Gesamtübersicht

über das

Kompendium der Statik der Baukonstruktionen

Erster Band

Die statisch bestimmten Systeme

Vollwandige Systeme und Fachwerke

In Vorbereitung

Zweiter Band

Die statisch unbestimmten Systeme

Erster Teil: Die allgemeinen Grundlagen zur Berechnung statisch unbestimmter Systeme. Die Untersuchung elastischer Formänderungen. Die Elastizitätsgleichungen und deren Auflösung.

> IX und 206 Seiten 8^o. Geheftet GZ. 6.5*) Gebunden GZ. 8.5*)

- Zweiter Teil: Berechnung der einfacheren statisch unbestimmten Systeme: Grade Balken mit Endeinspannungen und mehr als zwei Stützen. — Einfache Rahmengebilde. — Zweigelenkbogen. — Gewölbe. — Armierte Balken. VIII und 314 Seiten 8^o.
- Dritter Teil: Die hochgradig statisch unbestimmten Systeme. Durchlaufende Träger auf starren und elastischen Stützen. Fachwerke mit starren Knotenpunktsverbindungen. — Stockwerkrahmen. — Vierendeel-Träger und verwandte Rahmengebilde.

In Vorbereitung.

Vierter Teil: Das statisch unbestimmte Fachwerk. Aufgaben des Brücken- und Eisenhochbaues.

In Vorbereitung.

^{*)} Grundzahl (GZ) entspricht dem ungefähren Vorkriegspreis und ergibt mit dem jeweiligen Entwertungsfaktor (Umrechnungsschlüssel) verveilfacht den Verkaufspreis. Über den zur Zeit geltenden Umrechnungsschlüssel geben alle Buchhandlungen sowie der Verlag bereitwilligst Auskunft.

Kompendium der Statik der Baukonstruktionen

Von

Dr.-Ing. J. Pirlet Privatdozent an der Techn. Hochschule zu Aachen

Zweiter Band Die statisch unbestimmten Systeme

Zweiter Teil

Berechnung der einfacheren statisch unbestimmten Systeme: Grade Balken mit Endeinspannungen und mehr als zwei Stützen. — Einfache Rahmengebilde. Zweigelenkbogen. — Gewölbe. — Armierte Balken.

Mit 298 Textfiguren

Berlin Verlag von Julius Springer 1923 Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

ISBN 978-3-642-50403-7 DOI 10.1007/978-3-642-50712-0 (eBook) DOI 10.1007/978-3-642-50712-0 Softcover reprint of the hardcover 1st edition 1923

Vorwort.

In dem vorliegenden zweiten Teile des II. Bandes ist eine Reihe der einfacheren statisch unbestimmten, vollwandigen Systeme behandelt, wie sie in mannigfaltigen Formen speziell in der Baupraxis vorkommen. Als Grundlage dienen die im ersten Teil dargestellten allgemeinen Verfahren.

Die Lösungen der Aufgaben sind hiernach allgemein auf rechnerischem Wege durchgeführt. In Anlehnung an die im ersten Teil behandelten Eliminationsverfahren ist insbesondere beim beiderseits eingespannten Rahmen auch auf jene in der Fachliteratur besonders beliebte Lösungsart näher eingegangen, welche teils auf zeichnerischem, teils auf rechnerischem Wege die Verwendung tunlichst einfacher Elastizitätsgleichungen anstrebt. Die verallgemeinerte rechnerische Grundlage läßt eine Anwendung auf andere Systeme ohne weiteres zu.

Bei der Einfachheit der hier behandelten Systeme ließen sich die Endergebnisse der Rechnung meist in geschlossener Form darstellen, und zwar nicht nur für äußere Lasten, sondern auch für Temperaturänderungen und Widerlagerverschiebungen. Infolgedessen stellt der vorliegende Teil zugleich eine Formelsammlung dar; jedoch ist auch die Herleitung aller Endergebnisse aus dem Text zu entnehmen.

Die Darstellung der Resultate in geschlossenen Formeln ist naturgemäß an bestimmte Voraussetzungen, wie insbesondere an die Symmetrie der Systeme gebunden. In jenen Fällen, wo bei Zahlenrechnungen diese Voraussetzungen über die Querschnittsannahmen oder die Form der Systemachse nicht genau erfüllt sind, können die Ergebnisse höchstens noch als Annäherungen gelten, die bei manchen Aufgaben für erste Rechnungen gute Dienste leisten.

Um aber auch für allgemeinste Fälle den Rechnungsgang zu erläutern, sind in den angefügten Beispielen, speziell in den Zahlenrechnungen, auch beliebig gestaltete Systeme behandelt.

Die Zahl der hierher gehörigen Aufgaben hätte sich noch beliebig erweitern lassen. Die vorliegenden Beispiele dürften indessen genügen, um die Verwendung der allgemeinen Grundlagen des ersten Teiles zu erläutern und damit den Weg für die Behandlung beliebiger Systeme zu zeigen. Auch die im dritten Teil dieses II. Bandes zu besprechenden verwickelteren Aufgaben, wie z. B. die Berechnung der Stockwerkrahmen, werden durch die vorliegenden Ausführungen vorbereitet und sind durch einfache Fortsetzung der hier besprochenen Gedankengänge zu behandeln. Vorwort.

Beim Durchrechnen der Zahlenbeispiele sowie beim Lesen der Korrektur haben mich die Herren Diplom-Ingenieure J. Mols, K. Müller, A. Konertz und St. Link in dankenswerter Weise unterstützt. — Zu ganz besonderem Danke bin ich meinem Mitarbeiter, Herrn Dipl.-Ing. Mols, verpflichtet, welcher verschiedene Aufgaben dieses Teiles selbständig entwickelt und bearbeitet hat.

Aachen, im Oktober 1922.

Pirlet.

Inhalt.

	Ι.	
	Vollwandige Systeme mit gradlinigen Achsen. Sei	ite
§ 1.	Allgemeine rechnerische Unterlagen für die Bestimmung von Ver- schiebungen bei der Untersuchung statisch unbestimmter Systeme a) Geschlossene Ausdrücke für die Verschiebungen	12
	c) Größe und Lage des Maximalmomentes bei ruhender, gleich-	7
§ 2.	mäßiger und dreieckförmiger Belastung	20 22
	a) Allgemeine Gleichungen für die Unbekannten X, für Momente, Querkräfte und Auflagerreaktionen	22
	b) Untersuchung des Trägers für ruhende Belastung (Tabelle VIII)	25 33
§ 3.	Der einseitig eingespannte gerade Balken (Tabelle IX)	39
§ 4. § 5.	Ubungsaufgaben	43
	Aufgabe 1. Beiderseits eingespannte Balken 4 Aufgabe 2. Halbrahmen 4	13 18
§ 6.	Der kontinuierliche Träger auf 4 Stützen	52
	statische Größen	52 56
	a) Ruhende Belastung. Temperaturveränderungen. Widerlager-	-0
	b) Bewegliche Belastung. Einflußlinien. — Maximal- und Minimal-	<u> </u>
	Momenten und Querkraftsflächen	39 35
§ 7. 8 8	Zahlenbeispiel zu § 6	36
3 0.	Querschnittsverteilung	€7
	1. Belastungszuszande $A_{a \cdot 0}, A_{b \cdot 1}, A_{c \cdot 2} = 1.$ – Zuszammensetzung dieser Lastengruppen zu Einzellasten) 8
	schiedenen Verfahren)3
§ 9.	Der beiderseits eingespannte symmetrische Rechteckrahmen 11 I. Allgemeine Gleichungen für die Unbekannten und für beliebige	16
	statische Größen	16 25
§ 10 .	Sonderbehandlung des Rahmens bei Symmetrie. — Dreigelenkbogen und Zweigelenkbogen als Grundsysteme	52
§ 11.	Rechenbeispiele:	30
	Beispiel II: Rechteckrahmen mit zwei auskragenden Balken auf)9 \r
§ 12. § 13.	Kollenlagern, nach zwei Verfahren	15 15 24

Inhalt.

П.

Vollwandige Systeme mit gekrümmten Achsen.

	Seite								
§ 14.	Der beiderseits eingespannte elastische Bogen; erste Berechnung . 234								
	I. Elastizitätsgleichungen und Verschiebungen für verschiedene Be-								
	lastungen								
	II. Lösung der Gleichungen								
§ 15.	Der beiderseits eingespannte elastische Bogen; zweite Berechnung.								
U	(Vereinfachende Annahme über die Querschnitte.) Berechnung der								
	Unbekannten X und der wichtigeren statischen Größen 255								
§ 16.	Zahlenbeispiel zu §§ 14 und 15								
	Anhang: Kreisliniengewölbe								
§ 17.	Der vollwandige Zweigelenkbogen mit parabelförmiger Achse 287								
0	I. Bewegliche Belastung								
	II. Besondere Belastungsfälle								
§ 18.	Übungsaufgabe zu § 17								
•	111.								
A									

Aus	vollwandigen	und	fachwerkartigen	Teilen	zusammengesetzte
			Systeme.		
8 10	Annianto Ballio	n			

S 19.	Armierte Balken.
0	I. A'lgemeine Grundlagen der Berechnung
	II. Untersuchung besonderer Systeme (dreieckförmig, trapezförmig,
	parabelförmig armierte Balken; Hängebrücke)
§ 20.	Rahmen mit Eckverstrebungen

I. Abschnitt.

Vollwandige Systeme mit geradlinigen Achsen.

§ 1. Allgemeine rechnerische Unterlagen für die Bestimmung von Verschiebungen bei der Untersuchung statisch unbestimmter Systeme.

Die Wahl des Grundsystems und der Überzähligen X ist von grundlegender Bedeutung für die Art und den Umfang der Rechnung. Es erscheint zweckmäßig, als Überzählige im allgemeinen nur Momente zu wählen. Das gegebene statisch unbestimmte System wird also dadurch in ein statisch bestimmtes Grundsystem verwandelt, daß man durch Anordnung von Gelenken die erforderliche Anzahl von Einspannungsmomenten beseitigt. Hierdurch läßt es sich in vielen Fällen erreichen, daß das Grundsystem sich ganz oder teilweise aus einfachen Bal-

weise aus einfachen Balken zusammensetzt; z. B. ist dies der Fall beim kontinuierlichen Träger, wenn man die Stützenmomente als Überzählige wählt (s. Fig. 1a und 1b). Bei Rahmen

(Fig. 2) und Rahmengebilden tritt im Grundsystem außer dem einfachen Balken auch der einseitig eingespannte Balken (Fig. 2 b) bzw. der Dreigelenkbogen auf (Fig. 2 c).

Die Unbekannten X eines ν -fach sta-

tisch unbestimmten Systems werden nach den Ausführungen im ersten Teil, § 12, berechnet aus Quotienten von der Form:

Pirlet, Statik. II. 2.

Hierin bedeuten sowohl der Zähler- wie der Nennerwert Verschiebungen des Angriffspunktes i in Richtung von X_i am ν -fach statisch unbestimmten Hauptsystem, und zwar der Zähler die Verschiebung infolge der gegebenen äußeren Belastung (P) und der Nenner diejenige infolge $X_i = 1$. — Die Werte $[im.\nu]$ und $[ii.\nu]$ werden stets rechnerisch als Summenausdrücke ermittelt. Um zu ihrer Darstellung zu gelangen, sollen zunächst einige allgemeine Unterlagen hergeleitet werden.

Anmerkung: Die Herleitung der folgenden allgemeinen Ausdrücke nebst ihrer Anwendung auf die hier behandelten Systeme könnte überflüssig erscheinen. Diese an sich einfachen Rechnungen sind indessen hier angegeben worden, weil sie für die Praxis des statischen Rechnens ein wertvolles Rüstzeug bilden. Die Endformeln gestatten eine schnelle Durchführung der Rechnungen und sind nicht nur bei den im folgenden behandelten Aufgaben, sondern auch bei der Untersuchung sonstiger, häufig vorkommender Tragwerke zu verwenden.

Daß derartige Hilfsmittel zur raschen Ermittlung statischer Größen einem vielfach empfundenen praktischen Bedürfnis entsprechen, zeigen die in letzter Zeit erschienenen Formelsammlungen. (Vgl. z. B. Kleinlogel, Rahmenformeln.)

Jedenfalls erscheint es angebracht, derartige Rechenergebnisse nur in Verbindung mit ihrer Ableitung vorzulegen. Darum sind hier die ohnehin nötigen allgemeinen Entwickelungen so weit ausgedehnt, daß eine Reihe von Formeln gewonnen wurde, die bei einiger Übung auch für die Erledigung vieler sonstiger Aufgaben des statischen Rechnens geeignet erscheinen.

Die Angaben der dem Verfasser bekannt gewordenen Formelsammlungen sind im wesentlichen mitsamt ihrer Herleitung aus den nachstehenden Entwickelungen direkt zu entnehmen oder aber an Hand der hier angegebenen Unterlagen ohne weiteres abzuleiten.

a) Geschlossene Ausdrücke für die Verschiebungen [*ii.v*] und [*im.v*].

Der Nennerwert $[ii.\nu]$ der Gleichung (1) wird gefunden nach der Gleichung:

$$EJ'[ii.\nu] = \int M_{i.\nu}^2 ds \frac{J'}{J} = \int M_{i.\nu} \cdot M_i ds \frac{J'}{J}^{-1}.$$

Hierin bedeuten:

- M_i die Momente infolge der Last $X_i = 1$ am statisch bestimmten Grundsystem (M_i -Fläche) und
- $M_{i,\nu}$ die Momente infolge der Last $X_{i,\nu} = 1$ am ν -fach statisch unbestimmten Hauptsystem ($M_{i,\nu}$ -Fläche). Die Ermittelung der $M_{i,\nu}$ -Fläche wird im folgenden bei jedem Beispiel erläutert.

Bei den hier zunächst in Betracht kommenden Systemen mit geradlinigen Achsen verlaufen die M_i - und $M_{i,\nu}$ -Fläche geradlinig über die einzelnen Systemteile. In diesem Falle ist die Auswertung des Integralwertes $[ii.\nu]$ sehr einfach. Die Unterlagen hierfür finden

¹) Diese Gleichung vernachlässigt den Einfluß der Normalkräfte N und Querkräfte Q, der im allgemeinen von geringem Einfluß auf das Endergebnis ist. J' bedeutet ein beliebiges konstantes Trägheitsmoment. Der Faktor EJ' kann, da er bei allen Verschiebungen konstant ist und daher auf das Endergebnis X keinen Einfluß hat, fortgelassen werden.

§ 1. Allg. rechnerische Unterlagen für die Bestimmung von Verschiebungen usw. 3

sich im ersten Teil dieses Bandes, § 7, sollen jedoch der Vollständigkeit halber noch einmal zusammengestellt werden.

Einige häufiger vorkommende Sonderfälle sind zusammengestellt in folgender Tabelle I.

Ta	ha	11.	Т
1 a			1.

Mit Hilfe dieser Tabelle I läßt sich der Nennerwert nach Ermittelung der M_i - und $M_{i,\nu}$ -Fläche angeben¹).

Der Zählerwert $[im.\nu]$ der Gleichung (1) wird gefunden aus der Gleichung:

$$[im.\nu] = \int M_0 M_{i.\nu} \, ds \, \frac{J'}{J} \, .$$

(Auch hier ist, wie in der Gleichung für $[ii.\nu]$, der konstante Faktor EJ' fortgelassen und der Einfluß der Normal- und Querkräfte vernachlässigt.)

Bezüglich der M_0 -Fläche (Momentenfläche infolge der äußeren Belastung am Grundsystem) unterscheiden wir zwei Fälle:

Erstens: Die M_0 -Fläche erstreckt sich nur über den belasteten einfachen Balken.

Zweitens: Durch die Auflagerdrücke des belasteten einfachen Balkens werden noch weitere Systemteile auf Biegung beansprucht, so daß sich die M_0 -Fläche auch über diese erstreckt.

Fig. 4. M_0 - Fläche.

Der erste Fall tritt z. B. ein, wenn das Grundsystem aus einer Reihe einfacher Balken besteht (Fig. 4). Die M_0 -Fläche erstreckt sich nur über den belasteten einfachen Balken AB. Das Integral:

$$\int M_0 M_{i,\nu} \, ds \frac{J'}{J}$$

ist also auch nur über diesen Balken AB auszudehnen.

¹) Man kann den Nenner auch aus den Verschiebungen des Grundsystems ermitteln, durch fortgesetzte Anwendung der Gleichung (vgl. Erster Teil, § 13):

$$[ik.\nu] = [ik.\nu-1] - \frac{[hi.\nu-1]}{[hh.\nu-1]} \cdot [hk.\nu-1].$$

Der zweite Fall ist z. B. vorhanden bei dem nach Fig. 5 belasteten Rechteckrahmen. Hier wird durch die Last P nicht nur der rechte Ständer beansprucht, sondern, infolge des durch den oberen Riegel vom rechten auf den linken Ständer

übertragenen Auflagerdruckes, auch dieser linke Ständer, der ein unten eingespannter Balken ist. Die M_0 -Fläche hat also die in Fig. 5 angegebene Form. Das Integral

 $\int M_0 M_{i,\nu} \, ds \, \frac{J'}{J}$

erstreckt sich in diesem Falle über die beiden Ständer.

Bezüglich der $M_{i,\nu}$ -Fläche nehmen wir wieder an, daß sie auf der Strecke l trapezförmig verläuft und die Endordinaten $M'_{i,\nu}$ und $M''_{i,\nu}$ hat (Fig. 6). An einer Stelle x (vom rechten Auflager gemessen) ist dann:

$$M_{i,\nu} = M'_{i,\nu} \frac{x}{l} + M''_{i,\nu} \left(1 - \frac{x}{l}\right)$$

Setzt man diesen Wert $M_{i,\nu}$ in die Gleichung für $[im.\nu]$ ein, so erhält man:

Hier ist

und

Bei Temperaturänderungen ergeben sich die Unbekannten aus Quotienten von der Form:

¹) Da die Werte M_0 je nach der äußeren Belastung verschieden sind, so ändern sich naturgemäß auch die Werte φ_1 und φ_2 mit der äußeren Belastung.

Vollwandige Systeme mit geradlinigen Achsen.

$$X_{i,\nu} = -\frac{[it,\nu]}{[ii,\nu]}.$$

Bei ungleichmäßiger Erwärmung finden wir den Zählerwert [it.v] aus der Gleichung (vergl. I. Teil § 7)

$$[it.\nu] = EJ' \int M_{i.\nu} \cdot \varepsilon \cdot \frac{\Delta t}{h} ds + EJ' \int N_{i.\nu} \cdot \varepsilon \cdot t_0 \cdot ds.$$

Darin ist ε der Wärmeausdehnungskoeffizient des Materials, t_0 die Wärmeänderung im Schwerpunkt, Δt der Wärmeunterschied zwischen oberem und unterem Querschnittsrand und h die Höhe des Querschnitts. (Wir bestimmen auch hier die $E \cdot J'$ -fachen Verschiebungen.) — Ist der Wert $\frac{\Delta t}{h}$ auf der ganzen Balkenlänge konstant, so wird, wenn wir lediglich das erste Glied vorstehender Gleichung berücksichtigen:

$$[it.\nu] = EJ' \varepsilon \frac{\Delta t}{h} \cdot \int M_{i.\nu} ds.$$

Das Integral $\int M_{i,\nu} ds$ ist der Inhalt der Momentenfläche $(M_{i,\nu}$ -Fläche), hat also bei trapezförmiger Gestalt der Momentenfläche den Wert

$$\frac{(M_{i,\nu}'+M_{i,\nu}'')}{2}l$$

Es ist damit

$$[it.\nu] = \varepsilon \frac{\Delta t}{h} \cdot \frac{l}{2} (M'_{i.\nu} + M''_{i.\nu}) \cdot EJ'.$$

Bei gleichmäßiger Wärmeänderung um den Wert t_0 erhält man mit $\Delta t = 0$ und konstanten $N_{i,r}$:

$$[it.\nu] = EJ' \int N_{i.\nu} \cdot \varepsilon \cdot t_0 \cdot ds = \varepsilon \cdot t_0 \cdot l \cdot N_{i.\nu} \cdot EJ'.$$

Allgemein gilt also die Gleichung

$$[it.\nu] = \varepsilon \frac{\Delta t}{h} \cdot \frac{l'}{2} (M'_{i.\nu} + M''_{i.\nu}) EJ + \varepsilon \cdot t_0 \cdot l' \cdot N_{i.\nu} \cdot EJ \quad (5)$$

Bei Widerlagerverschiebungen lautet die Gleichung für den Wert $X_{i,r}$ (vergl. I. Teil § 16):

$$X_{i,\nu} = -\frac{[i\overline{w}.\nu]}{[ii.\nu]};$$

darin ist

$$[i\overline{w},\nu] \doteq -\sum L_{i,\nu}[lw,\nu] \cdot EJ' \quad . \quad . \quad . \quad (6)$$

 $L_{i,\nu}$ sind die Auflagerreaktionen des ν -fach statisch unbestimmten Hauptsystems infolge $X_{i,\nu} = 1$; $[lw.\nu]$ sind die (gegebenen oder beobachteten) Verschiebungen der Auflagerpunkte in Richtung dieser Auflagerreaktionen $L_{i,\nu}$. §1. Allg. rechnerische Unterlagen für die Bestimmung von Verschiebungen usw. 7

b) Entwickelung des für den Zählerwert [im.v] gefundenen Ausdrucks bei verschiedenen Belastungsfällen.

Als äußere Belastungen kommen in der Praxis hauptsächlich in Betracht Einzellasten, gleich- oder dreieckförmig verteilte Belastungen, Momente, sowie Zusammensetzungen aus diesen Belastungsarten.

 α) Für eine Einzellast *P* im Abstande ξ vom rechten Auflager (Fig. 7) hat die Momentenfläche die Form eines Dreiecks mit der größten Ordinate unter der Last *P*. An einer Stelle *x* sind die Ordinaten:

Für
$$x < \xi$$
: $M_0' = Pl\left(1 - \frac{\xi}{l}\right) \frac{x}{l}$,
 $x > \xi$: $M_0'' = Pl\frac{\xi}{l}\left(1 - \frac{x}{l}\right) = Pl\left(1 - \frac{\xi'}{l}\right) \frac{x'}{l}$.

Der Integralwert φ_1 (vergl. S. 5) nimmt also folgende Form an:

$$\varphi_{1} = \frac{J'}{J_{0}} \int_{0}^{\xi} M_{0}' \frac{x}{l} dx + \frac{J'}{J_{\xi}} \int_{\xi}^{t} M_{0}'' \frac{x}{l} dx$$
$$= \frac{J'}{J_{0}} \int_{0}^{\xi} Pl \left(1 - \frac{\xi}{l}\right) \left(\frac{x}{l}\right)^{2} dx + \frac{J'}{J_{\xi}} \int_{\xi}^{l} Pl \frac{\xi}{l} \left(1 - \frac{x}{l}\right) \frac{x}{l} dx.$$

Daraus ergibt sich nach entsprechender Umformung, wenn $l' = l \cdot \frac{J'}{T}$ ist:

$$\varphi_{1} = \frac{Pll'}{6} \cdot \frac{\xi}{l} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right].$$

Der Integralwert φ_2 erhält die folgende Form:

$$\begin{split} \varphi_2 &= \frac{J'}{J_0} \int_0^{\xi} M_0' \left(1 - \frac{x}{l}\right) dx + \frac{J'}{J_{\xi}} \int_{\xi}^{t} M_0'' \left(1 - \frac{x}{l}\right) dx, \\ &= \frac{J'}{J_0} \int_0^{\xi} Pl \left(1 - \frac{\xi}{l}\right) \frac{x}{l} \left(1 - \frac{x}{l}\right) dx + \frac{J'}{J_{\xi}} \int_{\xi}^{l} Pl \left(1 - \frac{x}{l}\right)^2 \frac{\xi}{l} dx, \\ &= \frac{J'}{J_{\xi'}} \int_{\xi'}^{l} Pl \frac{\xi'}{l} \left(1 - \frac{x'}{l}\right) \frac{x'}{l} dx' + \frac{J'}{J_0} \int_{0}^{\xi'} Pl \left(1 - \frac{\xi'}{l}\right) \left(\frac{x'}{l}\right)^2 dx'. \end{split}$$

Dies ist dieselbe Form, wie wir sie oben für φ_1 gefunden haben, wenn man x' für x und ξ' für ξ einsetzt. Man erhält also als Resultat: Vollwandige Systeme mit geradlinigen Achsen.

$$\varphi_2 = \frac{Pll'}{6} \frac{\xi'}{l} \left[1 - \left(\frac{\xi'}{l}\right)^2 \right] = \frac{Pll'}{6} \left(1 - \frac{\xi}{l} \right) \cdot \frac{\xi}{l} \left(2 - \frac{\xi}{l} \right).$$

Die für eine Einzellast P gefundenen Werte φ_1 und φ_2 schreiben wir:

$$\varphi_{1} = \frac{Pl l'}{6} \cdot c_{1},$$

$$\varphi_{2} = \frac{Pl l'}{6} \cdot c_{2}.$$
(7a)

Darin ist:

$$c_{1} = \frac{\tilde{s}}{l} \left[1 - \left(\frac{\tilde{s}}{l} \right)^{2} \right],$$

$$c_{2} = \frac{\tilde{s}}{l} \left(1 - \frac{\tilde{s}}{l} \right) \left(2 - \frac{\tilde{s}}{l} \right).$$

$$(7b)$$

Der Zählerwert $[im.\nu]$ hat also die Form:

$$[im.v] = \frac{Pll'}{6} (c_1 M'_{i.r} + c_2 \cdot M''_{i.r}) \dots \dots \dots \dots \dots (8)$$

Die Werte c_1 und c_2 sind in Tabelle II (S. 13) für die verschiedenen Abstandsverhältnisse $\frac{\xi}{l}$ von $\frac{1}{100}$ bis $\frac{100}{100}$ zusammengestellt. Es sind für beide Werte nur die 50 ersten Zahlen angegeben, da für die folgenden Zahlen von 51 bis 100 die Werte c_1 gleich den entsprechenden Werten c_2 der Zahlen von 49 bis 1 sind.

Die Auflagerdrücke des einfachen Balkens (Fig. 7) sind für eine Einzellast

$$A = P \cdot \frac{\xi}{l}; \quad B = P\left(1 - \frac{\xi}{l}\right).$$

Fig. 8.

 β) Für eine gleichförmig verteilte Belastung von der Größe p für die Längeneinheit (Fig. 8) werden die Werte φ_1 und φ_2 wie folgt gefunden.

Die Last p möge auf der Strecke ξ wirken. An der Stelle x wirkt auf dem Streckenelement dx eine Last $p \cdot dx$ als

Einzellast im Abstande x vom rechten Auflager. Für diese Einzellast ist nach den vorigen Ergebnissen:

$$d\varphi_1 = (p \cdot dx) \frac{ll'}{6} \frac{x}{l} \left[1 - \left(\frac{x}{l}\right)^2 \right] = \frac{pll'}{6} \frac{x}{l} \left[1 - \left(\frac{x}{l}\right)^2 \right] dx,$$

$$d\varphi_2 = (p \, dx) \frac{ll'}{6} \frac{x}{l} \left(1 - \frac{x}{l} \right) \left(2 - \frac{x}{l} \right) = \frac{pll'}{6} \frac{x}{l} \left(1 - \frac{x}{l} \right) \left(2 - \frac{x}{l} \right) dx.$$

Integriert man diese Ausdrücke über die Strecke ξ , so erhält man die Werte φ für die auf der Strecke ξ gleichmäßig verteilte Last. Nach gehöriger Vereinfachung ergibt sich: \S 1. Allg. rechnerische Unterlagen für die Bestimmung von Verschiebungen usw. 9

$$\begin{split} \varphi_{1} = & \int_{0}^{\xi} \frac{p \, l \, l'}{6} \frac{x}{l} \left[1 - \left(\frac{x}{l} \right)^{2} \right] dx = \frac{p \, l^{2} \, l'}{24} \left(\frac{\xi}{l} \right)^{2} \left[2 - \left(\frac{\xi}{l} \right)^{2} \right], \\ \varphi_{2} = & \int_{0}^{\xi} \frac{p \, l \, l'}{6} \frac{x}{l} \left(1 - \frac{x}{l} \right) \left(2 - \frac{x}{l} \right) dx = \frac{p \, l^{2} \, l'}{24} \left(\frac{\xi}{l} \right)^{2} \left(2 - \frac{\xi}{l} \right)^{2}. \end{split}$$

Wir schreiben:

Darin ist:

$$\begin{aligned} k_1 &= \left(\frac{\xi}{l}\right)^2 \left[2 - \left(\frac{\xi}{l}\right)^2\right], \\ k_2 &= \left(\frac{\xi}{l}\right)^2 \left(2 - \frac{\xi}{l}\right)^2. \end{aligned} \right\} \quad \dots \quad \dots \quad (9b)$$

Der Zählerwert $[im.\nu]$ hat also die Form:

Die Werte k_1 und k_2 sind für die Abstandsverhältnisse von $\frac{1}{100}$ bis $\frac{100}{100}$ in der Tabelle III (S. 14) zusammengestellt.

Die Auflagerdrücke für gleichförmig verteilte Streckenlast (Fig. 8) sind:

$$A = \frac{pl}{2} \left(\frac{\xi}{l}\right)^2, \quad B = \frac{pl}{2} \frac{\xi}{l} \left(2 - \frac{\xi}{l}\right).$$

 γ) 1. Für eine dreieckförmig verteilte Last, die auf einer Strecke ξ vom rechten Auflager aus

wirkt, so daß die größte Ordinate püber dem Auflager liegt (Fig. 9), ermitteln wir die Werte φ wie folgt.

Für eine Stelle x vom rechten Auflager aus gemessen ist die Belastungsordinate:

$$\frac{p}{\xi}\left(\xi-x\right) = p\left(1-\frac{x}{\xi}\right)$$

Für eine als Einzellast zu denkende Last $p\left(1-\frac{x}{\xi}\right)dx$ (auf dem Streckenelement dx) ist dann:

$$d\varphi_1 = \frac{pll'}{6} \left(1 - \frac{x}{\xi}\right) \frac{x}{l} \left[1 - \left(\frac{x}{l}\right)^2\right] dx,$$

$$d\varphi_2 = \frac{pll'}{6} \left(1 - \frac{x}{\xi}\right) \frac{x}{l} \left(1 - \frac{x}{l}\right) \left(2 - \frac{x}{l}\right) dx$$

Durch Integration der Werte über die Strecke ξ erhält man die für dreieckförmige Belastung gültigen Werte:

$$\varphi_{1} = \int_{0}^{\xi} \frac{p l l'}{6} \left\{ \left[\frac{x}{l} - \left(\frac{x}{l} \right)^{3} \right] - \frac{1}{\xi} \left[\frac{x^{2}}{l} - \frac{x^{4}}{l^{3}} \right] \right\} dx,$$

$$\varphi_{2} = \int_{0}^{\xi} \frac{p l l'}{6} \left\{ 2 \frac{x}{l} - 3 \left(\frac{x}{l} \right)^{2} + \left(\frac{x}{l} \right)^{3} - \frac{1}{\xi} \left[2 \frac{x^{2}}{l} - 3 \frac{x^{3}}{l^{2}} + \frac{x^{4}}{l^{3}} \right] \right\} dx.$$

Daraus ergibt sich:

$$\varphi_1 = \frac{p l^3 l'}{360} \left(\frac{\xi}{l}\right)^2 \left[10 - 3\left(\frac{\xi}{l}\right)^2\right],$$
$$\varphi_2 = \frac{p l^3 l'}{360} \left(\frac{\xi}{l}\right)^2 \left[20 - 15\frac{\xi}{l} + 3\left(\frac{\xi}{l}\right)^2\right].$$

Wir schreiben:

$$\varphi_1 = \frac{p l^2 l'}{360} \cdot r_1,$$

$$\varphi_2 = \frac{p l^2 l'}{360} \cdot r_2.$$
(11a)

Darin ist:

$$r_{1} = \left(\frac{\xi}{l}\right)^{2} \left[10 - 3\left(\frac{\xi}{l}\right)^{2}\right],$$

$$r_{2} = \left(\frac{\xi}{l}\right)^{2} \left[20 - 15\frac{\xi}{l} + 3\left(\frac{\xi}{l}\right)^{2}\right].$$

Der Zählerwert $[im.\nu]$ hat also die Form:

$$[im.v] = \frac{pl^2l'}{360} (M'_{i.r} \cdot r_1 + M''_{i.r} \cdot r_2) \dots \dots (12)$$

Die Werte r_1 und r_2 sind in Tabelle IV (S. 15) für die Abstandsverhältnisse $\frac{\xi}{l} = \frac{1}{100}$ bis $\frac{100}{100}$ zusammengestellt.

Die Auflagerdrücke betragen:

$$A_0 = \frac{pl}{6} \left(\frac{\xi}{l}\right)^2, \quad B_0 = \frac{pl}{6} \frac{\xi}{l} \left(3 - \frac{\xi}{l}\right)$$

2. Für eine dreieckförmig verteilte Belastung mit der größten Ordinate p im Abstande ξ vom rechten Auflager und der Spitze über dem Auflager (Fig. 10) erhalten wir die Werte φ durch Subtraktion der unter γ , 1 gefundenen Werte φ von den unter β gefundenen.

§1. Allg. rechnerische Unterlagen für die Bestimmung von Verschiebungen usw. 11

$$\begin{split} \varphi_1 &= \frac{p l^3 l'}{24} \cdot k_1 - \frac{p l^2 l'}{360} \cdot r_1 = \frac{p l^2 l'}{360} (15 \ k_1 - r_1), \\ \varphi_2 &= \frac{p l^2 l'}{24} \cdot k_2 - \frac{p l^2 l'}{360} \cdot r_2 = \frac{p l^2 l'}{360} (15 \ k_2 - r_2). \end{split}$$

Aus den Gleichungen (9^b) und (11^b) findet man:

$$(15 k_1 - r_1) = \left(\frac{\xi}{l}\right)^2 \left[20 - 12\left(\frac{\xi}{l}\right)^2\right] = 4\left(\frac{\xi}{l}\right)^2 \left[5 - 3\left(\frac{\xi}{l}\right)^2\right].$$

$$(15 k_2 - r_2) = \left(\frac{\xi}{l}\right)^2 \left[40 - 45\frac{\xi}{l} + 12\left(\frac{\xi}{l}\right)^2\right].$$

Wir schreiben:

$$\varphi_1 = \frac{p l^2 l'}{360} \cdot t_1,$$

$$\varphi_2 = \frac{p l^2 l'}{360} \cdot t_2;$$
(13a)

darin ist:

$$t_{1} = 4 \left(\frac{\xi}{l}\right)^{2} \left[5 - 3 \left(\frac{\xi}{l}\right)^{2}\right],$$

$$t_{2} = \left(\frac{\xi}{l}\right)^{2} \left[40 - 45 \frac{\xi}{l} + 12 \left(\frac{\xi}{l}\right)^{2}\right].$$
 (13 b)

Der Zählerwert $[im.\nu]$ hat dann die Form:

$$[im.v] = \frac{pl^2l'}{360} (M'_{i.v} \cdot t_1 + M''_{i.v} \cdot t_2) \ldots \ldots (14)$$

Die Werte t_1 und t_2 sind in Tabelle V (S. 16) für die Abstandsverhältnisse $\frac{\xi}{l}$ von $\frac{1}{100}$ bis $\frac{100}{100}$ zusammengestellt.

Die Auflagerdrücke betragen:

$$A_0 = \frac{pl}{3} \left(\frac{\xi}{l}\right)^2, \ B_0 = \frac{pl}{6} \cdot \frac{\xi}{l} \left(3 - 2\frac{\xi}{l}\right).$$

 δ) Bei Belastung durch ein im Abstande ξ vom rechten Auflager angreifendes (linksdrehendes) Moment (Fig. 11) erhalten wir für M_0 im Abstande x vom rechten Auflager folgende Werte (Fig. 11a):

Für $x < \xi$: $M_0 = -\frac{x}{l} \cdot M$," $x > \xi$: $M_0 = \left(1 - \frac{x}{l}\right) M$.

Man erhält unter Anwendung der Gleichungen (4):

$$\varphi_1 = \frac{J'}{J} \int_0^{\xi} M\left[-\left(\frac{x}{l}\right)^2\right] dx + \frac{J'}{J} \int_{\xi}^{t} \left(1-\frac{x}{l}\right) \frac{x}{l} M dx,$$

$$\varphi_2 = \frac{J'}{J} \int_0^{\xi} M\left(-\frac{x}{l}\right) \left(1-\frac{x}{l}\right) dx + \frac{J'}{J} \int_{\xi}^{l} \left(1-\frac{x}{l}\right)^2 M dx$$

oder, wenn man den Wert x' = l - x und dx' = -dx einsetzt:

$$\varphi_2 = -\frac{J'}{J} \int\limits_{\xi'}^l M\left(1 - \frac{x'}{l}\right) \frac{x'}{l} dx' + \frac{J'}{J} \int\limits_0^{\xi'} M\left(\frac{x'}{l}\right)^2 dx' \, .$$

Nach entsprechender Umformung erhalten wir:

$$\varphi_{1} = \frac{Ml'}{6} \left[1 - 3\left(\frac{\xi}{l}\right)^{2} \right],$$

$$\varphi_{2} = -\frac{Ml'}{6} \left[1 - 3\left(\frac{\xi'}{l}\right)^{2} \right] = -\frac{Ml'}{6} \left[1 - 3\left(1 - \frac{\xi}{l}\right)^{2} \right].$$
reihan:

......

Wir schreiben:

$$\begin{array}{c}
\varphi_1 = \frac{Ml'}{6} \cdot s_1, \\
\varphi_2 = -\frac{Ml'}{6} \cdot s_2.
\end{array}$$
. (15a)

Darin ist:

$$\begin{array}{c} s_1 = 1 - 3 \left(\frac{\xi}{l} \right)^2, \\ s_2 = 1 - 3 \left(1 - \frac{\xi}{l} \right)^2. \end{array} \right\} \quad \dots \quad \dots \quad \dots \quad (15b)$$

Der Zählerwert $[im.\nu]$ hat dann die Form:

$$[im.v] = \frac{Ml'}{6} (M'_{i.v} \cdot s_1 - M''_{i.v} \cdot s_2) \dots \dots (16)$$

In Tabelle VI (S. 17) sind die Werte s_1 und s_2 für die verschiedenen Abstandsverhältnisse $\frac{\xi}{l}$ von $\frac{1}{100}$ bis $\frac{100}{100}$ angegeben.

Die Auflagerdrücke betragen:

$$A = \frac{M}{l}; \quad B = -\frac{M}{l}.$$

Aus den vorstehend ermittelten Werten φ_1 und φ_2 für die fünf Hauptbelastungsfälle lassen sich für spezielle Belastungsfälle die entsprechenden Formeln leicht ableiten. In Tabelle VII (S. 18 und 19) sind auch für einige häufiger vorkommende Sonderfälle die Ergebnisse für den Zählerwert $[im.\nu]$ eingetragen.

erte	c_1 und c_2 fü	r die Abstand	sverhältnisse	$\frac{\xi}{l}$ von $\frac{1}{100}$ bis $\frac{10}{10}$
	$100 \frac{\xi}{l}$	c1	C2	
	0	0.000.000	0.000.000	100
	ĭ	0.009 999	0.019701	99
	$\overline{2}$	0.019992	0.038808	98
	3	0.029973	0.057327	97
	4	0.039.936	0.075264	96
	$\hat{5}$	0.049875	0.092625	95
	Ğ	0.059784	0,109416	94
	$\tilde{7}$	0.069657	0 125 643	93
	8	0.079488	0.141312	92
	9	0.089271	0.156429	91
	10	0.099000	0.171000	90
	11	0.108669	0.185031	89
	12	0.118272	0.198528	88
	13	0,127803	0,211497	87
	14	0.137256	0.223.944	86
	15	0,146625	0,235875	85
	16	0,155904	0,247296	84
	17	0,165087	0,258213	83
	18	0,174168	0,268632	82
	19	0,183141	0,278559	81
	20	0,192000	0,288000	80
	21	0,200739	0,296961	79
	22	0,209352	0,30544 8	78
	23	0,217833	0,313467	77
	24	0,226176	0,321024	76
	25	$0,\!234375$	$0,\!328125$	75
	26	0,242424	0,334776	74
	27	0,250317	0,340983	73
	28	0,258048	0,346752	72
	29	0,265611	0,352089	71
	30	0,273000	0,357000	70
	31	0,280209	0,361491	69
	32	0,287232	0,365 568	68
	33 94	0,294 063	0,369237	67
	04 95	0,300696	0,372504	66
	00 96	0,307123	0,373373	65
	30 37	0,313344	0,377830	64 69
	90 90	0,319347	0,379933	63
	30 30	0,525126	0,001072	61
	35 40	0,000001	0,00019	60
	40	0,350000	0,004,000	50
	49	0,341079	0,004021	59
	43	0,340,312	0,384,807	57
	44	0,354,816	0,384,384	56
	45	0.358.875	0,383695	55
	46	0.362664	0.382536	54
	$\tilde{47}$	0.366177	0 381 123	53
	48	0.369408	0.379392	52
	49	0.372351	0.377349	$5\overline{1}$
	50	0,375000	0.375000	50
-				*
		c_2	c_1	$100 - \frac{3}{7}$
	1	l j		i

Tabelle II. ۶ 1, $s \frac{100}{100}$. We

Tabelle III.

Werte k für die Abstandsverhältnisse $\frac{\xi}{l}$ von $\frac{1}{100}$ bis $\frac{100}{100}$.

					·
$100 \frac{\xi}{l}$	k1	k2	$100 \frac{\xi}{l}$	k1	k2
1	0 000 200	0.000.396	51	0 452 548	0 577 448
2	0,000,800	0,001568	52	0 467 684	0.592284
3	0,001,799	0.003493	53	0 482 895	0.606 997
4	0,003197	0.006147	54	0 498 169	0.621 575
5	0.004.994	0,009,506	55	0.513494	0.636006
ĕ	0,007,187	0.013549	56	0.528855	0.650281
7	0,009,776	0.018252	57	0.544 240	0.664388
8	0.012759	0.023593	58	0.559635	0.678317
ğ	0.016134	0.029550	59	0.575 026	0.692058
1Ŏ	0.019900	0.036100	60	0.590400	0,705 600
11	0.024054	0.043222	61	0.605742	0,718934
12	0.028593	0.050895	62	0.621 037	0.732051
13	0.033514	0,059098	63	0,636270	0,744942
14	0,038816	0,067808	64	0,651 428	0,757596
$1\overline{5}$	0.044494	0,077 006	65	0,666494	0,770006
16	0,050545	0,086671	66	0,681453	0,782163
17	0,056965	0,096783	67	0,696289	0,794059
18	0,063 750	0,107322	68	0,710986	0,805686
19	0,070897	0,118267	69	0,725529	0,817035
20	0,078400	0,129600	70	0,739900	0,828100
21	0,086255	0,141 301	71	0,754083	0,838873
22	0,094457	0,153351	72	0,768061	0,849347
23	0,103002	0,165730	73	0,781818	0,859514
24	0,111882	0,178422	74	0,795334	0,869,370
25	0,121094	0,191406	75	0,808594	0,878906
26	0,130630	0,204666	76	0,821578	0,888118
27	0,140486	0,218182	77	0,834270	0,896998
28	0,150653	0,231939	78	0,846649	0,905543
29	0,161127	0,245917	79	0,858699	0,913745
30	0,171 900	0,260100	80	0,870400	0,921600
31	0,182965	0,274471	81	0,881733	0,929103
32	0,194314	0,289014	82	0,892678	0,936250
33	0,205941	0,303711	88	0,903217	0,943035
34	0,217837	0,318547	84	0,913 329	0,949 455
35	0,229994	0,333506	85	0,922994	0,955 506
36	0,242404	0,348 572	86	0,932192	0,961184
37	0,255058	0,363730	87	0,940 902	0,960480
38	0,267949	0,378963	88	0,949105	0,971407
39	0,281066	0,394258	89	0,956778	0,973940
40	0,294 400	0,409600	90	0,963 900	0,900100
41	0,307942	0,424974	91	0,970400	0,900,800
42	0,321 683	0,440303	92	0,970407	0,907241
43	0,333012	0,400 100	95	0,901 /40	0,990224
44	0,049719	0,471140	94 05	0,900401	0,992013
40	0,000,004	0,400000	90	0,009,059	0,006,800
40	0,010420	0,001001	90 07	0,9990000	0.008901
41	0,093000	0,529,216	31	0,008,199	0.000.001
40 40	0,407710	0,004010	90 00	0,330434	0,000 200
49 50	0,422002	0,041404	100	1000000	1 000 000
90	0,401000	0,002000	100	1,000,000	1,000,000

Tabelle IV.

Werte	r	für	die	Abstandsverhältnisse	$\frac{\xi}{I}$	von	$\frac{1}{100}$	bis	$\frac{100}{100}$.
					ι		100		100

					·····
$100 \frac{\xi}{l}$	<i>r</i> ₁	r_2	$100 \frac{\xi}{l}$	r ₁	r_2
1	0.001.000	0.001.985	51	2 398 044	3 415 191
2	0,004,000	0.007.880	52	2,050044	3 518 998
3	0.008998	0.017597	53	2,572,286	3 621 559
4	0 015 992	0.031.048	54	2,660908	3 795 139
5	0.024.981	0.048144	55	2,000,000	3 828 804
6	0.035961	0.068799	56	2,840965	3 9 9 9 7 9 5
7	0.048928	0,092,927	57	2,040,000	4 096 785
8	0.063877	0 120 443	58	3 094 505	4,030705
ğ	0,080,803	0 151 262	59	3 117479	4,140010
10	0,099,700	0 185 300	60	3 211 200	4,244,000
11	0 120 561	0 222 474	61	3 305 625	4,546600
12	0 143 378	0 262 702	62	3 400 710	4,556370
13	0 168 143	0,305,902	63	3 4 96 4 1 1	4 650 884
14	0 194 848	0 351 992	64	3 592684	4 763 156
15	0.223481	0.400894	65	3 689481	4 866 144
16	0.254 034	0.452526	66	3 786 758	4 968 802
17	0.286494	0.506811	67	3 884 466	5 071 089
18	0.320851	0.563669	68	3 982 559	5 172 961
19	0.357 090	0.623023	69	4 080 986	5 274 379
20	0.395200	0.684800	70	4 179700	5 375 300
21	0.435166	0.748919	71	4 278 650	5 475 685
$\overline{22}$	0.476972	0.815308	72	4 377 784	5 575496
23	0.520605	0.883890	73	4 477 053	5 674 692
$\overline{24}$	0.566047	0.954593	74	4 576 403	5 773 237
25	0.613281	1.027344	75	4.675781	5.871 094
26	0.662291	1.102069	76	4,775135	5,968225
27	0,713057	1,178698	77	4.874409	6.064 596
28	0,765560	1,257160	78	4.973548	6.160172
29	0,819782	1,337383	79	5,072497	6.254917
-30	0,875700	1,419300	80	5.171200	6.348800
31	0,933294	1,502841	81	5,269598	6.441787
32	0,992543	1,587 937	82	5,367 635	6,533845
33	1,053422	1,674523	83	5,465250	6,624945
34	1,115910	1,762530	84	5,562386	6,715054
35	1,179981	1,851894	85	5,658981	6,804144
36	1,245612	1,942548	86	5,754976	6,892184
37	1,312775	2,034430	87	5,850307	6,979148
38	1,381446	2,127474	88	5,944914	7,065006
39	$1,\!451597$	2,221618	8 9	6,038733	7,149732
40	1,523200	2,316800	90	6,131700	7,233300
41	1,596227	2,412958	91	6,223751	7,315684
42	1,670649	2,510031	92	6,314821	7,396859
43	1,746436	2,607959	93	6,404844	7,476801
44	1,823557	2,706 683	94	6,493753	7,555487
45	1,901981	2,806144	95	6,581 481	7,632894
46	1,981676	2,906284	96	6,667960	7,709000
47	2,062610	3,007045	97	6,753122	· 7,783783
48	2,144748	3,108372	9 8	6,83689 6	7,857224
49	2,228056	3,210 209	99	6,919212	7,929303
5 U	2,312500	3,312500	100	7,000000	8,000 000

Tabelle V.

Werte t für die Abstandsverhältnisse $\frac{\xi}{l}$ von $\frac{1}{100}$ bis $\frac{100}{100}$.

			······································	100	
$100 \frac{\xi}{l}$		t_2	$100 \frac{\xi}{l}$	<i>t</i> ₁	t_2
1	0.002000	0.003955	51	4.390176	5.246529
$\tilde{2}$	0.007998	0.015642	52	4,530,606	5,366034
3	0.017 990	0.034795	53	4.671142	5,483393
4	0.031969	0.061151	54	4.811633	5.598487
5	0.049925	0.094450	55	4.951925	5.711200
6	0.071844	0.134436	56	5.091860	5.821420
7	0,097712	0,180853	57	5.231280	5,929035
8	0,127 508	$0,\!233452$	58	5.370020	6.033940
9	0,161213	0,291982	59	5,507917	6,136028
10	0,198800	0,356200	60	5,644800	6,235200
11	0,240243	$0,\!425862$	61	5,780499	6,331 356
12	0,285512	0,500728	62	5,914840	6,424400
13	0,334572	0,580562	63	6,047645	6,514240
14	0,387 390	0,665130	64	6,178734	6,600786
15	0,443925	0,754200	65	6,307925	6,683950
16	0,504136	0,847544	66	6,435032	6,763648
17	0,567977	0,944 938	67	6,559865	6,839800
18	0,635403	1,046157	68	$6,\!682235$	6,912325
19	0,706361	1,150984	69	6,801 945	6,981150
20	0,780800	1,259200	70	6,918800	7,046200
21	0,858662	1,370593	71	7,032598	7,107407
22	0,939889	1,484951	72	7,143137	7,164703
23	1,024419	1,602066	73	7,250211	7,218024
24	1,112187	1,721733	74	7,353611	7,267 309
25	1,203125	1,843750	75	7,453125	7,312500
26	1,297163	1,967917	76	7,548539	7,353541
27	1,394227	2,094038	77	7,639635	7,390380
28	1,494241	2,221919	78	7,726193	7,422967
29	1,597126	2,351369	79	7,807990	7,451255
30	1,702800	2,482200	80	7,884800	7,475 200
31	1,811177	2,614228	81	7,956393	7,494762
32	1,922171	2,747269	82	8,022539	7,509901
33 94	2,035689	2,881146	83	8,083001	7,520584
04 95	2,151040	3,013080	84: 05	8,157544	7,520770
20 26	2,209923	3,130700	80	8,185925	7,528450
97	2,390440	0,200004 9,401514	00 07	0,227902	7 510 196
38	0 697 794	3,441314	00	8,203229 9,901656	7,516150
30	2,031104	3,000010	80	0,291000	7,000104
40	2,104301	3,032200	00	0,012,001	7,469404
41	3 022 000	3,021,200	01	8 332 005	7 449 300
49	3 154 596	4 095 444	09	9 331 984	7 411 756
43	3 987 744	4 228 4 41	03	8 321 376	7 376 559
44	3,422,228	4 360 492	94	8 303 012	7 336 708
45	3,557 925	4 491 450	95	8 275 925	7 292 200
46	3,694 705	4.621 175	96	8.239841	7 243 039
47	3,832438	4,749,527	97	8 194 486	7 189 229
48	3,970,990	4,876370	98	8 139 582	7,130778
49	4.110224	5,001571	99	8.074 848	7.067697
50	4,250,000	5,125000	100	8.000.000	7.000 000
	-,	-,			.,

erte s für d	ie Abstandsve	rhältnisse $\frac{\xi}{l}$ v	von $\frac{1}{100}$ bis $\frac{1}{100}$
$100 \frac{\xi}{l}$	<i>s</i> ₁	· S ₂	
0	1,0000	- 2,0000	100
1	0.9997	-1,9403	99
2	0,9988	-1,8812	98
3	0,9973	-1,8227	97
4	0,9952	-1,7648	96
5	0,9925	-1,7075	95
6	0,9892	-1,6508	94
7	0,9863	-1,5947	93
8	0,9808	-1,5392	92
9	0,9757	-1,4843	91
10	0,9700	-1,4300	90
11	0,9637	-1,3763	89
12	0,9568	- 1,3232	88
13	0,9493	-1,2707	87
14	0,9412	-1,2188	86
15	0,9325	-1,1675	85
16	0,9232	- 1,1168	84
17	0,9133	-1,0667	83
18	0,9028	-1,0172	82
19	$0,\!8917$	-0,9683	81
20	0,8800	-0,9200	80
21	0,8676	-0,8723	79
22	0,8548	-0,8252	78
23	0,8413	-0,7787	77
24	0,8272	-0,7328	76
25	0,8125	-0,6875	75
26	0,7972	-0,6428	74
27	0,7813	-0,5987	73
28	0,7648	-0,5552	72
29	0,7477	-0,5123	71
30	0,7300	- 0,4700	70
31	0,7117	-0,4283	69
32	0,6928	-0,3872	68
30 94	0,6733	-0,5467	
04 95	0,6532		66
90 90	0,0320	- 0,2075	60
00 97	0,0112	-0,2288	62
97 98	0,0893		60
90 90	0,0000	-0,1052	61
3 3 40	0,0407	- 0,1105	60
40	0,0200	- 0,0800	50
41	0,4937	-0,0445	59
44	0,4708	- 0,0092	50
40	0,4455	+0,0255	57
44	0,4192	0,0092	50
40 AR	0,0920	0,0920	00 54
47	0,0002	0,1202	04 59
49	0,00/0	0,1070	00 50
40	0,3088	0,1000	02 51
5 0	0,2797	0,2197	50
00	0,2000	0,2000	00
	1		1005

Pirlet, Statik. II. 2.

 $\mathbf{2}$

lung der Formeln für φ_1 und φ_2 und $EJ' \cdot [im \cdot v] = \frac{v}{J} \cdot \int_0^{J} M_{i \cdot v} M_0 ds$.	$[im.v] = [M'_{i,v} \cdot \varphi_1 \cdot$	$\frac{Pl}{6} l' (M'_{i,r} \cdot c_{i} + M''_{i'r})$	$rac{pl^2}{24}l'(M_{i,v}',k_1+M_{i,v}')$	$\frac{pl^2}{360}l'(M'_{i,j},r_1+M''_{i,j})$	$\frac{pl^3}{360} l' (\boldsymbol{M}'_{i, \cdot} \cdot \boldsymbol{t}_1 + \boldsymbol{M}''_{i, \cdot})$	$M \frac{l'}{6} (M'_{i, y}, s_1 - M''_{i, y})$	$\frac{Pl}{16} l' \left(M'_{i,r} + M''_{i',r} \right)$	$rac{Pl}{6} l \left(c_1 + c_2 ight) \left(M'_{i, r} + ight)$
	φ ₂	$\frac{Pl}{6} t c_2$	$\frac{pl^3}{24}l'k_2$	$rac{p^{1^3}}{360} l' r_2$	$\frac{pt^3}{360} t' t_2$	$-rac{M}{6}l's_2$	$\frac{Pl}{16}l$	$rac{Pl}{6}l'(c_1+c_2)$
	φ1	$\frac{1}{6}lvc_1$	$\frac{pl^3}{24}l'k_1$	$\frac{pl^3}{360}l'r_1$	$\frac{pl^3}{360}l't_1$	$\frac{M}{6} l' s_1$	$\frac{Pl}{16}lr$	$\frac{Pl}{6}l t (c_1 + c_2)$
Zusammenste	Belastungsfall						$\frac{1}{2} \rightarrow d$	
		,	5	က	4	ų	9	-

Tabelle VII¹).

-2 5 A R. V. Li. . -Ē Ξ

18

Vollwandige Systeme mit geradlinigen Achsen.

' $(M_{i,\nu}'+M_{i,\nu}')$	' [$M'_{i,"}(k_1''-k_1')+M''_{i,"}(k_2''-k_2)$	' $(1-k_1-k_2) (M'_{i,n}+M''_{i,n})$	$V(7M'_{i,n}+8M''_{i,n})$	$w + M''_{i,v} + \frac{p_2 l^2}{360} l' (7 M'_{i,v} + 8 M'_{i})$	$V\left[M_{i.\nu}^{\prime}\left(t_{1}\!+\!t_{2}^{\prime} ight)\!+M_{i.\nu}^{\prime\prime}\left(t_{2}\!+\!t_{1}^{\prime} ight) ight]$	$pl^{2}l^{\prime}\left(oldsymbol{M}_{i,oldsymbol{\nu}}^{\prime}+oldsymbol{M}_{i,oldsymbol{\nu}}^{\prime\prime} ight)$	$(M'_{i,.}-M''_{i,.})$	$(M'_{i,"} + 2 M''_{i,"})$ (vgl. Tab. I, e)
$\frac{pl^2}{24}l$	$\frac{pl^2}{24}l$	$\frac{pl^2}{24}l$	$\frac{pl^2}{360}$	$\frac{p_{1}l^{2}}{24}l'(M_{i}'.$	$\frac{pl^2}{360}l$	$\frac{5}{192}$	$\frac{M}{24}l'$	$\frac{M}{6}$
$\frac{pl^2}{24}l'$	$rac{pl^2}{24}l'(k_{z}''-k_{z}')$	$\frac{pl^2}{24}l'(1-k_1-k_2)$	$8 \frac{pl^2}{360} l'$	$\left(rac{p_1 l^2}{24} + 8 \; rac{p_2 l^2}{360} ight) l'$	$rac{pl^2}{360}l'(t_2+t_1')$	$rac{5}{192} p l^2 l'$	$-rac{M}{24}l'$	$\frac{M}{3}l'$
$\frac{pl^3}{24}l'$	$\frac{pl^3}{24} l' (k_1'' - k_1')$	$\frac{p l^2}{24} l' \left(1 - k_1 - k_2\right)$	$7 \frac{p l^2}{360} l'$	$\left(rac{p_1l^2}{24} + 7 \; rac{p_2l^2}{360} ight) t'$	$rac{pl^2}{360}l'(t_1+t_2^{\prime})$	$\frac{5}{192} p l^2 l'$	$\frac{M}{24}l'$	$\frac{M}{6}l'$
v/					↓ ↓	Y Z Z	- Z	× (
œ	6	10	11	12	13	14	15	*6

§1. Allg. rechnerische Unterlagen für die Bestimmung von Verschiebungen usw. 19

*) Anmerkung. Die Tabelle enthält für die eingezeichneten Belastungsfälle den $E \cdot J'$ -fachen Wert der Verschiebung $[im.\nu]$, wobei die $M_{i,\nu}$ -Fläche auf der Strecke l trapezförmig angenommen ist. (Endordinaten: $M'_{i,\nu}$ links und $M''_{i,\nu}$ rechts.) — Die Werte φ_1 und φ_2 sind angegeben zur Verwendung in geschlossenen Formeln. — Das Trägheitsmoment J soll auf der Strecke l konstant sein.

c) Größe und Lage des Maximalmomentes bei ruhender gleichmäßiger und dreieckförmiger Belastung.

Die Größtmomente für ruhende Streckenlasten sowie der Abstand x, den der Angriffspunkt dieses Momentes vom Auflager hat, lassen sich bei rechteckigen und dreieckförmigen Belastungen in einfacher Weise durch die Querkraft am Auflager, d. h. den Auflagerdruck des einfachen Balkens angeben.

Wir betrachten den allgemeinen Fall, daß außer den äußeren Lasten, welche die Auflagerdrücke A_0 und B_0 hervorrufen, noch zwei Momente M_a und M_b an den Balkenenden angreifen (Fig. 12). Es ist dann:

$$A = A_0 + \frac{M_b - M_a}{l},$$

$$B = B_0 + \frac{M_a - M_b}{l}.$$
(17)

Das Größtmoment tritt bekanntlich da auf, wo die Querkraft das Vorzeichen wechselt, also den Wert 0 erreicht. Die Resultierende der äußeren Last zwischen diesem Punkt und dem Auflager muß

also umgekehrt gleich dem Auflagerdruck sein. Diese Beziehung kann zur Bestimmung des Größtmomentes benutzt werden.

 α) Bei gleichförmig verteilter Last an beliebiger Stelle (Fig. 13) trete M_{max} auf beim Punkte m im Abstande x vom Anfang der Belastung, also im Abstande

$$M_{max} = B\left(\xi + \frac{x}{2}\right) + M_b \ldots \ldots \ldots$$
(18)

Darin ist, da $p \cdot x = B$ ist:

§1. Allg. rechnerische Unterlagen für die Bestimmung von Verschiebungen usw. 21

 β) Bei dreieckförmig verteilter Belastung (Fig. 15) trete M_{max} auf an der Stelle mim Abstande x von der Spitze der Belastung, also im Abstande $(x + \xi)$ vom Auflager. Es ist dann, wenn p_a und a bekannt sind:

$$p_x = \frac{x}{a} \cdot p_a.$$

$$B = p_x \cdot \frac{x}{2} = \frac{x^2 \cdot p_a}{2a}$$

Fig. 15.

Daraus ergibt sich:

$$x = a \sqrt{\frac{B}{P_a}} = a \sqrt{\frac{2B}{p_a \cdot a}}.$$

Hier bildet die dreieckförmige Belastung rechts von m, nämlich $p_x \cdot \frac{x}{2} = B$, mit dem Auflagerdruck B das Kräftepaar $B \cdot \left(\xi + \frac{2}{3}x\right)$, so daß das Gesamtmoment bei m beträgt:

worin also

Links von *a* kann die Lastverteilung beliebig sein.

 γ) Auch bei trapezförmiger Belastung lassen sich entsprechende Gleichungen für x und M_{max} angeben. Mit den Bezeichnungen der Fig. 16 findet man:

$$B = p_x \frac{a+x}{2} - \frac{p_1 \cdot a}{2}$$

 $\left(\frac{x}{a}\right);$

$$p_x = p_1 + p_2 \frac{x}{c} = p_1 + \frac{p_1 \cdot x}{a} = p_1 \left(1 + \frac{p_1 \cdot x}{a}\right)$$

also ist

Darin ist

$$B = p_{1} \left(1 + \frac{x}{a} \right) \frac{a + x}{2} - p_{1} \frac{a}{2}$$
$$B = \frac{p_{1}a}{2} \left[\left(1 + \frac{x}{a} \right)^{2} - 1 \right].$$

Daraus findet man:

$$x = a \left(\sqrt{\frac{2B}{p_1 \cdot a} + 1} - 1 \right) \cdot \dots \cdot (22a)$$

Durch Einsetzen der Werte

a lso

$$\frac{p_1 a}{2} = \left(\frac{p_1}{p_2}\right)^2 \frac{p_2 c}{2}$$

 $a = c \frac{p_1}{m}$,

ergibt sich aus der vorhergehenden Gleichung

Die letzte Form hat den Vorteil, daß der Wert a, der unter Umständen sehr groß wird, nicht vorkommt, sondern nur gegebene Werte c, p_1 und p_2 vorkommen.

Werte c, p_1 und p_2 vorkommen. Nach Ermittelung von x findet man M_{max} aus folgender Gleichung:

$$M_{max} = p_1 \cdot x \left(\xi + \frac{x}{2} \right) + \frac{p_2}{c} \cdot \frac{x^2}{2} \left(\xi + \frac{2}{3} x \right) + M_b \cdot \ldots \quad (23)$$

NB. Aus den Gleichungen (22) lassen sich die Werte der Gleichungen (19) und (21) ableiten, indem man einmal $p_2 = 0$ in Gleichung (22b) oder $a = \infty$ in Gleichung (22a), und das andere Mal $p_1 = 0$ in Gleichung (22b) oder a = 0in Gleichung (22a) setzt. Für $p_1 = 0$ ergibt sich aus Gleichung (22b) ohne weiteres der Wert der Gleichung (21). In den anderen Fällen ergeben beide Gleichungen die unbestimmten Werte $\infty \cdot 0$ bzw. $\infty - \infty$. Schreibt man aber

$$x = \frac{\sqrt{\frac{2B}{p_1a} + 1} - 1}{\frac{1}{a}} = c \qquad \frac{\sqrt{\frac{2B}{c}p_2 + p_1^2} - p_1}{p_2}$$

so ergeben sich, wenn man Zähler und Nenner nach a bzw. p_2 differenziert und dann $a = \infty$, a = 0 bzw. $p_2 = 0$ einsetzt, die Gleichungen (19) und (21).

§ 2. Der beiderseits eingespannte gerade Balken.

Als erstes Beispiel behandeln wir den beiderseits eingespannten geraden Balken, der sich wegen der Einfachheit des Systems für die Anwendung der in § 1 gegebenen Rechnungsunterlagen besonders eignet. Die Aufgabe ist hier eingehender behandelt, weil sie als Grundlage für manche der später zu behandelnden Aufgaben dient.

a) Allgemeine Gleichungen für die Unbekannten X, für Momente, Querkräfte und Auflagerreaktionen.

Das System (Fig. 17a) ist dreifach statisch unbestimmt. Wählt man als Grundsystem einen einfachen Balken mit einem festen und einem beweglichen Auflager (Fig. 17b), also als Unbekannte die beiden Einspannungsmomente X_a und X_b und den horizontalen

22

Auflagerdruck X_c , so wird letzterer bei senkrechter Belastung, gleich Null. (Bezüglich X_c bei Temperaturänderungen vgl. S. 29.)

Für die Unbekannte X_h haben wir die Gleichung:

$$X_b = -\frac{[bm.1]}{[bb.1]}.$$

Der Wert [bb.1] kann ermittelt werden aus der Gleichung:

$$[bb.1] = \int M_{b.1}^2 ds \frac{J'}{J} = \int M_{b.1} M_b \cdot ds \frac{J'}{J}.$$

Die $M_{b.1}$ -Fläche (Momentenfläche am einfach statisch unbestimmten Hauptsystem infolge der Belastung $X_b = 1$; Zustand $X_{b,1} = 1$) hat [a b]bei B den Wert 1, bei A den Wert $X_{ab} = \begin{bmatrix} a & a \end{bmatrix}$

Aus der M_a - und M_b -Fläche (Fig. 18a und 18b) ergibt sich, unter Anwendung der Tabelle I, f und g $(\S 1)$:

$$[a a] = \int M_a^2 ds \frac{J'}{J} = \frac{l'}{3},$$

$$[a b] = \int M_a M_b ds \frac{J'}{J} = \frac{l'}{6},$$

$$[b b] = [a a] = \frac{l'}{3}.$$

Also ist $-\frac{[a b]}{[a a]} = -\frac{1}{2}.$

Die $M_{b,1}$ -Fläche hat also die in Fig. 19 dargestellte Form. Damit ist nach Tabelle I, b in $\S 1$:

$$[bb.1] = \frac{l'}{6} \cdot 1\left(2 - \frac{1}{2}\right) = \frac{l'}{4}.$$

Es ergibt sich also für X_{μ} die Gleichung:

$$X_b = -\frac{4}{l'} \cdot \left[b \, m \, . \, 1 \right].$$

Der Wert [bm.1] ist für jede Belastung besonders zu ermitteln aus der Gleichung:

$$[bm.1] = \int M_{b.1} M_0 ds \frac{J'}{J}.$$

In Hinblick auf Fig. 19 erhält [bm.1] die Form:

$$[bm.1] = -\frac{1}{2}\varphi_1 + \varphi_2.$$

Damit findet man:

$$X_{b} = -\frac{4}{l'} \left(-\frac{1}{2} \varphi_{1} + \varphi_{2} \right) = -\frac{2}{l'} \left(2 \varphi_{2} - \varphi_{1} \right).$$

Fig. 18b.

Fig. 19.

Wegen der Symmetrie des Systems können wir daraus ohne weiteres die Gleichung für X_a durch entsprechende Vertauschung der Bezeichnungen angeben. Die Unbekannten X_a und X_b haben also die Form:

$$X_{a} = -\frac{2}{l'} (2 \varphi_{1} - \varphi_{2})$$

$$X_{b} = -\frac{2}{l'} (2 \varphi_{2} - \varphi_{1})$$

$$(24)$$

Zur Auswertung der folgenden Gleichungen (26) ist der Wert $X_a - X_b$ zu ermitteln. Nach den Gleichungen (24) ergibt sich dafür:

$$X_a - X_b = -\frac{6}{l'}(\varphi_1 - \varphi_2)$$
 (25)

Sind die beiden Einspannungsmomente X_a und X_b gefunden, so ergeben sich für die Auflagerdrücke, Querkräfte und Momente folgende Gleichungen:

Auflagerdrücke:

$$A = A_o + A_a \cdot X_a + A_b \cdot X_b$$
,
 $B = B_o + B_a \cdot X_a + B_b \cdot X_b$.Querkräfte: $Q = Q_o + Q_a X_a + Q_b X_b$. $M = M_o + M_a X_a + M_b X_b$.

Darin bedeuten A_o, B_o, Q_o, M_o die betreffenden Werte, die infolge der äußeren Belastung am Grundsystem auftreten. Die durch die Unbekannte $X_a = 1$ am Grundsystem hervorgerufenen Werte sind (Fig. 18a):

$$\begin{split} &A_a \!=\! -\frac{1}{l}, \\ &B_a \!=\! \frac{1}{l}, \\ &Q_a \!=\! A_a \!=\! -\frac{1}{l}, \\ &M_a \!=\! \frac{x}{l} \text{ (an der Stelle } x); \end{split}$$

die durch X_b hervorgerufenen Werte sind (Fig. 18b):

$$\begin{split} & A_b = \frac{1}{l}, \\ & B_b = -\frac{1}{l}, \\ & Q_b = A_b = \frac{1}{l}, \\ & M_b = 1 - \frac{x}{l} \text{ (an der Stelle } x). \end{split}$$

Damit ergibt sich:

$$A = A_{o} - \frac{X_{a} - X_{b}}{l},$$

$$B = B_{o} + \frac{X_{a} - X_{b}}{l},$$

$$Q = Q_{o} - \frac{X_{a} - X_{b}}{l},$$

$$M = M_{o} + X_{a} \frac{x}{l} + X_{b} \left(1 - \frac{x}{l}\right).$$
(26)

Anmerkung: Nach den vorstehenden Gleichungen (24) - (26) ist nun der Träger für die verschiedenen Belastungsfälle in einfachster Weise zu berechnen. Man hat nur für φ die früher ermittelten Funktionen von c, k, r... einzuführen.

Wenn somit auch die Untersuchung einzelner Belastungsfälle an sich nichts Neues bietet, so sollen doch für einige häufig vorkommende Fälle die näheren Angaben folgen, damit sich der weniger Geübte an die Verwendung der bisherigen Unterlagen gewöhnt und man für etwaige sonstige Aufgaben die fertigen Ergebnisse zur Hand hat.

b) Untersuchung des Trägers für ruhende Belastungen.

Die Fälle ruhender Belastung lassen sich mit Hilfe der in § 1 hergeleiteten allgemeinen Grundlagen ohne weiteres erledigen. Fig. 20.

 α) Einzellast P.

Greift im Abstand ξ vom rechten Auflager *B* (Fig. 20 und 20a) eine Einzellast *P* an, so ist nach Gleichung (7a) in § 1:

$$\varphi_1 = \frac{Pl}{6} l' \cdot c_1,$$
$$\varphi_2 = \frac{Pl}{6} l' \cdot c_2.$$

Damit ergibt sich hier:

$$X_{a} = -\frac{Pl}{3}(2c_{1} - c_{2}) = -Pl\left(\frac{\xi}{l}\right)^{2}\left(1 - \frac{\xi}{l}\right), \\ X_{b} = -\frac{Pl}{3}(2c_{2} - c_{1}) = -Pl\frac{\xi}{l}\left(1 - \frac{\xi}{l}\right)^{2}.$$
(27)

Die Differenz $X_a - X_b$ ist dann

$$X_{a} - X_{b} = -\frac{6}{l'} \cdot \frac{Pl}{6} \cdot l'(c_{1} - c_{2}) = -Pl(c_{1} - c_{2}) = -Pl\frac{\xi}{l} \left(1 - \frac{\xi}{l}\right) \left(2\frac{\xi}{l} - 1\right).$$

Zur Bestimmung der Auflagerdrücke dienen die Gleichungen (26). Es ist:

$$A = \frac{P \cdot \xi}{l} + P(c_1 - c_2) = P\left[\frac{\xi}{l} + (c_1 - c_2)\right] = P\left(\frac{\xi}{l}\right)^2 \left(3 - 2\frac{\xi}{l}\right),$$

$$B = P\left[\left(1 - \frac{\xi}{l}\right) - (c_1 - c_2)\right] = P\left(1 - \frac{\xi}{l}\right)^2 \left(1 + 2\frac{\xi}{l}\right) = P - A.$$
 (28)

Das Größtmoment tritt auf unter der Last P. (Die genaueren Untersuchungen finden sich bei der Besprechung der Einflußlinien im folgenden Abschnitt.) Es ist:

$$M_{0} = Pl\frac{\xi}{l}\left(1-\frac{\xi}{l}\right), \quad \text{also}$$

$$M_{max} = Pl\frac{\xi}{l}\left(1-\frac{\xi}{l}\right) + X_{a}\frac{\xi}{l} + X_{b}\left(1-\frac{\xi}{l}\right) = 2Pl\left(\frac{\xi}{l}\right)^{2}\left(1-\frac{\xi}{l}\right)^{2} (29)$$

Die Momentenfläche ist in Fig. 20a dargestellt.

 β) Gleichförmig verteilte Belastung.

Bei gleichförmig verteilter Belastung auf der Strecke ξ vom rechten Auflager aus (Fig. 21) ergibt sich nach Tabelle VII aus Gl. (24):

$$\begin{split} \varphi_{1} &= \frac{p l^{2}}{24} \cdot l' \cdot k_{1} ,\\ \varphi_{2} &= \frac{p l^{2}}{24} \cdot l' \cdot k_{2} .\\ X_{a} &= -\frac{p l^{2}}{12} \left(2 k_{1} - k_{2} \right) .\\ X_{b} &= -\frac{p l^{2}}{12} \left(2 k_{2} - k_{1} \right) . \end{split} \right\} \quad (30)\\ X_{a} - X_{b} &= -\frac{p l^{2}}{4} (k_{1} - k_{2}) . \end{split}$$

Ferner ist:

$$\begin{split} A_{0} &= \frac{pl}{2} \left(\frac{\xi}{l}\right)^{2} \\ B_{0} &= \frac{pl}{2} \frac{\xi}{l} \left(2 - \frac{\xi}{l}\right) \end{split}$$

Demnach ergeben sich die Auflagerdrücke nach Gl. (26):

$$A = \frac{pl}{4} \left[2\left(\frac{\xi}{l}\right)^2 + (k_1 - k_2) \right] = \frac{pl}{2} \cdot \left(\frac{\xi}{l}\right)^3 \cdot \left(2 - \frac{\xi}{l}\right),$$

$$B = \frac{pl}{4} \left[2\frac{\xi}{l} \left(2 - \frac{\xi}{l}\right) - (k_1 - k_2) \right] = \frac{pl}{2} \cdot \frac{\xi}{l} \cdot \left[2 - \left(\frac{\xi}{l}\right)^2 \cdot \left(2 - \frac{\xi}{l}\right) \right].$$
(31)

Das Moment an einer beliebigen Stelle x hat somit den Wert:

Für
$$x > \xi$$
: $M_x = A(l-x) + X_a$,
, $x < \xi$: $M_x = B \cdot x - \frac{px^2}{2} + X_b$.
(32a)

Das Größtmoment ist nach Gleichung (18a), wenn X_b für M_b gesetzt wird:

§ 2. Der beiderseits eingespannte gerade Balken.

$$M_{max} = \frac{B^2}{2p} + X_b$$
. (32b)

γ) Dreieckförmige Belastung.

1. Bei dreieckförmig über die Strecke ξ verteilter Last mit der größten Ordinate bei B (Fig. 22) ergibt sich nach Tabelle VII:

Es ist also nach Gl. (24):

$$X_{a} = -\frac{pl^{2}}{180} (2r_{1} - r_{2}),$$

$$X_{b} = -\frac{pl^{2}}{180} (2r_{2} - r_{1}).$$

$$X_{a} - X_{b} = -\frac{pl^{2}}{60} (r_{1} - r_{2}).$$
(33)

Ferner wird:

$$A_{0} = \frac{pl}{6} \cdot \left(\frac{\xi}{l}\right)^{3},$$
$$B_{0} = \frac{pl}{6} \cdot \frac{\xi}{l} \left(3 - \frac{\xi}{l}\right)$$

also:

$$A = \frac{pl}{60} \left[10 \left(\frac{\xi}{l} \right)^2 + (r_1 - r_2) \right],$$

$$B = \frac{pl}{60} \left[10 \frac{\xi}{l} \left(3 - \frac{\xi}{l} \right) - (r_1 - r_2) \right].$$
(34)

Das Größtmoment tritt auf im Abstand x von der Spitze der dreieckförmigen Belastung (s. Fig. 22). Dieser Abstand ist:

$$x = \sqrt{\frac{A}{P_{\xi}}} = x\sqrt{\frac{2A}{p\cdot\xi}}$$

Damit ergibt sich als Größtmoment nach Gl. (20):

$$M_{max} = A\left(l - \xi + \frac{2}{3}x\right) + X_a$$
 (35)

2. Hat die auf der Strecke ξ dreieckförmig verteilte Last die größte Ordinate bei ξ (Fig. 23), so erhält man mit Hilfe der Tabelle VII:

Vollwandige Systeme mit geradlinigen Achsen.

$$\varphi_{1} = \frac{p l^{2}}{360} \cdot l' \cdot t_{1},$$

$$\varphi_{2} = \frac{p l^{2}}{360} \cdot l' \cdot t_{2},$$

$$X_{a} = -\frac{p l^{2}}{180} (2 t_{1} - t_{2}),$$

$$X_{b} = -\frac{p l^{2}}{180} (2 t_{2} - t_{1}),$$

$$X_{a} - X_{b} = -\frac{p l^{2}}{60} (t_{1} - t_{2}).$$

$$A_{0} = \frac{p l}{3} \left(\frac{\xi}{l}\right)^{2},$$

$$B_{0} = \frac{p l}{6} \frac{\xi}{l} \left(3 - 2\frac{\xi}{l}\right).$$

$$A = \frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

$$X_{b} = -\frac{p l}{60} \left[20 \left(\frac{\xi}{l}\right)^{2} + (t_{1} - t_{2})\right],$$

Mit

wird

$$A = \frac{p l}{60} \left[20 \left(\frac{\xi}{l} \right)^2 + (t_1 - t_2) \right],$$

$$B = \frac{p l}{60} \left[10 \frac{\xi}{l} \left(3 - 2 \frac{\xi}{l} \right) - (t_1 - t_2) \right].$$
(37)

Das Größtmoment ergibt sich im Abstande x von der Dreiecksspitze:

$$x = \xi \sqrt{\frac{B}{P_{\xi}}} = \xi \sqrt{\frac{2}{p \cdot \xi}}.$$

$$M_{\text{max}} = B \cdot \frac{2}{3} x + X_b \cdot \dots \cdot \dots \cdot \dots \cdot (38)$$

$$\delta$$
) Äußere Belastung durch
ein Moment *M*. Es greife ein Mo-
ment *M* im Abstande ξ vom rechten
Auflager an (Fig. 24). Es ergibt
sich nach Tabelle VII:

$$\begin{split} \varphi_1 = & \frac{M}{6} \cdot l' \cdot s_1 \text{ ,} \\ \varphi_2 = & - \frac{M}{6} \cdot l' \cdot s_2 \end{split}$$

Es ist also nach Gl. (24):

$$X_{a} = -\frac{M}{3}(2 s_{1} + s_{2}) = -M\frac{\xi}{l}\left(2 - 3\frac{\xi}{l}\right),$$

$$X_{b} = +\frac{M}{3}(2 s_{2} + s_{1}) = -M\left(1 - \frac{\xi}{l}\right)\left(1 - 3\frac{\xi}{l}\right).$$
st: $X_{a} - X_{b} = -M(s_{1} + s_{2}) = M\left[1 - 6\frac{\xi}{l}\left(1 - \frac{\xi}{l}\right)\right].$
(39)

•

Damit i L $l \setminus l/ \rfloor$

28

Es ist ferner:

$$A_0 = -B_0 = \frac{M}{l}$$

damit erhält man:

$$A = \frac{M}{l}(1 + s_1 + s_2) = 6\frac{M}{l}\frac{\xi}{l}\left(1 - \frac{\xi}{l}\right), B = -\frac{M}{l}(1 + s_1 + s_2) = -6\frac{M}{l}\frac{\xi}{l}\left(1 - \frac{\xi}{l}\right).$$
 (40)

Ein Moment an beliebiger Stelle x ist:

Für

$$x < \xi: \quad M_x = -M\frac{x}{l} + X_a \frac{x}{l} + X_b \left(1 - \frac{x}{l}\right),$$

$$x > \xi: \quad M_x = M\left(1 - \frac{x}{l}\right) + X_a \frac{x}{l} + X_b \left(1 - \frac{x}{l}\right).$$
 (41)

 ϵ) Treten an dem System ungleichmäßige Temperaturänderungen auf, ist z. B. der Temperaturunterschied zwischen dem oberen und unteren Rand des Querschnitts $\Delta t = t_0 - t_u$, so ist (vgl. S. 6 Gl. 5)

$$[b\ t.\ 1] = -\varepsilon \frac{\Delta t}{h} \cdot \frac{l}{2} \left(-\frac{1}{2} + 1 \right) E \cdot J' = -E \cdot J \cdot \frac{\Delta t}{h} \cdot \frac{l'}{4}$$

Da hier X_a gleich X_b sein muß, so erhalten wir:

$$X_a = X_b = X = + EJ \cdot \varepsilon \frac{\Delta t}{h} \dots \dots \dots \dots (42)$$

Auflagerdrücke treten nicht auf, da am Grundsystem $A_t = B_t = 0$ ist; der Einfluß der Unbekannten $X_a - X_b$ ist ebenfalls gleich 0. Die Momente sind über dem ganzen Balken konstant (=X).

Infolge einer gleichmäßigen Temperaturerhöhung um t_0 ergibt sich $X_a = X_b = 0$. In diesem Falle wird jedoch die dritte Unbekannte, der horizontale Auflagerdruck X_c , nicht gleich 0, sondern

$$X_c = -\frac{[ct.2]}{[cc.2]}.$$

Die Werte [ct.2] und [cc.2] ergeben sich aus den Gleichungen:

$$[ct.2] = -\int \varepsilon \cdot t_0 \cdot ds \cdot N_{c.2} = -\varepsilon \cdot t_0 \cdot l \cdot N_{c.2},$$

$$[cc.2] = \int N_{c.2}^2 \cdot \frac{ds}{EF} = \frac{l}{EF} \cdot N_{c.2}^2.$$

Man findet also mit $N_{c\cdot 2} = 1$: $X_c = \epsilon \cdot t_0 \cdot E \cdot F \cdot \ldots \cdot \ldots \cdot (42a)$

Diese Unbekannte äußert sich als Druckkraft in dem Balken.

 ζ) Für den Fall, daß Widerlagerverschiebungen eintreten, betrachten wir zwei Fälle:

1. Verschiebungen in Richtung der Auflagerdrücke A und B um die Werte $[aw.2] = \delta_a$ und $[bw.2] = \delta_b$.

29
2. Verdrehungen im Sinne der Einspannungsmomente um die Werte $[aw.2] = \vartheta_a$ und $[bw.2] = \vartheta_b$.

Zu 1: Wir schreiben nach Gl. (6) S. 6

 $[b\overline{w}.1] = -EJ'\Sigma L_{b.1}[lw.2] = -EJ'[A_{b.1}\delta_a + B_{b.1}\delta_b].$

Es kommen nur die senkrechten Auflagerdrücke hier in Frage, da in Richtung der Einspannungsmomente, die gleichfalls Auflagerreaktionen sind, keine Verschiebungen (Verdrehungen) angenommen sind. Es sind also dafür die Produkte $L_{b.1} \cdot [lw.2] = 0$.

 $A_{b.1}$ und $B_{b.1}$, die Auflagerdrücke infolge $X_b = 1$ am einfach statisch unbestimmten Hauptsystem, sind:

$$A_{b.1} = \frac{1}{l} - \frac{\lfloor a \ b \rfloor}{\lfloor a \ a \rfloor} \left(-\frac{1}{l} \right) = \frac{1}{l} \left(1 + \frac{\lfloor a \ b \rfloor}{\lfloor a \ a \rfloor} \right) = \frac{3}{2} \cdot \frac{1}{l},$$

$$B_{b.1} = -\frac{1}{l} - \frac{\lfloor a \ b \rfloor}{\lfloor a \ a \rfloor} \cdot \frac{1}{l} = -\frac{3}{2} \cdot \frac{1}{l}.$$

Es ist also:

$$\begin{split} [b\,\overline{w}\,.\,1] = & \left(-\frac{3}{2}\cdot\frac{1}{l}\,\delta_a + \frac{3}{2}\cdot\frac{1}{l}\cdot\delta_b\right)EJ' = -\frac{3}{2}\frac{1}{l}(\delta_a - \delta_b)EJ', \\ X_b = & +\frac{3}{2}\cdot\frac{1}{l}(\delta_a - \delta_b)EJ'\cdot\frac{4}{l'} = 6\frac{EJ}{l^2}(\delta_a - \delta_b). \end{split}$$

Durch Vertauschung von δ_a und δ_b ergibt sich daraus ohne weiteres der Wert für X_a ; man erhält also:

$$X_{a} = -\frac{6 E J}{l^{2}} (\delta_{a} - \delta_{b}),$$

$$X_{b} = -\frac{6 E J}{l^{2}} (\delta_{b} - \delta_{a}).$$
(43)

Damit ergibt sich:

$$X_a - X_b = -12 \frac{EJ}{l^2} (\delta_a - \delta_b).$$

Da nun $A_0 = B_0 = 0$ ist, so wird

Zu 2: Bei Verdrehung der Widerlager haben wir wieder die Gleichung

$$[b\,\overline{w}\,.\,1] = -EJ'\Sigma L_{b,1}[l\,w\,.\,2].$$

Da die Verschiebungen in Richtung der senkrechten Auflagerdiücke A und B gleich 0 sind, so wird hier für diese der Ausdruck $L_{b.1}[lw.2]$ gleich 0, und es kommen für $L_{b.1}$ nur die Einspanrungemomente X_a und X_b infolge der Belastung $X_{b.1} = 1$ $(X_b = 1$ am einfach statisch unbestimmten Hauptsystem) in Frage, also die Werte X_{ab} und X_{bb} . Diese sind nun:

$$X_{bb} = 1, X_{ab} = -\frac{[ab]}{[aa]} = -\frac{1}{2}.$$

Es ist somit:

$$[b\,\overline{w},1] = -EJ'\left(-\frac{1}{2}\cdot\vartheta_a + 1\cdot\vartheta_b\right) = \frac{EJ'}{2}(\vartheta_a - 2\,\vartheta_b).$$

Damit ist:

$$X_{b} = -\frac{EJ'}{2}(\vartheta_{a} - 2 \vartheta_{b})\frac{4}{l'} = 2\frac{EJ}{l}(2 \vartheta_{b} - \vartheta_{a}).$$

Durch Vertauschung von ϑ_a und ϑ_b erhält man daraus ohne weiteres den Wert für X_a . Man erhält also:

$$X_{a} = \frac{2 E \cdot J}{l} (2 \vartheta_{a} - \vartheta_{b}),$$

$$X_{b} = \frac{2 E \cdot J}{l} (2 \vartheta_{b} - \vartheta_{a}).$$
(45)

Die Differenz dieser Werte ist:

$$X_{a} - X_{b} = \frac{6 E \cdot J}{l} \left(\vartheta_{a} - \vartheta_{b} \right).$$

Da nun im Grundsystem $A_0 = B_0 = 0$ ist, so wird:

$$A = -B = -\frac{6 E \cdot J}{l^2} (\vartheta_a - \vartheta_b) \dots \dots \dots (46)$$

Es ergibt sich für ein beliebiges Moment im Abstand x vom rechten Auflager

Aus den unter Abschnitt b) ermittelten Belastungsfällen lassen sich die Formeln für Sonderfälle leicht herleiten. Für einige derselben sind die entsprechenden Werte in Tabelle VIII zusammengestellt.

\mathbf{T}	a	b	e	11	e	V	III	
--------------	---	---	---	----	---	---	-----	--

Nr.	Belastung	X_a und X_b
1		$X_{a} = -\frac{Pl}{3}(2c_{1}-c_{2})$ $X_{b} = -\frac{Pl}{3}(2c_{2}-c_{1})$
2	ηξ	$X_{a} = -\frac{p l^{2}}{12} (2 k_{1} - k_{2})$ $X_{b} = -\frac{p l^{2}}{12} (2 k_{2} - k_{1})$
3		$X_{a} = -\frac{p l^{2}}{180} (2 r_{1} - r_{2})$ $X_{b} = -\frac{p l^{2}}{180} (2 r_{2} - r_{1})$

Nr.	Belastung	X_a und X_b
4		$X_{a} = -\frac{p l^{2}}{180} (2 t_{1} - t_{2})$ $X_{b} = -\frac{p l^{2}}{180} (2 t_{2} - t_{1})$
5		$X_{a} = -\frac{M}{3} (2 s_{1} + s_{2})$ $X_{b} = \frac{M}{3} (2 s_{2} + s_{1})$
6	$\begin{array}{c} \text{Temperaturunterschied} \\ t_o - t_u = \varDelta \ t \end{array}$	$X_a = X_b = E J \cdot \varepsilon \cdot \frac{\Delta t}{h}$
7	Widerlagerverschiebung	$X_a = -X_b = -\frac{6 E J}{l^2} \left(\delta_a - \delta_b\right)$
8	Widerlagerverdrehung	$X_{a} = \frac{2 E \cdot J}{l} (2 \vartheta_{a} - \vartheta_{b})$ $X_{b} = \frac{2 E \cdot J}{l} (2 \vartheta_{b} - \vartheta_{a})$
9		$X_a = X_b \doteq -\frac{Pl}{8}$
10		$X_a = X_b = -\frac{Pl}{3} \left(c_1 + c_2 \right)$
11	p.	$X_a = X_b = -\frac{p l^2}{12}$
12		$X_{a} = -\frac{p l^{2}}{12} [2 (k_{1} - k_{1}') - (k_{2} - k_{2}')]$ $X_{b} = -\frac{p l^{2}}{12} [2 (k_{2} - k_{2}') - (k_{1} - k_{1}')]$
13		$X_a = X_b = -\frac{p l^2}{12} (1 - k_1 - k_2)$
14	3	$X_a = -\frac{p l^2}{30}$ $X_b = -\frac{p l^2}{20}$

Tabelle	VIII	(Fortsetzung).

§ 2. Der beiderseits eingespannte gerade Balken.

Tabelle VIII (Fortsetzung).

c) Untersuchung für bewegliche Belastung.

a) Einflußlinien.

Der Einfluß einer Einzellast P = 1 in einem beliebigen Abstande ξ vom rechten Auflager auf beliebige statische Größen ist aus den Gleichungen (27)—(29) zu entnehmen. Betrachtet man ξ als veränderliche Größe, so stellen die Werte in jenen Gleichungen die Ordinaten der Einflußlinien dar.

1. Einflußlinien der Unbekannten X_a und X_b . Nach Gl. (27) ergibt sich mit P = 1:

$$\begin{split} X_{a} &= -\frac{l}{3} \left(2 \ c_{1} - c_{2} \right), \\ X_{b} &= -\frac{l}{3} \left(2 \ c_{2} - c_{1} \right). \end{split}$$

Setzt man in diese Gleichungen für c_1 und c_2 die Werte ein vgl. § 1, S. 8), so erhält man:

$$X_{a} = -l\left(\frac{\xi}{l}\right)^{2}\left(1-\frac{\xi}{l}\right),$$

$$X_{b} = -l\left(1-\frac{\xi}{l}\right)^{2}\frac{\xi}{l}.$$
(48)

Die X_a -Linie ist danach in Fig. 25 aufgetragen. Die Ordinaten in den Zehntelpunkten ergibt folgende Tabelle:

$10\frac{x}{l} =$	0	1	2	3	4	5	6	7	8	9	10
$-rac{1}{l}\cdot X_a =$	0	0,009	0,032	0,063	0,096	0,125	0,144	0,147	0,128	0,081	0
Pirlet, Statik, II. 2.						3					

$$\frac{dX_b}{d\xi} = -1 + 4\frac{\xi}{l} - 3\left(\frac{\xi}{l}\right)^2 = 0; \text{ also } \frac{\xi}{l} = \frac{1}{3}; \text{ bzw. } \frac{\xi}{l} = 1$$

Die Größtwerte treten auf bei

$$\frac{\xi}{l} = \frac{2}{3}$$
 bzw. $\frac{\xi}{l} = \frac{1}{3}$

Damit ergibt sich:

$$\begin{split} X_{a}{}_{\max} &= -l \left(\frac{2}{3}\right)^2 \cdot \frac{1}{3} = -\frac{4}{27} l, \\ X_{b}{}_{\max} &= -l \left(\frac{2}{3}\right)^2 \cdot \frac{1}{3} = -\frac{4}{27} l. \end{split}$$

2. Die Einflußlinie eines Momentes M_x im Abstande x vom rechten Auflager hat folgende Gleichungen (s. Fig. 26a u. b).

$$= l\left(\frac{\zeta}{l}\right) \left[\left(1 - \frac{x}{l}\right) \left(2 - \frac{\zeta}{l}\right) - \frac{x}{l} \left(1 - \frac{\zeta}{l}\right) \right].$$
Für $\xi > x$: $M_x = l\left(1 - \frac{\xi}{l}\right) \frac{x}{l} + X_a \frac{x}{l} + X_b \left(1 - \frac{x}{l}\right)$

$$= l\left(1 - \frac{\xi}{l}\right)^2 \left[\frac{x}{l} \left(1 + \frac{\xi}{l}\right) - \left(1 - \frac{x}{l}\right) \frac{\xi}{l} \right].$$
(49)

Die Ordinate im Punkte x ($x = \xi$; Spitzenordinate) ist nach Gleichung (29): $M_{x\max} = 2 l \left(\frac{x}{l}\right)^2 \left(1 - \frac{x}{l}\right)^2$. Diese Gleichung, als Kurve aufgetragen, ergibt die sogenannte Spitzenkurve, in der die Spitzen sämtlicher Momenteneinflußlinien liegen.

NB. Bezüglich der Momentenlinien mit Belastungsscheiden v
gl. die Ausführungen in Abschnitt $\beta.$

A-Linie 3. Die Einflußlinien der Auflagerdrücke A und B sind gegeben durch die Gleichungen (28) (vgl. Fig. 27): Fig. 27.
$$\begin{split} &A = \frac{\xi}{l} + (c_1 - c_2) = \left(\frac{\xi}{l}\right)^2 \left(3 - 2\frac{\xi}{l}\right), \\ &B = \left(1 - \frac{\xi}{l}\right) - (c_1 - c_2) = \left(1 - \frac{\xi}{l}\right)^2 \left(1 + 2\frac{\xi}{l}\right). \end{split}$$
. (50)

4. Für die Querkraft in einem beliebigen Punkte m ergeben sich die Gleichungen:

$$\begin{array}{ll} \operatorname{Für} \xi < x \colon & Q_x = A, \\ , & \xi > x \colon & Q_x = -B. \end{array} \right\} \ldots \ldots \ldots (51)$$

Tragen wir also in einer Figur (Fig. 28) die positive A-Linie und die negative B-Linie ab und verbinden beide durch die vertikale Gerade CD im Punkte m, so ergibt

sich ACDB als Q-Linie.

 β) Maximal- und Minimalmomentenflächen für gleichmäßig verteilte Belastung.

Um den größtmöglichen positiven oder negativen Wert einer Größe S für gleichförmige bewegliche Belastung q zu ermitteln, sind

nur die Teile des Systems als belastet anzunehmen, für welche die Einflußlinie positiv bzw. negativ ist. Man muß dazu die Punkte kennen, an welchen die Einflußlinie den Wert 0 hat, d. h. vom positiven zum negativen Teil übergeht. Diese Übergangspunkte (0-Punkte) nennt man die Belastungsscheiden.

Für eine Querkraft im Punkte x ist die Belastungsscheide der Punkt x selbst.

Für ein Moment M_x , im Abstande x vom rechten Auflager, kommt eine Belastungsscheide nur dann in Frage, wenn der Momentenpunkt in der Nähe der Auflager liegt (Fig. 26b). Wir werden später finden, daß es sich um die beiden äußeren Drittel des Balkens handelt. Der Abstand a, d. h. die Lage der Belastungsscheide, ergibt sich aus der Bedingung, daß das Moment M_x für eine Last 1 im Abstande a vom rechten Auflager gleich 0 wird. Es besteht also die Beziehung für a < x [vgl. Gleichung (49)]:

$$M_x = l \left(\frac{a}{l}\right)^2 \cdot \left[\left(1 - \frac{x}{l}\right) \left(2 - \frac{a}{l}\right) - \frac{x}{l} \left(1 - \frac{a}{l}\right) \right] = 0.$$

Daraus ergibt sich die Beziehung zwischen $\frac{x}{l}$ und $\frac{a}{l}$.

oder

In diesen Gleichungen kommen für $\frac{a}{l}$ nur positive Werte zwischen 0 und 1 in Betracht. Indem wir in die Gleichung (52 b) die Grenzwerte $\frac{a}{l} = 0$ bzw. $\frac{a}{l} = 1$ einsetzen, finden wir für $\frac{x}{l}$ die Werte $\frac{x}{l} = \frac{2}{2}$ und $\frac{x}{l} = 1$.

Die Belastungsscheide liegt also nur für solche Werte von $\frac{x}{l}$ innerhalb des Trägers, welche zwischen $\frac{2}{3}$ und 1 liegen. — Man beachte, daß die abgeleiteten Werte für den Fall $\frac{a}{l} < \frac{x}{l}$ gelten, also nur für den rechten Kurventeil der in Fig. 26 dargestellten Einflußlinien. Für den linken Teil lassen sich die entsprechenden Werte ableiten. — Wir betrachten im folgenden nur den rechten Teil, da sich die Resultate ohne weiteres auf den linken Teil übertragen lassen. Für ein Moment M_x im Abstande x vom rechten Auflager er-

gibt sich, wenn $\frac{2}{3} < \frac{x}{l} < 1$ ist, die Belastungsscheide in einem Abstande *a* vom rechten Auflager, der gegeben ist durch die Gleichung (52 a). Auf der Strecke *a* sind also die Ordinaten der Einflußlinie für M_x negativ (Fig. 26 b). Belastet man ausschließlich diese Strecke *a* mit einer gleichförmigen Last *q*, so tritt der größte negative Wert M_x auf. Nach den Gleichungen (30) bis (32 a) (Tab. VIII, 2) ergibt sich bei Belastung der Strecke *a* für das Moment M_x :

Darin ist

$$\begin{split} M_{x_{min}} &= A \cdot l \left(1 - \frac{x}{l} \right) + X_a. \\ A &= \frac{p l}{4} \left[2 \left(\frac{a}{l} \right)^2 + k_1 - k_2 \right], \\ X_a &= - \frac{p l^2}{12} (2 k_1 - k_2). \end{split}$$

Hierin sind die Größen k_1 und k_2 für das Abstandsverhältnis $\frac{a}{l}$ einzusetzen. Es ist also:

$$\begin{aligned} k_1 &= \left(\frac{a}{l}\right)^2 \left[2 - \left(\frac{a}{l}\right)^2\right], \\ k_2 &= \left(\frac{a}{l}\right)^2 \left(2 - \frac{a}{l}\right)^2, \end{aligned}$$

§ 2. Der beiderseits eingespannte gerade Balken.

und demnach erhält man nach gehöriger Vereinfachung:

$$M_{x_{min}} = -\frac{q l^2}{12} \left(\frac{a}{l}\right)^4 \cdot \frac{1}{3-2 \frac{a}{l}} = -\frac{q l^2}{12} \frac{\left(3 \frac{x}{l}-2\right)^*}{\left(2 \frac{x}{l}-1\right)^3} \cdot \cdot \cdot (53)$$

Man findet aus dieser Gleichung:

$$M_{x_{min}} = 0$$
, für $rac{x}{l} = rac{2}{3}$: $M_{x_{min}} = -rac{ql^2}{12}$, für $rac{x}{l} = 1$

Nach Gleichung (53) sind die beiden Kurven in Fig. 29 aufgetragen. Ihre Ordinaten $M_{x_{min}}$

ergeben das größtmögliche negative Moment für alle Punkte in den beiden äußeren Dritteln der Balkenlänge. Die größte Ordinate liegt in den Endpunkten $\left(\frac{x}{l}=1\right)$ und hat den Wert $-\frac{q l^2}{12}$.

Eig. 29. Minimal-Momentenfläche.

Der Größtwert des positiven Momentes $M_{x_{max}}$ tritt gemäß Fig. 26b bei Belastung der Strecke l - a auf. Man kann diesen Wert finden, indem man den Wert $M_{x_{min}}$, der bei Belastung der Strecke aauftritt, von dem bei Vollbelastung für das Moment bei x auftretenden Werte $M_{x'}$ subtrahiert.

Der Wert

$$M_{x}' = -\frac{q l^{2}}{12} + \frac{q l^{2}}{2} \frac{x}{l} \left(1 - \frac{x}{l}\right)$$

ist in Fig. 30a aufgetragen. $\left(AC = BD = \frac{ql^2}{12}\right)$, Parabel *CED* mit der Pfeilhöhe $\frac{ql^2}{8}$ bei $x = \frac{l}{2}$. Zieht man von dieser Momenten-

fläche die $M_{x_{min}}$ -Fläche, d. i. die Kurven CF und DG, ab (Fig. 30a), so heben sich die nichtschraffierten Teile fort; es bleibt als $M_{x_{max}}$ -Fläche der schraffierte Teil. Dieser ist in Fig. 30b an die Gerade AB angetragen.

Für die Praxis genügt in den meisten Fällen eine angenäherte Konstruktion, indem man in Fig. 29 $(M_{x_{min}}$ -Fläche) statt der Kurven FC und GD die Geraden FC und GD, und in Fig. 30b $(M_{x_{max}}$ -Fläche) statt der Kurven F'A und G'B die Geraden F'A und G'B zieht. Man erhält dadurch sowohl für die negativen wie für die positiven

Fig. 30b. Maximal-Momentenfläche.

Größtmomente in den Strecken FA und GB etwas zu große Werte.

γ) Maximal- und Minimal-Querkraftsfläche für gleichförmige Belastung.

Wie schon erwähnt, ist die Belastungsscheide für die Querkraft eines Punktes dieser Punkt selbst. In einem Punkte im Abstande x vom rechten Auflager tritt also die größte Querkraft $Q_{x_{max}}$ auf bei der Belastung der Strecke x. Es ist dann (s. Gl. 31):

$$\mathbf{Q}_{x_{max}} = \mathbf{A} = \frac{ql}{4} \left[2 \left(\frac{x}{l} \right)^2 + k_1 - k_2 \right].$$

Setzt man für k_1 und k_2 die Werte ein, so erhält man:

Tragen wir für diese Gleichung die Kurve BCan BA an (Fig. 31), so erhält man die Maximalquerkraftsfläche.

Die kleinste Querkraft $Q_{x_{min}}$, d. h. den Größtwert der negativen Querkraft, erhalten wir durch Belastung der Strecke l - x; wir können sie also finden, indem wir den Wert $Q_{x_{max}}$ von Wort

dem für Vollbelastung sich ergebenden Wert

$$Q_{x'} = -rac{q l}{2} \left(1 - 2 rac{x}{l}
ight)$$

subtrahieren. Es wird also:

$$Q_{x_{min}} = Q_x' - Q_{x_{max}} = -\frac{ql}{2} \left(1 + \frac{x}{l}\right) \left(1 - \frac{x}{l}\right)^3$$
. (55)

Die Querkraftsfläche für Vollbelastung (Q_x') ist gegeben durch die Gerade CD (Fig. 31). Man erhält also die zwischen dieser Geraden und der Kurve verlaufende Minimalquerkraftfläche.

In Trägermitte ist:

$$Q_{max} = Q_{min} = \frac{ql}{2} \left(\frac{1}{2}\right)^3 \left(2 - \frac{1}{2}\right) = \frac{3}{32} ql$$

(gegen $\frac{1}{8}ql$ beim frei aufliegenden Balken).

§ 3. Der einseitig eingespannte Balken.

Der einseitig eingespannte Balken (Fig. 32) ist nur einfach statisch unbestimmt und unterscheidet sich von dem beiderseits eingespannten Balken dadurch, daß die Unbekannte X_{h} fortfällt. Zur Ermittelung der Unbekannten X_a dient die Momentenfläche für $X_a = 1$ am Grundsystem (Fig. 33). Der Nennerwert ist also hier:

$$[aa]=\frac{l'}{3}.$$

Der Zählerwert [am] ergibt sich gemäß den Ausführungen in § 1 und § 2 nach der Gleichung:

$$[am] = \varphi_1$$

Damit wird die Unbekannte

$$X_a = -\frac{3}{l'} \cdot \varphi_1 \quad \dots \quad \dots \quad \dots \quad \dots \quad (56)$$

Für die übrigen statischen Größen ergibt sich:

$$A = A_0 - \frac{X_a}{l},$$

$$B = B_0 + \frac{X_a}{l},$$

$$Q = Q_0 - \frac{X_a}{l},$$

$$M_x = M_0 + X_a \frac{x}{l}.$$

In der folgenden Tabelle IX sind die Unbekannten für die verschiedenen Belastungsfälle zusammengestellt.

Tabelle IX.

Nr.	Belastungen	Xa
1.		$-\frac{Pl}{2} \cdot c_1$
2.		$-\frac{3}{16} P \cdot l$
3.		$-\frac{Pl}{2}(c_1+c_2)$

Nr.	Belastungen	Xa
4.		$-\frac{pl^2}{8} \cdot k_1$
5.	The second se	$-\frac{pl^2}{8}$
6.		$-\frac{pl^2}{8}(k_1-k_1')$
7.	r n	$-rac{pl^2}{120}r_1$
8.	The second second	$-\frac{pl^2}{120}\cdot r_2$
9.	n. to man	$-\frac{pl^2}{120}\cdot t_1$
10.	-E-m	$-\frac{pl^2}{120}\cdot t_2$
11.	n n	$-\frac{7}{120}pl^2$
12.	P.	$-\frac{pl^2}{15}$
13.		$-\frac{pl^2}{8}-\frac{7}{120}p'l^2$
14.	E	$\begin{split} &-\frac{pl^2}{120}(t_1+t_2')\\ (t_2' {\rm für}\xi'{=}l-\xi). \end{split}$
15.	μ. ξ. ··································	$-\frac{M}{2} \cdot s_1$
16.		$-\frac{M}{2}$

Tabelle IX (Fortsetzung).

§ 4. Träger mit elastischer Einspannung.

In ähnlicher Weise wie die in § 2 und § 3 behandelten Balken mit starren Einspannungsstellen sind auch solche mit elastischer Einspannung zu behandeln. Als ein solcher Träger kann der horizontale Riegel des in Fig. 34 und 35 dargestellten Trägers angesehen werden.

Fig. 34.

h

Dabei kann der Stützenfuß gelenkig gelagert (Fig. 34) oder auch fest eingespannt sein (Fig. 35).

(NB. Würde man den Balken an beiden Enden elastisch einspannen, d. h. an den beiden Seiten Stützen anordnen, so würde man auf Rahmengebilde kommen, die in späteren Paragraphen behan-delt werden. Auch bezüglich des in Fig. 35 dargestellten Trägers mit zwei eingespann-

ten Enden sei auf die späteren Ausführungen verwiesen.) Das System Fig. 34 ist zweifach statisch Unbekannte wählen wir entsprechend der Behandlung des beiderseits eingespannten Balkens die beiden Einspannungsmomente des wagerechten Balkens l (Fig. 36). Die Größe X_{h} ergibt sich wieder nach der Gleichung

$$X_b = -\frac{[b\,m\,.\,\mathbf{1}]}{[b\,b\,.\,\mathbf{1}]}.$$

Die $M_{b,1}$ -Fläche, d. i. die Momentenfläche infolge $X_b = 1$ am einfach statisch unbestimmten Hauptsystem, die wir zur Ermittelung der Werte [bm.1]und [bb.1] benutzen, hat die folgenden Ordinaten:

Im Punkt b: $X_{bb} = 1$, ", ", a: $X_{ab} = -\frac{[ab]}{[aa]}$. Aus den Momentenflächen Fig. 37a und Fig. 37b erhält man, wenn $h' = h \cdot \frac{J'}{T}$ und $l' = l \frac{J'}{T}$ ist:

Fig. 37 b. M_b - Fläche.

Fig. 38. *M*_{b.1}-Fläche.

unbestimmt; als

Fig. 35.

Fig. 36.

h

$$[aa] = \frac{h' + l'}{3},$$

$$[ab] = \frac{l'}{6},$$

$$-\frac{[ab]}{[ab]} = -\frac{l'}{2(h' + l')}$$

Damit ergibt sich die Momentfläche für $X_{b,1} = 1$ (Fig. 38).

Für eine beliebige Belastung des oberen Balkens ist also:

$$[bm.1) = -\frac{[ab]}{[aa]} \cdot \varphi_1 + \varphi_2 = -\frac{l'\varphi_1 - 2(h'+l')\varphi_2}{2(h'+l')}.$$

Der Nennerwert beträgt:

$$\begin{bmatrix} b \, b \, . \, 1 \end{bmatrix} = \int M_b M_{b-1} \, ds \, \frac{J'}{J} = \frac{l'}{6} \left(2 - \frac{\begin{bmatrix} a \, b \end{bmatrix}}{\begin{bmatrix} a \, a \end{bmatrix}} \right) = \frac{l'}{12} \cdot \frac{4 \, h' + 3 \, l'}{h' + l'}$$

Es ist damit:

$$X_{b} = \frac{6[l'\varphi_{1} - 2(h' + l')\varphi_{2}]}{l'(4h' + 3l')}$$

Da hier keine Symmetrie vorhanden ist, so muß X_a besonders berechnet werden, und zwar aus der Gleichung:

$$X_a = -\frac{[am]}{[aa]} = \frac{[ab]}{[aa]} X_b$$

oder indem wir die Reihenfolge der Unbekannten umkehren (Fig. 39) und dann das Moment $X_b'(X_a)$ in gleicher Weise ermitteln. Man findet:

Fig. 39.

Fig. 40. $M_{b'.1}$ -Fläche.

$$[a'a'] = \frac{l'}{3}.$$
$$[a'b'] = \frac{l'}{6}.$$
$$-\frac{[a'b']}{[a'a']} = -\frac{1}{2}$$

Damit ergibt sich die Momentenfläche für $X'_{b.1} = 1$ (Fig. 40) und daraus:

$$\begin{bmatrix} b'b'.1 \end{bmatrix} = \frac{l'}{6} \cdot \frac{3}{2} + \frac{h'}{3} = \frac{3l' + 4h}{12}$$

$$\begin{bmatrix} b'm.1 \end{bmatrix} = \varphi_1 - \frac{1}{2}\varphi_2$$

$$X_{b'} = -\frac{6(2\varphi_1 - \varphi_2)}{3l' + 4h'}.$$

Die beiden Einspannungsmomente des wagerechten Balkens haben somit die Werte:

§ 5. Übungsaufgaben.

$$X_{a} = -\frac{6(2\varphi_{1} - \varphi_{2})}{3l' + 4h'}$$

$$X_{b} = \frac{6[l' \cdot \varphi_{1} - 2(h' + l')\varphi_{2}]}{l'(4h' + 3l')}$$
(57)

Bei Belastung des vertikalen Ständers h ergibt sich mit Hilfe der Momentenflächen, Fig. 38 und 40:

$$X_{a} = X_{b}' = -\frac{12}{4h' + 3l'} \varphi_{1}$$

$$X_{b} = \frac{6}{4h' + 3l'} \cdot \varphi_{1}.$$
(58)

Nach den Gleichungen (57) und (58) sind alle Belastungsfälle zu untersuchen, indem man für φ wie früher die den einzelnen Belastungen entsprechenden Werte (mit den Größen c, k, r, t und s) einsetzt. Dabei sind in den Gleichungen (58) die Abstände ξ von unten zu messen.

Die übrigen statischen Größen ergeben sich jetzt nach denselben Gleichungen wie in §2 für den beiderseits eingespannten Balken, bzw. wie in §3 für den einseitig eingespannten Balken.

Anmerkung: Setzt man $h' = \omega \cdot l'$, also $\omega = \frac{h'}{l'}$, so wird aus Gleichung (57) und (58):

 $\begin{array}{l} X_{a} = -\frac{6 \left(2 \varphi_{1} - \varphi_{2}\right)}{\left(4 \omega + 3\right) \dot{l}'}, \\ X_{b} = \frac{6 \left[\varphi_{1} - 2 \left(\omega + 1\right) \varphi_{2}\right]}{\left(4 \omega + 3\right) l'}, \end{array} \right\} & \text{für Riegellasten . . . (57 a)} \\ X_{a} = -\frac{12}{\left(4 \omega + 3\right) l'} \varphi_{1}, \\ X_{b} = \frac{6}{\left(4 \omega + 3\right) l'} \varphi_{1}, \end{array} \right\} & \text{für Ständerlasten . . (58 a)} \end{array}$

§ 5. Übungsaufgaben.

Im folgenden sollen zwei Übungsaufgaben durchgeführt werden, deren erste die Verwendung der im vorhergehenden § 3 angegebenen geschlossenen Formeln erläutern soll, während das zweite den Rechnungsgang für ein beliebiges zweifach statisch unbestimmtes System zeigt.

Aufgabe 1. Ein beiderseits eingespannter Träger von 6 m Spannweite soll für folgende Beanspruchungen untersucht werden.

1. Ruhende Belastung.

a) Trapezförmige Vollbelastung mit den Endordinaten 0,50 t bzw. 1,50 t (s. Fig. 41).

b) Zwei Einzellasten P = 3t im Abstande 1,50 m von den Enden.

c) Ein Einspannungsmoment M = 5 mt im Abstande 2,5 m vom rechten Ende.

2. Bewegliche Belastung:

a) Zwei wandernde Einzellasten von je5t im Abstande von 1,50 m voneinander.

b) gleichmäßige Belastung mit 1,50 t/m.

3. Verschiebungen der Widerlager:

a) Senkung des rechten Auflagers um 1,5 cm in vertikaler Richtung.

b) Verdrehung der rechten Einspannstelle um einen Winkel von 15 Bogenminuten.

4. Temperaturänderung des oberen gegen den unteren Trägerrand von $\pm 15\,^{\rm o}\,{\rm C}.$

Zu ermitteln sind die Momente und Querkräfte. Bei der Untersuchung der Widerlagerverschiebungen und der Temperaturänderungen soll als Stabprofil ein I-Eisen N. P. 32 mit einem Trägheitsmoment $J_x = \sim 12500$ cm⁴ angenommen werden.

Lösung:

1. Ruhende Belastung.

a) Trapezförmige Belastung mit den Endordinaten p = 0.5 t/m und $p_1 = 1.5$ t/m. Die Ordinate $p_1 = 1.50$ t zerlegen wir in die Teile p = 0.5 t und p' = 1.0 t (Fig. 41). Es ist nach Tabelle VIII, 17, Seite 33:

$$X_{a} = -\frac{pl^{2}}{12} - \frac{p'l^{2}}{30} = -\frac{0.5 \cdot 6^{2}}{12} - \frac{1.0 \cdot 6^{2}}{30} = -2.7 \text{ mt},$$

$$X_{b} = -\frac{pl^{2}}{12} - \frac{p'l^{2}}{20} = -\frac{0.5 \cdot 6^{2}}{12} - \frac{1.0 \cdot 6^{2}}{20} = -3.3 \text{ mt}.$$

Der Auflagerdruck bei A ist:

-l=6.00

Fig. 41.

$$A = \frac{pl}{2} + \frac{p'l}{6} - \frac{X_a - X_b}{l} = \frac{0.5 \cdot 6}{2} + \frac{1 \cdot 6}{6} - \frac{-2.7 + 3.3}{6} = 2.4 \text{ t},$$

$$B = \frac{pl}{2} + \frac{p'l}{3} + \frac{X_a - X_b}{l} = \frac{0.5 \cdot 6}{2} + \frac{1 \cdot 6}{3} + \frac{-2.7 + 3.3}{6} = 3.6 \text{ t}.$$

Das Größtmoment tritt auf im Abstande x vom Punkte a; dieser ist nach Gleichung (22b), Seite 22, mit c = l:

$$x = l \left(\sqrt{\frac{2A}{p'l} + \left(\frac{p}{p'}\right)^2} - \frac{p}{p'} \right)$$

= $6 \left(\sqrt{\frac{2 \cdot 2.4}{1 \cdot 6} + \left(\frac{0.5}{1.0}\right)^2} - \frac{0.5}{1.0} \right)$
= $3 \cdot 15 \text{ m}$

Damit ist das Größtmoment nach Gleichung (23), Seite 22, mit $\xi = 0$:

$$M_{max} = \frac{p x^2}{2} - \frac{p' x^3}{3l} + X_a$$

= $\frac{0.5 \cdot 3.15^2}{2} + \frac{1 \cdot 3.15^3}{3 \cdot 6} + 2.7$
= 1.52 mt.

b) Zwei Einzellasten von P=3 t im Abstande 1,50 m von den Enden (Fig. 42). Es ist nach Tabelle VIII, 10, Seite 32:

$$X_a = X_b = -\frac{Pl}{3}(c_1 + c_2);$$

dabei ist für P in der Stellung $\frac{\xi}{l} = \frac{1,5}{6} = 0,25$ nach Tabelle II, Seite 13: $c_1 = 0,234375,$ $c_2 = 0,328125.$

Also ist:

$$c_{1} + c_{2} = 0.5625,$$

$$X_{a} = X_{b} = -\frac{3 \cdot 6}{3} \cdot 0.5625 = -3.375 \text{ mt};$$

$$A = B = P = 3 \text{ t};$$

$$M_{max} = A \cdot 1.5 + \frac{X_{a} + X_{b}}{2}$$

$$= 3 \cdot 1.5 - 3.375 = 1.125 \text{ mt}.$$

c) Ein Einspannungsmoment M = 5 mt im Abstande 2,5 m vom rechten Ende (Fig. 43). А∄а Es ist nach Tabelle VIII, 5, Seite 32:

Darin wird für $\frac{x}{l} = \frac{2,5}{6,0} = 0,417$: $s_1 = 0,48$, $s_2 = 0,02$ (Tab. VI, S. 17). Man findet also: $X_c = -\frac{5}{2} (2 \cdot 0,48 - 0,02) = -1,57$ mt,

$$X_a = -\frac{1}{3} (2 \cdot 0.48 - 0.02) = -1.57 \text{ mt}$$

 $X_b = \frac{5}{3} (2 \cdot 0.02 + 0.48) = 0.73 \text{ mt};$

Nach Gl. (40) wird weiter:

$$A = \frac{M}{l} (1 + s_1 + s_2) = \frac{5}{6} (1 + 0.48 + 0.02)$$

= 1.22 t,
$$B = -\frac{M}{l} (1 + s_1 + s_2) = -1.22 t.$$

Ferner wird

 $\begin{array}{l} -M_{max} = B \cdot x + X_b = -1,22 \cdot 2,5 + 0,73 = -2,31 \text{ mt}, \\ +M_{max} = A \left(l - x \right) + X_a = 1,22 \cdot 3,5 - 1,57 = +2,69 \text{ mt}. \end{array}$

2. Bewegliche Belastung.

a) Zwei wandernde Einzellasten von 5 t im Abstande von 1,50 m voneinander.

Die Einflußlinie für X_a ergibt sich nach der Gleichung (48) und den Angaben Seite 33 oder durch folgende Tabellenrechnung:

$100 \frac{x}{l}$	2 c1	c_2	$2 c_1 - c_2$	$\frac{l}{\bar{3}}$	$-X_a$	- X,
10	0,198	0,171	0,027	2	0,054	0,486
20	0,384	0,288	0,096	2	0,192	0,768
30	0,546	0,357	0,189	2	0,378	0,882
40	0,672	0,384	0,288	2	0,576	0,864
50	0,750	0,375	0,375	2	0,750	0,750
60	0,768	0,336	0,432	2	0,864	0,576
70	0,714	0,273	0,441	2	0,882	0,378
80	0,576	0,192	0,384	2	0,768	0,192
90	0.342	0.099	0.243	2	0.486	0.054

Die daraus sich ergebende X_a -Linie ist in Fig. 44 dargestellt.

Für die Laststellung Fig. 44, (Lasten in 0,5 l und 0,75 l), ergibt sich:

$$X_{a_{max}} = (\eta_a' + \eta_b') \cdot 5 = -7,97 \text{ mt.}$$

Die M_m -Linie (Einflußlinie für das Moment in Balkenmitte) ergibt sich nach der Gleichung

$$M_m = M_0 + \frac{X_a + X_b}{2}$$

aus der nachstehenden Tabellenrechnung.

$100 \frac{x}{l}$		$\frac{X_a + X_b}{2}$	η
10	0,3	$\begin{array}{r} -0,27 \\ -0,48 \\ -0,63 \\ -0,72 \\ -0,75 \end{array}$	0,03
20	0,6		0,12
30	0,9		0,27
40	1,2		0,48
50	1,5		0,75

Fig. 45.

Danach ist die M_m -Linie in Fig. 45 aufgetragen. Sie kann auch nach Gleichung (49), Seite 34, gefunden werden, wenn man $\frac{x}{l} = \frac{1}{2}$ setzt; man erhält dann für $\frac{\xi}{l} < \frac{1}{2}$ die Gleichung: $M_m = \frac{l}{2} \cdot \left(\frac{\xi}{l}\right)^2$.

Bei der in Fig. 45 eingezeichneten Laststellung (Lasten in 0,5 l und 0,25 l) wird: $M_m = (\eta_a + \eta_b) \cdot 5 = 4,7 \text{ mt.}$

Ferner sei die Einflußlinie für einen Punkt im Abstandsverhältnis $\frac{x}{l} = 0.2$ berechnet. Die Gleichung lautet:

$$M_{\frac{x}{\bar{t}}=0,2} = M_0 + 0,2 X_a + 0,8 X_b.$$

Die Einflußlinie ergibt sich aus der nachstehenden Tabellenrechnung und ist in Fig. 46 dargestellt.

$100 \cdot \frac{\xi}{l}$	M ₀	$0,2 X_a$	0,8 X _b	М
$ \begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 90 \\ \end{array} $	$\begin{array}{c} 0,48\\ 0,96\\ 0,84\\ 0,72\\ 0,60\\ 0,48\\ 0,36\\ 0,24\\ 0,12\\ \end{array}$	$\begin{array}{c} - & 0,0108 \\ - & 0,0384 \\ - & 0,0756 \\ - & 0,1152 \\ - & 0,1506 \\ - & 0,1728 \\ - & 0,1764 \\ - & 0,1536 \\ - & 0,0972 \end{array}$	$\begin{array}{r} - 0,3888 \\ - 0,6144 \\ - 0,7056 \\ - 0,6912 \\ - 0,6000 \\ - 0,4608 \\ - 0,3024 \\ - 0,1536 \\ - 0,0432 \end{array}$	$\begin{array}{r} + 0,0804 \\ + 0,3072 \\ + 0,0588 \\ - 0,0864 \\ - 0,1500 \\ - 0,1536 \\ - 0,1188 \\ - 0,0672 \\ - 0,0204 \end{array}$

Es können auch die Gleichungen (49) verwandt werden, wobei dann $\frac{x}{l} = 0,2$ zu setzen ist.

Für die Laststellung a findet man:

$$M_r = 0.3072 \cdot 5 = 1.536 \text{ mt.}$$

Für die Laststellung b wird:

$$\breve{M}_{x_{min}} = (-0.143 - 0.103) \cdot 5 = -1.23 \text{ mt.}$$

b) Gleichmäßige bewegliche Belastung mit 1,5 t/m.

Die Größtwerte der Unbekannten sowie des Momentes in Balkenmitte treten nach Abb. 44 und 45 bei Vollbelastung auf. Es ergeben sich also aus den Einflußlinien als Größtwerte:

$$M_m = (\eta_1 + \eta_2 + \dots) \cdot 0, 6 \cdot 1, 5 = 2,295 \text{ mt}.$$

Als Probe dient:

$$M_{max} = \frac{1,5 \cdot 6^2}{24} = 2,25 \text{ mt.}$$

Die Differenz entsteht dadurch, daß die Einflußlinie in Wirklichkeit eine Kurve und kein Polygon ist.

$$X_{a_{max}} = -(\eta_1 + \eta_2 + \ldots) \cdot 0.6 \cdot 1.5 = -4.455 \text{ mt.}$$

Als Probe dient:

$$X_a = -\frac{p l^2}{12} = -\frac{1.5 \cdot 6^2}{12} = -4,50 \text{ mt}.$$

Für das Moment M_x ergibt sich nach Fig. 46 und zugehöriger Tabelle:

$$M_{x_{max}} = \left[(0,0804 + 0,3072) \ 0,6 + 0,0588 \cdot \frac{0,0}{2} \right] \ 1,5 = 0,38 \ \mathrm{mt},$$

$$M_{x_{min}} = (-0.15 - 0.24 - 0.27 - 0.24 - 0.15) \cdot 0.6 \cdot 1.5 = -0.945 \text{ mt.}$$

ls Probe dient:

Als Probe dient: Belastete Strecke $\xi = 0.33 l$; $k_1 = 0.206$; $k_2 = 0.304$ (vgl. Tabelle III). $1.5.6^2$ and 0.496 mt

$$X_{a} = -\frac{1.5 \cdot 6^{2}}{12} (2 \cdot 0.206 - 0.304) = -0.486 \text{ mt},$$

$$X_{b} = -\frac{1.5 \cdot 6^{2}}{12} (2 \cdot 0.304 - 0.206) = -1.809 \text{ mt},$$

$$M_{x} = 1.50 \left(2 \frac{5}{6} - \frac{1.20}{2}\right) 1.20 - 0.2 \cdot 0.486 - 0.8 \cdot 1.89 = 0.376 \text{ mt}.$$

3. Verschiebungen der Widerlager.

a) Senkung des rechten Auflagers um 1,5 cm in vertikaler Richtung (Fig. 47).

-----*l=6,00m*--Fig. 47.

Es ist nach Gl. (43):

Es ist:

$$X_a = -\frac{6 E \cdot J}{l^2} \left(\delta_a - \delta_b \right); \quad X_b = -\frac{6 E \cdot J}{l^2} \left(\delta_b - \delta_a \right).$$

$$\begin{split} E &= 2\,200\,000 \text{ kg/cm}^3, \quad J = 12\,500 \text{ cm}^4, \\ (\delta_a - \delta_b) &= 0 - (-1,5) = +1,5 \text{ cm}, \\ (\delta_b - \delta_a) &= -1,5 \text{ cm}, \\ X_a &= -\frac{6 \cdot 2,2 \cdot 10^6 \cdot 12,5 \cdot 10^3 \cdot 1,5}{23 \cdot 10^3 \cdot 1,5} = -6,875 \text{ mt}, \end{split}$$

$$X_b = +6,875 \text{ mt.}$$

b) Verdrehung der rechten Einspannstelle um einen Winkel von $\vartheta = 15$ Bogenminuten (Fig. 48).

~**a**

Dem Winkel von 15' entspricht ein Bogenmaß von:

$$\frac{\pi \cdot 15}{180 \cdot 60} = 0,00436.$$
$$\vartheta_a = 0, \qquad \vartheta_b = -\frac{4,36}{10^3}$$

Also ist:

Nach Gl. (45) ist:

$$X_{a} = \frac{2 \cdot 2, 2 \cdot 12, 5 \cdot 10^{9} \cdot 4, 36}{6 \cdot 10^{2} \cdot 10^{3}} = 4 \text{ mt},$$

$$X_{b} = -\frac{2 \cdot 2, 2 \cdot 12, 5 \cdot 10^{9} \cdot 8, 72}{6 \cdot 10^{2} \cdot 10^{3}} = -8 \text{ mt}.$$

Die Auflagerdrücke und Momente ergeben sich nach den Gleichungen (26). 4. Temperaturänderung des oberen gegen den unteren Trägerrand von ± 15 °C; ($\Delta t = \pm 15^{\circ}$).

Es ist nach Gleichung (42):

$$X_a \doteq X_b = E \cdot J \cdot \epsilon \cdot \frac{2}{h} \frac{t}{h}$$

= $\frac{2, 2 \cdot 12, 5 \cdot 10^9 \cdot (\pm 15)}{8 \cdot 10^4 \cdot 32} = \pm 1,61 \text{ mt.}$

Aufgabe 2. Der in Fig. 49 dargestellte Halbrahmen (Hallenbinder) soll für Eigengewicht, Schneelast und Winddruck untersucht werden. Außerdem ist der Einfluß einer am Ständer wirkenden Kranlast P = 5t am Hebelarm 0,40 m zu untersuchen. — Schließlich soll die Wirkung von Temperaturänderungen und einer Senkung des einen Auflagers bestimmt werden.

Lösung. Als Unbekannte sind gewählt: Das Einspannungsmoment X_a bei A und das Eckmoment X_b bei B (Fig. 50).

Die Unbekannten ergeben sich nach den Gleichungen:

$$X_b = -rac{[bm,1]}{[bb,1]},$$

 $X_a = -rac{[am]}{[aa]} - rac{[ab]}{[aa]}X_b$

Die M_a - und M_b -Flächen sind in Fig. 51 und 52 dargestellt. Es ist:

$$[aa] = \frac{6,8}{3} = 2,27,$$

$$[bb] = \frac{6,8}{3} + \frac{10,26}{3} = 5,69$$

$$[ab] = \frac{6,8}{6} = 1,13,$$

$$\begin{split} -\frac{[a\,b]}{[a\,a]} &= F_{a\,b} = -\frac{1,13}{2,27} = -0.5\,,\\ [b\,b\,.\,1] = [b\,b] + F_{a\,b} \cdot [a\,b] \\ &= 5,69 - 0.5 \cdot 1,13 = 5,13\,. \end{split}$$

Im folgenden sind für die einzelnen äußeren Belastungsfälle die Zählerwerte ermittelt.

1. Eigengewicht und Schneelast.

Das Gewicht der Decke einschließlich Schneelast betrage:

$$p = 315 \text{ kg/m}^2$$
.

Bei einem Pfettenabstand von 2,55 m ist das Gewicht der auf die Pfetten übertragenen Belastung mit Eigengewicht der Pfette:

$$p' = 900 \text{ kg/m}.$$

Bei einem Binderabstand von 4 m ist der Auflagerdruck der Pfetten: P = 3,6 t (Fig. 53).

Es wird also:

$$[am] = 0,$$

$$[bm] = \frac{Pl^2}{16} (M_1 + M_2) + \frac{Pl^2}{6} (c_1 + c_2) (M_1 + M_2).$$

(Der erste Wert gilt für die mittlere Last P und der letztere für die äußeren Lasten P, vgl. Tab. VII, 6 und 7).

Für

$$\frac{s}{l} = 0.25$$
 wird $(c_1 + c_2) = 0.234375 + 0.328125 = 0.5625$

also

$$[b\ m] = \frac{3,6\cdot10,26^3}{16} \cdot 1 + \frac{3,6\cdot10,26^3}{6} \cdot 0,5625\cdot 1 = 59,1;$$

[bm.1] = [bm] = 59,1.

Damit wird:

$$\begin{split} X_b &= -\frac{59,1}{5,13} = -11,5 \text{ mt}, \\ X_a &= -0,5 \cdot (-11,5) = +5,75 \text{ mt}. \\ \text{Unter den Einzellasten wird (vgl. Fig. 53)} \\ M_1 &= 1,5 \ P \cdot 2,55 + 0,75 \cdot X_b \\ &= 13,77 - 8,625 = 5,145 \text{ mt}, \\ M_2 &= P \cdot 5,10 + 0,5 \cdot X_b \\ &= 18,36 - 5,75 = 12,61 \text{ mt}, \\ M_3 &= 13,77 + 0,25 \cdot X_b \\ &= 13,77 - 2,875 = 10,895 \text{ mt}. \end{split}$$

Winddruck links 100 kg/m². Auf jeden Binder kommt ein Druck: $p = 4 \cdot 100 = 400$ kg/m.

Damit ergibt sich:

$$[am] = [bm] = \frac{ph^3}{24} (M_1 + M_2)$$

= $\frac{0,400 \cdot 6,8^3}{24} \cdot 1 = 5,24;$
 $[bm.1] = [bm] + F_{ab} [am]$
= $5,24 - 0,5 \cdot 5,24 = 2,62;$
 $X_b = -\frac{2,62}{5,13} = -0,51 \text{ mt},$

Pirlet, Statik. II. 2.

Vollwandige Systeme mit geradlinigen Achsen.

$$H = \frac{-2 - X_a + X_b}{6.8} = -0,395 \text{ t.}$$

Die Momente an der Konsole sind:

 $M_{min} = H \cdot 5 + X_a = -1,975 + 0,785 = -1,19 \text{ mt},$ $M_{max} = -1,19 + 2 = +0,81 \text{ mt}.$

4. Das linke Widerlager senkt sich um 1 cm ([lw.2] = -0.01 m). Es ist:

$$X_{b} = -\frac{[b\,\overline{w}.\,1]}{[b\,b.\,1]},$$
$$X_{a} = -\frac{[a\,\overline{w}]}{[a\,a]} + F_{a\,b} \cdot X_{b}.$$

Nach Gleichung (6), Seite 6, wird $[h_{\overline{u}}, 1] - - E \cdot J \cdot L_{h-1} [l_{u}, 2]$

$$\begin{aligned} & [bw,1] = -EJ^{b} \cdot L_{b} \cdot 1[tw,2], \\ & L_{b-1} = L_{b} + F_{ab} \cdot L_{a} = -\frac{1}{10,20} \left(1 + \frac{0,2}{6,80}\right) - 0.5 \cdot \frac{1}{10,20} \cdot \frac{0,2}{6,80} \\ & = -0.1008 - 0.5 \cdot 0.00288 = -0.10224, \\ & [b\overline{w},1] = -EJ (-0.10224) (-0.01) = -0.0010224 EJ, \\ & X_{b} = -\frac{-0.0010224}{5,13} EJ = 0.000199 EJ, \\ & X_{b} = \frac{1.99}{10^{4}} EJ. \end{aligned}$$

Weiter findet man:

$$\begin{split} & [a\,\overline{w}] = -EJ \cdot L_a \cdot [l\,w.\,2] = -EJ \cdot 0.002\,88 \cdot (-0.01) \\ &= 0.000\,0288\,EJ \,, \\ & X_a = \left(-\frac{0.000\,0288}{2.27} - 0.5 \cdot \frac{1.99}{10^4}\right) EJ \\ &= \left(-\frac{0.127}{10^4} - \frac{0.995}{10^4}\right) EJ = -\frac{1.122}{10^4} EJ \,. \end{split}$$

In diesen Werten sind E in kg/m² und J in m⁴ einzusetzen. Das Resultat ergibt sich dann in mkg.

5. Erhöhung der Temperatur des Außenrandes um 15°C. Es wird:

$$X_b = -\frac{[b\,t.\,1]}{[b\,b.\,1]},$$

$$X_a = -\frac{[a\,t]}{[a\,a]} + F_{a\,b} \cdot X_b.$$

Darin ist:

$$\begin{split} [b\,t.\,1] &= \frac{E \cdot J \cdot \epsilon \cdot \Delta t}{d} \int M_{b\,.\,1} \, ds \\ &= \frac{E J}{d} \cdot \frac{1 \cdot 15}{80\,000} \left(\frac{1 - 0.5}{2} \, 6.8 + \frac{1 \cdot 10.20}{2} \right) \\ &= \frac{1.275}{10^3} \frac{E J}{d} \,, \\ X_b &= -\frac{2.49}{10^4} \frac{E J}{d} \,, \\ [a\,t] &= \frac{E J}{d} \cdot \frac{1 \cdot 15}{80\,000} \int M_a \, ds = \frac{E J}{d} \cdot \frac{15}{80\,000} \cdot 1 \cdot \frac{6.8}{2} \\ &= \frac{6.375}{10^4} E J \,, \\ X_a &= \left(-\frac{2.81}{10^4} + 0.5 \cdot \frac{2.49}{10^4} \right) \frac{E J}{d} \\ &= -\frac{1.565}{10^4} \frac{E J}{d} \,. \end{split}$$

Anmerkung: Man kann für die Unbekannten wie in § 4 geschlossene Formeln ableiten. Unter Beachtung der Momentenflächen Fig. 51 und 52 wird:

$$[aa] = \frac{h'}{3}, \ [ab] = \frac{h'}{6}, \ [bb] = \frac{h'+l'}{3}, \ F_{ab} = -\frac{1}{2}, \ [bb.1] = \frac{3h'+4l'}{12}.$$

Bei Belastung des Riegels wird, wenn wieder $\omega = \frac{h'}{l'}$ ist:

Bei Belastung des Ständers:

-

Diese Gleichungen werden wir im folgenden Bande bei Berechnung der Rahmen verwerten.

§ 6. Der kontinuierliche Träger auf 4 Stützen.

I. Allgemeine Gleichungen für die Stützenmomente und beliebige statische Größen.

Der kontinuierliche Träger auf 4 Stützen mit einem festen und drei beweglichen Lagern ist zweifach statisch unbestimmt. Wir wählen als Grundsystem drei zusammenhängende Balken auf je zwei

Fig. 55. Grundsystem.

Stützen (Fig. 55). Als Überzählige sollen die Einspannungsmomente X_a und X_b über den Mittelstützen A und B gelten.

Für X_b haben wir die Gleichung:

$$X_{b} = -\frac{[bm \cdot 1]}{[bb \cdot 1]} = -\frac{Z_{b}}{N_{b}}.$$
$$N_{b} = [bb \cdot 1] = \int M_{b \cdot 1} M_{b} ds \frac{J'}{J},$$
$$Z_{b} = [bm \cdot 1] = \int M_{b \cdot 1} M_{0} ds \frac{J'}{J}.$$

Darin ist

J' ist, wie bisher, irgendein (mittlerer) Wert eines Trägheitsmomentes.

Zur Ermittelung dieser Werte ist zunächst die $M_{b,1}$ -Fläche, d. h. die Momentenfläche für $X_{b,1} = 1$ (d. i. $X_b = 1$ am einfach statisch unbestimmten Hauptsystem; Lastengruppen X_{bb} und X_{ab} am Grundsystem) zu bestimmen.

Die M_a - und M_b -Fläche (Fig. 56a u. b) liefern folgende Verschiebungen des Grundsystems:

Es ist damit

$$X_{ab} = -\frac{[ab]}{[aa]} = -\frac{l_b'}{2(l_a' + l_b')}.$$

Diesen Wert bezeichnen wir mit F_{ab} (Festwert). Es ist also:

$$F_{ab} = -\frac{l_b'}{2(l_a'+l_b')}.$$

Der Belastungszustand $X_{b,1} = 1$ ist also gegeben durch die am Grundsystem angreifende Lastengruppe:

$$\begin{array}{l} X_{b\,b} = 1\,, \\ X_{a\,b} = -\frac{[a\,b]}{[a\,a]} = F_{a\,b}\,. \end{array}$$

Damit ergibt sich die in Fig. 57 dargestellte $M_{b,1}$ -Fläche. Wir finden also aus Fig. 56b und 57:

$$\begin{split} N_{b} = [b \, b \, . \, 1] = & \frac{l_{b}'}{6} (2 + F_{ab}) + \frac{l_{c}'}{3}, \\ N_{b} = & \frac{4 (l_{a}' + l_{b}') (l_{b}' + l_{c}') - l_{b}'^{2}}{12 (l_{a}' + l_{b}')}. \end{split}$$

Der Zähler Z_b wird nach den Angaben in § 1 (s. Gl. 3):

1. Bei Belastung von Feld l_a : $Z_b = \varphi_2 \cdot F_{ab}$. 2. Bei Belastung von Feld l_b : $Z_b = \varphi_1 \cdot F_{ab} + \varphi_2$. 3. Bei Belastung von Feld l_c : $Z_b = \varphi_1$.

Ist X_b gefunden, so können wir X_a bestimmen aus der Gleichung:

$$X_a = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]}X_b.$$

Darin wäre $[am] = \int M_0 M_a ds \frac{J'}{J}$ aus der M_0 -Fläche und M_a -Fläche

mit Hilfe der Formeln in § 1 zu finden. — Wir können hier jedoch den Wert für X_a auch in gleicher Weise wie für X_b in der Form $X_a = -\frac{Z_a}{N_a}$ ermitteln, wenn wir die Momentenfläche für $X_a = 1$ am einfach statisch unbestimmten System aufsuchen. Diese läßt sich aus der $M_{b.1}$ -Fläche ohne weiteres angeben, wenn man im Wert für F_{ab} statt l'_a jetzt l'_c einsetzt. Der sich hiernach ergebende Wert F_{ba} (Fig. 58) ist:

$$F_{ba} = -\frac{l_b'}{2(l_b' + l_c')}.$$

Der Nennerwert N_a ergibt sich aus N_b durch Vertauschung von l_a und $l_c. \ Es$ ist also

$$N_{a} = \frac{4 \left(l_{a}' + l_{b}' \right) \left(l_{b}' + l_{c}' \right) - l_{b}'^{2}}{12 \left(l_{b}' + l_{c}' \right)}.$$

Der Zähler Z_a wird dann:

1. Bei Belastung von Feld l_a :

$$Z_a = \varphi_2 \,.$$

2. Bei Belastung des Feldes l_h :

$$Z_a = \varphi_1 + F_{ba} \cdot \varphi_2.$$

3. Bei Belastung des Feldes l_c :

$$Z_a = F_{ba} \cdot \varphi_1$$

Wir erhalten also die folgenden

Gleichungen für die Unbekannten:

1. Für Belastung im Feld l_a :

$$\begin{split} X_a &= -\frac{1}{N_a} \cdot \varphi_2 \,, \\ X_b &= -\frac{1}{N_b} \cdot F_{ab} \cdot \varphi_2 \,. \end{split}$$

2. Bei Belastung des Feldes l_b :

$$X_{a} = -\frac{1}{N_{a}}(\varphi_{1} + F_{ba} \cdot \varphi_{2}),$$

$$X_{b} = -\frac{1}{N_{b}}(\varphi_{2} + F_{ab} \cdot \varphi_{1}).$$
(59)

3. Bei Belastung des Feldes l_c :

$$X_{a} = -\frac{1}{N_{a}} F_{b a} \cdot \varphi_{1},$$
$$X_{b} = -\frac{1}{N_{b}} \cdot \varphi_{1}.$$

Darin ist:

$$F_{ba} = -\frac{l_{b}'}{2(l_{b}' + l_{c}')},$$

$$F_{ab} = -\frac{l_{b}'}{2(l_{a}' + l_{b}')},$$

$$N_{a} = \frac{4(l_{a}' + l_{b}')(l_{b}' + l_{c}') - l_{b}'^{2}}{12(l_{b}' + l_{c}') - l_{b}'^{2}},$$

$$N_{b} = \frac{4(l_{a}' + l_{b}')(l_{b}' + l_{c}') - l_{b}'^{2}}{12(l_{a}' + l_{b}')}.$$
(60)

Sind die Unbekannten X_a und X_b gefunden, so ergeben sich folgende Werte für die sonstigen statischen Größen des Systems. Auflagerdrücke (vgl. Fig. 55):

$$A = A_{0} - X_{a} \left(\frac{1}{l_{a}} + \frac{1}{l_{b}} \right) + X_{b} \cdot \frac{1}{l_{b}},$$

$$B = B_{0} + X_{a} \frac{1}{l_{b}} - X_{b} \left(\frac{1}{l_{b}} + \frac{1}{l_{c}} \right),$$

$$C = C_{0} + X_{a} \frac{1}{l_{a}},$$

$$D = D_{0} + X_{b} \frac{1}{l_{c}}.$$
(61)

Momente (x immer von rechts gemessen):

Feld
$$l_a$$
: $M_{x_a} = M_0 + X_a \left(1 - \frac{x_a}{l_a} \right)$,
, l_b : $M_{x_b} = M_0 + X_a \frac{x_b}{l_b} + X_b \left(1 - \frac{x_b}{l_b} \right)$,
, l_c : $M_{x_c} = M_0 + X_b \frac{x_c}{l_c}$. (62)

Querkräfte:

Feld
$$l_a: Q = Q_0 + X_a \frac{1}{l_a},$$

 $, l_b: Q = Q_0 - \frac{1}{l_b} (X_a - X_b),$
 $, l_c: Q = Q_0 - X_b \frac{1}{l_c}.$
(63)

Sind die Querkräfte an den Auflagern ermittelt, so ergeben sich die Auflagerdrücke auch in der Form (vgl. Fig. 59):

$$\begin{array}{c} C = Q_c, \\ A = Q_a' - Q_a, \\ B = Q_b - Q_b', \\ D = -Q_d. \end{array} \right\} \quad \dots \quad \dots \quad (64)$$

Mit Hilfe der Gleichungen (59) bis (64) läßt sich der kontinuierliche Träger in gleicher Weise für die verschiedenen Belastungsfälle untersuchen, wie die in § 2 und § 3 behandelten Träger. Sind mehrere Felder belastet, so ist es zu empfehlen, die Belastung jedes Feldes getrennt zu behandeln und die Resultate nachträglich zu addieren. In gleicher Weise ist zu verfahren, wenn mehrere Belastungsarten in Frage kommen.

Bei einem kontinuierlichen Träger mit drei gleichen Öffnungen und konstantem Trägheitsmoment wird:

$$F_{ba} = F_{ab} = -\frac{1}{4}, \\ N_a = N_b = \frac{5}{8}l.$$
 (60 a)

)

Damit ist also:

1. Für Belastung im Feld l_a :

$$X_{a} = -\frac{8}{5} \cdot \frac{1}{l} \cdot \varphi_{2},$$

$$X_{b} = +\frac{2}{5} \cdot \frac{1}{l} \cdot \varphi_{2}.$$
im Feld l_{i} :

2. Für Belastung im Feld l_{μ} :

$$X_{a} = -\frac{2}{5} \frac{1}{l} (4 \varphi_{1} - \varphi_{2}), \qquad (59 a)$$

$$X_{b} = -\frac{2}{5} \frac{1}{l} (4 \varphi_{2} - \varphi_{1}).$$

3. Für Belastung im Feld l_c :

$$X_a = \frac{2}{5} \frac{1}{l} \cdot \varphi_1,$$
$$X_b = -\frac{8}{5} \frac{1}{l} \cdot \varphi_1.$$

Die übrigen statischen Größen, wie Auflagerdrücke, Momente und Querkräfte ergeben sich ohne weiteres nach den Gl. (61) bis (64).

II. Ermittelung der Unbekannten für ruhende und bewegliche Belastung.

a) Ruhende Belastung, Temperaturänderungen und Widerlagerverschiebungen.

Im folgenden sollen nur einige besonders wichtige Belastungsfälle behandelt werden; im übrigen sei auf die Tabelle X, Seite 65, verwiesen.

 α) Einzellasten.

Sind die einzelnen Felder durch Einzellasten, P_a im Feld l_a , P_b im Feld l_b , P_c im Feld l_c belastet (Fig. 60), so finden wir, da hier

 $\mathbf{56}$

Auflagerdrücke, Momente und Querkräfte ergeben sich nach den Gleichungen (61) bis (64). Sind mehrere Einzellasten in einem Feld vorhanden, so sind deren

Einflüsse zu addieren.

1. Bei einem kontinuierlichen Träger mit je einer Einzellast in Feldmitte wird: .

$$\frac{\xi_a}{l_a} = \frac{\xi_b}{l_b} = \frac{\xi_c}{l_c} = \frac{1}{2},$$

also $c_1 = c_2 = \frac{3}{8}$ für alle Felder.

Damit wird nach Gleichung (65) (vgl. auch Tab. VII, 6):

$$X_{a} = -\frac{l_{a}'}{N_{a}} \cdot \frac{P_{a}l_{a}}{16} - \frac{l_{b}'}{N_{a}} \cdot \frac{P_{b}l_{b}}{16} (1 + F_{ba}) - \frac{l_{c}'}{N_{a}} \cdot \frac{P_{c}l_{c}}{16} \cdot F_{ba} \cdot \begin{cases} 65a \end{cases}$$

$$X_{b} = -\frac{l_{a}'}{N_{b}} \cdot \frac{P_{a}l_{a}}{16} \cdot F_{ab} - \frac{l_{b}'}{N_{b}} \cdot \frac{P_{b}l_{b}}{16} (1 + F_{ab}) - \frac{l_{c}'}{N_{b}} \cdot \frac{P_{c}l_{c}}{16} \cdot \end{cases}$$
(65a)

2. Hat der Träger gleiche Feldweiten und wird das Trägheitsmoment als konstant angenommen, so wird:

$$X_{a} = -\frac{4}{15}P_{a} \cdot l \cdot c_{2} - \frac{1}{15} \cdot P_{b} \cdot l(4c_{1} - c_{2}) + \frac{1}{15} \cdot P_{c} \cdot l \cdot c_{1} \cdot k_{1}$$

$$Y = -\frac{1}{15}P_{c} \cdot l \cdot c_{2} - \frac{1}{15}P_{c} \cdot l \cdot c_{2} \cdot k_{2} \cdot k_{2$$

$$X_b = \frac{1}{15} P_a \cdot l \cdot c_2 - \frac{1}{15} P_b \cdot l \cdot (4c_2 - c_1) - \frac{4}{15} P_c \cdot l \cdot c_1.$$
3. Steht in diesem Falle die Einzellast in Feldmitte, so wird:

$$X_{a} = -\frac{l}{40} (4 P_{a} + 3 P_{b} - P_{c}),$$

$$X_{b} = -\frac{l}{40} (-P_{a} + 3 P_{b} + 4 P_{c}).$$
(65 c)

Vollwandige Systeme mit geradlinigen Achsen.

4. Sind die Einzellasten auch noch unter sich gleich, so wird:

$$X_a = X_b = -\frac{3}{20} Pl.$$
 (65d)

Die anderen statischen Größen sind wie vorhin zu berechnen.

 $\beta)$ Gleichförmig verteilte Vollbelastung¹). Bei gleichmäßig verteilter Vollbelastung in den einzelnen Feldern mit $q_a,\,q_b$ und q_c

Fig. 61.

(Fig. 61) ergibt sich nach Tabelle VII für die Zählerwerte der Unbekannten:

$$\begin{split} & Z_a = \frac{q_a l_a^2}{24} \cdot l_a' + \frac{q_b l_b^2}{24} \cdot l_b' (1 + F_{ba}) + \frac{q_c l_c^2}{24} l_c' \cdot F_{ba} \\ & Z_b = \frac{q_a l_a^2}{24} \cdot l_a' \cdot F_{ab} + \frac{q_b l_b^2}{24} \cdot l_b' (1 + F_{ab}) + \frac{q_c l_c^2}{24} l_c' \,. \end{split}$$

Damit ergeben sich folgende Werte der Unbekannten:

$$X_{a} = -\frac{l_{a}'}{N_{a}} \cdot \frac{q_{a}l_{a}^{2}}{24} - \frac{l_{b}'}{N_{a}} \cdot \frac{q_{b}l_{b}^{2}}{24} (1 + F_{ba}) - \frac{l_{c}'}{N_{a}} \cdot \frac{q_{c}l_{c}^{2}}{24} \cdot F_{ba}.$$

$$X_{b} = -\frac{l_{a}'}{N_{b}} \cdot \frac{q_{a}l_{a}^{2}}{24} \cdot F_{ab} - \frac{l_{b}'}{N_{b}} \cdot \frac{q_{b}l_{b}^{2}}{24} \cdot (1 + F_{ab}) - \frac{l_{c}'}{N_{b}} \cdot \frac{q_{c}l_{c}^{2}}{24} \cdot$$
(66)

Die Querkräfte erhält man aus den Gleichungen:

$$Q_{c} = \frac{q_{a}l_{a}}{2} + \frac{X_{a}}{l_{a}},$$

$$Q_{a} = -\frac{q_{a}l_{a}}{2} + \frac{X_{a}}{l_{a}},$$

$$Q_{a}' = \frac{q_{b}l_{b}}{2} - \frac{X_{a} - X_{b}}{l_{b}},$$

$$Q_{b}' = -\frac{q_{b}l_{b}}{2} - \frac{X_{a} - X_{b}}{l_{b}},$$

$$Q_{b} = \frac{q_{c}l_{c}}{2} - \frac{X_{b}}{l_{c}},$$

$$Q_{d} = -\frac{q_{c}l_{c}}{2} - \frac{X_{b}}{l_{c}}.$$
(67)

Die Auflagerdrücke sind dann:

$$\begin{array}{c}
 A = Q_{a}' - Q_{a}, \\
 B = Q_{b} - Q_{b}', \\
 C = Q_{c}, \\
 D = -Q_{d}.
\end{array} \quad (68)$$

¹) Mit Rücksicht auf das häufige Vorkommen dieses Falles bei den Aufgaben der Baupraxis sollen hierüber einige nähere Angaben folgen.

Die Größtmomente in den einzelnen Öffnungen mögen in den Abständen a, b, c von den jeweiligen rechten Auflagern der betreffenden Öffnungen angreifen. Diese Abstände sind dann gegeben durch folgende Gleichungen (gemäß Gl. (19), § 1, worin für *B* hier die Querkräfte Q_a , Q_b' , Q_d einzusetzen sind):

$$a = -\frac{Q_a}{q_a},$$

$$b = -\frac{Q_b'}{q_b},$$

$$c = -\frac{Q_d}{q_c}.$$
(69)

An diesen Stellen sind dann die Momente

$$M_{a} = \frac{Q_{a}^{2}}{2 q_{a}} + X_{a},
 M_{b} = \frac{Q_{b}'^{2}}{2 q_{b}} + X_{b},
 M_{c} = \frac{Q_{d}^{2}}{2 q_{c}}.$$
(70)

Sonderfälle:

1. Für den besonderen Fall eines Trägers mit gleichen Spannweiten l und konstantem Trägheitsmoment J' = Jvereinfachen sich die Gleichungen wie folgt:

Unbekannte:

$$X_{a} = -\frac{l^{2}}{60}(4 q_{a} + 3 q_{b} - q_{c}),$$

$$X_{b} = -\frac{l^{2}}{60}(-q_{a} + 3 q_{b} + 4 q_{c}).$$
(66a)

`

Querkräfte:

$$Q_{c} = \frac{l}{60} (26 q_{a} - 3 q_{b} + q_{c}),$$

$$Q_{a} = \frac{l}{60} (-34 q_{a} - 3 q_{b} + q_{c}),$$

$$Q_{a}' = \frac{l}{12} (q_{a} + 6 q_{b} - q_{c}),$$

$$Q_{b}' = \frac{l}{12} (q_{a} - 6 q_{b} - q_{c}),$$

$$Q_{b} = \frac{l}{60} (-q_{a} + 3 q_{b} + 34 q_{c}),$$

$$Q_{d} = \frac{l}{60} (-q_{a} + 3 q_{b} - 26 q_{c}).$$
(67 a)

Auflagerdrücke:

$$C = Q_{c} = \frac{l}{60} (26 q_{a} - 3 q_{b} + q_{c}),$$

$$A = Q_{a}' - Q_{a} = \frac{l}{20} (13 q_{a} + 11 q_{b} - 2 q_{c}),$$

$$B = Q_{b} - Q_{b}' = \frac{l}{20} (-2 q_{a} + 11 q_{b} + 13 q_{c}),$$

$$D = -Q_{d} = \frac{l}{60} (q_{a} - 3 q_{b} + 26 q_{c}).$$
(68 a)

Größtmomente:

$$M_{a} = \frac{q_{c}}{2 q_{a}},
 M_{b} = \frac{q_{a}^{2}}{2 q_{b}} + X_{a},
 M_{c} = \frac{q_{d}^{2}}{2 q_{c}}.$$
(70a)

Die Lage des Größtmomentes ergibt Gleichung (69).

2. Für den Träger mit gleichen Öffnungen und gleicher Belastung in allen Feldern $(q_a = q_b = q_c = q)$ erhält man:

Unbekannte:

$$X_a = X_b = -\frac{q l^2}{10}$$
 (66b)

Querkräfte:

$$\begin{array}{c}
Q_{c} = -Q_{d} = \frac{2}{5} q l, \\
Q_{a} = -Q_{b} = -\frac{3}{5} q l, \\
Q_{a}' = -Q_{b}' = \frac{q l}{2}.
\end{array}$$
(67b)

Auflagerdrücke:

$$C = Q_{c} = \frac{2}{5} q l,$$

$$A = Q_{a}' - Q_{a} = \frac{11}{10} q l,$$

$$B = \frac{11}{10} q l,$$

$$D = \frac{2}{5} q l.$$
(68b)

Größtmomente: $M_a = 0,08 \ q \ l^2$, $M_b = 0,025 \ q \ l^2$, $M_c = 0,08 \ q \ l^2$. (70b)

Die Lage der Größtmomente ist gegeben durch:

$$\begin{array}{c} a = 0, 6 \, l, \\ b = 0, 5 \, l, \\ c = 0, 4 \, l. \end{array}$$
 (69b)

 γ) Dreieckförmige Vollbelastung der einzelnen Felder mit den größten Belastungsordinaten an den Stützen A, B, D (Fig. 62).

Die Zählerwerte ergeben sich wie folgt (vgl. Tab. VII):

$$\begin{split} Z_{a} &= \frac{p_{a}l_{a}^{2}}{45} \cdot l_{a}' + \frac{p_{b} \cdot l_{b}^{2}}{360} l_{b}' \left(7 + 8 F_{ba}\right) + \frac{p_{c}l_{c}^{2}}{360} l_{c}' \cdot 7 F_{ba}.\\ Z_{b} &= \frac{p_{a}l_{a}^{2}}{45} \cdot l_{a}' \cdot F_{ab} + \frac{p_{b}l_{b}^{2}}{360} l_{b}' \cdot \left(8 + 7 F_{ab}\right) + \frac{p_{c}l_{c}^{2}}{360} \cdot l_{c}' \cdot 7 \,. \end{split}$$

Damit ergeben sich für die Unbekannten die Werte:

$$X_{a} = -\frac{l_{a}'}{N_{a}} \cdot \frac{p_{a} l_{a}^{2}}{45} - \frac{l_{b}'}{N_{a}} \cdot \frac{p_{b} l_{b}^{2}}{360} (7 + 8F_{ba}) - \frac{l_{c}'}{N_{a}} \cdot \frac{p_{c} l_{c}^{2}}{360} \cdot 7F_{ba}.$$

$$X_{b} = -\frac{l_{a}'}{N_{b}} \cdot \frac{p_{a} l_{a}^{2}}{45} \cdot F_{ab} - \frac{l_{b}'}{N_{b}} \cdot \frac{p_{b} l_{b}^{2}}{360} (8 + 7F_{ab}) - \frac{l_{c}'}{N_{b}} \cdot \frac{p_{c} l_{c}^{2}}{360} \cdot 7.$$

$$\left\{ \begin{array}{c} (71) \\ (72) \\ (71$$

Sonderfall 1.

Für einen Träger mit gleichen Öffnungen ergibt sich:

$$X_{a} = \frac{l^{2}}{900} (-32 p_{a} - 20 p_{b} + 7 p_{c}),$$

$$X_{b} = \frac{l^{3}}{900} (8 p_{a} - 25 p_{b} - 28 p_{c}).$$
(71a)

Sonderfall 2.

Ist außerdem $p_a = p_b = p_c = p$, so wird:

$$X_a = X_b = -\frac{p l^2}{20}$$
. (71b)

Anmerkung: Dieser Belastungsfall kommt insbesondere bei einer trapezförmigen Belastung zur Anwendung, wo die dreieckförmige Last mit der vorhin behandelten rechteckigen zu kombinieren ist.

 δ) Dreieckförmige Vollbelastung der einzelnen Felder mit den größten Belastungsordinaten in den Feldmitten (Fig. 63).

Eig. 63.

Die Zählerwerte ergeben sich unter Benutzung der Tabelle VII und mit Hilfe der Momentenflächen Fig. 57 und 58 wie folgt:

$$\begin{split} Z_{a} &= \frac{5}{192} p_{a} l_{a}^{2} l_{a}' + \frac{5}{192} p_{b} l_{b}^{2} l_{b}' (1 + F_{ba}) + \frac{5}{192} p_{c} l_{c}^{2} l_{c}' \cdot F_{ba}.\\ Z_{b} &= \frac{5}{192} p_{a} l_{a}^{2} l_{a}' \cdot F_{ab} + \frac{5}{192} p_{b} l_{b}^{2} l_{b}' \cdot (1 + F_{ab}) + \frac{5}{192} p_{c} l_{c}^{2} \cdot l_{c}' \cdot l_{c}' \end{split}$$

Demnach lauten die Gleichungen für die Unbekannten:

$$X_{a} = -\frac{l_{a}'}{N_{a}} \cdot \frac{5}{192} \frac{p_{a} l_{a}^{2}}{N_{a}} - \frac{l_{b}'}{N_{a}} \cdot \frac{5}{192} \frac{p_{b} l_{b}^{2}}{192} (1 + F_{ba}) - \frac{l_{c}'}{N_{a}} \cdot \frac{5}{192} \frac{p_{c} l_{c}^{2}}{192} \cdot F_{ba}.$$

$$X_{b} = -\frac{l_{a}'}{N_{b}} \cdot \frac{5}{192} \frac{p_{a} l_{a}^{2}}{192} \cdot F_{ab} - \frac{l_{b}'}{N_{b}} \cdot \frac{5}{192} \frac{p_{b} l_{b}^{2}}{192} (1 + F_{ab}) - \frac{l_{c}'}{N_{b}} \cdot \frac{5}{192} \frac{p_{c} l_{c}^{2}}{192}.$$
Sonderfall 1.
$$(72)$$

Hat der Träger gleiche Spannweiten und konstantes Trägheitsmoment, so ergeben sich die Gleichungen:

$$X_{a} = -\frac{p_{a}l_{a}^{2}}{24} - \frac{p_{b}l_{b}^{2}}{32} + \frac{p_{c}l_{c}^{2}}{96} = \frac{l^{2}}{96}(-4p_{a} - 3p_{b} + p_{c}),$$

$$X_{b} = \frac{p_{a}l_{a}^{2}}{96} - \frac{p_{b}l_{b}^{2}}{32} - \frac{p_{c}l_{c}^{2}}{24} = \frac{l^{2}}{96}(+p_{a} - 3p_{b} - 4p_{c}).$$
(72a)

Sonderfall 2.

Sind dazu die Lasten in den Feldern gleich, so ist:

 $\epsilon)$ Äußere Momente M_c und M_d als Belastung an den Endstützen C und D.

Greifen an den Balkenenden- äußere Momente an (Fig. 64), her-

vorgerufen z. B. durch einen Kragarm, so erhält man nach Tabelle VII und mit Hilfe der Momentenflächen Fig. 57 und 58 die Zählerwerte der Unbekannten in der Form:

$$\begin{split} & Z_a \! = \! - \frac{M_c}{6} \, l_a^{\ \prime} \! - \! \frac{M_d}{6} \, l_c^{\ \prime} \! \cdot F_{b \, a}, \\ & Z_b \! = \! - \frac{M_c}{6} \, l_a^{\ \prime} \! \cdot F_{a \, b} \! - \! \frac{M_d}{6} \cdot l_c^{\ \prime} \! \cdot \end{split}$$

Die Gleichungen für die Unbekannten lauten dann:

$$X_{a} = \frac{l_{a}'}{N_{a}} \cdot \frac{M_{c}}{6} + \frac{l_{e}'}{N_{a}} \cdot \frac{M_{d}}{6} \cdot F_{ba},$$

$$X_{b} = \frac{l_{a}'}{N_{b}} \cdot \frac{M_{c}}{6} \cdot F_{ab} + \frac{l_{c}'}{N_{b}} \cdot \frac{M_{d}}{6}.$$
(73)

Sonderfall 1.

Bei gleichen Feldweiten und konstantem Trägheitsmoment ist:

$$X_{a} = \frac{4}{15} M_{c} - \frac{1}{15} M_{d},$$

$$X_{b} = -\frac{1}{15} M_{c} + \frac{4}{15} M_{d}.$$
(73a)

Sonderfall 2.

Ist außerdem $M_c = M_d = M$, so ist $X_a = X_b = \frac{1}{5}M....$ (73b)

 ζ) Temperaturänderungen.

Bei gleichmäßiger Temperaturänderung treten keine Spannungen auf.

Hat der Querschnitt die Höhe h und besteht zwischen dem oberen und dem unteren Rand ein Temperaturunterschied $\Delta t (= t_0 - t_u)$, so sind die Unbekannten (vgl. Gl. (5), Seite 6):

$$\begin{split} X_{a} &= -\frac{Z_{a}}{N_{a}} = \frac{1}{N_{a}} \varepsilon \frac{\Delta t}{h} EJ \Big[\frac{l_{a}'}{2} + \frac{l_{b}'}{2} (1 + F_{ba}) + \frac{l_{c}'}{2} \cdot F_{ba} \Big], \\ X_{b} &= -\frac{Z_{a}}{N_{b}} = \frac{1}{N_{b}} \varepsilon \frac{\Delta t}{h} EJ \Big[\frac{l_{a}'}{2} F_{ab} + \frac{l_{b}'}{2} (1 + F_{ab}) + \frac{l_{c}'}{2} \Big]^{1} \big]. \end{split}$$

Setzt man die Werte für F_{ba} und F_{ab} ein, so erhält man:

$$X_{a} = \frac{1}{N_{a}} \varepsilon \cdot \frac{\Delta t}{h} EJ \frac{2l_{a}' + l_{b}'}{4},$$

$$X_{b} = \frac{1}{N_{b}} \varepsilon \cdot \frac{\Delta t}{h} EJ \cdot \frac{2l_{c}' + l_{b}'}{4}.$$
(74)

Sonderfall 1.

Bei gleichen Spannweiten und konstantem Trägheitsmoment wird daraus mit $N_a = N_b = \frac{5}{8}l$:

$$X_a = X_b = \frac{1}{5} EJ \cdot \epsilon \frac{\Delta t}{h} \dots \dots \dots \dots \dots \dots (74a)$$

Querkräfte, Auflagerdrücke und Momente ergeben sich nach den Gl. (67) bis (70); darin sind die Werte Q_0 , A_0 , B_0 , C_0 , D_0 und M_0 gleich 0 zu setzen.

 η) Widerlagerverschiebungen.

Verschieben sich die Widerlager in Richtung der positiven Auflagerdrücke (nach oben) um die Werte [lw.2] gleich δ_a , δ_b , δ_c und δ_d (Fig. 65), so erhält man den Zählerwert der Unbekannten X_b nach Gl. 6, Seite 6 in der Form:

$$Z_b = -EJ' \sum L_{b.1}[lw.2].$$

Darin sind $L_{b,1}$ die Auflagerdrücke des einfach statisch unbestimmten

¹) Wenn $t_0 > t_u$ ist, so finden die Verschiebungen im Sinne negativer Momente statt, da der Baklen bei größerer Erwärmung des oberen Riegels sich nach oben ausbiegt. Die Verschiebungen [it.v] sind also hier negativ.

Hauptsystems für die Belastung $X_{b.1} = 1$; dies ist eine Belastung des Grundsystems mit $X_{bb} = 1$ und $X_{ab} = -\frac{[ab]}{[aa]} = F_{ab}$. Aus dieser Belastung ergeben sich die Auflagerdrücke:

$$C_{b.1} = \frac{F_{ab}}{l_a},$$

$$A_{b.1} = -F_{ab}\left(\frac{1}{l_a} + \frac{1}{l_b}\right) + \frac{1}{l_b},$$

$$B_{b.1} = -\left(\frac{1}{l_b} + \frac{1}{l_c}\right) + \frac{F_{ab}}{l_b},$$

$$D_{b.1} = \frac{1}{l_c}.$$

Damit ergibt sich nach gehöriger Vereinfachung:

$$Z_b = - EJ' \Big[\frac{\delta_c - \delta_a}{l_a} \cdot F_{ab} + \frac{\delta_a - \delta_b}{l_b} (1 - F_{ab}) - \frac{\delta_b - \delta_d}{l_c} \Big].$$

In entsprechender Weise findet man:

$$Z_a = -EJ' \left[\frac{\delta_c - \delta_a}{l_a} - \frac{\delta_a - \delta_b}{l_b} (1 - F_{ba}) - \frac{\delta_b - \delta_d}{l_c} F_{ba} \right].$$

Damit haben wir die Unbekannten in der Form:

$$X_{a} = -\frac{Z_{a}}{N_{a}} = \frac{EJ'}{N_{a}} \left[\frac{\delta_{c} - \delta_{a}}{l_{a}} - \frac{\delta_{a} - \delta_{b}}{l_{b}} (1 - F_{ba}) - \frac{\delta_{b} - \delta_{d}}{l_{c}} \cdot F_{ba} \right],$$

$$X_{b} = -\frac{Z_{b}}{N_{b}} = \frac{EJ'}{N_{b}} \left[\frac{\delta_{c} - \delta_{a}}{l_{a}} \cdot F_{ab} + \frac{\delta_{a} - \delta_{b}}{l_{b}} (1 - F_{ab}) - \frac{\delta_{b} - \delta_{d}}{l_{c}} \right].$$
(75)

Sonderfall.

Bei gleichen Spannweiten und konstantem Trägheitsmoment ergibt sich daraus:

$$X_{a} = \frac{8}{5} \frac{E \cdot J}{l^{2}} \Big[(\delta_{c} - \delta_{a}) - \frac{5}{4} (\delta_{a} - \delta_{b}) + \frac{1}{4} (\delta_{b} - \delta_{d}) \Big] \\ = \frac{2}{5} \frac{E J}{l^{2}} \Big[4 \, \delta_{c} + 3 \, (2 \, \delta_{b} - 3 \, \delta_{a}) - \delta_{d} \Big], \\ X_{b} = \frac{8}{5} \frac{E \cdot J}{l^{2}} \Big[-\frac{1}{4} (\delta_{c} - \delta_{a}) + \frac{5}{4} (\delta_{a} - \delta_{b}) - (\delta_{b} - \delta_{d}) \Big] \\ = \frac{2}{5} \frac{E J}{l^{2}} \Big[4 \, \delta_{d} + 3 \, (2 \, \delta_{a} - 3 \, \delta_{b}) - \delta_{c} \Big].$$
(75 a)

In dem Zahlenbeispiel § 7 ist die Anwendung der in den vorstehenden Ausführungen gewonnenen Formeln erläutert. Für die wichtigsten Belastungsfälle sind in Tabelle Xa die Unbekannten X_a und X_b angegeben.

a. Zusammenstellung.	$\frac{J'}{J}, F_{ba} = -\frac{l_b'}{2(l_b'+l_c')}; N_a = \frac{4(l_a'+l_b')(l_b'+l_c')-l_{b'}^2}{12(l_b'+l_c')}, F_{ab} = -\frac{l_b'}{2(l_a'+l_b')}; N_b = \frac{4(l_a'+l_b')(l_b'+l_c')-l_{b'}^2}{12(l_a'+l_b')}.$	Unbekanntc	$X_{a} = -\frac{l_{a'}}{N_{a}} \cdot \frac{P_{a}l_{a}}{6} c_{s} - \frac{l_{b'}}{N_{a}} \cdot \frac{l_{b}P_{b}}{6} (c_{1} + F_{b_{a}} \cdot c_{2}) - \frac{l_{c'}}{N_{a}} \cdot \frac{P_{c}l_{c}}{6} \cdot F_{b_{a}} \cdot c_{1}$ $X_{b} = -\frac{l_{a'}}{N_{b}} \cdot \frac{P_{a}l_{a}}{6} \cdot F_{a_{b}} \cdot c_{2} - \frac{l_{b'}}{N_{b}} \cdot \frac{l_{b}P_{b}}{6} (c_{2} + F_{a_{b}} \cdot c_{1}) - \frac{l_{c'}}{N_{b}} \cdot \frac{P_{c}l_{c}}{6} \cdot c_{1}$	$\begin{split} X_a &= -\frac{l_a'}{N_a} \cdot \frac{P_a l_a}{16} - \frac{l_b'}{N_a} \frac{P_b l_b}{16} \left(1 + F_{ba}\right) - \frac{l_c'}{N_a} \frac{P_c l_c}{16} F_{ba} \ .\\ X_b &= -\frac{l_a'}{N_b} \frac{P_a l_a}{16} F_{ab} - \frac{l_b'}{N_b} \frac{P_b l_b}{16} \left(1 + F_{ab}\right) - \frac{l_c'}{N_b} \frac{P_c l_c}{16} \ . \end{split}$	$X_{a} = -\frac{l_{a'}^{a'} \cdot \frac{q_{a} l_{a}^{a}}{24} \cdot k_{z} - \frac{l_{b'}}{N_{a}} \cdot \frac{q_{b} l_{a}^{b}}{24} (k_{1} + F_{ba} \cdot k_{z}) - \frac{l_{c'}^{a'} \cdot \frac{q_{c} l_{c}^{a}}{2}}{N_{a} \cdot k_{1}} \cdot F_{ba} \cdot k_{1}$ $X_{b} = -\frac{l_{a'}^{a'} \cdot \frac{q_{a} l_{a}^{a}}{24} \cdot F_{ab} \cdot k_{z} - \frac{l_{b'}^{a'} \cdot \frac{q_{b} l_{b}^{a}}{24} (F_{ab} \cdot k_{1} + k_{z}) - \frac{l_{c'}^{a'} \cdot \frac{q_{c} l_{c}^{a}}{24} \cdot k_{1}}{N_{b} \cdot \frac{2q_{c} l_{c}^{a}}{24} \cdot k_{1}}$	$\begin{split} X_{a} &= -\frac{l_{a'}}{N_{a}} \cdot \frac{q_{a}l^{a}}{24} - \frac{l_{b'}}{N_{a}} \cdot \frac{q_{b}l_{b}^{2}}{24} \left(1 + F_{ha}\right) - \frac{l_{c'}}{N_{a}} \cdot \frac{q_{c}l_{c'}}{24} \cdot F_{ha} \\ X_{b} &= -\frac{l_{a'}}{N_{b}} \cdot \frac{q_{a}l_{a'}}{24} \cdot F_{ab} - \frac{l_{b'}}{N_{b}} \cdot \frac{q_{b}l_{b}^{2}}{24} \left(1 + F_{ab}\right) - \frac{l_{c'}}{q_{c}} \cdot \frac{q_{c}l_{c}^{2}}{24} \end{split}$	$\begin{aligned} X_{a} &= -\frac{l_{a'}}{N_{a}} \cdot \frac{p_{a} l_{a}^{2}}{360} r_{2} - \frac{l_{b'}}{N_{a}} \cdot \frac{p_{b} l_{b}^{2}}{360} (r_{1} + F_{ba} \cdot r_{2}) - \frac{l_{s'}}{N_{a}} \cdot \frac{p_{b} l_{c}^{2}}{360} F_{ba} \cdot r_{1} \\ X_{b} &= -\frac{l_{a'}}{N_{b}} \cdot \frac{p_{a} l_{a}^{2}}{360} F_{ab} \cdot r_{2} - \frac{l_{b'}}{N_{b}} \cdot \frac{p_{b} l_{b}^{2}}{360} (F_{ab} \cdot r_{1} + r_{2}) - \frac{l_{c'}}{N_{b}} \cdot \frac{p_{c} l_{c}^{2}}{360} \cdot r_{1} \end{aligned}$	$X_{a} = -\frac{l_{a'}^{a'}}{N_{a}} \frac{p_{a}l_{a}^{a}}{45} - \frac{l_{b'}}{N_{a}} \cdot \frac{p_{b}l_{b}^{a}}{360} (7 + 8 F_{b,a}) - \frac{l_{c'}}{N_{a}} \cdot \frac{p_{c}l_{c}^{a}}{360} \cdot 7 F_{b,a}$ $X_{b} = -\frac{l_{a'}^{a'}}{N_{b}} \cdot \frac{p_{a}l_{a}^{a}}{45} \cdot F_{a,b} - \frac{l_{b'}^{b'}}{N_{b}} \cdot \frac{p_{b}l_{b}^{a}}{360} (8 + 7 F_{a,b}) - \frac{l_{c'}^{b'}}{N_{b}} \cdot \frac{p_{c}l_{c}^{a}}{360} \cdot 7$
Tabelle In dieser Tabelle bedeuten:		Belastungsfall	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$\qquad \qquad $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\qquad \qquad $	$\frac{1}{2} - \frac{1}{2} - \frac{1}$
	- /1	Lfd. Nr.		21	**	4	ر ت	9
	Pii	riet, St	atik, 11.2.				5	

 $\mathbf{65}$
mmenstellung.	Unbekannte	$X_{a} = -\frac{l_{a'}}{N_{a}} \cdot \frac{5}{192} \frac{p_{a}l_{a}^{a}}{192} - \frac{l_{b'}}{N_{a}} \cdot \frac{5}{192} \frac{p_{b}l_{b}^{a}}{192} (1 + F_{ba})$ $-\frac{l_{c'}}{N_{a}} \cdot \frac{5}{192} \frac{p_{c}l_{c}^{a}}{192} \cdot F_{ba}$ $X_{b} = -\frac{l_{a'}}{N_{b}} \cdot \frac{5}{192} \cdot F_{ab} - \frac{l_{b'}}{N_{b}} \cdot \frac{5}{192} \frac{p_{b}l_{a}^{b}}{192} (1 + F_{ab})$	$egin{array}{lll} X_{a} &+ rac{l_{a}'}{N_{a}} \cdot rac{M_{c}}{6} + rac{l_{o}'}{N_{a}} \cdot rac{M_{d}}{6} \cdot F_{ba} \ X_{b} =+ rac{l_{a}'}{N_{b}} \cdot rac{M_{c}}{6} \cdot F_{ab} + rac{M_{d}}{6} \cdot rac{l_{o}'}{N_{b}} \end{array}$	$X_a = rac{1}{N_a} arepsilon rac{At}{h} E J rac{2 l_a' + l_b'}{4} onumber X_b = rac{1}{N_b} arepsilon rac{At}{h} E J rac{2 l_a' + l_b'}{4}$	$X_{a} = \frac{EJ'}{N_{a}} \left[\frac{\delta_{c} - \delta_{a}}{l_{a}} - \frac{\delta_{a} - \delta_{b}}{l_{c}} \left(1 - F_{b,c} \right) - \frac{\delta_{b} - \delta_{d}}{l_{c}} \cdot F_{b,c} \right]$ $X_{b} = \frac{EJ'}{N_{b}} \left[\frac{\delta_{c} - \delta_{a}}{l_{a}} \cdot F_{a,b} + \frac{\delta_{a} - \delta_{b}}{l_{c}} \left(1 - F_{a,b} \right) - \frac{\delta_{b} - \delta_{d}}{l_{c}} \right]$
Fortsetzung: Tabelle Xa. Zusa	Belastungsfall	C - La - Lo	$M_{c} \xrightarrow{M_{c}} I_{a} \xrightarrow{M_{d}} I_{b} \xrightarrow{M_{d}} I_{b} \xrightarrow{M_{d}} I_{c} \xrightarrow{M_{d}} I_{c$	Temperaturänderungen $(t_0-t_u)=At$	Widerlagerverschiebungen
	Lauf. Nr.	۲	œ	6	10

66

Vollwandige Systeme mit geradlinigen Achsen.

Wie die Gleichungen (65b), (66a), (67a), (68a) erkennen lassen, ergeben sich die Werte bei gleichen Feldweiten und konstantem Trägheitsmoment in besonders einfachen Formen, die zudem den Vorzug haben, daß man aus ihnen sofort die Größtmomente entnehmen kann.

In den folgenden Tabellen Xb und Xc sollen für einige besonders häufig vorkommende Belastungsfälle des kontinuierlichen Trägers mit gleichen Feldweiten die wichtigsten Momente und Querkräfte angegeben werden.

Mit Hilfe der zweiten Rubrik der Tabelle X b lassen sich die größten positiven und negativen Werte leicht angeben; in Tabelle X c sind diese Maxima und Minima mit der Belastung, bei welcher sie auftreten, zusammengestellt. — Die dritte Rubrik der Tabelle X b liefert die Werte für gleiche Belastung aller Felder.

Tabelle Xb.

Stützenmomente (X_a) , Feldmomente $(M_1 \text{ und } M_2)$, Querkräfte (Q_e, Q_a, Q_a') .

S	Belastungen der einzelnen Öffnungen verschieden. $(g_a, g_b, g_c); (P_a, P_b, P_c)$	Belastungen in allen Öffnungen gleich. (g) ; (P) .
	$C \stackrel{fa}{\leftarrow} 04l \stackrel{f}{\leftarrow} 1 \qquad A \stackrel{fa}{\leftarrow} 05l \stackrel{f}{\rightarrow} 2 \qquad B \qquad D$	
$egin{array}{c} X_a \ M_1 \ M_2 \end{array}$	$\begin{array}{c} (-0.067g_a-0.050g_b+0.017g_c)l^2 \\ (0.093g_{\bullet}-0.020g_b+0.007g_c)l^2 \\ (-0.025g_a+0.075g_b-0.025g_c)l^2 \end{array}$	$-\begin{array}{c} - 0.1 \ g l^2 \\ 0.08 \ g l^2 \\ 0.025 \ g l^2 \end{array}$
$egin{aligned} Q_c & \ Q_a & \ Q_a' & \end{aligned}$	$\begin{array}{c} (0,433g_a-0,05g_b+0,017g_c)l\\ (-0,567g_a-0,05g_b+0,017g_c)l\\ (0,083g_a+0,5g_b-0,083g_c)l\end{array}$	$- 0,4 gl \\ - 0,6 gl \\ 0,5 gl$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$egin{array}{c} X_a \ M_1 \ M_2 \ \end{array}$	$\begin{array}{c} (-0.1 \ P_a - 0.075 \ P_b + 0.025 \ P_c) \ l \\ (0.2 \ P_a - 0.0375 \ P_b + 0.0125 \ P_c) \ l \\ (-0.0375 \ P_a + 0.175 \ P_b - 0.0375 \ P_c) \ l \end{array}$	0,15 Pl 0,175 Pl 0,1 Pl
$egin{array}{c} Q_c \ Q_a \ Q_a' \end{array}$	$\begin{array}{c} 0.4 \ P_a = 0.075 \ P_b + 0.025 \ P_c \\ - \ 0.6 \ P_a = 0.075 \ P_b + 0.025 \ P_c \\ 0.125 \ P_a + 0.5 \ P_b - 0.125 \ P_c \end{array}$	$0,35 P \\ - 0,65 P \\ + 0,5 P$
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	

5*****

s	Belastungen der einzelnen Öffnungen verschieden. $(g_a, g_b, g_c); (P_a, P_b, P_c).$	Belastungen in allen Öffnungen gleich. (g) ; (P) .
	$\begin{array}{c} P_{a} \qquad P_{b} \qquad P_{c} \\ \downarrow $	
$egin{array}{c} X_a \ M_1 \ M_2 \ Q_c \ Q_a \ Q_a' \end{array}$	$\begin{array}{c} (-0,\!178 \ P_a - 0,\!133 \ P_b + 0,\!044 \ P_c) \ l \\ (0,\!274 \ P_a - 0,\!044 \ P_b + 0,\!015 \ P_c) \ l \\ (-0,\!067 \ P_a + 0,\!2 \ P_b - 0,\!067 \ P_c) \ l \\ (-0,\!822 \ P_a - 0,\!133 \ P_b + 0,\!044 \ P_c \\ -1,\!178 \ P_a - 0,\!133 \ P_b + 0,\!044 \ P_c \\ 0,\!067 \ P_a + 1,\!0 \ P_b - 0,\!067 \ P_c \end{array}$	$\begin{array}{c} - 0,267 \ Pl \\ 0,245 \ Pl \\ 0,067 \ Pl \\ 0,733 \ P \\ - 1,267 \ P \\ 1,0 \ P \end{array}$
$\begin{array}{c} X_a \\ M_1 \\ M_2 \\ Q_c \\ Q_a \\ Q_a' \end{array}$	$\begin{array}{c} (-0.25 \ P_a - 0.1875 \ P_b + 0.0625 \ P_c) \ l \\ (0.375 \ P_a - 0.09375 \ P_b + 0.03125 \ P_c) \ l \\ (-0.09375 \ P_a + 0.3125 \ P_b - 0.09375 \ P_c) \ l \\ (-0.09375 \ P_a - 0.1875 \ P_b + 0.0625 \ P_c \\ -1.75 \ P_a - 0.1875 \ P_b + 0.0625 \ P_c \\ 0.3125 \ P_a + 1.5 \ P_b - 0.3125 \ P_c \end{array}$	$\begin{array}{c} - \ 0,375 \ Pl \\ - \ 0,3125 \ Pl \\ 0,125 \ Pl \\ 1,125 \ P \\ - \ 1,875 \ P \\ 1,5 \ P \end{array}$

Tabelle Xb. (Fortsetzung.)

Τa	bel	lle	Xc.

s	Größtwa a) positive Größtwert	erte bei verä e (Max.)	änderlicher Belastung: b) negative Größtwerte (Min.)				
X _a		+0,017		— 0,117	$q l^2$		
<i>M</i> ₁		+ 0,1		0,02	$q l^2$		
M_{2}		+ 0,075	<u> </u>	— 0,05	$q l^2$		
Qe		+ 0,45		0,05	ql		
$rac{Q_a}{Q_a'}$	<i>q</i>	+0,017 +0,583	A A A A	- 0,617 - 0,083	$rac{ql}{ql}$		
Xa		+ 0,025		— 0,175	Pl		
M_1		+ 0,2125		- 0,0375	Ρl		
M_2		+0,175		- 0,075	Pl		
Qe		+0,425		— 0,075	P		

$egin{array}{c} Q_a \ Q_a' \end{array}$		+ 0,025 + 0,625		-0,675 -0,125	$\frac{P}{P}$
X _a		+ 0,044		0,311	Pl
Mí		+0,289		— 0,044	Pl
M_{2}		+ 0,2		— 0,133	$_{Pl}$
Q_c		+ 0,866		— 0,133	P
Qa Qa'		+0,044 +1,067			$\frac{P}{P}$
X _a		+ 0,0625	adda adala	— 0,4375	Pl
<i>M</i> ₁	alala alala	+0,40625		— 0,09375	Pl
<i>M</i> ₂		+ 0,3125		— 0,1875	Pl
Q _c	Aldd Aldred	+ 1,3125	add a data	- 0,1875	Ρ
Q_a Q_a'	alala alala	+ 0,0625 + 1,8125	and a star		P P

Anmerkung: Die Einzellasten in den vorstehenden Gruppen sind in den Mitten bzw. in den Dritteln und in den Viertelpunkten der Öffnungen angenommen.

b. Bewegliche Belastung.

a) Einflußlinien.

1. Die Gleichungen (65) unter a, a) geben die Gleichungen für die Einflußlinien der Unbekannten X, wenn man P=1setzt und ξ_a , ξ_b und ξ_c veränderlich annimmt. Die Gleichungen für die Einflußlinien der Unbekannten lauten dann:

Fig. 66.

69

Vollwandige Systeme mit geradlinigen Achsen.

$$X_{a} = \begin{cases} -\frac{l_{a}'}{N_{a}} \cdot \frac{l_{a}}{6} \cdot c_{2}, & (\text{Feld } l_{a}), \\ -\frac{l_{b}'}{N_{a}} \cdot \frac{l_{b}}{6} (c_{1} + F_{b a} \cdot c_{2}), & (\text{Feld } l_{b}), \\ -\frac{l_{c}'}{N_{a}} \cdot \frac{l_{c}}{6} \cdot F_{b a} \cdot c_{1}, & (\text{Feld } l_{c}). \end{cases}$$

$$X_{b} = \begin{cases} -\frac{l_{a}'}{N_{b}} \cdot \frac{l_{a}}{6} \cdot F_{a b} \cdot c_{2}, & (\text{Feld } l_{a}), \\ -\frac{l_{b}'}{N_{b}} \cdot \frac{l_{b}}{6} \cdot (c_{2} + F_{a b} \cdot c_{1}), & (\text{Feld } l_{b}), \\ -\frac{l_{c}'}{N_{b}} \cdot \frac{l_{c}}{6} \cdot c_{1}. & (\text{Feld } l_{c}). \end{cases}$$
(76)

In Fig. 66 ist die X_a -Linie dargestellt.

Wollen wir die Abstände a, b und c der größten Ordinaten ermitteln, so differenzieren wir die Gleichungen für die einzelnen Kurventeile nach x und setzen die Differentialquotienten gleich 0. Man findet dann:

$$a = l_{a} \left(1 - \sqrt{\frac{1}{3}}\right), b = l_{b} \left[-\frac{F_{ba}}{1 - F_{ba}} + \sqrt{\frac{1 - F_{ba}^{3}}{3(1 - F_{ba})^{3}}} \right] = l_{b} \frac{-F_{ba} + \sqrt{\frac{1}{3}(1 + F_{ba} + F_{ba})^{3}}}{1 - F_{ba}} \right]$$
 (77)
$$c = l_{c} \sqrt{\frac{1}{3}}.$$

2. Die Einflußlinie der Querkraft Qc ergibt sich nach den Gleichungen:

$$Q_{c} = \begin{cases} \frac{\xi_{a}}{l_{a}} + \frac{X_{a}}{l_{a}} = \frac{1}{l_{a}} (\xi_{a} + X_{a}) & (\text{Feld } l_{a}) \\ \frac{1}{l_{a}} \cdot X_{a} & (\text{Feld } l_{b} \text{ und } l_{c}) \end{cases}$$
(78)

Die Einflußlinie wird aufgetragen (Fig. 67), indem man, entsprechend

 $\mathbf{70}$

dem Klammerwert in Gleichung (78), bei $C(\xi_a = l_a)$ den Wert $CE = l_a$ abträgt. Verbindet man E mit A, so sind durch diese Gerade $(Q_0 - Linie)$ die Werte ξ_a gegeben. Trägt man dann an die Geraden EAund ABD die Einflußlinie für X_a an, so erhält man die Q_c -Linie. Da im Feld l_a die X_a -Linie negativ ist, so subtrahiert sich diese dort von der Q_0 -Linie EA. In Feld l_b und l_c ist die Q_c -Linie proportional der X_a -Linie. — Die so gefundene Einflußlinie hat den Multiplikator $\mu = \frac{1}{l_a}$ (Fig. 67).

Um in gleicher Weise die Q_a -Linie für Feld l_a nach der Gleichung

$$Q_{a} = Q_{ao} + \frac{X_{a}}{l_{a}} = \left(1 - \frac{\xi_{a}}{l_{a}}\right) + \frac{X_{a}}{l_{a}} = \frac{1}{l_{a}}\left[\left(l_{a} - \xi_{a}\right) + X_{a}\right]$$

zu finden, trägt man zunächst die mit l_a multiplizierte Q_0 -Linie CFmit $AF = -l_a$ auf; da hier sowohl Q_0 wie X_a im Felde l_a negativ sind, so addieren sich die Einflußlinien (Fig. 67). Es verläuft also die Kurve CF parallel der Kurve EA. In den Feldern l_b und l_c ist die Q_a -Linie identisch mit der Q_c -Linie. — Die Querkraftlinie für einen Punkt m (Q_m -Linie) im Feld l_a ist identisch mit der Q_c -Linie, solange die Last 1 rechts von m steht; sobald sie links von m steht, ist die Q_m -Linie gleich der Q_a -Linie. Zieht man also in Fig. 68 die Gerade GH durch m, so ist die Begrenzungskurve der schraffierten Fläche die Q_m -Linie.

In gleicher Weise sind die Einflußlinien für die Querkräfte in Feld l_c zu finden.

Im Mittelfeld ergibt sich eine Querkraftlinie nach der Gleichung

$$Q = Q_0 - \frac{X_a - X_b}{l_b}.$$

Diese Einflußlinie ist in gleicher Weise zu zeichnen wie die

Fig. 68. Querkraftlinien für Feld l_b .

in den Endfeldern. In Fig. 68 sind die Geraden AE und BF die mit l_b multiplizierten Q'_{a0} - und Q'_{b0} -Linien nach den Gleichungen:

$$\begin{aligned} Q'_{a0} &= \frac{\xi_b}{l_b}, \\ Q'_{b0} &= -\left(1 - \frac{\xi_b}{l_b}\right). \end{aligned}$$

Die Kurven CA, AGE bzw. FHB stellen die Einflüsse der Differenz $X_a - X_b$ dar.

Für eine beliebige Querkraft Q_m im Abstand x_b vom rechten Auflager *B* ergibt sich die Einflußlinie wieder durch die Gerade *GH* durch den Punkt *m*. (In Fig. 68 schraffiert.)

3. Die Einflußlinien der Momente ergeben sich wie folgt: Für die Momentenlinie eines Punktes im Feld l_a im Abstand x_a vom rechten Auflager A lautet die Gleichung:

$$M = M_0 + \left(1 - \frac{x_a}{l_a}\right) X_a.$$

Darin ist für eine Last 1 im Felde l_a im Abstande ξ_a vom Auflager A:

$$X_a \!=\! -rac{l_a l_a'}{6\,N_a} \cdot c_2 \!=\! -rac{l_a l_a'}{6\,N_a} \cdot rac{\xi_a}{l_a} \Big(1 \!-\! rac{\xi_a}{l_a}\Big) \Big(2 \!-\! rac{\xi_a}{l_a}\Big),
onumber \ M_0 \!=\! \left\{ egin{array}{c} rac{x_a}{l_a} \Big(1 \!-\! rac{\xi_a}{l_a}\Big) l_a, ext{ wenn } \xi_a \!>\! x_a,
onumber \ \Big(1 \!-\! rac{x_a}{l_a}\Big) rac{\xi_a}{l_a} \cdot l_a, ext{ wenn } \xi_a \!<\! x_a. \end{array}
ight.$$

Damit ist also

$$M = \begin{cases} \left(1 - \frac{\xi_a}{l_a}\right) \frac{x_a}{l_a} \cdot l_a \\ \frac{\xi_a}{l_a} \left(1 - \frac{x_a}{l_a}\right) \cdot l_a \end{cases} - \left(1 - \frac{x_a}{l_a}\right) \frac{l_a l_a'}{6 N_a} \frac{\xi_a}{l_a} \left(1 - \frac{\xi_a}{l_a}\right) \left(2 - \frac{\xi_a}{l_a}\right)$$
(79a)

Für eine Last 1 im Felde l_b oder l_c ist $M_0 = 0$, also

$$M = \left(1 - \frac{x_a}{l_a}\right) \cdot X_a \cdot \ldots \cdot \ldots \cdot (79b)$$

Der Verlauf dieser Einflußlinien ist in Fig. 69a-c dargestellt.

Die Belastungsscheiden, d. h. die Nullpunkte der Einflußlinien, findet man, indem man obige Gleichungen (79) gleich 0 setzt. Die erste der Gleichungen (79a) ergibt dann:

Fig. 69a—c. Momentenlinien für Feld l_a .

Aus dieser Gleichung kann durch Einsetzen des jeweiligen gegebenen Wertes von $\frac{x_a}{l_a}$ die im Feld l_a liegende Belastungsscheide der Momentenlinie $\left(\text{Wert} \ \frac{z_a}{l_a}\right)$ gefunden worden. Je nach der Größe von x_a erhält man für $\frac{z_a}{l_a}$ Werte, die größer oder kleiner sind als 1. Die Werte größer als 1 kommen nicht in Betracht; der Grenzwert ist $\frac{z_a}{l_a} = 1$. Dafür erhält man die Beziehung:

$$\frac{\frac{\lambda_{a}}{l_{a}}}{1-\frac{x_{a}}{l_{a}}} = \frac{l_{a}'}{6N_{a}}; \qquad \frac{x_{a}}{l_{a}} = \frac{l_{a}'}{l_{a}'+6N_{a}};$$

(Diese Beziehung findet man aus Gleichung (80), wenn man den Grenzwert $\frac{\xi_a}{l_a} = 1$ einsetzt.) Den aus dieser Beziehung sich ergebenden Wert von x_a bezeichnen wir mit a und schreiben:

$$\frac{\overline{l_a}}{1-\frac{a}{l_a}} = \frac{l_a'}{6N_a}, \quad \text{oder} \quad \frac{a}{l_a} = \frac{l_a'}{6N_a+l_a'} \dots \dots \dots (81)$$

Den durch das Verhältnis $\frac{a}{l_a}$ bezeichneten Punkt nennen wir T_a (vgl. Fig. 69a—c). Nur für Punkte zwischen T_a und $A\left(\frac{x_a}{l_a} < \frac{a}{l_a}\right)$ hat die Momentenlinie eine Belastungsscheide innerhalb des Feldes l_a (Fig. 69c), deren Abstand ξ_a von A aus Gleichung (80) ermittelt werden kann. Für $\frac{x_a}{l_a} = \frac{a}{l_a}$ liegt die Belastungsscheide in $C\left(\frac{\xi_a}{l_a}=1\right)$; für $\frac{x_a}{l_a} > \frac{a}{l_a}$ wird $\frac{\xi_a}{l_a} > 1$; für diese beiden Fälle $\left(\frac{x_a}{l_a} > \frac{a}{l_a}\right)$ erhält man keine Belastungsscheide der Momentenlinie im Felde l_a . Anmerkung: Setzt man die zweite der Gleichungen (79a) gleich Null,

Anmerkung: Setzt man die zweite der Gleichungen (79a) gleich Null, d. h. nimmt man eine Belastungsscheide innerhalb der Strecke x_a an und dort eine Last 1, so erhält man:

$$0 = \frac{\xi_a}{l_a} \left(1 - \frac{x_a}{l_a} \right) l_a - \left(1 - \frac{x_a}{l_a} \right) \frac{l_a l_a'}{6 N_a} \frac{\xi_a}{l_a} \left(1 - \frac{\xi_a}{l_a} \right) \left(2 - \frac{\xi_a}{l_a} \right)$$

Diese Gleichung kann unter folgenden Bedingungen erfüllt sein:

1)
$$\frac{\xi_a}{l_a} = 0$$
,
2) $1 - \frac{x_a}{l_a} = 0$; $\frac{x_a}{l_a} = 1$;
3) $1 - \frac{l_a}{6N_a} \left(1 - \frac{\xi_a}{l_a}\right) \left(2 - \frac{\xi_a}{l_a}\right) = 0$.

Die beiden ersten Bedingungen kommen hier nicht in Betracht. Die Bedingung 3 stellt für die hier in Frage kommenden Werte von $\frac{\xi_a}{l_a}$ zwischen 0 und 1 $\left(0 < \frac{\xi_a}{l_a} < 1\right)$ eine Ungleichung dar. Es ist nämlich gemäß Gleichung (60) $\frac{6}{l_a'} \cdot N_a = \frac{24 (l_a' + l_b') (l_b' + l_c') - 6 \cdot l_b'^2}{12 l_a' (l_b' + l_c')} = 2 + \frac{l_b'}{l_a'} \left(2 - \frac{l_b'}{2 (l_b' + l_c')}\right).$

Dieser Wert ist immer größer als zwei, also $\frac{l_a'}{6 \cdot N_a} < \frac{1}{2}$. Der Ausdruck $\left(1 - \frac{\xi_a}{l_a}\right) \left(2 - \frac{\xi_a}{l_a}\right)$ ist aber für $0 < \frac{\xi_a}{l_a} < 1$ immer kleiner als zwei, das Produkt dieser beiden Werte ist also stets $< \left(\frac{1}{2} \cdot 2 = 1\right)$; die obige Gleichung 3 kann also für die möglichen Werte von $\frac{\xi_a}{l_a}$ nicht erfüllt sein; es tritt also keine Belastungsscheide der Momentenlinie zwischen dem betrachteten Punkte und dem Auflager A auf.

Die Momentenlinie für einen Punkt im Feld l_c (Fig. 70 a—c) ergibt sich in gleicher Weise wie für Feld l_a . Es ist entsprechend für einen Punkt im Abstand x_c vom Endauflager D:

$$M = M_0 + X_b \cdot \frac{x_c}{l_c}.$$

Steht die Last 1 im Feld l_a oder l_b , so ist:

Steht eine Last 1 im Feld l_c im Abstand ξ_c vom rechten Auflager, so ist:

$$\begin{array}{l} \text{für } \xi_c > x_c \colon M = \left(1 - \frac{\xi_c}{l_c}\right) \frac{x_c}{l_c} \cdot l_c + X_b \frac{x_c}{l_c}, \\ \text{,} \quad \xi_c < x_c \colon M = \frac{\xi_c}{l_c} \left(1 - \frac{x_c}{l_c}\right) l_c + X_b \frac{x_c}{l_c}. \end{array} \right\} \quad . \quad . \quad (82 b)$$

Fig. 70 a—c. Momentenlinien für Feld l_c .

Die Belastungsscheide im Feld l_c ergibt sich, wenn man die zweite der Gleichungen (82 b) gleich Null setzt, woraus sich ergibt:

$$\frac{1-\frac{x_c}{l_c}}{\frac{x_c}{l_c}} = \frac{-\frac{X_b}{l_c}}{\frac{\xi_c}{l_c}} = \frac{l_c'}{6 N_b} \left[1-\left(\frac{\xi_c}{l_c}\right)^2\right].$$

Die Belastungsscheide fällt mit dem Endpunkt D zusammen $\left(\frac{\varsigma_c}{l_c}=0\right)$ für einen Punkt T_c im Abstand c vom Endauflager, der gegeben ist durch die Gleichung:

 $\frac{1-\frac{c}{l_c}}{\frac{c}{l_c}} = \frac{l_c'}{6N_b}$ $\frac{c}{l_c} = \frac{6N_b}{l_c'+6N_b}.$ (63)

oder

Damit ist der Verlauf der Momentenlinien für die Punkte des Endfeldes gegeben (Fig. 70a-c).

Die Momentenlinie für einen Punkt im Feld l_b (Fig. 71 a—e) im Abstand x_b vom Auflagerpunkt *B* ergibt sich nach der Gleichung:

$$M = M_0 + X_a \frac{x_b}{l_b} + X_b \cdot \left(1 - \frac{x_b}{l_b}\right).$$

Darin ist, wenn die Last 1 im Feld l_a steht:

Fig. 71a-e. Momentenlinien für Feld l_b .

$$\begin{split} & \boldsymbol{M_0} = \boldsymbol{0} \,, \\ & \boldsymbol{X_a} = -\frac{l_a \, l_a'}{6 \, N_a} \cdot \boldsymbol{c_2} \,, \\ & \boldsymbol{X_b} = -\frac{l_a l_a'}{6 \, N_b} \cdot \boldsymbol{F_{ab}} \cdot \boldsymbol{c_2} = -\frac{l_a \, l_a'}{6 \, N_a} \cdot \boldsymbol{c_2} \cdot \frac{N_a}{N_b} \cdot \boldsymbol{F_{ab}} = \boldsymbol{F_{ba}} \cdot \boldsymbol{X_a} \end{split}$$

[Wie aus den Gleichungen (60) leicht zu ersehen ist, ist

$$rac{N_a}{N_b} = rac{F_{b\,a}}{F_{a\,b}};$$
 $rac{N_a}{N_b} \cdot F_{a\,b} = F_{b\,a};$

also

womit sich obiger Wert für X_b ergibt. Dies ist übrigens auch ohne weiteres zu ersehen, weil bei ausschließlicher Belastung der

Seitenöffnungen X_b nur von X_a beeinflußt werden kann und umgekehrt.

Man erhält also für M, wenn die Last 1 im Feld l_a steht:

$$M = X_{a} \left[\frac{X_{b}}{l_{b}} (1 - F_{b a}) + F_{b a} \right] (84a)$$

Dieser Wert verschwindet, wenn $\frac{x_b}{l_b} = -\frac{F_{b\,a}}{1-F_{b\,a}}$ ist; d. h. auf den durch dieses Abstandsverhältnis gegebenen Punkt des Feldes l_b ist eine Belastung des Feldes l_a ohne Einfluß (Fig. 71b). Wir bezeichnen diesen Punkt mit $T_{b\,a}$, den Abstand dieses Punktes vor. B mit b'; es ist also der Punkt $T_{b\,a}$ gegeben durch die Gleichung:

$$\frac{\frac{b'}{l_b}}{1-\frac{b'}{l_b}} = -F_{ba},$$

$$\frac{b'}{l_b} = -\frac{F_{ba}}{1-F_{ba}}.$$
(85a)

Wird $\frac{x_b}{l_b} > \frac{b'}{l_b}$, so wird der Klammerwert in der Gleichung (84a) positiv: da X_a negativ ist, so wird M gleichfalls negativ (Fig. 71 c, d, e). Umgekehrt wird für $\frac{x_b}{l_b} < \frac{b'}{l_b}$ der Einfluß der Belastung des Feldes l_a positiv (Fig. 71 a).

Für eine Last 1 im Felde l_c findet man in gleicher Weise:

$$M = X_b \left[1 - \frac{x_b}{l_b} (1 - F_{ab}) \right].$$
 (84b)

Dieser Wert verschwindet, wenn

$$\frac{x_b}{l_b} = \frac{1}{1 - F_{ab}} = \frac{b}{l_b}$$

ist.

Den dadurch bestimmten Punkt nennen wir T_{ab} ; auf das Moment dieses Punktes T_{ab} hat eine Belastung des Feldes l_c keinen Einfluß (Fig. 71d). Er ist gegeben durch die Gleichung:

$$\frac{1-\frac{b}{l_b}}{\frac{b}{l_b}} = -F_{ab},$$

$$\frac{b}{l_b} = \frac{1}{1-F_{ab}}.$$
(85b)

oder

Wird $\frac{x_b}{l_b} < \frac{b}{l_b}$, so wird der Einfluß einer Belastung des Feldes l_c auf das

Moment negativ (Fig. 71 a, b, c); wird $\frac{x_b}{l_b} > \frac{b}{l_b}$, so ist der Einfluß positiv. (Fig. 71e.)

Es ist zu beachten, daß das Vorzeichen der Momente im Mittelfeld bei Belastung der Außenfelder nur von der Lage des betrachteten Punktes im Mittelfeld (d. i. von der Größe x_b) abhängt, also von der Laststellung in den Außenfeldern unabhängig ist.

NB. Der Punkt T_{ab} ist der Nullpunkt der $X_{b,1}$ -Fläche, also ohne weiteres

durch den Festwert $F_{ab} = -\frac{[ab]}{[aa]}$ gegeben (Fig. 57). Wir bezeichnen diesen Punkt als "Festpunkt". Entsprechendes gilt für den Punkt T_{ba} und die Belastung $X_{a,1} = 1$ am 1-fach statisch unbestimmten Hauptsystem.

Steht eine Last 1 im Mittelfeld im Abstande ξ_b vom Auflagerpunkt *B*, so wird:

$$\begin{cases} \text{für } \xi_b > x_b : M = \left(1 - \frac{\xi_b}{l_b}\right) \frac{x_b}{l_b} \cdot l_b + X_a \frac{x_b}{l_b} + X_b \left(1 - \frac{x_b}{l_b}\right), \\ \text{für } \xi_b < x_b : M = \frac{\xi_b}{l_b} \left(1 - \frac{x_b}{l_b}\right) l_b + X_a \cdot \frac{x_b}{l_b} + X_b \left(1 - \frac{x_b}{l_b}\right). \end{cases}$$

$$\end{cases}$$

$$(84c)$$

Die erste dieser Gleichungen wird gleich Null, d. h. die Last 1 steht in der Belastungsscheide, wenn die Beziehung besteht:

$$\frac{\frac{x_b}{l_b}}{1-\frac{x_b}{l_b}} = \frac{-\frac{X_b}{l_b}}{1-\frac{\xi_b}{l_b}+\frac{X_a}{l_b}} \\
\frac{x_b}{l_b} = \frac{-\frac{X_b}{l_b}}{1-\frac{\xi_b}{l_b}+\frac{X_a-X_b}{l_b}} \cdot$$
(85c)

oder

Setzt man in diese Gleichungen die Werte X_a und X_b ein, nach Gleichung (65), nämlich:

$$\begin{aligned} X_{a} &= -\frac{l_{b} l_{b}'}{6 N_{a}} (c_{1} + F_{ba} \cdot c_{2}) = -\frac{l_{b} l_{b}'}{6 N_{a}} \cdot \frac{\xi_{b}}{l_{b}} \left(1 - \frac{\xi_{b}}{l_{b}}\right) \left[1 + \frac{\xi_{b}}{l_{b}} + F_{ba} \left(2 - \frac{\xi_{b}}{l_{b}}\right)\right], \\ X_{b} &= -\frac{l_{b} l_{b}'}{6 N_{b}} (c_{2} + F_{ab} \cdot c_{1}) = -\frac{l_{b} l_{b}'}{6 N_{b}} \cdot \frac{\xi_{b}}{l_{b}} \left(1 - \frac{\xi_{b}}{l_{b}}\right) \left[2 - \frac{\xi_{b}}{l_{b}} + F_{ab} \left(1 + \frac{\xi_{b}}{l_{b}}\right)\right], \end{aligned}$$
so erhält man:

so erhält man:

$$\frac{\frac{x_b}{l_b}}{1-\frac{x_b}{l_b}} = \frac{\frac{l_b'}{6N_b} \cdot \frac{\xi_b}{l_b} \left[2 - \frac{\xi_b}{l_b} + F_{ab} \left(1 + \frac{\xi_b}{l_b} \right) \right]}{1 - \frac{l_b'}{6N_a} \cdot \frac{\xi_b}{l_b} \left[1 + \frac{\xi_b}{l_b} + F_{ba} \left(2 - \frac{\xi_b}{l_b} \right) \right]}$$

Aus dieser Gleichung läßt sich für das jeweilige $\frac{x_b}{l_b}$ der Abstand ξ_b der Belastungsscheide ermitteln. Der Grenzwert für diesen Abstand ξ_b ist l_b , d. h. $\frac{\xi_b}{l_b} = 1$; für diesen Wert findet man aus obiger Gleichung die Beziehung:

$$\frac{\frac{x_b}{l_b}}{1-\frac{x_b}{l_b}} = \frac{\frac{l_{b'}}{6N_b}(1+2F_{ab})}{1-\frac{l_{b'}}{6N_a}(2+F_{ba})}.$$

Setzt man in diese Gleichung die Werte für F_{ba} , F_{ab} , N_a und N_b nach Gleichung (60) ein, so findet man:

$$\frac{\frac{x_b}{l_b}}{1-\frac{x_b}{l_b}} = \frac{l_b'}{2(l_b'+l_c')} = -F_{ba} = \frac{\frac{b'}{l_b}}{1-\frac{b'}{l_b}} \dots \dots (85a)$$

Das ist dieselbe Gleichung, die schon vorhin entwickelt wurde; sie führt auf den Punkt T_{ba} ; für alle Punkte zwischen T_{ba} und $B\left(\frac{x_b}{l_b} < \frac{b'}{l_b}\right)$ weist die Momentenlinie eine Belastungsscheide im Feld l_b auf in einem Abstande $\frac{\xi_b}{l_b} > \frac{x_b}{l_b}$ von B (Fig. 71a); für den Punkt $T_{b\,a}$ selbst $(x_b = b')$ fällt diese mit A zusammen $\left(\frac{\xi_b}{l_b}=1\right)$ (Fig. 71b).

Für die Punkte zwischen T_{ba} und $A(x_b > b')$ weist die Momentenlinie keine Belastungscheide links von diesem Punkt auf. Es kann jedoch unter Umständen eine Belastungsscheide rechts von diesem Punkte eintreten, wie die folgende Ausführung zeigt.

Setzt man nämlich die zweite der Gleichungen (84 c) $\left(\text{für} \frac{\xi_b}{l_b} < \frac{x_b}{l_b} \right)$ gleich Null, so findet man in gleicher Weise die Beziehung:

$$\frac{1-\frac{x_b}{l_b}}{\frac{x_b}{l_b}} = \frac{-\frac{X_a}{l_b}}{\frac{\xi_b}{l_b}+\frac{X_b}{l_b}},$$

bzw.

$$\frac{1-\frac{x_b}{l_b}}{\frac{x_b}{l_b}} = \frac{\frac{l_b'}{6N_a}\left(1-\frac{\xi_b}{l_b}\right)\left[1+\frac{\xi_b}{l_b}+F_{ba}\left(2-\frac{\xi_b}{l_b}\right)\right]}{1-\frac{l_b'}{6N_b}\left(1-\frac{\xi_b}{l_b}\right)\left[2-\frac{\xi_b}{l_b}+F_{ab}\left(1+\frac{\xi_b}{l_b}\right)\right]}$$

Hier wird der Grenzwert für ξ_{ν} , nämlich $\frac{\xi_{\nu}}{L} = 0$, erreicht, wenn die Beziehung besteht:

$$\frac{1-\frac{x_b}{l_b}}{\frac{x_b}{l_b}} = \frac{\frac{l_b'}{6N_a}(1+2F_{ba})}{1-\frac{l_b'}{6N_b}(2+F_{ab})} = -F_{ab} = \frac{1-\frac{b}{l_b}}{\frac{b}{l_b}} \cdot \dots \cdot (85b)$$

Dies ist die Gleichung (85b), wie auf S. 77 gefunden; es ist also $x_b = b$, Dies ist die Gleichung (85 b), wie auf S. 77 gefunden; es ist also $x_b = b$, wodurch der Punkt T_{ab} bestimmt ist. Für alle Punkte zwischen T_{ab} und A $(x_b > b)$ ergibt sich eine Belastungsscheide der Momentenlinie zwischen diesem Punkte und B ($\xi_b < x_b$, Fig. 71e). Für den Punkt T_{ab} selbst ($x_b = b$, Fig. 71 d) fällt sie mit B zusammen; für die Punkte zwischen T_{ab} und B ($x_b > b$, Fig 71 a, b, c) tritt im Felde l_b keine Belastungsscheide rechts von diesem Punkte ein. Für die Punkte zwischen T_{ab} und T_{ba} ($b' < x_b < b$, Fig. 71 c) haben die Momentenlinien überhaupt keine Belastungsscheiden im Feld l_b .

Damit ist der Verlauf der Einflußlinien der Momente klargestellt. -

β) Maximal- und Minimalmomenten- und Querkraftflächen.

Auf Grund obiger Ausführungen können wir nunmehr die Maximal- und Minimalmomenten-, bzw. Querkraftsflächen für gleichmäßig verteilte bewegliche Lasten bestimmen.

Die Punkte zwischen C und T_a erhalten die größten positiven Momente bei Vollbelastung der Felder l_a und l_c , wie Fig. 69a und 69b erkennen läßt. Die Momentenfläche für diesen Belastungszustand stellt also für die Strecke CT_a zugleich die Maximalmomentenfläche dar. Gemäß Fig. 70b und c gibt diese Belastung zugleich die Größtwerte für die Punkte zwischen T_c und D im Feld l_c , so daß die Momentenfläche auch für diese Punkte die Maximalmomentenfläche liefert. Die Stützenmomente bei dieser Belastung sind:

Tragen wir diese Größen in A und B an (s. Fig. 72, $AA' = X_a$; $BB' = X_b$) und tragen an die Verbindungslinien A'C und B'D die Parabeln mit den Pfeilhöhen $\frac{q_a l_a^2}{8}$ bzw. $\frac{q_c l_c^2}{8}$ an, so begrenzen die damit gefundenen Kurven zwischen C und E bzw. zwischen F und D mit CD die Maximalmomentenfläche. — Für die Strecke T_aA ist nach Fig. 69c zur Ermittelung der Größtmomente das Feld l_c vollbelastet, das Feld l_a dagegen nur teilweise belastet anzunehmen. Je näher der zu untersuchende Querschnitt dem Punkte A rückt, um so geringer wird die Belastung des Feldes l_a , bis sie für den Punkt A vollständig verschwindet (siehe Fig. 66, Einflußlinie für X_a .) Für das Stützenmoment X_a erhält man also den positiven Größtwert bei Belastung des Feldes l_c . Diese Werte sind:

§ 6. Der kontinuierliche Träger auf 4 Stützen.

$$\begin{split} X_a &= -\frac{l_c' q_c l_c^{-2}}{24 N_a} \cdot F_{b \, a} \quad (\text{Vollbelastung des Feldes } l_c) \\ X_b &= -\frac{l_a' q_a l_a^{-2}}{24 N_b} \cdot F_{a \, b} \, \left(\begin{array}{ccc} & & & \\ & & & \\ \end{array} \right) \quad & \\ \end{array}$$

Tragen wir diese Größen in Fig. 72 in A und B als die Strecken AA'' und BB'' an und verbinden A'' mit E und B'' mit F, so haben wir mit den Linienzügen A'' EC und B''FD die Maximalmomentenfläche der Endfelder. Dabei liefern die Geraden A'E und B'F etwas zu große Werte, da die Verbindung, streng genommen, durch Kurven erfolgen müßte, die tangential an die Kurven CEA'und DFB' in den Punkten E und F anschließen müßten. Die Ermittelung des genauen Verlaufes der Kurve ist aber recht umständlich, so daß es sich, wegen der geringen Abweichung von der Geraden nicht lohnt, sie zu ermitteln (vgl. auch § 2, c, β).

Für die Punkte zwischen T_{ab} und T_{ba} im Mittelfeld finden wir die Momentengrößtwerte bei Vollbelastung des Mittelfeldes. Dafür finden wir die Stützenmomente:

$$\begin{split} X_{a} &= A A''' = -\frac{l_{b}' q_{b} l_{b}^{2}}{24 N_{a}} \cdot (1 + F_{ba}), \\ X_{b} &= B B''' = -\frac{l_{b}' q_{b} l_{b}^{2}}{24 N_{b}} (1 + F_{ab}), \end{split} \ \begin{bmatrix} \text{Vollbelastung} \\ \text{des Feldes } l_{b} \end{bmatrix} \end{split}$$

Tragen wir an die Gerade A'''B''' die Parabel A'''GHB''' mit der Pfeilhöhe $\frac{q_b l_b^2}{8}$ an, so stellt der Kurventeil GH die Maximalmomentenkurve für die Strecke $T_{ab}T_{ba}$ dar. — Für Punkte zwischen T_{ab} und A ergeben sich die Größtmomente bei Vollbelastung des Feldes l_c und einer Teilbelastung des Feldes l_b ; letztere wird um so geringer, je näher der betrachtete Querschnitt bei A liegt, und verschwindet für den Punkt A (wie schon vorher erwähnt). Im Punkte A ist also der Größtwert AA''. Es ist also wieder (näherungsweise) der Punkt G mit A'' zu verbinden, und entsprechend der Punkt H mit B''. Die so gefundene Kurve stellt die Maximalmomentenfläche dar. Die gesamte Maximalmomentenfläche ist in Fig. 72 dargestellt.

Um die Kleinstwerte (größten negativen Werte) der Momente zu finden, sind die Teile des Trägers als belastet anzunehmen, für welche die Einflußlinien negative Ordinaten haben. — Für die Punkte des Feldes l_a zwischen C und T_a ergeben sich die Kleinstmomente bei Vollbelastung des Mittelfeldes; es ist also CA''' bis zur Senkrechten durch T_a identisch mit der Minimalmomentenfläche (vgl. Fig. 72 und 73). [In gleicher Weise findet man für Feld l_c die Gerade DB''' bis zum Punkte F'.] Für die Punkte zwischen T_a und Akommt dazu noch eine Teilbelastung des Feldes l_a , die um so größer ist, je näher der betrachtete Querschnitt bei A liegt, bis für A selbst die Vollbelastung der Felder l_a und l_b vorhanden ist. Für Punkt B

ergibt sich bei Vollbelastung der Felder l_b und l_c der Kleinstwert. Diese beiden Kleinstwerte der Stützenmomente sind:

$$\begin{split} X_a &= -\frac{l_a' q_a l_a^{\ 2} + l_b' q_b l_b^{\ 2} (1 + F_{b \ a})}{24 \ N_a} \ \text{(Vollbelastg. d. Felder} \ l_a \text{ u. } l_b) \\ X_b &= -\frac{l_c' q_c l_c^{\ 2} + l_b' q_b l_b^{\ 2} (1 + F_{a \ b})}{24 \ N_b} \ \text{(Vollbelastg. d. Felder} \ l_b \text{ u. } l_c) \end{split}$$

Wir tragen $AA^{(4)} = X_a$ und $BB^{(4)} = X_b$ an; die Punkte E' und $A^{(4)}$ bzw. F' und $B^{(4)}$ sind wieder durch Kurven zu verbinden, die wir jedoch annäherungsweise durch die Geraden $E'A^{(4)}$ und $F'B^{(4)}$ ersetzen (Fig. 73).

Die Kleinstwerte für die Punkte zwischen T_{ab} und T_{ba} ergeben sich bei Vollbelastung der Felder l_a und l_c ; für diese Strecke ist also die Gerade A'B' (vgl. Fig. 72 und 73), also die Strecke G'H'(Fig. 73), identisch mit der Minimalmomentenfläche. Die Punkte G'und $A^{(4)}$ bzw. H' und $B^{(4)}$ sind wieder durch entsprechende Kurven zu verbinden, die wir durch die Geraden $G'A^{(4)}$ und $H'B^{(4)}$ ersetzen (Fig. 73). Damit sind auch die Minimalmomentenflächen bestimmt.

Maximal- und Minimalquerkraftflächen für gleichmäßig verteilte Lasten. Der Größtwert einer Querkraft für einen Punkt im Feld l_a im Abstande x_a vom Auflager A ergibt sich gemäß der Einflußlinie bei Vollbelastung des Feldes l_c und der Strecke x_a im Felde l_a (vgl. Fig. 67). In diesem Falle ist:

$$X_{a} = -\frac{l_{c}^{\prime} q_{c} l_{c}^{2}}{24 N_{a}} \cdot F_{b a} - \frac{l_{a}^{\prime} q_{a} l_{a}^{2}}{24 N_{a}} \cdot k_{2}.$$

Damit ergibt sich:

$$\begin{aligned} Q_{\boldsymbol{x}_{a}} &= \frac{q_{a}l_{a}}{2} \left(\frac{\boldsymbol{x}_{a}}{l_{a}}\right)^{2} + \frac{X_{a}}{l_{a}} &= \frac{q_{a}l_{a}}{2} \left(\frac{\boldsymbol{x}_{a}}{l_{a}}\right)^{2} - \frac{l_{a}' q_{a}l_{a}}{24 N_{a}} \cdot k_{2} - \frac{l_{c}' q_{a}l_{c}^{2}}{24 N_{a}l_{a}} \cdot F_{b a} \\ \text{Setzen wir:} \\ l'a l^{2} - - \end{aligned}$$

$$\begin{split} \eta_{1} &= -\frac{\frac{l_{c} q_{a} l_{c}}{24 N_{a} l_{a}} \cdot F_{b \, a}}{24 N_{a} l_{a}} \cdot F_{b \, a} \\ \eta_{2} &= -\frac{\frac{l_{a}' q_{a} l_{a}}{24 \cdot N_{a}} \cdot k_{2}, \\ \eta_{3} &= \frac{q_{a} l_{a}}{2} \left(\frac{x_{a}}{l_{a}}\right)^{2}, \end{split}$$

so wird:

$$Q_{x_a} = \eta_1 + \eta_2 + \eta_3.$$

Das erste Glied dieser Gleichung (η_1) ist ein von x_a unabhängiger konstanter Wert. Dazu sind dann die beiden Werte η_2 und η_3 zu addieren, die Funktionen von x_a darstellen.

Im Feld l_c findet man in ähnlicher Weise bei Belastung des Feldes l_b und der Strecke x_c in l_c :

$$\begin{array}{l} Q_{x_c} \! = \! \frac{l_b' \dot{q}_b l_b^2}{24 N_b \cdot l_c} (1 + F_{ab}) \! + \! \frac{q_c l_c}{2} \left(\frac{x_c}{l_c} \right)^2 \! + \! \frac{l_c' q_c l_c}{24 N_b} \cdot k_1, \\ &= \! \eta_1 \! + \! \eta_2 \! + \! \eta_3. \end{array}$$

Für einen Punkt im Feld l_b im Abstande x_b von B findet man die größte Querkraft bei Belastung des Feldes l_a und der Strecke x_b (vgl. Fig. 68), und zwar ist dann:

$$Q_{x_b} = \frac{q_b l_b}{2} \left(\frac{x_b}{l_b}\right)^2 - \frac{X_a - X_b}{l_b}$$

Infolge der Belastung des Feldes l_a ist:

$$X_a - X_b = - \frac{l_a' q_a l_a^2}{24} \Big(\frac{1}{N_a} - \frac{F_{ab}}{N_b} \Big).$$

Infolge der Belastung der Strecke x_b ist:

$$X_{a} - X_{b} = \frac{l_{b}' q_{b} l_{b}^{2}}{24} \left(\frac{k_{1} + F_{ba} \cdot k_{2}}{N_{a}} - \frac{k_{2} + F_{ab} \cdot k_{1}}{N_{b}} \right).$$

Damit ergibt sich:

$$\begin{split} Q_{x_b} &= \frac{l_a' q_a l_a^2}{24 \, l_b} \left(\frac{1}{N_a} - \frac{F_{ab}}{N_b} \right) + \frac{q_b l_b}{2} \left(\frac{x_b}{l_b} \right)^2 \\ &= -\frac{l_b' q_b l_b}{24} \left(\frac{k_1 + F_{ba} \cdot k_2}{N_a} - \frac{k_2 + F_{ab} \cdot k_1}{N_b} \right) \\ &= \eta_1 + \eta_2 - \eta_3. \end{split}$$

Auch hier ist wieder η_1 ein konstanter, von x_b unabhängiger Wert. — Die nach diesen Gleichungen angetragenen Maximalquer-

kraftflächen zeigt Fig. 74. — Im Feld l_a ist η_1 und im Feld l_c ist η_3 so gering, daß sie in der Zeichnung verschwinden.

Die Minimalquerkraftfläche für gleichförmig verteilte Lasten kann man nun dadurch finden, daß man die oben gefundene Maximalquerkraftfläche von der Querkraftfläche für Vollbelastung subtrahiert, denn der Kleinstwert der Querkraft eines Punktes ergibt sich natürlich bei der Belastung der Balkenteile, die beim Auftreten des Größtwertes unbelastet sind. Die Querkraftfläche des Trägers bei Vollbelastung aller Felder ist gegeben durch die Gleichungen (67):

$$egin{aligned} Q_{c} &= rac{q_{a}l_{a}}{2} + rac{X_{a}}{l_{a}}\,, \ Q_{a} &= -rac{q_{a}l_{a}}{2} + rac{X_{a}}{l_{a}}\,, \ Q_{a}' &= -rac{q_{b}l_{b}}{2} - rac{X_{a}}{l_{b}}\,, \ Q_{b}' &= -rac{q_{b}l_{b}}{2} - rac{X_{a}}{l_{b}}\,, \ Q_{b} &= -rac{q_{c}l_{c}}{2} - rac{X_{b}}{l_{c}}\,, \ Q_{d} &= -rac{q_{c}l_{c}}{2} - rac{X_{b}}{l_{c}}\,. \end{aligned}$$

Hierin sind für X_a und X_b die nach Gleichung (66) sich ergebenden Werte einzusetzen. Die Querkraftlinie verläuft in den einzelnen Feldern geradlinig. — Die Subtraktion der beiden Querkraftflächen ist in Fig. 75 dargestellt.

Fig. 75. Minimal-Querkraftfläche.

Anhang: Der Balken auf drei Stützen.

Der kontinuierliche Träger auf drei Stützen ist einfach statisch unbestimmt. Zur Ermittelung der Zählerwerte dient die Momenten-fläche für $X_a = 1$ (Fig. 76). Der Nennerwert beträgt hier:

 $[aa] = \frac{l_a' + l_b'}{3}.$

Nach den Ausführungen in §1 finden wir die Zählerwerte allgemein in der Form:

$$\begin{bmatrix} a m \end{bmatrix} = \varphi_2 \text{ für Belastung in Feld } l_a, \\ \begin{bmatrix} a m \end{bmatrix} = \varphi_1 & n & n & n & n & l_b. \end{bmatrix}$$
 (86)

Für die anderen statischen Größen haben wir dann die folgenden Gleichungen:

in Feld
$$l_a$$
: $Q = Q_0 + \frac{X_a}{l_a}$,
"
"
 l_b : $Q = Q_0 - \frac{X_a}{l_a}$;

 $A = A_0 - \frac{X_a}{l_a} - \frac{X_a}{l_b}$,
 $B = B_0 + \frac{X_a}{l_a}$,
 $C = C_0 + \frac{X_a}{l_b}$;

(87)

Vollwandige Systeme mit geradlinigen Achsen.

in Feld
$$l_a: M = M_0 + X_a \left(1 - \frac{x_a}{l_a}\right),$$

"" " $l_b: M = M_0 + X_a \frac{x_b}{l_b},$ (89)

Mit Hilfe der Gleichungen (86) bis (89) ist der Träger auf drei Stützen in ähnlicher Weise zu berechnen, wie der Träger auf vier Stützen.

§ 7. Zahlenbeispiel.

Es sei der in Fig. 77 dargestellte Träger auf vier Stützen mit den Spannweiten $l_a = 6,00$ m, $l_b = 7,50$ m, $l_c = 4,50$ m für folgende Belastungsfälle zu untersuchen.

Fig. 77.

1. Ruhende Belastung:

a) Ständige gleichmäßig verteilte Belastung (Eigengewicht); im Felde l_a sei $g_a = 400 \text{ kg/m}$, im Felde l_b sei $g_b = 500 \text{ kg/m}$, im Felde l_c sei $g_c = 300 \text{ kg/m}$.

b) Einzellasten P_a und $P_b = 10$ t gemäß Fig. 77.

c) Im Felde l_c die dreieckförmig verteilte Last mit der Größtordinate 500 kg.

2. Bewegliche Belastung:

a) Gleichmäßig verteilte bewegliche Nutzlast von 1000 kg/m.

b) Zwei bewegliche Einzellasten von je 5 t im Abstand von 1,50 m voneinander.

3. Eine ungleichmäßige Erwärmung des Trägers von $\Delta t = \pm 15^{\circ}$ bei einem Trägheitsmoment J.

4. Senkung der linken und der rechten Endstütze um je 1 cm, der linken Mittelstütze um 2 cm.

Lösung:
Berechnung der Werte
$$F_{ab}$$
, F_{ba} , N_a , N_b .
 $F_{ba} = -\frac{lb'}{2(lb'+lc')} = -\frac{7,50}{2(7,50+4,50)} = -0,313$,
 $1 + F_{ba} = 0,687$,
 $F_{ab} = -\frac{lb'}{2(la'+lb')} = -\frac{7,50}{2(6,00+7,50)} = -0,278$,
 $1 + F_{ab} = 0,722$.
 $N_a = \frac{4(la'+lb')(lb'+lc')}{12(lb'+lc')} = \frac{4(6,00+7,50)(7,50+4,50)-7,50^2}{12(7,50+4,50)} = 4,10$,

86

§ 7. Zahlenbeispiel.

$$N_{b} = \frac{4 \left(l_{a}' + l_{b}' \right) \left(l_{b}' + l_{c}' \right) - l_{b}'^{2}}{12 \left(l_{a}' + l_{b}' \right)} \\ = \frac{4 \left(6,00 + 7,50 \right) \left(7,50 + 4,50 \right) - 7,50^{2}}{12 \left(6,00 + 7,50 \right)} = 3,65$$

Mit diesen Werten ergeben sich für die Unbekannten bei gleichmäßig verteilter ständiger Last g nach Tabelle Xa, 4 folgende Werte:

$$X_{a} = -\frac{6,00}{4,1} \cdot \frac{0,4 \cdot 6,00^{2}}{24} - \frac{7,50}{4,1} \cdot \frac{0,5 \cdot 7,50^{2}}{24} \cdot 0,687$$

+ $\frac{4,50}{4,1} \cdot \frac{0,3 \cdot 4,50^{2}}{24} \cdot 0,313 = -2,260 \text{ mt},$
 $X_{b} = +\frac{6,00}{3,65} \cdot \frac{0,4 \cdot 6,00^{2}}{24} \cdot 0,278 - \frac{7,50}{3,65} \cdot \frac{0,5 \cdot 7,50^{2}}{24} \cdot 0,722$
- $\frac{4,5}{3,65} \cdot \frac{0,3 \cdot 4,5^{2}}{24} = -1,775 \text{ mt}.$

b) Für die beiden Einzellasten ergibt sich folgendes:

Die Abstandsverhältnisse $\frac{\xi}{l}$ und die Werte c sind zuerst zu errechnen, sie betragen (vgl. § 1, Tabelle II):

Im Feld l_a :

$$\frac{\xi_a}{l_a} = \frac{1,50}{6,00} = 0,25; \quad c_1 = 0,234; \quad c_2 = 0,328.$$

Im Feld l_{b} :

$$\frac{\xi_b}{l_b} = \frac{4,50}{7,50} = 0,60; \quad c_1 = 0,384; \quad c_2 = 0,336.$$

Hiermit findet man (Tabelle Xa, 1):

$$X_{a} = -\frac{6,00}{4,1} \cdot \frac{10 \cdot 6,00}{6} \cdot 0,234 - \frac{7,50}{4,1} \cdot \frac{10 \cdot 7,50}{6} \cdot (0,384 - 0,313 \cdot 0,336)$$

= - 11,17 mt,
$$X_{b} = \frac{6,00}{3,65} \cdot \frac{10 \cdot 6,00}{6} \cdot 0,278 \cdot 0,328 - \frac{7,50}{3,65} \cdot \frac{10 \cdot 7,50}{6} \cdot (0,336 - 0,278 \cdot 0,384)$$

= - 4,380 mt.

c) Für die dreieckförmige Belastung mit der Größtordinate p = 0,5t in der Mitte von Feld l_c ist nach Tabelle Xa, 7:

$$X_{a} = \frac{4,50}{4,1} \cdot \frac{5}{192} \cdot 0,5 \cdot 4,50^{2} \cdot 0,313 = 0,09 \text{ mt},$$

$$X_{b} = -\frac{4,50}{3.65} \cdot \frac{5}{192} \cdot 0,5 \cdot 4,50^{2} = -0,325 \text{ mt}.$$

Infolge der ruhenden Lasten ergeben sich also folgende Werte:

$$X_a = -2,26 - 11,17 + 0,09 = -13,34$$
 mt,

$$X_b = -1,775 - 4,38 - 0,325 = -6,48$$
 mt.

Als Querkräfte findet man:

$$\begin{aligned} Q_{c} &= \frac{0.4 \cdot 6.00}{2} + 10 \cdot 0.25 - \frac{13.34}{6.00} = 1.48 \text{ b,} \\ Q_{a} &= -\frac{0.4 \cdot 6.00}{2} - 10 \cdot 0.75 - \frac{13.34}{6.00} = -10.92 \text{ t,} \\ Q_{a}' &= -\frac{0.5 \cdot 7.50}{2} + 10 \cdot 0.60 - \frac{-13.34 + 6.48}{7.50} = 8.79 \text{ t,} \end{aligned}$$

Vollwandige Systeme mit geradlinigen Achsen.

$$\begin{aligned} Q_{b}' &= -\frac{0.5 \cdot 7.50}{2} - 10 \cdot 0.40 - \frac{-13.34 + 6.48}{7.50} = -4.96 \text{ t}, \\ Q_{b} &= -\frac{0.3 \cdot 4.50}{2} + \frac{0.5 \cdot 4.50}{4} + \frac{6.48}{4.50} = 2.68 \text{ t}, \\ Q_{d} &= -\frac{0.3 \cdot 4.50}{2} - \frac{0.5 \cdot 4.50}{4} + \frac{6.48}{4.5} = +0.20 \text{ t}. \end{aligned}$$

2. Bewegliche Belastung.
a) Gleichmäßige, bewegliche Nutzlast p=1 t/m.
Für die Vollbelastungen der einzelnen Felder findet man:
Fall 1: Feld l_a vollbelastet:

$$X_{a} = -\frac{6,00}{4,1} \cdot \frac{1 \cdot 6,00^{2}}{24} = -2,2 \text{ mt},$$

$$X_{b} = -\frac{6,00}{3,65} \cdot \frac{1 \cdot 6,00^{2}}{24} \cdot (-0,278) = +0,685 \text{ mt}$$

$$Q_{c} = -\frac{1 \cdot 6,00}{2} - \frac{2,2}{6,00} = 2,63 \text{ t},$$

$$Q_{a} = -\frac{1 \cdot 6,00}{2} - \frac{2,2}{6,00} = -3,37 \text{ t},$$

$$Q_{a}' = Q_{b}' = -\frac{-2,2 - 0,685}{7,5} = +0,375 \text{ t},$$

$$Q_{b} = Q_{d} = -\frac{0,685}{4,50} = -0,15 \text{ t}.$$

Fall 2: Feld l_b vollbelastet:

$$\begin{split} X_{a} &= -\frac{7,50}{4,1} \cdot \frac{1 \cdot 7,50^{2}}{24} \cdot 0,687 = -2,95 \text{ mt}, \\ X_{b} &= -\frac{7,50}{3,65} \cdot \frac{1 \cdot 7,50^{2}}{24} \cdot 0,722 = -3,48 \text{ mt}, \\ Q_{c} &= Q_{a} = -\frac{2,95}{6,00} = -0,49 \text{ t}, \\ Q_{a}' &= -\frac{1 \cdot 7,50}{2} - \frac{-2,95 + 3,48}{7,50} = +3,68 \text{ t}, \\ Q_{b}' &= -\frac{1 \cdot 7,50}{2} - \frac{-2,95 + 3,48}{7,50} = -3,82 \text{ t}, \end{split}$$

. .

$$Q_b = Q_d = \frac{5,40}{4,50} = 0,77$$
 t

2 1 2

Fall 3: Feld l_c vollbelastet:

$$X_{a} = -\frac{4,50}{4,1} \cdot \frac{1 \cdot 4,50^{2}}{24} (-0,313) = +0,29 \text{ mt},$$

$$X_{b} = -\frac{4,50}{3,65} \cdot \frac{1 \cdot 4,50^{2}}{24} = -1,04 \text{ mt},$$

$$Q_{c} = Q_{a} = \frac{0,29}{6,00} = 0,05 \text{ t},$$

$$Q_{a}' = Q_{b}' = -\frac{0,29+1,04}{7,50} = -0,18 \text{ t},$$

$$Q_{b} = \frac{1 \cdot 4,50}{2} - \frac{-1,04}{4,50} = 2,47 \text{ t},$$

$$Q_{d} = -\frac{1 \cdot 4,50}{2} - \frac{-1,04}{4,50} = -2,02 \text{ t}.$$

Mit Hilfe dieser Werte sollen nun die größten und kleinsten Momente und Querkräfte in den einzelnen Feldern unter Berücksichtigung der ruhenden Lasten und der ungünstigsten Laststellungen der Nutzlasten ermittelt werden. Welches die ungünstigsten Laststellungen sind, ist aus den Einflußlinien der entsprechenden Größen zu ersehen.

Der Belastungsfall 2 liefert für das Feld l_b das größte, für die Felder l_a und l_c die kleinsten Momente, wie die Einflußlinien Fig. 69, 70 und 71 erkennen lassen; man findet für die ruhende Belastung und Fall 2:

$$X_a = -13,34 - 2,95 = -16,29 \text{ mt},$$

 $X_b = -6,48 - 3,48 = -9,96 \text{ mt}.$

Unter der Einzellast ergibt sich also

$$\begin{split} \textbf{M}_{2\,max} &= \frac{(1+0.5)\cdot7.50^2}{2} \cdot \textbf{0.6} \cdot \textbf{0.4} + 10 \cdot 7.5 \cdot \textbf{0.6} \cdot \textbf{0.4} \\ &- 0.6 \cdot \textbf{16.29} - \textbf{0.4} \cdot \textbf{9.96} = \textbf{14.35 mt}. \end{split}$$

Weiter findet man im Felde l_a :

$$C = Q_c = 1,48 - 0,49 = 0,99$$
 t,
 $M_{1\,min} = \frac{0,99^2}{2 \cdot 0.4} = 1,22$ mt.

Dieses Moment tritt auf in einem Abstande x von C:

$$x = \frac{0.99}{0.40} = 2.475 \text{ m}.$$

Im Feld l_c wird:

 $D = -Q_d = -0.2 - 0.77 = -0.97$ t.

Ein positives Moment tritt also bei dieser Belastung im Felde l_c nicht auf.

Fall 1 und 2 zusammen liefern die Größtwerte für X_a , Q_a und Q_a' . Es ist also:

$$\begin{array}{l} X_{a\,min} = - \ 13,34 - 2,2 \ - 2,95 = - \ 18,49 \ \mathrm{mt}, \\ Q_{a\,min} = - \ 10,92 - 3,37 - 0,49 = - \ 14,78 \ \mathrm{t}, \\ Q_{a'\,max} = \ \ 8,79 + 0,38 + 3,68 = + \ 12,85 \ \mathrm{t}. \end{array}$$

Aus den beiden letzten Werten ergibt sich:

$$A_{max} = 14,78 + 12,85 = 27,63 \text{ t}.$$

In gleicher Weise finden wir für Fall 2 und 3 zusammen die Werte $X_{b \min}$, $Q_{b'\min}$, $Q_{b\max}$ und B_{\max} :

$$\begin{array}{l} X_{b\,min} = - \,\,6,48 - 3,48 - 1,04 = - \,\,11,00 \,\,\mathrm{mt}\,, \\ Q_{b'\,min} = - \,\,4,96 - \,\,3,82 - \,\,0,18 = - \,\,8,96 \,\,\mathrm{t}\,, \\ Q_{b\,max} = \,\,\,2,68 + \,0,77 + \,2,47 = \,\,5,92 \,\,\mathrm{t}\,, \\ B_{max} = \,\,\,8,96 + \,5,92 = 14,88 \,\,\mathrm{t}\,. \end{array}$$

Bei Belastungsfall 1 und 3 zusammen findet man die Werte $M_{1 max}$, $M_{3 max}$ (größte Momente der Endfelder), $M_{2 min}$ (kleinstes Moment des Mittelfeldes l_b), $Q_{c max}$ und $Q_{d min}$. Es ergibt sich:

$$\begin{array}{l} X_a = -13,34 - 2,20 + 0,29 = -15,25 \text{ mt}, \\ X_b = -6,48 + 0,685 - 1,04 = -6,835 \text{ mt}. \end{array}$$

Unter der Einzellast im Mittelfeld wird jetzt:

$$\begin{split} M_{2\,min} &= \frac{0.5 \cdot 7.50^2}{2} \cdot 0.6 \cdot 0.4 + 10 \cdot 7.50 \cdot 0.6 \cdot 0.4 \\ &\quad -0.6 \cdot 15.25 - 0.4 \cdot 6.835 = 9.5 \text{ mt}, \\ C &= Q_{c\,max} = 1.48 + 2.63 + 0.05 = 4.16 \text{ t}, \\ Q_{d\,min} &= -D = + 0.20 - 0.15 - 2.02 = -1.97 \text{ t}. \end{split}$$

Vollwandige Systeme mit geradlinigen Achsen.

Da der Wert $x = \frac{C}{q_a} = \frac{4,16}{1,4} = 2,98$ m kleiner ist als der Abstand der

Einzellast vom Punkte C (4,50 m), so wird:

$$M_{1\,max} = \frac{4,16^2}{2\cdot 1,4} = 6,2 \text{ mt.}$$

Unter der Einzellast wird:

$$M_1' = \frac{1.4 \cdot 6,00^3}{2} \cdot 0.25 \cdot 0.75 + 10 \cdot 6,00 \cdot 0.25 \cdot 0.75 - 0.75 \cdot 15,25 = 4.6 \text{ mt}.$$

Im Felde le ermitteln wir den Angriffspunkt des Größtmomentes aus der Gleichung 22b, §1. Es wird mit

$$D_{max} = -Q_{d \min} = 1.97 \text{ t},$$

$$p = 1.3 \text{ t/m}, p' = 0.5 \text{ t}:$$

$$x = \frac{4.50}{2} \left\{ \sqrt{\frac{2 \cdot 1.97}{0.5 \cdot \frac{4.50}{2}} + \left(\frac{1.3}{0.5}\right)^2} - \frac{1.3}{0.5} \right\} = 1.35 \text{ m}.$$

Damit wird:

$$M_{3max} = \frac{1,3\cdot 1,35^2}{2} + \frac{0,5\cdot 1,35^3}{3\cdot \frac{4,50}{2}} = 1,36 \text{ mt.}$$

Wollte man noch für diesen Träger unter Voraussetzung einer für den ganzen Träger gleichen Nutzlast von p = 1000 kg/m die Maximal- und Minimalmomentenflächen zeichnen, so wären zunächst die bei Fig. 72 u. 73 angegebenen Werte

$$AA', AA'', AA''', AA^{(4)}$$

sowie

$$BB', BB'', BB''', BB^{(4)}$$

zu berechnen.

Man findet dafür:

$$AA' = -\frac{1000 (6,00^3 - 4,50^3 \cdot 0,313)}{24 \cdot 4,1} = -1900 \text{ mkg},$$

$$BB' = -\frac{1000 (-6,00^3 \cdot 0,278 + 4,50^3)}{24 \cdot 3,65} = -355 \text{ mkg},$$

$$AA'' = \frac{1000 \cdot 4,50^3 \cdot 0,313}{24 \cdot 4,1} = 290 \text{ mkg},$$

$$BB'' = \frac{1000 \cdot 6,00^3 \cdot 0,278}{24 \cdot 3,65} = 685 \text{ mkg},$$

$$AA''' = -\frac{1000 \cdot 7,50^3}{24 \cdot 4,1} \cdot 0,687 = -2950 \text{ mkg},$$

$$BB''' = -\frac{1000 \cdot 7,50^3}{24 \cdot 4,1} \cdot 0,687 = -2950 \text{ mkg},$$

$$BB''' = -\frac{1000 \cdot 7,50^3}{24 \cdot 3,65} \cdot 0,722 = -3480 \text{ mkg},$$

$$AA^{(4)} = -\frac{1000 (6,00^3 + 7,50^3 \cdot 0,687)}{24 \cdot 4,1} = -5150 \text{ mkg},$$

$$BB^{(4)} = -\frac{1000 (4,50^3 + 7,50^3 \cdot 0,722)}{24 \cdot 3,65} = -4520 \text{ mkg}.$$

Die Abstände der Punkte T_a , T_c , T_{ab} und T_{ba} von den rechten Feldenden ergeben sich wie folgt:

90

§ 7. Zahlenbeispiel.

$$a = \frac{l_a^2}{6N_a + l_a} = 1,175 \text{ m (Gl. 81)},$$

$$c = \frac{l_c \cdot 6N_b}{l_c + 6N_b} = 3,73 \text{ m (Gl. 83)},$$

$$b = \frac{l_b}{1 - F_{ab}} = 5,87 \text{ m (Gl. 85b)},$$

$$b' = \frac{-l_b \cdot F_{ab}}{1 - F_{ab}} = 1,78 \text{ m (Gl. 85a)}.$$

Damit läßt sich die Maximal- und Minimalmomentenfläche aufzeichnen (vgl. Fig. 72 und 73, S. 80 und 82).

Um auch die Maximal- und Minimalquerkraftsflächen ermitteln zu können, berechnen wir noch die bei Fig. 74 angegebenen Werte η . Es ist: Für Feld l_a :

$$\begin{split} \eta_1 &= -\frac{1}{l_a} \cdot \frac{l_c}{N_a} \cdot \frac{p_c l_c^2}{24} \cdot F_{ba} = \frac{1000 \cdot 4,50^3 \cdot 0,313}{24 \cdot 4,1 \cdot 6,00} = 48 \text{ kg}, \\ \eta_2 &= -\frac{l_a^2 \cdot p_a}{24 \cdot N_a} \cdot k_2 = -\frac{6,00^2 \cdot 1000}{24 \cdot 4,1} \cdot k_2 = -365 k_2 \text{ kg}, \\ \eta_3 &= -\frac{q_a l_a}{2} \left(\frac{x_a}{l_a}\right)^2 = \frac{1000 \cdot 6,00}{2} \left(\frac{x_a}{l_a}\right)^2 = 3000 \left(\frac{x_a}{l_a}\right)^2 \text{ kg}. \end{split}$$

Für Feld l_b:

$$\begin{split} \eta_1 &= \frac{1000 \cdot 6,00^3}{24 \cdot 7,50} \left(\frac{1}{4,1} + \frac{0,278}{3,65}\right) = 385 \text{ kg}, \\ \eta_2 &= \frac{1000 \cdot 7,50}{2} \left(\frac{x_b}{l_b}\right)^2 = 3750 \left(\frac{x_b}{l_b}\right)^2 \text{ kg}, \\ \eta_3 &= \frac{1000 \cdot 7,50^2}{24} \left(\frac{k_1 - 0,313 k_2}{4,1} - \frac{k_2 - 0,278 k_1}{3,65}\right) \\ &= 2340 \left(\frac{k_1 - 0,313 k_2}{4,1} - \frac{k_2 - 0,278 k_1}{3,65}\right) \text{ kg}. \end{split}$$

Für Feld *l_c*:

$$\eta_{1} = \frac{1000 \cdot 7,50^{3}}{24 \cdot 3,65 \cdot 4,5} \, \mathbf{0},722 = 775 \, \mathrm{kg},$$

$$\eta_{2} = \frac{1000 \cdot 4,50}{2} \left(\frac{x_{e}}{l_{e}}\right)^{2} = 2250 \left(\frac{x_{e}}{l_{e}}\right)^{2} \mathrm{kg},$$

$$\eta_{3} = \frac{1000 \cdot 4,50^{2}}{24 \cdot 3,65} \cdot k_{1} = 230 \, k_{1} \, \mathrm{kg}.$$

Die Werte k_1 und k_2 sind aus der Tabelle III, § 1 zu entnehmen. In Fig. 74, S. 84 ist die Maximalquerkraftsfläche dargestellt.

Um die Minimalquerkraftsflächen zu finden, sind noch die Querkräfte für Vollbelastung des ganzen Trägers zu ermitteln. Man findet:

$$\begin{aligned} X_{a} &= \frac{1}{4,1} \cdot \frac{1000}{24} \left(-6,00^{3} - 7,50^{3} \cdot 0,687 + 4,50 \cdot 0,313 \right) = -4850 \text{ mkg}, \\ X_{b} &= \frac{1}{3,65} \cdot \frac{1000}{\cdot 24} \left(+6,00^{3} \cdot 0,278 - 7,50^{3} \cdot 0,722 - 4,50^{3} \right) = -3840 \text{ mkg}, \\ X_{a} &= X_{b} = -1010 \text{ mkg}. \end{aligned}$$

Damit ist nach Gleichung (67):

91

Vollwandige Systeme mit geradlinigen Achsen.

$$Q_{c} = \frac{1000 \cdot 6,00}{2} - \frac{4850}{6} = 2190 \text{ kg},$$

$$Q_{u} = -\frac{1000 \cdot 6,00}{2} - \frac{4850}{6} = -3810 \text{ kg},$$

$$Q_{a}' = \frac{1000 \cdot 7,50}{2} + \frac{1010}{7,5} = 3885 \text{ kg},$$

$$Q_{b}' = -\frac{1000 \cdot 7,50}{2} + \frac{1010}{7,50} = -3615 \text{ kg},$$

$$Q_{b} = \frac{1000 \cdot 4,5}{2} + \frac{3840}{4,5} = 3100 \text{ kg},$$

$$Q_{d} = -\frac{1000 \cdot 4,50}{2} + \frac{3800}{4,50} = -1400 \text{ kg}.$$

Damit ist die Querkraftsfläche für Vollbelastung gegeben und es kann nunmehr durch Subtraktion der Maximalquerkraftsfläche von dieser die Minimalquerkraftsfläche gefunden werden (Fig. 75, S. 85).

2b. Zwei bewegliche Einzellasten von je 5t im Abstande 1,50 m voneinander.

Zur Berechnung der durch die beweglichen Lasten erzeugten größten Stützen- und Feldmomente und Querkräfte an den Auflagern werden ihre Einflußlinien berechnet und gezeichnet.

Die Gleichungen für die Einflußlinien der Unbekannten X_a und X_b lauten:

$$\begin{split} X_a &= -\underbrace{\frac{l_a^2}{6N_a}c_2}_{\text{Feld }l_a} - \underbrace{\frac{l_b^2}{6N_a}(c_1 + F_{ba}\,c_2)}_{\text{Feld }l_b} - \underbrace{\frac{l_c^2}{6N_a}F_{ba}\,c_1}_{\text{Feld }l_c} \\ X_b &= -\underbrace{\frac{l_a^2}{6N_b}F_{a\,b}\cdot c_2}_{\text{Feld }l_a} - \underbrace{\frac{l_b^2}{6N_b}(c_2 + F_{a\,b}\cdot c_1)}_{\text{Feld }l_b} - \underbrace{\frac{l_c^2}{6N_b}c_1}_{\text{Feld }l_c} \end{split}$$

Es wird für die X_a -Linie:

$$-\frac{l_a^3}{6N_a} = -\frac{6,00^2}{6\cdot 4,1} = -1,46,$$

$$-\frac{l_b^2}{6N_a} = -\frac{7,50^2}{6\cdot 4,1} = -2,28,$$

$$-\frac{l_c^2}{6N_a} = -\frac{4,50^2}{6\cdot 4,1} = -0,82.$$

Ferner für die X_b -Linie:

$$-\frac{l_a^2}{6N_b} = -\frac{6,00^2}{6\cdot 3,65} = -1,64,$$
$$-\frac{l_b^2}{6N_b} = -\frac{7,50^2}{6\cdot 3,65} = -2,57,$$
$$-\frac{l_c^2}{6N_b} = -\frac{4,50^2}{6\cdot 3,65} = -0,93.$$

Die einzelnen Feldweiten sind in je 10 Abschnitte unterteilt. Die den verschiedenen Abstandsverhältnissen entsprechenden Werte c_1 und c_2 sind in der folgenden Tabelle enthalten. Die Entfernungen gelten jedesmal vom rechten Auflager.

$10 \frac{\xi}{l}$	<i>C</i> 1	<i>C</i> ₂	$F_{ba} \cdot c_1$	$F_{ba}\cdot c_2$	$F_{ba} \cdot c_2 + c_1$	$F_{ab} \cdot c_1$	$F_{a\ b}\cdot c_{2}$	$F_{ab}c_1+c_2$
1	0,099	0,171	-0,031	-0,053	0,046	0,0275	0,0475	0,143
2	0,192	0,288	-0,060	- 0,090	0,102	0,0535	0,0800	0,234
3	0,273	0,357	-0,085	-0,112	0,161	0,0760	0,0990	0,281
4	0,336	0,384	-0,105	-0,120	0,216	0,0935	0,1070	0,290
5	0,375	0,375	-0,117	-0,117	0,258	0,1040	0,1040	0,271
6	0,384	0,336	-0,120	-0,105	0,279	0,1070	0,0935	0,229
7	0,357	0,273	-0,112	- 0,085	0,272	0,0990	0,0760	0,174
8	0,288	0,192	- 0,090	-0,060	0,228	0,0800	0,0535	0,112
9	0,171	0,099	- 0,053	- 0,031	0,140	0,0475	0,0275	0,051
10	0,000	0,000	-0,000	-0,000	0,000	0,0000	0,0000	0,000

Mit den Werten dieser Tabelle und den vorher berechneten Konstanten sind in den folgenden Tabellen die Ordinaten η der X_a - und X_b -Linie berechnet. In Fig. 78 ist die X_a -Linie aufgetragen.

Fig. 78. X_{a} -Linie; 1 cm = $\frac{2}{3}$ mt.

Ordinaten η der X_a -Linie.

Fel	d	0,1 1	0,2 l	0,3 <i>l</i>	0,4 l	0,5 l	0,6 I	0,7 l	0,8 I	0,9 l	1,0 <i>l</i>
$egin{array}{c} l_c & . \ l_b & . \ l_a & . \end{array}$	•	$+0,03 \\ -0,10 \\ -0,25$	+0,05 - 0,23 - 0,42	$^{+\ 0,07}_{-\ 0,37}_{-\ 0,52}$	$+0,09 \\ -0,49 \\ -0,56$	$+0,10 \\ -0,59 \\ -0,55$	+0,10 - 0,64 - 0,49	+0,09 -0,62 -0,40	+0,07 -0,52 -0,28	0,04 0,32 0,14	+0,000 -0,000 -0,000

Ordinaten η der X_b -Linie.

Fel	d	. 0 ,1 <i>l</i>	0,2 <i>l</i>	0,3 l	0, 4 <i>l</i>	0,5 l	0 ,6 <i>l</i>	0,7 l	0,8 l	0,9 <i>l</i>	1,0 <i>l</i>
le.	•	- 0,09	- 0,18	- 0,25	- 0,31	- 0,35	- 0,36	- 0,33	- 0,27	- 0,16	- 0,00
l_b . l_a .	:	-0,37 + 0,08	$ -0,60 \\ +0,13$	-0,72 + 0,16	-0,75 + 0,18	-0,70 +0,17	-0,59 + 0,15	-0,45 +0,12	-0,29 +0,09	-0,13 +0,05	-0,00 +0,00

Mit den so tabulierten Ordinaten der X_{a} - und X_{b} -Linie lassen sich die Einflußlinien der Querkräfte, Feldmomente und Auflagerdrücke leicht berechnen. So ergeben sich im Feld l_{a} die Querkraftlinien aus den Gleichungen:

$$Q_{s} = \frac{1}{l_{a}} \left(\xi_{a} + X_{a}
ight)$$
 und $Q_{a} = \frac{1}{l_{a}} \left[- \left(l_{a} - \xi_{a}
ight) + X_{a}
ight]$

ferner die Momentenlinie für einen Punkt im Abstande x_a von A aus der Gleichung:

$$\dot{M}_{x_a} = M_0 + \left(1 - \frac{x_a}{l_a}\right) X_a.$$

Im Feld l_b wird dementsprechend

Vollwandige Systeme mit geradlinigen Achsen.

$$Q_{a}' = \frac{1}{l_{b}} [\xi_{b} - (X_{a} - X_{b})],$$
$$Q_{b}' = \frac{1}{l_{b}} [-(l_{b} - \xi_{b}) - (X_{a} - X_{b})],$$

und für einen Punkt x_b von B

$$\boldsymbol{M}_{\boldsymbol{x}\boldsymbol{b}} = \boldsymbol{M}_0 + \boldsymbol{X}_a \left[\frac{\boldsymbol{x}_b}{\boldsymbol{l}_b} (1 - \boldsymbol{F}_{b\,a}) + \boldsymbol{F}_{b\,a} \right].$$

Im Feld l_c wird endlich:

$$Q_b = \frac{1}{l_c} [\xi_c - X_b],$$
$$Q_d = \frac{1}{l_c} [-(l_c - \xi_c) - X_b],$$

und für einen Punkt im Abstande x_c von D:

$$\boldsymbol{M}_{\boldsymbol{x}_c} = \boldsymbol{M}_0 + \boldsymbol{X}_{\boldsymbol{\nu}} \, \frac{\boldsymbol{x}_c}{\boldsymbol{l}_c} \, .$$

In diesen Gleichungen ist:

$$egin{aligned} &M_0\!=\!\left(1\!-\!rac{x}{l}
ight)\!rac{\xi}{l}\!\cdot\!l, ext{ wenn } x\!>\!\xi, \ &M_0\!=\!rac{x}{l}\!\left(1\!-\!rac{\xi}{l}
ight)\!\cdot\!l, ext{ wenn } x\!<\!\xi. \end{aligned}$$

Mit diesen Gleichungen sind die in den folgenden Tabellen angegebenen Werte der Einflußlinien für die Momente

1. eines Punktes in Feldmitte von l_a (M_1 -Linie),

2. eines Punktes in Feldmitte von l_b (M_2 -Linie),

3. ferner der Querkraftlinien für das Feld l_b (Q_3 -Linie) und

4. die Auflagerlinie für den Punkt C (C-Linie), die identisch ist mit der Q_c -Linie, berechnet.

		-		2	
1.11.	 			-	
-	-		٠	~	٠

Feld	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0, 8	0,9	1,0
$l_c \cdot \cdot \cdot \\ l_b \cdot \cdot \cdot \\ l_a \cdot \cdot \cdot $	+0,01 - 0,05 + 0,18	$^{+\ 0,03}_{-\ 0,12}_{+\ 0,39}$	+0,04 - 0,19 + 0,64	$^{+0,04}_{-0,25}$ + 0,92	+0,05 - 0,30 + 1,23	+0,05 - 0,32 + 0,96	+0,05 - 0,31 + 0,70	$^{+0,04}_{-0,26}_{+0,46}$	$^{+0,02}_{-0,16}_{+0,23}$. 0,00 0,00 0,00

Die Ordinaten der vorstehenden Einflußlinie für das Moment in Feldmitte l_a sind in Fig. 79 aufgetragen.

Fig. 79. M_1 -Linie; 1 cm = $\frac{2}{3}$ mt.

Feld	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
$l_c \cdot \cdot \cdot \\ l_b \cdot \cdot \cdot \\ l_a \cdot \cdot \cdot $	-0,03 + 0,14 - 0,09	-0,07 + 0,33 - 0,14	-0,09 + 0,58 - 0,18	- 0,11 + 0,88 - 0,19	-0,13 + 1,23 - 0,19	0,13 + 0,89 0,17	- 0,12 + 0,59 - 0,14	- 0,10 + 0,35 - 0,10	-0,06 + 0,15 - 0,05	0,00 0,00 0,00

M₂-Linie.

Die Ordinaten vorstehender Einflußlinie, die für das Moment in Feldmitte l_b gelten, sind in Fig. 80 aufgetragen.

Fig. 80. M_2 -Linie; 1 cm = $\frac{2}{3}$ mt.

 Q_2 -Linie (Q_a' - und Q_b' -Linie).

Feld		1	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
l_c l_b l_a	•	{	-0,12 + 0,48 - 7,02 + 0,33	-0,23 + 1,13 - 6,37 + 0,55	-0,32 + 1,90 - 5,60 + 0,68	-0,40 +2,74 -4,76 +0,74	-0,44 + 3,64 - 3,02 + 0,72	-0,45 + 4,55 - 2,95 + 0,64	-0,42 + 5,42 - 2,08 + 0,52	-0,34 + 6,23 - 1,27 + 0,37	-0,20 + 6,94 - 0,56 + 0,19	$0,00 \\ +7,50 \\ -0,00 \\ 0,00$

Die Tabelle enthält die l_b -fachen Ordinaten der Querkraftlinie für Punkte im Felde l_b .

Die zweite Reihe der vorstehenden Tabelle enthält oben die Ordinaten der Q_a' -Linie, unten die der Q_b' -Linie. Die Einflußlinie zeigt Fig. 81.

Fig. 81. Q_2 -Linien; 1 cm = $\frac{1}{3}$ t.

Feld	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
l_c l_b	+0,03 -0,10 +0.35	+0,05 -0,23 +0.78	+0,07 -0,37 +1.28	+0,09 -0,49 +1.84	+0,10 -0,59	+0,10 -0,64	+0,09 -0,62 +3.80	+0,07 -0,52 +4.52	+0,04 -0,32 +5.26	+0,00 0,00 +600

Fig. 82. *C*-Linie; $1 \text{ cm} = \frac{1}{2.4} \text{ t.}$

Die Tabelle enthält die l_a -fachen Ordinaten der Auflagerlinie für den Punkt C. In den Feldern l_c und l_b sind diese proportional mit denen der X_a -Linie. Die Ordinaten sind in Fig. 82 aufgetragen.

In gleicher Weise lassen sich auch für Punkte mit anderen Abstandsverhältnissen die Einflußlinien berechnen.

Um nun mit Hilfe der gezeichneten Einflußlinien die durch die beiden Lasten von je 5 t hervorgerufenen größten Momente, Querkräfte und Auflagerdrücke zu bestimmen, stellt man die Lasten so, daß die Summe der unter ihnen liegenden Ordinaten möglichst groß wird. Diese ungünstigsten Laststellungen sind in den Figuren gekennzeichnet.

Als größtes Stützmoment X_a infolge beweglicher Einzellast ergibt sich hiernach:

$$X_a = (\eta_1 + \eta_2) P = (-0.59 - 0.62) \cdot 5 = -6.05 \text{ mt}.$$

Das größte Feldmoment in der Mitte von l_a (Fig. 79) wird:

$$\max_{\substack{\max \\ 2}} M_{la} = (\eta_1 + \eta_2) P = (0.58 + 1.23) \cdot 5 = +9.05 \text{ mt}.$$

Ferner wird das größte Feldmoment in der Mitte von l_b (Fig. 80)

$$_{max}M_{l,b} = (\eta_1 + \eta_2) P = (1,23 + 0,59) \cdot 5 = +9,1 \text{ mt.}$$

Die größte positive Querkraft in Feld l_b ergibt sich nach Fig. 81 zu: $_{max}Q_b = (1 + 0.83) \cdot 5 = +9.15$ t.

Ferner der größte Auflagerdruck C nach Fig. 82 zu:

$$C_{max} = (1 + 0.69) \cdot 5 = 8.45 \text{ t}.$$

3. Eine ungleichmäßige Erwärmung mit $\varDelta t = \pm 15^{\circ}$ bei einem Trägheitsmoment J.

 $\begin{array}{l} \text{Mit } \varepsilon = \frac{1}{10^5} \text{ und } E = 2 \cdot 10^6 \, t/\text{m}^2 \text{ wird nach Tab. X a, } 9: \\ X_a = \frac{1}{4,1} \cdot \frac{1}{10^5} \cdot \left(\pm \frac{15}{h} \right) \cdot 2 \cdot 10^6 \cdot J \left[\frac{6,00}{2} \pm \frac{7,50}{2} \, 0,687 \pm \frac{4,50}{2} \cdot 0,313 \right] \\ = \pm \frac{J}{h} \cdot 355 \text{ mt,} \end{array}$

§ 8. Der beiderseits eingespannte unsymmetrische Rahmen usw. 97

$$\begin{split} X_{b} = & \frac{1}{3,65} \cdot \frac{1}{10^{5}} \cdot \left(\pm \frac{15}{h} \right) \cdot 2 \cdot 10^{6} \cdot J \left[-\frac{6,00}{2} \cdot 0,278 + \frac{7,50}{2} \cdot 0,722 + \frac{4,50}{2} \right] \\ = & \pm \frac{J}{h} \cdot 289 \text{ mt.} \end{split}$$

J und h sind in m⁴ bzw. m einzusetzen.

Querkräfte, Momente und Auflagerdrücke ergeben sich nach den Gleichungen 61 bis 63.

4. Senkung der linken und der rechten Endstütze um je 1 cm, der linken Mittelstütze um 2 cm (Fig. 83).

Fig. 83.

Es wird:

$$\begin{array}{l} \delta_c - \delta_a = -1 - (-2) = +1 \text{ cm} = 0.01 \text{ m}, \\ \delta_a - \delta_b = -2 \pm 0 = -2 \text{ cm} = -0.02 \text{ m}, \\ \delta_b - \delta_d = 0 - (-1) = +1 \text{ cm} = 0.01 \text{ m}. \end{array}$$

Damit wird nach Gleichung (75) bzw. Tab. Xa, 10:

$$\begin{split} X_a &= \frac{2 \cdot 10^8}{4,1} \cdot J \cdot \begin{bmatrix} 0.01 \\ 6.00 \end{bmatrix} - \frac{-0.02}{7,50} \cdot 1.313 - \frac{0.01}{4,50} \cdot (-0.31) \\ &= 2860 \ J \ \text{mt} \,. \\ X_b &= \frac{2 \cdot 10^6}{3,65} \cdot J \cdot \begin{bmatrix} 0.01 \\ 6.00 \end{bmatrix} \cdot (-0.278) + \frac{-0.02}{7,50} \cdot 1.278 - \frac{0.01}{4,50} \\ &= -3350 \ J \ \text{mt} \,. \end{split}$$

J ist in m⁴ einzusetzen.

§ 8. Der beiderseits eingespannte unsymmetrische Rahmen mit beliebiger Querschnittsverteilung.

In den vorangehenden Kapiteln sind einige besonders einfache Systeme mit geradlinigen Achsen behandelt worden. Die Ergebnisse ließen sich ohne Schwierigkeiten in geschlossenen Ausdrücken darstellen.

Auch der besonders häufig vorkommende symmetrische Rechteckrahmen läßt sich auf Grund der bisher verwandten Unterlagen in einfacher Weise behandeln, und für die Ergebnisse können wiederum einfache, geschlossene Formeln hergeleitet werden. Diese Aufgabe soll uns im nächsten Abschnitt beschäftigen.

Hier möge zuerst die allgemeine Behandlung des beliebig geformten Rahmens dargelegt werden. Sobald keine Symmetrie des Systems mehr vorhanden ist und die Achse eine beliebige Form annimmt, wird man die Resultate im allgemeinen nicht mehr in geschlossene Form zu bringen suchen, sondern von vornherein, also schon bei den Verschiebungen des Grundsystems, die Zahlenwerte einsetzen.

Wir besprechen im folgenden ohne Rücksicht auf die Form des Systems einen Rechnungsgang, der das im ersten Teil dieses Bandes, Pirlet, Statik. II. 2. 7 § 16 angegebene Verfahren zur Lösung der Gleichungen erläutern und zugleich das Verständnis der sonst in der Fachliteratur gebräuchlichen Berechnungsmethoden¹) vermitteln soll.

I. Die Belastungszustände $X_{a.0}$, $X_{b.1}$, $X_{c.2} = 1$. — Zusammensetzung dieser Lastengruppen zu Einzellasten.

Als Grundsystem wählen wir zunächst den einseitig eingespannten Balken (Fig. 84). Die Überzähligen X sind das Einspannungsmoment, der Horizontalschub und die Vertikalkraft am linken Kämpfer. Wir berechnen zuerst die Verschiebungen des Grundsystems für die Belastungen $X_a = 1, X_b = 1$ und $X_c = 1$ und aus diesen in gewohnter Weise die Festwerte $-\frac{[a \ b]}{[a \ a]}, -\frac{[a \ c]}{[a \ a]}, -\frac{[b \ c \ 1]}{[b \ b \ 1]}$.

Die Unbekannten ergeben sich nach den Gleichungen:

$$X_{a.0} = -\frac{[a m]}{[a a]},$$

$$X_{b.1} = -\frac{[b m \cdot 1]}{[b b \cdot 1]},$$

$$X_{c.2} = -\frac{[c m \cdot 2]}{[c c \cdot 2]}.$$

Für die erste Unbekannte $X_{a,0}$ kommen also nur Verschiebungen des Grundsystems infolge der Belastung $X_{a,0} = 1$ in Frage (Fig. 85).

Für die zweite Unbekannte $X_{b,1}$ in Frage (Fig. 85). Für die zweite Unbekannte $X_{b,1}$ sind die Verschiebungen des einfach statisch unbestimmten Hauptsystems infolge $X_{b,1} = 1$ zu bestimmen. Diese erhält man auch als Verschiebungen des Grundsystems infolge der in Fig. 86 dargestellten Lastengruppe $X_{b,1} = 1$, d. h. infolge

der beiden Einzellasten $X_{bb} = 1$ in Richtung von X_b und $X_{ab} = -\frac{\begin{bmatrix} a & b \end{bmatrix}}{\begin{bmatrix} a & a \end{bmatrix}}$ in Richtung von X_a . Die beiden Lasten X_{bb} und X_{ab} kann man zu einer gleichwertigen Einzellast zusammensetzen. Läßt man nämlich die Horizontalkraft 1 statt am Kämpfer in einem Abstand $y = -\frac{\begin{bmatrix} a & b \end{bmatrix}}{\begin{bmatrix} a & a \end{bmatrix}}$ vom Kämpfer angreifen (Fig. 86a), so ist das System durch diese Einzel-

98

¹) Anmerkung. Vgl. die Abhandlung des Verfassers: "Zur Frage der Verwendung vereinfachter Elastizitätsgleichungen bei der Berechnung mehrfach statisch unbestimmter Systeme". Zeitschrift "Der Eisenbau", Jahrg. 1915, Nr. 7. Verlag von Wilh. Engelmann, Leipzig. — Dort ist auch die allgemeinere Behandlung nach den im § 18 des ersten Teils erläuterten Verfahren angegeben und durch ein Zahlenbeispiel erläutert.

last $X_{b,1} = 1$ genau so beansprucht, wie durch die in Fig. 86 angegebene Lastengruppe $X_{b,1} = 1$. Denn wenn man in Fig. 86 a die Last 1 am Kämpfer gleich und entgegengesetzt anbringt, wodurch an dem Lastangriff nichts geändert wird, so erkennt man, daß insgesamt eine Einzellast 1 am Kämpfer und ein Kräftepaar $-\frac{[a \ b]}{[a \ a]} \cdot 1$ am System angreifen, gleichwie in Fig. 86.

Für die dritte Unbekannte $X_{c.2}$ sind die Verschiebungen des zweifach unbestimmten Systems infolge der Last $X_{c.2} = 1$ zu bestimmen. Die Last $X_{c.2} = 1$ am zweifachen unbestimmten System kann man ersetzen durch die am Grundsystem wirkende Lastengruppe $X_{c.2} = 1$,

wie sie in Fig. 87 dargestellt ist. Sie umfaßt die Einzellasten:

$$X_{cc} = 1; \ X_{bc} = -\frac{[b \ c \ . \ 1]}{[b \ b \ . \ 1]}, \ X_{ac} = -\frac{[a \ c]}{[a \ a]} - \frac{[a \ b]}{[a \ a]} \cdot X_{bc}$$

Diese Lastengruppe suchen wir gleichfalls durch eine Einzellast zu ersetzen. Zu diesem Zweck verschieben wir die beiden Einzellasten X_{cc} und X_{bc} in einen Punkt 0 mit den Koordinaten $-\frac{[a\,c]}{[a\,a]}$ und $-\frac{[a\,b]}{[a\,a]}$ (Fig. 88). Sodann setzen wir die beiden Lasten $X_{cc} = 1$ und $X_{bc} = -\frac{[b\,c.1]}{[b\,b.1]}$ zu einer Resultierenden zusammen. Ihre Neigung ist durch das Verhältnis von X_{bb} zu X_{cc} gegeben, und zwar ist (Fig. 88)

$$\operatorname{tg} \varphi = -\frac{[b \, c \, . \, \mathbf{1}]}{[b \, b \, . \, \mathbf{1}]}.$$

Die Größe der Resultierenden hat den Wert:

$$R = \sqrt{X_{cc}^2 + X_{bc}^2}.$$

7*

Für unsere Untersuchungen können wir R auch in der Größe 1 wirken lassen. Denn die Formänderungen sind der Last R proportional, und da es sich hier bei den Unbekannten um Quotienten von Formänderungen handelt, so ist der Proportionalitätsfaktor ohne Belang. — Die Last 1 in 0 in der vorhin bestimmten Richtung φ ersetzt also die Lastengruppe $X_{c,2} = 1$.

Naturgemäß muß der Angriffspunkt 0 mit dem gegebenen System in Verbindung gebracht werden. Dies kann geschehen durch Angliederung eines Stabes oder einer Scheibe an den linken Kämpfer (vgl. Fig. 86a und 88). Dieser Stab darf aber keinen Beitrag zu den Formänderungen liefern, er muß also unelastisch, d. h. starr sein.

Somit wären die drei Belastungszustände $X_{a.0} = 1$, $X_{b.1} = 1$, $X_{c.2} = 1$ dargestellt durch je eine Einzellast 1 und zwar $X_{a.0}$ durch ein Kräftepaar 1 am Kämpfer (oder an dem angegliederten Stab), $X_{b.1}$ durch eine Horizontalkraft 1 in 0 (oder wenigstens in der durch 0 gehenden Horizontalen), $X_{c.2} = 1$ durch eine in 0 unter dem Winkel φ gegen die Vertikale wirkenden Kraft 1.

Die Biegungslinien für diese Belastungszustände sind die Einflußlinien der Unbekannten. Bei ruhender Belastung sind die Zählerwerte der Unbekannten als Summenausdrücke zu berechnen, in denen außer den Momenten M_0 und Normalkräften N_0 im Grundsystem die

Fig. 89.

Momente und Normalkräfte infolge der in Fig. 89 angegebenen Lasten 1 vorkommen.

Sind auf diese Weise die Unbekannten ermittelt, so ergeben sich die Werte statischer Größen S, z. B. eines beliebigen Momentes, nach der Gleichung:

$$S = S_0 + S_a \cdot X_{a.0} + S_{b.1} \cdot X_{b.1} + S_{c.2} \cdot X_{c.2}.$$

Die Multiplikatoren S der Unbekannten sind Werte infolge eben jener Belastungen 1, wie sie in Fig. 89 angegeben sind.

Man erkennt, daß durch die Zusammensetzung der Lastengruppen X=1 zu gleichwertigen Einzellasten an dem Rechnungsgan weder etwas geändert noch verbessert ist. Wir haben diese Gedankengänge hier lediglich deshalb besprochen, weil ähnliche Verfahren in der Fachliteratur vielfach benutzt werden.

Diesen Verfahren liegt das Bestreben zugrunde, die Unbekannten so zu wählen, daß sie aus je einer Gleichung mit einer Unbekannten, d. h. als Quotienten zweier Verschiebungen gefunden werden. Dies setzt ein System von drei Gleichungen voraus, in dem die Koeffizienten seitlich der Diagonale gleich 0 sind. Es ist klar, daß dies nicht ohne weiteres durch die Wahl beliebiger Unbekannten zu erreichen ist. Diese müssen vielmehr bestimmten Bedingungen unterworfen werden, und dadurch kommt man letzten Endes zu dem Gedankengang des hier zugrunde gelegten allgemeinen Rechnungsverfahrens. Zur Erläuterung dieser Zusammenhänge mögen noch einige Angaben folgen, wobei zugleich auf die geometrische Bedeutung jener Bedingungen hingewiesen werden soll.

1. Bei der Lösung nach dem hier allgemein zugrunde gelegten Eliminationsverfahren, d. h. bei der Verwendung von Hauptsystemen ansteigender statischer Unbestimmtheit kommen verschiedene Werte von Verschiebungen überhaupt nicht vor. So treten z. B. in dem vorliegenden Falle des dreifach statisch unbestimmten Systems die Werte [a b.1], [a c.2] und [b c.2] nicht auf, d. h. man kann schreiben

1.)
$$[a b . 1] = 0$$
,
2.) $[a c . 2] = 0$,
3.) $[b c . 2] = 0$.

Gleichung 1. und 2. besagen, daß sowohl (Fig. 89) $X_{b.1}$, als auch $X_{c.2}$ beim Verschiebungszustand infolge $X_{a.0}$ die Arbeit 0 leisten, oder daß der Angriffspunkt 0 von $X_{b.1}$ und $X_{c.2}$ beim Verschiebungszustand infolge $X_{a.0}$ sich nicht verschieben darf. Dies bedeutet: 0 ist der Drehpol, um den sich das System beim Verschiebungszustand infolge des Momentes $X_{a.0}$ dreht.

Gleichung 3. besagt, daß $X_{c,2}$ beim Verschiebungszustand $X_{b,1}$ die Arbeit 0 leistet, bzw. daß die Verschiebung des Angriffspunktes cvon $X_{c,2}$ in Richtung von $X_{c,2}$ infolge der Belastung $X_{b,1}$ gleich 0 ist. Die Richtung von $X_{c,2}$ muß also senkrecht zu der Verschiebung von 0 infolge $X_{b,1}$ gewählt werden.

Wie wir also bisher den Pol 0 sowie die Richtung von X_c durch die Festwerte festlegten, so kann man hierzu auch Verschiebungspläne, d. h. geometrische Hilfsmittel benutzen. Man zeichnet nach den Ausführungen im ersten Teil dieses Bandes, § 9 den Verschiebungsplan infolge $X_a = 1$ und wählt als Angriffspunkt 0 der beiden anderen Unbekannten $X_{b,1}$ und $X_{c,2}$ den Pol, um den das System sich bei jener Bewegung dreht. Alsdann zeichne man den Verschiebungsplan infolge einer in 0 beliebig angreifenden (horizontalen) Last $X_{b,1} = 1$ und wähle die Richtung von $X_{c,2}$ senkrecht zu der aus diesem Verschiebungsplan sich ergebenden Verschiebung des Punktes 0.

Bei dieser Wahl der Unbekannten sind die vorhin aufgestellten drei Bedingungen erfüllt, d. h. wir erhalten, entsprechend dem Grundgedanken des Eliminationsverfahrens, jede der drei Unbekannten als Quotienten zweier Verschiebungen. Hierbei handelt es sich freilich um Verschiebungen statisch unbestimmter Hauptsysteme.

Es unterliegt keinem Zweifel, daß der rechnerische Weg zur Ermittelung der Unbekannten, d. h. die Bestimmung der Festwerte und die dadurch gegebene Festlegung der geometrischen Bedingungen, falls man solche noch verwenden will, den zeichnerischen Methoden vorzuziehen ist, und zwar schon wegen der Vermeidung von Ungenauigkeiten. Denn selbst bei so einfachen Aufgaben wie der vorliegenden können Zeichenfehler, die bei Auflösung der Elastizitäts-
gleichungen begangen werden, von wesentlichem Einflusse auf die Endergebnisse sein.

Wir werden auch bei allen künftigen Aufgaben stets nur den rechnerischen Weg wählen.

2. Der Angriffspunkt und die Richtung der Unbekannten lassen sich auch noch in anderer Weise durch geometrische Erwägungen

Fig. 90.

bestimmen. Stellen wir die vorhin angegebenen drei Verschiebungen, welche den Wert 0 haben sollen, in bekannter Weise als Summenausdrücke dar, so erhält man, da $M_a = 1$ ist, im Hinblick auf die Bezeichnungen in Fig. 90:

1.
$$[ab.1] = \int M_a M_{b.1} \frac{ds}{EJ} = \int y \frac{ds}{EJ} = 0$$
,
2. $[ac.2] = \int M_a M_{c.2} \frac{ds}{EJ} = \int z \frac{ds}{EJ} = 0$,
3. $[bc.2] = \int M_{b.1} M_{c.2} \frac{ds}{EJ} = \int yz \frac{ds}{EJ} = 0$.

Faßt man die durch EJ dividierten Stabelemente ds als Massenteile auf, so erkennt man, daß nach Gleichung 1. und 2. die statischen Momente und nach Gleichung 3. das Zentrifugalmoment dieser Massenteile den Wert 0 haben müssen. Das heißt aber bekanntlich nichts anderes, als daß 0 der Schwerpunkt jener Massenteile und die Richtungen von $X_{b.1}$ und $X_{c.2}$ konjugierte Achsen bzw. Hauptachsen in bezug auf jenes Massensystem sein müssen.

Die Bestimmung des Schwerpunktes eines Massensystems sowie die rechnerischen und graphischen Verfahren zur Ermittelung der Hauptachsen (Mohrscher Kreis) werden als bekannt vorausgesetzt.

3. Der hier behandelte Fall, wo ein Kräftepaar und zwei Einzelkräfte die Unbekannten bilden, ist nur ein Spezialfall des allgemeineren Verfahrens, welches im ersten Teil dieses Bandes, § 18, angegeben

ist. Nach diesem Verfahren findet man drei Einzelkräfte (s. Fig. 91), von denen die erste (Y_a) willkürlich ist, während die beiden anderen $(Y_b$ und Y_c) durch den gegenüberliegenden Eckpunkt *a* des Dreiecks *abc* gehen. Von diesen beiden letztgenannten Unbekannten ist die eine Y_b noch der Richtung nach willkürlich. Die Richtung von Y_c dagegen ist derjenigen von Y_b

in bestimmter Weise zugeordnet. Jede Ecke des Dreiecks (etwa b) ist der Pol, um den sich das System bei Belastung durch die der Ecke gegenüberliegende Kraft (also Y_{b}) bewegt. — Die analytischen Beziehungen, welche zu diesen geometrischen Eigenschaften führen, lauten (vgl. das allgemeine Verfahren)

$$\begin{bmatrix} AB \end{bmatrix} = 0, \\ \begin{bmatrix} AC \end{bmatrix} = 0, \\ \begin{bmatrix} BC \end{bmatrix} = 0.$$

Diese Werte stellen virtuelle Arbeiten infolge der Lastengruppen Y dar, die zu Einzellasten zusammengesetzt werden. Je nachdem eine oder zwei der Einzellasten dieser Gruppen Y nicht mehr willkürlich, sondern bedingt sind, sind die Unbekannten nach Lage und Richtung bestimmt. Nähere Darlegungen sowie ein Zahlenbeispiel finden sich in der zu Beginn dieses Abschnittes erwähnten Abhandlung in der Zeitschrift "Der Eisenbau" 1915.

Ein Zahlenbeispiel unter Anwendung des allgemeinsten Verfahrens findet sich auch bei der Lösung der nachstehenden Übungsaufgabe (s. S. 113), wobei allerdings ein anderes Grundsystem (Dreigelenkbogen) zugrunde gelegt ist.

II. Übungsaufgabe.

Es soll der in Fig. 92 dargestellte Rechteckrahmen für eine Horizontallast $H = 1^t$ am oberen Ende des linken Ständers untersucht werden. Das System ist unsymmetrisch, insofern für den Querschnitt des rechten Ständers ein nur halb so großes Trägheitsmoment angenommen wurde wie für den des linken Ständers bzw. des oberen Riegels.

In dieser Übungsaufgabe soll die vorhin behandelte Rechenmethode erläutert werden. Dabei wird zunächst der eingespannte Balken als Grundsystem gewählt. Im Anschluß daran wird dann das-

selbe Beispiel mit Hilfe eines Dreigelenkrahmens als Grundsystem nach der gleichen Methode berechnet. In beiden Fällen werden die geometrischen Beziehungen und die Zusammensetzung der Lastengruppen zu gleichwertigen Einzellasten erläutert. — Am Schluß wird dann noch das allgemeine Verfahren auf dieses Beispiel angewandt.

1. Berechnung mit Hilfe des eingespannten Balkens als Grundsystem.

a) Rechnerische Bestimmung der Unbekannten und eines Eckmomentes S.

Wir beginnen in gewohnter Weise mit der Berechnung der Koeffizienten der Grundgleichungen, d. h. der Verschiebungen infolge der Belastungszustände X = 1 am Grundsystem. Als solches ist der am rechten Ende eingespannte Balken gewählt (Fig. 93).

Die Momentenflächen des Grundsystems infolge der Belastungen X = 1 bzw. infolge der äußeren Belastungen sind in Fig. 94 bis 97

gleichen Vorzeichen zu rechnen, wenn auf der betreffenden Strecke die Verbiegungen im gleichen Sinne erfolgen.

Fig. 98. Ms-Fläche.

Hiernach erhält man folgende Werte für die Verschiebungen des Grundsystems.

 $(J_c$ ist ein beliebiger Wert eines Trägheitsmomentes und hier gleich dem des linken Ständers und des oberen Riegels gewählt. Für den rechten Ständer möge

$$h \cdot \frac{J_e}{J} = h'$$

gesetzt werden. Alle Verschiebungen sind mit EJ_c multipliziert.)

$$\begin{split} & [a\,a] = \int M_a{}^2 ds \, \frac{J_c}{J} = h + l + h' = 40 \,, \\ & [a\,b] = \int M_a M_b \, ds \, \frac{J_c}{J} = -\left(\frac{h}{2} \cdot h + l \cdot h + \frac{h'}{2} \cdot h\right) = -250 \,, \\ & [a\,c] = \int M_a M_c \, ds \, \frac{J_c}{J} = l \cdot \frac{l}{2} + h' \cdot l = 250 \,, \\ & [b\,b] = \int M_b{}^2 ds \frac{J_c}{J} = \frac{h}{3} \cdot h^2 + \frac{h'}{3} \cdot h^2 + l \cdot h^2 = 2000 \,, \\ & [b\,c] = \int M_b M_c \, ds \frac{J_c}{J} = -\frac{l}{2} \cdot h \cdot l - \frac{h'}{2} \cdot h \cdot l = -1500 \,, \end{split}$$

Fig. 97. M_c-Fläche.

§ 8. Der beiderseits eingespannte unsymmetrische Rahmen usw. 105

$$[cc] = \int M_c^2 ds \frac{J_c}{J} = \frac{l}{3} \cdot l^2 + h' \cdot l^2 = 2333,33,$$

$$[am] = \int M_0 M_a ds \frac{J_c}{J} = -\frac{h'}{2} \cdot h = 100,$$

$$[bm] = \int M_0 M_b ds \frac{J_c}{J} = -\frac{h'}{6} \cdot h \cdot h = -3333,33,$$

$$[cm] = \int M_0 M_c ds \frac{J_c}{J} = -\frac{h'}{2} \cdot h \cdot l = 1000.$$

Um die Richtigkeit obiger Verschiebungen zu prüfen, wenden wir das im ersten Teil, § 20 angegebene Verfahren an.

Danach ist die Summe der Verschiebungen:

$$[ss] = \int M_s^2 ds \frac{J'}{J}.$$

Die M_s -Fläche hat folgende Ordinaten:

					In	fol	ge	X_a	X_b	X_c	Summe
In " "	der "	linken u " o rechten " v	nteren beren "	Ecke " "	• •		•	-1 -1 -1 -1	$-10 \\ -10 \\ -$	- + 10 + 10	$\begin{array}{c} \div & 1 \\ - & 9 \\ + & 1 \\ + & 11 \end{array}$

Die M_s -Fläche ist in Fig. 98 aufgetragen. Danach ergibt sich: $\int M_s^2 ds \frac{J_e}{J} = 2 \cdot \frac{10}{6} [1 \cdot (2 \cdot 1 - 9) - 9 (-2 \cdot 9 + 1)] + \frac{20}{6} [1 (2 \cdot 1 + 11) + 11 (2 \cdot 11 + 1)] = 1373,33.$

Die Summe der in den Grundgleichungen vorkommenden positiven Glieder ist:

+40+250+2000+250+2333,33=4873,33.

Die Summe der negativen Glieder ist:

$$-250 - 250 - 1500 - 1500 = -3500.$$

Die Gesamtsumme ist demnach:

4873,33 - 3500 = 1373,33.

Zur Prüfung der Absolutglieder stellen wir auf:

$$\int M_s M_0 \, ds \, \frac{J_c}{J} = 2 \cdot \frac{10}{6} \cdot 10 \, (2 \cdot 11 + 1) = 766,67 \, .$$

Die algebraische Summe der Absolutglieder in den Grundgleichungen ist:

1000 - 100 - 333,33 = 766,67.

Somit stimmen die errechneten Verschiebungen, und wir gehen jetzt an die Auflösung der Gleichungen. Auflösung der Grundgleichungen und Berechnung der Unbekannten.

Festwerte:

$$-\frac{[ab]}{[aa]} = \frac{250}{40} = 6,25,$$

$$-\frac{[ac]}{[aa]} = -\frac{250}{40} = -6,25,$$

$$[bc.1] = -1500 + 6,25 \cdot 250 = 62,5,$$

$$[bb.1] = 2000 - 6,25 \cdot 250 = 437,5,$$

$$-\frac{[bc.1]}{[bb.1]} = -\frac{62,5}{437,5} = -0,143.$$

Wir berechnen zuerst die Unbekannten sowie eine statische Größe S, etwa das Moment in der linken oberen Ecke in der üblichen Weise:

$$[cc.1] = 2333,33 - 6,25 \cdot 250 = 770,833, [cc.2] = 770,833 - 0,143 \cdot 62,5 = 761,905.$$

Die Absolutglieder sind:

$$[am] = 100, [bm.1] = -333,33 + 6,25 \cdot 100 = 291,67, [cm.1] = 1000 - 6,25 \cdot 100 = 375, [cm.2] = 375 - 0,143 \cdot 291,67 = 333,33.$$

Also wird:

$$X_{a.0} = -\frac{100}{40} = -2.5,$$

$$X_{b.1} = -\frac{291.67}{437.5} = -0.667,$$

$$X_{c.2} = -\frac{333.33}{761.905} = -0.437.$$

Aus diesen Unbekannten berechnet sich eine statische Größe S nach der Gleichung:

$$S = S_0 + S_a X_{a,0} = S_{b,1} X_{b,1} + S_{c,2} X_{c,2}.$$

 $S_{b.1}$ und $S_{c.2}$ sind Werte S infolge $X_b = 1$ am 1-fach bzw. $X_c - 1$ am 2-fach unbestimmten Hauptsystem, d. h. es sind die Werte S infolge der Lastengruppen:

$$\begin{split} X_{bb} &= 1 \quad \text{und} \quad X_{ab} = -\frac{\lfloor a b \rfloor}{\lfloor a a \rfloor} = 6,25 \,, \\ \text{bzw. } X_{cc} &= 1 \quad \text{und} \quad X_{bc} = -\frac{\lfloor b c \cdot 1 \rfloor}{\lfloor b b \cdot 1 \rfloor} = -0,143 \quad \text{und} \\ X_{ac} &= -\frac{\lfloor a c \rfloor}{\lfloor a a \rfloor} - \frac{\lfloor a b \rfloor}{\lfloor a a \rfloor} \cdot X_{bc} = -6,25 + 6,25 \cdot (-0,143) = -7,143 \,. \end{split}$$

Es ergibt sich somit (vgl. die Belastungszustände X = 1, speziell die Ordinaten der Momentenflächen in der linken oberen Ecke):

$$\begin{split} S_a &= 1, \\ S_{b.1} &= S_b + S_a \cdot X_{ab} = -10 + 1 \cdot 6, 25 = -3, 75, \\ S_{c.2} &= S_c + S_b \cdot X_{bc} + S_a \cdot X_{ac} = 0 - 10 \cdot (-0, 143) + 1 \cdot (-7, 143) = -5, 7142. \end{split}$$

Somit erhält man für das gesuchte Eckmoment:

$$S = 0 + 1 \cdot (-2,5) + (-3,75) \cdot (-0,667) + (-5,7142) \cdot (-0,437) = 2,5 mt.$$

Anmerkung. Wir benutzen das Zahlenbeispiel, um nochmals den Unterschied zwischen dem hier gewählten Verfahren und der bisher benutzten Methode zu erläutern, bei welcher die Überzähligen X_a , X_b , X_c zugleich die Unbekannten sind.

Der vorhin ermittelte Wert $X_{c,2}$ stellt die Überzählige X_c dar. Aus dieser berechnen wir sodann die zweite Überzählige X_b nach der Gleichung:

$$X_{b} = -\frac{[bm.1[}{[bb.1]} - \frac{[bc.1]}{[bb.1]} \cdot X_{c}.$$

Dies ergibt:

 $X_b = -0,667 - 0,143 (-0,437) = -0,605$.

Mit Hilfe der beiden nunmehr bekannten Größen X_b und X_c berechnen wir X_a nach der Gleichung:

$$X_{a} = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]} \cdot X_{b} - \frac{[ac]}{[aa]} \cdot X_{c}$$

= -2,5 + 6,25 (-0,605) - 6,25 (-0,437)
= -3,55.

Aus diesen drei Unbekannten X ergibt sich eine statische Größe S nach der Gleichung:

$$S = S_0 + S_a \cdot X_a + S_b \cdot X_b + S_c \cdot X_c$$

Für das gesuchte Eckmoment finden wir also:

 $M = 0 + 1 \cdot (-3,55) + (-10) \cdot (-0,605) + 0 = 2,50 \, mt$.

eta) Geometrische Darstellung der Unbekannten $X_{a,0}$, $X_{c.1}, X_{e.2}$ als Einzellasten.

Wir knüpfen nunmehr an den unter I dargestellten Gedankengang an.

Wir verlegen den Angriffspunkt der Unbekannten in den Punkt 0 mit den Koordinaten $-\frac{[ab]}{[aa]}$ = 6,25 und $-\frac{[ac]}{[aa]}$ = -6,25 in bezug auf das durch das linke Widerlager gelegte Koordinatensystem (Fig. 99)

Fig. 100. Ma-Fläche.

Fig. 101. *M*_{b.1}-Fläche.

Fig. 102. Mc. 2 - Fläche.

und verbinden 0 mit diesem Widerlager durch eine starre Scheibe. Die Unbekannte $X_{a,0}$ ist ein an der Scheibe angreifendes Kräftepaar; die Unbekannten $X_{b,1}$ ist die in 0 wirkende horizontale Kraft; die Unbekannte $X_{c,2}$ greift gleichfalls in 0 an, aber nicht vertikal, sondern unter dem Winkel φ gegen die Vertikale geneigt, so daß

 $\operatorname{tg} \varphi = - \frac{[b \, c. \, 1]}{[b \, b. \, 1]} = - 0,143$

ist.

Für die Kräfte $X_{a.0}$, $X_{b.1}$, $X_{c.2} = 1$ erhält man die in (Fig. 100 bis 102) dargestellten Momentenflächen. Diese sind naturgemäß übereinstimmend mit denjenigen infolge der vorhin angegebenen Lastengruppen, z. B. X_{cc} , X_{bc} , X_{ac} für $X_{c.2} = 1$. Man kann die Unbekannten aus den nachstehenden Gleichungen ermitteln:

$$X_{a,0} = -\frac{\int M_0 M_a \, ds \, \frac{J_c}{J}}{[a \, a]},$$

$$X_{b,1} = -\frac{\int M_0 M_{b,1} \, ds \, \frac{J_c}{J}}{[b \, b \, .1]},$$

$$X_{c,2} = -\frac{\int M_0 M_{c,2} \, ds \, \frac{J_c}{J}}{[c \, c \, .2]}.$$

Dabei kann man auch für die Nennerwerte die entsprechenden Summenausdrücke setzen, z. B.:

$$[cc.2] = \int M_{c,2}^2 ds \frac{J_c}{J} = \int M_c \cdot M_{c,2} ds \frac{J_c}{J}.$$

Es sei hierbei daran erinnert, daß in diesem Ausdruck der eine Faktor M_c (d. h. Momente am Grundsystem) statt $M_{c.2}$ gesetzt werden kann (vgl. ersten Teil, § 5).

Wegen der einfachen Form der M_0 -Fläche (Fig. 94) erstrecken sich die Zählerwerte der Unbekannten nur über den rechten Ständer.

2. Berechnung mit Hilfe des Dreigelenkbogens als Grundsystem.

Der unter 1. zahlenmäßig untersuchte Rahmen soll nach dem vorhin erläuterten Verfahren unter Zugrundelegung des Dreigelenkbogens als Grundsystem berechnet werden.

a) Lösung nach dem einfachsten Verfahren mit $X_{a.0}$, $X_{b.1}$, $X_{c.2}$ als Unbekannten.

a) Rechnerische Bestimmung der Unbekannten und des Eckmomentes S. Das System ist das gleiche wie im letzten Zahlenbeispiel (s. Fig. 103). Das Grundsystem mit den Überzähligen X ist in Fig. 104 dargestellt

Die Fig. 105 bis 108 zeigen die Momentenflächen infolge der einzelnen Belastungen X = 1 und H, die wir zur Berechnung der Verschiebungen benutzen.

Man findet hiernach:

$$\begin{split} & [aa] = \int M_a^2 ds \, \frac{J_c}{J} = h + \frac{l}{3} = \frac{80}{6}, \\ & [ab] = \int M_a M_b ds \, \frac{J_c}{J} = \frac{h}{2} + \frac{l}{2} = \frac{60}{6}, \\ & [ac] = \int M_a M_c ds \, \frac{J_c}{J} = -\frac{h}{2} - \frac{l}{3} = -\frac{50}{6}, \\ & [bb] = \int M_b^2 ds \, \frac{J_c}{J} = \frac{h}{3} + \frac{h'}{3} + l = \frac{120}{6}, \\ & [bc] = \int M_b M_c ds \, \frac{J_c}{J} = -\frac{h}{3} - \frac{l}{2} + \frac{h'}{6} = -\frac{30}{6}, \\ & [cc] = \int M_c^2 ds \, \frac{J_c}{J} = \frac{h}{3} + \frac{l}{3} + \frac{h'}{3} = \frac{80}{6}, \\ & [am] = \int M_0 M_a ds \, \frac{J_c}{J} = \frac{h}{2} \cdot h + \frac{l}{3} \cdot h = \frac{500}{6}, \\ & [bm] = \int M_0 M_b ds \, \frac{J_c}{J} = \frac{h}{3} \cdot h + \frac{l}{2} \cdot h = \frac{500}{6}, \\ & [cm] = \int M_0 M_c ds \, \frac{J_c}{J} = -\frac{h}{3} \cdot h - \frac{l}{3} \cdot h = -\frac{400}{6}. \end{split}$$

Sämtliche Verschiebungen mögen mit dem Faktor $\frac{6}{10}$ multipliziert werden. Alsdann nimmt die Tabelle der Verschiebungen des Grundsystems folgende Form an:

	a	Ь	С	m
$a \\ b \\ c$		$\begin{array}{c} 6\\ 12\\ -3 \end{array}$	-5 - 3 - 3 - 8	$50 \\ 50 \\ -40$

Für die Festwerte finden wir somit folgende Größen:

$$-\frac{[ab]}{[aa]} = -0,75; \quad -\frac{[ac]}{[aa]} = 0,625;$$

$$[bc.1] = -3 - 0,75 \cdot (-5) = 0,75,$$

$$[bb.1] = 12 - 0,75 \cdot 6 = 7,5,$$

$$-\frac{[bc.1]}{[bb.1]} = -0,10.$$

Wir erhalten somit folgende Belastungszustände:

Hierbei ist:

$$X_{ac} = -\frac{[ac]}{[aa]} - \frac{[ab]}{[aa]} \cdot X_{bc} = 0,70,$$

$$X_{bc} = -\frac{[bc.1]}{[bb.1]} = -0,10.$$

Wir benötigen ferner folgende Werte:

.....

$$[cc.1] = 8 - \frac{-5}{8}(-5) = 4,875,$$

$$[cc.2] = 4,875 - 0,10 \cdot 0,75 = 4,8,$$

$$[bm.1] = 50 - 0,75 \cdot 50 = 12,5,$$

$$[cm.1] = 40 - \frac{-5}{8} \cdot 50 = -8,75,$$

$$[cm.2] = -8,75 - 0,10 \cdot 12,5 = -10,0$$

Hiernach ergeben sich folgende Werte der Unbekannten:

$$X_{a.0} = -\frac{50}{8} = -6,25,$$

$$X_{b.1} = -\frac{12,5}{7,5} = -1,67,$$

$$X_{c.2} = -\frac{10}{4,8} = 2,083.$$

Für das gesuchte Eckmoment gilt die Gleichung:

$$S = S_0 + S_a X_{a.0} + S_{b.1} X_{b.1} + S_{c.2} X_{c.2}.$$

Hierin ist:

$$\begin{split} S_0 =& 10; \quad S_a = -1; \quad S_b = -1; \quad S_c = 1, \\ S_{b.1} =& -1 \left(-0.75 \right) - 1 = -0.25; \\ S_{c.2} =& -1 \cdot 0.70 - 1 \cdot (-0.10) + 1 \cdot 1 = 0.40. \end{split}$$

Also ergibt sich:

$$S = -10 - 1 \cdot (-6,25) - 0,25 \cdot (-1,67) + 0,40 \cdot 2,083 = -2,5 \ mt.$$

NB. Das Resultat ist das gleiche wie vorher; das Vorzeichen mußte umgekehrt sein, weil die Momente mit umgekehrten Vorzeichen eingeführt worden sind. Vgl. die Belastungen des Grundsystems in beiden Fällen.

 β) Geometrische Darstellung der Unbekannten $X_{a,0}$, $X_{b.1}, X_{c.2}$ als Einzellasten.

Die vorhin verwandten Lastengruppen lassen sich wiederum als Einzellasten darstellen, welche das System in gleicher Weise beanspruchen. — Die Belastung $X_{a,0} = 1$ ist ein Moment 1 in *a* am Grundsystem (Fig. 109). Statt dessen kann man eine Einzellast 1 t an einer das System erweiternden (starren) Scheibe in Richtung des rechten Ständers angreifen lassen (Fig. 110). Die Beanspruchung (s. Momentenfläche) des Systems ist die gleiche wie die in Fig. 106 (bzw. ihr proportional).

Die Lastengruppe $X_{b,1} = 1$ kann als Einzellast 1 (Moment 1) in b an einem Ersatzsystem dargestellt werden (Fig. 111). Man verschiebt das früher bei a gelegene Gelenk in einen Punkt a', wobei die Linie ca' durch die Bedingung gegeben ist, daß die Momente in b und a sich müssen verhalten wie 1 zu

|ab|Dies ist der Fall, [aa]

wenn die Linie ab in s im Verhältnis $-\frac{[ab]}{[aa]}$ geteilt wird, so daß

 $\frac{as}{sb} = \frac{al}{bn} = \frac{[ab]}{[aa]}$ (s. Fig. 111). — Läßt man in Richtung dieser Geraden cs eine Einzellast 1t nach Fig. 112 angreifen, so erhält man die gleiche Beanspruchung des Systems.

Die Lastengruppe $X_{c,2} = 1$ besteht aus den drei Einzellasten $X_{cc} = 1$ in c, $X_{bc} = \frac{[bc.1]}{[bb.1]}$ in b,

Fig. 111.

Fig. 112.

 $X_{ac} = -\frac{[ac]}{[aa]} - \frac{[ab]}{[aa]} \cdot \left(-\frac{[bc,1]}{[bb,1]}\right) \text{ in } a; \text{ sie ist ebenfalls unschwer}$

durch eine Einzellast 1 zu ersetzen. Zu diesem Zweck muß nun auch das Gelenk b nach einem Punkte b' verschoben werden (Fig. 113). Die Lage von b' ist gegeben durch eine Gerade L'', welche zunächst die Strecke bc in b'

weiche zuhlachst die Strecke bc in bim Verhältnis $-\frac{[bc.1]}{[bb.1]}$ teilt, so daß also $\frac{bb'}{b'c} = -\frac{[bc.1]}{[bb.1]}$ ist. Wie der Durchgangspunkt b' der Geraden L''sich aus dem Verhältnis von X_{cc} zu X_{bc} ergab, so findet man die Neigung von L'' aus der Beziehung zwischen

 X_{cc} zu X_{ac} . Da X_{cc} zu X_{ac} den Beitrag $X_{cc} \cdot \left(-\frac{ac}{aa}\right)$ liefert, so muß sein

$$\frac{X_{ac}}{X_{cc}} = -\frac{[ac]}{[aa]}.$$

Denkt man sich in dem Punkt c ein Moment X_{cc} wirken, so würde die hierdurch in b' erzeugte Gelenkreaktion, wenn sie in Richtung von L'' wirkt, in a (Einspannstelle) ein Moment X_{ac} erzeugen; die Momente X_{ac} und X_{cc} werden sich zueinander verhalten wie die Lote ak und ci von a bzw. c auf L'', d. h. es wäre $\frac{X_{ac}}{X_{cc}} = \frac{ak}{ci}$, und dieser Wert müßte in unserem Falle gleich $-\frac{[ac]}{[aa]}$ sein. Wählt man also die Lage von L'' so, daß $\frac{ak}{ci} = \frac{am}{cm} = -\frac{[ac]}{[aa]}$ ist, so wird die Bedingung erfüllt.

Weiterhin muß aber auch zwischen X_{ac} und X_{bc} ein bestimmtes Verhältnis bestehen und zwar muß (wie vorhin beim Belastungszustand $X_{b.1} = 1$) $\frac{X_{ac}}{X_{bc}} = -\frac{[ab]}{[aa]}$ sein. Dies ist erfüllt, wenn die Reaktion infolge X_b (allein) in die Richtung von L' fällt. (Hierbei ist in c ein Gelenk und bei a eine Einspannung zu denken.)

Die Lage des verschobenen Gelenkes a' muß also auf den Geraden L' und L'', d. h. im Schnittpunkte a' liegen. Das Ersatzsystem mit den drei Gelenken a', b', c erfüllt also die Bedingung, daß eine Last $X_c = 1$ die erforderliche (der Lastengruppe $X_{c.2} = 1$ entsprechende) Beanspruchung des Systems erzeugt (Fig. 114).

Statt des Momentes 1 in c kann man auch eine Last 1 in Richtung von L'' an zwei, den Widerlagern angegliederten Scheiben angreifen lassen (Fig. 115).

Aus alledem folgt, daß man als Unbekannte die drei in Fig. 109, 111 und 114 angegebenen Einzellasten einführen und aus je einer Gleichung mit einer Unbekannten ermitteln könnte. Die geometrischen Eigenschaften der Lösung, d. h. die Lagen der Wirkungslinien der Unbekannten, sind durch die Festwerte des Lösungsverfahrens gegeben.

Setzt man die Zahlengrößen der Festwerte unserer Aufgabe ein, so findet man die Lage von L' und L'' aus den vorhin angebenen geometrischen Beziehungen.

b) Lösung nach dem allgemeinsten Verfahren mit Lastengruppen von teilweise willkürlichen Einzellasten als Unbekannten.

α) Rechnerische Bestimmung der Unbekannten und des Eckmomentes S.

Der Zustand $Y_a = 1$ besteht aus drei willkürlichen Lasten. Wir wählen:

$$X_{aa} = 1; \quad X_{ba} = -3; \quad X_{ca} = 4.$$

Hiernach ergibt sich (vgl. erster Teil, § 18) unter Verwendung der vorhin (s. a, α) ermittelten Verschiebungen des Grundsystems:

$$\begin{array}{l} [Aa] = 8 \cdot 1 + 6 \quad (-3) + (-5) \cdot 4 = -30 \,, \\ [Ab] = 6 \cdot 1 + 12 \, (-3) + (-3) \cdot 4 = -42 \,, \\ [Ac] = -5 \cdot 1 + (-3) \cdot (-3) + 8 \cdot 4 = 36 \,. \end{array}$$

Hieraus ergeben sich die Festwerte:

$$-\frac{[Ab]}{[Aa]} = -1,4,$$

$$-\frac{[Ac]}{[Aa]} = 1,20.$$

Beim Zustand $Y_b = 1$ sind zwei Lasten willkürlich. Wir wählen:

$$X_{bb} = -0.50; \quad X_{cb} = -4.$$

Dann ergibt sich:

$$\begin{split} [AB] &= [Ab] X_{bb} + [Ac] \cdot X_{cb} \\ &= (-42) (-0.50) + 36 \cdot 4 = 165 \\ X_{ab} &= -\frac{[A\overline{B}]}{[Aa]} = -\frac{165}{-30} = 5.50 \,. \end{split}$$

Pirlet, Statik. II. 2.

Vollwandige Systeme mit geradlinigen Achsen.

Nachdem nunmehr die Lasten des Zustandes $Y_b = 1$ bekannt sind, ergibt sich:

$$\begin{split} & [Ba] = [aa] \cdot X_{ab} + [ab] \cdot X_{bb} + [ac] \cdot X_{cb} \\ & = 8 \cdot 5.5 + 6 \cdot (-0.50) + (-5) \cdot 4 = 21 \,, \\ & [Bb] = [ab] \cdot X_{ab} + [bb] \cdot X_{bb} + [cb] \cdot X_{cb} \\ & = 6 \cdot 5.5 + 12 \cdot (-0.50) + (-3) \cdot 4 = 15 \,, \\ & [Bc] = [ac] \cdot X_{ab} + [bc] \cdot X_{bb} + [cc] \cdot X_{cb} \\ & = (-5) 5.5 + (-3) (-0.50) + 8 \cdot 4 = 6 \,. \end{split}$$

Beim Zustand $Y_c = 1$ ist nur eine Last willkürlich. Wir wählen:

$$X_{cc} = -6$$
.

Dann ergibt sich:

$$\begin{split} X_{bc} &= -\frac{[B\overline{C} \cdot 1]}{[Bb \cdot 1]} = -\frac{[Bc \cdot 1]}{[Bb \cdot 1]} \cdot X_{cc}, \\ X_{ac} &= -\frac{[A\overline{C}]}{[Aa]} - \frac{[Ab]}{[Aa]} \cdot X_{bc} = -\frac{[Ac]}{[Aa]} \cdot X_{cc} - \frac{[Ab]}{[Aa]} \cdot X_{bc}. \\ \text{Es ist:} \\ & [Bc.1] = 6 - \frac{21}{-30} \cdot 36 = 31, 2, \\ & [Bb.1] = 15 - \frac{21}{-30} \cdot (-42) = -14, 4. \\ & -\frac{[Bc.1]}{[Bb.1]} = \frac{31, 2}{-14, 4} = 2, 17. \\ & X_{bc} = 2, 17 \cdot (-6) = -13, \\ & X_{ac} = \frac{-36}{-30} (-6) - \frac{-47}{-30} \cdot (-13) = 11. \end{split}$$

Nachdem nunmehr die drei Lasten X_{ac} , X_{bc} , X_{cc} der Gruppe $Y_c = 1$ bekannt sind, findet man:

$$\begin{bmatrix} Ca \end{bmatrix} = 8 \cdot 11 + 6(-13) + (-5)(-6) = 40, \\ \begin{bmatrix} Cb \end{bmatrix} = 6 \cdot 11 + 12(-13) + (-3)(-6) = -72, \\ \begin{bmatrix} Cc \end{bmatrix} = -5 \cdot 11 + (-3)(-13) + 8(-6) = -64. \end{bmatrix}$$

Ferner wird:

$$\begin{split} [AA] &= [Aa] \cdot X_{aa} + [Ab] \cdot X_{ba} + [Ac] \cdot X_{ca} \\ &= -30 \cdot 1 + (-42) (-3) + 36 \cdot 4 = 240 , \\ [BB] &= [Ba] \cdot X_{ab} + [Bb] \cdot X_{bb} + [Bc] \cdot X_{cb} \\ &= 21 \cdot 5.5 + 15 \cdot (-0.5) + 6 \cdot 4 = 132 , \\ [CC] &= [Ca] X_{ac} + [Cb] X_{bc} + [Cc] X_{cc} \\ &= 40 \cdot 11 + (-72) (-13) + (-64) (-6) = 1760 . \end{split}$$

114

§ 8. Der beiderseits eingespannte unsymmetrische Rahmen usw. 115

$$\begin{split} [Am] &= [am] \, X_{aa} + [bm] X_{ba} + [cm] \cdot X_{ca} \\ &= 50 \cdot 1 + 50 \, (-3) + (-40) \cdot 4 = -260 \,, \\ [Bm] &= [am] \cdot X_{ab} + [bm] X_{bb} + [cm] \cdot X_{cb} \\ &= 50 \cdot 5, 5 + 50 \, (-0, 5) + (-40) \cdot 4 = 90 \,, \\ [Cm] &= [am] \cdot X_{ac} + [bm] \cdot X_{bc} + [cm] \cdot X_{cc} \\ &= 50 \cdot 11 + 50 \, (-13) + (-40) \cdot (-6) = 140 \,. \\ Y_a &= -\frac{[Am]}{[AA]} = \frac{260}{240} = 1,083 \,, \\ Y_b &= -\frac{[Bm]}{[BB]} = -\frac{90}{132} = -0,683 \,, \\ Y_c &= -\frac{[Cm]}{[CC]} = -\frac{140}{1760} = -0,0795 \,. \end{split}$$

Berechnung des Biegungsmomentes in der linken oberen Ecke.

$$S_{o} = 10; \quad S_{a} = 1; \quad S_{b} = 1; \quad S_{c} = -1, \\ \mathfrak{S}_{a} = 1 \cdot 1 + 1 \cdot (-3) - 1 \cdot 4 = -6, \\ \mathfrak{S}_{b} = 1 \cdot 11 + 1 \cdot (-13) - 1 \cdot (-6) = 4. \\ S = 10 + (-6) \cdot (1,083) + 1 \cdot (-0,683) + 4 \cdot (-0,0795) = 2,5 \text{ mt}. \\ \beta) \text{ Geometrische Darstellung der Unbekannten Y.}$$

Die gleichen Überlegungen, wie wir sie für den Zustand $X_{c,2} = 1$ im vorigen vereinfachten Fall anstellten, sind jetzt bei jeder der drei Lastengruppen Y = 1 anzuwenden.

Beim Zustand $Y_a = 1$ (s. Fig. 117) ergeben die drei willkürlichen Lasten eine nach Lage und Richtung willkürliche Gerade L_a . Aus dem Verhältnis der gewählten Lasten X_{aa} , X_{ba} , X_{ca} ergeben sich die geometrischen Bedingungen (Durchgangspunkt und Richtung) der Lage von L_a . Beim Zustand $Y_b = 1$ (s. Fig. 118) ist die Last

$$X_{ab} = -\frac{[AB]}{[Aa]} = -\frac{[Ab]}{[Aa]} \cdot X_{bb} - \frac{[Ac]}{[Aa]} \cdot X_{cb}$$

bedingt, während X_{bb} und X_{cb} willkürlich sind. Die Beiträge von X_{bb} und X_{cb} zu X_{ab} sind durch die Festwerte $-\frac{[Ab]}{[Aa]}$ bzw. $-\frac{[Ac]}{[Aa]}$

gegeben. Die Strecke ab (s. Fig. 118) ist wiederum im Punkt snach dem Verhältnis $-\frac{[Ab]}{[Aa]}$, die Strecke ac im Punkt t im Verhältnis $-\frac{[Ac]}{[Aa]}$ zu teilen. Die durch s von c ausgehende Gerade und die durch t von b ausgehende Gerade liefern in ihrem Schnittpunkte 0 den Durchgangspunkt der Geraden L_b . Die von dem Verhältnis der willkürlichen Lasten X_{bb} und X_{cb} zueinander abhängige Richtung von L_b ist ebenso wie diese Lasten willkürlich. Beim Zustand $Y_c = 1$ ist die Gerade L_c nicht nur dem Durch-

Beim Zustand $Y_c = 1$ ist die Gerade L_c nicht nur dem Durchgangspunkte nach (Punkt 0), sondern auch der Richtung nach gegeben. Die Richtung ist durch das Verhältnis

$$\frac{X_{bc}}{X_{cc}} = -\frac{[Bc.1]}{[Bb.1]}$$

festgelegt. Die Strecke bc (s. Fig. 119) ist wiederum im Verhältnis des vorgenannten Festwertes zu teilen.

In Fig. 120 ist das aus den Angriffsrichtungen L der drei Unbekannten Y gebildete Dreieck dargestellt. Es ist mit der Darstellung in Fig. 116 zu vergleichen, welche einen Sonderfall dieses allgemeinsten Verfahrens darstellt.

Anmerkung: Ähnliche Wege, die Lastengruppen $X_{i,r} = 1$ durch eine Einzellast an einem statisch unbestimmten Ersatzsystem zu erzeugen, lassen sich auch bei beliebig hochgradig statisch unbestimmten Systemen einschlagen. Man gelangt aber

nur dann zu einfachen geometrischen Eigenschaften der Ersatzsysteme, wenn die Grundgleichungen (Elastizitätsgleichungen) einfach sind, insbesondere dann, wenn eine Reihe von Koeffizienten zu 0 werden. Einen besonders einfachen Fall werden wir im folgenden Bande finden, und zwar beim kontinuierlichen Träger, wo die Gelenke des Ersatzsystems in den bekannten Fixpunkten liegen. Näher auf diese geometrischen Methoden einzugehen, würde nicht den Zielen dieses Buches entsprechen, und zwar um so weniger, als besondere Vorteile für den Rechnungsgang dadurch nicht gewonnen werden.

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen.

I. Herleitung allgemeiner Gleichungen für die Unbekannten und für beliebige statische Größen¹).

a) Grundsystem, Bezeichnungen, Vorzeichen.

Als Unbekannte wählen wir drei Einspannungsmomente, und zwar diejenigen in drei der vier Ecken I, II, III, IV (s. Fig. 121).

¹) Anmerkung: Diese Aufgabe läßt sich auch unter Zugrundelegung eines symmetrischen Grundsystems in besonders einfacher Weise behandeln (s. § 10). Die in diesem Abschnitt behandelte Lösung liefert aber zugleich die allgemeinen Richtlinien für die Behandlung des beliebig gestalteten unsymmetrischen Rahmens.

Das Grundsystem besteht also aus drei in den Ecken gelenkig miteinander verbundenen Einzelbalken, von denen einer am Widerlager eingespannt bleiben muß. Sind die drei Einspannungsmomente X_a , X_b , X_c gefunden, so handelt es sich nur mehr um die Untersuchung einfacher gerader Balken, die durch irgendwelche äußere Lasten und an den beiden Enden durch Momente (X) beansprucht sind. Somit ist also die Aufgabe auf eine ähnliche Grundlage gestellt, wie die bisherigen Untersuchungen eingespannter Balken oder durchlaufender Träger.

Wir führen die folgenden Bezeichnungen ein. Die Spannweite, d. h. die Länge des horizontalen Riegels, sei l, die Höhe, d. h. die Länge der vertikalen Ständer, sei h. Die beiden Ständer sollen denselben Querschnitt, also das gleiche Trägheitsmoment J_h haben; das Trägheitsmoment des Riegels sei J_l . Den Wert $h \cdot \frac{J_l}{J_h}$ bezeichnen wir mit h'. Es ist also

$$h' = h \cdot \frac{J_l}{J_n} \quad \dots \quad \dots \quad \dots \quad \dots \quad (90)$$

Für das Verhältnis $\frac{\hbar'}{l}$ führen wir die Bezeichnung ω ein:

$$\omega = \frac{h'}{l} \dots \dots \dots \dots \dots \dots \dots \dots \dots (91)$$

Die Normalkräfte (N), die Querkräfte (Q) und die Momente (M) im Riegel sollen mit $N^{(o)}$, $Q^{(o)}$, $M^{(o)}$, die entsprechenden Werte im rechten Ständer mit $N^{(r)}$, $Q^{(r)}$, $M^{(r)}$, die im linken Ständer mit $N^{(l)}$, $Q^{(l)}$, $M^{(l)}$ bezeichnet werden. — Die vertikalen Auflagerdrücke seien $V^{(l)}$ (links) und $V^{(r)}$ (rechts), die horizontalen $H^{(l)}$ (links) und $H^{(r)}$ (rechts).

Bezüglich der Vorzeichen sollen folgende Regeln gelten: Die Normalkräfte N sind als Zugkräfte positiv, als Druckkräfte negativ. — Die Querkräfte $Q^{(o)}$ im Riegel sind positiv, wenn die Summe der links von dem zu untersuchenden Querschnitt angreifenden senkrechten Kraftkomponenten nach oben bzw. rechts nach unten wirkt. In den Ständern seien die Querkräfte $Q^{(l)}$ bzw. $Q^{(r)}$ positiv, wenn die Summe der unterhalb eines bestimmten Querschnittes wirkenden horizontalen Kraftkomponenten nach innen, oberhalb nach außen gerichtet ist, negativ dagegen, wenn sie unterhalb des Querschnittes nach außen, oberhalb nach innen wirkt. - Die Momente seien positiv, wenn sie die Systemteile nach innen verbiegen, negativ, wenn sie nach außen biegend wirken. Die unbekannten Eckmomente Xin Fig. 121 sind also positiv eingezeichnet. - Die senkrechten Auflagerdrücke V sind positiv, wenn sie nach oben, negativ, wenn sie nach unten gerichtet sind. Der Horizontalschub sei, nach innen gerichtet, positiv, nach außen gerichtet, negativ.

b) Ermittlung einer Unbekannten (X_c) . Für die Unbekannte X_c gilt die Gleichung:

Hierbei ist:

$$[c c. 2] = \int M_c M_{c.2} ds \frac{J'}{J}.$$
$$[c m. 2] = \int M_0 M_{c.2} ds \frac{J'}{J}.$$

 $X_c = -\frac{[c\,m\,.\,2]}{[c\,c\,.\,2]}\,.$

Für die Verschiebungen sind in gewohnter Weise die EJ'-fachen Werte eingesetzt worden, wobei J' irgendein Trägheitsmoment bedeutet. — Die Werte M_0 und M_c sind Momente am Grundsystem, und zwar infolge der gegebenen äußeren Belastung (M_0) bzw. infolge der Last $X_c = 1$ (M_c) . Die Größen $M_{c.2}$ sind Momente infolge der Belastung $X_{c.2} = 1$, d. h. infolge $X_c = 1$ am zweifach statisch unbestimmten Hauptsystem. Um diese Momente, d. h. um die $M_{c.2}$ -Fläche soll es sich zunächst handeln.

Der Belastungszustand $X_{c.2}$ = 1 (s. Fig. 122 und 123) kann als Einzellast 1 in Richtung der Unbekannten X_c am zweifach statisch unbestimmten System dargestellt werden (s. Fig. 122). Statt dessen kann man auch am Grundsystem die Lastengruppe $X_{c.2} = 1$ wirken lassen, d. h. die Lasten X_{ac} , X_{bc} und X_{cc} in den Angriffspunkten

und in Richtung der einzelnen Unbekannten (Fig. 123). Diese Einzellasten der Lastengruppe $X_{c.2} = 1$ haben folgende Werte (vgl. Bd. II erster Teil, § 16):

$$X_{cc} = 1,$$

$$X_{bc} = \left[-\frac{[bc.1]}{[bb.1]} \cdot X_{cc},$$

$$X_{ac} = -\frac{[ac]}{[aa]} \cdot X_{cc} - \frac{[ab]}{[aa]} \cdot X_{bc}.$$

Die in diesen Gleichungen vorkommenden Koeffizienten der Lasten X (Festwerte) setzen sich aus Verschiebungen des Grundsystems infolge der einzelnen Belastungen X = 1 zusammen. Diese Verschiebungen sind daher zunächst zu bestimmen.

In Fig. 124 bis 126 sind die Momentenflächen für die Belastungen $X_a = 1 \ (M_a$ -Fläche), $X_b = 1 \ (M_b$ -Fläche) und $X_c = 1 \ (M_c$ -Fläche) dargestellt. Nach der allgemeinen Gleichung:

118

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 119

$$[i\,k] = \int M_i \,M_k \,ds \,\frac{J'}{J}$$

erhält man für die Verschiebungen des Grundsystems die nachstehenden Werte:

Fig. 124. M_a-Fläche. Fig. 125. M_b-Fläche. Fig. 1

Fig. 126. M_c -Fläche.

[NB. Alle Momentenflächen sind geradlinig begrenzt und erstrecken sich über geradlinige Systemteile. Daher sind für die Auswertung der Integrale die in der Einleitung (s. S. 3, Tabelle I) angegebenen Formeln zu benutzen.]

$$[a a] = \frac{l}{3} (3 \omega + 1), \qquad [b b] = \frac{l}{3} (2 \omega + 1),$$
$$[a b] = -\frac{l}{6} (3 \omega - 1), \qquad [b c] = -\frac{l}{6} \cdot \omega,$$
$$[a c] = \frac{l}{2} \cdot \omega, \qquad [c c] = \frac{l}{3} \cdot 2 \omega.$$

Anmerkung: Als eine Kontrolle für die vorstehenden Werte kann man die Bedingung benutzen, daß die Summe aller Verschiebungen des Grundsystems gleich

$$[s] = \int M_s^2 ds \frac{J'}{J} = l (1+2 \omega)$$

sein muß. Dieser Wert ergibt sich ohne weiteres aus der M_s -Fläche, d. h. der Momentenfläche für die Belastung $X_s = 1$, welche sich als eine Lastengruppe aus Einzellasten 1 in Richtung sämtlicher Überzähligen X darstellt. Die M_s -Fläche besteht aus drei über Ständer und Riegel sich erstreckenden Rechtecken von der Ordinate 1. — Man erkennt, daß vorstehender Wert $[s\,s]$ sich auch aus den vorhin errechneten Verschiebungen ergibt; zu beachten ist dabei, daß die in den Elastizitätsgleichungen (Grundgleichungen) seitlich der Diagonale stehenden Verschiebungen $[a\,b], [a\,c], [b\,c]$ zweimal auftreten. —

Aus den Verschiebungen des Grundsystems ergeben sich die Festwerte wie folgt:

$$-\frac{[a b]}{[a a]} = \frac{3 \omega - 1}{2(3 \omega + 1)},$$
$$-\frac{[a c]}{[a a]} = -\frac{3 \omega}{2(3 \omega + 1)}$$

Hieraus ergibt sich:

$$[b \ b \ \cdot \ 1] = [b \ b] - \frac{[a \ b]}{[a \ a]} \cdot [a \ b] = \frac{l}{12} \cdot \frac{15 \ \omega^2 + 26 \ \omega + 3}{3 \ \omega + 1},$$
$$[b \ c \ \cdot \ 1] = [b \ c] - \frac{[a \ c]}{[a \ a]} \cdot [a \ b] = \frac{l}{12} \cdot \frac{\omega (3 \ \omega - 5)}{3 \ \omega + 1}.$$

Also erhält man für den dritten Festwert:

$$-\frac{[b c.1]}{[b c.1]} = -\frac{\omega (3 \omega - 5)}{15 \omega^2 + 26 \omega + 3}.$$

Nunmehr lassen sich die Einzellasten der Lastengruppe $X_{c.2} = 1$ angeben. Es ist:

$$\begin{split} X_{cc} &= 1, \\ X_{bc} &= -\frac{\omega \left(3 \ \omega - 5\right)}{15 \ \omega^{2} + 26 \ \omega + 3}, \\ X_{ac} &= -\frac{3 \ \omega}{2 \ (3 \ \omega + 1)} \cdot 1 + \frac{3 \ \omega - 1}{2 \ (3 \ \omega + 1)} \cdot \left(-\frac{\omega \left(3 \ \omega - 5\right)}{15 \ \omega^{2} + 26 \ \omega + 3}\right) \\ \chi_{bc} &= -\frac{\omega \left(9 \ \omega + 7\right)}{15 \ \omega^{2} + 26 \ \omega + 3}. \end{split}$$

Damit ist die $M_{c.2}$ -Fläche gegeben. sie ist in Fig. 127 dargestellt. Der Wert des Momentes an der Einspannstelle des rechten Ständers ergibt sich als Einfluß der drei Lasten X_{ac} , X_{bc} , X_{cc} in Hinblick auf Fig. 124 bis 126 wie folgt:

Fig. 127. *M*_{c.2}-Fläche.

Xac-Xbc+Xcc

$$1 \cdot X_{ac} + 1 \cdot X_{bc} + 1 \cdot X_{cc} = \frac{9 \,\omega^2 + 14 \,\omega + 3}{15 \,\omega^2 + 26 \,\omega + 3}$$

Unter Benutzung der $M_{c.2}$ -Fläche läßt sich der Wert X_c leicht berechnen. Für den Nennerwert [cc.2] ergibt sich

$$[c c 2] = \int M_c M_{c,2} ds \frac{J'}{J} = \frac{h'}{6} \cdot 1 \cdot \left(2 - \frac{\omega (3 \omega - 5)}{15 \omega^2 + 26 \omega + 3}\right) + \frac{h'}{6} \cdot 1 \left(2 \cdot \frac{9 \omega^2 + 14 \omega + 3}{15 \omega^2 + 26 \omega + 3} - \frac{\omega (9 \omega + 7)}{15 \omega^2 + 26 \omega + 3}\right)$$
$$[c c. 2] = l \cdot \frac{\omega (\omega + 2) (6 \omega + 1)}{15 \omega^2 + 26 \omega + 3}.$$

Auch der Zählerwert [cm.2] ist nunmehr für eine beliebige äußere Belastung leicht zu bestimmen. Wir besprechen jedoch die verschiedenen Belastungsfälle im folgenden Abschnitt II. Zuvor soll noch die Ermittlung der übrigen Momente angegeben werden

120

c) Allgemeine Gleichungen für die Eckmomente M_{IV} .

Unter Verwendung des vorhin zur Ermittlung der Unbekannten X_c benutzten Rechnungsganges bestimmen wir jetzt die einzelnen Eckmomente M. Das eben ermittelte Moment X_c bezeichnen wir mit M_i (s. Fig. 128) und schreiben statt:

$$X_c = -\frac{[c\,m\,.\,2]}{[c\,c\,.\,2]}$$

nunmehr die Gleichung:

$$M_{I} = -\frac{\mathfrak{Z}_{I}}{\mathfrak{R}_{I}} \ldots \ldots \ldots \ldots (92)$$

Entsprechend bezeichnen wir die Momentenfläche für den Belastungszustand $X_{c.2} = 1$, d. h. die $M_{c.2}$ -Fläche, jetzt als die Momentenfläche infolge der Belastung $M_{I.2} = 1$, d. h. als die

Fig. 128. $M_{I,2}$ -Fläche. $M_{II} = 1$

$$\begin{split} M_{II I} &= -\frac{\omega \left(3 \,\omega - 5\right)}{15 \,\omega^2 + 26 \,\omega + 3} \,, \\ M_{III I} &= -\frac{\omega \left(9 \,\omega + 7\right)}{15 \,\omega^2 + 26 \,\omega + 3} \,, \\ M_{IV I} &= \frac{9 \,\omega^2 + 14 \,\omega + 3}{15 \,\omega^2 + 26 \,\omega + 3} \,. \end{split}$$

 $M_{I.2}$ -Fläche. Die im folgenden allein in Frage kommenden Ordinaten dieser Momentenfläche in den Punkten *I*, *II*, *III*, *IV* sollen mit M_{III} , M_{IIII} , M_{IIII} , M_{IVI} bezeichnet werden, wobei also der erste Index den Ort, der zweite die Ursache, d. h. den Belastungszustand $M_{I.2} = 1$ angibt¹).

Der Nennerwert \mathfrak{N}_{f} ist als [c c. 2] bereits vorhin berechnet worden. Es gelten also die Gleichungen:

$$\left. \begin{array}{l} \Im_{I} = \int M_{0} M_{I,2} \, ds \, \frac{J'}{J}, \\ \Re_{I} = \int M_{I,2}^{2} \, ds \, \frac{J'}{J} = l \frac{\omega \, (\omega + 2) \, (6 \, \omega + 1)}{15 \, \omega^{2} + 26 \, \omega + 3}. \end{array} \right\} \quad .$$
 (93)

Das Einspannungsmoment am Fuß des rechten Ständers könnte nun auf dem gleichen Wege als Unbekannte X bestimmt werden. Es leuchtet jedoch ein, daß wegen der Symmetrie des Systems in bezug auf die senkrechte Mittellinie die Momentenfläche für die Belastung $M_{IV,2} = 1$ (Fig. 129) das Spiegelbild der $M_{I,2}$ -Fläche (Fig. 128) ist. Da auch die Momentenflächen der Fig. 124 bis 126 in gleicher Form, nur um die Mittellinie gedreht erscheinen, so erkennt man, daß für den Nennerwert \Re_{IV} der gleiche Ausdruck gilt wie für den Nennerwert \Re_{I} . Es ist somit:

¹) Anmerkung: Wir haben hier eine Abweichung von der sonst in diesem Buche benutzten Bezeichnungsweise, insofern nämlich die Angriffspunkte der zu bestimmenden Größen (Momente M) nicht mit Buchstaben, sondern mit Zahlen, allerdings mit römischen Zahlen, bezeichnet sind. Die Rücksicht auf die bei den gewöhnlich benutzten Bezeichnungen aufgestellten Grundsätze ließ dies in dem vorliegenden Falle zweckmäßig erscheinen.

Fig. 129. $M_{IV,2}$ -Fläche. $M_{IIV} = \frac{9 \omega^2 + 14 \omega + 3}{15 \omega^2 + 26 \omega + 3}$, $M_{IIIV} = -\frac{\omega (9 \omega + 7)}{15 \omega^2 + 26 \omega + 3}$, $M_{IIIIV} = -\frac{\omega (3 \omega - 5)}{15 \omega^2 + 26 \omega + 3}$, $M_{IV} IV = 1$.

Fig. 130.

$$M_{IV} = -\frac{3_{IV}}{\mathfrak{N}_{IV}} \dots \dots (94)$$

Hier ist:

$$\mathfrak{N}_{IV} = l \frac{\omega (\omega + 2)(6 \omega + 1)}{15 \omega^2 + 26 \omega + 3},$$

$$\mathfrak{Z}_{IV} = \int M_0 M_{IV,2} ds \frac{J'}{J}.$$
(95)

 $\begin{array}{c} {\rm Um \ auch \ f\ddot{u}r \ die \ oberen \ Eck-} \\ {\rm momente \ } M_{II} \ und \ M_{III} \ entsprechende \\ {\rm Gleichungen \ zu \ erhalten, \ wählen \ wir \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm die \ Angriffspunkte \ der \ Uberzähligen \ X \\ {\rm der \ art \ der \ art \ der \ der$

der Bestimmung der Verschiebungen des Grundsystems und finden durch entsprechende Vertauschung:

Hieraus ergeben sich die Festwerte:

$$-\frac{[ab]}{[aa]} = \frac{1}{4}, \\ -\frac{[ac]}{[aa]} = -\frac{3}{4}. \\ [bb.1] = \frac{l}{24}(15\omega + 8), \\ [bc.1] = -\frac{l}{24}(9\omega - 4), \\ -\frac{[bc.1]}{[bb.1]} = \frac{9\omega - 4}{15\omega + 8}.$$

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 123

Hiernach haben die Einzellasten der Lastengruppe $X_{c.2} = 1$ folgende Werte:

$$X_{cc} = 1, X_{bc} = \frac{9\omega - 4}{15\omega + 8}, X_{ac} = -\frac{9\omega + 7}{15\omega + 8}.$$

Daraus ergibt sich für das Einspannungsmoment am Fuß des rechten Ständers beim Belastungszustand $X_{c,2} = 1$:

$$1 \cdot X_{ac} - 1 \cdot X_{bc} + 1 \cdot X_{cc} = -\frac{3 \omega - 5}{15 \omega + 8}$$

Damit ist die $M_{c.2}$ -Fläche gegeben und der Wert X_c leicht zu berechnen.

Für den Nennerwert [cc.2] findet man:

$$[cc.2] = \frac{h'}{2} \cdot 1 \cdot \left(1 - \frac{3\omega - 5}{15\omega + 8}\right) + \frac{l}{6} \cdot 1 \cdot \left(2 + \frac{9\omega - 4}{15\omega + 8}\right)$$
$$= l \frac{(\omega + 2)(6\omega + 1)}{15\omega + 8}.$$

Den Zählerwert [cm.2] berechnen wir für die verschiedenen Belastungsfälle im folgenden Abschnitt II.

Für die vorhin berechnete Größe X_c führen wir nunmehr die Bezeichnung M_{III} ein; die $M_{III.2}$ -Fläche, d. h. die Momentenfläche für die Belastung M_{III} = 1 am 2 fach statisch unbestimmten Hauptsystem, ist in Fig. 131 dargestellt. Die im folgenden in Frage kommenden vier Eckordinaten bezeichnen wir mit M_{IIII} , M_{IIIIII} , $M_{IIIIIII}$, M_{IVIII} . Das gesuchte Moment M_{III} ergibt sich aus der Gleichung:

$$M_{III} = -\frac{\Im_{III}}{\Re_{III}} \cdot \cdot \cdot (96)$$

Hierin ist:

Fig. 131. $M_{III.2}$ -Fläche. $M_{IIII} = -\frac{9.\omega + 7}{15.\omega + 8};$ $M_{II III} = \frac{9.\omega - 4}{15.\omega + 8};$ $M_{III III} = 1;$ $M_{IV III} = -\frac{3.\omega - 5}{15.\omega + 8}.$

$$\Re_{III} = l \frac{(\omega + 2) (6 \omega + 1)}{15 \omega + 8}, \\ \Im_{III} = \int M_0 M_{III.2} ds \frac{J'}{J}.$$
 (97)

Das symmetrisch gelegene Eckmoment M_{II} finden wir durch entsprechende Vertauschung der Rechnungsgrößen. Die $M_{II,2}$ -Fläche

Fig. 132. $M_{II,2}$ -Fläche. $M_{III} = -\frac{3 \omega - 5}{15 \omega + 8};$ $M_{IIIII} = 1;$ $M_{IIIII} = \frac{9 \omega - 4}{15 \omega + 8};$ $M_{IV II} = -\frac{9 \omega + 7}{15 \omega + 8}.$ ist das Spiegelbild der $M_{III.2}$ -Fläche (s. Fig. 132). Der Nennerwert \Re_{II} ist gleich \Re_{III} . Es ist also:

 $M_{II} = -\frac{\Im_{II}}{\Re_{II}} \bigg\} \quad . \quad . \quad (98)$

Hierin ist:

$$\Re_{II} = l \cdot \frac{(\omega + 2) (6 \omega + 1)}{15 \omega + 8}, \\ \Im_{II} = \int M_0 M_{II,2} ds \frac{J'}{J}.$$
 (99)

Bevor wir nun die Berechnung der Zählerwerte besprechen, geben wir zunächst noch an, wie sich aus den Eckmomenten M_I bis M_{IV} beliebige andere statische Größen ermitteln lassen.

d) Allgemeine Gleichungen für beliebige statische Größen.

Sind die vier Eckmomente gefunden, so kann man den Riegel sowie jeden der beiden Ständer einzeln als einfache Balken betrachten, die durch irgendwelche gegebene äußere Lasten und an den Enden durch die Eckmomente beansprucht sind. Eine statische Größe S setzt sich somit zusammen aus dem Wert S_0 , d. h. dem Einfluß der gegebenen äußeren Belastung beim einfachen Balken und dem Beitrag der Eckmomente. Der Wert S_0 ist an dem jeweils betrachteten einfachen Balken zu bestimmen. Dieser einfache Balken ist also gewissermaßen das Grundsystem eines zweifach unbestimmten Systems, bei dem die beiden Endmomente die hier als bereits berechnet angesehenen Unbekannten darstellen. Das Grundsystem, welches zur Berechnung der Eckmomente benutzt worden ist, kommt hier nicht in Frage.

Danach ergibt sich:

Momente:

Im Riegel:

$$M^{(0)} = M_0^{(0)} + M_{II} \frac{x}{l} + M_{III} \left(1 - \frac{x}{l} \right); \quad . \quad . \quad . \quad (100)$$

(x ist vom rechten Ende des Riegels aus zu messen).In den Ständern:

$$M^{(l)} = M_0^{(l)} + M_{II} \frac{x}{h} + M_I \left(1 - \frac{x}{h} \right),$$

bzw. $M^{(r)} = M_0^{(r)} + M_{III} \frac{x}{h} + M_{IV} \left(1 - \frac{x}{h} \right).$ (101)

(x ist von unten aus zu messen.)

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 125 Auflagerdrücke:

$$V^{(l)} = V_{0}^{(l)} - \frac{M_{II} - M_{III}}{l},$$

$$V^{(r)} = V_{0}^{(r)} + \frac{M_{II} - M_{III}}{l},$$

$$H^{(l)} = H_{0}^{(l)} + \frac{M_{I} - M_{II}}{h},$$

$$H^{(r)} = H_{0}^{(r)} + \frac{M_{II} - M_{III}}{h}.$$
(102)

Normalkräfte:

$$N^{(l)} = -V^{(l)},$$

$$N^{(r)} = -V^{(r)},$$

$$N^{(0)} = \begin{cases} N_0^{(0)} - \frac{M_I - M_{II}}{h} & \text{oder} \\ N_0^{(0)} - \frac{M_{II} - M_{III}}{h}. \end{cases}$$
(103)

Querkräfte:

$$Q^{(0)} = Q_0^{(0)} - \frac{M_{II} - M_{III}}{l},
 Q^{(l)} = Q_0^{(l)} + \frac{M_{I} - M_{II}}{h},
 Q^{(r)} = Q_0^{(r)} + \frac{M_{II'} - M_{III}}{h}.$$
(104)

II. Untersuchung verschiedener Belastungsfälle.

a. Belastung des Riegels.

Zur Ermittelung der Zählerwerte 3 gelten die vorhin angegebenen Gleichungen von der Form (Moment M_i):

$$\mathfrak{Z}_I = \int \boldsymbol{M}_0 \, \boldsymbol{M}_{I.2} \, ds \, \frac{J'}{J}.$$

Da es sich hier um eine vertikale Belastung des Riegels handelt, so treten Momente M_0 (Grundsystem) nur im Riegel auf. Die Ständer erhalten lediglich Normalkräfte, liefern also keinen Beitrag zu dem vorstehenden Ausdruck. — Die $M_{I.2}$ -Fläche interessiert uns also gleichfalls nur insoweit, als sie sich über den Riegel erstreckt. Auf dieser Strecke hat sie stets die Form eines Trapezes mit den Endordinaten M_{III} und M_{IIIII} , die wir kurz mit M' und M'' bezeichnen

Fig. 133.

wollen (s. Fig. 133). Somit erhalten wir nach der Entwickelung in der Einleitung jeden Wert 3 in der Form:

$$3 = \mathbf{M'} \varphi_1 + \mathbf{M''} \cdot \varphi_2$$

Die Werte φ sind je nach der äußeren Belastung verschieden.

Es ergeben sich somit für die einzelnen Eckmomente unter Beachtung der Fig. 128, 129, 131, 132, welche die Momentenflächen infolge der jeweiligen Belastungen M = 1 am zweifach statisch unbestimmten Hauptsystem darstellen, die folgenden Gleichungen:

Momente am Fuß der Ständer:

$$\begin{split} \boldsymbol{M}_{I} &= -\frac{3}{\mathfrak{N}_{I}} = -\frac{1}{\mathfrak{N}_{I}} \bigg[-\frac{\omega \left(3\,\omega - 5 \right)}{15\,\omega^{2} + 26\,\omega + 3} \cdot \varphi_{1} \\ &- \frac{\omega \left(9\,\omega + 7 \right)}{15\,\omega^{2} + 26\,\omega + 3} \varphi_{2} \bigg]. \end{split}$$

Für \mathfrak{N}_{I} wurde der Ausdruck gefunden:

$$\mathfrak{M}_{I} = l \frac{\omega (\omega + 2) (6 \omega + 1)}{15 \omega^{2} + 26 \omega + 3}.$$

Wir führen die folgende Abkürzung ein:

Dann wird:

$$\mathfrak{N}_{I} = l \frac{\omega \cdot n}{15 \, \omega^{2} + 26 \, \omega + 3}.$$

Also:

$$M_{I} = \frac{1}{l} \frac{(3\omega - 5)\varphi_{1} + (9\omega + 7)\varphi_{2}}{n}$$

In gleicher Weise findet man, da $\mathfrak{N}_{IP} = \mathfrak{N}_{I}$ ist, für das entsprechende Moment M_{IP} :

$$M_{1r} = \frac{1}{l} \frac{(9 \omega + 7) \varphi_1 + (3 \omega - 5) \varphi_2}{n}$$

Momente am Riegel:

$$M_{II} = -\frac{3_{II}}{\mathfrak{R}_{II}} = -\frac{1}{\mathfrak{R}_{II}} \left[1 \cdot \varphi_1 + \frac{9 \,\omega - 4}{15 \,\omega + 8} \cdot \varphi_2 \right].$$

Da

$$\Re_{II} = l \frac{(6\omega + 1)(\omega + 2)}{15\omega + 8} = l \cdot \frac{n}{15\omega + 8}$$

so wird

$$\boldsymbol{M}_{II} = -\frac{1}{l} \cdot \frac{(15 \, \omega + 8) \, \varphi_1 + (9 \, \omega - 4) \, \varphi_2}{n} \, .$$

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 127

Ebenso findet man für das entsprechende Moment M_{III} :

$$M_{III} = -\frac{1}{l} \frac{(9 \, \omega - 4) \, \varphi_1 + (15 \, \omega + 8) \, \varphi_2}{n}.$$

Für die in den früheren Gleichungen (102), (103), (104) auftretenden Differenzen $M_I - M_{II}$, $M_{IV} - M_{III}$ und $M_{II} - M_{III}$ ergeben sich aus vorstehenden Gleichungen die Werte:

$$\frac{M_{I} - M_{II}}{M_{IV} - M_{III}} \bigg\} = \frac{3}{l} \cdot \frac{\varphi_{1} + \varphi_{2}}{\omega + 2},$$

$$M_{II} - M_{III} = -\frac{6}{l} \cdot \frac{\varphi_{1} - \varphi_{2}}{6\omega + 1}.$$

Mit diesen Werten lassen sich nach den früheren Gleichungen (100) bis (104) alle statischen Größen angeben (s. die folgende Zusammenstellung).

Ergebnis.

Allgemeine Gleichungen der Eckmomente und sonstigen statischen Größen bei beliebiger Belastung des Riegels.

Eckmomente:

Beliebige Momente:

a) im Riegel:
$$M^{(0)} = M_0^{(0)} + M_{II} \frac{x}{l} + M_{III} \left(1 - \frac{x}{l}\right)$$
,
b) in den Ständern: $M^{(l)} = M_{II} \frac{x}{h} + M_I \left(1 - \frac{x}{h}\right)$,
 $M^{(r)} = M_{III} \frac{x}{h} + M_{IV} \left(1 - \frac{x}{h}\right)$.
Auflemme definition

Auflagerdrücke:

$$V^{(l)} = V_0^{(l)} + \frac{6}{l^2} \cdot \frac{\varphi_1 - \varphi_2}{6\omega + 1},$$

$$V^{(r)} = V_0^{(r)} - \frac{6}{l_2} \cdot \frac{\varphi_1 - \varphi_2}{6\omega + 1},$$

$$H^{(l)} = H^{(r)} = H = \frac{3}{hl} \cdot \frac{\varphi_1 + \varphi_2}{\omega + 2}.$$
(108)

Normalkräfte:

Querkräfte:

$$\begin{array}{c}
Q^{(0)} = Q_0^{(0)} + \frac{6}{l^2} \cdot \frac{\varphi_1 - \varphi_2}{6\omega + 1}, \\
Q^{(l)} = Q^{(r)} = H = -\frac{3}{hl} \cdot \frac{\varphi_1 + \varphi_2}{\omega + 2}.
\end{array}$$
(110)

b. Belastung der Ständer.

Bei Belastung eines Ständers durch wagerechte Lasten wählen wir das Grundsystem so, daß der belastete Ständer einen einfachen Balken darstellt (Fig. 134 u. 135). Das in Fig. 134 dargestellte Grundsystem ist das gleiche wie bei den bisherigen Untersuchungen. Als Unbekannte sind die Eckmomente M_{II} , M_{III} und M_{IV} anzusehen. — Will man das Moment M_I als Unbekannte berechnen, so ist im Grundsystem bei I ein Gelenk einzulegen. Da an den Enden des belasteten (rechten) Ständers bereits Gelenke liegen, so muß die Ecke bei II, wenn das Grundsystem starr sein soll, steif bleiben. Man berechnet also M_I aus dem in Fig. 135 dargestellten Grundsystem.

Bei einer wagerechten Belastung des rechten Ständers dieser Grundsysteme tritt der in der Einleitung erwähnte zweite Fall ein, daß die M_0 -Fläche sich nicht nur über den belasteten einfachen Balken (Ständer), sondern auch über andere Systemteile erstreckt, nämlich hier über den anderen Ständer und den Riegel. Den Teil der M_0 -Fläche, der sich über den belasteten Ständer erstreckt, bezeichnen wir mit M'_0 -Fläche, den anderen Teil mit M''_0 -Fläche. — Die M''_0 -Fläche ist nur beeinflußt durch den oberen Auflagerdruck P'des belasteten Ständers und hat die in Fig. 134 und 135 angegebenen Ordinaten.

Die Werte der unbekannten Eckmomente setzen sich also hier aus zwei Teilen $M' = -\frac{3'}{n}$ und $M'' = -\frac{3''}{n}$ zusammen. Darin ist 3'

128

aus der \mathfrak{M}_0 '-Fläche unter Anwendung der in der Einleitung gegebenen Gleichungen zu ermitteln. Es ergibt sich allgemein dafür, wie bisher, die Gleichung:

$$\mathfrak{Z}' = \mathfrak{M}' \varphi_1 + \mathfrak{M}'' \varphi_2.$$

Hier bedeuten M' und M'' die an den Enden des belasteten Ständers oben bzw. unten, d. h in den Punkten III und IV, infolge der einzelnen Momente M=1 am zweifach statisch unbestimmten Hauptsystem auftretenden Momente (vgl. Fig. 128, 129, 131, 132).

Durch Einsetzen der entsprechenden Werte für M' und M'' findet man:

$$3'_{I} = \frac{-\omega (9\omega + 7) \varphi_{1} + (9\omega^{2} + 14\omega + 3) \varphi_{2}}{15\omega^{2} + 26\omega + 3},$$

$$3'_{II} = \frac{(9\omega - 4) \varphi_{1} - (9\omega + 7) \varphi_{2}}{15\omega + 8},$$

$$3'_{III} = \frac{(15\omega + 8) \varphi_{1} - (3\omega - 5) \varphi_{2}}{15\omega + 8},$$

$$3'_{III} = \frac{-\omega (3\omega - 5) \varphi_{1} + (15\omega^{2} + 26\omega + 3) \varphi_{2}}{15\omega^{2} + 26\omega + 3}.$$

Durch Division mit den Nennerwerten R findet man daraus:

$$M'_{I} = \frac{\omega (9\omega + 7) \varphi_{1} - (9\omega^{2} + 14\omega + 3) \varphi_{2}}{\omega \cdot n \cdot l},$$

$$M'_{II} = -\frac{(9\omega - 4) \varphi_{1} - (9\omega + 7) \varphi_{2}}{nl},$$

$$M'_{III} = -\frac{(15\omega + 8) \varphi_{1} - (3\omega - 5) \varphi_{2}}{nl},$$

$$M'_{IV} = \frac{\omega (3\omega - 5) \varphi_{1} - (15\omega^{2} + 26\omega + 3) \varphi_{2}}{\omega n l}.$$

Auch für die aus den M''_0 -Flächen sich ergebenden Werte \mathfrak{Z}'' lassen sich geschlossene Formeln anschreiben.

$$\begin{split} 3_{I}^{"} &= \int M_{0}^{"} M_{I\cdot 2} ds \frac{J'}{J} \\ &= -\frac{l}{6} P' h \frac{-\omega \left(15\omega - 3\right)}{15\omega^{2} + 26\omega + 3} - \frac{h'}{6} P' h \frac{9\omega^{2} + 36\omega + 3}{15\omega^{2} + 26\omega + 3} \\ &= -\frac{P' h}{2} \omega l \frac{(3\omega + 1) \left(\omega + 2\right)}{15\omega^{2} + 26\omega + 3}. \\ 3_{II}^{"} &= \int M_{0}^{"} M_{II\cdot 2} \cdot ds \frac{J'}{J} \\ &= \frac{h'}{6} P' h \frac{-6\omega + 10 + 15\omega + 8}{15\omega + 8} \\ \text{Pirlet, Statik. II. 2.} \end{split}$$

$$= \frac{P'h}{2} \frac{3 \omega l (\omega + 2)}{15 \omega + 8}.$$

$$3''_{III} = \int M''_0 M_{III \cdot 2} ds \frac{J'}{J}$$

$$= \frac{h'}{6} P'h \cdot \frac{-18 \omega - 14 + 9 \omega - 4}{15 \omega + 8}$$

$$= -\frac{P'h}{2} \frac{3 \omega (\omega + 2) l}{15 \omega + 8}.$$

$$3''_{IV} = \int M''_0 M_{IV \cdot 2} ds \frac{J'}{J}$$

$$= \frac{h'}{6} P'h \frac{18 \omega^2 + 28 \omega + 6 - 9 \omega^2 - 7 \omega}{15 \omega^2 + 26 \omega + 3}$$

$$= \frac{P'h}{2} \frac{\omega l (3 \omega + 1) (\omega + 2)}{15 \omega^2 + 26 \omega + 3}.$$

Daraus ergibt sich:

$$M_{II}'' = -\frac{3_{II}''}{\mathfrak{N}_{II}} = \frac{P'h}{2} \cdot \frac{3\omega+1}{6\omega+1},$$

$$M_{II}'' = -\frac{3_{II}''}{\mathfrak{N}_{II}} = -\frac{P'h}{2} \cdot \frac{3\omega}{6\omega+1},$$

$$M_{III}'' = \frac{3_{III}''}{\mathfrak{N}_{III}} = \frac{P'h}{2} \cdot \frac{3\omega}{6\omega+1},$$

$$M_{IV}'' = \frac{3_{IV}''}{\mathfrak{N}_{IV}} = -\frac{P'h}{2} \frac{3\omega+1}{6\omega+1}.$$

Durch Addition der M' und M'' erhält man die im folgenden angegebenen Gesamtwerte M.

Ergebnis.

Allgemeine Gleichungen der Eckmomente und sonstiger statischer Größen bei beliebiger Belastung des rechten Ständers.

Eckmomente:

$$M_{I} = \frac{\omega (9\omega + 7) \varphi_{1} - (9\omega^{2} + 14\omega + 3) \varphi_{2}}{n\omega l} + \frac{P'h}{2} \frac{3\omega + 1}{6\omega + 1},$$

$$M_{II} = \frac{-\omega (9\omega - 4) \varphi_{1} + \omega (9\omega + 7) \varphi_{2}}{n\omega l} - \frac{P'h}{2} \frac{3\omega}{6\omega + 1},$$

$$M_{III} = \frac{-\omega (15\omega + 8) \varphi_{1} + \omega (3\omega - 5) \varphi_{2}}{n\omega l} + \frac{P'h}{2} \frac{3\omega}{6\omega + 1},$$

$$M_{IV} = \frac{\omega (3\omega - 5) \varphi_{1} - (15\omega^{2} + 26\omega + 3) \varphi_{2}}{n\omega l} - \frac{P'h}{2} \frac{3\omega + 1}{6\omega + 1}.$$
(111)

130

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 131

Hieraus ergibt sich:

$$M_{II} - M_{II} = \frac{3 \left[\omega \varphi_1 - (\omega + 1) \varphi_2 \right]}{\omega (\omega + 2) l} + \frac{P' h}{2}$$
$$M_{IV} - M_{III} = \frac{3 \left[\omega \varphi_1 - (\omega + 1) \varphi_2 \right]}{\omega (\omega + 2) l} - \frac{P' h}{2},$$
$$M_{II} - M_{III} = \frac{6 (\varphi_1 + \varphi_2)}{(6 \omega + 1) l} - P' h \frac{3 \omega}{6 \omega + 1}.$$

Setzen wir diese Werte in die Gleichungen (102) bis (104) ein, so findet man:

Auflagerdrücke:

$$V^{(l)} = -\frac{6}{l^2} \frac{\varphi_1 + \varphi_2}{6\omega + 1} + \frac{P'h}{l} \frac{3\omega}{6\omega + 1},$$

$$V^{(r)} = +\frac{6}{l^2} \frac{\varphi_1 + \varphi_2}{6\omega + 1} - \frac{P'h}{l} \cdot \frac{3\omega}{6\omega + 1},$$

$$H^{(l)} = \frac{3}{hl} \cdot \frac{\omega \varphi_1 - (\omega + 1)\varphi_2}{\omega (\omega + 2)} + \frac{P'}{2}.$$

$$H^{(r)} = \frac{3}{hl} \cdot \frac{\omega \varphi_1 - (\omega + 1)\varphi_2}{\omega (\omega + 2)} + \frac{P'}{2} - P.$$

Normalkräfte:

$$N^{(l)} = -V^{(l)}, \quad N^{(r)} = -V^{(r)}, \quad N^{(0)} = -H^{(l)}.$$
 (113)

Querkräfte:

$$\begin{array}{l} Q^{(0)} = V^{(l)}, \\ Q^{(l)} = H^{(l)} \text{ am unbelasteten Ständer,} \\ Q^{(r)} = H^{(r)} - P_x \text{ am belasteten Ständer,} \end{array} \right\} \quad . \quad . \quad (114)$$

wenn P_x die äußeren Lasten auf der Strecke x, vom unteren Auflager aus gemessen, bedeuten.

Anmerkung: Ist der linke Ständer belastet, so ergeben sich durch entsprechende Vertauschungen folgende Werte:

$$M_{I} = \frac{\omega (3 \omega - 5) \varphi_{1} - (15 \omega^{2} + 26 \omega + 3) \varphi_{2}}{\omega n l} - \frac{P' h}{2} \frac{3 \omega + 1}{6 \omega + 1},$$

$$M_{II} = \frac{-(15 \omega + 8) \varphi_{1} + (3 \omega - 5) \varphi_{2}}{n l} + \frac{P' h}{2} \frac{3 \omega}{6 \omega + 1},$$

$$M_{III} = \frac{-(9 \omega - 4) \varphi_{1} + (9 \omega + 7) \varphi_{2}}{n l} - \frac{P' h}{2} \frac{3 \omega}{6 \omega + 1},$$

$$M_{III} = \frac{\omega (9 \omega + 7) \varphi_{1} - (9 \omega^{2} + 14 \omega + 3) \varphi_{2}}{\omega n l} + \frac{P' h}{2} \frac{3 \omega}{6 \omega + 1},$$

$$W^{(l)} = -V^{(r)} = \frac{6}{l^{2}} \frac{\varphi_{1} + \varphi_{2}}{(6 \omega + 1)} - \frac{P' h}{l} \frac{3 \omega}{6 \omega + 1},$$

$$H^{(r)} = \frac{3}{h l} \frac{\omega \varphi_{1} - (\omega + 1) \varphi_{2}}{\omega (\omega + 2)} + \frac{P'}{2},$$

$$H^{(l)} = \frac{3}{h l} \frac{\omega \varphi_{1} - (\omega + 1) \varphi_{2}}{\omega (\omega + 2)} + \frac{P'}{2} - P.$$

$$9^{*}$$

Vollwandige Systeme mit geradlinigen Achsen.

Durch Addition der Gleichungen (111) bis (114) zu den Gleichungen (111a) bis (114a), ergeben sich die Werte für die gleiche Belastung beider Ständer. Man findet:

$$M_{I} = M_{IV} = \frac{2}{l} \frac{\omega \cdot \varphi_{1} - (2\omega + 3)}{\omega (\omega + 2)} \varphi_{2},$$

$$M_{II} = M_{III} = -\frac{2}{l} \frac{2 \varphi_{1} - \varphi_{2}}{\omega + 2}.$$
 (111 b)

$$H^{(l)} = H^{(r)} = -P + P' + \frac{6}{hl} \frac{\omega \varphi_1 - (\omega + 1) \varphi_2}{\omega (\omega + 2)}, \quad \{ 112b \}$$

$$\begin{cases} N^{(l)} = N^{(r)} = 0, \\ N^{(0)} = -H - P. \end{cases}$$
 (113b)

$$Q^{(0)} = 0,$$

 $Q^{(l)} = Q^{(r)} = H - P_x \text{ [vgl. Anm. zu Gl. (114)].}$

Durch die Gleichungen (111) bis (114), (111a) bis (114a), (111b) bis (114b) sind die Werte für alle Belastungsarten gegeben, wenn wir nach den Ausführungen in der Einleitung (s. § 1) die entsprechenden Werte für φ_1 , φ_2 und P'einsetzen.

c. Untersuchung besonderer Belastungsfälle.

Mit Hilfe der angegebenen Formeln lassen sich jetzt für beliebige Laststellung alle in Frage kommenden Größen in einfacher Weise anschreiben. Die Ergebnisse für einige häufiger vorkommende

Belastungsfälle sind in nachstehender Tabelle angegeben.

Zur Erläuterung sei der Fall einer Einzellast P an beliebiger Stelle des Riegels (Fig. 136) kurz besprochen. Es ist nach Gleichung 7a in §1 (hier ist l' = l):

$$\varphi_1 = \frac{Pl^2}{6}c_1,$$

Fig. 136. $\varphi_2 = \frac{Pl^2}{6}c_2.$

Setzen wir diese Werte in die Gleichung (106) ein, so finden wir für die Eckmomente:

$$M_{I} = \frac{Pl(3\omega - 5)c_{1} + (9\omega + 7)c_{2}}{n},$$
$$M_{II} = -\frac{\bullet}{6} \frac{Pl(15\omega + 8)c_{1} + (9\omega - 4)c_{2}}{n},$$

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 133

$$M_{III} = -\frac{Pl}{6} \frac{(9 \omega - 4) c_1 + (15 \omega + 8) c_2}{n},$$
$$M_{IV} = \frac{Pl}{6} \frac{(9 \omega + 7) c_1 + (3 \omega - 5) c_2}{n}.$$

Hieraus ergeben sich beliebige andere Momente mit Hilfe der Gleichung (107). Zur Bestimmung der Auflagerdrücke setzen wir:

$$\varphi_{1}-\varphi_{2}\!=\!\frac{Pl^{2}}{6}(c_{1}-c_{2}); \hspace{0.1in} \varphi_{1}\!+\!\varphi_{2}\!=\!\frac{Pl^{2}}{6}(c_{1}\!+\!c_{2})$$

in Gleichung (108) ein und erhalten:

$$V^{(l)} = P\left(\frac{\xi}{l} + \frac{c_1 - c_2}{6\omega + 1}\right),$$
$$V^{(r)} = P\left(1 - \frac{\xi}{l} - \frac{c_1 - c_2}{6\omega + 1}\right),$$
$$H = \frac{Pl}{2h} \cdot \frac{c_1 + c_2}{\omega + 2}.$$

Damit sind auch die Normal- und Querkräfte Gleichung (109) und (110) gegeben.

d. Temperaturänderungen.

Bei Temperaturänderungen sind die unbekannten Eckmomente M_I , M_{II} , M_{III} , M_{III} , M_{III} , wieder nach den Gleichungen (92), (94), (96), (98) zu bestimmen. Die Zählerwerte \mathfrak{Z}_I , \mathfrak{Z}_{II} , \mathfrak{Z}_{III} , \mathfrak{Z}_{III} , sind dann nach den Angaben in § 1 zu ermitteln.

Es soll zunächst eine ungleichmäßige Temperaturänderung angenommen werden. Die Unterschiede zwischen den Änderungen am Innen- und Außemand seien Δt , die Änderung im Schwerpunkt sei t. Die Werte t und Δt seien für jeden Stab verschieden, aber auf ganzer Länge des Stabes konstant; für den linken Ständer heißen sie $t^{(l)}$ und $\Delta t^{(l)}$, für den rechten Ständer $t^{(r)}$ und $\Delta t^{(r)}$, für den Riegel $t^{(0)}$ und $\Delta t^{(0)}$.

Der Einfluß der Werte t und Δt soll getrennt ermittelt werden. Der für t sich ergebende Wert gibt dann zugleich den Einfluß einer gleichmäßigen Erwärmung um t ($t^{(l)}$, $t^{(r)}$, $t^{(0)}$) an.

Ist ε , der Ausdehnungskoeffizient für Wärme, konstant und bedeutet d_h die Querschnittshöhe der Ständer, d_l diejenige des Riegels, so findet man nach Gleichung (5), S. 6 als Einfluß der Werte $\Delta t^{(l)}$, $\Delta t^{(r)}$, $\Delta t^{(0)}$:

$$\begin{split} \boldsymbol{\beta}_{I} &= \boldsymbol{E} \cdot \boldsymbol{J}_{l} \cdot \boldsymbol{\varepsilon} \left(\frac{\boldsymbol{M}_{II} + \boldsymbol{M}_{III}}{2} \cdot \frac{\boldsymbol{\Delta} t^{(l)}}{d_{h}} \cdot \boldsymbol{h} + \frac{\boldsymbol{M}_{IIII} + \boldsymbol{M}_{IIII}}{2} \cdot \frac{\boldsymbol{\Delta} t^{(r)}}{d_{h}} \cdot \boldsymbol{h} \\ &+ \frac{\boldsymbol{M}_{III} + \boldsymbol{M}_{IIII}}{2} \cdot \frac{\boldsymbol{\Delta} t^{(0)}}{d_{l}} \cdot \boldsymbol{l} \right), \end{split}$$

Vollwandige Systeme mit geradlinigen Achsen.

$$\begin{split} \Im_{II} &= E \cdot J_{l} \cdot \varepsilon \left(\frac{M_{III} + M_{IIII}}{2} \cdot \frac{\Delta t^{(l)}}{d_{h}} \cdot h + \frac{M_{IIIII} + M_{IIIII}}{2} \cdot \frac{\Delta t^{(r)}}{d_{h}} \cdot h \right. \\ &\quad + \frac{M_{IIII} + M_{IIIII}}{2} \cdot \frac{\Delta t^{(0)}}{d_{l}} \cdot l \right), \\ \Im_{III} &= E \cdot J_{l} \cdot \varepsilon \left(\frac{M_{IIII} + M_{IIIII}}{2} \cdot \frac{\Delta t^{(l)}}{d_{h}} \cdot h + \frac{M_{IIIIII} + M_{IIIIII}}{2} \cdot \frac{\Delta t^{(r)}}{d_{h}} \cdot h \right. \\ &\quad + \frac{M_{IIIII} + M_{IIIIII}}{2} \cdot \frac{\Delta t^{(0)}}{d_{l}} \cdot l \right), \\ \Im_{III} &= E \cdot J_{l} \cdot \varepsilon \left(\frac{M_{IIII} + M_{IIIII}}{2} \cdot \frac{\Delta t^{(l)}}{d_{h}} \cdot h + \frac{M_{IIIIII} + M_{IIIIII}}{2} \cdot \frac{\Delta t^{(0)}}{d_{l}} \cdot l \right), \\ \Im_{III} &= E \cdot J_{l} \cdot \varepsilon \left(\frac{M_{IIII} + M_{IIIIII}}{2} \cdot \frac{\Delta t^{(l)}}{d_{h}} \cdot h + \frac{M_{IIIIII} + M_{IIIIII}}{2} \cdot \frac{\Delta t^{(r)}}{d_{h}} \cdot h \right) \\ &\quad + \frac{M_{IIIII} + M_{IIIIII}}{2} \cdot \frac{\Delta t^{(r)}}{d_{h}} \cdot l \right). \end{split}$$

Die in diesen Gleichungen vorkommenden Summenwerte der Momente ergeben sich aus den Momentenflächen (Fig. 128, 129, 131, 132), man findet:

Setzt man diese Werte in obige Gleichungen ein und dividiert durch die entsprechenden Nenner:

$$\mathfrak{N}_{I} = \mathfrak{N}_{IV} = l \frac{\omega (\omega + 2) (6 \omega + 1)}{15 \omega^{2} + 26 \omega + 3} = \frac{\omega \cdot l \cdot n}{15 \omega^{2} + 26 \omega + 3},$$

$$\mathfrak{N}_{II} = \mathfrak{N}_{III} = l \frac{(\omega + 2) (6 \omega + 1)}{15 \omega + 8} = \frac{l \cdot n}{15 \omega + 8}.$$

so erhält man nach gehöriger Vereinfachung:

134

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 135

$$\begin{split} \mathbf{M}_{I} &= -\frac{E \varepsilon}{2 n} \left\{ \frac{J_{h}}{d_{h}} [(12 \ \omega^{2} + 31 \ \omega + 3) \ \Delta t^{(l)} + (7 \ \omega + 3) \ \Delta t^{(r)}] \\ &- \frac{J_{l}}{d_{l}} 2 \ (6 \ \omega + 1) \ \Delta t^{(0)} \right\}, \\ \mathbf{M}_{II} &= -\frac{E \varepsilon}{2 n} \left\{ \frac{J_{h}}{d_{h}} [\omega \ (12 \ \omega + 13) \ \Delta t^{(l)} - 11 \ \omega \ \Delta t^{(r)}] \\ &+ \frac{J_{l}}{d_{l}} 4 \ (6 \ \omega + 1) \ \Delta t^{(0)} \right\}, \\ \mathbf{M}_{III} &= -\frac{E \varepsilon}{2 n} \left\{ \frac{J_{h}}{d_{h}} [- 11 \ \omega \cdot \Delta t^{(l)} + \omega \ (12 \ \omega + 13) \ \Delta t^{(r)}] \\ &+ \frac{J_{l}}{2 n} 4 \ (6 \ \omega + 1) \ \Delta t^{(0)} \right\}, \end{split}$$
(115a)

$$M_{IT} = -\frac{E \varepsilon}{2 n} \left\{ \frac{J_{h}}{d_{h}} [(7 \omega + 3) \Delta t^{(l)} + (12 \omega^{2} + 31 \omega + 3) \Delta t^{(r)}] - \frac{J_{l}}{d_{l}} \cdot 2 (6 \omega + 1) \Delta t^{(0)} \right\}.$$

Daraus findet man:

$$\begin{split} M_{I} - M_{II} &= M_{II} - M_{III} = -\frac{3}{2} \cdot \frac{1}{\omega + 2} E \varepsilon \left\{ \frac{J_{h}}{d_{h}} (\Delta t^{(l)} + \Delta t^{(r)}) \\ &- \frac{J_{l}}{d_{l}} \cdot 2 \Delta t^{(0)} \right\}, \\ M_{II} - M_{III} &= -\frac{6 \omega}{6 \omega + 1} \cdot E \varepsilon \frac{J_{h}}{d_{h}} (\Delta t^{(l)} - \Delta t^{(r)}). \end{split}$$

Da in diesem Falle die Werte $S_0=0\,$ sind, so erhält man nach Gleichung (102):

$$V^{(l)} = -V^{(r)} = \frac{1}{l} \cdot \frac{6\omega}{6\omega+1} \cdot E \varepsilon \cdot \frac{J_{h}}{d_{h}} (\Delta t^{(l)} - \Delta t^{(r)}),$$

$$H^{(l)} = H^{(r)} = H = -\frac{1}{h} \cdot \frac{3}{2(\omega+2)} \cdot E \varepsilon \cdot \left\{ \frac{J_{h}}{d_{h}} (\Delta t^{(l)} + \Delta t^{(r)}) - \frac{J_{l}}{d_{l}} \cdot 2 \Delta t^{(0)} \right\}.$$
(115b)

Den Einfluß der Wärmeänderungen $t^{(l)}$, $t^{(r)}$, $t^{(0)}$ in der Systemachse finden wir nach der Gleichung (5), § 1. Da die Normalkräfte $N_{i.r}$, d. i. hier $N_{I.2}$, $N_{II.2}$, $N_{III.2}$, $N_{IV.2}$ für jede Stablänge konstant sind, so findet man:

$$\begin{split} & \mathfrak{Z}_{I} = E \cdot J_{l} \cdot \varepsilon \left[(N_{II.2}^{(l)} \ t^{(l)} + N_{I.2}^{(r)} \ t^{(r)}) \ h + N_{I.2}^{(0)} \ \cdot t^{(0)} \cdot l \right], \\ & \mathfrak{Z}_{II} = E \cdot J_{l} \cdot \varepsilon \left[(N_{II.2}^{(l)} \ t^{(l)} + N_{II.2}^{(r)} \ t^{(r)}) \ h + N_{II.2}^{(0)} \ \cdot t^{(0)} \cdot l \right], \\ & \mathfrak{Z}_{III} = E \cdot J_{l} \cdot \varepsilon \left[(N_{II.2}^{(l)} \ t^{(l)} + N_{II.2}^{(r)} \ t^{(r)}) \ h + N_{II.2}^{(0)} \cdot t^{(0)} \cdot l \right], \\ & \mathfrak{Z}_{II} = E \cdot J_{l} \cdot \varepsilon \left[(N_{IV.2}^{(l)} \ t^{(l)} + N_{II.2}^{(r)} \ t^{(r)}) \ h + N_{II.2}^{(0)} \cdot t^{(0)} \cdot l \right]. \end{split}$$

Die Werte $N_{I.2}$, $N_{II.2}$, $N_{III.2}$, $N_{IV.2}$, d. h. die Normalkräfte für die Belastungszustände $M_{I.2} = 1$, $M_{II.2} = 1$, $M_{III.2} = 1$, $M_{IV.2} = 1$ sind aus den Werten der Eckmomente dieser Belastungszustände nach folgenden Gleichungen zu ermitteln:

$$\begin{split} & N_{I\!I,2}^{(l)} = -N_{I\!I,2}^{(r)} = \\ & -N_{I\!V,2}^{(l)} = N_{I\!V,2}^{(r)} = \\ & N_{I\!V,2}^{(0)} = N_{I\!V,2}^{(r)} = -\frac{1}{l} \cdot \frac{6\,\omega\,(\omega+2)}{15\,\omega^2+26\,\omega+3}, \\ & N_{I,2}^{(0)} = N_{I\!V,2}^{(0)} = -\frac{1}{h} \cdot \frac{3\,(6\,\omega+1)(\omega+1)}{15\,\omega^2-26\,\omega+3}, \\ & N_{I\!I,2}^{(l)} = -N_{I\!I\!I,2}^{(r)} = \\ & -N_{I\!I\!I,2}^{(l)} = N_{I\!I\!I,2}^{(r)} = \\ & N_{I\!I\!I,2}^{(0)} = N_{I\!I\!I,2}^{(0)} = \frac{1}{l} \cdot \frac{6\,(\omega+2)}{15\,\omega+8}, \\ & N_{I\!I,2}^{(0)} = N_{I\!I\!I,2}^{(0)} = \frac{1}{h} \cdot \frac{3\,(6\,\omega-1)}{15\,\omega+8}. \end{split}$$

Damit findet man aus obigen Gleichungen nach Division durch die Nenner \mathfrak{N}_I und \mathfrak{N}_{II} :

$$\begin{split} M_{I} &= -E \varepsilon \left[\frac{J_{h}}{l} \cdot \frac{6 \omega}{6 \omega - 1} (t^{(l)} - t^{(r)}) - \frac{J_{l}}{h} \cdot \frac{3 (\omega + 1)}{\omega (\omega + 2)} t^{(0)} \right], \\ M_{II} &= -E \varepsilon \left[\frac{J_{h}}{l} \cdot \frac{6 \omega}{6 \omega - 1} (t^{(l)} - t^{(r)}) + \frac{J_{l}}{h} \cdot \frac{3}{\omega + 2} t^{(0)} \right], \\ M_{III} &= -E \varepsilon \left[-\frac{J_{h}}{l} \cdot \frac{6 \omega}{6 \omega - 1} (t^{(l)} - t^{(r)}) + \frac{J_{l}}{h} \cdot \frac{3}{\omega + 2} t^{(0)} \right], \\ M_{IV} &= -E \varepsilon \left[-\frac{J_{h}}{l} \cdot \frac{6 \omega}{6 \omega + 1} (t^{(l)} - t^{(r)}) - \frac{J_{l}}{h} \cdot \frac{3 (\omega + 1)}{\omega (\omega + 2)} t^{(0)} \right]. \end{split}$$
(116a)

Daraus findet man:

$$\begin{split} M_{I} - M_{II} &= M_{II} - M_{III} = \frac{E \varepsilon J_{l}}{h} \cdot \frac{3 (2 \omega + 1)}{\omega (\omega + 2)} t^{(0)}, \\ M_{II} - M_{III} &= -\frac{E \varepsilon J_{h}}{l} \cdot \frac{12 \omega}{6 \omega + 1} (t^{(l)} - t^{(r)}). \end{split}$$

Damit ergeben sich:

$$V^{(l)} = -V^{(r)} = \frac{E \cdot \varepsilon \cdot J_h}{l^2} \cdot \frac{12 \omega}{6 \omega + 1} (t^{(l)} - t^{(r)}),$$

$$H^{(l)} = H^{(r)} = H = \frac{E \cdot \varepsilon \cdot J_l}{h^2} \cdot \frac{3 (2 \omega + 1)}{\omega (\omega + 2)} t^{(0)}.$$
(116b)

Durch Summierung der Gleichungen (115a) und (116a), bzw. (115b) und (116b) erhält man die Gesamtwerte für ungleichmäßige Erwärmung. Die Normal- und Querkräfte ergeben sich dann aus den Gleichungen:

e. Widerlagerverschiebungen.

Bei Verschiebungen der Widerlager sind die Zählerwerte 3 zu ermitteln nach der Gleichung (6), S. 6, man erhält also:

$$\begin{array}{l} 3_{I} = - E J_{l} \sum L_{I,2} \quad [l \, w.2], \\ 3_{II} = - E J_{l} \sum L_{II,2} \quad [l \, w.2], \\ 3_{III} = - E J_{l} \sum L_{III,2} \quad [l \, w.2], \\ 3_{IIF} = - E J_{l} \sum L_{IV,2} \quad [l \, w.2]. \end{array}$$

Darin bedeuten $L_{I,2}$, $L_{II,2}$, $L_{III,2}$, $L_{IV,2}$ die Auflagerreaktionen bei den Belastungszuständen $M_{I,2} = 1$, $M_{II,2} = 1$, $M_{III,2} = 1$, $M_{IV,2} = 1$; die Werte [lw.2] sind die Verschiebungen der Auflagerpunkte in den Richtungen der jeweiligen Auflagerreaktionen an den zugehörigen statisch unbestimmten Hauptsystemen.

Wir betrachten getrennt drei Arten von Widerlagerverschiebungen, nämlich:

a) Verschiebungen in Richtung der Kräfte V (senkrecht),

c) Verdrehungen " " " Momente M_I und M_{IV} .

a) Bei Verschiebungen der Widerlager in senkrechter Richtung werden nur Beanspruchungen des Systems hervorgerufen, wenn die beiden Punkte I und IV sich um verschiedene Werte senken; gleichmäßige Senkungen beider Punkte sind ohne Einfluß. Es kommt also nur die relative Senkung eines Punktes, etwa des

Punktes I, gegenüber dem anderen Lagerpunkte, dem Punkte IV, für die folgenden Entwickelungen in Frage.

Es verschiebe sich der Punkt I in Richtung der Kraft $V^{(l)}$ (nach oben) um das Maß Δh gegenüber dem Punkte IV (Fig. 137). Es ist also hier zu setzen:

$$[lw.2] = \Delta h.$$

Als einzige Auflagerkraft kommt hier
$$V^{(l)}$$
 in Frage; für die einzelnen Belastungszustände ist diese:

$$V_{I,2}^{(l)} = -V_{IV,2}^{(l)} = -\frac{M_{III} - M_{IIII}}{l} = -\frac{1}{l} \cdot \frac{6\omega(\omega+2)}{15\omega^2 + 26\omega + 3};$$
$$V_{II,2}^{(l)} = -V_{III,2}^{(l)} = -\frac{M_{IIII} - M_{IIIII}}{l} = -\frac{1}{l} \cdot \frac{6(\omega+2)}{15\omega + 8}.$$

Fig. 137.

Д
Setzt man diese Werte in obige Gleichung für \mathfrak{Z} ein und dividiert zugleich durch den entsprechenden Nenner \mathfrak{N} , so findet man nach gehöriger Vereinfachung:

 $M_{-} - M_{-} = 0$

$$M_I = M_{II} = -M_{III} = -M_{III} = -\frac{EJ_I}{l^2} \frac{6}{6\omega+1} \cdot \Delta h$$
. (118a)

Daraus findet man mit

und

$$M_{II} - M_{III} = -\frac{EJ_l}{l^2} \cdot \frac{12}{6\omega + 1} \Delta h:$$

$$V^{(l)} = V^{(r)} = \frac{E \cdot J_l}{l^3} \cdot \Delta h \cdot \frac{12}{6\omega + 1},$$

$$H^{(l)} = H^{(r)} = 0.$$
(118b)

Damit sind auch die übrigen statischen Größen gegeben.

b) Eine horizontale Verschiebung der Widerlager verringert den Abstand der Punkte I und IV um eine Strecke Δx (Fig. 138); es ist dann $[lw.2] = \Delta x$ zu setzen. Die Auflagerkraft $H^{(l)}$ beträgt für die einzelnen Belastungszustände:

$$\begin{split} H_{I,2}^{(l)} &= H_{IV,2}^{(l)} = \frac{1}{h} \cdot \frac{3 \left(6 \,\omega + 1\right) \left(\omega + 1\right)}{15 \,\omega^2 + 26 \,\omega + 3} \,, \\ H_{II,2}^{(l)} &= H_{III,2}^{(l)} = -\frac{1}{h} \cdot \frac{3 \left(6 \,\omega + 1\right)}{15 \,\omega + 8} \,. \end{split}$$

Damit finden wir die Eckmomente:

$$M_{II} = M_{III} = \frac{E \cdot J_{l}}{h l} \cdot \Delta x \cdot \frac{3 (\omega + 1)}{\omega (\omega + 2)},$$

$$M_{III} = M_{III} = -\frac{E \cdot J_{l}}{h \cdot l} \cdot \Delta x \cdot \frac{3}{\omega + 2}.$$
 (119a)

Es ist also:

$$M_{I} - M_{II} = \frac{E \cdot J_{l}}{h l} \cdot \Delta x \cdot \frac{3(2 \omega + 1)}{\omega (\omega + 2)},$$
$$M_{II} - M_{III} = 0.$$

Damit ergeben sich die Auflagerdrücke:

$$V^{(l)} = V^{(r)} = 0, H^{(l)} = H^{(r)} = \frac{E \cdot J_l}{h^2 l} \cdot \Delta x \cdot \frac{3(2\omega + 1)}{\omega(\omega + 2)}.$$
 (119b)

Hiernach lassen sich die übrigen statischen Größen ohne weiteres angeben.

c) Wir behandeln noch den Fall, daß Verdrehungen der Widerlagerpunkte I und IV eintreten. Die Werte der Drehungen seien $\Delta \varphi_{I}$ und $\Delta \varphi_{IF}$ (Fig. 139).

Die in Richtung dieser Verschiebungen wirkenden Auflagerreaktionen der statisch unbestimmten Hauptsysteme sind die Momente M_{II} und M_{IVI} , M_{III} und M_{IVII} , M_{III} und M_{IVIII} , M_{IIV} und M_{IVIV} (vgl. Fig. 128, 129, 131, 132). Wir finden für die Zählerwerte also:

$$\begin{split} \mathfrak{Z}_{I} &= -EJ_{I}(M_{II} \ \varDelta \varphi_{I} + M_{II'I} \ \varDelta \varphi_{IV}),\\ \mathfrak{Z}_{II} &= -EJ_{I}(M_{III} \ \varDelta \varphi_{I} + M_{IVII} \ \varDelta \varphi_{IV}),\\ \mathfrak{Z}_{III} &= -EJ_{I}(M_{IIII} \ \varDelta \varphi_{I} + M_{IVIII} \ \varDelta \varphi_{IV}),\\ \mathfrak{Z}_{III} &= -EJ_{I}(M_{IIII} \ \varDelta \varphi_{I} + M_{IVIII} \ \varDelta \varphi_{IV}). \end{split}$$

Durch Division mit den entsprechenden Nennern ergibt sich nach gehöriger Vereinfachung:

$$M_{I} = E J_{i} \frac{(15\omega^{2} + 26\omega + 3) \varDelta \varphi_{i} + (9\omega^{2} + 14\omega + 3) \varDelta \varphi_{ir}}{n \omega l},$$

$$M_{II} = -E J_{i} \frac{(3\omega - 5) \varDelta \varphi_{I} + (9\omega + 7) \varDelta \varphi_{Ir}}{n l},$$

$$M_{III} = -E J_{i} \frac{(9\omega + 7) \varDelta \varphi_{I} + (3\omega - 5) \varDelta \varphi_{Ir}}{n l},$$

$$M_{III} = -E J_{i} \frac{(9\omega^{2} + 14\omega + 3) \varDelta \varphi_{i} + (15\omega^{2} + 26\omega + 3) \varDelta \varphi_{Ir}}{n \omega l}.$$
(120a)

Daraus findet man:

$$M_{I} - M_{II} = M_{IV} - M_{III} = E J_{i} \cdot \frac{3(\omega+1)}{\omega(\omega+2)} \cdot \frac{1}{l} (\Delta \varphi_{I} + \Delta \varphi_{IV}),$$

$$M_{II} - M_{III} = E J_{i} \frac{6}{6\omega+1} \cdot \frac{1}{l} (\Delta \varphi_{I} - \Delta \varphi_{IV}).$$

Damit ergeben sich als Auflagerdrücke:

$$V^{(l)} = -V^{(r)} = -E \cdot J_{l} \frac{6}{6\omega+1} \frac{1}{l^{2}} (\Delta \varphi_{I} - \Delta \varphi_{IP}),$$

$$H^{(l)} = H^{(r)} = H = E \cdot J_{l} \frac{3(\omega+1)}{\omega(\omega+2)} \cdot \frac{1}{hl} (\Delta \varphi_{I} + \Delta \varphi_{IP}).$$
(120b)

Die übrigen statischen Größen sind dadurch gleichfalls leicht anzugeben.

Tabelle Beiderseits eingespannte symmetrische Rechteckrahmen. Tabelle der

In dieser Tabelle ist:

Lfd.Nr.	Belastungsfall	Momente
1		$M_{I} = \frac{Pl}{6} \frac{(3\omega - 5)c_{1} + (9\omega + 7)c_{2}}{n}$ $M_{II} = -\frac{Pl(15\omega + 8)c_{1} + (9\omega - 4)c_{2}}{6}$ $M_{III} = -\frac{Pl(9\omega - 4)c_{1} + (15\omega + 8)c_{2}}{6}$ $M_{III} = -\frac{Pl(9\omega + 7)c_{1} + (3\omega - 5)c_{2}}{n}$
2	$\frac{p_{1}}{\frac{1}{2}}$	$M_{I} = M_{IV} = \frac{Pl}{8} \cdot \frac{1}{\omega + 2}$ $M_{II} = M_{III} = -\frac{Pl}{4} \cdot \frac{1}{\omega + 2} = -2M_{I}$
3		$M_{I} = M_{II} = \frac{Pl}{\omega + 2} \cdot \frac{\xi}{l} \left(1 - \frac{\xi}{l} \right)$ $M_{II} = M_{III} = -2 \frac{Pl}{\omega + 2} \frac{\xi}{l} \left(1 - \frac{\xi}{l} \right)$
4		$M_{I} = \frac{pl^{2}}{24} \cdot \frac{(3\omega - 5)k_{1} + (9\omega + 7)k_{2}}{n}$ $M_{II} = -\frac{pl^{2}}{24} \cdot \frac{(15\omega + 8)k_{1} + (9\omega - 4)k_{2}}{n}$ $M_{III} = -\frac{pl^{2}}{24} \cdot \frac{(9\omega - 4)k_{1} + (15\omega + 8)k_{2}}{n}$ $M_{IV} = \frac{pl^{2}}{24} \cdot \frac{(9\omega + 7)k_{1} + (3\omega - 5)k_{2}}{n}$
5	r.	$M_{I} = M_{IV} = \frac{p l^{2}}{12} \cdot \frac{1}{\omega + 2}$ $M_{II} = M_{III} = -\frac{p l^{2}}{12} \frac{2}{\omega + 2}$

XI. Untersuchung besonderer Belastungsfälle. Ergebnisse. $\omega = \frac{h'}{l} = \frac{h}{l} \frac{J_l}{J_b}; \quad n = (6 \ \omega + 1) \ (\omega + 2).$

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$V^{(o)} = P\left(\frac{\xi}{l} + \frac{c_1 - c_2}{6\omega + 1}\right)$ $V^{(o)} = P\left(1 - \frac{\xi}{l} - \frac{c_1 - c_2}{6\omega + 1}\right)$	$\frac{Pl}{2h} \cdot \frac{c_1 + c_2}{\omega + 2}$	
$V^{(t)} = V^{(r)} = \frac{P}{2}$	$\frac{3}{8}\frac{Pl}{\hbar}\frac{1}{\omega+2}$	Moment unter der Einzellast: $M_{max}=rac{Pl}{4}rac{\omega+1}{\omega+2}$
$V^{(i)} = V^{(r)} = P$	$3\frac{Pl}{\hbar}\frac{1}{\omega+2}\frac{\xi}{l}\left(1-\frac{\xi}{l}\right)$	
$V^{(l)} = \frac{p l}{2} \left[\left(\frac{\xi}{l} \right)^2 + \frac{1}{2} \frac{k_1 - k_2}{6\omega + 1} \right]$ $V^{(r)} = \frac{p l}{2} \left[\frac{\xi}{l} \left(2 - \frac{\xi}{l} \right) - \frac{1}{2} \frac{k_1 - k_2}{6\omega + 1} \right]$	$+rac{pl^2}{8\hbar}\cdotrac{k_1+k_2}{\omega+2}$	
$V^{(l)} = V^{(r)} = \frac{pl}{2}$	$\frac{pl^2}{4\hbar}\cdot\frac{1}{\omega+2}$	Größtmoment in Balkenmitte: $\frac{pl^2}{24} \cdot \frac{3\omega+2}{\omega+2}$

Lfd.Nr.	Belastungsfall	Momente
6		$M_{I} = \frac{pl^{2}}{24} \frac{(3\omega - 5)(k_{1} - k_{1}') + (9\omega + 7)(k_{2} - k_{2}')}{n}$ $M_{II} = -\frac{pl^{2}}{24} \frac{(15\omega + 8)(k_{1} - k_{1}') + (9\omega - 4)(k_{2} - k_{2}')}{n}$ $M_{III} = -\frac{pl^{2}}{24} \cdot \frac{(9\omega - 4)(k_{1} - k_{1}') + (15\omega + 8)(k_{2} - k_{2}')}{n}$ $M_{IV} = \frac{pl^{2}}{24} \cdot \frac{(9\omega + 7)(k_{1} - k_{1}') + (3\omega - 5)(k_{2} - k_{2}')}{n}$
7		$M_{I} = \frac{pl^{3}}{360} \cdot \frac{(3\omega - 5)r_{1} + (9\omega + 7)r_{2}}{n}$ $M_{II} = -\frac{pl^{2}}{360} \cdot \frac{(15\omega + 8)r_{1} + (9\omega - 4)\cdot r_{2}}{n}$ $M_{III} = -\frac{pl^{2}}{360} \cdot \frac{(9\omega - 4)r_{1} + (15\omega + 8)r_{2}}{n}$ $M_{IV} = \frac{pl^{2}}{360} \cdot \frac{(9\omega + 7)r_{1} + (3\omega - 5)\cdot r_{2}}{n}$
8		$M_{I} = \frac{pl^{2}}{120} \cdot \frac{31\omega + 7}{n}$ $M_{II} = -\frac{pl^{2}}{120} \cdot \frac{11\omega + 8}{n}$ $M_{III} = -\frac{pl^{2}}{120} \cdot \frac{19\omega + 12}{n}$ $M_{IV} = \frac{pl^{3}}{120} \cdot \frac{29\omega + 3}{n}$
9		$M_{I} = M_{IV} = \frac{5}{96} p l^{2} \cdot \frac{1}{\omega + 2}$ $M_{II} = M_{III} = -\frac{5}{48} p l^{2} \cdot \frac{1}{\omega + 2} = -2 M_{I}$
10		$M_{I} = \frac{M}{2} \cdot \frac{7\omega + 3}{n}$ $M_{II} = -\frac{M}{2} \cdot \frac{11\omega}{n}$ $M_{III} = -\frac{M}{2} \cdot \frac{13\omega + 4}{n}$ $M_{IV} = \frac{M}{2} \cdot \frac{5\omega - 1}{n}$

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$\begin{split} \overline{V^{(0)}} &= \frac{pl}{2} \left[\left(\frac{\xi}{l} \right)^2 - \left(\frac{\xi'}{l} \right)^2 \\ &+ \frac{1}{2} \frac{(k_1 - k_1') - (k_2 - k_2')}{6\omega + 1} \right] \\ V^{(r)} &= \frac{pl}{2} \left[2 \left(\frac{\xi}{l} - \frac{\xi'}{l} \right) \\ &- \left(\frac{\xi}{l} \right)^2 + \left(\frac{\xi'}{l} \right)^2 - \frac{1}{2} \frac{(k_1 - k_1') - (k_2 - k_2')}{6\omega + 1} \right] \end{split}$	$\frac{pl^2}{8h} \cdot \frac{(k_1 - k_1') + (k_2 - k_2')}{\omega + 2}$	
$V^{(t)} = \frac{pl}{6} \left[\left(\frac{\xi}{l}\right)^2 + \frac{1}{10} \frac{r_1 - r_2}{6\omega + 1} \right]$ $V^{(r)} = \frac{pl}{6} \left[\frac{\xi}{l} \left(3 - \frac{\xi}{l}\right) - \frac{1}{10} \frac{r_1 - r_2}{6\omega + 1} \right]$	$\frac{pl^2}{120h} \cdot \frac{r_1 + r_2}{\omega + 2}$	
$V^{(t)} = \frac{pl}{20} \cdot \frac{20\omega + 3}{6\omega + 1}$ $V^{(t)} = \frac{pl}{20} \cdot \frac{40\omega + 7}{6\omega + 1}$	$\frac{pl}{8\hbar}\cdot\frac{1}{\omega+2}$	Größtmoment: $M_{max} = V^{(l)} \cdot \frac{2}{3} \cdot x$ $+ M_{II};$ darin ist $x = l \sqrt{\frac{V^{(0)} \cdot 2}{p \cdot l}}$
$V^{(l)} = V^{(r)} = \frac{pl}{4}$	$rac{5}{32} \cdot rac{pl^2}{\hbar} \cdot rac{1}{\omega+2}$	$M_{max}=rac{pl^2}{48}\cdotrac{4\omega+3}{\omega+2}$
$V^{(l)} = -V^{(r)} = \frac{M}{l} \cdot \frac{6\omega}{6\omega+1}$	$\frac{3}{2}\frac{M}{h}\cdot\frac{1}{\omega+2}$	

i.

144

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$V^{(l)} = -V^{(r)} = \frac{Ph}{l} \left(\frac{\xi}{h}\right)^2 \frac{3\omega}{6\omega+1}$	$ \frac{H^{(t)}}{=\frac{P}{2}\left[\frac{\omega \cdot c_1 - (\omega + 1)c_2}{\omega + 2} + \frac{\xi}{\hbar}\right]} \\ H^{(r)} = -P + H^{(t)} $	
$V^{(l)} = -V^{(r)} = \frac{3\omega}{6\omega+1} \cdot \frac{Ph}{l}$	$H_l = \frac{P}{2}$ $H_r = -\frac{P}{2}$	
0	$ \begin{aligned} H^{(t)} &= H^{(r)} \\ &= -P\left[\left(1 - \frac{\xi}{h}\right) \\ -\frac{\omega c_1 - (\omega + 1) c_2}{\omega + 2}\right] \end{aligned} $	·
$V^{(l)} = -V^{(r)}$ $= -\frac{ph^2}{4l} \cdot \frac{\omega}{6\omega+1} \left[k_1 + k_2 - 6\left(\frac{\xi}{h}\right)^2 \right]$	$=\frac{ph}{8}\left[\frac{\omega k_1 - (\omega+1)k_2}{\omega+2} + 2\left(\frac{\xi}{h}\right)^2\right]$ $H^{(r)} = -p \cdot \xi + H^{(l)}$	
Pirlet, Statik. II. 2.	;	10

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$V^{(i)} = -V^{(r)} = -\frac{ph^2}{4l} \cdot \frac{\omega}{6\omega+1} \left\{ (k_1 - k_1') + (k_2 - k_2') - 6 \left[\left(\frac{\xi}{h}\right)^2 - \left(\frac{\xi'}{h}\right)^2 \right] \right\}$	$H^{(l)} = \frac{p h}{8} \left\{ \frac{\omega (k_1 - k_1)}{+ 2 \left[\left(\frac{\xi}{h} \right)^2 + 2 \left(\frac{\xi}{h} \right)^2 + $	$ \left \frac{(\omega+1)(k_2-k_3')}{\omega+2} - \left(\frac{\xi'}{h}\right)^2 \right] $ $+ H^{(0)} $
$V^{(l)} = -V^{(r)} = \frac{ph^2}{l} \cdot \frac{\omega}{6\omega+1}$	$H^{(n)} = \frac{ph}{8} \cdot \frac{2\omega + 3}{\omega + 2}$ $H^{(r)} = -ph + H^{(r)}$ $= -\frac{ph}{8} \cdot \frac{6\omega + 13}{\omega + 2}$	$M_{max} = rac{H^{(r)^2}}{2p} + M_{IV}$
0	$ \begin{split} H^{(i)} &= H^{(r)} \\ &= -\frac{ph}{2}\frac{\xi}{\bar{h}}\left(2 - \frac{\xi}{\bar{h}}\right) \\ &+ \frac{ph}{4}\frac{\omega k_1 - (\omega + 1)k_2}{\omega + 2} \end{split} $	
0	$H^{(a)} = H^{(r)}$ $= -\frac{p\hbar}{4} \cdot \frac{2\omega + 5}{\omega + 2}$	$M_{max} = rac{p \hbar^2}{96} \cdot rac{4 \omega^2 + 20 \omega + 27}{(\omega + 2)^2}$
		10*

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$V^{(l)} = - V^{(r)}$ $= \frac{ph^2}{60} \frac{\omega}{(6\omega+1)l} \left[r_1 + r_2 - 30 \left(\frac{\xi}{h}\right)^2 \right]$	$H^{(i)} = \frac{ph}{120} \left[\frac{\omega r_1 - (\omega + 1)r_2}{\omega + 2} + 10 \left(\frac{\xi}{h} \right)^2 \right]$ $H^{(i)} = H^{(i)} - P$	
$V^{(l)} = -V^{(r)} = \frac{ph^2}{4} \cdot \frac{\omega}{(6\omega+1)l}$	$H^{(l)} = \frac{ph}{40} \cdot \frac{3\omega + 4}{\omega + 2}$ $H^{(r)} = -\frac{ph}{2} + H^{(l)}$ $= -\frac{ph}{40} \cdot \frac{17\omega + 36}{\omega + 2}$	M_{max} $= H^{(t)} \cdot \frac{2}{3} x + M_{III},$ worin $x = h \sqrt{\frac{H^{(t)} \cdot 2}{ph}}$ $= h \sqrt{\frac{3\omega + 4}{20 (\omega + 2)}}$
0	$-\frac{ph}{60}\left[10\frac{\xi}{h}\left(3-\frac{\xi}{h}\right)-\frac{\omega\cdot r_1-(\omega+1)r_2}{\omega+2}\right]$	
0	$-\frac{ph}{20}\cdot\frac{7\omega+16}{\omega+2}$	

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 149

Lfd. Nr.	Belastungsfall	Momente
23	$p' = \frac{p}{h}$	$M_{I} = \frac{Pa}{6} \cdot \frac{\omega (9\omega + 7) s_{1} + (9 \omega^{2} + 14 \omega + 3) s_{2}}{n} \\ + \frac{Pa}{2} \cdot \frac{3\omega + 1}{6\omega + 1} \\ M_{II} = -\frac{Pa}{6} \cdot \frac{\omega (9\omega - 4) s_{1} + \omega (9\omega + 7) s_{2}}{n} \\ - \frac{Pa}{2} \cdot \frac{3\omega}{6\omega + 1} \\ M_{III} = -\frac{Pa}{6} \cdot \frac{\omega (15\omega + 8) s_{1} + \omega (3\omega - 5) s_{2}}{n} \\ + \frac{Pa}{2} \cdot \frac{3\omega}{6\omega + 1} \\ M_{IV} = \frac{Pa}{6} \cdot \frac{\omega (3\omega - 5) s_{1} + (15\omega^{2} + 26\omega + 3) s_{2}}{n} \\ - \frac{Pa}{2} \cdot \frac{3\omega + 1}{6\omega + 1} \\ \end{bmatrix}$
24	Temperaturänderung	$\begin{split} M_{I} &= -\frac{E\varepsilon}{2n} \left\{ \frac{Jh}{dh} \left[(12\omega^{2} + 31\omega + 3)\Delta t^{(l)} \right. \\ &+ (7\omega + 3)\Delta t^{(r)} \right] - \frac{J_{l}}{d_{l}} 2(6\omega + 1)\Delta t^{(o)} \right\} \\ &- E\varepsilon \left[\frac{J_{h}}{l} \cdot \frac{6\omega}{6\omega + 1} (t^{(l)} - t^{(r)}) - \frac{J_{l}}{h} \cdot \frac{3(\omega + 1)}{\omega(\omega + 2)} t^{(o)} \right] \\ M_{II} &= -\frac{E\varepsilon}{2n} \left\{ \frac{J_{h}}{d_{h}} \left[\omega \left(12\omega + 13 \right)\Delta t^{(l)} - 11\omega\Delta t^{(r)} \right] \right. \\ &+ \frac{J_{l}}{d_{l}} \cdot 4(6\omega + 1)\Delta t^{(o)} \right\} \\ &- E\varepsilon \left[\frac{J_{h}}{l} \cdot \frac{6\omega}{6\omega + 1} (t^{(l)} - t^{(r)}) + \frac{J_{l}}{h} \cdot \frac{3}{\omega + 2} t^{(o)} \right] \\ M_{III} &= -\frac{E\varepsilon}{2n} \left\{ \frac{J_{h}}{d_{h}} \left[-11\omega\cdot\Delta t^{(l)} + \omega(12\omega + 13)\Delta t^{(r)} \right] \right. \\ &+ \frac{J_{l}}{d_{l}} \cdot 4(6\omega + 1)\Delta t^{(o)} \right\} \\ &- E\varepsilon \left[-\frac{J_{h}}{l} \cdot \frac{6\omega}{6\omega + 1} (t^{(1)} - t^{(r)}) + \frac{J_{l}}{h} \cdot \frac{3}{\omega + 2} t^{(o)} \right] \\ M_{III} &= -\frac{E\varepsilon}{2n} \left\{ \frac{J_{h}}{d_{h}} \left[(7\omega + 3)\Delta t^{(l)} + (12\omega^{2} + 31\omega + 3)\Delta t^{(r)} \right] \right. \\ &- E\varepsilon \left[-\frac{J_{h}}{d_{l}} \cdot \frac{6\omega}{6\omega + 1} (t^{(l)} - t^{(r)}) - \frac{J_{l}}{h} \cdot \frac{3(\omega + 1)}{\omega(\omega + 2)} \cdot t^{(o)} \right] \\ \end{split}$

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$V^{(l)} = \frac{Pa}{l} \frac{\omega}{6\omega + 1} \left[3 - (s_1 - s_2) \right]$ $V^{(r)} = P - \frac{Pa}{l} \frac{\omega}{6\omega + 1} \left[3 - (s_1 - s_2) \right]$	$H^{(0)} = \frac{Pa}{2h} \left[1 + \frac{\omega \cdot s_1 + (\omega + 1) \cdot s_2}{\omega + 2} \right]$ $H^{(0)} = H^{(r)}$	Bei $V^{(r)}$ ergibt sich hier eine Abwei- chung von Gl. (112), da diese nur für hori- zontale Lasten auf- gestellt ist. Hier tritt zu dem Wert nach Gl. (112) noch der Wert P hinzu.
$V^{(l)} = -V^{(r)} = \frac{1}{l} \cdot \frac{6\omega}{6\omega+1} \cdot E\varepsilon \cdot \frac{J_{k}}{d_{k}}$ $+ \frac{E\varepsilon \cdot J_{k}}{l^{2}} \cdot \frac{12\omega}{6\omega+1} (t^{(l)} - \frac{1}{k} \cdot \frac{3}{2(\omega+2)} \cdot E\varepsilon \left\{ \frac{J_{k}}{d_{l}} - \frac{J_{l}}{d_{l}} \cdot 2\Delta t^{(\omega)} \right\} + \frac{E\varepsilon \cdot J_{l}}{h^{2}} \cdot \frac{3(2\omega)}{6(\omega)}$	$(\Delta t^{(l)} - \Delta t^{(r)})$ $t^{(r)})$ $\frac{\hbar}{h} (\Delta t^{(l)} + \Delta t^{(r)})$ $\frac{h}{h} (\Delta t^{(l)} + \Delta t^{(r)})$ $\frac{h}{h} (\Delta t^{(l)} + \Delta t^{(r)})$	

§ 9. Der beiderseits eingespannte symmetrische Rechteckrahmen. 151

§ 10. Sonderbehandlung des Rahmens bei Symmetrie.

I. Erste Berechnungsart. Dreigelenkbogen als Hauptsystem.

Bei symmetrischen Rahmenformen ist es im allgemeinen zweckmäßig, von einem Grundsystem auszugehen, das selbst symmetrisch ist. Es lassen sich dann wesentliche Vereinfachungen erzielen in den Gleichungen der Unbekannten. So z. B. ergeben sich bei der Verwendung des Grundsystems nach Fig. 140 die Unbekannten X_a und X_b aus zwei Gleichungen mit je zwei Unbekannten und X_c aus einer Gleichung mit einer Unbekannten.

Auch bei dem Grundsystem (Fig. 141) (Dreigelenkbogen) lassen sich solche Vereinfachungen erzielen, wenn wir als Unbekannte gewisse Lastengruppen wählen, die die Symmetrie ausnützen. Ein solcher

(Fortsetzung).

Vertikale Auflagerkräfte V	Horizontale Auflagerkräfte <i>H</i>	Bemerkungen
$V^{(l)} = -V^{(r)} = \frac{E \cdot J_l}{l^2} \varDelta h \cdot \frac{12}{6 \omega + 1}$	$H^{(t)} = H^{(r)} = 0$	
$V^{(t)} = V^{(r)} = 0$	$H^{(l)} = H^{(r)}$ $= \frac{E \cdot J_l}{h^2 l} \varDelta l \cdot \frac{\Im (2 \omega + 1)}{\omega (\omega + 2)}$	
$V^{(l)} = -V^{(r)}$ $= -EJ_{l}\frac{6}{6\omega+1}\cdot\frac{1}{l^{2}}\left(\Delta\varphi_{I}-\Delta\varphi_{I}\gamma\right)$	$H^{(l)} = H^{(r)}$ $= E \cdot J_{l} \frac{3(\omega+1)}{\sigma(\omega+2)}$ $\cdot \frac{1}{hl} (\Delta \varphi_{l} + \Delta \varphi_{l} \gamma)$	

Rechnungsgang, der auch für spätere Aufgaben von Wert ist, soll im folgenden erläutert werden.

Als erste Unbekannte X_a soll das Moment im Punkt a in Riegelmitte berechnet werden. Die Momentenfläche infolge $X_a = 1$

am Grundsystem ist in Fig. 141 dargestellt. Wegen der Symmetrie des Grundsystems und der Belastung ist auch die Momentenfläche $(M_a$ -Fläche) symmetrisch.

Als zweite Unbekannte X_b wählen wir eine Gruppe von Momenten in den Ständerfußpunkten *b* und *c*, und zwar soll bei Belastung $X_a = 1$ in *b* ein nach innen wirkendes (positives) Moment von der Größe 1 und in *c* ein nach außen wirkendes (negatives) Moment von der Größe 1 angreifen. Wir bezeichnen diese Einzelmomente mit

$$X_{bb} = +1$$
 im Punkte b,
 $X_{cb} = -1$ im Punkte c.

Die Veranlassung zur Wahl gerade dieser zwei entgegengesetzt gleichen Momente gibt folgende Überlegung. Infolge der Last $X_{bb} = +1$ ergibt sich im Punkte a eine bestimmte Winkeländerung [ab]'; würde in c der gleiche Wert +1 wirken, so würde sich infolge der symmetrischen Lage der Punkte a, b, c und der Symmetrie des Systems die gleiche Winkeländerung [ab]' ergeben, so daß also infolge des umgekehrten Wertes $X_{cb} = -1$ sich die Verschiebung - [ab]' ergibt. Bei der Belastung $X_{bb} = +1$ und $X_{cb} = -1$ wird also die Winkeländerung im Punkte a zu Null werden. In der Tat erkennt man auch aus Fig. 142 (M_b -Fläche) und Fig. 141 (M_a -Fläche), daß der Wert [ab] = 0 wird, da die M_b -Fläche beiderseits der Symmetrieachse gleiche Werte mit umgekehrten Vorzeichen hat, so daß $[ab] = \int M_a M_b \frac{ds}{E_{eff}}$ sich aus zwei gleichen Teilen mit umgekehrten

 $[ab] = \int M_a M_b \frac{1}{EJ}$ sich aus zwei gleichen Teilen mit umgekehrten Vorzeichen zusammensetzt.

Als dritte Unbekannte X_c soll wieder eine Gruppe von Momenten gewählt werden, und zwar zwei gleiche Momente in den Punkten *b* und *c*, diesmal mit gleichen Vorzeichen. Außerdem soll im Punkte *a* ein Moment μ wirken. Insgesamt soll die Belastung $X_c = 1$ die Werte haben:

$$X_{ac} = \mu, X_{bc} = 1, X_{cc} = 1.$$

Der Wert μ soll aus gewissen Bedingungen noch angegeben werden. — Man erkennt leicht, daß die Momentenfläche infolge $X_c = 1$ wieder wie die M_a -Fläche, symmetrisch ist, so daß also, wie vorher [ab], nun auch [bc] = 0 wird. Der Wert [ac] nimmt nun nach Fig. 141 und 143 den Wert an:

$$[ac] = l\frac{J'}{J_l} \cdot \mu + 2\frac{s}{6}\frac{J'}{J_s}(2\mu + 1).$$

Wir wollen nun die Größe μ so wählen, daß auch dieser Wert [ac] = 0 wird, d. h.:

$$l\frac{J'}{J_l}\mu + \frac{s}{3}\frac{J'}{J_s}(2\mu + 1) = 0.$$

Setzt man:

$$J' = J_l,$$

T

so findet man

$$\mu = -\frac{s \cdot \frac{J_l}{J_s}}{3l + 2s \frac{J_l}{J_s}} = -\frac{s'}{3l + 2s'} = -\frac{\omega}{2\omega + 3} . \quad (121)$$

Darin bedeutet:

$$s' = s \cdot \frac{J_l}{J_s},$$

$$\omega = \frac{s'}{l} = \frac{s}{l} \cdot \frac{J_l}{J_s}.$$
(122)

Wird also die Lastengruppe $X_c = 1$ zusammengesetzt aus

$$X_{ac} = -\frac{\omega}{2\omega + 3},$$

$$X_{bc} = 1,$$

$$X_{cc} = 1,$$

so wird auch der Wert [ac] = 0. Von den Koeffizienten der Grundgleichungen bleiben also nur die Werte [aa] in der ersten Gleichung, [bb] in der zweiten und [cc] in der dritten Gleichung, so daß sich die Unbekannten aus folgenden 3 Gleichungen mit je einer Unbekannten ergeben:

$$[aa] X_a = -[am]; \quad X_a = -\frac{[am]}{[aa]},$$

$$[bb] \cdot X_b = -[bm]; \quad X_b = -\frac{[bm]}{[bb]},$$

$$[cc] \cdot X_c = -[cm]; \quad X_c = -\frac{[cm]}{[cc]}.$$

Für die Werte [aa], [bb], [cc] ergeben sich aus den Fig. 141, 142, 143 die Größen (im folgenden sind die EJ_l -fachen Verschiebungen angegeben, wobei der Faktor EJ_l fortgelassen ist):

Vollwandige Systeme mit geradlinigen Achsen.

$$[aa] = l + \frac{2s'}{3} = \frac{2\omega + 3}{3}l,$$

$$[bb] = \frac{2 \cdot l}{2 \cdot 3} \left(\frac{l}{l_n}\right)^2 + 2\frac{s'}{6} \left\{ \left(2\frac{l}{l_n} + 1\right)\frac{l}{l_n} + \left(2 + \frac{l}{l_n}\right) \right\}$$

$$= \frac{l}{3} \left\{ \left(\frac{l}{l_n}\right)^2 + 2\omega \left[1 + \frac{l}{l_n} + \left(\frac{l}{l_n}\right)^2\right] \right\}.$$

[In dem besonderen Falle, daß die Ständer parallel sind, wird $\frac{l}{l_n} = 1$ und damit:

$$[bb] = \frac{l}{3} (6 \omega + 1).]$$

$$[cc] = l \cdot \mu^{2} + 2 \frac{s'}{6} \{(2 \mu + 1) \mu + (2 + \mu)\}$$

$$= l \Big\{ \mu^{2} + \frac{2 \omega}{3} (1 + \mu + \mu^{2}) \Big\}.$$

Durch Einsetzen des Wertes

$$\mu = -\frac{\omega}{2\,\omega + 3}$$

findet man nach gehöriger Vereinfachung:

$$[cc] = \frac{\omega(\omega+2)}{2\omega+3}l.$$

Die Absolutglieder [am], [bm], [cm] können mit Hilfe der Fig. 141, 142, 143 ermittelt werden aus den Gleichungen

$$[am] = \int M_0 M_a \frac{ds J_l}{J},$$

$$[bm] = \int M_0 M_b \frac{ds J_l}{J},$$

$$[cm] = \int M_0 M_c \frac{ds J_l}{J}.$$

II. Zweite Berechnungsart; Zweigelenkbogen als Hauptsystem.

Eine zweite Art der Berechnung des symmetrischen Rahmens ergibt die Verwendung eines Zweigelenkbogens als Hauptsystem¹); es sind dann nur zwei überzählige Größen zu bestimmen (s. Fig. 144),

¹) Diese Berechnung wird hier eingehender erläutert, weil sie bei den im folgenden Bande behandelten Stockwerkrahmen mit Vorteil verwandt werden wird.

nämlich die Momente in den Punkten bund c, wenn wir voraussetzen, daß die Beanspruchung des Zweigelenkbogens für die vorkommenden Lasten bekannt ist. Als Unbekannte wollen wir wieder Gruppen der Momente in b und c wählen, und zwar besteht

Belastung
$$X_a = 1$$
 aus $X_{ba} = 1$ und $X_{ca} = 1$,
" $X_b = 1$ " $X_{bb} = 1$ " $X_{cb} = -1$.

Um mit diesen Lastengruppen arbeiten zu können, müssen wir die Beanspruchung des Hauptsystems, d. h. des Zweigelenkbogens, für beliebige Lastengruppen kennen. Diese sollen zunächst angegeben werden.

a) Berechnung des Zweigelenkbogens (Hauptsystems).

Das Grundsystem sei wieder der Dreigelenkbogen (Fig. 145); die Unbekannte heiße Y_a . Sie ergibt sich in der Form:

$$Y_a = -\frac{[am]'}{[aa]'}.$$

Aus der Momentenfläche infolge $Y_a = 1$ am Grundsystem (Fig. 145) ergibt sich als Nennerwert:

$$[aa]' = \frac{2\omega+3}{3}l.$$

 α) Infolge der Lastengruppe $X_a = 1$ als äußere Belastung ergibt sich am Grundsystem die in Fig. 146 dargestellte Momentenfläche. Aus Fig. 145 und 146 findet man für diese Belastung:

$$[am]' = 2 \cdot \frac{s'}{6} = \frac{\omega l}{3} \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot (123)$$
$$Y_{aa} = -\frac{\omega}{2\omega + 3} \cdot \dots \cdot \dots \cdot \dots \cdot (123)$$

Dies ist derselbe Wert, den wir vorher für μ gefunden haben. —

Wir können damit die Momentenfläche des Zweigelenkbogens für die Belastung $X_a = 1$ (M_a -Fläche) aufzeichnen; sie ist in Fig. 147 dargestellt.

 β) Infolge der Lastengruppe $X_b = 1$ als äußere Belastung ergibt sich am Grundsystem die in Fig. 148 dargestellte Momenten-fläche. Damit findet man:

Die Momentenfläche des Zweigelenkbogens infolge $X_b = 1$ (M_b -Fläche) behält also die in Fig. 148 dargestellte Form.

 γ) Infolge horizontaler Lasten am rechten Ständer mit der Resultierenden *H* ergibt sich am Grundsystem eine Momentenfläche nach Fig. 149. Der nicht schraffierte Teil liefert (wie die Momentenfläche Fig. 148) keinen Beitrag zu [am]'. Man findet also:

Die Momentenfläche des Zweigelenkbogens für diese Belastung $(M_0$ -Fläche für Lasten H) setzt sich also aus den Momentenflächen Fig. 149 und 145 zusammen. Erstere zerlegten wir in zwei Teile, den schraffierten und den nicht schraffierten Teil. Im ganzen besteht also diese M_0 -Fläche aus drei Teilen:

- Teil 1: Momentenfläche des als einfacher Balken gedachten belasteten Ständers (in Fig. 149 schraffiert).
- Teil 2: Momentenfläche mit beiderseits gleichen Werten mit ungleichen Vorzeichen (in Fig. 149 nicht schraffiert). Die Eckmomente ergeben sich aus der Querkraft im Gelenk zu

$$M_{l} = \frac{H \cdot \xi}{l_{n}} \cdot \frac{l}{2} = \frac{H \xi}{2} \cdot \frac{l}{l_{n}} = \frac{H' h}{2} \frac{l}{l_{n}};$$
$$H' = \frac{H \xi}{h}.$$

Teil 3: Symmetrische Momentenfläche nach Fig. 145 mit den Eckmomenten:

Anmerkung: Diese Gleichungen für horizontale Lasten gelten auch für Momente, welche an den Ständern angreifen. Für ein am obern Ende des rechten Ständers angreifendes linksdrehendes Moment M wird z. B.

$$\varphi_1 = -\frac{\omega l}{3} M,$$
$$Y_{aM} = \frac{\omega}{2\omega + 3} M.$$

Teil 1 der Momentenfläche ist ein Dreieck über dem rechten Ständer mit der oberen Ordinate 1.

Teil 2 hat mit $H' = \frac{M}{h}$ die Eckmomente:

$$M_l = \frac{M}{2} \frac{l}{l_n} = \frac{H' \cdot h}{2} \cdot \frac{l}{l_n} \quad . \quad . \quad . \quad . \quad . \quad (127)$$

Teil 3 hat die Eckmomente:

$$M_l = \frac{\omega}{2\omega + 3} \cdot M \cdot \ldots \cdot \ldots \cdot (128)$$

Wir werden diese Resultate im folgenden Bande verwerten.

 δ) Bei vertikalen Lasten des Riegels mit der Resultierenden Rwählen wir ebenfalls einen Dreigelenkbogen als Grundsystem, jedoch soll das Gelenk nicht in Riegelmitte liegen, sondern so, daß die beiden Eckmomente bei der äußeren Belastung des Grundsystems mit R gleiche Werte mit umgekehrten Vorzeichen haben. Die

Momentenfläche für $Y_a = 1$ (Fig. 145) wird dadurch nicht geändert. Die Momentenfläche infolge der Lasten R am Grundsystem läßt sich dann in zwei Teile zerlegen (wie in Fig. 150 skizziert), wobei der eine Teil die Momentenfläche des als einfacher Balken gedachten Riegels ist, während der andere Teil die Form der in Fig. 149 nicht schraffierten Fläche hat, also auf [am]' ohne Einfluß ist. Man findet also:

Fig. 150.

$$[am]' = \varphi_1 + \varphi_2$$

$$Y_{aR} = -\frac{3}{(2\omega + 3)l}(\varphi_1 + \varphi_2).$$

Die Momentenfläche des Zweigelenkbogens (M_0 -Fläche für senkrechte Lasten R) setzt sich auch hier wieder aus drei Teilen zusammen, nämlich:

- Teil 1: Momentenfläche des als einfacher Balken betrachteten Riegels (Fig. 150).
- Teil 2: Wie unter γ , Momentenfläche wie in Fig. 149 nicht schraffiert. Das Eckmoment M_i finden wir hier wie folgt: Aus der Bedingung, daß die beiden Eckmomente gleich sind, folgt:

$$A \frac{l_n - l}{2} - H \cdot h = -\left(B \frac{l_n - l}{2} - Hh\right)$$
$$H h = \frac{1}{2} (A + B) \frac{l_n - l}{2} = \frac{R(l_n - l)}{4}.$$

Dann wird das Eckmoment:

Teil 3: Wie unter γ , symmetrische Momentenfläche nach Fig. 145 mit dem Regelmoment:

$$M_{l} = Y_{aR} = -\frac{3}{(2\omega+3)l}(\varphi_{1}+\varphi_{2}). \quad . \quad . \quad . \quad (130)$$

Anmerkung: Man beachte, daß wir zur Ermittelung der Momentenfläche

den Angriffspunkt von Y_a nicht zu kennen brauchen. — In Fig. 150 ist die Belastung als indirekte, auf die beiden Ecken über-tragene Belastung gezeichnet. Die Eckmomente finden wir dann aus der Querkraft im Gelenk zu

$$M_{l} = \left(R \cdot \frac{\frac{l_{n} - l}{2} + \hat{s}}{l_{n}} - R \frac{\hat{s}}{l}\right) \cdot \frac{l}{2}$$

= $\frac{R l}{2} \left[\frac{1}{2} \left(1 - \frac{l}{l_{n}}\right) - \frac{\hat{s}}{l} \left(1 - \frac{l}{l_{n}}\right)\right]$
 $M_{l} = \frac{R l}{4} \left(1 - 2 \frac{\hat{s}}{l}\right) \left(1 - \frac{l}{l_{n}}\right).$

Das ist der gleiche Wert wie vorher; die Momentenfläche ist also insgesamt gleichwertig der vorher benutzten Momentenfläche des Grundsystems; wir können sie daher zur Ermittelung der Momentenfläche des Zweigelenkbogens benutzen, da wir den gleichen Wert Y_{aR} finden und damit auch den gleichen Beitrag Teil 3 zur M_0 -Fläche.

b) Berechnung der Größen X des gegebenen Systems.

Mit den vorher ermittelten Momentenflächen für $X_a = 1$ $(M_a$ -Fläche, Fig. 147) und $X_b = 1$ (M_b -Fläche, Fig. 148) ermitteln wir jetzt die Koeffizienten der X in den Elastizitätsgleichungen

$$[aa] X_a + [ab] X_b = -[am], [ab] X_a + [bb] X_b = -[bm]$$

und finden:

$$\begin{bmatrix} aa \end{bmatrix} = \frac{\omega (\omega + 2)}{2 \omega + 3} l$$

$$\begin{bmatrix} bb \end{bmatrix} = \left\{ \left(\frac{l}{l_n}\right)^2 + 2 \omega \left[1 + \frac{l}{l_n} + \left(\frac{l}{l_n}\right)^2\right] \right\} \frac{l}{3}.$$

$$\begin{bmatrix} ab \end{bmatrix} = 0.$$
(131)

Es sind die gleichen Werte, die wir im 1. Abschnitt für [cc] und [bb] fanden, da wir die gleichen Momentenflächen haben. —

Da [ab] wieder verschwindet, erhalten wir für die Unbekannten die Gleichungen;

$$X_{a} = -\frac{[am]}{[aa]} = -\frac{\int M_{0} M_{a} ds \frac{J_{I}}{J}}{[aa]},$$

$$X_{b} = -\frac{[bm]}{[bb]} = -\frac{\int M_{0} M_{b} ds \frac{J_{l}}{J}}{[bb]}.$$
(132)

Zur Ermittelung der Zählerwerte dieser Gleichungen können wir für M_0 die Momente eines statisch bestimmten Grundsystems einsetzen.

a) Für senkrechte Lasten R können wir die Momentenfläche Fig. 150 als M_0 -Fläche in Rechnung setzen; denn wie in der Anmerkung unter a, δ gezeigt ist, ist sie gleichwertig mit der zur Ermittelung von $Y_{a R}$ benutzten M_0 -Fläche. Man findet also unter Beachtung der M_a -Fläche Fig. 147 und M_b -Fläche Fig. 148:

 β) Für wagerechte Lasten H findet man unter Beachtung von Fig. 149:

$$[am] = -\frac{\omega}{2\omega + 3}\varphi_{1} + \varphi_{2} \dots \dots \dots \dots (134 a)$$

$$[bm] = -2\frac{s'}{6}M_{l}\left(2\frac{l}{l_{n}} + 1\right) - \frac{l}{3}M_{l}\frac{l}{l_{n}} - \left(\frac{l}{l_{n}}\varphi_{1} + \varphi_{2}\right)$$

$$= -\frac{M_{l}l}{3}\left[\omega\left(2\frac{l}{l_{n}} + 1\right) + \frac{l}{l_{n}}\right] - \left(\frac{l}{l_{n}}\varphi_{1} + \varphi_{2}\right);$$

$$[bm] = -\frac{H'h}{6}l\frac{l}{l_{n}}\left[\omega\left(2\frac{l}{l_{n}} + 1\right) + \frac{l}{l_{n}}\right] - \left(\frac{l}{l_{n}}\varphi_{1} + \varphi_{2}\right). (134 b)$$

Anmerkung 1: Wir geben noch die Absolutglieder für ein Moment Mam obern Ende des rechten Ständers. Mit $\varphi_1 = -\frac{\omega l}{3}M$ und $\varphi_2 = -\frac{\omega l}{6}M$ wird aus vorstehenden Gleichungen:

$$[b m] = \left[\omega \left(\frac{l}{l_n} - 1\right) \left(2 \frac{l}{l_n} + 1\right) + \left(\frac{l}{l_n}\right)^2\right] \frac{M l}{6} \dots \dots (135 b)$$
tik. II. 2.

Pirlet, Statik. II. 2.

Anmerkung 2: Wir könnten zur Ermittelung von [am] und [bm] auch die unter a, γ und δ ermittelten M_0 -Flächen am Zweigelenkbogen verwenden. Unter Beachtung der M_a - und M_b -Flächen (Fig. 147 und 148) erkennt man: Daß der Teil 3 der M_0 -Flächen, der die Form der Fig 141 (M_a -Fläche in Ab-schnitt 1) hat, auf [bm] keinen Einfluß hat, leuchtet ohne weiteres ein. Daß dieser Teil auch auf [am] ohne Einfluß ist, erkennt man, wenn man beachtet, daß die M_a -Fläche die Form der Fig. 143 (M_e -Fläche in Abschnitt 1) hat ω

 $(\mu = -\frac{\omega}{2\omega + 3} \text{ war dort (in Abschnitt 1) so ermittelt, } daß [ac] = 0 \text{ wurde).}$ - Der Teil 2 der M_0 -Flächen ist auf [am] wegen der Symmetrie der M_a -Fläche ebenfalls ohne Einfluß. - Wir haben also bei Ermittelung von [am] nur den Teil 1 (Momentenfläche des als einfacher Balken gedachten Riegels oder Ständers) zu berücksichtigen, der durch die Werte φ_1 und φ_2 ausgedrückt wird; bei [bm] kommt außerdem noch der Teil 2 (beiderseits gleiche Eckmomente mit umgekehrten Vorzeichen) in Frage.

Wir denken uns nun die Belastung mittelbar wirkend durch Balken, die in den Ecken des Zweigelenkrahmens aufgelagert sind. Der Zweigelenkrahmen (Hauptsystem) wird dann nur beansprucht durch Einzellasten in den Ecken (Fig. 151). Die Momentenfläche des Zweigelenkbogens (Hauptsystems) infolge der Einzellasten hat stets die in Fig. 152 dargestellte Form¹) und ist gegeben durch das Eckmoment M_i . Dies Moment M_i ist beeinflußt durch die Größen

A', B' und H' (Fig. 151) Die Größen A' und B' zerlegen wir je in eine Horizontale und eine Komponente in Richtung der Ständer (Fig. 153). Letztere rufen nur Normalkräfte hervor; erstere ergeben eine Normalkraft von $H' = (B' - A') \frac{l_n - l}{2h}$ nach links. Durch eine Kraft H' am oberen Riegel ergibt sich ein Eckmoment:

$$M_l = \frac{H'h}{2}\frac{l}{l_n}.$$

Das Gesamteckmoment ist also (vgl. auch unter a, γ und δ):

Für vertikale Lasten:

$$M_{l} = -\frac{(A'-B')l}{4} \left(1-\frac{l}{l_{n}}\right) = \frac{Bl}{4} \left(1-2\frac{\xi}{l}\right) \left(1-\frac{l}{l_{n}}\right).$$

Für horizontale Lasten:

$$M_l = \frac{H'h}{2}\frac{l}{l_n}.$$

Wir erhalten a'so die gleichen Werte wie in Gleichung (127) und (129); die Belastungen der Fig. 151 liefern also die Teile 1 und 2 der unter a, γ und δ

¹) Anmerkung: Dies erkennt man leicht, wenn man dies Moment in Riegelmitte als Unbekannte X_a des Zweigelenkbogens berechnet. Die M_0 -Fläche infolge einer Last in einem Knotenpunkt hat die in Fig. 152 dargestellte Form; der Zählerwert der Größe Y_a , also auch die Unbekannte Y_a , wird = 0.

ermittelten M_0 -Flächen, d. h. der M_0 -Flächen des Grundsystems, der allein für [am] und [bm] in Frage kommen. Wir würden also auch auf diesem Wege zu denselben Werten kommen wie in den Gleichungen (133) und (134).

Aus den Gleichungen (132) bis (134) können die Unbekannten X für beliebige Lasten angegeben werden. Man findet:

 α) Für vertikale Lasten R:

$$X_{a} = \frac{\varphi_{1} + \varphi_{2}}{(\omega + 2)l}.$$

$$X_{b} = \frac{Rl}{4} \left(1 - 2\frac{\xi}{l}\right) \left(1 - \frac{l}{l_{n}}\right) \frac{\omega \left(2\frac{l}{l_{n}} + 1\right) + \frac{l}{l_{n}}}{\left(\frac{l}{l_{n}}\right)^{2} + 2\omega \left[1 + \frac{l}{l_{n}} + \left(\frac{l}{l_{n}}\right)^{2}\right]} - \left\{\frac{3\frac{l}{l_{n}}}{\left(\frac{l}{l_{n}}\right)^{2} + 2\omega \left[1 + \frac{l}{l_{n}} + \left(\frac{l}{l_{n}}\right)^{2}\right]} \cdot \frac{\varphi_{1} - \varphi_{2}}{l}\right\}$$
(136)

 β) Für horizontale Lasten H:

$$X_{a} = \frac{\omega \varphi_{1} - (2\omega + 3)\varphi_{2}}{\omega(\omega + 2)l}.$$

$$X_{b} = \frac{H' \cdot h}{2} \frac{\frac{l}{l_{n}} \left[\omega \left(2 \frac{l}{l_{n}} + 1 \right) + \frac{l}{l_{n}} \right]}{\left(\frac{l}{l_{n}} \right)^{2} + 2\omega \left[1 + \frac{l}{l_{n}} + \left(\frac{l}{l_{n}} \right)^{2} \right]} + \frac{3}{\left(\frac{l}{l_{n}} \right)^{2} + 2\omega \left[1 + \frac{l}{l_{n}} + \left(\frac{l}{l_{n}} \right)^{2} \right]} \cdot \frac{l}{l_{n}} \varphi_{1} + \varphi_{2}}{\frac{l}{l_{n}} \varphi_{1} + \varphi_{2}} \right\}. \dots (137)$$

c) Zur Bestimmung beliebiger statischer Größen S gilt die Gleichung:

$$S = S_0 + S_a \cdot X_a + S_b \cdot X_b$$

Darin sind φ_0 , φ_a und φ_b die Werte, die sich am Hauptsystem (Zweigelenkbogen) ergeben infolge der äußeren Lasten und der Lastengruppen $X_a = 1$ und $X_b = 1$. — Handelt es sich z. B. um die Eckmomente M_{II} und M_{III} (vgl. Fig. 154), so lauten die Gleichungen:

Fig. 154.

$$M_{II} = M_{II0} + M_{IIa} X_a + M_{IIb} X_b.$$

$$M_{III} = M_{III0} + M_{IIIa} X_a + M_{IIIb} X_b.$$

Darin sind (vgl. Fig. 147 und 148):

11*

Vollwandige Systeme mit geradlinigen Achsen.

$$M_{IIa} = M_{IIIa} = -\frac{\omega}{2\omega + 3} \cdot M_{IIb} = -M_{IIIb} = \frac{l}{l_n} \cdot$$

Die Werte M_{110} und M_{1110} sind aus der Berechnung des Zweigelenkbogens bekannt, sie sind:

 α) Für senkrechte Lasten R:

$$M_{II0} = -\frac{Rl}{4} \left(1 - 2\frac{\xi}{l}\right) \left(1 - \frac{l}{l_n}\right) - \frac{3}{2\omega + 3} \frac{\varphi_1 + \varphi_2}{l}.$$
$$M_{III0} = \frac{Rl}{4} \left(1 - 2\frac{\xi}{l}\right) \left(1 - \frac{l}{l_n}\right) - \frac{3}{2\omega + 3} \frac{\varphi_1 + \varphi_2}{l}.$$

 β) Für wagerechte Lasten H:

$$M_{II0} = -\frac{H'h}{2} \frac{l}{l_n} - \frac{3}{2\omega + 3} \frac{\varphi_1}{l}$$
$$M_{III0} = \frac{H'h}{2} \frac{l}{l_n} - \frac{3}{2\omega + 3} \frac{\varphi_1}{l}.$$

d) Sonderfälle.

1. Erster Sonderfall: $\frac{l}{l_n} = 1$ (parallele Ständer). In diesem Falle ist:

Die Absolutglieder werden:

α) Für vertikale Lasten:

$$[am] = -\frac{\omega}{2\omega + 3}(\varphi_1 + \varphi_2), \\ [bm] = \varphi_1 - \varphi_2.$$

 β) Für horizontale Lasten:

$$[am] = -\frac{\omega}{2\omega+3}\varphi_1 + \varphi_2,$$

$$[bm] = -\frac{H'hl}{6}(3\omega+1) - (\varphi_1 + \varphi_2).$$

Die Unbekannten nehmen dann folgende Form an: α) Für vertikale Lasten:

$$X_{a} = + \frac{\varphi_{1} + \varphi_{2}}{(\omega + 2)l},$$

$$X_{b} = - \frac{3(\varphi_{1} - \varphi_{2})}{(6\omega + 1)l}.$$
(139)

§ 10. Sonderbehandlung des Rahmens bei Symmetrie.

 β) Für horizontale Lasten:

$$X_{a} = \frac{\omega \varphi_{1} - (2 \omega + 3) \varphi_{2}}{\omega (\omega + 2) \cdot l},$$

$$X_{b} = + \frac{H' h}{2} \frac{3 \omega + 1}{6 \omega + 1} + \frac{3 (\varphi_{1} + \varphi_{2})}{(6 \omega + 1) l}.$$
(140)

Das Fußmoment am linken Ständer ergibt sich bei vertikalen Lasten aus der Gleichung (vgl. Fig. 147 und 148):

$$\begin{split} M_I = X_a + X_b = & \frac{(\varphi_1 + \varphi_2) \left(6 \,\omega + 1\right) - 3 \left(\varphi_1 - \varphi_2\right) \left(\omega + 2\right)}{(6 \,\omega + 1) \left(\omega + 2\right) l} \\ M_I = & \frac{(3 \,\omega - 5) \,\varphi_1 + (9 \,\omega + 7) \cdot \varphi_2}{(6 \,\omega + 1) \left(\omega + 2\right) l}. \end{split}$$

Das Fußmoment des rechten Ständers ist dann:

$$M_{IV} = X_a - X_b = \frac{(9 \ \omega + 7) \ \varphi_1 + (3 \ \omega - 5) \ \varphi_2}{(6 \ \omega + 1) (\omega + 2) \ l}.$$

Für die oberen Eckmomente findet man (vgl. Fig. 154):

 α) Für senkrechte Lasten R:

$$M_{II0} = M_{III0} = -\frac{3(\varphi_1 + \varphi_2)}{(2\omega + 3)l}.$$

 β) Für horizontale Lasten H:

$$M_{II0} = -\frac{H'h}{2} - \frac{3\varphi_1}{(2\omega+3)l},$$
$$M_{III0} = +\frac{H'h}{2} - \frac{3\varphi_1}{(2\omega+3)l}.$$

Man findet also als gesamte chere Eckmomente des Rahmens folgende Werte:

 α) Infolge senkrechter Lasten R:

$$\begin{split} M_{II} &= -\frac{3(\varphi_1 + \varphi_2)}{(2\omega + 3)l} - \frac{\omega}{2\omega + 3} \cdot X_a + X_b, \\ &= -\frac{(15\omega + 8)\varphi_1 + (9\omega - 4)\varphi_2}{(6\omega + 1)(\omega + 2)l}; \\ M_{III} &= -\frac{3(\varphi_1 + \varphi_2)}{(2\omega + 3)l} - \frac{\omega}{2\omega + 3}X_a - X_b, \\ &= -\frac{(9\omega - 4)\varphi_1 + (15\omega + 8)\varphi_2}{(6\omega + 1)(\omega + 2)l}. \end{split}$$

 β) Infolge horizontaler Lasten H:

$$\begin{split} M_{II} &= -\frac{H'h}{2} - \frac{3\varphi_1}{(2\omega+3)l} - \frac{\omega}{2\omega+3} X_a + X_b \,, \\ &= -\frac{H'h}{2} \cdot \frac{3\omega}{6\omega+1} + \frac{-(9\omega-4)\varphi_1 + (9\omega+7)\varphi_2}{(6\omega+1)(\omega+2)l} \,; \\ M_{III} &= -\frac{H'h}{2} - \frac{3\varphi_1}{(2\omega+3)l} - \frac{\omega}{2\omega+3} X_a - X_b \,, \\ &= -\frac{H'h}{2} \frac{3\omega}{6\omega+1} - \frac{(15\omega+8)\varphi_1 - (3\omega-5)\varphi_2}{(6\omega+1)(\omega+2)l} \,. \end{split}$$

[Vgl. § 9, Gleichungen (106) und (111)].

2. Zweiter Sonderfall: Symmetrische Belastung des Riegels.

In diesem Falle liegt die Resultierende in der Symmetrieachse. Es werden dann die Werte φ_1 und φ_2 einander gleich, wie aus den Ermittelungen im §1 leicht zu erkennen ist (vgl. auch Tabelle VII, Seite...). In Gleichung (136) wird in dem Wert für X_b im ersten Glied der Ausdruck $1-2\frac{\xi}{l}$ zu 0, da $\xi = \frac{l}{2}$ ist; im zweiten Glied wird $\varphi_1 - \varphi_2 = 0$. Es wird also in diesem Falle: $X_b = 0$.

Dies erkennt man auch, wenn man bedenkt, daß eine symmetrische Belastung in einem symmetrischen System eine symmetrische M_0 -Fläche bewirkt, die natürlich keinen Wert [bm] liefern kann. Die Unbekannte X_a stellt dann zugleich die unteren Einspannungsmomente M_1 und M_{IV} dar. Es ist also:

In den Werten für M_{110} und M_{1110} verschwinden ebenfalls die ersten Glieder, und man erhält:

Die Eckmomente sind also das Doppelte der Fußmomente mit umgekehrten Vorzeichen (vgl. auch Tabelle XI).

3. Dritter Sonderfall: Gleiche Belastung beider Ständer.

Die für wagerechte Lasten abgeleiteten Werte galten bisher für Belastung des rechten Ständers. Ist der linke Ständer in gleicher

Weise belastet, so erkennt man aus der Symmetrie, daß wieder $X_b = 0$ wird, während X_a den doppelten Wert annimmt. Es wird also:

$$M_{I} = M_{IV} = X_{a} = 2 \frac{\omega \varphi_{1} - (2\omega + 3)\varphi_{2}}{\omega(\omega + 2)l} \dots$$
 (143)

In den Gleichungen für M_{II0} und M_{III0} verschwinden wieder die ersten Glieder, da wir eine Gesamtkraft H' = 0 erhalten, während die letzten Glieder sich verdoppeln.

Es wird also:

4. Vierter Sonderfall: Horizontale Einzellast *H* am Kopfe des Ständers.

In diesem Falle wird $\varphi_1 = \varphi_2 = 0$ (vgl. § 1), H' = H. Daraus folgt:

$$X_{a} = 0$$

$$M_{I} = -M_{IV} = X_{b} = \frac{Hh}{2} \frac{\frac{l}{l_{n}} \left[\omega \left(2 \frac{l}{l_{n}} + 1 \right) + \frac{l}{l_{n}} \right]}{\left(\frac{l}{l_{n}} \right)^{2} + 2 \omega \left[1 + \frac{l}{l_{n}} \left(\frac{l}{l_{n}} \right)^{2} \right]}.$$
(145a)

$$\begin{split} M_{II0} &= -M_{III0} = -\frac{Hh}{2} \frac{l}{l_n} \\ M_{II} &= -M_{III} = -\frac{Hh}{2} \frac{l}{l_n} + \frac{l}{l_n} \cdot \frac{Hh}{2} \frac{\frac{l}{l_n} \left[\omega \left(2\frac{l}{l_n} + 1 \right) + \frac{l}{l_n} \right]}{\left(\frac{l}{l_n} \right)^2 + 2 \omega \left[1 + \frac{l}{l_n} + \left(\frac{l}{l_n} \right)^2 \right]}, \\ M_{II} &= -M_{III} = -\frac{Hh}{l_n} \frac{l}{l_n} \left(2 + \frac{l}{l_n} \right) \frac{\omega}{\left(\frac{l}{l_n} \right)^2 + 2 \omega \left[1 + \frac{l}{l_n} + \left(\frac{l}{l_n} \right)^2 \right]}$$
(145b)

Während bei den symmetrischen Lasten die Neigung der Ständer (ausgedrückt durch
$$\frac{l}{l_n}$$
) ohne Einfluß ist, spielt sie hier eine Rolle. — Bei par-
allelen Ständern, also $\frac{l}{l_n} = 1$, wird (vgl. Tabelle XI):

$$M_{I} = -M_{IV} = \frac{Hh}{2} \cdot \frac{3\omega + 1}{6\omega + 1}.$$
$$M_{II} = -M_{III} = \frac{Hh}{2} \cdot \frac{3\omega}{6\omega + 1}.$$

Anmerkung 1: Die vorher besprochenen Sonderfälle erinnern in ihren Resultaten an das von W. L. Andrée veröffentlichte "B. U. Verfahren". Was dort durch die Belastungs-Umordnung erreicht wird, nämlich die unabhängige Berechnung zweier Teilwerte der Überzähligen, ergibt sich hier zwanglos durch Anwendung der Lastengruppen als Unbekannte. — Solche Lastengruppen wurden schon von Müller-Breslau verwandt (vgl. Graph. Statik, II. Bd., Nr. 67). — Bei späteren Aufgaben, insbesondere bei den Stockwerkrahmen, wird uns die Verwendung ähnlicher Lastengruppen von Vorteil sein.

Anmerkung 2: Man kann auf solche unbekannten Lastengruppen, die sich aus je einer Gleichung mit einer Unbekannten ergeben, auch mit Hilfe des allgemeinsten Verfahrens kommen (Erster Teil, § 16). Wenn wir dabei bei der Wahl der willkürlichen Einzellasten der Lastengruppen Y=1 auf die Symmetrie Rücksicht nehmen, erhalten wir ähnliche Lastengruppen wie vorher.

Wählen wir nämlich wieder den Dreigelenkbogen (Fig. 141) als Grundsystem, so können wir wie folgt vorgehen:

Die Einzellasten der Gruppe $Y_a = 1$ sind alle willkürlich. Mit Rücksicht auf die Symmetrie sei:

$$\begin{aligned}
\boldsymbol{X}_{a\,a} &= \boldsymbol{\alpha}, \\
\boldsymbol{X}_{b\,a} &= \boldsymbol{X}_{c\,a} = \boldsymbol{\beta}.
\end{aligned}$$

Daraus sind die Werte [Aa], [Ab], [Ac] zu bestimmen:

$$[\mathbf{A} \mathbf{a}] = [\mathbf{a} \mathbf{a}] \cdot \alpha + ([\mathbf{a} \mathbf{b}] + [\mathbf{a} \mathbf{c}]) \beta = [\mathbf{a} \mathbf{a}] \alpha + 2 [\mathbf{a} \mathbf{b}] \beta,$$
$$[\mathbf{A} \mathbf{b}] = [\mathbf{a} \mathbf{b}] \cdot \alpha + ([\mathbf{b} \mathbf{b}] + [\mathbf{b} \mathbf{c}]) \beta,$$

 $[Ac] = [ac] \cdot \alpha + ([bc] + [cc]) \beta = [ab] \alpha + ([bc] + [bb]) \beta = [Ab].$ Denn es ist:

Es ist also:

$$[ab] = [ac], [bb] = [cc],$$

 $[Ab] = [Ac].$

Von der Lastengruppe
$$Y_b = 1$$
 sind X_{bb} und X_{cb} willkürlich; wir wählen sie wieder symmetrisch:
 $X_{bb} = X_{cb} = \gamma.$

Dann wird:

$$X_{ab} = \left(-\frac{[Ab]}{[Aa]} - \frac{[Ac]}{[Aa]}\right) \gamma = -\frac{2[Ab]}{[Aa]} \gamma.$$

Daraus finden wir:

$$[Ba] = \left(-[aa] \cdot 2 \frac{[Ab]}{[Aa]} + [ab] + [ac]\right) \gamma,$$

$$[Bb] = \left(-[ab] \cdot 2 \frac{[Ab]}{[Aa]} + [bb] + [bc]\right) \gamma,$$

$$[Bc] = \left(-[ac] \cdot 2 \frac{[Ab]}{[Aa]} + [bc] + [cc]\right) \gamma = [Bb]$$

Es ist also wieder:

Von der

$$[Bb] = [Bc].$$

Daraus folgt weiter:

$$[Bc.1] = [Bc] - \frac{[aB]}{[aA]} [Ac],$$
$$[Bb.1] = [Bb] - \frac{[aB]}{[aA]} \cdot [Ab]$$
$$= [Bc] - \frac{[aB]}{[aA]} \cdot [Ac] = [Bc.1].$$

Also :

$$[Bb.1] = [Bc.1].$$

Gruppe $Y_c = 1$ sei gewählt:
 $X_{ce} = \delta.$

Dann wird:

$$X_{bc} = -\frac{[Bc,1]}{[Bb,1]} \cdot \delta = -\delta,$$

$$X_{ac} = -\frac{[Ab]}{[Aa]}(-\delta) - \frac{[Ac]}{[Aa]}\delta = 0$$

Wir haben also folgende Lastengruppen:

$$Y_{a} = 1: X_{aa} = \alpha; \quad X_{ba} = X_{ca} = \beta,$$

$$Y_{b} = 1: X_{ab} = -2 \frac{[Ab]}{[Aa]}\gamma; \quad X_{bb} = X_{cb} = \gamma,$$

$$Y_{c} = 1: X_{ac} = 0; \quad X_{bc} = -\delta; \quad X_{cc} = \delta.$$

Die Werte α , β , γ , δ sind beliebige Zahlenwerte. Setzen wir $\alpha = \gamma = \delta = 1$ und $\beta = 0$, so findet man mit [Ab] = [ab] und [Aa] = [aa] folgende Einzellasten der Lastengruppen:

$$Y_{a} = 1: X_{aa} = 1; \qquad X_{ba} = X_{ca} = 0,$$

$$Y_{b} = 1: X_{ab} = -2 \frac{[ab]}{[aa]}; \qquad X_{bb} = X_{cb} = 1,$$

$$Y_{c} = 1: X_{ac} = 0; \qquad -X_{bc} = X_{cc} = 1.$$

Der Wert + $X_{ab} = -2 \frac{[ab]}{[aa]}$ entspricht dem unter I) ermittelten Wert μ

und hat die gleiche Größe wie dieser. Denn infolge $X_b = 1$ ergibt sich die in Fig. 155 dargestellte Momentenfläche (M_b -Fläche). Auf den Wert $[ab] = \int M_a M_b ds$ (M_a -Fläche siehe Fig. 141) hat der in Fig. 155 nicht schraffierte Teil keinen Einfluß, da er für die linke Hälfte einen positiven, für die rechte Hälfte einen gleichen negativen Beitrag ergibt. Für den übrigbleibenden schraffierten Teil findet man:

 $[ab] = \frac{s'}{s} - \frac{\omega l}{s}$

Fig. 155.

$$-2\frac{[ab]}{[aa]} = -2\cdot\frac{\omega l}{6}\cdot\frac{3}{(2\omega+3)l} = -\frac{\omega}{2\omega+3} = \mu.$$

Man erkennt also, daß die vorhin dargelegte Rechnung einen Sonderfall des allgemeinsten Verfahrens darstellt.

§ 11. Rechenbeispiele.

Im folgenden sollen einige Übungsbeispiele gegeben werden, die Gelegenheit geben, die Ausführungen der §§ 8 bis 10 zu verwerten.

Beispiel I.

Umstehender Shedrahmen (Fig. 156) sei für die angegebenen Belastungen zu berechnen. Das Verhältnis der Trägheitsomente bzw. der Querschnitte sei

$$\begin{split} &J_2 = \mathbf{1},\! 5\,J_1; \quad J_3 = 0,\! 5\,J_1; \quad J_4 = 0,\! 80\,J_1, \\ &J_1 = 0,\! 07\,F_1, \\ &F_2 = 1,\! 2\,F_1; \quad F_3 = 0,\! 80\,F_1; \quad F_4 = 0,\! 90\,F_1. \end{split}$$

Die Berechnung ist durchzuführen:

a) ohne Berücksichtigung b) mit Berücksichtigung b) mit Berücksichtigung $A = \sqrt{P_{q}} - \sqrt{P_{2}}$ $A = \sqrt{P_{q}} - \sqrt{P_{2}}$ B = soll die Stützlinie fürverschiedene Belastungsfällegezeichnet werden. $<math>A = \sqrt{P_{q}} - \sqrt{P_{2}}$ $B = \frac{1}{2} \sqrt{P_{q}} - \sqrt{P_{q}} - \sqrt{P_{2}}$ $B = \frac{1}{2} \sqrt{P_{q}} - \sqrt{P_{q}}$

1. Berechnung unter Verwendung des Dreigelenkbogens als Grundsystem. (Vgl. den Rechnungsgang in § 8 und 9.) a) Als Unbekannte werden die Eckmomente X_a , X_b und X_c

a) Als Unbekannte werden die Eckmomente X_a , X_b und X_c eingeführt (Fig. 157). Diese berechnen sich aus den Gleichungen:

$$X_{c} = -\frac{\lfloor c \ m \ \cdot \ 2 \rfloor}{\lfloor c \ c \ \cdot \ 2 \rfloor},$$

$$X_{b} = -\frac{\lfloor b \ m \ \cdot \ 1 \rfloor}{\lfloor b \ b \ \cdot \ 1 \rfloor} - \frac{\lfloor b \ c \ \cdot \ 1 \rfloor}{\lfloor b \ b \ \cdot \ 1 \rfloor} \cdot X_{c},$$

$$X_{a} = -\frac{\lfloor a \ m \rfloor}{\lfloor a \ a \rfloor} - \frac{\lfloor a \ b \rfloor}{\lfloor a \ a \rfloor} X_{b} - \frac{\lfloor a \ c \ c \ \cdot \ x \rfloor}{\lfloor a \ a \rfloor} \cdot X_{c}$$

Infolge $X_a = 1$ am Grundsystem ergibt sich die M_a -Fläche Fig. 158. Die auftretenden Auflagerdrücke sind

Infolge $X_b = 1$ am Grundsystem ergibt sich die M_b -Fläche (Fig. 159). Hierbei ist

$$A = +\frac{1}{l} = +0,1178 = -B,$$
$$H_l = H_r = \frac{1}{h} = \frac{1}{6,5} = 0,1538.$$

Infolge $X_c = 1$ am Grundsystem ergibt sich die M_c -Fläche (Fig. 160). Hierbei sind die Auflagerdrücke:

$$A = B = 0,$$

$$H_l = H_r = -\frac{1}{h} = -0.1538$$

Als mittleres Trägheitsmoment werde das des Ständers 1 angenommen, d. h. $J_1 = J'$. Dann wird

$$\frac{J'}{J_1} = 1; \quad \frac{J'}{J_2} = 0,665;$$
$$\frac{J'}{J_3} = 2; \quad \frac{J'}{J_4} = 1,25.$$

Fig. 160. Me-Fläche.

Die Stablängen vgl. Fig. 167.

Die Verschiebungen infolge der Überzähligen ergeben sich nun zu (vgl. § 1):

$$[aa] = 6,5 \cdot 1 + \frac{7,85}{6} [1 (2 \cdot 1 + 0,146) + 0,146 (2 \cdot 0,146 + 1)] \cdot 0,665$$

+ $\frac{3,24}{3} \cdot 0,146^2 \cdot 2 = 8,576$,
$$[bb] = + \frac{6,5}{3} + \frac{7,85}{3} \cdot 1,318^2 \cdot 0,665 + \frac{3,24}{6} [1,318 (2 \cdot 1,318 + 1)$$

+ $1 (2 \cdot 1 + 1,318)] \cdot 2 + \frac{6,5}{3} \cdot 1,25 = 16,64$,
$$[cc] = \frac{6,5}{3} + \frac{7,85}{3} \cdot 0,461^2 \cdot 0,665 + \frac{3,24}{3} \cdot 0,461^2 \cdot 2 + \frac{6,5}{3} \cdot 1,25 = 5,702$$
,
$$[ab] = -\frac{6,5}{2} + \frac{7,85}{6} \cdot 1,318 (2 \cdot 0,146 + 1) \cdot 0,665$$

+ $\frac{3,24}{6} \cdot 0,146 (2 \cdot 1,318 + 1) \cdot 2 = -1,195$,

$$[ac] = \frac{6,5}{2} - \frac{7,85}{6} \cdot 0,461 (2 \cdot 0,146 + 1) \cdot 0,665 - \frac{3,24}{3} \cdot 0,461 \cdot 0,146 \cdot 2$$

= 2,5905,

Vollwandige Systeme mit geradlinigen Achsen.

$$\begin{bmatrix} b c \end{bmatrix} = -\frac{6,5}{3} - \frac{7,85}{3} \cdot \mathbf{1},318 \cdot \mathbf{0},461 \cdot \mathbf{0},665 - \frac{3,24}{6} \cdot \mathbf{0},461 (2 \cdot \mathbf{1},318 + 1) \cdot 2 \\ + \frac{6,5}{6} \cdot \mathbf{1},25 = -\mathbf{3},\mathbf{678}.$$

	Tabelle					
	der	Verschiebu	ngen infolge	der X .		
	1	a	ь	С		
$a\\b\\c$		$+8,576 \\ -1,195 \\ +2,5905$	- 1,195 + 16,64 - 3,678	$+2,5905 \\ -3,678 \\ +5,702$		

Zur Probe vorstehender Werte ermitteln wir (nach § 20 des ersten Teiles) die M_s -Fläche (Momentenfläche infolge der Lastengruppe $X_a = 1, X_b = 1$ und $X_c = 1$, s. Fig. 160a) und berechnen den Wert.

Fig. 160a.

$$[ss] = \int M_s^2 \, ds \, \frac{J'}{J}.$$

Die M_s -Fläche hat überall den Wert 1; denn der linke Ständer ist nur durch das Moment $X_a = 1$ beansprucht, während der gebrochene Riegel und der rechte Ständer nur durch zwei Endmomente beansprucht sind. Man findet also:

$$[ss] = 6,50 + 7,85 \cdot 0,665 + 3,24 \cdot 2 + 6,50 \cdot 1,25 = 26,33.$$

$$\sum_{\substack{i=c\\k=a}}^{\substack{k=c\\i=c}} [ik] = 26,35.$$

Die Übereinstimmung der beiden Werte ist reichlich genau.

Da wir für 5 verschiedene Belastungsarten die Absolutglieder [am], [bm.1] und [cm.2] zu berechnen haben, gestaltet sich die Rechenarbeit einfacher, wenn wir diese Werte direkt aus der $M_{b.1}$ -bzw. $M_{c.2}$ -Fläche herleiten, d. h. aus den Momentenflächen infolge $X_{b.1} = 1$ am einfach bzw. $X_{c.2} = 1$ am zweifach unbestimmten System.

Zur Bestimmung der $M_{b,1}$ -Fläche haben wir die Einzellasten des Belastungszustandes $X_{b,1} = 1$:

$$X_{ab} = -\frac{[ab]}{[aa]}; \quad X_{bb} = 1; \\ X_{ab} = +0,1395; \quad X_{bb} = 1$$

Die $M_{b.1}$ -Fläche ist in Fig. 161 dargestellt. Das Moment an der Einspannstelle wird hier

$$\begin{array}{c} M_{I} = X_{ab} \cdot 1 + X_{bb} \left(-1 \right) = \\ + 0.1395 - 1 = -0.8605. \end{array}$$

Das Moment im oberen Knickpunkte wird

$$\begin{array}{l} M_{III} = 0.146 \cdot X_{ab} + 1.318 \cdot X_{bb} \\ = 0.146 \cdot 0.1395 + 1.318 \cdot 1 = \\ + 1.338. \end{array}$$

Infolge $X_{c.2} = 1$ am zweifach

Fig. 161. Mb.1-Fläche.

unbestimmten System treten in den Angriffspunkten der Überzähligen X die Momente auf:

$$X_{cc} = 1; \quad X_{bc} = -\frac{\begin{bmatrix} b \ c \ . \ 1 \end{bmatrix}}{\begin{bmatrix} b \ b \ . \ 1 \end{bmatrix}} X_{cc}; \quad X_{ac} = -\frac{\begin{bmatrix} a \ b \end{bmatrix}}{\begin{bmatrix} a \ a \end{bmatrix}} \cdot X_{bc} - \frac{\begin{bmatrix} a \ c \end{bmatrix}}{\begin{bmatrix} a \ a \end{bmatrix}} \cdot X_{cc}.$$

Die hierin vorkommenden Festwerte ergeben sich für den vorliegenden Fall zu

$$-\frac{[a\ b]}{[a\ a]} = -\frac{-1,195}{8,576} = 0,1395; \qquad -\frac{[a\ c]}{[a\ a]} = -\frac{2,5905}{8,576} = -0,302,$$

$$[b\ c.\ 1] = [b\ c] - \frac{[a\ b]}{[a\ a]} \cdot [a\ c] = -3,678 + 0,1395 \cdot (+2,5905)$$

$$= -3,317,$$

$$[b\ b.\ 1] = [b\ b] - \frac{[a\ b]}{[a\ a]} \cdot [a\ b] = 16,64 + 0,1395 (-1,195)$$

$$= 16,473,$$

Damit ergibt sich:

$$X_{bc} = -\frac{\begin{bmatrix} b \ c \ . \ 1 \end{bmatrix}}{\begin{bmatrix} b \ b \ . \ 1 \end{bmatrix}} \cdot X_{cc} = -\frac{-3,317}{16,473} \cdot 1 = 0,202,$$

$$X_{ac} = -\frac{\begin{bmatrix} a \ b \end{bmatrix}}{\begin{bmatrix} a \ a \end{bmatrix}} X_{bc} - \frac{\begin{bmatrix} a \ c \end{bmatrix}}{\begin{bmatrix} a \ a \end{bmatrix}} \cdot X_{cc} = 0,1395 \cdot 0,202 - 0,302 \cdot 1$$

$$= -0,274.$$

Das Moment an der Einspannstelle wird:

 $M_{I} = 1 \cdot X_{ac} + (-1) X_{bc} + 1 \cdot X_{cc} = -0,274 - 0,202 + 1 = 0,524$. Das Moment am oberen Knickpunkt wird

$$M_{III} = 0,146 \cdot X_{ac} + 1,318 \cdot X_{bc} - 0,461 \cdot X_{cc} \\ = -0,04 + 0,266 - 0,461 = -0,235.$$

Mit diesen Werten erhalten wir die in Fig. 162 abgebildete $M_{c\cdot 2}$ -Fläche

$$M_{I} = 0.524; \quad M_{II} = -0.274; \quad M_{III} = -0.235; \\ M_{IV} = +0.202; \quad M_{V} = 1.$$

Wir können den Wert [cc.2] auch ermitteln durch Rechnung; wir finden zunächst:

$$[cc.1] = 5,702 - 0,302 \cdot 2,59 = 4,92$$
$$[cc.2] = 4,92 - 3,317 \cdot 0,202 = 4,25.$$

Wir können auch eine von der vorhergehenden Rechnung unabhängige Probe machen. Es sind nämlich am zweifach-statisch unbestimmten Hauptsystem (Fig. 162) die Verschiebungen der Punkte aund b in Richtung von X_a und X_b (Winkeländerungen) infolge der Belastung $X_{c,2} = 1$ gleich 0; es wird also:

$$\int M_{a} M_{c.2} ds \frac{J'}{J} = [ac.2] = 0,$$

$$\int M_{b} M_{c.2} ds \frac{J'}{J} = [bc.2] = 0,$$

$$\int M_{c} M_{c.2} ds \frac{J'}{J} = [cc.2].$$

Die Summe dieser Werte ergibt:

$$[cc.2] = \int (M_a + M_b + M_c) M_{c.2} ds \frac{J'}{J} = \int M_s M_{c.2} ds \frac{J'}{J}.$$

Die Auswertung dieses Integrals nach Fig. 162 und 160a ergibt:

$$[cc.2] = \frac{6,50}{2}(0,524 - 0,274) + \frac{7,85 \cdot 0,665}{2}(-0,274 - 0,235) + \frac{3,24 \cdot 2}{2}(-0,235 + 0,202) + \frac{6,50 \cdot 1,25}{2}(0,202 + 1) = 4,25.$$

Damit darf die zur Ermittlung von [cc.2] führende Berechnung, also auch die $M_{b.1}$ -Fläche Fig. 161 und die $M_{c.2}$ -Fläche Fig. 162 als richtig angesehen werden. Die von der äußeren Belastung abhängigen Verschiebungen.

1. Belastung durch H (Fig. 163). Aus der M_o -Fläche Fig. 163 und den Momentenflächen Fig. 158, 161, 162 findet man nach den Formeln Tabelle I:

$$[am] = -\frac{6.5}{2} \cdot 6.5 \cdot H = -21,125 \cdot H,$$

$$[bm.1] = \frac{6.5}{6} (-6.5 \cdot H) [2 \cdot (-0.8605) + 0.1395] = 11,15 \cdot H,$$

 $[c m \cdot 2] = \frac{6.5}{6} (-6.5 \cdot H) (2 \cdot 0.524 - 0.274) = -5.48 \cdot H.$

Die Auflagerdrücke des Grundsystems sind:

2. Belastung durch g t/m (Fig. 164). Es wird:

$$[am] = \frac{7,26^2}{24} \cdot 7,85 \cdot g (1+0,146) \cdot 0,665$$

+ $\frac{7,85}{6} \cdot 3,85 \cdot g (2 \cdot 0,146+1) \cdot 0,665$
+ $\frac{3,24}{3} \cdot 0,146 \cdot 3,85 \cdot g \cdot 2 = 18,714 \cdot g,$
 $[bm.1] = \frac{7,26^2}{24} \cdot 7,85 \cdot g (0,1395+1,338) \cdot 0,665$
+ $\frac{7,85}{6} \cdot 3,85 \cdot g (2 \cdot 1,338+0,1395) \cdot 0,665$
+ $\frac{3,24}{6} \cdot 3,85 \cdot g (2 \cdot 1,338+1) \cdot 2 = 41,66,$

Vollwandige Systeme mit geradlinigen Achsen.

$$[cm.2] = -\frac{7,26^2}{24} \cdot 7,85 \cdot g (0,274 + 0,235) \cdot 0,665$$

$$-\frac{7,85}{6} \cdot 3,85 \cdot g (2 \cdot 0,235 + 0,274) \cdot 0,665$$

$$+\frac{3,24}{6} \cdot 3,85 \cdot g [2 \cdot (-0,235) + 0,202] \cdot 2$$

$$= 9,456 \cdot g.$$

Die Auflagerdrücke des Grundsystems sind:

$$A = \frac{7,26\left(\frac{7,26}{2} + 1,24\right)}{8,5} g = 4,16 \cdot g; \quad B = \frac{7,26^2}{2 \cdot 8,5} = 3,1 \cdot g,$$
$$H_l = H_r = 0.$$

3. Belastung durch P_1 und P_2 (Fig. 165). Das Moment unter P_1 ist:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & \\ P_{7} \\ & & \\ P_{7} \\ & & \\ P_{7} \\ & \\$$

$$\begin{split} [b\,m\,\cdot\,1] = &+ \frac{3,925}{6}\,M_1\,(2\cdot0,7388\pm0,1395)\cdot0,665\\ &+ \frac{3,925}{6}\,[M_1\,(2\cdot0,7388\pm1,338)\pm M_2\,(2\cdot1,338\pm0,7388)]\cdot0,665\\ &+ \frac{3,24}{6}\,M_2\,(2\cdot1,338\pm1)\cdot2\\ = &\mathbf{6},\mathbf{9}\,\mathbf{P}_1 + \mathbf{6},\mathbf{8}\,\mathbf{P}_2.\\ [c\,m\,\cdot\,2] = &- \frac{3,925}{6}\,M_1\,(2\cdot0,255\pm0,274)\cdot0,665\pm\frac{3,24}{6}\,M_2\,[2\cdot(-0,235)\pm0,235)\\ &+ 0,202]\cdot2 - \frac{3,925}{6}\,[M_1(2\cdot0,255\pm0,235)\pm0,235)\\ &+ M_2\,(2\cdot0,235\pm0,255)]\cdot0,665\\ = &- \mathbf{1},707\,\,\mathbf{P}_1 - \mathbf{0},\mathbf{996}\,\mathbf{P}_2. \end{split}$$

Die Auflagerdrücke des Grundsystems sind:

$$\begin{split} \mathbf{A} &= 0.573 \ P_1 + 0.146 \ P_2, \\ \mathbf{B} &= 0.854 \ P_2 + 0.427 \ P_1, \\ H_l &= H_r = 0. \end{split}$$

4. Belastung durch Q (Fig. 166). $[am] = +5,6 \cdot 1 \cdot 0,4 \cdot Q = +2,24 \cdot Q,$ $[bm.1] = -\frac{5.6}{2} \cdot 0.4 Q \cdot 0.8605 =$ Q $-0,96 \cdot Q$, $[c m.2] = \frac{5.6}{2} \cdot 0.4 \cdot Q (0.5265 - 0.16) =$ $+0,41 \cdot Q.$ Die Auflagerdrücke des Grundsystems sind:

$$A = Q; \quad B = 0, \\ H_r = H_l = 0.$$

Fig. 166.

Berechnung der Überzähligen (Eckmomente).

1. Belastung durch H.

$$\begin{split} M_{r} &= X_{c} = -\frac{[c\,m.\,2]}{[c\,c.\,2]} = -\frac{-5,48}{4,251} = \mathbf{1}, \mathbf{290} \cdot \mathbf{H}, \\ M_{IV} &= X_{b} = -\frac{[b\,m.\,1]}{[b\,b.\,1]} - \frac{[b\,c.\,1]}{[b\,b.\,1]} \cdot X_{c}, \\ &= -\frac{11,15 \cdot H}{16,473} + 0,202 \cdot 1,29 \cdot \mathbf{H} = -\mathbf{0}, \mathbf{4165} \cdot \mathbf{H}, \\ M_{II} &= X_{a} = -\frac{[a\,m]}{[a\,a]} - \frac{[a\,b]}{[a\,a]} X_{b} - \frac{[a\,c]}{[a\,a]} X_{c} = -\frac{-21,125 \, H}{8,576} \\ &- 0,1395 \cdot 0,4165 \, H - 0,302 \cdot 1,29 \, H = \mathbf{2}, \mathbf{014} \cdot \mathbf{H}, \\ M_{I} &= M_{0} + M_{a} X_{a} + M_{b} \cdot X_{b} + M_{c} \cdot X_{c} = -6,5 \cdot \mathbf{H} + 2,014 \cdot \mathbf{H} \\ &+ 0,4765 \, H + 1,29 \cdot \mathbf{H} = -\mathbf{2}, \mathbf{780} \cdot \mathbf{H}, \\ M_{III} &= 0,146 \cdot 2,014 \cdot \mathbf{H} - \mathbf{1}, \mathbf{318} \cdot 0,4165 \cdot \mathbf{H} - 0,461 \cdot 1,29 \cdot \mathbf{H} \\ &= -\mathbf{0}, \mathbf{85} \cdot \mathbf{H}. \end{split}$$

2. Belastung durch g t/m.

$$\begin{split} M_{V} &= X_{o} = -\frac{9,456}{4,251} \cdot g = +2,23 \cdot g, \\ M_{IV} &= X_{b} = -\frac{41,660}{16,473} \cdot g + 0,202 \cdot 2,23 \cdot g = -2,070 \cdot g, \\ M_{II} &= X_{a} = -\frac{18,714}{8,576} \cdot g + 0,1395 (-2,07 \cdot g) - 0,302 \cdot 2,23 \cdot g \\ &= -3,1415 \cdot g, \end{split}$$

Pirlet. Statik. II. 2.

$$\begin{split} M_t &= -3,1415 \cdot g + 2,070 \cdot g + 2,23 \cdot g = 1,159 \cdot g, \\ M_{III} &= 3,85 \cdot g - 0,146 \cdot 3,1415 \cdot g - 1,318 \cdot 2,070 \cdot g - 0,461 \cdot 2,23 \cdot g \\ &= -0,35 \cdot g. \\ 3. \text{ Belastung durch } P_1 \text{ und } P_2: \\ M_r &= X_c = -\frac{-1,707 P_1 - 0,996 P_2}{4,251} = 0,403 P_1 + 0,235 P_2, \\ M_{II} &= X_b = -\frac{6,9 P_1 + 6,8 P_2}{16,473} + 0,202 (0,403 P_1 + 0,235 P_2) \\ &= -0,3365 P_1 - 0,3655 P_2, \\ M_{III} &= X_a = -\frac{3,467 P_1 + 1,525 P_2}{8,576} - 0,1395 (0,3365 P_1 \\ &+ 0,3655 P_2) - 0,302 (0,403 P_1 + 0,235 P_2) \\ &= -0,574 P_1 - 0,2998 P_3, \\ M_I &= 0,574 P_1 - 0,2998 P_3 + 0,3365 P_1 + 0,3655 P_2 + 0,403 P_1 \\ &+ 0,235 P_2 = + 0,1655 P_1 + 0,2993 P_2, \\ M_{III} &= 0,53 P_1 + 1.06 P_2 - 0,146 (0,574 P_1 + 0,2998 P_2) \\ &- 1,318 (0,3365 P_1 + 0,3655 P_2) - 0,461 (0,403 P_1 \\ &+ 0,235 P_2) = - 0,1827 P_1 + 0,428 P_2. \\ 4. \text{ Belastung durch } Q: \\ M_r &= X_c = -\frac{0,41 Q}{4,251} = -0,0964 Q. \\ M_{III} &= X_a = -\frac{2,24 Q}{4,251} - 0,202 \cdot 0,0964 Q = 0,0388 \cdot Q, \\ M_{III} &= X_a = -\frac{2,24 Q}{16,473} - 0,202 \cdot 0,0964 Q = 0,0388 \cdot Q, \\ M_{III} &= X_a = -\frac{2,24 Q}{16,473} - 0,202 \cdot 0,0964 Q = 0,0388 \cdot Q, \\ M_{III} &= 0,146 \cdot 0,2266 \cdot Q + 1,318 \cdot 0,0388 \cdot Q + 0,461 \cdot 0,0964 \cdot Q \\ &= -0,0226 \cdot Q, \\ M_{III} &= -0,146 \cdot 0,2266 \cdot Q + 0,0388 Q = 0,0964 Q = 0,0382 \cdot Q. \\ \text{Die Auflagerdrücke des Rahmens sind bei} \\ 1. \text{ Belastung durch } H: \\ A &= A_0 + A_a X_a + A_b X_b + A_c X_c, \\ A &= -0,1178 \cdot 2,014 \cdot H + 0,1178 (-0,4165 \cdot H) = -0,286 \cdot H, \\ B &= + 0,1178 \cdot 2,014 \cdot H - 0,1178 (-0,4165 \cdot H) = 0,286 \cdot H, \\ \end{array}$$

 $H_l = H + 0,1538 (-0,4165 \cdot H) - 0,1538 \cdot 1,29 \cdot H = 0,7375 \cdot H,$

 $H_r = 0 + 0,1538 (-0,4165 \cdot H) - 0,1538 \mathbf{1},29 \cdot H = -0,2625 \cdot H.$

2. Belastung durch q t/m: $A = 4.16 \cdot q - 0.1178 \cdot (-3.142 \cdot g) + 0.1178 \cdot (-2.07 \cdot g) = 4.286 \cdot g,$ $B = 3,1 \cdot g + 0.1178 (-3,142 \cdot g) - 0,1178 (-2,07 \cdot g) = 2,974 \cdot g,$ $H_1 = 0,1538(-2,07 \cdot g) - 0,1538 \cdot 2,23 \cdot g = -0,661 \cdot g,$ $H_r = H_l = -0.661 \cdot g.$ 3. Belastung durch P_1 und P_2 : $A = 0.573 P_1 + 0.146 P_2 + 0.1178 (0.574 P_1 + 0.2998 P_2)$ $-0,1178 (0,3365 P_1 + 0,3655 P_2)$ $= 0,6009 P_1 + 0,1382 P_2,$ $B = 0,427\,P_1 + 0,854\,P_2 - 0,1178\,(0,574\,P_1 + 0,2998\,P_2)$ $+0,1178(0,3365P_1+0,3655P_2)$ = 0,3991 P_1 + 0,8618 P_2 , $H_{l} = -0,1538(0,3365P_{1} + 0,3655P_{2}) - 0,1538(0,403P_{1} + 0,235P_{2})$ $= -0,1137 P_1 - 0,0922 P_2,$ $H_r = -0,1137 P_1 - 0,0922 P_2.$ 4. Belastung durch Q: $A = Q - 0,1178 \cdot (-0,2266 \, Q) + 0,1178 \cdot 0,0388 \, Q = 1,0313 \cdot Q,$ $B = 0 + 0,1178 (-0,2266 Q) - 0,1178 \cdot 0,0388 Q = -0,0313 \cdot Q,$ $H_1 = 0,1538 \cdot 0,0388 Q + 0,1538 \cdot 0,0964 \cdot Q = 0,02076 \cdot Q,$

 $H_r := 0,02076 Q.$

Tabelle der Eckmomente und Auflagerdrücke.

	H	g	P_1 und P_2	Q	
$egin{array}{c} M_I \ M_{II} \ M_{III} \ M_{IV} \ M_V \end{array}$	$\begin{array}{c} -2.78 \cdot H \\ 2.014 \cdot H \\ -0.85 \cdot H \\ -0.4165 \cdot H \\ 1.29 \cdot H \end{array}$	$\begin{array}{r} 1,159 \cdot g \\ - 3,142 \cdot g \\ - 0,350 \cdot g \\ - 2,070 \cdot g \\ 2,23 \cdot g \end{array}$	$\begin{array}{c} 0,1655 \ P_1 + 0,2993 \ P_3 \\ - \ 0,574 \ P_1 \ - \ 0,2988 \ P_2 \\ - \ 0,1827 \ P_1 + 0,428 \ P_2 \\ - \ 0,3365 \ P_1 - \ 0,3655 \ P_2 \\ - \ 0,403 \ P_1 \ + \ 0,235 \ P_2 \end{array}$	0,0382 · Q 0,2266 · Q 0,0624 · Q 0,0388 · Q 0,0964 · Q	
A B H _l H _r	$\begin{array}{c} - 0,286 \cdot H \\ 0,286 \cdot H \\ 0,7375 \cdot H \\ - 0,2625 \cdot H \end{array}$	$\begin{array}{c} 4,2^{8}6 \cdot g \\ 2,974 \cdot g \\ - 0,661 \cdot g \\ - 0,661 \cdot g \end{array}$	$ \begin{vmatrix} 0,601 \ P_1 \ + 0,138 \ P_2 \\ 0,399 \cdot P_1 \ + 0,862 \ P_2 \\ - 0,1137 \ P_1 \ - 0,0922 \ P_2 \\ - 0,1137 \ P_1 \ - 0,0922 \ P_2 \end{vmatrix} $	$1,0313 \cdot Q \\ -0,0313 \cdot Q \\ +0,02076 \cdot Q \\ -0,02076 \cdot Q$	

b) Berechnung der Eckmomente und Auflagerdrücke unter Berücksichtigung der Normalkräfte.

Zunächst bestimmen wir die infolge der Überzähligen und äußeren Kräfte in dem System auftretenden Normalkräfte.

Die Stäbe seien mit 1, 2, 3, 4 (vgl. Fig. 167) bezeichnet; α sei der Winkel des Stabes 2 gegen die Hori-

zontale, zugleich Neigung des Stabes 3 gegen die Vertikale. Es ist:

$$\sin \alpha = \frac{3}{7,85} = 0,382,$$
$$\cos \alpha = \frac{7,26}{7,85} = 0,925.$$

Es treten die Normalkräfte auf

1. infolge $X_a = 1$:

$$N_{a_1} = \frac{1}{l} = \frac{1}{8,5} = 0,118,$$

$$N_{a_2} = \frac{\sin \alpha}{l} = 0,045,$$

$$N_{a_3} = -\frac{\cos \alpha}{l} = -0,109,$$

$$N_{a_4} = -\frac{1}{l} = -0,118,$$

2. infolge $X_b = 1$:

$$N_{b_1} = -\frac{1}{l} = -0,118,$$

$$N_{b_2} = -\frac{\sin \alpha}{l} + \frac{\cos \alpha}{h} = 0,097,$$

$$N_{b_3} = \frac{\cos \alpha}{l} + \frac{\sin \alpha}{h} = 0,168,$$

$$N_{b_4} = \frac{1}{l} = 0,118.$$

3. infolge $X_c = 1$: $N_c = 0$

$$N_{c_1} = 0,$$

$$N_{c_2} = -\frac{\cos \alpha}{h} = -0,142,$$

$$N_{c_3} = -\frac{\sin \alpha}{h} = -0,059,$$

$$N_{c_4} = 0.$$

4. infolge H:

$$N_{H_1} = N_{H_2} = N_{H_3} = N_{H_4} = 0.$$

5. infolge g t/m:

$$\begin{split} N_{g_1} &= -4,16 \ g, \\ N_{g_2} &= 0 \ (\text{in der Mitte}), \\ N_{g_3} &= -3,1 \cdot 0,925 \cdot g = -2,87 \cdot g, \\ N_{g_4} &= -3,1 \cdot g. \end{split}$$

6. infolge P_1 :

$$\begin{split} N_{P_{1_1}} &= -0.573 \, P_1, \\ N_{P_{1_2}} &= -0.572 \cdot P_1 \cdot 0.382 = -0.219 \, P_1 \quad \text{in der} \end{split}$$

linken Hälfe,

$$N_{P_{1_2}} = (-0.572 P_1 + I_1) \cdot 0.382 = 0.163 P_1$$
 in der

rechten Hälfte,

$$\begin{split} N_{P_{1_3}} &= -0.427 \, P_1 \cdot 0.925 = -0.395 \, P_1, \\ N_{P_{1_2}} &= -0.427 \cdot P_1. \end{split}$$

7. infolge P_2 :

$$\begin{split} N_{P_{2_1}} &= -0,146 \ P_2, \\ N_{P_{2_2}} &= -0,146 \ P_2 \cdot 0,382 = -0,056 \ P_2, \\ N_{P_{2_3}} &= -0,854 \ P_2 \cdot 0,925 = -0,788 \ P_2, \\ N_{P_{2_4}} &= -0,854 \cdot P_2. \end{split}$$

8. infolge Q:

$$N_{Q_1} = -Q,$$

 $N_{Q_2} = N_{Q_3} = N_{Q_4} = 0.$

Wir berechnen nun die Verschiebungen info'ge der durch die Überzähligen und äußeren Lasten hervorgerufenen Normalkräfte. Es ist allgemein:

$$[ik] = [ik]_{\mathcal{M}} + [ik]_{N} = \int M_{i} M_{k} ds \frac{J'}{J} + \int N_{i} N ds \frac{J'}{F}.$$

Das erste Glied der rechten Seite ist kereits unter 1a berechnet. Das zweite Glied ist jetzt noch zu berechnen, und zwar ist:

$$\int N_i N_k ds \frac{J'}{F} = \frac{J'}{F'} \int N_i N_a ds \frac{F'}{F} \, .$$

Als mittlerer Querschnitt werde wieder der des Ständers 1 angenommen, d. h. $F' = F_1$.

Damit wird

$$\frac{F'}{F_1} = 1; \quad \frac{F'}{F_2} = 0.832; \quad \frac{F'}{F_3} = 1.25; \quad \frac{F'}{F_4} = 1.11.$$

Das Verhältnis $\frac{J'}{F_1}$ ist zu 0,07 angegeben.

Für die Verschiebungen ergibt sich somit: $[aa]_N = 0.07 [0.118^2 \cdot 6.5 \cdot 1 + 0.045^2 \cdot 7.85 \cdot 0.832 + 0.109^2 \cdot 3.24 \cdot 1.25 + 0.118^2 \cdot 6.5 \cdot 1.11] = 0.01775,$ $[bb]_N = 0.07 [0.118^2 \cdot 6.5 \cdot 1 + 0.097^2 \cdot 7.85 \cdot 0.832 + 0.168^3 \cdot 3.24 \cdot 1.25 + 0.118^2 \cdot 6.5 \cdot 1.11] = 0.0258,$

$$[cc]_N = 0,07 [0 + 0,142^2 \cdot 7,85 \cdot 0,832 + 0,059^2 \cdot 3,24 \cdot 1,25 + 0] = 0,01022,$$

$$[ab]_N = 0,07 [-0,118^2 \cdot 6,5 \cdot 1 + 0,045 \cdot 0,097 \cdot 7,85 \cdot 0,832 - 0,109 \cdot 0,168 \cdot 3,24 \cdot 1,25 - 0,118^2 \cdot 6,5 \cdot 1,11] = -0,0166,$$

$$[ac]_N = 0,07 [0 - 0,045 \cdot 0,142 \cdot 7,85 \cdot 0,832 + 0,109 \cdot 0,059 \cdot 3,24 \cdot 1,25] = -0,00112,$$

$$[bc]_N = 0,07 [-0,097 \cdot 0,142 \cdot 7,85 \cdot 0,832 - 0,168 \cdot 0,059 \cdot 3,24 \cdot 1,25] = -0,0091.$$
Weiter findet man in gleicher Weise:
1. Belastung durch H:

$$[am]_N = [bm]_N = [cm]_N = 0.$$
2. Belastung durch g t/m:

$$[am]_N = -0,0048 \cdot g,$$

$$[cm]_N = -0,0048 \cdot g.$$
3. Belastung durch P₁:

$$[am]_N = 0,00627 P_1,$$

$$[bm]_N = -0,0147 P_1,$$

 $[c m]_N = 0,00843 P_1.$

4. Belastung durch P_2 :

$$[am]_N = 0,0661 P_2,$$

 $[bm]_N = -0,0830 P_2,$
 $[cm]_N = 0,0169 P_2.$

5. Belastung durch Q:

```
[am]_N = -0.0463 Q,
[bm]_N = 0.0463 Q,
[cm]_N = 0.
```

Damit ergeben sich folgende Verschiebungen unter Berücksichtigung der Normalkräfte:

A. Verschiebungen infolge der Überzähligen X:

 $[aa] = 8,576 + 0,01775 = 8,59375, \\ [bb] = 16,64 + 0,0258 = 16,6658, \\ [cc] = 5,702 + 0,01022 = 5,71222, \\ [ab] = -1,195 - 0,0166 = -1,2116, \\ [ac] = 2,5905 - 0,00112 = 2,58938, \\ [bc] = -3,678 - 0,0091 = -3,6871, \\ \end{cases}$

$$-\frac{[a\ b]}{[a\ a]} = -\frac{-1,2124}{8,59375} = 0,1412,$$
$$-\frac{[a\ c]}{[a\ a]} = -\frac{2,58938}{8,59375} = -0,302$$

- B. Verschiebungen infolge der äußeren Lasten.
- 1. Belastung durch H:

$$[am] = -21,125 \cdot H + 0 = -21,125 \cdot H, [bm] = 14,1 \cdot H + 0 = 14,1 \cdot H, [cm] = -14,1 \cdot H + 0 = -14,1 \cdot H.$$

2. Belastung durch g t/m:

$$\begin{array}{l} [am] = 18,714 \cdot g + 0,0014 \cdot g = 18,7154 \cdot g, \\ [bm] = 39,21 \cdot g - 0,0048 \cdot g = 39,2052 \cdot g, \\ [cm] = -12,225 \cdot g + 0,0034 \cdot g = -12,2216 \cdot g. \end{array}$$

3. Belastung durch P_1 :

$$\begin{array}{l} [a\,m] = 3,467\,P_1 + 0,00627\cdot P_1 = 3,47327\cdot P_1, \\ [b\,m] = 6,41\,P_1 - 0,0147\cdot P_1 = 6,3953\cdot P_1, \\ [c\,m] = -2,046\,P_1 + 0,008\,43\,P_1 = -2,03757\,P_1. \end{array}$$

4. Belastung durch P_2 :

$$\begin{split} & [am] = 1,525 \, P_2 + 0,0661 \cdot P_2 = 1,5911 \cdot P_2, \\ & [bm] = 6,58 \, P_2 - 0,0830 \cdot P_2 = 6,4970 \cdot P_2, \\ & [cm] = -1,906 \, P_2 + 0,0169 \, P_2 = -1,8891 \, P_2. \end{split}$$

5. Belastung durch Q:

$$\begin{array}{l} [am] = 2,24 \cdot Q - 0,0463 \cdot Q = + 2,1937 \cdot Q, \\ [bm] = - 1,27 \cdot Q + 0,0463 \cdot Q = - 1,2237 \cdot Q, \\ [cm] = + 1,27 \cdot Q \pm 0 = + 1,27 \cdot Q. \end{array}$$

Berechnung der Verschiebungen des 1- bzw. 2 fach unbestimmten Systems. Diese sollen hier einmal rechnerisch bestimmt werden.

$$\begin{split} [bb.1] &= [bb] - \frac{[ab]}{[aa]} \cdot [ab] = 16,6658 - 0,1412 \cdot 1,2116 = 16,4946, \\ [bc.1] &= [bc] - \frac{[ab]}{[aa]} \cdot [ac] = -3,6871 + 0,1412 \cdot 2,58938 = -3,3215, \\ [cc.1] &= [cc] - \frac{[ac]}{[aa]} \cdot [ac] = 5,71222 - 0,302 \cdot 2,58938 = 4,93023, \\ [cc.2] &= [cc.1] - \frac{[bc.1]}{[bb.1]} \cdot [bc.1] = 4,93023 - \frac{-3,3215}{16,4946} \cdot (-3,3215) \\ &= 4,259 \\ - \frac{[bc.1]}{[bb.1]} = - \frac{-3,3215}{16,4946} = +0,202. \end{split}$$

1. Belastung durch
$$H$$
:
 $[b m.1] = [b m] - \frac{[a b]}{[a a]} \cdot [a m] = 14,1 H - 0,1412 \cdot 21,125 \cdot H$
 $= 11,117 \cdot H,$
 $[c m.1] = [c m] - \frac{[a c]}{[a a]} \cdot [a m] = -14,1 \cdot H + 0,302 \cdot 21,125 \cdot H$
 $= -7,72 \cdot H,$
 $[c m.2] = [c m.1] - \frac{[b c.1]}{[b b.1]} \cdot [b m.1] = -7,72 \cdot H$
 $+ 0,202 \cdot 11,117 \cdot H = -5,4726 \cdot H.$
2. Belastung durch $g t/m$:
 $[b m.1] = 39,205 \cdot g + 0,1412 \cdot 18,715 \cdot g = 41,865 \cdot g,$
 $[c m.1] = -12,2216 \cdot g - 0,302 \cdot 18,715 \cdot g = -17,87 \cdot g,$
 $[c m.2] = -17,87 \cdot g + 0,202 \cdot 41,865 \cdot g = -9,42 \cdot g.$
3. Belastung durch P_1 :
 $[b m.1] = 6,3953 P_1 + 0,1412 \cdot 3,47 P_1 = 6,8853 P_1,$
 $[c m.2] = -3,0876 P_1 + 0,202 \cdot 6,8853 P_1 = -1,6976 P_1,$
4. Belastung durch P_2 :
 $[b m.1] = 6,497 P_2 + 0,1412 \cdot 1,591 P_2 = 6,72 P_2,$
 $[c m.2] = -2,369 P_2 + 0,202 \cdot 6,72 P_2 = -1,014 P_2.$
5. Belastung durch Q :
 $[b m.1] = -1,2237 Q + 0,1412 \cdot 2,1937 \cdot Q = -0,9139 \cdot Q,$
 $[c m.2] = 0,5975 \cdot Q - 0,202 \cdot 0,9139 \cdot Q = 0,4129 \cdot Q.$

Mit diesen Verschiebungen ergeben sich nun die Überzähligen X für:

1. Belastung durch H:

$$X_{c} = -\frac{[c\,m.\,2]}{[c\,c.\,2]} = -\frac{-5,4726 \cdot H}{4,259} = 1,286 \cdot H,$$

$$X_{b} = -\frac{b\,m.1}{b\,b.1} - \frac{[b\,c.\,1]}{[b\,b.1]} X_{c} = -\frac{11,117 \cdot H}{16,4946} + 0,202 \cdot 1,286 \cdot H$$

$$= -0,4155 \cdot H,$$

$$X_{a} = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]} X_{b} - \frac{[ac]}{[aa]} X_{c} = -\frac{-21,125 \cdot H}{8,59375}$$

$$-0,1412 \cdot 0,4155 \cdot H - 0,302 \cdot 1,286 \cdot H = 2,012 \cdot H.$$

2. Belastung durch
$$g$$
 t/m:
 $X_c = -\frac{-9,42 \cdot g}{4,259} = 2,21 \cdot g,$
 $X_b = -\frac{41,865 \cdot g}{16,4946} + 0,202 \cdot 2,21 \cdot g = -2,09 \cdot g,$
 $X_a = -\frac{18,735 \cdot g}{8,59375} - 0,1412 \cdot 2,09 \cdot g - 0,302 \cdot 2,21 \cdot g = -3,14 \cdot g.$
3. Belastung durch P_1 :
 $X_c = -\frac{-1,6976 P_1}{4,259} = 0,398 P_1,$
 $X_b = -\frac{6,8853 P_1}{16,4946} + 0,202 \cdot 0,398 P_1 = -0,3395 P_1,$
 $X_a = -\frac{3,4732 P_1}{8,59375} - 0,1412 \cdot 0,3395 P_1 - 0,302 \cdot 0,398 P_1 = -0,569 \cdot P_1.$
4. Belastung durch P_q :
 $X_c = -\frac{-1,014 P_2}{4,259} = 0,238 P_2,$
 $X_b = -\frac{6,72 P_2}{16,4946} + 0,202 \cdot 0,238 P_2 = -0,361 P_2,$
 $X_a = -\frac{1,591 P_2}{8,59375} - 0,1412 \cdot 0,361 P_2 - 0,302 \cdot 0,238 P_2 = -0,308 P_3.$
5. Belastung durch Q :
 $X_c = -\frac{0,4129 \cdot Q}{4,259} = -0,097 \cdot Q,$
 $X_b = +\frac{0,9139 \cdot Q}{16,4946} - 0,202 \cdot 0,097 \cdot Q = 0,0358 \cdot Q,$
 $X_a = -\frac{2,1037 \cdot Q}{8,59375} + 0,1412 \cdot 0,0358 \cdot Q + 0,302 \cdot 0,097 \cdot Q = -0,221 \cdot Q.$

Wir bestimmen nun noch die Momente in den Eckpunkten I und III für die verschiedenen Belastungen.

Wir haben hierfür die Gleichung

$$\boldsymbol{M} = \boldsymbol{M}_{0} + \boldsymbol{M}_{a} \cdot \boldsymbol{X}_{a} + \boldsymbol{M}_{b} \cdot \boldsymbol{X}_{b} + \boldsymbol{M}_{c} \cdot \boldsymbol{X}_{c}$$

Für das Moment an der Einspannstelle I ist $M_a = 1$; $M_b = -1$; $M_c = 1$; für das Moment am oberen Knickpunkt III ist $M_a = 0,146$; $M_b = 1,318$; $M_c = -0,461$.

1. Belastung durch
$$H$$
:
 $M_I = -6.5 \cdot H + 2.012 \cdot H + 0.4155 \cdot H + 1.286 \cdot H = -2.7865 \cdot H$,
 $M_{III} = 0 + 0.146 \cdot 2.012 \cdot H - 1.318 \cdot 0.4155 \cdot H - 0.461 \cdot 1.286 \cdot H$
 $= -0.847 \cdot H$.
2. Belastung durch g t/m:
 $M_I = 0 - 3.14 \cdot g + 2.09 \cdot g + 2.21 \cdot g = 1.15 \cdot g$,
 $M_{III} = 3.85 \cdot g - 0.146 \cdot 3.14 \cdot g - 1.318 \cdot 2.09 \cdot g - 0.461 \cdot 2.21 \cdot g$
 $= -0.373 \cdot g$.
3. Belastung durch P_1 :
 $M_I = 0 - 0.569 P_1 + 0.3395 P_1 + 0.385 P_1 = 0.1555 P_1$,
 $M_{III} = 0.53 P_1 - 0.146 \cdot 0.569 P_1 - 1.318 \cdot 0.3395 P_1 - 0.461 \cdot 0.385 P_1$
 $= -0.1775 P_1$.
4. Belastung durch P_2 :
 $M_I = 0 - 0.308 P_2 + 0.361 P_2 + 0.238 P_2 = 0.291 P_2$,
 $M_{III} = 1.06 P_2 - 0.146 \cdot 0.308 P_1 - 1.318 \cdot 0.361 P_2 - 0.461 \cdot 0.238 P_2$
 $= +0.432 P_2$.
5. Belastung durch Q :
 $M_I = 0.4 Q - 0.221 \cdot Q - 0.0358 \cdot Q - 0.097 \cdot Q = +0.0462 Q$,
 $M_{III} = 0 - 0.146 \cdot 0.221 \cdot Q + 1.318 \cdot 0.0358 \cdot Q + 0.461 \cdot 0.097 \cdot Q$
 $= +0.0596 \cdot Q$.

Tabelle der Eckmomente für die verschiedenen Belastungen.

	H	g	P ₁	P_2	Q
$egin{array}{c} M_I \ M_{II} \ M_{III} \ M_{IV} \ M_V \end{array}$	$ \begin{array}{c} -2,7865 \cdot H \\ 2,012 \cdot H \\ -0,847 \cdot H \\ -0,4155 \cdot H \\ +1,286 \cdot H \end{array} $	$\begin{array}{c} 1,15 \cdot g \\ -3,14 \cdot g \\ -0,373 \cdot g \\ -2,09 \cdot g \\ 2,21 \cdot g \end{array}$	$\begin{array}{c} 0,1555\cdot P_1 \\ -0,569\cdot P_1 \\ -0,1775\cdot P_1 \\ -0,3395\cdot P_1 \\ 0,398\cdot P_1 \end{array}$	$\begin{array}{c} 0,291\cdot P_2\\ -\ 0,308\cdot P_2\\ 0,432\cdot P_2\\ -\ 0,361\cdot P_2\\ 0,238\cdot P_2\end{array}$	$\begin{array}{c} 0,0462 \cdot Q \\ -0,221 \cdot Q \\ 0,0596 \cdot Q \\ 0,0358 \cdot Q \\ -0,097 \cdot Q \end{array}$

c) Aus den vorher ermittelten Resultaten kann man nun die größten Momente und Normalkräfte leicht durch entsprechende Addition gewinnen. Die Beanspruchung ist in den meisten Fällen aus Biegung und Normalkräften zusammengesetzt. Die Spannungen kann man berechnen aus der Gleichung:

$$\sigma = \frac{\overline{N}}{F} \pm \frac{M}{W} = \frac{N}{F} \pm \frac{N \cdot e}{W},$$

oder aus der Gleichung:

$$\sigma = \frac{M_k}{W_k} = \frac{N \cdot e_k}{F \cdot k}$$

Darin ist e der Abstand der resultierenden Kraft N vom Schwerpunkt, e_k der Abstand der resultierenden Kraft N vom Kernrand

und k der Abstand dieses Kernrandes vom Schwerpunkt (vgl. ersten Teil, § 2, Seite 7f.); M_k ist das Kernrandmoment.

Die in diesen Spannungsgleichungen vorkommenden Werte N, e, e_k kann man sehr übersichtlich gewinnen

Fig. 170. Stützlinie für P_1 . Kräftemaßstab: 1 cm = 0,3 t.

Fig. 172. Stützlinie für Q. Kräftemaßstab: links 1 cm = 0,1 t. rechts 1 cm = 0,3 t.

aus den Stützlinien. Diese sind in den Fig. 168 bis 172 für die einzelnen Belastungen dargestellt. Sie können wie folgt ermittelt werden.

Aus der vertikalen und horizontalen Auflagerreaktion eines Auflagers wird die Resultierende Rbestimmt; das zugehörige Einspannungsmoment dividiert durch Rergibt die Exzentrizität e von R; die danach eingetragene Kraft Rwird dann der Reihe nach mit den übrigen Lasten durch Kräfteund Seilpolygon zusammengesetzt.

Man erkennt, daß die Stützlinie durch die aus der vorhergehenden Rechnung sich ergebenden Momentennullpunkte gehen muß; zur Probe sind die Momentenflächen eingezeichnet.

Aus diesen Stützlinien und den zugehörigen Kraftecken sind die Werte N und e und, wenn Querschnitt und Kern bekannt sind, auch e_k zu entnehmen und die Spannungen nach obigen Gleichungen zu ermitteln.

2. Berechnung unter Verwendung zweier eingespannter Balken als Grundsystem.

Wir wollen den im vorhergehenden behandelten Shedrahmen auf eine zweite Art berechnen, indem wir ein anderes Grundsystem und die in § 8 dieses Bandes erläuterte Rahmenbehandlung anwenden.

Die Überzähligen X_a , X_b , X_c seien die im Scheitel wirkenden Momente, Horizontalschübe und Querkräfte (vgl. Fig. 173). Wir beginnen, wie immer, zunächst mit der Berechnung der Verschiebungen des Grundsystems.

Die Momentenflächen infolge X_a , X_b , $X_c = 1$ am Grundsystem sind in den Fig. 174 bis 176 eingezeichnet. Es ergibt sich für die von der äußeren Last unabhängigen Verschiebungen:

$$[b c] = \frac{1}{2} \cdot 7,26 (9,5+3) + \frac{1}{3} \cdot 7,26 \cdot 3 \cdot 0,665 - \frac{1}{3} \cdot 1,24 \cdot 3 \cdot 2$$

$$-\frac{6,5}{2} \cdot 1,24 (3+9,5) \cdot 1,25 = 261,9,$$

$$[c c] = 6,5 \cdot 7,26^{2} + \frac{7,85}{3} \cdot 7,26^{2} \cdot 0,665 + \frac{3,24}{3} \cdot 1,24^{2} \cdot 2$$

$$+ 6,5 \cdot 1,24^{2} \cdot 1,25 = 451,83.$$

Hiermit erhalten wir nun die Festwerte wie folgt:

$$-\frac{[a \ b]}{[a \ a]} = -\frac{108,85}{26,325} = 4,13,$$

$$-\frac{[a \ c]}{[a \ a]} = -\frac{52,03}{26,325} = 1,98,$$

$$[b \ c.1] = [b \ c] - \frac{[a \ b]}{[a \ a]} [a \ c] = 261,9 - 4,13 \cdot 52,03 = 46,9,$$

$$[b \ b.1] = [b \ b] - \frac{[a \ b]}{[a \ a]} [a \ b] = 657,6 - 4,13 \cdot 108,85 = 208,1,$$

$$-\frac{[b \ c.1]}{[b \ b.1]} = -\frac{46,9}{208,1} = -0,226,$$

$$[c \ c.1] = [c \ c] - \frac{[a \ c]}{[a \ a]} \cdot [a \ c] = 451,83 - 1,98 \cdot 52,03 = 348,8,$$

$$[c \ c.2] = [c \ c.1] - \frac{[b \ c.1]}{[b \ b.1]} [b \ c.1] = 348,8 - 0,226 \cdot 46,9 = 338,2$$

Für die Belastungszustände $X_{a\cdot 0}$, $X_{b\cdot 1}$, $X_{c\cdot 2}$ ergeben sich nun die Belastungsgrößen:

$$X_{a,0} = 1: \qquad X_{a\,a} = 1.$$

$$X_{b,1} = 1: \qquad X_{a\,b} = -\frac{[a\,b]}{[a\,a]}; \qquad X_{b\,b} = 1.$$

$$X_{c,2} = 1: \qquad X_{a\,c} = -\frac{[a\,b]}{[a\,a]} \cdot X_{b\,c} = \frac{[a\,c]}{[a\,a]} X_{c\,c}; \qquad X_{b\,c} = -\frac{[b\,c.1]}{[b\,b.1]};$$

$$X_{c\,c} = 1.$$

Nach Einsetzen der Festwerte wird:

Die $M_{a.0}$ -Fläche ist in Fig. 174 dargestellt. Um die $M_{b.1}$ -Fläche zu erhalten, lassen wir den Schub $X_{bb} = 1$ parallel zu X_b im Abstande $-\frac{[a\,b]}{[a\,a]} = 4,13$ vom Scheitel wirken (vgl. Fig. 177). Tragen wir nun die Resultierende aus der Querkraft $X_{cc} = 1$ im Abstande $-\frac{[a\,c]}{[a\,a]} = 1,98$ links vom Scheitel und aus dem Schub $X_{bc} = -\frac{[b\,c.\,1]}{[b\,b.\,1]} = -0,226$

3. Belastung durch P_1 :

$$X_{a.0} = -\frac{28,35 P_1}{26,325} = -1,076 P_1,$$

$$X_{b.1} = -\frac{-42,4 P_1}{208,1} = +0,204 P_1,$$

$$X_{c.2} = -\frac{-135,5 P_1}{338,2} = +0,4 P_1.$$

4. Belastung durch P_{2} :

$$X_{a.0} = -\frac{66,15 P_2}{26,325} = -2,51 P_2,$$

$$X_{b.1} = -\frac{-59,7}{208,1} \cdot P_2 = 0,287 \cdot P_2,$$

$$X_{c.2} = -\frac{-290 P_2}{338,2} = +0,86 P_2.$$

5. Belastung durch Q:

$$X_{a.0} = -\frac{-2,24 \cdot Q}{26,325} = -0,085 \cdot Q,$$

$$X_{b.1} = -\frac{+5,75 \cdot Q}{208,1} = -0,0276 \cdot Q,$$

$$X_{c.2} = -\frac{+10,51 \cdot Q}{338,2} = -0,0311 \cdot Q.$$

Für die Berechnung irgendeiner statischen Größe haben wir nun die Gleichung:

 $S = S_0 + S_a \cdot X_{a.0} + S_{b.1} \cdot X_{b.1} + S_{c.2} \cdot X_{c.2},$

die für die im vorliegenden Falle zu berechnenden Eckmomente ergibt:

 $M = M_0 + M_a \cdot X_{a.0} + M_{b.1} \cdot X_{b.1} + M_{c.2} \cdot X_{c.2}.$

Die Werte M_0 , Momente infolge der äußeren Belastung am Grundsystem, entnehmen wir aus den Fig. 179 bis 183, die Werte M_a , $M_{b.1}$ und $M_{c.2}$, Momente infolge der Unbekannten am 0-, 1- bzw. 2-fach unbestimmten Hauptsystem, aus den Fig. 174, 177, und 178.

Es ergibt sich für die verschiedenen Belastungsarten:

1. Belastung durch H:

$$M_{I} = -6.5 \cdot H + (-1) \cdot (-0.804) \cdot H + 5.37 \cdot 0.326 \cdot H + 4.06 \cdot 0.285 \cdot H = -2.786 \cdot H,$$

$$\begin{split} M_{II} &= 0 + 0,804 \cdot H - 1,13 \cdot 0,326 \cdot H + 5,535 \cdot 0,285 \cdot H = 2,014 \cdot H, \\ M_{III} &= 0 + 0,804 \cdot H - 4,13 \cdot 0,326 \cdot H - 1,047 \cdot 0,285 \cdot H \\ &= -0,844 \cdot H, \\ M_{II'} &= 0 + 0,804 \cdot H - 1,13 \cdot 0,326 \cdot H - 2,96 \cdot 0,285 \cdot H \\ &= -0,409 \cdot H, \\ M_{I'} &= 0 + 0,804 \cdot H + 5,37 \cdot 0,326 \cdot H - 4,43 \cdot 0,285 \cdot H = +1,255 \cdot H \\ &= 13 \end{split}$$

2. Belastung durch $g t/m$:
$M_{I} = -26,35 \cdot g + 8,25 \cdot g + 5,37 \cdot 1,33 \cdot g + 4,06 \cdot 2,96 \cdot g = +1,12 \cdot g,$
$M_{II} = -26,35 \cdot g + 8,25 \cdot g - 1,13 \cdot 1,33 \cdot g + 5,535 \cdot 2,96 \cdot g$
$=$ $-3,16 \cdot g$,
$M_{III} = 0 + 8,25 \cdot g - 4,13 \cdot 1,33 \cdot g - 1,047 \cdot 2,96 \cdot g = -0,37 \cdot g$
$M_{IV} = 0 + 8,25 \cdot g - 1,13 \cdot 1,33 \cdot g - 2,96 \cdot 2,96 \cdot g = -2,04 \cdot g$
$M_{v} = 0 + 8,25 \cdot g + 5,37 \cdot 1,33 \cdot g - 4,43 \cdot 2,96 \cdot g = +2,26 \cdot g.$
3. Belastung durch P_1 :
$M_{I} = -3,63 P_{1} + 1,076 \cdot P_{1} + 5,37 \cdot 0,204 P_{1} + 4,06 \cdot 0,4 P_{1}$
$=+0,165 P_{1},$
$M_{_{II}}$ = - 3,63 P_1 + 1,076 P_1 - 1,13 \cdot 0,204 P_1 + 5,535 \cdot 0,4 P_1
$= -0.571 \cdot P_1$,
$M_{_{III}} \!=\! 0 \!+\! 1,\!076P_1 \!-\! 4,\!13 \cdot 0,\!204P_1 \!-\! 1,\!047 \cdot 0,\!4P_1 \!=\! -0,\!186P_1,$
$M_{IV} = 0 + 1,076 P_1 - 1,13 \cdot 0,204 P_1 - 2,96 \cdot 0,4 P_1 = -0,338 P_1,$
$M_{\nu} = 0 + 1,076 P_{1} + 5,37 \cdot 0,204 P_{1} - 4,43 \cdot 0,4 P_{1} = +0,399 P_{1}.$
4. Belastung durch P_2 :
$M_{I} = -7,26 P_{2} + 2,51 P_{2} + 5,37 \cdot 0,287 P_{2} + 4,06 \cdot 0,86 P_{2}$
$=+0,285P_{2}$,
$M_{_{II}} = -7,26 P_2 + 2,51 P_2 - 1,13 \cdot 0,287 P_2 + 5,535 \cdot 0,86 P_2$
$= -0,301 P_2,$
$M_{III} = 0 + 2,51 P_2 - 4,13 \cdot 0,28 P_2 - 1,047 \cdot 0,86 P_2 = +0,426 P_2,$
$M_{IV} = 0 + 2,51 P_2 - 1,13 \cdot 0,28 P_2 - 2,96 \cdot 0,86 P_2 = -0,365 P_2,$
$M_{\nu} = 0 + 2,51 P_{2} + 5,37 \cdot 0,28 P_{2} - 4,43 \cdot 0,86 P_{2} = +0,245 P_{2}.$
5. Belastung durch Q :
$M_I = 0.4 \cdot Q - 0.085 \cdot Q - 5.37 \cdot 0.0276 \cdot Q - 4.06 \cdot 0.0311 \cdot Q$
$= -0,04 \cdot Q$,
$M_{_{II}} = 0 - 0,085 \cdot Q + 1,13 \cdot 0,0276 \cdot Q - 5,535 \cdot 0,0311 \cdot Q$
$= -0,226 \cdot Q$,
$M_{III} = 0 - 0.085 \cdot Q + 4.13 \cdot 0.0276 \cdot Q + 1.047 \cdot 0.0311 \cdot Q$
= -0,062 Q,
$M_{IV} = 0 - 0.085 \cdot Q + 1.13 \cdot 0.0276 \cdot Q + 2.965 \cdot 0.0311 \cdot Q$
$=+0.0382 \cdot Q$,
$\mathbf{M}_{\nu} = 0 - 0,085 \cdot Q - 5,37 \cdot 0,0276 \cdot Q + 4,43 \cdot 0,0311 \cdot Q = -0,0955 \cdot Q.$

Die Größen der Eckmomente sind in folgender Tabelle zusammengestellt.

	H	$g~{ m t/m}$	P1	P_2	Q
$\begin{matrix} M_I \\ M_{II} \\ M_{III} \\ M_{IV} \\ M_V \end{matrix}$	$ \begin{array}{c} -2,786 \cdot H \\ +2,014 \cdot H \\ -0,844 \cdot H \\ -0,409 \cdot H \\ +1,255 \cdot H \end{array} $	$+1,12 \cdot g \\ -3,16 \cdot g \\ -0,37 \cdot g \\ -2,04 \cdot g \\ +2,26 \cdot g$	$\begin{array}{c} 0,165 \cdot P_1 \\ - 0,571 \cdot P_1 \\ - 0,186 \cdot P_1 \\ - 0,338 \cdot P_1 \\ 0,399 \cdot P_1 \end{array}$	$0,285 \cdot P_3 \\ -0,301 \cdot P_2 \\ 0,426 \cdot P_2 \\ -0,365 \cdot P_2 \\ 0,245 \cdot P_2$	$\begin{array}{c} 0,04 \cdot Q \\ -0,226 \cdot Q \\ 0,062 \cdot Q \\ 0,038 \cdot Q \\ -0,096 \cdot Q \end{array}$

Beispiel II.

Es soll der in Fig. 184 dargestellte Träger mit oberen und unteren Einspannungen an den Mittelstützen berechnet werden.

Das vorliegende System ist symmetrisch. Wir wollen daher hier ähnlich vorgehen wie in § 10 beim symmetrischen Rahmen und die Rechnung auf folgende zwei Arten durchführen:

Erstes Verfahren: Wir legen ein statisch bestimmtes Grundsystem zu Grunde; da das System fünffach statisch unbestimmt ist, erhalten wir fünf Unbekannte, die aus fünf Gleichungen zu ermitteln sind.

Zweites Verfahren: Wir wählen als Hauptsystem einen beiderseits eingespannten Rahmen mit zwei anschließenden einfachen Balken. Da die Beanspruchungen dieses dreifach statisch unbestimmten Hauptsystems nach § 9 bekannt sind, haben wir nur noch zwei Unbekannte zu berechnen.

In beiden Fällen sollen durch Ausnutzung der Symmetrie Vereinfachungen der Gleichungen erstrebt werden.

1. Erstes Verfahren.

Um das fünffach statisch unbestimmte System in ein statisch bestimmtes Grundsystem zu verwandeln, legen wir fünf Gelenke ein (vgl. Fig. 185), und zwar je eins an den Füßen der Stützen h, an den innern Enden der Außenriegel l_1 und in der Mitte des Riegels l_2 ; dieses Grundsystem ist ebenfalls symmetrisch.

13*

Die durch die Gelenke entfernten fünf Einspannungsmomente stellen die Überzähligen dar. Wir berechnen jedoch als Unbekannte nicht die Überzähligen selbst, sondern Gruppen dieser, und zwar wie folgt (Fig. 185):

- X_a sei das Moment in der Mitte des Riegels l_2 .
- X_b sei die Gruppe zweier gleichen und in gleichem Sinne wirkenden Momente an den Riegeln l_1 .
- X_c sei die Gruppe zweier gleichen und in gleichem Sinne wirkenden Momente an den Ständerfüßen.
- X_d sei die Gruppe zweier gleichen, aber in ungleichem Sinne wirkenden Momente an den Riegeln l_1 .
- X_e sei die Gruppe zweier gleichen, aber in ungleichem Sinne wirkenden Momente an den Stützenfüßen.

Die Gleichungen der Unbekannten lauten allgemein:

 $\begin{array}{l} \left[a\,a\right]\cdot X_a + \left[a\,b\right]\cdot X_b + \left[a\,c\right]\cdot X_c + \left[a\,d\right]\cdot X_d + \left[a\,e\right]\cdot X_e = - \left[a\,m\right].\\ \left[a\,b\right]\cdot X_a + \left[b\,b\right]\cdot X_b + \left[b\,c\right]\cdot X_c + \left[b\,d\right]\cdot X_d + \left[b\,e\right]\cdot X_e = - \left[b\,m\right].\\ \left[a\,c\right]\cdot X_a + \left[b\,c\right]\cdot X_b + \left[c\,c\right]\cdot X_c + \left[c\,d\right]\cdot X_d + \left[c\,e\right]\cdot X_e = - \left[c\,m\right].\\ \left[a\,d\right]\cdot X_a + \left[b\,d\right]\cdot X_b + \left[c\,d\right]\cdot X_c + \left[d\,d\right]\cdot X_d + \left[d\,e\right]\cdot X_e = - \left[d\,m\right].\\ \left[a\,e\right]\cdot X_a + \left[b\,e\right]\cdot X_b + \left[c\,e\right]\cdot X_c + \left[d\,e\right]\cdot X_d + \left[e\,e\right]\cdot X_e = - \left[e\,m\right]. \end{array}$

Wir werden später erkennen, wie sich diese Gleichungen infolge der Wahl der oben genannten Unbekannten wesentlich vereinfachen.

Bezüglich der Vorzeichen sollen folgende Regeln gelten: Momente sind positiv, wenn sie die Riegel nach oben hohl, bzw. die Ständer nach innen hohl verbiegen. Die Normalkräfte sind als Zugkräfte positiv, als Druckkräfte negativ.

Zur Berechnung der Koeffizienten der X bestimmen wir zunächst die Momentenflächen des Grundsystems infolge der Belastungen X = 1; sie sind in Fig. 186 bis 190 dargestellt.

Fig. 187. M_b-Fläche.

Fig. 190. Me-Fläche.

Damit lassen sich die Koeffizienten der X leicht angeben. Es gilt allgemein die Gleichung:

$$[ik] = \int M_i M_k \frac{ds}{E \cdot J},$$

wenn wir der Einfachheit halber wiederum die Normal- und Querkräfte vernachlässigen.

Wir multiplizieren diesen Wert mit EJ_l , und schreiben für $EJ_l[ik]$ einfach [ik].

$$[ik] = \int M_i M_k \frac{J_l}{J}.$$

Dieser Summenausdruck wird in gewohnter Weise an Hand der Momentenflächen (Fig. 186 bis 190) ausgewertet. Es handelt sich um geradlinig begrenzte Momentenflächen und gerade Strecken s, so daß wir die im § 1 angegebenen Formeln für die Integration verwenden können. Wir schreiben dabei: $s \cdot \frac{J_l}{J} = s'$ und finden damit folgende Koeffizienten der X: Vollwandige Systeme mit geradlinigen Achsen.

.

$$[aa] = l_2' + \frac{2h'}{3} = + 24,$$

$$[bb] = \frac{2(l_1' + h')}{3} = + 20,$$

$$[cc] = \frac{2h'}{3} = + 16,$$

$$[dd] = \frac{2l_1' + l_2'}{3} = + 6,67,$$

$$[ee] = 2h' + \frac{l_2'}{3} = + 50,67,$$

$$[ab] = -\frac{2h'}{3} = - 16,$$

$$[ac] = +\frac{h'}{3} = + 8,$$

$$[ad] = 0,$$

$$[ae] = 0,$$

$$[bc] = -\frac{h'}{3} = - 8,$$

$$[bd] = 0,$$

$$[bc] = 0,$$

$$[be] = 0,$$

$$[ce] = 0,$$

$$[ce] = 0,$$

$$[de] = +\frac{l_2'}{3} = + 2,67.$$

Die von der äußeren Belastung abhängigen Verschiebungen des Grundsystems sollen für folgende verschiedene Fälle berechnet werden

- 1. l_1 links mit p_1 t/m belastet (Fig. 191),
- 2. l_2 mit p_2 t/m belastet (Fig. 193),
- 3. l_1 rechts mit p_1 t/m belastet (Fig. 192),
- 4. Horizontalschub H am oberen Riegel (Fig. 194).

Bei Belastung eines der äußeren Riegel l_1 erstreckt sich die M_0 -Fläche nur über diesen belasteten Teil (l_1) des Systems. Bei Vollbelastung des mittleren Riegels mit p_2 t/m erstreckt sich die M_0 -Fläche in der in Fig. 193 angegebenen Form über den betreffenden Riegel und die Ständer. Bei einem Horizontalschub H von rechts nach links erstreckt sich die M_0 -Fläche über die Ständer und den mittleren Riegel (Fig. 194). Die Verschiebungen sind also:

1. l_1 links belastet (Fig. 191):

$$[am] = 0,$$

$$[bm] = + \frac{p_1 l_1^2 \cdot l_1'}{24} = + 9,0 p_1,$$

$$[cm] = 0,$$

$$[dm] = + \frac{p_1 l_1^2 \cdot l_1'}{24} = + 9,0 p_1,$$

$$[em] = 0;$$

2. Feld l_2 belastet mit p_2 t/m (Fig. 193):

$$[am] = -\frac{p_{2}l_{2}^{2}}{24} \cdot (2h' + l_{2}') = -149,3 p_{2};$$

$$[bm] = +\frac{p_{2}l_{2}^{2} \cdot h'}{12} = +128 p_{2},$$

$$[cm] = -\frac{p_{2}l_{2}^{2} \cdot h'}{24} = -64 p_{2},$$

$$[dm] = [em] = 0;$$

Vollwandige Systeme mit geradlinigen Achsen.

- 3. Feld l_1 rechts belastet mit p_1 t/m (Fig. 192): [am] = 0, $[bm] = + \frac{p_1 l_1^2 \cdot l_1'}{24} = 9,0 p$, [cm] = 0, $[dm] = -\frac{p_1 l_1^2 \cdot l_1'}{24} = -9,0 p_1$, [em] = 0;
- 4. Belastung durch H (Fig. 194):

$$[am] = [bm] = [cm] = 0,$$

$$[dm] = -\frac{H \cdot h \cdot l_3'}{6} = --8,0 H,$$

$$[em] = -\frac{Hh}{2} \left(\frac{l_3'}{3} + h'\right) = -80,0 H$$

Berücksichtigt man die vorhergehenden Ergebnisse, wonach eine Reihe von Koeffizienten der X zu 0 werden, so ergibt sich folgendes System der Elastizitätsgleichungen:

$$\begin{split} &X_{a}[aa] + X_{b}[ab] + X_{c}[ac] = -[am], \\ &X_{a}[ab] + X_{b}[bb] + X_{c}[bc] = -[bm], \\ &X_{a}[ac] + X_{b}[bc] + X_{c}[cc] = -[cm], \\ &X_{d}[dd] + X_{e}[ed] = -[dm], \\ &X_{d}[de] + X_{e}[ee] = -[em]. \end{split}$$

Wir haben also zwei voneinander unabhängige Gleichungssysteme, und zwar ein System mit den Unbekannten X_a , X_b , X_c und ein System mit den Unbekannten X_d und X_e .

mit den Undekannten Δ_d und Δ_e . Die Auflösung der Gleichungen ist also sehr einfach. Bezeichnet man die Festwerte allgemein mit F_{ik} , wo $F_{ik} = -\frac{[ik \cdot \nu]}{[ii \cdot \nu]}$. so ergeben sich bei Anwendung des im I. Teil, § 13, angegebenen Lösungsverfahrens die folgenden Ausdrücke:

$$\begin{split} X_c &= -\frac{[cm \cdot 2]}{[cc \cdot 2]}, \\ X_b &= -\frac{[bm \cdot 1]}{[bb \cdot 1]} + F_{bc} \cdot X_c, \\ X_a &= -\frac{[am]}{[aa]} + F_{ab} \cdot X_b + F_{ac} \cdot X_c, \\ X_e &= -\frac{[em \cdot 1]}{[ee \cdot 1]}, \\ X_d &= -\frac{[dm]}{[dd]} + F_{dc} \cdot X_c, \end{split}$$

$$\begin{split} F_{ab} &= -\frac{[ab]}{[aa]} = +\frac{2}{3}, \\ F_{ac} &= -\frac{[ac]}{[aa]} = -\frac{1}{3}, \\ [bb.1] &= [bb] + F_{ab} [ab] = +9,33, \\ [bc.1] &= [bc] + F_{ab} [ac] = -0,267, \\ [cc.1] &= [cc] + F_{ac} [ac] = +13,33, \\ F_{bc} &= -\frac{[bc.1]}{[bb.1]} = 0,285, \\ [cc.2] &= [cc.1] + F_{bc} [bc.1] = +12,58, \\ F_{de} &= -\frac{[de]}{[dd]} = -0,4, \\ [ee.1] &= [ee] + F_{de} [de] = +49,6. \end{split}$$

Für die einzelnen Belastungen findet man weiter:

1. Feld
$$l_1$$
 links belastet mit p_1 t/m:
 $[bm.1] = [bm] + F_{ab} [am] = + 9,0 p_1,$
 $[cm.1] = [cm] + F_{ac} [am] = 0,$
 $[cm.2] = [cm.1] + F_{bc} [bm.1] = + 2,57 p_1,$
 $X_c = -\frac{2,57}{12,58} p_1 = -0,204 p_1,$
 $X_b = -\frac{9 p_1}{9,33} - 0,285 \cdot 0,204 p_1 = -1,02 p_1,$
 $X_a = -0 + \frac{2}{3} (-1,02) p_1 - \frac{1}{3} (-0,204) p_1 = -0,612 p_1,$
 $[em.1] = 0 - 0,4 \cdot 9,0 p_1 = -3,6 p_1,$
 $X_e = -\frac{-3,6}{49,6} p_1 = +0,072 p_1,$
 $X_d = -\frac{9 p_1}{6,66} - 0,4 \cdot 0,072 p_1 = -1,38 p_1.$

Hieraus ergeben sich beliebige statische Größen S nach der Gleichung:

 $S = S_0 + S_a \cdot X_a + S_b \cdot X_b + S_c \cdot X_c + S_d X_d + S_e X_e.$

Für die Momente an den in Fig. 195 angegebenen Stellen nehmen die Multiplikatoren

die Multiplikatoren $S_a, S_b...$ die aus den Fig. 186 bis 190 zu entnehmenden einfachen Werte an (durchweg 0 oder 1). Man erhält somit die nachstehenden Gleichungen:

$$\begin{split} M_{I} &= 1 \cdot X_{b} + 1 \cdot X_{d} = -2.4 \, p_{1}, \\ M_{II} &= 1 \cdot X_{a} + 1 \cdot X_{d} + 1 \cdot X_{e} = -1.92 \, p_{1}, \\ M_{III} &= 1 \cdot X_{a} - 1 \cdot X_{b} + 1 \cdot X_{e} = 0.48 \, p_{1}, \\ M_{IF} &= 1 \cdot X_{e} + 1 \cdot X_{e} = -0.134 \, p_{1}, \\ M_{V} &= 1 \cdot X_{a} = -0.612 \, p_{1}, \\ M_{VI} &= M_{0} + 0.4 \, M_{II} = 3.55 \, p_{1}. \end{split}$$

2. Feld l_2 mit p_2 t/m belastet: $[bm.1] = 128 p_2 - \frac{2}{3} \cdot 149.3 p_2 = 28.5 p_2,$ $[cm.1] = -64 p_3 - \frac{1}{3} (-149.3 p_2) = -14.2 p_2,$ $[cm.2] = -14.2 p_2 + 0.285 \cdot 28.5 p_2 = -6.1 p_2,$ $X_c = -\frac{-6.1}{12.58} p_2 = +0.486 p_2,$ $X_b = -\frac{28.5 \cdot p_2}{9.33} + 0.285 \cdot 0.486 p_2 = -2.91 p_2,$ $X_a = -\frac{-149.3}{24} p_2 - \frac{2}{3} \cdot 2.91 p_2 - \frac{1}{3} \cdot 0.486 p_2 = +4.12 p_2,$ $[em.1] = 0, \quad [dm] = 0,$ $X_d = X_e = 0.$

Mit diesen Werten erhält man für die gesuchten Momente:

$$\begin{split} M_{I} &= 1 \cdot X_{b} + 1 \cdot X_{a} = -2,91 \cdot p_{2}, \\ M_{II} &= M_{II0} + 1 \cdot X_{a} + 1 \cdot X_{d} + 1 \cdot X_{e} = -3,88 \cdot p_{2}, \\ M_{III} &= M_{III0} + 1 \cdot X_{a} + 1 \cdot X_{e} - 1 \cdot X_{b} = -0,97 \cdot p_{2}, \\ M_{II} &= 1 \cdot X_{c} + 1 \cdot X_{e} = +0,486 \cdot p_{2}, \\ M_{F} &= +1 \cdot X_{a} = +4,12 \cdot p_{2}, \\ M_{FI} &= 0,4 \cdot M_{I} = -1,16 \cdot p_{2}. \end{split}$$

3. Feld l_1 rechts mit p_1 t/m belastet:

$$\begin{array}{l} X_a = & - 0,612 \cdot p_1, \\ X_b = & - 1,02 \cdot p_1, \\ X_c = & - 0,204 \cdot p_1, \end{array} \right\} \text{ wie bei } 1., \\ X_d = & - 1,38 \cdot p_1, \\ X_e = & - 0,072 \cdot p_1, \end{array} \right\} \text{ wie bei } 1., \\ \text{ wie be$$

Mit diesen Werten erhält man:

$$\begin{split} M_{I} &= 1 \cdot X_{b} + 1 \cdot X_{d} = 0.36 \cdot p_{1}, \\ M_{II} &= 1 \cdot X_{a} + 1 \cdot X_{d} + 1 \cdot X_{e} = 0.696 \cdot p_{1}, \\ M_{III} &= 1 \cdot X_{a} - 1 \cdot X_{b} + 1 \cdot X_{e} = 0.336 \cdot p_{1}, \\ M_{IV} &= 1 \cdot X_{c} + 1 \cdot X_{e} = -0.276 \cdot p_{1}, \\ M_{V} &= 1 \cdot X_{a} = -0.612 \cdot p_{1}, \\ M_{VI} &= 0.4 \cdot M_{I} = 0.144 \ p_{1}. \end{split}$$

4. Horizontalkraft H (von rechts nach links):

$$\begin{aligned} X_a &= X_b = X_c = 0, \\ [em.1] &= -80,0 \ H + 0,4 \cdot 8,0 \ H = -76,8 \cdot H, \\ X_e &= -\frac{-76,8 \ H}{49,6} = +1,55 \cdot H, \\ X_d &= \left(-\frac{-8}{6,66} - 0,4 \cdot 1,55\right) H = +0,58 \cdot H. \end{aligned}$$

Mit diesen Werten erhält man:

$$M_{I} = 1 \cdot X_{d} = + 0,58 \cdot H,$$

$$M_{II} = 1 \cdot X_{e} + 1 \cdot X_{d} + M_{II_{0}} = -0,87 \cdot H,$$

$$M_{III} = 1 \cdot X_{e} + M_{III_{0}} = -1,45 \cdot H,$$

$$M_{IV} = 1 \cdot X_{e} = +1,55 \cdot H,$$

$$M_{V} = 0,$$

$$M_{VI} = 0,4 \cdot M_{I} = 0,23 \cdot H.$$

Bei Horizontalschub von links nach rechts haben die Momente umgekehrtes Vorzeichen.

Anmerkung: Bei anderer Belastung der Riegel sind die Werte [am] usw. nach den Formeln des § 1 zu ermitteln.

2. Zweites Verfahren.

Als Grundsystem wählen wir den bereits früher (s. § 9) beberechneten dreifach statisch unbestimmten eingespannten Rahmen, und als überzählige Größen die Einspannungsmomente der äußeren

Riegel. Als Unbekannte bleiben dann aus dem ersten Verfahren die Gruppen X_b und X_d , die wir hier mit X_a und X_b bezeichnen (Fig. 196). Zur Ermittlung der Koeffizienten der X, [ab], [aa], [bb], und der Absolutglieder [am] und [bm] ist zunächst die M_a - und M_b -Fläche darzustellen.

Die M_a -Fläche ist die Momentenfläche für die Belastung $X_a = 1$, d. h. für je ein Moment +1 an den oberen Ecken des Rahmens (s. Fig. 197). Infolge der Momente $X_a = 1$ entsteht an den äußeren Auflagern der Riegel ein Auflagerdruck $V = \frac{1}{l_1}$, wodurch die M_a -

Fig. 197.

Fläche über diesen Riegeln als einfache Dreiecksfläche gegeben ist. Um die M_a -Fläche über dem mittleren Riegel und den Ständern zu finden, ermittle man die Momente M_I bis M_{IV} des eingespannten Rechteckrahmens, der mit den Momenten 1 an den oberen Ecken des Riegels belastet ist, nach den Formeln Tabelle XI, 10.

Da
$$n = (6\omega + 1)(\omega + 2)$$
 ist, findet man:
 $M_{IV} = M_I = \frac{M}{2} \frac{7\omega + 3 + 5\omega - 1}{n} = \frac{1}{\omega + 2},$
 $M_{III} = M_{II} = -\frac{M}{2} \frac{11\omega + 13\omega + 4}{n} = -\frac{2}{\omega + 2}.$
Darin ist $\omega = \frac{h'}{l_2'} = \frac{6 \cdot 4}{8 \cdot 1} = 3.$

Hiernach läßt sich die M_a -Fläche zeichnen (Fig. 197).

Das Moment — 1 rechts und +1 links infolge $X_b = 1$ (Fig. 198) ergibt am rechten und linken Riegel wiederum je ein Dreieck mit der Endordinate — 1 bzw. +1.

Für den mittleren Rahmen findet man nach Tabelle XI, 10:

$$M_{I} = \frac{M}{2} \frac{5\omega - 1 - 7\omega + 3}{n} = -\frac{1}{6\omega + 1},$$
$$M_{I} = -\frac{M}{2} \frac{13\omega + 4 - 11\omega}{n} = -\frac{1}{6\omega + 1},$$

$$M_{III} = + \frac{1}{6\omega + 1},$$

 $M_{IV} = + \frac{1}{6\omega + 1}.$

Hieraus ergeben sich die Koeffizienten der X:

$$[aa] = \frac{2}{3}l_1 + l_2 \frac{\omega}{\omega + 2} = 8,8,$$

$$[ab] = 0,$$

$$[bb] = \frac{2}{3}l_1' + \frac{l_2'}{3} \cdot \frac{6\omega}{6\omega + 1} = 6,53$$

Die Absolutglieder berechnen wir nach den Gleichungen:

$$[am] = \int M_0 M_a ds \frac{J_c}{J},$$
$$[bm] = \int M_0 M_b ds \frac{J_c}{J}.$$

Das Hauptsystem ist hier 3 fach statisch unbestimmt. Seine Beanspruchung durch $X_a = 1$ bzw. $X_b = 1$ ist durch die Momentenflächen (Fig. 197 und 198) gegeben. Die Belastung P_m , welche die Momente M_0 erzeugt, braucht nicht am 3 fach statisch unbestimmten System anzugreifen; man kann sie vielmehr an irgendeinem, und zwar innerhalb gewisser Grenzen beliebigen, statisch bestimmten System wirken lassen. Dies ist früher (s. 1. Teil, S. 42) des näheren erörtert worden.

Als statisch bestimmtes Grundsystem wählen wir das in Fig. 199 gezeichnete, wo der obere Träger aus drei Einzelbalken besteht.

1. Belastung des linken Riegels mit p_1 t/m $(l_1'=l_1, l_2'=l_2)$:

$$[am] = \frac{p_1 l_1^3}{24} = 9,0 \cdot p_1,$$

$$[bm] = \frac{p_2 l_2^3}{24} = 9,0 \cdot p_1.$$

2. Belastung des mittleren Riegels mit $p_2 t/m$:

$$[am] = \frac{p_2 l_2^3}{24} \cdot 2 \cdot \frac{3}{5} = 25.6 \cdot p_2,$$

$$[bm] = 0.$$

Vollwandige Systeme mit geradlinigen Achsen.

3. Belastung des linken Riegels mit p_1 t/m:

$$[am] = \frac{p_1 l_1^3}{24} = 9,0 \cdot p_1,$$
$$[bm] = -\frac{p_1 l_1^3}{24} = -9,0 p_1.$$

4. Horizontalschub von rechts nach links = H (Fig. 200):

Fig. 200.

$$[am] = \left(\frac{2 \cdot 1}{\omega + 2} - \frac{2}{\omega + 2}\right)h' = 0,$$

$$[bm] = -\frac{H \cdot h}{2}h' \cdot \frac{1}{6\omega + 1} = -3,79 H.$$

Damit sind alle Koeffizienten der Elastizitätsgleichungen berechnet und wir haben letztere jetzt nur noch aufzulösen.

Die Elastizitätsgleichungen lauten, da [ab] = 0 ist:

$$\begin{aligned} X_a \cdot [aa] &= - [am], \\ X_b \cdot [bb] &= - [bm]. \end{aligned}$$

Also wird:

$$X_a = -\frac{[am]}{[aa]}$$

und

$$X_b = -\frac{[bm]}{[bb]}$$

Haben wir X_a und X_b ermittelt, so ist jedes beliebige Moment:

$$M = M_0 + M_a \cdot X_a + M_b \cdot X_b.$$

In diesem Falle ist M_0 naturgemäß das Moment am dreifach statisch unbestimmten System. Alle Werte M_0 können wir aus den früher angegebenen Formeln des Rechteckrahmens errechnen.

1. l_1 links belastet mit p_1 t/m:

$$X_{a} = -\frac{9,0}{8,8}p_{1} = -1,02 p_{1},$$
$$X_{b} = -\frac{9,0}{6,53}p_{1} = -1,38 p_{1}.$$

An den in Fig. 195 angegebenen Stellen sind die Momente:

$$M_{I} = 1 \cdot X_{a} + 1 \cdot X_{b} = -2,4 p_{1},$$

$$M_{II} = \frac{\omega}{\omega + 2} X_{a} + \frac{6 \omega}{6 \omega + 1} X_{b} = -1,92 p_{1},$$

$$M_{III} = \left(-\frac{2}{\omega + 2}\right) X_{a} + \left(-\frac{1}{6 \omega + 1}\right) X_{b} = 0,48 p_{1},$$

$$M_{III} = \frac{1}{\omega + 2} \cdot X_{a} - \frac{1}{6 \omega + 1} \cdot X_{b} = -0,134 p_{1},$$

$$M_{III} = \frac{\omega}{\omega + 2} X_{a} = -0,61 p_{1},$$

$$M_{III} = 0,4 M_{I} + M_{0} = +3,4 p_{1}.$$
2. Belastung des Feldes l_{2} mit p_{2} t/m:

$$X_{a} = -\frac{25,6}{8,8} = -2,91 p_{1},$$

$$X_{b} = 0,$$

$$M_{I} = 1 \cdot X_{a} + 1 \cdot X_{b} = -2,91 p_{1},$$

$$M_{III} = \left(-\frac{2}{\omega + 2}\right) \cdot X_{a} - \frac{p_{2} l_{2}^{2}}{6} \cdot \frac{1}{\omega + 2} = -3,88 p_{2},$$

$$M_{III} = \left(-\frac{2}{\omega + 2}\right) \cdot X_{a} - \frac{p_{2} l_{2}^{2}}{6} \cdot \frac{1}{\omega + 2} = -0,97 p_{2},$$

$$M_{III} = \frac{1}{\omega + 2} \cdot X_{a} - \frac{p_{2} l_{2}^{2}}{12} \cdot \frac{1}{\omega + 2} = +0,49 p_{2},$$

$$M_{III} = 0,4 \cdot M_{I} = -1,16 p_{2}.$$
3. Belastung des Feldes l_{1} rechts mit p_{1} t/m:

$$X_{a} = -\frac{9,0}{8,8} p_{1} = -1,02 p_{1},$$

$$X_{b} = +\frac{9,0}{6,53} p_{1} = +1,38 p_{1},$$

$$M_{II} = 1 \cdot X_{a} + 1 \cdot X_{b} = +0,36 p_{1},$$

$$M_{III} = \frac{-2}{\omega + 2} X_{a} - \left(-\frac{1}{6 \omega + 1}\right) X_{b} = +0,335 p_{1},$$

$$M_{IV} = \frac{1}{\omega + 2} X_a - \frac{1}{6\omega + 1} X_b = -0,277 p_1,$$

$$\begin{split} M_{V} &= \frac{\omega}{\omega + 2} X_{a} = -0.61 \, p_{1}, \\ M_{VI} &= 0.4 \, M_{I} = 0.144 \, p_{1}. \\ 4. \ \text{Horizontalschub } H \text{ von rechts:} \\ X_{a} &= 0, \\ X_{b} &= \frac{3.79}{6.53} \cdot H = +0.58 \cdot H, \\ M_{I} &= 1 \cdot X_{b} = +0.58 \cdot H, \\ M_{II} &= \frac{6 \, \omega}{6 \, \omega + 1} \cdot X_{b} - \frac{H \cdot h}{2} \frac{3 \, \omega}{6 \, \omega + 1} = -0.87 \cdot H, \\ M_{III} &= -\frac{1}{6 \, \omega + 1} X_{b} - \frac{H \cdot h}{2} \frac{3 \, \omega}{6 \, \omega + 1} = -1.45 \cdot H, \\ M_{III} &= -\frac{1}{6 \, \omega + 1} \cdot X_{b} + \frac{H \cdot h}{2} \frac{3 \, \omega + 1}{6 \, \omega + 1} = +1.55 \cdot H \\ M_{VI} &= 0, \\ M_{VI} &= 0.4 \cdot M_{I} = 0.232 \cdot H. \end{split}$$

Für andere Belastungen lassen sich die Werte [am] und [bm]leicht nach den in §1 und in der Abhandlung über den Rechteckrahmen angegebenen Formeln berechnen. Die Unbekannten und Momente sind also in derselben Weise wie im vorhergehenden Falle ohne Schwierigkeit anzugeben.

,

Um den Einfluß jeder beliebigen Belastung auf die in Frage kommenden Momente zu ermitteln, zeichnen wir nunmehr die Einflußlinien.

1. Einflußlinie für X_a .

Es gilt die Gleichung:

$$X_a = -\frac{[am]}{[aa]}.$$

Die X_a -Linie ist also proportional der Biegungslinie des oberen Riegels für die Belastung $X_a = 1$. Nach den Ausführungen des § 1 berechnen wir [am] mit P = 1

nach der Gleichung:

$$[am] = \frac{l^2}{6} (M_1 \cdot c_1 + M_2 \cdot c_2).$$

Anmerkung. In den nachfolgenden Tabellenrechnungen bedeuten M_1 und M_2 die an den Enden des jeweils betrachteten Balkens wirksamen Mo-mente der M_a -Fläche (Fig. 197) bzw. der M_b -Fläche, und zwar ist diesmal, abweichend von den Annahmen in § 1, M_1 das Moment am rechten Ende und M_2 das Moment am linken Ende; um die Formeln des § 1 verwenden zu können, sind dann natürlich die Werte ξ von links zu messen. Die Werte c_1 und c_2 sind aus Tabelle II zu entnehmen.

	$\frac{z}{l}$	$\frac{l^2}{6}$	$c_1 M_1 + c_2 M_2$	$\frac{l^2}{6}(c_1M_1+c_2M_2)$	X _a
l_1 links	0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9	6 6 6 6 6 6 6 6 6	0,099 0,192 0,273 0,336 0,375 0,384 0,357 0,288 0,171	$\begin{array}{c} 0,594\\ 1,153\\ 1,638\\ 2,015\\ 2,250\\ 2,305\\ 2,140\\ 1,730\\ 1,026\\ \end{array}$	$\begin{array}{c} - & 0,0675 \\ - & 0,131 \\ - & 0,186 \\ - & 0,229 \\ - & 0,255 \\ - & 0,262 \\ - & 0,243 \\ - & 0,197 \\ - & 0,117 \end{array}$
l_2 Die Eint	$0,1 \\ 0,2 \\ 0,3 \\ 0,4 \\ 0,5 \\ X_a$ -Lin	10,66 10,66 10,66 10,66 10,66 nie ist symm nie für X.	0,162 0,288 0,378 0,432 0,450 netrisch. (vgl. Fig. 19	$ \begin{array}{c} 1,730\\ 3,070\\ 4,030\\ 4,610\\ 4,800\\ 08) \end{array} $	$\begin{array}{r} - & 0,197 \\ - & 0,348 \\ - & 0,458 \\ - & 0,525 \\ - & 0,545 \end{array}$

[aa] hat den Wert 8,8.

$$X_b = -\frac{\lfloor bm \rfloor}{\lfloor bb \rfloor},$$

$$\lfloor b b \rfloor = 6,53.$$

	$\frac{l^2}{6}$	$c_2 \cdot M_2$	$c_1 \cdot M_1$	$c_1 M_1 + c_2 M_2$	X _b		
$l_{4} \begin{bmatrix} 0,1\\0,2\\0,3\\0,4\\0,5\\0,6\\0,7\\0,8\\0,9 \end{bmatrix}$	6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0		$\begin{array}{c} 0,099\\ 0,192\\ 0,273\\ 0,336\\ 0,375\\ 0,384\\ 0,357\\ 0,288\\ 0,171\\ \end{array}$	$\begin{array}{c} 0,099\\ 0,192\\ 0,273\\ 0,336\\ 0,875\\ 0,384\\ 0,357\\ 0,288\\ 0,171\\ \end{array}$	$\begin{array}{c} - \ 0,091 \\ - \ 0,177 \\ - \ 0,251 \\ - \ 0,308 \\ - \ 0,353 \\ - \ 0,353 \\ - \ 0,327 \\ - \ 0,266 \\ - \ 0,157 \end{array}$		
$l_2 \qquad \begin{cases} 0,1\\0,2\\0,3\\0,4\\0,5\\0,6\\0,7\\0,8\\0,9 \end{cases}$	$\begin{array}{c} 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\\ 10,66\end{array}$	$\begin{array}{c} 0,162\\ 0,273\\ 0,338\\ 0,364\\ 0,355\\ 0,318\\ 0,259\\ 0,182\\ 0,094 \end{array}$	$\begin{array}{c} - \ 0,094 \\ - \ 0,182 \\ - \ 0,259 \\ - \ 0,318 \\ - \ 0,355 \\ - \ 0,364 \\ - \ 0,338 \\ - \ 0,272 \\ - \ 0,162 \end{array}$	$\begin{array}{c} 0,068\\ 0,091\\ 0,079\\ 0,046\\ 0\\ -0,046\\ -0,079\\ -0,046\\ -0,079\\ -0,091\\ -0,068\end{array}$	$\begin{array}{c} -0,111\\ -0,148\\ -0,129\\ -0,075\\ 0\\ +0,075\\ +0,129\\ +0,148\\ +0,111\end{array}$		
$l_1 \\ rechts \begin{cases} 0,1 \\ 0,2 \\ 0,3 \\ 0,4 \\ 0,5 \\ 0,6 \\ 0,7 \\ 0,8 \\ 0,9 \end{cases}$	6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0	$\begin{array}{c} - & 0,171 \\ - & 0,288 \\ - & 0,357 \\ - & 0,384 \\ - & 0,375 \\ - & 0,336 \\ - & 0,273 \\ - & 0,192 \\ - & 0,099 \end{array}$		$\begin{array}{c} -0.171 \\ -0.288 \\ -0.357 \\ -0.384 \\ -0.375 \\ -0.336 \\ -0.273 \\ -0.192 \\ -0.099 \end{array}$	$\begin{array}{c} + 0,157 \\ - 0,266 \\ + 0,327 \\ + 0,353 \\ - 0,343 \\ - 0,308 \\ + 0,251 \\ - 0,177 \\ + 0,091 \end{array}$		

Pirlet, Statik. II. 2.
Vollwandige Systeme mit geradlinigen Achsen.

Die Einflußlinie für M_{I} (s. Fig. 201) ergibt sich aus der Gleichung: $M_{I} = 1 \cdot X_{a} + 1 \cdot X_{b}$.

Man addiere also für jeden Punkt die Ordinaten der $X_a\text{-}$ und $X_b\text{-}\operatorname{Linie}.$

Die Einflußlinie für M_{II} ergibt sich nach der Gleichung: $M_{II} = M_{II0} + \frac{3}{5}X_a + \frac{18}{19}X_b.$

Um die Ordinaten der M_{II} -Linie zu finden, addiere man also die Ordinaten der M_{II0} -Linie zu den mit $\frac{3}{5}$ multiplizierten Ordinaten der X_a -Linie und den mit $\frac{18}{19}$ multiplizierten Ordinaten der X_b -Linie.

Die M_{II0} -Linie erstreckt sich nur über den mittleren Riegel, und zwar ist sie die Einflußlinie für das Moment, das beim einfachen Rechteckrahmen mit II bezeichnet ist. Die Ordinaten findet man auf dieselbe Weise, wie die von X_a und X_b , indem man für den eingespannten Rahmen nach § 9, Fig. 132 (S. 124) die $M_{II.9}$ -Fläche des Riegels (hier l_2) ermittelt (man findet $M_{IIII}=1$ und $M_{IIIII}=\frac{9 \, \omega - 4}{15 \, \omega + 8}=0.43$: vgl. Fig. 202) und dazu die Biegungslinie rechnet nach den Formeln:

$$M_{II0} = \frac{l_2^2}{6 \Re} (c_1 M_1 + c_2 M_2)$$
 (Fig. 202),

darin ist:

$$\Re = \frac{l(\omega+2)(6\,\omega+1)}{15\,\omega+8} = 14,3 \text{ (vgl. § 9, Gl. 99)}.$$

Man kann auch, statt die Einflußlinien zu addieren, die Momentenflächen addieren, zu denen diese Einflußlinien die Biegungslinien darstellen, und zu der so gewonnenen kombinierten Momentenfläche die Biegungslinien zeichnen, Wir addieren also die durch \mathfrak{R} dividierte Momentenfläche Fig. 132 mit den Endwerten 1 und 0,43 (M_{II0}) , die Momentenfläche infolge $X_a = -\frac{3}{5} \cdot \frac{1}{[aa]} = -0,0682$ und die Momentenfläche infolge $X_b = -\frac{18}{19} \cdot \frac{1}{[bb]} = -0,145$. Die Gesamtmomentenfläche hat die Werte: Linker Riegel l_1 : Links: 0. Rechts: -0,0682 - 0,145 = -0,2132. Mittlerer Riegel l_2 : Links: $-\frac{1}{14,3} - 0,0682 \cdot \frac{3}{5} - 0,145 \cdot \frac{18}{19} = -0,2484$. Rechts: $-\frac{0,43}{14,3} - 0,0682 \cdot \frac{3}{5} + 0,145 \cdot \frac{18}{19} = 0,0665$. Rechter Riegel l_1 : Links: -0,0682 + 0,145 = 0,0768. Rechts: 0,0682 + 0,145 = 0,0768.

Die Biegungslinie zu dieser Momentenfläche, die sich mit Hilfe der Tabelle II nach der Formel $\frac{l^2}{6} \cdot (c_1 M_1 + c_2 M_2)$ leicht ermitteln läßt, ist die Einflußlinie für M_{II} . — Die Resultate sind in nachstehender Tabelle zusammengestellt und in Fig. 202 aufgetragen.

Vollwandige Systeme mit geradlinigen Achsen.

Die Einflußlinie für M_{III} ergibt sich aus der Gleichung $M_{III} = M_{III0} - \frac{2}{5} X_a - \frac{1}{19} X_b$

oder aus der Gleichung

$$\boldsymbol{M}_{III} = \boldsymbol{M}_{II} - \boldsymbol{M}_{I}$$

Man findet die in der folgenden Tabelle zusammengestellten Werte (s. Fig. 203).

	Linkes Feld l_1	Feld l_2	Rechtes Feld l_1
<u>ξ</u> 1	M _{III}	M _{III}	M ₁₁₁
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9	$\begin{array}{c} + 0,032 \\ - 0,064 \\ - 0,088 \\ - 0,107 \\ - 0,118 \\ - 0,123 \\ - 0,113 \\ - 0,095 \\ - 0,055 \end{array}$	$\begin{array}{c} -0,075\\ -0,132\\ -0,166\\ -0,198\\ -0,184\\ -0,168\\ -0,142\\ -0,104\\ -0,056\end{array}$	$\begin{array}{c} +\ 0,038\\ -\ 0,064\\ -\ 0,081\\ +\ 0,087\\ -\ 0,085\\ -\ 0,075\\ -\ 0,061\\ -\ 0,043\\ +\ 0,022\\ \end{array}$
	M	1 _{III} -Linie	

Fig. 203.

Die Einflußlinie für M_{IV} ergibt sich aus der Gleichung:

 $M_{IV} = M_{IV0} + \frac{1}{5}X_a - \frac{1}{19} \cdot X_b.$

Die M_{IV0} -Fläche ist hier die Momentenfläche des Momentes M_I des einfachen Rahmens (vgl. § 9, Fig. 128); sie hat für den oberen Riegel die Endwerte: $M_1 = -0.452$ und $M_2 = -0.056$. Diese sind zu dividieren durch

$$\mathfrak{N} = \frac{\omega \, (\omega + 2) \, (6 \, \omega + 1)}{15 \, \omega^2 + 26 \, \omega + 3} = 10,55 \, .$$

Zu dieser Momentenfläche addieren wir die Momentenflächen für $X_a = -\frac{1}{5} \cdot \frac{1}{[a a]} = -0,0227$ und für $X_b = \frac{1}{19} \cdot \frac{1}{[b b]} = 0,00805$ und finden folgende Endordinaten: Linkes Feld l_1 :

Links: 0. Links: 0. Rechts: -0,0227 + 0,00805 = -0,01465: Mittleres Feld l_2 : Links: $\frac{0,056}{10,55} - \frac{3}{5} \cdot 0,0227 + \frac{18}{19} \cdot 0,00805 = 0,0007$. Rechts: $\frac{0,452}{10,55} - \frac{3}{5} \cdot 0,0227 - \frac{18}{19} \cdot 0,00805 = 0,0213$. Rechtes Feld l_1 : Links: -0,0227 - 0,00805 = -0,03075. Rechts: 0.

	Linkes Feld l_1	Feld l_2	Rechtes Feld l_1		
$\frac{\xi}{l}$	M _{IV}	M _{IV}	M_{IV}		
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} + \ 0,022 \\ - \ 0,044 \\ - \ 0,062 \\ - \ 0,076 \\ - \ 0,085 \\ - \ 0,087 \\ - \ 0,081 \\ - \ 0,065 \\ - \ 0,039 \end{array}$	$\begin{array}{c} - 0,032 \\ - 0,053 \\ - 0,068 \\ - 0,070 \\ - 0,069 \\ - 0,069 \\ - 0,062 \\ - 0,050 \\ - 0,035 \\ - 0,018 \end{array}$		
M _{IU} -Linie					
Fig. 204.					

Die Biegungslinie zu dieser Momentenfläche ist die M_{IV} -Linie (vgl. nachstehende Tabelle und Fig. 204).

 M_{ν} -Linie:

Nimmt man die Endmomente M_{II} und M_{II}' des mittleren Riegels als gegeben an, so kann man schreiben:

 $M_{\nu} = \frac{M_{II} + M_{II}'}{2} + M_{\nu 0}.$

Hier ist M_{r0} die Momentenlinie des als einfacher Balken auf zwei Stützen zu betrachtenden mittleren Riegels. Die M_{11} -Linie ist das Spiegelbild der M_{11} -Linie. Addiert man also die Ordinaten der M_{r0} -Linie des einfachen Balkens zu den halben Ordinaten der M_{11} - und M_{11} -Linie, so erhält man die M_r -Linie für das Mittelfeld. Im Außenfeld sind die Ordinaten $=\frac{3}{5}$ der Ordinaten der X_a -Linie, denn es gelten für M_{11} und M_{11} bei Belastung der Endfelder die Gleichungen:

 $M_{II} = \frac{3}{5}X_a + \frac{18}{19}X_b$, $M_{II}' = \frac{3}{5}X_a - \frac{18}{19}X_b$. Da nun bei Belastung der Endfelder $M_{V0} = 0$ ist, so wird

$$M_{\nu} = \frac{3}{5} X_{a}$$

Die Ordinaten der M_{ν} -Linie sind in nachfolgender Tabelle zusammengestellt (vgl. Fig. 205).

	Linkes Feld l_1	Feld l_2	Rechtes Feld l_1
<u>ξ</u> ι	M_V	M_V	M _V
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9	$\begin{array}{c} - \ 0,041 \\ - \ 0,079 \\ - \ 0,112 \\ - \ 0,138 \\ - \ 0,153 \\ - \ 0,157 \\ - \ 0,146 \\ - \ 0,118 \\ - \ 0,070 \end{array}$	$\begin{array}{c} + 0,138 \\ + 0,383 \\ + 0,588 \\ + 0,890 \\ + 1,271 \\ + 0,690 \\ + 0,588 \\ + 0,588 \\ + 0,383 \\ + 0,138 \end{array}$	$\begin{array}{c} -0,070\\ -0,118\\ -0,146\\ -0,157\\ -0,153\\ -0,138\\ -0,112\\ -0,079\\ -0,041\\ \end{array}$

Die $M_{\gamma\gamma}$ -Linie im linken Endfeld kann man berechnen nach den Gleichungen:

 $M_{p_I} = 0.4 \cdot M_I$ für Belastung im Mittelfelde und Feld l_1 rechts, und $= 0.4 \cdot M_I + M_{p_I 0}$ für Belastung im linken Außenfelde.

Die $M_{\gamma \tau 0}$ -Linie ist die des einfachen Balkens. Man findet also die Ordinaten der $M_{\gamma \tau}$ -Linie, wenn man im Feld l_1 links die mit 0,4 multiplizierte M_{I} -Linie zur $M_{\gamma \tau 0}$ -Linie addiert, in den anderen Feldern ist die Ordinate der $M_{\gamma \tau}$ -Linie das 0,4 fache der Ordinate der M_{I} -Linie (vgl. nachfolgende Tabelle und Fig. 206).

	Linkes Feld l_1	Feld l_2	Rechtes Feld l_1
<u>ξ</u> ι	M_{VI}	M_{VI}	M _{FI}
0,1 0,2 0,3 0,4 0,5	$\begin{array}{r} + 0,297 \\ - 0,597 \\ - 0,905 \\ - 1,225 \\ - 0,961 \end{array}$	$\begin{array}{r} - 0,123 \\ - 0,198 \\ - 0,235 \\ - 0,240 \\ - 0,218 \end{array}$	$ \begin{array}{r} + 0,016 \\ - 0,028 \\ - 0,034 \\ - 0,036 \\ - 0,035 \\ \end{array} $
0,6 0,7 0,8 0,9	$ \begin{array}{r} + 0,714 \\ + 0,492 \\ + 0,295 \\ + 0,130 \end{array} $	$-0,180 \\ -0,132 \\ -0,080 \\ -0,034$	$ \begin{array}{r} + 0,032 \\ + 0,026 \\ + 0,018 \\ + 0,010 \end{array} $

Anmerkung: Bei der Berechnung der X_a -Linie kann man, wenn die M_a -Fläche gegeben ist, die Biegungslinie auch nach dem Mohrschen Satze als Momentenfläche zu der als Belastung gedacnten M_a -Fläche ermitteln. Dies kann zeichnerische geschehen, indem man die M_a -Fläche in Lamellon aufteilt. Bei der rechnerischen Ermittelung denke man sich die trapezförmige M_a -Fläche mit den Endordinaten M_1 und M_2 in zwei Dreiecke mit diesen Endordinaten zerlegt; man findet dann für ein "zweites Moment" an der Stelle x:

$$M_1 \frac{x}{l} \left(1 - \frac{x}{l}\right) \left(1 + \frac{x}{l}\right) + M_2 \frac{x}{l} \left(1 - \frac{x}{l}\right) \left(2 - \frac{x}{l}\right) = M_1 \cdot c_1 + M_2 \cdot c_2.$$

Man kommt also wieder auf die oben durchgeführte Rechnung, die also mit der Anwendung des Mohrschen Satzes identisch ist.

§ 12. Der geschlossene Rechteckrahmen.

I. Erste Rechnungsart (vgl. § 9).

Herleitung allgemeiner Gleichungen für die Eckmomente.

a) Grundsystem. Bezeichnungen, Vorzeichen.

Der geschlossene Rechteckrahmen (Fig. 207) mit vier steifen Ecken ist ebenso wie der beiderseits eingespannte Rahmen ein dreifach statisch unbestimmtes System. Als statische Unbekannte X_a, X_b und X_c sollen wieder drei Eckmomente ermittelt werden, so daß also das Grundsystem ein Dreigelenkbogensystem vorstellt (Fig. 208).

Wir führen wieder folgende Beziehungen ein (vgl. § 9!): Die Ecken werden (wie in § 9) numeriert mit den römischen Ziffern *I*, *II*, *III*, *IV* (Fig. 208). Die Ständer sollen ein gleiches Trägheitsmoment J_h , desgleichen oberer und unterer Riegel ein gleiches Trägheitsmoment J_i haben¹). Den Wert $h \cdot \frac{J_i}{J_h}$ bezeichnen

wir mit h' und den Verhältniswert $\frac{h'}{l}$ mit ω . — Die Normalkräfte im Obergurt nennen wir $N^{(o)}$, im Untergurt $N^{(u)}$, in den Ständern $N^{(l)}$ bzw. $N^{(r)}$. — Die Querkräfte der Riegel seien mit $Q^{(o)}$ und $Q^{(u)}$,

¹) Für ungleiche Querschnitte der Riegel soll die Berechnung noch folgen.

die der Ständer mit $Q^{(l)}$ und $Q^{(r)}$ bezeichnet. Die Auflagerdrücke seien $V^{(l)}$ und $V^{(r)}$.

Bezüglich der Vorzeichen sollen folgende Regeln gelten: Momente sind positiv, wenn sie den Balkenteil nach innen verbiegen, negativ, wenn sie nach außen verbiegen. Querkräfte der Riegel sollen als positiv gelten, wenn sie links vom betrachteten Querschnitt nach oben, rechts nach unten gerichtet sind; in den Ständern gelten sie als positiv, wenn sie oberhalb des betrachteten Querschnittes nach außen, unterhalb nach innen wirken. Normalkräfte sind als Druckkräfte negativ, als Zugkräfte positiv.

b) Ermittelung einer Unbekannten X_c . Zur Ermittelung der Eckmomente M_I bis M_{IF} gehen wir in gleicher Weise vor, wie in § 9 bei der Berechnung des beiderseits eingespannten Rahmens. Das Moment M_{II} , in Fig. 208, die Unbekannte X_c , ergibt sich nach der Gleichung:

$$X_c = -\frac{[cm.2]}{[cc.2]};$$

darin ist

$$[cm.2] = \int M_0 M_{c.2} \, ds \frac{J'}{|J|},$$

$$[cc.2] = \int M_c M_{c.2} \, ds \frac{J'}{J} = \int M_{c.2}^2 \, ds \frac{J'}{J}.$$

Zur Ermittelung dieser Werte ist zunächst die $M_{c,2}$ -Fläche zu bestimmen, d. h. die Momentenfläche für $X_{c,2} = 1$ (am 2 fach statisch unbestimmten Hauptsystem). Diese ermitteln wir, wie in § 9. — Aus den in Fig. 209—211 dargestellten Momentenflächen (M_a -Fläche, M_b -Fläche, M_c -Fläche) findet man:

Fig. 209. M_a -Fläche.

Fig. 210. *M_b*-Fläche.

Fig. 211. M_c-Fläche.

$$[aa] = \frac{l}{6} 2 (3 \omega + 2),$$

$$[ab] = -\frac{l}{6} (3 \omega + 1), \quad [bb] = \frac{l}{6} 4 (\omega + 1),$$

$$[ac] = \frac{l}{6} 3 (\omega + 1), \quad [bc] = -\frac{l}{6} (\omega + 3), \quad [cc] = \frac{l}{6} 2 (2 \omega + 3).$$

- 7

Daraus ergibt sich:

$$\begin{aligned} -\frac{[ab]}{[aa]} &= \frac{3\omega+1}{2(3\omega+2)}, \\ -\frac{[ac]}{[aa]} &= -\frac{3(\omega+1)}{2(3\omega+2)}, \\ [bb.1] &= \frac{l}{6} \cdot 4(\omega+1) - \frac{3\omega+1}{2(3\omega+2)} \frac{l}{6}(3\omega+1) \\ &= \frac{l}{6} \frac{(5\omega+3)(3\omega+5)}{2(3\omega+2)}, \\ [bc.1] &= -\frac{l}{6} \cdot (\omega+3) + \frac{3\omega+1}{2(3\omega+2)} \cdot \frac{l}{6} \cdot 3(\omega+1) \\ &= \frac{l}{6} \frac{3\omega^2 - 10\omega - 9}{2(3\omega+2)}, \\ -\frac{[bc.1]}{[bb.1]} &= \frac{-3\omega^2 + 10\omega + 9}{(5\omega+3)(3\omega+5)}. \end{aligned}$$

Damit ergeben sich für die Momentenfläche $M_{c,2}$ folgende Werte:

$$X_{cc} = 1, X_{bc} = -\frac{[bc.1]}{[bb.1]} = \frac{-3\omega^2 + 10\omega + 9}{(5\omega + 3)(3\omega + 5)}, X_{ac} = -\frac{[ac]}{[aa]} - \frac{[ab]}{[aa]} X_{ac} = -\frac{9\omega^2 + 14\omega + 9}{(5\omega + 3)(3\omega + 5)}.$$
(146)

In der Ecke III ergibt sich dann ein Moment:

$$X_{ac} - X_{bc} + X_{cc} = \frac{9 \,\omega^2 + 10 \,\omega - 3}{(5 \,\omega + 3)(3 \,\omega + 5)}.$$

Nachdem die Momentenfläche für $X_{c.2} = 1$ ($M_{c.2}$ -Fläche, Fig. 212) bestimmt ist, können die Werte [cm.2] und [cc.2] aus den vorher angegebenen Gleichungen gefunden werden. Die Werte [cm.2] sind je nach der Belastung verschieden. Für den konstanten Wert [cc.2]findet man (vgl. Tab. I):

$$\begin{split} [cc.2] &= \frac{l}{2} \{ X_{cc} + (X_{ac} + X_{cc} - X_{bc}) \} \\ &+ \frac{h'}{6} \cdot 1 \left(2 X_{cc} + X_{bc} \right) + \frac{h'}{6} \cdot 1 \left[2 \left(X_{ac} - X_{bc} + X_{cc} \right) + X_{ac} \right] \\ &= \frac{2 \left(\omega + 1 \right) \left(\omega + 3 \right) \left(3 \, \omega + 1 \right)}{\left(5 \, \omega + 3 \right) \left(3 \, \omega + 5 \right)} l. \end{split}$$

Anmerkung: Diesen Wert konnten wir auch ermitteln aus den Verschiebungen des Grundsystems, wie folgt:

Vollwandige Systeme mit geradlinigen Achsen.

$$\begin{split} [cc.1] &= \frac{l}{6} 2 \left(2 \,\omega + 3 \right) - \frac{3 \left(\omega + 1 \right)}{2 \left(3 \,\omega + 2 \right)} \frac{l}{6} 3 \left(\omega + 1 \right) = \frac{l}{6} \frac{\left(5 \,\omega + 3 \right) \left(3 \,\omega + 5 \right)}{2 \left(3 \,\omega + 2 \right)}, \\ [cc.2] &= \frac{l}{6} \frac{\left(5 \,\omega + 3 \right) \left(3 \,\omega + 5 \right)}{2 \left(3 \,\omega + 2 \right)} - \frac{\left(-3 \,\omega^2 + 10 \,\omega + 9 \right)^2}{\left(5 \,\omega + 3 \right) \left(3 \,\omega + 5 \right)} \frac{l}{6} \frac{1}{2 \left(3 \,\omega + 2 \right)} \\ &= \frac{2 \left(\omega + 1 \right) \left(\omega + 3 \right) \left(3 \,\omega + 1 \right)}{\left(5 \,\omega + 3 \right) \left(3 \,\omega + 5 \right)} l. \end{split}$$

Fig. 208). Die Gleichung für M_{II} schreiben wir in der Form:

 $M_{II} = -\frac{3_{II}}{\mathfrak{N}_{II}}.$

Die Momentenfläche für $X_{c,2} = 1$ $(M_{c,2}$ -Fläche) ist also als Momentenfläche für $M_{II,2} = 1$ $(M_{II,2}$ -Fläche) zu bezeichnen.

Fig. 212. Mc.2-Fläche.

Fig. 213.Fig. 214. $M_{II.2} = 1 (M_{II.2} \cdot Fläche).$ $M_{I.2} = 1 (M_{I.2} \cdot Fläche),$ $M_{III} = \frac{-3 \omega^2 + 10 \omega + 9}{(5 \omega + 3) (3 \omega + 5)},$ $M_{II} = 1,$ $M_{IIII} = 1,$ $M_{III} = 1,$ $M_{IIII} = 1,$ $M_{IIII} = \frac{-3 \omega^2 + 10 \omega + 9}{(5 \omega + 3) (3 \omega + 5)},$ $M_{IIIII} = \frac{9 \omega^2 + 10 \omega - 3}{(5 \omega + 3) (3 \omega + 5)},$ $M_{IIII} = -\frac{9 \omega^2 + 14 \omega + 9}{(5 \omega + 3) (3 \omega + 5)} (= M_{IIII}),$ $M_{IVII} = -\frac{9 \omega^2 + 14 \omega + 9}{(5 \omega + 3) (3 \omega + 5)}.$ $M_{IVII} = \frac{9 \omega^2 + 10 \omega - 3}{(5 \omega + 3) (3 \omega + 5)} (= M_{IIIII}).$

Danach ist also zu schreiben:

$$\mathfrak{Z}_{II} = \int \mathfrak{M}_0 \, \mathfrak{M}_{II.2} \, ds \, \frac{J'}{J}.$$

Das System ist sowohl für die senkrechte wie für die wagerechte Mittelachse symmetrisch. Man kann also die Momentenflächen für die Zustände $M_{I,2} = 1$, $M_{III,2} = 1$ aus der Momentenfläche für

218

×ъс

 $M_{II,2} = 1$ finden durch symmetrische Vertauschung. Die Werte dieser Momentenflächen lassen sich also ohne weiteres aus den Gleichungen (146) anschreiben (s. Fig. 213-216). Aus der Momentenfläche für $M_{III.2} = 1$ läßt sich in gleicher Weise der Momentenfläche für $M_{IV.2} = 1$ $(M_{IV.2}$ -Fläche) durch symmetrische Vertauschung anschreiben.

Fig. 215.

 $M_{III.2} = 1 (M_{III.2}$ -Fläche),

$$\begin{array}{ll} \text{Fig. 216.} \\ \textbf{M}_{III.2} = \textbf{1} (\textbf{M}_{III.2} \text{-Fläche}), \\ \textbf{M}_{IIII} = -\frac{9 \, \omega^2 + 14 \, \omega + 9}{(5 \, \omega + 3) \, (3 \, \omega + 5)} (= \textbf{M}_{IVII}), \\ \textbf{M}_{IIII} = \frac{9 \, \omega^2 + 10 \, \omega - 3}{(5 \, \omega + 3) \, (3 \, \omega + 5)} (= \textbf{M}_{IIII}), \\ \textbf{M}_{IIIII} = \textbf{1}, \\ \textbf{M}_{IVIII} = \frac{-3 \, \omega^2 + 10 \, \omega + 9}{(5 \, \omega + 3) \, (3 \, \omega + 5)} (= \textbf{M}_{III}). \\ \textbf{M}_{IIIIII} = \textbf{1}, \\ \textbf{M}_{IVIIII} = \frac{-3 \, \omega^2 + 10 \, \omega + 9}{(5 \, \omega + 3) \, (3 \, \omega + 5)} (= \textbf{M}_{III}). \\ \end{array}$$

Für die Eckmomente haben wir nun, unter Berücksichtigung des Umstandes, daß die Nennwerte für alle gleich sind, die Gleichungen:

$$M_{I} = -\frac{3_{I}}{\Re},$$

$$M_{II} = -\frac{3_{II}}{\Re},$$

$$M_{III} = -\frac{3_{III}}{\Re},$$

$$M_{III} = -\frac{3_{III}}{\Re},$$

$$M_{III} = -\frac{3_{III}}{\Re}.$$
(147)

Darin ist:

$$\mathfrak{N} = \frac{2(\omega+1)(3\,\omega+1)(\omega+3)}{(5\,\omega+3)(3\,\omega+5)}l \quad . \quad . \quad (148)$$

Die Werte 3 sind für die verschiedenen Belastungsfälle aus der M_0 -Fläche mit Hilfe der in §1 gegebenen Integralwerte zu ermitteln. Bei Belastung der Riegel haben wir dann die Gleichungen

$$\mathfrak{Z} = \varphi_1 \, \boldsymbol{M}_1 + \varphi_2 \, \boldsymbol{M}_2,$$

worin M_1 und M_2 die Momente der entsprechenden Momentenfläche an den Enden des belasteten (oberen und unteren) Riegels bedeuten.

Der belastete Riegel muß im Grundsystem einen einfachen Balken darstellen.

Wenn ein Ständer belastet ist, so ist auch das Grundsystem so zu wählen, daß der belastete Ständer ein einfacher Balken ist (Fig. 217 und 218). Die Momentfläche M_0 erstreckt sich bei dieser Belastung

nicht nur über den belasteten Ständer, sondern auch über den andern Ständer und, je nach der Wahl des Grundsystems, über den oberen oder unteren Riegel. Die Werte M_I bis M_{IV} setzen sich also wieder aus zwei Teilwerten M' und M'' zusammen. Die Zählerwerte der Teilmomente M' ergeben sich aus der M_0 -Fläche des belasteten Ständers wieder in der Form:

 $\beta' = \varphi_1 M_1 + \varphi_2 M_2$

$$M'_{I} = -\frac{\vartheta'_{I}}{\vartheta},$$

$$M'_{II} = -\frac{\vartheta'_{II}}{\vartheta},$$

$$M'_{III} = -\frac{\vartheta'_{III}}{\vartheta},$$

$$M'_{IV} = -\frac{\vartheta'_{IV}}{\vartheta}.$$
(149)

Die Werte M'' ergeben sich ebenfalls in der Form:

$$M'' = \frac{3''}{\Re}.$$

Darin sind jedoch die Zähler \mathfrak{Z}'' aus dem Teil der M_0 -Fläche zu ermitteln, der sich über die nicht belasteten Teile erstreckt.

Für die Momentenflächen Fig. 217 und 218 ergibt sich:

$$3''_{I} = -\frac{P'h}{6} [h'(2M_{III} + M_{II}) + l(2M_{III} + M_{III})],$$

$$3''_{II} = -\frac{P'h}{6} [h'(2M_{III} + M_{IIII}) + l(2M_{III} + M_{IVII})],$$

§ 12. Der geschlossene Rechteckrahmen.

$$3''_{III} = -\frac{P'h}{6} [h'(2 M_{IIII} + M_{III}) + l(2 M_{IIII} + M_{IIII})],$$

$$3''_{IV} = -\frac{P'h}{6} [h'(2 M_{IIIV} + M_{IIV}) + l(2 M_{IIIV} + M_{IIIIV})].$$

Anmerkung: Für \mathfrak{Z}''_{II} ist das Grundsystem Fig. 218 in Betracht zu ziehen.

Durch Einsetzen der entsprechenden Werte für die Momente nach den Momentenflächen Fig. 213 bis 216 findet man, wenn man zugleich durch \Re dividiert und gehörig vereinfacht.

$$M_{I}'' = M_{III}'' = \frac{P'h}{4},
 M_{II}'' = M_{IV}'' = -\frac{P'h}{4}.$$
(150)

Nunmehr lassen sich die Eckmomente für alle Belastungen angeben.

Unter Verwendung der Momentenflächen, Fig. 213 bis 216 erhalten wir nach entsprechender Vereinfachung:

Für senkrechte Belastung des oberen Riegels nach Gleichung (147) und (148):

$$\begin{split} M_{I} &= \frac{(3 \, \omega^{2} - 10 \, \omega - 9) \, \varphi_{1} + (9 \, \omega^{2} + 14 \, \omega + 9) \, \varphi_{2}}{n \, l}, \\ M_{II} &= -\frac{(5 \, \omega + 3) \, (3 \, \omega + 5) \, \varphi_{1} + (9 \, \omega^{2} + 10 \, \omega - 3) \, \varphi_{2}}{n \, l}, \\ M_{III} &= -\frac{(9 \, \omega^{2} + 10 \, \omega - 3) \, \varphi_{1} + (5 \, \omega + 3) \, (3 \, \omega + 5) \, \varphi_{2}}{n \, l}, \\ M_{IIV} &= \frac{(9 \, \omega^{2} + 14 \, \omega + 9) \, \varphi_{1} + (3 \, \omega^{2} - 10 \, \omega - 9) \, \varphi_{2}}{n \, l}. \end{split}$$
(151)

Bei Belastung des unteren Riegels ist darin M_I mit M_{II} und M_{III} mit M_{IV} zu vertauschen.

Für wagerechte Belastung der Ständer findet man aus den Gleichungen (149) und (150):

$$\begin{split} M_{I} &= \frac{(9\,\omega^{2} + 14\,\omega + 9)\,\varphi_{1} - (9\,\omega^{2} + 10\,\omega - 3)\,\varphi_{2}}{n\,l} + \frac{P'\,h}{4}, \\ M_{II} &= -\frac{(9\,\omega^{2} + 10\,\omega - 3)\,\varphi_{1} - (9\,\omega^{2} + 14\,\omega + 9)\varphi_{2}}{n\,l} - \frac{P'\,h}{4}, \\ M_{III} &= -\frac{(5\,\omega + 3)\,(3\,\omega + 5)\,\varphi_{1} - (3\,\omega^{2} - 10\,\omega - 9)\varphi_{2}}{n\,l} + \frac{P'\,h}{4}, \\ M_{III} &= -\frac{(3\,\omega^{2} - 10\,\omega - 9)\,\varphi_{1} - (5\,\omega + 3)\,(3\,\omega + 5)\,\varphi_{2}}{n\,l} - \frac{P'\,h}{4}. \end{split}$$
(152)
In den Gleichungen (151) und (152) ist:

 $n = 2(\omega + 1)(3\omega + 1)(\omega + 3)$ (153)

Nach Ermittelung der Eckmomente M_I , bis M_{IV} sind beliebige andere statische Größen in gleicher Weise zu ermitteln, wie in § 9 für den eingespannten Rahmen gezeigt wurde.

Aus Gleichung (152) ergibt sich der Einfluß der verschiedenen Belastungsfälle wiederum dadurch, daß für φ_1 und φ_2 die entsprechenden Werte aus Tab. VII eingesetzt werden.

Die Verwertung der vorstehenden Ergebnisse soll an einem Zahlenbeispiel in § 13 erläutert werden.

II. Zweite Rechnungsart (vgl. § 10).

Eine zweite Rechnungsart schließt an die Ausführungen des § 10 an. Es ist in diesem Falle ein Hauptsystem nach Fig. 219 zugrunde gelegt; als Unbekannte sind Gruppen der beiden Einspannungsmomente an den Ständerfüßen zu ermitteln.

Man erkennt, daß die Beiwerte der X wie auch die Absolutglieder von den in § 10 angegebenen Resultaten nur dadurch abweichen, daß noch der Einfluß des unteren Riegels hinzuzufügen ist. Es tritt hier der Sonderfall 1 (S. 164) ein.

Für den unteren Riegel soll diesmal ein von dem Trägheitsmoment J_l des oberen Riegels abweichender Trägheitsmoment $J_{l\,u}$ angenommen und der Wert

$$l \cdot \frac{J_l}{J_{lu}} = l'$$

bezeichnet werden. — Man findet damit (vgl. Fig. 219 und 220)

$$[a a] = \frac{\omega(\omega+2)}{2\omega+3}l + l' = \frac{\omega(\omega+2)l + (2\omega+3)l'}{2\omega+3}$$
$$[b b] = \frac{6\omega+1}{3}l + \frac{1}{3}l' = \frac{(6\omega+1)l + l'}{3}.$$

Weiter findet man bei den verschiedenen Belastungsfällen: a) Senkrechte Belastung des oberen Riegels:

$$[am] = -\frac{\omega}{2\omega+3}(\varphi_1+\varphi_2).$$

$$[bm] = \varphi_1-\varphi_2.$$

§ 12. Der geschlossene Rechteckrahmen.

$$\begin{split} X_{a} &= \frac{\omega \left(\varphi_{1} + \varphi_{2}\right)}{\omega \left(\omega + 2\right) l + \left(2 \omega + 3\right) l'} = \frac{\omega \left(\varphi_{1} + \varphi_{2}\right)}{\Re_{a}}, \\ X_{b} &= -\frac{3 \left(\varphi_{1} - \varphi_{2}\right)}{\left(6 \omega + 1\right) l + l'} = -\frac{3 \left(\varphi_{1} - \varphi_{2}\right)}{\Re_{b}}. \end{split}$$

b) Senkrechte Lasten des unteren Riegels:

$$\begin{split} & [a\,m] = \varphi_1 + \varphi_2 \, . \\ & [b\,m] = \varphi_1 - \varphi_2 \, . \\ & X_a = - \frac{(2\,\omega + 3)\,(\varphi_1 + \varphi_2)}{\Re_a} \, . \\ & X_b = - \frac{3\,(\varphi_1 - \varphi_2)}{\Re_b} \, . \end{split}$$

c) Horizontale Belastung H des rechten Ständers:

$$\begin{split} & [a\,m] = -\frac{\omega}{2\,\omega+3}\,\varphi_1 + \varphi_2 \,. \\ & [b\,m] = -\frac{H'h}{6}(3\,\omega+1)\,l - (\varphi_1 + \varphi_2) \,. \\ & X_a = \frac{\omega\,\varphi_1 - (2\,\omega+3)\,\varphi_2}{\Re_a} \,. \\ & X_b = \frac{\frac{1}{2}(3\,\omega+1)\,l \cdot H'h + 3\,(\varphi_1 + \varphi_2)}{\Re_b} \end{split}$$

Die Eckmomente ergeben sich nach Ermittelung der Unbebekannten aus den Gleichungen:

$$M_{I} = X_{a} + X_{b}
 M_{IV} = X_{a} - X_{b}
 M_{II} = M_{IIo} - \frac{\omega}{2\omega + 3} X_{a} + X_{b}
 M_{III} = M_{IIIo} - \frac{\omega}{2\omega + 3} X_{a} - X_{b}$$
(153a)

Darin ist zu setzen (vgl. S. 165):

a) Für senkrechte Belastung des oberen Riegels:

$$M_{IIo} = M_{IIIo} = -\frac{3(\varphi_1 + \varphi_2)}{(2\omega + 3)l}.$$

b) Für senkrechte Belastung des unteren Riegels: $M_{IIo} = M_{IIIo} = 0.$

c) Für horizontale Belastung des rechten Ständers: T'_{k}

$$M_{IIo} = -\frac{H'h}{2} - \frac{3\varphi_1}{(2\omega+3)l},$$
$$M_{IIIo} = \frac{H'h}{2} - \frac{3\varphi_1}{(2\omega+3)l}.$$

Anmerkung. Nimmt man wieder für oberen und unteren Riegel gleiches Trägheitsmoment an, so wird l' = l. Setzt man dies in die Gleichungen für \Re_a und \Re_b ein und vereinigt die einzelnen Glieder der vorstehenden Gleichungen der Eckmomente, so erhält man wieder die Gleichungen (151) und (152).

§ 13. Zahlenbeispiel zum geschlossenen Rechteckrahmen.

Aufgabe 1.

Es ist das in Fig. 221 gezeichnete Brückenportal für den Horizontalschub *H* zu berechnen. — Die beiden Riegel haben gleiche Querschnitte. Die Aufgabe soll auf drei Arten gelöst werden, und zwar

- 1) unter Verwendung eines statisch bestimmten Grundsystems,
- 2) "", der geschlossenen Formeln für die Eckmomente (§ 12, I),
- 3) unter Verwendung eines Zweigelenkrahmens als Hauptsystem (§ 12, II).

1. Berechnung unter Verwendung eines statisch bestimmten Grundsystems.

Das System ist dreifach statisch unbestimmt. Als überzählige Größen wählen wir die Momente am Fuße der Ständer und das Moment in der Mitte des oberen Riegels (Fig. 222). Dies letzte Moment nennen wir X_a . X_b sei die Gruppe aus zwei gleichen Fußmomenten mit gleichen Vorzeichen, X_c die Gruppe von zwei gleichen Fußmomenten mit umgekehrten Vorzeichen. Bezüglich Bezeichnungen und Vorzeichen, vgl. § 12.

Zur Errechnung der Verschiebungen des Grundsystems benötigen wir die Momentenflächen infolge der Belastungen $X_i = 1$ und infolge der äußeren Belastung am Grundsystem (s. Fig. 223 bis 226).

Aus diesen Momentenflächen findet man:

Die von der äußeren Belastung unabhängigen Verschiebungen des Grundsystems.

$$[aa] = \frac{h'}{3} \cdot 2 + l$$

$$= \frac{\omega \cdot l \cdot 2}{3} + l = l \cdot \frac{2\omega + 3}{3}$$

$$[bb] = \frac{h'}{3} \cdot 2 + l = l \cdot \frac{2\omega + 3}{3}$$

$$[cc] = 2h' + 4 \cdot \frac{l}{2 \cdot 3}$$

$$= 2\omega \cdot l + 2 \cdot \frac{l}{3} = l \cdot 2 \frac{1 + 3\omega}{3}$$

$$[ab] = \frac{h'}{6} \cdot 2 = \omega \cdot \frac{l}{3}$$

$$[ac] = 0;$$

$$[bc] = 0.$$

Die Elastizitätsgleichungen lauten nun:

$$\begin{bmatrix} aa \end{bmatrix} X_a + \begin{bmatrix} ab \end{bmatrix} X_b = - \begin{bmatrix} am \end{bmatrix} \\ \begin{bmatrix} ab \end{bmatrix} X_a + \begin{bmatrix} bb \end{bmatrix} X_b = - \begin{bmatrix} bm \end{bmatrix} \\ \begin{bmatrix} cc \end{bmatrix} X_c = - \begin{bmatrix} cm \end{bmatrix}.$$

Wir können die beiden ersten Gleichungen getrennt von der dritten auflösen.

Man findet:

Pirlet,

$$F_{ab} = -\frac{\begin{bmatrix} a & b \end{bmatrix}}{\begin{bmatrix} a & a \end{bmatrix}} = -\frac{\omega}{(2\omega + 3)}.$$
Statik. II. 2.

Vollwandige Systeme mit geradlinigen Achsen.

$$\begin{split} [bb.1] &= [bb] + F_{ab} [ab] \\ &= \frac{l(2\omega + 3)}{3} - \frac{\omega}{2\omega + 3} \cdot \frac{l \cdot \omega}{3} \\ &= \frac{(\omega + 1)(\omega + 3)}{2\omega + 3} l. \\ X_b &= -\frac{[bm.1]}{[bb.1]}. \\ X_a &= -\frac{[am]}{[aa]} + F_{ab} \cdot X_b. \\ X_c &= -\frac{[cm]}{[cc]}. \end{split}$$

Errechnung der Absolutglieder, d. i. der von der äußeren Belastung unabhängigen Verschiebungen des Grundsystems für die Last H.

Es ist allgemein:

$$[im] = \int M_i M_0 \, d_s \frac{J'}{J}.$$

Wir benötigen die M_0 -Fläche, d. b. die Momentenfläche am Grundsystem infolge der äußeren Belastung H, die in Fig. 226 gezeichnet ist.

$$\begin{split} [am] &= 1 \cdot \left(-\frac{H[h+\eta]}{2} \right) \left(\frac{\omega l}{3} \right) + 1 \left(+\frac{H[h-\eta]}{2} \right) \left(\frac{\omega l}{3} \right) \\ &= \frac{\omega l}{3} H \cdot (-\eta) = -\frac{\omega \cdot l \cdot \eta}{3} \cdot H \\ [bm] &= -\frac{\omega \cdot l \cdot \eta}{6} \cdot H + \frac{l \cdot H \cdot \eta}{2} \\ &= \frac{3-\omega}{6} \cdot l \cdot \eta \cdot H \\ [cm] &= +H\eta \left(\frac{1 \cdot l}{3} \right) - \frac{H\eta \cdot 1 \cdot l}{6} \\ &- H \left(\frac{h+\eta}{2} \right) \cdot \frac{\omega \cdot l}{2} - \frac{H(h-\eta)}{2} \cdot \frac{\omega \cdot l}{2} \\ &- \frac{H(h+\eta)}{2} \cdot \frac{l}{3} \\ &= -l \cdot h \cdot \frac{3\omega + 1}{6} \cdot H \\ [bm.1] &= [bm] + F_{ab} \cdot [am] \\ &= l \cdot H \cdot \eta \left(\frac{3-\omega}{6} \right) - \frac{\omega \left(-\omega l \eta \cdot H \right)}{3 \left(2\omega + 3 \right)} \\ &= l\eta \frac{\omega + 3}{2 \left(2\omega + 3 \right)} \cdot H \end{split}$$

$$\begin{split} X_{b} &= -\frac{[bm.1]}{[bb.1]} \\ &= -\frac{l \cdot H \cdot \eta (\omega + 3)(2\omega + 3)}{2(2\omega + 3)(\omega + 1)(\omega + 3)l} \\ &= -\frac{\eta}{2} \frac{1}{(\omega + 1)} H \\ X_{a} &= -\frac{[am]}{[aa]} + F_{ab} \cdot X_{b} \\ &= +\frac{\omega \cdot l \cdot \eta \cdot 3 \cdot H}{3l(2\omega + 3)} \cdot \frac{\omega}{2\omega + 3} \cdot \frac{\eta}{2} \cdot \frac{1}{(\omega + 1)} \cdot H \\ &= \eta \cdot \frac{\omega}{2\omega + 2} \cdot H \\ X_{c} &= -\frac{[cm.2]}{[cc.2]} = -\frac{[cm]}{[cc]} \\ &= \frac{l \cdot h \cdot (3\omega + 1) \cdot 3 \cdot H}{6 \cdot l \cdot (3\omega + 1) \cdot 2} = \frac{H \cdot h}{4}. \end{split}$$

Jetzt errechnet sich jede beliebige statische Größe nach der Gleichung:

$$\begin{split} S &= S_a + S_a \cdot X_a + S_b \cdot X_b + S_c \cdot X_c. \\ \text{Die Eckmomente (Fig. 227) ergeben} \\ \text{sich zu} \\ M_I^h &= 1 \cdot X_b + 1 \cdot X_c + M_0 \\ &= -\frac{H \cdot \eta}{2} \left(\frac{1}{\omega + 1}\right) + \frac{Hh}{4} \end{split}$$

$$\begin{split} M_{I}^{l} &= H\eta - \frac{H\eta}{2} \left(\frac{1}{\omega+1} \right) + \frac{Hh}{4} \\ &= \frac{H\eta}{2} \left(2 - \frac{1}{\omega+1} \right) + \frac{Hh}{4} \\ M_{II}^{h} &= M_{0} + 1 \cdot X_{a} + 1 \cdot X_{c} \\ &= -\frac{H(h+\eta)}{2} + H \cdot \eta \frac{\omega}{(2\omega+2)} + \frac{Hh}{4} \\ M_{II}^{h} &= -\frac{H \cdot \eta}{2} \left(\frac{1}{\omega+1} \right) - \frac{H \cdot h}{4} \\ M_{II}^{l} &= M_{II}^{h} &= -\frac{H \cdot \eta}{2} \left(\frac{1}{\omega+1} \right) - \frac{Hh}{4} \\ M_{III}^{h} &= M_{0} + 1 \cdot X_{a} - 1 \cdot X_{c} \\ &= \frac{H(h-\eta)}{2} + \frac{H\eta}{2} \left(\frac{\omega}{\omega+1} \right) - \frac{Hh}{4} \end{split}$$

15*

Vollwandige Systeme mit geradlinigen Achsen.

$$\begin{split} M_{III}^{h} &= -\frac{H \cdot \eta}{2} \frac{1}{\omega + 1} + \frac{Hh}{4} \\ M_{III}^{l} &= M_{0} + 1 \cdot X_{a} - 1 \cdot X_{c} \\ &= \frac{H \cdot (h + \eta)}{2} + \frac{H\eta}{2} \frac{\omega}{\omega + 1} - \frac{Hh}{4} \\ &= \frac{H\eta}{2} \frac{2\omega + 1}{\omega + 1} + \frac{Hh}{4} \\ M_{IV}^{h} &= 1 \cdot X_{b} - 1 \cdot X_{c} \\ &= -\frac{H \cdot \eta}{2} \frac{1}{\omega + 1} - \frac{H \cdot h}{4} \\ M_{IV}^{l} &= -\frac{H\eta}{2} \frac{1}{\omega + 1} - \frac{Hh}{4} \end{split}$$

Setzen wir nun die in Fig. 221 angegebenen Zahlen für H, h, l und η ein und nehmen wir $\omega = \frac{h'}{l} = 3$ an, so ist:

 $\begin{array}{c} M_{I}^{l} = + 2,813 \cdot H \text{ mt} \\ M_{I}^{h} = + 1,313 \cdot H & , \\ M_{II}^{l} = -1,687 \cdot H & , \\ M_{III}^{h} = -1,687 \cdot H & , \\ M_{III}^{h} = + 2,813 \cdot H & , \\ M_{III}^{h} = + 1,313 \cdot H & , \\ M_{III}^{l} = - 1,687 \cdot H & , \\ M_{IV}^{l} = - 1,687 \cdot H & , \\ \end{array}$

2. Berechnung unter Verwendung der geschlossenen Formeln für die Eckmomente (§ 12, I).

Zu denselben Resultaten wie im vorhergehenden kommen wir, wenn

wir die im § 12, Abschnitt I angegebenen $M = H \eta$ Formeln für die Eckmomente des geschlossenen Rechteckrahmens verwenden, indem wir an dem Rahmen oben rechts eine Horizonalkraft H und an den oberen Riegel rechts und dem unteren links je ein Moment Hy angreifen lassen (s. Fig. 228). Aus dem Horizontalschub H ergibt sich für die Eckmomente (Gl. (150); S. 221):

$$M_{I}'' = M_{III}'' = \frac{Hh}{4}.$$
$$M_{II}'' = M_{IV}'' = -\frac{Hh}{4}$$

§ 13. Zahlenbeispiel zum geschlossenen Rechteckrahmen.

Für die Belastung der Riegel durch die Momente $M = H \cdot \eta$ sind die Gleichungen (151), S. 221, zu verwenden. Diese Gleichungen gelten für die Belastung des oberen Riegels. Für die diametral gegenüberliegende und in gleichem Sinne wirkende Belastung des untern Riegels durch das gleiche Moment $M = H\eta$ finden wir offenbar die gleichen Eckmomente, wobei jedoch M_I mit M_{III} und M_{IV} mit M_{II} vertauscht erscheint. Die Gesamtmomente sind damit:

$$\begin{split} M_{I} &= M_{III} = \frac{(3\,\omega^{2} - 10\,\omega - 9)\,\varphi_{1} + (9\,\omega^{2} + 14\,\omega + 9)\,\varphi_{2}}{nl} \\ &- \frac{(9\,\omega^{2} + 10\,\omega - 3)\,\varphi_{1} + (5\,\omega + 3)\,(3\,\omega + 5)\,\varphi_{2}}{nl} \\ M_{I} &= M_{III} = -\,\frac{\varphi_{1} + \varphi_{2}}{(\omega + 1)\,l} \\ M_{II} &= M_{IV} = -\,\frac{(5\,\omega + 3)\,(3\,\omega + 5)\,\varphi_{1} + (9\,\omega^{2} + 10\,\omega - 3)\,\varphi_{2}}{nl} \\ &+ \frac{(9\,\omega^{2} + 14\,\omega + 9)\,\varphi_{1} + (3\,\omega^{2} - 10\,\omega - 9)\,\varphi_{2}}{nl} \\ M_{II} &= M_{IV} = -\,\frac{\varphi_{1} + \varphi_{2}}{(\omega + 1)\,l} . \end{split}$$

Die Werte φ_1 und φ_2 sind in §1 für Belastung eines graden Balkens durch ein Moment am rechten Ende zu entnehmen; man findet:

$$\varphi_1 = \frac{Ml}{6} = 2H,^{\bullet}$$
$$\varphi_2 = \frac{Ml}{3} = 4H.$$

Damit wird nun insgesamt:

$$M_{I}^{h} = M_{III}^{h} = \frac{6,00}{4} \cdot H - \frac{6}{4 \cdot 8} =$$

$$= 1,50H - 0,1875H$$

$$= 1,3125H \text{ mt.}$$

$$M_{II} = M_{IV} = -1,50H - 0,1875H$$

$$= -1.6875H \text{ mt.}$$

3. Berechnung unter Verwendung des Zweigelenkrahmens als Hauptsystem.

Nach § 12, Abschnitt II erhalten wir, wenn wir wieder die Belastungen nach Fig. 228 betrachten:

Infolge H:

$$X_a = 0$$
$$X_b = \frac{H \cdot h}{4}$$

Infolge des Momentes $M = H \cdot \eta$ am oberen Riegel:

$$\varphi_1 = \frac{Ml}{6} = 2H; \quad \varphi_2 = \frac{Ml}{3} = 4H;$$
$$X_a = \frac{\omega}{(\omega+3)(\omega+1)l} \cdot 6H$$
$$X_b = \frac{1}{(3\omega+1)l} \cdot 3H.$$

Infolge des Momentes $M = H \cdot \eta$ am unteren Riegel:

$$\begin{split} \varphi_{1} &= \frac{Ml}{3} = 4H; \ \varphi_{2} = \frac{Ml}{6} = 2H; \\ X_{a} &= -\frac{(2\omega+3)}{(\omega+3)(\omega+1)l} \cdot 6H. \\ X_{b} &= -\frac{1}{(3\omega+1)\bar{l}} \cdot 3H. \end{split}$$

Insgesamt wird also:

$$X_{a} = -\frac{6H}{(\omega+1)l} = -\frac{6}{4\cdot8}H = -0,1875H$$
$$X_{b} = -\frac{Hh}{4} = -\frac{6}{4}\cdot H = 1,5H.$$

Damit wird für die untern Eckmomente:

$$M_{I} = X_{a} + X_{b} = 1,3125 H.$$
$$M_{IV} = X_{a} - X_{b} = -1,6875 H.$$

Für die oberen Eckmomente M_{II} und M_{III} findet man: Infolge H:

$$M_{IIo} = -M_{IIIo} = -\frac{Hh}{2}.$$

$$M_{II} = -\frac{Hh}{2} + \frac{Hh}{4} = -\frac{Hh}{4},$$

$$M_{III} = \frac{Hh}{2} - \frac{Hh}{4} = +\frac{Hh}{4}.$$

Infolge *M* am oberen Riegel:

$$\boldsymbol{M}_{IIIo} = \boldsymbol{M}_{IIIo} = -\frac{3}{(2\omega+3)l} \cdot 6 H$$

Infolge M am untern Riegel:

$$\boldsymbol{M}_{IIo} = \boldsymbol{M}_{IIIo} = 0.$$

Infolge M oben und unten ist also:

$$M_{IIo} = M_{IIIo} = -\frac{3}{(2\omega+3)l} \cdot 6H$$
$$X_{a} = -\frac{1}{(\omega+1)l} 6H$$

$$\begin{split} \mathbf{X}_{b} &= 0.\\ \mathbf{M}_{II} &= -\frac{3}{(2\omega+3)l} \cdot 6H + \frac{\omega}{(2\omega+3)(\omega+1)l} \, 6H \\ &= -\frac{1}{(\omega+1)l} \cdot 6H.\\ \mathbf{M}_{III} &= \mathbf{M}_{II}. \end{split}$$

Insgesamt ist also:

$$M_{II} = -\frac{Hb}{4} - \frac{6H}{(\omega+1)l} = -1,6875 \, H \, \text{mt.}$$
$$M_{III} = \frac{Hh}{4} - \frac{6H}{(\omega+1)l} + 1,3125 \, H \, \text{mt.}$$

Aufgabe 2.

Es sollen für das gleiche System die Einflußlinie für bewegliche Lasten auf dem untern Riegel ermittelt werden. Die Einflußlinie für das Eckmoment M_I (M_I -Linie) hat die Gleichung (vgl. § 12):

$$M_{I} = -\frac{1}{\Re} \frac{l^{2}}{6} (M_{II} c_{1} + M_{IVI} c_{2}).$$

Sie ist in nachstehender Tabelle berechnet und in Fig. 229 aufgetragen! Darin ist:

$\frac{x}{l}$	$\frac{l^2}{6 \mathfrak{N}}$	$M_{II} \cdot c_1$	$M_{III} \cdot c_2$	$\left M_{II} \cdot c_1 + M_{III} \cdot c_2 \right $	M _I
0,1	0,7	0,099	0,073	0,172	0,121
0,2	0,7	0,192	0,124	0,316	0,222
0,3	0,7	0,273	0,153	0,426	0,298
0.4	0,7	0,336	0.165	0,501	0.351
0,5	0,7	0,375	0,161	0,536	0,376
0.6	0.7	0,384	0,144	0.528	0.370
0.7	0,7	0,357	0.117	0.474	0.332
0.8	0,7	0,288	0,082	0.370	0.260
0,9	0,7	0,172	0,042	0,213	0,149

$$M_{II} = +1; M_{IVI} = +0,428$$

Steht die Last 1 am Ende des rechten Kragarmes, so entsteht bei IV ein Moment $M = 1 \cdot 2 = 2$ mt. Die Ordinate am rechten Ende des Kragarmes errechnet sich dann

mit
$$\varphi_1 = \frac{Ml}{6}$$
 und $\varphi_2 = \frac{Ml}{3}$ nach
der Gleichung:
 $M_I = -\frac{1}{\Re} \cdot \frac{Ml}{6} (M_{II} + 2 M_{IVI}).$
Darin ist:
 $M_{II} = 1; \quad M_{IVI} = 0,428$
Also wird

Vollwandige Systeme mit geradlinigen Achsen.

$$M_I = -\frac{2 \cdot 8(1 + 2 \cdot 0.428)}{6 \cdot 15.22} = -0.325.$$

Am linken Ende ist:

$$\begin{split} \mathbf{M}_{I} &= -\frac{1}{\Re} \frac{Ml}{6} (\mathbf{M}_{III} + 2 \mathbf{M}_{II}) \\ &= -\frac{2 \cdot 8}{6} \frac{(2 \cdot 1 + 0.428)}{15.22} = -0.425 \,. \end{split}$$

Die Einflußlinie für M_{II} hat die Gleichung:

$$M_{II} = -\frac{1}{\Re} \cdot \frac{l^2}{6} (M_{III} c_1 + M_{IVII} c_2).$$

Darin ist

$$M_{III} = 0,048, \qquad M_{IVII} = -0,524.$$

Danach ist die M_{II} -Linie in nachstehender Tabelle berechnet und in Fig. 230 aufgetragen.

$\frac{x}{l}$	<u>l²</u> 6 N	$M_{III} \cdot c_1$	$M_{IVII} \cdot c_2$	$\left M_{III} \cdot c_1 + M_{IVII} \cdot c \right $	2 M ₁₁
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8	0,7 0,7 0,7 0,7 0,7 0,7 0,7	0,005 0,009 0,013 0,016 0,018 0,018 0,018 0,017	$\begin{array}{c} - & 0,090 \\ - & 0,152 \\ - & 0,187 \\ - & 0,201 \\ - & 0,197 \\ - & 0,176 \\ - & 0,143 \\ - & 0,101 \end{array}$	$\begin{array}{c} - 0,085 \\ - 0,143 \\ - 0,174 \\ - 0,185 \\ - 0,179 \\ - 0,158 \\ - 0,126 \\ 0,087 \end{array}$	$\begin{array}{c} - & 0,060 \\ - & 0,100 \\ - & 0,122 \\ - & 0,130 \\ - & 0,125 \\ - & 0,111 \\ - & 0,088 \\ 0,061 \end{array}$
0,8 0,9	0,7	0,008	-0,101 -0,052	$\begin{vmatrix} -0,001 \\ -0,044 \end{vmatrix}$	-0,031

Die Ordinate am rechten Ende des Kragarmes errechnet sich wieder nach der Formel:

$$\boldsymbol{M}_{II} = -\frac{1}{\Re} \cdot \frac{\boldsymbol{M} \boldsymbol{l}}{6} (\boldsymbol{M}_{III} + 2 \boldsymbol{M}_{IVII}).$$

M ist das am rechten Riegelende angreifende Moment: $M = 1 \cdot 2,0$. Man findet:

$$M_{II} = -\frac{2 \cdot 8}{6} \cdot \frac{(0,048 - 1,048)}{15,22} = +0,175.$$

Am linken Kragarm ist:

$$M_{II} = -\frac{1}{\Re} \cdot \frac{Ml}{6} \cdot (M_{IVII} + 2 M_{III})$$
$$M_{II} = -\frac{2 \cdot 8}{6} \cdot \frac{(-0.524 + 0.096)}{15.22} = +0.075 .$$

Die Einflußlinien von M_{III} und M_{IV} sind die Spiegelbilder von M_{II} und M_{I} .

II. Abschnitt.

Vollwandige Systeme mit gekrümmten Achsen. Der beiderseits eingespannte elastische Bogen.

(Das Tonnengewölbe.)

Der an beiden Enden eingespannte Bogen ist ein dreifach statisch unbestimmtes System. In der vorliegenden Bearbeitung sollen auch für dieses System die für die Berechnung erforderlichen Größen, also namentlich die Verschiebungen der Angriffspunkte der Unbekannten sowie einzelne statische Größen (Momente) für die wichtigsten Belastungsfälle durch geschlossene Ausdrücke dargestellt werden.

Hierzu bedarf es einer Annahme über die Form der Bogenachse sowie über die Trägerquerschnitte. Bezüglich der Systemachse ist zu bemerken, daß sowohl die Parabel wie der Kreis und schließlich auch die Kettenlinie in Frage kommt. Bei flachen Bogen fallen die Kurven ungefähr zusammen; eine Untersuchung verschiedener Bogen mit größerem Pfeilverhältnis hat gezeigt, daß die Systemachse sich entweder dem Kreis oder der Parabel eng anschmiegt oder aber zwischen beiden liegt. Stets aber zeigt die Rechnung, daß bei Rechnungen mit kreisförmiger und parabolischer Achse die Abweichung in den Werten der Unbekannten gering ist.

Was ferner die Querschnittsannahmen betrifft, so ist es bekannt, daß diese für die Ergebnisse der Berechnung statisch unbestimmter Systeme im allgemeinen von untergeordneter Bedeutung sind. Ein solcher Fall liegt auch hier vor. Wir werden aber trotzdem bestrebt sein, der Rechnung Querschnittsannahmen zugrunde zu legen, die der Wirklichkeit wenigstens nahe kommen.

Eine bekannte und vielfach benutzte Regel besagt nun, daß die Gewölbestärke d nach dem Kämpfer hin so zunehmen soll, daß ihre Vertikalprojektion überall gleich der Scheitelstärke d_s ist. Es ist also dann (vgl. Fig. 231)

$$d = \frac{d_s}{\cos \varphi},$$

wo φ den Neigungswinkel der Gewölbetangente gegen die Horizontale darstellt. Diese Annahme trifft freilich nur bei Bogen mit mittlerem Pfeilverhältnis zu; bei flachen Bogen

wird der Endquerschnitt stärker, bei hohen dagegen schwächer als nach der erwähnten Regel zu erwarten wäre. Da aber, wie schon erwähnt, die Querschnittsannahmen von geringem Einfluß auf die Endergebnisse sind, so wollen wir in den folgenden Rechnungen zunächst das vorher angegebene Gesetz zugrunde legen (§ 14).

Es liegt jedoch nahe, die Annahmen, soweit die Rücksicht auf die Genauigkeit dies statthaft erscheinen läßt, so zu gestalten, daß die Rechnung sich einfach und schnell durchführen läßt. Denn legt man die etwa auf Grund einer Vorberechnung gefundene Systemachse, die im allgemeinen keine einfache mathematische Kurve darstellt, der Rechnung zugrunde und berücksichtigt die wirklich vorhandenen bzw. vorberechneten Querschnitte, so treten bei den dadurch notwendig gewordenen vielen Einzelrechnungen andere Fehlerquellen auf, die im obigen Falle ausscheiden. Dies betrifft namentlich das Abgreifen der für die Rechnung notwendigen Ordinaten der Systemachse aus der Zeichnung sowie die vielen Zwischenrechnungen, Produktbildungen usw., die zur Berechnung der Verschiebungen (Produktsummen) notwendig sind. Diese Fehlereinflüsse können aber von größerer Bedeutung sein als die vereinfachenden Annahmen; denn es sind zum großen Teil Fehler, deren Wirkungen sich nach den Fehlergesetzen summieren, während die Einflüsse der genannten Annahmen über Achse und Querschnitte sich in den Werten der Unbekannten (Quotienten von Verschiebungen) teilweise gegenseitig aufheben¹).

Wir werden daher später (§ 15) auf ein anderes Gesetz über die Veränderlichkeit der Querschnitte aufbauen, das besonders einfache Rechnung und Resultate liefert.

§ 14. Erste Berechnung des beiderseits eingespannten elastischen Bogens.

(Berechnung unter der Annahme: $d = \frac{d_s}{\cos \varphi}$).

I. Die Elastizitätsgleichungen und die Berechnung der Verschiebungen.

Zur Berechnung der überzähligen Größen des dreifach statisch

unbestimmten Systems schneiden wir in diesem Falle den Bogen im Scheitel durch und wählen das Moment X_a , den Horizontalschub X_b und die Scherkraft X_c als überzählige Größen (Fig. 232). Diese müssen die drei folgenden Bedingungen erfüllen:

$$\begin{split} &X_{a} \cdot [aa] + X_{b} \cdot [ab] + X_{c} \cdot [ac] = - [am], \\ &X_{a} \cdot [ba] + X_{b} \cdot [bb] + X_{c} \cdot [bc] = - [bm], \\ &X_{a} \cdot [ca] + X_{b} \cdot [cb] + X_{c} \cdot [cc] = - [cm]. \end{split}$$

Mit der Lösung der Gleichungen beschäftigen wir uns im folgenden Abschnitt. Hier sollen zunächst die Koeffizienten der Gleichungen, also die Verschiebungen, berechnet werden.

Wir setzen der Einfachheit halber einen — wohl in den weitaus meisten praktischen Fällen vorliegenden — symmetrischen Bogen

¹) Näheres hierüber findet sich in meiner Schrift: "Fehleruntersuchungen bei der Berechnung mehrfach statisch unbestimmter Systeme". Aachen 1909.

voraus. Die Belastungszustände X = 1 sollen so gewählt werden, daß sie alle drei die rechte Bogenhälfte im gleichen Sinne verbiegen. Die hierbei in diesem Bogenteil entstehenden Momente M_a , M_b , M_c sollen als positiv eingeführt werden. Die linke Bogenhälfte wird infolge $X_{a=1}$ und $X_{b=1}$ entsprechend der rechten Hälfte verbogen, so daß auch hier M_a und M_b das positive Vorzeichen erhalten. Dagegen verbiegt $X_{c=1}$ die linke Bogenhälfte in entgegengesetztem Sinne, so daß M_c im linken Teil negativ gesetzt werden muß. — Die Normalkräfte mögen als positiv gelten, wenn sie im Querschnitt Druckspannungen erzeugen.

Eine Verschiebung [ik] berechnet sich nach der Gleichung:

$$[ik] = \int M_i M_k \frac{ds}{EJ} + \int N_i N_k \frac{ds}{EF},$$

wenn, wie üblich, der Beitrag der Querkräfte vernachlässigt wird. — Aus dem vorhin bezüglich der Vorzeichen Gesagten ergibt sich, daß die Verschiebungen [ac] und [bc] zu 0 werden müssen; denn in der Summe der Produkte $M_a \cdot M_c$ und $M_b \cdot M_c$ bzw. $N_a \cdot N_c$ und $N_b \cdot N_c$ werden die gleichen Glieder für die rechte Bogenhälfte positiv und für die linke negativ; also muß wegen der Symmetrie der Gesamtwert zu 0 werden.

Somit vereinfachen sich die Gleichungen wie folgt:

$$X_{a} \cdot [aa] + X_{b} [ab] = -[am],$$

$$X_{a} \cdot [ba] + X_{b} [bb] = -[bm],$$

$$X_{c} \cdot [cc] = -[cm].$$
(154)

Die Koeffizienten dieser Gleichungen berechnen wir für den Fall einer parabolischen Achse. Als Veränderliche führen wir den Neigungswinkel φ der Bogentangente gegen die Horizontale ein. Die Gleichung der Parabel, bezogen auf die Mitte der Kämpferverbindungslinie als Anfangspunkt, lautet (vgl. Fig. 233):

Darin ist $\frac{x}{l} = \frac{\mathrm{tg}\,\varphi}{\mathrm{tg}\,\varphi_0}$, also

$$y = f\left(1 - \frac{\mathrm{tg}^2 \varphi}{\mathrm{tg}^2 \varphi_0}\right) \dots \dots \dots \dots \dots \dots (155 a)$$

Multipliziert man sämtliche Verschiebungen mit $E \cdot J_s$, wo J_s das Trägheitsmoment des Scheitelquerschnittes bedeutet, so erscheint in allen Verschiebungen der Wert:

Vollwandige Systeme mit gekrümmten Achsen.

$$ds \cdot \frac{J_s}{J} = ds \cdot \frac{J_s}{\frac{J_s}{\cos^3 \varphi}} = ds \cdot \cos^3 \varphi;$$

denn bei rechteckigem Querschnitt ist gemäß obenerwähnter Querschnittsannahme

$$J = b \frac{d^3}{12} = \frac{b}{12} \left(\frac{d_s}{\cos \varphi} \right)^3 \ (d_s = \text{Scheitelstärke}).$$

Den Wert ds finden wir aus der Gleichung:

$$ds = \frac{dx}{\cos \varphi}.$$
Da $\frac{x}{l} = \frac{\operatorname{tg} \varphi}{\operatorname{tg} \varphi_0}$ ist, so ist $dx = l \cdot \frac{1}{\operatorname{tg} \varphi_0} \cdot \frac{1}{\cos^2 \varphi}$ und mit tg $\varphi = k_0$:
 $ds \frac{J_s}{J} = \frac{l}{k_0} d\varphi \quad \dots \quad \dots \quad \dots \quad (156)$

NB. Für die $E \cdot J_s$ -fachen Verschiebungen behalten wir die übliche Bezeichnung [ik] für $EJ_s \cdot [ik]$ bei.

1. Die von der äußeren Belastung unabhängigen Verschiebungen.

Da das Moment infolge $X_a=1$ an allen Stellen $M_a=1$ und die Normalkraft $N_a=0$ ist, so erhält man:

$$[aa] = \int ds \frac{J_s}{J} = \frac{l}{k_0} \int d\varphi.$$

Dieses Integral ist über beide Bogenhälften, also von — φ_0 bis — φ_0 zu erstrecken; man erhält:

$$[aa] = 2 \frac{l}{k_0} \cdot \varphi_0 \ldots \ldots \ldots \ldots$$
 (157)

Hierin ist φ_0 (Kämpferwinkel) gegeben durch die Beziehung:

$$\operatorname{tg} \varphi_{\mathbf{0}} = k_{\mathbf{0}} \left(= \frac{2 f}{l} \right),$$

oder in der Umkehrung:

Infolge $X_b = 1$ ergeben sich die Momente:

$$M_{b} = 1 \cdot (f - y) = \frac{f}{k_{0}^{2}} \operatorname{tg}^{2} \varphi = \frac{l}{2} \frac{1}{k_{0}} \operatorname{tg}^{2} \varphi.$$

Damit ergibt sich:

$$[ab] = \int M_a M_b \, ds \, \frac{J_s}{J} = \frac{l^2}{2} \frac{1}{k_0^2} \int tg^2 \varphi \, d\varphi \,.$$

$$\left(\text{Der Wert} \int N_a N_b \, ds \, \frac{J_s}{F} \text{ wird zu } 0, \text{ da } N_a = 0 \text{ ist.} \right) \text{ Dieses Inte-}$$

gral ist wieder über den ganzen Bogen von — φ_0 bis $+\,\varphi_0$ zu erstrecken.

§ 14. Erste Berechnung des beiderseits eingespannten elastischen Bogens. 237

Anmerkung: Die im folgenden vorkommenden Integralwerte ergeben sich am einfachsten mit Hilfe der Reduktionsformel (vgl. Hütte I, Erster Abschnitt, Integralformeln!):

$$\int \operatorname{tg}^{n} \varphi \, d\varphi = \frac{\operatorname{tg}^{n-1} \varphi}{n-1} - \int \operatorname{tg}^{n-2} \varphi \, d\varphi$$

Ist n eine gerade Zahl, so erhält man als letztes Integral:

$$\int d\varphi = q$$

Ist n eine ungerade Zahl, so lautet das letzte Integral:

 $\int \operatorname{tg} \varphi \, d\varphi = -\ln \cos \varphi \, (\operatorname{vgl. H\"{u}tte}!) = \frac{1}{2} \ln \left(1 + \operatorname{tg}^2 \varphi\right)$

Mit Hilfe vorstehender Integrale findet man für [ab] den Wert:

$$[ab] = l^2 \cdot \frac{1}{k_0^2} (k_0 - \varphi_0) \quad . \quad . \quad . \quad . \quad (159)$$

Die Verschiebung [bb] berechnet sich nach der Gleichung:

$$[bb] = \int M_b^2 ds \frac{J_s}{J} + \int N_b^2 ds \frac{J_s}{F}.$$

Hierin ist

$$M_b = \frac{l}{2} \cdot \frac{1}{k_0} \cdot \operatorname{tg}^2 \varphi \,,$$

$$N_b = 1 \cdot \cos \varphi,$$

$$ds \cdot \frac{J_s}{F} = ds \cdot \frac{F_s}{F} \cdot \frac{J_s}{F_s} = \frac{l}{k_0} \frac{d\varphi}{\cos^3 \varphi} \cdot \cos \varphi \frac{J_s}{F_s} = \frac{J_s}{F_s} \frac{l}{k_0} \frac{d\varphi}{\cos^2 \varphi}.$$

Man findet mit diesen Werten:

17

$$[bb] = \frac{l^3}{4} \cdot \frac{1}{k_0^3} \int \mathrm{tg}^4 \varphi \, d\varphi + \frac{l}{k_0} \frac{J_s}{F_s} \int d\varphi \, .$$

Die Auswertung der Integrale für die Grenzen $-\varphi_0$ und $+\varphi_0$ ergibt:

$$[bb] = \frac{l^3}{6} \cdot \frac{1}{k_0^3} [k_0^3 - 3(k_0 - \varphi_0)] + 2l \frac{J_s}{F_s} \cdot \frac{1}{k_0} \cdot \varphi_0,$$

Der Wert $\frac{J_s}{F_s}$ ist für rechteckigen Querschnitt:

$$\frac{J_s}{F_s} = \frac{b \, d_s^{\ 3}}{12 \, b \, d_s} = \frac{d_s^{\ 2}}{12}$$

Die Scheitelstärke d_s ist, falls man die Normalkräfte berücksichtigen will, vorerst zu schätzen oder an Hand von Näherungsformeln (Tolkmittsche Formeln) zu ermitteln. Vereinigt man in der Gleichung für [bb] beide Glieder, so findet man:

$$[bb] = \frac{l^3}{6} \cdot \frac{1}{k_0^3} \left\{ k_0^3 - 3 \left[k_0 - \varphi_0 \left(1 + 4 \frac{k_0^2}{l^3} \frac{J_s}{F_s} \right) \right] \right\}$$
(160)

Vernachlässigt man den Beitrag der Normalkräfte, so wird

$$[bb] = \frac{l^3}{6} \frac{1}{k_0^3} [k_0^3 - 3(k_0 - \varphi_0)] \quad . \quad . \quad (160a)$$

Vollwandige Systeme mit gekrümmten Achsen.

Die Verschiebung [cc] berechnet sich wie folgt:

$$[cc] = \int M_c^2 ds \frac{J_s}{J} + \int N_c^2 ds \cdot \frac{F_s}{F} \cdot \frac{J_s}{F_s}.$$

Hierbei ist:

$$M_c = x = rac{l}{k_0} \operatorname{tg} \varphi$$

 $N_c = \pm \sin \varphi.$

Also ist:

$$[cc] = l^{3} \cdot \frac{1}{k_{0}^{3}} \int_{-\varphi_{0}}^{+\varphi_{0}} tg^{2}\varphi \, d\varphi + \frac{J_{s}}{F_{s}} l \frac{1}{k_{0}} \int_{-\varphi_{0}}^{+\varphi_{0}} tg^{2}\varphi \, d\varphi;$$

$$[cc] = 2 \, l^{3} \frac{1}{k_{0}^{3}} (k_{0} - \varphi_{0}) \left(1 + \frac{k_{0}^{2}}{l^{2}} \frac{J_{s}}{F_{s}}\right) \quad . \quad . \quad (161)$$

Unter Vernachlässigung der Normalkräfte ist

$$[cc] = 2 l^3 \frac{1}{k_0^3} (k_0 - \varphi_0)$$
 (161a)

2. Die von der äußeren Belastung (Temperatur, Widerlagerverschiebungen) abhängigen Verschiebungen.

Wir untersuchen den Fall ruhender Belastung, und zwar insbesondere den der gleichmäßigen Vollbelastung einer und beider Bogenhälften, Überschüttung einer und beider Seiten sowie den Fall einer beweglichen Belastung, d. h. einer wandernden Einzellast 1 t. Für diese Fälle ermitteln wir zunächst die Absolutglieder der Elastizitätsgleichungen, die Verschiebungen [am], [bm], [cm].

a) Gleichmäßige Belastung einer Bogenhälfte; Belastung rechts (Fig. 234).

Bei Belastung der linken Bogenhälfte ergibt sich der gleiche Wert.

Der Wert [bm] ergibt sich aus der Gleichung:

 $\mathbf{238}$

§14. Erste Berechnung des beiderseits eingespannten elastischen Bogens. 239

$$[b\ m] == \int M_0\ M_b\ ds\ \frac{J_s}{J} + \frac{J_s}{F_s} \int N_0\ N_b\ ds\ \frac{F_s}{F}.$$

Es ist

$$\begin{split} M_{0} &= -\frac{q l^{2}}{2} \frac{1}{k_{0}^{2}} \cdot \operatorname{tg}^{2} \varphi , \\ M_{b} &= \frac{l}{2} \frac{1}{k_{0}} \operatorname{tg}^{2} \varphi , \\ N_{0} &= q \cdot x \cdot \sin \varphi = q \cdot l \cdot \frac{1}{k_{0}} \cdot \sin \varphi \cdot \operatorname{tg} \varphi , \\ N_{b} &= \cos \varphi . \end{split}$$

Damit ergibt sich:

$$[mb] = -\frac{q l^4}{4} \cdot \frac{1}{k_0^4} \int_0^{\gamma_0} \operatorname{tg}^4 \varphi \, d\varphi + \frac{J_s}{F_s} \cdot q \, l^2 \cdot \frac{1}{k_0^2} \int_0^{q_0} \operatorname{tg}^2 \varphi \, d\varphi$$
$$= -\frac{q l^4}{4} \frac{1}{k_0^4} \left[\frac{k_0^3}{3} - (k_0 - \varphi_0) \right] + \frac{J_s}{F_s} \cdot \frac{q l^2}{k_0^2} (k_0 - \varphi_0) \, .$$
$$[mb] = -\frac{q l^4}{12} \cdot \frac{1}{k_0^4} \left[k_0^3 - 3 \, (k_0 - \varphi_0) \left(1 + 4 \frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s} \right) \right] \,. (163)$$

Bei Vernachlässigung des Beitrages der Normalkräfte ergibt sich:

$$[mb] = -\frac{ql^4}{12} \cdot \frac{1}{k_0^4} [k_0^3 - 3(k_0 - \varphi_0)] \quad . \quad . \quad . \quad . \quad (163a)$$

Bei Belastung links ergibt sich der gleiche Wert.

Das Absolutglied [mc] ist zu ermitteln aus der Gleichung:

$$[mc] = \int M_0 \cdot M_c \, ds \, \frac{J_s}{J} + \frac{J_s}{F_s} \int N_0 N_c \, ds \, \frac{F_s}{F}.$$
$$M_c = \frac{l}{T} \cdot \operatorname{tg} \varphi,$$

Es ist

$$M_c = \frac{l}{k_0} \cdot \operatorname{tg} \varphi,$$
$$N_c = -\sin \varphi,$$

also

$$[\mathbf{m}c] = -\frac{q l^4}{2} \cdot \frac{1}{k_0^4} \int_0^{\varphi_0} \operatorname{tg}^3 \varphi \, d\varphi - q \cdot \frac{J_s}{F_s} \frac{l^2}{k_0^2} \int_0^{\varphi_0} \operatorname{tg}^3 \varphi \, d\varphi$$
$$= -\frac{q l^4}{2} \cdot \frac{1}{k_0^4} \left(1 + 2 \frac{k_0^2}{l^2} \frac{J_s}{F_s} \right) \cdot \int_0^{\varphi_0} \operatorname{tg}^3 \varphi \, d\varphi.$$
$$[\mathbf{m}c] = -\frac{q l^4}{4} \frac{1}{k_0^4} [k_0^2 - \ln(1 + k_0^2)] \left(1 + 2 \frac{k_0^2}{l^2} \frac{J_s}{F_s} \right)$$

Vollwandige Systeme mit gekrümmten Achsen.

Setzt man darin:

$$\ln{(1+k_0^2)} = \psi_0\,,$$

so ergibt sich:

$$[mc] = -\frac{ql^4}{4} \cdot \frac{1}{k_0^4} (k_0^2 - \psi_0) \cdot \left(1 + 2\frac{k_0^2}{l^2} \frac{J_s}{F_s}\right) \quad . \quad (164)$$

Bei Vernachlässigung der Normalkräfte ist:

$$[mc] = -\frac{ql^{4}}{4} \cdot \frac{1}{k_{0}^{4}} (k_{0}^{2} - \psi_{0}) \quad . \quad . \quad . \quad (164a)$$

Bei Belastung der linken Bogenhälfte ergeben sich die gleichen Werte, jedoch mit umgekehrten Vorzeichen.

b) Gleichmäßige Vollbelastung des ganzen Bogens. Aus den Ergebnissen des Abschnittes a) folgt:

$$[mb] = -\frac{ql^4}{6} \cdot \frac{1}{k_0^4} \left[k_0^3 - 3(k_0 - \varphi_0) \left(1 + 4\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s} \right) \right], \quad (166)$$

bzw. bei Vernachlässigung der Normalkräfte:

c) Einfluß der einseitigen Überschüttung des Bogens. (Fig. 235.)

Das spezifische Gewicht des Auffül-
lungsmaterials sei
$$\gamma_e$$
. Das Moment M_o
für einen Punkt im Abstande x von der
Mitte ist gegeben durch die Belastungs-
fläche: $S_x \cdot \gamma_e = (f - y) \frac{x}{3} \cdot \gamma_e$ und deren
Schwerpunktsabstand $\frac{x}{4}$ von dem be-
trachteten Punkte. Setzen wir $g_0 = \gamma_e \cdot f$,
so wird:

$$M_{0} = -S_{x} \cdot \gamma_{e} \cdot \frac{x}{4} = -\frac{\gamma_{e} \cdot f}{l^{2}} \cdot \frac{x^{4}}{12} = -\frac{g_{0}}{l^{2}} \frac{x^{4}}{12}$$

oder, da $x = \frac{l}{k_o} \cdot \operatorname{tg} \varphi$ ist:

$$M_{0} = -\frac{\gamma_{e} l^{3}}{24} \cdot \frac{1}{k_{0}^{3}} \cdot \mathrm{tg}^{4} \varphi = -\frac{g_{0} l^{2}}{12} \frac{1}{k_{0}^{4}} \mathrm{tg}^{4} \varphi.$$

Die Normalkraft ist

$$N_0 = \sin \varphi \int_0^x \gamma_e(f-y) d\xi = \sin \varphi \int_0^x \frac{\gamma_e f}{l^2} \xi^2 d\xi = \sin \varphi \frac{\gamma_e f}{l^2} \cdot \frac{x^3}{3},$$

 $\mathbf{240}$

§14. Erste Berechnung des beiderseits eingespannten elastischen Bogens. 241

$$\begin{split} N_0 &= \frac{\gamma_e \cdot l^2}{6} \cdot \frac{1}{k_0^2} \cdot \mathrm{tg}^3 \varphi \cdot \sin \varphi, \\ N_0 &= \frac{g_0 \cdot l}{3} \cdot \frac{1}{k_0^3} \cdot \mathrm{tg}^3 \varphi \cdot \sin \varphi. \end{split}$$

Die Verschiebung [am] ist nun, da $N_a = 0$:

$$[am] = \int M_0 M_a \, ds \, \frac{J_s}{J} = \frac{\gamma_e \cdot l^4}{24} \cdot \frac{1}{k_0^4} \int_0^{\gamma_0} \mathbf{tg}^4 \varphi \, d\varphi,$$

$$[am] = -\frac{\gamma_e \, l^4}{72} \cdot \frac{1}{k_0^4} [k_0^3 - 3 \, (k_0 - \varphi_0)].$$

$$[am] = \frac{g_0 \cdot l^3}{36} \cdot \frac{1}{k_0^5} [k_0^3 - 3 \, (k_0 - \varphi_0)] \quad \dots \quad (168)$$

Für die Verschiebung [bm] findet man:

$$[b\,m] = \int M_0 \,M_b \,ds \,\frac{J_s}{J} + \frac{J_s}{F_s} \int N_0 \,N_b \,ds \,\frac{F_s}{F} \\ = -\frac{\gamma_e \cdot l^5}{48} \cdot \frac{1}{k_0^5} \int_0^{\gamma_0} \operatorname{tg}^6 \varphi \,d\varphi + \frac{J_s}{F_s} \cdot \frac{\gamma_e l^3}{6} \cdot \frac{1}{k_0^3} \int_0^{\gamma_0} \operatorname{tg}^4 \varphi \,d\varphi, \\ [b\,m] = -\frac{\gamma_e \,l^5}{720} \cdot \frac{1}{k_0^5} \Big\{ 3 \,k_0^5 - 5 \,[k_0^3 - 3 \,(k_0 - \varphi_0)] \cdot \Big[1 + 8 \,\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s} \Big] \Big\}, \\ [b\,m] = -\frac{g_0 \,l^4}{360} \cdot \frac{1}{k_0^6} \Big\{ 3 \,k_0^5 - 5 \,[k_0^3 - 3 \,(k_0 - \varphi_0)] \cdot \Big[1 + 8 \,\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s} \Big] \Big\}$$
(169)

oder bei Vernachlässigung der Normalkräfte:

$$[bm] = -\frac{g_0 l^*}{360} \cdot \frac{1}{k_0^6} \{ 3k_0^5 - 5[k_0^3 - 3(k_0 - \varphi_0)] \} \quad . \quad (169a)$$

Das Absolutglied [cm] berechnet sich wie folgt:

$$[cm] = \int M_0 M_c ds \frac{J_s}{J} + \frac{J_s}{F_s} \int N_0 N_c ds \frac{F_s}{F}$$

$$= -\frac{\gamma_e l^5}{24} \cdot \frac{1}{k_0^5} \int_0^{\gamma_0} tg^5 \varphi d\varphi - \frac{J_s}{F_s} \cdot \frac{\gamma_e l^3}{6} \cdot \frac{1}{k_0^3} \int_0^{\gamma_0} tg^5 \varphi d\varphi$$

$$= -\frac{\gamma_e l^5}{24} \cdot \frac{1}{k_0^5} \int_0^{\gamma_0} tg^5 \varphi d\varphi \left(1 + 4\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s}\right).$$

$$[cm] = -\frac{\gamma_e \cdot l^5}{96} \cdot \frac{1}{k_0^5} [k_0^4 - 2(k_0^2 - \psi_0)] \cdot \left[1 + 4\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s}\right]$$

$$[cm] = -\frac{g_0 l^4}{48} \cdot \frac{1}{k_0^6} [k_0^4 - 2(k_0^2 - \psi_0)] \left[1 + 4\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s}\right]$$
(170)
Pirlet, Statik. II. 2.

Bei Vernachlässigung der Normalkräfte ist:

$$[cm] = -\frac{g_0 l^3}{48} \cdot \frac{1}{k_0^6} [k_0^4 - 2(k_0^2 - \psi_0)] \dots \dots \dots (170a)$$

Bei Belastung der linken Bogenhälfte durch die Überschüttung ergeben sich für [ma] und [mb] dieselben Werte, während für [mc]der absolut gleiche Wert, aber mit umgekehrtem Vorzeichen eintritt.

d) Bei Überschüttung des ganzen Bogens

erhalten wir somit für [ma] und [mb] wieder die doppelten Werte. während [mc] = 0 wird.

e) Temperatureinflüsse.

Wir betrachten den Fall, daß Außen- und Innenrand ungleichmäßig erwärmt werden, und zwar möge ersterer seine Temperatur auf der ganzen Länge um t_1 und letzterer um t_2 ändern, so daß die Differenz der Temperaturänderungen $\varDelta t = t_1 - t_2$ beträgt.

Die Temperaturänderung im Schwerpunkte des Querschnitts ist dann

$$t_0 = \frac{t_1 + t_2}{2}.$$

Man hat allgemein für eine Verschiebung [it] die Gleichung:

$$[it] = -\int \varepsilon \cdot \frac{\Delta t}{d} \cdot M_i \cdot ds - \int \varepsilon \cdot t_0 \cdot N_i \cdot ds,$$

wo ε den Wärmeausdehnungskoeffizienten des Materials bedeutet.

Bezüglich der Vorzeichen ist zu beachten, daß, wenn die Temperaturerhöhung t_1 des Außenrandes größer ist als t_2 des Innenrandes, die Querschnitte sich umgekehrt verdrehen als infolge der positiven Momente, so daß die Arbeitsgrößen bei positiven Momenten negativ werden. Da ferner bei positivem t_0 (Temperaturerhöhung) eine Verlängerung von ds eintritt, also die Formänderung im umgekehrten Sinne der positiven Normalkraft (Druckkraft) erfolgt, so ist auch die Arbeit der positiven Normalkräfte negativ.

Man erhält also für die EJ_s -fachen Werte der Verschiebungen folgende Ausdrücke, wenn $d = \frac{d_s}{\cos \varphi}$ ist:

 $\mathbf{242}$

§ 14. Erste Berechnung des beiderseits eingespannten elastischen Bogens. 243

$$= -\frac{1}{3} \frac{E \cdot J_s}{d_s} \cdot \varepsilon \cdot \Delta t \cdot l^2 \cdot k_0 - 2 \cdot E J_s \cdot \varepsilon \cdot t_0 \cdot l.$$

$$[bt] = -\frac{1}{3} E \frac{J_s}{d_s} \cdot \varepsilon \cdot l (l \cdot k_0 \cdot \Delta_t + 6 d_s t_0) \cdot \ldots \cdot \ldots \cdot (172)$$

Die Verschiebung [ct] wird wegen der Symmetrie == 0.

Gleichmäßige Erwärmung des Bogens um t_0 ergibt mit $\exists t = t_1 - t_2 = 0$ für die Absolutglieder die Werte:

$$\begin{split} & [at] = 0. \\ & [bt] = -2 EJ_s \cdot \varepsilon \cdot t_0 \cdot l = -EJ_s \cdot \varepsilon \cdot t_0 \cdot L \\ & [ct] = 0. \end{split}$$

f) Widerlagerverschiebungen.

Wir betrachten getrennt drei Fälle von Widerlagerverschiebungen: 1. Eine Verschiebung des linken Lagerpunktes A in Richtung von A (vertikal, nach oben positiv).

2. Eine Verschiebung des linken Lagerpunktes A in Richtung von H (horizontal, nach innen positiv).

3. Verdrehungen der Einspannstellen in Richtung positiver Einspannungsmomente M_k .

Zu 1. Verschiebung $[lw.3] = \delta_A$ in Richtung des Auflagerdrucks A. (Fig. 236.)

Fig. 236.

Fig 237.

Aus Fig. 237 ergeben sich die Verschiebungen ohne weiteres nach der Gleichung: $[iw] = -EJ_s \cdot \Sigma L_i[lw] = -EJ_s \cdot A_i \cdot \delta_A$.

$$\begin{bmatrix} aw \end{bmatrix} = 0, \ da \ A_a = 0. \\ [bw] = 0, \ da \ A_b = 0. \\ [cw] = -\delta_A \cdot EJ_s, \ denn \ A_c = 1. \end{bmatrix} . . . (173)$$

Verschiebung $[lw.3] = \delta_H$ in Richtung von HZu 2. (Fig. 238).

Aus Fig. 239 ergibt sich:

$$\begin{bmatrix} aw \end{bmatrix} = 0, \text{ denn } H_a = 0. \\ [bw] = -\delta_H \cdot EJ_s, \text{ denn } H_b = +1. \\ [cw] = 0, \text{ denn } H_c = 0. \end{bmatrix}$$
 (174)

Zu 3. Verdrehung des linken Widerlagers um den Winkel ϑ_r und des rechten um ϑ_r nach Fig. 240.

Aus Fig. 241 findet man:

$$\begin{bmatrix} a w \end{bmatrix} = -(\vartheta_r + \vartheta_l) \cdot EJ_s \\ \begin{bmatrix} b w \end{bmatrix} = -f(\vartheta_r + \vartheta_l) \cdot EJ_s \\ \begin{bmatrix} c w \end{bmatrix} = -l(\vartheta_r - \vartheta_l) \cdot EJ_s \end{bmatrix}$$
 (175)

Denn die Kämpfermomente sind infolge $X_a = 1$ beiderseits gleich 1, infolge $X_b = 1$ beiderseits gleich f, infolge $X_c = 1$ links gleich -l und rechts gleich +l.

g) Einzellasten.

Wir bestimmen noch die Absolutglieder für eine Einzellast 1 tan einer beliebigen Stelle im Abstande ξ von der Mittelachse. (Fig. 242.)

Es treten bei dieser Belastung nur Momente und Normalkräfte auf zwischen der Last 1 und dem Kämpfer, also innerhalb der Grenzen ξ und *l*. Zwischen diesen Grenzen sind also auch die Integrale zu bestimmen.

Wir bestimmen zunächst das Moment M_0 und die Normalkraft N_0 an einer beliebigen Stelle im Abstande x von der Mittelachse; dabei ist also absolut $x > \xi$. Der Neigungswinkel an der Stelle x sei φ_x , an der Stelle ξ sei φ .

Es ist dann:

$$M_0 = -l\left(\frac{x}{l} - \frac{\xi}{l}\right) = \frac{l}{k_0}(\operatorname{tg} \varphi - \operatorname{tg} \varphi_x),$$

$$N_0 = 1 \cdot \sin \varphi_x.$$

Bei den folgenden Integrationen ist ξ , also auch tg φ zunächst als Konstante anzusehen.

Es ist nun mit
$$ds \frac{J}{J} = \frac{l}{k_c} d\varphi_a$$

§14. Erste Berechnung des beiderseits eingespannten elastischen Bogens. 245

$$[am] = \int M_0 M_a \, ds \frac{J_s}{J} = \frac{l^2}{k_0^2} \int_{\varphi_{\xi}}^{q_0} (\operatorname{tg} \varphi - \operatorname{tg} \varphi_x) \, d\varphi_x$$
$$= \frac{l^2}{k_0^2} \operatorname{tg} \varphi \left(\varphi_0 - \varphi\right) - \frac{l^2}{k_0^2} \left[\frac{1}{2} \ln\left(1 + \operatorname{tg}^2 \varphi_0\right) - \frac{1}{2} \ln\left(1 + \operatorname{tg}^2 \varphi\right)\right]$$

Zur Abkürzung bezeichnen wir wieder:

$$\begin{split} &\ln\left(1+\mathrm{tg}^2\varphi\right)\!=\!\psi; \quad \mathrm{tg}\,\varphi\!=\!k\\ &\ln\left(1+\mathrm{tg}^2\varphi_0\right)\!=\!\psi_0; \quad \mathrm{tg}\,\varphi_0\!=\!k_0. \end{split}$$

Damit ist:

$$[am] = \frac{1}{2} \cdot \frac{l^2}{k_0^2} [2(\varphi_0 - \varphi) \cdot k - (\psi_0 - \psi)] \quad . \quad (176)$$

Der Wert [bm] ergibt sich wie folgt:

$$M_{b} = \frac{1}{2} \frac{l}{k_{0}} \operatorname{tg}^{2} \varphi_{x}, \quad N_{b} = 1 \cdot \cos \varphi_{x},$$

$$[b\,m] = \frac{1}{2} \cdot \frac{l^{3}}{k_{0}^{3}} \int_{q}^{\varphi_{0}} (\operatorname{tg} \varphi - \operatorname{tg} \varphi_{x}) \operatorname{tg}^{2} \varphi_{x} d\varphi_{x} + \frac{J_{s}}{F_{s}} \cdot \frac{l}{k_{0}} \int_{q}^{\varphi_{0}} \sin \varphi_{x} \cdot \cos \varphi_{x} \cdot \frac{1}{\cos^{2} \varphi_{x}} d\varphi_{x}.$$

$$[b\,m] = -\frac{l^{3}}{4} \cdot \frac{1}{k_{0}^{3}} \Big[(k_{0} - k)^{2} + 2k (\varphi_{0} - \varphi) - (\psi_{0} - \psi) \Big(1 + 2\frac{J_{s}}{F_{s}} \cdot \frac{k_{0}^{2}}{l^{2}} \Big) \Big] (177)$$

Bei ausschließlicher Berücksichtigung der Momente gilt die Gleichung:

$$[bm] = -\frac{l^3}{4} \cdot \frac{1}{k_0^3} [(k_0 - k)^2 + 2k(\varphi_0 - \varphi) - (\psi_0 - \psi)]$$
(177a)

Für die Verschiebung [cm] findet man, da

$$\begin{split} M_{c} &= \frac{l}{k_{0}} \operatorname{tg} \varphi_{x}, \quad N_{c} = -1 \cdot \sin \varphi_{x} \text{ ist.} \\ [mc] &= \frac{l^{3}}{k_{0}^{3}} \cdot \int_{\varphi}^{\varphi^{\circ}} (\operatorname{tg} \varphi - \operatorname{tg} \varphi_{x}) \operatorname{tg} \varphi_{x} d \varphi_{x} - \frac{l}{k_{0}} \cdot \frac{J_{s}}{F_{s}} \int_{\varphi}^{\varphi^{\circ}} \frac{\sin^{2} \varphi_{x}}{\cos^{2} \varphi_{x}} d \varphi_{x} \\ &= \frac{l^{3}}{k_{0}^{3}} \left\{ \operatorname{tg} \varphi \int_{\varphi}^{\varphi^{\circ}} \operatorname{tg} \varphi_{x} d \varphi_{x} - \int_{\varphi}^{\varphi^{\circ}} \operatorname{tg}^{2} \varphi_{x} d \varphi_{x} - \frac{J_{s}}{F_{s}} \cdot \frac{k_{0}^{2}}{l^{2}} \int_{\varphi}^{\varphi^{\circ}} \operatorname{tg}^{2} \varphi_{x} d \varphi_{x} \right\} \\ [mc] &= \frac{l^{3}}{2 k_{0}^{3}} \left\{ k(\psi_{0} - \psi) - 2 \left[(k_{0} - k) - (\varphi_{0} - \varphi) \right] \left[1 + \frac{k_{0}^{2}}{l^{2}} \cdot \frac{J_{s}}{F_{s}} \right] \right\} (178) \\ \text{Berück sightight ight map num dia Momenta, so ist:} \end{split}$$

$$[mc] = \frac{l^3}{2 k_0^3} \{ k(\varphi_0 - \psi) - 2 [(k_0 - k) - (\varphi_0 - \varphi)] \} \quad . \quad . \quad (178a)$$

Diese Werte gelten für die Belastung der rechten Bogenhälfte. Steht die Last auf dem linken Teil, so erhält man die gleichen Werte, und zwar [cm] mit umgekehrtem (negativem) Vorzeichen.
Zur Frage der Fehlereinflüsse, insbesondere der Vernachlässigung der Normalkräfte.

Die vorstehenden Ausdrücke lassen erkennen, daß der Beitrag, den die Normalkräfte zu den Verschiebungen liefern, durch den Wert

$$\nu \cdot N = \nu \cdot \frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s}$$

seinen Ausdruck findet, wo ν die Werte 1, 2, 4 und 8 annehmen kann. Dieser Ausdruck ist stets zu 1 zu addieren, und man erkennt leicht, daß er im Verhältnis zu 1 sehr klein ist. Liegt z. B. ein Bogen von der Spannweite 20 m und einem Pfeilverhältnis $\frac{f}{L} = \frac{1}{8}$ vor, so wird:

8 701, 50 1111

$$k_0 = \frac{2f}{l} = \frac{4f}{L} = \frac{1}{2}.$$

Nimmt man eine Scheitelstärke von 1/2 m an, so erhält man

$$\frac{k_0^2}{l^2} \cdot \frac{J_s}{F_s} = \frac{1}{400} \cdot \frac{1}{48} = \frac{1}{19200},$$

so daß im ungünstigsten Falle statt 1 zu setzen ist:

$$1 + \frac{8}{19200} = 1,000416$$
.

Hierbei sind allerdings verschiedene, von Fall zu Fall wechselnde Besonderheiten zu berücksichtigen. Erstens ändert sich der Einfluß mit dem Pfeilverhältnis. So z. B. würde im vorstehenden Beispiel mit $\frac{f}{L} = \frac{1}{4}$ der Fehler auf den vierfachen Betrag anwachsen.

Zweitens aber — und dies ist besonders wichtig — ist der Wert $1 + \nu \cdot N$ verschiedentlich der Faktor eines Gliedes von Aggregaten, und diese sind hier sehr fehlerempfindliche Ausdrücke.

Drittens kommt es nicht so sehr auf die Verschiebungen, sondern auf die Werte X und schließlich auf die aus den X zu berechnenden statischen Größen S an. Man müßte daher an Hand der Fehlergesetze den Einfluß der fraglichen Fehlerquelle bis in die Endergebnisse verfolgen, um ihre Wirkungen beurteilen zu können.

Es wurde bereits vorhin auf die Fehlerempfindlichkeit einzelner Werte der Verschiebungen hingewiesen.

Dieser Punkt verdient ganz besondere Beachtung, und es unterliegt keinem Zweifel, daß für die Berechnung der Verschiebungen nicht etwa der Rechenschieber, sondern die Logarithmentafeln u. ä. in Frage kommen (vgl. auch das Zahlenbeispiel § 16).

II. Lösung der Elastizitätsgleichungen.

Bei der Auflösung der Gleichungen gehen wir vor nach dem im ersten Teil, § 13ff erläuterten Eliminationsverfahren. Danach erhalten wir die Unbekannten aus folgenden Gleichungen:

$$X_{c} = -\frac{[cm.2]}{[cc.2]},$$

$$X_{b} = -\frac{[bm.1]}{[bb.1]} - \frac{[bc.1]}{[bb.1]} \cdot X_{c},$$

$$X_{a} = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]} X_{b} - \frac{[ac]}{[aa]} X_{c}.$$

Da [ac] = [bc] = 0 wird, wird [bc.1] = 0, [cm.2] = [cm], [cc.2] = [cc], und man erhält

$$X_{c} = -\frac{\lfloor c m \rfloor}{\lfloor c c \rfloor},$$

$$X_{b} = -\frac{\lfloor b m \cdot 1 \rfloor}{\lfloor b b \cdot 1 \rfloor},$$

$$X_{a} = -\frac{\lfloor a m \rfloor}{\lfloor a a \rfloor} - \frac{\lfloor a b \rfloor}{\lfloor a a \rfloor} \cdot X_{b}$$

Aus diesen Gleichungen ergeben sich dann beliebige statische Größen S in der Form:

$$S = S_0 + S_a X_a + S_b X_b + S_c X_c$$
,

worin S_0 , S_a , S_b , S_c die statischen Größen S im Grundsystem infolge der äußeren Lasten und der Zustände X = 1 sind.

Danach sollen im folgenden einzelne Belastungsfälle untersucht werden, wobei zur Erreichung einfacher geschlossener Formeln der Einfluß der Normalkräfte vernachlässigt werden soll.

a) Einfluß einer einseitigen Belastung des Bogens mit q t/m (Fig. 234).

Die Unbekannten nehmen folgende Werte an:

$$\begin{split} X_{c} &= -\frac{[mc]}{[cc]} = \pm \frac{q}{8k_{0}} \frac{k_{0}^{2} - \psi_{0}}{k_{0} - \varphi_{0}} \\ X_{b} &= -\frac{[mb.1]}{[bb.1]} \,. \end{split}$$

Man findet:

$$\begin{split} [mb.1] &= [mb] - \frac{[ab]}{[aa]} \cdot [ma] \\ &= \frac{q}{12} \frac{l^4}{k_0^4} [k_0^3 - 3(k_0 - \varphi_0)] + \frac{l}{k_0} \frac{k_0 - \varphi_0}{2\varphi_0} \cdot \frac{q}{2} \frac{l^3}{k_0^3} (k_0 - \varphi_0) \\ &= -\frac{q}{12} \frac{l^4}{k_0^3} \cdot \frac{1}{\varphi_0} [\varphi_0 k_0^2 - 3(k_0 - \varphi)] \,. \\ &[bb.1] = [bb] - \frac{[ab]}{[aa]} \cdot [ab] \end{split}$$

Vollwandige Systeme mit gekrümmten Achsen.

$$= \frac{l^3}{k_0^3} \cdot [k_0^3 - 3 \ (k_0 - \varphi_0)] - \frac{1}{2} \frac{l^3}{k_0^3} \frac{(k_0 - \varphi_0)^2}{\varphi_0}$$

= $\frac{1}{6} \frac{l^3}{k_0^2} \cdot \frac{1}{\varphi_0} [\varphi_0 \ k_0^2 - 3 \ (k_0 - \varphi_0)].$

Somit ergibt sich:

$$X_b = \frac{q}{2} \frac{l}{k_0} = \frac{q l^2}{4} \cdot \frac{1}{f} = \frac{q L^2}{16} \cdot \frac{1}{f}.$$

Für X_a findet man jetzt:

$$X_{a} = \frac{q l^{2}}{4} \frac{k_{0} - \varphi_{0}}{k_{0}^{2} \varphi_{0}} - \frac{l}{2 k_{0}} \frac{k_{0} - \varphi_{0}}{\varphi_{0}} \cdot \frac{q}{2} \cdot \frac{l}{k_{0}} = 0.$$

Da hiernach das Scheitelmoment gleich 0 wird, können wir für den Fall der einseitigen Belastung des Bogens im Scheitel ein Gelenk annehmen. Wir haben es also für die weitere Rechnung mit nur zwei Unbekannten zu tun, dem Horizontalschub X_b , den wir uns im Scheitelgelenk angreifend zu denken haben, und der Scherkraft X_c .

Das Moment an beliebiger Stelle x in der rechten (belasteten) Bogenhälfte berechnet sich nach der Gleichung:

$$M_x = -\frac{ql^2}{2} \cdot \left(\frac{x}{l}\right)^2 + (f-y) X_b + x \cdot X_c.$$

Es ist

$$(f-y)\cdot X_b = \frac{ql^2}{4}\cdot \left(\frac{x}{l}\right)^2.$$

Also wird

$$M_x = - \frac{q l^2}{4} \cdot \left(\frac{x}{l}\right)^2 + \frac{q l^2}{8} \frac{x}{l} \cdot \frac{k_0^2 - \psi_0}{k_0 (k_0 - \varphi_0)},$$

oder

$$M_x = -\frac{q l^2}{8} \cdot \frac{x}{l} \left(2 \frac{x}{l} - \frac{k_0^2 \psi_0}{k_0 (k_0 - \varphi_0)} \right)$$

Wir suchen zunächst den Abstand x_0 des Punktes, für den $M_x = 0$ wird. Nach vorstehender Gleichung findet man:

Setzen wir diesen Wert in die Gleichung für M_x ein, so ergibt sich:

$$M_x = -\frac{ql^2}{4} \frac{x}{l} \left(\frac{x}{l} - \frac{x_0}{l} \right) \quad . \quad . \quad . \quad (180)$$

Das Kämpfermoment M_k , zugleich der größte negative Wert M_{min} , nimmt $\left(\text{mit } \frac{x}{l} = 1 \right)$ den Wert an:

$$M_{min} = M_k = -\frac{q l^2}{4} \left(1 - \frac{x_0}{l} \right)$$
 . . . (181)

Die Gleichung (180) ergibt ein Maximum für $\frac{x}{l} = \frac{1}{2} \frac{x_0}{l}$; für diesen Wert von $\frac{x}{l}$ tritt also der größte positive Wert M_{max} auf mit

$$M_{max} = \frac{q l^2}{16} \cdot \left(\frac{x_0}{l}\right)^2 \quad \dots \quad \dots \quad (182)$$

Der Verlauf der Momentenlinie in der linken (unbelasteten) Bogenhälfte ist der gleiche wie in der rechten, nur die Vorzeichen sind umgekehrt. Es wird nämlich für die linke Bogenhälfte:

$$\begin{split} M_{x} &= (f - y) X_{b-x} X_{c} = \frac{q l^{2}}{4} \cdot \left(\frac{x}{l}\right)^{2} - \frac{q l^{2}}{8} \frac{x}{l} \frac{k^{2} - \psi_{0}}{k_{0}(k_{0} - \varphi_{0})}, \\ &= \frac{q l^{2}}{4} \cdot \frac{x}{l} \left(\frac{x}{l} - \frac{x_{0}}{l}\right). \end{split}$$

Hier ist x mit seinem Absolutwert einzusetzen. Danach ergibt sich der in Fig. 243 dargestellte Verlauf der Momentenlinie für Belastung links.

Wir stellen das Ergebnis der Rechnung zusammen:

Bei Belastung der einen Bogenhälfte mit q t/m wird das Scheitelmoment

$$M_s = 0$$

Man kann also im Scheitel ein Gelenk annehmen. Der Horizontalschub H hat den Wert

$$\boldsymbol{H} = \frac{q\,\iota^2}{4} \cdot \frac{1}{f} \cdot \ldots \cdot \ldots \cdot \ldots \cdot (183)$$

Die Scherkraft V im Scheitel berechnet sich aus der Gleichung

Das größte positive (bzw. negative) Moment im Abstande $\frac{x_0}{2}$ von der Mitte wird

$$M_{max} = \frac{q l^2}{16} \cdot \left(\frac{x_0}{l}\right)^2.$$

Die Kämpfermomente haben den Wert:

$$M_k = \pm \frac{q l^2}{4} \left(1 - \frac{x_0}{l} \right).$$

Das positive Vorzeichen gilt für die unbelastete Seite.

Anmerkung: In all diesen Gleichungen berechnet sich der charakteristische Wert, nämlich das Abstandsverhältnis $\frac{x_0}{l}$ nach der Gleichung (179):

$$\frac{x_0}{l} = \frac{1}{2} \frac{k_0^2 - \ln(1 + k_0^2)}{k_0 (k_0 - \arctan tg k_0)}$$

Für sehr kleine Pfeilhöhen nähert sich diese Größe dem Wert $\frac{9}{9}$ und wird unbestimmt. Bei diesen Systemen wird die Gewölbewirkung unklar oder fraglich.

b) Einfluß einer gleichmäßigen Vollbelastung des ganzen Bogens mit q t/m.

Dieser Einfluß ist aus den vorstehenden Ergebnissen ohne weiteres anzugeben. Das Scheitelmoment hleibt 0 und der Horizontalschub verdoppelt sich, da die Belastung links wie rechts den gleichen Einfluß hat. Die Scherkraft und die Kämpfermomente dagegen werden 0, da die Belastung rechts den gleichen Einfluß, aber mit umgekehrten Vorzeichen, hervorruft.

Man erkennt also, daß die Momentenlinie sowie die Stützlinie diejenige eines Dreigelenkbogens ist, dessen Gelenke in der Achse liegen, und zwar im Scheitel und an den Kämpfern. Daraus folgt dann ohne weiteres, daß die Stützlinie überhaupt mit der parabolischen Achse zusammenfällt, da die Parabel das Seilpolygon der gleichmäßigen Belastung ist, so daß hier allgemein $M_x = 0$ ist.

Diese Belastung stellt also einen ungünstigen Belastungsfall nicht dar, und man begnügt sich daher durchweg mit der Untersuchung der einseitigen Belastung.

Anmerkung: Es sei noch erwähnt, daß auch bei Berücksichtigung der Normalkräfte das Scheitelmoment den Wert 0 beibehält; es ändert sich dagegen in etwa die Scherkraft V und damit auch das Kämpfermoment und die Momente M_x .

c) In gleicher Weise findet man für einseitige Überschüttung die Werte

$$\begin{split} X_{c} &= \pm \frac{g_{0} \cdot l}{96} \cdot \frac{1}{k_{0}^{3}} \cdot \frac{k_{0}^{4} - 2(k_{0}^{2} - \varphi_{0})}{k_{0} - \varphi_{0}}, \\ X_{b} &= -\frac{(bm.1)}{[bb.1]}. \\ [bm.1] &= -\frac{g_{0}l^{4}}{360} \cdot \frac{1}{k_{0}^{6}} \left\{ 3k_{0}^{5} - 5[k_{0}^{3} - 3(k_{0} - \varphi_{0})] \right\} \\ &\quad + \frac{1}{2} \cdot \frac{l}{k_{0}} \cdot \frac{k_{0} - \varphi_{0}}{\varphi_{0}} \cdot \frac{g_{0}l^{3}}{36k_{0}^{5}} [k_{0}^{3} - 3(k_{0} - \varphi_{0})], \\ [bm.1] &= -\frac{g_{0}l^{4}}{360} \cdot \frac{1}{\varphi_{0}k_{0}^{5}} \left\{ 3\varphi_{0}k_{0}^{4} - 5[k_{0}^{3} - 3(k_{0} - \varphi_{0})] \right\} \\ X_{b} &= \frac{g_{0}l}{60} \cdot \frac{1}{k_{0}^{3}} \cdot \frac{3\varphi_{0}k_{0}^{4} - 5[k_{0}^{3} - 3(k_{0} - \varphi_{0})]. \end{split}$$

Damit finden wir für das Scheitelmoment M_s folgenden Wert:

$$X_{a} = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]} \cdot X_{b}$$

$$= \frac{g_{0}l^{2}}{72} \cdot \frac{1}{k_{0}^{4}} \cdot \frac{k_{0}^{3} - 3(k_{0} - \varphi_{0})}{\varphi_{0}}$$

$$- \frac{1}{2} \cdot \frac{l}{k_{0}} \cdot \frac{k_{0} - \varphi_{0}}{\varphi_{0}} \cdot \frac{g_{0}l}{60 \cdot k_{0}^{3}} \cdot \frac{3\varphi_{0}k_{0}^{4} - 4[k_{0}^{3} - 3(k_{0} - \varphi_{0})]}{\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})}$$

$$X_{a} = M_{s} = \frac{g_{0}l^{2}}{360} \cdot \frac{1}{k_{0}^{2}} \cdot \frac{5[k_{0}^{3} - 3(k_{0} - \varphi_{0})] - 9k_{0}^{2}(k_{0} - \varphi_{0})}{\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})}$$
(185)

Der Horizontalschub H ist gleich X_b :

$$X_{b} = H = \frac{g_{0}l}{60} \cdot \frac{1}{k_{0}^{3}} \cdot \frac{3\varphi_{0}k_{0}^{4} - 5[k_{0}^{3} - 3(k_{0} - \varphi_{0})]}{\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})} \qquad (186)$$

d) Bei Überschüttung des ganzen Bogens ist:

$$X_c = 0.$$

$$X_{b} = H = \frac{g_{0}l}{30} \cdot \frac{3\varphi_{0}k_{0}^{4} - 5[k_{0}^{3} - 3(k_{0} - \varphi_{0})]}{k_{0}^{3}[\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})]} \quad (187)$$

$$X_{a} = M_{s} = \frac{g_{0} l^{2}}{180} \cdot \frac{5 [k_{0}^{3} - 3 (k_{0} - \varphi_{0})] - 9 k_{0}^{2} (k_{0} - \varphi_{0})}{k_{0}^{2} [\varphi_{0} k_{0}^{2} - 3 (k_{0} - \varphi_{0})]} \quad . \quad (188)$$

Die Kämpfermomente sind dann:

$$M_{k} = -\frac{g_{0}l^{2}}{12} + X_{a.0} + \left(f - \frac{[a\,b]}{[a\,a]}\right) X_{b.1}$$

$$= \frac{g_{0}l^{2}}{12} + \frac{g_{0}l^{2}}{36} \cdot \frac{k_{0}^{3} - 3(k_{0} - \varphi_{0})}{\varphi_{0}k_{0}^{4}}$$

$$+ \frac{\varphi_{0}k_{0}^{2} - (k_{0} - \varphi_{0})}{\varphi_{0}k_{0}^{3} - 3(k_{0} - \varphi_{0})} \cdot \frac{g_{0}l}{30} \cdot \frac{3\varphi_{0}k_{0}^{4} - 5[k_{0}^{3} - 3(k_{0} - \varphi_{0})]}{k_{0}^{3}[\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})]}$$

$$M_{k} = \frac{g_{0}l^{2}}{90} \cdot \frac{3\varphi_{0}(k_{0}^{2} + 1)(k_{0}^{2} + 5) - k_{0}(13k_{0}^{2} + 15)}{k_{0}^{2}[\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})]} \quad . \quad (189)$$

Es soll noch das Moment an einer beliebigen Stelle angegeben werden. $(m)^2$

$$M_{x} = M_{0,x} + X_{a} + f\left(\frac{x}{l}\right)^{2} X_{b}$$

$$M_{x} = -\frac{g_{0}l^{2}}{180} \cdot \frac{1}{k_{0}^{4}} \left\{ 3 k^{2} \left[5 k^{2} - \frac{3 \varphi_{0} k_{0}^{4} - 5 \left[k_{0}^{3} - 3 \left(k_{0} - \varphi_{0}\right)\right]}{\varphi_{0} k_{0}^{2} - 3 \left(k_{0} - \varphi_{0}\right)} \right] - k_{0}^{2} \frac{5 \left[k_{0}^{3} - 3 \left(k_{0} - \varphi_{0}\right)\right] - 9 k_{0}^{2} \left(k_{0} - \varphi_{0}\right)}{\varphi_{0} k_{0}^{2} - 3 \left(k_{0} - \varphi_{0}\right)} \right\} \dots (190)$$

Dieser Wert hat Maximum und Minimum für k = 0 (Scheitel) und

$$k^{2} = -\frac{1}{10} \cdot \frac{5 \left[k_{0}^{3} - 3 \left(k_{0} - \varphi_{0}\right) - 3 \varphi_{0} k_{0}^{4}\right]}{\varphi_{0} k_{0}^{2} - 3 \left(k_{0} - \varphi_{0}\right)}$$

e) Temperatureinflüsse.

Aus den Gleichungen (171) und (172) findet man für ungleichmäßige Temperaturänderungen Δt allein:

$$\begin{split} [bt.1] &= -\frac{1}{3} \cdot \frac{EJ_s}{d_s} \cdot \varepsilon \cdot l^2 \cdot k_0 \varDelta t - \frac{l}{k_0} \cdot \frac{k_0 - \varphi_0}{2\varphi_0} \cdot \left(-2 \frac{EJ_s}{d_s} \cdot \varepsilon \cdot l \cdot \varDelta t\right) \\ &= -\varepsilon \cdot \varDelta t \cdot l^2 \cdot \frac{EJ_s}{d_s} \cdot \frac{\varphi_0 k_0^2 - 3 \left(k_0 - \varphi_0\right)}{3 \varphi_0 k_0}. \end{split}$$

Da $[bb.1] = \frac{l^3}{2k_0} \cdot \frac{\varphi_0 k_0^2 - 3(k_0 - \varphi_0)}{3\varphi_0 k_0}$ ist, so wird:

Der Horizontalschub

$$\boldsymbol{H} = \boldsymbol{X}_{b} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\Delta} t \cdot \frac{\boldsymbol{E} \boldsymbol{J}_{s}}{\boldsymbol{d}_{s}} \cdot \frac{\boldsymbol{2} \boldsymbol{k}_{0}}{\boldsymbol{t}} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\Delta} t \frac{\boldsymbol{E} \boldsymbol{J}_{s}}{\boldsymbol{d}_{s}} \cdot \frac{\boldsymbol{k}_{0}^{2}}{\boldsymbol{f}} \quad . \quad (191)$$

Das Scheitelmoment M_{\circ} wird dann:

$$M_{s} = X_{a} = 2\varepsilon \cdot \Delta t \cdot l \cdot \frac{EJ_{s}}{d_{s}} \cdot \frac{k_{0}}{2l \cdot \varphi_{0}} - \frac{l}{k_{0}} \cdot \frac{k_{0} - \varphi_{0}}{2\varphi_{0}} \cdot 2\varepsilon \cdot \Delta t \cdot \frac{EJ_{s}}{d_{s}} \cdot \frac{k_{0}}{l}.$$
$$M_{s} = X_{a} = \varepsilon \cdot \Delta t \frac{EJ_{s}}{d_{s}} \cdot \cdots \cdot \cdots \cdot (192)$$

Der Wert X_c wird gleich 0.

Die Kämpfermomente sind einander gleich, und zwar wird:

$$M_k = X_a + f \cdot X_b = \varepsilon \cdot \Delta t \cdot \frac{E \cdot J_s}{d_s} (1 + k_0^2) \quad . \quad (193)$$

Ein beliebiges Moment wird: $M_x = M_s(1+k^2)$.

Für gleichmäßige Temperaturänderung t_0 (Temperaturänderungen der Achse) ergibt sich nach Gleichung (171) und (172) mit $\Delta t = 0$:

$$\begin{bmatrix} at \end{bmatrix} = 0 \\ [bt] = -2 \cdot \varepsilon \cdot t_0 \cdot l \cdot EJ_s; \quad [bt \cdot 1] = [bt]. \\ \mathbf{H} = \mathbf{X}_b = \frac{\mathbf{12} \cdot \varepsilon \cdot t_0 \cdot EJ_s}{l^2} \cdot \frac{\varphi_0 k_0^2}{\varphi_0 k_0^2 - 3 (k_0 - \varphi_0)} \quad (194) \\ M_s = X_a = -\frac{l}{k_0} \cdot \frac{k_0 - \varphi_0}{2 \varphi_0} \cdot X_b. \\ \mathbf{M}_s = \mathbf{X}_a = -6 \frac{\varepsilon \cdot t_0 \cdot EJ_s}{l} \cdot \frac{k_0 (k_0 - \varphi_0)}{\varphi_0 k_0^2 - 3 (k_0 - \varphi_0)} \quad (195) \\ X_c = 0. \end{bmatrix}$$

Damit werden die Kämpfermomente

$$M_{k} = X_{a} + f \cdot \lambda_{b} = \left(-\frac{l}{k_{0}} \cdot \frac{k_{0} - \varphi_{0}}{2\varphi_{0}} + \frac{l}{2} k_{0} \right) X_{b}$$
$$M_{k} = 6 \frac{\varepsilon \cdot t_{0} \cdot EJ_{s}}{l} \cdot \frac{k_{0} [\varphi_{0} k_{0}^{2} - (k_{0} - \varphi_{0})]}{\varphi_{0} k_{0}^{2} - 3 (k_{0} - \varphi_{0})} \quad . \quad . \quad (196)$$

f) Infolge von Widerlagerverschiebungen, für die in den Gleichungen (173) bis(175) die Verschiebungen angegeben sind, findet man

1. für δ_A

$$X_{c} = \frac{1}{2} \cdot \frac{k_{0}^{3}}{l^{3}} \cdot \frac{1}{k_{0} - \varphi_{0}} \cdot \sigma_{A} \cdot EJ_{s} \quad \dots \quad (198)$$

Damit werden die Kämpfermomente

$$\boldsymbol{M}_{k} = \pm \frac{1}{2} \frac{\boldsymbol{k}_{0}^{3}}{l^{2}} \cdot \frac{1}{\boldsymbol{k}_{0} - \boldsymbol{\varphi}_{0}} \cdot \boldsymbol{\sigma}_{\boldsymbol{A}} \cdot \boldsymbol{E} \boldsymbol{J}_{s} \quad . \quad . \quad . \quad (199)$$

Das positive Vorzeichen gilt rechts.

2. Für δ_H

Der Horizontalschub wird

$$X_{b} = -\frac{[bw.1]}{[bb.1]} = -\frac{[bw]}{[bb.1]}$$
$$H = X_{b} = \frac{6\varphi_{0}k_{0}^{2}}{l^{3}[\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})]} d_{H} \cdot EJ_{s}.$$
 (200)

Für das Scheitelmoment findet man dann:

$$\begin{split} X_{a} &= -\frac{\begin{bmatrix} a \, w \\ a \, a \end{bmatrix}}{\begin{bmatrix} a \, a \end{bmatrix}} - \frac{\begin{bmatrix} a \, b \end{bmatrix}}{\begin{bmatrix} a \, a \end{bmatrix}} X_{b} &= -\frac{\begin{bmatrix} a \, b \end{bmatrix}}{\begin{bmatrix} a \, a \end{bmatrix}} \cdot X_{b} \\ &= -\frac{l \, (k_{0} - \varphi_{0})}{k_{0} \cdot 2 \, \varphi_{0}} \cdot \frac{6 \cdot k_{0}^{2} \, \varphi_{0}}{l^{3} \left[\varphi_{0} k_{0}^{2} - 3 \left(k_{0} - \varphi_{0} \right) \right]} \cdot \delta_{H} \cdot E J_{s} \\ M_{s} &= X_{a} &= -\frac{3 \, k_{0}}{l^{2}} \cdot \frac{(k_{0} - \varphi_{0})}{\varphi_{0} k_{0}^{2} - 3 \left(k_{0} - \varphi_{0} \right)} \cdot \delta_{H} \cdot E J_{s} . \end{split}$$
 (201)

Die Kämpfermomente sind damit

$$\begin{split} M_{k} &= X_{a} + f \cdot X_{b} = X_{a} + \frac{lk_{0}}{2} \cdot X_{b} \\ &= \frac{-3k_{0}(k_{0} - \varphi_{0}) + 3\varphi_{0}k_{0}^{3}}{l^{2}[\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})]} \delta_{H} \cdot EJ_{s} \end{split}$$

Vollwandige Systeme mit gekrümmten Achsen.

$$M_{k} = \frac{3k_{0}}{l^{2}} \cdot \frac{\varphi_{0}k_{0}^{2} - (k_{0} - \varphi_{0})}{\varphi_{0}k_{0}^{2} - 3(k_{0} - \varphi_{0})} \delta_{H} \cdot EJ_{s}$$

$$= -\frac{\varphi_{0}k_{0}^{2} - (k_{0} - \varphi_{0})}{k_{0} - \varphi_{0}} \cdot M_{s}$$
(202)

3. Für die Verdrehungen ϑ_l und ϑ_r findet man:

$$\begin{bmatrix} b w. 1 \end{bmatrix} = -f(\vartheta_r + \vartheta_l) EJ_s + \frac{l}{k_0} \frac{k_0 - \varphi_0}{2 \varphi_0} (\vartheta_r + \vartheta_l) \cdot EJ_s,$$

oder mit $f = \frac{l}{2}k_0$:

$$[bw.1] = \frac{\vartheta_r + \vartheta_l}{2} l \left(\frac{k_0 - \varphi_0}{k_0 \varphi_0} - k_0 \right) EJ_s$$

$$= -\frac{l}{2} \frac{\varphi_0 k_0^2 - (k_0 - \varphi_0)}{k_0 \varphi_0} (\vartheta_r + \vartheta_l) EJ_s$$

$$H = X_b = \frac{3k_0}{l^2} \frac{\varphi_0 k_0^2 - (k_0 - \varphi_0)}{\varphi_0 k_0^2 - 3 (k_0 - \varphi_0)} (\vartheta_r + \vartheta_l) EJ_s$$

$$(203)$$

$$X_a = \frac{k_0}{2l \varphi_0} (\vartheta_r + \vartheta_l) EJ - \frac{l}{k_0} \frac{(k_0 - \varphi_0)}{2 \varphi_0} \cdot \frac{3k_0}{l^2} \cdot \frac{(\varphi_0 k_0^2 - (k_0 - \varphi_0))}{(\varphi_0 k_0^2 - 3 (k_0 - \varphi_0))} (\vartheta_r + \vartheta_l) EJ_s ,$$

$$= \frac{\vartheta_r + \vartheta_l}{2l \varphi_0} \left[k_0 - 3 (k_0 - \varphi_0) \cdot \frac{\varphi_0 k_0^2 - (k_0 - \varphi_0)}{\varphi_0 k_0^2 - 3 (k_0 - \varphi_0)} \cdot \frac{\vartheta_r + \vartheta_l}{2l} \cdot EJ_s \right]$$

$$M_s = X_a = \frac{k_0^3 - 3 (1 + k_0^2) (k_0 - \varphi_0)}{\varphi_0 k_0^2 - 3 (k_0 - \varphi_0)} \cdot \frac{\vartheta_r + \vartheta_l}{2l} \cdot EJ_s$$

$$X_c = \frac{k_0^3}{k_0 - \varphi_0} \cdot \frac{1}{2l^2} (\vartheta_r - \vartheta_l) EJ_s .$$

$$(205)$$

g) Einfluß einer wandernden Einzellast 1 t. — Ordinaten der Einflußlinien.

Setzt man die in den Gleichungen (176) bis (178a) angegebenen Werte der Verschiebungen ein, so erhält man die nachstehenden Größen der Unbekannten. Diese Werte stellen die Ordinaten der Einflußlinien dar.

Die Unbekannte X_b berechnet sich wie folgt:

$$X_b = -\frac{[bm.1]}{[bb.1]} = -\frac{1}{[bb.1]} \left([mb] - \frac{[ab]}{[aa]} \cdot [ma] \right).$$

Der Nenner [bb.1] wurde bereits berechnet:

$$[bb.1] = \frac{1}{6} \frac{l^3}{k_0^3} \frac{1}{\psi_0} [\varphi_0 k_0^2 - 3(k_0 - \varphi_0)].$$

Der Zähler [mb.1] bestimmt sich wie folgt:

$$\begin{split} [mb.1] = & -\frac{1}{4} \frac{l^3}{k_0^3} \left[2 k (\varphi_0 - \varphi) + (k_0 - k)^2 - (\psi_0 - \psi) \right] \\ & -\frac{1}{2} \frac{l}{k_0} \frac{k_0 - \varphi_0}{\varphi_0} \cdot \frac{1}{2} \frac{l^2}{k_0^2} \left[2 k (\varphi_0 - \varphi) - (\psi_0 - \psi) \right], \\ [mb.1] = & -\frac{1}{4} \frac{l^3}{k_0^3} \left\{ \frac{k_0}{\varphi_0} \left[2 k (\varphi_0 - \varphi) - (\psi_0 - \psi) \right] + (k_0 - k)^2 \right\}. \end{split}$$

Somit ergibt sich für die Unbekannte X_b der Wert:

$$X_{b} = H = \frac{3}{2} \cdot \frac{1}{k_{0}} \cdot \varphi_{0} \frac{\frac{k_{0}}{\varphi_{0}} [2 k (\varphi_{0} - \varphi) - (\psi_{0} - \psi)] + (k_{0} - k)^{2}}{\varphi_{0} k_{0}^{2} - 3 (k_{0} - \varphi_{0})}$$
$$X_{b} = H = \frac{3}{2} \frac{k_{0} [2 k (\varphi_{0} - \varphi) - (\psi_{0} - \psi)] + \varphi_{0} (k_{0} - k)^{2}}{k_{0} [\varphi_{0} k_{0}^{2} - 3 (k_{0} - \varphi_{0})]}.$$
 (207)

Das Scheitelmoment X_a ergibt sich zu:

$$X_a = M_s = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]} \cdot X_b.$$

Setzt man die gefundenen Werte ein, so findet man nach entsprechender Vereinfachung:

$$X_{a} = M_{s} = -\frac{l}{4} \frac{1}{k_{0}^{2}} \frac{k_{0}^{2} [2 k (\varphi_{0} - \varphi) - (\psi_{0} - \psi)] + 3 (k_{0} - \varphi_{0}) (k_{0} - k)^{2}}{\varphi_{0} k_{0}^{2} - 3 (k_{0} - \varphi_{0})}$$
(208)

In ähnlicher Weise wie vorher lassen sich Formeln für Kämpfermomente und beliebige Momente ableiten. Man findet z.B.:

§ 15. Zweite Berechnung des beiderseits eingespannten elastischen Bogens.

(Vereinfachende Annahmen über die Querschnittsverteilung.)

In den vorhin entwickelten Formeln ist die Annahme gemacht, daß das Trägheitsmoment eines Querschnitts im Abstande x von der Mitte

$$J = \frac{J_s}{\cos^3 \varphi}$$

Diese Annahme ergab sich aus der Bedingung, daß die sein soll. Höhe des Querschnitts bei x ist

$$d = \frac{d_s}{\cos \varphi}.$$

Es wurde schon erwähnt, daß im allgemeinen die Berücksichtigung des genauen Wechsels der Querschnitte hier nicht von großem Einflusse ist. Wir wollen deshalb im folgenden eine andere Annahme über die Querschnitte machen, die einfacher zum Ziele führt.

Es sei:

$$J = \frac{J_s}{\cos \varphi}, \qquad \frac{J_s}{J} = \cos \varphi \dots \dots \dots \dots (210)$$

 $ds \frac{J_s}{J} = dx \dots (211)$

Fig. 244.

I. Wahl des Grundsystems und der Unbekannten.

Berechnung der Koeffizienten der Unbekannten X.

ist (Fig. 244),

Als Grundsystem wollen wir diesmal den einfachen Balken auf zwei Stützen wählen (Fig. 245). Als Unbekannte wählen wir (wie

in § 10) Lastengruppen, die die Symmetrie auszunutzen gestatten. X_a ist der Horizontalschub, X_b und X_c sind Momentengruppen an den Auflägern; bei X_h sind beide Momente gleich mit gleichen Vorzeichen, bei X_c sind sie gleichgroß, jedoch mit umgekehrtem Vorzeichen. Die Momente infolge der Belastungen X = 1 sind:

Infolge $X_a = 1$ wird an der Stelle x:

$$M_a = y = f\left[1 - \left(\frac{x}{l}\right)^2\right].$$

Infolge $X_b = 1$ wird:

 $M_{b} = 1$.

Infolge $X_c = 1$ wird:

$$M_c = -\frac{x}{l}$$

Damit ergeben sich folgende Verschiebungen:

$$[aa] = \int M_a^2 ds \frac{J}{J} = \int_{-l}^{+l} f^2 \left[1 - \left(\frac{x}{l}\right)^2 \right] dx,$$

+1

$$= f^{2} l \int_{-1}^{1} \left[1 - 2 \left(\frac{x}{l} \right)^{2} + \left(\frac{x}{l} \right)^{4} \right] d \left(\frac{x}{l} \right),$$

$$= f^{2} l \left[2 - \frac{2}{3} \cdot 2 + \frac{1}{5} \cdot 2 \right];$$

$$[a a] = \frac{16}{15} l f^{2};$$

$$[a b] = \int M_{a} M_{b} ds \frac{J_{s}}{J},$$

$$= \int_{-l}^{+l} \left[1 - \left(\frac{x}{l} \right)^{2} \right] dx,$$

$$= f l \left[2 - 2 \cdot \frac{1}{3} \right];$$

$$[a b] = \frac{4}{3} l \cdot f;$$

$$[b b] = \int M_{b}^{2} ds \frac{J_{s}}{J},$$

$$= \int_{-l}^{+l} dx = 2 l;$$

$$[b b] = 2 l;$$

$$[c c] = \int M_{c}^{2} ds \frac{J_{s}}{J} = \int_{-l}^{+l} \left(\frac{x}{l} \right)^{2} dx = \frac{2}{3} l;$$

$$[c c] = \frac{2}{3} l.$$

Die Werte [ac] und [bc] werden zu 0, da sich bei beiden für die linke Systemhälfte (wo M_b positiv wird) der gleiche Wert mit positivem Vorzeichen ergibt, wie für die rechte Hälfte mit negativen Vorzeichen.

Aus diesen Werten findet man weiter:

$$[bb.1] = 2l - \frac{b}{4f} \cdot \frac{4}{3}lf = \frac{l}{3};$$
$$[bb.1] = \frac{l}{3}.$$

II. Berechnung der Unbekannten X und der wichtigeren statischen Größen für verschiedene Belastungen.

Die Gleichungen für die Unbekannten sind:

$$X_{c} = -\frac{[cm]}{[cc]},$$

$$X_{b} = -\frac{[bm \cdot 1]}{[bb \cdot 1]},$$

$$X_{a} = -\frac{[am]}{[aa]} - \frac{[ab]}{[aa]} \cdot X_{b}.$$
(212)

Pirlet, Statik. II. 2.

Zur Ermittlung der Unbekannten sind noch die Absolutglieder [am], [bm] bzw. [bm.1] und [cm] zu berechnen. Mit den Unbekannten X können dann beliebige Werte S bestimmt werden nach der Gleichung:

$$S = S_0 + S_a \cdot X_a + S_b \cdot X_b + S_c \cdot X_c.$$

Im folgenden sollen verschiedene Belastungsfälle berücksichtigt werden.

a) Einzellast P im Abstande ξ von der Mitte (Fig. 246). Die Momentenfläche des Grundsystems infolge dieser Last $(M_o$ -Fläche, vgl. Fig. 246a) hat die größte Ordinate

$$M^{\xi} = \frac{l}{2} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] P.$$

Die Ordinaten links und rechts von ξ (M_{x_1} und M_{x_2} , vgl. Fig. 246a) haben die Gleichungen

$$M_{x_1} = \frac{Pl}{2} \left(1 + \frac{x_1}{l} \right) \left(1 - \frac{\xi}{l} \right).$$
$$M_{x_2} = \frac{Pl}{2} \left(1 - \frac{x_2}{l} \right) \left(1 + \frac{\xi}{l} \right).$$

Damit wird:

$$\begin{split} [a\,m] = & \int M_o \cdot M_a \cdot d\,s \cdot \frac{J_s}{J} \\ = & \int \frac{P\,l}{2} \Big(1 + \frac{x_1}{l} \Big) \Big(1 - \frac{\xi}{l} \Big) \, f \Big[1 - \Big(\frac{x_1}{l} \Big)^2 \Big] \, ds \, \frac{J_s}{J} \\ x_1 = -l \\ x_2 = l \\ + & \int \frac{P\,l}{2} \Big(1 - \frac{x_2}{l} \Big) \Big(1 + \frac{\xi}{l} \Big) \, f \Big[1 - \Big(\frac{x_2}{l} \Big)^2 \Big] \, ds \, \frac{J_s}{J} \end{split}$$

Darin ist ξ zunächst als Konstante zu betrachten. Die Auswertung der Integrale ergibt:

$$[am] = \frac{Pfl^2}{12} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[5 - \left(\frac{\xi}{l}\right)^2 \right].$$

Der Wert [bm] ergibt:

$$[bm] = \int M_0 M_b ds \frac{J_s}{J},$$
$$= \int_{-l}^{+l} M_0 M_b dx.$$

Dieser Wert ist der gleiche, wie er sich ergeben würde bei geraden Balken von der Länge L = 2l mit konstanntem Querschnitt. Da die M_b -Fläche ein Rechteck mit den Endordinaten 1 ist, so wird, wenn $\eta = l - \xi$ der Abstand der Kraft vom rechten Ende ist:

$$\begin{split} [bm] &= \frac{PL^2}{6} (c_1 + c_2), \\ &= \frac{PL^2}{6} \frac{\eta}{L} \left(1 - \frac{\eta}{L} \right) \left(1 + \frac{\eta}{L} + 2 - \frac{\eta}{L} \right), \\ &= \frac{P \cdot 4 \, l^2}{2} \cdot \frac{l - \xi}{2 \, l} \left(1 - \frac{l - \xi}{2 \, l} \right), \\ &= \frac{P l^2}{2} \left(1 - \frac{\xi}{l} \right) \left(1 + \frac{\xi}{l} \right); \\ [bm] &= \frac{P l^2}{2} \left[1 - \left(\frac{\xi}{l} \right)^2 \right]. \end{split}$$

Für [cm] findet man den Wert:

$$[cm] = \int M_0 M_c dx$$
,

der aus der gleichen Überlegung wie vorher ergibt:

$$\begin{split} [cm] &= \frac{PL^2}{6} \cdot (c_1 - c_2), \\ &= \frac{PL^2}{6} \cdot \frac{\eta}{L} \left(1 - \frac{\eta}{L} \right) \left(-1 + 2 \frac{\eta}{L} \right), \\ &= \frac{Pl^2}{6} \cdot 4 \cdot \frac{l - \xi}{2l} \left(1 - \frac{l - \xi}{2l} \right) \left(-1 + 2 \frac{l - \xi}{2l} \right), \\ &= -\frac{Pl^2}{6} \left(1 - \frac{\xi}{l} \right) \left(1 + \frac{\xi}{l} \right) \cdot \frac{\xi}{l}; \\ [cm] &= -\frac{Pl^2}{6} \frac{\xi}{l} \left[1 - \left(\frac{\xi}{l} \right)^2 \right]. \end{split}$$

Weiter findet man:

$$\begin{bmatrix} bm.1 \end{bmatrix} = \frac{Pl^2}{2} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] - \frac{5}{4f} \cdot \frac{fl^2}{12} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[5 - \left(\frac{\xi}{l}\right)^2 \right],$$

$$= \frac{Pl^2}{48} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[24 - 25 + 5 \left(\frac{\xi}{l}\right)^2 \right];$$

$$\begin{bmatrix} bm.1 \end{bmatrix} = -\frac{Pl^2}{48} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[1 - 5 \left(\frac{\xi}{l}\right)^2 \right].$$

Damit ergeben sich jetzt folgende Unbekannte:

$$X_{c} = P \frac{l}{4} \frac{\xi}{l} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right] \qquad (213)$$

Vollwandige Systeme mit gekrümmten Achsen.

Aus diesen Gleichungen lassen sich schnell die wichtigsten Momente ableiten. Für die Kämpfermomente findet man z.B.:

$$M_{k} = X_{b} \pm X_{c} = \frac{Pl}{16} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right] \left[1 - 5\left(\frac{\xi}{l}\right)^{2} \pm 4\frac{\xi}{l} \right] (216)$$

Das positive Vorzeichen gilt links (vgl. Fig. 245). Das Scheitelmoment wird:

$$\begin{split} M_s &= M_{s,0} + f X_a + X_b, \\ &= \frac{Pl}{2} \left[1 - \frac{\xi}{l} \right] - f \frac{15}{32} \frac{Pl}{f} \left[1 - \left(\frac{\xi}{l} \right)^2 \right] \\ &\quad + \frac{Pl}{16} \left[1 - \left(\frac{\xi}{l} \right)^2 \right] \left[1 - 5 \left(\frac{\xi}{l} \right)^2 \right] \end{split}$$

Nach gehöriger Vereinfachung ergibt dies:

$$\boldsymbol{M}_{s} = \frac{l}{32} \left\{ 16 \left(1 - \frac{5}{l} \right) - 18 \left[1 - \left(\frac{5}{l} \right)^{2} \right] + 5 \left[1 - \left(\frac{5}{l} \right)^{4} \right] \right\} (217)$$

Diese Gleichung gilt für Belastung der rechten Hälfte. Bei Belastung links ist im ersten Glied $\left(1+\frac{\xi}{l}\right)$ einzusetzen. Es ergibt dieselben Werte, da dann ξ negativ ist.

Unter der Einzellast entsteht das Moment:

$$M_{\xi} = M_{0} + M_{a}X_{a} + M_{b}X_{b} + M_{c}X_{c},$$

$$= P\left\{\frac{l}{2}\left[1 - \left(\frac{\xi}{l}\right)^{2}\right] - \frac{15}{32}\frac{l}{f}\left[1 - \left(\frac{\xi}{l}\right)^{2}\right]f\left[1 - \left(\frac{\xi}{l}\right)^{2}\right]^{2} + \frac{l}{16}\left[1 - \left(\frac{\xi}{l}\right)^{2}\right]\left[1 - 5\left(\frac{\xi}{l}\right)^{2}\right] - \frac{\xi}{l} \cdot \frac{l}{4} \cdot \frac{\xi}{l}\left[1 - \left(\frac{\xi}{l}\right)^{2}\right]\right\};$$

$$M_{\xi} = \frac{3}{32}Pl\left[1 - \left(\frac{\xi}{l}\right)^{2}\right]^{2} \cdot \left[1 + 5\left(\frac{\xi}{l}\right)^{2}\right] \quad \dots \qquad (218)$$

NB. Die Werte der Gleichungen (217) und (218) müssen für $\frac{5}{l} = 0$ einander gleich sein. In der Tat nehmen dann beide den Wert $\frac{3}{32}$ Pl an.

Der senkrechte Auflagerdruck A am linken Auflager wird:

$$A = A_{0} + A_{c}X_{c},$$

$$= \frac{P}{2}\left(1 - \frac{\xi}{l}\right) - \frac{1}{l}\frac{Pl\xi}{4l}\left[1 - \left(\frac{\xi}{l}\right)^{2}\right],$$

$$= \frac{P}{4}\left(1 - \frac{\xi}{l}\right)\left[2 - \frac{\xi}{l}\left(1 + \frac{\xi}{l}\right)\right],$$

$$A = \frac{P}{4}\left(1 - \frac{\xi}{l}\right)^{2}\left(2 + \frac{\xi}{l}\right) \dots \dots \dots \dots (219)$$

Am rechten Ende wird:

Das Moment an einer beliebigen Stelle xdrückt man am zwekmäßigsten aus durch die Auflagerkräfte M_k , A und $H = X_a$. Man findet (s. Fig. 247):

Für $x_1 < \xi$:

$$M_{x1} = M_{kl} + A\left(1 + \frac{x_1}{l}\right) + X_a f\left[1 - \left(\frac{x_1}{l}\right)^2\right] \quad . (221)$$

Für $x_2 > \xi$:

$$M_{x2} = M_{kr} + B\left(1 + \frac{x_2}{l}\right) + X_a f\left[1 - \left(\frac{x_2}{l}\right)^2\right]$$
 (222)

Nach den Gleichungen (215)—(217), (219)—(222) sollen noch die Ordinaten der Einflußlinien für die Zehntelpunkte angegeben werden.

Die Einflußlinie des Horizontalschubes hat die Gleichung

$$H = X_a = \mu_H \cdot \frac{l}{f}.$$

Darin ist

$$\mu_{H} = -\frac{15}{32} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right]^{2}.$$

Die Einflußlinien der Kämpfermomente ergeben sich in der Form: 1. Linkes Kämpfermoment:

$$M_{kl} = \mu_{kl} \cdot l.$$

Darin ist:

$$\mu_{kl} = \frac{1}{16} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[1 - 5 \left(\frac{\xi}{l}\right)^2 + 4 \frac{\xi}{l} \right]$$

2. Rechtes Kämpfermoment:

$$M_{kr} = \mu_{kr} \cdot l.$$

Darin ist:

$$\mu_{kr} = \frac{1}{16} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[1 - 5 \left(\frac{\xi}{l}\right)^2 - 4 \frac{\xi}{l} \right].$$

Für die Einflußlinie des Scheitelmomentes findet man: $M_s = \mu_s \cdot l.$

Darin ist:

$$\mu_{s} = \frac{1}{32} \left\{ 16 \left(1 - \frac{\xi}{l} \right) - 18 \left[1 - \left(\frac{\xi}{l} \right)^{2} \right] + 5 \left[1 - \left(\frac{\xi}{l} \right)^{4} \right] \right\}.$$

Für die Auflagerdrücke findet man

$$A = \frac{1}{4} \left(1 - \frac{\xi}{l} \right)^2 \left(2 + \frac{\xi}{l} \right),$$
$$B = \frac{1}{4} \left(1 + \frac{\xi}{l} \right)^2 \left(2 - \frac{\xi}{l} \right).$$

Für ein beliebiges Moment finden wir nach Gleichung (221 und (222):

$$M_{x1} = \left\{ \mu_{kr} + A \left(1 + \frac{x_1}{l} \right) + \mu_H \left[1 - \left(\frac{x_1}{l} \right)^2 \right] \right\} l.$$
$$M_{x2} = \left\{ \mu_{kl} + B \left(1 - \frac{x_2}{l} \right) + \mu_H \left[1 - \left(\frac{x_2}{l} \right)^2 \right] \right\} l.$$

Die verschiedenen Werte für μ sowie A und B sind in nachstehender Tabelle für die Zehntelpunkte zusammengestellt. Die Einflußlinien sind danach in den Fig. 248 bis 251 aufgetragen.

$\frac{\xi}{l}$	μ_{H}	μ _{kl}	μ _k ,	μs	A	B
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0	$\begin{array}{c} - 0,469 \\ - 0,459 \\ - 0,432 \\ - 0,388 \\ - 0,331 \\ - 0,264 \\ - 0,192 \\ - 0,192 \\ - 0,061 \\ - 0,017 \\ 0 \end{array}$	0,0625 0,0835 0,0960 0,0995 0,0946 0,0720 0,0640 0,0430 0,0225 0,0065 0	$\begin{array}{c} 0,0625\\ 0,0340\\ 0,0000\\ -0,0369\\ -0,0735\\ -0,1055\\ -0,1280\\ -0,1355\\ -0,1205\\ -0,1205\\ -0,0790\\ 0\\ \end{array}$	$\begin{array}{c} 0,0937\\ 0,0498\\ 0,0160\\ -0,0069\\ -0,0203\\ -0,0254\\ -0,0240\\ -0,0181\\ -0,0102\\ -0,0031\\ 0\end{array}$	0,500 0,425 0,352 0,282 0,216 0,156 0,104 0,061 0,007 0	0,500 0,575 0,648 0,718 0,784 0,844 0,896 0,939 0,939 0,972 0,993 1,00
$\begin{array}{c} 1000 \\ 10$						

Anmerkung: Die Gleichung (218) gibt die Ordinate der Momenteneinflußlinie des Punktes ξ für diesen Punkt selbst, d. h. also die Spitzenordinate. Trägt man diese Gleichung als Kurve auf, so ist diese der Ort für die Spitzen der Momentenlinien. (Spitzenkurve.)

.

§ 15. Zweite Berechnung des beiderseits eingespannten elastischen Bogens. 263

~ 1 ·

Die Maxima und Minima dieser Kurve findet man aus der Gleichung

$$\frac{dM_{\xi}}{d\left(\frac{\xi}{l}\right)} = 0.$$

$$\frac{dM_{\xi}}{d\left(\frac{\xi}{l}\right)} = \frac{2}{32}l\left\{-2\cdot 2\frac{\xi}{l}\left[1-\left(\frac{\xi}{l}\right)^2\right]\left[1+5\left(\frac{\xi}{l}\right)^2\right]+10\frac{\xi}{l}\left[1-\left(\frac{\xi}{l}\right)^2\right]\right\}=0$$

$$-\frac{3}{16}l\left[1-\left(\frac{\xi}{l}\right)^2\right]\frac{\xi}{l}\left\{2\left[1+5\left(\frac{\xi}{l}\right)^2\right]-5\left[1-\left(\frac{\xi}{l}\right)^2\right]\right\}=0.$$

Diese Gleichung ist erfüllt für:

1 10. .

۰.

1.
$$\left(\frac{\xi}{1}\right) = 0$$
.
2. $\left(\frac{\xi}{l}\right) = \pm 1$.
3. $\left(\frac{\xi}{l}\right) = \pm \sqrt{\frac{1}{5}}$

Mit diesen Werten wird:

1.
$$M_{\xi} = \frac{2}{32} l$$
.
2. $M_{\xi} = 0$.
3. $M_{\xi} = \frac{3}{32} l \left(1 - \frac{1}{5}\right)^2 \left(1 + 5 \cdot \frac{1}{5}\right) = \frac{3}{25} l$

Danach kann die Spitzenkurve leicht aufgetragen werden.

b. Gleichmäßig verteilte Belastung q.

Für die Belastung des halben Bogens (Fig. 243) können wir die zu suchenden Werte durch Integration aus den vorhergehenden Werten finden. An einer Stelle ξ ist auf einem Streckenelement d_{ξ} die Belastung $p d_{\xi}$. Setzen wir dies in obige Gleichungen für P ein und integrieren von 0 bis l, so finden wir den gesuchten Wert für einseitige Belastung rechts. Auf diese Weise sollen die wichtigsten Werte angegeben werden.

Das Scheitelmoment wird:

Der Horizontalschub X_a wird:

$$X_{a} = -\int_{0}^{1} p \frac{15}{32} \frac{l}{f} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right]^{2} d_{\xi},$$

$$X_{a} = -\frac{15}{32} \frac{pl^{2}}{f} \left(1 - \frac{2}{3} + \frac{1}{5}\right),$$

$$X_{a} = -H = -\frac{1}{f} \cdot \frac{pl^{2}}{4} = -\frac{1}{f} \cdot \frac{pL^{2}}{16} \cdot \dots \cdot \dots \cdot (224)$$

Die anderen Unbekannten sind

Da die Kämpfermomente sich aus der Gleichung $M_k = X_b \pm X_c$ ergeben, so wird hier

$$M_k = \pm \frac{pl^2}{16} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (227)$$

Die senkrechten Auflagerdrücke sind:

Das Moment an einer beliebigen Stelle x wird am einfachsten gefunden aus dem Moment M_s , der Normalkraft X_a und der Quer-kraft $Q_s = A$ im Scheitel. Für die unbelastete Seite wird:

Auf der belasteten Seite wird:

$$M_{x} = -X_{a} \left(\frac{x}{l}\right)^{2} f + Q_{s} x - \frac{p x^{2}}{2},$$

= $\frac{p l^{2}}{16} \frac{x}{l} \left(3 - 4 \frac{x}{l}\right) \cdot \dots \cdot \dots \cdot (230)$

Die Werte der Gleichungen (229) und (230) sind absolut genommen einander gleich, haben jedoch das umgekehrte Vorzeichen; dies erkennt man leicht, wenn man bedenkt, daß in Gleichung (229) die Werte $\frac{x}{l}$ negativ, in Gleichung (230) aber positiv sind. Wir schreiben daher am zweckmäßigsten

$$\boldsymbol{M}_{x} = \mp \frac{q \, l^{2}}{16} \frac{x}{l} \left(3 - 4 \frac{x}{l} \right) \dots \dots \dots (231)$$

Diese Gleichung ist für beide Seiten gültig, wenn man x mit dem absoluten Wert einsetzt. Das negative Vorzeichen gilt dann für die unbelastete, d. i. hier die linke Seite.

Der Größtwert der Gleichung (231) ergibt sich mit:

$$\frac{x}{l} = \frac{3}{8}$$

und zwar wird:

$$M_{max} = \mp \frac{9}{256} p l^2 = \mp \frac{9}{1024} p L^2.$$

$$\operatorname{Für} \frac{x_0}{l} = \frac{3}{4} \text{ wird } M_{x0} = 0$$

Anmerkung: Bei Berücksichtigung der genauen Querschnittsverhältnisse $\frac{J_s}{J} = \frac{1}{\cos^3 \varphi}$ fanden wir, daß der Größtwert für M_x auftritt bei

$$\frac{1}{2} \frac{x_0}{l} = \frac{1}{4} \frac{k_0^2 - \psi_0}{k_0 (k_0 - \varphi_0)}.$$

Die zahlenmäßige Auswertung dieses Ausdrucks ergibt' für die verschiedenen Pfeilverhältnisse Werte, die zwischen

$$\frac{1}{2} \frac{x_0}{l} = 0,391 \quad \left(\text{für } \frac{f}{2l} = \frac{1}{20} \right)$$
$$\frac{1}{2} \frac{x_0}{l} = 0,3575 \quad \left(\text{für } \frac{f}{2l} = \frac{1}{4} \right)$$

und

schwanken. Im vorliegenden Falle haben wir dafür den konstanten Wert $\frac{1}{2} \frac{x_0}{l} = 0,375$. Die Werte der Größtmomente schwanken im ersten Falle zwischen den Grenzen:

$$M_{max} = \frac{pl^2}{16} \cdot 0,612$$
 bzw. $\frac{pl^2}{16} \cdot 0,512$.

Im letzteren Falle ist konstant

$$M_{max} = \frac{p l^2}{16} \cdot 0,5625$$

Das Beispiel zeigt, daß der Einfluß der Querschnittsverhältnisse gering ist.

Bei beiderseitiger Vollbelastung werden wieder sämtliche Momente zu 0, da sich gemäß obiger Ausführungen über M_x beiderseits zwei entgegengesetzte gleiche Momente addieren.

Der Schub wird:

$$X_a = -\frac{1}{f} \frac{pl^2}{2} = -\frac{1}{f} \frac{pL^2}{8}$$

Das größte Scheitelmoment infolge der Nutzlast p ergibt sich gemäß der Einflußlinie Fig. 249 bei Belastung des Teiles zwischen den Belastungsscheiden,

der kleinste Wert bei Belastungsscheiden, der kleinste Wert bei Belastung der beiden Teile außerhalb der Belastungsscheiden. Diese beiden Werte müssen absolut genommen einander gleich sein, jedoch mit umgekehrten Vorzeichen, da ihr Gesamtwert (Vollbelastung) den Wert 0 ergeben muß. — Die Belastungsscheide liegt ungefähr bei $\frac{\xi}{7}$ = 0,275.

Fig. 252.

Für die Belastung einer Strecke ξ vom Mittelpunkt aus (Fig. 252) findet man für M_s aus Gleichung (217):

$$M_{s} = \frac{pl^{2}}{32} \int_{0}^{\frac{z}{l}} \left\{ 16\left(1-\frac{\xi}{l}\right)-18\left[1-\left(\frac{\xi}{l}\right)^{2}\right]+5\left[1-\left(\frac{\xi}{l}\right)^{4}\right] \right\} \frac{d\xi}{l},$$
$$M_{s} = \frac{pl^{2}}{32} \frac{\xi}{l} \left\{ 8\left(2-\frac{\xi}{l}\right)-6\left[3-\left(\frac{\xi}{l}\right)^{2}\right]+\left[5-\left(\frac{\xi}{l}\right)^{4}\right] \right\}. (232)$$

Setzen wir darin für $\frac{\xi}{l}$ den Wert 0,275 ein und multiplizieren mit 2, so ergibt sich als Größtwert für M_s infolge der Nutzlast p: $M_{s \max} = \pm 0,0224 \ p l^2 \ldots \ldots (233)$

In gleicher Weise findet man für den Horizontalschub bei dieser Belastung, d. i. die Normalkraft im Scheitel durch Integration der Gleichung (205) über diese Strecke.

Das Größtmoment am rechten Kämpfer findet man in ähnlicher Weise. Die Belastungscheide der Einflußlinie liegt gemäß Fig. 250 bei $\frac{\xi}{l} = 0,2$. Für die Belastung von Strecke ξ wird:

$$M_{k} = \frac{pl^{2}}{16} \int_{0}^{\frac{\xi}{l}} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right] \left[1 - 5 \left(\frac{\xi}{l}\right)^{2} - 4 \frac{\xi}{l} \right] d\frac{\xi}{l},$$

$$M_{k} = \frac{pl^{2}}{16} \frac{\xi}{l} \left[1 - 2 \frac{\xi}{l} - 2 \left(\frac{\xi}{l}\right)^{2} + \left(\frac{\xi}{l}\right)^{3} + \left(\frac{\xi}{l}\right)^{4} \right] \quad . (235)$$
where wird mit $\frac{\xi}{l} = 0.2$:

Daraus wird mit $\frac{5}{l} = 0,2$:

$$M_k = 0,006255 \ p l^2$$
 .

Dazu kommt für die Belastung der linken Hälfte

$$\frac{p\,l^2}{16} = 0,0625 \ pl^2,$$

und man erhält:

$$M_{k \max} = \pm 0,068725 \ p \ l^2$$
 (236)

Für den Horizontalschub findet man in diesem Falle:

Der senkrechte Auflagendruck B beträgt

Aus B und H kann dann die Normalkraft am Kämpfer ermittelt werden.

c. Überschüttung.

Die Überschüttung stellt eine parabelförmig verteilte Belastung dar (Fig. 253). Bezeichnet man die Endordinaten dieser Belastung mit g_0 (vgl. § 14, S. 240), so ist ein Zwischenwert:

Setzen wir also in die für eine Einzellast P gefundenen Werte $P = g_0 \left(\frac{\xi}{l}\right)^2 d\xi$ und integrieren von 0 bis l, so erhalten wir als Resultate für rechtsseitige Überschüttung:

$$X_{a} = -\frac{15}{32} g_{0} \frac{l}{f} \int_{0}^{l} \left(\frac{\xi}{l}\right)^{2} \left[1 - \left(\frac{\xi}{l}\right)^{2}\right]^{2} d\xi,$$

$$-H = X_{a} = -\frac{g_{0}l^{2}}{28f} = -\frac{\gamma \cdot l^{2}}{28} \dots \dots \dots \dots (239)$$

$$X_{b} = \frac{g_{0}l}{16\int_{0}^{l} \left[1 - \left(\frac{\xi}{l}\right)^{2}\right] \left[1 - 5\left(\frac{\xi}{l}\right)^{2}\right] \left(\frac{\xi}{l}\right)^{2} d\xi,$$

$$X_{b} = -g_{0} \frac{l^{2}}{105} \dots \dots \dots \dots (240)$$

$$X_{c} = \frac{g_{0}l}{4} \int_{0}^{l} \frac{\xi}{l} \left[1 - \left(\frac{\xi}{l}\right)^{2}\right] \cdot \left(\frac{\xi}{l}\right)^{2} d\xi,$$

$$X_{c} = g_{0} \frac{l^{2}}{48} \dots \dots \dots \dots (241)$$

Damit wird:

$$M^{k} = -\frac{g_{0}l^{2}}{105} \pm \frac{g_{0}l^{2}}{48} = g_{0}l^{2}\left(-\frac{1}{105} \pm \frac{1}{48}\right) \quad . (242)$$

wobei das positive Vorzeichen links, das negative rechts gilt.

Bei beiderseitiger Überschüttung wird:

$$X_a = H = -\frac{g_0 l^2}{14 f} \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot (244)$$

$$X_b = M_k = -2 \frac{g_0 l^2}{105} \dots \dots \dots \dots \dots (245)$$

$$X_c = 0 \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (246)$$

$$M_s = -\frac{g_0 l^2}{140}$$
 (247)

An beliebiger Stelle wird:

$$M_{x0} = \frac{g_0 l^2}{12} \left[1 - \left(\frac{x}{l}\right)^4 \right],$$

$$M_x = \frac{g_0 l^2}{12} \left[1 - \left(\frac{x}{l}\right)^4 \right] - \frac{g_0 l^2}{14} \left[1 - \left(\frac{x}{l}\right)^2 \right] - \frac{2 g_0 l^2}{105},$$

$$M_x = -\frac{g_0 l^2}{420} \left[35 \left(\frac{x}{l}\right)^4 - 30 \left(\frac{x}{l}\right)^2 + 3 \right] \quad . . . (248)$$

Es kommt häufig vor, daß die Überschüttung eine Neigung erhält; es wäre dann von den vorher angegebenen Resultaten der Einfluß einer dreieckförmigen Belastung abzuziehen, die ihre Spitze im Scheitel hat. Mit dem Endwert g_0' wird ein Zwischenwert $g = g_0' \frac{x}{l}$. Man findet dann in gleicher Weise wie vorher:

$$X_{a} = -\frac{15}{32} g_{0}' \cdot \frac{l}{f} \int_{0}^{t} \frac{\xi}{l} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right]^{2} d\xi = -\frac{5}{64} \frac{g_{0}' l^{2}}{f} \quad . \quad (249)$$

$$X_{b} = \frac{g_{0}'l}{16} \int_{0}^{l} \left[1 - \left(\frac{\xi}{l}\right)^{2}\right] \left[1 - 5\left(\frac{\xi}{l}\right)^{2}\right] \frac{\xi}{l} d\xi = -\frac{g_{0}'l^{2}}{96} \quad (250)$$

Also findet man hier:

$$M_{s} = g_{0}' l_{0}' \left\{ \frac{1}{2} \left(1 - \frac{\xi}{l} \right) \frac{\xi}{l} - \frac{9}{16} \left[1 - \left(\frac{\xi}{l} \right)^{2} \right] \frac{\xi}{l} + \frac{5}{32} \left[1 - \left(\frac{\xi}{l} \right)^{4} \right] \frac{\xi}{l} \right\} d\xi,$$

$$M_{s} = -\frac{g_{0}' l^{2}}{2}$$
(252)

Für beiderseitige Last wird:

$$X_a = -\frac{5 g_0' l^2}{32} \cdot \frac{1}{f} = -H, \dots$$
 (253)

$$X_b = -\frac{g_0' l^2}{48} = M_k, \ldots \ldots \ldots$$
 (254)

$$X_c = 0, \ldots \ldots \ldots \ldots \ldots \ldots (255)$$

$$M_s = -\frac{g_0' l^2}{96}$$
. (256)

Anmerkung. Man kann diese Neigung auch von vornherein durch entsprechende Wahl des Wertes g_0 berücksichtigen und mit den Formeln (239) bis (248) rechnen. Dies würde einem Verlauf der oberen Begrenzungslinie nach einer flachen Parabel entsprechen.

d) Der Einfluß von Temperaturänderungen soll wieder getrennt für eine ungleichmäßige Erwärmung Δt $(t_0 = 0)$ und eine gleichmäßige Erwärmung t_0 ($\Delta t = 0$) angegeben werden.

Bei ungleichmäßiger Erwärmung wird

$$[at] = -EJ_s \int \varepsilon \frac{\Delta t}{d} ds \cdot f \left[1 - \left(\frac{x}{l}\right)^2 \right].$$

Wir setzen hier

$$d = \frac{d_s}{\cos \varphi}.$$

NB. Diese Annahme stimmt allerdings mit der Annahme $J = \frac{J_s}{\cos \varphi}$ nicht überein; danach müßte z. B. bei rechteckigem Querschnitt $d = \frac{d_s}{\sqrt[3]{\cos \varphi}}$ ge-

setzt werden. Wegen der Geringfügigkeit der Temperatureinflüsse kann jedoch obige Annahme als ausreichend gelten.

1.1

Man findet:

$$\begin{bmatrix} at \end{bmatrix} = -\frac{EJ_s}{d_s} \cdot \varepsilon \cdot \Delta t \cdot f \cdot l \cdot \int_{-1}^{+1} \left[1 - \left(\frac{x}{l}\right)^2 \right] d\left(\frac{x}{l}\right).$$

$$\begin{bmatrix} at \end{bmatrix} = -\frac{4}{3} f l \cdot \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s}.$$

$$\begin{bmatrix} bt \end{bmatrix} = -EJ_s \int \varepsilon \frac{\Delta t}{d} \cdot d_s = -\frac{EJ_s}{d_s} \cdot \varepsilon \cdot \Delta t \cdot \int_{-l}^{+l} dx.$$

$$\begin{bmatrix} bt \end{bmatrix} = -2l \cdot \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s}.$$

$$\begin{bmatrix} ct \end{bmatrix} = 0.$$

$$\begin{bmatrix} bt.1 \end{bmatrix} = -2l \cdot \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s} + \frac{5}{4f} \cdot \frac{4}{3} f l \cdot \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s}.$$

$$\begin{bmatrix} bt.1 \end{bmatrix} = -\frac{l}{3} \cdot \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s}.$$

$$\begin{bmatrix} bt.1 \end{bmatrix} = -\frac{l}{3} \cdot \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s}.$$

$$\begin{bmatrix} X_b = \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s} \\ X_a = 0 \\ X_c = 0 \end{bmatrix}$$

$$(257)$$

Die Momente betragen über den ganzen Bogen:

$$M = X_b = \varepsilon \cdot \Delta t \cdot \frac{EJ_s}{d_s} \quad . \quad . \quad . \quad . \quad (258)$$

Bei gleichmäßigen Temperaturänderungen ergibt sich: $[at] = -EJ_s \int \varepsilon \cdot t_0 \cdot ds \cdot N_a .$ Es ist darin $ds = \frac{dx}{\cos \varphi}$ und $N_a = -\cos \varphi$ (Zugkraft), also: $[at] = EJ_s \cdot \varepsilon \cdot t_0 \cdot \int_{-l}^{+l} dx .$ $[at] = 2l \cdot \varepsilon \cdot t_0 \cdot EJ_s .$ $[bt] = -EJ_s \cdot \int \varepsilon \cdot t_0 \cdot ds \cdot N_b .$ Da $N_b = 0$ ist, so wird [bt] = 0. $[ct] = -EJ_s \int \varepsilon \cdot t_0 \cdot ds \cdot N_c .$

Da $N_c = \frac{1}{l} \cdot \sin \varphi$ in der einen Hälfte Druck, in der andern Hälfte Zug ist, so heben sich die Einflüsse beider Hälften auf, und es wird [ct] = 0.

Damit findet man:

$$X_{b} = \frac{15}{2} \cdot \frac{1}{f} \cdot \epsilon \cdot t_{0} \cdot EJ_{s}$$

$$X_{a} = -\frac{45}{4} \cdot \frac{1}{f^{2}} \cdot \epsilon \cdot t_{0} \cdot E \cdot J_{s}$$

$$X_{c} = 0.$$

$$(259)$$

Für die Kämpfer- und Scheitelmomente ergibt sich:

$$M_{s} = X_{b} + f \cdot X_{a} = -\frac{15}{4} \cdot \frac{1}{f} \cdot \varepsilon \cdot t_{0} \cdot EJ_{s}$$

$$M_{k} = X_{b} = \frac{15}{2} \cdot \frac{1}{f} \cdot \varepsilon \cdot t_{0} \cdot EJ_{s} = -2 M_{s}$$
(260)

e) Einfluß von Widerlagerverschiebungen. Es sollen wieder drei verschiedene Fälle betrachtet werden, nämlich eine Vertikalverschiebung δ_A des linken Auflagers, eine Horizontalverschiebung δ_H des linken Auflagers und Verdrehungen ϑ_l und ϑ_r der beiden Auflager.

1. Bei einer Vertikalverschiebung δ_A des linken Auflagers nach oben (Fig. 236) ergibt sich nach der Gleichung $[iw] = -\Sigma Li[lw]$ $= A_i \cdot \delta_A$:

$$\begin{split} & [aw] = 0, & \text{da } A_a = 0. \\ & [bw] = 0, & \text{da } A_b = 0. \\ & [cw] = \frac{1}{l} \cdot \delta_A \cdot EJ_s, & \text{denn } A_c = -\frac{1}{l} \end{split}$$

Also wird:

$$X_a = X_b = 0.$$

$$X_c = -\frac{3}{2} \frac{1}{l^2} \cdot \delta_A \cdot EJ_s$$
(261)

Das Moment an einer beliebigen Stelle x ist mit $M_c = -\frac{x}{l}$:

$$M = -\frac{x}{l} \cdot X_c = \frac{3}{2} \cdot \frac{1}{l^2} \cdot \delta_A \cdot EJ_s \cdot \frac{x}{l} \quad \dots \quad \dots \quad \dots \quad (261a)$$

2. Bei einer Horizontalverschiebung δ_H des linken Auflagers (Fig. 237) findet man in gleicher Weise:

$$\begin{bmatrix} aw \end{bmatrix} = -H_{a} \cdot \delta_{H} \cdot EJ_{s} = -\delta_{H} \cdot EJ_{s}; \quad \text{denn } H_{a} = 1.$$

$$\begin{bmatrix} bw \end{bmatrix} = 0, \quad \text{da } H_{b} = 0.$$

$$\begin{bmatrix} cw \end{bmatrix} = 0, \quad \text{da } H_{c} = 0.$$

$$\begin{bmatrix} bw.1 \end{bmatrix} = \frac{5}{4f} \delta_{H} \cdot EJ_{s}.$$

$$X_{b} = -\frac{15}{4} \frac{1}{fl} \cdot \delta_{H} \cdot EJ_{s}.$$

$$X_{a} = \left(\frac{15}{16 l f^{2}} + \frac{5}{4f} \cdot \frac{15}{4 fl}\right) \delta_{H} \cdot EJ_{s} = \frac{45}{8} \cdot \frac{1}{l f^{2}} \cdot \delta_{H} \cdot EJ_{s}$$

$$\left. \left\{ 262 \right\} \right\}$$

Damit ergeben sich die Momente:

$$\begin{split} M_{kl} &= M_{kr} = X_b = -\frac{15}{4} \cdot \frac{1}{fl} \cdot \delta_H \cdot EJ_s \\ M_s &= X_b + f \cdot X_a = \frac{15}{8} \cdot \frac{1}{lf} \cdot \delta_H \cdot EJ_s \end{split}$$

3. Bei Widerlagerverdrehungen ϑ_i und ϑ_r , in Richtung der positiven Einspannungsmomente (Fig. 240) ergibt sich:

$$\begin{bmatrix} aw \end{bmatrix} = 0.$$

$$\begin{bmatrix} bw \end{bmatrix} = -(\vartheta_{l} + \vartheta_{r}) \cdot EJ_{s}.$$

$$\begin{bmatrix} cw \end{bmatrix} = -(\vartheta_{l} - \vartheta_{r}) \cdot EJ_{s}.$$

$$\begin{bmatrix} bw.1 \end{bmatrix} = \begin{bmatrix} bw \end{bmatrix}.$$

$$X_{b} = \frac{3(\vartheta_{l} + \vartheta_{r})}{l} \cdot EJ_{s}$$

$$X_{a} = -\frac{15(\vartheta_{l} + \vartheta_{r})}{4 fl} \cdot EJ_{s}$$

$$X_{c} = \frac{3(\vartheta_{l} - \vartheta_{r})}{2 l} \cdot EJ_{s}$$
(264)

18

Es ergeben sich damit folgende Momente: Pirlet, Statik. II. 2.

$$M_{kl} = \frac{3}{2l} (3 \vartheta_l + \vartheta_r) EJ_s$$

$$M_{kr} = \frac{3}{2l} (\vartheta_l + 3 \vartheta_r) EJ_s$$

$$M_s = X_b + f \cdot X_a = -\frac{3}{4l} (\vartheta_l + \vartheta_r) EJ_s$$
(265)

§ 16. Zahlenbeispiel zu § 14 und 15.

Im folgenden soll ein Gewölbe mit den in Fig. 254 angegebenen Abmesungen nach den in den vorhergehenden §§ 14 und 15 er-

mittelten Formeln berechnet werden. Zum Vergleich soll dann ein Kreisbogen mit denselben Abmessungen untersucht werden, unter Aufteilung der Bogenachse in Elemente ds, die als geradlinig betrachtet werden können.

1. Verwendung der in §14 abgeleiteten Formeln.

a) Für einseitige Belastung des Bogens mit q = 0.5 t/m ergibt sich nach Gleichung (183) die Horizontalkraft

$$H = \frac{q \cdot l^2}{4 f} = \frac{0.5 \cdot 11^2}{4 \cdot 2.2} = 6.875 \,\mathrm{t}$$

Das Scheitelmoment M_s ist gleich 0. Für ein beliebiges Moment ist im Abstande x vom Scheitel nach Gleichung (180):

$$\boldsymbol{M}_{x} = \frac{\boldsymbol{q} \cdot \boldsymbol{l}^{2}}{4} \cdot \frac{\boldsymbol{x}}{l} \left(\frac{\boldsymbol{x}_{0}}{l} - \frac{\boldsymbol{x}}{l} \right).$$

.

Für $\frac{x_0}{l}$ wird $M_x = 0$; man findet nach Gleichung (179)

$$\frac{x_{0}}{l} = \frac{1}{2} \frac{k_{0}^{2} - \psi_{0}}{k_{0}(k_{0} - \varphi_{0})}$$

Es ist:

$$k_0 = \operatorname{tg} \varphi_0 = \frac{2 f}{l} = 0.4; \quad k_0^2 = 0.16; \quad 1 + k_0^2 = 1.16.$$

$$\begin{split} \psi_0 = \ln{(1+k_0^2)} = 0.148\,420\,(=\ln{1.16} = \ln{\frac{29}{25}} = \ln{29} - 2\ln{5}).\\ k_0^2 - \psi_0 = 0.011\,580\,. \end{split}$$

 $\varphi_0 = \operatorname{arc} \operatorname{tg} k_0 = 0,380506 \text{ (nach Tabellen oder mit Hilfe der Reihe}$ $\operatorname{arc} \operatorname{tg} k_0 = k_0 - \frac{k_0^3}{3} + \frac{k_0^5}{5} - \frac{k_0^7}{7} + \dots \text{)},$ $k_0 = m = 0.019494$

$$\begin{array}{c} k_0 - \varphi_0 = 0,015454, \\ k_0 (k_0 - \varphi_0) = 0,0077976, \\ 2 k_0 (k_0 - \varphi_0) = 0,015595. \end{array}$$

Daraus ergibt sich:

$$\frac{x_0}{l} = \frac{0,011580}{0.015595} = 0,74253.$$

 $\frac{x}{l} = \frac{x_0}{l} = 0,74253$ den Wert 0 (s.

Fig. 256; vgl. auch Fig. 243).

 $M_k = \frac{q \cdot l^2}{4} (0,74253 - 1)$

Die Momentenfläche hat also für

Für $\frac{x}{l} = 1$ (am Kämpfer) wird

$$= -\frac{0.5 \cdot 11^2}{4} \cdot 0.25747 = -3.894 \text{ mt.}$$

Mit $\frac{x}{l} = \frac{1}{2} \frac{x_0}{l}$ wird der Größtwert
 $M_{max} = \frac{q \, l^2}{16} \cdot \left(\frac{x_0}{l}\right)^2 = \frac{0.5 \cdot 11^2}{16} \cdot 0.74253^2 = 2.08 \text{ mt.}$

b) Bei Belastung beider Bogenhälften mit q = 0.5 t/m wird $M_x = 0,$

$$H = 13,75 \,\mathrm{t}$$
.

c) Bei einseitiger Überschüttung findet man den Horizontalschub nach Gleichung (186). Für die einzelnen Werte ergibt sich:

$$\begin{split} 5 \left[k_0^3 - 3 \left(k_0 - \varphi_0 \right) \right] &= 5 \left[0,064 - 0,058\,482 \right] = 0,027\,589 \,, \\ 3 \,\varphi_0 \cdot k_0^4 &= 3 \cdot 0,380\,506 \cdot 0,0256 = 0,029\,223 \,, \\ 3 \,\varphi_0 \, k_0^4 - 5 \left[k_0^3 - 3 \left(k_0 - \varphi_0 \right) \right] = 0,001\,634 \,, \\ \varphi_0 \, k_0^2 &= 0,060\,881 \,, \\ \varphi_0 \, k_0^2 - 3 \left(k_0 - \varphi_0 \right) = 0,002\,399 \,. \end{split}$$

Damit wird, wenn $\frac{g_0}{k_0} = \frac{\gamma l}{2} = \frac{1.6 l}{2}$ ist: $X_b = H = \frac{1.6 \cdot 11^2}{120} \cdot \frac{1}{0.16} \cdot \frac{0.001 \cdot 634}{0.002 \cdot 399} = 6.87 \text{ t}.$

Für das Scheitelmoment ergibt sich nach Gleichung (185):

$$\begin{split} 9 \, k_0^{-2} (k_0 - \varphi_0) &= 1,44 \cdot 0,019 \, 494 = 0,028071 \,, \\ 5 \, [k_0^{-3} - 3 \, (k_0 - \varphi_0)] - 9 \, k_0^{-2} (k_0 - \varphi_0) = -0,000 \, 482 \,. \\ X_a &= M_s = -\frac{1,6 \cdot 11^3}{720 \cdot 0,4} \cdot \frac{0,000 \, 482}{0,002 \, 399} = -1,4875 \, \text{mt.} \\ X_c &= -\frac{1,6 \cdot 11^2}{192} \cdot \frac{1}{0,16} \cdot \frac{0,0256 - 2 \cdot 0,011 \, 580}{0,019 \, 494} = -0,79 \, \text{t.} \\ 18^* \end{split}$$

Das Kämpfermoment der belasteten Seite ist gegeben durch die Gleichung:

$$\begin{split} \boldsymbol{M}_{kr} &= -\frac{g \cdot f l^2}{12} + 1 \cdot X_a + f \cdot X_b - l \cdot X_c, \\ &= -\frac{1.6 \cdot 2.2 \cdot 11^2}{12} - 1.4875 + 2.2 \cdot 6.87 + 11 \cdot 0.79, \\ &= -13.19 \text{ mt.} \end{split}$$

An der unbelasteten Seite wird:

$$\begin{split} \boldsymbol{M}_{kl} &= \pm 1 \cdot X_a + f \cdot X_b + l \cdot X_c, \\ &= -1,4875 \pm 2,2 \cdot 6,87 - 11 \cdot 0,79 = 4,94 \, \mathrm{mt} \, . \end{split}$$

d) Bei beiderseitiger Überschüttung ist damit:

$$\begin{split} &X_a = M_s = -2 \cdot 1,\!4875 = -2,\!975 \; \mathrm{mt}\,, \\ &X_b = H \!=\! 2 \cdot 6,\!87 = \!13,\!74 \; \mathrm{t}\,. \\ &X_c = -0,\!79 + 0,\!79 = 0\,. \\ &M_{kl} \!=\! M_{kr} \!=\! M_k \!=\! -13,\!19 + 4,\!94 = \!-8,\!25 \; \mathrm{mt}\,. \end{split}$$

Letzterer Wert kann auch aus Gleichung (189) gewonnen werden. Man findet

$$\begin{split} M_{k} &= -\frac{1,6\cdot11^{3}}{180} \cdot \frac{3\cdot0,380\,506\cdot1,16\cdot5,16-0,4\,(13\cdot0,16+15)}{0,4\cdot0,002\,399} \\ &= -\frac{1,6\cdot11^{3}}{180} \cdot \frac{6,832\,668\,8-6,832}{0,4\cdot0,002\,399} \\ &= -\frac{1,6\cdot11^{3}\cdot0,000\,668\,8}{180\cdot0,4\cdot0,002\,399} \\ &= -8,25\,\mathrm{mt}. \end{split}$$

e) Als Temperaturänderung soll eine gleichmäßige Erwärmung um $t_0 = 15^0$ und eine ungleichmäßige Erwärmung um $\Delta t = 15^0$ bei $t_0 = 0$ berücksichtigt werden. Man findet nach Gleichung (191) bis (196) mit $d_s = 23$ cm:

1. Für $\Delta t = 15^{\circ}$,

$$H = \Delta t \cdot \frac{k_0^2}{d_s \cdot f} \cdot \varepsilon \cdot E \cdot J_s = \frac{15 \cdot 0.16}{23 \cdot 220} \cdot \varepsilon \cdot E \cdot J_s$$
$$= 0,000475 \ \varepsilon \cdot E \cdot J_s.$$

Für Beton ist $\epsilon = 0,000014$, $E = 200000 \text{ kg/cm}^2$, $J_s = \frac{100 \cdot 23^3}{12} = \sim 100\,000\,\mathrm{cm}^4 \,.$

Damit wird

$$H = 0,000\,475 \cdot 0,000\,014 \cdot 200\,000 \cdot 100\,000 = 133 \text{ kg}.$$

$$M_s = 0,000\,014 \cdot 15 \cdot \frac{200\,000 \cdot 100\,000}{23} = 183\,000 \text{ cmkg} = 1,83 \text{ mt};$$

$$M_k = M_s (1 + k_0^2) = 1,83 \cdot 1,16 = 2,12 \text{ mt}.$$

2. Für
$$t_0 = 15^{\circ}$$
 wird

$$H = \frac{12 \cdot 0,000014 \cdot 15 \cdot 2 \cdot 10^{10}}{1100^2} \cdot \frac{0,060881}{0,002399} = 1050 \text{ kg},$$

$$M_s = \frac{6 \cdot 1,4 \cdot 2 \cdot 10^5 \cdot 15}{1100} \cdot \frac{0,007798}{0,002399} = -74500 \text{ cmkg}$$

$$= -0,745 \text{ mt};$$

$$M_k = \frac{6 \cdot 1,4 \cdot 2 \cdot 10^5 \cdot 15}{1100} \cdot 0.4 \frac{0,060881 - 0,019494}{0,002399}$$

$$= 158000 \text{ cmkg} = 1,58 \text{ mt}.$$

f) Als Widerlagerverschiebungen sollen berücksichtigt werden: 1. $\delta_A = -5$ cm; 2. $\delta_H = 5$ cm; 3. $\vartheta_l = 10' = 0,002$ 91 im Bogenmaß, $\vartheta_r = 0$.

Es ergibt sich:

Zu 1.
$$M_k = \pm \frac{1}{2} \cdot \frac{0.064}{1100^2} \cdot \frac{1}{0.019494} \cdot 5 \cdot 2 \cdot 10^{10} = \pm 135500 \text{ cmkg}$$

= $\pm 1.355 \text{ mt.}$

Dies Moment nimmt linear zur Mitte hin ab und ist im Scheitel = 0. Das positive Vorzeichen gilt links.

Zu 2.
$$H = -\frac{6 \cdot 0.060\,881}{1100^3 \cdot 0.002\,399} \cdot 5 \cdot 2 \cdot 10^{10} = -12\,600\,\mathrm{kg} = -12.6\,\mathrm{t},$$
$$M_s = \frac{0.4}{1100^2} \cdot \frac{0.058\,482}{0.002\,399} \cdot 5 \cdot 2 \cdot 10^{10} = 806\,000\,\mathrm{cmkg} = 8.06\,\mathrm{mt},$$
$$M_k = -\frac{0.041\,387}{0.019\,494} \cdot 8.06 = -17.1\,\mathrm{mt}.$$
Zu 3.
$$H = \frac{3 \cdot 0.4}{1100^2} \cdot \frac{0.041\,387}{0.002\,399} \cdot 0.00\,291 \cdot 2 \cdot 10^{10} = 995\,\mathrm{kg}.$$
$$M_s = \frac{0.064}{0.002\,399} \cdot 0.002\,91 \cdot 2 \cdot 10^{10} = 995\,\mathrm{kg}.$$
$$M_s = \frac{0.064}{0.002\,399} \cdot 0.002\,91 \cdot 2 \cdot 10^{10} = 995\,\mathrm{kg}.$$

$$\begin{split} \Lambda_{e} &= -\frac{1}{0,019494} \cdot \frac{1}{2 \cdot 1100^{2}} \cdot 0,002\,91 \cdot 2 \cdot 10^{10} = -79 \text{ kg} \\ M_{k,l} &= -0,424 + 2,20 \cdot 0,995 + 11 \cdot 0,079 = 2,63 \text{ mt,} \end{split}$$

$$M_{k,r} = -0.424 + 2.20 \cdot 0.995 - 11 \cdot 0.079 = 0.89 \text{ mt.}$$

g) Es sollen noch nach den Gleichungen (206) bis (208) die Einflußlinien der Unbekannten X_a und X_b (d. i. M_s und H) und $A = X_c$ gerechnet werden. Dazu sind in gleicher Weise, wie vorher die Werte k_0 , φ_0 , ψ_0 , noch für die Zehntelpunkte die Werte

$$k = \frac{x}{l} \cdot k_0,$$

$$\varphi = \operatorname{arctg} k,$$

$$\psi = \ln (1 + k^2)$$

zu berechnen. Diese Berechnungen sind tabellarisch durchgeführt und die Resultate in der nachstehenden Tabelle zusammengestellt. Zum Vergleich sind dort auch die nach § 15 gefundenen Werte (s. Fig. 248, 249 und 251) angegeben.

M _s		H		A		10 8
nach § 14	nach § 15	nach § 14	nach § 15	nach § 14	nach § 15	107
0,998	1,030	-2,391	-2,345	0,5	0,5	0
0,512	0,542	-2,405	-2,295	(),424	$0,\!425$	1
0,147	0,176	-2,255	-2,16	0,350	0,352	2
-0,092	-0.076	2,009	-1,94	0,279	0,282	3
-0,226	-0.222	-1.702	-1,655	0,213	0,216	4
-0.287	-0.279	-1.346	-1.32	0,153	0,156	5
-0.262	-0.264	-0.971	-0.96	0.101	0,104	6
-0.192	-0.199	-0.608	-0.61	0.059	0.061	7
-0.099	-0.113	-0.272	-0.305	0.027	0.028	8
- 0,029	0,0345	-0,076	-0,085	0,007	0,007	9
0	0	0	0	0	0	10

Einflußlinien.

Die vorstehenden Rechnungen zeigen, daß man bei Verwertung der Formeln nach § 14 die Einzelwerte sehr genau ausrechnen muß; dies zeigen besonders die Rechnungen für die Zählerwerte der Gleichungen (185) und (190), wo sich die zwei bzw. vier ersten geltenden Ziffern bei der Subtraktion aufheben:

[0,027589 - 0,028071 in Gl. (185) und 6,8326688 - 6,832 in Gl. (190)].

Die Formeln des § 15 sind weniger empfindlich, so daß man im allgemeinen mit dem Rechenschieber auskommt. Außerdem ist die Rechnung einfacher und schneller durchzuführen, ohne daß die Resultate nennenswerte Abweichungen zeigen, wie die nachfolgende Rechnung zeigt.

2. Verwendung der Formeln nach § 15.

a) Einseitig gleichförmige Belastung q = 0.5 t/m. Nach Gleichung (223) ist $M_s = 0$.

Nach Gleichung (224):

$$M_k = \pm \frac{q \cdot l^2}{16} = \frac{0.5 \cdot 11^2}{16} = \pm 3.78 \text{ mt.}$$

Nach Gleichung (225) wird die Horizontalkraft:

$$H = -X_a = +\frac{q \cdot l^2}{4f} = +\frac{0.5 \cdot 11^2}{4 \cdot 2.2} = +6.875 \text{ t}.$$

tritt auf für $\frac{1}{2} \cdot \frac{x_0}{l} = 0,375$.

b) Bei Vollbelastung des ganzen Bogens ist überall M = 0, $H = 2 \cdot 6.875 = 13,75 \text{ t}.$

c) Bei einseitiger Überschüttung ergibt sich aus den Gleichungen (239) bis (243) mit $g_0 = \gamma_e \cdot f = 1, 6 \cdot 2, 2 = 3, 52$ t:

$$\begin{split} & H = -X_a = +\frac{1.6 \cdot 11^2}{28} = 6,91 \text{ t}, \\ & X_b = -\frac{3.52 \cdot 11^2}{105} = -4,05 \text{ mt}, \\ & X_c = 3.52 \cdot \frac{11^2}{48} = 8,87 \text{ mt}. \\ & M_k = X_b \pm X_c, \\ & M_{kl} = +4,82 \text{ mt}, \\ & M_{kr} = -12,92 \text{ mt}. \\ & M_s = -\frac{3.52 \cdot 11^2}{280} = -1,52 \text{ mt}. \end{split}$$

d) Bei beiderseitiger Überschüttung wird daraus:

$$\begin{array}{l} H = - X_a = 13,83 \ {\rm t}, \\ M_k = X_b = - 8,11 \ {\rm mt}, \\ M_s = - 3,04 \ {\rm mt}. \end{array}$$

Ein beliebiges Moment ist nach Gl. (248):

$$M_{x} = -\frac{3.52 \cdot 11^{2}}{420} \left[35 \left(\frac{x}{l} \right)^{4} - 30 \left(\frac{x}{l} \right)^{2} + 3 \right]$$

= -1,014 $\left[35 \left(\frac{x}{l} \right)^{4} - 30 \left(\frac{x}{l} \right)^{2} + 3 \right].$

Danach ist in Fig. 260 die Momentenfläche aufgetragen. Da die Belastung q' keine Momente bewirkt, so gilt auch diese Momentenfläche für die in Fig. 261 dargestellte Belastung ohne q.

e) Es soll noch die Momentenfläche für beiderseitige Überschüttung und einseitige Belastung mit q = 0.5 t/m angegeben werden. Sie setzt sich zusammen aus den Momentenflächen Fig. 258 und 260 und hat die in Fig. 262 dargestellte Form.

Die größten positiven Werte sind:

Links: M = 2,81 mt, Rechts: $M = \sim 4,70 \text{ mt}$.

Der größte negative Wert beträgt:

 $M_{kr} = -11,89$ mt.

f) Einfluß von Temperaturänderungen.

Es sollen folgende Temperaturänderungen in Rechnung gesetzt werden:

1.
$$\Delta t = 15^{\circ}, t_0 = 0;$$
 2. $\Delta t = 0, t_0 = 15^{\circ}.$

Zu 1. Es treten überall gleiche Momente auf von der Größe:

$$\begin{split} M &= \varepsilon \cdot \varDelta t \cdot \frac{EJ_s}{d_s} = 0,000\,014 \cdot 15 \cdot \frac{2 \cdot 10^{10}}{23} = 182\,500 \; \mathrm{cmkg} = 1,825 \; \mathrm{mt} \, . \\ \mathrm{Zu} \ 2. \ H &= -X_a = \frac{45}{4} \cdot \frac{1}{220^2} \cdot 0,000\,014 \cdot 15 \cdot 2 \cdot 10^{10} = 975 \; \mathrm{kg} , \\ M_s &= -\frac{15}{4} \cdot \frac{1}{220} \cdot 0,000\,014 \cdot 15 \cdot 2 \cdot 10^{10} = -71\,600 \; \mathrm{cmkg} \\ &= -0,716 \; \mathrm{mt} \, , \\ M_k &= 2 \cdot 0,716 = 1,432 \; \mathrm{mt} \, . \end{split}$$

g) Einfluß von Widerlagerverschiebungen.

Es sollen folgende Verschiebungen berücksichtigt werden:

1. $\delta_A = -5$ cm, 2. $\delta_H = 5$ cm, 3. $\vartheta_l = 10' = 0,00291$ im Bogenmaß. Man findet:

$$\begin{split} & \text{Zu } 1. \ H = 0, \\ & M_s = 0, \\ & M_k = \pm \frac{3}{2} \cdot \frac{1}{1100^2} \cdot 5 \cdot 2 \cdot 10^{10} = \pm 124\,000 \,\, \text{cmkg} = \pm 1,24 \,\, \text{mt.} \\ & \text{Zu } 2. \ H = X_a = \frac{45}{8} \cdot \frac{1}{1100 \cdot 220^2} \cdot 5 \cdot 2 \cdot 10^{10} = 11\,600 \,\, \text{kg} = 11,6 \,\, \text{t} \\ & M_s = \frac{15}{8} \cdot \frac{1}{1100 \cdot 220} \cdot 5 \cdot 2 \cdot 10^{10} = 775\,000 \,\, \text{cmkg} = 7,25 \,\, \text{mt,} \\ & M_k = -2 \cdot M_s = -14,5 \,\, \text{mt.} \\ & \text{Zu } 3. \ H = -\frac{15 \cdot 0,002\,91}{4 \cdot 220 \cdot 1100} \cdot 2 \cdot 10^{10} = 900 \,\, \text{kg,} \\ & M_s = -\frac{3}{4 \cdot 1100} \cdot 0,002\,91 \cdot 2 \cdot 10^{10} = -39\,700 \,\, \text{cmkg} \\ & = -0,397 \,\, \text{mt,} \\ & M_{kl} = \frac{9}{2 \cdot 1100} \cdot 2 \cdot 10^{10} \cdot 0,002\,91 = 238\,000 \,\, \text{cmtg} = 2,38 \,\, \text{mt,} \\ & .M_{kr} = \frac{1}{3}\,M_{kl} = 0,79 \,\, \text{mt.} \end{split}$$

h) Die Einflußlinien der Größen X, H und M_s sind durch die Tabellen in § 15 gegeben und dort aufgetragen (Fig. 248-251).

Vergleich der Ergebnisse.

In folgender Tabelle ist eine Übersicht über die verschiedenen Resultate für Scheitel- und Kämpfermomente und Horizontalschub gegeben.

	Par nach § 14	abel nach § 15	Belastungsart
H Ms Mkl Mkr	6,875 t 0 3,89 mt - 3,89 <i>n</i>	6,875 t 0 3,78 mt - 3,78 "	$\left. igg ight\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
H Ms Mkl Mkr	6,87 t - 1,49 mt 4,95 " - 13,19 "	$\begin{array}{r} 6,91 t \\ - 1,52 mt \\ 4,82 , \\ - 12,93 , \end{array}$	} Infolge einseitiger Überschüttung
$egin{array}{c} H \ M_s \ M_k \end{array}$	13,74 t - 2,98 mt - 8,25 "	13,83 t - 3,04 mt - 8,11 "	Infolge beiderseitiger Über- schüttung

Die geringen Unterschiede zwischen den Resultaten der §§ 14 und 15 lassen deutlich erkennen, wie gering der Einfluß der genaueren Berücksichtigung der Querschnittänderung ist, was auch in den in der Tabelle S. 278 für die Einflußlinien zu ersehen ist.
Kernpunktmomente.

Bei einer genaueren Gewölberechnung wird man im allgemeinen die Einflußlinien für die Kernpunktmomente bestimmen, da sich aus diesen die größten Spannungen ohne weiteres angeben lassen. Diese Einflußlinien sind natürlich genau so zu ermitteln, wie vorhin für die Momente der Systemachse. Auch sind die gleichen Formeln zu verwenden, wenn man die entsprechend veränderten Pfeilhöhen einsetzt.

Anhang zu § 16.

Kreisliniengewölbe.

Zum Vergleich mit diesen beiden Rechnungen soll nunmehr, wie schon erwähnt, ein Kreisgewölbe mit der gleichen Spannweite und dem gleichen Stich untersucht werden, und zwar sollen hierbei die Verschiebungen ermittelt werden, indem wir die Systemachse in 20 Einzelteile ds zerlegen, die wir als gradlinig betrachten. Die Momentenflächen für diese Streckenelemente ds sind dann ebenfalls als gradlinig zu betrachen.

Anmerkung. In gleicher Weise wie hier der Kreisbogen behandelt ist, kann natürlich auch jedes beliebig geformte Gewölbe untersucht werden. — Für das Kreisgewölbe selbst lassen sich auch geschlossene Ausdrücke herleiten. Jedoch sind sie in der äußeren Form nicht so einfach wie die des Parabelbogens. Da bei den normalen Stichverhältnissen ein wesentlicher Unterschied zwischen Kreis und Parabel nicht besteht, so kann man in den meisten Fällen mit letzterer rechnen.

Über die Querschnitte soll dieselbe Voraussetzung gelten wie beim ersten Beispiel, es ist also, wenn d_s die Stärke im Scheitel bedeutet:

$$d = \frac{d_s}{\cos \varphi}$$
 und $J = \frac{J_s}{\cos^3 \varphi}$.

Diese Werte sollen für jedes Streckenelement konstant sein. Dann ist (vgl. Fig. 263)

$$\frac{J_s}{J} = \cos^3 \varphi = \left(\frac{dx_i}{ds}\right)^3$$

Wählen wir das gleiche Grundsystem wie im § 14, so sind die Momente in einem Punkte i:

Infolge
$$X_a = 1: M_{i, a} = 1;$$

infolge $X_b = 1: M_{i, b} = y_i;$
" $X_i = 1: M_{i, c} = x_i.$

Die Werte ds, dx_i , x_i , y_i kann man zeichnerisch ermitteln; dabei ist jedoch große Genauigkeit erforderlich. Will man sie rechnerisch ermitteln, so bestimme man den Kreisradius aus der Bedingung:

$$f(2 r - f) = l^{2},$$

$$r = \frac{f^{2} + l^{2}}{2 f} = \frac{2,2^{2} + 11^{2}}{2 \cdot 2,2} = 28,6 \text{ m}.$$

Der halbe Zentriwinkel φ_0 des Bogens (s. Fig. 264) ergibt sich aus $\sin \varphi_0 = \frac{l}{r} = \frac{11}{28,6}$ zu $\varphi_0 = 22^0 37' 20'' =$

0,394783 im Bogenmaß.

Die halbe Bogenlänge ist also

28,6 · 0,394 783 == 11,29 m;

damit ist

ds = 1,129 m.

Aus der Gleichung $x_i = r \cdot \sin \varphi_i$ (vgl. Fig. 264) ist x_i zu berechnen, während sich y_i aus der

Gleichung ergibt: $y_i = r(1 - \cos \varphi_i)$. Die Werte φ_i ergeben sich. da zu jedem Streckenelement ds der Winkel $d\varphi = \frac{\varphi_0}{10} = 2^0 \, 15' \, 44''$ gehört, zu $\varphi_i = i \cdot d\varphi$. — Die Werte dx_i ergeben sich dann aus der Gleichung:

$$dx_i = x_i - x_{i-1}$$

Die so gefundenenen Resultate sind hier zusamengesstellt:

i	1	2	3	4	5	6	7	8	9	10
$\begin{array}{c} x_i \\ y_i \\ d x_i \end{array}$	1,129 0,022 1,129	$2,256 \\ 0,089 \\ 1,127$	3,379 0,200 1,124	4,498 0,356 1,118	5,609 0,555 1,111	6,711 0,798 1,102	7,803 1,085 1,092	8,883 1,415 1,080	9,949 1,787 1,066	$11,00 \\ 2,200 \\ 1,051$

Die Verschiebungen ergeben sich aus folgenden Gleichungen: Für ein Streckenelement i ist mit $M_{i,a} = 1$:

$$[a a]_i = ds \cdot \frac{J'}{J} = ds \left(\frac{dx_i}{ds}\right)^3 = \frac{dx_i^3}{ds^2}.$$

Insgesamt ist also für eine Bogenhälfte:

$$[a a] = \frac{1}{d s^2} \sum_{i=1}^{i=10} dx_i^3.$$

Für [ab] ergibt sich als Beitrag eines Elementes ds mit den Endordinaten $M_{i, a} = M_{i-1, a} = 1$, $M_{i, b} = y_i$, $M_{i-1, b} = y_{i-1}$:

$$[ab]_i = (y_{i-1} + y_i] \frac{ds}{2} \cdot \frac{J_s}{J} = \frac{1}{2} \frac{1}{ds^2} (y_{i-1} + y_i) dx_i^3;$$

also wird für eine Bogenhälfte:

$$[a b] = \frac{1}{2 ds^2} \cdot \sum_{i=1}^{i=10} (y_{i-1} + y_i) dx_i^3.$$

In gleicher Weise findet man:

$$[bb] = \sum_{i=1}^{i=10} \frac{ds}{6} [y_{i-1} (2y_{i-1} + y_i) + y_i (2y_i + y_{i-1})] \left(\frac{dx_i}{ds}\right)^3$$

Fig. 264.

$$\begin{split} [b\,b] &= \frac{1}{3\,d\,s^2} \sum_{i=1}^{i=10} [y_{i-1}^2 + y_{i-1}\,y_i + y_i^2]\,dx_i^3.\\ [c\,c] &= \sum_{i=1}^{i=10} \frac{d\,s}{6} [x_{i-1}\,(2\,x_{i-1} + x_i) + x_i\,(2\,x_i + x_{i-1})] \left(\frac{dx_i}{d\,s}\right)^3\\ &= \frac{1}{3\,d\,s^2} \sum_{i=1}^{i=10} [x_{i-1}^2 + x_{i-1}\cdot x_i + x_i^2]\,dx_i^3. \end{split}$$

Die rechnerische Durchführung geschieht am besten tabellarisch. Da sich Ungenauigkeiten, Abrundungsfehler, leicht addieren, ist zu empfehlen, einige Stellen mehr zu rechnen, als man im Resultat zu haben wünscht. Man findet folgende Werte:

$$\begin{bmatrix} a & a \end{bmatrix} = 20,92, \\ \begin{bmatrix} a & b \end{bmatrix} = 14,55, \\ \begin{bmatrix} b & b \end{bmatrix} = 18,75, \\ \begin{bmatrix} c & c \end{bmatrix} = 810,5, \\ \begin{bmatrix} b & b & 1 \end{bmatrix} = 18,75 - \frac{14,55^2}{20,92} = 8,65. \end{bmatrix}$$

Die Absolutglieder ermitteln wir

a) für einseitige gleichmäßig verteilte Last q = 0.5 t/m,

b) für Überschüttung,

c) für eine Einzellast P = 1t im Punkte i = 6.

a) Für einseitige gleichmäßig verteilte Last q = 0.5 t/m ist in der belasteten Hälfte;

$$\begin{split} M_{i,0} &= -q \cdot \frac{x_i^2}{2} \\ \text{Damit finden wir} \\ [a m] &= -\sum_{i=1}^{i=10} \frac{ds}{2} \left(q \cdot \frac{x_{i-1}^2}{2} + q \frac{x_i^2}{2} \right) \frac{J_s}{J} \\ &= -q \cdot \frac{1}{4 \, ds^2} \cdot \sum_{i=1}^{i=10} (x_{i-1}^2 + x_i^2) \, dx_i^3 , \\ [b m] &= -q \cdot \frac{1}{12 \, ds^2} \cdot \sum_{i=1}^{i=10} [y_{i-1} \left(2 x_{i-1}^2 + x_i^2 \right) + y_i \left(2 x_i^2 + x_{i-1} \right) \right] \cdot dx_i^3 . \\ [c m] &= -q \cdot \frac{1}{12 \, ds^2} \cdot \sum_{i=1}^{i=10} [x_{i-1} \left(2 x_{i-1}^2 + x_i^2 \right) + x_i \left(2 x_i^2 + x_{i-1}^2 \right) \right] \cdot dx_i^3 . \\ \text{Die tabellarische Durchrechnung ergibt:} \\ [a m] &= -203, 8 \cdot q , \\ [b m] &= -260, 7 \cdot q , \end{split}$$

$$\begin{bmatrix} c m \end{bmatrix} = -1659 \cdot q,$$

$$\begin{bmatrix} b m \cdot 1 \end{bmatrix} = -(260,7 - \frac{14,55}{20,92} \cdot 203,8) \cdot q = -118,9 q.$$

Damit ergeben sich folgende Werte für die Unbekannten:

$$\begin{split} X_{c} &= +\frac{1659}{810,5} \cdot 0.5 = 1.02 \text{ t.} \\ H &= X_{b} = \frac{118.9}{8.65} \cdot 0.5 = 6.88 \text{ t.} \\ M_{s} &= X_{a} = \frac{203.8}{20.92} \cdot 0.5 - \frac{14.55}{20.92} \cdot 6.88 = 4.872 - 4.780 = 0.092 \text{ mt.} \end{split}$$

An einer beliebigen Stelle der belasteten rechten Seite ist:

$$\begin{split} M_{x_i} &= -0.5 \cdot \frac{x_i^2}{2} + X_a + y_i \cdot X_b + x_i X_c \\ &= -\frac{x_i^2}{4} + 0.092 + y_i \cdot 6.88 + x_i \cdot 1.02 \\ &= -\left(\frac{x_i}{2}\right)^2 + 1.02 x_i + 6.88 y_i + 0.092 \end{split}$$

An der unbelasteten Seite wird:

 $M'_{x_{t}} = X_{a} + y_{i}: X_{b} - x_{i} \cdot X_{c} = 0,092 + 6,88 y_{i} - 1,02 x_{i}.$ Danach ist die Momentenfläche in Fig. 266 aufgetragen.

Die Nullpunkte ergeben sich in dem Abstandsverhältnis

$$\frac{x_0}{l} = \sim +0,745$$
 und $\frac{x_0'}{l} = \sim -0,736$

Die Größtwerte treten auf bei

Fig. 268.

und betragen

$$\begin{split} M_{max} &= 2,072 \text{ mt}, \qquad M_{min} = -2,05 \text{ mt}.\\ \text{An den Kämpfern ergeben sich die Momente:}\\ M_{kr} &= -\frac{0,5\cdot 11^2}{2} + 1,02\cdot 11 + 6,88\cdot 2,2 + 0,092 = -3,804 \text{ mt},\\ M_{kl} &= 0,092 + 6,88\cdot 2,2 - 1,02\cdot 11 = 4,008 \text{ mt}.\\ \text{b) Sind beide Seiten belastet, so wird (Fig. 267, 268):} \end{split}$$

$$X_a = 0,184 \text{ mt},$$

 $X_b = 13,76 \text{ t},$
 $X_c = 0.$

c) Für einseitige Überschüttung (rechts) findet man:

$$M_{i,0} = M_{i-1,0} - [Q_{i-1,0} \cdot dx_i + G_i \cdot \xi_i].$$
Darin ist:

$$G_{i} = \frac{y_{i-1} + y_{i}}{2} \cdot dx_{i} \cdot \gamma = 0,8 (y_{i} + y_{i-1}) dx_{i}.$$

$$Q_{i} = Q_{i-1} + G_{i},$$

$$\xi_{i} = \frac{y_{i+2} + y_{i-1}}{y_{i} + y_{i-1}} \cdot \frac{dx_{i}}{3}.$$

Sind danach die Momente M_0 tabellarisch berechnet, so findet man die Absolutglieder aus den Gleichungen

$$\begin{split} [a\ m] &= \frac{1}{2\ d\ s^2} \sum_{i=1}^{i=10} (M_{i-1,0} + M_{i,0}) dx_i^3, \\ [b\ m] &= \frac{1}{6\ d\ s^2} \sum_{i=1}^{i=10} [y_{i-1} (2\ M_{i-1,0} + M_{i,0}) + y_i (2\ M_{i,0} + M_{i-1,0})] dx_i^3. \\ [c\ m] &= \frac{1}{6\ d\ s^2} \sum_{i=1}^{i=10} [x_{i-1} (2\ M_{i-1,0} + M_{i,0}) + x_i (2\ M_{i,0} + M_{i-1,0})] dx_i^3. \\ \\ \text{Man findet:} \\ [a\ m] &= -70,25, \\ [b\ m] &= -107,95, \\ [c\ m] &= -636, \\ [b\ m.1] &= -107,95 + \frac{14,55}{20,92} \cdot 70,25 = -59,05. \\ &X_c = \frac{636}{810,5} = 0,785\ t. \\ &X_b = \frac{59,05}{8,65} = 6,83\ t. \\ &X_a = \frac{70,25}{20,92} - \frac{14,55}{20,92} \cdot \frac{59,05}{8,65} = 3,46 - 4,76 = -1,3\ \text{mt}, \\ &M_{kr} = -34,912 - 1,3 + 2,2 \cdot 6,83 + 11 \cdot 0,785 = -12,551\ \text{mt}; \\ &M_{kl} = -1,3 + 2,2 \cdot 6,83 - 11 \cdot 0,785 = 5,091\ \text{mt}. \\ &\text{d})\ \text{Bei\ beiderseitiger\ Uberschüttung\ wird:} \\ &M_s = X_a = -2,6\ \text{mt}, \\ &H = X_b = 13,66\ t, \\ &Y = 0 \end{split}$$

$$X_c = 0,$$

 $M_k = -7,46 \text{ mt}$

 $\mathbf{286}$

§ 17. Der vollwandige Zweigelenkbogen mit parabelförmiger Achse. 287

Das Moment an einer beliebigen Stelle i ist:

$$M_i = M_{i,0} + X_a + y_i X_b = M_{i,0} - 2.6 + 13.7 \cdot y_i$$

Danach ist die Momentenfläche (Fig. 270) aufgetragen.

e) Es soll auch hier der Fall voller Überschüttung mit einseitiger Nutzlast besprochen werden. Während jedoch vorher (s. S. 178, Fig. 261) die Belastung g' keine Momente ergab, sind diese hier von Null verschieden. Wir haben danach hier die folgenden Momentenflächen zu addieren:

- 1. Einseitige Nutzlast q = 0.5 t (Fig. 266),
- 2. Beiderseitige Belastung $g' = 0.23 \cdot 2.2 + 0.40 \cdot 1.6 = 1.146 \text{ t/m}$ (vgl. Fig. 268).

3. Beiderseitige Überschüttung (Fig. 270).

Die Momentenfläche für diesen Belastungsfall ist in Fig. 272 dargestellt.

§ 17. Der vollwandige Zweigelenkbogen mit parabelförmiger Achse.

Der Zweigelenkbogen ist ein einfach statisch unbestimmtes System. Er wird ausgebildet als gekrümmter Balken mit zwei festen Auflagergelenken, oder als Balken mit Zugband, wobei ein Auflager beweglich ist (Fig. 273).

Als Unbekannte X_a soll der Horizontalschub bzw. der Schub in Richtung der Verbindungslinie der beiden Auflagergelenke berechnet werden. Das Grundsystem ist also ein einfacher Balken. X_a ergibt sich aus der Gleichung

$$X_{a} = -\frac{[am]}{[aa]} = -\frac{\int M_{0}M_{a}ds \frac{J'}{J} + \int N_{0}N_{a}ds \frac{J'}{F}}{\int M_{a}^{2}ds \frac{J'}{J} + \int N_{a}^{2}ds \frac{J'}{F}} \quad . . (266)$$

Die Verschiebungen [am] und [aa] sind im allgemeinen in der Weise zu ermitteln, daß man die Balkenachse in einzelne geradlinige Teile zerlegt bzw. bei stetig gekrümmter Achse diese durch Aufteilung in annähernd geradlinige Teile in eine gebrochene verwandelt; für jeden Teil sind dann die Integralwerte zu ermitteln und die Resultate zu addieren.

Der Einfluß der Normalkräfte kann bei diesen Systemen bei geringem Pfeilverhältnis $\frac{f}{L}$ (s. Fig. 273) auf das Endresultat von nennens-

wertem Einfluß sein, jedenfalls soll man beim Bogen mit Zugband den Einfluß der Normalkräfte des Zugbandes nicht vernachlässigen, da er nur im Nenner vorkommt. Die Normalkräfte des Balkens sind auf Zähler und Nenner von Einfluß, so daß sie sich teilweise aufheben.

In besonderen Fällen, wenn die Achse eine mathematische Kurve ist,

ist es möglich, geschlossene Ausdrücke für X_a zu finden. Im folgenden sollen solche Ausdrücke für den parabelförmigen¹) Zweigelenkbogen gesucht werden, für den die Rechnung am einfachsten ist. Für kleinere Pfeilverhältnisse können die gefundenen Resultate auch auf Kreisbogen angewandt werden.

I. Herleitung geschlossener Ausdrücke für die Unbekannte X_a bei beweglicher Einzellast.

Die Gleichung der Parabel bezogen auf die Gerade AB als Abszissenachse und die Mittelsenkrechte als Ordinatenachse (s. Fig. 274) lautet:

$$y = f\left[1 - \left(\frac{x}{l}\right)^2\right] \dots \dots \dots \dots \dots \dots (267)$$

Die Verschiebungen [am] und [aa] ergeben sich aus den Gleichungen

$$EJ_s[am] = \int M_0 M_a ds \frac{J_s}{J} + \int N_0 N_a ds \frac{J_s}{F}$$
$$EJ_s[aa] = \int M_a^2 ds \frac{J_s}{J} + \int N_a^2 ds \frac{J_s}{F}.$$

¹) Auch für den kreisförmigen Zweigelenkbogen läßt sich der Wert für die Unbekannte X_a ohne Schwierigkeit berechnen. Das Ergebnis ist aber für die rechnerische Verwendung nicht so geeignet wie die im folgenden abzuleitenden Ausdrücke, und es soll daher hier auf die Untersuchung des kreisförmigen Bogens verzichtet werden.

§ 17. Der vollwandige Zweigelenkbogen mit parabelförmiger Achse. 289

a) Annahme eines nach den Auflagern abnehmenden Querschnitts $(J = J_s \cos \varphi)$.

Es sei J_s das Trägheitsmoment im Scheitel. — Man findet:

$$ds = \frac{dx}{\cos \varphi} \text{ (s. Fig. 274).}$$
$$\frac{J_s}{J} = \frac{1}{\cos \varphi}.$$
$$ds \frac{J_s}{J} = \frac{dx}{\cos^2 \varphi} = dx (1 + \text{tg}^2 \varphi).$$
$$ds \frac{J_s}{J} = d_x \left[1 + k_0^2 \left(\frac{x}{l}\right)^2 \right],$$

worin

$$k_0 = \operatorname{tg} \varphi_0 = \frac{2f}{l} \text{ (vgl. § 14)}.$$

Wir bestimmen zunächst die Verschiebungen aus den Momenten allein und geben die Einflüsse der Normalkräfte als Zusatzwerte an.

Das Moment M_a infolge $X_a = 1$ hat überall den Wert y. Es ergibt sich:

$$[aa] = \int y^2 ds \frac{J_s}{J} = \int_{-l}^{-l} f^2 \left[1 - \left(\frac{x}{l}\right)^2 \right]^2 \cdot \left[1 + k_0^2 \left(\frac{x}{l}\right)^2 \right] dx.$$

Die Auswertung dieses Integrales liefert:

$$[aa] = \frac{16}{105} lf^2 (7 + k_0^2) \dots (268)$$

Es soll noch der Einfluß der Normalkräfte angegeben werden. Mit $N_a = 1 \cdot \cos \varphi$ wird:

$$[aa]_N = \int N_a^2 ds \frac{J_s}{F} = \int N_a^2 ds \frac{J_s}{J} \cdot \frac{J}{F} = \int_{-l}^{-l} dx \frac{J}{F}.$$

Nehmen wir näherungsweise $\frac{J}{F}$ konstant an, so wird:

$$[aa]_{N_1} = 2l \frac{J_s}{F_s} \quad \dots \quad \dots \quad \dots \quad (269)$$

Hat der Bogen ein Zugband, so kommt dazu noch der Einfluß der Normalkraft Z = -1 im Zugband; es wird:

Pirlet, Statik. II. 2.

Für eine Einzellast im Abstande ξ von der Mitte (Fig. 275) ergibt sich als Moment im Abstande x:

$$\begin{split} M_0 &= \frac{l}{2} \left(1 + \frac{x}{l} \right) \left(1 - \frac{\xi}{l} \right) \text{für } x < \xi \,, \\ M_0 &= \frac{l}{2} \left(1 - \frac{x}{l} \right) \left(1 + \frac{\xi}{l} \right) \text{für } x > \xi \,. \end{split}$$

Damit ergibt sich:

$$\begin{bmatrix} am \end{bmatrix} = \int_{x=-l}^{z} \frac{l}{2} \left(1 + \frac{x}{l}\right) \left(1 - \frac{\xi}{l}\right) \cdot f\left[1 - \left(\frac{x}{l}\right)^2\right] \left[1 + k_0^2 \left(\frac{x}{l}\right)^2\right] dx$$

$$= \int_{x=l}^{x=l} \frac{l}{2} \left(1 - \frac{x}{l}\right) \left(1 + \frac{\xi}{l}\right) \cdot f\left[1 - \left(\frac{x}{l}\right)^2\right] \left[1 + k_0^2 \left(\frac{x}{l}\right)^2\right] dx.$$

Die Auswertung dieser Integrale liefert nach gehöriger Vereinfachung:

$$[am] = \frac{fl^2}{60} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left\{ 5 \left[5 - \left(\frac{\xi}{l}\right)^2 \right] + k_0^2 \left[3 + 3 \left(\frac{\xi}{l}\right)^2 - 2 \left(\frac{\xi}{l}\right)^4 \right] \right\}.$$

Damit ergibt sich bei Vernachlässigung der Normalkräfte:

$$X_{a} = -\frac{7}{64} \frac{l}{f} \frac{\left[1 - \left(\frac{\xi}{l}\right)^{2}\right] \left\{5 \left[5 - \left(\frac{\xi}{l}\right)^{2}\right] + k_{0}^{2} \left[3 + 3 \left(\frac{\xi}{l}\right)^{2} - 2 \left(\frac{\xi}{l}\right)^{4}\right]\right\}}{7 + k_{0}^{2}}$$
der

oder

worin

$$K_{1} = \frac{35}{32} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right] \left[5 - \left(\frac{\xi}{l}\right)^{2} \right]$$

$$K_{2} = \frac{7}{32} \left[1 - \left(\frac{\xi}{l}\right)^{2} \right] \left[3 + 3 \left(\frac{\xi}{l}\right)^{2} - 2 \left(\frac{\xi}{l}\right)^{4} \right] \right\} \quad . . (272)$$

Die Werte K_1 und K_2 sind von der Form des Systems unabhängige Werte und können für verschiedene Abstandsverhältnisse $\frac{\xi}{l}$

ein für allemal berechnet werden. Sie sind für die Zehntel in folgender Tabelle angegeben:

$\frac{\xi}{l} =$	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
K ₁	5,469	5,403	5,208	4,887	4,441	3,896	3,248	2,516	1,717	0,871	0
K_2	0,656	0,656	0,655	0,648	0,630	0,595	0,535	0,434	0,323	0,172	0

Mit diesen Werten ist die Einflußlinie für X_a bei gegebenem Werte $k_0 = \frac{2f}{l}$ schnell aufzutragen.

Der Einfluß der Normalkräfte auf den Wert [am] ergibt sich wie folgt:

Es ist:

$$\begin{split} N_0 \!=\! \frac{1}{2} \! \left(1 \!-\! \frac{x}{l} \right) \sin \varphi, \; \text{für } x \!<\! \xi, \\ \text{bzw. } N_0 \!=\! -\frac{1}{2} \left(1 \!+\! \frac{x}{l} \right) \sin \varphi, \; \text{für } x \!>\! \xi. \end{split}$$

Da $N_a = 1 \cdot \cos \varphi$ ist, so erhält man:

$$[am]_{N} = \int_{-l}^{+\frac{z}{2}} \frac{1}{2} \left(1 - \frac{x}{l}\right) \sin \varphi \, \cos \varphi \, ds \, \frac{J_{s}}{F}$$
$$+ -\int_{\frac{z}{2}}^{l} \frac{1}{2} \left(1 + \frac{x}{l}\right) \sin \varphi \, \cos \varphi \, ds \, \frac{J_{s}}{F}.$$

Mit $ds \frac{J_s}{F} = ds \frac{J_s}{J} \cdot \frac{J}{F} = \frac{dx}{\cos^2 \varphi} \cdot \frac{J}{F}$ wird:

$$[am]_{N} = \frac{1}{2} \int_{-l}^{+\xi} \left(1 - \frac{x}{l}\right) \operatorname{tg} \varphi \, dx \frac{J}{F} - \frac{1}{2} \int_{\xi}^{l} \left(1 + \frac{x}{l}\right) \operatorname{tg} \varphi \, dx \frac{J}{F}$$
$$= \frac{l}{2} k_{0} \frac{J}{F} \left\{ \int_{-l}^{+\xi} \frac{x}{l} \left(1 - \frac{x}{l}\right) d\left(\frac{x}{l}\right) - \int_{\xi}^{l} \left(1 + \frac{x}{l}\right) \frac{x}{l} \, d\frac{x}{l} \right\}$$
$$[am]_{N} = \frac{l}{6} k_{0} \left[5 - 3 \left(\frac{\xi}{l}\right)^{2} \right] \frac{J_{s}}{F_{s}} \dots \dots (273)$$

Im Zugband ist die Normalkraft $N_0 = 0$, so daß sich davon kein Einfluß auf [am] ergibt.

Bei Berücksichtigung der Normalkräfte wird also die Gleichung für X_a lauten:

Vollwandige Systeme mit gekrümmten Achsen.

$$X_{a} = -\frac{\frac{fl^{2}}{60} \left[1 - \left(\frac{\xi}{l}\right)^{2}\right] \left\{5 \left[5 - \left(\frac{\xi}{l}\right)^{2}\right] + k_{0}^{2} \left[3 + 3\left(\frac{\xi}{l}\right)^{2} - 2\left(\frac{\xi}{l}\right)^{4}\right]\right\} + \frac{l}{6} k_{0} \left[5 - 3\left(\frac{\xi}{l}\right)^{2}\right] \frac{J_{s}}{F_{s}}}{\frac{16}{105} lf^{2} (7 + k_{0}^{2}) + 2 l \frac{J_{s}}{F_{s}} + 2 l \frac{J_{s}}{F_{s}}} (274)$$

Das dritte Glied des Nenners kommt nur beim Bogen mit Zugband in Frage.

b) Annahme eines nach den Auflagern zunehmenden Querschnitts $\left(J = \frac{J_s}{\cos \varphi}\right)$.

Die der vorstehenden Ableitung zugrunde gelegte Annahme über die Querschnittänderung entspricht einem Bogen, dessen Querschnitt zum Auflager hin abnimmt und im Scheitel ein Maximum hat.

Wie gering der Einfluß über die Annahme der Querschnittsänderung ist, zeigt sich, wenn man den Wert X_a ermittelt für den Fall, daß

$$J = J_s \cdot \frac{1}{\cos \varphi}$$

ist, der Bogenquerschnitt also im Scheitel ein Minimum hat. In diesem Falle wird nämlich für eine Einzellast 1 nach Fig. 275: +l

$$\begin{bmatrix} aa \end{bmatrix} = \int y^2 ds \frac{J_s}{J} = \int y^2 dx = \int_{-l}^{l} f \left[1 - \left(\frac{x}{l}\right)^2 \right] dx$$

$$\begin{bmatrix} aa \end{bmatrix} = \frac{16}{15} lf^2$$

$$\begin{bmatrix} am \end{bmatrix} = \int_{x=-l}^{l} \frac{l}{2} \left(1 + \frac{x}{l} \right) \left(1 - \frac{\xi}{l} \right) f \left[1 - \left(\frac{x}{l}\right)^2 \right] dx$$

$$+ \int_{x=\xi}^{l} \frac{l}{2} \left(1 - \frac{x}{l} \right) \left(1 + \frac{\xi}{l} \right) f \left[1 - \left(\frac{x}{l}\right)^2 \right] dx$$

$$\begin{bmatrix} am \end{bmatrix} = \frac{fl^2}{12} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[5 - \left(\frac{\xi}{l}\right)^2 \right].$$

$$X_a = -\frac{[am]}{[aa]} = -\frac{5}{64} \frac{l}{f} \left[1 - \left(\frac{\xi}{l}\right)^2 \right] \left[5 - \left(\frac{\xi}{l}\right)^2 \right].$$

$$X_a = -\frac{K_1}{7 \cdot k_0} \dots \dots \dots (276)$$

oder

Zum Vergleich dieses Resultates mit Gleichung (271) schreiben wir letztere ir. der Form:

$$X_a = -\frac{K_1}{7 \cdot k_0} \cdot \frac{7 + 7 \frac{K_2}{K_1} k_0^2}{7 + k_0^2} \dots \dots \dots (271a)$$

292

§ 17. Der vollwandige Zweigelenkbogen mit parabelförmiger Achse. 293

Gl. (271 a) unterscheidet sich von Gl. (276) durch den Faktor:

$$d = \frac{7 + 7 \frac{K_2}{K_1} k_0^2}{7 + k_0^2}.$$

Dieser Quotient weicht nur ganz unwesentlich vom Wert 1 ab. Denn der Wert: $(5)^2 = (5)^4$

$$7 \frac{K_2}{K_1} = \frac{7}{5} \frac{3+3\left(\frac{\xi}{l}\right)^2 - 2\left(\frac{\xi}{l}\right)^2}{5-\left(\frac{\xi}{l}\right)^2}$$

schwankt zwischen 1,4 und 0,84. Der Wert tg $\varphi_0 = k_0 = \frac{2f}{l}$ schwankt bei den üblichen Pfeilverhältnissen $\frac{f}{2l} = \frac{1}{6}$ bis $\frac{1}{10}$ zwischen 0,667 bis 0,4. Im äußersten Falle würde also:

$$d = \frac{7 + 1,4 \cdot 0,667^2}{7 + 0,667^2} = 1,035,$$

d. h. die größte Abweichung des Wertes der Gl. (271 a) von der Gl. (275) beträgt etwa $3^{1}/_{2}^{0}/_{0}$.

Mit Rücksicht auf diesen Umstand sollen die folgenden Entwicklungen der Einfachheit wegen auf Gl. (275) aufbauen.

II. Untersuchung besonderer Belastungsfälle.

Es sollen nun einige Fälle ruhender Belastung besprochen werden.

a) Für eine Gruppe von Einzellasten kann der Wert X_a ohne weiteres gefunden werden, indem man den für eine Einzellast P = 1 gefundenen Wert [Gl. (271) oder (275)] auf jede Einzellast anwendet. Man findet also:

$$X_{a} = -\frac{5}{64} \cdot \frac{l}{f} \sum \left\{ \left[1 - \left(\frac{\xi}{l}\right)^{2} \right] \left[5 - \left(\frac{\xi}{l}\right)^{2} \right] \right\} = -\frac{\Sigma K_{1}}{7 k_{0}} \right\}$$

$$X_{a} = -\frac{\Sigma K_{1} + k_{0}^{2} \Sigma K_{2}}{k_{0} (7 + k_{0}^{2})}$$
(277)

b) Für eine streckenweise Belastung mit gleichförmig ver teilter Last p (Fig. 276) finden wir X_a wie folgt:

Auf der Strecke dx, zwischen ξ und ξ' ist die Last gleich p dx. Multiplizieren wir damit den Wert Gl. (275) und integrieren von ξ bis ξ' , so erhält man:

Vollwandige Systeme mit gekrümmten Achsen.

~,

$$X_{a} = -\frac{5}{64} \frac{l}{f} \int_{\xi}^{\xi} \left[1 - \left(\frac{x}{l}\right)^{2} \right] \left[5 - \left(\frac{x}{l}\right)^{2} \right] p \, dx$$
$$X_{a} = -\frac{1}{64} \frac{p l^{2}}{f} \left\{ \frac{\xi'}{l} \left[5 - \left(\frac{\xi'}{l}\right)^{2} \right]^{2} - \frac{\xi}{l} \left[5 - \left(\frac{\xi}{l}\right)^{2} \right]^{2} \right\}$$
(278)

c) Daraus findet man für Belastung des halben Bogens mit $\xi = 0, \ \xi' = l$:

d) Maximalmomente bei gleichförmiger Belastung einer Bogenhälfte.

In der Regel betrachtet man, insbesondere bei Bogendächern die einseitige Belastung mit Schnee und Wind, wobei auch für letzteren ein vertikaler Belastungszuschlag gemacht wird, als den ungünstigsten Fall. Es sollen deshalb für diesen Fall die größten Momente und Normalkräfte angegeben werden.

Bei Belastung der rechten Bogenhälfte (Fig. 277) ist nach (Gl. 279)

-

$$X_{a} = -\frac{pL^{2}}{16f} = -\frac{pl^{2}}{4f}.$$

Der senkrechte Auflagerdruck bei A ist:

$$A = \frac{pL}{8} = \frac{pl}{4}.$$

Der Neigungswinkel der Resultierenden R ist also:

$$\operatorname{tg} \alpha' = \frac{A}{H} = \frac{pL}{8} : \frac{pL^2}{16f} = \frac{2f}{L} = \frac{f}{l}.$$

Die Resultierende geht also durch den Scheitelpunkt des Bogens, d. h. es ist dort das Moment = 0.

Für ein Moment in der belasteten Bogenhälfte haben wir die Gleichung:

294

$$\begin{split} M &= M_0 + M_a \cdot X_a \\ &= \frac{3}{8} p L \left(l - x \right) - p \frac{\left(l - x \right)^2}{2} - \frac{p L^2}{16 f} y \\ &= \frac{3}{4} p l^2 \left(1 - \frac{x}{l} \right) - \frac{p l^2}{2} \left(1 - \frac{x}{l} \right)^2 - \frac{p l^2}{4} \left[1 - \left(\frac{x}{l} \right)^2 \right] \\ &= \frac{p l^2}{4} \cdot \frac{x}{l} \left(1 - \frac{x}{l} \right). \end{split}$$

Dieser Wert wird ein Maximum, wenn $\frac{dM}{dx} = 0$ wird, also:

$$\frac{pl^2}{4} \left(\frac{1}{l} - \frac{2x}{l^2} \right) = 0,$$
$$\frac{x}{l} = \frac{1}{2}.$$

Also wird M_{max} mit $\frac{x}{l} = \frac{1}{2}$:

$$M_{max} = \frac{p l^2}{16} = \frac{p L^2}{64}$$
 (280)

Für die unbelastete Bogenhälfte wird:

$$M = \frac{pL}{8} \left(l + x \right) - \frac{pl^2}{4} \left[1 - \left(\frac{x}{l} \right)^2 \right]$$
$$= \frac{pl^2}{4} \left(1 + \frac{x}{l} \right) \cdot \frac{x}{l}.$$

Dort wird also bei $\frac{l}{2}$ das Größtmoment:

Die Normalkräfte in diesen Punkten ergeben sich wie folgt: Der Neigungswinkel in den Viertelspunkten hat die Tangente:

$$\operatorname{tg} \varphi = \frac{2\left(f-y\right)}{\frac{l}{2}};$$

da hier $y = f\left(1 - \frac{1}{4}\right) = \frac{3}{4}f$ ist, so wird:

$$\operatorname{tg} \varphi = \frac{f}{l} = \operatorname{tg} \alpha'.$$

Die Tangente ist also parallel der Resultierenden *R*. Die Größe dieser Resultierenden ist als Normalkraft in dem Punkte bei $\frac{l}{2}$ wirksam; sie beträgt:

$$N_{max} = -R = -\sqrt{\left(\frac{pl^{2}}{4f}\right)^{2} + \frac{pl^{2}}{4}} = -\frac{pl}{4f}\sqrt{l^{2} + f^{2}} \\ = -\frac{pl^{2}}{4f}\sqrt{1 + \left(\frac{f}{l}\right)^{2}} = -X_{a}\sqrt{1 + \left(\frac{f}{l}\right)^{2}} \end{cases}$$
(282)

Für die belastete Bogenhälfte ist die Größe der Normalkraft zu ermitteln aus den Auflagerreaktionen und der Last $\frac{pl}{2}$ auf dem letzten Bogenviertel; man erhält den gleichen Wert, da der senkrechte Auflagerdruck *B* und die Last $\frac{pl}{2}$ eine Resultierende gleich dem Auflagerdruck *A* ergeben:

$$\frac{3}{4}pl - \frac{pl}{2} = \frac{pl}{4}.$$

Es ergibt sich also die gleiche Normalkraft wie in der unbelasteten Bogenhälfte.

d) Bei Vollbelastung des ganzen Bogens findet man mit $\xi = -l, \ \xi' = l$ nach Gl. (278):

$$X_a = -\frac{pl^2}{2f} = -\frac{pL^2}{8f} \dots \dots \dots \dots (283)$$

Dieses Resultat war zu erwarten; wählt man nämlich einen Dreigelenkbogen als Grundsystem, so ergeben sich bei parabelförmiger Achse keine Momente M_0 , da das Seilpolygon, d. i. die Momentenfläche, ebenfalls bei Vollbelastung eine Parabel durch die Gelenke darstellt, also mit der Systemachse zusammenfällt. Es ergibt sich damit der Zählerwert [am] = 0 und infolgedessen auch das unbekannte Moment X = 0. Der Zweigelenkbogen wirkt also bei dieser Belastung wie ein Dreigelenkbogen, der Horizontalschub muß also auch der gleiche sein wie bei diesem System.

e) Der Einfluß der Temperaturänderungen auf das Absolutglied ergibt sich aus der Gleichung:

$$[at] = E \cdot J_s \cdot \varepsilon \left\{ \int \frac{\Delta t}{h} M_a ds + \int N_a t_0 ds \right\}.$$

Darin ist Δt der Temperaturunterschied zwischen oberem und unterem Querschnittsrand, h die Höhe des Querschnitts, t_0 die Temperaturänderung in der Stabachse. Sind Δt und t_0 für den ganzen Bogen konstant und setzt man wieder

$$ds \frac{J_s}{J} = dx$$
,

so erhält man

$$\begin{bmatrix} at \end{bmatrix} = E \cdot J_s \cdot \varepsilon \left\{ \frac{\Delta t}{h} \int_{-l}^{+l} f\left(1 - \frac{x^2}{l^2}\right) dx + t^0 \int dx \right\} \\ \begin{bmatrix} at \end{bmatrix} = E \cdot J_s \cdot \varepsilon \left\{ \frac{\Delta t}{h} \cdot \frac{2fl}{3} + t_0 \cdot l \right\}$$
(284)

296

§ 18. Übungsaufgabe.

Der in umstehender Fig. 278 dargestellte Dachbinder sei ein Bogen mit polygonaler Achsenführung aus Eisenbeton mit einem Zugband aus Eisen. Das System ist statisch einfach unbestimmt und nach den zu Beginn des § 17 gemachten Angaben zu berechnen.

Es sei:

$$\begin{array}{l} P_1 = 20 \ {\rm t\ in\ den\ Punkten\ 3,} \\ P_2 = 6,3 \ {\rm t\ ,} \quad , \quad , \quad 1,\ 3,\ 4, \\ g = 1,2 \ {\rm t/m\ (Horizontal projektion),} \\ p = 1,4 \ {\rm t/m\ (} \quad , \quad). \end{array}$$

Als Überzählige X_a wählen wir die Kraft in dem Zugband. Das Grundsystem ist dann ein Balken auf zwei Stützen. Die Überzählige X_a ergibt sich in der Form:

$$X_a = -\frac{[am]}{[aa]}.$$

Unter Vernachlässigung des Beitrages der Querkraft haben wir für eine Verschiebung $[\imath k]$ die Gleichung:

$$[ik] = \int M_i M_k \frac{ds}{E \cdot J} + \int N_i N_k \frac{ds}{EF}.$$

Da der Querschnitt des Binders verhältnismäßig groß ist, können wir den Einfluß seiner Normalkräfte vernachlässigen, jedoch wollen wir die Normalkräfte des Zugbandes berücksichtigen. Da dieses bei äußerer Belastung des Grundsystems spannungslos ist, ergibt sich für X_a die Gleichung:

$$X_{a} = -\frac{\int M_{0} M_{a} \frac{ds}{E_{b} J_{b}}}{\int M_{a}^{2} \frac{ds}{E_{b} J_{b}} + \int N_{a}^{2} \frac{ds}{E_{e} F_{e}}},$$

oder, wenn wir die rechte Seite mit $E_b \cdot J_b$ erweitern,

$$X_a = -\frac{\int M_0 M_a ds}{\int M_a^2 ds + \int N_a^2 \frac{E_b}{E_e} \cdot \frac{J_b}{F_e} ds}$$

Hierin bedeuten E_b den Elastizitätsmodul und J_b das konstant angenommene Trägheitsmoment des Betonbogens, E_e den Elastizitätsmodul und F_e den Querschnitt des eisernen Zugbandes.

Es werde angenommen:

$$\frac{E_b}{E_e} = \frac{1}{10}; \quad \frac{J_b}{F_e} = \sim 4.$$

Um die M_a -Fläche zu erhalten, berechnen wir die in den Punkten 1, 2, 3, 4 (vgl. Fig. 278) infolge $X_a = 1$ auftretenden Momente. Wir erhalten

Hiermit ergibt sich die M_a -Fläche (Fig. 279).

Die Normalkraft im Zugband ist $N_a = +1$ t. Wir erhalten also für den Nenner:

$$[aa] = [aa]_{M} + [aa]_{N},$$

$$[aa]_{M} = \int M_{a}^{2} ds = 2 \left\{ \frac{6,32}{3} \cdot 3, 1^{2} + \frac{6,27}{6} \left[3, 1 \left(2 \cdot 3, 1 + 3, 5 \right) \right. \right. \right. \\ \left. + 3, 5 \left(2 \cdot 3, 5 + 3, 1 \right) \right] \right\} = 177,2,$$

$$[aa]_{N} = \int N_{a}^{2} ds \frac{E_{b} \cdot J_{b}}{E_{e} \cdot F_{e}} = 1 \cdot 23,50 \cdot \frac{1}{10} \cdot 4 = 9,4.$$

Insgesamt: [aa] = 186, 6.

Wir berechnen nun die infolge der äußeren Lasten in den Punkten 0 bis 4 auftretenden Momente M_0 . Der Auflagerdruck A berechnet sich zu:

$$A = 3,5 \cdot 1,2 + 8,25 \cdot 2,6 + 20 + 2\frac{1}{2} \cdot 6,3 = 4,20 + 21,45 + 20 + 15,75 = 61,4 \text{ t}.$$

Damit erhalten wir die Momente:

 im Punkte 4: $M_{0_4} = 61, 4 \cdot 11, 75 - 2, 6 \cdot 8, 25 \left(\frac{8, 25}{2} + 3, 5 \right)$

$$\frac{1,2\cdot 3,50^2}{2} - 6,3\cdot 7,85 - 26,3\cdot 3,50 = 408,5 \text{ mt}.$$

Mit diesen Werten erhalten wir die in Fig. 280 dargestellte M_0 -Fläche.

Wir erhalten somit für den Zählerwert [am]:

 $\frac{1}{2} \int M_0 M_a ds = -\frac{4,48}{3} \cdot 2, 2 \cdot 219,7,$

$$-\frac{1,84}{6} [219,7(2 \cdot 2,2 + 3,1) + 288,5(2 \cdot 3,1 + 2,2)],$$

$$-\frac{2,76}{6} [288,5(2 \cdot 3,1 + 3,276) + 391,2(2 \cdot 3,276 + 3,1)].$$

$$-\frac{3,51}{6} [391,2(2 \cdot 3,276 + 3,5) + 408,5(2 \cdot 3,5 + 3,276)],$$

$$= -9720,$$

$$[am] = -19440.$$

Demnach wird:

$$X_a = + \frac{19440}{186,6} = + 104,2 \text{ t.}$$

Da X_a bekannt ist, so lassen sich nun die im Bogen auftretenden Momente leicht angeben. Es ist im Punkte 1: $M_1 = M_{0_1} + S_a \cdot X_a = 219,7 - 2,2 \cdot 104,2 = -9,6$ mt, im Punkte 2: $M_2 = 288,5 - 3,1 \cdot 104,2 = -34,5$ mt, im Punkte 3: $M_3 = 391,2 - 3,276 \cdot 104,2 = +50$ mt, im Punkte 4: $M_4 = 408,5 - 3,5 \cdot 104,2 = +44$ mt.

Die in den Punkten 0, 1, 2 auftretenden Normalkräfte sind bei einem Winkel $\alpha = 29^{\circ}30'(\cos \alpha = 0.87, \sin \alpha = 0.49)$

300 Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

Zwischen den Punkten 2 sind die Normalkräfte annähernd gleich X_a , also: -- / ... --. . . .

$$N_2' = N_3 = N_4 = \sim 104 \text{ t.}$$

Die im Bogen auftretenden Querkräfte sind:
im Punkte 0: $Q_0 = -104,2 \sin \alpha + 61,4 \cos \alpha = +2,2 \text{ t.}$
links vom Punkte 1: $Q_1 = 2,2 - 3,9 \cdot 2,6 \cdot \cos \alpha = -6,6 \text{ t.}$
rechts " " 1: $Q_1' = -6,6 - 6,3 \cos \alpha = -12,1 \text{ t.}$
links vom Punkte 2: $Q_2 = -12,1 - 1,6 \cdot 2,6 \cdot \cos \alpha = -15,7 \text{ t.}$
rechts " " 2: $Q_2' = 26,3 + \frac{6,3}{2} + 2,75 \cdot 2,6 + 3,5 \cdot 1,2 = 40,8 \text{ t.}$
links vom Punkte 3: $Q_3 = 40,8 - 2,75 \cdot 2,6 = 33,65 \text{ t.}$
rechts " " 3: $Q_3' = 33,65 - 26,3 = 7,35 \text{ t.}$
links vom Punkte 4: $Q_4 = 7,35 - 4,2 = 3,15 \text{ t.}$
Damit kann der Bogen dimensioniert werden.

III. Abschnitt.

Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

§ 19. Armierte Balken.

1. Allgemeine Grundlagen der Berechnung.

Häufig wird ein biegungsfester Balken dadurch verstärkt, daß ein besonderer Zug- oder Druckgurt nach Fig. 281 angeschlossen wird.

γ

Diese Armierung kann man sich so entstanden denken, daß der Reihe nach Knotenpunkt I mit den Stäben 1 und 2, der Knotenpunkt II mit den Stäben 3 und 4,

Punkt III mit den Stäben 5 und 6 angeschlossen werden; sodann muß der Stab 7 eingefügt werden. Durch diese Armierung kommt also eine statisch überzählige Größe in das System.

War der einfache Balken statisch bestimmt, so ist er nunmehr einfach statisch unbestimmt. Die Behandlung solcher einfach statisch unbestimmter Balken soll im folgenden besprochen werden.

a) Wahl der Unbekannten $X_a \cdot -$ Beanspruchung des Grundsystems infolge $X_a = 1$ und der äußeren Lasten.

Die Normalkraft in dem angegliederten Gurt hat überall die gleiche Horizontalkomponente. Dies erkennt man, wenn man auf einen der Knotenpunkte I, II, III die Gleichgewichtsbedingung anwendet, daß die Summe der Horizontalkomponenten gleich 0 sein muß. Diese Horizontalkomponente soll als Überzählige X_a ermittelt werden.

Das Grundsystem eines solchen Balkens erhalten wir, indem wir den angegliederten Gurt an einer beliebigen Stelle durchschneiden

(Fig. 282). Die in dem durchschnittenen Stabe wirkende Normalkraft ist dann, wenn ihre Horizontalkomponente X_a ist, gleich $X_a \cdot \frac{1}{\cos a}$.

Die Unbekannte X_a ergibt sich aus der Gleichung:

$$X_{a} = -\frac{[am]}{[aa]}.$$

Darin ist, wenn J das Trägheitsmoment des Balkens l darstellt:

$$EJ \cdot [am] = \int M_0 M_a ds,$$

$$EJ \cdot [aa] = \int M_a^2 ds + \int N_a^2 ds \frac{J}{F}.$$

 M_0 sind die Momente infolge der äußeren Belastung, M_a und N_a sind Momente und Normalkräfte infolge $X_a = 1$.

Die Belastung $X_a = 1$ am Grundsystem ruft keine Auflagerreaktionen hervor, sie bewirkt jedoch Normalkräfte in den Gurten (Z_a) : in den Pfosten (V_a) sowie im Balken (L_a) und durch die Normalkräfte Z_a und V_a Momente M_a im Balken l. Die Normalkräfte sind:

$$Z_{i,a} = \frac{1}{\cos \alpha_i}; \quad L_a = -1; \quad V_{i,a} = Z_{i,a} \sin \alpha_i - Z_{i+1,a} \sin \alpha_{i+1}$$
$$= \operatorname{tg} \alpha_i - \operatorname{tg} \alpha_{i+1}.$$

Um die an dem Balken wirkenden Momente M_a zu finden, denken wir uns das System an einer Stelle etwa im Felde λ_i geschnitten und die dort wirksamen Spannkräfte als äußere Kräfte angebracht, wobei die Gurtkraft in zwei Komponenten zerlegt wird (Fig. 283). Aus den Gleichgewichtsbedingungen ergibt sich:

 $M = -X_a \cdot y = -y$. Die M_a -Fläche ist also identisch mit der Systemfläche.

Die äußere Belastung am Grundsystem bewirkt im allgemeinen nur Momente in dem Balken l, da die Belastung meist direkt auf diesen wirkt, also keine Normalkräfte N_0 auftreten. Es kommt jedoch auch vor, daß die äußeren Lasten durch die Pfosten y auf den Balken übertragen werden, wodurch dann in 302 Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

diesen Normalkräfte V_0 auftreten, die aber gegenüber den Momenten immer vernachlässigt werden können.

Die M_0 -Fläche (Fig. 285) zerlegen wir uns in zwei Teile, nämlich in eine M_0' -Fläche, die nur Teile aufweist, die in den einzelnen Feldern geradlinig begrenzt sind, und eine M_0'' -Fläche. Der letztere Teil stellt dann die Momentenflächen der einzelnen belasteten Felder dar, wenn wir diese als einfache Balken auf zwei Stützen betrachten.

Dies erkennt man als richtig, wenn man sich für einen solchen Teil, etwa ein Feld λ_i , in den Endpunkten h und i Gelenke einlegt und die dort wirkenden Momente $M_{0,h}$ und $M_{0,i}$ als äußere Kräfte angebracht denkt. — Wir würden also das gleiche Resultat erhalten, wenn wir annehmen, daß die Last indirekt durch einen Träger von der Spannweite des betreffenden Feldes auf den Balken übertragen wird, wobei dann das Integral $M_0 M_a ds$ über beide Balken zu erstrecken wäre (Fig. 287).

Fig. 287.

b) Ermittelung der Verschiebungen [am] und [aa].

Der Nennerwert [aa] ergibt sich jetzt wie folgt. Der Einfluß des Momentes $M_a = y$ des Balkens l auf den Wert [aa] beträgt bei n Feldern:

$$[aa]_{M} = \sum_{i=1}^{i=n} \frac{\lambda_{i}}{3} [y_{h}^{2} + y_{h} y_{i} + y_{i}^{2}]. \quad . \quad . \quad . \quad (285a)$$

Der Einfluß der Normalkräfte $Z_a = \frac{1}{\cos \alpha}$ beträgt:

$$[aa]_Z = \sum_{i=1}^{i=n} z_i \cdot Z_{i,a}^2 \frac{J}{Fz_i}.$$

Darin ist F_{Z_i} der Querschnitt des Gurtes z_i und:

$$Z_{i,a} = \frac{1}{\cos a_i} = \frac{z_i}{\lambda_i}.$$

Damit wird:

$$[aa]_Z = \sum_{i=1}^{i=n} \frac{z_i^3}{\lambda_i^2} \cdot \frac{J}{Fz_i} = \sum_{i=1}^{i=n} \left(\frac{z_i}{\lambda_i}\right)^2 \cdot z_i'; \quad \dots \quad (285 \text{ b})$$

darin ist dann:

$$z_i' = z_i \frac{J}{F z_i}.$$

Für den Teilwert $[aa]_v$ der Zugstangen findet man mit

$$\operatorname{tg} a_i = \frac{y_i - y_h}{\lambda_i}:$$

$$[aa]_{V} = \sum_{i=1}^{i=y} \left[y_i \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_k} \right) - y_h \frac{1}{\lambda_i} - y_k \frac{1}{\lambda_k} \right]^2 y_i'; \quad (285 c)$$

darin ist wenn Fy_i der Querschnitt von y_i ist:

$$y_i' = y_i \frac{J}{Fy_i}$$

Die Normalkraft $L_a = -1$ liefert den Beitrag:

$$[aa]_L = \frac{J}{F_l} \cdot l = l' \cdot (285 \,\mathrm{d})$$

Damit wird also insgesamt:

$$[aa] = \sum_{i=1}^{i=n} \left\{ \frac{\lambda_i}{3} \left(y_h^2 + y_h y_i + y_i^2 \right) + \left(\frac{z_i}{\lambda_i} \right)^2 z_i' + \left[y_i \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_k} \right) - y_h \frac{1}{\lambda_i} - y_k \frac{1}{\lambda_k} \right]^2 y_i' \right\} + l'. \right\}$$
(285 e)

Der Zählerwert [am] setzt sich aus dem Einfluß der M'_0 -Fläche und dem Einfluß der M'_0 -Fläche zusammen; ersterer beträgt:

$$[am]' = -\sum_{i=1}^{i=n} \frac{\lambda_i}{6} \left[M_{0,h} (2y_h + y_i) + M_{0,i} (2y_i + y_h) \right].$$

Der Wert [am]'' ist für jedes Feld nach den Angaben im § 1 anzugeben; man erhält also allgemein:

$$[am]'' = -\sum_{i=1}^{i=n} (\varphi_1 \cdot y_h + \varphi_2 \cdot y_i).$$

Insgesamt also ist:

$$[am] = -\sum_{i=1}^{i=n} \left\{ \frac{\lambda_i}{6} \left[M_{0,h} (2y_h + y_i) + M_{0,i} (2y_i + y_h) \right] + y_h \varphi_1 + y_i \varphi_2 \right\}.$$
(286)

2. Untersuchung besonderer Systeme.

Im folgenden sollen einzelne besondere Fälle armierter Balken behandelt werden, bei denen obige Gleichungen sich bedeutend vereinfachen lassen.

a) Der dreieckförmig armierte Balken; zwei Felder (n=2) (Fig. 288). In diesem Falle haben wir zwei gleichgroße Felder von der Weite $\frac{l}{2}$. Es kommt nur ein Wert $y_1 = h$ vor. Es wird damit aus Gleichung (285e):

$$[aa] = \frac{l}{3} \cdot h^{2} + 4\left(\frac{z}{l}\right)^{2} z' + 16\left(\frac{h}{l}\right)^{2} h' + l',$$

$$[aa] = \frac{lh^{2}}{3} + 4\frac{z^{3}}{l^{2}} \cdot \frac{J}{F_{z}} + 16\frac{h^{3}}{l^{2}} \cdot \frac{J}{F_{h}} + l \cdot \frac{J}{F_{l}}.$$
 (287)

Bei Berücksichtigung der Momente allein würde sich ergeben:

$$[aa] = \frac{l h^2}{3} = \frac{2}{3} a h^2 \dots \dots \dots (287a)$$

Den Wert
$$[am]$$
 geben wir im
folgenden für verschiedene Lasten.
Allgemein gilt die Gleichung (vgl.
Gl. 286 und Fig. 289):

$$[a m]' = -\frac{a}{6} M_{0,1} \cdot 2h - \frac{a}{6} M_{0,1} 2h$$
$$= -\frac{2}{3} a h \cdot M_{0,1},$$

 $[am]'' = -h \cdot \varphi_2$ bei Belastung der linken Hälfte bzw. $[am]'' = -h \cdot \varphi_1$ bei Belastung der rechten Hälfte.

Man findet damit:

1. Für eine Einzellast P=1 im Abstande $\xi < \frac{l}{2}$ vom rechten Auflager B:

$$M_{0;1} = \frac{Pa}{2} \cdot \frac{\xi}{a},$$

$$[am] = -\frac{2}{3} \cdot \frac{Pa}{2} \cdot \frac{\xi}{a} \cdot h - \frac{Pa^2}{6} \cdot h \cdot c_1,$$

Darin ist c_1 für das Verhältnis $\frac{\xi}{a}$ zu ermitteln:

$$c_1 = \frac{\xi}{a} \left[1 - \left(\frac{\xi}{a}\right)^2 \right].$$

Also wird:

$$[am] = -\frac{Pa^2}{6}h \cdot \frac{\xi}{a} \left[3 - \left(\frac{x}{2}\right)^2\right],$$

oder durch *l* ausgedrückt:

$$[am] = -\frac{Pl^2}{12}h \cdot \frac{\xi}{l} \left[3 - 4\left(\frac{\xi}{l}\right)^2\right]$$

Diese beiden letzten Gleichungen können als die Gleichungen der Einflußlinie für X_a aufgefaßt werden, die dann noch durch — [aa] zu dividieren ist. Es ist:

$$X_a = \frac{1}{[aa]} \cdot \frac{Pl^2}{12} \cdot h \cdot \frac{\xi}{l} \left[3 - 4 \left(\frac{\xi}{l} \right)^2 \right]. \quad . \quad . \quad . \quad (288)$$

Anmerkung: Will man für Näherungsrechnungen nur den Einfluß der Momente berücksichtigen, so findet man aus (287a) und (288):

$$X_{a} = \frac{P}{4} \frac{a}{\hbar} \frac{\xi}{a} \left[3 - \left(\frac{\xi}{a}\right)^{2} \right],$$

$$X_{a} = \frac{P}{4} \frac{l}{\hbar} \frac{\xi}{l} \left[3 - 4 \left(\frac{\xi}{l}\right)^{2} \right].$$
 (289)

oder

In diesem Falle ergibt sich für das Moment M_s in Balkenmitte:

$$M_{s} = \frac{Pa}{2} \cdot \frac{\xi}{a} - h \cdot \frac{Pa}{4} \frac{\xi}{h} \frac{\xi}{a} \left[3 - \left(\frac{\xi}{a}\right)^{2} \right],$$

$$M_{s} = -\frac{Pa}{4} \frac{\xi}{a} \left[1 - \left(\frac{\xi}{a}\right)^{2} \right] = -\frac{Pa}{4} \cdot c_{1},$$

$$M_{s} = -\frac{Pl}{4} \frac{\xi}{l} \left[1 - 4 \left(\frac{\xi}{l}\right)^{2} \right].$$
(290)

Unter der Einzellast wird:

$$M_{\xi} = \frac{Pa}{4} \cdot \frac{\xi}{a} \left(1 - \frac{\xi}{a}\right) \left[4 - \frac{\xi}{a} - \left(\frac{\xi}{a}\right)^{2}\right]$$
$$M_{\xi} = \frac{Pl}{2} \frac{\xi}{l} \left(1 - 2\frac{\xi}{l}\right) \left[2 - \frac{\xi}{l} - 2\left(\frac{\xi}{l}\right)^{2}\right].$$
 (291)

oder

2. Für eine Streckenlast (Fig. 290) in der rechten Hälfte wird:

$$M_{0,1} = \frac{pa^2}{4} \cdot \left(\frac{\xi}{a}\right)^2,$$

$$[am] = -\frac{2}{3}ah\frac{pa^2}{4} \cdot \left(\frac{\xi}{a}\right)^2 - h \cdot \frac{pa^3}{24} \cdot k_1.$$
Da
$$k_1 = \left(\frac{\xi}{a}\right)^2 \left[2 - \left(\frac{\xi}{a}\right)^2\right]$$
ist, so wird:
Fig. 290.

. . . . ~

$$[am] = -\frac{pa^3}{24} \cdot h \cdot \left(\frac{\xi}{a}\right)^2 \left[6 - \left(\frac{\xi}{a}\right)^2\right] = -\frac{pl^3}{24}h\left(\frac{\xi}{l}\right)^2 \left[3 - 2\left(\frac{\xi}{l}\right)^2\right].$$
Also:

$$X_a = \frac{1}{[aa]} \cdot \frac{pl^3}{24} h\left(\frac{\xi}{l}\right)^2 \left[3 - 2\left(\frac{\xi}{l}\right)^2\right]. \quad . \quad . \quad (292)$$

Anmerkung: Mit (Gl. 287a) findet man:

$$X_{a} = -\frac{pa^{3}}{16} \cdot \left(\frac{\xi}{a}\right)^{2} \left[6 - \left(\frac{\xi}{a}\right)^{2}\right] \cdot \frac{1}{h} = -\frac{pl^{2}}{8} \cdot \left(\frac{\xi}{l}\right)^{2} \left[3 - 2\left(\frac{\xi}{l}\right)^{2}\right] \frac{1}{h}.$$
 (293)
Pirlet, Statik. II. 2.
20

306 Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

Das Moment in der Mitte wird:

$$M_{s} = M_{0,1} + h \cdot X_{a} = -\frac{p a^{2}}{16} \cdot \left(\frac{\xi}{a}\right)^{2} \left[2 - \left(\frac{\xi}{a}\right)^{2}\right].$$
$$M_{s} = -\frac{p a^{2}}{16} \cdot k_{1}. \qquad (294)$$

(6) 0 5

3. Für Vollbelastung des ganzen Trägers ergibt sich daraus mit $\frac{\xi}{l} = 1$ und somit $k_1 = 1$:

$$[am] = \frac{pl^3}{24} \cdot h \cdot \ldots \cdot \ldots \cdot (295)$$

1610-

Anmerkung 1: Mit Gl. (287a) wird also:

$$X_a = -\frac{p l^2}{8} \cdot \frac{1}{h} \quad \dots \quad \dots \quad (296)$$
$$M_s = -\frac{p l^2}{2} \quad \dots \quad \dots \quad \dots \quad (297)$$

und weiter:

Anmerkung 2: Die Gl. (290), (294), (297) sind gleich den Werten der Stützmomente eines kontinuierlichen Trägers auf 3 Stützen. Will man also auch im Nennerwert (Gl. 287) die Einflüsse der Normalkräfte vernachlässigen, so kann man den Balken auch nach den Formeln des kontinuierlichen Trägers auf 3 Stützen dimensionieren.

In gleicher Weise lassen sich die Werte [am]' und [am]'' für beliebige Belastungen leicht mit Hilfe der Werte des § 1 angeben. Ist die Belastung über beide Hälften verteilt, so ist es im all-

Fig. 291.

$$[aa]_{\mathcal{M}} = \frac{2a+3b}{3}h^2,$$

gemeinen am zweckmäßigsten, die Belastungen der beiden Hälften getrennt zu untersuchen.

b) Der trapezförmig armierte Balken (Fig. 291).

Für den Nennerwert finden wir in diesem Falle aus den Gl. (285):

$$aa]_{N} = 2\left(\frac{z_{a}}{a}\right)^{2} \cdot z_{a}' + z_{b}' + 2\left(\frac{h}{a}\right)^{2}h' + l'.$$

Also insgesamt:

$$[aa] = \frac{2a+3b}{3}h^2 + 2\left(\frac{z_a}{a}\right)^2 z_a' + z_b' + 2\left(\frac{h}{a}\right)^2 h' + l'.$$
(298)

Den Zählerwert [am] ermitteln wir, wie eingangs erläutert, wie folgt:

1. Einzellasten.

ſ

Für eine Einzellast P_4 in dem Punkte 4 findet man:

$$M_{0,1} = \frac{P_4 \cdot c}{l} \cdot c,$$

$$\begin{split} M_{0,2} &= \frac{P_4 \cdot c}{l} \cdot (a+c), \\ M_{0,3} &= \frac{P_4 \cdot c}{l} \cdot (a+b+c), \\ M_{0,4} &= \frac{P_4 \cdot c}{l} (2a+b+c). \end{split}$$

Mit diesen Werten ergibt sich aus Gl. (286):

$$P_4 \cdot [am]_4 = -\frac{P_4 h}{2l} (a+b)(2a+b+2c) \cdot c = -\frac{P_4 h}{2} (a+b) \cdot c. \quad (299)$$

Der gleiche Wert ergibt sich für P_1 im Punkte 1. Eine Einzellast P_3 im Punkte 3 ergibt:

$$\begin{split} M_{0,1} &= P_3 \cdot \frac{a+c}{l} \cdot c , \\ M_{0,2} &= P_3 \cdot \frac{a+c}{l} (a+c) , \\ M_{0,3} &= P_3 \cdot \frac{a+c}{l} \cdot (a+b+c) , \\ M_{0,4} &= P_3 \cdot \frac{(a+b+c)}{l} \cdot c . \end{split}$$

Also wird:

$$P_{3}[am]_{3} = -\frac{P_{3}h}{6}[3(a+b)\cdot c + a(2a+3b)] = P_{3}[am]_{4} -\frac{P_{3}h}{6}a(2a+3b).$$
(300)

Den gleichen Wert liefert eine Einzellast P_2 im Punkte 2.

An Hand der beiden Gl. (299) und (300) können wir nunmehr den Einfluß einer Einzellast an beliebiger Stelle angeben. Wir folgen dabei dem in Abschnitt 1 (s. Fig. 285 bis 287) zugrunde gelegten Gedankengang. Die Last P wird in ihre Teillasten zerlegt, die auf die beiden nächstgelegenen Angriffspunkte der Armierung (s. 1, 2, 3, 4 in Fig. 291) entfallen. Z. B. wird P im Felde 3 bis 4 auf die Punkte 3 und 4 verteilt. Der Einfluß dieser Teillasten ist durch die beiden vorstehenden Gl. (299) und (300) gegeben. Diese liefern den Wert des ersten Gliedes in Gl. (286). — Dazu kommt der Einfluß der direkten Belastung der Teilstrecke, z. B. der Strecke a = 3 - 4; dieser Beitrag ist durch die beiden letzten Glieder $y_h \cdot \varphi_1 + y_i \varphi_2$ in Gl. (286) gegeben. —

Eine Einzellast P auf der Strecke c im Abstande $\xi < c$ vom Punkt B ergibt unter Verwendung von Gl. (299) mit $P_4 = P \frac{\xi}{c}$:

$$[am] = -\frac{Ph}{2}(a+b)\cdot\xi. \qquad (301)$$

308 Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

Eine Einzellast P in der Strecke a im Abstande ξ vom Punkte 4 liefert:

$$P_3 = P \cdot \frac{\xi}{a}; \quad P_4 = P\left(1 - \frac{\xi}{a}\right);$$

diese beiden Lasten ergeben:

$$P_{4}[am]_{4} + [am]_{3} \cdot P_{3} = P \cdot [am]_{4} - P \frac{\xi}{a} [am]_{4} + P \frac{\xi}{a} [am]_{4} \\ - \frac{Ph}{6} (2a + 3b) \frac{\xi}{a} = -\frac{Ph}{6} [3(a + b) \cdot c + (2a + 3b) \xi].$$

Zu dem Einfluß dieser beiden Lasten (P_3 und P_4) tritt gemäß Gl. (286) noch der Wert $P \cdot h \cdot \varphi_1 = P h \frac{a^2}{6} c_1$.

Es wird also insgesamt:

$$[am] = -\frac{Ph}{6} [3(a+b)c + (2a+3b)\xi + a^2 \cdot c_1], \quad (302)$$

worin c_1 für $\frac{\xi}{a}$ zu entnehmen ist.

Für eine Einzellast P im Teil b im Abstande ξ vom Punkte 3 wird mit

$$P_{2} = P \frac{\xi}{b} \quad \text{und} \quad P_{3} = P \left(1 - \frac{\xi}{b} \right):$$

$$[am] = P_{2} [am]_{3} + P_{3} [am]_{3} - \frac{Pb^{2}}{6} \cdot h \cdot (c_{1} + c_{2})$$

$$= P [am]_{3} - \frac{Pb^{2}}{6} h \cdot (c_{1} + c_{2}),$$

$$[am] = -\frac{Ph}{6} [3 (a + b) c + a (2a + 3b) + b^{2} (c_{1} + c_{2})], \quad (303)$$

worin c_1 und c_2 für $\frac{\xi}{b}$ zu entnehmen sind. Die Gl. (299) bis (303) liefern zugleich die Einflußlinie der Unbekannten.

Für beliebige Lasten ermitteln wir in gleicher Weise die Werte P_1 , P_2 , P_3 , P_4 und setzen den Wert[am] zusammen aus den Werten $[am]_4$ und $[am]_3$ der Gl. (299) und (300) und den entsprechenden Werten φ_1 und φ_2 .

Für gleichmäßige Vollbelastung p wird z. B.:

$$P_1 = P_4 = \frac{p(a+c)}{2}; P_2 = P_3 = \frac{p(a+b)}{2},$$

$$[am] = p(a+c)[am]_{4} + p(a+b)[am]_{3} - 2\frac{pa^{3}}{24}h - \frac{pb^{3}}{24} \cdot 2 \cdot h,$$

$$[am] = -\frac{ph}{12} \{ 2(a+b)[(2a+b+c)3c+a(2a+3b)] + a^{3} + b^{3} \}.$$
(304)

Wird c = 0, so wird aus den Gl. (299) bis (301) $[am]_{i} = 0$.

$$[am]_3 = -P_2 \cdot \frac{h}{6} (2a+3b)a.$$
 (305)

Für eine Einzellast in den Strecken a:

$$[am] = -\frac{Ph}{6}[(2a+3b)\xi + a^2 \cdot c_1]. \quad . \quad . \quad (306)$$

Für eine Einzellast in Teil b:

$$[am] = -\frac{Ph}{6} [(2a+3b)a+b^2(c_1+c_2)]. \quad . \quad (307)$$

Für gleichmäßige Vollbelastung p:

$$[am] = -\frac{ph}{12} \{ 2a(a+b)(2a+3b) + a^3 + b^3 \}.$$
 (308)

Der Nennerwert [aa] ist der gleiche wie vorher (Gl. 298):

$$[aa] = \frac{2a+3b}{3}h^2 + 2\left(\frac{z_a}{a}\right)^2 z_a' + z_b' + 2\left(\frac{h}{a}\right)^2 h' + l'.$$

c) Der parabelförmig armierte Balken (Fig. 292) kann in gleicher Weise berechnet werden mit Hilfe der Gl. (285) und (286). Hier sind jedoch die Resultate einfacher, wenn wir den Armierungsgurt nicht als eine gebrochene Linie, sondern als stetig gekrümmte Kurve betrachten, was wir ohne nennenswerten Fehler im allge-

Die Feld-

meinen tun können.

weite soll überall gleich λ sein.

Die Gleichung der Parabel bezogen auf die Balkenmitte als Koordinatennullpunkt ist:

$$y = f \left[1 - 4 \left(\frac{x}{l} \right)^2 \right].$$

Wir bestimmen zunächst wieder den Nenner [aa]. Mit $M_a = y$ ergibt sich:

$$[aa]_{M} = \int_{-\frac{l}{2}}^{+\frac{l}{2}} y^{2} dx = \int_{-\frac{l}{2}}^{+\frac{l}{2}} f^{2} \left[1 - 4\left(\frac{x}{l}\right)^{2}\right]^{2} dx.$$

Daraus ergibt sich nach entsprechender Vereinfachung:

$$[aa]_{M} = \frac{8}{15} f^{2} l.$$
 (309a)

Die Normalkräfte im Armierungsgurt infolge $X_a = 1$ sind

$$N_a = \frac{1}{\cos \varphi}.$$

309

310 Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

Nehmen wir an, daß der Querschnitt sich proportional der Kraft ändert, so ist, wenn F_z den Querschnitt im Scheitel bedeutet:

$$F = F_z \cdot \frac{1}{\cos \varphi};$$

damit wird, da $ds = \frac{dx}{\cos \varphi}$ ist:

$$[aa]_{Z} = \int_{-\frac{l}{2}}^{+\frac{l}{2}} N_{a}^{2} ds \frac{J}{F} = 2 \int_{0}^{\frac{l}{2}} \frac{1}{\cos^{2} \varphi} dx \frac{J}{F_{z}}.$$

Mit $\frac{1}{\cos^2 \varphi} = 1 + tg^2 \varphi = 1 + \left(8 \cdot \frac{f}{l} \cdot \frac{x}{l}\right)^2$ wird nach gehöriger Vereinfachung:

$$[aa]_{z} = \frac{l}{3} \frac{J}{F_{z}} \left[3 + 16 \left(\frac{f}{l} \right)^{2} \right] \dots$$
 (309 b)

Der Einfluß der Normalkräfte der Pfosten und des Balkens ergibt sich aus den Gl. (285c) und (285d):

$$[aa]_{v} = \frac{1}{\lambda} \sum_{i=1}^{i=n} (y_{h} - 2 y_{i} + y_{k})^{2} \cdot y_{i}', \qquad (309c)$$

$$[aa]_L = l \frac{J}{F_l} = l'. \qquad (309d)$$

Also insgesamt:

$$[aa] = \frac{8}{15}f^2 l + \frac{l}{3}\frac{J}{F_z} \left[3 + 16\left(\frac{f}{l}\right)^2\right] + \frac{1}{\lambda}\sum_{i=1}^{\lambda=n}(y_h - 2y_i + y_k)^2 y_i' + l'. (309e)$$

Der Zählerwert [am] ergibt sich für eine Einzellast P im Abstande ξ von Balkenmitte aus der Gleichung:

$$[am] = \int_{x=\xi}^{x=\xi} \frac{l}{2} \left(1-2\frac{\xi}{l}\right) \left(1+2\frac{x}{l}\right) y_x dx$$

$$x = -\frac{l}{2}$$

$$+ \int_{x=\xi}^{x=\frac{l}{2}} \frac{l}{2} \left(1+2\frac{\xi}{l}\right) \left(1-2\frac{x}{l}\right) y_x dx.$$

(Vgl. auch die Behandlung des Zweigelenkbogens S. 287ff.) Daraus ergibt sich:

$$[am] = P \frac{fl^2}{48} \left[1 - 4 \left(\frac{\xi}{l}\right)^2 \right] \left[5 - 4 \left(\frac{\xi}{l}\right)^2 \right] = \frac{fl^2}{48} \frac{y_{\xi}}{f_i} \left(4 + \frac{y_{\xi}}{f} \right). \quad (310)$$

NB. Man kann dieses Ergebnis auch auf einfache Weise herleiten, indem man die durch $E \cdot J$ dividierte Momentenfläche, d. h. die M_a -Fläche als (parabolische) Belastungsfläche aufbringt und für diese Belastung das Moment an der Stelle ξ ausrechnet (Mohrscher Satz).

Anmerkung: Wollte man in [aa] nur die Momente berücksichtigen, so würde sich ergeben:

$$X_a = -\frac{5}{128} \cdot \frac{Pl}{f} \left[1 - 4 \left(\frac{\xi}{l} \right)^2 \right] \left[5 - 4 \left(\frac{\xi}{l} \right)^2 \right]. \quad . \quad . \quad (311)$$

Für gleichmäßig verteilte Lasten p finden wir [am], indem wir in Gl. (310) $P = p \cdot dx$ setzen und über die belastete Strecke integrieren. Für eine Streckenlast nach Fig. 294 würde sich also ergeben:

$$[am] = \int_{0}^{5} p \frac{fl^2}{48} \left[1 - 4 \left(\frac{x}{l} \right)^2 \right] \left[5 - 4 \left(\frac{x}{l} \right)^2 \right] dx.$$

Dies ergibt nach entsprechender Vereinfachung:

$$[am] = \frac{pl^3}{240} f \frac{\xi}{l} \left[5 - 4 \left(\frac{\xi}{l} \right)^2 \right]^2. \quad . \quad . \quad . \quad (312)$$

Bei Belastung einer Trägerhälfte $\left(\frac{\xi}{l} = \frac{1}{2}\right)$ wird daraus:

$$[am] = \frac{pl^3}{30} \cdot f \quad \dots \quad \dots \quad \dots \quad (313)$$

und bei Vollbelastung:

$$[am] = \frac{pl^3}{15}f.$$
 (314)

Aus den Gl. (312) bis (314) lassen sich die Resultate für beliebige Streckenlasten leicht zusammensetzen.

Anmerkung: Bei alleiniger Berücksichtigung des Wertes $[aa]_M$ würde aus den letzten Gleichungen sich ergeben:

$$X_{a} = -\frac{1}{128} \frac{pl^{2}}{f} \frac{\xi}{l} \left[5 - 4 \left(\frac{\xi}{l} \right)^{2} \right]^{2} \dots \dots$$
 (315)

für Streckenbelastung nach Fig. 294,

bei einseitiger Vollbelastung,

bei Vollbelastung.

d) Der durch Hängegurtung armierte Balken (Hängebrücke). Das in Fig. 295 dargestellte System ist nichts anderes als

Fig. 295.

ein armierter Balken, ist also ähnlich zu berechnen wie die vorhergehenden Systeme, und zwar können wieder die Gleichungen (285) und (286) verwandt werden. Die infolge $X_a = 1$ auftretenden Normalkräfte sind hier:

$$Z_{i,a} = \frac{1}{\cos \alpha_i} \text{ im Zuggurt,}$$
$$V_{i,a} = \operatorname{tg} \alpha_k - \operatorname{tg} \alpha_i,$$
$$L_a = 0.$$

Der Balken AB wird also in diesem Falle lediglich durch Momente M_a beansprucht, die hervorgerufen sind durch die Lasten V_a . Das Seilpolygon zu diesen Lasten mit einer Schlußlinie zwischen den Senkrechten durch A und B würde die Momentenfläche M_a darstellen. Es ist ersichtlich, daß diese Momentenfläche in Fig. 295 ohne weiteres durch die Hängegurtung und die Linie A'B' gegeben ist. Es ist also hier:

$$M_{i,a} = -y_i$$

Der Wert ist negativ, da der Balken sich nach oben verbiegt.

Es ist weiterhin zu beachten, daß die Normalkräfte sich auch über die außerhalb der Punkte A' und B' gelegenen Teile der Gurtung sowie über die Stäbe EC, CG, DF, DH erstrecken. Die Einflüsse dieser Normalkräfte betrachten wir am zweckmäßigsten gesondert.

Da $L_a = 0$ wird, so fällt der in Gleichung (285d) gegebene Wert für $[aa]_L$ fort, wofür ein Wert

$$[aa]_s = \sum S_a^2 \frac{1}{F_s} \cdot J_l$$

eintritt, der den Einfluß der eben erwähnten Konstruktionsteile außerhalb A' und B' darstellt. Es wird also:

$$[aa] = \sum_{i=1}^{i=n} \left\{ \frac{\lambda_i}{3} (y_h^2 + y_h y_i + y_i^2) + \left(\frac{z_i}{\lambda_i}\right)^2 \cdot z_i' + \left[y_i \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_k}\right) \right] - y_h \cdot \frac{1}{\lambda_i} - y_i \frac{1}{\lambda_k} \right]^2 \cdot y_i' \right\} + [aa]_s$$

$$(318)$$

Die Absolutglieder ergeben sich nach Gleichung (286).

$$[am] = -\sum_{i=1}^{i=n} \left\{ \frac{\lambda_i}{6} \left[M_{0h} (2y_h + y_i) + M_{0i} (2y_i + y_h) \right] + y_h \cdot \varphi_1 + y_i \cdot \varphi_2 \right\}$$
(319)

Bei parabelförmigem Gurt und gleichen Feldweiten λ läßt sich in ähnlicher Weise wie unter c folgender einfacherer Ausdruck für [aa] finden.

$$[aa] = \frac{8}{15}f^2l + \frac{l}{3}\frac{J}{F_z}\left[3 + 16\left(\frac{f}{l}\right)^2\right] + \frac{1}{\lambda}\sum_{i=1}^{i=n}(y_h - 2y_i + y_k)^2y'_i + [aa]_s$$
(320)

Als Zählerwerte [am] finden wir dann die gleichen Werte wie unter c, jedoch mit umgekehrten Vorzeichen, womit dann auch die Unbekannten gegeben sind.

§ 20. Rahmen mit Eckverstrebungen.

Wir wollen noch einige Systeme besprechen, die teils an die vorher behandelten armierten Balken, teils an die rechteckigen Zweigelenkrahmen erinnern. Es sind die in den Fig. 296 und 297 dargestellten Rahmen mit Eckverstrebungen.

Die Unbekannte soll in beiden Fällen die Normalkraft in der rechten Eckstrebe sein. Die Momentenflächen für $X_a = 1$ (M_a -Flächen) sind in Fig. 296 und 297 dargestellt. Normalkräfte treten nur in den Eckstreben (Z_a) und in den Riegeln auf (L_a), und zwar wird:

$$Z_a = 1$$
 beiderseits,
 $L_a = H_a$.

Dieser Wert tritt auf zwischen den beiden Anschlußpunkten der Eckstreben, also in Fig. 296 auf der Strecke b, in Fig. 297 auf der Strecke b+2a. — Andere Normalkräfte treten nicht auf.

Ermittelt man mit diesen Angaben die Größe [aa], so findet man, wenn J_l und J_h die Trägheitsmomente von Riegel und von Stützen bedeuten:

313

314 Aus vollwandigen und fachwerkartigen Teilen zusammengesetzte Systeme.

$$[aa] = \frac{(h_0 \cos \alpha)^2}{3} \left[2h' \left(\frac{h_u}{h}\right)^2 + 2a + 3b \right] + 2z \frac{J_l}{J_z} + \left\{ \frac{b \cdot \frac{J_l}{F_l} \left(\frac{h_0}{h}\right)^2 \cos^2 \alpha \quad (\text{vgl. Fig. 296})}{(2a+b) \frac{J_l}{F_l} \left(\frac{h_0}{h}\right)^2 \cos^2 \alpha \quad (\text{vgl. Fig. 297})} \right\} . . (321)$$

Der Zählerwert [am] ergibt sich bei senkrechter Belastung der Riegel in gleicher Weise wie bei den in § 18, b behandelten armierten

in § 18, b behandelten armierten Balken. Es gelten also die dort angegebenen Gleichungen, wobei allerdings statt h der Wert $h_0 \cdot \cos \alpha$ einzusetzen ist.

Bei horizontaler Belastung des rechten Ständers hat dieser die Momente eines einfachen Balkens; der übrige Teil des Grundsystems hat, wie Fig. 298 zeigt, in diesem Falle gleichfalls Momente aufzunehmen.

Diese sind abhängig von der Größe des oberen Auflagerdruckes P' des belasteten Ständers. Der Einfluß dieses Teiles ist:

$$[am]' = \frac{P'h}{6} \cdot h_0 \cos \alpha \left[2\left(\frac{h_u}{h}\right)^2 \cdot h' + 2a + 3b \right].$$

Der Einfluß der Momente des belasteten Ständers ist für jede Belastung besonders nach den früheren Angaben in § 1 zu ermitteln. Man kann dabei wieder die M_0 -Fläche des Ständers in zwei Teile zerlegen (s. Fig. 298) und den schraffierten Teil durch die Werte φ ausdrücken. Der Rechnungsgang soll hier nicht weiter durchgeführt werden, da er an Hand der Unterlagen sowie der sonstigen Beispiele in diesem Bande leicht durchzuführen ist. Repetitorium für den Hochbau. Für den Gebrauch an Technischen Hochschulen und in der Praxis. Von Geh. Hofrat Professor Dr.-Ing. E. h. Max Foerster, Dresden.

1. Heft: Graphostatik und Festigkeitslehre. Mit 146 Textfiguren. 1919. GZ 3

- 2. Heft: Abriß der Statik der Hochbaukonstruktionen. Mit 157 Textfiguren. 1920. GZ. 3
- 3. Heft: Grundzüge der Eisenkonstruktionen des Hochbaues. Mit 283 Textfiguren. 1920. GZ, 3.5

Taschenbuch für Bauingenieure. Unter Mitwirkung bewährter Fachleute herausgegeben von Geh. Hofrat Prof. Dr.-Ing. E. h. **M. Foerster,** Dresden. Vierte, verbesserte und erweiterte Auflage. Mit 3193 Textfiguren. In zwei Teilen. 1921. Gebunden GZ. 24

Die Eisenkonstruktionen. Ein Lehrbuch für Schule und Zeichentisch nebst einem Anhang mit Zahlentafeln zum Gebrauch beim Berechnen und Entwerfen eiserner Bauwerke. Von Dipl.-Ing. Prof. L. Geusen, Studienrat in Dortmund. Dritte, verbesserte Auflage. Mit 522 Figuren im Text und auf 2 farbigen Tafeln. 1921. Gebunden GZ. 12

Die Knickfestigkeit. Von Privatdozent Dr.-Ing. Rudolf Mayer, Karlsruhe. Mit 280 Textabbildungen und 87 Tabellen. 1921. GZ. 16

Statik der Vierendeelträger. Von Dr.-Ing. Karl Kriso. Mit 185 Textfiguren und 11 Tabellen. 1922. GZ. 10; gebunden GZ. 13

Mechanik. Von Dr.-Ing. Fritz Rabbow, Hannover. Mit 237 Textfiguren. (Otzen "Handbibliothek für Bauingenieure". I. Teil, 2. Band). 1922. Gebunden GZ. 6.4

Ed. Autenrieth, Technische Mechanik. Ein Lehrbuch der Statik und Dynamik für Ingenieure. Neu bearbeitet von Dr.-Ing. Max Ensslin in Eßlingen. Dritte, verbesserte Auflage. Mit 295 Textabbildungen. 1922. Gebunden GZ. 15

- Theoretische Mechanik. Eine einleitende Abhandlung über die Prinzipien der Mechanik. Mit erläuternden Beispielen und zahlreichen Übungsaufgaben. Von Prof. A. E. H. Love, M. A., D. Sc., F. R. S., Oxford. Autorisierte deutsche Übersetzung der zweiten Auflage von Dr.-Ing. Hans Polster. Mit 88 Textfiguren. 1920. GZ. 12; gebunden GZ. 14
- Ingenieur-Mechanik. Lehrbuch der technischen Mechanik in vorwiegend graphischer Behandlung. Von Dr.-Ing. Dr. phil. Heinz Egerer, Diplom-Ingenieur, vormals Professor für Ingenieur-Mechanik und Materialprüfung an der Technischen Hochschule Drontheim.
 - Erster Band: Graphische Statik starrer Körper. Mit 624 Textabbildungen sowie 238 Beispielen und 145 vollständig gelösten Aufgaben. Unveränderter Neudruck. Erscheint Ende 1922.

Band 2-4 in Vorbereitung. Der zweite und dritte Band behandeln die gesamte Mechanik starrer und nichtstarrer Körper.

Der vierte Band bringt die Erweiterung der Festigkeitslehre und Dynamik für Tiefbau-, Maschinen- und Elektroingenieure.

Die Grundzahlen (GZ.) entsprechen den ungefähren Vorkriegspreisen und ergeben mit dem jeweiligen Entwertungsfaktor (Umrechnungsschlüssel) vervielfacht den Verkaufspreis. Über den zur Zeit geltenden Umrechnungsschlüssel geben alle Buchhandlungen sowie der Verlag bereitwilligst Auskunft.

Lehrbuch der technischen Mechanik. Von Prof. M. Grübler in Dresden.

Erster Band: Bewegungslehre. Zweite, verbesserte Auflage. Mit 144 Textfiguren. 1921. GZ. 5

Zweiter Band: Statik der starren Körper und graphische Statik. Zweite Auflage. Mit etwa 222 Textfiguren. In Vorbereitung. Dritter Band: Dynamik starrer Körper. Mit 77 Textfiguren. 1921. GZ. 5

Technische Schwingungslehre. Ein Handbuch für Ingenieure, Physiker und Mathematiker bei der Untersuchung der in der Technik angewendeten periodischen Vorgänge. Von Dipl.-Ing. Dr. Wilhelm Hort, Berlin. Zweite, völlig umgearbeitete Auflage. Mit 423 Textfiguren. 1922. Gebunden GZ. 20

- Ingenieur-Mathematik. Lehrbuch der höheren Mathematik für die technischen Berufe. Von Dr.-ing. Dr. phil. Heinz Egerer, Diplom-Ingenieur, vormals Professor für Ingenieur-Mechanik und Materialprüfung an der Technischen Hochschule Drontheim.
 - Erster Band: Niedere Algebra und Analysis. Lineare Gebilde der Ebene und des Raumes in analytischer und vektorieller Behandlung. — K.gelschnitte. Mit 320 Textfiguren und 575 vollständig gelösten Beispielen und Aufgaben. Berichtigter Neudruck. 1921. Gebunden GZ. 12
 - Zweiter Band: Differential- und Integralrechnung. Reihen und Gleichungen. — Kurvendiskussion. — Elemente der Differentialgleichungen. — Elemente der Theorie der Flächen und Raumkurven. — Maxima und Minima. Mit 477 Textabbildungen und über 1000 vollständig gelösten Beispielen und Aufgaben, 1922. Gebunden GZ. 17
 - Dritter Band: Gewöhnliche Differentialgleichungen, Flächen. Raumkurven, partielle Differentialgleichungen, Wahrscheinlichkeits- und Ausgleichsrechnung, Fouriersche Reihen. In Vorbereitung.
- Die linearen Differenzengleichungen und ihre Anwendung in der Theorie der Baukonstruktionen. Von Privatdozent Dr. Paul Funk, Privatdozent an der Deutschen Universität und an der Technischen Hochschule in Prag. Mit 24 Textabbildungen. 1920. GZ. 2.5
- Die Berechnung statisch unbestimmter Tragwerke nach der Methode des Viermomentensatzes. Von Ing. Fr. Bleich, Wien. Mit 108 Textfiguren. 1918. GZ. 12
- Theorie und Berechnung der statisch unbestimmten Tragwerke. Elementares Lehrbuch. Von H. Buchholz. Mit 303 Textabbildungen. 1921. GZ. 11; gebunden GZ. 12.8
- Berechnung von Rahmenkonstruktionen und statisch unbestimmten Systemen des Eisen- und Eisenbetonbaues. Von Ingenieur P. Ernst Glaser. Mit 112 Textabbildungen. 1919. GZ. 3.6

Die Grundzahlen (GZ.) entsprechen den ungefähren Vorkriegspreisen und ergeben mit dem jeweiligen Entwertungsfa tor (Umrechnungsschlüssel) vervielfacht den Verkaufspreis. Über den zur Zeit geltenden Umrechnungsschlüssel geben alle Buchhandlungen sowie der Verlag bereitwilliget Auskunft.