

OUTLINES OF CHEMISTRY,

FOR

THE USE OF STUDENTS.

C 68236nx

OUTLINES OF CHEMISTRY,

For the Use of Students, OF

TORDATO

WILLIAM GREGORY, M.D.,

RV

PROFESSOR OF CHEMISTRY IN THE UNIVERSITY OF EDINBURGH.

WITH NUMEROUS ENGRAVINGS ON WOOD.

PART I.-INORGANIC CHEMISTRY.

LONDON:

PRINTED FOR TAYLOR AND WALTON,

UPPER GOWER STREET.

MDCCCXLV.

LONDON : BRADBURY AND EVANS, PRINTERS, WHITEFRIARS

STROMO

With a Farmer

THE present work is designed exclusively for the use of students attending Lectures on Chemistry, and is more particularly adapted as a Text-book for my own Lectures. It has no pretensions to any more important character; and is so far from being intended as a substitute for any of the larger elementary works, that its chief value, if it possess any, will be, that it serves as an introduction to those works.

Every teacher of Chemistry must have felt the want of a compact text-book, the price of which might place it within the reach of every student; and it is the long-felt sense of this want which has led me to compile these outlines. The importance, to beginners, of having some such guide and some such help to the memory, cannot, I believe, be over-estimated.*

Some apology, or explanation at least, may seem to be required for the omission of certain subjects, usually treated of in elementary works on Chemistry. I allude to the subjects of Heat, Light, Electricity, and Magnetism : in short, to the Imponderables. It is not without ample consideration that I have taken this step.

For nearly ten years past, I have been in the habit, in my lectures, of treating these subjects very briefly, partly because, in my opinion, they belong almost entirely to the province of Physics : but also, and chiefly, because the enormously increased extent and importance of Chemistry, especially of Organic

^{*} It is proper here to state that this work was commenced before the late work of Dr. Fownes was announced; and that its publication has been delayed by circumstances connected with my removal from Aberdeen to Edinburgh.

Chemistry, rendered every moment of time, in a course of lectures which at best could be but imperfect, precious in the highest degree.

Since I had the honour to be appointed to the Chair of Medicine and Chemistry in the University and King's College, Aberdeen, in 1839, I have altogether discontinued the teaching of the above-mentioned subjects as regular sections of the course; and have only taught them incidentally, that is, where they naturally come into very close connection with Chemistry ; and by this means I have been enabled to devote about three months, out of five and a half, to Organic Chemistry, a branch of the subject of the highest importance to medical students, and, as is well known, of daily increasing interest and value, from its applications to physiology and to the useful arts. I am inclined to believe that, if, by the omission of the Imponderables as a regular part of the course, anything has been lost, the comparatively full, although yet too brief, development of Organic Chemistry has furnished more than sufficient compensation.

But, in truth, the Imponderables are now very generally, as they undoubtedly ought to be, taught as a part of Physics by the lecturers on Natural Philosophy, so that the teacher of Chemistry is not absolutely required to do more than to explain their most important bearings on Chemistry.

It is probably on account of such considerations that the opinion has long been gaining ground among teachers of Chemistry, that it would be desirable to confine their attention more particularly to matters essentially chemical, than to those branches of Physics which are in some measure related to Chemistry. But although this opinion is very general, the habit of teaching these branches of Physics as part of our courses of Chemistry has still continued to prevail; and, consequently, the appearance of a chemical text-book without them will appear to many a novelty.

I wish it to be clearly understood, that, in omitting these subjects, I am not actuated by any doubts as to their great importance and value to the chemist. It is necessary that the

chemist should be well acquainted with them, at least in so far as they bear on his own science; but it is impossible for the teacher of Chemistry, who gives a fair view of its present state, to undertake, in addition, the teaching of so great a part of Physics. The student of Chemistry must obtain that knowledge elsewhere, just as he does his knowledge of arithmetic, mathematics, or mechanics, all of which are highly useful to him, but which the chemist is not expected to teach.

The present work, therefore, is to be viewed as giving a brief sketch of the Chemistry of *ponderable substances only*; and with the experience of several years in teaching this Chemistry, with only occasional and incidental references to the Imponderables, I venture to testify that this method of instruction in Chemistry has many advantages over the old one; in particular, that this alone enables the teacher to do justice to Organic Chemistry.

The reader will perceive that while I have given both the rival theories of the constitution of Acids and Salts, I have indicated a decided preference for the new one, that, namely, which considers all hydrated oxygen acids as really hydrogen acids, and thus unites all acids into one series, while salts are viewed as compounds in which the hydrogen of acids is replaced, wholly or partially, by its equivalent of metals.

This theory, along with the usual view of acids and salts, will be found minutely illustrated in the sections which treat of the acids formed by sulphur and oxygen, of the phosphoric acids, of salts generally, and of the phosphates in particular.

In close connection with the theory of acids and salts, stands the doctrine of polybasic acids, which in the present state of our knowledge appears to be so well founded, that we must admit it, and so simple that it materially facilitates the teaching of what would otherwise be most complicated and difficult. This doctrine I have adopted and fully illustrated under the heads of Phosphoric Acid and the Phosphates. But while adopting, on these points, the views held by Professor Liebig, I agree with him in considering them not as permanently established truth,

but only as best agreeing with the facts known to us, and therefore the best theoretical doctrines within our reach, although likely, nay, certain, in process of time, to be modified or even replaced by better, the natural result of improved knowledge. In the mean time they serve an important purpose; that, namely, of enabling us to systematize or classify our actual knowledge, and thus to obtain fresh starting points for new researches.

There is one more feature of this work to which I would direct attention. In describing chemical processes, or chemical changes, I have, as a general rule, added to the verbal description a representation of the reaction in the form of an equation, exactly as I am in the habit of doing in my lectures. This method I have found most advantageous, and it gives me great satisfaction to find that Professor Gmelin, in the new edition of his "Handbuch," has followed exactly the same plan. The use of such equations enables us to place the most complex reactions in the clearest point of view; and they also furnish data for all the calculations which are so often required in the laboratory.*

Finally, the brevity with which Inorganic Chemistry has here been treated will enable me, in the second part, without adding to the intended size or price of the work, to devote to Organic Chemistry a space proportionate to its importance, and to the share of time allotted to it in my lectures. That second part is now in preparation, and will appear early in Spring.

WILLIAM GREGORY.

University of Edinburgh, 20th Dec., 1844.

* Those readers of this work, among the students of the University of Edinburgh, who may wish to perform for themselves the experiments and processes described, will find the necessary apparatus and materials, at reasonable charges, in the establishment of Messrs. KEMP & Co., opposite the College.

viii

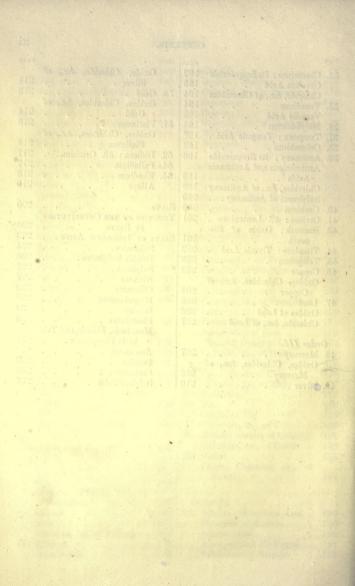
CONTENTS OF PART I.

PAGE

INTRODUCTORY	. 1
Elements	. 2
Affinity	. 3
Nomenclature	. 4
COMBINATION	. 6
Combination Decomposition	. 9
DEFINITE PROPORTIONS .	
TABLE OF EQUIVALENTS .	. 14
USES OF EQUIVALENT NUMBERS	. 15
ATOMIC THEORY	
SYMBOLS AND FORMULE .	
COMBINATION BY VOLUMES	
ISOMORPHISM	. 34
ISOMERISM	. 39
METALLOIDS	. 41
1. Oxygen	. 41
Ovides	. 44
2. Hydrogen	. 45
Water	. 47
Deutoxide of Hydrogen	. 53
3. Nitrogen	. 54
Atmospherical Air	. 55
Eudiometry	. 56
Protoxide of Nitrogen	. 58
Deutoxide of Nitrogen	. 59
Hyponitrous Acid .	. 60
Nitrous Acid	61
Nitrous Acid	. 61
Amide : Ammonia	64
Ammonium	66
4. Chlorine	68
Hydrochlamia Acid	71

	Nitro-hydrochloric Acid .	74
	Hypochlorous Acid	
	Chlorous Acid	76
	Chloric Acid	77
	Perchloric Acid	78
	Compounds of Chlorine and	
	Öxygen	79
	Chloride of Nitrogen	80
5.	Bromine	80
	Bromine Hydrobromic Acid : Bromic	
	Acid	82
6.		83
	Hydriodic Acid	84
	Iodic Acid	85
7.		87
	Hydrofluoric Acid	88
8.		88
	Sulphurous Acid	90
	Sulphuric Acid	91
	Hyposulphurous Acid	95
	Hyposulphuric Acid	95
	Sulphuretted Hyposulphuric	
	Acid	96
	Bisulphuretted Hyposulphu-	
	ric Acid	96
	Tabular view of the com-	
	pounds of Sulphur and	
	Oxygen : with a view of	
	the Constitution of Acids	97
	Sulphuretted Hydrogen	98
	Persulphuretted Hydrogen .	99
	Sulphurets of Ammonium .	100

PACE


CONTENTS.

		PAGE		PAGE
	Chlorides of Sulphur	102	Order II.	
9	. Selenium		17. Barium : Baryta	155
	Selenium with Oxygen and		Chloride, &c., of Barium .	157
	Hydrogen	104	18. Strontium	158
10	Hydrogen Phosphorus	105	19. Calcium	158
10.	Dhamhama mith Ommun	105	Chlorido fra of Coloium	159
	Phosphorus with Oxygen .		Chloride, &c., of Calcium .	
	Phosphoric Acids	108	20. Magnesium	160
	Theoretical views of these		Magnesia	161
	Acids	111		
	Phosphuretted Hydrogen .	113	Order III.	
	Chlorides of Phosphorus .	115	21. Aluminum	162
11.	Carbon	116	Alumina	
	Carbon	117	Alumina	164
	Carbonic Acid	118	24. Thorinum: 25. Zirconium	
	Carbonic Acid Carburetted Hydrogen	120	24. Inorinum: 25. Zircomum	104
	Cranagan	191		
	Cyanogen Sulphuret of Carbon	141	METALS.—Class II.	
10				
12.	Boron	123	Order I.	
	Boracic Acid		26. Manganese : its Protoxide .	165
	Fluoride of Boron		Peroxide of Manganese	166
13.	Silicon	125	Manganic Acid	167
	Silicon	126	Permanganic Acid	168
	Fluoride of Silicon	127	Chloride, &c., of Manganese	168
			27. Iron	170
35	and a second	127	Protoxide of Iron	171
MEI	rals	146	Frotoxide of from	
GEN	ERAL OBSERVATIONS ON	105	Sesquioxide of Iron	
	Metals	127	Magnetic Oxide of Iron	173
	Metals with Oxygen	129	Chloride, &c., of Iron .	174
	Reduction of Oxides	132	Carburets of Iron	
	Metals with Chlorine .	134	28. Zinc: Oxide of Zinc.	176
	Metals with Sulphur	136	Chloride, &c., of Zinc	177
	Action of water on Chlorides,		29. Cadmium	177
	Sulphurets, &c. &c.	138	. 30. Tin	178
	Alloys	139	Oxides of Tin	179
	Classification of Metals .	139	Chlorides, &c., of Tin	
	Classification of Metals .	100	31. Cobalt: Oxides of Cobalt .	
1	and the factor of the second little			
Mei	TALS.—Class I	141	Chlorides, &c., of Cobalt .	
0	rder I	141	32. Nickel	183
14	rder I	141	Oxide, Chloride, &c., of	1.1
	Potash	143	Nickel	184
	Potash	140	A REAL PROPERTY AND A REAL PROPERTY.	
	Detessium	147	Anden II	
10	Potassium	147	Order II.	10+
15.	Sodium	149	33. Arsenic: Arsenious Acid .	185
	Soda .	151	Detection of Arsenic	
22.2	Chloride, &c., of Sodium .	152	Arsenic Acid	190
16.	Lithium	153	Arseniuretted Hydrogen .	191
	Ammonium	155	Sulphurets of Arsenic .	192

x

		PAGE		PAGE
34.	Chromium : its Sesquioxide	192	Oxide, Chloride, &c., of	
	Chromic Acid	193	Silver	211
	Chloride, &c., of Chromium	194	50. Gold	213
35.	Vanadium	194	Oxides, Chlorides, &c., of	
	Vanadic Acid	195	Gold	214
36.	Molybdenum	195	51. Platinum	215
37.	Tungsten : Tungstic Acid .	197	Oxides, Chlorides, &c., of	
38.	Columbium	198	Platinum	216
39.	Antimony : its Sesquioxide	198	52. Iridium : 53. Osmium	217
	Antimonious and Antimonic	1100	54. Palladium	217
	Acids	199	55. Rhodium	218
	Chlorides, &c., of Antimony	199	Alloys	219
	Sulphuret of Antimony	200		
40.	Uranium	200	SALTS	220
41.	Cerium: 42. Lantanium .	201	THEORIES OF THE CONSTITUTION	
43.	Bismuth: Oxide of Bis-	a di la	OF SALTS	220
	muth	201	SALTS OF INORGANIC ACIDS	223
44.	Titanium : Titanic Acid .	202	Sulphates	224
45.	Tellurium	203	Double Sulphates	226
46.	Copper	203	Sulphites	227
	Oxides, Chlorides, &c., of	Den Th	Nitrates	227
	Copper	204	Chlorates	229
47.	Lead	205	Hypochlorites	229
	Oxides of Lead	206	Iodates	230
	Chloride, &c., of Lead .	207	Phosphates	230
	where any province in the second		Monobasic, Bibasic, and Tri-	
0	rder III.		basic Phosphates	231
48.	Mercurý	207	Arseniates	232
	Oxides, Chlorides, &c., of		Borates	233
	Mercury	208	Carbonates	234
49.	Silver	210		236

xi

OUTLINES OF CHEMISTRY.

ありたちましたのである

INTRODUCTORY.

THE world in which we live is formed, in its different parts, of a number of distinct kinds of matter, amounting, according to the present state of our knowledge, to about 55. These are called elements, elementary bodies, or simple substances. The forms of matter with which we are most familiar, how-

The forms of matter with which we are most familiar, however, are not elementary. If we examine the matter of which a rock, a tree, an animal, the atmosphere, or the ocean are respectively composed, we shall find that all those objects may be proved to contain two or more distinct kinds of matter; that is, two or more elements. Where this is the case, we call the substance a compound body.

A compound, therefore, may be resolved into its elements; whereas an element, or simple substance, cannot be made, by any means yet known to us, to yield more than one kind of matter. Brass, which is compound, may be resolved into copper and zinc; but from copper or zinc we can obtain only copper or zinc. Vermilion may be shown to contain sulphur and mercury; but sulphur can only be made to yield sulphur, and mercury, mercury.

But when we call any substance elementary, or simple, we do not mean that it is certainly or essentially so; we only say that hitherto, in our hands, and exposed to all the various agencies which we can bring to bear on it, it has yielded only one kind of matter, or element, and no more. In the early part of the present century, the alkalies and earths were believed to be elementary bodies, because only one kind of matter had ever been obtained from them; but the new power of galvanism enabled Davy to discover that all these bodies were compound. It is far from being improbable that, in the progress of discovery, several, perhaps many, of the 55 elements which we are now compelled to admit, may, in like manner, prove to be really compound bodies.

ELEMENTS.

Till then, however, we must be content to class together, as elements, all those bodies which have not yet been resolved into other kinds of matter; and of these undecomposed bodies, or elements, all material objects are constituted. Here follows the list of the elementary bodies at present admitted, with the abbreviation, or symbol, which is used for each element placed after the name:—

ELEMENTS.

Oxygen	. 0	Erbium ?	
Oxygen Hydrogen Nitrogen	. н	Terbium?	
Nitrogen	. N	Manganese	Mn
Sulphur	. 8	Iron (Ferrum)	Fe
Phosphorus	. P	Cobalt	Co
Carbon	. C	Nickel	Ni
Carbon Chlorine	. Cl	Iron (Ferrum). Cobalt Nickel Zinc	Zn
Bromine	. Br	Cadmium	Cd
Iodine	. I	Lead (Plumbum) .	Pb
Fluorine		Tin (Stannum)	Sn
Boron	. B	Bismuth	Bi
Silicon		Copper (Cuprum)	Cu
a servicita interior Dia se	11 4.13	Uranium	U
Selenium	. Se	Mercury (Hydrargyrum)	Hg
Carlo and the state of a later		Silver (Argentum)	Ag
Potassium (Kalium)	. K	Palladium Rhodium Iridium Platinum	Pd
Sodium (Natrium) .	. Na	Rhodium	R
Lithium Barium	. L	Iridium	Ir
Barium	. Ba	Platinum	Pt
Strontium	. Sr	Gold (Aurum)	Au
Calcium	. Ca	Osmium	Os
Magnesium	. Mg	Titanium	Ti
Aluminum		Tantalum	Ta
Glucinum		Tellurium	Te
Yttrium		Tungsten (Wolfram) .	W
Zirconium	. Z	Molybdenum	Mo
Thorium	. Th	Vanadium	V
Cerium	. Ce	Chromium	Cr
Lantanium	. La	Antimony (Stibium) .	Sb
Didymium ?		Arsenic	As

(The symbols or abbreviations are in every case taken from the Latin names of the elements, so as to be universally understood. Should the three new metals lately discovered by Mosander be established, the number of the elements will be 58.)

Of the above list of elements, about 14 constitute the great mass of our earth and of its atmosphere. The remainder occur only in small quantity, comparatively; while nearly a third of the whole number is so rare, as not to admit of any useful application.

By their external aspect, the elements may be divided into two classes; and these classes are also found to possess other distinctive characters. Thus the twelve first in the list, which are called non-metallic bodies, or metalloids, are easily distinguished from all those after potassium, inclusive, which are metals. The latter possess that peculiar brightness and opacity of surface which is called the metallic lustre, of which the former are destitute. Again, the metals are all found to be excellent conductors of heat and electricity, while the metalloids conduct these influences very badly, with the exception of charcoal, which, when in certain states, conducts electricity almost like a metal.

Selenium has the metallic lustre, and is by some considered a metal; but it is a non-conductor of heat and electricity, and · in all its chemical relations and analogies belongs to the nonmetallic bodies.

This division of the elements is of great use in facilitating the study of chemistry.

The elements are capable of combining together, metalloids with metalloids, metals with metals, and metalloids with metals.

When two elements unite together, they give rise to a new substance, a compound of the two; and, generally speaking, the compound has properties entirely distinct from those of its elements. Thus, sulphur and mercury, a yellow earthy solid and a white fluid metal, unite, and give rise to a fine red powder, which is vermilion. It is not possible, by the eye, to distinguish two kinds of matter in the vermilion, any more. than in its elements, so completely have the properties of those elements disappeared. But, by chemical means, we can prove that vermilion contains both mercury and sulphur. These elements are said to be combined, so as to produce vermilion, which is said to be a compound, or to be composed of them. In such a case, the combined elements can no longer be separated mechanically from each other. They are held together by a force which is called chemical attraction, or affinity, the real nature of which we do not know. It resembles cohesion, since it holds together the particles of matter: but while cohesion is only exerted between particles of the same nature, as, for example, between those of sulphur, or between those of vermilion, affinity is only exerted between particles of different kinds of matter, for example, between the particles of sulphur and of mercury.

By affinity, then, we understand simply that force, whatever

COMPOUNDS.

may be its nature, by which the particles of one elementary body are made to unite with those of another. When once united, the particles of the compound obey the laws of cohesion exactly as if they were simple particles.

It is the object of chemistry to investigate the properties of the elements, the laws which regulate their mutual actions, and the nature and properties of the compounds which arise from their union.

Before describing the individual elements, it is necessary to explain to the reader certain terms and phrases of very frequent occurrence, as well as to mention the general laws which regulate chemical combination.

Combination occurs when two or more bodies unite together: decomposition takes place when bodies, previously united, are made to separate from each other.

When oxygen enters into combination with any other element, the compound is called an oxide; the compound of chlorine with any other element is called a chloride: and with bromine, iodine, and fluorine, we have, in the same way, bromides, iodides, and fluorides. The compounds of sulphur, phosphorus, carbon, selenium, &c., with metals, are called sulphurets, phosphurets, carburets, seleniurets, &c.

When a compound body possesses a sour taste, reddens vegetable blue colours, and neutralises alkalies, it is called an acid. If composed of oxygen united to a metalloid, such as carbon, or a metal, such as chromium, the acid is simply named from the metalloid or metal, as carbonic acid, chromic acid. But if the acid contains hydrogen united to a metalloid, the word "hydro" is prefixed; as hydro-chloric acid (hydrogen and chlorine), hydro-sulphuric acid (hydrogen and sulphur), &c.

Where the same element forms with oxygen several acids, they are distinguished by their terminations, as sulphuric acid, sulphurous acid; the acid in *ic* always containing most oxygen : but where new acids of intermediate composition are discovered, it is necessary to use the prefix "hypo,"—as hyposulphurous acid, hypo-sulphuric acid, meaning acids containing less oxygen than sulphurous or sulphuric acids respectively; or "hyper," as hyper-chloric acid, meaning an acid containing more oxygen than chloric acid.

When a compound body has an acrid, urinous taste, restores to blue the colour reddened by an acid, and, above all, if it possess the property of neutralising acids, or causing their acid properties to disappear, it is called an alkali, or more generally a base, or a basic substance.

We have seen that oxygen is an element of many acids ; it

is also an element in most bases. Almost all the metals are capable of forming one base, several form more than one base, with oxygen. These bases are usually called oxides of the metal: and where there are two, that which contains least oxygen is usually called protoxide, and that which contains most oxygen, peroxide; as the protoxide and peroxide of iron, &c.

Acids and bases unite together, and the characteristic properties of both disappear.' They are said mutually to neutralise each other, and the resulting compound is called a salt. If neither the acid nor base be in excess, the salt is a neutral salt; if the acid predominate, it is called an acid salt, or a super-salt, and if the base prevail, it is called a basic salt, or a sub-salt. The salt is named from both the ingredients. Thus, when sulphare of soda; when phosphoric acid unites with lime, the acid being in excess, the salt is called acid phosphate of lime, or superphosphate of lime; and when nitric acid unites with oxide of mercury, the latter being in excess, the compound is called basic nitrate of mercury.

Besides acids and bases, there is a third kind of oxides, namely, such as have neither acid nor basic properties. They are called indifferent oxides, and sometimes superoxides; as, for example, peroxide, properly superoxide of manganese.

The term "radical" is applied to any body which, by uniting with an element, can give rise to an acid or a base. Most of the elements play the part of radicals : but we have, besides, compound radicals, containing two elements, like cyanogen, or even three or more elements, like benzoyle or kakodyle. The compound radicals unite with elements, just as if they were themselves elementary. Thus, cyanogen unites with hydrogen to form an acid, and kakodyle unites with oxygen to form a base.

nicohel. Indext, the liquid form in as in word if to charded metrical flux the bismust screenily on locyons to hove also we have of the authences, where bellen by writice to stylin, thus here.

COMBINATION.

the structures line bails by a build

THE force of chemical attraction, or affinity, is unequal in the case of different substances. Thus, the affinity between potassium and oxygen is more powerful than between gold and oxygen.

The capacity of one body to unite with another is mainly affected by two circumstances; namely, the state or form of the substances in question, whether solid, liquid, or gaseous, and the temperature at which they are brought together.

Cohesion tends to keep the particles of bodies in close proximity, while the tendency of heat is to separate them from each other. When cohesion predominates over the repulsion due to heat, the body is solid : when cohesion and repulsion are exactly balanced, it is liquid; and when repulsion predominates, it becomes gaseous.

It is obvious that, since chemical attraction operates between the particles of different bodies, and only when they are at infinitely small distances, the cohesion between the particles of two solid bodies respectively must impede chemical action by preventing the sufficiently close approximation and intermixture of the particles which have affinity for each other. Hence the solid form is most unfavourable to chemical action, although, in rare cases, the power of affinity is sufficient to overcome the obstacle. Thus, phosphorus and iodine, both in the solid form, act powerfully on one another.

But if one or both of the bodies be liquid, the particles of both readily come so near as to admit of affinity producing its full effect. Thus, bromine acts violently on phosphorus, although the latter is solid; nitric acid, in like manner, dissolves metals, and the same acid acts with great energy on alcohol. Indeed, the liquid form is so favourable to chemical action, that the chemist generally endeavours to have one or both of the substances, whose action he wishes to try, in that form. Moreover, when two solid bodies, as is generally the case, refuse to act on each other, it is commonly sufficient to cause one of them to assume the liquid form. This may be done in two ways; either by applying a sufficient heat to melt it, or by dissolving it in water or some other solvent. Thus, iron and sulphur, when mixed in the solid form, do not combine; but if the sulphur be melted by heat, rapid combination takes place. Again : citric acid and carbonate of soda do not act on each other when dry; but if water be added to the mixture, the acid dissolves, and brisk action ensues.

It is evident that heat, being opposed to cohesion, will promote chemical action whenever cohesion or the solid form is the obstacle : and this is the source of the immense value of heat in chemical and manufacturing processes : as, for example, in the smelting of metals from their ores.

But when cohesion has been still further overcome, and the body has assumed the gaseous form, a new impediment is offered to chemical action. The particles, by the predominance of the repulsion due to heat, are now so far removed from each other, as not to come readily within the sphere of chemical affinity. Hence, two bodies in the gaseous form seldom act on one another, unless their mutual attraction be very strong, as in the case of hydrochloric acid gas and ammoniacal gas; or by the aid of heat, light, or electricity, as in the case of chlorine and hydrogen gases. As heat is here the cause of the obstacle, the appropriate remedies are cold and compression, which tend to bring the particles nearer. Heat and electricity are supposed to act by producing compression of some particles in consequence of the expansion of others; but heat certainly acts also by increasing the force of affinity.

Even where only one of the bodies is gaseous, chemical action is much impeded, especially if the other be solid. Still, in many cases, solids and liquids do slowly act on gases; and by such means some of the most important processes in the organic kingdoms are carried on : as, for example, the respiration of animals, and the growth and decay of plants.

In some cases, as in that of hydrochloric acid gas, the affinity between the gas and water is so powerful, that they combine instantaneously when brought into contact.

There are other cases in which solid bodies at the ordinary temperature are incapable of combining with gases, but in which a high temperature, although it opposes chemical action by its tendency to remove still further the particles of the gas, yet, on the other hand, so much exalts the power of affinity as to be the most powerful promoter of combination. The effect of heat in causing wood, coal, or charcoal, to combine with oxygen, as in ordinary combustion, is a familiar example of this: and as, in this form of experiment, the combustion, once begun, produces a great amount of heat without external aid, it is in this manner that heat is obtained and rendered available for the useful purposes above alluded to.

A gaseous body, which under ordinary circumstances will not combine with another substance, may be made to do so, if presented to it in the nascent state, that is, while it is separating from another solid or liquid body. Thus hydrogen gas, if formed in contact with sulphur, will not combine with it; but if the hydrogen be formed by the action of an acid on sulphuret of iron, the sulphur is presented to the gas at the very moment at which the former is separating from the iron, (in the nascent state, as it is called,) and the gas which is now disengaged is a compound of sulphur and of hydrogen.

It sometimes happens that the combination of two bodies is promoted by the presence of a third, which does not combine with either of the two, nor even with the resulting compound. Thus, if oxygen and hydrogen gases be mixed, they do not combine; but the contact of spongy platinum causes their immediate union, although the metal combines neither with oxygen nor with hydrogen, nor with water, the product of their combination.

But in all cases where the third body has a powerful affinity for the resulting compound, its effect in promoting combination is very great, and has got the name of predisposing affinity. Thus, zinc does not decompose water ; but if sulphuric acid be added, the water is decomposed, its oxygen uniting with the zinc. In this case, according to the usual explanation, the oxide of zinc formed unites with the acid, and the affinity of the acid for the oxide of zinc is called a predisposing affinity, as if the acid had caused the formation of oxide of zinc because of its affinity for that oxide when formed. In truth, however, all the changes that occur are strictly simultaneous, and the phrase, "predisposing affinity," is not an accurate one. It is, however, sufficiently convenient and expressive to be a good deal used in regard to similar cases.

When two bodies, A and B, are in combination, the force with which they are actually held together is not dependent alone on their mutual affinity, but also on their relative mass. In the compound ABB, A is retained by a greater force than in AB. This is the result of the increased mass of B. Or we may view it thus :-In the compound AABB, the first A may be removed with comparative facility, the relative masses of A and B being equal. But after the removal of the first A, the mass of B is relatively doubled, and the second A requires for its removal a much greater force. It is obvious that, conversely, in ABB, the second B is less forcibly retained than the B in AB.

When a body A is presented to two bodies B and C, for each of which it has affinity, although unequal, then, if nothing interfere, A will divide itself between B and C, according to its affinity for each. But the effect of mass is seen here also; for if the mass of C, the body for which A has least affinity, be much larger than that of B, then the division will be no longer in the ratio of the affinities to A, but C will obtain more, and B less, of A.

When to a compound body AB, another body C is added, having an affinity for B, both combination and decomposition occur : for AB is decomposed, and at the same time B, which separates from A, enters into combination with C. It does not often happen that the mere force of affinity is sufficient to complete such a change, but such cases do occur : as where iron acts on a salt of copper, or copper on a salt of silver, the one metal taking the place of the other, and the latter being entirely separated. More frequently a part only of B is separated from A and combines with C; and thus there are present, at the same time, the compounds AB and BC, while part of A and of C exists in the free or uncombined state along with them.

If now the free A be removed from the mixture, the free C, being unresisted, at last effects a complete separation of A. The removal of the free A is effected either when that body assumes the solid form by virtue of its great cohesion, or when it takes the form of gas in consequence of its feeble cohesive power, or of the application of heat. The precipitation of an insoluble oxide by a soluble alkali is an example of the former; the formation of glass by the fusion of silicic acid with carbonate of potash is an illustration of the latter case. Similar cases are of constant occurrence.

In both cases, the decomposition is the more easy and complete, the larger the mass of the decomposing body C employed. And from this follows the curious fact, that if, in any given temperature, we can alter the form or the mass of either of the bodies which act on one another, the result of the experiment is likewise altered: nay, it may actually be reversed. Thus, if oxide of iron be exposed at a red heat to a current of hydrogen gas, the oxide is decomposed, its oxygen, with the hydrogen, forming water, while the iron is reduced to the metallic state. But if now the iron be heated red hot, and exposed to a current of the vapour of water, the water is decomposed, its oxygen,

DECOMPOSITION.

with the iron, forming oxide of iron; while the hydrogen is reduced to the free state.

Decomposition is rendered complete, not only when the body A, which is separated, assumes the solid form, but also when A remains liquid or dissolved, and the new body BC takes the solid form, or is insoluble. Hence the nature of the liquid, iu which a chemical action goes on, exerts a most important influence on the result of the action.

When two compound bodies, AB and CD, act on one another, both decomposition and combination occur. When complete, the change is called double decomposition, since both AB and CD are decomposed; but at the same time the two new combinations AD and CB have been formed. Should the change be only partial, the four compounds AB, CD, AD and CB, will be present together. Double decomposition is of very frequent occurrence.

In cases where a compound A B cannot be decomposed by a body C, even with the aid of a high temperature, the addition of a fourth body D, if it have an affinity for A, while there is an affinity between C and B, will often enable us to accomplish the decomposition. Thus, oxide of aluminum cannot be decomposed by charcoal even at a white heat: but when a current of chlorine gas is passed over the mixture, the chlorine by virtue of its affinity for aluminum, added to that of carbon for oxygen, effects the decomposition, and we obtain chloride of aluminum and oxide of carbon.

When a compound of three or more elements is exposed to a high temperature, the elements unite to form such new compounds as are not decomposable by the temperature employed.

If such a compound be heated along with a body which is capable of forming with some of the elements in certain proportions a more fixed compound, the remaining elements give rise to one or more new and more volatile compounds.

The two last are the principal laws which regulate the phenomena of the destructive distillation of organic substances.

Such are the most important facts in regard to the circumstances under which combination and decomposition occur. We now come to the subject of the proportions in which bodies combine together, or

COMBINATION IN DEFINITE PROPORTIONS.

The experience of chemists, derived from many thousand analyses, has established the following laws; which, however, are purely the expression of ascertained facts, and involve no hypothesis whatever:--- The quantity, by weight, of the body B, which is taken up by a given weight of the body A, to produce the compound AB, is definite and unchangeable. Thus 8 grains of oxygen are invariably taken up by 1 grain of hydrogen (in round numbers) to produce water: or, in other words, 9 grains of water are invariably composed of 8 grains of oxygen and 1 of hydrogen.
When a body A combines with a body B in more propor-

2. When a body A combines with a body B in more proportions than one, producing more than one distinct compound, the quantity, by weight, of B, which is united to the same weight of A in the different compounds, increases according to one of two ratios. According to one, the series of compounds formed is—

A	+	В,	lst c	ompou	nd			$B \equiv 1$
A	+	BB,	2nd	do.		. 1		B = 2
A	+	BBB,	3rd	do.	10		0.0	B = 3
A	+	BBBB,	4th	do.				B = 4
A	+	BBBBB,	5th	do.			1.	B = 5

According to the other, the series of compounds is-

A	+	BBB,	lst	compound		A	:	В	=	1	:	3
A	+	BBBBB,	2nd	do		A	:	В	=	1	:	5
A	+	BBBBBBB,	3rd	do.	•	A	:	B	=	1	:	7

The compounds of nitrogen and oxygen offer an example of the first series of multiple proportions. In the first of these compounds,

9			14 grs.	of nitrogen	are united	with	8 of	oxygen.
In	the	2nd.	14	"	22	""	16	>>
	22	3rd.	14	"	37	99	24	>>
	22	4th.	14	22	77	""	32	99
	72	5th.	14	22	22		40	.99

The compounds of arsenic and oxygen will illustrate the second series. In the first of these compounds,

75.4 grs. of arsenic are united with 24 of oxygen. In the 2nd. 75.4 ,, , , , 40 ,,

Here the quantities of oxygen increase in the ratio of 3 to 5. 3. The proportions, by weight, in which bodies combine, are proportional to each other. That is : if a given weight of A unite with weights of B and C, which are to each other as 3 to 4, for example ; then if a fourth body, D, unite with B and with C likewise, the weights of B and C combined with D will also be to each other as 3 to 4.

Thus, 100 grains of potassium unite with 20.41 grains of

oxygen; 100 grains of potassium unite also with 41.06 grains of sulphur. Now 100 grains of silver unite with 7.39 grains of oxygen, and also with 14.88 grains of sulphur. According to this law, we find that 7.39:14.88:20.41:41.06; or, in other words, that the weights of oxygen and sulphur which unite with 100 grains of silver bear to each other the same proportion as the weights of those elements which combine with 100 grains of potassium.

Another consequence of this law is, that the weights of two bodies which combine with the same weight of a third body, will also represent the weights of these two bodies which unite together, if they are capable of combination; or if the proportions should not be precisely the same, they will be found to be multiples or submultiples of those weights.

Thus, 8 grains of oxygen combine with 1 grain of hydrogen to form water; and 8 grains of oxygen combine with 16 of sulphur to form hyposulphurous acid. Now, sulphur and hydrogen combine together to form hydrosulphuric acid; and that compound is found to contain sulphur and hydrogen in the proportion of 16 grains of the former to 1 grain of the latter. The same elements form another compound, the persulphuret of hydrogen; and in this the proportions are 32 of sulphur to 1 of hydrogen. Now $32 = 16 \times 2$.

If, therefore, we know the weights of two bodies, B and C, which combine with a given weight of A, we also know the relative weights, in which, or in multiples or submultiples of which, B and C will combine together.

Now oxygen is capable of uniting with all the other elements, (save perhaps with fluorine); and therefore if we ascertain by experiment the weights of the different elements which combine with a given weight of oxygen, the weights thus obtained will inform us, not only in what proportions (or their multiples) these elements combine with oxygen, but also in what proportions (or their multiples) they combine with each other, provided they are capable of doing so.

It is obviously of no importance what number we select to represent the standard weight of oxygen, to which the other elements are referred. On the Continent 100 is usually taken, and the combining numbers of the other elements are referred to oxygen as 100. In this country, for the sake of convenience in calculation, advantage has been taken of the fact that the combining weight or number of hydrogen is the smallest of all, and hydrogen has consequently been made the standard, with the number 1. Now as 1 of hydrogen is found to combine (in water) with 8 of oxygen, it is obvious that if hydrogen be repre-

DEFINITE PROPORTIONS.

sented by 1, oxygen will be represented by 8. Again, on the continental scale, oxygen being 100, hydrogen must be " $g^{\circ} = 12.5$, the proportion being preserved exactly the same. So that it is equally correct to say that water is composed of 100 grains of oxygen, combined with 12.5 of hydrogen, and to say that water consists of 8 grains of oxygen and 1 of hydrogen. Both scales are so extensively employed, that the chemist ought to be familiar with both, and, accordingly, both are subjoined. It is hardly necessary to point out that the numbers of the scale in which oxygen \equiv 100, which we shall call the oxygen scale, may be easily reduced to those of the other, or hydrogen scale, in which oxygen \equiv 8 by dividing the former by 12.5, and that conversely the numbers of the hydrogen scale if multiplied by 12.5, are converted into those of the oxygen scale.

The numbers, then, attached to the names of the elements in the subjoined Table, are the results of experience, and merely represent the relative weights of the elements which (or multiples of them) combine with 100 of oxygen on the one scale, and with 8 of oxygen on the other. In this work we shall use the numbers of the hydrogen scale : but the table of the other scale will be of use to those who read foreign chemical works ; and the numbers of one scale may at any time be substituted for those of the other, provided we do not mix them up together.

vi.
5
Ξ.
0
~
PROPOI
č.
5
0
PR
2
78
\simeq
ĭ
E
4
-
m.
COM
2
0
\mathcal{O}
OF
0
-
r-1
ABLE
H.
m.
F

Aluminum Al Antimony (Stibium) . Sb Arsenic Sb Barium Bi Bismuth Bi Boron Br Cadmium Ca	171-17 806-45 470-04 856-88 886-92 136-92 136-92 136-92 978-30 6977 596-07	13.72				
y (Stibium) .	80645 470-04 856-88 886-92 978-30 978-30 696-77 256-02	00.10	Mercury (Hydrargyrum)	Hg	2531-65	202.87
	470.04 856.88 886.92 978.30 978.30 696.77 256.02	70.40	Molybdenum	Mo	598.52	47.96
	856-88 886-92 136-25 978-30 696-77 256-02	37.67	Nickel	Ni	369.68	29.62
	886-92 136-25 978-30 696-77 256-02	68.66	Nitrogen	Z	177.04	14.19
· · · · · · · · · · · · · · · · · · ·	136-25 978-30 696-77 256-02	71.07	Osmium	08	1244.49	99.72
· · · · · · · · · · · · · · · · · · ·	978-30 696-77 256-02	10.01	Oxygen	0	100.00	8.013
· · ·	256.02	78.39	Palladium	Pd	665.90	53.36
•	256.02	55.83	Phosphorus	Р	196.14	15.72
		20.52	Platinum	Pt	1233.50	98.84
•	75.40	6.04	Potassium (Kalium) .	K	489.92	39-26
•	574.7	46.05	Rhodium	R	651.39	52.20
Chlorine Cl	442.65	35.47	Selenium	Se	494.58	39.63
Chromium Cr	351.82	28.19	Silicon	Si	277-31	22.22
Cobalt Co	368-99	29.57	Silver (Argentum) .	Ag	1351.61	108.31
Columbium (Tantalum) Ta	2307-44	184.90	Sodium (Natrium)	Na	290-90	23.31
Copper (Cuprum) Cu	395.7	31.71	Strontium	Sr	547.29	43.85
•	233.80	18.74	Sulphur	202	201-17	16.12
• •	331-26		Tellurium	Te	801.76	64.25
Gold (Aurum) Au	2486.02	199-2	Thorium	Th	744.90	59-831
•	12.479		Tin (Stannum)	Sn	735-29	58.92
• •	1579.50	126.57	Titanium	Ti	303.66	24.33
Iridium Ir	1233-50	98.84	Tungsten (Wolfram) .	M	1246-25	02.66
Iron (Ferrum) Fe	339-21	27.18	Vanadium	Δ	856.86	99.89
Lead (Plumbum) Pb	1294.50	103.73	Uranium	D	2711.36	217-2
Lithium L	80.33	6.44	Yttrium	Y	402.51	32.25
Magnesium Mg	158.35	12.89	Zinc	Zn	403.23	32.31
•	345.89	27.72	Zirconium	Zr	420-20	33.67

COMBINING PROPORTIONS.

The number 39, attached to potassium,* expresses the fact that 39 grains of potassium combine with 8 of oxygen, and 16 of sulphur: 8 and 16 being the numbers respectively attached to oxygen and sulphur.

These numbers further express the facts, that if we wish to convert 47 grains of oxide of potassium, composed of 39 of potassium and 8 of oxygen, into sulphuret of potassium, 16 grs. of sulphur will be required to displace the 8 of oxygen, and will give 55 grains of the sulphuret.

We thus perceive that 16 grains of sulphur are the equivalent of 8 grains of oxygen. Hence the term "equivalent" is used as synonymous with combining proportion, and we shall in this work employ the term equivalent by preference.

When an element combines with oxygen in only one proportion, the equivalent of that element is the weight which combines with 8 (or on the other scale with 100) of oxygen. Or we may calculate the equivalent from the compound, if there be one, of the element with chlorine.

Thus, in the oxide of potassium (potash), 39 grs. of potassium are combined with 8 of oxygen. If there were no other compound of potassium and oxygen, we should take 39 for the equivalent of potassium. But there is another compound of these elements, and in order to acquire certainty, we refer to the compound (there is but one) which potassium forms with chlorine. We find this to contain 39 grs. of potassium, and 35 of chlorine ; and as 35 is the equivalent of chlorine, we conclude that 39 is the true equivalent of potassium.

Where an element combines with oxygen in several proportions, we are more uncertain. If the proportions of oxygen belong to the series of simple multiples, the equivalent is usually calculated from that compound which contains least oxygen, assuming that to contain an equivalent of oxygen.

Thus nitrogen forms 5 compounds with oxygen. In the first 14 grs. of nitrogen are combined with 8 of oxygen; in the fifth, 14 grs. of nitrogen are united with 40 of oxygen. Taking the former, we conclude 14 to be the equivalent of nitrogen; but if we selected the other, then the equivalent of nitrogen would necessarily be five times smaller. On the ordinary view, we consider the fifth compound to consist of one equivalent of nitrogen=14, and 5 equivalents of oxygen= $8 \times 5 = 40$. But it will be seen that this is, to some extent, arbitrary; and that we might consider the fifth compound as formed of one equivalent of each, and the first as composed of one equivalent of oxygen, and 5 of nitrogen.

* Here the fractions, for convenience, are omitted.

The usual system of equivalents, above explained, being consistent and uniform, as far as possible, is very convenient; but the student must remember, that while the combining proportions are fixed, it is, in any one compound, a matter of arbitrary choice, whether it be viewed as containing one or more equivalents of any element.

A very large proportion of elements, however, combine among each other according to laws so simple, that when we have assumed 8, for example, to represent one equivalent of oxygen, we need have no doubt as to the equivalents of the other elements.

In those compounds of one element with two or three proportions of another, where the quantities of the latter are not simple multiples, but belong to the series 3:5:7, much greater uncertainty prevails as to the equivalents. Thus, arsenic, antimony. and phosphorus, form compounds with oxygen, chlorine, and sulphur, belonging to this latter series ; and chemists are not fully agreed whether they ought to consider the quantity of arsenic, antimony, or phosphorus, which combines with 3 or 5 equivalents of oxygen, chlorine, and sulphur, as representing one equivalent, or two equivalents. The same doubt occurs in other cases; and we are guided, in such instances, chiefly by probabilities, and by the rule to avoid, as much as possible, fractions of equivalents. Thus, if we suppose the first oxide of arsenic to contain 1 equivalent of arsenic, and 1 of oxygen, the second must contain 1 equivalent of arsenic, and 12 equivalent of oxygen. We, therefore, prefer to consider the first as formed of 2 eq. arsenic, and 3 eq. oxygen; and the second as formed of 2 eq. arsenic, and 5 eq. oxygen. There is still a third way, by which also fractions may be avoided ; and that is, to make the first a compound of 1 eq. arsenic, and 3 eq. oxygen; and the second a compound of 1 eq. arsenic, and 5 eq. oxygen. This last view, however, does not, in many cases, agree so well as the preceding, with the composition of the other compounds of the same element.

It is to be observed, that whichever view is adopted, the facts of the proportions remain unchanged. It is only the equivalent of arsenic which requires to be altered.

The equivalent of a compound body is the sum of the equivalents of its component parts. Thus, potash being composed of 1 eq. of potassium, 39, and 1 eq. of oxygen, 8, its equivalent is 39+8=47. Sulphuric acid is composed of 1 eq. of sulphur, 16, and 3 eq. of oxygen, 24; and, consequently, its equivalent is 40 =16+24. As in the case of elementary bodies, the equivalents represent the combining proportions. Thus, the neutral sulphate of potash contains 47 grains of potash, and 40 grains of sulphuric acid. The law of multiples also applies to compound bodies; for there is another compound of sulphuric acid and potash, the bisulphate of potash, in which 47 grains of potash are combined with 80 grains of sulphuric acid, or 1 eq. of potash with 2 eq. of the acid.

The use of equivalents enables us to define more accurately some of the more important classes of compounds.

Oxygen acids are compounds of one or two equivalents of the metalloids, and of certain metals, with two or more equivalents of oxygen.

Oxygen bases are, without exception, compounds of metals with oxygen. In most cases, the base contains 1 eq. of the metal, and 1 eq. of oxygen; in a few bases there are two eq. of the metal, and 3 eq. of oxygen; and in one or two there are two eqs. of metal to 1 eq. of oxygen.

A neutral salt is a compound of 1 eq. of an oxygen acid, with 1 eq. of a base; or a compound of 1 eq. of a metal with 1 eq. of the radical of a hydrogen acid. Thus neutral sulphate of potash contains 1 eq. of sulphuric acid, and 1 eq. of potash; while common salt is composed of 1 eq. of sodium, and 1 eq. of chlorine.

A hydrogen acid is, in almost every case, composed of 1 eq. of hydrogen, and 1 eq. of a radical, simple or compound. Thus hydrochloric acid is composed of 1 eq. of hydrogen, and 1 eq. of chlorine; and hydrocyanic acid is formed of 1 eq. of hydrogen, and 1 eq. of the compound radical cyanogen.

The equivalent of an acid is that quantity which will form a neutral salt with one equivalent of a base; and, in like manner, the equivalent of a base is that quantity which forms a neutral salt with one equivalent of an acid.

The equivalent of potash is 47. Now, in order to form a neutral salt with 47 grains of potash, 54 grains of nitric acid must be added: 54 is, therefore, the equivalent of nitric acid. Again, 40 is the equivalent of sulphuric acid; and in order to form a neutral salt with 40 grains of sulphuric acid, 31 grains of soda are required. Hence, 31 is the equivalent of the base, soda or oxide of sodium.

Since the equivalent of a compound body is the sum of the equivalents of its constituents, it follows, that if we know the equivalent of a compound and the relative proportions by weight of its component parts, we can calculate the *number* of equivalents of each element contained in the compound. For example, we find by analysis, that 100 grains of hyposulphuric acid are composed of 44:59 grains sulphur, and 55:41 grains oxygen. We also find, by experiment, that the equivalent of hyposulphuric acid is 72. Now, in order to ascertain the number of equivalents of sulphur and oxygen contained in the acid, we first examine how much sulphur and oxygen are present in 72 grains of the acid. It is clear, that if 100 grains contain 44:59 of sulphur, 72 will contain 32 of sulphur; and the remainder, 40, must be oxygen. But 32 is equal to 2 eq. of sulphur, the equivalent of sulphur being 16; and 40 is equal to 5 equivalents of oxygen, or 5 times 8. Hence the acid in question is composed of two eq. of sulphur, combined with 5 eq. of oxygen.

The rule for the above calculation is to ascertain the proportions of the elements in the equivalent number of the compound; and as these proportions represent respectively the sums of the equivalents of the elements, to divide the numbers by the equivalents. In the above case, 32 (the proportion of sulphur in 72, the equivalent of the acid) $\div 16=2$ eq. of sulphur; and 40 (the proportion of oxygen in 72 of the acid) $\div 8=5$ eq. of oxygen.

In cases where we have ascertained the proportions of the elements in a compound, but are ignorant of its equivalent or combining proportion, we cannot determine with certainty the absolute, but only the relative number of equivalents contained in the compound. For example, it is shown by analysis that 100 grains of sugar of milk contain—

	1				100.00
Oxygen	1			•	52.94
Hydrogen					6.61
Carbon		÷.			40.45

But as sugar of milk enters into hardly any combinations, we cannot ascertain its combining proportion or equivalent, and thus it is, of course, impossible to tell how many equivalents of carbon, hydrogen, and oxygen, are contained in 1 eq. of sugar of milk. But we can ascertain the relative numbers of equivalents as follows. Divide the weight of carbon in 100 parts of sugar of milk by the equivalent of carbon, which is $6:40.45 \div 6=6.74$. Next, divide the weight of hydrogen in 100, which is 6.61, by the equivalent of hydrogen, which is $1:6.61 \div 1=6.61$. Lastly, divide 52.94, the weight of oxygen in 100, by 8, the equivalent of oxygen. $52.94 \div 8=6.61$. Here, then, the relative numbers of equivalents of carbon, hydrogen, and oxygen, are represented by the numbers 6.74, 6.61, and 6.61: or, making allowance for the unavoidable errors of manipulation, there is an equal number of equivalents of each. We cannot say whether sugar of milk contains 1, 2, 3, 4, 6, 12, or any other number of equi-

valents of each of its elements; we only know that if 1 eq. of sugar of milk contains 6 eq. of carbon, it must likewise contain 6 of oxygen and 6 of hydrogen.

When a body A combines with B and C, and the number of equivalents of B and of C, which respectively unite with 1 or more equivalents of A is equal, the compounds A B and A C are said to correspond in constitution, or they are called corresponding compounds. Thus, 1 eq. of potassium combines with 1 eq. of oxygen, and 1 eq. of potassium combines with 1 eq. of chlorine, and we say that chloride of potassium and protoxide of potassium (potash) are the corresponding chlorine and oxygen compounds of that metal.

When two compounds, AB and CD, respectively consist of an equal number of equivalents, they are said to be proportional compounds. Thus, oxide of potassium contains 1 eq. of oxygen and 1 eq. of potassium; hydrochloric acid, contains 1 eq. of hydrogen and 1 eq. of chlorine; and we say that the composition of hydrochloric acid is proportional to that of oxide of potassium (potash).

When two proportional compounds mutually decompose each other, the resulting compounds are likewise proportional; and we have a complete case of double decomposition. Thus 1 eq. hydrochloric acid and 1 eq. oxide of potassium, act on each other, and give rise to water (1 eq. oxygen and 1 eq. hydrogen) and to chloride of potassium (1 eq. chlorine and 1 eq. potassium) which new compounds are obviously proportional. Any excess of either of the original compounds, beyond the 1 eq. required, remains undecomposed, and mixes with the new compounds.

When two bodies act on one another, which are not proportional, they may do so in the proportion of one equivalent of each, or in the proportion of 1 eq. of the one compound to 2 or more of the other.

In the former case there may be formed-

1. Two new compounds, not proportional to each other, but corresponding respectively to the two original compounds; or-

2. Two new proportional compounds, in which case one of the elements of one of the original compounds must be partially separated.

We may thus have

1. AB + CDD producing AC + BDD

or,

2. AB + CDD producing AC + BD + D

In the latter case there may be formed-

1. An equal number of new compounds, not proportional, but corresponding to the original compounds.

2. Two new compounds, proportional to each other, in which case an element has been partially separated.

3. Two new compounds, not proportional, and one of which does not even correspond to either of the original compounds. Here also an element has been partially separated.

• We may thus have

- 1. A + 5B and 5CD producing A + 5C and 5BD.
- 2. A + 2 B and 2 C D producing A C, 2 B D, and C.
- 3. A + 5 B and 5 C D producing A + 3 C, 5 B D and 2 C.

Numerous examples of these and of many similar modes of decomposition will occur in the course of this work. For the present, our space makes it necessary to confine ourselves to the general statements.

Under all circumstances, and in the most complicated chemical changes, the composition of the new products must admit, when expressed in equivalents, of a distinct relation being traced to the composition of the compounds from which these products have been derived. It is to the steady application of this principle to the investigation of the complicated decompositions of organic compounds, that we must ascribe the amazingly rapid progress which has of late been made in organic chemistry.

It is obvious that where we are unable to trace the relation above mentioned between the products and the substances which yield them, this must be looked upon as a proof that we do not yet fully understand the changes we are investigating; and that we are either mistaken in the composition which our analyses lead us to assign to one or more of the new compounds, or have overlooked some one or more of the products actually formed.

The laws of combination which have been briefly indicated in the foregoing pages, have been deduced from accurate observation, and are nothing more than an abridged expression of facts. They are consequently entirely independent of any theory or explanation of their causes which may be attempted. Neither is it necessary to attempt any such theory or explanation, since, for all practical purposes, the facts alone are required.

But the human mind is never satisfied with observing and ascertaining facts, and deducing from them those general expressions which are called laws of nature. Man ever strives to account for, to explain, that which he has observed : and although his explanations never reach the essence of things, but only enable him to generalise to a greater extent, and to approach somewhat more nearly the Great First Cause of all, still it appears to be a law of his intellect, that he shall never cease from his attempts to explain, by reference to some simple principle, the complicated phenomena by which he is surrounded.

The facts of gravitation are well known, and entitle us to admit the law, that all material bodies have a tendency to move towards each other with a force which is proportional to their masses, and which varies inversely as the squares of their distances. To account for this, we are in the habit of assuming the existence of a certain force which we call the attraction of gravitation. But we know nothing of the nature of this force; and, assuming its existence, it is only known to us by its effects. Nor does the assumption enable us to understand how, in what way, it acts in attracting masses of matter towards each other.

But if we assume the existence of such a force, acting according to the above law, then we can deduce, as necessary inferences from these data, all the phenomena which have been observed, and many which have not been observed, but which we are thus enabled to anticipate. There is, therefore, an obvious advantage in assuming the existence of this supposed cause, as we are thus enabled to remember and to classify the phenomena much better than in the form of a dry catalogue of facts, not attached to any common idea.

If, in like manner, we seek for some hypothesis, which shall account for the facts of combination in definite and multiple proportions, the first obvious conclusion is that the cause of these phenomena must be intimately connected with the mechanical constitution of matter. But since our senses are not capable of directly taking cognizance of the ultimate physical constitution of matter, and since the ultimate causes of natural phenomena are also beyond the reach of our senses, we must have recourse to induction from facts, or to some hypothesis regarding the constitution of matter, which may serve to explain the phenomena.

Different opinions have been held as to the constitution of matter; but two in particular have prevailed. According to one, matter is susceptible of being divided *ad infinitum*: according to the other, matter is formed of particles, which are indeed very minute, far too minute to be cognizable by our senses; but which still possess a definite size, and cannot be divided. They are hence called *atoms*.

Now it is very remarkable, that if we assume the latter view, or that which is called the atomic constitution of matter, to be correct, and if we further assume that the individual atoms of different elements possess different weights, but always the same weight in the same element, we can from these data, deduce all

ATOMIC THEORY.

the facts of combination in definite and multiple proportions. This is the theory proposed by Dalton—the Atomic Theory.

No other hypothesis hitherto proposed is capable of explaining the phenomena; and therefore in the present state of our knowledge, and until a better explanation shall be given, we may admit the atomic theory. It is to be observed, however, that we have no positive proof of its truth, nor are we likely to obtain such proof. On the other hand, the discovery of any fact inconsistent with the atomic theory would compel us to reject it, even if we had no other theory to supply its place. But whether the atomic theory be admitted or not, the facts of combination in definite and multiple proportions remain unaffected.

ATOMIC THEORY.

According to the atomic hypothesis, therefore, matter is composed of certain minute, indivisible particles, or atoms; and consequently cannot be divided infinitely. We may divide a mass of matter to a very great extent, far beyond the point at which our senses cease to be able to follow; but still there is a limit to divisibility, and we should reach that limit if we succeeded in dividing so far that the resulting particles were the individual atoms.

Here it may be observed, that the partisans of the opinion according to which matter is infinitely divisible argue thus: there is no conceivable particle of matter so small that we cannot conceive it to be divided into two halves, and so on *ad infinitum*: therefore there is no limit to the divisibility of matter.

Now while we admit that there is no limit to our conception of the divisibility of matter, this does not prove that there may not be a limit, in point of fact, to its actual divisibility. For, let us consider a moment what division really is; and we shall find that it can only be defined as the separation of one portion of matter from others. Now as matter, in its usual forms, undoubtedly consists of particles held together, more or less firmly, by cohesion, it is plain that we can easily, by overcoming cohesion, separate those particles from each other, and this is ordinary division.

But, on the atomic hypothesis, each of these visible ordinary particles is, like the original mass, formed of still smaller particles cohering together, but, in neither case, in absolute contact. Indeed, the phenomena of expansion by heat, and contraction by cold, demonstrate that the particles of matter are not in absolute contact: in other words, an ordinary mass of matter may be defined as a portion of space not entirely filled with matter.

Let us now define an atom as a portion of space entirely filled by matter, and we see at once that such a mass cannot possibly admit of division. It is strictly a unit, and as division implies separation of one unit from another, it is here evidently impossible. It is not meant that we can prove this to be the nature of atoms, for we cannot even prove their existence: but the object of the above illustration is to show that we can conceive the existence of an indivisible particle, and therefore that the argument above described in favour of the infinite divisibility of matter is not necessarily conclusive.

Such a particle or atom as has now been defined, or, in other words, a single portion of matter entirely filling the space bounded by its circumference, cannot be cut in two, like a mass of matter, for there is no interstice into which, as in ordinary matter, the edge of a cutting instrument can penetrate; and it cannot, being a unit, be separated from itself. It cannot be crushed to powder, for the particles of a powder existed previously as distinct particles, in the solid mass of matter, and were only separated by the force employed. It cannot be drawn out like metal into wire, or beat out into thin leaves: for both drawing out and beating out are merely new *arrangements* of a plurality of particles, and we have here only a unit.

Moreover, such a particle or atom would, in all probability, be spherical, since no reason can be assigned why one dimension should exceed another. It would no doubt be opaque; for transparency is the result of the passage of light through the vacant spaces between the particles of matter: and colourless, because colour depends on the action of the particles of matter on light; and it would be perfectly hard.

In short, it is evident that we can imagine indivisible atoms to exist; and that the physical properties of matter are not in any degree inconsistent with the idea that it is made up of such atoms.

The atomic hypothesis goes on to assume that the atoms of the different elements possess different weights, but that those of the same element possess invariably the same weight.

The third assumption is, that when one element unites with another, the atoms of the two respectively combine. Thus, an atom of A combines with an atom of B to form an atom of the compound AB. Or two atoms of A unite with three atoms of B, to form an atom of the compound AABBB.

A distinction must here be made between simple or elementary atoms and compound atoms. It is obvious that an atom of AB, if it contain an atom of A and an atom of B, may be decomposed, and A separated from B. AB is, therefore, not an atom in the fullest sense of the word. But A cannot be separated from B by mechanical means, or otherwise than by chemical agency; so that, in a mechanical sense, AB is an atom, although a compound one. A mass of the compound AB is made up of mechanically indivisible, but chemically divisible, particles of AB, each of which, although it may be called an atom, contains an atom of each of the elements.

The *absolute* weight of the atoms of the different elements is altogether unknown. If, indeed, we had any means of ascertaining the number of atoms in a given weight of any element, in one grain for example, we should know the actual weight of each atom; but this is for the present beyond our power.

But we know the relative weights of two elements which combine to form a given compound; and, therefore, if we assume that the compound contains one atom of each element. we know at once the *relative* weights of the atoms of those elements. Thus, 8 grains of oxygen unite with 1 grain of hydrogen to form 9 grains of water ; and we assume that water contains 1 atom of each element, or an equal number of atoms of each. In that case it is clear that the relative weights of the single atoms must be the same as those of what are assumed to be equal numbers of each; and, consequently, 1 atom of oxygen will be eight times heavier than 1 atom of hydrogen. If the 8 grains of oxygen contain 8,000,000 of atoms, then 1 atom of oxygen would weigh Toodovoo of a grain, and 1 atom of hydrogen Toubood of a grain. But although we shall most probably never know the actual number in a given weight, or the absolute weight of the atoms, we are not the less sure that, if matter be composed of atoms, differing in weight for each element, and if water be formed by the union of an equal number of atoms of oxygen and hydrogen, then 1 atom of oxygen must be 8 times heavier than 1 atom of hydrogen.

These numbers, then, express merely the relative weights of these atoms : on the above assumptions, 8 represents the weight of an atom of oxygen, if an atom of hydrogen be supposed to weigh 1; and 12.5 will represent the weight of an atom of hydrogen, if an atom of oxygen be supposed to weigh 100. It is evident that any other numbers might be used, provided the ratio, in this case that of 8 to 1, were kept up.

It is now easy to see, that the atomic hypothesis, if assumed, at once explains all the facts of combination in definite and multiple proportions. As has already been remarked, no other hypothesis, yet proposed, is capable of doing this; and, therefore, while we must not lose sight of the fact that the atomic hypothesis has not been, and indeed probably never will be, demonstrated to be true, we are justified in adopting it, until it shall be proved to be false, or until a better one shall be proposed in its stead.

It will be observed that the weights of the atoms, or atomic weights, as they are termed, coincide with the equivalent numbers previously given. When, therefore, the term atomic weight is used, it is not as implying the established truth of the atomic theory, but only as a convenient synonym for the term equivalent, or for that of combining proportion. Whichever name we use, it must never be forgot that the facts remain unchanged, and are independent of all hypothesis. 9 grains of water invariably contain 8 of oxygen and 1 of hydrogen, whether we speak of the combining proportions, the equivalents, or the atomic weights of oxygen and hydrogen being represented by the numbers 8 and 1. The two former expressions have the advantage of simply expressing the fact without any allusion to hypothesis, and are, therefore, strictly speaking, preferable : but the latter is much used, and may safely be employed when properly defined.

In this country, the terms equivalent and atom have been from the beginning held to be entirely synonymous. On the Continent, this has not been the case : for the equivalent of many elements, such as hydrogen, chlorine, &c., has been there assumed to contain 2 atoms ; and hence the atomic weight of hydrogen, for example, has been on the Continent one half of that adopted here.

This is a matter which is, to a great extent, arbitrary, and only affects the mode of viewing and representing the composition of certain compounds. Thus Continental chemists, admitting as we do that 9 grains of water contain 8 of oxygen and 1 of hydrogen, consider water to be composed of 1 atom of oxygen and two atoms (= 1 equivalent) of hydrogen; they, consequently, give to hydrogen the atomic weight of 0.5, that of oxygen being 8; or 6.25, that of oxygen being 100.

It is not easy to decide whether water be composed of I atom of each element, or of 1 atom of oxygen to 2 atoms of hydrogen. But as both parties agree that water contains 1 equivalent of each element, it is obvious that the system adopted in Britain, by which equivalent is made entirely synonymous with atom, has the very great advantage of superior simplicity : and that system will, therefore, be followed in this work. Within the last year or two several of the most distinguished chemists on the Continent have adopted the British system in this respect, and there is little doubt that it will, ere long, become universally prevalent.

The table of equivalents, formerly given, is therefore, at the same time a table of atomic weights. It is now time to give rules for the use of that table, and particularly for the use of the abbreviations or symbols there attached to the elements, in the construction of formulæ.

CHEMICAL SYMBOLS AND FORMULE.

These have nothing in common with algebraical symbols and formulæ. They are mere abbreviations, and are intended to express only the arithmetical operations of addition and subtraction. Various systems have been given to the world: but that which has finally obtained the most extensive currency among the chemists of the day, is one proposed by Liebig and Poggendorff, which we now proceed to explain.

The symbol of an element, standing alone, signifies 1 atom, or equivalent, of the element. Thus O stands for 1 atom of oxygen, H for 1 atom of hydrogen, and Fe for 1 atom of iron (ferrum).

A symbol, with a small figure below and to the right, signifies as many atoms of the element as the figure expresses. Thus O_2 means 2 atoms of oxygen, S_s , 5 atoms of sulphur.

Two symbols joined by the sign +, or simply placed together, signify a compound of 1 atom of each element. Thus, H + O, or simply HO, means water, a compound of 1 atom hydrogen, and 1 atom oxygen.

If a figure be attached, as above, to either or both symbols, it multiplies that symbol only to which it is attached. Thus Mn O_g is the symbol for peroxide of manganese, a compound of 1 eq. manganese and 2 eq. oxygen. Cu_g O is the symbol of suboxide of copper, composed of 2 eq. of copper and 1 eq. oxygen. Fe_g O_g is the symbol of peroxide of iron, which contains 2 eq. of iron and 3 eq. of oxygen.

When a compound, formed of two or more compounds, is to be expressed, the compounds which combine are joined, either by a + sign or by a comma. Thus $HO + SO_s$ or HO, SO_s both signify hydrated sulphuric acid, a compound of 1 eq. water and 1 eq. dry sulphuric acid.

A large figure, printed on the same level as the symbol, and to the left of it, multiplies every symbol as far as the next comma, or the next + sign; or it multiplies all within brackets if placed before them. Thus 2 HO, means 2 atoms of water, 2 SO_3 , KO, HO represents bisulphate of potash, a compound of 2 eq. sulphuric acid, 1 eq. potash, and 1 eq. water. It might also be written $2 \text{ SO}_3 + \text{ KO} + \text{ HO}$. But the following, $2 (\text{SO}_3, \text{ KO}, \text{ HO})$ would signify 2 eq. of a compound which was formed of 1 eq. sulphuric acid, 1 eq. potash, and 1 eq. water.

When a compound contains 3 or more elements, the symbols are written simply one after the other, with the necessary figures. Thus, sugar is represented by $C_{1,2}$ $H_{1,0}$ $O_{1,0}$: that is 12 eq. carbon, 10 eq. hydrogen, and 10 eq. oxygen. Alcohol is C_4 H_2 O_6 .

If we wish to show that any compound of three or more elements really contains two compounds, it is expressed in the following manner: alcohol, $C_4 H_6 O_5$, when viewed as a compound of ether and water becomes $C_4 H_5 O + HO$. Benzoic ether, $C_{18} H_{10} O_4$ becomes $C_{14} H_5 O_3$ (benzoic acid) + $C_4 H_5 O$ (ether)

In this way we find it quite easy to express in symbols the composition of the most complicated substances. For example, crystallised alum is composed of 1 eq. neutral sulphate of potash, 1 eq. tersulphate of alumina, and 24 eq. of water of crystallisation. This is expressed in symbols, as follows:

$KO, SO_3 + Al_2O_3. 3SO_3 + 24 HO.$

And this abbreviated expression contains, in a line, in addition to the general information concerning alum printed above, more information as to details than could be given in a page of print. It informs us, for example, that alum contains 4 eq. sulphuric acid, of which 1 is combined with 1 eq. of potash, and 3 with 1 eq. of alumina: that alumina is a sesquioxide of aluminum: that 1 eq. alum contains 1 eq. potassium, 2 eq. aluminum, 4 eq. sulphur, 24 eq. hydrogen, and 40 eq. oxygen, &c. &c.

There are, besides the direct information thus conveyed by symbols, two most important uses to which they are applied.

The first is, to render easily intelligible the view taken by a writer of any chemical change, however complicated. This is done by means of a formula or equation: in which all that is essential is, that the sum of the various symbols should be the same on both sides. Thus, to take an example previously described in words (at p. 19), the action of oxide of potassium on hydrochloric acid. This is expressed in a formula as follows:

KO + HCl = HO + KCl.

Here the symbols on the left are those of the bodies which act on each other, oxide of potassium and hydrochloric acid: while those on the right are the symbols of the new compounds produced, water and chloride of potassium.

Or, to take a more complicated case.

Sugar, $C_{1,2}$ H₁₀O₁₀, when acted on by 6 eq. of hypermanganate of potash, KO, Mn₂O₂, gives rise to 6 eq. of oxalate of potash, KO, C₂O₃, 12 eq. of peroxide of manganese Mn O₂, and 10 eq. of water. All this is briefly and clearly expressed by the equation

 $C_{12} H_{10} O_{10} + 6 (KO, Mn_2 O_7) \equiv 6 (KO, C_0 O_3) + 12 Mn O_0 + 10 HO.$

The second very important use to which these equations are applied is, that of calculating the quantities of the different substances which must be employed, in order to operate as economically as possible, and likewise the weight of the products which ought to be obtained. Thus, in the last example, we wish to know what proportions of sugar and hypermanganate of potash ought to be used, that nothing of either should be wasted : and also how much oxalate of potash, peroxide of manganese and water will be obtained. By means of the above equation, and the table of atomic weights, we can easily make all these calculations. Since the equivalent or atomic weight of a compound is the sum of those of its elements, it is obvious that the equivalent of sugar is equal to the sum of $12 \text{ eq. of } \operatorname{carbon} + 10 \text{ eq.}$ hydrogen +10 oxygen. Now by the table, the equivalent of carbon is 6, that of hydrogen 1, that of oxygen 8. Hence the equivalent of sugar is $= 6 \times 12 + 1 \times 10 + 8 \times 10 = 72 + 10 + 10 = 72 + 10$ 10 + 80 = 162. In like manner the equivalent of hypermanganate of potash is found to be, in round numbers, 160. For every 162 parts, therefore, of sugar, we must employ 6 times 160 • =960 parts of hypermanganate of potash. The whole materials employed amount to 1122.

On the other hand, we obtain of oxalate of potash, the equivalent of which is (in round numbers) 84, 6 equivalents ± 504 ; of peroxide of manganese, the equivalent of which is 44, 12 equivalents ± 528 ; and of water, the equivalent of which is 9, 10 equivalents ± 90 ; the whole products amounting to 1122.

It is hardly possible to exaggerate the value of so easy a method of representing chemical changes, and of making all the necessary calculations connected with them. Every chemist, and every student of chemistry, ought to be quite familiar with the use of chemical formulæ; and, indeed, without this knowledge it will soon be impossible to read chemical writings. The use of formulæ enables the writer so easily to put before his readers, in a very small space, any conceivable view of the phenomena, such as might require pages to explain in words, that they are now universally employed.

Even in the commonest use of symbols and atomic weights, that, namely, of expressing the composition of any compound, the advantage derived from their employment is immense. Thus, previous to the invention of tables of atomic weights, chemists could only express the composition of a compound by giving the proportions of the elements contained in 100 parts. For example, water, the protoxide of hydrogen, was found to consist of-Hydrogen, 11.11; and oxygen, 88.88, in 100 parts; while the deutoxide of hydrogen was found to consist of-hydrogen, 5.89; and oxygen, 94.11, in 100 parts. It is very difficult for the memory to retain these numbers with accuracy, even in the case of a few such compounds; how much more so, then, must it be to remember the composition of the numerous bodies with which the chemist is constantly occupied !

If, however, we have recourse to symbols, we have only to express the composition of water by HO, and that of the deutoxide of hydrogen by HO₂; and referring to the table of atomic weights, we find that the former contains 1 of hydrogen to 8 oxygen, and the latter, 1 of hydrogen to 16 of oxygen. Even if we could not retain these latter numbers, we should thus still derive great benefit from the use of symbols; but the fact is, that we soon learn the atomic weights of the more important elements, and are not compelled to have recourse to the table for them.

But this is not all ; for in the numbers, as given in 100 parts, we can trace no relation ; and, consequently, if we commit them to memory, must do so as bare numbers. In the symbols, on the contrary, we see at a glance that the same quantity of hydrogen which, in water, is combined with a given weight of oxygen, is combined with double that weight in the deutoxide of hydrogen ; and we are thus supplied, not only with a fact, in itself, of the highest value, but also with a link by which the composition of two substances is associated in the memory, and therefore retained with facility.

Before quitting this part of the subject, it is well to point out two results which follow from the atomic theory.

The first is, that since, by definition, an atom is that which cannot be divided, there cannot be formed a compound of "1 atom, or equivalent of one element, and 4 an atom (or any fractional number of atoms, as 11, 24, &c.) of another element. Should such proportions appear to exist, they must be so expressed as to get rid of fractions, otherwise they imply a contradiction in terms. Thus, for example, iron combines with oxygen in two proportions. In the first compound, or protoxide of iron, 28 parts (1 eq.) of iron are combined with 8 parts, or 1 eq., of oxygen. We, therefore, assume this compound to contain 1 atom of each element, and express it in symbols by FeO. In the other oxide, or peroxide of iron, 28 parts, or 1 eq., of iron are found to be combined with 12 parts of oxygen. Now, 8 being 1 eq. of oxygen, 12 must be 11 eq. But as it would be absurd to call this oxide a compound of 1 atom of iron and 11 atom of oxygen, we get rid of the fraction by doubling both numbers, and we represent the peroxide of iron by Fe, O,. Here the proportion is still that of 1 to 11, but the absurdity of

dividing an atom is avoided. It is obvious that the atomic weight of the compound is double what it would be if we had retained the fraction; for Fe₂ $\equiv 56$, and O₃ $\equiv 24$: and 56: 24: 28: 12. As the proportion is still that of 1 to $1\frac{1}{2}$ atom, although there are, in reality, 2 to 3, this compound is frequently called sesquixide of iron, from *sesqui*, a prefix signifying one and a half. The prefix, *sesqui*, is used in many similar cases, precisely in the same way.

Of course, where analysis indicates the proportions of 1 atom of A to $2\frac{1}{2}$ or $3\frac{1}{2}$ of B, we, in like manner, to avoid fractions, express these proportions by 2 to 5, or by 2 to 7. The symbol for phosphoric acid is $P_g O_s$: that of hypermanganic acid is $Mn_s O_s$.

The second result or corollary from the atomic theory is, that when two compounds having a common element unite together, the amount of the common element in the equivalent of the one is, to its amount in the equivalent of the other, in a ratio which may be expressed by whole numbers. Thus, potash is composed of potassium and oxygen, sulphuric acid of sulphur and oxygen. Here oxygen is the common element. Now, in an equivalent of potash, KO, there is 1 atom of oxygen = 8. In an equivalent of sulphuric acid, SO,, there are 3 atoms of oxygen = 24; and it is obvious that the oxygen in the latter is to that in the former as 3:1. This relation is at once seen in the formula of the compound, sulphate of potash, which is KO, SO, ; and it prevails necessarily in all neutral compounds of sulphuric acid with bases which have an analogous constitution. In nitrate of potash, KO, NO,, the ratio is different, being as 5:1. When an acid, such as sulphuric acid, forms a neutral salt with a base of a constitution different from that of potash, as, for example, with sesquioxide of iron, the relation of 3 to 1 is still kept up : for the neutral sulphate of sesquioxide of iron is Fe, O, 3 SO,. In a compound not neutral, such as Fe O₃, SO₃, which represents the basic sulphate of sesquioxide of iron, the relation is different, being that of 3:3 or 1:1; but still it is capable of being expressed in whole numbers.

COMBINATION BY VOLUMES.

When two gaseous bodies combine together, it is always in such proportions, by volume, that 1 volume of the one gas combines with one or two or more volumes of the other; and if the resulting compound be gaseous, its volume bears some simple ratio to those of its elements. Thus, 1 vol. hydrogen combines with 1 vol. chlorine, to produce 2 vol. hydrochloric acid; and 2 vol. hydrogen combine with 1 vol. oxygen, to form 2 vol. of the vapour or gas of water. It is evident, that where two gases combine in several proportions, the law of multiple proportions must prevail in regard to the volumes as well as in regard to the weights. For example, in the five compounds of nitrogen and oxygen formerly mentioned, 2 vol. nitrogen are combined with 1, 2, 3, 4, and 5 vol. oxygen.

The volume of the compound is in all cases either equal to the sum of the volumes of its component gases, or less than that sum; in the latter case condensation has taken place. It follows that 1 vol. of a compound gas contains either 1 vol. of each of its constituents, or a multiple or a submultiple of a volume of one or both.

It is easy to see that there must be a relation between the volume and the weight of gaseous elements, since the law of definite proportions can be traced in both. Since water, for example, is composed of 8 parts by weight of oxygen to 1 of hydrogen, and of 2 parts by volume of hydrogen to 1 of oxygen, it must be possible to construct a table of combining volumes, as well as a table of atomic weights; and in fact this may be done in regard to all those elements which may be made to assume the form of gas, and even in regard to some which cannot be obtained in that form, but which combine with gaseous elements to form gaseous compounds.

If the weight of a given volume of oxygen be called 1.000, it will be found that an equal volume of hydrogen will weigh sixteen times less, or 0.0625; and these numbers will represent the relative specific gravities of these gases. But we already know that in water 1 vol. of oxygen is combined with 2 vols. hydrogen; or, taking the specific gravities, 1.000 oxygen with $2 \times 0.0625 = 0.125$ hydrogen. Now these latter numbers are precisely the atomic weights or equivalents of oxygen and hydrogen, oxygen being made the standard, and = 1.000. Again, 1 vol. hydrogen combines with 1 vol. chlorine to form hydrochloric acid. Now, if 1 vol. hydrogen as above, be represented as weighing 0.0625, 1 vol. chlorine will be found to weigh 2.25; and these numbers are to each other precisely in the ratio of the equivalents of the two gases, which, on the oxygen scale, are 12.5 and 450, or on the hydrogen scale 1 and 36.

It was for a long time supposed, especially among Continental chemists, that equal volumes of the simple gases contained equal numbers of atoms. Were this the case, the specific gravities of the gases compared to oxygen as a standard, would of necessity coincide with the atomic weights as compared with the same standard : and would at all events, whatever standard might be employed, bear the same ratio to each other. Specific gravity in the gaseous form and atomic weight would then be synonymous.

Experiment, however, has demonstrated that this is not the case; but that, while an equivalent of one element is represented by one volume of its gas, two volumes are required to make an equivalent in some cases; and one-half volume, one-third volume, or even less, in others. In the following table will be found the specific gravities or the weights of equal volumes of such elements as admit of their specific gravities being either directly taken or calculated. In the first column are given the usual specific gravities compared to atmospheric air as the standard: in the second the specific gravities compared to hydrogen as the standard, in order to show the relation to the atomic weights :---

Gas or Vapour.	Specific	e Gravities.	Chemical Equivalents.		
Gas of Vapour.	Air=1.	Hydrogen=1.	By Vol.	ByWeight	
Hydrogen	0.0690	1.00	100	1.00	
Nitrogen	0.9727	14.12	100	14.15	
Carbon (hypothetical) .	0.4213	6.12	100	6.12	
Chlorine	2.4700	35.84	100	35.42	
Iodine	8.7011	126.30	100	126.30	
Bromine	5.3930	78.40	100	78.40	
Mercury	6.9690	101.00	200	202.00	
Oxygen	1.1025	16.00	50	8.00	
Phosphorus	4.3273	62.8	25	15.70	
Arsenic	10.3620	150.8	25	37.7	
Sulphur	6.6480	96.48	16.66	16.10	

It will be observed that the numbers in the second column are not the same in all cases as the equivalent numbers of the elements; but many of them are so, and in these cases a volume represents an equivalent. The other numbers are multiples by a whole number of the equivalent, oxygen being represented, for example, by $16 = 2 \times 8$, and sulphur by $96 = 6 \times 16$. This shows that, if an equivalent of hydrogen, chlorine, be represented by 1 vol., an equivalent of oxygen is represented by $\frac{1}{2}$ vol., and an equivalent of sulphur by $\frac{1}{2}$ vol.

The knowledge of the proportions by volume according to which bodies combine, and of the specific gravity of gaseous bodies, enables us to answer a great many questions, and decide a great many doubtful points in Chemistry. Thus—

1. If we know the specific gravity of two simple gases and the proportions by volume in which they combine, we can calculate the composition, by weight, of the compound. Thus, 2 vols. of hydrogen combine with 1 vol. of oxygen to form water. Now, the Sp. G. of hydrogen (Air = 1.000), is 0.0694, and that of oxygen is 1.1111. Therefore water is composed, by weight, of 0.0694 $\times 2 = 0.1388$ of hydrogen, and 1.1111 of oxygen.

2. If we know the volumes of the elements of a compound, and their specific gravities, and the volume of the compound, we can calculate the Sp. G. of the compound. To take the same example, 2 vols. hydrogen, Sp. G. = 0.0694, and 1 vol. oxygen, Sp. G. = 1.1111, combine to form 2 vols. vapour of water. Now the vapour of water must weigh as much as the oxygen and hydrogen taken together, that is, $0.0694 \times 2+1.1111=1.2499$. But as this represents the weight of 2 vols. vapour of water, the weight of 1 vol. vapour of water (or the specific gravity) must be $1.2499 \div 2=0.6249$.

3. If we know the volume and the Sp. G. of one of the two elements of a binary compound, and the Sp. G. of the compound itself, we can calculate the composition, by weight, of the compound. Thus, 1 vol. carbonic acid gas contains 1 vol. of oxygen; the Sp. G. of carbonic acid gas is 1.5239, and that of oxygen as before is 1.1111. Subtracting the latter number from the former, we have 0.4128, which must represent the weight of carbon united with 1.1111 of oxygen; and this is the composition, by weight, of carbonic acid gas.

4. If we know the specific gravity of a compound and its composition by weight, we can calculate the composition by volume. Example—by experiment the Sp. G. of the vapour of aldehyde (the weight of 1 vol.), was found to be 1.532; and the analysis of the compound showed that its composition by weight was, carbon 55.024, hydrogen 8.983, and oxygen 35.993, in 100 parts. Now, in order to ascertain the composition by volume, let us calculate the proportions of carbon, hydrogen, and oxygen in 1.532.

If 100 parts	contain	55.024	carbon, 1.532	contain	0.84279
22	99		hydrogen	>>	0.13760
>>	57	35.993	oxygen	"	0.55130

Now, the specific gravity or weight of 1 vol. of carbon is hypothetical or calculated : it is assumed to be 0.42139 (see table) : 1 vol. of hydrogen weighs 0.0694, and 1 vol. oxygen

ISOMORPHISM.

weighs 1.1111. It is easy to see, therefore, that 1 vol. of the vapour of aldehyde contains :---

2 vol. vapour of carbon	1.			0.84279
2 vols. hydrogen				0.1388
$\frac{1}{2}$ vol. oxygen .				0.5555

It is obvious, therefore, that the knowledge of the volumes in which gaseous bodies combine, and of their specific gravities, is of great value to the chemist : but we must not forget that we have no evidence that equal volumes of different elements contain an equal number of atoms ; or, in other words, that the term volume may be substituted for atom or equivalent, as was at one time supposed. On the contrary, all the recent researches on this point go to prove that, in the case of many elements, a volume corresponds to two or more equivalents.

ISOMORPHISM.

Most substances, when they assume the solid form slowly, so as to allow the particles to follow their natural attractions, exhibit, more or less perfectly, a regular form: in other words, they crystallise. Thus carbon, when slowly deposited in the form of diamond, assumes the form of a regular octohedron, or of some form geometrically allied to it; and common salt, a compound body, takes the form of the cube and its modifications, including the octohedron.

Now it has been observed that the same substance invariably crystallises in forms belonging to the same system, but that different substances very frequently present different crystalline forms. Thus, while diamond crystallises in regular octohedrons, iodine forms acute rhombic octohedrons: and while common salt crystallises in cubes, chloride of barium yields right rhombic prisms.

It happens, occasionally, but rarely, that the same element is capable of assuming two crystalline forms, belonging to different systems, and not geometrically connected with each other. Thus sulphur, crystallising from its solution in bisulphuret of carbon, forms very acute rhombic octohedrons, but when melted by heat, and allowed to consolidate by cooling, it yields oblique rhombic prisms.

The same is occasionally observed in compound bodies. Thus, carbonate of lime, in its common form of Iceland spar, crystallises in obtuse rhombohedrons and in innumerable varieties of that form : but in the rarer form of arragonite, it assumes the form of a rhombic prism. These cases, and others which are analogous, are to be explained by a different arrangement of particles, dependent most probably on a difference of temperature at the period of the formation of the crystals. They are not, however, numerous enough to affect the general law, that the same substance always assumes the same crystalline form.

But the admirable researches of Gay-Lussac and of Mitscherlich have established the fact, that in many instances, different compounds assume the same form. Thus, the following substances, and many others, take the form of the cube, tetrahedron, or regular octohedron, which are geometrically connected. Chloride of sodium (sea-salt), chloride of potassium, sal ammoniac : bromide of potassium : iodide of potassium : sulphuret of lead : fluoride of calcium : bisulphuret of iron : arseniuret of cobalt : sulphate of alumina and potash (alum) : ammonia alum : chrome alum, iron alum : sesquioxide of iron, sesquioxide of aluminum, sesquioxide of chromium. In like manner, other crystalline forms are found to be common to many different compounds, although none occurs so frequently as the cube and its congeners.

Now at first sight it would appear that no relation whatever could exist between the form of these numerous and very different compounds, and their composition. But on closer inspection, they are found to arrange themselves into groups. Of these groups, two may be specified among the compounds above enumerated. One is that of the chlorides, bromides, iodides, and fluorides of metals, having the formula MR, that is, 1 at : metal to 1 at : radical. This includes chloride of potassium KCl, of sodium Na Cl, of ammonium (sal ammoniac) Am Cl:* to which may be added bromide of potassium KBr, iodide of potassium KI, and fluoride of calcium Ca F : and this group is a very large one. It will be observed that the members of it contain an equivalent of a metal united to 1 equivalent of a metalloid, and are therefore, so far analogous in composition. The next group is that of the alums. Common alum has this formula.

$$KO_{3}SO_{3} + Al_{2}O_{3}3SO_{3} + 24 HO.$$

Now if we substitute ammonium for potassium, we have

$$Am O, SO_3 + Al_2O_3, 3SO_3 + 24 HO:$$

and this is the formula of ammonia alum. Chrome alum is

 $KO, SO_3 + Cr_2 O_3, 3SO_3 + 24 HO:$

* See the section on Ammonium.

D 2

ISOMORPHISM.

and another may be formed by substituting Am for K. Iron alum is

$KO_{3}SO_{3} + Fe_{2}O_{3}, 3SO_{3} + 24 HO.$

And here also another alum is obtained by substituting Am for K. A good many more alums may be procured by substituting Na (sodium) for K, and Mn for Al, that is, manganese for aluminum; and all these salts have the same crystalline form and the same general properties. Here, as in the former more simple group, the analogy in constitution is at once obvious. Every alum is

$m 0, SO_3 + M_2 O_3, 3SO_3 + 24 HO:$

m stands for a metal of one class such as potassium, sodium or ammonium : and M for a metal of another class, such as aluminum, iron, chromium or manganese. It appears, therefore, that a salt, containing 1 eq. of a neutral sulphate of a protoxide of one of the former metals (mO, SO₃), along with 1 eq. of a neutral tersulphate of a sesquioxide of one of the latter metals, (M, O,, 3SO,), and 24 eq. water (24 HO) takes the crystalline form of common alum, the type of this group. From this we must conclude that the similar arrangement of particles prevailing in all these alums is one chief cause of the similarity in form. We see that the particles need not be all identical in two similar crystals : for example, of common alum and of iron alum. But there must be an analogy between those elements the equivalents of which may be mutually substituted for each other. We find, accordingly, in all other relations an analogy between potassium, sodium, and ammonium, on the one hand, and between aluminum, iron, chromium, and manganese on the other. In the group first mentioned, that of the chlorides, bromides, and iodides of certain metals, we find the same analogy between potassium, sodium, and ammonium on the one side, and between chlorine, bromine, and iodine on the other.

Now to these groups of analogous elements, the name of isomorphous groups has been given, as there is every reason to believe that, as elements, they possess the same form (1000, equal, and $\mu o \rho \phi \eta$, form); and the phenomena of identical form in compounds of different but analogous composition, have received the name of isomorphism. Two elements are isomorphous, which either crystallise in the same form, or may be substituted for each other in their compounds, equivalent for equivalent, (the other elements remaining unchanged) without affecting the form of the compound.

The doctrine of isomorphism enables us, in many cases, to decide on the formula of a compound, and, consequently, on its

36

equivalent. Thus, we have seen that aluminum or iron may be replaced by chromium, without change of form, in alum; and we find that sesquioxide of aluminum, sesquioxide of iron, and oxide of chromium, also crystallise in the same form. Now, the composition of oxide of chromium was formerly uncertain; but, finding as we do, that it is isomorphous with the other two sesquioxides, we conclude that it is also a sesquioxide, and that its formula is Cr_{a} .

Again, chromic acid is found to contain twice as much oxygen for the same an. unt of chromium, or it may be represented as $Cr_{2} O_{e}$. This being a most improbable formula, we observe next, that chromic acid may be substituted for sulphuric acid, without change of form; in other words, these acids are isomorphous. But the formula of sulphuric acid is S O_{3} , and we, therefore, conclude, that the formula of chromic acid is Cr O_{3} ; which agrees perfectly with the first observation, that it contains twice as much oxygen for the same weight of chromium as the oxide does; for Cr O_{3} is the very same proportion as $Cr_{2} O_{6}$.

The following isomorphous groups have been established, and the existence of more is highly probable :---

tenil to alive an 1. of Aces			7.		
Silver	Ag		Salts of potash	K	0
Gold	Au		Salts of oxide of ammo-		
			nium	Am	0
2.			(Or ammonia NH _a +		
Arsenious Acid (in its			water, $HO = NH_{A}O$		
unusual form)	As,	0,	testes month blacks they		
Sesquioxide of Antimony	Sb.	0,	8.	Hinta	
A land tales with the			Oxide of silver	Ag	0
3.			Oxide of sodium	Na	0
Alumina	Al,	03	9.		
Sesquioxide of iron .	Fe2	03	Baryta	Ba	0
" chromium .	Cr2	0,			0
" manganese .	Mn2	0,	Lime (in arragonite) .		0
			Oxide of lead	Pb	0
. 4.			any production and the first		
Phosphoric acid	P2	0,	10.		
Arsenic acid . , .	As2	0,		Ca	0
			Magnesia		0
5.			Protoxide of iron		0
Sulphuric acid	S	0,	,, manganese	Mn	0
Selenic acid	Se	03	" zinc	Zn	0
Chromic acid	Cr	0,	" cobalt .	Co	0
Manganic acid	Mn	0,	" nickel	Ni	0
			" copper .	Cu	0
6.	1010	and the	" lead (in		
Hypermanganic acid .			plumbo calcite)	Pb	0
Hyperchloric acid	Cl	0,	alase hansdama ela ava	14/2	1.74

The above groups are almost all formed of compounds : either because these compounds are found to be actually isomorphous when themselves crystallised, as, for example, the sesquioxides in group 3; or because they may be mutually substituted for each other, in those compounds into which they enter, without change of form. This, as we have seen, is the case with the sesquioxides in the alums; and, indeed, three of these oxides have been obtained in crystals, and found to be themselves isomorphous. But it is also the case with the acids ; for example, in groups 4 and 5, although we do not positively know, what is, however, most probable, that these acids possess, in each group respectively, the same form. Although, for example, we cannot say that arsenic and phosphoric acids are themselves isomorphous, since they do not crystallise, yet their salts are strictly isomorphous; and the analogy extends not only to form, but to colour, taste, and many other external qualities. So strong, indeed, is this external resemblance that, in many cases, we must actually decompose one of these salts, and ascertain whether it contain arsenic or phosphorus, before we can say whether the salt is an arseniate or a phosphate. The same extraordinary similarity in all external characters, is seen in the salts of the sulphuric and selenic acids.

We can hardly doubt that not only the salts, but the acids, are really isomorphous, and would be found so, if we could obtain them all in crystals; and we have the same reason to conclude that the elements of these acids are also isomorphous; that arsenic and phosphorus, sulphur and selenium, for example, crystallise in the same form.

Indeed, the only plausible explanation of the existence of isomorphous groups of compounds is, that the elements characterising those groups are isomorphous, and that hence their analogous compounds are so. If we assume that arsenic and phosphorus are isomorphous, then we see that As₂O₅ must be isomorphous with P₂ O₅, since the oxygen in both is, of course, the same. In like manner, arseniate of soda, As₂ O₅, 2 Na O, HO, 24 aq., since all the elements in these two salts are the same in nature, number, and arrangement, except that As₂ in the first is replaced by P₂ in the second, and the elements As and P have been assumed to possess the same form.

There is one case which requires explanation. It is the isomorphism of potash, KO, and oxide of ammonium NH₄O; or, in other words, ammonia with 1 at : water, NH₃ HO. Here we have a body composed of 6 equivalents isomorphous with one containing only two. But, on the one hand, there is good reason to believe that the compound metal, ammonium, NH₄ exists; and if we represent this by a single symbol Am, its oxide will be Am O, corresponding in constitution to KO, each being formed of 1 eq. metal, and 1 eq. oxygen. It is true, Am is a compound; but, on the other hand, this compound acts as an element, and Am=NH₄ is only 1 eq. of metal. Besides, we cannot be certain that even potassium, K, is not also a compound, although we have not as yet succeeded in decomposing it, if it be one. At all events, it is a fact, that NH₄ may be substituted for K without affecting the form of the compound in which the substitution is made, as in the alums; and we have only to assume that the compound NH₄ happens to be isomorphous with the simple substance K, and all the facts would follow.

We shall have occasion to return to the subject of isomorphism, when treating of salts generally, and of their crystallisation.

ISOMERISM.

We have seen that, as a general rule, analogy of composition implies analogy or similarity in form and external properties. But it has been observed in a number of cases, that two or more compounds, formed of the same elements, in the same relative proportions, and having, therefore, the same composition in 100 parts, are yet entirely distinct from each other in all their properties. Such bodies are called isomeric bodies (from $\iota \sigma os$, equal, and $\mu \epsilon \rho os$, part.)

It is obvious that, as the proportions of the elements are the same, the source of the difference in properties must be sought for in the absolute number, or in the arrangement of the atoms. Thus, acetic ether and aldehyde are two entirely different liquids, containing exactly the same relative proportions of carbon, hydrogen, and oxygen. These proportions, reduced to the smallest number of atoms, are C. H. O. Now, there is no doubt that the absolute numbers in aldehyde are C, H, O,; and there is also no doubt that the absolute number of equivalents in acetic ether is C, H, O,. Here it is evident that, although the proportions are the same, the equivalent of acetic ether is twice as large as the equivalent of aldehyde. Again, the composition, in 100 parts, and consequently the relative proportions of the elements, of urea is exactly the same as in hydrated cyanate of ammonia; while the equivalent of both compounds appears to be the same, or, in other words, they contain the same absolute number of atoms of the element. But we know that the hydrated cyanate of ammonia is represented by NH, +C, NO, HO; and that urea contains

ISOMERISM.

neither ammonia NH_s, nor cyanic acid C₂NO. Let us suppose the atoms in urea to be simply united thus, $C_{g}N_{s}H_{4}O_{2}$, and we see at once that the same relative and absolute number of atoms may readily give rise to perfectly distinct compounds. In some cases, we know what the arrangement is in both compounds. Thus, hydrated acetic acid, $C_{4}H_{3}O_{3}$, HO, and formiate of oxide of methule, $C_{2}H_{3}O+C_{2}HO_{3}$, both contain $C_{4}H_{4}O_{4}$. Such isomeric compounds are called *metameric*; and where the absolute number of atoms differs, *polymeric*; where the absolute number in one or both is unknown, they are called simply *isomeric*.

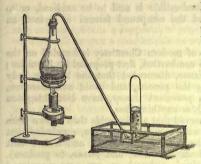
It is easy to see that, wherever the atoms of the elements of a compound admit of more than one arrangement, metameric compounds may occur. In binary compounds, such as water, HO, there is but one arrangement possible, as long as the absolute number of atoms is not doubled, trebled, or still further multiplied. But in such a compound as peroxide of iron, Fe₂O₃, for example, the elements might yield several metameric compounds, such as 2FeO+O, $FeO+FeO_2$, Fe+ FeO_3 , not to mention the multitudes of compounds which might be formed with precisely the same composition in 100 parts, by increasing the absolute number of atoms.

The discovery of isomerism, however unexpected, is thus entirely consistent with the atomic theory, of which it is merely a special case. Isomerism is of very frequent occurrence among organic compounds, owing, no doubt, to their usually large atomic weights, since the numerous atoms of the elements afford much scope for isomeric modifications; and doubtless this principle plays an important part in the processes of organic life and growth, as well as in decay.

Having premised the preceding general or introductory remarks, we now proceed to the actual description of the elements, and of their compounds, which constitutes Chemistry, properly so called.

It is not possible, in the present state of our knowledge, to follow any arrangement that shall not be open to objection. The different classes or groups of elements are not so clearly characterised as to permit us to follow a strictly scientific arrangement, and therefore we shall only adhere to the division of the elements into metalloids and metals; and, beginning with the former, describe the elements in the order of their importance and interest. It has already been stated that even this division is not always fully observable, since selenium is classed by some as a metal, and arsenic by others as a metalloid.

OXYGEN.


METALLOIDS.

There can be no hesitation as to that element which, being the most important of all, ought to be first treated. We therefore proceed to describe—

1. OXYGEN. 0 = 8.013

Is of all elements the most abundant; forms 89 p. c. by weight of all the water, and 23 p. c. of the atmospheric air of our globe; exists in all rocks, except rock salt; and is an essential element in all animal or vegetable bodies. It constitutes at least + of the weight of our earth.

Obtained most easily by applying a heat rather below redness to a mixture of chlorate of potash with $\frac{1}{100}$ of its weight of

peroxide of manganese. The latter undergoes no change, but promotes in a high degree the decomposition of the chlorate. The mixture being introduced into a small retort, or a small flask with a bent tube, may be heated by a spirit lamp, and the gas, which comes off very abundantly and rapidly, collected, over water, in the pneu-

matic trough. The chemical change caused in the chlorate by heat is represented as follows :

$KO, ClO_5 = KCl + O_6$

That is, 1 eq. of the salt yields 1 eq. chloride of potassium, KCl, which remains in the retort, and 6 eq. of oxygen, which escapes in the form of gas.

Properties.—A gas, colourless, tasteless, inodorous. Specific gravity (air=1:000) 1:1026, or, according to Thomson, 1:1111. A burning body, as a match of wood or paper, burns in the gas with greatly increased brilliancy; a spark on a piece of wood bursts out into flame. Iron wire burns in it, when heated white hot, with beautiful sparks. Phosphorus burns in it with an intense dazzling white light, &c.

Oxygen combines with all the other elements (except perhaps

fluorine), and with most of them in several proportions. The combustion of bodies in oxygen is nothing but their combination with that element; the process, from the energy of the affinities, being attended with heat and light. Thus, when iron burns in oxygen, it yields oxide of iron, FeO; and when phosphorus burns in oxygen, it produces phosphoric acid, P_2O_z . In all such cases, the oxygen and the combustible body disappear, and a new compound results.

Combustion, or the combination of a combustible with oxygen, goes on in atmospherical air, but much less rapidly and vividly than in pure oxygen, because, in air, the oxygen is diluted with four times its bulk of nitrogen.

Many substances slowly combine with oxygen without the development of heat or light; as, for example, iron, when it rusts.

In every case the combustible is said to be oxidised, or to undergo oxidation, and the compound formed is termed an oxide.

The whole structure of modern Chemistry is founded on the above simple theory of combustion, first proposed by Lavoisier; who, by using the balance, discovered that the burning body became heavier during the process, and could not, therefore, according to the then prevalent theory, have lost phlogiston (an imaginary element), or anything else.

Lavoisier having observed that all the acids then known were compounds of oxygen with combustible bodies, concluded that acidity depended on the presence of oxygen, and named that element accordingly (from etvs, acid, and yerraw, to produce). The name is still retained, although we are now acquainted with many acids which contain no oxygen; and although, according to views now considered probable, hydrogen has more claim to the title of the producer of acids than oxygen. Besides, oxygen is now known to be an essential ingredient in bases, the basic power of which really seems to be in a close relation to their amount of oxygen. But the inconvenience of changing the name would be very great, so that, while many of the views of Lavoisier have been abandoned, his names are retained.

Lavoisier, among other views, held that combustion could not take place without the presence of oxygen. But subsequent experience has shown that although all combustions in our atmosphere, or in oxygen gas, depend on the presence of oxygen; the phenomenon of combustion is nothing more or less than chemical combination, attended by heat and light. Many examples might be adduced of combustion without oxygen; take, for example, the case of iron and sulphur, which, when heated, combine with much heat and light; or that of phosphorus, which, when introduced into chlorine, takes fire and burns, combining with the gas. Although, therefore, oxygen is concerned in all ordinary combustions, that is, in all which take place in our atmosphere, the student must bear in mind the true definition of combustion;—namely, "chemical combination, attended with heat and light."

Oxygen has been termed a supporter of combustion, as distinguished from a combustible body, such as phosphorus. But we are not to suppose that the oxygen has any greater, or any other share in combustion, than the phosphorus a solid. The heat and light, therefore, appear to proceed from the phosphorus ; because the combustion can only take place where the two bodies are in contact. But, in reality, both bodies are equally concerned in the production of the heat and light; and while we may call phosphorus a supporter of combustion as well as oxygen, we may call oxygen a combustible as well as phosphorus.

In all combustions in our atmosphere, the heat and light, as above explained, although derived equally from both bodies, or rather, from the process of combination, appear to proceed from what is usually called the combustible, or burning body. But this is merely appearance; for while a jet of hydrogen, set fire to in a jar of oxygen, seems to burn and to give out the heat and light, a jet of oxygen in a jar of hydrogen may be set fire to and will then appear, as the hydrogen did before, to be the source of the heat and light, which in both cases was derived from the combination of oxygen with hydrogen.

Oxygen is necessary to the respiration of animals; but for this purpose pure oxygen is not fitted; and it has, therefore, in our atmosphere been diluted with four times its volume of another gas.

When a large quantity of oxygen gas is required, it is generally prepared by heating to redness, in an iron bottle, the peroxide of manganese, of which 88 parts yield 8 of oxygen, according to the equation $2 \text{Mn} O_3 = \text{Mn}_3 O_3 + 0$. Oxygen may also be obtained by the action of heat on nitrate of potash or nitre, on red oxide of mercury, or on red oxide of lead. In practice, the chlorate of potash (of which 124 parts yield 48 of very pure oxygen), although rather a dear salt, and the peroxide of manganese, which, although not very productive, is very cheap, are alone employed. On the small scale, the peroxide of manganese.

OXIDES.

nese, heated with sulphuric acid, yields twice as much oxygen as when heated *per se*, according to the equation :

$Mn O_2 + SO_3 = Mn O, SO_3 + O.$

The sulphate of protoxide of manganese, Mn O, SO₃, remains in the retort. This process is troublesome, and the retort is generally broken during cooling. A better process, lately proposed, is to heat bichromate of potash with an excess of sulphuric acid.

Since oxygen unites with all the other elements, and forms very numerous and important compounds, it may be well here to mention the principal classes of oxidised bodies, or oxides, as the compounds of oxygen are called.

The most numerous class of oxides is that of the basic oxides or bases. These are formed, in every case, by the union of a metal with oxygen. The most frequent formula for a basic oxide is MO (M representing 1 eq. of a metal). Examples, potash, KO, lime, Ca O, protoxide of iron Fe O, protoxide of manganese, Mn O. Such bases are called protoxides. Next to these in importance are the sesquioxides, the formula of which is M_{σ} O₃. Examples, sesquioxide of iron Fe₂ O₃, sesquioxide of manganese, Mn₂ O₃, sesquioxide of antimony, Sb₂ O₃. Sesquioxide are in all cases weaker bases than the protoxides of the same metals; and, generally speaking, they are found to be weaker bases than protoxides. There are a very few basic oxides of the formula MO₂. Example, deutoxide or binoxide of tin Sn O₂. Finally, there are also a very few basic oxides of the formula M_{σ} O. Example, suboxide of copper, Cu₂O. Both these last kinds of bases are very feeble, compared to the preceding kinds.

The next important class of oxides is that of the oxygen acids. These are most frequently composed of metalloids united to oxygen; but there are also oxygen acids formed of metals united to oxygen. Examples of the former, carbonic acid CO_{g} , sulphuric acid, SO_{g} , phosphorus acid $P_{g}O_{g}$, phosphoric acid $P_{g}O_{g}$, nitric acid NO_{g} , hyperchloric acid $CI_{g}O_{g}$, of the latter, arsenious acid $As_{g}O_{g}$, antimonious acid, $Sb_{g}O_{g}$, antimonic acid $Sb_{g}O_{g}$, chronic acid CTO_{g} , manganic acid MTO_{g} , hypermanganic acid $MT_{g}O_{g}$. It will be observed, that the formulae of acids are very various; and it will also be noticed that where a metal forms an acid with oxygen, that acid contains more oxygen than the basic oxide or oxides of the same metal. Thus, sesquioxide of antimony which is basic, is $Sb_{g}O_{g}$, while antimony forms two acids, one Sb O_{g} , or Sb $_{g}O_{g}$, and the other Sb $_{g}O_{g}$.

The third class of oxides is that of the neutral or indifferent

oxides. These are neither decidedly acid, nor decidedly basic, and some of them play both parts ; on the one hand combining with bases, as a weak acid would do; on the other, uniting with acids like a weak base. This is the case with water HO, which, itself neutral, combines both with acids and bases, forming compounds which are still acid or basic, and are called hydrates. Examples, HO, SO,, oil of vitriol, or hydrated sulphuric acid; KO, HO, caustic potash, or hydrate of potash. Others do not enter into any combination, but are strictly indifferent ; such as deutoxide of hydrogen, HO,, and deutoxide (binoxide, peroxide, or superoxide) of manganese. Where, as in this last example, the metal also forms a basic oxide, or oxides, and an acid or acids, it is important to notice, that the indifferent oxide is intermediate in composition, as if a certain proportion of oxygen communicated basic properties, a somewhat larger proportion destroyed these without producing acidity, and a still larger share of oxygen gave to the compound distinctly acid characters. By inspecting the compounds of manganese with oxygen, we further see that of the two basic oxides, both of which contain less oxygen than the indifferent oxide, or superoxide, that which contains the most oxygen is the weaker base.

Mn	0	Protoxide of manganese.	A powerful base.
Mn,	04	Sesquioxide of do.	A feeble base.
Mn	0,	Superoxide of do.	Neither basic nor acid.
Mn	0.	Manganic acid.	A strong acid.
Mn2	0,	Hypermanganic acid.	A strong acid.

When the superoxide, or indifferent oxide of a metal, is acted on by an acid it loses oxygen, while a basic oxide, being left, combines with the acid; as in the process for obtaining oxygen by the action of sulphuric acid on peroxide of manganese, given and explained at p. 44.

Oxygen was discovered by Priestley, in 1774; and in the following year by the Swedish chemist, Scheele, without any knowledge of Priestley's discovery. The time, in fact, had come when Chemistry was studied in the true scientific spirit; and had these illustrious men not then discovered oxygen, it must, nevertheless, have been very soon discovered by some one else.

2. Hydrogen. H = 1.

Occurs in nature only in combination, chiefly in the form of water, of which it constitutes 11 per cent. by weight. It is an essential ingredient in all organised bodies.

It may be easily prepared by causing diluted sulphuric or

HYDROGEN.

hydrochloric acid to act on iron filings, or on granulated zinc. The best apparatus for the purpose is a wide-mouthed bottle, furnished with a closely-fitting cork. In this cork are made two holes, into one of which a tube properly bent is closely fitted, while into the other is inserted, also air-tight, a straight tube, reaching to the bottom of the bottle, and widened at its upper end, so as to form a funnel. Both tubes are open at both ends, and the bent tube terminates, within the bottle, just below the cork, while its further end dips under water in the pneumatic trough.

The metal being introduced into the bottle, and covered to the depth of an inch with water, the cork with the tubes is fitted

in: the acid is poured in through the straight tube, and the bottle shaken, so as to mix the acid and water thoroughly. Enough of acid should be added to cause a brisk, but not violent effervescence; and as the end of the straight tube is covered by the liquid, the gas produced can only escape through the bent tube. Care must be taken not to collect the gas for use until the whole of the air originally in the upper part of the bottle has been expelled; otherwise the application of a light might cause a dangerous explosion. Perhaps the safest way is to collect, in a large jar full of water, as much of the gas which

first escapes as would suffice to fill the gas-bottle twice, and to throw this away : what comes subsequently is pure. When the current of gas slackens, the addition of a little more acid, through the straight tube, causes it again to go on as briskly as at first.

When zinc and hydrochloric acid are employed, the process is represented by the following equation: Zn + H Cl = H +Zn Cl. That is, the zinc takes the chlorine of the acid, forming chloride of zinc, and the hydrogen is separated. When iron and sulphuric acid are used, the process is expressed by the equation Fe + HO, $SO_3 = H + FeO$, SO_3 . Here the hydrogen is supposed to proceed from water, the oxygen of which forms, with the iron, protoxide of iron, which again unites with the sulphuric acid, forming sulphate of protoxide of iron. It is to be observed, that this, the generally received explanation of the latter process, is very different from the former, although the phenomena in both are the same, namely, the 'escape' of hydrogen and the formation of a neutral salt. When treating of acids and salts,

46

WATER.

we shall see how it is possible to do away with this complexity, and to bring both processes under one formula.

(The above simple method of obtaining hydrogen gas is equally applicable in all cases where a gas is to be produced by the action of an acid on a solid body, without the aid of heat; as in the cases of deutoxide of nitrogen, sulphuretted hydrogen, carbonic acid, &c. It has, therefore, been described minutely, and will hereafter be referred to in describing the preparation of the above gases.)

Properties.—Hydrogen is a gas, colourless, tasteless, and, when quite pure, devoid of smell. When prepared from common zinc or iron, it contains some foreign body, which gives it an unpleasant smell. It is the lightest body known, its Sp. G. being 0.0694 (Air = 1), or 16 times less than that of oxygen. A lighted candle, introduced into hydrogen, is extinguished, but the hydrogen takes fire at the mouth of the vessel, where it is in contact with the oxygen of the air, and burns rapidly away, giving out but little light, with an intense heat, and producing water, which, by proper means, may be condensed and collected. Hydrogen gas is not absorbed by water.

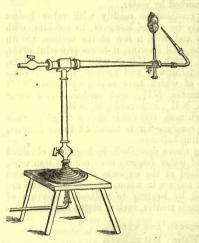
Hydrogen does not combine so readily with other bodies as oxygen does. It may be made, however, to combine with most of the metalloids and with a few of the metals. With chlorine, bromine, iodine, and fluorine, it forms powerful acids, the general formula of which is HR;* with carbon, sulphur, phosphorus, selenium, tellurium, and arsenic, it forms combustible gases, several of which have acid properties. With nitrogen it forms ammonia, NH₃, and probably two other compounds, ammonium, NH₄, and amidogen, NH₄.

From its extreme lightness, 100 cubic inches weighing only about 2.5 grains, while common air is about 14 times heavier, hydrogen is used for filling balloons.

Besides the processes above described, hydrogen is obtained by passing the vapour of water (steam) over red hot iron wire, when the iron is oxidised at the expense of the water ; also by placing potassium or sodium in water, when these metals are instantly oxidised ; and by heating to redness a mixture of potash, or soda, and organic matter, such as sugar, saw-dust, &c.

HYDROGEN AND OXYGEN. a. Water. HO = 9.013.

Hydrogen may readily be made to unite with oxygen, whether pure or in the form of atmospheric air. When hydrogen is


* R here stands for 1 eq. of any of the metalloids just mentioned.

mixed with oxygen or with air, the mixture takes fire and explodes violently on the approach of a flame, or when the electric spark is passed through it. A jet of hydrogen, issuing from a tube, may be set fire to by the same means; and in both cases, water is the only product.

We have already seen that 1 grain of hydrogen combines with 8 of oxygen to form water; and as no other element takes up so large a proportion of oxygen, this is probably the reason why the combination of hydrogen with oxygen is attended with so intense a heat.

If hydrogen and oxygen be mixed in the exact proportion of 2 vol. of the former to 1 vol. of the latter, and the mixture set fire to, as it issues from a small tube, the most intense heat is produced that it is possible to obtain by combustion. The flame of the oxy-hydrogen blowpipe, as it is called, readily melts platinum and pipe-clay, substances which resist the fire of the hottest furnaces. By this means, Mr. A. Kemp has melted 6 oz. of platinum at once.

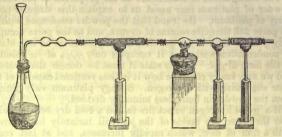
The gases, if previously mixed, should be made to pass

through a safety-apparatus before being set fire to; but, as accidents have occurred even when the safety-apparatus was used, it is, in all cases, better to keep the gases in separate gasholders. and to allow them to mix only in the tube. just before they are ignited, regulating the flow of the two gases so as to obtain the most intense heat. Any excess of either gas cools the flame and diminishes the effect. For the jet best adapted to this experiment, see the cut.

When a portion of spongy platinum, or of the finely-divided black powder of that metal, is introduced into a mixture of hydrogen with oxygen, or with air, the platinum soon becomes red-hot, and then the explosion instantly follows. Or if a jet of hydrogen be thrown on the metal in the air, it becomes redhot and ignites the jet. On this principle is constructed the beautiful instantaneous light apparatus of Döbereiner.

It would appear that the platinum possesses the property of causing hydrogen and oxygen to combine on its surface, whereby heat is developed sufficient to make the metal red-hot; and it then acts as any other red-hot body, such as flame, would do, in causing the explosion.

The observations of Döbereiner on the properties of the black powder of platinum may assist us to explain this singular property of platinum. He found that the powder condensed within its pores 253 times its volume of oxygen, and as the pores occupy only $\frac{1}{4}$ of the bulk of the powder, this oxygen must be in a state of condensation such that it occupies only $\frac{1}{10^{100}}$ of its volume in the form of gas. In this state it must be denser than water, and we may easily conceive how it is thus rendered capable of at once combining with hydrogen. Spongy platinum only differs from the powder in being less minutely divided.


If a jet of hydrogen be set fire to and a cold dry bell jar held over the flame, the inside of the jar will instantly be covered with a film of dew, which rapidly increases, and at last condenses into drops of water. This water, if collected, is found to be quite pure ; and if a known weight of hydrogen be burned, and the whole water collected without loss, the weight of the water will be 9 times that of the hydrogen ; the difference, or 8 parts in 9 of water, is oxygen.

This most important point, namely, the true composition of water, may be ascertained in other ways. Thus, if 2 vols. of pure hydrogen and 1 vol. of pure oxygen be mixed and confined over water or mercury, and if the electric spark be passed through the mixture, both gases will entirely disappear, and water alone will be the product. If the experiment be made in a graduated tube, and if, for example, 210 vols. of hydrogen be mixed'with 100 vols. of oxygen, and the mixture exploded, 10 vols. of hydrogen will remain unchanged; or if the proportions had been 200 vols. of hydrogen to 110 of oxygen, 10 of oxygen would have been left. Now, as hydrogen is 16 times lighter than an equal bulk of oxygen, it follows that 2 vols. of hydrogen must be 8 times lighter than 1 vol. of oxygen; and thus we arrive at the same result as to weights as we obtain by burning hydrogen and weighing the water produced.

Another, and a very beautiful method, of ascertaining the composition of water, by weight, is the following :--

Into the bulb blown in the middle of a wide tube of Bohemian glass, the weight of which is known, there is introduced a E

weighed portion of oxide of copper. One end of the tube is then connected with an apparatus, from which a steady current of dry hydrogen is disengaged; and to the other end is attached a tube containing fragments of chloride of calcium, a substance possessing a strong attraction for water; this tube with its contents being also weighed. As soon as the whole of the atmospherical air of the apparatus has been entirely displaced by the hydrogen gas, heat is applied, by means of a spirit-lamp, to the

oxide of copper. Aided by the high temperature, the hydrogen very soon begins to decompose the oxide of copper, combining with its oxygen to form water; and before long the black colour of the oxide is changed to the red of metallic copper. The water which is formed condenses in the cold part of the tube beyond the bulb, but by heating that part of the tube the whole of the water is soon carried by the current of gas into the tube with chloride of calcium, where it is retained. The apparatus is now allowed to cool, and when the tubes have again become full of atmospherical air, they are weighed. That with the copper will be found lighter than before, the other heavier. The loss of the former is oxygen, the increase of the latter is the water which that oxygen has yielded, and, of course, the difference between the two is the hydrogen of the water.

Let us suppose the first tube, when empty, to have weighed 500 grains, and when filled with the oxide of copper 540 grains; the oxide of copper must weigh 40 grains. The tube with chloride of calcium weighs, before the experiment, say 300 grains. Now, we should find, after the experiment, that the first tube, now containing metallic copper, would weigh 532 grains (oxygen), while the latter has gained 9 grains (water). Hence, the 9 grains of water contain 8 of oxygen, and, of course, 1 grain of hydrogen. Moreover, this experiment tells us that 40 grains of oxide of copper are composed of 32 of copper and 8 of oxygen; thus proving the composition of water by synthesis, and that of oxide of copper by analysis.

There is still another method of demonstrating the composition of water: namely, the decomposition of that fluid by

galvanic electricity. When the electric current of a powerful battery is made to pass through water in an apparatus so contrived, that the gas given off at each pole may be received into a separate graduated tube, it is found that by the time the tube at the positive pole is half full, the tube at the negative pole is half full, the tube at the negative pole is quite full; and on examination, the gas in the latter is found to be pure hydrogen, while that in the former is pure oxygen; and the proportion, by volume, is obviously 2 of hydrogen to 1 of oxygen, and from this, by means of the specific gravities of the gases, we obtain, as before, the proportion, by weight, of 1 to 8.

Water, which is thus proved to contain 1 eq. of hydrogen to 1 eq. of oxygen, represented by HO, is, at ordinary temperatures, a liquid, colourless, tasteless, and inodorous. It assumes the solid form, that of *ice* or *snow*, at 32° F., and all lower temperatures; and it takes the form of gas or vapour, that of *steam*, at 212° F., and retains that form at all higher temperatures. When ice is heated above 32° , it melts into water; and when steam is cooled below 212° , it condenses into water. Thus water possesses the liquid form only at temperatures lying between 32° and 212° .

Hence, in certain arctic regions, water is always, or nearly always, solid. Even in that state, however, and at all temperatures below 212°, it is always slowly assuming the gaseous form. It is in this way that watery vapour is constantly rising into the atmosphere from the surface of the sea, of lakes, of rivers, and of the soil ; which watery vapour, being again condensed into the liquid form, falls back on the earth in the shape of rain or dew, or if frozen, as snow, hail, and hoar-frost.

Water is perfectly neutral; that is, it exhibits in itself neither acid nor basic properties: but it is capable of combining with both acids and bases, and indeed, seems to be almost essential to their activity. The compounds of water with acids and bases are called hydrates; as HO, SO_3 , hydrated sulphuric acid, and KO, HO, hydrate of potsh.

Water combines also with neutral salts, and that in two con-

WATER.

ditions. In one it is easily expelled by heat, and the salt, if crystallised, generally falls to powder when the water has been expelled. This is called water of crystallisation, and its quantity is often very large. In the other, a portion of water, generally 1 eq., is combined with the salt by so powerful an affinity that it is with some difficulty separated. This is called saline water. because it may be replaced by an equivalent of a neutral salt. In formulæ, water of crystallisation is represented by aq. (for aqua), and saline water by HO. Thus, green vitriol is represented by FeO, $SO_3 + HO + 6$ aq.: that is, 1 eq. of neutral sulphate of protoxide of iron, 1 eq. of saline water, and 6 eq. of water of crystallisation. When this salt is gently heated, the 6 eq. of water of crystallisation are expelled, but the 1 eq. of saline water can only be expelled by a red-heat. It can also be replaced by a neutral sulphate, such as sulphate of potash, KO, SO_{3} , and the resulting double salt is FeO, $SO_{3} + KO$, $SO_{3} + KO$ 6 aq. Here, as in the green vitriol, the 6 eq. of water of crystallisation are easily expelled by a gentle heat.

In relation to acids, therefore, water acts the part of a base; in relation to bases, that of an acid; and in relation to neutral salts, that of a neutral or indifferent substance, or, indeed, of a neutral salt. Taking the three examples of hydrated sulphuric acid, HO, SO₃, hydrate of potash, KO, HO, and dry sulphate of iron, FeO, SO₃, +HO, it is to be observed that the water in the first can only be replaced by a base, such as potash, KO, which would yield sulphate of potash, KO, SO₃; the water in the second can only be replaced by an acid, such as sulphuric acid, SO₃, which would yield the same salt, KO, SO₃; and the water in the third may be replaced by a neutral salt, such as sulphate of potash, KO, SO₃, which would give rise to the double salt, FeO, SO₃ + KO, SO₃. Water in these three different characters is called basic water, hydratic water, and saline water, and, in addition to these, we have water of crystallisation.

Besides these numerous forms of combination, in which water most frequently loses the liquid form, it enters, as a liquid, into a peculiar kind of combination with the greater number of all known substances: it dissolves them. Of all liquids, water is the most powerful and general solvent, and on this important property its use depends. By the solvent power of water, substances, inert in the solid form, are made to assume the liquid form, and thus to become active—chemical action is promoted—substances mixed together may be separated from one another ;—in short, without water, not only the operations of the chemist, but the processes of animal and vegetable life, would come to a stand. The solvent power of water, in regard to solid bodies, is generally increased by heat. Hot water, therefore, dissolves more of most bodies than cold water does; so that, when a hot saturated solution cools, it deposits a quantity of the dissolved solid, commonly in crystals.

Water readily dissolves or combines with, or absorbs, as it is termed, many gaseous bodies. The gas, in this case, assumes the liquid form; and, as heat tends to cause bodies to assume the gaseous form, it is obvious that heat must diminish, and cold increase, the solvent power of water for gases. Increased pressure also enables water to absorb more of a gas than it will do under the ordinary pressure, evidently because pressure favours the liquefaction of a gas, by forcing the particles nearer to each other.

In consequence of the great solvent power of water, it is never found pure in nature. Even in rain water, which is the purest, there are always traces of carbonic acid, ammonia, and sea salt. When the rain water has filtered through rocks and soils, and re-appears as spring or river water, it is always more or less charged with salts derived from the earth, such as sea salt, gypsum, and chalk. When the proportion of these is small, the water is called soft, when larger, it is called hard water. The former dissolves soap better, and is therefore preferred for washing ; the latter is often pleasanter to drink, as its saline contents communicate to it a slight, but agreeable, taste.

When water becomes so highly charged with foreign matters as to have an unpleasant taste, or to acquire medicinal virtues, it is called mineral water. Of mineral waters there are several kinds: those in which iron predominates are called chalybeate waters; where sulphur prevails, they are called sulphureous waters; acidulous waters are those which contain much free carbonic acid; and saline waters are such as contain neutral salts, generally sea salt, and sulphate of magnesia, or Epsom salt.

The only way to obtain perfectly pure water, is to distil it; and in the laboratory, no water except distilled water should ever be used, provided distilled water can be procured in sufficient quantity.

Water is the standard of specific gravity for liquid and solid bodies, and its specific gravity is therefore represented by 1.

b. Deutoxide of Hydrogen. HO = 17.013.

This compound is formed, in some cases, where oxygen is presented in the nascent state to water. The best process is that of Pelouze, which consists in adding to diluted hydrofluoric acid (fluosilicic or phosphoric acids may equally be used), kept very cold, exactly so much of the peroxide of barium, that neither barium nor the acid can be detected in the liquid, the whole of both being precipitated as fluoride of barium, $BaO_g + HF = BaF + HO_g$. The deutoxide of hydrogen is dissolved by the surrounding water, and the filtered liquid is concentrated by being placed under the exhausted receiver, along with a vessel containing sulphuric acid, the whole being kept cold. The process, even in this form, is tedious and difficult, but much less so than the original method of Thénard, who discovered the compound.

The deutoxide, peroxide, or superoxide of hydrogen, when as free from water as possible, is a syrupy liquid, colourless, and possessed of a slight disagreeable odour, like that of bleaching liquor, and of a peculiar nauseous, bitter, and astringent taste. Its sp. g. is 1.453 (water = 1). It does not become solid, even in a very intense cold.

This compound is very easily decomposed, yielding water and oxygen. The contact of carbon, of many metals, and even of metallic oxides, also of many salts, causes the separation of oxygen, often with explosion, and sometimes with a flash of light. It is very remarkable that peroxide of manganese, for example, should cause this rapid decomposition, without combining with any part of the disengaged oxygen; and still more astonishing, that oxide of silver, so far from combining with more oxygen, loses all that it previously contained and is reduced to the metallic state. We cannot, at present, explain these phenomena. The application of heat to the deutoxide of hydrogen, causes oxygen to escape with effervescence. It is less easily decomposed when diluted, and especially if acidulated; the presence of a base, on the contrary, hastens its decomposition.

It is very probable that this remarkable compound will be found to possess valuable properties as a medicinal agent, and it is much to be desired that its preparation could be rendered easier.

3. NITROGEN. N=14.19.

Syn. Azote.—Discovered by Rutherford, in 1772. Occurs principally in the atmosphere, of which it forms 79 or 80 parts in 100 by volume, and about 77 by weight; also, in minute quantity, in the atmosphere as ammonia. It is an essential ingredient of all animal tissues, and of all such vegetable products as can be converted into blood in the animal body; also of the vegetable bases, and other vegetable compounds, such as indigo, &c. &c.

It is best obtained by the action of burning phosphorus, in a con-

fined portion of air, over water. The phosphorus takes the oxygen, forming phosphoric acid, which is soon removed by the water, and nitrogen gas is left.

Nitrogen is a colourless and transparent gas, devoid of taste and smell, and chiefly distinguished by the absence of active properties. It does

not support combustion, neither does it burn itself. It is incapable of supporting animal life, and consequently an animal, immersed in pure nitrogen, soon dies; but only because oxygen is absent, for nitrogen itself is so far from being poisonous, that the air we breathe contains \ddagger ths of its bulk of that gas in an uncombined state. It serves to dilute the oxygen, and for that purpose it is admirably adapted, from the absence of marked characters or strong affinities. Its specific gravity is rather less than that of air, being 0.976.

Nitrogen cannot be made to unite directly with any element, and only forms combinations when one or both elements are in the nascent state. It is, therefore, unlike the other metalloids, in a high degree chemically indifferent or neutral. But, under favourable circumstances, it does combine with most of the metalloids, and with several metals. Its most important compounds are those with oxygen and with hydrogen. Almost all compounds of nitrogen are easily decomposed, and many of them are even dangerous, from their tendency to explode from very slight causes.

It is this very character of easy decomposability that gives to the compounds of nitrogen their very high importance in the organised kingdoms of nature. We shall hereafter see how important a part these compounds perform in the formation, as well as in the destruction, of organic bodies.

NITROGEN AND OXYGEN.

a. Atmospherical Air.

The air of our atmosphere is formed of nitrogen and oxygen, not in a state of combination, but simply mixed together. Dalton has shown that, when any two gases, however different in density, are placed in communication, they are very soon found to be completely and equally mixed, even although they have no tendency to combine chemically. This is the case with the gases in air. The properties of each are present, only modified slightly by the presence of the other; whereas chemical combination gives rise to new compounds, possessing entirely new properties. This is eminently the case in the compounds which are really formed between nitrogen and oxygen, so that we are forced to look upon the air as a mixture merely.

It is remarkable, however, that the proportions of the gases are such as correspond almost exactly, by weight and by volume, to 2 eq. nitrogen and 1 eq. oxygen. Of 100 vol. of air, 79 or 80 are nitrogen, and 20 or 21 oxygen. Here we have the ratio of 4 vol. to 1. 100 parts of air, by weight, contain nearly 77 of nitrogen and 23 of oxygen; that is, almost exactly 28 of nitrogen to 8 of oxygen, or N_{a} O.

The physical properties of air are well known. It is, like all gases, elastic, and it possesses such a density, that 100 cubic inches weigh about 31 grains. Hence, the whole atmosphere presses on the surface of the earth with a very great force, equal to about 14 lbs. on each square inch of surface. In other words, a column of air, 1 square inch in base, and equal in height to the atmosphere, weighs 14 lbs. But the further consideration of this subject belongs to physics. Air is made the standard of specific gravity for gases and vapours, and its sp. g. is made 1.000.

The chemical properties of air are chiefly those of the oxygen it contains, modified by the presence of 4 times its bulk of the negative body, nitrogen. Air supports combustion, and the respiration of animals, as long as the proportion of oxygen does not fall below a certain amount.

Besides nitrogen and oxygen, the air always contains more or less watery vapour, which is almost equally important to animal and vegetable life, since neither animals nor plants can live long in a perfectly dry air.

Air also contains, as ingredients essential to the life of plants, and thus indirectly also to that of animals, minute proportions of carbonic acid and of animonia. The amount of the former seldom, in the open air, exceeds $\frac{1}{10^{100}}$ part of the weight of the air; while the proportion of ammonia is much smaller even than this.

When it is required to ascertain the exact proportion of oxygen in any specimen of air, the object may be attained in a variety of ways. The operation is called eudiometry, and the instruments employed eudiometers. The most commonly employed is that of Volta, modified by Ure, which is simply

EUDIOMETRY.

a graduated glass tube, closed at one end, and furnished with two platinum wires, to allow the electric spark to pass. The

air being introduced and measured, half its bulk of pure hydrogen gas, or thereabouts, is added, and the whole measured again. The tube being from the first inverted in water or mercury, the spark is now passed through it, when an explosion takes place, and a certain portion of the mixture disappears, the water or mercury rising in the tube to supply its place. The residue is now measured, and $\frac{1}{2}$ of the volume which has disappeared is oxygen. It is obvious that, if there be enough of hydrogen, the whole of the oxygen will assume the form

of water, and both the oxygen and hydrogen of that water must lose the gaseous form. Now, as water is formed of 2 vol. hydrogen to 1 vol. oxygen, $\frac{1}{2}$ of the volume of the gases which have combined must be oxygen.

If, for example, 100 measures of air are mixed with 50 of hydrogen, the bulk of the whole will be 150. If, now, after explosion, 87 parts remain, it is plain that 63 have disappeared, and of these 63 measures 21, or $\frac{1}{2}$, are oxygen, originally contained in the 100 of air, while 42, or $\frac{2}{3}$, are hydrogen.

Gay-Lussac has lately proposed to remove the oxygen from a measured portion of air by means of copper moistened by sulphuric or hydrochloric acid, which soon absorbs that gas completely. The diminution of volume here is exactly equal to the proportion of oxygen present.

There are many other eudiometrical methods, but the above are the best.

The amount of water in the atmosphere is ascertained by hygrometers, of which there are various kinds. That of Daniell is the best. It is founded on the fact, that the temperature at which the water contained in the air is deposited as moisture, varies with the amount of moisture present. The drier the air, the more must it be cooled before it begins to deposit moisture. If the air be saturated with moisture, the cooling of it one degree will cause a deposition of dew, and the temperature at which dew is deposited is called the dew-point. The details of this and other hygrometers belong to Physics.

The presence of water in the atmosphere may be shown at any time by exposing a deliquescent substance, such as chloride of calcium, to the air, when it quickly becomes moist and finally liquefies by attracting moisture. Air, or any other gas, may thus be dried, either in a tube over mercury, into which the drying substance is introduced, or by passing the gas through a long tube filled with the substance in coarse powder, or through strong sulphuric acid, which has a powerful affinity for water.

The uses of atmospheric air are obvious. Besides supporting animal and vegetable life, it is essential to all our modes of obtaining heat and light by combustion.

It is very important to remark, that although the processes of respiration and combustion, as well as that of the decay and putrefaction of animal and vegetable matter, are constantly removing oxygen from the air, yet the proportion of that element never diminishes, being kept up by the process of vegetable life. In like manner, respiration and combustion are continually sending carbonic acid into the atmosphere in place of the oxygen they consume, and yet the air does not become more highly charged with carbonic acid; for the same process of vegetable life which restores oxygen to the air, removes an equal bulk of carbonic acid,—from which, indeed, the oxygen thus restored is derived.

b. Protoxide of Nitrogen. NO = 22.203.

SYN. Nitrous Oxide; Intoxicating or Laughing Gas.—Prepared by applying a moderate heat to pure nitrate of ammonia in a retort. The salt melts, boils, and is soon entirely volatilised in the form of water, which trickles down the neck of the retort, and protoxide of nitrogen, which being gaseous may be collected over water. The following equation represents the change:

$$(NH_3 + NO_5) \equiv 3HO + 2NO.$$

Showing that 1 eq. of ammonia and 1 eq. of nitric acid yield 3 eq. water, and 2 eq. protoxide of nitrogen.

This compound is a gas, colourless, and transparent. It has a faint smell and a sweetish taste. It is slowly absorbed by water, and therefore cannot be long kept over that liquid. Its specific gravity is 1.527. It may be liquefied by a pressure of 50 atmospheres.

By weight, it contains 8 parts of oxygen to 14 of nitrogen, and, by volume, two vol. of nitrogen and 1 vol. of oxygen, condensed into the bulk of 2 vol. Hence this gas contains its own bulk of nitrogen, and half its bulk of oxygen, while air only contains $\frac{1}{5}$ of its bulk of that gas. Consequently, as some combustible bodies, such as phosphorus, or a candle if burning, are capable of decomposing this gas and seizing its oxygen, they burn in it with great brilliancy. Probably for a similar reason it is capable of supporting life for a short time, if respired, and its action on the human system is most remarkable. In most persons it causes very agreeable sensations, a sense of lightness, a rapid and brilliant flow of ideas, accompanied with an irresistible tendency to laughter and to very violent muscular exertion. These effects only last for a minute or two after the gas has been breathed as long as possible : but they are not followed, like those of other excitants, by any sense of depression or languor : on the contrary, a certain feeling of exhilaration and unusual lightness of spirits is often felt for a whole day after. In some cases, the effects are unpleasant, such as headache, a rush of blood to the head, and a tendency to stupor. The experiment must be therefore made with caution, and the gas withdrawn, should the face of the experimenter appear flushed to any considerable extent. As he is often, however, unwilling to relinquish the bag of gas, an aperture should be made in the side of the breathing-pipe, and stopped with a cork, which may be removed if necessary, thus admitting air to the mouth, and putting an end to all danger. These very singular properties of this gas were first discovered by Davy; and, in a physiological point of view, they merit further investigation than they have yet received. The gas has been tried in medicine, but hitherto without much benefit : although in America it is said to have been found useful in cases of melancholia.

Protoxide of nitrogen is neutral or indifferent, and has hardly any tendency to combine with other bodies. According to Pelouze, however, it combines with the salts of sulphurous acid, or sulphites.

c. Deutoxide of Nitrogen. $NO_{2} = 30.216$.

SYN. Nitric Oxide: Nitrous Gas.—Best obtained by the action of copper clippings on moderately strong nitric acid, in the apparatus, p. 46. The metal is dissolved with effervescence, and the gas may be collected and preserved over water.

A gas, transparent and colourless. Its taste and smell are not known, because as soon as it comes in contact with air, it forms, with the oxygen, red vapours of nitrous acid, which have a suffocating smell and a rough, acid, corrosive taste. It supports, like the preceding gas, the combustion of burning phosphorus, and for the same reason, namely, that it contains half its bulk of oxygen, being formed of equal volumes of nitrogen and oxygen, united without condensation. Its specific gravity is consequently the mean between those of oxygen and nitrogen, or 1'0416. A burning candle is extinguished in this gas, and it not only does not support life, but cannot be breathed, as it forms nitrous acid gas in the mouth, and the glottis instinctively closes against the latter. Its most distinctive character is that of forming, when mixed with air or oxygen, a red gas or vapour, which is nitrous acid, and which instantly disappears if in contact with water, being absorbed by that liquid. As the formula of the deutoxide is NO_{a} , and that of nitrous acid, NO_{a} , it is plain that the latter may be formed from the former by the mere addition of oxygen. As the red vapours are very remarkable, the deutoxide may be used as a test of the presence of free oxygen in a gaseous mixture.

If a few drops of bisulphuret of carbon be added to a jar of this gas, and a light applied to the mixture, it burns with a bright blue flame.

The deutoxide of nitrogen is abundantly absorbed by any solution containing a salt of protoxide of iron, such as green vitriol, forming a brown solution, from which the gas may be expelled unchanged by boiling. This solution absorbs oxygen, and has been used in eudiometry, but it does not give accurate results.

d. Hyponitrous Acid. NO_a = 38.229.

Syn. Acide Nitreux; Salpetrige Saüre. It is formed when a strong base, such as potash, is brought into contact with the preceding gas, protoxide of nitrogen being given off, while the acid unites with the base. Thus,

$KO + 2NO_2 = KO, NO_3 + NO.$

It is best obtained, however, by heating 1 part of starch in 8 parts of nitric acid, Sp. G. 1.25, and conducting the disengaged gases, first through a long tube filled with chloride of calcium, to remove water, and then through a dry tube cooled down to -4° F. in which latter the acid condenses, as a very volatile liquid which, while cold, is colourless, but at the ordinary temperature becomes green. Its properties are little known.

In contact with water it is destroyed, giving rise to nitric acid and deutoxide of nitrogen, thus :

$3NO_3 = NO_5 + 2NO_3$.

The salts of this acid are obtained by heating a nitrate,—for example, nitrate of potash or soda,—till it begins to precipitate nitrate of silver brown. The whole is then precipitated by nitrate of silver, the precipitate dissolved in boiling water, and the hyponitrite of silver crystallises on cooling. From this salt, by the action of soluble chlorides, the other hyponitrites may be obtained. They have been little studied.

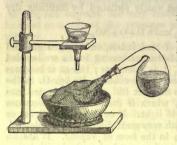
NITRIC ACID.

e. Nitrous Acid. NO4=46.242.

Syn. Acide Hyponitrique. Untersalpetersaüre.—This is the acid which appears as red vapours when deutoxide of nitrogen mixes with air, or with oxygen. 1 vol. deutoxide of nitrogen, and $\frac{1}{4}$ vol. of oxygen, if mixed quite dry, and cooled, form the liquid nitrous acid; but it is most easily obtained by distilling dry nitrate of lead. Equation,

$(Pb O, NO_5) = Pb O + O + NO_4$.

In this experiment oxide of lead is left, and oxygen gas and nitrous acid pass over, the latter condensing in the well-cooled receiver. If intensely cold, it is colourless; but as it becomes warmer, assumes a yellow or orange colour. Its Sp. G. in the liquid form is 1.42. It boils at about 82°, and is converted into a deep red vapour, or gas, which if further heated, becomes nearly black, or impervious to light. If once mixed with air or any other gas, it can only with very great difficulty be condensed, so that it is commonly seen in the form of vapour. It has an unpleasant suffocating smell, and cannot be breathed with impunity even for a moment. It supports the combustion of almost all combustible bodies, by virtue of its large proportion of oxygen.


In contact with water, it is destroyed, giving rise, like the preceding acid, to nitric acid, and deutoxide of nitrogen. Thus, $3 NO_4 = 2 NO_4 + NO_4$. As it undergoes the same change in contact with all bases hitherto tried, its salts are unknown. Along with pure nitric acid, it forms the orange-fuming nitric acid of the shops, often called nitrous acid.

f. Nitric Acid. NO = 54.255.

Formula of the hydrated acid, HO, NO5, or H, NO =63.268.

This, the most important of all the compounds of nitrogen and oxygen, occurs very frequently in nature, chiefly combined with potash or soda, forming nitre and cubic nitre; also in minute proportion in rain-water, after thunder-storms. It is formed in natural or artificial nitre beds, where animal or vegetable matter containing nitrogen is exposed to the air along with bases. The nitrogen being disengaged as ammonia, NH_s is oxidised along with the hydrogen, yielding nitric acid and water; thus, NH_s + $O_s = NO_s + 3$ HO. The acid is seized by the base present, and nitre is formed. The nitric acid occasionally found in rain-water, is also produced by the oxidation of ammonia; its quantity is too small to arise from the oxidation of the nitrogen of the air. The dry acid, NO_s is unknown in the separate form; if we attempt to separate it from water or a base, it is resolved into nitrous acid and oxygen; thus, NO_s = NO_s + 0.

The hydrated acid, HO, NO₅, or H, NO₆, is the substance commonly called nitric acid. It is best prepared by the distillation of a mixture of equal weights of hydrated sulphuric acid, or oil of vitriol, and of nitre or saltpetre, the nitrate of potash. The salt in coarse powder being introduced into a plain retort,

the acid is poured in by means of a retort funnel. The retort is then placed in a sand-bath over the lamp, and cautiously heated, till the acid begins to drop into the receiver, which is to be surrounded with cold water. As the nitre generally contains a little sea-salt, the first portions of acid which distil are impure, containing chlorine and nitrous acid;

but they serve to wash quite clean the neck of the retort, on which some sulphuric acid is commonly to be found, in spite of all our care, as well as traces of the powdered nitre. It is best, therefore, to collect the first portion, say $\frac{1}{100}$ of the whole, in a separate receiver, and when the liquid that drops is found to be free from chlorine (by the test of nitrate of silver), the receiver is changed, and the rest of the nitric acid is thus obtained quite pure, or at most, slightly tinged by nitrous acid. By this simple device, we avoid the necessity of re-distilling the acid, as commonly directed. The impure portion which first passes over, is extremely well adapted for all experiments of illustration, and ought to be carefully preserved for such purposes.

The following equation explains the change in this process :--

$(KO, NO_5)+2$ (HO, SO₃)=(KO, HO, 2 SO₃)+HO, NO₅.

For 1 eq. of nitre, we take 2 eq. of oil of vitriol, and we obtain 1 eq. of hydrated bisulphate of potash, and 1 eq. of hydrated nitric acid. We take equal weights of the materials, because 1 eq. of nitre weighs 102, while 2 eq. of oil of vitriol weigh 98; and a slight excess of the latter is advantageous rather than otherwise. By using 1 eq. of oil of vitriol, we may also obtain nitric acid; but a much higher temperature is required, and a large part of the acid is decomposed into oxygen, which escapes, and nitrous acid, which combines with the nitric acid, giving it a deep red colour, and causing it to give out red fumes. Moreover, in the latter case, neutral sulphate of potash is left, which can hardly be got out of the retort without breaking it; while the bisulphate of potash, formed in the operation first described, may be easily dissolved out by hot water.

Hydrated nitric acid, when pure, is a colourless liquid, giving out dense gray fumes, on exposure to the air. Its Sp. G. is 1.52 to 1.53. It freezes at 40°, and boils at 108°. If diluted somewhat with water, so as to have the Sp. G. 1.42, it boils at 248°; but if still weaker, it boils more easily, and becomes stronger, till the boiling point reaches 248°, when it distils over unchanged. Nitric acid has a pungent, rather disagreeable smell, is very acid and corrosive, and stains the skin, and organic matter in general, yellow.

It has a strong attraction for water, and becomes hot when mixed with it. (Acid of middling strength, mixed with snow, causes it to liquefy instantly, producing intense cold.)

Nitric acid is very easily decomposed. If passed through a red-hot porcelain tube, it is resolved into oxygen and nitrogen. All combustible or oxidisable bodies deprive it of oxygen, reducing it to nitrous acid, hyponitrous acid, or deutoxide of nitrogen; and even, in some cases, removing all the oxygen, and leaving only nitrogen gas. The action is generally attended with heat; and in some cases, such as phosphorus and essential oils, combustion takes place, and even dangerous consequences may ensue from the acid, or the burning body; which is scattered about by the violent commotion. Nitric acid is, therefore, a very powerful oxidising agent, and is much used for oxidising and dissolving metals, such as silver, copper, mercury, &c. It is remarkable that the very strongest acid does not attack metals ; but, on the addition of a few drops of water, a most violent action ensues.

The presence of nitric acid in a liquid is best ascertained by adding pure oil of vitriol, and then a drop or two of solution of green vitriol. If nitric acid be present, a red or brown colour will appear where the two liquids meet; and by this test $\frac{1}{24000}$ of nitric acid may be detected.

Pure nitric acid ought to be entirely volatile ; and when diluted with distilled water, to give no precipitate with the salts of baryta, or of silver.

Nitric acid is used in medicine, and in the arts; in the latter, as aquafortis. To the chemist, it is one of the most valuable agents, and is daily employed as a means of oxidising metals and organic substances. The tendency of this acid to yield oxygen to combustible bodies is found also in its salts, especially at a red-heat; and hence, nitrate of potash, or saltpetre, is an essential ingredient of gunpowder, and of the various mixtures used for rockets and fireworks; in all of which it is mixed with charcoal and sulphur.

With bases, nitric acid forms salts called nitrates. Most of these are neutral, with the general formula MO, NO₅; but there are a few basic nitrates, in which one or more atoms of the base are added to the neutral salts. All the nitrates are decomposed by sulphuric acid, and they may be recognised by deflagrating with red-hot charcoal, and by the test above given for nitric acid, which distinguishes them from other deflagrating salts, such as chlorates, &c.

NITROGEN AND HYDROGEN.

a. Amide. $NH_2 = 16.19$.

Syn. Amidogen.-This compound is unknown in a separate state, but is believed, with good reason, to exist in many compounds. If potassium, for example, be heated in dry ammoniacal gas, NH., 1 of the hydrogen is expelled, and an olive-coloured solid remains, the composition of which is K, NH.. It is viewed as a compound of potassium with amide, the amidide or amiduret of potassium. When put into water, potash and ammonia are formed, thus, K, $NH_{o} + HO = KO + NH_{o}$. Compounds of amide with sodium, with carbonic oxide (oxamide), with benzoyle (benzamide), and other substances, are known. Their general character is, in contact with water, and under the influence of acids and bases, to be resolved into ammonia and an oxidised product, commonly an acid. Thus oxamide, C, O, NH, along with water, HO, in the presence of an acid or an alkali, yields ammonia, NH,, and oxalic acid, C. O. It is this very powerful affinity for hydrogen which has hitherto defeated all our efforts to isolate amide. The various compounds of amide will be described in their proper order.

b. Ammonia. $NH_8 = 17.19$.

SYN. Volatile alkali—Occurs in combination with hydrochloric acid, as sal ammoniac; in the urine of animals, especially of birds and reptiles, as urate of ammonia; in several aluminous and ferruginous rocks and earths in small quantity; finally, in the air, as a constant result of the putrefaction, decay, or combustion of organic matters containing nitrogen.

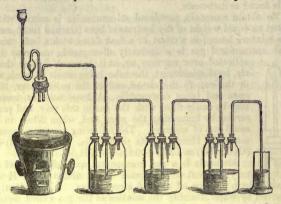
It is formed abundantly in putrid urine (from urea), and in the destructive distillation of organic nitrogenised matter, as, in Egypt, by heating camel's dung; in Europe, formerly, by distilling horn, hence the name spirit of hartshorn, at present by distilling any animal refuse; or in the distillation of coal in gasworks, which yield abundance of ammonia. In all these cases it is found as carbonate.

To obtain ammonia, powdered sal-ammoniac is mixed with about an equal weight of dry hydrate of lime (slacked lime), and the mixture heated in a retort, or a flask fitted with a bent tube. The ammoniacal gas is abundantly disengaged, and may be

collected over mercury, or, as it is much lighter than air, by displacement, the tube being made to reach, as in the cut, to the closed end of the gas-receiver, the open end being downwards. A large tube or vessel may be easily filled with the gas in this way, and preserved by immersing the open end, when filled, in a small cup of mercury. The following equation represents the change in its production. $(NH_3, HCl) +$ $(CaO, HO) = CaCl + 2 HO + NH_3$.

Ammonia is a gas, transparent and colourless, of a very pungent and peculiar smell and taste. It is liquefied by a pressure of about 5 atmospheres. It is instantly absorbed by water, forming the solution of the gas called aqua, or liquor, ammoniæ. It extinguishes a candle, does not burn itself under ordinary circumstances, and, if respired undiluted, is fatal to animal life. Its Sp. G. is 0.5902, being thus little more than one half as heavy as air. It possesses strongly alkaline or basic properties, neutralising the strongest acids. The approach of any gaseous or volatile acid, such as carbonic, hydrochloric, or nitric acids, to the mouth of a jar of ammonia, causes the formation of dense white clouds of carbonate, hydrochlorate, or nitrate of ammonia. By this property and by its smell, it is easily detected and recognised.

Ammonia is formed by the union of 3 vol. hydrogen and 1 vol. nitrogen, which yield not 4 vol., but 2 vol. ammoniacal gas. Here condensation to one half has taken place.


AQUA AMMONIÆ OR LIQUOR AMMONIÆ.

This most useful re-agent is best prepared by causing the gas disengaged from the above mixture of sal-ammoniac and slaked lime by heat, a little water having been previously added to moisten the powder, to pass through cold water in an apparatus, furnished with a safety-tube, to prevent undue absorption, the gas being washed by means of a very little water placed in an intermediate bottle. The water, if kept cold, will absorb about 670 times its bulk of the gas, by which it is increased in bulk, acquires a Sp. G. of only 0.872, and becomes possessed of all the chemical properties of the gas in a very high degree.

F

AMMONIUM.

This is the aqua ammoniæ fortissima of the manufacturers, and for medical use it requires to be diluted till it has the Sp. G. of 0.96.

At 0.872, it contains 32.5 per cent. of dry gas; at 0.96, hardly 10 per cent. Hence, by adding 8 vol. of water to 3 vol. of the strongest ammonia, we reduce it to the ordinary medical strength, which is also sufficiently strong for the usual chemical purposes.

¹ This solution is constantly employed by the chemist for neutralising acids, and precipitating insoluble bases. It has the very great advantage of not introducing any fixed matter, so that the re-agent may be totally expelled by a red-heat. In medicine it is much employed, internally, as a diffusible stimulant, and externally as a powerful rubefacient, and also along with oil as a counter-irritant. If it can be procured in time, it is the best antidote to prussic acid.

With acid, ammonia forms salts, which are recognised by their yielding the pungent smell of ammonia when mixed with caustic potash or slacked lime. They are either volatile in the fire, as carbonate, sulphate, &c.; or they are decomposed, the ammonia being driven off and the acid remaining behind, as phosphate of ammonia. For the constitution of the salts of ammonia, see below.

c. Ammonium. $NH_4 = 18.19$.

This compound, like amide, is not known in the separate state; but we have reason to believe that it exists, and has the chemical relations of a metal; hence its name.

When a salt of ammonia is decomposed by galvanic electricity, the negative pole terminating in a drop of mercury, the mercury swells to many times its original bulk, becomes almost solid, but retains its metallic aspect. The same compound is formed when an amalgam of mercury with potassium or sodium is placed in aqua ammoniæ, or in contact with a moistened ammoniacal salt. It is crystalline, and has been regarded as an amalgam of mercury and ammonium. When removed from the pole, and placed in water, it gives off ammonia and hydrogen. and the mercury resumes its original bulk. The remarkable circumstance is, that the amalgam contains so small a weight of ammonium (or of ammonia + hydrogen), although its properties are so different from those of the mercury. But, if we suppose an amalgam to be formed of 10 eq. mercury and 1 eq. ammonium, this would contain less than 2 per cent. of the latter. There is, therefore, nothing unreasonable or very improbable in the idea of a compound metal ammonium, NH4. Indeed, if we assume its existence, we are enabled to take a view of the constitution of the salts of ammonia, which makes them analogous to those of the other alkalies.

It was formerly the universal opinion that ammonia, NH₃, combined directly with oxygen acids, such as sulphuric acid, SO3, as well as with hydrogen acids, such as hydrochloric acid, HCl. According to our present knowledge, the hydrochlorate of ammonia does really contain the elements NH₃ + HCl, although we may suppose them otherwise arranged : but it has been shown that sulphuric acid, SO3, although it can be made to unite with ammonia, does not produce sulphate of ammonia : but that the formation of this latter salt requires, besides the elements of ammonia and sulphuric acid, those of 1 eq. of water, HO; and that the salts of ammonia, with the oxygen acids in general, contain, as an essential ingredient, this 1 eq. of water. It is not easy to see why ammonia should form neutral salts without the aid of water, when acted on by hydrogen acids, and should require water when combining with oxygen acids. But if we admit that ammonium exists, and is the true basic radical in all these salts, the whole becomes clear. In that case, NH, + HO, ammonia + 1 eq. of water, becomes NH₄, O, or oxide of ammonium; sulphate of ammonia + water $(NH_3, HO + SO_3)$ becomes dry sulphate of oxide of ammonium, NH, O, SO; ; and hydrochlorate of ammonia, NH_a, HCl, becomes chloride of ammonium, NH4, Cl. It has been observed, that the oxygen acid salts of ammonia + water are isomorphous with the dry salts of potash. Now, on the old view, we can trace no analogy between NH, HO, SO, and KO, SO, ; but if we admit the

F 2

CHLORINE.

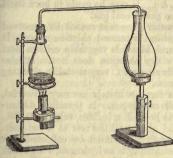
existence of the metal ammonium, and still more, if we represent it by the symbol Am. the analogy becomes obvious. Thus we have the two series—

2101 12 19 19	Potassium.		Ammonium.		Do.	Do. at full length.		
Metal .	1 110	к.	1.0	Am .		NH,	Ci Ma	
Oxide		KO	15.18	Am O		NH. O		
Chloride		K Cl		Am Cl		NH, C	I	
Sulphate		KO, S	0.	Am 0, 8				

The only difference between the two series is, that we know Am. to be a compound, while K is, as yet, undecomposed. But, as formerly remarked, all our present elements may hereafter prove to be compounds; and even were this not so, we can easily conceive a compound metal playing the same part as a simple one.

We have to bear in mind that ammonium, if it exists, is resolved into ammonia NH, and hydrogen, whenever we attempt to isolate it : that ammonia, in combining with a hydrated oxygen acid, such as HO, SO, takes the hydrogen of the water, forming ammonium NH₄, which, with the oxygen of the water, produces oxide of ammonium, and that the oxide then unites with the acid: and, finally, that ammonia, in contact with a hydrogen acid, such as HCl, takes the hydrogen of the acid to form ammonium, which then unites with the acid radical chlorine. Indeed, this very simple view may be extended to the hydrated oxygen acids, if we view them as hydrogen acids. Hydrated sulphuric acid, HO, SO₃, may be viewed as a hydrogen acid. H, SO_4 : and if ammonia act on this, we have either $NH_3 +$ $HO_{1}SO_{2} = NH_{4}, O_{1}SO_{2}$: or $NH_{3} + H_{1}SO_{4} = NH_{4}, SO_{4}$; the latter being perfectly analogous to the formation of chloride of ammonium (sal ammoniac), NH₃ + HCl = NH₄, Cl.

The above is a sketch of the ammonium theory of Berzelius, which is beautifully consistent, if we once admit the existence of ammonium : rendered, as it is, so probable by the phenomena of the amalgam, and by the isomorphism of the compounds of potash and those of animonia + 1 eq. water. This theory is pretty generally adopted by chemists.


4. Chlorine. Cl = 35.47.

This element occurs in prodigious quantity in the well known substance sea or rock salt, in which it is combined with sodium. It is also occasionally found in combination with lead, silver, and mercury. Chloride of potassium is a frequent ingredient of ashes, especially of the ashes of sea plants.

It is best prepared by the action of peroxide of manganese on hydrochloric acid. 1 part of finely-powdered peroxide is covered in a roomy flask with 6 parts of moderately strong hydrochloric

CHLORINE.

acid (4 parts of concentrated acid and 2 of water); to the flask is fitted tightly a tube bent twice at right angles, the longer limb

of which is conducted to the bottom of a dry, widemouthed bottle, furnished with a tight glass stopper. The chlorine, on the application of a gentle warmth, escapes in the form of gas, and, being much heavier than air, is very easily collected in dry vessels by displacement. As soon as the bottle is filled, which is easily seen from the vellow colour of the gas, it

is withdrawn and replaced by another. If the gas is to be kept, the stopper must be tightly fitted into the bottle, and the juncture well greased.

The following equation shows the change :--Mn $O_2 + 2 H Cl$ = Mn Cl + 2 H O + Cl. Here one half of the chlorine is given off as gas, while the other remains behind as chloride of manganese.

Chlorine, at the usual temperature, is a gas which is liquefied by a pressure of about four atmospheres. It is transparent and of a strong yellowish green colour (hence its name). Its Sp. G. is 2.500. Its smell is very disagreeable, pungent and suffocating; when much diluted it recals the smell of the air on the sea shore. If respired pure, it causes instant death; and even when diluted with air, excites cough, pain, and a sense of stricture on the chest, often lasting for many hours, and only relieved by a very copious expectoration of thick mucus, but occasionally followed by spitting of blood. The irritation thus caused may often give rise to permanent and serious disease of the lungs, and, therefore care should be taken not to breathe the gas in working with it. It is not a little remarkable, however, that, if very much diluted, although still apt to excite cough, it is found to alleviate the symptoms of phthisis when inhaled, probably by promoting expectoration. The patients themselves soon learn to bear it stronger, and to long for the hour of inhaling it. It is also stated that the workers in manufactories of bleaching powder, and in bleaching and dye works, where the air is always to some extent charged with chlorine, are less liable to phthisis than others : so that, up to a certain point, the system seems capable of becoming habituated to it with benefit.

CHLORINE.

Chlorine supports the combustion of many substances, such as a candle; many take fire spontaneously in it, as phosphorus, antimony, oil of turpentine, &c. It may be made to burn itself in an atmosphere of hydrogen gas or coal gas.

Chlorine gas dissolves in water: hence it cannot be preserved over that liquid. The solution is termed chlorine water. It has the smell of the gas, and bleaches vegetable colours most powerfully, which perfectly dry chlorine does not. It also destroys feetid or noxious effluvia, and is very useful in checking the spread of contagious disease.

The affinities of chlorine for the metals are very powerful, frequently stronger than those of oxygen. It therefore decomposes many oxides, as well as bromides, iodides, sulphurets, &c., at ordinary temperatures, and almost all the rest at a red-heat. It acts so strongly on mercury that it cannot be collected over that metal. But its strongest affinity is to hydrogen, with which it forms hydrochloric acid. It is to this powerful affinity that the bleaching properties of chlorine are to be ascribed; it seizes on part of the hydrogen of the colouring matter, and thus decomposes it entirely. The same remark applies to the destruction of effluvia and miasmata.

The presence of free chlorine is detected by its smell and its power of bleaching solution of indigo. Nitrate of silver also causes with it a curdy white precipitate of chloride of silver, insoluble in acids. (See Hydrochloric Acid.)

The compounds of chlorine, which are not acids, are called chlorides.

SOLUTION OF CHLORINE.

This solution is prepared by simply passing a slow current of chlorine gas through water (previously boiled and allowed to cool), placed in inverted retorts nearly full. As soon as water begins to escape at the neck of one retort, the tube is transferred to another, and so on alternately till the water refuses to absorb any more. The solution, which has the colour, smell, and bleaching properties of the gas, must be kept in small bottles, quite filled, and closely fitted with glass stoppers. A drachm or more of this, added to about four or six ounces of water at 100°, forms a mixture through which air may be drawn into the lungs when we wish diluted chlorine to be inhaled. The solution is decomposed by light, and ought, therefore, to be kept in the dark.

Chlorine combines both with oxygen and hydrogen, but as the compound of chlorine with hydrogen is the most important, we shall here deviate slightly from the natural order and treat of it first.

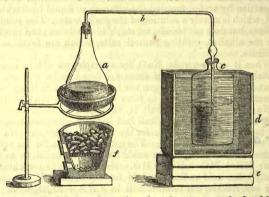
CHLORINE AND HYDROGEN.

Hydrochloric Acid. H Cl = 36.47.

SYN. *Muriatic Acid.* — Is formed when equal volumes of chlorine and hydrogen are mixed and exposed to light, flame, or the electric spark, all of which cause the gases to combine with explosion. Is best prepared by the action of sulphuric acid on sea salt, when the gas is disengaged even without the aid of heat. As water instantly absorbs it, it must be collected over mercury, or by displacement, as it is somewhat heavier than air.

The following equation shows the formation of the acid: $N_a Cl + (HO, SO_3) = H Cl + (Na O, SO_3)$: or, Na Cl + H, $SO_4 = H Cl + Na$, SO_4 .

Hydrochloric acid is a gas, transparent and colourless, fuming strongly with moist air, of a pungent, acid, suffocating smell, and a strong sour taste. Its Sp. G. is the mean between those of chlorine and hydrogen, or 1.284, it being formed of equal volumes of these gases without condensation. It is absorbed in large proportion by water, forming the common or liquid hydrochloric acid, which is merely a solution of the gas in water. This solution reddens, but does not bleach, vegetable blue colours; and neutralises the alkalies, yielding neutral salts, which are found to be chlorides.


When it acts on soda, NaO, for example, we obtain neutral crystals by evaporation, but these are found to be sea-salt, Na Cl. and contain neither oxygen nor hydrogen, so that these latter elements must have united to form water; thus: Na O + H Cl The result is, in regard to neutrality, the = Na Cl + HO. same as if the acid and alkali had directly combined together and neutralised each other : for the chloride of sodium (Na Cl) and water are both neutral. The general formula for the action of this and similar hydrogen acids on metallic oxides is as follows: HR + MO = MR + HO. Here, R stands for chlorine or any other acid radical, and M for any metal. If the oxide be a sesquioxide, the formula will be $3 \text{ HR} + M_2 O_3 = M_2 R_3$ + 3 HO. Here, 3 eq. hydrogen acid and 1 eq. sesquioxide yield 1 eq. sesquichloride (bromide, iodide, &c) and 3 eq. water; but the principle is the same. In some cases, however, hydrochloric acid appears to combine with oxides; as with alumina or oxide of chromium.

It will be easily seen, from what has just been said, that the action of hydrochloric acid on oxides affords a ready and convenient means of obtaining the corresponding chlorides. This method is very often employed.

HYDROCHLORIC ACID AND. WATER.

LIQUID, OR AQUEOUS, HYDROCHLORIC ACID.

SYN. Liquid Muriatic Acid: Spirit of Salt.—This most indispensable re-agent is best prepared by the following easy process, which moreover yields it perfectly pure: 6 parts, by weight, of pure salt are introduced into a flask or mattrass, and covered with 10 parts, by weight, of oil of vitriol, and 4 parts of water, the latter having been previously mixed, and the mixture allowed to cool: or we may take 8.5 parts, by measure, of sulphuric acid, Sp. G. 1.65. No action takes place in the cold, so that we may adapt securely a bent tube to convey the gas, to the flask. This tube is twice bent at right angles, and has a bulb blown on the longer descending limb. In a bottle, surrounded with icecold water, is placed a quantity of distilled water equal in weight to the salt, and the bent tube is made to dip about $\frac{1}{2}$ inch into this water. A gentle heat is now applied to the flask, which

rests in a sand-pot, and continued as long as any hydrochloric acid comes over. In about two hours the process is finished, and we find the distilled water increased in volume nearly twothirds, and converted into hydrochloric acid, quite pure and colourless, of Sp. G. 1.14 to 1.15. If we wish it as strong as possible, or of Sp. G. 1.21, we have only to employ, in a second operation, a part of the acid above described in the place of the distilled water, during the first half of the operation, when it will speedily become saturated. No safety-tube is required : it is only necessary to lower the bottle a little, occasionally, so that the tube shall never dip far into the liquid : and even should absorption take place too rapidly, and the water rise in the tube, the bulb will receive it, the end of the tube will be exposed, and air entering will prevent the regurgitation of the water into the flask. This simple tube, therefore, forms a selfacting valve, and renders a safety-tube unnecessary. The absorbing liquid must be kept as cold as possible, by frequently changing the surrounding water, which becomes warm owing to the heat developed in the absorption. If ice can be had, a little added to the cooling-vessel, from time to time, keeps the temperature sufficiently low.

In the above operation, the proportions of acid and salt are according to the formula

Na C1+2 (HO, SO_a)=(Na O, HO, 2 SO_a)+H Cl.

Here, 2 eq. of acid are employed for one of salt; for two reasons. First, a much lower heat is required; and 2ndly, the resulting salt, bisulphate of soda, is quite easily got out, without risking the flask, which is not the case when 1 eq. of acid is used, and neutral sulphate is left. The acid is diluted to Sp. G. 1.65, or even 1.60 for the same reasons. The addition of the water facilitates the operation, and renders the resulting mass more soluble and manageable. It is to be observed that, notwithstanding this addition of water, 2 of the hydrochloric acid gas comes off quite dry, and it is only towards the end of the operation that, the heat being increased, water and acid come off together. This is easily known by the tube becoming hot from the condensation of the steam. From first to last, not a trace of sulphuric acid passes over, even into the tube; and thus by using tolerably pure materials, we obtain colourless and pure hydrochloric acid, as easily and cheaply as if we were making the very impure acid of commerce. By the above process, the purest and strongest hydrochloric acid might be sold for not more than 3d. per lb., probably for less.

Pure aqueous hydrochloric acid has, when concentrated, a Sp. G. of 1.21, and fumes strongly when exposed to the air, the gas constantly escaping and uniting with the vapour which it meets. The acid even fumes when no denser than 1.13, and acid of from 1.14 to 1.16 is most convenient for common use, as there is not so much gas lost from it as from the strongest. It ought to be quite colourless; if yellow, it contains perchloride of iron or free chlorine, probably both. The liquid is very acid and corrosive. When a rod dipped in aqua ammoniae is brongth near, very thick white fumes of sal ammoniac are formed. If heated, gas is expelled, the boiling point, which is at first very low, gradually rising, till the Sp. G. falls to 1.100, when the boiling point is rather higher than that of water; and at this strength the acid distils over uncharged. A weaker acid, if boiled, loses water, and becomes stronger, while a stronger, as we have seen, loses gas and becomes weaker. We can, therefore, purify the common acid by diluting it to Sp. G. 1.100, and distilling it, rejecting the first and last portions. The intermediate portion is pure, but cannot in this way be obtained concentrated.

The presence of hydrochloric acid is detected by nitrate of silver, which forms, even in very diluted solutions, a white curdy precipitate of chloride of silver, insoluble in acids. It is to be borne in mind, however, that the presence of free chlorine and soluble chlorides gives rise to the same compound : we must, therefore, ascertain their absence, and the presence of an acid, before we can rely on this test.

The muriatic acid of commerce is very impure. It contains fixed impurities, detected by evaporation to dryness : sulphuric acid, detected by adding to the liquid, first distilled water, and then a salt of barium ; chloride of iron, detected by ferrocyanide of potassium ; free chlorine, recognised by its power of dissolving gold ; and sulphurous acid, easily known by its smell. It often also contains tin and arsenic, which may be discovered by the proper tests of those metals. As no re-agent is so much employed by the chemist, and none so necessary to have perfectly pure, the chemist ought never, in careful experiments, to use the common acid ; and it is on this account that I have so minutely described the method which I have given for obtaining it pure, and which is now generally adopted in the Continental laboratories.

Hydrochloric acid is much used in chemical investigations, chiefly for dissolving inorganic bases, with most of which it forms soluble chlorides: the exceptions are oxide of silver and protoxide of mercury, the chlorides corresponding to which are insoluble; and protoxide of lead, which yields a sparingly soluble chloride. In all inorganic researches, and above all, in the analysis of minerals, soils, &c., it is absolutely indispensable.

Hydrochloric acid may be viewed as the type of all acids, including the so-called hydrated oxygen acids. We shall have occasion to return to this subject when treating of the acids of sulphur, and also in the general remarks on salts.

NITRO-MURIATIC, OR NITRO-HYDROCHLORIC ACID.

Syn. Aqua Regia.-This, which was formerly viewed as a distinct acid, and celebrated for its power of dissolving gold,

HYPOCHLOROUS ACID.

is in reality a mixture. It is made by adding nitric acid to twice or thrice its bulk of strong hydrochloric acid. Both acids are decomposed, according to the equation :—

$HCl + NO_5 = HO + Cl + NO_4$

Here, the products are water, chlorine, and nitrous acid. It is also possible that the change may be as follows :----

$2 \text{ H Cl} + \text{NO}_5 = 2 \text{ HO} + \text{Cl}_2 + \text{NO}_3$.

Where the products are water, chlorine, and hyponitrous acid. While neither nitric nor hydrochloric acid, if pure, can dissolve gold or platinum separately, this mixture does so readily. It is certain, that free chlorine can dissolve those metals, and that their solution in aqua regia yields chlorides on evaporation; but there is reason also to believe, that the nitrous, or hyponitrous acids, contribute powerfully to the solvent power of the aqua regia, possibly by yielding oxygen to the metals, as these acids are more easily decomposed than nitric acid.

CHLORINE AND OXYGEN.

The affinity of chlorine for oxygen is very feeble, and these elements cannot be made to combine directly. By indirect means, however, they may be made to unite, and four compounds are known, all of which are acids.

a. Hypochlorous Acid. Cl O=43.483.

SYN. Acide hypochloreux. Unterchlorige Saüre.—When chlorine gas is passed through a cold diluted solution of an alkali, compounds are formed, which are known as bleaching compounds, and have been considered to consist of chlorine and metallic oxides, such as the so-called chlorides of lime and soda. They are, however, in reality, mixtures of chloride of the metal with hypochlorite of the oxide. Thus 2 eq. soda and 2 eq. chlorine, instead of combining together, act on each other as follows :—

2 Na $0+Cl_2=Na Cl+Na 0, Cl 0.$

The true bleaching compound of soda contains, therefore, 1 eq. of chloride of sodium +1 eq. hypochlorite of soda.

To obtain hypochlorous acid in the free state, red oxide of mercury and water are agitated with chlorine; when there are formed a compound of perchloride and peroxide of mercury, which is insoluble, and hypochlorous acid which dissolves in the water.

$2 \operatorname{Hg} O_2 + \operatorname{Cl}_4 = (\operatorname{Hg} O_2 + \operatorname{Hg} \operatorname{Cl}_2) + 2 \operatorname{Cl} O.$

By rectification, a stronger solution may be obtained; and if this be placed in a retort with an excess of dry nitrate of lime, this salt seizes on the water, and the hypochlorous acid gas separates, and may be collected over a saturated solution of nitrate of lime.

It is a gas of a strong yellow colour, and a peculiar penetrating smell. It is very easily decomposed into two vol. chlorine, and one vol. oxygen, exploding by the mere contact of many combustible substances, or by a gentle heat. Experiments with it require the greatest caution.

Water absorbs about 100 times its volume of this gas, and acquires a pale yellow colour, and the astringent, not acid, taste and peculiar smell of the gas. It bleaches powerfully, and is easily decomposed by all substances which have a strong affinity for chlorine, or for oxygen.

With the stronger bases it unites, forming salts which are called hypochlorites, the general formula of which is MO, Cl O. With acids these salts yield hypochlorous acid, not chlorine; and they are thus distinguished from the true bleaching salts, which, when acted on by acids, yield pure chlorine. The bleaching salts have the general formula M Cl+MO, Cl O; that is, as already stated, they are mixtures or compounds of chlorides and hypochlorides. The action of sulphuric acid on them is as follows :—

$(M Cl+MO, Cl O)+2 SO_3=2 (MO, SO_3)+Cl_2$.

Here all the chlorine, both that of the chloride, and that of the hypochlorite, is given off in the free state. Hence, as chlorine is the real bleaching agent, the great bleaching power of the chlorides of lime and soda, as they are called. The action of dilute sulphuric acid on bleaching powder (chloride of lime, or Ca Cl +Ca O, Cl O), furnishes a very easy and economical method of disengaging rapidly a large quantity of chlorine gas, as in fumigating a large room or house. No heat is required; we have only from time to time to add a tablespoonful of bleaching-powder to a basin of diluted acid.

When boiled, the hypochlorites as well as the bleaching compounds, which consist of hypochlorite+chloride, are resolved into chlorides and chlorates. Thus 3 eq. hypochlorite of potash, 3 (KO, Cl O), yield 1 eq. chlorate of potash, KO, Cl O_s, and 2 eq. chloride of potassium, 2 K Cl. Of course, if, as in the bleaching compound of potash, the 3 eq. of hypochlorite were mixed with 3 eq. of chloride, the result would be 1 eq. of chlorate, and 5 eq. of chloride.

b. Chlorous Acid. Cl O₄=67.522.

SYN. Peroxide of Chlorine. Chlorige Saüre. Acide Hypochlorique.—This acid is obtained by mixing oil of vitriol very gradually and cautiously with chlorate of potash, and applying to the yellow pasty mass thus formed, in a retort placed in a bath of proof spirit, a very gentle heat. Chlorous acid is given off as a deep yellow gas, which is even more easily decomposed, and more explosive than the preceding acid. Hence, very great caution, and the use of a glass mask, are necessary in experimenting with it. It may be collected over mercury. Its smell is peculiar, almost aromatic. It is absorbed by water, which acquires its odour, and its bleaching properties.

The following equation explains its formation :--

3 (KO, Cl O_5)+(2 SO₃)=KO, Cl O_7 +2 (KO, SO₈)+2 Cl O_4 .

That is, 3 eq. chlorate of potash, and 2 eq. sulphuric acid, yield 1 eq. perchlorate of potash, 2 eq. sulphate of potash, and 2 eq. chlorous acid.

The compounds of chlorous acid with bases are not much known. In contact with alkalies, chlorous acid appears to be resolved into chloric and hypochlorous acids. Thus, $4 \text{ Cl. } O_4 = 3 \text{ Cl } O_4 + \text{Cl } O_4$

c. Chloric Acid. Cl O₅=75.535.

SYN. Hyperoxymuriatic Acid.—This acid is formed, as we have seen, in combination with a base, under different circumstances; as, when the solution of a hypochlorite is boiled; when chlorine is passed through a hot and strong solution of an alkali; and when chlorous acid is brought in contact with bases. It is evident that in the second case a hypochlorite is formed, but is by the heat as rapidly destroyed, yielding a chlorate (see chlorate of potash); and if we suppose 6 eq. of potash to be acted on by 6 eq. chlorine, we may suppose the first stage to be represented as follows :—

 $6 \text{ KO} + \text{Cl}_6 = 3 \text{ K Cl} + 3 (\text{KO}, \text{Cl} \text{O}).$

And in the second stage, the 3 K Cl remaining unchanged, we have

3 (KO, Cl O)=2 K Cl + (KO, Cl O₅).

Or, omitting the first stage, as temporary only in the heat, we have

6 KO+Cl₆=5 K Cl+(KO, Cl O_5).

To obtain chloric acid, chlorate of baryta is dissolved in water, and sulphuric acid is added, so as exactly to precipitate all the baryta as sulphate. The clear solution is concentrated by spontaneous evaporation.

When very strong, it forms a yellowish oily-looking liquid, very sour to the taste. A piece of paper dipped in it soon takes fire, from the ease with which the acid yields its oxygen. It is

PERCHLORIC ACID.

resolved by distillation into hyperchloric acid, oxygen, and chlorine.

$2 \text{ Cl } 0_3 = \text{Cl } 0_7 + \text{Cl} + 0_8.$

The salts of this acid, which are called chlorates, are quite permanent, but readily explode with combustible matter at a redheat; or, in some cases, by friction and percussion alone, or by contact of oil of vitriol. Thus phosphorus and charcoal explode most violently in contact with chlorate of potash—the latter by friction, the former by percussion; and a kind of instantaneous light, formerly much used, consisted of a mixture of chlorate of potash, sugar, and a little gum, to make it adhere, placed on the end of a match, and dipped into oil of vitriol, when it took fire. The lucifors now used are also made with the same salt, and take fire by friction. (See chlorate of potash.)

'd. Perchloric Acid. $ClO_2 = 91.561$.

Syn. Hyperchloric Acid.—This acid may be obtained either by the distillation of chloric acid (see above), or by the distillation of hyperchlorate of potash with an equal weight of oil of vitriol, previously mixed with half as much water. It is purified from sulphuric acid by means of baryta, from chlorine by oxide of silver; and is then concentrated by slow evaporation.

It resembles the preceding acid, and when very concentrated, has a sp. g. of 1.65. It reddens litmus without bleaching it, boils at 412°, and may be distilled without change. It is very permanent, and has strong affinities. Its best known salt is the perchlorate of potash, which is so sparingly soluble, that the acid may be used as a test for potash, in all liquids not too diluted. As the perchlorate of soda is very soluble, the use of this acid enables us to distinguish, and to separate soda from potash.

The perchlorate of potash is easily formed by melting chlorate of potash, and heating it till the mass becomes thick and pasty, which takes place when $\frac{1}{2}$ of the oxygen is expelled. The residue is a mixture of chloride of potassium and perchlorate of potash, and the latter is easily purified by dissolving the whole in hot water, and allowing it to crystallise on cooling. The action of heat on chlorate of potash is thus expressed :

$2 (KO, ClO_s) = KCl + (KO, ClO_7) + O_a.$

It must here be observed, that our knowledge of the compounds of chlorine and oxygen is far from being complete or satisfactory, and that Gay-Lussac and Millon, since the discovery by Balard of hypochlorous acid, have devoted attention to the subject. Millon, indeed, has published an elaborate

78

memoir, in which he describes, under the name of chlorous acid, a compound ClO_3 , while he gives to the chlorous acid above described the name of hypochloric acid. The compound discovered by Davy, by acting on chlorate of potash with hydrochloric acid, and by him called euchlorine, by others protoxide of chlorine, and supposed by some to be a mixture of chlorine and chlorous acid (ClO₄), by others to be identical with chlorous acid, is, according to Millon, composed of Cl₂ $O_{1,3}=2 \text{ ClO}_3+\text{ClO}_2$. He calls it chlorochloric acid, and views it as composed of chlorous acid (ClO₃) and perchloric acid. In like manner, Millon has described another acid, obtained by the action of light on his chlorous acid in contact with cold water, and which he calls chloroperchloric acid. It is composed of $\text{Cl}_3 O_{1,2} = \text{ClO}_3 + 2\text{ClO}_2$, and differs from the last in the proportion of chlorous and perchloric acids it contains.

Almost all of these compounds have properties so similar, that they are with difficulty distinguished from each other. Thus there are not less than 5 compounds, according to Millon, namely ClO, ClO₃, ClO₄, Cl₃O₁₃, and Cl₃O₁₇, which are volatile liquids, yielding deep yellow highly explosive vapours. He distinguishes ClO and ClO₃ from the others, as forming permanent salts with bases; the other three yield, with bases, a mixture of chlorate with chlorite (the acid in the latter being Millon's chlorous acid, ClO₃), and the proportion of these salts is different in each case.

We have not space to enter more minutely into this very difficult but interesting subject. The researches of Millon are hardly completed, and require confirmation. In the mean time, the following table contains the compounds admitted by him, with his view of their true constitution:

Hypochlorous acid .	Cl	0
Chlorous acid .	Cl	
Hypochloric acid .	Cl	$O_4 \equiv Cl_4 O_{16} \equiv 3 Cl O_3 + Cl O_7$
Chloric acid	Cl	$0_{s} \equiv Cl_{2} 0_{10} \equiv Cl 0_{s} + Cl 0_{s}$
Chlorochloric acid .	Cl ₃	$0_{13} = 2 Cl 0_3 + Cl 0_7$
Chloroperchloric acid	Cla	$O_{17} = Cl O_8 + 2Cl O_7$
Perchloric acid	Cl	0,

It will easily be seen that Millon admits, as independent compounds, only ClO, ClO₃, and ClO₇; and that he considers all the others as compounds of ClO₃ with ClO₇, in various proportions. This readily explains the formation of perchlorate of potash from chlorate: for, on this view, chlorate of potash is $KO, ClO_7 + KO, ClO_2$; and when heated, it is the latter (the chlorite) alone which is at first decomposed into chloride of potassium and oxygen. On this view, also, we see why all the three compounds, Cl_3, Cl_3, O_{13} , and Cl_3, O_{12} , have properties so similar, and why they all yield, with potash, mixtures of chlorate and chlorite. For the details of the preparation and properties of these compounds, I must refer to the memoir of Millon, which is in the Annales de Chimie et de Physique, 1843, also in Liebig's Annalen, xivi, 281.

CHLORINE AND NITROGEN.

Perchloride of Nitrogen. N $Cl_4 = 156.07$.

Syn. Quadrichloride of Nitrogen. — This compound is obtained by allowing chlorine gas to come in contact with a solution of sal ammoniac at 90° or 100° . The gas is slowly absorbed, and an oily liquid appears in large drops on the surface of the liquid. By agitating the vessel, these fall down, being heavier than the solution, and should be received in a thick cup of lead, kept very clean.

The chloride of nitrogen is a yellowish oily liquid, distinguished for its tendency to explode by the mere contact of combustible matter, such as fat, oil, essential oils, phosphorus, &c. &c. The explosion is so violent, that even one drop of the liquid infallibly shatters to pieces any basin or bottle in which it explodes: and as it explodes often without any obvious cause, possibly from the contact of some minute portion of greasy matter, it is most dangerous to experiment on. A strong mask should be worn, and all the vessels employed should be scrupulously clean if it is necessary to make such experiments : it is better, however, not to attempt them. Both Dulong, the discoverer, and Davy, suffered very severely from their researches on it. Each lost an eye, and the former lost several fingers also. For the sake of illustration, a drop or two may be exploded in the lead cup above mentioned, by simply touching them with a rod dipped in oil. The results of the explosion are chlorine and nitrogen gases. It is generally admitted that the formula of the compound is Cl. N, and its formation may be thus explained-NH, HCl+Cl,=4HCl+ NCI.

5. BROMINE. Br = 78.39.

This element is found in minute proportion in sea water, in somewhat larger quantity in the water of the Dead Sea, in the bittern or mother liquor of sea water, out of which the sea salt has been crystallised, and in the mother liquid of many salt springs, from which, in like manner, the sea salt has been separated. The mother liquor of the salt springs at Kreuznach is particularly rich in bromine. In all these cases, the bromine occurs as bromide of potassium, sodium, or magnesium.

To obtain it, the liquor, concentrated as much as possible, is exposed to a current of chlorine gas, which is continued as long as the liquid becomes darker in colour from the bromine which is set free. The orange liquid thus obtained is to be agitated with ether, which rises to the surface, carrying with it all the bromine dissolved, which gives to the ether a hyacinth-red colour. The solution of bromine in ether is then acted on by a slight excess of potash, which produces a mixture of bromate of potash and bromide of potassium; 6K0+6Br=5KBr+(KO, BrO.). The whole is dried up and ignited, when all the oxygen of the bromate is expelled, and only KBr is left. This bromide is mixed with rather more than half its weight of peroxide of manganese, and then distilled along with its own weight of oil of vitriol (previously mixed with half its weight of water); the red vapours of bromine are given off, and condensed in a tube or receiver very well cooled. By rectification with a little chloride of calcium, the bromine is obtained dry and pure. The following is the action of the sulphuric acid on the bromide of potassium and peroxide of manganese :---KBr+ $MnO_{2} + 2SO_{2} = KO, SO_{2} + MnO, SO_{2} + Br.$

Bromine is, at ordinary temperatures, a deep brownish-red liquid, boiling at 113°; its Sp. G. is 2.99. Its vapour resembles that of nitrous acid, but has a very peculiar disagreeable pungent smell. It is poisonous, and acts so strongly on the living membrane of the nose, that the mere smelling to a bottle of bromine is often followed by a painful sensation in the nostril, attended with a copious flow of tears, lasting for hours, or even for days.

In all its relations, bromine is closely analogous to chlorine. It supports the combustion of phosphorus, and of many metals, like chlorine, and it bleaches organic colours. With hydrogen it forms hydrobromic acid, exactly analogous to hydrochloric acid; with oxygen it forms as yet only one acid, Br O_s, analogous to chloric acid. The analogy is equally striking when we compare the metallic bromides with the corresponding chlorides. Having so minutely described the relations of chlorine, this analogy will enable us to describe those of bromine very briefly. The affinities of bromine are less powerful than those of chlorine, so that the latter element disengages bromine from its compounds,

G

BROMINE AND HYDROGEN.

Hydrobromic Acid. H Br = 79.39.

To obtain this acid, phosphorus, bromine, and a little water are placed in contact, and the gas which is disengaged is collected over mercury. The change is the following :--

$P_{a} + Br_{a} + 3HO = P_{a}O_{3} + 3HBr.$

Here, along with hydrobromic acid, phosphorous acid is produced.

Hydrobromic acid is a gas, transparent and colourless, fuming strongly when mixed with the air. Its Sp. G. is 2.73. It is, in smell, taste, absorbability by water, and indeed all its properties, hardly distinguishable from hydrochloric acid; but chlorine decomposes it, setting free bromine. The strongest solution of the acid is a fuming liquid of Sp. G. 1.29.

With metallic oxides it forms water and bromides, exactly as was explained under hydrochloric acid.

MO + HBr = HO + MBr.

The bromides of lead, mercury, and silver, like the corresponding chlorides, are insoluble : the other bromides are soluble.

BROMINE AND OXYGEN.

Bromic Acid. Br $O_s = 118.445$.

It has been already mentioned that bromic acid is formed in combination with potash, when bromine is acted on by that alkali. The bromate of potash is quite analogous to the chlorate; and bromic acid may be obtained in the same way as chloric acid, by the action of fluosilicic acid on the bromate of potash, or of sulphuric acid on bromate of baryta. Its properties are quite analogous to those of chloric acid.

There is some reason to think that bromine forms bleaching compounds, which, like those of chlorine, contain peculiar acids bromous or hypobromous acids; and it is also probable that there exists a perbromic acid, analogous to perchloric acid. Our knowledge of these compounds, however, is very limited.

No compound of bromine and nitrogen is yet known. With chlorine bromine forms a reddish-yellow, volatile, pungent liquid which is said to be Br Cl₂, a perchloride of bromine. When this substance is acted on by potash, it yields chloride of potassiun and bromate of potash.

 $Br Cl_s + 6 KO = 5 K Cl + (KO, Br O_s).$

6. Iodine. I = 126.57.

Iodine occurs in marine vegetables, and is found rather more abundantlyin their ashes, as iodide of potassium, solium, or magnesium. It is, of course, present in sea-water, but in so small a proportion as not to be easily detected. Iodide of silver has been found in Mexico, and some of the Silesian ores of zinc contain iodine.

It is best obtained from kelp, the ashes of various species of fucus, or other algæ. The kelp is lixiviated with water and the solution evaporated as long as it deposits crystals. The mother liquor is precipitated by a mixture of 1 part of sulphate of copper and 2_1 parts of sulphate of iron, and the precipitate, which is subiodide of copper, Cu. I, if heated with peroxide of manganese alone, or with the addition of sulphuric acid, yields the iodine as a purple vapour, which condenses in black crystalline scales on the cold part of the apparatus. It is purified by a second sublimation.

At ordinary temperatures iodine is solid, of a grayish-black colour, and metallic lustre, like plumbago. It is often seen in acute rhomboidal plates; it is very bittle, and its Sp. G. is 4 948. It melts at 220°, and is converted, when dry, into purple vapour at 347°. Along with the vapour of water it volatilises much more easily. It has a peculiar marine smell and a rough acrid taste, and is poisonous.

Iodine is sparingly soluble in water, which takes up not more than $\tau_{0,00}$ of its weight (1 lb. of water dissolves 1 grain of iodine). The solution has a pretty strong brownish-yellow colour, and the smell of iodine. Alcohol and ether dissolve iodine abundantly, forming deep-brown solutions. Free iodine, whether in the form of vapour or of solution, gives to starch a deep blue colour, which affords a very delicate test for iodine, as well as for starch.

Iodine, like chlorine and bromine, enters into combination with phosphorus, metals, &c., when placed in contact with them, and frequently with the phenomena of combustion.

In liquids containing a minute trace of iodine in combination, it is best detected by adding fresh starch rubbed up with water, and then a very little chlorine, which may easily be done by simply inclining over the vessel the mouth of a phial containing some solution of chlorine, but not allowing the liquid to drop. There is always some chlorine gas in the upper part of the phial, which by its weight descends to the surface of the liquid to be tested, and the whole being agitated together, a blue tint, more or less deep, appears if iodine be present. Or oil of vitriol may be added to the liquid supposed to contain iodine, in a phial, and a slip of paper moistened with starch paste inserted between the cork and the neck of the phial, so as to be suspended over the liquid. After a time, if iodine be present, the starch is tinged blue.

HYDRIODIC ACID.

In both tests, the iodine is set free, for combined iodine has no action on starch. In the chlorine test, the superior affinity of chlorine seizes on the metal with which the iodine is united—thus : KI + Cl = KCl + I.

In power of affinity iodine stands below bromine, as bromine does below chlorine. With metals it forms iodides extremely analogous to the chlorides and bromides. The iodides of lead, mercury, silver, and a few others are insoluble or sparingly soluble; most of the others are soluble. Some iodides possess beautiful colours, as those of lead and mercury. With hydrogen and oxygen iodine forms compounds, which, as far as they are known, correspond to those of chlorine and bromine with the same elements.

Iodine itself, and many metallic iodides, especially iodide of potassium, are much used in medicine as remedies in scrofula, and as discutients for glandular tumours in general. They are used both internally and externally in the shape of baths and ointments. Iodide of sulphur is also used medicinally. The long-known efficacy of burnt sponge was shown by Coindet to depend on its containing, as the ashes of the sea-plant or zoophytes generally do, a small proportion of iodine. The presence of iodine has also been detected in certain mineral springs, both in South America and in Europe, which had acquired celebrity as capable of curing goître, a disease for which iodine seems to be a specific remedy, at least in all but the most advanced stages. On the whole, the discovery of iodine, which was made almost accidentally by Courtois, a soap-boiler, in Paris, in 1811, has proved a very valuable addition to the Materia Medica.

IODINE AND HYDROGEN.

Hydriodic Acid. HI = 127.57.

This acid, which is exactly similar in properties to hydro-

chloric and hydrobromic acids, is best obtained, in the form of gas, by gently heating a mixture of one part of phosphorus and 16 of iodine, stratified with moistened sand or powdered glass, in a small tube. The gas may be collected over mercury, or absorbed by water, if the liquid acid is required. As iodine and phosphorus act very violently on each other, and indeed take fire in the open air, they ought to be brought in contact in the retort,

Carling and the second

and it is even preferable to fill it first with carbonic acid. Millon has lately proposed another method, namely, to dissolve in a very small quantity of water, in a retort or flask, some iodide of potassium, to add to this as much iodine as it will dissolve, and a moderate quantity of phosphorus in small pieces, and then to apply a gentle heat. In this way the action is more easily regulated.

Hydriodic acid gas is transparent, colourless, acid to the taste, and suffocating to the smell. It has a Sp. G. of 4.385, fumes strongly in the air, and is absorbed by water to as great an extent as hydrochloric acid gas, from which it is not to be easily distinguished, except by the action of chlorine or bromine, which seizing the hydrogen, disengage the purple vapours of iodine.

The aqueous solution is prepared by passing a current of the gas through water, by passing a current of sulphuretted hydrogen through water in which iodine is suspended, or by adding diluted sulphuric acid to a solution of iodide of barium. The two latter methods are thus expressed :---

1. I + HS = HI + S. 2. BaI + HO, $SO_{3} = HI + BaO$, SO_{3} .

When very concentrated, this solution acquires a Sp. G. of 1700. It does not keep well, however, being decomposed by the oxygen of the air, with separation of iodine, HI + O =HO + I. With solution of bichloride of platinum, hydriodic acid strikes a deep brownish-red colour; with nitrate of bismuth a dark brown, nearly black. Hydriodic acid can dissolve a large quantity of free iodine, which gives it a deep brown colour; hence the gradual decomposition of the acid by the air is shown by its becoming continually darker, from dissolving the iodine separated.

With metallic oxides, this acid forms water and iodides. Thus, with solution of silver, it forms a yellowish-white precipitate of iodide of silver, with solution of lead, a fine yellow precipitate of iodide of lead; and with solution of peroxide or bichloride of mercury, a beautiful scarlet precipitate of biniodide of mercury. With chlorine and starch, it of course gives the blue iodide of starch.

IODINE AND OXYGEN.

a. Iodic Acid. IO, = 166.675.

Analogous to chloric and bromic acids. To obtain it, iodine is boiled in a long-necked flask with the strongest nitric acid, when it is gradually oxidised, and the excess of nitric acid is expelled by a moderate heat. Or 9 parts of iodate of baryta are boiled with a mixture of 2 parts of oil of vitriol and 10 or 12 of water. The filtered liquid by evaporation yields iodic acid as a white crystalline solid.

It is very soluble in water and very acid to the taste. It is easily resolved into iodine and oxygen by a red-heat; and it also yields oxygen to many organic substances, and is used as a test for morphia or its salts, which it colours dark brown.

The salts of iodic acid, like the chlorates and bromates, deflagrate with combustible bodies at a red-heat, but not so powerfully as chlorate of potash. Iodic acid forms two series of salts, with 1 and 2 eq. of base respectively.

Iodic acid is decomposed, iodine being separated by hydrochloric and hydrobromic acids, also by sulphuretted hydrogen and sulphurous acid. It may, therefore, be recognised by using any of these re-agents, followed by starch, to detect the free iodine.

b. Periodic Acid. $IO_7 = 182.661$.

Analogous to perchloric acid. Formed when iodate of soda is heated with bleaching liquor (chloride of soda), or when chlorine is passed through a hot solution of 7 parts of dry carbonate of soda in 100 of water, in which 1 part of iodine is suspended, as long as a white crystalline salt is deposited. This is periodate of soda. It is dissolved in dilute nitric acid, and nitrate of lead added, which forms a precipitate of periodate of lead. This last salt is boiled with diluted sulphuric acid, avoiding excess, and the filtered solution, or evaporation, yields crystals of periodic acid, in transparent plates.

When heated, this acid is resolved into oxygen and iodic acid. It forms with bases two series of salts, with 1 and 2 eq. of base.

It is at present doubtful if there exist compounds of iodine with less oxygen than in iodic acid. Salts have been obtained, having a composition represented by MO, IO; but the supposed hypoiodous acid, IO, has not been isolated, and these salts are very easily resolved into a mixture of iodates and iodides, of which they may possibly be, in reality, composed; for 6 (MO, IO) \equiv 5 MI + MO, IO₅.

IODINE AND NITROGEN.

When iodine is placed in contact with aqua ammoniæ, there is formed a black powder, the composition of which is either NI_3 or NI_4 . It explodes with very great violence, often spontaneously, on becoming dry by exposure to the air; and at all times by very slight causes, a slight blow, or friction. It is, therefore, a very dangerous substance.

FLUORINE.

IODINE AND CHLORINE.

Iodine readily combines with chlorine, forming apparently two compounds, ICl and ICl₂, which, however, are not well known. Both of them are volatile liquids of a brown colour, and exceedingly pungent odour, strongly affecting the eyes. When acted on by alkalies, they yield iodate of the base and chloride of the metal, while iodine is set free. Water, also, decomposes them.

IODINE AND BROMINE.

Iodine appears, also, to form two compounds with bromine, of which one is solid, the other liquid. With alkalies they yield a mixture of iodate of the oxide and bromide of the metal, with free iodine.

7. FLUORINE. F = 18.74.

This element occurs in the mineral kingdom combined with calcium, as fluor spar; also in small proportions as an element of mica and of topaz. Fluoride of calcium is also in minute quantity an ingredient of animal bones, especially of the enamel of the teeth, and of the urine of some animals. It is very remarkable, that fossil bones contain much more fluoride of calcium than recent bones; in some cases even 10 per cent. Even human bones of the historical period, as bones from the tombs of Egypt, or from Pompeii, appear to contain more fluoride of calcium than those of the present day.

Fluorine has not yet been isolated, owing, no doubt, to its very powerful affinities, which cause it, even if separated from one substance, instantly to unite with another, derived from the substance of the vessel used for the experiment. Its properties, in the separate state, are therefore unknown. Knox and Baudrimont have, of late, made repeated efforts to isolate fluorine, using vessels of fluor spar, &c., but as yet without satisfactory results; although it is conjectured, from some of these experiments, to be a yellow gas, not, unlike chlorine. It is probable, however, that the presence of chlorine has been the cause of this apparent resemblance.

The affinities of fluorine for metals and for electro-positive elements in general, are very powerful indeed; probably surpassing those of oxygen. On the other hand, it has not been obtained in combination with any of the more negative elements, such as oxygen, chlorine, bromine, and iodine. These considerations render it probable that it is a highly negative body; and the character of its compounds with hydrogen and metals indicates a strong analogy between fluorine and chlorine, bromine and iodine.

SULPHUR.

FLUORINE AND HYDROGEN.

Hydrofluoric acid. HF=19.74.

SYN. Fluoric acid.—This acid is obtained by the action of oil of vitriol on fluoride of calcium (fluor spar). The powdered mineral is gently heated with the acid in a retort of lead, silver, or platinum, as glass and porcelain are destroyed by the process, and the acid condensed in a receiver of the same metal, surrounded by a freezing mixture. The action is thus expressed—

$CaF + HO, SO_a = CaO, SO_a + HF.$

The acid appears as a very volatile liquid, strongly acid and corrosive, fuming in the air. A drop on the skin burns it like red-hot iron, and causes a painful sore, not easily healed. Even the vapours, if they are allowed to come much in contact with the hand, are apt to cause painful sores under the nails. The acid, even when much diluted, or in the form of vapour, rapidly corrodes glass, and may be used for etching on glass plates.

With metallic oxides, hydrofluoric acid gives rise to water and metallic fluorides; HF + MO = HO + MF. The affinity of fluorine for silicon is such, that hydrofluoric acid decomposes all silicious compounds; and this explains its corrosive action on glass and porcelain. Berzelius has employed this acid as a means of analysing silicious minerals. As the fluoride of silicium is gaseous, any such mineral, if digested with hydrofluoric acid, soon loses all its silica, and is dissolved, so that the other ingredients may be determined.

No compound of fluorine with any of the preceding elements, except hydrogen, is yet known. Its compounds with silicon, boron, and the metals will come to be described in their natural places.

8. SULPHUR. S=16.12.

Sulphur occurs, especially in volcanic districts, in a state of purity, often crystallised. It is also found in combination with oxygen, as sulphuric acid, in gypsum, heavy spar, and many other minerals, with hydrogen as sulphuretted hydrogen, or mineral waters, and above all with metals, most abundantly with lead, iron, copper, &c. &c. Finally, it is an essential ingredient of vegetable and animal fibrine, albumen, and caseine, and as such is indispensable to vegetation and to animal life. Some essential oils, such as those of mustard, of horse-radish, of assafcetida, &c., contain a large proportion of sulphur.

Native sulphur is purified by sublimation, when the sulphur assumes the form of a fine light powder, flowers of sulphur. It also occurs in cylindrical sticks, roll sulphur, which has been melted and run into moulds.

Sulphur is a solid of a pale yellow colour, of. Sp. G. 1.99, and when pure has neither taste nor smell. It melts at 226° and boils at 600°, yielding a deep brownish-yellow vapour, or gas. At temperatures below 390° the melted sulphur is very fluid. but if heated to and beyond that point, it becomes so thick and viscid that it cannot be poured out of the vessel. If the heat be still increased, so as to approach the boiling point of sulphur, it again becomes fluid, although not so much so as at 230° or 240°. If now allowed gradually to cool, it first becomes thick, and on cooling still further, quite fluid again. When thrown into water in its most fluid state (at 240°), it instantly becomes a hard brittle yellow mass; but if heated to between 500° and 600' for some time, and then thrown into water, it remains brown and transparent, and is so flexible that it may be kneaded in the fingers, and drawn into threads. In this state it may be used for taking copies of reliefs or intaglios, for in a few days it becomes solid, crystalline, hard, and yellow, retaining very sharp impressions.

Sulphur is a very bad conductor of heat and of electricity, hence it becomes strongly electric by friction. It crystallises in two distinct and irreconcileable forms, probably from a difference of temperature; from a solution in sulphuret of carbon, or chloride of sulphur, in acute rhombic octohedrons; and when melted and allowed to cool, in oblique rhombic prisms. It is thus dimorphous, and besides occurs in an altogether amorphous state when heated to 500° and thrown into cold water (see above).

Sulphur is insoluble in water, soluble in alcohol, ether, and oils, also in bisulphuret of carbon and in chloride of sulphur.

The affinities of sulphur are powerful; it forms numerous and important compounds, especially those with oxygen, hydrogen, and the metals. With many metals it combines when heated along with them, the combination being accompanied with the development of heat and light. In other words, metals undergo combustion with sulphur, just as with oxygen or chlorine. The compounds of sulphur with metals are called sulphurets.

Besides roll sulphur, and sublimed sulphur, there is another form, namely, precipitated sulphur or lac sulphuris. This is a light powder, nearly white, obtained by boiling sulphur with water and an alkali, and adding an acid to the solution, when sulpur separates as a precipitate. It is very finely divided, and appears to contain some water, although not perhaps chemically combined. Sulphur is much used both externally and internally in medicine. It is a mild laxative, and acts as a specific when employed as ointment in prurigo and some other cutaneous affections.

When heated to about 560° in the open air sulphur takes fire and burns with a blue flame, producing a very suffocating gas, which is sulphurous acid, the only compound of sulphur with oxygen capable of being formed by direct combination of its elements. There are, however, several other compounds of sulphur and oxygen, and one of them, the sulphuric acid, is perhaps the most important agent possessed by the chemist.

SULPHUR AND OXYGEN.

a. Sulphurous acid. SO₂=32.146.

This is the gas produced when sulphur burns in the air in oxygen gas. It is best obtained pure by heating oil of vitriol with mercury or copper. Either of these metals deprives a part of the sulphuric acid of oxygen, and the oxide thus formed combines with the rest of the acid. Thus—

Cu+2 (HO, SO₂)=(Cu O, SO₂)+2 HO+SO₂.

The gas may be collected over mercury, being absorbed by water.

Sulphurous acid is a transparent and colourless gas; it has a peculiar disagreeable taste and a most suffocating smell, and is very injurious when respired, its effects, such as hard cough, constriction in the trachea, &c. continuing for a long time. It is also very injurious to vegetation. Its Sp. G. is 2.222. It bleaches organic matters, such as flowers, without destroying the colouring matter as chlorine does; for the addition of a stronger acid produces the same red as if the colour had not been bleached. Sulphurous acid gas is liquefied by intense cold, and yields a very volatile liquid.

Water absorbs about 50 times its volume of this gas, forming liquid sulphurous acid, as it is called, properly an aqueous solution of the acid. This solution has the suffocating smell, peculiar taste, and bleaching properties of the gas. If exposed to the air, it gradually absorbs oxygen, and passes into sulphuric acid. Nitric acid also converts sulphurous acid into sulphuric acid.

With bases, sulphurous acid forms salts which are called sulphites. They have all the unpleasant taste of the acid, and when acted on by stronger acids, give off the suffocating smell of burning sulphur. These salts, as well as the acid, are occasionally used by the chemist as deoxidising agents, the sulphurous acid having a very powerful attraction for a third eq. of oxygen to form sulphuric acid. The oxides of mercury, silver, gold, and platinum are reduced to the metallic state by sulphurous acid.

b. Sulphuric acid. $SO_{a} = 40.159$.

Oil of vitriol, or hydrated sulphuric acid = HO, SO_3 or H, $SO_4 = 49.272$.

The first of these formulæ represents dry or anhydrous sulphuric acid, or at least a substance having the composition of oil of vitriol, *minus* 1 eq. of water. But it is very doubtful if this compound really possesses acid properties; and we consider as true sulphuric acid the well-known compound oil of vitriol, which may be viewed either as a compound of water (a hydrate), or a compound of hydrogen (a hydrogen acid, analogous to hydrochloric acid).

Anhydrous sulphuric acid is obtained by distilling dried basic persulphate of iron, F_{2} , O_{3} , SO_{3} , when the peroxide of iron is left, and the sulphuric acid distils over, condensing in the receiver (if kept dry) as a white crystalline solid, which gives off thick fumes in moist air, is converted into vapour at about 160°, and has so strong an affinity for the elements of water, that when thrown into water it hisses as a red-hot iron would do, combining with the water and forming oil of vitriol.

This compound, SO₃, enters into few combinations, and does not form the ordinary sulphates, unless the elements of water be present. Its claim to the character of an acid is therefore doubtful, and depends on the view which makes oil of vitriol a hydrate, HO, SO₂.

OIL OF VITRIOL, OR TRUE SULPHURIC ACID.

'This acid cannot be formed by the direct union of its elements, but is produced by causing sulphurous acid to unite with an additional eq. of oxygen, in contact with the elements of water. Sulphur is burned with the aid of nitrate of potash or soda, thus yielding a mixture of sulphurous acid and nitrous acid gases. These gases are conducted into leaden chambers along with atmospherical air and steam, the bottom of the chambers being also covered with water. All the changes which take place are not thoroughly understood ; but this much is certain, that the sulphurous acid is oxidised at the expense of the nitrous acid, reducing it to the state of deutoxide of nitrogen :

$2 SO_2 + NO_4 = 2 SO_3 + NO_2$

The water becomes gradually charged with oil of vitriol, and the deutoxide of nitrogen, being reconverted into nitrous acid by contact with the oxygen of the air, again yields half its oxygen to a fresh portion of sulphurous acid; and thus, for an indefinite period, acts as a carrier of oxygen from the air to the sulphurous acid. In this way, a comparatively small quantity of nitrate is required for a large quantity of sulphur.

When the liquid has become very acid, it is boiled down in platinum or glass vessels until it acquires the Sp. G. 1.845, when it begins to be converted into vapour itself, all the superfluous water being now driven off. The remaining liquid is now oil of vitriol.

Oil of vitriol, or hydrated sulphuric acid, is an oily liquid, nearly twice as heavy as water, very acid and corrosive, charring all organic matters, apparently by its very strong attraction for water, or its elements. It freezes at— 31° , and boils at 617° .

The oil of vitriol prepared at Nordhausen and other places by the old process of distilling partially dried green vitriol (whence its name) often fumes on exposure to the air, and is called Nordhausen oil of vitriol, or fuming sulphuric acid. It is, in fact, a compound of 1 eq. anhydrous acid, and 1 eq. of common or hydrated sulphuric acid=HO, 2 SO₃, or HO, SO₃+SO₃. When the fuming acid of Nordhausen is distilled at about 290°, anhydrous acid distils over, and hydrated acid remains behind. Most specimens of the fuming acid contain 5 to 8 per cent. of hydrated acid, in excess beyond the formula HO, SO₃+SO₃.

If we view common sulphuric acid as a hydrate of the anhydrous acid, then we have several hydrates of which the fuming acid is one. There are, 1st, fuming acid, HO, 2 SO_3 ; 2d, common acid, HO, SO₃; 3d, HO, SO₃ + HO=SO₃ + 2 HO; 4th, HO, SO₄ + 2 HO=SO₄ + 3 HO.

The third hydrate has a Sp. G. of 1.78, and at 39° crystallises in large regular transparent crystals. Of the two eqs. of water it contains, one is easily replaced by an eq. of a neutral salt; thus HO, SO₃+HO gives rise to bisulphate of potash (HO, SO₃ +KO, SO₃), when the 2d eq. of water is replaced by neutral sulphate of potash. The 1st eq. of water can only be displaced by an eq. of a base; as when HO, SO₃ gives rise to neutral sulphate of potash, KO, SO₃.

The 4th hydrate may be regarded as the third +1 eq. water of crystallisation. Its Sp. G. is 1.632. If heated to 212°, it loses water, until nothing remains but the third hydrate.

If we view oil of vitriol, HO, SO₃, as the original compound from which all the others are derived, then the fuming acid will be a compound of 1 eq. of it with 1 eq. of anhydrous acid, and the other two hydrates will contain 1 eq. oil of vitriol, with 1 and 2 eq. of water respectively.

The attraction of oil of vitriol for water is very strong. When

these liquids are mixed, a great amount of heat is developed. depending partly on the energetic chemical action, partly on the condensation which takes place; for the volume of the diluted acid, after cooling, is found to be considerably less than that of the acid and water before mixture. Oil of vitriol attracts moisture strongly from the atmosphere, becoming rapidly weaker if exposed. This property is made use of in Leslie's ingenious method of freezing water in vacuo by its own evaporation; the evaporation being greatly hastened by the presence of a vessel containing oil of vitriol, to absorb the vapour as fast as it is formed. In chemical researches, where heat is to be avoided, liquids are frequently concentrated by being placed either in vacuo, or simply under a bell-jar, along with a basin of this acid. Many gases, such as chlorine, carbonic acid, &c. &c., are most conveniently deprived of moisture by causing them to pass through oil of vitriol, which arrests all the water they contain. It is this powerful attraction for water that is the principal cause of the charring or corrosion of organic matters by this acid. When wood, for example, is charred by sulphuric acid, the acid is found to have undergone no further change, except that it is more diluted, having combined with water, the elements of which are derived from the wood. Now, as wood may be represented as carbon+water, the removal of water is, of course, accompanied by a separation of carbon.

No chemical agent is applied to a greater number of purposes in the useful arts than sulphuric acid; and hence its manufacture is of very high importance. Since the introduction and improvement of the process now followed, the price of this invaluable product has been diminished to a trifling fraction of what it was; and its applications have in consequence become vastly more numerous and important. These will be described in their proper places; but it may here be mentioned, that two of the most extensive and valuable chemical manufactures, those of soda from sea-salt, and of bleaching-powder, are entirely dependent on the supply of sulphuric acid at a low price; and that not only these manufactures have benefited by every reduction in the cost of making the acid, but also all the important arts to which soda and bleaching-powder are essential; such as soap-making, glassmaking, and the cotton and calico-printing trades.

The uses of this acid to the scientific chemist are innumerable; almost every page of chemical works bears evidence of this. In medicine, diluted sulphuric acid is used as a refrigerant, and care should be taken to avoid administering it along with incompatible substances, such as all bases, and many salts.

The commercial acid is never pure. The chief impurities are

sulphate of lead, derived from the lead chambers; arsenic, and occasionally selenium, derived from the sulphur; and nitrous, or hyponitrous acid. It is purified by distillation, the first portions being rejected, as containing the nitrous acid. The operation in glass vessels requires caution, as from the high temperature, and the tendency of the acid to boil with succussions, the retorts are liable to be broken. The danger is best avoided by introducing into the retort some coils of platinum wire, and heating chiefly from above, so that the ebullition may go on at the surface chiefly.

The pure distilled acid is perfectly colourless, and, when cold, devoid of smell; it ought also to be entirely dissipated when heated on platinum, leaving no residue.

The presence of sulphuric acid, whether free or combined, is detected in solutions by the characteristic property of forming, with any soluble compound of barium, a precipitate of sulphate of baryta, which is not only insoluble in water, but also in the strongest acids.

With bases, sulphuric acid forms salts, which are called sulphates. In the neutral sulphates, the water of the oil of vitriol is replaced by its equivalent of a metallic oxide; or, if we regard oil of vitriol as a hydrogen acid, then in the neutral sulphates the hydrogen is replaced by its equivalent of a metal. Thus we have

Oil of vitriol=HO, SO3, or H, SOA, and a

Neutral sulphate=MO, SO3, or M, SO4.

The acid in the neutral sulphates, as may be seen by their formula, contains three times as much oxygen as the base by which it is neutralised. This holds true also in the sulphates of sesquioxides, the formula of which is M_2O_3 , $3 SO_3$, or M_2 , $3 SO_4$. The acid sulphates, which are numerous, contain twice as much acid as the neutral; thus acid sulphate, or bisulphate of potash, is KO, HO, $2 SO_3$; when the acid contains six times as much oxygen as the base.

The affinity of sulphuric acid for most bases is stronger than that of all other acids. In a red heat, phosphoric and boracic acids, being fixed in the fire, expel sulphuric acid from its salts. In solution, sulphate of lime is decomposed by oxalic and racemic acids, which seize the lime; and sulphate of potash, by tartaric, racemic, and perchloric acids, which combine with the potash. In other circumstances, however, the sulphuric acid appears stronger than the acids just mentioned; thus, it decomposes phosphates in the cold, and tartrates, or perchlorates, with the aid of a gentle heat.

HYPOSULPHURIC ACID.

Many sulphates of metallic oxides, when exposed to a red heat along with charcoal, or in a current of hydrogen gas, lose all the oxygen they contain, and are changed into sulphurets of the metals. When charcoal is used, the oxygen escapes as carbonic oxide, or carbonic acid gas; when hydrogen is employed, the oxygen is given off as water. Thus, MO, SO₃ + $C_{*}=4CO+MS$; or MO, SO₃ + H₄=4HO+MS.

c. Hyposulphurous Acid. $S_2 O_2 = 48.266$.

This acid is unknown in the separate state. Its salts are formed when sulphur is boiled with a solution of a sulphite. Thus, if sulphite of soda is boiled with sulphur, we have NaO, SO₂ + S = NaO, S₂O₂. The salts of this acid are called hyposulphites, and they are all, except the hyposulphite of baryta, easily soluble in water. Hyposulphites are also formed when alkalies are fused at a low heat with sulphur, and when solutions of alkaline sulphurets are exposed to the air so as to be slowly oxidised.

When we attempt to separate hyposulphurous acid from any of its salts, it is instantly resolved into sulphurous acid and sulphur, $S_2 O_3 = SO_2 + S$. When oxidised by nitric acid, the hyposulphites are converted into bisulphates, KO, $S_2 O_2 + O_4 = KO$, $2SO_3$.

This acid, and all its soluble salts, possess the remarkable property of dissolving all the compounds of silver, even the chloride, which is insoluble in the strongest acids; and the solution thus formed has a very intense sweet taste, with a metallic aftertaste. This property has been made available in the Daguerreotype, for the purpose of dissolving the sensitive coating of iodide from the plate of silver, after exposure to light, and thus fixing the image already formed. For this purpose hyposulphite of soda is now prepared in considerable quantity.

d. Hyposulphuric Acid. $S_2 O_5 = 72.355$.

This acid is formed, along with sulphuric acid, when sulphurous acid is oxidised by means of peroxide of manganese; $3SO_s + 2MnO_s = MnO, S_sO_s + MnO, SO_s$. The solution thus obtained is decomposed by baryta, or by sulphuret of barium, by which the manganese is separated as oxide or as sulphuret, and the sulphuric acid as sulphate of baryta, and hyposulphate of baryta, a soluble salt, is obtained; MnO, S $O_s + BaS = BaO, S_sO_s + MnS$; and MnO, $SO_s + BaS = BaO$, $SO_s + MnS$. The filtered solution is then mixed with just as much diluted sulphuric acid as is sufficient to separate the

SULPHUR AND OXYGEN.

baryta as the insoluble sulphate, and the liquid now contains hyposulphuric acid; BaO, S_2O_5 +HO, SO_3 =BaO, SO_3 +HO, S_2O_5 .

 S_2O_5 . When concentrated by evaporation in vacuo, hyposulphuric acid forms a syrupy liquid of a very acid taste, and devoid of smell. When heated, it yields sulphurous acid gas, while sulphuric acid remains, $S_2O_5 = SO_2 + SO_3$. Its salts, when ignited, give off sulphurous acid, white sulphates remain; $MO, S_2O_5 = SO_5 + MO, SO_5$.

With bases, this acid forms salts, most of which crystallise with great facility. It is not applied to any useful purpose.

e. Sulphuretted Hyposulphuric Acid. S₃ O₅ = 88.475.

Discovered by Langlois. When bisulphite of potash is digested along with sulphur and water, without boiling, a salt is gradually produced, which contains this new acid. The acid may be isolated by means of perchloric acid, which removes the potash. It forms an acid liquid, which is slowly decomposed, and when heated is resolved into sulphurous acid, sulphur, and sulphuric acid; for $S_s O_s = SO_s + S + SO_s$. The theory of its formation is not yet fully understood, and the acid itself is as yet but little known. The salt which it forms with potash crystallises easily, and when heated yields sulphurous acid, SO_s.

f. Bisulphuretted Hyposulphuric Acid. S4 05 = 104.595.

Discovered by Fordos and Gelis. When iodine is dissolved in the solution of a hyposulphite, as hyposulphite of soda or baryta, the following change takes place :

2 (Ba O, S₂ O₂) + I = Ba I + Na O, S₄ O₅,

Here 2 eq. of hyposulphite of baryta and 1 eq. of iodine yield 1 eq. of iodide of barium and 1 eq. of the baryta salt of the new acid. Alcohol dissolves the former, and leaves the latter pure. By the cautious addition of diluted sulphuric acid, the baryta is precipitated, and the new acid is obtained dissolved in water. It resembles the two preceding acids, and, like the last, it is resolved, when heated, into sulphurous acid, sulphur, and sulphuric acid, $S_4 O_s = SO_2 + S_2 + SO_3$. Here the quantity of sulphur separated is exactly double of that yielded by the last-described acid.

The salts of this acid crystallise, and when heated yield 1 eq. of sulphurous acid, 2 eqs. of sulphur, and 1 eq. of sulphuric acid; $MO, S_4O_6 = SO_8 + S_8 + MO, SO_8$.

THEORY OF ACIDS.

The following table exhibits the composition of the compounds of sulphur and oxygen above described, with their formulæ, and those of their neutral salts, according to the older and newer views of the constitution of acids.

and tab to bealding add	Older View.		New View.	
arity out only to which	Acids.	Salts.	Acids.	Salts.
Sulphuric Acid Hyposulphurous Acid . Hyposulphuric Acid		$\begin{array}{c} \text{MO, S} \text{O}_3 \\ \text{MO, S}_2 \text{O}_2 \\ \text{MO, S}_2 \text{O}_5 \\ \text{MO, S}_8 \text{O}_5 \end{array}$	$\begin{array}{c} \mathrm{H, S} & \mathrm{O_4} \\ \mathrm{H, S_2 O_3} \\ \mathrm{H, S_2 O_6} \\ \mathrm{H, S_3 O_6} \end{array}$	$\begin{array}{c} M, S & O_4 \\ M, S_2 O_8 \\ M, S_2 O_6 \\ M, S_3 O_6 \end{array}$

Now, when we reflect that all the salts in the above table, although containing only 1 eq. of metal or of base, are neutral, while the acids, according to the older view, and considered as oxygen compounds, contain different proportions of oxygen, we can hardly hesitate to prefer the newer view, according to which all true acids are hydrogen compounds, and their capacity of saturation, or power of neutralising bases, depends, not on the oxygen they contain, but on the amount of hydrogen replaceable by metals, which, in all these acids, is 1 equivalent. This at once accounts for the fact that acids so different in composition should all form neutral salts with the same quantity of base. The difference lies in the compound radicals, which, according to this theory, are united with hydrogen in the acids, and the composition of which may vary ad infinitum without affecting the neutralising power, provided the replaceable hydrogen continue unaltered. In fact, an acid has been described by Régnault in which 1 eq. of chlorine is added to the radical of sulphurous acid; and another by Pelouge, in which 1 eq. of hyponitrous acid is added to the same radical, without affecting the power of neutralisation.

If we take the radical of sulphurous acid as the first member of the series, all the above acids may be thus represented :----

Sulphurous Acid	$H + SO_3$	
	$H + (SO_3 + 0)$	
Hyposulphurous Acid ,	$H + (SO_{s} + S)$	
Hyposulphuric Acid	$H + (SO_{2} + SO_{3})$)
Acid of Langlois	$H + (SO_3 + SO_3)$	+ S)
Acid of Fordos and Gelis	$H + (SO_3 + SO_3)$	+ S.)
Chlorosulphuric Acid .	$H + (SO_3 + CI)$	10 10 10
Nitrosulphuric Acid	$H + (SO_s + NO_s)$) nino

H

Here we see that the addition to the radical SO_3 of oxygen, of sulphur, of its own elements SO_3 , of the same with sulphur, of chlorine, or of hyponitrous acid, does not affect the neutralising power, that being dependent on the amount of replaceable hydrogen, which is the same in all.

I have here entered into some detail on the subject of the true constitution of acids, because the acids of sulphur form an admirable illustration of the superior simplicity of the new view of acids and salts, according to which, an acid may be defined as,—A compound of hydrogen with a radical, simple or compound, in which the hydrogen may be replaced by its equivalent of metal: while a salt is,—A combination of a simple or compound radical with a metal: the different salts of one metal corresponding with the oxides of the same metal.

It is obvious that even when a chemical combination or change is represented in a formula according to the old view, as is the case in almost all existing works, we can easily transpose the formula so as to express the new view. Thus, sulphate of potash, on the old view, is KO, SO₃; on the new it is K, SO₄; or if we express the action of iron on sulphuric acid, on the former view, by Fe + HO, SO₃ = H + Fe O, SO₃ it is more simple on the latter, Fe + H, SO₄ = H + Fe, SO₄.

While, therefore, in order to avoid confusion, I shall generally use, in equations, the older formula for acids and salts, I shall give the new formula for the principal acids, as I have done for sulphuric and nitric acids, so that the student may, if he please, convert the equations into the new form.

SULPHUR AND HYDROGEN.

a. Sulphuretted Hydrogen. HS=17.12.

SYN. Hydrosulphuric Acid.—This compound is formed when hydrogen and sulphur come in contact in the nascent state. It is best prepared by causing diluted hydrochloric or sulphuric acid to act on sulphuret of iron in the apparatus, p. 46, when sulphuretted hydrogen is disengaged as a gas, which may be collected over warm water, or solution of salt. The action is as follows: Fe S + H Cl = Fe Cl + HS.

Sulphuretted hydrogen is a gas, transparent and colourless, having a very offensive and peculiar smell, which is well known as that of putrid eggs. It is liquefied by a pressure of 17 atmospheres. When respired, even although much diluted with air, it is highly deleterious, and as it is often formed where animal matters or excrements putrefy, as in burying-vallts and cloacæ, it not unfrequently causes the death of workmen who suddenly come in contact with it. The smell of the gas ought, in all cases, to be viewed as a warning of danger. The presence of the gas may also be recognised by its power of blackening the salts of lead, owing to the formation of the black sulphuret of lead.

This gas is combustible, burning with a bluish flame, and producing sulphurous acid gas and water. Its Sp. G. is 1.177. Water absorbs 2 or 3 times its volume of the gas, and acquires its smell and a nauseous sweetish taste. By contact with the air, the solution is gradually decomposed : water is formed and sulphur deposited. Sulphuretted hydrogen water must, therefore, be kept in small phials, quite full and closely stopped.

Sulphuretted hydrogen has the properties of a weak acid; it reddens litmus feebly, and acts on bases, forming with them water and metallic sulphurets: HS + MO = HO + MS. As the sulphurets of some metals are soluble while those of others are insoluble; as moreover the oxides of some of the latter are not decomposed by sulphuretted hydrogen when dissolved in an acid, the action of this gas on solutions of metals in acids affords us a great deal of information, according as a precipitate of sulphuret is formed or not, the colour of the precipitate being also frequently characteristic, as will be described under the individual metals: this renders sulphuretted hydrogen a most useful re-agent in detecting and separating from each other metallic compounds.

Mineral waters exist, as at Harrogate, which contain sulphuretted hydrogen, easily recognised by its smell and by the property of blackening the salts of lead, silver, and several other metals. The gas in these waters arises from the slow and continued putrefaction of vegetable matters containing sulphur, such as albumen, fibrine, &c. These sulphureous waters are used in medicine, both internally and externally (as baths), with great advantage. In many cases the artificial sulphuretted hydrogen water, formed by passing the gas through water, previously boiled and allowed to cool, may be substituted for them.

b. Persulphuretted Hydrogen. HS5? or HS2?

This compound is formed when alkalies, such as potash or lime, are boiled with excess of sulphur, and the solution, which is of a deep yellow or orange colour, is poured into a large excess of moderately strong hydrochloric acid, made by mixing equal parts of concentrated acid and water. A heavy, somewhat viscid, transparent, yellowish liquid falls to the bottom, which is the compound in question. The precise nature of all the changes which take place in this process is not known; but it is probable that a persulphuret of the metal is formed in the first

н2

stage, such as persulphuret of potassium KS₅; and that a hyposulphite is generated at the same time, possibly according to the formula $3 \text{ KO} + \text{S}_{12} = \text{KO}, \text{S}_2 \text{ O}_2 + 2 \text{ KS}_5$. In the second stage, we have probably KS₅ + HCl = KCl + HS₅. But as the composition of persulphuretted hydrogen is not precisely determined, and as the persulphuret appears to dissolve an excess of sulphur, we cannot be certain that this is the true explanation. Thénard considers persulphuretted hydrogen HS₂, and to be analogous to the peroxide of hydrogen HO₂. But his own analysis always gave far more sulphur than corresponds to his formula, and the analogy he pointed out is very obscure and doubtful.

Persulphuretted hydrogen soon undergoes spontaneous decomposition, even if kept in sealed tubes, resolving itself into sulphur and sulphuretted hydrogen. In a strong sealed tube, the sulphuretted hydrogen, by its own pressure, is liquefied, and floats above the sulphur, which is deposited in transparent crystals. Persulphuretted hydrogen seems to have feeble acid properties. In contact with alkalies, it reproduces water and the metallic persulphuret. $HS_{e} + KO = HO + KS_{e}$.

SULPHUR AND NITROGEN.

Sulphuret of Nitrogen. NSa=62.51.

When chloride of sulphur, SCl, acts on dry ammonia, NH_{3} , a compound is formed, SCl, $2 NH_{3}$. By the action of water on this there is formed, among other products, a greenish yellow solid body, which is sulphuret of nitrogen NS₃. By contact with water, it is gradually converted into hyposulphurous acid and ammonia: for $2 NS_{3} + 6 HO = 2 NH_{3} + 3S_{2}O_{2}$. (Soubeiran).

When aqua ammoniæ acts on chloride of sulphur, a variety of products are formed, among which is one, a white crystallisable solid, soluble in alcohol, which appears to consist chiefly of sulphur and nitrogen. Its nature is not yet ascertained, but it is distinguished by the property of dissolving in an alcoholic solution of potash with a deep purple colour, which soon disappears, while ammonia is given off, and crystals of hyposulphite of potash are deposited—(W. G.)

SULPHUR AND AMMONIUM.

a. Protosulphuret of Ammonium. NH4, S=Am S=34.27.

Syn. Hydrosulphuret of Ammonia.—This compound is formed when 1 vol. of dry ammoniacal gas is mixed with $\frac{1}{2}$ vol. of sulphuretted hydrogen, $NH_3 + HS = NH_4$, S. It is best obtained by distilling a mixture of chloride of ammonium (sal ammoniac) and sulphuret of barium, or of calcium. BaS + N H₄, Cl = Ba Cl + N H₄, S. It forms colourless crystals, which are volatile, and dissolve readily in water. The solution becomes yellow by the gradual action of the atmospheric oxygen; it smells of sulphuretted hydrogen and ammonia; and in fact this solution may be more conveniently prepared by taking two equal portions of aqua ammoniæ, and saturating one of them completely with sulphuretted hydrogen. This produces, first, sulphuret of ammonium, and then a compound of that body with sulphuretted hydrogen, N H₄, S + H S. The other half of the aqua ammoniæ is then added, and we have (N H₄, S + HS) + N H₄ = 2 (N H₄, S).

Sulphuret of ammonium, or hydrosulphuret of ammonia, as it is called, is very much used as a test and re-agent in detecting and separating metals. It converts into sulphurets many oxides on which sulphuretted hydrogen does not act, and it also dissolves many metallic sulphurets.

The compound above mentioned, which is formed when ammonia is completely saturated with sulphuretted hydrogen, NH_4 , S + HS, possesses very nearly the same properties, and may be used for the same purposes. It may be called the hydrosulphuret of sulphuret of ammonium.

Both the preceding compounds, when pure, are colourless; and their solution, mixed with acids, gives off sulphuretted hydrogen, without the deposition of sulphur. By keeping, however, they become yellow, and acids cause a precipitation of sulphur. This is owing to the formation of persulphuret of ammonium.

b. Persulphuret of Ammonium.

This compound is formed when either of the preceding is digested with sulphur. There seem to be several sulphurets of ammonium, as of potassium (which see), containing from 2 to 5 eqs. sulphur. When NH_4 , S is exposed to the air, we may suppose the ammonium of 1 eq. to be oxidised (as is the case with potassium) and to be converted into free ammonia, NH_4 , $\mathrm{O} = \mathrm{NH}_3$, HO, while the sulphur of that equivalent unites with the other, forming NH_4 , S₂. When the compound NH_4 , S₄ + HS is exposed to the air, it is the hydrogen of the sulphuretted hydrogen which is oxidised, while its sulphur forms the bisulphuret of ammonium. When sulphur is digested with either of the preceding compounds, different persulphurets of ammonium are probably formed; and where the sulphur is in excess, it yields, in all probability, the compound NH_4 , S₅, analogous to persulphuret of potassium, KS₅.

All the yellow sulphurets of ammonium have the same useful properties as the protosulphuret in relation to metallic compounds, and some of them dissolve certain metallic sulphurets still more readily. The persulphuret of ammonium or sulphuretted hydrosulphuret of ammonia, as it is sometimes called, is, therefore, very much used in analysis. It is distinguished from the protosulphuret by the action of acids, which cause a precipitate of sulphur, and by its yellow or orange colour. The solution of protosulphuret of ammonium, when kept, becomes gradually yellow, from the formation of persulphuret; so that, in fact, the latter is always present in the usual forms of this valuable re-agent.

Sulphuret of ammonium, under the name of hydrosulphuret of ammonia, is used in medicine. It ought to be given alone in pure water, as it is decomposed by most acids or salts. The persulphuret has long been known as Boyle's fuming liquor, which was obtained by distilling 3 parts of slaked lime, 2 of sal-ammoniac, and 1 of sulphur, into a receiver containing 3 parts of water. Thus prepared, it was an orange-coloured liquid, of oily consistence, fuming in the air, and having a very offensive sulphurous smell. This preparation, however, contains variable proportions of free ammonia.

SULPHUR AND CHLORINE.

a. Dichloride of sulphur. So Cl=67.71.

Formed when chlorine is passed through a vessel containing flowers of sulphur, until nearly the whole sulphur has disappeared. The liquid formed is then purified by distillation. It is a reddish brown, fuming, pungent liquid, boiling at 280°. The Sp. G. of the liquid is 1.687; that of the vapour is 4.70. It is decomposed by water, yielding hydrochloric acid, hyposulphurous acid, and sulphur.

b. Protochloride of sulphur. S Cl=51.59.

When an excess of chlorine is passed through the preceding compound, and the liquid is repeatedly distilled at about 140°, the protochloride is obtained pure. It is a deep reddish brown liquid, which boils at 147°. Its Sp. G. is 1.62; that of its vapour, 3.68. When acted on by water, it yields hydrochloric acid and hyposulphurous acids, the latter being soon spontaneously decomposed, $2 \text{ SCl} + 2 \text{ HO} \equiv 2 \text{ HCl} + \text{S}_2 \text{ O}_2$.

SULPHUR AND BROMINE.

Bromine combines readily with sulphur, and produces compounds analogous to the preceding.

SELENIUM.

SULPHUR AND IODINE.

When 1 part of sulphur and 8 of iodine are mixed and gently heated, they immediately combine and liquefy. On cooling, the liquid, which is dark brown, consolidates into a black crystalline solid, which is the iodide of sulphur. It must be kept in wellclosed bottles, as it is destroyed by the access of air, iodine being given off. Its composition is probably S1. It is used in medicine as a remedy in various cutaneous diseases.

No compound of sulphur and fluorine is yet known.

9. Selenium. Se \equiv 39.6.

This element occurs in very small quantity, chiefly in certain varieties of pyrites, the sulphur from which, when converted into sulphuric acid, leaves in the chambers a deposit, consisting of sulphur, selenium, and some metals; and from this the selenium is obtained. Some kinds of fuming sulphuric acid contain a little selenium, which separates on the addition of water as a red powder. Different processes are employed for extracting selenium from the deposit above mentioned; but the essential parts are, oxidising and dissolving the selenium by means of aqua regia, separating the dissolved metals by sulphuretted hydrogen, &c., and finally deoxidising the selenious acid by means of sulphate of ammonia and hydrochloric acid.

When precipitated, selenium appears as a red powder, which, when heated, melts, and on cooling forms a brittle mass, nearly black, but transmitting red light in thin plates. When more strongly heated it volatilises, yielding a yellow gas, which condenses into a crystalline dark red powder on a cold surface.

Selenium is extremely analogous to sulphur, except in colour; and this analogy is still more striking in its combinations. When heated in the air it takes fire, burns with a blue flame, and produces a gaseous compound, oxide of selenium, SeO, which has a most penetrating and characteristic odour of putrid horseradish. By this character selenium is easily recognised in minerals containing it, before the blowpipe.

SELENIUM AND OXYGEN.

These elements combine in three proportions-

a. Oxide of Selenium. Se 0=47.613.

This compound has been already mentioned. It is formed when selenium burns, and is gaseous; it is not acid, and has no analogy with any of the oxides of sulphur.

b. Selenious Acid. Se $O_2 = 55.626$.

This acid is formed when selenium is dissolved in nitric acid, and the solution evaporated to dryness. It is a solid which, when heated, is converted into a yellow gas, condensing again into acicular crystals. It is very soluble in water, and has an acid taste. In composition it corresponds to sulphurous acid. This latter acid and its salts deprive selenious acid and its salts of oxygen, causing the selenium to be deposited in the uncombined state.

c. Selenic Acid. HO, Se $O_8 = H$, Se $O_4 = 72.652$.

This acid is formed when selenium is oxidised by fusion with nitre. The fused mass is dissolved in water, and the selenic acid precipitated as seleniate of lead by adding a salt of lead. The seleniate of lead is decomposed by sulphuretted hydrogen, and the filtered solution of selenic acid cautiously evaporated till it has the Sp. G. 2.625. It is now hydrated selenic acid, HO, SeO_4 , or rather H, SeO_4 . It is very acid and corrosive, and resembles sulphuric acid very much. It may be recognised by the action of hydrochloric acid, which reduces it to selenious acid, chlorine being set free. Selenic acid is not decomposed by sulphurous acid (as selenious acid is), or by sulphuretted hydrogen. It produces intense heat when mixed with water.

With bases, for which it has great affinity, selenic acid forms salts, called seleniates, which are isomorphous with the corresponding sulphates, and entirely resemble them in external characters.

SELENIUM AND HYDROGEN.

Seleniuretted Hydrogen. H Se = 40.6.

SVN. Hydroselenic acid.—This compound is obtained, like sulphuretted hydrogen, which it much resembles, by the action of acids on metallic seleniurets. MSe + HCl = MCl + HSe.

It is a colourless gas, which is combustible, and when burned gives off the characteristic odour of oxide of selenium. Seleniuretted hydrogen itself has a smell resembling that of sulphuretted hydrogen, and when respired is even more poisonous than that gas. A small bubble of it produces much and painful irritation of the mucous membrane of the nose and eyes; and if it reaches the bronchi, excites severe cough, in addition to its poisonous action if absorbed into the blood. The presence of a small quantity of it in sulphuretted hydrogen seems to exalt the poisonous energy of the latter. Like sulphuretted hydrogen, this gas is absorbed by water, and precipitates most metallic solutions, yielding seleniurets corresponding to the respective

PHOSPHORUS.

oxides. Most of these seleniurets are black or dark brown ; but those of zinc, manganese, and cerium, are flesh red.

Nothing is known of the compounds of selenium with nitrogen. With ammonia it is probable that seleniuretted hydrogen forms seleniuret of ammonium, NH_4 , Se, and hydroseleniuret of seleniuret of ammonium, NH_4 , Se+HSe.—(Bineau.)

Chloride of selenium appears to be analogous to chloride of sulphur; and the same may be said of the bromide and iodide.

10. PHOSPHORUS. P=15.7.

This element occurs abundantly in the bones of animals, in combination with oxygen and metals, as phosphate of lime, phosphate of magnesia, &c. It is also an ingredient in some unknown form of combination, of vegetable and animal fibrine and albumen, and is constantly present in the urine and excrements. In the mineral kingdom it occurs as phosphate of lime (apatite), phosphate of alumina (wavellite), phosphates of lead, copper, &c.

To obtain phosphorus pure, 10 parts of burnt bones are mixed with 30 or 40 parts of water, and 6 parts of oil of vitriol gradually added. After 24 hours, 50 or 60 parts of water are added to the mixture, and the whole well stirred and digested for a day or two. The strained liquid is evaporated to the consistence of thick syrup, and is then acid phosphate of lime. It is now mixed with $\frac{1}{2}$ of its weight of powdered charcoal, dried up, and gently ignited. The mass is then gradually heated to whiteness

in a stoneware or iron retort, the neck of which ends in a wide bent tube, which dips a little under water. Half of the phosphoric acid in the acid phosphoric acid in the acid phosphorus is set free, which distils over, and condenses under the water. Owing to the presence of water in the mass, part of the phosphorus is disengaged in combination with hydrogen, forming a

spontaneously combustible gas. Care must therefore be taken to avoid explosions. The action of the charcoal on the phosphoric acid is thus represented— $P_s O_s + C_s = 5 C O + P_s$. Carbonic oxide gas, CO, is therefore disengaged in large quantity.

The phosphorus is now to be melted under water, and squeezed through chamois leather, which separates impurities. It is lastly melted under water, in funnels with long cylindrical necks, stopped below. Into the necks of the funnels the phosphorus runs, and when cold may be pushed out in the form of solid cylinders.

Pure phosphorus is a colourless, or very pale, yellowish, transparent, or translucent solid, of the consistence of wax. Its sp. g. is 1.77. At 113° it melts, and at 572° it boils, distilling completely in close vessels. It has, in the solid form, neither taste nor smell; but it gives off vapours in the air, which, undergoing a slow combustion, have an odour of garlic; and in solution it has an acrid disagreeable taste. Phosphorus is insoluble in water, soluble in alcohol, ether, oils, sulphuret of carbon, and chloride of phosphorus. From the latter liquids it is often deposited in octahedral and dodecahedral crystals. It is very poisonous, but is used in medicine in very small doses.

When kept in vessels exposed to light, phosphorus becomes yellow, or even brown, externally, owing to some unexplained change. It must always be kept under water, and never taken into the fingers, for it is so combustible as occasionally to take fire from contact with the warm hand, where, as it melts and continues to burn, it inflicts frightful injuries.

When heated in air, phosphorus takes fire, and burns with a bright light, producing much white smoke, which is anhydrous phosphoric acid, $P_{,0}O_{,.}$ When heated in oxygen, it burns with a light so dazzling that the eye cannot endure it. In contact with chlorine, bromine, or iodine, without the aid of heat, combustion takes place spontaneously, while the phosphorus combines with those metalloids.

PHOSPHORUS AND OXYGEN.

Phosphorus combines very readily with oxygen. Even at the ordinary temperature it undergoes a slow combustion in air, giving out vapours, which are luminous in the dark. It frequently happens that the heat developed by this slow combustion gradually reaches the point at which the phosphorus takes fire; hence the spontaneous combustion of phosphorus, if left exposed to the air, and the necessity of keeping it under water. Many powders, such as powder of platinum, charcoal, lamp-black, &c., when sprinkled on dry phosphorus, cause it to take fire; no doubt because these powders absorb and condense oxygen in their pores, and thus bring it into close contact with the phosphorus. Many different kinds of instantaneous lights are made with phosphorus, owing to its ready combustibility by friction, especially when chlorate of potash is used.

We are acquainted with four compounds of phosphorus and oxygen.

a. Oxide of Phosphorus. $P_s O = 55.113$.

This oxide is obtained by causing a current of oxygen to come in contact with phosphorus under boiling water. Combustion takes place, and some phosphoric acid is formed; but a part of the phosphorus forms an insoluble cinnabar red powder, which is oxide of phosphorus, $P_a O$.

It burns, if heated nearly to redness, in the air; if heated in close vessels, it is resolved into phosphorus and phosphoric acid, $5P_3O=P_2O_5+P_{1,3}$. It is oxidised with combustion by nitric acid, and takes fire in chlorine gas.

b. Hypophosphorous Acid. P. O=39.413.

In the separate, or hydrated state, $P_s O_s 3HO$, or $P_s O_4$, H_3 . This acid is formed when phosphurets of the alkaline metals act on water, or when phosphorus is boiled with alkalies and water, phosphoric acid and phosphuretted hydrogen gas being formed at the same time. The two acids combine with the base; and if this be lime or baryta, the hypophosphite being soluble, is easily separated from the insoluble phosphate. From the hypophosphite of baryta sulphuric acid removes the baryta, and the hypophosphorous acid is left, dissolved in water. By gentle evaporation it may be obtained as a deliquescent crystalline mass, which is the hydrated acid.

When heated, are resolved into phosphates and phosphuretted hydrogen gas and gas phosphare the hydrogen <math>gas and gas phosphoric acid. Thus, $2(P_2O, 3HO) = P_2H_3 + P_2O_5$, 3HO. It is a powerful deoxidising agent, taking oxygen from many other substances, and passing into phosphoric acid. With bases, it forms salts called hypophosphites, which are all soluble in water, and which, when heated, are resolved into phosphates and phosphuretted hydrogen.

c. Phosphorous Acid.

In the anhydrous state, $P_{2}O_{3}$; in the separate, or hydrated, state (the crystals), $P_{2}O_{3}$, 3HO, or $P_{2}O_{6}$, H_{3} . This acid is formed, along with phosphoric acid, during the

This acid is formed, along with phosphoric acid, during the slow combustion of phosphorus in air. It is best obtained pure by acting on the sesquichloride of phosphorus, $P_{\alpha}Cl_{\alpha}$, by water. $P_{\alpha}Cl_{\alpha}+6HO=3HCl+P_{\alpha}O_{\alpha}, 3HO$. The hydrochloric acid is easily expelled by a gentle heat, and the aqueous solution of

PHOSPHORIC ACID.

phosphorous acid, if sufficiently evaporated, yields a mass composed of deliquescent crystals. This is the hydrated acid. This acid, like the preceding, is a powerful deoxidising agent.

This acid, like the preceding, is a powerful deoxidising agent. When heated in close vessels, the anhydrous acid, obtained by the combustion of phosphorus in rarefied air, yields phosphorus, and anhydrous phosphoric acid, $5P_sO_s = 3P_sO_s + P_4$. The hydrated acid, in the same circumstances, yields hydrated phosphoric acid and phosphuretted hydrogen gas, $4(P_sO_s, 3HO)=3(P_sO_s, 3HO)+P_sH_s$.

With bases phosphorous acid forms salts, which are called phosphites; and the general formula of the neutral phosphites is $P_{o}O_{a}$, 3MO, or $P_{o}O_{a}$, M_{a} .

d. Phosphoric Acid.

1. Anhydrous Phosphoric Acid, P₂ O₅ = 71.465.

This compound is formed only when phosphorus is burned in dry air or oxygen gas. It then appears as a white solid, like snow, which rapidly attracts moisture from the air, and passes into metaphosphoric acid, $P_2 O_s$, HO, or $P_2 O_6$, H; and this, again, soon changes, in contact with water, especially if heated, into common or hydrated phosphoric acid, $P_2 O_s$, 3HO, or $P_2 O_8$, H₂. The anhydrous phosphoric acid, like the anhydrous sulphuric acid, can hardly be said to be an acid body, as it does not exhibit acid properties until it has been brought into contact with water.

2. Hydrated Phosphoric Acid.

There are three different acids to which this name may be given. If we view them as compounds containing water, then they all contain anhydrous phosphoric acid, combined in each with a different proportion of water, and their formulæ will be P_2O_s , HO; P_2O_s , 2HO; and P_3O_s , 3HO. If, on the other hand, we view them as hydrogen acids, then they contain no anhydrous phosphoric acid, but are quite distinct compounds, and their formulæ will be as follows— P_2O_s , H; P_2O_7 , H₂; and P_2O_s , H₃. The latter view is much more probable, and agrees better with the properties and composition of these acids, and of their salts. The first is called metaphosphoric acid, the second pyrophosphoric acid, and the third common phosphoric acid; or they may be still better designated as monobasic, bibasic, and tribasic phosphoric acids.

108

METAPHOSPHORIC, OR MONOBASIC PHOSPHORIC ACID.

$P_2 O_5$, HO, or $P_2 O_6$, H = 80.478.

This acid is easily obtained by dissolving phosphorus in diluted nitric acid with the aid of heat, evaporating to a syrup, and exposing the residue to a red-heat in a platinum crucible. Or the solution of the anhydrous acid may be treated in the same manner; or phosphate of ammonia may be ignited in a platinum crucible. When phosphoric acid has once come in contact with water, it can never be rendered anhydrous by heat; it can only be reduced to the state of monobasic acid.

As thus obtained, it appears in the shape of a colourless and transparent glass, which slowly dissolves in water. It is hence called glacial phosphoric acid. Its solution causes in solutions of silver a white granular precipitate of monobasic phosphate of silver; it also coagulates albumen. But if long kept, or if very rapidly boiled, this solution passes into one of tribasic phosphoric acid, and no longer precipitates silver or coagulates albumen. Here 2 eqs, of water enter into the composition of the acid; $P_x O_x$, $HO + 2HO = P_x O_x$, 3HO.

With bases, this acid forms one series of salts, the monobasic phosphates, the general formula of which is $P_2 O_s$, MO, or $P_2 O_s$, M. In these, the hydrogen of the acid is replaced by its equivalent of metal. The precipitate caused by the acid in solutions of silver is one of these salts, $P_2 O_s$, Ag O.

PYROPHOSPHORIC, OR BIBASIC PHOSPHORIC ACID.

$P_2 O_5$, 2 HO, or $P_2 O_7$, $H_2 = 89.491$.

When common or tribasic phosphoric acid, $P_2 O_s$, 3 HO is heated for some time to 417°, it loses one-third of the water it contains, and becomes bibasic, or pyrophosphoric acid. It appears as a viscid syrup, very acid, and very soluble in water. Its solution neither precipitates silver nor coagulates albumen; but if previously neutralised by ammonia it causes in salts of silver a flaky white precipitate of bibasic phosphate of silver, $P_2 O_s$, 2 Ag O. The solution of this acid, like that of the preceding, soon passes into tribasic acid, especially if heated.

With bases it forms two series of salts, one containing 2 eqs. of base, the other 1 eq. of base, and 1 of water. The former are neutral, and have the general formula $P_2 O_3$, 2 MO: the latter are acid, and their formula is $P_2 O_3$, MO, HO. This acid is much more easily obtained in combination with a base than in the free state, and in fact it was discovered in the salt obtained by igniting the common phosphate of soda, when there is left pyrophosphate or bibasic phosphate of soda, $P_2 O_3$, 2 NaO. When a pyrophosphate is melted with excess of base, it is converted into a tribasic phosphate. Thus, if pyrophosphate of soda be fused with an additional equivalent of soda, the tribasic salt, $P_a O_s$, 3 Na O is formed, which no longer contains pyrophosphoric acid.

COMMON, OR TRIBASIC PHOSPHORIC ACID.

$P_2 O_5, 3 HO; or P_2 O_8, H_3 = 98.504.$

When a solution of any of the preceding acids is evaporated by a moderate heat to the consistence of syrup, the residue is found to be the tribasic acid P_{g} O_g, 3 HO. Heated for a long time to 417°, it loses 1 eq. water and becomes bibasic; heated to redness it gives off 2 eqs. water, and becomes monobasic. A diluted solution of either of these gradually becomes tribasic, and this change is very rapidly effected by boiling. Solution of common phosphoric acid neither precipitates silver nor coagulates albumen; but if neutralised by ammonia, it causes in salts of silver a pale yellow precipitate of tribasic phosphate of silver, P_{g} O_g, 3 Ag O.

The most economical method of preparing phosphoric acid is to add to the syrupy superphosphate, or acid phosphate of lime. previously described, oil of vitriol as long as it causes a precipitation of sulphate of lime. The mixture becomes quite thick. and is to be diluted with water, filtered, again concentrated to a syrup, and again tested by adding a few drops of oil of vitriol. When no more sulphate of lime is formed, the whole is digested with cold alcohol, and the clear solution allowed to stand as long as it deposits crystals of phosphate of magnesia. Lastly, the alcoholic solution which contains all the phosphoric acid, with a little sulphuric acid, is distilled to separate the alcohol, and the acid residue dried up and gently ignited in a covered vessel of platinum. Pure monobasic phosphoric acid is left. If it be dark coloured from a trace of carbon derived from the alcohol, a little nitric acid is added, and the whole again heated, when it becomes colourless. It is now dissolved in hot water, and becomes tribasic acid, the form usually employed, as it is the most permanent. Like the other phosphoric acids, it is very acid, but not corrosive. It is occasionally used in medicine.

With bases, common phosphoric acid forms three series of salts, in which the 3 equivalents of water in the acid are wholly or partially replaced by metallic oxides. Thus, with soda it forms three salts; 1st, neutral phosphate P_2O_5 , 3NaO; 2nd, common phosphate of soda, P_2O_5 , 2NaO, HO; 3rd, acid phosphate of soda, P_2O_5 , NaO, 2HO. In each of these salts there

are 3 eqs. of base, but these may be either all soda, or partly soda and partly basic water. All three salts give with the salts of silver the same yellow precipitate, P_2 , O_3 , 3 Ag O; but the supernatant liquid is only neutral when the neutral phosphate is used; it is acid in the case of the other two salts, because, for every eq. of oxide of silver in the precipitate, 1 eq. of nitric acid has to be neutralised, and this cannot be effected by the basic water, but only by the soda.

When the second or common phosphate of soda is ignited, its basic water is driven off, and bibasic phosphate of soda $P_2 O_s$, 2 Na O, is left. This salt, dissolved in water, gives with salts of silver a white flaky precipitate of bibasic phosphate, while the supernatant liquid remains neutral.

If the third or acid phosphate of soda be ignited, it loses 2 eqs. of basic water, and monobasic phosphate is left, which, if dissolved in water, gives with silver a granular white precipitate of monobasic phosphate, the supernatant liquid remaining neutral.

From the above brief description of the three modifications of phosphoric acid, it will be seen that their characters are distinct and well marked. Graham views them, according to the formulæ which assume the presence of water, as three different hydrates of the same anhydrous acid; and he considers that when the anhydrous acid has combined with one, two, or three atoms of water, it acquires and retains, in each case, the power or tendency to combine with one, two, or three equivalents of fixed The facility with which one form passes into the other is base. in favour of this view ; but it must be observed that it affords no explanation of the remarkable tendency alluded to, but only states the fact, and still leaves unanswered the question, Why does anhydrous phosphoric acid at one time unite with 1 eq., at another with 2 eqs. or 3 eqs. of water ? or why does it, by doing so, acquire the tendency to unite with 1, 2, or 3 eqs. of base ?

Liebig, on the other hand, considers the three acids as radically different, being formed of hydrogen, united in each to a different compound radical; and that as in the first there is only 1 eq., in the second 2 eqs., and in the third 3 eqs. of hydrogen, the salts must necessarily contain equivalent proportions of metals which, in the two latter, may replace the hydrogen either wholly or partially, as in other polybasic acids. The formulæ for the acids, on this view, have been given above.

The now-admitted existence of numerous polybasic acids, and the growing tendency to consider all hydrated acids as hydrogen acids, tend to induce us to prefer the latter view, which moreover has the advantage of at least offering an explanation of the different neutralising power of the three acids, which is referred

THEORY OF THE PHOSPHORIC ACIDS.

to the amount of replaceable hydrogen they contain. Thus we have-

 $\begin{array}{c|cccc} & \text{Monobasic Acid.} & \text{Bibasic Acid.} & \text{Tribasic Acid} \\ & \text{Acid.} & \text{Salts.} & \text{Acid.} & \text{Salts.} & \text{Acid.} & \text{Salts.} \\ \mathbf{P}_2\mathbf{O}_6, \mathbf{H} & \mathbf{P}_2\mathbf{O}_6, \mathbf{M} & \mathbf{P}_2\mathbf{O}_7, \mathbf{H}_2 & \mathbf{P}_2\mathbf{O}_7, \mathbf{M}_2 & \mathbf{P}_2\mathbf{O}_8, \mathbf{H}_3 & \mathbf{P}_2\mathbf{O}_8, \mathbf{M}_3 \\ & & \mathbf{P}_2\mathbf{O}_7 & \begin{cases} \mathbf{M} & & \mathbf{P}_2\mathbf{O}_8 & \begin{cases} \mathbf{M} \\ \mathbf{H} & & & \\ \end{array} \\ & & & \mathbf{P}_2\mathbf{O}_8 & \begin{cases} \mathbf{M} \\ \mathbf{H} \\ \end{array} \\ & & & & \\ \end{array} \end{array}$

If we begin from the tribasic acid, and represent one of its salts, the common phosphate of soda, $P_2 O_s$, $\begin{cases} Na \ 2, as follows : H, \end{cases}$

$$P_{2} O_{8} = \begin{cases} \frac{1}{3} P_{2} O_{8} + Na \\ \frac{1}{3} P_{2} O_{8} + Na \\ \frac{1}{3} P_{2} O_{8} + H \end{cases}$$

We see that when this salt is ignited, 1 eq. of hydrogen is expelled, along with 1 eq. of oxygen, and the 2 eqs. of sodium now neutralise the whole of the remaining phosphorus and oxygen, which is $\frac{3}{3} P_2 O_8 - O = P_2 O_7$, and the bibasic salt, $P_2 O_7$, Na₂ results. If this be expressed by

$$P_2 O_7 = \begin{cases} \frac{1}{2} P_2 O_7 + Na \\ \frac{1}{2} P_2 O_7 + Na \end{cases}$$

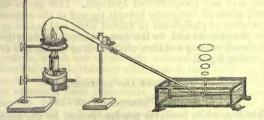
We see that something has been added to the radical previously united with each eq. of sodium, without altering its neutralising power. In like manner, if we represent microcosmic salt $P_{2}O_{s}$, (Na

 ${ {\rm NH}_4 \atop {\rm H}_4 }$ as follows,

 $P_{2} O_{8} = \begin{cases} \frac{1}{3} P_{2} O_{8} + Na \\ \frac{1}{3} P_{2} O_{8} + NH_{4} \\ \frac{1}{3} P_{2} O_{8} + H \end{cases}$

We see that when it is ignited, the hydrogen and the ammonium are both expelled, each combined with 1 eq. of oxygen ; but as the rest of the phosphorus and oxygen formerly combined with them is not expelled, it enters into the composition of the radical still united with the 1 eq. of sodium, but without affecting its neutralising power. This radical, therefore, becomes $\frac{3}{2} P_2 O_s - O_2$ $P_2 O_s$; and its salt with sodium is $P_2 O_s$, Na, the monobasic phosphate of soda. If, now, we turn to what was said above of the acids of sulphur, viewed as hydrogen acids, we shall there see many analogous cases of the addition to the acid radical of different quantities of its elements, while the neutralising power remains

112


unchanged. Thus, hydrated sulphurous acid, $H + SO_{a}$, by the addition of $SO_{a} + S_{a}$ to its radical, becomes the acid of Fordos and Gelis, without change of neutralising power. In the phosphoric acids, the neutralising power varies, because the hydrogen varies : but when they are represented, as has been done above, in such a way as to keep the hydrogen (or metal) the same in all, the analogy between them and the acids of sulphur, in regard to the non-dependence of the neutralising power on the nature and proportions of the ingredients of the radical, becomes manifest.

The above is the view which Liebig takes of the nature and formation of the three phosphoric acids. It must be admitted, that it has the advantage of simplicity; that it explains, in a consistent manner, all the known facts; and that it is at present better supported, and rests on fewer assumptions, than any other theory, of the constitution either of these acids, or of acids in general.

PHOSPHORUS AND HYDROGEN.

Phosphuretted Hydrogen. $P_2 H_3 = 34.4$.

This compound may be formed by the action of phosphurets of alkaline metals on water, or by the action of phosphorus on boiling alkaline solutions. Thus, phosphuret of calcium, thrown into water, disengages the gas in question; and it is also produced in large quantity by applying heat to a mixture of lime, water, and fragments of phosphorus, in a retort nearly filled

with the mixture, or by boiling phosphorus with an alcoholic solution of potash. The two former methods yield it in a form in which it is spontaneously combustible on coming in contact with air or oxygen; the latter in a form in which it requires the contact of flame in order to burn. The gas in both cases is essentially the same; but in the former it contains a minute proportion of a compound, not yet isolated, which is spontaneously inflammable, and which, inflaming by contact of air, kindles the gas. This compound is supposed to be $P_a H_a$. When the spontaneously inflammable gas is long kept, it deposits a solid compound, $P_a H_a$, and is then no longer spontaneously combustible. Possibly 2 $P_a H_a$, yield $P_a H$ and $P_a H_a$.

The gas, whether spontaneously inflammable or not, is colourless, and has a very offensive smell of putrid fish. When it burns, it produces anhydrous phosphoric acid and water, forming thick white vapours; and when bubbles of the spontaneously inflammable gas take fire in still air, they form beautiful circular wreaths of vapour, which ascend, gradually widening, till they are dissipated in the air.

The addition of ether, oil of turpentine, and many other substances, destroys the spontaneous inflammability; but this property may be restored by adding to the gas a minute proportion of nitrous acid.—(Graham.)

Phosphuretted hydrogen is neither acid nor alkaline; but it seems to have alkaline tendencies, since it combines with hydriodic acid, forming a neutral crystalline compound, isomorphous with hydriodate of ammonia. It also combines with several metallic chlorides, forming compounds analogous to those produced by ammonia with the same chlorides. Rose, who has described these compounds, points out a considerable analogy between phosphuretted hydrogen and ammonia.

It has already been mentioned, that when hypophosphorous and phosphorous acids are heated, they are resolved into phosphoric acid and phosphuretted hydrogen. This gas is consequently given off frequently towards the end of the evaporation of a solution of phosphorus in diluted nitric acid, which at first forms phosphorous acid, by the decomposition of which the gas is produced, causing a sudden combustion at the surface of the evaporating liquid.

PHOSPHORUS AND NITROGEN.

Phosphuret of Nitrogen. $NP_{o} = 45.52$.

This is a white insoluble powder, formed by the action of ammonia on sesquichloride of phosphorus. $NH_3 + P_2 Cl_3 = 3 HCl + NP_2$. It is infusible and fixed in the fire in close vessels.

PHOSPHORUS AND CHLORINE.

Phosphorus takes fire spontaneously in chlorine gas, forming two compounds.

a. Sesquichloride of Phosphorus. P. Cla = 137.81.

When phosphorus is made to pass, in the form of vapour, through a tube filled with coarse powder of bichloride of mercury, HgCl₂, or when chlorine is slowly passed through a tube or retort containing phosphorus, a volatile colourless liquid is obtained, which is sesquichloride of phosphorus. $3 \text{ HgCl}_2 + P_2 = 3 \text{ HgCl} + P_2 \text{ Cl}_3$. Here protochloride of mercury is left, while the excess of chlorine combines with the phosphorus. The sesquichloride is a pungent fuming liquid, which, in contact with water, yields hydrochloric and phosphorous acids. $P_2 \text{ Cl}_3 + 3 \text{ HO} = 3 \text{ HCl} + P_2 \text{ O}_2$.

b. Perchloride of Phosphorus. $P_2 Cl_5 \equiv 208.75$.

This compound is best formed by passing a current of chlorine through the preceding to saturation. It is a white volatile solid, of a pungent smell. In contact with water, it yields hydrochloric and phosphoric acids: $P_2Cl_s + 5 HO = 5 HCl + P_2O_s$.

PHOSPHORUS AND BROMINE .- PHOSPHORUS AND IODINE.

With these elements, phosphorus also unites with spontaneous combustion, and forms with each two compounds, analogous to those with chlorine. They are volatile solids, yellow in the case of bromine, dark brown or nearly black in the case of iodine. They decompose water like the chloride, with the production of hydrobromic and hydriodic acids on the one hand, and phosphorous or phosphoric acids on the other.

PHOSPHORUS AND SULPHUR.

When phosphorus and sulphur are heated together under water they combine, often with incandescence, forming several compounds, which are exceedingly inflammable, and having a tendency to explode violently when heated, from some unknown cause, are very dangerous to experiment with. Berzelius has lately examined these compounds, and has described the following. 1. P_sS . This compound occurs in two states, as a colourless liquid, and as a red powder; 2. P_sS . A pale yellow liquid, also as an orange powder; 3. P_sS_s . Yellow crystals; 4. $P_sS_s = P_sS + P_sS$. A scarlet powder, changed by distillation into a liquid; 5. P_sS_s . A yellow fusible solid; 6. P_sS_s . A yellow crystallisable solid.—It is very remarkable, that several of these compounds occur in two distinct states; and Berzelius conceives that this is owing to the circumstance that, like sulphur, phosphorus itself exists in two mechanically distinct

12

CARBON.

states, and that the difference of the two states of the compounds depends on the one containing phosphorus in its ordinary condition, while in the other the phosphorus is in the allotropic state, as it is now called.

11. CARBON. C = 6.04.

This element occurs very abundantly in nature, generally combined. In the pure state, and crystallised, it constitutes the diamond. In a compact, amorphous condition, it occurs as plumbago or graphite : and in a much less pure form as anthracite coal. It is an essential ingredient of all organised tissues and products, animal and vegetable; and it is also found in the mineral kingdom as the chief component of pit coal and wood coal, which are evidently derived from vegetables; and, further, as carburetted hydrogen gas, the fire-damp, and carbonic acid gas, the choke-damp, of coal mines, which are products of the decay of vegetable matter. Carbonic acid is abundant in volcanic districts and in mineral waters, and, combined with lime or magnesia, constitutes extensive rock formations. Carbonate of lime occurs, for example, as marble, limestone, and chalk; and along with carbonate of magnesia as dolomite. When crystallised, it forms calcareous spar. Carbonate of magnesia also forms rocks in some parts of the world. In smaller quantity, the carbonates of baryta, strontia, lead, and some other bases, are also found. Carbonic acid gas is always present in the atmosphere, of which it forms about Too part by weight.

Carbon is artificially prepared by heating organic matter in close vessels as long as any volatile substances are given off. These volatile bodies are compounds of carbon, hydrogen, nitrogen, and oxygen, in various proportions, and the residue is the excess of carbon, which is fixed in the fire, provided oxygen be excluded. Wood thus treated yields common charcoal, which is carbon + the ashes or mineral elements of the wood. Coal yields coke, which is more dense in its structure. Animal matters yield animal charcoal, which contains phosphates, and also nitrogen, probably as mellone, C6 N4. The charcoal from bones is called bone or ivory black, and is of course loaded with phosphate of lime. When oils or resins, which are always rich in carbon, are burned with a deficient supply of oxygen, they yield a great deal of soot, which is called lamp-black. When ignited in close vessels, to expel any traces of oil or volatile matters, it is almost pure carbon.

The diamond, or crystallised carbon, is the hardest body known. Its sp. g. is 3.5. It is also quite infusible, but is

116

easily burned when heated in oxygen, and is converted into carbonic acid. It is remarkable for its transparency and high refractive and dispersive power: it is a non-conductor of electricity. In the other (allotropic?) form of graphite, anthracite, or charcoal, carbon is opaque, black, combustible in air or oxygen, yielding carbonic acid, but is now a conductor of electricity. Its sp. g. is 2. In all its forms, carbon is devoid of taste or smell, insoluble, as such, in all menstrua (although it may be oxidised and dissolved as carbonic acid by strong nitric acid, or aqua regia, with the aid of heat), and altogether fixed in the fire in close vessels.

In open vessels, carbon, when heated, takes fire, and, if pure, burns entirely away, being converted into carbonic acid gas. Indeed, the attraction of carbon for oxygen at a red heat exceeds that of almost all other bodies. It is to this property, and to the heat and light given out in its combustion, that are owing the uses of carbon, as the chief ingredient of all kinds of fuel, whether burned for heat or for light.

CARBON AND OXYGEN.

With oxygen, carbon forms two well-marked gaseous compounds, which shall be here described. The same elements, in other proportions, constitute, according to the opinion which regards oxygen acids as hydrates, certain anhydrous acids, to be described under the head of organic chemistry. As these anhydrous acids, however, are not known in the separate form, we may rather consider the acids in question (the oxalic, mellitic, croconic, and rhodizonic acids) as compounds of hydrogen.

a. Carbonic Oxide. CO = 14.053.

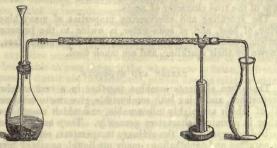
This gas is formed either when carbon is burned with a limited supply of air, as when air is passed through a mass of red-hot charcoal; or when carbonic acid is brought into contact with red-hot charcoal. In the latter case, the carbonic acid, CO_2 , is deoxidised, while the carbon is oxidised, $CO_2 + C = 2CO$.

It is best obtained by heating in a retort 1 part of finelypowdered ferrocyanide of potassium (prussiate of potash) along with 10 parts of oil of vitriol. The salt contains cyanide of potassium, K, C₂ N, and cyanide of iron, Fe, C₂ N. One orboth of these salts acts on the sulphuric acid and water, yielding sulphate of potash (or of iron), sulphate of ammonia, and carbonic oxide, K, C₂ N+2(HO, SO₃)+2HO=(KO, SO₃)+ (NH₄O, SO₃)+2CO. The gas may also be obtained by heating a mixture of a formiate, MO, C₂ HO₃, with an excess

CARBONIC ACID.

of oil of vitriol, $MO, C_{3}HO_{3}+HO, SO_{3}=MO, SO_{3}+2HO+2CO$. When oxalic acid, $HO, C_{2}O_{3}$, or an oxalate, $MO, C_{2}O_{3}$, is heated with an excess of oil of vitriol, there is obtained a mixture of carbonic oxide and carbonic acid gases, $MO, C_{2}O_{3}$, $+HO, SO_{3}=MO, SO_{3}+HO+CO+CO_{2}$. By passing the mixed gases through milk of lime, or solution of potash, the carbonic acid is arrested, and the carbonic oxide gas obtained pure.

Carbonic oxide gas may be collected and kept over water. It is transparent and colourless, has neither taste or smell, and when respired is fatal to animal life. It takes fire when heated to redness in contact with air, as by the approach of a candle, and burns with a lambent clear blue flame, combining with a second equivalent of oxygen, and yielding carbonic acid. Its sp. g. is 0.9722. The blue flame that is often seen to play on the surface of a large red-hot coal fire is owing to the formation of this gas; the carbonic acid formed at the lower part of the fire being forced to pass through a thick mass of red-hot charcoal. The formation of this poisonous gas is also one cause of the danger of slowly burning charcoal in chauffers, in rooms where there is no chimney and little ventilation.


Carbonic oxide is a compound radical; that is, it acts like an element, combining with elements. Thus, it combines with chlorine, with oxygen, with metals. In this point of view it is a most interesting compound; but, like cyanogen, comes to be treated of as a compound radical in the organic division of this work.

b. Carbonic Acid. $CO_0 = 22$.

SYN. Fixed Air.—This gas occurs in a variety of circumstances, which have been noticed above, in treating of carbon. In addition to these, it may here be mentioned that it is formed during the respiration of animals, and that it is a chief product of the vinous or alcoholic fermentation. It is also formed in large quantity in all ordinary combustions, from the oxidation of the carbon in the fuel.

It is best prepared artificially by the action of diluted hydrochloric or sulphuric acid on marble or chalk, which, as already stated, is carbonate of lime. CaO, CO₂. Thus we have CaO, $CO_2 + HCl = CaCl + HO + CO_2$. It may be collected, with some loss, over water, which absorbs it to a considerable extent.

It is a transparent and colourless gas, with a rather pungent, subacid smell, and a slight acidulous taste. Its sp. g. is 1.527; and it is so much heavier than air, that it may be collected in vessels by displacement, as represented in the cut, especially if it be wanted dry, after passing through a tube filled with

chloride of calcium. Lime water is rendered turbid by this gas, the insoluble carbonate of lime being formed; and by this character it is distinguished from all other gases. It extinguishes flame, and is most deleterious when inhaled. As it is apt, from its great density, to accumulate in the lower part of wells, pits, or mines, where it escapes, it is often the cause of fatal accidents. No such place should be entered until a light has been introduced, and found to burn brightly; if it burns dimly, or is extinguished, the air will certainly destroy life if respired.

Carbonic acid gas, by a pressure of 36 atmospheres, is liquefied. This is best accomplished by condensing the gas, by means of a pump, into a strong copper vessel, such as is used for air-guns. The liquid carbonic acid, by its almost instantaneous evaporation, when allowed to escape through a jet, produces so much cold as to freeze a part of the gas into a white solid like snow. The solid carbonic acid evaporates slowly, but, if mixed with ether, more rapidly, so as to freeze mercury easily. The liquid acid expands by heat in a greater degree than even the gas does.

Carbonic acid gas is absorbed by water, particularly under increased pressure, and gives to that liquid an acidulous taste and the power of reddening litmus; although, on exposure to the air, or on boiling, the gas is given off, and the blue colour is restored. With the bases, it unites, forming salts, which are called carbonates; but in the soluble carbonates the alkali is not neutralised, and many carbonates of the base, especially of ammonia, may be obtained, in all of which the properties of the alkali predominate. It would appear, from this, that carbonic acid is not a true acid, although it combines with bases. We shall hereafter see that one or two other oxygen acids which, like it, do not form hydrates, are, in like manner, destitute of the true character of acids.

The sparkling and effervescing properties of many kinds of wine, of beer, and of soda-water, is owing to the presence of carbonic acid. The mineral waters, in which it occurs free, are known by their sparkling, and are much used.

CARBON AND HYDROGEN.

These two elements combine together in a vast number of proportions, and being both combustible, give rise to compounds, all of which are highly inflammable, and which resemble each other in chemical characters generally. They are often called carbo-hydrogens. At the ordinary temperature, some are solid, as parafine and naphthaline ; many are liquid, as oils of turpentine and lemons, naphtha, &c.; and two are gaseous, namely, light carburetted hydrogen gas, and olefiant gas. All of these compounds are either vegetable products, or arise from the decay or the destructive distillation of organic matter. As, however, the two gases, mixed in various proportions with air, constitute the fire-damp of coal mines, and consequently occur in the mineral kingdom, we shall describe them here, leaving the remainder for organic chemistry.

a. Light Carburetted Hydrogen, CH2 = 8.04.

This gas forms the chief part of the combustible gases, which issuing from seams in the coal, mixes with the air of the mines, and produces the explosive fire-damp. It is produced nearly pure, when vegetable matter decays under stagnant water. The bubbles which rise are found to consist of this gas, with a little carbonic acid, which may be removed by solution of potsah. The gas may also be formed artificially by heating an acetate, MO, $C_4H_3O_3$, with an excess of hydrate of baryta. We have then

 $(MO + C_4 H_8 O_3) + Ba O HO = MO, CO_2 + Ba O, CO_2 + 2CH_2.$

The gas is colourless and inflammable, burning with a yellowish flame, and forming carbonic acid and water with the oxygen of the air. $CH_2+O_4=CO_2+2$ HO. Its sp. g. is 0.5555. When mixed with twice its volume of oxygen and set fire to, it explodes violently. The same result follows, but with less violence, when it is mixed with 10 vol. of air, which contain 2 vols. oxygen. This is the nature of fire-damp. It is a mixture of this gas with air. If the air is less than 6 times, or more than 14 times the volume of the gas, explosion does not take place.

To put an end to the frightful accidents formerly so common in coal-mines, Davy invented his safety-lamp, which is only a common oil-lamp, surrounded by wire gauze. Davy found that flame, which is incandescent gaseous matter, and intensely hot, could not pass through fine wire gauze, the gaseous matter being cooled by the contact with the metal, below the point at which it becomes luminous. Now, as it requires the heat of flame to fire the explosive mixture, it is evident that the flame of the lamp, not being able to pass through the wire-gauze as flame, but only as gaseous matter not incandescent, cannot fire the mixture which surrounds it. Since this beautiful contrivance was adopted, explosions have become much more rare in coal-mines; and there is good reason to believe that such as have occurred, have arisen from neglect of the use of the safety-lamp, or from carelessness in using lamps, the gauze of which has been so injured by blows, or otherwise, as to allow the flame to pass.

When an explosion takes place, those who are not burnt or shattered, are generally suffocated by the carbonic acid, which is the product of the explosion.

b. Olefiant Gas. C₂ H₂=14.08; or, C₄ H₄=28.16.

This gas occurs in the gaseous mixture of coal-mines, mixed with the preceding. It is prepared by heating 1 part of strong alcohol with 4 parts of oil of vitriol. The mixture blackens and gives off the gas, which may be collected over water. It is rendered quite pure by passing it through oil of vitriol, which removes some of the vapour of ether which is generally present.

Olefiant gas is transparent and colourless. When brought in contact with a flame in the air, it takes fire, and burns with a very luminous white flame. Mixed with its volume of chlorine, the two gases rapidly disappear, producing an ethereal or oily liquid, $C_4H_4Cl_2$; hence the name. But if mixed with 2 vols. of chlorine, and set fire to, the mixture burns off with a red flame, and an immense quantity of smoke, which is carbon deposited in the solid form, the hydrogen uniting with the chlorine. C_2 $H_a+Cl_a=2 H Cl+C_2$.

When a light is applied to a mixture of 1 vol. of olefant gas, and 3 vols. of oxygen, or 15 vols. of air, a very violent explosion takes place, the products being carbonic acid and water. C_2H_2 $+O_c=2H0+2CO_2$.

CARBON AND NITROGEN.

Cyanogen. C₂ N = Cy = 26.23.

These elements in the nascent state, and in the presence of a base, combine to form a very remarkable compound, which, from

CYANOGEN.

being a chief ingredient in Prussian blue, has been called Cyanogen. This compound is best obtained by heating a mixture of 6 parts of dried ferrocyanide of potassium, and 9 parts of bichloride of mercury in a flask, when cyanogen is given off in the form of a colourless gas, absorbed by water, having a very pungent and peculiar smell. Cyanogen gas is combustible, and burns with a beautiful purplish red flame. It is liquefied by a pressure of 3 or 4 atmospheres.

Such are the leading external properties of this remarkable compound, which, in its chemical relations, however, acts most frequently the part of a simple acid radical, entirely analogous to chlorine, bromine, iodine, or fluorine, forming an acid with hydrogen, and neutral salts with metals.

In fact, cyanogen is the type of the important class of compound acid radicals, which characterise the chemistry of organic bodies, although, as we have seen, they also occur in inorganic chemistry. But as cyanogen is exclusively a product of organised compounds, or of the destruction of organic bodies, the detailed description of its chemical relations, and of its numerous compounds, belongs to organic chemistry.

The composition of cyanogen is $C_6 N$; but as it plays the part of an elementary body, it is generally more convenient to employ for it the symbol Cy.

Carbon and nitrogen form another compound, C_cN_a, which is also a compound radical, and is called Mellone. Symbol Me.

CARBON AND CHLORINE.

Carbon does not directly unite with chlorine; but when chlorine is made to act on certain organic compounds, which are decomposed by it, the carbon being presented to it in the nascent state, combines with the chlorine. There are several chlorides of carbon : 1. Dichloride of carbon C_2 Cl. A white solid fusible and combustible body. 2. Protochloride of carbon, C Cl., a liquid, boiling at 160°. 3. Perchloride of carbon, C_2 Cl. A very fusible solid, boiling at 360°, combustible. None of these compounds have any practical interest.

Little, if anything, is known of the compounds of iodine, bromine, and fluorine, with carbon.

CARBON AND SULPHUR.

Bisulphuret of Carbon, $CS_0 = 38.28$.

This compound is best formed by filling with fragments of recently ignited charcoal a wide cast-iron tube, which is placed in a somewhat inclined position across a furnace. The lower

BORON.

end of the tube is connected with Liebig's condensing apparatus. the wide glass tube of which is kept cold by iced water, and terminates in a two-necked bottle, also placed in ice-cold water : a tube in the second tubulature of the bottle, allows the escape of gaseous matter. The part of the iron tube containing the charcoal being now raised to a red heat, a fragment of sulphur is introduced into the upper end, which is instantly closed. The sulphur melts, boils, and passes in vapour over the hot charcoal, which combines with it, forming bisulphuret of carbon, which condenses in the bottle as a volatile liquid. A second fragment of sulphur is introduced very soon after the first ; and if the proportion of sulphur introduced at once, and the heat of the charcoal be fortunately observed, a large quantity of the new compound may soon be obtained. The gases disengaged appear to be a gaseous sulphuret of carbon, chiefly formed when there is too little sulphur, and sulphuretted hydrogen, arising from the presence of hydrogen or water in the charcoal.

The bisulphuret of carbon is purified by distillation in a very gentle heat, and then forms a very transparent, mobile, colourless liquid, of sp. g. 1.272, sinking, therefore, in water, which has a peculiar offensive smell of putrid cabbage. It is very volatile, boiling at 108°; and very combustible, burning with a pale blue flame, and producing sulphurous and carbonic acids. It is insoluble in water, soluble in alcohol, ether, and oils. It dissolves sulphur and phosphorus readily; and these solutions, by spontaneous evaporation, yield fine crystals of those elements. It also dissolves camphor, essential oils, and resins.

Sulphuret of carbon is occasionally used as an external application in burns; and it promises to be useful as a solvent for resins, many of which it dissolves readily, and thus forms varnishes, which from its great volatility, dry very rapidly.

12. BORON. B=10.9.

This element is found, in combination with oxygen, forming boracic acid in certain hot springs in the north of Italy; and as borate of soda (borax), on the shores of some lakes in Thibet.

From boracic acid, boron is with difficulty obtained by the action of potassium, aided by heat, which removes the oxygen. Or it may be prepared by the action of potassium on borofluoride of potassium, when boron is separated. KF, BF₃+K₃=4 KF +B. The fluoride of potassium which is formed, is dissolved away by water, and the boron remains as a dark olive-coloured powder. Boron is fixed in the fire, but if heated in oxygen gas it burns brilliantly, being converted into boracic acid.

Boron and Oxygen. Boracic Acid, BO₃ = 34.939.

When boron is heated in air it burns like tinder, or, as above stated, if heated in oxygen, with a brilliant light, and yields this acid. It is obtained by evaporating the hot springs of Sasso, in Italy, in a somewhat impure state, under the name of Sassoline, or crude boracic acid. It is best prepared by dissolving borax in four parts of hot water, and adding to the hot solution one-third of the weight of the borax of oil of vitriol. Borax is a borate of soda; the sulphuric acid takes the soda, forming a soluble salt, and the boracic acid is set free. Being very sparingly soluble in cold water, it is deposited, on cooling, in scaly crystals, which are a crystallised hydrate of boracic acid, $BO_s + 3 HO$. These crystals are purified by being dissolved in the smallest possible quantity of boiling water after they have been washed with a little cold water. On cooling, this solution deposits pure hydrated boracic acid.

When the crystals are heated to 212°, they lose half the water they contain, and this is probably water of crystallisation. The residue is $2 BO_3 + 3 HO$; so that the original crystals may be represented as $2 BO_3 + 3 HO + 3 aq$. When heated to redness the acid melts, and, on cooling, forms a transparent brittle glass. It is quite fixed in the fire in close vessels if dry; but it volatilises readily with the vapour of water, so that a solution of boracic acid cannot be evaporated without notable loss. It is in this way, along with steam, that it is brought from great depths into the springs in which it is found.

Boracic acid is sparingly soluble in cold, readily in hot water. It is very soluble in alcohol, and its alcoholic solution burns with a flame mixed and tinged with pale green : a property characteristic of the compounds of boron.

It is a feeble acid, and reddens litmus slightly; it colours turmeric brown, like alkali. With bases it forms salts called borates, which are for the most part insoluble. The alkaline borates alone are soluble. All the salts of this acid are very fusible, and promote the fusion of other bodies when mixed with them. Hence, borax is much used as a blowpipe flux, which not only promotes fusibility, but at a red-heat dissolves siliceous compounds to a clear, fusible glass.

No compounds are known of boron with hydrogen or nitrogen.

With chlorine boron combines when it is heated in the gas, or when chlorine is passed over a red-hot mixture of boracic acid and charcoal. The terchloride of boron, $B Cl_s$, is a gas at ordinary temperatures. It has a pungent acid smell, and forms thick

SILICON.

vapours in the air. These are the result of its action on the water of the atmosphere, whereby hydrochloric and boracic acids are formed : $B Cl_s + 3 HO = 3 HCl + BO_s$.

Nothing is known of the compounds of boron with bromine and iodine.

BORON AND FLUORINE.

Terfluoride of Boron. $BF_{a} = 66.94$.

Boron has a remarkable affinity for fluorine, and when fluor spar (fluoride of calcium) is heated to redness with boracic acid, a gaseous compound is produced, analogous in composition and properties to the terchloride of boron. $3 \text{ CaF} + 4 \text{ BO}_s = 3 (\text{Ca O}, \text{BO}_s) + \text{BF}_s$. The sp. g. of the gas is 2.36. It instantly seizes on water, decomposing it, and thus, like the chloride, forms very thick vapours with the moisture of the air. It is, in fact, a very delicate test of the presence of moisture in any gas.

When this gas is absorbed by water to saturation, hydrofluoric acid and boracic acid are formed: $BF_s + 3HO = 3HF + BO_3$. The hydrofluoric acid unites with the boracic acid and I eq. of water forming an acid, 3HF + HO, BO_3 , and this, when acted on by bases, yields salts, the formula of which is 3MF + MO, BO_3 . Berzelius has shown that when terfluoride of boron is absorbed by concentrated hydrofluoric acid, another compound is formed, the formula of which is $HF + BF_3$. It is an acid, the formula of its salts being MF + BF_3 . All its salts, when heated, give off terfluoride of boron.

Boron, when heated in the vapour of sulphur, burns and forms a sulphuret of boron, which is a white solid decomposed by water, with which it yields sulphuretted hydrogen and boracic acid.

13. Silicon. Si = 22.18.

This element is, with the exception probably of oxygen, the most abundant of all those which form the solid mass of our earth. It occurs, however, only in a state of combination with oxygen, as silicic acid or silica, which is the chief ingredient of all rocks, except limestones, rock salt, and coal, and also of all soils.

Silicon is best obtained by heating potassium with silicofluoride of potassium, $3 \text{ KF} + 2 \text{ Si} \text{ F}_3$, which with 6 eqs. of potassium yields $9 \text{ KF} + \text{ Si}_2$. Water dissolves off the fluoride of potassium, and leaves the silicon as a dark brown powder, which contains some hydrogen, and is purified by exposure to a low red heat. Silicon is infusible, and after having been ignited in close vessels it is so compact as not to burn when heated even in oxygen. It is not acted on by any acid except the hydrofluoric acid, which slowly dissolves it. A mixture of hydrofluoric and nitric acids acts more strongly. When silicon is fused with nitrate or carbonate of potash, it is oxidised with a smart deflagration. It is heavier than oil of vitriol.

SILICON AND OXYGEN.

Silicic Acid. Si $O_a = 46.219$.

SYN. Silica.—This acid is found pure in rock crystal, or in white quartz. Along with small and variable quantities of certain metallic oxides it forms many well-known minerals—as yellow or smoke rock crystal with oxide of iron; agate, jasper, heliotrope, carnelian, with the same metal; amethyst with oxide of manganese; prase with oxide of nickel; rose-quartz with some fugitive colouring matter; opal and calcedony with water, &c. &c. Many sands and sandstones are nearly pure silica, and quartz rock and flint are quite pure.

Silicic acid may be obtained in a state of purity from any siliceous sand by fusing it with three or four parts of carbonate of potash, dissolving the fused mass in water, adding hydrochloric acid, which separates the silica as a jelly, which is a hydrate of the acid, and evaporating the whole to dryness. Water removes from the dry mass all soluble chlorides, and leaves the silica, which, when dried, is a snow-white powder, insoluble in water, and all acids except the hydrofluoric acid. It dissolves in caustic or even carbonated alkalies with the aid of heat.

Silicic acid combines with bases, forming silicates, all of which, except those containing an excess of the stronger alkalies, are insoluble in water. The greater number of rocks and minerals consist of silicates, especially those of alumina, lime, magnesia, oxide of iron, potash, and soda. The silicates of potash and soda, when heated to redness, form glass, which when the acid predominates is insoluble, and is the basis of all ordinary glass; when the alkali is in excess, the glass is very soluble in water. Many silicates found in nature, as the zeolites, are soluble in strong acids; but most of them lose this solubility on being ignited. Many, such as felspar, are not attacked by acids, even before ignition.

No compounds are known of silicon with hydrogen or nitrogen.

SILICON WITH CHLORINE AND BROMINE.

When silicon is heated in chlorine it burns and forms a compound, which is better prepared by passing chlorine over a red-

METALS.

hot mixture of silicic acid and charcoal, Si $O_s + C_s + Cl_s =$ Si $Cl_s + 3 CO$. The compound, which is called terchloride of silicon, condenses in the cold part of the apparatus as a very volatile, pungent, and colourless liquid, which decomposes water, forming hydrochloric and silicic acids: Si $Cl_s + 3 HO =$ $3 H Cl + Si, O_s$.

Bromine yields an analogous terbromide, Si Br, the properties of which are similar to those of the terchloride.

Iodine is not known to combine with silicon.

Silicon and Fluorine. Si $F_3 = 78.22$.

Silicic acid is rapidly dissolved by hydrofluoric acid, and a gas is produced, which is found to be a terfluoride of silicon: Si O_3 +3 HF = 3 HO + Si F_3 . This gas is best obtained by heating a mixture of powdered fluor spar and quartz with oil of vitriol: 3 Ca F + Si O_3 + 3 (HO, SO₃) = 3 (Ca O, SO₃) + 3 HO + Si F_3 . The gas must be collected over mercury. It is colourless, fuming strongly in the air, its sp. g. 3.66. It is absorbed by water, and hydrated silicic acid is deposited, while an acid is found in the water composed of 3 HF + 2 Si F_3 . With bases this acid forms salts, called silicofluorides, the formula of which is 3 MF + 2 Si F_3 . These salts are nearly all insoluble, and when heated give off terfluoride of silicon.

The aqueous hydrofluosilicic acid is used in chemistry to separate potash, with which it forms an insoluble salt, from certain acids, such as chloric acid, by which means these acids are obtained in the free state. It is also used as a test, to distinguish between compounds of barium and of strontium, as it forms after a short time a crystalline deposit in the solutions of the former base only.

Heated with sulphur, silicon combines with it, forming a white, earthy compound, Si S₃. It decomposes water, yielding sulphuretted hydrogen and silicic acid: $SiS_3 + 3HO = 3HS + SiO_2$.

METALS.

GENERAL OBSERVATIONS ON METALS.

In the arrangement we have adopted, all the elements not hitherto described are considered metals, although some of them, especially arsenic and tellurium, are, in many points, very analogous to the metalloids. The metals are 42 in number, exclusive of the three lately announced by Mosander, which, if established, will raise the number to 45. See the list of elements, page 2. A metal is defined to be a body possessing the peculiar appearance called the metallic lustre (which is well illustrated in polished silver or in mercury), and capable of conducting well both heat and electricity. All the metals possess this combination of characters, but in other physical characters they exhibit great variety. We shall notice the following :--Specific Gravity, Hardness, Tenacity, Fusibility, and Volatility.

1. Specific Gravity. The density of metals varies from 0.865 (water being = 1) to 21: the former being the Sp. G. of potassium, the latter that of platinum. Iridium is said to be still denser than platinum.

2. Hardness. Some metals, as potassium, lead, tin, silver, &c., are so soft as to be easily cut with a knife; potassium and sodium may even be kneaded in the fingers, Others, such as iron, nickel, antimony, &c., are much harder; and a few, such as as rhodium and iridium, especially the latter, possess a very high degree of hardness.

3. Tenacity. This property is present in very various degrees in metals. Some, as antimony, bismuth, cobalt, have so little tenacity that they are brittle and may be powdered : while others may be beat out into thin leaves, or drawn into fine wires. These two forms of tenacity, malleability and ductility, are not always proportional to one another; for iron, which can only be beat into plates of a very moderate thinness, being, of all the malleable metals, the least malleable, may be drawn out into very fine wires, and is among the most ductile of metals. Of the malleable metals, the following are remarkable : lead, tin, copper, palladium, platinum, silver, and gold. The last-named metal may be beat out into leaf so fine, that, although quite entire and free from visible pores, 57 square inches of the finest gold leaf will not weigh more than 1 grain. Zinc, which is rather brittle at ordinary temperatures, admits of being rolled into thin plates at 300° or 400°. The most ductile metals are lead, copper, palladium, iron, silver, gold, and platinum. 1 grain of gold may be drawn out into a wire 550 feet long, and platinum is about 6 times more ductile, according to Wollaston. Iron wire, although not the finest, is stronger than wire of equal, diameter of any other metal.

4. Fusibility. One metal, mercury, is liquid at all temperatures above — 39° F. Some, such as potassium, sodium, &c., melt at a very moderate heat: others, such as lead, tin, &c., at temperatures below a red-heat; others at a strong red or white heat, such as copper, silver, and gold. Some, as platinum, rhodium, &c., require the heat of the oxygen and hydrogen blowpipe to melt them; and one at least, indium, appears to resist, when pure, even this intense heat. 5. Volatility. Some metals are very volatile compared with others. Mercury volatilises slowly at all temperatures above 80° or 100° F., and below its boiling point, at which temperature, 662°, it is rapidly converted into vapour. At the other extreme is iridium, which is quite fixed, not even melting in the strongest white heat yet known. The following metals are converted into vapour, or they boil, at temperatures varying from a low to a bright red-heat : cadmium, zinc, arsenic, tellurium, potassium, and sodium. Most of the others are fixed, although some of them, in the flame of the oxy-hydrogen blowpipe, appear to be volatilised in small quantity.

The chemical relations of metals are very important, and as there runs through the whole class a great analogy in this respect, it is advisable to describe, generally, the chemical characters of metals; by which means we are enabled to render the account of the individual metals more brief and more easily remembered.

Metals have powerful affinities, especially for the metalloids, with almost all of which they combine, and frequently in several proportions. In addition, therefore, to the important uses of the metals, as such, the useful applications of a large number of metallic compounds are of the highest interest and value.

Almost all the metals have a powerful affinity for oxygen, and all of them may be made to combine with it. In like manner the metals have strong affinities for, and may easily be made to combine with chlorine, bromine, iodine, fluorine (to which may be added cyanogen), as well as sulphur, selenium ; and in many cases, phosphorus and carbon; in a few, hydrogen and silicon. Metals also combine with each other. Owing to the extensive range of these affinities, metals are rarely found uncombined, or native, as it is called, and the operations of metallurgy are chiefly such as are required to separate metals from the compounds in which they occur, which are called their ores. Oxygen, in the atmosphere and in water, being far more abundant than the other metalloids, metals are chiefly found oxidised, and are therefore commonly extracted from the ores by processes of deoxidation, or reduction, as it is termed.

METALS WITH OXYGEN.

Metals differ in the degree of their attraction for oxygen. Some metals, such as potassium, rapidly combine with oxygen when exposed to the air, or when brought in contact with water or with any other oxidised compound. Others, such as iron, are very slowly oxidised by exposure to the air at ordinary temperatures, and hardly act on cold water; but at a strong red-heat they burn in the air, and decompose the vapour of water, setting free hydrogen gas. Others again combine with oxygen when heated in air, but do not decompose water at all, such as copper. These, as well as the preceding, are in general easily oxidised by acids; and their attraction for oxygen is such that their oxides, once formed, are not decomposed by a red-heat alone, without the help of combustible matter. Finally, some metals, such as gold and silver, &c., have much less attraction for oxygen. They are not so easily or directly oxidised, and the oxides, once formed, are quite easily decomposed by a red-heat, being resolved into metal and oxygen.

When metals combine with oxygen, they form three classes of oxides.

1st. Bases or basic oxides, the most usual formula of which is MO; such oxides are called protoxides. Besides protoxides, a pretty numerous class of basic oxides has the formula M_2O_3 : these are sesquioxides. A very few basic oxides have the formula MO_4 : these are binoxides or deutoxides. Potash, KO, is an example of a protoxide; sequioxide of iron, Fe₂O₃, of a sesquioxide, and deutoxide of tin, SnO₄, of a basic deutoxide.

KO + HCl = HO + KCl.

That is, the basic oxide, and the hydrogen acid, give rise to water and to chloride of potassium, both neutral substances. Neither have we any difficulty in adopting the same view in the case of a hydrogen acid with a compound radical; for example, hydrocyanic acid :---

KO + HCy = HO + KCy; or, KO + H, $C_0 N = HO + K$, $C_0 N$.

But when we bring potash in contact with oil of vitriol or strong sulphuric acid, most chemists are inclined to adopt a different explanation of phenomena precisely analogous. They call the acid hydrated sulphuric acid, HO, SO₃, and express the action as follows :---

$KO + HO, SO_s = HO + KO, SO_s$

Here, it will be observed, the results are quite similar to those in the preceding cases; namely, the separation of water, and of a neutral salt, in this case sulphate of potash. And yet we

NEUTRAL OXIDES.

adopt a different explanation, at least on the older view of acids and salts, supposing the water to pre-exist in the acid, and to be replaced by the oxide. As it is, however, quite unphilosophical to employ two explanations of analogous facts if one will suffice, we are thus induced to prefer the newer view of acids and salts formerly alluded to, which admits of our giving the same explanation of the two cases. According to this view, then, we consider oil of vitriol a hydrogen acid, H, SO₄, and express the change thus :—

$$KO + H, SO_A \equiv HO + K, SO_A$$

On comparing this with the equation above given for the action of potash on hydrocyanic acid in its second form, it will be seen that the analogy is perfect. Both acids and both salts contain a compound acid radical, in the one case C_2 N, in the other SO₄; and both differ from the acid and salt of chlorine in the fact of their radicals being compound, or rather known to be compound : for chlorine may very possibly be itself a compound radical, although at present we must view it as simple, because it is undecomposed.

The action of a basic sesquioxide, and of a basic deutoxide, on an acid, say sulphuric, is represented as follows on both the different theories of acids :---

$$\begin{split} & M_2 \ O_3 + 3 \ (HO, SO_3) = 3 \ HO + M_2 \ O_3, 3 \ SO_3: \\ & \stackrel{\text{or,}}{M_2 \ O_3} + 3 \ (H, SO_4) = 3 \ HO + M_2, 3 \ SO_4. \\ & MO_2 + 2 \ (HO, SO_3) = 2 \ HO + MO_2, 2 \ SO_3: \\ & \stackrel{\text{or,}}{MO_2 + 2 \ (H, SO_4) = 2 \ HO + M, 2 \ SO_4. \end{split}$$

Here we see that, for every equivalent of oxygen in the base, an equivalent of acid is required to form a neutral salt; and that, on the new view, the resulting neutral salts are compounds corresponding to the basic oxides from which they are formed. Thus we have—

Basic Oxide.	Corresponding Neutral Salt.			
M + O .	M + SO4,	or in genera	al terms,	M + R
$M_{2} + O_{3}$	$M_{2} + 3SO_{4}$	"	37	M2+R
$M + O_2$.	$M + 2SO_{4}$	"	>>	$M + R_2$

Such are the most important chemical relations of the basic oxides, which include, among the protoxides, the strongest alkalies and alkaline earths.

2nd. Neutral or indifferent metallic oxides. These appear, by combining with an additional quantity of oxygen, to have lost the basic, without acquiring the acid character. They

METALLIC ACIDS.

commonly enter into few combinations of any kind. Their composition varies, being sometimes $M_3 O_4$, and sometimes MO_2 . Red oxide of lead, $Pb_3 O_4$, is an example of the former; hyperoxide of manganese, $Mn O_2$, of the latter. When heated with acids, oxygen is given off, while a basic oxide is formed, and acts on the acid as above, forming a neutral salt. Thus, peroxide of manganese, heated with oil of vitriol, gives—

$$\operatorname{Mn} O_2 + \operatorname{HO}, \operatorname{SO}_3 = \operatorname{Mn} O, \operatorname{SO}_3 + \operatorname{HO} + O:$$

$Mn O_0 + H, SO_4 = Mn, SO_4 + HO + O.$

3rd. Metallic acids. These are pretty numerous. When the same metal forms a basic oxide and an acid, the latter always contains more oxygen. There are several different formulæ among metallic acids. Some are sesquioxides, as $As_2 O_3$, arsenious acid; sometimes deutoxides, as titanic acid, $Ti O_s$; very often teroxides, as chromic acid, $Cr O_s$; occasionally $\frac{e}{2}$ oxides, as arsenic acid, $As_2 O_s$; and in one case a quadroxide, as osmic acid, $Os O_4$.

Metallic acids, when heated, generally lose oxygen, and are reduced to the basic oxide; this takes place especially if they are heated with acids. Thus manganic acid, MnO_3 , heated with sulphuric acid, yields oxygen gas and neutral sulphate of the protoxide.

$$\begin{array}{c} \operatorname{Mn} O_{s} + \operatorname{HO}, \operatorname{SO}_{s} = \operatorname{Mn} O, \operatorname{SO}_{s} + \operatorname{HO} + O_{2}: \\ & \text{or,} \\ \operatorname{Mn} O_{s} + \operatorname{H}, \operatorname{SO}_{s} = \operatorname{Mn}, \operatorname{SO}_{s} + \operatorname{HO} + O_{2}: \end{array}$$

When we wish to form metallic acids, we commonly heat or deflagrate the metal, or its lower oxides, along with an alkaline nitrate or chlorate, in which case the acid that is formed remains in combination with the alkali. Or chlorine gas is passed through water in which the oxide, in fine powder, is suspended, sometimes along with an alkali, sometimes alone.

When our object is to deprive metals of the oxygen with which they are combined, or to reduce them, as it is called, to the metallic state, different methods are followed, according to the attraction of the metal for oxygen.

1. The oxides of the noble metals, such as mercury, silver, gold, platinum, &c., are reduced by a red-heat alone.

2. The oxides of a large number of metals, such as copper, iron, tin, barium, or potassium, can only be reduced by the united, action of heat and combustible matter, such as carbon, hydrogen, &c. The change is as follows—MO+C=M+CO: or MO+H=M+HO. In the former case carbonic oxide gas, in the latter water, is produced, and being expelled by the heat, leaves the metal pure. The use of carbon for reduction is the foundation of all the metallurgic processes on the large scale. As the ores, however, are not pure, substances called fluxes are added to cause the impurities to melt, forming a fluid glass, below which the melted metal is found.

Perhaps the most powerful reducing or deoxidising compounds at a red-heat are the formiates, and cyanide of potassium. The formula of a formiate is $MO, C_2 HO_3 = MO + HO$, 2CO: so that it yields at a red-heat carbonic oxide gas, a body having much attraction for oxygen. Cyanide of potassium is $KCy=K, C_2 N$; and, as Liebig has pointed out, it combines the very powerful deoxidising agency of carbon and of potassium. Its reducing power is very great.

3. The oxides of the metals of some of the alkalies and earths, whose attraction for oxygen is very strong, and which are with difficulty reduced in any other way, are decomposed by a powerful galvanic battery so as to yield the metals. This is only done on a very small scale.

4. Many oxides in solution are reduced to the metallic state by other metals having a stronger attraction for oxygen, which take the place of the metal previously in the solution. Thus copper precipitates silver, and iron precipitates copper.

5. Many oxides in solution, that is, combined with acids, are reduced to the metallic state by what are called deoxidising agents. Thus the noble metals, such as gold, platinum, &c., are reduced by sulphurous, phosphorous, and hypophosphorous acids and their salts; by oxalic and formic acids and their salts: gold is even reduced by hydrogen gas and by solutions of protosalts of iron, such as green vitriol. In all these cases the reducing or deoxidising agent is oxidised; phosphorous acid, for example, yielding phosphoric, and protoxide of iron passing into peroxide, at the expense of the metallic oxide.

The electrotype, in which copper, silver, gold, or platinum are reduced to the metallic state in such a way as to form coherent masses similar to the hammered metals, and by which the most beautiful and perfect copies of medals may be taken, is a process depending partly on the reducing agency of the galvanic battery, partly on that of hydrogen gas, which, instead of escaping uncombined at the negative pole, is then oxidised at the expense of the metallic oxide. In this process, which is minutely described in works devoted to the subject, it is essential that the electric current should be slow and uniform, otherwise the metal is deposited in different states. Plating

METALS WITH CHLORINE.

and gilding by this process have a beautiful appearance, and are perfectly adapted for objects not subjected to much wear or friction.

METALS WITH HYDROGEN.

Only a few metals unite with hydrogen, and these form gaseous and combustible compounds not yet known in a pure state, but only in a state of mixture with hydrogen gas. The following metals only are as yet known to combine with hydrogen :—zinc, potassium, arsenic, antimony, and tellurium.

METALS WITH NITROGEN.

Until lately metals were not known to combine with this element ; but we are now acquainted with compounds of nitrogen with copper, chromium, and mercury. These compounds are black or dark brown powders, which may be obtained by passing dry ammoniacal gas over the oxides of the metals, gently heated, water being at the same time produced and nitrogen gas liberated. Thus, when oxide of copper is acted on by ammonia, we have $6 \operatorname{Cu} O + 2 \operatorname{NH}_{2} = 6 \operatorname{H} O + \operatorname{N} \operatorname{Cu}_{6} + \operatorname{N}$. Like the compounds of nitrogen with chlorine and iodine, these compounds are easily made to explode, their elements separating with violence, and with a flash of light, by a gentle heat or friction, or percussion. It is possible, or indeed probable, that fulminating gold and silver, prepared by the action of ammonia on the oxides of these metals, and the explosive tendencies of which render them so very dangerous, are in reality the compounds of the metals with nitrogen. These must be distinguished from the other fulminating silver which, like fulminating mercury, is a compound of oxide of the metal with fulminic acid.

METALS AND CHLORINE.

The attraction or affinity between chlorine and metals is very strong. Many metals, such as potassium, copper, gold, antimony, &c., combine instantaneously with chlorine without the aid of heat, but with the phenomena of combustion. Others, such as mercury, &c., burn in chlorine only when they are heated in the gas. By combining with chlorine, metals give rise to chlorides, which may often be more advantageously formed by other means than by direct combination with the gas. Other methods of obtaining chlorides are the following :—

1. Chlorine gas is passed over the oxide or sulphuret of the metal heated to redness. In many cases the affinity of chlorine prevails, and the oxygen or sulphur is expelled. MO + Cl = MCl + O.

134

REDUCTION OF CHLORIDES.

2. Hydrochloric acid gas is passed over the oxide or the sulphuret heated to low redness. Here the affinity of hydrogen for oxygen or sulphur, added to that of chlorine for the metal, effects decomposition which chlorine alone could not accomplish. MO + HCl = MCl + HO: MS + HCl = MCl + HS.

3. To the solution of an oxide, in water or in acids, hydrochloric acid or a soluble chloride are added. If the metal forms an insoluble chloride, that is at once orecipitated, showing that the change must be, as in the case of the dry gas, MO + HCI =MCI + HO. If the metal, as in the case of potassium, forms a soluble chloride, then the addition of hydrochloric acid causes no visible change; but on evaporation, crystals are deposited, which are generally found to be of a chloride, and free from oxygen or hydrogen. Thus, potash, KO, with hydrochloric acid, HCI, undergoes, in solution, no change of appearance at first; but on evaporation yields cubical crystals, which are found to be K CI.

4. Some metals, as gold and platinum, are converted into chlorides by dissolving them in aqua regia, or nitro-muriatic acid, and evaporating gently to dryness with an excess of hydrochloric acid. The dry residue is pure chloride.

When metals are combined with chlorine they may be reduced to the metallic state by various means.

1. Some chlorides are reduced by heat alone, which expels the chlorine. This is the case with almost all the chlorides of the noble metals.

2. Other chlorides are reduced by the action of another metal. Thus, chloride of platinum or chloride of silver is reduced by means of zinc.

3. Many chlorides are reduced by hydrogen gas at a red heat, but not by charcoal, as oxides are.

4. The chlorides of the noble metals are reduced by boiling their solutions with a formiate; those of gold and platinum also by the protosulphate of iron. Chlorides may also be reduced by fusion with formiates or with cyanide of potassium.

What has been said of the relation of metals to chlorine applies almost exactly to their relations with bromine, iodine, fluorine, and cyanogen, which in its combination with metals plays the part of a salt radical, entirely analogous to chlorine.

The chlorides, bromides, iodides, and cyanides of metals are true salts, for the most part neutral salts. Indeed, sea salt, the type of all salts, is chloride of sodium, Na Cl. None of these compounds possess decided acid or basic characters; but the chlorides, &c., are capable of combining together and forming double chlorides, &c., which have been compared by Bonsdorff to oxygen salts. Thus viewing, as he did, chromate of potash, KO, CrO₃, as an oxygen salt, he viewed the following compound, KCl, Hg Cl₂, as a chlorine salt. The former contains, according to him, an oxygen acid, CrO₃, and an oxygen base KO; the latter, a chlorine acid (bichloride of mercury), Hg Cl₃, and a chlorine base, KCl, (chloride of potassium). But it is to be observed that neither KCl nor Hg Cl₂ have basic or acid properties; they are, on the contrary, neutral salts, and, according to the more probable views now beginning to prevail as to the true nature of salts, which are considered compounds of metals with salt radicals, the compound KCl + Hg Cl₂ is viewed as a double salt. The same view applies to a large number of analogous double chlorides, bromides, iodides, fluorides, and cyanides.

METALS WITH SULPHUR.

All the metals are capable of combining with sulphur, and many metallic sulphurets are found native: those of iron, copper, lead, antimony, zinc, and bismuth in abundance: those of mercury, silver, cadmium, and some others, more sparingly.

Most metals when heated along with sulphur combine with it; but in many cases sulphates are obtained by the action of sulphur compounds on the oxides, or by the deoxidation of sulphates.

1. When an oxide is exposed to the action of sulphuretted hydrogen gas, aided by heat, water and a sulphuret are formed, MO + HS = HO + MS. The same change takes place when a solution of sulphuretted hydrogen or a current of the gas is made to act on solutions of oxides in acids. The sulphurets of the following metals may be thus obtained, being all insoluble in water :--

GROUP I. Metals, the oxides of which, in acid solutions, are precipitated as sulphurets by sulphuretted hydrogen.

Metals.	Col	our of	Precipitate.	Metals.		Colour of Precipitate.	
Cadmium .	. it .	1.1	Orange.	Platinum .		Black.	
Lead .	· · · ·		Black.	Iridium .		Black.	
Bismuth .	1.5140		Black.	Gold .		Black.	
Copper .				Tin, protoxide		Brown.	
Silver .			Black.	Tin, peroxide		Yellow.	
Mercury			Black.	Antimony .		Reddish orange.	
Palladium .			Black.	Molybdenum		Brown or red.	
Rhodium			Black.	Tungsten .		Brown.	
Osmium .		100	Black.	Vanadium		Dark brown.	
Tellurium			Yellow.	Arsenic .		Orange yellow.	

The other metals are not precipitated by sulphuretted hydrogen, but the following yield sulphurets when their oxides in

SULPHURETS.

solution are acted on by hydrosulphuret of ammonia (sulphuret of ammonium), or by a soluble metallic sulphuret :----

GROUP II. Metals, the oxides of which are precipitated as sulphurets by soluble sulphurets, although not by sulphuretted hydrogen.

Metals.	Colour of Precipitate.	Metals.	Colour of Precipitate.
Iron .	Black.	Cobalt .	Black.
Manganese Zinc .	Flesh colour. White.	Nickel .	Black.*

The remaining metals, those of the alkalies and earths, form a third group, the sulphurets of which being soluble do not appear as precipitates.

2. When a sulphate of a metallic oxide, MO, SO₃, or M, SO₄, is acted on by hydrogen or carbon at a strong red-heat, it is entirely deoxidised, and the sulphuret of the metal is left. Thus, if sulphate of baryta, KO, SO₃, or K, SO₄, be mixed with about one-sixth of its weight of charcoal, and exposed for two hours to a bright red-heat in a vessel closed, except where a small aperture is left for the escape of gaseous matter, carbonic oxide is given off and sulphuret of barium is left; Ba O, SO₃ + C₄ = 4 CO + Ba S.

The sulphurets of each metal are commonly equal in number and analogous in composition to its oxides. Metallic sulphurets unite together, as oxides do, and produce double sulphurets or sulphur salts, which are closely analogous to oxygen salts.

Thus we have-

	Oxygen Salts.				Sulpl	ur Salts.
	Oxygen	Acids.	Ox	ygen Base.	Sulphur Acid	s. Sulphur Base.
With Molybdenu	m Mo	0,	4	KO	Mo Sa	+ KS
With Arsenic	. As,	0,	+	KO	As ₂ S ₃	+ KS
	. As2	05	+	3KO	As ₂ S ₅	+ 3KS

Of course, if we view the oxygen salt, $As_2 O_5$, 3 KO, for example as a compound of a metal with a salt-radical, $As_2 O_8$, K_3 , the corresponding sulphur salt, $As_2 S_5$, 3 KS, becomes $As_2 S_8$, K_3 . The analogy between the compounds of sulphur with metals, and those of oxygen with the same bodies, has been shown by Berzelius to be very complete.

With selenium and tellurium metals form compounds very analogous to the sulphurets.

With phosphorus some metals combine and yield compounds called phosphurets, few of which are known. The alkaline

* Alumina is precipitated white by soluble sulphurets, but the precipitate is not sulphuret of the metal, but only hydrated oxide. phosphurets, as those of barium and calcium, yield by the action of water phosphuretted hydrogen gas, which takes fire spontaneously.

Metals combine in several cases with carbon, forming compounds which are called carburets. They are generally brittle solids, and the only useful carburets are those of iron, which are two valuable compounds, steel and cast iron.

As all the compounds of metals with chlorine, bromine, iodine, fluorine, sulphur, and selenium, contain along with the metal a radical which forms an acid by combining with hydrogen, while the metal generally forms a base with oxygen, the question arises what takes place when such metallic compounds are dissolved in water? Does the metal seize the oxygen, and the radical the hydrogen of an equivalent of water, and do the acid and base thus produced combine together?

In the case of an insoluble chloride, such as that of silver, we know that the hydrochloric acid does not combine with the oxide when both are mixed in solution, for the precipitate is found to be Ag Cl. Here the oxygen of the base and the hydrogen of the acid must have formed water : Ag O + H Cl = HO + Ag Cl.

But when hydrochloric acid, H Cl, is mixed with potash, KO, or, what comes to the same thing, when chloride of potassium, K Cl, is dissolved in water, what is the compound present in the liquid ? Is it K Cl simply dissolved as such ? or, is it a salt, KO + H Cl? We know that the liquid, if evaporated, yields crystals of K Cl, but it is possible that this compound may be formed by the force of cohesion when it crystallises, and may not be previously present.

The general opinion of chemists is that in most cases soluble chlorides, sulphurets, &c., dissolve as such in water; but that in some cases the hydrogen acid does appear to combine with the oxide.

If K Cl, in dissolving, decomposes water and forms KO + H Cl, then we must admit that in the act of crystallising, when K Cl separates, water is again recomposed. These continual decompositions and recompositions of water, without any visible change of properties, are so improbable that in most cases we cannot admit their occurrence.

But there are cases in which the solution of a chloride, &c., is attended with a change of properties. Thus, chloride of magnesium and chloride of aluminum when dissolved in water, cannot again be obtained in the anhydrous form. On evaporation oxide of magnesium or of aluminum are left, while hydrochloric acid escapes. Again, dry sesquichloride of chromium is peachcoloured, but its, solution is deep green, the colour of all solutions containing sesquioxide of chromium; dry chloride of cobalt is blue, and its solution is pink, like all solutions containing oxide of cobalt.

In these and a few more similar cases, we can hardly doubt that water is decomposed when a chloride, &c., is dissolved; but in the great majority of cases we have no evidence of this; and, therefore, it may be laid down as a general rule that chlorides and analogous compounds dissolve as such in water, and that hydrogen acids mutually decompose metallic oxides, yielding water and compounds of the metal with the radical of the hydrogen acid. To this rule there are some exceptions; some chlorides, &c., in dissolving decompose water, producing a hydrogen acid and an oxide; and hydrogen acids are capable of combining with some oxides without mutual decomposition, the compounds, however, not being very stable.

METALS WITH METALS.

Metals are capable of combining together, and forming compounds which retain the metallic character, and many of which are highly useful. They are called alloys, except where mercury is one of the metals, when they receive the name of amalgams. Thus, brass is an alloy of copper and zinc; pewter an alloy of lead and tin; German silver an alloy of copper, zinc, and nickel. The metal used for silvering the backs of mirrors is an amalgam of tin and lead; that is, it contains mercury with these metals. The alloys will be briefly described hereafter.

The progress of modern chemistry has added largely to the number of the elementary metals. Before the middle of last century the metals known were only such as had long been used in the arts or in medicine, and did not exceed twelve in number. From that period many new metals were gradually discovered in the mineral kingdom; and, in 1807, Davy's discovery of the metals of the alkalies at once added a numerous class of metals to the list. Wollaston and Smithson Tennant had previously, in 1803, discovered the four remarkable metals associated with platinum in its ores. The whole number of ascertained metals is now forty-two; and within the last year Mosander has announced the discovery of three new metals, accompanying cerium and yttrium, which, if established, will raise the number to forty-five.

In considering the metals individually, we shall arrange them in groups or classes, according to their affinities for oxygen and to their chemical relations.

CLASS I. includes twelve metals, subdivided into three wellmarked orders.

Order 1. Metals of the alkalies proper, namely— Potassium. Sodium. Lithium.

These metals have so strong an affinity for oxygen that they are rapidly oxidised by exposure to the air, and decompose water with violence, disengaging hydrogen gas, which generally takes fire. Their oxides are powerful bases or alkalies, very soluble in water and very caustic.

Order 2. Metals of the alkaline earths, namely-

Barium. Strontium. Calcium. Magnesium.

These metals have also a very strong affinity for oxygen, and, except magnesium, they decompose water at ordinary temperatures, but without flame. Their oxides are powerful bases, but less soluble and caustic than the alkalies ; indeed, oxide of magnesium is insoluble. As they are thus intermediate between the alkalies and the earths proper, they are called alkaline earths.

Order 3. Metals of the earths proper, namely-

Aluminum.	Glucinum.	Yttrium.
Thorium.	Zirconium.	

These metals do not decompose water at ordinary temperatures, but burn in air when heated, forming oxides, which are less powerful bases than the preceding; and being quite insoluble in water and earthy in aspect, they are called the earths.

CLASS II. includes 30 metals; which are also subdivided into three orders. All these metals combine with oxygen, and in general their protoxides are insoluble and of an earthy aspect, but coloured, and have basic characters, in many cases very powerful. A considerable number of these metals form acids with a larger proportion of oxygen. This class contains all the heavy metals, and all those which, from their malleability, ductility, &c., have long been used by mankind.

Order 1. Metals, the protoxides of which are powerful bases, but which do not decompose water unless with the aid of a redheat; namely—

Manganese.	Tin.	Cobalt.
Zinc.	Cadmium.	Nickel.
Iron.		

Order 2. Metals which do not decompose water at any temperature ; but the oxides of which, once formed, cannot be reduced by heat alone : namely—

Arsenic.	Columbium.	Bismuth.
Chromium.	Antimony.	Titanium.
Vanadium.	Uranium.	Tellurium
Molybdenum.	Cerium ?	Copper.
Tungsten.	Lantanium?	Lead.

140

POTASSIUM.

It is doubtful whether cerium and lantanium do not belong to the preceding order, to which also belong, in all probability, the three new metals of Mosander, didymium, erbium, and terbium.

Order 3. Metals, the affinity of which for oxygen is so feeble that their oxides are reduced by a red-heat : namely,

Mercury.	Platinum.	Osmium.
Silver.	Palladium.	Iridium.
Gold.	Rhodium.	

Owing to the comparatively feeble affinity for oxygen of these metals, they have no tendency to rust when exposed to the air, as iron does, for example, from its strong attraction for oxygen. Hence they retain the brilliant lustre of their polished surface, and do not wear by exposure to the air. They are therefore often called the noble or precious metals.

We now proceed to the description of the separate metals, which may be made very brief in consequence of our having so minutely described the general chemical characters of metallic bodies, the analogy among which is so great that the description of one is applicable, with but little change, to the others.

METALS.—CLASS I.

ORDER 1 .- METALS OF THE ALKALIES PROPER.

14. POTASSIUM. K = 39.15.

SYN. Kalium.—This metal occurs chiefly in the ashes of land plants as oxide or potash united to carbonic acid; it is also found as chloride in the ashes of sea plants. Many abundant rocks, such as felspar (with all its derivatives, such as clays), and mica, besides many simple minerals, contain potash in considerable quantity. It is contained also in most fertile soils, being necessary to the growth of plants, in the form of potash. Potassium was discovered in 1807, by Davy, who obtained it by the action of a powerful galvanic battery on hydrate of potash, KO, HO. At the negative pole oxygen was given off, and at the positive pole hydrogen, derived from the water of the hydrate, along with the globules of a metal resembling mercury, which took fire in the air and burnt, reproducing potash. This expensive and troublesome method has long been abandoned, and potassium is now prepared by the action of charcoal at a white heat on carbonate of potash, KO, CO..

A mixture of carbonate of potash with finely divided charcoal is first prepared by igniting cream of tartar in a covered crucible, which leaves such a mixture, well-known as the black flux. This, while still warm, is mixed with a considerable proportion of charcoal in coarse powder and small fragments, recently ignited and allowed to cool in a covered crucible. The whole is now introduced into one of the hammered iron bottles used for holding mercury, coated outside with a mixture of sand and clay. The bottle is placed horizontally in a wind furnace, and a short wide tube of iron is fitted to it, to which tube is attached a copper receiver, partly filled with good naphtha, and having a diaphragm of copper, and on the further side of the receiver an aperture for the escape of gas, opposite the tube of the bottle; so that, if necessary, a strong steel rod may be introduced through this aperture and another in the upper part of the diaphragm into the tube, for the purpose of cleaning it out, as it is apt to become choked. The receiver with the naphtha being surrounded with ice, a steady and uniform strong red or white-heat (by means of dry wood, the flame of which plays all round the bottle,) is applied to the bottle, and after a time potassium, which is known by the appearance of its pink flame at the mouth of the tube, distils over, accompanied with carbonic oxide gas, and with a gray powder, which is the cause of the occasional choking of the tube. The potassium drops into the naphtha, which protects it from the action of the air. To purify it entirely, it is redistilled in a small iron retort along with a little naphtha into a receiver containing that liquid.

In this process the carbon deprives the oxide of potassium and the carbonic acid of their oxygen, forming carbonic oxide gas. KO, $CO_{a} + C = K + 3 CO$. Were this all, we should have no other product but potassium and carbonic oxide. Unfortunately, however, carbonic oxide at a red-heat, enters into combination with potassium, forming the grey powder above mentioned; the composition of which is $7 \text{ CO} + K_3 = C_7 O_7$, K_3 . If, therefore, we consider the products obtained from 4 eq. of carbonate of potash, they ought to be as follows, if the grey compound were not formed, 4 (KO, CO_{2})+ C_{4} = K_{4} +12 CO. Instead of obtaining 4 eq. of potassium, however, from 4 eq. of carbonate, we only obtain 1 eq. as metal, the remaining 3 eq. combining with carbonic oxide to form the grey powder. $K_4 + 12 CO = (C_2, O_2, O_3)$ K_{3})+5 CO+K. This is the reason why the above process is not nearly so productive as might be expected. The grey powder must be kept under naphtha, as it is liable to be altered if exposed to the air, and especially to take fire and explode, if moistened with water. (This compound, by the slow action of the air, is converted into a very remarkable salt, rhodizonate of potash, to be hereafter mentioned, when carbonic oxide is treated of as a compound radical.)

Potassium is a metal of a bluish-white colour, and a high degree

of metallic lustre, so that a melted portion of it, under naphtha, resembles mercury or melted silver. At ordinary temperatures, it is so soft as to yield easily to the finger. At 150° it is quite fluid, and if cooled to 32° , it becomes brittle. At a low redheat it boils, and may be distilled unchanged. Its Sp. G. is 0.865, so that it floats on the surface of water.

When exposed to the air it is instantly tarnished by the formation of a film of oxide ; and after a short time the whole is oxidised and converted into a white solid oxide, which soon attracts water from the atmosphere. Potassium must therefore be kept under naphtha, a liquid containing no oxygen. When heated in the air, potassium takes fire, and burns with a beautiful pink flame, oxide being formed. So powerful is its affinity for oxygen, that when thrown on the surface of water, it instantly decomposes it, with so much disengagement of heat as to set fire to the hydrogen gas which is separated. K+HO=KO+H. The hydrogen burning causes the potassium also to burn, combining with the oxygen of the air, and the globule swims about until it is consumed, burning on the surface of the water with a beautiful pink flame. The same phenomenon appears if the metal be placed in a small hollow on the surface of a piece of ice, when it instantly bursts into flame.

The affinity of potassium for oxygen and the other metalloids is so powerful, that it has been the means of isolating many metals and some metalloids, whose attraction for oxygen, &c., is too strong to be overcome by the usual means. Thus potassium decomposes the oxides or chlorides of aluminum, glucinum, yttrium, thorium, and zirconium, and the boracic and silicic acids. It is, consequently, a very powerful instrument of research.

The compounds of potassium to be here described are those which it forms with the metalloids.

POTASSIUM AND OXYGEN.

Potassium forms two compounds with oxygen, a protoxide KO, and a peroxide KO.

a. Protoxide of Potassium. KO = 47.163.

This oxide is only formed when potassium is oxidised in dry air, or oxygen. It is a white powder, which rapidly absorbs moisture from the air, and deliquesces. It is now converted into the usual form, namely, hydrated oxide of potassium, or hydrate of potash.

 \hat{S}_{YN} . Caustic Potash. KO, HO = 56⁻¹⁷⁶.—This important compound is best prepared by acting on pure carbonate of potash, dissolved in water, so as to deprive it of carbonic acid. Two

parts of carbonate are dissolved in twenty of boiling water in an iron pot, and one part of quick lime, being previously slaked by covering it with boiling water, so as to form a kind of cream of slaked lime, is added to the boiling liquid in small portions, the mixture being allowed to boil a minute or two after each addition. When all the lime has been added, the whole is to be boiled for five minutes, care being taken to keep up the original quantity of water; since, with less water, the potash actually takes back the carbonic acid from the lime. The vessel, which ought to be more deep than wide, is then covered up with its lid, and allowed to stand for 24 hours. At the end of that time, if the above directions have been exactly followed, 1% of the liquid may be decanted off perfectly clear and colourless. This is a pure solution of potash, and to obtain the hydrate, we have merely to boil it rapidly down, in a clean deep iron or silver vessel, till the residue flows like oil. It is then poured out on a plate of silver, and, on cooling, broken up into fragments, and preserved in well-stopped bottles.

In the above process, the lime deprives the carbonate of potash of its carbonic acid, forming insoluble carbonate of lime. KO, $CO_a + CaO, HO = CaO, CO_a + KO, HO$. By slaking the lime with hot water, it falls to so fine a powder that every particle acts, and we are thus enabled to use very little more than the atomic proportion of quick-lime, which would be about 28 to 69, instead of 1 to 2, or 28 to 56, as we employ. Again, by adding the lime gradually, and constantly boiling, the carbonate of lime assumes a very dense form, and settles perfectly to the bottom ; whereas, if the lime were all added at once, it would yield a very bulky carbonate, from which the solution of potash would be with difficulty separated. By allowing the liquid to clear in the covered vessel, we avoid filtration and, consequently, the bringing the potash in contact with the air, from which it absorbs carbonic acid, and is re-converted into carbonate. So effectual is the above process, that the decanted liquid does not effervesce with acids, if carefully prepared ; and if it be rapidly boiled to dryness, the solid hydrate may be also obtained free from carbonic acid.

The hydrate of potash is so valuable a re-agent to the chemist, that I have described minutely the best method of preparing it, which, as generally happens, is also the most simple. The solution, or aqua potassæ, is daily used in the ultimate analysis of organic bodies, to absorb carbonic acid; and for this purpose, as well as for many others, it is obtained sufficiently pure from the pearlash, or impure carbonate of potash of commerce. The pearlash is to be treated precisely as the pure carbonate in the above process ; and the decanted solution of caustic potash is to be boiled down until crystals begin to form in the boiling liquid, which is then allowed to cool in well-stopped bottles of green glass. The crystals are sulphate of potash, a salt present in the pearlash, which is insoluble in a strong solution of caustic potash. On cooling, therefore, the whole of the sulphate crystallises out, so that not a trace is left in the liquid. The clear liquid, decanted from the crystals, now contains no impurity, except chlo ride of potassium, which, for most purposes, is of no importance. It has a sp. g. of 1.25 to 1.35, and is ready for use in organic analysis. If boiled to dryness, it yields a hydrate of potash, far purer than the hydrate of commerce, inasmuch as it is free from sulphate.

Hydrate of potash cast into small sticks, is much used by surgeons as a powerful caustic. The chief objection to its use is that, owing to its attraction for water, it deliquesces, and spreads farther than is intended. But in careful hands, it is easily managed, and is often used in preference to the knife, for opening glandular swellings, such as buboes, which have suppurated. When thus opened, and when the caustic has been applied to the inner surface of the cavity, they appear to heal better than when opened with the lancet. In chemistry hydrate of potash is much used for the decomposition of minerals, by fusion with them, and for drying certain gases.

The solution of potash, aqua potassæ, or liquor potassæ, has the acrid corrosive taste of the hydrate ; and when rubbed between the fingers, gives them a soapy feel, forming, in fact, soap with the oil of the skin. It turns infusion of red cabbage, of violets, dahlias, &c., green, and restores the blue of litmus reddened by acids. It is powerfully alkaline, or basic, neutralising all acids. Its great attraction for carbonic acid has been already mentioned as the reason of its being used in organic analysis, for the purpose of absorbing the carbonic acid derived from the carbon of the substance, and enabling us to ascertain' its weight. For the same reason, potash in the form of solid hydrate, or in solution, must always be protected from the carbonic acid of the atmosphere. The solution, when of sp. g. 1.060, is used in medicine as an antacid and lithontriptic. The chief use of potash is unquestionably that of promoting the growth of plants, to which it is generally essential, although it may frequently be replaced by soda or lime. Its function appears to be that of fixing the carbonic acid of the atmosphere, which, with the elements of water, gives rise to the chief vegetable products, as will be explained in the second part. Hence, all fertile soils contain it; hence also the value of the ashes of vegetables, as manure,

L

depends, in a great measure, on the potash they contain; and the same remark applies to animal manures. Cow-dung, for example, is very rich in potash.

The presence of potash in any solution is best ascertained by the action of bichloride of platinum in solution, which, if any notable quantity of potash be present, forms with it a pale yellow precipitate of the double chloride of platinum and potassium. If the proportion of potash be very small, no precipitate may appear; in this case, the liquid to be tested may be first concentrated by evaporation, and then again tested with the platinum salt, when the precipitate will in all probability appear; or alcohol may be added to the first mixture, in which the double chloride is quite insoluble. The only uncertainty in this test is, that ammonia gives a similar precipitate; so that we must first ascertain if ammonia be present; and if so, expel it by a red-heat, before testing for potassium.

Perchloric acid also causes in solutions containing potash, a white precipitate of perchlorate of potash, sparingly soluble in water, and quite insoluble in alcohol, so that if but little potash be present, alcohol ought here also to be added,

An excess of tartaric acid produces, after a time, a crystalline deposit of cream of tartar, in solutions containing potash, more especially if well stirred with a glass rod, which causes the deposit to appear in streaks on the glass.

An alcoholic solution of carbazotic acid causes a yellow crystalline precipitate in solution of potash.

Lastly, hydrofluosilicic acid causes a gelatinous semi-transparent precipitate of silicofluoride of potassium, when added to solutions of potash : of all these tests, the most certain is the bichloride of platinum, with the aid of alcohol.

b. Peroxide of Potassium. $KO_{a} = 63.176$.

This oxide is formed by passing oxygen over red-hot potash. It is an orange-yellow powder, which, when thrown into water, is decomposed, oxygen being given off, and potash being found in the liquid.

POTASSIUM WITH HYDROGEN AND NITROGEN.

With hydrogen, potassium forms two compounds, one of which appears to be a solid, the other a gas. The latter seems to take fire spontaneously in contact with air, and is probably formed when potassium acts on water. The former is produced when potassium is heated in hydrogen gas. It is a grey solid decomposed by water.

When potassium is heated in dry ammonia, an olive-coloured

CHLORINE AND IODINE.

solid is formed, which is composed of potassium and amide (amidogen), K, NH₂. When this is heated, ammonia is given off, and there is left a substance resembling graphite, which is a compound of potassium and nitrogen, $3 (K, NH_2) = 2 NH_3 + NK_2$. This compound has been little examined.

POTASSIUM WITH CHLORINE, BROMINE, IODINE, AND FLUORINE.

With all these elements potassium combines, with each in one proportion only, forming compounds which are very analogous to each other.

Chloride of Potassium. K Cl = 74.57.

This compound is a neutral salt, very similar to sea-salt. It is found in considerable quantity in the ashes of plants, especially of sea-plants. It is formed when potash is neutralised by hydrochloric acid, and the solution evaporated so as to form crystals. KO + HCI = HO + KCI. It is also left when chlorate or perchlorate of potash is heated so as to expel all the oxygen KO, $CIO_5 = KCI + O_5$.

It has a saline and bitterish taste, and is not much more soluble in hot than in cold water. It crystallises, like sea-salt, in cubes. It is only used, when very cheap, in the manufacture of alum. It cannot be substituted for sea-salt, as a condiment, or antiseptic.

Iodide of Potassium. KI=165.45.

This salt, which is very much used in medicine, resembles the preceding in external characters. It crystallises in cubes, and is very soluble in water. To prepare it, iodine is dissolved in a pure solution of potash, with the aid of heat, until the liquid begins to assume a permanent brownish yellow colour, indicating a slight excess of iodine. The liquid is now evaporated to dryness, and the dry residue ignited and melted in a covered platinum or iron vessel. The melted mass is poured out on a clean iron plate. It is iodide of potassium ; and if dissolved in water and filtered, if necessary, the solution on evaporation yields pure crystals of the salt. In the first stage of this process, iodate of potash and iodide of potassium are formed; $I_6 + 6 \text{ KO}$ $= 5 \text{ KI} + (\text{KO}, \text{IO}_s)$. In the second stage, the iodate is converted, by a red-heat, into iodide of potassium, oxygen being given off, while the iodide already present is unaltered : 5 KI + $(KO, IO_5) = 6 KI + O_6$.

Another method is to form iodide of iron by bringing iron and iodine in contact under water. The iodide of iron dissolves, and the filtered solution is decomposed by an equivalent weight of carbonate of potash in solution : Fe I + KO, $CO_g = KI + FeO$, CO_g . The insoluble carbonate of iron is separated by the filter, and the clear liquid evaporated till crystals are deposited.

Pure iodide of potassium is white, and dissolves entirely in hot alcohol. It is often adulterated with carbonate of potash, but that salt is easily detected by its insolubility in alcohol. The solution of iodide of potassium can dissolve a large quantity of free iodine, by which it acquires a deep brown colour. This solution is much used for baths; and the iodide is employed both externally and internally in scrofulous diseases.

Bromide of Potassium. KBr = 117.5.

This salt is very analogous to the preceding, and is formed in the same way. It crystallises in cubes, and is very soluble in water. It has not been applied to any use.

Fluoride of potassium, KF = 57.8, is obtained when hydrofluoric acid acts on potash. HF + KO = HO + KF. It is soluble and crystallises in cubes, and is very analogous to the preceding salts.

POTASSIUM AND SULPHUR.

Potassium combines with sulphur in several proportions, of which the most important are, the protosulphuret, KS, and the pentasulphuret, or persulphuret, KS.

Protosulphuret of Potassium. KS = 55.2.

This may be formed by melting together its constituents; but it is best prepared by passing hydrogen gas over neutral sulphate of potash, heated to bright redness. Here the hydrogen removes all the oxygen of the salt, and the sulphuret is left.

$KO, SO_3 + H_4 = 4HO + KS.$

Protosulphuret of potassium is a solid of a bright red colour, which forms with water a colourless solution. This solution smells of sulphuretted hydrogen, and probably contains that compound and potash, formed by the action of water on the sulphuret. KS + HO = KO + HS. The solution is alkaline, and if pure is decomposed by acids, without any separation of sulphur, sulphuretted hydrogen being given off.

Pentasulphuret or Persulphuret of Potassium. $KS_s = 119.5$.

This is the chief ingredient in what is called heparsulphuris, or liver of sulphur, when prepared by fusing sulphur with carbonate of potash at the lowest possible temperature, when the persulphuret is formed along with hyposulphite of potash: $3 \text{ KO} + S_{12} = 2 \text{ KS}_5 + (\text{KO}, \text{S}_2 \text{ O}_2)$. Alcohol dissolves the

SODIUM.

sulphuret, which has a deep orange colour. It may be obtained pure in solution by boiling the protosulphuret with 4 eq. of sulphur and water. The persulphuret of potassium forms an orange or yellow solution, which is decomposed by acids, with the deposition of a large quantity, 4 eq. of sulphur.

There are 5 other compounds of sulphur and potassium, all similar in properties to the persulphuret. They are KS₂, KS₃, KS₄, KS₅, and K₂S₅. The two last are probably (KS₂ + KS₃) and (KS₄ + KS₅).

POTASSIUM AND SELENIUM.

The relations between these elements appear to be closely analogous to those between potassium and sulphur: but the compounds formed are little known.

POTASSIUM AND PHOSPHORUS.

These elements, when heated together, combine to form a solid phosphuret. When thrown into water, it gives rise to the disengagement of spontaneously inflammable phosphuretted hydrogen, while solid phosphuretted hydrogen separates, and hypophosphite of potash is found dissolved.

Nothing is known with certainty of the carburet of potassium, which is supposed by some to be formed in the process of making potassium.

No compound of potassium with silicon is accurately known: but with silicic acid potash forms compounds, which are known as glass. When the silica predominates, we have ordinary hard insoluble glass : when the potash is in excess, the compound is called silicate of potash. It is a glassy mass, soluble in water, and the solution has long been known as liquor of flints. (See, hereafter, under the head of Salts, the silicates, including glass and porcelain).

15. SODIUM. Na = 23.3.

SYN. Natrium.—This metal is, perhaps, more abundant in our globe than any other; for it constitutes two-fifths of all the sea salt existing in sea water, in the water of springs, rivers, and lakes, in almost all soils, and in the form of rock salt. Sea salt is a compound of sodium with chlorine, NaCl. Sodium also occurs as oxide of sodium, or soda, in a good many minerals; and more especially in the forms of carbonate, nitrate, and borate of soda: the first extracted from the soil in many parts of Africa; the second covering extensive plains in South America; and the third enerusting the shores of numerous lakes in Thibet. Soda is contained in sea plants, and in land plants growing near the sea, in the latter apparently replacing potash; it is the chief base in kelp, varec, or barilla, which are the ashes of sea-weed. Soda also occurs in most animal fluids.

Sodium is obtained by a process exactly similar to that above described for potassium, substituting acetate of soda for cream of tartar. Owing to the fortunate circumstance that sodium does not combine with carbonic oxide, the process is much more productive than in the case of the former metal. In fact, when properly conducted, we may expect to obtain the whole of the sodium. Thus, in the laboratory at Giessen, 1 lb. of calcined acetate of soda (carbonate containing a little charcoal) mixed with 1 lb. of finely-powdered, and 1 lb. of coarsely-powdered charcoal, and heated in a malleable iron bottle, as above recommended, yielded nearly 5 oz. of sodium, even when it was obvious that the result was capable of considerable improvement : the whole of the sodium present being about 7 oz. From the extreme cheapness of carbonate of soda, and the productiveness of the operation, sodium can be prepared far cheaper than potassium, and may, in most cases, be substituted for that metal, as its affinities are almost equally powerful. Should this metal be ever required on the large scale, it might be obtained for a price little, if at all, higher than that of zinc.

Sodium is a silver-white metal, having a very high lustre. It has not the bluish tinge of potassium, but, if any, rather a very slight yellowish tint, so that it resembles silver, while potassium resembles mercury. Its sp.g. is 0.9348; it melts at 200°, being rather less fusible than potassium; but it is, on the other hand, somewhat more volatile, which is one cause of its preparation being easier, since it distils over at a lower heat.

SODIUM AND OXYGEN.

The affinity of sodium for oxygen is next to that of potassium. It rapidly attracts oxygen from the air, and must therefore be kept under naphtha; but it is evidently less rapidly oxidised than potassium, and consequently keeps better. When heated in air or oxygen it takes fire, burning with a very pure and intense yellow flame, which is characteristic of sodium and of all its compounds. It decomposes water instantly, but does not spontaneously take fire when thrown on water, as potassium does. If the water, however, be thickened with gum, or if there be only a few drops of water, the action of sodium is attended with flame, and the yellow colour of the flame is most conspicuous. When exposed to the air, or burned in air or on water, sodium forms the protoxide, or soda: but it can form two other oxides—the suboxide and the peroxide. The suboxide is little known; the peroxide is an orange powder, Na_2O_3 . The only important oxide is the

Protoxide of Sodium. Na O = 31.

Syn. Soda.—This oxide is formed when sodium is burned in dry air or oxygen. It is a white powder, which attracts moisture and carbonic acid from the air. When sodium is oxidised by water, or when the protoxide is dissolved in water, there is formed the true alkali, the hydrated oxide of sodium, or hydrate of soda, NaO, HO.

SYN. Caustic Soda.—This hydrate is prepared by a process exactly similar to that given for caustic potash, substituting carbonate of soda for carbonate of potash. If the carbonate of soda be in crystals, 1 part of quick lime is sufficient for 5 or 6 parts of carbonate : if dry, 1 part of quick lime will suffice, if pure, for 2 of carbonate. As the lime is seldom pure, it is in general safer to take 2 parts for 3 of dry carbonate of soda.

The solution of caustic soda, owing to the superior purity of the carbonate, which is generally free from sulphate and chloride, is much purer than the common aqua potassæ : and when boiled down, it leaves a very pure hydrate of soda, NaO, HO. This hydrate is, in all external characters, and in most chemical ones, exactly similar to caustic potash : it is deliquescent and caustic, and may be used for almost all the same purposes. The solution, however, cannot be used for organic analysis, as it froths up like solution of soap when a gas passes through it.

With acids soda forms salts, all of which, with hardly an exception, are soluble in water, and many of which crystallise. The solubility of its salts serves to distinguish soda from potash, for neither bichloride of platinum, tartaric acid, perchloric acid, nor carbazotic acid causes any precipitate in the salts of soda, even when alcohol is added. Hydrofluosilicic acid is the only test that forms a precipitate in cold and pretty strong solutions of soda salts ; but the silicofluoride of sodium, thus formed, is much more soluble than the corresponding salt of potassium. When we know that either potash or soda is present, and the tests give the above negative results, we may safely decide on the presence of soda: but if we wish for positive evidence, this can only be obtained by setting fire to alcohol along with the suspected salt, or exposing the salt on platinum wire to the flame of the blowpipe ; when, if soda be present, a rich and pure yellow colour will be given to the flame.

The chief uses of soda are in the manufacture of glass and of hard soap. The carbonate is used in washing, and is a powerful detergent, although milder than carbonate of potash.

SODIUM AND CHLORINE.

Chloride of Sodium. Na Cl = 58.75.

SYN. Muriate of Soda.-Sea Salt.-Rock Salt.-Kitchen Salt. -This very important salt is formed when chlorine and sodium, or hydrochloric acid and soda, come together. But it is found in immense quantity, dissolved in sea water, and in the water of salt springs, and in smaller quantity in all natural waters, by which, indeed, it is carried to the sea, where it accumulates. Inland seas, without any outlet, and where. consequently, the superfluous water escapes only by evaporation, become more saline than sea water, although the streams which feed them are not richer in salt than ordinary rivers. Hence the Dead Sea in Palestine, fed by the Jordan, is a very strong brine, containing the same ingredients as sea water, but far stronger ; these ingredients being also the same which are found in the Jordan and all rivers, in much smaller quantity. Salt is also found abundantly, as rock salt, in various countries. It is obtained from the sea water by simple evaporation, either spontaneous, or with the aid of heat, till crystals separate, which are nearly pure chloride of sodium.

The properties of salt are well known. It is singular that it is not materially more soluble in hot than in cold water, for which reason it separates in crystals from the hot liquid during evaporation, and ought to be taken out from time to time with a perforated ladle, to allow the mother liquor to drain off.

One chief use of salt is as an antiseptic in curing meat. It seems to act chiefly by removing so much water from the flesh that too little is left to allow of putrefaction. Hence, highly salted meat is always dry, and requires long steeping in water to render it eatable. Salt is also employed to yield hydrochloric (muriatic) acid, and chlorine, for the making of bleaching-powder, as well as the best carbonate of soda. In preparing hydrochloric acid from salt, which is done by the aid of oil of vitiol, sulphate of soda is formed, from which, by heating it with charcoal, carbonate of soda is obtained. Thus, in the very important manufacture of soda from salt, both the chlorine and the sodium are made use of ; the hydrochloric acid being but a secondary product, formed in the first stage of the manufacture of carbonate of soda, a product nearly equal in importance to the oil of vitriol, by means of which it is made.

But the most important use of salt, which renders it an absolute necessary of life to animals in some shape or other, is as a condiment to food, or rather, as a substance indispensable to digestion. This subject will be fully treated of in the Second Part of this work : in the meanwhile, it may be mentioned, that the free muriatic acid, always present in the chyme before it leaves the stomach, and the soda which is found in the chyle and in the blood, and which is the essential basic element of the bile, are both derived from salt, either originally present in the food, or, as is most commonly the case, added to it by man. Herbivorous animals, who produce an enormous quantity of bile, find salt in their food, and above all in the river or spring-water they drink. But they are so sensible of the good effects of salt, that they show the greatest preference for salt springs, and indeed for solid salt, if placed within their reach. When supplied with salt in moderate quantity, they thrive uncommonly well, as in salt marshes, which are well known to give rise to very rich and well-feeding pastures. An excess of salt is, however, injurious.

SODIUM WITH BROMINE, IODINE, AND FLUORINE.

The compounds of sodium with these elements are quite analogous to those of potassium above described. The iodide and bromide of sodium are found in sea-water and in salt springs, in minute quantity. The formulæ of these three compounds are Na Br, Na I, and Na F.

SODIUM WITH SULPHUR.

Sodium, like potassium, unites with sulphur in several proportions. The protosulphuret, Na S, is very similar to the corresponding sulphuret of potassium; the others are little known.

It is very remarkable that the beautiful mineral, lapis lazuli, or ultra-marine, the nature of the colouring matter in which was long a complete puzzle to chemists, should, according to recent discoveries, owe its magnificent blue colour to the presence of sulphuret of sodium, a compound destitute of any such colour. But this seems to be really the case : for by heating a mixture of hydrated alumina and silicic acid to whiteness, along with sulphuret of sodium, C. G. Gmelin has succeeded in preparing artificial ultra-marine, which is now prepared in France quite equal to the native pigment, and very much cheaper. We are still quite in the dark as to the true nature of the blue compound formed in this operation.

The compounds of sodium with phosphorus, carbon, boron, and silicon are unknown. With silicic acid, soda, like potash, forms glass.

16. LITHIUM. L = 6.42.

This metal is very rare, occurring only as oxide or lithia in a few rare minerals, such as spodumene, petalite, lepidolite, and

LITHIA.

lithion-mica. The metal has been obtained in small quantity by means of galvanism from the oxide, and is white, burning when heated, with a blood-red flame, and forming protoxide of lithium, or lithia.

Protoxide of Lithium. LO = 14.43.

This alkali can only be obtained from either of the above minerals, which are silicates. One part of the mineral in fine powder is mixed with two of fluor-spar, and the mixture heated with sulphuric acid, until the whole of the silica is dissipated. There then remains a mixture of sulphates of alumina, lime, and lithia, and, in the case of lepidolite or spodumene, potash. By boiling with carbonate of ammonia in excess, the alumina and lime are precipitated, and the filtered liquid is evaporated to dryness, and ignited to expel the sulphate of ammonia. The residue is sulphate of lithia, or sulphates of lithia and potash. In the latter case, by the cautious addition of chloride of barium, the sulphuric acid is separated as sulphate of baryta, and the lithia and potash converted into chlorides. These being dried. are digested in absolute alcohol, which dissolves the chloride of lithium. The lithia is now free from other bases : to obtain it in the separate state, the chloride is converted into sulphate, by being boiled with oil of vitriol, and the solution of the sulphate decomposed by the exact equivalent of barytic water, by which the sulphuric acid is precipitated, while the free lithia is dissolved, and the solution, if evaporated, leaves hydrate of lithia, LO, HO.

Lithia is not quite so soluble in water as soda or potash, nor is it so caustic; but it very much resembles these alkalies. Its solution attracts carbonic acid as readily as theirs from the atmosphere. When lithia is fused on platinum, it corrodes and stains the metal. Lithia and all its salts give a blood-red colour to flame. The carbonate of lithia is sparingly soluble, and its phosphate is nearly insoluble. Lithia occurs too rarely to admit of any useful application; but it is important to know that lithion-mica, which is recognised by its easy fusibility before the blow pipe, and by its tinging the outer flame red, has hitherto been only found associated with albite and topaz, or pycnite, in tin districts, and its occurrence, thus associated, may be looked on as a sure indication of the existence of tin in the locality.

Chloride of lithium, L Cl, crystallises in cubes. It is very deliquescent and soluble in alcohol, the flame of which it colours of a fine red.

APPENDIX TO THE FIRST, OR ALKALINE GROUP OF METALS.

Ammonium. $NH_{4} = Am = 18.19$.

This hypothetical compound metal has already been described under the head of Ammonia, but we must here consider it as a metal, analogous to the three just described.

In all the salts of ammonia Am O is found. This compound, oxide of ammonium = NH_3 , HO, is itself a very powerful and caustic alkali, and neutralises all the acids. It is important to observe that it is isomorphous with potash, KO; so that the salt KO, SO_3 has the very same form as Am O, SO_3 .

Chloride of Ammonium. Am $Cl = NH_{4}Cl = NH_{3}$, HCl = 53.64.

This is the well-known salt, sal ammoniac, which is analogous to K Cl, Na Cl, and L Cl, crystallising, like them, in cubes. It is the salt from which ammonia and all its compounds are formed, and it is prepared from the impure carbonate of ammonia obtained by distilling animal matters. It is entirely volatile, soluble in water, has a pungent saline taste, and no smell. Its chemical relations are those of a chloride, although it is called muriate of ammonia, because it is formed when muriatic (hydrochloric) acid and ammonia act on each other. But there is little doubt that these bodies mutually decompose each other, according to the equation, $NH_3 + HCl = NH_{42}Cl$.

The bromide, iodide, and fluoride of ammonium are very similar to the chloride.

ORDER 2 .- METALS OF THE ALKALINE EARTHS.

17. BARIUM. Ba = 68.7.

This metal may be obtained with difficulty, by causing the vapour of potassium to pass over baryta (oxide of barium) strongly heated in an iron tube. The potassium is oxidised at the expense of the barium, forming potash, while barium is separated. Ba O + K = KO + Ba. Mercury dissolves out the barium forming a fluid amalgam, and this, if the mercury is distilled off in a small iron retort, leaves the barium.

Barium is a metal of a dark grey colour, heavier than oil of vitriol. When exposed to the air it rapidly absorbs oxygen, forming a white powder, the protoxide of barium or baryta. It is also oxidised by water, hydrogen being liberated.

Protoxide of Barium. Ba O = 76.713.

Syn. Baryta.—This alkaline earth occurs in nature combined with carbonic and sulphuric acids. It is best obtained pure by

BARYTA.

decomposing pure nitrate of baryta, by a continued red-heat, when the nitric acid is destroyed, being expelled as nitrous acid and oxygen, and the baryta left behind. Ba $0, NO_s = Ba O + NO_a + O$.

Baryta is a grey porous solid, the sp. g. of which is about 4.000. It has an acrid alkaline taste, but is much less soluble in water than potash or soda. When sprinkled with water, it slakes, like quicklime, combining with the water to form a dry, white powder, hydrate of baryta. Great heat attends this combination. Baryta, if exposed to the air, speedily attracts moisture and falls to powder, and the hydrate absorbs carbonic acid from the air, and is converted into carbonate by degrees.

Hydrate of Baryta. Ba O, HO = 85.726.

This compound is formed when dry baryta is slaked with water, as above-mentioned. It is a bulky white powder, which dissolves in 3 parts of boiling water, and in about 20 of cold water. The saturated hot solution deposits, on cooling, crystals, which are composed of Ba O, HO + 9 aq. The saturated cold solution, which is called barytic water, is a most useful test of the presence of carbonic acid in the air, or in any gas; for with that acid it instantly produces the insoluble carbonate of baryta, which forms a film, or crust, on the liquid.

A solution of baryta may be formed, extemporaneously, by boiling sulphuret of barium in solution with oxide of copper or oxide of lead in excess, and filtering as soon as the liquid gives a white, and not a black precipitate with acetate of lead. The change is as follows: BaS + CuO = BaO + CuS; or BaS + PbO = BaO + PbS. The sulphurets of lead and copper, being insoluble, are easily separated by the filter.

Baryta may be recognised, either in the free state, or in its salts, by its giving, with alkaline carbonates, a white precipitate of carbonate, and with sulphuric acid or any soluble sulphate, a white precipitate of sulphate of baryta. The latter is quite insoluble in water and acids; and hence baryta and its salts are much used as tests for sulphuric acid.

Peroxide of Barium. Ba $O_{o} = 84.7$.

This oxide is formed either by passing oxygen over baryta at a red heat, or by sprinkling chlorate of potash on baryta heated to very low redness, and washing away the soluble part with water. In the latter case it is obtained as a hydrate. It is insoluble in water, and weak acids dissolve it, forming a salt of protoxide; while the oxygen combines with water, forming peroxide of hydrogen. In fact, the peroxide of barium is only used for the purpose of making that compound.

BARIUM AND CHLORINE.

Chloride of Barium. Ba Cl = 104.17.

This salt is best obtained by dissolving carbonate of baryta in hydrochloric acid, $BaO,CO_2+HCl=BaCl+HO+CO_2$. It is also obtained by acting on solution of the sulphuret of barium with the same acid, BaS+HCl=BaCl+HS. In the former case carbonic acid gas, in the latter sulphuretted hydrogen gas, is disengaged; and in both the chloride of barium remains dissolved, and, on evaporation, crystallises in white brilliant tabular crystals, which are composed of BaCl+2aq. A red heat expels the water of crystallisation, and chloride of barium is left.

It is a white solid, soluble in water, and is used in medicine, and very extensively in chemistry, as a test for sulphuric acid, and a means of removing that acid from any solution.

Bromide, iodide, and fluoride of barium are very analogous to the chloride.

BARIUM AND SULPHUR.

Sulphuret of Barium. Ba S = 84.82.

This useful compound, from which all the other compounds of barium may be obtained, is prepared from the native sulphate of baryta, or heavy spar, by reducing it to fine powder, mixing it with $\frac{1}{2}$ of its weight of lamp black (charcoal), and exposing the mixture to a white heat for two hours in a covered crucible. The following change takes place—

$Ba O, S O_{s} C_{4} = 4 C O + Ba S.$

The sulphuret of barium dissolves in hot water, forming a colourless solution, which, if exposed to the air, gradually absorbs oxygen, becoming yellow, and is finally converted into hyposulphite of baryta, the latter salt being deposited in hard brilliant crystals. When, in preparing the sulphuret, the heat has been insufficient, the sulphuric acid of the sulphate of baryta is entirely deoxidised, the baryta only partially, and we obtain a mixture of baryta and persulphuret of barium, BaS_2 . Thus $2(BaO,SO_3)+C_8=C+7CO+BaO+BaS_2$. This mass, dissolved in hot water, deposits, on cooling, crystals of hydrate of baryta: while the solution, owing to the presence of persulphuret, is orange-coloured.

Sulphuret of barium, from its solubility, and from its being easily decomposed, serves to prepare all the compounds of barium. This, as already stated, if boiled with oxide of copper or of lead, it yields hydrate of baryta; and oxide of manga-

CALCIUM.

nese may be used for the same purpose. With hydrochloric acid it yields chloride of barium, and with nitric or acetic acid it gives rise to nitrate or acetate of baryta, $BaS+HO, NO_s = HS+BaO, NO_s$. Mixed with carbonate of potash, soda, or ammonia, in solution, it produces insoluble carbonate of baryta, and asoluble sulphuret of potassium, sodium, and ammonium, $BaS+KO, CO_s = KS+BaO, CO_s$. From the nitrate pure baryta, and from the carbonate, any salt of baryta may be obtained.

All the compounds of barium, except the sulphate, are poisonous.

18. STRONTIUM. Sr = 43.8. Oxide of Strontium. Sr O = 51.813.

This metal is analogous to barium, but little known. It occurs only as oxide, combined with carbonic acid in Strontianite, and with sulphuric acid in celestine. From these minerals the oxide of strontia may be obtained, by processes exactly similar to those described for baryta. Strontia is rather less soluble in water than baryta, but otherwise much resembles it. Indeed it was long confounded with baryta, from which it is distinguished by forming with hydrochloric acid a chloride which crystallises in needles, and is very deliquescent and soluble in alcohol, to which it gives the property of burning with a crimson flame. The nitrate of strontia is used in making the red fire of the theatres, which is also employed for signal lights.

The chloride and sulphuret of strontium are prepared as those of barium, and from the latter hydrate of strontia and all the salts of strontia may be prepared. The sulphate of strontia is not absolutely insoluble, like that of baryta, although it is very nearly so.

19. CALCIUM. Ca = 20.5. Oxide of Calcium. Ca = 28.513.

This metal is little known, but appears to resemble the two preceding. It is soon oxidised in air or in water, forming the oxide of calcium, or quicklime.

The oxide, or line, occurs in great abundance in nature chiefly as carbonate, in the forms of marble, limestone, chalk and calcareous spar; also as sulphate, in the shape of gypsum and alabaster. Carbonate of lime is the chief ingredient of shells, and phosphate of lime is the earthy part of bones. Lime is found in the ashes of many plants.

Pure lime is easily obtained by igniting white marble or chalk till all the carbonic acid is expelled. The residue is seldom quite white, but combines with water to form a snow-white

158

hydrate (slaked lime). A high temperature is produced in the slaking of lime. Lime is far less soluble in water than baryta or strontia, and cold water dissolves a good deal more lime than hot, about $\frac{1}{\sqrt{6}v}$. The solution is called lime water; it tastes acrid, and if exposed to the air, is soon covered with a film of carbonate, which forms a crust that at length breaks. Quicklime, exposed to air, gradually absorbs both water and carbonic acid; but a good red heat always restores it to the state of quicklime again. When an excess of hydrate is mixed up with water, it forms a milky-looking fluid, called milk or cream of lime, which is much used for absorbing carbonic acid.

The uses of lime are well known : slaked lime is the chief ingredient in mortar, and lime water is used in medicine as an antacid. With acids lime forms salts, of which the carbonate, like that of baryta or strontia, is insoluble, the chloride very deliquescent, and the sulphate sparingly soluble, but far from insoluble. Lime and its salts are recognised by forming, with oxalate of ammonia, the very insoluble oxalate of lime. In testing for lime, the solution must be neutral, as an excess of acid dissolves the oxalate.

Chloride of Calcium. Ca Cl = 55.97.

This salt is formed when carbonate of lime is dissolved in hydrochloric acid, as in preparing carbonic acid gas, CaO, CO, +HCl=CaCl+HO+CO₂. When the neutral solution is evaporated to the consistence of syrup, it forms, on standing in a cold place, long prisms of crystallised chloride of calcium, CaCl+2HO+4aq. At 480° these lose the 4 equivalents of water of crystallisation, and at a red heat the other two equivalents of water. The crystals, when powdered and mixed with snow, liquefy rapidly, and produce intense cold. In every form chloride of calcium has a great attraction for water, and it is much used for drying gases, and in organic analysis for collecting the water, by weighing which the proportion of hydrogen is determined. It also serves to deprive alcohol, ether, and many similar fluids, of water.

The bromide and iodide of calcium are deliquescent salts, CaBr and CaI.

Fluoride of Calcium. Ca F = 39.24.

This is a very abundant mineral, occurring chiefly in veins along with lead ore, heavy spar, and quartz. It is well known as fluor, or Derbyshire spar, and crystallises beautifully in cubes, octahedrons, and tetrahedrons, which are transparent and colourless, or purple, green, brown, or yellow. It also occurs in a massive semicrystalline form, capable of being cut and

MAGNESIUM.

polished for ornaments. It is very remarkable that fluoride of calcium is an ingredient of bones in variable quantity. It is said to be found chieffy in the enamel of the teeth, and it is certainly found in variable quantity, but always present, in ancient human bones. It is now said that it is less easily detected in recent bones, owing to the presence of animal matter. It has been found in some bones to the amount of 10 per cent.

The presence of it is detected by treating the mineral or bone, after ignition, with oil of vitriol in a platinum crucible, covered with a waxed plate of glass, having the glass exposed by traces made with a point through the wax. In a short time the traces are so far etched as to be indelible, and very small traces of fluor spar may be thus detected.

Sulphuret of Calcium. Ca S = 36.62.

This compound is formed by a process similar to that given for sulphuret of barium. Sulphate of lime, mixed with $\frac{1}{4}$ of its weight of charcoal powder, is strongly ignited for an hour or two in a covered crucible. CaO,SO₄+C₄=4CO+CaS.

It is a nearly white powder, provided no excess of charcoal is present, and is very sparingly soluble in water. When it has been exposed to the sun's rays, it shines in the dark, and is called Canton's phosphorus. When water, lime, and sulphur are boiled together, there is formed a yellow or orange solution containing hyposulphite of lime and persulphuret of calcium. This liquid, acted on by hydrochloric acid, yields persulphuretted hydrogen. When sulphur and lime are melted together, there is formed a mixture of sulphate of lime and sulphuret of calcium.

Phosphuret of calcium is obtained, in an impure state, by bringing phosphorus in contact with red-hot lime. A brown powder is formed, which is a mixture of phosphate of lime and phosphuret of calcium. When thrown into water it produces spontaneously inflammable phosphuretted hydrogen, along with hypophosphite and phosphate of lime.

20. MAGNESIUM. Mg = 12.7.

This metal is obtained by causing the vapour of potassium to come in contact with red-hot chloride of magnesium in a tube. Vivid incandescence takes place, chloride of potassium is formed, and magnesium separated. When the mass is acted on by cold water, the chloride dissolves and the magnesium is left in globules.

Magnesium is silver white, very brilliant and malleable. It melts at a red heat; and if heated in air or oxygen, burns

MAGNESIA.

vividly, being converted into oxide of magnesium, or magnesia. It does not decompose water, even when boiled with it; and is not oxidised at ordinary temperatures by dry air. Hence it may be preserved far more easily than any of the preceding metals. It dissolves in diluted acids, hydrogen being disengaged.

MAGNESIUM AND OXYGEN.

Oxide of Magnesium. Mg O = 20.713.

Svs. Magnesia; Calcined Magnesia.—This oxide occurs in nature as carbonate, forming considerable masses of rock in some parts of the world; also as a mixed carbonate of lime and magnesia, under the forms of dolomite and magnesian limestone; and as sulphate of magnesia, or Epsom salts, which occurs in many saline springs.

It is best obtained pure by heating the carbonate to redness. Pure or calcined magnesia is a bulky white powder, insoluble in water. It has an earthy taste, and readily unites with acids, neutralising them, on which account, and because it is in itself mild in its action, it is much used in medicine as an antacid. Magnesia, when precipitated from its salts by an alkali, combines with water, forming a hydrate, MgO,HO, which loses its water in a low red heat. This hydrate is found native, crystallised.

Of the salts of magnesia, the carbonate, like that of the three preceding earths, is insoluble; but the sulphate is very soluble. The solution of this, or any other soluble salt of magnesia, is precipitated by potash, soda, and ammonia, which throw down pure magnesia; and by carbonates of potash and soda, which form carbonate of magnesia. But carbonate of ammonia causes no precipitate, owing to the formation of a soluble double salt; and for the same reason, oxalate of ammonia does not precipitate the salts of magnesia. By this last character magnesia may be distinguished and separated from lime. The most delicate test of magnesia in solutions is to add, first, carbonate of ammonia, and then phosphate of soda, which then forms an insoluble double phosphate of ammonia and magnesia, in the form of a heavy crystalline powder, slowly formed when the quantity of magnesia is very small.

Besides its uses in medicine, magnesia is a useful ingredient of all fertile soils. The double phosphate of ammonia and magnesia is found in the husk of grain, and in the potato; and phosphate of magnesia is also found in bones. In a soil totally destitute of magnesia, grain does not produce perfect seed, however well the plants may thrive or grow in the stalk or leaf, to

M

ALUMINUM.

which parts magnesia seems not to be essential. Owing to the occurrence of the double phosphate in potatoes, bran, which contains that salt, is a very powerful manure for that crop.

MAGNESIUM WITH CHLORINE, BROMINE, IODINE, AND FLUORINE. Chloride of Magnesium. Mg Cl = 48.17.

This salt is best formed as follows :—Take two equal portions of hydrochloric acid, and neutralise one with magnesia, the other with ammonia; then mix, evaporate to dryness, and ignite in a covered crucible till the sal ammoniac is dissipated. Fused chloride of magnesium remains, which is poured out on a clean stone, and when solidified kept in a closely-stopped bottle. It is highly deliquescent, and is used for preparing magnesium.

When magnesia acts on hydrochloric acid, they combine, producing hydrochlorate of magnesia, MgO, HCl, a rare case. On evaporating the solution to dryness and heating it, hydrochloric acid is expelled and magnesia is left. But when sal animoniac is added (chloride of animonium, NH₄, Cl), and the mixture evaporated, chloride of magnesium is formed, and unites with the sal animoniac, forming a double chloride, MgCl +NH₄, Cl. When this is ignited, the sal animoniac is expelled, and chloride of magnesium is left. Chloride of magnesium exists in sea water, and is found in the mother liquor of the crystals of salt.

The iodide and bromide of magnesium are very soluble; the fluoride is insoluble.

Sulphuret of magnesium may be obtained by a method similar to that given for sulphuret of barium. When pure, it is a white brittle mass, partially soluble in water.

ORDER 3 .- METALS OF THE EARTHS PROPER.

21. Aluminum. Al = 13.7.

This metal is best obtained, like the last, by the action of potassium on the chloride. Chloride of aluminum is mixed with small fragments of potassium in a platinum crucible, the lid of which is wired down. Heat is then applied by means of a spirit-lamp, when a violent action ensues, and a dark grey mass is left, from which water dissolves chloride of potassium, leaving alumina as a grey powder, which has considerable lustre. It is not easily melted; and when heated in the air, or in oxygen gas, it burns with a vivid light, forming alumina, which is a sesquioxide of the metal.

162

ALUMINA.

ALUMINUM AND OXYGEN.

Sesquioxide of Aluminum. $Al_2 O_a = 51.539$.

SYN. Alumina; Pure Clay.—This earth is very abundant in nature. It occurs crystallised as the sapphire and ruby; in a crystalline, but more massive form, as corundum or emery; and as the chief ingredient of all clays, and of most'slaty rocks, from which, indeed, clays are derived. Pipe-clay is the purest clay, but is not pure alumina, although approaching to it.

Pure alumina is best prepared as follows :—A solution of alum is precipitated by an excess of chloride of barium, by which means the sulphuric acid is separated, and chloride of aluminum is left in solution with the chloride of potassium and the excess of chloride of barium. Alum $(KO,SO_{3}+Al_{2}O_{3},$ $3SO_{3})$ with 4BaCl yields $4(BaO,SO_{3})+KCl+Al_{2}Cl_{3}$. On evaporation, water is decomposed, and hydrochlorate of alumina is formed, $Al_{2}Cl_{3}+3HO=Al_{2}O_{3},3HCl$. When the dry mass is ignited, the hydrochloric acid is expelled, and the alumina is left with the chlorides of potassium and barium, which are removed by water.

Pure alumina is a fine white powder, quite unalterable in the fire. When precipitated from its solution in acids by alkalies, it forms a very bulky gelatinous hydrate, which, when dried at 60° , is $Al_{2}O_{3,}6HO$; if dried at 100° it becomes $Al_{2}O_{3,}3HO$. Dry or anhydrous alumina, mixed with water, forms a plastic mass, which admits of being moulded. This property is given to clay by the presence of alumina, and is the foundation of the art of making porcelain or earthenware.

Alumina, after ignition, is almost insoluble in acids; but the hydrate readily dissolves in all strong acids, forming salts which have a peculiar astringent taste.

Alumina is precipitated, as hydrate, from its solutions by potash, soda, ammonia, and their carbonates; but the precipitate readily dissolves in an excess of the two first. Hydrosulphuret of ammonia, which precipitates none of the previously-described metallic oxides, causes in solutions of alumina a precipitate, which, however, is not a sulphuret, but the hydrate of alumina precipitated by the ammonia of the test.

Besides the use of alumina in pottery, it is much used in dyeing and calico printing, from its attraction for vegetable colouring matters, and for the fibre of cloth. It forms a bond of union between the cloth and the dye, and fixes the latter on the former. It is said, in this, to act as a mordant, and is most generally used in the shape of alum or acetate of alumina. When solution of alum is mixed with a colouring matter, and

GLUCINA, YTTRIA.

the alumina then precipitated by an alkali, the hydrate carries with it all the colouring matter, or the greater part of it, and forms what is called a lake. The water colour termed lake is merely a lake made with some pink dye stuff, such as madder or logwood. Carmine is a lake of cochineal.

ALUMINUM AND CHLORINE.

Sesquichloride of Aluminum. Al, Cl₂ = 133.81.

This compound is prepared by passing chlorine gas over a mixture of alumina and charcoal, heated to redness in a tube. The chloride sublimes into the cold part of the apparatus. It forms a volatile crystalline mass, colourless or slightly yellow. It fumes in the air, and dissolves in water with much heat. It appears at first to combine with the water, forming a hydrated chloride, Al_{2} Cl₂, 3 HO; but on heating this, hydrochloric acid is expelled, and alumina is left, Al_{2} Cl₃, 3 HO = Al_{2} O₃, 3 H Cl. The chloride is used for the preparation of aluminum.

The sulphuret of aluminum is formed when sulphur is dropped on red-hot aluminum. It is a dark grey mass, which decomposes water, forming sulphuretted hydrogen and alumina, and hence its composition must be Al_sS_3 . If so, we have $Al_sS_3 + 3$ HO = $Al_sO_3 + 3$ HS. Similar compounds are formed with phosphorus and selenium.

22. GLUCINUM. 23. YTTRIUM. 24. THORINUM. 25. ZIRCONIUM.

These metals, or rather their oxides, are all so rare as not to admit of any useful application. The oxides, which are glucina, yttria, thorina, and zirconia, only occur in a few rare minerals.

Glucina occurs in the emerald and the beryl. Its composition is analogous to that of alumina; and its formula is $G_{\bullet}O_{\bullet}$. It is a white powder, insoluble in water, soluble in acids, forming salts which have a sweetish taste. It resembles alumina very much, but differs from it in being soluble in solution of carbonate of ammonia. The metal, which may be obtained, like aluminum, from the chloride, burns with amazing splendour when heated in oxygen.

Yttria, the oxide of yttrium, occurs in gadolinite in yttrocerite, and in yttrotartalite. The pure earth is a white powder, which dissolves in acids, forming sweetish salts, from which yttria is precipitated by alkalies; but is not, like alumina and glucina, redissolved by excess of potash or soda. It is, moreover, precipitated by ferrocyanide of potassium, which these earths are not. Yttria seems to be a protoxide of Yttrium, YO. The salts of yttria have often an amethyst colour; but the recent researches

MANGANESE.

of Mosander seem to show that this is owing to the presence of the oxide of one of the new metals detected by him, which accompany yttrium. It is probable that pure yttria is not yet known.

Thorina is still more rare, and has only been found in one mineral—thorite. It is a white powder, resembling yttria. The metal, thorinum, burns in air or oxygen, when heated, with great splendour. It also burns with sulphur and phosphorus, as do the two preceding metals.

Zirconia is found in the zircon or hyacinth. It resembles alumina in appearance. It differs from all the preceding earths in being precipitated as an insoluble subsulphate, when solutions of its salts are boiled with sulphate of potash. The metal, zirconium, resembles aluminum. The oxide is believed to be a sesquioxide Zr_oO_o.

METALS.—CLASS II.

Order 1.—Metals, the Protoxides of which are Powerful Bases, but which do not Decompose Water, unless with the Acid of a Red-heat.

26. MANGANESE. Mn = 27.7.

This metal occurs in considerable abundance, chieffy as deutoxide or peroxide MnO_s , which is much used in the arts and in chemical manufactures, as well as in the laboratory. The metal is obtained by making oxide of manganese into a paste with oil, and exposing this paste to a strong white-heat in a covered crucible. If the heat be high enough, a button of the metal is obtained.

It is a hard, brittle, very difficultly fusible metal, of a greyish white colour, sp. g. 8 013. It tarnishes on exposure to the air, and is rapidly oxidised when heated. It decomposes water rapidly at a red-heat, hydrogen being disengaged. As a metal, it is not applied to any useful purpose.

MANGANESE AND OXYGEN.

a. Protoxide of Manganese. Mn O = 35.713.

This oxide is obtained when the peroxide is acted on by hydrogen gas at a red-heat. But the best method is to heat to redness a mixture of 1 part of dry chloride of manganese, 1 part of sal-ammoniac, and 2 parts of dry carbonate of soda. The chloride acts on the soda, MnCl + NaO = MnO + NaCl; forming oxide of manganese and chloride of sodium: while the carbonic acid escapes as gas : the sal-ammoniac is also expelled. and its vapour serves merely to exclude the oxygen of the atmosphere. From the fused mass, water extracts the chloride of sodium; and leaves the protoxide of manganese undissolved.

It is a powder of a pale grass green colour, which, if prepared by hydrogen at a low red heat, soon attracts oxygen from the air and becomes brown. If it has been made, however, at an elevated temperature, especially by the second process, it is more compact, and keeps tolerably well. When heated in the air, it takes fire and burns.

Protoxide of manganese is a powerful base, neutralising acids and forming salts, which are either colourless or have a tinge of flesh colour. Its solutions give, with caustic alkalies, a precipitate of hydrate, which is at first white, but soon absorbs oxygen and becomes brown; with carbonated alkalies, a white precipitate of carbonate of manganese, which retains its whiteness till it is dried, when it becomes generally slightly fawn-coloured. Hydrosulphuret of manganese, which, in the air, absorbs oxygen and becomes brown. Chloride of soda or bleaching liquor causes a bulky dark brown precipitate of hydrated peroxide. The two last tests are characteristic. Ferrocyanide of potassium gives a white precipitate. All the salts of protoxide of manganese may easily be prepared from the calborate, which again is most economically made from the chloride, the preparation of which will be described below. The sulphate is used in calico-printing.

b. Sesquioxide of Manganese. Mn₂ O₃ = 79.439.

This oxide is left behind when the peroxide is ignited in preparing oxygen gas. $2 \text{ Mn } O_s = \text{Mn}_s O_s + O$. It is a dark brown powder, very similar to the peroxide, but rather lighter in colour, and yielding no oxygen when ignited. It is a feeble base, and is only known to combine with sulphuric acid, forming an amethyst-coloured solution of sesquisulphate. With sulphates of potash and ammonia, this salt forms manganese alums, which crystallise in dark purple octahedrons. When heated with sulphuric acid it yields oxygen, and with hydrochloric acid chlorine, but less of either than the peroxide, which see. As some specimens of peroxide are, naturally or accidentally, mixed with sesquioxide, the manufacturer finds it a source of inconvenience and loss. It occurs in a pure state as braunite, and combined with baryta in psilomelan. Its hydrate is the mineral manganite. Its pewder is dark brown.

c. Hyperoxide or Peroxide of Manganese. $Mn O_2 = 43.726$.

SYN. Deutoxide of Manganese.—This oxide is found in considerable abundance, and is known in the mineral kingdom as pyrolusite. It generally assumes the form of a black shining mass composed of radiated groups of acicular crystals; also in distinct crystals, which are right rhombic prisms; and in the compact and even earthy state. Its powder is black. When heated to redness, it loses one-fourth of its oxygen, leaving sesquioxide: $2 \text{ MnO}_{3} = \text{Mn}_{3} \text{ O}_{3} + \text{ O}_{3}$ In a white heat it is said to lose half its oxygen, leaving protoxide. Heated with oil of vitriol, it forms sulphate of protoxide, and half the oxygen is expelled. MnO_{4} + HO, SO_{3} = (MnO, HO, SO) + O. With hydrochloric acid it yields chlorine, chloride of maganese, and water. MnO + 2 HCl = Cl + MnCl + 2 HO. It also yields chlorine when heated with common salt and sulphuric acid; and this is the process commonly used by the manufacturers of bleaching powder. MnO_{4} + NaCl + 2 HO, SO_{3} = (MnO, HO, SO_{2}) + (NaO, HO, SO_{2}) + Cl.

It is further used in glass-making to destroy the colour given to the glass by protoxide of iron, which it converts into peroxide; in larger proportion, to give glass an amethyst colour; and in numerous operations in the laboratory as a convenient oxidising agent.

With water, peroxide of manganese forms a hydrate, MnO₂, HO, which is obtained when salts of the protoxide are acted on by bleaching liquor, or when the acids of manganese are spontaneously decomposed. It is a beautiful brown powder, which is decomposed by heat.

d. Manganic Acid. Mn O_a = 51.739.

This acid has not been isolated. It is only known in combination with bases, especially potash, in which state it forms the chief ingredient of the mass called chameleon mineral, formed by igniting peroxide of manganese strongly with nitre, or still better by heating a mixture of peroxide, chlorate of potash and caustic potash. A dark green mass is formed, which is the chameleon mineral. The green colour is a property of manganic acid and all its salts. The peroxide obtains oxygen from the nitre or chlorate of potash, and the acid, when formed, combines with the potash. Water dissolves the manganate of potash, forming a splendid emerald-green solution, which very soon begins to change colour, and passes through bottle-green, blue, and purple, to a fine crimson red, hydrated peroxide of manganese being at the same time deposited. The red colour belongs to a salt of the next acid, permanganic acid ; see p. 168. The salts of manganic acid are decomposed if kept in solution, depositing hydrated peroxide.

e. Permanganic Acid. Mn₂ O₇ = 111.491.

The salt of this acid with potash, permanganate of potash, is formed, when the chameleon mineral (see p. 167) is dissolved in hot water. The green colour of the manganate changes to red, while hydrated peroxide separates. 3 eq. manganate of potash give rise to 1 eq. permanganate, 1 of peroxide, and 2 of free potash: $3(KO, MnO_3) = MnO_2 + (KO, Mn_2O_2) + 2KO$. When the red solution is sufficiently evaporated, it deposits small dark bronze-coloured crystals of permanganate of potash.

This salt is more permanent than the manganate; but when we attempt to isolate the acid, it is rapidly decomposed, yielding hydrated peroxide and oxygen gas, $Mn_{o}O_{s}=2MnO_{o}+O_{s}$.

The name of chameleon mineral was given to the compound above described from its singular changes of colour. Both the above acids possess and communicate to their salts very beautiful colours; but they cannot be used in dyeing, &c., because these acids are so easily decomposed, especially by the contact of organic matter. They ought to be filtered through asbestos when they require filtration.

f. Red Oxide of Manganese. Mn₃ O₄ = 115.152.

This oxide occurs in nature, and may be obtained when any other oxide of manganese is strongly ignited in an open crucible. It is very permanent in composition: its colour is reddish-brown. It is not supposed to be an independent oxide of the metal, but rather a compound of two other oxides. It may be either MnO $+Mn_{o}O_{a}$ or MnO₀ + 2MnO, and it is not easy to say which.

g. Varvicite. $Mn_4 O_7 = 166.8$.

This is another oxide, found native in Warwickshire, whence the name. It resembles the peroxide, but is really distinct. It is probably a compound of two others, $Mn_{o}O_{o} + 2MnO_{o}$.

MANGANESE AND CHLORINE.

a. Protochloride of Manganese. Mn CI = 63.15.

This salt is best obtained by the following process:—The solution formed in the preparation of chlorine by means of peroxide of manganese and hydrochloric acid, which is generally a mixture of chloride of manganese and more or less perchloride of iron, is first rendered neutral by gently evaporating it to dryness. It is then redissolved, and a portion of it precipitated by carbonate of soda, which throws down a mixture of peroxide of iron and carbonate of manganese. MnCl+Fe₂Cl₂ acted on by $4(NaO,CO_2)$ yield (MnO,CO_2) +Fe₂O₃+4NaCl+3CO₄.

CHLORIDE OF MANGANESE:

The precipitate is well washed, and then boiled with the rest of the solution, when the oxide of manganese in the precipitate acts on the perchloride of iron in the solution, producing chloride of manganese, which dissolves, and peroxide of iron, which separates. $3(MnO,CO_2) + Fe_2Cl_3 = 3MnCl + Fe_2O_3 + 3CO_2$. The filtered liquid is free from iron, if we have hit the proportion right; if not, a second operation with a smaller portion of the liquid will complete the purification. The pure solution is evaporated to dryness in a retort, and there fused. On cooling, the protochloride forms a pink crystalline mass. Iron is the ordinary impurity to be removed ; but if other metals be present, they are to be got rid of by appropriate means. Thus, if cobalt and nickel are present, which they generally are in small quantity, the addition of hydrosulphuret of ammonia, as long as it causes a dark precipitate, or till it produces the pure flesh colour characteristic of manganese, will remove them. The chloride of manganese is used for preparing, by the action of an alkaline carbonate, pure carbonate of manganese, from which all other salts of manganese may be obtained.

b. Perchloride of Manganese. Mn₂ Cl₇ = 303.19.

This compound, which corresponds to the permanganic acid, is formed, according to Dumas and Wöhler, when permanganate of potash is heated along with common salt and sulphuric acid. KO, Mn₂O₇+7NaCl+8SO₃=KO,SO₃+7 (NaO,SO₃)+Mn₂ Cl₂. It is a greenish-brown volatile liquid, which is instantly decomposed by contact with moist air, forming a dense cloud of a pink colour. Here water is acted on, and the products are hydrochloric and permanganic acids. Mn₂Cl₇+7HO=Mn₂ O₈+7HCl.

c. Perfluoride of Manganese. Mn₂ F₇ = 186.46.

When mineral chameleon (or better, permanganate of potash) is acted on by sulphuric acid and fluoride of calcium (fluor spar) with the aid of heat, a greenish-yellow gas or vapour is disengaged, which, with moist air, instantly becomes red. It acts powerfully on glass. Its composition seems to correspond to that of the preceding compound, and its production is to be explained in the same way, substituting fluoride of calcium for chloride of sodium. (Wöhler.)

d. Protosulphuret of Manganese. Mn S = 43.79.

This compound is found native. It may be formed by passing a current of sulphuretted hydrogen over sulphate of manganese at a red-heat. The sulphuric acid of the sulphate is expelled, and the protoxide is acted on by the sulphuretted hydrogen. MnO+HS=MnS+HO. It is nearly black in colour, and dissolves readily in dilute hydrochloric and other acids, with disengagement of sulphuretted hydrogen. MnS+HCl=MnCl+HS. The flesh-coloured precipitate formed in salts of protoxide of manganese by hydrosulphuret of ammonia, or any other soluble sulphuret, is a hydrated protosulphuret of manganese, MnS, HO.

27. IRON. Fe = 28.

This important and useful metal occurs very abundantly in nature. It is occasionally found in the uncombined state in masses, most probably of meteoric origin; but its most common form is that of oxide, frequently uncombined, frequently also combined with carbonic acid. It is found, likewise, abundantly as sulphuret. There is hardly a rock, a soil, or a mineral which does not contain some proportion, generally a small one, of oxide of iron; and the carbonate is a frequent ingredient in mineral waters, which are then termed chalybeate waters.

The chief ores of iron are—1. Clay iron stone, which is a more or less pure carbonate of protoxide, generally containing carbonates of lime and magnesia; it accompanies coal beds both in England and in Scotland. 2. Red hematite, which is pure peroxide or sesquioxide of iron; and brown hematite, which is hydrated peroxide. 3. Black or magnetic oxide of iron.

From its ores iron is obtained by heating them in furnaces, in the upper part of which the ores are stratified with coal, lime, and sandstone. The carbon of the coal, at a red-heat, reduces the iron to the state of metal, while the sand and lime act as a flux, and form a liquid slag, through which the melted iron falls to the lower part of the furnace, where it is drawn off. The slag is drawn off separately after the iron, and on cooling is found to be a mixture of silicates of lime and magnesia with a little iron.

The iron thus obtained, which is called pig iron or cast iron, is not pure, containing some unreduced ore, or earthy matters, and a good deal of combined carbon. It is far more fusible than pure iron, but also far more britle. To convert it into pure or malleable iron it is melted and exposed to a current of air, which gradually burns off the carbon. The mass is well stirred, and the other impurities rise to the surface as slag or dross. By degrees the metal becomes less fusible, and the heat must be increased, till at last, with the strongest heat, the metal continues solid. It is then well hammered while hot, by which it is still further purified, and rendered more dense. It is not yet absolutely pure, containing about $\frac{1}{2}$ per cent. of carbon and a trace of silicon. A very good test of the purity of iron is its ductility. Unless very pure, it cannot be drawn out into fine wire.

If perfectly pure iron is wanted, the filings of malleable iron should be fused with $\frac{1}{4}$ their weight of black oxide of iron, and some green glass to act as a flux. Or pure oxide of iron may be reduced to the metallic state by passing a current of hydrogen gas over it at a red-heat. The metal remains as a spongy mass.

Pure iron has a grey colour, and strong lustre when polished. It is very ductile, moderately malleable, and remarkably tenacious. It is hard at common temperatures, but at a red-heat it is so soft that it may be beaten into any form, and even admits of being welded ; that is, two pieces of iron being heated red hot, may be, by hammering, so incorporated into one, that no joining is perceptible. Its sp. g. is 7.7. It is very infusible, requiring the very highest temperature of a wind furnace to melt it.

Iron is attracted by the magnet, and may itself be rendered permanently magnetic by various means.

The attraction of iron for oxygen is very powerful, and when exposed to air and moisture it rusts rapidly, forming oxide of iron. When heated to redness in air, iron is very quickly covered with a crust of black oxide, which scales off under the hammer. If heated to redness in oxygen, or to whiteness in the air, it burns with vivid scintillations. To secure the result in the air, the white hot metal must be exposed to a current of air from a bellows, or rapidly whirled round. Iron decomposes water rapidly at a red heat.

IRON AND OXYGEN.

a. Protoxide of Iron. Fe O = 36.013.

This oxide is a powerful base, almost unknown in a separate state, owing to its tendency to attract an additional quantity of oxygen. It combines with acids, forming salts, which have generally a pale bluish green colour, although some are colourless. Several of these salts are of great importance in medicine and in the arts, particularly the sulphate of iron, or green vitriol.

The solutions of these salts give with alkalies, when no trace of peroxide is present, a bulky white precipitate of hydrated protoxide of iron, which soon becomes green, and lastly brown, being converted into peroxide by absorbing oxygen from the air. They give a similar precipitate, not more permanent, with carbonated alkalies; which at first is hydrated carbonate of protoxide, but as oxygen is absorbed the carbonic acid is given off. peroxide of iron having no affinity for that acid. With ferrocyanide of potassium they give a pale blue, or rather a white precipitate, which gradually becomes dark blue, and with ferridcyanide of potassium (red prussiate) a deep blue precipitate of prussian blue. These salts are not affected by sulphuretted hydrogen, sulphocyanide of potassium, meconic acid, or gallic acid. Hydrosulphuret of ammonia, and soluble sulphurets, produce a black precipitate of sulphuret of iron.

The salts of protoxide of iron, for the most part, attract oxygen from the air and from other bodies, passing into salts of the peroxide. Hence they act in some cases as deoxidising agents. Gold is completely reduced from its solutions by protosulphate of iron.

b. Sesquioxide of Iron. $Fe_2 O_3 = 80.039$.

SYN. Peroxide of Iron .- This oxide is found native, as red hematite and specular iron ore, and hydrated, as brown hema-It may be prepared artificially by calcining pure, dried tite. green vitriol, when the protoxide is oxidised at the expense of the sulphuric acid, and water, along with sulphuric and sulphurous acids, is expelled. 2 (Fe O, HO, SO.) = Fe. 0. + $2 HO + SO_2 + SO_3$. A red powder is left, which is peroxide of iron, and in this form it is used for polishing plate, as Jeweller's rouge, or colcothar of vitriol. Hydrated peroxide of iron is obtained by precipitating a solution of persulphate of iron, or perchloride of iron by an alkali, whether caustic or carbonated. When protosulphate of iron is precipitated by an alkaline carbonate, the precipitated protocarbonate, during the process of washing and drying, loses its carbonic acid, and attracts oxygen. becoming hydrated peroxide. This, when dry, is a brown powder, used in medicine under the erroneous name of carbonate of iron. In the moist state, it is the only known antidote to arsenious acid.

Peroxide of iron is not magnetic. It is a base, although not a powerful one, forming, with acids, salts which are either yellow, brown, or red. The solutions of such salts, or persalts of iron, as they are called, are very easily recognised. They give, with caustic or carbonated alkalies, a brown precipitate of hydrated peroxide; with ferrocyanide of potassium a deep, Prussian blue; with ferridcyanide of potassium no precipitate; with sulphocyanide of potassium, or with meconic acid, a blood-red colour, and with tannic acid (or tannine), and gallic acid, a bluish black colour (ink). Sulphuretted hydrogen causes a white precipitate of sulphur, while the peroxide is reduced to protoxide; hydrosulphuret of ammonia causes a black precipitate of sulphuret of iron. These tests are so delicate and so uniform, especially those of ferrocyanide of potassium, sulphocyanide of potassium and tannic acid, or infusion of galls, that it is always best in testing for iron, to convert any protoxide that may be present into peroxide, which is easily done by boiling the solution with a little nitric acid.

c. Magnetic Oxide of Iron. Fe₃ O₄=116.052: and Fe₄ O₅=152.065.

This oxide is the native magnet, or loadstone, which is a heavy black mineral, strongly attracting iron filings, or steel. It is believed to be composed of protoxide and peroxide, and the native magnet is generally supposed to be Fe. $O_a = Fe O +$ Fe. O.. There is reason, however, to believe, that another kind of magnetic oxide exists, which is $Fe_4 O_5 = 2 Fe O + Fe_2 O_3$. At all events, both of these compounds may be formed artificially, and both are magnetic as well as permanent; not absorbing oxygen, or passing into peroxide. To prepare the former, take 2 parts of green vitriol; dissolve it in water and convert it into persulphate by boiling with nitric acid; then mix the solution with the solution of 1 part of the unaltered green vitriol, and precipitate the hot liquid by ammonia. A green precipitate falls, which is to be washed and dried. The second magnetic oxide is prepared in the same way, only converting into persulphate 1 part of green vitriol instead of 2 parts. The precipitate is black, if made in the liquid while hot. It is evident that in the latter case the quantity of iron, in the forms of protoxide and of peroxide, will be equal; in the former, the quantity of iron in the peroxide will be double that in the protoxide, so as to yield the above formulæ. Magnetic oxide of iron is also formed when iron is heated red-hot, and hammered. The black scales which separate (smithy ashes) are magnetic. The same oxide is produced when the vapour of water is passed over iron at a red heat, hydrogen being disengaged. It is used in medicine.

When black oxide of iron is dissolved in acids, both protoxide and peroxide are present. The latter may be precipitated by digestion with carbonate of lime, after which the former can be detected in solution.

IRON AND CHLORINE.

a. Protochloride of Iron. Fe Cl = 63.47.

This compound is formed when dry hydrochloric acid gas is passed over iron heated to redness, hydrogen gas being disengaged. Fe + H Cl = Fe Cl + H. It appears as a white crystalline solid, volatile in a very high temperature. It dissolves readily in water, forming a pale green solution, which

IODIDE OF IRON.

yields on evaporation crystals of the same colour. These contain water of crystallisation. The characters of this solution, its colour, taste, and reactions, are so exactly those of a solution of a salt of protoxide, that there is good reason to conclude that the chloride, in dissolving, decomposes water, forming protoxide of iron and hydrochloric acid.

b. Perchloride of Iron. Fe, Cl, =162.35.

SYN. Sesquichloride of Iron: Permuriate of Iron.—It is formed when chlorine gas is passed over iron heated to a temperature below redness, when it appears as red iridescent scales, volatile at a temperature little beyond 212°, and soluble in water, alchohol, and ether. A solution of the perchloride is easily obtained by dissolving peroxide of iron in hydrochloric acid: Fe₂ O₃ + 3 HCl = Fe₂ Cl₃ + 3 HO. When evaporated to the consistence of syrup, and cooled, it forms red crystals, which contain water of crystallisation. When heated, they are partly decomposed, peroxide being formed, and hydrochloric acid passing off, in consequence of the action between perchloride of iron and water. As perchloride of iron is a volcanic product, it is probably in this way that the crystals of peroxide, found in volcanic districts, have been formed. Perchloride of iron is much used in medicine.

IRON AND IODINE.

a. Protoiodide of Iron. Fe I = 154.3.

When iron filings and iodine, in atomic proportions, are brought in contact under water, they rapidly combine, with considerable heat, and the resulting iodide dissolves in the water. The whole is boiled with a slight excess of iron for a short time, and the pale green filtered solution rapidly boiled down in a Florence flask, till on cooling it becomes solid. The solid mass of iodide is broken up, and kept in very closely-stopped bottles. It forms a dark grey crystalline mass, which is very soluble in water, and forms a pale green solution; the solution, which is much used in medicine, attracts oxygen rapidly from the atmosphere, and is decomposed, iodine escaping, and peroxide being deposited. It is, therefore, necessary to prepare it extemporaneously, or to keep it in small tightly-corked bottles, with a portion of clear iron wire in each.

b. Periodide of Iron. $Fe_2 I_3 = 434.9$.

This compound is made by causing an excess of iodine to act on iron wire, and subliming the dry mass left after gently evaporating to dryness. It is a volatile, deliquescent body, of a red colour, soluble in water and alcohol.

The bromides of iron are analogous to the chlorides and iodides; and the fluorides correspond in composition, but are sparingly soluble in water.

IRON AND SULPHUR.

a. Protosulphuret of Iron. Fe S = 44.12.

This sulphuret is prepared by heating iron filings with sulphur in atomic proportions, when they combine with evolution of heat and light. Or a bar of iron may be heated to whiteness in a forge, and a stick of roll sulphur applied to the hot metal; which is instantly perforated, while the sulphuret falls to the ground in melted globules, having a yellowish colour and metallic lustre. Prepared by the first process, it is partly in crystalline grains, partly in the form of a black powder. It is used for protoxulphuret is dissolved in hydrochloric or sulphuric acid. Fe S + H Cl = Fe Cl + HS.

b. Sesquisulphuret of Iron. Fe. S. = 104.36.

It is formed by the action of hydrosulphuric acid (sulphuretted hydrogen) on peroxide of iron, at a heat not above 212°, as a yellowish grey powder; or by adding perchloride of iron to an excess of hydrosulphuret of ammonia, as a black powder, rapidly oxidised by exposure to the air.

c. Bisulphuret of Iron. Fe S. = 60.24.

Svn. Iron Pyrites.—This a very abundant mineral, of a yellow colour and metallic lustre, crystallising in cubes or octahedrons. When heated in close vessels, it loses nearly half its sulphur, which may be collected, magnetic pyrites being left. Iron pyrites is often contaminated with arsenic, which accompanies the sulphur, and is found in the sulphuric acid made from it.

d. Magnetic Pyrites. Fe₆ S₇ = 280.7.

This also occurs in nature, and is attracted by the magnet. It dissolves in acids, yielding sulphuretted hydrogen and a residue of sulphur.

Arfwedson has formed two other sulphurets, the tetrasulphuret $Fe_{2}S$, and the disulphuret $Fe_{2}S$, which have no particular interest.

Diphosphuret of iron is an ingredient in some kinds of iron, and has the bad effect of rendering it cold short, that is, brittle at common temperatures.

IRON AND CARBON.

Iron forms with carbon two distinct compounds, the precise composition of which is unknown. These are cast iron and steel.

Cast iron is obtained in the process for extracting iron from its ores. It occurs in two forms, white and grey. Both fuse far more readily than pure iron. White cast-iron is very hard and brittle; it contains about 5 per cent. of carbon. Grey cast-iron is softer and tougher; it contains between 3 and 4 per cent. of carbon, in part uncombined.

Steel contains from 1.3 to 1.75 per cent. of carbon. It is less fusible than cast-iron, and is much harder, more elastic, and more sonorous than pure iron. It is made by cementation : that is, alternate layers of iron and charcoal are placed in a closed chamber and heated to redness for several days, during which time a gradual combination takes place.

28. ZINC. Zn = 32.3.

This metal is found in considerable abundance. It occurs, as sulphuret, in zinc blende; and as carbonate of the oxide in calamine. To obtain the metal, the sulphuret is roasted in the air till the sulphur is burnt off and the zinc converted into oxide; or what is preferable, the carbonate is heated till all the carbonic acid and water it contains are expelled, leaving oxide of zinc. The oxide is now mixed with charcoal and the mixture distilled in retorts, or in crucibles, closed at the top, but having a tube open at both ends fitted into the bottom, and reaching, within, nearly to the cover. The oxide is reduced by the action of the charcoal at a full red-heat, and the metal being volatile, distils over and is condensed in water.

Zinc has a bluish white colour and bright lustre, and tarnishes slowly on exposure to the air. Its sp. g. is about 7. It is brittle at ordinary temperatures; but, between 250° and 300°, it is both malleable and ductile, and may be rolled or hammered into sheets of considerable thinness. It melts at 773° (Daniell), and at a high red or white-beat sublimes or distils unchanged in close vessels. Heated strongly in air, it takes fire and burns with a beautiful white light, forming oxide of zinc.

ZINC AND OXYGEN.

Protoxide of Zinc. Zn O = 40.313.

The oxide which is formed when zinc is burned in the air is the only compound of these elements. It may also be obtained by heating the carbonate to redness, or by precipitating the sulphate of zinc by a caustic alkali, in which latter case we obtain a bulky gelatinous hydrate of the oxide. Oxide of zinc is a fine white powder, insoluble in water, but very soluble in acids, which it neutralises, being a very powerful base, of the same class as magnesia.

Solutions of oxide of zinc are recognised by the following characters. Caustic alkalies produce a bulky white precipitate of hydrate, soluble in an excess of the alkali. The alkaline carbonates precipitate a bulky white carbonate of zinc, permanent when carbonate of soda or potash is employed, but soluble in excess of carbonate of ammonia. Sulphuretted hydrogen has no action if the solution be acid; but if it be quite neutral forms a white precipitate of hydrated sulphuret of zinc, which is best formed by hydrosulphuret of ammonia. Ferrocyanide of potassium also causes a white precipitate.

Chloride of Zinc. Zn Cl = 67.75.

This compound is formed by the action of chlorine on zinc, or by dissolving zinc in hydrochloric acid, when hydrogen is evolved. Zn + HCl = ZnCl + H. The solution is evaporated to dryness and sublimed in a current of hydrochloric acid gas. It is white, semisolid, very fusible, volatile at a red-heat, and highly deliquescent. It was formerly called butter of zinc.

Iodide of Zinc. Zn I = 158.6.

When iodine is acted on by excess of zinc under water, an energetic combination takes place, and a colourless solution is obtained which, in evaporation, leaves a deliquescent mass, very analogous to the chloride, and capable of being sublimed in crystals.

The bromide and fluoride of zinc are little known.

Sulphuret of Zinc. ZnS = 48.4.

Sulphuret of zinc occurs native, under the name of zinc blende, in dodecahedral crystals, which are sometimes yellow, sometimes red, brown, or black. It may be formed by heating oxide of zinc with sulphur, or sulphate of zinc with charcoal, in a closed crucible. ZnO, SO₂ + C₄ = 4 CO + ZnS.

29. CADMIUM. Cd = 55.8.

This metal occurs, in the form of carbonate, as an ingredient in various kinds of calamine or carbonate of zinc. It is also found in the form of sulphuret, as the rare mineral greenockite, and to the extent of 5 per cent. in some kinds of sulphuret of zinc. The metal is, in all its relations, very analogous to zinc, and is almost invariably found associated with it.

When an ore of zinc, containing cadmium, is treated as above

described, to obtain the zinc, the first vapours that distil over, which are known as the brown blaze, contain the cadmium, and are separately collected. To purify it from zinc, it is dissolved in an acid, and the solution acted on by a piece of zinc in a platinum vessel. The cadmium is reduced, and adheres to the platinum, the zinc being dissolved in its place. When well washed, the cadmium may be dissolved off by nitric acid. Or the acid solution of both metals may be precipitated by sulphuretted hydrogen, which throws down cadmium and not zinc. The sulphuret of cadmium is then dissolved in nitric acid. From this solution alkalies throw down oxide of cadmium, which is reduced exactly like oxide of zinc.

Cadmium is in appearance similar to tin, but is harder and more tenacious. It is both malleable and ductile. Its Sp. G. is 8.6. It melts at about 450°, and boils at a temperature not a great deal higher than the boiling point of mercury. When strongly heated in the air it burns, forming oxide. Like zinc, it forms only one oxide, chloride, sulphuret, &c.

Oxide of Cadmium. Cd O = 63.813.

The oxide is best prepared by heating the carbonate to redness. It is an insoluble orange powder, which is a strong base, neutralising acids. Its salts are easily recognised by the following tests. Caustic alkalies cause a white, bulky precipitate of hydrated oxide, which dissolves in excess of ammonia. Sulphuretted hydrogen produces an orange precipitate of sulphuret of cadmium.

The chloride and iodide of cadmium are white fusible compounds.

The sulphuret of cadmium is an orange yellow powder, soluble in nitric acid, and distinguished from yellow sulphuret of arsenic by being insoluble in caustic potash, and fixed in the fire.

30. TIN. Sn=57.9.

This important metal occurs in Cornwall and in Saxony, in the form of oxide, from which the metal is obtained by heating with charcoal.

Tin is a white metal, with a very high lustre, which is very little tarnished by exposure to the atmosphere. It is very malleable, yielding leaves (tinfoil) not thicker than $\frac{1}{1000}$ of an inch. It is soft, and when bent in the fingers makes a peculiar noise. Its Sp. G. is 7.2. It melts at 442°, and if heated to whiteness in air, it takes fire and burns with a white flame, forming peroxide of tin.

TIN AND OXYGEN.

a. Protoxide of Tin. Sn O == 65.913.

This oxide is prepared by adding an alkaline carbonate to a solution of protochloride of tin, when a bulky white precipitate is formed of hydrated protoxide of tin. This is washed with warm water and dried at a heat not above 196°. The dry hydrate is now heated to redness in a current of carbonic acid gas, and the anhydrous protoxide is left.

Protoxide of tin is a dense black powder, which has so strong an attraction for oxygen, that if touched with a red-hot body, it takes fire and burns into peroxide. It dissolves in acids, forming salts which absorb oxygen with avidity, and reduce the oxides of silver, mercury, and platinum to the metallic state, if added to their solutions. With solutions of gold, salts of protoxide of tin produce a purple precipitate, the purple of Cassius; so that salts of gold and salts of protoxide of tin are mutually tests for each other. Salts of protoxide of tin give, with sulphuretted hydrogen, a black precipitate of protosulphuret of tin.

b. Sesquioxide of Tin. $Sn_{g}O_{g} = 129.839$.

When moist hydrated peroxide of iron is mixed with a neutral solution of protochloride of tin, an exchange takes place, and a bulky precipitate of a grey colour is formed, which is a hydrate of sesquioxide of tin. Fe₂O₃ + 2SnCl = Sn₂O₃ + 2FeCl. The sesquioxide is soluble in acids and in ammonia, the latter character distinguishing it from the protoxide. Its solution in hydrochloric acid forms, with chloride of gold, the purple of Cassius; and seems, indeed, better adapted for making it than the protoxide.

c. Peroxide of Tin. $\operatorname{Sn}O_{\circ} = 73.926$.

This oxide exists in two distinct modifications. 1. If made by the action of nitric acid on tin, which is very violent, it appears as a dense white opaque powder, which is a hydrate, insoluble in water or acids. 2. If prepared by adding potash to perchloride of tin, it forms a very bulky hydrate, readily soluble in acids and also in alkalies. It seems rather to possess the characters of a weak acid than of a base. It is recognised in its solution in acids, by forming with alkalies, a bulky white hydrate, readily dissolved by excess of potash or soda, and by yielding, with sulphuretted hydrogen, a dirty yellow precipitate of bisulphuret of tin. When melted with glass, peroxide of tin renders it opaque, forming a white enamel.

N 2

TIN AND CHLORINE.

a. Protochloride of Tin. Sn Cl = 93.37.

This chloride is formed when chlorine gas is passed over metallic tin moderately heated, when hydrogen is given off. When dry it is a grey solid, fusible below redness. Tin dissolves in hydrochloric acid, and the concentrated solution deposits acicular crystals, which are a hydrated chloride, SnCl + 3HO. When heated, they give off water and hydrochloric acid, while protoxide is left : SnCl + 3HO = SnO + HCl + 2HO. The addition of a large quantity of water decomposes these crystals. causing the formation of an insoluble white powder, which is a compound of oxide and chloride with water. The solution of protochloride of tin, made by digesting an excess of tin in hydrochloric acid as long as hydrogen is given off, is much used as a deoxidising agent. It is apparently resolved into bichloride and metal, $2 \operatorname{Sn} \operatorname{Cl} = \operatorname{Sn} \operatorname{Cl}_{2} + \operatorname{Sn}_{3}$; and the latter, probably, is the true agent in deoxidising. It is also used for making the purple of Cassins.

b. Perchloride of Tin. Sn Cl. = 128.74.

When protochloride of tin is heated in excess of chlorine gas, or when 8 parts of tin powder are distilled with 24 of bichloride of mercury, a volatile fuming liquid is obtained, formerly known as the fuming liquor of Libavius, which is bichloride of tin. It is obtained in solution by dissolving tin in nitro-hydrochloric acid of moderate strength, adding small portions of tin at a time; also by forming a solution of protochloride, and passing chlorine through it, or heating it gently with a little nitric acid. It is much used in dyeing as a mordant.

The protoiodide of tin is a brownish-red fusible solid, dissolving in water; the periodide forms silky yellow crystals.

TIN AND SULPHUR.

a. Protosulphuret of Tin. Sn S = 74.

This compound is formed by pouring melted tin on its own weight of sulphur, and stirring well. 'The mass is then powdered, mixed with more sulphur, and thrown by degrees into a red-hot crucible, by which means the whole of the tin is sulphurised. It forms a bluish black brittle solid, having metallic lustre. It is also formed when sulphuretted hydrogen acts on solutions of protoxide or protochloride of tin.

b. Persulphuret of Tin. $Sn S_{2} = 90.1$.

This sulphuret, formerly called aurum musivum, is prepared

COBALT.

by heating to low redness, in a retort, a mixture of 2 parts peroxide of tin, 2 of sulphur, and 1 of sal-ammoniac. The sulphuret is left in the form of golden yellow scales, having a metallic lustre. It is soluble in potash. It is also formed as a dirty yellow bulky hydrate by the action of sulphuretted hydrogen on solutions of peroxide or perchloride of tin.

31. COBALT. Co = 29.5.

This metal occurs pretty abundantly, generally combined with arsenic, and associated with nickel and iron. A trace of it is always found in meteoric iron. To obtain the metal from the arseniuret, the ore, finely powdered, is gradually added to 3 parts of bisulphate of potash, melted in a moderate heat, and gradually increasing the fire, till no more white fumes appear. The mass, when cold, is powdered and boiled with water as long as anything is dissolved. The solution is free from arsenic, and contains sulphate of protoxide of cobalt. It is precipitated by carbonate of soda, and the washed precipitate acted on by oxalic acid, which forms an insoluble pink powder of oxalate of protoxide of cobalt. Should iron be present, it forms a soluble compound with the oxalic acid, provided it has been brought into the state of peroxide by boiling the solution with a little nitric acid before precipitating with carbonate of soda. The only impurity now likely to be present is nickel, and to separate this, the oxalate is dissolved in an excess of ammonia, and the solution exposed to the air in a deep glass vessel. As the ammonia evaporates, the nickel is deposited (if present) in the form of a pale green insoluble double oxalate of nickel and ammonia, while the cobalt remains dissolved, forming a port-wine-coloured solution. This being digested with excess of potash, yields a dark brown precipitate of pure peroxide of cobalt. This is again dissolved in hydrochloric acid, the solution precipitated by caustic potash or carbonate of soda, and the precipitate converted into oxalate, which is now quite pure; and the oxalate being heated to whiteness in a closed crucible, with a small aperture for escape of gas, leaves a button of pure metallic cobalt. The oxalate of cobalt, CoO, C₂O₃, is resolved by the heat into car-bonic acid and metal, CoO, C₂O₃ = Co + 2 CO₂. Cobalt is a metal of a reddish grey colour, rather brittle and

Cobalt is a metal of a reddish grey colour, rather brittle and very infusible. Its Sp. G. is 7.8. It is attracted by the magnet. At a red heat it decomposes water, hydrogen being disengaged.

COBALT AND OXYGEN.

a. Protoxide of Cobalt. CoO = 37.513.

Obtained by calcining carbonate of cobalt in close vessels, as an ash grey powder. It is a strong base, and forms, with acids, salts which are either pink or blue. Zaffre and smalt, which are so much used for painting blue on porcelain, and by the papermakers to correct the yellow tinge of their paper, are silicates of this oxide. The solutions of its salts are precipitated by caustic alkalies, which form a blue hydrate, gradually changing to green, soluble in excess of ammonia. Carbonates produce a lilaccoloured precipitate of carbonate of cobalt. Sulphuretted hydrogen produces no change : hydrosulphuret of ammonia produces a black sulphuret.

When this oxide, or the peroxide of cobalt, are heated in the air, they both yield a black oxide, which corresponds to the red oxide of manganese, its formula being $C_{0,3} = C_{0,3} =$

b. Peroxide of Cobalt. $Co_2 O_8 = 83.039$.

SYN. Sesquioxide of Cobalt.—When bleaching liquor (hypochlorite of lime) is added to solutions of protoxide of cobalt, or when chlorine is passed through hydrated protoxide suspended in water, a black powder is formed, which is hydrated peroxide. 3 eq. protoxide, and 1 eq. chlorine, yield 1 eq. protochloride and 1 eq. peroxide. $3 \operatorname{CoO} + \operatorname{Cl} = \operatorname{Co}_{2} \operatorname{O}_{2} + \operatorname{CoCl}$.

Peroxide of cobalt is, like peroxide of manganese, an indifferent or neutral oxide, for it does not combine with acids ; and when dissolved in hydrochloric acid, it forms protochloride, chlorine being disengeged.

Chloride of Cobalt. Co Cl = 64.95.

Obtained by dissolving cobalt, or any of its oxides, in hydrochloric acid. The solution is pink, and on evaporation yields beautiful red crystals of hydrated chloride, or possibly hydrochlorate of the oxide. When dried by heat, the chloride is of a deep blue, but is instantly rendered pink by the contact of water. The crystals are either CoCl, HO, or CoO, HCl. When traces are made on paper with a dilute solution of chloride of cobalt, they are invisible when dry; but, when warmed, assume a decided blue colour, which disappears again on cooling, as they again absorb moisture from the air. This is the most beautiful of the sympathetic inks. If iron or nickel be present, the traces appear green instead of blue.

The sulphurets of cobalt are not of much interest. The protosulphuret, CoS, is formed when hydrosulphuret of ammonia acts on salts of protoxide of cobalt as a black precipitate. According to Wöhler, sulphuret of cobalt is easily obtained by fusing the arseniuret of cobalt with 3 parts of pearlash and 3 parts of sulphur. The arsenic forms a soluble compound, and

NICKEL.

this is removed by water, leaving sulphuret of cobalt as a black powder. This may be dissolved in nitric acid, and the cobalt purified from iron and nickel, as above described. This process for extracting cobalt from its ores would seem to be the best of all.

The compounds of cobalt, when fused with glass, give to it a beautiful blue colour, and their use in painting the blue patterns on china is well known. The finest cobalt-blue for painting is made by heating a mixture of 15 parts of alumina with 2 of phosphate of cobalt to redness.

32. Nickel. Ni = 29.5.

This metal is rather rare; it occurs, like cobalt, chiefly in combination with arsenic, and associated with iron and cobalt. A very good method of extracting it from the arseniuret, or speiss, as it is called, is that of Wöhler, which is, to fuse the speiss with 3 parts of pearlash and 3 parts of sulphur. The arsenic forms, with the sulphur and potash, a soluble compound, and the nickel forms with the sulphur an insoluble sulphuret. This is well washed with water, and dissolved in nitric acid; and the solution, after any lead, copper, or bismuth that may be present, have been precipitated by a current of sulphuretted hydrogen, is precipitated by caustic or carbonated potash or soda. The washed precipitate is now acted on by an excess of oxalic acid, which forms, with the peroxide of iron that is generally present, a soluble, and with the oxide of nickel an insoluble, oxalate, which of course includes any cobalt that the ore may have contained. The oxalate is now dissolved in an excess of ammonia, and the solution exposed to the air. As the ammonia escapes, the nickel is deposited as an insoluble double oxalate, while the cobalt remains dissolved as a soluble double oxalate. of the metallic oxide with ammonia. The nickel salt, being ignited, leaves oxide, which may be reduced by heating with charcoal, or dissolved in acid, and again converted into oxalate, which this time is free from cobalt, and appears as a pale applegreen powder. The oxalate of nickel, being well washed, dried, and ignited in a closed crucible, with an aperture for the escape of gas, leaves metallic nickel, which, if the heat be very intense, is fused into a button.

Wöhler gives another process, which is said to be preferable to the above. It consists in projecting the finely powdered ore along with 2 parts of nitre and 1 of carbonate of potash, by degrees, into a red-hot crucible, and finally raising the heat for a good while. The arsenic is oxidised, yielding arsénic acid, which

NICKEL.

unites with the potash, while the nickel is also oxidised, and forms oxide of nickel, which is left undissolved when the mass is lixiviated with water. This oxide is pure, except from cobalt and iron, which must be separated as above. When these metals are not present, the oxide may be at once reduced by heating with charcoal, and yields pure nickel.

Nickel is nearly silver white, but has a tinge of grey. It has a high lustre, is hard, and malleable. Its sp. g. is 8'9. It is very infusible, and decidedly magnetic. It decomposes water at a red heat. Magnetic needles may be made of it, which do not rust. It is now much used in the manufacture of German silver, or argentan, which is an alloy of copper, zinc, and nickel. The better qualities contain more nickel than the inferior kinds.

NICKEL AND OXYGEN.

Protoxide of Nickel. Ni O = 37.513.

Its preparation is given above, in Wöhler's second process for metallic nickel. It is a greenish grey powder, which is a base, and forms, with acids, salts which are all green of different shades. Solutions of these salts give pale apple-green precipitates of hydrate and carbonate, with caustic and carbonated potash and soda. Ammonia causes a slight precipitate, which is instantly redissolved by an excess, forming a violet blue solution. Salts of nickel are not precipitated, in acid solutions, by sulphuretted hydrogen, but hydrosulphuret of ammonia causes a black precipitate of sulphuret of nickel.

b. Peroxide of Nickel. Ni $_{2}$ O $_{8} = 83.039$.

Svn. Sesquioxide of Nickel.—May be formed by passing chlorine through water in which the hydrated protoxide is suspended. It is an indifferent oxide or superoxide, analogous to sesquioxide of cobalt. It is a black powder.

Chloride of Nickel. Ni Cl = 64.95.

Analogous to chloride of cobalt. Its solution is emerald green, and yields crystals of the same colour; but when entirely deprived of water, it is yellow. At a low red heat it sublimes and condenses in brilliant gold yellow scales.

Protosulphuret of Nickel. Ni S = 45.6.

Analogous to protosulphuret of cobalt, and formed in the same way. Sulphur and nickel unite when heated together, with disengagement of heat and light, forming a greyish yellow metallic mass. The precipitated sulphuret is black. Sulphuret of nickel is found native in fine crystals of a pale brass colour, as the Haarkies of the Germans.

184

Order 3.—Metals which do not Decompose Water at any Temperature, and the Oxides of which are not Reduced to the Metallic state by the sole action of Heat.

33. Arsenic. As = 37.7.

This metal is occasionally found native, but it is chiefly met with in combination with cobalt, nickel, and iron. When the arseniurets of these metals are heated to redness in a current of air, a great part of the arsenic, being volatile, rises in vapour, and is deposited in the cold part of the chimney in the form of white oxide of arsenic or arsenious acid, the well-known white arsenic of commerce. This substance is mixed with charcoal or black flux (a mixture of charcoal with carbonate of potash), and the mixture introduced into a medicine phial, filling it about one-third. The phial is then placed in sand, the sand reaching as high as the mixture, and gradually heated to low redness. The metal sublimes and condenses in the upper part of the phial, which, when cold, may be cut off.

Arsenic is a very brittle metal, of a whitish grey colour, and very high lustre. Its sp. g. is 5.80. When heated to 356°, it sublimes without previously melting, its melting point being higher than its boiling point under the usual pressure. Its vapour has a strong alliaceous smell, a property which is characteristic of arsenic, no other metal possessing it. It sometimes rapidly tarnishes on exposure to the air, becoming nearly black ; and when sublimed in a current of air it is oxidised, being converted into arsenious acid. The rapid tarnishing of arsenic is probably owing to the presence of a little potassium, derived from black flux; for the native metal, when sublimed, does not tarnish.

ARSENIC AND OXYGEN.

a. Arsenious Acid. As₂ $O_3 = 99.439$.

The formation of this substance, when arsenic is sublimed in a current of air, has been mentioned. It occurs, when newly sublimed, as a hard brittle glass, which, when kept, slowly becomes opaque and crystalline, the change often taking years to reach the centre of a small lump of the glass. The sp. g. of arsenious acid is 3.7. At 380° it sublimes, yielding inodorous vapours, which condense in octohedral crystals, when the sublimation is slowly conducted in a glass tube.

It has little taste, which renders it the more dangerous as a poison; as when taken by mistake, there is no warning, as in the case of many other poisons. It is sparingly soluble in water, but the crystalline variety is more soluble than the glassy; 100 parts of hot water dissolving 11.5 of the former, and only 9.7 of the latter.

Arsenious acid, whether in the solid form or in that of solution, is a most virulent poison, and is, unfortunately, so accessible as to be often used for criminal purposes. Its detection, therefore, is a matter of the utmost importance; and innumerable tests, more or less effectual, have been proposed. These, however, may with advantage be reduced to a very small number; which again are best divided into—1. Those tests which apply to pure arsenious acid, or its salts; and, 2. Those which apply to mixtures, such as are likely to occur in medico-legal investigations.

1. Pure arsenious acid is easily recognised, as a heavy white powder, volatile without smell, sparingly soluble in water, and, when heated with charcoal, black flux, formiate of soda, or cyanide of potassium, yielding a volatile crust of metallic arsenic, the vapours of which have the odour of garlic.

The solution gives, with lime-water in excess, an insoluble white precipitate of arsenite of lime; with ammoniaco-nitrate of silver, a yellow precipitate of arsenite of silver; with ammoniaco-sulphate of copper, a grass green precipitate of arsenite of copper; and with sulphuretted hydrogen, acetic or hydrochloric acid being first added to the solution, an orange yellow precipitate of sesquisulphuret of arsenic. When to the solution of arsenious acid, or of any of its salts, sulphuric acid is added, and a portion of pure zinc introduced into the acid liquid, the hydrogen disengaged by the action of the zinc on the acid is found to be mixed with a portion of arseniuretted hydrogen gas, the presence of which gives it an alliaceous smell, and causes it to burn with a pale blue flame. If a piece of cold glass or porcelain be held in contact with this flame, a black stain or crust of metallic arsenic is deposited on it, and this crust may easily be recognised by its volatility, and the other characters of arsenic. (Marsh.) If the hydrogen gas, containing arseniuretted hydrogen, instead of being burned at the end of the tube, be slowly passed through a long narrow tube of hard glass, part of which is heated to redness, the arseniuretted hydrogen is decomposed at the red-hot part of the tube, and the arsenic deposited as a bright metallic crust a little beyond the hot part.

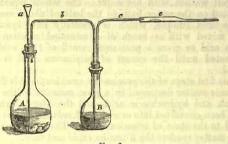
2. When, however, arsenious acid occurs in mixtures containing much organic matter, such as, for example, are found in the stomach or intestines of those poisoned with arsenic, or in the matters vomited before death, a method must be adopted which removes all organic matters, and permits the operator to test for arsenic with security. The following method, lately proposed by Fresenius and Von Babo, is perhaps the best :--

a. Two-thirds of the suspected mixture, or contents of a stomach, all solid parts being cut small, are introduced into a large porcelain capsule (the remainder being kept in case of accidents), and mixed with a moderate quantity of pure hydrochloric acid, and as much water as gives to the whole the consistence of a thin gruel, which is heated in the vapour bath, and chlorate of potash added at intervals of five minutes in portions of 20 or 30 grains to the hot liquid, until the whole has become clear yellow, perfectly homogeneous and fluid. At this point, about 2 drachms more of chlorate are added, and the vessel removed from the vapour bath. When quite cold it is strained through linen, or filtered, and the residue on the filter well washed with hot water. The whole liquid is now evaporated on the water bath to the bulk of about one pound, and the acid residue, which is generally now brownish in colour, mixed with as much of a saturated solution of sulphurous acid as gives a permanent smell of that acid. It is then heated until the excess of sulphurous acid is entirely expelled.

In this first stage of the process the arsenious acid is dissolved, the organic matter destroyed in a great measure by the chlorate of potash and hydrochloric acid, and the arsenic, which had thereby been converted into *arsénic* acid, reduced by the sulphurous acid to the state of arsenious acid. The destruction of the organic matter renders the filtration rapid and easy.

b. The acid liquid is now exposed for twelve hours to a current of sulphuretted hydrogen gas, the gas tube is washed with a little ammonia, which is added to the mass of liquid, and the whole allowed to stand, covered with paper, in a warm place, until the smell of sulphuretted hydrogen disappears. The precipitate which has formed, and which contains sulphuret of arsenic along with some organic matter, and possibly other metallic sulphurets, is collected on a small filter and well washed.

Here the arsenious acid is converted into sesquisulphuret of arsenic by the sulphuretted hydrogen. As, $O_3 + 3 HS = As_2 S_3 + 3 HO$.


c. The filter with the precipitate is dried in the vapour bath, moistened with fuming nitric acid, and the mass dried up in the water bath. Pure oil of vitriol is now added, so as to moisten the dry mass uniformly, the mixture is heated for two or three hours in the vapour bath, and, finally, dried on the sand bath at a heat not exceeding 290° till the charred mass assumes a brittle consistence. It is then heated in the vapour bath with from ten

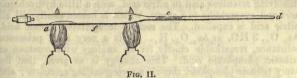
DETECTION

to twenty parts of distilled water, filtered, and the charcoal perfectly washed with hot distilled water. The whole filtered liquid is now mixed with hydrochloric acid and again precipitated by sulphuretted hydrogen, exactly as before. The precipitate is collected on a very small filter, well washed, and dissolved on the filter by ammonia, with which the filter is well washed. The ammoniacal solution of sulphuret of arsenic is evaporated to dryness in a small porcelain vessel, and the residue may be weighed if required.

In this stage the remaining organic matter is entirely destroyed, and the arsenic obtained in the form of pure sesquisulphuret.

d. For obtaining the metallic arsenic from this sulphuret, or reducing the sulphuret, which is the decisive proof, the following apparatus is employed (see cut, fig. I). A, is a well sized flask

FIG. I.


for generating carbonic acid gas, half filled with water and fragments of marble. Through one aperture in the cork passes the funnel tube a, reaching nearly to the bottom; through the other passes a tube b, which conducts the gas into the smaller flask B, in which it is washed and dried by passing through oil of vitriol. The tube c, carries the gas into the reduction tube C, which is represented in fig. II., a little less than half the real size.

When the whole is fitted and arranged, a portion of the dried sulphuret (reserving part for other experiments, or in case of accident), is mixed in a warm agate mortar with about twelve parts of a mixture of three parts of dried carbonate of soda and one part of cyanide of potassium. The mixed powder is carefully introduced, by means of a half cylinder of card, into the reduction tube, which is then turned on its axis, so as to allow the powder to lie on the part a f, fig. II. of the reduction tube. The card is then removed. The reduction tube is now attached to the gas apparatus, and hydrochloric acid poured into the

188

OF ARSENIC.

flask A, through the funnel, so as to cause a disengagement of carbonic acid gas, which fills the whole apparatus. The tube is then gently warmed through its whole length until all traces of moisture have disappeared, and when the current of gas has become so slow that the bubbles follow each other at an interval of about a second, the part b of the reduction tube (fig. II), is

heated to redness by a spirit lamp. This being done, the powder is now heated by another spirit lamp from a towards f, gradually, till all the arsenic is expelled.

The reduced arsenic is deposited as a bright metallic ring at c, fig. II., a mere trace only escaping at d. The second lamp is then brought towards b, in order to collect any trace of arsenic in the wide part of the tube, and the point d, being closed by melting it, and the tube detached, the arsenic is driven into as small a space as possible by heating from d towards c. The tube is now cut across at f, corked, sealed, and preserved as evidence. If the above process be followed exactly, the result is a ring of astonishing purity and brilliancy. The use of the carbonic acid is to prevent oxidation by the air, which, as well as moisture, if admitted, would very much interfere with the result.

This is not the place to notice the very numerous methods which have been proposed for the detection of arsenic in mixed fluids. It is enough to say that none of them is preferable to the above, if indeed any are equal to it, in point of facility, delicacy, and security. The process of Marsh, by hydrogen gas, as above described, is indeed very delicate, but it is rendered less secure by the fact that antimony, if present, gives somewhat similar appearances. In the method of Fresenius and Von Babo, antimony, if present, remains in the residue of the powder heated in the reduction tube, where it may be found, chiefly in the metallic state, and partly in a soluble combination.

The only known antidote to arsenious acid is the hydrated peroxide of iron, the ferrugo of the Edin. Pharmacopœia, which should be given in the moist state mixed with water. When made for this purpose, the precipitated oxide should never be dried, but kept under water; as when once dried, it is far less efficacious. It acts by combining with the arsenious acid.

ARSENIC ACID.

forming a compound which is quite insoluble and inert, and is a basic arsenite of sesquioxide of iron, Fe. O., As. O..

b. Arsénic Acid. As $O_5 = 115.465$.

This acid is found in nature combined with oxides of calcium, lead, copper, iron, cobalt, and nickel. It is easily prepared by dissolving arsenious acid in nitric acid, with a little hydrochloric acid and evaporating to a syrup, which is heated gently till all nitric acid is expelled. The residue is hydrated arsenic acid, As, O, 3 HO, or As, O, H₃. It is a very acid, poisonous substance, remarkable chiefly for its analogy with common or tribasic phosphoric acid. This analogy is so great, that for every tribasic phosphate, there is a corresponding arseniate : and this is not all, for the external properties of these salts are so exactly similar, that, except by analysis, or characteristic tests, we cannot tell whether arsénic, or phosphoric acid, be present. Not only are the native phosphates of copper, lead, and iron, exactly like the arseniates in colour, crystalline form, and constitution, but the phosphates are seldom found unmixed with arseniates.

The complete isomorphism of arsénic and tribasic phosphoric acids, in their salts, is one of the finest examples of isomorphism depending on similarity of constitution. Like the tribasic phosphates, the arseniates occur in 3 forms.

lst, As2 O5, 3 MO: 2nd, As2 O5 { 2 MO HO: 3rd, As2 O5 { 2 HO 2 HO :

and the crystalline form in all yet examined is the same as that of the corresponding phosphates. Thus the arseniate of soda, with 2 eqs. soda, and 1 eq. water, is not to be distinguished, in external aspects, from the common phosphate of soda. The formulæ are-

 $P_2 O_5$, $\begin{cases} 2 \operatorname{Na} O \\ HO \end{cases} + 24 \operatorname{aq}$: and $\operatorname{As}_2 O_5 \begin{cases} 2 \operatorname{Na} O \\ HO \end{cases} + 24 \operatorname{aq}$.

It is highly probable that phosphorus and arsenic are themselves entirely isomorphous, as elements : and in one particular they are alike, besides the analogy of their compounds; namely, the alliaceous odour of their vapour.

The salts of arsénic acid give with nitrate of silver a brickred precipitate of tribasic arseniate of silver; As, O, 3 AgO: and with hydrochloric acid and sulphuretted hydrogen, a pale yellow precipitate of persulphuret of arsenic, As, S... No modifications of arsenic acid, analogous to bibasic and

monobasic phosphoric acids, are yet known.

190

ARSENIURETTED HYDROGEN.

ARSENIC AND CHLORINE.

Sesquichloride of Arsenic. $As_{2} Cl_{3} = 181.66$.

Prepared by distilling 6 parts of bichloride of mercury with 1 part of metallic arsenic, 3 Hg Cl₂ + As₂ = 3 Hg Cl + As₂ Cl₃. It is a colourless, volatile, fuming liquid, which is resolved, by the action of water, into hydrochloric and arsenious acids. As₂ Cl₂ + 3 HO = As₂ O₂ + 3 H Cl.

ARSENIC AND IODINE.

Periodide of Arsenic. As $I_5 = 706.9$.

When arsenic and iodine are gently heated together they combine, and form a red solid compound, which by the action of water yields arsénic and hydriodic acids. As, $I_s + 5 \text{ HO} =$ As, $O_s + 5 \text{ HI}$.

ARSENIC AND BROMINE.

Sesquibromide of Arsenic. As₂ $Br_3 = 313.6$.

Arsenic and bromine when brought in contact, instantly combine, with vivid combustion. The compound is a solid, melting at about 70°, and boiling at 430°. It is transparent, and slightly yellow, and occasionally forms long prismatic crystals. With water, it yields arsenious and hydrobromic acid.

ARSENIC AND HYDROGEN.

When an alloy of arsenic and potassium is made to act on water, there is formed a brown solid body, which is said to be a protohyduret of arsenic, As $H = 38^{\circ}7$.

When arsenic is melted with an equal weight of zinc, an alloy is formed, which, when acted on by strong hydrochloric acid, yields a gas which is colourless, has a strong garlic odour, burns with a blue flame, and is distinguished from all other gases by being totally absorbed, when pure, by a saturated solution of sulphate of copper. It is frightfully poisonous when respired even in very small proportion along with common air, and the incautious experimenting with it has proved fatal to more than one chemist. It acts on many metallic solutions, forming insoluble arseniurets. When heated to redness it is decomposed, arsenic being deposited, and hydrogen, equal to one and a half time the bulk of the gas, being separated. This gas is formed when hydrogen is generated in a liquid, containing arsenious acid dissolved, and mixes with the hydrogen, and when the mixture is heated red hot in passing through a tube, or burned, a cold plate being held in the flame, arsenic is deposited. This is the principle on which Marsh's process for detecting arsenious acid is founded.

CHROMIUM.

ARSENIC AND SULPHUR.

a. Protosulphuret of Arsenic. As S = 53.8

Formed by melting arsenious acid with half its weight of sulphur. It is a red translucent solid, which may be sublimed in close vessels. It occurs in the mineral kingdom as realgar.

b. Sesquisulphuret of Arsenic. As₂ $S_8 = 123.7$.

Prepared by melting together equal weights of arsenious acid and sulphur, or by passing a current of sulphuretted hydrogen through a solution of arsenious acid. It has an orange yellow colour, is fusible, and may be sublimed in close vessels. It is very soluble in caustic alkalies, yielding colourless solutions. It occurs in the mineral kingdom as auripigmentum, or orpiment, and is an ingredient in king's-yellow. It may be used for dyeing silk, woollens, or cottons yellow, by soaking them in a solution of orpiment in ammonia, and then suspending them in a warm chamber. The ammonia evaporates, and the orpiment remains firmly fixed in the cloth. This sulphuret is the form in which arsenic is best separated from mixed liquids in medico-legal investigations.

c. Persulphuret of Arsenic. $As_2 S_5 = 156$.

Formed by the action of sulphuretted hydrogen on arsenic acid, or on arseniates acidulated by acetic acid. It is of a paler yellow than orpiment, is soluble in alkalies, fusible, and in close vessels volatile without change.

34. Chromium. Cr = 28.

Occurs in nature, in union with oxygen, as chromic acid in chromate of lead, and as oxide of chromium in chrome iron ore, from which latter all the compounds of chromium are obtained. The metal is very infusible, and has probably never been completely melted. It is obtained with difficulty in hard coherent masses of an iron grey colour, by heating the oxide to the highest temperature of a wind furnace for some hours in a crucible lined with charcoal. In this state it is hardly at all acted on by the strongest acids, but is oxidised by fusion with nitre, yielding chromic acid.

CHROMIUM AND OXYGEN.

a. Sesquioxide of Chromium. $Cr_2 O_3 = 80.039$.

This oxide may be obtained by heating to redness the bichromate of potash, KO_2CrO_3 , when neutral chromate, KO_3CrO_3 , is formed, sesquioxide is produced, Cr_2O_3 , and oxygen is disengaged. $2(KO_2CrO_3)=2(KO_3CrO_3)+Cr_2O_3+O_3$. The neutral chromate is dissolved out by water and the oxide is obtained as a crystalline green powder; or it may be prepared by heating a mixture of bichromate with carbonate of soda and sal ammoniac to redness. The hydrate is obtained by heating solution of bichromate with hydrochloric acid and alcohol or sugar till the liquid becomes of a pure green, and adding ammonia, which precipitates the hydrate as a pale bluish-green bulky powder.

Sesquioxide of chromium is isomorphous with sesquioxide of iron and alumina, and has been obtained in crystals exactly resembling specular iron ore. It is a weak base, and may be substituted for alumina or peroxide of iron in their salts, without altering the form. All its salts are green or blue, and most of them are red by transmitted candle-light. Oxide of chromium appears to exist in its salts in two modifications, in one of which the solutions are pure green, in the other of a mixed tint of red and green. The oxide may be used for painting a beautiful green on china, and for giving glass a green colour, or as a paint, being very permanent.

b. Chromic Acid. $\operatorname{Cr} O_{a} = 52.039$.

Prepared by adding 1 vol. of a cold saturated solution of bichromate of potash to 1½ vol. of pure oil of vitriol, and allowing the mixture to cool in a covered capsule, or in a flask, when it deposits beautiful deep red needles of chromic acid. The liquid being drained off, these are laid on a porous brick to dry, covered with a bell jar. They must be preserved in very tightly-stoppered bottles, as they are highly deliquescent.

Chromic acid is a strong acid, isomorphous with sulphuric, selenic, and manganic acids. Its salts are yellow, orange or red, and distinguished by the beauty and permanence of their colours. The acid itself is a powerful oxidising agent, yielding half its oxygen readily to oxidisable bodies, and being reduced to sesquioxide : $2 \text{CrO}_3 = \text{Cr}_2 \text{O}_3 + \text{O}_3$. Thus it instantly sets fire to alcohol when thrown into that fluid; and a mixture of bichromate of potash and sulphuric acid is much used as a means of oxidising organic products, and yielding new compounds. Chromic acid and oxide of chromium are both easily recognised in solutions by their colour, and the acid especially by its ready convertibility into the oxide by deoxidising agents.

According to Barreswill there exists a perchromic acid, $Cr_{,}$, $O_{,}$, corresponding to permanganic acid. It is formed by the action of peroxide of hydrogen on chromic acid, and has a fine deep blue colour. It is almost immediately resolved, however, into chromic acid and oxygen.

VANADIUM.

CHROMIUM AND CHLORINE.

a. Sesquichloride of Chromium. $Cr_{2}Cl_{3} = 162.26$.

Prepared by passing chlorine over a mixture of sesquioxide of chromium and charcoal heated to redness. It collects in the cold part of the tube as a crystalline peach-blossom-coloured sublimate, which dissolves in water, forming a green solution, which probably contains hydrochloric acid and sesquioxide. $Cr_{s}Cl_{s}+3HO = Cr_{s}O_{s}+3HCl$. The sesquichloride exists in another modification as a pink insoluble powder.

b. Oxychloride of Chromium. Cr $\begin{cases} O_2 \\ Cl \end{cases}$, or Cr Cl₃ + 2 Cr O₃.

This compound is formed when neutral chromate of potash, common salt, and oil of vitriol are heated together. (KO, Cr O_3)+NaCl+2SO₃=(KO, SO₃)+(NaO, SO₃)+Cr O₂ Cl; or 3(KO, CrO₃)+3NaCl+6SO₃=3(KO, SO₃)+3(NaO, SO₃)+ Cr Cl₃+2CrO₃. It distils over as a deep-red fuming liquid, which decomposes water, producing hydrochloric and chromic acids. It sets fire to phosphorus and many other combustible bodies. When its vapour is passed through a red-hot tube it is resolved into oxygen, chlorine, and sesquioxide of chromium. 2CrO₂ Cl=Cr₂O₃+O+Cl₂; or 2(Cr Cl₃+2CrO₃)=3Cr₂O₃ +O₃+Cl_e. Its constitution is uncertain, as, according to the two formulæ above given, it may be viewed either as chromic acid, in which 1 eq. of oxygen is replaced by chlorine, or as a compound of 1 eq. terchloride of chromium, and 2 eqs. chromic acid.

c. Perfluoride of Chromium.

When a mixture of chromate of lead, fluoride of calcium, and oil of vitriol, or, better, fuming sulphuric acid, is distilled in a silver retort, there is disengaged a red gas, which, in contact with the moisture of the air, produces hydrofluoric and chromic acids. Its precise composition is unknown. It was formerly considered a terfluoride; but it appears that this is not the case, and that it is more probably a quintofluoride, CrF_s. Possibly it may be, like the preceding compound, an oxyfluoride.

35. VANADIUM. V = 68.5.

This very rare metal is found in small quantity in the slag of the iron furnaces where the iron ore of Taberg, in Sweden, is smelted, also in the lead mines of Scotland, as vanadiate of lead, a mineral which likewise occurs in Mexico. The metal is brittle, very infusible, and nearly silver white. In its chemical relations it is somewhat analogous to chromium; and, like it.

MOLYBDENUM.

forms coloured compounds. It is not oxidised either by air or water, and the only acid that dissolves it is aqua regia.

a. Protoxide of Vanadium. VO = 76.513.

A black powder, which being heated burns into deutoxide.

b. Deutoxide of Vanadium. $VO_2 = 84.526$.

This oxide, when anhydrous, is black, but forms blue salts; these are apt to become first green and then red, from the formation of vanadic acid.

c. Vanadic Acid. $VO_3 = 92.539$.

Is obtained from vanadiate of lead by dissolving it in nitric acid, and precipitating lead and arsenic by sulphuretted hydro-gen, which reduces the acid to deutoxide. The blue solution is evaporated, during which vanadic acid is reproduced, and the dry mass is digested in ammonia, which dissolves the acid. Into this solution a lump of sal ammoniac is introduced, and, as this dissolves, the vanadiate of ammonia separates, being insoluble in a saturated solution of sal ammoniac. When this salt is heated to a point below a red-heat in an open vessel, the ammonia is expelled, and vanadic acid left, which melts below a red-heat, and on cooling forms beautiful red crystals. With bases it forms salts which are either red or yellow, according as they are acid or neutral salts. It is singular that the neutral vanadiates of the alkalies may occur both yellow and colourless without any known difference in composition. Vanadic acid unites with deutoxide of vanadium, forming compounds which are purple, green, yellow, or orange, according as the acid or oxide predominates. Vanadic acid is distinguished from chromic acid by yielding a blue solution, when deoxidised, instead of a green one.

With chlorine, vanadium forms a bichloride, VCl₂, and a terchloride, VCl₂. The latter is formed by passing chlorine over a mixture of protoxide of vanadium and charcoal, heated to low redness, when the terchloride distils over as a yellow fuming liquid, which decomposes water, producing hydrochloric and vanadic acids. When this chloride is exposed to a current of ammonia, a white compound is formed, and if this be heated in a continued current of ammonia, metallic vanadium is formed, and adheres to the tube.

36. MOLYBDENUM. Mo = 47.7.

This metal occurs in nature, combined with sulphur, forming a lead-coloured metallic mineral in broad plates or leaves, called

MOLYBDIC ACID.

molybdena, or sulphuret of molybdenum. It is found more sparingly as molybdic acid combined with lead. The metal may be obtained by passing hydrogen gas over molybdic acid, heated to whiteness in a porcelain tube. It is a brittle white metal, almost quite infusible. It forms three oxides.

MOLYBDENUM AND OXYGEN.

a. Protoxide of Molybdenum. Mo O = 55.713.

A black powder, which, when heated in the air, takes fire and forms deutoxide. Its hydrate dissolves in acids.

b. Deutoxide of Molybdenum. Mo $O_{0} = 63.726$.

A dark brown powder, forming a rust-coloured hydrate, which dissolves in acids, forming red salts. When exposed to air, it absorbs oxygen and becomes blue on the surface. The blue compound is a bimolybdate of the deutoxide, $MoO_{..} 2 MoO_{..}$

c. Molybdic Acid. Mo $O_a = 71.739$.

Obtained by roasting the sulphuret at a low red-heat, as long as sulphurous acid escapes, and acting on the residue with ammonia, which dissolves molybdic acid. The molybdate of ammonia is then purified by crystallisation; and on heating it gently in an open platinum crucible, ammonia is expelled, and molybdic acid left. It is a white powder, fusible at a red-heat, which sublimes in a current of air. It is sparingly soluble in water. It forms salts with bases, which are colourless.

MOLYBDENUM AND CHLORINE.

The protochloride, Mo Cl, is a nearly black soluble compound. When chlorine gas is passed over metallic molybdenum gently heated, bichloride of molybdenum, $Mo Cl_{2}$, is formed as a deep red vapour, which condenses in black crystals, like iodine. When the deutoxide is heated in dry chlorine, there is formed a yellowish white crystalline sublimate, which is an oxychloride, analogous to that of chromium. Mo $\begin{cases} O_{2} & \text{or Mo Cl}_{3} + 2 \text{ Mo O}_{3}. \end{cases}$

MOLYBDENUM AND SULPHUR,

There are 3 sulphurets of this metal. 1. The bisulphuret, MoS_g , which is the usual ore of molybdenum already described; 2. The tersulphuret, a dark brown or black powder, MoS_g ; 3. The persulphuret, also a dark powder, MoS_4 . Both the last are sulphur acids, combining with sulphur bases, such as sulphuret of potassium.

196

TUNGSTEN.

37. TUNGSTEN. W = 99.7.

SYN. Wolfram—Occurs in nature, chiefly in the mineral wolfram, oxidised along with oxides of iron and manganese, and more sparingly in the mineral tungsten, a compound of tungstic acid with lime. The metal may be obtained as the preceding, but is little known. It is very infusible, and has the Sp. G. 17.4. When heated in air, it burns and forms tungstic acid.

TUNGSTEN AND OXYGEN.

a. Deutoxide of Tungsten. $WO_2 = 115.726$.

To obtain it, 1 part of finely-powdered wolfram is fused in a platinum crucible with 2 parts of carbonate of potash. Tungstate of potash is formed, which is dissolved, filtered to separate the oxides of iron and manganese, and evaporated to dryness. The salt is mixed, in solution, with half its weight of sal-ammoniac, and the mixture dried up and ignited. The tungstic acid is reduced to the state of oxide by the ammonia, and chloride of potassium is formed; the latter is dissolved out by water, and the former, being first boiled with potash to remove any tungstic acid, and then washed and dried, is pure oxide of tungsten. It is a very heavy black powder, which, when heated in the air, burns like tinder, forming tungstic acid.

b. Tungstic Acid. $WO_{s} = 123.739$.

Is formed, as above, by heating the oxide in the air. It is a yellow powder, insoluble in water. With bases, it forms crystallisable salts. When heated to 500° or 600° in a current of hydrogen, it becomes of a fine deep blue, losing so much oxygen that it leaves an oxide, the blue oxide of tungsten, the formula of which is $W_2 O_s = WO_2 + WO_3$; so that it may be viewed as a tungstate of tungsten.

TUNGSTEN AND CHLORINE.

When heated in chlorine gas, tungsten forms two chlorides, a bichloride, WCl_3 , and a terchloride, WCl_3 . Both are red, volatile, and crystallisable compounds, subliming in beautiful crystals. The former, with water, produces hydrochloric acid and binoxide of tungsten; the latter yields hydrochloric acid and tungstic acid.

When the binoxide is heated in chlorine gas, there is formed an oxychloride in the shape of white volatile scales, like boracic acid. It is WCl₃ + 2WO₃; or W $\begin{cases} O_2 \\ Cl \end{cases}$

The sulphurets of tungsten have no peculiar interest.

ANTIMONY.

38. Columbium. Ta = 185.

Syn. Tantalum.—It occurs very sparingly, in the minerals tantalite and yttro-tantalite, as columbic acid. The metal is obtained by the action of potassium on the double fluoride of columbium and potassium, as a black powder, which, when compressed, exhibits metallic lustre ; and when heated burns in air, yielding columbic acid.

With oxygen it appears to form two compounds; a binoxide, TaO₂, and columbic acid, TaO₃. The latter is a white insoluble powder, which forms salts with bases.

With chlorine it forms a volatile terchloride, TaCl₃; and with fluorine, a white soluble terfluoride, TaF₂.

39. Antimony. Sb = 64.6.

This valuable metal is chiefly found in the mineral called antimony, which is a sesquisulphuret, $Sb_2 S_3$, and which occurs both pure and combined with other sulphurets. From the sulphuret the metal is easily obtained by heating it with iron filings, when the sulphur combines with the iron, and the melted antimony collects at the bottom of the crucible.

It is a brittle metal, of Sp. G. 6.7, having a bluish or greyish white colour when pure. It melts at 810°, and in a very intense heat it is volatilised. When heated strongly in open vessels, it takes fire, burning with a white light, and producing white vapours, which often condense in crystals, and are sesquioxide of antimony, Sb_2O_3 . Antimony is the chief ingredient in type metal.

ANTIMONY AND OXYGEN.

a. Sesquioxide of Antimony. $Sb_2 O_3 = 153 239$.

To prepare it, sesquisulphuret of antimony is boiled with about 5 parts of strong hydrochloric acid, when sulphuretted hydrogen is given off, and sesquichloride of antimony is dissolved. Sb₂S₃ + 3 HCl = Sb₂Cl₃ + 3 HS. The solution is now thrown into a large quantity of water, when a curdy precipitate separates, which is sesquioxide of antimony, combined with some undercomposed chloride, 9 Sb₂O₃ + 2 Sb₂Cl₃, the oxide having been formed by the action of water on the chloride; Sb₂Cl₃ + 3 HO = Sb₂O₃ + 3 HCl. The precipitate of oxychloride, which soon changes into crystals, if left in the liquid, is now to be washed and digested with an excess of carbonate of soda, by which the remaining chloride is converted into oxide. Sb₂Cl₃ + 3 NaO = Sb₂O₃ + 3 NaCl. The sesquioxide is now pure, and is to be washed and dried.

It is a greyish white heavy powder, fusible at a dull red-heat in

ANTIMONY.

close vessels, and volatile at a higher temperature. If heated in the open air it absorbs oxygen, forming antimonious acid. It is a base, and forms salts with acids, the most important of which is tartar emetic. Most of its soluble salts are decomposed by the contact of water.

Sesquioxide of antimony in solution is easily recognised by the peculiar brownish orange precipitate caused by sulphuretted hydrogen.

b. Antimonious Acid. $Sb_{2}O_{4} = 161.252$.

When oxide of antimony is heated, it absorbs oxygen, and when antimonic acid is heated, it loses oxygen, the product in both cases being the permanent antimonious acid. It is a white inscluble powder, very infusible and fixed in the fire. It forms salts, called antimonites, with bases.

c. Antimonic Acid. $Sb_2 O_5 = 169.265$.

Is formed by acting on the metal with strong nitric acid till it is converted into a white powder, which is hydrated antimonic acid. It is decomposed by a red heat, yielding water, oxygen, and antimonious acid. It forms salts, called antimoniates, with bases.

All the oxides of antimony are used in medicine; but the sesquioxide is the most important, as the basis of tartar emetic, which is a double tartrate of potash and sesquioxide of antimony.

ANTIMONY AND CHLORINE.

a. Sesquichloride of Antimony. $Sb_2 Cl_3 = 235.46$.

Is readily obtained by dissolving 1 part of sulphuret of antimony in 5 parts of hydrochloric acid (see above), and distilling the solution, until the volatile part becomes semisolid on cooling; the receiver is then changed, and what passes over afterwards is pure anhydrous chloride of antimony. It is a soft deliquescent solid, formerly called butter of antimony. When mixed with water, it is decomposed as mentioned above.

b. Perchloride of Antimony. $Sb_2 Cl_5 = 306.3$.

Obtained by acting on metallic antimony, or on the sesquichloride, with an excess of chlorine. It is also formed when powdered antimony is introduced into chlorine gas, when it burns with a vivid light. It is a colourless, volatile fuming liquid, which is decomposed by water, yielding hydrochloric and antimonic acids.

c. Oxychloride of Antimony. 9 Sb₂ O₃ + 2 Sb₂ Cl₃.

This is the white powder formed when sesquichloride of antimony is thrown into water, as above described, under the head of sesquioxide. It soon changes into crystals, and is a definite

URANIUM.

compound of oxide and chloride. It is entirely converted into oxide by alkalies. It was formerly called powder of Algaroth.

Bromine and antimony combine readily, and form a volatile crystalline solid.

ANTIMONY AND SULPHUR.

a. Sesquisulphuret of Antimony. Sb₂ S₂ = 177.5.

This is the common ore of antimony, and is generally a dark grey radiated fusible crystalline mass, Sp. G. 4[.]62. When formed by the action of sulphuretted hydrogen on salts of antimony, it is precipitated as a hydrate, of a brownish orange colour.

b. Persulphuret of Antimony. Sb₂ S₅ = 209.7.

When sesquisulphuret and sulphur are boiled in solution of potash, and an acid added to the filtered liquid, a golden yellow precipitate is formed, often called the golden sulphuret of antimony, which is the persulphuret, $Sb_{2}S_{2}$.

c. Oxysulphuret of Antimony. $2 \operatorname{Sb}_2 \operatorname{S}_3 + \operatorname{Sb}_2 \operatorname{O}_3 = 508.2$.

This compound is found in nature as red antimony; and when sesquisulphuret of antimony is boiled with potash, and an acid added to the filtered liquid, a reddish orange precipitate is formed, which is often oxysulphuret; although it may be obtained nearly free from oxide, and is then hydrated sesquisulphuret. This is the substance so long known as mineral kermes; and it is the form in which sulphuret of antimony is chiefly used in medicine on the Continent. In this country we use the precipitated sesquisulphuret.

40. URANIUM. U = 217.

This metal occurs in the form of protoxide, along with other oxides in the mineral pitchblende; and in that of peroxide in uranite and uran mica. When an excess of pitchblende is digested with diluted nitric acid, uranium dissolves, to the exclusion of iron, and after lead, copper, bismuth, or arsenic, have been removed by sulphuretted hydrogen, the solution may be considered pure. Carbonate of ammonia precipitates the peroxide of uranium, but an excess re-dissolves it; and this solution, if boiled, deposits pure peroxide of uranium, of a very fine yellow colour. The metal is little known ; and from recent researches, it would appear, that what was supposed to be the metal is an oxidised body, acting, according to Péligot, the part of a metal ; while, according to others, it is the protoxide of the true metal. In the present state of our knowledge, it is not easy to decide ; and as the metal is not one of great importance, I shall not enter into details here; merely stating, that the oxide formerly called protoxide, is used for giving a fine black in painting

200

BISMUTH.

on porcelain; and that the peroxide and all its compounds have rich and permanent yellow colours. Its solutions are yellow, and give with ferrocyanide of potassium, a rich chestnut brown precipitate.

41. CERIUM. 42. LANTANIUM.

These metals are in a state of still greater uncertainty. They occur invariably associated in some very rare minerals, and are not yet known in a state of purity. This applies to the oxides likewise. According to the most recent researches of Mosander, who discovered lantanium, these two metals appear to be always associated with a third, didymium, which is not yet fully described. It would be absurd at present to give a description which would infallibly have to be altered in a very short time. All these metals are too rare to become of any practical interest.

43. BISMUTH. Bi = 71.07.

Occurs sometimes as metal, more frequently as sulphuret. It is a highly crystalline metal, of a reddish white colour, fusible at 476° , and even volatile in close vessels. When heated in the air it burns with a bluish flame, forming oxide of bismuth. Bismuth is an ingredient in Newton's fusible metal, and in various fusible alloys.

BISMUTH AND OXYGEN.

a. Protoxide of Bismuth. Bi O = 79.083.

To obtain it, bismuth is dissolved in nitric acid, and the solution thrown into water, when a copious white precipitate of subnitrate of bismuth is formed. This is washed, dried, and ignited, and protoxide of bismuth is left. It is a yellow powder, fusible at a red-heat. With acids it forms colourless salts. Most of these salts are decomposed when thrown into water; and this character, coupled with the black caused by sulphuretted hydrogen, enables us easily to recognise the presence of bismuth, and to separate it from other metals.

b. Peroxide of Bismuth. $Bi_2 O_3 = 166.179$.

Formed when protoxide of bismuth is fused with hydrate of potash, or when it is digested in a solution of chloride (hypochlorite) of soda. It is a heavy brown powder, of a neutral character.

Chloride of Bismuth. Bi Cl = 106.42.

Powdered bismuth takes fire in chlorine gas, and forms a grey semisolid chloride, not volatile, the old butter of bismuth.

Bromide of bismuth resembles iodine in appearance; it is fusible and volatile.

TITANIUM.

The sulphuret of bismuth found in nature is of a lead grey colour; that formed by the action of sulphuretted hydrogen on the salts of bismuth is black. It is a protosulphuret, Bi S.

44. TITANIUM. Ti = 24.3.

This metal is found oxidised in several minerals; and occurs occasionally in the metallic form, in the slag of iron works, as small cubical crystals, exactly similar to copper in appearance, of Sp. G. 5:3, and very infusible. When heated with nitre, they are oxidised, producing titanic acid.

TITANIUM AND OXYGEN.

a. Protoxide of Titanium. Ti O?

When a solution of titanic acid in hydrochloric acid is acted on by zinc, a purple powder is thrown down, which is supposed to be a hydrate of the protoxide. It rapidly absorbs oxygen from the air, and is reconverted into titanic acid.

b. Titanic Acid. Ti $O_2 = 40.326$.

To obtain this acid, rutile, which is a native titanate of iron and manganese, is heated to strong redness in a porcelain tube, and sulphuretted hydrogen gas passed over it, which acts on the oxides of iron and manganese, converting them into sulphurets; the operation is continued as long as water is formed, and the residue is digested in hydrochloric acid, which dissolves the sulphurets, leaving the titanic acid, mixed with a little sulphur. Should it not appear quite white, the process is repeated. Titanic acid is a snow-white infusible solid, in its relations

Titanic acid is a snow-white infusible solid, in its relations somewhat analogous to silicic acid. When it has been fused with alkali, it becomes soluble in strong hydrochloric acid, but it is precipitated by boiling. A solution of galls causes an orange red colour in its solution, and a rod of zinc causes a purple deposit. Titanic acid is used in making the finer kinds of enamel for artificial teeth, from its whiteness and hardness.

BICHLORIDE OF TITANIUM.

Formed by passing chlorine gas over metallic titanium, or a mixture of titanic acid and charcoal, at a red-heat. It is a transparent colourless liquid, boiling a little above 212°, and fuming strongly in the air. When a few drops of water are added to a portion of it, a very violent action takes place, and a solid hydrate of titanic acid is left, hydrochloric acid being given off. Ti $Cl_{g}+2$ HO=Ti $O_{g}+2$ H Cl. It absorbs a large quantity of ammonia, and yields a solid compound.

COPPER.

Bisulphuret of titanium is formed by passing the vapour of bisulphuret of carbon over titanic acid, at a white-heat. $CS_{,}$ + Ti $O_{z} = CO_{z}$ + Ti S_{z} . It forms thick, green masses, which become yellow and metallic-looking by friction.

45. TELLURIUM. Te = 64.2.

This very rare metal occurs alloyed with gold and silver. It has a colour between that of tin and lead, is very brittle, and has the Sp. G. 6:2578. It is very fusible, and volatile at a red-heat. It forms two oxides. The first, oxide of tellurium, or tellurous acid, Te O_g , is analogous to selenious acid, and like it formed by the action of nitric acid on the metal. It is a white insoluble powder, which forms with the alkalies crystallisable salts, from which it is separated by acids as a flaky hydrate, which dissolves in acids, and even in water. It is blackened by sulphuretted hydrogen, and reduced to the metallic state by zinc and other metals. The other oxide is telluric acid, Te O_g , which is formed when tellurium is deflagrated with nitre. It is a soluble and crystallisable acid; the crystals are Te O_g , 3 HO. Its salts are not much known.

There are two chlorides: the protochloride, Te Cl, a black solid, yielding a violet vapour; and the bichloride a white, volatile, crystallisable solid.

With sulphur, tellurium forms two compounds, one of which, the bisulphuret, Te S_2 , is a dark-brown powder; the other is yellow, but not permanent.

With hydrogen, tellurium forms a gaseous compound, obtained by the action of hydrochloric acid on an alloy of tellurium with zinc. It is a feeble acid, analogous in composition, smell, and other characters, to sulphuretted hydrogen. With water it forms a claret-coloured solution, which precipitates many metallic salts, yielding precipitates which are tellurets of the metals, analogous to the sulphurets and seleniurets. Its formula is H Te, and its action on metallic oxides is, H Te + M O = M Te + HO.

46. COPPER. Cu = 31.6.

This important metal is sometimes found as metal, but it chiefly occurs in copper pyrites, the sulphuret, and in blue copper ore, or malachite, which is carbonate of copper. The latter ore, heated with charcoal, yields the metal most easily. It is distinguished from all other metals, except titanium, by its red colour. It melts in a strong red-heat, and has the Sp. G. 8.667. It is both ductile and malleable, and has a high degree of tenacity. It is hard, elastic, and sonorous. Heated in the open fire it absorbs oxygen, and produces a black crust of oxide

COPPER.

of copper, Cu O. Its proper solvent is nitric acid, but it dissolves in all acids if air be admitted, even in the cold. This renders its use for culinary purposes dangerous, as copper vessels left with vinegar, or any vegetable acid in them, are sure to be corroded, and the solutions are very poisonous. Copper is an ingredient of brass, in which it is combined with zinc, and of bronze and bell-metal, in which it is alloyed with different proportions of tin.

COPPER AND OXYGEN.

a. Protoxide of Copper. CuO = 39.613.

SYN. Black Oxide of Copper—Is obtained, as above, by heating copper in air, or by calcining nitrate of copper, when the oxide is left. It is a heavy black powder, which is a strong base, and forms with acids, salts, all of which are blue or green. The solutions of this oxide have generally a blue colour; they give with potash a pale blue hydrate, becoming black when boiled in the liquid in which it was formed; with ammonia in excess a deep violet blue solution; with sulphuretted hydrogen, a black; and with ferrocyanide of potassium, a chestnut-brown precipitate. The last test is highly delicate. Iron throws down metallic copper from these solutions. Black oxide of copper is not decomposed by heat, but has the valuable property of yielding all its oxygen at a red heat to organic matter; hence its importance in organic analysis.

b. Suboxide of Copper. Cu. 0=71.213.

SYN. Red Oxide of Copper—Occurs native, and is formed when a mixture of dried sulphate of copper, dried carbonate of soda, and copper filings, is ignited strongly for 20 minutes. It is a red powder. It dissolves in hydrochloric acid, forming a colourless solution, from which alkalies precipitate an orange hydrate, but most acids resolve it into black oxide and copper. $Cu_{o} 0 = Cu 0 + Cu$. It is a feeble base.

COPPER AND CHLORINE.

Chloride of Copper. Cu Cl = 66.02.

Forms green deliquescent needles, which are a hydrate. The anhydrous chloride is yellow.

Dichloride of Copper. Cu₂ Cl = 98.62.

Is found when copper-filings are heated with 2 parts of corrosive sublimate. A resinous-like, fusible mass, of a yellow or brown colour.

LEAD.

Diniodide of Copper. Cu 2 I=189.7.

Formed when iodide of potassium is added to a solution of 1 part of sulphate of copper, and 3 parts of sulphate of iron. It falls as a dirty white precipitate. We are thus enabled to precipitate the whole of the iodine from any iodide; for if we add only sulphate of copper, not more than one-half of the iodine is got, the other half being set free, because no protoiodide of copper exists.

Disulphuret of Copper. Cu. S=79.32.

This is the native ore, copper pyrites, and is formed when sulphuretted hydrogen acts on solutions of copper.

The best antidote to the preparations of copper is white of egg, which forms with oxide of copper an inert compound.

47. LEAD. Pb=103.6.

This valuable metal chiefly occurs combined with sulphur, forming the mineral galena, or lead-glance, from which all the lead of commerce is obtained. It is also met with as carbonate, sulphate, phosphate, and arseniate of oxide of lead. The galena is roasted, to expel the sulphur and oxidise the lead, and the oxide is heated with charcoal to reduce the metal; indeed, a good deal of lead is obtained by heating the ore alone in a reverberatory furnace, where it is partly converted into sulphate of lead, and partly into oxide. Both of these act on undecomposed sulphuret, yielding sulphurous acid and metallic lead : thus, $2 \text{ PbO} + \text{PbS} = \text{SO}_{2} + \text{Pb}_{3}$: and, PbO, SO₃ + PbS = $2 \text{ SO}_{2} + \text{Pb}_{2}$.

Lead has a bluish-grey colour, and high lustre, but soon tarnishes. Its Sp. G. is 11.381. It is malleable, ductile, soft, and flexible, but of inferior tenacity. It melts about 612°. When heated in air it is rapidly oxidised, and, according to the heat, yields protoxide, or red oxide. The grey matter that forms on the surface of melted lead is a mixture of metal and protoxide.

Lead, when exposed to the action of air and moisture, is rapidly corroded, and particularly in contact with pure or rainwater, forming a white crust of carbonate, which is highly poisonous. The oxygen and carbonic acid are absorbed from the air. This renders lead quite improper for pipes or cisterns, where rain-water, or very soft water, is to be kept in them ; but Dr. Christison has shown that lead is protected by the presence of a minute quantity of saline matter, particularly sulphates, and as these exist in hard-water, or even in such water as that of Edinburgh, in sufficient quantity, lead may be safely used in such cases, as it is not corroded, the surface becoming

OXIDES OF LEAD.

covered with an insoluble film, which protects the mass of the metal.

Lead is a most useful metal, not only in itself, but as an ingredient in pewter, solder, and other important alloys.

LEAD AND OXYGEN.

a. Protoxide of Lead. Pb O = 111.613.

Prepared by heating lead in air till it is entirely converted into a yellow powder, which is the protoxide, often called massicot. When partially fused, as in the process of cupellation, it is called litharge. It is a heavy, insoluble, yellow or reddish powder, which is a base, and forms with acids the salts of lead, which are generally colourless, and have a sweet taste. Their solutions give with potash a white hydrate, soluble in excess; with carbonates, a white carbonate, which is the paint white lead; with sulphates, or sulphuric acid, a white insoluble sulphate; with iodide of potassium, a bright yellow iodide of lead; with sulphuretted hydrogen, a dark brown, nearly black sulphuret. Lead is very easily recognised in solution by the combination of the two tests of sulphuric acid, and sulphuretted hydrogen, or iodide of potassium and sulphuretted hydrogen.

b. Sesquioxide of Lead. Pb, Os = 231.239.

Is formed when solution of hypochlorite of soda is added to protoxide of lead dissolved in caustic soda. It is a reddish yellow insoluble powder, resolved by acids into protoxide and oxygen.

c. Peroxide of Lead. $Pb O_{2} = 119.626$.

Prepared by acting on red oxide of lead (see below) with dilute nitric acid, which dissolves protoxide, and leaves peroxide of lead as a puce-coloured insoluble powder. It is also formed when litharge is fused with chlorate of potash at as low a heat as possible; and when chlorine is passed through a solution of acetate of protoxide (sugar of lead). Here, $2 \text{ PbO} + \text{Cl} = \text{PbCl} + \text{PbO}_3$. The peroxide yields oxygen when heated, or when acted on by acids, which combine with protoxide, liberating oxygen.

d. Red Oxide of Lead. Pb. 0,=342.852.

This well-known pigment is formed when lead is exposed to a current of air at 600° or 700°. It is formed either of protoxide and peroxide, $2 \text{ PbO} + \text{PbO}_3$; or of sesquioxide and protoxide, $\text{Pb}_2 \text{ O}_3 + \text{PbO}$. Acids resolve it into peroxide and protoxide. It is much used in the manufacture of flint glass, to give brilliancy and fusibility to the glass.

206

MERCURY.

Chloride of Lead. Pb C1 = 39.02.

Is formed when hydrochloric acid or a soluble chloride is added to any solution of a salt of protoxide of lead : HCI + PbO =PbCI + HO. It is deposited in strong solutions as a white precipitate, sparingly soluble in cold water. It dissolves in hot water, and forms white needles on cooling. It is fusible below a red-heat, and forms on cooling a horny mass.

Iodide of Lead. Pb I = 229.9.

Formed when hydriodic acid or a soluble iodide is added to a salt of protoxide of lead. $KI + PbO, NO_s = PbI + KO, NO_s$. It forms a bright yellow very sparingly soluble precipitate, which dissolves in hot water, forming a colourless solution; and, on cooling, deposits beautiful yellow six-sided tables with the lustre of gold.

Bromide of lead, PbBr, resembles the chloride.

Sulphuret of Lead. Pb S = 119.7.

This is the native compound from which the lead of commerce is obtained. It is grey, and has a high metallic lustre, and is often found beautifully crystallised in cubes. By the action of fuming nitric acid, it is entirely converted into sulphate of lead. PbS + $4 \text{ NO}_{s} = \text{PbO}, \text{ SO}_{s} + 4 \text{ NO}_{4}$. It is formed by the action of sulphuretted hydrogen on the salts of lead, as a black powder.

Order 3.—Metals, the Oxides of which are reduced to the Metallic State by a Red-Heat.

48. MERCURY. Hg = 202.

This metal is distinguished from all others by its being liquid at ordinary temperatures. It is occasionally found in the metallic state; but its usual ore is the bisulphuret, known as cinnabar. From this it is obtained by distilling it in iron vessels with iron filings.

The appearance of mercury or quicksilver is well known. Its Sp. G. is 13:545 at 47° : but it contracts in freezing; and as a solid, its Sp. G. is 15:612. It freezes at -39° , and boils about 620°. When heated to its boiling point along with air, it slowly combines with oxygen, forming a red powder, which is peroxide of mercury, the oxydum hydrarogyri rubrum per se of the older chemists. At a somewhat higher temperature the oxygen again separates from the metal. The uses of mercury for barometers, thermometers, mirrors, &c., are universally known.

MERCURY.

MERCURY AND OXYGEN.

a. Protoxide of Mercury. Hg O = 210.013

To prepare it, protochloride of mercury (calomel) is rapidly mixed with aqua potassæ in excess, by rubbing in a mortar ; and the black powder formed is washed with cold water and dried in the dark. HgCl + KO = KCl + HgO. It is a black or dark olive powder, which is easily resolved into peroxide and metal: $2 HgO = HgO_2 + Hg$; and hence is difficult to keep. It is a feeble base, and forms with acids crystallisable salts, such as the acetate and nitrate. Its solutions are precipitated black by caustic alkalies: white (calomel) by hydrochloric acid, or a soluble chloride; and the metal is reduced by copper, phosphorous acid, or protochloride of tin.

b. Peroxide of Mercury. HgO2 = 218.026.

Is formed, as above mentioned, by the combined action of heat and air; but much more readily by dissolving mercury in nitric acid, evaporating to dryness, and heating the dry residue as long as any nitrous acid is given off. The peroxide is left in the form of a crystalline scaly powder, nearly black while hot, but of a light red when cold. In this form it is often called red precipitatate, a most absurd name, as it has not been prepared by precipitation, and when precipitated it appears as a yellow hydrate. It is a base, and forms salts with acids, which are apt to be decomposed by hot water, yielding insoluble yellow sub-salts and soluble super-salts. These salts give a yellow precipitate with caustic potash, a white with ammonia, and a fine scarlet with iodide of potassium ; phosphorous acid, protochloride of tin, and copper, reduce the mercury to the metallic state.

Both the oxides of mercury, in their solutions, are precipitated black by sulphuretted hydrogen.

MERCURY AND CHLORINE.

a. Protochloride of Mercury. Hg Cl = 237.42.

Syn. Calomel—Occurs sparingly as horn quicksilver in the mineral kingdom. May be prepared either by subliming a mixture of bichloride of mercury and mercury, $\text{Hg Cl}_2 + \text{Hg}$, which yields 2 HgCl; or by adding hydrochloric acid or solution of common salt to a solution of protonitrate of mercury, when the protochloride is precipitated. HgO, NO₅ + NaCl = NaO, NO₅ + HgCl. It is a heavy white volatile powder, insoluble in water. It is blackened by alkalies. When first prepared, it is always contaminated with corrosive sublimate, and must be well washed with hot water before it is used as a medicine.

IODIDES OF MERCURY.

b. Bichloride of Mercury. Hg $Cl_{2} = 272.84$.

SYN. Corrosive Sublimate.—This compound is formed when mercury is heated so as to burn in chlorine gas. It is prepared by subliming a mixture of bisulphate of peroxide of mercury with common salt. HgO_2 , $2SO_3 + 2NaCl = 2(NaO, SO_3)$ $+ HgCl_2$. Or it may be formed by dissolving peroxide of mercury in hydrochloric acid, when it is deposited in crystals. It is a heavy, translucent, crystalline, volatile solid, soluble in 20 parts of cold water, and in two parts of hot water. It has a very disagreeable acrid, metallic taste, and is very poisonous. Its solution gives, with fixed alkalies, a yellow precipitate of hydrated peroxide ; with ammonia, a white insoluble powder, called white precipitate ; with sulphuretted hydrogen, first a white, and when the test is added in excess, a black precipitate of periodide ; and with protochloride of tin, a grey powder of running mercury.

The proper antidote to corrosive sublimate, as a poison, is albumen or white of egg, which forms with it an insoluble and inert compound.

MERCURY AND IODINE.

a. Protoiodide of Mercury. Hg I = 328.3.

This compound is formed when iodine and mercury are rubbed together in the proper proportions, with a little alcohol, which facilitates the combination; or when iodide of potassium is added to solutions of protoxide of mercury; HgO + KI =KO + HgI. It is a greenish yellow, heavy insoluble powder, which may be sublimed; but is apt to be decomposed by heat, and especially by light, into metallic mercury and periodide. $2 HgI = HgI_{\circ} + Hg$.

b. Biniodide of Mercury. Hg $I_2 = 454.6$.

SYN. Periodide of Mercury.—Is obtained by rubbing together iodine and mercury in the proper proportions, with a little alcohol, and subliming; or by adding iodide of potassium to a solution of corrosive sublimate. $Hg Cl_2 + 2 K I = 2 K Cl +$ $Hg I_2$. It is an insoluble powder, of the most brilliant scarlet colour, superior to that of vermilion, and equal to that of certain flowers, such as *lobelia cardinalis*, salvia splendens, and certain varieties of *pelargonium*: but unfortunately it loses part of its brilliancy when exposed to light under certain circumstances. Although insoluble in water, it dissolves easily in an excess of either of its precipitants; a hot solution of nitrate of peroxide of mercury dissolves it, and on cooling, deposits it in beautiful red crystals.

209

SILVER.

The biniodide, when heated, undergoes a remarkable change: the red powder, which has an earthy aspect, passing into yellow crystals; and when further heated, melting and subliming in large yellow rhombic tables. Either these, or the yellow crystalline powder first mentioned, sometimes retain their yellow colour pretty long; but agitation, or friction, or the mere touch of a sharp point, at once causes them to become red, beginning at a point or points, and gradually changing throughout the mass. This is the result entirely of a new molecular arrangement; for the composition of the red and yellow iodide is precisely the same.

The bromides of mercury are very similar to the chlorides.

MERCURY AND SULPHUR.

a. Protosulphuret of Mercury. Hg S = 218.1.

Formed by the action of sulphuretted hydrogen on diluted protonitrate of mercury. It is a black powder which, by heat, is resolved into metallic mercury and bisulphuret.

b. Bisulphuret of Mercury. Hg S₂=234.2.

Occurs naturally, as cinnabar, and is the chief ore of mercury. Is formed by fusing sulphur with 6 parts of mercury, and subliming; or by pouring a solution of corrosive sublimate into an excess of hydrosulphuret of ammonia, when a black powder falls, which is to be dried and sublimed. When sublimed, the bisulphuret forms a dark red crystalline mass, called cinnabar, which, when finely powdered, acquires a very fine red colour, and becomes vermilion.

The black powder obtained by triturating together equal parts of mercury and sulphur, and long known as Ethiops mineral, is a mixture of sulphur with bisulphuret. It is to be observed, that the bisulphuret, like the biniodide, exists in two states, being sometimes black, and sometimes red.

49. SILVER. Ag = 108.31.

This beautiful and useful metal is found in the metallic state; also, as chloride and as sulphuret. It occurs also alloyed with gold, tellurium, antimony, copper, and arsenic. Almost all varieties of galena (the ore of lead) contain a small proportion of sulphuret of silver; and in many places, it is found worth while to extract this silver from the lead smelted from the ore. The separation of lead from silver is effected by cupellation; that is, by heating the alloy in a current of air, when the lead is oxidised, and the oxide is either absorbed by the cupel or porous cup; or, on the large scale, is raked away to the side, while the silver remains as a bright metallic globule, or button. From the ore in which silver occurs as metal, it is extracted by amalgamation with mercury; and the amalgam being distilled, leaves pure silver.

When the proportion of silver in lead is very small, it may be still rendered available by melting the lead, and allowing it to crystallise, the crystals first formed being the richest in silver. These are ladled out, and again melted and subjected to the same process, by which is at last obtained a lead very rich in silver, and at the same time a quantity of lead nearly free from that metal. The former is now cupelled, and the silver obtained.

Silver has a fine white colour and high lustre. It is highly malleable and ductile, and, when pure, is a soft metal. Its Sp. G. is 10.5; it melts at a full red-heat, and when melted in open vessels, it absorbs a considerable quantity of oxygen, without apparently combining with it; and on consolidating, gives out the whole, causing the metal to assume a beautiful frosted aspect. The uses of silver are quite familiar. For the purpose of making coinage, or silver plate, it is alloyed in this country with rather less than $\frac{1}{T_T}$ of copper, which renders it much harder and fitter for wear.

When silver, as commonly happens, has been alloyed with copper, it is purified in several ways. 1. By dissolving the alloy in nitric acid, and adding common salt, which throws down the silver as chloride; and from this the metal is separated (see below). 2. By dissolving the alloy in oil of vitriol, with the aid of heat, and acting on the hot solution with metallic copper, which precipitates the silver as metal, the copper taking its place in the solution. In both processes, the small quantity of gold usually present in commercial silver, is left by the acid as a black powder, when the silver and copper are dissolved; and its extraction generally covers the whole expense of the purification of the silver, leaving, besides, a profit to the purifier.

Oxide of Silver. Ag O = 116.323.

This, the only oxide of silver, is obtained by dissolving silver in nitric acid, and adding caustic potash, when the oxide is precipitated as a brown powder. It may also be formed by boiling the moist, recently-prepared chloride with very strong potash, when it appears as a very dense pure black powder. It is a base, and neutralises all acids, forming salts, most of which are insoluble, or sparingly soluble. The oxide is reduced to the metallic state by a red-heat. Its solutions are easily recognised.

p 2

They give, with caustic fixed alkalies, a brown precipitate ; with ammonia, a similar one, soluble in the slightest excess ; with hydrochloric acid, or any soluble chloride, the white curdy precipitate of chloride of silver, insoluble in water and acids, but soluble in ammonia ; and with sulphuretted hydrogen, a dark brown, nearly black precipitate of sulphuret. Silver and all its compounds are very sensitive to sulphuretted hydrogen, which blackens them. Most of the compounds of oxide of silver are very soluble in ammonia; and all the compounds of silver are darkened by the action of light, a property which has lately been applied to useful purposes in the Daguerréotype, Calotype, and other photographic methods. Oxide of silver is reduced to the metallic state from its solutions by copper, zinc, and several other metals. When mercury is used, there is formed a beautiful arborescent crystallisation of an alloy of silver and mercury. called Arbor Dianæ.

When precipitated oxide of silver is acted on by ammonia, a dark powder is formed, which fulminates violently when heated, or by friction. Its composition is not exactly known; but it probably contains a compound of silver with nitrogen.

Chloride of Silver. Ag Cl = 143.78.

Is found in the mineral kingdom as horn silver ; and is formed whenever oxide of silver comes in contact with chlorine, hydrochloric acid, or a soluble chloride. Ag+OH Cl (or M Cl)= Ag Cl+HO (or MO). It then forms a heavy white curdy precipitate, quite insoluble in water and acids, but soluble in ammonia. Hence, a solution of silver is a most delicate test for hydrochloric acid, or chlorides. The chloride melts at a heat below 600°, and, on cooling, forms a translucent horny mass. The freshly precipitated chloride is very sensitive to light, and this is the foundation of Talbot's Calotype.

To reduce the chloride to the metallic state, several methods are followed. 1. It is covered with water acidulated with hydrochloric acid, and a rod of zinc is introduced, which gradually reduces the whole mass of chloride. Ag Cl+Zn=Ag+Zn Cl. The silver is digested in dilute hydrochloric acid, washed, dried, and fused. 2. The dried chloride is fused with carbonate of potash, when carbonic acid and oxygen are given off, chloride of potassium is formed, and metallic silver collects as a button in the bottom of the crucible. In this process, the effervescence is troublesome ; and if the heat be not high enough, the silver remains disseminated in the mass ; while, if the heat be too high, the crucible is corroded, and the silver flows into the fire. Hence this process, although it succeeds in experienced hands,

GOLD.

is very apt to fail in those of beginners, for which reason I have proposed the following. 3. The freshly precipitated chloride, while still moist, is boiled with very strong caustic potash, till it is converted into black oxide of silver entirely, or in great part. The oxide is then heated with a little pearlash and borax, and yields a button without any risk of failure. The oxide thus prepared, answers admirably for making pure nitrate of silver, as diluted nitric, and dissolves it instantly, leaving undissolved any undecomposed chloride. The action of the potash in the two last processes is very simple. Ag Cl+KO=KCl+Ag O.

Iodide of Silver. Ag I = 234.88.

Formed under the same circumstances as chloride of silver, which it resembles. It is a yellowish white insoluble powder, insoluble in water, and nearly so in ammonia. It is very sensitive to light, and a film of iodide of silver is the substance which receives the impressions in the silver plates of the Daguerréotype.

The bromide of silver is very similar to the chloride.

Sulphuret of Silver. Ag S = 124.43.

Occurs as a mineral, silver glance, and is formed by the action of sulphuretted hydrogen on oxide of silver, or indeed on silver itself, or any compound whatever. Polished silver is instantly tarnished by the minutest trace of sulphuretted hydrogen, so that coal-gas, which contains a mere trace of that gas, cannot be used in silversmith's shops. It would appear that the affinity of silver for sulphur is very powerful.

50. Gold. Au = 199.2.

This metal is found native, either pure, or alloyed with silver and tellurium. When combined with silver, it is purified by quartation; that is, by fusing it with so much silver, that the gold does not exceed one-fourth of the mass, and then acting on the alloy by nitric acid, which dissolves the silver, and leaves the gold as a black or brown powder, which, when fused, assumes the peculiar yellow colour of gold.

Gold is distinguished by its pure yellow colour, high metallic lustre, and great density. Its Sp. G. is 19.3. It is the most ductile and malleable of all metals; and it melts in a strong red or white heat. From its feeble affinities, gold does not readily tarnish, and may be heated for any time without change, except when it is exposed to a strong electric spark, when it burns with a green light. No single acid dissolves it; but it is easily dissolved by chlorine and by nitro-hydrochloric acid, or aqua regia, chlorine being apparently the solvent in both cases.

GOLD AND OXYGEN.

The oxides of gold can only be obtained by indirect means.

a. Protoxide of Gold. Au O = 207.213.

Formed by the action of cold potash on protochloride of gold. It forms a green precipitate, which is soon resolved into peroxide and metallic gold.

b. Peroxide of Gold. Au O. = 223.239.

Obtained by adding carbonate of potash to a neutral solution of perchloride of gold, as a brownish-yellow hydrate, which at 212° loses its water and becomes black. It is a very feeble base, having apparently a tendency to combine with bases rather than with acids. When acted on by ammonia it yields fulminating gold, a very dangerous compound, which probably, like fulminating silver, contains a compound of gold with nitrogen. A binoxide of gold, Au O₂, is supposed to exist, and to be formed as a purple powder when gold is burned by the electric spark.

GOLD AND CHLORINE.

a. Protochloride of Gold. Au Cl = 234.67.

Formed by exposing the perchloride to a heat of 600°. It is a yellow insoluble powder, which by boiling in water is changed into metallic gold and perchloride. $3AuCl=Au_{a} + AuCl_{a}$.

b. Perchloride of Gold. Au $Cl_a = 305.61$.

This, the usual form in which gold is dissolved, is formed when gold is acted on by aqua regia or by chlorine. It forms, when evaporated sufficiently, ruby-red crystals, which are deliquescent. The solution is yellow. It is reduced to the metallic state by many deoxidising agents, such as protosulphate of iron, formic acid and formiates, &c. &c.; and when the reduction takes place in a diluted solution, the metallic gold appears as a blue powder as long as it is suspended in the liquid. Deoxidising agents probably act by decomposing water, the hydrogen of which deprives the gold of chlorine. Chloride of gold is also reduced directly by the action of hydrogen, phosphuretted hydrogen, and metals. When heated it is first reduced to protochloride and afterwards to metallic gold.

When solution of protochloride or sesquichloride of tin is added to solution of gold, a purple precipitate is formed, long known as the purple of Cassius, and used for staining glass. Its composition is not known with certainty, but it contains gold, tin, and oxygen.

PLATINUM.

The iodides of gold are in composition analogous to the chlorides. The sulphuret, formed by the action of sulphuretted hydrogen on the perchloride, is a black powder, supposed to be a tersulphuret, AuS..

51. PLATINUM. Pt=98.84.

This metal, like gold, is found in the metallic state, but always alloyed with other metals, and generally mixed, as the ore of platinum is, in the form of sand, with gold, silver, and other minerals in small proportion. The purification of platinum is a tedious operation, too difficult to be described here in a few words. But the essential parts of the process are the dissolving the platinum ore in aqua regia; the precipitating the platinum as a double chloride of ammonium and platinum ; and the igniting of this salt, which leaves pure platinum in a spongy state, containing, perhaps, a trace of iridium. The double chloride may also be reduced by the action of zinc and diluted sulphuric acid, when the platinum is obtained as a dense black powder. Spongy platinum is rendered malleable by being first exposed to powerful pressure, and then heated and hammered till it is rendered dense and workable. Or it may be fused before the oxyhydrogen blowpipe, being quite infusible in the furnace.

Pure platinum resembles silver, but is not so white. Its density is about 21.5, and it is both malleable and ductile, particularly the latter. It is not melted by any furnace-heat, nor acted on by air and heat together; hence its extreme utility to the chemist. When ignited with caustic alkalies, however, it is oxidised and corroded; and care should be taken never to heat any metal in vessels of platinum, as it readily forms alloys, and is much injured in consequence. The proper solvent of platinum is chlorine or aqua regia, but it dissolves less easily than gold.

One of the most important properties of platinum is its power of causing gases to enter into combination. When a current of hydrogen gas falls on spongy platinum or platinum powder in the air, combination between hydrogen and oxygen takes place at the surface of the platinum, and the heat developed is sufficient to make the metal red-hot. The red-hot metal, then acting like any other red-hot body, sets fire to the hydrogen. This power is present even in solid polished platinum; for if a perfectly clean plate of platinum be introduced into a mixture of oxygen and hydrogen, it will cause them to combine, and may, by becoming red-hot, even produce explosion. But the power is seen in greatest perfection in the black powder of platinum; and Döbereiner has shown that this powder contains within its pores about 250 times its volume of oxygen, which, as the pores do not exceed $\frac{1}{4}$ of the powder, must occupy no more than $\frac{1}{10^{5}0^{50}}$ of its bulk as gas, and must be denser than water. This explains the action on hydrogen. In the case of the polished metal it is supposed that the particles of the gases, which repel each other, are attracted by the metal, and consequently, on its surface, come within the sphere of affinity. The powder of platinum, by virtue of the oxygen in its pores, rapidly oxidises the vapour of alcohol into acetic acid, &c.; and the smallest portion of this powder introduced into a mixture of oxygen and hydrogen causes instantaneous explosion.

OXIDES OF PLATINUM.

Platinum appears to form a green protoxide, PtO, and a rustcoloured binoxide, PtO, which, when anhydrous, is nearly black; but these compounds are even more prone to change than the oxides of gold, and the binoxide is hardly to be obtained pure, owing to its tendency to combine with the alkalies used to precipitate it. Both oxides are prepared from the chlorides.

PLATINUM AND CHLORINE.

a. Protochloride of Platinum. Pt Cl = 134.31.

Prepared by heating the bichloride to 450°, when the protochloride is left as a greenish-grey insoluble powder. This chloride enters into combination with ammonia, and the compound, under certain circumstances, gives rise to several very remarkable organic or quasi-organic bases, of which platinum is an element.

b. Bichloride of Platinum.

This, the usual soluble salt of platinum, is best made by dissolving spongy platinum in aqua regia, and gently evaporating to the consistence of syrup, when, on cooling, the whole forms a crystalline brownish-yellow mass, very soluble in water. The solution of platinum is characterised by yielding metallic platinum as a black powder when acted on by zinc and diluted sulphuric acid; and by giving with salts of potash and of ammonia a sparingly soluble yellow double chloride, which is also reduced by zinc and sulphuric acid.

The iodides and sulphurets of platinum correspond in composition to the chlorides, but are of no practical interest. The iodides are very dark-coloured, so that the addition of iodide of potassium to a solution of platinum produces a very intense reddish-brown colour, gradually becoming nearly black.

IRIDIUM. OSMIUM.

52. IRIDIUM. Ir = 98.84.

This is one of the metals which accompanies platinum. It occurs combined with osmium, alloyed with a large proportion of platinum, and occasionally nearly pure, but still containing platinum. Specimens have been found of Sp. G. 23 to 26, indicating that iridium is the heaviest of all metals. It is also the most infusible, the hardest, and that which resists best the action of acids. These latter properties would render it most valuable if it could be wrought, but as yet it has proved refractory. It is remarkably analogous to platinum, from which it chiefly differs in the darker colour of its chloride, and of the double chlorides which it forms with potassium and ammonium. The latter occurs in very dark red octohedral crystals, nearly black, which, when heated, leave metallic iridium, very similar to spongy platinum, and acting in the same way on hydrogen.

Iridium forms 4 oxides and 4 chlorides, which are little known. They have different colours; hence the name iridium, from iris, the rainbow. The oxides are IrO, Ir_2O_3 , IrO_2 , and IrO_3 , and the chlorides correspond to them.

53. Osmium. Os = 99.72.

This metal is found associated with iridium, constituting a small part of the ore of platinum, which is insoluble in aqua regia. When this residue is acted on at a red-heat, by nitre, both the metals are oxidised, and the mass being distilled with sulphuric acid, yields osmic acid, Os O_4 , which condenses in fusible crystals. From the acid, the metal may be obtained by the action of reducing agents, as a black powder, which becomes metallic by friction.

Osmium is very infusible, and when it nas been ignited in close vessels, may be heated in air without oxidation. It is chiefly remarkable for forming with oxygen a volatile acid, which has a pungent smell, like that of chlorine, and is very poisonous. It forms, altogether, 5 oxides, Os O, Os₂ O₃, Os O₂, Os O₃ and Os O₄; 4 chlorides, and 4 sulphurets, corresponding to the 4 first oxides.

54. PALLADIUM. Pd = 53.3.

This metal is also one of those which occur in small quantity in the ore of platinum. It has lately been found rather more abundantly, alloyed with gold and silver. When the ore of platinum has been dissolved, and the solution rendered neutral by evaporation to dryness and resolution in water, a solution of bicyanide of mercury causes a flocculent, grevish, yellow precipitate of cyanide of palladium. When this is ignited, the palladium is left. It is rather more fusible than platinum, which it resembles in colour, lustre, and malleability, but is rather harder. Its Sp. G. is 11.3 to 11.8. From its not tarnishing, it is a valuable metal, and would be applied to many useful purposes, if it were less scarce. It is chiefly used by dentists in plates, as a substitute for gold. It is dissolved by nitric acid, but more easily by aqua regia.

Palladium forms two oxides: the protoxide Pd O, and the binoxide, Pd O₂, both of which are black when anhydrous, and brown or yellow when hydrated. The binoxide forms fine red salts, with acids, from which the palladium is precipitated, as metal, by other metals, and by deoxidising agents in general.

There are two corresponding chlorides, a black protochloride, Pd Cl, and a dark brown bichloride, Pd Cl₂. The former yields with chloride of potassium a yellow double chloride, the latter a red one.

The protosulphuret of palladium, Pd S, is easily formed by heating the metal with sulphur. It is a brittle fusible grey solid.

55. RHODIUM. R=52.2.

This metal is also found, in small proportion, in the ore of platinum. It is separated from platinum, when both are in the state of chloride, by adding chloride of sodium, with which both the chlorides form double salts, of which the platinum salt is soluble, the rhodium salt insoluble, in alcohol. When purified, the rhodium salt is dissolved in water, and the rhodium precipitated by metallic zinc. It appears as a black powder, which may be fused in a powerful wind furnace, and is then white and metallic, very hard, brittle, and of Sp. G. 11.

Rhodium is hardly dissolved by any acids, unless when alloyed with other metals. The best method of dissolving it is to fuse it with bisulphate of potash, when it forms a soluble double salt. Rhodium, from its great hardness, has been used to form the tips of metallic pens, which are said to last wonderfully.

It forms two oxides; a protoxide, and a sesquioxide, $R_{,,O_{,2}}$; and probably two corresponding chlorides. The solution of the sesquichloride is of a fine red colour, and most of the salts of rhodium are either red or yellow.

The sulphuret of rhodium is bluish grey, metallic, and fusible at a white-heat.

ALLOYS.

The compounds of metals with metals are called alloys, and many of them are extremely useful and important. The alloys into which mercury enters, as a component part, are called amalgams.

Fine solder is an alloy of two parts of tin and one of lead. It melts at 360°. Coarse solder, which melts at 500°, contains one part of tin and three of lead. Hard solder, for copper, is a compound of copper and zinc, the latter metal being in excess.

Pewter is composed of tin, with a little antimony, copper and bismuth; the inferior kinds contain a good deal of lead.

Newton's fusible metal is composed of 8 parts of bismuth, 5 of lead, and 3 of tin. It melts below 212°.

Type metal is an alloy of 3 parts of lead, and 1 of antimony. Bronze is composed of about 90 parts of copper to 10 of tin; bell-metal and gong-metal, of 80 parts of copper to 20 of tin. Speculum metal, for telescopes, is formed of 2 parts of copper and 1 of tin, with a little arsenic.

Brass is an alloy of copper and zinc ; the best contains 4 parts of copper and 1 of zinc ; and when the proportion of zinc is increased, we have tombac, Dutch gold, and pinchbeck.

Tutenague, or white copper, as it is called in China, or German silver, as it is now called in Europe, is an alloy of copper, zinc, and nickel; the finer kinds containing most nickel.

Steel appears to form valuable alloys with a very small proportion of some other metals. With a little silicon and aluminum, it yields a metal equal to the Indian wootz; and with small quantities of silver, platinum, rhodium, palladium, and even iridium and osmium, alloys of prodigious hardness and toughness are obtained. $\frac{1}{3 \cdot 0 \cdot 0}$ part of silver is sufficient to effect a marked improvement.

Standard silver, and standard gold, are alloys, with from $\frac{1}{12}$ to $\frac{1}{12}$ of copper, which much increases the hardness of these metals, without injuring their colour.

An amalgam of tin is used for silvering the backs of mirrors; and an amalgam of 4 of mercury, 2 of bismuth, 1 of lead, and 1 of tin, is used for silvering the inside of hollow glass globes.

The amalgam used for exciting electrical machines is formed of 1 part of zinc, 1 of tin, and 2 of mercury.

The tendency of mercury to combine with gold and silver is made use of in extracting these metals from their ores. An amalgam of 1 part of gold, and 8 of mercury, is used in gilding brass.

It is probable that the best alloys are those which contain

atomic proportions of their ingredients; but this subject has been as yet little studied. Alloys are always more fusible than their least fusible ingredient, and they are commonly harder and more brittle than their elements. They are sometimes more dense, sometimes less dense than we should expect from the densities of the combining metals.

SALTS.

The salts are a very important and useful class of compounds; but our space will not allow us to describe them minutely, and we must be satisfied with a few general remarks, applicable to the whole class, and with a brief statement of the characters which distinguish the separate families of salts, as marked by the acids they contain. We have already given, under the different metals, the characters of the different bases in their salts. Fortunately the analogies among the very numerous salts are so strong and well marked, that here, better than in any other department, minute details may be omitted.

When the term salt was first extended beyond sea-salt, the original type, it was applied to substances having similar properties, such as solubility, neutrality, and saline taste, with the property of crystallising. It was found, after a time, that salts were produced by the combination of acids with alkalies, or at least by bringing them together, and as sea-salt was obtained when soda and muriatic acid were mixed, it was supposed to be formed of these constituents, just as sulphate of soda was supposed to consist of sulphuric acid and soda.

But when, in process of time, it came to be known that seasalt contained neither muriatic acid nor soda, it was found necessary, since it was impossible to deny the claim of sea-salt to rank as a salt, to admit two kinds or classes of neutral salts, one formed of an oxygen acid and an oxygen base; the other, of a salt-radical and a metal. Thus, while sulphate of soda was Na O, SO₃; sea-salt was Na Cl; the former corresponding to the hydrated acid, HO, SO₃; the latter to the hydrogen acid, HCl. This, indeed, is the view which has for many years prevailed.

But it did not escape the sagacious mind of Davy, that, according to this view, we give two different explanations of phenomena almost identical, and that a more truly philosophical view might be taken.

When hydrated sulphuric acid acts on soda, we have two marked phenomena: these are, the formation of a neutral salt and the separation of water. This is represented as follows: Na O + HO, SO₂ = HO + Na O, SO₂. Now, when hydrochloric acid acts on soda, we observe exactly the same phenomena; the formation of a neutral salt, and the separation of water; but the explanation is now different. It is Na O + H Cl = Na Cl + H O.

Davy showed that, in the latter case, but one explanation was possible—because the hydrogen could only come from the hydrochloric acid, and the oxygen from the soda; and he proposed so to view the former case as to bring it under the same explanation.

He pointed out that we have no certainty that the hydrated sulphuric acid really contains water; or the sulphate of soda, oxide of sodium; and that, instead of the formula $HO_{s}SO_{4}$, we might with better reason adopt the formula $H_{s}SO_{4}$ for the acid, which would thus come to be considered a hydrogen acid, differing from hydrochloric acid only in containing a *compound* radical, SO_{4} , instead of a *simple* one, Cl. But, in the first place, chlorine may not be really a simple body; and secondly, if it were so, we know that compound radicals exist, performing exactly the part which is here ascribed to the hypothetical body SO_{4} .

Thus, cyanogen, $Cy=C_s N$, with hydrogen forms hydrocyanic acid, HCy, which acts on bases exactly as hydrochloric acid does, yielding a neutral salt (a cyanide) and water. MO+HCy =MCy+HO.

Let us represent SO₂ by Su, and then we have HSu = hydrated or real sulphuric acid; and when it acts on soda, NaO+HSu=NaSu+HO. We have then—

and all a wind		Chlorine.	Cyanogen.	Radical of Sulphuric Acid.
Radical .	ine.	. Cl	 Cy .	. Su
Hydrogen Acid		. HCl	 HCy .	. H Su
Neutral Salt		. MCl	 MCy.	. M Su

In this form we see that, assuming sulphuric acid to be a hydrogen acid, the whole of its relations admit of being expressed as simply as those of hydrochloric acid. These two acids, and all acids analogous to either of them, come into the same category, and the same is true of their salts, all of which are considered compounds of metals with radicals, simple or compound. In this simple way we get rid of the absurdity of two different explanations for the same phenomena, and we arrive at the following general definition of an acid and of a salt:

An acid is the hydrogen compound of a simple or compound radical, possessing the power of neutralising bases; and its general formula is HR. A salt is the compound formed by replacing the hydrogen of an acid by a metal; and the general formula for a salt is MR.

This is the only view that can be taken in the case of the acids and salts of simple radicals; but in the case of compound radicals, we have already seen that another view is taken. For example, oil of vitriol is considered to be, not a hydrogen acid, but an oxygen acid united to water, and is called hydrated sulphuric acid, HO,SO₃; and in its salts the water is supposed to be replaced by metallic oxide, MO,SO₃.

In favour of this, the ordinary view, it is urged that dry sulphuric acid, SO₃, exists, and that, in contact with water, it produces hydrated sulphuric acid; in contact with bases, sulphates. That, although oil of vitriol may be viewed as H,SO_4 , this view is improbable, because the body SO₄, the supposed radical, is unknown in a separate form, and that many undoubted oxygen acids exist containing no hydrogen, as carbonic, silicic, phosphoric, and chromic acids.

To these considerations it may be replied, that although the body SO, exists, it is not truly an acid, and does not acquire acid properties until it has been in contact with water, and combined with it, that is, with hydrogen. That with ammonia, SO, does not form sulphate of ammonia, but an entirely different compound. That, although the supposed radical SO, is unknown in a separate form, the same objection may be made to the older view in the case of nitric acid and many other acids ; for strong nitric acid is viewed as a hydrate of dry nitric acid, HO, NO,, while dry nitric acid is quite unknown in a separate form. That those oxygen acids which exist without hydrogen, such as dry sulphuric acid, SO_3 , dry phosphoric acid, P_2O_3 , carbonic acid, CO_2 , silicic acid, SiO_3 , and chromic acid, CrO_3 , either have no acid properties till water is added, as in the case of SO₃ and $P_2 \dot{O}_5$, or possess very feeble and ill-marked acid properties, as in the case of carbonic and silicic acids, which cannot neutralise the alkalies, and form with them an almost unlimited number of compounds. That all those oxygen acids which possess in perfection the acid character, such as oil of vitriol, nitric acid, phosphoric acid in its active state, and the whole of the organic acids, invariably contain hydrogen in a form in which it is replaced by metals in the salts, or, according to the older view, water, which in the salts is replaced by metallic oxide. Now, as in water, HO, and metallic oxide, MO, the oxygen is the same, it is, even on that view, hydrogen which is replaced by metal when an acid is converted into a salt.

.

It may be added, that considerations derived from the phenomena of galvanic decomposition (Daniell), from the heat developed when bodies combine to form salts (Graham, Andrews), and from the molecular or atomic volume of acids and salts (Kopp), all concur to render it probable that oxygen acids are hydrogen compounds, not hydrates, and that oxygen salts contain a metal united to a radical, and not an oxide united to a dry or anhydrous acid.

On the whole, therefore, the simpler view, and that which admits of but one kind of acids and one kind of salts, is, in the present state of our knowledge, to be preferred; but we shall give the formula according to both views, since we ought to be equally familiar with both.

Since salts are formed from acids by the replacement of the hydrogen of the acid by a metal, and since acids exist containing more than one equivalent of hydrogen (or of water) replaceable by metals (or metallic oxides), it is advisable to class the salts according to the acids from which they are derived, whether monobasic or polybasic.

SALTS OF MONOBASIC OXYGEN ACIDS.

Monobasic acids are those of which an equivalent forms a neutral salt with 1 eq. of base. The general formula of a monobasic acid, considered as a hydrogen acid, is HR, and its action on a protoxide is as follows—HR+MO = HO+MR; so that MR is the general formula for a monobasic salt. R stands here for the radical, which with hydrogen forms the acid.

On the other view, a monobasic oxygen acid is a hydrate containing 1 eq. of water and 1 eq. of dry or anhydrous acid, and the general formula is HO, RO_x ; R standing here for the combustible element of any oxygen acid, which may be united with 2, 3, or more eq. of oxygen in the anhydrous acid. The action of such an acid on a base is as follows:— $HO, RO_x + MO = MO, RO_x + HO$; so that, on this view, the general formula for a monobasic neutral salt is MO, RO_x .

The most important monobasic oxygen acids, of inorganic nature, are the following—sulphuric, sulphurous, nitric, hypochlorous, chloric, perchloric, iodic, phosphoric, arsenic, arsenious, chromic, boracic, silicic, and carbonic acids, the salts of which are now to be very briefly described. The salts formed by the monobasic hydrogen acids with simple radicals have been already described, under the respective metals, as chlorides, bromides, iodides, fluorides, sulphurets, &c.

SULPHATES.

General formula of neutral sulphates— M,SO_4 , or MO,SO_3 . General formula of bisulphates— M,SO_4 + H,SO_4 ; or MO,SO_3 + HO,SO_3 .

Of the sulphates, some are found native; some are very soluble, some sparingly soluble, some insoluble. All the soluble sulphates are recognised in solution by the test of nitrate of baryta, which causes a white precipitate of sulphate of baryta, insoluble in acids. All the insoluble sulphates, when fused with carbonate of soda, yield sulphate of soda, which may be recognised as above; or, when heated with charcoal, they yield sulphurets, which are easily known by their blackening the salts of lead. The action of charcoal on a sulphate is thus represented: $MO, SO_3 + C_4 = 4CO + MS$; or $M, SO_4 + C_4 = 4CO + MS$.

The sulphates of the weaker bases are decomposed by a white heat, but those of the stronger bases are not altered.

Some neutral sulphates exist in the anhydrous state, MO,SO_3 , or M,SO_4 . Others occur combined with 1 eq. of what Graham calls constitutional water, requiring a red-heat for its expulsion, and capable of replacement by another neutral sulphate; and many occur with several equivalents of water of crystallisation.

Sulphate of potash crystallises in six-sided prisms and pyramids, which are anhydrous. Its formula is KO,SO₃, or K,SO₄.

Bisulphate of potash crystallises in fine needles, the formula of which is (KO,SO_3+HO,SO_3) , or (K,SO_4+H,SO_4) . It is a very acid salt, and is much used as a flux in mineral analysis.

Sulphate of soda, or Glauber's salt, forms large prisms, the formula of which is Na O, SO₃+10 aq.; or Na, SO₄+10 aq. It is used as a laxative; and from this salt in its anhydrous state (prepared from sea-salt by the action of oil of vitriol), carbonate of soda is manufactured by heating it with charcoal in a reverberatory furnace.

Sulphate of ammonia (NH_3, HO, SO_3) or (NH_4, SO_4) , crystallises in the same form as sulphate of potash. With water of crystallisation it forms crystals of a totally different form, NH_4 , O, SO_3 +aq.

Sulphate of baryta, or heavy spar, occurs native in large tabular and also prismatic crystals. It is remarkable for its insolubility in water and acids. It is decomposed by ignition with charcoal, yielding sulphuret of barium, from which all the other compounds of barium may be obtained. It is anhydrous, and its formula is BaO, SO₄, or Ba, SO₄.

Sulphate of strontia, or celestine, also occurs native, and is very analogous to the preceding. It serves, when decomposed by ignition with charcoal, to yield all the compounds of strontium. Formula SrO, SO,, or Sr, SO,.

Sulphate of lime. This salt occurs native, as gypsum, selenite, and alabaster, the formula of which is $(CaO, SO_{2} + HO) +$ aq.; or (Ca, SO, +HO)+aq. In the mineral anhydrite, it is anhydrous, CaO, SO, or Ca, SO₄. When heated to 270°, gypsum loses both its constitutional water, and its water of crystallisation, and falls to a fine powder, which is plaster of Paris; and which, when mixed with water, combines with it again, forming a solid compound, or setting, as it is called. Hence its use in moulding. Gypsum is also a very valuable manure. It is very sparingly soluble in water, but its solution is precipitated copiously by salts of barvta.

Sulphate of magnesia, or Epsom salts, occurs in some springs, and is easily made by dissolving carbonate of magnesia in sulphuric acid. It is very soluble, and crystallises readily in foursided prisms, the formula of which is $(MgO, SO_2 + HO) + 6$ aq. It is much used as a laxative.

Sulphate of alumina does not crystallise, but it enters into the composition of crystallisable double salts, called alums. Its formula is Al₂ O₃, 3 SO₃, or Al₂, 3 SO₄. A subsulphate, or trisulphate of alumina, occurs native as the

mineral aluminite. Formula Al, O3, SO3 + aq.

Sulphate of manganese. Forms pale pink, or colourless crystals; of the formula (MnO, SO₄+HO)+4 aq.; or, (Mn, SO₄+ HO) + 4 aq.

Sulphate of iron (protoxide) or green vitriol. This well known salt forms pale green oblique prisms. Formula (FeO, SO, + HO)+5 aq.; or (Fe, SO, +HO)+5 aq. It is used in the manufacture of fuming sulphuric acid, hence called oil of vitriol; in making ink; and very extensively in dyeing, and calico-printing. It is also much used in medicine.

Sulphate of the peroxide of iron does not crystallise, but forms crystallisable double salts. Formula Fe. O., 3 SO.; or, Fe., 3 SO 4.

Sulphate of zinc, or white vitriol, forms crystals exactly similar to those of sulphate of magnesia. Formula (ZnO, SO₃+HO) +6 aq.; (Zn, SO₄+HO)+6 aq. It is much used in surgery, and is formed when zinc is dissolved in diluted sulphuric acid.

Sulphate of nickel forms emerald green crystals, of the same form as the preceding. Formula (Ni 0, SO, +HO)+6 aq.; or, $(Ni, SO_4 + \hat{H}O) + 6 aq.$

Sulphate of cobalt forms rose-red crystals of the same form as

green vitriol. Formula (CoO, SO_3 +HO)+5 aq. ; or (Co, SO_4 +HO)+5 aq.

Sulphate of chromium does not crystallise, but forms crystallisable double salts. Formula $Cr_{0}, 0_{3}, 3 SO_{4}$; or $Cr_{0}, 3 SO_{4}$.

Sulphate of copper, or blue vitriol, forms azure blue crystals, exactly of the same form as those of sulphate of manganese. Its formula is (CuO, SO₃+HO)+4 aq; or (Cu, SO₄+HO)+4 aq. With excess of ammonia it forms a deep violet-blue salt, the ammoniuret of copper, in which the water of crystallisation of blue vitriol, or a part of it, appears to be replaced by ammonia. Sulphate of copper is much used as an escharotic in surgery.

Sulphate of peroxide of mercury is formed as a crystalline powder, when mercury is boiled to dryness with sulphuric acid. Its formula is Hg O_2 , $2 SO_3$, or Hg, $2 SO_4$. It is used in the preparation of corrosive sublimate, and of calomel.

Sulphate of silver forms anhydrous crystals, having the same form as those of anhydrous sulphate of soda. Formula AgO, SO_{4} , or Ag, SO_{4} .

DOUBLE SULPHATES.

Of these there are two well-marked groups. The type of the first is sulphate of magnesia and potash; the type of the second is sulphate of alumina and potash, or alum.

1. When sulphate of potash and sulphate of magnesia are mixed in equivalent proportions, and the solution evaporated, crystals are deposited, of a well-marked form, the formula of which is $(KO, SO_3 + MgO, SO_3) + 6aq$.; or $(K, SO_4 + Mg, SO_4) + 6aq$. It appears to have been formed from sulphate of magnesia, by the substitution of KO, SO₃, for the constitutional HO, the 6 aq. remaining unchanged. It is but the type of a large group; for similar double salts may be formed with sulphate of potash, and the sulphates of zinc, nickel, cobalt, iron, copper, and manganese; and another series, of exactly the same form, may be obtained by substituting sulphate of ammonia for sulphate of potash; as, for example, in the double sulphate of magnesia and ammonia $(NH_4, O, SO_3 + MgO, SO_3) + 6aq$.

2. Common alum, the type of the second group, is formed when sulphate of potash combines with sulphate of alumina, and its formula is (KO, SO₃+Al₂O₃, 3 SO₃)+24 aq.; or (K, SO₄+ Al₂, 3 SO₄)+24 aq. Now, this is also the type of a numerous group; for the potash may be replaced by soda or ammonia, and the alumina may be replaced by the sesquioxides of iron, manganese, and chromium. The general formula of this group is (MO, SO₃+m₂O₃, 3 SO₃)+24 aq.; M representing potassium, sodium, or ammonium, and m, aluminum, iron, manganese,

NITRATES.

or chromium. All the salts of this group, which are called alums, crystallise in octohedrons, and contain the same amount of water.

When we consider the facts above noticed, the circumstance that the sulphates of copper and manganese, with 4 eq. of water of crystallisation, those of iron and cobalt, with 5 eq., and those of magnesia, zinc, and nickel, with 6 eq. respectively crystallise in the same forms, different for each group; and when we reflect on the two remarkable groups of double sulphates just described, we cannot avoid the conclusion, that similarity of constitution is one main cause of similarity of crystalline form; and this constitutes the doctrine of isomorphism, as at present understood and admitted. By similarity of constitution is meant, not only a likeness in the nature of the elements present, but a similar arrangement of those elements.

Thus, in common alum, KO, SO₃+Al₂ O₃, 3 SO₃+24 aq.; and in ammonia, iron, alum, Am O, SO₃+Fe₂ O₃, 3 SO₃+24 aq.; not only is ammonium (Am) analogous to potassium, and iron to aluminum; but the new elements occupy the same position as the original ones, as is shown by the formula.

SULPHITES.

The sulphites are recognised by their giving off the suffocating smell of sulphurous acid when acted on by a stronger acid. They have lately been studied by Muspratt, who has found that a very close analogy exists between the sulphites and the carbonates.

NITRATES.

The nitrates are easily prepared by the action of nitric on bases, on metals, or on carbonates. They are all decomposed by a red-heat, and they all deflagrate with red-hot charcoal. In solution, they are best recognised by adding sulphuric acid and warming, which sets free the nitric acid, and then cautiously adding solution of green vitriol, which, at the line of junction of the two liquids, becomes black or red, according to the proportion of nitric acid, from its peculiar action on the protosalts of iron. The general formula of nitrates, in the anhydrous state, is MO, NO₅, or M, NO₆.

Nitrate of potash, nitre or saltpetre, is found as an efflorescence on the soil in hot climates, and may be formed artificially in nitre beds. The essential conditions are the presence of a fixed base, particularly potash; and of decaying organic matter, or some other source of ammonia, which is oxidised, producing nitric acid and water; and the acid then unites with the base.

q 2

The ammonia NH_s , with 8 eq. of oxygen from the air, gives rise to nitric acid and water, $NO_s + 3$ HO, or H, $NO_s + 2$ HO. There is no reason to believe that the nitrogen of the atmosphere is ever oxidised, or contributes to nitrification; and the minute trace of nitric acid sometimes observed in the rain of thunderstorms, has in all probability been formed from the ammonia of the atmosphere.

Nitre crystallises in 6-sided prisms. It is much used in making gunpowder, and as an oxidising agent, also in the manufacture of nitric acid. Formula, KO, NO, or K, NO,

Nitrate of soda is formed precisely in the same way, where soda is the base present in the soil, and occurs in immense quantities in some parts of South America. It crystallises in rhombohedrons. It is much used in the manufacture of sulphuric and nitric acids, but does not answer for gunpowder, Formula NaO, NO_c or Na, NO_c.

Both nitre and nitrate of soda are used as manures : and it is still uncertain whether the acid of these salts contributes to the good effect, or whether they act by the bases alone.

Nitrate of ammonia crystallises in prisms like those of nitrate of potash. It is used in the preparation of the protoxide of nitrogen or laughing gas. Formula NH_4O , NO_5 or $NH_{42}NO_5$.

Nitrate of baryta crystallises in octohedrons, which are anhydrous. It is much used as a test, and when ignited yields pure baryta. Formula Ba O, NO₅ or Ba, NO₆.

Nitrate of strontia forms anhydrous crystals, isomorphous with the preceding salt; but it also occurs in large prismatic crystals, containing 5 eq. of water. It is used in the manufacture of red fire.

Nitrate of lime and nitrate of magnesia crystallise with difficulty, and are extremely deliquescent.

Nitrate of copper forms deep blue crystals, the formula of which is Cu O, NO_s + 3 HO or Cu, NO_e + 3 HO. There is also a subnitrate, the formula of which is H O, NO_s + 3 Cu O : the former salt may be viewed as nitrate of copper with 3 eq. of constitutional water, the latter as nitrate of water, with 3 eq. of constitutional oxide of copper. When either is ignited, it leaves pure oxide of copper, well adapted for organic analysis.

Nitrate of lead crystallises in octohedrons, and is isomorphous with the nitrates of baryta and strontia. Formula PbO, NO_s or Pb, NO_s .

Nitrate of mercury is of uncertain composition : there seem to be nitrates both of protoxide and peroxide, but both have a great tendency to form subsalts, especially in contact with water. When heated, the acid is driven off, and peroxide of mercury is left.

CHLORATES. HYPOCHLORITES.

Nitrate of silver, or lunar caustic, is very much used as an escharotic. It is made by dissolving pure silver, or the oxide formed from the chloride (see p. 213) in nitric acid and evaporating, when crystals are deposited, which are fine tables, anhydrous, and fusible at 426°, when they may be run into a mould so as to yield the sticks of caustic. Formula Ag O, NO_s, or Ag, NO_s. It is the chief ingredient of indelible ink. Like all the other compounds of silver, it is blackened by light, especially when in contact with organic matter. It is much used as a test for chlorine.

CHLORATES.

The chlorates are, both in formula and properties, very analogous to the nitrates. They deflagrate violently with combustible matter, and are easily distinguished from nitrates by leaving chlorides when ignited. Their general formula is MO, ClO_s , or M, ClO_s .

The only important chlorate is chlorate of potash, the theory of the production of which has been already explained (see p. 77). It forms tabular crystals, of a pearly lustre. It is chiefly used as a convenient source of very pure oxygen gas, and as an oxidising agent. Its formula is KO, ClO_s , or K, ClO_e .

The perchlorate of potash, KO, ClO, or K, ClO_s, is the only perchlorate of interest. It is so sparingly soluble that perchloric acid may be used as a test for potash. It deflagrates with combustible matter, although not so powerfully as the chlorate.

HYPOCHLORITES.

These salts do not, in themselves, possess much importance, but are interesting as forming part of the bleaching compounds of lime soda, so much used in the arts. These bleaching compounds, as explained at pp. 76 and 77, are formed when chlorine acts on an alkali or alkaline earth, and may be viewed either as composed of a hypochlorite and a chloride, or as oxychlorides of the metal. According to the former view, which is the more probable, bleaching-powder is (CaO, ClO) + CaCl. When acted on by an acid, the whole of its chlorine is set free, and hence its enormous bleaching power when an acid is used : hence, also, its want of bleaching power, unless acid is added. The action of sulphuric acid is as follows :—(CaO, ClO + CaCl) + 2 SO₃ $\pm 2(CaO, SO_3) + Cl_2$. According to the latter view, bleaching powder is CaO Cl, an oxychloride, and the action of sulphuric acid is CaO Cl + SO₃ = CaO, SO₃ + Cl.

Chloride of soda, a perfectly analogous compound, is either NaO, ClO + NaCl, or NaO Cl; and its action with sulphuric acid is explained exactly as above.

IODATES.

These salts are, in general, analogous to the chlorates, but are of little practical importance. The general formula for an iodate is MO, IO_s , or M, IO_c . When heated to redness, oxygen is given off, and an iodide remains.

The bromates are quite analogous to the chlorates. General formula, MO, BrO, or M, BrO,

PHOSPHATES.

There are three distinct modifications of phosphoric acid, each of which forms its own salts. Indeed, were it not that these acids, under certain circumstances, may be made to pass into each other, we should never think of describing them otherwise than as totally distinct acids. The three acids are, monobasic, bibasic, and tribasic phosphoric acids.

The so-called anhydrous phosphoric acid, formed by burning phosphorus in dry air or oxygen, is not, strictly speaking, an acid, and does not acquire acid properties till it has taken up the elements of at least 1 eq. of water, when it becomes monobasic phosphoric acid.

According to the usual view, the three acids are $P_{a}O_{a}$, HO, $P_{a}O_{a}$, 2 HO, and $P_{a}O_{a}$, 3 HO, thus containing, all of them, anhydrous acid united with different proportions of water. Now this is quite conceivable, and we actually possess three distinct hydrates of sulphuric acid, SO_a HO; SO_a, 2 HO; and SO_a, 3 HO. But we find, further, that the acid $P_{a}O_{a}$, HO requires but 1 eq. of base to form a neutral salt, while the acid $P_{a}O_{a}$, 2 HO requires 2 eq.; and the acid, $P_{a}O_{a}$, 3 HO, 3 eq. of base to form neutral salts. In the case of sulphuric acid the same phenomenon does not occur, for all the hydrates are neutralised by 1 eq. of base, yielding the same salt, and not, as the phosphoric acids do, different salts. What is the cause of this difference ? It is not enough to say that the dry acid, $P_{a}O_{a}$, being in the monobasic form combined with 1 eq. of water, has a tendency to take 1 eq. of base, and so on; for this is merely re-stating the fact in other words; and, besides, no such tendency is observed in sulphuric and in many other acids.

It appears to me that the only satisfactory answer to the question is the following. The three acids are all distinct acids, and none of them contains anhydrous phosphoric acid. They are all hydrogen acids; and their respective formulæ are $P_2 O_{c2}$, $H; P_2 O_7, H_2$; and $P_2 O_8, H_3$. Now, as every hydrogen acid forms a neutral salt by the substitution of a metal for the hydrogen, these acids, if they exist, must require respectively, one.

PHOSPHATES.

two, and three eq. of base to neutralise them, and must, of course, produce totally distinct salts : according to the equations, $P_2 O_6$, $H + MO \equiv P_2 O_6$, M + HO; $P_2 O_2$, $H_2 + 2 MO = P_2 O_2$, $M_2 + 2HO$; and $P_2 O_8$, $H_3 + 3 MO = P_2 O_8$, $M_3 + 3 HO$.

MONOBASIC PHOSPHATES.

According to the above views, therefore, the general formula for a monobasic phosphate is $P_2 O_a$, M, or $P_2 O_5$, MO. Monobasic phosphate of soda, $P_2 O_6$, Na, or $P_2 O_5$, NaO, is obtained by heating the acid tribasic phosphate of soda to redness, when it loses 2 eq. of water, and monobasic phosphate is left. It is soluble, but not crystallisable, and gives, with chloride of barium, a bulky precipitate, which is $P_2 O_6$, Ba, or $P_2 O_5$, BaO; and with nitrate of silver, a flaky white precipitate, which is $P_2 O_6$, Ag, or $P_2 O_5$, AgO.

BIBASIC PHOSPHATES.

Of these there are two series, as one of the two eq. of base may be basic water, or both may be fixed base. The general formulæ for the two series are P_2O_7 , M_s , or P_2O_5 , 2 MO; and P_sO_7 {H or P_sO_5 {HO. Bibasic phosphate of soda, P_sO_7 , Na, or P_2O_5 , 2 NaO, is obtained by exposing to a red-heat common tribasic phosphate of soda, which loses 1 eq. of water, and is converted into the new salt. It is soluble and crystallisable, and gives, with nitrate of silver, a granular white precipitate, which is P_2O_7 , Ag_2 , or P_2O_5 , 2 AgO. When the acid tribasic phosphate of soda is heated to 400°, it loses 1 eq. of water, and leaves the acid bibasic phosphate, P_2O_7 {H M or

P. O. {HO. MO.

TRIBASIC PHOSPHATES.

Of these, which are the most usual phosphates, there are three series, the general formulæ for which are as follows: $P_2 O_s, M_3$, or $P_2 O_5, 3MO: P_2 O_8$ $\begin{cases} H\\M_2 \end{cases}$ or $P_2 O_5 \begin{cases} 2HO\\MO \end{cases}$ and $P_2 O_8 \begin{cases} H\\M_2 \end{cases}$ or $P_2 O_5 \begin{cases} 2HO\\MO \end{cases}$

Common phosphate of soda belongs to the second series : it is $P_{2} O_{s} \begin{cases} H \\ Na_{2} \end{cases}$ or $P_{2} O_{s} \begin{cases} HO \\ 2NaO \end{cases}$ when dry, to which, in the crystals, are added 24 eq. of water of crystallisation. By the

addition of caustic soda, it is converted into $P_{a} O_{s}$, Na_{s} , or $P_{a} O_{s}$, 3 Na O; and by the addition of phosphoric acid, until it ceases to precipitate chloride of barium, it is converted into the acid tribasic salt, $P_{a} O_{s} \begin{cases} H_{a} \text{ or } P_{a} O_{s} \end{cases} \begin{cases} 2 HO. \\ Na O. \end{cases}$ With nitrate of silver, either of these three salts yields a lemon-yellow precipitate, which is tribasic phosphate of silver, $P_{a} O_{s}$, Ag_{a} , or $P_{a} O_{s}$, 3 Ag O.

Microcosmic salt, much used as a blow-pipe re-agent, is a tribasic phosphate, $P_{2} O_{3} \begin{cases} H \\ Na \\ NH_{4} \end{cases} + 8 aq. or <math>P_{2} O_{5} \begin{cases} HO \\ NaO+8aq. \\ NH_{4} O \end{cases}$ NH, here represents ammonium.

Bone phosphate of lime is a peculiar compound, (8 Ca O + 3 P₂ O₅ + HO) = $\left(P_{x} O_{s} \begin{cases} H \\ Ca_{x} \end{cases} + 2 \left(P_{x} O_{s}, Ca_{3}\right)\right)$; or P₂ O₅ $\begin{cases} HO \\ 2 Ca O \end{cases} + 2 \left(P_{x} O_{s}, 3 Ca O\right)$; and may be viewed as a compound of two forms of tribasic phosphate of lime.

The double phosphate of ammonia and magnesia, which occurs in some urinary calculi, and is also found in the husk of grain and other vegetable products, appears to be an anomalous phosphate, containing (P_{g} O_s, 2 Mg O, 2 NH_g, 10 HO), but how arranged is not known. This salt always separates as a sparingly soluble, or insoluble granular precipitate, when phosphoric acid, ammonia, and magnesia meet in neutral or alkaline solutions, and therefore its formation may be made a test, either of the presence of phosphoric acid, or of that of magnesia.

ARSENIATES.

The salts of arsenic acid are extremely analogous to those of tribasic phosphoric acid ; indeed, they are so similar, in form, colour, solubility, &c., that to distinguish the arseniate of a base from the corresponding tribasic phosphate, we must ascertain the presence of arsenic. The only case in which a well-marked difference in external properties exists, is in the case of the arseniate of silver, which, instead of being yellow, like the corresponding tribasic phosphate, is of a dark, brick-red colour. The arseniates are tribasic, and their general formulæ are, As_g O_s , M_s or As_g O_s , 3 MO: As_g O_s $\begin{cases} H_0 \\ M_0 \end{cases}$ or As_g O_s $\begin{cases} H_0 \\ M_0 \end{cases}$ or As_g O_s $\begin{cases} H_0 \\ M_0 \end{cases}$. Several arseniates are found native.

232

CHROMATES.

These salts are yellow, orange, or red, the latter colour predominating when the acid is in excess, except in the case of dichromate of lead, which is red. The soluble chromates are recognised by their colour, which is changed to green when alcohol and hydrochloric acid are added, and the mixture is boiled. The general formula for neutral chromates is MO, Cr O₃; and for bichromates, MO, 2 Cr O₃.

Neutral chromate of potash, KO, CrO_3 , forms beautiful yellow crystals, isomorphous with sulphate of potash. It is formed by neutralising the bichromate with potash.

Bichromate of potash, KO, 2 $\hat{C}r O_3$, is much used in calicoprinting, and is obtained by fusing chrome iron ore with nitre. The ore contains sesquioxide of chromium, $Cr_2 O_3$, which is oxidised by the nitre into chromic acid, $Cr_3 O_6 = 2 Cr O_3$, and this combines with the potash of the nitre to form neutral chromate. This is dissolved and filtered, and the warm solution acidulated with acetic acid, which takes half the potash, and, on cooling, the bichromate is deposited in beautiful red crystals.

Both these salts, especially the bichromate, have a very deleterious action on the system, when their solutions are brought much in contact with the skin, causing sores, which are very painful and difficult to heal. Paper impregnated with these salts, and dried, forms excellent tinder. The solutions have very powerful antiseptic properties.

Dichromate of lead, $2PbO + CrO_3$ is found native, as the red-lead ore, forming beautiful red crystals. It may also be formed by fusing the neutral chromate of lead with nitrate of potash, or by boiling carbonate of lead with chromate of potash; and is much used as a paint.

Chromate of lead, Pb O, Cr O₃, is an insoluble powder, of a very fine yellow colour, much used in painting, under the name of chrome yellow. It is formed by the action of soluble salts of lead on chromate, or bichromate of potash.

Chromate of silver, Ag O, Cr O₃ forms dark green crystals, which are red by transmitted light, and yield a deep red powder. When precipitated, the salt is of a rich dark red.

Bichromate of silver forms crimson-red tabular crystals, Ag O, 2 Cr O₃. Chromate of mercury, Ag O, Cr O₃, is a light red powder, which, when ignited, leaves sesquioxide of chromium of a very fine green colour.

BORATES.

The only important borate is borax, which is a biborate of soda, Na $0, 2 B O_3 + 10 ag$. It is found native, but very

CARBONATES.

impure, in Thibet, and is purified in Europe. It is also now formed by adding soda to the native boracic acid obtained from hot springs in Tuscany. Boracic acid is so feeble an acid that even the 2 eq. of it in borax do not fully neutralise the soda, so that borax is an alkaline salt. The borate of soda with 1 eq. of acid, Na O, BO₃ +8 aq., is a strongly alkaline salt.

Borax is much used as a flux, on account of its ready fusibility, and its high solvent power, at a red-heat.

CARBONATES.

These salts are recognised by their being decomposed with effervescence, the gas disengaged having no offensive smell, when acted on by acids. All the soluble carbonates, even those containing 2 eq. of acid to 1 of base, are alkaline, so that the title of carbonic acid to the name of acid is doubtful.

Carbonate of potash, KO, CO_a, is anhydrous, deliquescent, not crystallisable, insoluble in alcohol. It is obtained pure by igniting cream of tartar, and lixiviating the residue. In an impure state it constitutes pearlash and potashes, which are, as the name implies, the ashes of plants. Carbonate of potash is much used as a flux in mineral analysis, and for the preparation of caustic potash, and other salts of potash; also in the manufacture of soap, and of glass.

Bicarbonate of potash, KO, $CO_2 + 2$ aq., is obtained by exposing a strong solution of the carbonate to a current of carbonic acid, or to the atmosphere of a fermenting vat, when the bicarbonate is deposited in crystals. The purest carbonate is obtained by igniting these crystals.

Carbonate of soda, Na O, CO, + 10 aq., forms very large rhomboidal crystals, which effloresce in the air. It was formerly extracted from kelp, or barilla, which is the ashes of marine plants; but is now made from sea-salt, far more cheaply, and in a state of perfect purity. The salt, Na Cl, is first converted into sulphate of soda, Na O, SO₃, by being heated with oil of vitriol. The sulphate of soda is now mixed with sawdust and lime, and heated in a reverberatory furnace. By this means the sulphuric acid is decomposed, its sulphur partly uniting with calcium, and partly escaping as sulphurous acid, while the carbonic acid which is formed unites with soda. The carbonate is purified by crystallisation, but generally retains a trace of sulphuric acid.

Carbonate of soda is very much used in the making of soap and glass, being both much cheaper and much purer than ordinary potash. It is also much employed by washerwomen to render hard water soft, and in general to assist in washing, as it is powerfully detergent.

Bicarbonate of soda, Na O, $2 CO_3 + aq.$, forms a white powder, which is alkaline, and is much used in medicine as a mild antacid, and as one of the ingredients in effervescing or Seidlitz powders.

The common commercial and medicinal carbonate of ammonia is a sesquicarbonate, $2 \text{ NH}_3 + 2 \text{ HO} + 3 \text{ CO}_2$. It is formed by heating a mixture of 2 parts of sal ammoniac and 3 of dried chalk, and sublimes as a hard crystalline volatile mass, having a strong smell of ammonia. When exposed to air, it loses ammonia, and falls to a powder of bicarbonate, NH_4 O, $\text{CO}_2 + \text{HO}$, CO_2 .

Carbonate of baryta occurs native, as witherite. It forms, when artificially prepared, a heavy white powder, soluble in diluted hydrochloric and nitric acids, insoluble in water. It is very poisonous. Formula, Ba O, CO_2 .

Čarbonate of strontia resembles the preceding. It occurs native, as strontianite, in radiated crystalline masses of an applegreen colour. It is not poisonous. Formula Sr O, CO₂.

Carbonate of lime occurs native, as marble, limestone, chalk, and calcareous spar. It also forms the chief part of shells, and is often found in springs, dissolved by an excess of carbonic acid. When such water, which is very hard water, is boiled, the excess of carbonic acid escapes, the carbonate of lime is deposited, and the water becomes, *pro tanto*, softer. Or, the same effect may be produced by adding just as much lime-water as will neutralise the bicarbonate of lime, when the whole is precipitated as neutral carbonate. Ca O, $2 CO_g + Ca O = 2 (Ca O, CO_g)$.

When carbonate of lime is ignited in the open fire, it loses all its carbonic acid and becomes quicklime. The uses of this substance are well known. Formula of carbonate of lime Ca O, CO_{a} .

Carbonate of Magnesia, Mg O, Co₂, occurs as a rock in the East Indies. When a solution of bicarbonate is exposed to the air, crystals are deposited, which are Mg O, CO₂ + 3 aq. Other crystals have been obtained, which were Mg, O, CO₂ + 5 aq. When carbonate of potash is added to a solution of sulphate of magnesia, a precipitate falls, which contains 4 Mg O + 3 CO₂ + 4 aq.

Carbonate of protoxide of iron is formed when an alkaline carbonate is added to a solution of protosulphate of iron. It falls as a dirty white bulky precipitate, which rapidly becomes green, and then brown, losing carbonic acid, and attracting oxygen, till it passes into hydrated peroxide of iron. It may be preserved as protocarbonate by mixing the fresh precipitate while still moist with sugar, and drying it in the water bath. In this state it is the carbonas ferri saccharatus, and is a very active remedy. It occurs in chalvbeate waters, dissolved by excess of carbonic acid. Formula Fe O, C O, +aq.

There are two native carbonates of copper: the dicarbonate, $2 \text{ Cu} O + CO_{2} + \text{aq.}$ in the beautiful green mineral called malachite; and the carbonate, hydrated, in the fine blue copper ore, CuO, HO+2 (CuO, CO.).

Carbonate of lead, PbO, CO., occurs native as white lead spar. Prepared artificially, it is ceruse, or white lead, much used as a white pigment. It is formed by the slow action of air, moisture, and the vapour of acetic acid on thin sheets of lead, by which the metal is oxidised and carbonated. It is the most poisonous of all the compounds of lead, and is apt to be formed when pure water (as rain water) is kept in leaden cisterns or conveyed in leaden pipes. It is not formed, however, when the water contains even a small proportion of saline matter, especially sulphates. These appear to protect the metal, and render the use of it safe.

SULPHUR SALTS.

Berzelius has shown that sulphurets unite together, and produce what he calls sulphur salts. The sulphurets of potassium, sodium, and the strongly basic metals in general, act the part of bases ; and the sulphurets of arsenic, antimony, molybdenum, such the parts of acids. Thus sesquisulphuret of arsenic combines with sulphuret of potassium, forming the arsenio-sulphuret of potassium, $KS+As_2 S_3$, which corresponds to the arsenite of potash, $KO+As_2 O_3$; and as a general rule, the sulphur salts correspond to oxygen salts, and may of course be represented in two ways ; as, if we make the arsenite of potash K + As, O₄, the sulphur salt will be K+As, S₄. The sulphurets of hydrogen and carbon are sulphur acids. The sulphur salts, as yet, are not of much practical interest, although the tendency to form them is applied to useful purposes in analysis. Selenium and Tellurium form similar compounds.

ST VALLE IS " GON

END OF PART I,

Warks printed for

TAYLOR AND WALTON,

UPPER GOWER STREET.

OUTLINES OF CHEMISTRY,

FOR THE USE OF STUDENTS.

By WILLIAM GREGORY, M.D., Professor of Chemistry in the University of Edinburgh. Fcp. 8vo.

Part I. (INORGANIC CHEMISTRY), Just Published. Part II. (Organic Chemistry), will be ready early in the Spring.

TURNER'S ELEMENTS OF CHEMISTRY.

Seventh Edition. Edited by JUSTUS LIEBIG, M.D., Professor of Chemistry in the University of Giessen, and WILLIAM GREGORY, M.D., Professor of Chemistry in the University of Edinburgh. 1 thick vol. 8vo, 14. 8s. cloth.

"There is no English work on Chemistry which has been in so many hands, and has met with such universal approbation as 'Turner's Elements,' and there is scarcely any work which has received so many additions and improvements in passing through its numerous editions. The present one appears to fulfil all that can be desired of a work of this kind. In the former editions, which were conducted by the late lamented Dr. Turner, the inorganic division of the subject was treated with that clearness, perspicitly, and beauty of arrangement so peculiarly his own ; but the organic part of the work, although giving a very good general outline of this part of Chemistry, was not so full as could be wished, when the almost miraculous advances of this interesting branch of the science were taken into consideration. The edition now before us, by W. Gregory and J. Liebig, leaves nothing to be desired in this respect ; they have rendered it exceedingly complete, carrying out, at the same time, the original idea of Turner. There are many other new works on Chemistry of surpassing merit, but some of them are more adapted to the teacher than the student; some are based on entirely new hypotheses, adopted only by a few, and, consequently, although of incalculable value to advanced students, do not render such eminent service to young chemists as works on the usual plan are capable of doing. Of these latter the work hefore us is a splendid example ; and as a compendium of the present state of Chemistry, and a text-book for all beginners, we consider it as unequalled by any in the English language, and we even doubt whether there are any of the foreign manuals of an equal size which can venture to compete which it."—*Chemical Gazetie*, December 1, 1842. WORKS PRINTED FOR TAYLOR AND WALTON.

PROFESSOR LIEBIG'S WORKS.

AGRICULTURAL CHEMISTRY. CHEMISTRY IN ITS APPLICATIONS TO AGRICULTURE AND PHYSIOLOGY.

By JUSTUS LIEBIG, M.D., Ph. D., F.R.S., Professor of Chemistry in the University of Giessen. Edited, from the Manuscript of the Author, by LYON PLAYFAIR, Ph. D. Third Edition, with large additions and numerous alterations. 8vo, 10s. 6d.

"A book infinitely superior to its predecessors, and to a very considerable extent unlike them."—Gardeners' Chronicle.

FAMILIAR LETTERS ON CHEMISTRY;

AND ITS RELATIONS TO COMMERCE, PHYSIOLOGY, AND AGRICULTURE. By JUSTUS LIEBIG, M.D. Edited by John Gardner, M.D. Second Edition. Fcp. 8vo, 4s. 6d.

"That the public will discover its merits, and that it will find its way into the drawing-room as well as the library, and be equally prized by the advanced man of science and the student, we venture to say is certain: and it must increase the respect entertained for Chemistry wherever it is read."—Chemical Gazette.

FAMILIAR LETTERS ON CHEMISTRY.

Second Series. The Philosophical Principles and General Laws of The Science. By Justus Liebig, M.D. Edited by John Gardner, M.D. Fcd. 8vo, 5s.

"The volume should be in every family library, and read in every school."-Critic.

ANIMAL CHEMISTRY;

OR, CHEMISTRY IN ITS APPLICATIONS TO PHYSIOLOGY AND PATHOLOGY.

By JUSTUS LIEBIG, M.D., Ph. D. Edited, from the Author's Manuscript, by WILLIAM GREGORY, M.D., Professor of Chemistry in the University of Edinburgh. Second Edition. 8vo, 9s. 6d. cloth.

⁴⁴While we have given but a very imperfect sketch of this original and profound work, we have endeavoured to convey to the reader some notion of the rich store of interesting matter which it contains. The chemist, the physiologist, the medical man, and the agriculturist, will all find in this volume many new ideas, and many useful practical remarks. It is the first specime of what modern Organic Chemistry is capable of doing for Physiology; and we have no doubt that from its appearance, Physiology will date a new era in her advance."—Quarter by Review, No. 139.

RECENT ADVANCES IN CHEMISTRY, AND ITS APPLICATION TO AGRICULTURE

Report of Speeches delivered at a Public Dinner given to PROFESSOR LIEBIG in Glasgow, on Friday, October 11th, 1844. 8vo, 1s. WORKS PRINTED FOR TAYLOR AND WALTON.

PORTRAIT OF PROFESSOR LIEBIG.

A Line Engraving by RAUCH, after a Drawing by TRAUTSCHOLD. Price 7s. 6d.

" This is an admirable likeness of Professor Liebig,"-Lancet.

DR. THOMAS YOUNG'S LECTURES ON NATURAL PHILOSOPHY AND THE MECHANICAL ARTS;

With References and Notes, by the REV. P. KELLAND, M.A., F.R.S., Loud. and Edinh, late Fellow of Queen's College, Cambridge, Professor of Mathematics, &c., in the University of Edinburgh. To form I Volume Octavo, with an Octavo Volume of Plates.

PLAN OF PUBLICATION.

1. It is proposed to reprint the Text entire. The authorities referred to will be given at the foot of each page, and a copious list of recent treatises will be added. In those branches of Science in which considerable progress has been made since the lectures were first published, the references given will point out the authors of the improvements, and will be accompanied by observations on the nature of those improvements, with directions to the best sources of further information.

2. The work will be completed in Eight or Nine Monthly Parts, each containing 80 pages of letter-press and 5 quarto plates, folded into 8vo. In the present edition all the Plates contained in the Original Work will be given.

PART I. WILL APPEAR ON THE 31ST OF JANUARY, 1845.

THE USE OF THE BLOWPIPE

IN THE EXAMINATION OF MINERALS, ORES, FURNACE PRODUCTS, AND OTHER METALLIC COMBINATIONS.

By PROFESSOR C. F. PLATTNER, Assay-Master at the Royal Freyberg Smelting Works. Translated from the German, with Notes, by DR. JAMES SURRIDAN MUSPRATT, of the University College and Giessen Laboratories. With a Preface by PROFESSOR LAEBED. Illustrated by numerous Wood Engravings. 1 vol. 8vo, 10s. 6d. (Just Published.)

LECTURES TO FARMERS ON AGRICULTURAL CHEMISTRY.

By ALEXANDER PETZHOLDT. (Just Published.) 1 vol. small 8vo, 7s. 6d.

"The author does not overload his subject with needless details, which is the vice of some such books, but he confines the reader to those points only which he ought to be well acquainted with, and these he explains in a clear and simple way." — Gardeners" Chronicte,

"A work which ought to be found in every farm-house."-Critic.

WORKS PRINTED FOR TAYLOR AND WALTON.

APPLIED CHEMISTRY;

IN MANUFACTURES, ARTS, AND DOMESTIC ECONOMY. Edited by E. A. PARNELL, Author of "Elements of Chemical Analysis." With numerous Wood Engravings and Illustrations.

Vol. I., 13s. cloth lettered, contains :--PRELIMINARY OBSERVATIONS-GAS ILLUMINATION -PRESERVATION OF WOOD-DYEING AND CALICO PRINTING.

Vol. II., 13s. cloth lettered, contains :--GLASS-STARCH -- TANNING -- CAOUTCHOUC-BORAX AND THE BORACIC LAGOONS-SOAP-SULPHUR AND SULPHURIC ACID, AND SODA.

Vol. III. will contain :- Dyeing Materials.

CHEMICAL ANALYSIS.

PARNELL'S ELEMENTS OF CHEMICAL ANALYSIS, INORGANIC AND ORGANIC.

With Diagrams on Wood. 8vo, 10s. 6d. cloth lettered.

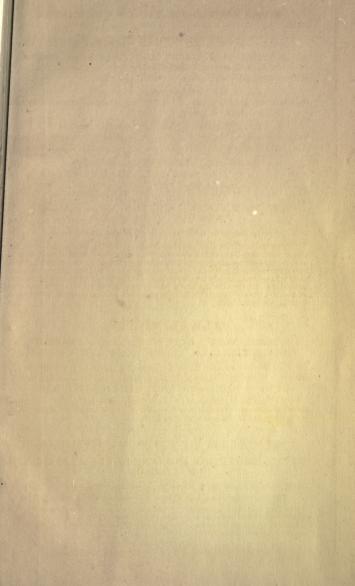
"As an adjunct to the exertions of the teacher, but by no means superseding the necessity of oral and practical instruction, the work of Mr. Parnell appears likely to be in the highest degree useful ; it will servet coronvey to the attentive student a correct notion of the general routine of operations proper to each of the different classes of analytical research, and the principles upon which such modes of proceeding have been devised, besides affording him a fund of practical detail, an easy reference to which will certainly lighten his labours and accelerate his progress."—*Chemical Gazette*, November, 1842.

ALKALIMETRY.

NEW METHODS OF ALKALIMETRY, AND OF DETERMINING THE COMMERCIAL VALUE OF ACIDS AND MANGANESE.

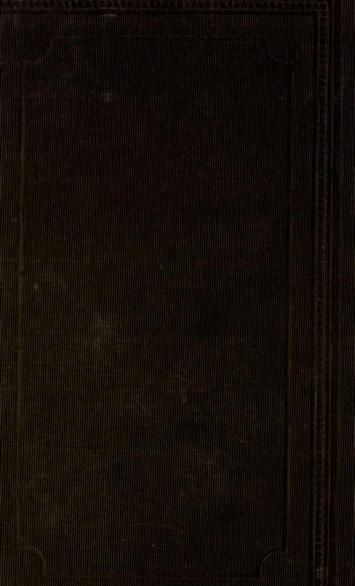
By DRS. FRESENIUS and WILL, Chemical Assistants in the University of Giessen. Edited by J. LLOYD BULLOCK, Member of the Chemical Society, and late of the Giessen and Paris Laboratories. 12mo, 48. cloth.

"This little Work will prove of the highest importance to Calico Printers, Bleachers, Dyers, Manufacturers of Soap, Paper, and Prussiate of Potash; also, to Chemists, and to Dealers in Alkalies, Acids, &c."


APPLICATION OF LIEBIG'S PHYSIOLOGY,

TO THE PREVENTION AND CURE OF GRAVEL, CALCULUS, AND GOUT.

By H. BENCE JONES, M.A., Cantab.; Licentiate of the Royal College of Physicians, London; and Fellow of the Chemical Society. 8vo, 6s.


"In thus expressing our opinion of the practical value of this publication, it is satisfactory to find ourselves supported by Professor Liebig himself, under whose immediate superintendence and sanction a translation into German is now preparing,"--Pharmacentical Journal.

LONDON : BRADBURY AND EVANS, PRINTERS, WHITEFRIARS.

Gregory, William Outlines of organic and inorganic chemis-try. vol.1. Inorganic chemistry **UNIVERSITY OF TORONTO** LIBRARY 68668 Do not remove the card from this Pocket. Acme Library Card Pocket Under Pat. "Ref. Index File." Made by LIBRARY BUREAU

