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f [5a(x)-PP(X)]2 dx . tln [( (x)] dx.

This proves the closure of the set cos ukx.
As a special case, let Xk = k-1, C = 2/Xr. Then D can be any number

less than + -2* In particular, if

l 9 3
<83,X2+4 2

the sequence
cos vx, cos (1 + v)x, cos (2 + v)x,.

is closed over (0, 7r).
I The terms at the beginning may have to be modified slightly because Fk(u) is to

vanish for negative u. This is allowed for in the following estimate.

ON A TYPE OF LORENTZ TRANSFORMATIONS

By G. Y. RAINICH

DEPARTMgNT OF MATHEMATICS, UNIVERSITY OF MICHIGAN

Communicated December 23, 1926

1. Under a general Lorentz transformation we understand a linear
transformation on the variables x, y, z, t which leaves the form

X2 + y2 + Z2 - t2 (1)

invariant. Usually one type of special Lorentz transformations is con-
sidered corresponding to the case in which only t and one of the other vari-
ables is affected. The importance of such transformations in the Theory
of Relativity is very well known. In what follows another special type of
Lorentz transformations is considered, which so far as I know has not been
studied, and which seems to have important applications in the study of
radiation.

2. We arrive at the desired transformations in a simple way if we look
for linear transformations which leave (1) invariant and, at the same time,
do not change the vector 1, 0, 0, 1 and the plane x = t, y = 0. The last
two conditions give four relations on the 16 coefficients of the general
linear homogeneous transformation in addition to the 10 relations which
express the condition that (1) remains invariant. The transformation
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which we want to write down depends, therefore, on two parameters,
and if we take for these two parameters the coefficients of y and z in the
expression for x' we find easily that, after adjusting the directions on the
y and z axes, the transformation assumes the form

x (1-'/2(a2 + b2))x + ay + bz + 1/2(a2 + b2)t
V= -ax +y +at
z= -bx +z +bt (2)
t-= -I/2(a2 + b2)x + ay + bz + (1 + 1/2(a2 + b2))t

3. From these formulas we can deduce formulas for point trans-
formations of the x, y, z, t space which do not change the form

(X1-X2) 2 + (Yl- Y2) 2 + (Z1-Z2) 2-(t1-2) 2, (3)
the plane x = t, y 0, and the vector 1, 0, 0, 1. They are

x= (1-/2(a2 + b2))x + ay + bz + 1/2(a2 + b2)t + c
y = -ax +y + at
z= -bx + z + bt

1=-/2(a2 + b2)x + ay + bz + (1 + 1/2(a2 + b2))t + c

If we ask when a point x, y, z, t can be transformed into a point x', y',
z', t' by a transformation (4) we find that a necessary condition is

x'-t' = x-t; (5)

and this condition is also sufficient if x $ t. If we ask what happens in
case x = t, i.e., when a point x, y, z, x can be transformed into a point
x', y', z', xI we find as a necessary and sufficient condition

yI = Y, z' = Z. (6)
The analogies with and the differences from the more familiar helicoidal

motions in Euclidean space are obvious.
4. From the point of view of geometry the situation with respect to

types of special Lorentz transformations may be characterized as follows.
As in the case of Euclidean space (form x2 + y2 + Z2 + t2 with four pluses)
in the pseudo-Euclidean space (form (1)) a rotation always leaves two
absolutely perpendicular planes in their positions (i.e., rotates them in
themselves). But whereas in the Euclidean space there exists only one
type of absolutely perpendicular planes-planes which intersect in a point,
there are two types of absolutely perpendicular planes in pseudo-Euclidean
space: outside of the "general case" in which the two planes have only
one point in common there exists "a singular case" in which the two planes
have a line in common, viz., a line of zero direction which is perpendicular
to itself. To this singular case belongs the rotation given by the formulas
(2). More general cases may be obtained by combining (2) with rotations
in the x, t and the y, z planes. The two types of absolutely perpendicular
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planes have been discussed by the author about two years ago;l it was
pointed out at that time that, as a consequence, there exist two types of
antisymmetric linear vector functions, and since antisymmetric linear
vector functions are to be considered as infinitesimal rotations the exis-
tence of two types of rotations follows.

5. In conclusion a possible application of the transformations (4)
in the theory of light might be mentioned. On the emission theory we
have to consider a ray as given by a vector of square zero ("light vector")
which is freely movable in the line in which it is contained, just as a particle
is given by a time-like vector (four-dimensional momentum) freely movable
along its line. If we want to determine the field associated with a light
quantum or photon, we will want, of course, to use the same method which
determines the (gravitational and electromagnetic) field associated with
an electron, i.e., we will seek a field which is not changed by transformations
which do not affect the light vector, and these can be deduced from (4).

New York, Trans. Amer. Math. Soc., 27, January, 1925, p. 113.
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A continuous curve M will be said to be cyclicly connected if and only
if every two points of Ml lie together on some simple closed curve which
is a subset of M.
The points A and B of a continuum MI are said to be separated in M

by the point X of M provided it is true that M-X is the sum of-two mu-
tually separated sets' S1 and S2 containing A and B, respectively. The
point P of a continuous curve M is an end-point of M if and only if it is
true that no simple continuous arc of M has P as one of its interior points.
I have shown2 that this definition of an end-point of a continuous curve
is equivalent to the one given by Wilder.3

In this paper it is to be understood that the point sets considered lie
in a Euclidean space of two dimensions.
THEOREM 1. In order that a continuous curve M should be cyclicly con-

nected it is necessary and sufficient that it should have no cut4 point.
Proof. The condition is sufficient. Let M denote a continuous curve

having no cut point. Then, by a theorem due to H. M. Gehman,5 M can
have no end-point. But I have shown2 that every continuous curve M
is the sum of its cut points, end-points, and points belonging to simple
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