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INTRODUCTION TO PART II

§ I. Before introducing the topics to be examined

in Part II, I propose to recapitulate the substance of

Part I, and in so doing to bring into connection with

one another certain problems which were there treated

in different chapters. I hope thus to lay different em-
phasis upon some of the theories that have been main-

tained, and to remove any possible misunderstandings

where the treatment was unavoidably condensed.

In my analysis of the proposition I have distinguished

the natures of substantive and adjective in a form in-

tended to accord in essentials with the doctrine of the

large majority of logicians, and as far as my terminology

is new its novelty consists in giving wider scope to each

of these two fundamental terms. Prima facie it might

be supposed that the connection of substantive with

adjective in the construction of a proposition is tanta-

mount to the metaphysical notions of substance and

inherence. But my notion of substantive is intended

to include, besides the metaphysical notion of substance

—so far as this can be philosophically justified—the no-

tion of occurrences or events to which some philosophers

of the present day wish to restrict the realm of reality.

Thus by a substantive /r^/^r I mean an existent; and

the category of the existent is divided into the two

subcategories: what continues to exist, or the continuant;

and what ceases to exist, or the occurrent, every occur-

rent being referrible to a continuant. To exist is to be
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in temporal or spatio-temporal relations to other exis-

tents; and these relations between existents are the

fundamentally external relations. A substantive proper

cannot characterise, but is necessarily characterised ; on

the other hand, entities belonging to any category

whatever (substantive proper, adjective, proposition,

etc.) may be characterised by adjectives or relations

belonging to a special adjectival sub-category corre-

sponding, in each case, to the category of the object

which it characterises. Entities, other than substantives

proper, of which appropriate adjectives can be predi-

cated, function as quasi-substantives.

§ 2. The term adjective, in my application, covers

a wider range than usual, for it is essential to my system

that it should include relations. There are two distinct

points of view from which the treatment of a relation

as of the same logical nature as an adjective may be

defended. In the first place the complete predicate in

a relational proposition is, in my view, relatively to the

subject of such proposition, equivalent to an adjective

in the ordinary sense. For example, in the proposition,

' He is afraid of ghosts,' the relational component is ex-

pressed by the phrase 'afraid of ; but the complete

predicate 'afraid of ghosts' (which includes this relation)

has all the logical properties of an ordinary adjective,

so that for logical purposes there is no fundamental dis-

tinction between such a relational predicate and an irra-

tional predicate. In the second place, if the relational

component in such a proposition is separated, I hold that

it can be treated as an adjective predicated of the sub-

stantive-couple 'he' and 'ghosts'. In other words, a rela-

tion cannot be identified with a class of couples, i.e. be
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conceived extensionally ; but must be understood to

characterise couples, i.e. be conceived intensionally. It

seems to me to raise no controvertible problem thus to

include relations under the wide genus adjectives. It is

compatible, for example, with almost the whole of Mr
Russell's treatment of the proposition in his Principles of

Mathematics-, and, without necessarily entering into the

controvertible issues that emerge in such philosophical

discussions, I hold that some preliminary account of

relations is required even in elementary logic.

§ 3. My distinction between substantive and adjec-

tive is roughly equivalent to the more popular philoso-

phical antithesis between particular and universal; the

notions, however, do not exactly coincide. Thus I

understand the philosophical term particular not to apply

to quasi-substantives, but to be restricted to substantives

proper, i.e. existents, or even more narrowly to occur-

rents. On the other hand, I find a fairly unanimous

opinion in favour of calling an adjective predicated of

a particular subject, a particular—the name universal

being confined to the abstract conception of the adjec-

tive. Thus red or redness, abstracted from any specific

judgment, is held to be universal; but the redness,

manifested in a particular object of perception, to be

itself particular. Furthermore, qua particular, the ad-

jective is said to be an existent, apparently in the same

sense as the object presented to perception is an exis-

tent. To me it is difficult to argue this matter because,

while acknowledging that an adjective may be called a

universal, I regard it not as a mere abstraction, but as

a factor in the real ; and hence, in holding that the ob-

jectively real is properly construed into an adjective
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characterising a substantive, the antithesis between the

particular and the universal (i.e. in my terminology

between the substantive and the adjective) does not

involve separation within the real, but solely a separation

for thought, in the sense that the conception of the

substantive apart from the adjective, as well as the

conception of the adjective apart from the substantive,

equally entail abstraction.

§ 4. Again, taking the whole proposition constituted

by the connecting of substantive with adjective, I have

maintained that in a virtually similar sense the proposi-

tion is to be conceived as abstract. But, whereas the

characterising tie may be called constitutive in its func-

tion of connecting substantive with adjective to con-

struct the proposition, I have spoken of the assertive

tie as epistemic, in the sense that it connects the thinker

with the proposition in constituting the unity which may
be called an act of judgment or of assertion. When,

however, this act of assertion becomes in its turn an

object of thought, it is conceived under the category of

the existent ; for such an act has temporal relations to

other existents, and is necessarily referrible to a thinker

conceived as a continuant. Though, relatively to the

primary proposition, the assertive tie must be conceived

as epistemic
;
yet, relatively to the secondary proposition

which predicates of the primary that it has been asserted

by A, the assertive tie functions constitutively.

§ 5. In view of a certain logical condition presup-

posed throughout this Part of my work, I wish to re-

mind the reader of that aspect of my analysis of the

proposition, according to which I regard the subject as

that which is given to be determinately characterised
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by thought. Now I hold that for a subject to be

characterised by some adjectival determinate, it must

first have been presented as characterised by the corre-

sponding adjectival determinable. The fact that what

is given is characterised by an adjectival determinable

is constitutive ; but the fact that it is presented as thus

characterised is epistemic. Thus, for a surface to be

characterised as red or as square, it must first have

been constructed in thought as being the kind of thing

that has colour or shape ; for an experience to be

characterised as pleasant or unpleasant, it must first

have been constructed in thought as the kind of thing

that has hedonic tone. Actually what is given, is to be

determined with respect to a conjunction of several

specific aspects or determinates ; and these determine

the category to which ' the given ' belongs. For example,

on the dualistic view of reality, the physical has to be

determined under spatio-temporal determinables, and

the psychical under the determinable consciousness or

experience. If the same being can be characterised as

two-legged and as rational, he must be put into the

category of the physico-psychical.

§ 6. The passage from topics treated in Part I to

those in Part II, is equivalent to the step from implica-

tion to inference. The term inference, as introduced in

Part I, did not require technical definition or analysis,

as it was sufficiently well understood without explana-

tion. It was, however, necessary in Chapter III to in-

dicate in outline one technical difficulty connected with

the paradox of implication ; and there I first hinted,

what will be comprehensively discussed in the first

chapter of this Part, that implication is best conceived
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as potential inference. While for elementary purposes

implication and inference may be regarded as practically

equivalent, it was pointed out in Chapter III that there

is nevertheless one type of limiting condition upon which

depends the possibility of using the relation of implica-

tion for the purposes of inference. Thus reference to

the specific problem of the paradox of implication was
unavoidable in Part I, inasmuch as a comprehensive

account of symbolic and mechanical processes necessarily

included reference to all possible limiting cases; but,

apart from such a purely abstract treatment, no special

logical importance was attached to the paradox. The
limiting case referred to was that of the permissible em-

ployment ofthe compound proposition 'If/> then ^,'in the

unusual circumstance where knowledge of the truth or

the falsity oip or of ^ was already present when the com-

pound proposition was asserted. This limiting case will

not recur in the more important developments of infer-

ence that will be treated in the present part of my logic.

It might have conduced to greater clearness if, in

Chapters III and IV, I had distinguished—when using

the phrase implicativeproposition—between the primary

and secondary interpretations of this form of proposi-

tion. Thus, when the compound proposition Tf/ then

q' is rendered, as Mr Russell proposes, in the form

'Either not-/ or q^ the compound is being treated as a

primary proposition of the same type as its components

/ and q. When on the other hand we substitute for Tf

/ then q' the phrase 'p implies q^ or preferably 'p would

imply q^ the proposition is no longer primary, inasmuch

as it predicates about the proposition q the adjective

'implied by/' which renders the compound a secondary
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proposition, in the sense explained in Chapter IV\ Now
whichever of these two interpretations is adopted, the

inference which is legitimate under certain limiting con-

ditions is the same. Thus given the compound ' Either

not-/ or q' conjoined with the assertion of '/,' we could

infer ' q \
just as given 'p implies q' conjoined with the

assertion of '/,' we infer ^q! It is for this reason that

the two interpretations have become merged into one

in the ordinary symbolic treatment of compound pro-

positions; and in normal cases no distinction is made
in regard to the possibility of using the primary or

secondary interpretation for purposes of inference. The
normal case, however, presupposes that p and q are

entertained hypothetically; when this does not obtain,

the danger of petitio principii enters. The problem in

Part I was only a very special and technical case in

which this fallacy has to be guarded against ; in Part II,

it will be dealt with in its more concrete and philoso-

phically important applications.

§ 7. The mention of this fallacy immediately sug-

gests Mill's treatment of the functions and value of the

syllogism; but, before discussing his views, I propose

to consider what his main purpose was in tackling the

charge of petitio principii that had been brought against

the whole of formal argument, including in particular

the syllogism. In the first section of his chapter, Mill

refers to two opposed classes of philosophers—the one

of whom regarded syllogism as the universal type of all

logical reasoning, the other of whom regarded syllogism

^ The interpretation of the impHcative form '/ implies q' as

secondary is developed in Chapter III, § 9, where the modal adjectives

necessary, possible, impossible, are introduced.
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as useless on the ground that all such forms of inference

involve petitio principii. He then proceeds: 'I believe

both these opinions to be fundamentally erroneous,' and

this would seem to imply that he proposed to relieve

the syllogism from the charge. I believe, however, that

all logicians who have referred to Mill's theory—

a

group which includes almost everyone who has written

on the subject since his time—have assumed that the

purport of the chapter was to maintain the charge of

petitio principii, an interpretation which his opening

reference to previous logicians would certainly not seem

to bear. His subsequent discussion of the subject is,

verbally at least, undoubtedly confusing, if not self-con-

tradictory; but my personal attitude is that, whatever

may have been Mill's general purpose, it is from his own
exposition that I, in common with almost all his con-

temporaries, have been led to discover the principle

according to which the syllogism can be relieved from

the incubus to which it had been subject since the time

of Aristotle. In my view, therefore, Mill's account of

the philosophical character of the syllogism is incon-

trovertible ; I would only ask readers to disregard from

the outset any passage in his chapter in which he

appears to be contending for the annihilation of the

syllogism as expressive of any actual mode of inference.

Briefly his position may be thus epitomised. Taking

a typical syllogism with the familiar major 'All men
are mortal,' he substituted for 'Socrates' or 'Plato' the

minor term 'the Duke of Wellington' who was then

living. He then maintained that, going behind the

syllogism, certain instantial evidence is required for es-

tablishing the major; and furthermore that the validity
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of the conclusion that the Duke of WelHngton would

die depends ultimately on this instantial evidence. The
interpolation of the universal major ' All men will die

'

has undoubted value, to which Mill on the whole did

justice; but he pointed out that the formulation of this

universal adds nothing to the positive or factual data

upon which the conclusion depends. It follows from

his exposition that a syllogism whose major is admittedly

established by induction from instances can be relieved

from the reproach of begging the question or circularity

if, and only if, the minor term is not included in the

ultimate evidential data. The Duke of Wellington being

still living could not have formed part of the evidence

upon which the universal major depended. It was there-

fore part of Mill's logical standpoint to maintain that

there were principles of induction by which, from a

limited number of instances, a universal going beyond

these could be logically justified. This contention may

be said to confer constitutive validity upon the inductive

process. It is directly associated with the further con-

sideration that an instance, not previously examined, may

be adduced to serve as minor premiss for a syllogism,

and that such an instance will always preclude circularity

in the formal process. Now the charge of circularity or

petitio principii is epistemic; and the whole of Mill's

argument may therefore be summed up in the statement

that the epistemic validity of syllogism and the consti-

tutive validity of induction, both of which had been dis-

puted by earlier logicians, stand or fall together.

In order to prevent misapprehension in regard to

Mill's view of the syllogism, it must be pointed out that

he virtually limited the topic of his chapter to cases in
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which the major premiss would be admitted by all

logicians to have been established by means of induction

in the ordinary sense, i.e. by the simple enumeration of

instances; although many of them would have contended

that such instantial evidence was not by itself sufficient.

Thus all those cases in which the major was otherwise

established, such as those based on authority, intuition

or demonstration, do not fall within the scope of Mill's

solution. Unfortunately all the commentators of Mill

have confused his view that universals cannot be in-

tuitively but only empirically established, with his spe-

cific contention in Chapter IV. I admit that he himself

is largely responsible for this confusion, and therefore,

while supporting his view on the functions of the syl-

logism, I must deliberately express my opposition to

his doctrine that universals can only ultimately be estab-

lished empirically, and limit my defence to his analysis

of those syllogisms in which it is acknowledged that the

major is thus established. Even here his doctrine that

all inference is from particulars to particulars is open to

fundamental criticism ; and, in my treatment of the

principles of inductive inference which will be developed

in Part III, I shall substitute an analysis which will

take account of such objections as have been rightly

urged against Mill's exposition.

[Note. There are two cases in which the technical terminology

employed in Part II differs from that in Part I. (i) The phrase/nW-
tive proposition, in Part I, is to be understood psychologically; in

Part 11, logically as equivalent to axiom. (2) Counter-impiicative, in

Part I, applies to the form of a compound proposition; in Part II, to

a principle of inference.]



CHAPTER I

INFERENCE IN GENERAL

§ I. Inference is a mental process which, as such,

has to be contrasted with impHcation. The connection

between the mental act of inference and the relation

of implication is analogous to that between assertion and
the proposition. Just as a proposition is what is poten-

tially assertible, so the relation of implication between

two propositions is an essential condition for the possi-

bility of inferring one from the other; and, as it is

impossible to define a proposition ultimately except in

terms of the notion of asserting, so the relation of im-

plication can only be defined in terms of inference.

This consideration explains the importance which I

attach to the recognition of the mental attitude involved

in inference and assertion ; afterwhich the strictly logical

question as to the distinction between valid and invalid

inference can be discussed. To distinguish the formula

of implication from that of inference, the former may
be symbolised *If/ then q^ and the latter 'p therefore

q,' where the symbol q stands for the conclusion and^
for the premiss or conjunction of premisses.

The proposition or propositions from which an in-

ference is made being called premisses, and the pro-

position inferred being called the conclusion, it is

commonly supposed that the premisses are the pro-

positions first presented in thought, and that the transi-

tion from these to the thought of the conclusion is the

J. L. II I
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last step in the process. But in fact the reverse is

usually the case ; that is to say, we first entertain in

thought the proposition that is technically called the

conclusion, and then proceed to seek for other pro-

positions which would justify us in asserting it. The
conclusion may, on the one hand, first present itself to

us as potentially assertible, in which case the mental

process of inference consists in transforming what was

potentially assertible into a proposition actually asserted.

On the other hand, we may have already satisfied

ourselves that the conclusion can be validly asserted

apart from the particular inferential process, in which

case we may yet seek for other propositions which,

functioning as premisses, would give an independent or

additional justification for our original assertion. In

every case, the process of inference involves three dis-

tinct assertions : first the assertion of */,' next the asser-

tion oV ql and thirdly the assertion that ^p would imply

q.' It must be noted that '/ would imply q^ which is

the proper equivalent of 'if/ then ^,' is the more correct

expression for the relation of implication, and not 'p

implies q'—which rather expresses the completed in-

ference. This shows that inference cannot be defined

in terms of implication, but that implication must be

defined in terms of inference, namely as equivalent to

potential inference. Thus, in inferring, we are not

merely passing from the assertion of the premiss to the

assertion of the conclusion, but we are also implicitly

asserting that the assertion of the premiss is used to

justify the assertion of the conclusion.

§ 2. Some difficult problems, which are of special

importance in psychology, arise in determining quite
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precisely the range of those mental processes which

may be called inference: in particular, how far asser-

tion or inference is involved in the processes of asso-

ciation and of perception. These difficulties have been

aggravated rather than removed by the quite false

antithesis which some logicians have drawn between

logical and psychological inference. Every inference is

a mental process, and therefore a proper topic for psycho-

logical analysis ; on the other hand, to infer is to think,

and to think is virtually to adopt a logical attitude; for

everyone who infers, who asserts, who thinks, intends

to assert truly and to infer validly, and this is what con-

stitutes assertion or inference into a logical process. It

is the concern of the science of logic, as contrasted with

psychology, to criticise such assertions and inferences

from the point of view of their validity or invalidity.

Let us then consider certain mental processes—in

particular processes of association—which have the

semblance of inference. In the first place, there are

many unmistakeable cases of association in which no

inference whatever is even apparently involved. Any
familiar illustration, either of contiguity or of similarity,

will prove that association in itself does not entail in-

ference. If a cloudy sky raises memory-images of a

storm, or leads to the mental rehearsal of a poem, or

suggests the appearance of a slate roof, in none of these

revivals by association is there involved anything in the

remotest degree resembling inference. The case of con-

tiguity is that which is most commonly supposed to

involve some sort of inference; but in this supposal there

is a confusion between recollection and expectation.

Our recollection of storms that we have experienced in
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the past is obviously distinct from our expectation that

a storm is coming on in the immediate future. It is to

this latter process of expectation, and not to the former

process of recollection, that the term inference is more

or less properly applied ; but even here we must make
a careful psychological distinction. We may expect a

storm when we notice the darkness of the sky, without

at all having actually recalled past experiences of storms;

in this case no inference is involved, since there has

been only one assertion, namely, what would constitute

the conclusion without any other assertion that would

constitute a premiss. In order to speak properly of

inference in such cases, the minimum required is the

assertion that the sky is cloudy and that therefore there

will be a storm. Here we have two explicit assertions,

together with the inference involved in the word 'there-

fore.' It is of course a subtle question for introspection

as to whether this threefold assertion really takes place.

This difficulty does not at all affect our definition of

inference; it would only affect the question whether in

any given case inference had actually occurred. It has

been suggested that, where there has been nothing that

logic could recognise as an inference, there has yet

been inference in a psychological sense; but this con-

tention is absurd, since it is entirely upon psychological

grounds that we have denied the existence of inference

in such cases.

Let us consider further the logical aspects of a

genuine inference, following upon such a process of

association as we have illustrated. The scientist may
hold that the appearance of the sky is not such as to

warrant the expectation of an on-coming storm. He
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may, therefore, criticise the inference as invalid. Thus,

assuming the actuaHty of the inference from the psycho-

logical point of view, it may yet be criticised as invalid

from the logical point of view. So far we have taken

the simplest case, where the single premiss 'The sky

is cloudy' is asserted. But, when an additional premiss

such as 'In the past cloudy skies have been followed

by storm' is asserted, then the inference is further

rationalised, since the two premisses taken together

constitute a more complete ground for the conclusion

than the single premiss. This additional premiss is

technically known as 2. particular proposition. If the

thinker is pressed to find still stronger logical warrant

for his conclusion, he may assert that in all his expe-

riences cloudy skies have been followed by storm (a

limited universal). The final stage of rationalisation is

reached when the universal limited to all remembered

cases is used as the ground for asserting the unlimited

universal for all cases. But even now the critic may
press for further justification. To pursue this topic

would obviously require a complete treatment of induc-

tion, syllogism, etc., from the logical point of view.

Enough has been said to show that, however inade-

quate may be the grounds offered in justification of a

conclusion, this has no bearing upon the nature or upon

the fact of inference as such, but only upon the criticism

of it as valid or invalid.

As in association, so also in perception, a psycho-

logical problem presents itself. There appear to be at

least three questions in dispute regarding the nature of

perception, which have close connection with logical

analysis: First, how much is contained in the percept
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besides the immediate sense experience? Secondly,

does perception involve assertion? Thirdly, does it

involve inference? To illustrate the nature of the first

problem, let us consider what is meant by the visual

perception of a match-box. This is generally supposed

to include the representation of its tactual qualities ; in

which case, the content of the percept includes qualities

other than those sensationally experienced. On the

other hand, supposing that an object touched in the

dark is recognised as a match-box, through the special

character of the tactual sensations, would the represen-

tation of such visual qualities as distinguish a match-box

from other objects be included in the tactual perception

of it as a match-box ? The same problem arises when
we recognise a rumbling noise as indicating a cart in

the road: i.e. should we say, in this case, that the

auditory percept of the cart includes visual or other dis-

tinguishing characteristics of the cart not sensationally

experienced? In my view it is inconsistent to include in

the content of the visual percept tactual qualities not

sensationally experienced, unless we also include in the

content of a tactual or auditory percept visual or similar

qualities not sensationally experienced

\

This leads up to our second question, namely whether

in such perceptions there is an assertion {a) predicating

of the experienced sensation certain specific qualities;

or an assertion {B) of having experienced in the past

similar sensations simultaneously with the perception of

^ In speaking here of the mental representation of qualities not

sensationally experienced, I am putting entirely aside the very im-

portant psychological question as to whether such mental repre-

sentations are in the form of 'sense-imagery' or of 'ideas.'



INFERENCE IN GENERAL 7

a certain object. Employing our previous illustration,

we may first question whether the assertion 'There is

a cart in the road' following upon a particular auditory

sensation, involves (a) the explicit characterisation

of that sensation. Now if the specific character of the

noise as a sensation merely caused 2. visual image which

in its turn caused the assertion 'There is a cart in the

road,' then in the absence of assertion {a) there is no

explicit inference. In order to become inference, the

character operating (through association) as cause would

have to be predicated (in a connective judgment) as

ground. On the other hand, any experience that could

be described as hearing a noise of a certain more or less

determinate character would involve, in my opinion,

besides assimilation, a judgment or assertion {a) expres-

sible in some such words as 'There is a rumbling noise.'

The further assertion that there is a cart in the road

is accounted for (through association) by previous ex-

periences of hearing such a noise simultaneously with

seeing a cart. Assuming that association operates by

arousing memory-images of these previous experiences,

it is only when by their vividness or obtrusiveness these

memory-images give rise to a memory-judgment, that

the assertion (^) occurs. We are now in a position to

answer the third question as to the nature of perception

;

for, if either the assertion of [a) alone or of {b) with (a)

occurs along with the assertion that there is a cart in

the road, then inference is involved; otherwise it is not.

§ 3. Passing from the psychological to the strictly

logical problem, we have to considei; in further detail

the conditions for the validity of an inference symbolised

as 'p .'
. qJ These conditions are twofold, and may be
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conveniently distinguished in accordance with my termi-

nology as constitutive and epistemic. They may be

briefly formulated as follows:

Conditionsfor Validity of the Inference 'p .'. q'

Constitutive Conditions: (i) the proposition '/' and
(ii) the proposition 'p would imply q^ must both be true.

Epistemic Conditions: (i) the asserting of '/' and
(ii) the asserting of '/ would imply q' must both be

permissible without reference to the asserting of q.

It will be noted that the constitutive condition ex-

hibits the dependence of inferential validity upon a

certain relation between the contents of premiss and of

conclusion ; the epistemic condition, upon a certain

relation between the asserting of the premiss and the

asserting of the conclusion. Taking the constitutive

condition first, we observe that the distinction between

inference and implication is sometimes expressed by

calling implication 'hypothetical inference'—the mean-

ing of which is that, in the act of inference, the premiss

must be categorically asserted ; while, in the relation of

implication, this premiss is put forward merely hypo-

thetically. This was anticipated above by rendering

the relation of implication in the subjunctive mood

(/ would imply ^) and the relation of inference in the

indicative mood [p implies q\
Further to bring out the connection between the

epistemic and the constitutive conditions, it must be

pointed out that an odd confusion attaches to the use

of the word 'imply' in these problems. The almost

universal application of the relation of implication in

logic is as a relation between two propositions; but, in

familiar language, the term 'imply' is used as a relation
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between two assertions. Consider for instance (a) 'B's

asserting that there will be a thunderstorm would imply

his having noticed the closeness of the atmosphere,' and

(S) 'the closeness of the atmosphere would imply that

there will be a thunderstorm.' The first of these relates

two mental acts of the general nature of assertion, and

is an instance of 'the asserting of ^ would imply having

asserted/'; the second is a relation between two pro-

positions, and is an instance of 'the proposition/ would

imply the proposition ^.' Comparing (a) with (d) we
find that implicans and implicate have changed places.

Indeed the sole reason why the asserting of the thunder-

storm was supposed to imply having asserted the close-

ness of the atmosphere was that, in the speaker's judg-

ment, the closeness of the atmosphere would imply that

there will be a thunderstorm.

Recognising, then, this double and sometimes am-

biguous use of the word 'imply,' we may restate the

first of the two epistemic conditions and the second of

the two constitutive conditions for the validity of the

inference '/> .'. q' as follows:

Epistemic condition (i) : the asserting of the propo-

sition '/' should not have implied the asserting of the

proposition '^.'

Constitutive condition (ii) : the proposition '/' should

imply the proposition '^.'

The former is merely a condensed equivalent of our

original formulation, viz. that 'the asserting of the pro-

position '/' must be permissible without reference to the

asserting of the proposition 'q.'

Now the fact that there is this double use of the

term 'imply' accounts for the paradox long felt as
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regards the nature of inference : for it is urged that, in

order that an inference may be formally valid, it is

required that the conclusion should be contained in the

premiss or premisses; while, on the other hand, if there

is any genuine advance in thought, the conclusion must

not be contained in the premiss. This word 'contained'

is doubly ambiguous: for, in order to secure formal

validity, the premisses regarded as propositions must

imply the conclusion regarded as a proposition ; but, in

order that there shall be some real advance and not a

mere petitio principii, it is required that the asserting

of the premisses should not have implied the previous

asserting of the conclusion. These two horns of the

dilemma are exactly expressed in the constitutive and

epistemic conditions above formulated.

§ 4. We shall now explain how the constitutive

conditions for the validity of inference, which have been

expressed in their most general form, are realised in

familiar cases. The general constitutive condition 'p

would imply q' is yi?r?;^^//)/ satisfied when some specific

logical relation holds of/ to q-, and it is upon such a

relation that the formal truth of the assertion that 'p

would imply q' is based. There are two fundamental

relations which will render the inference from / to q,

not only valid, but formally valid ; and these relations

will be expressed in formulae exhibiting what will be

called the Applicative and the Implicative Principles

of Inference. The former may be said to formulate what

is involved in the intelligent use of the word 'every';

the latter what is involved in the intelligent use of

the word 'if.'

In formulating the Applicative principle, we take p
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to stand for a proposition universal in form, and q for

a singular proposition which predicates of some single

case what is predicated universally in p. The Appli-

cative principle will then be formulated as follows:

From a predication about 'every' we may formally

infer the same predication about 'any given.'

In formulating the Implicative principle, we take/

to stand for a compound proposition of the form 'x and

''x implies
J)/'"

and q to stand for the simple proposition

'y' The Implicative principle will then be formulated

as follows:

From the compound proposition 'x and ''x implies

y we may formally infer 'jj/.'

§ 5. We find two different forms of proposition, one

or other of which is used as a premiss in every formal

inference; the distinction between which is funda-

mental, but has been a matter of much controversy

among logicians. In familiar logic the two kinds of

proposition to which I shall refer are known respec-

tively as universal and hypothetical. As an example of

the former, take 'Every proposition can be subjected

to logical criticism'; from this universal proposition we
may directly infer 'That ''matter exists'' can be sub-

jected to logical criticism.' This inference illustrates

what I have called the Applicative Principle, and its

premiss will be called an Applicational universal. Take
next the example 'If this can swim it breathes,' and 'it

can swim'; from this conjunction of propositions we
infer that 'it breathes'; here, the hypothetical premiss

being in our terminology called implicative, the in-

ference in question illustrates the use of the Implica-



12 CHAPTER I

tive Principle. It is the combination of these two prin-

ciples that marks the advance made in passing from

the most elementary forms of inference to the syllogism.

For example: From 'Everything breathes if able to

swim' we can infer 'This breathes if able to swim,'

where the applicative principle only is employed. Con-

joining the conclusion thus obtained with the further

premiss 'This can swim,' we can infer 'this breathes,'

where the implicative principle only is employed. In

this analysis of the syllogism which involves the inter-

polation of an additional proposition, we have shown

how the two principles of inference are successively

employed. The ordinary formulation of the syllogism

would read as follows: 'Everything that can swim

breathes; this can swim; therefore this breathes.' In

place of the usual expression of the major premiss, I

have substituted 'Everything breathes if able to swim,'

in order to show how the major premiss prepares the

way for the inferential employment successively of the

applicative and of the implicative principles.

§ 6. Now the two propositions ' Every proposition

can be subjected to logical criticism' and 'everything

that is able to swim breathes' must be carefully con-

trasted. Both of them are universal in form; but in the

latter the subject term contains an explicit characterising

adjective, viz. able to swim. The presence of a charac-

terising adjective in the subject anticipates the occasion

on which the question would arise whether this adjec-

tive is to be predicated of a given object. In the

syllogism, completed as in the preceding section, the

universal major premiss is combined with an affirmative

minor premiss, where the adjective entertained cate-
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gorically 2.?, predicate of the minor is the same as that

which was entertained hypothetically as subject of the

major. This double functioning of an adjective is the

one fundamental characteristic of all syllogism ; where

it will be found that one (or, in the fourth figure, every)

term occurs once in the subject of a proposition, where

it is entertained hypothetically, and again in the pre-

dicate of another proposition where it is entertained

categorically.

The essential distinction between the two contrasted

universals (applicational and implicational) lies in the

fact that an inference can be drawn from the former on

the applicative principle alone, which dispenses with

the minor premiss. We have to note the nature of the

substantive that occurs in the applicational universal as

distinguished from that which occurs in the implicational

universal. The example already given contained 'pro-

position ' as the subject term, and a few other examples

are necessary to establish the distinction in question.

'Every individual is self-identical,' therefore 'the author

of the Republic is self-identical'; 'Every conjunction

of predications is commutative,' therefore 'the conjunc-

tion lightning before and thunder after is commutative'

;

' Every adjective is a relatively determinate specifica-

tion of a relatively indeterminate adjective,' therefore

'red is a relatively determinate specification of a rela-

tively indeterminate adjective.' These illustrations

could be endlessly multiplied, in which we directly

apply a universal proposition to a certain given instance.

In such cases the implicative as well as the applicative

principle would have been involved if it had been

necessary or possible to interpolate, as an additional
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datum, a categorical proposition requiring certification,

to serve as minor premiss. Let us turn to our original

illustration and examine what would have been involved

if we had treated the inference as a syllogism; it would

have read as follows: 'Every proposition can be sub-

jected to logical criticism'; 'That matter exists is a

proposition'; therefore 'That matter exists can be sub-

jected to logical criticism.' In this form, the substantive

word proposition occurs as subject in the universal

premiss, and as predicate in the singular premiss. What
I have to maintain is that this introduction of a minor

premiss is superfluous and even misleading. It should

be observed that, in all the illustrations given above of

the purely applicative principle, the subject-term in the

universal premiss denotes a general category. It follows

from this that the proposed statement 'That matter

exists is a proposition ' is redundant as a premiss ; for it

is impossible for us to understand the meaning of the

phrase 'matter exists' except so far as we understand

it to denote a proposition. In the same way, it would

be impossible to understand the word 'red' without

understanding it to denote an adjective ; and so in all

other cases of the pure employment of the applicative

principle. In all these cases, the minor premiss which

might be constructed is not a genuine proposition—the

truth of which could come up for consideration

—

because the understanding of the subject-term of the

minor demands a reference of it to the general category

there predicated of it. This proposed minor premiss,

therefore, is a peculiar kind of proposition which is not

exactly what Mill calls 'verbal,' but rather what Kant

meant by 'analytic,' and which I propose to call ' struc-
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tural.' All structural statements contain as their pre-

dicate some wide logical category, and their fundamental

characteristic is that it is impossible to realise the

meaning of the subject-term without implicitly con-

ceiving it under that category. The structural propo-

sition can hardly be called verbal, because it does not

depend upon any arbitrary assignment of meaning to

a word;—this point being best illustrated by giving

examples. For instance, taking as subject-term 'the

author of the Republic,' then 'The author of the

Republic wrote something,' would be verbal, while

' The author of the Republic is an individual,' would

be structural. In reality the subject of a verbal pro-

position, and the subject of a structural proposition are

not the same; the one has for its subject the phrase 'the

author of the Republic,' and the other the object denoted

by the phrase. This is the true and final principle for

distinguishing a structural (as well as a genuinely real

or synthetic statement) from a verbal statement.

§ 7. Since a category is expressed always by a

general substantive name, the important question arises

as to whether or how the name of a category such as

'existent' or 'proposition' is to be defined. Now the

ordinary general substantive name is defined in terms

of determinate adjectives which constitute its connota-

tion ; but, so far as a category can be defined, it ihust

be in terms of adjectival determinables\ e.g. an existent

is what occupies some region of space or period of

time : the determinates corresponding to which would

be, occupying some specific region of space or period of

time. Similarly, the category 'proposition' could be

defined by the adjectival determinable 'that to which
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some assertive attitude can be adopted,' under which

the relative determinates would be affirmed, denied,

doubted, etc. We may indicate the nature of a given

category by assigning the determinables involved in its

construction. Using capital letters for determinables

and corresponding small letters for their determinates

(distinguished amongst themselves by dashes), the major

premiss of the syllogism would assume the following

form : Every MP \s p \{ m; where the determinables

M and P serve to define the category so far as required

for the syllogism in question. Here we substitute for

the vague word 'thing' previously employed, the symbol

MP to indicate the category of reference ; namely, that

comprising substantives of which some determinate

character under the determinables Til/ and P can be pre-

dicated. The statement that the given thing is MP is

redundant where M and P are determinables to which

the given thing belongs ; for the thing could not be given

either immediately or in an act of construction except

so far as it was given under the category defined by these

determinables. Hence any genuine act of characterisa-

tion of the thing so given would consist in giving to

these mere determinables a comparatively determinate

value. For example, it being assumed that the given

thing is MP, we may characterise it in such determi-

nate forms as 'm and/*,' 'm or/,' 'p \i m,' 'not both/>

and m' where the predication of the relative determi-

nates m and / would presuppose that the object had

been constructed under MP. In defining the function

of a proposition to be to characterise relatively deter-

minately what is given to be characterised, we now see

that what is 'given is not given in a merely abstract
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sense, but—in being given—the determinables which

have to be determined are already presupposed.

§ 8. We may now show more clearly why the force

of the term 'every' is distinct from that of the term

* if ; and how, in the syllogism, the two corresponding

principles of inference are both involved. The major

premiss having been formulated in terms of the deter-

minables M and P, the whole argument will assume

the following form

:

{a) Every MP is/ if m,

from which we infer, by the applicative principle alone

:

[b) The given MP is/ if m.

Next we introduce the minor, viz.

{c) The given MP is m,,

and finally infer, by the implicative principle alone:

{d) The given MP'isp.
Now if we held that the inference from {a) to {b) re-

quired the implicative principle as well as the applica-

tive, so that a minor premiss 'The given thing is MP'
must be interpolated, the syllogism would assume the

following more complicated form:

[a) Everything is / \{ m if MP (the reformulated
major).

.'. {b) The given thing is / if ;^ if MP (by the
applicative principle alone).

Next we introduce as minor

{c) The given thing is MP.
.'. {d) The given thing is / if w (by the implicative

principle alone);

finally, introducing the original minor, viz.

(e) The given thing is m.

.'. (/) The given thing is / (by the implicative prin-

ciple alone).

J. L. II 2
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Now this lengthened analysis of the syllogism, while

involving the implicative principle twice, involves as

well as the applicative principle the introduction of a

new minor, viz, that the given thing is MP, which hints

at the doubt whether what is given is given as MP.
But if this were a reasonable matter of doubt requiring

explicit affirmation, on the same principle we might

doubt whether what is given is a 'thing,' in some more

generic sense of the word 'thing.' If this doubt be ad-

mitted, the syllogism is resolved into three uses of the

implicative principle, with two extra minor premisses.

Such a resolution would in fact lead by an infinite regress

to an infinite number of employments of the implicative

principle. To avoid the infinite regress we must es-

tablish some principle for determining the point at

which an additional minor is not required. The view

then that I hold is not merely that what is given is a

'thing' in the widest sense of the term thing, but that

what is given is always given as demanding to be

characterised in certain definite respects—e.g. colour,

size, weight; or cognition, feeling, conation—and that

therefore such a proposition as 'The given thing is

MP' is presupposed in its being given, i.e. in being

given, it is given as requiring determination with respect

to these definite determinables M and P. The above

formulation, therefore, in which the syllogism is resolved

into a process involving the applicative and the impli-

cative principles each only once, is logically justified;

for it brings out the distinction between the function of

the term every as leading to the employment of the

applicative principle alone, and the function of if as

leading to the employment of the implicative principle
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alone; and furthermore it distinguishes between the

process in inference which requires the applicative prin-

ciple alone from that which requires the implicative as

well as the applicative principle.

The distinction between the cases in which the im-

plicative principle can or cannot be dispensed with

depends, so far, upon whether the subject-term of the

universal stands for a logical category or not. But we
may go further and say that, even if the subject of the

universal is not a logical category, provided that it is

definable by certain determinates, and that the subject

of the conclusion is only apprehensible under those

determinables, then again the use of the implicative

principle may be dispensed with. For example: 'All

material bodies attract; therefore, the earth attracts.'

Here the term 'material body' is of the nature of a

category in that it can only be defined under such de-

terminables as 'continuing to exist' and 'occupying some
region of space' ; furthermore the earth is constructively

given under these determinables: hence a proposed

minor premiss to the effect that the earth is a material

body is superfluous, and the above inference involves

only the applicative principle. Again 'All volitional acts

are causally determined; therefore, Socrates' drinking

of hemlock was causally determined.' Here the subject

of the conclusion is constructively given under the de-

terminables involved in the definition of volitional act,

which again justifies the use of the applicative principle

alone. As a third example :
' Every denumerable aggre-

gate is less than some other aggregate: therefore, an

aggregate whose number is 5<o is numerically less than

some other aggregate.' Here the construction of the
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notion of a class whose number is ^io involves its being

denumerable, so that the given inference again re-

quires only the immediate employment of the applica-

tive principle.

§ 9. Incidentally the above analysis of the major

premiss—Every M*P is p if m—(or still more simply,

'Every M is m,' which may sometimes be true; or

again, of the minor premiss—'The given MP is 7n or

'The given MP is /')—accounts for the insistence by

certain philosophers, notably Mr Bradley, that every

proposition employs the relation of identity; i.e. that

the adjective involved in the subject is the same as that

involved in the predicate. This philosophical sugges-

tion is, I hold, true, in the sense that the adjectival

determinable in the subject is the same as that in the

predicate; but the latter is a further determination of

the former. Now, in this admission that the relation of

identity of subject to predicate is involved in the general

categorical proposition, I am not in any way with-

drawing what was maintained as regards identity in my
analysis of the proposition. For the identity which I

denied was (as it has been expressed) identity in deno-

tation with diversity of connotation, i.e. substantival

identity with adjectival diversity. The identity I have

accepted above is identity of an adjectival factor in the

subject with an adjectival i2SXQ)X in the predicate. More-

over I should still deny that the proposition asserts this

identity, and maintain that it simply />resup/>oses it, in

just the same way as a proposition presupposes the

understanding of the meaning of the terms involved

without asserting such meaning.

8 10. We have discussed the case in which a minor
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premiss may be dispensed with, namely that in which

a certain mode of using the applicative principle is

sufficient without the employment of the implicative.

We will now turn to a complementary discussion of the

case in which there is unnecessary employment of the

applicative principle, entailed by the insertion of what

may be called a redundant major premiss. It will be

convenient to call the redundant minor premiss a sub-

minor, and the redundant major premiss—to which we
shall now turn—a super-major. In this connection I

shall introduce the notion of a formal principle of in-

ference, which will apply, not only to inferences that are

strictly formal, but also to inferences of an inductive

nature, for which the principle has not at present been

finally formulated and must therefore be here expressed

without qualifying detail. The discussion will deal with

cases in which the relation of premiss or premisses to

conclusion is such that the inference exhibits a formal

principle.

We shall illustrate the point first by taking the

principle of syllogism, and next, the ultimate (but as yet

unformulated) principle of induction. As regards the

syllogism, taking / and q to represent the premisses

and r the conclusion, we may say that the syllogistic

principle asserts that provided a certain relation holds

between the three propositions p, q, and r, inference

from the premisses p and q alone will formally justify

the conclusion r. Now it might be supposed that this

syllogistic principle constitutes in a sense an additional

premiss which, when joined with p and q, will yield a

more complete analysis of the syllogistic procedure.

But on consideration it will be seen that there is a sort
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of contradiction in taking this view: for the syllogistic

principle asserts that the premisses / and q are alone

sufficient for the formal validity of the inference, so that,

if the principle is inserted as an additional premiss co-

ordinate with / and q, the principle itself is virtually

contradicted. In illustration we will formulate the syllo-

gistic principle:

'What can be predicated of every member of a class,

to which a given object is known to belong, can be pre-

dicated of that object.'

Now, taking a specific syllogism:

'Every labiate is square-stalked,

The dead-nettle is a labiate,

.'. The dead-nettle is square-stalked,'

if we inserted the above-formulated principle as a pre-

miss, co-ordinate with the two given premisses, with a

view to strengthening the validity of the conclusion,

this would entail a contradiction ; because the principle

claims that the two premisses are alone sufficient to

justify the conclusion 'The dead-nettle is square-stalked.'

Now the same holds, mutatis mutandis, of any pro-

posed ultimate inductive principle. Here the premisses

are counted— not as two—but as many, and summed up

in the single proposition 'All examined instances charac-

terised by a certain adjective are characterised by

a certain other adjective'; and the conclusion asserted

(with a higher or lower degree of probability) predi-

cates of all what was predicated in the premiss of

all exam,ined. Now, in accordance with the inductive

principle, the summary premiss is sufficient for asserting

the unlimited universal (with a higher or lower degree

of probability). To insert this principle, as an additional
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premiss co-ordinate with the summary premiss, would,

therefore, virtually involve a contradiction. In illustra-

tion, we will roughly formulate the inductive principle

:

'What can be predicated of all examined members
of a class can be predicated, with a higher or lower
degree of probability, of all members of the class.'

Now, taking a specific inductive inference:

'All examined swans are white. .'. With a hig-her

or lower degree of probability, all swans are white,'

if we inserted the above-formulated inductive principle

as a premiss, co-ordinate with the summary premiss 'All

examined swans are white,' with a view to strengthening

the validity of the conclusion, this would entail a con-

tradiction ; because the principle claims thatthis summary
premiss is alone sufificient to justify the conclusion that

'With a higher or lower degree of probability, all swans

are white.'

We may shortly express the distinction between a

principle and a premiss by saying that we draw the

conclusion from the premisses in accordance with (or

through) the principle. In other words, we immediately

see that the relation amongst the premisses and con-

clusion is a specific case of the relation expressed in the

principle, and hence the function of the principle is to

stand as a universal to the specific inference as an in-

stance of that universal : where the latter may be said

to be inferred from the former (if there is any genuine

inference) in accordance with the Supreme Applicative

principle. For example : from x =y and y = z, we may
infer x = z. This form of inference is expressed, in

general terms, in the Principle: 'Things that are equal

to the same thing are equal to one another.' Now, here,
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the two premisses

—

x^y 2indy = 2—are alone sufficient

for the conclusion x= 2; the conclusion being drawn

/rom the two premisses through or in accordance with

the principle which states that the two premisses are

a/one sufficient to secure validity for the conclusion.

The principle cannot therefore be added co-ordinately

to the premisses without contradiction. Moreover the

above-formulated principle (which expresses the tran-

sitive property of the relation of equality) cannot be

subsumed under the syllogistic principle. In the same

way the syllogistic or inductive principle may be called

a redundant or super-major, because it introduces a mis-

leading or dispensable employment of the applicative

principle.

§ II. There is a special purpose in taking the in-

ductive and syllogistic principles in illustration of super-

majors, for many logicians have maintained that any

specific inductive inference does not rest on an inde-

pendent principle, but upon the syllogistic principle

itself; in other words, they have taken syllogism to

exhibit the sole form of valid inference, to which any

other inferential processes are subordinate. Now it is

true that the inductive principle could be put at the

head of any specific inductive inference, and thus be

related to the specific conclusion as the major premiss

of a syllogism is related to its conclusion ; but the same

could be said of the syllogistic principle : namely that it

could be put at the head of any specific syllogistic in-

ference to which it is related in the same way as the

major premiss of a syllogism is related to its conclusion.

But, if we are further to justify the specific inductive

inference by introducing the inductive principle, then,
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by parity of reasoning, we should have to introduce the

syllogistic principle further to justify the specific syllo-

gistic inference. But in the case of the syllogism this

would lead to an infinite regress as the following illus-

tration will show. Thus, taking again as a specific

syllogism, that

from (/) 'All labiates are square-stalked'

and (^) 'The dead-nettle is a labiate'

we may infer (r) 'The dead-nettle is square-stalked,'

and, adding to this as super-major the syllogistic

principle, namely (a), we have the following argument

:

(a) For every case o( Af, of 6" and ofP: the inference

'every Jkf is P, and kS" is Af, .-. S is P' is valid.

(d) The above specific syllogism is a case of (a).

(c) .'. The specific syllogism is valid.

But here, in inferring from (a) and (d) together to (c),

we are employing the syllogistic principle, which must

stand therefore as a super-major to the inference from

(a) and (d) together to (c), and therefore as super-super-

major to the specific inference from/ and ^ to r. This

would obviously lead to an infinite regress.

We may show that a similar infinite regress would

be involved if we introduced, as super-major, the in-

ductive principle, by the following illustration. Taking

again as a specific inductive inference that from 'All

examined swans are white' we may infer with a higher

or lower degree of probability that ' All swans are

white'; and adding to this as super-major the in-

ductive principle, namely (a), we have the following

arg-ument:

(a) For every case of Af and of P: from 'every-

examined Af Is P,' we may infer, with a higher or lower
degree of probability, that 'every Af is P';
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{b) The above specific induction is a case of (a),

(c) .'. The specific induction is valid.

But, here we may argue in regard to this (a), (d), {c) as

in the case of the previous (a), (d), (c). Thus, by in-

troducing the inductive principle as a redundant major

premiss, we shall be led as before, by an infinite regress,

to a repeated employment of the syllogistic principle.

This whole discussion forces us to regard the in-

ductive and syllogistic principles as independent of one

another, the former not being capable of subordination

to the latter; for we cannot in any way deduce the in-

ductive principle from the syllogistic principle. Those

who have regarded the syllogistic principle as ultimately

supreme, have in fact arrived at this conclusion by noting

that, as shown above, the inductive principle could be

introduced as a major for any specific inductive inference,

in which case the inference would assume the syllogistic

form {a\ (d), (c). But this in no way affects the supremacy

of the inductive principle as independent of the syllo-

gistic.



CHAPTER II

THE RELATIONS OF SUB-ORDINATION AND CO-ORDI-

NATION AMONGST PROPOSITIONS OF DIFFERENT
TYPES

§ I. In the previous chapter we have shown that the

syllogism which establishes material conclusions from

material premisses involves the alternate use of the

Applicative and Implicative principles. Now these two

principles, which control the procedure of deduction in

its widest application, are required not only for material

inferences, but also for the process of establishing the

formulae that constitute the body of logically certified

theorems. All these formulae are derived from certain

intuitively evident axioms which may be explicitly

enumerated. It will be found that the procedure of

deducing further formulae from these axioms requires

only the use of the Applicative and Implicative prin-

ciples ; these, therefore, cover a wider range than that

of mere syllogism. But a final question remains, as to

how the formal axioms are themselves established in

their universal form. By most formal logicians it is

assumed that these axioms are presented immediately

as self-evident in their absolutely universal form ; but

such a process of intuition as is thereby assumed is

really the result ofa certain development of the reasoning

powers. Prior to such development, I hold that there

is a species of induction involved in grasping axioms in

their absolute generality and in conceiving of form as
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constant in the infinite multiplicity of its possible appli-

cations. We therefore conclude that behind the axioms

there are involved certain supreme principles which bear

to the Applicative and Implicative principles the same

relation as induction in general bears to deduction ; and,

even more precisely, that these two new principles may
be regarded as inverse to the Applicative and Impli-

cative principles respectively. This being so, it will be

convenient to denominate them respectively. Counter-

applicative andCounter-implicative. It should bepointed

out that whereas the Applicative and Implicative prin-

ciples hold for material as well as formal inferential

procedure, the Counter-principles are used for the

establishment of the primitive axioms themselves upon

which the formal system is based. We will then pro-

ceed to formulate the Counter-principles, each in imme-

diate connection with its corresponding direct principle.

§ 2. The Applicative principle is that which justifies

the procedure of passing from the asserting of a pre-

dication about ' every ' to the asserting of the same

predication about 'any given.' Corresponding to this,

the Counter-applicative principle may be formulated:

'When we are justified in passing from the asserting

of a predication about some one given to the asserting

of the same predication about some other, then we are

also justified in asserting the same predication about
every.

'

Roughly the Applicative principle justifies inference

from 'every' to 'any,' and the Counter-applicative

justifies inference from 'any' to 'every'; but whereas

the former principle can be applied universally, the

latter holds only in certain narrowly limited cases; and.
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in particular, for the establishment of the primitive

formulae of Logic. These cases may be described as

those in which we see the universal in the particular,

and this kind of inference will be called 'intuitive in-

duction,' because it is that species of generalisation in

which we intuite the truth of a universal proposition in

the very act of intuiting the truth of a single instanced

Since intuitive induction is of course not possible in

every case of generalisation, we have implied in our

formulation of the principle that the passing from 'any'

to 'every' is justified only when the passing from 'any

one' to 'any other' is justified. Now there are forms of

inference in which we can pass immediately from any

one given case to any other ; if it were not so, the

principle would be empty. For instance, we may illus-

trate the Applicative principle by taking the formula:

'For every value of/ and of ^, "/ and q' would imply

"/",' from which we should infer that 'thunder and

lightning' would imply 'thunder.' If now we enquire

how we are justified in asserting that for every value

oi p and of q, 'p and q' would imply '/,' the answer

will supply an illustration of the Counter-applicative

principle. Thus, in asserting that '"thunder and light-

ning" would imply "thunder"' we see that we could

proceed to assert that '"blue and hard" would imply

"blue",' and in the same act, that ' "/ and (7" would

imply "/" for all values of/ and of ^.'

§ 3. The second inverse principle to be considered is

the Counter-implicative. Before discussing this inverse

principle, it will be necessary to examine closely the

^ This is a special case of ' intuitive induction,' the more general

uses of which will be examined in Chapter VIII.



30 CHAPTER II

Implicative principle itself, which may be provisionally

formulated: 'Given that a certain proposition would

formally imply a certain other proposition, we can validly

proceed to infer the latter from the former.' Now we
find that the one positive element in the notion of

formal implication is its equivalence to potentially valid

inference, and that there is no single relation properly

called the relation of implication. We must therefore

bring out the precise significance of the Implicative

principle by the following reformulation: 'There are

certain specifiable relations such that, when one or

other of these subsists between two propositions, we
may validly infer the one from the other.' From the

enunciation of this principle we can pass immediately

to the enunciation of its inverse—the Counter-implica-

tive principle

:

'When we have inferred, with a consciousness of

validity, some proposition from some given premiss or

premisses, then we are in a position to realise the specific

form of relation that subsists between premiss and con-

clusion upon which the felt validity of the inference

depends.'

Here, as in the case of the Counter-applicative principle,

we must point out that there are cases in which we in-

tuitively recognise the validity of inferring some con-

crete conclusion from a concrete premiss, before having

recognised the special type of relation of premiss to

conclusion which renders the specific inference valid

;

otherwise the Counter-implicative principle would be

empty. In illustration, we will trace back some accepted

relation of premiss to conclusion, upon which the validity

of inferring the one from the other depends; and this
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will entail reference to a preliminary procedure in ac-

cordance with the Counter-applicative principle; for

every logical formula is implicitly universal. Thus we
might infer, with a sense of validity from the information

'Some Mongols are Europeans' and from this datum

alone, the conclusion 'Some Europeans are Mongols.'

We proceed next in accordance with the Counter-appli-

cative principle to the generalisation that the inference

from 'Some M \s P' to 'Some P is M' is always valid.

Finally we are led, in accordance with the Counter-

implicative principle, to the conclusion that it is the re-

lation of 'converse particular affirmatives' that renders

the inference from 'Some M is P' to 'Some P is M'
valid,

§ 4. We have regarded the intuition underlying the

Counter-applicative principle as an instance of 'seeing

the universal in the particular'; and correspondingly the

intuition underlying the Counter-implicative principle

may be regarded as an instance of 'abstracting a common
form in diverse matter.' But the dii'ect types of intuition

operate over a much wider field than the Counter-appli-

cative and Counter-implicative principles : for, whereas

the twin inverse principles operate only in the estab-

lishment of axioms, the direct types of intuition

are involved wherever there is either universality or

form. These direct types of intuition have been ex-

plicitly recognised by philosophers ; but the still more

purely intuitive nature of the procedure conducted in

accordance with the twin inverse principles accounts for

the fact that these principles have hitherto not been

formulated by logicians. Moreover the point of view

from which the inverse principles have been described
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and analysed is purely epistemic, and the epistemic

aspect of logical problems has generally been ignored

or explicitly rejected by logicians. It follows also from

their epistemic character that these principles, unlike

the Applicative and Implicative principles of inference,

cannot be formulated with the precision required for a

purely mechanical or blind application.

§ 5. The operation of these four supreme principles

is best exhibited by means of a scheme which comprises

propositions of every type in their relations of super-,

sub-, or co-ordination to one another. We propose,

therefore, to devote the remainder of this chapter to

the construction and elucidation of such a scheme.

I. Superordinate Principles of Inference.

la. The Counter-applicative and Counter-impli-

cative.

Id. The Applicative and Implicative.

II. Forrmdae: i.e. formally certified propositions

expressible in terms of variables having general

application.

11^. Primitive formulae (or axioms) derived

directly from II I ^ in accordance with \a.

\\b. Formulae successively derived from 1 1 ^ by
means of I b.

III. Formally Certified Propositions expressed in

terms havingfixed application.

\\\a. Those from which \\a are derived by use

of the principles \a.

\\\b. Those which are derived from II<^ by use

of the Applicative principle I b.

I V. Experientially Certified Propositions.

Wa. Data directly certified in experience.
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IV^. Concrete conclusions inferred from Wa by
means of implications of the type III, and
therefore established in accordance with the

Implicative principle, \b.

I. The highest type consists of those principles

under one or other of which every inference is sub-

ordinated. These superordinate principles consist of

\a\ the Counter-applicative and Counter-implicative,

to which intuitional inferences are subordinated; and

o{ \b\ the Applicative and Implicative, to which de-

monstrative inferences are subordinated. \a are those

principles in accordance with which the primitive for-

mulae (or axioms) of Logic are established. But the

choice of logical formulae that are accounted primitive

is (within limits) arbitrary, and since any comparatively

self-evident logical formula, instead of being exhibited

as derivative, could be regarded as established directly

in accordance with these inverse principles, their scope

must not be restricted to the establishment of the more

or less arbitrarily selected axioms. It will be found later,

when we discuss the types of proposition in level III,

that the content or material upon which the inverse prin-

ciples \a operate, is supplied by the propositions of type

1 1 1 ^. On the other hand, the Applicative and Implica-

tive principles I b stand in the relation of immediate

superordination to the processes of inference by which

from 11^ are derived 1 1 <$, viz. the general formulae of

deduction, induction, demonstration, probability, etc.

II. The characteristic common to all the propositions

on the second level is that they are formally certified,

and are expressible in terms of variable symbols. They
are theoretically infinite in number, and may be divided

J. L. II 3
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into two groups, 'primitive' and 'derivative'; but, as

pointed out above, the line of demarcation between the

two cannot be sharply drawn. Thus Ha comprises a

small number of primitive formulae which are directly

established in accordance with the twin inverse principles

I a : for example, the commutative and associative laws,

the laws of identity and of negation, the modus ponendo

tollens, etc., or such of these as have been selected as

primitive. Next, II <^ comprises an indefinite number

of formulae successively derived from the primitive for-

mulae 11^: for example, the dictum of the syllogism,

and other more complicated logical formulae, as well as

the rules of arithmetic and algebra. All the formulae of

level II are implicitly universal in form; and most of

those that are logical (as distinct from mathematical)

assert relations of implication. Each formula in lid is

derived from previously certified formulae, and ultimately

from those in 11^, the process of derivation being marked

at each step by the relation 'therefore.' Now wherever

a previously certified relation of implication is used for

deriving a new formula (in which case its implicans

must also have been previously certified in order that

its implicate may be derivatively certified) the procedure

is conducted in accordance with the implicative principle,

to which therefore all such cases of inference are to be

subordinated. Again, the process of successive deriva-

tion of the formulae of 1 1 <^ entails explicit recognition

of the implicit universality of the formulae from which

they are derived ; and this allows us, by means of the

Applicative principle, to replace the illustrative symbols

occurring in an earlier formula by any other symbols,

in order to derive a new formula.
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III. The third level contains formally certified pro-

positions expressed entirely in linguistic terms of fixed

application ; and, like its predecessors, is to be divided

into two sections, the division being made on precisely

the same grounds as that between II a and II <5. Thus
the propositions of 1 11^ constitute the intuited material

for deriving 1 1 « in accordance with the inverse prin-

ciples la; and the propositions of 1 11^ are exhibited

as derived from lid in accordance with the applicative

principle ld\ It will be seen, however, that the relation

of 1 1 1 ^ to 1 1 1 <5 differs from that of 1 1 ^ to 1 1 ^ in that the

two parts of III are not inferentially connected, as are

those of II. The propositions comprised in II I ^ are

obtained from II<^ by substituting words with fixed

application for the variable symbols ; these proposi-

tions, then, are specialised instances of the general

formulae which constitute the second level, and are

established from them in accordance with the appli-

cative principle alone. Any logical text-book teems

with examples of this procedure, where instances under

such formulae as the modus tollendo tollens, or the

syllogistic dictum are represented in words with fixed

application, and then exhibited as derived (in ac-

cordance with the applicative principle) from the appro-

priate general formula. It is usual in these cases, how-

ever, to exhibit the conclusion as being inferred from

the premisses, thus leading the reader to suppose that

it is the conclusion which has been formally certified,

whereas, properly speaking, what has been formally

certified Is the relation of implication of premisses to

^ Hence the point of division between III a and III<^ cannot be

precisely indicated.

3—2
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conclusion. It will be found below that this distinction

between implication and inference is the essential con-

sideration in comparing Hid with IV^,

IV. The fourth and lowest level consists of experi-

entially certified propositions expressed in concrete

terms ; and again this level must be divided into two

sections, viz. IV^ the primitives and IV d the deriva-

tives, these two sections standing in a relation to one

another which in every respect agrees with the rela-

tion of 11^ to 11^. Thus the propositions comprised

in IV^ are successively derived from experiential

propositions that have been previously certified, and

ultimately derived from the primitive experiential data

which constitutes Wa. And again, as in the case of

formally certified propositions, here, in that of ex-

perientially certified propositions, the point of division

between the primitives and derivatives is not precisely

fixed; the primitives of IV, like those of II, are sup-

posed to be intuitively accepted, i.e. in this case per-

ceptually guaranteed ; but philosophers do not agree

on the question of the kind and range of experiences

that can be regarded as in this case immediate. More-

over, as regards experiential propositions admittedly

derivative and not primitive, no logician or philosopher

has as yet been able to show how they can be exhibited

as derived ultimately from absolutely primitive data of

experience. Hence, in expounding the logical nature

of the propositions in this lowest level, attention must

be chiefly directed to the mode in which any admittedly

derived proposition is inferred from some previously

certified proposition, without enquiring too closely as

to the mode in which the previous certification had
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been conducted, or whether this certification could

properly be called perceptually immediate. The mode

of deriving an experiential conclusion from experi-

entially certified premisses may be explained quite

briefly ; the former is derived directly from the latter

by means of some implication of type III, of which the

implicans is composed of the previously certified pre-

misses and the implicate is the conclusion required.

Since in this process a relation of implication is trans-

formed into the relation ' therefore,' it is obvious that

the implicative principle alone is employed. But, to

complete the exposition, we must trace the process of

derivation one stage further back, namely to the general

formulae of line II. Thus, while any conclusion xxiWb
is directly derived from premisses IV^ by means of an

implicative proposition of the type III, and so far

employs the implicative principle alone
;
yet, since any

proposition of type III is itself derived from some

formula of type 1 1 in accordance with the applicative

principle alone, it follows that both these principles are

jointly involved in deriving experiential conclusions

from experiential data. This mode of derivation is

illustrated in any text-book example of a concrete

syllogism, where from previous experiential certification

of the premisses we infer the experiental certification

of the conclusion. For the sake of variety we will

choose, for illustrating the processes of deriving any

conclusion W b, the formula of pure induction, which,

as was maintained in the preceding chapter, must be

included amongst the formulae constituting the second

level. Take for instance as premiss :
' Every examined

case of an acquired characteristic is non-transmitted.'
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This datum is regarded not, of course, as a mere sum-

mary of directly given experiences, but as the product

of various constructive and inferential processes which

may be supposed ultimately to be based on sense-data.

Now by means of the concrete implication that ' every

examined case of an acquired characteristic being non-

transmitted would imply, with a certain degree of pro-

bability, that no acquired characteristic is transmissible,'

conjoined with the certified fact that ' in all examined

cases acquired characteristics are non-transmitted,' we
infer the conclusion that ' with a certain degree of

probability no acquired characteristic is transmissible,'

In this fourth line, we are representing propositions

as proved, or as validly asserted on the basis of ex-

periential knowledge, and this suggests an ambiguity

in the use of the term ' ground ' which is sometimes

applied in philosophy to the experiential data which

may be said to be co-ordinate with the experiential con-

clusions ; the same term 'ground' being also applied to

the logical formulae of induction or deduction which

are stiperordinate to the experiential data and con-

clusions. This ambiguity in the use of the term is

removed by thus recognising the distinction between

superordinate and co-ordinate.

§ 6. In further elucidation of the scheme, we will

show what exactly is involved in level II, where em-

phasis has been put upon the variable symbols. In

logical text-books we find that an inference or implica-

tion is expressed in terms of variable symbols, such as

S, M, and P, and this is always supplemented by a

formula expressed entirely linguistically, but which is

its mere equivalent. For example, it may be first
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asserted that ' Every P \s Q would imply that some Q
is /^

'
; and here the assertion of implication is under-

stood as being implicitly universal, i.e. that it holds for

all values of P and Q. This is usually supplemented by

the so-called 'Rule for the Conversion of ^/ viz. that

'Any universal affirmative proposition would imply the

particular affirmative obtained by interchanging subject

and predicate terms.' But this is merely an alternative

formulation, and is not related to the former as a

universal to its instance. We see therefore that the

formulae of level II are not necessarily expressed in

terms of variables, but may be expressed with precise

equivalence in linguistic terms only. The possibility of

this linguistic formulation depends upon the invention

of a technical terminology which employs such terms as

subject, predicate, conversion, universal, proposition,

etc. The reason why what is called symbolic logic

requires the employment of variable symbols is essen-

tially because the logical formulae which it establishes

are so complicated that a terminology could hardly be

invented for dealing with them. There is therefore no

difference of principle involved in the employment of

variable symbols by symbolic logic and the employ-

ment of technical linguistic terms by ordinary logic.

By the employment of the technical terminology of

logic the variables entering into any formula are elimi-

nated en bloc, leaving the formula with the same range

of universality as before. In contrast with this, a pro-

position of level III, being obtained from level II by

replacing each of the several variables by a particular

word of fixed application, constitutes a single instance

of the general formula. For instance, 'that every
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trespasser will be prosecuted would imply that some

prosecuted person is a trespasser \' is a specific assertion

obtained by the applicative principle from the universal

formula of conversion adduced above.

This last discussion of the distinction and connection

between the use of variable symbols and that of linguistic

terminology, points to certain respects in which the

methods of symbolic logic differ, and others in which

they agree with those of ordinary logic—a topic which

will be treated at greater length in the following chapter.

^ This illustration is chosen in order incidentally to suggest that

the text-books are not always infallible, the form of implication in

question being at least dubious.



CHAPTER III

SYMBOLISM AND FUNCTIONS

§ I. The value of symbolism, as is universally re-

cognised, is due to the extreme precision which its

employment affords to the process of logical demonstra-

tion. As a language it differs from all ordinary languages

in three respects, viz. systematisation, brevity and

exactness; and in these respects differs from all other

languages in a way in which they do not differ from one

another.

Now, when we examine the language of symbolism,

we find that symbols are of two fundamentally distinct

kinds, which I propose to call illustrative and shorthand.

In such familiar logical forms as 'S is P,' 'Every M is

/*,' etc., S, M, P, exemplify illustrative symbols. Thus
an illustrative symbol is represented by a single letter

chosen from some alphabet. Shorthand symbols, on

the other hand, are mere substitutes for words, and

serve the obvious purpose of saving time in reading

and space in writing. Some of them, in fact, are literal

abbreviations, such as 'rel.' for 'relative,' 'prop.' for

'proposition,' 'indiv.' for 'individual.' Others again are

arbitrarily shaped marks standing for simple words such

as not, and, or, if, is, identical with. A third kind of

shorthand symbol is one introduced in the course of a

symbolic calculus, and defined in terms of combinations

of other shorthand symbols, and ultimately in terms

of the simple symbols introduced at the outset. So far,
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a shorthand symbol has all the characteristics of a word
ora word-complex—only differing from these in satisfying"

the essential symbolic requirements of systematisation,

brevity and exactness. In one respect, however, these

symbols differ from such word-complexes as 'that man/
'the river,' 'Mr Smith,' 'this experience,' 'my present

purpose,' in that these latter have a meaning or appli-

cation—not universally fixed—but determined only by

means of context ; whereas the symbols of Logic have

an unalterable meaning wholly independent of context,

and resemble rather, such word-complexes as 'rational

animal,' 'loud,' 'hard,' 'church,' differing from these

however in being strictly unambiguous. Ordinary Logic

generally dispenses with symbols of this kind—the most

familiar exception being Dr Keynes's 'SaPJ which is

shorthand for 'Every 5 is P,' etc. On the other hand,

Dr Keynes himself shows, in his Appendix C, how
certain complicated problems, previously relegated to

Symbolic Logic, can be solved without recourse to

shorthand symbols, illustrative symbols only being in-

troduced.

Now an important character of the shorthand symbol

is that its constancy is logical or formal and not expe-

riential or material. A formal constant is one whose

meaning is to be understood by the logician as such

;

that is to say, logic pronounces it either as indefinable

—

because understood without requiring definition—or as

definable in terms of logically understood constants

alone. The following is a rough classification of formal

constants expressed inordinary language : (
i
) the articles

or applicatives ; a, ike, some, etc. (2) the negative not\

and the conjunctions and, or, if, etc. (3) the copula is;
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and certain prepositions such as of, to, in some of their

meanings. (4) certain relations such as identical with,

comprised in. (5) such modal adjectives as true, false,

probable, etc. Formal constants are to be contrasted

with material in that the meanings of the latter are to

be understood in terms of ideas or conceptions outside

the sphere of logic. The division between formal and

material constants, i.e. between what is and what is not

required for the understanding of logical principles, can

ultimately be rendered precise only after a complete

logical system has been constructed. For instance,

numerical adjectives such as two 'd.nA five would have

been pronounced as merely material at the stage at

which the logical system had not been carried on into

its mathematical developments. Ideas that are imme-

diately recognised as material relatively to the essentials

of logic are those of sense-qualities, or of the properties

and characteristics of physical and mental entities.

Temporal and spatial relations, being in one aspect sub-

sumable under the conceptions of order, would, so far,

be called formal or logical, but, inasmuch as these rela-

tions actually have a specific—over and above their

generic—significance, they must be treated also as

having an experiential or material source. The same

holds of the determinates of a determinable, inasmuch

as experience is required in order to present to the

mind any single determinable and to distinguish one

determinable from another, whilst the discussion of the

formal relations of incompatibility, order, etc., between

determinates under any determinable is purely logical.

Since shorthand symbols and the words or word-

complexes of ordinary language function in the same
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way, there is no essential difference between them if

we take the symbols or words in isolation apart from

consideration of the mental processes involved in their

use. The psychological distinction is—not between

words and symbols as such—but between the linguistic

and the symbolic mode in which we think with their

assistance. Thus, in linguistic thought, the words or

symbols presented in imagination or vocalisation are the

means or instruments by which we can attend to or

think about the objects for which they stand. On the

other hand, such a phrase as 'Waterloo was fought in

1815' might illustrate the symbolic use of language

which consists—not in thinking about the objects for

which the words stand—but in mentally rehearsing the

language in which propositions previously accepted have

been expressed. Now the previous acceptance of these

propositions must have entailed genuine processes of

thinking; but, when they are recalled, we need not

repeat these mental processes. It is in this way that

the symbolic is distinguished from the linguistic use of

words or symbols. In the latter, we are thinking by the

use of words; whereas, in the former, recall of the

words serves merely as a substitute for a previous act

of thought

\

§ 2. These preliminary considerations bring us to

the question : What actually happens in the mind of the

symbolist, when he is either constructing or intelligently

following the formulae of a symbolic calculus.^ In the

first place, the axioms of the calculus can only be es-

tablished by the use of what I have called the Counter-

^ This subject will be found to be more fully treated in Dr Stout's

Analytic Psychology.
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applicative and Counter-implicative principles, and here

genuine thought is required on the part of the symbolist.

In the second place, the construction of any symbolic

calculus involves the procedure of inference; and this

is conducted always in accordance with the Applicative

principle, and, in the case of the logical calculus, also in

accordance with the Implicative principle. When pro-

ceeding in accordance with these principles, the sym-

bolist is actually thinking; he is not merely recalling

verbal formulae in which the results of previous acts of

thought have been expressed. In the third place, even

a perfectly constructed symbolic system would need to

introduce some axioms, as also some propositions derived

from axioms, that can only be expressed in non-symbolic

terms. This necessary recourse to ordinary language in

developing a deductive system shows that direct atten-

tion to meanings, presented linguistically, is entailed in

the intelligent following of even a professedly symbolic

exposition. Lastly, the extent to which thought can be

dispensed with, when working a calculus, depends very

largely and essentially upon the extent to which the

system requires what maybe called interpretation clauses

such as 'when P stands for any proposition,' or 'where

X is to be understood as a variable and ^ as a constant.'

If the symbolic language is so constructed that a mini-

mum of interpretation clauses is required, then there is

a corresponding minimum in the extent to which actual

thinking is involved. But, however few interpretation

clauses are required, the intelligent use of symbolic

formulae cannot be reduced to a merely mechanical

process. This will be still more apparent from an exami-

nation of the nature of a symbolic system in which both
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shorthand and illustrative symbols enter in combination

with one another.

§ 3. For this purpose we will further consider the

characteristics of illustrative symbols. These, being

nothing but arbitrarily chosen letters of the alphabet,

differ from words of ordinary language in that they

cannot be interpreted as standing for this rather than

for that specific object or idea; and hence, in the nature

of the case, have a variable application. The writer or

reader of a symbolic system must always bear in mind,

however, that the variability in application of an illus-

trative symbol in any given case is not wholly unre-

stricted, but is limited within an understood range.

Thus a single letter used illustratively must be under-

stood to be restricted in one case (say) to any substan-

tive; in another (say) to any adjective; and in another

again (say) to any proposition,—these being the three

most prominent categories to which illustrative symbols

are applied. Symbolic devices may, indeed, be invented

by which to distinguish one kind of symbol as appli-

cable to a substantive, and another kind to some other

specific category; but the range of application to be

understood by letters taken in combination could not be

indicated by any such device. When single letters are

bound together into a complex by means of logical

constants, then a further act of intelligence is required

in interpreting such complex. For example, under-

standing in the first place the letters /, q, r, to stand

for propositions, such constructs as 'p and ^,' '/ or g,'

'p if q,' must h^ further interpreted as also constituting

propositions. Thus, when a formula about any or all

propositions has been established, we may proceed to
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apply it to any complex such as '/ and q' or '/>[( q' and

so on in accordance with the Applicative principle, in-

asmuch as each of such complexes constitutes a pro-

position. Similarly, when such letters as x, s, t are

understood to stand for substantives, and such letters

as/, q, r to stand for adjectives, then a further act of

intelligence is required to interpret such a complex as

^s is/' as standing for a proposition. This presupposes

that the logical analysis of the simple proposition into

the form ' s is/,' where s is understood to stand for a

substantive and / for an adjective, has been discussed

and established in a preliminary account in which words

and not symbols were employed. Propositional signifi-

cance having been attached to this form of construct, a

distinct act of intelligence is required when, in uniting

say ' s is/' with V is q' in some form of combination,

the resulting construct is understood to stand for a pro-

position. As another example illustrating the need for

intelligent activity in symbolic work, we may take the

two propositional forms ' s e p^ and 'x i y^ where 'e \s

shorthand for the copula 'is' and '2' for is identical

with. Not only must these forms be interpreted as

standing for propositions, but the relation for which 'e

stands must be understood to be different from that for

which *^
' stands. In consequence, when these two forms

occur, reference must be made to one set of established

formulae for the one case, and to a different set for the

other. The necessity for using this modicum of intelli-

gence is to be contrasted with the purely blind or

mechanical process required of the reader or writer in

making use of the formulae to which he refers; for, in

this latter process, he need attach no significance to 'e
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or to '/,' as each standing for its own specific relation.

The examples adduced have been selected on the ground

of their simplicity, but complex examples would have

brought out more forcibly the importance of the distinc-

tion between the intelligent and the merely mechanical

operations required in working a symbolic system.

§ 4. Now the variability that characterises illustra-

tive symbols constitutes a special feature of symbolism,

and its further discussion requires the introduction of

the notion function. This term is used by logicians

and mathematicians in a sense quite unconnected with

the biological meaning of the term. The notion of a

function is closely connected with the notion of a con-

struct, but the former must be understood relationally,

whereas this is not obviously the case with the term

construct. Thus, we should speak of a certain construct

as being a function of certain enumerated constituents.

The notation for a function in general \s f(a, b, c, ...)

where a, b, c, ... stand for the constituents ; and where

the order in which these constituents are written is

essential, so thaty"(^, b, c, ...) is not necessarily equiva-

lent iof{a, c, b, ...). Thus any function of a, b,c, ... is a

construct involving a, b, c, But, if this were all that

could be said about a function, the term would have no

special value, since it would be a mere synonym for

'construct involving.' The importance of the notion

of function lies in the fact that we may speak of the

same function in reference to dzferent constituents,

whereas the same construct would of course entail the

same constituents. Thus, if C be a certain construct

involving a, b, c, ..., and if D be another construct

involving /, ^, r, ..., then C is said to be the same
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function of a, b, c, ... as \s D oi p, g, r, ..., when the

substitution of/ for a, q for b, r for c, etc., would render

D identical with C. Thus, in order to decide as regards

two constructs, whether they express the same or a

different function, we must specify the constituents of

which the construct is regarded as a function ; and, to

avoid all possible ambiguity, all the constituents for

which substitutions have to be made must be enu-

merated. To explain this necessity, it must be pointed

out that a construct may involve, implicitly or explicitly,

other constituents in addition to those ^ which it is to

be regarded as a function. In order to indicate the

sameness of function exhibited by different constructs,

it is therefore essential to enumerate those constituents

for which substitutions are contemplated. These con-

stituents will be called variants^, because it is these and

these alone that have to be varied in order to obtain

the different constructs that exhibit the same function.

On the other hand, in exhibiting identity of function,

terms entering into the construct that are not to be

replaced by some other terms will be called constants or

non-variants. Hence the distinction between a variant

and a non-variant constituent of a construct has rele-

vance only to functional identity. Since a function and

its variants are to be understood relationally to one

another, we may speak of the variants for a. certain

function just as we speak of a function 0/ certain

^ The word variant is here and throughout used in place of the

mathematically technical word argument, partly in order to prevent

confusion with the ordinary logical use of the latter word, and partly

in order to bring out the distinction and connection between the

notion of variant and that of variable.

J. L. n 4
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variants. In a complicated symbolic system it is found to

be convenient to use, in place of a singular or proper

name, an illustrative symbol—which, qua symbol, must

be what is called variable. Variability is therefore the

mark of an illustrative symbol as such, whereas the con-

trast between variant and non-variant holds—not of a

symbol—but of that for which the symbol may stand
;

and, as has been said, this latter contrast has no sig-

nificance apart from the notion of a function.

§ 5. In considering the constituents of a construct

with a view of indicating which are to be variants and

which non-variants for a function, we must first note

the distinction between material and formal constituents.

Now as regards the strictly formal constituents of a

construct, logic never contemplates making substitu-

tions for these ; hence, in all applications of the notion

of a function in reference to its variants, two cases

only have to be considered
;

(i) the function for which

all the material constituents are treated as variants,

and (2) the function for which some of the material

constituents are treated as constants and others as

variants—in both cases the formal constituents being

understood to be constants. When (i) all the material

constituents are to be varied, then the function may be

said to be formal ; and the form of a construct is a

brief synonym for the formal function which it exhibits.

But, when (2) some of the material constituents are to

be constant, then the function will be said to be non-

formal. It follows that, when two constructs can be

said to exhibit the same formal function, their reduction

to identity is effected by taking all the formal con-

stituents to be constant, and replacing all the material
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constituents of the one by those of the other. But,

when two constructs are said to exhibit the same non-

formal function, their reduction to identity is effected

by taking certain of the material, as well as all the

formal, constituents to be constant, and replacing all

the remaining material constituents of the one by those

of the other. A formal function is a function of all the

material constituents, since all these are to be varied

;

but a non-formal function is a function of only some of

the material constituents, because only some of these

are to be varied.

We may take the following as illustrations of formal

functions : The construct ' a good boy ' is the same

function of the variants good and boy as is 'a diffi-

cult problem ' of the variants difficult and problem
;

' Socrates is wise ' is the same function of Socrates and

wise, as is ' London is populous ' of London and popu-

lous ;
' red or heavy ' is the same function of red and

heavy as is ' loud or pleasant ' of loud and pleasant.

We may compare these simple examples with similarly

simple examples in arithmetic. The arithmetical con-

struct 'three days plus seven days' is the same function

of the two variants three days and seven days as is

' five feet plus four feet ' of the two variants five feet

and four feet ;
' four days multiplied by three ' is the

same function of four days and three as is ' seven feet

multiplied by two ' of seven feet and two, etc. These

illustrate formal functions because the only constituents

which are constant are formal: namely *a,' 'is,' 'or,'

' plus,' ' multiplied by,' respectively. Each of the above

examples exhibits a specific formal function, and serves

to explain the general notion of a formal function. We
4—2
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may take similar examples to illustrate the general

notion of a non-formal function. Thus taking boy as

constant, ' a good boy ' is the same function of good as

is *a tall boy' oi tall\ taking ^(9^rtf as constant, 'a good

boy' is the same function of boy as is 'a good action

of action; tsking />/easant 3.S constant, 'loud or pleasant

is the same function of lotid as is ' bright or pleasant

of bright ; taking wise as constant, ' Socrates is wise

is the same function of Socrates as is ' Plato is wise

of Plato ; taking Socrates as constant, ' Socrates is

wise ' is the same function of wise as is ' Socrates is

poor' oi poor, etc., etc. And in general the specific

function exhibited by a given construct varies according

to the constituents of the construct that operate as

variants \

' It will be observed that in the above illustrations of non-formal

functions we have used adjectives and substantives indifferently as

constants or as variables. Now in Mr Russell's first introduction of

the notion of function, he appears to limit the application of the

notion to the case where the substantive is variable and the adjective

is constant. It is true that he extends the notion to include the cases

in which the reverse holds; yet throughout he adopts an absolute

distinction between the two constituents of a proposition which I

have called substantive and adjective, inasmuch as he treats the sub-

stantive as the typical kind of entity which can stand by itself, the

adjective never being allowed to stand by itself. Thus I am repeating

his illustration in giving ' Socrates is wise ' as the same function of

Socrates as is ' Plato is wise ' of Plato, since here the substantive terms

Socrates and Plato are allowed to stand by themselves. But the

parallel example, that ' Socrates is wise ' is the same function of wise

as is ' Socrates is poor ' oipoor, is not recognised by Mr Russell, be-

cause he does not allow such adjective-terms as ' wise ' and ' poor ' to

stand by themselves. The consequences of this contrast, which I hold

to be fundamentally fallacious, between the substantive and the

adjective as constituents of a proposition, infect the whole of his logical
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§ 6. A classification has been given, in an earlier

section, of those formal constituents of a construct that

are expressible in words or in shorthand symbols under-

stood as equivalent to words. Such formal constituents

may be called explicit in distinction from others which

are more or less latent and not usually expressed in

words. Reserving the name ' constituent,' for the

material variants, and ' formal component ' for those

formal constants that are explicitly expressed, the

implicit formal constants may be conveniently termed
* elements of form.' Of these, several different kinds

are to be distinguished :

( 1
) Ties. These are more or less latent elements of

form, inasmuch as it is a matter of accident whether they

are expressed by some separate word or by some form

of grammatical inflection.

(2) Brackets. A construct may be composed of

sub-constructs, and these again of sub-sub-constructs

system. Without entering into elaborate detail, it would be impossible

fully to justify my difference from Mr Russell on this matter; but

what I take to be perhaps the root of the error is that he treats the

general notion of function before giving examples of the simplest

functional forms upon which the more complicated functions are built.

It is true that he illustrates a function by such an elementary example

as ' X is a man ' where x stands indifferently for Socrates or Plato, etc.,

but he does not bring out the speciality of this form of proposition,

which does in fact exhibit the specific function which is constructed

by means of the copula ' is.' In mathematics the general notion of

function is reached by building up constructs out of such elementary

functions as those indicated by + x - etc., but in Mr Russell's

system it seems impossible to explain and reduce to systematic

symbolisation the process by which any prepositional function what-

ever is constructed.

I hope to treat more fully elsewhere this point of difference be-

tween Mr Russell's system and my own.



54 CHAPTER III

and so on, until we reach the ultimate constituents,

namely those that are expressed, not as constructs, but

as 'simples,' where by 'simple' is not meant incapable

of analysis, but merely unanalysed. The operation of

binding constituents into a unity to constitute a sub-

construct I shall call bracketing. In speaking, the dis-

tribution of brackets is indicated by pauses or vocal

inflections ; and, in writing, by punctuation marks.

But, as the employment of these signs is not governed

by any systematic principle, they must be replaced in

logical or mathematical symbolism by some conven-

tional notation.

(3) Connectedness. Two sub-constructs will be called

unconnected when one is a function of the simple terms

a, b, c (say), and the other of the simple terms d, e—
the terms of the one not recurring in the other. On the

other hand, two sub-constructs will be called connected

when one is a function of a, b, c (say), and the other of

a, e—the term a recurring in the two. This distinction

is of importance when we have to determine what con-

stituents of a function can be taken as variants ; for

the several variants for a function must be indepen-

dently variable, and in the case of any two complex

constituents, if these are connected (in the sense ex-

plained), they cannot be made to vary independently

the one of the other. Thus, in the above illustration of

two sub-constructs that are respectively functions of

a, b, c and of a, e, the variants for the function exhibited

by the construct must be taken to be the ' simple

'

constituents a, by c, e, and not the connected sub-

constructs themselves. But, when a construct contains

unconnected sub-constructs, as in the example of the
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sub-constructs that are functions respectively of a, b, c

and oi d, e, then it may be regarded either' as a function of

the several ultimate terms involved in the different sub-

constructs, namely a, b, c, d, e\ or alternatively, as a

function of the sub-constructs themselves.

(4) Categories. Every material, and therefore vari-

able, constituent belongs to a specific logical category

or sub-category which is not usually expressed in words.

Thus the proposition ' Socrates is wise ' is understood

as it stands without being expanded into the form
' The substantive Socrates is characterised by the

adjective wise.' Nevertheless the formal significance

of the proposition for the thinker depends upon his

conceiving of ' Socrates ' as belonging to the category

substantive, and of 'wise' as belonging to the category

adjective. These must therefore be included amongst
the latent elements of form. It further follows from

the recognition of this formal element, latent in every

material constituent, that the range of variation for

any material constituent is determined by the logical

category—substantive, adjective, relational adjective,

as the case may be—to which it belongs. In other

words, the material constituents which may replace one

another, in order that the construct may exhibit the

same function in its varied exemplifications, must all

belong to the same logical category or sub-category.

\ 7. This account of the formal elements of a con-

struct leads to an examination of different types of

function. Amongst the functions of logic the con-

junctional and the predicational are the most funda-

mental. A function is called conjunctional when the

component that determines its form is the negative not
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or some logical conjunction ; and the variants for such

a function are always, strictly speaking, propositions,

as is also the construct itself. A function is called

predicational when the component that determines its

form is the characterising tie, which unites two variants

related to one another as substantive to adjective. Thus

there is only one elementary predicational function,

namely the characterising function represented by the

copula 'is'; whereas there are five elementary conjunc-

tional functions represented respectively by the opera-

tors, 'not,' 'and,' 'if and its converse, 'or,' 'not-both.'

Just as a conjunctional function may exhibit any degree

ofcomplexitymade up of these elementary conjunctional

functions, so a predicational function may exhibit any

degree of complexity made up of recurrences of the

characterising function in sub-constructs and sub-sub-

constructs, etc. An important distinction between these

two types of function introduces the notion of func-

tional homogeneity. A function is said to be homo-

geneous when all its variants belong to the same

category as itself. Now, since a conjunctional function

takes propositions as its variants and is itself a pro-

position, it illustrates a homogeneous function ; but,

since a predicational function constitutes a construct

under the category proposition out of constituents under

the respective categories, substantive and adjective, it

illustrates a heterogeneous function. Under this head

are also to be included secondary propositions which

predicate adjectives of primary propositions, and pro-

positions which predicate secondary adjectives of pri-

mary adjectives; for the subjects of these propositions

are quasi-substantives, and the propositions themselves
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are of a different order of category from their con-

stituent terms.

§ 8. We will proceed to apply the notion of con-

nectedness to these two types of function. A conjunc-

tional function is a function of those propositional sub-

constructs which are unconnected, but not of those

which are connected with one another through identity

of some of the terms involved. For such sub-constructs,

though properly regarded as constituents, cannot be

taken as variants, since they cannot be freely varied

independently of one another. Thus the variants for a

conjunctional function which is also connectional are

not the connected sub-constructs themselves, but the

ultimate propositions or ' simples ' of which they are

constituted; e.g. in the construct

\ij> and q) or i^p and r)} and i^x or y)

the constituents that may be taken as variants are

/, q, r, {x orjy); and in the construct

{(/ and q) or (/ and r)} and (^ or y)

the only constituents that can be taken as variants are

P-> Q, ^^ y- I^ these symbolic illustrations, the ultimate

constituents are unanalysed propositions; but the same

distinction between connected and unconnected sub-

constructs holds for a conjunctional function of pro-

positions that are expressed analytically in terms of

subject and predicate. For example, 'A \sp or B is q'

illustrates a conjunctional function of the two uncon-

nected sub-constructs ^A is/,' 'B is q.' On the other

hand, 'A is p or A is q' is not a function of the sub-

constructs 'A is /,' 'A IS q' because these are con-

nected; but must be taken as a function of the three
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ultimate constituents A,p, q. Again, 'A is/ ox B is/'

is not a function oi ' A\spyB\s p' but of the ultimate

constituents A, B, p. The connectedness in the former

case is through identity of the substantive A ; in the

latter through identity of the adjective /. Similar

examples of connectedness occur, in which 'if or 'not-

both' or 'and' enter in the place of ^or.'

Ordinary language adopts abbreviated expressions

for propositions that are connected, through identity of

subject, by constructing a compound predicate, e.g. 'A
IS p or q,' 'A is/ and q' \ as also for propositions that

are connected, through identity o( predicate, by con-

structing a compound subject, e.g. 'A or B is p,' *A
and B are/.' This is extended to any number of terms

enumeratively assigned for which language supplies us

with a special condensed mode of expression. Thus the

alternative function is condensed into the form : 'Some

one or other of the enumerated items is /'; and the

conjunctive function into the form: ' Every one of the

enumerated items is/.' Such forms are usually restricted

to enumerations of substantival items : for example,

* Some one of the apostles was a traitor,' ' Every one of

the apostles was a Jew.' But it is possible to extend

the form to enumerations of propositional or of adjec-

tival items ; for example, * Some one of the axioms of

Euclid is unnecessary for the purpose of establishing

the theorems of geometry
'

; or ' Every one of the

qualities characterising A, B, C characterises D!

§ 9. A special notation has been adopted by the

symbolists for representing such condensed expressions.

In this notation, an illustrative symbol such as x enters

as an apparent variable (to use Peano's phraseology)

;
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by which is meant that the proposition in which x
occurs—though it appears to be, yet is not in reality

—

about X, inasmuch as its content is not changed when
any other symbol, say y, is substituted for x. The
typical mode of formulating propositions on this prin-

ciple is :
' Every item, say x, is /,' or ' Some item, say

X, is p,' where it is obvious that the force of the pro-

position would be unaltered if we substituted s, or y,

or z, for X. IfX is the name of the class that comprises

all such items as x, then the above forms are equi-

valent to ' Every X is /,' and ' Some X \s p' respec-

tively. The ultimate constituents of such universal or

particular propositions are the simple propositions of

the form ' x\s p' which are conjunctively combined for

the universal, and alternatively combined for the par-

ticular. The phrases ' Every X,' ' Some X', therefore,

though obviously constituents of the sentence, do not

denote genuine constituents of the proposition of which

the sentence is the verbal expression. Since then the

constituents of the general proposition are singular

propositions of the form ' x\s, p,' such a class-name as X
and such a variable name as x, which are in danger

of being identified, must be carefully distinguished. To
the former the distributives some or every can be pre-

fixed, never to the latter. [See Part I, Chapter VII.]

When we use a symbolic variable or illustrative

symbol x to construct the proposition 'x is /' say,

X stands, not for a class-name, but for a special

kind of singular name, only differing from the ordinary

singular name in that it stands indifferently for any

substantive name, such as 'Socrates' or 'Cromwell' or

'this table' or 'yonder chair.' To bring out more pre-
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cisely the distinction between a symbolic variable and

a class-name, we may suppose that in a certain context

s stands indifferently for a.ny person such as 'Socrates'

or 'Cromwell'; or again, indifferently for any article

of furniture such as ' this table ' or ' yonder chair.'

Now 'person' and 'article of furniture' are class-names,

and in the instances adduced the symbolic variable s

stands—not for the class-name—but in fact for any

singular name (proper or descriptive) that denotes an

individual comprised in the class ' person ' for the one

case, and the class 'article of furniture' for the other case.

What holds of a substantive-name s holds also of an

adjective-name / or of a class-name c. Thus, in

the form 's is /,' where Hs' represents the charac-

terising tie, / stands for any one indifferently assign-

able adjective comprised, say, in the class colour^ but

not for the class itself to which the distributives

' every ' or ' some ' can be prefixed. Again, in the

form 's is comprised in c^ c represents a singular

class-name standing for any one indifferently assignable

class; and the limits of variation for the variable c

could be expressed in terms of a class of a higher

order comprising it. Thus the symbol c is equivalent to

a variable proper class-name, and, like the substantive-

name s and the adjective-name /, is to be contrasted

with the class in which it is comprised. The names

substantive, adjective, proposition, etc., which denote

logical categories, i.e. the ultimate comprising classes,

are not variable proper names, but names bearing fixed

or constant significance, having so far the character of

shorthand symbols in that they stand for logical con-

stants, not for material variables. Thus the employ-
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ment of the illustrative symbol as an apparent variable

—i.e. to stand indifferently for any one or another

object—makes possible the use of the same symbol,

recurring in a given context, to stand for the same

object. It thus fulfils the same function in a complex

symbolic formula as the proper name in ordinary narra-

tive, where the use of the pronoun in complicated cases

would be ambiguous. The construction of such formulae

requires the use, in a symbolic system, of apparent vari-

ables in place of class-names.

§ lo. We have seen that certain phrases containing,

implicitly or explicitly, the conjunctions and ox or, though

linguistically intelligible, do not really represent genuine

constructs. This raises a wider and more fundamental

problem in regard to the nature of logical conjunctions

when used in constructingacompound out of enumerated

items. Can conjunctions serve to construct compound
substantives or compound adjectives in the same way
as they operate in constructing compound propositions ?

Now I shall maintain that while the nature of an adjec-

tive is such that we may properly construct a compound

adjective out of 'simple' adjectives just as we may
construct a compound proposition out of 'simple' pro-

positions, yet the nature of any term functioning as a

substantive is such that it is impossible to construct a

genuine compound substantive. Thus 'rational and

animated' represents a genuine conjunctive adjective,

since it is equivalent in meaning to the simple adjective

'human'; and 'one or other of the colours approximat-

ing to red' is a genuine alternative adjective, since it is

equivalent in meaning to the simple adjective 'reddish.'

And again, more generally, where no single adjectival
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word represents such a conjunction of adjectives as

'square and heavy,' 'red or green,' these are still to be

regarded as genuine adjectival constructs on the ground

that they agree in all essentially logical respects with

simple adjectives, from which in fact they cannot be

distinguished by any universal criterion. It follows,

therefore, that no contradiction will ensue from replacing

a simple by a compound adjective in any general for-

mula holding of all adjectives as such. At the same

time it must be pointed out, as regards alternative adjec-

tival constructs, that no single or determinate adjective

can be identified with such an alternative or indetermi-

nate adjective as 'red or green,' 'one or other of the

colours approximating to red.' In this respect, as we
shall see, an alternative adjectival construct precisely

resembles a substantival construct. Turning then to

substantival constructs, it is obvious in the first place

that a conjunctive enumeration of substantives such as

'Peter and James' or 'Every one of the apostles' does not

represent any single or determinate man. 1 1 might, how-

ever, be maintained that such phrases represent a couple

of men or a class of men, and that a couple or a class

comprising substantives is itself of the nature of a sub-

stantive. Such a view would, however, involve a con-

fusion between the enumerative and the conjunctional

and. A statement about 'Peter and James' or 'Every

one of the apostles' is really not about the compound

construct that appears to be denoted by its subject-

term, but must be analysed into a conjunctive compound

of singular propositions. Thus in the statement 'Peter

and James were fishermen' the subject-term uses and

enumeratively. The conjunctional a7id can be shown
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to enter only when we analyse the statement into the

form 'Peter was a fisherman and James was a fisher-

man.' The case of an alternative enumeration of sub-

stantives, such as ' Peter or James' or 'Some one of the

apostles,' is less obvious than that of a conjunctive

enumeration of substantives. To prove that the alter-

native enumeration does not represent a genuine sub-

stantive, it will be convenient to take a proposition in

which the enumeration occurs in the predicate. Thus
'Nathaniel is one of the apostles' or 'Bartholomew is

one of the apostles ' would appear to be expressible in

the form 'Nathaniel is-identical-with one or other of

the apostles' or 'Bartholomew is-identical-with one or

other of the apostles.' But, if this is allowed, the con-

junction of these two propositions would imply that

'Nathaniel is-identical-with Bartholomew,' since things

that are identical with the same thing are identical with

one another. Now that 'Nathaniel is-identical-with

Bartholomew' may or may not be the case; but it cer-

tainly would not follow from the fact that Nathaniel

was one of the apostles and that Bartholomew was one

of the apostles. In order correctly to formulate the pro-

position 'Nathaniel was one of the apostles' in terms of

the relation of identity, it must be rendered: 'Nathaniel

is-identical-with Peter or identical-with Bartholomew or

identical-with Thaddeus, etc' In this form, the alter-

nants are not the proper or substantival names Peter,

Bartholomew, Thaddeus, etc., but the adjectival terms

'identical with Peter,' 'identical with Bartholomew,'

identical with Thaddeus,' etc. These latter being re-

cognised as adjectives, the reconstructed proposition

assumes the form 'A \s p ox q or r, etc' where 'is'
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represents the characterising tie, and/, q, r... stand

for adjectives, so that (as alleged above) the new
predicate expresses a genuine construct.

§ II. A further and more general explanation may
now be given of the principle according to which a

proposition containing a fictitious construct must be re-

formulated. What holds of the relation of identity (as

in the particular example concerning the apostles) holds

of any relation whatever: that is to say, taking r to

stand for any relation, the phrase 'P to a or b or: c.,.'

does not express a genuine construct and must be re-

placed by the phrase ^r \.o a or r \.o b or rto c...' which

is an alternative of adjectives. For example, the pro-

position 'This action will injure either Germany or

England' must be transformed into 'This action will

either injure Germany or injure England.' The essen-

tial points in this transformation can best be indicated

with the help of vertical lines for brackets. Thus

:

X \\s r \.o\ a or b or c

is corrected into

x\ is
I

r to a or r to b or r to c.

In the former the two principal constituents of the pro-

position are linked by the relational predication 'is r

to,' in the latter by the characterising tie 'is.' In order

that the predicate in the latter case should constitute a

genuine construct, what is essential is, not that the

subject term should stand for a substantive in any abso-

lute sense, but only that it should function as a sub-

stantive relatively to the adjectival predicate; and it is

the characterising tie which indicates this relative con-

ception of substantive to adjective. Thus the term x
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may be either a substantive proper, an adjective or a

proposition, and the same holds of the terms a, b, c,

with which x is connected by the relation r.

Examples may be given of propositions based upon

the forms 'x \s r to a or b,' 'x is f to « and b,' in order

further to illustrate the principles under discussion.

(i) In the example just given: 'This action will

injure either Germany or England,' which must be

rendered 'This action will either injure England or in-

jure Germany,' the terms x, a, b, are all substantives

proper. But taking

(2) 'p characterises either a ov b or c^ which has to

be transformed into '/> either characterises a or charac-

terises b or characterises c,' the subject term is an ad-

jective and may be called primary relatively to the

predicate terms which function as secondary adjectives \

In (3): 'A has asserted/ or^ or;',' the subject term

stands for a person (i.e. for a substantive proper), and

the terms/, q^ r in the predicate are propositions. Since

here the terms alternatively combined are themselves

propositions, the expression as it stands would be correct

if its intention were to state that the compound propo-

sition 'p or q or r' was asserted by A. But, if it were

intended to state that one or other of the assertions

/, q, r had been made by A, then (3) should be amended

^ The predication characterises, like injures in the previous example,

is expressed by a verb ; but, as explained in Part I, Chapter XIII,

section 5, any verb may be resolved into an adjective or relation

preceded by the characterising tie. Thus, in order to show more
explicitly that the principal constituents are united by the characterising

tie, proposition (2) should be expanded into the form: '/ is charac-

terised as either characterising a or characterising b or characterising

^.' Similarly for other examples.

J. L. n 5
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(as in the preceding examples) into the form: 'A has

asserted/ or has asserted q or has asserted r.'

(4) The proposition: 'g is characterised by all the

adjectives that characterise a and b and c' exhibits a

higher degree of complexity than those previously given

since it introduces the two correlatives characterising

and characterised by. It illustrates a type of proposi-

tion which plays an important part in the theory of

induction; and is a specific case of the more general

form: ^g is r to everything that \sr\.oa and b and c'

As thus formulated it contains the fictitious conjunctive

construct 'a and b and c' where a, b, c function as

substantives. To eliminate this fictitious construct, the

statement must be reformulated thus : 'g is character-

ised by every adjective that characterises a and charac-

terises b and characterises c' But there still remains

the fictitious construct prefaced by the distributive

phrase 'every adjective.' The final correction must be

made by introducing an apparent variable as was re-

quired in reformulating the elementary forms of pro-

position: 'Every M is /,' 'Some M is /.' Thus:
' Every adjective, say x, that characterises a and charac-

terises b and characterises c also characterises^.'

§ 12. The above exposition of functions is funda-

mentally opposed to that given in the Principia Mathe-

matica. The first point of difference to be emphasised

concerns Mr Russell's view of the relation between

what he calls a propositional function, and function

in the sense in which it is universally understood in

mathematics. The latter he terms a descriptive function,

and maintains that it is derivable from the nature of the

propositional function; whereas it appears to me that
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the reverse is the case, and that his prepositional func-

tion is nothing but a particular case of the mathematical

function. The general nature of a descriptive function

can be illustrated by taking a proposition say about

'The teacher ofy.' This phrase illustrates what is meant

by a descriptive function, the full meaning of which can

be indicated only by showing how it may enter into a

proposition such as (a) : 'The teacher o(y was a Scotch-

man.' Now we may agree with Mr Russell that this

proposition could not be interpreted as true, unless jk

had one and only one teacher. On this interpretation

the full force of the proposition is explicated as follows

:

(a) There is a being, say d, of which the following

statements may be made:

(i) that d was a Scotchman;

(2) that d taught jj/;

(3) that no being other than d taught^.

This analysis in which the describing relation is teaching

is typical of all cases in which a descriptive function is

used in a proposition. To illustrate a mathematical func-

tion ofjj/i for teacker-of suhstxtute greater-by-ythan; so

that jj/ + 3 stands for 'Ike quantity that is greater by 3

than j^.' Again for the predication is-a-Scotchman substi-

tute is-divisible-by-df. Thus, in place of the proposition

'The teacher oi y was a Scotchman,' we have con-

structed the proposition {h)\ 'jv + 3 is divisible by 4,' the

full force of which is rendered as follows

:

{b) There is a quantity, say b, of which the fol-

lowing statements may be made

:

ii) that b is divisible by 4;

(2) that b is greater-by-3 thanjv;

(3) that no quantity other than b is greater-by-3-

than y.
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Thirdly, to illustrate a propositional function, for

divisible-by-\ substitute the predicate dubious; for the

quantitative construct *jy + 3
' substitute the propositional

construct 'y is p! We have thus constructed the se-

condary proposition {c)\ 'That jv \s> p is dubious,' of

which the full force is rendered as follows

:

{c) There is a proposition, say b, about y^ of which

the following statements may be made

:

(i) that b is dubious;

(2) that b predicates-/-aboutjj/;

(3) that no proposition other than b predicates-

/-aboutjy.

Now in example (a) the ground for asserting unique-

ness of the construct the teacher ofy is merely empirical

or factual; but in example (<5) the necessary and sufficient

condition for the uniqueness of the construct jv + 3 is its

mathematical form, as indicated by the symbol -f ; and

in example {c) the uniqueness of the corresponding con-

struct y is p similarly depends upon its logical form, as

indicated by the logical constant is. Dismissing the em-

pirical example which requires no further discussion, it

must be pointed out as regards the quantitative function

{b) and the propositional function (c) that these illustrate

—not quantitative or propositional functions in general

—but certain specific functions : in the former case that

which is constructed by means oiplus, and in the latter

case, that which is constructed by means of is. The
former may be called the additive and the latter the

characterising function. Just as the quantitative con-

struct y-\-a would not yield a quantity unless y and a

were themselves quantities of the same kind ; so the

propositional construct y is p would not yield a pro-

position unless the two constituents y and p were, in
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their nature, relatively to one another as substantive to

adjective. A specifically different form of quantitative

construct would have been obtained if (or y-{-a we had

substituted y : a. Similarly a specifically different pro-

positional form of construct would have been obtained

if for s is p we had substituted x is identical with y.

In both cases the uniqueness of the construct is secured

by the nature of the operator involved ; viz., + which

yields a sum, or : which yields a ratio for the two quanti-

tative constructs ; and is and is identical with for the

two propositional constructs. If there is any difference

between the uniqueness of the propositional construct

when its constituents are given and that of the mathe-

matical construct when its constituents are given, it is

that the uniqueness in the former case is assumed on

the ground of its intuitive evidence realised in the mental

act of constructing the proposition, whereas in the latter

the uniqueness may require and maybe capable of formal

demonstration.

§ 13. Before continuing the discussion of my differ-

ences from Mr Russell, I shall examine more precisely

what he means by a descriptive function. A descriptive

function (p. 245) is defined to be a phrase of the form

:

'the term x that has the relation i" to the term y.' In

this definition the sole emphasis is to be laid on the

predesignation the. Now, just as we speak of the

quantity 's+p,' so we speak of the proposition 's is pJ
But these quantitative and propositional phrases differ

from ordinary descriptive phrases such as 'the writer

of Waverley' or 'the teacher of Xenophon'—which are

of the general form :
' the thing x that is r to the thing

_y'—in that they do not explicitly contain any descriptive
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relation r (writing or teaching). Tlie arithmetical form

*5+/' and the propositional form 's is /' having in

common this negative characteristic, I shall proceed to

maintain that they are, in all essential logical respects,

identical in nature ; and, if either of the two can be

explicated into the form of a descriptive function, so

can the other. We may attempt to express these forms

explicitly as descriptive functions by introducing, as

the describing relation, constructed by. Thus the pro-

positional function may be rendered: 'the proposition

X constructed by means of is out of the constituents s

and p'
; and the quantitative function may be rendered

:

' the quantity x constructed by means oiplus out of the

constituents s and /.' This attempt reduces the state-

ment of equivalence of the construct with the proposed

descriptive phrase to a mere tautology ; for 'the pro-

position X constructed by means of is out of the con-

stituents s and /' is merely a lengthened expression

for 'the proposition 5 is/'; and similarly 'the quantity

X constructed by means of plus out of the constituents

s and / ' is merely a lengthened expression for * the

quantity s-\-p' It thus turns out that the x thus

introduced in the completely formulated descriptive

phrase stands merely for the function itself, i.e. in the

one case for ' s is/' and in the other for ' s-\-p.' Follow-

ing Russell in his demand that a descriptive function

must only be defined 'in use,' the statement that 's is

/ is dubious' or that 's+p is divisible by 4' must be

rendered 'the proposition x constructed etc. (as above)

is dubious,' or ' the quantity ;r constructed etc. (as above)

is divisible by 4.' In this way the original statements:

'the proposition i' is / is dubious,' and 'the quantity
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s-\-p is divisible by 4,' which were supposed to require

definition, are after all defined tautologically.

§ 14. Another way of attacking Russell's preposi-

tional function, which in fact presents only another

aspect of the same criticism, is to ask: What are the

variants for any given proposional function, and what

function is it that a given prepositional form exhibits ?

In his first introduction of the notion of prepositional

function, Mr Russell gives three quite different appli-

cations of the symbol for a function. According to his

first definition, ^x is called a prepositional function when
X is variable provided that when x is replaced by the

constant a, <f)a represents a proposition. Now here the

symbol for a function is first used along with a variable

and then along with a constant ; although Russell insists

that (f)a is not a function but a proposition, and that <^jir

is not a proposition but a function. It seems to me that

he cannot attach the symbol for a function exclusively

to a variable in this way without contradiction at every

point; and it is for this reason that, in my account of

functions, I have used the word variant to include both

Russell's variable and his constant. There is yet a third

application of the symbol for a function deliberately

introduced in the very first paragraph of his exposition,

by way of correcting his initial definition of prepositional

function. For his first account is that (^x is to be called

a prepositional function, owing to the ambiguity—or as

I should prefer to say indeterminateness—of the symbol

x, and that it is net itself a proposition, and would only

become a proposition when a is substituted for x. This

is corrected, however, when he takes the example 'x

is hurt' which he says illustrates, not a prepositional
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function, but an ambiguous (i.e. an indeterminate) value

of a propositional function. Thus, as I have pointed

out, he illustrates the use of the word function in his

first paragraph in three different ways which are sym-

bolised as follows :
'« is hurt,' 'x is hurt,' and '^ is hurt'

The last application of the word function is that which

he wishes to be finally adopted; but, in spite of this, he

continually uses the word in both of the two other ap-

plications. It is still more surprising that, on page 6 of

his Introduction, where he gives a preliminary account

of the ideas and notations of logical symbolism, he uses

the word function without any explanation of its meaning,

and in deliberate defiance of his own later definition.

Thus he speaks of the fundamental functions of pro-

positions in these words : 'an aggregation of propositions

considered as wholes, not necessarily unambiguously

determined, into a single proposition more complex than

its constituents, is a function with propositions as argu-

ments.' This account appears clearly to suggest that un-

ambiguously determined constituents are allowable as

arguments for a function, which contradicts his explicit

definition. He proceeds to enumerate the four funda-

mental functions of propositions which are of logical im-

portance, viz. (i) the contradictory function, which I

have called the negative function
; (2) the logical sum

or disjunctive function, which I have called the alter-

native function; (3) the logical product, which both he

and I call the conjunctive function; (4) the implicative

function, for which I have used the same term. These

four functions I have called conjunctional functions, in

contrast to the one fundamental predicational function.

The recognition of this distinction, which does not appear
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in Mr Russell's account, would have simplified and

corrected his 'theory of types.' But, in thus introducing

the specific conjunctional fijnctions, he inevitably adopts

the familiar meaning of the mathematical term 'function,'

the essence of which lies, not in the indeterminateness

of the constituent terms, but in the identity of form that

is exhibited in the process of substituting indifferently

any one term for any other.

That he is not only in disagreement with universal

usage, but also logically mistaken, when he says that

it is a function of which the essential characteristic is

ambiguity—and thus that ^x ambiguously denotes ^a,

(j>d, (f>c, where (fya, <^b, (f)C are the various values of (f)X
—

is shown by noting that the ambiguity attaching to (f>x

is not due to the nature of (^ as a function, but to the

nature of the symbol x itself; that is to say, (ftx am-

biguously denotes cjya, (j>b, (f)C, etc., only because x am-

biguously denotes a, b, c, etc. In short a propositional

function has ambiguous denotation, if it contains a term

having ambiguous denotation; whereas a propositional

function has unambiguous denotation, if it contains no

term having ambiguous denotation.

§ 15. Hitherto, in illustrating Russell's account, we
have taken the propositional function to be a function

of a single variable, viz., of the symbol for the subject

of the proposition, the predicate standing for a constant.

It is obvious, however, that no proposition can be re-

garded as a function of a single variant unless the pro-

position is represented by a simple letter; and we will

therefore take the specific propositional form 'x \s p' to

illustrate a function of two variables. The variants of

which this is a function would naturally be taken as the
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symbols x and p themselves ; but, since Russell refuses

to allow a predicate or adjective to stand by itself, he

takes as the two variables the subject term x together

with the symbolic variable 'x vs, p.' The symbolic ex-

pression 'x is/' may be read ';i:-blank is /'; by which

is meant that instead of the full propositional form 'x

is p,' we suppose that the subject-term x is omitted,

leaving a blank. But, if we use a blank symbol for the

subject-term, we ought in consistency to be allowed to

use a similar blank symbol for the predicate term. This

would give rise to nine combinations all of which are of

the same propositional form: 'this is hurt,' 'x is hurt,'

'this is/,' '^is hurt,' 'this isjzJ*,' '^is/,' ^x is/,' 'x is/,'

and finally 'x is p.' Of these nine phrases, Russell uses

only 'this is hurt,' 'x is hurt' and 'x is hurt'; of which

the two latter illustrate the two admittedly different

meanings or applications of the general notion <f)X, i.e.

of the propositional function. Now, though his first

reference is to a propositional function taking a single

argument, nevertheless he allows that any proposition

(as distinguished from a propositional function) when
analysed contains at least two constituents. For example,

the proposition 'this is hurt' as analysed contains the

two constituents 'this' and 'x is hurt.' In my view,

there is no ground whatever for preferring this analysis

either to that in which the constituents are 'hurt' and

'this is/,' or to that in which the constituents are 'this

is/' and '^ is hurt.' But, returning to his own analysis

in which 'this' and 'x is hurt' are assigned as the two

constituents of 'this is hurt,' as also '^' and 'Jt is
p'

as the two constituents of ' x is /
'

; we must insist

upon asking : What is the specific function for the
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case of the proposition 'xxsp' when its two arguments

are taken to be 'x and 'St is/'? Mr Russell only tells

us that '^ is/ ' = 'f{pc, xxspy where the specific symbol

_/has nowhere been defined by him. It is as if he had

said that the quantitative function 'x+p' has for its

two constituents, variants or arguments: (i) -1:^ and (2)

x+p. Now according to this analysis of the nature of

a function, the process by which a function is constructed

out of two variables is to substitute in one of these

variables x for x, so that taking a similar example to

the above, the constituents of the quantitative construct

*x-^P' would be x and x-^p. Every mathematician

would take as the two constituents of the construct

x-^p the two simple symbols :r and /> ; as Russell himself

does in his preliminary account of the alternative func-

tion X or p, of which the two constituents are the simple

symbols x and /. In fact he can only take a function

of a single variable as ambiguously denoting a pro-

position, by starting with what I have called a non-

formal function, e.g. 'x is hurt' as a non-formal function

oix\ instead of starting with the essentially logical notion

of a function, which is synonymous with the form of a

construct such as 'x is/' where instead of one material

or variable constituent there are two. In short the form

of a proposition, if it has form at all and is not simply

expressed by a simple symbol, must contain two inde-

pendent constituents. When Mr Russell says that

<^ {x) is a propositional function, provided that (^ {a) is

a proposition, he provides us with no indication as to

the form that ^ {a) must assume in order that ^ {a)

shall constitute a proposition.
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THE CATEGORICAL SYLLOGISM

§ I. As the relation between implication and in-

ference has already been explained, we may treat the

syllogism indifferently as a species either of implication

or of inference: regarded as implication, the propositions

concerned must be spoken of as implicants and impli-

cate; regarded as inference, we speak of them as pre-

misses and conclusion. The term syllogism is strictly

confined to one only of the many forms of demonstrative

inference; and in this strict usage must be defined as

an argument containing two premisses and a conclusion,

involving between them three terms, each of which

occurs in two different propositions. That occurring as

predicate in the conclusion is called the major term;

that occurring as subject in the conclusion, the minor

term; and that not occurring in the conclusion, the

middle term. The distinction between the major and

minor terms determines which of the premisses shall be

called major and which minor: that which contains

the predicate of the conclusion being called the major

premiss ; and that which contains the subject of the

conclusion being called the minor premiss. Reference

to the conclusion is thus required before the premisses

can be distinguished as major or minor. The canonical

order of the three propositions, viz. major premiss,

minor premiss, conclusion, is purely artificial, and

adopted only for general purposes of reference. The
mood of a syllogism is defined by the forms (A, E, /,
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or O) of the three propositions constituting the major

premiss, minor premiss, and conclusion, in their canoni-

cal order. Furthermore syllogisms are distinguished

according to figure : the first figure being that in which

the middle term occurs as subject in the major premiss

and predicate in the minor ; the fourth figure being that

in which the middle term occurs as predicate in the

major and as subject in the minor: the second figure,

that in which the middle term occurs as predicate in

both premisses; and the third figure that in which the

middle term occurs as subject in both premisses. Two
syllogisms would be said to be of different form, although

they might agree in mood, provided they differed in

figure.

§ 2. There are two opposite tendencies in the choice

of illustrations of the syllogism, both of which, in my
view, should be avoided. The first is to select examples

composed of propositions, each of which is universally

accepted as true. But such illustrations hinder the

learner from examining the validity of the inferential

process from premisses to conclusion, since he is apt to

assume validity because of his familiarity with the pro-

positions as being generally accepted. The opposite

course, which we find amusingly illustrated by Lewis

Carroll, is to select propositions which are obviously

false. But this leads the learner to regard the syllogism

merely as a kind of game, and as having no real signi-

ficance in actual thought procedure. It is preferable,

therefore, to select propositions which are dubious,

or which are affirmed by some persons and denied

by others. Of such propositions important kinds are

(i) those which deal with political, ethical, or similar
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topics m general, e.g. 'Lying is sometimes right,' 'All

countries that adopt free-trade are prosperous,' 'The

suffrage should not be extended to uneducated persons;

(2) those which exercise the faculty of judgment, in the

Kantian sense, upon some individual case, e.g. 'This

man is untrustworthy,' *The Niche is finer than the

Venus of Milo,' 'Esau is a more lovable person than

Jacob.'

§ 3. Correlative to the syllogism we may here in-

troduce the antilogism, in reference to which the above

principle of selecting examples will be seen to have

special significance. An antilogism may be defined as a

formal disjunction of two, three, or more propositions,

each of which is entertained hypothetically. When
limited to three propositions constituting a disjunctive

trio, the antilogism may be formulated in terms of illus-

trative symbols as follows :
' the three propositions P, Q,

and R cannot be true together.' It is then seen that

just as the disjunction of P and Q is equivalent to the

implication 'If /^ is true, then Q is false,' so the disjunc-

tion of P, Q, and R is equivalent to each of the three

implications:

(i) If P and Q are true, then R is false,

(2) UP and R are true, then Q is false,

(3) If 7? and Q are true, then P is false.

We may put forward the following example of an

antilogism, no one of the propositions of which would

be universally acknowledged either as true or as false,

but which taken together are formally incompatible

:

P. All tactful persons sometimes lie.

Q. Lord Grey is a tactful person.

R. Lord Grey never lies.
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Something could be said in support of, as well as in

opposition to, each of these three propositions; but it is

obvious that they are together incompatible, and hence

constitute an antilogism or disjunctive trio. This anti-

logism is equivalent to each of the three following

syllogistic implications

:

ist if All tactful persons sometimes lie

and Lord Grey is a tactful person,

then Lord Grey sometimes lies.

2nd if All tactful persons sometimes lie

and Lord Grey never lies,

then Lord Grey is not a tactful person.

3rd if Lord Grey never lies

and Lord Grey is a tactful person,

then Some tactful persons never lie.

§ 4. The propositions in each of these syllogisms

are in the canonical order of major, minor, conclusion,

and the syllogisms will be recognised as being in the

first, second, and third figures respectively. In defining

the figures of syllogism we may, in fact, separate the

first three from the fourth in that the former contain

one and only one term standing in one proposition as

subject and in another as predicate, while in the fourth

figure all three terms occupy this double position. Such

a term may be called a class-term, on the ground that

a class-term has a partly adjectival meaning, and as such

serves appropriately as predicate ; and partly a sub-

stantival meaning, and as such serves appropriately as

subject. The first three figures, then, containing only

one class-term, are distinguished from one another

according as this term occupies one or another position.

In the first figure it serves as the middle term; in the
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second figure as the major term ; and in the third figure

as the minor term. Taking the above antilogism as

illustrative, we may generalise by formulating the

following antilogistic dictum for the first three figures:

It is impossible to conjoin together the three pro-

positions :

Every member of a class has a certain property

;

A certain object is included in that class;

This object has not that property.

From this single antilogistic dictum we construct the

dicta for the first three figures of syllogism, thus

:

Dictum for \st Figure

if Every member of a class has a certain property
and A certain object is included in that class,

then This object must have that property.

Dictumfor 2nd Figure

if Every member of a class has a certain property

and A certain object has not that property,

then This object must be excluded from the class.

Dictum for -^rd Figure

if A certain object has not a certain property
and This object is included in a certain class,

then Not every member of the class has that property.

These dicta bring out the normal function of each of the

first three figures in thought-process. Thus we are

reasoning in the first figure when, having established a

certain characteristic as belonging to every member of

a class, we bring forward an individual object known to

belong to the class and proceed to assert that it will

have the characteristic common to the class. We are

reasoning in the second figure when, having similarly
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established a certain characteristic as belonging to every

member of a class, and having found that an individual

object has not this characteristic, we proceed to assert

that it does not belong to the class. We are reasoning

in the third figure when we note that a certain object

known to belong to a certain class has not a certain

property, and proceed to assert that that property cannot

be predicated universally of all members of the class;

or otherwise, when, having noted that an object known
to belong to a certain class has a certain character, we
infer that at least one member of the class has this

character. A peculiarity of the third figure is that it

functions either destructively or constructively; as de-

structive, it disproves some universal proposition that

may have been suggested ; as constructive, it naturally

suggests the replacement of the particular conclusion

either by a universal whose subject is restricted by some
further adjectival characteristic, or by an unrestricted

universal to be obtained by induction from the par-

ticular conclusion.

§ 5. A second illustration of an antilogism develop-

ing into three syllogisms may be chosen with the purpose

of showing how purely formal and elementary reasoning

underlies even the most abstract arguments. Thus

:

It is impossible to conjoin the three propositions:

P. All possible objects of thought are such as have
been sensationally impressed upon us;

Q. Substance is a possible object of thought

;

R. Substance has not been sensationally impressed
upon us.

Since each of these propositions has been asserted by

J. L. II 6

5^74'2>
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some and denied by other philosophers, the three

together constitute an antilogism having the same illus-

trative value as our previous example.

Taking, first, P and Q as asserted premisses and

not-^ as conclusion, we obtain the syllogistic inference

:

P. All possible objects of thought have been sensa-

tionally impressed upon us;

Q. Substance is a possible object of thought;

.*. not-i?. Substance has been sensationally impressed

upon us.

With some explanations and modifications this syllo-

gism represents roughly one aspect of the new realistic

philosophy.

Taking, next, P and R as asserted premisses and

not-^ as conclusion, we have

:

P. All possible objects of thought have been sensa-

tionally impressed upon us;

R. Substance has not been sensationally impressed
upon us;

.
•. not-^. Substance is not a possible object of thought.

This syllogism represents very fairly the position of

Hume.
Taking, lastly, R and Q as asserted premisses and

not-/* as conclusion, we have

:

R. Substance has not been sensationally impressed
upon us;

Q. Substance is a possible object of thought;

. '. not-/*. Not every possible object of thought has been
sensationally impressed upon us.

This syllogism represents almost precisely the well-

known position of Kant.
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As in our previous example these three syllogisms

are respectively in figures i, 2, and 3; and, moreover,

Kant's argument in figure 3 has both a destructive

function in upsetting Hume's position; and a construc-

tive function in suggesting the replacement of the

particular conclusion by a limited universal which would

assign the further characteristic required for discrimi-

nating those objects of thought which have not been

obtained by experience from those which have been

thus obtained.

§ 6. Since the dicta, as formulated above, apply

only where two of the propositions are singular or

instantial, they must be reformulated so as to apply also

where all the propositions are general, i.e. universal or

particular. Furthermore, they will be adapted so as to

determine directly all the possible variations for each

figure. As follows:

Dictum for Fig. i

if Every one of a certain class C possesses (or lacks)

a certain property P
and Certain objects S are included in that class C,

then These objects S must possess (or lack) that pro-

perty P.

Dictumfor Fig. 2

if Every one of a certain class C possesses (or lacks)

a certain property P
and Certain objects 6" lack (or possess) that property/*,

then These objects 6" must be excluded from the

class C.

Dictum,for Fig. 3

if Certain objects .S possess (or lack) a certain pro-

perty P
6—2
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and These objects ^ are included in a certain class C
then Not every one of the class C lacks (or possesses)

that property P.

i.e. Some of the class C possess (or lack) that pro-

perty P.

In each of these dicta the word 'objects,' symbolised

as S, represents the term that stands as subject in both

its occurrences; the word 'property' P, the term that

stands as predicate in both its occurrences; and the

word 'class' C, that term which occurs once as subject

and again as predicate. Hence, using the symbols

S, C, P, the first three figures are thus schematised

:

Fig. I Fig. 2 Fig. 3

C-P C-P S-P
S-C S-P S-C

.-. S-P .-. S-C .-. C-P

§ 7. In order systematically to establish the moods

which are valid in accordance with the above dicta, it

should be noted in each figure (i) that the proposition

S —P is unrestricted as regards both quality and

quantity; (2) that the proposition S—C is indepen-

dently fixed in quality, but determined in quantity by

the quantity of the unrestricted proposition ; and (3) that

the proposition C— P\s, independently fixed in quantity,

but determined in quality by the quality of the un-

restricted proposition. Thus in Fig. i, while the

conclusion is unrestricted, the minor premiss is indepen-

dently fixed in quality but determined in quantity by

the quantity of the conclusion; and the major premiss

is independently fixed in quantity but determined in

quality by the quality of the conclusion. In Fig. 2,

while the minor premiss is unrestricted, the conclusion
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is independently fixed in quality but determined in

quantity by the quantity of the minor premiss ; and the

major premiss is independently fixed in quantity, but

determined in quality by the quality of the minor pre-

miss. In Fig. 3, while the major premiss is unrestricted,

the minor premiss is independently fixed in quality but

determined in quantity by the quantity of the major

premiss, and the conclusion is independently fixed in

quantity but determined in quality by the quality of the

major premiss.

Having in the above dicta italicised the phrase in

each case which is directly restrictive, the proposition

which is unrestricted, i.e. may be of the form A or B
or /or O, is seen to be: in Fig. 1, the conclusion; in

Fig. 2, the minor premiss ; in Fig. 3, the major premiss.

Hence each of these figures contains four fundamental

moods derived respectively by giving to the unrestricted

proposition the form A, E, I or O. Besides these four

fundamental moods there are also supernumerarymoods.

These are obtained by substituting, in the conclusion,

a particular for a universal; or, in the minor premiss,

a universal for a particular; or, in the major again, a

universal for a particular. These supernumerary moods

will be said respectively to contain a weakened con-

clusion, a strengthened minor, or a strengthened

major; and, in the scheme given in the next section,

the propositions thus weakened or strengthened will

be indicated by the raised letters w or .$• as the case

may be.

§ 8. Adopting the method above explained, we may
now formulate the special rules for determining the

valid moods in each figure as follows

:
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Rulesfor Fig. i

.

The conclusion being unrestricted in regard both to

quality and quantity,

{a) The major premiss must in quantity be uni-

versal, and in qualityagree with the conclusion.

{b) The minor premiss must be in quality affirma-

tive, and in quantity as wide as the conclusion.

Rules for Fig. 2.

The minor premiss being unrestricted in regard both

to quality and quantity,

(a) The major premiss must be in quantity uni-

versal, and in quality opposed to the minor.

[b) The conclusion must be in quality negative,

and in quantity as narrow as the minor.

Rulesfor Fig. 3.

The major premiss being unrestricted in regard both

to quantity and quality,

(a) The conclusion must in quantity be particular,

and in quality agree with the major,

[b) The minor premiss must in quality be affirma-

tive, and in quantity overlap^ the major.

Italicising in each case the unrestricted proposition,

we may represent the valid moods for the first three

figures in the following table:

Valid Moodsfor the " One-Class " Figures.

Fig. I AA^

Fig. 2 E^E

Fig. 3 AW
^ The minor and major will necessarily overlap if one or the other

is universal^ not otherwise.

Fundamentals

EA^ AI/
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§ 9. Having established the valid moods of the first

three figures from a single antilogism, we proceed to

construct those of the fourth figure also from a single

antilogism; thus:

Taking any three classes, it is impossible that

The first should be wholly included in the second
while The second is wholly excluded from the third

and The third is partly included in the first.

The validity of this antilogism is most naturally

realised by representing classes as closed figures. Such

a representation is in fact valid, although the relation

of inclusion and exclusion of classes is not identical

with the logical relations expressed in affirmative and

negative propositions respectively; for, there is a true

analogy between the relations between classes and the

relations between closed figures; in that the relations

between the relations of classes are identical with the

corresponding relations between the relations of closed

figures. Thus adopting as the scheme of the fourth

figure

:

the above antilogism will be thus symbolised

:

It is impossible to conjoin the following three pro-

positions :

P. Every C^ is C^,

Q. No C2 is C3,

R. Some C^ is C,.

This yields the three fundamental syllogisms

(i) If /'and Q, then not-^?; i.e.

if Every C^ is C^

and No C2 is C^,

then No C is C-
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(2) If Q and R, then not-P; i.e.

if No C2 is C3

and Some C^ is C^,

then Not every C^ is C„.

(3) If 7? and P, then not-^ ; i.e.

if Some C^ is Cj

and Every C^ is C,
then Some C is C3.

Since the propositions of these syllogisms are

arranged in canonical order, the valid moods in the

fourth figure can be at once written down : ABE, B/0,

lAI. Moreover, since the conclusion of the first mood

is universal, it may be weakened; since the minor of

the second is particular, it may be strengthened; and

since the major of the third is particular, it also may be

strengthened. This yields:

Valid Moods of the Fourth Figure.

Fundamentals

AEE EIO lAI

Supernumeraries
\v s s

AEO EAO AAI

Here each supernumerary can only be interpreted in

one sense, viz., as containing respectively a weakened

conclusion, a strengthened minor, and a strengthened

major. In contrast to this, the supernumeraries of the

first and second figures must be interpreted as contain-

ing either a weakened conclusion or a strengthened

minor; and those of the third figure as containing

either a strengthened major or a strengthened minor,

§"10. An antiquated prejudice has long existed

against the inclusion of the fourth figure in logical

doctrine, and in support of this view the ground that

has been most frequently urged is as follows:
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Any argument worthy of logical recognition must

be such as would occur in ordinary discourse. Now it

will be found that no argument occurring in ordinary

discourse is in the fourth figure. Hence, no argument

in the fourth figure is worthy of logical recognition.

This argument, being in the fourth figure, refutes

itself; and therefore needs to be no further discussed.

§ 1 1. Having formulated certain intuitively evident

dicta, the observance of which secures the validity of

the syllogisms established by their means, we will pro-

ceed to formulate equally intuitive rules the violation

of which will render syllogisms invalid. These rules

will be found to rest upon a single fundamental con-

sideration, viz. if our data or premisses refer to some

only of a class, no conclusion can be validly drawn

which refers to all members of that class. This is

technically expressed in the rule:

(i) 'No term which is undistributed in its premiss

may be distributed in the conclusion.'

This rule alone is not sufficient directly to secure

validity, but from it we can deduce other directly

applicable rules which, taken in conjunction with the

first, will be sufficient to establish directly the invalidity

of any invalid form of syllogism. In the course of

deducinof these other rules we shall make use of certain

logical intuitions that are obvious apart from their em-

ployment in this deductive process, of which the follow-

ing may be mentioned:

{a) that if a term is distributed in any given

proposition, it will be undistributed in the contradictory

proposition ; and conversely, if a term is undistributed

in a given proposition, it will be distributed in the
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contradictory proposition. That this is so is directly seen

when it has been accepted on intuitive grounds that only

universals distribute the subject term, and only nega-

tives the predicate term; and that an A proposition is

contradicted by an O, and an / proposition by an E.

(3) That any syllogism can be expressed as an

antilogism and conversely. This principle follows from

the intuitive apprehension of the relation between im-

plication and disjunction.

{c) That it is formally possible for any three

terms to coincide in extension. (This particular in-

tuition is employed in the rejection of only one form of

syllogism.)

We are now in a position to deduce from our

original principle, i.e. from rule (i), by means of {a)y

{b\ and {c), other rules, the direct application of which

will exclude any invalid forms of syllogism.

(2) 'The middle term must be distributed in one or

other of the premisses.'

To establish this, let us consider the antilogism

which disjoins P, Q and 7?; this, by {b) is equivalent

to the syllogism 'If P and Q, then not-7?' and also to

the syllogism 'l[ P and P, then not-^.' Taking the

first of these, if a term X is undistributed in the premiss

P, it must be undistributed in the conclusion not-7?,

i.e. it must, by (a), be distributed in P. Applying this

result to the second syllogism ' If P and P, then not-^,'

we have shown that if the middle term X is undistri-

buted in the premiss P, it must be distributed in the

premiss P. This then establishes rule (2).

(3) 'If both premisses are negative, no conclusion

can be syllogistically inferred.'
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For, taking any two universal negative premisses,

these can be converted (if necessary) into * No /* is M'
and ' No 5 is J/' ; which, by obversion, are respectively

equivalent to 'All P is non-J/' and 'All 5 is non-J/,'

in which the new middle term non-J/ is undistributed

in both premisses. But this breaks rule (2). What
holds of two universals will hold a fortiori if one or

other of the two negative premisses is particular. Thus

rule (3) is established.

(4) 'A negative premiss requires a negative con-

clusion.'

For, taking again the antilogism which disjoins P,

Q and R, this is equivalent both to the syllogism 'If/*

and R, then not-^,' and to the syllogism '\{ P and Q,

then not-/?.' Taking the first of these two syllogisms,

by rule (3), if the premiss P is negative, the premiss R
must be affirmative. Applying this result to the second

syllogism, we have, if the premiss P is negative, the

conclusion not-/? must be negative. This establishes

rule (4).

(5) 'A negative conclusion requires a negative

premiss.'

This is equivalent to the statement that two affirma-

tive premisses cannot yield a negative conclusion. To
establish this rule, we must take the several different

figures of syllogism

:

Fig. I Fig. 1 Fig. 3 Fig. 4

M-P P-M M-P P-M
S-M S-M M-S M-S
S-P S-P S-P S-P

For the first or third figure, affirmative premisses

with negative conclusion would entail false distribution
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of the major term ; which has been forbidden under our

fundamental rule (i). Taking next the second figure,

it would entail false distribution of the middle term,

forbidden by rule (2), Finally taking the fourth figure,

it would either entail some false distribution forbidden

by rules (i) and (2); or else yield the mood ^4^0 which

would constitute a denial that three terms could coincide

in extension, thus contravening (c). This establishes

rule (5).

§ 12. The five rules thus established may be re-

arranged and summed up into two rules of quality and

two rules of distribution, viz.

A. Rules of Quality.

(^1) For an affirmative conclusion both premisses

must be affirmative.

(«o) For a negative conclusion the two premisses

must be opposed in quality.

B. Rules of Distribution.

{b^ The middle term must be distributed in at

least one of the premisses.

(4) No term undistributed in its premiss may be
distributed in the conclusion.

These rules having been framed with the purpose of

rejecting invalid syllogisms, we may first point out that,

irrespective of validity, there are sixty-four abstractly

possible combinations of major, minor and conclusion.

The Rules of Quality enable us to reject en bloc all

moods except those coming under the following three

heads, viz. those which contain (i) an affirmative con-

clusion (requiring affirmative major and affirmative

minor)
;

(ii) a negative major (requiring affirmative
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minor and negative conclusion); (iii) a negative minor

(requiring affirmative major and negative conclusion).

This leads to the following table, which exhibits the

24 possibly valid moods unrejected by the Rules of

Quality.
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/ Fig. 2. One premiss must be negative; i.e. con-

clusion must be negative.

Fig. 3. One or the other of the premisses must be
,universal.

2nd of the Major Term.

Figs. I and 3. If the conclusion is negative, the

major must be negative; i.e. (in either case) the minor
mtist be affirmative.

Figs. 2 and 4. If the conclusion is negative, the

major must be universal.

^rd of the Minor Term.

Figs. I and 2. If the minor is particular, the con-

clusion must be particular.

Figs. 3 and 4. If the minor is affirmative, the con-

clusion must be particular.

These rules have been grouped by reference to the

term (middle, major or minor) which has to be correctly

distributed. They will now be grouped by reference to

the figure (ist, 2nd, 3rd or 4th) to which each applies.

In this rearrangement we shall also simplify the for-

mulations by replacing where possible a hypothetically

formulated rule by one categorically formulated. As a

basis of this reformulation we take the rules of quality

for Figs. I, 2 and 3, which have already been expressed

categorically; viz. for Figs, i and 3: 'The minor pre-

miss must be affirmative,' and for Fig. 2: 'The con-

clusion must be negative.' Conjoining the categorical

rule (of quality) for Fig. i with its hypothetical rule,

' If the minor is affirmative the major must be universal,'

we deduce for this figure the categorical rule (of quantity),

'The major must be universal' Again, conjoining the
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categorical rule (of quality) for Fig, 2 with its hypo-

thetical rule 'If the conclusion is negative the major

must be universal,' we deduce for this figure the cate-

gorical rule (of quantity), 'The major must be universal.'

Lastly, conjoining the categorical rule (of quality) for

Fig. 3 with its hypothetical rule, 'If the minor is affir-

mative the conclusion must be particular,' we deduce

the categorical rule (of quantity) for this figure, 'The

conclusion must be particular.' The remaining rules

must be repeated without modification.

The Special Rules of Distribtition for each Figure

and the application of these rules of distribution to the

scheme of possibly valid moods unrejected by the rules

of quality are set out on the preceding page.

§ 14. We will now compare the results reached by

the two methods—direct and indirect. The direct

method determines, by means of certain intuited dicta,

what moods are to be accepted as valid ; the indirect

method determines—on equally intuitive principles

—

what moods are to be rejected as invalid, and conse-

quently what moods remain unrejected. We gather from

this comparison that the 24 moods (6 for each figure)

that are established as valid by the direct method are

identical with the 24 that are not rejected as invalid by

the indirect method. It follows that the two methods

must be used as supplementary to one another. For,

apart from the use of the indirect method we should

not have proved that the moods established as valid

were the only valid moods ; and apart from the use of

the direct method we should not have proved that the

moods unrejected as invalid were themselves valid. In

short, by the direct method we establish the conditions
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that are sufficient to ensure validity, and by the indirect

those that are necessary to ensure validity.

§ 15. The attached diagram, taking the place of the

mnemonic verses, indicates which moods are valid, and

which are common to different figures. The squares are

so arranged that the rules for the first, second and third

figures also show the compartments into which each

4TH

mood is to be placed, according as its major, minor or

conclusion is universal or particular, affirmative or nega-

tive. The valid moods of the fourth figure occupy the

central horizontal line.

§ 16. A very simple extension of the syllogism and

of the corresponding antilogism is treated in ordinary

logic under the name Sorites, which is a form of argu-

ment comprised of propositions forming a closed chain
;

J. L. II 7
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and may be defined as 'an argument containing any

number of terms and an equal number of propositions,

such that each term occurs twice and is Hnked in one

proposition with one term, and in another with a different

term.' E.g. an argument of this form, containing five

terms, would be represented by the five propositions:

a—b, b—c, c—d, d—e, e—a, where each term placed

first may stand indifferently either for subject or for

predicate. Now it will be found that the necessary and

sufficient rules for inferences of this form are virtually

the same as for the three-termed argument; viz.

A. Rules of Quality.

(^i) For an affirmative conclusion, all the pre-

misses must be affirmative.

(^2) For a negative conclusion, all but one of the

premisses must be affirmative.

B. Rules of Distribution.

(b^ Any term recurring in the premisses must be
distributed in (at least) one of its occurrences.

(^2) Any term occurring in the conclusion must
be undistributed, if it was undistributed in its

premiss.

The rules for the corresponding antilogism reduce to

two, viz.

A. Rule of Quality: All but one of the propositions

must be affirmative.

B. Rule of Distribution: Every term must be dis-

tributed at least once in its two occurrences.

§ 17. There are certain irregular forms of syllogism

or of sorites, which may be reduced to strict syllogistic

form by the employment of certain logical principles,

the nature of which we shall proceed to discuss. The
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arguments to be considered are those which involve a

larger number of terms than of propositions; and it is

necessary, in order to test the validity or invalidity of

such arguments, to substitute if possible, for one or

more of the propositions, an equivalent proposition,

which will diminish the terms to the number of pro-

positions. This is done by means of obversion, con-

version, and other logical modes. Until this substitution

is made, the argument may be valid, and yet break one

or more of the rules of syllogism. Thus two of the

premisses may be negative, and the argument yet be

valid, the apparent violation of the rule being due to

the presence of more than the proper number of terms

;

for example,

No right action is inexpedient,

This is not a wrong action,

.'. This is expedient.

Here by merely obverting the two premisses we arrive

at the standard syllogism of the first figure, namely

:

Every right action is expedient,

This is a right action,

.*. This is expedient.

In all cases of substituting for a proposition some equi-

valent, we may require, besides simple conversion, the

replacement of some term by one of its cognates. Thus
in obversion, we replace P by wo\.-P or conversely ; P
and not-/^ being the simplest case of cognates. Again

any relative term may be replaced by its cognate co-

relative. Now in the previous illustration obversion

alone was required, whereas if the major had been

written* No inexpedient action is right' conversionwould

have been required before obverting. To illustrate the

7—2
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replacement of a relative by its corelative, we may take

the old example from the Port Royal logic,

The Persians worship the sun,

The sun is a thing insensible,

.*. The Persians worship a thing insensible.

This argument contains five terms, viz., the Persians,

worshippers of the sun, the sun, a thing insensible, and

worshippers of a thing insensible. The process of re-

ducing this argument to a strictly three-termed argument

is effected by what is called 'relatively converting' the

major premiss, and again 'relatively converting' the

conclusion syllogistically arrived at from our new pre-

misses. The transformed argument then assumes the

form of a strict syllogism in the third figure

:

The sun is worshipped by the Persians,

The sun is a thing insensible,

.•.A thing insensible is worshipped by the Persians,

where, by converting the conclusion, we reach that re-

quired,

The Persians worship a thing insensible.

§ 1 8. The question whether the syllogism is actually

used in thought process is met by noting that, while in

ordinary discourse it is rare to find three propositions

constituting a syllogism explicitly propounded, argu-

ments of a syllogistic nature are of frequent occurrence.

These syllogisms are expressed as enthymemes, i.e with

the omission of one at least of the requisite propositions.

Now in an enthymeme there is one, and only one, pro-

position which could be introduced to render the corre-

sponding syllogism valid. For this reason the enthy-

meme is liable to one or other of two forms of attack

:

first it may be attacked on the ground that the premiss
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supplied by the hearer is true, and yet renders the argu-

ment invalid ; or secondly, that the premiss supplied by

the hearer is false, and is yet the only one which would

render the argument valid. The former case would be

said to involve a formal fallacy; and the latter a material

fallacy. For example: Consider the enthymeme, 'This

flower is a labiate, because it is square-stalked.' Here

the premiss 'All labiates are square-stalked,' which is

true, renders the argument formally invalid ; on the

other hand, the proposition which renders the argument

formally valid, namely 'All square-stalked plants are

labiates' is false. These fallacies arise, for the most part,

in the case of disagreement between disputants with

respect to the conclusion. An enthymeme is free from

both kinds of fallacy when the premiss to be supplied

is known or accepted by all parties, and at the same

time, renders the argument formally valid. Thus a

strictly valid argument is expressed in the form of an

enthymeme when there is no question with regard to

the truth of the omitted proposition which will render

the argument formally valid.

This may be instructively illustrated by taking ex-

amples where either the major or the minor premiss in

each of the first three figures of syllogism is omitted.

'Mr X is a profiteer, and therefore he ought to be

super-taxed,'

this argument is acceptable on condition that the re-

quired major premiss 'All profiteers ought to be super-

taxed' is admitted.

'All bodies attract, therefore the earth attracts,'

this requires the minor premiss 'The earth is a body.'
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'Mr X ought not to be super-taxed, therefore he is

not a profiteer/

this requires the same major premiss as in the first

example.

'Everyone present voted for Home Rule, therefore

Mr Carson was not present.'

This requires as minor premiss 'Mr Carson would have

voted against Home Rule.'

'Mr Carson was present, therefore someone there

must have voted against Home Rule.'

This requires the major premiss 'Mr Carson would vote

against Home Rule.'

'The earth is not self-luminous, therefore not all

attracting bodies are self-luminous.'

This requires as minor premiss 'The earth is an attracting

body.' These three pairs of arguments are respectively

in the first, second and third figure of syllogism.

§ 19. Having restricted my technical treatment of

the syllogism to a single chapter, it will be easily in-

ferred that I attach considerable importance to this form

of inference, while at the same time I hold it to be

only one among many other equally important forms of

demonstrative deduction. Syllogism is practically im-

portant because it represents the form in which persons

unschooled in logical technique are continually arguing.

It is theoretically important because it exhibits in their

simplest guise the fundamental principles which underly

all demonstration whether deductive or inductive. It is

educationally important because the establishment of its

valid moods and the systematisation and co-ordination

of its rules afford an exercise of thought not inferior and

in some respects superior to that afforded by elementary

mathematics.
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FUNCTIONAL EXTENSION OF THE SYLLOGISM

§ I. The categorical syllogism treated in the last

chapter is correctly described as subsumptive. This

term applies strictly to the first figure alone—which

may be called the direct subsumptive figure, and since,

either by antilogism or by conversion, the other figures

can be reduced to the first, these may be called indi-

rectly subsumptive figures. As explained in Chapter I,

this form of inference employs in the most simple

manner the Applicative followed by the Implicative

principle. The ordinary subsumptive syllogism has a

conclusion applying to the same range as the instantial

minor, and its typical form is :

Everything is/ if m
;

This is m
;

.*. This is/.

The first step in the extension of the ordinary syllogism

to its functional form is to take a conjunction of dis-

connected syllogisms of the type :

' Everything is/ \i m ; This is ;;^ ;
.*. This is/.'

' Everything is /' if m' \ This is ^'; . •. This is/'.'

' Everything is /'Mf ;;^"; This is iw''; .*. This is /'V etc.

We next take m, m', m", etc., to be determinates

under the determinable M, and /, /', p", etc., to be

determinates under the determinable P. If then we
can collect these major premisses into a general formula

holding for every value ofM and P in accordance with
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the mathematical equation P=f{M), then we have an

example of what may be called the functional exten-

sion of the syllogism, or (more shortly) of the functional

syllogism, where the major or supreme premiss may
be expressed in the simple form P=f[M). Thus in

the subsumptive syllogism the terms that occur in the

minor and major premisses are merely repeated in the

conclusion ; but, in the functional syllogism which yields

an indefinite number of different conclusions for the

different minors, the terms which occur in these dif-

ferent minors and conclusions are specific values of

the determinates presented in the supreme premiss.

Now it will be seen that no other principles are used

in the functional syllogism, except the Applicative and

Implicative, which together are sufficient to extend

deduction beyond the scope of merely subsumptive

syllogism. As a concrete example, let us take the

formula of gravitation, which may be elliptically ex-

pressed 'Acceleration P varies inversely as the square

of the distance M' and written in the form P=^i-fz.

Then, by the Applicative Principle :

'Ifi]/=7, then/^= J^,'

and adding, as Minor Premiss :

* In this instance J/=7,'

we infer, by the Implicative Principle

:

* In this instance P= :^'

Similarly when the value of M is ii, the value of

/'will be X2T» ^^^ so on. The same form of inference

holds for two or more independent variables : thus
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Boyle's Law may be written ' T=22,<^PV \ then, as

before, we infer

:

When the value of P is 5, and the value of F is 2,

the value of 7" will be 2390.

When the value of P is 3, and the value of V is 7,

the value of 7" will be 5019.

§ 2. A functional expression is of course familiar

to the mathematician, but it will be important to ex-

amine the logical principles in accordance with which a

universal functional formula operates in mathematical

demonstration. In the first place we may observe that,

as in ordinary syllogism, the supreme or major func-

tional universal must always have been ultimately

established by means of inductive generalisation, and

in the last resort from intuitive or experiential data.

Further, the functional universal may be said to be a

universal of the second order, because it not only

universalises over every instance of a given value in,

but applies also to every value of M. In deducing

from the major 'P=f{My conjoined with the minor

'A certain given instance is m,' we reach the conclusion

'This given instance is /,' where p is found from the

equation 'p=f(m).' Here it is to be observed: first,

that this type of conclusion can be drawn, not only for

the minor which predicates m, but also for minors which

predicate any other value ofM ; and secondly, that the

character predicated in each conclusion is not merely

what is predicated in the functional major, but a deter-

minate specification of this predicate.

In the functional syllogisms that we shall consider

in this chapter, the functional major is to be understood

to express a factual rule, or more particularly a Law of
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Nature. The general conception of a Law of Nature

has been discussed (in Chapter XIV of Part I) under

the head of the Principles of Connectional Determina-

tion. There it is shown that a typical uniformity or

Law of Nature may be expressed in the form that the

variations of a certain phenomenal character depend

upon an enumerable set of other phenomenal characters ;

of these the former is taken to be connectionally de-

pendent upon the others, which are connectionally

independent of one another. A specific universal, which

expresses such a relation of dependence may also be

called a Law of Covariation ; for the nature of the

dependence (say) of P upon ABC is such that all the

possible variations of which /* is capable are determined

by the joint possible variations of A, B, C, which are

themselves connectionally independent of one another.

§ 3. We have a special case of this relation of de-

pendence or covariation when the determined character

can be represented as a mathematical function of the

determining characters ; and it is this special case which

gives rise to the functional syllogism. Now, in a func-

tional major expressed (say) in the form P=f(A, B, C),

it may in general be assumed that the correlation of

these variables is such that, not only can the value of

P be calculated from any assigned values of A, B, C;

but also, conversely, that the value of A can be cal-

culated from the values of P, B, C ; and that of B from

the values oi P, A, C ; and that of C from the values

of P, A, B ; and similarly for a larger number of such

connected variables. This process is expressed in mathe-

matical terms as solving the equation P=/{A, B, C),

to find the value of A, which is thus calculated as a
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certain function of P, B, C, and so on. A convenient

symbolisation for these several equations will be as

follows

:

P=MA,B, C):

from which we calculate

A =MP, B, C) ; B=MP, A, C) ; C=MP, A, B).

It is here assumed not only that P (in mathematical

phraseology) is a single-valued function oi A, B, C,

but also that in solving this equation to determine A
or B or C respectively, these also are single-valued

functions of the remaining variables. When this as-

sumption holds, we may speak in a special sense of the

reversibility of cause and effect ; i.e. not only is the

effect P uniquely determined by the conjunction of the

cause-factors A, B, C; but also each of the cause-

factors themselves, such as A, is uniquely determined

by the effect-factor P in conjunction with the remaining

cause-factors B and C. In the simplest cases reversi-

bility follows immediately from the /or7n of the function

as seen in the example given of Boyle's Law. Here

we have a correlation between temperature, pressure,

and volume, in which a constant, say ^, is involved,

and which assumes indifferently the form :

^ pv kO ^ kd
a= -r , or z; = -— , or p =— .

k p -^ V

In this simple case, the multiplier k indicates the

special form of the function which in the general case

was represented by the unassigned but constant symbol

f. An equation which, in this way, solves uniquely for

all the variables is known as linear. But even in the

case of non-linear equations we must be able to deter-
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mine, amongst the theoretically possible solutions for

any one of the variables, that which is the sole factual

value. In other words, a unique determination of all

the variables, in terms of a given number of them, may
be taken as expressing the actual concrete fact.

§ 4. In this connection it is important to note the

mimber of variables entering into the functional formula.

In Boyle's Law this number is three; i.e. there are

three variables, any one of which is connectionally

dependent upon the two remaining variables, so that

the scope of dependence may be measured either as

two or as three : for the functional formula contains

three variables which are notionally independent of one

another, namely /, v, 6 ; but of these two only are

connectionally independent of one another. These two

may be taken indifferently either as v and Q, or as p
and 6, or as/ and v, where, according to the alternative

taken, / or z/ or ^ is connectionally dependent upon

the two others. In general, when there are r functional

relations, connecting n notionally independent variables,

then any n — roi these can be taken as connectionally

independent of one another, and each of the remain-

ing r as connectionally dependent jointly upon the

others.

Thus when ^ = 8, and r= 3, the three functional

relations may be symbolised :

P =fp (^> ^> ^> ^- ^) ; ^ =/i {^> b, c, d, e) ; r =/, {a, b, c, d, e)
;

or adopting a shorter notation :

p =fp . abcde
; q =yj . abcde ; r =f^ . abcde.

Such a trio of equations are taken to be implicationally

independent of one another ; i.e. from neither one or
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two of them could we infer the third. Otherwise the

number three would reduce to two. Now the number
of implicationally independent equations is necessarily

the same as the number of connectionally dependent

variables. Hence for the case under consideration we
may express the three independent functional relations

in either of four typical forms :

1. p =fp . abcde; q = fq . abcde; r = f^ . abcde.

2. a = fa . pbcde

;

g=fq.pbcde; r=fr.pbcde.
3- P=fp' abcqr; d = f^ . abcqr; e = f^ . abcqr.

4. a=fa. pqrde
;

b = f^ . pqrde ; c=f. pqrde.

The first trio expresses the three effect-factors sepa-

rately in terms of the five cause-factors jointly ; the

second expresses one cause-factor and two effect-

factors separately in terms of one effect-factor and four

cause-factors jointly ; the third expresses one effect-

factor and two cause-factors separately in terms of

three cause-factors and two effect-factors jointly ; and

the fourth expresses three cause-factors separately

in terms of three effect-factors and two cause-factors

jointly.

In illustration of this general principle we will con-

sider the Law of Gravitation, which may be formulated

where A is the force of attraction of any two masses

m^ and m. whose distance is d, c being constant for all

variations of m^ and m»_, as well as of ^. In any appli-

cation of the above formula we must first suppose 711^

and m^ to be constant, so that the variation of A de-

pends solely upon that of d. The algebraical equation

here is, however, logically incomplete. In the first
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place, as regards the effect A, we must add the state-

ment that it is a force acting in the direction of the

line joining m^, 7it,. In the second place, as regards

the cause d, not only must the distance of the line

joining m^ and m^ be taken as a cause-factor, but also

its direction.

In comparing the Law of Gravitation with Boyle's

Law, the constants k, c, in^, m.,, represent unchange-

able properties of the bodies concerned, while /, 6, v, d
represent their changeable states or relations. It is

necessary then to include amongst the independent

cause-factors the permanent properties of bodies as

well as their alterable states or relations.

§ 5. In our typical expression of a set of functional

equations the number of variables taken to be con-

nectionally independent was the same in all the several

equations. But a very important type of connectional

formulae is that in which equations enter involving

different numbers of independent variables. Consider

the following

:

Let a body be allowed to fall in vacuo. Here the

two independent cause-factors are the mass (m) of the

body and the distance [d) from which it falls to the

earth. The effect-factors to be considered are the time

{£) of falling, and the impulse (/) of the body upon the

earth. Since out of the four variables m, d,p, t, two of

them, namely m and d, are (as cause-factors) connec-

tionally independent, the standard form in which both

of these would enter into the function is

p =f^ . md and t =ft . md.

But, where the body falls in vacuo, the time {t) is in-
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dependent of the mass (my. Hence in this case the

two formulae assume the form

/> =fp . md and t =yj . d.

In this case, since the solution of the equations gives

uniquely determined roots, we have :

{i) p=fp.nid, {2)m=f,„.pd, {z)d=fa.mp
and (4) t=f,.d, (5) d=f,{t),

and, by substitution from (5) in (i), (2), (3) respectively,

(6) P =fp ' w/, (7) m =/. .//, (8) /=/ . mp.

Now, since, of the four variables ;;/, d, p, t, any two

except t and d may be taken as connectionally inde-

pendent, either one of the following pairs of connec-

tional equations may be used, thus :

Taking m and d as independents : p =f • md with t =^ f,d^

„ wand/ „ „ : p=f.?nt „ d=^f.t,

„ p and d „ „

„ p and t „ „

„ m andp „ „

Giving to the unassigned functions their actual form,

we have here

(6) p = m^^ and (5) d=lgi\

where the constant g stands for the acceleration 32 ft.

per second. Solving these equations so as to express the

effect-factors / and i in terms of the cause-factors m and

d, we have

{i) p = mj^2.nd (4)^ =j(^jy
§ 6. The example just given suggests a certain

further characteristic of the connectional equations

^ This illustrates the principle underlying the inductive method

of agreement ; where m is eliminated as a cause-factor relative to the

effect /, since a variation in m does not entail a variation in /.

m =/.pd „ / =/. d,

m^f.pt „ d = /./,

d= f. mp „ t=f. 7np.
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of applied mathematics. As will be seen in the above

illustration, the connectional equations from which the

deductive process derives other but equivalent equations

are of a mixed nature as regards the variables that

are taken as independents. Of the two equations

p — mgt^ and d—\gf, from which the other equations

are derived, the former expresses the effect-factor / in

terms of the cause-factor m and the other effect-factor ^;

while the second expresses the cause-factor d in terms

of the effect-factor t. It is therefore necessary to solve

this pair of equations by an appropriate process in

order to derive the pair of equations which express the

effect-factors in terms of the cause-factors ; namely in

the form

P = mj2gd, ^^Jy—
What holds in this particular example may be gene-

ralised. Instead of separating variables that are given

from those which have to be deduced, we have a set of

equations (corresponding in number to the dependent

variables) which all the variables taken together have

to satisfy. Thus, in the above example, the equa-

tions were not at first expressed by taking a pair of

cause-factors as independent upon which the pair of

effect-factors depended, but the first of the two equa-

tions was taken from the pair in which m and t were

supposed to be independent, and the other from the

pair in which m and t, orp and / were taken as indepen-

dent. That the particular example of the falling body,

originally taken to illustrate a different principle, should

have lent itself to the principle now under considera-

tion, is more or less accidental, and we will now put
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forward an example which more naturally exhibits this

new speciality of a set of determining equations.

Thus : consider the effect of mixing two substances

at different temperatures in order to find the resultant

temperature which will be reached when thermal equi-

librium has been established. Here we must take as

the causally determining factors, the two initial tem-

peratures ^j, ^2. ^^^ the two thermal capacities of the

substances ^^ and /^,. The factors to be determined are

the heat //j entering into or passing from the one sub-

stance, and the heat //^ passing from or entering into

the other, together with the final temperature d. Now
the equations that must be here used express the con-

ditions that are to be satisfied—the effects not being,

in the first instance, expressible as functions of the

cause-factors. These equations of condition are the

following three

:

from which we find

6 =
k^ + L

'~
k, + k, '

^'~
k, +L '

The solutions of these equations give the three values

H^, H.^, and 6 (respectively) that were to be deter-

mined. Thus, in the final solution we have succeeded

in expressing the factors to be determined in terms of

the determining factors. But, in the equations express-

ing the conditions to be satisfied, the first two express

an effect-factor as a function of two of the cause-factors

and one of the effect-factors, and the third equation

J. L. II 8
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expresses one effect-factor as a function of another

effect-factor. The use of equations of this kind is

necessitated by the inadequacy of our knowledge of

the precise temporal process by which the causal con-

ditions operate until the final issue is reached. Thus, in

the actual process, heat will be passing to and fro from

one to the other of the two substances, and this will

entail a rise or fall of their temperatures in an in-

calculable way, which may be roughly expressed by

suggesting that the quantum of heat entering the

cooler body may be too great, so that the flow of heat

will immediately be reversed; and this process might

be conceived as involving even an infinite number of

ingoings and outgoings of heat. What we know, how-

ever, is that at any stage of the process the heat that

leaves one body must be equal to the heat that enters

the other, whether this quantum is to be reversed in the

next stage or not. It is this law which is expressed in

our third equation, while the other two equations

express a law or property, specific to the two substances,

which correlates the effect upon the temperature with

the quantum of heat which enters or leaves the body.

What then we know, are these conditions of conserva-

tion of the total heat, and the several thermal capacities

of the bodies, and from this knowledge the final effects

can be calculated. It would appear, in fact, that the

cases in which this logical principle is exhibited are

those in which we know what is entailed in a final

state of equilibrium, without having adequate know-

ledge for tracing in detail the perhaps oscillating pro-

cesses which take place in the lapse of time before the

final state of equilibrium is reached.
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We have illustrated this in the simplest case, where
only two substances are mixed, but the reader will

easily be able to construct the corresponding equations

for any given number of different substances. In all

cases the final or resultant temperature is equivalent to

the arithmetic mean of the initial temperatures, each
' weighted ' by the corresponding thermal capacity.

Thus

k^ + k^ + ...+k.

Now having given an illustration from physics, we
will give a closely analogous illustration from economics.

The formula of covariation which connects the quantity

of a commodity that is exchanged with lis price is such

that the two opposed parties shall be satisfied at the

rate of exchange finally agreed upon. Now the formula

of covariation on the side of demand is assumed to be

connectionally independent of that on the side of supply.

That which represents the economic attitude of the

consumers depends solely upon their relative desires

for different commodities, their monetary resources,

and—we may add—the prices at which they are able

to buy commodities other than that under consideration.

In the same way, the attitude of the producers is wholly

independent of that of the consumers ; and depends

upon the contract-prices current for the employment of

the several agents of production, and upon the efificiency

of these agents when co-operating in producing the

commodity. It will thus be seen that the several

factors that determine the conditions of supply are

independent of those that determine the conditions of

demand. Here, as in the case of thermal equilibrium,
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the equations of condition express, not the effect-factors

as functions of the cause-factors, but the conditions

taken together which satisfy the consumers and the

producers regarded each as economically independent

of the other.

This economic illustration differs from the case of

thermal equilibrium in the important respect that the

two functions ofdemand and supply respectively replace

the actually operating cause-factors, which are highly

complex and do not explicitly enter into the equations

to be solved.

§ 7. The above illustrations of the functional ex-

tension of the syllogism have shown how, by the use

of a set of functional premisses standing as majors, we
may take not only minors which enable us to infer

an effect-factor from the knowledge of a given cause-

factor, but also minors which enable us to infer a cause-

factor from the knowledge of a given effect-factor. The
supposition upon which this is based has been called

the Principle of Reversibility. We shall now show that

it is this principle which underlies the so-called method

of Residues, and other similar deductive processes. The
canon of this method is stated by Mill as follows:

* Subduct from any phenomenon such part as is

known by previous inductions to be the effect of cer-

tain antecedents, and the residue of the phenomenon is

the effect of the remaining antecedents.'

In usinof the term 'subduct' Mill intends no doubt to

hint that, in the simplest cases, for 'subduct' we may
substitute 'subtract.' Thus Jevons, in his Elementary

Lessons, takes the case of ' ascertaining the exact weight

of any commodity in a cart by weighing the cart and
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load, and then subtracting the weight of the cart alone,

which has been previously ascertained.' Here what

corresponds to the effect (/) is the weight of the cart

and load together, and its causes are (a) the weight of

the commodity, and (d) the weight of the cart : so that

the functional datum assumes its simplest form, viz.

p = a-{-d, which by reversibility gives a=p — b. This is

a case of solving an equation / =/{(i, b) to find a, and

deducing ^=y((:5,/), the equations being linear. The
next simplest example of such reversibility is that of the

composition of forces. Here the

diagonal OP represents the effect,

and the sides OA, OB, the cause-

factors. Just as, given the two

cause-factors OA and OB, we
drawy^/* parallel and equal to OB
to find the effect OP; so, given OA as one cause-factor

and OP as effect, we may draw OB parallel and equal

to AP to find the other cause-factor OB. Innumerable

other examples may be given of reversibility for more

or less complicated cases. But the classical example

most frequently cited is the Adams-Leverier discovery

of the planet Neptune from the observed movements

of Uranus. Here we may represent the positions and

masses of the Sun, of the Moon and of the unknown
Neptune by the symbols a, b, c respectively; and the

movement of Uranus by the symbol p. Thus p was

theoretically known as a given function of a, b, c, say

p=ff,{cL, b, c), where/ stands elliptically for the effect,

and a, b, c for the several cause-factors. The solution

for c was then uniquely calculated in the form
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Now it will be observed that the so-called Method
of Residues, which is based upon the assumption of

reversibility is purely deductive, in that (i) it employs

only the Applicative and Implicative principles of in-

ference, and (2) the conclusion obtained applies solely

to the specific instances for which the calculation is

made. This consideration shows that there is no justifi-

cation for putting Herschel's method of Residues under

the head of methods of induction, along with such

methods as those of Agreement and Difference; for,

on the grounds above alleged, it is purely deductive.

On this matter Mill sees half the truth ; for, in com-

paring the Method of Residues with that of Difference,

he remarks that the negative instance in the former is

not the direct result of observation, but has been arrived

at by deduction. And again, in his formulation of the

Canon of Residues, he speaks of ' such part of the

phenomenon as is known by previous induction,' where

he fails to note that what is known by previous induction

functions merely like the major premiss of a syllogism,

and therefore does not in any way render the inference

inductive. What holds for the method of Residues holds

also of many less technical processes which, while

purely deductive, have been obscurely conceived as

inductive. For instance, the procedure in a judicial

enquiry or by a police detective or of historical research

in discovering the specific cause of a complicated set

of circumstances constituting an observed effect, is

purely deductive ; for it employs as major premiss

known laws of human or physical nature under which the

known circumstances are to be subsumed in the minor

;

while the conclusion refers solely to the case subjudice.
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§ 8. Something should be said in explanation of the

fact that inferences of this kind are so frequently spoken

of as inductive. It is not only because the major premiss

must itself have been obtained by induction, but further

because the minor premiss represents a fact obtained

by observation, that logicians have made this mistake
;

for the notion of observation or experimentation as the

method by which new knowledge is acquired is in-

variably associated with induction. But it should be

pointed out that there is here a confusion between the

matter and the form of an inference. Mere syllogism

will obviously yield new material knowledge, provided

that the minor premiss represents new material know-

ledge such as can only be obtained by observation.

For example, from the observation that the importation

of food has been taxed, we may infer the new material

knowledge that the price of food will rise at a certain

time in a certain economic market, if we have been

otherwise assured of the major premiss appropriate to

the circumstance. The form of such an inference is

purely deductive, and the fact that historical research

—

and not a merely foreknown universal formula—has

been required to establish the minor does not render

the argument in any sense inductive ; for the conclusion

holds only of the period and region to which the causal

occurrence which has been discovered applies, and does

not involve any inductive generalisation from one period

or region to others. A further explanation of this com-

mon error is to be found in the fact that the conclusion

reached deductively for a given instance may often

be verified by awaiting the occasion for observing the

effect in that instance. Now this process of verification
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merely assures us that we have adequately estimated

the causes operating in the given instance; but it has

been almost invariably confused with the process of

verifying, or rather confirming, the major premiss itself

regarded as a problematic hypothesis as yet unproven.

§ 9. We ought now to distinguish, in these functional

extensions of the syllogism, the element which is purely

subsumptive from that which is functional ; for the two

elements are practically always united in any concrete

inference of the functional kind. It will be found that

the factual formulae used in applied mathematics as

major premisses for deduction necessarily involve two

kinds of constituent, one of which is known as variable

and the other as constant. The mathematical use of the

termcons^an^ presents certain difficulties from the logical

point of view. There are certain constants—e.g. the

specific integers and the algebraical operators—which

are absolutely constant in the sense that in all their

occurrences they stand for the same thing and are

entirely independent of context. But those so-called

constants which are dependent upon context are only

referentially constant, being actually variable in precisely

the same sense as the symbols that mathematicians

recognise as variable. To explain this we may select

illustrations from an innumerable variety of formulae

used in applied mathematics. Consider, for instance, the

formula which expresses the elasticity of a solid body

which can support tension. The rule upon which the

extension of such a body depends is shortly expressed

in the formula T= kE, where T stands for the variable

tension and E for the variable extension; while k,

which is said to be constant, stands for the elasticity of
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the particular kind of solid for which the rule holds.

Now this coefficient of elasticity, though constant for

all possible variations of extension and tension of the

body, yet varies from one kind of solid substance to

another. We shall show, then, that such a coefficient,

which mathematicians call constant, is used in the

deductive process subsumptively, while that which is

explicitly regarded as variable is u^e.d functionally. We
may mark the real variability of a so-called constant by

a subscript indicating the specific kind of substance of

which the coefficient can be predicated. Thus k, will

stand for the coefficient of elasticity of the kind of sub-

stance named s ; while k,' (say) will stand for that holding

for the kind of substance called s\ To express the

mathematical procedure in strictly explicit logical form

:

Major Premiss. Every body, say b, which is k^ has

the property expressed by the algebraical equation

Minor Premiss. A certain body b is k,.

Conclusion. The body b has the property expressed

by the equation T=k,E.

Now this is a merely subsumptive syllogism, in which

the coefficient k, and the body b recur unmodified in

the conclusion as in the premisses. Thus, the coefficient

which is called constant is used solely in a subsumptive

form of syllogism ; but, inasmuch as a similar formula

applies to bodies of a different nature (such as /), the

coefficient k is not absolutely constant but varies

according to the substance of the solid. In logical

analysis, we must recognise the distinct ways in which

the so-called constants and the so-called variables enter

into the deductive process. This may be expressed
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logically by defining the order in which the variations

have to be made. For we \v2cyr& first to consider varia-

tions of the so-called variables, which determine the

range of the conclusion as holding for every case over

which the constant applies. Only after this range of

variation has been taken into consideration may we
proceed to vary the so-called constants, and for any

new value carry out the same range of variations of the

variables. In lang-uagfe borrowed from mathematical

terminology, we may say that the variations of the

explicit variables are to be made within the bracket,

while the variations to be made of the so-called constants

are to be made outside the bracket.



CHAPTER VI

FUNCTIONAL DEDUCTION

§ I. Under this heading- we shall discuss the prin-

ciples underlying the deduction of formulae in the

sciences of mathematics and logic. Although properly

speaking pure mathematics is a development of logic,

yet certain important points of distinction between the

two sciences must be brought out. It has been very

commonly assumed that the sole method of deductive

procedure in pure mathematics, including Geometry,

is syllogistic. Now although it will be found that no

fundamental principle is employed in mathematical de-

duction other than the Applicative—which is essential

for syllogism—yet the conclusions successively derived

from previously established formulae are not such as

could be inferred by means of any mere chain of syl-

logisms. To explain this, it is necessary to point out the

peculiar nature of the relation between conclusion and

premisses in mathematical processes. Ordinary syl-

logism, as has been explained, is of the comparatively

simple type denominated subsumptive. If subsumptive

inferences only were used in algebra or geometry, it

would be impossible to demonstrate conclusions except

for special cases subsumable under the primary intuited

axioms or under some previously established formulae.

Thus from such premisses as: 'Everything that is m is

p' and 'Everything that is /z is ^' we could infer sub-
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sumptively only that 'Everything that is m and n is/

and q' In other words, by means of subsumptive de-

duction, we can infer only that what holds universally

of the members of a genus, in or n, holds universally of

the members of their common species, viz. of the things

that are characterised as being both m and n. For

example: in geometry, having established a formula for

all triangles and a formula for all right-angled figures,

we could by merely subsumptive inference predicate of

any species of triangles—say right-angled—only what

could be predicated of all triangles ; and similarly we
could predicate of any species of right-angled figures

—

say three-sided—only what could be predicated of all

right-angled figures. But actually in geometry we prove

a property (viz. the Pythagorean) of all right-angled

triangles which is not the same as any universal pro-

perty either of three-sided or of right-angled figures.

Similarly in algebra, we can deduce properties of all

integers divisible by 2 and divisible by 3, which hold

neither of all integers divisible by 2 nor of all integers

divisible by 3. A predicate which holds for all members
of a species, but not for all members of any genus to

which by definition the species belongs, is technically

known as a proprium or tStov, either of which term may
be translated property. It is one of the special objects

of this chapter to analyse the process by which proper-

ties, in this technical sense, are deduced. It will be

shown that, in the deductions peculiar to pure mathe-

matics, the premisses and conclusions assume the form

of functional equations; and that it is owing to this

characteristic that properties in the technical sense can

be deductively demonstrated. We therefore give the



FUNCTIONAL DEDUCTION 125

Vi.'a.vci^ functio7tal deduction, in antithesis to subsumptive

or syllogistic deduction, to the specifically mathematical

form of inference.

§ 2. Before entering upon the main discussion it

will be well further to consider the nature of the Aris-

totelean tStov. Many modern logicians have failed to

grasp the important significance to be attached to this

notion. Elementary textbooks, such as that of Jevons,

define a property of a class as any character not in-

cluded in the connotation, which can be predicated of

all^ as distinct from an accident which can be predicated

only of some, members of the class. On the other hand,

Mill attempts to define a proprium in closer connection

with the scholastic development of Aristotle's doctrine,

and distinguishes not merely between an invariable and

a variable predicate of a class—which satisfies Jevons

—

but defines a proprium as a predicate not included in

the connotation of the class (and therefore assertible in

a proposition not merely verbal) but following neces-

sarily from the connotation alone. But since a pro-

position which merely asserts connotation is verbal,

this account of the proprium is incompatible with the

theory—so clearly expounded in his chapters on Defi-

nition and on Verbal Propositions—that no conclusion

can be drawn from merely verbal propositions that is

not itself merely verbal. From this it follows that in

order demonstratively to establish any invariable charac-

ter that can be regarded as necessary, we require as

premisses not only definitions but also real or genuine

propositions, and, in mathematics, ultimately axioms.

It is true that Mill distinguishes two ways in which the

proprium may follow necessarily from the connotation

:
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'it may follow as a conclusion follows premisses, or it

may follow as an effect follows a cause.' But this dis-

tinction is purely illusory and wholly irrelevant to the

notion of necessity of demonstration ; for, in both cases,

the ground for Mill's account of a proprium as neces-

sarily following from the connotation is that appropriate

knowledge will enable us to infer demonstratively the

proprium from the connotation. A legitimate distinc-

tion may be drawn according as the major premiss from

which a proprium is inferred is of the nature of an axiom

or of a causal law. Indeed Mill himself goes on to say

that the necessity attributed to the proprium means that

'its not following would be inconsistent with'—i.e. its

following could be inferred from—either an Axiom or

a Law of Nature. Thus in both cases the notion of

following \s, the same, and simply means inferriblefrom.

The proprium, therefore, never follows from the conno-

tation alone, but requires in addition one or other of

the two species of real propositions, axiomatic or ex-

periential, to serve as major premiss.

§ 3. The functional equations used in the deductions

of pure mathematics in some respects differ from and

in others agree with those used as major premisses in

the process discussed under the head of the functional

extension of the syllogism. The equation used in this

latter process serves as a single major premiss for a

number of specific conclusions found by replacing the

variables by their specific values. Here the functional

equation assumes the form P =f{A, B, C) for all values

oiA,B, C. But the equations used in the process offunc-

tional deduction are of the formy(^, B, C) — (f>{A, B, C)

for all values of A, B, C, where all the variables are
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independently variable, and the equation therefore

contains no such symbol as P that can be exhibited as

dependent upon the others. The distinction between

these two typesof equation is familiarto mathematicians

;

the former may be called a limiting, the latter a non-

limiting equation. The limiting equation is generally

used to determine one or other of the quantities P, A,
B, or C, in terms of the remainder; so that here we
associate the antithesis between dependent and inde-

pendent with the antithesis between unknown and
known; whereas, in the non-limiting equation, no one
of the variables can be regarded as unknown and as

such expressible in terms of the others regarded as

known. The distinctions that have been put forward

between these two types of functional process are tanta-

mount to defining the functional syllogism as that which

proves factual conclusions from factual premisses, and
functional deduction as that which proves formal conclu-

sions or formulae from formal premisses, i.e. from

formulae previously established. It will further be ob-

served, from the simple illustrations which follow, that

whereas the functional syllogism requires only the one
functional equation that serves as major premiss, the

process of functional deduction will necessarily involve

a conjunction of two or more functional equations, all

of which are, as above explained, formal and not

factual.

To illustrate the general formula used in functional

deduction, viz.

:

/{a, b, c, ...) = (j){a, b, c, ...)

which is understood to hold for every value of the
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variables A, B, C, ..., we may instance the following

elementary examples:

{a + d)x{a-d) = a'-d'

and axd = dxa,

both of which involve two variables; and again

{a-{-d)-\-c =a + {d + c)

and {a + d)xc ={axc)-\-(dxc),

both of which involve three variables. The last three

formulae are known respectively as the Commutative,

the Associative and the Distributive Law.

§ 4. In the functional equations of mathematics it is

important to realise the range of universality covered by

any functional formula. This range depends upon the

numberof independent variables involved in the formula,

the range being wider or narrower according as the

num.ber of independent variables is larger or smaller.

For example, supposing that x, y, z have respectively

7, 5, 10 possible values; then the numberof applications

of the formula involving x alone is 7, that of a formula

involving x and y alone is 35, and that of a formula

involving x and y and 2 is 350. And in general, the

number of applications of a formula is equal to the

arithmetical product of the numbers of possible values

for the variables involved. Now the number of possible

values of any variable occurring in logical or mathe-

matical formulae is infinite; hence, for the cases re-

spectively of I, 2, 3... variables, the corresponding

ranges of application would be 00, 00 "^j 00 \.., consti-

tuting a series of continually higher orders of infinity

;

or rather, in accordance with Cantor's arithmetic, each

of the ranges of application for i, 2, 3 ... variables is a
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proper part of that for its successor, although their

cardinal numbers are the same.

Now it will be found that, in inferences of the nature

of functional deduction, the derived formula may have

a range of application—not narrower than but—equal

to or even wider than that from which it is derived.

Thus the word deduction as here applied does not

answer to the usual definition of deduction (illustrated

especially in the syllogism) as inference from the generic

to the specific; although the only fundamental principle

employed in the process is the Applicative, according

to which we replace either a variable symbol by one of

its determinates or one determinate variant by another.

But here a distinction must be made according as the

substituted symbol is simple or compound. If we merely

replace any one of the simple symbols a, b, c by some

other simple symbol we shall not obtain a really new
formula, since the formula is to be interpreted as holding

for all substitutable values, and hence it is a matter of

indifference whether we express the formula in terms of

the symbols a, b, c, (say) or oip, q,r. In order to deduce

new formulae, it is necessary to replace two or more simple

symbols by connected compounds.

For those unfamiliar with mathematical methods, it

should be pointed out that, when any compound symbol

is substituted for a simple, the compound must be en-

closed in a bracket or be shown by some device to

constitute a single symbolic unit. Though we may
always replace in a general formula a simple by a com-

pound symbol, the reverse does not by any means hold

without exception. The cases in which such substitu-

tion is permissible have been partially explained in the

J. L. II 9
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chapter on Symbolism and Functions. There it was

shown that, if a formula involves such compound

symbols or sub-constructs as f{a, b\ f{c, d) etc., and

only such, where none of the simple symbols used in

the one bracketed sub-construct occur in any of the

others, then these bracketed functions are called dis-

connected. It is in the case of disconnected functions

that free substitutions of simple symbols for the com-

pound are permissible. The reason for this is that, for

the notion of a function of any given variants, it is

essential that these shall be variable independently of

one another. Now, when the different sub-constructs

or bracketed functions are connected with one another

through identity of some simple symbol, say a, it is

clear that we cannot contemplate a variation of one of

these compounds without its involving a variation of the

other connected compounds. Hence we should be vio-

lating the fundamental principle of independent varia-

bility of the variants, if we freely substituted for such

connected compounds simple symbols which would have

to be understood as capable of independent variation.

Hence, it is only when the various compounds involved

in a function are unconnected, that for each of such

compounds a simple symbol may be substituted.

§ 5. Returning to the problem under immediate con-

sideration, a simple illustration from algebra will show

how, by making appropriate substitutions in a given

functional formula, we may demonstrate a new formula.

Thus, having established the formula that for all values

of X and y
(i) {x+y)x{x-y)=x'-f

we may substitute for xa.ndy, respectively, the connected
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compounds a-\-b and a — b\ and so deduce (by means of

the distributive law for multiplication etc.) that for all

values of a and b^

(ii) \ab^{a-^by-(a-b)\

This is a new formula, different from the previous one,

because the relation between a and b predicated in

(ii) is different from the relation between x and y pre-

dicated in (i). Moreover the range of application for

(ii) is no narrower than that for (i); for (i) applies for

every diad or couple 'x tojK,' and (ii) for every diad or

couple 'a to <5'; and therefore the ranges for (i) and (ii)

are the same. Again, if we have established the Com-
mutative, Associative, and Distributive formulae given

above, the reader will see that, by means only of the

Applicative principle, we can deduce from these three

formulae what is in fact a new formula:

{a-\-b){c-\-cl) — ac-\-bc-\- ad+ bd.

In this case, the formula deduced has a wider range of

application than any of the formulae from which it is

deduced. For the premisses for this deduction involve

respectively 2, 3 and 3, independent variables, while

the conclusion involves 4; showing, as explained in the

previous paragraph, that the range of application of the

conclusion is wider than that of even the widest premiss.

To reach a conclusion inclusive of and wider than the

premisses is in general considered the mark of an in-

ductive inference; but we have shown by the above

example that, wherethe premisses are functional formulae

involving more than one independent variable, the mere

employment of the Applicative principle enables us to

reach a formula wider than any of the premisses. Now
9—2
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it is in accordance with general usage to define deductive

inference as that which employs no principles but the

Applicative and the Implicative. In the purely deduc-

tive process of mathematics, in fact, it is only the Appli-

cative principle that is required ; and pure mathematics

is regarded as specially typifying the power of mere

deduction. It is true, however, that mathematicians

have employed a method which involves also the Impli-

cative principle, viz, what has always been known under

the name of 'mathematical induction.' In these later

days, this method has been regarded as more specifically

characteristic of mathematics than any other. But the

line of distinction between induction and deduction, in

their extended potentialities fordemonstrative inference,

cannot be drawn on any logical principle that would be

universally accepted. It is for this reason that I have

attempted to treat in one large division of my Logic all

varieties of demonstrative inference, on the ground that

it is the demonstrative character of these inferences that

brings them within one sphere, and that the distinction

that might be drawn between deductive and inductive

demonstration has no important logical significance com-

parable with that between demonstrative and proble-

matic inference. Mathematics, as the above adduced

inferences illustrate, provides a host of cases in which

the Applicative principle alone is explicitly employed

without any recourse to the Implicative principle. These

inferences might be called purely Applicative^ in con-

trast to the syllogism, which in our analysis has been

shown to involve the Implicative as well as the Appli-

cative principle. Again the construction of the logical

' Cf. Chapter I, p. 1 1 and onwards.
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calculus involves the Implicative as well as the Appli-

cative principle, and will be discussed later. Before

proceeding to this topic, we must complete our account

of mathematical demonstration by an analysis of mathe-

matical induction, which also involves both principles.

§ 6. Mathematical induction assumes a unique place

in logical theory. It resembles other forms of demon-

strative induction, which will be discussed in a later

chapter, where it will be shown that the universal mark
of this type of induction is that the conclusion demon-

stratively inferred asserts for every case what has been

asserted in one premiss for a single case. The possi-

bility of such demonstration rests upon the logical

character oi the other premiss, which may be of different

types, each type yielding a different form of demonstra-

tion. The distinctive characteristic of mathematical in-

duction is that it is concerned with finite integers. These

constitute a discrete series beginning with the integer i,

and proceeding step by step in the construction of suc-

cessive integers. The generation of each successive

integer from the preceding is indicated by the operation

plus I. Thus, using the illustrative symbol n to stand

for any finite integer, the operation symbolised as ;« -|- i

will yield the next following integer. This construction

defines the general conception of a finite integer which

is fundamental for arithmetic. The method of mathe-

matical induction introduces the notion of function.

Thus f{n) will be used to stand for any proposition^

^ The functions previously adduced were mathematical, i.e. con-

structs yielding quantities, whereas the function here introduced is pro-

positional, i.e. a construct yielding a proposition. And, in general, the

equating of two mathematical functions yields a prepositional function.
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about the specific integer n, where variation of form

will be represented by changing/" into ^ say, and varia-

tion of reference by changing n into m say. The argu-

ment in its general form will consist of the following

assertions of two premisses and of the inferred con-

clusion :

Implicative Premiss: 'The proposition f{n) would
imply the proposition f{n-\-\y for every finite in-

teger n.

Categorical Premiss : '/(i)' holds.

Conclusion : Therefore '/{n)' holds for every finite

integer n.

In this argument we observe that the conclusion states

categorically what is stated hypothetically in the im-

plicative premiss; and further that it predicates for

every case what is predicated for a single case in the

categorical premiss. Its demonstrative force may be

shown by resolving the argument into a succession of

steps. Thus, by the applicative principle, we may re-

place in the implicative premiss ;^ by i, and this yields

the assertion ^f{i) would implyy"(2)'; then, adding the

categorical premiss '/{i),' we infer, by the implicative

principle, '/{2).' Again, replacing n by 2, ^/{2) would

imply /(s),' and, adding to this the conclusion of the

preceding inference, we may infer '/{s).' If this process

is indefinitely continued we are enabled, by use merely

of the applicative and implicative principles, to infer

successively/"( 2 ),/"(3),y"(4), etc., for every finite integer.

The whole argument therefore rests merely upon the

same principles as are involved in ordinary deduction;

and yet the inference is of the nature of induction,

because the conclusion is a generalisation of the same
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formula that the categorical premiss lays down only for

a single case.

The following is a simple application of mathematical

induction:

Let /(n) stand for the proposition: 'The sum of

the first n odd integers = ;^l' We have first to establish

the implicative premiss, viz.,

'/{n) would imply/(n+ i).'

Nowy"(;^) is the proposition

'i+3 + 5 + 7 + ---+(2^-i) = <'

andy"(;^+ i) is the proposition

' I + 3 + 5 + 7 + • • • + (2^ - I ) + (2« + i) = (« + if.'

Here the left hand side of the equation y^(;2+ i) is ob-

tained from that o(/(n) by adding {2n-{- 1).

Hence, by the formula for the square of the sum of

two numbers: viz.,

{n+ iY = n" + {2n+ i),

the conclusion is established that

'if/(n) holds, theny(;2+ i) would hold.'

Now/(i) holds; for i = I^ (Also/(2) holds; for

1 + 3 = 2': and /(3) holds; for i +3 + 5 = 3-.)

Hence, having established the implicative premiss

'/(n) would imply y(;^+ i),' and the single categorical

premiss '/(i),' the required universal '/{n)' has been

proved.

§ 7. In this account of the principles employed in

establishing general algebraical formulae, special em-

phasis has been laid on the novelty of the conclusion

as compared with the familiarity and obviousness of the
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premisses (including the axioms) from which the con-

clusion is drawn. This summary account of the methods

and results of deductive reasoning enables us to meet

what has been called the paradox of inference in a more

direct way than that explained in Chapter I. For the

existence of the mathematical calculus, where the con-

clusions are absolutely unknown to those who start by

admitting as self-evident the fundamental premisses,

constitutes a direct refutation of the arbitrary dictum

that for valid inference the conclusion must not contain

more than what is already known in asserting the pre-

misses.

The notion of a calculus is generally associated with

elaborate symbolism, which renders possible the more

complex deductive processes in logic and mathematics.

As a question of history, there is no doubt that the in-

troduction of such simple symbols as -1- , — , x , created

a revolution in mathematical science, and rendered it

possible to make advances otherwise unattainable.

Again it is an equally noteworthy historical fact that

the best formal logicians, such as Leibniz and Lambert,

were comparatively unsuccessful in their attempt to

develop a logical calculus, which was first started by

Boole on lines followed by all subsequent symbolists

who advanced the science. Boole's method was simply

to import the familiar symbols of elementary arithmetic

into logic, making use of the fundamental formulae with

which algebraists were already conversant. In this way

he created the first great revolution in the study of

formal logic, and one that is comparable in importance

with that of the algebraical symbolists in the sixteenth

century. I think, however, that Boole's procedure has
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led to considerable confusion with regard to the relations

between the logical and the algebraical calculus, inas-

much as he seems to have supposed—in common with

many logicians of his time—that the advance achieved

by introducing mathematical formulae into logic made
logic into a department of mathematics. This attitude

of Boole's obstructed, for a considerable period, the in-

vestigation of the foundations of mathematics, which

demanded the reversal of the relationship between the

two sciences. It is under the influence mainly of Peano

and of the new mathematicians such as Cantor, that we
now recognise mathematics to be a department of logic.

The current phrase fnathematical logic is ambiguous

inasmuch as it may be understood to mean either the

logic of mathematics or the mathematics of logic. Now,
in my view, the logic or rather philosophy of mathe-

matics is a study which ought to dispense entirely with

symbolic language. It must, of course, explain the nature

of symbols and of symbolic methods, and account for

the extraordinary power of symbolism in deducing with

absolute security previously unknown formulae. But

the philosophical exposition of the deductive power of

mathematics must be treated in language the under-

standing of which requires thought of a profounder

nature than that required in merely following symbolic

rules. As indicated in the chapter on Symbolism and

Functions, the essential purpose of symbolism is to

economise the exercise of thought; and thus symbolic

methods are worse than useless in studying the philosophy

of symbolism or of mathematics in particular. The phrase

'mathematics of logic,' on the other hand, merely in-

dicates a certain line of development of logic, in which
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deductive processes are reduced to strictly demonstrative

form by means of a symbolism founded on explicitly

logical axioms. The important advances in this direction

have been systematised with extraordinary success in

Whitehead and Russell's great work Principia Mathe-

matical where it is shown how pure mathematics can be

actually developed from pure logic. The value of the

work consists, therefore, in reducing mathematics to

logic, and not at all in reducing logic to mathematics.

I shall attempt hardly any criticism of their formal de-

velopment of the science, and shall here confine myself

to the principles which enter into its very elementary

foundations.

§8. In contrasting the mathematical developments

of logic with the ultimate foundations of the science, it

will be convenient to use the terms premathematical

and mathematical logic, the latter of which introduces

certain novel conceptions, strictly formal in character,

in addition to those employed in the former. There

are certain notions common to the premathematical and

mathematical departments of logic, and of these we have

already discussed the nature of functions, illustrative

and short-hand symbols, variables, brackets, etc., which

before Peano and Russell had not received adequate

recognition in logical teaching; they apply, however,

over a wider field than mere mathematics, and must

therefore be transferred without modification from the

narrower science back to logic. The term 'formal' as

applied to these conceptions means that they are to be

understood by the logician as such, and they include,

besides those primitive ideas which are to be understood

without definition, also derivative ideas which are com-
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pletely defined in terms of primitive ideas. For example,

the notions of implication, alternation, disjunction and

negation are formal, and of these we may take negation

and alternation as understood without definition, while

the others can be defined in terms of these two\ Again

logical categories and sub-categories such as substantives

proper, primary and secondary adjectives and proposi-

tions, come under the head of formal conceptions. There

are also specific adjectives and relations, such as true,

probable, characterised by, comprised in, identical

with, which are formal; and, though some of them are

ultimately indefinable, the understanding of all of them

is essential to logical analysis. In contrast to these

formal adjectives, such adjectives as red, hard, popular,

virtuous^ etc. are termed material, because their meaning

is unessential to the explication of logical forms. In

premathematical logic formulae are established for all

adjectives as such, or for a limited set of adjectives

comprised in such a sub-category as that of secondary

adjective. The range over which these formulae hold

must be said to be material, though it necessarily com-

prises adjectives which may happen to be formal, i.e. to

have specifically logical significance. Passing from pre-

mathematical to mathematical logic, we find that new
specific adjectives, having essentially logical significance

and coming therefore under the head of formal concep-

tions, are introduced. We may specially mention in-

tegers and ratios. Integer is a logical sub-category

^ This, at any rate, is the procedure of the Frincipia Mathematica;

but, while undoubtedly permissible from the point of view of the

logical calculus, it is open to serious philosophical criticism, which I

have given elsewhere.
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comprised in the general cdX^^oxy adjective ; and ratio is a

logical sub-category comprised in the general category

relatio7t ; but what constitutes the new feature in mathe-

matical logic is that each specific integer and each

specific ratio has itself essentially logical significance,

while at the same time formulae hold for all integers

and again for all ratios. Premathematical logic on the

other hand can only establish formulae holding for ad-

jectives in general or for secondary adjectives in general.

This distinction carries with it the further result that

premathematical logic can only use illustrative adjectival

symbols as variables over a range of variation covering

the whole category adjective, or the whole sub-category

secondary adjective; while in mathematical logic there

occur illustrative symbols for variables covering the

range, in the one case ijiteger, in the other ratio. Con-

sider for example such an illustrative symbol as m in

ordinary or premathematical logic. The specific values

that can be substituted for this variable are material;

for the formal character of such of them as have speci-

fically logical significance is irrelevant to the truth of

the formulae. In mathematical logic, on the other hand,

all the specific values which can be substituted for a

symbol m standing for any integer, say, or a symbol t

standing for any ratio, denote formal conceptions. Again

it is obvious that, besides the formulae which hold for

adjectives in general, there are innumerable additional

formulae holding for integers or for ratios; and this

accounts for the variety and complexity of mathematics

as compared with premathematical logic. But the es-

sential distinction between the two sciences—or rather

the two departments of logical science—lies in the point
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already urged, namely that every specific adjective within

a certain mathematical range has itself a logically de-

termined value ; whereas no logically determined value

can be assigned to adjectives in general which enter

into premathematical logic. This distinction may be

summed up in other words by taking the two antitheses

material and formal, and constant and variable, which

combined give the four cases formal variables, formal

constants, material variables and material constants.

Now premathematical logic uses formal constants and

material variables (and also in Mr Russell's work material

constants), but nowhereformal variables. On the other

hand mathematics uses formal constants, material vari-

ables, and also formal variables. It is therefore the use

of formal variables that fundamentally distinguishes

mathematics from premathematical logic.

§ 9. To continue our account of the relation between

the premathematical and mathematical departments of

logic, we must next define and illustrate the nature of

those formal elements which are never expressed by

variable symbols, and therefore come under the head of

formal constants. To these, the name connectives will

be given. The first division under this head includes

what are known as operators in mathematics, such as

plus, minus, multiplied by, divided by, as well as ana-

logous logical operators such as and, or, not, if. Thus
the operation 'm + n,' where m, n stand for determinate

numbers, yields a certain determinate number; and
analogously the operation 'p and q,' where /, q stand

for determinate adjectives, yields a certain determinate

adjective. This is most clearly seen when a proper

name has been invented to stand for the compound
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construct as well as for each of the constituents them-

selves: thus, the operation 'three-plus-five' yields the

number 'eight'; the operation 'rational-and-animated'

yields the adjective 'human.' The analogy goes one

step further when, in place of the simple predication

yields, we use the complex yields-what-is-yielded-by

:

thus, the operation 'm plus n yields-what-is-yielded-by

the operation 'n plus m \ the operation '/ and q' yields-

what-is-yielded-by the operation 'q and/.' Now neither

in logic nor in mathematics is it ever required to use

illustrative or variable symbols to stand for formal

operators like plus or and—the reason being that no

formula which holds for one operator will hold if we

substitute indiscriminately any other operator. Hence,

if symbols are used for formal operators, these come

under the head of short-hand symbols, and never under

the head of illustrative or variable symbols. Thus the

operators both of logic and of mathematics enter as

formal constants, never as variables.

In the second division of connectives are to be in-

cluded certain relational predications which must be

systematically illustrated and classified according to

their different properties. Of these, the five of most

fundamental importance are the relational predications

:

identical with, implied by, characterised by, comprised

in, included in, together with their cognates. These

are formal, and to represent them I shall introduce the

short-hand symbols: t, t; X, X; X' X' ^i *^'-> *'» ^ respec-

tively. These five formal connectives are absolutely

distinct from one another, although they have been

frequently confused by logicians ; and this distinctive-

ness is sufficient to account for the fact that they are
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never represented by variable symbols for which one

could replace another. Thus: in the predication xXy,

the symbols x and y must stand for entities belonging

to one and the same assigned category; but, in the

predication xfy, x and j|/ must stand respectively for an

item or member and an enumeration or class; and, in

the predication x^y, x and y must stand respectively

for a substantive and an adjective. Again, while t con-

nects entities belonging to any the same category, X.

connects only propositions or adjectives or relations;

and V connects only classes or enumerations of the same

order. And yet again : the relation identity is reflexive,

symmetrical, and transitive; but the relations charac-

terised by 2^\6. comprised in are a-reflexive, a-symmetrical,

a-transitive; while the relations implying and included

in are reflexive and transitive but neither symmetrical

nor a-symmetrical. The five connectives above enu-

merated may be said to be on the borderland between

premathematical and mathematical logic. There are,

however, many formal connectives which belong ex-

clusively to mathematics, of which the most funda-

mental is equals universally represented by the short-

hand symbol = . There is serious danger of confusing

equal-to with identical-with because they agree in pos-

sessing the properties reflexive, symmetrical and tran-

sitive (to the consideration of which we shall have to

return later). Other important connectives in logic and

alg^ebra are derivative from those above enumerated as

fundamental. Classifying fundamentals and derivatives

according to their properties we have the following

table, where the initials F, S, T stand respectively for

reflexive, symmetrical and transitive, and the suffix a



144 CHAPTER VI

'fo



FUNCTIONAL DEDUCTION 145

formula 3$' + 5^ = 8^, q enters as a material variable

standing for any quantity ; and 3,5,8, = , + , as also the

category quantity itself, enter as formal constants. But in

applying the material variable q to deduce the equation

3 feet + 5 feet = 8 feet, or 3 ohms + 5 ohms = 8 ohms,

the terms foot, ohm, as species of the genus quantity,

have to be defined by means of conceptions outside

the range of pure mathematics. In this way we see

that variable symbols—material as regards their range

of application—entering into premathematical and

mathematical logic, assume their particular values when
logical theorems are applied to experimental matter.

Having shown then, as regards both formal constants

and material variables, that general logic agrees in all

respects with mathematics, the conclusion follows that

the latter fundamentally differs from the former in the

sole fact that it introduces formal variables.

§ II. Before examining the characteristics of the

specifically mathematical notion ' equals ' upon which

its symmetry and transitiveness depend, we will con-

sider the wider problem of relations in general possess-

ing these two properties. There is one mode of con-

structing such relations which has very wide application

and is of great importance in logical theory, viz.

^x is r to the thing that is r to z'

Here the word the indicates that r is a many-one rela-

tion. I shall call ' the thing' to which reference is made
in the above formula the intermediary term, and the

relation r the generating relation. Thus, given an in-

termediary term and a many-one generating relation,

we can always construct by (what is called) relative

J. L. n 10



146 CHAPTER VI

multiplication a derived relation which is symmetrical

and transitive. Representing the intermediary by the

symbol y, the relation oi x to z may be otherwise ex-

pressed by the conjunctive proposition

:

'x IS r to y and 2 is f to y,'

where it is to be understood that there is some uniquely

determined entity (sayj) to which Jt: and 5" stand in the

relation f ; i.e. r is a many-one relation.

Now the theorem that any relation so constructed

is symmetrical and transitive requires no discussion

and is universally admitted ; but the converse theorem

—that any symmetrical and transitive relation can be

exhibited by this mode of construction—cannot be

assumed to be true without careful examination. To
this converse theorem Mr Russell gives the name 'the

principle of abstraction'; and professes to have proved

its truth by a process involving highly complicated

symbolism. It is quite easy, however, to explain the

nature of his proof without recourse to such symbolism.

Thus, let t be a symmetrical and transitive relation
;

then, in order to prove the theorem, we have to dis-

cover an intermediary entity and a generating relation

in terms of which t may be constructed. The inter-

mediary entity for the relational predication 'x is t toz'

is, in Mr Russell's proof, ' the class of things comprising

X together with everything such as 2 for which "x is t to

2" holds.' The required generating relation r is the rela-

tion o{ being comprised in\ hence the proposition 'x is

t to z' is resolved into the form:

X is comprised in the class

(defined as comprising everything to which x is t)

which comprises z.
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Here the intermediary entity is a class uniquely defined

in terms o( x and /, and therefore the relation in which

X or any other item stands to the intermediary is a

many-one relation. Now what Mr Russell has suc-

ceeded in proving in this way is proved with absolutely

demonstrative validity; but my first comment is: has

he proved what he undertook to prove ? In one sense

he has proved too much, and in another sense he has

proved nothing whatever that is relevant. He has

proved too much in the sense that he has discovered an

intermediary entity which would, mutatis mutandis,

apply to every possible symmetrical and transitive rela-

tion, such as contemporaneous, compatriot, co-implicant,

co-incident, as well as equal. Thus he has proved that,

for the resolution of the relation equals, we must take as

intermediary 'the class of quantities equal to any given

quantity'; for the relation contemporaneous, 'the class

of events contemporaneous with any given event
'

;

for the relation compatriot, 'the class of persons that

are compatriots of any given person '
; and so on. But

what he set out to discover as the required inter-

mediary was, in the case of equality, a certain magni-

tude \ in the case of compatriot, a certain country, in

the case of contemporaneous, a certain date ; and so

on. He has not proved that there is a certain magni-

tude that all equal quantities possess ; nor a certain

country to which all compatriots belong; nor a certain

date to which all contemporaneous events are to be

referred. Moreover, in taking as his intermediary a

certain uniquely determined class, it seems obvious that

Mr Russell's alleged proof is incomplete, unless we can

assert that there are such entities as classes, and the
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validity of this assertion is explicitly denied by him : or

rather he holds that there is no necessity in the deduc-

tions of logic and mathematics to assume that there are

classes, although without this assumption his proof of

the principle of abstraction completely breaks down.

I do not, however, wish to press my criticism of

Mr Russell further, but rather to expound what ap-

pears to me to be the true view on the nature of

abstraction. The cases in which the principle comes

into consideration may be distinguished according as

the intermediary is of the nature of a substantive such

as country, or of the nature of an adjective such as

magnitude. In applying the attempted proof of the

principle of abstraction to such a relation as compatrioty

Mr Russell argues as if we knew this relation to

be symmetrical and transitive independently of our

knowledge that a person can belong-to (r) only one

country (jv); whereas it is obvious that we have con-

structed the derivative relation compatriot by means of

the prior notions country and belonging-to. Hence, no

such case as compatriot can be used to prove the prin-

ciple of abstraction, but only to illustrate the theorem

of which the principle of abstraction is the converse.

Where the intermediary is adjectival, e.g. colour, pitch,

magnitude, the principle directly raises the issue of the

connection and distinction between a determining ad-

jective and the class that it determines. In the case of

an adjectival intermediary, our general formula

'x is r to the term (sayjj/) that is r to z'

must be expressed in a special form in which the gene-

rating relation {f) is to stand for characterised-by (x),
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and the intermediary term (y) is to stand for a specific

determinate under a specific determiriable, thus

:

'x is characterised-by the determinate adjective

that characterises z'

Here the uniqueness of the intermediary term is secured

by the disjunctive principle of adjectival determination

expressed ( Part I, Chapter XI V) in the form :
' Nothing

can be characterised by more than one determinate

under any assigned determinable.' Now, since any one

substantive may be characterised under many different

determinates, the intermediary term must specify the

determinable, or ground of comparison, upon which the

symmetry and transitiveness of the derived relation

depend. Thus,

'x is characterised by the colour that characterises z'

or 'x is characterised by the shape that characterises 5",'

or ';*: is characterised by the size that characterises z!

Any of these three propositions may be significantly

asserted of the same subjects x and z, if these are

bounded surfaces distinguished from one another by

determinate localisation ; and the relation o( x to z thus

constructed is transitive (as well as symmetrical) pro-

vided that the colour, shape or size is strictly deter-

minate. With this proviso, we may say that x and z

are equivalently coloured, equivalently shaped or equi-

valently sized, as the case may be. Such symmetrical

and transitive relations between the substantives x and

z must be distinguished from the symmetrical and tran-

sitive relation e^<?^^zVywhich holds between the adjectives

described as the colour oix and the colour oiz, the shape

of :tr and the shape oi z, or the size of x and the size of z.
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Now magnitude—like any other adjectival determinable

—must first be abstracted as a character in order that by

its means we can construct the class of equally sized

objects. Thus it is just as absurd to define the size of

X in terms of ' the class of objects that are equal in size

to X ' as to define the colour of x in terms of ' the class

of objects that are equivalent in colour to x!

§ 12. To secure that the relations constructed by

means of the above formula shall be symmetrical and

transitive, it is necessary to specify, not only such differ-

ences as those between colour, shape, etc., but also

differences within the general notion magnitude, con-

stituting various kinds or species of magnitude. For

just as colours and sounds are incomparable with one

another, since they must be characterised under dif-

ferent determinates, so there are distinct determinables

subsumable under the superdeterminable magnitude.

Taking some of Mr Russell's suggestive examples, we
note that the magnitude of pleasure predicable of an

experience is incomparable with the magnitude of area

predicable of a surface, and that these again are in-

comparable with the magnitude of duration predicable

of an event. Hence pleasure-magnitude, area-mag-

nitude, duration-magnitude, are three distinct deter-

minables, predicable only of experiences, surfaces, and

events respectively. In ordinary usage the word

magnitude is omitted when reference is made to the

determinables in question ; but in specifying the 'area'

of a surface, we are in point of fact specifying a kind

of magnitude; so in specifying the 'duration' of an

event we are specifying another kind of magnitude;

and in specifying the 'pleasure' of an experience, we
are specifying yet another kind of magnitude. The
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analogy here drawn between area or duration on the

one hand, and pleasure on the other will probably be

disputed because pleasure is so often used in its concrete

sense to mean 'pleasurable experience ' as well as in its

abstract sense to mean ' the pleasure of a (pleasurable)

experience.' Now it happens that a pleasurable ex-

perience may be characterised under at least two dif-

ferent determinates of magnitude; viz. pleasure-mag-

nitude and duration-magnitude, the latter of which

applies in the same sense to any event whatever that

may last through a period of time. Here it is important

to note that pleasure-magnitude and duration-magni-

tude, etc. are not determinates under the one deter-

minable magnitude, but different species included in

the genus magnitude. They may therefore be con-

veniently termed sub-determinables of magnitude,

each generating its own determinates, which are in-

comparable with the determinates generated by any

other. Thus magnitude does not generate its sub-

determinables in the way in which a determinable gene-

rates its determinates. An experience, a surface, an

event are substantives belonging to different categories

of which pleasure, area, or duration may be respec-

tively predicated as adjectives ; but a specific pleasure-

magnitude, or area-magnitude, or duration-magnitude

is related to its respective species of magnitude as a

determinate to. its determinable. We shall proceed in

the next chapter to examine and classify the fundamental

kinds of magnitude, to which reference is here made.

§ 13. It remains to point out one highly important

characteristic which distinguishes pure or pre-mathe-

matical logic from mathematics proper. In both branches,

the two principles of inference termed Applicative and
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Implicative are employed in the procedure of functional

inference, and these alone. But the peculiarity of

pre-mathematical deduction is that it lays down two

formulae0/implieationioith^rdiS primitive or as derived)

which are virtually equivalent respectively to the Appli-

cative and Implicative Principles themselves. The
formulae in question may be thus expressed

:

( 1
) Applicativeformula : Any predication that holds

for every case x would formally imply that the same
predication holds for a given case a.

(2) Implicative/ormula : For any case x, y, the com-
pound '";»;" and ''x would imply y" ' would formally

imply y.'

We must, therefore, explain the distinction between

Principles of Inference^ on the one hand, and Formulae

of Implication, on the other hand. In all formulae of

implication, the implicans and implicate stand indif-

ferently for propositions that are to be materially or

formally certified. But, when a formula of implication

is used as a premiss in the process of deduction, its

implicans must first be formally certified in order that

its implicate may be formally certified. This inference

is made by a direct application of the implicative prin-

ciple. And again, every formula of implication holds

for all cases coming under an assigned form ; hence the

inferences from any formula of implication are made by

a direct application of the applicative principle. The fact

that every step by which we advance in the building

up of the logical calculus requires both the Applicative

and the Implicative principles of inference, and these

alone, establishes their sovereignty over all deductive

processes.



CHAPTER VII

THE DIFFERENT KINDS OF MAGNITUDE

§ I. The term magnitude, as is suggested by its

etymology, denotes anything of which the relations

greater or less can be predicated; and it is only if M
and N (say) are magnitudes of the same kind that M
can be said to be greater or less than N. I have taken

magnitude to be an adjectival determinable, or rather a

class of adjectival determinates including several dis-

tinct kinds. That of which a determinate magnitude

of a specific kind may be predicated stands, relatively

to its magnitude, as substantive to adjective ; but it may
be either an existent, i.e. substantive proper (in which

case the magnitude predicated is a primary adjective)

or itself an adjective (in which case the magnitude pre-

dicated is a secondary adjective). In order to keep

clear the distinction between the adjectives of magni-

tude themselves and the substantives of which magni-

tude is predicable, a separate terminology ought strictly

to be applied to the latter. A striking case where

language supplies us with the logically required termi-

nological distinction is that of 'longer' and 'shorter'

predicated of lines—to the lengths of which the terms

' greater ' and ' less ' are applied. 1 1 would be convenient,

for the purposes of a general exposition of magnitude,

to restrict the application of the terms 'greater' and

*less' to magnitudes, and to adopt the corresponding

terms 'larger' and 'smaller' for that of which the
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magnitudes are predicated. For example: the class

compositae is larger or smaller than the class vio/aceae,

according as the number of compositae is greater or less

than the number of violaceae^; the period 1815 to 1832

may be called larger than the period 1714 to 1720,

inasmuch as the temporal magnitude of the former is

greater than that of the latter. Now for every distinct

kind of magnitude there is a corresponding distinct kind

or category of entity of which it can be predicated ; and

hence, though it is strictly illogical, yet it is legitimate

and usual to apply the same terms, such as extensive

and intensive, to distinguish both between the different

kinds of magnitude and between the corresponding

different kinds of entities which bear to the magnitude

the relation of substantive to adjective. From these

preliminary remarks, we may pass to an examination of

the nature of different kinds of magnitude, beginning

with number, which is the most fundamental of all.

§ 2. Integral number is an adjective exclusively

predicable of what we call classes, including enumera-

tions; two classes being said to be numerically equal

when the number predicable of the one is identical with

that predicable of the other. I think it is legitimate to

maintain that the two notions class and number are not

independently definable, but each definable only in its

relation, the one as the only appropriate substantive for

^ This may mean either that the number of existing plants com-

prised in the genus is greater or less, or that the number of infimae

species included in the genus is greater or less. It is obvious that these

two modes of determining numerical comparison do not necessarily

tally. It will be shown later that the same distinction holds as regards

the number oipoints in a line and the number of \\nea.r parts (equal

or unequal) into which it may be exhaustively and exclusively divided.
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the other as its only appropriate adjective. The common
habit of representing classes by closed figures may lead

to the false supposition that the members of a class

can as such be arranged in some kind of proximity to

one another within an enclosed space. But when the

items to be comprised in a class have relations meta-

phorically called near or far, they constitute not merely

a class but a series or ordered class. Now in modern

mathematics the appropriate number-adjective of a

class conceived independently of any arrangement or

order of its items, is known as a cardinal number;

whereas of a series or ordered aggregate the appropriate

numerical adjective is known as an ordinal number.

When a class or enumeration comprises a finite number
of items, then, in whatever order the items may be

enumerated, we reach the same ordinal number, and

this number agrees with the cardinal number; but for

transfinite aggregates, which have been introduced into

modern arithmetic, this agreement no longer holds;

and consequently the fundamental distinction between

ordinal and cardinal numbers is required. Readers are

referred particularly to yir'RMSseWs PrinciplesofMathe-

matics for the full development of this topic, which is

outside the compass of my work.

§ 3. The psychological aspect of number is revealed

by analysing the process of counting. In this process

we establish numerical equality between a set of things,

on the one hand, and a set of number-names temporarily

attached to the things, on the other hand. Hence

counting is a special, and, in some respects, a unique

case of correlation between the things upon which names

are imposed and the names that are imposed upon the
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things. Ideally language requires that any given proper

name should denominate one and only one thing, and

conversely that any given thing should be denominated

by one and only one proper name ; or briefly, that there

should be a one-one correlation between the names of

things and the things named. If this relation held, it

would follow that the class of names would be numeri-

cally equal to the class of things named. Actually,

however, this ideal is not realised; for the same thing

often has many names, and the same name is often

attached to many things. It is worth pointing out that

there may still be numerical equality in spite of there

not being a one-one correlation between names and

things named. For example : let R, Q, M, T, ^ be a

set of names, and k, a, ^, ;>(, <^ a set of things named.

Then suppose that

R names k: or o-; Q names k or o-; M names cr or

6 on
X'y

^names ^ ; and U names 6 or ^ov kov ^\

so that

K is named R or Q or U; a- is named R or Q or

M\ 6 is named M or U; x is named J/ or 7" or

C/; and ^ is named C/.

Here the denominating correlation is not one-one but

many-many, and yet the names and the things happen

to be numerically equal. How then do we establish the

fact that the number of items in the enumeration R, Q,

M, T, U is the same as that in the enumeration k, (t,

6, x> ^^ What we do, where there is no y^<:///^/ correla-

tion, is to institute what I shall call a factitious corre-

lation; by which I mean one which is not inherent or

objective, but arbitrarily imposed by the counter. In the

adduced instance—in order to establish the numerical
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equality between the enumerations R, Q, M, T, U,

and K, a, 6, x> ^—we must mentally attach, either in

thought or in figurative imagery, R say to 0, Q to (/>,

7"to o", ^to K, y^to x; where the items of the two

sets have been indiscriminately permuted and attached.

We can now analyse the mental act of counting as a

special case of factitious correlation. The essential

psychological requisite is that we should learn to enu-

merate a set of arbitrary names in a fixed or invariable

temporal orderfrom, thefirst onwards; and these names

are attached temporarily to the objects to be counted,

in this respect differing from names in general which

have fixed denotation. For example : let us arrange

the names U, R, Q, M, T in the following order:

M, Q, R, T, U\ and temporarily attach these names

as follows \ M X.O y^, Q X.O ^, R to B, T to a, U to k.

Thus the set of names have to be attached in a fixed

order, one by one, to the set of things taken in any

order. What is logically required to avoid mistake is

that the enumeration of the things should be both ex-

haustive and non-repetitive—a condition which children

and savages often find difficult to fulfil. Now, inasmuch

as the number-names J/, Q,R, T, 6^are always attached

in an invariable order, the last number named indicates

unequivocally the number of the counted set of objects.

In other words, the cardinal number of any enumerable

set of objects is unambiguously indicated by the ordinal

number of the correlated number-names. Historically

the letters of the alphabet, having been memorised in

a fixed order, served also as the written symbols for

numbers; but their employment for this purpose could

not be extended to all numbers, since an alphabet
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necessarily consists of a limited number of letters.

Moreover it is psychologically impossible to memorise

an endless list of names. Hence it was necessary to

invent some system which would render it possible to

count any set of things, however large. The Roman,

Greek and Hebrew alphabets were employed for this

purpose with more or less success, but were finally

superseded by the Arabic notation in which place-value

was given to the symbols i, 2, 3, 4, 5, 6, 7, 8, 9, and

the symbol o was added. These ten symbols serve as

proper names of numbers, all other numbers being ex-

pressed by names constructed out of these. Thus the

compound word twenty-four or the compound symbol

24 is analysable as meaning 'two tens plus four,' and

therefore to be understood in terms of the operations

of multiplication and addition. Such compound symbols

or words are not proper names of numbers like two, ten,

or four, but may be called constructed names. The
elementary learner of arithmetic must, in fact, reverse

the logical order of thought, and understand the pro-

cesses of multiplication and addition before he can

intelligently learn to count beyond twenty or so, or

understand what is known as the decimal system of

notation.

§ 4. We now pass from the psychological analysis of

counting to the consideration of its underlying logical

principles. Counting is a special case of one-one corre-

lation, the peculiar characteristics of which are (i) that

a prescribed set of name-items have to be memorised

in a definite serial order; and (2) that the correlations

are factitious. As regards (i) the mental process of

counting, which involves order, must be contrasted with
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one-one correlations in general which are irrespective

of order. As regards (2) factitious correlations must be

contrasted with such correlations as husband and wife,

denominating and denominated by (in an ideal language)

etc., in which any given husband is correlated with a

determinate wife, or any given proper name with a

determinate thing. Now in my view, factitious corre-

lations are essentially necessary in the general theory of

numerical equality; though they never enter into the

abstract deductions of arithmetic. On the necessity of

factitious correlations, recognised authorities, above all

Mr Russell, are opposed to me. Their definition of the

numerical equality of two sets of things is, in effect,

formulated as follows: 'There is a one-one relation of

any member of the one set to some member of the

other set.' But it seems to me essential to distinguish

the statement that 'the items can be correlated one

to one' from the statement ''there is a one-one correla-

tion'; the former points to a factitious, the latter to a

factual correlation. There need be no relation at all de-

pending on the nature of the items themselves comprised

in the two sets, that would determine which item of the

one set should be attached to any given item in the

other. If relations are treated extensionally, i.e. as mere

substantive-couples, then it is of course a matter of

fact that two numerically equal classes contain couples

of items, one of which is comprised in the one class and

the other in the other; but I know of no sense in which

the two members of the couple are related the one to

the other, except that the one is temporarily attached

in thought by some thinker to the other. Apart from

this factitious coupling, there is no one-one relation,
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subsisting between any given item of the first set and any

determinate item of the second, that would not equally

subsist between the given item and any other item arbi-

trarily selected from the second set. Thus the establish-

ment of numerical equality between two finite classes

requires in general factitious correlations. On the other

hand, the only mode of establishing numerical equality

between infinite classes is to ddscov^r factual, or more

specifically formal, correlations. The formal correla-

tions required in pure arithmetic, finite and transfinite,

are what may be called functional ; and, for the purposes

of this elementary exposition of the logic of arithmetic,

the notion of functional correlation must be introduced

and explained.

§ 5. Using the symbol y" for any function and /^ for

its converse, the relation n to f{n) will be one-one; pro-

vided that n determines uniquely the value o(f(n) and

fini) determines uniquely the value oi f\^f{ni)\. For

example: \^X.f{n) stand for n-^'j, then y"(;?2) will stand

for w — 7 ; and the integers from i to n (inclusive) can

be correlated one to one with the integers from 8 to

n + y; each integer in the second series being given by

adding 7 to the corresponding integer in the first, and

each in the first series by subtracting 7 from the corre-

sponding integer in the second. Similarly, i(f{n) stands

for nx 7, theny"(;;^) will stand for m-^y; and the integers

from I to n can be correlated one to one with the multi-

ples of 7 from 7 to yn. In general : if the relation of n to

f{n) is one-one, then the series of values assumed by n is

numerically equal to the series of values assumed byy"(«).

An important application of this theorem is to the

case where the integer n assumes all possible finite
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values, obtained from unity by the successive addition

of unity. In this case, the simplest illustration is afforded

by takingy(;^) to stand for 2n. There is then established

a one-one correlation of the successive integers i, 2,

3, 4 ... with the successive integers 2, 4, 6, 8— In

other words, the number of finite integers is the same

as the number of finite even integers; although the

former series comprises all the odd integers and these

are not comprised in the latter. Thus, although the

aggregate of even integers is a part proper of or sub-

included in the aggregate of integers, yet the two

aggregates are numerically equal. Now we may define

an infinite number as the number of any aggregate that

includes a part proper numerically equal to itself. Thus

the instance above cited is the simplest of the many
proofs that establish the theorem that the number of

finite integers is infinite. If the integers are presented

in ascending order of magnitude, the series so conceived

has a first but no last term and also is discrete in the

sense that each term has one and only one immediate

successor. The cardinal number of any aggregate that

can be so arranged in a series is called Xo- This is the

smallest of infinite cardinal numbers.

The reader must here be referred to the mathe-

matical exponents of the theory of transfinite cardinals

and ordinals for further instruction. The most com-

prehensive account of this theory will be found in

Mr Bertrand Russell's work entitled Principles of
Mathematics.

\ 6. As number and the magnitudes that are derived

solely from number may be called abstract, so those

which contain a material factor may be called concrete

J.L. II II
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magnitudes or quantities. Thus duration-magnitudes,

stretch-magnitudes, magnitudes of quaHtative difference

are quantities, because the entities of which they are

predicable are defined and differentiated in terms that

are not purely logical. This use of the term quantity

differs from that expressly enjoined by Mr Russell, who
defines a quantity as 'an instance or specification of

magnitude.' He then proceeds to identify the relation

thus indicated in some cases with that of substantive to

adjective, and in others with that of determinate to de-

terminable ; whereas, in the common language of mathe-

matics, quantity stands to magnitude in the relation of

species to genus, with which my use of the term quan-

tity corresponds. With regard to quantities the three

differentiae which I hold to be fundamental or primitive

are extensive, distensive and intensive. The term dis-

tensive magnitude is new, and the reason for placing it

intermediarily between extensive and intensive is that

by some logicians it has been included under extensive

and by others under intensive magnitude.

An extensive magnitude may be defined as one

which can be predicated only of an entity that can

appropriately be called a whole. The notion of whole

is correlative to the notion of part; and, more precisely,

a whole is to be conceived as having parts which can

be specifically identified and distinguished indepen-

dently of their relations of equality or inequality ; e.g.

a finite line is a whole of the simplest possible kind,

under the figure of which all one-dimensional wholes

may be metaphorically pictured. Thus a line CEG is

represented as having the parts CE and EG, each of

which is definitely identifiable for itself and distinguish-
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able from the other. The several parts of a whole are

of the same nature as the whole, and therefore the con-

struction of a whole out of parts or the division of a

whole into parts may always be called homogeneous*.

The term extensive magnitude has, in fact, been popu-

larly restricted to spatial and temporal wholes; but I

shall follow Mr Russell In applying this term also to

certain qualitative wholes, e.g. to a continuous aggre-

gate of hues or of pitches. Thus we speak of a scale of

hue and a scale of pitch in the sense of a class com-

prising all specific hues or pitches which are qualita-

tively intermediate between two terminal hues or pitches.

Now the class comprising such determinate items con-

stitutes what is now called a stretch ; thus a qualitative

stretch of hue or of pitch is formally analogous to the

period comprising all determinate instants between one

instant and another or to the geometrical line comprising

all points intermediate between one point and another.

§ 7. It might appear, since the instants comprised

in a period and the points comprised in a line are sub-

stantival, while the hues or pitches comprised in a

qualitative stretch are adjectival, that there is some

fundamental logical distinction between these two kinds

of stretches. Thus : though either may be metaphori-

cally represented by a line CEG, yet, if the points C,

B, G stand actually for points or instants—these being

substantival—the stretch represented is substantival

;

whereas if C, E, G represent three pitches—pitches

^ The term whole is frequently applied to a construct constituted

of heterogeneous elements, e.g. to a proposition ; but for such a con-

struct the term u7iity is preferable, unity being the genus of which

whole is a species.

II—2
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being characteristics of sound and therefore adjec-

tival—the stretch itself is adjectival. It is open to

question, however, whether points or instants are of a

substantival nature ; and this has been a matter of

frequent philosophical dispute. If we regard time and

space as existents, then the events which occur at a

given date or occupy a given period, like the ink-spots

which may be placed at different points or the ink-

lines which may be drawn on paper, have as substan-

tives a unique kind of relation to the substantives of

a different category—date, period, point or line—to

which they are attached. Such a relation, like that of

characterisation, is unique ;—in the sense that one of

its terms necessarily belongs to a certain category and

the other to a certain other category. The relations

' occupying ' and ' occurring at ' further resemble the

characterising tie in being unmodifiable ; thus, of any

given date and any given event the only relevant as-

sertion that can be made is that the event either did

or did not occur at that date. In saying of an event

that it occurs at a certain date or of a material body

that it occupies a certain region, the predications may
be, not ultimately analysable into definable relations

to a definable period or region, but regarded rather

as adjectivally unanalysable. * Occurring at ' and 'occu-

pying ' are therefore properly speaking ties. It is not,

however, formally incorrect to regard them as relations,

in the same way as we have allowed characterisation to

be analysed as a relation involving the two correlatives

characterising and characterised by. From this discus-

sion it will be seen that I incline to the view that

instants of time and points of space, as well as time
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and space as wholes, are not substantival or existential

but merely adjectival.

Now, under the head of the relativity of time and

space two distinct philosophical problems are often

confused. The view that position in space or time is

definable not as absolute, but only as relative to other

points or instants is to be distinguished from another

view according to which temporal and spatial relations

are relations, not between entities such as points and

instants, but between what occupies the points or in-

stants. The first of these two problems is appropriately

described as the question of the absoluteness or rela-

tivity of time and space ; the second as the question of

the substantival or adjectival nature of time and space.

In the Principles of Mathematics Mr Russell explicitly

maintains the absolute view as regards both these

problems ; he deliberately asserts that position—a term

conveniently used both for space and time—is absolute

and not merely relationally definable in terms of other

points or instants ; and also that points and instants

are existents. Now, in the foregoing analysis, I have

taken the relative i.e. adjectival view on the second of

these two problems, while not rejecting the absolute

view on the first. The adjectival view of space and

time, in which we deny such separable entities as

instants and points, must not be confounded with the

class-view : that identity of dating merely means being

comprised in a certain assigned class of contempora-

neous events. For, in holding that 'occupying a certain

instant' is an unanalysable adjectival predicate, we
maintain at the same time that, qua predicate, it is an

identifiable entity, in the same way as the adjective
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* red ' is an identifiable entity when predicated now of

this patch and then again of some existentially other

patch. This view is not inconsistent with my previous

analysis ; for I have repeatedly maintained, particularly

in my analysis of the principle of abstraction, that ad-

jectival identity cannot be resolved merely into mem-
bership of a certain definable class. My contention for

the adjectival nature of space and time amounts to the

statement that instants and points are substantival

myths. It is not necessary, however, for the purposes

of this exposition, to press the question of the substan-

tiality of time and space, for any difference of view on

this point does not affect the further development of

the subject.

§ 8. Having shown the analogies between the three

kinds of stretches—qualitative, temporal, and spatial

or rather linear—we will now compare such extensive

wholes with classes considered in extension, which may
be called ex^enszona/ wholes. It is not a mere accident

of language that the term extension has two applica-

tions in philosophy, these generally occurring in such

different contexts that they are not confused. But it is

worth while drawing attention to the double use of the

word ; and, in so doing, to examine a topic, prominent

in modern mathematics, concerning the formal agree-

ments and differences between extensional and exten-

sive wholes. An extensional whole, otherwise a class,

is naturally associated with the notion of assignable

items ofwhich the class is composed ; on the other hand,

a linear whole—which illustrates an extensive whole of

the simplest kind—is apprehended as a whole without

thinking of the points it contains. In other words:
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the items in an extensional whole are prior in thought

to the whole, which appears to be the product of a

constructive process ; while the extensive whole is

prior to any conception of points, which seem to be the

result of a similar, but reversed, process of thought-con-

struction. This psychological distinction Mr Russell

seems to regard as philosophically negligible ; and he

devotes a large part of his exposition to a proof of the

essential sameness in nature of extensional and ex-

tensive wholes. This question raises the same problem

as that discussed by Hume and Kant—the former in

his quarrel with the mathematicians, and the latter in

his solution of the antinomies.

Let us then examine what common-sense would elicit

from a consideration of these two kinds of wholes. With

regard to extensional wholes, I have adopted the term
' comprise ' to represent the relation of a class to any

of its items or members, and 'include' to represent the

relation of a genus to any of its species ; and it is of

the first importance to note that, for extensive wholes,

an analogous distinction holds between the relation of

a line to any of its points and the relation of a line to

any of its parts which are themselves linear. For just

as a class comprises items which have to one another

the sole relationship of otherness, so a line comprises

points which have to one another the sole relationship

of otherness ; and again, just as members of a species

are members of the genus, so points in a linear part

are points in the linear whole. Further, since a line or

stretch contains parts in the same sense as a genus

includes species, it follows that such purely logical or

formal relations as overlapping, includent, excludent,
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which apply to classes and not to items, apply also to

the parts of a stretch but not to points. Now the parts

into which a three-dimensional space can be divided

are three-dimensional, and have, qua three-dimensional,

all the properties of the whole ; similarly the parts of

a two-dimensional space are two-dimensional ; and the

parts of a one-dimensional space one-dimensional. On
the other hand, of the contiguous parts of a three-

dimensional whole the common boundary is two-dimen-

sional ; of the contiguous parts of a two-dimensional

whole the common boundary is one-dimensional ; and

of the contiguous parts of a one-dimensional whole

the common boundary is zero-dimensional, i.e. a point.

Restricting our discussion to the last case, we note a

very substantial difference between extensive wholes

and extensional wholes ; for within a merely extensional

whole there are no relations of contiguity, whereas

every extensive whole is apprehended as containing

parts which are either literally or metaphorically further

from or nearer to one another. Hence the notion of a

point as a boundary comprised in neither or in both of

the two parts of a line has no analogy amongst members

of a genus which belong either to one species or to

another and cannot belong to both. It further follows

that an extensive whole resembles a serial or ordered

set of items rather than a mere unordered class or

enumeration.

§ 9. Having considered the nature of an extensive

whole, i.e. that of which extensive magnitude may be

predicated, we will pass to the consideration of the

kinds of entities of which distensive or intensive mag-

nitude can be predicated. By distensive magnitude is
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meant degree of difference, more particularly between

distinguishable qualities ranged under the same deter-

minable \ Thus the difference between red and yellow

may be greater or less than that between green and

blue ; and similarly the difference between the pitches

C and F may be greater or less than that between B
and G. The notion of difference is apt to be associated

with the arithmetical process of addition, for which the

term 'addendum' or 'subtrahend' may be used in order

to distinguish it from a distensive magnitude. Thus it

is preferable to say that successive terms forming an

arithmetical progression are obtained by a constant

addendum, just as those forming a geometrical pro-

gression are obtained by a constant multiplier. This

reference to arithmetical and geometrical progressions

is needed because the measure of qualitative difference,

in its logical and even its philosophical sense, is in

some cases or on some grounds to be conceived as an

addendum, and in other cases or on other grounds as a

multiplier. For example, if a series of colours are pre-

sented as in the spectrum, in a continuous spatial order,

we might conceive the magnitude of difference between

any one hue and any other to be proportional to the

length in the spectrum between the two hues. In this

case, by taking any hue as origin, say (9, such that A
is between O and B, and representing the difference

between A and B by the symbol AB, we should assume

that its value was given by the equation y^i5= OB — OA.
On the other hand, as regards the scale of pitch, the

scientist would naturally connect the pitches with the

physical process of aerial vibration, and measure each

^ See Part I, p. 191.
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pitch by the number of vibrations per second. On this

assumption the * difference ' between C and G would

be represented by the ratio of |-, and that between G
and ^ by J, and therefore the ' difference' between C
and B would be f x |^ = ^^-. These two examples of the

tw^o natural modes of estimating degrees of qualitative

difference—viz. by an addendum or by a multiplier

—

are typical of all problems regarding distensive or even

intensive magnitudes.

It will be important, however, to contrast either of

these more physical modes of conceiving distensive

magnitude with the mode that has become familiar to

psychologists ever since Fechner's and Weber's experi-

ments. According to Fechner it would appear that the

magnitude of difference between the qualities or inten-

sities of sensations should be determined by taking as

unit-difference that which is just discernible in an act

of perception directed to the sensations as experienced.

It should be here noted that we are measuring psychical

entities, and not, as in the previous discussion, their

physical correlates. Fechner adopted the view that the

proper sensational magnitude, either of qualitative or

of intensive difference, was obtained by addition, in

which equal units were those which were just per-

ceptible. When he compared the resulting sensational

magnitude with the magnitude of the stimulus as

measured physically, he concluded that, while the sensa-

tions could be ranged in arithmetical progression, the

corresponding stimuli would form a geometrical pro-

gression. By means of an elementary mathematical

process it will be seen that this formula can be ex-

pressed by saying that the magnitude of the sensation
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varies as the logarithm of the stimulus. But this tech-

nical development is not our concern here. I wish

rather to draw attention to the extraordinary, and in

my view baseless, assumption that the just discernible

differences at the different points in a scale should be

taken to indicate equal addenda. If he had assumed

what appears to be more plausible that the just dis-

criminate qualities were those which bore a common
ratio to one another, the experimental results of Fechner

or Weber would have been most naturally expressed

in the formula that the sensational magnitude (cr) varies

in proportion to the magnitude of the physical stimulus

(s) measured from a certain constant (^0) : i.e.

<T = k{s- ^0),

where k is constant; instead of by the formula

So far from taking discriminability as equivalent to an

addendum, it is more plausible to consider it as equiva-

lent to a ratio\ For example, taking the visual magni-

tudes of four objects A, B, C, and Z?, if we can just

discriminate between the magnitudes of A and B and

also between those of C and I?, then it is reasonable

to infer that the ratio of B to A is equal to the ratio

of D to C, rather than that the addendum by which

B exceeds A is equal to the addendum by which D
' I am not here concerned with the accuracy of the experiments

made by Fechner, nor with his right to make the very wide induction

from the artificial nature and limited number of cases that he and
his successors have examined. I am referring merely to a logical and
not to a psychological question, namely, the justification for regarding

our power of discrimination as equivalent to our power of perceiving

additions of magnitude rather than ratios.
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exceeds C. This principle for measuring psychical

magnitude may be applied not only to cases of direct

sense-perception, but also to those in which we are

guided by general psychological considerations ; for

example, the difference of pleasure that we conceive

to be produced by two different increases of income

such as that from ^loo to ^200 and from ^1000 to

^iioo would not naturally be taken to be equal ; the

increase from ;^ioo to ;!^i 10 would rather be considered

the equivalent of the increase from ;^iooo to ^i 100.

§ 10. We now pass explicitly to the third funda-

mental kind of magnitude, namely intensive, which has

received considerable philosophical attention. Kant

regarded intensity as so to speak equivalent to existence

or reality, so that that which has greater intensity has

for him greater reality. The point in which this view

agrees with the modern theory is that intensity has a

terminus in the value called zero ; and it is in this

respect that the distinction between distensive and

intensive magnitudes is most clearly marked ; the mini-

mum or zero of distensive magnitude is identity, whereas

the minimum or zero of intensive magnitude is non-

existence. Another obvious distinction between the two

kinds of magnitude is that distensive magnitude is a

relation between determinates under some one given

determinable, whereas intensive magnitude holds within

each separate determinate, or even amongst different

qualities under the same determinable. Thus, with re-

gard to the comparative brightness of different hues,

we may predicate equal to, greater than or less than,

and so also with regard to the loudness of sounds of

different pitch. It is impossible, however, to compare
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two kinds of intensive magnitude such as the bright-

ness of a light sensation with the loudness of a sound

sensation ; all we can say is that a colour of zero

brightness would be non-existent, and a sound of zero

loudness would be non-existent. The subtle point then

arises whether the notion of zero-intensity of sound is

distinguishable from the notion of zero-intensity of

light. In popular language we might ask: Is there

anything to distinguish absolute silence from absolute

darkness ? I think that apart from an organ of sensa-

tion having potentialities as a medium for receiving

sensations we must say that zero-intensities are indis-

tinguishable ; it is only through the capacity of visual

and auditory imagery, and indirectly through the pos-

session of organs for conveying these two corresponding

kinds of sensation, that distinctions between zeros can

have for us any import.

§ II. In conclusion I have to explain why disten-

sive magnitudes have been confused on the one hand

with extensive and on the other hand with intensive

magnitudes. As regards the former, the confusion is

due to identifying the distensive magnitude of differ-

ence, say between the pitches Cand Gy with the stretch

including all the intermediary pitches. This stretch

illustrates what we have called an extensive whole
;

and, in so far as it can be measured, its measure would

be equivalent to that of the difference between C and

G\ i.e. its measure would be equivalent to that of a

distensive magnitude, but the natures of the two are

non-equivalent. As regards distensive and intensive

magnitudes, these agree in so far as they both apply to

qualities, and not obviously to things occupying a



174 CHAPTER VII

quantum of space or time or forming a linear or tem-

poral series ; but it is necessary to distinguish them

inasmuch as distensive magnitude requires the funda-

mental conception of different qualities which are yet

comparable; while intensive magnitude requires—what

has sometimes been paradoxically described as the

conception of a thing as merely qualitative, and yet as

susceptible of quantitative variation.

§ 12. Having distinguished different kinds of mag-

nitude, we have now to consider how magnitudes of

any given kind are to be compared; and we will begin

by the simplest kind of magnitude, viz. that which can

be predicated of a linear whole.

Mr Russell deliberately adopts the view that the

ultimate parts of a line are points, of which the number

may be assumed to be 2 exp j^, whatever be the magni-

tude of the line. In other words, any comparison of

one line with another in regard to magnitude depends

upon something other than the number of points which

the lines contain. Hence the magnitude of an exten-

sive whole, as illustrated by a line, cannot be estimated

in terms of pure or abstract number. In this respect

it is of a totally different nature from a class, the mag-

nitude of which is entirely determined by the number

of items it comprises, or by the number of exclusive

sub-classes into which it may be divided. It follows

then that magnitude, when applied to an extensive

whole, has a different meaning from magnitude when

applied to an extensional whole. For what I have

called an extensive whole Mr Russell uses the term

'divisible whole,' because the notion of dividing is

essential to our conception of the relation of part to
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whole, particularly in temporal and spatial applications.

But, in discussing the principle required for comparing

the magnitude of one line with that of another, he uses

the phrase ' magnitude of divisibility.' This phrase ap-

pears to me unfortunate inasmuch as it conveys no

meaning : entities may be distinguished according as they

do or do not possess the quality of divisibility ; and the

term magnitude is of course required when we discuss

whether one thing is greater or less than another. But

I fail to see how we can regard one line as being greater

than another on the ground that it possesses the quality

of divisibility in a higher degree. It is quite certain

that the number of parts into which a shorter line can

be divided is exactly the same as the number of parts

into which a longer line can be divided ; as also are

the number of points in the one and in the other. The
term 'magnitude of divisibility' therefore appears to

me merely to conceal what really is the problem in-

volved in comparing things having extensive magnitude

;

namely the conception of equality of magnitude.

§ 13. What do we mean by the question, or how
can we test, whether one given line or surface or bounded

three-dimensional figure is greater or less than another ?

Or again whether one stretch of hue or of pitch is

equal to or greater than another ? In general, for two

extensive wholes M and N of the same kind, ifM in-

cludes but is not included in N it will be agreed that

the magnitude of M is greater than that of A''; or

briefly, the relation of superincident to subincident,

whole to part proper, entails the relation of greater to

less. But, if the wholes M and N are coexclusive, then

no such test of equality or inequality can be directly
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applied ; and in order to compare their magnitudes in

this case, we must be able to find parts of M that can

be equated to one another as also to parts of N. This

would provide us with a unit magnitude, in reference

to which the magnitudes ofM and N could be numeri-

cally compared. If we further assume that the wholes

satisfy the strict criterion of continuity as defined by

Cantor, then the series of numbers rational and irra-

tional will provide means for comparative measurement

of all such magnitudes. On this assumption the only

problem that remains is the provision of a test or

definition of equality amongst unit parts. The possi-

bility of such a test must be separately examined for

the three cases of spatial, temporal and qualitative

stretches. As regards spatial wholes of one, two or

three dimensions, the classical method is that of super-

position, the validity of which must be carefully con-

sidered. It is obviously absurd to think of the parts of

space themselves as moving ; and hence the so-called

method of superposition can only have practical signi-

ficance when we distinguish the material occupant of

a place from the place which it occupies. When the

material occupants of space are superposed one upon

another, and the boundary of one is coincident with

that of the other, they are said to be conterminous ; and

when the boundary of one is subincident to that of the

other, they may be said to be partially conterminous.

Thus the outer boundary of a liquid and the inner

boundary of a closed receptacle which it fills are coinci-

dent ; and, in this case, the volume occupied by the

liquid is equal to the volume unoccupied by the receptacle.

Again, if any two bodies have a common two-dimen-
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sional boundary (which does not enclose a volume), then

the boundary of the one has the same areal magnitude

as that of the other ; and, if two bodies have a common
one-dimensional boundary, then the boundary of the one

has the same linear magnitude as that of the other. If,

moreover, several different bodies can in either of these

three ways be made conterminous with some one given

body, the volume, area or length of the corresponding

boundary of the one is equal to that of the other. But this

predication of equality assumes that the volume of the

receptacle, or of the areal or linear boundaries of the

superposed bodies remains unchanged ; and the assump-

tion that in the course of time a material body does not

change its spatial magnitude is in general invalid ; hence

there is no literally logical justification for asserting

equality or inequality in general, either with respect to

the same body in different places, or with respect to the

different places which the same body may occupy.

Science in this case relies upon the constancy (under

unchanged conditions) of the volume of certain bodies,

and uses these as standards by which the changes of

volume of other bodies are tested. In this process, we
are continually acquiring more precise knowledge of

causal conditions; but the final justification for com-

parisons of spatial magnitude is to be found in the

coherency or consistency with which the systematisation

of measurements and the construction of physical laws

can be developed. The conclusion follows then that no

directly logical test can be found, and we must be satis-

fied with the indirect principle according to which com-

prehensive universals are asserted on the mere ground

that they do not lead to appreciable inconsistencies.

J. L. II 12
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The problem of temporal magnitude, like that of

spatial magnitude, is met first by the axiom that events

that are conterminous at both ends have the same

temporal magnitude, and secondly by the postulate that

under identical causal conditions equal changes occupy

equal lengths of time. We then employ some physical

process, such as the movement of the hands of a watch,

in which the mechanical conditions can be estimated

with the closest approximation to exactitude, and adopt

as standard time-units the times occupied by the changes

thus effected. Conversely, where equal changes are

effected during unequal times, we infer that the causal

conditions are not identical. In all temporal changes,

the means by which we can measure such changes

as equal, itself depends upon the assumption that we

can measure certain spatial, distensive or intensive

magnitudes.

Turning now to qualitative magnitudes, we have to

consider by what method stretches of hue and pitch can

be quantitatively compared. Ifwe agree that the stretch

from A \.o E \s equal to that from C to 6^ in a scale of

pitches, this cannot be tested by any such method as

that of superposition, for there is no distinction here

corresponding to that between the place which is occu-

pied on the one hand, and that which is movable and

can occupy indifferently one place or another on the

other hand. If a qualitative stretch has magnitude, this

involves the assumption that stretches of the same kind

are comparable as greater or less. But how much
greater, or by what ratio the two are to be compared

must be determined, if at all, by some principle totally

different from superposition. Mathematicians who have
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written on this subject appear to agree in the view that

two magnitudes may be comparable as greater or less,

and yet not measurable in terms of number. But, if two

stretches are mutually excludent, I can see no sense in

which they can be compared as greater or less, unless

we have a test of equality; and, when such test is

forthcoming, a numerical measurement seems to me
immediately to follow. Numerical measurement is

not a merely arbitrary one-one correlation between

numbers and magnitudes : for such correlation could

only mean that for the greater magnitudes we apply

higher numbers, and the precise numbers which we
correlate would be absolutely arbitrary. Hence it

appears to me that if a specific one-one numerical

correlation has an objective ground, according to

which it is to be preferred to any other, this must

be because we have adopted some principle for de-

termining a correct quantitative unit. For example,

if we prefer the absolute measurement of tempe-

rature to the thermometric measurement as deter-

mined say by the changes of volume of mercury, this

is because we believe that the differences of tempe-

rature indicated by the former scale do correspond

to really equal differences of magnitude, whereas the

other does not. Readers of Clerk Maxwell's Heat
will learn that the absolute measurement of tempera-

ture depends upon measurements of heat and work,

which are complex quantities, being partly extensive

and partly intensive. In all such cases, where we can-

not directly measure a cause or an effect, we measure

it indirectly in terms of its effect or cause (as the case

may be).
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§ 14. The entities of which either extensive, disten-

sive or intensive magnitude can be predicated alone

may be termed simple or simplex, and from these kinds

of entity we now pass to those which may be called

compound or complex, on the ground that two or more

magnitudes are combined in our conception of the

quantity of the resultant complex. These latter may be

illustrated by light sensations, which vary intensively

according to their brightness, distensively as regards

their hue, and in yet a third respect according to the

proportion in which the chromatic and achromatic factors

are combined to produce different degrees of saturation.

Similarly sound sensations vary intensively according

to their loudness, distensively as regards their pitch,

and as regards timbre or klang-tint in accordance with

the proportional intensities of their constituent tones,

under-tones and over-tones. It is convenient to speak,

then, of light and sound sensations as three-dimensional,

in the sense that there are three distinct determinables

under which any such sensation can be defined and

quantitatively estimated. But the simplest case of a

three-dimensional quantity is space. In space we may
take three arbitrary directions ; and, according to the

ordinary view, the magnitudes (i.e. lengths) along these

directions have the unique characteristic of being com-

parable. Any point in a space of three dimensions is

therefore assignable by three ordinates drawn in deter-

mined directions from a given point as origin. In this

way a surface in three dimensions, or a line in two

dimensions, differs from what is called a graph, in that

the magnitudes represented by the ordinates of a point

in the graph are of different kinds and therefore incom-
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parable. For example: a graph representing the co-

variation of work done and hours expended uses two

incomparable magnitudes.

The general topic which we have now to consider

is that of a derived quantity that is constructed by some

kind of combination of other quantities. I n constructing

a quantity comparable with each of those combined, the

processes of addition and subtraction can alone be

applied; and, conversely, addition and subtraction can

only be applied to comparable quantities. Such addition

and subtraction may be termed concrete, in antithesis

to abstract in which pure numbers are concerned whose

sum or difference is also a pure number. Now I shall

maintain that processes analogous to multiplication and

division may be employed in constructing a quantity of

a different kind from any of those that are combined in

its construction ; and such multiplication or division

may also be called concrete. Thus, considering first the

three notions of length, area, and volume, I shall say

that the multiplication of two differently directed lengths

constitutes an area, and that of three differently directed

lengths constitutes a volume. Here we are extending

the operation called multiplication beyond its primary

use. For, while it is universally agreed that we may
multiply a pure number by a pure number, in con-

structing another pure number, or a quantity of any

kind by a pure number, in constructing a quantity of

the same kind, yet most mathematicians have refused

to allow that by multiplying one quantity by another

we may construct a third quantity different in kind from

both the quantities multiplied. They maintain that what

is multiplied is the numerical measure of the quantities
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and not the quantities themselves. Similarly with regard

to division: it is agreed that we may divide a pure

number by a pure number in constructing another pure

number, or a quantity of any kind by a pure number in

constructing a quantity of the same kind; but we are

prohibited from dividing one quantity by another in

constructing a quantity different in kind from the quan-

tities divided. In this case too, the so-called division

is regarded as a division not of the quantities but of

their numerical measures. My first objection to this

view is that it offers no means of distinguishing between

the multiplication or division of a quantity by a pure

number, which yields a quantity of the same kind, from

that very different kind of multiplication or division

which yields a quantity different in kind from those

multiplied or divided. My disagreement, however, with

the almost unanimous opinion of mathematicians may
perhaps be considered merely verbal ; but the view that

I maintain is, I think, based upon an important logical

principle. Apart from any conception of numerical

measurement which adopts numbers, integral, rational

and irrational, it appears to me that we must conceive

the process of multiplying say a foot by an inch (which

involves no idea of number) as a construction by which,

from two magnitudes of the same kind, a third magni-

tude of a different kind is derived. If no such magni-

tude were presented to perception or thought, it would

follow that no meaning could be attached to such multi-

plication ; but, inasmuch as an area is a genuine object

of thought construction, I see no insurmountable objec-

tion to speaking of the process of multiplication as that

by which area, for instance, is constructed out of two
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directed lengths, or volume out of three. The mathe-

maticians who reject this idea hold that the notion

of units of different kinds is sufficient, without intro-

ducing the multiplication or division of units. It is

agreed that the area of a rectangle whose sides are of

unit length is a unit area, and the volume of a cube

whose sides are of unit length is a unit volume. In this

way the numerical measures of area and volume are ob-

tained by multiplying the numerical measures of their

sides; but in my view we must allow that the lengths

themselves are multiplied, for otherwise we could not

distinguish the different kindsof magnitudes constructed,

since where only abstract numbers are concerned only

abstract numbers are constructed, and there is nothing

to indicate the difference between one quantity thus

derived and another. Passing from concrete multipli-

cation to concrete division we have what may be thought

a more interesting and certainly a wider application of

the same general principle. Those quantities which are

derived by dividing one kind of quantity by another

may be called rate-quantities, or in certain cases degree-

quantities. A rate-quantity is expressed in familiar

English by the Latin word per, of which it is easy to

multiply examples: e.g. space traversed per second,

wages earned per hour, pleasure experienced per minute,

pressure per square foot, mass per cubic foot. The two

constituent quantities in this kind of division may be

themselves complex or of different kinds, extensive,

distensive or intensive ; but so far as the conception of

concrete division is concerned, no logical distinctions

are required in analysing the general notion of a rate-

quantity. Each of the rate-quantities constructed by
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this species of division is a quantity of a different kind

from the quantities of which it is constituted; and, as in

multipHcation, it is always useful for arithmetical pur-

poses to adopt as the derived unit-quantity that which

is constructed out of fundamental unit-quantities. The
general term 'rate' which I have introduced is incommon
use: thus we mean by the rate of wages the quantum

of wages earned per unit of time, by the rate of speed

the quantum of length traversed per unit of time, and

by the rate at which pleasure is being experienced, the

quantum of pleasure per unit of time—these being cases

in which the rate is estimated in reference to time.

Again the rate called hydrostatic pressure is the quantum

of pressure per unit of area; the rate called density is

the mass per unit of volume. The term degree, which

is sometimes used instead of rate, is ambiguous inas-

much as it is often used as equivalent to intensity ; but

the terms rate and intensity or degree ought to be

clearly distinguished, because the notion of intensity

refers to a single determinate quality, whereas rate is

always constituted out of two distinguishable quantities;

moreover the notion of rate, which involves concrete

division, is always correlated with concrete multiplica-

tion. For example velocity, i.e. rate of movement, which

involves the division of space by time, involves the

converse process of multiplying velocity by time in

constructing space. But if we conceive of velocity

only by its numerical measure, confusion results be-

tween an abstract number on the one hand and the

very many different kinds of quantity on the other

hand that may be measured by the same abstract

number.
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§ 15. The practical importance of recognising con-

crete multiplication and division is best indicated by-

explaining what is meant by the algebraical dimensions

of a quantity. We have already spoken of dimensions

in its geometrical sense; thus an area is of dimension

two in regard to length, a volume of dimension three in

regard to length. Symbolising the dimension length by

[Z] that of area is symbolised by [Z^] and that of volume

by [^^]. Similarly velocity, i.e. length per time, is di-

mensionally p=^ or [Z] . [7^~^]; acceleration, i.e. velocity

per time is \_L^. [^~T; density, i.e. mass per volume is

YiA' ^'^' [-^J-C^Tj momentum, i.e. massxvelocity

is [^][Z][^T; force, i.e. mass x acceleration is

[yJ/]. [Z]. [7""^J; hydrostatic pressure, i.e. force per

area is [yl/] . [Z~^] [7""-], etc., etc. Now the one rule as

regards dimensions is that the additions and subtractions

that are involved in a quantitative equation must always

operate upon homogeneous quantities; i.e. upon quan-

tities all of which have the same dimensions—these

dimensions being generally expressed in terms of the

three fundamental incomparables mass, length, and time.

Regarding multiplication and division, in accordance

with my view, as real operations performed upon con-

crete quantities, the square bracket in the above symbols

stands for a concrete unit. For example the velocity

r ^ 1 » 320 ft. 16 ft. 16 c
' ^20 teet per 60 seconds means ^ = = — 01^ 60 sec. 3 sec. 3

unit velocity. Those mathematicians who hold that

such an expression as ft.-=-sec. is meaningless have to

maintain that the mathematical equations which are
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used to express physical facts are concerned only with

the numerical measurement of concrete quantities,

whereas I hold that they are concerned with the concrete

quantities themselves.

§ 1 6. There is one very unique case in concrete

division, viz. where the dividend and divisor are quan-

tities of the same kind. In general the result of such

division is to construct a pure ratio, i.e. a magnitude

which, when entering as multiplier or divisor of a quan-

tity of any kind yields a quantity of the same kind, like

the processes of addition and subtraction of quantities.

But when a length is divided by a length, or an area by

an area, we often intend the result of such division to

represent an angle. It is therefore necessary to dis-

tinguish those cases in which the division of a length

by a length represents a mere ratio, from those in

which it represents an angle. In the former case, the

quotient being a pure number can be used as a multi-

plier or divisor for a quantity of any kind whatever;

but in the latter case this is never possible; one angle

can only be mathematically combined with another

angle, and this only by the operation of addition or of

subtraction. The further complication in respect of the

measurement of an angle is that this measurement may
be used in different algebraical applications alternatively

either as an abstract ratio or as a concrete quantity, which

is denoted by the term angle. But the special question

which, in my view, requires a clear answer is how to

distinguish the process of dividing length by length that

yields a mere ratio, from what appears to be the same

process and yet yields an angle. The answer seems to

be that when we are merely comparing two lengths
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which may be said to be dissociated, their comparison

yields a mere ratio, while when connecting two asso-

ciated lengths in the process of division, we are con-

structing an angle. Thus, when we define the magni-

tude of an angle by the ratio of the arc of a circle to its

radius, the arc and the radius are associated in our con-

ception of the mode in which the angle is constructed;

but when we are merely comparing the length of one

linewith thatof any other, no natural association between

the two lines is involved. The same holds of the dif-

ferential coefficient dy by dx, when used in geometry

to represent the slope of a tangent of a curve, which is

a concrete quantity in the same sense as the quotient

foot by second representing velocity.

§ 17. To sum up: Of the different kinds of magni-

tude, the first division is between abstract and concrete,

abstract magnitudes being represented by pure numbers,

these falling into the three divisions of integral, rational

and irrational. Amongst concrete quantities—namely

those that involve conceptions obtained from special

kinds of experience, and which are therefore not purely

logical—we distinguish the fundamental or primitive

from the complex or derivative; the former being sub-

divided into extensive, distensive and intensive magni-

tudes, out of which the various derived or complex

quantities have been shown to be constructed by opera-

tions analogous to arithmetical multiplication and divi-

sion. These complex magnitudes fall again into different

kinds, the distinctions between which may be always

indicated by expressing the quantity dimensionally, i.e.

as involving a concrete product of different fundamental

quantities, each entering with a positive or negative
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index. Finally a fundamental distinction has been drawn

between addition or subtraction on the one hand and

multiplication or division on the other; inasmuch as the

quantities added or subtracted must be of the same kind,

i.e. represented as dimensionally equivalent; whereas

the operations of multiplication and division yield a

quantity different in nature from its factors, which,

however, together determine its nature. Throughout

the whole discussion of concrete magnitudes, the diffi-

cult problem of defining or testing equality has been

examined for each fundamentally distinct kind of quan-

tity. The treatment has been comparatively elementary,

the reader being referred for more subtle distinctions

and analyses to works which deal primarily with mathe-

matics and its philosophy.
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INTUITIVE INDUCTION

§ I. Induction in general may be contrasted with

deduction in that for a universal conclusion deduction

needs universal premisses, whereas in induction a uni-

versal conclusion is drawn from instances of which it is

a generalisation. Here the emphasis is upon the word

instances, because although the customary account of

deduction is that the range of the conclusion is identical

with that of the narrowest of the premisses, yet de-

duction must include cases in which the range of the

conclusion is not identical with that of any one of the

premisses, and may even be wider than the widest of

them. Actually the antithesis between inductive and

deductive inference is not so fundamental as that between

demonstrative and problematic inference ; for every

form of induction, except the problematic, is based upon

the same fundamental principles (and these alone), as

syllogism and other forms of deduction ; whereas it is

impossible to establish a theory of problematic induc-

tion, without recourse to certain postulates that are not

involved in either form of demonstration, whether de-

ductive or inductive. Now the fundamental principles

which underlie demonstrative forms both of induction

and deduction are themselves based upon a kind

of inference which may be called intuitive induction.

This process is not limited to the establishment of the

principles of demonstration, but applies also to certain

material as well as formal generalisations.
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We have so far referred to two types of induction,

viz., intuitive and demonstrative ; it will be convenient

to distinguish in all four varieties, namely intuitive,

summary, demonstrative and problematic. Of these

the three former will be discussed in the present Part

of this work, but problematic induction will be examined

in detail in a separate Part, on the ground, specified

above, of its dependence upon special postulates.

§ 2. Before treating the main topic of this chapter,

we must discuss the necessarily preliminary process

known as abstraction, the nature of which was a special

subject of philosophical and psychological controversy

amongst James Mill and his contemporaries. The dis-

cussions of that date started from the supposition that

what was presented in our earliest acts of perception

was a combination of impressions from different senses,

such as those of sight and touch. From this pre-

supposition, upon which both parties were agreed, the

difficulty was raised as to how the percipient could

single out an occurrent impression of one sense from

the concurrent impressions of other senses. This pre-

supposition, however, is fundamentally mistaken. For,

in fact, our earliest acts of attention, which yield any

product that could be called a percept, are directed to

impressions of one sense at one time, and to impressions

of another sense at another time. For example, the

child when interested in the colour of a ball, is attending

to his visual impressions apart from any motor or tactual

sensations that he may be experiencing in handling

the ball ; that is to say, his attention is from the first

exclusive, and it is only in further progress of attentive

power that his attention becomes inclusive. The atten-
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tion that includes visual with tactual impressions is a

higher and later process than the attention which is

directed either exclusively to the visual impressions or

exclusively to the tactual impressions. The fact that

we can and do attend to impressions of one order in

disregard of concurrent impressions of other orders,

explains how our primitive perceptual judgments, from

the first, assume a logically universal form. For, in

predicating a determinate colour, for instance, of any

given impression, there is a recognition that the same

determinate can be predicated of all impressions which

agree with the given impression in respect of colour,

however much they may disagree in other respects.

Now, if this be granted, it has an important bearing

upon another serious historical controversy—namely

that between Mill and his opponents as to the founda-

tions of geometry. Both parties to this dispute started

with an obscure view, that there was an opposition

between intuition and experience ; whereas in truth

intuition is a form of knowledge, in relation to which

experience is the matter. The intuitionists seem to

have held that the intuitive form of knowledge involved

no reference to experience ; whereas the empiricists

forgot, when relying upon experience as the sole factor

in knowledge, that knowing is a mode of activity, and

therefore not of the same nature as sense-experience

which is merely passive or recipient. The truth is that

when we have asserted a predicate of a particular, we
have apprehended the universal in the particular, in the

sense that the adjective is universal and the object of

which it is predicated is particular.

§ 3. There is another sense in which we may be
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said directly to apprehend the universal in the par-

ticular, namely in regard to certain classes of proposi-

tions, where the terms universal and particular apply

to the propositions themselves, and not to the distinc-

tion between the subject and the predicate within the

proposition. It is at this stage that we pass, in our

discussion, from abstraction to our main topic, viz.,

abstractive or intuitive induction. The term intuitive

is taken to imply felt certainty on the part of the

thinker ; and it is characteristic of propositions estab-

lished by means of intuitive induction that an accumu-

lation of instances does not affect the rational certainty

of such intuitive generalisations. The procedure by

which these generalisations are established may be

shown by psychological analysis to involve an inter-

mediate step by which we pass from one instance to

others of the same form and in this passage realise

that what is true of the one instance will be true of all

instances of that form.

§ 4. Two types of intuitive induction may be dis-

tinguished, experiential and formal, although these types

are not precisely exclusive of one another.

The experiential type of intuitive induction may be

illustrated from our immediate judgments upon sense-

impressions and the relations amongst them. For

example, in judging upon a single instance of the

impressions red, orange and yellow, that the qualitative

difference between red and yellow is greater than that

between red and orange (where abstraction from shape

and size is already presupposed) this single instantial

judgment is implicitly universal ; in that what holds of

the relation amongst red, orange and yellow for this
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single case, is seen to hold for all possible presenta-

tions of red, orange and yellow. Again in immediately

judging that a single presented object, whose shape is

perceived to be equilateral and triangular, is also equi-

angular (where abstraction from colour and size is pre-

supposed) we are implicitly judging that ^//equilateral

triangles are equiangular. Similarly when judging for

a single instance that the sounds A, C, F, produced,

say, from the human voice, are in an ascending scale

of pitch, we are implicitly judging that all sounds

—

apart from differences of timbre or loudness such as

those produced by the violin or piano—that can be

recognised as of the same pitches A, C, JF, are also in

an ascending order of pitch. The universality of these

experiential judgments extends over imagery as well

as sense impressions : the fact that we can identify a

specific image as corresponding to a specific impression

is sufficient to enable us directly to transfer our judg-

ments about the relations amongst impressions to those

amongst the corresponding images. These elementary

illustrations show that intuited universals about colours

and pitches are of the same epistemological nature as

those about geometrical figures, in that the judgment

upon a single presented instance is sufficient for the

establishment of a universal extending in range over

imagery as well as impression.

§ 5. Passing now to other experiential judgments,

which are not merely sensational, we may illustrate

intuitive induction from introspective judgments.

For instance, when I judge that it is the pleasure of

this or that experience which causes me to desire it,

I am implicitly universalising and maintaining that the

J. L. II 13
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pleasure of any experience would cause me to desire

it. And again, when I judge that the greater resultant

desire for one possible alternative than for any other

causes me to will that alternative, I am judging that

this will hold for all my volitional experiences. An
important sub-class of experiential judgments which

are intuitively inductive consists of moral judgments.

Thus, when anyone judges that a certain act charac-

terised with a sufficient degree of precision is cowardly,

or dishonest, or generous, he is implicitly judging that

all acts of the same specific character would be charac-

terisable by the corresponding moral attribute. That

this is not a case of mere abstraction is clear when we
consider that the characteristics used to define the

nature of the action are other than ethical, and that

the judgment is therefore synthetic. This intuitive

aspect of moral judgments assumes importance as re-

conciling the two forms of ethical intuitionism to which

Sidgwick refers as Perceptual and Dogmatic, the first

of which stands for the particular, and the second for

the universal, intuition. For, in my view, the Dogmatic

form of intuition is not genuinely intuitive except so

far as it is based on the Perceptual. Instead, therefore,

of distinguishing moralists according to what they hold

to be the nature of an ethical intuition, it is more im-

portant to distinguish them according as they base

their doctrine upon genuinely intuitive judgments, e.g.

Kant ; or upon judgments accepted on authority as

expressions of the voice of God, e.g. Butler.

§ 6. The gulf between experiential and formal

intuition is bridged by considering certain intermediary

forms of intuitive apprehension in which, according as
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the range of universality increases, we depart further

from the merely experiential and approach nearer to

the merely formal type. A typical case is the merely

experiential judgment that red and green cannot both

be predicated of the same visual area by one person

at one time. The judgment is first universalised when

the experient sees that the same holds of all cases of

the specific determinates red and green. But this judg-

ment almost immediately passes into the wider universal

that any two different determinates under the deter-

minable colour are similarly incompatible. And when

lastly the experient extends the range of his judgment

to all determinates, he has reached a formal intuition,

namely that any two different determinates under any

determinable are incompatible.

To this formal type of intuition belong all intuitively

apprehended mathematical, as well as purely logical,

formulae. For instance, the algebraical formula known
as the Distributive Law is intuitively reached in some

such way as this : perceiving that

3 times 2 ft. + 3 times 5 ft. = 3 times (2 ft. + 5 ft.)

we immediately realise that

4 times 7 days + 4 times 9 days = 4 times (7 days + 9 days),

and in this step we are virtually apprehending the Dis-

tributive Law symbolically expressed thus

:

n times P-\-n times Q^n times (P+Q)

where n stands for any number, and P and Q for any

two homogeneous quantities.

A logical example of a similar nature is the formula

of the simple conversion of particular affirmative pro-

positions. This is reached by perceiving, for instance,

13—2
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that 'Some Mongols are Europeans' would Imply that

'Some Europeans are Mongols,' and at the same time

that

'Some beings incapable of speech have the same
degree of intelligence as men' would imply that 'Some
beings having the same degree of intelligence as men
are incapable of speech.'

This leads to the virtual apprehension of the universally

expressed implication:

'Some things that are / are q' would imply that

'Some things that are q are/'

where/ and q stand for any adjective.

§ 7. This example of the establishment of logical

formulae by means of intuitive induction has an educa-

tional importance in correcting a certain prevalent con-

ception of the function of logic. What is called formal

or deductive logic is usually taught by first presenting

general principles in a more or less dogmatic form, with

the result that the learner is apt to use these principles

merely as rules to be applied mechanically in testing

the validity of logical processes. I nstead of leading him

to conceive of these rules as externally imposed impera-

tives, an appeal should be made to him to justify all

fundamental principles by the exercise of his own
reasoning powers; and this exercise of power will in-

volve the process of intuitive induction.



CHAPTER IX

SUMMARY (INCLUDING GEOMETRICAL) INDUCTION

§ I. The term summary induction is here chosen

in preference to what, in the phraseology of the old

logicians, was called 'perfect induction,' to denote a

process which Mill regarded as not properly to be called

induction ; on the ground that the conclusion does not

apply to any instances beyond those constituting the

premiss. Mill's contention can certainly be justified in-

asmuch as the process involves precisely the same

logical principles, and these alone, that govern ordinary

deduction. In fact, the process of summary induction

may be expressed in the form of a syllogism in the first

figure. For example

:

Major' Premiss. ' Sense and Sensibility' and ' Pride

and Prejudice' and 'Northanger Abbey' and 'Mansfield

Park' and 'Emma' and 'Persuasion' deal with the

English upper middle classes.

Minor Premiss. Every novel of Jane Austen is

identical either with 'Sense and Sensibility' or with

'Pride and Prejudice ' or with ' Northanger Abbey ' or with

'Mansfield Park' or with 'Emma' or with 'Persuasion.'

Conclusion. .'. Every novel of Jane Austen deals

with the English upper middle classes.

Here the enumeration standing as subject in the major

premiss is the same as the enumeration standing as

predicate in the minor premiss. But, in the former,

reference is made to every one of the collection, in the
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latter to some one or other. This precisely corresponds

to the characteristic of first figure syllogism ; namely

that the middle term is distributed as subject of the

major and undistributed as predicate of the minor. In

text-book illustrations, of perfect induction the minor

premiss is almost invariably omitted, because the illus-

trations chosen—such as the Apostles or the months of

the year—are so familiar that the completeness of the

enumeration is assumed to be known by every ordinary

reader and therefore does not require to be expressed

in a separate minor premiss. The same process is

exhibited by an example in which each of the items

enumerated is a universal instead of being a singular :

Every parabola and every ellipse and every hyper-

bola meet a straight line in less than 3 points.

Every conic section is either a parabola or an ellipse

or a hyperbola.

.'. Every conic section meets a straight line in less

than 3 points.

§ 2. Another case of perfect induction, which has

specific bearing upon induction in general, may be

expressed symbolically in the following syllogism:

s^ and ^"2 ... and s^ are/.

Every examined case of m is identical either with

i-j or with ^2 ••• or with s^.

.'. Every examined case oi m is/.

A summary or perfect induction of this form is the

necessary preparatory stage in gathering together the

relevant instances for establishing an unlimited generali-

sation. For the conclusion thus obtained, constitutes the

premiss from which we directly infer, with a higher or

lower degree of probability, that 'Every case of ;;^ is/.
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Whewell pointed out the importance and difficulty of

discovering ' the concept / under which the instances

are colHgated.' He, in agreement with other critics of

Mill, accordingly held that the process of induction was

completed in the discovery of this colligating concept,

on the ground that this process alone required some-

thing like genius to perform, while it is the easiest

thing in the world to pass from every examined instance

to every instance. Mill, on the other hand, considered

that this process only supplied the requisite premiss for

a genuine inductive inference. To illustrate his view,

Whewell had chosen Kepler's famous discovery of the

formula for the orbit of the planets, and it was towards

this illustration that Mill directed his criticism. Ex-

pressed in terms of the above used symbols.

Let nt stand for *positionsofa certain moving planet,'

^1, ^2 ... 5,1 ,, ,, 'the several observed positions,'

and p ,, „ 'being a point on a certain ellipse.'

The syllogism which expresses the process of perfect

induction used by Kepler will then be as follows:

'Each of several observed positions is a point on
a certain ellipse.

' Every examined position of a certain moving planet

is identical either with one or with another of these

several observed positions.'

.'. 'Every examined position of the moving planet

is a point on that ellipse.'

This formula had not been discovered by any previous

astronomer, and, on the grounds already assigned,

Whewell maintained that the discovery constituted the

completion of the induction. To this Mill demurred,

because by induction he meant a process in which the
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conclusion is an unlimited universal extending beyond

examined instances ; he, however, failed to observe that

Kepler had actually gone beyond the examined instances

and had described the complete orbit of the planet by

inferring that what held of the examined positions

would hold of all the interpolated positions. Kepler

had thus unconsciously made a genuine induction in the

sense required by Mill. Whewell was concerned with

the art of discovery, and therefore held that the essen-

tial factor in induction was the discovery of the colli-

gating concept; whereas Mill was concerned with the

science of proof, and therefore held that the essential

factor in any induction (that was not merely formal or

demonstrative) was the inferential extension from ex-

amined to unexamined instances.

§ 3. Having illustrated the process of summary (or

perfect) induction by familiar examples, in which the

conclusion applies to a finite number of cases which are

enumerable, we proceed to consider a more interesting

type of summary induction in which the conclusion

applies to an infinite number of cases which are non-

enumerable. This type occurs in geometrical proofs of

geometrical theorems, and has been more or less con-

fused on the one hand with merely intuitive, and on the

other hand with problematic induction. It differs, how-

ever, from the former in that its conclusion cannot be

reached from an examination of one or of a few instances;

and from the latter in that the conclusion does not

extend beyond the range of the examined instances

—

these being apprehended in their infinite totality.

It is well known that there are two modes by which

geometrical theorems may be proved, viz. 'analytical'
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and 'geometrical.' Strict analytical proof has the same

logical character as algebraical proof, and comes under

the head of functional deduction. Such proofs do not

require the aid of geometrical figures. But the geo-

metrical method of proof depends essentially upon the

use of such figures. It may further be pointed out that

the analytical method has an indefinitely wider scope

than the geometrical. For example, by employing mere

analysis we can construct spaces of various different

forms other than Euclidian; and certainly a geometrical

method would be impossible except as applied to our

space which is presumed to be Euclidian. The actual

procedure in constructing any non-Euclidian space is to

bring forward some four or five axioms which must be

{a) independent of one another, and (<5) mutually con-

sistent. These axioms, however, are not put forward

categorically, but purely hypothetically ; it follows, there-

fore, that the theorems which, for convenience are said

to be deduced from the axioms, should be more strictly

said to be implied by the axioms. Such systems, there-

fore, are throughout implicative and not inferential. In

other words, a supposed space, definable by any chosen

set of axioms, would have such and such other charac-

teristics which these axioms would formally imply. On
the other hand, the geometrical method is a method of

proof or inference, inasmuch as we accept its conclusions

as true only because we have accepted its axioms as

true.

§ 4. We must therefore examine the process by

which the axioms of geometry are established. These,

qua axioms, are not reached by deduction ; and, since

they are universal in the specific sense that they apply
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for an infinite number of possible instances, it would

seem that some form of induction is required for their

establishment; unless we adopt the view that they are

obtained by a process which embraces all possible cases

in a single act of direct intuition. This latter appears

to be the view of Kant who held, as regards geometry,

that our intuitions are from the first universal, and that

they therefore function as premisses for deducing any,

or any other, given case.

In order to examine this question let us take the

familiar axiom conveniently expressed in the form:

' Two straight lines terminating at the same point cannot

intersect at any other point.' This is the most important

axiom which does not hold of non-Euclidian spaces in

general. Independently, however, of the nature of any

other kind of space, the axiom certainly represents the

manner in which we actually intuite our space, whether

falsely or truly. Now this axiom, in its universality,

can be established only by means of imagery and not

by mere perception; for the compass over which the

axiom holds is beyond the range of actual perception.

For in the first place it is only through imagery that we
can represent a line starting from a certain point and

extending indefinitely in a certain direction ; and, in the

second place, we cannot represent in perception the

infinite number of different inclinations or angles that

a revolving straight line may make with a given fixed

straight line. We may, however, by a rapid act of

ocular movement represent a line revolving through

360° from any one direction to which it returns. In this

imaginative representation the entire range of variation,

covering an infinite number of values, can be exhaus-
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lively visualised because of the continuity that charac-

terises the movement. It is only if such a process of

imagery is possible that we can say that the axiom in

its universality presents to us a self-evident truth. It

is therefore this species of summary induction that is

employed to establish geometrical axioms—differing, as

explained above, on the one hand from mere intuitive

induction, inasmuch as one or a few specific cases would

not constitute an adequate premiss ; and, on the other

hand, from induction in Mill's specific sense, since the

conclusion does not go beyond the premisses taken in

their totality.

§ 5. I shall further maintain that if, in the course of

a geometrical proof which may involve several succes-

sive steps, the perception or image of a figure is required

for any single step, this is because we have to go

through precisely the same process of summary induc-

tion, embracing an infinite number of specialised cases

of which the figure under inspection is one—all of these

being included in the subject of the universal conclusion

to be proved at that step. Speaking generally, in any

one demonstrative step, the major premiss is a universal

previously established, and from this universal major it

is required to establish a new universal conclusion. It

is obvious that this can only be done by means of a

universal minor; and it is in the establishment of the

universality of the minor that consists the logical func-

tion of the figure. The arbitrarily chosen figure under

inspection can only be used as a minor term to prove

the conclusion about that single figure; and hence, to

obtain the required universal conclusion, the minor

must be universalised by the same logical process that
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is used for establishing the explicit axioms. Now the

Euclidian geometry might have been established by

purely analytical methods
;
provided first, that a sufficient

number of axioms had been explicitly formulated ; and

secondly that each of these axioms had been established

for itself by the process of summary induction. Such

an analytical system would dispense with the use of

figures as objects either of perception or of imagery in

the course of the proofy these being only required in the

process of establishing the axioms themselves.

To show by specific illustration how the geometrical

proof uses a figure, we will select a very frequently

assumed, but not explicitly stated axiom, which, in

Euclid's proofs is required to supplement the explicit

axiom ' the whole is greater than its part,' or more

precisely, 'the whole is equal to the sum of its parts.'

Before this explicit axiom can be used, we must be

satisfied that the two elements of the figure, one of

which is to be greater than the other, do stand in the

relation of whole to part. The axiom to which I refer

is actually employed by Euclid and most geometricians

in the propositions numbered 5, 6, 7, 16, 18, 20, 21, 24,

and 26 in Euclid, Book I. It may be formulated as

follows : The angle sub-

tended at any point by a

part of a line is part of the

angle subtended by the

whole line.' If the reader

is not familiar with this

new axiom, he must go

through a process in which he imagines a line revolving

in a plane through a point (O) from some initial direc-
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tion (OA) to a final direction (OC), so that it will

intersect the whole line {AC) in a series of successive

points. In this way, and in this way alone, can he

accept the universality of the required conclusion that

the angle AOC is greater than the angle A OB. In

Euclid's theorems enumerated above it will be found

that this axiom is required in every case to establish

the conclusion that a certain angle is greater than

another ; and that this conclusion is a necessary step in

the further progress of each proof

Geometrical induction involves, in addition to the

summary process above explained, two further pro-

cesses which are of the nature of intuitive induction,

as explained in the preceding chapter. Of these two,

the first is concerned with absolute position, the second

with absolute magnitude. Thus, having reached a

universal by summary induction limited to figures oc-

cupying a certain position, it is by intuitive induction

that we pass to figures of the same specific shape and

magnitude occupying any other possible position ; and

again from a figure imaged as having a certain magni-

tude, to figures of the same specific shape but of any

other possible magnitude. I have described these two

processes as of the nature of intuitive induction, in

which we universalise by abstracting from variable

position and from variable magnitude ; but they might

otherwise be regarded as involving the conception of

position and magnitude as being—not absolute—but

relative to the percipient's own position and to his dis-

tance from the figure depicted in imagination.

§ 6. Having illustrated the proper use of the geo-

metrical figure, we shall proceed to illustrate what may
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be called its abuse ; and give, by means of a figure, an

alleged proof that every triangle is isosceles :

To prove that every Triangle is Isosceles.

Let the bisector of

the vertical angle A
meet the perpendicular

bisector of the base^C,
whose middle point is

D, at the point O. Join

BO, CO, and draw OE
perpendicular to AC,
and OF perpendicular

to AB. Then,

(i) the triangles BOD, COD, are congruent; for

BD = CD ; OD is common ; and
LBDO= L CDO;

.'. BO = CO.

(2) the triangles AOE, A OF, are congruent; for

A0\^ common; L OAE= L OAF; and

L OEA = L OFA ;

.-. AE = AF?.nA OE=.OF.

(3) the triangles COE, BOF are congruent; for,

by (i) CO = BO', and by (2) OE=OF', and

hence CO' - OE' =Ba - OF'-,

i.e. (since CEO and BFO are rt L ) CE' = BF^.

Hence, by (2) AE = AF2.nd, by (3), CE =BF;
.'. by addition AC=AB. q.e.d.

Here we see that the axiom : 'the whole is greater

than its part' is used in its more precise form, 'the

whole is equal to the sum of its parts.' Now before we

can state as regards the straight line AFB, that

AB =AF+FB,

we must be sure that AF, FB are really parts of AB;
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whereas if F was beyond AB^ then AF would be the

whole and AB, BF would be its parts.

The fallacy incurred in this proof arises from the

mistaken intuition that the bisector of the vertical angle

A meets the perpendicular bisector of the base BC at

a point O inside the triangle. By drawing an incorrect

figure and thus convincing ourselves of the false con-

clusion, we had unconsciously universalised from the

figure before us that for every case the two bisectors

would meet at a point within the triangle, this being in-

dicated in the figure as drawn. In other words, we have

swallowed the relation presented in the drawn figure

as being universalisable, without having gone through

the necessary summary induction.

We may proceed to draw the corrected figure.

From this we reach, as before, the two conclusions

AE= AF2SiA CE=^BF.

But now we see that

AC=AE^-EC,
while AB = AF-BF.
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Euclidian demonstration professes to be based on

pure reasoning, in such a manner that the figure may-

be drawn quite inaccurately, and yet the force of the

proof be equally cogent. But it may happen, as in the

case before us, that the figure is drawn with a degree

of inaccuracy which affects the proof; because the

particular demonstration, involving unconscious refer-

ence to the figure drawn, has been illegitimately uni-

versalised.

§ 7. My explanation of the logical function of the

figure in geometrical demonstration differs fundamen-

tally from that put forward by Mill, who maintains that

it is by parity of reasoning that what is apprehended

to be true for the one drawn figure, is apprehended to

be true for any other figure (within the scope of the

conclusion). But the passage from the demonstration

for one case to that for any other case can only be said

to exhibit ' parity of reasoning ' when the two demon-

strations have the ssxii&form. Taking for example the

two demonstrations :

(i) every m is/; this S \s m; therefore this S isp]

(2) every misp; that S \s m; therefore that S'lsp;

we may certainly pass by parity of reasoning from (i)

to (2) inasmuch as both arguments are of the same

form, the words 'this' and 'that' indicating difference

in matter. In ascribing the same form to (i) and (2),

what is meant is that the relation of implication between

the premisses and conclusion of the one is the same as

that between the premisses and conclusion of the other.

But in order to use an implication for the purposes of

inference, we should have to assert ' This S \s m' for
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case (i) and 'That S is m' for case (2); for although

the relation of implication is the same in the two argu-

ments, it does not follow from having asserted the

minor of the one that we can, on this ground, assert

the minor of the other. Now, in order to establish

the required conclusion 'Every 6" is /' we must first

establish the universalised minor 'Every S is m.' No
reasoning process (in the accepted meaning of the

term) would enable us to pass from the case 'This S is

7n' to 'That S is m' and to 'That other S is m' ad

infinitum ; and the only mode of establishing the re-

quired universal minor 'Every S is in is through some
process of induction, the nature of which we have been

describing.

J. L.

"

14



CHAPTER X

DEMONSTRATIVE INDUCTION

§ I. Having so far examined intuitive and summary
induction, we now pass to the third type of inductive

inference distinguished at the outset, namely demon-

strative induction. As its name suggests, this form of

inference partakes both of the nature of demonstration

and of induction. It includes several different forms,

the characteristics common to them all being (i) that

they are demonstrative, in the sense that the conclusion

follows necessarily from the premisses; and (2) that

they are inductive, in the sense that the conclusion is

a generalisation of a certain premiss or set of premisses

which, taken as a collective whole, may be spoken of

as 'the instantial premiss.' The possibility of arriving

demonstratively at aconclusion wider than the premisses,

depends here upon the nature of the major premiss,

which is not only universal but composite. In short

demonstrative induction may be described as that form

of inference in which one premiss is composite and the

other instantial ; the conclusion being a specification of

the former and a generalisation of the latter.

§ 2. In explaining the nature of demonstrative in-

duction as above described, the composite nature of the

major premiss brings us back to those fundamental

modes of inference specified in Part I, Chapter III on

compound propositions. There P and Q are taken to

stand for any propositions, and four composite relations



DEMONSTRATIVE INDUCTION 211

are distinguished in which P may stand to Q\ (a) Im-

plicative, leading to the Ponendo Ponens; (b) Counter-

implicative, leading to the Tollendo Tollens\ (c) Alter-

native, leading to the Tolleiido Ponens
\
(d) Disjunctive,

leading to the Ponendo Tollens :

{a) UP then Q, but P; therefore Q.

(d) If Q then P, but not P; therefore not Q.

{c) Either P or Q, but not P; therefore Q.

(d) Not both /* and Q, but P; therefore not Q.

In these composite premisses, we shall take the impli-

cates and alternants to stand for universal propositions,

and the implicants and disjuncts to stand for particular

propositions. This secures, for each case, a form of

inference in which a particular or singular premiss yields

a universal conclusion. Thus:

(a) If some 6^ is/, then every 7"is ^;
but this S isp,

.'. every Z'is ^.

(d) If some 7" is ^, then every 5 is/;

but this 6^ is/',

.'. no T\s q.

{c) Either every 5 is/, or every 7" is ^;
but this 5 is/',

. *. every T is q.

(d) It cannot be that some S is /, and some 7" is ^

;

but this 5 is /,
. '. no 7" is ^.

In the above formulae, it will be observed that the

simple or categorical premiss is not the precise equiva-

lent or contradictory, as the case may be, of the corre-

sponding proposition that occurs in the composite

premiss; for 'this 6" is /' is more determinate than

14—

2
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'some 6" is /,' being one of its superimplicants ; and

again 'this ^is/" is not the mere contradictory of 'every

5" is/,' being one of its contraries or superopponents.

The categorical premiss having been in this way

strengthened, the conditions of vaHd inference are still

satisfied. In short, we have taken as our instantial

premiss a specific instance characterised determinately.

The object of this is to illustrate the symbolic formulae

by concrete examples which, when further developed,

will exhibit the nature of demonstrative induction in its

most important scientific forms. Consider the following

illustrations of the symbolic formulae :

(a) If some one recorded miracle has been shown
to have happened, then every natural phenomenon has

a supernatural factor; but such or such recorded miracle

has been shown to have happened; therefore every

natural phenomenon has a supernatural factor.

(d) If some one female member of a Board had
lowered the educational standard in her university,

every woman would have submitted to exclusion from

the Cambridge Senate; but Miss C. has not submitted

to exclusion from the Cambridge Senate; therefore no
female member of a Board has lowered the educational

standard in her university.

(c) Either every Protectionist country is financially

handicapped or every economist of the old school is

mistaken; but America is commercially prosperous;

therefore every economist of the old school was mis-

taken.

(d) It cannot be that some variations can be arti-

ficially produced in domesticated animals, while there

are some species whose characters are unaffected by
their environment; but some variations have been arti-

ficially produced in the pigeon; therefore there are no
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species whose characters are unaffected by their environ-

ment.

These illustrations would be regarded by those logicians

who divide all inferences into inductive and deductive,

as being of the nature of deduction rather than of in-

duction, because the universal conclusion is not a

generalisation of the instantial premiss. In contrast to

these we will therefore now select a set which will be

recognised as of the nature of induction ; inasmuch as

here the universal conclusion in each case is a generali-

sation of the instantial premiss. These new examples

are applications of the same symbolic formulae as the

preceding set; they differ only in that the symbols 5"

and T will now stand for the same class, whereas in the

first set they stood for different classes.

{a) If some boy in the school sends up a good
answer, then all the boys will have been well taught;

the boy Smith has sent up a good answer; therefore

all the boys have been well taught.

{b) If a single authoritative person had witnessed

the alleged occurrence, then everyone would have be-

lieved it ; but Mr S. is incredulous ; therefore no
authoritative person could have witnessed the occur-

rence.

{c) Either every act of volition is determined or

every act of volition is free; but by introspection I am
sure that a certain act of mine was undetermined; there-

fore every volition is free.

{d) It is impossible to suppose that any modern
theologians are genuine scholars while others have
remained orthodox; Dean I. is a genuine scholar;

therefore no modern theologian could have remained
orthodox.
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§ 3. Returning to the symbolically expressed formu-

lae, and substituting p or
J),

as the case may be, for q,

as well as 5 for T, the composite premisses will assume

the following still more specialised form

:

{a) If some S \s p then every 6* is/.

(b) If some S \sp then every 5* is/.

(c) Either every S is/ or every 5" is/.

(d) Not both some S\sp and some 6" is/.

It will be seen that these four composite premisses are

formally equivalent to one another, and that by adding

the categorical premiss 'This 5" is/' we may conclude

in each case that ' Every ^ is/.' Now we may transform

the alternation of universals in {c) and the disjunction

of particulars in {d) by substituting for / and / any set

of predicates p, q, r, t, v ... for the alternative pro-

position {c), and the same set in pairs for the disjunctive

proposition [d), thus

:

(c) Either every S \sp or every 5" is ^ or every 6*

is ^ or ... etc.

{d) Not both 'some S is p and some 5" is q' and
not both 'some 6^ is/ and some S is r ... etc. etc.

In this transformation the two complexes {c) and (d)

are no longer equivalents but rather complementaries

to one another. If the categorical premiss 'This 5" is

/' is now introduced we may infer by means of (d) that

'No 5 is qj 'No 6" is r,' 'No 6' is ^' etc., so that all but

the first of the universal alternants in {c) is rejected,

and again the universal conclusion 'Every S is p' is

established. The need of combining the complemen-

taries (c) and (d) in order to establish the required uni-

versal conclusion is apparent when we consider a con-
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Crete illustration. In the following example, where the

predicates^, q, r ... stand respectively for 'attacking

the Coalitionists,' 'attacking the Liberals,' 'attacking

the Labour Party'... it will be observed that the com-

posites (c) and id) retain the same logical force as in

the above symbolisation, although somewhat differently

worded

:

(c) At least one of the political parties was attacked

by every speaker at a certain sitting of the Congress,

and {d) not more than one of the parties was attacked

at that sitting.

Mr X. who spoke attacked the Coalitionist Party.

.*. Every speaker at the sitting attacked the

Coalitionist Party.

§ 4. Now, if—instead of/, q, r ...—we take deter-

minates /,/',/'' ... under the same determinable P,

then the disjunctive premiss (d) will not be explicitly

required, because it is accepted a priori that nothing

can be characterised by both of any two determinates

under the same determinable. What remains then is

the universal alternative proposition (r), established,

we may assume, by problematic induction; namely:
' Either every 5* is p, or every 6^ is /', or every 6* \sp" . .

.

running through all the determinates under P,' and

this may be summed up in the single phrase 'Every 5"

is characterised by some the same determinate under the

determinable P.' If to this composite premiss is added

the instantial premiss 'This 5" is /,' the universal con-

clusion follows that 'Every S is /.' This trio of

propositions represents the one immediate way of es-

tablishing a generalisation demonstratively from a single

instance, and it will be termed
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The Formula of Direct Universalisation

Composite Premiss: Every S is characterised by-

some the same determinate under the determinable P.

Instantial Premiss: This 6" is/.

Conclusion: .'. Every 6" is/.

§ 5. To take a typical illustration from science:

Every specimen of argon has some the same atomic

weight.

This specimen of argon has atomic weight 39'9.

.'. Every specimen of argon has atomic weight 39*9.

In this, as in all such cases of scientific demonstra-

tion, the major premiss is established—not directly^ by

mere enumeration of instances—but rather by deductive

application of a wider generalisation which has been

ultimately so established. In the given example it is

assumed that all the chemical properties of a substance,

defined by certain 'test' properties, will be the same for

all specimens ; and this general formula is applied here

to the specific substance argon, and to the specific pro-

perty atomic weight. The assumption in this case is

established by problematic induction, i.e. directly from

an accumulation of instances. In practically all experi-

mental work, a single instance is sufficient to establish

a universal proposition : when instances are multiplied

it is for the purpose of eliminating errors of measure-

ment. It is owing to the fact that the general propo-

sition, functioning as major or supreme premiss, has the

special form of an alternation of universals that, by

means of a minor premiss expressing the result of a

single observation, we are enabled to establish a uni-

versal conclusion. This conclusion, in accordance with
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our general account of demonstrative induction, is a

specification of what is predicated indeterminately in

the universal premiss, and a generalisation of the pro-

position recording the result of a single observed

instance.

§ 6. The most important extension of demonstrative

induction deals with such methods as those of agree-

ment and difference that have been treated by Mill.

We propose to give a formal account of methods similar

to those explained by Mill, but so constructed as to

render them strictly demonstrative. Many critics of

Mill's methods have treated them disparagingly because

of his failure to exhibit their formal cogency; while

others have maintained that induction should not profess

to exhibit the strictly formal character that is ascribed

to syllogism and other deductive processes. I hold, on

the contrary, that Mill's methods can and should be

exhibited as strictly formal, by rendering explicit certain

implicit premisses upon which the cogency of the argu-

ment from instances in any given case depends; and

by indicating the precise conclusion which can be drawn

from the instances in question. The implicit premiss is

ultimately established by a process of problematic in-

duction, which must be sharply distinguished from the

demonstrative process exemplified by the methods.

Mill's exposition differs from mine, then, in three pre-

liminary respects. In the first place, he does not clearly

distinguish the nature of direct or problematic induction

from the nature of the process conducted in accordance

with his 'methods of induction,' which he appears often

to regard as demonstrative. This confusion is particu-

larly noticeable when we contrast his different modes
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of treating the methods of Agreement and of Difference

:

'Agreement' he hardly distinguishes from the method

of simple enumeration, which is admittedly problematic
;

whereas 'Difference' he attempts to exhibit as strictly

demonstrative. In the second place, he professes to

employ as the 'supreme major premiss' for his methods

a very wide but at the same time undefined proposition

called the 'Law of Causation.' In opposition to this

prevalent view, I hold that it is impossible to present

such methods as those of Agreement and Difference as

strictly formal so long as we attempt to subsume them

under so vague a proposition as the Law of Causation,

and that each inference drawn in accordance with these

methods requires its own specific major premiss. The
formulation of such a major premiss is the necessary

first step in rendering formally cogent any inference

(drawn under methods similar to Mill's) from instances

finite in number, presented either in passive observa-

tion or under experimental conditions. In the third

place, whereas Mill retains or eliminates a determining

factor according as it affects or does not affect a deter-

mined character, in my view the precise conclusion to

be drawn is not correctly expressed in terms of the

presence or absence of factors, but rather in terms of

co-variation, thus : according as in two instances a single

variation in any determining character does or does not

yield a variation in the determined character, the same

will hold for any and every further variation of that

determining character.

§ 7. In order to obtain the requisite premisses for

demonstrative induction, we must assume that by a

preliminary inductive process based upon general ex-
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perience, a number of variable circumstances have been

eliminated as irrelevant to the formula to be proved.

The exposition of this preliminary process by which

irrelevant conditions are eliminated, must be postponed

until we examine in detail the nature of problematic

induction. The process itself must be regarded as pre-

scientific; and science takes up the problem at the

point where the character of a phenomenon is known to

depend only upon a limited number of variable con-

ditions. This knowledge is expressed in a proposition

which constitutes the major premiss in the scientific

process which we are about to examine as a species of

demonstrative induction. The major in question is

specifically different for different classes of phenomena,

and is in this respect unlike the so-called Law of Causa-

tion which professes to be the same for every class of

phenomena. If the symbols A, B, C, D, E are taken

to illustrate the determining characters, and P the

thereby determined character, then the instances col-

lected in order to establish a given generalisation of

the form ABCDE ~ P, must be characterised by the

same set of determinates, and will be said to be of the

same type or homogeneous with one another. The
specific major premiss may then be expressed in the

formula

:

The variations of the phenomenal character P
depend only upon variations in the characters A, B, C,

D, E (say).

The conception of dependence, which the above

formula introduces, requires more precise explanation.

In the first place the formula must be understood to

imply that the variations of ^, B, C, D, E, upon which
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variations oiP depend, are independent of one another.

For if, for example, a variation of A entailed a varia-

tion of B, then B being a determined character should

be omitted from amongst the determining characters.

It is only by observing this principle that we can apply

the essential rule for all experimentation—that one only

of the determining characters should be varied at a

time. Again it is essential that A, B, C, D, E, should

be simplex characters : for the nature of the dependence

of P upon them is such that, if only one of these

mutually independent determining characters varies,

the character P will vary ; whereas, if more than one

of them varied, P might remain constant. This con-

sideration shows that if any character such as A was

not simplex, but resolvable into unknown factors X
and Y which varied independently of one another, then

a variation in A might involve such a variation in

both X and Y that the character P would remain

unchanged.

In the second place, the force of the term ' only

'

indicates that the dependence of P upon A, B, C, D, E
is such that no variable circumstances other than these

need be taken into consideration, all others having

been previously eliminated in what we have called the

prescientific or problematic stage of the induction. The
conclusion that results from this prescientific induction

is to be expressed by an alternation of universals in

the form :
' Either every instance of abode is/, or every

instance of abcde is p' , or every instance of abcde is

p", or ' From this it follows that when a single

instance is given of abcde that is p, this may be im-

mediately universalised in the form 'Every abcde is p.
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It should be pointed out that this immediate univer-

salisation is not dependent upon any comparison of one

instance with another, and is prior to the use of such

methods as those of difference or agreement ; being in

fact exempHfied above for the case of the atomic weight

of argon.

The full significance of the notion of dependence

is brought out by taking not only instances which agree

in the determining characters and therefore in the

determined character, but by taking also instances

which differ in the determining, and consequently also

in the determined characters. If a variation in anyone

of the characters A, B, C, D, B entails a variation in

P, then, in accordance with the principle underlying

Mill's method of Difference, that character cannot be

eliminated ; whereas, if no variation in P is entailed by

a variation in some one of the characters A,B,C, D, E,

then, in accordance with the principle underlying Mill's

method of Agreement, that character can be eliminated.

§ 8. The forms of Demonstrative Induction to be

now exhibited contain (i) the supreme premiss of

dependence formulated above for a given set of deter-

minates, and (2) a finite set of instantial premisses

under the same determinates. These forms will be

distinguished under four heads to be designated y^^^r^i-

rather than methods ; but will not correspond severally

to Mill's methods, although primarily based upon his

method of Difference, and with some important modi-

fications upon his method of Agreement. The notion

of 'figure' is substituted for that of 'method'; [a) be-

cause there is only one method employed in the four

figures, namely that of varying one determining factor
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at a time ; and (d) because, as in the case of the figures

of syllogism, the precise conclusion drawn from the

instantial premisses will depend on the nature of the

instances themselves, and the figure to be employed in

any given case will not be foreknown until the instances

have been examined and compared. I shall adopt the

phrases 'Difference' and 'Agreement' for the first two

figures but 'Composition' and 'Resolution' for the two

remaining figures. All the four figures have the same

demonstrative force, and the two last figures—though

they have some resemblance to Mill's or rather

Herschel's method of Residues, which, as shown in a

previous chapter, is purely deductive—have precisely

the same inductive nature as those of Difference and

Agreement. In each figure, the first step in the demon-

strative process is to universalise each single instance

^aken separately in accordance with the principle of

Direct Universalisation enunciated above ; and the

second to draw the more specific conclusion that can

be inferred from a comparison of instances.

We proceed to give an account of each of the four

figures in turn.

§ 9. Figure of Difference

Given the supreme premiss : P depends only upon

ABCDE: we shall suppose instantial premisses in

which variations occur in the determining factor D,

which is assumed to be simplex.

Then a single instance of abcde that is p is uni-

versalised into 'Every instance oi abcde is/.'

Again a single instance of abcd'e that is p' is uni-

versalised into 'Every instance oi abcd'e is/'.*
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Comparing these two instances of abce, we note

that a variation from d to d' entails a variation from /
to/.

From this we infer that the value of D is actually-

operative in determining the value of P. Hence any

further variation ofD—say from d to d"—will entail a

further variation ofP—say from p to p" . I.e. any value

of D other than d or d' will yield a value of P other

than / or p'

.

Represented symbolically, the conclusion reached

is that

'Every instance oi abcd"e will be/'V

where this universal is interpreted to signify that, within

the range abce, any given difference in D will entail

some difference in P, without however indicating what

determinate value of P will be yielded by the given

determinate value of D.

We may symbolise the form of inference which has

just been explained in the following scheme :

Figure of Difference

Supreme Premiss : P depends only onA,P, C, D, E
where D is simplex.

Instantial Premisses Immediate Conclusions

1. P^c^xXaSxi abcde'x?, p. .*. i. 'EvG.xy abcde \s p.

2. A. c&riaXn abed'e \?,
p'

.

.'. 2. Y.\&ry abed'e \s p'

.

Final Conclusion : .'. Every abed"e is/".

§ 10. Figure of Agreem,ent

Given the supreme premiss : P depends only upon
ABCDE'. we shall suppose instantial premisses in

which variations occur in the determining factor A,
which is assumed to be simplex.
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Then a single instance of abcde that is p is uni-

versalised into 'Every instance oi abcde is/.'

Again a single instance of a'bcde that \s, p is univer-

salised into 'Every instance oi a'bcde is p.'

Comparing these two instances of bcde, we note

that a variation from a to a' entails no variation in P.

From this we infer that the value of A is not

actually operative in determining the value oi P. Hence
any further variation ofA—say from a to a"—will en-

tail no variation in P; i.e. any value of A will yield the

same value p of P.

Represented symbolically, the conclusion reached is

that:

'Every instance oi Abcde will yield/,'

where this universal is interpreted to signify that within

the range bcde, whatever value A may have, the value

p will remain unaffected.

We may symbolise the form of inference which has

just been explained in the following scheme :

Figure of Agreement

Supreme Premiss : P depends only onA,B, C, D, E,

where A is simplex.

Instantial Premisses Immediate Conclusions

1. Xctna\n abcde'xsp. .". l. E.v&ry abcde is p.

2. A certain a'bcde \s p. .'.2. Every a'bcde \s p.

Final Conclusion : .
•

. Every a"bcde is p.

§11. Figure of Composition

Given the supreme premiss : P depends only upon

ABCDE : we shall suppose instantial premisses in

which variations occur in the determining factor C,

which is assumed to be simplex.
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Then a single instance of abcde that is / is uni-

versalised into 'Every instance oi abcde is/.'

Again a single instance of abc'de that is p' is univer-

salised into 'Every instance oi abc'de is/'.'

Comparing these two instances of abde we could

infer, as in the Figure of Difference, that a further

variation of C would entail a variation in /. But we
have to contemplate a third instance where c" yields

the same value/ that was presented in the first instance.

If the values abe are known to be the same as in this

first instance, then a difference in the remaining factor

d must have accounted for the recurrence of the

same determined value /. Thus the first and third

instances of abe determining / must have been due to

the compounding of c with d in the first case, and to

the compounding of c" with d" in the third case. Such

a case arises when the factor D in the third instance

has not been amenable to precise evaluation.

Represented symbolically the conclusion reached

is that:

'Any instance oi abc"pe will be d"

^

where d" is some unevaluated value of D other than

d or d'

.

Symbolically:

Figure of Composition

Supreme Premiss: P depends only onA,B, C, D, B,

where C is simplex.

Instantial Premisses Immediate Conclusions

1. A. ceri2i\n abcde \s p. .'. i. 'E.vQxy abcde is p.

2. A certain abc'de is/'. .*. 2. Every abc'de is/'.

Final Conclusion : .'. Every abd'pe is d".

J.L.ii 15
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§12. Figure of Resolution

Given the supreme premiss : P depends only upon

ABCDE : we shall suppose instantial premisses in

which variations occur in the determining factor £,

which is not here assumed to be simplex.

Then the three single instances of

abcde'^p, abode' '^p', abcde" '^ p,

may be respectively universalised into

Every abcde is, p, Every abcde' is p', Every abcde" is p.

Comparing the first and third of these instances,

where under the range abed, e and also e" yield /, we
conclude that £ is complex, being resolvable say into

the two independent factors X, V; so that (say) e=xy,

and/'=yy'.
Represented symbolically, the conclusion reached

is that

'Every abcdxy is p, and Every abcdxJy is p,

where xy and x^'y" represent the resolution of e and e"

to account for the same value p of P. Thus :

Figure of Resolution

SupremePremiss : /'depends onlyupon A, B, C, D, E.

Instantial Premisses Immediate Conclusions

1. hc^x\.2\x\ abcde'xsp. i. ^vtry abcde is p.

2. A certain abcde' is/'. 2. Every abcde' is/'.

3. A certain abcde" is/. 3. Every abcd^' is/.

Final Conclusion : E is resolvable into X V,

where e=xy, and e"= x"y".

§ 13. It will be seen that each of these figures of

inductive implication is formally equivalent to a single
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disjunction of four propositions. This fourfold disjunc-

tion may be called :

The Antilogism of Demonstrative Induction

Given three instances of the same type exhibiting

three different values of a given determining character,

then no case can arise in which :

(i) \S\^ given determining character is simplex
;

(2) the values of the other determining characters

agree throughout the three instances

;

(3) the value of the determined character differs in

two of the three instances
;

(4) the value of the determined character agrees in

two of the three instances.

Symbolically expressed, we cannot have

B simplex ; and

an instance oi a b c d e that is p,

,, ,, y, a b' c d e that is p\
,, ,, „ a b"c d e that is p.

Expressing this fourfold disjunction in terms of its

four equivalent implications, we can formulate the

Figures of Demonstrative Induction thus :

(not-4) Figure of Difference : If i and 2 and 3 ; then not-4

(not-3) Figure ofAgreement : If i and 2 and 4; then not-3

(not-2) Figure of Composition : If i and 3 and 4 ; then not-2

(not-i) Figure ofResolution : If 2 and 3 and 4 ; then not-i.

In symbols this becomes :

Figure of Difference.

If ^ is simplex, and we have

an instance oi a b c d e that is p,
and an instance of ^ b' c d e that is /',

then every instance of a b" c d e will be p"

.

15—2
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Figure of Agreement,

If B is simplex, and we have

an instance o{ a b c d e that is /,
and an instance oi a b' c d e that is p,

then every instance of a b" c d e will be p.

Figure of Composition.

\{ B \s simplex, and we have

an instance oi a b c d e that is p,
and an instance oi a b' c d e that is p\

then any instance of a b" c p e must be d".

Figure of Resolution.

If we have an instance oi a b c d e that is p,
and an instance oi a b' c d e that is p'

,

and an instance of a b" c d e that is p,
then B is complex.

§ 14. A simple illustration of the Figure of Dif-

ference is afforded by Guy-Lussac's law which connects

variations in the pressure/, temperature t, and volume

V, of a specific gas g. Suppose that in two instances

without changing g and p, a change of temperature

from t to /' is found to entail a change of volume from

V to v' . From this it can be inferred under the Figure

of Difference that, with the same gas at the same

pressure, any further change of temperature, say from

t to t", would entail a further change of volume, say

V to 7/'. This experiment does not prove that for any

other gas or for any other pressure, a change of tem-

perature would entail a change of volume ; nor does it

indicate what determinate value of the volume would

be entailed by any supposed further change of tempera-

ture. It should be observed that the conditions required
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for the Method of Difference—namely precise con-

stancy in all but one of the determining factors—is

much more easily realisable when dealing with the

same body or substance and varying its alterable states

than when we pass from one to another body or sub-

stance in one of which a character is present and in

the other absent. Hence the conditions most favour-

able for the application of the Figure of Difference are

those in which concomitant variations in the determin-

ing and determined factors are observed. For Mill, on

the other hand, the so-called Method of Concomitant

Variations was primarily distinguished from the Method

of Difference in that the latter was concerned with

presence and absence, and the former with variations

in degree. He speaks of this method as the one

necessarily required when we cannot wholly get rid of

a phenomenon, and are obliged to be satisfied with

noting the varying degrees with which it is manifested

from instance to instance ; as if this method were a

sort of makeshift which had to be put up with when
recourse to the Method of Difference was impossible.

But it is precisely in those cases in which we can vary

the degree of a phenomenon, and not in those that

can be described as presence and absence, that we can

be assured that the rigid conditions required by the

Method of Difference are fulfilled. Mill in adopting

this position neglected the consideration of the homo-
geneity in any collection of instances brought together

for comparison under any method of induction what-

ever. In the conception of concomitant variations is

included—not only quantitative variations or variations

of degree but also qualitative variations under any
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given determinable such as colour or sound. To illus-

trate Concomitant Variations, Mill chose the method

employed in connecting the varying heights of the

tides with the variations of the position of the sun and

moon relatively to the earth ; but he presented the

matter as if the difference in the cogency of this method

from that of Difference was due to the distinction

between presence and absence in the latter and varia-

tions of degree in the former ; whereas it is obvious

that the real deficiency in this application of the Method
of Concomitant Variations was due to the special nature

of the case, which made it impossible to secure, in the

different instances examined, exact agreement in regard

to the circumstances not known to be irrelevant : e.g.

the variations of height of the tides might have de-

pended upon variations in the force or direction of the

wind, or in the shape of the coast, etc. So far then

from regarding the Method of Concomitant Variations

as an inferior substitute for that of Difference, if by

the former is meant variation in the alterable states or

relations of some one body or substance, and by dif-

ference is meant comparison of two similar bodies in

one of which some quality is present and in the other

absent, we must regard the former method as superior

to the latter. For example : if we attempt empirically

to establish a causal connection between the prosperity

or the reverse of a country and its adoption of free

trade or protection, it would be impossible to find two

different countries which agreed in all relevant respects

with the exception of this difference in industrial

policy ; and hence a change in which one policy was

replaced by the other within one and the same country
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would afford incomparably more cogent evidence of

causation than a comparison of the effects in two

different countries which must necessarily differ in

very many respects that could not be assumed to be

irrelevant.

§ 1 5. To illustrate the Figure of Agreement we may
take instances used to establish the law that the rate at

which a body falls in vacuo to the earth is independent

of its weight. In these instances we keep unchanged

all the possibly relevant circumstances, such as distance

from the earth, absence of air, substance and shape of

the falling body, and vary only the weight. From two

instances in which the weight alone differs, we find

that the time occupied in falling through any given

distance is unchanged. In this way we use the Figure

of Agreement which might also be called the Figure

of Indifference, since it picks out a determining con-

dition which is naturally expected actually to modify

the effect in question, and yet is shown by a comparison

of instances to be indifferent as regards the determinate

value of the effect. An illustration of this kind seems

not to have occurred to Mill, because in his Method

of Agreement every circumstance except one differs in

the several instances ; whereas, in my formulation of

the corresponding figure, every circumstance except

one agrees in the several instances. In other words,

as regards the determining factors my Figures of Dif-

ference and of Agreement require the same condition,

namely a single difference ; whereas Mill contrasts the

two by defining the Method of Difference as involving

a single difference and the Method of Agreement as

involving a single agreement. In fact Mill attempts
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the elimination en bloc of all the varying circumstances

which distinguish the different instances in which the

same effect-value is observed, whereas what is required

in order to give corresponding form to the two methods

is that we should eliminate as indifferent or irrelevant

only one circumstance at a time.

§ 1 6. Having illustrated the figures of Agreement

and Difference, I will explain the strict procedure

of using these figures in dealing with a number of

cause factors and of effect factors conjoined in a set of

examined instances. Taking as our original major

premiss: ABCDE '^ PQRT, i.e. the conjunction of

the cause factors A, B, C, D, E determines the con-

junction of the effect factors P, Q, R, T: it is to be

remembered that no cause- factors other than those

enumerated are determinative of the enumerated effect-

factors, as also that no effect-factors other than those

enumerated are dependent upon the enumerated cause-

factors. We then take in turn one cause-factor and

another and find instances from which we may conclude,

in regard to a given effect-factor either, in accordance

with the Figure of Difference, that the factor that is

varied is actually operative, or in accordance with the

Figure of Agreement, that such factor is not actually

operative : and this procedure is repeated for each of

the effect-characters in turn. Each pair of instances

compared in this way will lead to a universal conclusion

under the Figure of Difference or of Agreement as the

case may be. This Complete method (as it may be

called) is by no means identical with Mill's Joint

Method of Agreement and Difference, the use of which

he advocates only to compensate for the failure to
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secure variation in a single factor ; in this Complete

method, on the other hand, one cause-factor alone is

varied in each pair of compared instances.

This process symbolically expressed serves as an

exercise in the application of the principles underlying

demonstrative induction. For example, take the follow-

ing instances :

(i) abcde '^ pqrt \ (2) a!bcde '^ pq'f^t \

(3) ab'cde '^p'qr^i
; (4) a'bc'de r^ffr't ;

(5) abcd'e ^p'q'r't.

From (i) and (2), we eliminate a and «' as irrelevant

to / and t\ and infer Abcde ^ pt. From (i) and (3),

we eliminate b and b' as irrelevant to q and t ; and

infer aBcde ^ qt. From (2) and (4), we eliminate c and

c' as irrelevant to r and t ; and infer a'bCde ~ r't. On
the other hand, from the comparison of (i) and (5) we
infer that d and d' cannot be eliminated as ineffective as

regards either /, p' or q, q' or r, r^ . Hence, under the

Figure of Difference, we infer abcd"e '^ p"q"r". Since,

however, in these two instances, the variation of D is

inoperative on T, we also infer, under the Figure of

Agreement, abcDe ~ t. We may now combine the

conclusions Abcde ^ pt and abed"e '^ p"q"r" , and thus

infer Abcd"e ~ p" . This conclusion expresses the fact

that, under unchanged conditions bee, A is inoperative

while D is operative upon P. It should be observed

that the conclusion abcd"e ~ p"q"r" is contrary to the

inference drawn by Mill in his Method of Difference
;

for, according to his formulation of the Method, a

difference in a single cause-factor entails a difference

in a single effect-factor. Other inferences—such as
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from (i) and (2) that a"bcde ~ /V—may be left to the

ingenuity of the reader to discover.

§ 1 7. Before illustrating the two remaining figures,

it is desirable to explain how the symbols employed in

my notation are to be practically applied. When the

characters of two or more cause-factors are represented

by such symbols as a, b, c, ... two typical cases may arise

;

(
I
) where a,b,c,... represent determinates under different

determinables A, B, C...
\ (2) where two or more of

them are determinates under the same determinable.

In the latter case, supposing the symbol B to represent

the same determinable character as A, the three factors

a, b, c would more naturally be symbolised by a, a, c.

Here the recurrence of the symbol a indicates that

there are two factors conjoined which are existentially

different the one from the other, although characteris-

able under the same adjectival determinable. In order

to symbolise the two-fold manifestation of cause-factors

characterised under the same determinable, we might

use the subscripts i, 2, to represent existential plurality;

and thus, instead of writing aby ab\ a'b, a!b', etc., we
should write a^a^, ci^d^, cila._, a^a.!, etc. For example,

the adjectival determinable Force may be represented

by F, and, when two forces enter together as cause-

factors in producing a certain effect, the possible varia-

tions in which they may be conjoined may be repre-

sented by//,///,///,,////, etc. Or again: taking

the character of a chemical element to be indicated say

by its atomic weight, we may use A to represent this

adjectival determinable ; and the possible variations in

which two elements are conjoined in producing a com-

pound may be represented by a^a.^, a^al, a^a„, alal, etc.
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Since, however, amongst symbolists, any difference of

symbol such as a and b, is never understood to prohibit

identity of meaning, while of course an identity of

symbol is always understood to prohibit a difference

of meaning, the notation that I have adopted in my
schematisation of the Figures may still be retained

without danger of confusion ; and, in any case, it serves

to represent the general principles of the Figures,

although in specific cases the special notation indicated

above may be preferred.

§ 18. As regards the two remaining figures of

Composition and Resolution, we must point out their

differences from the figures of Agreement and Dif-

ference, and explain what is meant by the composition

of causes as contrasted with the combination of causes.

Although these figures have been exhibited in a form

according to which their demonstrative cogency is

equivalent to that of Difference or of Agreement, they

palpably differ from these latter in two respects. In

the first place, the predicate of the universal conclusion

drawn in the last two figures concerns one of the deter-

mining factors D or E, while that in the first two figures

concerns the determined factor P. In the second place,

the last two figures introduce the notion of ' composi-

tion ' and its converse * resolution '—these terms being

used in a special and technical sense which requires

explanation.

§ 19. The notion of composition has been long un-

derstood in mathematical physics, where the resultant of

two directed forces regarded as components is repre-

sented by the diagonal of the parallelogram whose

sides represent these components. The principle by
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which the mechanical effect of two conjoined forces

can thus be calculated, was contrasted by logicians and

philosophers with the principle underlying chemical

formulae, in which the properties of a compound sub-

stance could not be calculated in terms of those of the

elements combined in the compound. This led to the

view that there was a fundamental antithesis between

mechanism and chemism, the former of which involved

a ' composition,' the latter a ' combination ' of cause-

factors. Mill introduced and explained the phrase

'composition of causes' (i.e. of cause-factors) and con-

trasted this with the combination of cause-factors,

specially characteristic of chemical phenomena, and

also, in his opinion, of many psychological and socio-

logical phenomena. Mill's explanation is not altogether

satisfactory. I will therefore attempt my own ex-

planation of the antithesis between composition and

combination.

When two cause-factors represented, say, by the

determinables B and C are such that there are certain

pairs of values, say be and b'c', which jointly determine

the same value/ of an effect character P\ then, referen-

tially to P, the conjunction reconstitutes a composition.

On the other hand, when there are no pairs of values

under the determinables B and C, such as be and b'd,

which jointly determine the same value of P\ then,

referentially to P, the conjunction BC constitutes a

combination. What is important to note here is that

the distinction between composition and combination

is not absolute ; for certain conjunctions of cause-

factors may constitute a composition referentially to

one assigned effect-character, and a combination re-
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ferentially to another. For example, when chemical

elements are conjoined in producing a compound sub-

stance, it is possible to take the weights of certain

elements and different weights of other elements so as

to produce a compound of the same weight ; hence

referentially to the effect weight, the conjunction of

chemical elements comes under the principle of com-

position. But as regards the chemical character of the

elements conjoined, it is impossible so to vary these as

to produce a compound of the same chemical character

in two different cases ; for instance, the substance

having the chemical properties of water can only be

produced by the combination of hydrogen and oxygen.

This account of the distinction between composition

and combination is to be regarded as an indication

rather than as a definition. Expressed mathematically:

the conjunction of the factors B and C constitute a

composition, referentially to the effect P, when there

is a certain function y^ such that/ equals y(<5, c) for any

and every value b and c oi B and C. We might there-

fore replace the terms composition and combination

respectively by the more suggestive terms functional

and non-functional conjunction. The method of dis-

covering and establishing such functional relations will

be treated in the next chapter. But we cannot well

illustrate the figures of Composition and Resolution

without first modifying their formulation in view of the

above explanation of the nature of composition.

§ 20. In the figure of Composition as symbolically

formulated, we took two instances agreeing as regards

the determining factors abde^ and a third instance

agreeing with both as regards abe, but in which the
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factor D was unamenable to precise calculation. We
then supposed that, while in the first two instances the

differences c and c' in the determining factor C yielded

a corresponding difference / and p' in the determined

factor P ;
yet, in a third instance, c" yielded the unex-

pected effect / equivalent to that yielded in the first.

The unexpectedness of this result was thus accounted

for either by our inability, in the third instance, to

measure the factor D, or by our error in supposing that

its value was still unchanged. Now, instead of illus-

trating our figure by supposing equivalence as regards

P in the first and third instance—a somewhat artificial

assumption—let us suppose rather that in the third

instance the effect, say/j, was other than that calculated

by a foreknown formula in which the value of P would

be given hy p" =/{a, b, c", e). On the assumption that

the correctness of this formula had been properly

assured by means of the functional extension of the

Figure of Difference or of Concomitant Variations,

we should rightly infer that any instance of abd'p^e

would entail d" in place of d, so that the effect /g, under

the constant conditions abe, would be due to the com-

position c"d", and not merely to (f\

In this modified form, the Figure of Composition

can be illustrated by the irregular motions from / to /,

of the planet Uranus, the positions a, b, e, of any other

planets being effectively unaltered while that of the sun

had changed from c to c". The motion from d to d" of

an unknown planet, afterwards called Neptune, con-

joined with that of the sun from c to c" accounted for

the unexpected movement of Uranus from / to/3; in

other words, a, b, e being constant, p^ was the same
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function of c" and d" as / was of c and d\ so that P
was a function, not of C alone, but of C and D com-

pounded.

A similar illustration of the Figure of Resolution

is found in the experiments by which the new chemical

substance argon was discovered by Sir William Ramsay.

Here the factor E would represent atmospheric nitro-

gen, and its greater weight—as compared with that

of nitrogen prepared from chemical compounds—was

accounted for by the resolution of the atmospheric

nitrogen into the two components argon and pure

nitrogen. It should be pointed out that the resolution

here employed was not a chemical analysis, for argon

does not combine with any other element (as far as is

at present known) and therefore the resolution in

question was a true instance of the converse of com-

position.

In regard to the illustration o{ Composition involving

the discovery of Neptune, and that of Resolution in-

volving the discovery of argon, the precise measure-

ments finally made reduced the inference to a purely

deductive form, which assumed the character of the

method of Residues according to my interpretation of

this method (see p. 1 18).



CHAPTER XI

THE FUNCTIONAL EXTENSION OF DEMONSTRATIVE
INDUCTION

§ I. In concluding the treatment of demonstrative

inference I propose to recapitulate the results that have

been so far reached, and to bring into focus the dis-

tinctions and connections between the several forms of

inference, deductive, inductive and problematic. I have

already examined the general notion of function, and

shown how it is employed in mathematical and other

processes of deductive inference ; and it remains to

exhibit this notion as it enters into inductive inference

—

this constituting the specifically new topic to be dis-

cussed in the present chapter.

Pure induction, by which is to be understood that

which involves no assumption of universal laws, has

been shown to be the sole direct and ultimate mode of

generalising from instances examined and theoretically

enumerable. This species of induction I have called

problematic because, in my view, the universal proposi-

tions which it establishes must be regarded, not as

absolutely certified, but as accepted only with a higher

or lower degree of probability depending upon the

collective character of the instances enumerated. The
possibility of establishing such direct generalisations

depends upon certain postulates, the discussion of which

raises one of the most important and difficult problems

of philosophical logic ; and even then, the probability



FUNCTIONAL INDUCTION 241

to be attached to generalisations thus established has

to be determined by reference to the formal principles

of probability. But, so far as these generalisations

enter into the account of demonstration, they function

as major premisses. Demonstrative induction, then, so

far resembles deduction in that it requires the conjunc-

tion of two types of premisses : (i) the major or supreme

universal premiss, which expresses the relation of

dependence between one specified set of variables

and another ; and (2) the minor or instantial premiss

which sums up the results of single observations or ex-

periments. The major premiss in this mixed form of

demonstration is formulated, not as a uniformity per-

vading all nature, but as a specified universal holding

only for the special class of phenomena to which the

conclusion refers.

§ 2. A very general statement of the contrast

between my exposition and Mill's is conveniently intro-

duced at this point. I have deliberately separated the

treatment of formal or demonstrative induction from

that of problematic induction. In the latter, the accu-

mulation of instances is all important ; in the former,

a precise major premiss, relating to a finite and enu-

merable set of determinates, is required in each step

of the formal process. These major premisses are

assumed to have been previously established, with a

higher or lower degree of probability, on the principles

of problematic induction. The essence of problematic

as contrasted with formal induction is expressed in

three statements : first ; no wide generalisation, such

as that which asserts the uniformity of nature, is in-

volved ; secondly ; the instances compared are not

J. L. II 16
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determinately analysed with respect to the variable

characters upon which the proposed generalisation

may depend ; and hence, thirdly, an indefinite multi-

plication of instances is required in order to give any

appreciable value to the probability of the conclusion.

It is partly for this reason that Mill's account of the

Method of Agreement differs so considerably from my
extremely simple Figure of Agreement ; for Mill is

largely thinking, under the title Agreement, of a direct

method of establishing empirical generalisations to

which only an inferior degree of probability can be

attached. The generalisations thus established by

problematic induction function as major premisses in

demonstrative processes in one of two ways : either as

established with what may be called experiential as

opposed to rational certitude ; or as put forward hypo-

thetically, and thus as exhibiting forms of implication

rather than of inference—implication being defined,

as in Chapter I, to be potential or hypothetical

inference.

§ 3. The term hypothesis has been used by logicians

in so very many senses that, in order to obviate logical

confusion, it will be well to examine its various usages,

showing how they have developed from one funda-

mental element. This element will be found to be

definitely epistemic rather than constitutive, and for

my own purposes I consequently prefer to use the

phrase ' hypothetically entertained,' which has an epi-

stemic significance quite independent of the form or

content of the proposition so entertained. We may

take in turn the various meanings of the substantive

' hypothesis ' or the adjective ' hypothetical ' that occur
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in deductive or inductive logic, in order partly to

connect and partly to contrast its epistemic with its

other bearings. In traditional formal logic, propositions

are called hypothetical which are in fact compounded
out of two categorical propositions, say p and q. In

this case, while the adjective hypothetical is traditionally

used to denote a particular species of compound pro-

position, namely that of the form ' if / then q '

;
yet at

the same time the term hypothesis clings firstly to the

proposition / because in this form it is not actually

asserted, and next to the proposition q because it is

only assertible on condition that p has been asserted.

Thus the adjective hypothetical is actually attached to

three quite distinct propositions or forms of proposition

:

the compound 'if/ then q' \ the simple proposition /
itself, which I call the implicans ; and the simple pro-

position q which I call the implicate. Now in order to

make a first approximation to justifying this confused

terminology, we must consider its epistemic aspect, and

we may say that normally both the implicans separately

and the implicate separately are entertained hypo-

thetically, while the compound proposition * \{p then q
'

is entertained assertorically. Hence, even where the

term hypothetical is used in its most precise technical

sense, it is applied to a form of proposition assumed

to be entertained assertorically, the components alone

of this assertoric compound being entertained hypo-

thetically.

The recognition of this ambiguity in the use of the

term hypothetical resolves the often disputed problem

of the relation in general between induction and deduc-

tion. When we are concerned with the purely formal

16—

2
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relation of implication as subsisting between the pre-

misses and conclusion of any argument of the general

nature of a syllogism, then these premisses need only

be entertained hypothetically; while, at the same time,

the relation of implication itself is to be conceived, not

only as assertorically advanced, but even as having the

highest degree or kind of assertoric certitude. The
conclusion of a syllogism thus deduced is usually spoken

of as demonstrated, i.e. as having demonstrative certi-

tude ; although, taken by itself, any kind or degree of

certainty attaching to it is wholly dependent upon the

kind or degree of certitude with which the premisses

are entertained. Taking full advantage, then, of Mill's

account of the functions and value of the syllogism,

we may say that the hypothetical conclusion has been

hypothetically demonstrated, and can only be asser-

torically demonstrated when we have examined and

tested the truth of the premisses. Only when the major

premiss has been inductively established can the con-

clusion be entertained categorically, and even then

with a degree of probability dependent upon that of

the major premiss ; and ultimately upon the mode of

induction by which the major has been established.

§ 4. The problematic nature of the universal ob-

tained by induction and functioning as major premiss

in a deductive process has led to a confusion between

the notions problematic and hypothetical, resulting in

the use of the term ' hypothesis ' for any proposition

entertained with a degree of probability. Thus, when

Jevons says that all induction is hypothetical, what he

means is merely that an inductive conclusion has not

certainty but probability. Thus any inductive generali-
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sation is commonly called a hypothesis ; and the term

when applied to a scientific theory may have three

alternative meanings : first, it may mean that the pro-

position is unproven ; secondly, that the proposition

has an appreciable degree of probability which renders

it worth considering ; thirdly, that the proposition has

no appreciable probability at all, and may even be

known to be false. Besides the epistemic significance

revealed in all these three alternative meanings, the

term hypothesis must also be understood to indicate

the purpose which an unproven universal, definitely

formulated, fulfils in calculating deductively the con-

clusions to which it would lead. In fact Jevons, in

describing induction as hypothetical, uses the term in

two quite different senses : first, in the formal sense, to

indicate the provisional or tentative attitude towards a

universal before we have confirmed it by a process in-

volving deduction ; and, secondly, to represent the

final attitude towards a universal after it has been

tested and confirmed with the highest attainable degree

of probability. With the view indicated in the second

application of the term hypothesis, I agree ; but, as

regards the first use of the term, it seems to me that

we always adopt a tentative attitude towards a proposi-

tion entertained as a proposal, whether it is to be proved

deductively or inductively; so that the term as applied

to a proposition to be proved does not represent any

characteristic peculiar to induction. Now the special

topic with which this chapter is concerned involves

both the contrasted ideas of hypothesis : namely, of a

proposition having a certain degree of probability, and

of one put forward to be tested by appropriate evi-
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dence. Thus, while the functional formula in deduction

is assumed to be true and therefore may serve as pre-

miss for deducing an equally assured conclusion, the

inductive aspect of such a functional formula presents

the inverse problem ; for we have now to examine by

what kind of instances, and by what modes of com-

parison, the functional formula itself can be established.

So far as this process of examination may be said

to have a special characteristic by which it may be

distinguished from problematic induction used for

establishing the wide generalisations of science, its

peculiarity is that a comparatively small number of

instances will constitute the sufficient factual basis for

the establishment of the formula, and that the actual

procedure of mathematical physics, at least in the

majority of cases, rightly attaches practical certitude

to the formula thus inferred.

§ 5. In order to show how the functional formula

is established, I must refer to my account of the figures

of Demonstrative Induction. There the conclusion

demonstratively drawn does not assign the specific

value of the effect-character that is to be correlated

with any given value of a cause-character. In popular

language, the conclusions drawn would be termed

qualitative not quantitative ; that is to say, the figures

establish causal connection without determination of a

causal law or formula. I n comparing the different figures,

it is seen that the Figure of Difference, which stands

first, is a direct expression of the principle of the de-

pendence of change in the effect upon change in the

cause; and that the Figure of Agreement or of Indif-

ference is complementary to that of Difference in the
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same sense as the universal or implicative 'if not-/ then

not-^ ' is the complementary of ' if / then q

'

; while

the Figures of Composition and Resolution merely

carry out the principle of Difference under certain

more complicated circumstances. There is, therefore,

one principle common to all the four figures, namely

that underlying the Figure of Difference—the functional

extension of which will be our principal concern.

The original formula of Difference may be restated

in the following canon : When in two instances a dif-

ference in the cause-character D entails a difference in

the effect-character P, all other cause-characters which

might contribute to the determination of P being the

same in the two instances, then we infer that any other

difference in the cause-character will be correlated with

some other difference in the effect-character, under the

continued constancy of the remaining cause-characters.

Now this canon, which applies to two instances only,

may be obviously extended to any number of instances

all of which conform to the figure of Difference: i.e.

all other cause-factors remaining unchanged, we find a

series of instances in which I? alone varies, and in

which the determinate values d, d\ d", d'", etc., say,

are associated respectively with p, p', p'\ p"', etc. Now,

as in the simple case of two instances, these observa-

tions do not enable us to assign the specific value of P
that is to be correlated with any given value of D :

we can still only infer that any further change in D
will be associated with some further change in P. The
required extension of the figure of Difference consists,

therefore, in the determination of /* as a function of D
which shall hold for all unexamined as well as examined
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instances. A famous example of the determination of

such a function is that formulated by Kepler who, after

nineteen guesses, discovered a formula for the plane-

tary movements about the sun which co-ordinated

the spatio-temporal relations for the cases—necessarily

finite in number—that he was able to examine and

measure. The discovery of this formula involved nothing

of the nature of inductive inference, but its application

to all the planetary positions intervening between those

observed constituted a genuine inductive inference, so

easy to draw that neither Whewell nor Mill seems to

have been aware that any such inference was implicitly

made.

The canon for the Figure of Composition may be

reformulated as follows : When in several instances

variations in the single cause-character C have entailed

variations in the effect-character P such that, in ac-

cordance with the functional extension of the Figure

of Difference, P has been shown to be a certain func-

tion of C then, if some similar instance of a further

variation of C has entailed a variation ofP not satisfying

this function, we infer that, in this instance, besides

C some other character, say D, has varied, and hence

that P depends upon the composition of C with D.

This simple use of the Figure of Composition does

not, however, enable us to determine the value ofD in

the particular instance observed. In expanding this

figure therefore we have to look for further instances

in which both C and D can be evaluated ; and thus

construct a formula by which P is represented as a

function both of C and of D. This method should be

compared with that of Residues, which I have regarded
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as purely deductive ; for, in the method of Residues,

the values of D are determined deductively from the

known formula p =f{c, d), whereas, in our extension of

the Figure of Composition, the formula /=/" (r, d) is

determined inductively from the observed values of D.

The case of the irregularities in the movements of

Uranus, instanced in the previous chapter, illustrates

this type of functional extension.

§ 6, Now the formula which expresses an effect as

a function of one or more cause-factors must at least

satisfy the negative condition that it fits all the examined

instances as regards the observed values of cause and

effect. Many logicians, and certainly many experi-

menters in practical branches of science, are finally

satisfied with this negative criterion. They assert, in

effect, that provided the formula p=/{d), where/" has

some specific form, agrees with the values of P and D
as measured in the examined cases, then it has all the

guarantee that experimentation requires for its uni-

versalisation. But the mathematician points out that,

theoretically speaking, there are an infinity of different

functions that would exactly fit any finite number of

cases of covariation. Hence he demands in general a

much more rigid defence for selecting one formula

rather than another to represent the universal law.

In order to escape this threatening annihilation of

inductive inference, we may indicate two fundamental

principles upon which the highest attainable degree of

certainty, which may be called practical or experiential

certitude, depends. In the first place, reliance is placed

upon the character of the formula itself, and in par-

ticular on its comparative simplicity ; in the second

16-5
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place, the higher credibility of a proposed formula

depends upon its analogies with other sufficiently well-

established formulae in similar classes of phenomena.

Briefly, the criteria of simplicity and analogy, especially

when conjoined, confer upon a formula of covariation

that highest degree of probability which allows us to

regard the induction, not as merely problematic, but as

virtually demonstrative. For example, the experiments

that have been conducted in regard to the covariations

of temperature, pressure and volume of gases have

always been treated by physicists as conferring absolute

demonstrative certitude upon the formulae inferred,

although they have been actually confirmed from a

necessarily limited number of observations.

We may illustrate the notion of simplicity by taking

the simplest of all possible functions, namely where p

is proportional to d, or its inverse -,. For example, if

we have instances in which, weight being the deter-

mined factor, and some quantitatively measurable cause

D varies so that where we double D we double P, and

where we treble D we treble P, and so on for fractional

as well as integral multipliers, we inductively infer that

P, not merely varies with D, but in mathematical

language, varies as D. There have been philosophers

who, in effect, have imagined that, unless a causal

formula can be expressed by a proportionate relation

of cause to effect, it must be regarded as a mere em-

pirical rule ; and conversely, as soon as instances are

found to fit some such simple formula, the generalisa-

tion may be regarded as absolutely certified. A slightly

less simple kind of formula is exemplified by gravitation



FUNCTIONAL INDUCTION 251

where, for a given attracting mass, the acceleration of

the attracted body varies inversely as the square of

the distance, being in the direction towards the attract-

ing body. The high probability of this formula is due,

not only to its relative simplicity, but to its analogy

with the independently known formula for the intensity

of radiant light or heat. Moreover the formula in

question could have been deduced from the assumption

that radiation operates equally in all spatial directions,

so that its magnitude upon any part of a spherical sur-

face is inversely proportional to the area of that surface

and therefore to the square of the distance. In the

examples thus brought forward, indications are given

of the kind of reasoning upon which the high proba-

bility attached to any formula that fits the examined

instances is based.

§ 7. The criterion of simplicity is not often directly

applicable ; but, when in a relatively complex conjunc-

tion of circumstances that can be analysed, a formula

is constructed that could have been deduced from a

combination of wider and well-established formulae of

comparative simplicity, then an empirical formula thus

confirmed acquires problematic value corresponding to

that of the laws from the combination of which it could

have been deduced. Both Whewell and Mill have

taken this kind of criterion as fundamental in their

theories of induction ; Whewell using the phrase 'con-

silience of inductions,' and Mill having in his earlier

chapters put forward this deductive confirmation as the

one principle dominating his whole theory. At first

sight Mill's position is paradoxical, since he apparently

attributes a higher probability-value to a law, merely
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on the ground of its width, whereas it would appear

that the narrower generalisation is the safer. I think,

on this matter, we must recognise the value of the two

opposed principles that have been put forward. On
the one hand, mere simplicity has been elevated into

a supreme criterion ; but, so far from admitting that

simplicity alone guarantees a formula, we must main-

tain that where a known complexity of circumstances is

involved, a corresponding complexity must be expected

to characterise their co-ordinating formula. Hence,

when a class of phenomena that have not been defini-

tively analysed resembles other classes for which a

complex formula has been established, a corresponding

complexity should be anticipated for the given class
;

whereas the formula for a class of phenomena analogous

to others for which a simple formula holds may rightly

be expected to be simple. The criterion of simplicity,

when including its indirect as well as its direct form, is

of value ; but it is only when analogy is thus conjoined

with simplicity that we may attach practical certitude

to a formula which satisfies at least the negative cri-

terion of fitting perhaps only a small number of well-

examined cases.

§ 8. The theory of what I have called the functional

extension of demonstrative induction constitutes a link

between the Demonstrative and the Problematic forms

of inference. For certain rules (of a strictly formal

character) are required for deducing, amongst all the

functions which fit the observed co-variations, the most

probable function of the variable cause-factors by which

an effect-factor may be calculated. The oldest and most

usual method of determining this function is known as
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the method of least squares. Its validity depends upon

a certain assumption with regard to the form of the

Law of Error, i.e. of the function exhibited by diver-

gences from a mean or average, when the number of

co-variational instances is indefinitely increased ; and a

different method must be employed for each correspond-

ing different assumption. The reader must be referred

to Mr J. M. Keynes's Treatise on Probability, Chapter

XVII, for a very comprehensive and original discussion

of this topic.

The inductive inference examined in the above is

thus shown to be based upon purely formal and demon-

strative principles of probability, whereas the discussion

of problematic induction to be developed in Part III

will introduce informal theorems of probability, based

on postulates of a highly controversial nature. It is

therefore legitimate, and even necessary, to include the

functional extension of the figures of induction under

the general title of demonstrative inference.
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