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PREFACE

The theory that form= the subject of this book had its beginning with Artin’s
extension in 1927 of Wedderburn’s strueture theory of algebras to rings satisfving
the chain conditions. Since then the theorv has been considerably extended
and simplified. The only exposition of the subject in book form that has ap-
peared to date is Deuring’s dlgebren published in the Ergebnisse series in 1935.
Much progress has been made since then and this perhaps justifies a new exposi-
tion of the subject.

The present account is almost completely self-contained. That this has been
possible in a book dealing with results of the significance of Wedderburn’s theo-
rems, the Albert-Brauer-Nocther theoryv of simple algebras and the arithmetic
ideal theory is another demonstration of one of the most remarkable charac-
teristics of modern algebra, namely, the simplicity of its logical structure.

Roughly speaking our subject falls into three parts: structure theory, repre-
sentation theory and arithmetic ideal theory. The first of these is an out-
growth of the structure theory of algebras. It was motivated originally by the
- desire to discover and to classify ““hypercomplex’ extensions of the field of real
numbers. The most important names connected with this phase of the de-
velopment of the theory are those of Molien, Dedekind, Frobenius and Cartan.
The structure theory for algebras over a general field dates from the publication
-~ of Wedderburn’s thesis in 1907; the extension to rings, from Artin’s paper in
1927. The theory of representations was originally concerned with the prob-
lem of representing a group by matrices. Thix was extended to rings and was
- formulated as a theory of modules by Emmy Noether. The study of modules
~also forms an 1mportant part of the arithmetie 1deal theory. This part of the
theorv of rings had its origin in Dedekind’s ideal theory of algebraic number
fields and more immediately in Emmy Noether's axiomatic foundation of this
theory.

Throughout this book we have placed particular emphasis on the study of
rings of endomorphisms. By using the regular representations the theory of
abstract rings 1s obtained as a special case of the more conerete theory of endo-
morphisms. Moreover, the theory of modules, and hence representation theory,
may be regarded as the study of a set of rings of endomorphisms all of which are
homomorphic images of a fixed ring 0. Chapter 1 lays the foundations of the
theory of endomorphisms of a group. The concepts and results developed here
are fundamental in all the subsequent work. Chapter 2 deals with vector spaces
and contains some material that, at any rate in the commutative case, might
have been assumed as known. For the sake of completeness this has been
included. Chapter 3 1s concerned with the arithmetic of non-commutative
principal ideal domains. Much of this chapter can be regarded as a special
case of the general arithmetic ideal theory developed in Chapter 6. The
methods of Chapter 3 are, however, of a much more elementary character and

v



vi PREFACE

this fact may be of interest to the student of geometry, since the results of this
chapter have many applications in that field. A reader who is primarily in-
terested in structure theory or in representation theory may omit Chapter 3
with the exception of 3. Chapter 4 is devoted to the development of these
theories and to some applications to the problem of representation of groups by
projective transformations and to the Galois theory of division rings. In
Chapter 5 we take up the study of algebras. In the first part of this chapter we
consider the theory of simple algebras over a general field. The second part
is concerned with the theory of characteristic and minimum polynomials of an
algebra and the trace criterion for separability of an algebra.

In recent years there has been a considerable interest in the study of rings that
do not satisfy the chain conditions but instead are restricted by topological or
metric conditions. We mention von Neumann and Murray’s investigation of
rings of transformations in Hilbert space, von Neumann’s theory of regular rings
and Gelfand’s theory of normed rings. There are many important applications
of these theories to analysis. Because of the conditions that we have imposed
on the rings considered in this work, our discussion is not directly applicable to
these problems in topological algebra. It may be hoped, however, that the
methods and results of the purely algebraic theory will point the way for further
development of the topological algebraic theory.

This book was begun during the academic year 1940-1941 when I was a visit-
ing lecturer at Johns Hopkins University. It served as a basis of a course given
there and 1t gained materially from the careful reading and criticism of Dr.
Irving Cohen who at that time was one of the auditors of my lectures. My
thanks are due to him and also to Professors Albert, Schilling and Hurewicz
for their encouragement and for many helpful suggestions.

N. JacoBsoN.
Chapel Hill, N. C.,
March 7, 1943.



CHAPTER 1
GROUPS AND ENDOMORPHISMS

1. Rings of endomorphisms. With anyv commutative group I we may
associate a ring G(IM), the ring of endomorphisms (homomorphisms of M into
itself) of M.  On the other hand, as we shall see, anyv ring with an identity may
be obtained as a subring of the ring of endomorphisms of i1tz additive group.
Because of this fact, we may use the theory of rings of endomorphisms to obtain
the theoryv of abstract rings. Thiz method of studyving rings 1s one of the most
important ones that we shall use in this book. It will therefore be well to begin
our discussion with a brief survey of that part of the theory of groups and endo-
morphisms that will be required later.

Our primaryv concern in the sequel is with commutative groups. However,
since most of the results of this chapter are valid for an arbitrary group IR, we
shall not assume at the outset that I 1s commutative. Nevertheless, we shall
find it convenient to use the additive notation in I: The group operation will
be denoted as 4+, the identity element as 0, the inverse of a as —a, etc.

Consider the collection T(M) of single-valued transformations of MM into
itself, i.e. onto a subset of W¢. As alwayvs for transformations, we regard A = B
if the images vA and 2B are identical for all x in 9. Now we shall turn T into
an algebraic system by introducing into 1t two fundamental operations. First,
if A and B are’'in I, the sum 4 + B 1s defined as the transformation whose
effect on any x in M is obtained by adding the images x4 and zB. In other
terms

x(4 4+ B) = x4 + zB.
The product AB is the resultant of 4 and B:
2(AB) = (z4)B.}

The following facts concerning the algebraic syvstem T are readily verified:
1) T 1s a group relative to +. The identity element of this group 1s the
transformation 0 that is defined by the equation 0 = 0. The negative of 4,
— A, 1s given by the defining equation t(—A4) = —zxA.
2) T is a semi-group with an identity relative to multiplication, i.e. (AB)C =
A(BC() and the identity element of T is the identity transformation 1 (z1 = z).
3) The diztributive law

AB+ C) = AB + AC
holds.

The system T is therefore very nearly a ring. It fails to be one since the

1 This equation justifies our notation zA. For by using it, the order of writing cor-
responds to the order of performance of the transformations.

1



2 GROUPS AND ENDOMORPHISMS

relations 4 + B =B + A and (B + ()4 = BA + (.1 are not universally
valid. We may satisfv the first of these conditions if we suppose that I 1s
commutative, but even in this case, the second condition fails. |

Example. Let I be the cevelie group of order 2 with elements 0, 1 where
1 +1 = 0. 3T contains four elements

, 0 1 0 1 0 1 0 1
0 == y 1 = , 44 = , B =
0O 0O 0 1 I 0 11

0 1
where, 1n general, ( b) denotes the transformation 0 — «, 1 — b. The
' a
addition and multiplication tables in I are, respectively,
'0'1'4!B 0l1!4!'B
010 14 B 0'00/B B
1 1 0IB 4 1'0:1 A B
A%A!Bm}l 404 1B
B B'A1.0 B .0 B 0 B

Since 0.4 = 0, 1t 13 clear that the second distributive law does not hold.

We consider next the subset G(I) of T consisting of the endomorphisms of I
(an arbitrary group). We recall the definition: A transformation A of a group
18 an endomorphism if 1t 1s a homomorphism of the group into itself, that is,

(* + 4 =24 + yd.

It 1s clear that ¢ is closed relative to the multiplication defined mm I. More-
over, if B and (' are arbitrary elements of £ and A 1s in §, then

B+ (0)A = BA + CA.

From our point of view the system € is not particularly interesting when )¢ 1s
an arbitrary group, for then G need not be closed relative to the addition that
we defined in I. However, the situation is quite different when I 1s commu-
tative. In this case 1t 1s readily seen that if 4 and B are in G, then A + B=
B + A,0and —A all belong to §&. Since the associative and distributive laws
for multiplication hold, G 1s a ring. This is the fundamental

TreorEM 1. If I is a commutative group, then the set G(IM) of endomorphisms
of M 18 a ring relative to the operations A + B and AB that are defined by the
equations x(A + B) = x4 + B, x(AB) = (2 4)B.

Eramples. 1) Let M be the group of rational integers under ordinary addi-
tion. Since M 1s a cyelic group with 1 as a generator, any endomorphism A

is determined by its effect on 1. Forif 14 = aand x = 1 + -+ + 1, then
rA = za the ordinary product of the integers r and a. Since (—x)4 = —zA,
this equation holds also for negative 2’s and since 04 = 0 = Oa, 1t holds for 0.
Thus any endomorphism 4 of M is a transformation that multiplies the element
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z of M by a fixed element «. The element a is uniquely determined by .1, and
it 1s clear that everv integer a arises from some endomorphism in this way.
Hence G is in (I — 1) correspondence with 9. If 4 — ¢ and B — b 1n our
correspondence, then (A + B) = x4 + B = ra + xb = x(a 4 b) and simi-
larly 2 (AB) = x(ab). Hence 4 + B —a + band AB — ab, i.e. € is isomorphie
to the ring of rational integers 1.

2) As a generalization of 1) we let I be a direct sum of n infinite eyclic
groups. If ¢y, - -+, e, are generators of I, any endomorphism 4 is completely
determined by the images e.1 = f;. On the other hand, we may choose ele-
ments f; arbitrarily in M and define (Ze;x;)d = =f.x,, x; integers. Then A 1s
an endomorphism. If

e A = ey + -+ enni, (t=1, --,mn),

a,; rational integers, then the correspondence A — (a;;) 1s (1 — 1) between &
and the ring of n X n matrices with rational integral elements. If B — (b;)),
we may verify that 4 + B — (a;;) + (b;;) and AB — (b;;)(a;;). Hence the
correspondence 18 an anti-isomorphism between & and the ring of rational
integral matrices.” It may be remarked that the associative and distributive
laws for these matrices may be deduced by means of our correspondence from
the associative and distributive laws for endomorphisms.

3) If M is a direct sum of cyelic groups of order m, a similar discussion
shows that the ring of endomorphisms of Mt is anti-isomorphic to the ring of
matrices with elements in the ring of rational integers reduced modulo m.

We return to the consideration of an arbitrary group 3. Let G(I) be the
set of (1 — 1) transformations of 9 onto itself. It is elear that if 4 is i G(IN),
then the inverse transformation A7 is defined. It follows that &(IN) is a group
under multiplication.

Now if 4 is an endomorphism, 47" is also an endomorphism. Hence the
intersection A (M) = CIN) A G(N) is also a group under multiplication. The
elements of this group, the (1 — 1) endomorphisms of I onto itself, are the
automorphisms of Ni. Of particular interest among these transformations are
the inner automorphisms. 1If s € I, then the inner automorphism corresponding
to s is the transformation S definetl by the equation xS = —s +  + s. If
A is an arbitrary automorphism, then £(47'SA4) = —sd4 + x + s4,ie. A7'SA
1s the Inner automorphism associated with the element sA. This shows that
the totality of inner automorphisms constitutes an invariant subgroup of the
complete group of automorphisms.

We recall that in any ring with an identity, an element w is a wnit if it has both
a left and a right inverse relative to the identity. It follows immediately that
these two inverses are equal and that no other element in the ring can satisfy
etther of the equations ur = 1 or xu = 1. As usual we denote the inverse of

2 If we use the correspondence 4 — (a;;)*, the transposed matrix of (a;;), we obtain
an isomorphism. However, in a similar situation that will be encountered later, it is
impossible to effect this passage from an anti-isomorphism to an isomorphism. For this
reason we prefer to emphasize the correspondence 4 — (a;;).
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u by w~'. It may be proved directly that the set of units of any ring is a group
relative to the multiplication defined in the ring. Now consider any commuta-
tive group I, its ring of endomorphisms € and its group of automorphisms .
Since the (1 — 1) transformations of a set are the only ones that possess two-
sided inverses, 1t 1s evident that A i1s the group of units of €. As an application
of this fact, we see that the group of automorphisms of the direct sum IR of n
infinite cyelie groups is isomorphie to the extended unimodular group of n X n
rational integral matrices having determinants +1 or —1. For we have seen
that the ring of endomorphisms of M is isomorphic to the ring of n X n rational
integral matrices, and by using the multiplicative property of determinants, we
see that the units of the latter ring are the matrices of determinants #1.

2. Groups relative to a set of endomorphisms. In many algebraic problems
we are interested in studying a group IN relative to a fixed set of endomorphisms
Q acting in IR. We fix our attention on the subgroups, called Q-subgroups
(allowable), which are transformed into themselves by every endomorphism
belonging to Q. Although, in our applications, It will usually be an infinite
group, the following examples indicate that this point of view is fruitful even in
the study of finite groups.

Examples. 1) Q@ 1s vacuous. All subgroups are allowable. 2) Q consists
of the inner automorphisms. Here the Q-subgroups are the invariant sub-
groups. 3) € 1s the complete set of automorphisms. The Q-subgroups are
the characteristic subgroups of IN.

We suppose now that I and Q are fixed. If 9, and N: are Q-subgroups,
evidently the intersection M; A MN: 1s also an Q-subgroup. The join (N, No),
defined as the smallest subgroup containing 9t; and 9t: , may be characterized as
the set of finite sums of elements in 9; and Ny . It follows that I, , Ne) 1s an
Q-subgroup. If N is invariant, Ny, N2) = N1 + N2 = N + Ny where Ny + N2
denotes the set of elements x; + z2 , x; In N .

If 9 1s an Q-subgroup, the endomorphism a of € induces in N an endomorphism
which we shall also denote as a. Of course, distinct mappings a« and 8 in IN
may coincide when regarded as mappings in 9t. We note that if a8 = v € Q
or a + 8 = 6 €9, then these relations hold also for the induced transformations
in N.

Now suppose that M and P are Q-subgroups and that P 1s invariant in N.
We consider the difference group consisting of the cosets 4 y, y in N. If
a €Q, a determines a transformation in ¢t — P in the following way. If P + y
is an arbitrary coset, then the coset P + ya does not depend on the choice of the
representative ¥ and so it is uniquely determined by the coset P + y and by
the endomorphism «. Hence the correspondence P + y — P + ya1s a single-
valued transformation. Again, we denote this transformation in %t — B by «,
le. (B + v)a = P + ya. It is clear that a i1s an endomorphism in N — P.
As in the case of subgroups, a = y or & + 8 = & in N implies the same relation
for the induced transformations in ¢t — P. We may repeat these processes,
forming difference groups of difference groups, subgroups of difference groups,
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etc. In this way a whole hierarchy  of groups is generated in which the
original endomorphisms « induce utliquely defined endomorphisms. We shall
call the members of $, Q-groups. |

Let M and N be any two Q-groups. A mapping A of N into the whole of N
is an Q-homomorphism if it is an ordinary homomorphism and a4 = A« for all
o in Q. Then M and N are Q-homomorphic.’ If A is (1 — 1), it is an Q-iso-
morphism and then N and N are Q-isomorphic. If M < N, we use the term Q-
endomorphism for @-homomorphism and if # = N, we use the term Q-automorph-
tsm for Q-isomorphism.

3. The isomorphism theorems. Let 9t and P be Q-groups, P invariant in .
It is well known that the correspondence r — B + z is a homomorphism 4
between 9 and ¢ — P. Since (B + 2)a = P + ra, Aa = a4 and 4 is an
Q-homomorphism. Now suppose that % and N are two Q-groups and that
r— & = rd is an Q-homomorphism between them. If P is the set of elements
of It sent into 0, we know that P is an invariant subgroup of 9t and that the
correspondence B + = — ¥ = x4 is an isomorphism between (! — P) and N.
Since (ya)4d = (yA)a = 0a = 0if y € P, P is an Q-subgroup and since (P + x)a=
(B + ra) — (xa)Ad = (xA)a, the isomorphism is an Q-isomorphism between
N — Pand N. This proves the fundamental theorem on Q-homomorphisms:

THEOREM 2. If M and P are Q-groups and P 1s invariant in N, then N and
N — B are Q-homomorphic. Conversely iof M 1s Q-homomorphic to an Q-group
N and P is the set of elements mapped intoQ by the homomorphism, P s an in-
variant Q-subgroup of N and N — B and N are Q-isomorphic.

If 4 is an Q-homomorphism between % and N and N is an Q-subgroup of N,
then its image R4 is an Q-subgroup of !. If N isinvariant in N, NA isinvariant
in N4 = N. On the other hand, if R is an Q-subgroup of N and R is the set of
elements y of M such that y4 e R, then N is an Q-subgroup of N containing P,
the set of elements mapped into 0 by the homomorphism. Again, the invariance
of N implies that of R. If N is an Q-subgroup containing P, any element of N
mapped into an element of M4 1sin R. Forif x4 = yA for x in M and y in K,
(x —yA =0andxr — yePB. Hencezr = (x — y) + ¥y e R. These results
may be stated as follows:

THEOREM 3. Let M be Q-homomorphic to M under the Q-homomorphism A and
let P be the set of elements mapped into 0 by A. Then the correspondence RN —
NA = Rs (1 — 1) between the Q-subgroups R containing P and the Q-subgroups
of M. The group R is tnvariant tn N if and only if R is tnvariant in N.

3If M. (7 =1, 2) 1s a group and Q; a fixed set of endomorphisms, we may define I, and M,
to be (22, , 2:)-homomorphic if there is a single-valued mapping z; — z, of N, into the whole
of M- and a single-valued mapping a; — a; of ©; into the whole of 2, such that z;, + y, —
Zo + Yo, Tiay — Toas if 2y — Z2, y1 — Y2 and a; — a2 . This differs from the definition of
Q-homomorphism, for in the latter the mapping between the transformations is completely
determined by the original group 9. The concept of Q-homomorphism is the important
one for our purposes.
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Now let R be an invariant Q-subgroup of M.  If we apply the Q-homomorphism
between N and N — N after that between N and N, we obtain an Q-homo-
morphism between 3t and M — K. The elements mapped into 0 of N — R
are those in . Hence we have the

Firsr IsomorpPHISM THEOREM. Suppose that N is Q-homomorphic lo N, and
let % be an inpariant Q-subgroup of N and N the totality of elements mapped into N.
Then N — R and N — N are Q-isomorphic.

Evidently this implies the

CoroLLARY. If R is an Q-subgroup of I containing the invariant Q-subgrou‘p
Bof Mand (RN — P) s tnvariant in (M — B), then R s tnvariant in N and N — N
18 Q-zsomorphic to (N — P) — (K — V).

Suppose that N, N2, M; are Q-groups; N; < Py and N, invariant in N, .
Then the smallest subgroup containing 9¢; and N 1s N = Ny + N = I + Ny .
The group Y. 1s invariant in Yt and the cosets in the difference group M — It
have the form Y, + x;, x; 1n Y. It follows that the correspondence r, —
N + a1 1s an Q-homomorphism between 9, and 9t — 9. . Since the elements
mapped into 0 are those of 9¢; A 9%, we have the

SecoxDp IsomorpHIsSM THEOREM. If 9, o, WV are Q-groups, N: = D4
and Ny is tnvariant in My, then 1) Ny + Mo = o + Ny, 2) M A e 15 2nvariant
Ny and 3) (W + ) — N ws Q-isomorphic to 9ty — Ot A Ji2).

4. The Jordan-Holder-Schreier theorem. A chain of Q-groups M, = Pi,
= - = My = 01s a normal series for M if each M; 1s invariant in P, .
The difference groups M._; — M, are called the factors of the series while a second
chain is a refinement of the first if it contains all of the %, . We shall call two
normal series equivalent if there i1sa (1 — 1) correspondence between their factors
such that the paired factors are 2-1somorphic.

THEOREM 4 (Schreler). Any two normal series for I, have equivalent refinements.

LetDy =2 - 2Meyy=0and M, =% = -+ = Nys = 0 be the two nor-
mal series. Define M,;; = My + M A M) forg=1,---,t+ land: =
1, e, S, ms+1,1 = (). Then 9)31',1+1 = 9)21'4_],1 and (9)21 => gﬁu = - 2 9:”“ =
Moy = -+ 2 WMoy = --- = Dte, = 0. Similarly, set N, = N + O A M)
fori: =1,:---,s+1landj =1, --- ,t, W11 = 0and obtain M; .1 = N,
and O =) = - 22N =2V = - - 2 Mos 2 -+ 2Nys =2 0. Thusin
each chain we have st + 1 terms. We may pair IM;; — M, 1 with N, —
N, 11 to obtain the theorem as a consequence of the following

LemMa (Zassenhaus). Let 0y, My, Mo, Na, Dy be Q-groups where N; < M, ,
N: £ Niand N is invariant in N; . Then Ny + Ny A N2) is twariant in Ny +
Ot A No); Na + O A N1) 45 invariant in Nz + M A Ny) and the corresponding
difference groups are Q-isomorphic.

By the Second Isomorphism Theorem, % A N1 = M2 A N1) A N, is invariant
in M A Neand O A M) — O A M) and (O + O A M) — N7 are Q-iso-
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morphic. Similarly, % A N, is invariant in 9 A N. and hence O A N) +
Qu A N) is invariant. In the homomorphism between 9, A N, and (N; +
O A N2)) — N1, the group (N1 A M) + O A N2)) is mapped into (N A Ne)
4+ M AN +ND) — N = (O AN + N — N1. Hence by the above
corollary (J, A 9N2) + Ny isinvariant in By A Ny) + N1 and N1+ O A M) —
M+ O A N2)) and Ry A N2) — (O A N2) + M7 A Ne)) are Q-isomorphic.
By-symmetry (R A J2) — (O A N2) + R4 A M) and Nz + O A -Ne)) —
Nz + O A 92;‘)) are Q-isomorphic. Comparing the second members of these
isomorphic pairs, we obtain the lemma.

5. Chain conditions. If 9 is an Q-group, we shall at various times assume
one or both of the following finiteness conditions:

Descending chain condition. If N = I; > Ny > - - - where N, 1s an invariant
O-subgroup of 9t;_; , then the sequence has only a finite number of terms.

Ascending chain condition. If M = Ny > -+ > N = P > 0 is a normal
series for Jt, then any chain of Q—subgroups 0 <Py < P < -+ all of which are
invariant in P is finite.

Of course both chain conditions hold if N 1s of finite order. On the other
hand, we shall see that these conditions may be used in place of the assumption
of finiteness of order to obtain extensions of some of the classical theorems on
finite groups to infinite Q-groups. The following examples prove the inde-
pendence of the two chain conditions.

FEramples. 1) The additive group of integers. This group satisfies the
ascending chain condition but not the descending chain condition. This is also
true for the direct sum of a finite number of infinite cyvelic groups (Cf. Chapter

3, 3). |
2) The direct sum I of an infinite number of cyclic groups of order a prime p.*
Let x;, 22, - - - be a basis for I and let A be the endomorphism determined by

the equations 7,4 = 0, x;A = z,_,. Then I satisfies the descending chain
condition relative to @ = {A} but not the ascending chain condition. Another
example of this type is furnished by the commutative group with generators
Ty, X2, -+ - satisfying the relations px; = 0, pr; = x;,_;. Here we take Q to
be vacuous.

It should be noted that if ;i is commutative, the ascending chain condition
assumes the simpler form that any chain 0 < P; < B, < - - - of Q-subgroups of
N is finite in length. If either chain condition holds for an (arbitrary) Y, then
it holds also for any invariant Q-subgroup P and for any difference group 3t — P.
If both chain conditions hold, 9t has a composition series, 1.e. a normal series
N =Ny > -+ > Ny > 0 that has no proper refinements. Thus a normal
series 1s a composition series if t,_; > N, and PN,y — N, 18 Q-irreducible in the
sense that it has no proper invariant Q-subgroups. To prove our assertion
let N be a proper invariant Q-subgroup. If M — N is reducible, there is an
N’ invariant in N such that N > N > N’ > 0. Continuing in this way we

4+ Note that this group relative to the vacuous set of endomorphisms satisfies neither
chain condition.
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obtain, after a finite number of steps, an invariant Q-subgroup 9. of t = M
such that 9t; — N is Q-irreducible. If we repeat. this process for 9t; , we obtain
an N3, etc. Then we have a normal series My > N2 > -+, and by the de-
scending chain condition this breaks off after a finite number of steps, yielding a
composition series for N.

If Q is the set of inner automorphisms, a composition series for N is called a
principal series and if Q is the complete set of automorphisms, we have a charac-
teristic series. The following extension of the Jordan-Hélder theorem implies,
1in particular, the uniqueness (in the sense of isomorphism) of the factors of these
series as well as of ordinary composition series (2 vacuous).

THEOREM 5. Any two composition series for an Q-group N are equivalent.
This is an immediate consequence of Schreier’s theorem.

THEOREM 6. A necessary and sufficient condition that an Q-group have a com-
position series 18 that 1t satisfy both chain conditions.

The sufficiency of this condition has already been proved. Now suppose
that 9t has a composition series of 2 terms. If N =9 > N2 > -- - 1s a descend-
ing chain of Q-subgroups, then there are at most & terms in this chain since
N >N > -+ > N > 01s a normal chain and may be refined into a composi-
tion series having h terms. A similar argument applies to ascending chains.

Ny > - > N > 0is a composition series for N, , then A is the length of
the group ;. Hence a group is Q-irreducible if and only if it has length one.
If 9’ 1s an invariant Q-subgroup of 9, , we may suppose that N’ is the term Ny 4,y
in a composition series. Then N;,, has length h — k. By the First Isomorph-
ism Theorem, (P& — Ni41) > -+ > O — Ni41) > 0 is a composition series
for My — Nk+1, and so the difference group has length %.

An Q-endomorphism A of N is normal if it commutes with all the inner auto-
morphisms of M. Then for any a and 2, —ad + 24 + a4 = —a + z4 + a.
Thus ad = a + c(a) where c(a) is an element that commutes with every element
of MA. If P is an invariant Q-subgroup, then PA is invariant in N for any
normal A. We note also that the product of normal endomorphisms is normal.

If A is any Q-endomorphism, the set 3, of elements z such that z4 = 01s an
Q-subgroup. Evidently 0 < 34 < B4 = ---. If Bu = Bar+1, we have
RBak+1 = Byx+2 = -++ . Thus in the chain 0 < B, < 342 = --- we have either
the sign < throughout or we have this sign for £ (= 0) terms and thereafter
equality. Now suppose that ®A = N and B4 # 0. Then B2 > B4. For,
each z in 3, has the form z4 for a suitable z and so z4 = zA4*> = 0. Hence if
Ba2= B4,2A = 0,1.e.everyz=0. Similarlyweseethat0 < B, <Bu: < ---.
Hence |

THEOREM 7. If N satisfies the ascending chain condition and tf A vs an endo-
morphism such that A = N, then B4 = 0.

If A is a normal endomorphism, the chain # = N4 = NA* = .- is a nor-
mal chain. We have either # > N4 > ---or N > NA > --- > NA* =
SRA"“ = ..., The first of these alternatives certainly holds if 8, = 0 and
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N > NA. For if RA* = NA*Y, 24" = yA* for any = and a suitable .
Hence (rA* — yA* ™A = 0and zA4* = yA* " i.e. NA* ! = NA*. Thus we have

THEOREM 8. If M satisfies the descending chain condition and if A is a normal
Q-endomorphism such that 34 = 0, then N = NA.

If we combine the two preceding theorems, we obtain

THEOREM 9. If M satisfies both chain conditions and if A is a normal Q-endo-
morphism, then either A vs an automorphism or NRA < N and B4 # 0.

Assume again the ascending chain condition. Then0 < B, < -+ < By =

Bur+1 = --- for a finite k. It follows that 8. A NA* =0. For if w is in this
intersection, w = zA* and wA* = 0. Hence z4%”* = 0 and since R4 = Rz,
zA* = w = 0. Since NA*™' = NA*, A4 induces an Q-endomorphism in P = NA*

and since there are no elements z in P other than 0 such that zA = 0, 4 is an
isomorphism between f and PA. Hence if D is any transformation in P such
that DA = 0, then D = 0. Evidently A induces a nilpotent endomorphism
(A* = 0) in Bux. ,

If A is normal and 9 satisfies the descending chain condition, we have 3t >
oo > NAL = NAY = ... . If zis any element of N, x4’ = yA* for a suit-
able y and so z = yA' + (—yd' + 2) = (z — yA) + yA' e MA' + Ba =
B4t +NA'. The transformation induced by A in B,: is nilpotent. If D is
any transformation in NA' such that AD = 0, where 4 is the induced endo-
morphism in NA4°, then D = 0.

If both chain conditions hold, the integers & and [ of the last two paragraphs
are equal. For MA* A B.r = 0 and hence the only element of RA* mapped into
0 by Ais 0. It follows that NA* = NA*" so that I £ k. On the other hand,
NA' = MAHA implies that RA' A 8, = 0. Thus if yA'™ = (y4H4 = 0,
yA' = 0; hence B.1+1 = B, and k < I. Hence we have proved the important

LemMma (Fitting). Suppose that both chain conditions hold for N and that A
is a normal Q-endomorphism. Then for a suitable k we have ® = NA* + Bux,
NA* A Bax = 0 where A 1s nilpotent in . and an automorphism in NA*.

Remark. We need not suppose that A is an Q-endomorphism in the above
discussion. Instead let Q contain the inner automorphisms and let A satisfy
the condition that AQ = QA, i.e. for each « in Q there is an o’ and an o'’ in Q
such that Aa = a’A, aAd = Aa’’. Since Q contains the inner automorphisms,
Q-subgroups are invariant. The groups 4 and X, are Q-subgroups and one
may carry over the above arguments without change. However, we shall
sketch a more direct proof of the final result. Consider the chains Mt >N4 = - - -

and 0 = 8, < ---. The terms of these chains are Q-subgroups and so by
the chain conditions there is an integer m such that MA™ = NA™" = ... and
Bam = Bam+1 = +++. Set A™ = B. Then NB = NB*, By = Bs2 and hence

by the chain conditions "B A Bz = 0. If z is any element of N, B° = yB for
a suitable y andsox = yB 4+ (—yB + ) e B + X5

6. Direct sums. In the remainder of this chapter we consider an Q-group N
for which the endomorphisms in @ induce all of the inner automorphisms of N.
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We shall also suppose that 9t satisfies both chain conditions. As we have seen,
the first assumption implies that every Q-subgroup is invariant and that Q-
endomorphisms are normal. The ascending chain condition may be stated in

the simpler form: Every ascending chain 0 < 9%, < . - - - terminates after a
finite number of terms.
We say that M i1s a direct sum of the Q-subgroups; ,2 =1, --- , hif

N =N+ - + My

and
A+ +Na+Np+ -+ =0

for all 2. The decomposition is proper if all M; # 0. If no proper decomposi-
tion exists other than 9N = N, N is indecomposable. We use the notation N =
N1 @ -+ @ Nyforadirect sum. Since the N, are invariant, 9t; +N; =N, + N,
and we may equally well write t = Ry @ -+ @ Nw for any permutation
1, ---,h of 1,---, h. If ae; and b eN;, 5 # ¢, then the commutator
—a—b+a+be: AN;=0. Hencea + b = b + a and any element of
N: commutes with any in N ;.

A necessary and sufficient condition that 9t = 9, @ --- @ I, where the
N. are Q-subgroups, is that every x in N be expressible in one and only one way
in the formz, + -+ + x5, 2; inN; . This implies directly that f ‘R =N, @ - - -
@MW, then Ny =N+ - +Np, =N @ -+ @ Ny, and if Nz = Moy 41 + -+ -
-+ 9?h+k, y Ty m; = mkl+---+k,_1+1 + -+ mk1+---+k1 y then N ﬁm; D -
@ N;. Conversely, f N =M @ - @M and N =M @ -+ @ Ny, -+,
Ny = Mboobyoyal @ -+ @ Miyseeopty, then N =N @ - @ My, b =
kv + - + ki | |

If N =N @ N, the Second Isomorphism Theorem implies that 9, is Q-
1somorphic to M — 9t . Evidently the length of M = length 9t + length 9, .
If N, and N, are Q-subgroups of N such that N =N, + 2, and N3 = I, A N,
then M — I = Ot — ) @ O, — I3). 1t follows that

length 9t 4+ length (0 A MN») = length N, + length N. .

We may, of course, replace M by 9, + N= and obtain this relation for arbitrary
Q-subgroups of 3.

N =9 @ --- @ Ny so that we have, for every r, x = 2, + --- + x4,
z; in Y, , then we define the mapping E; by xF; = z;. Since the expression for
x 1s unique, E; 1s single valued. Ify =y1 4+ - - 4+, 2+ y = (x1 + y1) +
v+ + (xn + yx). Hence (x + y)E; = zF; + yE;. If a e, za = 2100 +
+++ + x,a so that aFl; = E,a. The E; are therefore Q-endomorphisms. Evi-
dently the following relations hold:

We note also that E; + E,; = E; + E; and that any partialsum E;, + -+ + E,,
7; distinct, 1s an endomorphism.
An Q-endomorphism E that is idempotent (E* = E) will be called a projection.
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The E; determined by the direct decomposition are of this type. Now suppose,
conversely, that the E; are arbitrary projections that satisfy (1). Then NE; =N,
are Q-subgroups such that 9% = 9, @ -.- @ M and the E; are the projections
determined by this decomposition. Furthermore if £ is any projection and
B is the set of elements z such that zE = 0, then by Fitting’s lemma, or directly,
we have it = ME ® 3. Hence there is a projection E’ such that £ + E’ =
E'+ FE =1 FEE" = E'E = 0. We shall call an idempotent element E of any
ring primitive if. it is impossible to write ¥ = E’ + E” where £’ and E" are
idempotent elements 20 of the ring and EF'E” = E"”E’ = 0. Thus M is in-
decomposable if and only if 1 is a primitive projection.
By Fitting’s lemma we have

THEOREM 10. Let M be an Q-group for which Q contains all the inner auto-
morphisms of 9 and both chain conditions hold. If N 1s indecomposable, then
any Q-endomorphism 1s either nilpotent or an automorphism.

7. The Krull-Schmidt theorems. Suppose that M is decomposable so that
N =9 ® Ny, N # 0. If N, is decomposable, Ny = Ny @ Npand N =Ny @
Nie @ N, ThusN > Ny > Ny # 0 and continuing in this way, we obtain an
indecomposable M, . ; such that 9t = Ny, @ N. We simplify the notation and
write M = Ny, @ N, where N, is indecomposable and =#0. If N, is decomposable,
we have N7 = Ny ® N2 where M, is indecomposable and #0. Then N = M @
N @ N2. This process vields a descending chain N, > Ny > ---. Hence
it breaks off and we obtain M = 9, @ - - @ N where the M, are indecomposable
and #0. \

Now suppose that ' = B, @ --- @ Pi 1s a second decomposition where the
Q-subgroups P, are indecomposable and #0. Let E; and F; be the projections
determined by the two decompositions. Since any sum F; + --- 4+ E,; ,
1 distinct, 1s an endomorphism, this is true also for AE; + --- + AL; =
AE, + -+ FE;) and £, A + -+ F;A = (K, + -+ E;)A for
any endomorphism A. If we apply the endomorphism F;E, to 9t , we obtain
an endomorphism in this group and we have I'/E, + --- + FFE, = E, as the
identity In Yt . We wish to show that at least one of the F';F, 1s an automorphism
in Jt; . This will follow from the following lemma.

LEMyaA.  Let 0N be an Q-group for which Q contains all the inner automorphisms
of V¢ and both chain conditions hold. If DN 1s indecomposable and A and B are
Q-endomorphisms such that A + B = 1, then either 4 or B 1s an automorphism.

Since 4 + B = 1 and 4 and B are endomorphisms, A° + 4B = 4° + BA
and hence AB = BA. If neither A4 nor B is an automorphism, both are nil-
potent. Then 1 = (4 + B)"™ 15 a sum of terms of the tyvpe A'B’
where r + s = m. 1If m is sufficiently large, we have either A” = 0 or B’ = 0,
and so we obtain the contradiction 1 = 0.

We apply this to F1E;, = A and FLE, + -+ + FiE, = B acting in 9%, . If
F\E; is not an automorphism, then B is and hence B~ exists. It follows that
F,L,B™ + --- + F,E.B”" = 1. Either F2E:B™" is an automorphism or



12 GROUPS AND ENDOMORPHISMS

F.,E.B' + --- + F.E,B 'is. If we continue in this way, we obtain the result
that for some j, F;,E;B'C™" --. G is an automorphism where B™', ("},

are automorphisms. It follows that F;E, is an automorphism in ;. For
simplicity we write 7 = 1.

Consider the Q-homomorphism F,; between 9; and Y94,F; £ B, . Since F.\FE,
1s an automorphism, F; is an i1isomorphism. Now N,F; 1s an Q-subgroup of
P, , as is also P, , the subset of P, of elements z such that zE, = 0. If y is any
element of B, , yE, = wF,F, for some w in ;. Hencey = (y — wF,) + wkF,
where y — wFyisin B;. Since B, A M F, = 0, this contradicts the indecom-
posability of P; unless B, = 0 and IF; = B, . Thus IF, = B, and hence F,
1s an isomorphism between M, and P, , and £, is an isomorphism between B,
and ;. We assert that H, = E\F, + E; + --- 4+ E} 1s an Q-endomorphism.
This 1s a consequence of the following general remark: Suppose that
N="® - ®Nand that N’ = N, @ --- @ N, is an Q-subgroup of N. If
A 18 an Q-homomorphism between Yt; and N. . then E,A, + --- + E,A, is an
Q-endomorphism in Jt. Our result follows by noting that B, A Ot + --- +
Ni) =0sothat W = P, +No+ -+ =P, N @ -+ @ Ny. Since
zH, = 0 implies that z = 0, H, is an automorphism, i.e. W' = N.

Now suppose that we have already obtained a pairing between P, and I,
forz = 1, --- , r such that E; is an Q-isomorphism between PB; and N; and F;
is one between M; and P, . Suppose alsothat N = B, @ --- @ P, @ N, @

® N,and H, = EJF, + --- + E,F, + E,;;, + --- + E, is an auto-
morphism. Since the inner automorphisms of a difference group are induced
by inner automorphism of the group, ! = N — (P, + --- + P,) satisfies our
conditions. We have

N =N @ - @M =P ® - ® Ps

w'here“)_%z=(%1+-- + B +W) - B+ -+ PB), Bi= B+ -+
B, + B,) — (B + -+ + B,) are Q-isomorphic to 921 and P, respectively. By
the above discussion we may pair B,,; with, say, N,4, so that the corresponding
projections E, ., , F,+1 are 1som01phlsms between 1,4, and 9?r+1. We also
have the equation N = Py DNy @ - @M. e (By+ -+ + Byy) A
Mrye + --- + M), the coset T =z + (P, + -+ + B,) e ‘Bm A Ny +
.+« 4+ 9). Hence ¥ = 0 and xe%-{— coo +B,. Since (By+ -+ B) A
(%+l + .- + 92;,) = 0,-’13 = (. Thus

B+ +Pu+Nu+ -+ =30 - @B @WN 2@ - @M.

Hence H.\y = E\F1 + -+ + E. . \F,., + E.;.2 + --- + Ejis an endomorphism.
Since F,; is an isomorphism between N,4; and Py, 2,01 Frpq & 0 if 2,4 # 0
1sinN,,;. HencezH,,, = Oonlyif z = 0; H.,, 1s an automorphism and It =
T @ @ Byg @®Neyo @ -+ @ Ny. This proves the following theorems.

TarorEM 11 (Krull-Schmidt). Let 9t be an Q-group such that Q contains all
the inner automorphisms and both chain conditions hold. Suppose that ! = N, @
@M =Py @ -+ @ Py are two decompositions of N as direct sums of in-
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decomposable groups #0. Then h = k and there 1s an Q-automorphism H and a
suitable ordering of the P’s such that MH = P;and N = P; @ --- @ B, @
%r+l CIRERNS %h-

THEOREM 11’ (Krull-Schmidt, second formulation). Under the above assump-
trons let E; | F ; be sets of primitive projections =0 such that

E1+"'+Eh=1, E,‘Euzo ’Lf ’L#’L,
Fi4+ - -+ Fe=1 FF.=0 i j=j.

Then h = k, and we may order the F’s so that there exists an Q-automorphism H
satisfying F'; =H 'E:HandsothatH, = E\F1+ -+ + EF, +E,..+ --- + Ej
18 an Q-automorphism.

In both theorems we take H = E\Fy 4+ -+ 4+ E,\F).

IfN =N @ N is any direct decomposition, there is a refinement of this
decomposition to a direct sum of indecomposable groups. It follows that if the
PB: above are suitably ordered, then there is an Q-automorphism H such that

NH=P,®--- @ P,andMN'H = Py @ --- @ Pu.

8. Complete reducibility. If as in the present situation, the Q-subgroups of
Ot are invariant, they constitute a modular lattice (Dedekind structure) € relative
to the operations A and 4. For Dedekind’s distributive law:

MAQ+N) =N+ AN A I =N

1s valid. The concepts of reducibility and decomposability are lattice concepts.
Similarly, we say that 9 is completely reducible if the lattice ¥ is completely
reducible, that is, if for every %’ in N there is an N’ such that N = N & N’".
The element N’ is a complement of N’ relative to N.

If B, B’ e and P’ < B, let B’ be a complement of P’ relative toN. From
N = P’ + PB” and Dedekind’s law we have P = R’ + (P A B). Since P’ A
B’ =0, (B A B”)i1s a complement of P’ relative to B. Thus any Q-subgroup
B of a completely reducible group 9t is completely reducible. If ! = N, >

M, > --- is an infinite descending chain of elements in ¥, there exist elements
N, = 0fori =2,3,--- such that N,y = N; @ N;. Then
M=M= =M@ BN ON

and Nz < N @ Nz < Ny @ Ny @ Ny < --- is an infinite ascending chain.
Hence, if the ascending chain condition holds for a completely reducible group
then the descending chain condition holds. Now suppose that 0 < 9, <
Mo < --- 1s an infinite ascending chain. Determine N so that | = N, @ Ny
and N; for ¢ > 1so that Ny = M-y A N) @ N;. Then Ny + N: = Niy
and = Ni_y. Hence M = N, + N:. Since Ni A it A M) = 0, N A
N:) A Nioy = 0 and since M; A M) < Niy, it follows that N; A N = 0 and
N =N @ N:. This, together with the relation Nl > S.Tt;, implies that
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N1 > N» > --- is an infinite descending chain. The descending chain con-
dition therefore implies the ascending chain condition.

THEOREM 12. If M satisfies either chain condition and 1s completely reducible,
then it = Ny @ -+ @ Ny where the N, are irreducible. Conversely, if N = Ny +
-+« 4 I, where the MN; are irreducible, then N is completely reducible and satisfies
both chain conditions.

First suppose that 9 is completely reducible and that # = N, @ --- @ Ny
where the 9, are indecomposable. If N is reducible, it contains an 9N = 0
and # N; . SinceMN; < N, it is completely reducible also. HenceN; = N; @ N,
for a suitable M; # 0 contrary to the indecomposability of ;. Now let N =
Ny + - 4+ Nn, N rreducible, and let P; be an Q-subgroup of . Then
PBr A N e ¥ and by the irreducibility of It; either By A 9N; = 0or Py A I = N,
so that P, = N.:. If the second condition holds for all 7, B, = N. Otherwise
let 7; be an index such that B; A M;;, = 0. Then Po= [y + Ny, = P @ Ny, .
If we use . in place of P, , we obtain either P. = I, or there is an N, , 72 # 11,
such that P, A N, # 0. Then By = P, + Ny, = Bo @ N, . Continuing in
this way we finally reach a £ such that t = Ppoy = P @ No, = B @ Ny, @
s @My, . ThusN,, @ --- @ Ny, 1s a complement of P; relative to N. Now
if we begin with P, = 0, we obtain the decomposition 9t = 9;, @ --- @ N, .
Hence

N=Ny @ - ONe) > Ny @ - DNy) > -+ >Ny, > 0

1s a composition series for It and by Theorem 6, both chain conditions hold.

9. o-modules. We shall now introduce the concept of a module, which is of
particular importance in the theory of representations. We define a representa-
tion of an abstract ring o as a homomorphism between o and a subring of the
ring of endomorphisms of a commutative group M. We denote the endo-
morphism corresponding to @ in 0 by A. However, we shall find 1t more con-
venient to denote the effect x4 simply as xza and to regard this element as the
“product’”” of x in M and a in o. The following conditions hold:

(x + y)a = xa + ya
(2) x(a +b) = xa + xb
x(ab) = (xa)b

for all x, ¥ in I and all ¢, b in 0. Now we shall call a commutative group IMN
an o-module if a product za in I is defined for each x in I and each a in o such
that (2) holds. Thus we have shown that the group I in which a representation
of o is defined may be regarded as an o-module. On the other hand, any o-
module defines a representation. For by the first of equations (2), the mapping
x — xa is an endomorphism in 9. By the second and third equations, the set O
of these efdomorphisms is closed under addition and multiplication. More-
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over, we mayv deduce easily that x0 = 0 and that x(—a) = —uxa so that £ con-
tains the 0 endomorphism and the negative of any endomorphism in this set.
Thus € is a ring. Now by the second and third equations, the correspondence
between a and the endomorphism x — 2a is a homomorphism between o and O.

Since the ring o has an existence independent of I, there is a natural way of
comparing different o-modules. We define an o-homomorphism H between the
o-module M and the o-module It as a homomorphism between It and N such that
(xa)H = (xH)aforallxin Mand allaino. If His (1 — 1), we have an p-iso-
morphism. In a similar fashion we define an o-endomorphism and an o-auto-
morphism. If 9 is a subgroup of an o-module, having the property that ya ¢ 9t
for all ¥ in 9 and all ¢ in o, M 1s a2 module relative to the product ya. Then
N is called a submodule of M. We mayv set (x + N)a = xra + N and observe
that this function is single valued for the pairs x + 9t in M — IVt and «a in o.
The rules (2) hold and so M — N is a module, the difference module of M with
respect to M. The module IMN 1s reducible if 1t contains a proper o-submodule.
Decomposability and complete reducibility are defined in a similar fashion.

We shall see later that the following representation i1s fundamental in the
structure theory of rings. We consider o as a commutative group relative
to the addition defined in the ring 0. Now we may turn this group into an
o-module by taking za to be the ring product of x and a. Then the equations
(2) follow from the distributive and associative laws. Hence the group o 1s an
o-module. It follows that the correspondence between the ring element a and
the endomorphism r — xa is a representation. We shall denote the endo-
morphism *r — ra by a, and we shall call this mapping the right multiplication
determined by a. The representation a — a, is the (right) regular representation
of 0. If o has an identity 1, la, = 1b, implies that a = b; hence the regular
representation is (1 — 1). The o-submodules relative to the regular representa-
tion are the right 1deals of »o.

The theorems that we have proved for Q-groups are all valid for o-modules.
The modification in statement and proof is obvious. For example, if I 1s an
o-module homomorphic to the o-module ¥, then the set P of elements mapped
into 0 by the homomorphism 1s a submodule of 9 and M — PV and N are o-
1somorphic. If o contains an identity, the following device enables us to reduce
the theoryv of o-modules to that of Q-groups. If I and Y are o-modules, we
form the direct sum € = ¢t @ N ® o and we define (x + y + b)a = xa +
ya + ba for x in M, y in N and a, b in 0. In this way we obtain a ring of endo-
morphisms £ in £ i1somorphic to 0. Now I and N are T-subgroups and are
£-homomorphic (L-isomorphic) if and only if thev are o-homomorphic (o-
1Isomorphic).

Finally we mayv remark that certain problems regarding Q-groups may be
reduced to questions on representations. This is done by replacing Q bv its
enveloping ring £ defined as the smallest subring of endomorphisms containing
all the transformations in Q. Then £ defines a representation of itself, or, more
precisely, £ defines a representation of the abstract ring o 1somorphic to .
The group I in which the endomorphisms act is therefore an o-module.
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10. Left-modules. Since we are primarily interested in non-commutative
rings, the concept of an anti-homomorphism is almost as important as that of a
homomorphism. We recall the definition: If o and o’ are rings, an anti-homo-
morphism 1s a mapping x — 2’ of 0 into the whole of o’ such that

( + y) =2 + ¢y () = ya.

If, in addition, the mapping is (1 — 1), then it is an anti-tsomorphism and o
and o’ are anti-isomorphic. If we add the further condition that o = o’, we have
an anti-automorphism. For example, the correspondence between a matrix
and its transpose is an anti-isomorphism in the ring of matrices with rational
integral elements.

Now if o 1s anv ring, we may form a set o’ whose elements x’ are in (1 — 1)
correspondence with those of o (x « 2’) and then define 2’ + ¥y’ as (x + y)’
and 2y’ as (yx)’. The resulting syvstem is a ring anti-isomorphic to o, the
mapping ¥ — 2’ being an anti-isomorphism.

We may now formulate the duals of the concepts of representation and
o-module. We define an anti-representation (inverse representation) of o as
an anti-homomorphism a — A’ between o and a subring of the ring of endo-
morphisms of a commutative group 9®. In this case it is convenient to denote
the value x4’ of the function of x and a by ax. Then

a(x + y) = axr + ay
(3) | (a4 bz = axr + bx
(ab)xr = a(bx).

We are therefore led to define a left o-module I as a commutative group for
which there is defined a product of x in I® and a in o whose values ar, in IN,
satisfy (3). Thus any anti-representation leads to a left p-module, and, con-
versely, if a left o-module is given, the correspondence a — A’ where x4’ = ax
is an anti-representation. The definitions of isomorphism, submodule, etc. are
similar to those for ordinary modules. As is to be expected, the ‘“anti’’-theory
parallels the ordinary theory. We may in fact obtain a reduction to the ordinary
theory by noting that any left o-module may be regarded as an o’-module where
o’ 1s anti-iIsomorphic to 0. In many cases, however, we shall find it more con-
venient to deal directly with left modules instead of carrying out this reduction.

As before, the additive group of any ring o i1s a left o-module relative to the
function whose values are the products axr, r in the additive group o and a in
the ring 0. We shall denote the mapping *+ — ax by a; and shall call it the
left multiplication determined by a. The anti-representation a — a; is called
the left regular representation. 1t is clear that the submodules of the left o-
module o are the left ideals of o.



CHAPTER 2
VECTOR SPACES

1. Definition. In this chapter we study a commutative group R relative
to a set ® of endomorphisms that forms a division ring (non-commutative field).
The set ¢ of #-endomorphisms of a group of this type is a matrix ring over a
division ring " anti-isomorphic to ®. Our study is therefore equivalent to the
study of matrix rings. One of the fundamental results of the structure theory
of rings (obtained in Chapter 4) amounts to the statement that any simple
ring satisfying certain finiteness conditions is a matrix ring over a division ring.
By means of this theorem, we shall be able to elevate the present seemingly
special discussion to an important place in the general theory.

The exact assumptions that we make on %t and on ® are the following:

1. If a, B e®, then « + B e® and of €.

2. 0 and 1 €.

3. If @ €®, then —a e® and if « 0, then « is an automorphism and o' € ®.
Thus the set ® is a division subring, containing the identity endomorphism, of
the ring of endomorphisms of . We call R a vector space (linear space, linear
set) over &.

As we have remarked for commutative groups relative to an arbitrary ring of
endomorphisms, any vector space R over ® may be regarded as a ¢-module,
where ¢ 1s the abstract ring isomorphic to ®. The module product rl = «x
for all x in R and 1, the identity of ¢. On the other hand, suppose that ¢ is an
arbitrary division ring and that ¥t 1s a ¢-module in which 1 = xforall x. Let
® denote the ring of endomorphisms r — xa determined by the elements « in ¢.
Then & is a homomorphic image 0 of the division ring ¢. It follows that &
1s isomorphic to ¢. Hence ® is a division ring and since ¢ contains the identity
mapping, ¢ satishies the assumptions 1 — 3. Thus we may also define a vector
space as a ¢g-module such that ¢ 1s a division ring and z1 = x for all  in the
modaule.

A ®-subgroup & of a vector space R over @ is called a subspace of R.  We shall
restrict our attention to vector spaces that are finite dimensional in the sense
that

4. The ascending chain condition for subspaces holds.

If x is any vector (element) in N, the set (x) of vectors of the form xa, a
arbitrary in ®, is a subspace. It is irreducible. For if x # 0, and y # 0 1s In
a subspace € of (r), then y = xy; hence ra = yy '« € S so that () = S. Evi-
dently the subspaces (x) are the only irreducible ones, since any subspace con-
tains a subspace of this form.

If & is a subspace #N, let ; be a vector not in &. Then &, = & + (1) =
@ @ (y1) since (yy1) is irreducible. If ©; # R, we may find a y2 not in &, , and

17
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then €. =S, 4 (y2) = S, @ (1) = S @ (1) @ (y2). Continuing in this way,
we obtain an increasing chain of subspaces 2, = & ® (1) @ -+ @ (y.).
Hence, by the ascending chain condition, there is an integer r such that It =
D W) @@ W) HwesetE = (1) ® -+ @ (y,), we obtain N =
© ® Z£’. Hence N 1s completely reducible. If we begin with £ = 0, we
obtain a set of vectors xy, ---, 2, # 0 such that W = (1) @ - @ ().
Every vector x has a unique representation as Zu.¢; , & in®; for 2.¢; 1s determined
by @ and «:¢; = xn;, implies that &, = 5; . The 2's constitute a basis for ‘K over ®.
By either the Jordan-Hoélder theorem or the Krull-Schmidt theorem their num-
ber n, the dimensionality of R over ®, is an invariant. In the next section we
shall obtain a direct proof of this fact.

The invanance of dimensionality implies that isomorphic o-modules have the
same dimensionality. Conversely, let R, and R, be ¢-modules having the same
dimensionality and let 1", - -+ 2{" be a basis for W; . Then Zz{’a; — S2ra;,
a;1n ¢, 1S a ¢-1somorphism.

If ¢ 15 any division ring, we may construct a vector space of any dimensionality
n over a ring of endomorphisms @ 1somorphic to ¢. For let 3 be the set of
elementsx = (&, -+, &), &ine. Wedefinexr =y = (g, -+, ) if & = n;

and
$+y:(51+7]17"'7£n+nn>; xa=(£1a7”'7‘§"a)

for a in ¢. Then N 18 a g-module 1n which x1 = x. Hence X i1s a vector space
over ®, the ring of endomorphisms xr — za and ® i1s isomorphic to ¢. If we set
ry = (1,0, ---,0), -~ xr, =0, ---,0,1), weobtammn R = (x;) & --- D (xn).
Hence ‘R has a composition series and therefore ‘R satisfies both chain conditions.
The dimensionality of ) is n. The possibility of constructing a vector space
for any division ring nsures the applicabilityv of the results we shall derive for
division rings of endomorphisms to arbitrary division rings.

2. Change of basis. The vectors y;, ---, ¥y, of R over ® are lincarly inde-
pendent if £ = (y)) + -+ + () = (Y1) @ --- @ (y,) and the y; are = 0.
An equivalent condition 15 that Zy;a; = 0 only if all the o; = 0. Now suppose
that the y’s are linearly independent and that y; = Zx,8;; are expressions for the
y’s in terms of the basisay, -+, x,. If p1sany element of ®, then the vectors
Y1, Y= + ywp, Ys, -, y. are linearlv independent. For otherwise, y» +
vip € (y1) + (y3) + -+ + (y,) and hence y» ¢ (y1) + (y3) + -+ + (). We
note also that £ = (y1) + (y2 + yip) + (ys) + -+ + (y-). Let 8.1 # 0 and
set p = —f7118x,2. Then the expression for the vector ys' = y» + y1p does

! If we assume the well ordering theorem, these facts may be established without using
the ascending chain condition. For let [y.] be the set of vectors in & where « ranges over
a section of ordinal numbers. If £ is a subspace, we define £, to be the smallest subspace
containing € and all yswith8 < a. If y.¢ £., weset y, = 2z, . Then the z’s are linearly
independent and generate a complement of Z. The above discussion shows that the
ascending chain ccendition implies the descending chain condition. Now the complete
reducibility of R has the consequence that the ascending chain condition is implied by the
descending chain condition. This may also be proved directly (Chapter 4, 12).
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- e . (1) (0 - .
not involve r,, . Similarly, we may choose vectors y; , ---,y, I () +

! | : (D (1 . M .
oo 4 () F (@ e1) + - 4+ (2n) such that yi, Y2, -,y are linearly
. —~ ’1 1) ~ (1)
independent and S = (y1) + ys'' -+ - + . Now suppose that y =

. 1) 1 - (2) (1) U ,(1) —1,(1) p o
>e8% and that d(n,_,)g #“ (). Then we set y,~ = yp~ — y§ n._,)z B, for b =

2 . . (2)
3, 4, -+ and note that y;” = 0 and that the expressions for these y,” involve
. ~ (D (2 (2
neither @x,, nor x,, . Moreover, £ = () @ (2 ) @ (y37) @ --- @ (y,7).

. .. , =z N

After a number of repetitions of this process, we obtain £ = () @ (y2 ) ®

(=i g Gl , , o :

o @ (y)" ) “he]e yil _ 'lni‘Y”ii + Z LiYii 7 07 Yot 7 07 S = 17 e, 1
iF#En,

and the n; are distinet.  The correspondence between y; and @, clearly shows
that » < n. If £ = WM, the y’s also form a baxis for N and so, by svmmetry,
n = r. Thus the dimensionality 1s an invariant.

By a slight extension of the above method we obtamn a basis 2, -+, 2, for
< =uch that z; = v, + Z Ti€ji, €. =0, t =1,---r. By multiplying
I#Eny
-1 . . . .
these vectors by €, ., and then arranging them in proper order, we obtain finally
a basis wy, -+, u, for £ such that u; = x,, + D wpiand np <y <
jFEn,
If £ =R, the invariance of dimensionality shows that r = n.  Then the vectors
u; are merely the original vectors ;. Suppose, conversely, that » = n, 1.e.

the y’s are linearly independent and thewr number i1s the dimensionality of 9.
Then w; = r; and so the y’s as well as the @’s form a basis for '|R. It should be
remarked that the passage from the basis v, -+, y. to the basis u;, =
r, -+, u, = T, has been effected by a sequence of replacements of the fol-
owlng types:

I. y,-—->y,-forz'¢rahdyr—ayr—%ysp,s#r.
II. y;— y.fore # rand y, — y.0, 0 = 0.
T, yi — y.fori # r,sand y, = vy, ys — ¥, .

The last type 1s required to arrange the 2’s in the right order.
If oy, -+, r,and y,, - -+, y» are anyv two bases for Jt, we may suppose that
y, = Zx;8; and x; = Zyrai;. These expressions are unique. Since

Y = Z Yk akjﬁji, Ly = Z Ly Bkia:'f ’
ko1

KyJ

we have

J

Z Akj Bji = 5ki, Z Bkj aj; = Oki
y)

(6r: , the Kronecker delta). Thus if we set B = (8;;), A = (a;;), we obtain
AB =1 = B.A where 1 1s the identity matrix in &, , the ring of n X n matrices
with elements mn the division ring $.

> It A1s a ring, A, denotes the set of elements Ze;ja.;, ai;in A where Zea;; = Ze; by

if and only if a;; = b, . Weset Z¢;ja;; + Ze;jbi; = Zeij(ai; + b:j) and (Ze;ja,:;)(Ze; b)) =

E e:il E aikbk,-). The resulting system is aring. The subset of ¢Jements Ze;;a1s a subring
k
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On the other hand, suppose that B = (8;;) is any matrix having a right inverse
A (BA =1). Sety; = Zx;8;; where x;, --- , x, is a basis for ®. Then

Eykak,- = Ex,-ﬁ,-kak,- = 21?,;5;,- = Ty .

If the y’s are not linearly independent, we may choose a subset y;, - - - , y, of
them which are and such that @ = (y1) + -+ + @a) = (W) @ -+ @ (v,),
a proper decomposition. Since x;, --- , 2, e S, © = R, and we have a contra-

diction to the invariance of the dimensionality. Hence the y's are linearly
independent and so they form a basis for 3, and AB = 1.

THEOREM 1. If ® 15 a diwision ring, then AB = 1 in®, if and only if BA = 1.

If the 3’s do not form a basis, they are linearly dependent and hence
2ynwyi = 0,vinot all 0. If y; = Zx,8;;, then Z8,,v; = 0 so that the matrix

(1 0 --- 0

\

(y2 0 .-+ 0]
satisfies BC = 0. Conversely, if C # 0 and BC = 0, then the vectors Zx;8;
are linearly dependent. Thus we have proved

THEOREM 2. If ® is a division ring, a matrix in $, s a unit if and only if it 1s
not a left zero divisor.

Let ¢’ be a division ring anti-isomorphic to ® and a — «’ an anti-isomorphism
between ® and ®’. Then (ay;) = A — A* = (a);), ai; = ay; is an anti-isomor-
phism between &, and ®,. If AB = 1, then B*A* = 1 in &, and if CB = 0,
then B*C* = 0. It follows from this that we may replace the word ‘‘left”

by ‘‘right’’ in the above theorem.
We saw that we could pass from the basis y,, - -+, y» to 2y, -+ , 2, by a
sequence of replacements of the types I, IT and III noted above. The matrices

relating the new y’s to the old ones are respectively

\ ‘1

¥ isomorphic to %. We shall identify I with %. If ¥ has an identity 1, ¥, contains ele-
ments e;; = e;;1 such that

eijekt = 0;jk€;1

and e;; + -+ + eanisanidentity for A, . Every element ain 2, may be written in one and
only one way as Ze;;a;; where e;;a;; now denotes the product of e;; and a;; , a;; in . The
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and are called elementary matrices. Now if {x;}, {y.} and {z;} arc three different
bases for 'R and y,; = Sxtiai;, 22 = Sy;8j, then 2z, = Zxyy where C = (v:5) =
AB. Hence we have

THEOREM 3. Any unil in ®, 1s a product of elementary malrices.

As a matter of fact, the last tvpe is superfluous. For if n = 2, we have
0 1 1 1 1 O0\/1 1\/—1 0
1 0 0 1/\—1 1/\0 1 0 1

and the modification for n > 2 1s obvious.

3. Vector spaces over different division rings. A type of vector space that
occurs frequently in the theory of rings and algebras is obtained as follows.
Let A be a ring with an identity and ¢ a division subring of A containing the
identity. We have seen that the endomorphisms » — xa, for v in A and a 1n ¢,
form a division ring ® isomorphic to ¢. Since ® contains the identity endo-
morphism, we may regard 9 as a vector space over ®. In a similar manner, we
may use the endomorphisms ¥ — ar = ro’ and obtain a division ring &’ of
endomorphisms anti-isomorphic to ¢.

Now suppose that 9t is anv vector space over ® and that = is a division sub-
ring of ®. We denote the set of endomorphisms ¢ — fa in ®, « In =, by T also.
Suppose first that the dimensionality (9:®) is n and that (®:X) = m. Then if
i, -+, @, 1x a basis for B over® and &, - -, £ 15 a basis for  over =, every
veetor in N has one and only one representation as 2x.:£ja:;, a;; iIn . Hence
the x;£; form a basis of mn elements for R over Z. Conversely, if (R over =
1s finite dimensional, 1t is evident that R over ® 1s also finite dimensional since
® = =. Furthermore if 2 iz any vector 0 1n %, the set x¢, £ arbitrary in P,
is a subspace of R over . If x&, ---, 26, 13 a basis for this space,
then &, -+, &, is a basis for ® over Z and so ® 1s finite dimensional over .
We have therefore proved

THEOREM 4. If R 7s a vector space of finile dimensionality over ® and = 1s a
division subring of ® such that ® over T s finite, then (R:Z) = (R:P)(P:2).
Conversely, if ‘R is any vector space over ® and R 1s finite over =, a dwision subring
of ®, then ® 1s finite over Z.

The same result holds for T’ the set of endomorphisms § — «f. In the
remainder of this chapter we consider a fixed vector space h over a fixed division
ring &.

4. The ring of linear transformations. A ®-endomorphism A of )t is called a
linear transformation of R over ®. Now, in any ring, the totality of elements
that commute with the elements of a fixed subset of the ring form a subring.

clements of A commute with the e;; . Conversely, if 8 is any ring containing an identity 1
and elements e, ; satisfying the above conditions and Te;; = 1; and if B contains a subring A
such that 1) 1 € A, 2) ae;; = e;ja for all a in A and 3) every element of B may be written 1n
one and only one way in the form Ze;;a;; , then 8 = A, .



22 VECTOR SPACTES

Hence the =et of linear transformations is a subring V' of the ring of endomor-
phisms.

{1 1s a lncar transformation and oy, - -+, &, 1= a basis for 20 over &, (1 13
completely determined by the images o1 of the o'=. TForif v = Zu& ) we
have w1 = Z(r:4)E . On the other hand, we may choose n elements gy, at
random and verify that the mapping v, — Ty 12 a linear transtormation .
such that v 4 = y,. In particular, for each « i ® there 18 a unique linear
transformation o’ such that x.@' = v, Of course, o’ depends on the choiee
of the basix as well as on «. The o5y form a subring ®’ of ¥ anti-isomorphie
to &, the correspondence o« — o’ being an anti-isomorphism.

Now we mav regard N as a veetor space over ®.  Since everv o mav be
written in one and onlyv one way in the form S, a1, - -+, 2. 15 a basis for N
over & and =0 I 15 n dimensional over . The endomorphisms « are hnear
transformations m K over " and since r;o = 2, « 18 the endomorphism
associated with «” and the v's in the same way that o 1s associated with « and
the 2's, 1e. (') = «a.

Let I, ; denote the linear transformation of It over & such that . £, = 6,0
Sinee v, (F; ') = 0. (d'Ky;), Eiod = &'Ey;, and Ey; 15 also linear in W over @7,
Now suppo=e that .1 i1s an arbitraryv hinear transformation in it over ¢ and that
v = Zr,e ;. Then, as is readilv verified, .1 and FE;a;; have the same
effect on the »'s. Hence .1 = SE;a;;. Converselv,if 4 = SF ja;;. 4 ixin ¥
and v, = Zurje, ;. It follows that every 4 in ¥ mayv he represented in one and

.
Wy

. 4 . .
onlv one wav in the form /0, ;, «" In ®’. Since

(1) E{jb“ - 51';5151'1, Elfii = l,
/
V=&,
By (1) we obtain
A / hj h 4 R
(2) apy = 22 Erp(SE ol )E . .
k
. . ’ . ~ ’ .
Hence if 1 = ZFE;a;; commutes with all the £, then «,, = 01f p # ¢ and
’

a,, = A,1e. 4 = o’ ¢®. Thusd may be characterized as the set of elements
of ¥ commutative with all the F,;. We mayv also characterize & as the com-
plete set of endomorphisms of N commutative with all the endomorphisms «
and all the E;;, or, more simply, with all the endomorphisms ZF a,;. Ior,
the condition that A commute with & 1x that 4 V. In a similar manner we see
that ® is the complete set of Y-endomorphisms of . In particular the center’
C of ¥ 1s contamned in ®. Since € = ¥ and the elements of € commute with the
E, ¢ =3 It follows that ¢ = & A &', If & ix commutative, the trans-
formation o' = « and, therefore, o’ is independent of the choice ot the basis.
The field ® is then the center of ¥. We return to the general case where ¢ 13 a
division ring, and we shall use the specific form of ¢ to obtain a number of
important structure theorems.

3 We use this term for the set of elements of a ring commutative with all the elements of
the ring.
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THEOREM 5. The ring 8 is stmple.

We recall that a ring is simple if it has no proper two-sided ideals. Let

B # 0 be a two-sided ideal of @ =&,. If ZE;;8;; = Bisan element #0 in
%3 by (2) we obtain that B,, eB. At least one of these, say B,,q is 0. It
follows that 1 = B85, ¢B. Hence B = L.

TaHEOREM 6. The ring R is a direct sum of irreductble right (left) ideals.

The set E.R consisting of the elements D Ej,ax; is an irreducible right ideal.
i
For if § is a right ideal €0 contained in Eng, let B = Y. ExB:; € where
i

B # 0. Then J contains BE st = Ew and hence all the elements of Eug.
E"idently ? = Ellg ® - ) Enng.

5. Automorphisms and anti-automorphisms of . Let F; be 7’ linear
transformations such that

3) - FiFu=6F4, Fu+ -+ +Fa=1.

If ¥ is a vector 0, there is an F,, such that y¥,, #0. It follows that the
vectors y; = yF,; form a basis for i over ®. For if Zy;8; = 0, (Zy.8:)F ;, =
Z Y(FpiF i) = (YF,,)8; = 0 and hence 3; = Oforj =1, ---, n. Relative to

the y; , we have
(4) yrFiJ‘ = 'prrFiJ‘ = 61‘1‘pr1’ = 0irY; .

If S is the linear transformation such that ;S = y:, S is defined by y:S™" = z;.
From (4) and the definition of the E;; we obtain that F;; = STE;;S. An im-
portant application of this result is the following theorem.

e . / —_—
I'HEOREM 7. Any automorphism of { has the form ZE;ja;; — S (ZE; a; ,)S
where o' — o'* is an automorphism in &',

Let G be an automorphism of = &, . Then the transformations F;; = E,-G,-
satisfv (3) and hence there is an S in € such that Ef; = S7'E;;S. The mapping
4 — S4°S7 = A" is an automorphism in € such that Ei; = E;;. Since &' is
the complete set of elements commutative with the E;;, it follows that H in-
duces an automorphism s in & and hence (ZE;a;,)” = ZE;;a;!. Then A® =
h—l(“E,]a”)S | |

Now let J be an antl-automorphlsm in &. Since the transfonma,tlons F;; = Ei;

satisfy (3), there exists an S in € such that E; = ST'E;;S. The correspondence
4 — SA'S7H= A% is an anti-automorphism sending E;;into E;; . It therefore
induces an anti-automorphism ¢ in ® and (ZE; j: ) = ST (SE ,.a,,)S

THEOREM 8. The ring ¥ has an anti-automorphism if and only if ® has an
anti-automorphism. Moreover if ® has an anti-automorphism J, then A7 =

—1 / : -y . . . . 4
STUSE jia;))S where S €€ and o — o'* is an anti-automorphism in &',

¢ The ring ® has an anti-automorphism if and only if &’ has.
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If .J is involutorial in the sense that J° = 1, then FE;; = E{j =
(NSTHEGSS)Y™. Henee S = ¢S, ¢’ in @, If ¢/ # —1, 87 + S
(¢ + 1)S = T and (¢’ + 1) has an inverse in &. Then (ZE;a),) =

TN EE o )T where 77 = T and & = (¢! + 1)a’'(¢' + 1)7". Thus we may
suppose at the start that 47 = §774%S where 87 = =8, A% = TE ;a5 . Since
AR = S84/ ST = A, K 15 involutorial. Hence {15 involutorial.  We
note finally that 87 = S7'8%S = 2 S implies that S* = £,

THeorEM 9. The ring ¥ has an involutorial anti-awtomorphism if and only if
¢ has an incolutorial anti-automorphism. If ¥ has an involutorial anti-automor-

; J — /1 t . : : :
phism J, then A7 = STHZE ja:7)S where o — o' is an involutorial anti-anto-
. . y . . ’ !¢
morphism in &, and S e\ and satisfies the equations ¢,; = o, .

We consider now the special case of a commutative ® and we obtain as a corol-
lary to the above theorems the following

TaeorEM 10. If & s a field, then any automorphism in &, that leaves the cle-
ments of the center ® invariant s inner.  Any anti-automorphism of &, leaving
the elements of ® invariant has the form A — S7A'S = A7, A’ the transpose of A.
The anti-automorphism J is involutorial iof and only 1if 8" = £5S.

6. Commuting rings of endomorphisms. Suppose that n = rs and define

s—1

GGSZZE#T+G,#r+5; a’B::l"”;r’
p=0

H,‘)\ = Z E(x-—l)r+7,(>\-—1)r+‘7> K, A= 1, y S

.oy=1

One readily verifies that
(5) GaBGyb — 557Ga6 y (;11 + e + Grr — 1,
(()) Hx)\Hpv = 5)\u[{xv ’ Hll + te + HSS = 1)

(7) . Gaﬁflx)\ - bw(x-—l)raya,()\-—l)r—;-j — Hx)\Gaﬂ .

By (7) every element of ¥ has the form SG.3Bqs where Bag is a sum SH a8 ,

3" in®", and if SGa3Bas = 0, By = 0. It follows that (®,), = &,, . Similarly,

every element has one and only one expression of the type TH\C' o where (',

has the form D Gasyms, v’ in® . If A = Y G asBas, Bas = Z (G,.1G5,. Hence
Y

the condition that 4 commute with all G5 1xs that 4 = Baoe = Bs; = EH,AB:X .
Similarly, if 4 commutes with all H,, it has the form .‘_‘Gaw;g :

Now let @, denote the ring of endomorphisms in 9 of the form =G 30,3,
pn®. A d-endomorphism is a $-endomorphism which commutes with all the
(1.5 . Hence it 1s an element of ¥ commutative with all the G,3. It therefore
belongs to ®. | the set of endomorphisms of the form SHaB.n . Because of the
symmetry, &, mayv be characterized as the set of ®,-endomorphisms of ).

Now suppose that N i1s any commutative group in which there 1s defined a
ring of endomorphisms of the type ®, where ® 15 a division ring contamning the
identity endomorphism. Our assumptions are therefore that 1) there are »’
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endomorphisms (7,3 in ®, such that (5) holds, 2) G.p = pG .5 for any p in @
and 3) every endomorphism of &, has a unique representation in the form
SGaspas . We suppose also that the ascending chain condition holds for &,-
subgroups. Since &, = & = 1, R 1s a vector space over &, though it 1s not clear
a priort that 9N is finite dimensional.

Let £ be an element #0 in . Since ZG.o. = 1, there 18 a G55 such that
rGy %= 0. Set ro, = r(so . Then these elements are linearly independent over
d. If N, denotes the set of elements Zr.p., p P, N, 18 a $.-subgroup. If
R # N, let ¥ be a veetor not in Iy . As before, there 18 a GG, such that yG..
is not iIn N; and if v,y = yGeo, the elements Zx,  po form a ®.-subgroup N
independent of N, in the <ense that RNy A R = 0. If N + Y #£ RN, we may
repeat the process thereby obtaining a chain i, < Ny + R < -+ . By the
finiteness assumption this breaks off and we obtain I = N, @ --- @ R,.
Hence R has finmite dimensionality n = rs over &.

THEOREM 11. Let W be a commutative group and ®, a matrix ring of endo-
morphisms in N where ® is a diviston ring containing 1. If N satisfies the ascending
chain condition for ®,-subgroups, then it has finite dimensionality n = rs over &
and M = N1 @ --- @ Ns where the R; are irreducible ®,-subgroups.

The irreducibility of 9N, is seen as follows: If z 1s any vector #0 in R, there 1s
a { such that Gy, -+, 2G;, are independent over . Hence the set zb, = R,
forany z # 0 1n I, .

If we use the basis vy, - -, x, determined above for N over ® and define the

s—1
linear transformations E;; as before, we obtain Gas = 2 Eursaprss - For, Gag
. “=O
s—1

is lincar in 9 over ® and it has the same effect as D Euia.ures0n the ;. Hence
u=0

we may apply the above discussion to obtain the following

THEOREM 12. Let ®, be a matrix ring of endomorphisms in a commutative
group N such that the conditions of the preceding theorem hold. Then the ring of
endomorphisms commutative with the given endomorphisms has the form ®, where
®’ 18 a division ring anti-tsomorphic to ®. The original set of endomorphisms P,
18 the complete set commutative with those in P, .

7. Isomorphism of matrix rings. Suppose now that we have a ring that
may be regarded as a matrix ring ®, and as a V. where ' and ¥’ are division
rings containing the identitv. Then we may suppose that &, is the ring of
linear transformations of an n-dimensional vector space 3N over &, & anti-1so-
morphic to . ILet Gas, a, 8 = 1, -+, r, be the matrix units of ¥,. The
endomorphisms =G 43p48, p 10 @, form a ring ®, and we have seen that the dimen-
sionality of %t over ® 1s rs = n. Hence r < n. By reversing the roles of &’
and ¥’ we obtain n < r and hence r = n. It follows that there is a linear
transformation S such that G;; = S7'E;;S, E;; the matrix units for ®, . Since
the elements ¢’ in ¥/ may be characterized as the linear transformations com-
muting with the G;; and those of ®’, as the linear transformations commuting
with the E;;, we have ¥/ = S™'#’S.
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4 ’/ . v e B
TneoreM 13. If &, = ¥, where & and V' are division rings, then v = n,
. . . - ’ —_
®" and V' are isomorphic, and there exists an S in &, such that ¥’ = S™'&'S and
_1 o - .
Gi; = S LS for the corresponding matrix units.

8. Semi-linear transformations. We shall now discuss a type of trans-
formation of a vector space, first considered by C'. Segre, that forms a generali-
zation of the concept of a linear transformation. Let S be an automorphism of
the division ring ®. Then a transformation 7 of W is called a semi-linear
transformation of N over ® 1if

(8) (w 4+ YT = T + yT, ()T = (T)a’

foralla, yin Wand all « in®. If T = 0, S is uniquely determined by 7. For
then there exists a vector w such that uT # 0, and if S and S’ are automorphisms
of ® for which (8) holds, then (u7)a’ = (uT)a’ for all . Hence &° = & and
S = S’ We shall call S the automorphism of T.

The condition aT = Ta’ evidently implies that the endomorphism 7' com-
mutes with the set of endomorphisms®. If S = 1, T, of course, commutes with
the individual members of ® and 7 is a linear transformation. The commuta-
tivity with ® implies that a semi-linear transformation transforms any subspace
Z of N mto another subspace. It is also clear that if =, and . are subspaces
such that £, £ Z., then the image 2,7 =< the image S.T. Since for any
two subspaces 2, , £, <1 + S2: may be characterized as the smallest subspace
containing Z; and . , it follows that if 71sa (1 — 1) semi-linear transformation,
then (1 + )7 = 2T + ST. In asimilar manner (S, A )T = ST A
Z.7. Thus any (1 — 1) semi-linear transformation of a vector space R induces
a lattice isomorphism in the lattice of subspaces of %R. For this reason the
semi-linear transformations are on a par with linear transformations in pro-
jective geometry.

If T 1s an arbitrarv semi-linear transformation, we let 9t = J¢(7T") denote the

space of vectors z such that 27 = 0 and we suppose that z, , - - -, 2, 15 a basis for
this space.  We determine a subspace £ such that R = 0 ® Zandlety;, -- -,
”.—r be a basis for <. Then it follows direetly that 4,7, - - -, y,_.T 1s a basis

for MT. Hence if we call the dimensionality of W7 the rank of T and the
dimensionality of 9t the nullity of T, then we have the following extension of
the well-known theorem on linear equations:

rank 7" + nullity 7 = n.

If vy, -+, a, 12 a basis for N over ®, we mayv write x;7 = Zx,;7; and call
(7;;) the matriz of T relative to this basis. The semi-linear transformation T
i~ determined byv its matrix and its automorphism since (Sx;£)7 = Jx;7,:i& .
In terms of the coordinates (&, - - -, £.) of the veetor &, we may describe 7' as
the transformation that sends (&, ---, &) into (g, -+, 7.) where 7, =
Yr& . Now if (745 iz an arbitrary matrix and S is any automorphism, then
the equation (Zx8)T = Zx7;& defines a semi-linear transformation with
antomorphism S and with matrix (r;;) relative to the basis oy, -+, x,. .

I wi, -+ -,y 18 a second basis for S over @ and y; = Zx;3;;, a simple com-
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putation shows that the matrix of the semi-linear transformation 7' relative to
this basis is (8)7'(7)(8°) where (7) is its matrix relative to the 2’s. Hence the
theorv of semi-linear transformations corresponds to a theory of matrices with
elements in a division ring in which two matrices () and (¢) are regarded as
equivalent if there exists a matrix (8) such that (¢) = (B) ' (7)(8°), S, a fixed
automorphism,

Now suppose that T is a set of semi-linear transformations. If & is a proper
subspace of I invariant under all the 7 in I', we may choose a basisy;, «++ |, ¥a

for i such that y,, - -+, .18 a basis for & (0 < r < n). Then the matrix of T
b 3

relative to this basis is of the form (Tl ) where (7,) 1s a matrix of 7 1n & and

0 7
(79) 1s a matrix of T in the difference space W — &. Conversely, if there exists
a basis relative to which the matrices of I' have this “reduced’” form, then R
1s reducible when regarded as a group relative to @ = (I', ) the logical sum of
I' and ®. In view of the relation between the matrices of a semi-linear trans-
formation, we mayv state this condition also in the following way: If (7) is the
matrix of P relative to the basis x;, ---, x, and S is the automorphism of 7,

%k

then there exists a matrix (8) independent of T such that (8)'(7)(8°) = <8 _ ) :
2

Nowif R = R, > Rey > - -+ > Ry > 0 18 a composition series for R relative

to 2, we choose a basis y,, - -+ , y» of R over ® such that y,, --- , y», 1s a basis
for M1y Yn,41, ** 5 Yn +n, 18 @ basis for R., ete.  Then if (B) 1s the matrix relat-
ing the ¢’s to the 2’s, the matrix of 7 relative to the s is
r T1 * )
—1 S 72
9) 8) " (r)(B°) =
L0 Ts )

where (7;) 1s a matrix of the semi-linear transformation induced by 7 in R, —
N,_; and the blocks below the “diagonal’”’ consist of 0’s. The irreducibility of
RN; — K., amounts to the following matrix irreducibility: it is impossible to
find a matrix (8;) independent of 7 such that (8:) " (.)(8}) has the reduced
form (TO'I ¥ ) Conversely if (8) 1s anv matrix for which (9) holds, where
. T2
the (7;) are irreducible, then (3)7 (7)(8°) arises from a composition series in the
way indicated.
In a similar fashion we see that f R = Ry D --- @ R, where RN; # 0 1s an
(-subgroup, there is a matrix (3) such that

{7'1 O\
T2

R CONOICHES

\O TsJ
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for all T where, in this case, we have 0’s on both sides of the diagonal, and
where (7;) 1s the matrix of the induced transformation T in R;.

We note the following combinatorial properties of the set of semi-linear
transformations. If 7, and 7. are semi-linear transformations with auto-
morphisms S; and S:, respectively, then T,T. is a semi-linear transformation
with automorphism S,S;. If §; = S; = 8§, then Ty + T, is a semi-linear
transformation with automorphism S and if 7y is (1 — 1), 77" is a semi-linear
transformation with automorphism STt

Now if (71) and (72) are the matrices, relative to the same basis, of T, and 7%,
then the matrix of 7,7 is (7.)(732). Thus the matrix of T%is (7)(+*) - - - (TSk_l).
If 7is (1 — 1), the matrix of 77" is (+* )™ If T, and T, have the same
automorphism, then the matrix of T, + T.is (1) + (7). As a special case of
these facts we note that the correspondence between a linear transformation T
and its matrix (7) is an anti-automorphism between the ring of linear trans-
formations ¢ and the ring of matrices ®, . Since ® is associated in an invariant
manner with ¥ this correspondence has certain advantages over the one noted
previously between ¢ and @, .

Ax applications of our computations and of the results of the first chapter we
note the following theorems on matrices in &, .

THEOREM 4. If (e;) (1 = 1, -+, 8) are matrices # 0 in ®, such that
()" = (es), (e)(e) =0 of @3, Z(e:)) = 1,
then there exists a non-singular matrix (8) in ®, such that

( 3
(1 \ 0. s
Loy '0

1
1
(10)  (B) (e)(8) = 0.. (B (B = ‘.1}nz

00

..OJ

\

'OJ

\
This is obtained by using the (¢;) to define linear transformations £; such that

Then N = RE, & --- & RE, and so, relative to a suitable basis, we obtain the
matrices (10) for K, , E, , - -

If T 1s a semi-linear transformation, we may use the Remark following Fit-
ting’s lemma to obtain a decomposition &8 = N @ S where N and &S are sub-
spaces invariant under 7 and T 1s nilpotent in M and non-singular in &. This
implies the following

THeEOREM 15. If (7) s a matrix in ®, and S is an automorphism in &, there
exists a matrix (8) such that

1 ss (v O
©0E) = () )

where (v) - - - (VSk> = 0 for sufficiently large k and (o) is a unat.



CHAPTER 3
NON-COMMUTATIVE PRINCIPAL IDEAL DOMAINS

1. Definitions and examples. In studying a linear transformation or, more
generally, a semi-linear transformation 7 with automorphism S, we are usually
interested in the ring of transformations ®[T] generated by T and the scalar
multiplications * — za. Evidently ®[7T] contains the transformations ay -+
Tey + T’a; + -+ + T"an . On the other hand, (T*a)(T'8) = T*"'«*'8 and
hence the set of polvnomials in T is closed under multiplication. It follows
that ®[T] coincides with the set of these polynomials. Now, it is convenient to
introduce a certain ring ®[f, S] of polynomials in an indeterminate ¢. First,
let & be the abstract division ring isomorphic to the ring of endomorphisms &
in the vector space R.! Let ®[t, S] denote the set of polynomials

o + tag + oy + -0 + t"am

where { 1s an indeterminate and the coeflicients a; arein®. We define ag + ta; +

o " = Bo A+ 81+ - A+ B ifag = Bo, a1 = Bi, -+, and we add
polynomials according to the rule (ag + tay + -+ ) + Bo + 81 + -+ ) =
(o + Bo) + t(ay + B1) + - -+ . Multiplication is defined by means of the dis-

tributive law and
(tka)(tlﬁ) — tk+lC\{Sl6.

It is readily verified that ®[¢, S] is a ring.

Now, with the polynomial g + ta; + - -+ + t"a, we may assoclate the endo-
morphism oy + Ta; + -+ + T"an, e®[T]. Our correspondence is then a
representation of ®¢, S]in R and N is a ®[¢, S]-module.

If a(t) = ao + -+ + t"am, an # 0, the degree of «(t) is m. We also define
the degree of 0 to be — « and note that

deg [a(t) + B(¢)] = max (deg «a(t), deg B(?)),
deg [a(t)8(f)] = deg a(t) + deg B(¢).

The second equation shows that ®[¢, S] has no zero-divisors, 1.e. ®[¢, S]is a domain
of integrity. It shows also that the only units of this domain are the elements
#“0in®. Nowlet 8(t) = 8o+ -+« + t™ Bms With 8 = 0 and m’ < m. Then

a(t) — B ™ B " am = ag + tay + -+ " o .

Hence, if we continue this division process, we obtain polynomials y(¢) and
p(t) such that

alt) = BOYQ) + o)

1 It is not necessary for our purposes to make any distinction in notation between these
two systems.
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where deg p(t) < deg B(¢). Similarly, we may find a v,(¢) and a p,(¢) such that
a(t) = v1(HB(E) + pi(t), deg pi(8) < deg B({).

Now let 5 be a right ideal =0 1n ®[t, S]. We choose an element 8(¢) = 0 in &
having least degree for the non-zero elements of 3. Then if «(¢) 1s any clement
in 3, a(t) = B)y({) 4+ p(t) where deg p(f) < deg 3(¢) and since p(t) = a(t) —
B)y() e, p(t) = 0 because of the minimality of the degree of 8(¢). Thus
a(t) = B)y({t) and 3 = B)®[t, S]. the 1deal of right multiples of 8(¢f). An
ideal of this form will be called a principal right ideal. Similarly, every left
ideal 15 prineipal in the sense that it has the form ®[¢, S|3(f). Now we shall call
a domain of integrity o a principal ideal domain if every right ideal 1s a principal
right ideal ao and every left ideal is a principal left ideal oa.  Thus ®[¢, S]1s an
example of a domain of this type. One may verify that the following are other
examples:

1) The ring of integers.

2) Any division ring.

3) The subring of Hamilton’s quaternion algebra consisting of quaternions
lag + {a; + jar + kaz where the o’s are either all rational integers or all halves
of odd integers.

1) The ring ®[t, '] of differential polynomials. Here the definition i1s simlar
to that of ®[¢t, S] with the modification that the rule af = ta + o' replaces
at = ta” and (o + B) = o' + A/, (aB)’ = of’ + &'B.

In this chapter we consider in some detail the theory of principal ideal do-
mains. The prinecipal applications that we note are to the theory of semi-
linear tranzformations, obtained by specializing o to be ®[¢, S|.

2. Elementary properties. Let o be a principal ideal domain. If ao and
bo are right ideals 0 such that aop = bo, then b = ac, or a 1s a left factor of b.
If ao = bo, au = band bv = a. Hencea = awwr and a(l — w) = 0, ww = 1.
Similarly vu = 1 so that « and v are units in 0. Hence a and b are right asso-
ciates. Similar remarks hold for left 1deals. Throughout this chapter there 1s
a complete parallelism between the theorv of right ideals and that of left ideals.
We shall therefore state the results for right ideals only.

If aip £ a0 = --- 18 a chain of right ideals, the set theoretic sum of these
ideals is a right ideal and hence has the form ao. Since a e ayo for a suitable
N,ao = ay0 = ay0 = --- . Now suppose that ai1p = a0 = ---1s a de-

scending chain and that all of the a,0 contain a fixed element b = 0. Then
b = ab:, a; = a;_ici, and hence b = a;_1(ci_1b;) = a,_1b;_1. It follows that
bi_i1 = ciib; and oby £ oby £ --- so that oby = obyy, = - -- for N sufhciently
large. Thus ¢y, cxyy1, -+ - are units, and ayo = ayy 0 = --- . We note next
that the descending chain condition holds onlyv if o 1s a division ring. For
suppose that a is an element 0 in o and consider the chain a0 = a’o = -
Let % be an integer such that a*o = ¢*™o. Then """ = a*u where u is a unit;
hence & = w is a unit.

2 1f 0 is any domain of integrity and ur = 1 in o, then (1 — vu)v = 0; hence vu = 1 also.
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THeEOREM 1. The ascending chain condition holds for right ideals of o. .Any
descending chain of right ideals having an intersection %0 contains only a finite
number of distinct ideals. If the descending chain condition holds without restric-
tion, o 18 a dwision ring.

Let a and b be elements 0 and consider the 1deal ao + bo of elements ax + by,
r and y arbitrary in 0. This 1s the smallest 1deal contaiming ao and bo. Now
let ao + bo = do. Then d = ap + bg is a highest common left factor of a and b,
1.e. d 18 a left factor of a and b and anv left factor of a and b 1s a left factor of d.
The element d 1s determined to within a unit right factor. Anv one of the deter-
minations of d will be denoted by (a, b). Now write a = da,, b = db,. Then
a(l — pay) = da; — apa; = bga, and similarlv, b(l — ¢b,)) = apb,. Since
either p or ¢ is 0, this proves that the intersection ao A bo = mo 0. The
element m 1s a least common right multiple of a and ) in the obvious sense: mn
1s a common right multiple of a and b and m 1s a right multiple of any common
right multiple of @ and b. We denote m by [a, b] and note that it is determined
to within a unit right factor.

THEOREM 2. Any two elements a and b, #0, have a highest common left factor
(a, b) and a least common right multiple [a, b] determined to within unit right factors.

The existence of common right multiples #0 enables us to use the ordinary
construction of fractions to obtain a quotient division ring for o. For this
purpose we consider the pairs (a, b) with b = 0. Define (a, b) ~ (c, d) if, for
m = bd, = db, , we have ad, = cb; . This relation is symmetric, reflexive and
transitive. Let a/b denote the set of pairs (¢, d) ~ (a, b). We define a/b +
c/d = (ady, + cby)/m. If ¢ = 0, let n = be, = c¢b. and define (a/b)(c/d) =
acs/dby . For ¢ = 0 we zet (a/b)(0/d) = 0/d. 1t 1s readily seen that these
functions are single valued and that the sets a/b called (right) fractions form a
division ring ® relative to these functions as addition and multiplication. The
division ring ¢ contains a subring o whose elements a/1 are in isomorphic corre-
spondence with the elements of 0. Thus if we replace o by b, we may suppose
that the domain o is a subring of a division ring. The elementa/b = (a/1)(b/1)"
so that ® 1s the smallest division subring of ® containing o.

3. Finitely generated o-modules. We suppose that o is an arbitrary ring
with an identity and that 9 1s an o-module in which x1 = x for allxz. We recall
the defining properties of the product:

(x + y)a = xa + ya
x(a +b) = xa + xb
r(ab) = (xa)b

for all x, ¥y in IN and all a, b in 0. We say that IN is finitely generated if there
exist n generators x;, - -+, r, in M such that everv element in I may be ex-
pressed in the form =x.a;, a; in 0. If the ascending chain condition holds for
the submodules of I, 1t 1s readily seen that M 1s finitely generated.



32 NON-COMMUTATIVE PRINCIPAL IDEAL DOMAINYS

Now suppose that 9 1s a submodule of Yt and let J3; = J:(M) denote the set
of elements a; that occur as multiphers of elements of the form xv.a;, + v +
oo 4 xaa, in M. Then J3; 15 a right ideal.  Evidently if < B, a second sub-
module, then J:(0¢8) = 3:(P). On the other hand, it follows readily that if
N Pand 3:M) = (B fore =1, ---  n,thenN = V. This remark enables
us to prove

THEOREM 3. If o0 1s a ring that satisfies the ascending (descending) chain con-
dition for right ideals, then any finttely generated o-module N satisfies the ascending
(descending) chain condition for submodules.

For let M, < My < --- be an ascending chain of submodules and let 3% =
;M. Then Y < 3% < ... and hence there is an integer .\ such that
Y = 3% = ... for all 7. This implies that My = My = ---. The

descending chain condition may be treated in a similar manner.

If the elements of ¢ are expressible in one and only one wayv in the form
Sria; , then It is called a free module with the basis 2y, - -+, x,. Anequivalent
condition is that the x; be generators of M and that Zx.d; = 0 only when all the
d; = 0. As in the case of division rings discussed in Chapter 2, we may con-
struct, for any ring o, a free module having a prescribed number of base elements.
The theorem on the invariance of the number of base elements is not, however,
true without restriction on o. Thus 1t may be possible to choose elements
Yi, * , Ym, m < n, In P! such that every r = Zy,b, for suitable b, In p. We
shall now show that the mvariance theorem holds under either one of the follow-
Ing assumptions:

1) 0 1s a subring of a division ring.

2) The ascending chain condition holds for the right ideals of o.

For suppose that M has m < n generators ¥, = Sr.a;.° Then each z; =
2y:bi; and hence x; = Zx;a;b.,; . By the uniqueness assumption, Za by, = 65
so that

( a1 e Q1m 0o --- 0\1 rbll e blm b1m+1 ot bln\
—_ Am1  *°** Amm 0 0 bml bmm bmm+1 bmn .
(a)(b) = Ami1l *** Gmgtm O +-+ O 0O --- 0 0 e 0 = L
@ ¢ QG O ---0)J (O -~ O O - O

Since (b)(a) = 1, this is impossible when 1) holds, as 1s evident from Theorem 1,
Chapter 2. We note next that the mapping 2Zx;a; — Zyia 1s an p-endomorphism
A such that MA = I*. On the other hand B, , the set of elements mapped
into 0 by A4, includes x,,4,, - -+, ¥, and so B4 % 0. This i1s excluded when 2)
holds by Theorem 7, Chapter 1.*

5 By symmetry it suffices to consider this case.
4 The last result is due to C. J. Everett. A fuller discussion of these questions is con-
tained in his paper [3].
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Now let § be a free o-module with the basis e;, --- , e, and let It be any
o-module with n generators x;, ---, x,. The correspondence Ze,a; — Zz,a;
is an p-homomorphism between § and 9¢. Hence I is isomorphic to F — N,
I the set of elements mapped into 0 by the homomorphism. We shall use this
result later to obtain the structure of finitely generated o-modules for any
principal ideal domain o.

An o-module that 1s generated by a single element 1s called cyclic. If we regard
o as a module relative to the ordinary multiplication xa, we see that o 1s a free
cvelie module since a = la. A right ideal § of o is an o-submodule. 3 1s eyclic
if and only 1f it is principal, and & = ao is free if and only if « is not a left zero
divisor. Now if I 1s any cyelic o-module and 2 1s a generator of I, the corre-
spondence between a in 0 and za in I is an p-homomorphism. Thus in this
case M 1s isomorphic to the difference module 0 — & where & 1s the right ideal of
elements b such that xtb = 0. The ideal J is called the order of x.

4. Cyclic o-modules. From now on o will denote a principal ideal domain.
If 9 1s an o-module and x 1s an element of M, we shall say that = has finute
order if its order J # 0. Suppose that x and y have finite orders 3; and 3: .
Then 35 = 31 A 32 # 0 and since (x + y)b = 0 for all b in &3, the element
x + y has finite order. Next if ¢ is any element #0in o, a0 A 3 = JF¢ # 0 and
if bis an element #01n &4, b = ac where ¢ # 0. Then (xa)c = b = 0. Thus
the totality of elements of finite order is a submodule of IN.

We consider now a cyclic o-module I whose generator has finite order and
hence, without loss of generality, we may suppose that M = o — ao, a # 0.
Any submodule of o — ao has the form bo — ao where bo = ao and hence a = be.
The submodule bo — ap is cyclic since it 1s generated by the coset of the element
b. Since the order of the coset b 4+ ao 1s co, bo — ao 1s p-isomorphic to o0 — co.
By the Second Isomorphism Theorem, (0 — ao) — (bo — ao) is p-1somorphic to
o — bo. Thus with a factorization a = be of an element ¢ # 0 we may associate
a chain of p-modules o — a0 = bo — a0 = ao — ao = 0 whose difference modules
are respectively o — bo and o — c¢o, and conversely.

We seek a condition on ¢ and b, 0, that 0 — ao and o0 — bo be p-isomorphie.
Let 1, be the coset containing the element 1 in o — @o. By an isomorphism this
is mapped Into a coset up iIn 0 — bo. Then 1,c corresponds to u,c. Since 0 — 0
1s an isomorphism, usa = bp. If wi1s any element of w, , ua = bv = m. Since
1, , the coset containing 1 in o — bo, has the form wc for a suitable ¢, we have
uc = 1 + bq. Hence the highest common left factor (u, b) of w and b 1s 1.
Since ua; € bo only if a; = ac;, m is the least common right multiple [u, b] of
u and b. Following Ore, we shall say that a and b are right stmzlar if there is a
win o such that (u,b) = land @ = u '[u, b], or uad = uo A bo and uo + bo = o.
We have, therefore, shown that o — ao and o — bo are p-isomorphic only when
a and b are right similar. The converse also holds, since, as is seen by retracing
the above steps, 1,6 — wc 1s an iIsomorphism. Now the condition m = ua =
bv = [u, b] implies that a and v have no common right factor, i.e. oa + ov = o,
and (u, b) = 1 implies that m is a least common left multiple of @ and ». Thus
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a and b are left similar in the obvious sense. Because of the equivalence of left
and of right similarity we shall refer to this propertv simply as somilarity. 1f
we consider o as a left module relative to left multiplication, we obtain

THEOREM 4. The o modules o — ao and o — bo (a, b # 0) arc isomorphic if
and only 1f the left modules 0 — oa and o — ob are isomorphic.  For etther of these
conditions to hold it 1s necessary and sufficient that a and b be similar,

We note that wa, and henee wae, are similar to a if 1 and v are units. I ois
commutative and m = ua = bv, up + bg = 1;thena = aup + aby = b(rp 4+ ag)
<o that b1s a factor of a. Similarly a 1s a factor of b.  Hence, in this case, a and
b are similar if and only if they differ by units.

I.et @ be an element = 0 and not a unit. Then o > ao > 0. Since the
chain conditions hold, the p-module o0 — ao has a composition =eries. Such a
series corresponds to a chain of ideals 0 = a0 > a0 > a0 > -+ > a,0 = ao
such that (¢;0 — ao) — (a;.10 — ao), and hence a0 — a;410, 1s rreducible.  If
aiyp = a;biy, ap = 1, then a,0 — aly 0 1s 1somorphic to o — b;.;0. Hence
a = biby - - - b, where the b; are irreducible in the sense that thev are neither O
nor units and they have no proper factors. Conversely if @ = by --- b, , b;
irreducible, we obtain a composition seriesp — ao > bjo — ao > bjbso — ap > - - -
> 0. Thus we may apply the Jordan-Holder theorem to obtain the following

THEOREM §. Any element a = 0 and not a unit may be written as by - - - b, , b
irreducible. If a = ¢, - -+ ¢, where the c; are 1rreducible then m = n and the
b’s and the ¢’s may be paired into similar pairs.

The number n of irreducible factors b; in a = b, - -- b, will be called the
length of a. It 1s also the length of a compasition =eries for o — ao. Let b be a
second element # 0 and not a unit and suppose first that (¢, b) = 1. Then

a '[a, b] = b’ is similar to b. Hence length b’ = length b. Now let (@, b) = d,
a = da,, b = db;. Then (a,, ) = 1 and length [a,, b;] = length a; +
length ai '[ay, b)) = length a; + length b, .  Since [a, b] = d[a , by}, length [a, b] =
length d + length a, + length b, and length [a, b] + length d = length a;, 4
length b, + 2 length d = length ab we have |

THEOREM 6. If a, b are %0 and not units, then length [a, b] + length (a, b) =

length ab.

A proper direct decomposition of 0 — ao i1s associated with a set of ideals
a;0 such that o > a,0 > a0, a0 + -+ + a,0 = oand a;0 A (a;0 + -+ +
;10 + a;40 + -+ + a,0) = ao. Thus the elements a; are proper factors of a,
the highest common left factor (a,, ---, ¢,) = 1 and the least common right
multiple [a;, (ay, -, @iy, @iy, -+, ay)] = a. If a = ab;, a;0 — ao

is o-isomorphic to 0 — b;0. The condition that a;,0 — ao be indecomposable is
that no proper divisors b b7 of b, exist such that [b; ,b] = b;and (b, , b.) = 1,
or that no proper divisors a, . a; of a exist such that [a; : a;] = a, (a; : al) = a;.
This of course affords an interpretation of the Krull-Schmidt theorem. A
more usual interpretation is obtained by making use of the following general
lattice theoretic argument.
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Let I be a group relative to a set © of endomorphisms containing the inner
automorphisms and suppose that MW = PV, @ - @ I, 1.c

VE=N4 + -0+ 0,

(1) _
V& A DG+ -+ Dy + Mgy + -+ + W) = 0.

Sct 9 = V& + -+ + Moy + Dy + -+ + M. Then by repeated applica-
tion of Dedekind’s distributive law we obtamn (9t A -+« A Wit A Vipr A -+
AN, = M. Hence

0= A --- Ay,

(2)
9%1 ‘)L (‘)21 A - A 925_1 A 9?;41 A - A %n) — 9)2

Conversely, if we have a set of M, satisfying these conditions, we may define
9)3; - (921 A - A <ﬁi__l A \Jtprl A - A %n) and obtain 921 = ml + P +
Mg +Dia+ -+ and M =D - @M, . Thuswehave a complete
dualism between the two types of decompositions. We note also that M — I,
1s Q-1somorphic to MV, . Henece we have the following dual of the Krull-Schmidt
theorem:

THEOREM 7. Let M be an Q-group such that Q@ includes all the inner auto-
morphisms and both chain conditions hold. Suppose that Iy, ---, N, and
N1, -, W are two sets of Q-subgroups =M satisfying (2) and such that M — N, ,
M — N, are indecomposable.  Then n = n' and there i1s an Q-automorphism H in
M and a suitable ordering of the N; such that W;H = N: . In particular, M —
N, and M — N are Q-1somorphic.

We return now to o and shall call an clement a indecomposable if a 1s neither
0 nor a unit and o — ao 15 indecomposable. The latter condition holds if and
only if there are no proper factors ¢’ and a’’ of a such that a = [a’, a’’] and
(a’, a’’) = 1. If a has such a decomposition and a = a’d”’ = a’’b’, a is a least
common left multiple of 4" and b”’ and these elements have no common right
factors other than units. It follows that o — ao is indecomposable if and only
if 0 — oa 1s indecomposable. The dual of the Krull-Schmidt theorem implies

TheorEM 8. An element a # 0 and not a unit may be written as [¢;, -+ - , ¢,]
where the c; are indecomposable and (¢, , [c1, *++, ¢i1, Cig1, *++, Ca)) = 1. If we
have a second decomposition a = [dy, -+, dn] of this type, then n = m and the

c’s and the d’s may be parred into stmilar pairs.

Polynomial domains. let o be the polynomial domain ®[¢, S]. If ¢ =
(" 4+ "'y + - 4 an, m > 0, and d is any element of the domain then
d = aq + r where deg r < deg a. Hence in each coset of a®[t, S] there is an
element of degree < m. Asis readily seen, this element is uniquely determined.
It follows that any coset of a®[¢t, 8] may be written in one and only one way in
the form {11& + {t}& + -+ + {t™ '}t where {t°} is the coset containing ¢
and ¢; e®. Thus if we regard the ®[t, S]-module ®[¢, S] — a®[t, S] as a $-module,
we sec that its dimensionality is the degree of a.
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As a consequence of this we obtain the result that similar polynomials have
the same degree. The degrees of the irreducible polynomials that occur in a
factorization of any a are therefore invariants of a. Suppose that a 1s similar
to'b, sava = u [u, b]with (u,b) = 1. If [, b] = ua = by, let

u = bgy + uy, v = @0 +
where deg u; < deg b and deg »; < deg a. Then
‘ b(qgy — go)a = bv, — wa.

Unless ¢; = ¢» the degree of the left hand side is = deg a + deg b while the degree
of the right hand side 1s < deg a + deg b. Hence ¢; = ¢» and by, = wa. The
pair b, 1, have no common left factors other than units and v, , a have no common
right factors other than units. Hence a = 7 '[u;, b] where deg u; < deg b.
For example, if b = ¢t — 8, 3 in ®, then we may take u; = cindand ¢t — g8 =
oo '(t — 8) = [o,t — B]. Hence the elements similar to ¢ — 3 are right asso-
ciates of polynomials of the form o (t—RBort— o Ba.

Now let & = R(7, j), the quaternion algebra over a real closed field: The
elements of ® are ay + foq + joo + 7jas where i = 55 = —1 and 4§ = —ji.
Assume S = 1. If at) = ao + tay + tas + -+ + t"am, a; in ®, we define
5([) = dy + ta, + t'a. + - -+ + t"a,, where apy + 1y + jor + ijoz = a0 — 10§ —

jos — Jaz . One readily verifies that

(3) a(t) + b(t) = a(t) + b(t), a®bE) = b(t) a?)
and

(4) alt) + al®,  a@a@) = a@ald)

have coefficients in . Thus a(t)a(t) may be factored into linear factors in
R()[t]. Hence the irreducible factors of a(f) in ®[f] are linear and the only
irreducible polynomials in ®[¢] are the linear ones. As in the commutative case
we may use the identity

tk __ Tk — (t . r)(tk—l + tk_2'r + .. .'_+_ rk—l)

to prove that the remainder obtained by dividing a(t) = ay + ta; + --- + t"an
on the left by t — risay + ra; + --- + r"a,, . Hence{ — r1s an exact divisor
of a(?) if and only if r1s a left hand root of a(¢) in the sense that ap + ra; + - - -
+ r"a,, = 0. Thus we have proved that every polynomial of degree >0 has
a left hand root, and, in a similar fashion, we see that these polynomials have
right hand roots (ay + a;r + -+ + a,r" = 0). In this sense ® is algebraically
closed.

Next let ® = R(¢), where i = —1 and R is a real closed field. Suppose that
S 1s the automorphism o + g — o — oy . Ifalt) =ay+tay + -+ + t"am,
a; in ®, is in ®ft, S], we define a(¢) = ao — ta; + t'ay — t'ag + --- (or, I = —t¢,

tia; = a;t). Then (3) is valid and a(t)a(t) = a(H)a(t) = a(’), a polynomial in
t* with coefficients in . We may factor «(¢’) into factors of the form t* — a
where a € ®; and these are irreducible in ®[¢, s] unless a = bb, 1.e. unless a is real
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and non-negative. Hence any «(¢) has linear or quadratic factors and our result
gives a special form to which every irreducible polynomial 1s similar.

6. Two-sided ideals. Any two-sided ideal 3 has the form ao = oa’. It
follows that ¢ = wa’, @’ = av and a = uav, '’ = ua’v. Since ua € 3, ua = au’
and @ = au’v, u'v = 1. Hence v is a unit. Similarly, v is a unit and ao = oa,
a’o = oa’, 1.e. any right generator is a left generator and vice versa. We shall
denote generators of two-sided ideals by a*, b*, ---. These elements are
characterized by the propertv that given any x there is an 2’ (&) such that
ra* = a*x’ (a*xr = fa*). This shows, of course, that the correspondence r —
' (x — )18 (1 — 1) and hence it is an automorphism in o.

If & and &, are two-sided ideals, then so are &1 + 32, 31 A 32 and the product
3,3, , defined as the set of sums Zyyy, ¥: in &:.° If $1 = a*o, I = b*p, then
3132 = (a*o)(b*0) = a*(ob*)o = a*(b*o0)o = a*b*n. Evidently & A I =
3132 - Now suppose that 3, = & # 0; then a* = b*c and if x € o, there is an
x’ and an & such that xa* = a*2’ and zb* = b*Z. Hence b*ic = xa* = a*r’ =
b*cx’ and Tc = ca’. Since & is arbitrary, ¢ = c* generates a two-sided ideal
c*o such that a*o = (b*p)(c*0). Evidently c*o = a*o.

LeMma 1. If & and 3. are two-sided ideals #0, the condition that I = Iy
18 51 = &5 where 33 18 a two-stded ideal containing 3.

By a maximal two-sided ideal p*o we shall mean a two-sided ideal =p which
is contained in no two-sided ideal 0 and = p*o0. In a similar fashion we define
a maximal right ideal po. Thus po is maximal if and only if p is irreducible.

Now let pio be a maximal two-sided ideal containing a*o = 0, 0. Such ideals
exist since o — a*p satisfies the chain conditions. We have a*o = (pi0)(aio)
where afo # a*o since 'piko =< p. If ajp = 0, a*p = p’fo. Otherwise aip =
(p%ko)(a;‘o) where 0 = aso0 > alo. Continuing this process we obtain the fol-
lowing

LEmMA 2. Any two-sided ideal a*o = 0, % o may be factored as (p{o)(pso) - - -
(pro) where the p*o are maximal (or unfactorable) two-sided ideals.

Suppose that p*o is maximal and contains (or is a divisor of) (a*o)(b*p).
If p*o 2 a*o, p*o + a*o = o, and hence b*o = ob*o = (p*o 4 a*o)b*o =
(p*0) (b*0) +-(a*0)(b*0) = p*o.

LemMa 3. If p*o is maximal and s a divisor of (a*0)(b*o), then p*o s a divisor
of etther a*o or of b*o.

Let p*o and ¢*o be maximal two-sided. ideals. If p*» = g¢*p, evidently
(p*0)(g*p) = (¢*o)(p*n). Now suppose p*o # ¢*o. The ideal (p*o A ¢*p) =
p*o so that (p*o A ¢*o) = (p*0)(¢gi0). Now ¢*o = (p*o0)(gi0) and since ¢*o =
p*o, ¢*0 = ¢io. Hence (p*0)(¢*0) = (p*o A ¢*0). Since the reverse inequality
holds, (p*o)(¢g*o) = (p*» A ¢*0). By symmetry we have

5 In general if A and B are subrings of a ring, AB is defined as the set of elements Zab,
ain A and b in B. The following rules hold: A(BEC) = AB)E, AB + C) = AB + ACE,
B8+ OA = BA + CA.
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LemMa 4. If p*o, ¢g*o are maximal two-sided ideals, then (p*p)(¢*o) =
(7%0) (p*0).

These lemmas yield, as in the commutative case,

THEOREM 9. The two-sided ideals of o form a commutative multiplicative system.

Any two-sided ideal #0, #o has one and only one factorization as a product of
maximal two sided ideals.

It follows from this theorem that if a*p = (pi"n)e1 (p;ko)e’ where p:-ko 19
maximal and plo # p o if ¢  j, then any two-sided ideal containing a*o has the
form (pyo)™ -+ (pfo)’* with f; < e;. Hence if a*o = (pio)* - - (pfo)™,

(p1o)™ - (pFo)"s where h; = min (e; , fi), and a*o A b*o = (pro)’ --- (pJo)"*
where g; = max (e;, f;). If a*o + b*0 = o, a*o A b*» = (¢*0)(b*»). Thus
a necessary and sufficient condition that a*o = (p*p)°, p*o maximal, is that it be
impossible to write a*o = (b*n A c*o) where b*p, ¢c*o are proper divisors such
that b*o + c*o = o.

Two-sided ideal in ®[t, s]. Let a* = t* + " ay + -+ + t" ", ar #= 0,
generate a two-sided ideal in ®[t, S]. Then since t"* generates a two-sided
ideal, this is true also for t* 4+ t*'a; + -+ + o . Hence we may suppose that
k= mnand a, # 0. If ¢£is any element in ®, there is a ¢ in ®[¢, S] such that

"+t s ) = "+ T o+ o+ an)f

Hence deg ¢’ = 0,0r ¢ isin®. Then ¢ = a, ¢a.. Ifn =0, £ = ¢ so that
£%" = a'ta, . Thus we see that if no power of S other than S° = 1 is an inner
automorphism, the only elements a* are t‘a and the two-sided ideals are t‘o =
o, k = 0,1,2 ---. '

Now suppose that S" e &, r > 0, where R is the group of inner automorphisms
of ®, and let S” be the least positive power having this property. Accordingly let
£ = u 'tuforall &, Then if S" e R, nisa multipleof r. If a* = " + t"28; +
t"*Bs + -+ + Bs, B: # 0, n > nyg > --- and &éa* = a*t’ where, of necessity,
£ = B;'t8,, then 8", 8" ... are inner. Hence a* = "™ + " "y, +
oo Y, Ym # 0 and v = u " V™ Yy, for all £, Since ta* = a*t’,
t' = tand hencey; = v, . Conversely, the conditions

(i), (m—i) S
(5) vi£ = u " VEu Yi, Yi = Vi

imply that za* = a*z’ forxz = ¢ in®and r = ¢. It follows that this holds for
all x in ®¢, S]. The general form of a generator of a two-sided i1deal is therefore
t*a*y where a* is as indicated.

b*o = (pro)’ --- (pfo)’* where e; = 0 and f; = 0, then a*o + b*> =

6. Bounded ideals. A right ideal ao will be called bounded if it contains a
two-sided ideal 0. The join of all two-sided ideals contained in ap is then a
two-sided ideal called the bound & = a*o = oa* of ao. If z €, vz € ao for any
x in o and hence z € §’, the ideal of annihilators of the difference module 0 — ao.
Hence if ao is bounded, &’ = 0. Conversely if § = 0, 13’ < ao, and ap is
bounded with bound 3 = &’. Thus & = &’. This characterization of the
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bound implies that if @ and b are similar and ao is bounded, then bo is bounded
and they have the same bounds. In particular if ap = a*p is a two-sided 1deal,
then ao = bo.

A second characterization of boundedness and bounds is obtained as follows:
Let b be an clement similar to some right factor of a and let 3’ = Abo be the
intersection of all bo of this type. Suppose that 3’ == 0. If x is any element
of o,let (x,a) = e,z = ex;,a = ea; so that (x;,a;) = 1. Letm; = [z, a;] =
T1as = a;ry . - Then a. is similar to the right divisor a, of a. Hence if d e §’,
d = a.d’ and ad = exia.d’ = eayryd’ = axsd’ e ap. This implies that ao is bounded
with bound & = J’. On the other hand, let ao be bounded with bound 3.
Then if b 1s simalar to a right factor of a, o — bo 18 o-1somorphic to a submodule
of 0 — ao and hence if d €3, d = 1d e bo. Since bo is arbitrary, d e Abo = 3’
and so 3 = 3. Hence 3 = 3.

THEOREM 10. The following conditions are equivalent: 1) ao s bounded,
2) there exist elements z % 0 such that xz € ao for all x; 3) Abo, the intersection of all
bo where b 1is stmilar to a right factor of a, 1s #0. If these conditions hold, the
bound of ao 1s the set of elements z satisfying 2), or, the set Abo of 3).

CoroLLARY. If a and b are similar and ao is bounded, then bp 1s bounded and
has the same bound as ao.

Similar definitions hold for left ideals. Now if ao = a*o, consider oa and let
oa + oa* = od. Then d = ka + la*. Since a* = aa,, we have da; = kaa, +
la*a, = kaa, + laa* = (ka + la;a)al. Hence d = ua where u = k + la; .
Then od £ oa and oa* = a*o £ oa. Thus oa is bounded and its bound is the

same as that of ap.

THEOREM 11. If ao 18 bounded with bound a*o = oa*, then oa 1s bounded and
has the bound a*op.

If ao and bo are bounded with bounds a*o and b*o respectively, then a*o A b*p
1< a two-sided ideal 20. Hence ao A bo 1s bounded and evidently its bound is
a*o A b*. It follows also from the definition of the bound that if bo = ao,
sav a = bc, and ao i1s bounded with bound a*o, then bo 1s bounded with bound
b*o = a*p. Similarly oc, and hence co, is bounded with bound containing a*o.
If we combine these two facts, we see that if ao = bedo 1s bounded, then co 1s
bounded and its bound contains a*o.

THEOREM 12. If ao = bedo ts bounded with bound a*o, then co ts bounded and
has the bound c*o containing a*p.

Now let p be irreducible. Then po 1s a maximal right ideal. Suppose that
po = (a*o)(b*p). If po & a*o, then po + a*o = o and hence b*o = (po)(b*o) +
(a*p)(b*0) =< po. If po is bounded, it follows that its bound p*o is a maximal
two-sided ideal.

Now let ¢ be indecomposable and let qo be bounded with bound ¢*o. Suppose
that ¢*o = ¢i0 A ¢20, ¢10 + gao = 0. Set g0 = ¢10 + ¢o, g0 = Q20 + ¢o.
Then g0 + ¢:0 = 0 and ¢giogs0 = ga0gi0 = ¢*o. Ifx e g10 + go, z(ga0) < qo
and if 2 e gs0 + go also, z(gi0) < go. Hence zo < go and z ego. Thus qi0 A
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@20 = qo. By the indecomposability of go we have either ;0 = ¢o or ¢:0 = go.
Accordingly go = ¢io or go = goo. Since ¢g*o is the bound of ¢o, either gro =
¢*o or a0 = ¢*o. It follows that ¢*o cannot be factored as a product of proper
two-sided factors which are relatively prime, i.e ¢*o is a power of a maximal
two-sided ideal.

THEOREM 13. If p 1s irreducible and po is bounded, then its bound p*o is a
maximal two-sided ideal. If q is tndecomposable and qo s bounded, then its
bound q*o 18 a power of a maximal two-sided ideal.

An element a 1s a total divisor of b # 0 if there is a two-sided ideal & such that
a0 = & = bo. Thus ao 1s bounded with bound a*o containing bo. Since we
have seen that oa = a*o and since oa* = a*o = ob is evident, we also have the
result that oa = oa* = ob. An equivalent condition that is more symmetric
is due to Teichmiiller, namely, (a0 A o0a) = obo. For if (ap A oa) = obo,
ap contains the two-sided ideal obo which contains bo. Conversely if ao =
a*p = bo, a*0 = obo and ap = obo. Similarly, oa = o0bo and so (a0 A oa) = obo.
The notion of total divisibility is a similarity invariant as is seen in the following
theorem.

THEOREM 14. If a s a total dwisor of b, and a’ is stmalar to a and b’ is sitmilar
to b, then a’ is a total divisor of b’.

We have seen that if ao is bounded and a’ is similar to a, then a’o 1s bounded
and has the same bound a*o as ap. Hence if a is a total divisor of b, then a’
is a total divisor of b also. Now suppose that b’ = u [, b] where (u, b) = 1.
Then uo + bo = o, and if a0 = a*o = bo, then uo 4+ a*o = o. Thus u '[u, a*]
is similar to a* and since a*o is a two-sided ideal, % '[u, a*]o = a*o and ua*
[u, a*]. Since (uo A a*o) = (uo A bo), we may write ub’ = [u, b] = [u, a*]c =
ua*c. Hence b’ = a*c and a*o = b’p so that a is a total divisor of b’. It follows
that a’ also 1s a total divisor of b'.

Bounded elements of ®[t, S]. Let I be the center of ® and suppose that (®:T) =
m(< ) and that a power of S not S°is inner. Let S" be the smallest positive
power having this property, where £ = p 'tu for all £, Then S induces an
automorphism in I' and S = 1 in I'. If S* is the smallest positive power of
the induced automorphism which is the identity then t = r. For, as we shall
prove later (Chapter 5, 9), if S° leaves the elements of T' invariant, then S°
is inner. Hence ¢t = r and since ¢ < ris evident, t = r. If Ty is the subfield of
elements invariant under S, then from the Galois theory of fields, (I':Ty) = r.°
Hence (®:Ty) = mr.

Since S and S commute and £ = p fu, ()78’ = u'tu. Hence
u’ = 6u where § e I'. It follows that 86° - - - 370 = 1. Then, as we show in
9,6 = n(n°)" where n eI'. By replacing s by nu and changing the notation,
we may suppose that u° = p.

Now suppose that a* = t""y, + " V% + -+« + ym, where v, = 1, gener-
ates a two-sided ideal. This may be written as u™6 + u™ 6, + -+ + 6m,

¢ See Chapter 4, 19.
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6m = 1 where u = t'w™", w* = t"u >, ---. The conditions on a* are that
6; e I'y, and the general form of an element that generates a two-sided ideal is
s + w8 o0 4+ )y, §; in Ty.

If a(t) is a polynomial of degree h let

w = alt)g:(t) + r:t), ¢ =0,1,---, mrh,
where deg r;(t) < h. Since the polynomials of degree < h form a space of
dimensionality mrh = N over T ) there- exist elements 8y, 6, -+, 6y In Ty
such that Zr;(¢)é; = 0. Hence Zu's; = a*(t) = a(t)q(t) where q(t) = Zq.(t)é;,
and a(H)®[t, S] = a*(®)P[t, S].

THEOREM 15. If ® has finite dimensionality over its center and S™, 0 < r < o,
18 inner, then every ideal in ®[t, S] 7s bounded.

7. Matrices with elements in 0. If U and V €0, the ring of n X n matrices
with elements in 0 and UV = 1, then VU = 1 also. This is an immediate
consequence of the fact that o may be embedded in a division ring. Thus U is
a unit in 0,,. If A and B are any two n X r matrices (n rows, r columns) with
elements in o and B = UAV where U and V are units in o, and o, respectively,
then A and B are associates. We shall consider in this section the problem of
selecting a canonical form among the associates of a given matrix. This will be
applied in the next section to obtain the structure of an arbitrary o-module.

Let a and b be elements 0 in o and ao + bo = dp, (ao A bo) = mo. Then
there are elements p, ¢, r, s such that ap + bqg = d, ar + bs = 0 where m = ar =
—bs# 0andor +0s =o0. Ifa = da,,b = db, and ¢, , d; are elements such that
cr + dis = 1, we set u = ¢;p + di¢ and we may verify that

W b p T _(10
o —uwm dy—ub/\qg s/  \0 1

Hence the matrix (Iq) Z) 1s a unit in o, and
) J
(1, ) ’
1 .
.p. . o ./r. 7/
A
V= 1
q . .8. . o ]
1,
\ 1)
1s a unit in o,. If A has the #th row (¢;, ---, ¢ci1, @, Cig1, -+, Cju,
b, Cj41, *** , ), then the --th row of AVis (¢;, --- ,¢i1,d, Ciya, *++,C520, 0,

Cit1, "+, C). A similar result holds for the columns of A.
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We note next that the following ‘“‘elementary” transformations may be
performed by multiplying A on the left and on the right by units:

I. Adding te the i-th column the j-th column multiplied by ¢ on the right
(7 # 7). This is done by multiplying A on the right by (1 4+ e¢;,q). To add to
the 2-th row the 7-th row multiplied on the left by q, form (1 + e;;9)A.

II. Interchanging the 7-th and the j-th columns (rows): Form A(1 + e;; +
e;i — €i; — €55) (or (1 + ei; + ej0 — e — €;5)A).

ITI. Multiplying the 7-th column (row) on the right (left) by a unmit #: Form
Al + (u — Dey) (or (1 + (u — 1en)A).

If A 0, let a,, £ 0 be an element of A whose length is least for the non-zero
elements of A. By performing operations of type II, we obtain an associate
B = (b;;) for which b1, ¢ 0 has the smallest length. If by, is not a left factor of
one of the by;, a suitable associate BU has in place of b;; the element d = 0
whose length is less than that of b, . Similarly, if b;; 1s not a right factor of
every b, , b may be replaced by an element of smaller length. After a finite
number of these replacements, we obtain an associate (' of 4 for which the
element c7; 1s 20 and 1s a left factor of every c¢;; and a right factor of every c;; .
If ¢;; = cuqi, we multiply successively the first column on the right by —gq;
and add to the 2nd, 3rd, ---, r-th columns. This leaves the first column
unaltered and replaces c¢;;, 7 > 1, by 0. If we use a similar procedure on the
rows, we obtain an associate D of A such that

po (0 dmod ) 40
0 dn2"'dnr

The same process applied to the matrix (d;;) and repcated to submatrices shows
that A has an associate in diagonal form {d,, ---,d;,0, ---,0},d; # 0.

We wish to show that we may suppose that each d; i a total divisor of d; for
7 > 1. If d;1s a left factor of bd; for every b, d:o = od;0 and, as we have seen,
d; 1s a total divisor of d;. Now suppose that there is a b ¢ 0 such that d, is not
a left factor of bds .  Add the second row multiplied on the left by b to the first.
The corner of the resulting matrix is

_ (di bds
D2—<0 d2>'

_fdn O
b= (Gt )

where di1; is a highest common left factor of d, and bd, and hence has length less
than that of d,. This matrix may be diagonalized to a form in which the
element in the (1, 1) position has smaller length than d,. Repeated applica-
tions of this process will yield an associate {e;, -+ ,e;,0, ---, 0} of A in which
each e; 1s a left factor of every be; with 7 > 7. Hence

This has an associate
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THEOREM 16. Any rectangular matriz with elements in o has an associate
fe,, - ,¢e,0,---,0} in diagonal form where each e; is a total diwisor of e;,
J > .

We may replace e; by wu.ew;, u; and v; units, and obtain another diagonal
matrix having the same properties as {e; , --- , e, 0, -+, 0}. If ois a division
ring, we may, therefore, suppose that e; = 1. Hence we have the

CoroLLARY. If o0 is a division ring, any rectangular matrix with elements in o
has an assoczate of the form {1, --- 1,0, ---  0}.

We consider next the special case where o is commutative. Let h; denote the
highest common factor of the ¢-rowed minors of A. Since the columns of any
AV are linear combinations of those of A, h; 1s a divisor of the 7-rowed minors
of AV. Similarly h;is a factor of the z-rowed minors of any matrix UA. Hence
if U and V are units, h;1s a highest common factor of the i-rowed minors of UAV.

Now if U and V are chosen so that UAV = {e;, ---,¢e,0, .-+, 0} where e;
is a factor of e; for j > 4, it is evident that h; = e; - - - e; and so ¢; = hhily
This enables us to compute directly the normal form {e;, ---,e,,0, ---, 0}

of A. It shows also that the e; are uniquely determined except for unit multi-
pliers. In 11 we shall show that in the general case, the e; are determined in
the sense of similarity by the matrix A.

8. The structure of finitely generated o-modules. We have seen that'any
finitely generated o-module has the form §§ — M where § is a free module with
the basis 1, - - - , x, and 9 is a submodule. We consider first the structure of
in the following

THEOREM 17. If 0 18 a principal ideal ring and § is a free o-module, then any
submodule N of 5 is free. The number of elements tn a basis for N 7s < that for §.

Let M be a submodule of § and suppose that it is a submodule of (z;, - - -, za)»
-, of (xn, , - -+, x4) but not of (xn, 41, - -+, ) Where in general (y1, - - , y-)
denotes the o-module generated by the y;. The multipliers of x,, of the ele-
ments y in N form a right ideal b,,0 0. Thus there is an element y, = z,,b,, +
> xb;inNandif z = Tn,dn, + Zx;d; 18 any element in N, we have d,, = b, k.

i>ny

Hence z — wyik € (xn, 41, -+, 2»). Consider next the o-module M; = N A
(Tn 41, ***, Ts). Treating it in a similar fashion, we obtain an n, > n; such
that 9t, £ (x;, -+, x,) forj < ne but Ny £ (py41, -+, x.). Hence there is
a Yo = ZTn,bn, + Z x;b; such that for each z in 9, there is a k£ in o such that
1>n9
z — yok € (Xny41, -+ -, %a). If we continue this process, we obtain r < n ele-
ments y1, -+, ¥, iIn N where y;, = x,,b., + E ibii, b, Z 0,0y < Mp < -+
‘ ~ i>ng

such that each z in 9 has the form Zy;k;. This expression is unique, as is evi-
dent from the form of the y’s.

Next we may replace the basis x; of § by Z; = Zz;u;; where (1) iz a unit 1n
0, . Likewise the elements y, = Zx.bi may be replaced by elements 7, =
Zywur, () a unit in o, . Then we obtain 7x = ZZei where (¢) = (u) (b))
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1s an associate of (b). It follows from Theorem 16 that, for a suitable choice of
the z and the ¢, we have g, = Tiexr, where ex = 0if bk =1, --- 5, ¢ = 0if
k > s and each e is a total divisor of e; for [ > £, We return to the original
notation and write r and y in place of 7 and 7.

Consider now the difference module § — 9. It is generated by the cosets
{z:} containing x;. If {xijer + -+ + {xnlcn = 0, 1icr + -+ + Ta¢a €I and
hence cijee;0if j = 1, ---,sand¢; = 0if 7 > s. Since z;¢; e N for j < s,
& — M is a direct sum of the cyclic modules {r;}]. The eyclic modules
{1}, - -+, {x.} are finite and {x.1}, - -+, {x,} are infinite, The j-th of these
(7 = s) 1s 1somorphic to (o — e;,0) and if ¢; 1s a unit, we may delete the corre-
sponding {z;}. If a;, --- , a, are any elements in o, there exist k; such that
ak; = eb and if k i1s a common multiple of the k;, then a;k = exc;. Hence
({x1jay + - -+ + {zsla)k = 0. It follows that the module B — N of cosets
{x;}a, + --- + {a}a, may be characterized as the totality of elements of
$ — ¢ that have finite order. The difference module (F — N) — (L — N)
is a free module of dimensionality n — s.  Evidently this number is an invariant
of § — M. If we make use of the fact that any finitely generated o-module is
p-isomorphic to an § — M, we obtain the following theorems.

THEOREM 18. Any finitely generated o-module is a direct sum of its submodule
of elements of finite order and of a free o-module.

Tueorem 19. Any finitely generated o-module is a direct sum of cyclic o-
modules. The orders e;0 # 0 may be chosen so that e; is a total dwisor of e; if
i>

For the further study of finitely generated o-modules we shall restrict ourselves
to modules having only clements of finite order. Thus s = 7 in the above
notation. As a consequence of Theorem 19, an indecomposable o-module is
cyclic with order ¢.0, ¢; indecomposable. Any module is a direct sum of modules
of the form 0 — ¢;0. By the Krull-Schmidt theorem the ¢; are determined in
the sense of similarity. We shall call these elements elementary divisors of the
module.

9. Bounded indecomposable elements. We have seen that if o0 — ¢qo is
indecomposable and go is bounded, its bound ¢*o is a power (p*p)° of a maximal
two-sided ideal (p*o). If ¢ = p; - -+ p, is a factorization of ¢ into irreducible
elements p; , the ideals p;0 are bounded and have bounds containing ¢*o. Since
p:0 1s maximal, its bound 1s a maximal two-sided ideal. Hence this bound is
p*o. Now let p,, ---, p; be arbitrary irreducible elements having the pro-
perty that the bound of p:.o is p*o. Suppose that p,y; - ppo = (p*o)f__'.
Then p:pisi -+ PO = pi@*0) ™" = (pi0)(P*0) ™" = (p*0)(p*0)’ ™" = (p*0) """
Thus we have proved that p, --- pyo is bounded with bound (p*n)°, ¢ = f.
Evidently this implies that the bound of p; --- P06 A pryr -+ pso is (p*0)°
with e < min (k, f — k).

We now form a direct sum N, of & cyclic modules each o-isomorphic to o — go,

7 The ordinary theory of finitely generated commutative groups is obtained from Theo-
rems 18 and 19 by specializing o to be the ring of rational integers.
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g = pp - - - p;indecomposable, and we suppose that this module is eyelic.  Then
Or 1s o-isomorphic to o — ¢.0. The bound of g0 is (p*0)° and the length of ¢
is fh. Thus fh =< el 1if k 15 the length of p*.  Now consider 9,4 , a direct sum
of i + 1 eyelic modules iromorphic to 0 — go.  We assert that cither 44 1s
cyclic or o = (p*0)". For, if Ny1 18 not eyelie, it is a direct sum of § > 1
cvelic modules whose orders are e;0, where e; 1s a total divisor of ¢; if 7 > 4.
By the Krull-Schmidt theorem the indecomposable parts of e, are similar to ¢
and hence the length of ¢; = length of ¢ and the bound of e;0 is (p*0)°.  Then the
length of e = ek = fh the length of ¢» . Since

length ¢, + length ¢ = length e; + length ¢,

we see that length e = length ¢, = length (p*)". Hence g0 = (p*o0)°. If
N1 1s cyclic, we form ;.2 and repeat the process. Since the lengths of ¢,
qri1, - - - form an inecreasing <equence bounded by the length of (p*)°, we obtain
an integer k' such that ;. is c¢velie but 9% 4, is not.  Then gx0 = (p*o0)° and
0 — (p*0)° is decomposable as a direet sum of &’ modules isomorphic to o — go.
This proves the important

THEOREM 20. If o — go 1s indecomposable and go is bounded with bound
(p*0)?, p*o maximal, then o — (p*o0)* is decomposable into a direct sum of k' modules
o-tsomorphic to o — go. 1 necessary and suffictent condition that the itndecompos-
able modules o — qo and o — ro, with qo and ro bounded, be o-itsomorphic 1s that
they have the samc bounds.

C'OROLLARY. If pio = p*o, poo = p*o where the p; are irreducible, then p, and
Do are simalar.

For p:o has the bound p*o and 0 — p;0 is indecomposable. In particular the
factors p; of ¢ are all similar. '

Let p*o be an arbitrarv maximal two-sided ideal 0, 0 and po # o a maximal
right ideal containing p*o. If p;, -+ -, p» are similar to p, it follows as above
that p; - - - pro has the bound (p*0)*" with &’ < h. Suppose that we have
alreadv determined elements p;, - -+, p» such that p; - - - pro has the bound
(p*0)". Then there exists an element ps.1 such that the bound of p; - -+ Pii10
is (p*0)"*". For otherwise, for every p’ similar to p we have that p; - -+ pip’o =
(p*0)". Since the intersection Ap’o = p*o, Ap, --- pap’®0 = P1 - pa(p*o)
and it contains (p*o)". It follows that p; -+ pao = (p*0)*' contrary to the
choice of p;, - -+, p» . Thus for every integer e there exist p;, ¢ = 1, --- | ¢,
such that the bound of p; - -+ p.o is (p*0)°. Then p; - - - p.o is indecomposable
since otherwise its hound would be (p*o)" with ¢/ < e. By the preceding
theorem we obtain

THEOREM 21. Let ¢ = py - -+ p. where p; is irreducible and p;o has the bound
p*0. Then a mecessary and sufficient condition that ¢ be indecomposable 1s that
the bound of qo be (p*o)°.

A comparison of lengths shows that &', the number of indecomposable com-
ponents in a direct decomposition of 0 — (p*0)°, is the same as k, the length of p*.
We shall call this number the capacity of p*o. Our criterion for indecomposa-
bility has a number of important consequences which we now note.
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THEOREM 22. If ¢ = rst 18 indecomposable and o 1s bounded then s is inde-
composable, 1.e. any submodule and any difference module of an indecomposable
0 — ¢o, with go bounded, 1s tndecomposable.

Suppose that r = py -+ P, 8 = Py - - P, t = Piy1 - -+ Pe Where the p;
are irreducible.  Let p*o be the bound of p,0. Then the bound of go is (p*o)°.
If so is decomposable, (s0) = (p*o0)"™*'. We have seen that to = (p*o)"
and so sto = s(p*0) " = (s0)(P*0)" = (p*0)* "', Similarly, rsto = (p*o)*

contrary to-the fact that (p*o)° is the bound of rsto.

THEOREM 23. If ¢i0, 20 = qo, a bounded ideal, and g is indecomposable, then
either 10 = @e0 07 @20 = 0.

If g0 A @20 = g¢30, ¢g30 = ¢go and hence g; 15 Indecomposable. If the bound of
¢:0is (p*0)” , 7 =1, 2, that of gz0 1s (p*0)®, e = max (e, , e2). Hence the length
of 3 = maximum length of (¢, ¢.), sav = length of ¢; . Then ¢;0 = g0 < @o0.

This theorem readily mmplies the following

THeorREM 24. If ¢ 18 tndecomposable and go is bounded, then o — ¢o has only
one composition sertes.

Now let bo be any bounded 1deal with bound of the form (p*0)°, p*o maximal.
Suppose that b = [¢;, - -+, ¢a] 1sa direct decomposition of b into indecomposable
elements where the bound of ¢.0 1s (p*0)” and ¢; = --- = ex = 1. Evidently
e = e;. We assert that A £ £, the capacity of p*o. For suppose that A > k.
If ¢io = ¢, g1, ¢s, -] is a direct decomposition of this element since we
clearly have gio + (1o A --- A gi—10 A ¢i10 A ---) = 0. We choose the
divisors ¢;0 of ¢ to have the length e, for ¢ = 1,---,k%k and form
¢ =g, - ,q,orquo A --- A g0 = ¢'0. Since ¢'o = (p*0)* and the latter
15 decomposable into & indecomposable ideals of length e;, we have ¢'o =
(p*0)* . Thus (p*0)™* = (gio A --- A ¢w0). On the other hand, qry10, - - - , ga0
all contain (p*0)* and this contradicts (g0 A -+ A qi0) + ¢rp10 = 0. |

THEOREM 25. If bo has the bound (p*o)’, p*o maximal with capacity k, then a
direct decomposition of b has at most k terms.

Applications of the polynomial case. Suppose that o = ®[¢], i.e. S = 1. The
two-sided 1deals of this domain are generated by polynomials whose coeflicients
are in the center I of . Let p be an element of & which 1is algebraic over I in
the sense that 1t 1s a root of a polynomial «(¢) in T'[t]. Then «(¢) is divisible by
t — p. If a(t) has least degree for polynomials in T'[¢t] having the root p, a(f)
18 irreducible 1in T'[f]. Hence if ¢ 1s a second element in & such that a(s) = 0,
the corollary to Theorem 20 implies that ¢ — p and { — o are similar and so
o = 8 'p8. Since our hypothesis that p and ¢ satisfy the same irreducible equa-
tion 1s equivalent to the assumption that £(p) — &(¢), £(¢) in T[¢], is an 1iso-
morphism between I'(p) and I'(¢) over I',” we have proved

THEOREM 26. Let ® be a division ring with center T' and let T'(p) and I'(s) be
1somorphic subfields of ® which are algebraic over T. Then any isomorphism be-
tween T'(p) and T'(¢) over T may be extended to an inner automorphism in ®.

¥i.e. an 1somorphism leaving the elements of I' invariant.
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We consider next ®[t, S] where 8™ = 1 for r > 0, and no smaller power of S
is an inner automorphism. If we use the form, determined on p. 38, of the
elements which generate two-sided ideals, we see that {* — v generates a maximal
two-sided ideal if v is any element 0 in the center I'and v~ = y. A necessary
and sufficient condition that ¢ — + be divisible by { — pi1s that v = N(p) =

S Sf"l . . S Sr—l . .
pp- -+ p- . For, since vy commutes with p, v = pp” --- p implies that

sr—1 . 7 S - .
v=p ---p° p= N(") and conversely. Since

=) ==+ 05T+ (V) — )
=@ T+ 0T = ) + (V) - ),

our assertion is evident. Since {” — v generates a maximal ideal, any two irre-
ducible factors of ¢ — ~ are similar. Moreover, { — p and ¢ — ¢ are similar
: . —1 oS

if and only if ¢ = 3 'p8°. Hence we have

sr—1

THEOREM 27. Let @ be a division ring and S an automorphism in ® such that
S"=1,0 <r < =, and no smaller power of S 1s inner. If v 1s in the center of
®, v° = vy and p and o are elements of ® such that N(p) = v = N (o), then there
exists an clement 8 in ® such that ¢ = 8 'p3°.

C'oroLLARY. A necessary and sufficient condition that N(o¢) = 1 s that
o= g 8"

We remark that the conditions on S amount to the statement that S generates
a finite group & of outer automorphisms, i.e. all the automorphisms #1 in ¢
are outer. Now suppose again that vy eI',v° = yand let r = ryro.  Let ¥ =
N(p), pin®d. Then t — 4" = (£'* — ~)q(t) is divisible by ¢ — p. Since the
irreducible factors of ¢ — v are all similar, {* — v is divisible on the left by a
suitable ¢t — o. Since

2 —y =t =)+ o ot oS (g0 08T — ),

S L. O—Sr2_1. S .. ro

. -1 . S
Y = oo Since v eI, we have vy = ¢ - ¢8* ¢ and since v° = ¥,
S ro—1 s"2

v = g -+ 05% ¢52  Thus ¢8* = o.

THEOREM 28. Suppose that ®, S and v are as in the preceding theorem. If
r = rire and v'* 18 the norm of an element in &, then v = aa° -+ ¢8> " where

.
oS? = g.

10. Bounded o-modules. An s-module M 1s bounded if there exist elements
b # 01n o such that b = 0 for all x in . The totality of these b’s 1s then a
two-sided 1deal B = 0 which we call the bound of 3. This is in agreement with
the previous definitions given in the cvelic case. It is readily seen that a neces-
sary and sufficient condition that I be bounded is that the orders of any set of
generators y; be bounded right ideals. The bound of the order of any z in I
1s a divisor of 8.

If ¢, -, qu are the elementary divisors of M, we have seen that these
elements are determined up to similarity by M. On the other hand, any two
indecomposable elements ¢ are stmilar if and only if they have the same bounds.
Hence we have the following fundamental
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THEOREM 29.  The bounds of the elementary dwisors of a bounded o-mndule are
theariant: They are independent of the particular decomposition.

Let B = (pro)” -+ (pJ0)” be a factorization of the hound of M into distinet
maximal ideals pio. Set B, = %(p:-ko)_f", and M = MY, the subset of finite
sums of elements 2b;, b; in B, . Since B, is a right ideal, M'” is a submodule
and sxince B; + -+ + B, =0, M = MY + -+ 4+ M. The elements of
M satisfyv the equation x;(pioY = 0 so that the hound of M is (p*o)’
with fi < f;. Tt follows that M A (MY + o + MY + MO + -0 4
M) = 0 and hence M = MY @ --- @ M. Moreover, since
apy’t o p¥r = 0 for anv z, we must have fi = f;. Suppose that y is an ele-
ment of M satisfving the equation y(pio)* = 0 for some k. Then if we write
Yy =y + - 4+ y,y in MY, we have y;(p;0)" = 0 and since (p;jo)* +
(pioY* = o0, y;: = 0if 7 £ j. Thus M may be characterized as the totality
of elements y; such that y;(p;o)" = 0 for some k. We note also that if N is any
submodule of M, then N = N" @ --- @ N where N = MY A N

We now restrict our attention to the case r = 1, or 8 = (p*0)’. In this case
let MW = Py @ --- @ P, be a decomposition of I into indecomposable o-
modules, and let (p*0)” be the bound of the evelic module M where
ep = --- = ¢,. Evidently ¢; = f.

(‘onsider first an indecomposable o-module 9% with bound (p*0)’. If x 1s a
generator of Y and ¢o 1s its order, ¢ = p;--- p,, p: ureducible, then
apy - pe—1 = Y 1s #0 and y(p*0) = 0. Thus the submodule N, of elements
Yo such that yo(p*o) = 01is £0. Since 9N, < N, it is indecomposable and since
its hound is p*o, No is irreducible. We note also that the submodule 9t(p*o)’
15 indecomposable and its elementary divisor has the length max (0, ¢ — 7).

In the general case where 0t = PV, @ --- @M, , if y(p*o) = 0andy = y, +
co 4y, yoin M, then yi(p*o) = 0. Hence v mayv be characterized as the
length of the submodule M, of elements yo such that y,(p*o) = 0. We have also
M(p*0)’ = Dy (p*0)’ @ - -+ ® M.(p*o)’ and hence the number §(j, M) of bounds
(p*0)‘ with exponents ¢; > j is the length of the intersection M (p*o)’ A M, .

If M is a submodule of M, N(p*0)’ < M(p*o)’ and hence N(p*0)’ A Ny =
N(p*0)’ A Mo £ M(p*0)” A My . It follows that 6(j, MN) < 6(j, M) and there-
fore if (p*n)?', (p*0)”*, - - - are the bounds of the elementary divisors of J¢ and
g1 = ¢g> = ---, then we havee; = g;,. If we apply this and the decomposition
M =M @ -+ ® M noted above to the case where M is cyclic, we obtain
the “necessity’’ part of the following

THEOREM 30. Suppose thata = [gu, **, Guu, 3 "+ *** , Gru,) 18 @ direct de-
composition of a into tndecomposable elements q,; where the bound of ¢;;0 s (pfo)
and e = e = -+ . Similarly, letb = [su, -+, Swuy ¢+, Su,] Where the
bound of s;;01s (pi0)”  and g = gie = -+ = 0. Then a necessary and sufficient
condition that b be similar to a factor of a is that e; = g;; .

To prove the sufficiency we observe that there exists a divisor ¢:; of ¢;; with
bound (p;0)°’ . For, we obtain such an element by taking the produet of the
first g;; irreducible factors of ¢i; . It follows that @’ = [gi1, -+, Quu, ; ** "
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/’ . . /. . .
-+, ¢ru,) 18 a factor of a. Since, by Theorems 20 and 21, ¢;; 1s similar to s;;,

a’ 13 similar to b.

11. The invariant factors. Let M = I, ® --- @ Wi be a decomposition
of the finite o-module I as a direct sum of modules o-isomorphic to o — e;0
where ;18 a total divisorof ¢, , 7 > 7. We wish to show that the e; are invariants
in the sense of similarity-.

Suppose first that 9 is bounded. We obtain a decomposition of 9 into in-
decomposable p-modules by decomposing the e; into indecomposable elements
¢:;; where the bound of g0 is (p70)* /%, pio a maximal two-sided ideal. Let
p*o be one of the p;o’s, k its capacity and ¢;, - - - , qu the indecomposable parts
of the ¢’s for which the hbounds of ¢;0 have the form (p*0)"* . We recall that if
the bound of ¢:0is (p*0)"* , then the length of ¢; is h; . If ¢ is one of the ¢; and
¢ iz an indecomposable part of e, , then e, is divisible by (p*)". Hence by
Theorem 30, e.,; contalns at least A ¢’s whose lengths h; are =h. Since k 13
the capacity of p*o, these are all of the ¢’s corresponding to p* that occur in the

decompositionrof e,,, . Thus we may arrange the ¢’s in a sequence ¢, -+ , Qs ;
sty * " v G2k " 5 Quis1 s -, Querm SO that their lengths form a non-increasing
sequence and ¢, , - -+, g, are indecomposable parts of ¢, , ¢.11, - -+, gax the in-

decomposable parts of e, , ete.

If we have a second decomposition of I as My @ --- @ M., where M. is
o-isomorphic to o0 — e:0 and e; is a total divisor of ¢; for j > 4, then we may
arrange the indecomposable elements ¢’ corresponding to »p* in the same way.
By the Krull-Schmidt theorem, ¢; and ¢: are similar and their number is the
same. Thus the indecomposable parts of e,_; and of e,_; may be paired into
similar pairs and so e,_; and e,_; are similar and s = s’

Now let I be arbitrary and let A = a*o be the bound of ¢;_10and B = b*p that
of c.-_10.  Let 9, be the submodule of M, of elements y such that yAB = yBA = 0.
If ¢. = ca* and y, 1s a generator of I, of order e;n, then y.,c e N, and its order
15 a*p. Hence if 2z, is a generator of 9¢,, its order has the form d.ao where d
is similar to a*. Since a*p is two-sided, a differs from a* by a uuit so that the
order of z, is d.a*o = a*d.0. Now suppose that N is the submodule of M con-
<isting of the elements y such that ¥AB = 0. Evidently 9 1s bounded, and
M=P, D - @ M_1 ® N, is a decomposition of N into eyelic modules whose
orders are bounded and where the bound of each order is a divisor of the next
order. Similarly, we have ! = M @ --- @ M,y @ N,- where N, < M, .
Hence by our result in the bounded case, s’ = s and ¢; and e; are similar for
i =1, ---,8 — 1. Tt follows then by the Krull-Schmidt theorem applied to
M that e, and e, are similar. We shall call the elements e; the invariant factors
of the module. Hence we have

THEOREM 31 (Nakavama). The tnvariant factors of an o-module IN are deter-
mined to within stmdlarity.

12. The theory of a single semi-linear transformation. We have seen that
if 7" is a semi-linear transformation with automorphism S acting in a vector space
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R over &, we may regard R as an 0 = ®[¢, S]-module by defining xa(t) = xa(T).
If Ty and T are semi-linear transformations in ‘R having the same automorphism
S, then the ®[¢, S]-modules determined by them are isomorphic if and only if
there exists a linear transformation A such that 7. = A7'7,4. For if A is a
®[t, S]-isomorphism, A 1s linear since £4 = A& forall £ in ®, and T4 = AT,
co that T: = A7 '7h4. Conversely if these conditions hold for an automor-
phism A, then «(7,)4 = Aa(T:) for all a(f) and A 1s an 1somorphism. If the
matrices of T, T and A relative to a basis x;, - -+, x, are respectively (7y),
(72) and (&), then the condition 7> = A7'T,A4 is equivalent to (r2) = (@) () (™)
(= B (1)B, B = 7).

(Consider now a fixed 7. Then if x is any vector, there is a vector +77 in the
sequence x, 2T, - - - which is a linear combination of the 7", i < m, say 2T™ =
Bm + - + 27" 8. Then 2(T™ — T" '8y — -+- — Bm) = 0 so that every
element of the ®[{, S]-module ) has finite order. It follows from the general
theory that R = R @ -+ @ R, where R; is cvelic with generator u; whose
order is e®[t, S], e; = ¢;(t) a total divisor of e;(f) for 7 > ¢. If the degree of the
invariant factor e;(¢) is n;, the vectors u;, - -, w;T""' form a basis for N; over
®. Hence wy, -+, wT" " -+ ;- w,T" ' is a basis for N over ®, and rela-

)

tive to this basis the matrix of 7 1s

(T(l) )
(2)
T

\ )

where
(i) )

n,

0
1 0 - - - fjg_l
0 1

(1)

0
o - - 01 B

if e;(t) = t" — ¢"78Y — .. — BY) . If (a) is any matrix in @, there exists a
matrix (p) such that (p) '(«)(p®) has this form. Similarly, we may obtain a
canonical form for («) corresponding to the decomposition of R into indecom-
posable o-modules.

As an illustration we consider the case of a linear transformation T acting in
R and ® where ® = R(¢, j) is the quaternion algebra over a real closed field.
We have seen that the irreducible polynomials in o = ®[¢] are linear. The bound
p*Wofp(t) = t—a)ist — aif a e R. OtherwiseitisN(t — a) = (t — a)(t — &).
We obtain in this way all the irreducible polynomials (with leading co-
efficient 1) in_ R[t]. Now consider (¢ — a)v. Its bound is (p*)°0. For,
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otherwise, (t — «)° would be a divisor of (p*)’ with f < e. This is clearly
impossible if p* = (t — «). In the other case we obtain

(t— a)qlt) =N =t — )t — &)

Since & € R(a), ¢(t) has coeflicients in R(a) and since this ring 1s commutative,
we obtain a contradiction to the unique factorization theorem in R(«)[t]. It
follows now that (f — «)° 1s indecomposable and that every indecomposable
element is similar to one of this form. Hence if S is an indecomposable sub-
space of i, it is generated by a veetor y whose order is (f — a)’p. If we use the

basisyr = y(T — ) k=1, --- e, for S, we obtain the matrix.
[ o )
1 «
(6) .
l 1 af

Two such matrices are similar if and only if their diagonal elements oy and ao
are similar and the condition for this is that a; and s satisfy the same irre-
ducible polynomial in R[f]. Any matrix is similar to one having blocks of the
form (6) strung down the main diagonal.

We return to the general case and the decomposition H = R, ® --- @ N,
where the R, are cyclic with orders e;(t) the invariant factors. In order to
determine the e;(t) we choose a basis x;, - -, &, for R over ® and write 2,7 =
>x;77i.  Then % is ®[t, S]-isomorphic to the difference module of the free ®[¢, S]-
module §, whose basisise;, --- , e, , with respect to a submodule M containing
the elements f; = e;t — Ze;7;;. We assert that the f’s form a basis for 9t. For
if f1s any element in N, we may choose polynomials ¢i(¢), - -+, ¢,(t) so that
f — Eficpi(l) = Ze;8; , B imn®. Then 2xi3; = 0 and so B; = 0. Thlle = 'ficpi(t).
Now suppose that Zfip;(f) = 0. Then Ze;to:(t) — Z740;(1)] = 0 and te:(t) =
Stueit), 1 =1, -+ n. If any ¢;(t) # 0 and ¢.(¢) 1s one of these polynomials
of maximum degree, the equation ftpi(t) = Z7i0;(f) 1s impossible. Hence
0i(t) = 0 for all . From this result we see that the e;(¢) are the diagonal ele-
ments in the normal form of the matrix 1¢ — (), expressing the f’s in terms of
the ¢’s.

In the case where ® 1s commutative and T is linear, ®[{] i1s commutative and
e;(t) = h;(t)h,_1(t)"" where ho(t) = 1 and h;(¢) is the highest common factor of
the t-rowed minors of 1 — (7). The last invariant factor e;(f) = u(f) has the
property that xu(7T) = 0 for all z. For we have u,u(T) = 0 if u; is a generator
of N, and since any x = Zu.;£:(T), xu(T) = 0. Since u(t) ®[t, S] is the order of
us , u(?) 1s the polynomial of least degree with leading coefficient 1 having T or,
the matrix () of T, as a root. Since the other invariant factors are factors of
u(t) and the characteristic polynomial f(¢) = det (1t — (7)) = e;(¢), f(¢) and u(¢)
have the same irreducible factors in ®[¢], differing at most in the multiplicities
of these factors. This i1s the well-known
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THEOREM 32 (Frobenius). Let (1) be a matriz in &, , $ a field, and let u(t) be
the last tnvariant factor of the matrix 1t — (1) in (®[t]),. Then 1) u((r)) = 0, 2)
u(t) is a factor of any polynomial v(t) having the property that v((r)) = 0 and 3)
p(t) and the characteristic polynomial det (1¢ — (7)) have the same irreducible
factors in ®|t].

Suppose now that & 1s a division ring such that (®:I') = m < o for T the
center of & and let S be an automorphism in ® such that S, 0 < r < «, is inner
but no smaller positive power of S is inner. If Ty is the subfield of T consisting
of the elements invariant under S, (I':I'y) = r and hence (®:I,) = mr. We
have seen that £ = u u where p° = u.  The two-sided ideals of 0 = ®[t, S]
are generated by elements of the form t"(uh + Uy e vx) where ©u =
t'uw ' and v; e [y. Every ideal in o is bounded.

If 0; = D[olu], 1t 1s evident that any o-module is an 0,-module and if two o-mod-
ules are o-isomorphic, then they are p;-isomorphic. We wish to prove the
“converse of the latter result for modules that contain no elements of order ¢o.
For this purpose we consider first an indecomposable module R, of this type.
Then R, has the bound (p*)°o where p* = " + v 'y1 + -+ + 71, v: in Iy and
v # 0. We have seen that Ny may be embedded 1n a evelic module SR whose
generator has the order (p*)o and that ® = R, @ - -+ @ Ni where the R; are
o-1somorphic indecomposable p-modules and % is the capacitv of p*o. We may
obtain a decomposition of R into indecomposable o-modules by decomposing
the :M;. This vields kl indecomposable o;-components for JR. On the other

hand, we may also use the following procedure: Let p,, - - -, pn, be a basis for
. N A
® over I'y. Since the vectors zt’u’; 7 =0, --- ,r — 1,1 =0, --- ,h — 1, form
. ] ) .
a basis for 3 over ®, the vectors zt’u'p; ,7 = 1, -+ , mr form a basis for R over

. . 9 .
['v. Hence R is a direct sum of the mr” c¢yclic o;-modules whose generators are
zt’p; . The orders of these modules are (p*)°0, and, since p*o, is maximal in the
commutative ring oy, they are indecomposable. It follows that mr° = kl and
2
mr

N, 1s a direct sum of 7 indecomposable p;-modules whose orders are (p*)‘p; .

Now let 9, and N, be two indecomposable modules having no elements of
order {o and suppose that R, and R, are o,-isomorphic. Then if 5*, €, k have
the same significance for N, as p*, e, k have for R, , we evidently have k = k
and (p*)° = ($*)°. Thus the bounds of N, and R, are the same and so R, and

R1 are o-isomorphic. If we use the Krull-Schmidt theorem, we may extend this
special case to the following

THEOREM 33. Suppose that R and RN are d[¢, S]-modules having only elements
of finite order but no element of order t®[t, S]. Then a necessary and sufficient
condition that N and RN be B[t, S]-isomorphic is that they be To[u]-isomorphic.

CoroLLARY. Under the assumptions of the theorem, W and R are d[t, S]-
isomorphic if and only f they are ®ul-isomorphic.

Now let T be a semi-linear transformation in R over & where ® and S have
the above form. The condition that no vector in R has order ¢®[¢, S} is the same
as the assumption that 7 1s (1 — 1). Our results therefore give conditions for
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similarity of (1 — 1) semi-linear transformations 7; and 7. having the same
automorphism S. Thus the corollary states that T, and T» are similar if and
only if the linear transformations U, = Tip ' and U, = Thu ' are similar. If

we recall the connection with matrices, we obtain

THuroreEM 34.  Let ® be a division ring such that (P:T) = m < o« where T 15
the center and let S be an automorphism in & such that o= T, 0 < r < oo
' = u and so smaller power of S is inner. If (1)) and (r.) are non-singular
matrices (i.e. units) in &, , then a necessary and sufficient condition that there exists

a non-singular matriz (8) such that (r3) = (B) 7 (m)(8®) is that N(r)u ' =

N Sr—1 — — . . .
(r)(71) -+« (#1 Hu " and N(w2)u~" be similar in the usual sense.
Another mnteresting case of the above theorem 1s obtained by taking r = 1
and u = 1. The result iz the theorem that two linear transformations in N

over ® are similar if and only if thev are similar as transformations in W over T,
I the center.  As is readily shown, it is not necessary to assume in this case that
Tiand T are (1 — 1).



CHAPTER 4

STRUCTURE OF RINGS OF ENDOMORPHISMS AND OF
ABSTRACT RINGS

1. The general problem. Special cases. We consider an arbitrary com-
mutative group M and a fixed set © of endomorphisms «, 8, --- acting in IMN.
Let A be the set of Q-endomorphisms, i.e. the set of endomorphisms that com-
mute with every endomorphism in Q@. Then ¥ is a subring containing the iden-
tity endomorphism of the ring of endomorphisms of M. In this chapter we
impose various conditions on the lattice of Q-subgroups of I and investigate the
restrictions that these imply for A.  These results will be applied to obtain the
structure of abstract rings and finally we shall give some applications to the
theory of projective representations of groups and to the Galois theory of divi-
sion rings.

FExamples. 1) I a finite commutative group and Q vacuous.

2) M a vector space over a division ring @ = . Here A is the ring of linear
transformations. We have seen that % = &, , & anti-isomorphic to &, or,
I is anti-isomorphic to ¢, . We recall also that 9 is simple.

3) M a vector space over ®, Q the logical sum of ® and a set of semi-linear
transformations Ty, T2, - -- . In this case ¥ consists of the linear transforma-
tions commutative with 7, , To, --- . It follows that if (), (7)), ---; Si,
Ss , - - - are, respectively, the matrices relative to a fixed basis and the automor-
phismsof T, , T, - -+, then ¥ is anti-isomorphic to the subring of ®, of matrices
(a) such that (a)(7:)) = (7)(a’}).

We wish to show now that any ring A with an identity is essentially the ring
of Q-endomorphisms of a certain commutative group M. The group IM is the
additive group of A. We have seen that the right multiplication x — xa = za,
1s an endomorphism of M and that the totality of these endomorphisms is a
subring A, of the ring of endomorphisms of M. The ring A, is isomorphic to A.
Similarly we have defined the left multiplication a; by xa, = ax and we have
shown that their totality is a ring A; anti-isomorphic to 2.

Now the associative law evidently implies that if a, e A, and b; € A;, then
a,b; = ba, . On the other hand, suppose that B is a single-valued transforma-
tion in I commutative with all the a, and let 1B = b. Then 2B = (12)B =
(1B)x, = bx, = bx. Thus B = b;, and A, is the set of A,-endomorphisms.
Similarly, 2, is the set of A,-endomorphisms. The isomorphism between A,
and A will therefore enable us to apply the theory of rings of Q-endomorphisms
to the theory of abstract rings. We state these fundamental results in

THEOREM 1. Any ring A with an identity is isomorphic to U, , the ring of its
right multiplications and is anti-isomorphic to N, , the ring of its left multiplications.
A, is the ring of rendomorphisms acting in the additive group M of A and A, s
the ring of U,-endomorphisms of IN.

o4
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The A;-(A-) subgroups of the additive group are the left (right) ideals. The
(;, A,)-subgroups are the two-sided ideals. Wenote also that 3. A A; consists
of the endomorphisms ¢, = ¢;, ¢ in the center €. Tor if a, = b, , la, = 1b; and
a=>b. Thenar = raforallzrandsoa = cisin C.

2. Algebras over a field. In a similar fashion our results will apply to the
theorv of algebras (hypercomplex systems). These are defined as follows: If
® is an abstract field, a set A 1s called an algebra over & if

1. M is a ring.

2. The additive group of A is a $-module and ¥1 = z for any  in ¥ and 1,
the identityv of &.

3. a,a = aa, ,a;a = aa;forall @ n A and all « in &.

The last condition may also be written in the form: (ab)a = (aa)b = a(ba) for
all ¢, b in Y and all « in ®. Since & is a field, the ring of endomorphisms corre-
sponding to ® 1s 1zomorphic to #. Hence if we wish to fix our attention on a
particular algebra, we may adopt the point of view of Chapter 2 and regard the
set of endomorphisms, rather than the abstract field, as fundamental. In the
present chapter we shall follow this line and, in fact, the field properties of &
will play no role. Thus we may equally well study a ring A relative to an
arbitrary set ® of endomorphisms «, 3, - - - which commute with the left and the
right multiplications. This includes the case of ordinary rings, obtained by
taking ® to be vacuous, as well as that of algebras, obtained by taking ® to be a
held. A will be called a ®-ring. We shall be concerned with $-subrings and
with ®-1deals of 2.

If A has an identity 1, then ra = 2(la) = (la)x, so that the endomorphism
a 12 the right and the left multiplication corresponding to the element la. It
follows that the element la is in the center of . Any ideal of the ring ¥ is
necessarily a ®-ideal. Hence in the statements of many of the important
structure theorems, we could, without loss of generality, omit any reference to
the set of operators &.

If we wish to compare different algebras 9, and 9, , it 1s natural to suppose
that the field ® is the same for both algebras. Thus we say that ; and A are
1somorphic if there i a (1 — 1) correspondence a, — as between them that is
both an isomorphism of the rings A, and 9, and a #-isomorphism of the additive
grouns: If a; — a. and b, — b,

a, + by — a» + be, aa — (s, ab; — a.by .

The correspondence 18 an isomorphism. Homomorphisms, automorphisms,
anti-automorphisms, etc., are defined in a similar manner.

We consider now some methods of constructing algebras of finite dimension-
alitv. Ewvidently &, is such an algebra if aa 1s taken to be the product of a by
the diagonal matrix {«, --+, a}. The ring € of linear transformations in an
n-dimensional vector space It over ® 1s also an algebra if Aa is defined as the
product of A with the scalar multiplication . As we have seen, if x,, -+, 2,
18 a basis for I over ¢ and r;A = Zx,xj;;, then the correspondence between 4
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and the matrix (a;;) 1s an anti-isomorphism between the algebra ¥ and the
algebra &, . Now let 3 be an arbitrary algebra. Then the multiplications
r — ra and ¥ — ax are lincar transformations in I regarded as a vector space
over &, Since r(aa) = (va)a and (aa)r = (ar)a, (aa), = a,a and (aa);, =
a,«. Tt follows from these equations that if ¥ has an identity, the correspond-
ence a — a, 1s an algebra 1somorphism between A and the subalgebra U, of V.
If we combine this correspondence with one of the anti-isomorphisms hetween
¥ and ¢, , we obtain an anti-isomorphism between I and a subalgebra of &, .
Similarly we may combine the correspondence @ — a; with one of the anti-
isomorphisms between ¥ and &, and obtain an isomorphism between A and a
subalgebra of ®,. To be explicit, let x,, ---, r, be a basis for ¥ over ® and
let r;a = Zxjpyi(a) and ar; = Zxhj(a). Thenif (p;;(a)) = R(a) and (\;;(a)) =
L{a), the correspondence ¢ — R(a) i1s an anti-isomorphism and the correspond-
ence a — L{a) is an 1somorphisim between A and subalgebras of &, . It may be
remarked that we may also combine the anti-isomorphism a — R(a) with the
anti-isomorphism (a) — (a)’, («)’ the transposed matrix, and obtain a second
iomorphism between I and a subalgebra of &, .

If A does not have an identity, we form the vector space 8 = A + {xy) and
we define (xoa + a) (208 + b) = xo(aB) + a8 + b+ abfora, bin Y. Then B
1s an algebra with the identity »y, and A 15 contained as a subalgebra of B.
Hence B and, a fortior: I, 1s 1somorphic to an algebra of matrices. We have
therefore proved

THEOREM 2. _Any algebra with a finite basis i1s isomorphic to a subalgebra of a
matrix algebra.

This theorem gives one general method of obtaining algebras of finite di-
mensionality. A second general procedure is the following. Let 3 be a vector
space over ® with the basizs vy, ---, r.. We choose n’ elements v,; in ® and
set v, = D Tavaij. Inorder that this definition lead to an associative algebra

x

it is necessarv that the y’s satisfy the associativity equations > vieiVai;

a
> vYiavajr - Then if we define (Sx:£)(Sxm;) = Stayaifing, we obtain (v ;)
a

= r;(x;x) and hence (xy)z = x(yz) for all x, y, z. Evidently (2y)a = (za)y =
r(ya) and the distributive laws hold. Hence 9 1s an algebra.

Eramples. 1) Let the basis be &y, &2, r3, 13 where 2.0; = ¥; = 28, T3 =
la, ;o= 183, Ty = —laf, r223 = —X3hs = Ty, T3ly = —L4l3 = — o3, Tals
— Xy = — .

2) Suppose that M is a finite group with elements 1, s, --- , u. We put these
in (1 — 1) correspondence with the elements of a basis of a vector space and
denote the vector corresponding to s by r;. Then if we define x,x, = x4,
the associativity equations are satisfied. Hence we obtain an algebra, the
group algebra of ® over ®.

3) Let A be the. difference algebra ®[t] — (v(t)) where ®[{] is the ordinary
polynorﬁial domain and (»(¢)) is the principal ideal generated by v(f) = " —
("8 — - — B". Then A has the basis 1, v+ = |t} the coset containing ¢
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and 2°, .-+, 2"7'. The multiplication table is deducible from the relation
" = x2"8, + --- 4+ 18, and the associative law.

3. Previous results. We now begin the discussion of the general problem
formulated in 1: A commutative group I and a set of endomorphisms Q in
M are given, what can be said about the structure of , the ring of Q-endo-
morphisms?

We have seen that if M is an Q-subgroup of M and A e A, then NA 1s an
Q-subgroup. The set of elements mapped into N by A is also an Q-subgroup.
Corresponding to a direct decomposition of I into M, ® --- @ WM, where
the I, are Q-subgroups, we have a decomposition

1) 1=E+---+E,, EE; =0 if < # ], E: =E,

where the E. are the projections on the ;. Conversely, if the E’s are given
such that (1) holds, then M = ME, @ --- @ ME,. The Q-group IN 1is inde-
composable if and only if 1 is a primitive idempotent element of 2.

By a completely primary ring A we shall understand a ring that contains a
nil-ideal N (1.e. an ideal all of whose elements are nilpotent) such that A — <N
is a division ring. If b is any element not in R, there is a ¢ such that bc = 1(N)
or,bc =142 2zinR. Ifz" =0, wehave(1 +2)1 —2+2 — --- £2"") =
1 and hence b has the inverse ¢(1 — z + 2° — -+ ). Thus R may be charac-
terized as the totality of singular elements (non-units) of 2 and N is therefore
uniquely determined. Fitting’s lemma (5, Chapter 1) yields the following

THEOREM 3. If MM is an indecomposable Q-group and satisfies both chain con-
ditions, then U, the ring of Q-endomorphisms, is completely primary.

By the lemma any A in ¥ is either an automorphism or is nilpotent. The
latter case occurs when either MA < IN or when there are elements z # 0 such
that z4 = 0. (These two conditions are equivalent.) Let 9 be the totality
of endomorphisms that are not automorphisms. If B ¢ R and A is arbitrary,
then AB and BA are in M. Suppose that B, + B, = A 1s an automorphism.
Then C; + Cy, = 1 where C; = B;A7" ¢R. Since C: is nilpotent, C3 = 0 for
some rand hence C1(1 + Co+Ci+ - - +03 N =1=14+Cy+ -+ +C37HC,,
and C; 1s not in N. This contradiction proves that K i1s an ideal. If A 4+ R
is a coset = R, A is an automorphism and hence (4 + RNUA '+ R) =1 + K.
Thus A — N i1s a division ring.

An important related result is the following

THEOREM 4 (Schur’s lemma). If I is an zrreductble Q-group, then A is a
division ring.

IfAs01sin Y, MA = M and the set of elements z such that zA = 0 consists
of 0 alone. Thus A4 is an automorphism and hence it has an inverse in .

4. Matrix rings.
LeMMA. Let A be an arbitrary ring with an identity and lete;; ;1,7 =1, --- | u,
be a set of elements of A which satisfy

(2) | Il =en+ -+ + euu, eijeri =0 xe;q .
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Then I = B, where B 1s the subring of A consisting of the elements which commute
with the e;;.  The ring B 1s 1somorphic to e; ey, .
If a € A, we readily verify that a;; = D e,iaej, 1sin B and ¢ = Ze;a:;. On

P
the other hand, if a;; are arbitrary elements in 8 and Ze;;a;; = 0, then a;; =

Eep,-(f.‘e,-]-a,-j)e,-p =0. Henced =9B,. Ifa= ae,-,-ai,-is arbitrary, then e;;ae;; =
e.:a;; . 'The correspondence between e;;ae;; and a;; in B is an isomorphism.

LEMMa. If M = Iy @ P& and correspondingly, 1 = E, + E., E; the pro-
jection on IN; | then the ring N, of Q-endomorphisms of M, 1s 1somorphic to E1ALE,
A, the ring of Q-endomorphisms of IN.

If 4 €, F,AFE, induces an Q-endomorphism B in I, and maps It into O.
Hence if B = 0, EtAE, = 0, and the correspondence between E1AE, and B is
an isomorphism between E;UE; and a subring ¥, of A;. On the other hand, if
B ed,, F\BE, = EB1s an element E,(E\BE,)E, of E,AE, whose induced effect

n 9)21 1s B. Hence Q—Il = ?Il .

THEOREM 5. IfIN = Iy @ - - @ M, where the IN; are Q-isomorphaic, then
W = B, where B 18 isomorphic to the ring of Q-endomorphisms of one of the M, .

Let E; be the projection determined by the decomposition and B,; a fixed
Q-isomorphism between 9%, and M, , 7 = 1. Set F;;, = E;, B, = EuBul;,
Eqa=EiBT/Eyand E;; = E4E,;ifi % j,1 % 1,j # 1. Then we readily verify
that KK, = 6, £, for all 7, 5, k, [. The theorem is therefore an immediate
consequence of the above lemmas.

5. Completely reducible groups. We suppose that I is a completely re-
ducible Q-group satisfying one (and hence both) of the chain conditions. Then
M =P @ --- @ M, where the IN; are irreducible. We choose the notation
so that 9%, - -+, M,, are Q-isomorphic, P, 41, -+, My, 40, are Q-1somorphic
but not Q-isomorphic to I, ete.

Now if M, and M- are any irreducible Q-subgroups of M and B is an 2-homo-
morphism between Yt; and a part of N, , it is clear that either B = 0 or B is an
Q-isomorphism between 9, and the whole of .. If 1 = K, + E» + --- + E,
1s the decomposition of 1 into projections corresponding to the decomposition
M=PD, @ --- @ M, and A4 is any Q2-endomorphism, then E;AFE; induces an
Q-homomorphism between I; and a part of ;. Hence if 7 1s 1n the range

n+ -+ +mnp,+1--+,n + -+ 4+ n,and j is in another range n, + - --
+n,y +1,---,n + -+ 4+ n,, then E;AE; maps I; into 0. Since KAE;
maps all the other My into 0, we have E;AE; = 0. Thus if we set BV =
E,+ -+ Ey,E?” =Espu+ -+ Enjgny, -+, EY = Enjioony_yna

+ - 4+ Ent..yn, , weobtain A = SEAE; = EVAEY + ... + EAE",
Since (EPAEPYE'YBE®) = 0if p # q, E‘PUAE'® is a two-sided ideal in ¥ and
the latter is a direct sum of these ideals.

We have seen that E'®” %E'® is isomorphic to the ring A, of 2-endomorphisms
of ME®. Since the indecomposable parts of ME'® are irreducible and Q-iso-
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morphic, by the preceding theorem and Schur’s lemma, A, = @iﬂ " a matrix ring
over a division ring. The division ring ®'” is isomorphic to the ring of Q-endo-

morphisms of M, ... 40 _ 41 .

THEOREM 6. The ring of Q-endomorphisms of a completely reducible group
that satisfies the descending (ascending) chain condition is a direct sum of two-
sided ideals that are matrix rings over division rings.

6. Nilpotent endomorphisms. We suppose that I is an Q-group for which
both chain conditions hold and that B is a set of nilpotent Q-endomorphisms
closed under multiplication. We wish to prove the following

THEOREM 7. If s is the length of a composition series for I and By, - - -, B,
are in B, then B, - -+ B; = 0.

Let M be an Q-subgroup such that NB; < N and suppose that NB, - - - By # 0.
Since N = NB; = NB;B; = --- and each NB, --- B 1s an Q-subgroup, the
following is a descending chain of Q-subgroups:

N =INB;, =2 ZNB,B; = -+ .

If the equality sign holds between two terms of this chain, it holds for all subse-
quent terms. Since M has length <s and NB, --- B: # 0, equality holds
between ZNB;, --- B;, = N and ZNB,, -+ B, ,, withr <s. Since NB; - -- By
= 0, N # 0, and N’ = ZNW'B; = ---. There exists an infinite sequence
B: , By, , ---suchthatW'B; --- B; # 0. Forsuppose that p terms B;, , ---,
B; have been found such that W'B,; --- B, $ 0. Then WB,; --- B; =
WBB., - By + -+ NWB,B, --- By and since N'B;, --- B;, # 0, there
is an 7,4 such that WB, ,, --- By # 0. Let k be one of the indices that occurs
infinitely often in the sequence B;, , B;,, --- . By dropping enough terms we
may suppose that 7, = k. Thus there exist s endomorphisms C,, ---, C,
in B, where C; = BiB; and B. is a product of B’s, such that R'C, - -- C; == 0.
Since By is nilpotent, W'B;, < N’ and since TZN'C; < B, ZN'C; < N'. By
the first part of the discussion we can find an Q-subgroup % = 0, < N’ and
therefore <M, such that ! = INC.. If we repeat this argument, we obtain an
# 0 and properly contained in N and endomorphisms D; in B such that
= ZND;. Thus this process leads to an infinite descending chain of Q-
subgroups and hence the assumption that MB, --- B; # 0 1s untenable. If we
apply this toM = M, we obtain B, --- By, = 0.

We noté as a first consequence of this result that if I is indecomposable and
satisfies both chain conditions, then the set i of Q-endomorphisms that are not
(1 — 1) is a nilpotent ideal: We have i* = 0 if s is the length of k.

Sh=3l

7. The radical of the ring of endomorphisms. The assumption that both
chain conditions hold for I is retained in this section and in the next. Write
M= ® --- ®@ M, where the IN; # 0 are indecomposable;1 = E, + --- +F,
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where the F; are the projections on the M;. Any 4 in A may be written in
one and only one way as ZA;; where A;;1s in E;AE;. An endomorphism A;;
maps each IPx, £ # 7, into 0 and induces an Q-homomorphism between IN;
and an Q-subgroup of ;.

Let N denote the set of endomorphisms of the form B = ZB;; where no B;;
induces an Q-isomorphism between It; and 9t,. Thus either there are elements
z; # 0 1n M; such that z,B;; = 0 or M;B;; < M;. We wish to show that R is
a nilpotent ideal. If 5 = k, B;;Ax = 0 and A;;Br; = 0 since E;E; = 0. If
2:Bi; = 0, then z;B;;A;; = 0. Now suppose that M; = M;B;; = M;, but
that B;;4; induces an Q-isomorphism between 9¢; and 9I%,. Then A4
induces an Q-isomorphism between M; and M, . Tt follows readily that I,
= M;- ® M, where M, is the subset of M; of elements sent into 0 by A ;.
This contradicts the assumption that I; is indecomposable. Thus we have
shown that if B;; e ® and 4 1s any Q@-endomorphism, then B;;4 ¢ R. Further-
more if Ay;B;; induces an Q-isomorphism between M and M ;, A induces an
Q-isomorphism betwen I and I, , and hence B;; induces an Q-isomorphism
between It and M ; contrary to hypothesis. Thus AB;; e R.

Now let B;;, C;;eR and consider A;; = B;; + (C;;. If A;; induces an
Q-isomorphism A;; between M; and IM;, set 4;; = E;A7/E;. Then E; =
B,‘_,'Aji + CijA i and Bi]'fl iy Cijfl ji are not (1 — 1) in ﬂﬁ,- . Since g.ni iS inde-
composable, this is impossible and so A;; e N. If we combine these results, we
obtain the result that 9t is a two-sided ideal in 2.

If Bisin R, we decompose It as M’ @ I’ in such a way that B is nilpotent
in I’ and B is an automorphism in M’ (Fitting’s lemma). By the Krull-
Schmidt theorem there is an Q-automorphism U such that U = M* MU =
I** where M* =P, @ --- @ P, |** = My @ -+ - @ M, , assuming that
the order of the M; has been properly chosen. Thus U 'BU = C is in N and
this endomorphism induces an automorphism C in I** . Hence if E** =
Eiw+ - +E,, E¥*CE**C 'E** = E**is in R, and this is impossible since
Eiyi, Eipo,---arein B, AE,.,, --- ,unless t = u. Thus M** = 0 = M"’
and B 1s nilpotent. Since every element of R is nilpotent, by the theorem of
the preceding section, R is nilpotent. Now if M is any nilpotent two-sided ideal
in A and N = IN;;i1sin N, then each N;; = E;NE;1s in . It follows that
N;;1s in R, for otherwise, we should find by a suitable multiplication that E;
is in N. Hence N = N.

THEOREM 8. Let M = Py @ - -+ @ M, be a decomposition of the Q-group IN,
satisfying both chain conditions, into indecomposable IM; = 0 and let E; be the
corresponding projections. Then the set of endomorphisms ZB;;, where B;j e
ENE ; and B;; 18 not (1 — 1) between M; and M ; , forms a nilpotent two-sided
ideal N 1n the ring of Q-endomorphisms A. R contains every nilpotent two-sided
1deal of .

The ideal N will be called the radical of 2.

1 Cf. the proof of the Krull-Schmidt theorem, Chapter 1.
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8. The structure of the ring of endomorphisms of an arbitrary group. We
order the components IN; so that M, , --- | M,,, are Q-isomorphic, M,, 11, - -,
Mr, +n, are Q-isomorphic but not Q-isomorphic to M, ete. Set

MY =P @ - @ My, M? = M1 @ -+ D Mnyny, -
EY =E + - + E, | E® =E, i+ -+ Epyny, -

Then M = MY @ --- @ M. If ; and j are in different ranges n, + - - -
+npg+1, - 4 o Fapandny - Fng 1, 0 g+ - g,
EAE; < the radical . Hence EPAEY < R if p # ¢ and EPAEY + R
is a two-sided ideal in 2, which determines a two-sided ideal A, in A = A — N.
Since EPUE™ contains E”, %, = 0. Evidently A = 4, ® --- @ A,. We
have seen that the correspondence between A, in EPAE'” and its effect in-
duced in M'” is an isomorphism between E‘”AE® and the ring of Q-endomor-
phisms of M”. It follows that the radical of E‘P AE® consists of the elements
B;where i, j=n+ ---+mn,_,+1,---, ny + --- 4+ nyand B;isnot (1 — 1).
Thus the radical of EPAE” is (EPAEP AR) = EPRE®  and A, = EPAEP
_ E(p)i)?E(p).Q

We suppose now that I is homogeneous in the sense that all of its indecom-
posable components 9t; are Q-isomorphic. Then we have seen that A = B,
where 8 1s 1somorphic to the ring of Q-endomorphisms of ;. We have shown
also that 8 — £ is a division ring if © i1s the radical of B. If K denotes the
radical of A, (N A B) 1s a nilpotent two-sided ideal in B and is therefore con-
tained in €. On the other hand, if E;; are the matrix units of A and S;; ¢ &S,
then the set of elements ZF;;S;; is a nilpotent ideal in A and hence is contained
in SR In particular, EE,'iS GSR a'nd (CR A %) = @ If B = EE“B;]' iS any
element of R, B;; = ZEBE;j;isin (R A 8) = &. Thus X = &, and the
difference ring A = A — R = (B — &), , 2 matrix ring over a division ring.
Since rings of this form are necessarily simple, we have shown that ¥ is simple.
On the other hand, we have seen that % = A, @ --- @ A, and so if A is simple,
t = 1 and I is homogeneous. The following implications have therefore been
established:

M is homogeneous — A = B, , B completely primary — A — N is simple —
M 1s homogeneous. Hence we have

THEOREM 9. The following conditions are equivalent:
. 1. IN 78 homogeneous.

2. A = B, B completely primary.

3. A — R s simple. ‘

The question of the uniqueness of the representation of A as B, is settled in
the following

2We are using the isomorphism theorem that if A = B and R is an ideal in

A, then B+ R) —R~B— BAR).
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THEOREM 10. Suppose that the conditions of the preceding theorem hold.
Then if A = B, where B’ is completely primary, u = w' and B and B’ are iso-

morphic.

Let E;; be the new set of matrix units. Since E::AE:; = ¥, the identity
E:, is the only idempotent element in E;;%E;;. Hence E},is a primitive idempo-
tent element and the components of the decomposition M = ME, @ ---
® ME., are indecomposable. By the Krull-Schmidt theorem, u = %’ and
there is an Q-automorphism A such that A7'E;;A = E.» for a suitable permuta-
tion 1’ --- Ju" of 1, -+, u. Since M is homogeneous, there i1s an Q-automor-
phism P such that 9, P = M;. Henceif B = PA ,we have B'E;B = E:;.
Then the endomorphism B'E,;B induces an Q-isomorphism between I and

M and so »_, B~'E ,BE; ;and C = SE ;,BE}; are Q-automorphisms. Evidently
1

E;.C = CE:-,-, E:; = CE:-,-C_I. Since B and B’ are respectively the sets of
endomorphisms commutative with the E;; and the E;,, we have 8 = CB'C™".

9. Direct sums. We consider now the theory of abstract rings. In order
to include the case of algebras, we suppose that ¥ is a ring and that ® is a set of
endomorphisms of the additive group of A which commute with the elements
of A, and the elements of ;. We begin with some elementary remarks on
direct decompositions of U into ®-ideals. The first of these is a special case of
the theorem connecting direct decompositions and projections, namely,

LemMa. If A is a d-ring with an identity and A = I, @ --- @ Ju s a direct
decomposition of U into left ®-ideals #= 0, then 1 = e, + -+ 4+ e, , 6] = e; #
0,e,er =012f) # kand §; = Ne; .

A direct proof is the following. Write 1l = ¢; + --- + e, , where the e; ¢ J; .
Then any a = ae; + --- + ae,and ae; eJ;. Ifa =a;e3;,a; = ae, + ---
+ aje. . Since the 3; are independent, all of the a;e, = 0 with the exception of
ae;=a;. HenceJ;= e;ande: = ¢;= 0, ejer, = 0if j = k.

Now suppose that A = A, @ --- @ A, 1s a direct sum of two-sided P-ideals.
Ifg =k AW = A; A A = 0. Hence any d-ideal (left, right or two-sided)
of A;1s a d-ideal of A. On the other hand, let & be a left ®-ideal in ¥. Then
Ji=AF =Z A Ujis a left d-ideal in A;. Since

(3) J=13=AF = 3® - ® J¢,

J AU =J;and hence § A A; = X;. The decomposition (3) shows in par-
ticular that A satisfies the ascending or descending chain condition for one or
two-sided ideals if and only if each A ; does.

Suppose that the ; are indecomposable two-sided @®-ideals 0, that is,
A, = A; @ A, accurs only if either A or A, = 0. Then the U, are uniquely
determined. For if A = B, @ --- @ B, is a decomposition of A into inde-
composable two-sided ®-ideals = 0, %, A B; = 0 for all but one j since
A= QAUAB)®--- @ (W A B.). Wemay suppose that j = 1 and we obtain
A = Ay A By and, by symmetry, B; = A; A By = A, . Similarly, if the order
1s properly chosen, %, = By, --- and ¢ = u.
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TaroreM 11. If A is a d-ring with an identity and A = A, & --- @ A,
18 a direct decomposition of A into indecomposable two-sided P-rdeals =0, then any
decomposition of A into indecomposable d-ideals =0 has the same components as
the given decomposition.

10. The radical. We recall the definition of a nil ring as one containing only
nilpotent elements -and of a nilpolent ring as one having the property that a
finite power of it 1 0. Thus the statement that I is nilpotent means that for a
suitable integer s, any product aya, - - - a, = 0 for any a; in A. In particular

= (0 for all @ and so A 1s a4 nil ring. It is remarkable that the converse of this
rather trivial statement holds if I satisfies the descending chain condition for
d-ideals. Before proceeding to the proof we note the following lemmas.

Lemva 1. If 3y and 2 are nilpotent left ®-ideals of A, then J; + J2 18 nul-
potent.

Let 3] = 0and 35 = 0. Now (31 + 32)° = =3:,34, -+ Ji, where ¢; = 1, 2
If = r 4+ s — 1, each product contains either at least r \51’3 or at least s 3.’s.
In the first case we replace any 3.3, in the product by &, . After a finite number
of such replacements we obtain J;, -+~ Ji, < < §IX; = 0. Similarly if there are
at least s 3o’s, we have §;, -+ Jip, = %537 = 0 and so Jip - Ji, = 0 1n all
cases and (X; + J)* =

Lemva 2. If 3 is a nilpotent left d-ideal of A, I 1s contained 1n a nilpotent
two-sided d-ideal. |

Since AZ < 3, we have (I + JA)* = J* +3*A. Henceif 3" =0, (I + JA)”
= (0. Evidently 3 + JU is a two-sided P-ideal.
As a consequence of these lemmas we have

THEOREM 12. Let R be the join of all nilpotent left ®-ideals of a ®-ring. Then
‘R s a nel two-sided d-rdeal.

By the join we mean the smallest subgroup containing all the nilpotent left
d-ideals. If beR, beS1 + -+ + Jn = & for suitable nilpotent left d-ideals
S;. By Lemma 1, & is nilpotent and hence b is nilpotent. By Lemma 2,
3 = € a nilpotent tw0-81ded d-ideal. Hence ba ¢ © = N for any a and so R
1S a rlght ideal as well as a left ideal.

We suppose now (and for the remainder of the chapter) that A i1s a $-ring
satisfying the descending chain condition for left ®-ideals. Let N be a nil left
d-ideal in A. Since the product of ®-ideals is a ®-ideal and N = N* = --- |
there is an integer k such that ¥ = N ™" and hence N* = N = 9?“2 =
We wish to show that M = N* = 0. Evidently M = M’ is a nil left &- 1deal
If M # 0, let & be a minimal left #-1deal contained in M with the property that
M # 0. (The existence of such an ideal i1s assured by the descending chain
condition.) Then there is an element b in & such that Mb = 0. Since Wb
is a left ®#-ideal contained in & and P(Mb) = INb, we have Mb = J. It follows
that there is an element m in M such that mb = b and this is clearly impossible
since it impliesthat b = mb = m’b = --- = m'b = 0 if r is sufficiently large.
This contradiction shows that MM = 0 and so we have the following theorem.
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THEOREM 13. If A 7s a ®-ring satisfying the descending chain condition for
left d-ideals, then any nil left d-ideal of U is nilpotent.’

As a consequence of this theorem we see that the 1deal R defined in Theorem
12 is nilpotent. If & 1s any nil left $-1deal of A, F £ K. This is clear since F
18 nilpotent. Furthermore R contains every nilpotent right ®-ideal. For, as
before, any such i1deal is contained in a nilpotent two-sided ®-ideal and the latter
is contained in 9. We shall call R the (left) radical of A. Similarly if A satis-
fies the descending chain condition for right ®-ideals, A has a right radical R’
that contains all nil right ®-1deals. If both descending chain conditions hold,
R = N'. We prove next

THEOREM 14. If A s a -ring satisfying both chain conditions for left d-ideals,
then any left ®-ideal & that contains a non-nilpotent element contains an idem-

potent element #O0.

Suppose that I = J1 @ J2 where the &; are left #-ideals. If &; and . are
nil ideals, they are nilpotent and hence J is nilpotent. Thus at least one of the
& ;18 not a nil ideal and so we may suppose at the start that & is indecomposable
when regarded as a group relative to the set of endomorphisms €, the logical
sum of A; and ®. The mapping y — yb = yB for y, b in § 1s an Q-endomorphism.
Hence by Fitting’s lemma, either B is nilpotent or B is an automorphism. If
B 1s nilpotent, b 1s a nilpotent element and so by the assumption that & is not a
nil ideal, there 1s a b such that Bi1s (1 — 1). Then B = & and there i1s an
element e in § such that eB = b. Then eb = b and (8 — e)b = (€6 — e)B = 0,
and so ¢ = e # 0 is an idempotent element in .

In a similar manner we may use Schur’s lemma to prove

TaeoreM 15. If & is an irreducible left d-ideal, then either §° = 0 or § = e

where e 1s tdempotent.

We consider again the mapping vy — yb = yB, y and b in J. Either B = 0
or Bis (1 — 1). As before, the second possibility implies that & contains an
idempotent element e. Then § = e.

11. The structure of semi-simple rings. We shall call a ®&-ring A semi-simple
if 1) it satisfies the descending chain condition for left #-ideals and 2) it has no
nilpotent left ®-ideals. It follows from the preceding section that ¥ contains
no nil left #-ideals and no nilpotent right ®-ideals =0. If A is a ring satisfying 1)
and R is its radical, then A = A = R is semi-simple. For if § is a nilpotent
left ®-ideal of A, T = § — N where § is a left d-ideal of A and I* < N for a
suitable k. Then 3* < ®°* = 0 if s is sufficiently large. Hence § £ R and
§ = 0. The following theorem is fundamental in determining the structure of
semi-simple rings.

THEOREM 16. Any semi-stmple ®-ring has an identity, and its lattice of left
d-ideals 1s completely reducible. Conversely, if N is a d-ring having the properties

3 This theorem is due to C. Hopkins. 1 am indebted to Professor R. Brauer for the
present proof.
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1) A has an wdentity and 2) the lattice of left P-ideals s completely reducible and
satisfies the descending chain condition, then A is semi-simple.

Assume that A is semi-simple. We shall show first that any irreducible left
d-ideal I = 0 has a complement. Since 3° = 0, 3 = e where e is an idempotent
element 1n 3. Let 3’ be the set of elements b’ in A such that b’e = 0. Then
3’12 aleft -1deal and 3 A 3" = 0. Sincea = ae + (a — ae) = b 4+ b’ where
beld, b el3’, 3" 1s a complement of J.

Set X = Sy, e = e . If X is not minimal, let §» = Neo , where ez = e, , be
an irreducible left #-ideal #0 contained in §’. Then A = J» ® J» where Iz
1s the left #-1deal of elements ¢’ such that ¢’'e; = 0. It followsthat3’' = 3. @ &/,
where 3" = S A & may be characterized as the set of elements b’/ such that
b'’e; = b'’ea = 0. Hence A =5, @ J2 @ JF” where Y < &', If X" is not irre-
ducible, we repeat the argument and obtain A = J; @ J2 @ J3 @ §"”” where
3; = Ae; = 0is irreducible, e;e; = 0if 7 < j, e5 = ¢; # 0 and §' is a left
$-idcal < J’'. Continuing in this way, we obtain finally

A=J[, PF@® --- ® J,, J; = e; irreducible,

where ¢ = e; and eje; = 0if 7 < j. Hence we have proved the complete re-
ducibility of the lattice.
If weputo = D e —> eie;+ -+ (—=1)"eren - - €4, we may verify that

1<J

ev = e fork =1, ---,u. Sinceanya = Zae, ,av = aforalla. In particular
v = v. The set of elements z such that vz = 0 is a right ®-ideal 8. Since
220 = (z)z = 2:(v22) = 0, B> = 0 and hence B = 0. Hence for any a, we

have a — va = 0, since v(d — va) = 0, and so a = va. Thusvis a left identity
also and we may setv = 1.

Conversely, if % has an identity and its lattice of left d-ideals is completely
reducible, any left ®-ideal § > 0 has the form e, ¢ = e. For, A = F @ I
andhence l = ¢+ ¢’ wheree e, e’ €3, ¢ = e # 0,¢” = ¢ and ee’ = €'e = 0.
Then 3 = AYe. Since § contains the idempotent element e # 0, it can not be
nilpotent. If A satisfies the descending chain condition, it will follow that
is semi-simple. The theorem is therefore proved as is also the

C'OROLLARY. Any left ®-ideal of a semi-simple $-ring is principal and 1s
generated by an idempotent element.

If we recall the general lattice theoretic argument of Chapter 3, 4, we obtain
the following dual of Theorem 16.

TueoreMm 17. If A zs a semi-simple ®-ring, there exist maximal left P-ideals
Py, -+« , W, n A such that

0=MP&H A -+ A DL,
9.7},'—{— My A oo A A DG A - A = A

For if A = 3§, @ --- @& J. where the §; are irreducible, then IN; =
1+ - 4+ i1 + Sip1 + -0 + Q. satisfies the conditions of the theorem.
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This result leads to an interesting ‘“‘arithmetic’’ characterization of the
radical, namely

THEOREM 18. Let A be a d-ring with an identity for which the descending chain
condition for left d-ideals holds. Then the radical ‘R of A is the iniersection of all
maximal left d-ideals of A.

Since A = A — R is semi-simple, 0 = Dy A -+ - A i, for suitable maximal
left ®-ideals of A. Hence if M; is the left ®-1deal of elements mapped nto those
of M., then Py A --- A M, = R. By the First Isomorphism Theorem, the
I ,-groups’ A — M; and A — M, are isomorphic. Hence A — M, is irreducible
and 9¢; 1s a maximal left ®-ideal. If we denote the intersection of all of the
maximal left ®-ideals by &, we have, therefore, proved that © = . On the
other hand let M be any maximal left ®-ideal. Then either MM + N = N or
DM+ R = A. Inthelattercasel = m +r,min M and rin R, andso 1 =
Q+r4+74+ - Y1 =7 =Q0QA+7r+7r 4+ - )ImeM This contradicts
the maximality of % and proves that 9t + R = R, ie. R =M. Thus R =S
and the theorem is proved.

We proceed now to the fundamental structure theorem for semi-simple
d-rings. We base the proof on two faects: 1) 3N is isomorphic to A, and 2) ¥,
is the complete set of A,endomorphisms. Both of these are consequences of
the fact that 9 has an identity: Now we have seen that A = 3§, @ -+ @ .
where the &; are irreducible ,-groups. Hence by the general theory of b,
9, 1s a direct sum of two-sided ideals that are matrix rings over division rings.
Thus it follows that A = Pf,ll) @ - ®P ﬁf,), P a division ring. Now the
two-sided ideals A; = P} are d-ideals since the elements of & are multiplications
by elements of the center € of . If 1;is the identity of 9, , the endomorphism
induced by « in A, is also the mulsiplication by 1.«, an element of the center
C;of A;. Since P = G, , P™ is a d-subring of A. This proves the first part
of the structure theorem:

THEOREM 19. Any semi-simple $-ring 1s a direct sum of two-sided ideals that
are matrix rings over d-division rings and conversely.

To prove the converse it suffices, by the considerations of 9, to prove that a
matrix ring over a division ring is semi-simple. We saw in Chapter 2 that a
ring of this type is a direct sum of irreducible left ideals. These are ®-1deals.
Hence ¥ is semi-simple by the preceding theorem.

From the theory of matrix rings we obtain also the

CorOLLARY. A semi-simple d-ring satisfies both chain conditions for left
(right) ®-ideals.

This corollary shows, in particular, that the conditions imposed on the left
ideals in the definition of a semi-simple ring hold also for right ideals. We can
also begin with the conditions on the right ideals. We then obtain the result
that ‘9, is a direct sum of matrix rings over division rings. Hence ¥ is anti-

* We need not mention ® since d; = &.
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isomorphic to a ring having this structure, and since a ring anti-isomorphic to a
matrix ring over a division ring 1s a matrix ring over a division ring, we see that
A 1s semi-simple.  Anyv theorem that holds for left (right) ideals in a semi-
simple ring has a dual for right (left) ideals. For example, by the above corol-
lary, any right ideal in 3 1s prineipal.

If A1 a simple ®-ring satisfying the descending chain condition for left ®-ideals
and A ix not semi-simple, then I is nilpotent.  Since 3¢ < A is a two-sided ®-
ideal, we have 3 = 0. Hence any clement b # 0 generates a two-sided ideal
and therefore b gencrates the whole of .. Thus I = {b}, the set of clements
Shajas - am, o in®or a; = £1, foranv b # 0, and b® = 0. A ring of this
tvpe 1s called a zero-®-ring. Henee 1if a simple I satisfies the descending chain
condition and is not a zero ®-ring, 1t is semi-simple. The above theorem then
applies and we obtain

THEOREM 20. A simple ®-ring satisfying the descending chain condition for
left ideals 1s either a zero ®-ring or a matrix ring P, over a ®-division ring P, and
conversely. If A = P, = ¥,, where V¥ 18 a division ring, then n = m and P and ¥
are 18omorphic.

The direct part of the theorm 1s an immediate consequence of the theorem on
semi-simple rings. The converse and the uniqueness of n and of P in the sense
of iIsomorphism were proved in Chapter 2.

It is interesting to note that the corresponding statement for rings satisfying
the ascending chain condition for left ideals does not hold. For let P = Py(§)
be the ficld of rational furctions in one indeterminate over a field Py of charac-
teristic 0 and let A = P[¢,’] the ring of differential polynomials over P, i.e. poly-
nomials in { where af = ta + o, o’ the ordinary derivative of a. 18 a principal
ideal domain and hence satisties the ascending chain condition. It is easy to
show that there are no proper two-sided 1deals in A so that A is simple. How-
ever, since ¥ 1s not a division ring, 1t does not have the form ¥, , ¥ a division ring.

If we use 9 and the above theorems, we obtain

THEOREM 21. The lattice of two-sided ®-ideals of a semi-simple $-ring A is
completely reducible. If A = W, @ --- @ A, = B ® -+ @ B, are decomposi-
tions of A into trreducible two-sided P-ideals, then s = t and A; = B, for a suztable
ordering of the B, .

Suppose that A = A, @ --- ® A; where the A; are wrreducible two-sided
d-ideals. If Bisa two-sided ¥-ideal of A, we haveseenthat B =B, @ - @ B,
where B; = B A A;1s a two-sided d-1deal in A. Hence either B; = A; or = 0.
Thus 8 = A;, @ --- @ A, and there are exactly 2’ distinct two-sided ®-ideals
in .

We consider now the connection between the decomposition of U into left
d-1deals and 1nto two-sided d-ideals. If & 1s an wwreducible left ®-1deal then we
have seen that 3 1s contained in one of the A;, say ;. If 3’ 1s a second left
$-ideal and ' < ., F and I’ are not A;-isomorphic since for 1, , the identity
of A;, we have 1,§ = & while 1,3’ = 0. Thus if 8 1s the join of all the irre-
ducible left ®-ideals A-isomorphic to J, B = A;. We assert that B is a two-
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sided 1deal. For if beB, b = y; + --- + y. where y; ¢ };, an irreducible
®-1deal 1somorphic to . If a is arbitrary, J.a is either 0 or is ¥ ;-isomorphic to
3. Hence y.a ¢ B and ba € B, and so B 1s a right ideal as well as a left ideal.
Since 2, 1s irreducible, 8 = A; . Hence we have

THEOREM 22. If N is semi-simple and A = W, @ --- ® A, where the A; are
wrreducible two-sided $-ideals, then each A; s the join of the set of irreducible left
(right) ®-1deals that are N~ (A,-)tsomorphic to a fixed irreducible left (right) -ideal.

CorOLLARY. The number t of irreducible two-sided components is the same as
the number of classes of non-isomorphic (relative to U, or A,) irreducible left (right)
1deals.

If & 1s a left ®-ideal of A, we define B,(J) to be the set of elements b in A such
that 3b = 0. 3,(3) 1s a right #-1deal. Similarly, if I’ is a right $-ideal, we can
obtain a left ®-ideal 3,(’) as the set of elements ¢ such that ¢}’ = 0. If ¥ is
semi-simple, we may suppose that J = e and we may write 3 = e & A¢’,
where ¢ = ¢, ¢® = ¢, e¢’ = ¢’¢ = 0. Then we obtain also A = eA @ .
We assert. that B,(%e) = €’A. For, A =< B,(Ne) and if b € B,(Ae), we have
eb = 0 and hence b = (e + ¢')b = e'b ee’dA. Byv symmetry, 3,(e’A) = Ae.
Thus B.(3,(3)) = & and similarly, 3,(3:,(8’)) = 3’. The correspondences
g — 3,(3) and & — B, (') are inverses of each other and are (1 — 1) between
the lattice of left #-1deals and the lattice of right ®-ideals. Evidently if §; < 3, ,

then 3,(31) = 3,(8:). This result may be expressed as follows.

THEOREM 23. If 3 is semi-simple, then the correspondence § — 3,(J) s an
anti-isomorphism bctween the lattice of left ®-ideals and ‘the lattice of right $-ideals

of A.

Let C be the center of the semi-simple ring A = %, @ --- ® A,. We have
seen that € 1s a ®-subring. IfceC ¢ = ¢, + --- 4+ ¢, where ¢c; € ;. Since
= Za;,a;n A; and ac = ca, we have a,c; = c;a; . Inadditiona;,c; = c.a; =0
if j # 2. Hencethec,eCand €= C @ --- ®@ €, where €, = € A A 18 a
®-ring. ¢, 1s the center of A;. Forif d; e C; and d.a; = a;d:, then d; ¢ € and
hence € G;. Since A = P, P a division ring, its center is contained in P*’
and 1s therefore a field.

THEOREM 24. If A 1s a semi-simple &-ring and N = W, @ --- @ A, where
the ; are simple two-sided 1deals, then the center € 1s a ®-ringand € = ¢ @ ---
@ Cp, where §; = € A U; is a field.

12. Representation of semi-simple rings. We suppose first that Y is any
ring and that 9% is an A-module. If & is a right ideal of M, =¥ the set of ele-
ments of xb, x fixed and b variable in ¥, 1s an A-sub-module of M. The asso-
ciation b — b 1s an A-homomorphism between & and 5. Hence if J is irre-
ducible, either & is A-isomorphic to & or 2% = 0. If M is irreducible, 2& = 0
or M, for any x and any right ideal &. Now if ¥ is semi-simple, A = J; @

@ 3. where the &; are irreducible right ®-ideals. Then if 9% is irreducible and
IMA = 0, there exists an x in IM such that 2 = 0 and there exists an & ; such
that 3 ; = 0. ' It follows that IN = zJF; is A-isomorphic to J; .
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We assume now that A is semi-simple and that 1 = z for all x in IR. Then
ecachx = 2l exq = 28, + --- + 28 . Since the xJ; are either irreducible or
0, M 1s the join of its irreducible submodules. If I satisfies the ascending chain
condition or, what is equivalent, if I is finitely generated, Pt = M, + - - + M,
for suitable irreducible IM; = 0. It follows that N = MW,, @ --- @ I, .
For if M = Py = M., , there is a least 7 = 42 such that M; £ M, . Then
gﬁil A 93&2 = (0 and W' = M + - -- +9ﬁi2 = mil @ 9)2,-2. If M = Sﬁ,let
73 be the least index such that M, £ M. Then W' = Wy + - + My, =
M, @ M, @ M;,. This process evidently leads to the required decomposition.
Thus we have shown that the A-module I is completely reducible and satisfies
the descending chain condition.

On the other hand, suppose that the descending chain condition holds, and
let M, < Y. < - - - be an ascending chain of A-submodules. If r;is anelement
of M, not in P, , then 2z, A < Miyy. Since x; e = 2,3 + -+ + 2T,
at least one of the irreducible z,;3; # 0 1s in N, but not in M;. Choose one of
these x;3; and denote it as 9M;. Consider the chain M, + N + -+ ) =
O+ + ---) = ---, where Oty + Nry1 + - -+ ) denotes the join of all the
N, withz = k. " Weassert that (0, + 9% + --- ) > Mo+ Nz + --- ). Forif
M+ 4 - )= +N3+ --- ) forany y; iIn Iy, we havey; = . + - - -
+yn» where y; e ; , and we may suppose that ¥y, # 0. Thusym =y1 — y2 — - --
~Yma e + -+ Np) £ M. Hence y,A £ M., and this is im-
possible since ¥y, 1s an A-module # 0 in N, and therefore y,A = N,. . Thus
we have the inequalities Ot + Na + -2 ) > e +Ns + --- ) > ---. By
the descending chain condition, this chain is finite in length and hence the
original ascending chain ; < MWy < - - - is finite.

THEOREM 25. Let A be a semi-simple &-ring and let IN be an A-module such
that x1 = x for all x in IN. Then ¢f IN satisfies either chain condition for A-
submodules, it 1s completely reductble and satisfies the other chain condition.
Any irreducible M vs A-isomorphic to an irreducible right ideal of A. The number
of non-tsomorphic irreducible A-modules is the same as the number of irreductble
two-sided tdeals A ; in the decomposition W = A, @ --- @ A,.

A partial converse of this theorem holds. In order to prove it, we require the
following general remarks: Suppose that I is an A-module and that B is a two-
sided ideal in A annihilating M in the sense that zb = 0 for all  in I and all
bin B. If we denote the coset a + B by a, then it is clear that the function
xd = ra is a single valued function of z and @ in A = A — B. It follows that
M is an A-module relative to this product. Evidently H-submodules of M are
A-submodules, ard conversely, and so A-reducibility, A-decomposability, etc.
are equivalent to Q_I—reducibility, A-decomposability, etc. It is also readily seen
that if 90 and N are two A-modules annihilated by B, then A-homomorphisms
and ¥A-isomorphisms between them are at the same time A-homomorphisms
and A-isomorphisms, and conversely.

Now let A be a ®-ring satisfying the descending chain condition for left
®-ideals and let R be the radical of A. If I is an irreducible A-module, then
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R 1s a submodule for any x, and so either 2R = 0 or 2R = M. If 2N = M,
M= 2R = 2R = --- = 0. Hence R annihilates M and M is an -module
A=A-N. A=Y, ® - ® A, either MA = 0 or M is 1somorphic to a
right ideal contained in one of the ;. It follows that M is an I;-module.
Similarly if It 1s a join of wrreducible submodules, xR = 0 for all z, and I
is an d-module.

THEOREM 26. Let A be a d-ring satisfying the descending chain condition for
left d-ideals and let IR be an A-module such that IMA = 0. If I is trreducible,
then M is an A,-module, where A; 1s one of the irreducible two-sided ideals of
A = A — R. If M is a join of irreducible A-modules, then M s an A-module.

A more striking form of this result is the following

THEOREM 27. Let A # 0 be a d-ring of endomorphisms in Mt and suppose that
A satisfies the descending chain condition for left ®-ideals. Then ©f IN s irre-
ductble, A 1s stmple, and if I s a join of irreductble A-groups, then A s semi-
stmple.

For in this dase, I 1s an A-module and the representation of A by itself is
clearly (1 — 1).

Now suppose that A is any ring of endomorphisms in I including the identity
endomorphism and let A = A, @ --- @ A, where the ¥A; are two-sided ideals.
Then M = MW, + --- + INA, where MIA; denotes the smallest submodule
containing all the elements za; ,a;in A;. If1 =1, 4+ --- + 1, where 1, ¢ A;,
1;1s the identity of ; since A; = Al; = 1,A . Hence if z; e MA; , x:1; = x;
and sinece 1;1; = 0, z;1; = 0if¢ # 3. If oy + --- + z, = 0 with z; in ;,
(2131+ +xt)l,~=x;~l.;=xi=0. Thusim= 9]22[1@ @SD??L

Again let A be semi-simple and suppose that 9t satisfies the chain conditions.
Then INA; 1s a join of irreducible submodules 1somorphic to the right ideals of
A:. As we have seen 1n b, the ring of d-endomorphisms of IN has the form
B =B @ --- D B; where B; is obtained from the A-endomorphisms b; of
. = MA; by extending the definition of these endomorphisms so that Mb; = 0
for g # ¢. Thus M; = IMYB;. Since the ring of endomorphisms induced by
A n PN, 18 a2 matnx ring over a division ring if U; has this structure, it follows
readily from our result on matrix rings’ that if A; = PY), then 8; = B}, P*
anti-isomorphic to P, and U is the complete set of B-endomorphisms of IN.

THEOREM 28. Let A be a semi-simple ®-ring of endomorphisms including the
wdentity in IN and suppose that N satisfies either one of the chain conditvons for
A-groups. If A = P @ --- @ PY) , where PY) is a two-sided ideal and p™
is a division ring, then the ring of A-endomorphisms B has the form B = P, @ - - -
&) f’fft) , where f’f.? is a two-sided ideal and P” is anti-tsomorphic to P, U s

the ring of B-endomorphisms of IN.

13. Rings satisfying the descending chain condition. The results of the
preceding section yield the interesting

5 See Chapter 2, 6.
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THEOREM 29. If A is a ®-ring with an identity satisfying the descending chain
condition for right (left) ®-ideals, A satisfies the ascending charn condition for right
(left) d-ideals also.

Let % be the radical of A and R*"' = 0, R % 0. Then A > R > --- >
R > 0is a descending chain of A-modules (A,-groups). The difference modules
A — R, R — R, --- are mapped into 0 by the elements of R and hence may be
regarded as (A — R)-modules. Since A satisfies the descending chain condition,
the difference modules A — N, R — K% - - satisfy this condition also. Since
A = A — R is semi-simple and its identity is the identity endomorphism in
A — R, R — K% --- these modules satisfy the ascending chain condition and
hence have composition series. For example, A — R = J; > F > --- >
8, = O where &; — §,;11s A-irreducible. Hence A =31 > 32> -+ > Fm =R
where &, is the right ®-ideal mapped into 0 in the homomorphism between the
groups A and A — R. By the First Isomorphism Theorem, &; — &,y is A-
isomorphic to &; — I, and hence is U-irreducible. Similarly, we obtain
R =Qm > > Smip = R where the 3 are right $-ideals and i — Sy
are irreducible. Thus A has a composition series J, > -+ > Fm > Jmy >
-+ - > 0 and so both chain conditions hold for right ®-ideals of .

This theorem enables us to apply directly our results on rings of endomor-
phisms to abstract rings. Thus, as a consequence of 6, we obtain the following

TaeEOREM 30. If A is a &-ring with an identity satisfying the descending chain
condition for left (right) ®-ideals, then any nil subring B of A zs nilpotent.

Consider B the ring of right multiplications in A corresponding to the ele-
ments of B. The elements of B are Ar-endomorphisms. Hence if s is the length
of a composition series for the A,-group A, by --- b, = 0 for any b; in B. Thus
xby --- b, = 0 for any z in % and b; in B. Hence B = 0.

We note also the following theorem which is an immediate consequence of 8.

THEOREM 31. If A is a -ring with an identity satisfying the descending chain
condition for left (right) ®-ideals, then the following conditions on N are equivalent:

1. A s a direct sum of WNi(N,-)isomorphic indecomposable left (right) ®-ideals.

2. A — N 18 stmple, R the radical of A.

3. A = B, where B is a completely primary ring.

If any one of these conditions holds, A is a primary ring.

14. The regular representations. Let 2 be an arbitrary &®-riig with an
identity satisfying the descending chain conditions for one-sided ideals. Sup-
pose that A = e A @ --- @ e, N is a decomposition of A into right ideals 0
where ’

(4) 1 = Ze;, ei = e; # 0, eie; = 0 if 157,
If R is a nilpotent two-sided ideal of A and &; = e; + R, then

(5) 1 = Z¢;. e: = & # 0, ge; =0 if 757
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inA=A—- RN andso A = A @ --- @ &N is a direct decomposition of %
into right ideals. Since &; = 0, &% > 0. We wish to show that any decomposi-
tion of ¥ into right ideals may be obtained in this way. For this purpose we
require the

LemMma. If &, ---, &, are idempotent elements =0 in A such that €é; = 0
for i £ j, then it 1s possible to choose elements e; in the cosets &; such that e; = e;
and ee; = 0.

Suppose that e;, - - -, e, have already been determined so that these condi-
tions hold for 7, j = 1 -, m. Let u be any element in é,,; and set v =

’ m
U — eu — ue + eue where e = Ze;. Then ey = ve; = 0forz =1, ---,m
1

and ». = u (mod N). Hence »* = v + z where 2 is nilpotent, say z*° = 0. Evi-
dently zv = vz. We now try to determine an element w = f(z)v + g(z) so that
w’ = w and f(z) and ¢(z) are polynomials in z with integer coefficients. This
leads to the consideration of the equations

(6) F+ 2fg = f, g+ fz=yg.

We shall first solve these equations for power series in an indeterminate ¢.
By elimination, we obtain f(t) = (1 + 4¢) * and ¢(¢) = 1(1 — f(t)). Now con-
sider the expansion of f(t) = (1 + 4¢)*. It is readily seen that f({) =1+

> (=" <2n n— 1) 2t" and so the coefficients of f(t) and of ¢g(t) are all integers.

The formal identities

FO))* + 2f(g®) = fQ), @) + F)t = g(t)

are satisfied. It follows that if f,(t) and ¢,(t) are the sth partial sums of f(¢)
and g(t), respectively, then f = f,(z) and g = ¢.(2) satisfy (6). Hencew = fv 4 ¢
1s idempotent. Since e = ve; = 0, we; = e;w = 0. The formula for w shows
also that w = v (mod R) and hence w = u (mod R). Thus w may serve as the
element e,.; and the lemma follows by induction.

Remark. The above proof 1s also valid for an algebra A without an identity.
For we may adjoin an identity to A and then construct the idempotent elememnt
em+1 In the manner indicated from an element u chosen in A. It 1s readily seen
that en41 € .

If £é; = 1 in the lemma, then Zé; = 1 and Ze; = 1 + y, y in N. Since
Se;is idempotent, (1 4+ )* = (1 + y). Hencey’ +y =0. Thusy = —¢* =
y> = -+~ =0and so Ze; = 1. It follows thatif % = A ® --- ® &Ais a
decomposition of ¥ into right ideals 20, where the é; satisfy (5), then A =
edl ® --- @ e, where the e; e ; and satisfy (4). The lemma together with
the Krull-Schmidt Theorem shows also that the idempotent elements’ e; are
primitive if and only if the & are. Thus ¢ is indecomposable if and only if
e is. If Nis the radical of A, A is semi-simple and hence & is indecomposable
if and only if it 1s irreducible. We have therefore proved

THEOREM 32. Let A be a d-ring with an identity satisfying the descending chain
conditions for one-sided ideals and let R be 1ts radical. If A = A @ -+ @ e A
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where the e; satisfy (4), then A = A — R = &A@ --- @ &,N. The ideal ;A
is indecomposable if and only if & is irreducible.

Consider It = e, A @D e;A = e, e = e; +€;. SinceA =M d 1 — )Y,
the projections £ and E’ determined by this decomposition are the left multipli-
cations by the elements e and ¢’ = 1 — e, respectively. Since ¥; is the ring of
A.-endomorphisms of A, by 4, EA,F is the ring of A,-endomorphisms of IMN.
Thus the ring of U,-endomorphisms of IN is anti-isomorphic to ede. Hence by
8, ¢;A and ¢, are A,-isomorphic if and only if ee is primary. Now ede —
(R A ede) = (eAe + N) — R = éAeé and ¢ is anti-isomorphic to the ring of
A,-endomorphisms of PN = &IA. Since IM is completely reducible, ¥ is semi-
simple. It follows that R A ede = eRe, which i1s evidently contained in the
radical of ee, coincides with this radical. Hence ee is primary if and only if
edlé is simple and we have proved the following

THEOREM 33. Let U, 9, etc. be as in the preceding theorem with the e; primitive.
Then e;A and e, N are A-isomorphic if and only if €A and é;A are A-isomorphic.

Since ¢; R = ;A A R, the A-module e;A — e.N is isomorphic to (e;A + K) — R.
The latter is essentially the d-module €. Hence ;% — e is irreducible and
so e; R is a maximal submodule of ¢, and &3 is a first composition factor of
e;A. On the other hand, if M 1s any maximal submodule of ¢; 3, e;A — IN 1s
irreducible and therefore this module is annihilated by R. It follows that
e =< IM and hence eR = IM. Thus e;R is the only maximal submodule of the
A-module e;NA. This is the first part of

TueorEM 34. If & s an indecomposable right ideal that occurs tn a direct
decomposition of A, then & contains only one maximal right ideal of A. If I and
S’ are indecomposable right ideals that occur in direct decompositions of U, then a
necessary and sufficient condition that & and X’ be A-isomorphic is that their first
composition factors be A-1somorphic.

The second part of the theorem follows from the Krull-Schmidt Theorem and
Theorem 33. For, by the former, & is 2-isomorphic to one of the right 1deals
&, that occur in a decomposition of A that includes 3’. By Theorem 33, & and
X’ are isomorphie if and only if their first composition factors are isomorphic.
Hence this holds also for & and &’.

In order to obtain a connection between the decomposition of N into inde-
composable right ideals and into indecomposable two-sided 1deals, we require

the following

LeMMA. Let N and N’ be A-modules with composition series. Suppose that N
has only one maximal submodule IR and that N 1s A-homomorphic to a submodule
N* of W'. Then any composition sertes for N’ includes a factor A-tsomorphic to
N — IN.

We note first that if 3 is a proper submodule of 9t, then 3 = M. ForN — 3
contains a maximal submodule M, and the corresponding submodule M, of N
is maximal and contains X. Since I is the only maximal submodule of N,
M = PMy. Now let B be the submodule of elements mapped into 0 by the
homomorphism between 9t and 9t*. Then N* is A-isomorphic to N — B. Since
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M—-3)>I — B) 2 0, N — B has the composition factor M — 3) —
I® — R), U-isomorphic to N — M. Hence N*, and consequently N/, have
a composition factor -isomorphic to N — M.

We shall confine our attention to the indecomposable ideals of U that occur in
direct decompositions of A. These are necessarily of the form el where e is a
primitive idempotent element. Conversely, any ideal of this form is indecom-
posable and belongs to a decomposition of A. We shall say that two such ideals
e and e’y belong to the same block if there is a sequence of indecomposable
ideals e = ¢, e, - - -, e,¥ = ¢’ such that e = e; and each ¢, has a compo-
sition factor A-isomorphic to one of the composition factors of e¢;4,A. This re-
lation between el and e’Y is evidently an equivalence. The sequence {e;} is a
sequence connecting e and e’A. With these definitions, we have the following

THEOREM 35. Let A = A @ --- @ U, be the decomposition of N into inde-
composable two-sided ideals. Then any two indecomposable ideals e and e'NA
belong to the same block if and only if they are contained in the same component U; .
Hence ¥U; 1s a join of a set of indecomposable ideals e belonging to the same block.

We have seen in 9 that any indecomposable right 1deal is contained in one
of the ;. If eA and ¢’A belong to the same block, they are contained in the
same two-sided component. For suppose that e¢A and e'A are in different
components say, A; and U, respectively. If 1, is the identity of ,, then
(eA)1; = e and (¢’A)1; = 0 and so no composition factor of e is A-isomorphic
to one of ¢’A. Thus if {e;A} 1s a sequence connecting eA and €', each pair
e; N, e; 1A 1s contained in the same component and this holds also for ¢ and
eA. If e and e’ are in different blocks, then ede’dA = 0. For otherwise,
there 1s an element b = eae’ % 0 and so the left multiplication determined by
b 1s an A-homorphism # 0 between ¢’ and a submodule of e . Hence:by the
lemma, both ¢’ and e have composition factors isomorphic to &, contrary
to assumption. Now let A = ¢, A @ --- @ e, A be a decomposition of A into
indecomposable right 1deals # 0. We suppose that the e, satisfy (4) and that

e;d, - -+, e, A belong to the same block, e, ¥, -+, en,4n, A, belong to the
same block but not to the same block as ;) etc. Set B, = e, A ® -+ @D e, Y,
Be=€n 41 A®D -+ - Depyyn, A, --+. Thene;Ae;,A =01f ¢ < njandj > n,. Hence

Ae;A) = Bi(e,A) < By and B, is a two-sided ideal. Similarly, each B is a
two-sided ideal and since B 1s a join of ideals that belong to the same block, it
is contained in one of the ’s. Hence we may suppose that B; = A, - -+, By =
.. Now suppose again that e and ¢’A are in different blocks. We may sup-
pose that el = ¢, A < A;. Then we have seen that e;Ae’A = 0 for 7 < n,.
Hence there is a 7 > n,; such that ¢;e’A # 0 and so ¢;A and ¢’A are in the
same component. Consequently e and e’ are in different components.

The above results are, of course, also valid for left ideals. The following
theorem gives a connection between decompositions into right ideals and into
left ideals.

THEOREM 36. If A = A @ --- @ e, Y where the e; satisfy (4), then A =
Ne, @ --- @ Ue,. The rdeal Ae; is indecomposable if and only if e;N s in-
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decomposable. If e; N and e;A are indecomposable, then these ideals are A-tso-
morphic if and only if Ae; and e ; are A-tsomorphic.

The first part of this theorem is evident, since the condition for indecom-
posability in either. case is that e; be primitive. To prove the second part, we
suppose first that A is semi-simple. Then the condition that ¢;) and e, be
isomorphic is that they be contained in the same irreducible two-sided ideal
Bof A. Since ;A = B if and only if Ae; < B, the theorem is true in this case.
The theorem in the general case then follows directly from Theorem 33.

It may be noted that we have succeeded in obtaining extensions of all of the
maln theorems on the structure of semi-simple rings with the exception of the
theorem establishing an anti-isomorphism between the lattice of left ideals and
the lattice of right ideals. The class of rings for which this theorem holds has
been the subject of a very interesting investigation by Nakayama. We refer
the reader to his papers [10], [14] for this discussion.

16. Principal ideal rings. In this, and in the next, section we shall indicate,
following Asano, that the main results of Chapter 3 are valid for principal ideal
rings satisfying the descending chain conditions for one-sided ideals. These
results will play an important role in the multiplicative ideal theory that will be
considered in Chapter 6.

By a principal ideal ring we mean here a ring with an identity in which every
left ideal is a principal left ideal and every right ideal is a principal right ideal.
For the sake of simplicity we assume that the set of endomorphisms @ is vacuous.
We prove first the following

TaeorEM 37. If U 7s a ring with an identity satisfying the descending chain
eonditions for one-sided ideals, and every two-sided ideal of U vs a principal right
tdeal and a principal left ideal, then N is a direct sum of two-sided ideals that are
primary rings having these properties.

Let U, be a minimal non-nilpotent two-sided ideal in A. Then A, = UYe =
¢’ for suitable ¢ and ¢/, and Ac® = (¢')*¥ is a two-sided ideal of U contained in
A, . Since Ae)® = AeA)e = AAc)e = Ac?, Ac” is not nilpotent. Hence by
the minimality of %, Ac® = e = /A = (¢’)’A. Since the ascending chain
condition holds for ¥, regarded as an A;-group, the Arendomorphism z — xc
is (1 — 1) in ¥;. Hence the only element z in ¥, such that zc = 01sz = 0.
Thus if A* denotes the set of elements a* in A such that a*c = 0, A* is a left
ideal and A* A A, = 0. If z is any element of A, zc = yc’ for a suitable y.
Hencez = (x — yc) + yce A* + Ay and so A = A; @ A*. Similarly, A =
A, ® A’ where A is the right ideal of elements a’’ such that ¢'a”’ = 0. If
a'’ is arbitrary in A/, @’ = a; + a*, a;in Yy, a* in A*. Then 0 = c'a”’ =
ca; + c'a* e Ay @ A* and ¢’a;, = 0. Hence a; = 0 and a”’ = a* ¢ A*. Simi-
larly if a* € °*, a* ¢ A"’ and so A* = A" is a two-sided ideal. It follows that
9, is primary. For otherwise, we should have a non-nilpotent two-sided ideal
B = A, in A; and this would contradict the minimality of ¥, . In order to
complete the proof we require the
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LemMA. Let A be a ring with an wdentity and A = A; @ --- @ A, where the
A; are two-sided ideals. A necessary and sufficient condition that every right
(left, two-sided) rdeal of A be a principal right (left, left and right) ideal s that this
holds for each U .

If &; is a right ideal of U, , it is one of A since ;A; = 0if + # 5. Hence
S = ;A = ;W since ¢; is in Y; . On the other hand, any right ideal & of
A hastheformF =3, @ --- @ F; whereX; = U; A § is a right 1deal 1n ;.
3. =cWi,ciinG;,thenY =+ -+ + ¢ = cAwherec=c1+ -+ + ¢,
1s in .

This lemma implies that the rings ; and A* determined above satisfy the
same conditions as . If A* is not primary, we may repeat this process and
write A* = s @ A" where Ay, A’ are two-sided ideals of A’ and hence of A,
and ¥, is primary. After a finite number of repetitions of this process we obtain
A=A & --- @ A where the I; are primary and satisfy the conditions of the
theorem.

THEOREM 38. Let A = B, where B 1s completely primary and N satisfies the
chain conditions for one-sided ideals. Suppose that the radical R of A is a prin-
cipal right ideal and a principal left ideal. Then R = wA = Aw for any w which
belongs to (R A B) but not to (R*> A B).

We have seen that if R A B = & and e;; are matrix units such that A = Ze; ;B
and e;;b = be;;,bin B, then R = Ze;;&. Then N* = Ze;;& and & = R* A 8.
We note next that if v and 7 are elements of % such that uv = 1(R), then uv =
1 ——\r, rin N and hence wv(1 +r+ 4+ -+ + ¥ DN = w = 1if r = 0. Evi-
dentlyv = 5 (R). Also,since % — R isamatrixring over adivision ring, tu = 1(R).
Hence there is a o’ such that v’y = 1, o' = 5 (R). It follows that v’ = v, and u
1s a unit with v as its inverse.

After these preliminaries we may begin the proof of the theorem. Let w e 3,
¢S’ Thenw = zuif ® = 2. We consider « modulo R. Since ¥ — Risa
matrix ring over a division ring, there exist elements »; and v, which are units

modulo N such that u = view:(RN), e, = D e:;. We may suppose that v, and v,
1

are units in . Thus u = vew, + 7, 7in R, and w = 2z(vews + 1), Wz =
(zv)es + zrvs'. Hence wvs' = (zv)e, (RY). If we write wvz' = Ze;;w;j, w;;
in B, this shows that the w;;, withj > s, are in &". If v’ = Ze;wi;j, v;;in B,
then each v;;,7 > s,1sin &. Otherwise »;; 1s a unit and since w;; = wv;;, we
should have w in &® contrary to assumption. We have therefore proved that
vi; = 0 (&) for j > s. Since v is a unit modulo R, this is impossible unless
s = n, 1.e. unless u = v, (R). Since v, and ve are units, it follows that u is a
unit and N = z2Y = wU. Similarly, R = Aw.

THEOREM 39. Under the assumptions of the preceding theorem, the ideals
& k=0,1,-.. (& = B), are the only right (left) ideals of B. &* is a principal
right (left) ideal. The only two-sided ideals of U are R*.

Let b be any element =0 of 8. If b¢&S, b is a unit. Now suppose that
be@*, ¢, k >-0. Then beR*, ¢ R**" and hence b = w*u where w ¢ S,



A-MODULES, % A PRINCIPAL IDEAL RING 77

¢ ©°. If we write u = Ze;u;;, we obtain b = w*u;; , wu;; = 0. Hence we may
replace u by u; = uy; and obtain b = w*u, with w;in 8. Then %, is a unit. By
a parallel argument we may show that b = @w" with @, a unit in 8. If now b
is any element of ©*, bisin & but not in &', 1 = k, and so b = w'u, = w",
¢ in B, and likewise b = éw*, ¢in B. Hence we have proved that &* = w8 =
Bw*. Now let & be a right ideal of B. Suppose that I = &" but £ &
and let b be an element of & not in &', Then b = w*uy , u; a unit. Hence
w® is in & and 6" = . Since any two-sided ideal B; in B has the form Ze; 3,
where & is a two-sided ideal in B, B; must be one of the ideals Ze¢;;&° = R*.
We prove next,

TaEOREM 40. If B is a principal ideal ring, then so is the matrix ring A = B, .

Let §§ denote the free B-module with u generators. The elements of § are
the u-tuples (by, ---, b.), b; in B. With any right ideal & in A we associate
the set F(F) of elements in § consisting of the columns of the matrices in J.
Evidently §(&) is a submodule of § and hence by the argument on p. 43, §F(J)
has a set of m =< w generators. Let these be (by;,b2;, -+, buj), 7 =1, -+, m,
and let b be the matrix (b;;) where b;; = 0 if j = m. We wish to show that
3 = bA. To prove this, we note that if ¢ = Ze;,c;; is an element in J, then so
is ce,, , and this matrix has as its ¢-th column the p-th column of ¢ and allother
columns are 0. Since the columns of b ocecur in matrices of &, the matrices
Teuybi;eXFforg =1, .-, uand hence b = Ze;;0;;1s1inJ. The w® matrices bep,
contain the columns of b in all possible positions, and since these columns form a
basis for §(X), any element of & has the form bv for a suitable v in . A similar
argument holds for left ideals.

Now let I be any primary ring with an identity satisfying the descending
chain condition for one-sided ideals. Suppose that the radical of ¥ is a principal
right ideal and a principal left ideal. Then by Theorem 39, A = B, where B
is a completely primary principal ideal ring. Hence by Theorem 40,  itself
1s a principal ideal ring.

THEOREM 41. If A is a primary ring satisfying the descending chain conditions
for one-sided ideals and the radical R of N is a principal left ideal and a principal
right 1deal, then N 1s a principal rdeal ring.

By this theorem and Theorem 37, we obtain

THEOREM 42. If U is a ring with an identity satisfying the descending chain
conditions for one-sided ideals, and if every two-sided ideal of A is a principal left
wdeal and a principal right ideal, then A 1s a principal ideal ring.

16. A-modules, A a principal ideal ring. We wish to determine the structure
of finitely generated A-modules, A of the type of 156. As usual, we suppose
that 1 = x for all x in the module I and 1, the identity of 2. Since A =
2[1 CIREERNC) 21:,-9]2 = N, @ --- @ MA, . Since 211'2{]' = 01f ¢ #j, any
A-submodule of M, is an A-submodule and A-isomorphism of submodules of
MA; implies A-isomorphism. Hence we may assume that ¢ = 1, that 1s, that
A is primary. We consider first the case where A = B is completely primary.
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Then if & is its radical and w ¢ © but ¢ &°, we have seen that every element of B
has the form uw* = w*u’ where u and ' are units. Hence if (a;;) is a matrix
in B,, , we may use elementary transformations (p. 42) to reduce it to diagonal
form. Thus there exist units u; and w, in B, such that

(7) | ul(a,-,-)ug = w*

where 0 < ky <k = --- < 1if & = 0, &' # 0. As we saw in Chapter 3,
this implies that any finitely generated B-module is a direct sum of cyclic
B-modules isomorphic to the B-modules B — w*B = B — S*. Since the
mapping r — w' ‘z is a B-homomorphism between B and & * sending the
elements of &* and only these into 0, @ and 8 — &* are isomorphic. Now
&'* is indecomposable, for otherwise, & * = I; ® I, where the &, are right
1deals 0 of B, and this is impossible since each & ;is a power of ©. Thus the
cyclic modules 8 — w*® are indecomposable.

Now let A = B, = Ze;;B where B is a completely primary principal ideal ring.
If I is an A-module, M is a B-module and if z,, -- -, . generate M relative
to A, the elements x.e;; generate M relative to B. Thus IN 1s finitely generated
relative to B. The sets Pe;; are B-modules since e;;b = be;; for all b in B and
are B-isomorphic since, as is readily verified, the correspondence x — xey; is a B-
isomorphism between e, and Me;; . Evidently I = Pey @ --- @ ey -
We fix our attention now on Yte;; . Since B i1s a principal ideal ring, Mey; 1s a
finitely generated 8-module. Hence, by our assumption, we may write MNe;; =
MY @ --- @ MY where MY is a cyclic B-module generated by y;. By the
isomorphism noted, we have Me;; = MPe; @ --- @ MW ey; where IMPey; is
cyclic and has the generator y;e;; . It follows that the elements y; are generators
of M relative to A. Now suppose that ya;, + -+ + y.a, = 0 fora; = Zeabt .
Since y ;e = ¥;, we have

0 = (yenay + --- + yaellaa)epp = (ylb{g + -+ yab&))elp, p=12 ---.

This implies that b2 = 0 and hence y,a, = 0. Thus M = (y) @ --- @ (y,)
where (y;) denotes the cyclic Ad-module generated by y;. This proves

TueoreM 43. If A is a principal ideal ring satisfying the descending chain
conditions for one-sided ideals, then any finitely generated A-module 1s a direct sum
of cyclic A-modules.

Our argument shows also that if 9 is an indecomposable A-module, ey, is
an indecomposable B-module. For if e,y = P @ IR, we may decompose
P’ and M into cyclic modules M j = 1,2, ---, g, 9 = 2, and then obtain
a decomposition of M into ¢ A-modules. On the other hand, suppose that Mey;
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is an indecomposable B-module. If M = M @ M, we may write M’ =
Men @ - @ Mewe, M’ = Meny @ -+ @ M’e,, and obtain a direct de-
composition of I into 2u components. Smce we have M = Me;;y @ -+ @
Me,. where the Pe;; are indecomposable, we obtain a contradiction to the
Krull-Schmidt Theorem.

If I = (y1) 1s an indecomposable B,-module, we may suppose that y,e;; = y;
and that y, generates an indecomposable B-module. It follows, on considering
the set of elements a of A = B, such that y,a = 0, that (y;) is A-isomorphic to
A — § where & is the right ideal generated by e;; with ¢ > 1 and by e;w", If we
use the A-homomorphism =z — eyw' "z, we may prove that A — &, and hence
(y1), is isomorphic to the ideal ey®‘ ™ . Now, as in Chapter 3, we define the
bound of an A-module M to be the two-sided ideal of elements d of A such that
xd = 0 for all x iIn M. In the present case we allow the bound to be 0. It is
readily seen that the bound of (y1) (or ey’ ™) is ®*. Hence if A is primary,
then a necessary and sufficient condition that two indecomposable A-modules
be 1somorphic i1s that they have the same bounds. If we use the decomposition
M= IMA, & --- ® MA,, we see that this result is also valid for arbitrary
principal ideal rings A and finally, by the Krull-Schmidt Theorem, we obtain
the following general criterion:

THEOREM 44. If A 1s a principal ideal ring, then a necessary and sufficient
condition for A-isomorphism of any two finitely generated A-modules s that the
totality of bounds of the indecomposable components that occur in a decomposition
- of one of the modules coincide with the totality of bounds occurring in a decomposition
of the second.

The main results of Chapter 3 may now be proved for the rings considered
here. We mention, for example, the following theorem that will be required
later.

TueoreM 45. If IN s an indecomposable A-module and . is its bound, then
A = A — < is a primary ring. If e is the exponent of the radical of A, I has
length e. An indecomposable A-module has only one composition series.

The proof 1s left to the reader.

We remark that if o 1s an arbitrary principal ideal domain and & 1s a two-
sided 1deal 0 in o, then 0 — & 1s a principal ideal ring satisfying both chain
conditions for one-sided ideals. Hence if 9% 1s a bounded o-module in the sense
of Chapter 3 and & 1s the bound of 9, then IN is an (0 — J)-module, and so
the results on bounded o-modules are consequences of the present theory.
The treatment of Chapter 3 i1s, however, of a more elementary character.

17. Projective and affine representations of a group. In the remainder of
this chapter we shall consider some applications of the theory developed thus
far. We begin with the problem of representation of groups.

It 1s a classical result that any projective space P of dimensionality
(n — 1) = 3 may be regarded as the system of one dimengional subspaces
{za}, r fixed, in a suitable n-dimensional vector space It over a division ring .
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The k-dimensional subspaces of I correspond to (k¢ — 1)-dimensional subspaces
of B. It is well known that the collineations, or, projective transformations of
P, 1.e. the (1 — 1) transformations that preserve incidence, are induced by non-
singular semi-linear transformations i M over ®. Two semi-linear trans-
formations 7'y and T have the same effect in P if and only if Ty = Tou, u in &.
The complete projective group is therefore isomorphic to &/®* where & is the
group of non-singular semi-linear transformations and ®* the set of mappings
r— xu, u# 0ind." We recall also that the collineations which are generated
by perspectivities are the ones whose corresponding semi-linear transformations
induce inner automorphisms in &. We shall call these collineations spgcial.

Consider the following problem: Given a group ¢ = (1, s, ¢, ---) and a pro-
jective space 3, to determine the homomorphisms between g and groups of
collineations in PB. Such homomorphisms are called projective representations
of g. Two representations s — ¢,, s — d; are equivalent (strictly equivalent)
if there 1s a collineation (special collineation) u — u’ such that (uec,)’ = u'd,,
or, if u — 2’ is denoted as f, then d, = f™'c.f.

If we transfer this to I, we obtain the following formulation: A projective
representation of g corresponds to an association s — T, where T, 1s a non-
singular semi-linear transformation in ¢ such that

T.T: = Tstps,t ’ Ps,t in .
If § denotes the automorphism in & determined by 7', then
(8) ESE = Ps—.ifﬁps,t

forall £in®. Thus if we call the factor group of the group of automorphisms of
® relative to the invariant subgroup of inner automorphisms the group of outer
automorphisms of &, we see that the correspondence s — § determines a homo-
morphism between g and a subgroup of the group of outer automorphisms of &.
It follows that the subset § of elements h of g for which T 1s a special collineation
is an invariant subgroup of g. The set p = {p;,.} will be called the factor set
of the representation. The associative law imposes the condition

(9) Ps, tuflRt,u — Pst,uP:t .

The projective representations s — T, s — U, are equivalent if there is a
non-singular semi-linear transformation A with automorphism @ and elements

us such that
U, = AT\ Au, = AN(Tw® HA.

We have strict equivalence if A may be taken to be linear. If s’ i1s the auto-
morphism associated with U, and ¢ is the factor set of this representation, we
have as necessary conditions for equivalence

- -1 a a lia
(10) s' = @ 8Aps,  Ost = W5 pSiMs CHe,
6 Since the group operation is denoted as multiplication, we use the terms: factor group,
power, etc.
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where in the first equation p, denotes the inner automorphism & — u; £u, .
Necessary conditions for strict equivalence are

- ~1 i
(11> § = Sus Os,t = #stps.tuim-

If ® 1s commutative, the only inner automorphism is the identity mapping.
Hence the correspondence s — 3 is a homomorphism between g and a subgroup
of the group of automorphisms of ®. Strictly equivalent representations have
the same automorphisms in ®.

An mmportant class of projective representations consists of those representa-
tions for which the factor sets ps,: = 1. In this case we have T, = TT: and
s — § 1s a homomorphism. We call a representation of this type an affine
representation, and we are usually concerned with equivalence of pairs of these
representations defined by the condition that U, = A™'T,A where 4 is a linear
transformation (1.e. u, = 1). Finally, we may impose the further condition
that § 1s the identity automorphism for all s, Then T, 1s linear. If, in addition,
$ 1s commutative, we obtain the classical case for which there 1s a very extensive
literature.

From now on we suppose that g is finite. Let r be 1ts order and p the char-
acteristic of ®. 'We wish to prove the following

TueoreM 46. If p 4 r, any projective representation of g ts completely reducible.

By complete reducibility we mean complete reducibility of It relative to the
set of endomorphisms {&, T;, T,, ---}. Let M be a subspace of I invariant
under the transformations 7', and let 9t* be any complementary space, 1.e. N =
N ® N*. We wish to show that we may choose M* so that it, too, 1s invariant
relative to the T, . If z ¢ M, we may write x = y + y* where y ¢ N, y* e N*.
The mapping *+ — y = xD determined by the decomposition is then an idem-
potent linear transformation such that IMD = N. Now any linear transforma-
tion which maps I into 9 and acts as the identity in 9 is idempotent. Hence

if D, --- ., D, have this property and p + m, then }n (D, + -+ + D, has the

property. Thus F = ! (O T7'DT,) has the property since T, DT, is linear,

S €@

MT'DT, < NT, = N and yT7'DT, = yforallyinN. Now
FET =LY 17T DT = Y pi T DT wpus = F

since T7; DT, commutes with p, : and st ranges over g when s does. Thus E,
and hence 1 — E, commutes with all the T, . Then IR = ME @ M1 — F) =
N @ N and N is invariant relative to all T', .

18. Crossed products. The preceding theorem may be strengthened by
replacing the hypothesis p ¢+ r by the weaker one, p 1 g, ¢ the order of the invar-
iant subgroup b of elements h such that h is inner. In order to prove this, and
for other purposes, we introduce a certain ring [ determined by g, ®, the cor-



82 RINGS OF ENDOMORPHISMS AND ABSTRACT RINGS

respondence s — 5§ = s” and the factor set p. We need not supposec that the
§ and the p are obtained frem a projective representation but merely that they
satisfy (8) and (9) and that p;,, % 0. The elements of A = (g, H, p) arc the
expressions D {,¢, where the £ vary in ®. We consider St,£, = Zt.n. if and only

S€q

if £ = #, for all s and we define

Etsfs + Etsns = Ets(gs + 773)9

(Etsfs)(ztmt) = Z: tstps,tf:m .

It is readily verified that A i1s a ring. We shall call it the crossed product of &
and g with correspondence H and factor set p. _ _

The conditions on p imply in particular that p, 1011 = ps.10s.1 . Hence pb | =
P11, pi1 = pr1 and psq1 = pra. Similarly, ;1. = pli. We note also that
' = plifpr1. Tt follows that the element tp1; is an identity 1 for A and the
elements 1£ form a division subring of A that may be identified with . We
may set s = (.1, 1, the identity of ®. Then any element of A has the form
~t:Es where t.£, now indicates the product of {, and £, in®. The ring I 1s a vector
space over ® relative to the endomorphisms x — x£. Since the expression of
an element in the form Zt.£, 1s unique, (A:®) = r. We note that

Ets = tsgé ’ tsle = tstps,t .

Similarly, the endomorphisms z — tx = z¢ form a division ring ' anti-iso-
morphic to ®, and (A: ®’) = r also. Since right (left) ideals of A are subspaces
over ® (®'), A satisfies both chain conditions for right (left) ideals.

If s — T, 1s a projective representation of g in It over & with the correspond-
ence s — § and the factor set p, the correspondence Zt.,t, — ZT&, is a representa-
tion of A by endomorphisms in Pt in which 1 is mapped into the identity en-
domorphism. If two N-modules thus determined are A-isomorphie, then the
projective representations are strictly equivalent. Conversely if we have a
representation of A by endomorphisms in 9 such that 1 — 1, I may be re-
garded as a vector space relative to the endomorphisms of ® < A. If (M: )
is finite and T 1s the correspondent of ¢. , we obtain a projective representation
s — T, of g having the same correspondence and factor set as . Thus the
theory of representations of the ring A is closelv connected with that of the
projective representations of g that have the same correspondence and factor set.

Let ¥ denote the subring of A of elements D tx&, . Then B is the crossed

heb
product of ® and b with the factor set px,» and the correspondence i — h. Let
1, u, ---, w be representatives of the cosets of g/h. Then if seg, s = uh, h

in h. Hence {, = tutipur = t.b where bisin B. It follows that the elements of
A may be written in the form =t,b, , b, in B and the summation extending over
the representatives 1, u, - -+ . This representation is unique. For if Z¢,b, =0,
we set b, = Zhén. and obtain Ztuupurén. = 0. Since the r elements uh are
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distinct, puséne = 0, & = 0 and hence b, = 0. Now ;' = (pr.1ps-1.5) ts-1
and so

ts_l thls = (Pl,lpa—l,s)—lta—lth ts = (Pl,l ps—l,a)—l ts"lhapa"lh,api‘l,h

- ta_lks(p;._ilhs p::i.hss)_l PS‘lh.api‘l,h
is in 8. Hence the mapping b — ;'bt, = b is an automorphism in 8. By
means of this automorphism we may write (t.b.)(t.b,) = LusPu. oDl Dy .
We may now prove the following theorem., |
THEOREM 47. A necessary and suffictent condition that A be semi-simple is that
B be semi-simple.

Let © be the radical of 8. Since the automorphism b — ¢, bt, maps a nil-
potent ideal into a nilpotent ideal, {;'St, < &. It follows that the totality N
of elements Zt,s, , s, iIn &, is a two-sided ideal in 9. Since N = &, it contains
ASA. On the other hand, by definition, ! < AS. Hence N = AS = ASI.
Then N* = AS"* and so N is nilpotent. Hence if & = 0, the radical R of A is
#0. Now suppose that © = 0. We wish to show that if & is any two-sided
ideal 0 in 9, then (B A I) # 0. For this purpose let z = t,b, + --- be an
element #0 in & for which the least number of coefficients b, are 0. If
beB,zb = t,bb + -+ and bz = t,b*'b, + --- arein 3. We fix our attention
on a particular u for which b, # 0. Since b* ranges over B, the coefficients
c. of the elements t,c, + --- of & that have the same form’ as z form a two-
sided ideal &, = 0. Since B is semi-simple, &, has an identity e, and e, is In
the center of 8. Now we may suppose that z = t,e, + --- . We assert that
z = t,e,. For suppose that z = (e, + t,by + --- with b, # 0. For any ¢
in ®, £z — 28" = t,(£'hy — bot”) + --- is in B and has fewer non-zero terms
than z and is >0 unless £b, = b,t*. Now if b, = Zti8s ,

£b, — bt* = ZL(E*8 — But").

Since b, # 0, there is a 84 # 0 and so £* = 8 £#8,. This holds for all ¢ and it
implies that u and » differ by an inner automorphism contrary to the assumption
that u and v are in different cosets of hin g. Hence z = t.e, and tz z = e, is an
element #0mn (B A ). Now if & = R, we obtain 8 = 0 since (B A R)
is a nilpotent ideal in B.

We have seen that if p + ¢, the order of b, any representation of 8B such that
1 — 1 is completely reducible. If we apply this to the regular representation
(by B,) we see that the lattice of right ideals of B is completely reducible. Hence
P is semi-simple and we have proved the following theorems.

THEOREM 48. The crossed product U is semi-simple if p + q, q, the order of §.

THEOREM 49. A projective representation s — T, of a finite group is completely
reductble if p ¢ q, q, the order of the subgroup of elements h such that T ts a spectal
collineation.

The proof of the main theorem implies also

7i.0. Cy = Oif bv = 0-
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THEOREM 50. If b = (1), then A 1s simple.

For in this case 8 = & s0 that © = 0. Then if 3 is a two-sided ideal 50 in
A, (@ A J) is an ideal 0 in ® and hence (® A ) = &. Thus 3 contains 1
and 3 = 9.

Suppose ?hat b= (1). Thenif (Z¢8,)¢ = £(Zt.8,) forall & £3, = B:¢. Hence
if 8, # 0, £ = B8.£8;. Thuss = 1 and we have proved that the only clements
of A which commute with all £in® are in®. Consequently the center of A < T,
the center of . If y e I', v, = ¢,y for all s implies that v e Ty the subfield of T
of elements invariant under all 5. It follows that Ty is the center of . If
® = I so that ® is commutative, it is well known that (I': I'y) = r.° Henee
(A:Ty) = 1.

Suppose now that p, . = 1in addition to h = (1). Since Aissimple, A = F; @
-+ @ Ju where the 3 ; are A-isomorphic irreducible right ideals. An 9-iso-
morphism between right ideals is in particular a (1 — 1) linear transformation
between them regarded as subspaces of the vector space 3 over . Hence
F;:®) = Qu:®) =mandr = (A:P) = um. Now let 3 be the right ideal of
multiples ea of ¢ = Zt.. Since et, = t;, ea = eo for a suitable « in ®. Hence
(J:®) = 1 so that J is irreducible. Then (3, :®) = (J: %) = 1 and r = u.
It follows that A = ¥, where ¥ is a division ring. ¥ contains the center I'y of
9 and since (A: ¥) = r°, it follows that when ® = ', ¥ = I .

THEOREM 1. If A = ®(q, H, 1) and b = 1, A = ¥, where ¥ is a dwvision ring
and r 1s the order of a. If, in addition, ® = T 1s commutative, then A = Ty, ,
[y the center of .

19. Galois theory of division rings. Let & be an arbitrary division ring and
&G = (1, S, -, U) a finite group of r outer automorphisms acting in ®. The
subset of invariant elements (" = «) is a division subring ®, of ®. We denote
the set of left (right) multiplications in ® corresponding to the element of &, by
®y (@) and the set of endomorphisms =S&s (ESts), where &(£5) is a right (left)
multiplication by £sin ®, by (®, ®) (@', ®)). We note that £S = S¢°. Hence
if 2 1s the crossed product of ® and an abstract group g isomorphic to @ defined
by the isomorphism s — S and the factor set p,,; = 1 the correspondence
Ttk — I8¢, i1s a representation of A by endomorphisms acting 1 ®.  Since I
is simple, the representation is (1 — 1). Hence by the last theorem, the ring
(®, ®) = V¥, where ¥ is a division ring.

If « # 01sin® and 8 1s arbitrary, there is a £ in ® such that af = 3. It
follows that (®, ®) = ¥, 1s an irreducible set of endomorphisms and hence by the
A-1somorphism of any two irreducible A-groups, there exist relements ay , -+ - | a;
in ® such that every element of ® may be represented in one and only one way
as ayr + -+ + ay., ¥ in ¥. To prove this again directly, let E;; be the
matrix basis in ¥, and choose E,, and « so that aF,, # 0. Then it follows
readily that the elements oy = al,1, - -+, . = aF,, arc independent over V.
Since any 8 = (al,,)ZE ¢ for suitable ¢,; , we have 8 = a1 + -+ + by .

8 This will be proved in the next section.
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[Let ¥’ be the ring of linear transformations ¢’ in ® over ¥ defined by the
equations ay’ = ayf. We have seen in Chapter 2 that ® 1s an r-dimensional
space over V', that ¥’ i1s the complete set of endomorphisms commutative with
those of ¥, and that ¥, 1s the complete set of linear transformations of ® over ¥’.

We recall now that ¥, = (&, ). If A is an endomorphism commutative with
all the endomorphisms of ®, it 15 a left multiplication, say, § — af = &a’. If In
addition it commutes with all the elements of &, (at)® = &°t° = at’ and o’ edy .
Thus ¥/ = &; . 1In a similar fashion we mav treat &, and (@', ®) and obtain the
following

THEOREM 52. Let ® be an arbitrary dwision ring, & a finite group of r outer
automorphisms acting in ® and &, the dwision subring of invariant elements. Then
the dimensionality of ® over d, (® over &) is r and (®, &) (@', &)) is the complete
set of linear transformations of ® over ®y (® over &y).

Suppose that V 1s any automorphism in & leaving the elements of &, unaltered.
Then T is a linear transformation of ® over @, and hence V = =St¢. Forevery
endomorphism 5 we have nV — V3' = 0. Hence =S(n°ts — £&s1°) = 0 and if
Ec# 0,7 = & '7°Es.” Since no S # 1 is inner, this holds for just one S and so
V=S¢ Since Vis an automorphism, £§ = land V = S e¢®. In particular if
v 18 any clement of & commutative with all the elements of &, , then the inner
automorphizsm 5 — v 7y is in ® and hence is the identity mapping. Thus ¥y
1= 1n the center of &.

If $ is a subgroup of O, we denote the division subring of elements invariant
under the tran<formations of $ by #(9), and if = 1s any division subring between
®, and &, we denote the subgroup of ® leaving the elements of £ invariant by
G(X). Note that &y < P(D), (O) = &y, (1) = &. The following i1s the
fundamental theorem of the Galois theory.

THEOREM 33. The correspondences £ — ®(9) and £ — &(Z) are inverses of
cach other.  Each one is (1 — 1) between the subgroups of & and the division rings
X between &y ard . The dimensionality (: Z) = (P: ') = order of G(Z) and
(S:d) = (Z:dy) = index of G(Z).

Let © be a subgroup of & and () the set of invariant elements. If S'is an
automorphism of & leaving the elements of () invariant, we have seen that
Sicsin . Thus G@(H)) = H. Now suppose that Zisgiven wheredy < T < &
and let A e the set of linear transformations of ® over £'. Then A = (&, ().
[f ©S¢: ¢ A and g’ 1s any element of I7.

TSty = =Sty = (SSEu’ = ZSp'ks

where ¥ denotes the left multiplication corresponding to u°. Hence
ESWP = wEs =00 I Se®E) = 9, p”° = u'. Now suppose that S ¢ 9.
Then we assert that £&s = 0. Forlet &5 = 0. Since S ¢ O, there exists a u such
that u° 3 u. On the other hand

Sw?® — wgs + TW" — W + -

I

0.
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Clearly this relation cannot reduce to S(u’® — u')ts = 0 and so we may suppose
that £&r # 0 and " — ' # 0 so that T ¢ § either. Then by multiplying on the
left by the endomorphism 5 and on the right by & '5°ts and subtracting we
obtain

Tw" — wW)Yn"tr — trks n°ks) + -+ = 0.

Since T'S™" is not inner, we may choose an 7 so that (9"¢&r — Erks n°ks) # 0.
If we continue this process, we obtain finally a single term Uu'" — u/ )¢y = 0
with U not in © and ¢y # 0. Since this has been excluded, we have proved that
ts = 0 for all S not in . Hence A consists of the transformations D S&s.

SedH
Now Z’ 1s the complete set of endomorphisms commutative with those of A.
On the other hand, the form of the elements of A shows that these transforma-
tions are precisely the ¢’ such that ¢ e¢®($). Hence ®#(®(Z)) = =. The

dimensionality relations follow from Theorem 1. .
If = = &(9), =° = &(S'OS). Hence 9 is invariant if and only if = is trans-
formed into itself by all the elements of &. If 1, S, --- are representatives of

the cosets of §, the transformations induced in Z by these elements are distinct
and depend only on the cosets. Their totality is a group ® = &/$. The ele-
ments S not in - induce outer automorphisms in . For if S 1s inner in Z,
there i1s an inner automorphism A in ® such that SA leaves the elements of X
invariant. Then SA = H e¢®() = © and S'H = A4 is inner contrary to
assumption.

If ® is commutative and ¢ is any element of this field, let £, --- | £7 be its
distinct conjugates. The coefficients of

E—8&- - t=£)

are invariant under & and therefore belong to & . Thus every element of &
satisfies a separable equation with coefficients in ®,. Since & ---, £ are in
&, it follows that ® 1s separable and normal over ®,. To complete the Galois
theory for (finite extension) fields along these lines it would be necessary to
prove the converse theorem that if & is finite, separable and normal over &,
then the elements of &, are the only ones left invariant by the automorphisms
of the Galois group of ® over &, .

20. Finite groups of semi-linear transformations. We consider a projective
representation of a finite group such that p = 1 and the group § = (1). Thus
the ring ®(g, H, 1) = ¥, , the semi-linear transformations T, form a group and
the automorphisms § in ® assoeiated with the 7', are distinct and outer. Let
M =T @ --- @ M,. be a decomposition of the vector space into irreducible
¥,-modules. In each IM; we may choose a vector z; such that y; = z,(Zt,) =
z;(ZT,) # 0. Then y;Ts = y; and since each element in IMM; has the form
vi(ZTE) = y.:¢, M; is one-dimensional over ®. Hence y1, -+, Y= 1S a basis
for IN over &.

Let I be the set of vectors in IR invariant under all of the T, . P 1s a vector
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space over &, the division subring of elements of ® invariant under the auto-

morphisms 5. If y = Zyi&i e Mo, & = & Py and hence y1, -+, ym 18 also a
basis for I, over &, .

THEOREM 54. Let IN be an m-dimensional vector space over a diviston ring ®
and Ty, = 1, Ty, -+, T, a finite group of semi-linear transformations whose
induced automorphisms 1, 5, --- , @ are distinct and outer. If M, ¢s the set of
vectors invariant under all Ty and ®, the division subring invariant under the §,

then M ts a vector space over B, of m-dimensions and the extension Med = IN.

If we use the correspondence between semi-linear transformations and
matrices, we may state this theorem also in the following way:

THEOREM 55. If O s a finite group of outer automorphisms 1,8, -+ ;4 ina
division ring ® and 7, are matrices with elements in & such that 11 = 1 and 7,1y =
Tet , then there exists a non-singular matriz o such that v, = a ‘o for all §.



CHAPTER 5

ALGEBRAS OVER A FIELD

1. The direct product of algebras. In the preceding chapter we have been
concerned mainly with absolute properties of rings. The role of the set of
endomorphisms ® has been a rather minor one, its sole function having been to
weaken the assumption that the set of ideals of the ring satisfies the chain con-
ditions. The results which we obtained apply in particular to algebras. On
the other hand, a considerable part of the theory of algebras is concerned with
“relative” properties—that depend essentially on the field ® over which the
algebras are defined. This phase of the theory is the subject of the present
chapter. We consider first the theory of simple algebras and later we take up
again the study of an arbitrary algebra.

The discussion in Chapter 4 has been concerned to a large extent with additive
decompositionfs of a ring, as a direct sum of ideals. In the theory of simple
algebras a type of multiplicative decomposition, the direct product, is of fun-
damental importance. Let A be an algebra over ® and suppose that (A:$) =
n< <. We say that 9 is the direct product A, X A of the subalgebras QI\I and
Az if the following conditions obtain:

1. The elements of A; commute with those of s .

2. 2[ == 3112{2 = 2122[1 .

3. (W) = (Ap:®)(As:®).

Evidently 9, and A, are interchangeable in these conditions so that if A =
W X W, A= Ay X Ay . Itisclear from 3. that this concept depends essentially
on the field ®. We remark that if 2 is a proper subfield of ® and A = A, X U,
when these are regarded as algebras over ®, then A = A; X A when these are
regarded over £. For then (A:Z)(@:Z) = (A;:2)(s:2).

Let y1, -+, ya, be a basis for 9, over & with the multiplication table y.y;, =
Yy oiir and z1, - -+, 2n, , one for Az over  with the multiplication table z;z; =
T2y v and v in ®. Then every b in %; has the form Zyip; and every ¢
in 9, has the form Zzp;. By 2. every a in A is a sum Za;"as” where a;” € ;.
Hence a = Zyizjp;;. By 3. the elements x;; = yiz; , 1 =1, -+ ,n1 ;5 = 1,

-, Mg, are linearly independent and hence form a basis for A over ®. The
multiplication table z;xi;r = Zx,0v9:-ves, of this basis is determined by that
of the bases y; and z; of A; and A.. Hence if B is a second algebra over &,
B =B, X B, and a; — ai , a; — a; are isomorphisms of I; and B, over & and
of A, and B, over &, respectively, then Zrip,; — Zriep:;, where zi; = y:z;,
ri; = yiZ; , is an isomorphism between 2 and B over . In this sense the
algebra A = A; X . is determined by its components A, and A>. More gen-

! We assume througho‘ut this chapter that our algebras have finite dimensionalities.
Some of the results are valid under less stringent conditions but, for the sake of simplicity,
we shall not indicate these extensions of the theory.

88
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erally, if 8 is an algebra containing two subalgebras 8, and 8. such that bb, =
bob, for b; in B; and if a; — a} is a homomorphism between ; and B;, then
Sxipi — STipii , Tij = YiZ; , is a homomorphism between A; X s and B;B: =
BB, .

If a = Syzps, ¢ = ya® + - + y.,a®, where af? ¢ %, and since the
elements y.z; are linearly independent, a = 0 implies that every a{® = 0. Now
if y1, -+, yr18 an arbitrary set of linearly independent elements of U, , we may
add to 1t y,41, - -+ , ¥n, to obtain a basis for %; over ®. Similarly if z;, -- -, 2,
are linearly independent in %, , we may add to these elements and obtain a
basis for .. It follows that the elements y;2;, ¢ = 1,---,r;7 =1, --- s,

are linearly independent. As a special case of this we see that if B; is a sub-
algebra of QI,' ,.then %182 = %2%1 = §81 X §82 . If 2!1 = 2111 X 9112 y 2[ = (2[11 X
M) X A = Ay X (A2 X Az), Thus the associative law holds for direct mul-
tiplication. We note also that the intersection A; A ¥, is at most one dimen-
sional. For if a, b are elements of %; A A, @, ab, ba and b° are linearly
dependent since ab = ba. If A; and A, have identities 1, and 1, , respec-
tively, then 1 = 1,1, 1s the identity element of . Now 1, = 1,(1,1;) = 1,1,
= 1 and similarly 1, = 1. Hence A; A 2 consists of the multiples 1la, a in &.
Now let U; and ¥A. be arbitrary algebras with identities. Suppose that
= 11,Y%, ",y and 2z, = 15,25, -+ -, 2,, are bases for these algebras and
that yiyir = Sypyoisr, 22 = Zzgven are the multiplication tables. We
define an algebra A by using the basis z;;, ¢ = 1, -+, ny ;73 =1, , ng,
subjected to the multiplication table z;zi;r = SZpeyoiiver: . It is readily
verified that the subset of elements Zz:;¢:, ¢: in ®, is a subalgebra A; of ¥
isomorphic to 2; and that the subset of elements a0, is a subalgebra 3,
isomorphic to 2. From the multiplication table we obtain z;xy; = z; =
r1;24 and (xaxy;) (xinxy;) = (xaxi1)(xx1;7).  The latter relation and the as-
sociative laws in ¥, and 9, imply the associative law in %. Evidently U =
A X Az. We have, therefore, constructed an algebra ¥ that is a direct product
of algebras isomorphic to the given algebras ; and A>. As we saw above, I
is the only algebra (in the sense of isomorphism) having this property. We
shall identify the algebra 9; with q; and shall call A the direct product (A =
Ay X Az) of A, and A, .  The restriction that the A; have identities is not essen-
tial in this discussion. For we may adjoin an identity 1; to A; obtaining an
algebra B;. We then form B; X 8B; and take the subalgebra A, X U, as the

direct product of A; and As .

2. Extension of the field. An algebra that is closely related to the direct
product i1s obtained as follows. Let 2 be an algebra with the basis 2, , - -+, z,
over ® and let B be an algebra over ® containing an identity. We consider the
set of expressions x1b; + -+ + z,b, where the b; e 8. Two suchexpressions
>z.b; and Zx.b; are regarded as equal if and only if b; = b; . We define

Srbi + Sxb; = 2zi(b: + b:),
(Zx:b:) (Czd)) = ZxiZbdives
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if r2; = Zapyri, v in ®. It is readily seen that the system thus defined is a
ring. It is independent of the choice of the basis x; in the sense that the rings
determined by different bases are isomorphic. Hence we may denote this ring
as 2[23 .

Since B contains an identity, it contains a subfield 1® of elements la iso-
morphic to ®. The ring As contains the subset of elements Zz;(1a;) which
forms a subring isomorphic to A. We identify this subring with . Now the
definition Z(z;b;)b = Zz:(b;b) turns Ag into a B-module. From this definition
we obtain

ul = u, (uv)b = u(vd), (ub)x = (ux)b

for all , vin Ay, all z in Y and all b in B. Thus the module operation com~
mutes with all the left multiplications and with the right multiplications by the
elements of A. Since Ap is a B-module and B = 1, Aw is a $-module. (We
set ua = u(la).) If a e® and w and v are arbitrary, then (w)a = u(a) =
(ua)v. Hence g is an algebra over ®. If 4, -+, ym is a basis for B over d,
the mn elements z,;y; form a basis for B over &.

These properties characterize g . For suppose that ® is an algebra such
that

1. & contains .

2. & 1s a B-module, B an algebra with an identity element 1, and ua = u(la)
for all u in 8 and all @ in . R is generated by U in the sense that the smallest
B-submodule of K containing ¥ is K itself.

3. (uww)b = w(b), (ub)x = (ux)b for all u, v in &, all z in A and all b in B.

4. (R:®) = (UA:d)(B:).

Then if z; , - - - , 2, 1s a basis for A over ®, the elements of & may be represented
in one and only one way in the form Zz;b;, b; in B. If z;r; = Zaxyei;, then
(Zzbi) (Zab;) = Z(x:bi) (@) = Z(@d)z)b; = Z((xawp)b)b; = ZTpyribid; =
S2ibbive; . Hence ® is isomorphic to UAsg .

If A has an identity 1, (Zxb;)1 = Z(x:b;)1 = Z(x;1)b; = Zx;b; and similarly,
1(Zx:b;) = Zz:b;. Hence 1 is the identity of As . The set of elements 1b
forms a subalgebra isomorphic to 8. We note that u(1b) = ub and that (1b)r =
xb = x(1b) if u e Ay and x € A. Hence if we identify the algebra of elements
1b with B, we may write Ay = A X B.

If A; 1s a subalgebra of A, we may suppose that x;, -+, z, is a basis for ¥,

where 2, , -+, x, is one for %A. The elements Y 2;b; form an algebra and this
‘ 1

set is the smallest B-module containing A, . It is clear that this algebra is
isomorphic to ;e and it may therefore be denoted as ;s . If A; 1s an 1deal
(nilpotent ideal) in A, ;s is an ideal (nilpotent i1deal) in Ay . Hence if Agp is
simple (semi-simple), 9 is simple (semi-simple).

We suppose now that 8 = P is a field.? Then (uv)p = u(vp) = (up)v for all

2 It should be observed that in defining s, no use has been made of the assumption that.
B i1s an algebra with a finite basis. The abstract characterization in the general case is
given by 1., 2., 3., and 4'.: If z;, ---, z, are linearly independent in A and y;, ---, y, are
linearly independent in 8, then the rs elements z;y; are linearly independent in As. The
extensions Hp, P an infinite field, have many important applications.
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u,vin Ap and all pin P. Hence we may regard Ap as an algebra over P. Unless
otherwise stated, this is, in fact, what we shall do. Ewvidently (Up:P) = (A:®).
The following rules may be noted:

(A @ WUz)p = Uip @ Usp,
(211 X %[2)1) = ﬂlp X ﬂzp ’
(%[P)E = Uz ’

if 2 1s a field containing P.

3. Representation by matrices and representation spaces. A second 1m-
portant tool in our study of algebras is the theory of representations of an algebra
A by matrices. In the usual theory we are interested in the representations of
an algebra by matrices with elements in the field ®. For the investigation of
simple algebras we shall require a generalization, in which the elements of the
matrices are taken from a simple algebra 8B unrelated to . However, before
considering this more general case, it will be well to discuss the simpler one.

As 1in the case of representations by endomorphisms, there are two types of
representations by matrices. First, we define an (ordinary) representation of an
algebra 9 over ® by matrices as a homomorphism a — A between A and a sub-
algebra of a matrix algebra ®y: If a — A and b — B, then

a+b— A+ B, aa — Aa, ab — AB.

Similarly, we define an anti-representation by matrices as an anti-homomorphism
between A and a subalgebra of a matrix algebra. Now suppose that & is a
commutative group that satisfies the following conditions:

1. ¢ is a $-module such that x1 = x for all x in & and 1 the identity of &,
and (N:d) = N.

2. ¢ 1s a left A-module.

3. (aa)r = (ax)a = a(ra) forall a in Y, all @ in ® and all x in NK.
Then R is a vector space over ® of N dimensions, and the endomorphisms corre-
sponding to the elements a are linear transformations. Since R 1s a left -
module, the correspondence between a and the transformation a is an anti-
homomorphism between the ring 3 and a ring of linear transformations. By 3.
the linear transformation corresponding to aa is the product of the linear
transformation a with the scalar multiplication «. Hence the correspondence
is an anti-homomorphism between the algebra A and a subalgebra of the algebra
of linear transformations. We recall that the correspondence between the
linear transformations of a vector space and the matrices that they determine
relative to a fixed basis is an algebra anti-isomorphism. It follows that if
Xy, -+, xyis such a basis and ax; = Zx,a;;, then the correspondence between
a and the matrix A = (a;;) i1s a representation of ¥ by matricesin®y. We may
also reverse the steps of this argument and thus associate with any representation
of I by matrices a group % satisfying 1., 2. and 3. We shall call such a group a
representation space of . A similar discussion holds for anti-representations.
The modules in this case satisfy 1. and
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2/. R 1s an Y-module.

3. z(aa) = (za)a = (za)a, ain A, ain &, x in N.

R will be called an anti-representation space of A. We shall restrict our attention
now to ordinary representations, since the modifications necessary to treat
anti-representations will be obvious.

We recall that if y;, -+, y~ 18 a second basis for the representation space
N and y; = Zaju;; , then the matrix of a relative to this basis is M “AM where
M = (u;;). The representation a — M AM is said to be simslar to the repre-
sentation @ — A. Thus a representation space determines a class of similar
representations by matrices. We shall call the representation spaces R and
R. tsomorphic if there is a (1 — 1) correspondence between them which is at the
same time a ®-isomorphism and an A-isomorphism. If U is such an isomor-
phism, and z,, - -+, zy 1s a basis for R, over ®, thenz, = z,U, - -+ , 2y = 25U 18
a basis for R over . Moreover, if ar; = Zz;a;;, then also az; = Zzjoy; .
Thus isomorphic representation spaces determine the same similarity class of
representations by matrices. The converse is also true.

We shall call a representation reducible, decomposable, completely reducible
according as the group R relative to the endomorphisms of ® and of A is re-
ducible, decomposable, completely reducible. It is clear from the discussion in
8 of Chapter 2 that a representation is reducible if and only if it is similar to a
representation of the form

A,
| 0 A

The representation a — A; corresponds to the proper subspace © which is in-
variant relative to the endomorphisms @. The condition that R be a direct
sum, f = N; @ N, where the N, are invariant subspaces = 0 is that the repre-
sentation determined by R be similar to one of the form

Ay 0
0 A

Here a — A; is the representation determined by the representation space 3R; .
We recall also that if & = Ry > Ry > --- > Ry > 01is a chain of subspaces
invariant relative to the transformations a, then our representation is similar to

(441 *
A

\

(3)

\O As)

where the representations ¢ — A; are associated with the spaces J: — iy .
The chain of subspaces is a composition series if and only if the representations
a — A, are irreducible. The condition for complete reducibility is that the
representation be similar to one of the form (3) in which the blocks * above the
“/diagonal” are 0 and in which the representations @ — A; are irreducible.
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Our discussion takes on a much simpler form if the algebra U has an identity
1 and 1 is mapped into the identity matrix. This, of course, means that lr = x
forallz in R. Then (la)r = za. Thus in this case it suffices to regard N as a
left A-module. On the other hand, if N is any left A-module in which 1z = x
for all z, then N is a left #-module relative to the composition ar = (la)z.
Since ® is commutative, ¢ may also be regarded as a ®-module by setting
ra = ax. Now if (R:®) i1s finite, N is a representation space. We remark that
the condition (R:®) finite is equivalent to the requirement that R befinitely
generated relative to %. For, if y;, -+, y, are generators of N relative to A
and if a;, -- -, a, is a basis for A over ®, then the nr elements a;y; generate R
relative to ®. Hence (N:®) is finite.

If A has an identity 1 but 1 is not mapped into the identity transformation,
we write ] = © @ X where & is the totality of elements 1z and & is the totality
of elements x — lx annihilated by 1. If we choose a basis ¥, --- , yx of R so
that y;, ---, ¥- 1s a basis for & and y,,,, -+, y~ 1s a basis for X, then the
matrix of a in ¥ relative to this basis 1s

6 o)

0 0/

In the representation a — A associated with & we have 1 — 1. This enables us
to reduce our discussion in this case also to that of left ®-modules.

4. Application of the theory of J-modules. Let R be an arbitrary represen-
tation space of the algebra A. If & is a left ®-ideal, then Jx, the set of vectors
bz, x fixed in RN and b variable in &, is an invariant subspace of ®. Similarly,
the space 3@ of vectors byz; + -+ + b,x-, where the z; range over a set &
and the b; range over J, is an invariant subspace. By the argument of 12
Chapter 4, we may prove that if & is irreducible and 9N is the radical, then
NR = 0. Hence in this case R is actually a representation space of the semi-
simple algebra A = A — N. Moreover, the irreducibility of R assures that
either AN = 0, or the identity of ¥ is the identity mapping in R. In the former
case R 1s 1-dimensional and in the latter, by 12 of Chapter 4, 3 is -isomorphic
to an irreducible left ideal of A. If A = A, & --- & A, where the A, are ir-
reducible two-sided ideals, then % is annihilated by all the A; except, say, ¥ .
Thus R is a left A;-module. If we recall that the number of irreducible left
9-modules R such that AR = 0 is the number ¢ of components A; of A, we may
state the following

TueorEM 1. Let N be the radical of N and A = A —~N =, @ --- @ ¥,
where the ; are stmple. Then any trreducible representation a — A is either the
O-representation (a — 0) or 1t 1s stmilar to the representation obtained by using one
of the irreducible left ideals of A as a representation space. The number of classes
of similar trreducible representations % 0 is the number of components U; .

We recall also that if 9 is semi-simple, any left A-module in which 1lx =
for all z, 1s completely reducible. Now if R i1s an arbitrary representation
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space of U, we write R = S @ B where 1y = y for all yin © and 1z = 0 for all
zin 8. Since & is a left A-module in which 1y = y, S is completely reducible.
Moreover, we may decompose & into 1-dimensional subspaces. This proves

THEOREM 2. Any representation of a semi-simple algebra 1s completely re-
ductble.

As a special case of these theorems, we see that if 9 is a simple algebra which
18 not a zero algebra, then its representations by matrices are completely re-
ducible. The irreducible representations # 0 of such an algebra are all similar.
If, in particular, ¥ = &, , the irreducible representations # 0 are all similar to
the original representation A — A. This can also be seen by noting that
®,e1; 1s an 1rreducible left ideal, where e;; is a matrix basis. A &-basis for this
idealisa; = ey, -+, 2, = eqand if A = Ze;;a;;, then Ax; = Zx;05; . Hence
the representation determined by this ideal is the original one, A — A.

5. Representation of an algebra by matrices with elements in a simple
algebra. If B is an arbitrary algebra, we define a representation (anti-repre-
sentation) of N by matrices with elements in B as a homomorphism (anti-homo-
morphism) between 2 and a sub-algebra of a matrix algebra By . As in the
special case where 8 = &, we call the representations a — A, and a — A, in the
same By stmilar if there exists a matrix M independent of a such that A, =
M~'A,M. The representation a — A is reducible if it is similar to one of the
form (1) and decomposable if it is similar to one of the form (2). 1t is completely
reductble if 1t is similar to one of the form (3) where the blocks * are 0 and the
representations a — A4; are irreducible. We shall restrict our attention to the
study of the representations of an algebra with an identity by matrices’ with
elements in an algebra with an identity. Moreover, we assume that theidentity
of A is mapped into the identity matrix. As we shall see, the theory of anti-
representations is somewhat more natural in this case than the theory of ordinary
representations. Hence we shall keep the former in the foreground indicating
only where necessary the modifications required for the ordinary theory.

We wish to obtain a module formulation of the representation problem. For
this purpose 1t i1s necessary to recall the theory of free modules discussed in
Chapter 3 (3). We shall now call a B-module R a B-space if RN is a direct sum
of a finite number of free modules. Since B satisfies the ascending chain con-
dition for ideals, the rank N of R is aninvariant. Ifx,, --- ,zy andy,, - -, yn
are two bases for R, we write y; = Zr;b;; and x; = Zy;e;;, B = (bi;) and C =
(c;;) in By . Then BC = CB = 1so0that C = B™'. Conversely if x,, -+ , zy
is a basis and B i1s a unit in By , then the y; = Zx;b;; form a second basis:

Now let a be a B-endomorphism of R. We set z.a = Zx;a;, A = (a;5) In
By . Then A is uniquely determined by a. Thus we have a single-valued
correspondence between the algebra € of B-endomorphisms of & and a set of
matrices in By . As in the case where B is a division ring, we may show that
the correspondence i1s an anti-isomorphism between the algebra of B-endo-
morphisms and the algebra B .
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We now define an anti-representation B-space of A as a commutative group N
that satisfies the following conditions:

1. N 1s a B-space.

2. M 1s an A-module such that x1 = z for all x and 1 the identity of 2.

3. (xa)b = (zb)aif r e R, a e A and b e B.

4. la 1n A is mapped into the same endomorphism as la in B.

Now by 3. the endomorphism corresponding to a i1s a B-endomorphism.
Hence if x, , - - -, zy 15 2 B-basis for R and ax; = Zx;a;; , then the correspondence
between a and the matrix A = (a;;) in By 1s a ring anti-homomorphism. By 4.
to aa = a(la) there corresponds the matrix A(la) = Aa and so we have an
algebra anti-homomorphism between A and a subalgebra of By . It follows
that each anti-representation B-space of A determines an anti-representation
and conversely. Again, as in the case where ¥ = &, a second basis for R defines
an anti-representation similar to the anti-representation a — A. The anti-
representation spaces R, and R, are (A, B)-isomorphic if and only if they deter-
mine the same similarity class of anti-representations.

We consider now the algebra g = A X B. We have seen thatif z,, -+, x,
1s a basis for A over ®, then each element of Ay is expressible in one and only one
way in the form z;b; + - -+ + z.b, where the b; ¢ 8. Thus Ug 1s a B-space of
rank n relative to the right multiplications £ — zb as module operation. The
algebra s 1s also an A-module relative to the right multiplications =z — za.
Hence Ay is an anti-representation B-space of A. We shall show next that any
anti-representation B-space N is an Ap-module. For let I denote the set of
endomorphisms corresponding to the elements of A and B the set corresponding
to the elements of ¥. Since a — a of A and b — b of B are homomorphisms, the
correspondence between the element Za;b; of Ay and the endomorphism Za;b;
of AP = PBA is a homomorphism. Thus R is an Ag-module. On the other
hand, any As-module which is a B-space when regarded relative to B is an
anti-representation B-space of .

In a similar manner, we may show that the theory of ordinary representations
is equivalent to a theory of representation B-spaces where these are defined by
the conditions 1., 4. and

2'. R isa left A-module such that 1x = x for all z and 1 the identity of 2.

3'. (ax)b = a(xb) if x e R, a e and b ¢ B.

We introduce the algebra A’ anti-isomorphic to . Then we may regard R as
an A’-module relative to the product za’ = ax(a < a’ in the anti-isomorphism).
Thus R is an anti-representation 8B-space of A’ and is therefore an As-module.
Conversely, any g-module which is a B-space is a representation B-space of .

We suppose now that B is simple. Then we recall that 8 i1s a direct sum of,
say, m B-isomorphic irreducible right ideals & and that B = D,, where D is a
division algebra. B itself is a free cyclic module with 1 as a basis. Any B-
module R in which 21 = z for all z is a direct sum of irreducible modules B-
isomorphic to the irreducible right ideals . Hence R is a free cyclic module if
and only if it is a direct sum of m irreducible submodules and R is a B-space if
and only if it is a direct sum of A = Nm irreducible B-modules. Then if & is
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any subspace of R, N = £ ® &’ where &’ 1s also a subspace. Thusify,, -+ ,y.
1s a basis for &, there exists a basis for R that includes the y; .  Using this result
we mayv prove, as In the case where ¥ = &, that the condition that an anti-
representation be reducible is that the anti-representation space R contains a
proper B-subspace invariant relative to the endomorphisms a. The condition
that the anti-representation be decomposable 1s that R = N; @ R, where the
N: are anti-representation subspaces of . A sufficient condition for complete
reducibility i1s that 3R be a completely reducible g-module. As we have seen
in Chapter 4, if g is semi-simple, then any Ap-module such that 21 = =z, for
all z, 1s completely reducible. Hence if Ay 1s semi-simple, any anti-representa-
tion of A by matrices with elements in B is completely reducible.

If B = D is a division algebra, any irreducible ®-module such that D = 0
1s a free cyclic module. The D-spaces defined in this section are simply the
vector spaces over D that we have considered before. Hence in this case any
Ap-module R in which z1 =z for all z and (RN:D) is finite, is an anti-representa-
tion D-space of A. As above, the condition (R:D) finite 1s equivalent to the
condition that 3R be finitely generated relative to Ap. In particular, the irre-
ducible Ap-modules are anti-representation P-spaces. These modules are
therefore the irreducible anti-representation D-spaces of A. As we have seen,
any irreducible Ap-module is Ap-isomorphic to an irreducible right ideal & of
Ap — N, N the radical. The size of the matrices determined by & is the di-
mensionality (or rank) of 3 over ©. The number of non-isomorphic irreducible
Ap-modules in which 1 = x for all z, and hence the number of classes of irre-
ducible anti-representations # 0, 1s equal to the number of simple two-sided ideals

in Ap — IN.

6. Direct products and composites of fields. As an application of the above
theory we shall now obtain the structure of Ay for A a separable field over &
and B an arbitrary field over ®. Suppose first that B contains a subfield iso-
morphic to the least normal field over ® containing A. Then if (A:P) = n,
it is well known that there exist precisely n distinct isomorphisms ¢ — a‘”,
i =1, ---, n, between ¥ and subfields of 8. Thus we obtain n anti-homo-
morphisms between U and matrices with elements in 8B, and, since these are one
dimensional, they are irreducible and dissimilar. It follows from the general
theory that s — N, N the radical, is a direct sum of at least n ideals. Since
the dimensionalities of these ideals over Bis = 1 and (Ax»:B) = n, it follows that
N = 0 and that there are exactly n simple ideals in Ay , each one dimensional
over B. Now if B 1s arbitrary, we take a field € = B and containing a field
isomorphic to the least normal field containing . Since (UAp)s = s, Asn is

semi-simple.

TaeoreM 3. If N is a separable field over ®, (N:®) = n, and B 1s any field
over ®, then g ts semi-stmple. If B contains a subfield isomorphic to the least
normal field containtng A, the irreductble representations of W by matrices in B
are all one-rowed.

3 Cf. van der Waerdpn’s Moderne Algebra, vol. 1, p. 115 or 2nd. ed., p. 102.
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By the structure theory of semi-simple rings, Ny is a direct sum of fields, say
51 @ - @ Fe. If 1 = ¢ + --- 4 e 18 the corresponding decomposition of
the identity of Ay into the identities of the {;, then the set €;A of elements
e;a, a in Y, is a subfield of §§; isomorphic to A. Similarly, §: contains the sub-
field ;8 1somorphic to B. Smce (e;A)(e;B) = e, ABe; = F., the field F; is
generated by these two fields.

Suppose now that we have any two fields A and B over & and two 1somor-
phismsa — a” and b — b" of ¥ and B, respectively, into subfields %° and B” of a
third field §. Then we call the system (§, S, T) a composite of A and B pro-
vided that § = [A°, B7], the smallest subfield of § containing A° and B”.*
We shall regard the two composites (§, S, T) and (§’, S’, T’) as equivalent if
the isomorphism a® — a*’, b — b” may be extended to an isomorphism between
§ and §’. It is evident that such an extension, if it exists, is uniquely de-
termined.

We have seen that if U is separable, then Ay = F @D -+ @ F.. The map-
pings a — a°* = ae, , for a in ¥, is an isomorphism between A and the subfield
A% of §F;. Similarly b — b™" = be; is an isomorphism between B and B”".
Moreover, §; = (A*)(B™) = [A%, BT'], and therefore (F., S;, T:) is a com-
posite of A and of B.

We wish to prove the following

THEOREM 4. The composites (F:, S;, T:), t = 1, --- , t, are inequiwvalent.
Any composite of the separable field N and the field B vs equivalent to one of the
(&, Si, T9). |

To prove that (§., S;, T;) and (§;, S;, T,) are inequivalent if 7 ¢ 7, we note
that e; has the form a;b; + --- + a.b,, ax in A and by, in B, and, since e; = e;,
e; = (mei)(be;) + -+ + (a'rei)(breo = algiblTi + -+ afibrTi- If (&, Si, 1)
were equivalent to (§;, S;, T;). the required isomorphism would map e; into
ay’bii 4+ - Faiibli = (aby + -+ + ab,)e; = e;e; = 0 and this is impossible.
Now suppose that (§, S, T) is anv composite of A and B. Then the mapping
Zab — Za’b” is a homomorphism between Ay and the subalgebra AV’ of F.
Since the only ideals of g are the ideals §:;, ® .-+ ® §:, and since § has no
zero-divisors, the ideal mapped into 0 by the homomorphism is one of the form
FT1 @ @ Fit @ Fit @ - @ F = & . Hence AB” is isomorphic to
& — ¢ and thus to §;. This implies that A°B” is a field and so AV’ =

(A%, BT] = F. Moreover, the isomorphism defined by our homomorphism is
the mapping Za®b” — Z(@*)(®"). Hence (F, S, T) and (F:, S., T:) are
equivalent.

We have seen that if B contains a field 1somorphic to the least normal exten-
sion of U, then ¢t = n and each §; is one dimensional over B. Hence §; = B**
1s isomorphic to 8.

THEOREM 5. If A is separable over &, (A:®) = n and B contains a field tso-

morphic to the least normal extension of A over ®, then s = B, @ -+ @ B,
where B, = B.

4 If both fields A and B contain transcendental elements, this definition requires modifi-
cation. Cf. Chevalley [9].
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That these theorems do not hold when both fields are inseparable may be seen
from the following example: Let A = ®(x) where ® has characteristic p and
z” = ¢isin®, but ris not in®. Suppose that B is the field ®(y), y* = £. Then
g contains the element z = r — ¥ # 0 which is nilpotent. Since g is commu-
tative, z generates a nilpotent ideal and so Ay is not semi-simple.

7. Central simple algebras. We take up now the main topic of this chapter,
namely, the theory of simple algebras. Throughout our discussion we shall
exclude the trivial zero algebras. With this agreement we may state the
fundamental structure theorem in the following way.

TaueoreM 6 (Wedderburn). Any simple algebra N over ® is a direct product
®,, X D where D is a division algebra and conversely, any algebra of this form is
simple. If A = &, X D = &, X § where § 1s a division algebra, then m = m’
and O and § are tsomorphic.

We shall also require
THEOREM 7. &,, = &, X P,.

This is an immediate consequence of the computations of 6, Chapter 2.

A simple algebra A 1s central if its center consists of the multiples la, o in
. For example, ®,, is central simple. A central algebra is in a sense the
opposite of a commutative algebra and we shall see that the theory of direct
products for these algebras i1s considerably simpler than that for commutative
algebras indicated in the preceding section.

If A =&, XD =,, where D is a division algebra, we have seen that the
center € of ¥ is contained in ©. Hence ¥ is central if and only if D is central.
If 9 1s any simple algebra, €, the center, s a field and A may be regarded as an
algebra over €. Obviously U is central over €.

Suppose now that U is an arbitrary algebra with an identity and that 8 1s a
central simple algebra. We wish to show that the two-sided ideals of Ay may
be put into (1 — 1) correspondence with those of A. First, let Jo be a two-
sided ideal of . ThenJ = JoB = Jop 1s a two-sided ideal of Uy . Letxz,;, - - -,
z, be a basis for A over ® such that z,, ---, z, 1s one for & over ®. Then if

Z.’E,‘biéﬂ, b,’ = 6,‘ iS n P, If inbiés, b,-+1 = e = bn = 0. Hence
1 1

(A A Q) consists of the elements D_ z;8;and (A A &) = Jo. It follows that
1

Sop = Jow if and only of I = Jo.

Now let & be an arbitrary two-sided ideal in A X B, § = (A A §), and let
Zy, -, Zn be a basis for Y such that z,, ---, z, i1s one for § . Evidently &,
is a two-sided ideal in B and Fop < &. Suppose that Fos < § and let 261 + - - -
+ z.b. be an element of & not contained in Sos . Then Z,iibrpr + -+ +
x.bn has this property also, and so at least one of the b;, ) =r 4+ 1, ---, n, 18

51 am indebted to Professor Albert for suggesting this term as a substitute for the
overworked term ‘‘normal’”’ formerly used in this conneection. The term ‘‘centralizer’’
that we shall use later is also due to Albert.
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= 0. Nowletzbi + -+ +xi,bi,,b;;, # 0,0, =7r+ 1, --+ ,n, be an element
of & for which s has the least positive value. The elements

b(xibi, + -+ + zi,bi,), (xibi, + -+ + x:,bi,)b

are in & if b is any element of B. It follows that the first components b;, of these
elements together with 0 form a two sided ideal ¢ 0 in B and hence, since B
i1s simple, b;, is arbitrary. Thus J contains z;, + zibe + -+ - 4+ x:b, and
hence it contains

b(xiy + @ipbe + -+ 4 @i, by) — (3, + Tbs 4+ -0+ 2, DD
= D xz;;(bb; — bjb).
i=2

Since s is minimal, bb; = b;b and so, by the centrality, b; = B;ed. Thus
contains z;, + z;,8: + -+ 4+ ;8. which is evidently in A. This contradicts
the fact that x;, - -+ ,z,1sa basisfor$ = (A A &). We have therefore proved

TueoreEM 8. If U 1s an arbitrary algebra with an identity and B is a central
stmple algebra, then the correspondence 3o — Jow ts (1 — 1) between the two-sided
ideals of A and the two-stded ideals of N .

CoroLLARY 1. If U is simple and B ts central simple, then s 1s simple.

If 9 is the radical of s , o = A A N is a nilpotent ideal in A and is therefore
contained in the radical Mo of A.  On the other hand, Nes is a nilpotent ideal in
A so that Nos < N. Hence No = No. This implies in particular

CoROLLARY 2. If N 18 semi-stmple and B s central stmple, then Ay ts semi-
simple.

Now let ¢ = by + -+ + z.b, be an element of As = A X B commutative
with every b in 8. Then Zz;(bb; — b;b) = 0 and bb; = b;b. Hence b; e® and
ceA. It follows that the center of A X B coincides with the center of .
If 9 is central simple, A X B is central simple.

TaeEoREM 9. If A is an algebra with an identity and B is central stmple, the
only elements of A X B that commute with all the elements of B are the elements of
A. If A s central simple, A X B is central simple.

8. Representation of a semi-simple algebra by matrices with elements in a
central simple algebra. As before we restrict the discussion to the represen-
tations of an algebra ¥ in which the identity of 2 is mapped into the identity
matrix. If 9 i1s semi-simple and B is central simple, then Ay 1s semi-simple.
As we have seen in b this implies the following

TueoreEM 10. If A is a semi-simple algebra, any anti-representation (ordinary
representation) of I by matrices with elements in a central simple algebra is com-
pletely reductble.

We assume now that 2 is simple. Let B be a direct sum of m isomorphic
irreducible right ideals. ThusB = D,, where D is a division algebra. We have
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seen that Ay 1s simple. Hence Ay 1s a direct sum of r isomorphic irreducible
right ideals and g = &, where € is a division algebra. Any irreducible right
ideal of Ay 1s a B-module and 1s therefore a direct sum of, say, h B-isomorphic
irreducible B-modules. It follows that g is a direct sum of rh irreducible
B-modules. On the other hand, if (A:®) = n, Ay 1s a B-space of rank n. Since
any B-space of rank 1 is a sum of m B-isomorphic irreducible B-modules, Ay
1s a direct sum of mn irreducible B-modules. Thus rh = mn.

Now let R be an arbitrary irreducible anti-representation 8B-space of 2.
Then R = S, @ --- @ S; where the €, are isomorphic irreducible Ag-modules.
Each &; 1s a direct sum of h isomorphic irreducible B-modules. Hence R is a
direct sum of A irreducible B-modules. Since R i1s a B-space, it follows that
hm = 0(m). Now if m’’ 1s an integer =< such that hm’”” = 0(m), then the
direct sum of m’’ of the &; 1s a B-space. It therefore coincides with k. This
implies that m’’ = m so that ki = mh is the least common multiple of A and m.
The equation hm = mh shows also that the rank of ! over B is h. Hence the
size of the matrices determined by R is h. If R’ is a second irreducible anti-
representation B-space of A, N’, too, is a direct sum of m = h [k, m] irreducible
Ap-modules. It follows that R’ and N are As-isomorphic. Thus all the
irreducible anti-representations of A by matrices are similar. Any anti-repre-
sentation of A 1s completely reducible into irreducible parts all of which are
similar to the representation determined by M. These results may be stated
as the following fundamental

THEOREM 11.  Let A be a simple algebra and B a central stmple algebra. Set
A:®) =n, B = D, and g = G, where D and € are division algebras. Then
r|mn and if mn = hr and [h, m] = hi = hm, A has an_anti-representation in
By if and only if h | N. Any two anti-representations of U in the same By are
stmzular.

In a similar manner we may prove

TueoREM 117. Let A and B be as in Theorem 11 and let Ay = G, where W
is the algebra anti-isomorphic to A and & is a diviston algebra. Then r' | mn
and if mn = h'r" and [B', m] = h'm’ = K'm, A has a representation in By if and
only if B’ | N. Any two representations of U in the same By are similar.

We may obtain a somewhat sharper form of Theorem 11 by first specializing
this theorem to the case where B = D is a division algebra and then extending
the result thus obtained to the general case where 8 = D,,. If B = D then
m = 1 and [h, m] = h. Hence we have the

CoroLLARY. Let A be a stmple algebra and D a central dwision algebra. Set
(A:®) = nand Ay = §,. Thenn = hs and A has an anti-representation in Dy
if and only of h | N.

Now if Up = €, , Up = G, for B = D,,. Hence the integer r of Theorem
11 is equal to sm and n = hs. This proves

TueoreEM 12. Let A and B be as tn Theorem 11 and let Ay = €, , € a dwision
algebra. Then s|n and if n = sh and [h, m] = hm = hm, U has an anti-repre-
sentation in By if and only if h | N.
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TueoreM 12'. Let A and B be as in Theorem 11 and let Ap = @_; . G a dun-
ston algebra. Then s’ |n and if n = s’k and [, m] = h'm’ = h'm, A has a
representation in By if and only if ' | N.

W.e suppose now that ¥ is a division algebra and B = D is a central division
algebra. We may regard ¥ X D = §, as an ¥-space. Then by a repetition
of the argument that led to Theorem 11 we may prove that s|d, d = (D:®).
The details are left to the reader.

THEOREM 13. Let U be a dwision algebra and D a central division algebra.
Then of A X D = E, where € s a dwision algebra, s 1s a common
factor of (A:®) = nand of (D:®) =d. If (d,n) = 1, A X D s a dwision
algebra.

9. Simple subalgebras of a central simple algebra. The theory of representa-
tions may be applied to the study of the subalgebras of a central simple algebra 9.
For if 8B is a subalgebra, then b — b is a representation of B by matrices of one
row with elements in A. If B i1s a simple algebra that contains the identity,
we may apply Theorem 12’.° Let ¥ = D, where D is a central division algebra,
(B:®) = gand B’ X D = By = G, where § is a division algebra. Then
g = s'h’ and if A’ = m™'[h/, m], B has a representation only in those ¥y for which
B’ | N. Since B has a one-rowed representation with elements in %, A’ = 1.
Hence b’ | m and if we write m = h’l, we obtain ms’ = ¢l. Thus ¢ | ms’.

THEOREM 14. If B 1s a stmple subalgebra, containing 1, of a central simple
algebra A = D, , D a division algebra, then B' X D = .. where & is a division
algebra and s’ | ¢ and q | ms'.

CoroLLARY. If B is a subalgebra, containing 1, of a central division algebra
D, then B’ X D = €, where C' is a division algebra and ¢ = (B:9).

If B; and B, are isomorphic subalgebras of A, we may regard these algebras
as 1somorphic images of the same algebra B. If by — b, 1s an 1somorphism
between B; and By, b — b, and b — b, are representations of B by one-rowed
matrices with elements in ¥. These representations are similar. Hence we
have the following

THEOREM 15. If B, and B, are isomorphic simple subalgebras containing 1
of the central simple algebra U, any isomorphism between B, and B, may be ex-
tended to an inner automorphism wn .

This, of course, implies

THEOREM 16. Any automorphism of a central simple algebra is inner.

10. Derivations. The theorems of 9 have striking analogues in the theory
of derivations of an algebra. If 8B is a subalgebra of an algebra A, a deriwvation

6 It should be noted that from now on we use a different notation from that of 8. Here
I denotes the central simple algebra and B the simple algebra that need not be central.
This seems desirable since in our applications 8 will usually be a subalgebra of .
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D of B into A is a mapping of B into a part of A satisfying the following condi-
tions:

(bl + bg)D == le + sz, (ba)D = (bD)a, (b1b2)D = bl(sz) + (le)bz .

If B = A, we speak simply of a deriwation tn A. It i1s readily seen then that if
Dy, D, € , the set of derivations in A, then Da and D; &= D; € . Since

(b1b2)DID2 - (le2)(b2Dl) + bl(b2D1D2) + (b1D1D2)b2 _|_ (bIDI) (b2D2),
DD, is not in general a derivation. However,
(bibe) (D Dy — D2Dy) = by(ba(D1Dy — D2Dy)) + (by(D1Ds — DyDy))b,

so that -[D,, D,] = DD, — D,D, is a derivation. For any element d in I we
may define a derivation by means of the correspondence z — [z, d] = zd — dz.
A derivation of this type is called tnner.

As usual, Leibniz’s rule

(bibe)D* = by (b:D*) + ('f) (D) (®:D* + -+ 4 (5:D*)be

1s valid. Hence if ® has characteristic p # 0,
(bib2)D? = b(b:D?) + (b.D")be

so that D? is a derivation. Similarly we prove by induction
b_dk - dkb + (llc> dk—lb[ _|_ C _|_ b(k)

where b’ = [b, d], b’ = [[b, d], d], etc. Thus for ® of characteristic p # 0

1

b, d"] = b = [--- (b, dl, dJ, -- -, dl.

The theory of derivations to a large extent parallels that of isomorphisms.
For example, we have the following

THEOREM 17. If B is a semi-simple subalgebra, containing 1, of a central simple
A, then any derivation of B in A may be extended to an inner derivation in .

We consider the set of matrices in A, of the form

(b bD>

0 b

where b ranges over 8. This set forms an algebra isomorphic to B and hence
it determines a representation of 8 by matrices with elements in A. Let R
be the corresponding representation I-space. According to the form of the
matrices, R has a basis x, , 2. such that the U-space % = 2% is invariant rela-
tive to the endomorphisms b of 8. Since the By-module R is completely re-

ducible, there exists a second space R. = y which is also invariant relative
to the b and such that ® = N, ® N2. Let y = x,a; + x.a02 where the a; € N.
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Since z; = zia; + yas for suitable a; and as in ¥, a: has the inverse as in .
We may replace y by ya; . Hence we may suppose that 2, = 2:d + y and y =

: : : . . (1 -
r2 — 2y,d. The matrix relating the A-basis z; , ¥ to the A-basis z; , 2218 (0 1 ) .
1 d

The inverse of this matrix 1s (O 1) . Since X = R @ R, the matrix of the

endomorphisms. b relative to the basis x,, y has the form ( 0 bz) . Hence

G 6 D6 7)=6 )

A simple computation shows that b, = b = b and bD = [b, d] for all b.
As a consequence of Theorem 17 we have

THEOREM 18. Any derivation of a ceniral stmple algebra 1s inner.

11. Commuting subalgebras. If B is a subalgebra of an algebra A, we call
the subalgebra of A of elements commutative with those of B the centralizer
A(B) of B in A. As usual, we denote the algebra of right multiplications in
A by A, and the algebra of left multiplications in % by %;. Let B, (B.) be the
algebra of right (left) multiplications b, (b;) in A determined by the elements
bof B. Werecall that if 9 has an identity, 2;is the algebra of A,-endomorphisms
and ¥, is the algebra.of A~endomorphisms. Then the algebra of endomorphisms
commutative with those of U; and of B, is A(B), . For if C is such an endomor-
phism, C = ¢, is a right multiplication. Since ¥, is isomorphic to ¥ under the
isomorphism a — a, mapping the elements of b into those of B, , it follows that
c € A(B). If the subalgebra B contains the identity, the algebra of endomorph-
isms A, B, = B contains A; and B, . Hence in this case I(B), may be char-
acterized as the algebra of %;B,-endomorphisms acting in .

We now suppose that ¥ is central simple and that 8B is a simple subalgebra
containing the identity of %. The algebra %A;B, is a homomorphic image of
A X B where A’ 1s the algebra anti-isomorphic to A. We have seen that
A X B is simple. Hence this algebra has the form €, , € a division algebra.
It follows that A;B, is isomorphic to €, and 3B, = A; X B, = G, where G is
a division algebra isomorphic to €.  Since 1A; = 9, A is finitely generated
relative to G, . Hence, by 6 of Chapter 2, the algebra of @,-endomorphisms
has the form G, where @ is antl-lsomorphlc to € and rs is the dimensionality of
Aover & Thus A(B), = G, and A(B) = €, where & == §'.

We shall now determine A(A(B)). Evidently A(A(B)) contains B. On the
other hand, if ¢ e A(A(B)), ¢, is an E,-endomorphism. Since the &,-endo-
morphisms belong to G = A;B,, ¢, e Ay X B,. Since ¢, commutes with the
elements A; , by Theorem 9, ¢, ¢ B,. Hence ¢ € B so that A(A(B)) = B. This
equation implies that (B A A(B)) is the center of B and the center of A(B).

Let (A:®) = n, (6:®) =e. Thenn = (A:G)(E:®) = rse. Since A(B) = G.
(A(B):®) = es’. Moreover, A’ X B = E, so that (A’ X B:®) = n(B:d) = e’
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Hence
n(B:®)(AB):®) = €r’ss = n’ = (W:d)

and (B:P)(AEB):®) = (A:P).

THEOREM 19. Let U be a central sitmple algebra and B a simple subalgebra con-
taining 1. Then of A(B) 1s the centralizer of B and A’ is the algebra anti-isomorphic
to A, the following statements hold:

1. AMDB) is simple and contains 1.

2. AAB)) = B.

3. If B X W' = G, where G is a division algebra, then A(B) = G, , C anti-
1somorphic to €.

4. (A:®) = (B:P)(AW):d).

12. Subfields and splitting fields. We now let B = §, a field, in the above
theorem. Then A(F) = §F so that (A:d) = (F:®)AG): ) = (F:9)°. We
assume next that A = D is a central division algebra. Then we may embed
T in a field § such that D(F) = F. Forif D(F) > §, we may choose an element
b in D(F) not in F and obtain the field §, = F(b) properly containing §F. If
D(F1) > Fi, we may repeat this process. Eventually we obtain a field § with
the required property. Our argument shows also that if D(F) > §F, § 1s not a
maximal subfield. Conversely if § is not maximal, then § < §: a larger field
and hence D(F) > F. Since D(F) = §, (D:®) = (§:®)". This proves

TaEOREM 20. The dimensionality of any central division algebra D 1s a square.
If (D:®) = &, then § is the dimensionality of any maximal subfield of D.

If (D:®) = &, §is the degree or the index of D and if A = D, , & is the index
of %. Evidently the dimensionality of % is a square n = (6m)’. Now if §
1s a subfield of A containing 1 such that (F:®) = 6m, then A(F) = § and so §
1s a maximal subfield of .

We now apply Theorem 14 to 8 = §. According to thisresult §’ X D = G,
where €’ is a division algebra and ¢ = ém is a factor of ms’. Thus é§ | s’ and
¥ X A = E, . where om | 'm. We have seen that the center of § X A is
&’ and that ' < §’. Hence

(F X 0):@) = (F:8)(6m)* = (E":®)(s'm)".

Since s’ = § and (§:®) = (F:®), it follows from the above equation that s’ = §
and (€':®) = (F:®). Hence ¢ = F and F’ X A = §,. Since § is com-
mutative, we may also write § X A = Az = F» .

Now we shall call a field § over ® a splitting field for a central simple algebra
A = D, if s = Fn. Since (Fn)e = K. if & = §F, any extension field of a
splitting field is a splitting field. If D5 = €, , Az = (Dn)s = €, . Hence by
the uniqueness part of Wedderburn’s theorem, if § is a splitting field for 2, it
is one for . The converse, that § splits A if 1t splits D, is clear. For if Dy =
s, then Az = Fsm . The result that we obtained in the last paragraph is the
suficiency part of the following
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THEOREM 21. Necessary and sufficient conditions that a field § be a splitting
field of a central division algebra D of degree 6 are that f = (F:®) be a multiple
mé of & and that § be isomorphic to a subalgebra containing 1 of D, .

To prove the necessity of the conditions we use the Corollary to Theorem 11.
Since g = F X D = Fo = Fs, f = mé and § has an anti-representation in
Dm . Since §F is a field, § is isomorphic to a subfield containing 1 of D,, .

The existence of a splitting field of a central simple algebra implies

Tueorem 22. If A <s central simple and T is any field over ® (not necessarily of
finite dimensionality), then Ay is central simple.

For let §§ be a finite dimensional splitting field. There exists a field Z contain-
ing § and I'."- Then Yz = (Uz)s = =Z,. Hence (Ur)s = =, . Since the exten-
sion of any idealin Ar is anidealin (Ar)z, Ar issimple. Similarly Ar is central.

13. The Brauer group. We have seen that the direct product of any two
central simple algebras 1s a central simple algebra. We shall consider now the
structure of the direct product A’ X A where A is central simple and A’ 1s
anti-isomorphic to A. For this purpose we apply Theorem 14 to the case where
B = A. We then obtain that A’ X A = G,,,, where n = (U:®) is a factor of
s’'m. By comparing the dimensionalities over ®, we see that s'm = n and
& = &. Hence we have proved

THEOREM 23. If A s a central stmple algebra and N’ 1s the algebra anti-1so-
morphic to A, then A X A = &, .

A second proof of this theorem that is more direct is the following: Let ¥,
and A, , respectively, denote the algebras of right and of left multiplications in
A. Consider A, A, = A A,. The elements of this algebra are linear trans-
formations in U regarded as an n-dimensional space over ®. We note also that
the algebra A’ X A is homomorphic to A;A, and since A’ X A is simple, these
algebras are isomorphic. It follows that %, ¥, contains n® linearly independent
elements. Hence A;9, is i1somorphic to &, and this holds for A’ X .

This result enables us to define a remarkable group first discovered by R.
Brauer. We consider the set &S of central simple algebras over a fixed field ®.
Two elements A and B of & are said to be similar (A ~ B) if their division al-
gebras D, © in the representation ¥ = D,,, B = D are isomorphic. Since
D 1s determined in the sense of isomorphism by ¥, the relation of similarity is
well-defined. Evidently this relation has the properties of an equivalence and
hence it determines a decomposition of & into non-overlapping sets {2},
(B}, -+ . ({U} denotes the set of algebras similar to a fixed A.) The elements
of the Brauer group &(®) are the sets {A}. Multiplication is defined by
(A {B} = {A X B}. This is single-valued. For if A = DY ~ A = DY
and B = DS) ~ B = DY, then A X B = (DY X D)0, and A X B =
(DY X D®)mym, . The central simple algebras D X D? and DV X DP
are 1somorphic and hence their division algebras are 1somorphic. The class of

7 More precisely, containing subfields isomorphic to § and T.
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matrix algebras (% ~ 1) acts as an identity in &. By the above theorem
(A{A'} = {1} so that {A'} = {A}™". Since direct multiplication is com-
mutative and associative, 3(®) is a commutative group.

If P is a field over ® the mapping {A} — {Up} is a homomorphism between
& (®) and a subgroup of &(P). For (A X B)p = Ap X Bp.

Our principal objective in 14-16 is the theorem that every element of ®&(P)
has finite order. Thus far we have had to refer only to results obtained else-
where in this book. However, we must now call on a part of the theory of com-
mutative fields. In particular we shall use the results of 6 which have until
now served only as illustrations of the theory of direct products.

14, Separable subfields. We suppose that ® has characteristic p # 0 and
that D is a central division algebra of degree p. If a is any element of ‘© not 1n
®, ®(a) 1s a subfield of dimensionality p over ®, and if b is an element of D not
in ®(a), then the algebra generated by a and b is ©. Now suppose that a is not
separable over ® so that a® = «a e®. Consider the derivation z — =’ = [z, al.
If z ¢e®(a), 2’ # 0. However, z'” = [z, a’] = 0. Hence thereisa k = 1 such

that z® = 0but %™ = 0. If wesetb = 2%V (®)™, we obtain b’ = 1 and
—P—
if wesetc = ab, thenc¢’ = a. Thus [¢®, a] = [¢[---[c,al ---]] = a. Hence

[c® — ¢,a]l = 0and ¢” = ¢ + g(a) where g(a) e®(a). Evidently g(a) commutes
with ¢ and with a and hence g(a) = v €®, and c is a separable element.

LEmMma. If D is a central division algebra of degree p and characteristic p and
if D contains an inseparable element over ®, then D also contains a separable ele-
ment not in P.

We note that the element b satisfies an equation of the form b” = g since
[b7, a] = 0. The elements b'a’, 2,7 =0, ---, p — 1, form a basis for D and the
following relations determine the multiplication:

a’ = a, b” = B, ba — ab = 1.
Similarly, we may use a and ¢ as generators with the following relations
a® = q, ¢’ = ¢ + 7, a'ca = ¢ + 1.

Sincec +1,¢c+ 2, ---,¢c+ (p — 1) satisfy the equation t* = ¢ 4+ v, ®(c) is a
cychic field over ® with the generating automorphism ¢ — ¢ + 1.
The above lemma may be used to prove the following

THEOREM 24. Any central diwision algebra O over & contains a mazximal
separable subfield.

If ® has characteristic 0, there is nothing to prove. Hence we suppose that &
has characteristic p # 0. Let a; in © be separable and (®(a,):®) = rn > 0.
If B is the algebra of elements commutative with those of ®(a;), then (D:®) =
8 = (®(ay):®)(B:®) = mbfor b = (B:d). The field ®(a,) is the center of B.
If B contains an element a, separable over ®(a;) and (®(a,, a):®(ay)) = r > 0,
then ®(a; , a.) 1s separable of dimensionality r7; over ®. This process leads to a
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maximal subfield separable over ® or to a central division algebra whose sub-
fields, properly containing the center, are all purely inseparable. Let D be
such an algebra and & its center. If § = ®(a;, a2, -+, ax) 18 2 maximal sub-
field of ®, each a; satisfies an equation of the form a?™' = a;. Hence § con-
tains a subfield o such that (F:F) = pand F = Fo(a), a” € Fo. The elements
commutative with those of $ form a central division algebra B of degree p over
$o. Since B contains the element a such that a ¢ Fo but a” € Fo, it follows
that B contains an element ¢ such that ¢ — ¢ = g(a) e Fo but c ¢ Fo. Then

® =) =" =" = (™" = (™) = g(a)™"

is in ® if m is sufficiently large. Hence ¢”” is separable over ® and ¢?” ¢ ® since
¢’ o= T+ g™, ™ = "7 4+ g@®™ 7, .- implies that
B(c™, Fo) = ®(c, Fo) > Fo. Thus the assumption that a D possessing only
purely inseparable subfields exists leads to a contradiction, and hence the

theorem is proved.

v

16. Crossed products. If © is a central division algebra of degree 6, let §§ be
a maximal separable subfield of ©. Then § may be extended to a field & nor-
mal, separable and of dimensionality » = ém over ®. We have seen that & is a
splitting field and hence is contained in ©,, , a central simple algebra similar to
®. Furthermore, & 1s a maximal subfield of ©,,. Let 1, S, ---, V be the
elements of the Galois group & of ® over ®. Since the automorphism k& — k°
in & may be extended to an inner automorphism in 9,, , there is a non-singular
element us in D, such that us kus = k°, or kus = wusk® for all k£ in ®. The
element usrusur commutes with all & and hence usur = usrps.r, pin &. By the
assoclative law we obtain

U
Ps,TruPr,u — PST,UPS,T

so that p = {ps,r} is a factor set. Consider now the crossed product (®, p) of &
with its Galois group ®, and having the factor set p.° Evidently it is homo-
morphic to the subalgebra 8 of D, consisting of the elements Zusks. Since
R(G, p) is simple, K(G, p) is isomorphic to B and since (R(F, p):d) = »*, B = D .

THEOREM 25. Any central stmple algebra vs stmilar to a crossed product (9, p).

This theorem enables us to apply the theory of crossed products to that of
central simple algebras. We recall the definition that the factor sets p and ¢

are assoclates if there exist elements us in & such that ps.r = 03,7 ’;ST . Thus
Hs 4T

if s is a second set of elements in D,, = K(®, p) such that vz kvs = k5, then
—1 . .

us vs € & and vg = usus .. Then if vy = vsros,r, p and o are associates (p ~ o).

With these definitions we have the following

THEOREM 26. . R(0, p) ~ 1 +f and only if p ~ 1.

8 Since the correspondénce is the identity, we may use this simplification of the notation
of Chapter 4.
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If the conditions are satisfied, we replace ug by elements vs = usus to obtain
vevr = vgr. It follows from 18, Chapter 4, that &(®, p) is isomorphic to P, .
Conversely, suppose that £(®, p) ~ 1. Then R(®, p) is isomorphic to (®, 1)
and hence (®, p) contains a field £; isomorphic to £ and elements »s, such that
every element has the form Evslkéi), Y in 8, and

(1) (s
(4) k U.sl - Uslk 1 ] vslle = v81T1 b

S; in the Galois group of & . We may suppose that S; is the automorphism
k, — (k°); where k — k, is a particular isomorphism between & and ;. This
isomorphism may be extended to an automorphism a — a; in (O, p). If us, =
(us)1 , we have

(18, (1)
k0

k(l) _ —
usl - usl usluT1 - uSITIPS,T s

If we compare with (4), we obtain o™ ~ 1 and hence p ~ 1.

We consider now two crossed products £:(®;, p1) and (2 , 02) where & =
f2 and, say, k; — k2 is an isomorphism between &; and & . Let S; and S be
the corresponding automorphisms of the Galois groups &; and &, in the sense
that kT* — k3. We wish to obtain the form of £:(®,, p1) X £:(S2, o).

Evidently £:(®;, p1) X 8:(®;, o2) contains & X 2. The latter is a direct
sum of » fields isomorphic to & . If ¢; is the identity of one of the components,
the elements of the component have the form ek, k: in 8, i.e. & X K =
efly @ - @ ef2. Similarly e;R = e;8 . The correspondence k; — ks?
obtained by writing ek, = eks” is an (anti-) representation of & in f; and we
have seen that we obtain in this way all of the irreducible representations (in
the sense of similarity, which in this case means identity) of 8 in & . On the
other hand, we have the » distinct representations k; — k3* where S, ranges
over @, . Hence ki’ = k32 and the idempotent elements are in (1 — 1) corre-
spondence with the elements of &; . We may therefore denote e; as es, and note

that
263’ = 1, €8,€Try = 0 if Sz #= T, ’ eg, = €3, ,
632(k1 —_ kg’) = 0.

The mappings x — vr.xvr, and x — uz,xur, are automorphisms of & X &:.
Since the simple components of a semi-simple algebra are uniquely determined,
the elements vr,es,vr, and Uz, es,ur, are again e's. Since vy, commutes with %,
and vrkwr, = ki,

vryes,0ry (k1 — k3*T%) = 0.

-1 . e —1
Hence vr,es,vr, = és,r, andlmmllarly, Ur s,Ur, = ery's, .
We now define es,r = vg, vr,er, and verify that

és,r€u,v = Or,Uu€s,v, Zess = 1.

These matrix units may be used to write £,(®,, p1) X (2, 02) = B, where
B is the set of elements commutative with the esr and is isomorphic
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to e 1 (RO, p1) X Qz(@z_ Ca2))err = B. By the relations noted above
611,1us1?)32 = Ug,Vs,61,1 — Wg € % and kl = 18161,1 = k261,1 = kz € % Then

— — - = — T8
WsWr = WsrpP1s,,T,028,,Ty ) kws = wsk

where k = k; and &° = k', We have shown that B contains the crossed pro-
duct & (®, p16:) and since its dimensionality over ® is »°, B coincides with the
crossed product. Hence we have proved the following

THEOREM 27. Let & and 8 be isomorphic separable normal fields over & and
ki — k, an isomorphism between them. Then £1(®;, p1) X K2(&: , 02) ~ R(B, p162)
where R s isomorphic to the &; and k; — k; is an tsomorphism between K; and &
such that ky = ks .

This theorem has the following significance: Let psr and os,r be factor sets
and define 75+ = ps,ros,r as the product factor set. The set of factor sets forms
a commutative group relative to this multiplication. The factor sets of the form

ps,r = ”TST form a subgroup and two factor sets that belong to the same coset

Ms 4T
relative to this subgroup are associates. If g 1s the factor group whose ele-
ments are the classes of associate factor sets and ®e(®) the subgroup of the
Brauer group over ® consisting of those classes of central simple algebras that
have R as a splitting field, then, by our theorem, e and @a(®) are isomorphic.
We prove next

TaeoreM 28. If R(O, p) has index 8, then p° ~ 1.

Let (®, p) = D,, where D is a central division algebra. Then D, = J @
.-+ @ X, where the §’s are isomorphic irreducible right ideals and hence have
the same dimensionality when regarded as vector spaces over . Since
(Dm:R) = vand (Dn:®) = v = &m’, (:0)m = vand (:8) = 6. The ele-
ments us define semi-linear transformations in & over . Hence if z;, - , xs
is a basis for & over & and vwus = Zx;ujs, pin &, then the matrices Mg =
(ujis) satisfy the equations M M35 = Mgrpsr. If we set det Mg = us, we
obtaln pg,m“ = uguqv . Hence p‘S ~ 1.

16. The exponent of a central simple algebra. The results of the last section
imply

TueoreM 29. If U is a central simple algebra of index 8, then {A}° = 1, 7.e.
the direct product of & algebras vsomorphic to U is of the form ®,; .

For we have seen that % ~ R(®, p) and A; X --- X U ~ KRG, p°) if A; =2 .
Since p> ~ 1, Ay X --- X s ~ 1.

Thus the order of each element of the Brauer group is finite. If e is the order
of {A}, we call e the exponent of the central simple algebra A. The above
theorem implies that the exponent is a divisor of the index of .

THEOREM 30. If p is a prime factor of the index of U, then p is a divisor of
" the exponent of .
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If ¥ is a field containing ®, we have seen that the correspondence between
{A} and {As} is a homomorphism between the Brauer group over ¢ and a
subgroup of the Brauer group over §. Hence the exponent ey of g 1s a divisor
of that of 4. Now let A ~ K(Y, p) = D, where (R:®) = v = §.. Let p’ be
the highest power of p dividing » and &, a Sylow subgroup of order p° of ©.
Corresponding to &, there is a subfield § of & such that (R:F) = p°’. Consider
RS, p)s, where F1 = §. Since R(®, p)s, has the splitting field & = & and
(R1:F) = p°, the degree of R(®, p)s, is p’, t < s, and hence ey, = p* where
u £ t. Thuse = 0(es,), = 0(p), unlessu = 0. Now, if u = 0, (O, p)s, ~ 1

and hence (§;:®) 1s divisible by 6. Since (%mb) = -;7% and (#, p) = 1, this is

impossible.
We prove finally the following theorem which in most considerations of central
division algebras yields a reduction to the case of prime power degree.

TueorEM 31. If D s a central division algebra of degree § = pi* - - - pi' where
the p; are distinct primes, then D = D; X --- X D; where D; has degree p;* and
18 untquely determined in the sense of 1somorphism by .

Let e = pi' --- pi*,0 < t; < s;, be the exponent of . By the usual group
theoretic argument, {D} = {Dy} --- {D;} where {@i}p‘f = 1. We may sup-
pose that D; is a division algebra. Then its degree is pi*, s: = t;. Since the
degrees of the D; are relatively prime, the direct product D; X -+ X ;15 a
division algebra and since it is similar to the division algebra D, ® = D, X
o X Djand s = 8. Nowif D =D X - XDy =G X -+ X € where
G;: has degree p?*, then D¥ ~ G¥ if ¢; = ep7"* . Since (g;, pi’) = 1, there
exist integers a;, b; such that gia; + pi'b; = 1. Then (D¥)* ~ (E¥)*, D; ~ .
and since both are division algebras, ©; =< §;.

17. Central division algebras over special fields. If a is any element of an
algebra A, a satisfies an equation ¢(a) = 0 where ¢(f) 1s a polynomial 0 in
®[t]. Forlet a® = 1 if A has an identity and a’ = 0 otherwise, and consider the
sequence a’, @', a®, --- . There are only a finite number of linearly independent
elements in this sequence. Hence there exists an m, 0 < m = n the dimen-
sionality of %, such that ™ = a"'ay + -+ + @’am. Thus (@) = 0 for
o(t) = t" — t" 'ay — -+ — a, where * = 1 or 0 according as a’ = 1or0.
Now let m be minimal. Then the a' with ¢ < m are linearly independent and
so the a; used in expressing a™ in terms of the a', ¢ < m, are uniquely determined.
It follows that the corresponding polynomial ¢(¢) = u.(t) 1s the only polynomial
of degree m with leading coeflicient 1 having a as a root. Moreover, it is clear
that m is the least degree for the polynomials ¢(f) 2 0 such that ¢(a) = 0.
By the division process we may show also that us(¢) is a factor of any ¢(¢) such
that o(a) = 0. We shall call u,(¢) the minimum polynomzial of a.

If A is a division algebra, ua(t) is irreducible.. For if u,(t) = ™ @u® @),
then 4V (a)u® (@) = 0 and so either 2P() = 0or x® (@) = 0. Because of the
minimality of the degree of ua(t) either u”(¢) or u®(¢) is of degree 0. Now if
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® is algebraically closed, the irreducible polynomials are all linear and so for
any a, we havea — la = Qora = la. This proves

THEOREM 32. The only dwision algebra over an algebraically closed field &
18 & qtself.

Suppose that ® is a real closed field. It is well known that the only algebraic
extensions of ® are ® itself and ®(z), 2> = —1.> Let A # & be a central division
algebra over ®. If (U:®) = m’, m > 1, there is a maximal subfield T of
such that (Z:®) = m. Hence £ = &) and m = 2. Since ®(z) 1s normal,
I is a crossed product and so there is a second element j in I such that j7'4j = —71,
it = 18. The element 3 is negative and j may be normalized so that i = —1.
Hence A has the basis 1, ¢, j, £ = 1y with
1'.2 — _1’ j2 = _1’ 7’] — _.7?”
and A 1s Hamilton’s quaternion algebra. As is well known, an U of this form
is a division algebra. If % 1s a division algebra over & that is not central, the

center of ¥ is the algebraically closed field #(z). Hence by Theorem 32, A = &(7).

THEOREM 33 (Frobenius). The only division algebras over a real closed field
® are ®, ®(z) and the quaternion algebra ®(z, 7).

Now let ® be a finite field and A a central division algebra over . We denote
the multiplicative group of elements 0 of A by A’. If Z 1s a maximal subfield,
3’ the set of elements #0 of Z, is a subgroup of A’. Any element b = 0 may be
embedded in a maximal subfield and since any maximal subfield has the form
W 'Su, b eu '='u for a suitable u. Thus A’ is a sum of subgroups conjugate to.
3’ Now the conjugates of a subgroup of a finite group include all the elements
of the group only if the subgroup is the entire group. Hence £’ = A’ and A

1s commutative. Thus A = &.

THEOREM 34 (Wedderburn). The only central division algebra over a finite
field ® is ® itself.

This, of course, means that every division algebra over a finite field i1s com-
mutative. Moreover, since any division ring may be regarded as an algebra
over 1ts center, this theorem holds also for arbitrary finite division rings.

18. Minimum polynomial of an algebra. In the remainder of this chapter
we consider algebras that are not necessarily simple. We'shall define a special
class of semi-simple algebras called separable, and shall give a constructive
criterion for an algebra to belong to this class. If & has characteristic 0, every
semi-simple algebra 1s separable so that in this case our criterion will be one for
semi-simplicity. We shall also obtain a structure theorem, due to Wedder-
burn, which to a certain extent reduces the study of arbitrary algebras to that
of semi-simple and of nilpotent algebras.

We consider first the theory of the minimum polynomial of an element a of

9 See van der Waerden’s Moderne Algebra, vol. 1 p. 228 or 2nd. ed. p. 237.
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an arbitrary algebra A. Suppose that we have a (1 — 1) representation x — X
of A by matrices in the matrix algebra ®y , such that if A has an identity, then
1 — 1 the identity of &5 ."° Let % denote the set of matrices representing I
and let A be the matrix corresponding to «. Then we assert that the minimum
polynomial u,(t) of a is the minimum polynomial of the matrix A regarded as
an element of the algebra &y . For it is clear that u.(¢) is the minimum poly-
nomial of A regarded as an element of ). Our assumptions imply that if
has an-‘identity, then this identity is the identity of ®y . Hence, in this case, the
minimum polynomial in 9 of 4 is the same as its minimum polynomial in &y .

Now suppose that % does not have an identity and let u,(t) = t™ — t" 'y —
+++ — lam_; be the minimum polynomial of A in &y . Then la, = A" —
A" 'y — +++ — Aam_; belongs to I and must therefore be 0. Thus the con-

stant term of us(¢) is 0 and hence u4(f) is the minimum polynomial in ¥ of A.
Now we recall that the minimum polynomial of a matrix 4 is the last invariant
factor of the matrix (1 — A) belonging to ®[{]y . Hence u.(f) 1s the last in-
variant factor of (1f — A), and if f(¢) i1s the characteristic polynomial
det (1t — A), then w.(?) is a factor of f(¢). Since f(¢) is the product of all of the
invariant factors, and each invariant factor is a factor of the last one, any ir-
reducible factor of f(¢) is a factor of u.(?).

Let 2, - -+, 2, be a basis for A over &, and set P = &(§&,, - -, &) the field
obtained from & by adjoining the indeterminates ¢ . We form the algebra
Ap and shall call the element x,& + --- + ., of Up a general element of .
Now suppose that z; — X, in the (1 — 1) representation of ¥ in &y . Then
Tray; — ZXovi,yIn Py1s a (1 — 1) representation of Ap In Py satisfying the
condition that 1 — 1 if Up has an identity."! We may therefore apply the above
considerations to Zxz;£;. We see then that m(¢, £), the last invariant factor of
(1t — ZX;¢:), 1s the minimum polynomial of Zz:£; and i1s a divisor of the char-
acteristic polynomial

f@, &) = det (¢t — ZXit) = t" — " ou(®) + - + (=D Von(®).

Since the coefficients of f(¢, £) are polynomials in the ¢&;, 1t follows from Gauss’
lemma that the coefficients of m(¢, £} are polynomials in the £s.* We have
shown also that m(¢, £) and f(¢, £) have the same irreducible factors in P[¢], dif-
fering at most in the multiplicities of these factors. From the definition of
m(t, £) as the minimum polynomial of Zx;£; in Ap , 1t 18 clear that m(¢, £) depends
only on Zz;¢; and not on the particular representation used. We shall call this
polynomial a minimum polynomzial of the algebra .

10 Throughout this discussion we may use anti-representations in place of ordinary
representations of the algebra 2.

11 Tf an extension Ap of an algebra A has an identity, then A has anidentity. This follows
from the well-known theorem that a set of linear equations with coefficients in & have a
solution in an extension field P if and only if they have a solution in ®. The details of the

proof are left to the reader.
12 See Albert, Modern Higher Algebra, p. 37.
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Let 41, ---, Yn, Yy: = Zxju;; , be a second basis for I and let m’(¢, ) be the
minimum polynomial determined by the general element Zy;n; . If we use the
field = = ®(¢, 1), we may compare m(t, §) and m’(¢, ). Now we recall that
if a;, ---, a, are linearly independent ‘elements in an algebra A, then they
remain linearly independent in any extension s of . It follows from this that
the minimum polynomial of an element of an algebra is unchanged when the
field over which the algebra is defined is extended. Hence m(¢, £) and m’(¢, n)
are the minimum polynomials of Zx;&; and Zy.n;, respectively, in the algebra
As. Since y; = Zxuji, SyYin; = Zx,f; where & = Zujin:. Hence m(¢, &) =
m’(t, 7). In this sense m(¢, £ is an invariant of .

We write

m(t, £) =t — t7TE + -+ + (=1)N(®).

If the ¢’s are specialized in ®, say & = a;, we obtain a polynomial m,(t) =
m(t, a) called the principal polynomial associated with the element a = Zxa;
of A. Using the relation m(¢, §) = m’(t, n) we see that m.(f) does not depend
on the choice of the basis. Hence this is true also for the functions 7'(a) = T («)
and N(a) = N(a) which we call respectively the principal trace and the principal
norm of a. The equation m(x(¢), £) = 0 1s equivalent to n polynomial identities
pi(§) = 0 obtained by expressing m(x(£), £) as Zzp;(§). Hence we have
m(a, a) = 0. It follows that ma(¢) is divisible by ua(f). Since f(¢, a) and uq(t)
have the same irreducible factors, m.(f) and w.(¢) have the same irreducible
factors. |

The matrix (7T (zr:x;)) is called a discriminant matric of A. A change of
basis replaces this matrix by a cogredient one (M'TM, M non-singular). The
det (T (x;x;)) 1s a discriminant of A. The discriminants differ by square factors
#0 in &.

We consider now the problem of computing the minimum polynomial m (¢, £).
First let 3 = ®,. Here we use the representation of ¥ by itself. If the &;
are indeterminates, f(¢, £) = det (1¢ — (&) is irreducible in P[¢], P = ®(&;,)."”
Hence m(t, £§) = f(¢, £). By a similar argument we treat A = @f:) @ --- D
' &Y =~&. A general element of U is

(D \
11

(s)
\ f:: /

Using this representation we obtain m(t, &) = Ifx(t, £*) where f; is the char-
acteristic polynomial of (1¢ — (¢™)).

Now let ¥ be arbitrary. We note that m(¢, £) is unchanged if U is replaced
by Ar, I an extension of ®; for Zx£; is also a general element for Ar. Hence
it suffices to determine m(¢, £) for Ar where T is the algebraic closure of ®. We

13 See L. E. Dickson, Algebras and Their Arithmetics, p. 115.
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suppose that 2 — X is a (1 — 1) representation of Ur such that 1 — 1 if A
has an identity. We may take this representation to have the form

( X(l) *

\

(5)

where £ — X™® are irreducible representations some of which may be the O repre-
sentation. Now we recall that if 9% 1s the radical of Ar, then Ar — N = I’f})
@ --- @ I} where the T} are division algebras. Since I'is algebraically closed,
it follows from Theorem 32 that I'” = I'. The representation z — X is a
representation of one of the I's. Hence if this representation is #0, the set
of matrices X is the complete set of matrices having the same number of rows
and columns as X”. Hence it is possible to express the matrix units e;" of the
h-th block as linear combinations of the matrices X*. It follows that the
characteristic polynomial fi(t, £) of (1t — =X™¢;) is irreducible, and conse-
quently, m(t, £) = IIfy; (¢, £), a product of certain of the f,’s. Since m(¢, £) is the
last invariant factor of (1t — X), m(¢, ¢) is divisible by each of the distinct fi’s.
We wish to show now that the representations z — X® include all of the irre-
ducible representations #0 of Ar. For this purpose we recall that if 3% is a
particular irreducible left ideal in T'¥ | then the representations of A determined
by the s ideals %, k = 1, ---, s, constitute a complete set of inequivalent
irreducible representations %0 of Ar. If A™ denotes the two-sided ideal in
Ar mapped into I‘,(,':'), the representation of A* determined by &, I 5« k, is the
0 representation. Hence if the representation determined by I does not
occur among the constituents x — X, then the elements of A are represented
in (5) by matrices whose diagonal blocks are all 0. Evidently such matrices
form a nilpotent algebra and since the representation of A" is 1 — 1), A™
i nilpotent contrary to the relation A% — (R A A¥) = Y. We remark
finally that if A has an identity, then none of the representations r — X "
are 0. Hence m(¢, £) 1s divisible by ¢ if and only if A does not have an identity.

If fu(t, &) = t™ — " 7'TP@E) + -« + (=D NP@¢), T"(¢) is the trace of
>X"g and N?(¢) is the determinant of this matrix. Evidently, 7(¢) =
> T (£) and N(¢) = TN (¢). Using the properties of T and N and the
]

fact that Szia; — X" a; is a homomorphism, we obtain the following impor-
tant relations for the principal trace and the principal norm:

T@+b) = T@) + T®), Tlaa) = T(@ea,  T(ab) = T(ba)
N(ab) = N(@)N (), N(aa) = N(a).

Of course, N(a) = 0 if A does not have an identity.

Examples. 1) If A is a separable field, let P be the minimum normal exten-
sion of . Then Ap = PY @ --- @ P™ where n = (A:®). Hence m(t, &)
has degree n and so it coincides with the characteristic polynomial of the matrix
of the general element in the regular representation.
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2) Let A be the purely inscparable field of characteristic p # 0 of the form
®(xy, -+ ,xn) where 7 = v; iIn ® and (A:®) = p™. Then the elements
2t 0 < ki < p, form a basis for A and if x = Zxi! - -- x'f,,,’"gkl...km
then m(¢, £) = t¥ — =yi* - -- 'y]:,{"f;fl...km .

19. Separable algebras. If A is a separable field over &, (N:®) finite, we
have seen that Ar is semi-simple for any extension field T" of ®. Now let A be
inseparable of -characteristic p, a an inseparable element and ¢(t) = (t7) +
"8, + --- + B, its minimum polynomial. Since 1, @, ---,a” ' are
linearly independent in A, they are linearly independent in Ar. Hence

b=a 4+ a y1 + -+ + v, % 0 for any v; in I'.  We suppose that I is al-
1

gebraically closed and choose v; = 87 . Then b” = 0 and so r is not semi-
simple. These facts lead us to define a separable algebra over ® as an algebra A
over & such that Ar is semi-simple for arbitrary extension fields I' of ®. As an
extension of our result on fields, we have

THEOREM 35. A necessary and sufficient condition that A be separable over ®
1s that A = Ay @7--- @ A, where N; 1s simple and has a separable center §;
over &.

Necessity. By definition, if U is separable, 9 is semi-simple and hence A =
A @ - -+ @ A, where each A, is simple. The center €; of ¥;1s separable. For,
otherwise, one of the §;, say @, , contains an inseparable element and hence if T
1s the algebraic closure of ®, then €,r contains a nilpotent element b £ 0. Since
b 1s in, the center of. Ay, the principal ideal b3y is nilpotent, contrary to hypoth-
esis.

Sufficiency. Since Ar = yp @ --- @ Air, it suffices to consider the case
where A = U, issimple and its center € is separable. ILet P be a field isomor-
phic to the least normal extension of €. We have seen that € X P =
PP @ - @P" where P is isomorphic to P and r = (E:®). Let 1 = ¢ +
.-+ + e, where ¢; e P”’. Then P” = ¢.P and so for any ¢ in G, e;c = e;p™
where p € P and where the correspondences ¢ — p'” are the distinct, irreducible
(anti-) representations of € in P. Now let z;, -+, z» (n = »°) be a basis of

A over € and
(6) XiXir = ZXkCkiir

creii In €. Then if ¢;, -+, ¢, 1s a basis for € over &, the elements r,c; form a
basis for A over . Thus every element of A X T has the form Zx.c;v:;, vij
in P. If we express the elements c¢; in terms of the e¢;, we obtain a unique ex-
pression Zx.e;y;; for each element of A X P. Sinceger = 0forj =k, A X P =
A @ --- @ A where A; is a two-sided ideal with the basis z{’ =
xi€;, -+, 2y = x.; over P. By (6), 2Pz = Zzy% . Thus ¥, is a
central simple algebra over P, isomorphic as an algebra over ® to (A over §)p.
Now if T is any extension of ®, we form an extension = containing P and T.
Then Az = Ap)z = Wiz @ --- @ A,z and the A;z are central simple. Since

Az = (Ar)z, Ar is semi-simple.
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A second criterion for separability of an algebra is given by

THEOREM 36. A necessary and sufficient condition that A be separable is that
its discriminants A be #0.

We note first that A = det (T'(xz;x;)) = 01if and only if there exists an element
2z # 0 in A such that T(za) = 0 for all a. For if A = 0, the equa-
tions T (x;x;)¢; = 0 have a solution (&, -+, &) # (0, ---, 0), and hence
the element z = Zx;&; » 0 satisfies T'(x;2) = T(zx;) = Ofore = 1, -+, n.
It follows that T(za) = O for all a. The converse is evident: If 7T(za) = 0
for all @ then T'(x;2) = 0 and so the equations 27T (x;x;)¢; = 0 have a non-trivial
solution. Then A = 0. Now suppose that ¥ is not separable. Then there
exists a field I" such that Ar has a radical . If z e N, za €I for all @ in Ar.
Now let x — X be a (1 — 1) representation of Ar by matrices. Then if z — Z,
a — A, the matrix ZA = X 1s nilpotent. If we use the form (5), we see that
each X is nilpotent and hence each 7”(X) = 0. Then T(X) = =T (X) = 0
and so T'(za) = Oforallaand A = 0. Now let A be separable and let T be the
algebraic closure of ®. Then Ar = T @ --- @ I'Y) where I’ =~ I'.  Then
Ar 1s the algebra of matrices

( )
(&5

r = '

\ (&7) |
where the £'s are arbitrary and, as we have seen, T'(X) is the ordinary trace of z.
If we use the basis e )., @, jg = 1, -+ ,m; k = 1,---,t for Ap

k . . . k . . .
where ey is a matrix basis for TI'l., we obtain by a simple computation

det (T(e) esrs) = %1,

20. A theorem of Wedderburn.

THEOREM 37. Let A be an algebra with the radical . Then if A = A — N
is separable, there exists a sub-algebra & of A such that A =N + S, N A S = 0.

Suppose first that %° = 0. Then (A — N:d) < (A:d). Since (A — N*) —
R — N2 A, M — N°) is the radical of (A — N’) and the latter algebra satisfies
the hypothesis of the theorem. We may assume that the theorem has already
been established for algebras of dimensionality < (A:®). Hence there exists
a sub-algebra &, of A that contains N° and such that

A=W =@ =MW+ R-N), G —-N)ARN-N)=0.
These equations are equivalent te
(7) A = S + N, S AN = N

14 This theorem is due to Wedderburn for fields ® of characteristic0. Moreover, the proof
in the general case is a rather trivial modification of Wedderburn’s argument ([8] or

Dickson (2]).
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Since A — N =S, +N) —N=S, — (& AN = &S — N, the radical of
€, is N* and S, satisfies the condition of the theorem. Since &; A N = N,
(Z1:®) < (A:®P) and so there exists a subalgebra © of &; such that
=8 +N, S AN =0. Thenby (7),A =S +NandS A N = 0.

Suppose next that % = &%) @ --- @ &) where $“ =~ & and let 1, be the
identity of &)ﬁf‘,‘). We may choose an idempotent element u; in % so that uzu; = 0
if £ # [. Then wdur — (wdAue A MN) =2 (Awr +N) - N = &, Hence
wrNuy 18 primary and its radical is wxAur A N = wtue . It follows that w,dus
contains a subalgebra &, =~ ®%”. Since wu; = 0if £ = [, S, = 0 and so
S=& 4+ - +&, =6 @ --- @ &, is semi-simple and its dimensionality
is Zn;. Hence S A N = 0 and by comparing dimensionalities we see that
S+ N = .

Finally, let A be any algebra for which the assumption of the theorem holds
and for which M* = 0. If T is any extension of ®, Ar — Nr = W
and the latter algebra is semi-simple. Hence Nr 1s the radical of Ar.
If T is the algebraic closure of &, Ar — Nr =T @ -+ @ T where I™ = T.
The matrix units of the simple components of I are expressible in terms of a
basis g1, - -- , ¥, of A as TFw;, w; in T'. Since there are only a finite number
of w’s involved in these expressions and each w is algebraic over ®, they generate
a finite extension P of . Evidently Ap is a direct sum of matrix algebras over
Pand Ap — Np = P@ - @ Pﬁf,), and by what has already been proved, Up
=+ S, A Np = Owhere@ is a subalgebra of Ap. Let po=1, p1, - - -, ps
be a basis for P over & and 1, ---, z, a basis for A over <I> (P) such
that z,,1, -+ -, T, is a basis for W over® (P). Then z; = y; — z; where y; ¢ &
and z; €9ty . The elements Y1, -+, Y, form a basm for S and Yy = i + Zzip;
where z;;eN. We set 7; = x; + 2. Then zy, -+, Ty, Tryr, -+, Tn iS a
basis for A over® and y; = z: + 2z where z; = kzl zapiw. Henceziz: = Zaiyei; +
Vij, Yijk in P and Vij in ETE It fO“O\VS th&t Yiy; = Zyk'y;“-,- + Uij, Uij in 9Ep , and
since the y; ¢ S, u;; = 0. If we substitute the expressions z: + 25 for y;, this
relation becomes

[ ! 7 [ | / /
vix; + x2; + zsx; = Z(xe + 2e)veig -
If we express each term as Za.p; and compare the coefficients of p = 1, we ob-

tain x3z; = ZZryri; . Thus the totality of elements Zz.a;, « in &, is the required
algebra &.



CHAPTER 6
MULTIPLICATIVE IDEAL THEORY

1. Quotient rings. It is a well-known discovery of Emmy Noether’s that
the fundamental factorization theorem for the ideals of a maximal domain of
algebraic numbers may be deduced from some very simple properties of these
domains. These properties are embodied in the theorem: If o is a commutative
domain of integrity, then the ideals (0, o) are factorable in one and only one
way as products of prime i1deals if and only if o satisfies the following conditions:

N1. ois integrally closed (in its quotient field). |

N2. The descending chain condition holds for the ideals containing any
fixed 1deal 0.

N3. The ascending chain condition holds for all ideals.

In this chapter we shall consider the extension of this result to non-commuta-
tive rings. The contents of this theory are due mainly to Speiser, Brandt,
Artin, Hasse and Deuring; the axiomatic foundations to Asano. Many of the
results of this chapter have been anticipated in our discussion of principal ideal
domains. We shall also need to refer to the theory of principal ideal rings
that we have developed in 16-16 of Chapter 4.

We begin with a ring o having an-identity. An element a of o will be called
regular if it is neither a left nor a right zero-divisor. The first restriction that
we shall impose on o is that it have a (right) quotient ring, i.e. a ring A containing
o such that 1) every regular element of o has an inverse in ¥ and 2) every element
of A has the form ab™" where a and b are in 0. It is a simple matter to obtain
a condition on o that A exist. For this purpose we consider any pair of elements
a and b in o with b regular. Then b is in A and hence b~'a has the form a.b7 ",
a; and by in 0. Then ba; = ab;. A necessary condition for the existence of A
is therefore that for any pair of elements a, b in o, b regular, there exists a common
right multiple m = ab; = ba; such that b, is regular.

Conversely, suppose that this condition holds. As in Chapter 3, we consider
the pairs (a, b) of elements a, b in o such that b is regular. If (¢, d) 1s a second
pair of this type and m i1s any multiple of the form db, = bd; such that b, (and
hence d;) is regular, then we regard (a, b) as equivalent to (c, d) ((a, b) ~ (c, d))
if ad; = c¢b;. We note that if this condition holds for a particular m, it holds
for any n = db, = bds such that b, and d. are rggular. For we may determine
regular elements e, and e; such that bjes = bee; . Then dies = dqe; and ads = cb, .
It follows directly from this that the relation ~ is symmetric, reflexive and
transitive. As usual, we denote the set of pairs equivalent to (a, b) as a/b.

If m = db, = bd; and b; and d; are regular, we define a/b + c¢/d as (ad, +
cb))/m, and if n = be, = c¢by, by regular, we define (a/b)(c/d) = ac,/dbi. The
functions thus defined are single-valued and they turn the set A of “fractions”

118
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a/b into a ring. We leave the verification of these facts to the reader. The
ring I has an identity 1/1 and contains a subring, consisting of the elements
a/1, that is isomorphic to 0. We shall identify this subring with o and write
a for a/1. Then if a is not a zero-divisor in o, it has the inverse a™ = 1/a in 4.
Since any element of U has the form (a/1)(1/b) = ab™', ¥ is a right quotient
ring of o.

We note next that the quotient ring is uniquely determined in the sense of
isomorphism. For it is readily verified that if o and o’ are isomorphic under
the correspondence a — a’, then their quotient rings A and A’ are isomorphic
under the correspondence ab™" — a’(b’)"". Finally, we remark that if % is a
quotient ring of a ring o, any regular element of A has an inverse in .

2. Orders and ideals. Once the condition that o have a quotient ring has
been determined, it 1s more convenient to shift our attention from o to %. Thus
we suppose that A is given as any ring with an identity in which every regular
element has an inverse. For example, A may be any ring satisfying the de-
scending chain condition for left and for right ideals." We consider the subrings
o of I defined by the following

Definition 1. An order o in U is a subring containing 1 and having the property
that every element of 9 has the form ab™" for suitable elements a and b in o.

It may be remarked that this definition 1s one-sided since we do not require
that the elements of A be representable in the form b™'a, b, @ in 0. The latter
condition will be satisfied, however, for the orders with which we shall be pri-
marily concerned in the sequel.

The orders o, and 0, are equivalent if there exist regular elements a; , b1, a2, b,
in A such that a,01b1 < 0 and aq200b2 < 0, . Evidently this relation 1s symmetrice,
reflexive and transitive. We shall restrict our attention to the orders that are
equivalent to a fixed order o, , and for simplicity, we use the term ‘“‘order’ in place
of “order equivalent to 0, .”” We remark that in order to prove that a subring
o’ containing the identity is an order it suffices to show that there exists an order
o and regular elements a, b, a’ and b’ such that aob < o’ and a’ob” < 0. For if
z is any element of 9, there exist elements p, q in o such that a 'za = pq~' and
so z = (apb)(agb)™".

Definition 2. A subset a of % is a (fractional) right o-ideal if 1) a0 < a, 2)
a contains a regular element and 3) there exists a regular element a in A such that
aa = 0.

Left o-ideals are defined in a similar fashion. If a is both a right o-ideal and
a left o-ideal, it is a two-sided o-ideal. If a is any regular element, the set a = ao
is a right o-ideal. For 1) and 2) are clear and 3) holds since a 'a = 0. An ideal
of this type is called principal. In terms of this definition the conditions 2)
and 3) may be replaced respectively by 2’) a contains a principal right o-ideal
and 3’) a is contained in a principal right o-ideal.

! For in this case, if a is not a left zero-divisor then the mapping £ — az is an ¥.-iso-
morphism between % and the right ideal a¥. By the descending chain condition for right
ideals, a¥ = UA. Hence there is an element b such that ab = 1. Similarly, an element b’
exists such that b’a = 1. It follows that b = b’.
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Now let o be an order and let a be a right o-ideal. Consider the set o; of ele-
ments x such that za < a.® Evidently, o, is a subring of % containing the
identity. Since there exist regular elements a and b such that bo < a = ao,
boa™' < o, and since 0,(bo) < ao, 0;b < ao and o; < aob™". Thus o; is an order.
Since a 'a < 0,a0a 'a < aand soaa™" = 07, a < va. Finally, b is in a so that
00 £ a. This shows that a is a left o,~ideal.

In a similar manner if a is a left o-ideal, the set o, of elements y such that
ay = a is an order and a is a right o-ideal.” Hence if we begin with a right
p-ideal, we may determine first 0; and then use the fact that a is a left o;-ideal
to show that the set o, of ¥’s such that ay =< a is an order and that a is a right
o~ideal. Evidently o £ o,.

THEOREM 1. If a s a right (left) o-ideal, the set of elements x such that za < a
s an order o; and the set of elements y such that ay < a is an order o, . The set a
18 a left or-ideal and a right o,~ideal.

The orders o; and o, are respectively the left order and the right order of a.
If a = o,, a = 0; and conversely. In this case a is called integral. 1If a is a
principal o-ideal ao, ao, < ao and so o, = 0. Similarly 0; = aoa ™.

If a is a right ideal with right order o, and left order o;, let a~' denote the set
of elements z in A such that aza £ a. Evidently the elements z may also be
characterized by either of the equations az < o, or za < o,. If ¢ and d are
regular elements such that do, < a < co,, then a(o,c Da = (ao,)(c 'a) =
(a0,)o, = aand a'd < o,. Then o,c' < o' < o,d "' and since a” ' is a left

o-module, a " is a left o,-ideal. Similarly a™ is a right o,-ideal.

THEOREM 2. If a is an ideal with right order o, and left order o1, then the set
of elements z in A such that aza < a is a left o,~ideal and a right orideal.

The ideal a™" is called the ¢nverse of a. Since a~'is the set of elements z such
that za < o,, it follows that if b is a second ideal with right order o, (left order
o;)anda = b,thena ' = b™". Ifa = ao, 0, = oandifzisina ', za = b is in o.
-1

Hence 2z

[ {\%

ba™' and a”' = oa

p—

3. Bounded orders. We shall see that a fundamental concept of the present
theory is one that we have already encountered in our study of principal ideal
domains, namely, that of a bounded ideal. If a is a right (left) o-ideal, a is
bounded if it contains a two-sided o-ideal. It should be remarked that the present
definition applies to any ideal, integral or not, and that it is unnecessary to
state explicitly that the two-sided ideal is 0 since this requirement is contained
in our new definition of an ideal. If all ideals in o are bounded, we say that o
itself is bounded. In this section we shall investigate some of the properties of
bounded orders.

Since any ideal contains a principal ideal, in order that o be bounded it clearly
suffices that every principal o-ideal contains a two-sided o-ideal. Suppose that

2 Unfortunately, our notation here is the same as that for the ring of left multiplications.
For this reason we shall not use our old notation for the latter system in this chapter.
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o is maximal in the sense that there exists no order (equivalent to o) properly
containing 0.> Then we have the following theorem.

THEOREM 3. If o s a maximal order, the following coriditions on o are equiva-
lent: 1) o ts bounded, 2) every integral right (or left) o-itdeal contains a two-sided
o-ideal, 3) for every regular c, oco is a two-sided o-itdeal and 4) for every regular
element a there exists a reqular element b such that ob < ao (or bo < ao).

Suppose that for any regular element a in o, ao contains a two-sided o-ideal a.
Since o is maximal, both orders of a coincide with 0. Hence (a0)™ = oa™" < o™’
and oo '0 < a~'. This implies that oa o is contained in a right (left) principal
o-ideal and so oa ‘o is a two-sided o-ideal. If ¢ is an arbitrary regular element,
¢ has the form ba™' with b and @ in 0. Then oco = oba "o < oa "o and ocop is a
two-sided o-ideal. We have therefore proved that 2) implies 3). Now suppose
that 3) holds. If @ i1s an arbitrary regular element, the two-sided o-ideal a =
oa o contains oa ' and a 0. Hence a”' < (oa” )" = ao. Since a ' is a two-
sided o-ideal, it contains a principal left o-ideal ob. Similarly oa contains
a ' and a suitable b’o, b’ regular. Thus 3) implies 1) and 4). Since 2) is an
obvious consequence of 1), the conditions 1), 2) and 3) are equivalent. Finally
we prove that 4) implies 1). Let ao be an arbitrary principal ideal and b a
regular element such that ap = ob. Then ao = obo and the latter is a right o-
ideal. Since o is maximal, the left order of obo is 0 and so obo is also a left
o-ideal. This shows that 1) holds and the theorem is completely proved.

The following theorem shows that if o i1s a bounded maximal order, then the
condition that every z of U has the form ab™' may be replaced by the dual

requirement that every x has the form ¢ 'd, ¢ and d in o.

THEOREM 4. If 0 is a bounded mazximal order, every = in U has the form ¢ 'd
with ¢ and d in o.

We know that any z of % may be expressed as ab™', a and b in 0. Since b
1s regular, bo 2 a = oc where a is a two-sided o-ideal and c is regular. Since o
is maximal, the left and the right orders of a are o and hence 0b”' < o™ < ¢ .
Thus ab™' = ¢ 'd for a suitable d in o.

THEOREM 5. Suppose that o is a bounded maximal order. Then if o' is any
order and I 18 a set such that a’INY’ =< o’ for suitable regular elements a’, b’, there
exist regular elements ¢ and d such that ¢t < o and Md =< o.

Since o’ 1s equivalent to o, there exist regular elements'a and b such that
ab < o. Hence ad? < ob ' < ob 0 < ¢'v. Thus M =< c¢o for ¢ = a'¢’.
Similarly N £ od for a suitable regular d.

We use this result to prove

THEOREM 6. If o is a bounded maximal order, every maximal order o’ (equiva-
lent to o) 1s bounded.

Let a be any regular element in o’ and suppose that b and ¢ are regular elements
such that boc < o’. Then ao’ = (ab)oc and (ab)o = ob’ for a certain regular b’.

3 Examples of bounded maximal orders will be given later.
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Hence a0’ = ob’c. If we apply the preceding theorem to It = o/, we obtain the

existence of a regular element ¢’ such that o’¢’ < o. Then ao’ = o’¢’b’c and o’
1s bounded as a consequence of Theorem 3.

4. The axioms. We now impose the following conditions on our order o:

I. o is maximal.

II. The descending chain conditinns hold for the integral one-sided o-ideals
that contain any fixed integral two-sided o-ideal.

ITI. The ascending chain condition holds for integral two-sided o-ideals.

IV. o is bounded.

If A is a field, any ideal in the old sense, which is not zero, is an ideal in the
sense of thischapter. Hence the conditionsII and III are equivalent respectively
to Noether’s conditions N2 and N3. We recall now the meaning of N1. Sup-
pose that A is an algebra with an identity, of finite dimensionality over the
underlying field ®, and let g be an order in ®. Then g is any subring of ® con-
taining 1 and having ® as its minimal containing field. An element a of ¥ is
called g-integral if it 1s a root of a polynomial in g[t] having leading coefficient 1.
If A = &, 0 = g is integrally closed if every element of 9 which is o-integral
belongs to 0. In order to discuss the relation between this property and I
we require the foliowing general condition.

THEOREM 7. If g satisfies the ascending chain condition for ideals, then a
necessary and sufficient condition that an element a in U be g-integral is that all of
the powers a* be contained in the same finitely generated g-module (in ).

If a is integral, a” = a™ 'y; + --- 4+ ly, where the v; are in g. It follows
that all a* belong to the g-module (1, a, ---, a™") generated by @, 0 < ¢ <
m — 1. Conversely let I be a finitely generated g-module containing all a”.
Since the ascending chain condition holds for the ideals of g, I satisfies the

ascending chain condition for g-modules. Hence for the chain (1) < (1, a) <
(1, a, @’) < --- there exists an integer m such that (1, a,---, a™) =
(1, a, ---,a™). Itfollows that a™ = a™ 'y; + -+ + lvy. for suitable v; in g.

We may now show that if IIT holds in an order o of a field A = &, then the
conditions I and N1 are equivalent. For let a be integral. Then all the powers
of a and hence ola], the set of polynomials in a with coefficients in o, belong to an
o-module (a,, - - -, a,) generated by elements a; of 3. We may write a; = bid
where b; , d are in 0. Hence o[a] < od ' and so o[a] is an order (equivalent to
0). Since o[a] = o our condition I implies that o[a] = o, 1.e. aeo. Thus o is
integrally closed. Suppose, conversely, that o i1s integrally closed. Then if o
1s any order, o’ < ob for a suitable b in ). Hence the elements of o’ are o-inte-
gral and so o’ < 0. We have therefore proved that o i1s maximal. Hence if
A is a field, the assumptions I, IT and III are equivalent to N1, N2 and N3.

We return to the general case of an arbitrary A and consider some consequences
of our axioms. First, we remark that any ideal of o in the old sense, which
contains a two-sided o-ideal a, 1s an integral o-ideal. Since these 1deals are in
(1 — 1) correspondence with the ideals of the difference ring 0 — a, condition
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IT is equivalent to II': If a is an integral two-sided o-1deal, the descending chan
conditions hold for the (ordinary) one-sided ideals of 0 — a.

We recall that for anv ring with an identity the ascending chain condition:
for one-sided ideals are consequences of the descending chain conditions. Hence
the former hold for o and consequently we have

V. The ascending chain conditions hold for the integral one-sided o-ideals
that contain any fixed integral two-sided o-1deal.

Evidently this implies III. However, we have preferred to state III as a
separate assumption since in many important instances, it holds while 1T fails.

If a and b are integral right (left, two-sided) o-1deals, it i1s clear that a + b
1= also of this type. If a and b are integral two-sided o-i1deals, ab contains a
regular element and so ab 1s an integral two-sided o-ideal. Since the inter-
section a A b = ab, 1t follows thata A 0 is an integral two-sided o-ideal.

Definition 3. An integral two-sided o-1deal b £ o is a prime ideal if for any
pair of integral two-sided o-ideals a, b such that ab = 0(p), we have either
a = 0(p) or b = 0(p).

If ab = 0(p), thena’t’ = 0(p) fora’ = a+ pand b’ = b+ p. Sincea’ = I(p)
implies a = 0(p), in order to ascertain whether or not p is prime it is sufhicient
to test the integral ideals a’, b’ containing p. Thus if p is maximal in the sense
that no two-sided o-ideal # o, p exists between o and p, then p is prime. This
remark is the trivial part of the following important theorem:

VI. An integral two-sided o-ideal p # o is prime if and only if it 1s maximal.
When the condition holds, 0 — p is a matrix ring over a division ring.

The property of maximality is equivalent to the property of simplicity of
the difference ring 8 = o — p. Now suppose that p is prime. Since D satisfies
the descending chain condition for left ideals, 1t has a radical T and there exists
a two-sided o-ideal t in o such that t = vt — p. The ring 0 — t is isomorphic
to 8 — T. Hence o — ris semi-simple. Now T" = 0 for a suitable s. Hence
' = 0(p) and since p is prime, v = 0(p). This shows that 5 is semi-simple.
Either 8 is simple or there exist two two-sided ideals @, b > 0 in § such that
@b = 0. This implies that there exist two-sided o-ideals a, b contained in o
such that ab = 0(p) but neither a nor b = 0(p). Hence o is simple and p 1s
maximal. The second part of the theorem is, of course, a consequence of the
fundamental structure theorem for simple rings.

If o — p = dr, b a division ring, then % is the capacity of the prime ideal p.

5. Orders in an algebra. Let A be a separable algebra over ®, (A:®P) = n,
and suppose that g is an order in ®. We consider the problem of embedding g
in an order o of A.* If o issuch an order, let B = o® be the smallest sub-algebra
of A containing 0. Then if b is an element of o which is regular in ¥, b is regular
in B and hence its inverse is in B. It is therefore clear from the definition of"
an order that 8 = 9, and so o contains a basis uy, ---, u, of A over d. On
the other hand, if o is any subring of 2 that contains g and contains a basis

* For the present the word ‘‘order’’ is used in the original sense. The choice of the
equivalence class of orders will be made later.
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U, +--,u, of A, then o is an order. For, any element of A has the
form (Zusv.)y ' where the v;, vy are in g and since Zu;y; is in o, this element
has the form by™', b, v in o.

THEOREM 8. A necessary and suffictent condition that a subring of A containing
g be an order 1s that it contain a basis of N over ®.

We may, of course, take u; = 1 to be one of the elements of the basis. We
now assume that g satisfies the conditions I and III (or N1, N3) and we suppose
that o is an order having only g-integral elements. In order to investigate
orders of this type we require the following theorems.

THEOREM 9. If a and b are g-integral and ab = ba, then a &= b and ab are
g-integral.

m’—1

m—1
Forifa™ = D a'y;and b™ = D bin; with the v’s and the 7's in q, then all of
0 0

the powers (a + b)* are contained in the g-module generated by a't’, 0 < 7 <
m— 1,0 <5 =m’ — 1. Hence by Theorem 7, (¢ + b) is integral. A similar
argument, applies to a — b and ab.

As an immediate corollary we have the result that if A 1s commutative, the
set of g-integral elements is a subring of 2. This remark may be used in the
general case to prove

TaroreEM 10. If a is a g-integral element, q satisfying 1 and IIl, then the
mintmum polynomial p.(t), the principal polynomial m,(t), and the characteristic
polynomial f,(t) in any (1 — 1) representation of A all belong to g[t].

Let ©(?) in g[t] be a polynomial with leading coefficient 1 having a for a root,
and suppose that B is a root field over ® of ¢(¢).” Then ¢(t) = I — a;) in
Blt] and since u,(t) 1s a factor of ¢(t), u.(t) = II'(t — a;) a product of certain of
the factors (¢t — a;). The elements a; are g-integral in B and hence the coeffi-
cients of u,(f) are g-integral. Since g is integrally closed, u,(¢) 1s in g{t]. The
results for m,(t) and f,(¢t) follow from this since the roots of these polynomials
are the same except for multiplicities as those of u,(t).

Suppose, as before, that o is an order containing g and consisting of g-integral
elements. Let w; = 1, u, -+, u, be a basis of A contained in 0. Then by
replacing the u;, 7 > 1, by certain multiples w;vy:, v: in @ and returning to the
original notation, we may suppose that the constants of multiplication g
In ;= Zuryr; are in g. It follows that the totality of elements Zw.u;, u;
in g, is an order o, < o.° Suppose that d = Zu;1sin 0. Then by the preceding
theorem the principal traces T (u.d) and T (u;u;) belong tog. We have the equa-
tions

T(ud) = ZT (uiw;)9;

5B =d(a;, -+, am) where o(t) =TI(t — a;) in B[t]. Cf. Albert’s Modern Higher Algebra,
p. 156. -

¢ Incidentally, this argument-shows that orders of the type considered here do exist.
For, we may start with an arbitrary basis u; , u; = 1, for which the multiplication constants
are in g and take 0o to be the set of elements Zu;u; , using. Then o918 an order.
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which, since A = det (T(uw;)) # 0, give §; as an element of gA™'. Thus o
is a submodule of the finitely generated g-module 0,A™". Since the ascending
chain condition holds for the ideals of g, any submodule of a finitely generated
g-module is finitely generated.” In particular o has this property. Conversely,
if 0 1s any order containing g and o 1s finitely generated over g, then by Theorem
7, all the elements of o are g-integral.

THEOREM 11. Suppose that o 1s an order containing g. Then a necessary and
sufficient condition that o contains only g-integral elements is that it be a finitely
generated g-module.

Now if I 1s any g-module generated by a finite number of elements v, , - - - , v,
we may write v; = (Suwi)v |, vi;,and ving. Then M =< opr " < or . In
particular, if o’ 1s any order of g-integral elements and o’ contains g, then o’ <
ov ' for a suitable ». By symmetry there exists an element u in g such that

o’u " = pand so we have proved the following

THEOREM 12. Any two orders o and o’ of g-integral elements containing g are
equivalent.

If we refer back to the proof of Theorem 11, we see that the element A does
not depend on o but rather on the basis u;, -+, u,. Hence our argument
shows that if o’ is any order containing o and containing only g-integral elements,
then o’ < 0,A~". Moreover if o’ is any order equivalent to o, o’ < aob, a finitely
generated g-module, and so all the elements of o’ are g-integral. Thus any o’
containing o and equivalent to o is contained in 0,A™"; it follows that there exists
a maximal order o’ equivalent to o and containing o.

THEOREM 13. [ f 0 1s as in the preceding theorem, then o may be embedded in a
maximal order o' equivalent to o.

Let © denote the ring of g-integral elements of the center € of A. Then if o
1s an order containing only g-integral elements, by Theorem 9, 0o® 1s an order
containing @ (and hence g) and containing onlv g-integral elements. If o itself
contains g, we have seen that o and o® are equivalent. Hence if, in addition,
p is maximal, then o0 = o® and o contains .

THEOREM 14. Any maximal order o that contains g and contains only g-integral
elements contains all the g-integral elements of the center of A.

Let o’ be an order equivalent to o, an order that contains g and contains only
g-integral elements. Then we have seen that o’ =< aob, a finitely generated
g-module, and consequently that all the elements of o’ are g-integral. Now
let A be commutative and let o be the totality of g-integral elements. Then o
1s an order, and if o’ 1s any order equivalent to o, its elements are g-integral and
so o’ < o.

THEOREM 15. If A is commutative, the totality o of g-integral elements of N is a
maximal order. Any order equivalent to o is contatned in o.

" Theorem 3, Chapter 3.°
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If o/ < aob and o is an order containing g, then o’q < aob also. Hence if o’
is equivalent to o, 0’g 1s equivalent to o and if o’ 13 maximal, then o’ = o’g. To
sum up; if g satisfies [ and III, the orders o that have the properties: 1) o con-
tains g and 2) o contains only g-integral elements, belong to a single equivalence
class. All orders of this class have property 2) and all maximal orders in the
class have both properties. For the remainder of this section we assume that
g satisfies I and III and that o satisfies 1) and 2).

If a1s a right ideal, a £ ao a principal o-ideal and so a 1s a finitely generated
g-module. Since a contains a regular element b, 1t contains a basis v; = buy, -,
vp = bu, of A. The identity 1 = Zv;p;, p; iIn P, and hence there 1s a relation
of the form » = Zv;n; with 5, »; in @. Thus » 15 1n the intersection a A g and
a A g 0. Evidently a A gisag-ideal. We note also that the 1deal 70 = o9
1s a two-sided o-1deal contained 1n a and so a 1s bounded.

THEOREM 16. Any order o in A s bounded.

Suppose next that a 1s an integral two-sided o-1deal. We consider the differ-
ence g-module 0 — a and note that it is finitely generated. Since it is annihi-
lated by ap = a A g, it mayv be regarded as a (g — ag)-module. We have seen
that ap # 0. Hence if g satishes condition II, g — a, satisfies the descending
chain condition for ideals and therefore 0 — a satisfies the descending chain
condition for (§ — ap)-sub-modules. It follows that the descending chain con-
dition holds for the integral o-ideals containing a.

THEOREM 17. If q satisfies condition 11, any order o of N satisfies this condition
also.

A special type of domain g that satisfies our conditions is a principal ideal
domain. For we have seen in Chapter 3 that N2 and N3 hold for g and N1
may be proved as in the case of the ring of integers by using the unique factoriza-
tion theorem. Let o be an order of A containing ¢ and containing only g-
integral elements. Then if w;, - -- , u, 18 a basis for A contained in o and having
an integral multiplication table, we have seen that o contains the free g-module
with the basis u; and o is contained in the free g-module having the basis u;A™
where A = det (T(w;u;)). It follows that o is a free g-module with a basis of n
elements.

THEOREM 18. If g 75 a principal ideal domain, any order o has a free basts of
n = (N:P) elements.

6. Factorization of two-sided ideals. We return now to the general case of
an arbitrary ring 9 and an order o in 9 that satisfies conditions I-IV.> Our
first aim is to prove the existence and the uniqueness of factorization of any
integral two-sided o-ideal as a product of prime ideals. If we examine the
argument of 5, Chapter 3, we see that the decisive step 1s the theorem that if
a and b are two-sided o-ideals, then a < b if and only if there exists an integral

8 As a matter of fact we shall require in this section only conditions I, III, IV andVII:
any prime o-ideal is,maximal.
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two-sided o-1deal ¢ such that a = c¢b. This fact will be established here as a
consequence of the following

TueorEM 19. If a is a two-sided o-ideal properly contained in o, then a_ ' > o.
We require a pair of lemmas.

Lemya 1. Any tntegral two-sided o-ideal a is contained in a prime 1deal.

This 1s clear because of the ascending chain condition and the criterion VI,
Leama 2. Aﬁy integral two-sided o-ideal a contains a product of prime ideals.

If a 1s prime, the lemma holds. Otherwise there exist two integral two-sided
o-ideals a’ and a’’ containing a such that a’a” = 0 (a) but a’ # 0, a’’ 2 0 (a).
Then a’ > a,a” > a. If we repeat this process with a’ and a’’ and the 1deals
arising from them, we obtain the lemma as a consequence of the ascending chain
condition.

Proof of theorem. Let p be a prime ideal containing a. Then if a~' = o,
p ' = o. Let a be a regular element in p and consider the right o-ideal ao
contained in p. By the boundedness condition, ao contains a two-sided o-1deal,
and so by Lemma 2 ao contains a product p; - -+ p, of prime ideals p;,. We
suppose that the p; have been selected so that r is minimal, i.e. ao contains no
product of » — 1 prime ideals. Since p = ao = p; - -+ p,, one of the p;, = p
and p, -+ p, = bpc. Thena 'bpc < panda'b < (DC)_I. Since (;Jc)(pc)_1 < o,
p(c(pe)™) < oand c(pe)™ £ p ' =o. Thus (pc)_ < ¢ ' and since (pc)” = ¢!
we have (pc)™' = ¢ . ThlS 1mp11es that a7'b < ¢ 1, a ‘bc < o and be ao.
Since bc 1s a product of » — 1 prime ideals, we have a contradiction to the
minimality of ». An important consequence of this theorem is

TueoreMm 20. If a is a right (left) o-ideal, a 'a = o (aa” = o).

The set a 'a is contained in o and is therefore an integral two-sided o-ideal.
Since p is maximal, the orders of ¢ 'a are 0. Now (a 'a) '(a 'a) < o and so
(@ 'a)'a”' = a'. Hence (a 'a)”" < o0 and so by the preceding theorem a 'a = o.

We may now prove the important

THEOREM 21. If a 7s a right o-ideal contained in a two-sided o-tdeal b, there
‘exists an integral right o-ideal ¢ such that a = cb.

ﬁ

b

l/\ IIV

Sincea < b, ¢ = ab™" < bb™' = p and ¢ is an integral right o-ideal. Since
676 = o, ¢hb = ab”'b = a. |

We may now carry over the discussion of 5, Chapter 3. We obtain then
1) the commutativity of multiplication of integral two-sided o-1deals and 2) the
unique factorization of any integral two-sided ideal as a product of prime ideals.
By Theorem 20 the two-sided o-ideals form a group G (o) under multiplication
with o as the identity and o' as the inverse of a. Now if a is any two-sided
p-ideal, there exists a regular element a in o such that aa = o, or (an)a = 0.}
The 1deal ao contains an integral two-sided o-1deal b and so ba = ¢ < 0. Thus

9 For there exists a regular element b = a7, a and ¢ in o, such that a < bo. Hence
a = alco<aloandaa = o.
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a = b7 'c where b and ¢ are integral and G(o) is generated by the integral ideals
contained in it. It follows, of course, that G(o) i1s commutative. KEvery a in
(G(0) has a unique representation in the form p{* --- pi* where the g; 2 0 and
the p; are distinct prime ideals. Hence we have proved the fundamental

THEOREM 22. The two-sided o-ideals form a commutative group G(o) under
multiplication.  G(o) s a direct product of the infinite cyclic groups generated by
the prime 1ideals of o. |

7. The structure of o — a. Let a = pi' - p;* where the p; are distinct
primes and the e; are > 0. Then if we set a; = ap;**, weobtaino = a; + -+ +a,
and a; A (a; + -+ + a;1+ i1 + -+ + a;) = a. This follows directly from
Theorem 21 and the unique factorization theorem. Hence o — a =a; @ -
@a, where G; = a; — a. We have the relation 0 — p;* = (a; + pi*) — pi* =
a; — (a: A piY) = a;. We note also that if a = p°, p a prime, then 5 = 0 — a
contains the nilpotent ideal p = p — p°and 5 — P 1s isomorphic to o — p a simple
ring. It follows that p 1s the radical of d and 5 i1s a primary ring.

We wish to prove that for arbitrary a, o — ais a principal ideal ring. Because
of the direct sum decomposition it suffices to take a = p°, and by Theorem 41 of
Chapter 4, our theorem will be proved if we show that the radical p = p — »°
of o — p°1is a principal right ideal and a principal left ideal. Now the ideals of
d have the form b = b — p° when b is an integral o-ideal containing p°. Hence
by Theorem 21 any right (left) ideal b of 5 that is contained in p has the form
cp (bc) where ¢ 1s a right (left) ideal. The theorem will therefore follow from

THEOREM 23. Let O be a primary ring and let B be s radical. Then 1f evefy
right (left) ideal of O contained in P may be written in the form CP (BC) where €
1s a right (left) ideal, P is a principal right (left) ideal.

We recall that O 1s a matrix ring O where o 1s completely primary. The
radical of Co1s 0o A P = Py and P = Ze;Po if e;; form a matrix basis
for © = Ze; Q0. We suppose first that $° = 0. Let w be an element
# 0 in P, and consider the right ideal wO. Evidently wO = P and so
wO = CP, € a right 1deal. Since (€ + P)P = CP, we may suppose that
C > PB. Consider the simple ring L = O — P and the right ideal € =
C — Pinit. We know that € has the form @ where @ is an idempotent ele-
ment # 0. Now the cosets é&; = e;; + P form a matrix basis for O and © =

2¢,;00 where Oo = (Lo + P) — P is a division ring isomorphic to Qo — Bo .
t

It follows that there exists a regular element § in O such thata = ' ) 4.
1

Any element ¢ in the coset g is regular in O and because of the form of €, €
consists of the elements of the form (¢ eq)x + 2z where z isin O, z is in B and

¢
e. = D e;. Hencew = > ¢ 'ew; withy;in Band qw = D_ ey, . If we write
1 . .

]
q = Zeiqii, qij in Oy, this equation implies that g;;w = 0 forz =¢t + 1, --- , n.
Since every element of Oy that is not a unit is contained in P, , these ¢,; are in
Po . This contradicts the fact that ¢ is regular, unless ¢t = k, i.e. @ = 1. Then
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C=L,¢C = 9Dand B = w is a principal right ideal. If P° > 0, we consider
£ — P and note that it satisfies the hypothesis of the theorem. Moreover
its radical P* = P — P satisfies P** = 0. Hence L — B’ is principal. This
implies that B = wO + P°. Then P’ = wP + F°, B° = wP* + P* -+ and
so P = w. In alike manner we prove that P is a principal left ideal.

As we have seen, this implies

THEOREM 24. If a s an integral two-sided o-tdeal, o — a s a principal ideal
ring. |

8. Bounded o-modules. The preceding theorem enables us to obtain the
structure of any finitely generated o-module I that is bounded in the sense that
its annihilating ideal contains a regular element. Then the annihilating ideal a
1s an integral two-sided o-ideal and Y% may be regarded as an d-module, 5 =
p — a. Since dis a principal ideal ring satisfying the descending chain conditions
for one-sided ideals, the results of 16-16, Chapter 4 are directly applicable.
We obtain in thisway that M = M, @ - - - ® IN, where N, is an indecomposable
cyclic o-module (or 5-module).

If we call the annihilating ideal a the bound of N, then in order that IN be
indecomposable it 1s necessary that its bound be a prime power. This follows
directly from the decomposition of 8 = 0 — aasq @ -+ @ a, where a;, =
ap; * — aand a = pi* .- p;* is the decomposition of a into powers of distinct
prime 1deals. Evidently if I and N are bounded and o-1somorphic, they have
the same bound. On the other hand, if I and N are indecomposable and have
the same bound p°, then both of these modules may be regarded as (0 — p°)-
modules. Hence by 16 Chapter 4, MM and N are (0 — p°)-isomorphic. It
follows that 9t and N are o-isomorphic. We recall also that an indecomposable
bounded o-module M has only one composition series and its length is the ex-
ponent e of the prime p in the bound p° of M. Any submodule and any differ-
ence module of M are indecomposable.”

Now let Mt be arbitrary and suppose that I = PNy @ --- @ M. where the
It; are indecomposable and 0. If the bound of M, is p5’ , p; a prime, then by
the Krull-Schmidt Theorem we see that the ideals pi' , -- -, p* are invariants
of M. If IR and N are two o-isomorphic bounded modules, then they have the
same invariants. On the other hand, if I and M have the same invariants, we
may suppose that the subscripts of the indecomposable components have been
chosen so that I, and N, have the same bounds  Then N¢; and IN; , and conse-
quently It and N, are o-isomorphic.

For the applications to ideal theory it is more convenient to deal with the
dual decomposition of 0 as a direct intersection. Here we consider submodules
M: = Msuchthat 0 = My A -+ A Mo, M+ M A -+ A My A Mia A

A ML) = M and M — M is indecomposable. We recall that if M =
M @ --- @ M, where the M, are indecomposable, then we obtain a dual

10 Tn general, any submodule (difference module) of a bounded o-module 9 is bounded.
Its bound is a divisor of that of JR.
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decomposition of 0 by taking N; = My + -+ + iy + iy + -+ + My,
C'onversely, any set of M; lead to a set of M; by means of the definition M; =
M A - A My A MWiy A --- A D, . Tt follows from what we have shown
that Mt is completely determined in the sense of o-isomorphism by the bounds
of the modules M — N (o-isomorphic to IM;) where the M are the components
of the dual decomposition.

9. Decomposition of integral o-ideals. The significance of the assumption
that the integral right (left) o-ideals are bounded may now be seen. If b is an
integral right o-ideal, the boundedness of b implies that the o-module I =
o — b is bounded. For if ais a two-sided o-ideal contained in b, a 1s contained
in the annihilator of 9. The bound of M is the join of all two-sided o-ideals
contained in b. We shall refer to this o-ideal also as the (right) bound of b. A
similar definition holds for the left bound of an integral left o-1deal.

Corresponding to the dual decomposition of 9 = o — b we obtain right
o-ideals gq; (+ = 1, ---, u) such that

Gt A A gu.=D, gi + (@ A -+ A Qizi A Giga A -+ A qu) =0

or, if we use the customary notation [, ] for the intersection and (, ) for the
join, then

(1) [Ql, ""7qu]=b7 (Qi,[Ql,"',Qi—l,QH—l,"',Qu])=D

The dual components of I and M; = a; — b. Since M — M is indecomposable,
0 — @i, which is o-1somorphic to (0 — b)) — (b — q:) = IM — IM; , is indecom-
posable. The bound of ¢ — I is the bound of the ideal q;. Evidently the
converse also holds: Any decomposition of b as a direct intersection of ideals
(in the sense of equation (1)) such that o — g; are indecomposable p-modules
yields a decomposition of 0 in MM = o — b as a direct intersection of submodules
M: such that M — M; are indecomposable. It follows from the general theory
that if b is a second integral right o-ideal and b = [§;, Gz, - - - ] is a direct inter-
section such that the o — §; are indecomposable, then a necessary and sufficient
condition that o — b and o — b be o-isomorphic is that the bounds {*, 3!, - - -
of §, G2, - -+ be the same (except for order) as those of g1, g2, ---. As in the
case of principal ideal domains, we call b and b (right) stmilar if o — band 0o — b
are p-isomorphic. Then we have the following

THEOREM 25. If b = [qy, Gz, --- ] and b = [, Tz, - - - ] are decompositions
of the integral right o-ideals b and b as direct intersections of ideals q: and q; such
that o — q; and 0 — q; are indecomposable then a necessary and sufficient condition
that b and b be stmilar is that the aggregate of bounds of the q; be the same as that of
the ai .

If a = pi' --- pi*is an integral two-sided o-ideal and the p; are distinct primes,
a = [p1’, ---, pe*] and (p%, [pi*, - - -, piigt, payt, --+]) = o. Moreover if p is

a prime ideal, = 0 — p° is a primary ring whose radical is p = p — p°. Since
0 — P = b where d is a division ring and k is the capacity of p, 5 is a direct
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sum of k£ 1somorphic indecomposable right ideals. It follows that there are
exactly & 1deals in any decomposition of p° as a direct intersection [a1, g2, - - -, ax)
where the 0 — q; are indecomposable, and all of the q; are similar. Thus the
q: all have the same bound which is therefore p°.  Now in the general case of an

arbitrary integral two-sided o-ideal a = pi' - -+ p¢*, we obtain a decomposition
of a = [pi', - -+, ps*] as a direct intersection by decomposing the p;* in this way.
Hence we have |

THEOREM 26. “Let a = py' - -+ ps® be an integral two sided o-ideal and p; a prime
of capacity k., p; # p; tf © # j. Then a 18 a direct intersection [qu, -+, Qe ;
cre 3 Qus, tcc, Or,s) Where the 0 — qi; are indecomposable, and for a fixed j any

pair qi; , Gir; are similar and have the bound p;’ .
As an immediate consequence of the theory of modules we have also

THEOREM 27. If q1is an integral right o-ideal such that o — q 1s indecomposable,
then o — q has only one composition series and its length is e if the bound of q 18
p°, p a prime. All the composition factors of o — q are o-1somorphic. If o' is an
integral right o-ideal containing q, o — q’ 18 tndecomposable.

From Theorems 26 and 27, we obtain the

CoroLLARY. If p is a prime ideal with capacity k, p s a direct interseciion
(g1, - - -, qr] where the q; are maximal right o-ideals, are all similar and have
p for bound.

10. Normal ideals. In order to obtain a satisfactory factorization theory for
one-sided ideals it is necessary to consider simultaneously all of the maximal
orders o equivalent to a fixed order. .This important remark was made first by
Brandt for orders in an algebra. From now on we assume that all the maximal
orders satisfy conditions II, III and IV. It may be recalled that IV holds for
all maximal orders if 1t holds for one of them.

Definition 4. An ideal a; 1s called normal if both its left order o; and its
right order o, are maximal.

In the next two sections we shall develop a factorization theory for normal
ideals. Here we establish the fact that this theory is valid for arbitrary right
(left) o-ideals of a maximal order o by proving that any such ideal is normal.

LemMa 1. Let b be an inteégral right o-ideal £ o having the bound p, a prime
tdeal. Then there exists an integral left o-ideal ¢ with the (left) bound p such that
p = cb.

Consider the right ideal b — p = b in the simple ring 8 = o0 — p. Since
b = 7, the left ideal © of left annihilators of the elements of b is = 0. If ¢is the
integral left o-ideal corresponding to ¢, then ¢ £ p and p* £ ¢b £ p. Since
¢b is a two sided o-ideal, either ¢b = p° or ¢cb = p. If the former equation holds,
for each ¥ in ¢ we have yp < p° and on multiplying by p™' yo < p. This con-
tradicts the fact that there exist ¥’s in ¢ that are not in p. Hence ¢b = p.

LeMMA 2. If b is an integral right o-ideal properly contained in o, then b~ > o.
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Let q be a maximal right o-ideal so that o > q > b. Then the bound p of g
1s prime. If ais a regular element of p, a0 = cp where ¢ is a right o-ideal. By the
preceding lemma, p = bq for a suitable left o-ideal d containing p but =#y.
Hence ap = ¢dg, 0 = @ ‘cbgandsoa ' d < q . Ifq ' =o0,a'd <0, cd < a0 =
¢p and ¢dp” " =< ¢. Thus dp~' is contained in the maximal order 0. It follows

that d < (p7))™" = p. This contradiction shows that q " > opand hence b™' > o.
Lemma 3. If b is a right o-ideal, o maxvmal, then 6™ s normal.

Let o’ be the left order of 0, o’ the right order of 6™ and o* any order contain-
ing o’’. Clearly o* = o’” = o’. Consider the set b™'0*b. Since (b "0*b) (0™ 0*b)

< b 'o*o’0*b = b 'o*b, b 'o*b is a subring of . It contains o since b p*b
> b7'b = 0. Now if a and b are regular elements of b™ and b respectively,
ao*b < b7 'o*b and b(b'o*b)e < bbo*bb™' < o’o*0’ = o*. This shows that

b~'0*b is an order and so because of the maximality of o, b '0*b = o. It fol-
lows that b"'0* < b™' and since o” is the right order of 6! o* = o”’. This
proves that o’ is maximal and b™" is normal.

THEOREM 28. If b 1s a right (left) o-ideal and o is maximal, then b is normal.

First let b be integral and let 0 > b; > by > --- > b,, = b be a chain of
right o-ideals corresponding to a composition series for o0 — b. Now b™" > o
and hence (6”7 < p. Since 7007 = 007" = b7, b < (b™)"". Hence if
m = 1, b = (677" by the maximality of b. Then the theorem follows from
Lemma 3. We assume now that the theorem holds for integral ideals b’ for
which the length of 0 — b’ is less than m. Then b,,_; is normal and if o’ is the
left order of b,_;, o’ is maximal and 0,0,y = o’. We wish to show that
o/ > b.b,.; and that b,b,-, is maximal in o/. Evidently o/ = T
0By and if o/ = bubpiy, 0/ Bmey = bmbriibmy = b0 = b, contrary to the
inequality b,_; > b, . Next let ¢ be aright o’-ideal such that o’ > ¢ = b,.b,.5, .
Then 0’6y = by = ¢bpy = b, and either b,y = ¢bpnyor by = b, If
b1 = Cbm_1, 0’ = co’ = ¢. Hence ¢bmy = bnand ¢ = b,b,,~;. This proves
that b,bn..; is a maximal right o’-ideal contained in o’ and by what we have
shown, b.b,—; is normal. Since, as is readily seen, the left order of b,b,
coincides.with that of b,, , b,, = b is normal. If b is not integral, there exists a
regular element a such that ab < o. Since ab is an integral right o-i1deal, its
left order is maximal. Now if o* is the left order of b, ap*a ™" is the left order of

. -1 - . . .
ab. Since ao*a  1s maximal, o* is maximal.

11. Brandt’s groupoid. In order to obtain an extension of Theorem 22 that
is applicable to one-sided ideals we require the concept of a groupoid which we
now define. A system G is a groupoid if a product in G is defined for certain
pairs of its elements subject to the following conditions:

1. For each element a;;, there exist uniquely determined elements e; and e;
in G such that the products e;a;; and a;e; are defined and e.a;; = a;e; = aij.
These clements are respectively the left and the right unit of a;; .

2. If e i1s a unit for any element of ¢, then e is its own left unit and hence its
own right unit.
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3. The product ab is defined if and only if the right unit of « is the left unit of b.

4. If ab and bc are defined, (ab)c and a(bc) are defined and (ab)c = a(be).

5. For any element a;; with the left unit e; and the right unit e; there exists an
element a;; with left unit ¢; and with right unit e; such that a;a7; = e; and
a?,-l a; = ¢;. We call a;; the inverse of a;; .

6. For any pair of units e; and e; there exists an element a,; having e; as left
unit and e; as right unit."

Example. Let Gy be an arbitrary group and let G be the set of n X n matrices
(n finite or Infinite) having one element in Gy and the remaining elements O.
We denote the matrix having the element a of Gy in its ¢-th row and j-th column
by a;; and we define a;;b;x = (ab)y, . It may be verified that G 15 a groupoid.
The units of G are the elements e; = 1;; and the inverse of a is (a™1);; .

In an arbitrary groupoid @ it is readily seen that the inverse a=! of an ele-
ment a is unique. We note also that (a=1)~! = a and if ab is defined, b—la!
1s defined and (ab)~! = b~'a~!. If ab is defined and e is the left unit of a, then
e 18 the left unit of ab. For e(ab) = (ea)b = ab.

Let e be a unit and let G(e) denote the set of elements a of G that have e as left
unit and as right unit. It is readily verified that G(e) is a group relative to the
composition of G. If e and e’ are units and ¢ is an element having these respec-
tively for left unit and right unit, then the mapping x — ¢ 'zc¢ is an isomorphism
between G(e) and G(e¢’). If G(e) 1s commutative, this isomorphism is inde-
pendent of the choice of the element ¢. For if d is a second element with left
unit e and right unit ¢’, then ¢d™ is in G(e). Hence (cd Nz = z(cd ") for any
z in G(e) and so ¢ 'xc = d'zd. In this case we call z in G(e) and 2’ = ¢ 'zc
in G(e’) conjunctive. |

We corsider now the set G of normal ideals. Let a and b be normal and
suppose that the left order of a is o’ and the right order of b is 0. Then there
exist regular elements a and b such that a < o’a and b < bo. Hence ab =
o’abo and since (Theorem 5) there exists a regular element ¢ such that o’ < oc,
ab =< ocabo. We have seen that ocabo is a two-sided o-ideal and so there
exists a regular element d such that do = ocabo = ab. This shows that ab
1s a right o-ideal and in a similar manner we prove that ab i1s a left o’-1deal.
Since o and o’ are maximal, the orders of ab are o’ and o and so ab is normal.

We define the product ab of normal ideals a and b to be proper if for any pair
of normal ideals a’, b’ such that a’ = a and b’ = b and either a’ > a-or b’ > b,
we have a’b’ > ab. We wish to show that G is a groupoid relative to proper
multiplication. Condition 1 holds for any normal a;; and its left and right
orders o; and o, . Condition 2 is evident. We consider 3 in the following

LemMa. If a and b are normal, ab s a proper product if and only if the right
order of a s the left order of b.

1 Tt may be remarked that if ‘G is any groupoid, we may adjoin an element 0 to @
and define 0a = 0 = a0 and ab = 0 if ab is undefined in G. The extended system is a
special type of semi-group called completely simple (c¢f. A. H. Clifford [3]). For the
present applications the definition given in the text seems to be the appropriate one.
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Let o be the right order of a and o’ the left order of b. If o’ £ o, a0’ 1s a normal
ideal properly containing a. Since (ao’)b = a(o’b) = ab, ab is not a proper
product. Conversely suppose that o = o’ and let a’ be a normal ideal containing
a such that ab = a’6. Then a’bb™" = abb™  or a’o = a0 = a. Thus a = o
and so a’ = q.

Condition 4 is now evident. If a;; is normal, we set a;; = a;; and we obtain
5 by Theorem 20. If o and o’ are arbitrary orders, 0’0 is a normal ideal having
o’ and o as its orders. This proves 6 and hence

THEOREM 29. The normal ideals form a groupord G with respect to the operation
of proper multiplication. The maximal orders are the units of G and the inverse

ideal a~' is the inverse of a in G.
We prove next the following extension of 6.

TureoreM 30. If o and o’ are maximal orders, (00’)"" is an integral ideal with
the right order o and the left order o'. The ideal (00’)™ contains every integral
wdeal a that has o for right order and o’ for left order.

Since oo’ is normal, (00o’)”' is normal and has the left order o’ and the right
order p. Since o = (00")(00’)™ = (o0”)7, (00’) "' is integral. Now let a be any
integral ideal with the right order o and the left order o’. Then oo’a < oa < o
and so a < (oo')7".

The ideal (00’) ™" is called the distance ideal from o to o’.

We recall that the group G(o) of two-sided o-ideals is commutative. Hence
if ¢ is an ideal with left order o and right order o/, the mapping a — ¢ 'ac = a’
1s an isomorphism between G(o) and G(o’) independent of c. As in the case of
an abstract groupoid, we call a and o’ conjunctive. Evidently a is-a prime P
or a prime power p° if and only if ' = p’ or p’°, p’ a prime of o’.

12. Necessity of conditions I-IV. Let A be a ring with an identity in which
every regular element has an inverse, and suppose that G 1s a set of additive
subgroups q, b, - -+ of A that form a groupoid relative to a composition that
coincides with ordinary multiplication'® of additive subgroups when it isdefined.
We assume the following conditions:

1. Every a in G contains a regular element.

2. Every unit o of G 1s an order in 2.

3. For each unit o in G, every integral right (left) o-ideal is in G and has o
as 1ts right (left) unit.

4. For any pair of units o and o’ there 1s an a contained in 0 A o’ having o
as its right unit and o’ as its left unit.

We note then that if a 1s in G and o is its right (left) unit, a is a right (left)
o-ideal. For a is a right o-module and if a is a regular element in a, a contains
ap. Since a 'a = o, b 'a < o if b ' is a regular element in a ' and so a < bo.

TaEOREM 31 (Asano). If the above conditions 1-4 hold, then the units of G
form a set of equivalent orders satisfying conditions I-1V. The set of units of G

2 We recall that if a and b are additive subgroups, ab is the smallest additive subgroup
containing all ab, ain a and b in b.
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includes all the maximal orders equivalent to these orders. The groupoid G consists
of the normal ideals relative to these orders with the groupotd composition as proper
multiplication.

Equivalence. Let o and o’ be two units of G and let a be an ideal having o
as right unit and o’ as left unit. Then o’ = aoa ' = aob if a is regular in a and
bisregularin a” ' . Similarly, 0 = co’d for suitable regular ¢ and d.

Boundedness of integral ideals. 1If a is in o, ao 1s integral and hence belongs to
(. Let o’ be the left unit of ao in G and let a be an ideal contained in o A o’
and having o as its left unit and o’ as its right unit. Then ao = o'(a0) = a(ao)
a two-sided o-ideal belonging to .

Mazximality. Suppose that o is a unit in & and that o* is an order equivalent
to o and containing 0. Then there exist elements a and b such that o* < aob.
If b = dc' with d and ¢ in o, 0* < aoc”'. We have seen that oc contains an
integral right ideal go and so ¢ 'oc = o and ¢ 'o = oc . Hence 0* < aoc™' <
ag 0. Thus if A" = ag~', ho* is contained in o and is therefore an integral
right o-1deal. By 3, ho* is 1n ¢ and has o as its right unit. If a denotes the
inverse of ho* in G, then aho* = p. Since (0*)° = o*, this implies that oo* = o
and 0* =< o. Hence 0* = ».

Ascending chain conditton. let a; £ a: = --- be an ascending chain of
integral right o-1deals. The join a of the a; is an integral right o-ideal and hence
belongs to G. We have ma”" £ wa™' £ --- £ aa”’ = o’ the left unit of a.
The join of the a;a " is o’. Sinece 1 isin o/, it is contained in one of the a;a™", say
a.a . Then o’ = 0,087 = an0 ' = ---. By multiplying by a we obtain
A = Qo = - ° . :

Restricted descending chain condition. Let by = b, = --- be a descending

chain of integral right o-ideals all containing the two-sided o-ideal a. The
b; and a are in G and we have the relation 0 = b7'b.. Hence bz’ = ob3' = b0’

> b;'if o/ is the left unit of b.. Thus b7' < b3' < --- £ o' and ab;’ <
abz;’ £ ... isan ascending chain of integral left o-ideals. It follows that ab,! =
ab;l, = --- for a suitable index m and hence b;' = b4, = --- and b, =
bm-H _

Now since any integral o-ideal is bounded and o i1s maximal, any o-ideal is
bounded. Hence each unit o satizsfies the conditions I-IV. If ais any element
in G, a is an ideal relative to its units and since the latter are maximal, they are
the orders of a. It follows that the inverse of a in ¢ is the ordinary inverse
ideal. Hence the operations in G are the ones previously defined. It remains
to show that every maximal order o’ equivalent to an o in G is in G and every
normal ideal having orders in G 1s in ¢. Let o’ be maximal and suppose that
o’ =< aob. Then oo’ < oaob = oc for a suitable ¢ and so oo’ is a left o-ideal.
Its orders are evidently the maximal orders o and o’. Since the inverse ideal
(00”) " is the set of ’s such that (po”)x < o, (00’)” is contained in 0. It follows
that (oo0’)”" belongs to G and since its left unit in (¢ is its left order, o’ is in G.
Finally, let b be any right o-ideal, 0 in G and let a be a two-sided o-ideal contained
in b. Since a = a0’ where a; and a» are integral two-sided o-ideals, a is in G.
Now ¢ = b 'a is contained in o and hence belongs to G. Hence b™' = ca ' is
inGand b = (67) ' isin G.
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Example. We let o be a principal ideal domain and 2, its quotient ring.
Consider the set G of additive subgroups of the form aob, a and b = 0. If z is
an element of A such that (aob)x = aob, (ob)xr < ob and bxr = yb, y in 0. Hence
xisin b 'ob and, conversely, if z is any element in b ob, (aob)x < aob. It follows
that if aob = a’ob’, b 'ob = (b") 'ob’. Hence if we specify that b 'ob is the
“right unit” of aob, b~ 'ob is uniquely determined in G. Similarly if we define aoa™
to be the “left unit” of a = aob, this element does not depend on the choice
of a in the representation of a. We consider only those products (aob)(cod)
where the right order b 'ob of aob is the same as the left order coc™' of cod.
Then beo = obc and (aob)(cod) = abcod is in G. The set b 'pa”' may be charac-
terized as the totality of elements z such that (aob)z is in the left order asa™".
Hence if we define (aob)™' as b 'oa ', this element is uniquely determined by
aob and satisfies (aob)(aob)™ = aoa™', (aob) '(aob) = b 'ob. Every right or
left a 'oa-ideal (integral or not) is principal and hence belongs to G. Finally
for any pair of units ¢ 'oaz and b 'ob in G there is an element b 'oa having these
respectively as right and left units. Thus  is a groupoid that satisfies condi-
tions 1, 2 and 3. We show now that if every integral o-ideal is bounded, the
condition 4 holds. In this caseif @ = bc™, b, ¢ in o, is any element in 9, there
is an element c* in o such that c*o = oc* and ¢ 'c* is in 0. This is clear since co
contains a two-sided o-ideal c*o = oc* and so ¢* = c¢c’, ¢’ in o and ¢ '¢* = ¢,
It follows that aoc* = ac*o is integral and has aoa™ as its left order and o as its
right order. Since the order b 'ob is isomorphic to o, it satisfies the same condi-
tions as o and so by a similar argument we may show that for any pair of orders
a 'oa and b 'ob there is an a 'oa-left, b~ 'ob-right ideal contained in these orders.
This shows that the present discussion is applicable directly to the principal
1deal domains in which every integral ideal is bounded.

13. Factorization of normal ideals. We consider now the question of factori-
zation of the integral elements of the groupoid . If o; and o; are maximal
orders in (¢, we denote the normal ideals having o; as left order and o; as right
order by a;;, bi;;, -+ . The following is the fundamental lemma.

LeEMMA. A necessary and suffictent condition that by, = a;; (bjr = ;) 8 that

a;; = Cixbr; (a;; = bjcri) where ¢ (1) 18 integral. Equality holds +f and only of
Citk = 0; (ki = O&).

If a;; = ciby, with ¢ in ox, then a;; £ by;. By the preceding lemma, a;; = by;
Only if £ = 7 and ¢z = o;. Conversely if bkj = My, O = aijbk_-jlbkj = Cikbk,‘
where ¢;x = a;;05;. Then cix < a;ap; = 0; and so ¢ is integral.”

Suppose that a;; is integral and properly contained in o;,. Let o; > a;; >
@iy; > -+ > Q;,; = G; be a chain of integral right o;-ideals corresponding to a
composition series for o; — a;; . The composition factors of the series are then
p;-1somorphic to the modules a;,_,; — a;;. By the lemma, we have a;; =
Dipin—,0ir—y; and hence a; = Pi, Pip—iimy *°* Piy; (Pi;; = ai;). The integral
ideals p;.:,_, are maximal in their orders. For otherwise p;.,_, = vi8u,_,

13 More generally, if bx; = a;;, we have a;; = c¢ikbridi; where ¢;x = a;;(0x0;;) 7 and b; =
—1 .
b,.; a:;; are integral.
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where t;,; 1s integral and # o, and 8,;,_, is integral and # o,,_,. Thena;_, >
81ip—,Mip_;; > Qi; contrary to the irreducibility of a;,_,; — a;;. It follows
that the bound of p;._, iIn o,,_, (left bound in o;,) is a prime ideal. It is
also clear that we may retrace our steps in the above argument: If a; =
Diipe Dipyimes * - Piy; 18 any factorization of a,; into maximal integral ideals
Dipis—, , then o; > p;; > 0y bi; > -+ > Qi corresponds to a composition
series for o; — ay; .

In order to discuss the relation between different factorizations of a;; we
require an extension of the concept of isomorphism that is applicable to modules
relative to different orders of A. Let I, and M, be respectively o~ and ox-
modules that are finitely generated and bounded. Then we shall say that I
and M are conjunctive if the invariants of P, and M may be paired into con-
junctive pairs. If 7 = k, this is equivalent by 8 to ordinary isomorphism.

THEOREM 32. If c¢;; 18 an integral ideal and b;. 1s any tdeal, then IN; = o0; — ¢;;
and My = b, — ci;b; are conjunctive.

We note first that these modules are lattice isomorphic. For any submodule
of M, corresponds to an ideal b, such that o; = d; = ¢;;. Then by = dybjr =
¢;;0;x and by multiplying by b7, we see that equality holds in the second set of
equations only if it holds in the first set. Moreover, any submodule of ¥t has
the form u; — c;;b;x where uy is an oi-module contained in by, . It follows that
Uy 1S a right pi-ideal and hence is normal. Then by the lemma, uy = dybjx
where d,; 1s integral. Thus our correspondence between the submodules of IN;
and those of i 1s (1 — 1) and, since it preserves order, it is a lattice iIsomorphism.
If ¢;; 1s the bound of IM; , 1t is readily seen that the bound of My is the conjunctive
ideal ¢ = bjrc;;b,x . Hence if we decompose ¢;; as a direct intersection [c;;, - - -,
¢i,;] of o;-right ideals such that o; — ¢, ; is indecomposable, then the bound of
0; — Ci,; 1s conjunctive to that of b;; — ¢;;b;x. We recall that the bounds of
the o; — c;,; are the invariants of ;. On the other hand by the lattice iso-
morphism, 0 in M is a direct intersection of the modules My~ = Ci, ;b —
¢;;bix and the difference modules M — My” are indecomposable. Since Py, —

¢ is isomorphic to bz — ¢: ;b , its bound is conjunctive to that of o; — ¢ ;
and so the invariants of IN; are conjunctive to those of My .

Of course a like discussion may be made for left modules. Now we shall call
the integral ideals b;; and cx; right similar (left similar) if the module o; — b,
(left module 0; — b;;) is conjunctive to 0; — ¢z (0x — ¢x;). In the next section we
shall show that two ideals are right similar if and only if they are left similar.
We may therefore drop the modifiers “right” and “left” in these terms. We

now state the fundamental factorization theorem.

THEOREM 33. Any integral ideal a; may be factored as a product
Ditye Pipeyipy - Di; of maximal integral ideals. If i = Dik,_ Dey_ihuey - D
18 a second factorization of this type, then the number of factors n = m and the
p’s and p”’s may be pazred into stmilar pazrs.

We have seen that a factorization of a; as p.,_, --- ps; corresponds to a
composition series for o; — a; whose composition factors are isomorphic to
certain modules a;,_,; — 9ii-,%_,; . By the preceding theorem these are
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conjunctive to the modules 0;,_, — pi,i,—, . Our theorem is therefore an imme-
diate consequence of the Jordan-Hoélder theorem.

The ‘“necessity’’ part of the following theorem is an immediate consequence
of Theorem 27.

THEOREM 34. A necessary and suffictent condition that o; — q;; be indecompos-
able 1s that q.; have only one factorization as a product of maximal integral ideals.
If the condition holds, then the maximal factors of qi; are all similar.

To prove the sufficiency, suppose that q; = [gi;, qi,7] and (qi5, Gi7) = ;.
Then qi; = ti:,0:; = Ti,0i,; Where the t's are integral ideals. Hence if q;,; #
q:; and q:,; # @i, we have two distinct factorizations of q;; .

The following corollaries are evident.

CoroLLARY 1. If o; — q; is indecomposable and qi: 18 a factor of qi;, 01 — Qr:
18 tndecomposable.

CoROLLARY 2. The module o; — qi; 18 tndecomposable if and only if the left
module o; — q;; 18 tndecomposable.

We recall that if 0; — q,;1s indecomposable then its (right) bound has the form
p;; where p;; is prime and e is the length of a composition series of 0; — .
Evidently e may be characterized as the number of maximal factors in a fac-
torization of q;; . This together with the corresponding result for left modules
yvields |

CoroLLARY 3. If o; — qy s tndecomposable and the bound of qi; s b;;, b,
a prime, then the left bound of q.; has the form pi; , pi; a prime.

If p;; 1s a prime ideal, o; — p,, 18 a simple ring and hence the composition
factors of the module o; — p;; ‘are all isomorphic. This implies the following

THEOREM 35. If pj; is-prime, all the maximal factors of p;; are sstmilar.

We show finally that the order of the similarity classes of maximal i1deals
appearing in a factorization of any integral ideal i1s arbitrary: Thus if q;; =
Dii,— Pineyim—s ° *° Pi; Where the p’s are maximal and if the class of p;_, 1S
(%, there exists a factorization of a;; as px,,_, « - p,’cl,- where the corresponding
similarity classes C;, ---, Cr is any prescribed permutation of Cy, ---, Cp.
Evidently 1t suffices to prove the following

THEOREM 36. If p,;, pix are marimal integral ideals, then PPy = DiDik
where py; and P are stmilar and p;x and pr; are right (left) similar.

If 0, — pipjx 18 iIndecomposable, p;; and p;x are right similar. Hence we may
take pi; = Vi, p;k = p:-k. Otherwise we have p;p; = [pilk, pi-zk], (D:lk,
pi,») = or. Then we may suppose that p; ; is similar to p;; and pi,s is similar
to p,v . Since PP = r,-,-lp:-lk = r,-;zpi-zk , we may take py = Dilk and pi; = T,

14. Similarity of normal ideals. If a; is any integral ideal, its bound a;; is |
a two-sided o,-ideal of the form b;;q;;, b;; integral, and having the property that

1 10 & Aixricar Af antyr 1idnal Af thic farm A cimilar nhanantarimatinn haldo farn +ha
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of a;; does not exceed that of a;;b;; , or that of q;;. By symmetry the numbers
of maximal factors of a;; and of g;; are equal and so a;; = a;;0;; . Then q;; =
a;0;07; 1s conjunctive with a;; . We may use this fact to prove the following

LemMma. If a;; and Dy are right similar and o; — a;; 18 indecomposable, then
Q45 and by; are left stmlar.

Since 0; — a;; and o — bg; are indecomposable, it suffices to show that these
left modules have conjunctive bounds, i.e. the left bound of a;; is conjunctive
to that of by; . By assumption the right bound of a; is conjunctive to that of
br; . Since the two bounds of an ideal are conjunctive this result is clear.

Now suppose that o; — a; 1s decomposable and let a; = [a:;, il
/ I4 . . -
(a:;, G:s;) = 0;. Then ay; = a;;,0i; = Qii0i,7 . The intersection a; =
7/ 7/ - . - . 1 r—1
[a,-,-l y a,-,-z] contains (0 and so Ay = QuCry . Since Cry = Qi Qyy = Qi Qi = Q45
. - , ,
and similarly ¢; = a;,;, we have ¢; = o;, or a; = [aj;,, a:,. Next

let (a;,-l , a'ﬁz) = C41 . Then c?llai,- < a’,-i_lla,-,- = Qiyj and c?lla;,- § Qiof which implies
that ¢;; = o;. Thus a; is a direct intersection of the o.-left ideals aj;, and ai, .

We have seen that 0;, — ajs, and a;,;; — aj4,0:,; = Qi,; — ; are conjunctive.
Since D; — a',-l,- = (a,-l,-, aiz,-) — Qi 1S 0,-isom0rphic to Aip; — [a,-l,-, a,-z,-] =
ai,; — 04, it follows that o;, — ai;, and o; — a;; are conjunctive. Hence
a.,; and aj;, = a;ja5,; are right similar and by symmetry, these ideals are also
left similar. Likewise a;,; and a};, are similar.

We consider now the general case where a;; = [a;,;, -, 0;,;] and where, if
bk’.j denotes [a,-l,-, cct Qi Qippyiy T, (I;s,'], then (a,-,,-, bk,j) = Dj. We
write a;; = ay bk, ; = bi;a.,; and shall show that a;, is a direct intersection of
the p;-left ideals aﬁk, . This has been proved above if s = 2. Hence we may
suppose that it holds for a decomposition into (s — 1) components. It is readily

’ -1 -1 —1
Seen tha’t ?‘llr = a11a1r7 = [ailJ b vt ) ais ]]a1r7 = [[all]) a‘r]]alr] ) v )
- . -1 .
[a:,7, ai5la5,;] and if we delete the term (a:;;; A a:,;)a5,;, ¢ = r in the last
. . -1 .
expression we obtain by ;a;; . Since (bx ;, [a:;, ai]) = [(be,s, ai,5), @il

by Dedekind’s law, and (bx,;, ai;;) = 0;, we have (b ;, [ai,;, a:,5]) = a;.;.
Hence (b, e [0, 5, s, Ja7;) = o;, and so the decomposition of b}; into the
[0, 5, a;, ;lai;, ¢ # r, is direct. Since b;;, = aix, (be, 7)), we conclude from
the induction hypothesis that b:-i, 1S a direct intersection of the p;-left ideals
air, . Since a;;is a direct intersection of a7, and b3, , a;;is a direct intersection

of all the aj:’s. We state this result as

THEOREM 37. If a;; is a duirect intersection of the right oj-ideals a; ; and by, ;
denotes [as j, ~+ -, Qi 7, Qi rj, * -, Qi,;l, then a;; is a direct intersection of the
. -1 ’
o,--left 1deals a.-,-bk,,- = Q;k, -

. . . e . ’ —
Since A;; = [a.-,,- , bk,j]; (ai,,-, bkrj) = 0y, the ideal a;,.; 18 similar to ik, = a,-,-bkrl,- .
In conjunction with the lemma this implies

THEOREM 38. If a;; = [ai;;, -+, ai,;] = [a:j,, -, Qij,] are direct decomposi-
tions of a;; into oright ideals and o j-left vdeals such that o; — a; ; and 0; —a;;j,
are indecomposable, then the divisors a;,; and a;j, may be paired into pairs that are
right and left stmilas.
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Evidently this implies

THEOREM 39. Any two ideals which are right (left) stmilar are also left (right)
similar.

We shall prove finally that two two-sided ideals are conjunctive if and only
if they are similar. For this purpose we require the

LEMMmA. If p;; and p;; are conjunctive prime ideals then their capacities are
equal.

We factor p.; as Pii_ Pi,_ i,—s - - Pi;s Where the p; . _, are maximal. Then
since k is the length of a composition series for o; — p;;, k is the capacity of
p;; . We may suppose that p;; = q;0i:a7: where qj; is a maximal integral ideal.
Now consider b;..q7: . If pis = qji, we evidently have p; :q7; = 0; = q;l,lp;”
where p;,; = q;,;is a maximal integral ideal. On the other hand if p;,; # q,1 i

(P:,i, Gj;) = 0; and so [pi;i, q;] 1s a direct intersectlon of Piys and q;;. Then
!/ / . —
[Dhi ’ qji] = q.’f1ilpi1i = nh 74 ji a'nd SO agaln pll‘IQH -,— qnllan Where p a'nd q

are maXImal ThuS D“ =, q;;puk -1 pzzzl q“n D;l J = dj: puk, p "
szquzanan ,= Tt = Qth“-,l p?k]k -1, Tt nn] = ql7 ql?kpﬂcﬂc 1 Pivi =
q:;7'ti;. Since qp; is maximal, r;; = qi;p;; has &’ + 1 maximal factors if &'

1s the capacity of p;;. On the other hand, the factorization r;; = qz,kp,k,k o
p;. ;shows that r;; has & + 1 maximal factors and so we have proved that &’ = k.

TueEoreM 40. A necessary and sufficient condition that a;; and a;; be similar
1s that they be comjunctive.

If a;; is an intersection of right o;-ideals, it is clear that a;; is also the intersec-
tion of the bounds of these ideals. Hence it follows directly from the definition
of (right) similarity that if a;; and a;; are similar, they are conjunctive. Suppose,
conversely, that a;; and q;; are conjunctive. Then the prime powers p%:, p;;
of these ideals may be paired into conjunctive pairs. Now o; — pi; is decom-
posable as a direct sum of £ isomorphic indecomposable modules, k& the capacity
of p:i, and each of these submodules has the bound p;;. Hence by the preceding
theorem o; — p;; is a direct sum of %k indecomposable modules, each having
the bound pj;. Thus p3; and p;; are similar and consequently a;; and aj; are
similar.
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