VoL. 16, 1930 MATHEMATICS: H. M. GEHMAN 609

Pg(tl,tz) = K‘;(tl)K;(tz) . (11)

where the Greek indices take on exactly the same values as in (10). This
is the crux of the proof of the theorem below.

THEOREM. T'he one-parameter family of projective functional transforma-
tions (2) gemerated by a regular infinitesimal projective functional trans-
formation (1) is a one-parameter continuous group.

1 A general theory of linear functional equations on a composite range with applica-
tion to projective functional transformations including a fuller account of the work
of this note is to be published elsewhere. These developments are embodied in a
California Institute thesis. I am indebted to Prof. A. D. Michal for suggesting these
topics and for invaluable suggestions and criticisms.

21,. L. Dines, Trans. Am. Math. Soc., 20, 45 (1919), has given in different notation
the inversion and group properties for transformation of type (2) and has shown the
existence of the one-parameter family satisfying (4) and (5). G. Kowalewski, Wien.
Ber., 120, 1435, has given the name ‘“‘regular infinitesimal projective functional trans-
formation” to (1).

3 Loc. cit., p. 59; see also, I. A. Barnett, Bull. Am. Math. Soc., 36, 273 (1930)
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1. Introduction.—The object of this paper is to show, in the final
section, an application of the special type of upper semi-continuous collec-
tion of continua? which is discussed in § 3. Before doing so, we shall
prove certain theorems concerning upper semi-continuous collections in
general.

2. G-Magps on a Cactoid.—R. L. Moore has shown that an upper semi-
continuous collection of continua which fills up a sphere is topologically
equivalent to a cactoid.? Since a plane is topologically equivalent to a
sphere minus a point, this theorem can be extended to the case where the
collection fills up a plane, in which case the collection is topologically
equivalent to a cactoid minus a non-cut point.

If then G is an upper semi-continuous collection of continua which
fills up a sphere (or plane) S, a given correspondence I" between the
elements of G and the points of a cactoid (or cactoid minus a non-cut
point) 2, affects a kind of ‘“mapping” of the points of S upon the points
of =. To define this ‘“mapping” more precisely:

Let F be any subset of .S, and let G be the collection of elements of G
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which have points in common with F. If & is the set of points of Z,
which correspond to the elements of Gr under the correspondence T,
then we shall call the set ® the G-map of F on Z. 1t should be noted that
the G-map of a set F depends upon the correspondence T as well as upon
the collection G.

If the set F has a point in common with an element X of the collection
G, then it is obvious that the sets F and F 4+ X will have on X the same
G-map ®. In general, we have:

TurorEM 1. If Hp is the set of all points belonging to the elements of
Gp, and if K is any subset of Hp, then the sets F and F + K will have on
Z the same G-map.

THEOREM 2. The G-map of a continuum is a continuum in Z.

For if Fis a continuum, then Hp is a continuum,* and hence the G-map
of F on 2 is a continuum in Z—that is, is connected and closed in =.

THEOREM 3. The G-map of a continuous curve is a continuous curve in Z.

This theorem follows at once from Theorem 2 and the properties of
continuous curves and of upper semi-continuous collections.

As before, let Hr denote the set of all points belonging to the elements
of Gr, where G is the collection of elements of G which have points in
common with F. Let H, denote the set of all points of Hr which lie
in elements of Gy consisting of a single point, and let Hz = Hp — H,.
By definition, H, is a subset of F.

THEOREM 4. If the G-map on = of a continuum F is a continuous curve,
then F is connected im kleinen at every point of H, which is not a limit point
0f H Be

Suppose on the contrary that a continuum F is not connected im kleinen
at some point P of H, which is not a limit point of Hp, and that &, the
G-map of F on Z, is a continuous curve. Then within some neighborhood
R of P that contains no points of Hg, we have the state of affairs described
in § 3 of R. L. Moore’s ‘‘Report on Continuous Curves.”’® Since there is
a continuous (1-1) correspondence between the points of F in the neighbor-
hood R, and the points of some subset of ®, it follows that & fails to be
_ connected im kleinen at some point, which is contrary to hypothesis.

The following example shows the necessity of assuming that the point
P is not a limit point of the set Hp.

Example.—In a Euclidean 3-space, let S be the sphere x? 4 y? 4 2% = 1.
Let the elements of G be the circles in which the planes parallel to the
X Y-plane intersect the sphere. The collection G is topologically equiva-
lent to the straight line from (0, 0, 1) to (0, 0, —1). Since every sub-
continuum of a straight line is a point or a straight line, it follows that the
G-map of every subcontinuum of S is a continuous curve. It should be
noted, however, that for any subcontinuum F of S, the only points of S
which could possibly be points of H, are the points (0, 0, 1) and (0, 0, —1),
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and if F contains one of these points, then that point is a limit point
of H B-

3. A Special Type of G-Map.—Let L be a bounded continuum lying
on a sphere S. The collection of continua G consisting of L and of the
points of S-L is an upper semi-continuous collection and is topologically
equivalent to the cactoid 2 consisting of a contracting sequence of spheres,
each one of which is tangent to each one of the other spheres at a point A.
Such a set has been called by R. L. Moore a simple aspiculate cactoid.®

In case the continuum L lies in a plane S, the surface = may be defined
as the cactoid just described, with some point (different from A) omitted
from one of the spheres, or it may be defined as a surface consisting of a
plane IT and a contracting sequence of spheres, each one of which is tan-
gent to the plane II at the same point A of the plane. In the discussion
of § 4, we shall consider Z as the latter type of set.

THEOREM 5. A mecessary and sufficient condition that the G-map on =
of a continuum F be a continuous curve, is that F be connected im Eleinen at
every point of S-L.

The condition is necessary by Theorem 4, since H, = F(S—L) and
Hp = FL is closed. It is sufficient, because if , the G;-map of F, is not
a continuous curve, it fails to be connected im kleinen at some point of
® — A, and then by an argument similar to that used in the proof of
Theorem 4, it follows that F fails to be connected im kleinen at some point
which is not a point of L.

THEOREM 6. If L, and L, are bounded subcontinua of S and L,L, = 0,
a necessary and sufficient condition that a continuum F be a continuous
curve is that the Gr,-map of F on =, and the Gr,-map of F on Z, be continuous
curves.

The condition is necessary by Theorem 3. It is sufficient by Theorem
5, since under our hypotheses F is connected im kleinen at every point of
(S—L) +(S—-Ly) = S.

4. An Application to Theorems on Accessibility.—The above considera-
tions can be used to show that the generalization of the concept of a
point’s being accessible by arcs (or by continua) to the concept of a con-
tinuum’s being accessible by arcs (or by continua) which was recently
announced by G. T. Whyburn’ is a generalization which is more apparent
than real. :

As in § 3, let L be a bounded continuum lying in a plane S, and let
G be the upper semi-continuous collection and Z the surface described
there. According to Whyburn'’s definition, L is said to be accessible by
arcs from a point set D, provided that if A is any point of D, then G
contains a simple continuous arc of elements from’ 4 to L, every point
of which is contained in D 4 L. This is equivalent to saying that L
is accessible by arcs from D, provided that if 4 is any point of A, the G;-
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map of D on Z, then Z contains a simple continuous arc from 4 to A,
every point of which is containedin A 4+ A. That is, Whyburn’s “‘general-
ized accessibility”” in S is equivalent to “ordinary accessibility”’ in 2.

Consideration of the Gz-map of D rather than D itself has the advantage
that we replace an arc of elements, which when considered as a point set
in S may not be an arc or even a continuous curve, by an ordinary arc of
points in Z. If then throughout the discussions in Whyburn’s paper we
replace each subset of S by its Gr-map on Z, this replacing has the effect
(1) of reducing his “‘generalization” to the ordinary notion of accessibility
by arcs, and (2) of replacing the plane S by the more complicated space
Z. We shall next show that the difficulties involved in (2) are not suffi-
cient to cause ordinary accessibility in 2 to be considered as a generaliza-
tion of ordinary accessibility in .S.

Methods of proof will not be materially changed if the space considered
is 2 instead of S. So far as the topology of Z is concerned, it is locally
2-dimensional, except in the neighborhood of the point A. Hence prac-
tically all topological theorems, particularly those concerning accessibility,
hold true in this space, with appropriate modifications in some cases.
If, for instance, L is a subset of a continuous curve F in S, the G;-map of
F on = is a continuous curve containing the point A, by Theorem 3. ‘This
continuous curve on Z can be thought of as the sum of a sequence of con-
tinuous curves, one lying on the plane II and one (which may degenerate
into the point A only) on each of the spheres. Also if a set D is a subset
of one component of S-L, then A the G;-map of D on Z lies on IT or on one
of the spheres. Hence L is accessible from D if and only if the point A is
accessible from a set A lying on a plane or a sphere. If D has points in
common with more than one component of S-L, then L is accessible from D
if and only if the point A is accessible from each one of a sequence of sets
Ay, A, As, ..., which lie respectively in a sequence of different spaces,
one of which is a plane and the remainder are spheres.

As has just been shown, in considering questions of accessibility, it is
in general no more difficult to prove theorems for the space = than for the
space S. Hence it can be seen that the announced generalization of the
idea of accessibility is in reality no generalization at all. Many of the
results of Whyburn’s paper? are merely restatements for the space Z of
theorems previously proved by Whyburn for the plane.?

While the above discussion has been restricted to the plane for the sake
of definiteness, the same ideas can obviously be used in considering ques-
tions of accessibility in any Euclidean space of # dimensions.

! The major portion of this paper was presented to the American Mathematical
Society at Bethlehem, Penna., December 27, 1929.

2 For definitions, see: R. L. Moore, “Concerning Upper Semi-continuous Collec-
tions of Continua,” Trans. Amer. Math. Soc., 27, 416—28 (1925).
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#R. L. Moore, “Concerning Upper Semi-continuous Collections,” Monatshefte fiir
Mathematik und Physik, 36, 81-88 (1929). See especially Theorem 2.

4R. L. Moore, Transactions, loc. cit., Theorem 1.

5 Bull. Amer. Math. Soc., 29, 289302 (1923).

¢ R. L. Moore, Monatshefte, loc. cit., Definitions, pp. 81-82 and Theorem 6. The
set described above does not satisfy Moore’s condition (b), p. 81—a condition which
is not essential under any circumstances.

7 G. T. Whyburn, “A Generalized Notion of Accessibility,” Fund. Math., 14, 311—
326 (1929).

8 G. T. Whyburn, “On Certain Accessible Points of Plane Continua,” Monatshefte
fiir Mathematik und Physik, 35, 289—304 (1928).
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1. The remarkable expansions of arithmetical functions obtained by
Ramanujan in his notable memoir (Collected Papers, No. 21) on certain
trigonometrical sums and their applications are contained as special
cases of much more general expansions which have also other special cases
of particular interest. The purpose of this paper is to present these
generalizations and to draw from the expansions some conclusions of
importance obtained by means of a hitherto unnoticed fundamental
property of the Ramanujan sums c,(n), namely, that expressed by the

relations
q

dp

"El C(n)c,(n) = 0if p = g, ”Zl ci(n) = ge(g),
where ¢(g) denotes Euler’s o-function of ¢. This has led to the notion of
orthogonal arithmetical functions analogous to the notion of orthogonal
functions in analysis.

2. By x(a), xi(a), x2(a), ..., we denote any characters modulis %, k;,
ke, ..., respectively, and by xo(a), x10(a), x20(@), . . . we denote the principal
characters for these moduli. If a symbol for a character is written with
an argument which is not an integer it may have for this argument any
conveniently assigned value. The character which is equal to unity for
all arguments will sometimes be replaced by 1. We use u(az) to denote
the Mobius function. By n,(rn) we denote the sum of the #n'® powers
of the ¢*® roots of unity; then n4(n) is g or 0 according as g is or is not
a factor of ».



