to 1 the function iv becomes

important. At any rate I know that this is what happens in

some other cases of apparent equivalence.

As regards the extension to (64), there will be some notes

later.

Remarks on the Use of Divergent Series.

432. In O.P.M., 43 to 48, I have stated the growth of

my views about divergent series up to that time: I have

avoided defining the meaning of equivalence. That has to be

found out by experience and experiment. The definitions will

make themselves in time. Starting from complete ignorance,

my first notion of a series was that to have a finite value it

must be convergent, of course. A divergent series also, of

course, has an infinite value. Solutions of physical problems
should always be in finite terms or in convergent series, other-

wise nonsense is made.
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Then came a partial removal of ignorant blindness. In some

physical problems divergent series are actually used, notably

by Stokes, referring to the divergent formula for the oscillating

function JB(z). He showed that the error was less than the

last term included. Now here the terms are alternately

+ and -. This seems to give a clue. After initial con-

vergence, the terms do get bigger and bigger, but the

alternation of sign is significant. It is possible to imagine
a finite quantity divided into parts in this way. It is a bad

arrangement of parts, but as the initial convergence guides

one to the value, it may be practical.

But by the same reasoning, a continuously divergent series,

with all its terms + ,
is infinite in value, of course. It cannot

represent the solution of a physical problem involving finite

values. This seems to be what Boole maintained in his

" Differential Equations" (3rd Ed., p. 475): "It is known

that in the employment of divergent series an important
distinction exists between the cases in which the terms of the

series are ultimately all positive, and alternately positive and

negative. In the latter case we are, according to a known

law, permitted to employ that portion of the series which is

convergent for the calculation of the entire value." He illus-

trated this by integrals ascribed to Petzval. It is equivalent

to this. The equation

(tf + x-1

&)u = u (69)
is satisfied by

that is, multiples of H
(a;)

and K (). According to Boole, we

may use B, but not A, when x is + . But if a? is -
,
use A,

but not B. So there is only one solution of the characteristic

obtained in this way. The plausibility of this argument is

evident, as evident as that A is oo when x is + .

But, later on, divergent series presented themselves to me
in a different way viz., as differentiating operators. The

operators may be the same functions of A, or dfdxt
as would

make convergent series, or else series which would be either
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alternatingly or continuously divergent if x took the place of A.

Introducing an operand and algebrising, the solution of a

problem arises, and in a convergent form. Here, then, is the

secret of the continuously divergent series. They are numeri-

cally meaningless, using x\ the proper use is as differentiating

operators to obtain convergent solutions. So the series A and

B above are really independent solutions, and neither should

be rejected when used as operators.

But this view is soon found to be imperfect. For an

operator may lead to a convergent solution by one way, and to

a divergent by another. This and other considerations show

that divergent series, even when continuously divergent, must

be considered numerically, as well as algebraically and analy-

tically. In the analytical use, every term must be used, if the

result is a convergent series. But we cannot use all terms in

the numerical case, because there is no limit. And numerical

examination shows that the initial convergence determines

the value of a continuously divergent series in the same sense

as an alternatingly divergent series. The supposed distinction

between the two cases asserted by Boole disappears, and we
seem to have something like a distinct theory.

Examination into the reason why two series, one con-

vergent, the other divergent, are equivalent, leads us to con-

sider generalised differentiation, and the connected generalised

series. There are certainly three kinds of equivalence. The

first use I made of equivalent series, one of which is con-

tinuously divergent, was analytical only. The second one

was numerical. The third was algebraical, connecting the

series concerned by means of generalised series. Equivalence

does not mean identity. The investigation in 429 above

illustrates several points in this connection. The identical

connection is given by C = J(A + B), using a particular

formula for e*. This further explains some other things, viz.,

the different behaviour of A and C (which are numerically

equivalent when x is + )
on making x imaginary, as will be

shown later on. The series B effects the reconciliation.

But the numerical meaning of divergent series still remains

obscure. The property of estimation of value by the initial

convergence is a very valuable one, and is true in a large

number of cases. But it seems to fail in a marked manner

GO
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sometimes. (See the examples above and suggested ex-

planation.) The use of divergent series, however, is not

merely for numerical purposes. In the analytical use, as

operators, the question of value does not arise. In any case

we must not be misled by apparent unintelligibility to ignore

the subject. The error fallen into by Boole was striking

There was a time, too, when mathematicians of the

highest repute could not see the validity of investigations

involving the algebraic imaginary. The results reached, they

considered, were only suggestive, and required independent
corroboration. But there is now a theory of the imaginary.
There will have to be a theory of divergent series, or, say, a

larger theory of functions than the present, including con-

vergent and divergent series in one harmonious whole.

Logarithmic Formula derived from Binomial.

433. The limit of (d/dn)x* when w = is logx. Using

(72)

where r has any leading value, and the step is unity, we obtain

(O.P.M. 49, 50)

'-^"-"' <7S>

where the accent indicates the derivative with respect to n.

That is,

(75)

by equation (9). But here

0(0) = 1, </(<>)
= = 0-5772, S *r

-l, (76)

by (17) and (28) ;
so we reduce to

log (1 + x)
= - C + Z aty (r) g'(

-
r). (77)
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The common formula is the case r = 0. To obtain it, we
must use

^-l) = l,^(-2)=-l,/(-3) =
(2,/(-4)^-^&c. (78)

If we differentiate (75) to x, we get (O.P.M. 51),

(l+^-Zaf'rtr-lfcX-r); (79)

or, increasing r by unity,

(1 + x)-
1 = 2 *g(r)g(

- r - 1). (80)

This reduces to l-x + x* ... when r = 0, and it may be

readily tested to be numerically right when r = J.

If the last result (80) can be regarded (O.P.M., 52) as true

when A' 1
is put for x, and we introduce unit operand, the left

side will make e~*, and so the right side should be a

generalised formula for r-*, wanted in the theory of Bessel

functions. But this formula turned out to be incorrect later, so

need not be given. Its failure led to finding the proper one,
to be given later. Similarly, O.P.M., 53, 54, may be

skipped, being based on the erroneous formula, and only

partially valid.

Logarithmic Formulae derived from Generalised

Exponential.

434. From the generalised exponential we may derive

(O.P.M. , 56 to 62) some formulas involving the logarithm.

Thus, differentiate

* = ? *</(>'), (81)

with respect to r. We get

0-*loga? + 2sy(r). (82)

A second and a third differentiation give

0= -e*(log*)
2 + 2*V'W, (83)

0==+e*(log^ + 2*y''(7-), (84)

and so on. In another form, we may write
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These various formulae may be combined to make others,

to show a fit. Thus

a?* = e*{l + log x + + ...}, (86)

by the use of (85) becomes

=
2^-/+|--.)W

(87)

= 2 afy(r- 1)
= &2 arg(r)

= xtx, (88)

by using Taylor's theorem.

If we use (82) thus,

(r), (89)

to obtain a formula for -
log x in powers of x, by rearrange-

ment of terms we are led to

which is striking, if not usable. A power series for x-1
also

fails. The equation (43) comes in, and brings us back to x~\

Now take r= in (82) to specialise. We get

.]. (91).

The values of g' for negative integers were given before, (78).

For positive integers we have

-(l*i +J+...+). (92).

These bring (91) to

There is only poor initial convergency for calculation with

small values of x. The second line of (93) may also be

written
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A different way of reaching (93) is thus : Integrate the

identity

with respect to x. We get

(96)
-

...,

where C is the constant of integration, given by the limit of

(97)

when x = oo .

By giving x the values 1, 2, 3, &c., in turn we approximate

pretty quickly to the value of C, much faster than by

C-l +i+J+ ... + ?-logr, (98)

with r increased to oo .

Connections of the Zeroth Bessel Functions.

435. In a similar way, by differentiating the function

u = 2f[g(r)]* (99)

with respect to r, we obtain various formulae involving the

zeroth Bessel function I
Q (x), and its companion with the

logarithm, if, as in 428, y stands for \y?. But the results

(O.P.M., 64 to 67) were considered on the idea that u repre-

sents IQ(X), which is only true specially, though, as before

mentioned, there is apparent numerical equivalence beyond
the special cases. So this is superseded by the proper inves-

tigation later.

The companion zeroth Bessel functions in divergent series

are got by algebrising

The first was done in 353, equivalently. Introduce 5Z as

prefactor, and e"5* as postfactor, at the same time turning
A to A -

q. Then put A (A + q)-
1 for the final e~ x

,
and alge-

brise. The result is

(101)
\7rqxJ ( 8qx (8qt) [2
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Now it is striking that the second operator in (100) similarly
treated leads to the companion function, by introducing the

prefactor
-qx

. Thus, for distinctness, and to show how (101)
was got (O.P.M. 68 to 71),

A "

4? [2

- 1
+

1232
I (102)

Sqx (8qx)*\2

"
J

'

The function (101) only differs from the last in all signs

being positive. The equivalent convergent series is

in which IQ(qx) is given by

as usual. The functions (104) and (103) are, being conver-

gent, the companion solutions of rigorous mathematicians,

save in the standardisation of (103) by the two constants 2/?r

and C, in which respects there is no settled practice.

Now the oscillating functions come out by putting q = si and

letting s be real. Thus
Z'l

,j4r4
,,6r6

JoW = 1 - '- + - + ... (105)

is the original Fourier-Bessel function. But q
= si in (103)

makes
K (^) = G (^)-ao(^), (106)

where the new function G (sx) is given by

A L t A U J

It is G that is the proper companion (oscillating) to J ,



GENERALISED DIFFERENTIATION AND DIVERGENT SERIES. 455

Similarly q = si in H and K makes

J W- (^), (108)

GO(*) - #o(**) <109)

the bars indicating that divergent series are used, and

(Rcos + S'sin)(8*-i*r), (110)

GQ(sx)
=
(-L) (S'cos

-
Rsin)(* -

JTT),' (111)
\7rS#/

where R and S' are the real functions of sx given by
1232 12325272~ + ~'--'

q,_ 1 1 23 252 1 232527 292
711

~to~(8^
+
7^]5~'

Equations (110) and (105) are equivalent, and so are (111) and

(107).

Here we come to another matter explained by the generalised

exponential series. The functions H (2#) and 2I (^) are

equivalent. But the transformation q = si makes them dis-

crepant. We get (J
- iG }(sx) from the first and 2J

(sr<) from

the second. But I have shown that the identical connection is

In this put q
=

si, and there results

where

So we produce harmony by the function G (s#), which is an

equivalent form of G (s#) and G
(s.r).

The series (115) occurs

in Lord Eayleigh's
" Sound "

(Vol. L, p. 154, 1st Ed) in a split

form, and not identified, or rather equivalised with GQ(sx).

We have
J ()AG (p)

- G (s*)AJ M = - 2/, (116)

when using the pair (105), (107), or else the pair (110), (111).

And similarly

HoMAKofe*) - K (^)AH (7r)= -
4/^, (117)

using the pair (101), (102), But in the transition from (117)
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to (116) by q si it is indifferent whether we substitute

23 (sx) or JQ(sx)
- iG

Q(sx) for H
Q(qx).

Operational Properties of the Zeroth Bessel Functions.

436. The following (O.P.M., 72 to 76) brings together

compactly the principal mutual relations of H and K . These

formulae occur naturally in the treatment of columnar elastic

waves, and should be studied in immediate connection there-

with, for which there is no space here. Let there be two

variables, say, r and vt, whose differentiators are A and q.

Then we have

rp-i- A? i

(A^-^-

o , w

. w^\4 7 L J

(118)

This makes one set. Another set is obtained by inter-

changing r and y, and A and q throughout.

To get [a] from [P], expand [P] in descending powers of

A, and algebrise.

To get [6],
introduce the prefactor tqr to [P], and expand the

properly transformed operator in descending powers of q, and

algebrise.

To get [c],
introduce the prefactor

~ vtA to [P], and expand
the properly transformed operator in descending powers of A,

and algebrise.

The result [d] may be derived from [a], or [b] or [<?]. Thus,

from [b] to [d],
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Similarly from [c]
to [d],

To get [tZ]
from [a], use harmonic analysis, thus,

i /"* if
00

V</r)ol Io(ar)- cossi'f <&=-! J (sr) cossv* ds, (121)
Try o Try o

a known integral, equivalent to [d].

To get [d] from [e] is obvious by executing the differentia-

tions. Similar remarks apply to the second set above referred

to, the change from one to the other set being usually related

to the change from inward- to outward-going waves.

In the theory of pure diffusion there are analogous results.

One of the simplest is this. Change the meaning of q from

d/d(vt) to (d/d(vt)}*. On this understanding we shall have

(1 22)

As regards the proper use, sometimes of one method some-

times of another, that cannot be understood save in concrete

applications.

Remarks on Common and Generalized Mathematics.

437. Coming toO.P.M.,Part.3,60pp.of Proc.R.S.= about

80 or 90 here, which must be boiled down to 20 or 30 by
omission of details.

When algebra reached a certain stage of development, the

imaginary turned up. It was exceptional, however, and

unintelligible, and therefore to be evaded, if possible. But it

would not submit to be ignored. It demanded consideration,

and has since received it. The algebra of real quantity is

now a specialisation of the algebra of the complex quantity,

say a + bi, and great extensions of mathematical knowledge
have arisen out of the investigation of this once impossible and
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non-existent quantity. It may be questioned whether it is

entitled to be called a quantity, but there is no question as to

its usefulness, and the algebra of real quantity would be

imperfect without it.

It has no essential connection with vectors or with

quaternions or with circular functions, though it may be

used illustratively. It turns up by itself in these subjects

just as in scalar algebra, and in the same way. It is sui

generis, and is the imaginary.
Some writers on double algebra appear to think that when

they multiply together complexes they are multiplying vectors

together. In an illustrative sense, vectorial work is being
done. But it is versorial rather than vectorial. Say

(a + bi) x (c + di)
=

(ac
-

bd) + (ad + bc)i.

This is strictly scalar algebra. But even illustratively, it is

not the multiplication of the vector c + di by the vector a + bi

that is done, when these are represented by lines in a plane, to

form a new vector. Keally i is a quadrantal versor, and

a + bi and c + di are also versors with a stretching faculty as

well, and their product is another operator of the same sort.

Thus, if x is a real \~ector in the plane, then

(a + bi)(c + di)JL
=

[(ac
-

bd) + (ad + lc)i\ X

is a proper vectorial equation. The x may be a unit vector,

and may be omitted altogether. The point is that the multi-

plication does not refer to vectors at all. The idea is too

prevalent (though of late years it has been disappearing fast)

that vectors ought to possess the associative property in multi-

plication. It is not in their nature to possess it. Versors

possess this property naturally.

Again, in Quaternionics, all directions in space were made

"equally imaginary, and therefore equally real." But this

imaginary foundation gave way long ago. The real imaginary
enters into quaternions just as usual. Yet quaternionists

profess to be doing vector work, and go on confounding versors

with vectors. It is not a new subject by any means. I think

there is much room for improvement in the way of expound-

ing the science of quaternions to those who are hardy enough
to attack what is, as at present expounded, a puzzling subject,
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It is the more desirable because there is no doubt that Quater-
nionics has been unduly neglected; and should have a useful

field of its own. This is quite independent of the question of

the suitability of the present Quaternionics for the purposes
of physical inquirers. For that I prefer to discard the

quaternionic idea completely, for the usual purposes, and use

a simple algebra based upon vectorial ideas.

Another use of i is in the treatment of physical -differential

equations whose solutions are required to be simply periodic
functions. There are two ways. One is to assume a complex
form of solution at the beginning. It comes out complex at

the end. Then either of its two parts may be selected for a

real solution. The algebra is that of the real imaginary. But
in the other way, if i be used at all, it is only a spurious

imaginary. Say that C = Ye determines C from e, a given
function of the time, through the operator Y, containing p,

the time differentiator. Then if we specialise e to be simply

periodic, and also C, the power of p
2 in Y is - ri2

,
if the fre-

quency of e be
7j/2,T.

This reduces C to the form C = (Yj + Y^)?,
when Y! and Y

2
are real functions of n2

. The solution

is fall and explicit. But if we say p = ni, we come to the

result C = (Y, + Y2m')e, which looks imaginary. But it is

not, for the i means p/n, a differentiator. Either of these

methods, the algebraical complex method or the differen-

tial one, may be done illustratively by lines in a plane as

before alluded to.

Now just as the imaginary first presented itself in algebra as

an unintelligible anomaly, so does fractional differentiation turn

up in physical mathematics. It seems meaningless, and that

suggests its avoidance in favour of more roundabout but

understandable methods. But it refuses to be ignored.

Starting from the ideas associated with complete differentia-

tions, we come in practice quite naturally to fractional ones

and combinations. This occurs when we know unique solu-

tions to exist, and asserts the necessity of a proper development
of the subject. Besides, as the imaginary was the source of

a large branch of mathematics, so I think it must be with

generalised analysis and series. Ordinary analysis is a

specialised form of it. There is a universe of mathematics

lying in between the complete differentiations and integrations.
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The bulk of it may not be useful, when found, to a

physical mathematician. The same can be said of the

imaginary lore.

But some of it I have found to be very useful, and to furnish

the most ready way of getting results simply. Compare, for

instance, the simplicity of the processes used in 353,4, with

the complication of the subject when done by ordinary analysis.

As regards some of the problems worked out later, I do not know

any way of doing them by ordinary analysis. But it is un-

necessary to appeal to utility. As the subject may be developed,

what is useful will find its way out.

There is another analogy to be drawn. It is true that we
cannot fully understand the usual algebra of convergent series

without the imaginary. It is equally true that we cannot fully

understand algebra, whether real or imaginary, without gen-
eralised analysis. I do not say that it is fully understandable

with it, without more light. But a little light is better than

darkness. In illustration of this I may refer to the equivalences
treated of in 429. Ordinary algebra furnishes no reason

whatever why the series A and C should be equivalent. The

generalised analysis does. This is not an isolated example ;

great extension follows.

The question of physical application raises another.

Generalisations are to some extent arbitrary, according to the

direction they take and the nature of the controlling ideas.

It may be possible to elaborate generalised analysis in

different ways. But to be useful in physical applications, it

should be developed to suit them. In physical mathematics

the quantities concerned are not arbitrary, but are con-

trolled by the special relations involved in certain

laws, involving, for instance, the necessary positiveness and

singleness of certain quantities, simple themselves, or it may
be complicated functions of other quantities, and their con-

tinuity of existence in time or space, or both, and their

variation in time and space according to definite laws. So we
have a definite march of events from one state to another,
without that complicated multiplicity so common in pure
mathematics. It is these general characteristics that seem
to give reality to the mathematics, and serve to guide one

along safe paths to useful results. Every one who has gone
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seriously into the mathematical theory of a physical subject

(though it may be professedly only an ideal theory) knows

how important it is not to look upon the symbols as standing

for mere quantities (which might have any meaning), but to

bear in mind the physics in a broad way, and obtain the

important assistance of physical guidance in the actual work

of getting solutions. This being the case generally, when the

mathematics is well known, it is clear that when one is led

to ideas and processes which are not understood, and when
one has to find ways of attack, the physical guidance becomes

more important still. If it be wanting, we are left nearly in

the dark. The Euclidean logical way of development is out of

the question. That would mean to stand still. First get

on, in any way possible, and let the logic be left for later

work.

These remarks are caused by certain experiences in the

interval between Parts 2 and 3, O.P.M., when performing
some very complicated and laborious calculations. Prof. Klein

distinguishes three main classes of mathematicians the

intuitionists, the formalists or algorithmists, and the logi-

cians. Now it is intuition that is most useful in physical

mathematics, for that means taking a broad view of a question,

apart from the narrowness of special mathematics. For what

a physicist wants is a good view of the physics itself in its

mathematical relations, and it is quite a secondary matter to

have logical demonstrations. The mutual consistency of

results is more satisfying, and exceptional peculiarities are

ignored. It is more useful than exact mathematics.

But when intuition breaks down, something more rudi-

mentary must take its place. This is groping, and it is

experimental work, with of course some induction and deduc-

tion going along with it. Now, having started on a physical

foundation in the treatment of irrational operators, which was

successful, in seeking for explanation of some results, I got

beyond the physics altogether, and was left without any

guidance save that of untrustworthy intuition in the region of

pure quantity. But success may come by the study of failures.

So I made a detailed and close examination of some of the

obscurities before alluded to, beginning with numerical groping.
The result was to clear up most of the obscurities, correct
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the errors involved, and by their revision to obtain correct

formulae and extend the results considerably. Leaving out the

details of the groping, some account of the results will follow.

It is of some importance to distinguish between a function

in the physical sense, and its mode of expression in symbols

standing for numbers. A physically-minded man need have

no difficulty in conceiving the existence of a function of

position and time, for instance, varying according to certain

laws, and with any number of discontinuities in it, without

any power to find formulae which will have the necessary

properties. Perhaps, if found, they would be much too

compreherisive, the physical application requiring various

limitations and reservations. It is characteristic of rigorous

mathematicians, I think, that they think too much of the

formula, and consider that it is the function. No, it is only
the dress, and need not be a convenient fit. It is generally

too large ; or, may be, several dresses are needed, disconnected,

for what would be simply a single function in its physical

meaning. One form of expression of a function is a divergent

series, and I take the view that the whole series is significant

functionally, and not merely the few terms that may be utilised

numerically. In a convergent series, though we cannot reach

the value of the function by adding on terms at a uniform rate,

we may go as near as we like, and it is easy to imagine practi-

cally taking the later terms in larger and larger groups, so on

to include the whole in a finite time. But in a divergent

series we cannot do this, though the initial convergence

may guide us to the value approximately. How far does this

property extend ? It can be demonstrated to be true in certain

cases, but something more general is wanted. Yet it can

hardly be considered to be generally true, for we might make

up series arbitrarily, having no particular characteristics.

Nevertheless, the principle has a very wide application, to

continuously divergent as well as alternatingly divergent

series. I have employed it in the examination of a large

number of divergent series, to test their equivalence to other

convergent series, and have found it very useful. It has

enabled me to distinguish between true and apparent equiv-

alences, even when showing very small difference. But I

do not think that the size of the smallest term does always



GENERALISED DIFFERENTIATION AND DIVERGENT SERIES. 468

govern the size of the error. May be, the terms preceding

and following the smallest influence the value.

This simple illustration will serve to illustrate the nature of

convergence. This series 1 + J + J + J-f... ad inf. is called a

divergent series because it sums up to infinity. Yet, at first

glance, it might be thought to be convergent, because the

terms get smaller and smaller continuously. We may say

that it is convergent, only that it converges to infinity instead

of to a finite value. Now suppose we slightly alter the law of

the successive terms in a suitable manner so that the conver-

gence ceases at a finite distance, after which the series becomes

divergent. Then the point of convergence finds the value, as

near as the smallest term will allow. But I do not say that

all formulae admit of a continuity of calculation if they pass
from a state of finiteness through infinity to divergency. The

meaning of the formula may change at the same time.

The Generalised Zeroth Eessel Function Analysed.

438. Consider the generalised function

*. (123)

Let y = \y?. Then, if r is zero or any integer, u is I (#).

In any case it satisfies the characteristic of I (#). But that

has two solutions, I (#) and K
(a;).

Is then u a function of

both when r is not integral ?

On first experience it would seem not, but that U remains

IQ(X) as r varies. This is closely true when r = J by calcula-

tion. This includes 1J, 2J, &c. Besides, in this case we
have had separate verification by algebraical use of the *=i
case. I also tested u for r = J, f, and y

1
^, though only in a

rapid way, having no tables of g(r). There was apparently

equivalence, though not minutely verified.

But an anomaly presented itself. Differentiate U to r. Thus.

(124)

(125)

if G(r)=y'(r)/g(r), a rather important function,
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Now if U is really I (#), U
f

is zero. But it is not zero

according to (125), in the case r = 0. We get

(r
=

0) U'=-7rK (z), (126)

where K (#) is the other solution, as in (103) above. So U
must involve K

(o;),
in spite of its apparent equivalence to

I (a). Say
U = I + 6K

, (127)

where b is independent of x. It must be a periodic function

of r, with period 1, and must vanish when r is integral, and

when r is J, and must satisfy (126) when r = 0. These con-

siderations suggest a sine function, viz.,

U=I -|sin27rr.K , (128)

U'= -7rcos2irr.E . (129)

It is now easy to see why, if (128) is true, U seemed to be

I
rt always. For, with the not small values of x which are

needed to produce marked initial convergence in U, the extra

term is like a small satellite. The function I is 1 at the

origin, 2-279 when y=l, 4-252 when y = 2, and so on, rapidly

increasing to oo. On the other hand, K is oo at the origin,

but decreases so fast that it is only O072 when y = l, 0-027

when y = 2, 0-009 when y = 3, and so on. So, unless specially

sought for, the distinction between U and I may be invisible

numerically.
The next thing is to see whether the satellite really shows

itself in the numerical results. We require

(r
=

0) U'= -7rK
,

and U'= +7rK , (r
=

|), (130)

(r
=

J) U = I -JK ,
andU' = 0, (131)

(r
=

f) U = I + JK , (132)

U = I - 7rrK
, when r is very small. (133)

I have tested all these, and find them true when carefully

calculated, and with values of x and r suitable for allowing
the satellite to show itself. It is not necessary to give details,

so I will quote one or two results.

Test (133). Say,r = TJ?r
. Then

= 1'005706, /(T^) =
1-011443,
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and when y = 1, these make U = 2-27728. But the value of I

is 2-27958. So
I -U = 0-00220. (134)

Now this difference though itself small is far larger than is

permissible according to the size of the l.c.t. But

^K = 0-00227, (135)
j-UU

which agrees with (134) up to the fourth 6gure. This makes
matters right, for the error is now brought to be smaller than

the l.c.t., and that is all that we can do.

With y = TG> tfv* results are

Io = 1-1025, I -U = 0-0139, (136)

U = 1-0886, -^KO- 0-0147,
lUU

The smallness of r allows small values of y to be used here,

but in other cases, r= J, for instance, larger values of y are

required for clearly showing that the satellite serves to bring
the error within the limits permitted by the size of the l.c.t.

I usually count J the l.c.t. in the series U, and make note of

the size of this half-term
;
and usually employ smallish values

of y to avoid the very lengthy calculations involved when y is

large.

The other cases may be skipped. Nearly the whole of the

evidence supports the truth of the formulae (128), (129), and
the little that does not is of a dubious natui^, perhaps arising
from errors in calculation. I only refer to these tests because

the case is a typical one. We establish not merely that U may
be the function of I and K given above, but also that the

error may be regarded as limited by the size of the smallest

term in the divergent series U. If there had been distinct

failure, the assumed equivalence would have been rejected at

once. Algebraical proof will follow.

Expression of the Divergent H (a:) and K (z) in Terms of Two
G eneralised Bessel Functions. Generalisation of e~x .

439. Putting r=0 and J in turn in (129) and subtracting,

using (125), we get the result

7rK W =
(2-2V^r)y(r) (137)
r= r=0
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This expresses the function K without the logarithm. Now
we had before a remarkable connection between the usual

descending series for H and the r = and J cases of the pre-

sent function U. Is there a similar connection between the

usual descending K and (137) ? If so, and (137) expressed

an identity, not a mere equivalence, we should obtain the

two oscillating functions J and G out of the right side of

(137) by putting zi. But this fails on trial.

What then is the function

identically in terms of the ascending series for K ?

To answer this question, we require a generalised formula

for e~x . I first used a formula before referred to
( 433), but

it would not work, and on examination it was easily seen to

be incorrect. To obtain the correct generalised formula,

grope again. Suppose we alternate the signs of the terms in

the generalised e*. Say

xr+ ^ ,
xr

^
189

j

Then v satisfies the differential equation of e~x . It is e~x

itself when r = or any even integer ; and is - e~ x when r is

an odd integer, so it must generally be Ae-*, where A is a

periodic function of r which is + 1 when r is even, and - 1

when r is odd. The simplest way of doing it is to say

t> = e-*cosnr =2^. (140)

t
Numerical tests of this formula are by no means so satisfying

as those concerning the generalised c*. For instance, with

r = J, we require v = 0. This means that the generalised e* can

then be divided into two equal parts, sum of even terms = sum
of odd terms. This is satisfied as far as the initial convergence

allows, but since v is the difference of the two series, we can

only conclude that v is a small quantity. However, in this,

and in the cases r = J and |, the rule regarding the error

limits is satisfied, so (140) may very well be true.

Now we have identified H (#) with U + U^, the suffixes

meaning the values of r. Express KO(.-B) similarly in terms of
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wo U's. In equation (138), put for e~* the ordinary t~x series;

thus,

When arranged in powers of x
y
or preferably in powers of y,

this makes a pair of series of the type U. To identify K ,

therefore, it is only necessary to size up the coefficients of the

leading terms. We have

/L3y
/L3.5X 2

(i)* V2.2; V2.2.2;

21 22

i2|2 2*33

L3\ 2 /1.3.5

1 + (g)
2

4.
x 'u "u/

4.
\a "a "a/

t

9i9i1 9^1^19 9 3l4i'-i7T / ^ ~ I
i

"^ ^

+ terms involving the other powers of x. (142)

The coefficient of (2/7r#)* comes to 1-1795, and that of - (2a?/ir)*

to 1-0782. Divide these by TT*. We get 0'665 and 1-217.

The former is the value of [g(
-

J)]
2
,
and the latter of [#(i)]

2
.

We therefore prove that

K W = U. i
-U

i
. (143)

In the same way, by taking all signs positive in (141) and

(142), we show that

H W = U_, + Ui
. (144)

So far, then, we corroborate the formula (128), or

U = J(H -sm27rr.K
), (145)

for it makes
Ur + Um =H

, (146)

Ur-U.+^-Ko.Sn^.rr, (147)
for any r.

The Divergent Hn(#) and Kn(z) in Terms of Two Special

Generalised Bessel Functions.

440. We can now extend our results to Bessel functions of

any order. We may verify (146), (147) with r left arbitrary by

employing the generalised e* and the proposed
"* formula

;
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but this is unnecessary, because the work may be done upon
the general formulae for Hn and Kn . The characteristic is

(A
2 + ar^A)U = (1 +^>2

)U, (148)

if A is dfdx, and a convergent solution is

The companion solution is !_(#), got by changing n to - n.

Both these known functions are included in the generalised

formula

where, as usual, only the leading term is written. All the rest

follow by changing the constant r to r + 1, r-1, &c., the

series to be made complete both ways.
The function Un must be expressible in terms of In and I_n

because it satisfies the characteristic (148). The factors will

be functions of r, though only one function is to be expected.

We have to find out what U
)t represents, and co-ordinate it with

Hn and Kn ,
the divergent series also satisfying the charac-

teristic, namely,

First of all, see the effect of using the ordinary series for

e* and
~x in these formulae. Pick out the terms involving

at and ar*, because we want only one term of each of the two

series of the Un type. Put x = 2^*, then

H -y-*{l +
1'-W (l'-4n')(y-4

"

(2(8)2(2

'

O^y? f 1 2 4->J^
i .y

l-4-i"- _-+ IT
""

/ i

PI
ll(8)(2 [2(8)

2

[3
-J

+ other terms. (153)

We see that r=^ and J are involved
;
and since in the

series
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we have the exponent r + \n in ihe leading term, we mus

cancel the in by inclusion in the r. Thus

i n + r=-\ makes r= l-n %,\ CIK~\

-^ + r= t makes r= -;/

therefore -2 =
,

^ ^. j j-
in first case,

and =
l jj^-n 1

-- m second case.

So Hn is the sum of two Un series with leading terms as just

found, thus,
Hn

= Un
, (_*_;) + !!,(}_,. (157)

Comparing with (153), we see that the coefficient of y~* in

that equation is g(
-
J
-
ln)g(

-
\ + |-;i),

and that of y
l is

In the same way, by alternating signs in Hn , we can show

that Kn
= U, (-J-Jn)

~ Un
, (i+Jn). (158)

The Divergent Hn(?) and Kn (a;)
in Terms of any Generalised

Bessel Function of the same order.

441. Now, we found, subject to verification, that

U
0> r = }(H -K sin27rr). (159)

We also know, by (154), that the exponant r becomes

in passing from U0ir
to Un>r . So it is suggested that

U, r = J{Hn - Kn sin 2ir(>- + )} (160)

is the general relation, true if (159) is true.

Changing n to -n, and, at the same time, increasing r by n,

makes no difference on either side of the equation. Special

cases of (160) are

Un,(-J-{)
= KHn+KH), (161)

Una-n) =i(H -Kn). (162)

These are equivalent to (157) and (158).

Also, by negativing n in (160),

U_ n>r
= i{Hn

- Kn sin 27r(r
-

i n}\ ; (163)
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so, U
n>)

. + U_n>r
=Hn

- Kn cos TTH sin 2?rr, (164)

U
B>r

- U_n>r
= - Kn sin irn cos 2;^

; (165)

and from these again,

HH
= U

H>r + U_n,r + (U_nir
- U

n>r)
cot tan 2;rr, (166)

K
re
= ?-"""V . (167)

sin Trn cos 2?rr

We may also express Hn and Kn in terms of two Un functions

whose r's differ by J. Thus

Hn^UH.r + Un.r+i, (168)

sin 7r(n + 2r)KH = Un ,r+ > - Un . (169)

The case r = J is worth notice. It is easy to see by (160)

that U
Wii
=U _ n>1

= J(Hn-Kncos iro) ; (170)

that is, the U function is the same for n as for - n when the

value of r is J. Similarly

UW)|
=U .,,

= J(Hn + Kncos7r). (171)

It looks unlikely at first that the expansion of Un according
to (154) should be valid here, because it is not the same for n

as for n, save when n is integral. When n is not integral

there can only be equivalence. To examine this, take n = J.

Comparing results by the two methods, we find that equiva-

lence depends upon

(172)

These agree with the r = J case of the generalised formula

(139) suggested above, but not yet verified algebraically.

To make Un>r
= U_n>r we require 4r = odd, for any value of

n, unless it be integral, when any r will do. Further, to

reduce these equal series to JH requires 2n to be integral.

If odd, then 4r is odd, as before. If even, then n is an integer,

and 2r is integral.

Going back to (167), the Kn formula. Or

Kn sin r.n cos 2?rr = U_n, r
-
U^,. (174)
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Both members vanish when r is integral. Then differentiate

to r to find Kn, The result is

- Kn7r cos irn cos 27T?- = (Un> r + U _,,.) log y%

+2 *"^"-G(n + ,) + /-'" G(- + r). (175)

In the case r we should reduce to known formulae.

Putting In for |Hn we have

.^ log y* + i 2
j^G(n)

-
M) ' (176)

In the summations only the leading terms are written. The

step of r is 1 as usual. The two summations are stopping series

now. The result may easily be expanded to the known formula

where Sr=l + J + J+.
To obtain the oscillating functions, put x = zi, and we have

Kn(*)
= i-(Gn -an)(*). (178)

To show the connections of Hn ,
Kn and Un , U_ n briefly in

a more general way, go back to (151) and (152). In the first

use the generalised e*, and in the second the generalised e~x
,
or

(140) above. Multiply up, and we obtain, by arrangement in

powers of x or y,

Hn
= 2>-^(,r), (179)

'-i*(n,r) ) (180)
7T

where <(w,r) is given by

Take half the sum and difference. Then

J(H. + K. cos nr)
= L

2; >-^(72,r), (182)
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J0H.
- K. cos nr)

= . 2 *
+
*(. + !) (

188 )

In these last summations the step of r is 2, not 1. But it

is better to alter so that the step shall be 1, to harmonise with

Un ,r
.

Put \r
-
\ = * + JM, or r ~ 2s + w + J in (182).

Also put r + J = s- Jw, or r + l = 2s-?i + iin (183).

These will make summations in which the step of s is 1.

Then, after the change, put r for s. The results are

-Kn sinT(2r + W
)}
=

6l(
W
), (184)

- Kn sin 7r(2r- )}
= 0(-), (185)

I 2 -
where

I 2 - 4n2 A 32 -

Comparing with the previous investigation, we see that

(W-U^-Z.-^ (187)r
|7?
+ r v ;

This involves

1

(^(r
+ n

+ ..., (188)
which is an identity.

Although the generalised e~x formula has so far only been

used speculatively, yet the fact that its use, along with

the generalised e
x
formula, enable* us to connect algebraically

the two sorts of expression of the two ?ith Bessel functions, the

convergent and the divergent, makes it practically certain that

it is the correct formula. An algebraical process leading to it

will follow.

Product of the Series for e
x and t~x cos nr. Possible

Transition from e-x to e*.

442. The product of e
r and c~x is 1. If, then, the product

of the same when generalised came to 2 or to x
t
we could be

sure there was something wrong. But we need not expect
that the product should reduce to 1 in a plain manner. The

product, say Q, of the generalised series for t* and c-

makes the power series
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Q = . . . + o*r
<(r)

- a^+tyfr + 1) + x^+*<f>(r + 2)
-

. . .
, (189)

where +(r)
= Jl-*(l-^(l-

r
-^*(l-..., (190)

(Y)- 1 r+l\ r + 2\ r +

which may be transformed to

So <(r) is when r is + ,
and is oo when r is -

,
unless

integral. Q is 1 when r is 0, and is - 1 when r is 1, and so

on. But when r is fractional, Q assumes the indefinite form

of a succession of infinities, not plainly reducible to cosrvr.*

Write (140) thus,

w = ?,--- (192)
|r

COSrrr

When x is + , ic is e~z. Differentiate to r, then

w' = - - l
(log x + G(r) + TrtanrA (193)

**ir cosrTrV
l

/

This is zero when x is + . Compare with u and w' before

considered, representing e
x and 0. The r = case of (193) is

(194)

Compare with (93) above. That, by (97), makes a rapid

approximation to the value of C. The present formula does

not, for the same figures are differently arranged, which

makes the l.c.t. large.

Since u satisfies (A
-

1) u = Q, it must be Ae*, where A is a

function of r. This being 1 when x is -H ,
if it is different

when x is -
,
it is made a function of x. So there seems to

be an irreconcilableness requiring some modification of ideas,

perhaps. But u'
t u", &c., also satisfy the characteristic, and

so does

X = u + Ay + AX + A3

'" + . . . . (195)

Moreover, the value of X is simply u, or *, when x is positive.

Similarly, the characteristic (A + l)w? = is satisfied by

* In 447 later, the improbability of Q coming to cos rir algebraically

\vill appear, since the square of the expression for e~x "cosrTr is the

expre.s.siuu
for e~-x cos nr.
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Y = Iff +BX + B2
W* + B3

/" + . . .
, (196)

and the value of Y is w, or t~x
,
when x is positive. When x is

negative, or complex, we do not know what they are. As the

A's and B's may be various, we may have transitions from

X to Y. Here is one. Say

*-* = ; + Bio'. (197)

Put x = - z = zi". Then we get

e*= 2 -(l+i tan nr)
(r

. + B2 (1 + i tan nr) (log z + G(r) + wr + TT tan nr), (198)

which splits into equations which may be written

(199)

= U & 2 tan r:r. (200)
\ rfr/

[r

Whether this be a proper transformation or not, equations

(197) and (199) are consistent. For with z positive and there-

fore x negative, both equations are true, if (197) is true for x

negative as well as positive. But further investigation is

reserved.*

Power Series for log x.

443. We may derive a power series for the logarithm of x

from the binomial theorem
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When r= this makes

-Iogz = 2-cosr7r, (204)

without the zeroth term for r ^= 0. That is,

logx = x-x-
1 -}2(x*-x-

2

)+^(x
3 -x- 3

)-..., (205)

that is, the sum of the logarithms of 1 + x and (1 + or1

)-
1
,

according to the common formula.

In the case r = J,

loga-ls^ainrar; (206)
7T T

or, putting z = y
2

,

-y-*}~'.- . (207)

The two formulae (205) and (207) both lead to log i = JiV.

Differentiating (204) to x, we get

(208)
x r*

Multiply by x and use the result (43) ; we then reduce to

0= Z p
cosrjr. (209)

The r = case is =
(1 + x)~

l- x~l

(l + or1

)-
1
. (210)

Also (208) seems to give a power series for x"1
. But it is

only a particular form of (209).

Differentiating (209) to x gives

= Zzr
sinr7r. (211)

Equation (206) may be used numerically. I have also verified

that the more general formula (203) goes when r = J, the error

vanishing when x = 1.

Put y xi in (207). We get the well-known

--- ... . (212)

Again, putting x = t
zi in (203) we get

(213)

which, when r= 0, makes the well-known

sm3,s- .... (214)
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Although these substitutions of imaginary for real values

are successful in the special cases chosen, they are only experi-

mental, for the theory of generalised functions is in nubibus

as yet.

Examination of some Apparent Equivalences, and
Rectification.

444. In 433 this formula, equation (80), was arrived at

from the binomial theorem vid the logarithmic function :

(1 4- x)~
l = 2 *rg(r)<j( -r-1). (215)

Put A-1 for x and algebrise with unit operand ;
then we get

e-*\\ V*f[ff(r)]*g'(-r-l). (216)

Do the same again, and we get

Jo(*) II -V(- r-1). (217)

Here
1 1

is used to indicate a possible or apparent equivalence ;

it may not be one, or it may. The method is a very speedy

way of generating new formulae, and sometimes gives true

equivalences, at other times only partial ones.

Now (217) is easily seen to be incorrect. What about (216),

then? And is not (215) to be suspected? It may be

tested. Multiply by 1+x. The result is

(218)

which is identically the same as

(219)

which formula was obtained before, equation (43). It asserts

that e
Al = 1, and often turns up as a connecting formula. It

satisfies the characteristic

0, (220)

i.e., Aw = 0, therefore u is constant as regards x. Numerically
considered, however, it can only be used when x is near to 1.

When x = l, we have such series as

('=i) -x-i-i+|-*+~- (
221

)
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(r
=

J) ^2 = l+^-^ + T|^-^ + .... (222)

There is DO reason, so far, to doubt (215).

Passing to (216), see on what the satisfaction of the charac-

teristic of e~x by the right member depends. The result is

If the || can ba replaced by = ,
then (216) will go. Integ-

rating to x,
xr sin rir

1

112^-^r
,7, (224)

because it is 1 for a special case, though the left side might be

a function of r. On numerical testing, v seems to be 1 very

closely. Thus take r=J; then x=5 makes v = 0-9993 by a

long sum of about 20 terms. But this x may not be small

enough to show an auxiliary satellitic function, if it exists.

Now # = 2 makes v= 1-009 with, and 1-0009 without the l.c.t.

Again with x = 1, I get 1-063 with and 1-0093 without the l.c.t.

The error rule seems to fail here
;
for example, the last result

is nearly 1 per cent, more than the size of the l.c.t. would

allow. However, passing to x = J, the rule is satisfied, and

also with x = J, although now the error itself has become large.

Testing (223) in the same way, with the same values of r

and x, the value comes out right (within the error limits)

all through. Also with #= 3. Unless, therefore, errors in

calculation are involved, it would seem that the error rule, by
which the l.c.t. finds the error, is not a complete rule.

Try with r = J. Here

y\l) = 1-21 690, ^(J)
= 1-10313,

by the formula (188) above with n = 0, and r = J. Applying
these to (224), with #=2, 1, ^, ,

the results are a little less

than 1 throughout, and within the error limits. We can say
that v is certainly closely equal to 1 save when x is small,

when the l.c.t. is too big lor a certain conclusion.

But that (224) is not a real equivalence is to be seen by

differentiating it to r. Thus

rS cos ^-(rr.)-
1
sin

+ 2, u r
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When r = 0, this reduces to

-ij|

2

+
jJ-...}

(226)

12 13

Here t;' is zero only when x = oo . So v
1 1

1 is only an apparent

equivalence. The characteristic of v is

(A + 1)^0 = 0, (228)

,\v = a f dx = k + ar\ogx +C-(x-~+. ..Yl (229)

where C, or G(0), is brought in to make
[...]

= when x= CD.

A and a are functions ofr. From the preceding A is 1, and a

is periodic. To harmonise with (226), we may write

(280)

So v = 1 when r is integral and midway between, and is nearly
1 for any r, if a is over 1.

The sine function thus reached may also be utilised thus.

Equation (228), by (224), means the same as

(231)

Divide by Ti
1 sin rir cos rir. Then

2 ?^L_ =
.

2
e-* = e-*. (232)

IT cos ?'7r sin 2vrr

Comparing with (140), we see that the present investigation
leads to the generalised t~x formula which harmonised the

Bessel functions. Numerically tested, the formula (230) goes
with 0=1, J, .

Determination of the Meaning of a Generalised Bessel

Function in terms of H and K .

445. Passing now to the generalised formula
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before obtained, equation (53). First test thatW satisfies the

characteristic of I
(;r) identically. It therefore involves I or

K
,
or both. But can K come in at all ? W is the convergent

I when r = 0, and is the equivalent divergent JH when r-^J.
Now when r is arbitrary, we may, by the use of the corres-

ponding generalised e
x
series, reduce W to an integral power

series. But the solution of the characteristic equation of I

in an integral power series was shown to split into two sc ries

(even and odd terms), which satisfy the characteristic sepa-

rately, and are, moreover, equivalent. This strongly suggests

that W does not involve K at all, but is I (#) x periodic

function of r, which is 1 when r is and J. Or, in terms of

the even and odd series, W =
afc + 6B, where A is IQ(x) and B

is the equivalent series in odd powers as in (44), (45). I tried

to test this numerically, to fix a and b. But the series to find

a and b are divergent with wide error limits, so it was no good
this way.

In order to detect the satellite, take r= J. The result

(numerically) is that W is sensibly I when x is big, but falls

slightly below I
ft
as x is reduced to 1, f , \. Then take r = -

J,

and test. As x is reduced W now rises slightly above I .

This difference, + or - as the case may be, increases as x

decreases.

The form of W is therefore probably I - cK
, as in the case

of U before, and c has to be found. Finding the result of

reducing W to an integral power series difficult to manage,

try another way. Use the ordiuary e* series in (233). The

result is then
W= Zyi

r
#r), (234)

where //
=

J.r
2 and the step of r is 1

, whilst

(235)

This is a stopping series, and is convergent, so can be closely

calculated. With r integral, we get I (#). With r = integer + J,

we get a result reducible to

W-l(U 4
+ U_ 4 )

= iH (*). (236)

In general, (234) makes

, (237)
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where A and B are functions of r to be found. Understand

that U is the previous UM>r function, with 7i = 0, as in 439.

In the case of r = J the result is

W
4
= 0-8525 U

4
+ 0-1460

U_!, (238)

where Ur
= KHo

- sin 2nr . K
) (x). (239)

This makes Wj = JH - JK0> (240)

very closely. Note that (238) is an identity, subject to the

use of the ordinary *.
x series

;
whilst (240) is a conveniently

substituted equivalence.

The general identical formula corresponding to (238) is

Wr
= U

ir
cos"2

JTTT,- U_lr
sin2 JTIT. (241)

I have verified it numerically for eight values of r, namely,
0, &, J, &c., up to I-. Using (239) in it, the result is

Wr
- J(H -

J sin 2nrKo) (*). (242)

The satellite for WP has only half the mass of that for Ur .

The value of
</>(r)

in (235) is

(r)-[0(Jr) cos **]. (243)

The reduction of Wr (involving K
)

to an integral power
series, before referred to, implies that the series, which satisfies

the characteristic as a whole, does not do so in two inde-

pendent ways. The expansion (137) above illustrates this.

Both the even and the odd powers have to be included to

satisfy the characteristic. The characteristic is

(DyD-l)K =
0, (244)

if D = d/dy, and this is satisfied because the odd power series

when operated upon by (DyD 1) gives
-
~D*2y

r

[g(r)]
2

, with

r = i, whilst the even power series gives + (the same), with

r = 0. On addition, therefore, (244) is obeyed.

Of course, when W is expanded in the form (234), it does

split into two series, as in (241), which separately satisfy the

characteristic. But it seems that this is the exceptional case,

and that there is no double satisfaction when the generalised
*
is used.

The satellitic terms in both cases, U and W, become very

important when x nears the origin, But then the series



GENERALISED DIFFERENTIATION AND DIVERGENT SERIES. 481

cannot be used for calculation, on account of the largeness of

the possible error. So, practically, both U and W are appa-

rently I
;
and the small correction may be eliminated by using

two values of r
; thus,

. (245)

Some Apparent Equivalences.

446. If the characteristic be of the third order, its three

solutions will be all included in one generalised solution, and

will be separable therefrom by giving special values to r. It

r=0 makes the primary, the other two solutions are likely to

enter satellitically in the general solution. Similar remarks

may apply to higher orders, but there is some work to be done

to investigate fully.

The apparent equivalence

(246)

arises from c
" 1

1 = I (a) ;
where D = d/dy, and y= \x*. If we

change y to A" 1
,
and algebrise again, with unit operand, we

obtain

The characteristic is now

(DyDyD-l)w = 0. (248)

It has three independent solutions. One of them, W
Q, with

r = 0, is the left member of (217). All three are included in

u-
r
. Nevertheless, 10$ \\ wr is an apparent equivalence.

Taking r= J, the original equation (246) is a true equiva-

lence, but (247) is not. (Besides r = 0, ^ and f are probably

the important values.) For u* is a little greater than w% when

y = 1
,
the ratio being about 0-967. Increasing y improves the

equivalence ; y = 3 and above making w\ a little greater than

w
,
the ratio being I'OOl when y = S.

Going a step farther in the same way to the fourth order, say

<>
and comparing ic with Wj, the numerical equivalence is so close

ii
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as to make one think it may be an exact one here specially.

Still w% is the smaller when y = 1
, though a trifle greater

from y = 2 up to 9.

Passing on to
v = 2-J-8> (250)

there is a falling off in agreement ; for as y increases from

1 to 36, the ratio W$/WQ falls continuously from 1-37 to 0-907.

One more case to show further falling off. Let

(251)

The peculiarity here (and in the last case less markedly) is the

very large ratio, namely 2 16
,
of the coefficient of y^ to that of

i/-i in the series 10$, whereas the succeeding ratios are quite

small. This may affect the determination of the error in a

complete rule. Anyhow the tendency shown in the last case

is now more marked, for w/w falls from 3-3 to 0'75 as y goes

from 1 to 100. There is equality at about 49.

The above formulae produce such good apparent equiva-

lences at the beginning, though so bad later on, that it is

suggested to examine the formula which arise from the

equivalence l = 2^r(^~1 sin m, equation (219), in a similar

way. The first one, turning x to A and algebrising, is the

apparent equivalence (224) above, shown to be excellent.

But, others, of the types

_, r /sinnr\
n ^ of/sin nr\ n

/OKO\IV2X1- -) wv= 2 r (
)> (252)

\ rr / rr \ TTT /

with n integral and greater than 1, are found by a cursory

examination not to furnish apparent equivalences, at least as

regards r = 0and J.

Cotangent Formula and Derived Formula for Logarithm.

Various Properties of these and other Divergent Series.

447. So far 0. P. M., Part 3. I regret that the condensa-

tion should tend to reduce it to the dry bones of mere formulae.

The original will not be published in Another Place before it

is wanted. In the meantime I have only space left here for



GENERALISED DIFFERENTIATION AND DIVERGENT SERIES. 483

a few notes in connection with the preceding. They may be

useful to investigators, as there are plenty of nuts to crack.

The formula (219) may be written

(253)
r

The companion formula is

TT cot TTT A = 2 =
v, (254)

and possesses several points of interest. Just as u comes

from the generalised V, so does v come from the generalised

-*. Thus,
A
1=21 = 2 *"" - 2 g smrar

, (255)
!
r [r I

- r r TT

(256)
jr_cos?-;r

r TT

Now (254) is exact when z=l, without A. But when x is

not 1 ,
the functions u and v differ in behaviour. The first is

continuous through jc = l, the second is discontinuous. That

is, there is a jump up through the amount A when x is just

above 1, and a jump down to the same extent when x is just

below 1, A being about 1-895, as found below. Why there

should be a discontinuity in r, though not in u, at x= 1, may
be understood by considering that e

AAl is an impulse at x = -
1,

and e~ AAl an impulse at x +1. So in the latter case

integration produces a jump.
Or we may differentiate v to x. We get = 2 of. This

means that 2#r
is an impulsive function. It is oo at a?= l.

Note also that in the theory of convergent functions the

expression 2 z
r
,
z being complex, plays the part of an impul-

sive function at the point 2 = 1, although, of course, function-

theorists would not, I think, admit that it had, by itself, any

particular meaning.

By differentiation to r, the v formula makes

. (257)

and other formulae may be derived. Perhaps the most

interesting particular case of v is when r = 0. Then there is

n2
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an infinite term o/0 on the right side of (254).

from the left side. The result is

Deduct it

-.... (258)

Remembering the potency of A, this leads to

w = # +K + i#
8 +...=A- logO-1), (#>1), (259)

or = -
log (1 -#), 0<1). (260)

This w function is infinite at a = 1
; beyond that it changes

from -log(l-ar) to log [JL(X
-
1)"

4
, where /* is a constant

(about 6 653). It is then continuously divergent. When x

is < - 1 it is alternatingly divergent.

To show A by itself, we have

\ = 2(x + JaJ + fe* + ...
- ar1 -

Jar
8 -

Jar* -...). (261)

Numerical examination of various cases of the cot and log

formulae all lead to about the same value of A when done

roughly, usually from 1-8 to 2. But to find it more closely,

special care must be taken. Some of the derived formulas

are much more convergent than the primitive ; but this does

not help as regards close estimation of A, because the error

becomes multiplied in another way, To find A pretty closely,

I used the w formula (259), with x between 1 and 2. The

results are very regular when attention is paid to certain

points. The error, if estimated by the size of the l.c.t., would

be large unless a value of x so little greater than 1 were used

that the labour became prohibitive. But there are certain

considerations allowing of closer work with less labour. Thus,
in the series w = x + Ja?

2 + ..., give x a value between 1 and 2,

say 1*1, such that there are two equal bottom terms. Repre-

senting the series diagrammatically thus, we have to find the

lowest point, when regarded as a continuous curve. If quite
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symmetrical, the lowest point would be at A, and the shaded

area would represent the value of the series. But there never

is symmetry, so A is not quite, though nearly, right. In this

way, choosing values of x producing two equal bottom terms,
excellent results are obtainable by stopping at the end of the

first of the two.

But if x is such that there is but one l.c.t., the results will

be staggery if we always count the full l.c.t., or always one-

half of it, &s. We should plainly count a portion only of

the l.c.t. of such size as harmonises with the case of two

equal bottom terms. Now to get the nih term to equal the

(tt + l)
th when x=l+m~l

, requires n = m. Use this rule

whether m be integral or fractional. For example, if z = l-3,

n = 3J, count three terms and ^ of the next. Then regular
results arise, as may be seen by the following :

X
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There is a similar conflict in the cot formula. By squaring
the series u and v, it can be shown that

u\ = TT cot rv(vr
-

iv+i), (263)

v\ = TT cot rir(vr + vr+ j). (264)

The formula for u is satisfied, but that for v, containing A,

will not do. If, however, we put A = in, then we harmonise

the algebra at the expense of making the series v be complex
when x is real.

The generalised e* and t~x formulas show a conflict also.

Thus, by squaring,

^ X +

(266)
|r

i.e., (
x
)

2 = 2
*, with the generalised series.* In a similar

manner, we can show that

(266)

This would be satisfied by e~* = 2 #r

#M. But it is not true,

save when r is integral. The effective meaning of the series is

not t~x
,
but e^cosrTr. I do not explain, but take things as I

find them.

The w series above runs up to oo at x = 1, and fchen runs down

again on the other side, with a constant multiplier introduced.

But there is not necessarily a change of this kind in passing

through infinity. For instance,

U = 1 + Ja?(l + }*(! + fc(l + Ja?(. . . (267)

represents (!-#)"* when #<1. It is convergent down to

x= -
1, and then alternating!^ divergent and calculable. At

#=1 it is infinite. But it is directly divergent and calculable

* The generalised binomial theorem furnishes the expansions of </(2r)

and #(2r + l) which appear above.
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when #>!, and seems to represent (js- 1)~*. Here there is

conflict with the algebra of i.

But the series

which represents (1 a:)*, and is alternatingly divergent when

x<-l, passes through zero when x = l, and then becomes

directly divergent. Considered as a function satisfying a differ-

ential equation, we should say it then represents c(xl)*
where c is a real constant. But ft is not 1, as in the last

case, but is - J, by rough calculation. The negativity can be

easily explained, for V = (1
-

a?)U by algebra, and when U is

(x
-

1)"*, V is negative. A reason can also be given why the

algebraical relation V = (1
-
#)'U is numerically violated. For

though U and #U have the same point of convergence when

z>l, yet when they are united to make the V series, the

point of convergence is shifted to quite another place. But

I do not see why the factor should be J, if that be the true

value. It is remarkable that the divergent Bessel functions

should be more understandable, both algebraically and

numerically, than elementary cases of Newton's binomial

theorem.

Three Electrical Examples of Equivalent Convergent and

Divergent Series.

448. The following electrical method of constructing

formulas for comparison is worthy of attention. If two

electrical combinations whose resistance operators are Z
x
and

Z2 be put in sequence, and an impressed voltage e act at their

junction, the current there is G = e (Z x + Zg)"
1
,
and the voltage

on the Z
2
side is

V = Z
2
C= '

. (269)
1 + ^1/^9

Taking various forms of Z
l
and Z

2
we may obtain interest-

ing results by different ways of algebrisation. For instance,

there are two ways of expansion of the operator (l + Z./Zg)"
1

by division. That either of the series of operations should

give V correctly is remarkable. It will do so if the result is

convergent. That the other way should give an equivalent

result is much more remarkable. This occurs sometimes.
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But it usually happens that the divergent result is not the full

equivalent of the convergent result. Interesting generalised

series connect them.

Say Z
lj7i 2

= ap^. and e = l, starting at = 0. Denote the

convergent result by w, and the divergent by v. Then

u = a~l
p

~
i - cr^p-

1 + a~3
p

~ l* - a~^p~
2 + ...

This satisfies (269), and is right initially, and is convergent.
It is not immediately evident what V rises to finally, though
we know it should be 1. The other way makes

v = 1 - a^ + a2
/)
-

cfip
1 } + a^p

2 - ...

='-(+3*4 <">

This also satisfies (269) ;
it is not evident what it means

initially, but it is 1 when t = x . Here u and v are equivalent
when a is +. Equating them, we obtain the generalised
*/

2
. But u and v are not equivalent when a is -

. V = w is

the solution then, but not V = v. To see this put a = - b and
let b be + . Then use the generalised e*/&

2 in the first part of

u. Let u become w. It is

This is the solution when a is negative. Comparing with v,

we see that in passing from positive to negative a, the extra

term 2
y

/
a2 is added.

The electrical interpretation is interesting. See 242. Let a

cable (having resistance and permittance only) of infinite

length be earthed at x = Q through a resistance, and e be

inserted there. Then u or v show the rise of V at the begin-

ning of the cable from to 1, when the terminal resistance

is positive, and u or w show the rise of V from to - oo when
the resistance is negative. When a is reduced to zero, the

rise from to 1 takes place instantly. When b positive is

reduced to zero, the rise from to - oo takes place instantly.

That is, if we had a negative resistance, even of infinitesimal
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amount, the finite voltage e would generate an infinite voltage

instantly under the circumstances stated.

As a second case, let Z 1/Z = a-J. Then

Here u and v are equivalent again when a is + ,
as we see

by equating them. V falls from 1 to 0. But when a is -
b,

and b is + ,
the result is

(275)

This comes from u by the generalised exponential. V now
rises from 1 to oo . It is a terminal condenser, instead of a

resistance, that is concerned. See 243.

Thirdly, let Zj/Z 2
= a?

1
*. Then

u = a~l

p-^ - a-2^-3 + arSp-4i
- a~V6

'

(
276)

is the convergent solution, true whether a is + or - . But the

other result, dividing the other way, viz.,

v = 1 _ ap
1 ' + a2/)

3 - aV1 + a*P* ~ -
> (277)

is not equivalent to u whether a be + or . The reason is

this. Let
X =

. .. + 1 + ftp'* + by + fcyi + .. , (278)

the series being complete both ways. What is its value?

Now
a*...+l+j*+9+pii+...; (279)

and I find that the sum of every third term beginning any-

where equals J of the total. Therefore X =
|e

(/c
,

if c = fcl,

and b is + ,
and the equivalent solutions are

u = -
(6-ip-i* + &-2p~

3 + b-3r *l
+...), (280)

u' - - |^ + 1 + /^i + &y 4- ..., (281)
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when b is + . Here by p~
n
is to be understood

"/[,
to save

useless work.

But when a is + ,

(a~
2
p-

3 + orV6 + ) (282)

.)- 2(<i-
2
^-3 + a~V" 6 + ..) (288)

Here

1 + a-ys + a-y 6 + . . .
=

J{c/ + 2e-'/2< Cos (*/c) (})*}, (284)

so % is transformed to

f), (285)

when a is + . This explains the result (36), 244, relating to

a terminal inductance.*

Sketch of Theory of Algebrisation of (1 -fy/)-
]
l.

449. The above three cases illustrate the general theory,

which may be just sketched here. Let

U =
^-JL;

= -
(b~

lp-
r + fr-y^ + fc-3p-s' +...). (286)

This is the convergent solution when r is + . It is not neces-

sary to consider r to be -
,
because the theory is quite similar.

To transform U to the equivalent W when b is + , let

-f ...
, (287)

the series to be complete. Then

W = - X + 1 + bp" + b*p* +by + . . . (288)

is the required result.

When r is the reciprocal of any integer, say n~l

,

X = ~/
/C

(289)

where c = 61 /r
,
because of the generalised e* formula. But

* In ELcc. Pa., Vol. L, pp. 153 to 169, are discussed problems equivalent to

the above by the Fourier method with extensions. It is to be noted that

the definite integral in that method corresponds to the divergent series in

the present one. The extra term which comes in when a changes from

positive to negative, is, in the Fourier method, accounted for by an extra

root of the determinant*! equation. The results by the two methods are

in full harmony.
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when b is negative, X = 0. For when n is even, \n generalised

c* expressions are cancelled bjr the other %n. And when n is

odd, the generalised
-*

expressions occurring n times also

annihilate the result. Thus, n = 5, omitting the constant,

X = ~'
(1

- COS I-TT + COS |TT
- CO * TT -f COS ^ir)

= 0. (290)

It follows that in the physical case, when a is+ , both the

solutions, convergent and divergent, are obtained by division,

as in the cases r = J and - J given above, whilst when n is -
,

there is an extra term, - X. -In any case the matter is resolved

into the evaluation of X. Putting c = 1 for ease,

X=... + 1+// + p
2r +...=r-> (

(291)

is not only true for r = l, J, ^, J, &c. ; but also for their

doubles, except when the doubling makes r = 2. The general-

ised
-* formula shows the validity of this doubling. But

when r is an integer, then

X=l+;r"+p-*+...=n-i(' +
e< + c<*+...) f (292)

where 1, c, c
2

, &c., are the nnth roots of 1. [Prove by the

Expansion Theorem, thus,

So X-7V is not true for r integral, save 1, and there may
be special peculiarities when r> I and fractional, thoujh
it is true when r=lj. But continuity would seem to show

that it is true from r = to r=] generally. The following

refers to r m/n, m being a smaller integer than n. A special

case will be easier to follow. Say r = J, then

(293)

Hers 0V * *

;

r ~* = <r~* cos rir, p
r cos i = cos (t + fair) , (294)

so we get X = sum of five correct real formulse, and this sum

comes to |e
f

,
as required.

If imaginary parts cancel one another at the end, the

imaginary may be employed throughout. Thus. r = $.
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where c = i
1
*. Now take p

r
e
ct = c

r
e
ct

. Then

X = *t* + 1(1 + i + i* + *)" + J(l + *
2 + i

4 + *
cy , (296)

which is |e*, as required. Numerical results are good. This

process goes when r = m/n. But the individual results, when

complex, are not true. E.g., p
r^H is not Pr

c-\ but only the

real part thereof. There is more to be said on this subject,

and I have no doubt a good deal more will be said when

proper mathematicians will thoroughly explore divergent series

for physical purposes. But this volume is now full up.
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APPENDICES.

APPENDIX D.

ON COMPRESSIONAL ELECTRIC OR MAGNETIC
WAVES.

There are no "
longitudinal

" waves in Maxwell's theory

analogous to sound waves. Maxwell took good care that there

should not be any. He knew what he was about, and having
done a first-class piece of work in producing harmony between

electrostatics and kinetics in a philosophical manner, by his

invention of the electric current in non-conductors and his

doctrine of the circuitality of the true current, he saw that it

was good, and let it be. Moreover, the phenomena of light

indicated the absence of longitudinal waves ; to get rid of

them was a difficulty in elastic solid theories
; they could not

even account satisfactorily for the elementary laws of reflection

and refraction at the interface of transparent media. Now,
Maxwell's theory went of itself in the directions required.

Why, then, should
'

he spoil his work by introducing longi-

tudinal waves ?

Although there does not, in my opinion, seem to exist at

present any distinct evidence of longitudinal waves in reality,

yet, if such should be superadded to Maxwell's theory, care

should be taken that the modified or extended theory is con-

structed so as to harmonise with Maxwell. Now, there are

compressional waves in Helmholtz's theory. But I am quite

unable to see that that theory harmonises with Maxwell's, and

I am not aware that anyone has shown that it does. It seems

to me to be out of court.

There are many ways in which compressional waves can be

introduced, some simple, others complicated. But in a primary

theory we are naturally limited to the simplest ways possible.

Let us, then, in the first place, see how the rotational ether

will furnish compressional waves. The rotational ether is

known to furnish a formal analogy which is useful so far as

it can be followed with advantage. The moving force per
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unit volume arising from the stress in a medium which

opposes finite elastic resistance to shear, compression and

rotation is

F = w(V
2G + JV div G) + AV div G - v curl2

G, (1)

if G is the spacial displacement, and n, A, v the elastic con-

stants, connected with shear, compression and rotation

("Electromagnetic Theory," Vol. I., 145, equation (313).)

Here, for reasons explained ( 153), put w = 0, and keep v

finite instead; and, to have compressional waves, retain A.

Then

F = AV div G - v curl2 G = cG (2)

is the equation of motion for small motions, without any

impressed force, if c is the density of the ether.

The most convenient form of the analogy for present

purposes is to compare E, the electric force, with G, the

velocity of the ether, as in 159. Then

-vcurlG = H, (3)

expressing that the rotation is elastically resisted, becomes by
time differentiation, and putting v~l =

/*,

- curl E = /^H, (4)

the second circuital law. Also -vcurPG is the same as

curl H, so (2) above makes

curl H = cpE - AV div p-
l

E, (5)

which is the modified first circuital law. The expansion is

divj9
-1
E, and Avdiv^E means the moving force due to the

space variation of the expansion (or compression), or of the

pressure, if Aconv/>~
lE be considered to be the pressure, dis-

regarding any constant pressure which is inoperative. The
other moving force, curl H, arises from the space variation of

the torque.

Equations (4) and (5) being the working equations, it will

be as well to see how A affects the flux of energy. The mere
convective flux of stored energy is disregarded. The stress on

the N plane being

PN = NAdivG - vVNcurlG, (6)
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( 145, equation (310),) the flux of energy representing its

activity is the negative of the conjugate stress on the plane

(because E is the velocity), multiplied by the size of E (see

145). This makes, after using (3),

(7)

represent the flux required. Its convergence should represent

the time rate of increase of energy per unit volume. Carrying
this out, and using the circuital laws (4), (5) we get

- divW = EcurlH - HcurlE + div(EA^-
1

divE)

= ErpE + H/^H + A divp^E divE

(8)

which is correct, since |<?E
2

is the kinetic energy, J/xH
2 the

energy of rotation, and |A(v^E)2 the energy of compression.

(See also 145).

To show the effect of electric conductivity, turn (5) to

curl H =
(k + cp)E

- AV divjp^E, (9)

where &E is the conduction current. The translation of the

ether is frictionally as well as inertially resisted
( 159). W is

unchanged in (7), but its convergence, by the introduction of

k, produces an extra term E/rE in the right side of (8), express-

ing the waste of energy.

As regards the general interpretation of (4), (5) it is to be

observed that circuital E and H are propagated identically as

in Maxwell's theory. Further, if H is polar, or divergent
without curl, it remains steady in time and place. But if E
is polar and H = or is polar, then (5) makes

which, if c is treated as a constant, means the same as

if E= - VP, and u2 =
\/c. That is, polar E, and the diverg-

ence of E, and the associated potential, are propagated at

speed (A/c)*, without magnetic force. This makes longitudinal
electric waves,
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The strict constancy of c is impossible in the fluid case,

because it then stands for the density of the fluid (with some

solid properties imitated by the rotational elasticity), and we
have allowed it to be compressible. The equation of con-

tinuity is

div(cE) + c- = 0, (12)

using which, equation (10), by a time differentiation, takes

the form

(13)

The first term must be negligible to reduce to the standard

form (11).

But electrically there is no reason visible why c (the per-

mittivity of the ether) should not be treated as usual, as an

ether constant. Then we have simple longitudinal waves

according to (11), or waves of compression and expansion
which are propagated without change of type if they are plane
waves. We are not bound to follow up the analogy when we
find that it fails. That is the worst of analogies. Sooner or

later they have to be given up.
A serious difficulty with all analogies which represent elec-

trical phenomena by bodily motions of an ether is that the

motions have to be continuous to represent certain steady states,

and then the ether gets out of shape. So the analogy may be

useful only for small oscillating motions. But there are many
other difficulties. There are the mechanical forces to be

explained, for instance. Even the existence of electrification

isolated in a dielectric involves the stretching of a point. If,

for instance, E is the velocity of the medium, then a charged
body has to be imagined to be continuously emitting fluid in

all directions. That is, we have to imagine an impressed
source of fluid or something equivalent. On the other hand,
if H is velocity, the case is far worse, for an impossibility is

involved. The electric force becomes rotation or proportional

thereto, and the impossibility is that we need to have E both
circuital and polar at the same time roundabout an isolated

charge ! Dr. Larmor's determined attempt* to make the

rotational ether go, with H as the velocity, labours under this

*
J. Larmor,

" A Dynamical Theory of the Luminiferous Medium,"
Trans. U.S., 1885-86.
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apparently incurable defect. His electronic investigations

have to be understood electromagnetically, but not in terms of

the rotational ether. Of course Maxwell's theory is dynamical,

without any specialised mechanical hypothesis about the

ether.

Let us, then, have done with the analogy and its embarrass-

ments, and let (4), (5) be the two circuital laws without

specialised mechanical representation, or (4) and (9) in a con-

ductor. We reduce to Maxwell by A = (or no resistance to

compression in the fluid analogy). There are two kinds of

electric energy shown in (8). If electrification is still to be

measured by the divergence of the displacement, then we cannot

have stationary electrification. Given any initial state with H
circuital. What happens in an unbounded non-conducting
uniform medium is that the circuital E and H make Maxwellian

waves which go out to infinity, whilst the polar part of makes

longitudinal waves, which also go out to infinity. Nothing is

left behind. In Maxwell's scheme, electrification persists in

time and place. But according to (4), (5) if electrification has

the same meaning, it only persists in the total. It does not

keep its place, for one thing. Besides that, it may increase at

some places and decrease at others equivalently. The persist-

ence is merely one of total amount in the whole dielectric. To
alter this amount a source is required.

The fact that divD does not persist at any place unless A = 0,

requires us to modify equation (5), in order to show electrifica-

tion stationary, and still have longitudinal waves. But, whilst

we are about it, we may as well remember that two fluxes are

concerned in Maxwell's scheme, and that we can have longi-

tudinal waves either of divE or of divH. Moreover, there is

no present reason why we should not have both kinds at the

same time, if we have any at all. Thus, let

(14)

- curlE = fipB. + VQ + f, (15)

be the circuital equations. Here f and g are introduced to

represent sources ; they are perfectly arbitrary vectors, and

are impressed. We see at once that circuital E and H make
Maxwellian waves, along with circuital f and g. Thus, if T

H H
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and E
2
are the circuital and polar parts of E, and similarly for

H, f and g, we have

(16)

(17)

for the circuital parts, as in Maxwell's system, and

(18)

(19)

for the polar parts. Now let

P = - A divjr^Ej, Q = - y div /r'H^ (20)

show the connection between P, Q and E
2 ,
H

2
. Then, using

(20) in (18), (19), we obtain

(21)

(22)

showing that polar E when free is propagated at speed (A/c)*

by longitudinal waves, and that free polar H is similarly pro-

pagated at speed (y//*)
1
. Call these speeds u and w. These

two kinds of longitudinal waves are quite independent of one

another. The polar E waves have no H with them, and the

polar H waves have no E with them.

Given any initial state of E and H, and no f, g. In an

unbounded medium the result is automatic division into three

sorts of waves, the circuital or Maxwellian at speed v = (jj)~*,

the polar E at speed u
t
the polar H at speed w. Nothing is

left behind.

To have remanent E and H, we require f and g respectively.

If gl
= curlh, we see by (16) that fda. may be regarded as the

density of the intrinsic magnetisation. Its effect is known.
It produces, when steady, a circuital state of magnetic induc-

tion without electric displacement. Intermediately, it produces
both. Or we may regard gl as impressed electric current. Simi-

larly, if
fj
= curl e, then e may be regarded as impressed electric

force, or ce as intrinsic electrisation, or
fj

as impressed mag-
netic current. It produces ultimately, when steady, a state of

circuital electric displacement without magnetic induction,

though both intermediately.
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Lastly, we coine to f2 and g2 ,
and now we can represent

stationary electrification and its analogue. To show this

plainly, let

o, (23)

where E is polar, say = - VP . Then (18) becomes

= cPE2
-
AVdiv/>-

1

(E2
-
Bo), (24)

or, which is equivalent,

AV^-E,,). (25)

Here it is E that is to be regarded as impressed arbitrarily.

Now, if it is steady, or becomes steady after varying anyhow,

(25) shows that E
2
= E is the final state assumed. That is,

P is the electrostatic potential, so that

= P , (26)

if p is the electrification.

Similarly, if f
2
= yV divp-'Ho, (27)

we have

rV
2

(H2
-H ); (28)

and if H is steady, the final result is H
2
= H

,
a polar state of

H indicating stationary magnetification a-, according to

-V2
Qo/i

=
o-, if H =-VQ . (29)

It is to be observed also that p and a-, or P and Q equiva-

lently, need not be steady. This shows a striking difference

from Maxwell's scheme, in which E, H, f
15 gl

settle the state

of induction and displacement. A knowledge of the elec-

trification, and also of its analogue, is included, for that div B
is zero in reality is a special experimental datum. But in

our present system p and o- must be independently given, and

may be varied.

As regards conductivity, turn cp to k + cp, and pp to g + pp
in (14) and (15), if k is the electric and g the magnetic con-

ductivity, which is specialised to be zero in actual fact. So we

may write

curl(H -
h)
=

(k + q>)E - A Vdiv/j-^B - E ), (80)

2 HH
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- curl (E
-

e)
=

(g + w]H -
yVdiv^H - H

) ; (31)

or, equivalently, in terms of p and o-,

curl (H
-
h)
=

(k + cp)E - AVdivjp^E + \Vp~
l

p/c, (32)

- curl (E
-

e)
=

(g + /*p)H
- yVdiv^H + y Vp-V//x, (33)

where p and a- are arbitrary as well as e and h.

To illustrate, if it is given that there is no E or H initially,

and no e, or h, or o-, at any time later, but merely p, then the

solution will express the result of introducing p. If it is a

steady point source, amount q, then

is the displacement at distance r from q finally. But at time t,

although this is the solution still, it is only valid within the

sphere of radius ut. Outside this sphere there is no disturb-

ance. On the boundary is a state analogous to condensation,

a longitudinal or normal wave, in fact. The total condensa-

tion in this wave increases uniformly with the time.

If q acts from time t = to ^ and then ceases, the result is

a shell of depth ut19 which goes out to infinity. On the outer

boundary is a condensational wave, and on its inner boundary
a rarefactional wave. The total condensation and the total

rarefaction increase uniformly with the time, but their differ-

ence remains constant, being proportional to qtlt Between

the waves is the steady state according to (34). If, temporarily,

E be imagined to be velocity, then fluid is being steadily trans-

ferred from the inner to the outer boundary of the expanding
shell. Similar remarks apply to a magnetic source o-.

But although we have a scheme which is really Maxwell's,
with longitudinal waves of E and of H (or either alone) added,

and have further added the means of exhibiting stationary and

steady electrification if required, so that Maxwell's theory can

also be imitated in this respect, yet I hasten to add that I have

not the least faith in the physical possibility of the extensions.

The price to be paid is too great.

To begin with, the representation of electrification by an

impressed term may be regarded as objectionable, and open to

suspicion. Its only justification would be that it worked out
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well, and did not lead to embarrassing difficulties. Now,

though it is not immediately evident, examination shows that

the representation of electrification by an impressed term in

the above way cannot be admitted for energetic reasons. To
see this, we must examine the activity products.

First put A = 0, y = in (32), (33), reducing to Maxwell.

It is then the same as (16), (17), if there is no conductivity.

We may exhibit the equation of activity in two strikingly

different ways. Let (k + cp) E be denoted by J, and (g + fip) H
by G. They are the electric and magnetic currents respec-

tively. Then one form of activity equation is

-
(gE + H) = Q +i>U + j?T 4 divWr (35)

On the left side is exhibited the sum of the activities of f

and g. On the assumption that these vectors indicate the

sources of energy, -f and -g are impressed forces. The

right side expresses the sum of the waste, the time rate of

increase of stored energy, and the divergence of the flux of

energy, according to

Q = &E2 + #H2
,
U = |cE

2
,

T = J/*H
2

, W^VEH. (86)

Now it is a consequence of the circuital equations that f and

g are the sources of disturbances. But it cannot be proved
from these equations that they are the sources of energy. The

above form of activity equation suits the rotational ether.

But in electromagnetics, though f and g are the sources of

disturbances, it is e and h that are the sources of energy. This

is concluded from experimental knowledge. The appropriate

form of activity equation, instead of (35), is

eJ + hG = Q + PV +PT + div W, (87)

where Q, U, and T are the same, but

W = V(E-e)(H-h). (38)

Equations (35) and (37) are mutually convertible, but differ

entirely in the sources of energy and its flux, for the same

varying disturbances E and H. (Compare with 70 and 159,

and observe the anomalies pointed out in the latter place.)

Now pass to the more general equations (32) (33). The

sources of disturbance are g; , fj, p and <r. But we cannot con-
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elude from the equations where the energy is taken in. We
have the activity equation

- (gE + fH) = Q +pV +pT +p\J1 +J>T! + divW2 , (89)

where Q, U and T are as before, whilst there is fresh stored

energy
U

t
- JA(diviriE)

2
, T! = Jyfdivir^H)', (40)

and W2 is given by

W2
= VEH - EX div p~

lE - Hydiv^H. (41)

This form (41) suits the rotational ether, so far at least as it

can be applied, for of course the equations are too general for

it. For example, if E = velocity, then c/?E is the rate of time

increase of momentum (per unit vol.), and therefore -g is

ordinary impressed Newtonian force (per unit vol.), and its

activity is - gE. This means the rate at which energy is being

taken in on the spot.

The above is all very well for consistency, but it will not

do in respect to stationary electrification. Thus, by (23)

and (26),
- g2

E = - EAVdiv^Eo = - E\Vp~
l

p/c. (42)

Apply this to the case of a sphere with constant charge. The

activity increases uniformly with the time ! This is accounted

for by the longitudinal wave (here a spherical wave, of course)

at the boundary of the region occupied by the E set up by p,

that is, EO ultimately, but practically only E in a sphere of

finite radius, and which can never be anything but finite.

Similar remarks apply to f
2
and cr. We cannot possibly admit

a scheme which requires a supply of energy to keep up an

electrostatic field.

But perhaps the other way will work out better. Guided

by Maxwell's electromagnetics, e and E
,
h and H should be

the sources of energy, although gj and p, f
x
and cr are the

sources of disturbances. On this understanding, the equation
of activity takes the form

(eJj + hGj) + (E J2 + HoG2)
= (Q +?U + pT) + PUa + />T2 + divWs

(43)

where Q, U and T are as before, whilst the new quantities are

thus defined. Jj and Gj are the circuital parts of the true
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currents (k + cp]E and (g + /^>)H. That is, J\ and Q
1
are the

right members of (30) and (31). J
2
and G

2
are the polar

parts of the true currents, that is

J2
= Aydiv^E - E

),
G2
- A.V divjr^H -H ). (44)

U2 and Ta are the new stored energies given by

Ua
= ir!vp-

1

(E-E )P> T^Wdivp-'tH.H,,)!*, (45)

and, finally, W3 is given by

W3
= V(E -

e) (H
-
h)

-
(E

- E
)
A.div^

1

(E
-
EO)

rXH-Ho). (46)

Superficially considered, we have now got rid of the energetic

difficulty. If a stationary electric polar field exists, no work

is apparently needed to keep it up. The activities of EO and H
are zero when their fields are established. But, looking closer,

the former difficulty turns up in a new shape. Thus, con-

sidering a charged sphere. Formerly, the place of activity was

the surface of the sphere, and the continuance and increase of

the activity were obvious. At present, the seat of activity is

the expanding spherical boundary of the radial E. But the

activity is existent however far the region of E may extend.

We must therefore give up the representation of static

states by impressed terms in the above way. That is, EO = 0,

Ho = 0, or />
= 0, o- = 0. But when we do this we are no

longer able to have stationary electrification in a non-

conductor. Not only Maxwell's theory, but older theories, as

W. Thomson's, are violated. The cure is to abolish the

longitudinal waves, by A = 0, y = 0. Then we come back to

Maxwell and his purely transverse waves. Good old Maxwell !

The way the transition takes place is worth notice. When
A and y are reduced to zero the wave speeds u and w are also

reduced to zero. Then, even if we do have the above p and <r in

action, varying anyhow, they do nothing, for no disturbance

leaves the sources. This agrees with Maxwell, inasmuch as

his electrification cannot be introduced in a dielectric without

conduction or convection. Also, if electrification exists,

given by divD, it persists, unless there is conduction or

convection.
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Lastly, a few remarks about Helmholtz's theory must be

added. I made acquaintance with it about 1886, and con-

cluded that it would not do, being fundamentally in conflict

with Maxwell's theory. Prof. J. J. Thomson seemed to be of

the same opinion, in his Report on Electrical Theories, not

being able to harmonise it with Maxwell. Dr. Larmor, too, had

a go at it, without success. But Hertz appears to have believed

in it, that is, as a possible extension of Maxwell's theory, and

certainly Prof. Boltzmann and Dr. Curry have faith in it, as

the recent work of the latter testifies.*

I think this state of dubiety is principally due to the extra-

ordinary complication of Helmholtz's investigations. There is

not only the usual cartesian complication, and the usual

4ir anomalies, but an unusual display of constants, and worst

of all, the exhibition of results in the form of equations of

electric and magnetic force, which are very complicated, and

the use of several potential functions. And yet the matter is

essentially quite simple, if we look at it from another point

of view, employing the simple methods which are coming
into general use. Eliminate the potentials ;

rationalise the

formulae, and put in vectorial language and seek the circuital

laws. Then we shall see what we shall see.

Transformed in the desired way, I make Helmholtz's

equation of electric force, in my own notation, be

E = - V< -
pop pot (k + ctf)E -fWQ(! /c)Vpot/>

2
</>

-p curl pot /^H. (47)

Here understand that pQ
and C

Q belong to the ether, and /*,, c
x

are the extra parts due to matter, so that /^ + /
jl
i
=

At
>
and

c
Q + c

l
= c. Also < is a potential, to be explained presently,

and K is a numeric, also to be interpreted. There is another

potential ^, in Helmholtz's equation, but I have put it in

terms of <, as in the third term, on the right. I also omit

impressed electric force as unessential. There is no impressed

magnetic force in the equation.

*
Curry's "Theory of Electricity and Magnetism," 1887, may be consulted

for Helmholtz's investigation. See also my review of that work in Tkt

Electrician, p. 643, Sept. 10, 1897, and Dr. Boltzmann's remarks theieoq,

p. 55, Nov. 5, 1897.
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Operate on (47) by curl, and we get

-curlE=>.pH, (48)

the second circuital law, simply. (Compare 65, Vol. I.)

Conversely, from (48), by vectorial work we may construct

(47), except as regards the < terms.

Similarly, from Helmholtz's equation of magnetic force, we

obtain, by curling, another circuital law in the form

curl H =
(k + clP)

E - cQpV<f>. (49)

There are, initially, two remarks to be made. First, that the

potential term, without further information, merely allows the

electric current to have divergence. Next, notice that instead

of cp"E, as in Maxwell, we have c^E. This is a fatal discre-

pancy. It is not an inadvertent mistake, however, but is

intentional. Maxwell's current in a non-conductor is pcE, or

pD, the time variation of the displacement. But Helmholtz's

is c^E, the time variation of the polarisation only, CjE being
the electric polarisation. It is supposed that < can be adjusted

so as to give Maxwell's theory, or a wider theory, by varying
a certain constant contained in <, viz., K in (47).

The next thing to do is to eliminate <. Take the divergence
of (49). Then

c pV2
<t>
= div (k +.clP)E. (50)

Again, take the divergence of (47). We get

div E + V2
< = -

frp pot div (k + c^)E + /^c (l
-

K) potV2p2
<f>, (51)

which, by the use of (50) reduces to

(52)

01 ********- 5 (53)-

and therefore cQVp<{>
=l2Ly div E. (54)
/W<^

This gives Vp<j> in terms of E. The first circuital law is

therefore, by (49),

curlH = (k + c^)E - --Vdiv^E - V div~2E. (55)Wo
Now put clfiQc K = X. Then

curlH = (k + Clp) E - A rdiv^-'E- - V divj^E. (56)
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This is perhaps the simplest form. Comparing with (9)

we see the interpretation of Helmholtz's numeric K. It is

K =
c//x

c A, where A, is, in the rotational analogy, the elastic

constant connected with compression.
But no possible legitimate manipulation of K can reduce

Helmholtz to Maxwell. The nearest approach is by K = oo
,

or A = 0. Then we make

curlH-(fc + c,p)E, (57)

inconsistent for the reason before mentioned. The speed of

propagation is (ftci)"
1
,
and is only finite in polarisable media.

It is infinite in the ether ! This comes out of Helmholtz's

conception of the current being the time variation of the

polarisation instead of the displacement.
Take the case of K finite, but no conductivity. Then

curl H =
(k + c^)E - AV divp^E, (58)

(59)

These indicate transverse waves at speed (fWi)-* and normal
waves at speed (A/c). See (9), (10), (11) above. When the

conductivity is finite as in (56), the interpretation is more

difficult, but of course still incapable of reduction to Maxwell.

It is important to note that c cannot be equated to zero.

If it could be, then c = 0, making c = c^ would reduce (49) to

Maxwell in appearance. But this is nonsense. Note also

that Helmholtz's theory, being reducible to (48) and (55),

is not necessarily a distance action theory. < has gone out.

We do not need to have
</> given to specify the state of the field.

Finally, remember that even if Helmholtz's theory could be

reduced to Maxwell's, there would be, in its unreduced state,

the electrification difficulties before described.
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APPENDIX E.

DISPERSION.

A short time since Prof. J. J. Thomson in his Rede

Lecture and then (The Electrician, July 17, 1896) Prof. Lodge
directed attention to Helmholtz's (1893) electromagnetic

theory of dispersion. This was followed next week by
Dr. Howard's translation of that paper. The celerity was

wonderful. I wish the paper itself could be as quickly

understood as translated.

The subject is exceedingly important and exceedingly
difficult. In one respect only is it easy. It is perfectly easy
to make a mathematical theory of dispersion, or 20 theories

in an hour, if desired. But it is not easy to make a mathe-

matical theory which shall agree with the facts, which are

rather complicated, and vary from one body to another. And
as for a physical theory, the case is worse still. Our know-

ledge about atoms and molecules is quite nebulous, and an

hypothesis concerning the mutual action of ether and matter,

or of electromagnetic and material vibrations, must be highly

uncertain, even if we have a fairly good mathematical theory .

The subject demands and deserves study from several points

of view. At present I only desire to direct attention to some

obscurities and inconsistencies 1 find in Helmholtz's theory.

The objections are made entirely in an enquiring spirit.

Let D be the displacement in Maxwell's theory, extended

to formally include convection currents, p the density of

electrification,* u the velocity of p. Then pu is the convection

current, and D + />u the true current, the curl of the magnetic

*
It is not implied that there is any volume electrification. In any ionic

or electronic hypothesis, we must assume that the + and -
charges

balance one another in general, because there is no sign of volume electri-

fication. (The footnotes to this paper, added December, 1897, did not

appear in the original, which is represented by the text.)
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force, in a dielectric. Let the time integral of pu be d. Then

the first -circuital law is

curlH = D + pu = D + d, (1)

and the second is

-curlE = fiH l (2)

if D = /cE. If now d can be defined in terms of D, we shall

have the essentials of a complete system.
Now D is the (/, g, h) of Helmholtz's paper (translation),

and d is the same in a thicker type. But 1 desire to use my
usual vector notation (and rational units of course), and the

reader will find that it produces a great simplification. E is

(P, Q, R) the electric force, and it is given that D = *E and

d = 0E, and that K and are constants. [Equation (2) and

the one preceding (4)].* Here is the first inconsistency.

If 6 is constant, we cannot have a theory of dispersion. A
homogeneous dielectric of the common kind is the result.

must be a differential operator of some sort. And it is so,

later on in the paper, although the supposed constant 6 is

retained, which makes a second inconsistency.

The density of the electric energy, say U1 [equation (4)] is

made to be

Ui= fD! +id*_Dd (3)
K (/ /C

and if D and d are parallel, this reduces to

T^-KK-ejB". (4)

I cannot clearly understand this, either when 6 is regarded

as a constant, or in the form (3).

The density of the magnetic energy is as usual [equation

(5)] ; say, if B = //H, where B is the induction, then T = J/xH
2

in my notation.

But Helmholtz introduces another sort of energy, called

the electromagnetic, which is wholly incomprehensible to me.

It is defined in terms of the vector potential A, and the true

electric current in the old-fashioned way [equation (8)], say
in my notation, 2 AC, if is the true current. But by a well-

known transformation, this is the same as 2 HB, since C is

* These references in square brackets are to Dr. Howard's translation of

Helmholtz's Paper in The Electrician, July 24, 1896,
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the curl of H, and B the curl of A, as may be seen in the

paper itself. [Equations (6), (7), (8), and the one between

(12) and (13).] So the '

'electromagnetic energy
"

density is

twice the magnetic energy density. What can it be ?

There is also the kinetic energy of disturbed ions, which

is represented by the product J mass of ion x square of con-

vection current. Obviously this makes the kinetic energy x p*.

That is a small matter. There is also the friction assumed

to act on disturbed ions.

Finally, there is the Principle of Least Action. Now,
Least Action has no more to do with the matter than the

man in the moon, so far as I can see. It is quite unnecessary,

to begin with. Next, it obscures and complicates the matter,

so much so as sometimes to lead to serious error. I make
this remark advisedly, remembering previous applications of

the Principle of Least Action to electromagnetics, which is

much clearer without it.

Lastly, we come to the circuital equations [equations (13),

(14)]. One is equivalent to

curl H = I) + d, (5)

in the sense before explained. The other is equivalent ,to

H. (6)

I understand (5). I cannot understand (6). Compare with

(2) above. I do not see how - d gets in. The Principle of

Least Action may do it, or else the reckoning of the electric

energy as in (4) above, or the astonishing electromagnetic

energy ;
but as no details are given, and there are the incon-

sistencies alluded to, the matter is hopeless at present.

Note that if the in d = OE is really constant, then
(5), (6)

with d eliminated make a simple homogeneous dielectric, with

no dispersion. But as a matter of fact, the relation between

D and d is [equations (17)]

, (7)

(where I change k to h on account of another
Jc), so that 6 is

an inverse operator, as is required in practical theories of

dispersion.
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Now (7) can be understood broadly without going through
the previous obscurities. It says that the ordinary mechanical

force E/o on p produces motion of
/o,

and that there is opposing
elastic resistance, and frictional resistance, and inertial resis-

tance. This is a reasonable elementary hypothesis, though
when applied to atomic charges some process of averaging
must be gone through.* Besides that, the real force on p is

not E/o, but E/a + VOB. Pass this correction by.

If we take out the d from equation (6), reducing it to (2),

then since (5) is the same as (1), I should be inclined to assert

that the auxiliary hypothesis (7), without necessarily entering
into details regarding the nature of the frictional force, &c.,

would give an intelligible dispersion theory. For (7) is simply
an ordinary

"
equation of motion "

introduced as an auxiliary
to the circuital laws.

But I could not say the same if d is to be retained in

equation (6), because of its unintelligibility. It might work,

or it might not. Further examination, given below, raises

doubts as to its physical possibility.

To construct electromagnetic theories of dispersion rapidly,

proceed thus. Write the two circuital laws in this way :

curl H = YE, - curl E = ZH, (8)

where Y and Z are operators, functions of p, the time-differ-

*
Perhaps the following transition from the continuity of the primary

theory to the discontinuity of the secondary theory may help. In pure

ether, we have curl H = /cE :=D. Now this equation will still hold good
if we fill the space concerned with electrification, density \ p positive and

the same amount negative, provided these electrifications cannot separate.
But if they can separate, then E will do it, and pu is the additional

current, making D + d the true current as in (1) above. The etherial

permittivity is K. It will be increased by d to a variable amount in

general, but to a constant amount if the two electrifications are merely
elastically connected according to the simplest law. If the connection

involves inertia and friction as well, then we have the auxiliary equation

(7). So far, the theory remains a primary theory, inasmuch as there is a

continuous structure assumed. But, if we concentrate the electrifications in

numerous detached pairs separated by ether we come to a secondary theory,
and the equations (1) and (7) can only be understood to result by some

process of averaging. H. A. Lorentz's " Versuch einer Theorie der elec-

trischen und optischen Erscheinungen in bewegten Korpern," and Dr.
Larmor's work already referred to, should be consulted concerning iona

and electrons in relation to electromagnetics.
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entiator. In a common homogeneous dielectric, after

Maxwell, Y = (& + */>),
Z = pp. As is well known, this fails

to account for the facts of dispersion, being only suitable for

slow working. But Y and Z may be any operators we choose,

provided they represent possible electrical arrangements of

coils and condensers (elementary). They may be direct or

inverse, rational or irrational. In any case, when we treat

simply periodic states, we reduce the circuital laws to the

form

curlH = (K + Sp)E,
- curl E = (B + Lp)H, (9)

by the assumption p*= - n2
, where n/2ir is the frequency. If

the four constants were independent of the frequency, the case

would be that of a homogeneous dielectric of constant induc-

tivity, permittivity, electric conductivity, and magnetic conduc-

tivity, whose theory I have described in Chap. IV., Vol. I,

"
Electromagnetic Theory." But in general they are functions

of n2
. And note that even though there be no magnetic con-

ductivity in reality, we are usually obliged in the above way to

use an effective magnetic conductivity.

To make a large scale model, use the line integrals of E and

H. Say, V and C. Then, for plane waves,

(10)dx ax

express the resultant forms. They may be interpreted in

terms of a generalised telegraph circuit, with R' the resistance

of wires, K' the conductance between them, L' the inductance,

S' the permittance, all per unit length, and all being the

effective values at the frequency concerned. We can concen-

trate the four quantities in lumps, and regard the circuit as

made up of a number of Z"s in series, with leaks represented

by the Y"s (see "Electromagnetic Theory," Vol. L, 221,

222, for this generalisation of the circuital laws, and the

resulting formulae).

If we assume Y' and Z' to represent any real electrical

arrangements of coils and condensers, we can, I think, be

quite certain beforehand that the resulting theory of dispersion

will be a consistent one in all parts, containing no electrical

impossibilities. That is one thing. Another is, that if we



51 2 ELECTROMAGKETIC THEORY. APP. E.

translate a theory of dispersion to the telegraph circuit theory,

or to the equivalent theory for plane waves in a doubly con-

ducting medium, and do it properly, we can see whether it

really represents a possible arrangement. If it does not, if

the telegraph will not work properly, neither will the homo-

geneous medium ; and, finally, it raises a very serious question

whether the theory of dispersion is an admissible one.

Test Helmholtz's theory in the way described. Eliminate

d from (5) and (6) by means of (7). For plane waves we get

-*K = Kp (l +
2

*--\E, (11)dx ^\ *

= ni then

_ rfE = f /x7m
aX + //ffX(X

- az + mn*)\
)

where X = (a
2 - wrc2

)

2 x ftV. (15)

Or, if we expand the reciprocal of Z, we have, more simply,

Comparing with

(16)
dx dx

which are the special forms of (9) for plane waves, we see that

the effective electric conductivity is positive, the effective

permittivity may be positive or negative, likewise the effective

inductivity, and the effective magnetic conductivity is positive.

The rate of waste per unit volume is KE 2 + BH2
. (Divide by

2 if the amplitudes are in question.) The negativity of S and

L is admissible at certain frequencies, but it is not allowable to

have E negative under any real circumstances. It is impossible
for B to be negative when we construct Y and Z out of

really possible combinations of coils and condensers, either

in the telegraph theory, or in its analogue in a medium.
Effective resistances and conductances are always positive,

because they arise out of the positive waste in Joules' law
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and its magnetic analogue, or from the positivity of the real

ultimate electric conductivity and its analogue.
I make these remarks because in my first translation into

the telegraph theory, a stupid mistake of my own made R come
out negative. So far as the above goes, Helmholtz's system
is not impossible. But let us see what arrangements the

operators in Helmholfcz's theory lead to. Translate to V and

C. Say as in (10) above. Then, first we have ,

in (11), (12). Now imagine the proper changes made in the

constants to suit V and C, instead of E, H. It is unnecessary
to introduce fresh symbols. If we consider a short finite

portion of the telegraph circuit, to which Y and Z belong,

we see that the leak Y consists of a condenser without shunt,

in parallel with another condenser without shunt which is

itself in sequence with a resisting coil. I.e., Yis a conductance

operator ; Kp stands for the conductance operator of the first

condenser, and the denominator of the big fraction in Y is the

resistance operator of the other condenser a?/Kp in sequence
with the coil JI/K + mp/K. (Dimensions are of no importance

here, since it is only the structure that is in question.) Thus
Y makes a proper and intelligible arrangement.
But Z does not. It is the resistance operator of the short

piece of the circuit, and Z"1 in (17) is the corresponding
conductance operator. So we see that there are two arrange-
ments in parallel, one of which is a coil of no resistance

(resistance operator pp), and the other has the resistance

operator np^ + hp + mp*). Here, - az

p.p represents a coil

of no resistance and negative inductance, whilst the rest,

-
(J-p

2

(h + mp) is not electrically intelligible, although in simply

periodic states, when - pp
z becomes /m

2
,
it is equivalent to a

coil of positive resistance and inductance. For this reason,

then, in simply periodic states, we do get positive resistance,

and if the effective inductance is negative, that does not matter.

But in general, unlike Y, the operator Z~ x
is electrically

unintelligible.*
* Similar equations of Dr. Larmor, so far as I have examined them, are

not open to this objection to Helmholtz's system made in this Paper.

L L



514 ELECTKOMAGNETIC THEORY. APP. E.

This brings us back to Helmholtz's second circuital equa-

tion again, and the question what - d is doing there ? If we

omit it altogether, as before suggested, we do away with the

unintelligibility. Y is as before in (17), whilst Z is pp.
Then putting Y = K + Sp, Z = R + Lp, in the simply periodic

case, we find

R = 0, L = ju, X =
(a

2 -ww2

The type of a wave is

E-E - p
*sm(^-Q#), (20)

when N/YZ=P + Qi; and

P or Q - (J)*{(R
2 + L2

/*
2
)*(K

2 + S>i2)* (RK - LSrc2
)}*, (21)

as in "
Electromagnetic Theory," Vol. L, 221, equation (16).

The same symbols are used here, only it is now E and H
that are concerned, so R, L, K, S refer to unit volume.)
Note that P and Q are always real and positive, for all values

of the quantities R, K, L, S. For the square of (RK - LSra2
)

is less than (R
2

-f L%2
) (K

2 + Sra2). When R is zero, take

the positive value of (L
2
7i
2
)*, whether L is positive or negative.

So the wave speed n/Q may be zero or infinite, but cannot

be negative or imaginary. Having the square of the wave

speed negative at certain frequencies is not desirable.

It is true that S may be negative, and then \/LS te

imaginary when L is positive, and the square of the wave

speed seems to be negative. But that does not seem to me
to be the right way to look at it. Say R = first, then

P or Q = (J)*{Ln(K
2 + S2

fl
2
)* + LSn2

}* (22)

)* + S}*. (23)

Here L is + in the case under consideration, so the outside

radical causes no trouble. Now if K = also, we shall have

dispersion but no waste ; then P = 0, and Q = (LS^
2
)* appa-

rently ; and therefore, apparently, Q is imaginary if S is

negative, as it may be within certain frequencies. But this

is wrong. We should take the + value of the radical ; then,
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when S is negative, = - S' say, it is P that is (LS'n
2
)*,

and

Q zero. In fact, the type of the wave is now c-pz sinn; a

stationary vibration.

It is easier to follow when K is not quite zero. If quite

zero and P = 0, then if by decrease of n, S becomes zero, we

have Q zero, and v infinite
;
and when S goes on further the

same way and becomes negative, Q remains zero, but P is

finite. When, on further decrease of n, S become positive

again, then Q becomes positive again, and P zero. If this is

not the correct interpretation, I shall be glad to be corrected

myself.
In the case (18), (19), L is constant, K is always + and is

proportional to the square of the frequency, and by (13),

Also, by (23), if V is the wave speed,

V-2=
5=g{(l + !/*)

4 + ?}, (25)

where y = Sn/K. Or

(26)

Here X is always + ,
whilst y is generally + ,

but may vanish

twice. When so, then P = Q ;
but in the region between

the critical frequencies P and Q change places, as compared
with their values when S was positive to the same extent as

it is now negative. In the limit, if K = 0, one of the vanishings
of S on decrease of n takes place by the route -

oo, 0, + oo .

Then P rises to oo as n goes from the higher to the lower

zero.

The two values of ri* making S = are

1

Between these frequencies, when possible, S is negative.

But if

V = m(l + 2a2

)
-
2mo(l + a2

)*, (28)

the two critical frequencies coincide, making

w2=-N/r+^r (29)m
i L 2
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Therefore, when W exceeds the value given in (28), the region

of negative S does not exist. The general characteristics are

much the same as in Helmholtz's theory.

If we imagine a plane electromagnetic sheet travelling

through the ether to enter a material dielectric permeated by
the ether, it is a matter of first principles that the very front

of the disturbance goes on at the same speed as before, that

is, as much or little as manages to get through at all at that

speed. It may be infinitesimally little.* The practical speed
of the sheet in the material dielectric is different, being less.

The thin sheet becomes widened by retardation, and the bulk

of the disturbance is left behind the first front. It is far

more complicated in reality when we come to simply periodic

waves (though so much simpler in the mathematics) ;
the

values of P and Q are determined by actions proceeding both

ways, ultimately tending to establish a stably progressive con-

dition under the influence of a continued simply periodic

impressed wave.f To allow of this, frictional resistances

causing waste should be positive.

*
It seems to me very unlikely that the front of the wave should be

unattenuated, for there is internal reflection and scattering to be considered,

as well as true absorption by the interposed storers of energy. The reason

why in Helmholtz's theory, or in the form I have substituted for it, the

matter has no influence when the frequency is infinite, is simply the way
inertia is associated with the ions or electrons. It takes time to move

them, so they do not move when no time is allowed, and do not disturb

the passage of a wave train of infinitely rapid oscillations.

t According to the above, we must, in the consideration of the passage
of light through material bodies, always distinguish between the propaga-

tion of an impulsive wave and of a train of waves. They will in general

behave quite differently, save when the action of the matter is such as to

produce merely an increased permittivity of constant amount, which is,

however, inconceivable in molecular theories. A simply periodic train of

waves cannot be set up until all parts of a body are well under influence

and reacting. We can also illustrate this effectively by the telegraph

theory in its generalised form. Although an impulse will begin by travel-

ing at the speed of light, it will be thrown back and redistributed in

various ways, according to the structure of Y and Z, the generalised

leakance and resistance operators. The finally resulting wave speed, when
a simply periodic train of waves has been set up, comes about from the

actions proceeding both ways. The distortionless circuit is the unique

exception, for there is then no back action.
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Another way of testing Helmholtz's theory is by forming
the equation of activity, and seeing if it accounts for the work

done. Take first the simple system consisting of equations

(1), (2), and (7). Then the equation of activity is

convVEH = E curlH - H curlE

(30)

Here ED = U, the rate of increase of the electric energy

U = JED according to my reckoning. Similarly, HB = T, the

rate of increase of the magnetic energy. The remaining

term Ed is Bpu or Fu, if F is the moving force on p. That

is, it is the activity of F, and is, by (7) accounted for thus

Kp

showing that the rate of waste is 7m2
/3

2
//c,

the potential energy
is J(aV/*) (p~

l

u)
2

,
and the kinetic energy is J(H/o

2
/K)w

2
.

The activity is therefore fully accounted for. But in Helm-
holtz's system equations (5), (6), and (7), we obtain

convVEH = U + T + Fw-H curl d/*, (32)

and I am unable to see how to interpret the additional term.

Of course, in (32) it is assumed that VEH is the flux of energy,

just as in (30). It may be objected that this is not the case,

but that the flux of energy should be V(E -
d/*)H. But this

does not help much. The convergence is

-5-^(1) + d) + HB. (33)

The curl of d does not now appear, but (33) does not account

for the increase of electrical energy as reckoned by Helmholtz,
or for the strange

"
electromagnetic energy."
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APPENDIX P.

ON THE TRANSFORMATION OF OPTICAL WAVE.
SURFACES BY HOMOGENEOUS STRAIN.*

Simplex Eolotropy.

1. All explanations of double refraction (proximate, not

ultimate) rest upon the hypothesis that the medium in which

it occurs is so structured as to impart eolotropy to one of the

two properties, associated with potential and kinetic energy,

with which the ether is endowed in order to account for the

transmission of waves through it in the simplest manner. It

may be elastic eolotropy, or it may be something equivalent

to eolotropy as regards the density. In Maxwell's electro-

magnetic theory the two properties are those connecting the

electric force with the displacement, and the magnetic force

with the induction, say the permittivity and the inductivity, or

c and /*.
These are, in the simplest case, constants corre-

sponding to isotropy. The existence of eolotropy as regards
either of them will cause double refraction. Then either c or

ju,
is a symmetrical linear operator, or dyadic, as Willard

Gibbs calls it. In either case the optical wave-surface is of

the Fresnel type. In either case the fluxes displacement and
induction are perpendicular to one another and in a wave-

front, whilst the electric and magnetic forces are also perpen-
dicular to one another. But it is the magnetic force that is

in the wave-front, coincident with the induction, in case of

magnetic isotropy and electric eolotropy, the electric force

being then out of the wave-front, though in the plane of the

normal and the displacement. And in the other extreme

case of electric isotropy and magnetic eolotropy, the electric

force is in the wave-front, coiccident with the displacement,

*
Proceedings R.S., Dec, 20, 1893.
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whilst the magnetic force is out of the wave-front, though in

the plane of the normal and the induction. Now, as a matter

of fact, crystals may be strongly eolotropic electrically, whilst

their magnetic eolotropy, if existent, is insignificant. This,

of course, justifies Maxwell's ascription of double refraction to

electric eolotropy.

Properties connected with Duplex Eolotropy.

2. When duplex eolotropy, electric and magnetic, is admit-

ted, we obtain a more general kind of wave-surface, including

the former two as extreme cases. It is almost a pity that

magnetic eolotropy should be insensible, because the inves-

tigation of the conditions regulating plane waves in media

possessing duplex eolotropy, and the wave-surface associated

therewith, possesses many points of interest. The chief

attraction lies in the perfectly symmetrical manner in which

the subject may be displayed, as regards the two eolotropies.

This brings out clearly properties which are not always easily

visible in the case of simplex eolotropy, when there is a one-

sided and imperfect development of the analysis concerned.

In general, the fluxes displacement and induction, although
in the wave-front, are not coperpendicular. Corresponding to

this, the two forces electric and magnetic, which are always in

the plane perpendicular to the ray, or the flux of energy, are

not coperpendicular. Nor are the positions of the fluxes in the

wave-front conditioned by the effective components in that

plane of the forces being made to coincide with the fluxes.

There are two waves with a given normal, and it would be

impossible to satisfy this requirement for both. But there is

a sort of balance of skewness, inasmuch as the positions of the

fluxes in the wave-front are such that the angle through which

the plane containing the normal and the displacement (in

either wave) must be turned, round the normal as axis, to

reach the electric force, is equal (though in the opposite sense)
to the angle through which the plane containing the normal

and the induction must be turned to reach the magnetic force.

These are merely rudimentary properties. I have investigated
the wave-surface and associated matters in my paper

" On the

Electromagnetic Wave -surface
"

(Phil. Mag. t June, 1885;
or " Electrical Papers," vol. 2, p. 1).
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Effects of straining a Duplex Wave Surface.

3. The connection between the simplex and duplex types of

wave-surface has been interestingly illustrated lately by Dr. J.

Larmor in his paper "On the Singularities of the OpticalWave-
surface" (Proceedings London Math. Soc., vol. 24, 1893). He

points out, incidentally, that a simplex wave-surface, when

subjected to a particular sort of homogeneous strain, becomes

a duplex wave-surface of a special kind. To more precisely

state the connection, let there be electric eolotropy, say c, with

magnetic isotropy. Then, if the strainer, or strain operator,

applied to the simplex wave-surface, be homologous with c,

given by c* x constant, the result is to turn it into a duplex
wave-surface whose two eolotropies are also homologous with

the original c
;
that is to say, the principal axes are parallel.

This duplex wave-surface is, of course, of a specially simplified

kind, though not the simplest. That occurs when the two

eolotropies are not merely homologous, but are in constant

ratio. The wave-surface then reduces to a single ellipsoid.

Conversely, therefore, if we start with the duplex wave-

surface corresponding to homologous permittivity and induc-

tivity, and homogeneously strain it, the strainer being

proportional to c~i, we convert it to a simplex wave-surface

whose one eolotropy is homologous with the former two.

Eemembering that the equation of the duplex wave-surface

is symmetrical with respect to the two eolotropies, so that

they may be interchanged without altering the surface, it

struck me on reading Dr. Larmor's remarks that a similar

reduction to a simplex wave-surface could be effected by a

strainer proportional to ft~*. This was verified on examination,
and some more general transformations presented themselves.

The results are briefly these :

Any duplex wave- surface (irrespective of hornology of eolo-

tropies), when subjected to homogeneous strain (not necessarily

pure), usually remains a duplex wave-surface. That is, the

transformed surface is of the same type, though with different

inductivity and permittivity operators.

But in special cases it becomes a simplex wave- surface. In

one way the strainer is c~*/[c~i], where the square brackets

indicate the determinant of the enclosed operator. In another
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the strainer is /*-*/[/&-*].
These indicate the strain operator to

be applied to the vector of the old surface to produce that of

the new one.

Now, these simplex wave-surfaces may be strained anew to

their reciprocals with respect to the unit sphere, or the cor-

responding index-surfaces, which are surfaces of the same

type. So we have at least four ways of straining any duplex
wave-surface to a simplex one.

Furthermore, any duplex wave-surface may be homo-

geneously strained to its reciprocal, the corresponding index-

surface, of the same duplex type. The strain is pure, but is

complicated, as it involves both c and
/z. The strainer is

c~l

(cfjr
l

)l,
divided by the determinant of the same. This

transformation is practically the generalisation for the duplex
wave-surface of Pliicker's theorem relating to the Fresnel

surface, for that also involves straining the wave-surface to its

reciprocal.

Instead of the single strain above mentioned, we may employ
three successive pure strains. Thus, first strain the duplex
wave-surface to a simplex surface. Secondly, strain the latter

to its reciprocal. Thirdly, strain the last to the reciprocal of

the original duplex wave-surface. There are at least two sets

of three successive strains which effect the desired trans-

formation. The investigation follows.

Forms cf the Index- and Wave-Surface Equations, and the

Properties of Inversion and Interchangeabiliby of Operators.

4. Let the electric and magnetic forces be E and H, and the

corresponding fluxes, the displacement and induction, be D
and B, then

D = cE, B = /*H, (1)

where c is the permittivity and
//.

the inductivity, to be

symmetrical linear operators in general. We have also the

circuital laws

curl H = cE, - curl E = //H. (2)

Now, if we assume the existence of a plane wave, whose

unit normal is N, propagated at speed v without change of

type, and apply these equations, we find that D and B are in
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the wave-front, E and H are out of it, and that there are two

waves possible. We are led directly to the velocity equation,

a quadratic in vz
, giving the two values of v2 belonging to a

given N. Next, if we put s = N/v, then s is the vector of the

index-surface, and its equation is

(3)

which are, of course, equivalent to the velocity equation

(" El. Papers," vol. 2, p. 11, equations (41)). Two forms are

given for a reason that will appear later. I employ the vector

algebra and notation of the paper referred to, and others.

Sufficient to say here that c"1 and /r-
1 are the reciprocals of

c and p ;
and that scs means the scalar product of s and cs ;

for example, if referred to the principal axes of c,

scs= c^f + c
2

.s
2
2 + c

3
s
3
2
, (4)

if cv c
2 , c

z be the principal c's (positive scalars, to ensure

positivity of the energy), and slt s2,
ss be the components of s.

Also, [c"
1

]
denotes the determinant* of c"1

, that is, (e^Cg)"
1
.

The operators in the denominators of (3) may be treated, for

our purpose, as linear operators themselves. But it is their

reciprocals that occur. For example, the first form of (3) may
be written

^jTs^J
=v"

asserting that the vectors s and [...^s are perpendicular.
The expansion of (3) to Cartesian form may be done im-

mediately if c and /z are homologous, for then we may take the

reference axes i, j, k parallel to those of c and
/*, and at once

produce

*
It occurs to me in reading the proof that the use of [c] to denote the

determinant of c, which is plainer to read in combination with other

symbols than |c|, is in conflict with the ordinary use of square brackets,
as in (5) and some equations near the end. But there will be no confusion
on this account in the present paper.
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where s/*s is as in (4), with /* written for c. Similarly as

regards the second form of (3). When the operators are not

homologous, the complication of the form of the constituents

of the inverse operators makes the expansion less easy.

As regards the second form of (3), it is obtained from the

first form by interchanging /* and c. It represents the same

surface. The transformation from one form to the other, if

done by ordinary algebra, without the use of vectors and

linear operators, is very troublesome in the general case. But

in the electromagnetic theory the equivalence can be seen to

be true and predicted beforehand. For consider the circuital

equations (2). If we eliminate H, we obtain

-curl pr
l curl E = cE, (7)

whilst if we eliminate E, we obtain

curl c-1 curl H = juH. (8)

These are the characteristic equations of E and H respec-

tively in a dielectric with duplex eolotropy, and we see that

they only differ in the interchange of c and /A. When there-

fore we apply one of them, say that of E, to a plane wave to

make the velocity equation, in which process E is eliminated,
we can see that a precisely similar investigation applies to the

H equation, provided p and c be interchanged. So, if the E

equation leads to the first form in (3), the H equation must

lead to the second form. They therefore represent the same

surface. The same property applies to any equation obtained

from the circuital equations with the electrical variables

eliminated, the equation of the wave-surface, for example. If

we have obtained one special form, a second is got by inter-

changing the eolotropies.

The index equation being what we are naturally led to from

the characteristic equation, it is merely a matter of mathema-

tical work to derive the corresponding wave- surface. For s is

the reciprocal of the perpendicular upon the tangent plane to

the wave-surface, so that

rs = l, (9)

if r is the vector of the wave-surface ; and from the equation

of s and its connection with r, we may derive the equation of
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r itself. I have shown (loc. cit., vol. 2, pp. 12-16) that the

result is expressed by simply inverting the operators in the

index equation. Thus, the equation of the wave-surface is

where, as before, two forms are given. Now, the final equi-

valence of this transition from the index to wave-equation to

mere inversion of the two eolotropic operators is such a simple
result that one would think there should be a very simple way
of exhibiting how the transition comes about. Nevertheless,

I am not aware of any simple investigation, and, in fact,

found the transition rather difficult, and by no means obvious

at first. I effected the transformation by taking advantage of

symmetrical relations between the forces and fluxes ; in par-

ticular proving, first, that rE = = rH, or that the ray is per-

pendicular to the electric and magnetic forces, comparing this

with the analogous property sD = = sB, and constructing a

process for leading from the former to the wave-equation

analogous to that leading from the latter to the index equation.

It then goes easily. However, we are not concerned with

these details here.

A caution is necessary regarding the interchangeability of p
and c. They should be fully operative as linear operators. If

one of them be a constant initially, and therefore all through,
we may not then interchange them in the simplified equations

which result. For example, let
//-
be constant in (10). We

have now

/or* [cjtrc-
1

!)

The first 'form is what we are naturally led to by initial

assumption of constancy of p. Now observe that the inter-

change of fi and c in the second form gives us the first form,

after a little reduction, remembering that
[//]

is now /*
3

. But

the same interchange in the first form does not produce the

second, because it is more general. So we have gained a

relative simplicity of form at the cost of generality. The
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extra complication of the duplex wave-surface is accompanied

by general analytical extensions which make the working

operations more powerful. The equivalence of the two forms

in (11) may be established by the use of Hamilton's general

cubic equation of a linear operator, as done in Tait's work.

Though not difficult to carry out, the operations are rather

recondite. On the other hand, the much more general

equivalence (10) is, as we saw for the reason following (7) and

(8), obviously true. This suggests that some other trans-

formations involving the general cubic may be made plainer

by generalising it, employing a pair of linear operators.

General Transformation of Wave-Surface by Homogeneous
Strain.

5. Now apply a homogeneous strain to the wave-surface.

Let =,
We need not suppose that the strain is pure. Use (12) in the

first of (10). It becomes

4,-iq
- - = 0. (13)

c

Now the use of vectors and linear operators produces such a

concise exhibition of the essentially significant properties,

freed from the artificial elaboration of coordinates, that a

practised worker may readily see his way to the following

results by mere inspection of equation (13), or with little

more. I give, however, much of the detailed work that

would then be done silently, believing that the spread of

vector analysis is not encouraged by the quaternionist's prac-

tice of leaving out too many of the steps.

In the first place, <J>~
l

q. is the same as ti^'"*, if
</>'

is the

conjugate of <. So

<#>-vv-'a = a^'-V-
1

^-
1

*! (U)

in the denominator. Also, the first ^-'q. in (13) may be

written q</>'~S and the postfactor <f>'-
1

may then be transferred
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to the denominator. To do this, it must be inverted, of

course, and then brought in as a postfactor. Similarly the

^ in the numerator may be merged in the denominator by
inversion first, and then bringing it in as a prefactor. We
may see why this is to be done by the elementary formula

(15)

where a, b, c are any linear operators. So (13) becomes

= 0. (16)

Now introduce some simplifications of form. Let

<H' = 6, <&"<' = A. (17)

It follows from the second, and by (15), that

^-V-1

^-^^^')-1-^1
. (18)

We also have [A]
=

[>] [</>]

2
.

(19)

These three, (17) to (19), reduce (16) to

a ^ =o=a 5L
, (20)

[A] (qA-q)
"

[b] (q^'q)

where the second form is got from the first by interchanging
A and b, which is permissible on account of the interchangea-

bility of /A and c.

Comparing (20) with (10), we see that there is identity of

form. Consequently (20) represents a duplex wave-surface

whose operators are b and A, provided they are self-conjugate.

They are, for, by the elementary formula

(abc)'
= c'b'a

f

, (21)
it follows that

(hc(p
=

(<pc<p ) , (22)

and similarly for the other one.

In case the strain is a pure rotation, we may take the form
of

</> (following Gibbs) as

(28)
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where i, j, k is one, and I, J, K another set of coperpen-

dicular unit vectors. For, obviously, this makes

<r=I.ir + J.jr + K.kr = Ie + J2/ + K. (24)

Special Cases of Reduction to a Simplex Wave-Surface.

6. Now take some special forms of <. We see, by inspec-

tion of (17), that we can reduce either of b or A. to a constant.

Thus, first,

< = /*-*, A = l, & = /iH c/r-J. (25)

Then (20) reduces to

= =*- -A_- -, (26)

~tf \b] (q^q)
showing that the original duplex wave-surface is reduced to a

simplex one involving eolotropy &, given by (25).

Similarly, a second way is

< = c-i & = l, A =
c-fyc-^ (27)

which reduces (20) to the simplex wave-surface

'
(28)

involving the eolotropy A..

The new surfaces (26), (28) may now be strained to their

reciprocals. Thus, take the first of (26), and put

(29)

This makes 6*p- ? = 0. (30)'

- PIE.

Here the initial and final 6*'s may be removed to the

denominator, and, since we also have

we bring the first of (26) to

^r = 0. (32)

Now compare this with the second form of the same (26).

They are identical, except that b is now inverted, Conse,-
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quently (32) represents the index-surface corresponding to the

wave-surface represented by the second of (26), and therefore

by the first, since they are the same. In a similar manner
the strain (29) applied to the second of (26) leads to the

reciprocal of the first form.

In like manner the simplex surface (28) is strained to its

reciprocal by

Applied to the first form of (28), we get the second form with

A inverted ; and, applied to the second form, we get the first,

with A inverted. These inversions of simplex wave-surfaces

by homogeneous strain are equivalent to PJiicker's theorem

snowing that the Fresnel wave-surface is its own reciprocal

with respect to a certain ellipsoid (Tait,
"
Quaternions," 3rd

Ed., p. 342).

Transformation from Duplex Wave- to Index-Surface by a

Pure Strain.

7. What is of greater interest here is the generalisation of

this property for the duplex wave-surface itself. Take

< = c-1

(cfjT
1

)*. (34)
Then we obtain

c~l
(op

~ 1

)*cc~
1

(c//,~
1

)*
=

fjT~
i
J (35)

c
1

(c//,~
1

)'//,c~
1
(c/x-

1

)
= c"1

, (36)

the first of which is obvious, whiJst in the second we make
use of

iur
l =

(cfjr
1

)-
1
. (37)

There are other ways in which this < may be expressed, viz.,

all of which lead to /z<c</>
= 1. (39)

If this <f>
is self-conjugate, we see, by (17) and (35), that its

use in (20) brings us to

* ^ = = q ?-^ (40)
-i c -i fi

That is, the strain converts the first of (10) to the first of (40),

and the second of (10) to the second of (40). But the first of

(40) is the same as the second of (10) with ^ and c inverted,
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and the second of (40) is the same as the first of (10) with the

same inversions. In other words, the strain has converted

the duplex wave-surface to its corresponding index- surface.

Observe that the crossing over from first to second form is an

essential part of the demonstration, which is the reason I

have employed two forms.

In full, the strainer to be applied to r of the wave-surface

to produce the vector s of the index-surface (or q. in (40) )
is

XVO* ()

But to complete the demonstration it should be shown that

this strain is pure, because we have just assumed < = <' in

equation (20) to obtain (40). Now the purity of this strain

is not obvious in the form (41), nor in any of the similar

forms in (38). But we may change the expression for
</>

to

such a form as will explicitly show its purity. Thus, we have

CfjT
1 = C* . C*fJT

l
C* . C~*,

identically, and this may be expanded to

cji-i
= c* (cVV)W (cVWc"*,

the right member reducing to the left by obvious cancellations.

Therefore

by taking the square root. So, finally,

<j>
= c-1 (cfjT

1

)*
= c"* (cVWc"1

. (42)

This is of the form fafafa, where ^ is pure. Its conjugate is

therefore </>i<'2<i. This reduces to
<j>

itself if <

2
is pure. But

<
2
is pure, because it is also of the form 0^0^ where 6l and

6'

2
are both pure. So our single strain depending on < is

pure.

Substitution of three successive Pure Strains for one.

Two ways.

8. This is dry mathematics. But it is at once endowed

with interest if we consider the meaning of the expression oi

the strain
<f>

as equivalent to the three successive strains <h,

<

2 ,
and < r First, the strain

(43)
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converts the duplex wave-surface to a simplex surface. This

was done before, equation (28). Next, the strain

-*

converts the simplex surface q to another simplex surface

whose vector is p, and which is the index-surface correspond-

ing to the wave-surface q. This strain (44) is, in fact, the

same as (33), and the result is

V* -0-p-^-y, (45)
-~

[A'
1

] (pAp)

where A = c"}
/xc~i Finally, the strain

=p (46)

converts the simplex surface p to a duplex surface s, which is

the reciprocal of the original duplex wave-surface, the result

being (40).

The interchangeability of // and c shows that we may also

strain from r to s by a second set of three successive pure

strains, thus,

^/^(/xVVftrt (47)

This is the same as first straining the surface r to the simplex

surface (26) ;
then inverting the latter, which brings us to

the simplex surface (32) ;
and finally straining the last to the

duplex surface s.

Transformation of Characteristic Equation by Strain.

9. In connection with the above transformations it may be

worth while to show how they work out when applied to the

characteristic equation itself of E or H. Thus, take the form

(7), or

-rE = VV
/
a"1

VVE, (48)

and let r = /r', V = /"
1Y7 E^/^E', (49)

so that (48) becomes

- cf-*E = V/^vy-iV/-V/ ~IE'. (50)

Now employ Hamilton's formula

, (51)
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< being here any self-conjugate operator. Take <j>=f-*, and

we transform (50) to

-
cf-* =VrV^/WE' x [/-

1

] (52)

= VrVf-\fr 'I/)WE' x [/-
1

] . (53)

In this use Hamilton's formula again, with
<f>
=f1

,
and we

obtain ,

= /VV(/>-V)WE'x [/-
1

]
2
. (54)

Or, more conveniently written,

-< =VV'VV'E".

'

(55,

So far, / is any pure strainer ; we can now make various

specialisations. For example, to get rid of p~
l from the right

side of (48), and substitute c. Take

^y =
c, then

f

rf-i-\
=

J*""
1

(56)

which brings (55) to the form

-
/x-

1
!!' = VVcW'E', (57)

which should be compared with the other characteristic, that

of H, which is (8), or

-
/*H = We-1WH. (58)

The above process is analogous to our transformation from

the duplex wave-surface to its reciprocal. As then, we have

an inversion of operators and also a crossing over from one

form to another.

Derivation of Index Equation from Characteristic.

10. We may also, in conclusion, exhibit how the index-

surface arises from the characteristic, when done in terms of

y up to the last moment. Start from the last equation (58).

Hamilton's formula (51) makes it become

[c]/xH
=W VcVcH. (59)

The elementary formula in vector algebra,

VaVbc = b(ca)
-
c(ab), (60)

transforms (59) to

-
[c] /xH

= cV(VfH)
-
(VcV)eH, (61)

M M 2
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or (VoV) (! -[c] /,H= cV(VeH) ) (62)

from which
~

H). (63)

So far we have merely a changed form of the characteristic.

But the induction /*H is circuital. Therefore, taking the

divergence of (63), we obtain

= V(VcV)c - [c>V(VcH), (64)

or, which is the same,
J

). (65)

Here VcH is the divergence of cH. It is the same as (cV)H.
Now (65) only differs from the velocity equation (for plane

waves) in containing V instead of the unit normal N and

cP/dt
z instead of i>

a
,
v being the wave-velocity. Thus, let

then we shall have t>Vn = _H,
dt*

where, however, V2
is specialised, being only V3

2 or d?/dz
z

.

We therefore put v
aV8

a
for d*/dt

z and NV3 for V in equation

(65), thus making

= NV3r(NV3cNV8)/x

-1-
[c] c-

1
y
2V3

2T1

NV8(NV3CH), (66)

We may now cancel out all the V3's except the last, making

=N
["(NcN)/*-

1-
[c] c-V~| "^(NVgcH). (67)

Now throw away the operand NV8cH, and we get the

velocity equation pure and simple, and the index equation (3)

then comes by s = NV-1
.

But, although the above manipulation of the characteristic

equation has some analytical interest, the process cannot be

always recommended on the score of simplicity. It is, on the

contrary, usually easier and simpler to work upon the com-

ponent equations upon which the characteristic is founded,
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APPENDIX G.

NOTE ON THE MOTION OF A CHARGED BODY AT
A SPEED EQUAL TO OE GREATER THAN

THAT OF LIGHT.

Mr. Searle remarks at the end of his paper* that it would

seem to be impossible to make a charged body move at greater

speed than that of light. Prof. J. J. Thomson! has made a

similar remark in the same connection. Prof. G. F. Fitz-

Gerald did so also, long ago, but in a different connection. J

The argument implied in the cases of Thomson and Searle

seems to be that since the calculated energy of a charged body
is infinite when in steady rectilinear motion at the speed of

light, and since this energy must be derived from an external

source, an infinite amount of work must be done, that is, an

infinite resistance will be experienced.

There is a fallacy here. One easy way of disproving the

argument from infinity is to use not one, but two bodies, one

positively and the other negatively charged to the same degree.

Then the infinity disappears, and there you are, with finite

energy when moving at the speed of light.

But I go much further than that, and assert that a single

charged body may be moved at any speed, whether equal to

or exceeding that of light, without any infiniteness of the

energy or infinite resistance to motion that, in fact, a charged

body may be moved about anyhow. Remember that it is not

a question of whether the mechanical construction of the

ether will permit it nothing is known about that but

merely one of electromagnetic laws. If they are valid at any

*
Physical Society, 1897 ;

Phil. Mag., October, 1897.

t " Recent Researches in Electricity and Magnetism," Chap. I.

J Dr. Fleming has lately repeated Prof. J. J. Thomson's conclusion.
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speed, then there is nothing to prevent speeds of motion greater
than light.

To illustrate. Start with a stationary charged body ; then

move it anyhow, finally bringing it to steady rectilinear

motion at speed u. Wait a little while, and the special dis-

tribution of displacement round the instantaneous position of

the body will be assumed. But it will not extend to infinity.

For beyond the distance from the first position of the body,
travelled by light in the time occupied in shifting it to a

second position, there is no disturbance of the original dis-

tribution of displacement. This holds for all time, so the

energy is always finite, even when the speed u is that of

light or more, unless there should be infinite collections of

energy at a finite distance from the body, and there is no
need for that.

Where does the energy come from ? The body meets with

resistance as its speed is increased. Not only that, but it

requires force to maintain its speed steady until the steady
distribution of displacement appropriate to the speed is

assumed. This force tends to vanish when u<v. But it

does not when u = v. (A single charged body is in question

now.) There is a pull-back on the body exerted by the

deformation of the tubes of force ; their pull on the body is

greater behind than in front until the regular steady distribu-

tion is fully assumed. This cannot be approximated to

exactly when u = v. But we may get over this difficulty, as

before, by means of two charges.

When u>v, the pull-back becomes very prominent, and in

any case, whether there is one body or two, the constant

exertion of force is required to maintain the motion. The

displacement for a point charge is a conical sheet behind the

charge, together with a supplementary distribution inside the

cone. The pulling back is obvious, and the energy is being
wasted at a steady rate by the constant growth of the cone at

its apex, which is fully accounted for by the activity of the

applied moving force. This is as I suspected in 1888* (" El.

Papers," Vol. 2, p. 494), and I later corroborated it by

*
But, on reference, I see that I described the electric current as being

towards the charge inside the cone, and away from it on the outside. This

should be the electric displacement.



MOTION OP A CHARGED BODY. 535

mathematical investigation. The solution is described in my
"El. Papers," Vol. 2, p. 516. It is not the same formula as

when u<v. The infinities that are concerned in it are not

essential. They arise from its being a point charge that is

in question. Make it a surface distribution and it will all

come plain, the cone (or other surface) behind the charge,

and the constant pull-back exerted on the body by the dis-

placement. [Fully worked out examples of this theory would

be too lengthy here, and must be postponed.]
The tendency of the displacement to be left behind as

the body moves is also the cause of the apparent increase

of inertia of the body at slow speeds. We then calculate

statically, as it were
;

in the approximate result it appears

that when u varies anyhow (u/v being always very small), the

resistance to motion is equivalent to an increase of inertia

(J. J. Thomson). And yet there is no apparent pull-back by
the electrical tension ;

but that is because of the erroneous

assumption made, that the change of displacement is instantly

assumed as the body moves. Allow for finite v, and this case

is no exception.

The moral is don't be afraid of infinity !

[The above arrived at the Physical Society too late for

the discussion. The matter in question is quite visionary,

superficially considered
;

but is of considerable theoretical

importance.]

[Feb. 26, 1898. It may also become of some practical

importance in connection with (t Cathode Rays
"

and
"
X-Rays," for J. J. Thomson and others have lately con-

cluded from experiment that immense speeds of the charged

particles, comparable with the speed of light, are concerned.

If this be fully confirmed, we may well believe that increased

voltage will produce speeds exceeding that of light, if they do

not exist already, and so bring in the conical theory. Re-

garding the nature of the waves generated by starting or

stopping charges, when the speeds are the same (or about the

same) as that of light, see vol. 1, 54 to 59.]
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APPENDIX H.

NOTE ON ELECTEICAL WAVES IN SEA WATER.*

To find the attenuation suffered by electrical waves in sea

water through its conductance, the first thing is to ascertain

whether, at the frequency proposed, the conductance is para-

mount, or the permittance, or whether both must be counted.

It is not necessary to investigate the problem for any par-

ticular form of circuit from which the waves proceed. The

attenuating factor for plane waves, due to Maxwell, is suffi-

cient. If its validity be questioned for circuits in general,

then it is enough to take the case of a simply periodic point

source in a conducting dielectric (Electrical Papers, Vol. II.,

p. 422, 29). The attenuating constant is the same, viz.

(equation (199) loc. cit.),

i

where n/'2ir
is the frequency, k the conductivity, c the per-

mittivity, and fl = (/zc)~i, where /* is the inductivity. The

attenuator is then e~nir at distance r from the source, as in

plane waves, disregarding variations due to natural spreading.

It is thus proved for any circuit of moderate size compared
with the wave length from which simply periodic waves

spread. This formula must be used in general, with the best

values of k and c procurable. But with long waves it is

pretty certain that the conductance is sufficient to make

large. Say with common salt solution k = (SO
11

)-
1
,
then

en f
*
[Read at Physical Society, June 11, 1897

;
discussion on Mr. C. S.

Whitehead's paper
" The Effect of Sea Water on Induction Telegraphy."

Mr. Whitehead worked out the case of diffusion of waves from a circular

simply periodic source in a pure conductor.]
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if / is the freqneney. This is large unless / is large, whether

we assume the specific c/c to have the very large value of 80

or the smaller value effectively concerned with light waves.

We then reduce n^ to

^-(ftr/ifcfi)*- 2*0*0*, (
A

)

as in a pure conductor. This is practically true, perhaps,

even with Hertzian waves, of which the attenuation has been

measured in common salt solution by P. Zeeman. If, then,

k~1= 3Gil

,
and f=300, we get

Therefore, 50 metres is the distance in which the attenuation

due to conductivity is in the ratio 2-718 to 1, and there is

no reason why the conductivity of sea water should interfere

if its value is like that assumed above.

These formula and results were communicated by me to

Prof. Ayrton at the beginning of last year, he having inquired

regarding the matter, on behalf of Mr. Evershed, I believe.

The doubtful point was the conductivity. I had no data, but

took the above k from a paper which had just reached me
from Mr. Zeeman. Now Mr. Whitehead uses k~l = 2010

,
which

is no less than 15 times as great. I presume there is good

authority for this datum. None is given. Using it, we obtain

1316

The 50 metres is reduced to 13-16 metres. But a considerably

greater conductivity is required before it can be accepted that

the statements which have appeared in the press, that the

failure of the experiments endeavouring to establish tele-

graphic communication with a lightship from the sea bottom

was due to the conductance of the sea, are correct. It seems

unlikely theoretically, and Mr. Stevenson has contradicted it

(in Xature) from the practical point of view. So far as I

know no account has been published of these experiments,
therefore there is no means of finding the cause of the failure.
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APPENDIX I.

NOTE ON THE ATTENUATION OF HERTZIAN
WAVES ALONG WIRES.*

The connection between the case investigated by Mr.
Morton of a wave- train arising from a damped source and the

standard case of an undamped source may be concisely exhi-

bited thus. Using the notation of "
Electromagnetic Theory,"

Vol. I., p. 452, we have
V = -**V , (1)

where q = (R + Lp)^(K + Sjt?)*, (2)

to express the wave-train V due to V at x = 0. When V is

simply periodic, say = e sin nt, then p = ni reduces q to P + Qi,

given by

P or Q = i

=>'"{ ('*)'('+)'
so that the solution is

V = e e~Px sin (nt
-
Q#). (4)

Now if V be damped, say = e
Q

~at sin nt, the effect of shifting
~at to the left is to change p to p - a in the operator

~qx
, that

is, in q. This is the same as changing R to R and K to K
,

given by R = R - La, K =K - La, (5)

30 that the wave-train is

V = e
Q
<rc*'* sin (nt

-
Q'a?), (6)

where P' and Q' are the same as P and Q with R and K
instead of R and K. Of course R and K are positive, and q

is in the first quadrant, but the new R and K may be posi-

*
[Read at Physical Society, Nov. 11, 1898

; discussion on Prof.

Morton's paper
" The Propagation of Damped Electrical Oscillations Along

Parallel Wires." Prof. Morton showed that the fact that the circuit was
not distortionless did not alter the results to an appreciable extent.]
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live or negative, and q may be in, the second quadrant. [To
be in the second quadrant E /Lw + K /Sw must be negative.]

Practically, under the circumstances of the experiments

Q'-?, and F= I
(* + )-?, (7)

v 2v\L y/ v

where K is negligible, and

V ~ e e
- at

t
ax/

"t
~ E*/2L* sin (nt

-
**/). (8)

As regards the cause of the attenuating coefficient R/2Lv
coming out by Dr. Barton's calculations* from his experiments
twice as great as when E is calculated by Lord Eayleigh's

formula, I think it must be because the real circumstances do

not correspond closely enough to those in the ideal theory.
The external resistance of unknown amount is ignored, for

one thing. Then, again, it is not to be certainly expected that

the formula in question is true for millions of vibrations per

second. We can conclude from the experiments, though,
that it furnishes an approximation to the real resistance.

But, even if it were rigorously true, the circumstances implied
in it are not those in the experiments. The magnetic vibra-

tions to which the wires are subjected are not long-continued

and undamped, as assumed in the formula. When a wave-

train passes any point on a wire, its surface is subjected to an

impulsive vibration lasting only a very minute fraction of a

second, a vibration, moreover, which is very rapidly damped.
So there is no definite resistance, and the resistance is greater

than according to Lord Eayleigh's formula.

Perhaps, also, the terminal reflections involved in Dr.

Barton's calculations may introduce error.

Nov. 8, 1898.

ADDITION,f January 20, 1899. Dr. Barton has calculated

the change made in the formula for the resistance of the wires

in his experiment, viz., R' = (JB/tfi)*, E being the steady

resistance, and
//,

the inductivity, by supposing the impressed

*
[See Dr. Barton's paper

" Attenuation of Electric Waves Along a Line

of Negligible Leakage," Physical Society, June 10, 1898.]

f [Expansion of a short note read at Physical Society, Jan. 27, 1899
;

discu.ssion on Dr. Barton's paper,
" The Equivalent Resistance and Induct-

ance of a Wire TO an Ocillatory Discharge."]
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vibrations to be damped, and finds that if K" is the corrected

value, then R" = 1-054 R'. That is, there is only 5J per cent.

increase. This R" is to be used in the attenuator c-**/^
instead of R. It is, however, an under-estimate of the effect

of the resistance, because the formula is not valid right up to

the wave-front. The resistance is greater there, and decreases

as the wave-train advances, tending towards R" as the waves

attenuate by the c- afc

damping. But it does not seem likely

that the total attenuative effect of the variable resistance of

the wires will be enough ;
and other causes, some of which

have been suggested, are operative. In addition, it is not

impossible that the conductivity of copper is less to vibrations

35 millions per second than to steady currents
; and that the

voltage at the wave-front is great enough to cause some

leakage.

The following, down to (16), is equivalent to Dr. Barton's

investigation brought into harmony with the above and sim-

plified. The resistance operator of a straight round wire

of radius b, inductivity /*, and steady resistance R per unit

length, is

where h = Jiirpkp, and k is the conductivity. It is such that

in the case of a pair of parallel wires in which the current is

C, and the tangential electric force at the boundary is E, the

equation connecting them is

E = (L p + 2Z)C, (10)

where L is the inductance of the dielectric (Elec. Pa.,

Vol. II., p. 63, or p. 187). When E = ^-"'sin nt, and C varies

similarly, the potence of p or d/dt is n(i
-

K), if K = a/n, and ni

is understood not to be the complete time differentiator, but

only as regards the simply periodic part of operands.

Now, when n(i K) is big, the divergent series for I and Ij

may be used, and I = Ilt Then

where foxg-{(l
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Here/ and g are 1 when K = 0, and when K is big tend towards

/=(2/c)-*,</
=

(2K)*. So

Z = -R'(f+gi), (12)

where R f = L'w = (JRjm)*

and R*-(/+Kflf)R' f U'n^K'g, (13;

where R" and I/ take the place of R' and L', which obtain

when a = 0. This is for one wire. Passing to the complete

pair with dielectric between, we have

E = (R"
- L"a + L"m)C = (R" +L'C (14)

where R" = 2(/+^)(JR^) (15)

L"-L + 2(^R/rc)V. (16)

If n/27T
= 350, and K = about 0-09545,

then /= 0-953, # = 1-049, /+/<# = 1-054,

and the resultant effect is

I'
= 81-6, 5 = 1-054.

These express the multiplication of the resistance to periodic

currents of constant amplitude, and the further multiplication

when the currents subside according to
~"#

.

Both R" and L" go up to oo with infinite increase of K.

But practically there is little increase in the resistance under

the circumstances supposed, anel practically none in the

inductance, which is sensibly L .

As regards the meaning of R" and L", they differ from R'

and L' . If V = ZC is the equation of voltage of a combination,
and we reduce Z to the form R" + ~L"p, on the understanding
that V and C are of the type e~ a "

sin nt, we have the equation
of activity

VC = R"C2

+|jL"C
2
, (17)

and also VC = Q + T, (18)

where Q is the waste and T the magnetic energy. But only
when a = can we say that the mean Q equals the mean
R"C2

,
and the mean T equals the mean JI/C

2
. When a is

not zero, the corresponding property is that the mea~ Q x ?"*
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equals the mean B"C2 Xe2a
*, and the mean Txc2*'

equals the

mean|L"C
2 X 2a

*.

Since the conduction is superficial, the penetration may
be represented by a plane wave. Thus

E,-e-*'E (19)

expresses Ey
at distance y from the surface in terms of E at

the surface. Here h = s(f+gi), if s = (2*p&n}* ;
so

E, = ?
-a '

-
s/y sin (nt

-
sgy) (20)

shows the penetration.
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