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PREFACE TO VOL. IL

oL L - s

Froxm one point of view the present volume consists essentially
of a detailed development of the mathematical theory of the
propagation of plane electromagnetic waves in conducting
dielectrics, according to Maxwell’s theory, somewhat extended.
From another point of view, it is the development of the
theory of the propagation of waves along wires. The con-
nection of the two subjects was thoroughly explained in
Chapter 1V. of Volume I., which should be understood. But
on account of the important applications, ranging from
Atlantic telegraphy, through ordinary telegraphy and tele-
phony, to Hertzian waves along wires, I have usually
preferred to express results in terms of the concrete voltage
and current, rather than the specific electric and magnetic
forces belonging to a single tube of flux of energy. The
translation from one form to the other is quite easy, when
understood. As far as space would permit, I have tried to
develop the theory as thoroughly as possible, considering
every kind of wave, and including the calculation of the waves
produced by multiple reflections. Even the theory of the
latest kind of so-called wireless telegraphy (Lodge, Marconi,
etc.) has been somewhat anticipated, since the waves sent
up the vertical wire are hemispherical, with their equatorial
bases on the ground or sea, which they run along in ex-
panding. (See §60, Vol. L.; also §393 in this volume.)
The investigations are based upon those in my ‘Electrical
Papers,” with considerable extensions. My old predictions
relating to skin conduction, and to the possibilities of long-
distance telephony have been abundantly verified in advanc-
ing practice ; and my old predictions relating to the behaviour
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iv. PREFACE.

of approximately distortionless circuits have also received
fair support in the quantitative observation of Hertzian waves
along wires. The reader need not therefore fear that he may
be muddling himself over fantastic theories void of practical
significance, whatever the scienticulist may say.

The mathematical methods employed are those which have
proved themselves to me by practice to be those best suited to
obtaining new results and advancing natural knowledge. The
general idea is to make the differential equations themselves
perfectly definite, so that the differential equation of a prob-
lem is actually its full solution, the operational or differential
solution, though it may not be in obvious quantitative form.
The process of algebrisation, or conversion from differential
to algebraical form admitting of numerical treatment is, of
course, very important. Though it may be easy when the
proper way of treatment has been found, yet there has been a
good deal of exploring work which makes no appearance.

In Chapter VIIL. I have given a condensed account of my
researches on generalised differentiation and series, a subject
that grows naturally out of the operational way of working.
Although I think this subject has a large future, yet I must
warn the reader that there is no pretence of logical rigour, and
that much of the matter was rejected some years ago by
persons who ought to be good judges.

The several appendices relate to electromagnetic waves in
general, save the one on rational units, There is some pro-
gress to report. Of the three stages to Salvation, two have
been safely passed through, namely the Awakening and the
Repentance. I am not alone in thinking that the third stage,
the Reformation, is bound to come.

I have good reason to be satisfied with the reception given
to the first volume of this work. Nearly all parts of it, the
outline of general theory, the nomenclature, the rational
units, the vector analysis, and the waves and their applica-
tion, have been approved in this and other countries. But I
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regret that I have been able to make so little impression upon
British official science as expressed by its late leader. It is
true that the ¢ K.R. law,” which set such unnecessary and
unwarrantable restrictions upon telephony, is not much heard
of now. With advancing practice it became so ridiculously
wrong (say 1,000 per cent.) that it was impossible to save
appearances by any manipulation of figures. But a dangerous
and alarming official error has been pressed forward, even
to the extent of experimentation with the public funds. I
refer to Mr. Preece’s proposal to increase the capacity of
telephone cables, with a view to Atlantic telephony, by
bringing the twin conductors as close together as possible.
It is, indeed, very true that by Mr. Preece’s ingenious plan of
flattening the wires on one side, and bringing the flat sides
closely together, the capacity may be considerably, and even
greatly increased. But it is not the working capacity that is
increased, but the electrostatic capacity ! Faraday knew that
much.

And this blundering is so unnecessary. For if it be beneath
the dignity of one who sat at the feet of Faraday and
afterwards rose to be the leading authority on electrical
matters (according to Amswers), to consult the works of an
insignificant person, still there are other ways. Why not ask
someone else? It may be too late to consult the family
doctor ; but there are many young gentlemen going about
who have been to technical colleges and are quite competent
to give information concerning the capacity of condensers.

It is to be hoped and expected that the late important
removals in the British Telegraph Department will lead to
much improvement in the quality of official science. The
above two examples show how much improvement has been
needed. Others could be given. This volume may help.

ArriL 10, 1899.
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ELECTROMAGNETIC TIIEORY. CH. V.

There is the same tendency in the most abstract and
logical of all sciences—pure mathematics. Geometry, for
instance, has most certainly an experimental foundation, like
any other science. We make our geometry, in the first place,
to suit the state of things in which we are born and live. We
all make our acquaintance with geometry first through our
senses, and become saturated, so to speak, with the essence
of the geometry of nature, even though this be unaccompanied
by any intelligent comprehension and expression. Now take
a hint from nature, and we can see plainly how much it is to
the advantage of the learner that he should continue, in the
first place, to acquire geometrical ideas through his senses—
though now, of course, with his attention specially directed
to the subject—freely assisted by models, solid and skeleton,
before being set to work upon the more intellectual theory on
a formal basis. For, disguise it as we may, no strictly formal
basis, apart from experience, can ever be possible. There is
always something very considerable to start with of an ex-
periential nature in the background, besides the formal
axioms and definitions and postulates which would be unintel-
ligible without it. A straight line can never be intelligibly de-
fined per se. One must actually know the practical straight line
before any definition of the abstract straight line can be under-
stood. Then our understanding and acceptance of the deinition
is a recognition that it states what we knew already, in accu-
mulated experience, though we may have never openly thought
about it. As regards an axiom, such as the one that asserts
that two straight lines cannot enclose a space, its aceeptance
involves the existence of a very extensive experience of the
geometry of nature as it is found to be. How impossible, then,
must it be to prove anything rigorously as absolute truth,
independent of nature. We come down to axioms, definitions,
and postulates at last, and these are only understandable by
experience.

There is also no self-contained theory possible, even of geo-
metry considered merely as a logical science, apart from
practical meaning. For a language is used in its enunciation,
which implies that developed ideas and complicated processes
of thought are already in existence, besides the general experi-
ence associated therewith. We define a thing in a phrase,
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using words. These words have to be explained in other
words, and so on, for ever, in a complicated maze. There is
no bottom to anything. We are all antipodeans and upside
down.

It is by the gradual fitting together of the parts of a dis-
tinetly connected theory that we get to understand it, and by
the revelation of its consistency. We may begin anywhere, and
go over the ground in any way. Some ways will be preferable
to others, of course, since they may be easier, or give broader
and clearer views, but no strict course is necessary. It may
not even be desirable. It may be more interesting and
instructive not to go by the shortest logical course from
one point to another. It may be better to wander about,
and be guided by circumstances in the choice of paths, and
keep our eyes open to the side prospects, and vary the route
later to obtain different views of the same country. Now it is
plain enough when the question is that of guiding another
over a well-known country, already well explored, that certain
distinet routes may be followed with advantage. But it is
somewhat different when it is a case of exploring a compara-
tively unknown region, containing trackless jungles, mountains
and precipices. To attempt to follow a logical course from one
point to another would then perhaps be absurd. You should
keep your eyes and your mind open, and be guided by circum-
stances. You have first to find out what there is to find out.
How you do it is quite a secondary consideration. Later on,
no doubt, much easier and perhaps better ways will be found,
so that a crowd can push along. It is obvious, I think, that
complaints of the want of perfection of the ways and manners
of work of explorers on the part of men who are accustomed
t0 more rigorous methods have a considerable element of the
ludicrous in them. However harmless in intention, they may
operate unfairly in effect, if they lead, as sometimes happens
(of which a case was quite lately brought to my notice), to the
rejection of honest work which failed to be appreciated by the
judges, who had no doubt different ways of working and think-
ing, and different experiences. When this result arises, it has
the effect of putting a learned society in the unfortunate posi-
tion of appearing to exist not merely for the encouragement of
research along established lines, but also for the active dis-
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couragement of work of a less conventional character. That
this is the case in reality it is impossible to believe. But then,
papers are so cheap, and one more or less does not matter.
Again, the probable fact that the judges were animated by
benevolent motives, and only desired to turn the misguided
author from the error of his ways into more rigorous paths
approved by themselves, does not make the matter any the
better for the author. He has his own ways, and must follow
them, even though he be told (virtually) that his work is
valueless, and not worth printing, and of course, by inference,
that he must not continue to send mere of it.

Rigorous Mathematics is Narrow, Physical Mathematics
Bold and Broad.

§ 224. Now, mathematics being fundamentally an experimen-
tal science, like any other, it is clear that the Science of Nature
might be studied as a whole, the properties of space along
with the properties of the matter found moving about therein.
This would be very comprehensive, but I do not suppose that
it would be generally practicable, though possibly the best
course for a large-minded man. Nevertheless, it is greatly
to the advantage of a student of physics that he should pick
up his mathematics along with his physies, if he can. For
then the one will fit the other. This is the natural way, pur-
sued by the creators of analysis. If the student does not pick
up so much logical mathematies of a formal kind (common-
sense logic is inherited and experiential, as the mind and its ways
have grown to harmonise with external Nature), he will, at any
rate, get on in a manner suitable for progress in his physical
studies. To have to stop to formulate rigorous demonstrations
would put a stop to most physico-mathematical inquiries.
There is no end to the subtleties involved in rigorous demon-
strations, especially, of course, when you go off the beaten
track. And the most rigorous demonstration may be found
later to contain some flaw, so that exceptions and reservations
have to be added. Now, in working out physical problems
there should be, in the first place, no pretence of rigorous
formalism. The physies will guide the physicist along some-
how to useful and important results, by the constant union of
physical and geometrical or analytical ideas. The practice:
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of eliminating the physics by reducing a problem to a purely

" mathematical exercise should be avoided as much as possible.
The physics should be carried on right through, to give life and
reality to the problem, and to obtain the great assistance
which the pbysics gives to the mathematics. This cannot
always be done, especially in details involving much calcula-
tion, but the general principle should be ecarried out as much
as possible, with particular attention to dynamical ideas. No
mathematical purist could ever do the work involved in Max-
well’s treatise. He might have all the mathematics, and
much more, but it would be to no purpose, as he could not put
it together without the physical gnidance. This is in no way
to his discredit, but only illustrates different ways of thought.
There have been enormous advances made in pure mathematicg
in the last half century, as is right and proper to match the
advance in physical science. DBut along with this has come
a tendency for purists to object to the introduction of physical
ideas in mathematics, with a possible lack of rigour as result.
It may be that there is no lack of rigour sometimes, but an
increased generality and simplified treatment. Maxwell was
severely taken to task by a distinguished purist for his use of
Green’s Theorem in Spherical Harmonies, a method which is
excellently to the purpose, and which eommends itself to the
electrician, and it is probably quite rigorous. But no doubt
there is frequently a lack of rigour. I have seen with much
pleasure some remarks on this point in the Preface to the
recently-published second edition of Lord Rayleigh’s treatise
on Sound, which I cannot do better than reproduce :—

In the mathematical investigations I have usually employed such
methods as present themselves naturally to a physicist. The pure mathe-
matician will complain, and (it must be confessed) sometimes with justice,
of deficient rigour. But to this question there are two sides. For, how-
ever important it may be to maintain a uniformly high standard in pure
mathematics, the physicist may occasionally do well to rest content with
arguments which are fairly satisfactory and conclusive from his point of
view. To his mind, exercised in a different order of ideas, the more severe
procedure of the pure mathematician may appear not more but less demon-
strative. And further, in many cases of difficulty to insist upon the
highest standard would mean the exclusion of the subject altogether in
view of the space that would be required.

Particularly notice the words ¢ not more but less demon-
strative.”” This is exceedingly true, especially in the subject
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of the expansion of functions in series of other functions,
which occupies so large a part of the treatise in question.
And I would add that if the physicist does sometimes get
carried too far, the proper time to find out the reservations
and corrections is later on, in order not to interrupt his work.
But this purification is more especially suitable for the purist
to undertake. If one sort of work is as necessary as the
other, it is certain that the physicist would get very little
work done by trying to do both, having the fear of the
rigourists before him. What is more hateful than a physieal
work done in propositions and corollaries ? It is bad enough
in pure mathematics, and I wish purists would take a lesson
from Fourier, Thomson and Tait, Maxwell, or Rayleigh, and
tell their tale differently and malke it interesting by letting in
a little imagination. I have had ocecasion fo go through a
considerable part of a very big Theory of Functions in search
for what I did not find. The work is most admirably pains-
taking and severely rigorous, but how different from physical
mathematics, how hard to read from its severe formalism, and
how narrow it seems from the want of physical illustration.
Perhaps the subject might be greatly lightened by having a
physical theory to rest upon or to illustrate.

When mathematies is cleared away from physies it becomes
set in logical form. But it is to be remembered that the men
who have in the past initiated great advances in mathematics
have usually been men who were employed in working out
physical questions. They supplied the purists with raw
material to be made coherent and elaborated. The expansion
of functions in series, already mentioned, arose physically.
It is an enormous and endless subject, and there is a striking
difference in the ways in which it is regarded by the physicist
and the rigourist, with the peculiarity that the former is far
in advance of the latter. To understand this, consider that a
physicist can have practical certainty that a certain expan-
gion is possible, because his physical problem tells him so,
when he seeks and finds the solution, even though he has not
investigated the properties of the functions used in the expan-
sion. He does not arrange long and severely disagreeable
demonstrations to prove what he knows; although it be a
fallible kind of knowledge, it only differs in degree from most
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mathematics in this respect. But eliminate the physies, and
put it simply as a question of functions. Given certain fune-
tions, can an arbitrary function be expressed in terms of them?
What a pretty piece of work there must be to answer this ques-
tion! This is true even in the case of circular functions in
the particular case rigorously treated by purists. But by
changes in the conditions the physicist gets an endless number
of expansions of one and the same arbitrary function in cir-
cular functions, and what becomes of the rigorous demonstra-
tion then 2 Then there is an endless number of other sorts of
functions, every one of which can represent an arbitrary fune-
tion in an endless number of ways, as is perfectly clear from
physical considerations. It is evident that for comprehensive
rigorous demonstrations (not special) we need enlarged ideas
about functions, and perhaps the purist would obtain the
necessary broadness of view by a study of the physies in which
such comprehensiveness of expression is found. Certainly the
purist is bound to complete the logical treatment some day, but
the hard-bound rules of the purist make it difficult. Thus at
present, although the purist carries his mathematical develop-
ments so far in some directions as to be far beyond physics,
out of sight in faet, yet in other respects the purist lags
behind. And this is true in other matters than that men-
tioned. For a physicist may use daily with success, and as a
matter of course, methods which he knows work usefully to
his assistance, but which are logically unintelligible to a purist,
and which have to wait for a proper development.

The best result of mathematics is to be able to do without
it. To show the truth of this paradox by an example, I would
remark that nothing is more satisfactory to a physicist than to
get rid of a formal demonstration of an analytical theorem
and to substitute a quasi-physical one, or a geometrical one
freed from co-ordinate symbols, which will enable him to see
the necessary truth of the theorem, and make it be practically
axiomatic. Contrast the purely analytical proof of the Theorem
of Version well known to electrical theorists, with the common-
sense method of proof by means of the addition of circuitations.
The first is very tedious, and quite devoid of luminousness.
The latter makes the theorem be obviously true, and in any
kind of co-ordinates. When seen to be true, symbols may be
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dispensed with, and the truth becomes an integral part of
one’s mental constitution, like the persistence of energy.

Physical Problems lead to Improved Mathematical Methods.

§ 225. There is a curious analogy to be found between exten-
sions of mathematical ideas and extensions of electrical theory.
Take, for instance, Maxwell’s theory in the form presented in
Vol. I. of this work, Chapter II. If we do not inquire too
minutely into the consequences, we may easily be temporarily
under the impression that the two circuital equations and
their accessories express the dynamies of a quite self-contained
system. But when we go to the very verge of the system,
and find that mechanical forces of the ordinary kind are in-
volved when electromagnetic disturbances pass through the
suppositional ether which supports them, we come to a stop.
Now, there is nothing impossible or incredible in the result.
It is simply unintelligible at present. The plain meaning to
be given to it without introducing additional data is that the
ether, as regards electromagnetic disturbances traversing if,
should be regarded like any other dielectric ; that is, as having
a substantial existence. To complete the matter evidently
requires a theory of the ether itself, and the suggestion is that
it should not be regarded as an elastic solid (generalised) in
which the actual displacements in bulk represent the electro-
magnetic disturbances. But, however this may be (and the
matter is difficult and speculative), the point here is that on
the outskirts of the theory we come to matters needing inter-
pretation and a larger theory.

So it is in mathematies. The fundamental notions are so
simple that one might expect that unlimited developments
could be made without ever coming to anything unintelligible,
But we do, and in various directions. To say nothing of the
interpretation of negative quantity (which is a sort of
imaginary), there is the imaginary, which has only become
understood and its properties developed comparatively recently.
But, besides these, there are much more obseure and ill-
understood questions, such as the meaning and true mani-
pulation of divergent series, and of fractional differentiations
or integrations, and connected matters. It is customary to
keep to convergent series and whole differentiations and regard
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divergent series and fractional differentiations as meaningless
and practically useless, or even to ignore them altogether, as
if they did not exist. The latter is the usual attitude of
moderate and practical mathematicians, for obvious reasons.
If they can be ignored, why trouble about them at all ?

But when these things turn up in the mathematies of
physies the physicist is bound to consider them, and make
the best use of them that he can. I am thinking more par-
ticularly here of the solution of the differential equations to
which physicists are led by quasi-algebraical processes. The
reader will see to what I refer by reference to §2083, Vol. 1.,
when I allude to the definiteness of meaning of the operator
R” in the equation E=R"C, R” being a complicated function
of a differentiator. See also §221 later on. When C is ex-
plicitly given as a function of the time we have to find E to
match through the operator R”, and when it is E that is
given, then C has to be found by the operation on E of the
inverse of R”. It isin the carrying out of these processes in
the investigation of various electromagnetic problems that we
are obliged to regard certain kinds of divergent series as re-
presenting fully significant functions, and the execution of the
processes involved in R”, which assumes various algebraical
forms, as being legitimate and feasible, however ill-understood
may be the theory involved therein.

Noris the matter an unpractical one. Isuppose all workers
in mathematical physies have noticed how the mathematies
seems made for the physics, the latter suggesting the former, and
that practical ways of working arise naturally. This is really
the case with resistance operators. It is a fact that their use
frequently effects great simplifications, and the avoidance of
complicated evaluations of definite integrals. But then the
rigorous logic of the matter is not plain! Well, what of that ?
Shall I refuse my dinner because I do not fully understand the
process of digestion ? No, not if I am satisfied with the result.
Now a physicist may in like manner employ unrigorous pro-
cesses with satisfaction and usefulness if he, by the application
of tests, satisfies himself of the accuracy of his results. At
the same time he may be fully aware of his want of infalli-
bility, and that his investigations are largely of an experi-
mental character, and may be repellent to unsympathetically
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constituted mathematicians accustomed to a different kind
of work. :

There is another point of view. Convergent mathematies
is often excessively unpractical in the labour it involves in
the numerical interpretation of results. I have noticed this
particularly in spherical harmonic expansions, where the
labour is sometimes prohibitive. Under these circumstances
the substitution of equivalent divergent series which may be-:
readily calculated becomes a matter of great practical import-
ance. If the example fails, others may readily be given. But
what about the theory of functions which deliberately ignores
the treatment of divergent series 2 Can it really be the theory
of functions? Is not a more comprehensive theory needed,
including both convergent and divergent functions in a
harmonious whole ?

“Mathematics—and Mathematics.” Remarkable Phenomenon.

§ 226. If it should ever come to pass that there prevailed in
this world a so-called religion in which the minor virtues of
mercy, charity, meekness, resignation, and so forth, were unduly
exalted at the expense of the supreme virtue of justice, and if
this relizion were carried into practice generally, it would be
a very bad thing for the world. TFor such a religion would be
a snivelling religion, only fit for the wealiminded of both sexes ;
and if the strong-minded and the just allowed it to prevail,
then would the liars, rogues, hypocrites, slanderers, and other
wicked people have it all their own way, and the just would
be crushed along with the meek and lowly. But just men are
better than their religions, and in self-defence would assert
the paramount importance of justice, in tacit defiance of the
nominal religion in which it was made a secondary virtue.
Let us above all things try to be just. Even Cambridge
mathematicians deserve justice. I cannot join in any general
attack upon them.* I regret exceedingly not to have had a
Cambridge education.myself, instead of wasting several years
of my life in mere drudgery, or little more. It is to Cam-
bridge mathematicians that we are indebted for most of the
mathematico-physical work done in this country. Do not
most mathematical physicists hail from Cambridge ? Are not

* See article in The Elcctrician, November 23, 1894, p. 100.
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Thomson and Tait, Maxwell and Rayleigh Cambridge mathe-
maticians, to say nothing of the large crowd of other and
mostly younger men whose names will suggest themselves ?
We must take the good with the bad, in this as in other
matters; and though legitimate and serious objection may be
raised to the distressing and soul-destroying style in which
some Cambridge mathematicians do their work, and to the
unpractical conservative tendency that exists (conserving the
bad as well as the good, and resisting innovations), we should
also bear in mind the great volume and value of the work done,
and not unduly depreciate or make invidious comparisons. As
regards their want of sympathy with less conventional men,
it is not sympathy that is particularly wanted—perhaps it
would be unreasonable to expect any at all. What one has a
right to expect, however, 1s a fair field, and that the want of
sympathy should be kept in a neutral state, so as not to lead to
unnecessary obstruction. For even men who are not Cam-
bridge mathematicians deserve justice, which I very much fear
they do not always get, especially the meek and lowly, and those
who long suffer under slight.

On this question of ¢ Mathematics—and Mathematies,” I
may mention a somewhat remarkable phenomenon which has
lately occurred. Orthodox mathematicians, when they cannot
find the solution of a problem in a plain algebraical form, are
apt to take refuge in a definite integral, and call that the solu-
tion. It is certainly one form of the solution. But it may
be just as hard, or harder, to interpret than the differential
equation of the problem in question, from the difficulty of
evaluating the integral, and so finding out what the solu-
tion means. In such cases we might as well keep to the
differential equation, and be just as wise. Now, it has come
to my knowledge that a man who is not a Cambridge mathe-
matician, and who does not pretend to be much of any sort of
mathematician, but who is a practical physicist, capable of
discassing with proper judgment such a question as the age
of the earth, a higher limit to which he finds (and with good
reason) to be very likely hundreds of times greater than the
most probable previous estimate (which conclusion has
obviously important interest to geologists and astronomers),
recently made the discovery that a certain unconventional
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mode of treating the mathematics of the question (explained
to him by myself) conducted him immediately to the exact
solution of the problem he had in hand, in a few lines in
fact; whereas by the methods generally employed.he might
have spent days over it, without any final success beyond
obtaining a definite integral of too complicated a nature to
be practically discussed or obviously evaluated.

It has naturally given me much pleasure to find that the
method in question, which professes to obtain the solution in
plain language directly from the differential operator, and, so
to speak, to evaluate the definite integral without the trouble
of finding it, should receive such ready appreciation from a
practical physicist. Of course, he has no prejudices of the
rigorous kind ; but makes use of what he finds useful, as soon
as he has got to know how to go to work. It is the fact that
he is a practical physicist, without mathematical pretensions,
that constitutes the importance of the phenomenon. For
this reason, I shall have no further hesitation in making use
-of the method in question occasionally in the course of the
rest of this work, at least in such simple cases as the above
experience shows are fairly and without much trouble within
the reach of practical physicists and electricians ; not mathe-
maticians of the Cambridge or conservatory kind, who look
the gift-horse in the mouth and shake their heads with solemn
smile, or go from Dan to Beersheba and say that all is barren ;
but of the common field variety, who take the seasonsas they
come and go, with grateful appreciation. It is really mot a
question of high mathematics at all, in these diffusion problems
at least, but of the substitution of simpler and more direct pro-
cesses for the indirect and complicated processes of the highly
cultivated mathematician with too rigorous proclivities.

The Age of the Earth. Kelvin's Problem.

§227. Now Prof. John Perry has suggested to me that I
should write something on the subject. Therefore, as he has
made the matter of the age of the earth interesting at the
present time, I give some particulars regarding simple solu-
tions. They are not so much out of place as may appear at
first, for they all represent electrical problems of interest, as
we shall see later.
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The main problem is: Given the earth initially at a constant
temperature V, throughout, find its way of cooling, and, in
particular, find the gradient of temperature in the earth’s
crust, for that is the observed datum. It can then be deduced
how long it takes to arrive at its present state. In accordance
with general practice, much simpler problems are substituted,
and approximations made with various data. Lord Kelvin,*
who started this branch of inquiry in his celebrated paper on
the Age of the Earth, substituted for the earth an infinite
body of uniform capacity and conductivity, the same as those
in the crust, with a plane boundary kept at zero temperature.

Now consider first the converse problem. The earth is
initially at zero temperature, and by means of surface sources
its skin is thereafter maintained at constant temperature V.
Find the temperature gradient in the skin which results. Let
V be the temperature at distance z from the plane face ; the
well-known characteristic of V is

Vv
(fz—wg‘= ({P) V=92V: say, (1}
where ¢ is the capacity per unit volume, k the conductivity,
and p means the time-differentiator. Therefore,
V=%V, 2)
gives V in terms of V,. This is easily integrated, but we
only want the surface gradient, say g. Thus,

av > >
. $8 B 06" Vo 6}
So, between (2) and (8) we get
9=9Vo (4

which is the solution.
To turn it to algebraical form, we have

:
A BT e e
so that (4) is the same as
H
=V, (L)
¥ *\mkt/" (6)

Since the final state due to our source is V, everywhere in
the earth, it follows that in the subsidence problem, starting

* “On the Secular Cooling of the Earth,” Trans. R. S. Edin,, 1862 ; or
App. D., Thomson and Tait’s ““ Natural Philosophy.”
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from a uniform temperature V,, the gradient has the same
value, only reversed in direction, so that (6) is still the
required solution. This is the formula, due to Fourier, used
by Lord Kelvin. Taking

¥, = 200050 1 U ERFR TS

578 G =0-0118,

which are data used by Perry, we find that ¢ is 103 million
years. That is, it takes about 100 million years for the gradient
in the skin fo fall to its present value, under the assumed
circumstances. The correction necessary for the finite size
of the earth, other data being the same, is not large. I find
that the time requires to be reduced by % part.*

Perry’s Modification. Remarkable Result.

§ 228. The next step, due to Perry,t is to assume that the
capacity and conductivity are higher in the earth than in its
skin. That this will prolong the time of subsidence may not
be difficult to understand in the case of an infinite block with
a plane face; but the result is most distinetly not an obvious
one in the case of a sphere, for it may be readily shown that
the time of cooling may be either less or greater, according to
circumstances. But we want numerical results. So take a
distinet case. Let the skin be so thin that its capacity may
be ignored, whilst its conductance per unit of surface, which
is ky/l, where k, is the conductivity, and ! the depth, is finite.
Then the current of heat inwards through the skin equals that
entering the inner earth. This gives the condition that af

2=0 we have
Vo=tV dV,
= — = Eg Vi i
i C[I.}J qV1 (7)
if V, is the temperature outside the skin, V; that just in-

side. So

o aniVy
Sz 1+ Rkg ®)

* This may be proved by formula (39) below, or by the same investiga-
tion simplified to meet the present case.

t+ John Perry, “On the Age of the Earth,” privately circulated in MS.
October 14, 1894 ; further circulated with additions in pamphlet form in
November, and published in revised form with other matter in Nature,
January 3, 1895, p. 224.
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is the solntion for V, in terms of V, impressed. R is ihe
resistance of unit area of the skin.

There are two ways of converting (8) to algebraical form,
one convergent, the other divergent. The latter is most
useful. Thus, by division,

V,=[1 - Rkg + (Rkq)®* - (Rkq)*+ ...} V,, - 9)
whieh, by the use of (5), is turned to

Vl_Vo[l ﬂ {1---+13 }] (10)

from which the subsidence solution, due to V, constant all
over initially, is*

V1=Vo<“ ){1-§+1 3(2t) -1.3.5(2“£)s+ } (‘11)

Here a=ckR? The gradient is got by dividing by , so that
the first term, which is sufficient when ¢ is big enough, is

=‘_]:1: Gr’;)* ()

So, with the same %, in the skin, the value of ¢ varies as the
value of ¢ in the earth when ¢ is big enough, which is an
important conclusion.

Now (11) is unsuitable when ¢ is small, on account of the
divergency. Then apply an alternative method to (8), viz.,

Vv 1 il
i A P NPT
" Rag(14l) v~ kg @iy T @)
Riq

which by means of p=1=¢"/n, is turned to the algebraical
form

() (e () el )

+ V(1 — €l (14)

* I am informed that this is Riemann’s solution for the surface tem-
perature of an infinite block with a plane face, cooling from an initially
uniform temperature ; the boundary condition being constancy of ratio of
the rate of loss of heat to the temperature. The problem is formally the
same as Perry’s problem of a resisting skin, because the boundary con-
dition on the inside of the skin is formally the same as in Riemann’s case.
Perfectly free escape of heat means R=0.
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So the subsidence solution due to initial V, is

V1=V0{e”“—2<£) (1+3a+315 2‘)"+ ) } (15)

The equivalence of (11) and (15) is merely an example of the
generalised exponential, but it is interesting to see how it.
arises.

The solution for the temperature at any distance xz may be
similarly obtained and without difficulty, but we need not
consider that here.

Cooling of an Infinite Block composed of Two Materials.

§ 229. Going a step further, let us examine the influence
of . the capacity of the skin itself. This was done by Perry
immediately on receipt of the above, so far as the beginning
and most important part of the solution was concerned. The
skin may now be of any depth, and is treated in the same
way as the inner earth, but with different constants. Let.
¢y k, V belong to the earth, and ¢, %, v to the skin. Measure
z in the earth from the inside of the skin, and z in the skin
also from its inside. Then we have

V=c®, (16).

v=¢" 720 + J¥D, @an)
where V, is the temperature at =0 and C, D are unknown,
and to be eliminated. The boundary conditions are v =V, at
2=, and v=V; at 2=0, besides continuity of current at the
interface of skin and earth, or

dv 'A%
fl = L 18).
e s de ( )

at =0, x=0. These find C and D, and lead us by ordinary
algebraical work, which need not be given, to the following
expression for the gradient of temperature at the outside of

the skin :—
1+sy

i Pis ‘2 Vo, (19)-
_1- (cll /ck)* gl 3
where =T e y S (20)

Notice thai s =0 when ck=c;k. That is, the flow of heat in.
the skin due to applied V, on its outside is the same for any:
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¢, term gives the factor of ¢}, the ¢,® term that of ¢-2, and so
on. It is easily seen by inspection that the functions of s that
oceur in (25) are derivable in succession from one another by
the operator s(d/ds), the first one being 2s/(1~s). So they
may be written finitely if we like. Or,

1=V {1+ (e GalRte.. ), ) 68

where A is short for d/ds, is the complete solution, of which
the first part is the same as

k1< Bi-(-g 2, ), e

where R=1/k, as before. Comparing with (11), we can see
the effect of the capacity of the skin.

Large Correction for Sphericity in Perry’s Problem.

§ 230. The next step would be to go on to consider the case
of a spherical earth, first with no surface resistance to the
escape of heat, next with a resisting skin, and, thirdly, with a
skin of any depth, the capacity being allowed for. But these
are too complicated for the present purpose, and would frighten
timid readers, and perhaps some Cambridge mathematicians
as well. At the same time, I may remark that the solutions
can be got through the operators in the form of Fourier series
with much less work than by Fourier’s way.

Prof. Perry has examined Fourier's solution for a homo-
gencous sphere with constant surface emissivity (equivalent to
a resisting skin) and a very interesting result comes out, viz.,
that the plane solution gives much too big a result with the
same data as regards conduectivity and capacity, internal and
external.

Thus, according to Perry, take the radius of the earth at
6380°%, and the depth of the skin at 40° centim., or 4 kilom.,
the initial tepiperature as 4000°C., the present surface gradient
1° in 2748 ventim., and ¢=2:86, k=47, ¢, = 507, k, = 00595,
so that & in the earth is 79 times that of surface rock, and %/e
in the earth is 14 times that of surface rock. Then the time
of subsidence to the present state is 960° years, or 96 times the
estimate of 10° years given with the same data except that the
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earth has the same ¢ and % throughout as in the skin, when
calculated by the plane theory, or the linear diffusion of heat.

But, according to the plane theory adapted to meet the
case of a plane slab of skin instead of a spherical shell, the
time of subsidence would, by (12) above, be ck/c,k; times as
great as the estimate without the increased ¢ and % inside,
or about 4630° years. So the effect of having an infinite con-
ductor with a plane face to represent the earth is to increase
the time of subsidence from 960° to 4630° years. Perhaps it
does not matter in very rough estimates; but it is interesting
to note the difference made by the finite size of the earth, and
that it lessens the time of subsidence in the ratio 463:96, or
47 to 1.

In order to ascertain whether the objection made to Perry’s
neglect of the capacity of the skin had any serious basis, I
have worked out the corresponding formula with the capacity
allowed for. There is very little difference numerically. Thus,
Perry found two terms in the Fourier expansion to be neces-
sary. But the first term is a large multiple of the second, so
we may take it alone for our comparison. By the first term of
Perry’s formula, the time of subsidence comes to 90207 years.
Allowing for the capacity of the skin, I find it comes to
90807 years. But I have not taken special pains to get the
third figures right.

Remarks on the Age of the Earth.

§ 231. Now a few remarks (which I make with much
diffidence) on the practical outcome of Prof. Perry’s investiga-
tions. It is known that geologists demand long ages of time
for the earth’s evolution in its geological aspect. Physicists,
on the other hand, have offered them what geologists con-
sider the miserable allowance of from 20 to 400 million years.
Prof. Tait, I believe, offers them only 20. They want more.*

There are two evident ways of getting more. The first is
by not requiring so much, by allowing that the earth’s evolu-
tion went on at a far more rapid pace in former times than
at present, wholly apart from catastrophes. This seems to

* It is to be remarked, however, that geologists have come down in
their demands remarkably, and probably in consequence of Lord Kelvin’s
work,

i
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be a reasonable view. The other is Prof. Perry’s way. He
advances arguments to show that it is reasonable to suppose
that the earth’s effective capacity and conductivity, especially
the latter, may be even at present much greater in the earth’s
interior than in its skin, so that the time of subsidence to the
present skin gradient is prolonged. But it is not a mere ques-
tion of the present state of the earth’s interior. The state
during the whole period of geological evolution has to be con-
sidered, and Prof. Perry’s argument seems to me to apply with
greater and greater force the further we go back in time. I
presume that the earth’s birth, for geological purposes, should
be reckoned from the time when it became encrusted, or when
the crust attained some notable thickness to give some sort of
gtability. Is it necessary to solidify the earth all through
before beginning its life ? If we allow it to solidify gradually
by the natural increase of depth of its solid crust, consequent
upon its cooling, it is evident that the age of the earth may
possibly be much extended.

As for the origin of life upon this planet, the only reason-
able view seems to me to be Topsy’s theory. She was a true
philosopher, and ¢ she spekt she growed.” Any other theory
is of the elephant and tortoise kind, a sort of evasion, which
explains nothing, whilst it increases one’s difficulties. Prof.
Tyndall was of Topsy’s persuasion. So am I, ag I firmly
believe (subject to correction) in the truth of his view ag to the
¢ promise and potency ”’ of life in so-called dead matter under
the influence of the forces of nature.

Peculiar Nature of the Problem of the Cooling of a
Homogeneous Sphere with a Resisting Skin,

§ 232. In connection with the above problems in cooling by
diffusion and escape of heat at the surface of bodies there are
a number of incidental matters of great interest, some of the
most noteworthy of which may be briefly noticed. In the
first place, as was remarked in § 228, the prolongation of the
time of cooling of a sphere from a given uniform initial tem-
perature until a given gradient of temperature is reached at
the surface of escape, produced by augmentation of the con-
ductivity and capacity of the inner portion only, is not by any
means an obvious result, though not difficult to understand in
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the case of an infinite block with a plane boundary when
there is a similar augmentation of eonductivity and eapacity
within its skin. In fact, we can easily make it be either a
retardation or an acceleration at pleasure, when it is a sphere
that is in question. To show this, let the conductivity be
made infinitely great as an extreme case, except in the skin,
where it remains finite, without changing the -capacity
either in the skin or body of the sphere. The theory
of the cooling of the sphere is then like that of the
discharge of a condenser through a resistance. The re-
sistance here is the resistance of the skin, and the
capacity is that of the inner body. Now by reducing the
depth of the skin, and therefore the resistance, we may
accelerate the discharge as much as we please. Thus, with
the skin conductivity as in § 230, or 0-006, and the internal
capacity per unit volume also the skin value, or 0-5, the time
taken to fall from an initial uniform temperature of 4000°C.
until the present gradient of temperature is reached in the
skin is 160° years when the skin’s depth is 10 kilometres, but
only 8307 years when it is 1 kilometre. If it is 4 kilometres,
as in Prof. Perry’s example, the result is 9207 yedrs, which is
only 9 times the standard result of 10° years found by I.ord
Kelvin. It is raised to 960° years, as Perry has shown, by
reducing the internal conductivity from infinity to 79 times
that of the skin, whilst at the same time increasing the internal
capacity to 5:7 times that of the skin. To obtain the stan-
dard result, 10° years, with infinite internal conductivity and
with internal capacity as in the skin, requires the skin to be
only } kilometrein depth, or a little less. When made thinner
still, the time required falls off to any extent. These examples
will show the danger of over-hasty generalisations regarding
the effect of varying the internal conductivity and capacity.
It is a general principle that increasing the conductivity
accelerates the subsidence of a normal system, or a distri-
buticn of temperature which will subside according to the
condenser law, and Prof. Perry’s case is no exception. But
there are other considerations, and the case is considerably
mixed. If, in Prof. Perry’s 960° years problem, we raise the
internal conductivity to infinity, making no other change, we
reduce the time to 520° years. Here the internal capacity is
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still 5-7 times that in the skin. Now reduce it to the same
value as in the skin, and the time falls to 9207 years, as just
mentioned. Lastly, reduce the internal conductivity to the
skin value,’and it falls to 10° years, being now Lord Kelvin’s
case.

Cooling of a Body of Variable Conductivity and Capacity
but with their Product Constant.

§ 233. After these illustrations of the curious nature of the
problem, consider another matter. It was mentioned in §229
that the flux of heat into an infinite homogeneous block due
to sources maintaining its plane face at the constant tempera-
ture V, was not altered by changing the material under the
skin to another having the same value of the product ¢k. Or
thus, by equations (2) and (8), the flux of heat, say C, per

unit area, is
C="Fkg = (ckp)tV,. (28)

This is unaltered by a change of material not altering the
value of ck.

The result'may be extended to include any number of slabs
of different materials put together to make a block, provided
¢k is the same for all; or, in the limit, to a continuously
heterogeneous material in which ck is constant, with, how-
ever, homogeneity in every slice parallel to the plane face.

Conversely, since the final temperature due to the impressed
V, is a state of uniform temperature V, everywhere, if we start
with V, everywhere constant, and let it subside by internal
diffusion and free escape at the surface, the flux of heat at the
surface will be unaltered by any change of material, provided
every plane stratum is homogeneous in itself, and ck is the
same for all.

A similar result applies to a sphere, with concentric shells
instead of plane slabs, provided the correction for sphericity,
due to the finite size of the sphere, be insensible : or if it be
sensible, then we may have approximately the same result.

Magnitude of the Correction for Sphericity in Various Cases.

§ 234. Another interesting point is the magnitude of the
correction for sphericity. As mentioned in §230, this is very
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large in Perry’s 9,600 millions problem of a shell of depth
4 kilom., surrounding a homogeneous sphere of greater capa-
city and very much greater conductivity. The time for the
corresponding infinite block is then 4-7 times that for the
sphere. This was so remarkable that I suspected and sug-
gested to Perry an error in his calculation of Fourier’s formula.
But I confirmed the result, and also obtained very nearly the
same result from an entirely different formula which allowed
for the capacity of the skin.

On the other hand, when the surface values of ¢ and % extend
all through the earth, as in Lord Kelvin’s problem, the cor-
rection for sphericity is quite small, as mentioned in §227.
It only reduces the time of cooling by 4;th part of the 10°
years which belongs to the infinite block.

Now in Perry’s case we have a large increase in ¢ and a
very large increase in k beginning at a moderate depth. But
if we increase them gradually, so as only to become very big
near the centre, we do not get the Perry effect. To illustrate
this I have calculated a few cases of continuously hetero-
geneous material.

When ¢ and % both vary inversely as the distance from the
centre of the earth, with the same values at the surface as
before, I find that the correction is reduced to ;% part.
That is, the 10° years of the infinite homogeneous block is
reduced by % part to represent the new case of variable ¢
and % in the earth, instead of by % part, as when they are
constant.

Also, to accentuate this effect, let the ¢ and % in the earth
vary inversely as the square of the distance from the centre.
Then I find that the correction vanishes. That is, the time
of subsidence from the initial state of 4,000°C. to the given
gradient of temperature at the surface is 10° years, the same
as for the infinite homogeneous block.

Similar results occur in other cases of gradual variation,
with, it may be, very large changes in ¢ and % near the centre,
but very little near the surface, or between the surface and
half-way down ; and clearly great latitude in the law of varia-
tion is permissible, provided we do notintroduce great changes
in ¢ and % near the surface.
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Explanation of the last.

§ 235. We may get an insight into the meaning of these
corrections by dividing the sphere into a series of shells of
unit depth. Since the flow of heat is radial, it is like the
diffusion of heat through a series of flat plates of variable
conductivity and capacity. Now the total conductance of a
shell is proportional to its area, and so is its total capacity.
Therefore, if the ¢ and % in the sphere be constant, the con-
ductance and capacity of a shell vary as the square of the
distance from the centre, being zero at the centre, very small
round it, and greatest and increasing most rapidly at the sur-
face. So we see that large variations in ¢ and % near the
centre may make only trifling differences in the state of things
at the surface, as the conductance and capacity of the inner-
most shells are naturally low. Besides that, they are so far
away from the surface where the escape takes place that their
¢ and % may become of little moment in the practical problem
concerning the gradient of temperature in the skin. These
considerations may help one to understand why, when ¢ and %
vary as the first or as the second inverse power of the distance
from the centre, so little difference is made in the time of cool-
ing to the present gradient.

Alse, by substituting a block for the sphere, say a block of
length equal to the radius of the sphere, and of cross-section
equal to the surface of the sphere, this block to be insulated at
its sides and open at its ends, we see that to represent the
sphere of uniform ¢ and %, the ¢ and % in the block must vary
directly as the square of the distance from the far end (corres-
ponding to the centre of the sphere) where they are zero
(equivalent to insulation). On the other hand, when ¢ and %
in the sphere vary inversely as the distance from the centre, ¢
and % in the block must vary directly as the distance from the
far end. Tinally, when ¢ and % in the sphere vary inversely
as the square of the distance from the centre, ¢ and % in the
block must be wuniform. That is, we have a homogeneous
block, only it is of finite depth instead of infinite.

We now see why the correction in the last case disappears,
the time for the sphere being the same as for the block. It is
not asserted that the complete solution of the problem is the
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same in both cases, but that the problem is reduced to one of
linear diffusion in a homogeneous medium, and that under the
circumstances the finiteness of depth of the block does not
influence the result sensibly, the secondary waves to and fro
along the block due to its finite depth being of insensible
effect because the depth is so great.

Investigation by the Wave DMethod of the Cooling of a
Homogeneous Sphere with a Resisting Skin. Effect of
Varying the Constants.

§236. In contrast with the above results with continuously
varying ¢ and k, Prof. Perry’s case involves so large a correc-
tion for sphericity as to deserve an independent confirmation
by a method not requiring the use of the Fourier expansion.
For it is by the consistency of results obtained in different
ways that a conviction of the accuracy of the results of com-
plicated processes may best be obtained. Itis very easy to make
mistakes in calculating Fourier series of complicated forms.
Fortunately, in this case, I find that my operational method
leads straight to the solution by a simple process.

We found in § 228, equation (8), that

g e '
43 1+ Rkg &
expresses the temperature V; just inside the skin due to V,
impressed on its outside, when R is the resistance of unit area
of the skin, k the internal conductivity, and ¢=(cp/k)}. This
is in the plane problem.

Now get the corresponding solution for the sphere. Let V
be the temperature at distance » from the centre of a sphere
of radius a and of uniform ¢ and % due to V, impressed on
the outside of an enveloping skin. Then V is given by

a shin ¢r
r shin ga

1—55+qu coth qa'
a

0

V= (30)

To prove this, note that in the first place V satisfies the
spherical characteristic
1 d ,dV_

Pdr dr

¢v; (1)
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next, that it is finite at the centre; and, lastly, that at the
inside of the skin, where r=a, it satisfies the condition of
continuity of the flux of heat there, or

Vo T V1 = ]“_i._v
R dr”
This is complete. But what we want is V;. So put r=a
in (80). This makes, if s=Rk/a,
e Yo
15+ Rkq coth ¢a’
which gives V, in terms of V,. Comparing with (29) we see
that 1 becomes 1 - s (which is a trifle less) and Rkg receives
the factor coth gqa, which brings in an infinite series of
secondary diffusive waves between the centre and boundary.
To show them explicitly, we may develop (83) by long
division to the form

(32)

(33)

Vi=(ap+ay+ay?+...)V, (34)
where y=e %0, (85)

Here a,V, is the result of the primary wave from the source
V, outside the skin, as modified by sphericity; the second
term ig the result of the first wave reflected from the centre,
the third term results from the weaker second reflected wave,
and so on.

But all these secondary waves are of insensible effect in our
problem, as we know by the solutions previously given when
the proper numbers for ¢ and %, &e., are put in. The
significant solution is merely the first part independent of y.
This amounts to the same as making « infinite in the coth
function, when it reduces to 1. So, by (83),

Vo
Vi= 1—-s+Rkq’
is the practical solution in operational form. We see that it
is equivalent to (29), only with a changed constant.

We also know, by (11) and (12), § 228, that only the first
power of ¢ is significant in the earth problem. This makes
(36) become

(36)

Ve gl (1K), @)

1-s -3
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which, by (5), is converted to the algebraical form
il ] {1 __B (cfy 38
o AR @)
the required result. The subsidence solution is got by sub-
tracting the right member from V,. This makes
EXRV0S Vig /ck)‘ 39
A9 R\’ (9)
if V,=gl, where g is the gradient of temperature in the skin
of depth I. We may write (39) thus,

g=

Vo, 7ck\}
4 = ._0 — 40
5 kl 7rt> z ( )
: 9 _q_ e Vs
if ?]_—(l s) (1+ (l—s)lg>. (41)

Now (40) is of the same form exactly as (12), with a changed
value of the gradient. The effect of the sphericity is, there-
fore, the same as changing the gradient in the plane problem
from g to ¢'.

Now put in the numerical values as in §280. That of sis
0-:0495, 1 is 40°, and V, is 4000. So

7 =21819, (42)

which is to be used in (40). This increased value of g requires
t to be reduced as its square. So the time required to make g
be A is (2:1819)% or 4-76 times as long for the infinite
block as for the sphere. Q.E.D.

If desired, the full expression for the secondary waves can
be developed from (84), but all we wanted was a direet cor-
roboration of the result got from the Fourier expansion. The
method followed is an example of the theory of §12 of my
paper ‘ On Operators in Physical Mathematics,” Proc. R. S.,
Vol. LII., 1893, which is of very general application.

The formula (39) allows us to see readily the effect of
varying the constants. The time of cooling varies directly as
¢ and as the square of V,, so these may be dismissed at once.
There are left { and k. Varying £ only, I find that ¢ has a
maximum and a minimum when 7 is under 7 kilometres. Tle
minimum is of no consequence. With =4 kilom., ¢=2-86,
the maximum occurs when £/k, =78, and is t=95-5, the unit
being 10° years. That Perry should have spotted the maximum
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5o closely is (unless he is a witch) one of the most remarkable
coincidences in ancient or modern history. But the hump is
so flat-topped that much smaller values of £ will do for big ¢.
Thus %/k, = 80 makes ¢ be about 90.

Another (and perhaps physically better way than increasing
k) of getting big ¢ is to increase the depth of the ecrust. Then
asmaller £ will do. Thus with ! =20 kilometres we get ¢ =68-5
when k/l; =15'950only. And =30 kilometres allows us to have
t=>534 when k/k, is only 10-65, and ¢= 95 when k/k, is 21-3.
These results altogether favour Perry’s view, and are better
than his own example,

Importance of the Operational Method.

§ 237. We now leave heat problems, and pass to the theory
of electrical matters involving diffusion. Pure diffusion, as of
heat, comes in principally in two different ways. There is,
first, Lord Kelvin's electrostatic diffusion in a submarine
cable when perfectly insulated and free from self-induction.
Secondly, there is Maxwell’s diffusion of magnetic induction
in electrical conductors. There are also two comparatively
unimportant cases, viz., diffusion in a cable or other circuit,
when it is the self-induction and the leakage that control
matters, and a kind of diffusion in a magnetic conductor. Of
these, the electrostatic diffusion involves the simplest funda-
mental ideas, and will therefore occupy us first. After that,
diffusion in electrical conductors will naturally follow.

How these diffusive propagations arise from the general
theory of electromagnetic waves has been explained in Chap-
ter IV. in considerable detail, including the more difficult case
of elastic diffusion. What we have now to do is to consolidate
the knowledge by actual exemplification. We shall then be
able to explain the meaning of the operational mathematics
above employed, as it turns up naturally. The physics itself
will serve to guide us along to useful methods and results.
At present the above illustrations from the theory of heat
diffusion will serve a double purpose. First, to illustrate Liord
Kelvin’s theory of the age of the earth and its recent exten-
sion by Prof. Perry, the practical import of which, however,
remains to be discovered, as very uncertain and speculative
data are involved. Next, to show that my operational method
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of dealing with these and similar more advanced problems is -
of importance. I assert that by its means problems can be
attacked and successfully solved with greater power than by
any other known method. Furthermore, that it is essentially
simple in operation; so that, although it goes deeper, yet it
requires less work and less mathematics of the complicated
kind. And, finally, that it is for the above reasons and
others quite practical. It is rather disagreeable to have to
be self-assertive and dogmatic (especially when one thinks of
the always possible risk of error); but there may be times
when it becomes a duty—e.g., when mathematical rigourists
are obstructive.* \

* [March 21, 1895.] After writing the above, Prof. Perry wrote asking
about the case of capacity and conductivity functions of the temperature,
saying, “X. says he can’t do it, doesn’t know anyone who can, and is sure you
can’t.” The general case is perhaps hard (I did not try it), but I found at
once that when ¢ and % vary together, according to any power, integral or
fractional, of the temperature, the solution was quite easy, the characteristic
becoming linear. This is obvious when done. I sent Perry some solutions
of this kind. He then himself extended the matter by taking c and k to be *
any similar functions of the temperature. This is also obvious when done
(Perry, Nature, Feb. 7, 1895, p. 341). He finds that if ¢ and % increase
s per cent. per 100deg., then Lord Kelvin’s age is multiplied (1+s/5)?
times ; eg., by 121 if s=50. His data were due to Dr. R. Weber, and
indicated a large increase in ¢ and & with temperature. If correct, Prof.
Perry would be fully justified, though to an uncertain extent. But Dr.
R. Weber has supplied fresh data which do not show any notable increase
in &, whilst that in ¢ is much less than Perry assumed. So Lord Kelvin
(Nature, Mar. 7, 1895, p. 438) concludes that Perry is wrong. He is also
inclined to reduce the initial temperature, and so bring down the age even
to 10 million years ; or, allowing for other things, to about 24 millions, in
agreement with Mr. Clarence King’s conclusion in comparing the caleu-
lations of Helmholtz, Newcomb, and Kelvin on the age of the sun. It will
be interesting to see whether the geologists will continue their downward
course to 24 or 10 millions (Sir A. Geikie, Nature, Feb. 14, 1895, p. 367, is
quite satisfied with only 100), or whether mathematical physicists will, by
fresh data, be obliged to go up to meet them. Prof. Perry said (Nature,
Jan. 3. 1895, p. 224) that his conclusions were independent of the cor-
rectness of R. Weber’s results (the old ones). ‘Lord Kelvin has to prove
the impossibility of the rocks inside the earth being hetter conductors
(including convective conduction in case of liquid rock in crevices) than
the surface rocks.” “The rocks at 20 miles deep are not merely at a high
temperature, but also under great pressure.” In any case, however, it
must be difficult to come to a reliable estimate as to how far Prof. Perry’s
important principle is really operative,




CHAPTER VI

PURE DIFFUSION OF ELECTRIC DISPLACEMENT.

Analogy between the Diffusion of Heat in a Rod and the
Diffusion of Charge in a Cable.

§ 238. In order that the problem of the propagation of
electrical disturbances along a telegraphic or telephonic eircuit
shall reduce practically to that of the diffusion of the electrie
displacement after the manner of heat in the celebrated theory
of Fourier, it is necessary for the self-induction to be ignor-
able, and that the external disturbances to which circuits are
liable should be removed. It would not be at all desirable to
bring a practical telegraph circuit to such a state closely,
because it is a state of relative inefficiency, accompanied by
the greatest possible distortion in transit, and is therefore
a state to be avoided by, as before explained,* making
self-induction be of importance, if efficient rapid signal-
ling with little distortion be required. The nearest approach
to the theory of diffusion being in slow signalling through
a long cable, we make believe now that this ecase is truly
represented by the reduced forms of the more general
equations appropriate to elastic diffusion.

On this understanding the two circuital equations, when
suitably transformed as explained in §§ 200-202, reduce to

LV, N _gg, @

Tz £

* §§ 215-218, Chap. IV., Vol L
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where R and S are the resistance and permittance per unit
length of line, whilst V and C are the transverse voltage and
the circuital gaussage of the more general theory, but which
may now be called the potential difference of the wires and
the current in them, if there be a pair of wires. Or, if we
have a cable in question, using only one wire, then we may
call V simply the potential and C the current.
From (1) we derive the characteristic

.ZZ_Z=RSPV=QEV, say. ‘ @)
In order to translate to heat problems, perhaps the easiest
way is to consider the longitudinal conduction of heat in a
rod. Then V is the temperature and C the flux of heat,
whilst R—* and S are the conductance and capacity for heat
per unit length of rod. But the rod should be insulated
laterally. It is easy to insulate a rod electrically; but it is
much harder, if not impossible, to insulate it thermally to an
equivalent extent. So, if the flow of heat in a real rod be
rejected for want of a sufficiently close similarity to the elec-
trical problem, we may imagine an infinite number of rods
fitted together in contact side by side. Just as jerry-built
houses in a street mutually support one another, and prevent
the collapse that would occur were they separated, so will
the rods prevent the lateral escape of heat from their
neighbours, so that a longitudinal flux of heat is possible in
the same way as in a perfectly insulated rod. This is the
case of the linear flow of heat in an infinite homogeneous
conductor. These remarks are to enable the reader to
translate from electrical to heat problems readily. On
the whole, the cable is preferable in the study of diffusion,
on account of the facility with which terminal and other
auxiliary arrangements can be imagined, and, if need be,
practically realised. The bheat problems are not so con-
venient in this respect. On the other hand, there is no
doubt greater scientific interest in heat problems when they
concern such stupendous questions as the age of our
common mother earth; but since this is primarily an
electrical work, I cannot go on further with that question,
but leave it to David and Goliath,
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The Operational Method assists Fourier.

§ 239. We have now to consider a number of problems
which can be solved at once without going to the elaborate
theory of Fourier series and integrals. In doing this, we
shall have, preliminarily, to work by instinet, not by rigorous
rules. We have to find out first how things go in the mathe-
matics as well as in the physiecs. When we have learnt the
go of it we may be able to see our way to an understanding of
the meaning of the processes, and bring them into alignment
with other processes. And I must here write a caution. I
may have to point out sometimes that my method leads to
solutions much more simply than Fourier’s method. I may,
therefore, appear to be disparaging and endeavouring to
supersede his work. But it is nothing of the sort. In a
complete treatise on diffusion Fourier’s and other methods
would come in side by side—not as antagonists, but as
mutual friends helping one another. The limitations of
space forbid this, and I must necessarily keep Fourier series
and integrals rather in the background. But this is not to
be misunderstood in the sense suggested. No one admires
Fourier more than I do. It is the only entertaining mathe-
matical work I ever saw. Its lucidity has always been
admired. But it was more than lucid. It was luminous.
Its light showed a crowd of followers the way to a heap
of new physical problems.

The reader who may think that mathematics is all found
out, and can be put in a cut-and-dried form like Euelid, in
propositions and corollaries, is very much mistaken; and if
he expects a similar systematic exposition here he will be
disappointed. ~The virtues of the academical system of
rigorous mathematical training are well known. But it
has its faults. A very serious one (perhaps a necessary
one) is that it checks instead of stimulating any originality
the student may possess, by keeping him in regular grooves.
Outsiders may find that there are other grooves just as
good, and perhaps a great deal better, for their purposes.
Now, as my grooves are not the conventional ones, there is
no need for any formal treatment. Such would be guite
improper for our purpose, and would not be favourable to
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rapid acquisition and comprehension. For it is in mathe-
matics just as in the real world; you must observe and
experiment to find out the go of it. All experimentation
is deductive work in a sense, only it is done by trial and
error, followed by new deductions and ehanges of direction to
suit circumstances. Only afterwards, when the go of it is
known, is any formal exposition possible. Nothing could be
more fatal to progress than to make fixed rules and conven-
tions at the beginning, and then go on by mere deduction.
You would be fettered by your own conventions, and be in the
same fix as the House of Commons with respect to the despatch
of business, stopped by its own rules.

But the reader may object, Surely the author has got
to know the go of it already, and can therefore eliminate
the preliminary irregularity and make it logical, not experi-
mental? So he has in a great measure, but he knows better.
It is not the proper way under the circumstances, being an
unnatural way. It is ever so much easier to the reader to
find the go of it first, and it is the natural way. The
reader may then be able a little later to see the inner
meaning of it himself, with a little assistance. To this ex-
tent, however, the historical method can be departed from to
the reader’s profit. There is no occasion whatever (nor
would there be space) to deseribe the failures which make
up the bulk of experimental work. He can be led into
successful grooves at once. Of course, I do not write for
rigourists (although their attention would be delightful) but
for a wider circle of readers who have fewer prejudices,
although their mathematical knowledge may be to that of
the rigourists as a straw to a haystack. It is possible to
carry waggon-loads of mathematics under your hat, and yet
know nothing whatever about the operational solution of
physical differential equations.

The Characteristic Equation and Solution in terms of
Time-Functions.

§ 240. Now, consider the characteristic equation (2) above.
If ¢ were a constant, its solution would obviously be
V=e"A + B, (3)

YOL. 1I. D
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where A and B are any constants. That is, there are two
independent functions of # which satisfy (2). The constancy
of A and B means independence of .

It is equally true that (3) is the solution in the same
sense when ¢* has the operational meaning RSp, because
the formal satisfaction by test is the same. The con-
stants are still constants with respect to =z, but they
are now any functions of ¢. That is, (8) is a form of the
general solution of the characteristic. To go further, we
have to find A and B to suit special cases, and then by
the execution of the processes implied by the exponen-
tial operators convert the solutions from operational to
algebraical form. There is a lot of assumption here; for
example, that the operations can be effected, as they in-
volve preliminarily unintelligible ideas. The best proof is
to go and do it.

The easiest solutions are those relating to the effects pro-
duced at a given spot by causes acting there. Those pro-
duced at a distance can be easily deduced later. So, now we
take some special cases to begin the treatment. Let an
infinitely long cable be laid in any depth of water. It need
not be laid straight, so by winding it about, even the finite
size of the seas of the earth might be sufficient to confain a
sufficient length for our purpose, which is, that the near end of
the cable is to be freely at our disposal to operate on, whilst
the far end is so very far off that it cannot react sensibly on
the near end, and to a great distance therefrom, in a large
interval of time. ;

Let the cable be initially free from charge, and be then
operated upon by a battery of voltage ¢ and no resistance at
its beginning, where #=0. That is, one end of the battery is
put to line, and the other to earth, the absence of resistance
being merely a practical simplification. The impressed volt-
age ¢ may be regarded as any function of the time ¢ (real,
of course, but not necessarily continuous). The effect is
to raise the potential at the beginning to Vy=e, and V,
may be regarded as the sole cause of disturbance in the
cable itself further away. Then A=0 and B=V, in (3),
making

V=2V, (4)
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a fundamental formula. The 1 means that function of the
time which is zero before and unity after t=0. We are only
concerned with positive values of the time. This way of find-
ing the meaning of a fractional differentiation of a given
function is purely experimental. Any problem involving p*l
in the operational form of solution will do for the determina-
tion of its value, by comparison with the solution by Fourier’s
method. On the other hand, the result is a simple funda-
mental one in fractional differentiation, and does not need
Fourier. But the reader presumably cannot take in the idea
of a fractional differentiation yet. So, for the present, let it
be taken as a fact that the value of pil ds (wt)~i. We can
make use of this fact extensively in Fourier mathematies with
much advantage, without necessarily going a step further in
the direction of fractional differentiation.

By (9) we see that the current entering the line is infinite
at the first moment (because of the absence of self induction),
and then falls, according to the inverse square root of the
time, to zero. At first, the slope of V in theline is infinite at
its beginning, and so is C;. DBut as the cable gets charged the
slope gets smaller. Finally, the potential is V, everywhere
and the current is zero. Or we may say that the final cur-
rent is zero, becausz the resistance is infinite. There can
only be current when the charge is increasing. It really
never stops increasing, but the potential near the beginning gets
to be so nearly V,, as to prevent the very distant parts of the
cable receiving their charge except at an insensible rate.
Mathematically speaking, we say that V=YV, everywhere,
when t=cw.

The final states of V and C may also be seen from (4) and
(5). Put p=0 in them and they reduce to V=V, and C=0.
This process is general. Putting p=0in an operator destroys
time-variation, and gives the ultimate steady form, when there
can be a steady state.

Another way of looking at the matter is to consider how we
get the simply periodie solution out of an operational solution,
when the impressed force is simply periodie. If the frequency
ig /2w, we put p=ni in the operator. Now p =0 is equivalent
to n=0, or an infinitely prolonged period, which means a
steady state,
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where 7 is its resistance and [ its inductance. Then

V0=W (15)

is the operational solution giving V, in terms of ¢.
This may be algebrized as follows. By division,

! {1_z(%11>’+z2%2 _zs(%l_’)ﬂ. e as)

Here in Z we have only complete differentiations, therefore in
union with the even powers of (Sp/R)* we still have complete
differentiations. All these terms may be ignored when e is,
as we shall suppose, constant after t=0, having previously
been zero, and Z is a mere resistance. The cases of a per-
mittance and an inductance will follow. So (16) reduces to

Vo={1- z<1 +Z2§1’ Z‘E?’Z ...)(%2)’}& 17)

We know p'l already, so the solution is found by complete
differentiations performed upon it. Thus, in the case of no
self-induction, when it is a mere resistance that is concerned,

Vo—e—c:{1+1 Sp }(R—Swzy (18)

This makes a series in descending powers of #!. Thus,

Vo=e- "(thy{l 3 221§t 48 (%%)2“ g7 } (19)

When ¢ is big enough, the only significant term is e, the final
value. When ¢ is smaller, the next becomes significant. When
smaller still another term requires to be counted, and so on.
But we must never pass beyond the smallest term in the series.
As t decreases, the smallest term moves to the left. As it
comes near the beginning of the series, the accuracy of
calculation becomes somewhat impaired. When it reaches
the first ¢ term, so that the initial convergency has wholly
disappeared, then we can only roughly guess the value of the
series. So (19) is unsuitable when ¢ is small enough to make
the initial convergency be insufficient.

It is said that every bane has its antidote, and some
amateur botanists have declared that the antidote is to be
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Theory of a Terminal Condenser.

§ 243. There is another simple case in which substantially
the same process obtains as in the last example. Superficially
considered, the problem of the effect of a terminal condenser
in modifying the action of an impressed force cn a cable is
entirely different from that of the effect of a terminal resist-
ance. Yet there is a very close analogy. Thus, let the
terminal arrangement be a condenser of permittance s. Its
equation is C=spV, so its resistance operator is (sp)~'. Pub
this for Z in equation (138). Then

V ia® (4 s e
by INE £ < (24
1+},<§{i>* 2 (24)
sp\ R

if a=s/8, or that length of cable whose permittance equals
that of the condenser, and ¢ is as before.

Now, to show the analogy with the effect of a terminal
resistance, put Z =7 in (12), making

(Chi= DL 1 S o vadmedty
7”4+ Ri 1+ b (S
q bg
if b =7/R, or that length of cable whose resistance is the same
as the terminal resistance in the changed problem.

Comparing (24) with (244), we see that the operational
solutions are of the same form, only differing in the changed
constant, a becoming b. So, if they are equal, we see that the
potential at the beginning of the cable due to the impressed
force runs through the same course when the condenser is
interposed as the current (multiplied by #) does when a
resistance is interposed.

To obtain the effect at a distance requires in both cases the
introduction of the same opetator e%°. Consequently, we
know that the course of the potential throughout the whole
cable in the condenser problem is the same as that of the
current in the resistance problem, due to the same impressed
force, which may be any function of the time. And, we do
not need to algebrize the golutions in order %o predict this
result.
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Perhaps some people will say (as usual) that they do not
like ¢ algebrize ; that it is un-English, &c., &c. People are
always saying something. What is more important is that a
word to express the idea of conversion from operational to
algebraical form is much wanted, and that ¢ algebrize " seems
to answer the purpose very well. Similarly we might say
that we logarize a number when we take its logarithm, and
delogarize it when we find the number whose logarithm it is;
and so on. i

When ¢ is a steady force, beginning when ¢=0, we may
algebrize (24) in two ways as before, and I will do it rather
fully now, merely remarking that the work can be done at
sight after a little practice by using equations (A) and (B),
extended in the latter case to fractional degrees, a matter to
be considered later. Thus, to obtain a convergent solution,
expand the operator in descending powers of ag by division,

making
Vo=(1-2 4 Lo s e 25)

aq a¢® ¢

Here the even powers of ¢ involve complete integrations, to be
done by (B) at sight. The odd powers involve complete in-
tegrations performed upon p—*1, with limits 0 and ¢. Thus,

1 1 1
Ve(letetsle )
$ +hp+h2p‘5+h"p”‘+ 3

1 1 e
ok (0198 Sinlte Cpse Ry CRAPINY) [T 2
< 5 hp & h2p? & ) (hp)¥ £

where 2=RSa?, which is a time constant. Also, we know
already that p=i1 =2(t/)}, so (20) is converted to

3 1/2¢ 1 /2t\?
—eeth_ 2 i) A e »_(H) il
BT (‘(hn' { +3(h>+3.5 h i ) L

This is complete, and answers well, except when ¢ is big, so
that many terms have to be used.

To get the alternative solution, expand the operator in (24)
in rising powers of ga. Thus,
v,=_1¢

0

o= N 2.2 _ 08,8 Az ’ 2
1+qac (1-qa+¢’a - gd®+ .. .)qac (28)
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Here the even powers of ¢ contribute nothing (which is not so
simple a matter as it looks), so

Vo=(1+ ¢+ ¢'a* + ¢°d® + ... ) qae. (29)

Here we have to find ¢ga 1, which is known, and then execute
complete differentiations upon it. Thus,

Vo=¢ (1 +hp+ PP+ 1R+ .. ) <—hz) (30)
iy

=() e {tmgr 1o () =) @0

This formula answers well for big ¢, and also when ¢ is not so
small as to render the initial convergency insufficient.

The condenser acts like a short-circuit at the first moment,
so that the potential at the beginning of the cable acquires
the full value ¢ instantly. It then falls to zero as the con-
denser gets charged, in accordance with (27) and (81). Of
course, the cable receives the same charge as the condenser ;
that is, the current is continuous through the condenser into
the cable, according to Maxwell’s now orthodox theory. But
as the charge spreads itself over a condenser of infinitely great
permittance, its density attenuates to nothing, so that V=01is
the final state of the cable, although the total charge is finite.
That the final V is zero is also to be seen by the operational
solution (24), when we put p=0 in it.

Theory of a Terminal Inductance.

§ 244, As a third example, let the terminal arrangement
be an inductance coil. For simplicity, let its resistance be
zero. If really small the resistance may be merged in that
of the cable itself without much error, and this is allowable
when we desire to exhibit the effect of the inductance alone,
which is materially different from that of a resistance or a
permittance.

The terminal Z ig now Ip, so that, by (13), we have

Voo o2 i
o= 3
rru(T) T ©2)



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 43

if f*=I/R’S, a constant. It is quite easy to obtain the con-
vergent algebraical solution. Expand in rising powers of fg,
thus

Vou 00y ()4 () - - e (39)

C ()

Here the even powers of ¢ involve complete integrations on 1,
and the odd powefs complete integrations performed upon
(fg)™%, so there is no new difficulty. To ease matters, put g
for RS2 It is a time constant. Thus (83) is the same as-

EE R nekende & o st &
e <fﬁ9 o Tyt >(.'Jp)‘

i 0 o (M om0 U 34
((gp)*-l—(gp)6 +(gp)”+ > 64

So, using (B) in the second line, and the known value of
p71 in the first line, we obtain

Vo=7fii§(giﬂ>{ L) P ¢.7//)

57.9 @ 57.911.18.15 S

{ (t/g)? (t/q)s (t/./)9 } . (35)
B "B
It is not laborious to calculate the curve of V, from this

formula, at least up to ¢=5 or 6 times g. I get the results
in the following table :—

tly |! 3 1 ‘ 2 ' il (3
Vofe || 025 | 0603 l 1152 i 1297 l 1208 107 | 097

The inductance stops the current completely at first, so
that V, is then zero. But, later on, theinertia of the current
in the coil causes V, to rise above its final permanent value,
which is ¢, and oscillate above and below it. An analogy in
heat diffusion would need something far-fetched to illustrate
the terminal condition and the inertia it brings in. A
mechanical analogy is plainer, as in §215. Have a long
flexible elastic string of insensible mass suspended from fixed
supports in a viscous medium which resists the transverse
motion of the string with a force varying as its velocity. Let



44 ELECTROMAGNETIC THEORY. 1. Vi.

the string be first in equilibrium. Then apply a force ¢ close
to the fixed end. The string will at once be transversely dis-
placed to a distance V,, say, proportional to e, and the rest of
the string will follow suit in time, but without any vibration,
owing to the absence of inertia. This illustrates the case of
no terminal -inertia in the cable problem, V, becoming ¢ imme-
diately, and V becoming ¢ everywhere in the cable later.

But next attach a mass to the string at the place of appli-
cation of the force, close to the fixed end. When the force is
applied it will now take time to fully displace the mass, which
will then swing past its equilibrium position and oscillate
aboutit. The attached mass corresponds to the coil in the cable
problem. The table on the preceding page shows the initial rise
of V, and its passage beyond the value ¢ to its first maximum,
and back again to a little below the equilibrium position.

The alternative formula is more difficult to obtain, and as
its derivation from the operational solution involves more
advanced ideas than have yet presented themselves, I will
merely give the resulf here. It is

Voo 2t cost"/3
3 29

+e;r(7;/t> {1 8.5 7(22) +35791113 } (36)

which is useful in the later oscillatory part of the pheno-
menon. The period is 47g/ /3. The descending series must
be counted up to the smallest term ; but, of course, when it is
close to the beginning of the series, and the accuracy of cal-
culation becomes impaired to the possible extent of the size
of the smallest term, or, more likely, to the extent of half its
size, the previous convergent series should be employed. The
oscillatory function in (86) arises from the infinite series of
even powers of ¢ in the operator when expanded in rising
powers of ¢, a matter to be returned to.

The General Nature of Electrical Operators.

§ 245. I have worked out the above examples (except the
end of the last one) in a manner suited to one who has not
done any work of the kind before, with a considerable amount
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of detail in the transformations. But when the go of it is
perceived, the transforming work may be simplified by atten-
tion to certain rules which are obeyed. So now, before pass-
ing to problems of an elementary kind, concerning the propa-
gation of effects to a distance, I interpolate some explanatory
remarks about operators in general. Later on, we may be
concerned with the theory of fractional differentiation.

Observe, in the above, that we first obtain the operational
solution, and that this is usually easily got and is of simple
form—at least in the examples used, which admit of generali-
sation. Now, the operational solution is got by algebraical
processes, of the same nature as if we were dealing with
merely conductive circuits, only replacing the resistances con-
cerned by the appropriate resistance operators, though treat-
ing them as if they were still resistances; that is, constants.
Thus, in getting (24) for example, if the condenser were a
a resistance, say Z, and the cable also a resistance, say 2,
then the current due to ¢ would be

— e -
C°_ﬂ_z’ (37)

obviously, and the potential on the right side of Z would be

Vo=e-7C,= I:_Z/z (38)

Now, in the real problem, we work in the same way, with
different meanings attached to Z and 2. They become the
resistance operators. They are the functions of p, the time-
differentiator, which take the place of resistance in the equa-
tion V=RC; viz., Ohm’s law applied to a simple conductor,
which connects the V and C thereof, V being the fall of poten-
tial through R in the direction of C, the current. If this
becomes V=ZC when there is stored electric and magnetic
energy concerned, we call Z the resistance operator, because
it replaces resistance, and reduces to resistance in steady states.
That the Z’s may be treated as resistances may be seen by
considering the nature of the well-known problem of a con-
ductive net of wires. We have an equation V=RC for every
branch, or, more generally,

e+ V=RC, (39)
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ife is an additional impressed force therein. If, then, we sum
up along any path in the net, we get

Ze+2V=2RC. (40)
But 2V is zero in any circuit, so we have
Ze=ZRC (41)

for every circuit in the net. This being the case, or, more
generally, (40) being true for any particular path in the net,
there is only one thing more required to determine C in all
the branches due to all the ¢’s, and that is the circuital nature
of the current itself, which connects together the values of all
the C’s meeting at a junction, and makes 2 C=0 there. The
problem is now determinate, and the algebra of simple equa-
tions enables us to write down the expression for the current
in any branch due to the impressed force in the same or
in any other branch. When it is a very complicated net
determinants are useful; but in most practical problems they
are a useless complication, and the work is easier without
them, and is more instructive from the physical point of view.

Now, instead of the branches of the net being simple con-
ductors following Ohm’s law in the above way, let them be
arrangements storing electric and magnetic energy—that is,
arrangements of condensers and coils; but still such that the
current in any branch is the same at both ends, and such that
there is no mutual action between one branch and another,
though there may be mutual action between the constituents
of a branch. Clearly, then, the currents, though now variable
with the time when the forces are steady, are subject to identi-
cally the same conditions of continuity. But the equations of
voltage are changed. We now have

e+ V=ZC (42)

in any branch, where Z has to be found from its detailed strue-
ture. Also

Ze+ZV=3ZC (48)
along any path in the net, and, 2V being zero in a circuit,
Se=2Y7C (44)

in any circuit in the net. There is, therefore, a complete
formal similarity between the problem of merely conductive
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circuits and the general one involving stored energy. Every
R becomes a Z. The equations which find the C’s in terms
of the ¢'s are, therefore, identically the same, only with the
R’s replaced by Z’s. These equations are the operational
solutions. So the rule is, work out the given problem as if
the independent branches were mere resistances ; then give to
the Z’s their actual functional expressions in terms of p
and constants; the result is the operational solution. It
follows that anybody ecan work out electrical problems of an
advaneed nature so far as the operational solutions are con-
cerned, by common algebra, assisted by electrical ideas. Nor
need he stop there, for the very important case of simply
periodic variations can be fully investigated by a continuation
of the algebra from the operational solution to the algebraical.
For, when a single simply periodic impressed e acts with fre-
quency n/2m, the power of p* in the operators is-7*; so, by
putting p=ni, we obtain an algebraical solution which may
be reduced to the simple form (a + bi) ¢, where the ¢ signifies
p/n or d/d(nt). It is then fully realised.

Geometrical methods are sometimes used, involving the
rotation of vectors in a plane. Their value seems to me to be
principally illustrative. Their drawback is the great compli-
cation of the diagrams that arise when we depart from very
simple problems, and the hard thinking and labour required
to work out results. The algebraical method, on the other
hand, works with admirable simplicity, even in complicated
problems. It is, however, only a special case of resistance
operators, in the general use of which we are not confined to
simply periodic variations, the ¢’s being any funections of the
time in the operational equations. The application of these
operators is not confined to condensers and coils, but extends
to electromagnetism in general, with waves in conductors
and dielectrics, and dissipation in space, the ultimate reason
being the linear nature of the equations. Nor is it confined
to electrical problems, but applies generally to the mathe-
matical sciences involving linear equations, and can be used
with advantage therein.

Returning to the network before considered, if a branch is
itself complex, its Z must be got by properly eliminating all
the internal V’s and C’s, so as to lead to a resultant equation
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V=ZC, where V is the voltage on and C the current in the
branch as a whole—that is, at the terminals. But should
there be mutual influence between a branch and some other
one, a further generalisation is required, which presents no
difficulty save in the extra work involved, which, however, is
still of the same nature in treating p and functions of p as
constants for the time.

A remark should be made here about the figure in § 242.
The impressed force is put between the Z and earth. It is
therefore necessary that the current should be the same ab
both ends of Z. But if we put the e between Z and the
cable, which will make no difference in the state of the cable
in the examples above, we can attack more general problems.
For Z may now have many branches; for example, a com-
plicated arrangement of condensers and resistances like the
cableitself. Thus we shall have

= 9 5
when ¢ is put between two cables, R, and S, being the constants
of the new one, on the left side. If R,/S,=R/S, the current
is halved by the substitution of the second cable for direct
earth. To find V,, multiply by the resistance operator of the
first cable, viz., by (R/Sp):. To find V;, the potential of the
beginning of the second cable, multiply by the negative of
(R(/S;p)}, the resistance operator of the second cable. The
changed sign is necessary on account of the current being
Jrom one cable to the other. If R,/S;=R/S, the potentials are
3e and —e. But in general they will not have the same
numerical value, though V,—~ V,=e¢ always.

It should be understood that these potentials have nothing
indeterminate about them, like the electrostatic potential, for
they are really transverse voltages in the dielectric of the
cables. They are proportional to the displacement, and to
the charge, so that the diffusion of V in the cables is repre-
sentative of the diffusion of the charge on the wires. No
constant can be added to this kind of V, of course, in our
problems, as it would introduce extra energy, having no con-
nection with our impressed force.
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The Simple Waves of Potential and Current.

§ 246, Let us now pass to some simple cases concerning
effects produced at a distance. I remarked before that the
solutions concerning the effects produced on the spot by an
impressed force were the easiest to investigate. This is true
when the constraint on the spot (or terminal condition) is not
too complicated. But some cases of the effects produced at a
distance are quite easily examined operationally, provided the
terminal conditions are of the simplest kind.

Go back to §240. To find V at = due to V, at =0, we
have the operational solution

V==V, 1
This expands to

V= (1 qa,+(f‘ -~y S,

= (cosh gz —shin qx) Vg (2)

Here we have even and odd powers of g, so there is nothing
new in the way of operations. Taking V =e, constant, be-
ginning when ¢t =0, we may discard the even powers of ¢, and

write
V = (1—shin gz)e

(1 )y (T?‘ " ) qae, (3)

and since this involves complete differentiations performed
upon g1, which is known, the full algebraical result follows at
once :—

G el

This is an exceedingly important formula in diffusion, both
in itself and as the basis of other formule, so we may as well
give some details about it.

If we differentiate to = we shall obtain the formula for the

. current. Thus

I @) - (5} @

VOL. II. E
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Here we recognise the exponential formula, so we may write
it finitely, thus,
Fe_c Az (R_S)*E—RS::!/M’ (6)

7t

which is another important formula in diffusion.

We got (5) by differentiating (4) to z. But if we please we
may get it in the same way from any of the previous opera-
tional forms. For example, from (8) we obtain

2 4
RO=(1 ezl @) ) g
e Je 0 g
which gives rise to (5) or (6) on development.
Or we may start from the initial operational solution for
C, viz.,

RO =e¢#RC,=e%ge. (8)
On expansion, this makes '
RC=/(cosh ¢z — shin gz)ge. 9)

In developing V we rejected the cosh function, excepting
the constant term 1. But now we must reject the shin fune-
tion, because (on account of the g factor) the even powers of
g go with it. So we get

RC=cosh ¢z . ¢e, ‘ (9a)
which is equivalent to (7). I give these variations to let the
reader see that the solutions do not arise by fortuitous acci-
dent, but that there is a consistent fitting together.

That these solutions for V and C are the solutions may be
tested by their satisfying the necessary conditions: (1), the
characteristic ; (2), the terminal condition ; (8), the time con-
dition, that V and C are zero initially everywhere except at
the origin. The last, however, is troublesome numerically, on
account of the very slow convergence when ¢ is small. But
the functions are well known, so there is no need to be
frightened.

The Error Function. - Short Table.
§247. The V/e formula (4), observe, is a function of RSa?/4¢
=y? say. So we may write it 2

5
T el y__y‘_’+y__£+...}, (10)
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svhich is the same as

4
Lt _lf Py 1)
e =} 0

=1-erfy. (12)

A comparison of (11) and (12) defines the function which
is sometimes called the error function, and denoted by erf y.
A pretty full table was given by De Morgan in the Ewncy.
Met., * Theory of Probabilities,” going by steps of 0:01 from
y=0 to 2. This table is reproduced by Lord Kelvin in hig
¢ Physical Papers,” Vol. IIL., p. 484. But a much briefer
table is all that is needed for general purposes, and for curve
tracing, say with step 0-05. Perhaps even step 01 would be
-enough.

Y. erf y. A, } 7. erf . A,
005 05637 5637 105 86243 1973
010 11246 5609 110 88020 1777
015 16799 5553 115 89612 1592
020 22270 5471 | S 91031 1419
25 27632 53%2 (| 125 92290 1259
030 | 32862 5230 | 130 93460 1110
035 37928 5076 || 135 94376 976
040 42839 4901 | 140 95228 852
045 47548 4709 || 145 95969 741
050 52019 4501 {150 96610 641
055 56332 4283 || 1t 97162 552
060 60385 4053 160 97634 a72
065 64202 2817 | 165 98037 403
070 67780 3578 | 1-70 98379 342
075 71115 3335 175 98667 288
080 74210 3095 1:80 98909 242
085 77066 2856 1-85 99111 202
0-90 79690 2624 1-90 99279 168
095 82089 2399 1-95 99417 138
100 84270 2181 2:00 99532 115

We see that the error function rises from O to 1, as y goes
from O to «; but as it reaches 0-995 when y=2 only, the
subsequent rise to the full 1 is very slow work. The values
are very easily calculated by formula (10), and without great
labour; but the table is useful for reference.* The A column
shows the differences or steps in erfy, corresponding to the

* The figures in the erf columns are decimals,

E2
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equal steps 0:05 in y itself. They therefore serve to plot
the curve of the derivative, that is, the curve of current,
represented by formula (6), which may also be used directly.

The Way the Charge and Current Spread.

§248. In Fig. 1 is represented the way the potential (or the
charge) extends itself into the cable when the potential at its
beginning is raised to and maintained at a steady value. The
abscissa is length from the beginning, and the ordinate is the
potential. The curve 1 is got by making RS =4¢, and vary-
ing . Or if ¢ =4¢/RS, then curve 1 represents the state of
things when ¢’ =1. We may use any unit of length we please,

vV, ; A

Fic, L

so that the base line may be 2 centim. or 2 kilom., or 2,000
kilom. if we like.

Now V/e is unchanged by altering #2 in the same ratio as ¢,
So when ¢'=4 we have the same values as before with doubled
values of z. This is shown by curve 4, representing the
potential distribution when ¢ =4. Doubling » again for
the same values of V/e, we get the curve 16, showing the
potential when #'=16. Similarly, by halving « in the curve 1,
we obtain the curve }, showing the potential when ¢'=1}; and
halving # again brings us to the curve j%, showing the
potential when ¢ =4%. The initial potential curve is simply
the vertical line OV, (up and down) and the base line 012.
The final potential curve is the vertical 0V, and the horizontal.
line V,A.
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the abscisse. Similarly as regards the other curves. The

unnumbered one, with the top cut off, belongs to ¢'=}. These
curves all bound the same area, that is, the area bounded by

the curve and the vertical and horizontal axes is constant.’
In another form, the line-integral of the current is constant,

the reason being that

V,-V= /’Rcazx (18)
i

by Ohm’s law, and V=0 at #=w. That is, when we apply
the impressed force we generate instantly a definite amount of
magnetic momentum at the beginning of the cable, which then
diffuses itself along the cable and attenuates to zero density
without alteration of total amount. It is true that the
magnetic momentum is zero in amount, because we have
assumed Li=0 in the theory. But that is nothing in the way
of the use of the idea of magnetic momentum, because we
may suppose L to be finite, although so small that the diffusion
law of propagation is followed practically.

Theory of an Impulsive Current produced by a Continued
Impressed Force.

§249. An exceedingly interesting and instructive case arises
when the impressed force at the beginning of the cable, in-
serted between it and earth, is variable with the time in a
certain way. Ior a purpos: to be seen presently, let the im-
pressed force be given by

R \#

e=Q ()’ (14)
where Q is a constant. Before t=0 the cable is to be under-
stood to be uncharged. The potential V, is raised to the
value ¢, of course. It is the same as :
=9Q/S, ! 15
by (A), § 241. A 8
Now find the current entermg the cable due to the lm-

pressed force. By (5), § 240, it is

o= k7o 5010 Yl

where the second equation arises by (15), and the third by the
definition of ¢* Since Q is constant for any finite value of
time, the result is zero. That is, there is no current entering
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the cable under the action of the continuously-present im-
pressed force at any finite value of the time.

Is this nonsense ? Is it an absurd result indicating the un-
trustworthy nature of the operational mathematics, or at least
indicative of some modification of treatment being desirable?
Not at all. It is the fact under the circumstances stated, and
the principal remarkability is the instantaneous arrival at the
result. For the above details concerning (14), (15), (16) are
not wanted by an experienced worker ; the operational solu-
tion RC, = qV, of § 240 being sufficient to show that if V, is ¢1,
then C, vanishes.

We have to note that if Q is any function of the time, then
pQ is its rate of increase. 1If, then, as in the present case, Q
is zero before and constant after t=0, pQ is zero except when
t=0. It is then infinite. But its total amount is Q. That
is to say, p1 means a function of ¢ which is wholly concentrated
at the moment ¢=0, of total amount 1. It is an impulsive
funetion, so to speak. The idea of an impulse is well known
in mechanics, and it is essentially the same here. Unlike the
funetion p'1, the function pl does not involve appeal either to
experiment or to generalised differentiation, but involves only
the ordinary ideas of differentiation and integration pushed to
their limit. Our result C,=pQ therefore means that an
impulsive current, that is a charge, is generated by the
impressed force at the first moment of its application ; that
the amount of the charge is Q, and that there is no subsequent
current. It is the same as saying that the charge Q is instan-
taneously given to the cable af its beginning, which charge
then spreads itself without loss anywhere.

Next work out the solutions for V and C anywhere in the
cable. We have, by (15),

V=¢ PV,=¢ ¥¢(Q/8). 17
This was algebrized before, equations (8) and (6), so the
result is
_naf B\ -rszut
V_Q(% p ; (18)

By differentiation to z, the current is
e 1dV _Qr (RS)%E-RSx?/u. (19)

Rde 2t \ a¢
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It will also be useful to obtain the current formula directly.
We have, by (16),

C=e%C,= Q. (20)
Here reject the even powers of ¢, and we get
C= - p shin ¢zQ, (21)
which expands to
c=_p(1+(_%)2+(%‘+ ...)qu, 22)

involving only complete differentiations upon gl. Thus
RS, 3 3
O% <30 (p § BBy, (REE) i) )(RTf) ,

13 &
which leads directly to the formula (19) above or, rather, its
full expansion.

'We may also note that (20) or (21) gives C by a time differen-
tiation upon the function €-9¢1, already obtained, (1) and (4)
above. This again leads to the result (19).

That the previous special results for V, and C, are con-
tained in the general formule for V and C anywhere is clear
enough—that is, they make V,=¢ and C,=0 at x=0. We
have now only to explain why there is no current after the
initial charge. It is for the same reason as why there is no
current in the galvanometer in Poggendorfl’s way of compar-
ing two battery voltages. If there be current in a network of
conductors, and two points A and B thereof be joined through
an external conductor, there will be a derived current in the new
wire usually—that is, if there be any voltage between A and
B due to the original arrangement. But if we introduce in
the new wire an impressed voltage equal to and acting against
the former voltage, there will be no current, and everything
will be the same as if A and B remained insulated.

Applying this to the cable, we see that the impressed force
in the above case is so artfully graduated in its strength as to
be exactly equal to the potential at the beginning of the cable
due to the charge Q when redistributing itself without ter-
minal loss—that is to say, if we remove ¢ and insulate the
beginning of the cable, everything will go on as before. Of
course, the removal must be done after its initial effect in
charging the cable.
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So, dismissing the impressed force altogether, we see that
if we suddenly communicate a charge Q to the beginning of a
cable, and then immediately insulate it, the potential and
current which result will be given by (18) and (19) above.
The potential (or the charge) redistributes itself in the same
way as the current in the previous problem of a steady
impressed force, that is, according to the curves in Fig. 2, p. 53.
It has been mentioned already that areas are conserved in that
diagram. In the present case this means that the electrifica-
tion is conserved.

Diffusion of a Charge initially at One Point. Arbitrary
Source of Electrification.

§250. If the cable be infinitely long both way, and have a
charge 2Q suddenly introduced at # =0, the resulting V and C
will still be given by (18) and (19) on the right side of the origin,
where « is positive, because the charge 2Q will split into two
-equal charges, one of which will go to the right and the other
to the left, and obviously in a symmetrical manner, so that
there is no current at the origin. On the left side, V will be
the same, and C the same negatived as at the corresponding
points on the right side. = We shall also obtain these results
in another way, without the use of e. Thus, let a doubly
infinite cable have an auxiliary wire attached at the point
=0, through which current is artificially sent into the
cable. Let 27 be this current. It is equivalent to a source
of electrification of strength 24; that is, electrification is
generated at z=0 at the rate 2k per second. This splits
-equally right and left, so that C,=% may be taken to be the
terminal datum for the positive half of the cable. Con-

sequently C = ), (@3)
gives the current at distance z, and since RC=¢V,
V=B (24)
g
is the corresponding V. Here & may be any function of the

time.
Now, if % is impulsive, acting only at the moment {=0, we

:shall have h=pQ, (25)
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where Q is the time-integral of 2. Putting this in (23) and
(24) we obtain the expressions (17) and (20) for V and C.
This proves formally the previous statements about the
behaviour of ¢, so far as the general electrical property of
balancing voltages entered into the explanation.

The Inversion of Operators. Simple Examples.

§ 251. We have hitherto usually supposed that the potential
at the beginning of the cable is produced by an impressed
force there, and the potential and current anywhere have
been derived from it. We may, however, regard the matter
differently ; as, given V,, find C, (and V and C); or, given C,,
find V, (and V and C); in all cases on the understanding
that the state of the cable depends entirely upon the state at
the origin due to a cause acting there. This dependence upon
the state at the origin implies that V and C are initially zero
except at the origin, and that the cable is not subjected to
impressed force or allowed to receive electrification anywhere-
else. The state at the origin need not, however, be due o an
impressed force there, but may result (for instance) from its.
connection with a continuation of the cable on the other side
of the origin, this continuation being initially charged. Thus,
the case of a steady impressed voltage ¢ between line and
earth at the origin may be imitated by having the whole-
of the imagined continuation on the negative side initially
charged to the uniform potential 2¢, and allowing it to-
discharge freely into the cable on the positive side. For the
assumed distribution is equivalent to the combination of two.
distributions, one expressed by V=e constant all over, and
therefore not subject to change, whilst the other consists of
V =¢ on the negative and V= —¢ on the positive side of the
origin, with a node between them at the origin itself. So-
the potential at the origin will be made permanently equal
to ¢, and the current is uncontrolled save by its natural
connection with the potential, therefore the result on the
positive side must be the sams as that due to ¢ considered as
an impressed force acting at the origin between the line and
earth. :

But suppose it is the current at the origin that is controlled
and led through a sequence of values. Then we may find the-
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potential that results there and elsewhere. Thus, we have in

general
Vo=(R/9)C, (26)

at the origin. So, by taking C, conveniently, we can imme-
diately find V,. If, for example, C, is proportional to q1,
that is, to t-%, the ¢ in the denominator of (26) is cancelled,
and V, comes out constant. We found before that V, con-
stant made C, vary as ¢-i. So now we solve the inverse
problem ; that is, if C, is zero before =0, and is then made
to vary as ¢t-1, the potential V, will be suddenly raised to and
be maintained at a constant value. Furthermore, since G
and V are derived from C, and V, by the operator <%, we see
that the state of things everywhere is determined as well by
the condition C « ¢-% as by the other condition V,=constant.
They are equivalent under the circumstances mentioned.
Again, suppose C, varies as ¢*1. Then C;is impulsive, as
before seen, so that we may call it pQ, where Q is constant,
being the charge in the impulse. The V, that results is

therefore
(Rp) (Sﬂ) iQ (27)

This is the inversmn of the problem beginning § 249, equations

(14) to (16), which was, given V, varying as ¢-3, to find C,.

The result was that C, was initially impulsive, and zero later.
Next, suppose that V, is impulsive, say

Vo=pf, (28)
where f (when regarded merely as a constant) is the measure
of the impulse, that is, the time-integral of V,. The result is

(D rrle) - -5 @

which indicates the current coming out of the cable after its
initial charging.

The reader may have noticed in the above, and perhaps
previously, that we change the order of operations at con-
venience, as in f(p) $(p)l = ¢ (p)f(»)1, and that it goes. But
I do not assert the universal validity of this obviously sug-
gested transformation. It has, however, a very wide appli-
cation, and transforms functions in a remarkable manner.
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Reservations should be learnt by experience. The present
example is, of course, elementary.

Observe that the current due to impressed ¢ when it is
made impulsive is got by writing pf for e, f being the time-
total of e. This process is general. If we have worked out
the solution arising from a steady impressed force, or a steady
source, we obtain that for a momentary force or source by
differentiating the former solution to the time, and substituting
the strength of the impulse for the intensity of the former
force or source. Or, in another form, if C=Ye is the primary
operational solution, giving C in terms of any ¢ through the
operator Y, then C=Ypf is the operational solution when ¢ is
impulsive, of total f, the moment of time of the impulse being
t=0.

It is generally better to work out a solution due to ¢ constant
than that due to an impulse, because the former leads, as
above, to the latter by a simple differentiation, whereas there
might be some trouble in rising from the developed impulsive
solution by integration to that for a steady force. But, know-
ing the developed impulsive solution, either directly, or by
derivation from the other, the solution for a continued force
varying anyhow with the time is at once expressible by a
definite integral, because the continued force may be regarded
asg consisting of an infinite series of successive infinitesimal
impulses. The definite integral, however, is of little use unless
the integration can be readily effected in the case of the special
function of the time that e is chosen to be. Moreover, it is
not uncommon for the result of the integration to be obtain-
able more easily directly from the operational solution itself,
The simply periodic solution is an obvious example, and others
may be given.

The Effect of a Steady Current impressed at the Origin.

§252. Returning to the mutual dependence of C and V and
the inversion of operators, let C, be made constant. That is,
there is to be no current before, and a steady current after
t=0, at the origin. Clearly this would be impossible were
it not for the permittance of the cable, which allows of any
amount of electrification being sent in, practical limitations
arising from the finite strength of thedielectric being nowhere
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in a theoretical discussion. Of course the potential rises
infinitely, if sufficient time be allowed. The pctential at the

origin is 50 A s -
@@ w

by using the known value of p-31.

Inversely, we may put it thus:—Given that there is an
impressed force at the origin between line and earth varying
as !, what is the resulting current? The answer is, the
current is steady. This contrasts well with the case of a
steady e, which leads to zero final current, though it is
initially infinite, varying intermediately as ¢t-%. For in our
present case we get a steady current from the first moment by
an ¢ rising from zero to infinity according to t.

As a typical example, it is worth while algebrising fully
the soluiions when the current at the origin is steady. From

C=e=C, (31)

we see that C follows the same law as was worked out for V
due to steady e, as was exemplified in Fig. 1. Those curves
now show how C distributes itself in the cable. From there
being initially no currert anywhere save at the origin, where
it is C,, the final state that is tended to i a constant carrent.
everywhere. The formula being the same, it is unnecessary
to repeatit. The operational form (381) is fully explicit and
understandable.
As regards V, we have to develop

v=Beug, (32)
q

Here reject, as in previous cases, the even powers of ¢, and
we get

Mo R;Co+};_cos‘n gz . G, . (89)

where the term involving the first power of z comes from
the term in the previous equation which is independent of ¢;
that is, it would partly express the final steady state were
such a state possible, which is obviously not the case in the
present problem, since the next term is (R/q)C,, which tends
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to infinity. There is nothing new in the way of operations
in equation (33). Written fully, it is the same as

RSa2%  (RSa?p)? RiN?
V= —RaCy (142002 (8728, ) (_> 20, (34
¢0++@+&+ S1‘_0()
which only requires the complete differentiations to be effected
to give the full development namely,

¥ 3 < +2 {1-!-_/2 g } (35)
G, 8 |_ 5(8 7 L_

where y?=RS82?/4¢, as before. This formula shows the
infinitely great ultimate increase of V, and how it spreads
into the cable. As a check, obtain the current by differentia-
tion to . We get

G ne J" 5

o B{y 3 51_ 7L_ } a3
Comparing with (10), we confirm the previous statement about
the law followed by C now being the same as that followed by
V when e is steady.

If, on the other hand, we should start with the last formula
for C, and atiempt to obtain that for V by integration with
respect to =, there might be some difficulty initially. The
indefinite integral is the formula (85) without the term
independent of . Now

& f jBCdz, @87)

s0 to get the missing term (that involving ¢ ) we require to
evaluate a series for an infinite value of the argument, which
is inconvenient. But instead of that we may note that

¥,-V= f’RCdx, (39)

0 by this formula we get what we want from the value of
V at the origin, which is already known. That is, it is known
by the operational method; otherwise it would have to be
specially obtained. The operational method usually avoids
auxiliary evaluations of this kind, as we may see by the way (85)
was got. The work is done automatically, as it were, and V is
made to vanish at # = co for any ¢, and also when ¢ =0 at any z.
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Fig. 1 serving to show how the current spreads, the new
formula (85) requires calculating to show how the charge
spreads. Without making a fresh table fully, like that for
the ¢error function,” the following special results which I
have calculated may be quite sufficient to allow the reader to
draw the curves roughly, should he care to do so. Write (35)

in the form
A 2R¢
2= (220, 38

G, (b ) i (388
where

z:-JJ2+(>{1+J L+ } (385)

Then z is a function of the former 3?>=RSz*/4t, and the.
values of z corresponding to some of those of »* are as
follows :—

e R AT T

z i} €798 { 0508 0395 | 0282 0167 |0'071 0034
i

Since y varies with z as well as with ¢, the last equation and
the numbers in the table will allow the form of the V curve
to be traced for a series of values of the time. But this case
of steady impressed current is by no means so important as
that of steady impressed potential, although interesting and
instructive enough in its way.

Nature and Effect of Multiple Impulses.

§ 253. We have already considered the cases of an impulsive
V, and an impulsive C;. Those impulses were simple. But
we may also have multiple impulses, to understand which it
is best to take a special case. We know that

C=%Ey (89)
expresses the current due to C, arbitrary at the origin, or to
a source of strength 2C; at the origin when it is free to spread
both ways equally, as if an auxiliary wire supplied electrifica-
tion to the middle point of a doubly infinite cable without
earih connection. Also, if C; is impulsive, say pQ, then

C=e%pQ, (40)
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as before examined, § 250, equations (23), (25). Now, if this
impulse be followed at time At later, by the impulse - pQ,
the negative of the former, it will nearly undo the effect of
the first one. If Q be finite, the differential effect will
decrease with A¢, and become zero when it does. But if,
whilst decreasing At, we simultaneously increase Q in the
same ratio, the differential effect is maintained of finite size,
and in the limit, where A¢ vanishes and Q is infinite, whilst
their product QA¢ is finite, the result takes a special simplified
finite form.

It is like the old way of making the magnetic force of a
magnetised molecule out of the combined magnetic forces of
two equal poles of positive and negative magnetism. If the
poles are kept of finite strength, their joint effect vanishes
when they are brought to coincidence. But if the product of
strength of pole into distance apart, or the magnetic moment,
be maintained finite, the resultant magnetic force is finite,
and takes a special form in the limit. This is the way to
form a solid harmonic distribution of potential, and Maxwell
showed how to carry on the process with multiple poles, so as
to generate solid harmonies of any order.

In our present case, however, it is not a space distribution
of poles that we are concerned with, but a time distribution.
The ““moment ” of the differential impulse is QAt, where + Q
is the strength of the poles (or impulses), and A¢ is their
distance apart in time. The finally resulting C is

C=e%p2(QAY), (41)
where A¢ is infinitesimal. Or, if Q, = QA¢,
C=e"p%Q, (42)

is the carrent due to a differential impulse of the first degree.
It is clear that we may extend the above to impulses of any
degree, say

Co=pQy or p?Q,, or p*Q,, &e.,

but at present let us keep to the middle one.
The potential corresponding to (42) is obtained in the usual
way by multiplying by the operator R/3. This makes

SV = e¥pgQ, (48)
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from which we see that the impressed force at the origin
between line and earth required to produce the same effect is.

given by
Se=p1Qs (44)

This, however, needs close and literal interpretation. Lt
Q./S =1 for simplicity, then, by algebrising pgl we get
RS\! 1 /RS\}
e g M
Now this merely represents the dregs of e, acting when ¢ is
finite, and, as before explained with respect to the impressed
forece e=¢l, serving (in Poggendorff’s way) to prevent current
at the origin. But we must understand pgl more literally.
Thus, ¢1 is the function of the time which is zero before ¢=0
and is (RS/=¢)} later. So pg1, which is its rate of increase, is
zero before ¢=0, then jumpsto o, then jumps through zero
to — o, and lastly rises to zero again gradually. Of course it
is only the last part that is explicitly represented by the
developed time-function in (45). On the other hand, pgl
represents it all. Similarly, p%l is to be interpreted as the
rate of increase of pgl just considered; and so on. And,
going back to the impulses without any residual effect, pQ, has
been already interpreted as a simple impulsive current ; next,
2°Q, we see is the time-rate of increase of pQ,, and is therefore
a double impulse, first positive and then negative ; and so on.
As regards the charge in the cable produced by the impulse
P2Qy, just after the first moment it is confined practically to the
region close to the origin, and consists of a positive wave followed
by a negative one. These tend to neutralise and do neutralise
one another by mutual diffusion to a large extent. Bufsince at
the same time the positive charge in front diffuses itself forward
into the cable, there cannot be a complete neutralisation.
The result is that the region occupied by the charge is con-
tinuously enlarged, the node between the positive and negative
charges advancing along the cable, all to the right thereof
being positive and to the left negative, whilst the density
rapidly attenuates to zero. Since the formule (438) and (42)
for V and C are derivable from previous formule by simple
time differentiation, viz. (48) from (8) or (6), and (42) from
(20) or (19), it is unnecessary to write the full developments.
VOL. 1L, F
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Moreover, since the operator RSp is equivalent to a double
differentiation to z, as is indicated by the characteristic of the
potential and current, the new curves of V and C may be
found by making their ordinates be proportional to the curva-
tures of the old ones. Similar remarks apply to multiple
impulses of higher degrees, as regards their development by
differentiation ; so, as we do not want them at present, it is
sufficient merely to point out, as above, how they may be got.

Convenient Way of denoting Diffusion Formulea,

§ 254, Our results, so far, depend upon the fundamental
function ¢l1, where ¢ is the square root of a differentiator.
From it follow various other resulis, notably the functions
%1 and g¢%1. Since they represent the elementary waves
of potential and current due to a steady impressed force, they
are of particular importance ; and since they form the elements
in more advanced problems that the preceding, their meanings
should be carefully noted. Thus, collecting some formula for
reference, let

g=(RSp)i, y = (RSa%/4¢)t,
for shortness. Then we have
€@l =1-erfy

_1__{ —J3+5_li_—7_yé+...}, @

which gives the V/V, curves, and
el = (.13@)55‘?/3, (2)
wt

which gives the C/V, curves, when V| is steady, beginning at
the moment ¢=0. FEgquation (1) belongs to Fig. 1, and
equation (2) to Fig. 2, §248.

Most solutions of problems in mathematical physics are
in the form of infinite series. Finite solutions are quite
exceptional. When of fundamental importance and of a
relatively simple nature, the series functions receive special
names and have conventional short expressions. Mathema-
ticians get so accustomed to working with the short expressions
that when they get solutions in terms of one or a finite number

Ed
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of such functions they sometimes say that they have got the
solution in a finite form. But if the functions were such as
had not received special names, the case would be substantially
the same. The difference is merely conventional. Compare
(1) and (2) above, for example. In (2) we have a case of the
familiar exponential function; in (1) a relatively unfamiliar
funetion which seems a great deal more transcendental than
the other, which is its slope. The name erfy for the deficit
of €91 from unity was invented by Glaisher, and by using erf
we have a condensed empirical form for the functions we are
concerned with.

Now, granting the desirability of having special short ways
of representing important functions, we may remark first that
e%1 and €%l may be themselves regarded as the special
short ways, shorter than the other ways, in fact. This would
be an undesirable deviation from common practice were no
advantage gained. But in the present case the forms in

question are actually indicative of the functions themselves in -

their structural meaning, through the operators generating
them. Moreover, they are the forms which present themselves
naturally in the mathematics. Furthermore, they are the
proper forms for the easy and immediate performance of
operations on the functions far more easily than upon either
the full series or the exp and erf forms. Lastly, when we pass
to more complicated cases, we shall see that they are made up
of the %1 and ¢~%¢1 functions, occurring in these particular
forms. Considering all these things, we see that there may
be great advantages in using these forms in their naked
simplicity, serving not merely as empirical abbreviations, but
as structural formule. Practice confirms this conclusion, as
will be evident in the following.

Reflected Waves. Cases of Simple Reflection.

§255. When we employ an infinitely long line we do away
with reflected waves, and exhibit the essentials in the simplest
manner feasible. The conditions prevailing are the same all
along, so no change occurs in the behaviour of the V and C
waves generated at a source. Now, passing to more practical
cases, the easiest are those in which there is only one reflected
wave. Let, for example, the impressed force ¢ be situated at

F2
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the point #=a, and the beginning »=0 be earthed, whilst the
end of the line is at an infinite distance.
The potential V generated by ¢ is

Vi= + 9@, on the right, (8)
Vo= — Je %2, on the left, 4)

because there is a rise of potential to the amount e at the
place of ¢, and the two potentials +3e and —J}e are the
sources of elementary V waves, V; to the right, and V, to the
left. The currents, however, are the same at equal distances
from e on either side, viz.,

RC,=}ge %,  RCy=}getoe, (5)

which follow from (3) and (4) by space-differentiation, or by
using the operator ¢ on the right side of ¢, and —g on the
left, because C is reckoned + from the source ¢ on the right
side and to the source on the left side.

The positive wave V, to the right suffers no change, except
what is involved in its known expression. But with the
negative wave V, it is different. When it reaches the origin it
has gone through the length a, and is, therefore, attenuated to
—Je%, DBut the potential is constrained to be zero at the
origin. This requires + 4¢ %% to be superposed on the negative
wave at the origin. Taken by itself, this would mean thaf
the line is raised to potential +34e %% at the origin, which, by
the previous, means a wave

Vi=¢% x L%, (6)

This is the reflected wave, and is positive, or from left to
right. Since it suffers no further reflection, the complete
potential is

V=V1+‘73=%E_q{x'a)e+%E‘Q(a"l‘x)g (7)
on the right side of the source, and
V=V2+Vs= —%€_qw-x)e+%e—':’(a'+x)e (8)

on the left side. These waves are of the former kind precisely,
only the constants being different. The ¢may be any function
of the time. If e is steady, we may employ the developed
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formula (1) above. The final result in this case (by ¢=0 in
(7) and (8) ) is V=e on the right side, and V=0 on the left
side.

Note that when ¢ is shifted up to the origin (by making
a=0), the two positive waves are made equal and coincident,
whilst the negative vanishes. That is, the case of ¢ at
the origin (earthed) previously treated may be regarded as the
case of instantaneous generation of a reflected wave of iden-
tically the same nature as the primary wave to the right, their
co-existence making a single wave of doubled size.

Another easy case is when the line is cut at the origin.
This makes C=0 there. The initial waves V, and V, from ¢
at z=a are the same as before, but the reflected wave differs.
It is the negative of the former reflected wave, because it has
to cancel the current due to the primary wave V,. So

V= 4 S0, fo0+a), (right) 9)
V= M@y _JTotn), (Left) (10)

are the potentials when the line is cut at the origin. The
final state when e is steady is V= —¢ on the left and V=0 on
the right side of the source. The final current is zero.
These steady results are obvious.

An Infinite Series of Reflected Waves. Line Earthed at
Both Ends.

§256. After the above easy casesin which only one reflected
wave is generated, pass to a case more nearly allied with
practice, in which we have an infinite series of reflected waves
all of the same type. Let the line be of length I, and be
earthed at both beginning =0 and at the end z=1I. Call
these A and B for descriptive convenience. Have ¢ on at A.
We will first build up the result in a physical manner. The
initial wave from A is

Vi=¢ %, (11)

and there would be no other if the line were infinitely long.
But when V, reaches the end B, and has attenuated to e %, it
would raise the potential there to that value, were it not
for the constraint forcing V to be zero. So V,= — e % has to
be superposed to cancel the effect of the first wave. This is
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the value at B of the reflected wave starting from B, and
going towards A. At distance « from A it has traversed the
distance ! —z, and therefore has attenuated to — e %% x e ?e;
so the second wave is

Vo= - 0B-0), (12)

When this wave reaches the origin A, it has attenuated to
—e2%, It would lower the potential there to that extent.
But the potential is kept constant. So we have the same
kind of reflection as at B, viz., with reversal of potential.
The third wave is therefore + ¢ % at A, so that, generally,

V= 18D, (13)

expresses the third wave. It is positive, like V. When it
reaches B, it becomes ¢ %, and (in the same way as the first
wave) generates a fourth wave with the potential reversed.
The fourth wave is therefore — e %% at B, and becomes

V= - eatag (14)

at 2. It is unnecessary to elaborate further, because the
process is the same for all the succeeding waves. The
complete potential is therefore

V=V, +V,+Ve+V, +...
(P - I ~IOHD_ g -qleD)
_ IO a0 _ qll-0) gy, (15)
The current to correspond is given by
RO=(ge” P +qe 104 gm0 4 | ), (16)

where it should be noted that all the signs of the waves are +.
That is, if the initial wave produces positive V,, the reflected
waves are alternately — and + as regards potential, but the
currents to correspond are all the same way.

If ¢ is steady, (15) gives V in a series of elementary waves
of the kind (1) above, and (16) gives C in terms of the
functions (2) above. The successive waves are smaller and
smaller, of course. But the above reasoning is the same
whether ¢ be steady or be any function of the time, so the
above results are fully expressive of the solutions in general,
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understanding that the waves will have different meanings
quantitatively in different cases.

We may readily transform the above solution to a compact
form. The odd terms in (15) make one geometrical series,
and the even terms make another. So, summing up, we get

V=e'q”—e'9(2l'z)e shing(l-2)
1-—e2 ghin gl

(17)

This is the condensed and most convenient form of the opera-
tional solution.
Putting ¢=01in (17), we see that a steady ¢ gives the final

steady state
e (LI f), fi 1
%54 ( i R (18)

as is obvious by Ohm’s law when the cable has become
permanently charged. The potential is kept down by the
reflections, whilst at the same time they allow the current to
rise to a steady value.

The above way is instructive, and should certainly be
followed sometimes. But when understood, much of it may
be taken for granted, because the operational method gives the
waves automatically and easily. Thus, to obtain (17), we
have the general solution

V= F 4 =G, (19)

where F and G are time functions (constants as regards ) to
be determined. We should not call them ¢ indeterminate,”
as is sometimes done in similar cases, because they are deter-
minate, or determinable, and in fact have to be determined.
They are determined by the terminal conditions V=e¢ at =0,
and V=0 at z=1, which give

e=F+G, 0=¢F + e 4G. (20)

Finding F and G from these, and inserting them in (19), we
obtain the solution (17) at once.

Expand it by division, and the developed wave solution (15)
results. This is the practical way to work in more complicated
cases. We arrive easily and speedily at the condensed form, and
may then develop it if we like. That the development of the




72 ELECTROMAGNETIC THEORY. CH. VI.

operator in (17) into elemertary wave operators by division is
legitimate, is obvious from the above.

If the simply periodic solution be got from (15) by the pro-
perty p?= —n?, or p=ns, we obtain an infinite series of simply
periodic trains of waves. It maybe that only the first, or the
first two or three, are wanted. If so, this way may be useful.

We have _
e ginnt=eT* sin (nt - Pr) (21}

when p =ni, the value of P being

P = (JRSn)!, by using # = }éj_‘.
Equation (21) shows the wave train in an infinitely long
cable. When of finite length, it is the type of the individual
members of the infinite series of wave trains, 2 having to
receive the series of values indicated in (15).
We may sum up this infinite series if we please, and obtain
a resultant formula in a complicated way. But if this
resultant be wanted, it can be got much more easily by making
p=ni in the condensed operational solution, because the
summation has been already effected in it.

The Method of Images. The Waves are really Successive.

§ 257. There is another way of regarding the matter. Ifis
usual in heat problems involving reflections, to consider the
extra terms to be due to images. In our present problem, it
would work out thus. Let the straight line represent part of
an infinitely long cable without any external connections. Let
the dots divide it into equal lengths I. At every second point

3 } 2 q 6
]

A B

let impressed forces, each of strength 2¢, act simultaneously
and in the same direction, say from left to right. Then the
potential at A, due to the pair of forces at 2 and 8, is zero. So
is that due to the pair 4 and 5, and so on. The potential at
A is therefore that due to the 2¢ there only; that is, ¢ on the
right and —e¢ on the left of A. Now consider B. The forces
at 1 and 2 produce no potential at B. Nor do the forces at 8
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and 4, and so on. The result is that between A and B, the
potential is the same as if the line were AB only, but earthed
at both A and B, and with an impressed force e inserted at A.
This is a mathematical equivalence.

But the way previously followed is, I think, preferable. It
is as easy to follow, if not easier. But more importantly, it
represents the true physics of the matter. We tale the line
as it is, and do not leave it, but introduce the reflected waves
just as they arise at the terminals. The order of the waves
is1, 2,8,4, 5, &¢. In the figure these mark the places of the
source and its imagined images. But the real sources are at
A and B.

Tt will also be noted that I described these waves as if they
came into existence one after the other. The formula (15) or
(17), on the other hand, says that they are contemporaneous.
This is right enough for the formula, but is only a mathe-
matical fietion in reality. The waves are successive, in the
way described. The speed of propagation of disturbances is
v=(pc)-# or (LiS)~% approximately, where L is the inductance
per centimetre. Our ignoration of L makes v be infinite. This
accounts for the contemporaneity of the waves in the diffusion
formula.

But give L a finite value, no matter how small, and v is
finite, and the waves are successive. By taking L small
enough, they will differ as little as we please from the above
waves in type, whilst being successive. So we are justified in
using the above natural way of description.

All diffusion formule (as in heat conduction) show instanta-
neous action to an infinite distance of a source, though only
to an infinitesimal extent. It is a general mathematical
property ; but should be taken with salt in making applica-
tions to real physies. To make the theory of heat diffusion
be rational as well as practical, some modification of the
equations is needed to remove the instantaneity, however little
difference it may make quantitatively in general.

Of course, to rationalise the theory in our immediate prob-
lem, we have merely to take Liinto account. We then change
the type of the waves as well. The change may be little or
great. It is very great in some telephone circuits, and, of
course, with Hertzian waves. In the more advanced treai-
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ment of the subject, including L (and K the leakance as
well), we have just the same kind of wave analysis as above,
though ¢ has a different meaning, and the waves are of
another kind.

There is only one exception to the rule that an infinite
series of waves results from terminal electrical arrangements
made up of a finite number of parts, and that is in the
theory of the distortionless circuit. It is possible to com-
pletely absorb an arbitrary wave by means of a suitable
terminal resistance. Then there are no reflected waves.

Reflection at an Insulated Terminal.

§ 258. If the line is insulated at the far end B, instead of
being earthed, as in §256, other things remaining the same,
namely, earth at the beginning A, where the impressed force
e is situated, the change made in the waves is very easily
settled.

The initial wave (11) from A is the same as before, but it
must now be reflected positively at B, or without reversal of the
sign of the potential, in order that the current may be main-
tained zero. So the second wave V, differs from the old one of
equation (12) in sign only, being now positive. This V, is
reflected negatively at A. Therefore V; is negative, and since
it is reflected positively at B, V, must be negative too. This
makes a cycle of signs. So we now have the following
series :—

Vet t--++--++--b&e,

writing down only the signs of the waves, which are otherwise
identically the same as in equation (15), where they make the
arrangement + — + — &e.
Summing up as before, by the law of geometric series, we
obtain o . )
¥+ coshg(l—2)
o Ti¥ew °" " cosh o (22)

which is the condensed form of the solution. The final V ig ¢
all over, and the final C is zero, as is obvious. To test (22)
generally, observe that it makes V=e¢ at x=0, and C=0 at
=1, which are the two terminal conditions.
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General Case. Effect of an Impressed Force at an Inter-
mediate Point, with any Terminal Conditions.

§ 259. When the impressed force is not at the terminal A,
but is at some intermediate point, say at = a, the case is a little
more complicated, because there are two series of waves. The
primary wave is double, going both ways, and each of its
members suffers reflection at A and B. At an earth, the
reflection of V is positive ; at a disconnection it is negative.
By means of these considerations it is easy to write down
without further calculation the full solution in terms of the
waves for any case in which the terminal conditions are earth
or insulation, as two earths, or two insulations, or one earth
and one insulation (two cases); and these solutions are fully
realised algebraically by the functions €1 and ¢ *%gl when
the impressed force acts steadily. As there is no difficulty in
this process, it will be as well to take a more comprehensive
case for illustration.

Let the terminal conditions be unstated except that it is
given that if v is a wave incident at B, then S8v is the reflected
wave ; and that if v is a wave incident at A, then av is the
reflected wave. Here a and B are the terminal operators
defining the nature of the reflection, the coefficients ot
reflection, so to say.

Now let there be an impressed force e at z=a, and let us
find its effect at & point « on the right side,

I
A

) [

x B

IS SN

or between the impressed force and B. The wave from e
going to the right is
=M1, (23)

In this put z=1 to obtain its value at B. Then multiply by
3 to obtain the value of the reflected wave v, at B. Finally,
multiply by e~%*—* to obtain the value of the last at distance
{ -z from B, that is, at z from A. The result is

Ty = e B M—0) ;. Be—i—a-D1, (24)
which shows the second wave, going towards A.
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Put =0 to get the value of v, at A. Then multiply by a to
produce the value of the reflected wave v; at A. Finally,
multiply by e to get its value at #. The result is

vy = e Vo101 = o1 -0t g (25)
showing the third wave.

Put x=1to get its value at B. Maultiply by B to get value
of the reflected wave v, at B. Then multiply by e%* to get
its value at . The fourth wave is therefore

vy = e~ =2 ﬁa ﬁe—q(sl——a) %e 15! ﬁZe—q(u-a——x) é e. (26) \
After this, it is the same over and over again. So we have
the series
¥ = e—a—a) %c’ V= Be—zq(l—x),vl’
ry= ae_qul'g, v = Be—%{ﬁl—x‘l.s’ (27)
U= o€y, v = By,

and so on. The first wave is given explicitly, and the rest
are obtained in succession by multiplying by one or the other
of two factors in turn. So, by the law of geometric series,
the sum of the v waves is

Uty s“’(”'“‘(l AL Be-?qﬂ-x))
1- aﬂei"z i 1 - afe%t be, (28)

Sv=

which represents the potential at « so far as it arises from the
initial wave to the right.

But there is also the initial wave to the left to be con-
sidered. It is — e 9@-?1¢ between a and A; becomes — e~%3e
at A; generates the new wave —ae~%}e by reflection, which
becomes — ae~4*+21¢ when it reaches ». After that, we have
a succession of reflections at B and A precisely in the former
manner. So, if this new set of waves be called w, we have

wy= — a€~q1a+x)2Le, wy= BG—M(Z—I)wh
Wy = ae~ 2wy, 1, = P00y, }) (29)
s = ae—quu.“ W= ﬁe—ﬂq(l— 1)11'5,
and so on. The total is
Dafdie ae-q(a+z)(1 st Be—ﬂq(l—x))%g’ (30)
1~ afe %

showing the part of the potential at « due to the initial wave
going to the left. The real potential is, therefore, the sum of
the v’s and w’s.

PR ——
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constants lying between the limits —1 and +1. Under these

circumstances the reflected waves are copies of the incident

either full-sized or reduced, with or without reversal of sign.
Thus, o or 3 being + 1 makes four important cases.

(1.) Both ends earthed. The V waves are reflected
negatively, 80 a= ~1=, and

= +(§f§f§ shing(l - 2).c, (87)
g= - :ﬁz 9;; cosh¢(l — a).e. (38)

(2.) Both ends cut. The V waves are reflected positively,
g0 a=1=4, and

shin
Vi=+ 5 Za coshq(l — x).e, (89)
cosh gz ;.
A% i il shin g(1 - a).e. (40)

(3.) Earth at A, and cut at B. Then a= -1, 8=1, and

V,=+ cos}; ‘;‘Z coshg(l - z).e, (41)
shin
9= coshqu shing(l - a).e. (42)

(4.) Earth at B, and cut at A, Here a=1, 8= -1, and

RS Zhinh 9% shin (1 - 2).c, (48)
Sl z"sﬁ L cosh o1 - a)c (44)

These solutions and the more general cases may be easily
converted to Fourier series, if required, by a method to be
explained later. In the meantime it may be noted that the
general solutions (35), (86) may be got by assuming

Vi=¢“F + %@, Vo= e*H + %], (45)

and determining the four time functions by the two inter-
mediate conditions

V1 = Vg —3 0, 01 = Cz’ (46)
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at z=a, and by two terminal conditions. In the case of
equations (87) to (44) these terminal conditions are simply
either V=0 or C=0 at A and B, as may be readily fested.
What the terminal conditions are in general, in relation to
the reflection coefficients a, 8, will now be pointed out.

The Reflection Coefficients in terms of the Terminal
Resistance Operators.

§ 261. The reflection coefficients are usually operators them-
selves. There is no difficulty in finding them. Let V=12,C
at B. This says that Z, is the resistance operator of the
terminal arrangement at B. Now let », be a wave incident
upon B, and v, be the reflected wave. Their sum is the real

potential. So
(%% + Vg= ZIC- (47)

Also, we multiply by ¢/R to get the current belonging to v,
and by —g/R to get that belonging to v, because the first is a
positive and the second a negative wave, going to and coming
from B respectively. So

q(r, — ;) =RO. 48)

Eliminating C between (47), (48) by division, we get
B8 B el g=- 1B/ 49
Y1+, sz’ N F 21 Z1+R/q, (19)

giving B in terms of Z,.
Similarly, if Z, is the resistance operator of the terminal
arrangement at A, we shall have

v +v,= — Z,C, (50)

if v, is the incident and v, the reflected wave. Now v, isa
negative wave, to be multiplied by —R/q to get the current to
correspond, whilst v, is a positive wave, to be multiplied by
R/g; so

—q(vy — 1) =RC. (51)
Eliminating C, we obtain
Oy v, Z,—R/q
diicde = thereforgifaipd=y 0o i1/ 52
v+v g2 v Zo+Rfg Ll
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giving o in terms of Z,. Using these expressions for « and 8
in the solutions (85), (86), they are made completely ex-
pressive. The terminal conditions they satisfy are V= - Z,C
at z=0and V=2,C at z=1.

Cases of Vanishing or Constancy of the Reflection
Coefficients.

§ 262. By inspection of (49), we see that S vanishes when
Z,=R/q. This is because R/q is the resistance operator of an
infinitely long cable line. To say that it equals Z,, asserts
that the cable either does not stop at 8, but goes on to infinity;
or else that if it does stop, there is a terminal arrangement
which is exactly equivalent to the infinitely long continuation,
so far as the real cable itself is concerned.

In this case 8=0 reduces (35) (36) to

Vi= (e — ae®)e]e, (58)

Vo= — (¥4 ae )" Le, (54)
showing two waves only, for there is no reflection at B, and
therefore can be but one reflection at A.

Again, if Z,=R/q then a=0. There is no reflection at A,
because either the cable is continued past A indefinitely, or
else there is a terminal arrangement copying the continuation.
We now have

V= e¥(e % 4 et 1, (55)
V2= A qu(eﬂa ! Be—qul—a))%a, (56)
showing two waves again, the reflection being at B.
Finally, if R/g=Z,=Z,, both « and B vanish, and we
reduce to
Vi=e 05 %1, (57)
Vo= - 9o, (58)
which are simply the primary waves from the source, without
subsequent interference.

It will be observed that the expressions for a, 8 contain ¢,
involving p!. In order, therefore, to have the coefficients
freed from p* (besides in the previous ways), we must intro-
duce p! in Z, and Z,. Say, for example,

R, \} R\
e ___.0_>, zZ =(_1_) i 59
d (SOI’ g B p. ¥
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These mean that the cable AB is put between two other
cables of different types; of the type R,, S, on the left of A,
and of the type Ry, S, on the right of B. The differentiator p
then disappears from « and 8, which reduce to

= (Ro/So)* - (B/S)!
T (Bo/S)TF(RIBY

(By/S)! - (R/S)!

P~ RS+ ®E)

(60)

These are constants, and may evidently have any values
between (and including) —1 and +1. We can get rid of the
reflection at A by having R,/S,=R/S, and of that at B by
R,/S,=R/S. This is somewhat more general than the previous
way of having continuations of the same type as the real
line.* If we do not abolish the reflections, the whole series
of waves summed up in (85), (86) are in action, only with
o and f3 constants instead of, as in the general case, operators
containing p.

General Case of an Intermediate Source of Electrification
subject to any Terminal Conditions.

§ 263. In conection with the preceding, the other kind of
source should be mentioned. The treatment is similar when
the source at #=a is not impressed force, which creates a
discontinuity in the potential, though not in the current, but
is a source of current, creating a discontinuity in the current,
though not in the potential. Thus, let % be the strength of
a source of current at ¢=a (say led to the cable by an
auxiliary wire), then the current in the line increases by the
amount % in passing from left to right past the souree. This
case has been already briefly considered (§250). The primary
waves are

(¥ =G 111 on the right, (61)

ca= —e@=1h  on the left, (62)

* But it is not necessary for the terminal cables to be homogeneous.
For example, if we want R/S=Ry/S;, we may make it go by having any
number of cables in sequence, in which the value of R,/S; is constant,
80 far as the reaction on the real cable is concerned. Compare with the
corresponding property in the diffusion of heat, as described in §233.

VOL. II. G
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and the potentials to correspond are

n=etea B o the right, (63)
1

pym e—tla—2) 1;1‘, on the lef, (64)
q

‘When 7 is steady or impulsive we have already indicated the
cesults. The point at present in question is the extension to
include terminal influences. Have the same reflection co-
efficients as above, and apply them to the present case. The
initial wave to the right is made the same as in § 259,
equation (28), by substituting Ri/q for e, whilst the initial
wave to the left is made the same by writing Ri/q for —e.
There is no other difference. So we may employ the previous
results fully. In particular, the solutions (85), (86) become

9% | g1 z gy PR
Vi e e e (65)
Q% Y/
Vam e (e B 2, (66)

which express the potentials V; on the right side and V; on
the left side of the source . Test that

Vol T oo ol A mps (67)
a3 2 di

at z=a.

Take h=pQ when the source is impulsive. Then (65), (66)
represent the potential due to a charge Q which is initially all
at the point #=a, as modified by the terminal influences.
The conversion to a Fourier series of this result leads to the
expansion of an arbitrary function in all sorts of Fourier
series, not merely the periodic case which rigourists have
tried so hard* to demonstrate, but to the numberless other
expansions which occur naturally in the physics of the matter,
associated with different forms of the coefficients «, 8 regarded
as functions of p. It is no easy matter from the restricted

* I do not mean that they have not succeeded, but that the rigorous
demonstrations are, from a physical point of view, hard to follow and not
very convincing.
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rigorous mathematical point of view to answer the question,
Why should an arbitrary function be capable of expansion in
such or such a series? But from the physical point of view,
the question is rather, Why shouldn’t it? This matter, how-
ever, must come later.

The Two Ways of expressing Propagational Results, in terms
of Waves, or of Vibrations.

§ 264. Having accumulated a stock of formule in the last
few sections, it becomes necessary to explain their connection
with Fourier series. Given an electromagnetic operational
equation, say e=ZC. Here C is some particular effect due to
a cause e, as, for instance, the current in one part of an elec-
trical system due to an impressed force in another part, though
it is not necessary to restrict their meanings in this way. The
-operator Z is to be constructed in the way previsusly explained
in §245 (or in any equivalent way), that is, in the same way asif
the elements of the combination were mere resistances subject
to Ohm’s ‘law, to be generalised in the final result to the
functions of p, the time differentiator, which are appropriate to
the real nature of the elements. '

Some ways of algebrising such operational equations have
been already given, especially applicable to diffusion problems,
though they have a wider application. One way in particular
should be noted and remembered, namely, the resolution of
the operator Z by algebraical division into wave operators.
This is a very simple and powerful method, which applies
very generally in physical problems concerning continuous
media. The effect is to express the solution in the form of
the sum of a series of waves. These may be either simul-
taneous or successive, according to circumstances. There may
be but one wave, or two, or an infinite number. If the
method had no other recommendation, it would have this
important one—that in considering the effect due to a source
it imitates nature by directly expressing the course of events
in the way it happens in actual fact, whereas an alternative
and equivalent formula might completely disguise it.

But there is another very different way of resolving an
operator into other more elementary ones, which leads to a
strikingly different functional expression of the developed

G2
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solution. The results are so entirely unlike the wave results
that their equivalence produces algebraical identities which
are rather astonishing at first. Only by the familiarity with
them, which their universal existence in physical problems
involving propagation (subject to certain restrictions) makes
possible, do they become commonplace. We may express our
results either in terms of the waves or in terms of the vibrations
of normal systems of disturbances. Or, in the latter case, if
the vibrations be frictionally resisted, in terms of the
subsidences or decadences of the normal systems. We may
compare the two developments to the branches and the roots
of a tree. They are widely separated, but have a common
bond in the trunk which joins them. The trunk corresponds,
of course, to the operational solution. No doubt the analogy
will fail if pushed much further. A perfect analogy in every
respect would require an identity—for nothing is wholly like
anything but itself—and an identity would be useless for an
analogy. The present oneis good enough as far as it goes here.

It is not a matter of indifference which way of development
is employed. It may be that in some particular problem one
of the two is far more manageable than the other, or more
amenable to numerical calculation. Apart from this, it
depends upon circumstances which of the two ways is to be
preferred by its natural recommendations. Take, for instance,
the case of a long stretched cord, fixed at its ends. If we
disturb it so as to make a hump or a number of humps run along
the string, that s, if we produce evident and visible progressive
waves, it is natural to express the mathematical results in the
form of waves. Again, if we displace the whole cord to the
form of a sine curve, and let it go, it will vibrate in the same

form over and over again, whether the sine curve be only half

a complete wave length, or have intermediate nodes. Here it
is obviously natural to express mathematically the visibly
evident simple vibrations as vibrations simply.

But in the former case the progressive wave may be
cxpressed entirely in the form of normal vibrations, and in

the latter the vibrations may be expressed entirely in the form -

of progressive waves. The methods are perfectly equivalent
quantitatively. We see at once, however, thatit is not natural

to express the simple progressive wave in the form of normal
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vibrations, or the normal vibration in the form of progressive
wayves, because the results would disguise the reality. The
examples used bere are extreme. In intermediate cases it
may be quite difficult to say which way is preferable, owing
to both ways being complicated. There may, however, be
namerical advantage in using one form ; or, more likely, one
form may be useful in one part of the history of events, and the
other form later, of which there are many examples in diffu-
sion problems. The normal vibrations may involve much
labour in calculation for some particular value of the time,
when, under the same circumstances, the waves are easily
done ; and conversely.

We should remark, however, that in pure diffusion problems
we are not concerned with true vibrations, as of a string. The
resistance stops the vibrations, so the disturbances simply
subside or decay. Thus, if the potential in a submarine cable,
imagined to be quite free from self-induction, be distributed
according to a sine curve, say V=V,sinax, with nodes at
beginning and end, if earthed terminally, and be left to itself,
the curve of potential will preserve its sine form, though con-
tinuously falling to equilibrium. But self-induction will make
it pass through the equilibrium position, and the potential will
vibrate, though decaying at the same time. Thisis oscilla-
tory subsidence. By reducing she resistance, or increasing
the self-induction, or in both ways together, we make the
vibrations last longer, and resemble those of a stretched cord.
The limit would be reached if there were no resistance. The
vibrations would continue for ever, without loss of intensity,
like those of the string in acoustical theory, when friction
is ignored. The stretched cord makes by far the best
analogy for a telegraph ecircuit when it is desired to
have a simple analogy, because every one knows something
about how a cord vibrates, and how pulses are transmitted
along it, and reflected, and so on until finally killed by friction.
They are visibly evident. Now all these things have their
close representatives in a telegraph circuit, which makes the
simple analogy be very useful. Of course, it is an entirely
different matter when the etherial theory is in question; then
suitable analogies are of a different nature, which may,
perhaps, be ag difficult to follow as the electromagnetic theory
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itself, as, for instance, the continuous medium first imagined
by MacCullagh, in which rotational elasticity is involved. In
one respect, however, the stretched cord fails. It does not, at
least in any simple manner, represent the effect of leakage on
a telegraph circuit. Prof. FitzGerald,* however, by employing
the vibrations of air in a pipe in the analogy, was able to
include leakage. But the pipe analogy is not so easily followed
in most respects as the stretched cord, since compressions and
condensations of the air are less easily pictured than the
motions of a cord.

In speaking of the diverse modes of representation as being
in terms of waves and of vibrations, of course progressive
waves are referred to, whether undistorted or distorted as they
progress. Progression is the essence of a wave. ¢ Standing’”
waves are somewhat deceptively so called, if simple normal
vibrations be included therein. Now the reader must be
cautioned against supposing that every operational equation is
convertible, as described, into waves or normal vibrations.
Some operational equations refuse to go more than one way,
save perhaps by artificial expedients. They make waves only,
or vibrations only, but not both. Why these failures occur is
evident in practice by physical considerations. Mathema-
tically, it is due to peculiarities in the form of the Z operator.
As an example of waves only, there can be at most only two
waves from one source situated in an infinitely long cable, as
in§ 255. Then we cannot have a vibrational form of solution
(if we include subsiding normal systems under vibrations),
except artificially. And, of course, when there is only a
limited number of degrees of freedom in an electrical arrange-
ment, as in the theory of condensers and coils, we have
vibrations or vibrational subsidences or pure subsidences of
normal systems in limited number which do not admit of
expression in the form of continuous waves, except perhaps
very artificially. Generally speaking we may have both, when
there is a continuous medium for propagation in some part
of the system. The distinction is usually connected with the
presence or absence of boundaries. If we create a disturbance
in an elastic medium which is quite homogeneous and is

* The Electrician, May 25, 1894, p. 106.
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unbounded, the disturbance goes out to infinity in wave
fashion, and no free vibrations in definite and separate modes
are possible. But if the medium is bounded, the wave cannot
dissipate itself freely, but is reflected and re-reflected any
number of times. We can now express the disturbance in terms
of the vibrations of definite normal systems of a complicated
nature, depending upon the nature of the medium and on the
form, &e., of the boundary. The possibility arises from the
superposition of an infinite number of progressive waves,
and we may express our results either in terms of waves or of
vibrations.

This brings us to the reservation made about an artificial
way of representing a progressive wave by vibrations. If in
the last case we imagine the boundaty shifted further and
further away, however far we go the normal systems remain
distinet and separate, and the two modes of representation are
in force. Now, in the limit, when the boundary is removed
to an infinite distance, the expression for the sum of the
normal systems becomes a definite integral. Thus a single
progressive wave may be expressed by a definite integral as
the sum of vibrations of infinitely numerous normal systems
differing infinitely little from one to the next. Instead of a
definite sequence of separated periods, the periods run into one
another. Of course it is simpler to think of the progressive
wave than of the vibrations in the definite integral which
equivalently expresses it, though not in a desirable manner,
and to derive it directly from the operational solution when
possible, instead of through the integral.

After these general remarks about the chief peculiarities, we
must proceed to show practical methods of manipulating the
Z operator so as to convert operational solutions to vibrating
or subsiding normal systems. It is not difficult by the general
method to be explained. Perhaps it is tooeasy. That is, too
easy in execution, for the theory thereof is more difficult. As,
however, it applies to all sorts of normal systems besides those
concerned in Fourier geries, it will perhaps be best at first
to show the connection of Fourier series with the operational
forms in more special ways, which, though longer, may be
more immediately intelligible to the unpractised in operational
methods.
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Conversion of Operational Solutions to Fourier Series by
Special Ways.

(1). Effect due to ¢ at A, when earthed at A and B.

§ 265. Take, to begin with, an interesting special case,
namely, the effect due to steady impressed force ¢ at A, where
=0, when earth is on at both A and B, where z=1. As
before shown, the operational solution is

_shin g({ =),
T @

The conversion to a Fourier series in this and many other
simple cases can be done by using well-known trigonometrical
identities, assisted by an elementary operational result. Thus,
we have

) ok 2 2 2

x =1- I8 A
FRingy 8 < )2 14 (?I) 1+ (3”>
gt ¢ gl

by trigonometry. Here noting that ¢* means RSp, we see
that we have merely to algebrize (1-+P/p)~'1, where P is a
constant. Thus, in full,

Lyt B (O o1 n B

1+-
or, in the usual brief expression of the exponential function,

—1_. =, (3)

1+ I_)_
P
This result should be noted, as it often turns up. Applying
it to (2), we obtain

o131

l
Shign A ofl — 27" 1 2P oty | 1 ()
where the constants p;, p,, &e., are given by
Po= — 'z RS (5)

Comparing (1) with (4), we see that V will be found by
operating on (4) by
shing(l - z)
peveag AT 5 (6)
ql
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This is a function of 42 also, so involves only complete
differentiations. They may be carried out at length if desired,
but that is unnecessary. For the power of p in the operator (6)
on € ig simply P. It is therefore zero on the first constant
term on the right of (4), then p, on the second term, and so
on. That is, these values are to be put in (6) for p to express
its effect. So (1) is converted to

V=c¢ (1 - f) Cohal -4 e  goling(l-a)ps | - @)

; ql gl
where the ¢’s are the constant values corresponding to the p’s,
through ¢>=RSp. Equation (7) is the full solution, but for

trigonometrical convenience, since the values of ¢2 are negative,
it is best to put ¢2= —s2. This makes

V=e<1 _f) ~gtinel—phak, osinsl -2 _ . @
& sl sql
or, since sinsl =0 for every s,

—e(1 _£> 4 (2 SISZ e gSiNST e L ) 9
el - il sy @
where the s’s are the roots of sin sl =0, which is the same as
saying that the p’s are the roots of shingl=0. In the
customary form (9) is the same as

V=e(1 = ) Wl ap i T e wwiman, (10)
n
This is the equivalent of the wave solution before got.
When t=w, the time factors vanish, and there is left the
final state expressed by the outside term. On the other hand,
when ¢=0, the time factors are unity, and

V=e<l——) 2R AT (11)
l T n !

We know that V is initially zero everywhere except at A,
where it is e. Therefore

1.5 Sreikeis i 12)

except at =0, where the right member gives zero. That is,
the steady state, which is e(1 — z/l), has become expanded in a
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series of sines. But we have got more than we wanted. For
the Fourier series is periodic, with period 2I. So the right
member represents 1 -/l between O and 2!; then the same
values are repeated from 27 to 47; and so on. Similarly on
the left side of the origin. Equation (11) is, in fact, the
solution of the problem of finding V due to an infinite
number of equal impressed forces of strength 2¢ acting all
the same way at the points 0, 21, 41, &c., — 2, — 41, &c., in an
infinitely long cable. This was shown before ag regards the
operational and wave solutions.

(2). Modified Way of doing the Last Case.
§ 266. There is another similar way of getting (9) which is
worth noticing. Use the trigonometrical identity

globth =iy RSl TR b 2y, S

TG e

differing from (2) on the right side only in the signs of the
terms. Let the operand, as before, be 1 in the usual manner,
and we obtain

ql cothgl . e =e(1 + 26" + 2672 4 2P 4 ), (14)

instead of (4) above, with the same values of the p’s.
Now (1) is the same ag

V = (cosh gz — coth g/shin gz)e
—coshgw.o— g_%(l +2t Loy, ), (15)
%
by (14). Here the power of p is zero in the cosh function,

and also in the other so far as the constant term goes, and p,
on 7ty &e.  So, putting ¢2= —s2, we get

V=e (1 = z”f) — 22 Sil:lsx &, (16)

which is the same as (9).
Since circular functions are finally to be employed, we may
put ¢2= —s2 at the beginning if we like, and write
_sins (/- oc) 17

" sinsl



PURE DIFFUSION OF ELECTRIC DISPLACEMENT. 91

instead of (1). Here of course s?is a differentiator, namely,
— RSp. It finally takes the meaning of a constant, or rather
of an infinite series of constants, merely because p has the
power of a constant on the exponential funetion.

The determinantal equation shin¢/=0, or, more strictly,
(shin ¢f)/ql =0, is really the equation finding the admissible
values of p in the normal systems. To every p belongs an s2,
so if we choose to consider the determinantal equation in the
form (sinsl)/sl=0 as finding the values of s, we need only
attend to the positive values.

Notice also that the operator in (1) does not contain p*, but
only the complete p. The elementary waves which make up
the solution (1) do depend on p'l, but the union of all the
wave operators to make the solution (1) causes p! to be
eliminated. The determinantal equation for a cable of finite
length—that is, bounded both ways by some restraint, is always
a rational equation in p, provided the terminal arrangements
themselves are finite* combinations whose resistance operators
are themselves rational functions of ».

(3). Earth at Both Terminals. Initial Charge at a Point.
Arbitra.;y Initial State.

§ 267. A more comprehensive case than the last, bringing
a fresh peculiarity into view, is that of the effect due to an
initial charge at a single place when the cable is earthed at
both ends. There are two solutions in terms of waves, one
for the region to the left, and the other for that to the right
side of the source. To find them put a= —1=L1in (65), (66),
§ 263, and also A =pQ, as there described. Then we obtain

Shm W /gt shin g(1— x) (18)

on the right side of the source, which is a cha.rge Q initially
at the place z=y. To obtain V,, the potential on the left side,
interchange y and x in the last equation.

We see that we have the same denominator shingl as
before. This is clearly because the terminal conditions, earth

* There is an cxception to finiteness in the case of a distortionless
circuit used for a terminal arrangement, because it behaves Lke a mere
resistance when it is infinitely long.
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on at both ends, are unchanged. The denominator sums up
the reflective action of the ends. But it is not to be supposed
that changing the terminal conditions necessarily changes the
determinantal equation. For that depends upon both terminal
conditions, and a change in one may be balanced by a change
in the other. Thus, if both ends were cut, the denominator
would be unaltered, since the signs of both « and 3 would be
reversed. It is their product that determines the subsidence
rates, as we see by (65), (66), § 263, which show that, in the

general case,
0o af (19)

is the determinantal equation.
Returning to (18), and using the result (4), we get

V, = shingy shing(l - z) % (1-2tpadt_ . ),  (20)

with the same values of p as before. The final steady V is
zero obviously, so there is no outside turn, and we get at once
by putting ¢2= -2,

V=%Cz)_2 + sinsy sins(l - z) &*; (=1)
or, since sinsl =0,
= 28%2 sin sy sin sz €. (22)

We have in the last two equations written V for V;, because
the interchange of x and y makes no difference. That is, (22)
represents V at z due to Q initially at y, whether « be to the
right or left of the source. Only one Fourier series is required
to represent the essentially different results to the right and
left of the source.

Putting t=0 and dismissing constant factors, we see th&t if

2 <o
W % 27 sin "_;fsm n_g‘g{’ (23)

the summation including all integral values of » from 1 to @,
then u represents O everywhere between A and B, except at
the point y ==, where it is infinite. But its space total is 1,
because the space total of SV in (22) is Q at the first moment,
before any of the charge has left the cable.
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The function = therefore expresses an impulsive function,
like the p1 with which we were concerned before, only now the
variable is = instead of ¢, or the function is distributed in
length instead of time. Such functions can be represented in
various ways. Every Fourier series involves one form.

If we multiply a continuous function of v, say f(y), by «, an
impulsive function which exists only at the point y ==z, the
product is obviously zero exeept at that point, where it is infinite.
But if we take the space, total of the product uf(y), the result
is f(z). For u only exists at z, and its total is 1. Thus,

[y =sia, @24

if the limits include the point z. If not, the result is zero.
This is the property made use of in Fourier and other series
when employed to express arbitrary functions. The function
u, in the above or other special form, spots a single value of
the arbitrary function in virtue of its impulsiveness.

Suppose, however, that the given function f{y) had no
definite value at a particular place, as happens when there is
a discontinuity, or sudden jump from one value to another.
Here f{y) has any value between the two extremes. Under
these circumstances, what should we expect the impulse to do,
if it can only, through (24), lead to one value? To be quite
fair, it should show the mean value. This is an excellent
reason why it ought to do so, though not a proof that it does.
Why it must may become clear later on.

Applying (24) to the problem in hand, with » as in (28),
we see that

@) =l? =7 sin 272 : 7o) sin"Vay (25)
expands the arbitrary function f(z) in a series of sines, so as
to vanish at #=0 and 7 (where, of course, if f(x) does not
vanish, the formula fails). We also see that

V=227 5in " ot [V, 5in ™Y ay 26)
< 1 l 0 l
represents the potential at « at time ¢ after the moment when
the potential was represented by V,. The former Q is repre-
sented now by SV,dy, that is, the charge on the clement of
length dy.

S ey T A0 il - T I o 2

/
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The formula (25) may, as we have seen, fail either at the
terminals or intermediately at a discontinuity. DBut the
formula (26) does not fail at all for any finite value of the
time. Imitially it is the same as (25), and may fail
then. But the presence of the time functions makes V
continuous. No matter how small ¢ is taken, if not actually
zero, there is no discontinuity. Sharp corners in V, are
instantly rounded off by the time factors, though if graphi-
cally represented there might be no observable difference.
We may take ¢ so small that the time functions differed from
1 insensibly for millions of terms, yet go far enough, and
we must corme to time-functions differing insensibly from O
with the same value of &. So V is necessarily made con-
tinuous in the smallest interval of time after the first
moment, if it be initially discontinuous.

Another way of getting (22) is by using the coth function.
Thus, by (18),

V.=¢lshingy (cosh qz — thilln gy gl coth gl) g (27)
ql

Noting that the first part is inoperative, the result (18) turns
the last to

V = - shingz shingy gi (14267 4+ 27 4, . ) ; 28)

and now, noting that the power of p is 0 in the first term, p,
in the second, and so on, and putting ¢*= —s? we make

=2S_? 2 sinsz sinsy %, (29)
ag before.
Finally, a third way. We have, by (18),
V, =gl shingy S_ln%?_r(f_ql_x) 8 (30)

Now the part after the x was algebrized in §265 ; see equations
(1) and (9) there. Therefore

V,=gl shingy s% { (1 = ’7”) -3 Si’:l‘“'“ evt}; (81)

and now, on effecting the differentiations, which is done af
sight by the power of p being constant in every term, we
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ey/l, the final potential on the right side of the force. On
the left side it is lower by the amount e.
(5). Line Cut at Terminals. Effect of Initial Charge.

§ 269. We may do the effect of a single charge at y in the
same way. Let it be Q, then

Vy =gl 9B ooch g1-2) . &,
y % g 1l-2) . (38)
by (65), § 268, with 2=pQ. This is on the right side of Q,
and on the left side the formula is obtained by interchanging
zand y. Pub¢®=—s% and reject the part involving sin sz.
Then

V,=cos sy cos sz . sl cotsl _SQZ (89)
=% cos sy cos sz (1 +2e" £ 22 4 | | ) (40}
= _g_l{l + 22 cossy cos sw et} (41)

In passing from (39) to (40) the result (14) is used, and the
further passage to (41) involves only a formal change by the
power of p being a constant, as in former cases.
By the last formula we see thab

u—-?+22°° cos Z";—x cos 7% (42)
is a unit impulsive function existing at the point y=u=, like
(28) in fact, sothat the formula (24) applies, and an arbitrary
function may be expanded in cosines thus :—

flay== fl f(y){l +237 cos 2 cos %r_y}dy (48)

The introduction of the time factor e"‘, where p = —n2r?/RSi2, -
in the summation will, by the preceding, represent what the
initial potential f(x) becomes at time ¢ later by diffusion in
the cable with its ends insulated. The final state is a uniform
mean potential.

(6). Earth at A and Cut at B, Effect of Initial Charge.

§270. Next take a case involving a different determinantal
equation. ~Say there is earth on at A and diseonnection at B.
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function for a line twice as long, earthed at both ends. The
corresponding p is the same as that for the line of double
length, so that the subsidence of the first normal system in
the present case of insulation at B takes four times as long to
reach a given stage, as the subsidence of the first normal
system of the same line does when it is earthed at both
ends.

The first normal system is, of course, the most important.
When ¢ is big it is practically the only one worth counting.
When ¢ is smaller, the second one acquires significance, then
the third, and so on, up to the first moment, when the whole
series is required. But these Fourier series are frequently
very unpractical for numerical purposes when ¢ is faken small
on account of the slow convergency.

Periodic Expression of Impulsive Functions. Fourier’s
Theorem,

§271. The above examples are sufficient to show the con-
nection between the operational solutions and the corre-
sponding Fourier series in the simple cases of terminal direct
earth connection and complete disconnection, at least so far
as the particular method employed is concerned, bearing in
mind that principles are often as well illustrated by simple as
by more complicated problems, if not better. The above
process consists in first converting the reciprocal of the deter-
minator shin ¢l or cosh ¢l, &e., to the sum of partial fractions
by using known trigonometrical formule. These are easily
algebrized, and the result is to give V or C or other quantity
at some particular place. Thirdly, we operate on this result
direetly by whole differentiations, which merely means giving
p a constant value in any term, and the result is the solution
at any place in the form of a Fourier series.

Before passing on to another way of considering Fourier
series operationally, some remarks about the functions called
» above may be useful. They were considered merely as
expressing unit impulsive functions located at a point z=y
situated between 0 and !. So far as that goes, they are quite
similar. But in other respects they differ. They are both
periodic, however. Every time « is increased by the amount
21, the sines » and the cosines « repeat themselves. But the
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sines u is an odd funection of #, whilst the cosines » is an even
function. So the sines w is negatived by changing x to — .
The complete meaning of the sines « is therefore an infinite
row of positive unit impulses at the points y=ux, x + 21, 2z + 41,
&e., x — 21, » — 41, &e. ; together with an infinite row of negative
unit impulses at the points y= —», —x+21, —x+4l, &e.,
—2—2l, —x—-4l, &. On the other hand, the cosines u
represents positive unit impulses at all the above places.
Neither of the s is a periodic repetition of a single impulse.

But if we take half the sum of the sines « and the cosines
u, the negative impulses will be cancelled. There is left
simply an infinite row of positive unit impulses at the points
y=a+ 2nl, where n is any integer. The diagram will serve
to fix this plainly :—

Sines

Cosines I

Both . l

2 a 6l

The horizontal straight line is divided into equal lengths
21, and the vertical lines at # and z+ 2nl, —z and —z+2nl
represent the distribution of the impulses in the three cases
of the sines u, the cosines %, and half their sum. By (23)
and (42), the new u is represented by ;

= 2%{1 +227 cos n_;r(y - :c)}, (52)

and its meaning for our purpose is a function of y which is
zero everywhere except at x+ 2nl, where it is infinite, but so
that its total is unity. This « is the periodic impulsive
function concerned in the periodic form of Fourier’s theorem.
For, using (52) in (24), we have

@) =§1J:Z{1 +227 cos "l_"'(y — x)}f(?/) dy, » (53)

which expands an arbitrary function f(x) whose values are
given between the limits O and 27 into the sum of a series of
22
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sines and cosines with constant coefficients, and with a constant
term expressing the mean value. Besides that, it makes the
given values repeat themselves over and over again, with the
period 21, That is, the impulse operator fu . . . dy, in virtue
of itg periodic nature, makes f(z) periodic as well.

When the period is infinitely long, if we put s=nx/l, we
have ds=m/l to represent the step from one s to the next,
which is infinitely small in the limit, when the impulsive
function becomes

1 L
u=7-Jo coss(y —x) . ds, (54)

and its meaning is a unit impulse at the point y== only.
So, applying it through (24) to a function of y, we get

fe) =1 [ ) cossty-a) . dy s, (55)

which is the form of Fourier’s theorem applicable to any
function given between — @ and + o . The mean value, should
it be finite, may be considered separately.

Fourier Series in General. Various Sorts Needed even when
the Function is Cyclic and Continuous. Expansions of
Zero.

§ 272. Fourier’s theorem as exhibited by equation (58)
applies to the diffusion of charge in a cable in two cases only.
First, let the cable be infinitely long, all in one piece, and let
it be charged initially in a periodic manner, say arbitrarily
between =0 and 21, and with repetitions of the same state in
all the other sections of length 2/. Then the expansion (53)
is obviously the proper one. The funection f(z) represents the
initial state of potential. The state at any time ¢ later is got
by introducing the time factor ¢, as in previous cases, in the
summation on the right side. This allows the harmonic
terms to subside or decay, leaving only the mean value of the
initial state behind finally.

But, secondly, it answers the purpose equally well to have
a finite cable, of length 2/, with the ends joined to make a
closed circuit. We may take the origin (x=0) anywhere, and
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z=2l, 41, &c., mean the same as x=0. Equation (58) is the
appropriate expansion to employ, with the time factor intro-
duced to indicate the resulting state at any time.

The action of the time functions is always to make the later
terms in the expansion insignificant compared with the earlier,
so that we may generally say that the successive terms
of the summation, not counting the outside constant term,
are of regularly decreasing importance. And, indeed, in
making practical applications, it will be found that this is
usually true for the initial state itself. We usually find that
the natural order of the harmonic terms in the expansion of
a function is the order of their relative importance inversely.
But this property is by no means a necessary one. One or any
number of terms may be wholly absent, or if not absent may
be very small, and followed by bigger ones. There is then an
exceptional state at the first moment, and for a certain time
after. But when the decadence has progressed sufficiently
we must arrive at a state of things in which the order of
the terms that exist at all is also the order of their mag-
nitude.

When a cable is closed upon itself, say as described above, the
real potential, whatever it may be, is necessarily a periodic
function of z. Now Fourier’s theorem in the form (53) is the
fully periodic form. It might therefore seem that the mere
fact of the periodic character of the potential in the case of a
closed circuit made the periodic form of Fourier’s theorem
obligatory. But this is only accidentally true, as it were. . The
expansion (53) is only one of an infinity of expansions appli-
cable to a closed cable, each in its proper place. For (53) to
be applicable, it is not only necessary for the cable to be
closed, but also for it to be self-contained—that is, there must
be no external connections imposing some restraint upon the
potential or the current at a particular place. The ¢ terminal”
conditions are that V at =0 and V at 2=2/ are identical,
and that C is also continuous at those places, because they are
united, and in such a manner as not to interfere with the con-
tinuity of V and C. We may, indeed, choose the initial
state to violate these conditions. But the violation is only
momentary, for continuity is instantly established by the
action of the time functions.
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But suppose we put a simple leak on at the place z=0,
everything else being unchanged. The charge in the cable
will redistribute itself now in an entirely different manner. For
one thing, it will all leak out of the cable, instead of settling
down to a state of uniform distribution. It is obvious that
the periodic form of Fourier's expansion of the initial state is
unsuitable, although the real potential of the line is periodic.
There is no difficulty in obtaining the proper series, though it
would be too great an interruption of continuity to give it just
now. The peculiarity is that although V is continuous at
z=0 and 2/ (except, it may be, at the first moment), C is not
continuous. The discontinuity in C at the joined terminals is
proportional to the potential there, by Ohm’s law applied to
the leak. The proper Fourier series must be found to satisfy
this condition as well as that of continuity of V in order that
it shall, when the time factors are introduced, represent the
potential at any moment. The initial state may be chosen
arbitrarily and so as to violate the conditions stated, but this
is of no consequence at all in the complete solution for V at
any time.

The simple leak may be generalised to any combination
having a definite resistance operator, by substituting the
latter for the resistance of the leak. Thus we obtain any
number of Fourier series for a closed circuif, which may
represent one and the same arbitrary function (the initial
state). All are continuous as regards V, but discontinuous
at the junection =0 as regards C according to the special
law imposed by the nature of the leak. That is, when ¢ is
finite ; for, going right back to the moment ¢=0, there may
be failure then, viz., by choosing the arbitrary initial state so
as to fail to comply with the conditions.

Instead of a discontinuity in the current (or in the deriva-
tive of the potential), we may make it be a discontinuity in the
potential inself. Thus, we may put a coil in circuit with
the cable, doing away with the leak. And, as before, this
may be variously generalised. Or we may have the potential
and the current both discontinuous at the junction of the
beginning and end of the cable by suitable electrical devices,
In every case there is one and only one appropriate Fourier
serics, and there is no difficulty (save complication in
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detail) in finding it by seeking the solution of the physical
problem of decadence of an initial state subject to the imposed
conditions. On the other hand, if we eliminate the physical
ideas and also the time variation, and look at the matter from
a purely mathematical point of view, there are serious diffi-
culties introduced.

The initial state may be one of equilibrium, say V=0 every-
where. That is, we may expand zero in any number of ways
in a Fourier series. To do this, we require an external source
of electric or magnetic energy. We may, for example, insert a
charged condenser and coil in sequence between earth and the
cable at the junction of z=0 and x=2/. Let the initial state
be a charge in the condenser, but none in the cable. The initial
arbitrary function to be expanded in a F. series of a very
special kind is zero. The time factors make the series be
finite, and express the potential at time ¢ due to the condenser’s
charge. Finally, if the condenser is leaky, we come to zero
potential again in the cable.

We may also require to determine a Fourier series not merely
so as to express f(z) (including zero as a special case) between
certain limits, but also so that certain functions of the
Fourier series may have special values in addition. And then
connected systems of Fourier series are sometimes required,
as when the line is divided into connected sections, with
external conditions imposed at the junctions. Or we may
have a network of cables, of the same type or different,
with imposed conditions, and have to find a set of Fourier
series (or other kind of series if a cable varies in its resis-
tance, &c.), to satisfy all the conditions. And so on to any
extent.

There is no difficulty in obtaining the operational solutions
by the method of resistance operators in a clear and definite
manner, and when that is done we are virtually in possession
of the real algebraical solutions in the cases of simply periodic
impressed forces, and steady and impulsive forces, and arbi-
trary initial states, for the conversion from operational to
algebraical form involves only formal transformations. But
we must now return to Fourier’s theorem. The above remarks
originated in the departures from Fourier's theorem required
even when the function under consideration is everywhere
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continuous and periodic. In the treatment of Fourier series
to be found in certain works, the reader can hardly find a
glimmer of a notion of the subject in its general and compre-
hensive aspect.

Specia,} Forms of Fourier Integrals. Interchangeable
Property. Use in Transforming Definite Integrals.

§ 273. There are two special forms of Fourier’s theorem in
the form of a double integral which should be noted.
Referring to the diagram of impulses, § 271, we see that
when 7 is o the sines u, say u,, is reduced to represent merely
a positive unit impulse at y =2, and an equal negative one at

= —2. The cosines u, say u,, on the other hand, represents a
positive impulse both at y and at —y. The formule are

ul=.2_ cos sy cos sz ds, (56)
a0
il 2

u;=— | sinsysinszds. (57)
TJ o

So, if we use these in the fundamental formula (24), or

(z) = f f(y)udy, (58)

the result on the left side, which is f(x) when u is a single
impulse within the limits as before stated, will depend upon
the limits employed. If the limits in (58) are complete, viz.,
— tow, and we use u;, we shall obtain f(x)+f(—=). But
if we use u,, we shall obtain f(#)—f(—z). For the impulses
are double, and positive or negative as described.

We may, of course, choose the limits so as to exclude both
2 and — 2. Then the result is zero. Or we may include just
one of them, and get either f(x) or +f(-«). The most
useful way is to exclude the whole of the negative values of .
Then (58) applied to », and u, makes

Hom ?_ f : f :f(y) cossycos s dsdy, (59)

f(z)= 7% j : f :f(y) sinsysin sz dsdy. (60)
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Similarly when we write sin for cos in these formule. Examples
are numberless. One or two will suffice here to illustrate. Say
that we know that

Jo(sz) =2 f (Sm ’”5’) dy. (68)
It follows that
e f 3, (s) sin xy dz. (69)
v -

Observe that the limits in (68) are not complete. From =0 to
y=s, the f(y) function integrated has no existence—that is,
y must be greater than s. Consequently, in (69), ¥ must be
greater than s. If yis less than s in (G9) the value of the
integral is zero. (We have assumed that « is positive in (68).
If negative, the — sign must be inserted.)

If we reversed the process and passed from (69) to (68), we
should require to know that the (69) integral is true as given
when y>s, but is zero when y<s. This will exclude the
region O to s from the first integral (68).

Similarly, if Gy (sz) is the companion function to J,(sz), the
second kind of oscillating function, and we know that

f Gy (s) cos zy dx, (70)
(z/
when yis greater than s, but that it is zero when g is less than
s, then we deduce

Gofsz) = 2 \ (Jcos_xsi*l " (71)
the region from y=0 to y=s being excluded. This is like
going from (67) to (66). Reversing the process, we observe
that the condition y>sin (71) has to be preserved in (70).
Else we get zero.

As an extreme case of (61), if we take f(y) to be a single
unit impulse at the point y=z, we obtain F(z)=(2/)!cos xz.
Next, using this function in (62), we come back to the impul-
sive function, in accordance with (56) above. There is a
similar property involved in all normal functions, since they
are capable of expressing arbitrary functions, and, therefore, a
single impulse. Observe that the (69) integral contains two

\
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normal functions, so that we may not only deduce (68) from
it, but also another integral, by employing the interchangeable
property involved in (65).

Continuous Passage from Wave Series to Fourier Series,
and its Reversion.

§ 274. Now, a few words on the reversibility of the process
of getting Fourier series operationally. Given a Fourier
series, say f(z)=2 Asinsz, can we find its meaning opera-
tionally ? Of course, its immediate meaning is given by the F.
series itself. But what the resultant meaning of the sum of the
harmonic functions may be is not evident, and it may be rather
a serious matter to find it by numerical calculation, though
after all the meaning may be quite simple, a straight line, for
example. There is matter for regret here, for whilst the
solution of problems by F. series may be easily elaborated, the
ease is confined to the formulz, not to their calculation,
which gets more and more difficult.

One way of finding the meaning may be briefly mentioned
here. By the introduction of a time-factor to every term of
the F. series we may make it (if of a suitable kind) represent a
real physical problem in diffusion. Then f{xz) means the
initial state. Now I have already pointed out the identity of
the wave solutions and F'. series. It will have been observed
that we can pass continuously from the waves to the F, series.
For we can construct the wave solution of a diffusion problem
expressing the effect due to a given source, subject to terminal
reflections, by writing down the waves themselves in opera-
tional form, first the initial waves and then their consequences
in order, as done in §§ 255 to 260. Adding these together, we
obtain the condensed operational solution, which may be inde-
pendently obtained without thinking out the waves in detail.
Finally, we an convert the result to a ¥. series, as explained
in §§ 265 to 270 in special cases, and in a general way that will
come later.

Is this process reversible ? It is certainly reversible on one
side, for we convert the operational solution to the wave form
by algebraical division. Itis not only in the simple cases of
terminal earth or disconnection that the meaning of the indi-
vidual waves can be ascertained, though I have not given any
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advanced examples in detail yet. As regards the other side,
we can plainly pass from the diffusion solution in a F. series
to the operational solution by simply reversing all the steps.
. Referring to examples before given—first, the constancy of
power of the time-differentiator on € enables us to put the
circular function occurring in the F. series outside the sum-
mation sign, by taking s* to mean— RS(d/d¢). Then the sum-
mation that is left, or Ze??, may be converted to the operational
form Z(1—P/p)~1. Thisseriesof fractions may then besummed.
The final result is an operational formula with unit operand.

But if the reader will apply this reversed process to the
examples in detail hitherto given, he will find that he will not
be able to do it safely with his eyes shut. This is because in
going from the operational equation to the F. series, certain
operations are impotent, and are omitted. So in the reversed
process, they should be restored. This ean only be done by
careful inspection of the problem, and is a question of expe-
rience and judgment. The terminal conditions satisfied by
the solution in F. series should be examined. They must be
satisfied all the way through, and this will enable the complete
reversal to be effected. But, though there may be troubles of
the above kind to be surmounted, it is not a useless way of
transforming from the F. series to waves when the sources
are of a simple nature. On the other hand, should the sources
be not simple, asin the case of subsidence from an ‘“ arbitrary’
state, the case is altered, on account of the integration which
is involved in the determination of the coefficients of the K.
series, which complicates the matter considerably. We may
therefore leave this question on one side.

How to find the Meaning of a Fourier Series Operationally.

§ 275. Another way of regarding F. series operationally
will be conveniently introduced by considering an elementary
example. Given

: 25wl . nre

Hr)= -~ 2 = Sk b

(2) b St e o (72)
Find what f{x) means, without numerical calculation, and

also without introducing time functions to make a diffusion
problem. We see that f(z) is an odd function of z, and that
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it is periodic. It is therefore sufficient if we know its meaning
from x=0 to z=1.

Regard the right member of (72) opera'ionally as a function
of z in the same way as our previous functionsof t. Let A stand
for d/dz. This replaces the former p, the time-differentiator,
Then first we have to convert the series to operational form
as a function of A. This is easy. For we have

gineg =gz 02 1 (G2
A5 e
e i it R
S *(z) it w7y SR G
Similarly, in passing, we see that cossz = same with 1 for

numerator.
Next, using (78) in (72) we produce

nT

e s

b G ( (74)
A

We have already had occasion to employ this formula,
equation (18), with ¢l instead of IA. So
1
= A oA Ty
f(x) =cothl TR ] (75)
with unit operand understood. That is, in getting (73), we
imagine the operand to start at #=0, and be 1 afterwards.
Next, expand the coth function in (75) by division. Thus,

f@)=(1-afl)y+ 2 FA1 201 9.-0 AL | (76)

where we have also algebrised the (!A)1 in (75).

Now this equation (76) expresses the full algebraical mean-
ing of f(z) on the assumption made, namely, that it begins at
z=0. The value of f(z) is explicitly represented by (76) from
z=0up tox=o. Itis1l-«/lfrom 2=0tox=2I. All the
following terms are then zero. From z=2l to x =4[, the
first auxiliary term exists. Its value is 2, and makes f(z)
=38-gz/l. From xz=4l to 6l, the second auxiliary exists as
well as the first. This adds on another 2, and makes
f(z)=5-x/l, and so on regularly. How these jumps come
about through the auxiliary terms will be explained next.

A
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Taylor's Theorem in its Essentials Operationally Considered.

§ 276. Imagine any wave form to be transmitted at a con-
stant speed undeformed, as, for instance, a hump running
along a flexible cord. Let it be as in the figure, naneely, a
triangular hump whose position at the moment of time ¢=0
is A, and at some later time ¢ is B. It is to be imagined to
travel at uniform speed v from left to right, so that the dis-
tance AB is ut, increasing uniformly with the time. If the
base line is the axis of z, the travelling form is our ¢ funection
of ,” its value being the ordinate of the wave form.

A B
Let f(x) represent the function when at A, and let it become
F(x) at B. They only differ in the change of origin. Their
relation to one another is

F(2)=fla—vt); (77
that is, the value of F at z at the moment ¢ is, by defnition,
the same as the value of f at a distance ¢ to the left. Equa-
tion (77) expresses the characteristic property of an undistorted
and unattenuated wave when the speed is constant. It is a
positive wave. When it goes the other way, it is a negative
wave, and the minus sign must be changed to plus.

Differentiate equation (77) with respect to  and ¢ separately
and compare them. We see that
df _ 1 dF

TR e (78)

This is the characteristic partial differential equation of a
solitary undistorted wave. It is easily understood by watch-
ing the transit of a particular part of the wave past a fixed
point, and considering how the speed v of transit combined
with the slope determines the time rate of increase of F' at the
fixed spot. Equations (78) and (77) have practically the

R RN RRRRRNEIRr——————,
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same meaning. Thus, given (78), its solution is (77), under-
standing that f expresses an arbitrary function of .
Now write (78) in the form

dF
e - vAF, (79)
where A stands for d/dz, and solve it as an ordinary linear

equation. This makes
F=¢""y, (80)

where f is a constant with respect to £. In our present case
it is any function of z. That (80) is the solution is verifiable
by its satisfying (79). What fis may be seen by putting t=0.
Then F=f. So f is the initial state of F, and is therefore
the same as the former /. Comparing (80) with (77), we see
that the operator ¢ ~*** is the translation operator, so that
¢ (@) = f(z - nt). (81)
This is the universal property of the operator A when £ is
a constant. What it does, when applied to a function of «,
is to translate it bodily through the distance . to the left.
Applying (81) to the result (76) which gave rise to these
remarks about uniform motion of a function, we found that
a certain F. series, when considered to exist only on the posi-
tive side of the origin, was identical with
TR R T A W PRl T & BT |
where the operand 1 is only positively existent. Denoting
this operand by f(z), the auxiliary terms in (82) are equiva-
lent to
2f(x — 21) + 2f(x — 40)+2f(z—61) +... . (83)
The value of every one of these functions is 2 when it exists.
But the first one only begins to exist when z reaches 2/, the
next when z reaches 47, and so on. The result is that the
constant 2 is added on every time the variable 2 passes the
points x=2!, 4l, 6/, &c. The function (1-z/l) therefore,
which falls down to —1 when 2=2I, and which would by
itself go on decreasing to — w, is lifted up by the first auxi-
liary to its starting value +1. The same series of values is
then repeated between =2l and 4I. Then the second auxiliary
begins and lifts up the function to its initial value for another
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repetition. The F\ series therefore represents (1— x/I) between
0 and 21, followed by unending repetitions of the same series
of values of the function.

If we allow the F. series to exist on the negative side also,
it is sufficient to note that it is an odd function of z, to see its
nature there. The negative side may be done operationally
by itself by ignoring the part already done, and reckoning x
positively the other way; but this is quite unnecessary,
since the work has been already done equivalently on the
positive side.

Equation (81), or, which is the same,

FAf@) =f(m+ ), (84)
is the well-known so-called ¢ symbolical” form of Taylor’s
theorem. For it is merely the condensation of the form
obtained by expanding the exponential, viz.:

(hay , (A, X
gt O e (@)

The form (84) is much more convenient. It is the form that
always occurs naturally in operational mathematics. That
is, we get solutions of the form ¢4 acting upon something
or other, and the meaning is simply a bodily translation
performed upon it.

The way followed above is not the usual way of leading to
Taylor’s theorem, for which see works or the Calculus. It is
a quasi-physical way, by which its truth becomes obvious in
a general sense. It only involves the idea of translation of a
form so far as the essential part goes. But now comes the
question of failures. In faet, the proofs of Taylor’s theorem
are largely devoted to the discussion of modified forms with
remainders occurring when there is some discontinuity,
involving an infinite differential coefficient. When mathe-
maticians come to an infinity they are nonplussed, and hedge
round it. They would, for example, stick at the three sharp
corners in the function above used, which involve discon-
tinuity in the slope, or infinite curvature.

But there is no difficulty of the kind in the physical way of
looking at the matter, so far as the act of bodily translation
is concerned. One shape of the function is just as easily

{1+h;\+
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conceived as another, and we are not limited to the angeli-
cally perfect function which is finite and continuousitself, and
has all its derivatives finite and continuous. It was long ago
remarked by Sir G. Stokes that it is important for physical
mathematicians to conceive of functions wholly apart from
their possible symbolical expression. The remark is particu-
larly important in the discussion of waves and their propaga-
tion, when discontinuous functions have frequently to be dealt
with.

Now (77) is unexceptionable, and requires no special inter-
pretation involving infinities. If f(x) makes a jump suddenly
at any place, so does F(x) precisely at a corresponding place.
(The translation of the form should be thought of, not merely
that of a value. If the curve is upright, the upright piece
behaves just like the rest.) But (78), which is taken to be
equivalent to (77), inasmuch as it utilises differential coeffi-
cients, may require interpretation. We should not say that
the whole thing breaks down if the slope is infinite, because
(78) becomes meaningless. It requires interpretation, but is
not uninterpretable. The variations in dF/dz and those in
dF[d¢ keep pace together precisely, and this tie does not
break when they are momentarily infinite.

Although, of course, in a popular sense, infinities are
immeasurable, they are not necessarily unmeasurable. A
suitable standard is required to measure an infinity. Consider,
for example, the case of electrification. Starting with a finite
volume density, if we imagine it condensed on a surface, we
have infinite volume density. But that causes no trouble. It
is now to be measured by its surface density. Again, imagine
it condensed from finite surface electrification to linear elec-
trification. This means infinite surface density, and therefore
doubly infinite volume density. But we now have a finite
linear density, so there is no difficulty in measurement, or at
any rate in the conception of the suitable way of measuring.
Again, the notion of impulses in dynamies is exceedingly
useful, though it involves the idea of an infinite force. We
must not be afraid of infinity. If suitably measured, it may
be no bigger than zero, or else quite small.

Now I think that similar ideas may with advantage be
introduced into pure mathematics, to enlarge the scope of the

VOL. 1L {
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mathematicians’ investigations, and enable them to tackle
infinities, instead of cvading them. However, we are not
concerned with the real or supposed failures in Taylor’s
theorem,. perhaps rather to be considered failures in the
mathematical machinery. Inthe operational mathematics M
is the translational operator, no matter how many discon-
tinuities may be in the way. We do not have to consider the
infinite values, but just jump over.

In physical applications, say to waves, the subject of opera-
tion is real and single valued, though it need not be finite and
continuous. But I do not see any reason why the translational
idea should not be carried further. Let it be applied to any
definite series of values, or of multiple values, or perhaps to
the case of a multiple pole, involving a collection of infinities.

A ZE'ouner Series involving a Parabola interpreted by
Taylor's Theorem.

§ 277. Since the investigation in § 275 shows one the work-
ing of the inner mechanism of a Fourier series in an interest-
ing way, it will be worth while to consider another example of
the same sort. Wemay put it thus :—

cothlA . flz) =(1+2 2242~ 4A, || )fz)  (86)
flse 2/ZA
s {[—A +2 11 + (nw/lA)? }f( )i )

and if we like to confine ourselves to the region 0 to 2!, we
may omit the translational auxiliaries, and write

S e 2
/&) {l’&+ 11+(7L7-/1A)3}f (8.8')
Take f(z)=1 to make up the expansion of 1 -2/l considered
in § 275.
Next take f(r) =2. Then (88) becomes
a2 w  2/(10)2
g R e
gince z=A"1, 32*=A4-"1. Continuing the algebrisation we
obtain

(89)

2l nrx
=_ = 1-cos—=
= 2l + = ( o0s'= ) ; (90)

P Y W
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or, which is the same,
l o 21 nwy
S s e iy 91
g 2l+3 o Ty S
This is true between =0 and 21.
But the full meaning, according to (86), (87), including the
auxiliaries, is

. i 222 2_:(2% - 1) 2l 21]__[@ Al-..., (92)

where the terms with square brackets are the auxiliaries.
They are to be understood in this way. In (86), f(z) is to be
z, so the auxiliary functions (not doubled) are f(z — 21), f(x — 41),
&c., and these are the same as x — 2{, x — 41, &c., when they exist.
Now f(z) is born when 2=0, and is positively existent. So
S(@—20) is born when =2/, and so on. The final result is
simple enough, namely, that in (92), with a particular value
of x, just as many of the auxiliaries exist as have positive
values. The rest are not yet born ; they are zero.
In the region #=0 to 2/ we have the curve
ae2se il o
Y=g 5 o
‘The ordinate y is } at #=0 and 2/, and has its minimum,
namely, —}, midway between. After =21, it would rise up
to infinity by itself, but the first auxiliary is now existent.
Adding it on, we get
g G e M
V=TT (o1
‘This is the same as
(z=20 _(e-21) 1
2z l 3
‘Comparing the last with (93), we see that they have the same
form, only » in (93) becomes = — 2! in (95). So the values of
y between =0 and 2! repeat themselves between z= 2! and
z=41. Then thesecond auxiliary comes into play, and causes
another repetition of the same series of values of y. And so
on to infinity.
The above refers to the positive side of the z axis. On
the negative side we see the meaning of the Fourier series by
.observing that it is an even function of .

y= (93)

12
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The reader who is curious in this matter will find it useful
to treat various simple Fourier series in the manner of § 275,
to discover their meaning. Thus, given

S(#) = Ao+ Z7A, cos "lﬂ” +37B, sin "lﬂ (96)
This may be converted at sight to
a f(x) 4 AO i Em An 20: B,,('mr/lA) (97)

1T+ (nwfIA)E T 1T+ (nr/ID)2

by the use of (78) and its cosine companion formula. Now
sum up the partial fractions, if you can. The coefficients
are supposed to be known functions of n. The summations
may be effected by the formulee for the expansion of coth A,
(shinlA)~?, &e., in partial fractions, or by formulze derivable
from them. When this is done, comes another important
step. The trigonometrical functions of /A may be expressed
in series exponentially (e.g., like e i &e.), and then Taylor’s
theorem, in its general translational sense, comes into play,
and the full meaning of the F. series becomes evident. We
determine it to represent a certain function between certain
limits, and endless repetitions of the same values caused by
the existence of the auxiliary terms involving the translational
operators. The example in §275 is fully descriptive in a
general way, combined with the explanationin § 276, and the
application may be made to a variety of formule. But the
method is not meant for general use, because the summation
of the partial fractions may be a troublesome matter.

The question arises whether a Fourier series with its con-
stants given numerically can be done in the same way.
Probably it can, by some extension of the process. DBut it
may be necessary to discover first the law followed by the
coefficients, so that they may be regarded as functions of n.

Representation of a Row of Impulses by Taylor’s Theorem,
leading to Fourier’s.

§278. By equation (86), we see that the operator cothiA,

applied to a positively existent function of , turns it into the

sum of f(x) and of twice the sum of its values at the points
x — 21, x — 41, &e.

RIS,
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From this, we conclude that if f{x) exists only between 0
and 2/, meaning thereby that it is zero outside those limits,
the series cothlA . f(z), as in (86), represents fz) first, in its
proper place, and then an infinite series of repetitions of the
values of the same function doubled. For example, if fx) is
a? we get first 2%, next 2(x — 27)%, then 2(z — 4/)?, and so on, in
regions of length 2/, every one by itself.

Therefore
(3 + % cothIA) f(z) (98)

represents f(z) and periodic repetitions of the same (not
doubled), from #=0 to », still understanding that f(z) is
zero except between 0 and 2/.

And by a slight extension we see that if

B (e T f VA L TAL AL V), (99)

then F(x) represents f(z) and periodic repetitions to right and
left through the whole range of z from negative to positive
infinity. Only one term exists (or is finite) at a time. DBut
if f(xz) be so chosen that its initial and final values do not
agree, there is a jump in the manner before alluded to.
The periodic praperty F(z + 2!) =F(x) is momentarily violated
—as regards a single value of the function—unless we repre-
sent the vertical part of the curve by the mean value.

Now, the reader may amuse himself by considering the
exponential expansions of other trigonometrical functions of
a differentiator, as than /A, and the reciproeals of shin /A and
cosh /A, and their powers as operators on a function. It will
be sufficient here to derive Fourier’s theorem in its general
form from the above.

Go back to (99). By construction the series I(z) has the
same meaning as Fourier’s

2
Fo)= [ wE @), (100)
o
1 =00y = 2)
where 1 1+22, st (101)
Here » is expressive of a unit impulse at the points = + 2xl, as

before explained, and (100) shows how a single value of the
function is isolated.
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Now Al is a unit impulse at the origin of the variable. Lek
the variable be y —2. Then A1l signifies a unit impulse at the
point y =, and nothing anywhere else. o, by (99), we have

o (1 plem HAL TR T HA L M8 ) YA SN

Since, by construction, this « represents the periodic unit
impulse, like (101), we see that (102) must be the operational
form of (101) itself.

But to algebrise (102) it is convenient to consider the
positive and negative regions separately. Split » into halves,
thus :(—

wy =31 + 26~ B4~ AL L DAL, (108)
sy m (U 2 R g A (104)

Here u, is for the positive side, and u, for the negative, %,
meaning half a unit impulse at the origin y =, and whole ones
at y=2+4 21, x + 47, &c.; whilst v, means half a unit impulse
at y =2, and whole ones at z — 2/, x — 4!, &ec.

Now (108) is equivalent to

u1=2ll cothZA . 7A. (105)

This is equivalent in partial fractions to

R 2 9
ul—g{n el s 1+(2Wﬂ_\‘)z+...}. (106)

Finally, the algebrisation is immediate, making

u,=2!l{1+ Qcosg(g/—x)+2cos.2l_7r(y—x)+ g .}.(107)

This result shows the same expression identically as Fourier’s
% in (101). DBut it has not the same meaning. Remember
the reservation that y—z ranges from O to « only in
connection with #,. In (105), (106) the positively existent
unit operand is understood. So (107)is limited to thepositive
side.

Similarly, from the symmetry of the complete » in (102)
with respeet to the origin y =z, or by reckoning y - z positively =
the other way, so that u,is represented formally by u;, we find
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that », is given by the same expression (107) as »,. Only in
this case y has to be not greater than z.

So, removing the restriction, we see that the sum of #, and
u, has the same expression as either. No change is needed in
the trigonometrical formula because it is an even function of
y—«. In itsuse to represent u, or u, alone, we merely restrict
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