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PREFACE 

Sampling Statistics a'nd Applications is the second volume of 
Fundamentals of the The9ry of Statistics; this second volume is 
intended for advanced students or research workers. The first 
volume is entitled Elementary Statistics and Applications and is 
designed for beginning courses in statistics. 

After reviewing the basic concepts an~ definitions in Sampling 
Statistics and Applications, the authors discuss the general theory 
of frequency curves and the theory. of random sampling. Impor
tant sampling distributions are derived, and their applications to 
a variety of problems are illustrated. Exact methods applicable 
primarily to normal populations and approximate methods used 
in sampling from discrete populations and from contil1tlous non- ' 
normal populations are considered. Theoretical discussion is 
illustrated throughout to show real-life applications. The 
character of assumptions involved in theory is explicitly treated; 
the problems that such assumptions present when the statistician 
is confronted with practical applications are illustrated. 

The arrangement of the material in the book is based partly on 
grounds of logic and partly on practical considerations.. The 
theory of frequency curves is general in scope and is therefore 
presented first. The theory of sampling, being _an elaboration 
of a specia.l part of the theory of frequency curves, is discussed 
after 'the more general theory. Within the discussion of the 
theory. of sampling, the more elementary aspects are examined 
before approaching complex proble'ins. This leads to a separa
tion of some. material that might logically be run together. It 
gives the instructor greater freedom, however, in the selection of 
material appropriate for the lev~l of his class, while the arrange
ment is such that he can assign material in logical sequence if he 
so desires. 

For the most part' theory and application have been discussed 
together in this volume. In certain cases, however, in which 
theoretical dispussion is especially elaborate, its applications to 
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vi PREFACE 

practical problems are treated separately. Nu~eHcal calcula
tions for frequency curves, for example, are discussed in a separate 
chapter following the chapters devoted to the theory of frequency 
curves. Again, the uses of the sampling distributions of the 
mean, standard deviation, etc., are discussed in a chapter 
separate from that in which the theoretical derivation of these 
distributions is presented. On the whole, the arrangement of 
material is designed .to facilitate the use of the book in the school 
or research laboratory as well as in the classroom. 

Progress in sampling theory and its application has been rapid 
during the past 25 years. Much has been accomplished in 
deriving exact sampling distributions for important statistics 
and in clarifying the assumptions on which statistical analysis 
rests. Discussion has also been active regarding the concept of 
proba~ility likely to be most fruitful for statistical research, and 
increasing attention has been paid to the logic of statistical 
inference. This development of theory has been accompanied 
by progress in method and application. The discovery of more 
exact sampling distributions, for example, has led to greater 
emphasis upon careful design of experiments and less emphasis 
upon size of sample. Quality of method has, in many instances, 
displaced reliance only on quantity of numbers. 

Sampling Statistics and Applications represents an attempt to 
coordinate the new theory and applications with the old, to 
place the whole upon a logically consistent basis, and to put the 
subdivisions in proper. relation to each other. To this end a 
concept of probability that at present appears most fruitful for 
statistical research was adopted, and the theory of sampling is 
explained in those terms. Elaboration of special techniques 
regarding the design of experiment and analysis of variance is 
not included since the primary intent is to emphasize funda
mentals of thE;) theory of statistics. Explanations both of old 
and of new methods start with the fundamentals; ahd, unless 
otherwise indicated, a particular exposition includes all the 
argument. If a highly mathematical step of an argument is 
omitted or abbreviated, this is so stated. Some of the mathe
matical portions are included in the text; other more advanced 
mathematical material is placed in appendixes to some of the 
chapters. These mathematical .parts. are presented in such a 
way as to be readily teachable. 
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The authors have dra'wn freely upon the many monographs 
and the periodical literature that have appeared during recent 
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INTRODUCTION 

CHAPTER I 

DEFINITIONS ,AND BASIC CONCEPTS 
\ 

Frequency Distributions;, Time-honored observation has 
made commonplace the eight~enth-century discovery that static 
variability in almost any conceivable attribute of an object, 
event, or condition follows a surprisingly uniform pattern.! 
The uniform pattern of static variability is revealed by arrangiJig 
the variable in a frequency distribution or frequency series, which 

. is simply a summary of an array of the variable arranged from 
smallest to largest. It is also calle,d a "monovariate." When 
graphed ·the figure is called a "histogram," "frequency polygon," 
or "frequency curve," depending upon the manner of graphing. 
Two types of frequency series are to be carefully distinguished, 
discrete frequency series and continuous frequency series. 

Discrete Frequency Series. A discrete frequency series is one 
in which the variation, by the nature of the variable, is in distinct 
steps. The variation in size of men's shoes occurs by distinct 
steps, not by infinitesimal differep.ces. Accordingly, a frequency 
series ,describing the number of men's shoes of various sizes is a 
discrete frequency series. The .same statement could be made 
with respect to almost any item of clothing manufactured in 
sizes for mass consumption. 

The graph of a discrete frequency series should be in the 'form 
of a histogram, not a frequency curve; for the latter would sug
gest continuous variability, which is contrary to fact in the case 
of a discrete series. "\, 

Continuous Frequency Series. A continuous series is one 
reprtJsenting a phenomenon that varies by infinitesimal amounts. 

1 Static variability refers to variability which is not correlated with time 
or in which time is "heid constant." Variability correlated with time, i.e., 
dynamic variability, may assume a great variety of patterns. See SMITH, 
J. G., and A. J. DUNCAN, Elementary Statistics and Applications, Chaps. V 
and XIX. 
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For example, the frequency distribution of weights or heights of 
people of some specified age is continuous in character; fof' the 
differences among a large number of people in weight or in height 
are in fact by infinitesimal amounts. A continuous series may 
have the appearance in a frequency table of the same discreteness 
as a discrete series; but this is because the arbitrarily discrete 
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Death rates 
FIG. 1.-Maternal mortality in cities of 100,000 or more population in the United 

States in 1938. (Deaths per 1,000 live births.) 

character of the unit of -measurement eclipses the actuai con
tinuous character of the data. 

The graph of a continuous-frequency series may appropriately 
be in the form of a frequency curve, but often when the number 
of cases observed is comparatively few a continuous frequency 
series is pictured by a histogram. 

Histograms and Frequency Curves. Figure 1 is an illustrl\tion 
of a histogram; it is a graph of the frequency distribution pre
sented in the first two columns of Table 1. In this figure the 
frequency of any class interval is represented by a rectangle 
erected on that interval as a base and with a height equal to the 
observed frequency. 
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For many types of analysis it is preferable to present the fre
quency distribution and the corresponding histogram in a form 
in which the area of a rectangle represents the proportional fre
quency of an interval. Figure 2 is an illustration of such a 
histogram; it is a graph of the third column of Table 1, with the 
same scale variation 'as that used in Fig. 1, namely, that shown 
in column (1) of Table 1. 

TABLE l.-MATERNAL ,MORTALITY IN CITIES OF 100,000 OR MORE 

POPULATIbN' IN THE UNITED STATES IN 1938' 

(1) (2) (3) 

De~f~ ght~~OOO Number of 
Proportioljal 

cities number of cities 

F 
X F N 

1- 2 .022 
2- 16 .172 
3- 18 .193 
4- 20 .215 
5- 15 .161 
6- 10 .108 
7- 4 .043 
8- 6 .064 
9- 0 .000 

10- 2 .022 
~ = 93 ~ = 1.000 

In histograms of the type shown in Fig. 2, the total area of the 
histogram always equals 1, and each of the bars is a portion of ~. 

N ow suppose that the data from which the histogram has been 
constructed were a sample from a very large set of ·c~s, theo
retically an infinite set. For example, the data might be the 
heights of 100 adult males of the white race, instead of the 
mortality statistics ~bove illustrated. The 100 heights, then, 
would be a sample of the heights of all adult men of that race, 
presumably millions of men. If the size of the sample were 
increased, the class interval could be reduced without causing 
irregularities in the form of the plotted histogram. In fact, if 
the number in the sample is made larger and larger and at the 
same time the size of the class interval is continuously reduced, 
the histogram will tend to become more and more regular and 



4 INTRODUCTION 

the tops of the rectangles, which are getting n~rrower and 
narrower, will come closer and closer to forming a smooth con
tinuous curve (a frequency curve). 

F 
N 
0.2 

o 
2 3 4 5 6 7 8 9 10 J J X \ 

Death rDltes 
FIG. 2.-Maternal mortality in cities of 100,000 or more population in the United 

States in 1938. (Deaths per 1,000 live births.) 

68 • 10 12 14 16 
Inches 

FIG. 3.-A frequency curve. 

In such a manner, the frequency curve may be viewed as 
the limit that an area .histogram of proportional frequencies 
approaches as the number of cases is increased and the size of 
the class interval is reduced indefin~tely. The frequency curve 
depicts the distribution of a theoretically infinite set of data, 
with a theoretically infin~tesimal class interval. Figure 3 illus
trates a frequency curve. 
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Being the limit approached by an area histogram of propor
tional frequencies, tp_e frequency, curve has a total area ~etween 
the curve and the X-axis that is always equal to 1. Furthermore, 
any section of area under the curve will give the relative fre
quency of the cases falling within the class interval marking off 
that section of area. . 

Populations, Parameters, and .Statistics. To say that the 
population -of the United States is some hundred and thirty· 
million people is a familiar Use of the word "population." In 
statistics the word is used in the same familiar sense, but it is also 
·used in a more general sense. ' In statistics the term "popula
tion" (or sometimes "universe") refers to the enumeration of 
persons or animals of any kind .or even to the enumeration of 
inanimate things. In statistics, population refers to all the 
objects of a defined kind- in existence in some specified universe; 
for example, all the adult males in the United States constitute 
a 'population, as do all the automobiles in the United States or 
all the three-year-old steers in the United States. 

The measurements of characteristics of a popUlation are called 
"parameters." The average height of all adult males in the 
United States is a parameter of that population. The average 
weight of all. the three-year-old steers in the United States is a 
parameter of that population. Rarely, are the parameters of any 
of these populations actually measured. In practice, it is much 
easier and more practical to estimate the parameter by taking 
the average or measuring the corresponding characteristic of a 
sample from the population in question. This latter measure 
is called a "statistic." Thus paI;ameters are the characteristics 
01 the population, and the corresponding sample statistics are the 
measures of the corresponding characteristics of samples. 

Averages. In aadition to the familiar arithmetic mean, other 
averages are used as devices for summarizing or comparing. The 
median and mode are often used in statiJ;tical analysis; less fre
quently, but necessarily for certain purposes, 1 the geometric 
mean and the harmonic mean are used. 

By definiti9n the arithmetic mean is the sum of tlle variables 
divided by the number of variables, i.e., 

- l:X 
X = N (1) 

1 Cf. SMITH and DUNCAN, ap. cit., pp. 173-179. 
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When the variable is arranged in a frequency distribution, this 
equation for the"mean generally appears as 

- ~FX X=-
N (I') 

to represent the fact that the several class-interval values of X 
have their respective frequencies, so that 

It is important to note that, when the frequency distribution 
is expressed proportionally, as in the third column of Table 1, 
it becomes a distribution of probability. 1 The arithmetic mean 
of a distribution of probability, i.e., of a proportional frequency 

distribution, is equal to L: ~ X. Expressed in the symbols of 

probability, this equation is 

x = ~P(X)X (2) 
.-- . 

Table 2 illustrates the calculation of the arithmetic mean of the 
frequency distribution shown in Table 1. 

TABLE 2.-CALCULATION OF THE ARITHMETlC-MEAN MATERNAL MORTALITY 

IN CITIES OF 100,000 OR MORE IN 1938 

Deaths per 1,000 live births 
F 

F FX P(X) NX orP(X)X 

X Mid-point of 
class interval 

1- 1.5 2 3.0 .022 .033 
2- 2.5 16 40.0 .172 .430 
3-- 3.5 18 63.0 :193 .676 
4- 4.5 20 90.0 .215 .968 
5- 5.5 15 82.5 .161 .886 
6- 6.5 10 65.0 .108 .702 
7- 7.5 4 30.0 .043 .322 
8- 8.5 6 51.0 .064 .544 
9- 9.5 0 .... .000 . ... 

10- 10.5 2 21..0 .022 .231 
93 445.5 1.000 4.792 

1 See ibid., p. 254. 
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x = "2,~X_ ~ 4~~.5 = 4.790 

X = "2,P(X)X = 4.792 

7 

The sum of the column of FX's must be divided by N (= 93) 
in order to find the mean, whereas the sum of the column of 
P(X)X'sjs the mean. It will be noted that taking the mid-point 
of each class interval as the X, respectively, of the various class 
intervals is equivalent to a:;;suming that the frequencies within 
each class interval are so distributed that their average is equal 
to the mid-point. This assumption ,causes negligible error in 
the calculation of the mean. 1 

25% 25% 25% 25% 
of the of the ofthe of the 
cities cities cities cities 

0 3.3 4.5 5.Q X 
OJ Mi Q3 

FIG. 4.-Medi~n ;tnd quartUes of mortality rates in selected cities of the United 
States. 

The median,.is a position average; by definition, the median 
is that value than which there is an equal number of cases larger 
and smaller. When the cases are arranged in an array, the 
median is either the value of the middle one (when there is an 
odd number of cases) or some value between the two middle ones 
(when there is an even number of cases). Ordinarily in the latter 
instance the arithmetic mean of the two middle cases is taken 
as the median value. The symbol for the median js Mi. 

The first quartile, Q1, is the value below which one fourth of 
the cases fall and above, which three fourths of the cases. fall. 
The third quartile, Qs, is that value below which three fourths· 
of the cases fall and above which one fourth of the cases fall. 
The median, obviously, is equivalen.t to the second quartile. 
If the cases are arranged in an array, it should be apparent from 
tne definitions of the median and the quartiles that these three 
values divide the cases into four parts, with one fourth of the 
cases in each part. This is illustrated graphically in Fig. 4. 

1 When the standard deviation is so calculated, as it usually is, it is neces
sary to correct for error due to the assumption made; the correction is called 
"Sheppard's correction." Cf. pp. 10, 12. 
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For the frequency distribution shown in Tables 1 and 2, the 
median is found by interpolating the value of the middle (4&!) 
case, to be 4.53; Ql is found by interpolating the N /4 case to 
be 3.3; and Qa is found by i~terpolating the 3N /4 case to be 
5.9. As shown in Fig. 4, the significance of these three values is 
that, in 1938, 25 per cent of the cities of 100,000 or more popula
tion had a maternal death rate of .less than 3.3 per 1,000 live 
births; 25 per cent of the cities had maternal death rates betw!)en 
3.3. and 4.5 per 1,000 live births; 25 per cent had mate;nal death 
rates between 4.5 and 5.9 per 1,000 live births; and the remaining 
25 per cent of the cities had maternal death rates greater than 
5.9 per 1,000 live births. 

If it were desired to obtain a more detailed description of the 
distribution of .these cities with respect to maternal death ~ates, 
the distribution could be divided in 10 parts each containing 
10 per cent of the cities. The dividing points 'of these 10 parts 
would be called "deciles," instead of quartiles; there would be 
9 deciles, and the fifth would be t1w same value as the median. 
Similarly, if with a larger number of cases it werf:l desired to 
obtain a description of the distribution sufficiently;efined to say 
within what limits lie each 1 per cent of the group of cit\es, the 
distribution could be divided in 100 parts each containing 1 per 
cent of the cities. The dividing points of these 100 parts would 
be called" percentiles"; and there would be 99 percentiles, of 
which the fiftieth would be the same value as the median. 

Another commonly used average, the mode, is described in 
terms of relative frequency of occurrence. It is the magnitude 
that occurs more frequently than any other. The mode is the 
most probaMe value. When the data are presented in a fre
quency distribution, it is necessary to interpolate for the mode . 

. The procedure may be illustrated by finding the mode in the 
frequency distribution shown in Tables 1 and 2. It may be 
assumed that the mode lies somewhere between 4 and 5, -for 
more cases (20) lie in that class interval than in any other of the 
class intervals. The mode is equal to the lower limit of the modal 
class interval plus the interpolated part of the class interval 
established by the relationship of the frequencies above and 
below that class interval. Thirty-six frequencies lie below the 
modal class interval, and 37 frequencies lie above the modal class 

interval. Hence the mode is equal to 4 + 37 ~ 36 (1) = 4.5. 
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The geometric mean is the nth root of the product of n variables 
X. Thus, the geometric mean of 5,8, and 25 is the cube ro~t of 
5 X 8 X 25 = 10. The geometric 'mean may also be defined 
as the antilogarithm of the arithmetic mean of the logarithms 
of the variables X, i.e., 

1 G 'u- = :z log X 
og .m. N (3) 

The harmonic mean is the reciprocal of the average of the 
reciprocals of a variable magnitude Xl, X 2, ••• ,Xn, thus: 

H.M. '= _E_ 

2:l 
(4) 

Moments. In statistics the term "moment" has been taken 
over from physics. In physics, moment is a measure of a force 
with respect to its tendency to produce rotation. The strength 
of the tendency depends on the amount of force and the distance 
from the, origin of the point at which the force is applied. If the 
arithmetic mean is taken as the origin in a frequency distribution 
and the frequencies in each class interval (F 1, F 2, • • • ,F ,,) are 
taken as the forces, at distances Xl, X2, • • • , X"' the moments 
(more exactly moment coefficients since the physical moments 
are divided by N) are defined as follows: 

in which x = X-X. 

:ZFx 
/).1 =-v 

:ZPx2 

/).2 =-
.. N 

:ZPx3 

/).3 =-v (5) 

The Greek letter mu (p.) is used to describe the moments about 
the arithmetic mean. _ When the deviations are measured about 
an arbitrary origin, instead of about the arithmetic mean, 
the symbol used to represent the moments is the Greek letter 
nu (v). Generally speaking, it is more convenient first to 
calculate the moments about an arbitrary origin and by the use 
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of the following equations to obtain the moments about the mean: 

J.l-1 = 111'- 11.1 = 0 
J.l-2 = 112 - II~ 
J.l-3 = 113 - 3112111 + 211~ 
J.l-4 = 114 - 411311 1 + 611~lIi - 3111 

By the use of Sheppard's correction, J.l-2 and J,l4'must be adjusted 
for errors involved in the use of mid-points of class intervals as 
the X's in the proc~ss of calculation. 1 When it is desired to use a 
symbol for a population parameter in the present text, J.l- is 
printed in boldfaced type (v). For the most part, statisticians 
deal with statistics and speculate about parameters. Seldom 
is it possible to specify the value of a parameter. But it is often 
possible to make a maximum likelihood estimate of a population 
parameter; the symbol for this is the symbol for the corresponding 
statistic, with a' breve (.__,) abov~ it. Thus the maximum likeli
hood estimates of the popUlation moments are represented by 
ih, iJ.2, . . . j /1,n. 

Types of Frequency Distribution. The momenj;s are important 
because it is possible to calculate from them precise measures 
that will distinguish types of frequency distributions. The 
measures used by Karl Pearson to distinguish types of frequency 
distributions are the moments and functions of the moments. 2 

Certain functions of the moments derived from them are called 
"betas." The first two are defined as follows: 

If a frequency distribution is normal, {31 = 0 and {32 = 3. The 
degree to which the betas depart from these values is therefore a 
precise measure of the degree to which a frequency curve is not 
of the normal type. 

1 Cf. pp. 12, 132-134. It should be noted that Sheppard's correction is 
for the purpose of removing a bias;. it does not correct for inaccuracies 
brought about by using class intervals that are too large. GOULDEN, C. H., 
Methods of Statistical Analysis (1939), p. 15. 

2 Cf. pp. 134-137. 
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The value of {31 is related to the skewness of a curve, i.e., 
whether or not the mode of the aistribution is greater or less than 
the mean. If the mode is less than the mean, }J.s is a plus quantity 
and the distribution.is positively skewed; if the mode is greater 
than the mean, }J.s is a minus quantity and the distribution is 
negatively skewed. The square root of {31, with the sign of the 
third moment, is often taken as a measure of skewness.1 ( 

The value of f3z is related to whether the frequency curve is .fiat 
topped or peaked. When it is flat topped, the shoulders of the 

\ --
curve are filled out 'and the tails depleted. When peaked, the 
frequency curve is higher at the center and the tails are also 
higher. The broad-shouldered frequency curve is said to 
be "plat ykurtic, " and the narrow, or peaked, one is called 
"leptokurtic." The statistic {32 is said, therefore, "to measure 
kurtosis." If {32 is more than 3, the frequency curve is a peaked 
one; if {32 is less than 3, the frequency curve is a broad-shouldered 
one. For the normal curve, {32 = 3. 

Because of their theoretical advantages R. A.· Fisher2 has 
suggested the use of certain k and g statistics instead of the 
mome~t and {3 statistics. These are defined as follows:3 

1:x 
kl = N 

1:x2 

k2 = N - 1 

k N '" 3 
S = (N _ l)(N _ 2)""x 

(8) 

k4 = (N_l)(N~~)(N_3)[(N+l)IX4-3N;; 1 (IX2F ] 

and 
ks 

l gl = v'k~ 
(9) 

k4 
g2 = k~ 

1 For more complete discussion of skewness and of the normal frequency 
curve, see Smith and Duncan, op. cil., pp. 226-230, 263-267; 285-306. 

2 Statistical Methods for Research Workers, Appendix B to Chap. III. 
3 Cj. FISHER, R. A. Statistical Methods fOT Research W orker8, Chap. III, 

Appendix on Technical Notation and Formulae (1932), p. 74; and GOULDEN, 

C. H:, op. cit., p. 29. 
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For large values of N, kl' k2, and ka are practically the same as 
J.l.l, J.L2, and J.l.a; and k4 equals approximately J.l.4 - 3J.l.~. 

It is necessary to apply Sheppard's correction to the second and 
fourth k statistics, as follows: 

k2 = k2 -'T~ 
k4 = k4 + rto 

Also, for large values of N, gl is practically equal to Vift, and 
g2 equals approximately {32 - 3. Thus, it is readily seen that 
gl relates to the measurement of-skewness and g2 relates to the 
measurement of kurtosis .. 

Standard Deviation and the Variance. From the second 
moment about the arithmetic mean a measure of the dispersion 
of the frequency distribution is obtained. The second moment 
itself is called the "variance." The square root of the second 
moment is called the "standard deviation." 

(10) 

The standard deviation gives a measure of the dispersion of 
the frequency distribution that for most purposes is preferable 
to the average deviation described below. The st~ndard devia
tion of a normal frequency distribution, measured above and 
below the arithmetic mean, includes about 68 per cent of the 
cases. Twice the standard deviation measured above and below 
the arithmetic mean of a normal frequency distribution includes 
all 'but 5 per cent of the cases. When a normal distribution of 
proportional frequencies is regarded as a distribution of proba
bilities it follows that the probability of a cas~ falling beyond the 
limits of X ± 20' of a normal frequency distribution is approxi
mately .05, the probability of a case falling beyond X - 20' is 
.025, and the probability of a case falling beyond X + 20' is 
.025. These facts are of basic importance in sampling theory 
when the normal curve is used. 

Average Deviation. The average deviation is a measure 
of dispersion that has its minimum value when deviations are 
measured from the median. To compute the average deviation 
from the median, subtract each of the N values of X from the 
median, add the absolute values of the deviations, and divide 
the sum by N. Thus, 

A.D. ~IF(X - Mi)l 
N 

(11) 
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The average deviation is less affected by extreme deviations 
than the more popular standard deviation, and for this reason 
it probably has greater sampling reliability from extremely 
leptokurtic (peaked) populations. 

Range. The absolute range of a frequency distribution is -the 
difference between the highest and lowest values of the distribu
tion. The relative range is this difference divided bi the 
standard deviation. 

Bivariate and Multivariate Distributions. In the univariate 
frequency distributions discussed in the preceding sections, the 
data were classified according to a single characteristic. In . . 
TABLE 3.-A BIVARIATE FREQUENCY DISTRIBUTION OF 81 MOUNT HOLYOKE 

FRESHMEN ACCORDING TO THEIR GRADES IN FIRST- eX.) AND 

• SECOND- ex 1) SEMESTER ENGLISH 

~ ~r 2160- 80- 100- 120- 140- 160- 180- 200- 220- 240- 260- 280- F 

~I ' I--
I 

60- 1 
1 1 

80-

120- ° ----1------------------------
140- 1 1 2 ------'---1---

5 3 1 1 9 
----11- ---- ----

160-

180- 2 4 2 8 

---1--3--4---7 -2 -----;-

---1----1-----------
220- I, I 2 4 7 4 17 1-1-1-1----2 -7 -3 -1 ---;:;-

-::-: -1-[1=:=1=[=1 . FI: 4 4 1= : 
__ 3_00-__ 1_==1====1====? 2 

2 I 0 1 I 7 5 8 9 113 18 11 5 2 81 

200-

240-
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bivariate or multivariate distributions, data are classified 
according to two or more characteristics. Table 3 is _an ilJus
tration of a bivariate frequency distribution. The frequency 
distribution showing grades .of the 81 Mount Holyoke freshmen 
in second-semester English, shown~in the total column at the 

AZ X z=204.1 
3Wr--r--r--r--~~--~~r-.--'--~--r-~ 

300 

180 

260 

240 

2W~-r--r--r~r--r-7~~~~~-1--~~~ 

200 

180 

160 

140 

1'20 

100 

-,.... .... " f'ro(lrg§sion 
oftheXc 

12.0 140 160 180 200 220 240 260 280 300Xz 

FIG. 5.-Progression of the means of X, with changes in X,. 

right, under the caption P, is cross classified to show how each 
group of freshmen did in its first-semester English. Thus of the 
8 students having second-semester grades between 180 and 200, 
row 7 of Table 3 shows that 2 had first-semester grades between 
140 and 160, 4 had first-semester grades between 160 and 180, 
and 2 had first-semester grades between 180 and 200. This is a 
small univariate frequency distribution of the group of students 
who had grades between 180 and 200 in their second-semester 
course. In Table 3 there are 13 rows and 12 columns, of which 
11 (in both instances) contain univariate frequency distributions. 
Since there are 11 subgroups of 11 groups, there are altogether 
121 classes, represented by 121 squares or cells in the table, of 
which 28 contain frequencies. 
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The characteristics' of a bivariate frequency distribution can 
be described by various statistics.. Many of these are the same 
as the statistics employed in the description of a univariate fre
quency distribution, and some are new. Thus" the central 
tendency of one of the two variables may be measured by its 

Xl X2 =204.1 
320~--------------~--~-----------r~ 

300r--------------------+------~7 

Z80r-------------~--__ -+~--~~ 

~Or-------------~-------Y 

220 I========:;L-,k~.c=.=====ti 

200 !----------~ 

120 

100 

x;= -s.S48-fa9G4~ 
:"fC---J 0"2.1 =t 21.02 

r-----t 0--0- -oProqre.§.slon 
oftheXr 

~~~~~--~-L--~_u~~~~~~~X 
100 120 140 160 180 200 220 240 ZliO zao 300 /I 

FIG. 6.-Progression of the means of Xi with changes in Xl. 

mean, or its mode, or its median. Similarly, the dispersion of 
this variable may be measured by its range, its standard devia
tion, its averl1ge deviation, or its quartile deviation; and its 
skewness and kurtosis may be measured.. by {31 and {32, respec
tively. The same is true of the other variable and of the numer
ous univariate frequency distributions that make up the details 
of a single bivariate distribution, i.e., each frequency gistribution 
of the rows and columns. 

Progressions of Means. If the data are grouped in the form 
·of a bivariate scatter diagram such as' Table 3, one way to meas
ure the association between the two variables is to compu,te the 
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mean values of one variable for various values of the other, i.e., 
the means of the rows and the means of the columns of Table 3. 
The means of the columns show how the X I variable tends to 
change, on the average, with changes in X 2 ; and the means of the 
rows show how the X 2 variable tends to change, on the average, 

X2 =204.1 . Xl 
320 

300 .' a' 

280 

260 

240 .' 
220 

200 

180 , 
Xl 

160 Xl 

140 , 
X J =47.S791+o.8J22X2 

120 

6060 80 100 120 140 160 180 200 220 240 260 280 300X2 

FIG. 7.-The fitting of the line of regression of Xl on X2 by the method of least 
squares (vertical deviations minimized). 

with changes in Xl. These means have been computed and 
shown, respectively, in Figs. 5 and 6, in which the means are con
nected by a series of straight lines; these are called" polygons of 
regression. " 

Lines of Regression. The tendency of the progressions of the 
means to follow straight lines suggests the following hypothesis. 
Suppose that X I is so related to X 2 that an ·increase in X 2 of one 
unit always produces an increase in Xl of, say, b units, b being a 
constant. If X2 were the only factor affecting Xl, all the 
values of Xl, when plotted, would fall exactly on a straigh~ 
line and the progression of all means would be perfectly- linear; 
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all of them would be on the line representing' the equation 
X~ = 47.58 + .8322X2 shown in Fig. 7. 

If, however, 'other forces also' affect XI, causing it to be higher 
or lower than the value expected from its association with X 2, 

the actual values of the means WciUld not fall on the straight line 

300 

280 

260 

240 

200 

180 

160 

140 

.. 

::. 

X;=-5.548+0.9642XJ 

Xz 

~~--~~~~~~~~il_~~~~~~-JX 
100 120 140 160 180 Zqo 220 240 260 280 300 2 

FIG. B.-The fitting of the line of regression of X 2 on XI by the method of least 
squares (horizontal deviations minimized). 

but would be scattered about the line in the manner shown in 
Fig. 7. According to such a hypothesis, a straight line fitted 
to the data should give the law of relatio~ship between Xl ap.d X 2, 

and· the scatter about the line should give the deviation from this 
line caused by the other factors affecting Xl. 

A similar view could be taken of the variation in the mean 
value of X 2 with changes in X; and would justify drawing a 
straight line to show the law of relationship between X 2 and Xl. 
This is illustrated in Fig. 8. 
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The lines t'hat are derived to show the relationship between 
the mean value of one variable and the value of another are 
called "lines of regression," following Francis Galton's termi
nology, who used this .term in his original study of the relationship 
between the heights of children and the heights of their parents. l 

A line of regression of one variable on another is to be interpreted 
as indicating the values of the first, the dependent variable, that 
would be obtained for various values of the second, the inde
pendent variable, if no other forces were affecting the dependent 
variable. 

First-order Standard Deviations. In dealing 'with bivariate 
and multivariate frequency distributions, it becomes necessary 
to differentiate among zero-order standard deviations, first-order 
standard deviations, second-order standard deviations, etc. 
The zero-order standard deviations are standard deviations of 
the original variables. The first-order, second-order, and higher
order standard deviations are standard deviations of variation 
from lines and planes of regression. 

In the case of the monovariate distribution, the representa
tiveness of the mean depended upon how closely the cases were 
scattered around this mean value. This scatter was measured 
by the zero-order standard deviation. Similarly, in the case 
of a line of regression in a bivariate distribution, the representa
tiveness of the line as a measure of the law of relationship between 
the two variables depends on the scatter of cases above and 
below the line or to the right and to the left of it. Tb:e repre
sentativeness of the line of regression depicting the equation 

... Xi = 47.58 + .8322X2, used in Fig. 7, may be indicated by the 
scatter of cases above and below it. A measure of this scatter 
would be the standard deviation of the vertical deviations (of 
individual cases, not of means) from the line. The standard 
deviation about the line X~ = -5.548 + .9642X1, shown in 
Fig. 8, would be the standard deviation of the horizontal devia
tions from that line, made by the scatter of cases (not by the 
scatter of means) about the line. These two standard de.viations 
are called" first-order standard deviations." 

The first-order standard deviations will always be less than 
the zero-order standard- deviations, for the part of the variation 

1 Cf. p. 19 for method used to derive the equations for these lines. 
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represented by the line of regression has been eliminated by 
taking the deviations from the line. 

If the equation for the line of regression is X~ = au + b12X 2, 

the first-order standard deviations are found as follows: 

(12) 

and 
Nutl = ~X~ - a2.l~X2 - b2l~XIX2 ~12') 

Sometimes these first-order standard deviations are called 
"standard errors of estimate" since they indicate the error 
involved in using the line of regression as an estimate of the 
dependent variable. • 

The Pearsonian Coefficient of Correlation. The progression 
of the means and the lines of regression described above are con
cerned with depicting the "law of relationship" between the two 
variables. They give the average value of one variable asso
ciated with given values of the other variable and show how 
these a~erage values tend to change in unison with the other 
variable. Another statistic, called the "Pearsonian coefficient 
of correlation," aims to measure the degree of association between 
the two variables. This coefficient of correlation is found by the 
equation 

(13) 

in which Xl and X2 refer to deviations from the means and N to the 
number of pairs of cases. 

Relationship between r and the First-order Standard Deviation. 
If the variables are measured from their mean values, Eq. (12) 
becomes 

NUi.2 = 2":xi - b12 :ZXIX2 since :ZXl,= 0 

If the value of bl2 is determined by the method of least squares, 
as Eq. (12) and (12') presuppose, l 

and the value of NUi.2 may be written 

N U1.2 = N ui - N uiri2 
1 Cf. SMI,\,H and DUNCAN, op. cit., pp. 331-333. 
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so that 

and, finally, 
(14) 

ln the same manner, 

(14') 

These equations, it is to be noted, m~y be put in the following 
form: 

(15) 

(15') 

From this form [Eq. (15)] it is readily seen that r is closely 
related to the first-order variance, i.e., to the scatter about the 
line of regression. If the scatter about the line of regression is a 
small percentage of the total scatter, this signifies that the line 
of regression itself accounts for a large part of the variation in 
X 1, and r12 is high. If the scatter (the fi!§t-order standard 
deviation) about the line of regression is arlarge percentage of the 
total variation in the dependent variation, this signifi,es that only 
a small paJ;.t of the variation is shown in the line of regression, and 
Tlll is low .. That is, the better the line of regression fits the data, 
the highet' the value of r, and vice versa. The Pearsonian coeffi
cient of correlation is thus a measure of the goodness of fit of the 
lines of regression. • 

The Pearsonian Coefficient of Correlation and the Breakup of 
Variance. For every point on a bivariate scatter diagram such 
as Fig. 7, there is a corresponding point on the line of regression 
of Xl and X 2• Geometrically, the former is obtained by pro
jecting the point· vertically onto the line of regression. This is 
illustrated by points P and P' in Fig. 7. Algebraically, the 
Xl coordinate of a point on the line of regression is found by 
substituting the given values of X 2 in the regression equation 
X~ = a1.2 + b12X 2 or, if the X's are both in terms of deviations 

from their respective means, x~ = r12 ~ X2. 
0'2 

When thE1 variaJ:>les are measured from their respective mean 
values, the mean of the various values of X2 is zero. Hence the 
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mean of the corresponding values of x~ is zero also; and the 
standard deviation 'Of these xf values is accordingly as follows: , 

2 ~(xD2 2 (1"i ~x~ 2 2 
(1 "',' = -r = T12 ~ N = r 12(11 

This describes the part of the variance in X I that is depicted by 
tKe line of regression; and it is to be noted that Eq. (15) may 
consequently be written 

(12 - (12 (12 
1.2 \" 1 - %/ 

or) in other words, . 

O'i = (A." + O'i.2 
\ 

u~ = 0'2",; + (1tl 

(16) 

(16') 

Equation (16) says that thl;"l total variance in Xl values is equal 
to the varianc~ of the corresponding points on' the line of regres
sion plus the variance of the deviations from these points. 
Another way of looking at this is that the total variance in Xl 
is made up of two parts, one consisting of the variance due to its 
association with X 2 (0'\') as represented by the line of regression, 
the other representing the variance of X I due to its association 
with factors independent of X 2 (Ui.2)' 

It was also found just above that u\' = ri2O'i; hence, 

(17) 

(17') 

These equations shed furt~er light on the meaning of r, which is 
consistent with the explanation of the significance of Eq. (16). 
Equation (17) shows that ri2 measures the proportion ofthe total 
variance in X I that is due to its association with X 2. It also 
measures the proportion of the total variance in X 2 that is due to 
its association with Xl, as indicated in E'<i. (17'). 
) The Correlation Ratio. The correlation ratio is a measure of 
correlation designed to be used in cases where correlation between 
the two variables is nonlinear. In such instances it is not 
appropriate to compute a straight line of regression; but an 
analysis similar to that outlined above may be applied. This 
latter ,analysis makes use of the polygon of regression rather than 
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the line of regression; i.e., it makes use of ·the means of the 
columns and thl'l means of the rows. The first-order variance 
is calculated by measuring the deviations in each column from 
its column mean, summing them, and dividing by N; this is_ 
the variance in Xl due to association with factors independent 
of.X2• -The amount of variailCe in X 1- explained by association 
or'correfation with X 2 is then the variance in the c6lumrr means 
from their mean, which is the mean or the whole distribution, 
namely, it 1. The ratio of either of these variances to -the total 
variance can be used to measure nonlinear correlation, and the 
ratio is called the" correlation ratio." The symbol used is the 
Greek lower-case letter eta 6,). While it has been seen that 
ru = r21, it is not true that 1112 equals 1}21. 

The correlation l'atios may bs defined by the- following 
equations: 

(18) 

(18') 



PART I 

General Theory of Frequency Curves 

CHAPTER II 
\ 

PROBABILITY AND THE PROBABILITY CALCULUS 

The theory of frequency curves is in large measure a special 
application of the theory of probability. An understanding of! 
probability and the probability calculus is therefore essential 
for a study of the theory of frequency curves. Probability theory 
in turn is principally based on combinatorial analysis. This 
chapter on probability and the probability calculus will accord
ingly begin with a review of permutations and combinations. 

Permutations and Combinations., Perrrtuta~ion8. A permuta
tion is an arrangement. If there"are N things, they may be 
arranged in Nt different ways; for the first selection may be 
made in N ways, the second selection in N - 1 ways, the third 
in N - 2 ways, etc. Hence the total number of arrangements, 
or permutations, that may be made of N things is 

N(N - l)(N - 2) ... 1 = Nt 

For example, the number of different permutations of five things 
is 5!.= 5 X 4 X 3 X 2 X 1 = 120. 

Sometimes in forming permutations only a fraction of the total 
number of objects can be selected at one time. Thus an arrange
ment is to consist of three objects, but there are five objects'from 
which to choose. In this instance the total number of different 
arrangements that can be made by the selection of three objects 
from the group of five will equal 5 X 4 X 3 = 60, for there are 
five ways of selecting the first object, four ways qf selecting the 
s.econd, and three ways of selecting the third. 

In general, the number of permutations of N things taken r 
at a time is 

Plf = N(N - l)(N - 2) ... (N - r + 1) = eN ~! r)! (1) 

2a 
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Combinations. Some of the permutations of Eq. (1) will ·be 
constituted alike; they will merely be different arrangements of 
the same combination of things. For example, suppose the 
five objects are the letters a, b, c, d, e. If permutations are made 
of these five letters three at a time, two of these permutations 
would be abc and acb, which are the same combination of the 
letters a, b, and c arranged in different order. To' find the num
ber of different combinations of three letters each that may be 
made from the group of five letters, it is necessary to allow for the 
number of permutations that can be made from anyone com
bination. In the first section it was found that a given set of N 
objects can be arranged in N! ways. Hence every combination 
of three letters can be made to yield 3! = 3 X 2 X 1 = 6 per
Ip.utations without changing the combination. It follows that 
the total number of combinations of three letters each that may 
be made from a group of five letters is equal to the total 
number of permutations of five things taken three at a time 
[N!/ (N - r)! = 5!/2!] divided by the number of permutations of 
three things takep. all at a time (r! = 3!); that is, q = 5!/2!3!' 

In general, the number of combinations of N things taken r 
at a time equals 

CN =- -~-
r r!(N - r)! (2) 

The last equation may also be looked upon as the number of 
different combinations that may be made of N things by put
ting r of them in one category and N - r in another. For 
obviously the number of different combinations that may be 
made of 10 men by putting 3 of them on a committee and leaving 
7 of them off is the same as the number of different c~mmittees 
of 3 that may be picked from 10 men. 

This new way of looking at the problem is especially helpful 
when more than two categories are involved. SupP?se, for 
example, that three committees are to be chosen from 10 men/ 
say a finance committee consisting of 3 men, a production com
mittee consisting of 5 men, and a personnel committee consisting 
of 2 men. If each man is to serve on a committee, but no man 
is to serve on more than one committee, how many different 
committees of this kind could be formed from the 10 men? Here 
it is a question of how many different combinations can be made 
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of 10 things, 3 of them to be placed in one category, 5 in another, 
and 2 in another. 

The answer to this broader question is obtained in the same 
way as the solntion of the two-category case. The total number 
of different ways of picking 10 men from 10 men is 1O!. But not 
all these different ways of picking 10 men will lead to differently 
constituted committees. For anyone set of committees eould 
be picked in (3!) (50 (2!) different ways without changing the 
make-up of the committees. Thus, if the finance committee 
consisted of Mr. A, Mr. G, and Mr. J, the committee could be 
picked in that order, or in the order A, J, G, or the order G, A, J, 
or G, J, A, or J, A, G, or finally J,. G, A. But each of these 3! 
ways of picking the finance committee could be combined with 
the 5! ways of picking the production committee, which would 
make (3!) (5!) different ways of picking these two committees. 
Finally, each of these (3!) (5!) ways of picking the finance and 
production committees could pe combined with the 2! ways of 
picking the personnel committee, making a total of (3!) (5!) (2!) 
different ways of selecting these three committees without chang
ing their ultimate constituency. It follows, therefore, that the 
total number of different committees that can be picked is equal 
to 1O!f3!5!2!. In general, the number of different combinations 
that may be made of N things by putting N 1 of them in one 
category, N2 of them in another category, Na of them in a third 
category, and Nk of them in a kth category, where 

is 

(3) 

The Binomial Expansion. An important use of the com
binatorial analysis is in the derivatiori of a formula for the 
expansion of the binomial (a + b)N. The expression (a + b)N 
means the multiplication of (a + b) by itself N times. Terms 
of the product are thus formed by multiplying'the a's of a various 
number of factors by the b's of the remaining number of factors. 
The product arbN - r will therefore appear C': times, since this is 
the number of diJierent ways in which r of the a's can be selected 
from N factors, no consideration being given to the order of 
selection. 
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The equation for the expansion of the binomial (a + b)N IS 

accordingly 

(a + b)N = CfraN + Cfr_IaN-1b + ... + C%_raN-rbr 
+ ... + C~bN (4) 

This is known as the "binomial expansion." As will be seen in 
the next chapter, there is a frequency distribution whose rela
tive frequencies are computed in the same way as the terms 
of the binomial expansion. It is consequently known as the 
"binomial distribution." 

The Multinomial Expansion. An argument similar to that 
just outlined shows that the general term of the expansion of the 
multinomial (Xl + X 2 + Xa + ... + Xk)N is given by ·Eq. 
(3). There is also a frequency distribution whose relative fre
quencies are computed in the same way as the terms of this 
multinomial expansion, and it is hence called a "multinomial 
distribu tion." I 

Mathematical Probability. Definition. If, in a given set of 
t objects, m possess a given property and n do not possess this 
property, the probability of an object of this set having the given 
property. is mit, or the relative frequency of these objects in the 
set. The word "object" may include events ~hat have the 
property of 'occurring or even propositions that have the property 
of being true, as well as m~terial or immaterial things. To 
illustrate probability by a simple case, consider an ordinary deck 
of playing cards containing 13 cards in each suit so that the 
probability of a heart is H = i. This is also the probability 
of a diamond, spade, Qr club in an ordinary deck of cards. In 
this illustration the -probability set is finite. The definition of 
probability as a relative frequency is equally valid, however, for 
infinite probability sets. 

In defining a probability, care must always be taken to see that 
the set of objects is precisely designated and that the propert~ 
of the object to which the probability refers is carefully dis
tinguished. It is 'obvious,that the probability of an ace in an 
ordinary deck of cards is not the same as the probability of an 
ace in a pinochle deck, since the latter contains 48 cards of which 
8 are aces, while an ordinary deck contains 5~cards of which 4 
are aces. If a probability of an ace is defined with reference to an 

1 See Chap. XIII. 
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ordinary deck, it must not in subsequent stages of the analysis 
be taken as referring to ~ pinochle deck. This should be clear 
to anyone; yet the pitfalls of such a shift lie athwart the path 
to more intangible analysis, a path that is strewn with the 
intellectual bones of the unwary. 

In this connection it is to be noted that the probability of a 
heart in an ordinary deck, say, is not necessarily the same llS the 
probability of drawing a heart from an ordinary deck. The first 
probability refers to a set of 52 cards, 13 of which are hearts, so 
that the probability of a heart in an ordinary deck is clearly 
H- = i. The second probability refers to a set of drawings from 
an ordinary deck. The probability of a heart in this set of 
drawings is the relative frequency of the number of hearts in the 
total set of cards drawn. The precise value of this second 
probability cannot be given until the number of cards drawn and 
the number of hearts among them have been counted. It may 
be i, or it may be some other value. 

Law of Large Numbers. That the probability of drawing a 
heart from an ordinary deck is commonly said to be i is the out
come of experience with certain kinds of mass' phenomena. It 
has been found that if cards are drawn at random from an ordi
nary deck, the card being replaced and the deck reshuffled after 
each draw, the ratio of the number of hearts to the total number 
of cards drawn tends, to appro~imate i whenever the number of 
drawings is large. Tliis experience with mass random 1 phenom
ena is generalized in the law of large numbers. 

The law of large numbers says that, when a large number of 
random events is invo1ved, it is possible to predict with reasonable 
accuracy the relative frequency of recurrence of a particular 
event by calculating a certain mathematical probability ascer
tainable .from a carefully defined probability set. ThIS law is 
the link between, abstract calculations of probability and the, 
prediction of relative frequencies ~f events in real life. With the 
assumption of its validity, the principal problem in most cases 
becomes that of finding the mathematical model that is the 
,correct one for the particular phenomenon in question. 

The probabilities in some sets are unknown but have been 
empirically approximated. Thus, if the empirically determined 

1 For a discussion of "randomness" see pp. 154-162. 
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probability of a man dying at age fifty is used in practice by life
insurance companies as a method of predicting, experience shows 
that these empirically determined probabilities yield good pre
dictions if a, large enough number of men is involved. With 
large masses of data, therefore, empirically determined probabili
ties may be used in the same way as known probabilities of a given 
set, as above illustrated, are used to make predictions. 

Probability Distributions. Definitions. Any ordinary fre": 
quency distribution may be expressed in the form of a probability 
distribution by describing the frequencies as percentages of the 
total number of cases. A probability distribution can therefore 
be discrete or continuous. A continuous frequency curve that 
represents the distribution of relative frequency of an infinite 
population of cases is also a probability curve. Accordingly, all 
the measures of the various characteristics of frequency distribu
tions, which have been summarized in the preceding chapter, 
apply to probability distributions; thus a probability distribution 
has a mean, a standard deviation, a coefficient of skewness, and a 
coefficient of kurtosis, like any frequency distribution. There 
are also bivariate and multivariate distributions of probability, 
corresponding to bivariate and multivariate distriputions. 

Probability Equations. Probability equations may be written 
in two ways. If the distribution is discrete, the probability of 
the attribute X may be written simply Y = <'oCX). The prob
ability in this case is represented by the height of the ordinate Y 
at the abscissa point X. If the distribution is continuous, the 
equation Y = <'oCX) serves as an algebraic d~scription of the curve 
but it is not a true measure of the 'probability. It merelyrepre
sents the height of the curve at an abscissa point X. 

For continuous distributions the proper form for representing 
probability is dCF IN) = <pCX) dX, or dP = <p(X) dX. In t'his 
form the probability, or relative frequency, of a case lying between 
X and X + dX is expressed as a function of the attribute X. A, 
probability, or frequency, curve is the limit approached by an 
area histogram as the class interval is made infinitesimally small. 
Thus the expression d(F IN) = <p(X) dX or dP = <p(X) dX 
merely says that, when the class interval (of size dX) is made 
infinitesimally ·small, the area under the curve for any class 
interval [that is, d(F IN) or dP] is approximately equal to the 
area of a small rectangle whose base is dX and whose height 
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is the ordinate of the curve [cp(X)] at some arbitrary value of X 
within the -interval. 

As an illustration, consid~r the normal probability curve. The 
algebraic equation for the normal curve is 

1 -(X-x), 
Y=---=e 2 .. ' 

O'y27r 

This expresses the ordinate Y simply as a function of the abscissa 
X. The probability, however, of a normal variate lying between 
X and X + dX is given 'by the equation 

1 -(X-X)' 
dP = _ /_ e 2 .. ' dX 

O'v 211' 
(5') 

In both cases e(= 2.7183+) is the base of the Napierian system 
of logarithms, X is the mean of the distribution, and q its standard 
deviation. 

The Probability Calculus. The Addition Theorem. If the 
attributes of a given probability set are Xl, X 2, ••• X. (repre
senting either qualitative or quantitative characteristics) and 
their probabilities are PI, P2, . . • , p., then the probability of 
Xl, X 2, or X a, say, i.e., the attribute of being anyone of these 
X's, is PI + P2 + Pa. If the variation in attributes within the 
probability set is continuous and if the distribution of probability 
is described by an equation such as dP = <cp(X) dX, the prob
ability of an attribute within anyone of a number of small 
ranges dX whose sum constitutes the range Xl to X 2 is given by 
x, x, 
l: dP = ~ cp(X) dX, or, in the symbolism of the integral calculus, 
XI XI 

l X'dP = fX' cp(X) dX. 
XI XI 

The addition theorem is stated briefly as follows: The prob
ability of either one of two mutually exclusive events (attributes) 
is the sum of their individual probabilities. 

In using this theorem care must be taken to interpret correctly 
the term" mutually exclusive." What the term signifies is that 
the addition theorem applies only to probabilities of one and the 
same probability set. For the attributes of a probability set 
are by definition mutually exclusive. Hence the effect of this 
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term is -to warn the student: to :define carefuJly his probability 
set at the start. It is to be noted that, while the attributes of a 
given probability set are mutually exclusive, not all mutually 
exclusive attributes are members of the same probability set. 1 

The M ultiplicatibn Theorem. The multiplication theorem 
_pertains to th~ ?alculation-of n: pro?abil.i~y. of a derived, or second-
6fder, probabIlIty set from the probabilItIes of two or more first
order sets. In deriving the multiplication theorem two cases 
are distinguished; tme pertaining to independent probabilities, 
the other to dependent probabilities. Cop.sider first the case 
of independent probabilities. 

The number of dots on' the faces of a die form a set of mutually 
E:Jxclusive attributes the-probability ,of ~ach of which is t. Two 
dice form two such probability set~. Each of these may be 
viewed as a :tirst-order_ probability s~t. COIl;sider now the attri
putes given by the sum of t-wo faces' of a pair of dice. If there 
is no restriction on the way in which the face of one die can .be 
paired with the face of the other ,die (the-condition of independ
ence), then each 'face of one die, can be paired with every face 
of th(.l other die and the sum of these, faees may take on the 
yalues 2, 3,4,5, 6, 7, 8, 9, 10, 11, and 12. If all possible pairs are 
formed, there will be 6 X 6 = 36 pairs. Only oile of these will 
yield the sum ~, viz., the pair 1 and 1. Hence, in this derived, 
or -second-Qrder, probability set of 36 combinatipns-, the prob.: 
ability of a sum having the value 2 is ";~. This, hOwever, is equal 
to the product ·of the probability of a 1 on one die times the 
probability of a 1 on the other dIe, that is, txt = 3~. This 
illustrates the multiplication theorem for independent probabili
ties. -It says that,. if the probability of attribute B of set II is 
independent of the probability Of attribute A of set I, .then the 
joint probability of A and B in the px:obability set formed by 
c~mbinir:tg each .a~tribute Qf set ~ with every attribute of set II 
is equal to the product of the probability of A in set I times the 
probability of B in set II. Succinctly, if P(B) is 'independent of 
A, P(A,B) = P(A) X P(B). . 

If the p~obability of B is dependent in some way on the occur
rence of the attribute A, then the multiplication theorem for 

1 For further discussion, see SMITH and DUNCAN, Elementary Statistics. 
and Applications, p. 269. 
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independent probabilities cannot be applied. In its place must 
be put the multiplication theorem for dependent probabilities. 
This says that the joint probabilitity of A and B is equal to the 
probability of A times the probability of B given A.I Succinctly, 
P(A,B) = P(A) X P(A/B).l 

1 For further discussion·, see ibid., pp. 269-274. 



CHAPTER III 

THE SYMMETRICAL BINOMIAL DISTRIBUTION 
AND THE NORMAL CURVE 

The preceding chapter has provided the tools that are now to 
be employed in shaping a general theory of frequency curves. 
This chapter is the first· step in the development of that theory. 

The argument will begin with a study of a simple problem 
in combinatorial analysis. The basic data 'will be 10 coins. 
These will be marked with a head on one side and a tail on the 
other. The problem will be to determine the relative frequencies 
or probabilities of various types of combinations in the whole 
set of combinations that might be made from various arrange
ments of the 10 coins. Immediate attention will center on the 
form of this derived di§tribution of probability, and exact and 
approximate equations will be determined. Ultimately, con
sideration will be given to how this combinatorial' analysis may 
explain some of the frequency distributions that appear in real 
life. 

The Symmetrical Binomial Distribution. Derivation. Sup
pose there are 10 coins all exactly' alike and each having a head 
and a tail. Each of these coins represents an elementary prob
ability set having two attributes, a head and a tail. Since there 
is only one head and one tail on a coin, the probability of each 
is -!. 

The 10 coins may be arranged in various ways so as to form 
different combinations of heads and tails. The various possible 
combinations are as follows: no heads, 10 tails; 1 head, 9 tails; 2, 
heads, 8 tails; 3 heads, 7 tails; 4 heads, 6 tails; 5 heads, 5 tails; 6' 
heads, 4: tails; 7 heads, 3 tails; 8 heads, 2 tails; 9 heads, 1 tail; and 
10 heads, no tails. The probability of the combination no heads, 
10 tails, is the product -!.-!.-!.-!.-!.j-.-!.-!.j-.* = C-!)10. 
The probability of the particular combination HTTTTTTTTT 
is also C!)lO; but since'there are nine other ways in which combina
tions containing 1 head and 9 'tails can be formed,. the total 
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probability of a combination containing 1 head and .9 tails is 
lO(~-)1°" In general, the tptal probability of a combination" con
taining r heads and 10 - r tails is CiO(t)lO, which is the formula 
for the (r + l)th term in the expansion of the binomial (t + t)lO. 
The probabilities of the various combinations of heads and tails 
"are shown in Table 4. 

TABLE 4.-PROBABILITI~S OF VARIOUS COMBINATIONS OF HEADS AND TAILS 

AMONG 10 COINS 

Combinations of 
heads and tails 

\ Probability 
\ 

H T 

----

° 10 
1 

1,024 

1 9 
10 

1,024 

2 8 
45 

1,024 

3 7 
120 

1,024 

4 6 
210 

1,024 

5 5 
252 

1,024 

6 4 210 
1,02f 

7 3 
120 

1,024 

8 2 
45 

1,024 

9 1 
10 

1,024 

10 ° 
1 

1,024 

For N coins, the probability of a. combination having N 1 heads 
and N - Nl tails is as follows: l 

Nt (l)N 
P(Nl) = Nd(N - N

l
)! 2 (1) 

or, if N 2 = N - N I, 

Nt (l)N 
P(N1) = NltN2! 2 (2) 
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Equatio'"n (f) is- thus the ge~eral equation for what is called the 
"symmetrical qinomial distribution." 1 

Characteristics. Mathematical analysis shows that in gen
eral the syml!letrical bi~omial distribution has the following 
characteristics: 2 

(3) 

The variable, it will be noted, is N 1, the number of heads: 
The Normal Curve. Derivation jrpm Binomial Distribution. 

If 40 coins wer~ used, the distribution of probability of N 1 heads, 
N - N 1 tails would be considerably more spread out than when 
10 coins were tossed. In general, the equation c} = v'N /4 
indicates that the dispersion of th~ distribu§m increases in 
proportion to the v'N" If the horizontal scare is reduced, how
ever, and the vertical scale enlarged, I in the same pr<lportion in 
which the dispe:r.,sion of t~e distribution is increased, then the 
effect of increasing N is to bring the ordinates of the distI:.ibution 
closer together and to raise them to the height of the original 
distribution. Under these conditions the tops of the ordinates 
tend to sketch out a smooth curve as IN is increased. 

Equations (3) suggest that the curve approached as a limit by 
the symmetrical binomial as N incr~a~es is, the normal prob-

ability curve. For ~l = 0, and ~~ =,3 :- ~ approaches 3 as N 
approaches infinity. It can also be shown that if a line is drawn 
between two ordinates of the symmetrical binomial the ratio of 
the slope of this line to the average of the two ordinates, i.e.,-the 
relative slope of the binomial distribution at any mid-point, is 

, 1 The name follows from the fact that it is the equation for the general 
term of the expansion of (! + !)N (see pp. 25-26). 

2 These equations are' derived in the Appendix to Chap. IV (pp. 65-67). 
It will be noticed that the parameters X, d, etc., are in: b~ldface type since. 
they are population va)ues' and npt sample statistics. This differentiation 
must be carefully watched in this,Yolume. Cf, SMITH and DUNCAN, Elemen-
tary Statistic8 and Applications, pp. 123-124, 316. . 
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the same as-the relative slope of the normal curve that is traced 
out by the binomial ordinates_ 1 Both these suggestions that the 
lim~t of th(') symmetrical binomla,l is a normal curve are borne ollt 
by strict mathematical analysis. 2 Thus the limit of the sym
metrical binomial is3 

(4) 1 [X2 ] 
Y = I} v'21r exp - 21}2 , 

Here x represents a deviation from the mean value and equalR 
N N 1 - -. 
2 

If z.is set equal to x/fJ .and if probabilities are measured by 
areas instead of ordinates, the equation becomes 

1 [Z2] dP = v'21r exp - 2 dz (5) 

which is the equation for a normal curve whose standard devia
tion is 1. It is subsequently ·referred ~o as the standard normal 
curve. If N is large, therefore, ~he probability that N 1 lies 
between N~ and N~' can be found approximately by computing 

N~ _ N N,( _ N 

v' 2 and v' 2 and finding the area under the standard 
N/4 N/4 

normal curve between these limits. The 'latter is easily accom
plished by reference to the normai' probability table given in 
Table VI of the Appendix. 4 _ 

Significance of the Symmetrical BfD.omiiH Distribution and 
the Normal Curve. The practical signipcance of the symmetrical 
binomial distribution and the normal curve is that certain con
ditions in real life appear to produce frequency distributions that 
have this form. Consider first a real situation that very closely 
parallels the combinatorial prol;>lem of the preceding sectIons. 
Let 10 unbiased coins (unbiased in the sense that they are 
physically uniform) be tossed at rando~5 a large number of times. 

1 See App~ndix to Chap. IV, pp. 74-76. 
2 Ibid., pp. 68-:;-76. _ 
a The expression exp [xi is merely. aJ)other -way ot 'Yrit'ing e,". It is fr_e~ 

q),lently US!iG. in this text to {acilita;te the printing of complicated equations-. 
'4 For further discussion on how to use the normal probability table, see 

pp. 120-123, 164-168. 
• Whether a method is random or not lias to be determined largely by 

intuition and experience with similar-experiments. See pp. 154-162. 
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Experience with such experiments indicates that -the relative 
frequencies with which 0, 1, 2, ... , 10 heads appear will be 
approximately the same as the probabilities of the binomial 
distribution. This is merely one instance of the law of large 
numbers referred to in Chap. II. 

Again, suppose a large number of flour bags, each weighing 5 
pounds at the start, are opened in succession and a certain quan
tity of flour is added or taken away in accordance with the follow
ing rule: When a bag is opened, 10 coins are tossed and an ounce 
of flour is added for each head that appears, and subtracted for 
each tail that appears. For this experiment the law of large 
numbers suggests that the outcome will be a set of bags varying 
in weight approximately as follows: 

TABLE 5.-RELATIVE FREQUENCIES OF BAGS OF 

WEIGHTS 

Weight of 
Bag 

41h. 6 oz. 

41b. 8 oz. 

4 lb. 10 oz. 

4 lb. 12 oz. 

4 lb. 14 oz. 

5 lb. 0 oz. 

I 5 lb. 2 oz. 

5 lb. 4 oz. 

5 lb. 6 oz. 

5 lb. 8 oz. 

5 lb. 10 oz. 

Relative 
Frequency 

1 
• 1,024 

10 
1,024 

46 
1,024 
120 

1,024 
210 

1l_024 
l!l62 

1,024 
210 

1,024 
120 

1,024 
46 

1,024 
10 

1,024 
1 

1,024 

FLOVR OF SPECIFIED 

In other words, the distribution of weights will approximately 
conform to a symmetrical binomial distribution with' a mean 
weight of 5 pounds, and a standard deviation of 2 V2.5 :::: 3.162 
ounces. 

If a much larger number of coins were employed and the amount 
of flour added or subtracted per head or tail were made very 
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small, the distribution of weights would become practically con
tinuous and would form a pormal curve. 

The two examples just given suggest "laboratory" experi
ments by which a symmetrical binomial distribution and, in the 
second case, a normal curve might be produced by real e~ents. 
Certain conditions in' everyday life that appear to parallel these 
laboratory experiments also produce symmetrical binomial 'dis
tributions and normal curves. Among a number of animals, for 
example, the biological conditions appear to be such that the 
chance of male offspring'is equal to the chance of female offspring. 
Distributions of the number of males per families of given size 
therefore clGsely approximate the symmetrical binomial distribu
tion. Again, in many cases of physical measurement, there are a 
host of forces tending to cause slight positive and negative errors, 
with the result that the net error of measurement is generally 
distributed like a normal frequency curve.! The heights of 
adult males of the same race, the heights of adult females of the 
.same race, grades of students, ~he durability of electric-light 
bulbs, and many other biological, psychological, and physical 
variables are likewise normally distributed. 

Summary of Conditions Leading to' Symmetrical Distribution. 
The foregoing analysis suggests that, whenever the following 
conditions exist in real life, the data generated by these condi
tions will tend to be distribut~d In the form of a symmetricaf 
binomial distribution and, if certain other conditions are also 
present, in the form of a normal curve. 

A. The conditions giving rise to the symmetrical binomial dis
tribution may be stated as follows: 

1. In the absence of certain "causes" of variation or in the 
event of a perfect balancing of their effects, the data as~ume a 
fixed central value (the 5 pounds of the flour illustration). 

2. Deviations from this central value result from certain 
causes of variation, the effect of anx cause being either to add a 
fixed quantity to the data or to subtract the same quantity (to 
add or ,subtract 1 ounce of flour). 

3. The probability of a cause of variation producing a positive 
effect equals the probability of its producing a negative effect, 

1 For a more extended discussion see Smith and Duncan, Elementary 
Statistics and Applications, pp. 294-295. 
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that is, P( +) = P( -) = t (~he probability of a head equals 
th~ probability of a tail). . 

4. The effects of all contributory causes of variation are of 
equa] magnitude (each ~dds or 'subtracts 1 ounce of flour). 

5. The contributory causes are independent in their action. 
That is, the probability of a positive or negative contribution 
by any causal factor is independent of the previous contributions 
of other causal factors; the sets of deviations generated by the 
various causes are all independent. 

6. The total deviation of any element from its central value is 
the algebraic su~ of the positive and negative contributions of 
the individual causal factors (the total amount of flour added or 
subtracted from a bag is the sum of the ounces added for each 
head tossed minus the ounces subtracted for each tail tossed). 

B. If, in addition to the above conditions, the following also 
exist, then the resulting distribution will tend to conform to the 
normal curve: 

7. The number of contributory causes is very large (a large 
number of coins, instead of .only 10 coins, are tossed). 

8. The positive and negative contributions of each cause is 
very small (if .01 ounce is added or subtracted instead of 1 ounce). 

It is to be noted that, so far as the normal curve is concerned, 
not all these conditions are necessary for its generation. The 
foregoing conditions will produce it, but jt can be shown that the 
normal curve may also occur when some of these conditions ar:e 
absent. The normal curve wnl still be produced if conditions 
2 and 3 are relaxed so that a causal factor may affect the data in 
varying degree and with varying probabilities and also if condi
tion 4 is only approximately and not exactly true. 1 Under cer
tain conditions the requirement of independence (condition 5) 
may also be relaxed. 

The most important conditions for the normal curve are 6, 
7, and 8, and condition 4 in an approximate form. For example, 
in the case of the flour illustration, the resulting weights of the 
bags 'of flour would still tend to 'be -normally distributed even if 
biased dice instead of unbiased coins were'used and if the amount 
of flour added or subtracted varied with the result of the throw 
(say, .001 ounce for the occurrence of a one, - .002 ounce for the 
occurrence of a two, .003 ounce for the OC9urrence of a three, 

1 See pp. 1~7-142. 
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-.004 for tIle occurrence of a four, etc.), provided that the num
ber of dice thrown were very large and the amount added or sub
tracted per die were very small and of about the same order of 
magnitude from die to die. The nOl:mal curve is thus a more 
general phenomenon than the symmetrical binomial distribution. 
Mathematically, the 'normal curve can be derived from a great 
variety of different assumptions. 1 , 

1 Cf. CZUBER, EMANUEL,' Theorie der Beobachtunusfehler, B. G. Teubner, 
Leipzig, 1891. 



CHAPTER IV 

THE PEARSONIAN SYSTEM OF FREQUENCY CURVES 

In the preceding chapter the conditions that would produce 
the symmetrical binomial distribution and the normal curve were 
outlined and briefly discussed. It was pointed out, however, 
that not all the conditions laid down are necessary for the produc
tion of the normal curve, and further consideration was postponed 
until this chapter. This more extensive examination will now 
be undertaken. 

ASYMMETRICAL BINOMIAL DISTRIBUTION 

Derivation. Beginning in this section some of the more 
important conditions will be examined that lead to nonnormality 
in homogeneous data. The discussion will again begin with some 
problems in the realm of combinatorial analYl3is. 

Suppose there are 10 prisms, each of which has three faces 
marked with an H and the fourth marked with a To. The pI:ob
ability of an H on each prism is thus t, and the ptobability of a 
Tis t. This differs from the previous coin problem in that the 
probabilities of the two attributes are not equal. As will be 
indicated later, it is an abandonment of condition 3 of the pre
viously listed conditions for normality. 

The particular problem that will be discussed is the determina
tion of the probabilities of the various types of combinations 
that may be made from independent selection of the faces of these 
10 prisms. The types of combinations will be the same as those 
of the coin problem (an H may be viewed as a "head" and a T 
as a "tail "), but the probabilities of each will be found to be 
different. For convenience let the various prisms be desIgnated' 
by the letters A, B, C, ... ,J. 

Analysis of the problem begins, once again, with the determina
tion of the probability of a particular combination. First con
sider the combination having no H's, viz., 

ABCDEFGHIJ 
TTTTTTTTTT 

40 
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Since the probability of a'T on each prism is t and since the face 
of each prism is selecteQ. independently of the others, the prob
ability of all prisms being T's is. by the multiplication theorem 
for independent probabilities, 

i . l· i . i . i . t . i . i . t . -!- = (i)10 

Furthermore, the given combination is the only way in wAich no 
H's can occur. Hence the probability of no H's is just 

1 
1,048,576 

Consider next the combination 

ABCDEFGHIJ 
HTTTTTTTTT 

This is a combination having but one H. Since the probability 
of A being an H is i and the probability of each of the other 
prisms being T's is -1, the probability of this particular combina
tion is 

t·-!-·1·-!-·-!-·1·1·-1·f·t = (t)(t)9 
The same would be true of the combination 

ABCDF;F,GHIJ 
THTTTTTTTT 

or in fact of any combination having but one H. Since there are 
10 such combinations altogether, the probability of any of these 
10 combinations is, by the addition theorem, 

10 (~)(~)9 = (10)(3) 
4 4 1,048,576 

This, tJ:_len, is the probability of one H. 
The following is a combination having but two H's: 

ABCDEFGHIJ 
HHTTTTTTTT 

The probability of this particular combination is 
¥ 

""1 ·1 . -l ··t· t . -!- . 1 . t . t . -1 = (!)2(i)8 

This is also the probability of any particular combination having 
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put two H's; and since there are 45 such combinations, the prob
ability of anyone of them is 

45 (~)2(!)8 = (45)(9) 
4 4 1,048,576 

This is the probability of two H's. 
In general, the probability of NiH's with 10 prisms is given 

by the equation 

10! (3)NI(1)10-NI-
P(N1) = Nd(lO - N 1)! 4" 4" 

For N 1 = 0 to N 1 = 10, this equation yields the ~esults shown 
in Table 6. 

TABLE 6.-PROBABILITIES OF VARIOUS COMBINATIONS OF 10 PRISMS, EACH 

HAVING THREE SIDES MARKED WITH AN H AND ONE WITH A T 

Combinations 
Having 

o H 

1 H 

2 H 

3 H 

4 H 

5 H 

6 H 

7 H 

8 H 

9 H 

10 H 

Probability 
1 

1,048,576 
. 30 

1,048,5].6 
405 

1,048,576 
3,240 

1,048,576 
17,010 

1,048,576 
61,236 

1,048,576 
153,090 

1,048,576 
262,440 

1,048,576 
. 295,245 
1,048,576 
196,830 

1,048,576 
59,049 

1,048,576 

It will be noted that the probabilities of Table 6 are the suc
cessive terms of the expansion of (t + -!-)10. The distribution 
obtained is thus a "'binomial" distribution, but it. is no l~nger 
symmetrical. If N prisms had been used, the probabilities 
ob~ained would have been the successive terJUs of .the expans,ion 
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of (1 + t)N and the equation for anyone term would have been 

, Nt (3)NI (J)N-NI 
P(N1) = N 1t(N - N 1)t 4:' 4:.' 

or, if N 2 = N - N 1 

Nl (3)Nl(1)N' 
P(N 1) = N1tN2! 4: '4' 

TABLE 7.-PROBABILITIES IOF Y ARIOUS COMBINATIONS OF 10 PRISMS, 'EACH 

HAVING THREE fjIDES' MARKED WITH A T AND ONE WITH AN H 
Combinations i, 

Having 

0 H 

1 H 

2 H 

3 H 

4 H 

5 H 

6 H 

7 I;I 

8 H 

9 H 

10 H 

Probability 
59,049 

1,048,576 
196,830 

1,048,576 
295,245 

1,048,576 
262,440 

1,048,576 
153,090 

1,048,576 
61,236 

1,048,576 
17,010 

1,048,576 
3,240 

1,048,576 
405 

1,048,576 
30 

1,048,576 
. ,1 

1,048,576 

If each prism is replaced by a group of objects1 within which 
the probability of an H is P1 and that of a T is P2, if there are N 
such groups, and if combinations are composed so as to consist 
of one object from each group, then the probabilities of the 
various types of combinatioi'is among the set of all po~sible 
combinations will be given by the equation 

NI 
P(N 1) = N IN' I prPf' 

1· 2· 
(1) 

This is the most general equation for the binomial distribution. 
When Pl = pz =:=.t, it is the equation for-the symmetrical bino-

1 The number of objects in each group is not relevant to the argument. 
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mial distribution. When PI ~ P21 it represents an asymmetrical 
binomial distribution. 

Character of the Asymmetrical Binomial Distribution. A graph 
of the probabilities of Table 6 is shown in Fig. 9. The asym-

'" 

0.288 

0.264 

0.240 

0.216 

0.192 

;EO. 168 

:g 0.144 e 
a. 0.120 

0.096 

0.072 

0.048 

0.024 

o I 
o I 2 3 4 5 6 7 8 9 10 No.ofH's. 

FIG. 9.-Asymmetrical binomial distribution, N ". 10, PI ". t, p. = i (see 
Table 6). 

metrical character of the distribution is obvious and needs no 
comment. Table 7 and Fig. 10 show what the distribution of 
the number of H's would have been if the probabilities of H's and 
T's had oeen reversed, i.e., if the probability of an H had been 
-! and the probability of aT 1. It will be noted that this altera
tion;n the probabilities changes the skewness of the distribution 
from negative to positive. This is generally the case; if the 
probability of an H is greater than the probability of a T, the 
distribution of the number of H's will be negatively skewed; 
and if the probability of an H is less than the probability of aT, 
the distribution will be positively skewed. I 

1 If the number of T's were taken as the attribute, the reverse would be 
true. 
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Mathematical analysis shows that in general the asymmetrical 
binomial distribution1 has the following characteristics (the 
variable is the number of H's, N 1): 

X =.Npl 
Mo = ihteger between Npl - P2 and Npi + lh 

d = yNp1P2 
(}I = (P2 - P1)2 (2) 

Np1P2 
. , 1 - 6P1P2 

(}2 = 3 + NpIP2 

0.288 

0.264 r 

0.240 . 

0.216 

0.192 

~O.168 
:.0 
150.144 
e 

0.. 0.120 

0.096 

0.072 

0.048 

0.024 

I 
o 0 I 2 3 4 5 6 7 8 9 10 No.ofHs 

FIG. 10.-Asymmetrical binomial di~tribution, N = 10, PI = t, P2 = £ (see 
Table 7). 

As indicated above, the sign of V(h should be the sign of P2 - PI, 
so that it will be positive when the distribution is positively 
skewed and negative when it is negatively skewed. These equa-

l These, of course, also apply to the symmetrical binomial distribution 
in which case Pl'= P2 = t. 
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tions are derived in the Appendix to this chapter.l It might be 
well for ~he nonmathematical student, however, to 'check them 
by calculating X, 0, ~l and ~2 of the distribution of Table 7 and 
then comparing the results given by the application of Eqs. (2). * 

Asymmetrical Binomial Distribution and the Normal Curve. 
If N is increased and if the horizontal scale is reduced in propor
tion to VN, the tops of the ordinates of the asymmetrical 
binomi"al distribution will tend to trace out a smooth' curve, just 
as did the symmetrical binomial distribution. In general, the 
character of this curve will depend on the size of N and on the 
difference between Pl and P2. 

Equations (2) suggest that, if N is very large, any binomial 
distribution, asymmetrical or symmetrical, will be approximated 
fairly well by a normal frequency curve. For as-N is increased, 
~l approaches 0 and ~2 approaches 3, which are tlie values of these 
coefficients for a normal curve. This implication is borne out 
by rigorous mathematical analysis. 2 It is to be concluded then 
that, if N is very large, an asymmetrical binomial distribution 
is approximated by a normal frequency curve, -just as was the 
symmetrical binomial distribution. ;--

The conclusion that an asymmetrical curve .-can be approxi
mated by a symmetrical curve would seem at first glance to be 
paradoxical. It is to be noted, however, that this is true only 
when N is very large, and in that case the binomial distribution 
will not be very asymmetrical. For, as just indicated, the 
skewness of the asymmetrical binomial distribution dimin-. 
ishes as N increases. This follows directly from the f~ct that 

{31 = (P2 - Pl)2. It may also be noted from any graphic analysis 
NplP2 

showing how the shape of a particular binomial distribution, i.e., 
one with a given Pl and a given P2, changes its shape as N is 
increased. Such __ ll. graphic comparison is presented in Fig. 11, 
for which the data are shown in Tables 8 and 9. 

The si~e of N that must be attained before the asymmetrical 
binomial distribution becomes practically _ symmetrical and can 

1.See pp. 65-68 . 
. * The direct calculation of these quantities is the same as that carried 

out in Smith and'Duncan, Elementary Statistics and Applications, pp. 284-
285, for the symmetrical binomial distribution. 

2 See Appendix to this chapter (pp. 68-74). 
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be· approximated by the normal curve depends on the. relati'v:e. 
size·of PI and P2 •. : For as the formula for ~l shows, if the difference 
between PI and: P2 is very great, then N must be so much the 

., 
TABLE 8.-PROBABILITIES OF VARIOUS COMBINATIONS OF' FOUR PRISMS; 

EACH HAVING THREE SIDES MARKED WITH AN H AND ONE WITH >I. T 

Combinations 
Having 
o H 
1 H 
2 H, 
2 H 
4 H 

(N'= 4) , 

Probability 
.003 
.047 
.211 
.422 
.316 

TABLE 9.-PROBABILITIES OF VARIOUS COMBINATIONS OF 16 PRISMS, EACH 

HAVING THREE SIDES MARiED WITH AN H AND ONE WITH A T 

• (N = 16) 
Combinations 

Having Probability 
0 H .00000000023 
1 H .000000012 
2 H .00000025 
3 H .0000035 
4 H .000034 
5 H .00025 

6 H .00135 
7 H .00583 
8 H. .01966 
9 H .05243 

10 H .11095 

11 H .18015 
12'. H .22519 
13 H .20787 

·14 H .13363 
15 H .05345 
16 H .01002 

larger if ~I is to be close to zero. On the other hand, if PI and :P2 
are relatively close, then N need not be very large to make the 
distribution approximately symmetrical. 

Asymmetrical Binomial Distribution and Pearson's Type .III 
Curve. . Although the asymmetrical binomial distribution 
approaches the normal curve when N is large relative to P2 - PI, 
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it is nevertheless of interest to find the type of curve that approxi~ 
mates this distribution in those cases when it is still markedly 
skewed. One approach to this problem is suggested by the 
previous analysis of the symmetrical binomial. The normal 

I/) 
Q) 
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FIG. H.-Comparison of two asymmetrical binomial distributions (see Table 9). 

curve, it will be recalled,l was found to be the curve that had 
the same relative slope at various points as did the symmetrical 
binomial. This suggests that the curve that will give a good fit 
to the asymmetrical binomial will also be one for which the 
relative slope at various points is the same as the relative 
slope of the asymmetrical binomial distribution. Such a line 
of attack was adopted by Karl Pearson, and the curve that 
.he found to have this. property is the one whose logarithmic 
form is 

1 See pp. 34-35. 
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loglo Y = loglo yo + ka loglo (1 + i) - kx loglo e (3) 

where x represents a deviation from the mode of the curve, Yo the 
height of the curve at the mode, y the height of the curve at any 
point x, logio e = .434294, and a and k are constants depending 

FIG. 12.-Comparison of asymmetrical (solid line) binomial with Pearson's 
type III curve (broken line) (see Table 10). 

on the PI, P2, and N of the binotnial distribution from which the 
curve is derived. l This curve has come to be known as Pearson's 

1 More specifica~ly, x = (N, + !) - Npl + P2 - l, 

log,o Yo = (ka + 1) loglo ka - loglo (ka)! - loglo a - ka loglo e, 

a = 2pIP2(N + 1), and k = _2 __ . See Appendix to this chapter (pp. 
P2 - PI P2 - PI 

76-79). 
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type III curve. l The way in which it fits the asymmetrical 
binomial distribution of Tabl~ 10 'is shown in Eig. 12. 

TABLE 1O.-CoMPARISON OF ASYMMETRICAL BINOMIAL t}ISTRffiUTION WITH 

PEARSON'S TYPE III CURVE ;r. 

AsymmetriC!Ll binomial Pearson's-
X distribution' type III curve 

P(X) P'(X) 

0 .056,314 ,,: .,061,245 
1 .187,712 .181,660 
2 .281,568 .272,720 
3 .250,282 .243,300 
4 .145,998 .144,220 
5 .05~,399 .061,333 
6 .016,222 .019,826 
7 .003,090 .005,098 
8 .000,386 .001,079 
9 000,029 .000,192 

10 .000,001 .000,030 

, Derived from Table 7 (p. 43), by converting'the fractions into relative numbers. 

HYPERGEOMETRICAL DISTRiBUTION 

In the previous section it has'been seen that when the prob
abilities of the two attributes' are not equal, the result is an 
asymmetrical instead of a symmetrical binomial distribution. 
The bearing of this upon the generation of nonnormal frequency 
distributions in real life will be discussed below. 2 Befor~ turning 
to these broader aspects of the analysis, however, it is desirable 
to consider the effects of other modifications of the conditions 
for normality. It is of interest in particular to consider what 
happens when 'the cOl).dition of independence (condition 5)3 is 
removed. This will now be studied in some detail. 

1 The equation for this curve was first published by Karl Pearson in the 
Proceedings of the Royal Society of London, VoL 54 (1893), p. 331. It was later 
discussed at some length in his fundamental paper on frequency curVes, 
"Contributions to the Mathematical Theory of Evolution. II. Skew Varia
tion in HomogeneouE:l Material." See the Philosophical Transactions of the 
Royal Society of London, Series A, Vol. 186 (1895), pp. 356-360. Also see W. 
P .. Elderton, Frequency' Curves and Correlation, Cambridge University 'Press, 
London (1927), pp. 45, 90-94. 

2 See pp. 60ff. 
S See p. 38. 
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Derivation of the Hypergeometrical Distribution. To show' ,the 
effect of dependent. probabilities on,.the form of a frequency dis
tribution consider the following card problem. Suppose there 
are 10 packs of 52 cards, each" containing at the start 13 sp~des, 
13 hearts, 13 diamonds,- and 13 clubs. Suppose further that all 
possible combimitiohs are made by selecting one card from each 
pack in Qrder, subject,to the condition that if:a card has al~6ady 
been selected from one pack the same card is not eligible for 
selection' Jrom subseq,uent packs. For example, if the ten Df 
spades is selected from the first pack, then the ten' of spades is 
not eligible for selection from any other pack. Again, if the ten 
of spades is selected from the first pack, the five of hearts from 
the second pack, and the ace of clubs from the third pack"then 
neither the ten of. spades, nor the five. of hearts, nor the ace of 
clubs is eligible for' selection from packs 4 to 10. Given this 
restriction on the selection of card~, let the problem be to find 
the probabilities of combinations containing various numbers of 
spades in the whole set of combinations of 10 cards that 'may be 
formed in the way described. To facilitate the analysis let the 
cards that make up a combination be represented by letters 
from A to J. 

Consider first the combination 

ABCDEFGHIJ 
o 0 0 0 0 0 000 0 

where ,0 stands for a card other than a spade. This is a com
bination containing no spades. The probability of the first card, 
A, in the combination being other than a spade is H, for there 
l:j.re 39 nonspades among the 52 cards open for selection from the 
first pack. The probability of the second card, B, being other 
than a spade is -H, for after a nonspade has been selected from 
'the first pack there are only 51 cards left for selection from the 
second pack and only 38 of these are nonspades. In like manner 
the probability of the third card, C, being other than a spade 
is H, etc. 

By the multiplication theorem for dependent probabilities 
the ,probability of the combination containing no spades is 
therefore 

H·-H-·H·H·H·H·:H·H·!t·H 
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Consider next the combination 

ABCDEFGHIJ 
S 0 0 0 0 0 0 0 0,0 

This is a combination containing only one spade. Its probability 
by the multiplication theorem for dependent probabilities is equal 
to the probability of a spade in the first pack (that is, ~D, multi
plied by the probability of a nonspade in the second pack after a 
spade has been selected from the first pack (that is, H), times 
the probability of a nonspade in the third pack after both a spade 
and a nonspade have been selected from the first arid second packs 
(tliat is, M), etc. In short, the probability of this particular 
combination is 

t!·H·!!·n·H·H·-H·l!·!t·U 
There are 9 other combinatipns, however, that contain .only one 
spade, and in each case the probability can be shown to be the 
same as that just computed. Hence, by the addition theorem, 
the probability of anyone of these 10 combinations, i.e., the 
probability of a combination containing one spade, is 

1O·M·H·M·n·H·if·-H·M-·U·* -
Consider next the following combination: 

ABCDEFGHIJ 
.SSOOOOOOOO 

This is a combination containing two spades. The probability 
of this particular combination is equal to the probability ~f a 
spade in the first pack (that is, H), times the p'robability of a 
spade in a deck from which a spade has been drawn (that is, H), 
times the probability of a nonspade in a deck from which two 
spades have been drawn (that is, H), times the probability of a 
nonspade in a deck from which two spades and a nonspade have 
been drawn (that is, U), etc. In short, .the probability 6f this 
particular combination is 

H·H·H·U·H·!t·H·H·H·H 
There are C~o = 45 different combinations, however, containing 
only two spades, and the probability of each can be shown to be 
the same as that just computed.. Hence the probability· of any 
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'one of these 45 combinations, i.e., the probability of two spades, 
IS 

A continuation of this same line of reasoning shows that in 
general the probability of N 1 spades out of 10 is 

(13)(12) ... (13 - N1 + 1)(39)(38) .'. 
(39 - 10 + N1 + 1) 

P (N 1) = c 1~ . -----,(=52=)-,-;:(5;-:;""1 )"(=50") (-;-;-~=9 )----(4=8") (--;-;;47"') 7-;-(4=6 )--;-(4";""";;5"") ('744",,)-'--;( 4=3 );-'-~ 

This yields the distribution shown in Table 11. 

TABLE 11. -PROBABILITIES OF THE VARIOUS POSSIBLE NUMBERS OF SPADES 

AMONG ALL THE COMBINATIONS OF 10 CARDS EACH THAT MIGHT 

BE MADE OF THE CARDS IN AN ORDINARY PLAYING DECK 

Combinations 
Containing Probability 

0 spade 
40,186 

1,000,000 

1 spade 
174,140 

1,000,000 

2 spades 
303,340 

1,000,000 

3 spades 
278,070 

1,000,000 

4 spades 
147,460 

1,000,000 

5 spades 
46,840 

1,000,000 

6 spades 
8,922 

1,000,000 

7 spades 
991 

1,000,000 

8 spades 
60 

1;000,000 

9 spades 2 
1,000,000 

10 spades 0.02 
v 

1,000,000 

If each of N packs contains S cards, p1S of which are spades 
and p2S other suits, Pl + P2 being equal to 1, and if all possible 
combinations of N cards each are formed by selecting a different 
card from each pack, the probability of N 1 spades will be given 
by the general equation 



54 GENERAL THEORY OF FREQUENCY CURVES 

,(PIS) (PIS -1) ... (PIS'- NI + 1)(p2S) ... 
_ N (p 2S - N + N I + '1) 

P(Nl ) - CN , (S)(S _ 1) ... (S - N + 1) (4) 

This expression is a term in a hypergeometrical series, I and the 
distribution of Table 11 may be called a hypergeometrical dis
tribution. A somewhat simpler equation that is equivalent to 
Eq. (3) * is as follows, 

P(N
1
) = (PIS) !(p2S) !(S -. N) !N! (4') 

_ (PIS....:... N l )!(p2S - N + N1)!S!Nd(N - N l )! 

In conclusion, it is to be noted that the percentages of 0, 1, 
2, . . . , N I spades among combinations formed by selecting 
a different card from each of N packs are the same as the percent
ages of 0, 1, 2, ... ,N I spades among combinations of N cards 
from a single pack. That these two problems are the same and 
have the same solution ~ay be shown as follows: In selecting the 
first card to form a cOlllbination, the situation is obviously the 
same for both problems, since pack 1 of the former problem and 
the original pack in the new problem are both complete ·packs. 
In selecting the second card, the situation continues to be the 
same for both problems. For, in the former problem, the cards 
eligible for selection from pack 2 are, according to the terms 
of the problem, all the cards except the card that matches the 
one dra)VIl from pack 1; in the present problem the cards eligible 
for selection are by necessity only. the cards left in the pack after 
the first card has been selected. Similarly, in selecting the third, 
fourth, fifth, or Nth card, the situation is the same for both 

1 As Nl goes from 0 to N, this equation generates the series 

(p~) ... (pvS - N + 1) [{I + (N)(prS) 
(S)(S - 1) ... (S - N + 1) (P2S - N + 1) 

+ N(N - 1) (p,S)(PrS - 1) 
~- (p 2S - N + 1) (p 2S - N + 2) + . .. } ] 

A general hypergeometrical series is of the form 

1 + (a) (b) x + (a)(a + I)(b)(b + 1) X2 + 
1 (c) 2!(c)(c + 1) 

The part of the former expression in brackets forms a hypergeometrical 
series in which x = 1, a = -N, b = -PlS, and c = pvS - N + 1. 

~ This is obtained from Eq. (3) by multiplying numerator and denomina
tor by (PlS - Nl)!(PvS - N + Nl)!(S - N)!(N - N l)! 
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problems. Hence it follows that the two problems are identical 
in all respects and ther,efore have the same'solution. 

In general, therefore, if all possible combinations of N cards 
are made from a deck of S cards, in which the percentage of spades 
is Pl and the percentage of nonspades is P2, where Pl + P2 = 1, 
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FIG. l3.-A hypergeometrical distribution, S = 52, N = 10, PI = f, p. = 1 
(see Table 11). 

the relative frequencies of combinations cont3,ining N 1 spades 
are those given by Eq. (4). This conclusion is of importance in 
certain types of sampling problems. l 

Character of the Hypergeometrical DistNoution .. It will be 
noted from Fig. 13 that the distribution of Table 11 is skewed. 
In general, the mean of the distribution is at Npl and the various 
moments about the mean are2 

1 See pp. 209-211. 
2 See PEARSON, KARL, "On the Curves Which Are Most Suitable for 

Describing the Frequency of Random Samples of a Population," Biometrfka, 
Vol. 5 (1906-1907), pp. 172-175. 
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( 
N - 1) t'2 = NplP2 1 - S _ 1 

( 
N - 1) [ 2(N - 1)J 

t'3 = NplP2(P2 - Pl) 1 - S _ 1 1 - S - 2 

( 
N - 1) { 6(N ,- 1) ( N - 2) 

t'4 = NplP2 1 - S _ 1 1 - S _ 2 1 - S - 3 

(5) 

[ N - 1 (N - 10 9 )J} + 3plP2(N - 2) 1 - S -"2 N - 2 + S' - 3 

It is to be noted, that the sign of t'3 is negative when 2N > S or 
NIS> t. 

These equations show that, if Pl does not equal P2, the hyper
geometrical distribution is generally asymmetrical. If P2 is 
greater than Ph it will be skewed positively; and if Pl is.greater 
than P2, it will be skewed negatively. If P2 = Pl, the distribution 
will be symmetrical. The equations also show that the greater 
the difference between P2 and Pl and hence the smaller the product 
PlP2, the largerl will be the coefficient of kurtosis ~,i! = t'4/t'~. 

If S is made indefinitely large relative to N, i.e., if the number 
of cards in each pack is made indefin~tely large relative to the 
number of cards selected to form a combination, then PlS, 
PlS - 1, ... , PlS - N 1 all become practically equivalent to 
PlS; similarly, p2S, P2S - 1, ... , P2S - N + Nl become 
practically equivalent to p2S, and S, S - 1, S . .:._ 2, ... , 
S - N + 1 become practically equivalent to S. Hence, as S 
is made indefinitely large relative to N, Eq. (3) becomes prac
tically the same as Eq. (1) and the hypergeometrical distribution 
reduces to the asymmetrical binomial distribution (or to the 
symmetrical binomial distribution if Pl = P2). * This is also 
shown by the fact that when S is increased relative to N the 
equations for ~l = t'Vt'~ and ~2 = t'4/t'~ of the hypergeometrical 
distribution (see Eq. 5) approach the equations for ~l and ~2 of 
the asymmetrical binomial distribution [Eqs. (2)). Such a 

1 For (}. reduces to the form 

where m, r, and t are constants depending only on Nand S. 
* This assumes that S becomes so large that not only S but also PlS is 

very large relative to N. 
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relationship is logically to be expected; for if the size of each pack 
of cards is very large relative to the number of cards making up a 
combination, the probability of a spade in the pack is not much 
changed in the course of forming combinations. That is, the 
problem reduces to the one considered in the previous section. 
Viewed in this manner the binomial Qistribution is a special case 
of the hypergeometrical distribution. , 

Hypergeometrical' Distribution and the Pearsonian System of 
Frequency Curves. The hypergeometrical distribution forms the 
basis of the Pearsonian system of frequency curves. Having 
noted that the normal curve had the same relative slope at various 
points as the symmetrical binomial distribution and that Pear
son's type III curve had the same relative slope at various points 
as the symmetrical binomial distribution, Karl Pearson raised the 
question: What curve has the same relative slope at various points 
as the hypergeometrical distribution? Such a curve, he con
tended, would be a generalized frequency curve; for in the deriva
tion of the hypergeometrical distribution no assumption was 
made as to the equality of the probabilities nor was any assump
tion made as to independence. 

N ow it can be shown l that the relative slope of the hypergeo
metrical distribution (i.e., the relative slope of the frequency 
polygon that the distribution forms) is given for various mid
points, X = Nl + t, by the expression 

(6) 

where a, bo, bl , and b2 depend on the values of S, N, Ph and P2 
of the hypergeometrical distribution. Equation (6), therefore, 
was taken by Pearson as a general equation capable of represent
ing any frequency distribution. 

The characteristics of a particular curve represented by this 
equation will depend on the values of a, bo, bl , and b2• The 
parameter a is of significance in determining.the position of the 
curve. For the slope of the curve is zero at its peak (assuming 
the curve to be a smooth one), and the mode of the curve is 
therefore given by X + a = O. That is, the mode comes at 
X = -a. The other parameters determine the general shape 

1 See Appendix to this chapter (p. 79). 
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of the curve. Thus, if the denominator of Eq. (6) is factored 
into the product of two expressions, viz., 

(X _ -b i + vbi - 4bob2) (X _ -bi - vbi - 4b~b2) 
2b2 2b2 

it is seen that the form of the curve will depend on the value of 
bi - 4bob2. This it will be noted, is the so-called" discriminant" 
of the equation bo + biX + b2X2 = 0, since its sign determines 
the nature of its roots. The discriminant may also be written 

( bi ) 4bob2 4b
o
b
2 

- 1. Accordingly, Karl Pearson took bU4bob2 as 

the criterion of curve form. I On t_he basis of this criterion, he 
distinguished three main types of curves. If the criterion is 
negative, i.e., if the roots of the equation bo + blX + b2X2 = ° 
are real and of opposite sign,2 the curve belongs to the class of 
curves distinguished by Pearson as type 1. If the criterion is 
positive but less tItan unity, i.e., if the roots of the equation 
bo + blX + b2X2 = ° are imaginary, the curve belongs to the 
class of curves distinguished by Pearson as'type IV. Finally, if 
the criterion-is positive but greater than unity, i.e., if the roots of 
the equation bo + blX + b2X2 = 0 are real and of the same sign, 

1 For the correct use of the Pearsonian criterion, X should be measured 
from the mean. 

2 Equation (6) is more general than the hypergeometrical distribution 
from which it was derived; for the constants of a hypergeometrical distribu
tion will never give rise to a type I curve (see Appendix to this chapter, 
p, 81). Having been suggested by the hypergeometrical distribution, 
Eq. (6) was taken by Pearson as a general frequency equation in wh.ich the 
constants could have any values' whatsoever, whether or not they satisfied 
the requirements of a hypergeometrical distribution. Other considerations 
!ll.!ggested the reasonableness of this. For example, if the causes of variation 
in X remained the same over the whole range they would generate a normal 
distribution, for which the relative slope would be -x/fT2• If, however, 
the causes of variation varied with X, then fT would become a function of X, 

and the relative slope might be written - fT(~;' If'the function fTCX-) is 

expanded in a power series (Taylor'S expansion) in the neighborhood of the 
mean of X and ~he first three terms of this expansion are taken as a good 
approximation to the function, the equation for the relative slope becomes 

- b + b x + b 2' which is essentially the same as Eq. (6). (Cj. PEARSON,' 
o 1X1 2X 

KARL, "Das Fehlergesetz und seine VerallgemeinerungeI). d urch Fechner und 
Pearson. A Rejoinder," Biometrika, Vol. 4 (1905-1906), p. 204.) 
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the curve belongs to the class of curves distinguished by Pearson 
as type VI. * 
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FIG. 14.-Type IV frequency curve. Number exposed to risk of sickness 

according to Sutton's sickness tables (males, all durations). 
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FIG. 15.-Type I frequency curve. Number exposed to risk of sickness. 
(According to Wat8on, lYI.U. Table8, p. 19.) 

These are the three main classes of Pearson,ian frequency 
curves. A type I curve is shown in Fig. 15. Curves of this 
type are limited in range. They are usually bellshaped, although 
skewed, but may under special circumstances be even U shaped, 

* See ELDERTON, op. cit., pp. 42-43. Figures 14, 15, and 16 are reproduced 
by permission of the author and publishers of. this book, 24 ed. (1927), PI" 
62,69, 77. 
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J shaped, or twisted J shaped. Figure 14 shows a type IV curve. 
These curves are unlimited- in range, bell shaped, and skewed. 
Finally, Fig. 16 shows a type VI curve. These are unlimited 
in range in one direction; they are usually bell shaped and 
skewed but may also be J shaped.! 

Various "transitional" types of curves have also been dis
tinguished depending on special values of the b's. For example, 
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FIG. 16.-Type VI frequency curve. Number of entrants, limited-payment 
policies, 1863-1893; experience summed in groups of 10 years of age and divided 
by 100. 

if b2 = 0 and the criterion is accordingly infinite, the result is 
Pearson's type III curve discussed above. 2 If both b2 and b! are 
zero, the result is the normal frequency curve. A table of 
criterion values and curve types is given on page 135. 

General Significance of the Pearsonian System of Frequency 
Curves. Explanation of N onnormal Distributions. The fore
going analysis is of considerable significance in explaining the 
conditions that give rise to various typ~ of nonnormal frequency 
distributions. To illustrate this, consider once again the flour
bag experiment described in the previous chapter. 3 Suppose as 
before. that the experimenter has a large number of bags, each 
weighing exactly 5 pounds. Suppose, however, that the amount 
added or subtracted from each bag is now dependent upon the 
throwing of 10 prisms, each of which has three faces marked 
with a T and one with an H. As previously, the experimen'ter 
adds an ounce of flour to a bag for each H that faces down and 
subtracts an ounce for each T that faces down. Under the 
assumptions that the prisms are thrown in a random fashion, 

1 See ibid., chart opposite p. 46. 
2 See pp. 47-50. 
3 Cf. pp. 36--37. Also see SMITH and DUNCAN, 0p. cit., pp. 292-293. 
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intuition suggests that a frequency distribution of the weights 
of a large number of bags will approximate the form of an asym
metrical binomial distribution for which PI = t and P2 =!. It 
would be like the relative frequency distributipn presented iiI 
Table 12. 

TABLE 12.-FREQUENCY DISTRIDUTION OF A LARGE :NUMBER OF BAGS OF 

'FLOUR OF SPECIFIED WEIGHTS 

Weight of Relative 
Bag Frequency 

59,049 
4 lb. 6 oz. 1,048,576 

41b. 8 oz. 

4 lb. 10 oz. 

41b. 12 oz. 

4 lb. 14 oz. 

51b. ° oz. 

5 lb. 2 oz. 

51b. 4 oz. 

51b. 6 oz. 

51b. 8 oz. 

51b. 10 oz. 

196,830 
1,048,576 
295,245 

1,048,576 
262,440 

1,048,576 
153,090 

1,048,576 
61,236 

1,048,576 
17,010 

1,048,576 
3,240 

1,048,576 
405 

1,048,576 
30 

1,048,576 
1 

1,048,576 

The general shape of this distribution can be represented by a 
Pearsonian type III curve. Owing in this particular case to the 
greater probability of subtracting an ounce than of adding an 
ounce, the mean weight of the bags will be less than the original 
"central value" of 5 pounds, and the distribution will be skewed 
positively. If the prisms hac} had more H than T faces, the 
probability of adding an ounce would have exceeded the prob
abjlity of subtracting an ounce, the mean weight would have been 
greater than 5 pounds, and the distribution of weights would have 
been skewed negatively. 

If, instead of adding or subtracting flour in accordance with 
the number of H's and T's appearing on the throws of 10 prisms, 



62 GENERAL THEORY OF FREQUENCY CURVES 

the additions and subtractions had been made with reference 
to the number of spades and the number of other cards found 
among 10 cards drawn without replacement from a pack of 52 
playing cards, then the distribution of weights would have tended 
to conform to a hypergeometrical distribution and it could have 
been represented by one of the Pearsonian curves given by Eq. 
(6). In the particular case in hand, the relative frequencies 
with which bags of 4 pounds 6 ounces, bags of 4 pounds 8 ounces, 
etc., would have tended to occur would have been those given in 
Table 11, and the general shape of the distribution would have 
been described by a Pearsonian curve of type IV. * Since the 
probability of adding the initial ounce (i.e., the probability of a 
spade on the first draw) is again less than the probability of sub
tracting the initial ounce (i.e., the probability of a nonspade 
on the first draw), the distribution of weights is again skewed 
positively and its mean is less than the central value of 5 pounds. 
If an ounce had been added when a nonspade was drawn and 
subtracted when a spade was drawn, then the distribution of 
weights would have been. skewed negatively and the mean weight 
would have been greater than 5 pounds. If the probability of 
adding the initial ounce had been eq1:1al to the probability of 
subtracting it, as would have been the case if an ounce were 
added whenever a black card appeared and sUbtracted whenever 
a red card appeared, then the distribution of weights would have 
been symmetrical 'about the normal value of 5 pounds, but 
the kurtosis of the" distribution woul'd have been less than 3, 
that is, it would have been less peaked than a normal frequency 
distribution. 1 

Thus, whenever the deviation of a variable from some central 
value is the algebraic sum of the contributions of a number of 
causal factors, the absolute size of each contribution being the 
same, tJ::ten if (1) the contributOIy causes are independent of each 
other, but the probability of a positive contribution is greater 
or less than the probability of a negative contribution, or (2) the 
contributory causes are not independent of each other, the 
resulting distribution of the variable will tend to be skewed in 
the direction for which the average probability is the smaller 
and will tend to be more or less peaked than the normal curve. 

" See Appendix to this chapter (p. 81). 
1 Ct. p. 56. 
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Although this conclusion as to the causes of skewness and 
kurtosis in homogeneous variates would appear to be generally 
applicable, one point needs to be further considered. The 
asymmetrical binomial distribution and the hypergeometrical 
distributiun, upon which this conclusion was based, are both 
discrete distributions. The number of H's and the number of 
spades can vary only by integral units. The weig~ts of the 
various bags of flour derived from either the binomIal or the 
hypergeometrical distribution differed exactly by multiples of 
2 ounces; there were no bags of fractional weights. Although 
the foregoing conclusion would therefore appear to be a valid 
explanation of the distributions of discrete variates, such as the 
number. of veins in a leaf, the number of petals on a flower, and 
the number of individuals in a litter, its validity as an explanation 
of the distributions of continuous variates, i.e., of frequency 
curves proper, has yet to be established. This will now be, 
considered. 

Difficulty in Explaining N onnormal Curves. In the case of the 
symmetrical binomial distribution, it was assumed that if the 
number of contributory causes was made infinitely large, and 
if each contribution was made infinitesimally small, the resulting 
fluctuations in the variate would become practically continuous. 
In that instance, .it was found that the distribution of the con
tinuous variate was of the form of the normal frequency curve. 

If the same method of .attaining continuity, however, is applied 
to the asymmetrical binomial and to the hypergeometrical dis
tributions, the analysis immediately runs into difficulties. For, 
as already pointed out,l if the number of prisms is made very 
large, the asymmetrical binomial distribution diminishes in .skew
ness; and as N approaches infinity, the distribution approaches 
the symmetrical form. The same thing is true of the hyper
geometrical distribution. If the number of cards in a pack is 
made larger and larger, the proportion of spades always remaining 
the same, and if the number of cards making up a combination is 

. also increased, the hypergeometrical distribution likewise 
diminishes in skewness and its coefficient of kurtosis approaches 
3. * The consequence is that, if continuity of a variate is the 

1 See p. 46. 
2 

* This is shown by Eq. (5). For {11 = ~ and if both Sand N are 
/1-2 
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result of the number, of contributory causes being infinitely 
large while their individual effects are infinitesimally small, the 
distribution of the variate is of the form of the normal frequency 
curve and the foregoing analysis fails to explain nonnormal 
curves. 

Karl Pearson recognized this difficulty in his analysis and 
sought to meet it as follows: That distributions of continuous 
biological and physical variates were nonnormal was a fact that 
had been demonstrated by empirical investigation. "IUs clear," 
argued Pearson, "that if such frequency curves . . . are to be 
treated as chance distributions at all, it would be idle to compare 
them to the limit of a symmetrical binomial. We are really' 
quite ignorant as to the nature of the contributory 'causes' in 
biological, physical, or economic frequency curves. The con
tinuity of such frequency curves may depend upon other features 
than the magnitude of n. . . . It may possibly be that con
tinuity in biological or physical frequency curves may arise from 
a limited number of 'contributory causes' with a power of frac
tionizing the result."! For example, in the flour-bag experiment, 
the amount of flour added or subtracted in each case could be 

/' 

taken ~s a handful instead of an exact ounce. In such a case, 
the distribution of the weights of the bags of flour wl)uld tend to 
foI'rn a smooth curve even when the number of prisms used was 
small. 2 

Thus, in proceeding by argument from the discrete sym
metrical binomial to the continuous normal curve, the element 
of discreteness is blurred and finally obliterated by making the 
number of causes infinitely large and decreasing the contribution 
of each cause. The same argument applied to the asymmetrical 

N -1 
increased, such terms as S _ 1 are little changedi but the N that appears 

in the denominatpr when }L~ is divided by }L3 is uncompensated for, and this 
causes /3, to get smaller and smaller as N is increased. The same is true for 

{3. = !ii for as N is increased, all terms in the ratio except 3 reduce to O. 
}L2 

1 "Contributions to the Mathematical Theory of Evolution. II. Skew 
Variation in Homogeneous Material," Philosophical Transactions of the 
Royal Society of London, Ser:ies A, Vol. 186 (1895), p. 358. 

2 Cf. PEARSON, KARL, "Das Fehlergesetz und seine Verallgemeineningen 
durch Fechner und Pearson. A Rejoinder," Biometrika, Vol. 4 (1905-
.1906), p. 206. 
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binomial or to the hypergeomet,ric series will also blur the dis
creteness, but it will, in addition, cause the nonnormality to 
disappear. In order to retain the nonnormality, it seems neces
sary to keep the assumption of a small number of contributing 
causes; the blurring of the discreteness is accomplished by the 
assumption that the Qontributions of the contributing causes 
vary among themselves. , 

In th6 Pearsonian analysis of nonnormal frequency curves, 
then, it is necessary to suppose that nonnormal series in real life 
are created by the number of causes affecting variability being 
small and their contributions varying in magnitude. This sup
position is not unreasonable when applied, for example, to such 
things as the distribution of income, wage rates, and other 
similar economic phenomena that are known to have nonnormal 
static variability. In these and other economic and social 
phenomena the factors causing static variability may reasonably 
be supposed to be not only finite but also comparatively few in 
number. 

APPENDIX 

MATHEMATICAL PROOFS 

A. Proof That, for Any Binomial Distribution Represented by 
N! 

the Equation peN 1) = ---. pf'pf', the Mean = Np11 
Nl!N2! 

d = VNp1P2, 

~ - (P2 - Pl)2 and ~ _ 3 + 1 - 6PIP2 [Since Eqs. (3) 6f 
I - NpIP2' 2 - NpIP2 

Chap. II are merely a special case of the foregoing for which 
PI = P2 = i, the following is also a proof of them.] 

By definition the mean of any distribution of probability is 
equal to };P(X)X [Chap. 1, Eq. (2)]. Hence'the mean of the 
binomial distribution, is 

2: peN 1)N 1 = 2: N ~~ 2! pf'pf'N 1 

where the summation is for N 1 from 0 to N. 
If N 1 is canceled out of the numerator and out of N I! in the 

denominator, however, and if Npi is factored out of the resulting 
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expression, the value of the me'aJl becomes 

Also, by definition N 2 = N - N 1, which may be written 
[N -,I - (N1 - 1)], and the sum may thus be put in the form 

~ (N - I)! ____ p NI- 1p[N-I-iNI-I l] 
4 (N 1------:1'"') =![ N~-----:l---'---;(N 1 - I)]! 1 2 

This is, recognized,l however, to be the expansion of (PI + P2)N-\ 
which equals 1 since PI + P2 = 1. Hence the mean of the 
binomial distribution reduces to Npl. 

The second moment of the binomial distribution about the 
origin is, by· definition, ~P(N I)N~. But Ni may be written 
N~ = NI(NI - 1) + N l • Hence 

~P(N I)Ni = ~P(N l)[N l(N I-I) + N 1] 
= ~P(N1)NI(N1 - 1) + ~P(NI)N1. 

The second term of this has just been seen to be equal to Npl 
and the first, when written in full, is 

If, as in the case of the mean, the terms N l(N 1 - 1) in the num
erator are canceled against the first two factors of N 1! in the 
denominat9r and if the quantity N(N - l)PI is factored'out of 
the resulting expression, the above becomes' 

N(N 1)2~ (N-2)! N-2N 
- PI 4 (N 1 - -2)!N 21 PI I P2' 

The quantity N 2, however, which equals N - N 1, may be written 
[N - 2 - (N 1 - 2)]; and when thi~ is done, the sum is recognized 
as the expansion of,(pl + Pi)N-2, which equals 1. Hence the sec
ond moment about tlle origin is equal to N(N - l)pi + Nph and 
the second moment about the mean is equal to this minus (NpI)2 
(by ~he short equation, (J2 = ~P(X2) - X2). Therefore, 

. 1 Cj. p. 43. 
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112 = N(N - l)pi + Npl - N2pi = Npi - Npi 
= NPI(l - PI) = NpIP2, 

and II = yNpIP2' 
Again the third moment about the origin is equal to ~P(NI)Nl. 

But Ni may be written 

N~ ;::= N 1(N1 - l)(NI - 2) + 3N1(N1 - 1) + N 1, , 
so that 

!'P(N1)Ni = ~P(NI)Nl(Nl - l)(NI - 2) 
+ !'3P(NI )NI(N1 - 1) + !'P(NI)N~. 

The second and third terms of this have already been proved to be 
equal to 3N(N - l)pi and NpI, resp-ectively. ]furthermore, by 
canceling N I (N I-I) (N I - 2) mit of the first term, and by 
factoring out N(N - l)(N - 2)i>i, the sum part of this term 
is reduced to the equivalent of (PI + P2)N-8, which equals 1. 
The whole expression for the third moment about the origin 
thus becomes "l'a.= N(N - l)(N - 2)pf + 3N(N - l)pi + Npl' 
By making use of Eq. (6), Chap. I, for converting moments 
about an arbitrary origin to moments about the mean, the third 
moment about the mean of the binomial distribution is found 
to be 

'-'3 = N(N - l)(N - 2)pi + 3N(N - l)pt + Npi - 3N3pi 
- 3N2pi(1 - PI) + 2N3pi 

= NpI(2Pi - 3pI + 1) = NpI(l - PI)(l - 2PI) 

Finally, bli = vi/vI has the value 
= NpIP2(P2 - PI) 

(R2 - PI)2 bli = -=--=--""--'-'-
NpIP2 

In precisely the same way the fourth moment about the 
mean can be shown to be equal to 

V4 = 3(PIP2N)2 + PIP2N (1 - 6PIP2) 

Since bl2 = V4/~, it follows that 

bl - 3(NpIP2)2 + NpIP2(1 - 6PIP2) 
2 - (PIP~)2 

01" 



68 GENERAL 7'HEORY OF FREQUENCY CURVES 

B. Proof That the Mode of a Binomial Distribution Lies 
between Npi - P2 and Npi + Pl. If the ordinate of the binomial 
distribution at N I is to be the modal ordinate (i.e., the highest) 
it must satisfy the following criterion: 

or 

N !pf,-IP:i-N,+l N !p'i'p:i-N , 
--- -_ -- - < --------
(NI - l)!(N - NI + I)! - Nd(N - N I)! 

N !pf,+IP:i-N,-1 
>. --- -
- (Nl + 1)!(N - NI - I)! 

Un taking out the common factor 

N !pf-fp:r-N.- I 

(NI -1)!(& - NI -1) 

these inequalities become. 

2 2 ____ P_2 ____ < __ PlP_!_ _ > PI 
(N - NI + 1)(N - N I) - NI(N - N I) _.(NI + 1)(NI) 

From the first inequality it follows that 

N lP2 :::;; (N - Nl + I)PI 

or that N I(PI + P2) :::;; Npi + PI, or, since PI + P2 = 1, that 
N 1 :::;; Npi + Pl. From the second inequality it _follows that 
P2(N 1 + 1) ~ Pl(N - N 1) or that N I(PI + P2) + P2 :2: Npi or 
that N 1 :2: Npl - P2' Hence, in summary, if N I is to be the 
mode it must be the integer lying b.etween Npi - P2 and Npi + Pl' 

C. Proof That the Binomial Distribution Is Approximated by 
the Normal Curve. The genergJ'equation for the binomial dis
tribution is 

• NI 
peN 1) = N IN' I pf'p:i' 

1· 2· 
(1) 

where N2 = N - NI and PI + P2 = 1 (cf. page 43). The 
equation for the symmetrical binomial ~distribution (cf. page 33) 
is the special case for which PI = P2 = t. The following analysis 
shows that the general binomial equation can be approximately 
represented by the equation for the normal curve, the degree of 
approximation depending on the size of N. The analysis thus 
includes the special case of the symmetrical binomial distribution 
as well as the more general asymmetrical binomial distribution. 
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If the variable N 1 is replaced by x = N 1 - NPh that is, by 
the deviation of N 1 from its mean, the general equation (1) 
becomes 

N' 
P(x) = (Nih + x) !(Np2 _ x) pfP1+%pfP'-'" (2) 

This gives the probaoility of x cases more or less than the mean 
number. The mean 1 of, this distribution of x is, of course~ 0, 
but its standard deviation 2 is the same as that of N 1, viz., V NpIP2, 
. . l'k . (P2 - Pl)2 d't Il 3 + 1 - 6pIP2 lts ~11S 1 eWlse -- --, an 1 s 1;'2 = ~---. 

NpIPZ NpIP2 
For simplicity assume that Npl and Np2, and hence x, are 

integers. This assumption does not materially affect the results 
since the error involveq is of order liN and the subsequent 
argument will assume that N is so large that terms of order liN 
or higher order may reasonably be neglected. In other words, 
this assumption is good enough for the degree of approximation 
given by the final equation. 

Expression (2) may be written 

P( ) _ P(O) (Npl) I (Np2) I i -% 

X - (Np~X)!(Np2 _ x)! PIP2 (3) 

where 

P(O) = (NPl~(~P2) I pfPlpfP' 

or the valu~ of P(x) when x = 0, its mean value. To Eq. (3) 

i Since x = NI - NpI, the mean of x is 

};P(x)x == T.P(N1)N1 - NpIT.P(Nl)' 

But T.P(N1)N1 = NpI, the mean of Ni (ci. p. 66), and };P(N1) = 1 
Hence the mean of x is Npi - Npl = o. 

2 Since the mean of x is zero, the variance of x, that is, the square of its 
standard deviation, equals ' 

"1:x2P(x) = T.(N1 - Npl)2P(N,) 
= T-NiP(N1) ...! 2NpIT-N IP(N1) + N'pi"1:P(N1). 

But T-N1P(N1) is the mean of Nl and equals Np.l. Also, T-P(N,) = 1. 
Hence T.N~P(N,) - 2Np,IN1P(NI ) + N2p;-ZP(N 1) = INiP(N 1) - N2pi, 
which by the short equation (see p.- 67) is the variance of N ,. Therefore 
the standal'd deviation of x is the same as that of N 1. 

A similar argument can be used to show that the third and fourth-moments 
of x about its mean are the same as the third and fourth moments of N 1 

about its mean and hence that it has the same ~l and ~2' 



70 GENERAL THEORY OF FREQUENCY CURVES 

Stirling's approrimation fOI: factorials may be applied. This isl 

a! == aae-a~ 

which is correct to l/a or as good an approximation as is being 
sought. Making use of this, Eq. (3) be, comes 

P(x) 
P(O) 

(Npl)NP'e-Np, .y211Npl {Np2)Np'e-NP2 .y2'll'Np2 P'iP2'" 
= ~(N~P~l"+~x~)~NP-'+~X-e-~N~p,---",-.y~2'l!'~(~N~p=l=+==X)~~·--~~~--

(Np2 - x)NP2-"e-NP'+x .y2'll'~Np2 - x) 
which reduces to 2 

P(x) 1 
P(O) = ( x )NP'+X+t ( x )NP'-X+l 1+- 1--

Npl, . Np2 

(4) 

A final step is to take logarithms and then expand these in a 
power series. 3 Thus, 

I More exactly Stirling's formula says that, as a approaches infinity, 

a"e-" .y2~a < at < a"e-a vz:;;:a (1 + ia) 
Accordingly, 1 + 41 

gives an estimate of the degree of accuracy of the a ~ 

approximation. This formula may be demonstrated briefly by evaluating 
the area under the curve y = log x between ordinates x "" 1 and x = n, 
which gives, by integration, 

Area = in log x dx = x log X - x J; = n log n - n + 1 

An approximate estimate of this same area is obtained, however, by the 
trapezoid formula [cf. R. Courant, Differential and Integral Calculus (1940), 
Vol. I, p. 343], erecting ordinates at x = 1, x = 2, x·= 3, ... , x = n. 
This approximate estimate gives the 

Area == t log 1 + log 2 + log 3 + ... + log(n - 1) + t log n 
= log n! - t log n, since log 1 = O. 

Consequently, log n! - t log n == n log n - ~ + 1, and hence 

log n! == (n + D log n - n + 1; 

so that n! == nn+~e-n+l == nne-n 2.710, which ill very close to Stirling's 
formula, nne-n .y2'1l"yn. For a more precise der~vation of Stirling's for
mula, see ibid., Vol. I, pp. 361-364. 

2 Accomplished by dividing both numerator and denominator by 
(NpI)NP'+"'+}(Np2)NP,-z+t and canceling out like terms in numerator and 
denominator. Note that PI + P2 = 1. ' 

3 The value of log. (1 + a) is given ap}:>roximately by 
a2 a3 a4 

log. (1 + a) == a - "2 + 3: - "4 + .. 
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P(x) ( 1) ( x ) log. P(D) = - Np1 + ,x + '2 .log. 1 + Np1 

- (NP2 - X + ~) log. (1 ~ ;p) 

= -(NP1+X+!) [~_!(~)2+!(~)8_,. 00 oJ 
2 Np1 2 Np1 3 Np1 

_ (NP2 - X +!) [ _ ~ -! (~)2 _! (~)3 _' 0 0 .J 
2 Np2 2 Np2 3 Np2 

\-

Upon multiplying mit and arranging in ascending powers of liN' 
this becomes 

10 P{x) = _ [X2 + X(P2 - Pl)] + 2X3(p~ - pi) + 3X2(p~ + pD 
g. P(D) 2NplP2 12N2p~p~ 

+ terms of order N3 \ 3 and terms of higher order (5) 
. PlP2 

Now the equation for the standard deviation of x, viz., 

d = VNpIP2, 

shows that variation in x is of order VN. In other words, 
as N increases, the variation in x increases as VN. Hence, 
terms such as xlNplP2 are of or:der vN IN or l/vN and terms 

for -1 < a ~ 1. 
To demonstrate this, note that by the integral calculus 

(a dt 
log, (1 + a) = .}o 1 + t 

If the division 1 ~ t is carried out to n terms and the integration carried 

out term by term, it follows that 

log, (l+a) =a---+---+··· + (-I)n-I-:t(-I)n --dt 
aZ a3 a4 an ,!ca tn 
2 3 4 n' ol+t 

For a .~ 0, the integral term is less than an+!/(n + 1) which approaches ° as 
n approaches 00. If -'1 < a ~ 0, ·tlte absolute value of the integral term 
. Inln+! . 
1S less than or equal to (1 + a)(n + 1)" (Cj. R. Courant, op. C1-t., Vol. I, 

pp. 315-317.) Since the standard deviation of x equals ~, it follows 

that x is of order YN. Hence N
X 

and N
X 

are of order llYN, and if N 
PI . Pz 

is taken large enough, IxllNpl and IxllNpz, -will for some value of N 
become less than 111 for the important part of the dis~ribution lying between 
x . x 
d = -3 and d = 3, say. 
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such as x2/N2pip~ are of order N /N2 or liN, If in Eq. (5) terms 
of order liN and those of higher order are neglected, then 

P(x) x 2 x x3 

Iogep(O-) = - --N--- - """iT - - (P2 - PI) + '6-N' 22 (p~ - pi) 2 PJP2 2.v PIP2 2P1P2 

or since p~ - p~ = (P2 - Pl)(P2 + Pl) and P2 + PI = 1, 

loge ~~~ = - 2N~lP2 - CV~~~ -3N~~P~) P2_i-
PI 

.On replacing NpIP2 by d2, etc., this becomes 

P(x) x 2 (x X
3 )P2 - PI 

log, P(O) = - 2d2 - d - 3d3 - 2d- -

or, on taking antilogarithms, 

P(x) = P(O)e -;;, (' - (~i11) 0-;<1;) (6) 

To complete this equation, P(O) must be evaluated. This 
may be done as follows: By definition, P(O) equals 

(NP1~(~P2f! pfP'pP'· 

Using Stirling's formula, 

. NNe-N v'<hN p.~·PlpfP' 
P(O) = - - -=--=-_-_- - - - ~_== 

(Npt)NP'e-SP, y'27rNpl (Np2)NP'e-NP' y27rNp2 

which reduces to 

P(O) == y2:~PIP2 = d ~2; 
all within an error of order l/N or 1/d2• 

Equation (6) may thus be rewritten 

(7) 

This giyes the value of P(x) within a margin of error of order 
1/d2 or liN. If N is sufficiently large so that terms of order 
1/0 or llYN can reasonably be neglected, Eq. (7) reduces to 

1 -~ 
P(x) = ---:c=- e 2<1' 

dy21l" 

This is the equation for the normal distribution. 

(8) 
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It will be noted that, when Pl = P2, Eqs. (7) and (8) become 
identical. The normal curve is thus a better approximation to 
the symmetrical than to the asymmetrical binomial distribution, 
as common sense suggests. Equation (8) however, ,vill also 
give results very close to those of (7) wherever the difference 
P2 - PI is sufficiently small relative to d. That is, if PI and P2 
differ little absolutely and hence the binomial distribution is only 
slightly skewed even for small values of N, or if '/<7 :s so large that 

PI - P2 = E_~-:='''p!. is small, then the normal distribution'becomes 
I} v NpIP2 

a satisfactory "first" approximation even to the asymmetrical 
binomial distribution. But if N is not very large and if PI differs 
radically from P2, then the binomial distribution iR rather skewed 
and the second approximation (7) had better be used. Of course, 
if N is very small, then it is preferable to use the binomial formula 
itself, for in this case neglect of terms of order 1/ N may lead to 
serious error. 

Equation (8) shows that the ordinates of the binomial distribu
tion may be approximated by the ordinates of the normal curve. 
It will be noted that, as N increases, the ordinates of the normal 
curve, as well as the ordinateR of the binomial distribution (ci. 
page 34), tend to get smaller and smaller and the curve becomes 
more spread out. This is because N enters into the formula for 
I} (that is, d = yNpIP2)' The larger the value of N, therefore, 
the larger the standard deviation and, according to Eq. (8), the 
smaller any particular ordinate (for d enters into the oenominator 
of this equation). If, however, the scales on which the curve 
is graphed are varied in proportion to d, that is, if the vertical 
scale is lengthened and the horizontal scale is shortened in 
proportion to d (that is, VN), then the normal curve retains a 
constant shape, namely, that of the standard normal curve, 

1 -~ 
y = y~ e 2 

where z = xl d. • This is the basis for the statement on page 34 
of the text, that if the scales arc adjusted in this way then the 
limit of the binomial distribution as N is increased is the standard 
normal curve. 

The above shows that a hinomial ordinate can be estimated 
by an ordinate of the normal curve and that a sum of binomial 
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ordinates can be estimated from the sum of certain ordinates of 
the normal c,urve. What is done in practice, however,.is to 
estimate a sum of binomial ordinates over a given range from 
the area under the normal curve for that range, and -it remains 
to be shown that an area under the normal curve is the approxi
mate equivalent of a sum of normal curve ordinates. This is 
,demonstrated as follows: 

An ordinate of a normal curve 

1 -z' 
Y = __ - e2d' 

d~ 
1 -x' 

can always be represented by a rectangle of height _ In: e2d' and 
v 211" 

a: base 1 I d. Furthermore, if the x-scale is measured in standard 
deviation units, a succession of ordinates will be lid units apart 
and the succession of rectangles representing them will all touch 
each other or, in other words, be contiguous. As N is increased 
and lid = l/~ is decreased, rectangles 'over an~ range 
will be thinner and their area will approach tlie area of the stand
ard normal curve for that range. Hencethe area under the 
standard normal curve.can be used as an estimate of the sum of 
a seriel\! of normal ordinates and thus of the corresponding series 
of binomial ordinates. 

D. Proof That the Relative Slope of the Symmetrical Binomial 
Polygon Is .the Same at Any Abscissa Mid-point as That of a 
Normal Curve with the Same Mean as the Binomial Distribution 

and a Variance Equal to N:; 1 Times the Binomial Variance.1 

The ordinate of the symmetrical 'binomial distribution at any \ 
abscissa point N 1 is 

N! (l)N 
YNI = Nd(N - Nl)! "2 

and the ordinate at the next abscissa point N 1 + 1 is 

N! (l)N 
YNl+l = (Nl + l)!(N - Nl - 1)! 2' 

1 This and the next two proofs are based upon Karl Pearson's analysis in 
the Philosophical Transactions of the Royal Society of London, Series A, Vol. 
186 (1895), pp. 355 jJ. 
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The difference between these ordinates is 

N! (i 1) 
I1YN, = YN,+l - YN,.= Nl!(N - Nl - 1)! Nl + 1 - N - Nl 

and since the abscissa interval is N 1 + 1 - N 1 = 1, the absolute 
slope of the side of the polygon joining the tops of these two 
ordinates is this difference AYh, (see Fig, 3, page 4), 

The' ordinate of the polygon at the abscissa mid-point N 1 + t 
is the average' of the two ordinates at the abscissa points N1and 
N 1 + 1. Hence the, ordinate at this mid-point is 

1 N! (1 1) 
2 (YN,+l + YN,) = 2N,1!(N - Nl - 1)! Nl + 1 + N - Nl 

The relative slope at the abscissa mid-point Nl + t is defined 
as the ratio of the absolute slope to the ordinate at that mid
point. Hence the relative slope of the polygon at the abscissa 
mid-point N 1 + t is 

llYN, = YN,+l - YN, 
YN,H HYN,+l + YN,) 

N - Nl - Nl - 1 
=t(N-Nl+N1 +.1) 

N - 2N 1 - 1 2(N 1 - N /2 + t) 
teN + 1) teN + 1) 

If x is set equal to N 1 + t - ~ that is, to N 1 + i minus the mean 

of N 1, and if k2 is set equal to N : 1, this expression for the 

relative slope at N 1-+ 1- becomes 

llYN, -2x 
YN,H'= 2k2 

1 x' 
The relative slope of the normal curve, Y = ~ I~ e - 20", at 

0" v 27J' 
any abscissa point x = X - X is 

x 2 _ 

1 dy d log y d( - ~"- log 0" V27r) 2x 
y dx = ----a:x- = dx - 20'2 

Hence, - ::2 is the relative slope of a normal curve at the point 

x whose standard deviation = k = ~(N : 1), Since the 
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standard deviation of the symmetrical binomial distribution is 
VN74, the normal curve that has the same relative slope as the 
polygon of a symmetrical binomial ,distribution at any abscissa 
mid-point is the one that has the same mean as the mean of the 

binomi~l distribution and a variance equal to N:; 1 times the 

variance of the binomial 'distribution. If N is large, the two 

variances are practically the saIl1e, for then N -:; 1 is practically 

equal to 1. 
E. Proof That the Relative Slope of the General Binomial 

Polygon Is the Same at Any Abscissa Mid-point as That of a 
Pearsonian Type III Curve. The ordinate of the general bino
mial distribution at any absciss~ point N I is 

and the ordinate at the abscissa po~nt NI + 1 is 

Y _ Nl nNt+1pN-Nt-1 
Nt+1 - (NI + 1)!(N - NI _ 1),!~1 2 

The difference between these ordinates is 

_ _ Nlpi"tpf-Nt- l 
( PI p2) 

6.YN t - YNt+l - YNt - Nl!(N - N 1 - I)! Nl + 1. - N - Nl 

and since the distance between the abscissa- points N 1 + 1 and 
Nl is 1, the absolute slope of the side of the polygon joining the 
tops of these two ordinates is AYNt" 

The ordinate of the polygon at the abscissa mid-point NI + i 
is the average of the two ordinates at the abscissa points N I and 
N1 + 1, that is, 

2Nrl(N - Nl - 1)! 

( PI + P2 ) 
NI + 1 N - NI 

The relative slope at the abscissa mid-point N 1 + i is the ratio 
of the absolute slope to the ordinate at that mid-point. This 
has the value 
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IlYNl _ YN1+I - YNI _ 2[(N - N1)PI - (N\ + I)p2] 
YN1+! - t(YN1H +.YNl) - (N - N1)PI + (NI + I)p2 

2(Npl - NI - P2) 
NpI + (P2 .. PI)NI + P2 

which may be put in terms of the abscissa mid-point N I + ~ by 
adding and subtracting t to the numerator and adding a'nd sub
tracting t(P2 - PI) in the denominator, as follows: 

2WPl - (NI + t) - P2 + il 

If now x is set equal to (NI + i) - NpI + P2 - i, that is, 
to the deviation of. N I + t from what is practically the mode 
of the binomial distribution (see page 68), the foregoing expres
sion for th~'relative slop'e can be put in the form 

-2x 
Relative slope = N + ( ) ( + N + J) PI P2 '- PI X PI - P2 2" 

+ P2 - -HP2 - PI) 

which, upon making use of the fact that PI + P2 = 1, reduces to 

-2x 
Relative slope I = 2NpIP2 + -2PIPZ + (p~ - PI)X 

where l 

2 
k = .---

P2 - PI 

, '2 
----x 

pz - PI 
2PIP2(N + Il + x 

P2 - ,PI 
-kx 

=a+x, 

and 

"-

a =' 2PIP2(N + 1) 
P2 - PI 

To find the curve whose relative slope at the point x is that of 
the binomial polygon, it is necessary merely to. integrate. This 
is done as follows: 

1 The k and a used in' this proof are the same as the boldface 'k and a used 
in the body of the text. Italic k and a are used here to simplify the printing 
of the mathematical derivation; they do not signify sample values but repre
sent population values iust as'k and Ii do in the text. 
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Set 

But 

and, by division, 

Hence, 

1 dy -kx 
ydx=a+x 

1 dy d log y 
y dx = ---;rx 

-kx -k + _E!:_ 
a+x=. a+x 

d log Y -k + _E!:_ 
~= a+x 

and, ~pon integrating, 

log. y'= -kx + ka loge (a + x) + loge C 

Therefore, 

y = ce-kx(a + x)ka = c' (1 + ~ya e-k", 

where c is the constant of integration and cf = caka, 
The value of 0' is determined fro~ the condition that the area 

under the ,curve must equal 1. In doing tl).is, it is to be noted 
that negative frequencies are inadmissible so that x cannot be 
less than -a, It is therefore the area under that part of the curve 

from x = -a to 00 that is to be equal to 1, that is, f-: y dx = 1. 
ekae-ka (ka) ka 

To carry out this integration, multiply y by (ka)ka ,which, 

of course, equals 1, which puts the integral in the form 

f '" y dx = f'" cf e
ke

ka 
[k(a + x)]kae-k(a+z) dx 

-a -a (ka) 

If z is set equal to k(a + x), this becomes 

f '" c'aeka roo 
-a y dx = (ka)ka+l ) 0 zkae-' dz 

(Note that dz = k dx). But!o '" zkae-z dzis by definition r(ka +1), 

called gamma of ka + 1, and equals (ka)!* Consequently, since 

* Integration of !o '" zm-1e-' dz by parts gives 
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f-: y dx must equal ~, 
\ (ka) ',a+1 

c' =~~~ aeka(ka) ! 

Since y = c' when x = 0 and since·x = 0 is the mode of the dis
tribution (for dy/dx = 0 when x = 0) c' is designated as yo and 
equals the h~ight of the curve at the mode. Therefore, the 
formula for the curve is that given in the text (page 49), viz., 

y = Yo (1 + ~ya e-k:c, the origin being the mode of the distribu

tion. This is Pel'j.rson's type III curve. Taking logarithms of 
both sides yields 

loglo y = lOglO Yo + ka -lOglO (1 + ~) - kx lOglO e, 

which is the form given on page 49. 
F. Proof That the :Q.elative Slope of the Hypergeometrical 

Polygon Is Given at Any Abscissa Mid-point X = N 1 + t by a 

Formula of the Type Relative Slope = boO + ~; ~ b
2
X2' By 

Eq. (4) of Chap. IV (see page 54) the ordinate of the hypergeo
metrical distribution at any abscissa, point N 1 is 

(PIS) !(p2S) !(S - N) !N! 

-e-'zm-1]0" + (m - 1) 10'" zm-2e-· dz. 

But the first term is zero both for z = 0 and z = 00, and therefore 

10 '" zm-1e-' dz = (m - 1) !o .. zm-2e-· dz. 

If m is a positive integer, repetition gives 

10 '" z,,!-le-' dz = (m - l)(m - 2) ... 10" e-' dz 

or since r" e-2 dz = -e--J '" = 1 Jo 0 " 

10 '" z .. -le-· dz = (m - 1)! 

When m is not a positive integer, 10 00 zm-1e-' dz is taken as the·definition of 

(m - I)! The function r '" zm-1e-' dz is called the gamma function of m . Jo 
and is written rem). Thus rem) = (m - 1)1, rem + 1) = m!, etc. (see 
p.254). 
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and its ordinate at the abscissa point N 1 + 1 is 

(PlS) !(p2S) !(S - IV) !N! 
YNt+l = (PlS - Nl - 1)!(p2S - N"+ Nl + l)!S!(Nl + I)! 

The difference between these two ordinates is 
• (N-Nl-1)! 

(PlS - Nl - 1)!(p2S - N + Nl)!S!Nl!(N - Nl -1)! 

[(P2S - N + N~ + l)(Nl + 1) - (PlS - Nl~(N - Nl)] 

Since the distance between the abscissa points is 1, this difference 
is the value of the absolute slope of the side of the polygon joining 
the two ordinates. 

The ordinate at the abscissa mid-point N 1 + i is equal to 
t(YNt+l + YNt), which equals 

and the relative slope is the ratio of the absolute slope to the 
value of this mid-ordinate. That is, 

2[(pl S - Nl)(N - N 1) - (P2S 
. - N + Nl + 1)(N1 + 1)J 

Relatlve slop~ = (PIS - N 1) (N - N 1) + (P2S - N 
+N1 + l)(Nl + 1) 

which reduces to 
. 2[N + NplS - p2S - 1 - NICS" + 2)] 

Relative slope = NplS + P2S + 1 - N + N l[(P2 - Pl)S ;_ 2N 
+ 21 + 2Ni 

If ~ow X is set equal to N 1 + t, the foregoing expression for 
the relative slope may be put iIi the form 

X + [~ _ eN + 1)(1 + PlS)] 
" 2 S + 2 

Relative slope = 2NplS + S + 1 [(P2 - Pl)S - 2N]X 

4(S + 2) + 2(S + 2) 
X2 

+S+2 
which is equivalent to 
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where 
1 .(N + 1)(1 + PIS) 

a=2"- S+2 

b _ 2Np i S + S + 1 
o - 4(S + 2) 

b _ (P2 - PI)S - 2N 
I - 2(S + 2) 

1 
b2 '= S+·2 

G. The Criterion for the Hypergeometrical Distribution. The 
\ 

character of the hypergeometrical distribution will depend on 
the value of the discriminant bl - 4bob2• From the results of 
the previous section, this is seen to be 

[(P2 - PI)S - 2NJ2 - 4(2Np1S + S + 1) 
4(S + 2)2 

The value of the discriminant is thus related to the values of 
PI, P2, N, and S. It is po~itive if N IS lies outside'the limits 

~ ± ~(pi + ~) (P2 + ~} and it is negative if N IS lies. within 

these limits. In the first case, the hypergeometrical distribution 
is approximated by a type VI curve (see pages 60, 135) j in the 
second case, by a type IV curve. 

In the example employed in the te'xt, PI = t, P2 = 1, S = 52, 
and N = 10. Hence, N IS = t£: On the other hand, 

~ ± ~(pi +~) (P2 + ~) = ~ ± ~G + 12) (~ + 5;) 
= ! + '(14) (40) = ! + _!_ . 1560 = 49.7 2.3 

2 - '\j 52 52 ~ - 52 v iJUV 52 or 52 

Since N IS( = -H) lies within these limits, the hypergeometricaI 
distribution given by these value~ of PI, P2, S, and N is approxi
mated by a type IV curve. 

It wiII be noted that N, PI, and S are all positive quantities so 
that the second term of the discriminant (without the minus 
sign) must be positive. That is, the roots of the equation 
bo + blx + b2x2 = 0 cannot be real and of opposite sign. Con
sequently, Pearsonian curves of type I cannot be derived from a 
hypergeometrical distribution (see footnote to page 58). 



CHAPTER V 

THE GRAM-CHARLIER SYSTEM OF FREQUENCY CURVES 

The introduction of a possible variation in the contribution 
of a causal factor at the end rather than at the beginning of the 
argument may be considered a weak point of the Pearsonian 
analysis. It is· therefore 'Of interest.to consider another approach 
to the theory of frequency curves that assumes variable contri
butions from the start. Such an approach is that which gives 
rise to the Gram-Charlier system of frequency curves. 1 

Derivation of the Gram-Charlier Formula. The assumptions 
on which the Gram-Charlier system of frequency curves is based 
are similar in many respects to those from which the skew 
binomial and Pearson's type III curve were derived. The first 
fundamental assumption is that the fluctuations in a given 
variable X are the a1gebraic sum of the contributions of a number 
of causal factors. Thus the deviations of X from some central 
value are assumed to be equal to El + E2 + . . ~ + EN where the 
t'S may take on either· positive or negative values. The signifi
cance of this assumption is that the contributions of' the vario).ls 
causes are additive rather than multiplicative or related in some 
more complex way. The second principal assumption is that 
the contribution of each cause is independent of the contributions 
of other causes. 

The two assumptions above are essentially the same as those 
made by Pearson in the derivation of his type III curve; but a 
third fundamental assumption differs froro Pearson's. In the 
case of the binomial distribution it was assumed that each con-

I So called because J. P. Gram and C. V. L. Charlier were principally 
responsibl7 for its development. See, for examplo, J. P. Gram, Om R£ek
keudviklinger (Copenhagen, 1879) (Doctor's Dissertation); and "Uber die 
Entwickehing reeler Functionen in Reihen mittelst die Methode der klein
sten Quadrate," Journal fur Mathematik, Vol. 94 (1883), pp. 41-73. Also 
see C. V. L. Charlier, "Uber das Fehlergesetz," Arkiv fur Matematik, 
Astronomi och Fysik, Vol. 2, No.8 (1905), pp. 1-9; and "Uber die Darstel
lung willkurlicher Functionen," Arkiv fur Matematik, Astronorni och Fysik, 
Vol. 2, No. 20 (1905), pp. 1-35. 

82 . 
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tributory cause could add or subtract only a fixed amount to the 
variable (only. an H or a T was possible). Under the Gram
Charlier system, it is assumed that the contributions of each 
causal factor can take on various values, the probability of any 
given value being given by a distribution the form of which is 
fixed, but not necessarily known. These distributions of prob
ability are allowed: to vary from cause to cause; they way be 
discrete or continuous and are not subject to any restrictions 
other thl}-n that the probability of very large positive or negative 
contributions shall be practically zero, i.e., that the distributions 
taper off to- zero in bqth directions. 

On tp,e basis of these assumptions the Gram-Charlier analysis! 
shows that, if the number of contributory causes is relatively 
large, then the distribution of the resultant variable X bears 
certain approximate relationships to the distributions of the 
individual contributory elements E. In setting up these rela
tionships it makes use of certain quantities, called" cumulants" 
or "semi-invariants," that are directly related to the moments 
of a distribution. Thus, if til, 1I2, tla, and tl4 are the ,first four 
moments of a distribution about its mean, then kl = VI' k2 = 1I2, 
ka = tis, and k4 = tl4 - 311~' where the k's are the first four 
cumulants of the distribution. Both kl and VI are 0, of course, 
when the moments are measured about' the mean. It is obvious 
that k2 = 02, that ks is r~lated to the skewness of the distribution, 
l).ud that k4. is related to its kurtosis.' When k3 is 0, the distribu
tion is symmetrical; when k4 is 0, its kurtosis is 3. 

By adopting certain mathematical approximations, the Gram
Charlier analysis shows that the cumulants of the distribution 
of X· are the sum of the cumulants of the distributions of. the 
individual contributory elements. That is, if k12 is the second 
cumulant of the distribution of the first contributory element 
EI, k22 the second cUD'1ulant 'of the second contributory element 

'f2, k23 the third cumulant of the second contributory element, 
etc., and if K 2, K s, and K4 are the cumulants of the distribution 
of X, then 

K2 = k12 + k22 + kS2 + 
Ka = k13 + k23 + kss + 
K4 = k14 + k24 + ka4 + 

1 For 1t fuller discussion of the Gram-Charlier analysis see the Appendix, 
pp,92-99, 
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These relationships form the basis of the Gram-Charlier 
analysis. Suppose, it is argued, that the variance K2 of the 
resultant variable X is finite, as it is in most practical cases, and 
suppose that the variances, k2'S, of the individual contributory 
elements are all of about the same order of magnitude. Then, 
since there arc N contributory elements, the variance k2 of each 
of them is of about the size of KdN, or, as the mathematicians 
say, of the order of liN, and its standard deviation Vk; is of 
the order of 1/vN. This means that the average variation in 
each contributory element is of order 1/ Vii, Hence the third 
and fourth moments (and therefore the third and fourth cumu
lants), "which involve the third and fourth powers of this varia
tion, will be of order 1/ Ng and 1/N2, respectively. Conse
quently, the third and fourth cumuIants of X, Ka and K4, which 
are equal, respectively, to the sum of the third and fourth cumu
Iants of the N contributory elements, will be of order 1/ VN 
and liN. 

It therefore follows that, if N is large, the third and fourth 
cumulants of X will be approximately O. This means that the 
distribution of X will be practically symmetrical and its kurtosis 
will be close to 3. The Gram-Charlier analysis shows further 
that under these circumstances the form of the distribution of X 
will be that of the normal curve. 

In summary, then, the Gram-CharHer analysis shows that if 
variation in a quantity X ?s the sum of a large number of ele
mentary independent variations 10, and if these elementary vari
ations are all of about the same order of magnitude, then the 
distribution of X will be approximately normal in form. . 

If N is not large enough to make terms of order llyN or 
1/ N negligible but is still large enough to make terms 'of higher 
order (such as terms of order I/N2) practically zero, then the 
Gram-Charlier analysis shows that the form of the distribution 
of X \vill be given approximately by 

y = d ~~ [ 1 + ~ Ci- - ~;) + ~ (3 - 6~~ + ~) ] e -2~' (1) 

where 

x = X - X, -Kg lIg 
A = -sf = 31' and 

B = K4 = lI4_-= ~'!t 
4! 4! 
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This is the more general Gram-Charlier formula for a frequency 
curve. The normal curve is the special case for which A and B 
both equal 0; all other curves are nonnormal. 

Components of a Gram-Charlier Curve. The effect of the 
additional A and B terms on the shape of the distribution of 
X is illustrated in Fig. 17. Here the ordinary normal curve is 
represented by curve 1. If A is negative, the effect of ~e A 

,. I. :,Normal curve 

\ limes normcrlcurVe 

\~" ---"':a.. ___ 

3 

FIG. 17.-Components of a Gram-Charlier frequency curve. 

4 x 
(j 

term is to subtract from the normal ordinate for positive values of 

X - X. . t fth t d' t X - X 1 --o--anmcreasmgpercen ageo a or ma e up to ~d~ = 

. X-X.,r,:; 
and then a decreasing percentage up to ---0 - = v 3 and there-

after to add a small percentage. The opposite is true for negaJ 

tive values of X ~.!. The fluctuations in the amounts added 

and subtracted are illustrated by curve II of Fig. 17, for which 
A/03 = - .2. Since, when A is negative, the effect of thc A 
term is to subtract from the right of the mean and to add to the 
left of the mean (at least in its immediate neighborhood), the 
result is a transformation of the normal curve into a positively 
skewed curve (cf. Fig. 18). If A is positive, the effect of the A 
term is to add to the 'right of the mean and to subtract from the 
left (cf. Fig. 19), at least within the immediate neighborhood, and 
thus to transform the normal curve into a negatively skewed 
curve (cf. Fig. 20). 
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This dependence of the skewness of the distribution of X on 
the sign of A was to be expected. For, as indicated above, 
A = -Ks/3! and K3 itself is a sum of the cum~ants k1s• k 23 • 

x 
7i 

FIG. I8.-Combination of curves I and II shown in Fig. 17. 

etc., which are the third moments of the distributions of the 
individual contributions. Consequently; if the distributions of 

y 

the individual contributions are all positively skewed, their 

-x 
(j 

FIG. 19.-Combination of curves I and III shown in Fig. 17. 

third moments, and hence kIs, k2S, etc., will all be positive; K 3, 

which equals k IS + k23 -+ k33 + . . . + kN ,. will be positive; 
A will be negative; and the distribution of x_ will be positively 
skewed. That is, if the distributions of the individual COll-
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tributions, E, are all positively skewed, then X itself will be 
positively skewed. Just the opposite is true if the individual 
contributions are all negatively skewed. If some of the indi
vidual contributions are positively skewed and others are 

x 
(j 

FIG. 20.-Combination of curves I, II, and III shown in Fig. 17. 

I. Normal cvrve 

-4 ---3- 4x 
(j 

FIG. 21.-Effect upon normal curve of additions and subtractions type II' 
and UI'. 

negatively skewed, then the value of Ka, and hence the skewness 
of X, will depend on whether the positive or negative influences 
are predominant. Since'the contributions are presumed to be 
of approximately the same or~er of magnitude, the result will 
depend primarily on the relative -number of positively skewed 
and negatively skewed contributions. 
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Th,e effect of the B term on the distribution of X is shown 
graphically in Figs. 17, 19, 21, and 23. If B is positive, the effect 
of the B term is to add a maximum percentage to the ordinate 

X-X of the normal curve at --d- = O. This percentage decreas~s 

.. '1 X - X 1 7 d 7 . I In slze untl --d- equa s -. 4 an +. 4, respectIve y, from 

which points an increasing percentage is subtracted from the 

FIG. 22.-Combination of curves I and II' shown in Fig. 21. 

x 
0' 

normal ordinates~ The maximum percentage subtraction is 

attained at X - X = - V3 and + 0, after which a decreas-
d 

ing percentage is subtracted until X ~ X = -:2.33 and +2.33. 

From those points on, a small percentage is added to the normal 
ordinates. 

These fluctuations in the percentages added and subtracted 
are illustrated by curve III of Fig. 17, for which B / d4 is taken 
equal to +.10. When B is positive, the effect of the B term is 
to add to the normal curve in the immediate vicinity of the meaD.', 
to subtract from it at intermediate distances from the mean, and 
then to add to it again on the tails of the distribution; the result 
is to give the final curve a greater than normal peakedhess. 
That is, if B is positive, ~he distribution of X will have a coeffi
cient of kurtosis greater than 3 (cl. Fig. 19). Just the opposite 
is true if B is negative. In this case subtractions are made 
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from the normal curve within the immediate vicinity of t~e mean, 
additions are made at intermediate distances, and subtractions 
are again made out on the tails (c/. Fig. 21). The result is to 
produce less than normal peakedness (c/. Fig. 23). If B is 
negative, therefore, the distributioI\ of X will have a coefficient 
of kurtosis less than. 3. 

FIG. 23.-Combination of curves I and III' shbwn in Fig. 21. 

x 
(j 

Again this result was to be expected. For the value of B 
depends on ,the vulue of K 4, and' this ,in turn depends on the 
values of k14, k24 , etc., which represent the excess above 3 or the 
deficit below 3 of the coefficients of kurtosis of the distributions of 
the .individual contributions. Thus if the distributions of the 

o x 
(j 

FIG. 24.-Combination of curves I, Ii', and III' show'n in Fig. 21. 

individual contributions, €, are all more peaked than normal, 
i.e., if the k4'~ are all positive, then K4, which equals 

k14 + k 4, + kS4 + . . . + k N4 , 

will also be positive, B will be positive,'and the distribution of X 
will be more peaked than normal. The opposite is true if the 
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distributions of the individual contributions are all less peaked 
than normal. If Some of them are more peaked than normal 
and others are less peaked, then the peakedness of the distribu
tion of X will depend upon the predominance of excess or deficit 
influences; and since the individual contributions are all assumed 
to be of approximately the same order of magnitude, this predom
inance will be primarily determined by the relative number of 
excess and deficit influences. 

Usually the A and B terms are the only additional terms 
deemed worthy of consideration. For unless the. number of 
-causal factors, N, is relative:y small, higher-order terms will be 
of negligible importance in determining the distribution of X, 
continUing to assume, of course, that the contributi~ns of the 
various causal factors are approximately of the same order of 
magnitude 1 In the practical work of fitting a Gram-Charlier 
curve, it also becomes difficult to determine with any degree of 
accuracy the values of these higher-order terms. 2 For these 
reasons, Eq. (1) is usually considered a sufficiently general equa
tion. In special cases of very skewed distributions, somewhat 
better results may be obtained by a type of I_!!athematical approx
imation that gives rise to a different equation3 from Eq. (1). 
Gram-Charlier distributions of this latter kind arfl called" type 
B distributions" to distinguish them from those given by Eq. (1), 
which are called' type A distributions." 

GENERAL SIGNIFICANCE OF THE GRAM-CHARLIER ANALYSIS 

The principal significance of the Gram-Charlier analysis for 
the theory of frequency curves is the explanation it affords of, 
nonnormal frequency curves when the number of contributory 
causes is limited. The Pearsonian analysis, it will be recalled, 4 

1 Failure to incluae higher-order terms, however, may sometimes produce 
negative frequencies in certain parts of a GralI!:Charlier curve, which is of 
course a practical impossibility. Such, for instance, is'seen to be the case in 
Figs. 15 and 20. 

2 The difficulty is that the sampling fluctuations in these higher-order 
terms are especially great. 

3 For a discussion of this special variation ,in tpe ~Ilalysis; see C. V. L. 
Charlier, "Uber die Darstelllmg willkurlicher Functionen," Arkiv fur 
Matematik, Astronomi och Fysik, Vol. 2, No. 20 (1905), pp. 1-35. An ele
mentary discussion in English is to be found in H. L. Reitz, Mathematical 
Statistics, Chap. VII. 

4 See p. 63. 



THE GRAM-CHARLIER SYSTEM OF FREQUENCY CURVES 91 

was strictly valid for nonnormal distributions of discrete vari
ables, but i.ts explanation of continuous nonnormal frequency 
curves depended upon Ii. tardily introduced assumption of 
"lumpiness" in the contributions of the causal factors-a pro
cedure that was not entirely satisfactory since the analysis 
was originally based upon the assumption of definitely fixed 
contributions. ... 

The Gram-Charlier. analysis assumes at the very beginning 
that the contributions of a causal _factor themselves vary con
tinuously, the probabilities of various possible values being given 
by a distribution ot a definite but unknown form. It then goes 
on to show that if a given variable X is an algebraic sum of the 
contributions e of a number of such causal factors, if the con
tributions are appr.oximately of the same order of magnitude 
(i.e., if the standard deviations of'the contributions are about 
equal), and if they are independent of each other, then the form 
of the distribution of X will depend partly on the forms of the 
distributions of the individual ,contributions and partly on the 
number of such contributory causes. Thus, if the number of 
causal factors is very large, the distribution of X will be approxi
mately normal, whatever the forms of the distributions of the 
individual contributions. If the number of causal factors is 
only moderately large, however, but their -contributions are still 
of the same order of-magnitud~, 'the skewness and kurtosis of the 
distributions of the individual contributions will tend to produce 
a skewness and kurtosis in the distribution of X. In' special 
cases the skewness of the .individual contributions may be com
pensatory. Thus it is possible for the distribution of X to be 
symmetrical, not only when the distributions of the individual 
contributions are themselves all symmetrical, but also when the 
skewness of one or more contributions is offset by a contrary 
skewness of one or more other contributions. Similar remarks 
may be made with respect to the kurtosis of X. 

These conclusions are much 'the ~ame as those drawn from the 
Pearsonian analysis pertaining to ,the asymmetrical binomial 
distribution. In fact, this part of the PearsQnian analysis may 
be considered a very sp'ecial case of the Gram-Charlier analysis. 
Suppose, for example, that, in the latter, distributions of the 
individual 'contributions are all assumed to be of a very special 
sort. Suppose that in each case only one specified positive 
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contribution and one specified negative contribution are possible 
and that these have the same absolute value. Let the probability 
'Xith which the contribution takes on its positive value differ from 
that with which it takes on its negative value. Furthermore, let 
these distributions of the individual contributions be all alike, 
both as to the amounts of the positive and negative values and 
as to the probabilities of each. Then, under these very special 
assumptions, the Gram-Charlier analysis will yield the asy.rp.
metrical binomial distribution. The latter is thus a special 
case of a Gram-Charlier distribution. 

Finally, it is to be noted that the Gram-Charlier analysis does 
not, as does the Pearsonian analysis, relax the assumption of 
independence of the contributory causes. The latter, it will be 
recalled, laid aside this assumption and permitted the contribu
tion of a causal factor to be dependent on the contributions of 
other factors. The skewness and kurtosis yielded by the general 
Pearsonian furmula were in part to be attributed to this assump
tion of dependence. The Gram-Charlier analysis assumes 
throughout that the contribu.tion of any causal factor is inde
pendent of the contributions of othm;Aausal factors. It is 
restricted in this respect in the explanation that it affords of 
actual frequency distributions. 

APPENDIX 

DERIVATION OF THE GRAM-CHARLIER FORMULA FOR A TYPE /\. 
FREQUENCY DISTRIBUTION 

The following is a more detailed discussion of the Gram
Charlier system of frequency curves than was given in the main 
body of the text. Its principal 'purpose is to outline the argu
ment by which the formula for a type A frequency-distribution 
[Eq. (1)] is derived. For the sake of those not well acquainted 
with higher mathematics, the essential steps are presented in a 
more or less nonmathematical manner, while the mathematical 
basis for each is sketched in a series of footnotes. For a fuller 
mathematical analysis, the reader is referred to the original works 
of Gram and Charlier (see footpote to page 82) or to the English 
accounts of them given by Arne Fisher's Mathematical Theory 
of Probabilities or H. L. Reitz's Mathematical Statistics. 1 The 

1 Also see THIELE, T. N., Theory of Observations, first published in 1903, 
(C. and E. Layton, London) ilnd recently reprinted in the Annals of Mathe-. 
matical Statistics, Vol. 3 (1933), pp. 161\-308. 
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presep.t discussion follows closely that outlined'in E. T. Whittaker 
and G. Robinson, The Calculus of Observations,! pages 168 to 174. 

The cornerstone of the Gram-Charlier analysis is the Fourier, 
integral theorem. This, so far as the argument in question is 
concerned, states that if a certain function of a given variable, 
called its "momen.t generating function," is known, then the 
frequency distribution of the variable itselj may be determined 
and conversely if the distribution is known its moment, generating 
function may be found. 2 This moment generating function is 

00 

of the form G = .2: e~o,,'f(x) dx, where x = X - X, jex) dx is the 

distribution of x, e is the, constant 2.718 +, i = V -1, and 0 is an 
arbitrary variable. 3 G is called the moment generating function 
because, if certain operations are performed on it with reference 
to iO and then 0 is given the value of 0, tv.e results are the various 
moments of the distribution of x. * 

The significance of the moment generating function for the 
present analys~ is that if a variable X is the sum of a number Of 
other variables, the values of anyone of which are independent 
of the values assumed by the others, then the moment generating 
function of the composite variable X is simply the product of 
the moment generating functions of the independent variables. <1 

Thus, with reference to the, ~iven problem, if variations in X 
are the sum of the contributions of certain causal factors, all 
acting independently of each other, the moment generating 
function of th.e frequency distribution of X, the form of which 

1 Blackie & Son, Ltd., Glasgow, 1925, 2d ed. 
2 More exactly, if the moment-generating function is defined as 

G(IJ) = f_'"",f(x)e iO , dx, 

where i ~ v' -1 and f(x) dx r~presents the frequency distribution of x, then 

f(x) = 21 J '" 'G(IJ)e- iO• dO, and vice versa. 
1[" _'" 

• When x is distributed in the form"of a smooth continuous curve, G is 
defined more exactly by the formula of the previous footnote. 

* Thus, if G is differentiated with respect to ilJ and 0 is set equal to 0, 
the result is the first moment of f(x). If G is differentiated twice and then () 
is set equal to 0, the result is the second moment of}(x), etc. This is fre
quently the· simplest method of obtaining equations for the moments of a 
known distribution . 

• The reason is that ea& = eab. Ci. WHITAKER and ROBINSON, op. cit., 
p.170. 
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is being sought, is the product of the moment generating func
tions of the frequency (i.e., probability) distributions of the 
individual contributory factors. Symbolically, 

Gx = GIG2 ••• GN 

This relationship between the generating function of the sum 
and that of the individual contributions is of fundamental impor
tance, but it does not of itself advance the argument. For there 
is nothing in.the given assumptions that provides any knowledge 
about the generating functions of the individual contributory 
factors. H~nce the relationship' of the latter to the generating 
function of X can of itself -give no information about the nature 
of this resultant generating function. 

The next step in the argument, however, yields more tangible 
results. This is to note that tM logarithm of a moment generat
ing function can be represented by an infinite series, the terms of 
which consist of risi,ng powers of it} and certain quantities that 
d~pend on the distribution to which the generating function 
relates. Thus if feEl) del represents the probability distribution of 

., 
'cause 1 and GI = '1f(EI)eiOI1 dEl is its m9J1lent generating function, 

then the logarithm of G1 can be put in the form 
l 

•. 82 (i8) 3 84 

log G1 = ~Okll - 2! k12 + 3! k13 '+- 4! kg - (1) 

where k ll , k 12 , etc., are quantities that are cailed "semivariants" 
or "cumulants" and, if El is measured from its mean, are related 
to the moments of feEl) dEl as follows: l 

co 

1 The moment-generating function G, = Z ei6n f(EI) dE, is a function of 

iB and may be written GI(i8). Let log GI(i8) be called K I(i8); then K I(i8) 
may be- expanded in a power series in i9 (Taylor's expansion), in the neigh
borhood of i8 = 0, as follows: 

K I(i8) = KI(O) + K;(0)i8 + K~/(O) (~?~ + .. 
where K~, K~, etc., represent derivatives with respect to iB. The problem 
is to find K,(O), K~(O), K~(O), ... 

Since GI (i8) = 1 when () = 0 [note that the sum from - co to -i- co of the 
the probabilities Of/(EI) dEl = 1), it follows that log G,(O) = 0, i.e.,K,(O) = 0 
Again 

d log GI(i() 1 dG I (i8) 
d('-Q) = GI (i8) d(i8) 

or 
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kll = t.J.l = 0, k14 = t.J.4 - 3t.J.~, etc. 

The same can be donEi for the logarithms of the generating func
tions of the other contributions, and since the logarithm of a 
product is the sum of the logarithms of the various factors, the 
logarithm of the generating function of X can be represented as 
the sum of the N infinite series representing the logarithJ.lls of the 

K'(io) = Gl~O) a;(io) 

or 
\ G,(iIJ)K'(iO) "" G~(iIJ) 

Furthermore, by expan'~ing e'G., in a power series~ it follows that .. .. 
a,CiIJ) = L f(El) dEl + iIJ ~ Etf(El) dEl 

+ (Z2'Ot)' ~ ~ • (iO)3 ~ £-J Ed(.,) dEl 1- 3f '-< .U(El) d., + 
-00 

. (iO)_2. (iIJ) , 
= 1 + ~0ll-l + -21 11-' + T! \la + 

DO .. 

because by definition 111 = 2: Eli(E,) dE" 1" = ~ EirCE1) d.~, etc; 
-DO -DO 

Thus 

0 '('0) +. + (iO)' + 1 ~ = 11-1. to\l' ""'2! 11-8 ••• 

lind likewise from Taylor's expansion for K,(iIJ), it fonows that 

K~CiO) = K~(OY + K~~(O)iO + K~'(O) (i:t + ... 
Hence the above identity may be written 

[1 + iIJvl + (~t V2 + ... J [x;(O) + K~(O)iO + xt(O) (~r + ... J 
. (iO) I 

"" IH + to\l2 + 2! tis + . . . 
If the left side of this identity is multiplied out and·if the coefficients of 
various powers of io on the left are equated to the coefficients of the same 
powers of iIJ on the right, it follows that when El is measured from its mean 

and 

K~(O) = \,1 = 0 
K~(O) = 11-' 
K~' CO)" = \'2 

!: K" (0) + K~ (0) l'c 
21 1 3t = 3i 

K~V (0) = 1.'. - 31'~ 
If kll is set.equal to K; (0), k12 to K~' (0), k13 to K~' (0), k'f to Kf (0), etc., the 
equation for log G,(iIJ) = K,(iO) is seen to be equation (1) of the text. 
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generating functions of the N individual contributions. Thus, 
if the first sUbscript of a cumulant k represents the contribution 
to which it pertains and the second the order of the cumulant, 
it follows that:1 • 

(J2 
log Gx = - (k13 + k22 + k32 + ... + k N2) '2! 

+ (k13 + k23 + k33 + + kN3) (~r 

(2) 

Comparison of the coefficients of Eq. (2) with those of (1) indi
cates that the cumulants of the generating function of the distri
bution of X are the sums of the corresponding cumulants of the 
generating functions of the indiv¥lual contributions. That is, 
if the cumulants of X are indicated by K 2, Ks, etc., it follows that 

K2 = k12 + k22 + + kN, 
K3 = k 13 + k 2S + . . . + kN• 
K4 = k14 + k24 + . . . + kN" etc. 

It is this last expression that permits c_ertain inferences regard
ing the moment generating function of X and hence the distribu
tion of X. Thus suppose that two additional' assumptions are 
made regarding the distributions of the contributions of the 
individual causal factors, viz.: (1) that the number of these 
causal factors, N, is very large and (2) that the variances d 2 = V2 

of the individual contributions are all approximately of the same 
order of magnitude. The k l2's, it will be recalled, are equal to 
the variances of the individual contributions, and expression (3) 
shows that their sum gives the variance K2 of X. The variances 
of physical, biological, and· economic variables are generally of 
finite size so that for practical purposes it may be assumed that 
the variance of X is finite. Since it is equal to the sum of N 
variances, all of about the same order of magnitude, it can be 
concluded that each of the contributory variances is of the order 
of liN and that each contribution is of order llYN. 

From this it follows that the higher cumulants and moments 
are of order greater tl;lan liN, for example, that k13, k 23, etc., 

1 For, it is to be remembered, ku = 0 on the assumption that El is meas
ured from its mean, and the same is true for kn , k 31, etc., on the assumption 
that all the E'S are measured from their means. 
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are of order 1/VJii3 and that k141 k241 etc., are of order l/N2. 
Since Ka is equal to the sum of the N cumulants k131 k2h etc., and 
K4 is equal to the sum of the N cumulants k 14) k341 etc., the magni
tude of these higher cumulants of X is therefore of the order of 
llYN and liN, respectively. Consequently, if the variance of 
X is finite and if N 'i~ very large, as is assumed, the size of Kal K4 
and that of the higher cumulants of X will be very small. A first 
approximation to the generating function of the distribution of 

X is t!ms given by log Gx = -K2 ~~ or G = exp [ -~r82l and 

from this; by means of the Fourier integral theorem mentioned 
above, it may be shown'! that a first approximation to the distri-

bution of X itself is f(x) = -V~K2 exp [ - 2~2 ] which is the 

formula for the normal curve. The Gram-Charlier analysis 
thus shows that if the number of the contributory causes is very 
large and if their contributions are of about the same order of 
magnitude, i.e., if the variances of the contributions of the indi
vidual causal factors are roughly the same, the q.istribution of the 
resultant variable X will approximate the normal form. 

1 Since, according to the Fourier integral theorem, the frequency distribu~ 

tion of X is f(x) = .;,_ J '" G(O)e-·9• dO when its moment generating func
v2". -00 

tion is G(O) = f-"' .. f(x)e,9z dx, it follows that, when G(O) = exp [-~202} 
then . 

1 f" [-K20' ] j(x) = - exp -- - iOx dO 
2 ... -.. 2 

But if the square of the exponential is oompleted, it makes 

j(x) = 21 ... f_ .... exp [ - (K~(I2 + ilJx + ~~:) J exp [~~] ~IJ 

=. ; ... exp [~~:J f_ .... \)i. exp [ - ( \)!j 0 + J:K) 2J 
" d (yK2 (J + ix ) 

2 V2K2 

But the integral is of the form f" W:K2. e-" dz, which equals YK2 
... 

- 00 2 2 

Hence, 
1 [:r;2 J !(x) =--=exp - - . 

V2 ... K. 2K. 
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If the variances of the individual contributions are about the 
same (that is, if k121 k221 etc., are approximately equal) but 
the number of causal factors, N, is not large enough to warrant the 
dropping of terms of the order of l/vN and liN, although 
'sufficiently large to warrant the dropping of'terms of higher oraer 
(i.~., terms of order l/vN, l1N2, etc.), then the moment generat
ing function of the distribution of X will be given approxim.atelyl 

(}2 (iO) 8 (}4 
by log Gx = -K2 21 + Ks 31 + K4 41' From this generating 

function, the distribution of X is found to be2 

1 For K., K6, and the higher cumulants of the generating function will 
all be of higher order than liN; arid, according to the assumption, terms of 
-that order may be considered as negligible. 

02 (iO) 3 04 

• If log Gx = -K. 2i + Ks "3! + K4 4! and 

[ 
- K,62 K.(i6}3 K.84] 

G=exp ~+3!+4t' 

then the distribution of x is given by 

f( ) = _!_ f " [-K,02 + Ka(iO)3 + K 404 - '0 ] dO 
X 211' _ .. exp 2! 3! __ 41 ~ x 

This may also be written, to within .terms of order liN, 

f(x) = ;11' f-"'" [ 1 + K3i~O)3 + K;f'] exp [_~t02 - iOX] do 

But as noted in the footnote to page 97 . 
2~ f-"" exp [ - ~202 - iOx] do = V2~K2 exp [ ;;:J 

and successive differentiation with respect to x gives 

- (iO)3 ex'p -_ - iOx do = ~ -= exp --1 f '" . [ -K,02 ] d3 1 [X2 ] 
211' _ 00 2! dx3 V211'K2. 2K2 

and 

Hencef(x) may be written in operational form, 

[ K.(d)' K"(d)4] 1 [_X2] 
f(x) = 1 - 3T dx + 4T dx V211'K2 exp 2K2 

or, actually' working out the diifer!lntiation, , 
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f(x) = d ~27r [ 1 +~ ejX - ~:) 
, + ~ (3 - 6d~2 + ::) J exp [ - ;;2] (4) 

where x = X - X, d is the standard deviation of x = ~, 
A = -Ka/3!, and B = K 4/4! ..... 

f(x) = ~ [1 + t! (3x _ ~) + ~ (3 _ 6x' +~)] exp [_ ~] 
d V211" d 3 d d' cj4 cI' d 4 2c1' 

where ciS = K 2, A = -~~(3!, and B = K.(4!.· 



CHAPTER VI 

SUMMARY OF THE THEORY OF FREQUENCY CURVES, 
AND SOME EXAMPLES 

At the end of Chap. II a summary of the conditions leading to 
a normal curve was given. These will now be reviewed, and the 
conditions leading to nonnormality will be summarized. 

Summary of Conditions Leading to Normality. The Pear
sonian aRd Gram-Charlier analyses suggest tpat a variable will 
tend to be normally distributed if (1) its fluctuations are the sum 
of the fluctuations in a number of contributory causes; (2) the 
fluctuations in the contributory causes are all of about the same 
order of magnitude; (3) the contributory causes act independently 
of each other; and (4) the number of contributory causes is large, 
while the contribution of each is relatively small. These condi
tions, it will be presumed, are sufficient)o procl.uce a normally 
distributed variable. It is not to be presumed, however, that 
they are all necessary. It is possible, for eXfLmple, that the 
presence of (4) may under some conditions make (3) unnecessary. 

Summary of Conditions Giving Rise to Nonnormality. The 
conditions that are likely to give rise to ~onnbrmal frequency 
curves are in general the negation of the conditions that give 
rise.to normal frequency curves. Thus, distribution of a variable 
X may fail to be normal for anyone of the following reasons: 

1. If the deviations of X from some central value are simply 
an algebraic sum of the contributions of a number of causal 
factors, if these contributions are of about the same order of 
magnitude, and if they are independent of each other, the dis
tribution of X may not be normal (even approximately) if the 
distributions of the individual contributions are themselves 
nonnormal and if the number of causal factors is not exceptionally 
large. 

2. If the deviations of X from some central value are an 
algebraic sum of the contributions of a number of causal factors 
and if these act independently of e.!Lch other, the distribution 
of X will not be normal if the contributions of a few of the cauS'al 

100 
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factors are of outstanding importance as compared with the 
others and if the distributions of these contributions are them
selves not normal. If' the magnitude of one contribution, for 
example, overshadowed that of all the others, then the distribu-• tion of X would tend to conform to the distribution of that partic-. 
ular contribution~ 

In this connection it is to be noted that, if one or m~re con
. tributing factors are of outstanding importance compared with 
other causes of' variation, the conditions producing variation 
in X might possibly be considered as nonhomogeneous. This is 

60 

FIG. 25.-Combination of two normal distributions to form a nonnorrnal dis
tribution (see Table 13). 

especially likely to be true if the factors in question are qualitative 
in nature. 

Consider, for example, the heights of adult human beings. Of 
all the single factors affecting mature height, sex and race are 
among the most important. Their effects are so outstanding that 
unless they are removed, by statistical classification, they over
shadow the effects of most other causes of variation among 
mature persons. Furthermore, both sex and race are qualitative 
factors that make a contribution to height of one amount when 
on~ sex or race is present a:rtd a contribution of a distinctly differ
ent amount when another sex or race is present. The net effect 
is to produce a variable, viz., adult height, that is not normally 
distributed. 
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The effects of sex and race being of this sort, it is the usual 
practice to view height in general as a heterogeneous variable 
whose frequency distribution has little significance. For when 
adult human beings are segregated according to sex and race, 
their heights form a distinctly normal distribution. • 'this serves 
to illustrate how a distribution may be nonnormal because the 
variable in question is nonhomogeneous. 

TAlILE 13.-AN ILLUSTRATION OF How THE COMBINATION OF Two NORMAL 

DISTRmUTIONS PRODUCED A N ONNORMAL DISTRm-UTION 

(1) (2) (3) 

Height, in. Hypothetical distribution Hypothetical distribution P) + (2), of heights of 300 males, of heights of 300 females, 
frequency' frequency' requenay 

56- ... .27 .27 
57- ... .91 .91 
58- 0 ••• • 2.59 2.q9 
59- .0 • •• 6.43 6.43 
60- t 13.69 13.69 .... . 
61- .0 •• • 23.87 23.87 
62- .27 35.19 35.46 
63- .91 44-.91 45.82 
64- 2.59 48.45 51.04 
65- 6.43 44.36 50.79 
66- 13.69 34.62 48.31 
67- 23.87 23.02 46.89 
68- 35.19 12.83 48.02 
69- 44.91 6.05 50.96 
70- 48.45 2.47 50.92 
71- 44.36 .86 45.22 
72- 34.62 .24 34.86 
73- 23.02 ..... 23.02 
74- 12.83 ..... 12.83 
75- 6.05 ..... 6.05 
76- 2.47 .... . 2.47 
77- . 86 ..... .86 
78- . 24 ..... .24 

I These are the ordinates of the normal curve fitted to the heights of the 300 Princeton 
freshmen of Table 20, Smith and Dunc~n. Elementary Statistics -and Application, p. 301. 
They are approximately equal to the frequency. 

• Assumed to be the same as (1), except that the mean height is 6 in. shorter. 

Figure 25 and Table 13' offer an example of the .production 
of a nonnormal distribution through the combination of two 
normal distributions with different mean values. This is what 
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the distribution of the heights of white adults would be like. It 
is of little significance because the important effect of the sex 
factor has not been separated from the minor effects of the many 
other factors influencing height. 

3. If the deviations of X from some central value are an 
algebraic sum of the contributions of a number of causal factors 
and if these are all of about the same o~der of magnitude, the 
distribution of X will not be normal if the amount of the con
tribution of a causal factor is dependent on the contributions of 
other causal factors. It is possible, however, that even under 
these conditions the distribution of X will be approximately 
normal if the number of contributory causes is very large. 1 

4. If the deviations in X from some normal value are not a 
simple algebraic sum of the contributions of a number of causal 
factors_but are related to them in a more complex manner, it is 
likely that the distribution of X will not be normal. Thus 
suppose that the deviations in X are equal to the cube of the sum 
of the individual contributions instead of the sum itself. Then, 
although the sum may be normally distributed, X will be dis
tributed in a skewed manner. 2 

This suggests that where certain "linear" measurements of a 
set of "individuals" are normally distributed, other "nonlinear" 
measurements of the-same individuals will not be normally dis
tributed. For example, th~ height~ of adult males of the white 
race make up a set of homogeneous linear measurements, while 
the weights of these individuals compose a set of nonlinear 
measurements in the sense that the weight of an individual is 
highly correlated with his "volume," a quantity that is. likely 
to vary with the cube' of height rather than the .height itself. 
In actuality, the heights of adult white males ~re found to be 
normally distributed, while tl"\eir weights are definitely skewed, 
thus giving an empirical illustration of the relationship between 
the distribution of a sum and the distribution of its cube. 

5. In some cases data that :are selected from a larger normal 
group of data are themselves nonnormally distributed because , 

1 Cf. p. 63. Also see MARKOV, A., Wahrscheinlickkeitsrechnung (B. G. 
Teubner, Leipzig, 1912), Appendices II and III. 

2 Cf. REITZ, H. L., Mathematical Statistics, pp. 72-74, and "Frequency 
Distributions Obtained by Certain Transformations of Normally Distrib
uted Variates," Annals of Mathematics, Vol. 23 (1922), pp. 292-300. 
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of the special way in which they are selected. Suppose) for 
example, that the United States Army refuses to take adult 
males whose heights are less than M or greater than 74 inches. 
The distrioution of the heights of Army men would then be a 
"truncated" normal distribution, such as that pictured in Fig. 
26. The extension of the curve by a dotted line recognizes the 
possibility that a few exceptionally qualified men would be 
accepted in spite of the rule. Again, suppose that the students 
who select courses in higher mathematics are only the_better 

60 

65 70 
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____ I 
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FIG. 26.-Nonnormal distribution of heights resulting from special selection. 

students, say the upper third. Although the intelligence quo
tients of all students would be normally distribUted, those of 
mathematics students would be more or less like the upper part 
of a normal curve. This is illustrated in Fig. 27, the rounded 
tail below 80 indicating .that a few below that score would be 
allowed to enter the mathematics course despite the general rule. 
On the other hand, the distribution of I.Q.'s of students taking 
courses in a notoriously easy field of study would be more or less 
like the lower part of a normal curve, such as that pictured in 
Fig. 28. In all these cases no-radical departure from the analysis 
of the previous chapter is requited 'to explain the nonnormal 
character of the data. N onnormality of the subgroup results 
only from special selection from a larger normal group.1 

1 Note that the nonnormality 'of the subgroup arises from its selection, 
not at random, but with definite reference to the attribute of its members. 
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These are th~ principal reasons, it would appear, for the occur
rence of nonnormal frequency distributions. , 
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FIG. 27.-Nonnormal distribution of grades resulting from special selectiofl
positively ske'Yed. 
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FIG. 28.-Nonnormal distribution of grades resulting from special selection
negatively skewed. 

\., 

EXAMPLES OF NONNORMAL FREQUENCY DISTRIBUTIONS 

Examples from Everyday Life. Figure 29 shows the distribu
tion of weights of 300 Princeton freshmen of the class of 1943. 
Its general shape and the value of ~l = .36795 and f32 = 4.6057 

A nonnormal subgroup may be obtained from a larger normal group in this 
way even though the latter is homogeneous. 
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(corrected for grouping) indicate a definite departure from nor
mality. Since height is a linear measurement and since weight 
is related-to volume, which is a cubical measurement, it is possi~ 
ble, as suggested in the previous section, that the departure of 
weights from normality is due .to the variation in weight being 
equal to the cube of a sum of elementary variations rather tlian 
to the sum itself. 
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FIG. 29.-Histogram and fitted Gram-Charlier curve, distribution of weiglJ.tsof 
300 Princeton freshmen. 

The distribution of family incomes is it distinctly- nonnormal 
distribution. This is illustrated by the distribution of family 
incomes in the United States in 1935-1936, as sh6w:n in Fig. '30! 
There are various causes 'for this departure from normality. 
Possibly one important cause is that, the more money a family 
has, the easier it is to get still more money. That is, it is likely 
that a principal cause of the nonnormality of the distribution of 
incomes is the la~k of ' independence of the factors contributing'to 
variation, . 
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Examples from Sampling Analysis. Some of the better known 
forms of nonnonnal frequency distributions are produced by the 
process of random san'lpling. The theory of sampling that 
provides the mathematical models for various types of sampling 
problems is disc1}.ssed at some length in Parts II .and II,I of this 
volume. It will be sufficient here to call attention to certain 
phases of sampling theory that are closely related to the d'iscus-
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FlQ. 30.-Distribution of family incomes in the United States, 1935-1936. 
(National Resources Committee, Consumer Income in the United States, p. 3.) 

sion of the previous chapters and serve to illustrate the generation 
of nonnormal frequency curves. It is to be noted that some of the 
sampling distributions here discussed are nonnormal only when 
the samples are relatively small ana tend toward normality 
as the size elf the sample is increased. This tendency will be 
noted in the discussion so that the conditions producing nor
mality and nonnorma"lity will be clearly contrasted. 

Sampling Distribution of the Mean for Any Population. The 
theoretical discussion of the previous sections offers cQnsiderable 
information about the distribution of the means of samples 
drawn at random from a large (theoretically infinite) population. 
For. it will be noted that the mean is merely liN times the sum 
of the individual cases. The variations in the individ~al cases 
from sample' to sample are thus the" contributory causes" (the 
e's of the Gram-Charlier analysis) of the sampling variation in 
the mean. Since the individual cases all come from the same 
population,t their individual distributions are all alike [that is, 

1 The population is assumed to be so large that the successive withdrawals 
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feEl) = !(E2) = !(E3), etc.]. Hence the cumulants of the distribu
tion of the mean will be I/Nk-1 times the cumulants of the 
population from which the samples -are taken. I 

Since the second- cumulant equals the variance, it follows 
that the variance of the distribution of the mean will equal liN 
times the variance of the population. Likewise; the third cumu
lant of the distribution of the mean.: (which equals the third 
moment of the mean) equals I/N2 times the third cumulant, 
(i.e., moment) of the population, and the fourth cumulant of the 
distribution of the mean equals l/Ns times, the fourth cumulant 
of the population. Therefore, the distribution of sample means 
will have the same genera~ form as the p'opulation from which 
the sl'lmples were dra,vn. Its variance, however, will be less, its 
skewness much less, and its kurtosis very much less ,than that 
of the population. In fact, if the sample is large, the skewness 
and kurtosis will be practically nonexistent and the distribution 
of sample means will become practically normal. 

Sampling Distribution of Any Linear Functio"n. What is true 
. of the mean is also true of any statistic that is a linear function of 
the individual variables. For example, the regr_ession coefficient 
b12 = l:xlxd l:x~. If samples are drawn frorrla bivariate popu
lation in such a manner that the X2 values are always the same 
and only the Xl values. change, then b12 becomes merely a linear 
function of the sample Xl'S, viz., 

b12 = Alx\l) + A2X~2J + ... + A"xrJ 

where the A's are dependent ou the given values of the X2'S and 
-ihe numbers iu the brackets differentiate the various sample 
values of Xl. The cumulants of the sampling distribution ,of bl2 
are accordingly related to the cumulants of the individual Xl'S 
as follows: 

Kz = Alkl2 + Aik22 + 
Ks = Afk l3 + A~k23 + 
K4 = Atk14 + Aik24 + 

+ A!k"2 
+ A~k"3 
+ A!kn4 

of the members of a sample do not materially affect the distribution of 
probabilities in the population. 

1 The cumulants of the sum of the cases would be N times the cumulants 
of the population, and therefore the cumulants of the mean (which equals 
II/Nth of the sum) would be I/Nc-l times the cumulants of the population. 

Note that the kth cumulant of !(XjN) is liNk times the kth cumulant of 
f(X). 
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in which k12 means the second cumulant of the first case in the 
sample of Xl'S, that is, x~ll; ~l3 means the third cumulant of xl!]; 

kn4 means the fourtl;l cumulant of the nth case in the sample of 
Xl'S, tliat is, x!rJ; etc. 

The variance of the sampling distribution of bl2 will conse
quently be directly related to the variance of the individual 
Xl'S, being merely their weighted sum. Similarly, the skewness 
and kurtosis of the sampling distribution of b12 will be a weighted 
average of the skewness,and kurtosis of the distributions of the 
ind~idual Xl'S. If the distributions of the Xl'S for each X2 are 
all alike in form (but not necessarily having the same mean, 
variance, etc.), the sampling distribution of b12 will have exactly 
the same sort (but not the same degree) of skewness and kurtosis 
as the individual Xl'S. 

It is to be noted, however, that the "weights" that enter into 
the relationships between the cumulants of bl2 and those of the 
individual Xl'S (i.e., the AI, A 2, ••• , An) are equal to • 

: .. , (for 1ixi = N <TD 

So, if the variances of the individual Xl'S were identical or were 
about the sa~e on;ier of magnitude, the variance of b12 would 
be l/N times the order of magnitude of the variances of the 
indrvidual XI'S and the third and fourth cumulants would be 
1/N2 and 1/N3 ti,mes the order of magnitude of the variances of 
the individual- XI/S. Consequently, as in, the case of the mean, 
the sampling distribution of the regression coefficient bl2 will 
have much less skewness and much less kurtosis than the originar 
distributions' of the individual Xl'S. In fact, if the size of the 
sample is large, the distribution of b12 will be practically n<;>rmal. 
This will be true whether the distributions of the individual xI's 
for various X2'S are or are not normal or are .or are not alike. 

The t Distribution. A number of saJIlple statistics from normal 
populations have sampling distributions that are nonnormal 
because they are not linear functions of the cases, although the 
distributions all approach normality as the size of the. sample is 
increased. Three important nonnormal sampling distributions 
are the so-called "t distribution," the "x2 distribution," and the 
"F distribution. III The occasions on 'which these distributions 

1 The t distribution is also referred to as "Student's distribution," after 
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arise will be discussed in subsequent chapters._ It is the purp'0se 
here merely to describe these three important nonnormal sam
pling distributions. 
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FIG. 31.-The standard normal curve compared to the curve of Student's 
distribution. 

A graph of the t distribution is shown in Fig. 3~ 1. It will be 
noticed that the curve is symmetrical about the mean and looks 
very much like the normal curve. It has larger tails than the 

the pseudonym of the man who first called attention to it. Sometimes the 
variable z = ! log, F is used instea'd of F. The distribution of z = ! log. F 
is shown on page 114. 

1 It will be noted that the vertical scales of figures showing discrete prob
abilities are labeled "Probabilities," or "P(x)," ·"P(H)," which mean 
"probability of an x" and "probability of an H," etc. Vertical scales of 
figures showing probability curves cannot prop'erly be so labeled; for in the 
graph of a proD ability curve the vertical distance is merely an ordinate. 
The probability of a case falling in a given range is the area under the curve 
for that range. If the vertical scale of the graph of a probability curve is 
labeled f(z.), then the probability, i.e., P(z), of a case falling in the infinites
imal range dx is given by P(z) '= lex) dx. For a finite range, x, - X2, 

P(x) = J."" f(x) dx. In the text (see page 116) yt, yp, Yx', etc., are used ." 
as equivalents of f(t), t(F) , t(X 2

), etc. In this book, the vertical scales of 
probability curves are, generally speaking, !'lot labeled. 
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normal curve, however, as can be seen fro~ a comparison of the 
two curves. 

The formula for the t distribution is 

(n ; 1)! . 
dP =~, ~( ~) (~)n+l dt 

V n?r n; 2 ! 1 + * -2-

where n is a constant that determines the shape of the curve, 
just as X and d do in the case of the normal curve. 

In general, the form~la says that the infinitesimal portion 
of the total area cut off by the infinitesimal class interval t to 
t + dt is equal approximately to the area of the rectangle whose 

h . h . (~)! d h b . dt 
mg tIS ( ) ( ) +lan w ose asels , - n - 2 t2' n_ V n?r -2- ! 1 + n 2 

The 

t curve has its mode at 0 and tapers off symmetrically in both 
directions as t goes to + <Xl and - <Xl. Its mean is 0 and its 

variance is _!!__2' 'Its skewness is zero, and its kurtosis is n-
greater than 3 but approaches 3 as n increases. In general, the t 
curve approaches the normal curve as n increases; in fact, the 
standard normal curve is a good approxi~ation to the t curve fOr 
values of n > 30. 1 

The x 2 Distribution. The x2 distribution is a positively 
skewed distribution, a picture of which is given in Fig. 32. The 
mathematical formula for the curve is . 

(2) 

where n is a quantity that determines the shape and position 
of the curve. In general, the 'formula says that the infinitesimal 
portion of the total area cut off by the infinitesimal class interval 

1 A better approximation for values between 30 and 100, say, is given by 

taking CT~ = _n_ instead of 1. 
n - 2 
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x2 to X2 + dx 2 is equa} approximately to th.e area of a rectangle 
-x' n-2 
-2- ( 2) -2-

whose height is il n (x ) and whose base is d(x2
). 

(2)"2 n; 2 ! 

The x 2 cur,ve begins at 0, rises to a peak at x2 = n - 2, and 
falls again to zero as x2 goes to infinity. The mean of the curve 
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FIG. 32.-The x' curves for n = 4 and for n = 14. 

is at n, and its standard deviation is .y2n. The skewness of 
X , - Mo, . _ /Of.:: 

the curve, as measured by _l__d---~' IS V 2/n. There are thus 
x' 

different x 2 curves for different valties of n. As n ;varies, the 
curve changes both its position and its shape. For larger values 
of n, the curve is located further along the X2 axis and is more 
spread out and more symmetrical. Figure 32 pictures two 
different X2 curves, one for n = 4, the other for n = 14. In 
general, as n gets larger, the X2 curve a;pproaches the normal curve. 
The normal curve is, in fact, a special case of the x2 curve. 

The F Distribution. l The Ji' distribution is positively skewed 
like the x2 distribution. A picture of the F distribution is shown 

1 The reader is warned that- the F of the F distribution and the F curve 
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in Fig. 33. The mathematical formula for the cmye is as follows: 

(nl + ;2'-"2} (nl)"!f(n2)~(Ft;2 
dP = nl+m dF 

(nl ;- ~)t (n2 ; 2)! (nlF + n2)-2-
(3) 

, 
in .. which nl and n2 are cbnstahts, such as n of the t curve and the 
x2 curve, which determihe .the character of the curve. 
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FIG. 33.-The F curve for n, = 4, n2 = 3. 

The formula for the F curve says,that the infinitesimal portion 
of the total area cut off by the infinitesimal class interval F to 
F + dF is equal to the area of an infinitesimal rectangle whose 

( + - 2) nl m nl-2 
nl ;2. - ! (nlf2' (n2) "2 (F)-2-

height is ( ) () n, +n2 and whose base 
nl - 2 , n2 - 2 '( F + )-2-
/ 2 . 2 . nl n2 

is dF. 

h F . n2(nl - 2) 
T e curve starts at zero, rIses to a peak at nl(n2 -+ 2) and 

falls again to zero'as F goes to infinity. Its mean is ~2' and , n2-

its standard deviation is ~2 /2(n2 t nl ~).2). The curve 
n2 - '\j nl n2 -

thus varies with nl and n2. As nl and n2 get larger, the F curve 

formula has no relationship to the F symbol employed to represent 
frequencies. 
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tends to become more symmetrical; and as nl a.nd n2 both 
approach infinity, (he F curve approaches the normal curve. If 
one of the n's approaches infinity, while the other remains 
small, the F curve approaches the xl! curve. If nl = 1 and n2 

• approaches infinity, the distribution of yF approaches the t 
distribution. Thus the normal curve, the t curve, and the x2 

curve are all special cases of the F curve. 1 

1 As already poi~ted out on p. 109n., the variable z == ! log, F is sometimes 
used instead of F. It is this z distribution that R. A. Fisher,has called atten
tion to as the one general sampling distribution. Cf. Paul R. Rider, An 
Introduction to Modern Stati8tical Methods (1939), who cites J. O. Irwin, 
"Mathematical Theorems Involved in the Analysis of Variance," Journal of 
the Royal Statistical Society, Vol. 94 (1931), pp. 287fJ.; and R. A. Fisher, "On 
the Distribution Yielding the Error Functions of Several Well-known 
Statistics." Proceedings of the !nternational Mathematical Congress (Toronto, 
1924), pp. 805-813. 'the accompanying figure, numbered 34, is a picture .of 
the z distribution for n, = 4, n2 = 3. It will be noted that the logarithmic 
transformation produces a much more symmetrical distribution. 
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F,G. 34.-The z curve for U, = 4, n2 '" 3. 

3.0 3.5 



CHAPTER VII 

NUMERICAL CALCULATIONS 
FOR FREQUENCY CURVES 

Up to this point the ,discussion has been primarily concerned 
with the how and the w4Y of frequency «urves, i.e., with theory 
per se. This chapter will snow vow frequency curves may be 
graphed, how frequencies and' probabilities may be computed 
from frequency curves, how curves may be fitted to sample data, 
and how the gqodness of fit may be tested. Attention will thus 
center in numerical rather than in abstract calculations. 

GRAPHING FREQUENCY CURVES 

It is sometimes des·red for instruction purposes or for illustra
tion to make graphs of some of the' be~ter known frequency 
curves. This sectiop. will indicate hOlY. such graphs may readily' 
be made. The purpose is to show ho)V a curve may be plotted 
after the constants of the curve have been determined. The 
problem of determining numeriqal values for the constants them
sehres will be discussed in the third section on curve fitting. 

The Normal Curve. Probably the easiest curve to graph is the 
standard normal curve. ,Tables of the ordinates of this curve 
h~ve been computed for various- abscissa, values. Such a table 
is Table VI in the Appendix. This gives values of 

1 -x' 
y = ___ e 2d2 

d~. 

for various values of x/d. To graph a normal curve it is neces
;Jary merely to plot these ordinates at selected values of X/d and 
draw a curve through the tops of the ordinates. This has been 
~one in Fig. 31. In making a quick freehand graph it may be 
noted that 'the curve is symmetrical, its mean and mode come at 
X/d = 0, its points of inflection are at x/d = 1, and its tails 
stretch to plus and minus infinity. 

The standard normal curve .is a normal curve whose mean 
is zero and whose standard deviation is 1 (since the abscissa 

115 
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scale is in terms of x/o units). To graph a normal curve with 
a given mean it is necessary merely to place the zero point of the 
standard curve at the mean and to adjust the abscissa scale for 
the difference in standard deviations. Further details and special 
adjustments are described in the section on testing goodness of 
fit of a frequency curve. l 

The t, x', and F Curves. For most other curves no tables oJ 
ordinat~s have 'been computed. Graphs of these curves must 
therefore be made directly from the equations for .the curves. 
Most of, the equations are such that it is easiest to find the 
logarithms of the ordinates first and then convert these to anti
logarithms. This method will now be illustrated for three impor
tant nonnormal sampling distributions, viz., the ~ curve, the X2 
curve, and the F curve. 

The equations for these curves are 

. 1 (n - 1) I' 11 (n - 2) og Yt = log -2- ! - 2 log n - 2 og 7r - log -2- ! 

_ n ~ 1 log (1 +<~) (I') 

x2 n - 2 n 
log Yx' = - 2" log e + -2- log x2 

- 2 log 2 

(
n - 2) -log -2-' ! (2') 

1 See pp. 137-152. 



NUMERICAL CALCULATIONS FOR FREQUENCY CURVES 117 

. (nl + n2 - 2) nl n2 log YF = log 2 ! + zlog nl + zlog n2 

nl - 2 . (nl - 2) (n2 - 2) + -2- logF -log -2- ! -log -2- ! 

nl + n2 
- 2 log (nlF + n2) (3') 

" 
In using these equations it is to' be noted that loglO 2 = .301030, 

IOglO e = .434295, and loglo 7r = .49715 -; logarithms of fac
torials can be obtained, from tables of the gamma function 1 given 
in Tracts for Computers (Cambridge University Press, London, 
1921) N Q. IV. For small values of nand nl and n2, the factorials 
may easily be computed directly. For example, if n = 8, 

n-2 8-2 
then -2-' -! = -2-! = 3! = 3 X 2 X 1 = 6. If n = 7, then 

n - 2 r _ 5 ~ 1.v'- ( , 255) F I d -2-' - "2 X "2 X"2 7r see P!1ge . or se ecte values 

of n or nl and n2, Eqs. (1'), (2',), and (3') will give values of log Y 
for various values of t, X2, and' P, and values of y can be com
puted by taking antilogarithms. Tables 14 to 16 illustrate this 
process for each oCthese three curves and Figs. 31 to 33 of Chap'. 
VI show the final graphs. 2 

1 By definition (n -, I)! = r(n) for both integral ~nd fractional values of n. 
See pp. 79n., 133-134. 

2 Ordinates for the z distribution may lie obtained from the F distribution 
as follows. For tlie values of F for which ordinates have been computed, 
the corresponding values of z may be obtained from the relationship 

.z = ! log, F = 1.1513 loglo F 

The z ordinates for these values may be computed by multiplying the cor
responding F ordinates by 2e'z, or the logarithms of the 11 ordinates may be 
obtained by adding .4343 (loglo 2 + loglo F) to the logarithms of the F 
ordinates. 

If z is to be computed directly. the equation to be used is 
\. 

(
n, + n2 - 2) n, n2 

log z = log 2 + log 2 ! + 2' log nl + 2' log n2 + n,z loglO e 

_ log enl ;; 2)! _ log (~2 ;; 2)! _ nl ~ n2 log (n,e2' + n2) 

Values of e2• can be found from tables of e' given in most books of mathe
matical tables. This was how the figure in the footnote to p. 114 was 
derived. 
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Other Curves. The graphing of other frequency curves 
presents about the same sort of problems as those discussed 
above. For example, when the numerical equation for a Gram
Charlier curve has been determined, 1 its graphing is readily 
accomplished by ,the use of the tables of ordinates of the standard 
normal curve and ordinates of its derivatives. These are to be 
found in the Appendix, .Table VI.' Their use is discussed below 
when the testing of the goodness of fit of a Gram-Charlier curve 
is described. 

(1) 

I 

TABLE 14.-CALCULATION OF ORDINATES OF THE t CURVE 

(n = 4) 

(2) (3) (4) (5) (6) (7) 

1+:: _ n + 1 (4) 
, 

I' log (3) (5) in another antilog 
n 2 form (6) 

(8)* 

K,· (7) 

----------- ----
.0 .00 1.0000 .0000 .00000 .00000 1.0000 .375 
.2 .04 1.0100 .00432 - .01080 9.98920 - 10 .9754 .366 
.4 .16 1.0400 .01703 - .04258 9.95742 - 10 .9066 .340 
.6 .36 1.0900 .03743 - .09358 9.90642 - 10 .8062 .302 
.8 .64 1.1600 .06446 - .16115 9.83885 - 10 .6900 .259 

1.0 1.00 1.2500 .09691 - .24228 9. 75772~ 10 .5724 .215 
1.2 1.44 1.3600 .13354 - .33385 9.66615 - 10 .4636 .174 
1.4 1.96 1.4900 .17319 - .43297 9.56703 - 10 \.3690 .138 
1.7 2.89 1.7225 .23616 - .59040 9.40960 - 10 .2568 .096 
2.0 4.00 2.0000 .30103 - .75258 9.24742 - 10 .1768 .066 
2.5 6.25 2.5625 .40866 -1.02\68 8.97832 - 10 .0951 .036 
3.0 9.00 3.2500 .51188 -1.27970 8.72030 - Hl .0525 .020 
4.0 16.00 5.0000 .69897 -1.74742 8.25258 - 10 .0179 .007 
5.0 25.00 7.2500 .86034 -2.15085 7.84915 - 10 .0071 .003 

. (!!c_.!)' 
* K, ~ (n _ ;) -' which, for n = 4, equals .375. 

-2~ !.y'mr 
The logarithm of K, could be 

added to (5) before taking antilogarithms, but if a calculating machine is available it is 
probably easier to follow the outline of the table. 

When once the type of a Pearsonian curve has been determined 
and the numerical values of its constants have been computed,2-
the curve can .. ,usually be graphed in much the same way j1S a t 
curve, x2 curve, or F curve. The process usually consists of 
taking logarithms, setting up a table to compute the logarithms 

1 See pp. 133, and 142-144. 
2 See pp. 134, and 146-150. 
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of the ordinates, and then finding the antilogarithms. The 
process is illustrated below (pages 148-150) . . 

TABLE 15.-CALCULATION OF THE ORDINATES OF THE X2 CURVE 

(n = 14) 

(1) (2) (3) (4) (5) (6) ~) 
n-2 

Kx' - (2) + (4)* (5) in another antilog 
x' .2172x' log x' -2- log'--x' form (6) 

4.0 .8688 .6021 3.6126 \ -2.2205 8.7795 - 10 .060 
5.0 1.0860 .6990 \ 4.1940 -1.8563 9.1437 - 10 .139 
6.0 1.3032 .7782 4.6692 -1.5983 9.4017 - 10 .252 
7.0 1.5204 .8451 '5.0706 -1.4141 9.5859 - 10 .385 
8.0 1.,7376 .9031 5\4186 -1.2833 9.7167 - 10 .521 
9.0 1.9548 .9542 5.7252 -1.1939 9.8061 - 10 .640 

10.0 2.1720 1.0000 6.0000 -1.1363 9.8637 - 10 .731 
11.0 2.3892 . 1. 0414 6.2484 -1.1051 9.8949 - 10, .785 
12.0 2.6064 1.0792 6.4752 -1.0955 9.9045 - 10 .803 
13.0 2.8236 1.1139 6.6834 -1.1045 9.8955 - 10 .786 
14.0 3.0408 1.1461 6.8766 -1.1285 9.8715 - W .744 
15.0 3.2580 1.1761 7.0566 , -1.1657 9.8343 - 10 .683 
16.0 ' 3.4752 1.2041 7.2246 -1.2149 9.7851 - 1Q .610 
17.0 3.6924 1.2304 7.3824 -1. 2743 9.7257 - 10 .532 
18.0 3.9096 1.2553 7.5318 -1.3421 9.6579 - 10 .455 
19.0 4.1268 1.2788 7.6728 -1.4183. 9.5817 - 10 .382 
20.0 4.3440 1.3010 7.8060 -1.5023 9.4977 - 10 .315 
21.0 4.5612 1.3222 7.9332 -1.5923 9.4077 - 10 .256 
'22.0 4.7784 1.3424 8.0544 -1.6883 9.3117 - 10 .205 
23.0 4.9956 1.3617 8.1702 -1.7897 9.2103 - 10 .162 
24.0 5.2128 1.3802 8.2812 -1.8959 9.1041 - 10 .127 
25.0 5.4300 1.3979 8.3874 -2.0069 8.9931 - 10 .098 
26.0 . 5.6472' 1.4150 8.4900 -2.1215 .8.8785 - 10 .076 
27.0 5.8644 1.4314 8.5884 -2.2403 8.7597 - 10 .058 . 

(
n - 2) * Kx' = -.1505n - log -2- !, which, for n = 14, equals -'t9643. 

COMPUTATIONS OF PROBABILITIES 

The computation of relative frl(quencies or probabilities for 
any frequency curve consists in finding the area under the curve 
for the stated range of values. This may be accomplished 
theoretically by a process of summation, or "integration." For 
the more important curves employed in sampling analysis these 
integrations have been worked out by the mathematicians and 
the results published in a series of tables,l The average student 

1 The integrations are generally complicated and involve a process of 
approximation through the use of rapidly convergent infinite series. 
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therefore need only know how to use ·these tables in order to 
compute the desired probabilities; it is not necessary for him to 
be an accomplis~ed mathematician. 
TABLE 16.-CALCULATICiN OF THE ORDINATES OF THE F DISTRIBUTION 

(n. = 4, n2 = 3) 
-
(1) (2) (3) (4) (5) (6) (7) (8) 

n, - 2
10gF log nl + nz 

Kr + (3) - antilog F logF nIP + n, (l',F+n,) 
-2-~ 

(6)* (7) 2 X (.5) 

---
. 01 -2.000090 -2.000000 . 3.04 0.482874 1.690059 9.142335 - 10 .139 
.02 -1.098970 ~ 1.698970 3 08 .488551 1 709928 9. 323596 - 10 .211 
.05 -1.301030 -1.301030 3.20 .505150 1. 768025 9.663239 - 10 .461 
.10 -1.000000 -1.000000 3.40 .531479 1. 860176 9.872218 - 10 .745 
.20 - .698970 - .698970 3.80 .570784 2.029244 .004180 1.010 

.30 - .522879 - .522879 4.20 .623249 2.176372 .033143 1.079 

.40 - .397940 - .397940 4.60 .662758 2.319153 .015301 1.035 

.50 - .301030 - .301030 5.00 .698970 2.446395 9.984969 - 10 .966 

.60 - .221849 - .221849 5.40 .732394 2.566379 9.944166 - 10 .879 

.70 - .154902 - .154902 5.80 .763428 2.671998 9.905496 - 10 .804 

.80 - .096910 ~ .096910 6.20 .792392 2.773372 9.862112 - 10 .728 

.90 - .045757 - .045757 6.60 .819544 2.867854 9.818783 - 10 .659 
1.00 0 0 7.00 .845098 2.957843 9.774551 - 10 .595 
1.10 .041393 .041393 7.40 .869232 3.042312 \J.731475 - 10 .539 
1.20 .079181 .079181 7.80 .892094 3...l22329 9.689246 - 10 .489 

1.30 .113943 .113943 8.20 .913814 3.198349 9.647988 - 10 .445 
1.50 .176091 .176091 9.00 .954243 3.339851 g 568634 - 10 .370 
:P.70 .230449 .230449 9.80 .991226 3.469291 .493552 - 10 .312 
2.00 .301030 .301030 11.00 1.041393 3.644876 9.389647 - 10 .245 
2.50 .397940 .397940 13.00 1.113943 3.898801 9.231533 - 10 .170 

3.00 .477121 .477121 15.00 1.176091 4.116313 ~.093202 - 10 .124 
3.50 .540680 .540680 17 00 1.230449 4.306572 8.966502 - 10 .093 
4.00 .602060 .602060 19.00 1. 278754 4.475639 8.858815 - 10 .072 
5.00 .698970 .698970 23.00 1.361728 4.766048 8.665415 - 10 .046_ 

10.00 1.000000 1.000000 43.00 1.633468 5.717138 7.015256 - 10 .001 

[
ent +;' - 2)! n,~ n,'-'i ] 

* KF = log which, when nl = 4, n2 = 3, is equal to e';- 2)1 (no;- 2)! 
2.732394. 

The Normal Curve. Table VI in the Appendix gives the area 
under the normal curve between the mean point X!d = 0 !)ond 
selected values of X/d. Since the 'curve is symmetrical, the areas 
are the same for plus deviations as for minus deviations. 

To illustrate the use of the table consider a normal curve whose 
mean is 100 and whose standard deviation is 10. Since the mean 
of the standard norm,al curve is taken as its origin, 100 will in 
this case be the origin from which deviations will be measured. 
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. x X 
FIG. 35a.-ProportlOn of area under a normal curve between d = 0 and d = 2, 

X = 100, d = 10. 

FIG. 35b.-Proportion of area under a normal curve between x 
d 

x . -
d = 0, X = 100, d = 10. 

-1 and 
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FIG. 35c.-Proportion of area under a normal curve between x -1 and 
d 

x -d = 2, X = 100, d = 10. 

FIG. 35d.-Proportion of area under a norIjlal curve between ~ = 1 and ~ = 2, 

:it = 100, d = 10. 



NUMERICAL CALCULATIONS FOR FREQUENCY CURVES 123 , 

Since 10 is the standard deviation, the deviations from the mean 
will be measured in multiples of 10. To find the probability 
of a case falling i~ tHe interval 100 to 120, for example; set 

: 120;;; 100 = 2 and note from Table VI of the Appendix 

that the probability of a normally distributed variate,falling 
between 0 and 2d from the mean is .477. Hence the prob
ability of a case falling between 100 and 120 is .477. To find 
the probability of a case falling between 90 and 100 set 

• 
x 90 - 100· 
'd = 10 =-1 

and note that the probability of a normally distributed variate 
falling between 0 and - ~d (same as between 0 and + 1) is .341. 
Hence the probability of a case falling between 90 and 100 is .341. 
To find the probability of a case falling between 90 and 120, it is 
necessary merely to add the probability of a case falling between 
90 and 100 to the probability of a case falling between 100 and 
120. Thus the probability of a caEl,e falling between 90 and 120 
is .477 + .341 = .818. To find the probability or' a case lying 
between 110 and 120 it is necessary merely to subtract the 
probability of a case falling between 100 and 110 from the prob
ability of a case lying between 100 and ,120. Since the prob
ability of a case falling between 100 and 110 is the same as the 
probability of a case falling between 90 and 100, it follows·that 
the probability of a case falling between 110 and 120 is , 

.477 - .341 = .136. 

These computations are pictured in Figs. 35a to 35d. 
The t Curve. Normal curves may be dra.\vn with different' 

means and different standard deviations, but when the variable 
has been measured in standard deviation units and is measured 
from the mean as an origin all n~ma1 curves become one and the 
same curve, i.e., the standara normal curve. It was therefore 
possible to construct a simple table which gave areas ,under , the 
curve (i.e., probabilities) for various x/d deviations from the 
mean. 

The t curve is inevitably used in the standard form. Even 
in that form, however, its shape d'epends on the parameter n. 
Hence areas under the curve, i.e., the curve probabilities, will be, 
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different for different values of n. A t table is thus a threefold 
table, listing the areas or probabilities that correspond to different 
deviations from the mean value for various values of n. 

A typical t table will be found in the Appendix, Table VIr. In 
contrast to the normal taple, the deviations from the mean are 
given for selected probabilities, rather than the reverse. These 
selected probabilities are probabilities of an equal or greater 
absolute deviation, not probabilities of an equal or smaller devia
tion, as is true of the normal table. That is, the t table selects 

o . 2.228 .+t I 

FIG. 36.-Equal probability areas of .025 in the tails 'Of the t curve for n = 10. 

areas under the tail of the curve and gives for various values of 
n the absolute deviations from the :rp.ean that will yield these tail 
areas. Since the curve is symmetrical, the areas are equally 
divided between the two tails. 

An example will illustrate the use of the table. Suppose the 
. parameter n has the value 10, and it is desired to find the absolute 
deviation from the mean that will yield a tail area of .05. To 
find this 'deviation, locate the row n = 10, and proceed to th_e 
right until the column marked .05 is reached. The figure so 
located is the deviation desired. It will be· seen to have the 
value 2.228. This means that a deviation of +2.228 will mark 
off an area of .025 on the upper tail and a deviation of -2.228 
will mark off an area of .025 on the lower tail and the two devia
tions together will mark off an area of .025 on each tail, or a total 
area of .05. This is illustrated in Fig. 36. 
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The x2 Curve. The x2 table, 'Fable VIn in the Appendix, is 
very: much like. the t table. It is again a threefold table; giving 
j1reas (probabilities) and deviations_ for various values of n. Also, 
like the t table, it lists deviations for selected areas or, probabili
ties, and these areas refer to the portion of the curve beyond the 
deviation. That is, the areas represent probabilities of an equal 
or greater deviation. Unlike the t table the deviations 'are 

o 4 11.668 
FIG, 37a.-The 2 per cent area in the upper tail of ax' curve, n = 4 [.02 is the 

P(X' ~ 11.668)]/ 

m~asured from the absolute origin of 0 and not from the mean 
of the curve. 

To illustrate the use of the x 2 table, let n = 4, and let the prob
lem be to find the deviation from 0 for which the probability of 
an equal or greater deviation is .02. ,To find this deviation, 
locate the row n = 4, and proceed to the right until the column 
headed .02 is reached. - The figure so located is~ the d1lviation 
desired. It will be seen to have the value 11.668 (see Fig. 37a): 

Consider another problem. Suppose it is desired to find the 
deviation from 0 for which the ate's, under the curve is just .02. 
That is, it is desired to' find the deviation for which the prob
ability of an equal or smaller value is just .02. Let n be 4 as 
before. To find this deviation, locate the row n = 4, and proceed 
to the column headed .98; the figure so located will be the 
desired deviation. It will be seen to have the value .711. That 
is, the deviation for which 98 per cent of the curve lies to the 
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right is also the deviation for which 2 per cent of the curve lies 
to the left (see Fig. 37b). It will be noted that the medians of 

FIG. 37b.-The 2 per cent area in the lower tail of ax' curve, n = 4 [.98 is the 
P(X' E; 0.711)]. 

FIG. 37c.-The median point ofax2 curve, n == 4 [.50 is the P(X' ~ 3.357) 
== P(X' ~ 3.357)]. 

various x2 curves are the deviations in the column headed .50* 
(see Fig. 37c), 

* The mean, it will be recalled, is n and the mode n - 2. See Chap. VI, 
pp. 111-112. 
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The F Curve. The F table (see Appendix, Table IX) is like 
the x2 table except that it takes account of two parameters, 
nl and n2, instead of one. It is thus a fourfold instead of a three
fold table. Because of this greater complexity, it gives values for 
only two tail areas or probabilities, viz., the upper .05 tail and 
the upper .01 tail. . , 

The use of the F table may be illustrated by the following 
problem: Let nl = 4 and n2 = 3, and let it be desired to find 
the deviation for which the tail area (or probability ~f an equal 
or greater value) is .05. To find this deviation, first select the 

9.12 F 
FIG. 38.-Probability area of .05 in the upper tail of an F curve, nl = 4, n, = 3 

[.05 is the f(F ii;; 9.12)]. 

row n2 = 3, and proceed to the right until the column headed 
nl = 4- is reached. The lightface figure (the adjacent boldface 
figure is the '1,01 point") so located is the deviMion desired. 
The ".05 point" is seen to be 9.12. The ".05 point" is shown in 
Fig. 38. If the problem were to find the deviation for which the 
tail area.or probability of an equal or greater area were just .01, 
then the" .01 point" would have to be used; the. rest o( the pro
cedure would be the same. 

Other Curves. Speci~l tables have been derived for the .... ' . 
computation· qf areas and probabj)ities for curv'es belonging to 
t4e ·Gram-Charlier system. These may best be explained, how
ev~r, in later sections l dealing with testing the goodness of fit 
of a Gra:m-Charlier curve. It can be· remarked here ,that the 
tables are generally similar to the table of the normal curve. 

The tables of the normal, t, X2, and F curves, together with the 
tabies 'used in computing probabilities for a Gram-Charlier 

1 See pp. 139-150. 
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curve, comprise the most commonly used tables of :probabilities. 
When tables are lacking, the areas or probabilities must be 
computed directly or indirectly from the math~matical equation 
for the curve. If the equation is a simple one, the area may be 
found by the application of the integral calculus. Often, how
ever, the equation for frequency curves make it difficult to apply 
the· integral calculus, and some approximate method must be 
employed. If an integraph is available, the curve need only 
be plotted carefully and the integraph run around tp_e desired 
area. If an integraph is not at hand, the area may be approxi
mated from some "quadrature" equation that expresses the 
area of a given interval in terms of the ordinates of the curve for 
that interval and for the neighboring intervals. 

Some of the more important quadrature equations given by 
W. P. Elderton are as follows: 1 

Area under the curve from x. = - t to x = + t 
approximates yo - "};\(b.Y_l - b.Yo) (4) 

or, if greater accuracy is desired, a nearer approximation is 
obtained by using 

In these expressions, x = 0 is taken as the middle point of the 
interval for which the area is to be computed an<;l, x = - i and 
x = + t are the values of the lower and upper limits of the inter
vAl. The units are thus class-interval (d/i) units, and ~t is in 
these that the area is measured. The symbol yo stands for the 
ordinate of the curve at x = 0, that is, at the mid-point of the 
interval; Ayo means the difference between the ordinate Yl at 
x = 1 (i.e" the' ordinate at the mid-point of the next higher 
interval) and the ordinate Yo at x = 0; AYl means the difference 
between the ordinate Y2 at the mid-point of the second next '" 
higher interval and the ordinate Yl at the mid-point of the next; 
higher interval; AY-l means the difference between the ordinate 
at x = 0 and the ordinate at x = -1 (i.e., the ordinate at the 
mid-point of the next lower interval); and b.Y_2 means the 
difference between the ordinate at the mid-point of the next 
lower interval and the ordinate at the mid-poipt of the second 

1 Frequency Curves and Correlation, pp. 25--26, 48. 



NUMERICAL CALCr[LATIONS FOR FREQUENCY CURVES 129 

lower interval.. In short, if Y2, YI, Yo, Y-I, and. Y-2 represent 
the ordinates at x = 2, x = 1, x = 0, x = -1, and x = 
- 2, then /::"YI = Y2 - YI, /::"Yo = YI - Yo, /::"Y-l = Yo - Y-I, and 
/::"Y-2 = Y-l - Y-2. 

To illustrate the use of these equations suppose that ordinates 
of a fr~quency curve for five values of the variable are as ffllows l 

(see Fig. 39): 
X 

105 
115 
125 
135 
145 

Y 
1.21 
3.40 

16.10 
47.57 
78.87 

Before prolleeding further it is to be noted that the frequency 
curve from which these ordinates have been taken was drawn 
so that the curve would fit ~ histogram in which the area of an 
interval was represente.d by the heights of the rectangles and not 
the area. That is, the ordinates ar~ actually one class interval 
(here the class interval is five) tiriles greater than they should be 
if the area under the curve is to be correct. It may also be noted 
that in this case the curve gives the distribution of 300 cases and 
is drawn so that the total area is,,not i, but 300. 

To find the area under the given curve for the interval whose 
mid-poin't is 125, set up the following table: 

x x( =0 11 611 

105 -2 Lin Y_l - Y-l = 3.40 - 1.21 = 2.19 
115 -1 3.40 Yo - Y_l = 16.10 - 3.40 -= 12.70 
125 0 16.10 Yl - Yo = 47.57 - 16.10 = 31.47 
135 1 47.57 y. - Yl = 78.90 - 47.57 = 31.33 
145 2 78.90 

This is shown graphically in Fig. 39. 
By using Eq. (4) a first approximation t9 the area will be 

given by 

16.10 - ~\(12.70 - 31.47) = 16.10 :I- .78 = 16.88 

1 Actually, these are the ordinates qf a Gram-Charlier curve fitted to the 
weights of 300 Princeton freshmen (see pp. 143-145). It will be interesting 
to' compare the area calculated here with that obtained from the tables of 
probabilities for a Gram-Charlier curve (see p. 147). 
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Equation (5) gives as a second approximation l , 

291 17 
16.10 - 5760 (12.70 - 31.47) + 5760 (2.19 - 31.30) = 16.96 , , 

Since the originai· ordinates were one class interval times as large 

y 
as they should be (if the area 
under the curve was to equal 
the total frequency), there is 
no need in this case to multi
ply the 16.88 or 16.96 by the 
class interval. Hence the final 
answers are 16.88 and 16.96 
cases. If these are divided by 
300 (the total number of cases), 

'__--'~--:'="~~:---C1:-!-45::---x- the results are .0563 and .0565, 

FIG. 39.-Five ordinates of the which are the first and second 
Gram-Charlier curve fitted to 'the approximations to the proba
weights of 300 Princeton freshmen. bility (relative frequ,ency) that 

a case falls in'the interval 120-130. 
It will be noted that the initial term in eacli~of Eqs. (4) and (5) 

is the ordinate of the curve at the mid-point of thel interval for 
which the area is to be calculated. This mea~s tnat the area 
of the rectangle whose height is the ordinate of tbe curve at the 
mid-point of the interval and whose base is the class interval 
i may be taken as a first approximation to the area under the 
curve over that interval. That is, it is assumed that the curve 
can be roughly approximated for the given interval by the hori
zontal straight line Y = yo. The extra terms added in Eq. (4) 
imply that the curve can be better approximated by a second
degree parabola drawn through the ordinates of the curve at 
x = 1,_ x = 0, and x = -1, that is, through the ordinates, Yl, 
Yo, and Y-l. Equation (5) assumes that a still better approxima
tion to the curve can be obtained by a fourth-degree parabola 
drawn through the_ordinates of the curve at x' = 2, x = 1, x = 0, 
x = -1, and x = -2, that is, through Y2, Yl, yo, Y-l, and Y-2. 
Elderton also gives equations based upon these same degrees 
of approXimation, that express the area over an interval in terms 

1 The area computed later from a table of probabilities for a Gram
Charlier curve is 16.98, which shows how good this approximation is. 
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of the ordinates of the curve at the' ends instead of the mid
points of that interval and of neighboring class intervals. l 

• 
FITTING FREQUENCY CURVES 

To fit a frequency curve to a given set of sample data means 
to determine numw·ical values for the constants of the ,curve 
equation. This is usually done by relating the curve constants 
to the various statistics of the data. The problem will now be 
considered with refe~ence to the more important types of curves 
that are fitted to saniple data. 

The N orma! Curve~ When the variable is expressed as an 
absolute deviation from the zero origin, the equation for the 
n'ormal curve is 

= ~ex [-(X - 1)2J 
y 0 y'27r P 202 

(6) 

where 1 and 0 are the mean and standard deviation of the curve. 
It would appear, therefore, that the normal curve Gould be fitted 
1(0 a set of sample data by merely putting the mean of the data 
and the standard deviation of the data in the curve equation. 
This is essentially the method that is used. A particular adjust
ment must be made, however, wnenever the sample standard 
deviation is computed ,from grouped data. This adjustment will 
now be discussed. 

When data are ~rouped for the purpose of , calculating a mean, 
standard deviation, or other statistic, a certain arbitrary distor
tion,may result from considering all the cases of a given class 
interval as being all concentrated at the center of _the interval 
or, what amounts to the same thing, as being uniformly dls
tri}:mted throughout the interval. If there were enough cases 
in an interval, it would probably be found that the frequencies 
df the cases in the interv.al would ~ctually form a smooth curve 
that tended to rise toward the center of the distribution (stle 
Fig. 40a) instead of forming a ho'tizontalline as assumed by the 
grouping of the data (see_Fig. 40b). 

The error that results from grouping is generally negligible 
in the case of odd-powered moments such as" the mean, since 
errors in measuring positive deviations tend to be offset by 
ehors in. measuring negative deviations. For even powered 

1 See ELDERTON, w. P., op. cit., pp. 25-26, 48. 
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moments, however, such as the variance, the errors of measure
ment are cumulative and result in a net error due to grouping. 
W. F. Sheppard! has put the error in the variance at ni2 where i 
is the size of the class interval. 

Before the nbrma~ curve is fitted'to a sample histogram, there
fore, the variance of the sample, when calculated from grouped 
data, must be corrected f9r grouping by subtracting 1.\-i2. 1;'he 
square root of the corrected variance will give the corrected 

FIG. 40a.-Actual distribution -of 
frequencies in a class interval. 

I 
I 
I 
I 
I 
I 
I 
I 
! 

FIG. 4Ob.-Assumed distribution of 
frequencies in a class interval. 

standard deviation. When the mean /0£ the data and this cor
rected value for the standard deviation are put in the general 
formula for the normal curv~, the result' will be a normal curve 
that has the same mean and same standard deviation as the 
given data. 2 

Whether the curve actually fits the data depends on how truly 
normal the data are. The good!less of fit can usually be made 
evident by plotting the normal curve on the same chart as the 
histo'gram of the data. s If the fit or lack of fit is somewhat 
doubtful, various methods may be employed to test the goodness 
of fit. The x 2 test of goodness of fit is discussed below. 4 

N onnormal Curves. The reason for fitting a normal curve to, 
a given set of data is to determine whether the data are or are not 
n~rmally distributed. If the distribution is normal, then the 

I 
1 See Proceedings of the London Mathematical Society, Vol. 29 (1898) p. 353. 
2 In fitting a frequency curve the data are generally very numerous, so 

the multiplication of the sample variance by N ~ 1 to improve the estimate 

of .the population variance affects the result but little and can therefore be 
neglected. 

3 See pp. 137-139. 
4 See pp. 139-150. 
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norm~l table can be used to calculate probabilities and the results 
of sampling can be predicted by the carefully worked out sampling 
theory applicable to' normal populations. 

When data are distinguished as nonnorma-l, there may be 
further advantages in fitting a nonnormal curve to the data. 
Such a curve, f-o_r example, may serve to "smooth" the histogram· 
and may thus permit a'more accurate determination 'Of the rela
tive frequencies of the population from which the sample was 
taken. The identification of the distribution of given data with 

, a particular frequency curve may also serve to distinguish them 
from other data the distribution of which is identified with a 
different frequency curve. The "fitting" of frequency curves 
may thus help to classify data as to type. These are the two 
principal reasons for fitting nonnormal frequency curves. 

A Gram-Charlier Curve. The usual type of nonnormal curve 
fitted to data of everyday life is either a Pearsonian curve or a 
Gram-Charlier curve. Since the latter is the easier to fit, it will 
be discussed first. 

In the case of the normal curve, the curve constants were 
themselves commonly computed statistics, viz., the mean and 
standard deviation of the data (the latter corrected for errors 
of grouping). In the case of a Gram-Charlier curve, the general 
frequency equation isl . 

= ~ (1 + A [3 (X - X) _ (X - X)3J 
y 1.1 .y27f 1.1 3 1.1 0 3 

+ ~ [3 - 6 (X ~2 X)2 + (X ~-X)4]) exp [ ~ (~I.I: X)2J (7) 

where 

A = - ~~ and 
.q - 3 .. 2 

B = .,. .,.2 

4! ' 

Hence the constants of the curve are again functions of commonly 
computed statistics,' viz., the mean X, the standard deviation 1.1, 

the third moment P3, and the fourth moment P4. Therefore, 
a Gram-Charlier curve can be fitted to a set of sample data by 
substituting the sample values for the popUlation values X, 
1.1, P3, and P4 of the curve equation. 

If the sample.values of X, (J', etc., have been computed from 
grouped data, as is usually the case, then a .correction for group-

1 See pp. 92-99. 
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ing must be made in the case of the even-power moments (]"2. = fJ.2, 

and J.!.4. Sheppard's corrections in these instances are 
/1-2 = fJ.2 (uncorrected) - -fi(i)2 } 

·J.l4 = J.l4 (uncor~ected) - (~2 }.L2 (upcorrected) + rlo(i)4, (8) 

'where the /I-'S stand for the corrected moments and for the 
uncorrected moments. 

The goodness of fit 'of the curve to the data may be examined 
by simply making a graphic comparison of the curve and sample 
histogram to which it is fitted, or a x2 test may be undertaken. 
Thel2e tests of gO'odness of fit are described and illustrated below. 

A Pearsonian Curve. Karl Pearson, it will be recalled,l found 
that freguency curv~es in general might be represented by an 
equation of the type-

R I t · x + a 
e a lve sLope = bo + b1x + b2x2 (9) 

The logical basis upon which this system of curv:es rests was dis
cussed in Chap. IV. It is the purpose here to describe the fitting 
of such a curve. 

The first step is to relate the constants, a, bu, b1, and b2 of Eq. 
(9) to various statistics computed from the sample data. The 
method by which this is accomplished is explained by W. P. 
Elderton in his Frequency Curves and Correlation (1?ages 39 to 40). 
The essence of the procedure is to determine a, bu, bl, and b2 so 
that the first four moments of the fitted curve will be the first 
four moments of the equation. The algebra is elaborate and 
will not be repeated here. When the results obtained by ~lder
ton's analysis are substituted in Eq: (9), it becomes2 

Relative slope = 

x + V;; V~ (~2 + 3) 
2(5~2 - 6~1 - 9) (10) 

v2(4~2 - 3~1) + V;; V~l W2 + 3)x + (2~2 - 3~1 - 6)x2 

2(5~2 - 6~1 - 9) 
1 See Chap. IV (p. 57). 
2 Elderton's method involves the assumption that xn(bo + b2x + b2x2)y 

vanishes at the ends of the range of the distribution, i.e., t):lat there is clos'e 
contact with the x-axis at both ends. 

It will be noted that the mode of the curve is that }:Joint at which the 
relative slope is zero. Equation (10) thus shows that the mode of a Pear
sonian curve comes at 
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where x. = X ...... X, ~1 = lJVlJ~ and ~2 = lJ4/lJ5, and ~ is to 
have the same sign as t'~. 

The Pearsonian equation is now expressed in terms of the 
moments and the ~ coefficients of the curve and the equation can 
be fitted by substituting the moments of the sample data for the 
curve moments. The values of the second and fourth moments 
must again be adju~ted for Sheppard's corrections if the'y have 
originally been computed from grouped data [see Eqs. (8)]. 

The Pearsonian equation (9), it will be recalled,! yields differ
ent types of curves,' depending on the value of the criterion 
" = M/4bob2• When tfle b's are given their values from Eq. (10), 
this criterion becomes2 

~1(~2 + 3)2 (11) 
" = 4(4~2 - 3(h)(2~2 - 3~1 - 6) 

The types of curves distinguished on the basis of this equation 
are as follows: 3 

Value of criter~on Curve type 

VII K = 0, ~l = 0, (12 > 3 
.. = 0, (h = 0, Ih = 3 
.. = 0, Ih = 0, Ih < 3 
.. = 0, ~l = 0, ~2 < 1.8 
0< .. <1 

Normal curve 
IIa 

.. = 00, that is, 2~2 - 3~1 - 6.= ° 

.. <:0 

x' = - V;. VIh «(h + 3) 
. 2(5~2 - 61h - 9) 

Since x = X - X and -vv:; = d, 

Mo = :X: _ d V(h (~2 + 3) 
2(5(h - 61h - 9) 

IIb 
IV 
V 
VI 
III 
I 

where Vih is to be given the same :Sign as 1'3. Since skewness can be 
X - Mo 

measured by d ' 

1 See Chap. IV (p. 57). 

sk = + vif," (~2 + 3) 
2(5~2 - 6~1 - 9) 

2 Sec' ELDERTON, op. cit., p. 42. 
3 Taken from Tables for Statisticians and Biometricians, Part I, p. bdiL 
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It is clear at once from Fig. 41 what type of curve is yielded 
by usual values of ~1 and ~2; it is unnecessary in most instances 
to go to the trouble of calculating the criterion value K. * The 
reader should be w.arned, however, that, if sample values of 
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FIG. 41.-Diagram to determine the type of a frElquency distribution from a 
knowledge of the constants !31 and !32.· 

* Reproduced with permission from Table8 lor Statistician8 and Biometrician8, Part I, 
p. 66. In this diagram Un refers to type lIb and II. Jr. and Ur refer to limited range. 
J-shaped, and U-shaped curves of type I. They are divided on the diagram by the biquad
ratic (h(8{J, - 9/11 - 12)(4/1, - 3/11) = (lOiS, - 12iSi - 18)'(/1, + 3)2. See Tabl.. lor 
Statisticians and Biometricians. Part I, p. lxiii. . 

fh and {j2 are near a border line, there may be a good chance, owing 
to sampling errors, that the population data are of the type 
lying on or on the other side of the border rather than of the 
type indicated by the sample {j's themselves. 

Thus the type of Pearsonian eurve that fits a given set of data 
may be found immediately by substitution of the corrected {j 

* This chart also reveals in a striking fashion the more or less arbitrary or, 
perhaps better, technical mathematical basis lor the Pearsonian classification 
of curves. As developed in Chap. IV, the logical classification is simply 
the normal curve, the type III curve, and the others. Cf. Tables for 'Statisti
cians & Biometricians, Part I, p. lxi. 
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coefficients in the criterion formula or by the location of the {3 

values on Fig. 41. The equation for the curve (in differential 
form) will be obtained by substituting the corrected moments 
and {3 coefficients in Eq. (10), as was indicated above. Since 
this is a differential equation that gives the relative slope of a 
curve at any point an!! not the actual ordinate, it is nece.ssar; to 
derive an equation fQr'the ordinates of a curve before the curve 
can be graphed. This problem will be discussed more fully in 
the next section on testing goodness of fit.l 

Fitting Sampling Curv;es. Sometimes laboratory experiments 
are undertaken to test certain sampling theories. These yield 
empirical sampling distributions. Sampling theory may sug
gest that these empirical distributions should conform to certain 
theoretical sampling distributions. To test this theory or possi
bly just to see how well the empirical distribution is approximated 
by some well-known theoretical distribution, a particular sam
pling curve is fitted to the empirical distribution. In such 
instances the process of fitting is relatively simple. To fit the t 
curve, x2 curve, or F curve it is necessary merely to determine 
the proper values for n or nl and n2 and then plot the curve as 
described in the first section. The goodness of fit can be deter
mined by graphic comparison or by a x2 test such as is described 
in the next section. 

TESTING GOODNESS OF FIT 

Testing a Normal Curve. Two methods of testing whether a 
normal curve fit's a given set of sample data will be described 
here. These will be simple graphic comparison and the x 2 test. 
Other methods .of testing for normality are described in Chap. 
XVI. 

Graphic Comparison. .In the first section of this chapter the 
graphing of a standard normal curve was explained. This con
sisted merely in plotting the ordinates of the standard curve at 
selected values of x/d. The problem now will be to adjust the 
abscissa scale and the curve ordinates so that the curve will fit 
a histogram with a given mean and a given standard deviation. 
The process is as follows: 

First find what the mid-points of the histogram class intervals 
are in terms of standard deviation units measured from the mean 

1 See pp. 137-152. 
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as an ongm. This can be done by subtracting the mean from 
each of the mid-values and dividing these deviations by the 
(corrected) standard deviation. For the values of x/d so 
obtained, the ordinates of the standard normai curve may be 
found from Table VI in the Appendix. If the histogram with 
which the normal curve is to be compared is such that relative 
frequencies are measured by the ateas of the rectangles erected 
on each interval, then the ordinates of the standard curve should 
be divided by u to allow for the fact that the abscissa scale for 
the histogram is in absolute units while the abscissa scale for the 
standard curve is in standard deviation units. 1 If the histogram 
is such that absolute frequencies are measured by the heights of 
the rectangles erected on each interval, then the ordinates of the 
standard curve must be multiplied by Ni/u, where i is the size 
of the class interval and N the number of cases. 2 When the 

TABLE 17a.-CALCULATION OF THE ORDINATES OF THE NORMAL CURVE 
THAT FITS THE DISTRIBUTION OF HElGH'l'S m' 300 PRINCETON FRESHMEN 

(1) . (2) (3) (4) (5) 

x x-x=x x-x Ordinate of Col. (4) X Ni 
(f standard curve (f 

62.5 -7.97 -3.22 0.00224 0.27 
63.5 -6.97 -2.82 0.00748 0.91 
64.5 -5.97 -2.42 0.02134 2.59 
65.5 -4.97 -2.01 0.05292 6.43 
66.5 -3.97 -1.59 0.11270 13.69 
67.5 -2.97 -1.19 0.19652 23.87 
68.5 -1.97 -0.80 0.28969 35.19 
,69.5 -0.97 -0.39 0.36973 44.91 
70.5' 0.03 -~.01 0.39892 48.45 
71.5 1.03 0.42 0.36526 44.36 
72.5 2.03 0.82 0.28504 34.62 
73.5 3.03 1.22 0.18954 23.02 
74.5 4.03 1.63 0.10567 12.83 
75.5 5.03 2.04 0.04980 6.05 
76.5 6.03 2.44 0.02033 2.47 
77.5 7.03 2.84 0.00707 . 0.86 

x = 70.47 <T (~orrected) = 2.47 

1 The area of the histogram in this case is one regular unit while the area 
of the standard curve is one standard deviation unit. To make the two 
equal, the ordinates of the standard normal curve must all be divided by <T. 

2 The area of this histogram is 'ZFi = Ni. Hence, after the ordinates 
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standard ordinates .have been properly adjusted, ·they can be 
plotted on the same graph as the given histogram and the good
ness of fit may be examined visually. Fits that are obviously 
good and bad may be determined in this way. 

52r-----------------------------~ 
48 
44 

40 
36 
32 

1328 
'u 
524 

fr20 
tt 16 

12 
8 
4 
O~~~~~~~~~~~~~~ 

FIG. 42a.-Normal curve fitted to heights of 300 Princeton freshmen. 

The whole procedure of graphically comparing a histogram 
with a fitted normal curve is illustrated by Table 17a, and the 
result obtained is shown in Fig. 42d. For this example, the fit is 
clearly a good one. It must be concluded, therefore, that the 
heights of young men of approximately the same age are nor
mally distributed. 

The x2 Test, When it is difficult to tell by graphic comparison 
whether a normal curve is a good fit to a given set of data, some 
more refined method must be unq.ertaken. One such method 
is the x2 test, so called because it makes use of the X2 distribution 
in determining the goodpess of fit. The essence of the test is a 
m,lmerical comparison of the frequencies of the curve and histo
gram, interval by interval. The procedure is as follows: 

To calculate the curve proliabilities for each interval it is first 
necessary to express the limits of these intervals in terms of 
standard deviation units measured from the mean as an origin. 
Thus x/d for each class limit can be found by subtracting the 

have been adjusted for the difference in abscissa scales by division by u, a.s 
explained above,· they m\lst be multiplied by Ni to take account of the fact 
that the area of this second form the histogram is Ni absolute units and 
not one unit. 
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mean from the class limit and dividing by the corrected standard 
deviation. The process is illustrated in columns (1) and (2) of 
Table 17a. 

The next step is to find from the area table for the normal 
curve the probabilities, or relative frequencies, of cases lying 
between the mean and the various class limits. Then the rela
tive frequencies, or probabilities, for each interval may be found 
by a process of subtraction, and these may be converted to 
absolute "frequencies by multiplying by the number'of cases N. 
This step is illustrated in columns (3), (4), and {5) of Table 17a. 

If it should tum out that the Curve frequency for any interval 
.is less than 5, it should. be combined with a neighboring'interval 
or intervals so tnat the frequency of every interval is at least 5. 
Such adjustments are almost always necessary at tlie ends of the 
curve. In this connection it should be pointed out that the end 
intervals should always be taken as running to ± 00, so that the 
total frequency for the curve will be the :;;ame as that for the 
histogram. 

(F - f>2 
The final step is to compute the quanti~ f for each 

interval and then sum for all intervals. Here f stands for the 
curve frequency and F for the histogram frequenc~. The valu~ 

of Z (F f f)2 is the final criterion of goodness of fit. As 

explained more fully below, 1 if normal curves are fitted to many 
sample histograms from a truly normal popUlation, the various 

sample values of Z (F f f)2 will tend to form a sampling dis

tribution that is of the form ofax2 distribution with n equal to 
the number of class intervals for which comparisons are made 
(a combined interval is treated as a single interval), minus $. 
Hence, a selected point of the X2 table for the proper value of n, 

say the .05 point, will serve as·a ~ritical value for Z (~ f f)2. 

For if the population from which the sample is taken is truly 
normal, there are only 5 chances out of it 100 that the-value of 

Z (F f f)2 will equal or ex~eed the .05 x2 value. Hence, values 

1 See pp. 331-333. 
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of 2: (F' ,J)2 greater than this .05 value suggest that the pOPll

lation is not truly normal; they are an index of bad fit. 

An illustration of the procedure for calculating 2: (F , /)2 is 

'given in Table 17b. The value of 2: (F f /)2 there obtained 

supports the graphic analysis in showing that the normal curve 
is a good fit to the heights of young college men. In fact, the fit 
is almost too good to be true. 1 

A Gram-Charlier Curve. The goodness of fit of a Gram
Charlier curve may also be tested by graphic comparison and 
by a x 2 test. These will now be described. 

Graphic Comparison. The graphing of a Gram-Charlier curve 
is almost as easy as the graphing of a normal curve. Equation 
~7) shows that the ordinates of a Gram-Charlier curve are equal 
to the normal ordinates plus two different multiples of these 

. . V3 (3X X3
) V4 - 3v~ ( 6x2 X4) 

ordmates, v~z., - 3!d3 d - d3 ~nd 4!d4 3 - d2 + d 4 . 

Graphing of the Gram-Charlier ordinates Is facilitated by use of 
tables of the normal ordinate [called <Po(x/d)], the rormal ordinate 

times (3X _ X
3

) [called <P3(X/d)], and the normal ordinate times 
d2 d3 

(3 - 6d~2 + ::) [called <P4(x/d)]. These values 'Will be found in 

the Appendix, Table VI. 
To get the ordinates of a particular Gram-Charlier curve it js 

necessary merely to multiply the values given for <P3(X/d) by 
/1- /1-4 - 3/1-2 

- 6:3 and the va!ues given for <P4 (X/d) by 240" 2 and to add 

the algebraic sum of these (or to subt;act if the sum is negative) 
to the values given for 'Po(x/d). * When the ordinates so com
puted are multiplied by Ni/O', they will become immediately 
comparable with the sample histogram from which the moments 
were computed and the two may be plotted on the same graph. 

1 Values of x2 less than the .95 point suggest that the randomness of the 
data be further investigated. 

* If 1-'2 and 1-" have been calculated from grouped data, they must be 
adjusted ior Sheppard's corrections before substituting in these equations 
(see p. 134). 
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To illustrate the fitting of a Gram-Charlier curve and the 
graphing of its ordinates, consider the distribution of weights' 
of the 300 Princeton freslimen, shown in Fig. 42b. The mean of 
this distribution is 151.8 pounds, its standard deviation is 17.8 
pounds, and the values of }L2, }La, and }L4 for this distribution are 
,.,.2 = 318.094, }La = .3,566.48, and }L4 = 472,727, Sheppaid's cor-
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Weight in pounds 
FIG. 42b.-A Gram-Charlier curve and a Pearsonian ourve fitted to the distribu

tion of weights of 300 Princeton freshmen. 

rections for grouping being applied in all cases. The equation for 
the Gram-Charlier curve that fits this distribution is thus 

1 [ , (3X X
3
) Y = . /- 1 - 1048 - - -

d V 2n- . d d 3 

( 6X2 X4)] [ X2 ] + .0697 3 - 62 - d4 exp - 2d2 

or, 

~ = [~O (~) - .1048 ~3 (~) + .0697 ~4 (~)] 
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The steps taken to obtain the ordinates of this curve at the 
mid-points of various class intervals are indicated- in Table 18. 
Thus in column (1) are written the values of the mid-points of 
the intervals, in column (2) their deviation from the mean of the 
distribution, and in column- (3) the measure of these deviations 
in standard deviation units. In columns (4), (5), and (6) are 
entered the values of <po(X/d), <Pa(x/d), and <f4(X/d) given in 
Table VI of the Appendix l for the values of X/d listed in column 
(3). lit column (7) is entered the product of - JLa/6u3 (= - .1048) 

JL4 - 3JL2 
times. column (5) and in column {8) the product of 24u4 2 

( = .0(97) tim~s column (6). Column (9) contains the algebraic 
sums of the items of columns (4), (7), and (8), and in column (10) 
these sums are multiplied by Ni/u = 168.2. These final figures 
are the ones in plotted Fig. 42b. Column (11) contains the 
ordinates of the histogram. 
TABLE I8.-COMPUTATION OF THE ORDINATES OF THE GRAM-CHARLIER 

CURVE THAT FITS THE DISTRIBUTION .oF WEIGHTS OF 300 PRINCETON 

FRESHMEN 

(1) (2) (3) (4) (5) (t») (7) (~)--- (9) (10) (11) 

-- --------------------_ 
\ (9)X

Ni 
Risto-

X-X= x 
z ~'G) ~'G) ~, (~) -1'3 1L4-3.uz2 (4)+(7) d gram X Ii 6(TI <p3 ~fP4 +(8) Curve ordi· 

ordi- nates 
nates 

-------------------

105 -46.8 -2.62 .0129 +,1305 + .1152 -.Ol3'i' +.0080 +.0072 1.21 2 
115 -36.8 -2.06 .0478 +.1225 - .2129 -.0128 -.0148 .0202 3.40 5 
125 -26.8 -1.50 .1295 -.1457 - .7043 +.0153 -.0491 .0957 16.10 20 
135 -16.8 - .94 .2565 -.5102 - .3901 +.0535 -.0272 .2828 47.57 52 
145 - 6.8 - .38 .3712 -.4028 + .7996 +.0422 +.0557 .4691 78.90 61 

155 3.2 .18 .3924 +.2097 +1.1017 -.0220 +.0768 .4472 75.22 73 
165 13.2 .74 .3034 +.5506 + .0043 -.0577 +.0003 .2460 41.38 47 
175 23.2 1.30 .1714_ +.2918 - .7341 -.0306 -.0512 .0896 15.09 25 
185 33.2 1.86 .0707 -.0605 - .4095 +.0063 -.0285 .0485 8.16 6 
195 43.2 2.42 .0214 -.1475 + .0461 +.0154 +.0032 .0400 6.73 5 

205 53.2 2.99 .0046 -.0811 + .1337 +.0085 +.0093 .0224 3.77 2 
215 63.2 3.54 .0008 -.0256 + .0643 +.0027 +.0045 .0080 1.-35 2 

-~i = -.1048 1" - 31',2 = 0697 
240'4 . !Ii = 168.2 

" 
The x2 Test. The x2 test of goodness of fit of a Gram-Charlier 

curve is the same as the x2 test for a normal curve. Frequencies 
1 It is to be noted that for negative values of X/d the signs of ",,(X/d) entries 

in the table must be reversed. 
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of curve and histogram are compared interval by interval, and 

the value l: (F f f)2 is computed and compared with the .05 

point ofax2 table. The procedure will be illustrated with 
reference to the distribution of weights discussed in the previous 

. section. J 

Before the procedure itself is described, a brief explanation of 
how to compute relative frequencies or probabilities (areas) for 
a Gram-Charlier curve is in order. To calculate. the area under 
a Gram-Charlier curve for a given range of x/d values it is neces
sa~y first to compute the normal area and then adjust for the 
effects of ~he CP3(x/d) ~nd CP4(x/d) terms. The adjustment 
required 'by the CP3(.x/d) term is given by the product of three 

X2 
factors, 02 - 1, the ordinate. of the. normal curve for X/d, and 

-1.'3/603• The adjustment required by the CP4(X/0) term is 

. I (X). \;h - 3",i Th t t th d .'lImp y CP3 d tImes 2404 ' us 0 ge e area un er a 

Gram-Charlier curve from- 00 to x/a write down the area given 
by Table VI of the Appendix [this table gives the area between 
the mean 0 and x/o; to :fj.nd the area from - 00 to x/o, subtract 
the table area from .5 if x/d is negative, or add it to .5 if x/a is 

positive], an{l add to it algebr-iically the value of (:: - 1) 
[ cpo (~) ] (~d;3) plus the value of T cpz (~) ] ("'4 2~a~"'~) To 

calculate the area between any two values of x/d, calculate the 
areas from - 00 to each of tp_ese values, and take the difference. 

Table 19 illustrates the procedure just outlined by showing 
how the areas under the Gram-Charlier curve fitted ,to the 
weights of the 300 Princeton freshmen are determined for various 
class intervals. Thus columns (1) to (3) convert the original 
class limits into x/a deviations fre;m the mean. Column (4) 
gives the areas under the normal curve from - ex> to the upp'er 
limit of each, class interval, now measured in x/a units. Columns 
(5), (6), '(7), and (8) show the computation of the adjustment 
required in each case by the CP3(x/d) term [the final' adjustment 
here is entered in column (8)], and columns (9) and (10) show 
the computation Of the adjustment required by the CP4(x/d) term 
[final adjustment given in column (~O)]. Column (11) is the sum 
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.of the items of columns (4), (8), and (10) and represents the final 
areas from - 00 to the given values of X/d. In column (12) the 
areas for the individual class intervals are computed by taking 
the successive differences between the items in column (Ii) .. 
These figures give the proportion of the total area contained in 
each interval. As indicated in the headings of the table, the 
sample values of /)-2, /)-3, and /)-4 are taken to be the parameter 
values, so the areas computed refer to the fitted curve. 

The remaining part of Table 19 is concerned with testing the 
goodness of fit of the curve to the given histogram. Thus in 
column (13) the relative frequencies given in column (12) (areas 
under a frequency curve, it will ,be recalled, measure relative 
frequencies) are multiplied by N = 300 to give absolute fre
qu~ncies that are comparable with the frequencies of the.sample 
histogram. Then columns (14) to (17) carry out the calculations 

necessary to compute the value of 2: (~ f f)2. This is found 

to be 11.6675. A x 2 table shows that for n = 10 - 5 (i.e., the 
number of class intervals1 minus 5) the probability of as great a 
value as 11.6675 is between .02 and .05, which does not indicate a 

" very good fit. Apparently the Gram-Charlier type curve is not 
flexible enough in this instance to adjus~ its~f to the ,sharp 
contours of the histogram. It is possible tha~ a Pearsonian type 
curve might give better results; this will be examined in the 
next section. 

A Pearsonian CurVe. Graphic comparison and the x2 test 
can ~be used to test the goodness of fit of a Pearsonian curve as 
well as a normal or Gram-Charlie!; curve. The following sec
tion will thus be devote.d to the problems peculiar to a Pears,on
ian curve and avoid as far as possible duplication of previous 
discussion. 

Finding the Curve Equation. The Pearsonian equation (9), 
as noted above, is not an equation for the frequency curve itself, 
but one for its relative slope. 2 The former can be readily 
obtained from the latter, however, by the use of the integral 
calculus. Although it is possible in any practical case to sub
stitute the computed values of the moments in Eq. (9) and then 
find the frequency curve to which it gives rise, it is generally 

1 See p. 333 for a fuller discussion of the basis for selecting n. 
2 See p. 57. 
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easier to carry out the transformation (integration) first and then 
substitute the values of the moments in the resulting equation. 
The details of the process of integration and the development 
of curve eq,_uations for the various types of curves is explained in 
detail in W. P. Elderton, Frequency Curv"es and Correlation. 
Their use will again be'illustrated by reference to the data on the 
weights of 300 Princeton freshmen. The p,'s and {3's for .these 
data are P.2 = 318.094, P.a = 3,5,66.48, P.4 = 472,727, {31 = .4063, 
and f32 = 4.6720. On substitution in Eq. (12), it is found that 
the criterion of curve type ~ equals .161, which indicates a type 
IV curve. "This is also indicated by fig. 41. ' 

If the integration is carried out, it will be found that the 
formula for a type IV curve isl 

( 
Xf2)-m -v tan-I ~ 

y = Yo' 1 + a2 e a (12) 

where 
6«(h - ~l - 1) r = ~~~~--~ 
2~2 - 3~1 - 6 

m = t(r + 2) 
r(r - 2) ~ 

v = -v-;i=-6~(r~-==="1 )=-~~~1~(r=-===2~) 2 

~
- I 

a = !l2 y16(r - 1) - ~l(r - 2)2 
16 • 
N 

Yo = aF(r,v) 

F(r,v) is a special function of rand v 

and the origin is at the mean plus v.a/r. An alterriative equation 
is2 

y = Yo cos ... +2 (je- v8 (13) 
, 

where (j = tan-1 ::_ ana (j in e-vo is measured in radians. The 
a 

functi9n F(r,v) may be evaluated for various values of r' and v 
from ,Karl Pearson's TabLes for Statisticians and Biometricians, 
Table LIV, explained on pages lxxxi to lxxxiii. 

Equation (13) is the easier form to employ in plotting ordinates 
although it does not give, ordinates at equal x. intervals. If the 

1 See ELDERTON, op. cit., p. 64. 
2 See ibid., p. 65. 
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hitter is essential, as it might be if the ordinates were to be used 
to compute areas, then Eq. (12) must be used. Equation (12) 
will be employed here. The calculations required for determin
ing the curve equations are as follows: 

Since {31 = .4063 and (32 = 4.6720, then, on substituting these 
sample values for the population parameters which they serve to 
estimate, it follows that -

6(4.6720 - .4063 - 1) 
r = 2(4.6720) -,3(.4063) _ 6 = 9.2204 

m = t(9.2204 + 2) = 5.6102 
9.2204(9.2204 - 2) v'A063 

V= . 
Y16(9.2,Z04 -' 1) - .4063(9.2204 - 2)2 

= 4.0398 

a = ~31~.~94 Y16(9.2204 - 1) - .4063(9.2204 - 2)2 

= 46.8374 

To find the value of F(r.,v) ~o be used in computing Yo, resort 
must be had to Karl Pearson:s Tables for Statisticians, Table 
LIV. The first step is to find 1/), defined by the relationship 
tan I/) = vir. For the given data, 

4.0398 
tan I/) = 9.2204 = .43814 and I/) = 23.6605° 

For I/) = 23° and r = 9, Pearson's Tables give log F(r,v) = 
9.2186422 - ~O; for I/) = 24°, . r = 9, log F(r,v) = 9.2488237 
- 10. Henpe, for I/) = 23.6605° and r = 9, the value of log F 
(r,v) is, by straight-line interpolation, 9.2385650 - 10. Again, 
for I/) = 23° and r = 10, log F(r,v) = 9.2347504 - 10; for 
I/) = 24° and r = 10, log F(r,v) = 9.26860~7 - 10. Interpola
tion gives, for I/) = 23.6605° and r = 10, log F(r,v) = 9.2571003 
- 10. Finally, interpolation between 9.238565 - 10 and 
9.2571003 - 10 gives, for I/) = 23.6605° aha r = 9.2209, log 
F(r,v) = 9.2426502 - 10 = -. 75~3498. Consequently, 

log Yo = log 300 - log 46.8374 - (-.7573498) = 1.5638783, 

and Yo = 36.63. The formula for the curve is thus 

= 3663 1 + x -4.040 tan 1 46.84 
[ 

12 ]-5.610 _ x' 

y. (46.84)2 e 
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the origin being at ~:~~~~ (46.8374) plus the mean or at· 
I 

20.5 + 151.8 = 172.3. 

TABLE 21.-COMPUTATION OF AREAS FROM ORDINATES OF TABLE 20 

x y A1I_ Area or frequency -. 
105* 3.3 7.7 - 3.(1 = 4.4 3.3 
115 7.7 17.3 - 7.3 = 10.0 7.7 - h( 4.4 - 10.0) = 7.7 + .2 = 7.9 
125 17.3 35.2 - 17.3 'F 17.9 17.3 - U. 10.0 - 17.9) = 17.3 + .3 ;;. 17.6 
135 35.2 59.9 - 35.2 = 24.7 35.2,- h( 17.9 - 24.7) = 35.2 + .3 = 35.5 
145 59.9 74.6 - 59.9 =, 147 

\ 
59.9 - ,h( 24.7 - 14.7) = 59.9 - .4 = 59 .. 5 

155 74.6 59.8 - 74.6 = -14.8 74.6 - h( 14.7 + 14.8) = 74.6 - 1.2 = 73.4 
165 59.8 28.5 - 59.8 = -31.3 59.8 - h(-14.8 + 31.3) = 59.8- .7 = 59.1 
175 28.5 8.4 - 28.5 = -20.1 28.5 - h(-31.3 + 20.1) = 28.5 + .5 = 29.0 
185 8.4 1.8- 8.4 = - 6.6 8.4 - h(-20.1 + 6.6) = 8.4 + .6 = 9.0 
195 1.8 .3 - 1.8 = - 1.5 1.8 - h(- 6.6 + 1.5) = 1.8+ . 2 = 2.0 • 

205 .3 .1 - .3 = ~ 0.2 .3 - h(- 1.5+ .2) = .3 + .1 = 0.4 
215* .1 ................... 0.1 

* Areas of theRe intervals are taken equal to ordinates. 

TABLE 22.-THE X2 TEST OF GOODNESS OF FIT OF THE CURVE 

X F 1 F - 1 (F - f)' 
(F - f)2 
-1-

---
Below 110 .................. 2 6.5* -4.5 20.25 3.12 
llO- .................. , .... 5 7.9 -2.9 8.41 1.06 
120- ..... '" 

. 
20 17.6 2.4 5.76 .33 . . . . . . . . . . 

130- ..... ......... . . ....... 52 35.5 16.5 272.25 7.67 
140- ...... ............... . 61 59.5 '1.5 2.25 .38 
150-...................... 73 73.4 -.4 .16 
160- ...... , ..... , ... . '" . 47 59.1 -12.1 146.41 2.48 
170- .......... ' ............. 25 29.0 -4.0 16.00 - .55 
180 and abovet ............. 15 11.5 3.5 12.25 1.06-

Sum 300 300 16.65 

* Taken to make total area equal to 300, it being assumed that the area above 220 is zero, 
t Consolidated so th,!'t total area for interval of comparison is at least equal to 5. 

Graphic Cornparison. From this equation the ordinates of 
the frequency curve y may be computed as indicated in Table 20 .. 
It will be noted that the x' values are taken as ~he mid-points 
of the various class intervals. The final results are to be found 
in column (10); the ordinates of the histogram to which the curve 
is fitted are given in column (11) for the sake of comparison. 
The curve and histogram are graphed in Figure 42b. 
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The Jf2 Test of Goodness of Fit. To test the goodness of fit the 
areas under the curve for the various class intervals may be com
puted from the quadrature equation (4) or (5). * This has been 
done in Table 21 by using Eq. (4). The final results are com
pared with the histogram frequencies in Table 22 and a X2 test 
of goodness· of fit carried out. This table yielqs 

~ (F f f)2 = 16.14. 

For n = 9 - 5 = 4, t the .01 point ofax2 distribution is 13.277, 
which indicates that for the case in question the probability of a 

value of 2: (F f f)2 equal to or greater than 16.65 is less than 

.01. Hence the fit is. not an especially good one. Apparently, 
owing to'tile sharp peak in the center, the given data cannot be 
well fitted by a smooth frequency curve. 

* See p. 128. 
t For explanation, see p. 333. 



PART II 

Elementary Theory if Random Sampling 

CHAPTER VIII 

A PREVIEW OF SAMPLING THEORY 

An important part of statistical theory is concerned with the 
logical basis of inferences about a population, i.e., about a large 
'set of cases, from which a sample has been taken. This is called 
the "theory of sampling." 

In many instances 11 study of the whole population- is imprac
ticable, if not impossible. T:p.e set of children born to members 
of the white race goes back to the dim past and, so far as we know, 
will continue into the unknown 'future. For all practical pur
poses it is an infinite population of children. Any study of 
this population, for example, a study of the percentage of male 
and female births, must be made from a sample. Agail} , the 
registered voters in the United States form a population of many 
millions. If an institute of public opinion wishes to discover 
the trend of, political 'sentiment in the country, it might con
ceivably approach everyone of these millions of voters and ask 
him what party or candidate he favors. Such a "s~raw-vote," 
however, would necessitate considerable preliminary' preparation 
and would be very costly, and the tabulation of returns would be 
an elaborate clerical and statistical problem; only the United 
States Bureau of the Census could venture to undertake such a 
job. A small private institute must necessarily determine public 
opinion from a carefully selected"sample. 

For similar reasons, sampling is employed in many other fields. 
It is used to study qualities of manufactured products, yields of 
various agricultural techniques, results of different· medical 
treatments, effects of suggested educational methods, and the 
like. Sampling analysis is not confined to human populations 
but may be applied to the study of populations of inanimate 
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objects, plants, and animals; it hlfs general applicability. Statis
ticians often speak of a "universe" instead of a "population"; 
the two words are interchangeable in sampling analysis. 

RANDOM SAMPLING 

Random Sampling and Probability. If a sample of data is 
obtained in a manner that may be characterized as "random," 
it is possible to make certain in,£erences about the population 
from which the sample has been drawn. With respect to a 
random sample the calculus of probability and the theory of 
frequency curves developed in previous chapters may be applied 
with a reasonable degree of accuracy. In random sampling, 
for example, it is possible to compute the probability of wrong
fully rejecting a given hypothesis regarding the population. It 
is also possible to calculate ranges of values that may be stated 
to cover the actual population values with a given probability.l 
The randomness of a sample accordingly affords an essential basis 
upon which inferences regarding the popUlation may be logically 
based. 

Sampling that is purposive and not random will be discussed 
briefly at the end of this chapter. Samples obtained by this 
method may be "thought" to be good representations of the 
population, but just how good is indeterminate; itor can it be 
determined by the use of this method how often incorrect 
inferences regarding the population may oCCur. Random 
sampling is the only method so far devised that permits logical 
inferences about a given population. 2 

Types of PopUlations. Before discussing the technique of 
random sampling it 'is desirable to distinguish several different 
types of populations. A population may be either "existent" 
or "hypothetical." The registered voters in the United States, 
the stock of machine parts in a given storeroom, the wool sheep' 
on a given ranch are all existent populations. The set of heads 

1 Testing of hypotheses and determination of "confidence intervals" are 
discussed briefly in a subsequent section of this chapter (see pp. 163-174) 
and developed more fully in the chapters that follow. 

2 It must be admitted, however, that confidence in an inference based on a 
random sample is dependent on the "thought" or firm belief that it is a 
truly random one. Whether thought with respect to randomness is any 
sounder, as a basis for inferences, than thought with respect to representa tiv~
ness of a sample obtained by some other method is a debatable question. 
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and tails to be obtained by the indefinite tossing of a given coin, 
the children that have been and will be born to members of the 
white race, the results of the repeated performance of a given 
physical, biological, or other type of scientific experiment are all 
hypothetical populations. In some cases an existent population 
is part of a larger. hypothetical population; for exam we, the 
machine parts in a storeroom, which of themselves form an 
existent population, may be viewed as a portion of the hypo
thetical population of parts that ,~ould be produced by the 
indefinite continuation of the given manufacturing process. 
Again, hypothetical populations may sometimes be the products 
of random selection from given existent populations. The balls 
in a bag, for example, form an existent population, but the balls 
that might be drawn from the bag with replacements would 
form a hypothetical population. 

PopUlations may also be classed as "finite" or "infinite." 
I 

The body. of registered voters in the United States is a finite 
population, although it is so large that for some purposes it may 
be considered infinite. The set of heads and tails obtained by 
the endless tossing of a coin, the continuous births of white 
children, the results of an i:o.definite repetition of any physical 
Or biological process-all constitute infinite populations. It 
is possible, of course, for a hypothetical population to be finite 
or infinite. The first 100 heads and tails to be obtained from 
the tossing of a coin is a finite hypothetical population. Existent 
populations, however, are almost universally finite. 1 

. Technique of Random Sampling. As indicated in the chapter 
on probability, randomness is largely a matter of intuition. 
Probability theory considers the set of all possible diffe-rent 
samples and derives their distribution according to some criterion. 
If probability theory is to be used in predicting the results of any 
method of sampling, the method should be such that, if repeated 
a large number of times, it will tend to yield all possible different 
samples with equal frequency. "Such a method is called a 
" random" method. 

1 The foregoing classification of popUlations follows closely that of G. 
Udny Yule and M. G. Kendall, Introduction to the Theory of Statistics, pp. 
332-334. Also, see M. G. Kendall and B. Babington Smith, "Randomness 
and Random Sampling Numbers," Journal of the Royal Statistical Society, 
Vol. 101 (1938), pp. 147-166. 



156 ELEMENTARY THEORY OF RANDOM SAMPLING 

General notions regarding the concept of probability suggest 
that, if every member of the population is given an equal chance 
of being selected, or, to put it another way, if the selection of any 
member of the population is independent of the attribute it 
assumes, the results may be those desired. There is no definite 
assurance, however, that any special technique wi!l conform to 
these criteria'. All that can be done, and all that has been done, 
is to apply to a known Ropulation some apparently random 
method and to compare the- results obtained with those expected 
upon the basis of probability theory. If t"9.e actual and theoret
ical results agree reasonably well when applie~ to the known 
population, it is concluded tlf.at the given method will also yield 
random samples when applied to an unknown population. The 
danger exists, nevertheless, that a method of selection yielding 
random samples in one instance may not give random samples 
in another instance. In the final analysis, belief that a particular 
method will produce random results rests on intuition guided 
by past exp,erience. Some of the methods that have been 
devised to obtain random samples are ordinal selection, mechan
ical randomi:ting devices, tables of numbers, random sampling ...--
numbers, and natural selection. 

Ordinal Selection. The methods of sel~ction descriped in this 
and the next three sections are methods devised to pbtain random 
samples from finite populations. They are frequently used in 
the social sciences, since the sampled populations in these fields 
are often finite. 

If a given population consists of a list of objects in which the 
attribute of an object is independent of its p~sition on the list, 
members of the population selected by some ordinal position 
(every tenth, every twentieth, or every tenth position per page) 
will be a random ,sample for the purpose of studying the given 
attribute. For example, a list of students alphabetically 
arranged in a college directory would presumably be an arrange
ment independent of student heights. Accordingly, some 
ordinal selection, say the tenth and twentieth name on each 
page, would give a random sample for the purpose of studying 
student heights. 

The method of ordinal selection must be used with care. If a 
reporter of a college newspaper visits every tenth room in a given 
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dormitory and if the dormitory is so arranged that each entry has 
only 10 rooms, it might happen that he would visit only a first
floor room in each entry. If. he were seeking data of an economic 

..()r social character, the preferred location of the rooms visited 
might give a definite bias to the sample obtained. This would 
be a case in which the method of selection failed to be indeperWent 
of the attributes of the members of the population in which the 
reporter was interested. -

In _ the use of ordinal selection, care must also be taken to 
note ·whether the list from which selection is made comprises the 
whole population being studied or is merely assumed to be repre
sentative of that population. The list of telephone subscribers 
in the city of New York might be taken, for example, to be 
representative of the whole adult population of the city. For 
some purposes, however, this would be a risky assumptitm. For 
very poor families cannot afford telephones, and any study of 
the social'characteristics of the popu_lation would be biased unless 
it included representatives of this poorer section. The Literary 
Digest poll in 1936 failed accurately to predict the outcome of 
the presidential election because it relied heavily upon lists of 
names that were not representative of the whole population with 
respect to attributes affecting their votes. 

M<f!chanical'Randomizing Devices. Random samples are often 
sought by the use of various i'randomizing" devices. Suppose, 
for example, that each member of a finite population is identified 
by a number. If this number is written on a small piece of paper 
and inserted in a small metal cylinder and if these cylinders are 
put in a revolving drum and thoroughly mixed, the selection of a 
sample of cylinders from the drum might possibly be taken to be 
a random sample from the given population. This type of 
randomizing device is'used in many lotteries. 

The shuIDing of cards is another randomizing device. If the 
population is small enough, the numbers representing its various 
members may be written on cards and these may then be thor
oughly mixed by shuffling. The withdrawal of a given number 
of.cards from the shuffled pack may be taken as a random sample 
from the given population. Such a sample may be taken without 
replacing any of the cards; or the number of each card may be 
recorded, the card replaced, and the pack reshuffled before the 
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ne~t card is drawn. Both these wo_uld constitute random 
samples, but'the probability of a given type of sample would be 
different under the two procedures. 1 

Similar devices make use of dice, roulette wheels, and other 
gambling instruments. Although a random sample may possi
bly be procured by such means, hidden bias in the mechanical 
device or in the procedure must be carefully avoided. If lottery 
cylinders are withdrawn by hand, the person making the with
drawals may have an unconscious predilection toward the 
cylinders of a certain shape, smoothness, or texture. If numbers 
are written on cards with ink, the difference in the size of the 
number might affect the stickiness of the cards and cause some 
to be withdrawn less often than others. The use of dice notori
ously results in bias; Karl Pearson's study of the gaming results 
at Monte Carlo indicates that the odds against the,absence of 
bias are extremely large. 2 If the possibility of deliberate falsi
fication is precluded, the bia~ in the'Monte Carlo results "would 
appear to arise from small imperfections in the roulette wheel 
which direct the ball into some compartments in preference to 
others."s For these reasons, mechanical randomizing devices 
of this kind are no longer in high favor. 

Tables of Numbers. When it is possible to associate a number 
with each member of the population, tables of nukbers sueh as 
tables of squares and other powers, tables of logarithms, various 
statistical tables, and even tables of telephone numpers are some
times employed in the attempt to secure a random' sample:' For 
example, if a population consists of 100 members and a number 
from 0 to 99 is associated with each member of the population, a 
statistical table involving seven-place figures, say, might be 
opened to any arbitrarily selected page and the last two digits of 
each of the first 10 lines of the table read 'off. The members of 
the population whose numbers correspond to the 10 pairs of two 
digits obtained in this way (09, 01, 07, etc., being read 9" 1, 7, 
etc.) might be considered to be a random sample of 10 from the 
given population. 

1 For further discuss!on of these two cases, see Chap. IX, pp. 186-190, 
209-211. 

2 Chances of Death, Vol. I, Edward Arnold, London and New York (1897), 
pp.42-62. 

• KENDALL and BABINGTON SMITH, op, cit., p. 156. 
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The success of this method of, obtainjng a ,random sample 
depends on the digits in the table occurring in a random order. 
Unfortunately in many tables of numbers, such as tables of 
logarithms, a relationship exists bet\veen the figures in successive 
rows. Such tables, of course, cannot be used to draw a random 
sample. Even tables that are apparently random in character 
must be used with caution. Kendall and Babington Smith give 
the following account of an experiment with telephone numbers:1 
"We have attempted to construct a random series by selecting 
digits from the London Telephone Directory. In, order to 
exclude bias as far as ,possible, pages were taken by opening 
the book haphazardly; 'numbers of less than four digits were 
ig'nored; numbers associated with names printed in heavy type 
were also ignored; and only the two right-hand digits were taken. 

"It was found that a series of this kind was significantly biased. 
There appeared a deficiency of fives and nines. . . . 

"The reasons for this effect are complicated and are not confined 
to the obvious one that telephone engineers would avoid fives 
and nines because of their assonance. It thus appears that the 
London Directory is useless as a'source of random digits." 

Random Sampling Numbers. Because ordinary tables of num
bers may fail to yield random sets of digits, attempts have been 
made to construct special tables of random ,sampling numbers 
that may be used with some Gonfidence. One such table is 
Tippett's Random Sampling Numbers. This consists of digits 
picked at random from British census reports. The digits are 
arranged in groups of four so as to provide 26 pages of.400 four
figured numbers, or a total of 10,400 four-figured nUIl}bers. 
These figures have been subjected to a number of different tests 
of randomness. Generally the results were deemed satisfactory, 
although one investigator found that the figures were somewhat 
"patchy" in meeting the tests. 2 The table and a description 
of the various methods of using it have been published by the 
Department of Applied Statistic~ University of London, Uni
versity College, as Tract XV of its Tracts jor Computers. 

Another set of 5,000 random sampling numbers has been 
published in the ,Journal of the Royal Statistical Society by 

1 Ibid., pp. 156-157. 
2 See YULE, G. UDNY, "A Test of Tippett's Random.8ampling Numbers," 

Journal of the Royal Statistical Society, Vol. 101 (1938), pp. 16'Z-172. 
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M. G. Kendall and B. Babington Smith. l These were obtained 
from a special randomizing machine, which its inventors describe 
as f911ows:~ "Essentially the machine consists of a disk divided 
into 10 equal sections, on which the digits 0 to 9 are inscribed. 
The disk rotates rapidly at a speed which can, if necessary, be 
made constant to a high degree of approximation by means of a 
tuning fork. The experiment is conducted in a dark room, and 
the disk is illuminated from time to time by an electric spark or 
by a flash of a neon lamp, which is of such short duration that the 
disk appears to be at rest. At each flash a number is chosen 
from the apparently stationary disk by means of a pointer fixed 
in space. 

"In the actual experiment, the disk was rotated by an electric 
motor at about 250 revolutions per minute. It was illuminated 
by a neon lamp in, parallel with a condenser in an independent 
electric circuit which was broken by means of a key. Owing to 
experimental conditions, the time between the making of the 
circuit and the passing of the flash varied, but to add an extra 
element of randomness the key was tapped irregularly by the 
experimenter. Flashes occurred, on the average, about once in 
3 or 4 seconds." .---

These random sampling numbers of Kendall aI\d Babington 
Smith have also been subjected to various tests of randomness 
with satisfactory results. 

To draw a random sample, tables of random sampling num
bers are used according to the procedure already explained in 
connection with other tables of numbers. After th~ members 
of the population are assigned numbers, a sample of size N is 
picked by selecting any set of N numbers from the table of 
random sampling numbers. Suppose, for example, that a 
sample of 100 from a population of 10,000 commercial banks 
doing business in a given area is desired. The banks are, it 
happens, listed in a directory. ·The first bank in the directory 
can thus conveniently be numbered 0 and the last 9999; and 
then Tippett's tables can be opened to any page and the numbers 
in the first column read off. The banks whose numbers corre
spond to the numbers so selected will then constitute a. random 
sample of 100 from ,the whole population of 10,000 banks. 

l' Op. cit., pp. 164-166. 
2 Ibid., pp~ 157. 
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Instead of taking the numbers from the columns of the table, 
they could have been selected by rows or even by diagonals. In 
each case, a random sample will be obtained. On the assumption 
that Tippett's numbers are a random set, the selection of any 
.subset of these numbers in a way that is independent of the 
numbers themselves· will yield a random sample. Keyldall's 
and Babington Smith's numbers can be used in the same way. 

Natural Selection. The methods of sampling described above 
are of use primarily in sampling from finite existent populations. 
For the most part they ,cannot be used to obtain random samples 
from an unknown hypo~hetical infinite population. 1 A popula
tion that would be hypothetically generated by the continuous 
operation of some physical, biological l or social process is an 
unknown hypothetical infinite population. When these proc
esses occur in everyday life, any existe:Q.t results of that process 
may be tentatively taken as a random sample of the infinite 
population of results. The selection here is a "natural" one in 
that it is effected by the ordinary forces of everyday life. 

The role of the investigator in the case of hypothetical infinite" 
populations is to study the circumstances under which the natural 
selection of the sample was effected in order to see whether some 
unusual influences might have given a special bias to this par
ticular sample and consequently might have destroyed its natu
rally random character. Thus -any set of white birth statistics 
might tentatively be taken as a random sample of the population 
of white births. If, however, the sex ratio were being investi
gated and it were known that geograpbical location had a sig
nificant effect on the ratio of male to female births, then data on 
white births in a given area could be looked upon as a random 
sample only of white births in that area and not of births in all 
areas. 

Naturally occurring data thus provide their own method of 
selection. This is true whether the process giving rise to them 
is one of ev~ryday life or a process carried out in some experi
mental laboratory or research station. In testing the effects of a 
oertain serum, care may be taken to see that the guinea pigs 

1 When the population is known, however, and sampling is undertaken 
primarily for experimental purposes, random sampling numbers may be 
used to obtain random 'samples from infinite populations. See YULE, 

G. UDNY, and M. G. KENDALL, op. cit., pp. 343-344. 
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used for the experiment are not noticeably abnormal, but 
otherwise the peculiar characteristics of each pig are those that 
chance happehs to provide. Again, in agricultural experiments 
with fertilizer, the peculiar influences that affect each plot are 
those that are provided by the chance variations in soil, wind, 
rain, sunshine, and other natural forces. • 

In experimental research, however, care must be taken to 
design an experiment so that the balance of natural forces is not 
all to the one side or to the other for certain parts of the data. 
Thus, if the difference in rate of growth of self-fertilized and cross
fertilized plants is being studied, and if the cross-fertilized plants 
are all placed on the sunny side of the experimental plot, the 
effect of the sun and ~ny possible effect of the difference in 
fertilization will be so confounded that it will be difficult, if not 
impossible to determine )Vhether any significant difference in the 
rate of growth is due to the one or to the other. If an equal 
number of plants of both types are assigned at random to the 
two sides of the plot, however, then the constant effects of the sun 

'will be eliminated. With this arrangement or design of the 
experiment, the possibility that the recorded difference in rate 
of growth may be due to chance instead or to a difference in 
method of fertilization may be determined by proba9ility theory.! 
It is the role of the experimenter in these cases so to design his 
experiment that natural forces do provide him with a random 
sample. 

In the case of very large finite populations, natural selection 
is also sometimes used to get a random sample. An organization 
investigating public opinion, for example, may send an agent 
to a given locality where 'the first dozen people he meets, of the 
sort whose opinion is desired, may be taken as a random sample 
of the given class of people. The sample is thus picked for him 
by chance forces. For the 1940 United States census, schedules 
were printed so that those persons whose names happened to 
fall on certain lines of each schedule were l:j.sked supplementary 
qy.estions. Two out of the forty lines on each side of a schedule 
were marked off for this purpose so that a 5 per cent sample was 
obtained on the supplementary questions. 2 

1 Cf. FISHER, R. A., The Design of Experiments, Chap. III. 
··See STEPHAN, F. F., W. E. DEMING, and M. H. HANSEN, "The Sampling 

Procedure of the 1940 Population Census," Journal of the American Statisti
cal Association, Vol. 35 (1940), pp. 615-630. 
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SAMPLING AND THE THEORY OF STA,TISTICAL INFERENCE 

If a sample is drawn from an unknown population in a random 
manner, certain inferences about the population may be made 
on the basis of probability theory. The followi.ng sections will 
discuss in a general way the testing of particular hypotheses 
regarding a population and the estimation of poputation param
eters. The application' of this general theory to special problems 
will be discussed in detail in subsequent chapters. 

Testing Hypotheses Regarding the Population. Often a 
problem presents itselr'in such a way that a definite hypothesis 
regarding the population\is offered for testing. A fruit merchant 
about to buy a carload of oranges wishes them to be of good 
quality; he does not want to buy the carload, let us say, if more 
than 10 per cent of the oranges are substandard. Accordingly, 
he will want to test the hypothesis that the carload is 10 per cent 
substandard. If this hypothesis is rejected, because a random 
sample suggests that the numb~r of substandard oranges is more 
than 10 per cent, he will not buy the carload. But if tlle hypo
thesis is not rejected, because the random sample suggests that 
the number of substandard oranges is not greater than 10 per 
cent, he will buy the oranges. 

A similar problem is illustrated by the manufacturer of electric
light bulbs who does not wish to adopt a proposed new process 
of production unless the mean length of life of the bulbs produci
ble by it is 1,000 kilowatt-hours or more. He knows from past 
experience that electric-light bulbs vary in length pf life in 
accordance with the normal frequency curve. He will thus want 
to 'test the hypothesis that the population of bulbs producible 
by the new process is a normal population with a mean/of 1,000 
kilowatt-hours. If this hypothesis is rejected, because.a.._random 
sample suggests that the mean length of life is less than 1,000 
kilowatt-hours, the manufacturer will not adopt the new process. 
But if the hypothesis is not rejected, because the random sample 
suggests that the mean length of Tife is not less than 1,000 kilo
watt-hours, he will adopt the new process. These are examples 
in which the problem itself suggests a particular hypothesis to 
be tested and alternatives to it. 

Errors in Testing Hypotheses. In testing a particular hypo
thesis regarding a population, two kinds of errors may be made. 
The first of these errors, hereafter referred to as "error I," is the 
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rejection of the hypothesis when _it is ac~ually true. That is, 
the hypothesis will be deemed unreasonable on the basis of the 
sample. obtained, although in fact the population is exactly as 
the hypothesis assumes. The second kind of error, which ;vill 
be referred to as·" error II," is the failure to reject the hypothesis, 
i.e., the failure to consider it unreasonable on the basis of the 
given sample; when in fact the populatioI?- is not the same as the 
hypothesis assumes. The aim of the statistical testing of 
hypotheses is twofold: it seeks on the one hand to limit the risk 
of the first kind of error to a· preassigned amount and, on the 
other hand, to minimize the risk of the second kind of error. 

Procedure for Limi~ing Risk of Error 1. To limit the risk of 
falsely rejecting a given hypothesis to a preassigned amount, the 
following procedure is adopted: 

First, the hypothesis to be tested is assumed to b~ true. 
Second, a certain statistic is selected such as a mean or 

standard deviation, and probability theory is employed to show 
how this statistic might be expected to vary from sample to 
sample on the assumption that the hypothesis is true. The 
process consists in supposing that a large number of samples of 
given size have been drawn at random from tIle assumed popula
tion and then finding the frequency distribution of the sample 
values of the selected statistic. This distributioh of sample 
values is called the" sampling distribution" of the statistic, and 
the standard deviation of this distribution is called the" standard 
error" of the statistic. The argument here is purely theoretical 
and is based upon the probability calculus. 

The third step is to specify th~ degree of risk that the investi
gator is willing to take in rejecting the given hypothesis when it 
is true. \ This degree of risk is called the" coefficient of risk." 

The fourth step is to study the sampling distribution of the 
selected statistic and to mark off a r~nge of values for which 
the probability of the statistic falling within it is just equal to the 
coefficient of risk. This range is called the" region of rejection," 
and the remaining range of values is called the "region of accept
ance." To illustrate, suppose that the adopted coefficient of 
risk is .05. Furthermore, suppose that the statistic used to 
test the given hypothesis is the mean of the sample and that the 
probability calculus indicates that means of random samples 
from the assumed population will by distributed in the form of a 



A PREVIEW OF SAMPLING'THEORY 165 

normal, frequency distribution, the mean of which is 1,000' and 
the standard deviation of which is 20. 1 From the properties of 
a normal distribution, it is known that .05 of the frequencies of a 
normal distribution lie below the mean minus 1.6450'. Hence the 
range of values below 1,000 - 1.645(20) = 967.1 could be taken 
as a .05 region of rejection. The range of values from 967.1 
upward would constitute the corresponding region of acc~ptance 
(~ee Fig. 43). 

The final step is to note whether the value of the selected 
statistic for the given sp,mple falls in the region of rejection or the 

oX 
(j 

.FIG. 43.-An .05 limit in the lower tail of a normal sampling distribution. 

region of acceptance. For example, if the sampling distribution 
and the regions of rejection and acceptance were as indicated 
above, and if the mean of the given sample were 965.2, ~he given 
hypothesis would be rejected because this sample value wop,ld 
fall in the range below 967.1. If, on the other hand, the sample 
mean had been 972.3, then the hypothesis would have been 
accepted, for the sample value would then fall in the range 
above 967.1. 

"" This procedure ensures that the risk of rejecting a given hypo-
thesis when it is true will be just .05. For if it is always followed 
in testing hypotheses, false rejections will be made only 5 per 
cent of the time, since sample values will fall in regions of rejec
tion only. that often when hypoth~ses are. true.' 

It will be noted that there are three arbitrary elements in the 
procedure, One is the selection of the statistic to be used, the 

1 As indicated in Chap. VI, the standard deviation of the sampling dis
tribution of the mean, i.e., the standard errOl; of the mean, is equal to the 
standard deviation of the population divided by the square root of the size 
of the sample. For samples of 25, say, a standard error of 20 implies a' 
population standard deviation of 100. 
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second is the selection of the coefficient -of risk, and the third 
is the selection of the regions of r.ejection and acceptance. The 
choice of the statistic will depena. in part on the ease of calcula
tion and in part on the size and position of the regions of reject~on 
and acceptance to which it gives rise. The latter consideration 
is of prime importance since, as pointed out below, the size and 
position of the regions of rejection are a major factor in reducing 
the error of accepting a hypothesis when it is not true. Th.is 
will be more fully discussed later. 

The selection of the coefficient of risk will depend in most 
instances upon the nature of the problem. If action based upon 
nonacceptance of a hypothesis is not of great significance, the 
investigator may be willing to run considerable risk of falsely 
rejecting a hypothesis. In testing a certain manufacturing, 
process, for example, it may be that any tendency for the process 
to deteriorate may be corrected with relatively little, expense. 
The manufacturer may in such instances be willing to undergo 
an occasional overhauling of his process when in fact there is no 
real need for such overhauling. In other cases, however, tp.e 
expense of overhauling may be very great, an<! .. the manufacturer 
may be willing to undergo an unnecessary overhauling only very 
infrequently and may gladly undertake consiclerable\ expense for 
statistical testing to avoid any such unnecessary overhauling. 

In the former case, the manufacturer might be willing to 
adopt a coefficient of risk of .10 (a risk that 10 per, cent of the 
overhaulings will be unnecessary); in the latter, even a coefficient 
of risk of .01 (a risk that 1 per cent of the overhauling will be 
unnecessary) might be too great. In cases ~here serious or 
dangerQus medical treatment is involved, a still smaller coefficient 
of risk might be adopted. A coefficient of .05 is one that has 
come to be frequently used in cases where there is no strong 
reason for adopting a very high or a very low figure. 

The third arbittary element, the choice of the regions of rejec
tion and acceptance, is illustrated in Fig. 44. For any given 
statistic and coefficient of risk it is possible to pick innumerable 
regions of rejection and acceptance. In the previous illustration, 
the range of values below 967.1 was taken as the region of rejec
tion, and the range of values from 967.1 upward was taken as the 
region of acceptance. The range of values above 1,000 + 1.6450', 
that is, above 1,032.9; cou\d equally well have been used as a 
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.05 region of rejection and the range of values from 1,032.9 down~ 
ward as the corresponding region of acceptance, for the prob~ 
ability of a sample mean1falling above the mean, plus 1.6450", is 
likewise .05. This probability of .05 could also have been 

0.025 

Region of_ I 1000 _I Region or x 
rej~~Eo_'7.!!!..J,. _li€f_'l~~'? q( q~ef..Iq,!:(I!!~!:_e!.e_c._f!q,! DI 7f 

960.8 1039.2 
FIG. 44.-Three combinations of regions of rejection and acceptance that will 

make 'the risk of falsely rejecting the hypothesis X = 1,000 just equal to .05. 

obtained by splitting the region of rejection so that it included tile 
range of values below 1,000 - 1.960', that is, below 960:8, and 
the range of values above 1,000 + 1.960', that is, above 1,039.2. 
The corresponding region of acceptance in thIS case would have 
been the range of values from 960.8 to 1,039.2, as shown in the 
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third section of Fig. 44. 1 Still other regions of rejection could 
have been found that would have had a probability of .05. 

Any of these regions would have limited the risk of falsely 
rejecting the given hypothesis to the preassigned cpefficient of 
risk, viz., .05. They would not all have been equally gOQd with 
respect to the risk of the second kind of error, viz., that of accept
ing the given hypothesis when it is not true. It is with the 
problem of selecting regions of rejection and acceptance that 
will minimize this second kind of error that the ensuing dis
cussion is concerned. 
~ Procedure for Minimizing Risk of Error II. If the population 

is not as specified ,by a given hypothesis, the probability of a 
sample falling in any region of acceptance selected for limiting 
the risk of error I will depend on the position of the region in 
relation to the actual character of the population. If there 
were one particular region of acceptance for which the probability 
of a -sample falling within it was less than that of any other 
region giving the same risk of error I, no matter how the popula
tion differed from the given hypothesis, this would 'Obviously 
be the best region that could be selected. For, in this case, the 
probability of accepting the false hypotheSi; would be less than 
it would be for any other region giving the ~ame risk of error 1. 

Such a best critical region is usually impossible to determine. 
Ordinarily, one region will be the best that can be chosen if the 
population differs from the given hypothesis in ~:me direction, 
while another region will be the best if the population differs 
from it in another direction. If the stati:;;tician is concerned with 
the possibility of the population differing from the given hypo
thesis in whatever direction possible, some compromise region 
is generally employed. 

The selection of good regions of rejection and acceptance will 
be illustrated by reference again to the three diagrams of Fig. 44. 
Suppose that tlie hypothesis to be tested is that the mean of the 
population from which a sample has been drawn, equals 1,(}OO, 
and suppose that p.robability theory, together with certain facts 
known about the population, indicates that the sampling dis
tribution of means of samples from this assumed population will 
be a normal distribution with a mean of 1,000 and a standard 

1 This is the only type of region that was discussed in J. G. Smith and 
A. J. Duncan, Elementary Statistics and Applications, Chap. XII. 
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deviation of 20. Finally, suppose that the three regions of 
rejectiqn and acceptance shown in Fig. 44 are considered for 
adoption. The question is which of these regions will be the 
best to employ. The answer is that it depends on the nature 
of the problem; this can be illustrated by concrete cases. 

Suppose that the data of the given example pertain to the 
length of life of electric-light bulbs, measured in kilowatt-hours, 
producible by some new process. The manufacturer of these 
bulbs, it can be arguyd, will desire especially to avoid acceptance 
of the hypothesis ~hat the average length of life of the new bulbs 
is 1,000 kilowatt-hours when in fact it is less than that. For if 
he accepts the given hypothesis when actually the mean length 
of life is greater than 1,000 kilowatt-hours, he stands to lose 
nothing; he in fact gets a better process than he expected. But 
if he accepts the hypothesis of a mean length of life of 1,000 
kilowatt-hour§ when actually the mean is less than that, he gets 
a poorer process than he expected. The quality of his product 
will not reach the desired standard, and the result may be a 
considerable lo~s of money. In this instance, therefore, the 
manufacturer will want to adopt regions of rejection and accept
ance that will minimize the risk of accepting tlie hypothesis 
when actually the mean length of life of the bulbs is less than 
1,000. This set of regions of acceptance and rejection is shown 
in the first diagram of Fig. 44. 

By the selection of this set of regions of rejection and accept
ance, the risk of error II is minimized; this is illustrated by three 
diagrams in Fig. 45. The three diagrams in this figure show the 
effects of applying the three sets of regions of rejection...-and 
acceptance shown in Fig. 44. The three curves in Fig. 45 show 
the true probabilities of obtaining sample means of varying 

'sizes, forming a normal ·distribution about the true population 
me~n of 980, superimposed over the scale showing the regions 
of rejection and acceptance according to the hypothesis of a 
mean of 1,000, shown in Fig. 44; '" The diagrams in Fig. 44, from 
which the regions of acceptance were obtained, show the prob
abilities of obtaining sample means of varying sizes, forming a 
normal distribution with a mean of 1,000 and a standard devia
tiop of 20. 

Figure -45 suggests that the· risk of accepting the hypothesis 
of ·LOOO when the actual mean is less than 1,000 is less for the 
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region of acceptance running from 967.1 upward than for any 
other region that irivolves the same risk of rejecting the given 
hypothesis when- it is true (i.e. J for any other .05 regio~). In 
each of the three diagrams the proportion of the area under the 
curve crosshatched indicates the probability of accepting the 

Q80 

I. When region of 
acceptance runs 
from 967.1 upward 

IL When region of 
acceptance runs 
from 1032.9downwClrd 

1032.9 X 
(T 

TIL When region of 
accephmce runs 
from 960.8 to 1039.2 

1039.2 x 
(f 

FIG. 45.-Risk of accepting hypothesis that population mean is 1,000 when 
actually it equals 980. 

hypothesis that the mean is 1,000, when.in fact it is 980, that is" 
the probability of accepting a hypothesis when it is not true. 
Part I of the figure shows the probability of a sample mean 
falling above 967.1, part II shows the probability of its falling 
below 1,032.9, and part III· the probability of its falling between 
960.8 and 1,039.2. These probabilities are the risks of accepting 
the hypothesis of a mea~ of 1,000 when the true mean is 980 
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and when the region of acceptance for testing the given hypoth
esis ru:tls from (I) 967.1 upwlt'rd, (II) 1,032.9 downward, and 
(III) from 960.8 to 1,039.2. 

It is clear that this risk is least for the first of these three 
regions, as shown by the fact that the crosshatched portion of 
the area under the curve is less in the first diagram of fig. 45. 
Further study of ihis kind shows that, whenever the mean of the 
population is less than 1,000, region I will always give a lower 
risk of accepting the hypothesis of 1,000 than any other region 

FIG. 46.-Sampling distribution of the mean of a sample when the mean of 
the population is 1,000 and the standard deviation of the population is 100. 
Region of rejection, .025 points at each end, when N = 5 compared to when 
N = 100. 

of acceptance for which the risk of falsely rejecting the hypoth
esis is .05. For the problem i.1Iustrated, therefore, it is the best 
region of acceptance that may be employed; since the manu
facturer wants to minimize the risk of -accepting the hypothesis 
that the mean is 1,000 when in fact it is less. 1 In other instances, 
one of the other regions might be preferred. 

Effect of the Size of lhe Sample. In testing hypotheses the 
size of the sample is of prime importance; for, theJarger the 
sample, the narrower the sampling distribution, i.e., the smaller 
the standard error, of the statistic used to test a hypothesis. 
The standard error of the meag, for example, is equal to the 
standard deviation of the population, divided by the square root 
of the size of the sample. Hence the standard -error of the mean 
varies inversely with the square root of the size of the sample. 2 

1 Of course, if the risk of rejecting the hypothesis were increased, the risk 
of falsely accepting the hypothesis could be reduced. 

2 See Chaps. XIII, XIV. 
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From this inverse relationship between the spread of the 
sampling distribution and the size of the sample it £ollo1"s that, 
the larger the sample, the closer the finite limits, of the region 
of acceptance to the central tendency of the sampling distribu
tion of that statistic, assuming, of course, a constant coefficient 
of risk. This increases the likelihood of rejecting a hypothesis 
that is not true. In other words, the larger the sample, the 
bloser the value of a sample statistic must be to its expected aver
age value if a given hypothesis is to be accepted. This is illus
trated by Figs. 46 and 47, which contrast the regions of rejection 
and acceptance with samples of 25 and 100, respectively. 

x 
(j 

FIG. 47.-Sampling distribution of the mean of a sample when the mean of the 
population is 1,000 and the standard deviation of the population is 1VO. Region 
of acceptance, .05 point at the lower end, when N = 5 compared to when 
N = 100. 

Still more important is the effect of the relationship between 
the size of the sample and the standard error of the sample 
statistic upon the risk of accepting a hypothesis that is not true. 
Since the sampling distribution becomes narrower as the size 
of the sample increases, the larger the sample, the less the 
probability that a given hypothesis will be accepted when it is 
not true. This i~ illustrated in Figs. 48a and 48b. It is prin
cipally for this reason that greater confidence'is put in a test 
making use of a large sample than in a test employing a small 
sample. In Figs. 48a and 48b, the prob.abiIit,ies of samples... 
occurring in the' regions, of acceptance are represented by the 
crosshatched portions -of the sampling distributions about the 
true mean in each case. 

Effect of the Statistic Selected. As pointed out above, the 
procedure for testi:(lg a given hypothesis may be varied by taking 
different sample statistics. A hypothesis regarding the mean 
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of a normal population, for example, may be te~ted by using 
either the mean or the median of the sample. The former has 
the advantage, however, of having a sampling distribution that , 

x 
(i 

Fro. 48a.-Standard deviation of the population known to be 100; if the 
hypothesis is that the mean of the population is 1,000, the range of values down
ward from 967.1 will be a .05 region of rejection for testing this hypothesis with 
reference to a sample ,of 25. The range of values upward from 967.1 will be 
the corresponding region of acceptance. This figure shows the probability of a 
sample falling in this region of acceptance when the true mean is 980 and not 
1,000. 

Mecm 
=980 

N'400 

1000 x 
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FIG. 48b.-Standard deviation of _the population known to be 100; if the 
hypothesis is that the mean of the population is 1,000, the range of values down
ward from 983.5 will be a .05 region of rejection for testing this hypothesis~ith 
reference to a sample of 100. The range of values 'upward from 983.5 will be 
the corresponding region of acceptance. This figure shows the probability of a. 
sample falling in this region of acceptance when the true mean is 980 and not 
1.000. 

is narrower than that 'of the median. In other words, the 
standard error of the mean .is less than the standard error of 
the median. l The use of the mean in preference t6 the median, 
therefore, is the 'equivalent of employing a larger sample; or, 
to put it another way, as good a test can be made with the,mean 

'1 This result may be reversed for other than normal universes. 
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of a smaller s~mple as with the median of a larger sample. The 
former is accordingly the better statistic to employ for the test. 

Estimation of Population Parameters. Often the statistician 
is interested in more than the testing of a single hypothesis.' 
In some ca~es, no particular hypothesis is suggested by the 
problem. Even if -it is, the statistician may wish to know, not 
only whether a particular hypothesis is acceptable on the basis 
of the sample return, but also what hypotheses in general are 
acceptable and what are not. More exactly, he may wish to 
draw a boundary line for which it can be said that the chances 
are, say, 95 out of 100; that this- boundary includes the true 
population. In addition, he may want to select a single hypoth
esis as the best hypothesis to be adopted. The theory of estima-. 
tion seeks an answer to these questi01?-s. 

Specification of a Population: A population is precisely speci
fied when its functional form is given together with the values 
of its parameters. A normal population, for example, is pre
cisely specified when the fact of its normality is given, together 
with the values of its mean and standard deviation. In many 
cases, however, a population will be reasona~ well determined 
if its more important parameters are given, such as its mean, 
standard deviation, ~h and ~2. For in this case ~ Pearsonian 
curve or a Gram-Charlier curve can be derived from which the 
probabilities of the 'population can be approximately computed. 
Thus, if .the form of a population is known, estjmates of its 
parameters will exactly specify it; if the form is not known, esti
mates of .its parameters will at least ap_prQximately determine 
the population. Hence, estimates of a population become largely 
estimates of its parameters} 

In the ensuing discussion it is assumed that the form of the 
population is known a priori. This will make for greater 

-simplicity and precision in the analysis and will facilitate the 
presentation of the argument. It will not affect any of the 
general conclusions of this chapter. 

Confidence Intervals. A principal consideration in the theory 
of estimation is to determine confidence intervals for a popula
tion parameter. A confidence interval for a given parameter is 

1 In many instances, knowledge of a particular parameter or set of param
eters is all" that is desired, so that full knowledge of the population is not 
required. 
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a range of values that, on the basis of a given sample, has a 
specified probability of including the trUE~ value. The probability 
associated with any confidence interval is called the" confidence 
coefficient" for .the interval. 

The procedure by which such a confidence interval for a given, 
parameter may be obtained will now be traced step by stepr 

1. Assume at the start that the form of the population is 
known a priori. For, simplicity, also assume that the population 

S 

FIG. 49.-A given sample in a region of acceptance. 

s 
FIG. 50.-A given sample in a region of rejection. 

is characterized by the value of a single parameter, 'which may 
,be designated as 6. 

2. Let some sample statistic 8 be chosen for the purpose of 
estimating the value of 6. What statistic is chosen is immaterial 
) 

to the present argument. ' 
3. From knowledge of the population, derive by use of the 

probability calculus the sampling distribution of 8 for samples 
of the giveIf size. This will give :'the relative frequencies with 
which sample 8'S may be .expected to have different values, 
since the sampling distribution, of. 8 is derived from the original 
population, the precise nature of the distribution will depend 

,on the value of the parameter 6. The way in whi~h a sampling 
distribution might vary with variations in a parameter 6 is 
suggested in Figs. 49 to 52. 
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4. Let the confidence coefficient for the given interval be set 
at .95. This means that the interval to be determined should 
have a probability of .95 of covering the true value of 6. 

5. Calculate the value of s for the sample actually obtained. 
Then determine the value of the parameter 6 that will cause the 
upper .025 point of the sampling distribution of s (as noted in 
item 3, this distribution varies with the value assigned to 6) to 
coincide with the computed sample value of s. Such a value of 

s 
FIG. 51.-Lower confidence limit. 

-Given oOlmple oS S 
FIG. 52.-Upper confidence.limit. 

6 is pictured in Fig. 51. Call this value of 6 "6 lower," and 
designate it by D. Next select a value of 6 that will calise the lower , 
.025 point of the sampling distribution of 8's to coincide with the 
computed sample value of s. A value of 6 that will give this 
result is pictured in Fig. 52. Call this "6 upper," and designate 
it 8. The interval D-8 is the desired confidence interval. For 
if the foregoing procedure is always followed in setting up con
fidence intervals, the true value of 6 will fail to be covered only 
in those instances in which the sample value of s falls in the upper 
or lower .025 tail of the true sampling distribution of si and this 
will occur on the average only 5 times out of 100. Hence, on 
the average, the confidence interva:l 0-8 will cover the true 
value of 6 95 times out of 100. The values 0 and 0 are called 
the "lower" and "upper confidence limits" of 6. 
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In conclusion, it may be noted that there are three arbitrary 
elements in the procedure for the determination of confidE,mce 
intervals, just as there were three arbitrary elements in the 
procedure for testing a hypothesis. One is the choice of the 
sample statistic s to be used; the s~cond is the selection of the con
fidence coefficient; ·and the third is the selection of the ~oints 
of the sampling di~tribution of s that are to coincide with the 
sample value. 

Since the sampling distributions o( some statistics are narrower 
tlian others, for the same confidence coefficient a smaller con
fidence interval can be obtained in some cases than in others.1 
Some statistics thus provide more accurate estimates of popula-
tion value's than others. '- , 

Confidence intervals can be made smaller, 2 if the confidence 
coefficient is ,smaller. Thus, in a given instance one may be 
able to say that the chances are 80 out of 100 that the interval 
50-70 includes the true value; or he might be able to say that the 
chances are 95 'out of 100 tha~ the interval 30-90 includes the 
true value. If the investigator is willing to run'greater chances 
of being wrong, he may thus reduce the size of the interval that 
is said to include the true value. In matters involving life and 
death a very high confidence coefficient should be adopted. In 
testing to discover the effect of an advertising campaign, on the 
other hand, a much smaller coe1ficient might be used. 

The third arbitrary element in the determination of confidence 
intervals is the selection of the points of the sampling distribution 
of s to serve as the points of coincidence with the sample value 
of s. In the analysis above, the upper and lower .025 points 
were chosen. For a confidence coefficient of .95 any other set of 
points that included 95 per cent of the sample values of s could 
have been used, such, for example, as the lower .01 point and 
,the upper .04 point, or the lower .03 point and the upper .02 
point. If an upper or lower limit only is desired for a confidence 
interval, the lower or upper .05 point of the distribution of 8 can 
be used. The particular points that are chosen in any case will 
depend on the problem in hand. Normally in estimating a 

1 Or if, as noted on pp. 177-178, a confidence interval has only one finite 
bound, this finite bound will be closer to the sample value. 

2 Or the finite bound of an interval that has one infinite bound can be 
brought closer to the sample value. 
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both an uppf:lr and lower bound will be desired. In some 
instl,tnc~s, however, the statistician may not care if he overesti
mates a certain figure, but he may wish especially not to under
estimate it. In other instances, he may wish particularly to 
avoid overestimation. 

The whole process of determining confidence intervals may be 
illustrated by reference to the previously used electric-light bulb 
problem. S:uppose that a sample batch of 25 bulbs has a mean 
length of life of 965 kilowatt-hours, and suppose that the manu
facturer desires to determine limits for the true mean length of 
life that have a probability of .95 of covering this true value. 
To simplify the analysis, suppose ·that the standard deviation in 
length of life of the bulbs is known to be 100. kilowatt-hours and 
that only the mean is unknown. 1 

To determine confidence limits for the mean of the population 
given a sample mean of 965 kilowatt-hours, the procedure is as 
follows: First identify the mean of the population 'as the unknown 
parameter a, and let the statistic 8, which will be used to estimate 
a, be the mean· of the sample. Next note that the sampling dis
tribution of the means of random samples fr_91U a normal popula
tion can be shown by the probability calculus to be a normal 
distribution with a mean equal to the mean of 1jhe population 
and a stil.ndard deviation equal to the standar<;l deviation of the 
population divided by the square root of N, the size of the sample. 
In the problem in hand, therefore, the standard deviation of the 
sampling distribution of 8 will ,have a standard deviation of 
100/V25 = 20 and a mean of which the value will be unknown 
but which will equal 6. 

As the third step in the analysis, note that the value of the 
mean of the population that will cause the upper .025 point 9f 
the sampling distribution of 8 to coincide with the given sample 
value of 8 IS 925.8. For the upper .025 point of the sampling 
distribution of the mean lies at just 1.96 times d above the mel1n 
of the population, i.e., at 1.96 times 20 = 39.2 above themean of 
the population. If this is to coincide with the given sample 
mean of 965, then the population mean must have the value 
965 - 39.2 = 925.8. The value 925.8 will thus be taken as 
the lower confidence limit for the mean of the population. 

1 Knowledge of the standard deviation might be obtained from technical 
considerations. 
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Similarly, note that the value of the mean of the population that 
will cause the lower .025 point of the sampling distribution of 
sample means to coincide with 965 is 965 + 39.2 = 1,004.2. 
The value 1,004.2 may thus be taken as the upper confidence 
limit for the mean of the population. The whole confidence 
interval will thus be Q25.8 ;__ 1,004.2, and it may be said tha1f'the 
chances are 95 out of 100 that this interval includes the true 
population mean. 

If the statistician wished to make an especially conservative 
report to the .manufacturer about the new process, he might 
choose a confidence interyal that has only an upper bound (but 
still a confidence coefficient of .95). This upper bound would 
be determined by finding the value of the mean of the population 
that caused the given sample value to fall at the lower .05 point 
of the sampling distribution of the mean. For the problem 
illustrated, this upper bound' would be' given by 965 + 1.645 
times 20 = 997.9 (for the .05 point of a normal distribution 
comes at 1.645 times (f from the'mean). The statistician would 
in this instance report to the manu.facturer that there is a chance 
of 95 out of 100 that the range of values up to 997.9 includes the 
true value, or, to put it another way, that there is only a chance 
of 5 out of .100 that the range of values above 997.9 includes the 
true value. 

Effect of Size of Sample. For confidence intervals making use 
of the same statistic, the same confidence coefficient, and the 
same type of interval, the larger the sample the smaller the con
fidence interval, or, in the case of an interval having only an 
upper or lower bound, the closer the bound to the sample value. 
That is, a larger sample is always a better means of estimating 
the character of a population than a smaller sample. Of course, 
large samples may be more costly to procure than small ones, 
and their greater accuracy may not be worth ,the additional 
expense. In 'all cases, however, improvement in estimates to be 
obtained from larger samples shoulct'be given consideration, for 
the gain from increased size may far overbalance the higher cost. 

Maximum-likelihood Estimates of Population Parameters. 
Sometimes a problem requires something further than setting 
up a range of values that probably includes the true value of a 
population parameter. It may be desirable to have a single 
figure that can be considered the "best," or "optimum," estimate 
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that can be made of the population parameter from a given 
sample. 

It should be noted at the start that various methods may be 
employed to estimate population parameters, and it is doubtful 
if any single method is the best for ali circumstances. There 
is one method; however, the method of maximum likelihood, that 
has been received with considerable favor, and it is this method 
that will be described here. 

The method of maximum likelihood reasons entirely from the 
s~mple to the population. It consists in estima~ing the values 
of the population parameters so that the probability of the given 
s.ample among all possible samples of the same sfze is a maximum. 
It will be noted that, if the values of the population parameters 
are given, a particular set of sample values will have a definite 
probability. As the parameter values are changed, the prob
ability of the given sample values also changes. According to 
the method of maximum likelihood, the "best estimates" that 
can be made of unknown population parameters, given a par
ticular sample, are those values of the parameters which, if they 
were the true values, would make the probability of the given 
sample a maximum. ' 

Mathematically the method of maximum ,ikeliho,od may be 
described as follows: Suppose th!lot for giv~n values of the popu
lation parameters 0, 0', 0", . . . , the probaoility of a sample 
consisting of Xl, X 2, ••• , X" is given by the probability dis
tribution F(Xl, X 2, ••• ,X .. , 0, 0', 0", ... ). Then for given 
values of Xl, X 2, ••• , X", that is, for a given sample, the 
best estimates that can be made of (I, (I', 0", ... are those values 
that maximize the logarithms of the function F. The logarithm 
of F, instead of F itself, is maximized because the mathematical 
analysis is easier. The results are the same, however, for F is a 
maximum when log F is a maximum. If the form of F is known, 
these maximizing values can be found by the use of the differential 
calculus. Thus the optimum estimates of 0, 0', and (I", •.. 

must satisfy the conditions 

a log F = 0 
ao 

a log F = 0 
ao' 

a log F = 0 
. ao" 

These give as many equations as there are parameters, and their 
common solution affords the desired. estimates. 
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It will be noted that the values of the population parameters 
that are found by the method of maximum likelihood are values. 
that depend on the given sample values. In other words, the 
estimate of each population parameter is expressed as a certain 
"function" of the sample values. These functions of the sample 
values constitute "statistics," for that is what a statisti<l is, a 
function of the observed sample values. Usually it is found 
that the maximu~-likelihood estimate of a given population 
parameter is the sample counterpart of the parameter itself. 
If the population is normal, for example, the mean and stand
ard deviation of the sample are the maximum-likelihood esti
mates, respectively, of ' the mean and standard deviation of the 
population. 

Sometimes it is desired to estimate a population .parameter 
in a way that will be independent of the estimates of other 
parameters. Such an independent estimate of a population 
parameter may be made unoer either of two conditions. If it 
turns out that in making the maximum-likelihood estimates one of 
the partial derivatives gives an,equation containing only a single 
parameter, then this parameter may be estimated immediately 
without troubling with the estimates of the other parameters. 

The second condition permitting an independent estimate of a 
population parameter may be described as follows: Sometimes 
it happens that the function F-giving the probability of a given 
sample can be broken up into the product of two factors, one of 
which depends on the sample values and on a single population 
parameter. If this is true, the value of that parameter can be 
estimated independently of the other parameters by choosing 
the value that maximizes this part of the total probability. For 
example, it so happens'that the probability of a sample from a 
normal population can be factored into a part that depends only 
on the sample values and on the standard devi~tion of the popu
lation. The other part depends on the sample values and on 
both the mean and the standard "deviation of the population. 
By taking as an estimate of d the value that maximizes the first 
factor, there will be obtained a m.aximum-likelihood estimate of 
the population standard deviation that is independent of the 
population mean. When the mathematics of this is actually 
carried out,l it is' found that this independent estimate of the 

1 See pp. 290-294. 
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population standard devia1{ion is 

if = ~(X. - XV 
- N-1 

In other words, the ~'aximum-likelihood estimate of the standard 
deviation of a normal population that is independent of the 
population mean is given by the standard deviation of th~ sample 

nnilttpliedby ~ N ~ 1" When the mean and standard.deviation 

are estimated jointly, the maximum-likelihood estimate of the 
standard deviation of; th~ population is the standard deviation 

of the sample. The factor ~N ~ 1 that occurs in the inde

pcndent estimate may thus be viewed as a correction factor that 
makes allowance for neglect of the estimate of th~ population 
mean. 

Maximum-likelihood Statistics as "Optimum" Statistics. 
Statistics derived by the method of maximum likelihood are 
deemed to be "optimum statistics" in certain senses. l First 
these statistics are said to be "consistent:" By this iUs meant 
that as the size of the sample is increased the

l 
sample statistic 

approaches closer and closer to the population parameter it is 
used to estimate. A more precise ~tatement is that the sampling 
distribution of the given statistic becomes more and more con
centrated around the value of the population paTameter and the 
probability of any given finite deviation from the population 
value becomes less and less. Such an approach of the sample 
value to the population value as the size of the sample is increased 
is spoken of as "stochastic convergence." A maximum likeli
hood estimate is thus a consistent statistic in that,it approaches 
the population value stochastically. 

Maximum-likelihood estimates are also optimum statistics 
in that they are "efficient." By this it is meant that in the 
limit as the size of the sample is indefinitely increased there is no 
other statistic that has a slJ,laller sampling variance. For a 
finite sample some other statistic used to estimate the same 

I: See FISHER, R. A., "On -the Mathematical Foundations of Theoretical 
Statistics," Phil080phical Tran8actions of the Royal Society of London, Series 
A, Vol. 222 (1922), pp. 309--368. 
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population parameter may have a somewhat smaller sampliI;lg 
variance, but as the size of the sample is increased the sampling 
variance of the maximum-likelihood statistic will tend to become 
at least as small as that of the other statistic. Maximum-likeli
hood statistics are thus said to have sampling variances that are 
a minimum asympt@tically. 

A third optimum characteristic of maximum-likelihood esti
mates is their" sufficiency." This characteristic ensures that, 
when a "maximum-likelihood estimate has been made of a popu
lation parameter, 'no further in.formation about that parameter 
can be obtained from any statistic that is independent of (i.e., 
not functionally related to) the maximum-likelihood statistic. 
Again this characteristic is obtained only in the limit as the size 
of the sample is indefinitely increased. 

Maximum-likelihood statistics· are thus optimum statistics 
in three ways. They are consistent, efficient, and sufficient. 

STRATIFIED, OR REPRESENTATIVE, RANDOM SAMPLING 

Often sampling fluctuations can be greatly reduced by. use 
of partial or supplementary knowledge about a popul~tion instead 
of relying entirely upon the sampling process itself. Suppose, 
for example, that it is known that with respect to the division 
of public opinion on a given question religious preference was 
an importance influencing factor. And suppose further that 
ce'nsus data artl av~ilable giving the number of people in the 
given community belonging to each religious category. If 
reliance was placed upon random sampling only to give a repre:
sentat~ve sample of public opinion, then it would be hoped that 
the sample was representative regarding the proportion of various 
religious adherents in each category as well as of the division 
of public opinion within ·each. When knowledge of the relative 
number of people in each religious category is available, however, 
then there is no need to rely upon s'ampling for it. In this case, 
the sampling can be so devised that the number of people sampled 
in each group is proportional to the number of people in each 
group in the whole population. The randomness of the sampling 
will in this instance be restricted to the selection of the individuals 
within each religious category. This is known as "stratified" 
or "representative" random sampling. It is especially imp or-
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tant in public-opinion analysis, index-number construction,l and 
the like. 

The significance of stratified, or representative, random sam
pling is that it reduces sampling errors. It makes use of knowl
edge of correlation between the variable which is being studied 
and one or more other variables which are correlated with this 
variable and about which information is available. By using 
this correlation it diminishes the extent of the chance fluctuations. 2 

PURPOSIVE SAMPLING 

Some sampling methods do not employ the random technique 
but select their samples to conform to chosen criteria. This is 
spoken of as "purposive sampling." For example, suppose a 
given research bureau is in search of some particular knowledge 
regarding the urban population of the United States. To get 
this they may go over carefully all the cities in the ·country 
and select a city that is "typical," say, as to size, as to proportion 
of heavy and light industries in the city, as to percentage of 
foreign born, etc. This city then will be taken as a typical sample 
of American cities, and the data it reveals on, the problem in ques
tion will be considered as typical of Amefican urban population. 

Purposive sampling is also used in combiningl census data in 
various ways, in order to save the time and money that would 
be required by use of the complete data. In the Danish census 
of 1923, for example, it was decided to pick a representative 
sample that was to be about 20 per cent of 'the whole country 
and also 20 per cent of the total in each of the country's 22 
Q_ounties. 3 The procedure for securing this sample was as 
follows: 

For each of the 1,300 parishes in the country, the number of 
cows per 100 hectares of farm area was computed and the paris4es 
in each county were grouped according' to the magnitude of this 
ratio, five groups being distinguished in each county. From 
each of these groups the parish was selected whose agricultural 

1 See SMITH and DUNCAN, op. cit., Chap. XIX. 
2 it will be recalled that the variation ~round a line of regression, i.e., 

the scatter, or second-order variance, is always less than the total variation 
in the dependent variable. 

S See JENSEN, ADOLPH, "The Repre'sentative Method in Practice," 
Bulletin de l'Institut international de statistique, tome 22 (1926), l"re livraison, 
pp. 420-421. 
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area most nearly amounted to one-fifth the total agricultural 
area of the group. In some cases, two or more parishes were 
combined or a single parish divided in order to get this 20 per cent 
sample. Next the parishes so selected were drawn on a map to 
see if the various parts of the country were about equally well 
represented. When.this was not the case, certain parishes .with 
approximately the sfLine number of cows per hectare as parishes 
included in the sample. were substituted for the latter so as to 
improve the geographical distribution. Finally this preliminary 
sample was tested with\regard to special factors such as the num
ber of farms, total agricultural area, grain area, number, of milch 
cows, number of pigs, etc., to see whether the sample represented 
with respect to these factors approximately one-fifth the whole 
country. Where there were marked divergencies in this respect, 
adjustments were made to make the sample approximately 20 
per cent of the whole for these auxiliary items without at the 
same time disturbing the area relationship or the geographical 
representation. 

Purposive sampling of this kind is hard to appraise. The 
argument is that if a sample is representative in certain respects 
it will be representative in other respects, but this need not be a 
necessary consequence. Samples of this kind depend largely 
on the judgment of those making them and-are worth just about 
as much.1 

1 C/. remarks on p. 154. 



CHAPTER IX 

SAMPLING FROM A DISCRETE TWOFOLD POPULATION 

Sampling frQ~ a, discrete population in which all the elements 
fall into one 6; the other of two categories is one-of the simplest 
sampling problems. This type of problem is illustrated 'when 
public opinion is being investigated, when a manufacturer is 
testing the quality of a, given production process, or when a 
sociologist is determining the ratio of male to female births. 

Sampling from a discrete twofold population affords an oppor
tunity to study in a more detailed yet relatively simple way 
most of the aspec,ts of sampling theory sketched in the previous 
chapter. The following discussion consequently offers an easy 
approach to the general principles of sampling, and the reader is 
urged to master it completely. The arguments, for the most 
part, will follow the essential steps that were outlined in the 
preceding chapter. Chapter XIII generalizes the argument for 
a manifold population, I . 

THE PROBLEM AND INITIAL ASSUMPTION 

To avoid excessive abstraction the argument will be expounded 
with reference to a concrete example. Suppose that a manu
facturer has produced an order of machine parts numbering 
several hundred thousand pieces. According to the standards 
of the trade an order of this kind is not acceptable if more than 
10 per cent of the parts are defective, Routine inspection of 
each part is costly, however, and the only feasible method of 
testing the lot is to take a sample. The problem then arises 
as to what inferences can be made about the percentage of defec
tives in the whole lot from the determination of the percentage 
of defectives in the sample. 

If the sample yields 11 ,per cent defectives, is it a reasonable 
hypothesis that the percentage of defectives in the whole Jot 
is only 10 per cent? What are the limits within which the 
percentage of defectives in the whole lot may be reasonably con
sidered to lie? What is the best estimate that can be made of 

186 
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the percentage of defectives in the whole lot? It is with these 
questions that the following analysis is concerne? 

Assumptions. In selecting the size of the sample to be tested 
the manufacturer is pulled in opposing directions. The larger 
the sample tested, the greater the expense to the manufacturer. 
He will seek, therefore, to test as small a sample as is pmcticable. 
On the other hand, in choosing a small sample he increases the 
risk of having tl?-e whole lot rejected when in fact it may be 
above standard. 1 

In the ensuing argUment it will be· assumed that the sample 
selected is small rela;_tive to the size of the population, although 
it may be large absolutely. More precisely, it will be assumed 
that the withdrawal of the sample parts does not materially 
change the· percentage Df defective and nondefective parts in 
the whole lot. Suppose, for example, that the initial lot con
sists of 500,000 parts and that a sample of 2,500 is taken. If 
lO"per cent of the whole lot were defective and 40 per cent of the 
sample were defective (an extremely unlikely result), the per
centage of defectives in the whole lot after the" entin~ sample had 
been taken would still be 9.85, which differs but little from 10 
per cent. In what follows it will be assumed that, as the sample 
is drawn, the percentage of defectives in the whole lot remains 
unchanged. This will greatly simplify the analysis. 2 

It will further be assumed that the process of sampling is a 
random one, as described in the previous chapter. The full 
implication of this will be understood only- as the analysis pro
ceeds. For 'the moment it may be noted that with randomness 
the results of repeated sampling should be predictable by mathe
matical probabilities calculated from some appropriate mathe
matical model. 

DISTRIBUTION OF SAMPLE PERCENTAGES 

In the problem in hand the population of parts is divided into 
groups, defective parts and non!lefective parts; it is therefore a 
twofold population. The problem is to make inferences regard
ing the percentage of defective parts in the population from a 
sample set of data. The only sample statistic that is appropriate 

1 See pp. 171-172, 
2 For a discussion of the complications that arise when this assumption 

cannot be made, see pp. 209-211. 
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for making inferences about the population percentage is the 
percentage of defective parts in the sample. For subsequent 
analysis, therefore, it will be necessary to have the distribution 
of sample percentages from a twofold population, i.e., a formula 
giving the probabilities of sample percentages taking on various 
values in repeated random sampling from a given twofold popu
lation. The derivation of this sampling distribution is the next 
task. 

Derivation of the Sampling Distribution. To derive a sam
pling distribution it is necessary to find a mathematical mOdel 
that'symbolizes the conditions of sampling and to use this model 
for the calculation of the desired probabilities. In drawing up 
the model, therefore, the first step is to note carefully the con
ditions of sampling. In the present problem these may be 
described as follows: 

Cond~'tions of Sampling. Prior to the withdrawal of any 
sample'let the percentage of defective parts in the whole.popula
tion be PI, and let the percentage of nondefective parts be P2. 
After the withdrawal of the first member of a sample, the per
centages of defective and nondefective parts remaining in the 
population will not, if the population is fi~ite, be exactly PI and 
P2. It is .one of the fundamental aSffilmptions pf the problem, 
however, that the changes in PI and P2 will be so slight that they 
may be ignored. Hence the percentages of defective and non
defective P!1rts in the population when the second member of 
the population is to be drawn will still be practically PI and P2. 
The same reasoning may be applied'to subsequent withdrawals, 
so that on each draw the percentages of defective and nondefec
tive parts in the population will be for all practicai purposes 
PI and P2. The withdrawal of a sample of N cases from the 
given population without replacement will therefore be considered 
to give practically the same results as withdrawals-with replace
ment. The following analysis will assume, then, that a sample 
item is replaced before the next item is drawn. 

The immediate problem is a study of what will happen under 
repeated sampling. If the sampling process is random, each 
member of the population will have an equal chance of being 
drawn on every occasion. This means that as a large number of 
samples are drawn, with replacements, every member of a popu
lation will presumably be drawn sometime or -other with every 
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member of every other population and in the long run no par
ticular combination of members will appear any more frequently 
than any other combination. I 

The Mathematical, Model. These conditions of sampling sug
gest that the sampling distribution of percentages may be 
derived from the £ollowing model; Suppose there are ten"packs 
of cards in each of which PI per cent are black cards and P2 per 
cent are white card!>. All possible combinations of N cards each 
are formed by combining without restriction each card of each 
pack with every card\of every other pack. Since the probability 
(relative frequency) of a black card in each of the 10 packs from 
which the various cards are selected is PI and the probability 
of a white card is P2, and since the combination of cards is without 
restriction so that the selection of a black or white card from 
any pack does not affect the probabilities. in other packs, then, 
according to the multiplication theorem, the probability of a 
combination in which, for example, the first 4 cards are black 
and the' last 6 are white is pip~. But the same would be true 
for any combination having 4 black cards and 6 white cards. 

10·9·8·7 
Since there are Clo = 1.2. 3 . 4 = 210 ways of picking 10 

cards so that 4 of them will be black, there will be 210 such 
combinations. The probability of a combination having 40 per 
cent black cards and 60 per cent ;white will therefore be 210 
pip~. In general, for N packs, the probability of a combination 

having ~I per cent black cards and N ~ NI per cent white cards 

will be 
N' 

The model: C~,pflpr-Nl = NI1(lf ~ NI)lPf1pr-Nl 

If this mathematical model is correct, the equation Just given 

will yield the probabilities of sa~ples having ~I per cent defec

N -Nl 
tive parts and N nondefective parts in the whole set of 

1 It should be carefully noted here that the members are identified as 
individuals so that a particular combination means a particular combination 
of members. Thus a combination of three members in which the first two 
were defective and the last nondefective would not be the same combination 
in which the first was defective and the last two nondefective. 
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samples of N each that might be dra\\.:n at randopl'(with replace
ments} from a population containing PI per 'Cent defective and P2 
per cent nondefective parts. For, as'noted a,bove, if the process 
of' sampling is random and each sample item is :replaced before 
the next is drawn, it is reasonable'to suppose that every particular 
combination of parts will appear as frequently as every other 
particular combination of parts so that the probability of samples 

" .. -NI N - NI ' 
having N per cent defective and N nondefective parts 

will tend to be the same as the probability of combinations of 

c~rds having ~I per cent black and N N N I per cent white cards 

among the set of all possible combinations of cards that might,be 
made of one card from each of N different packs, each pack con
taining PI per cent black and P2 per cent white cards. Although 
this model is derived for sampling with replacements, it also gives 
approximate results" as noted above, for sampling without 
replacements. l 

If the percentage of defective parts in the sample ~I' is chosen 

as the' sample statistic, the sampling distri15jltion of this statistic 
will therefore be ' 

p NI _ N! N N-N' 

(N) - NI!(N _ N I)!PI'P2 ' ,(I) 

';L'his will be recognized as the general e,quation for a binomial 
distribution. 2 Hence it follows that the sampling distribution 
of a percentage has3 a mean equal to PI, a standard deviation 

I t HIP 2 R (P2 - Pl)2 'd 'R 3 + 1 - 6PIP2 equa 0 --, a \:,1, = ,an a \:,2 = . 
N NpIP2 Np1P2 

Factors Affecting the Distribution. Effect of Size of the Sample. 
The foregoing equations show that the character of the sampling 

1 See p. 188. 
2 See p: 43. 

Nl ' --
s Cj, p. 45. Since the attribute is taken as N instead of Nil as III 

'the ,previous discussion of the binomial distribution, the mean of ~l is 

Npl ,"'" , Nt ~ INpIP2 ~ IPlll2' S' N = PI and the sta,ndard deVIation of N is "J'N2- = ''IN' mce 

~I and ~2 are coefficients their values are unaffected by this change in units. 
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distribution of a sample percentage from a twofold population 
is dependent on the size of the sample N. With a small value of 
N, the distribution of ptobaoilities may be very skewed, espe
cially if PI is markedly different from P2, and the standard devia
tion will be large. With a large value of N, the distribution will 
be more symmetrical (~l approaches 0 as N increasest and the 
standard deviation will, be small. If large samples are taken, 
therefore, the probabilities of samples in which the percentage 
of a selected attribute deviates slightly from the population per
centages will be moie or less symmetrically distributed about 
the population percentage as a central value and the probabilities 
of samples in which the percentage deviates by' a large amount 
from the population percentage will be very small. That is, 
the larger 'a sample, the smaller the probability of its differing 
greatly from the population., 

A further consequen.ce of ,increasing the size of the sample N 
is that the distribution ,of probabilities tends to approach the 
normal curve whose 'mean and stahd!ud deviation is the same 
as that of the binomial dist~ib:ution.l' Hence, in large samples, 
the probabilities of various types of'samples can, be computed 
from a normal probability table. 2 This is an especially important 
conclusion for the practical application of the mathematical 
model to the problem. 

Effect of the Population Parameter Pl. The sampling distribu
tion described by Eq. (1) gives the probabilities of various types 
of samples on the assumption that the percentaga of defective 
parts in the whole population is Pl. As the value of PI is varied, 
the character of the sampling distribution will be changed. For 
the subsequent discussion it is important to note the nature of 
~hese changes. 

For samples of size 10 (this small size is taken temporarily for 
purposes of exposition), Fig. 53 and'Table 23 show how the dis~ 

1 Cf. pp. 46-47. '" 
2 Actually the, ordinates of the binomial distribution are approached by 

those of the normal curve (see Appendix to Chap. IV, pp. 68-74). If, 
however, the probability of a given value of Nr/N is represented, not by the 
height of a line or bar, but by the 'area 'of a rectangle whose base is II and 

~hose height is P. (~,) / II, then as N is increased (and hence <I, w)J.ich equals 

VPIP2/N, is decreased) the rectangles become thinner and thinner and their 
area tends to be approximated .by that of the standard normal curv'e'. 
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tribution of a sample percentage changes as the value of PI is 
varied from 0 to 1 by intervals of .05. It will be noted that from 
PI = 0 to PI = .5 the sampling 'distribution changes from a 
positively skewed distribution to a symmetrical one, and then 
from PI = .5 to PI = 1 it changes to a negatively skewed dis
tribution. The reader should here center his attention on the 
character of the rows of Table 23 or on the left-right variation 

PI 
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FIG. 53.-The variation in the character of the distribution of a sample percentage 
with changes in the population parameter PI. 

of Fig. 53 as he proceeds from back to front. It will also be noted 
that for a given sample percentage NdN the probability of the 
sample rises as the population percentage PI approaches the 
point PI = N dN. That is, the probability of a given sample 
result is a maximum when PI = N liN. Here the reader should 
center his attention on the variation from row to row for a given 
column of Table 23 or from back to front for a given value of 
Nt/N in Fig. 53. 

If the population is very large, varia'tion in PI can be assumed 
to be practically continuous, that is, PI can be given any hypo
thetical value between 0 and 1. On the other hand, for samples 
of size lO, oply 11 values of NIIN are possiblei variation in this 
quantity. is therefore discrete. Accordingly, Fig. 53 consists 
essentially of a series of curves running from back to front and 
separated from left to right by intervals of.1. If sampling is 
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-made with a much linger sample, say a sample of 2,500, the 
variation in N I/N may also be considered to be practically con
tinuous. In that instance, Fig. 53 can be replaced by the smooth 
surface of Fig. 54. As pointed out in the previous section, 
except for the extreme ends where Pl is, very small, the left to 
right sections of this surface are practically normal curves. 

PI 
I.Or-_r_----."--7"-_r_~'__?"'-_T__r__r_~'-----_+------

FlO. 54.-The surface that approximates Fig. 53\when N is large. 

USES OF THE DISTRIBUTION OF THE SAMPLE PERCENTAGE FOR 
TESTING 'HYPOTHESES 

Up to this point the argument has been purely deductive. 
Given a certain population, it has been asked, how frequently 
will random sampling produce certain types of samples? The 
crucial part of the argument is the reverse of this: Given a certain 
sample, what inferences can he made about the; populati,on 
fro'!ll which it was obtained? It is this part _cUhe argument that 
will no'v be examined. : ~ 

The Hypothesis. With reference to the origiI).al illustratiop., 
suppose that the manufacturer of machine parts is particularly 

-interested in the hypothesis that the whole set or population of 
parts has just the standard lQ per cent of defectives. He takes a 
sample of 2,500 parts and finds that 11 per cent of the sample are 
defective. How does his' hypothesis fare in the light of this 
sample result? 
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Coefficient of Risk. The first step is to decide upon the coeffi
cient of -risk. The manufacturer recognizes, of course, that 
even if the number of'defective parts in the whole population is 
just 10 per cent h;e might by chance get a sample in which the 
percentage of defective parts is much greater or less than 10 per 
cent. There is always some risk that he will reject the 10 per 
cent hypothesis. when it is actually true. :fhe initial step, 
therefore, is to decide upon ho~ great a risk of this kind he is 
willing to run. Suppose he decides that on the average he does 

p 

FIG. 55.-A region of rejection for testing the hypothesis PI = .10. Coefficient 
of risk = .05. 

not want to reject the hypothesis when it is true more than 5 
times out of 100. He will then adopt·a coefficient of risk of .05. 

A .05 Reqion of Rejection., From the analysis of the previous 
section, the manufacturer knows that if he takes a sample of 
2,500 from a large population the probabilities of the -various 
possible.types of samples will be given approximately by a normal 
probability curve whose,mean is at the population percentage PI 
and w'hose standard deviation is ..jP1P2/N. From tills he knows 
that if the number of defectives in the whole population is 
actually 10 per cen.t (PI = .10), then. the probability of obtaining a 
sl'j.!llple in which the percentag~ of defectives is equal to or less 
than .10 - 1.96d,is .025 (see normal table in Appendix, Table.:vI)~ 
H~ .also knows th.at the probability of obtaining a sample in 

which· the· percentage 9f defectives is equal to or greater than 
)0 +1.96d is like1Vi~e".025. Hence; Mcording ,to the addition 
tIreorem, the pr9;bability. of a sample in which the' percentage 
of defectives ljes outside of the limits~lO + 1.96d and .10 - 1.96'd 
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is .025 + .025 = .05. Since d = ~~ = .006, the actual 

values of these limits are 8.82 per cent and 11.18 per cent (see 
Fig. 55). It follows, therefore, that the risk of rejecting the 
hypothesis when it is true will be just .05 if the manufacturer 
rejects it whenever a sample contains defective parts numbering 
less than 8.82 per cent or more than 11.18 per cent. For if the 
number of defectives in the whole population is exactly 10 per 
cent, samples will fall in these extreme regions (belQ"~r 8.82 per 

PJ 
FIG. 56.-An alternative region of rejection for testing'the h1pothesis p, = .10 

Coefficient of risk = .05. 

cent and above 11.18 per cent) only 5 per cent of the time, 
Hence, if the manufacturer follows this rule he will, on the 
average, reject the hypothtlsis when lt is true only 5 times out 
of 100, which is the degree of risk he is willing to undergo. 

Alternative Regions of Rejection. It will be noted, however, 
that the suggested region of rejection is not the only one that the 
manufacturer might adopt. He can follow the rule of rejecting 
the hypothesis whenev~r the sample percentage falls' above 
.10 + 1.645d, that is, above 10.99 per cent, and his risk of 
rejecting the hypothesis when, it is true will still be only .05; 
For, as will be noted from a table of the normal curve, the 
probability of a deviation from the mean of 1.645d or more is 

I 

just .05. The region beyond 10.99 per cent is therefore a.n 
alternative region of rejection with a coefficient of risk of .0!5. 
This is illustrated in Fig. 56. Still a third region with a coeffi
cient of risk of .05 is the region lying below .10 - 1.645d, that is, 
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below 9.11 per cent. For, owing to the symmetry of the normal 
curve, the probability of a negative deviation from the mean 
of 1.645d or more is 'also .05. This third alternative region of 
rejection is illustrated'in Fig. 57. Yet a four·th region with a 
coefficient of risk of .05 is the region lying below J-O - 2.327 d 

FIG. 57.-A third alternative re~ion of rejection for testing the hypothesis 
PI = .J O. Coefficient of risk = .05.' 

Region of 
r!l~~922..j 

Region of 
~~~c~~ 
I 

I M 
ItO.II05 N 

FIG. 5S.-A fourth .alternative region 'of rejection for testing the hypothesis 
PI = .10. Coefficient of risk = .05. 

~ -
and above .10 + 1.751d, that is, below 8.60 per cent and above 
11.05 per cent. This is illustrated in Fig. 58. 

In fact, there are an infinite number of regions of rejection 
that the manufacturer might adopt, all of which have associated 
with them a coefficient of risk of .05. What is the criterion that 
he should follow in choosing from among these various possible 
regions? 
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,_T~ Best Regio'f!- "_oi__Rejection. Each region of rejection has a 
corresponding region of acceptance. As suggested in the previ
ous chapter, the "best" region of _acceptance would be the one 
for which_ the risk of accept_ing a given hypothesis when it is not 
true- is _a minimum. f/illce the probability of a sample falling 
in the region of acceptance is equal to 1 minus the probability 
of its falling in the region of rejection, the former will be a mini-

I Region of 
~~~t~ 
I 
0.1099 ' 

0.500' 

FIG. 59.-Th-e probability of a sample falling in the region of Fig. 56 varies 
with the population percentage PI, illustrating the procedure for finding the 
data of Table 24 from which Fig. 60 is plotted. 

mum when tne1aUer is a maximum. - The'best region of rejec
tion, therefore, will be a region for which the probability of 
rejection when the given hypothesis is not true is a maximum. 1 

How the various regions suggested in the previous paragraph 
fare in respect to this criterion is indicated by the' probabilities 
shown in Table 24. Table 24 gives data for each of thE) four 
alte~~tive regions, showing how the probability o~ a .sample 
falIin~ in the region varies with the population percentage PI' 

1 In technical language this probability of rejection whim the hypothesis 
is not true is called the "power" ,of the test associated with the selected 
r~~~o~. The criteri?n is to select the region ~ith the highest power. The 
region so 'selected wIll then give. the "most powerful" test, 
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The method of computing the data ·in Table 24 is ·illustrated· ill; 
Fig. 59, and the results are presented in Fig. 60, which is baseq 
upon Table 24. r 

It is obvious from this figure that there is n,o one regioll·~or. 
which the probability of a sample is the greatest for all possible 
values of the pOP\llation percentage d,ifferent from tft'e one 'set 
up by hypothesis. 'Ihe region above .1099 (the regio.n of Fig: 
56) has the 4igh~st probability for population percentages 

0.50 _\ 
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0.40 
, , , 

0.35, I 

,'/ 
±0.30 I 

~0.25 " }/ Reg/on of' 
..0 " rIG·,f5 
e 0.20 1/' 

CL 0.15 // 
// 

0.10 //' 
0.05 

~ 

0 
0.092 0.108 

FIG .. 60.-Effect that variation in the population percentage Pl has on the prob
ability of a sample falling in given regions of rejection. 

greater thi1n the hypothetitlal percentage being tested (that is, 
Pl = .10 in tliis case), and the region below .0911 (the region of 
Fig. 57) has the highest probability for population percentages 
less than the hypothetical percentage. The region below .0882 
and above .1118 (the region of ' Fig. 55) does well for values of P,l 
both greater and less than the hypothesis beiilg tested, but it 
does not have the maximum probability for allY values. ,There 
is not in this instance any single region of rejection that. is best 
for all problems. \0 

In order to determine the region of rejection that is best for the 
present problem tpe manufacturer must draw upon other c011,
siderations.. Suppose he wishes particularly to avoid unneces
s~ry and expensive refinements in production methods and 
accordingly aims to keep the percentage of defectives as close 
as possible to the accepted standard of 10 per cent defective 
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parts. 1 At the same time, suppose he does not care if orders are 
sent out that are below standard; it may be that the purchaser 
will carry out his own test to avoid buying a substandard set. 
Accordingly, the manufacturer will select the region of Fig. 57, 

TABLE 24.-VARIATIONS IN THE PROBABILITY OF A SAMPLE FALLING IN 

ANY GIVEN REGION FOR DIFFERENT VALUES OF THE POPULATION PI * 

Prob';:bility of a sample in 

Values of PI 

Region of Fig. 55 Region of Fig. 56 Region of Fig. 57 Region of Fig. 58 

.091 .3157 .0005 .4404 .1952 

.092 .2581 .0010 .374.5 .1522 

.093 .2067 .0018- .3121 .1174 

.094 .1623 .0033 .2546 .0876 

.095 .1272 .0055 .2033 .0671 

.096 .0971 .0091 .1587 .0524 

.097 .0758 .0154 .1270 .0435 

.098 .0619 .0227 .0934 .0401 

.099 .0521 .0344 .0694 .0464 

.100 .0500 .0500 .0500 .0501 

.101 .0597 .0708 .0359 .0636 

.102 .0653 .0968 -:-6250 .0834 

.103 .0824 r 1292 .0174 .1102 

.104 .1069 .1685 .0116 \ .1439 

.105 .1389 .2033 .00Z8 .1851 

.106 .1782 .2643 .0049 .2333 

.107 .2218 .3228 .0032 .2846 

.108 .2718 .3821 .0020 .3448 

.109 .3304 .4443 .0013 .4053 

* These figures were <lalcul"ated as follows: The mean value Np, = 2,500p, was calculated 
for each value of p, and als,," the standard deviation, Vp,p';N = Vp,p,/2,500. The 
difference between the mean and the boundary or boundaries of a region was then divided 
by the standard deviation, and the probability of a deviation greater than this value, or 
values, of z/d was found from a normal probability table. These are the figures given in the 
table above. 

i.e., below .0911, as the best region for his purpose., He will 
thus accept the hypothesis that the number of defectives in the 
population is 10 per cent least ofte~ when that percentage is 

-actually below 10 per cent. 

I The assumption is that if a sample shows a percentage of defectives 
that is considered ·too low, ,the manufacturer would discontinue some 
expensive refinement in the method of production that might lower the 
quality somewhat but would yield him more profit. 
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On the other hand, if the manufacturer desires especially to 
protect his reputation and wishes particularly to avoi,d sending 
out an order that is actually below standard, he will select the 
region of Fig. 56, i.e., above .1099, as the best region to use. In 
this instance, he will accept the hypothesis of 10 p~ cent least 
often when the- ,population percentage is act~ally above 10 
per cent. He runs the least risk in this case of damaging his 
reputation .1 

If the manufacturer wishes especially to avoid the danger of 
damaging his repu'tation by sending out substandard lots but 
nevertheless desires ~o giv.e some consideration to the additional 
expense of attaining too high a standard, he might adopt a 
region such as that lying above .1105 and below .0860, that is, 
the region of Fig, 58, If he is equally indifferent or equally 
concerned about his reputation and the additional expense of 
attaining a high standard, he would do best to choose the region 
lying above .1118 and below .0882, the region of Fig. 55. For this 
latter regi,on favors values neither above nor below the hypothesis 
being tested i it is an "unbias,ed" region.2 '. 

In the problem illustra"ted, suppose that the manufacturer 
adopts the unbiased region lying below .0882 and above .1118, 
the region of Fig. 55. He knows that if this region is always 
adopted in his sampling tests he will in the long run reject the 
10 per cent hypothesis when it is actually true onfy 5 times out 
of a 100. He also knows that the probability of accepting the 
10 per cent hypothesis when it is not true is evenly distributed 
with respect to actual percentages above and below 10 per cent. 
He will in this instance not cause undue damage to his reputa
tion nor induce himself to incur an unnecessary expense of 
production. 

1 That is, least risk for the size region adopted, If the manufacturer had 
adopted a coefficient of risk of .10 of rejecting the 10 per cent hypothesis 
when it was actually true, his regions of rejection would all have been larger 
and his regions of acceptance correspondingly smaller. There would be less 
risk of accepting the hypothesis in this case when it was not true. When 
it is said in the text that a certain region gives the least risk of accepting the 
hypothesis being tested when some other values are true, it is meant that 
this is the least risk for any region of the specified size, i.e., for any region 
for which the associated risk of rejection is the specified coefficient ,05. 

2 Generally a region is said to be "unbiased" if the probability of a sample 
falling within it is less when the given hypothesis is true than when any 
alternative hypothesis is true. 
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The Test or the Hypothesis. The actual sample result is 11 
per cent. Since this does not fall in the adopted region of rejec
tion, the hypothesis of PI = 10 per cent is not· rejected and the 
given lot of parts is deemed to Qe of standard quality. 

USE OF THE DISTRIBUTION OF A SAMPLE PERCENTAGE TO 
ESTIMATE THE VALUE OF THE POPULATION PERCENTAGE 

The foregoing pages were primarily concerned with the rejec
tion or acceptance of a particular hypothesis regarding the 
percentage of defective parts in the population. It did not indi
c~te the limits within which this percentage might reasonably 
lie, no~ did it indicate what might be a good estimate of the 
actual percentage of de,fectives in the whole P9pulation. Often 
these considerations are of more importance than the testing 
of a particular hypothesis. 

Determining Confidence Intervals. The procedure for deter
mining a reasonable range for a population, parameter, giv.en a 
particular sample, is much the same as that followed in testing 
hypotheses regarding that parameter. First it is necessary to 
decide upon the degree of risk that .. is to be run in failing to 
include the true value of the parameter-Within the estimated 
range. To p'}t it positively, it is first necessa~y to determine 
the degree of confidence that may be had in the estimated range 
~overing the true value. Furthermore, if no one type of range 
~s found to be the best, it is necessary to decide whether failure 
to include the true value because the range is placed too low is 
of equal importance as failure to include the true value because 
the, range is placed too high. These matters will now be con
sidered in some detail. 

Determining an Unbiased Interval. In the example of the 
preceding. !Section the manufacturer of machine parts took a 
sample of 2,500.part.s from a large lot and found that, of the~e 
2,500 parts, 275, or 11 per cent, were defective. On the basis of 
this sample, the manufacturer may determine an unbiased 1 con-

1 The interval is called "unbiased" because it is so· determined that the 
probability of the interval failing to cover the true value because it is too 
high is equal to the probability of the interval failing to cover the true value 
because it-is too low. It happens in the present instance that this unbiased 
intervai is also symmetrical about the sample value. In other cases, how
ever, it will be found that an interval that is unbiased in the probability 
sense is not symmetrical around the sample value (see pp. 287-289). 
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fidence interval as follows: The' corifidenctr. coefficient associated 
with this interval will be put at .95. First let the manufacturer 
find the value of PI that will make the difference. between it and 

the sample percentage, that if:! ~I "'- PI, just equal to .1.960. 

Since 0 = ~p;Y-2, this value of PI will be given by the solution of 

the ~quation ~I - PI = 1.96 ~ for PI, which leads to the 

approximate equation I I 

= NI _ 1 96 IN"","N~' I---N ...... i 
El N . "J' N3 (2') 

In the present instance this formula yields the result PI .098. 
It will be noted that this lower limit for PI is designated PI 
(called "PI lower',,). The procedure is illustrated in Fig. 61. -

Next let the manufacturer find the value' of Pl that makes the 
difference between it an\f ,the sample percentage just equal to 
-1.960. This second value will be given by the equation 

~I - .Pl - -1.96 H or.by the approximate' equation2 

- = N 1 + 1 96 INN I - Ni 
Pl. N . "J N3 (3) 

For the given problem this yields jh = .122. Again it will he 
noted that this upper limit for Pl is designat~d by ih (called "Pl 
upper"). For illustration the reader is again referred to Fig. 61. 

1 The. approximate formula is obtained by substituting ':vI for PI and 

N Iv NI for P2 in the xadical on the right, that is dis estim!!:ted from the 

sample percentages. The formula given by the solution of the equation:is . 

I N; 
NI + 1.92 - \,-96 "J .96 + Nl - N 

l!1 = N + 3.84 

but when N is large, as it should be when the normal curve is taken as an 
approximation to the binomial distribution, this more exact formula differs 
but little from the approximate one given in the text. .. 

2 The exact formula is the same as that given in the preceding footilO·te 
except that the square. root is now preceded by a plus sign instead' of a 
negative sign. 
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These two values of Ph viz., PI and jh, mark off a confidence 
interval that the manufacturer may claim has a probability of 
.95 of covering the true value. This means that, if he con
tinuously follows the foregoing procedure in sampling from a 
twofold population, the interval he sets up will on tile average 

Nt 
0.11 N 

PI 
FIG. 61.-Determination of an unbiased confidence interval for Pl. Con

fidence coefficient = .95. Note that d = NplP2 and' hence varies with the 
values of PI and P2. 

cover the population value 95 times out of a '100. For, on t.qe 
assumption .that the normal curve is a good approximation to 
the binomial distribution, sample percentages will fall within the 
range ± L96d of the population percentage 95 per cent of the 
time. Hence, ranges of ± L96d about the sample percentage 
will include the population percentage 95 ,per cent of the time. 
It is only when the sample percentages deviate more than 
L96d from the population value that a range of ± L96d about 
the sample percentage will fail to include the population value, 
and according to the normal probability curve the probability 
of such an event is only .05. It will be noted that the manu
facturer speaks, not of the probability of the population value 
falling in the confidence interval, but of the probability of the 
interval covering the population value. For ,it is the interval 
that-varies from sample to sample, not the population value; the 
latter is an unknown constant. 
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Other Confidence Intervals. The confidence interval just 
determined is not the only interval with a confidence coefficient 
of .95. Other intervals with the same confidence coefficient 
may also be derived. For example, it is possible for the manu
facturer to select an interval that has only a variable lower limit, 
the upper limit being the maximum attainable va'ue of PI = 1.00. 
This lower limit may be computed by finding the value of Pl that 
\yill make the probability of getting the given sample percentage 

~ or a greate~ value just .05. Such a value of the lower limit 

will be given by the equation '~ - PI = 1.645d or the equation 

'P_l = ~1 - 1.645 ~N N ~-; Ni. For the given case in which 

N == 2,500 and N 1 = 275, this lower limit will be .100. The 
manufacturer can therefore say with equal validity that the 
interval .100-1.000 has a chance of 95 out of 100 of including 
the population value. 

Again, with the same' confidenge coefficient of ,95, the manu
facturer may choose an iJ?-terval that has only a variable upper 
bound, the lower bound being the minimum possible value of O. 
This upper limit can be co~puted by finding the value of PI 
that will ma'ke the probability of the sample percentage' of a 
lower percentage just equal to .05. The value will be given by 

Nl ' 
the equation N - PI = -1.645d or by the .formula 

PI = ~l + 1.645 ~NN ~-; Ni. 

For a sample of 2,500 and a sample percentage of 11, this upper 
limit will be :120. Hence, with as much truth ~as in the other 
cases, the manufacturer can say that the range 0-.120 has a 
chance of .. 95 of including the population.. value. 

Finally, the ma!lufactur& may adopt an interval determined 
in the following manner: He may determine a lower limit such 
that, if it were the population value, the probability of getting 
the sample percentage of 11 per cent or a greater value will be 
just .04. And he may determine an upper limit such that if it. 
were the population value the probability of getting the sample 
percentage or a lower value will be just .01. These two limits will, 
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be given by the equations 

NI 
N - PI = 1.751d and NI N - PI = 2.327d 

or by the equations, PI = ~I - 1.751 ~NN~--; Nt and 

Nl INNI-N~* F 1h = N + 2.327 '\J N3 . or a sample of 2,500 and a 

sample percentage of 11, these limits will 'be .099 and .125. 
Thus the manufacturer might say, as in the other cases, that the 
interval .099-.125 has a chance of .95 of including the population 
figure. 

The Best "Interval. There are accordingly an infinite number 
of different ranges, all associated with a confidence coefficient 
of .95, that might be adopted in setting up confidence limits for 
the population parameter Pl' Is there anyone range that might 
be designated the "best"? Before answering tpis question, 
consider the various values covered by the different intervals. 

If the confidence interval given by the limits 

Nl + 196 INN! - N~ 
N - . '\J N3 

is compared with the confidence interval give~ by\ the limits 

N I INN 1 - Ni d (. f d h N - 1.645 '\J N3 an 1, It IS oun t at for an actual 

population value of, say, 10 per cent the latter interval would 
include the value above 10 per cent, especially the higher values 
such as 13 per cent, 14 per cent, etc., much more frequently than 
the former would. For the latter always runs up to 100 per cent 
no matter what the sample percentage, while ~he for~er runs up 
as far as 13, per cent, say, only if the sample value is as high as 
11.68 per cen~,1 which, on the assumption that the population 
value is 10 per cent, is likely to be a rare phenomenon indeed. 2 

, *-For '.04 of the normal curve lies about 1.7511} from the mean and .01 
lies below - 2.3271} from the mean. 

1 This is calculated from the exact formula ~. - p. = 1.96 --VPiJ" 
2 If = 10 t th = 006 11.68 p'er cent - 10 per cent = 280' PI percen_, en I} • , d • , 

and the probability'of a normally distributed variate exceeding its mean by 
more than 2.80 times I} is o~ly .0026. 
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On the other hand, the second type of interval always has a 
larger value for its lower limit than the first, and it will therefore 
include values below Ie per cent (the actual population value) 
less frequently. than the first type of interval. If the same type 
of comparison were made between the interval given by the 

limits ~l f 1.96 ~N N ~ Nt and the interval giv:n by the 

limits 0 and ~1 + 01.645 ~N N ~ -; Ni, it would be found that the 

former would includ'e values of PI below the actual value of 10 
per cent much less fi-~quently than tp_e latter, while the latter 
would include values above 10 per cent less frequently. 

In the problem illustrated it wOllld seem that the manufacturer 
would prefer the interval running from ° to 

- ~ N 1 + 1645 INN 1 - Ni 
PI N . '\J N3 ' 

for this would put the best facy on his product. It would in9lude 
the true value 95 per cent of the time, just as the other intervals 
would, and it.would put the upper limit no higher than necessary. 
The buyer would be at no disadvantage if this method of stating 
the limits were employed. For if he understood their derivation 
he would know that 5 times out of 100 he might get a lot in which 
the percentage of defective parts exceeded the stated upper"limit, 
and he would not buy unless he were willing to run this risk. 

Influence of the Size of the Sample on the Confidence Interval. 
It will be noted that in the foregoing analysis the size -of °an 
interval depended upon the value of d and this in turn depended 
on the value of N, the size of the sample. Since d = VP2P2/N, 
it is seen that the larger the sample, the smaller the value of d, 

and hence the narrower the confidence interval. That is, for a 
given confidence coefficient, say a probability of .95, the larger 
the sample, the closer the population value may be estimated. 

Influence of ihe Size of the Confidence Coefficient on the Con
fidence Interval. The size of the confidence interval is also 
dependent on the size of the confidence coefficient. For example, 
if in setting up an unbiased confidence interval the manufacturer 
had been willing to have the interval cover the population voalue 
only 90 times out of 100, he could have set up limits given by 



208 "ELEMENTARY THEORY OF RANDOM SAMPLING 

~l ± 1.6450 instead ..of ~1 ± 1.960.1 Accordingly, by choosing 

a lower confidence coefficient, th~. manufacturer could have 
narrowed his confidence interval. The same is true for other 
types of confidence intervals. . 

A Single Estimate of Pl. The foregoing has had to, dO' with the 
determination of a range of reasonable values for Pl. In some 
instances, however, the manufacturer may desire a single esti
mate of the population percentage. He may wish, for example, 
to report to a buyer some measure of the quality of the lot being 
sold, and an estimate of the percentage of defective parts in the 
lot may be a suitable figure for this purpose. Estimation of 
popUlation parameters by the method of maximum likelihoad 
was outlined in the previous chapter. Consider how it may be 
applied to the present instance. 

In estimating Pl from the sample result, the manufacturer 
might proceed as follows: He might turn to Fig. 53 or to its 
more general form, Fig. 54, and pick out the point on the N dN 
axis representing his sample percentage. The chart would have 
to be one for which the size of the sample, N., was the same as 
that taken by the manufacturer. Then he coUfd proceed)n the 
direction ~f increasing Pl values until he had reached (he highest 
point on the surface, i.e., until he found t'\J,e value of pr that made 
the probability of the given sample a maximmp.. If he had 
taken a sample of 10 items, for example, and 2 had been found 
defective, he would start at the point .2 on the N liN axis of Fig. 
53 and proceed perpendicularly to this axis until he had reached 
the value Pl = .2. There he would find that the probability of 
his sample result would be a maximum. The maximum-likeli:. 
hood estimate of Pl would be .2, the same as the sample percentage. 
This, and all esti~tes made in this way, are called "maximum
likelihood estimates;' since they choose the value of the popula
tion parameter, in this case P1, so that the probability, or 
likelihood, of the given sample result, here NdN,-is a maximum. 

In general, the maximum-likelihood estimate 'of a population 
percentage is the sample percentage. This may be demon
strated mathematically as follows,: Equation (1) shows that if the 
percentage of attribute A in the population is Ph the probability 

1 For the probability of a normally distributed variate deviating from its 
mean by ± 1.645d or more is just .10. 
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of a sa,mple of N having NI A's is l 

P (lVI) _ N! Nl(1 )N-Nl 
N - N deN - N I)! PI - PI 

According to the differential calculus, tlie value of PI that will 
maximIze this probability for a given value of N I arM N must 
satisfy the conciiti~n 2 

which reduces to 

or 
NI 

PI = N 

If the maximum-likelihood estimate of PI is written th to dis
tinguish it from the population value itself, then PI = N dN is 
the maximum-likeiihood esthnate of PI, that is, the sample 
percentage N dN is the maximum-likelihood estimate of the 
population percentage PI. 

SAMPLES FROM RELATIVELY SMALL POPULATIONS 

One of the fundamental assumpt~ons of the foregoing analysis 
was that the population was very large relative to the sample 
taken. For it was on this basis that "the probability of a given 
attribute in the population was assumed not to be materially 
affected by the withdrawal of various members of the s_~mple. 
It was argued, for example, that, if a sample of 2,500 parts was 
taken from a lot of 500,000 parts in which the actual number of 
defective parts was 10 per cent, the percentage 'of defectives in 
the 499,000 parts left after 1,000 parts had been drawn would 
still be close to 10 per cent (actually, 9.82 per cent) even if all 
the 1,000 parts drawn turned out to be defective. Hence the 
analysis proceeded on the assumption that the percentage of 
defective parts in the population remained unaffected as the 
sample items were'taken out. That is, the sampling discussed 
was sampling with replacements. It is the purpose of this section 

1 Here P2 is replaced by its equal 1 - Pl' 
2 Generally the logarithm of the probability is maximized, but here it is 

just as easy to differentiate the function itself. 
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to consider how the analysis must be modified when nonreplace
ment of the sample items is taken into account. 

When the population is of such a size relative to the sample 
that consideration mus~ be given to the effects of the withdrawal 
of the sample items on the percentage of a given attribute in the 
population, then the distribution of a sample percentage can no 
longer be adequately describtld by the binomial distribution. 
Instead, as may be shown by an analysis similar to'that of Chap'. 
IV, the mathematical law ~escribing the distribution of a sa!llple 
percentage when replacements are not made is the hypergeo
metrical distribution. Thus, if a random sample ot N cases is 
taken from a population consisting of S cases and if the per
centage of cases in the population having attribute A is PI and 
the percentage not having the attribute A is 1 - PI = P2, then 
the probability of a sample (drawn without replacements) con
taining N 1/ N A's, is given by the formula 

p (N 1) _ (PIS) !(p~S}!{S - N)!N! 
N - (PIS - N 1)!(P2S - N t N1)!S!Nd(N - N 1)! (4) 

This substitution of the hypergeometrical dist~Umtion for the 
binomial distribution is the fundamental modification that must 
be made in the previous analysis when sampling is'lp.ade\without 
replacements. 

If both the population and the sample are relatively small, 
then either· the hypergeometrical distribution itself ,\:nay be 
employed to calculate the probabilities of various sample results 
or one of the Pearsonian frequency curves that approxiniates 
this distribution can be used for this purpose. Calculations of 
this kind are quite complicated, however, and will not be further 
considered here. The interested reader is referred to the Appen
dix to Chap. IV (page ~1) for a discussion of the appropriate 
Pearsonian curve to fit and .. ~o pages 127 to 131 foJ." a methpd of 
measuring probabilities.fro~ such a curve. 

When the population and sample are both moderately large, 
the hypergeometrical distribution can be approximated by a 
normal distribution, which again greatly simplifies the analysis. 
Specifically, if the sample N is less than half the population S, 
if 1iv'N and hence l/VS ;-- N .are so small as to be negligible, 
and if ljPI and Np2 are both moderately large, then the hypergeo
metrical distribution pan be approximated ,by Ii. normal distribu-
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tiotr; Whose mean is Pi and whose standard deviation is given by 
the equation1 ') 

(5) 

. When it is possible to use the normal distribution in place of 
the hypargeometrical distribution, the analysis procj:leds in 
almost exactly the sa:me manner as described ill the preceding 
sections. The only difference is that, instead of using the value 

~Pt2, Eq. (5) is used '~n i~s place. It will be noticed that the 

effect of this modification is to reduce the value of (} employed; 

since 1 - ~ is necessarily less tha~ 1. This means that con.. 

fidence intervals, regions of acceptance, and the like, will be 
smaller when account is taken of the size of the population. As 

S becomes large relative to N, ho\vever, the factor 1 - ~ becomes 

practically 1 and the size of the population may be disregarded. 
The analysis then becomes that of the previous sections of this 
chapter. 

SAMPLES FROM POPULATIONS)N WHICH PI IS VERY SMALL 

There ar:e some instances in which the chance of a "favorable" 
occurrence is very small. If a large enough sample is taken, 
however, a few cases will be found. The example most com
monly referred to is that of Borthewitch, who found that for 
10 Prussian army corps the average number of deaths occur
ring from horse kick during 10 years was .61 per corps per year. 
Another example is the counting o{ cells in certain biological tests 
and experiments where the chance of occurrence of cells of a 
certain type on"a given plate or a given section of a plate is very 
small. 2 "-

" Whenever the chance of a favorable c~se is very small, the 
binomial distribution is not well approximated by the normal 

• distribution unless N is v~ry large. 3 In these instances the 

1 Cf. BOWLEY, A. L., Elements of Statistics, 5t4 (ld., pp. 282-284. 
2 Cf. FISHER, R. A., Statistical Methods for Research Workers, par. 15. 
3 See p. 73. 
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binomial distribution is better approximated by the Poisson 
distribution. 1 This has the form 2 

mN, 
P(N 1) == -N , ~-m 

1· 
(6) 

which my also be written . 
P(N 1) == _(Npl)N exp [-NpJ] 

NIl 

where P(N l ) r~presents the probability of Nl cases out of N, 
pds the probability of a favorable case III = Npl, arid e = 2.718+ 
is the base of Napierian logarithms. For example, if PI = .003 
and N = 1,000, then m = 3 and the probabilities of 0, 1, 2, 3, 
4, . . . favorable occurrences are3 

N, P(N,) 

0 
3° = .0498 e- 3 -
1 

1 
31 

= .1494 e-3 -
1 

2 
32 

= .2240 e-3 -
2 
33 ./" 

3 e-3 - '" .2240, 6 

4 
34 

.1680 e-3 -
24 

5 3" 
e-3 

120 .1008 

6 
3" 

e-
a 

720 .0504 

7 
37 

'" .0216 -3 
e 5,040 

8 
38 

.0081 -3 
e 40,320 

.9 
39 

.0027 -3 
e 362,880 

10 
3'0 

.0008 e-3 

3,628,800 

1 Also known as the "law of small numbers" or "law of small chances." 
2 The derivation of this approximation is given in the Appendix to'this 

chapter (p. 215). 
3 These probabilities may be computed directly by noting that 
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These are graphed in Fig. 62. 
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I I I 

2 3 4 5 6 .., 8 9 10 
~. 

FIG. 62.-The Poisson distribution, m = 3, pr = .003, N = 1000 [see' Eq. (6)]. 

If it is desired to find the probability of N 1 exceeding or falling 
short of a given value, it is necessary merely to sum the individual 
probabilities in question. For example, if Pl = .003 and 
N = 1,000 as in the table above; the probability that two or 

,fewer favorable cases will occur is equal to 

.0498 + .1494 + .2240 = .4232. 

The probability that six or more favorable cases will occur equals 
.0504 + .0216 + .0081 + .0027 + .0008 + ... , which equals 
approximately .0836. Since the table is not completed in this 
direction owing to the small probabilities, the probability in 
question is more accurately computed by subtracting from "1 the 
probability of five or less favorable occurrences. The latter 
probability equals 

.0498 + .1494 + .2240 + .2240 + .. 1680 + .1008 = .9160. 

Hence a better approximation to the probability of six or more 
favorable cases is 1 - .9160 = .0840. 

The use of the Poisson distribution in testing a hypothesis 
about a population may be illustrated as follows: Suppose it is 

lagro e-3 = -31og,o e = -3(.4343) = -1.3029 

and therefore e-3 = .0498, or they may be obtained from Karl Pearson's 
Tables for Statisticians and Biometricians, Table LI. 
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wished to determine the chance of dying from a new type of 
inoculation, say against smallpox. The existing method, it 
will be assumed, resuits in the death of not more than .5 per cent 
of those inoculated, and the new method will not be adopted 
widely if its death rate ap'pears to be significant~y more than that. 
A thousan<l test cases are made, and of these seven die. Is it 
reasonable on the basis of these tests to reject the hypothesis that 
the true death rate from the inoculation is more than .5 per ,cent? 

To answer this question, set the coefficient of risk at approxi
mately .05, and place the region of rejectio~ all at the upper 
end of the distribution. (For the risk of accepting the hypothesis 
when the death rate is actually higher than .5 per cent is to be 
made a minimum.) It will be noted that the Poisson distribu
tion, like the binomial distribution, is discrete so that it may not 
be possible to obtain a region of rejection for which the p~ob
ability is exactly .05. One coming as close as possible to this 
standard, however, will be adopted. 

If .5 per cent is the true death rate and samples of 1,000 ~ 
are taken, the distribution of sample death rates will be approxi
mated by a Poisson distribution for which m = (1,000)(.005) = 5. 
The individual proba.bilities for the more likely--sample results 
will thus bel 

N, 
e-~SNl 

P(N,) = NT 
1· 

0 .0067 
1 .0337 
2 .0842 
3 .1404 
4 .1755 
5 ,1755 
6 .1462 
7 .1044 
8 .0653 
9 .0363 

10 .0181 
11 .0082 
12 .0034 
13 ,0013 
14 .0005 
15 .0002 

1 These are taken from Pearson's Table8/or Statisticians and Biometricians, 
Table LI. 
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The total probability of a sample containing 8 or less deaths 
is .93~9; thus the probability 'of a sample containing 9, or more 
deaths is .0681. This is close enough to .05 to take values of 
NI equal to 9 or more as the desired region of rejection. The 
actual sample has 7 deaths, which is not in the region of rejection; 
therefore the hypoth.esis of a true death rate of 5 per l;O(lO 
cannot be rejected. From the figures above it is seen that a 
slmple could have 3fI high as 8 deaths without causing the 
hypothesis of a general rate of 5 deaths per 1,000 to be rejected. 

An upper bound fot\ the true death rate that will have a 
probability of .95 of including the true rate may be found as 
follows: Note first that the sample return is 7 out of 1,000. 
Then examine Pearson's tables to see for what distribution the 
sum of the probabilities of 0 to 6 deaths 'per 1,000 is just .05. 
This will be found to be the distribution for which m = n.8. 
Since the sample contains 1,000 C'ases and m '=: NpI, it follows 
that the .95 upper bound for PI) given a sample rate of .007, is 
.01J8. It may be said, therefore, that the chances are 95 out of 
100 that the range 0-1.18% covers the true percentage. 

The mean of a Poisson distribution is m, its variance is also 

m, its (h = ..!., and its ~2 ,= ..!. + 3. When N' is so la;ge that - m m 
Npi = m is also large, the Poisson distribution is fairly well 
approximated by the normal curve: This is merely another 
way of saying that even when PI ~s very smalt and hence pz - PI 
is relatively large, if N is big enough, the binomial distribution 
approaches the normal distribution. I In this instance it, makes. 
little difference whether the variance of the normal distribution 
is taken as m = Npi or as NpIP2 since P2 is very close to 1. 

APPENDIX 

Derivation of the Poisson Distribution and Its Properties. 
The Poisson distribution is derived as follows: According to the 
binomial equation the probability of:-N'I cases out of N is 2 

N' 
peN 1) = N 'N' , Pf'P~' 

1· 2· 

where PI + pz = 1 and N I + N 2 = N. 

1 See p. 73. 
2 See p. 43. 

(1) 
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.. ' By dividing numerator and denominator by N 2! = (N - N 1) ! 
and setting P2 = 1 - P1 and N 2 = N - N 1, this may be. written 

Suppose that P1 is very small but that N is large enough so that 
Npl has a value of, say, at least.1. For example, if P1 = .003, 
let N =; 1,000, so that the value of Npl is 3. Represent Np1 by 

m 
that m, so P1 = N' If this value of P1 is put in the foregoing 

equat~on, then 

_ N(N - 1) ... (N - Nl + 1) (m)NI ( m)N-NI (3) I 
P(Nl) - Nd N 1 - N 

( l)N' By distributing N throughout the first N 1 factOls and by 

( )

N-Nl 

. separating 1 - N into its two components, Eq .. (3) gives 

But if N is large, as it must be to make Np1 equal to .1
1 

or more, 

the value of ~ and N 1;; 1 will be negligible. The value of 

(1 - r; )N will be approximately e-m , and the value of (1 - N )-Nl 
will be practically 1 since ~ is practically negligible. Hence 

or it may be written, 

(6) 

This is known as the Poisson distribution after the man who 
first developed it. 
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The mean of a Poisson distribution is m, which may be shown 
as follows: 

First note that 
N 
~mNl 
~ N I! exp [-m] = 1 (7) 

o 

since the sum of the total probabilities Of a distribution equals 1. 
Next note that the mean of the Poisson distribution is by 

definition 
N 

Mean Nl\ = 2: Nl ~:; exp [-m] (8) 

o 

Note further that if N 1 in the numerator is canceled against the 
N 1: factor in N I! and if m is factored out of mN" Eqo (8) becomes 

N 
~ mN,-l 

Mean Nl = m ~ (Nl _ 1)! exp [- m] (9) 

I 

But if N 1 - 1 is set equal to N ~ and N -1 to N ' , the sum term 
becomes 

N' 
~mN" 
4 N~! exp [ -m] 
o 

which by Eqo ,(7) equal's 1. Hence 

Mean Nl = m 

Similarly, d2 of Nl =om, which may be shown as follows: 
By definition, 

d1, = 2: N~ ~:; exp [-m] - m 2 

But N~ = N1(N 1 - 1) + N 1 ; therefore, 
" 

(10) 

2: mN, 2: mN' d1. = N 1(N 1 - 1) N,exp [-m] + Nl"iT! exp [-m] - m 2 

10 .iV 10 

The first term of the right-hand side of this expression equals 
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which as above equals 1l12
, and the second term equals m as 

demonstrated in the previous paragraph. Hence 

or 
d~, = 1112 + m - m 2 

d~l = m 

In the same manner it can be shown that Va = 1l1, and 

V4 = m + 3m2 

1 1 
Hence Ih =:= - and ~2 = - + 3. m m 

(11) 

These latter formulas suggest 'that, if N and hence m is large, 
the Poisson distribution approaches the normal form; for ~1 then 
equals approximately 0, and '~2 equals approximately 3. In 
fact, this approach to normality .with increasing size of m m~y 
be mathematically demonstrated in a manner essentially the 
same as that used to demonstrate the approach of the binomial 
distribution to normality. 



CHAPTER X 

SAMPLING FROM CONTINUOUS NORMAL POPULATIONS 
I. VARIOUS SAMPLING DISTRIBUTIONS 

The foregoing chapter was concerned with attributes that 
are qualitative, such,~s "defective" versus "nondefective," "for" 
versus "against," "black" versus "white," or attributes ,that 
have only discrete numerical values. This and the following 
chapter will be concerned with attributes that may theoretically 
'vary continuously, such as the heights of individuals, yields of 
wheat, and the like. 1 

The theory of sampling for a continuous variable has been 
most completely., worked .out for a normal population, i.e., 
a population in which the probability, or relative frequency, of 
a given variable is measured by the normal probability curve. 
Because of this and because hypotheses of normal populations 
arise frequently in practical problems, the present chapter will 
develop the analysis in considerable detaiL 

The argument will apply. strictly to ~ hypothetical infinite 
population. It might, for exampl~, apply to the infinite set 
of electric-light bulbs that could be produced by a given process 
if that process were to be used indefinitely without modification. 
It might also apply to the infinite set of crops of a given~~ariety 
that might be yielded by repeated farming of a given type of 
land with a given type of treatment. Again it might apply 
t.o the infinit.e set <;>f white adult males living now- and in the 
future. In fact, it might apply to the results of many types of 
rep'etitive or ,continuous physi<lal, biological, or social processes. 
The' ar.gument Will also be applicable without serious error to a 
large finite population that -IS distributed approximately in a 
normal manner, such as the h~ights of existing white adult males. 
In this instance the population will be presumed to be so large 
relative to the size of the sample that the withdrawal of the 
sample does not materially change the distrjbution of probabili-

1 Ci. pp. 1-2. 
219 
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ties in the population. Thus, if the pr.obability of a case lying 
between 1.2 and 1.3 is .09, 'say, before the sampling is begun, it 
will be assumed to remain equal to .09 throughout the whole 
of the sampling process. 

'the analysis will assume that the process of sampling is a 
random one. This implies, as previously, that the results or 
rather the distribution of the results of repeated sampling from 
the given population can be predicted with reasonable accuracy 
by the use of an appropriate mathematical model. The principal 
task of the analysis will be to develop such a model. 

The problem to be considered will be this: A random sample is 
obtaIned from a given . normal populati}'n. Being normal the 
population may be specified by the mean and standard deviation; 
for the {31 of all normal populations is 0, and the {32 is equal to 3. 
Hence the problem will be to make inferences about the m.ean 
and standard deviation of the population from knowledge 
of the mean and standard deviation of the sample. 

To solve this and similar problems, it will be necessary to 
consider what would happen under repeated random sampling 
from the given population. For this purpose, such statistics as 
the mean and variance are selected, and .... ~study is made of how 
these statistics vary from sample to sample. SUfh a study seeks 
in particular to estimate the relative frequencies with which the 
selected statistics will assume varipus value; among the infinite 
set of samples of given size that might be drawn from the given 
population (with replacements of the samples if the population 
is finite). 'J'hat is, it seeks to derive the sampling distributions 
of the selected statistics. 

To derive these sampling distributions by actually drawing 
a large number of random samples from the given population 
would be a tedious if not an impossible task in almost all cases. 
Fortunately, the derivation may be undertaken by a theoretical 
process simirar to that by which the sampling distribution of 
percentages was derived in the preceding chapters. The steps }n 
the theoretical argument are to find a mathematical model that 
appears to reproduce the conditions of sampling and then to 
derive the distributions of the selected statistics for this model 
by means of the probability calculus. 

On the assumption that the process of sampling is a random 
one, it is argued that the actual distributions of statistics among 
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a large set of sampl~s from the given popUlation will tend to 
conform to the theoretical distributions worked out for the given 
mathematical model. The basis for this, it will be recalled,l 
is intuition and experience ·with respect to mass phenomena or 
what has been called the "law of large numbers." The task 
of the present chapter is to set up the appropriate mathematical 
model and to derive the theoretical sampling distributions for 
various statistics. 

DISTRIBUTION Of SAMPLES OF 2 FROM A NORMAL POPULATION 

For simplicity $llPpose that a sample contains only two cases, 
that is, N = 2. Of course, in practical work, samples rarely 
contain such a small number of cases. Much is to be gained in 
the theoretical analysis, however, by taking samples of 2. For 
the essentials of' the argument are the same for these samples 
of 2 as they are for large samples, but the argument is much 
simpler and easier to comprehend. If the argument for samples 
of 2 is clearly understood"the generalization for samples of larger 
size is not very dJficult. 

In accordance with the assumption noted above, the popula
tion is assumed to be so large that the withdrawal of the sample 
does not materially change the distribution of probabilities in 
the population. Hence the·\vithdrawal of two cases from a 
single population will lre ,essentially the same as ,vithdrawing 
one case from one population and another case from another 
populatiop. identical in all respects to -the first. Similarly, 
repeated withdrawals of samples of 2 from a single population 
(with replacements of samples if the population is finite) will be 
esseptially the same as repeated withdrawals of samples of 1 
each from two identical populations. This suggests that the 
sampling distributions of means, variances" and other statistics 
of samples of 2 from a normal population may be derived from 
the following mathematical model: 

The model is an arithmeti,cal model instead of an algebraic 
one; this is intended to facilitate the exposition for the reader 
who does not have a ready knowle!lge of the calculus. However, 
algebraic equations will be given for all-results obtained; and, 
for those who have. the mathematical training, the translation of 

1 Cf. SMITH, J. G., and A. J. DUNCAN, Elementary Statistics and Applica
tions, pp. 239--241. See also pp. 27-28. 
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the numerical argument into its algebra\c ~counterpart is given 
in the appendix of this chapter. 

The model supposes two populations identical in all respects; 
each popUlation has 100,000 cases, which, when grouped in class 
intervals of 2, have relative frequencies of a normal frequency 
distribution. These relative frequencies are given in Table 25. 
The mean of each population is 100, and its standard deviation is 
10. Now suppose that each case of population I, like that shown 
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FIG. 63.-Probability of a joint sample X. = 102-104 and X, = 98-100. 

in Table 25, is combined without restriction with each case of 
population II, also like that shown in Table 25, and suppose that 
the pairs of values so obtained are checked off on a scatter 
diagram such as that illustrated in Fig. 63. For example, if a 
case from population I (call it Xl) belongs to the interval 98-
and a case. from population II (call it X 2 ) belongs to the interval 
102-, then this pair of'cases (this sample of 2) will be checked off 
as b'elonging to the cell abed of Fig. 63. 

If such pairs of cases, or samples of 2, are formed without 
restriction, as is supposed, then according to the multiplicatign 
theorem for independent probabilities, the probability (relative 
frequency) of a pair of. cases "belonging to anyone cell will be 
equal to the probability (relative frequency) of a case belonging to 
the ipterval from which the first member of th~ pair was selecteq, 
times the probability (relative frequency) of a case belonging to 
the interval from which the second member of the pair was 
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TABLE 25.-DISTRIBUTION OF PROBABILITIES FOR A NORMAL POPULATION 

(X = 100 and d = 10) 
Lower Limits Probabilities 1 

of Class (Frequ.encies Relative 
Intervals to the Total of 100,000) 

58- .00002 
60- .06004 
62- .00009 
64- .00018 
66- .00035 
68- .00066 
70- .00121 
72- .00210 
74- .00354 
76- .OD570 

78- .00885 
80- .01318 
82- .01887 
84- .02596 
86- .03431 
88- .04359 
90- .05320 
92- .06239 
94- .07033 
96- .07616 
98- .07926 

100- .07926 
102- .07616 
104- .07033 
106- .06239 
108-
110-
112-
114-
116-
118-
120-
122-
124-
12~ 

128-
13()"" 
132-
134-
136-

138-
14()"" 

.05320 

.04359 

.03431 

.02596 ' 

.01887 

.01318 

.00885 
.00570 
.00354, 
.00210 
.00121 
.00066 
.00035 
.00018 
.00009 

.00004 

.00002 
1 These probabilities are derived by successive subtraction of the .2 intervals in the five

place norm"! probability "rea table in F: C. Mia,; and D. H. Davenport, A Manual 0/ 
Proble11l8 and Table8 in Statistws, pp. 199-203. 
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selected. For example, if the probability of a case belonging to 
the interval 102- in population II is .07616 and the probability 
of a case belonging to the interval 98- in population I is .07926, 
then the probability of a pair of cases belonging to the cell 98-
for Xl and 102- for X 2, that is, cell abcd of Fig. 63, is 

(.07926)(.07616) = .006036. 

The probability of any pair of cases among the set of all possible 
pairs of cases may thus be calculated by simple multiplication 
of two elementary probabilities. This has been done for the 
more probable pairs of cases, a.nd the results 'are presented in 
Fig. 64. 

It may appropriately be argued that this distributi<m of 
pairs of cases is a good prediction of the results that would 
be obtained by drawing one item at random from population I 
and another at random from population II, recording the results, 
and then replacing the cases and repeating the process. For 
if the process of selection is a random one, each case in ea~h 
population will be drawn just about as often as every other 

'case; and if the selection of the first case does not influence the 
selection of the second, then no particular pair of cases will 
tend to occur any more frequently than any oth1r pair of cases. 
As a consequence, the relative frequencies Qf various types of 
samples will, in repeated sampling, be approximately the same 
as the relative frequencies of various types of combinations among 
the set of all possible combinations of one item each from the two 
populations. 

According to the argument presented above, the latter will 
also be a good approximation to the relative frequencies of 
various types of samples of 2 from a single population. For 
in this case, the original pop,lliation can be viewed as popUlation r, 
and the population remaining after the first case has been drawn 
can be viewed as population II, the form of the latter being 
practically the same as that of population I. Relaiive fre
quencies in Fig. 64 therefore constitute a good prediction of the 

-distribution of a very large number of samples of 2 from a normal 
population whose mean is 100 and whose standard deviation is 10. 

Properties of the Distribution. Its Circular Symmetry. The 
most striking feature of the set of samples represented in Fig. 64 
is the symmetrical distribution of the samples. They tend to 
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cluster most closely around the point whose c(1ordinates are both 
equal to th~ mean value, l(}O, and to thin out evenly in all direc
tions from that point. In fact, it will be r;oted that cells lying 
equally distant from this central point have approximately equal 
probabilities. 

If the cells ha.d been made smaller, this circular symmetry 
would have been more evident. Careful study also shows that 
the probabilities in each row and each column tend to conform to 
a normal frequency distribution with the same mean and same 
standard deviation lfs the original population. 

Figure p4 is typic~l of a large set of samples from a normal 
population, whatever the size of the sample. In every case 
the various samples cluster most closely around the point whose 
coordinates are all equal to the mean of the population, and i.Q. 
every case the distribution of samples around this point conforms 
to a symmetrically circular: (or spherical) pattern. 

Geometrical Measurement of the Mean of a Sample. Figure 64 
designates a sample by indicating the interval to which case I 
belongs and the interval to which case II belongs. It may also 
be used to find the interval to which the mean of any sample 
belongs. This follows from the geometrical properties of the 
figure. 

By definition the mean of any sample of two cases is 

For a given value" of X, this is the equation of a line in Fig. 64 
that runs through the point X 2 = 2X on the X 2-axis and the 
point Xl = 2X on the Xraxis. All XlX 2 sample combinations 
that lie on this line have the given mean value. For example, in 
Fig. 64 any sample point lying on line AB, such as points (100,90), 
(98,92), (94,96), (88,102), and (102,88), has a mean of 95. 
Coordinates are given in order X 1X 2• In general, the plane of 
Fig. 64 may be covered with a sef-of parallel lines, such as line AB, 
anyone of which is the locus of all sample combinations having 
the same mean. Geometrically, the slope of all these parallel 
lines 'is such that the increase in X 1 is matched by the decrease in 
X 2, or vice versa, so that the mean of the two remains the same. 

The parallel lines that could be drawn perpendicular to lines like 
AB (for example, like GH) represent samples such that, whenever 
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Xl increases by a !;iven quantity, X 2 increases also by the same 
given quantity. Thus, on ~ine GH, if Xl is 94, X 2 is 86, whereas, 
if Xl is 96, X 2 is 88-as Xl has increased by 2, X 2 has also increased 
by 2. Of this latter group of sample combinations one set is of 
special interest, viz., that for which Xl and X 2 have the same.value, 
or, algebraically, X I = X 2. In Fig. 64 all samples lying on line CD, 
which passes through the origin and bisects the angle between 
the axes, have values of Xl = X 2: In fact, line CD is the locus 
of all-sample combinations in which Xl = X 2• But in addition, 
when X I = X 2, it also follows that X = Xl = X 2. As -a conse
quence, every point on lin{l CD has a pair of equal coordinates 
wllose value is the mean 'of those' samples lying on' tpe line 
perpendicular to CD through this point. This follows from the 
f~ct that on a line perpendicular to CD, such as AB, the mean is 
constant. 

As a result of these geometrical properties, the mean of any 
sample in the diagram can be found immediately as' fOll<;lWS: 
First locate the sample point on the diagram. Then proceed 
up or down from this point along a line perpendicular to the 
line CD until the intersection with CD is reached. The mean 
of the sample is either the Xl or the X 2 coordmate (for Xl = X 2) 

of this intersection point. For example, the sample point 
(84,106) lies on a line that intersects CD in a poi'nt whose X 2 

coordinate is 95. Hence'the mean of this sample is 95. . 
These properties of Fig. 64 also make it possible to find the 

interval to which any sample mean belongs. Thus suppose 
that -intervals are marked off on the X 2- (or ..¥1-) axis, the cor
r~sponding points on the line CD are found by vertical (or 
horizontal) projection, and lines perpendicular to CD are drawn 
t)lrough these points. Then to find the interval to which the 
mean of a sample belongs it is necessary to find merely the pair 
of lines between which the sample lies. For example, the 
line perpendicular to CD through the point on CD whose X 2 

coordinate is 95 is the line' AB, and the line perpendicular to 
CD through the point whose X 2 coordinate is 97 is the line A'B'. 
Any sample lying between these two lines will have a mean lying 
between 95 and 97. This geometrical property of Fig. 64 will be 
found very useful in deriving the distribution of sample means. 

Geometrical M ea'surement of the Variance and Standard Devia
tion of a Sample. Figure 64 may also be used to find the interval 
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within which the variance and standard deviation of a sample 
lies. First note that by definition the variance of a sample of two 
items is 

(Xl ::_ xy + (X2 - X)2 
0-

2 = 2 

With reference .to Fig. 64 this may be interpreted as one-half 
the square of the distance l from the point whose sample values are 
both equal to it to the point whose sample values are Xl and X 2• 

,For example, one-half the square of the distance from the 
point (102,88) .to the point (95,95) is the variance of the sample 
102,88. Likewise, qne-half the square of the distance from the 
point (108,82) to tM point (95,95) is the variance of the sample 
108,82,- a sample that has the same mean as 102,88 but a differ
ent variance. Similarly, one-half the square of the distance 
from the point (102,92) to the point (97,97) is .the variance 
of the sample 102,92, a sample whose mean and variance both 
are different from those of the sample 102,88. 

It follows from this that all sample points equally distant 
from the points representing their meaIlS have the same variances. 
Since the line CD is the locus of the points representing the 
means of the various samples,2 it may be concluded that all 
sample points equally distant from the line CD (in a perp.en
dicular direction) have the same variances. Thus, if intervals 
are marked off on some line perpendicular to CD and if lines are 
drawn parallel to CD through the e!}d points of these intervals, 
the intefval to which the variance of any sample belongs may 
be found oy merely noting the pair of lines between which it 
lies. For example, the line EF is 2 vI2 units distant from the 
line CD.3 All samples on this line therefore have variances 
equal to t(2 0)2 = 4. The line GH is 4 vI2 units distant from 
line CD, and all samples on this line have variances llqual to 16. 
The sample' 98,104 lies between these two lines and hence has a 
variance lying between 4 and 16. 

Since the standard deviation of a sample is equal to the 
square root of the variance, the above method of finding the 

1 It will be recalled that 'the distance between points (XI, Y I ) and (X 2, Y2) 

is 

2 See pp. 225-226. 
3 Each side of a cell is equal to 2 uxuts i therefore, the diagonal is equal to 

2 V2 units. 
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variance of a sample also automatically gives its standard 
deviation. Thus the lines EF and GH include samples whose 
standard deviations lie between 2 and 4. 

This geometrical method of finding the intervals to which 
the variance and standard deviation of a sample belong is very 
helpf:ul in deriving the sampling distributions of these two 
statistics. 

Geometric Measurement of the Sample Statistic viIi (~ - X). 
(J 

As will be pointed out later, when the standard deviation of a 

D .D 

c c 

• X.2 
a b 

FIG. 65. 

population is not known and the sample is ,sma\l, the statistic 

vJ.l (~ - ,X) is the best to employ in testing hypotheses and 
(J " 

determining confidence limits for the mean of the population. 
In this statistic, X represents the mean of the sample, X is the 
hypothetical value for the mean of the population, and if is the 
maximum-likelihood estimate of the standard deviation of 
the population. The relationship between the v-alue of if and 

the standard deviation of the sample is if = (J ~ N ~ l' The 

derivation of this maximum-likelihood value is given in the ~ext 
chapter. 

In Fig. 64, the statistic viIi (~ ~ X) may be interpreted 
(J 

geometrically as follo)Vs: First, in Fig. 65a and 65b, note that 
yIN (X - X), which for ~amples of 2 becomes Y2 (X - X), is 
equal to the distance from the' point h, whose coordinates are 
both equal to X, to the point m, whose coordinates are both 
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equal to X. * Again note that, for samples of 2, if = (J V2 and 
that this latter is the perpendicular distance from the sample point 
(Xl,X2J to the mean' point (X,X).l Hence, if the sample point 

lies above the line CD, as in Fig. G5a, the statistic yIN (~ - X) 
(J 

is but the cotangent of the angle l that the line connecting that 
point with the central point (X,X) makes with CD. If the sample 

. l' b 1 CD . F' 65b h th .. vIi (X - X)" pomt leS e ow , as mIg. ,t en e statIstIC --''--_---'-
(J 

equals minus the ~otangent of the angle that the line connecting 
the sample point With the central point (X,X) makes with CD: 

If lines are thus drawn through the central point (X,X) so 
that the cotangents of the angles they make with CD form 
regular intervals of, say .2, then to find the interval within 

which the statistic vN (~ - X) lies for any sample it is neces-
(J 

sary merely to note betweeh what pair of lines the sample point 
lies. For example, the line LL in Fig. 64 makes an angle with 
CD, the cotangent of which'is 2, and the line KK makes an angle, 
the cotangent of which is 1.8. Hence, the sample 120,106, which 
lies between these- two lines and above CD, has a value for the 

statistic vN (~ - X) that lies between 1.8 and 2 (its exact 
(J 

value is 1.857). Similarly, the lines L'L' and K'K' form angles 
with CD of which the cotangents" are - 2 and -1.8. Hence 
the sample 120,106, which lies between these lines and below 

CD, has a value for vN (~ - X) that lies between 1.8_and 2. 
(J 

SAMPLING DIST~UTION. OF THE MEAN 

The foregoing properties of the distribution of samples of 2 
from a normal population offer a ready means of obtaining the 
sampling distributions of various sample statistics. Consider 
first the sampling distribution~of the,mean. 

By 'definition, the sampling distribution of sample means 
is a description of the relative frequencies with which samples 

* cD: makes a 45-degree angle with the Xl-axis, since it is the locus of all 
points whose two coordinates are identical. Hence in ihe right triangle 
hlm the distance mh = v'2 times the 'distance ml. 

1 All angles are viewed as being measured counterclockwise from CD. 



230 ELEMENTARY THEORY OF RANDOM SAMPLING 

assume various mean values. In any concrete problem, such as 
is involved here, it will consist of a list of intervals together with 
the relative frequencies of samples whose means fall in those 
intervals. As pointed out above, it is possible from Fig. 64 
to find the interval within which the mean of any sample of 2 
lies. Hence to find the sampling distribution of the mean of 
two cases it is necessary only to layoff a given range of intervals 
for the mean and then determine from Fig. 64 the relative 
frequencies of samples lying in the various intervals. _ The exact 
procedure may be illustrated by the following example: 

Suppose it is desired to find the relative frequency or prob
bility of a mean lying between 95 and 97 (i.e., from 95 up to 
but not including 97). To do this, first proceed from the points 
95 and 97 on the X 2-axis to the points vertically above on the 
CD line. Draw lines through these points perpendicular to CD. 
These are the lines AB and A' B' of Fig. 64. The relative fre
quency, or probability, of samples having mean values lying 
betwe~n 95 and 97 is equal to the relative frequency, or proba
'bility, of samples lying between the lines AB and A' B'. This 
is equal to the probabilities of all cells c(_)mpletely included 
between these two lines; i.e., it is equal to'''-

535.6 494.5 421.7 \ 
100,000 + 100,000 + 100,000 + ,. . . , 

plus the prorated share of the probability of those cells only partly 
included between these two lines, that is, 

1 557.4 1 475.2 1 42L7 1 494.5 
'2 . 100,000 + '2 . 100,000 + '2 . 100,000 + '2 . 100,000 + . . . . 

The grand total is ;6~7go~' and this is accordingly the probability , 
of a sample having a mean lying between 95 and 97. 

When the procedure just described is applied to finding the 
probabilities of sample means lying within each of the class 
jntervals 75-, 77-, etc., the results are those shown in Table 26. 
From this table and from the accompanying chart it can be seen 
that the mean of this distribution is the same as that of the mean 
of the population and that its variance is less. As a matter of 
fact, numerical calculation. shows that the variance of this 
sampling distribution of the mean of two items is one-half the 
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variance of the population. Furthermore, the figure suggests 
that the sampling distribution of the mean has the form of a 
normal frequency curve. 

These indications of the numerical analysis are verified by 
algebraic analysis. 1 This sh9WS that in general the sampling 
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FIG. 66.-Comparison of a normal population with the sampling distribution 
of means (N = 2). Data from Table 26. 

distribution 'of the mean is normal in form, tliat its mean is the 
mean of the popUlation from which the samples have been 
drawn, and that its variance is l/Nth the variance of the popula
tion. The algebraic equation\' for ..the sampling distribution 
of the mean is thus ' 

where 

dP(X) = 1 ex [- eX - :&:)2J dX (1) 
dx v'21r p 20i 

d 
dx = v'N 

1 See Appendix to this chapter (p. 251). 
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T~LE 26.-COMPARISON OF THE SAMPLING DISTRmUTION OF THE MEAN 

WITH THE DISTRIBUTION OF THE POPULATION 

Lower limits Probabilities of 
of elass 

intervals . 
Sample mean Population 

(1) (2) (3) 

75-
! 

.00036 .00451 
77- .00093 .00714 
79- .00215 .01086 
81- .00456 .01585 
83- .00895 .02224 
85- .01619 .02999 
87- .02705 .03887 
89- .04177 .04839 
91- .05960 .05790 
93- .07856 .06658 
95- .09571 .07355 
97- .10773 .07808 
99- .11206 .07968 

101- .10773 .07808 
103- .09571 .07335 

,-

105- .07856 .06658 
107- .05960 .05790 
109- . .04177 .04839 
111- .02705 .03887 
113- .01619 .02999 
115- .00895 .02224 
117- .00456 .01585 
119- .00215 .01086 
121- .00093 .00714 
123- .00036 .00451 

SAMPLING DISTRIBUTIONS OF THE VARIANCE 
AND STANDARD DEVIATION 

The sampling distribution of sample variances gives the 
relative frequencies, or probabilities, of samples having various 
values for their variances. In numerical form, it lists certain 
intervals and records the relative frequencies of samples whose 
variances faU in these intervals. 

The geometrical properties of Fig. 64 permit as ready a deriva
tion of the distribution of the variances of samples of 2, as it 
did of the distribution of the means of samples. of 2. For, as 
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pointed out above, I'all sample poillts ~qually ,distant from the line 
cn (in a perpendicular <;lirectlon; have '"tUe same variances. 
Thus a set of lines can be dr~wn parallel to the line CD and by 
computing the relative frequency, or probability, of the samples 
falling between various pairs of lines the relative frequency, or 
probability, of a, sample having a given variance can be deter
mined. The procedure may be illustrated by an example. 

The sample 98,94 has a mean of 96 and a variance of 4. The 
point representin~ this sample in Fig. 64 lies on the line EF 
running parallel to line CD. According to the previous para
graph, all other sample points lying on the line EF have the same 
variance. The' sample 100,92 has a mean of 96 and a variance 
of 16. The point representing this sample in Fig. 64 lies on the 
line GH, also running parallel to CD. All sample points lying 
on line GH therefore haye a variance of 16. It also follows that 
all sample points lying between lines EF and GH have variances 
lying between 4 and 16. Furthermore, since all points on the 
line E'F' of Fig. 64 are the same distance from line CD as those 
on line EF, they also have. sample variances of 4, and likewise 
all points on the line G'H' have sample variances of 16. Hence 
the total set of samples whose variances lie between 4 and 16 
consists of all the samples lying between the lines EF and GH 
on the one hand and the lines E'F' and G'H' on the other hand. . . . 
The relative frequency, or probability, of a sample having a 
variance.between 4 and 16 is therefore the relative frequency, or 
probabi1ity, of a sample lying between EF and GH, plus the 
relative frequency, or probability, of a sample lying between 
E'F' and G'H'. As in the case of the means, this total probabil
ity may be computed directly from Fig. 64 by adding the prob
abilities of all the cells and sections of cells included between 
these two pairs of lines. The result in this particular case is 
found to be 0.20510. It is suggested that the reader check this 
by' carrying out the c~lculations himself.. , 

By repeated applications- 'of the foregoing pro'cedure, the 
probabilities of samples having variances lying between other 
class limits may readily be computed. The results are summa
riz!Jd in Table 27 and pictured graphically in Fig. 67. This 
rep~esents the sampling distribution of the variances of sampll:ls 
of' 2. Owing to the small size of the sample, the shape' of the 

1 See pp. 227-228. 
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distribution is unueual. A more common shape is shown by the 
distribution of sa.mples of 11, ,vhich also is illustrated in Fig. 67. 
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FIG. 67.-Effect of size of sample on the sampling distribution of variances. 

Algebraic analysis 1 shows that the sampling distribution of 
variances of samples of N has the following equation: 

I 

N-l N-3 

dP(u2) = N-2-(u
2
)-2- exp [- Nu

2
] du2 (2) 

N-l (N ...:.. 3)1.>N-io ,..-_~d2 
2 2 2 .\1 

For N greater than 2, this represents a curve\~hat\ starts at 0, 

rises to ~ peak at u2 = N ;. 3 d2, and approaches 0 again as u2 

goes to infinity. For small values of N the curve'is thus very 
skewed. For large values of N, however, the curve is more 
symmetrical and almost normal in form, the mean of the curve 
being approxi~ately -the variance of the p.opulation d2 and its 

standard deviation being d 2 ,Jl;. 
For small samples, the sampling distribution of the variance 

is thus .nonnormal, i!-nd use cannot be made of the normal 
probability tables in testing hypotheses and determining con
fidence limit~. It can be shown, however, that if the unit 

of measurement is taken as ~ times the variance of the population 

(that is, ~} then the distribution takes on the form of the x2 

l See Appendix to this chapter (p. 263). 
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TABLE 27.--8AMPLING DISTRIBUTION OF THE VARIANCE AND STANDARD 

DEVIATION OF SAMPLES OF 2 FROM A NORMAL POPULATION WHOSE 

d = 10 
(N = 2) 

Values of . 
Probability 

0: .,.' _- --- -----
0- 0- .22193 
2- 4- .20510 
4- 16- .17515 
p-- 36- .13820 
8- 64- .10078 

1_{}-I 100- .06790 
12- 144- .04228 
14- 196- .02432 
16- 256- .01291 
18- 324- .00632 
20- 400- .00285 
22- 484- . DOllS 
24- 576- .00042 

TABLE 28.--8AMPLING PISTRIBUTION OF VARIANCES AND STANDARD 

DEVIATIO'NS OF SAMPLES OF 11 FROM A NORMAL POPULATION WHOSE 

d = 10 
(N = 11) 

Values of 
Probability 

.,. .,.' 
--' ---. 

0- 0- .00008 
2- 4- .00248 
4- 16- .04847 
6;- 36- .22713 
8- 64- .36406 

10- 100- .25270 
12- 144- .08718 

" '14- 196- '- .01592 
16- 256- .00095 
18- 324- .00005 

.99902 
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distribution. More specifically, it can be shown that the 
0"2 NO" 2 

quantity d2/N = d2 has a sampling distribution that is of 

the form of the x2 distribution with n in the X2 equation e'qual 
to N - 1. Tables of the X2 distribution. can therefore be used 
in computing probabilities of various 'sample variances. This 
use of the x2 tables will be explained more fully below. 1 

The sampling distribution of the standard deviation of samples 
of 2 is found from Table 27 by taking the intervals 0-,2-,4-,6-, 
8-, the limits being the square root of the limits adopted-for the 
variance. The result is shown in Fig. 68. The figure also gives 
the distribution of the standard deviation for samples of 11. 

Samples 

P((T} 

o 
'U 

Distribution of stcmcfard 
deviations of samples of 
two ~ncf samples of eleven 

FIG. 68.-Effect of size of sample on sampling distribution of the standard 
deviation. 

The equation for the sampling distribution of the standard 
deviation is 

N-l 

dP(O") 
N-2 O"N-2 [N 0"2] exp - -- dO" 

N-3 (N - 3), N-1 " (}2 
2 2 2 . d 

(3) 

This equation is not used in practical analysis since it is easier 
to work with·the variance 0"2 and to use tables of the x2 distribu
tion as just explained. 

SAMPLING DlSTRIB~'f.ION OF V'N (~ - X) 
u 

The sampling distribution of VN (~ - X) gives the relative 
0" 

frequencies with which samples take on various values of this 
1 See pp. 2S4-289. 
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statistic. In numeri~al cases, it lists intervals of this statistic 
and gives the relative frequencies of samples belonging to these 
intervals. 

It was pointed out above that if a line is drawn through a 
sample point connecting it with the central point (X;X) the 

value of the statistic VN (~ - X) for the sample is equal to the 
(J 

cotangent of the angle that th~s line makes with CD if the 
sample point lies above CD or to minus the cotangent of this 
angle if the sample point lies below CD, all angles to be read 
counterclockwise. \ 

The relative frequency, or probability, of samples having 

values of yN (~. - X) lying between certain limits is accord-
(J 

ingly the relative frequency with which samples fall between 
the radii through the point (X,X) whose cotangents are equal 
to these limits. For example, in Fig. 64, the cotangent of the 
angle that LL makes with CD is 2.0, and the cotangent of the 
angle that KK makes with Cp is 1.8; also, the cotangents of 
the angles thatL'L' and K'K' m1tke with CD are -2.0 and -1.8, 

respectively. Hence, the samples for which yN (~ :.._ X) lies 
(J 

between 1.8 and 2.0 are the samples included between the 
lines LL and KK and lying above CD and the samples included 
between the Hnes L'L' and K'K' and lying below CD. Similarly, 

the samples for which yN (~ - X) lies between -1.8 and -2.0' 
- (J 

are the samples included between LL and KK and lying below 
CD and the samples included between L'L' and K'K' and lying 
above CD. Since various sample points are distribut_ed with a 
circular symmetry abQut the point (X,X),l it follows that the 
relative frequency of samples included between LL and KK and 
lying above CD is proportional to the angle between these two lines. 
More specifically, it is equal t9 the ratio that this angle bears to 
360 deg. Since in Fig. 64 angle LXD = 26.56 deg and angle 
KXD = 29.05 deg and hence ~he difference equals 2.49 deg, it 
follows that the relative frequency, or probability, of samples 
included between the lines LL and KK and lying above CD is 

I See pp. 224-225. 
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equal to ~.:~ = .0069. Owing to the symmetry of the pro~
abilities represented by Fig. 64 this is also the probability of a 
sample included between L'L' and K'K' and lying. below CD. 

Hence the probability of a sample having a value of VN (~ - X) 
(J 

between 1.8 and 2.0 is .0138; similarly, the probability of a sample 
having a value of that statistic between -1.8 and - 2.0 is .0138. 

0.030 

0.025 

0.020 

0.015 

0.010 

0.005 

\ 

023 
t 

FIG. 69.-A t distribution with N = n - 1 = 2 - 1 = 1. Data in Tabie 29: 

The sampling distribution VN (~ - X) can therefore be 
(J 

.readily obtained ,for samples of 2 as follows: Find the angles for 
which the cotangents are, say, 0.0, 0.05, 0.15, 0.25, 0.35, etc.; 
take the successive differences between 'these angles, and double 
the results; finally divide these results by 360. This quotient, 
for each successive interval, will be the probability of a .sample 

havi~g a value of VN (~ - X) lying between 0 and 0.05, betw~en 
• (J 

0.05 and 0.15, between 0.15 and 0.25, between 0.25 and 0.35, etc. 
Owing to the symmetry of the probabilities represented in Fig. 64, 

VN (X - X) 
the probabilities of negative values of tJ are the 
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• v'N c~ - X) 
TABLE 29.-SAMPLING DISTRmUTION OF THE STATISTIC " FOR 

u 
SAMPLES OF,Two FROM A NORMAL POPULATION 

(X = 100 and d = 10) 
1) 2 (3) 4) (5) 6) 

Cotangent of Angle inter- Twice angle Class inter-
angle with Angle with v.als, e,g., intervals vats in the Probabilities 

CD line CD line LL'i{K divided by statistio 360 deg. 

- .05 92.862} 
.00 90.000 5.724 .03180 - .05- .03180 
.05 87.138 

5.669 .03149 .05- .03149 
.15 81.469 , 

5.506 .03059 .15- .03059 
.25 75.963 

5 .. 253 .02918 .25- .02918 
.35 70.710 

4.939 .02744 .35- .02744 
.45 65.771 

4.580 .02544 .45- .02544 
.55 61.191 

4.215 .02342 .55- .02342 
.65 56.976 

3.846 .02137 .65- .02137 
.75 53.130 

3.493 .01940 .75- .01940 
.85 49.637 

3.167 .01759 .85- .01759 
.95 46.470 

2.867 .01593 .95- .01593 
1.05 43.603 

2.593 .01440 1.05- .01440 
1.15 41.010 

2.350' .01306 1.15- .01306 
1.25 38.660 -

2.132 .01184 1.25- .01184 
1.35 36.528 

1.936 .01076 1.35- .01076 
1.45 34.592 

1. 763 .00979 1.45- .00979 
1.55 32.829 

1.611 .00895 1.55- .00895 
1.65 31. 218 

1.475 • .00819 1.65- , .00819 
1.75 29.743 

1.355 .00753 1.75- .00753 
1.85 28.388 

1<238 .00688 ~.85- .00688 
1.95 27.150 ~ 

~.150 .00639 1.95- .00639 
2.05 26.000 

1.056 .00587 2.05- .00587 
2.15 24.944 

.980 .00544 2.15- .00544 
2.25 23.964 

.9J4 .00508 2.25- .00508 
2.35 23.050 -_ --- -

.850 .00472 2.35- .00472 
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'.../N(X - xi 
TABLE 29.-SAMPLING DISTRIIIUTION OF THE S'l'ATISTIC • FOR 

(j 

SAMPLES OF Two FROM A NORMAL POPULATION.-(Continued) 

(1) (2) (3) (4) (5) (6) 

Cotangent of Angle inter- Twice angle Class inter-
angle with Angle with vals, e.o., intervals vals in the Probabilities 

CD line CD line 
LLXK 

divided by st!ltistic 360 deg. 

2.45 22.200 
.785 .00436 2.45- .00436 

2.55 21.415 , 
.744 .00413' 2.55- .00413 

2.65 20.671 
.691 .00384 2.65- .00384 

2.75 19.980 
.642 .00357 2.75- .00357 

2.85 19.338 
.614 .00341 2.85- .00341 

2.95 18.724 
.568 .00316 2.95- .00316 

3.05 18.156 
.546 .00303 3.05- .00303 

3.15 17.610 
.505 .00280 3.15- .00280 

3.25 17.105 
.486 .00270 3.25- .00270 

3.35 16.619 -
.454 .00252 3.35- .00252 

3.45 16.165 
3\45-.432 .00240 .00240 

3.55 15.733 
,413 .00229 3.55- .00229 

3.65 15.320 
.389 . .00216 3:65- .00216 

3.75 14.931 
.370 .00206 3.75- .00206 

3.85 14.561 
.354 .00197 3.85- .0019.7 

3:95 14.207 
.339 .00188 3.95- .00188 

4.05 13.870 
.321 • .00178 4.05- .00178 

4.15 13.549 
.. 308 .00171 4.15- .00171 

4.25 13.241 
.295 .00164 4.25- .00164,. 

4.35 12.946 
.281 .00156 4.35- .00156 

4.45 12.665 

I .270 .00150 4.45- .00150 
4.55 12.395 

.257 .00143 4.55- .00143 
4.65 12.138 

.250 .00139 4.65- .00139 
4.75 11. 888 
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same as the probabilities of positive values. The sampling 

d ' t 'b t' f -v!Jtex - X) . th . I b IS rI U IOn 0 v IS us symmetnca a out zero. . ~ 

The calculations here indicated are carried out in Table 29 and 
the results pictured graphically in Fig. 69. 

Algebraic analysis shows that, in general, the sampling dis-

tribution of the statistic -v!N e~ - X) is of the form of the t 
~ 

(or Student's) distribution, with the n in the equation equal to 
N - 1. Foe saclpies of any size the equation for the t distribu
tion is as follows: 1\ 

(
n - 1), 

dP [t = -v!N (X - X)] = -2- . dt (4) 
if _ /- (n - 2) ( t2)n+l 

y n7r -2-' -! 1 + n 2 

where n = N - 1. 
As might have been inferred from the. numerical analysis, 

h 1· d' 'b' 'f -v!N (X - X). . d d f h t e samp mg Istn utlOn 0 v - IS m epen ent 0 t e 
~ -

Iiypothetical values assumed for the mean or standard deviation 
of the population and varies only with N, the size of the sample. 
For large values of N the curve is approximately normal with 
a mean of 0 and a variance approximately equal to 1. In these 
cases the normal probability table can be .used in place of the 
t tl;tble. 

SAMPLING DISTRIBUTIONS OF OTHER STATISTICS 

In estimating the -properties of a normal population the 

1· d' 'b' f h -v!N (X - X) d samp mg Istn utlOns 0 t e mean, . if ' ,an the 

variance (or standard- deviation) are the most'important. For a 
normal distribution is characterized by its mean and standard 
deviation and these are best"Bstimated oy the above sampling 
distribu tions. 

It is also possible to estimate the mean o( the population 
from the median of a sample, and in the absence of knowledge 
of the sample mean this would be the next best statistic. As in 
the case of the mean, the sampling distribution of the median 

1 See Appendix to this chapter (p. 266). 
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is normal, and its mean i~ the mean (= median) of the popula
tion. The standard error of the median, however, equals 

1~!3 d, '~hich.is about It times as large as- the standard 'error 

of the mean. It is this greater sampling error that makes the 
median less" efficient" than the. mean in setting up confidence 
limits for the mean (= median) of the population. For the 
confidence interval derived from the median will, for a given 
confidence coefficient, be It times larger than that derived from 
the mean and will therefore not give as good an estimate of the 
population mean, or median. . 

In instances where time and economy of effort are ,important, 
it is also possible to estimate the variance (or"standa'rd deviation) 
of a normal population from the sample range. 1 It has been 
found possible to de:dve the mean range, the standard error of 
the range, and the upper and lower .001, .005, .010, .025, .050, 
,and .100 points o~ the sampling distribution of the range for 
samples of 2 to 20 cases. 2 These data are reproduced In Table 
XIII of the Appendix. The unit for the table is the st~ndard 
deviation of the population, and the table ca:n..-thus be used to 
estimate the popUlation standard deviation from the sample 
mean. The procedure is discussed on pages 294;-2961 

The sample statistics v'7§";. and (32 are importa~t as measures 
of departure from normality. If the popUlation is normal, the 
sampling distribu~ions of these statistics tend to nOrInality with 
increasing size of the sample. Their means are 0 and 3, and 
their standard deviations are approximately y6/N and y24/N, 
respectively. Hence, if a sample is large, departures from 

~ormality may be tested by treating _ ~ and ~ - 3 as 
. v 6/N 24/N 

normally distributed variates. 
Because of the complexity of the exact formulas for the 

meal.)Jl .and standard deviations of the sampling distribuj;ions 
of v'7§";. and (32, R. A. Fisher3 suggests the use of certain ({k 

1 The range is the difference'between the largest and smallest cases in a 
sample. 

2 L. H, C. Tippett, E. S. Pearson, and H. O. Hartley have been mainly 
responsible for deriving-these data. See footnote to Table XIII in the 
Appendix. 

3 Statistical Methods for Research Workers, Appendix; Chap. III. 
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statistics" in place of the moments of a sample distributiol). and 
certain" g statistics" in place of the sample {3 statistics. The k 
statistics1 are ,defined as follows: 

1 
kl = N ~x 

~X2 

k2 = N - 1 

N 
ka = (N _ l)(N _ 2) ~x3, 

N , 
k4 = (N -, l)(N - 2)(N - 3) 

[(N - 1)~x4 - 3 ,(N ;. 1) (~X2)2J 

The g statistics bear the same relationship to the k statistics 
as the (3 statistics do to the sample moments, viz., 

For large samples the sampling distributions of the g statistics 
tend to be normal in form, with means of zero and standard 
deviations equal ~xactly to 

d
g 

= 6N(N -'1) 
1 (N - 2)(N - l)(N - 3) 

24N(N - 1)2 
dg, = (N -: 3)(N - 2)(N - 3)(N - 5) 

. The use of the sampling distribution of {31 and {32 or gl and g2 
to test departures from normality will be discussed in the next 
chapter. 

For small' samples, the sampling dis1{ributions of vi {31 and {32 
have been approximated by "fitting" Pearsonian curves havi'ng 
the same moments as those of the exact sampling d~stributions. 
For samples of 25 to 100, the 5 per cent and 10 per cent 
limits of the sampling distribution of vi {31 have been determined 

1 The mean values of the k's are the "cumulants" of the P9pulation. 
Cf. pp. 83-84. 
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approximately by P. Williams'! These are reproduced III 

Table X of the Appendix. 2 

It is interesting to compare the limits of this table with those 
obtained by the assumption that VJ3 1 .has a normal sampling dis
tribution with a mean of zero and a standard deviation of V6/N. 
For example, for samples of 100, the 5 per cent point given by 
the table is 0.389; while the assumption of a normal sampling 
distribution gives 0.403. This suggests that for samples of 
100 or more a normal sampling distribution gives fairly good. 
results. 

Approximate values for the upper and lower 1 per cent and 
5 per cent points of the sampling distribution of 132 have also 
been computed3 and are reproduced in Table XI of the Appendix. 4 

By comparison, the 5 per cent points derived from the. assump
tion that 132 is normally distributed, with a mean of 3 and a 
standard deviation of V247N are 2.19 and 3.81 for samples of 
100 and 2.64 and 3.36 <for samples of 500. The table values 
are 2.35 and 3.77 for samples of 100 and 2.57 and 3.37 for samples 
of 500, which shows that for samples of 500 or more'the assump
tion of a normal sampling distribution gives results that would 
appear to be fairly reliable. For samples of 100, the assumption 
of a normal sampling distribution gives a lower \limit that is 
somewhat below that given by the table. 

For practical use, Tables X and XI of the Appendix have 
been put in chart form. 5 Th~s permits ready int~rpolation for 
values not listed in the tables. 

To test departure from normality with respect to kurtosis, 
tables have also been constructed for the sampling distribution 
of the statistic 

A.D. (calculated from the mean) 
a= . 

(J' 

Whereas the sampling distribution of 132 is quite skewed for 
N < 200 and the accuracy of the tabled probability lev.els for 

1 "Note on the Sampling Distribution of v{i;, where the Population Is 
Normal," Biometrika, Vol. 27 (1935), pp:"269-271. 

2 See p. 480. 
3 PEARSON, E. S., "A Further Development of Tests for .Normality," 

Biometrika, Vol. 22 (193D-1931),-pp. 239-249. 
4 See p. 480. 
5 GEARY, R. C., and E. S. PEARSON, Tests of Normality, pp. 13-15. 
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{32 cannot be determined without further investigation, the 
approximation involved in the calculation of probability levels 
for a is very close, eveI?- ,"hen N is as small as 10. * For this 
reason the use of a in place of f32 to test existence of kurtosis "is 
recommen~ed. Probability levels for a have been ,vorked ouV 
and are given in Table XII of the Appendix. The use of this 
table will, be illustrated in the next chapter. 

SUMMARY 

The fundamental hasis of any sampling analysis consists 
in a comparison of a sample with the set of all possible samples 
that may be derived fro~ some hypothetical population. The 
basis of the comparison will vary from problem to problem. The 
present chapter, which is concerned with sampling from a normal 
population, disyussed four principal sample measuremen!s that 
might be used to make this comparison. These are the mean of 
the sample, the variance and standard deviation 01 the sample, 

and the sample statistic VN (~ - X). 
(J 

When all possible samples from a normal population are 
considered with reference to their mean values, it is found that 
the set of sample means forms a normal frequency distribution 
the mean of which is the mean of the population and the variance 
of which is the variance of the population divided by N. This 
distribution of the s;1mple means is called the" sampling distri
bution of the mean." It is to be noted that its shape and position 
depend on ,the values of the population mean and variance. 

When the set of all possible samples is described in terms 
of the variances of the samples, it is found that the set of sample 
variances make up a skewed frequency distribution, which, if 
0 2

/ N is taken as the unit of measurement, is of the form 'Of the 
X2 distribution, with n in the x 2 formula equal to N - 1. This 
is the "sampling distribution of the variance." The shape 
and position of this distribution depends only on the value of 
the population variance and is independent of the value of the 
population mean. If the sample is large, say 30 or more, the 

* See ibid., p. 2. 
I GEARY, R. C., "Moments of the Ratio of the Mean Deviation to the 

Standard Deviation for Normal Samples," Biometrika, Vor. 28 (1936), pp. 
295-307. 
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sampling distribution of the variance is almost normal in' form, 
the mean of the distribution .being 'approximately equal to the 
variance of i:he population and the variance of the distribution 
being equal to the variance of the population times 2/N. 

When tne set of all possible samples "is described in tenus of 

the sample values of the statistic vN (~ - X), it is found 
. U 

that these sample values make up a frequency distribution which 
is of the form of the t distribution, with n equal to N. - 1. This 

is the "sampling distribution" of the ,statistic yIN (~ - X). 
U 

Since the form and ~hape of the t distribution depend only 
on the value of n (here equal to N - 1), it follows that the 

1· d' t'b' f yIN (X - X). . ddt f h samp mg IS n utlOn 0 • IS m epen en 0 t c 
. U 

valu~s of the population mean and variance. For large samples, 
say 30 or more, the t distribution is almost normal, with a mean 
of zero and a standard deviation of approximately unity . 

.f,.ttention was also called to the sampling distributions of such 
statistics as the median and the rangej{31 and {32, gl and g2, 
and A.D./O'. 

APPENDIX 

It is the purpose of this appendix to derive the sampling 
-yiN X - X 

distributions of the mean, variance, and ( v ) of a 
0' 

sample of 2 cases and a sample of N cases from a normal popula;
tipn. The argument will be the same as in the text but will 
be algebraic and hence general, instead of arit~m~tical and 
particular. 

SPECIAL CASE N = 2 

Distribution of All Possible Samples of Two from a N orm~l 
Population. Derivation. Let the first case in a sample be re~re
sented by Xl and the second by X 2• Since the population is 
normal, the probability of X I lying in the interval X I to X I + dX I 
• J 

IS 

1 r (Xl - X)2] 
dP(Xl ) = d vz:;;: exp ~ - 2d2 dXI (1) 
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and the probability of X 2 lying in the interval X 2 to X 2 + dX 2 is 

• 1 [(X2 - X)2] 
qP(X2) = d ,,/27r exp - 2d2 dX2 (2) 

If samples of two are drawn at random from the population, 
the law of large numbers suggests that the relative frequency 
with which samples will have one case in the interval Xl to 
Xl + fix l and ihe other in the interval X 2 to X 2 + dX2 may be 
predicted by the,)oint probability of Xl and X 2, that is, by the 
product of Eqs. (1) and (2); thus 

dP(X X) = _1_\ [_ (Xl - X)2 + (X2 - X)2] dX dX' (3) 
1, 2 d 227r_ exp I, 2d2 1 2 

Equation (3) is the {nathematical formula for the distribution of 
all possible samples of two from a normal population. It is the 
model that any large number of actual random samples of two 
will tend to approximate. 

Geometrical Properties. If values of Xl and X 2 for any sample 
are taken as the c90r~inates of a point in a plane, the?- the set of 
all possible samples will be represented by a cluster of points in 
this plane; and their distribution over the plane will be given by 
equation (3). The factor dX}dX2 of this equatioI). will represent 
the area of the plane containing the specified sample values and 

_1_ [_ (Xl - X)2 + (X2 - X)2] 
d221l' exp 2d2 ' 

will represent the "density" of sample points in this area. Since 
the density factor increases as X 1 and X 2 approach X, it follows 
that the greatest concentration of sample points is in the 
immediate neighborhood of the point X,X. Furthermore, since 

(Xl - X)2 + (X2 - X)2 
.,. 

measures the square of the distance from X,X it follows that all 
sections of the plane equally distant from X,X will have the same 
density of points and that the density decreases as the distance 
from X,X increases. The distribution of all samples of two thus 
has a circular symmetry about the central point, X,X. 

The point X,X, it will be noted, lies on the line through the 
origin that bisects the angle between the axes. This line (line CD 
of Fig. 64, or Figs. 65a and 65b, if projected to pass through the 
point where Xl = 0 and X 2 = 0) is the locus of all samples that 



248 ELEMENTARY THEORY OF RANDOM SAMPLING 

have two equal values and thus has the equation Xl = X 2 or 
Xl - X 2 = o. _ 

Now the mean of any sample (N = 2) is (Xl + X2)/~ = X. 
But this is the equation of a line that cuts the Xl axis at2X and 
the X 2 axis at 2X, and is perpendicuJar to the line CD, cutting 
that line at X,X. Such a line is line AB of Fig. 64. All points 
on line AB have the same mean. It then follows that the mean 
of any sample can be found by finding where the line through it, 
perpendicular to CD, cuts CD. Hence variation in mean values 
from sample to sample can be represented by variation along CD. 

Also, since the variance of a sample X IX 2 is by definition 

(J2 = [(Xl - X)2 + (X2 - X)2]/2 

and since (Xl - X)2 + (X2 - X)2 represents"the square of the. 
distance from the sample point X I ,X2 to the mean point X,X, it 
follows that all sample points equidistant from their mean points 
have the same variances. But all mean points X,X lie on the 
line CD; hence all points equidistant from line CD have the same 
variance. I . Loci of equal variances are accordingly lines, like lines 
EF and E'F' of Fig. 64, that are parallel.,..to-line CD. Variation 
in sample variances is thus measured by ~ariation perpendicular 
to these lines. \ 

Distribution of All Possible Samples in Terms of Their Means 
and Variances. From the foregoing analysis, it follows that the 
plane of Fig. 64 can be divided into cells indicatIng variation in 
X and in (J2 or (J, in lieu of cells indicating variation in X I and X 2 • 

This might be done as follows: 
Select any dX I interval on the X I axis and draw perpendicular 

lines through each end of this interval; likewise select any dX 2 

interval on the X2 axis (equal to dX!) and draw lines through 
the end points perpendicular to the X 2 axis. Let these two pairs 
of parallel lines mark out the cell abed of Fig. 70. The top and 
bottom of this cell will be dX 2 \ and the sides dX 1. This cell ·is 
like cell abed in Fig. 63 on page 222. Next draw lip.es through 

. a and e perpendicular to CD. These will mark off an interval on 
CD that will equal dX V2; since X = (Xl + X 2)/2, 

dX = (dX1 + dX2)/2, 

and because dX l = dX 2, dX = dX l or dX2• Hence, in Fig. 70, 

1 See p. 247. 
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fg =' ab V2 = dX 2 V2 = dX 0. Finally, draw lines through 
band d parallel to CD,and call the perpendicular distance between 
them dO'V2; the variance, it will be recalled from page 227, 
equals one-half the square of the distance from CD. 

From the cell abed there has thus been derived the new cell 
efgh of size dX 0 au V2 = 2dXdO'. When the whole of the 
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FIG. 70. 

plane has been cut up into cells like efgh, the plane Will become a 
grid based on X and 0' intervals instead of X 1 and X 2 intervals. 

In, Eq. (3) the factor that measures the variation in density of 
sample points from one part of the plane to the other is the 

quantity 1 [(X 1 - X:)2 + (X 2 - X:)2] But the 
d22?r exp - 2d2 • • 

numerator of the exponential can be evaluated as follows: 1 

1 For Nrr2 = 2:d2 - NC2, in which d = Xi - X and C = g - X. This 
is merely a version of the ': short formula," for finding the standard deviation. 
In this application, it is to be remembered, N = 2. 
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(Xl - X)2 + (X2 - X)2 = (Xl - X)2 + (X2 - X)2 + 2(X - X)2 
= 20"2 + 2(X - xy 

This indicates that it is possible also to measure the variation in 
density of sample points in terms of X and IT. 

This now permits the complete expression of the distribution of 
all samples in terms of X ,and 0". For from the foregoing it 
follows that the probability of a sample having a mean lying 
between X and X + dX and a 0" lying between 0" and 0" + dO" is 
equal to the density factor for the areas containin~- the specified 
values of X and 0" times the size of the area. The density factor 

1 [2IT2 + 2(X - X)2] 
is d

2 
~ exp - 2d2 • The area factor is double 

the area of square efgh in Fig. 70; i.e., double 2dXdO" or 4dXdIT. 
The doubling of the area of efgh results from the fact that there 
is another square, e'f'g'h', of the same size.on the opposite side of 
line CD that also contains sa:rr;tpl~s having the same mean and 
standard deviation as samples in square efgh. Since prob,abllity 
equals density factor times area, it follows that the probability of 
a sample having an X between X and.X ]::AX and a 0" bet\veen 0"' 

and 0" + dO" is equal to /' 

[ - -] \ 
dP' (X- --':\- = _1_ _ 20"2 + 2(X - X)2 4dw.J 

,IT) d22Jr exp 2d2 AUO" 

1 [2(X - XY] - 2 0 [2IT2] 
= .y2Jr d/V2 exp - 2d2 dX' d .y27r exp - 2d2 dO" 

(4) 
or, since 20"dO" = d0"2 

dP(X- ) 1 [2(X - :&:)2] dX- V2 
,IT = .y27T 0"/.y2 exp - 2d2 • O"d .y2; 

exp [ - ;~: ] d0"2 (4') 

f 

Equation (4') is the equation for the distribution of all sample 
points in ter.ms of their means and variances. 

Distribution of All Sample Means. Equation (4) gives' the 
probability of a sample falling in either square efgh br square 
e'f'g'h' of Fig. 70. It is the probability of a sample naving a 
mean between X and X + dX and a standard deviation between 
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u and u + du. To find the probability of a sample having a mean 
between X and X + dX and a standard deviation of any value, 
it is merely necessary, by the addition theorem, to sum probabili
ties like Eq. (4) for all values of the standard deviation. This 
can be done with reference to Fig. 64 by summing up the prob
abilities of all'cells lying between AB and A'B'. Algebraically 
this 'sum is found by integrating Eq. (4) with respect to (J'. Thus 

dP(X) = 1 ex [_ 2(X'::_ XY] dX r '" 2 0 
v21roiV2 P 202 )0 ov/21r 

exp [ - ;~:1 du 

But the integral is of the form 

2 -- e-z2
/ 2 dz f '" 1 . 

, 0 V27f 

where z = V2 u /0 and is equal to 1, since it is double one-half 
the area under the stand:ird normal curve. Hence 

dP(X) = 1 ex [_ 2(X - X)2] dX 
y'2; 0/y2 P 202 

1 [ex - X) 2] -' 
= Ox y"-2; exp - 2ox2 dX (5) 

i~ which Ox = 0/0. 
This shows that, for a normal population, the distribution of 

means of samples of two is normal in form with a mean equal to\ 
the mean of the population 'and a variance equal to the variance 
of the population divided by two. 

Distribution of All Sample Variances. The sam~ process may 
be used to find the distribution of all sample variances. In 'this 
instance, the probabilities of all cells lying between lines GH and 
EF and lines G'H' and E'F,,' are summed. Algebraically the 
distribution is found by integrating (4') with reference to X. 
Thus 
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But the integral gives the total area under the normal curve and 
thus equals 1. Hence 

1 [2cr
2

] dP(cr 2) = --- exp - -2 dcr2 

cro Y7r 20 
(6) 

If x2 is s.et equal to 2cr2
/ 02, and it is noted that -yI; = .( -t) 1, 

this becomes 

which shows that for samples of two from a normal popUlation 
the sampling distribution of 2cr2/ 02 has the form ofax2 distr~bu
tion with n = 2 - 1 = l,1 

Distributio~ of All Sample Values of t = y2 ( ~ - X). To 
cr . 

find the distribution of sample values of t = Y2/(~ - X)", first 
(]" 

note that by definition if = cr ~N ~ 1 or when N = 2, if = cr 0. 
x-x ----- - -Hence for N = 2, t = ---, cr 2t2 = (X, - X)2 and crdt = dX. 

cr 
Substituting 'these values in (4') gives \ 

cr [cr
2
t2] y'2' [cr

2
]' dP(t,cr) = exp -:- -2 dt· exp -"2 dcr2 

y27r'cr v'2 d cro y27r 0 

Combining terms yields 

dt 1 [cr
2 

] dP(t,cr) = -; . 0 2 exp - 02 (1 + t2) dcr2 

which may be put in the form 

dP(t,cr) = 7r(1 ~ 12) exp [ - ~: '(1 + t2) ] d [~: (1 + t2)1 
T.o get the distribution of t, integrate this for all values of cr2 

-from 0 to 00. Thus, 

dP(t) = 7r(1 ~ t2) 10" e-Y dy, where y = ~: (1 + t2
) 

1 Cf. equation for the x2 curve, page 111. 
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But the integral equals -e-lI ]0'" which equals 1. Hence 
dt • 

dP(t) = 71"(1 + t2) 

which is seen to b~ of the form of the t distFibution with 

n=N-1=2-1=1. 

Hence v'2(~ -;- X) is distributed like t with n = 1. 1 

THE GENERAL CASE N > 2 

Before proceeding to the general case, it will be well to prepare 
the ground by reviewing several mathematical f~nctions and 
relationships. -

N:"dimensionaZ Geometry. Those who have had coordinate 
geometry will remember that a linear equation in two variables 
may be represented by ~ straight line drawn on the coordinate 
plane. - If the equation is put in the form aX 1 + bX 2 + c = 0, 
-c/b is the X 2 intercept, ':_c/a is the :Xl intercept, and -alb is 
the slope of the line ·with. the X I-axis. The II direction ratios ,j 
of the line, i.e., factors that are proportional to the cosines of the 
angles the liIie makes with the X l - and X 2-axis, are -a and b. 
Thus a line that is perpendicular to aX 1 + bX 2 + c = ° would be 
one whose slope equals +b/a and whose direction ratios are a 
and b. In particular, a line through the origin that made equal 
angles with. the axes would be Xl -. X 2 = 0, and a line perpen
dicular to 'this line would be Xl + X 2 = c. Similarly, in three 
dimensions, a linear equation of the form 

aXl + bX2 + dXa + c = ° 
represents a plane, and a, b, d are the direction ratios of a line 
perpendicular to the plane. If this is generalized, it may be said 
that a linear equation of the form 

aX l + bX2 + . " .. + kXN + c = 0 

represents a hyperplane; -or flat space, in N dimensions and 
a, b, . • • , k are the direction ratios of a line perpendicular 
to this hyperplane. Just as a line in a two-dimensional plane 
is said to have one dimension (i.e., length) and a plane in thre~ 

• 1 Ct. equation for the t distribution, p. 111. 
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dimensions is said to have two dimensions (i.e., length and 
breadth), a hyperplane in N dimensions is said to have N - l 
dimensions. It is to be noted that this use of N-dimensional 
space is merely a convenient way of generalizing certain algebraic 
relationships that have concrete counterparts in two and three 
dimensions. There can be no real N-dimensional figures. 

This generalizatibn of two- and three-dimensional relation
ships may be extended to other figures. Thus, in two dimen
sions, (Xl - a)2 + (X2 - b)2 == r2 is the equation for a circle 
with center at (a,b) and radius equal to. ri in three dimensions, 
(Xl - a)2 + (X2 - b)2 + (Xa - C)2 = r2 is a sphere with center 
at (a,b,c) and a radius equal to r. If these relationships are 
gener:alized, it may be said that 

(Xl - a)2 + (X2 - b)2 + ... + (XN - k)2 = r2 

represents a hypersphere in N-dimensional space with center at 
(a,b, ... k) and radius equal to r. The circumference of a 
circle is of one dimension (being only a line), the surface of a 
sphere is of two dimensiOns, and the surf!tce of a hypersphere 
in N dimensions will be of N - 1 dimensions. These N-dimen-

~ 

sional notions will be useful in the analysis that follows. 
The Gamma Function. The integral 

T(m) = !a" r"xm
-

l dx, (7) 

is known as the It gamma function." IntegratIon by parts shows 
--that the integral on the right equals 

[--e-"xm-1]:;o + 10 '" e-"(m - l)x(m-l)-l dx (8) 

But the first term of Eq. (8) equals 0 when x = 0 and also when 
x = 00 and the second term is seen to be equal to ('fl'!' - l)r(m - 1). 
Hence we have the relationship. 

rem) = (m - l)r(m - 1) J (9) 

By Eq. (9), rem - 1) = (m - 2)r(m - 2), etc.; therefore, if m 
i,s a positive integer,! 

T(m) = (m - l)(m - 2)(m - 3) . " . 1 == (m - I)! (10) 

1 The last term will be rei) = !a" e-' dx = [-e-·]O' = eO = 1. 
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Equation (10) holds f9r positive integral values of m. For 
fractional values of m, it is taken as the definition of m! Thus, 
in general, m! is defined by 

m! = r(m + 1) (10') 

In statistic;al theory, ret) is of particular interest; for if m is 
set equal toi in Eq. (7), it becomes 

ret) = 10" e-"x-i dx 

By setting x =\y2/2k2, this may be put'in the form 

(1) roo y' ( 2)-1 ( 2) r 2 = Jo e -Zk' ik2 d ik2 
_ !.. -::. k V2 2y d - e --- y 

• 0 Y 2k2 

-v'2 1o'" y' = - e -Wdy 
k 0 

If the right member is multiplied by .y21r/.y21r, this becomes 

r - = 2 .y 1T -- e 2k'dy (1) -!o '" 1 _x: 
2 0 ky'2; 

But the integral is recugnized as the sum of half the 
a normal frequency curve and is thus equal to t. 
Eq. (11) reduces to l 

r(t) = -v'; 
In conclusion, it may be noted that 

(11) 

area of 
Hence, 

(12) 

is known as the "incomplete gamma-function." Tables of thiS 
function have been comp~ed by Karl Pearson and his staff and 
have been published by the Cambridge University Press. 

Distribution of All Possible Samples. Derivation. The first 
step in deriving the sampling distribution of means, variances, 

1 The integral r "" e-Y2 dy can be evaluated without making use of knowljo. 
edge of.the normal curve. See, for example, John F. Kenney, Mathemat£C8 
of Statistics (1939), Part II, pp, 35-37. 
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etc., is to obtain the derivation of all possible samples of N 
from a normal population. This may be accoIPplished by direct 
application of the multiplication theorem. 

'Phe probability of a case lying between X I and X I + dX I is 

(13) 

Similarly, the probability of a case lying between X 2 and X 2 + dX 2 

is 
1 [-(X2 - X)2] 

dP(X 2) = 0 -V21!' exp 202 dX2 (13') 

and the same sort of equation holds for the probability of X a, 

X 4, ••• ,XN • 

If samples of N are drawn at random from an infinite normal 
population, the law of large numbers sugge'sts that the relative 
frequency, or probability, of a sample in which one case lies 
between X I and X I + dX 1, another between X 2 and X 2 + dX 2, a 
third between X 3 and X 3 + dX 3, etc., will be predicted by the 
joint probability of Xl, X 2, X 3, ••• , X N , that is, by 

dP(X l , X 2, ••• ,Xli) = 

J exp [- ~(Xi - X)2] (dX l )(dX2 ) •• ~ (dXN ) (14) 
(0 2'n')N 202 

Equation (14) is the equation for the distribution,'of all possible 
samples of N from a normal population and is the model that' 
any large number of samples of N will tend to approximate. 

Geometrical Representation and Properties. If the sample 
values of Xl, X 2, ••• ,XNarerepresented by a point in N-dimen
sional space with coordinates Xl, X 2, ••• , X N , then Eq. (14) 
represents a cluster of sample points with center at X, X, X, . . . 
X (see Fig. 71a). 

Geometrically Eq. (14) says that in any N dimensional cell \ 
whose sides extend from XI to X I + dX 1, X 2 to X 2 + dX 2,' 

X N to X N + dXN the density of the sample is given by 

1 ex [_ ~(Xi ~ X)2] 
(0 -V2'n')N p 202 

and the probability of a sample falling in this cell is equal to the 
product of this density factor times the volume of the cell, viz., 
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...__ ... 
. . : : .. :;':": .. '; .:~,,,<·rX.X.x) 

.' :····:~·)WW~·(·.:.:·:: X2 

FIG. 71a. 

FIG.71b. 
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dX 1, dX 2, dX 3 • • • dX N. From this interpretation it follows 
that the density of sample points is the greatest when Xl, X 2, 

... ,._XN all equal X, that is, when Xl, X 2, .. '. ,XN,alllie at the 
center of the cluster. Since 2;(Xi - X)2 equals the square of the 
distance of a sample point from the center point X, X~ . . . ,X, 
Eq. (14) also shows that the density of sample points is constant 
for all cells lying on a hypersphere with center at X, X, .. ' . , X 
and radius equal to V 2; (Xi - X)2, 

I 
I I 
I I 
1/ _______ ..i 

FIG. 72. 

I 
I 

I 

The center point X, X, ... ,oX lies on the line OM, Fig. 71b, 
through the origin whose coo:t:dinates are equal. All samples with 
identical values lie on this line. TJ;le mean of any sample is 

Xl + X 2 + Xa + 0 •• + X N = X 
N 

For a given value of X this defines a hyperplane that is perpen
dicular to the line OM since its direction ratios are all equal. 
In other words, all samples that have the same mean lie on a plane 
that is perpendicular to line Ofr[ and cut .this line, in the sample 
point X, X, . .. ,X. It follows that variation in the mean of a 
sample can be represented by variation a.long the line OM. 
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~(X· - X)2 
The variance Df a sample is- 0-2 = tN' Thus N 0- 2 

represents the square of 'the distance of a sample point from the 
point lyi~g on OM whose coordinates are all equal to the mean 
of the sample. All samples with the same variance thus lie/on 
a hypercylinder whose axis is the line OM. It follows that 
variation in the variance of a sample can be represented by varia
tion in the square of the perpendicular distance of a sample point 
from the line OM. 

Distribution of All Possible Samples in Terms of Their Means 
and Variances. It is \mggested by the foregoing' analysis that 
the distribution o! all possible samples may be given in terms 
of the means and variances of the samples provided that the 
proper element of volume is found. As indicated above, the 
probability of a sample is the same for all "cubical cells" lying 
on the surface of a hypersphere, the probability being propor-

tional to exp [ -1:(~~2- X)2} If ~(Xt - X)2 is set equal to 

S2, this means that the density of sample points is constant 
throughout a shell with center at X, X, . . . ,X, radius equal to 
S, and thickness equal to dS. But1 

~(X; - X)2 = ~(Xi - ~)2 + N(X - X)2 

= Nd2 + N(X - X)2 

Hence the pr9bability of samples for all cells lying in a given 
shell is proportional to 

[ 
N0-2] [-N(X" - X)2] 

exp - 2d2 exp 2d2 

, 
that is, to the product of a function depending on the variance of 
a sample by a function depending on the mean of the sample. If 
the shell in question is cut by a",hyperplane through the point 

/... - - . 
X, X, ... , X on OM and perpendicular to OM and another 
th'rough the point X + dX, X + dX, ... , X + dX and also 
~erpendicular to OM, these planes will cut off a shell of one less 
, 
i 1 This is merely a "short" equation for obtaining the sum of the squares 

of the deviations from the mean of a sample by finding the sum of the squares 
ot the deviations from an arbitrary origin (here the mean of the population) , .-
and the difference between the sample mean and this origin. 
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dimension 1 throughout which the density of sample points con
tinues to be proportional to 

[ 
Nu2] [-N(X - :&:)2] 

exp - 2112 exp 2112 

Within an error dependent upon infinitesimals of higher order, 
this second shell may be approximated by a "rectangular" shell 

whose ,inner radius is V l:(Xi - Xy = VN u, whose outer 
radius is VN (u + du), and whose width is dX (see Fig. 74A, 

I I 
II _______ .Y 

FIG. 73. 

I 
I 

I 

-; 
/ 

B, C).2 The proportionate frequency of points in this second 
shell will be approximated by the product of the density factor 

[ 
-Nu2] [-N(X - :&:)2J 

exp 2d2 exp - 2112 . 

1 In three dimensions, the first shell is a true shell, the second is a "ring!' 
with width approximately equal to dX and thickness equal to du (see Fig. 
74A, B, C). 

2 The argument is thoug.ht out in three dimensions but is generalized to 
N dimensions. The diagrams illustrate the. three-dimensional argument. 
Figure 74A shows half the original shell. Figure 74B shows the rectangular 
approximation. Figure 74C shows that the areas of the cross sections are 
practically the same, although of different shapes. 
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times the -volume of the shell, or some factor proportional to 
this volume. This relative frequency.will represent the relative 
frequency, or probability, of all points whose means lie between 
X and X + dX and whose standard deviations lie between u 
and u + du. It wql thus give an expression for the distribution 
of all possible samples in terms of their means and standard 
deviations. 

Since the radius of the shell in question- is proportional to u, 
its volume will be proportional to (U)N-2 dO" dX. For a hyper
plane of N dimensions will intersect an N-dimensional hypersphere 
in another hypersphere of N - 1 dimensions (e.g., a plane will 
intersect a sphere in, a circle), and the generalized surface area 

Q 
A B c 

FIG. 74. 

of the latter will be .proportional to the radius raised to the 
(N - 2)th power. For example, the surface of a three-dimen
sional sphere is proportional to r2 and the circumference of a 
circle to r. The total volume will equal this surface area multi
plied by the width of the shell dX and its thickness dO". Multi
plying the 'volume of the shell by the density fact<;>r thus gives 
the relative frequency of the samples lying in the shell as pro
portional to 

uN - 2 exp [ -2~:2] ex~ [ -N(~d: X)2] du dX 

du2 

But du2 = 20" du or du = _. therefore, the above may be. 
2u' 

written 
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Thus it is to be concluded that the relative frequency of a sample 
having a mean lying between X and X + dX and a variance 
lying between CT2 and CT2 + dCT2 is 

_ [-N(X - X)2] _ N-3 [-NCT2] 
dP(X,CT2) =K exp 2d2 dX(CT2) 2 ex'p 2d2 dCT~ (15) 

where K is some constant independent of CT2 and X. 
Distribution of All Sample Means. If CT 2 is given a particular 

value, Eq. (15) gives the distribution of sample means; i.e., it 
gives the relative frequencies of samples with different mean 
values, but all the same CT 2• It shows that these relative fre
quencies are proportional to 

[
-(X - :&:)2] dX 

exp 2d2/N • 

which is obviously the form of a normal frequency distribution 
with mean at X and variance equal to d2/N. It also shows 
that the form of the distribution is the same no matter what 
the value of CT2 chosen. In other words, the distribution of 
sample means is independent of the value of the sample variance. 
Hence, if the relative'frequenci~s are sumrn'ed for all values of 
CT 2, the relative frequencies of various mean values will be given 
in general by 

dP(X) = Kl exp [ -~~2/N :&:)2] dX 

To obtain K 1, integrate the expression above from - 00 to + 00 

and set it equal to 1, the total frequency. Thus 

1-.... Kl exp [- (~2/;)2] dX = 1 

or setting y = X .-~ and noting that dy = ~~_, 
d/vN d/v N 

y' 

d y'2; f" e-"2 
. /- Kl . /- dy =,1 
vN -00 v 2'1l' 

But the integral is obviously the area under a normal curve of 

unit variance and hence is 1. Thus Kl = . ICC 1 V . Hence 
v 2'1l' d/ N 
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- 1 [ - (X - X) 2] -
dP(X) = v'27r d/v'N exp 202/N dX (16) 

which is the distribution of aU'sample means. 
Distribution of All Sample Variances. If X is given a particu

lar value, Eq. (15) gives the distribution of sample variances, 
i.e., the relative frequencies of samples with different 0-2'S, but all 
the same X's. It shows that these relative frequencies are 
proportional to 

(0-2( ;3 exp [ ~~u2] d0-2 
and thus indicates that the distribution of sample variances is 
independent of the value of the sample mean. Hence, if the 
relative frequen'cies are summed for all sample mean values, the 
relative frequencies of various variances will be given in general 
by 

dP(0-2) = K2(r12(;3 exp [-=-2~:2] d0-2 

To obtain K 2, integrate this expression from 0 to + 00 and set it 
equal to 1, the total frequency. Thus 

['" N-3 [N2] Jo K 2(cr 2)-2- exp -2(j20- dcr2 = 1 

But if Ncr2/d2 is set equal 'to X2, this may be put in the form 
N-l N-l 

(d2)-Z-2-Z-K2 h'" e-t (X2)N:;3 d(X2) = 1 
!!......1 0 2 2 N 2 -

But the integral equals r (N ;- I} therefore, 

N-l 
N-z-

K2 = N 1 ( \.) N 1 
2-2-r N;- 1 (d2)-2-

and 
N-l N-l N"-2 (0'2)-2- , [-N0-2] 

dP«(]'2) = N-l ( _) N-I exp 2T d0-2 (17) 
2 2 r N 2 1 ( (j2) 2 • 
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If Nu 2/0 2 is set equal to X2, this takes the form ofax2 distribu
tion with n -= N - 1. Since du 2 = 2u da;, the distribution. of 
u is 

N-l 

aP(u) '" = (-~uy "'=1 exp [_2~U2] du (18) 
2 2 r !!_____2 (02) 2 

2 

Distribution of Sample Values of v'N (~ - X). ,Since the 
u 

distribution of sample variances is independent of the distribu
tion of sample means, and vice versa, their joint distribution is 
equal to the product of their individual-distributions, shown by 
Eqs. (16) and (17). The exact form for Eq. (15) is thus given 
by the product of Eqs. (16) and (17), or 

- 1 [ - (X - X) ~] -
dP(X,u

2
) = v'2Jr o/yN exp 202/N dX 

N-l N-3 

N-2 (0"2)-2 l-N0"2] 
N:"'~ ( _) N-l exp ~ d0"2 

2 2 r N 2 1 (9:) 2 

N N-3 
N2 (0"2)-2-

2: v'; r (N ; 1) (0 2): 

[ 
-N0"2 (X - X)'2] -

exp ~ - 202jN du 2 dX (15') 

The distribution of v'N (~ - X)- may be obtained from Eq. 
u . . 

v'N (X - X) . 
(15') as follows: First set the symbol t = • and note 

0" 

thata' = u~N N__, ( 
v'N - 1 (X - X) 

Therefore, t = , while 
u 

dt = VJr=l dX. 
0" 

(f2t2 .. 

Substituting -_ for (X - X)2 and v' u dt for dX in 
N-1 N-l 

Eq. (15') yields 
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which may be put iri the form 
/ N N-2 

dP(t,u2) = N N2 (u 2
)-2- N 

- _ /-' _;= (N - 1) -22VN - l'v'lI"r" -2- (02)2 

[ NU2( t2)J exp - -- 1 _L --"- da:2 dt 
202 I N - 1 . 

Further manipulation shows that the following is the equivalent 
of the foregoing: 

dP(t,u 2
) = [~:22 (1 ; N ~ 1) r;2 exp [- ~:22 ( 1 + N ~ 1)] 

[Nu 2 
( t2)] dt 

d 20
2 1 + N-=-I VN _ 101' (N ; 1) (1 + N ~ 1)~ 

Here t is taken as a constant in d I ~:22 (1 + N t~ 1) 1 If the 

foregoing is summed or integrated for 02 for a given value of t. 
the probability of that t is given by 

dP(t) = dt 

VN -1 0 r (N; 1)(1 + N ~ 1)~ 
T <D [Nu2 ( t2 )]N-2 [Nu2 ( t2)] 

} 0 202 1 + Iv _ 1 2\, exp - 202 1 + N - 1 

[N(J'2 ( t2)] 
d 202 1 + N _ 1 

N-2 
But the integral is of the form 10" e-X X--:;; dX, which equals 

l' (~)- Hence, the distribution of t is 
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. T(~)dt 
dP(t) = _ _ (N ~ 1) ( t2)!!. 

VN -1 V'Ir r -2- ,1 + N _ 'I 2 

or if n is set equal to N.- 1, 

_ r(~)dt' 
dP(t) - ( ) ( )n+l V n'lr r ~ 1 + ~ -2-

which is recognized as the form of the t distribution. Hence 

vN C; - X) is distributed like t with n '= N - 1. 



C~APTER XI 

SAMPLING FROM CONTINUOUS NORMAL POPULATIONS 
II. USES OF, THE SAMPLING D~STRIBUTIONS 

SAMPLING DISTRIBUTION OF THE MEAN 

Used to Test a HypQthesis. Problem When Population Vari
ance Is Known. The practical use of the sampling distributions 
discussed'in the preceding chapter may be explained by reference 
to several examples. Consider first an illustration of l!ow the 
sampling distribution of the mean is used to test a hypothesis. 
Suppose it is claimed that a new process of manufacturing 
electric light bulbs will increase their mean length of life to 
1,100 kilowatt-hours. A man'\lfacturer tries out this new process 
and produces a sample batch 'of 100 bulbs for which the mean 
length of life proves t~ be 1,090. The new process, it may be 
supposed, .does not change the variability in length of life from 
bulb to bulb, and therefore the standard deviation in length of 
life may be taken as that of the old process .• Suppose this is 
known to be 200 kilowatt-hours. The question to which the 
manufacturer seeks an answer is therefore this: Is it reasonable 
to infer that the given sample is from a population in which the 
mean is 1,100 kilowatt-hours? This is the question that will 
now be discussed in some detail. 

Coefficient of Risk. Before answering the question the manu
facturer must first determine what degree of risk he is willing 
to undergo in rejecting the hypothesis when it is true. ' Suppose 
he is willing to make this mistake once in twenty times on the 
average; his coefficient of risk' will then be .05. 

Region of Rejection. The next" step is to select a "region of 
rejection," which on the basis of the given hypothesis will mark 
off the unreasonable or unacceptable samples from the others, 
the probability of this subset of samples being just .05. Since 
the sampling distribution of the mean is normal in form, the 
argument. is essentially the same as that pertaining to percent
ages (see Chap. IX). 

267 
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If the manufacturer is indifferent as to what mean value 
other than the hypothetical mean value is the true one, he will 
do best to distribute his .05 region of rejection equally at both 
ends of the sampling dist:r:ibution. If he wishes to reject the 
hypothesis more often when the true mean va:lue is actually 
below the hypothetical mean value than when it is above this 
value, he will do best to put the .05 region entirely at the lower 
end of the distribution. If he wjshes to reject the hypothesis 
more often when the true mean value is actually above the 
hypothetical mean value than when it is below this value, he 
will do best to put, his .05 region entirely at the upper end of the 
sampling distribution. 

In the present instance, a region of rejection lying entirely 
at the lower end of the distribution would appear to be the best 
region to adopt; for the manufacturer would not .care if the 
claims of the new process were'more than substantiated. He 
would care only if they fel~ short of being true. 

Testing the Hypothesis. Since .05 of the area of a normal 
frequency cur~e lie~ below 1.645d from the mean and since the 
standard deviation of the sampling distributi'on of the mean is 
equal to the standard -deviation of thf' population divided by 
y'N, the .05 region of rejection lying entirely, at tne lower end 
of the distribution would 'consist of all sa~ple~ whose means lay 
below 1,100 (the hypothetical population meaI\) mipus 

200 
(1.645) _ 1_' 

V 100 

that is, below 1,100 - 32.9 = 1067.1. 
A graph of the sampling distribution of the mean and this 

region Of rejection is shown in Fig. 75. Since the actual sample 
value was 1,090, it does not fall in this region of rejection and 
the hypothesis is not· rejected. Even though the sample failed 
to have a mean as high as that claimed for the new process, the 
manufacturer will not reject the claim that'the new prC5cess-~will 
make bulbs averaging 1,tOO kilowatt-hours of life. That is, the 
amount by which the sample average fell short of the figure 
claimed was not 'large enough to warrant the rejection of the 
claim. 

Other Examples. Other cases might be conceived of in which 
an upper region of rejection or an evenly distributed region 
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, 
of rejection would be the proper region to employ. For example, 
if a process of cigarette manufacture is claimed to yield cigarettes 
of a low burning temperature, an upper region of rejection )vould 
be appropriate. Or a manufacturer of automobile tires may 
wish to copy the tires of a competitor as closely as possible, and 
in this case he might be equally eager to avoid tur:qing out tires 
that were markedly worse or markedly better than the competing 
brand; here an equally distribut~d region of rejection would be 
in order. 

FIG. 75. 

x 
'iT 

Confidence Limits for the Population Mean. Problem When 
the Population Variance Is Known. In many cases it is the aim 
of the statistical investigation to determine confidence limitj3 
for the mean of the population from which a sample has been 
drawn, rather than to test any particular hypoth~sis. Again 
this may be done In a manner that is very similar to the process 
of determining confidence limits for percentage figures. The 
following discussion will relate to the electric-light bulb example 
described in the preceding section. As before, it will be assumed 
that the population variance is known. 

The Confidence Coefficient. Confidence limits" it will be 
recalled, are the end points of a certain range of values that may 
be said to include the true value with a given degree of probabil
ity. This degree of probabilit:y is called the "confidence coeffi
cient" associated with the given" confidence interval." Suppose 
in the present instance that the manufacturer of electric-light 
bulbs adopts a confidence coefficient of .95; that is, he wishes 
to be able to say that there 'is a probability of .95 that the 
confidence interval he establishes covers. the true mean value. 

The Confidence Interval. As previously pointed out, innumer
able confidence intervals may be set up that will all have a 
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confidence coefficient of .95. Suppose the manufacturer is as 
much concerned with underestimating the true mean value as 
with \)Verestimating it. Then he will proceed as-follows: 

He will select a lower value'such that if it is the true mean 
value the probability of getting th'e given sample mean or some 
higher valuEt will be just .025. The process is illustrated in 
Fig. 76A. Next.he will select some upper value such that if it 
is the true value the probability of getting the given sample 

A = Loeedlng 
lower bound 

C = Showinq whole 
confidence interval 

. FIG. 76. 

x 
(j 

mean or some lower value will be just .025. This is illustrated 
in Fig. 76B. 

The two values so determined will mark the upper and lower 
confidence limits for the population mean, as illustrated graph
ically in Fig. 76C. The distance between either limit and the 
sample mean value will be ·,equal to 1.96 times the standard 
deviation of the sampling distribution of the mean, that is, 
1. 96 times the "standard error" of the mean, as it i_s called. 
For the sampling distribution of the mean is normal, and the 
probability of a sample value exceeding the true mean value by 
1. 96d is just .025; and the same is true of a sample value falling 
short of the true meaR value by 1.96d. Since the standard 
error of the mean is equal to the standard deviation of the 
population, divided by the square root of N, the confidence . 
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limits for the population mean may be found in this instance 

by simply laying off ±1.96 IN from the sample mean value. 

For the given problem, these limits would be equal to 

200 
1,090 ± 1.96 _ J1i'\7..' 

V 100 

or 1,129.2 and 1,050.8 kilowatt-hours. This interval is sym
metrical with respect to the sample mean value and does not 
tend to overestimate the true value more than it tends to under
estimate it. 

A =Loccrfing 
upper 
bound 

o 
B=Showinq the 

confidence interval 
FIG. 77. 

If the manufacturer is concerned solely with the possibility 
of overestimating the true mean value, he may desire only an 
upper confidence limit. The confidence interval will presumably 
run from zero to this upper bound. If the upper bound is 
selected as that value such that if it is the true niea~ value the 
probability of getting the sample mean value or a lower value is 
just .05, then this confidence interval may be .said to have a 
probability of .95 of covering the true mean value. Since the 
probability of a normally distributed variate falling short of 
its true mean value by 1.645d is just .05, the upper limit of the 
confidence interval may be found by adding 1.645 times the 
standard error of the mean to the sample mean value. This is 
illustrated in Fig. 77. For the given problem, this yields 

200 
1,090 + 1.645 _ /_ = 1,122.9. It may be said! then, that 

v 100 
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there is a probability of .95 that the range 0-1,122.9 'covers the 
true mean value. 

If the manufacturer wished not to underestimate the true 
mean value, he would reverse the foregoing process. He would· 
subtract 1.645 times the standard error or" the mean from the 
sample mean value to obtain a lower bound for the true mean 
value. This is illustrated in Fig. 78 and would be 

200 1,090 - 1.645 _ j_ = 1,057.1. 
v 100 

He could then say that there was a probability of .95 that the 
range 1057.1-00 covered the true mean vl;llue. 

A = Locotfinq 
lower bound 

105,7.1 ~ 
I -q 

10S'rr- B=Showin'qlh;l, 60 
confidence interval 

FIG. 78. 

Relationship between Confidence Coefficient, Confidence Interval, 
and N. It is to be noted that the confidence limits set up in 
this way depend on the confidence coefficient adopted. The 
smaller this coefficient, the closer the 'limits to the sample value, 
and vice versa. 1 In other words, one can always narrow the 
range that is presumed to cover the true value if he is willing to 
increase the ri~k of its not doing so. Since the standard error 
pf the mean is equal to the standard deviation of the population, 
divided by the square root of N, it also is to be noted that, the 
larger the sample, the closer the confidence limits to the sample 
value. This is m,erely another way of saying that, the larger the 
size of the sample, the more confidence one can have that the 
true mean value is somewhere in the immediate neighborhood 

1 This of course, is true only of the upper bound in Fig. 77 and the lower 
bound in Fig, 78. 
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of the sampl~ mean value. 1 These points should be carefully 
noted. 

Maximum-likelihood Estimate of the PopUlation Mean. The 
Problem When Population Varianctl ~s ;Known. In addition to 
setting up a range that might reasonably be presumed to include 
the population mean, the manufacturer of electric-light bulbs 
may wish to have a single estimate of the population mean that 
could be viewed as the "best" estimate to be made of this, 
population parameter. As poin~d out in the preview of theory, 
one way of making such a-single estimate is to take that value 
for the population mean that makes the probability of the sample 
mean a maximum. 2 An estimate so made is a maximum-like
lihood estimate. 

Since the sampling distribution of the mean is normal, it 
follows that the probability of a sample mean is the greatest 
when ~he sample mean pas the same value as the population 
mean. 3 If, therefore, in estimating the population mean from 
the sample mean, the former is taken equal to the latter, then the 
probability of the given sample mean is \1 maximum. 

In the problem under discussion the mean of the sample of 
electric bulbs was 1,090 kilowatt-hours. The maximum-likeli-

hood estimate of the -population mean is therefore X = 1,090 
kilowatt-hours. 

SAMPLING DISTRIBUTION OF v'N eX - X) 
if 

Used to Test a Hypothesis. The Problem When the Popula
tion Variance Is Unknown. The analysis of the preceding section 
was based on the assumption that the variance of the population 
is known. If the variance of the population is not known ~nd 
the hypothesis to be tested does not prescribe any yalue for this 

parameter, the sampling distributio~ of the statistic VN (~ - X) 
(J' 

should be used. 4 

1 A more precise statement is this: The larger the value of N, the greater 
the probability that a given finite confidence interval, however small, will 
include the true value. 

2 See p. 180. 

3 For then peg) would equal ~ /_' which is the highest value it can 
dx v271' 

have. 
4 This is called a If composite hypothesis"; for it supposes that the sample 



274 ELEMENTARY THEORY OF RANDOM SAMPLING 

For purposes of illustration suppose that the electric-light 
bulb example is modified as follows: An inventor offers a new 
process of manufacturing electric-light bulbs that will, he claims,' 
increase the mean length of life to 1,100 kilowatt-hours. In the 
absence of any prolonged experience with the new process, the 
inventor makes no claims regarding the variability in length of 
life from bulb to ·bulb, and there is no relJ,son a priori to believe 
that the variability of bulbs manufactured by the new process 
will be the same as that o.f bulbs manufactured by the 
old. The latter, it will be recalled, was the assumption of the 
preceding section. Furthermore, suppose the manufacturer to 
whom the process is offered is interested, not in the variability 
in length of life of the bulbs, but only in their mean length of 
life. To test the claim of the inventor he manufactures a batch 
of 10 bulbs by the new process and finds that the mean length 
of life of these 10 bulbs is 1,090 kilowatt-hours.l 

In view of this result, is it reasonable to accept the hypothesis 
that the new process will in general produce bulbs whose mean 
length of life is 1,100 kilowatt-hours? Note that nothing is 
said here about the variance in length of life,. ...... To put the ques
tion another way, is it reasonable to assume that this sample 
could have come from a population in which the :rhean length 
of lif~ was 1,100 kilowatt-hours and the variance was any value 
whatever? 

Since the hypothesis does not prescribe any particular value 
for the variance of the population ,and its value is not known, 
the proper statistic to use in testing the given hypothesis is 

VN (~ - ~); for in this statistic, only the hypothetical value 
(]' 

of the population mean, X, enters. The quantity if2, it will 'be 
recalled, is the maximum-likelihood estimate of the population 
variance that is made from the sample; it is equal to the variance 

of the sample times N ~ 1 For the problem illustrated, let 

the value of the sample variance be (180)2 kilowatt-hours.2 
\ . 

is not from some one specific population but from anyone of a group of 
populations all of which hav~ the same mean. 

1 A small sample is used here purposely (see p. 284). 
2 This, it is recalled, is calculated from the sample data by the formula 

2:(X. - X)2 
0- 2 = . 

N 
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Coefficient of Risk. In order to answer the question that 
has been posed, the manufacturer must adopt a definite coeffi
cient of risk that will measure the chance he is willing to take
of rejecting the hypothesis when it is actually true. As before, 
suppose he adopts a coefficient of risk equ:;tl to .05. 

Testing the Hypothesis' with a Symmetrica'l Region of Rejection. 
Next the manufacturer must adopt a definite region Df rejection 
with a probability of .05. Such a region will be attained if 

. -yIN (X - X) \ 
from among all the pos,slble sample values of , as 

if 
represented by the sampling distribution of this statistic, he 
chooses a special subset such that the probability of a sample 
falling in this subset is just .05. Since the various possible 

t 
FIG. 79. 

sample values of tl;lis statistic' are distributed in the form -of a 
t distribution, with n = N - 1, the manufacturer will secure 
a .05 region of rejection if he includes in the region all values of 
-yIN (X - X) 

• that are numerically greater than 2.262. * The 
(J 

value 2.262 is found by consulting a table of the t distribution, in 
which it is seen that for n = 9 (that is, 10 - 1) the probability 
of getting an absolute value of t that is equal to or grea~er than 
2.262 is just .05. As shown in Fig. 79, this is a symmetrical 
region o~ rejection because the t distribution is symmetrically 
distributed about its mean of zero: 

If the manufacturer adopts this symmetrical region of rejec
tion, he can test the given hypothesis as follows: This hypothesis 
is that X = 1,100. The sample mean X is 1,090, N = 10, and 
the sample standard deviation is 180. The last gives 

if = 180 YJtp· = 189.7,; 

* See pp. 110-111, 474. 
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VN (X - X). 
For these values the sample value of • IS 

(J 

VIO (1,090 - 1,100) = _ 167 
189.7 . . 

This IS greater than -2.262 and less than +2.262, and the 
sample value does not therefore fall in the region of rejection. 
This is iilustrated by Fig. 79. The sample mean, although 
less than 1,100, is not sufficiently less than this quantity to cast 
doubt on its being the population mean. 

Other Regions of Rejection. The region of rejection adopted 
in the foregoing instance was a symmetrical region with respect 
to the t distribution. This would be the proper region to adopt 

t 
FIG. 80. , \ 

if the manufacturer were indifferent to whether the true mean 
value of the new process was abo~e or below the claimed value. 
Since it is reasonable to suppose that he would be more con
cerned if the true mean value were less than 1,100 than if it were 
above this amount, a region that contains sample values all 
at the lower end of the distribution is more appropriate for 
testing the given hypothesis. Such a r~gion would be given by 
those values of t that (for n = 9) are equal 'to or less than -1.833. 
For the {table shows that the probability of a t less than -1.833 
is just .05. * A picture of this appropriate region and the location 
of the sample value with reference to it is shown in Fig. 80. 

In another case a region of rejection lying all at the upper 
end of the distribution m~ght be the more appropriate. It is 
suggested that the reader himself think of a case in which this 
mi~ht be true and work out an illustrative problem. . 

* The table gives the probability of an absolute value of t equal to or 
greater than \1.833\ as .10; hence the'probability of a t equal to or less than 
-1.833 is .05. 
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Case Where Population Variance Is Known Compared with Case 
Where Population Variance Is Not Known. The difference 
between the case in which the standard deviation of the popula
tior~ is assumed to be known and the present case, in which it is 
not assumed to be known, may be made clear by several diagrams. 
These diagrams show how the various regions of rejection look in 

FIG.8la. 

a D 

Xi 

FIG.8lb. 

terms 01 Fig. 64 (page 224). Cbnsider first the symmetrical 
regions of rejection. In the caSe in which the standard deviation 
of the popul~tion is known, a hypothesis will b!'l rejected if the 
sample falls in a region in which the mean of the sample deviates 
from the hypo1{hetical population mean by more than a given 
amount, say 1.95d, for a .05 symmetrical region. In terms of 
Fig. 54 this means that all samples falling outside the lines Land 
U,'shown in Fig.,8Ia, which is a miniature reproduction of Fig. 64 
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. 

omitting the probabilities, will lead to the rejection of the 
hypothesis that the population melltn is X. This is illustrated 
by the crosshatched portions of Fig. 81a. 

In the case in which the standard deviation of the popul~tion 
is not known the hypothesis is rejected if the sample_ falls in a 

region for which VN (~ - X) is numerically less than the 
(j 

.025 value of t. In terms qf Fig. 64, this means that all samples 
lying between the lines a and /3, Fig. 81b, which is al§lQ a miniature 
reproduction of Fig. 64 omitting the probabilities, will lead to the 

FIG. 81c. 

rejection of the hypothesis that X is the mean of the population. 
This is illustrated by the crosshatched portion of Fig. 8Ib. 

Although the regions are symmetrical in both instances, it is 
to be noted that they do not include the same set of samples. 
Some sample& are common to each, but there are other samples 
that are included in only one of the two regions. 

As shown by Fig. 8Ic, samples falling in regions marked A 
would lead to the rejection of the hypothesis in either instance. 
Samples falling in regions C would lead to rejection of the 
hypothesis. only when the standard deviation is known, while 
s3.mples falling in regions B would lead to rejection of the hypoth
esis only when the standard deviation of the population is 
estimated from the sample. 

The reason why the latter samples lead to rejection of the 
hypothesis despite the fact that their mean values are relatively 
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close to the population mean is that their standard deviations, 
and hence the estimates 0 the population standard deviation, 
are so small that the difference between the hypothetical popula
tion mean and the sample mean, small as it actually is, appears 
to be relatively large. Likewise, although the means of samples 
falling in regions C differ greatly from· X, these samples do not 

FIG.82a • 

• 

FIG. 82b. 

lead to rejection of the hypot~esis when the standard deviation 
of the population is not known, despite the great difference 
between their mean values and that of the population mean, 
simply because the standard deviations of these samples (and 
hence the estimates of the population standard deviation) 
make this difference seem relatively small. Similar remarks 
apply to the one-sided regions shown in Fig. 82a to c. 
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Confidence Limits for the Population Mean. Problem When 
the Population Variance Is Unknown. The determination of 
confidence limits for the population mean when th~ population 
variance is not known proceeds much the same as in the case 
when the variance is known: The essential difference is that the 
t distribution is. used in place of the normal distribution. 

Sup'pose that a manufacturer finds that the mean length 
of life of 10 electric-light bulbs manufactured by some process 
is 1,090. kilowa~t-hours and that the standard deyiation of this 
sample is 180 kilowatt-hours. N' othing is known about the 
standard'deviation in l~ngth of life of bulbs producible by the 

Xi 

FIG. 82c. 

new process other than .the information provided by the sample. 
Under these conditions the manufacturer wishes to determine 
limits within which the average length of life of bulbs producible 
by the new process might in general be expected to lie. That is, 
he wishes to set up confidence limits for the mean of the popula
tion of bulbs producible by the new process. In setting up 
these limits he wants a confidence coefficient of .95, say. 

Determination of Confidence Limits. If the manufacturer is 
indifferent as to '\vhether he overestimates or underestimates , . 
the true mean length of life, he will adopt limits that are sym
metrical with oreference to the given sample mean. In this 
case, the upper limit may be found by determining a value of 
X such that the probability of getting the sample. value of 

y'N (~ - X) or a lower value is just .025, and the lower limit 
u 
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may be found by determining the value of X that makes the 

probability of getting the sample value of VN (~ - X) or a 
u 

higher value just equal to .025. For if this procedure is always 
adopted in setting up symmetrical confidence limits, the limits 
so determined will inciude the populati~n mean 95 times out of 
100 on the average. 1 Since the sampling distribution of 

VN (X - X) 
if 

is a t aistribution, with n in the t formula equal to N - 1, and 
since, for n = 10 - ,1 = 9, the .025 points of the t distribution are 
± 2.262, these upper and lower limits for X can be found by 

setting yiN (~ - X) = ± 2.262 and !3olving for X. For the 
u • 

given problem this yields the following, 

ylTO (1,090 - X) = ± 2.262 

180 ~~o 
or X = 1,225.72 as the upper Ii/mit and 954.28 as the lower limit. 
The analysis is illustrated by Fig. 83. 

H the manufa.cturer wjshes ·not ~o overestimate the mean 
of the population and does not care whether it is underestimated 
or not, he will seek only an upper bound for his confidence inter
val; in other words, he will seek an interval that runs from zero 
to this upper bound. For a confidence coefficient of .95, such 
an upper bound may be found by determihing the value of X 

that makes the probability of the sample value of yiN (~ - X) 
, u 

or a lower value just equal to .05. Since the lower .05 point 
of the t distribution (for n = 10 - 1 = 9) is -1.833, the upper 
bound for X in the present iIl$tance is given by -

v'1O (1,090 - X) = -1.833 

"180~ 
which gives the value 1,199.98 for X. The whole confidence 

1 See pp. 174-179. 
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interval is thus 0 to 1,199.98. The analysis is illustrated in 
Fig. 84. 

A=Locating 
upper bound 

o +2.262 
1_ i 

954.28 1090 OriginCAI units 
I I 1 

C=$howinl7 whole 1 ..... _-__ +' ___ '....;1 
. t. :;:I I~ I " 

/f7 t:rvtl! %4.28 1090 1225.12 Oriljinal 
units 

FIG. 83. 

o 
I 

SCClle unit 

1090 1199.98 Original units 
1 

o--h=Showinq IIQ9.98 Original units 
confidence interval 

FIG. 84. 

It might happen in cases of this kind that the manufacturer 
desires not to underestimate the mean of the population. Tn 
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such an instance he may wish only to determine a lower Qound 
for the population mean value, the upper "bound" presumably 
being infinity. For a confidence coefficient of .95, a lower bound 
of this kind can be found by determining the value of X that 

makes the p'robability of the sample value of v'N (~ - X) 
(J' 

or a higher value just equal to .05. Since the upper .05 point of 

o 
~ 

980.02 
I 

980.0? 

Sca/eunits 

+1.~33 t= JlNCX-X) 
, a 

1090 OriginClI units 

00 

OriginClI 
units 

FIG. 85. 

the t distribution (for n = 10 - 1 = 9) is + 1.833, the lower 
bound for X in the given problem is yielded by th~ equation 

-vi]] (1,090 - X) = + 1.833 

180~ 
which gives X = 980.02. The whole confidence interval is thus 
980.02 to 00. The analysis is illustrated in Fig. 85. 

Maximum-likelihood Estimate of the Population Mean. 
Problem When the Population Variance Is Unknown. When the 
variance of the population is not known, the maximum-likelihood 
estimate of the population" mean is based on the t distribution 
instead of the normal distribution. The procedure, however, is 
exactly the same. The optimum estimate of X is the value of X 

that makes the probability of the sample VN (; - X) a maxi

mum. Since the sampling distribution of this statistic is a 
t-distribution the peak of which always Mcurs at zero, the given 
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a Ie ,IN eX - X) will have the greatest probability of s mp if 

. VN eX X) 
occurrence when X is such that if - = 0, that is, 

when X = X. As in the previous case, therefore, the optimum 
estimate of the population mean is the value of the sample mean. 

Use of Normal Curve with Large Samples. The foregoing 
procedure for testing hypotheses, finding confidence limits, and 
determining optimum estimates when the variance of the 
population is not known will give exact results whether the 
sample is large or small. If the sample is large~ howeve:r,' say 
30 or more, approximate results may be obtained by using the 
norma"! curve in place of the t distribution. That is, for large 

VN (X - X) x 
samples, . becomes an - that can be looked up 

If If 

in a normal table. The basis for the procedure is that when N 
is large the t distribution is almost identical with the standard 
normal curve so that the latter can be used in its place .. It is for 
this reason that the t table does not give values for n > 30. 

SAMPLING DISTRIBUTION OF tHE VARIANCE 

Testing a Hypothesis. The Problem. TJle fdregoing sections 
were concerned with the mean of the population. ·Consider 
now a problem that is concerned with the variance. Suppose 
that the inventor of the new process for the manufacture of· 
electric-light bulbs claims that his process will reduce the va!,iabp
ity in length of life of _the bulbs. The process, it will be assumed, 
does not change the mean length of life but merely makes pos;
sible a more uniform and hence a more dependable product. 

To make the .problem .. concrete, suppose that the inventor 
claims that the standard deviation for the new electric-light 
bulbs is 180 kilowatt-hours, which represents, it will be supposed, 
a considerable reduction from the standard deviation of bulbs 
now in use. To test this claim a manufacturer produces 10 bulbs 
by the new process and finds that the standard deviation of this 
sample is 190 kilowatt-hours.1 The question is: In view of the 
sample result, is the claim of a population standard deviation 

1 A small sample is taken to show that the analysis can be applied to small 
as well as to large samples. For a simpler method applicable only to large 
samples; see pp. 289-290. 
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of 180 kilowatt-hours a reasonable one? Or, • to put this in 
terms of variances, with a sample variance of 36,100 square 
kilowatt-hours is the claim of a population variance of 32,400 
square kilowatt-hours a tenable hypothesis? 

Coefficient of Risk. Suppose, as in the case of the mean, that 
the manufacturer is willing to run the chance of rejecting hypoth
eses of this kind -5 times out of 100 when they are actually true. 
His coefficient of risk is thus .05. 

Regions of Rejection. To assure a coefficient of risk of .05 
the manufactu er, must select from the whole set of samples' 
that might be. drawn from the given hypothetical population 
a subset of· samples the probability of which is just .05. If he 
rejects the hypothesis whenever the given sample is found 
to belong to this special subset, he will attain a coefficient of risl,< 
equal to :05. This' subset will be his 'region of rejection. 

Since the manufacturer is interested here in the variance 
of the electric-light bulbs producible by the new process, the 
'set of all possible samples and the chosen region of rejec
tion can most appropriately be described in terms of the 
sample. variance. When the set, of all possible samples is so 
described, the result,is the sampling distribution of the variance. 
This, as already noted, is a skewed distribution which centers 
roughly around the variance of the population-its mean is 

N - 1 . 
actually -r times 02. * -If the unit of measurement is taken 

as 02/ N, the distribution assumes the form ofax2 distribution, 
with n in ·the x2 equation equal to N - 1. t 

Since the manufacturer wishes the variance in bulbs to bo 
as small as possible, he would like to reduce to a minimum the 
chance of .accepting the inventor's claim when in actuality the 
variance of the new process is above the hypothetical figure. 
The most appropriate region of rejection for him to select is 
consequently the region comprising the upper .05 tail of the 
sampling' distribution. A x 2 'table shows that, for 

n = 10 - 1 = 9, 

this comprises all values of x2 greater than 16.919, that is, all 

* For mean of Nq2/d 2 is N - 1, since mean x 2 is n. See t. 
t See pp_ 111-112,.263-263. 
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samples whose variances are greater than 16.919d2/10, or 1.6919d2• 

This is illustrl1ted in Fig. 86. 
Testing the Hypothel'1is. The hypothesis to be tested in the 

given instance is that d2 = 32,400. The region of rejection thus 
constitutes all samples whose variances exceed 

1.691~(32,400) = 54,818. 

The given sample variance is 36,100, which is far from this 
region of rejection. Hence the given hypothesis is not rejected; 
the claim of the inventor is non. disproved. 

Other Examples. In testing hypotheses concerI).ing the popula
tion variance, the statistician sometimes wishes to minimize 

o 54,818, _.... 2 '}l2 u 2 

O"=--w-
FIG. 86. I 

the risk of accepting the hypothesis when in fact the true variance 
is below the hypothetical figure being tested. In a college course, 
for example, it might be claimed that a new type of exami'nation 
will give a better spread in grades and hence be a better examina
tion for grading the students. In testing the hypothetical 
variance claimed for the new type of examination, the statistician 
would want to minimize the risk of accepting this claim when in 
fact the true variance in grades is less than this figure. In such 
a case, the region of rejection would most appropriately be chosen 
to constitute the lower 5 per cent of the sampling distribution. 

For N = 10, for example, this would constitute aH-values of 
x2 less than 3.325, or all samples whose variances are less than 
3.325d2/10. This is illustrated in Fig. 87. 

Still other cases might occur in which the statistician is 
indifferent as to whether the true variance is above or below 
the hypothetical variance being tested. In these cases, the most 
appropriate region of rejection would be one· in which the total 
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probability of .05 is equally distributed at both ends of the dis
tribution. Unfortunately, the x2 table has not been constructed .. . 
so that the points marking the .025 tails of the distribution can 
be obtained without interpolation. If the coefficient .of risk 
were set at .04, however, tails of .02 each could readily be deter
mined from the' existing table. Thus, if n = 9, a .04 region of 

o 10)13 

FIG. 87. 

Scorle 
unils 

2 ,){/u2 
U= 

N 

rejection could be taken to constitute all values of x2 Jess than 
2.532 and all values of x2 greater than 19.697. This region of 
rejection would comprise all samples whose variances are less 
than·2.532d2/10 and greater than 19.697d2/1O. Such a region of 
rejection would affox:d an even balance between the risk of accept
ing the hypothesis when tp.e true variance is less than the hypo-

Fi:G.8S. 

thetical figure and the risk of accepting it when the true variance 
is greater than this amount. This is illustrated in Fig. 88. 

Confidence Limits for the Population Variance. The Problem. 
In many cases no particular hypothesis regarding the population 
variance is to be tested. Instead, it is merely desired to deter
mine a range of values within which, on the basis of a given 
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sample, the variance of the population may reasonably be 
expected to lie. It is with the determination of such confidence 
limits that the present section is concerned. 

To make the problem concrete suppose that 10 electric-light 
hulbs are manufactured by' the new process ref~rr~d to in the 
foregoing 6xample and that the standard deviation in length of 
life of this sample is found to be 190 kilowatt-hours. This 
means a variance of 36,100 square kilowatt-hours. Suppose 
further ,that the manufacturer who is testing this new process 
wants to run no greater chance than 4 out of 100 that the con
fidence limits se~ up will fail to cover the true value of the 
variance. That is, he wishes confidence limits whose confidence 
coefficient is .96. * 

Determination of Confidence Limits. If the manufacturer is 
interested in both an upper and a lower'bound for the population 
variance, he can set up confidence limits as follows: He can 
obtain an uppedimit for d2 by finding the value that makes the 
quantity Nu2/d 2 j1!st equal to the lower .02 point of the x2 

distribution. For if this value is the true value, then the prob
ability of the sample u 2 or some lowe.c... value will be just .02. 
Similarly, a lower bound for d2 can b~ obtained by finding the 
value of d2 that makes the quantity N u2 / d2just"f~qual to the upper 
.02 point of the x2 distribution. For if this value is. the true 
value, then, the probability of getting the sample or some highel: 
value will be just .02. The values of 02 so determined will 
constitute the confidence limits for this parameter ahd the 
confidence interval so marked off will have a probability of .96 
of covering the true value. 

For the 'given data these upper and lower limits for d2 are 
determined as follows: For n = 10 - 1 = 9, the lower .02 
point of the x2 distribution is 2.532. The upper limit for 02 

is thus given by Nu2/d2 = 2.532. This yields 

(10) (36, 100) = 2.532, 

or d2 = 142,575. Similarly, for n = 9, the upper .02 point 
of the x2 distribution, is 19.697 and the lower limit for d2 is given 

* The confidence coefficient is put at this figure instead of the usual .95 
because the x"table gives the .02 points at each end instead of the usual .025 
points. 
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by N(Y2/d 2 = 19.697, or (1O)(36,100)/d2 = 19.697. This yields 
d2 = 18,328. The confidence interval is thus 18,328-142,575, 
and it may be said that there is a probability of .96 that this 
interval covers the true variance. 

The fQregoing interval was an unbiased confidence interval 
in that the probability of failing to cover the population value 
because the interval was set too low was equal to the probability 
of failiflg to cover the population- value because the interval 
was set too high. If the manufacturer had wished to set up a 
confidence intervlj.l that had only an upper bound, he could have 
found that upper bound by setting N(]'2/d 2 equal to the .95 poiut 
of the'x 2 distribution tor n = N - 1. For the given data this 
yields 10(36,100)/J2 = 3.325, or d2 = 108,571. Hence the 
manufacturer might say that the range 0-108,571 has a probabil
ity of .95 of covering ,~he true value. That is, in cases of this 
kind the manufacturer would go wrong only 5 per cent of the time 
in assuming that the population variance was equal to or below 
the upper bound. It will be noted here that the confidence 
interval established in this instance had a confidence coefficient 
of .95 instead- of .96 as in\ the previous example. The former 
was adopted because the x2 table lacks a .96 point. 

In conclusion, it should be note.d once again that, the larger 
the sample, the narrower the' confidence interval. If a sample 
of 20 ,had been taken instead of a sample of 10, 'the limits for 
d2 would have been 21,433 and 84,277. Thus, the larger the 
sample, the greater the assurance that the sample variance is 
near the true variance. It must be remembered, however, that 
a larger sample may involve increased expense. 

SPECIAL METHOD FOR LARGER SAMPLES 

As indicated in the preceding chapter, .when t,he sample is 
large the sampling di~tribution of the variance is approximately 
normal, its mean being practically the mean of the population 

(more exactly, N N__ 1 d 2) '~hd its standard deviation being 

d2 ~. Hence for large samples, say samples greater than -30, 

any hypothetical value of d 2 may be tested by noting the value 
(Y2 - d 2 • 

of . If a symmetrical region of rejection is adopted 
d2 v'2/N 
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with a probability of .05, then all values of U

2

.; 0
2 

lying out-
0 2 2jN 

side of ± 1.96 will lead to a rejection of the hypothesis. If the 
region of rejection is put at one- end, the hypothesis will be 

rejected if u
2

.; 9
2 

is greater than 1.645 in one instance or if 
02 2jN 

it is less than -1.645 in another instance. Siinilarly, confidence 
limits with a coefficient of .95 may be determined by setting 

(1"2 - 02 

vi = ± 1. 96 if both an upper and lower bound is desired, 
02 2jN 
Cl'l" to 1.645_if a lower bound only is desired, or to -1.645 if an 
upper bound only is desired. 

To illustrate this special method for large samples, suppose 
that the batch of electric-light bulbs of the previous sample had 
numbered 98 instead of 10. Let the sample variance be 36,100 
as before, and consider the hypothesis,that the true variance is 
32,400 (that is, 0 = 180). If the region of rejection is taken 
as the upper .05 ta,il of the normal curve, then thit) hypothesis 

(1"2 - 02 

may be tested by finding the value of 2-y'27N' For the given 
o 2jN 

d t thO • 1 t 36,100 - 32,400 8 S' th" 1 th a a IS IS equa 0 _ ; = .. m,ce IS IS ess an 
32,400 vi's I 

1.645, the sample does not fall in the region of rejection and the 
hypothesis is not rejected. 

To determine confidence limits for the population varianM 
in this instance, the procedure is as follows: Let the confidence 
coefficient be .96 so that the result will be comparable with that 
of the preceding section. Also, let the upper bound of the 
confidence interv:al be determined so that if the population 
variance has a value equal to. this upper bound then the probabil
ity of the sample 'result or a lower value is just .02, and let the 
lower bound be determined in the same manner. Then these 

upper and lower limits will be given by 36, 1O~ -: 0
2 

= ± 2.054. 
0

2 
9S 

This yields 02 = 27,911 and 02 = 51,090 as the limits of the 
confidence interval. It will be noted that this interval is still 
smaller than that for which N = 10 or N = 20. 

Maximum-likelihood "Estimate of the PopUlation Variance. 
So far maximum-likelihood estimates of population parameters 
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have been found to be the sample values of the corresponding 
statistics. Thus the maximum-likelihood estimate of the per
centage of "favorable'" cases in the pClpulation is the percentage 
of "favorable" cases in the sample. Similarly, whether or not 
the variance of th'e population is known, the maximum-likelihood 
estimate of the mean of the population iiS the mean of the sample. 
In the present instance, however, ,the maximum-likelihood esti
mate of the population variance that can be made independently 
of the sample mean! is not the sample variance but the sample 

variance multiplieq by N'~ l' Th~ derivation of this result 

is as follows: 
By definition the maximum-likelihood estimate of a population 

parameter is the value of the parameter that will make the 

100 200 
172 

FIG. 89a. 

300 

probability of the given sample a maximum. For an assigned 
value of the population variance the probability of a sampl~ 
having any given variance ~ay be determined from the sampling 
distribution of the variance. The equation for this distribution 
is Eq. (3) of Chap. X. If a particular value is given to d 2 in 
this equation, it will yield the probability of getting samples with 
various values of (J"2. If, however, the value of a given sample 
variance is substituted in this equation, then the formula yields 
the probability of getting this particular sample for various 
possible values of d2• Figure 89a, for example, shows the 
probability of a sample vari!tnce of 100 when the population 
va:riance is 200, the size of the sample being 11. Figure 8gb 
shows (for N = 11) the probability of a sample variance of 100 
when the popUlation variance is 80, and Fig. 89c shows this 

1 When the mean and standard deviation are estimated jointly thlm the 
maximum-likelihood estimate of the popUlation variance is also the variance 
of the sample. 
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probability when the population v~riance is equal to (NNr:_2
1
), 

that is, to 110. Further calculations will show that the probabil
ity of the given 0-2 is greater when 02 has this last value than 
when it has any other value. l This is indicated by the curve 
shown in Fig. 90. The .optimum estimate- of 02 when 0-2 = 100 
and N = 11 is thus 110. 

100 

100 

0"2 

FIG. 890. 

zoo 
0"2 

FIG. 89c. 

300 

300 

The algebraic counterpart of this geometrical explanation 
is as follows: For a given 0-2, Eq. (3) of Chap. X gives the prob
ability of that 0-2 as a function of 02, If this probability is to b~ 
a maximum for 02, then the derivative of the function with. 
respect to 02 must be zero-at this maximizing value. ,To siinplify 

, 

1 For simplicity the argument speaks of "the probability of thl:l given (}"2"; 

but a more precise expression would be "the probability of a sample variance 
lying between the given (}"2 and the given (}"2 + d(}"2." Again," the probability 
of a- sample variance of 100" is merely a short way of saying "the prooability 
of a sample variance lying between 100 and 100 + d(}"2." Although the true 
probability is an area, it is only the ordinate that changes from case to case 
in this argument and is therefore all that needs to be considered here. 
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matters the logarithm of the probability is differentiated instead 
of the probability itself, but this- does not alter the result since 
the probability will be a maximum when its logarithm is a 
maximum. Thus, from Eq. (3), Chap. X, 

Nrr2 N - 1 
log [P(rr2)] ==. - 2d2 - --2- log d2 + terms not involving dZ• 

Differentiating this with respect to d 2 and setting the result 
'equal to 0 yields the following; 

d'log [P(rr 2
)] = Nrr2 _ N - 1 = 0 

dd2 2(d2)2. 2d2 

or 

(1) 

It may seem strange at first thought that the optimum value 
of d 2 is not the value that makes the given rr2 fall at the mode 

"t:I 
'0 

o 
~ 
Q5. 
-" 
'..:J 

q2 

FIG. 90. 

or peak of the sampling distribution. On more careful examina
tion, however, it is seen that the sampling distribution. of rr2 

changes not only its position but also its shape with changes 
in the value assigned to d 2• The height at the mode of one 
curve may thus be less th~n the heigh,t at some other point on 
another curve. In the present instance it turns out that the 

height of the curve given by d2 = N ~ 1 rr2 a; the point rr2 is 

greater than the maximum height of the curve whose. mode 
occurs at rr2. 

'The explanation of this so~ewhat unexpected result for the 
maximum-likelihood estimate of d2 lies in the fact that the 
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yariance of a sample is always measured from the mean of 
the sample and not the mean of the population. Since the mean 
itself varies from sample to sample, any estimate of the popula
tion variance that ignores this variation in the mean will tend 
to underestimate its true value. It will be seen in Chap. XIV 
that, when the mean of the population and the variance of the 

. population are estimated jointly, the joint maximum-likelihood 
estimates are i = X and (/2 = (7"2. 

SAMPLING DISTRIBUTION OF THE RANGE 

Table XIII of the Appendixl giving pertinent facts regarding 
the sampling distribution of the range may be used to estimate 
the population standard deyiation in a quick and ready manner; 

for the values given in the t~ble are f~r w" = X" ~ Xl, and also 

the mean values for w in samples of varying size are given. 
On the assumption that a given sample range is close to the mean 

fifth' . 'tfll thtX,,-Xl range or samp es 0 e gIven slze, I 0 ows a w· 

will give a rough estimate of d. Suppose, tor example, that th~ 
range of a sample of 10 cases is 50, then 50/3.078 or 

50(.325) = 16.25 
I 

is a crude estimate of d. Furthermore, by using tll;e .025 points 
of Table XIII it will be seen that the chances are 95 out of 100 
that the interval from 50/4.79 to 50/1.67, that is, from 10.44 
to 29.94,jncludes the spandard deviation of the population. 

If all the data are available, good results involving little 
labor can be obtained by breaking up a large sample into a 
number of smaller samples of the same size, calculating the range 
for each of these samples, taking the average of these sample 
ranges, and using this average range to establish limits for the 
population standard deviation. Suppose, for example, that 
10 samples of eight cases each showed ranges of 30, 24, 16, 28, 11, 
20., 22, 35, 17, 25. The mean of these 10 sample ranges is 22.8. 
Table XIII shows that, if the population standard deviation is 
d, the mean rang<;l for -samples of 8 is 2.847d. It also shows 
that the standard error of the range is .820d. Hence the stand-

1 See p. 482. Note X" = -largest, Xl = smallest case. 
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ard error of a mean of 10, sample ranges would be .82Q/v'f6. 
In the present instance, therefore, the .95 confidence interval 

f .. b VTI5 (22.8 - 2.847d) + 196 (th 1 tt or d IS gIVen y .820d. = _ . e a, er 

being the upper and.lower .025 probability points of the normal 
curve). The confidence interval for d is accordingly 6.8 to 9.7. 

The sampling distribution of the range may also be used 
for quick analysis in certain problems in which the variation 
in means of particular groups ·is being tested for significance. 1 

For example, suppose that five classes of 12 students each 
have average grades\ of 77.25, 77.83, 70.92, 69.92, and 74.00 
and the ranges of inp.ividual grades for the five classes are 
31, 34, 24, 44, and 44 points. On the basis of the variation 
of grades indicated by t~e ranges, is the variation in mean 
grades more than might reasonably be attributed to chance? 
This is the question that may readily be answered as follows: 

The mean of the five ranges is a mean range of 35.4 points. 
From Table XIII of the Appendix it is seen that for groups of 
12 the mean range is 3.258d. Hence 35.4/3.258 = 10.86 may 
serve as a rough estimate of the population standard deviation d. 

N ow, if d = 10.86, then means of 12 grades should have a 
d = 10.86/\1'12 = 3.135 and Table XIII of the Appendix 
shows that for groups of five the mean range for a variable whose 
d is 3.135 is .2.326d = 2.326 X 3.135 = 7.292. For tlIe five 
mean grades given above the range is 7.91 and is thus just about 
what would be expected on the basis of chance. Hence the 
analysis of the variation in mean grades based on the ranges of 
grades in the individual classes indicates that the variation in 
means is apparently no greater than lIl:ay reasonably be attributed 
to chance. This is identical with the conclusion reached in 
Chap. xvn after a more refined analysis of vanance. The 
rougher analysis presented here is especially valuable as a 
preliminary analysis for throwing out those cases in which the 
variation in means is shown by the rougher analysis to be clearly 
not due to chance. 

The various percentage- points of the sampling distribution 
of the range may also be useful in setting up charts to control 

1 See SMITH, J. G., and A. J. DUNCAN, Elementary Statistics and Applica
tions, Chap. XV, for discussion of correlatio~ ratio. Also, see Chap. XVIII 
below on Analysis of Variance. 
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the quality of industrial mass production. An interesting dis
cussion of the use of the range in in~strial quality control may be 
found in reports issued by the British Standards Institution. 1 

Use of Sampling Distrjbutions of f31, f32 (or gl, g2) and a to Test 
for Departure from Normality. As indicated in the previous 
chapter, the sampling distributions of f31 and f32 (or gl and g2 if the 
worker prefers these more refined statistics) and of a = A.D./O" 
may be used to test departure from normality. FOl! illustrative 
purposes consider the data on. the weights of 300 Princeton 
freshmen 2 discussed in Chap. VII. 

For these data, 

#r = .637, /32 = 4.6720, gl = .635, g2 = 1.7320 

and a = .7640. Tests of departure from normality may be 
carried out as follows. 

For samples of 300, 

dyp; == ~ = .141 

. 124 
dfj, = '\j N = .283 

and the ratios of v' /31 and /32 - 3 to their standa~d errors are 

#r = .637 = 45 
dVtfl .141 . 

~ - 3 = 4.6720 - 3 = 59 
d/l, .• 283 . 

Both these indicate a marked departure from normality in that 
the probability of either v' f31 or f32 - 3 exceeding their standard 
errors by as'much as 4.5 to 5.9 times is very small. For samples 
as large as 300, gl and g2 and their standard errors are almost 
identical with v' f31 and f32 - 3 and their standard errors. In 
the case in hand, 'dol = .141, do. = .281, gr/dul = .G35/.141 = 4.5, 
and g2/do. = 1.7320/.281 = 6.2; therefore, the conclusions are 

1 See DUDDING, B. P., and W. J. JENNE~T, The Application of Statistical 
Methods to Quality Control, British Standards Institution, No. 600 (1942); 
and PEARSON, E. S., The Application of Statistical 'Methods to Industrial 
Standardization and Quality Control, British Standards Institution, No. 600 
(1935). 

2 See pp. 138, 141. 
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not modified by the use of the more accurate standard errors 
of gl and g2. Table XI of the Appendix also shows1 that the 
sample value of (32 = 4.6720 is considerably beyond the upper 
1 perl cent point, and Table XII of the Appendix shows2 that 
the sample value of a = .7640 is below the lower 1 per cent point 
for a. Hence all the tests indicate a distinct departure from 
nQrmality. 

1 See p. 480. 
2 See p. 481. 



CHAPTER XII 

SAMPLING ,FLUCTUATIONS 
IN CORRELATION STATISTICS 

SAMPLING DISTRIBUTION OF THE CORRELATION COEFFICIENT r 

Correlation coefficients have sampling distributions that are 
different from any yet discussed. Thus, if a large number of 
samples are taken at random from a normal bivariate population, 1 

and if a frequency distribution is made of the sample values of 
T12, the shape of this distribution will be found to conform to 
the equation2 

'(1 _ rr2)N-1 N-4 
dP(r12) = 7r(N _ 3)! (1 - rr2)-2-

. dN- 2 (cos- 1 
( -r12r12)) d 

d( )N 2 VI _ 2 2 r12 (1) 
r12 r 12 r 12r 12 

"}Vhere r12, in boldface type, refers to the\roP~lation correlation 

ffi . d dN
-

2 '(cos-1 (-r 12r 12)) 'h' N 2 coe Clent an (d )N 2 V means t e -
r 12r 12 1 - ri2rr 2 . 

1 A sample from a monovariate or univariate population consists of a 
group of1ndividual values; a sample from a bivariate population consists of 
a group of pairs of values. For example, a sample from the univariate 
population consisting of white male heights might be represented by the 
measurements 68, 70, 69, 74, 70, 71, 72, 71, 68, 69 inches, each of which 
represents the height of a particular individual. A sample from the bivari
ate population consisting of white male heights and weights might be repre
sented by pairs of measurements: 

68 70 69 74 70 71 72 71 68 69 inches 
140 150 149 206 165 183 190 175 154 142 pounds 

each pair consisting of the height and weight of a particular individual. 
It is to be noted that each of the above samples is said to be a sample of 10, 
although the second contains 20 measurements. They are each a sample 
of 10 in the sense that measurements are made only of 10 individuals. 

2 Cj. Frs HER, R. A., "On the' Probable Error' of a Coefficient of Correla
tion Deduced from a Small Sample," Melron, Vol. 1 (1920-1921), Part 4, pp, 
1-32. 

298 
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derivative of the expression in parentheses, with respect to r12r12. 

It is to be especially noted that the shape of this distribution 
depends not only on N, the size of the samples, but also on the 
population coefficient of correlation, r12. For small values of r12 

the distribution is practically symmetrical;l for large absolute 
·values of r12, ,however, the distribution is very skewed. This 
is illustrated iIi Fig. 91. The character of the sampling dis· 
tribution of r il' in part related to the fact that r12 and r12 must 
always be between -1 and + 1. Hence if r12 is close to + 1, 
say .94, then the\range of values above r12 that might possibly be 
taken by the sample r12 is very small compared with the range 

Tjz -I 
FIG. 91.-8ampling distributions of rl2, for tl2 = -0.6, r12 = 0, and r12 = 0.6. 

of values that might be taken by r12 below r12, and vice versa, 
if r12 is close to -1. Even for !arge values of N the distribution 
of r12 remains very skewed when r12 is close to + 1 or -1. 

Fortunately it is possible to "transform" the sampling 
distribution of r12 into, a more useful form. Thus, R. A. Fisher 
has shown that if Z12 is defined as t[loge (1 + r12) - loge (1 - r12)], 
that is, as tanh-1 r12 (read "inverse hyperbolic tangent of r12'''), 
then for all but very small values of N the sampling distribution 
of Z12 is practically normal in form, 'with a mean- approximately 
equal to the population value, Z12, that is, to 

t[loge (1 + r12) - loge (1 - r12)], 
\, 

and a standard deviation equal approximately to 1/ VN - 3. '!' 

1 For r12 = 0 it is perfectly symmetrical. 
* The distribution of z may be obtained by substituting 

e 2Z - 1 
T12 = e2Z + 1 

in Eq. (1). The mean of the distribution of z is always, except when r12 = 0, 
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Accordingly, if thi~ "z transformation" is used, a sampling 
distribution can be obtained that for all but very small samples 
is practically independent of the population correlation coefficient 
and is moreover approximately normal in form. The z trans
formation thus makes it unnecessary to use elaborate tables of 
the distribution of r12 in making estimates and testing hypotheses 
regarding the population correlation coefficient. 

Again it is to be noted that all the foregoing depends on the 
assumption that the population of Xl and X 2 values is distributed 
in the form of a joint normal frequency distribution. l 

USE OF THE SAMPLING DISTRIBUTION OF z = tanh-1 r 

In testing hypothesesand setting up confidence limits regard
ing correlation coefficients the most practicable procedure 
is to make use of the z transformation. For, as pointec;l out 
above, the sampling distribution of z, is. practically normal in 
form, and tables of the normal distribution are generally avail
able. Since z is normally distributed, all the previous discussion 
regarding any normally distributed statistic applies here, such 
as, for example, the discussion of the -sampling fluctuations 
of the mean when the population standard deviation is known. 
The following discussion will therefore be ~rimll.rily devoted to 
illustrating the use of the z transformation itself. 

Testing a Hypothesis. In Smith and Duncan's Elementary 
Statistics and Application the simple correlation coefficient 
between the standing of Mount Holyoke students in first
semester English and their standing in second-semester English 
was found to be rl2 = .89576. A table of hyperbolic tangents 
(see Appendix, Table XIV) shows that the angle for which' 

slightly greater in absolute value than the population value of Z'2, the "bias" 

b ·· hI b rl% emg glven roug y y 2(N _ 1)' 

A more accurate formula that indicates the closeness of the approximation 
for the standard deviation is as follows: 

1 
U;12 = -----~---=-

11 _ 3 + 8 + (N - 3)r~2 
2N + 2 - r~2 . 

1 For nonnormal cases see discussion, p. 451. 
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.89576 is the hyperbolic tangent (it will be recalled that 

for ZI2 = tanh-l T12) is approximately 1.4506. If tables are not 
available, z may be calculated from the equation 

Z12 = t[loge (1 + T12) - loge (1 ~ Tl2)] 
1 

2(.43429) [loglo (1 + T12) - loglo (1 - T12)] 

For the given case this yields z = 1.45049, 'which checks to three 
places with the value\derived from the table. l Here the sample 
value of Zl2 will be taken as that given by the table, viz., 

Z12 = 1.4506. 

Suppose 'it is argued that the true correlation coefficient 
between first- and second-semester English grades is .9900. How 
does thi~ hypothesis fare with reference to the sample coefficient 
of .89576? To test this hyppthesis convert both these correla
tion coefficients to their corresponding z values. The table of 
hyperbolic tangents indicates that z = tanh-l .9900 = 2.6465 
and, as previously, z = tanh-1 ,89576 = 1.4506. Hence the 
hypothetical z is 2.6465, and the sample z is 1.4506. The stand-

ard deviation of z = V 1 ~,= V 1 = .11323. Since z 
N - 3 81 - 3 

is normally distrib:uted, symmetrical regions of rejection would 
be given by the hypothetical z plus or minus 1.96d., or in this 
particular case by 2.6465 ± .22193, or 2.8684 and 2.4246. Since 
the sample value falls below 2.4246, the hypothesis would not be 
accepted., 

Confidence Interval for rl2' In order to determine a confidence 
interval for r12 from the given sample, it is necessary merely to 
determine a confidence interval for the population Zl2 and convert 
this into a value for r12' Thus, suppose that symmetrical confi
dence limits are desired (symmetrical-in the sense that failure to 
COver the true value is equally probable at one end and at the 
other). FQr Zl2 these are .given by the sample Z12 ± 1.960.. In 

"the present instance, 

1 The difference is due to the difference in decimals carried, methods of 
interpolation, etc., and not to any difference in definition. 
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1 1 
d = --- = ------c=== 
• V N - 3 V81 - 3 

.11323, and 

1.96d. = .22193. 

Accordingly, the upper confidence limit for Z12 is 

1.4506,+ .22193 = 1.6725, 

and the lower confidence limit for Z12 is 

1.4506 - .22193 = 1.2287. 

Interpolating in a table of hyperbolic tangents shows that the 
hyperbolic tangent of 1.6725 is .93188 and the hyperbolic tangent 
of 1.2287 is .84220. These values may also be obtained from the 
inverse of the equation for the z transf'ormation given above, viz., 

Thus for the upper limit, 2Z12 equals 3.3450; loglo e 3,3450 equals 
3.3450(.43429) = 1.45270; and e3.3450 equals the antilogarithm 
of this, or 28.359. Consequently, the upper limit for r12 equals 
27.359/29.359 = .93188, which checks tMinterpolation in the 
table. Similar calculations would check the .84,20 lower limit 
for r12' • 

In summary, the confidence limits for r12 are .84220 and 
.93188; it may thus be concluded that the range ,.84220-.93188 
covers the true value of r12 with a pr9bability of .95. To put it 
another way, any hypothetical value of r]2 that is below .84220 
01 above .93188 is deemed an unreasonable value in view of the 
sample value r12 = .89576. 

Confidence limits could also be set up and hypotheses could 
be tested in such a way that the region of rejection all came at 
one end. All this would. be a duplication of the discussion of 
Chap. XI, however, and need not be rep~ated here. As men
tioned above, once r12 has been transformed into Z12, all the 
analysis pertaining to normally distributed variables can' be 
applied. . 

Optimum Estimate of the Population Correlation Coefficient. 
An estimate of the population correlation coefficient that is' 
independent of the estimates of the means and variances of 
the population can be made from the sampling distribution of 
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r12. The independent maximum likelihood estimate of r12 is 
obtained by so choosing r12 that the probability of the sample 
r12, as indicated by Eq. '(I), is a maximum. 1. This yields the 
approximate result2 

rl2(1 - rI2) 
f12 = r12 - 2(N _ 1) (2) 

That is, the sample rl2 is somewhat too high as an estimate 
of the population correlation coefficient and needs to be corrected 

by the subtraction of' the quantity r~(~ -=- rl))· For example, 

if r12 = .89576 and N = 81, then the maximum-likelihood 
. t f . 89576 (.89576) (1 - .895762

) 89465 estrma e 0 1'12 IS • - 2(81 _ 1) = . . 
When r12 is estimated jointly with the means and variances 

of the population, it is found that the maximum-likelihood esti
mate of r12 is the sample r12. 

SAMPLING DISTRIBUTION 
OF OTHER CORRELATION COEFFICIENTS 

Partial Correlation Coefficients. The analysis that has ·been 
described in the preceding section for a simple correlation 
coefficient can be applied with very little modification to partial 
correlation coefficients. The -only change required in the 
formulas is to subtract from N the number of variables held 
constant. AB before, the practicable procedure· is to take 
z = tanh-1 rii.k ... and to treat z as if it were normally distributed. 
The mean of the distribution of z is again approximately the 
value of z corr~sponding to the population correlation coefficient, 
rii.k ... , that is, Z = tanh-1 rii.k ... ; but the standard deviation 
of z is now the reciprocal of the square root of N - m - '3, where 
m is the number of variables held constant. 

1 See pp. 181-182.. '" 
2 This is obtained by taking the derivative of expression (1) with respect 

to rl2 and setting the result equal to zero. The formula is only a first 
approximation. Better approximations may be found in Karl Pearson's 
Tables for Statisticians and Biometricians, Vol. II, p. 253: Another approxi
mate equation that is commonly used is 

1'2 = r2(N - 1) - 1 
N - 2 
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To illustrate, consider the determination of confidence limits 
for the r12.34 of the Mount Holyoke data. For these it was 
found that T12.34 was .80440. For this value of T, the value of z 
is 1.1110. The standard deviation of z in this instance is 

1 
vl81 = .1147: -2-3 

Accordingly, symmetrical_.95 confidence limits for z are 

1.1110 + 1.96(0.1147) 

and 1.1110 - 1.96(0.1147), or 1.3358 and 0.8862. The r12.34 

limits corresponding to these two z limits are, respectively, .8706 
and .7095. _ . 

Hypotheses regarding r12.34 can be tested and estimates can be 
made in the same manner as hypotheses and estimates pertain
ing to simple correlation coefficients except that the number 
of variables held constant (m) must always be subtracted from N 
in all the equations used. 

Multiple Correlation Coefficients. When the population 
multiple correlation coefficient is zero, th~tatistic 

(1 - R2)/(N - k) 

has a sampling distribution of the form of the F distriblltion, 
with nl = k - 1 and n2 = 11 - k. Here R is the multiple 
correlation ~oefficient, k is the number of regression statistics 
a1.234, b12•3 ••• , bl 3.2 ••• , etc., in the regression equation, and N is the 
size of the sample. Hence the F distribution can be used to test 
whether a given multiple correlation coefficient ·is significantly 
different from zero. 

For the Mount Holyoke data, for examplff, it was found that 
Rt123 = .2529, and the question arises whether this is sig
nificantly different from zero. To answer this the p-ypophesis 
that the population value is zero (the "null hypothesis" as it 
may be called) is set up and tested as follows: The number of 
independent variables is three, 'and the number of regression 
statistics is one more than this, or four. Hence, k = 4 and 

_!E_ = .2529 = 0843 
k - 1 3 . . 
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. 1 - R2, .7471 
Smce N = 81, N _. k = ----rr = .00970. Therefore, 

R2/(k - 1) .0843 
(1 - R2)/(/V -' k) = .0097 = 8.69 

The F table (see Appendix, page 476) shows, that, for nl = 3 
and n2 = 60, the .05 point is 2.758 and, for nl = 3 and n2 = 00, 

\ 

the .05 point is 2.605. Accordingly, the .05 point for nl :=; 3 
and n2 = 77 lies between 2.758 and 2.005. Since the sample 
value is much greater than this, the null hypothesis is obviously 
rejected and the multiple correlation coefficient must be declared 
significantly different from zero. That is, there must be some 
multiple correlation between the variables concerned. 

When the population correlation coefficient is not zero, the 
distribution of the multiple correlation coefficient is more 
complicated. This was worked out by R. A. Fisher in 1928. 1 

Using Fisher's analysis, Mordecai Ezekiel has drawn a series of 
charts that give the lower confidence limits for the population 
multiple correlation coefficient for samples of varying size and 
varying numbers of independent variables. The confidence 
coefficient used was .95. These charts are to be found in the 
Appendix to Ezekiel's book on Methods of Correlation Analysis. 
For N = 75 and k = 4, for example, Ezekiel's Chart C shows 
that, if the sample multiple correlation is .57, then the lower 
confidence limit for the population value is .40. For the Mount 
Holyoke data the various multiple correlation coefficients are 
R1.234 = .9056, R2.134 = .8983, R3,124 = .6326, and R4.123 = .5029. 
For each of these, N = 81, and k = 4. Ezekiel's Chart C 
shows that the lower confidence limit for these are approximately 
.85, .85, .49, and .32, respectively. In other words, the chance 
is .95 that the ranges .85-1, .85-1, .49-1, and .32-1 cover the 
population value in each case. ' 

The maximum-likelihood estimate of the multiple correlation 
coefficient is given by the approximate formula 

R
v 2 = !l2(N - 1) - (k - 1) 

-----"--N=-'--~k-'-----'-

1 Proceedings of the Royal Society of London, Series A (1928), Vol. 121, pp. 
654-673. 
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Thus the maximum-likelihood estimate of Ri.234 is 

.9056(~~) - 3 = .9019 

'Correlation Ratio. If the correlation ratio for the population 

. th th t t' t' 17i2/(k - 1) 1 h l' 1S zero, ,en e s a IS lC (1 _ 1712)/(N _ k) a so as a samp mg 

distribution of the form of an F distribution with n1 = k - 1 
and n2 = N - k. Here k stands for the number of means 
entering into the calculation of 1712. 

To illustrate the use of the sampling distribution of 17i2 con
sider again the Mount Holyoke data. For these, 17i2 = .82124, 
k = 11, N = 81, and thus 

.82124/10 = .082124 = 32 168 

.17873/70 .002553 . 

To test tl;le hypothesis that the 'true correlation ratio is 0, take 
a coefficient of risk equal to .05, and take the upper .05 tail as 
the rjlgion of rejection. For this case, n1 = 11 - 1 = 10, and 
n2 = 81 - 11 = 70. For n1 = 8 and n2 :;=-60, the F table shows 
that the upper .05 point is 2.097; and, for n1 = 8 and n2 = 00, 

the upper .05 point is 1.938. For n1 = 12 and n2 ~ 60, the upper 
.05 point is 1.918; and, for n1 = 12 and n2 ."" 00, the .05 point 
is 1.752. Interpolation for nl = 10 and n2 = 70 is unnecessary 
since it is obvious that 32.168 is far beyond the upper .05 point fo)-, 
this problem and the correlation ratio is certainly significantly 
different from zero. 

Correlation Index. If a curve such as a parabola is fitted to 
the original data and the correlation index for the population is 

th th t t · t' J2/(k - 1) . l'k . d' 'b t d zero, en e s a IS 1C (1 _ J2)/(N _ k) IS 1 eWISe Istn u e 

like F with n1 = k - 1 and n2 = N - k, k being the number of 
regression statistics in the equation for the curve. When 
logarithms or reciprocals are used to make a distribution linear, 
the correlation between the logarithms or reciprocals can Be 
treated as any ordinary lin~ar 90rrelation coefficient. 

Test for Linearity. Since a correlation ratio and a correlation 
index are always greater than a correlation coefficient calculated 
for the same data, the question may be asked: How can it be 
determined when a distribution is really linear and when non-



FLUCTUATIONS IN CORRELATION, STATISTICS 307 

linear? This question can be answered by a sampling test. 
Thus the null hypothesis is set up that the population is linear 
and this hypothesis tested'in the light of the difference between 
the correlation coefficient and the correlation ratio (or the corre
lation.index) for the given set of sample data. 

If the population is a normal bivariate distribution in which 
the progression of means is actually linear, then the statistic 

('1/2 - r2)/(k - 2) 
(~ - '1/2)/(N - k) 

or the statistic 
(12 - r2)/(k - 2) 
(1 - 12)/(N -'k) 

is distributed like F with,nl = k - 2 and n2 :::, N - k, where k is 
the number of means from which the correlation ratio is computed 
or in the case of 1 the number of regression statistics in the equa
tion of the curve. 

For the Mount Holyoke example a correlation index was hot 
computed; but the correlation ratio was calculated, and accord
ing to the above procedure a test for linearity can be made as 
follows: 

Hence, 

r~2 = .80239 7]~2 =' .82123 k = 11 
nl = 9 

.82123 - .80239 
9 .00209 

.17877 ' = .00255 =, .8196 
----w-

The .05 point in the F distribution for nl = 9 and n2 = 70 is 
between 1.752 and 2.097. Thus .8196 is well within that limit, 
and correlation is presumably linear. 



PART III 

Advanced Sampling Problems 

CHAPTER XIII 

SAMPLING FROM A DISCRETE MANIFOLD POPULATION 

Chapter IX was concerned with sampling from a discrete 
twofold population. It is the purpose of tM present chapter to 
e~t:end the discussion of this earlier chapter to a discrete maiti
fold population, a population that is divided into more than 
tw'o classes. The the6ry of sampling from a discrete ma.nifold 
population has widespread application, for in many discrete 
populations the cases are g;ouped into several classes. Further
more, the cases of any continuously distributed population can 
be, and commonly are, arbitrarily gro)lPed in~o a finite number 
of classes. 

The theoretical argument 'pertaining to m~nifold populations 
is fundamentally' an extension of the argument ,pertaining to a 
twofold population. The ensuing analysis will accordingly 
pursue the same line of attack a~ that of the earlier chapter. 
The argument will be presented in full; but those parts that are 
identical with the earlier argument will be reviewed only briefly, 
and attention will primarily q.e centered on the complications 
that arise from a manifold instead of a twofold division of the 
population. 

THEORETICAL ARGUMENT 

Fundamental Assumptions. The fundamental assumptions 
are the same as in the simpler case. It is first assumed ;that 
the sample is small relative to the population from which it is 
drawn. It can therefore be assumed that the-percentages of the 
cases belonging to the various classes of the population are not 
changed by the withdr:awal of the sample values. This will, of 
course, be only approximately true if the population is actually 
finite and will be perfectly true only for an infinite population. 

308 
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Although the sample is' assumed to be small relative to tlie 
population, it is nevertheless assumed to be sufficiently large 
to permit the use of certain approximatio:qs. In some of the 
theoretical illustrations very small 'samples are used for the 
sake of simplicity, but in the discussioJ!. of the practical applica
tion of the argument it is assumed that the samples are large in 
the aggregate. As a general rule, it is assumed that the product 
of the population, percentage of any class times the size of the 
sample (that is, PIN) is at least equal to 5. 

A -second fundamental assumption is that the method of 
sampling is a random one: This implies once again that the 
results of repeated sampling by the selected method can be 
predicted by the calculation of probabilities for some mathe
matical model. The appropriate model will be ·described in the 
next section. 

In order to make the analysis concrete, suppose the problem 
is that of estimating the percentages of various types 6f religious 
adherents in a given locality. The alternatives are taken 
to be Catholic, Protestant, 4nd other religious denominatiens, 
including atheists, and the problem will be to estimate by means 
of a random sample the percentages of these various religious 
adherent{; in the given population. 

The Sampling Distribution o~ Percentages. In making infer
ences about the percentages ,of various attributes in a manifold 
popUlation, the sample statistics that naturally offer themselves 
for this purpose are the sample percentages of these attributes. 
Subsequently, another statistic will be described that is more 
commonly used in large samples; but for the moment ,attention 
will be centered upon the sample percentages. To make use 
of these percentages in testing hypotheses, etc., the sampl~ng 
distribution of the percentages must be derived. This will be 
the principal task of the present section. 

Derivation. The analysis of Chap. IX suggests that the 
sampling distribution of percentages can most conveniently be 
derived from the following mathematical model: Suppose 

I 

10 packs of cards in each of which there are PI per cent red, 
P2 per cent white, and pa per cent blue cards. Let all possible 
combinations. of N cards each be made by combining without 
restriction each card in any given pacK with a single card from 
each of the other packs. Since the probability of a red card in 
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each group is PI, the probability of a white card is P2, and the 
probability of a blue card is P3; anp since combinaFions are formed 
without restriction so that the selectiQn .of any card from anyone 
pack does not affect, the probabilities in other packs, then by the 
:rr{ultiplication theorem the probability 9f a combination having, 
~9r example, the first three cards red, the second fiv@ white; and 
the,last tw:o ,blue, is pfp~p~. 
",:The prQbability il).st indic&ted is true fQr any combination, 
however, in which there are thJ::ee red, five white, and two blue 
cards. The total number of such combinations is, given by 'the 
combinatorial formula1 

,,,nich, for the above example, equals 

lO! 
3!5!2! = 2,520 

Acc~)t(~ingly, the totai probability of such a combination '_vould be 

10! 3 5 2 

3 !5 !2! PIP2P3 

,For N packs of cards and for ~ombinations ,contkining"N cards, 
the probability. of a combination containing N; ,:red; N 2 white, 
and N 3 blue cards would be 

N! pN'pN'pN, 
NdN2!N3! 1 2 3 

where NI + N2 + Na = N. 
The last probability may be taken as a 'good prediction of 

,tbe. relative frequency' with which samples of ON would have N l' 
Catholics, -N 2 Protestants, and N 3 other denominations in the 
whole set of samples ,of size N that might, by repeated sampli;ng 
(with replacements2), be drawn at random fro~ the give~ popula
tion., "This is true because, if'the process of sa.mpling is random, 

1 See pp. 24-26. 
2 Since the population is finite, each case would have to be "put back" so 

as to 'be eligible for withdrawal on the next draw. This need only be true, 
however, for the theoretical argumen_t. In practice it is assumed that for 
very large populations the effect ,of not making replacements is so slight
that:it,can be ignored. Cf. pp. 187-188. 
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it is reasonable to suppose that every particular combination of 
persons will appear as frequently as every other combi~ation 
so that the relative freq~ency of samples of N having N 1 Cath
olics, N 2 Protestants, and IV 3 other denominations will tend to be 
the same as the relative frequency of combinations of Nl red, N z 
white, and Na blue cards among the set of all, possible combina-
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FIG. 92.-The multinomial distribution represented by the equation 

P (~" '~2, ~) = N"::!N.!· or' 
(Probabilities are expressed in terms of ~h' ds.) 

tions of N cards that might be made by selecting a card from 
each of N different pa:cks. The formula for the sampling dis
tri~lition of percentages from a thJ:!'lefold populatiol!. is thus c. 

, P (Nl N2 Na) -'f N'! Nt No N, _ .• 
-; N' N' N - N 'N 'N ,PI P2 -Pa . < _. l' 2· a· " 

or,"for a manifold population, 

p (NIl N 2, ••• ,Nk) N! pNtpN, ••• pNk (1) 
N-N ,,' N -'JNi.!N-j!'·:· N,,! 1,2 k 
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It will be -recognized that this is merely a generalization -of the 
formula for the bi~omial distribution. Its technical name is 
the" multinomial distribution" since it is the equation also for 
the terms of a multinomial expansion, that is, ' 

- (PI + P2 + . - . + Pk)N. 

The Multinomial Distribution. In the case of the binomial 
distribution, a sample could be described by a single percentage 

fi F N I + N 2 1 d' - N I - 'fi d th gure. or N N = ; an as soon as N was speCl e, e 

type of sample was fully designated. A graph of the binomial 
distribution could therefore be reduced to an ordinary two
dimensional graph. For a multinomial distribution, however, 
this is not possible, for there are at least two independent per
centages that characterize each sample. A graph of a multi
nomial distribution must therefore be multidimensional. 

Illustration of Symmetrical Multinomial Distribution. A con
crete illustration of a very simple multinomial distribution 
is shown in Fig. 92. This is a graph of the multinomial distribu
tion for which N = 5, k = 3, and PI = Pa.-= Pa = i. Accord
ingly, the graph represents the distribution of probabilities of 
various types of samples of size 5 drawn at ra,ndorv from a three
fold population in which the- percentages of'{)ases in the three 
classes are all equal. The equation for this particular distribu
tion is 

d h 1 f P (
N 1 N 2 N 3). b thO . f an t e va ues 0 N' N' N gIven y IS equatIOn or 

various values of 1Jv_t, ~2, and ~a are recordeq in :r~ble 30.-
I 

Since there are three classes, the graph of this particular 
multinomial distribution is drawn in three dimensions. Each 
point in the three-dimensional diagram represents ~ particular 

NI N2 N'd b" NJ N2 Ns 
set of values for N' N' N' These com IllatIOns of N' N' N 

values which are possible under the conditions of the problem 
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TABLE 30.-THE MULTINOMIAL DISTRIBUTION REPRESENTING THE 
SAMPLE PERCENTAGES FOR WHICH N = 5, k = 3,' AND PI = P2 = pa = ! 

Type of sa pe Probability 
Nt N, N, P (Nt N, N.) 
N N N N'N'N 

1.0 .0 .0 1 
243 

, 1 
.0 1.0 .0 

243 

.0 .0 1.0 1 
243 

.8 .2 .0 5 
243 

.8 .0 .2 5 
243 

.2 .0 .8 5 
~43 

.2 .8 .0 5 
243 

.0 .8 .2 
5.., 

243 

.0 .2 .,8 5 
243 

.6 .4 .0 
10 
243 

.6 .0 .4 10 . 243 

.0 .6 .4 10 
243 

.4 .6 .0 10 
243 

.4 .0 .6 10 
243 

.0 .4 .6 10 
-.. 243 

.6 .2 .2 
20, 

243 
.2 .6 .·2 20 

243 
'" ~O .2 .2 .6 

243 

.4 .4 .2 30 
243-

.4 .2 .4 30 
243 

,2 .4 .4 30 
243 
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are mar:ked_ by large {lots. The proba,bili~ies Qf getting :these 
yarious combinations, expressed in terms of--d-idS"; ate written 
slightly below and to the right" or to the left of the dots. 

First, it will be noticed that only a limited number of ~!, ~2, 

d N 3 b· t· ·bl Th·· b N 1 N 2 d an N. com ma IOns are pOSSI e. IS IS ecause N' N-' an 

N 3 1 dd Th· . N 1 N 2 N must a ways a up to 1. e vanous values of N' N' 

and ~s are thus s~bject to the condition that ~ 1 + ~2 + ~J = l. 

. This condition, as the mathematicians put it, restricts the 

"degrees of freedom" 'in selecting ~\ ~2, and ~a values. With

out it there 'would be three degrees of freedom (three dimensions) 

for the setection of ~l, ~2, and ~3 values; with it the degrees of 

freedom are reduced to two (two dimensions). Geometrically 

. h h Nl N2 Na I b thIS means t at t e N' N' and N va ues.must e confined to 

the slanting plane ABC, the equation of-;hich is the condition 

lfvt + ~2 + ~a = 1. This particular aspect o~ the problem is 

emphasized here, because the concept of degrees of freedom will 
enter into most of t~e subsequent sampling apalysis. If it is 
mastered now, the student should have little trouble with what 
is to come. 

The symmetry of the given ,multinomial distribution will 
also be noted. Those combinations that have th'l:J most even 
distribution of cases among the three classes (.4,.4,.2; .4,.2,.4; 
and .2,.4,.4) have the highest probability of occurrence (-.}&); 
the extremely uneven combinations (1.0,0,0; .0,1.0,0; and 
9,0,1.0) have the lowest prooability (2h); and similarly for the 
intermediate combinations. This symmetry is due to the-equl,tl
ity of Pl, P2f and pa. A subsequent example will demonstrate 
what happens to the distribution when the p's are unequal. 

The Means and Standard Deviations of a Multinomial Distri
butil?n. The general similarity of the multinomial distribution 
to the binomial distribution (indeed the latter is merely a special 
case of the former) suggests that the equations for the means 



SAMPLING FROM A DISCRETE MANIFOLD POPULATION 315 . 
and standard deviations of the multinomial distribution 'will 
be of the same type-as those of the binomial distribution. This 
is in fact the case. 'The mean or expected percentage of cases 
falling in class l·is Ph the melln percentage of cases falling in 
class 2 is P2, and in. general the mean percentage of cases falling 
in' class k is Pk. The standard deviation of the percentage of 
cases falling in' class 1 is l . 

d~l = ~Pl(l ;; PI) 

the standard devi~tion of the percentage of cases falling in 
class 2 is 

and, in general, the standar~ deviation of the percentage of 
cases falling in' class k is 

, d _ ~Pk(l - Pk) 
N.- N 
N 

No general proof will be given of these equations. Their 
validity may be tested, however, 'by applying them to the data of 
Table 30 and by comparing the mean and staneJ,ard deviation 
tb,us obtained ,Vith the mean and standard deviation obtained 
by the use of conventional methods of calculation. 

By definition the mean of a variable X; which has the relative 
frequencies p, is 

x = ~PiX, 

The mean value of N I/N '(i.e., the mean percentage of cases 
falling in class 1) is accordingly 

X ~ 2: p (~t, ~2, ~3) ~l 
Numerically, the value of j( for class 1 can thus be obtained by 
multiplying the figures of the first column of Table 30 by 'the 

1 For the binomial case the corresp6nding equation is 

since P1 + p: = 1 
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corresponding probabilities given in ;the last column. The results 
of these row-by-row calculations are given in the first column 

TABLE 3l.-CALCULATION OF THE MEAN AND STANDARD D.E)VIATION OF 

PERCENTAGE OF CASES FALLING IN ULASS 1 
(Multinomial distribution representing the sample percentl1ges for which 

N = 5, k = 3, and PI = P2 = P3 = 1) 

" (Nl) p (!!2 N, N.) N N'N'N 

1 
243 

4 
243 

4 
243 
1 

243 
1 

243 
6 

24.3 
6 

24.3 
4 

243 
4 

243 
12 
243 

4 
243 
4 

243 
12 
243· 
12 
243 

6 
243 
81 
243 

(Nl)' P (Nl No N') 
N N'N'N 

1 
243 
3.2 
243 
3.2 
243 
.2 

243 
.2 

243 
3.6 
243 
3.6--
243 
1.6 
243 
1.6 
243 
7.2 
243 
.8 

243 
.8 

243 
4.8 
243 
4.8 
243 
1.2 
243 
37.8 
243 

6f Table 31, and the sum of this column is therefore the mean 
value of NJ/N. Consequently, X for NI/N is M = t. . 
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By use of a short method the standard deviation of the sample 
values of Nr/N (i.e., the sample percentages of cases falling in 
class 1) .can be calculated from Table 30 by the formula l 

~2: (N1 N2 Na) (N 1)2 dN = P -, -, - - ._ pi 
N ' N N N N 

It will be recognized that the first term of the square root is 
merely the sum of the squares of the percentages of column (1), 

. Table 30, multipliep. by the corresponding probabilities: Each 
of these row-by-row products is given in column (2), Table 31, 
and their sum is the sum of this column, viz., 37.8/24~. Hence, 

/37.8 (81)2 
d~l = \J 243 _ 243 = .21 

The same results are obtained by the use of the formulas; 
for X calculated above = t, which equals P1 = t. Using the 
equation for standard deviation, 

d = ~Pl(1 _ Pi)',= ~(t)(-f) = ~2 = 21 
N, N' 5 45' 
N 

A n Illustration of a Skewed Multinomial Distribution. Another 
example will now be used to illustrate a skewed multinomial 
distribution. 

Suppose that there are again three classes, that the probability 
of a single case falling in class 1 is Pi = i, that the probability of a 
case falling in class 2 is pz = t, and that .the probability of a 
case falling in class three is pa = ti again suppose that 'fiv~ (lases 
are chosen at random. Under these conditions the probability 

f . Nl . 1 1 N2 . 1 2 dNa . o gettmg N cases m c ass 'N cases m c ass ,an N cases m 

class 3 is as follows: 

1 This is merely the short formula 
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h 1 (
Nl N2 N3) f' Nt N2 T e va ues of P N' N' N or varIOUS values of N' N' and 

~3, are given in Tabie 32, and a diagrammatic representation of 

the distribution of probabilities is shown in Fig. 93. 

-
",... 

-

N3 
N 

1.0 A 
",... ",... ",... 

~ 
~ 

",... ",... ---......-
------ ",... -\ 

/0.8 \ -~O - ...-. - --- ",... --- x-
",... 

--- ",... y --< ",... 

I 0.6 

",... ",... ------ --- / -. --- -
--- --- ---,/" --- . ---

,/" 

--- ---",... 

",... 

x ___ _ 

/
' ~ 0.4 

~ 10 ~ , .... 7 ___ ",... 

- / __.- -------'\, 
0.2 

/ _,/" 08 - 405 

",... 

",... 

FIG. 93.-The multinomial distribution represented by the equation 

p (NI, N" N3) = 5! (:!.)N,(1)N,(1)N, 
N N N NdN.!N.!" 3 >6 ~. 

~Probabilities are expressed in terms or' 'r'lnths.) 

S· th d" N 1 + N 2 + N 3 1 h Id f thO • mce e con ItlOn N N N = 0 s or IS case 

Nt N2 
as for the preceding one; the various combinations of N' N' 
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and ~~-are again constrained to lie in the slanting plane ABC, 

that is, the degrees lof freedom are ,only two. The distribution 
of probabilities is no longer symmetrical, however. Since the 
probability of. a single case falling ip. tnE( first class is greater 
than the probability of a single case falling- in either the second 
or the third class, the multinomial distribution shows a major 

bunching of .cases in the direction of the ~l-axis; and since the 

probability of a 'case falling in the second class is greater than 
the probability _of a case falling in the third class, the distribution 

shows a minor bunching of cases in the direction of the ~2-axis. 
All this is clearly revealed in Fig. ·93. It is to be noted, how
ever, that the mean and standard deviation formulas continue to 
hold true for this 'skewed form. 

Accordingly, the mean ~l equals Pl =:' t, and the standard 

d .. f Nl 1 eVIatlOn 0 N equa s 

and similar calculations will give the means and standard devia-
. fN 2 dNa tlOns 0 - an -. N N 

Use of.Multinomial Distribution in Testing Hypotheses. Like 
the binomial distribution, the multinomial distribution may be 
used to test hypotheses regarding the true division of cases in a 
population. Consider, for example, the follOWIng problem: 
Suppose there are tp_ree candidates for election to the same 
office. An inquiring reporter stops five persons at random and 
asks which candidate they f'avor. The results obtained are as 
follows: 

Candidate 
A 
B 
C 

NUIIJ-ber of Persons Favoring 
~pecifi.ed Candidate 

3 
2 
o 
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TABLE 32.-MuLTINOMIAL DISTRffiUTION REPRESENTING THE DISTRffiUTION 

OF SAMPLE PERCENTAGES FOR WHICH N = 5, k = 3, AND PI = !, 
P2 = !, AND Ps = t 

Type of sample Probability 
NI N, N, P (!!_I, !! .. -" l!:.) 
N N N N N N -

1.0 .0 .0 
243 

7,776' 

.0 1.0 .0 
32 

7,776 

.0 .0 1.0 
1 

7,776 

.8 .2 .0 
810 

, 7,776 

.8 . 0 .2 
. 406 
7,776 

.0 .8 .2 
80 

7,776 

.2 .8 .0 
240 

7,776 

.2 .0 .8 
15 

7,776 

.0 .2 .8 10 

~ 
7,776 

.6 .4 .0 1,080 
7,776 

.6 .0 .4 
270 

1,776 

.0 .6 .4 
80 

7,776 

.4 .6 .0 
720 

7,776 

.4 .0 .6 
90 

7,776 - 40 
.0 .4 .6 7,776 

.6 .2 .2 
1,080 
7,776 

.2 .6 .2 
480 

7,776 

.2 .6 
120 

.2 7,776 

.4 .4 .2 
1,080 
7,776 

.4 .2 .4 
810 

7,776 

.4 
360 

.2 .4 7,776 
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On the assumption that tlie population from which this sample 
is taken is relatively large, do these results dispr<;>ve,the hypothe-:
sis that the populatidn as a whole is equally divided with respect 
to the three candidates? That is, does the sample division of 
.6, .4, and .0 disprove the hypothesis of a true division of .33+, 
.33+, and .33+.? 

To answer this question it is necessary, as in the twofold 
case, first to d~cide upon a coefficient of risk of rejecting a 
hypothesis when it is really true. Let this be .10 in the present 
instance.' In other words, the investigating organization is 
willing to run the risk of rejecting a true hypothesis 10 times out 
of 100 .. 

The second step is to derive the distribution of sample per
centages for samples of 5 from the assumed population. Since 
in the present instance the hypothesis is that Pi = P2 = Pa = t, 
the desired sampling dis~ributiol! is that described by the multi
nomial distribution of Table 30 and Fig. 92. 

The third step is to select a group of unusual samples that 
may constitute a "region of rejection." In this particular 
instance the distribution of samples is discret,e and the number of 
cases is small, so that approximation by a continuous distribution 
is likely to be very inaccurate. It may accordingly be impossible 
to find any region that has a probability exactly equal to the 
adopted coefficient of risko. In the present problem it seems 
reasonable to proceed as follows: In Fig. 94, w:here the plane 
ABC of Fig. 92 is laid out fiat, all the more unusual samples 
(i.e., those with the lowest probabilities) are seen to lie .on or 
outside of a given circle that is ruled double in the diagram. 
The total probability of this group is ,135. Although the region 
consisting of'the circle and the area outside of it would thus 
constitute a region of rejection with a probabilitJ .greater than 
the adopted coefficient ,of risk, this probability is not much 
greater. 

Let it be assumed that the investigating organization is 
indifferent to the other values or"the population percentages that 
might be true, i.e., that it is willing to run the same chance of 
accepting the given hypothesis in whatever direction the true 
percentages might happen to lie :relative to the assumed per
centages. Under these circumstances, a symmetrical region of 
rejection, such as the circular area just described, 'should be the 
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type of region adopted. In view of this situation, therefore, it 
will be assumed that the investigating body raises its coefficient 
of risk to .135 and adopts the given region as its region of rejection. 

The final step in the analysis is to note t~at the given sample 
(3,2,0) does not fall in the region of rejection. The investigating 
organization consequently concludes that the hypothesis of an 

·FIG .• 94.-The plane of the multinomial distribution represented by the 
equation 

p (Nt, No, N3). = 5! (i)5. 
N N N NtlN.!N3 ! 

(Probabilities are expressed in terms of 1!"i.ds.) 

equal division of sentiment regarding the three candidates cannot 
be rejected as a result of the knowledge obtalned from the sample. 

If the hypothesis had been other than an equal division of 
sentiment, the multinomial distribution describing the set of all 
possible samples would have been a skewed one such as that 
represented by Table 32 and Fig, 93. In these instances,. the 
selection of a symmetrical region of rejection presents difficulties. 
This p'roblem need not be discussed here, however, for in very 
tew instances are such small samples taken as that' assumed in the 
given problem. When larger samples are used, it is possible to 
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make a mathematical transformation of a smwed multinomial 
distribution that makes it more symmetrical and at the same 
time permits a redescription of the distribution in t~rms of a new 
statistic that has a simple one-dimensional sampling distribution. 
This is discussed in the ensuing section. 

The Sampling Distribution of the Statistic 2: (Ni ~p~Pi)2. 
One of the important contributions of mathematical statiJ;tics 
has been the demonstration that when the set of all possible 
samples from a manifold population is des~ribed in terms of the 

statistic ~ (Ni N ~Pi),2, the sampling distribution is reasonably 4- p, 
well described, if N is large, by the x2 distribution. Hence, 
instead of using the multinomial distribution for testing various 
hypotheses, it is much more practical in the-case of large samples 

~ (N '- Np-)2 
to, calculate the sample statistic 4 'NPi' and use the x2 

distribution, for which'tables are readily available. 
The complete argument by which this important conclusion 

is reached is not given in this section. Nevertheless, multi
nomial problems' arise so frequently ,and the x2 distribution is 
used as a substitute for the multinomial distribution in so many 
of these prob!ems that it is well for the student to understand
the basis upon which this use of the x2 distribution rests. The 
argument, therefore, by which it is established that the statistic 

~ (Ni
N
- NPi)2 has a sampling distribution of the form of the 
Pi _ 

x2 distribution is discussed in a simplified way in the following 
section. 

A Simple Version of the Argument: the Symmetrical Case. In 
Fig. 94, the plane ,ABC from Fig. 92 is laid out horizontally; the 
sample points are all marked with heavy dots, and the coordinates 
of the point are written beside each. In addition, the probabil
ity of each is indicated. It wilr be noted that the point X; 
which was not shown in the original figure tFig. 92), represents 
the point whose coordinates are the means of the Nk/N values, 
i.e., for this case, where PI = t, P2 = t, pa = t. Although 
the point X is not a sample point, I, it is. nevertheless important 
in that it marks the center of the distribution. 

1 If nine cases, for example, had been chosen instead of five, the mean 
pdint would have also been one of the sample points. 
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It will be noted from Fig. 94 that, for the particular multi
nomial distribution represented, sample PQints of equal probabil
ity all lie equally distant from the mean point X. That is, 
points of equal probability lie in a circle with center at X. 
This ,characteristic of the distribution suggests that the set 
of all possible ,samples might pe described in a somewhat simpler 
way, viz., by showing how the probability varies with the distance 
of sample points from the mean point X or preferably with the 
square of the distance, since the latter is easier to calculate. 

In pursuance of 'tmis line of thought, the following table of 
probabilities may be calculated from Fig. 94 and used in all 
practical problems as a substitute for the original multinon{i'al 
distribution. The point (.2,.4,.4), for example, is distant. from 

TAllLE 33,-PROBABILITIES OF SPECIFIED VALUES OF D2 

D2 = square of distance of 
sample point from mean 

point 

.0266+ .. 

.1066+ 

.1866 

.2466 

.6666 

the mean point X by! 

PlD2) = probability of 
getting a sample point 

distant by D from mean 
point 

90 
243 = 0,370 

...-
60 

243 = 0.247 

60 ' 
243 = 0.247' 

30 
,243 = 0.123 

3 
243 = 0.012 

Points (.4,.2,.4) and (.4,.4,.2) are equally distant from X. The 
probability of getting a particular one of these three sample 

. 1 The general equation for measuring the square of the distance between 
points (;lh,YI,ZI) and (X2,y.,Z2) is 

d2 = (Xl - X2)2 -If (Yl - Y2)2 + (Zl - Z2)2 
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results is /h, and the probability of getting anyone of them, 
i.e., the probability of getting a sample point distant from the 
point by D = yI])266;' is ,3(30)/243 = z¥a = .370. SimHar 
calculations give the other entries in Table 33. A ·more useful 
form of Table 33 is given in Table 34. This cumulates the 
probabilities of Table 33; it thus gives the probability of getting 
a sample point that is at least as far from the mean point as the 
given sample point. 

TABLE 34.-PROBABILITIES OF D2 ~ SPECIFIED QUANTITIES 
\ -

... 
D'\. PrObability of as great or 

\ greater D' 

.0266+ 

, 
243 
243 = 1.000 

.1066+ 
153 

.629 243 = 

.1866+ 
93 

.382 243 = 

.2466+ 
33 

.135 243 = 

.6666+ 
3 

.012 243 = 

The advantage of TablE:) 34 is the ease with which it can be 
used to test the hypothesis PI '= P2 = pa = t. If .135 is adopted 
as the coefficient of risk, then Table 34 indicates immediately 
that samples for Which D2 ~ .2466 would constitute ,R. sym
metrical region of rejection having the probability .135. Hence, 
given any sample, it is merely ne'ces~ary to calculate 

and to note whether the sample D2 falls above or below .2466. 
There is no longer need to draw a diagram such as Fig. 92 in order 
to mark off a two-dimensional regi'bn of rejection, for the set of all 
possible samples has now been described in terms of a single 
statistic, D2, whose sampling distribution (Table 34) is one
dimensional. Frqm the way Table 34 was derived, however, it 
is known that the upper .135 tail of the distribution of D2 is the 
mathematical equivalent of the symmetrical two-dimensional 
region of Fig. 92. The simpler one-dimensional description 
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of the set of all possible samples,thus accomplishes the same 
result as the multidimensional description. 

The General Case. When the i}ypothesis gives to PI, P2, and 
Pa values that are not equal, the result'is a skewed multinomial 
distribution. Generally, therefore, it is not possible to draw 
neat circles through points of equal probability, such as was 
done in the special case j~st considered; nor is it possible to 
redescri be ,the set of all possible samples exactly in terms of the 
distance D2 from the point given by the mean percentages PI, 
P2, and pa. Fortunately, however, a certain procedure can be 
adopted that will_ ~ive approximate results similar to those 
obtained in the simpler case. This procedure is as follows: 

In the more general case, considElrable- advantage is gained 
by changing the scale units. Instead of taking NJ/N, NdN, 
and N 3/ N as the coordinates of a sample point, it is found 
convenient to take NI/-\lNpr, Nd.yNp;, and N a/v'Np3 as 
the sample coordinates. l This ,means that the scales are modi
fied in proportion to square roots of the hypothetical probabili
ties, the net effect of which is to make the distribution more 

~ 

symmetrical. The point represented by the mean percentages 
becomes, in terms of the new coordinateS;Pl VN /Ph P2 VN /P21 
and Pa VN/Pa, or, simply, -yiNp;_, .yNp;, an~ VNPai and the 
square of the 'distance between this point and any sample point 

becomes l: (v'~P' - VfiP;y, or Z (Ni ~p~Pi)2. 
Owing to the approximate sylnmetry resulting from this 

change in the scale units, a symmetry that improves the larger 
the value of N, it is possible to give an approximate description 
of the set of all possible samples in terms of 

When this is done mathematically, it is found that the distribution 
of probabilities is approximately of the form ofax2 dist~ibutibn 
where n in the x2 equation is taken equal to the numb~r of classes, 
minus 1. 

To illustrate this important conclusion, suppose that sampling 
is made from a po-pulation in which the various items fall into 

r , 

1 That is, the old coordinates are multiplied by v'N !P •• 
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three classes-; Then on the assumption that the percentages 
of items in these three classes are PI, P2, and Pa, the' relative 
frequencies, or probabilities, with which various samples would 

2: (N· - Npy 
have values of D'2 = ' N. • equal to or exceeding 

p. . 
certain specified values are as.follows: 1 

TABLE 35.-PROBABILITIES OF D'2 !1;; SPECIFIED QUANTITIES 

Probability of as Great or 
Greater Value1 

Values of 
D'2 

.0201 

.0404 

.103 

.211 

.446 

.713 
1.386 
2.408 
3.219 
4.605 
5.991 
7.824 
9.210 

(= Probability of as Great 
or GreMer x2 for 
n = 3 - 1 = 2) 

.99 

.98 

.95 

.90 

.80 
.70 
.50 
.30 
.20 
.10 
.05 
:02 
.01 

That is, in the set of all possible samples from the given popula-
~ (N· - Np-)2 

tion, the quantity D'2 = 4 'Np;' would have a value 

equal to or greater than 5.991 in 5 per cent of the samples, or a 
value equal to or exceeding 4.605 in 10 per cent of the samples, 
and so forth. 

In the original description of the x2 distribution,. n was said 
to determine .the. nature of the curve2: Here n may be 
identified with the degrees of freedom. The reason for this in 
the present problem should now be clear. When the number of 
classes into which a discrete population is divided is three) as 
has been assumed in the above discussion, then the quantity of 

~ (N· - Np·)2 . 
D'2 = 4 · Npi ' has a sampling distribution of the form 

1 This is merely the row un = 2" of a )(' table (Appendix, Table VIII). 
2 See p. 111. • 
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of tlie X2 distribution with n = 3 - 1 = 2. It will be recalled, 
however, that when the set of all possible sample points is 
described in terms of the percentages falling into, each class, the 
various possible sample percentages must conform to the 

equation ':vI + ':v2 + ':va = L Geometrically this meant that 

all the sample points had to lie on a plane (the plane ABC 't>f 
Fig. 92, for example). It was accordingly said that there were 
only two degrees of freedom for the selection of the various 
possible samples. Since for the case of thre~ classes, n in the x2 

formula is equal to 2; this n becomes the same as the degrees of 
. freedom in the given problem. 

This relationship also holds true for any number of classes. 

F th . 't bl t' NI + N2 + N k • 1 . or e meVl a e equa IOn N N . . N = -mev-

itable because the sum of all the class percent,ages must be 100 per 
cent-al~ays·reduces the degrees of freedom with which various 
'possible .samples may be selected from k to k - 1, while it is 

~ (N, - Np)2 
also always true that the quantity D'2 = 4 'NPi' has a 

distribution approximately of the form of the- x2 distribution, 
with n in the X2 equation equal to k - 1. Hence in :problems 
of this kind the n in the x2 equation is always, the sarile as the 
degrees of freedom. ' 

Estimation of Population Percentages. Zones of Confidence. 
When, as in the case of the multinomial distribution and the 

distribution of l: eN. -;;p~Pi)2, there is more than one popUla

tion parameter to be estimated, the determination of confidence 
intervals for these pal'ameters 'presents difficulties. In abstract 
ter:rps, the problem is simple enough. rhus .. for any given case, 

the .05 point, say, of the distribution of :z:. eNi Np~Pi)2 could 

be determined from a X2 table (all that need be known for this 

is the value of n iii the x2 formula), and the ~ eNi N Npi)2 
~ 4 Pi 

could be set equal to this value. The resulting equation would 
give the value of the population percentages Pi that would just 
be on the border of reasonableness (assuming a coefficient of 
confidence = .95),. 
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Ge?metrically, the locus of the values of th~ p;'s satisfying 
this equation would ponstitute a definite geometrical figure 
such as an ellipse or, when tHere are more than three parameters, 
some sort of an ellipsoid. All values lying qutside this locus 
would be considered unreasonable values, and all inside would be 
considered reasonable values. The enclosed area would consti
tute a "zone of confidence," and in repeated sampling it might 
be said that this zone would include the true value 95 per cent 
of the time. 

The difficulty that arises in trying to make use of the abstract 
analysis above is that tp.e locus 
marking the zone of confidence is not 
a simple ellipse. or ellipsoid but a 
much more complicated figure. In 
fact, practical determination of the 
values of Pi constituting that locus 
would involve so much trouble that 
it is almost never undertaken. In 
general, the investigator is content P3. 

.M,~.~ 
NNN 

to test particular hypotheses that FIG. 95.-A confidence zone for 

may be of importance rather than PI, P2, and P.· 

attempting to class all hypotheses into those that are reasonable 
and those that are unreasonable. 

Maximum-likelihood. Although determination of zones of 
confidence for the values of the population percentages is thus 
not usually undertaken, single maximum-likelihood estimates 
may be readily :rp.ade. For it is found that the values of Pl, P2, 
Pa, etc., that maximize the probability of a given sample result 
are bu_.t the ~ample percentages NdN, N2/N, Na/N, etc. 1 

1 This may be demonstrated as follows: If there are three class diviSions, 
the probability of a given sample point'is 

By the method of maximum likelihood, the values of Ph P2, and pa are to be 
chosen so that the logarithm of this probability is a maximum. The per
centages PI, P2, and pa are not independent, however, for they ~ust add up to 
100 per cent, i.e., PI + P2 + pa = 1. In the process of estimation, there
fore, let PI and P' be the independent estimates to be made, and let pa be 
determined from PI and P2. Under these conditions the maximizing values 
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Maximum-likelihood estimates of the population 'percentages 
are thus a very simple matter. 

APPLICATION OF THEORY TO SELECTED PROBLEMS 

Sampling Public Opinion. In sampling public opinion, the 
division of opinion is often threefold or more. In all such 
instances the foregoing theory becomes imm~diately applicable. 
Consider, for example, the following problem: 

In 1940 the election returns were as follQws: 
Per Cent 

F. D. Roosevelt, Democratic candidate ............... 54.7 
Wendell Willkie, Republican' candidate. . . . . . . . . . . . .. 44.8 
Other candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.5 

Suppose that in the fall of -1944 a given polling agency took a 
random samI?le of 1,000 votersl and found that 510 were for 
Roosevelt, again the Democratic candidate, 478 were for Dewey, 

of PI, P2, and P3 must be such that the partial derivatives of the logarithm 
of the probability with respect to PI and p. must both be equal to zero. 

The logarithm of the above probability is 

( N' N. N3) (N!) ~ logP }f'N' N =log N,!N2!N3! +N,Iogpl/j-N2Iogp2+Nslogp3 

and the partial derivatives of this with respect to PI and,p" itlbeing remem
bered that ap3/apl = apalap2 = -1, are 

!!2 _ N, = 0 
PI P3 
N2 _ Na = 0 
P2 P3 

or N;P3 = N 3P, and N 2P3 = N aP2. 
Now add these two equa,tions, and to each side of the total add N 3Pa, 

giving 
(N, + N2 + N 3)P3 = N.(pi + P2 + P3) 

Since N, + N2 + N. = N, and P' + P2 + P3 = 1, this gives (using a breve 
to denote an estimate) 

• N3 
P3= N 

Then from the two previous equations, it is found'that PI = NdN and 
P:i = N2/N. Hence, as'stated in the body of the text, the maximum likeli
hood estimates of the population percentages are the sample percentages. 

'To avoid complications, a simple random sample is assumed to be taken. 
Actually, ·representative random sampling is employed by most polling -
agencies. See pp. 183-185. 
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the Republican .candidate, and 12 wer-e for other candidates: 
CO]Jld it have been reasonably inferred from this sample that 
popular sentiment regarding. the various parties had-changed? 
In other words, would the hypothesis of 54. 7 per cent Pemocr~tic, 
44.8 per cent Republican, and 9.5 per cent other affiliations have 
been a tenable hypot)1esis in view of the sample results? 

To answer this question the investigation proceeds as follows: 

First the statistic D'2 = 2: eN, ;p~Pi)2 is calculated. This 

gives, in the present instance, 

D'2 = (51Oe - 547)2 + (478 - 448)2 +-(12 - 5)2 = 11 5 
547 448 5 . , 

Next it is noted that there are only three classes, so that D'2 is 
approximately distributed as X2, with the degrees of freedom n 
equal to 3 - 1 = 2. }i'inally a region .of rejection is chosen. 
If .05 is taken as the coefficient of ,risk, a X2 . table shows that 

'. for n = 2 the region consisting of value~ of IJ.'2 equal tp or 
greater than 5.991 is an appropriate region of rejection to select. l 

In the given instance the sample, D'2 = !l.5 clearly falls in the 
region of rejection. Consequently, the hypothesis that there 
has been rio change in political sentiml:lnt cannot be accepted. 

Since; the maxirilUm-likelih'ood estimates of PQPulation, per., 
centages are the sample percentages,2 it follows in thIs case that 
the maximum-likelihood estimates to be made of the true political 
sentiment are 51 per cent Democratic, 47.8 per cent Republican, 
and 1.2 per cent other parties. 

Goodness of Fit of ~ Frequency Curve. The use of the X2 
distribution in testing the goodness of fit of a frequency curve 
has already been discussed in a practical way in Chap. VIP 
The theoretical basis of the method there outline.d will_!low be 
discussed. 

I It will be recalled that if NdvNplI N2/-\!Np2, etc., are taken -as the 
coordinates of sample points, D' constitutes the distance from a sample 
point to the mean point VNplI VNp2' .... etc. (see p. 326). Accordingly, 
D' _;;; V5,991 constitutes a circular region. ~his is unbiased with respect to 
other values of PI,P2, and pa than those chosen by hypothesis in the sense 
that the probability of samples falling in this region is least when PI, P2, P3 
have the given hypothetical values and increases in whatever direction 
PI, P2, and P3 deviate from these hypothetical values. 

2 See p. 329. 
3 See pp. 137-152. 
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• The 'procedure outlined previously called for the c~lculation 

of 2: (F f f)2, where F was the, frequency of cases in any 

class interval given by a sample histogram and f was th'e cor
responding frequency for that interval given by some theoretical. 
frequency curve. It should be recognized now that this is 

"\' (N' - Np-)2 
merely a special form of ~ 'NPi" For Ni is the sample 

number of cases falling in any class and hence is the i3ame as F 
in the other equation, and NPi is the number that would be 
expected to fall in that class if the sample total were divided 
in the same prop'ortion as the population total and- hence is the 
same as f. Since in the general discussion' earlier in this chapt~r, 

L: (N; -;p~Pi)2 is approximately distributed in the form ofax2 

distribution, so in the special case qf a comparison of ,a sample 
histogram with a theoFeticaf frequency curve the quantity' 

2: (F f f)2 is distributed in the form ofax2 distribution. 

There is one thing new in this problem, however, and this 
has to do with the determination of the" degrlies of freedom, 
n. When the theoretical curve that is fitted to a sample histo
gram is a normal curve, say, the theoretical probabilities pe~tain
ing to each class are not given directly by the merl'l hypothesis of 
normality. It is first necessary to estimate the mean and 
standard deviation of the curve from the sarp.ple. The' effect of 
this is to impose additional conditions on the sample frequencies 
that reduce the degrees of freedom from k (the number of classes) 
minus 1 to k minus' 3. For in all cases there is the condition 

Setting the mean and standard deviation of th~ curve equal tp 
the mea~ and standard deviation of the sample histogram imposes 
,the additional conditions

' 
1 It will be recalled that Ni is the same as F and that p, is the same as,~. 

It will also be recalled that when relative frequencies are used the mean of a 

distribution is :z ~ X and its standard deviation is -v:z ~ (X - X)2, 
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~ N· - ~ -
~ N' (X - X)2 = ~ Pi(Xi - X)2 

This means that ij1 the set of aU possible samples (in this case, 
sample histograms)' that might be drawn from a given popula
tion, only those sa:(Uples will be consider~d for which the sample 
percentages Nil N satisfy the above three equations. 

Probabilities are tp_us calculated with respect to this special 
group of the set of a\l possible samples, and it is in this sense 
that the decrees of freedom are reduced. In general, when a 
frequen.cy curve is fitted to a sample histogram anq c- parameters 
of the curve are estimated from the sample histogram, c + 1 
conditions are imposed upon the sample petcentages and the part 
of the set of all possible samples that is considered has, k - c - 1 

~ (N· - Np·)2 
degrees of freedom. That :rpeans that ~ 'NPi', or its 

equivalent in terms of the freCJ.uency distribution analysis, viz., 

2: (F f f)2, has a sampling distribution of the form of the x'2 

distribution with the degrees of freedom equal to k - c - 1. 
This is the' explanation of the special value given to n in the 
procedure described in Chap. VII. 

Testing Indepenpence. Still another use of the multinomial 
distribution ,and the, x2 distribution based upon it is to test. 
whether one classification is independent of anothet classification 
/or, conversely, whether the two are associated. Particular 
measures of association or correlation were discussed in Chap. 
XII, and tests of significance were developed for thes~ measures. 
At this point, attention will be directed primarily to festing the 
existence of an association, whatever its form or degree. 

Consider a simple case. In general, the percentage of males 
and females in a large populatIon tends to be the same, no 
matter what the color of the people. That is, the sex ratio is 
independent of color. Within a limited area, however, this 
may not hold true. Economic and social forces in certain 
metropolitan districts, for example, may cause the percentage of 
black and other colored males to exceed considerably the per
centage of white males, anq vice versa for females. Suppose a 
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sample of 1,000.people is taken from a given city with a view to 
studying the relationship between sex and co19r. For this 
purpose the 1,000 people are" cross classified" as follows: 

TABLE 36.-1,000 PEOPLE CLASSIFIED AS TO COLOR AND"SEX 

Males Females Totals 

-----------'-----------------
Whites ............ ". . ..................... 380 
Blacks. . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . 150 
Other colQrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Totals......... .... . . .... ... . . .... . ..... ... 600 

320 
50 
30 

700 
20.0 
100 

400 1,000 

The question is: Does this sample of 1,000 people demonstrate 
definitely tliat tlie population of the city as a whole has a higher 
percentage of black and other-color males than 'white males, or 
can this sample resu'It reasonably be considered the effect of 
chance? Or, to put it another 'way, does this sample show 
conclusively that the sex ratio in this city is not indept)ndent of 
color? 

In a problem of this kind, it is more convenient to test the 
negative, or "null," hypothesis. Fo~..if the classifications are 
assumed to be independent within the popUlation as a whole, it 
is then possible to tell something about the expected distribution 
of the cases. Thus, if two classifications are independent, the 
dist;ibution of cases in the various categories of one classification 
may be expected to be the same for each of t)1e categories of tp.e 
other classification. On the other hand, if the positive hypothe
sis of correlation is set up, nbthing can be told about the expected 
distributio~ of cases unless the exact form of correlation is 
specified; Thus, in the absence of specific information regarding 
the nature of the correlation, it is customary to test the null 
hypothesis of independence. 

With reference to the ,illustration, the assumption of inde
pendence means that the percentage of males (and hence the 
percentage of females) in the population as a whole is the same 
for all color groups and the percentages 'of whites and blacks 
(and hence the percentage.of other colored people) are the same 
for both sexes. That is, the probability of picking a male at 
random (and hence the probability of picking a female) is 
ind~pendent of the probability of picking a white person at 
random, the probability of picking a black person at random, and 
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the probability of picking a person of another color at ran~om. 
Likewise, both the probabillty of picking a white person at 
random and the probability of picking a person of another color 
are independent of the probability of picking a male at random 
and the probability of picking a female at random. Under these 
conditions, the probability of picking a white male, for· example, 
is, accordi~g' to the multiplication theorem for independent 
attributes,: the product of the probability of picking a male and 
the probability of picking a white person, Or, again, the 
probability of piojdng a black female is simply the product 

'of the probability of picking a female and the probability of 
picking a black perslm. 

Symbolically independence may be described as follows: l 

If one classification is represented by the roman numerltls I and 
II and the. other by the arabw num~ers 1, 2, and 3, then if the 
two classifications are independ~nt, PI (and hence 'PUI which 
equals 1 - PI) is independent of PI! P2! ~nd pai and Pl and P2 
(and hence pa, which equals 1 - Pl - P2) are independent of PI 

TABLE 37.-SYMBOLIC ILLUSTRATION OF INDEPENDENCE 

I II 

1 PI, PIl, PI 
2 PI, pu, p. 
3 PI, ,PIl, P3 

PI PH 1 

and PII' Renee, PI, = PIP,; PI, = PIP.; PI, = PIP.; PIll = pup,; 
pu, = pup,; and Pu. = puP., 

N ow it is to be noted that the assumption of independence 
does not give the actual values of any of the-above probabilities 
but merely states the existence of certain relationships among 
them. 2 .Consequently, if the actu~l frequencies to be expected 
on the basis of the assumptioTh.of independence are to be found,' 
it is necessary to estimate some of the underlying probabilities 
from the sample data (just as the mean and standard deviation 
of the, population were estimated in the previous example). 

1 Reference to Table 37 may help the reader at this point. 
2 Just as knowledgil that a population is normally distributed tells nothing 

about the actual distribution of probabilities but gives only its general form. 
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Thus, for the problem in hand, the probability of picking a male 
at random (PI) can be estimated as equal to the percentage of 
males in the sample (600/1,000 = 60 per cent), the probability of 
picking a white person at random (PI) can be estimated as equal to 
the percentage of white persons in the sample (700/1,000 = '70 
per cent),' and the probability of picking a black per~on at random 
(P2). can be estimated as equal to the percentage of black persons 
in the sample (200/1,000 = 20 per cent). Symbolically, these 
"estimating equations" are 

or 

N I• + NI, + N I, v 

, N = PI 

N I • + Nu • v' 

N = PI 

,NI , + l{u, v 

N = P2 

NI. + NI, + Nh = NpI 
N I• + N II• = Npi 
N I, + N u, = Np2 

---where the Ni;'s refer to the sample frequencies in the various 
classes, N is the total number of cases, and the Q3's are the esti-
mated probabilities. \ 

Estimates of the other class probabi:lities l can be computed 
from these three probabilities with the help of the relationships 
given by the hypothesis of independence and the laws for addition 
and multiplication of probabilities. 

Thus 

PI! = 1 - PI = 100 per cent - 60 per cent = 40 per cent; 
po = 1 - PI - P2 = 100 per cent - 70 per cent - 20 per cent 
, = 10 per cent; 

PI. = PIPI = (60 per cent) (70 per cent) = 42 per cent; 
PI, = PIP2 = (60 per cent) (20 per cent) = 12 per cent; 
PI, = PIPa = (60 per cent) (10 per cent) = 6 per cent; 

PII. = PIIPl = (40 per cent) (70 per cent) = 28 per cent; 
PI!, = PIIPZ = (40 per cent)(20 per ce~t) = 14 per cent; 
and 
PII, = pupa = (40 per cent) (10 per cent) = 4 per cent. 

1 It makes no difference what class probabilities are selected as the original 
three to be estimated directly from the sample data. 
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Applied to the num"Qer in the sample (N = 1,000), the fore
going estimated probaoilities yield the following theoretical, or 
expected,· frequencies for'the various classes: 

TABLE. 38.-1,000 PEOPLE CLASSIFIED AS TO COLOR AND SEX 

Males Females Totals 

-------------------------
'Vhites ..................................... . 
Blacks ..................................... . 
Other colors ................................ . 

Totals ................ ',' .................. . 
, 

420 
120 
60 

280 
80 
40 

700 
200 
100 ---------

600 400 1,000 

The actual frequencies differ considerably from these expected 
frequencies, and the question arises: Are these differences 
su~ciently gI;eat to disprove the hypothesis of independence? 

This is a problem involving estimated probabilities Pii' Like 
the previous problems, however, it can be shown mathematically 

that the quantity"" eN;i ~ !IPii)2 has a sampling distribution 4 Pi} 

that is approximatelyl of the form of the X2 distribution with the 
degrees of freedom n equal to k - c - 1) k being the nUID-ber of 
classes and c the additional restrictions imposed by the process 
of estimating the underlying probabilities. The number of these 
conditions is always equal to the number of the class probabilities 
originally estimated from the sample data (i.e., the number of 
estimating equations). Another way of finding the degrees of 
freedom is to note the number of cells in the cross 'classification, 
or "contingency," table (such as Table 39) that can be filled in 
arbitrarily without changing the marginal totals. Since one 
cell must be left in each row and one in each column in order to 
make the frequencies in each row or column add up to the given 
marginal totals, it follows that a table of r rows and c columns 
will yield (r - l)(c - 1) degrees of freedom. 

The problem- in hand: then, may readily be solved as follows: 
From Tables 36 and 38, it is found that 

llNot only is the x2 distribution derived from the multinomial-distribution 
by approximation, but it must be recalled that the derivation of the multi
nomial distribution itself is based on the assumption of sampling with 
replacements; when this is not true in practice, as is usually the case, the 
multinomial distribution gives merely approximate probabilities that' are 
sufficiently accurate only for samples that are small relative to the 
popUlation. . 
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'\' (Nii - NPii)2 = (380 - 420)2 + (150 - 120)2 + (70 - 60)2 
4 N Pii 420 120 _., 60 

+ (320 - 280)2 + (50 - 80)2 + (30 - 40)2 = 324'4 
280 80 '40 . 

Examiriing the x2 table for n = 6 - 4 == 2, it is seen "that 
x2 = 32.44 lies far beyond the .05 point. Hence, on the assump
tion that the upper .05 tail of the'distribution is taken as the 
regiQn of rejection, the hypothesis of independence cannot be 
accl;:lpted in this case; and it may be concluded that there-is some 
association betw~en color and sex in the given city. The general 
nature of that associatio,n is indicated by the sample. This-sug-, 
gests that the percentage of black and other-color males is greater 
than the percentage of white males, or, to put it another way, 
that the percentage of white females is greater than the per
centage of black females or the percentage of other-color females. 

Testing Homogeneity. Tests of independence that are' used 
to determine the homogeneity of a sample are of sufficient 
importance to warrant special mention. Su,ppose, for example, 
that intelligence tests are given to 1,000 students in a coeduca
tional university and also to 1,000 students in a university for 
men students only. Suppose that the dist;ibu~~on of grades in 
university A is quite different from that of uil.iversity B, the 
latter showing in general a tendency toward higher grades. 
Because of this result, authorities in B infer that they ate getting 
a more intelligent type of student than university A. Authori
ties in A, however, claim that the comparison is not fair, since, 
according to their contention, the women students in A 'are not 
generally as intelligent as the men stvdents and the sample from 
A is consequently not a homogeneous one. Fortunately, it is 
possible to test the claim of the A authorities by applying the 
test of independence. 

Suppose that the 1,000 grades from university A ani cross 
classified with respect to intelligence grade and sei, with the 
results as shown in the table on page 339. 

The question to be answered by these data is: Is the distribu
tion of intelligence grades in university A independent of s~x, 
or does sex make a difference? That is, can the distributions 
6f men's and women's grades reasonably' be taken ~o be two 
samples from a single homogeneous population? If they can, 
then authorities in A are probably wrong; at least th~ "test of 
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TABLE 39.-1,000 STUDl!JNTS C;"ASSIFIED AS TO SEX AND INTELLIGENCE 

GRADES 

Grades KIen ~Women Totals 

91-100 26 27 53 
81-90 84 73 157 
71-80 120 108 228 
61-70 131 125 256 
51-60 95 95 190 
41-50 48 46 94 
31-40 12 10 , 22 

Totals 516 484 1,000 

independence does not support their claim. If the distributions 
of men's and women's grades cannot reasonably be taken 'to be 
two samples from a single homogeneous population, then the 
authorities in A are right and the combination of the men'~ an_d 
w0l!len's grades produces a heterogeneous group that is not 
comparable with the presumably homogeneous group of grades 
from university B. 

What do the data show? 'To answer this question would 
require a repetition of the sort of numerical work carried out in 
the previous example. The reader is therefore left to find out 
the answer for himself. He will find it a good exercise. 1 

CAUTION: This chapter may well be concluded with a note 
of warning. It is always to be remembered that, when a hypoth
esis is not disproved, it is not necessarily proved. The x2 test Df 
goodness of fit affords a good illustration of this. As already 
indicated, if a normal curve gives a good fit to a sample histo
gram, it is no proof that the sample came from a normaJ popula
tion. Any other curye that would give approximately the same 
theoretical frequencies as the nQrmal curve would be an equally 
tenable hypothesis. Furthermore, it is to be noted 'that t,he x2 

test takes no account of sign. A histogram may differ'from a 
curve in a 'negative manner on one side of a central point and 
in a positive manner on the other. Still, if the differences are 
small, the x2 test may not reveal this obvious lack of conformity. 
Ira hypothesis is not disproved by one test, it may thus be dis
proved by another. It is therefore 'Yell to examine a hypothesis 
from ,all angles before accepting it, even tentatively. 

, 1 T4e procedure is to set up the hypothesis of indep,endence and from this 
And from the marginal totals to calculate a set of theoretical frequencies 
that may be compared with the actual frequencies by the x2 test. 



CHAPTER XIV 

JOINT SAMPLING FLUCTUATIONS 
IN MEAN AND STANDARD DEVIATION 

Previous sampling analysis has concentrated attention on a 
single statistic and a single population parameter. Hypotheses 
regarding that parameter were tested and confidence limits 
estabiished. Sometimes, however, problems arise in which two 
or more parameters are involved. For example, the question 
might be asked whether a given sa~ple could have come from a 
normal population with a specified mean and a specified standard 
deviation. 1 A problem might also require joint confidence limits 
for the mean and standard deviation of a normal distribution. 
It is with these problems that the present chapter will be con
cerned. Similar questions could be asked with respect to normal 
bivariate or multivariate popuiatiol)s;-or to nonnormal popula
tions in general, but these more difficult problems will not be 
discussed here. I. 

DERIVATION OF JOINT ~AMPLING DISTRIBUTION OF MEAN 
AND STANDARD DEVIATION 

To answer questions about both the mean .and the standard 
deviation of a normal population it is necessary to know the joint 
sampling distribution of the sample mean a~d standard deviation. 
This section will discuss the deriv~tion of such a joint distribution. 

1 Previous analyses of sampling fluctuations in means and standard devia
tions were concerned with the following questions: (1) Given the standard 
deviation' of the population as a known quantity, did the sample in ~and 
come from a population in which the mean had some specified value? To 
answer this question the normal curve . was used. (2) Regardless of what 
the standard deviation of the popUlation might be, did the sample cothe.from 
some population in which the mean has a specified value? Here the t dis
tribution was used. (3) Regardless of what the mean of the population 
might be, did the given sample come from some population in which the 
standard deviation has some specified value? The answer to this question 
required the use of the x~ distribution, 

In the present problem both the mean and the standard deviation are 
specified by hypothesis. 

340 
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Numerical Illustration. For samples of 2 from a normal 
population, with X = 100 and (} = 10, the joint distribution 
of the sample meart arid sample standard deviation may readily 
be found from Fig. 93 (page 318). To find those samples, fpr 
example, whose means lie between 95 and 97 and whose standard 

00 o 90 105 
FIG. 96 . ...-The sum of probabilities in gell abed is equal to 

494.5 + W(494.5) + W(421.7) + (t)(475.2) (t)(557.4) 981.7 
100,000 100,000 100,000 100,000 + 100,000 = roo,ooo 

The sum of probabilities in cell a'b'c'd' is the same. Hence the sum in both 

h . . 981.7 1963 (Th b b'l" . h fi toget er 1S tWlce 100,000 or 100,000' e pro a 11tles In t e gure are 

expressed in 100~000 thS.) 

deviations lie between 2 and:' 4 (variances between 4 and 16), it 
is merely necessary to find the samples that lie between lines 
AB and A'B' and also between the lines GH and EF and the 
lines G'H' and E'F'. The procedure is illustrated in Fig. 96. 
In this figure the samples sought are those lying in squares abed 
and a'b'c'd'. The probability of these samples, as given by 
Fig. 93, is the probability of a sample with a mean between 95 
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and 97 and a standard deviation between 2 and 4. This prob
ability can be entered in a joint distribution table such -as is 
pictured in Fig. 97. When this has been done for all possible 
combinations of values for the mean and standard deviation, the 
result is that shown in Fig. 98. Figure 98 depicts the joint 
distribution of the mean and standard deviation of samples of 2. 
For larger samples the joint distribution o£ the mean and stand-
ard deviation looks mor.e like Fig. 99. , 

A study of Fig. 98 will reveal_that the. distribution of sample' 
standard deviations is the same in form, whatever the mean 
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FIG. 97.-The probability of samples with a mean betwee:q. 95 and 97 and a, 

standard deviation between 2 and 4. (The p;obability i~ the figure is in 

lOO~OOO thS.) 

value of the sample. For samples with means lying between 115 
and 117, for example, the probability of a sample having a stand
ard deviation lying "between ° and 2 is equal to 198.6/100,000, 
the probability of a sample having a standard deviation lying 
between 2 and 4 is 183.6'/100,000, the probabllity; of a sample hav
ing a mean between ·115 and 117 and a standard -deviation lying 
between 4 and 6 is 156.8/100,000, etc. For samples with means 
lying between 117 and 119, the probabilities of various standard 
deviations are 101.2/100,000, 93.5/100,000, 79.9/100,000, etc. 
These are proportional to the former probabilities. 

That is, 198.6/101.2 = 183.6/93.5 = 156.8/79.9 = etc., which 
indicates'that the two distributions of sample standard devia-_ 
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tions are the same in form. - This is true for all columns of Fig. 98, 
indicating that the distribution of sample standard deviations is 
independent of the value of the sample mean. This is true in 
general. For a normal population the sampling distribution of 
sample standard deviations is thus independent of the value 
of the sample mean, whatever the size of the sample. 1 

'" " 
~ 

I/) 

'" '" 
'" '" CD 

0-
£:' 

'" ~ 
00 
N 

'" ... 
a 
a-
r-

'" 
5 
a 

~ co ,., 
~ 
." 
c-
o 
U) 
a 
'" ..., 
a-

O~~~~~MO~~ ~~~~~~on~~~~~o 

N 
'" X 

rog~~~~§~~~~~~~~~~~~~~~~2~ 
OL-~~~~~~~J_~~~-~N~N~~~"'~N~-~~-~J_~~-L-L-L_L~~~~ 

75 85 qs JOO 105 115 125 

~ 
FIG. 98.-Probability set of sample means and· sample standard deviations. 

:2;(P) '" 100,000. N = 2, n = 1. 

The sample standard deviation being independent of the 
sample mean, the joint probability of any given sample mean and 
any given sample standard deviation is just the product of their 
two individual probabilities. The equation for this joint dis
tribution is therefore the product of Eqs. (1) and (3) of Chap
ter X. Accordingly, the joint distribution of the mean and 
standard devi!l-tion is given by 

1 See Appendix to Cnap. X, p. 263. 



344 ADVANCED SAMPLING PROBLEMS 

dP(X,CT) 

USE OF JOINT SAMPLING DISTRIBUTION OF MEAN AND 
STANDARD DEVIATION 

(1) 

Testing Hypotheses. The use of the joint sampling distribu
tion of mean and standar.d deviation for testing hypotheses may 
be illustrated ,vith reference to Fig. 99, which gives the joint 
distribution of the mean and standard deviation for random 
samples of 11 from a normal population in which the mean is 
equal to 100 and the standard deviation is equal to 10. The 
que~tion to be consider~d will be this: If a certain sample of 
11 cases has a mean of 95 and a standard deviation of 13, is it 
reasona\Jle tb suppose that it came from a population whose 
mean is 100 and whose standard deviation is 10? 

Choice of Region of Rejection. In ans'~ing this question 
the :first step is to adopt a coefficient of risk that will d_etermine 
the risk of rejecting the hypothesis when it is true\ Let this be 
set at .05. The second step is to choose an appropriate region 
of rejection. This requires careful study. 

Suggested Regions. Various regions of rejection suggest them
selves. First are regions of rejection based entirely on the 
sample mean. Figure 100 shows a balanced'region of this kind 
(call this region Ia), and Fig. 101 shows a region covering only 
the 'lower mean values (call this region Ib). A third region of 
this sort might cover only higher mean values but is not here 
depicted by a figure (call this region Ic). 

A similar set of regions could be based entirely on the sample 
standard deviations .. Figure 102 shows a balanced region of 
this kind (call this region IIa), and Fig. 103 shows a region f 
covering only larger standard deviation values (call this region' 
IIb ).1 A ;third region (not shown graphically) might cover only 
lower values of (j (call this region IIc). 

1 For the standard deviation the .02 and .98 points of the x 2 distribution 
are used because the table of x2 is so set up that these values, and not the 

:.025 points, can be obtained~ the total probability for the regions of Fig. 102 
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A third set of regions could be based on the statistic 

t ="' yiN (X - X) 
if 

345 

which involves loth the sample mean and the sample standard 
deviation. 1 To no~.e how such regions are set IIp, consider the 
following rebtionships: In Fig. 99, X - X is the distance of the 
sample from the vfrtical line through the population mean 

value X = X. Likewise, if is equal to (j ~ N N_ 1 and is thus 

equal to ~ N N_ 1 multiplied by the distance of the sample 

from the horizontal axis, i.e., the X-axis. 

The statistic yIN (~ - X) is thus proportional to the cotan-
(j 

gent of the angle that the line connecting the sample point with 
the point (X,D) makes with the horizontal axis (angle (3 of 
Fig. 104). 

A balanced region of rejection based on the sample value of 

t = yIN (~ - X) would thus look like that marked off in 
(j 

Fig. 104 (call this region IlIa). A similar region based solely 
on negative values of tis shown)n Fig. 105 (call ~his region IIIb). 
A third region could be based solely on positive values 'Of t 
but is not here depicted by a figure (call this region IIIe). 

A fourth type of region that is considered (call it region 
IV) is a region based on a special set· of contours known as 
"A contours."2 

The quantity A is called the "likelihood ratio." The likeli
hood of a sa:rp.ple, it will be recalled, is the probability of that 
sample on the basis of certain assumed values of the population 

is .04 and not .05. While the regions of rejection based' on the standard 
deviation are thus not strictly compardble with those based on the mean, 
their position is good enough to illustrate the idea of regions of rejection. 

1 if is the optimum estimate of d, based on the sample standard deviation 

and is equal to <T -v N ~ l' 
2 Cj NEYMAN, J., and E. S. PEARSON, "On the Use and Interpretation of 

Certain Test Criteria for Purposes of Statistical Inference," Biometrika, 
Vol. 20A (1928), pp. 175-240. 
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parameters. The likelihood ratio that Profs. Neyman and 
Pearson suggest is the ratio of the likelihood of the given salnple 
on the assumption that the population has the mean and standard 
deviation given by the hypothesis in question to the likelihood 
of the given sample on the assumption that the population mean 
and standard deyiation are equal to the joint maximum-likelihood 
estimates of these' parameters. This ratio is given by 

(2) 
or 

N 
loglo A = 2" [loglo 8 2 - (M2 + 8 2 - 1)](.4343) (3) . 

X-X (J 

where M = d ,8 = -, and .4343 = loglO e. d • _ 

Equation (3) may be written more succinctly as follows: 

N 
loglo A = 2' (.4343 - k) 

in which k = .4343(M2 + 8 2) - IoglO 8 2 

This is the .equation for the A contours. 

(4) 

(5) 

TABLE 40.-ILLUSTRATING THE CALCULATIONS NECESSARY FOR 
GRAPHING A-CONTOYR REGION OF REJECTION 

(~egion IV) 

(1) (2) (3) (4) (5) (6) (7) (8) _-~ ------------

" ", log ", log ", __jQ__ (5) - ", V(6) x = 100 ± (7) 
- 1.3050 .004343 

-- ----~ ------
5.5 30.25 1.4807 .1757 40.46 10.21 ±3.3 103.2 96.8 
6.0 36.00 1.5563 .2513 57.86 21.86 ±4.7 104.7 95.3 
7.0 49.00 1.6902 .3852 88.69 39.69 ±6.3 106.3 93.7 

,.8.0 64.00 1.8062 .5012 115.40 51.40 ±7.2 107.2 I 92.8 
9.0 81.00 1.9085 .9035 ~8.96 57.96 ±7.6 107.6 92.4 

10.0 100.00 2.0000 .6950 160.03 60.03 ,±7.8. 107.8 92.2 
11.0 121.00 2.0828 .7778 179.09 58.09 ±7.ff' 107.6 92.4 
12.0 144.00 2.1584 .8534 196.50 52.50 ±7.2 107.2 92.8 
13.0 169.00 2.2279 .9229 212.50 43.50 ±6.6 106.6 93.4 
14.0 196.00 2.2923 .9873 227.33 31.33 ±5.6 105.6 94.4 
15.0 225.00 2.3522 1.0472 241.12 16.12 ±4.0 104.0 96.0 
15.5 240.25 2.3807 1.0757 247.68 7.43 ±2.7 102.7 97.3 
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The calculations shown in Table 40 are solutions of an equa
tion derived from Eq. (5). By interpolating in Table 41 
(page 361) f~r the value of k, for which the Ph is .05, k is fOllnd 
to be .695. Hence, by Eq. (5), if d equals 10 and X equals 100,' 

[
(X - 100)2 0'2 ] 

.695 = .4343 100 + 100 - log 0'2 + log 100 

and since (X - 100)2 = jj2 

.695 = .004343x2 + .0043430'2 - log 0'2 + 2 

i 2 = -0'2 + .00I343 (log 0'2 - 1.305) 

X = 100 + flog 0'2 - 1.305 _ 2 

- '\J .004343 0' 

This last is the form in which solutions are found for X cor
responding to the specified values for 0' shown in column (1) 
of Table 40. The corresponding values for X are shown iIi the 
two sub columns of column (8). The graph of columns (1) and 
(8) gives the elliptical region depicted in Fig. 106. This is a 
picture of region IV, which is a A-contour region. . 

A final set of regions that may be sugge§ted is a type 'of region 
that cuts off a corner section of the distribution qf sample means 
and standard d~viations. Such regions are PIctured in Figs. 107 
to 109. These ,vill be called, as a class, regions V 0:, Vb, and V c: 

Discussion of the Various Regions of Rejectio[t. The reason 
why so many regions of rejection are suggested as possible alterna
tives is that the best region to choose in any particular. instance 
depends on the circumstances of the problem. The r~ions 
suggested here include those likely, under varying circumstances, 
to- be found most useful. Their relative advantages and dis
advantages may now briefly be considered. 

-First note that all regions having a probability of .05 WQuld 
lead to a rejection of the hypothesis 5 times out of 10::1 when it 
was true. Region I has the disadvantage that it would permit 
acceptance of hypotheses in cases :in which the sample was very 
~mprobable because the 0'2'S were very large or very small. 
Similarly, region II would have the disadvantage of leading to 
the acceptance of hypotheses in cMes in which the mean was far 
distant from the hypothetical mean _of the population. Region 
III, based on both sample means and sample standard deviations 
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might presumably be thought to avoid this disadvantage of 
regions I and II of including improbable samples; but unfortu
nately this does not f~llow.. As may be seen from Fig. 104, 
region HI. accepts the hypothesis in cases where the standard 
deviation is very large because the mean happens to be very 
small or very large at the same- time, although both are very 
unlikely on the basis of a given hypothesis. Also, region III 
accepts the hypothesis when the sample standard deviation is 
very small because the mean is also very close to the hypo
thetical value. 

Region IV avoids the disadvantage of accepting -highly 
improbable hypotheses in that it has a certain elliptical sym
metry about the center of the distribution of sal1lple means and 
variances. 

All· these regions, it should be repeate!;l, will lead to the rejec
tion of the hypothesis when it is true 5 per cent of the trials; but 
only regions like IV will lead to rejection of the hypothesis in 
every case in which the sample itself is very improbable on the 
basis of ~hat hypothesis. 

More importan~, however, than the criterion that a region 
should include the more improbable samples is the criterion 
that a region should lead to rejection of th~ hypothesis most 
frequently when the hypothesis is not true. Which region fares 
best on this more important criterion will depend on the nature 
of the problem in hand. If the investigator. desires to aV9id 
acceptance of the hypothesis especially when the true value 
of the mean is less than the liypothetical mean being tested, 
region Ib should be used, for this will lead to rejection of the 
hypothesis more often when the true mean is less than the 
hypothetical mean. l Region IlIb is also a good region to use 
in this case, but it does not appear to be as good as._ region Ib, 
based only on the means. 

On the other hand;if the investigator wishes to avoid accept
ance of the hypothesis especially when the true value of d 

is greater than the hypothetical value, region IIb should be used; 
for when d is increased, the distribution is stretched upward and 
its vertical mean moves higher. In this instance, region IlIa, 
for certain values of d, and region lIe, for all high values, 

1 For as the distribution is shifted to the left by decreasing X, a larger 
percentage of the samples tends to fall hi the established region of rejection. 
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are worse than useless, since if the true 0 were greater than 
the hypothetical 0 the probability of a sample falling in the 
region of rejection would be less than if the hypothetical 0 

were the true o. Thus, if region lIe is used under these circum"" 
stances, there is more chance of accepting the hypothesis when 
it is not true (because 0 is actually larger) than there would be 
if it were true. On the other hand, region lIla, for certain values 
of 0, or region lIe, for all lower values, is not so bad in cases in 
which the true 0 is less than the hypothetical o. 

Instances in which region lIla or Illb appear to be particularly 
useful are those in which the investigator wishes especially 
to'reject the hypothesis when in fact the true mean is less or 
greater than the hypothetical mean and at the same time the 
true 0 is less than the hypothetical d. For in this instance the 
distribution is distorted so that more of the samples would fall 
in the established region of rejection. 

Region IV is a compromise region that tends to give a high 
probability of rejection in whatever manner the true means and 
standard deviations differ from their hypothetical values. For 
such instances Region IV has been offered as an especially good 
region. ;--

The region of rejection that would be best in mrst instances 
would probably be one that maximized the proQability 'of reject
ing the given hypothesis when in fact the true mean was less 
and- the true 0 greater than the hypothetical values. A manu
facturer of tires, for example, would be concerned about getting 
tires that rendered less mileage on the average than desired and 
varied more from tire to tire. Of course, other cases would arise 
in which the investigator would wish to avoid acceptance of the 
hypothesis when in fact the mean was greater than the hypo
thetical _value and the standard deviation was greater or less. 
It is believed, however, that the former instance is more common. 

A region bounded by a smooth continuous curve would appear 
to be the best type of region to adopt for the reason explained 
in the preceding paragraph. Such a region is depicted in 
Fig. lO7. But to find a curve that would permit the ready 
calculation of probabilities is not so easy. Probably the simplest 
region would be a rectangular one such as that pictured in 
Fig. 108. A method of defining such a region in practical cases 
will be discussed below. A region like that pictured in Fig. 109 
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would involve the same difficulties as one like that shown in 
Fig. 107. 

TABLE 41.-PROBABILITY OF A VALUE OF A AS GREAT AS, OR GREATER THAN 
N 

SPECIFIED VALUE FOR VARIOUS VALUES OF k = .4343 -"2 log A * 

N = 3 N = 4 N = 5 

k 'Px '. k 
I Ph k . Ph 

1.50 :0830 \ 1.25 .0578 1.05 .0568 
1.80 .0415 1.30 .0486 1.10 .0450 
2.40 .0106 1.50 .0243 1.40. .0113 
2.70 .0053 1.80 .0086 1.45 .0090 

N = 6 N = 7 N = 8 

--
k Ph k Px k Ph 

.90' .0666 .85 .0551 .80 .0512 

.95 .0499 .90 .0389 .85 .0341 
1.20 .0117 1.05 .0137 1.00 .0101 
1.25 .0088 1.10 .0097 1.05 .0068 

N = 9 N = 10 N=l1 

k Px k Ph k - Px 
-

.75 .0534 .70 .0625 .65 .0,822 

.80 .0336 .75 .0371 .70 .0461 

.90 .0133 .85 .0131 .80 .0145 

.95 .0084 .90 .0078 .85 .0081 

* Abridged from more elaborate tables in J. Neyman and E. S. Pearson. "On the Use and 
Interpretation of Certain Test Criteria for Purposes of Statistical Inference:" Biometrika, 
Vol. 20A (1928), pp. 175-240, 238-240. 

Illustrations. The two region~ whose use will be illustrated 
here will be region IV, based on the A contours, and region Vb. 
These regions are the ones that would probably be used in most 
instances when a joint hypothesis was being tested. Region IV 
would be used when the investigator is' indifferent to what the 
actual values of X and 0 might be and region Vb would be used 
when the investigator is especially troubled about these values 
deviating f.rom the hypothetical values in a particular direction. 
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Regions based entirely on either the mean or the standard devia
tion alone would probably not be used in cases in which a joint 
hypothesis is being tested,. It is unlikely that the investigator 
would be at all concerned about the actual value of the standard 
deviation, say, when the hypothesis does involve this quantity. 

TAIlLE 42,-VALUES OF THE RATIO Ph /,,- FOR VARIOUS VALUES OF k* 

k 
• Ph 

k 
Ph 

k P" 
T T T 

, 

A35 LOO08 ,520 L0965 .605 1.2024 
.440 1.0062 .525 \ 1.1024 .610 1.2089 
.445 i.0116 .530 1.1084 .615 1.2155 
.450 l. 0170 .535 L1144 .620 1.2221 
.45S. 1.0224 .540 1.1205 .625 1.2287 
.460 1.0279 .545 1.1266 .630 J.2353 
.465 1.0334 .550 1.1328 .635 l.2420 
.470 1.0390 .555 1.1390 :640 1.2488 
.475 1.0446 .560 1.1452 .645 1.2555 
.480 1.0502 .565 1.1514 .650 1.2623 
.485 1.0559 .570 1.1576 .700 1.332 
.490 1.0616 .575 1.1639 I-' .750 1.407 
.495 1.0673 .580 1.1702 .800 1.485 
:500 1.0731 .585 1.1766 .8~0 1.569 
.505 1.0789 .590 1.1830 .9 0 1.658 
.510 1.0847 .595 1.1894 .950 1.753 
.515 1.0006 .600 1.1959 l.oqo 1,855' 

* Reproduced from Table XII in J. Neyman and E. S. Pearson, "On the Use and Inter
pretation of .Certain Test Criteria for Purposes of Statistical Inference," Biometrika, Vol. 
20A (1928), pp. 175-240, 235. 

The Probability Distribution of A. To make use of A contours 
for regions of rejection, .the probabili~y distribution of A must be 
determined. This has been done by Neyman and Pealson 
and the -results published in a table of probabilities. These 
are condensed in Tables 41 and 42. For N = 3 to N = 11 and 
for various values of k; the probability Ph of getting as great 9r 
greater values of A by chance is given in T~ble .41. These have 
been. taken from a more elaborate table worked out by Neyman 
and Pearson. For larger values of N, Table 42 is found useful. 
This gives"for various values of k, the rati~ p),j).., affording a set 
of relationships that'is practically i'ndcpepdent of N.1 

1 It will be noted that Ph means the probability of as great or greater value 
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Testing.a Hypothesis with a A. Contour. To make use of these 
fundamental relationships in an actual problem proceed a.s 

• (X - :it) (I • follows: Calculate M =. d and 8 = "d' and 

If N is equal to or less than 10, use Table 41 to note whether the 

probability of as great or greater). [ given by log A. = ~(.4343 - k) ] 

is less than or equal to .05 (or .01 if this is taken as the coefficieht 
of risk), If it is less' than or equal to the coefficient of risk, then 
the given· sample must fall in'the region of rejection marked off by 
the ,05 (or ,01) A contour, If N is greater than 10, find from 
Table 42 the value of PAl}. corresponding to the value of k com-

N 
puted for the sample, Then compute .log.}.. = "2 (.4343'- k), 

and 'multiply PA/A. by this value of A, The result is PA, the 
probability of as great or greater value of ').., If this is less than 
the adopted coefficient of risk, then the sample falls in the region 
of rejection marked off by the}. contour. 

For illustration this procedure may be applied to the problem 
stated above ~n page 344. In the sample, N = 11, X = 95, and 
(J' = 13. It is desired to test the hypothesis that the mean of the 
population from which this sample was drawn is 100 and its 
standard deviation ~O. The investigator is indifferent as to 
whether the actual values of the population mean and population 
standard. deviation are greater' or less than 100 and 10, :r:espec
tively, and he decides upon a coefficient of risk of .05. 

95 - 100 13 
For thes.e data, M = 10 = -.5, and 8 = 10 = 1.3. 

Hence, M2 = .25,82 = 1.69, and 

k = (.4343) (.25 + 1.69) - .2279 = .6146. 
"-

Looking up this value of k in Table 41 it is found that, for N = 11 
and k = .65, P" = .0822. Hence, for k = .6146, P" must be 
greater than .08 and ,certaiI?-ly greater than .05. Accordingly, 

of A. If it had been written P(}.) it would have meant simply the probability 
of A. Thus PA is the prQbability of a range of values beginning at A and 
running to infinity. 
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the samp~e in question does not fall in the region of rejection, and 
the hypothesis is not rejected: 

Since N = 11, Table 42 ,could have been used iflstead of 
Table 41. Interpolation in Table 42 shows that, for k = ,6145, 
Ph/A = 1.1969. For this,given value of k, the value of log A is 
(¥)(.4343 - ~6146) = -.9922, or 9.0078 - 10. This gives 
A =' .1018. Multiplying- the value of Ph/A by this value 'of A 
gives Ph = (1.1~69)(.1018) = .1'218" which corroborates the 
previous conclusion that Ph was greater than .08. ,_ 

The calculations in Table 40 have illustrated the construction 
of a A-contour region of rejection for the testing of a hypothesis 
as to the mean and standard deviation of the population. The 
'resulting A-contour region of rejection (region IV) is graphically 
depicted in Fig. 106. It will be noted that the A contour is a 
symmetrical ellipse with the intersection of (} and X as its center.l 
Table 40 and Fig. 106 are presented as an aid in visualizing the 
principle involved in these problems; such a table and figure 
need not, of course, be constructed for an actual problem. The 
problem illustrated above was solved without the use of such 
a figure. 

Use of a Corner Region Illustrated. The foregoi:iig has been 
based on the assumption that the investigator is indi~erent as to 
whether the true values of the mean and standard deviation are 
greater or less than the hypothetical values being tested. If an 
investigator is more concerned with the possibility that the 
true mean is less, say, than the hypothetical mean ,being tested 
and that the true standard deviation is greater than the hypo
thetical standard deviation, he will have the least probability 
of accepting the hypothesis when the true values actually bear 
this relationship to the hypothetical values if he locates his 
region of rejection entirely in the upper left-hand quadrant of 
the distribution of samples. Logically, it would se.em appro
priate to find the A contour that marked off a .05 region 
in this upper quadrant. Unfortunately, this presents -such 
great mathematical difficulties that the procedure is imprac
ticable. The following discussion is therefore offered as a crude 
substitute: 

1 The ellipse obtained in this way'is different from that of Fig. 111. The 
latter gives joint values for the population mean- and standard deviation 
for given values of the sample mean and sample standard deviation (see 
p.369). 
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The determination of a corner region of rejection may· be 
explained with reference to the following problem: Suppose it is 
claimed that a new methotl. of cultivating potatoes in a given 
locality will average a yield of 100 bushels per acre and a standard 
deviation of 10 bushels. Suppose that this offers a gain over 
the old method of cultivation in that the mean is greater and the 
standard deviation is less. To test this claim a farmer uses the 
new method of cultivation on 10 plots of ground of the same 
size and finds that tne lI/-can y~eld is 97 busliels and the standard 
deviation is 13.5 bushels. Can he reasonably reject the hyp.0the
sis that the average yield will in the long run be 100 bushels and 
the standard deviation 10 bushels? 

If the true mean of the population is 100 bushels and the true 
standard deviation is 10 bushels, 50 per cent of samples of 10 
will have an average yield equal to or less than 100. Likewise, if 
the true standard deviation is 10 bushels, 50 per cent of samples 
of 10 will have standard deviations equal to or greater than 9.15. * 
Accordingly, the probability of a sample of 10 having a mean 
less than 100 and a standard deviation greater than 9.15 is .25. 

If two other values for th.e meah and standard deviation can 
be found such that 20 per cent of the samples have ,means lying 
between 100 and this second mean value and standard deviations 
lying between 9.15 and this second standard deviation value, 
these second values for the mean and standard deviation will 
mark off a .05 region in the upper quadrant that would appear, 
to be a good region of rejection for the present problem. The 
square root of .20 is .4472. Therefore, if a second mean value 
can be found such that .4472 of the samples have means lying 
between this value of 100 and a second standard deviation value 
can be found such that .4472 of the samples have st!1ndard 
deviations lying between this second standard deviation value 
and 9.15, the two values for the mean and standard (:leviation so 
determined will mark off the desired region of rejection. 

A table of normal probabilities sho~s that .4472 of the samples 
would fall between the mean and the mean less 1.6180". Since 
the standard deviation of the mean is d/yN, it would have 

the value lO/ylO = 3.16. Hence, .4772 of the samples would 
fall between 100 and 100 - 1.618(3.16) = 94.9. 

* For n = 9, probability is 50 per cent that a x2 will exceed 8.343 i there
fore, probability is 50 per cent that Nu2/d 2 = lOu2/102 will exceed 8.343 or 
that u will exceed V83.43 = 9.15. 
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Similarly, a table of the X2 distributionl shows that, for 
n = 9, .4772 of the cases lie between the median value 8.343 
and the value X2 = 16.774. Since N1]'2/d2 has a sampling dis
tribution of the form of the x2 distribution, this means that 
.4472 of the samples will have a I]' lying between 9.15 and 12.95; 
for 101]'2/100 = 16.774 gives I]' = 12.95. 

Accordingly, the desire a .05 region of rejection will be such 
as the shaded area of Fig. llO. It will include all samples whose 
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FIG. llO.-An example of a corner region of rejection. 

means are less than 94.9 and whose standard deviations are 
greater than 9.15 and also all samples whose means lie between 
94.9 and 100 and whose standard deviations are greater than 
12.95. Inasmuch as the given sample has a mean of 97 and a. 
standard dev.iation of 13.5, it falls in this region of rejection and 
the hypothesis must be rejected. 

Determination of Joint Confidence .Zone for the Mean and 
Standard Deviation. In the estimation of a single population 
parameter it was found possible to mark off a range of values in 
the neighborhood of the sample result that could be said-to 
include ~he population value with a given degree of probability. 
Such a range of values was called a. " confidence interval" for the 
given population parameter, and the probability ,of its including 

1 Pearson's Tables for Biometricians and Statisticians was used for this 
purpose since it permits a finer interpolation than the table included in the 
Appel'ldix of this book. 
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the true value of this parameter was called the "confidence 
coefficient. " 

In a similar fashion, when two parameters are being estimated 
jojntly, it is possible to layoff joint ranges of values that may be' 
said to include the true population values of these parameters 
with a given degree of probability. This joint range of values is 
called a "confidence zone," and the probability associated with 
it is its confidence coeffi<;ient. . 

It will be recalled that the upper limit of the confidence 
interval for a single parameter was taken as the value of the 
parameter that would make the probability of the given sample 
result or a lower value just equal to a predetermined figure, say 
.025. Likewise, the lower confidence liinit was the value of the 
parameter that would make the probability of the sample result 
or a higher value just equal to another predetermined quantity, 
again say .025. The sum of these two probabilities is equal to 
the selected coefficient of risk,·and the complement of the sum 
is the confidence coefficient, say .95. 

Another way of looking at it is that the upper confidence 
limit is so chosen th_at the sample would fall exactly on the upper 
boundary of t!?-e lower region of rejection, and the lower con
fidence limit is so chosen that the sample would fall exactly on the 
lower boundary of the upper region of rejection. 

In order to determine a joint confidence zone for two param
eters a similar procedure is possible. The limits of the zone are 
determined such that if the population parameters have any 
of these limiting values then the sample will fall on the boundary 
of the region of rejection. In the case of the mean and standard 
deviation of the population a confidence zone with a confidence 
coefficient of .95 would b~ determined by finding the values of 
these parameters that would m..ak~ the given sample fall on~the 
). contour marking the .05 region of rejection. The equation 
for the). contours, it will be recalled,I is as follows: ~ 

"-
N 

10glo:X = 2" [loglo 8 2 
- (M2 + 8 2 

- 1)](.4343) (3) 

or 
k = .4343(M2 + 8 2) - 10glO 8 2 (5) 

in which k = .4343 - ; loglo ). M = X ~ X,"and 8 = ~. 
1 See p. 353. 
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If hypothetical values are a~signed to X and 0 and if h (or k) 
is given the value that makes the probability of as great or 
greatel" h just equal to ,05, the equation above will represent 
the boundary line of the ,05 region of rejection to be used in 
testing the given hypothesis, If, however, a particular samRle 
value is substituted for X and (]" and if A (and hence k) is given its 
,05 value,. then this equation will show what hypothetical'values 
of X and d would cause the given sample'to fall exactly on the 
boundary line of the ,05 region of rejection, When so used the 
equation becomes the formula for the boundary of the joint 
confidence zone for the mean and standard deviation, 

Suppose, for example, that a random sample of 11 cases 
is found to have a m~an of 95 and a standard deviation of 13, 
What is the joint confidence zone that may be said to cover 
the true values of the population mean and standard deviation 
with a probability of ,951 For samples of 11, the value of k 
for which the probability of as ~reat or greater- A is just ,05 is 
found from interpolation in Table ~1 to be approximately ,695. 
On substituting this value of k and the given sample value of X 
and rT in Eq. (5), the boundary of the joint-confidence zone for the 
mean and standard deviation of the p~pulation is given by the 
following, \ 

695 = 4343 [(95 - X)2 + 169J _ 1 (169) 
• " 02 02 OglO 0 2 

which, on solving for X gives 

X = 95 ± V._ 169'+ 2,302602(2.9229 - loglO ( 2) 

By substituting va.rious values for 0 and obtaining the cor
responding values of X a graph may be drawn of the .boundary 
line of the desired confidence zone. This has been done in 
Table.43 and depicted in a graph in Fig. 111. 

The result so obtained may be interpreted as follows: The set 
of X, 0 values included within the oval-shaped curve of Fig'/l11 
constitutes the .95 zone of confidence for the mean and standard 
deviation of' the population. In 'other words, there is ~ chance 
of .95 that one of the pairs of values included within the curve 
is the pair whose values are those of the actual mean and standard 
deviation of the population. Accordingly, any pair of 'values 
included within this curve is a reasonable hypothesis as to the 



JOINT SAMPLING FLUCTUATIONS 369 

true values of the mean and standard deviation of the population 
-it would be a hypothesis that would 'not cause the given sample 
to fall in the .05 region 'of rejection of Fig. 106. • 

Any pair of values outside the oval-shaped curve of -Fig. 111 
would be an uQreasonable hypothesis as to' the true value of the 
mean and ~tandarrd deviation of the population. The curve 
shows that the maximum tenable value for the mean of the 
population is approximately 107 and the minimum tenable 
value is approximately 83. It abo shows that the maximum 
tenable value for the standard deviation of the population is 

• 

u 

FIG. l11.-The .95 joint confidence zone for X and d, given X = 95, <I = 13. 
and N = 13. 

approximately 25.3 and the minimum tenable value is approxi
mately 8.8. 

It is to be noted, however, that these extreme values for 
the mean and standard deviation of the -population are not 
jointly tenable. If the mean should be assumed to ,have the 
value 107, the only tenable value for the standard deviation 
of the population would be 17.5. If the standard deviation 
should be assumed to have the vatue 25.3, the only tenable value 
for the mean of the population would be 95. Joint tenability, 
of course, is the very essence of. the diagram. It shows what 
range of values for one parameter is jointly tenable. with a 
given value of the other variable. 

If the mean is assumed to be 85, for example, then the values 
of the standard deviation that are jointly tenable with this value 
of the mean are the values from 13 to 22. Likewise, if the 
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standard deviation is assumed to have the value 20, say, the 
values of the mean that are then jointly tenable are the values 
from 84 to 106. 

TABLE 43.-ILLUSTRATING THE CALCULATIONS NECESSARY FOR THE 
GRAPHING OF' A' JOINT CONFIDENCE ZONE 

For the mean and standard deviation of the population 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

- - ------ ---

d d' log d' 2.9229 - 2.3026d' . (5) . (4) (6) - 169 V(7) 95 ± (8) log d' 

- ~ --- --------
9 81 1.9085 1.0144 186-.5106 189.20 20.20 ± 4.5 99~5 90.5 

10 100 2.0000 .9229 230.2600 212.51 43.51 ± 6.6 101.6 88.4 
11 121 2.0828 .8401 278.6146 234.06 65.06 ± ·8.1 103.1 86.9 -12 144 2.1584 .7645 331.5744 253.49 84.49 ± 9.2 104.2 85.8 
13 169 2.2279 .6950 389.1394 270.45 101.45 ±10.1 105.1 84.9 
14 196 2.2923 .6306 451.3096 284.60 115.60 ±10.8 105.8 84.2 
15 225 "2.3522 .5707 518.0850 295.67 126.67 ±1l.3 106.3 83.7 
16 256 2.4082 .5147 589.4656 303.40 134.40 ±1l.6 106.6 83.4 
17 289 2.4609 .4620 ,665.4514 307.44 138.44 ±11.8 106.8 83,2 
18 324 2.5105 .4124 746.0424 307,67 138,67 ±1l,8 106,8 83,2 

19 361 2,5575 ·.3654 813,2386 303.73 la4-:-73 ±11,6 106.6 83.4 
20' 400 2.6021 ,3208 921.0400 295.47 126.47 ±11.2 106,2 83.8 
21 441 2,6444 .2785 1015.4466 282.80 113.80 ±~0,7 Hi5,7 84,3 
22 484 2,6848 .2381 1114'.4584 265.35 96.3~ ± 9.8 104.8 85,2 
23 529 2.7235 .1994 1218,0754 242.88 73,88 ± 8.6 103.6 86.4 
24 576 2.7604 ,1625 1326,2976 215.52 46.52 ±,6.8 101.8 88.2 
25 625 2,7959 .1270 1439.1250 182,77 13,77 ± 3.7 98,7 91.3 

The equation to which the calculations above give solutions 
is as follows: 

.695 = .4343 [(95 ~ xy + 1d~9 J - log 169 + log <T2 

or 
,X = 95 ± y' -169 + 2.3026d2(2.9229 - log d2) 

This 'equation is Eq. (5) with ,k = .695, N = 11, X = 95, and 
<T ~ 13, 

Joint Maximum-likelihood Estimates of the Mean and Stand
ar<l Deviation. A final use of the joint distribution of the mean 
and standard deviation ·is to make joint maximum-likelihood 
estimates of the mean and standard·devi[l.tion of the population, 
The equation for this joint distribution is Eq. (1). This equa-
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tion may be viewed from two aspects. For a given value for 
each of the population parameters X and d, it may be viewed 
as giving the probability M getting various sample values for 
statistics X and cr; for given sample values of X and cr, it may be 
viewed as giving the probability of getting such a sample result 
for various hypothetical values of the parameters X and d. 

In testing hypotheses and determining confidence limits the 
first view of the equation has been adopted and illustrated; 
in determining maximum-likelihood estimates it is the second 
aspect of the equation that is significant. For, by definition, 
the maximum-likelihood estimates of the population mean and 
standard deviation are the values of these parameters that will 
make the probability of the given sample a maximum. Thus:{ 
study is made of how the probability of the sample varies with 
different hypothetical values for X and d, and the values that 
make this probability the greatest are the m.aximum-likelihood 
estimates. Algebraically the procedure is as follows: - . 

Since the probability of the given sample will be a maximum 
when its logarithm is a maximum, ·the first step is to simplify 
Eq. (1) by taking logarithms. This gives· the following result 

_ '(X - X)2 Ncr2 

log P(X,cr) = -log crj( - 20~ - 262 - (N - 1) log d 
x 

+ other terms not involving X or 0 (6) 

- N(X - X)2 + Ncr2 

log P(X,cr) = 202 - N log d 

+ other terms not involving X ot.o 

The values of X and 0 that make this a maximum will be those 
for which the partial derivatives with respect to these param
eters are equal to zero. Taking these derivatives and setting 
them equal,to zero give the following results: 

2N(X"- X) = 0 
202 

_ N + N(X - X) + Ncr2 = 0 
o 02 

The common solutions of these two equations are X =- X and 
d = cr.' These, then, are the joint maximum-likelihood estimates 
of the mean and standard deviation of the population. 



CHAPTER XV 

'SAMPLING FLUCTUATIONS IN REGRESSION STATISTICS 

Lines and planes of regression are commonly us~d devices to 
estimate one variable from one or more other variables. It is 
therefore desirable to study sampling fluctuations in regression 
statistics, higher order variances, and lines and planes of regres
sion in order to determine the accuracy of the estimates made 
from them. Such a study is the purpose of this chapter. 

" 
MAXIMUM-LIKELIHOOD ESTIMATES 

OF REGRESSION STATISTICS AND HIGHER-ORDER VARIANCES 

Two Variables. The problem to be considered here is this: 
If a random sample has been taken from a given bivariate popula
tion, what are the best estimates that may be made of the 
regression parameters of the populatJOn and how will these 
estimates fluctuate from sample to sample? lIn what follows 
it will be assumed that the population is ,[1 normal pQpulation 
in which the lines of regression are the loci of mean values and the 
distributions of cases around these lines are normal distributions. 

Consider first the line of regression of Xl on X 2, and let the 
equation of this lip.e in the population be represented by the 
eguation 

(1) . 

The problem is to estimate au and b12 and to determine the 
sampling fluctuations of these estimates. This section will be 
devoted to the first of these problems. Although t~e analysis 
relates to only one of the lines of regression, it is equally applicable 
to the other. ' . / 

As in other cases the method of solving this problem will be 
the method of maximum likelihood. In other words, the 
estimates of au and b 12 will be those that will make the logarithm 
of the probability of the given sample a maximum. The pro
cedure is as follows: First note that any pair of X 1,X2 values 
may be represented by a point in a plane such as point P in 

372 
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Fig. 112. If values are assigned to a1.2 and b12, the line of 
regression represented by Eq. (1) will be a straight line in this 
plane. The vertical deviation of,the point P from the line of 
regression will be equal to 

v = Xl - Xi = Xl - al.2 - bl2X 2 

For each pair of X ljX 2 values a vertical deviation from the line 
of regression can thus be calculated. A sample set of X I,X 2 

pairs of values can thus be translated into a sample set of devia
tions from the line of regression. If the· values assigned to 
au and b l 2 are such a~ to make the logarithm of the probability 
of the corresponding .set of deviations a maximum, they will 
also be such as to make the logarithm of the probability of the set 
of sample X I,X 2 "pairs of values a maximum, and vice versa. 

XL 

FIG. 112.-Graph of a vertical deviation of a point from the line of regression 
of Xl on X2. 

Since the population is assumed to be a normal 'bivariate 
population, it follows that the deviations from the line of regres
sion are normally distributed with a mean of zero and a standard 
deviation equal to the populatiolt' first-order standard deviation 
01.2. The probability of each deviation will thus be of the form 

1 [V2 ] dP(v) = . / exp - 202 dv 
01.2 V 271" 1.2 

(2) 

Since the sample is assumed to be a random one, the various 
deviations will be independent of each other and the probability 
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of the whole sample of deviations will be the product of their 
individual probabilities. Inasmucl;l as exponents are added in 
multiplication, the probability of the ,sample set of deviation~ 
will be given by the equation ' 

1 
dP(Vl,V2,Va, ... ; VN) = V 

,( 01.2, 21r)N" 

[ 

r v.i + v] + vi + 
exp -, 202 

. 1.2 

which may be writte~ 

dP(lh,V2,Va, ... ,VN) 

= _ ~ e:l<p [- 22::~2 ] dVI dV2 . . . dVN (3) 
(01.~ 21r)N 01'.2 

But each V is of the form Xl - al;2 - b 12X 2, so that the exponent 
of e can be written 2::(X1 - ad - b I2X 2)2. According to the 
method of maximum likelihood;, the values of na1.2 and b 12 are 
to be so chosen that the logarithlll of Eq. (3) is a maximum. 

Since the logarithm of ~ is independent of al.2 and 
(0l.2 2'1T)N ___ 

b l21 it may be ignored in determining 'their maximum-likelihood 
estimates. The logarithm of the se,cond Pljtrt of Eq. (3) is 
merely the exponent 6f e, since loge tJ" is oX by aefinition. Hence 
the logarithm of Eq. (3) will be a maximum whl3n 

1." ' 

exp [- 2::(Xl - al.2 - b 12X I2)!l1: 
" 

is a minimum, or 2::(X'l - a1.2 _- D12X2)2 is_a illihimum. 
Accordingly, the mathematical problem is so to choose a1.2 

and b 12 that 2:: (X I ;_ al.2 - b 12X 2)2 is a minimum. It will be 
recognized that this is the criterion of least squares. That is, if 
a line of regression is fitted to a sample set of data so that the sum 
6f the squares of the deviations from the line is a minimum, then 
tlie values of the regression statistics so obtained are the maxi
mum-likelihood estimates of the population regression param
eters. But if 2::(XI - ~it.2 - b12X 2)2 is to be a minimum, its 
partial derivatives with respect' to a).2 and b12 must be zero. 
These two conditions give the equations: 

2::(Xl - al.2 - b 12X 2) = 0 
2:: (Xl - al.2 - b 12X 2)X2 = 0 

} (4) 
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If lk2 and b12 represent the maximum-likelihood estimates of al-.2 
and h12' respectively, I;ts given by Eq. (4), then 

a1.2 ,;. X 1 - b12X 2 

b = l;X1X 2 - N X1X2 

12 l;X~ _ NX~ 
J (5) 

The sample least-squares values of a1.2 and b12 are thus the 
maximum-likelihood estimates of the population ·parameters. 
Siinilarly, the sample least~squares values 'of a2.1 and b21 are'the 
maximum-likefihood, estimates of au and b 21. 

More Than Two Variables. In like manner, it can be'shown 
that the sample least-squares values of the regression coefficients 
of planes and hyperplanes of regression are the maximum-likeli
hood estimates of the corresponding population regression 
parameters. Thus the maximum-likelihood estimates of a1.23 ... , 
b12•3 ... , b 1S.2 ••• are given by the _:;olutions of the least-squares 
equations. 

~(X1 := al.23 ... := b 12•a ... X 2 := b 13.2 ... Xa:= : . ?X2 :: 0 
l;(Xl - a1.23 ... - b12•3 ... X~ - b 1a.2 ... Xa - ... ) = 0 l 
~(Xl al.2a... b 12.3 ... X 2 b13,2 ... Xa )Xa - 0 

(6) 

Similar equation~ hold for maximum-likelihood estimates of 
a2.l3 ... , b21.3 ... , b 31•2 ... , etc. 

SAMPLU{G DISTRIBUTIONS OF REGRESSION STATISTICS 

Two Variables. The Sampling Distributions of a1.2, b12 , a2.1, and 
b21. The sampling distributions of regression statistics calculated 
by the method of least squares (i.e., the sampling distributions 
of the maximum-likelihood estimates of the -regress~on param
eters) are similar to the sampling distributions of the mean. 
If the population is normal, these distributions are normal. 
The means of the sampling distributions are the population 
values and the standard deviations are the population higher
order st~ndard deviations Oi.i" ... divided by VN times some 
function of the independent variable. These general formulas 
will first be eXI2.lained and illustrated witll reference to two 
variables. 

For' a line of regression the maximum-likelihood estimates of 
al.2 and h12 are given by Eq. (5). The sampling distributions 
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of these estimates (ih.2 and ( 12) are normal with means equal 
to the population values of au and b12 and standard deviations 

1 d1.2 d d1.2 • 1 equa to _ 1_ an _ 1-' respectIve y. Similarly, the sampling 
vN d2 vN 

distributions of a2.1 and li21 are normal with means equal to 

a2.1 and b 21 and.standard deviations equal to _d~-:_ and d~ , 
vN d1 N 

respectively. 
If the first-order standard deviation of the population is not 

known, it must be estimated from the sample and the t distribu
tion must be used in place of the normal curve, the appropriate 
value of n being N - 2. If the sample is large, the t distribution 
is so close to the normal distribution that the latter may be 
used instead. Hence, it makes little difference in the case of 
large samples whether or not the population first higher-order 
variance is known. In general, all the discussion of Chap. XI 
concerning the sampling fluctuations in the mean are applicable 
to the sampling fluctuations in a 1.2, b12, a2.1, and b21• 

Use of Distributions in Testing Hypotheses. To illustrate the 
testing of a 'hypothesis regarding a regression coefficient of a 
normal bivariate population, consider again the data on grades 
of Mount Holyoke students in first-semester Erlglish, X 2, and 
second-semester English, Xl. It was seen in Ghap. XIV of 
Smith and Duncan's Elementary Statistics and Applications 
that the value of b12 is .8322. Since grading in the two courses 
was apparently on a similar basis, it might be expected that a 
student whose grade exceeded the mean grade in first-selllester 
English by 20 points, say, would tend to exceed the mean grade 
in second-semester English by an equal amount, so that the 
value of b 12 might be expected to be 1.00. Let the hypothesis, 
therefore, that 'b 12 = 1 be tested in the light of the sample 
result. 

Since the population first-order standard deviatioI! is not 
known, it is .necessary to estimate ·it from the sample. As 
indicated below,l the maximum-likelihood I estimate of the 
population first-order standard deviation is derived from the 
sample first-order standard deviation by multiplyi~g it' by 

VN 
VN-2' 

Since the sample first-order standard deviation is 

1 See p. 383. 
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19.53, * the maximum-likelihood estimate of the first-order 
standard deviation of the population is thus 

U1.2 = '19.53 vtt = 19.78: 

The estimate of the standard error of b12 is consequently 

• U1.2 19.78 04647 
IT/;" = 1T2 yiN = (47.29)(9) = . , 

since 1T2 = 47.29 and' N = 81. 
The difference bet~veen the sample value, .8322, and the 

hypothetical value, 1.00, is 0.168, which is more than three 
times the estimated standard error. Since the sample· is large, 
the normal curve may be used to test the hypothesis. The 
lower .05 point on~ a normal curve comes at 1. 6451T. Hence the 
sample value obviously falls far below the .05 point, and there
·fore the hypothesis must be rejected. The value of b 12 is almost 
certainly not 1.00. 

Use of Sampling Distribution in Determining Confidence Limits. 
Confidence limits can be obtained for b 12 as follows: Suppose 
first that the confidence coefficient is set at .95, in other words, 
that the confidence limits are to be so chosen that the chances 
of their including the population value are 95 out of 100. Fur
ther, let the confidence interval be such that the chance of failing 
to include the population value because the interval is set too 
high is just equal to the chance of failing to include the population 
value,because the interval is set too low. In short, let the desired 
confidence interval be an unbiased interval with it confidence 
coefficient of .95. 

For the Mount Holyoke data the value of b12 was .8322, and 
the maximum-likelihood estimate of the standard error of b12 
has just been seen to equal .04647. Since the sample ~as large 
(N = -81) and the sampling distribution can be taken as'normal, 
an unbiased confidence interval for b 12 with a confidence coeffi-

~ 

cient of .95 will be given by b12 :t 1.960'/;." which for the given 
data yields .8322 ± 1.96(.04647) = 0.9233 and 0.7411. The 
desired confidence interval is thus 0.7411-0.9233. If the sample 
had been small, the t distribution would p~rforce have been 
used. For example, if N = 20, then the desired confidence 
limits would have been 0.8322 ± 2.10(.04647), where 2.10 is the 

* See SMITH, J. G., and A. S. DUNCAN, Elementary Statistics and Applica-
tions, p. 363. . 
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.05 value for t with n'= ~O - 2 = 18. Had there been but 
20 cases in the sample, therefore, the confidence limits would 
have been 0.7326 and 0.9318. 

More than Two Variables. The argument for two variables 
can be extended without difficulty to samples involving-more than 
~wo variables. Thus, as already indicated, the sampling distri
bution of any maximum-likelihood estimate of a regression 
parameter of a normal population is normally distributed with a 
mean equal to the population b 12 and a standard deviation equa:l 
to Oi.ik· . .. " divided by VN times some function of the independent 
variablea. In the case of two variables the function of the 
independent variable that was used was its standard deviation, . 

Thus ob" equaled ~l~. For more than two variables the 
u2vN 

standard-error formulas are equally simple, the form of their. 
equations being symmetrical, as follows: 

o -~~ 
d,.23 - VN 

0- _ 01.23 
bu .• - _ rATN 

0"2.3 v lV,--

0- _ 01.23 
bu., - - IN 

0"3.2 v 
d . 01.234 d,.,,, = VN 

0
- _ 01.234 
b12 34 - ~ / 

U2.34 V N 
o _ 01.234 

bl3.,,' - - IN 
U3.24 v 

0" _ ~h.234 
bu." - _ rATN 

U4.23 v lV 

and, in general 
'0 = Oi.ik • • '. " 

IJi.,k ... n VN 
o· 'k o =.., ... " 

hi' k ••. n U. • IN 
}.k .•. "V l (7) 

The standard deviations Ui.k . .. " can be calculated by the equation I 

ULkt . .. pn = u7(l - Tii) (1 - rik.i) ... (1 - r7n.ikt ... p) 
1 Cf. Smith and Duncan, op. cit., p. 436. 
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If the value of oi.ik ••• n is not known, it must be estimated 
froID the sample vallle O"i.ik ••• n. When this is done, the t 
distribution must be used in place of the normal distribution 
with n = N - m where m equals the number of regression 
statistics in the regI:ession equation. If the sample is relatively 
large, however, say N - m > 30, the normal curve can be used 
with sufficient accuracy, even if 0i.ik ••• " is estima~ed from the 
sample value. 

Testing a Hypothesis. In Chap. xvIi of Elementary Statistics 
and Applications, it was found that for Mount Holyoke students 
1)12.34 = .7211 where X 1 represents a student's grade in second
semester'English, X 2 her grade in first-semester English, X3 her 
verbal scholastic-aptitude test score, 'and X 4 her grade. on the 
College Board Entrance Examination in English. The value of 
0"1.234 was 18.63, and the maximum-likelihood estimate of 01.234 

is~ found by the equation 
/81 ' 

0'1.234 = 18.63 \181 _ 4 = 19.55. 

The maximum-likelihood estimate or the standard error of 

by • y 0'1.231 Th I f b bt' d 12.34 IS O"b12,,. = ,/. e va ue 0 0"2.34 may e 0 aine 
0"2.34 v N 

from the equation 2 • 

O"i.kl = 0"1 VI - rJ: VI - rlLk (8) 

In the present instance this gives 

0"2.34. = 0"2 vI - r~3 VI - rk3 

= 47.-29(.8046)(.9192) = 34.98 

The values of 1 - r~3 and 1,- rk3' are derived from the data 
for r23 and r24.3 given in ,Elementary Statistics and A·pplications. 3 

Hence the maximum-likelihood estimate of the standard error· 
of b12•a4 is 

1 Cj. p. 376. 
• Cj. p. 378. 

19:55 
(34.98) V81 

.0621 

3 SMITH and' DUNCAN, op. cit., pp. 445, 456-458. To obtain values of 
1 - r' for given vaIues of r, the sine and cosine tables 'may be used; for 
sin x = VI - cos' x. 
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So much for the preliminary calculations. Suppose the 
hypothesis is set up that grades in second-semester English 
tend to show less variation than those in first-semester English 
owing to training received in first-semester English. Suppose, 
further, that it is commonly believed that after allowance is 
made for differences in verbal aptitudes and in secondary
school training as represented by the College Board Entrance 
Examination in English, a deviation of 10 points from the mean 
of first-semester English grades will on the average-be accom
panied by a deviation of only 7t points in second-semester 
English. This is a hypothesis that the value of b 12•d4 = .7500. 
The value of b12_34 calculated from the sample is .7211. How 
does the hypothesis fare'in the light of this sample result? 

To test the given hypothesis it is necessary merely to compare 
the deviation of the value of 612•34 from the hypothetical value 
for b 12_34 with the standard deviation of b12•34• For the given 
data this yields the following result: 

.7211 - .7500 
.0621 

-.0289 
.0621 

-0.464 

Since the sample is large and the population may be taken as 
normal, the sampling distribution of 1)12_34 may also be taken 
as normal. Let the coefficient of risk be taken as .Q5' and let 
the region of rejection be taken as values of xl d = -l.645. 
The sample value of xl d = - .464 obviously does not fall in the 
region of rejection, and the hypothesis of b 12•34 = .7500 is 
therefore not rejected. If the sample had been small, then 
the t distribution, with n = N - 4, would have been used. , 

Confidence Limits. If the confidence coefficient is set at .95, 
unbiased confidence limits for the b 12_34 of the Mount Holyoke 
data are given by b12.34 ± 1.960'612.,,, which for the given data 
yields _7211 + l.96(.0621) = .843 and 

.7211 - 1.96(.0621) = .599. 

Hence the chances are .95 that the range from .599 to .843 covers 
the population value - of b 12•34• For a small sample the .05 
value of t for n = N - 4 would have had to be used in place 
of 1.96. 



SAMPLING FLUCTUATIONS IN REGRES'SION STATISTICS 381 

SAMPLING FLUCTUATIONS IN LINE OR PLANE OF REGRESSION 

Lines of Regression. 1 For any given value of ~2 the sample 
\ . 

regression value of X~ is a function of ih.2 and b12 given by the 
sample regression equation X~ = a1.2 + b12X 2. Hence sampling 
fluctuations 2 in a1.2 and b12 ~ill cause sampling fluctuations in X~. 
Let X 2 be measured from its mean value so that the regression 
equation can be written X~ = a1.2 + bl2X2. In this case, 
a1.2 = Xl, but to avoid a shift in notation it will continue to be 
called (£1.2. Under ,these conditions, sampling fluctuations in 
Xi for an arbitrarily selected value 3 of X2 will be normally dis
tributed with a mean 'equal to the population value of X~ for the 
selected value of X2, that is, X~ = a1.2 + b12X2, and a variance 
equal to the variance of ih.2 plus the variance of b12 multiplied 
by x~. These relationships may be written succinctly as follows: 4 

X~ = al.2 + b 12X2 

Ox,, = vi dd,., + Ob12X~ } (9) 

where X~ refers to the mean of sample values of X~ for the 
selected X2 and Ox,, refers to the standard error. 

With the help of these formulas the sampling fluctuations in 
Xi can be analyzed in the same manner as the sampling fluctua
tions in a mean Or a regression coeffici,ent were analyzed. For 
example, a particular hypothe.sis regarding a certain value of X~ 
can be tested by taking the ratio of the difference between the 
hypothetical value and the sample value to the estimated stand-

1 In this section and the rest of this chapter, X, is taken as the dependent 
variable. The argument is valid for any dependent variable, however, and 
formulas in which X 2 or X3 are taken as the dependent variable may be 
derived by interchanging the subscript 2 and 1 or 3 and 1. 

2 The assumption underlying the argument of this section _is that the 
values of X 2 are the same from sample to sample but the values of X I vary 
at random. The sampling is therefore of those values of X, associated with 
given values of X 2• 

• See footnote 2, page 380. 
4 It will be noted that the "variables" in this case are ih.2 and b12x2 (the 

selected value of X2 being a constant, a sort of "coefficient" for. b,.). Equa
tions (9) are t~us merely applications of the theorem that the mean of the 
sum of two normally distributed variables is the sum of their means and the 
variance of their sum is the sum of their variances if the variables are inde
pendent (ci. pp. 419-421). It may be shown that tl1.2 and b12X2 are inde
pendent in their sampling fluctuations. 
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aid e~ror of this difference. If the sample is small and the 
standard error has'to be estimated from the data, this ratio is 
looked up in A t table with n = N - 2. If the sample is large 
or if the standard error is based up~n population values, then the 
normal curve may be used. 

Or, again, unbiased confidence limits for'X~ can be determined 
by laying ,off ± t. 05crx', from the sample X~, if the sample is small, 
or ± 1.96crx'1l if the sample is large. The symbol t.05 refers to 
the .05 point! in a t table for the given value of n. The analysis 
is. essentially the same as before and will not be repeated here. 

One aspect of the sampling fluctuations in . X~, however, 
deserves further consideration. Since the standard error of 
X~ is a fmiction of the values of the independent variables, con
fidence limits for X~ will vary with its-location on the line or 
plane of regression. Furthermore, it is to be notedJrom Eqs. (9) 
that, the closer X2 is to its mean, the closer the confidence inter
vals are to the sample values of X~. The loci of the confidence 
limits for all points on the line of regression yield confidence 
limits for 'the line itself. If the confidence coefficient is .95, it 
may be said that -the chances are .95 that these limiting loci 
include the population line of regression. 

If the sample is small and the standard errors have to be 
estimated from the data, the equations of the iimi~ing loci with 
a .Q5 confidence coefficient are 

X~ = al.2 + b12X2 ± t.oo ..J if2(f"" + if2t;"X§ (10) 

where t.05 is the .05 point of a t table for n = N - 2. If the 
sample is large, 1.96 can be used in place of t. 05. A graph of the 
limiting loci for the line of regression of Xl on X 2 for the Mount 
Holyoke data is shown in Fig. 113, and the numerical values for 
the graph are given in Table 44. These were computed from the 
equations 

X~ = 217.3 + 0.8322x2 ± 1.96 -v 4.83 + .002159xi 

which are the equations for the limiting loci.~ Here 4.83 = if2(f,1.2 

and is calculated from the equation 

.2 _ ifi.2 
er".., - N' 

1 This is the point on each tail that gives an individual tail area of .025 
and a combined tail area of .05 (see Table VII in the Appendix). 



SAMPLING FLUCTUATIONS IN REGRESSION STATISTICS 383 

where 0'i.2 is the maximum-likelihood estimate of the population 
first-order variance and is equal to the sample first-order variance 

multiplied by N ~ 2· For the given data, 

-2 
(J t.2 

= (81)(~~.53)2 = 391.07 

and therefore 0'2a1.2 =;: 391.07/81 == ;i.83. The quantity 0.002159 
is 0'2b12 and is equa]1 to the square of .04647~ whIch was found 
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FIG. 113.-Maximum likelihood estimate and confidence limits for line of 
regression. The chances are .95 that these limiting loci include the population 
line of regression. 

above to be the standard error of b12 • The numerical values 
from which Fig. 113 was constructed are given in Table 44. 
It may be noted again that the limiting loci are closest to the 
sample regression line at the mean of X 2 (i.e., where X2 = 0) 

1 Actually, the value 0.002159 was calculated from the squares of the 
components and differs slightly from the square of 0.04647 itself. 
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and tend to swing away from this line as X 2 departs further and 
further from its mean value. 

TABLE 44.-S0LUTIONS FOR THE EQUATION SHOWING CONFIDENCE LIMITS 

FOR A LINE OF REGRESSION 

Equation of confidence limits: 

X; = 217.4 + 0.8322x2 ± 1.96 vi 4.83 + 0.002159x; 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

---- ---- --

"" 
x,, 0.8322x, 0.002159x,2 (4) + 4.83 V(5) 1.96(6) 217.4 + (3) 

± (7) X,* 

---- -- _-
-140 19,600 -116.5 42.32 47.15 6.866 13'.4 I 114.3 87.5 64 
-120 14,400 -99.9 31.09 35.92 5.\)93 11. 7 129.2 105.8 84 
-100 10,000 -83.2 21.59 26.42 5.140 10.1 144.3 124.1 104 
-80 6,400 ~66.6 13.82 18.65 4.319 8.5 159.3 142.3 124 
-60 3,600 -49.9 7.77 12.60 3.550 7.0 174.5 160.5 144 
-40 1,600 -33.3 3.45 8.28 2.878 5.6 189.7 178.5 164 
-20 400 -16.6 0.86 5.69 2.385 4.7 205.5 196.1 184 

0 0 0 0 4.83 2.198 4.3 221.7 213.1 204 
20 400 16.6 .86 5.69 2.385 4.7 238.7 229.3 224 
40 1,600 33.3 3.45 8.28 2.878 10l 256.3 245.1 244 
60 3,600 49.9 7.77 12.60 3.550 "7.0 274.3 260.3 264 
80 6,400 66.6 13.82 18.65 4.319 • 8.5 29j.5 275.5 284 

lOT ° ,000 
83.2 21.59 26.42 5.140 10.t 310.7 290.5 304 

12014,400 99.9 31.09 35.92 5.993 11.7' 329.0 305.6 324 
14019,600 116.5 42.32 47.15 6.866 13.4 347:3 320.5 344 

* x, = "" + )t, and ."fl, = 204. C/. SMITH, J. G., and A. J. DUNCAN, Elementary Statis
tics and Applications, p. 360. The line of regression plotted in Fig. 113 is based upon the 
equation in ibid., p. 362. 

Planes of Regression. The argument concerning sampling 
fluctuations of a line of regression can be extended easily to a 
plane of regression. Thus, if samples are selected so that the 
values of the independent variables X 2, X 3, .'. • are the same 
for each set of samples! and only the values of X! are allowed 

I Suppose, for example, that N = 3 and the first set of sample values is 

Dependent VariabZe 
Xl 
10 
12 
14 

I ndependent Variables 
X 2 Xa X 4 

235 
316 
407 

'Then all other samples of 3 would have to be selected so that X 2, X a, and. 
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to vary at random from sample to sample, then the mean yalue 
of X~ for an arbitrarily selected set of values of X 2, X:a, 
will be 

X~ = a1.23 ... + b1.2a ... X2 + b 1a.2 ... x~ + . .. .(11) 

where X2 = X 2 - X2, Xa = Xa - Xa, ... and X~ refers to the 
mean of the sample values' of X~ for the selected values of X 2, 

X a, .. " The standard error of these sample values of X~ 
would be 

dX'l = d2
<11.2 •••• + d2b12 .•... x~ + d2b13., ... x~ + . " (12) 

The distribution of Xi will be normal, and this may be used to 
test hypotheses and determine confidence limits if di,2a... is 
known or if it is- estimated and the sample is large. If the 
sample is small, the t table must be used with n = N - m 
where m is the number of regression statistics in the regression 
equation. . 

The limiting loci for a plane of regression are given by the 
sample plane plus the .05 valve of t for n = N - m times the 
standard error of X~. The equ,ations are 

Xi == al.23 ... + b12 .3 • •• X2 + b13.2 . .. X3 -]- • • • 

+ t . / '2 + '2. X2 + '2· X2 _ .05 V (J <1 .. 23 • • • (J bu.. . .. 2 (J b"., . .. a (13) 

where t.05 is the .05 point of a t. table for n = N - m. For 
large samples (that is, N - m > 30), ± 1.96 may be substituted 
for t. 05. 

- ~ 
SAMPLING DISTRIBUTION OF HIGHER-ORDER VARIANCES 

The sampling distribution of a higher-order variance is essen
tially the same as that of a zeTo-order variance, the form of the 
distribution being that of the X2 distribution. More precisely, 

it may be said that the statistic N~i.2a . .. will vary from sample 
. d1.2a .. . 

to sample in the manner of the x: distribution whose n is equal 
to N - m, m being the number of regression statistics in the 
regression equation. Thus the only difference between the 
sampling distribution of a zero-order variance and that of a 

X. had the values 2, 3, 5; 3, 1, 6; and 4, 0, 7, /respectively, in each set of 
sample values. Only the values of the dependent variable X, would be 
allowed to vary at random from one sample set·to another. 
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higher~order variance is in the value of n in the x2 equation. 

In the first case, ~~2 has a x2 distribution with n = N - 1, 

and in the second case N ~i.23 . .. has a X2 distribution with 
d1.23 ... ' 

n = N - m. 
All the sampling analysis regarding zero-order variance, may 

be applied directly to higher-order variances. For example, 
if the sample variance uL is (21.02)2 = 441.84, and if there are 
10 cases in the sample, the hypothesis that the population 
variance dL is 500, say, could be tested by looking up the value 

of N~~.I in a x2 table with n = N - 2. For the given figures, 
d2•1 

this would ~ive the result 1O(~~~.84) = 8.83. On the assump

'tion that a coefficient of risk of .05 is adopted and that the 
region of rejection is taken all at the lower end of the distribution, 
it is found that for n = 10 - 2 = 8 the .95 point of the x2• 

distribution is 2.733. Since the sample value is larger than 
this, the hypothesis would have to be accepted. 

If the sample is larger than 30, say, tlrenormal curve may be 
used in place of the x2 distribution. In this care, the value of 

u2 - d2 

V27N would be determined and the result looked up in a 
d2 

/ 

normal table. For example, for the Mount HQlyoke data the 
size of the sample is, 81 and U~,l = 441.84. To test the hypotM
sis that the population first-order variance is 490, say, calculate 
crtl - d~.l For .the given data this has the value 
dtI V27N 

441.84 - 490 = _ .63. 
490 vi Ii 

Since this is numerically less than -1.645, the hypothesis must 
again be accepted. 

Confidence limits with a confidence" coefficient of .96 can also 
'be established in the same manner as before. For small samples, 

N 2 
set d~ equal first to the upper and then to the lower .02 points 

of the x2 distribution for 'which n = N - m, and solve for d 2• 

This will give unbiased confidence limits. For example, if 
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N = 10 and o-L = 441.84, the upper and lower limits are given! 

b 2 - 10(441.84) - 2 175 d 2 - 10(441.84) - 243 L' 
y 01.2 - 2.032 -, an 01.2 - 18.168 - . Im-

its with only an upper or lower bound can also be derived in a 
manner similar to that <;lescribed for the zero-order case. 2 The 

. work will not be duplicated here. For large samples, unbiased 
0- 2 - 02 

confidence limits are given by - . / = ± 1.96. For 
0 2 V 2/N 

0-1.2 = 441.84 

and N = 81' as in the Mount Holyoke problem, these become 

441.84 - Oi.2 + 1 96 h' h' 2 - 639 d 2 - 338 2 • / 2 = -' ,w lC gIves 01.2 - an 01.2 - • 
01.2 V 8T 

Since the sampling distri~ution .of a higher-order variance 
is the same as that of a zero-order variance except that in its 
X2 form n = N - m instead of N - 1, it follows that the maxi
mum-likelihood estimate of the corresponding population 

higher-order variance is equal to N.E__ times the sample 
-m 

variance instead of N ~ l' The proof of this is the same as that 

given in Chap. XI (pages 290 to 294). In the present instance, 
0-i.2 for the sample equals 441.84. Hence the maximum-likeli
hood estimate of the value of 01.2 is 0'1.2 = %(441.84) = 453:03. 

USE OF LINE OF REGRESSION AND 
HlGHER~ORDER STANDARD DEVIATION IN ESTIMATING 

THE DEPENDENT VARIABLE 

The principal use of a line or plane of regression and the 
corresponding higher-order standard deviation is to estimate the 
dependent variable from the independent variables. For 
example, the sample data on Mount Holyoke grades show that a 
student's grade in second-semester English (Xl) is on'the average 
r~lated to her first-semester English grade (X 2) by the equation 
(line of reg!ession of Xl on X 2) 

,X~ = 217.4 + .8322(X2 ·_ X2) 

This equation may therefore be used to forecast a student's 

1 Note that n = 10 - 2 = 8. 
2 See p. 289. 
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second-semester grade from her. first-semester grade. For 
example, if a student gets a first-semester grade of 180, the best 
estimate that can be made of her second-semester grade will be 

X' = 217.4 + .8322(180 - 204.1) 
= 197.4 . 

But how reliable is this estimate? It IS m answering this 
question that use is made of the first-order standard devi:;ttion 
around the foregoing line of regression. This first-order standard 
deviation was found to be 0'1.2 = 19.53. If the foregoing equa
tion represented the population line of regression and the fore
goillg standard deviation was the population first-order standard 
deviation, and if the data were normally distributed, then it 
could be said that the chances are 95 out of 100 that the actual 
second-semester grade will fall within the limits 197.4 ± 1.96d1.2. 
that is', between 197.4 + (1:96)(19.53) = 235.7. and 

197.4 - (1.96)(19.53) = 159.3. 

The foregoing line of regression and standard deviation are not 
those of the population, however, but "'were obtained from a 
previous sample of 81 grades. Hence additional \allowance must 
be made for the sampling fluctuation in the line of regression 
and in the first-order standard deviation. The prbcedure maY'be 
. outlined as follows: " 

It should be noted that the difference between the estimate 
of the second-semester English grade and the actual value that 
occurs will consist of the sum of two independent deviations. 
First, there is the deviation of the sample regression line from the. 
population regression line. This is the error that arises from 
taking the regression of the 81 sample cases as the population 
regression. Second, there is the deviation of the actual second
semester grade from the population regression yalue. This is 
the error that arises from taking the mean of a distribution as 
representative of any' individual case. The latter will, of 
course, differ from the mean in accordance with the laws of 
sampling. There are thus two sampling errors involved in 
estimating a future grade, one relating to the past sample of 
81 grades, the other to the sampling of the future grade. The 
total error is the sum of these two. Symbolically 
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x - 2(' = (X' - X' ) + (Xl - X' ) lactual 1 estimated lactua.l lestimated actual lactual 

(14) 

Previous analysis indicated that sample regression, values 
X~ tend to -be normally distributed around the population X~ 
as a me!l:ll' with a.standard deviation equal to 

Also, on the assumption that the grades form a normal bivariate 
population, it can be said that the actual second-semester 
grades tend to be normally distributed about the population 
regression line with a standard deviation equal to the (population) 
first-order standard deviation. Since sample grades in the future 
are independent of sample grades in the past, with respect to 
deviations ,from the population regressi<;>n line, the sampling 
variance of the first of th,e right-hand members of Eq. (14) is 
independent of the sampling variance of the second right-hand 
member. Hence the sampBng variance of the left-hand member 
is the s~m of these two indep,endent sampling'v:ariances. Thus 

ax -x' 
la.ctual lestima ted 

di', + di.2 

vdi'! + di.2 

(15) 

If the population first-order variance. di.2 is not known and 
must be estimated from the sample value, then the ratio of 
X lactuol - X~e"imoted to its estimated st::tndard error will have a 
sampling distribution that is of the form of the t distribution, 
with n = N = - 2. Hence to determine" confidence limits "1 for 
the actual value of the second-semester English grade, set 

x -X + t . /"2 + "2. 2 + "2 lactu.l - lesUmated _ .05 V (J d1.2 (J b12X2 (J 1.2 

where t.os is the .05 value of a t table for n = N - 2. For large 
samples, t.05 can be replaced by 1.96, and the normal curve can 

" be used. • 
As already noted, if2d !.2 = 4.83 and if2b12 = .002159. Further

more, x~ = (180 - 204.1)2 = 580.81. Thus the confidence limits 

1 Confidence limits in the sense that in repeated sampling these limits will 
include the actual value 95 per cent of the time. They are not confidence 
limits in the usual use of the words since they do not refer to a population 
parameter. 
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for the actual value' of the second-semester English grade are 

Xlupper = 197.4 + 1.96 Y4.83 + (.002159)(580.81) + 391.07 

= !97.4 + 1.96(19.93) = 236.5 
and 

Xllowe. = 197.4 - 1.96(19.93) = 158.3 

The chances are 95 out of 100 that the range 158.3-236.5 will 
include the actual second-semester grade for the-student whose 
grade is being predicted. 

Since N is large, these limits for the actual value of Xl do not 
differ materially from those previously obtained on the assump
tion that the sample regression and first-order varinnce are the 
population regression and first-order variance. l For small 
samples, however, the allowance for sampling errOl'S in the 
regression line and the first-order variance will make a much 
greater difference. 

Similar analyses will determine confidence limits for forecasts 
from a pl!1ne of regression. Fol' small samples, tpe limits are 
given by /'---

Xl = , , 
X' + t - 1(f2 + (f2. x2 + (f2. '-x2+ . .. (f2 1 - .05 V' 4"'.... bu.. . .. 2 b.... . .. 3 1.23 ••• 

}Vhere t.os is the .05 point of a t table f!;>r n = N - m. 
samples are large, then 1.96 may be used in place of t.os. 

1 See p. 388. 

(16) 

If the 



CHAPTER XVI 

PROBLEMS INVOLVING TWO SAMPLES 

Some· of the more interesting problems in statistical analysis 
involve two samples. A sample poll, for example, ,is taken i 
month before election and another 2 days before election. The 
former shows a Democratic vote of 54 per cent and a Republican 
vote of 46 per _cent; the latter a Democratic vote of 49 per cent 
and a Republican vote of 51 per cent. If the samples both 
number 100, can the difference in the two percentages be taken 
to represent a real change in sentiment or can such a difference 
be reasonably attributed to the chance fluctuations of sampling? 
Again, 200 automobile tires of make A show an average mileage 
of 16,400 miles; 300 tires 01 make B, subjected to the same test, 
show an average mileage'of 15,900 miles. Does the difference in 
mileage indicate- that make A is really better than make B, or 
can the difference be reasonably attributed to chance? It is 
with such problems as these that the present chapter will be 
concerned. 

OUTLINE OF THE GENERAL ARGUMENT 

Proceeds from a Null Hypothesis. The. statistical analysis by 
which it is determined whether the difference between two 
samples can reasonably be attributed to chance starts with a null 
hypothesis. The hypothesis is first set up that the populations 
from which the two samples are taken do not differ,with respect· 
to the characteristic in question. This is called the "null 
hypothesis."- Sec'ond, some statistic is computed from the two 
samples that is based upon the difference in characteristics being 
studied. This may be the difference between their mean values; 
the ratio of their two variances, or the like. Third, 'the sampling 
distribution of this statistic is derived on the basis of the null 
hypothesis. That is, the set of all possible pairs of samples from 
the assumed. populations is derived, and the percentages of these 
pairs of samples having various values of the selected statistic 

391 
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are determined. Fourth, a special subset of the set of all possible 
p""airs of samples is, m'arked as an appropriate region of rejection. 
For example, this might be the upper 5 per cent of a normal 
curve. Finally, it is noted whether the statistic for the given 
pair of samples falls in the chosen region of rejection. .If it does, 
the null hypothesis is rejected and the difference between the two 
samples is not attributed to chance. This general procedure will . 
be explained more fully below with reference to several selected 
problems. 

Sampling Distribution of the Difference between Two Independent 
Sample Statistics. Before turning to particular problems, how
ever, two general relationships are worth noting. Often the 
statistic that is taken to measure the difference between two 
samples Is the arithmetic difference between two individual 
sample statistics. Thus the statistic may be Xl - X 2, 0'1 - 0'2, 

or the like. 
In general, let such a statistic be designated as 0, and let the 

two individual sample statistics be designated as 01 and 82, so 
that 8 = 01 - 82• N ow it is shown in the Appendix to this 
chapter that if the two samples are independent of each other, 
whatever the nature of the populations Irom- which the two 
samples have been drawn, the'mean of the sampling distribution 
of e is equal to tlie mean of the sampling distributlOn of el , minus 
the mean of the sampling distribution of O2, and the variance of 
the sampling distribution of 8 is equal to the variance of the 
sampling distribution of Ol plus the variance of the sampling dis
tribution of O2• In summary, if the two samples are independent, 

o = 61 - O2 

d20 = d201 + d2o, 

'These general relationships are worth remembering, 

} (1) 

DIFFERENCE BETWEEN TWO SAMPLE P~RCENTAGES 

A problem that often arises is whether the percentage of 
favorable cases in one sample is significantly different from the 
-percentage of favorable cases in another sample. Consider, for 
example, a recent senatorial campaign in Kentucky in which 
the two candidates for the Democratic nomination were Barkley 
and Chandler. On Apr. 10 a sample poll was taken which 
gave Barkley 67 per cent of the total vote and Chandler 33 per 
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cent. On July' 8 another sample poll was taken which gave 
Barkley 64 per cent .of the vote and Chandler 36 per cent. l 

If the first sample nUIhbered 100 votes and the second 200 
vote~, was it to be inferred that, during the 3 months from April 
to July, public sentiment shifted from Barkley to Chandler, or 
could the difference between the two returns have been reasonably 
attributed to chance? This is the question that the following 
argument will seek to answer. 

The Argument.' The Null Hypothesis. In accordance with 
the general procedl,lre outlined above, the first step in the analysis 
is to set up a null hypothesis. In the present instance this would 
state that the sentiment of the voters as a whole was the same 
on July 8 as it was on Apr. 10 and that the difference in sample 
returns for these two dates was merely the chance result of 
random sampling. The purpose of the following analysis is to 
see whether this hypothesis should be accepted or rejected. 

The Statistic. The second step in the analysis is to choose an 
appropriate statistic for measuring the difference between the 
two sample returns. The statistic usually selected is the differ
ence between the two sample percentages. Call this statistic 
Pd, and let it be defined by Pd = p~ - p~/, where p~ is the sample 
percenta.ge'in favor of Barkley on Apr. 10 and p~' is the sample 
percentage in favor of Barkley on July 8. 

The Sampling Distribution of Pd. It was shown in Chap. IX 
that the percentage of favorable cases in a sample would vary 
from sample to sample in accordance with the binomial distribu
tion. The mean of the distribution was found to be equal to 
Npl and the variance PlP2/N, where Pl is the percentage of 
favorable cases in the population and .P2 the perceritage of 
unfavorable cases. It was also pointed out that, if the sample 
was large, the binomial distribution could be approximated by a 
normal curve whose mean and variance were the same as those 
of the binomial distribution. 

The same sort of result can be demonstrated in the present 
instance. 2 Thus it can be shown that the difference between the 
percentages of two large samples,independently derived from the 
same population (the null hypothesis) is distributed approxi-

1 GALLUP, G., and S. F. RAE, "Is There a Bandwagon Vote?" The Public 
Opinion Quarterly, Vol. 4, (1940), p. 245. 

2 The mathematical analysis is beY0.!ld the scope of this book. 
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mately in the form of a normal frequency distribution with a 
mean of zero al'l.d a variance equal to the sum of the variances of 
the two individual sample percentages. That is, Pd can be taken 
to ,pe normally distributed with a mean of zero and a variance 

equal to ~~2 + ~~,2, where Pl and P2 are the percentages of 

favorable and unfavorable cases in the population from which the 
two samples are assumed to have been taken and N' and Nil the 
number in each of the samples. 

In the present instance, Pl and P2 are not known and must 
therefore be estimated from the samples. This can be done by 
taking Pl as the weighted average of P~ and P~' and by taking P2 

.as 1 minus the estimated value of Pl. Thus Pl and P2 can be 
estimated from the equations 

• N'p~ + N"p~' 
Pi = N' + N" and (2) 

For the data given, this gives 

• _ 100(.67) + 200(.64) _ 65 
Pl - 100 + 200 - . and...... P2 = 1 - lh = .35 

Hence, for·the problem .. in hand, Pa can be ,take~ as normally dis
tributed with a mean of zero and a variance equal to 

o 

d~d = (.65) (.35) (rh + Th) = .003363 

The Region of Rejection. Let it be assumed that in 'instances 
of this kind the polling agency does not wish to reject the null 
hypothesis when it is true more than 5 times out of 100. This 
means that the region of rejection should be of such a size that the 
probability of a sample falling within it should ·be just equal 
to .05. 

Since a real shift in public sentiment away from Barkley and 
toward Chandler might ultimately lead to the election of the 
latter, whereas a shift toward Barkley would merely strengthen 
his existing lead, it may be presumed that the polling agency 
would be more concerned about accepting the null hypothesis 
when the former shift in public sentiment had occurred than 
when the latter had taken place. -On the assumption of such an 
attitude, it would appear that the upper .05 of the sampling 
distribution of pa would be the ~est regi,on of rejection to adopt. 
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For the probability of a sample pd'falling in tliis region would 
then be greatest if public sentiment had actually shifted toward 
Chandler. The region of rejection in tl:t~· present instance will 
therefore be'the upper .05 tail of a normal curve whose mean is 
zero and whose variance is .003363. 

Testing the Null Hypothesis. The-final step is to test the.given 
hypothesis by noting whether the given sample falls in the 
selected region of rejection. Since this region comprises the 
upper .05 tail of the normal curve, it will include all values of 
x/d equal to or greater than 1.645. In the present instance; 

\ 

Pd = 67 per cent - 64 per cent = 3 per cent, and 

Hence, 
- \. dPd = V.003363 = 5.8 per cent 

Pd = 3 per cent = .517 
d

Pd 
5.8 per cent 

The sample obviously' does not fall in the region of rejection. 
The n1111 hypothesis is thus accepted, and the difference in the 
sample polls is attributed to ch~nqe. . 

In conclusion, it shouIa be not'e~ onc~ again that the foregoing 
analysis relates only to independent samples. If the same people 
were questioned on July 8 as those questioned in April, the sample 
results would not be independent of each other and the above 
analysis could not be applied. 

Alternative Argument. Instead of using the foregoing argu
ment it would have been possible to solve the given problem by 
a test of'independence such as that described in Chap. XIII. 
The steps in this alternative argument are as follows: 

First the results of the two polls are set up in a contingency 
table in which the votes are classified according to candidates 
on the one hand and dates of polls on the other. This has been 
done in Table 45. In this form the problem can be stated as 

TABLE 45.-CROSS CLASSIFICATION OF POLL DATA 

Date of poll Votes favoring Votes favoring ,Total 
Barkley ,Chandler votes 

April. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 33' 100 
July. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 72 200 

Totals ............................. 1--1-95--1--10-5--1'-30-0-
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follows~ Is the classification according to candidates independent 
of the classification .according to dates, .or does the division of 
votes vary significantly from April to July? 

The null hypothesis assumes that the true division of votes 
between the two candidates is the same in April and July and 
that the apparent differences are due to the chance effects of 
sampling. On the basis of this hypothesis, estimates are made 
of the true division of sentiment by takil1g a weighted average 
of the sample results for the 2 months. Thus the percentage in 
favor of Barkley may be estimated as equal to 

100(.67) + 200(.64) = 195 = 65 
300 300' 

and th~ percentage in favor of Chandler may be estim~ted as 

I t 100(.33) + 200(.36) - 105 - 35 Th ttl t' equa 0 300 - 300 -.. e 0 a vo e III 

each month is then distributed in the same proportion as these 
estimates of the hypothetical division of sentiment. The results 
are sh9wn in Table 46. The question then is: Do the actual 
results, shown in Table 45, differ significantly from the expected 
result.s shown in Table 46?' r---

TABLE 46.-POLL RESULTS THAT WOULD BE ExpkcTED ON THE 

ASSUMPTION OF INDEPENDENCE 

Date of poll 
Expected Expected Total votes favoring votes favoring 
Barkley Chandler votes 

April ............................... . 65 35 100 
July ............................... . 130 70 200' 

Totals ........................... . 195 105 300 

As pointed out in Chap. XIII, questions of this kind can be 
answered by calculation of the statistic 

~ ~actual number in each cell minus expected number)2 
L{ , expected number (3) 

and making use of the fact that this statistic has a sampling dis
tribution of the form ofax2 distribution. The degrees of free
dom, it is noted, will be equal to (r - l)(c - 1), where r is the 
number of rows in the contingency table and c the number of 



PROBLEMS INVOLVING TWO SAMPLES 397 

columns. Since rand c both equal 2 in the present problem it 
follows that statistic (3) ,for this problem will be distributed 
like X2 with n = (1)(1) = l. 

It remains now to determine what part of the sampling distri
bution will serve as the best region of rejection. In the previous 
argument the upper .05 tail of the normal curve (the sampling 
distribution there used) was considered as the best region to 
employ. For it was assumed that the polling agency would be 
especially anxiQus not to accept the null hypothesis if the actual 
trend in public sentiment was away from Barkley and toward 
Chandler. The same assumption will be made here. 

In view of this assumption it might appear at first glance that 
the upper .05 tail of the sampling distribution would again be 
the most appropriate region of rejection to employ, but this is 
not so. Statistic (3) does not take account of signs, and la.rge 
values might, arise from sample differences in favor of Barkley 
just as readily as from sample differences in favor of Chandler. 
If the region of rejection in this case is to be comparable with the 
upper .05 tail of the normal curve,used in the previous argument, 
it should include only those values of the statistic that arise from 
differences in favor of Chandler. Such differences, on the basis 
of the null hypothesis, will occur only 50 per cent of the time. 
Hence, a .05 region of rejection comparable to that of the previous 
argument may be taken to constitute all.values of statistic (3) 
that arise from differences in favor of Chandler and that at the 
same time are equal to or greater than the upper .10 point of the 
x2 distribution (n = 1), that is, equal to or greater than 2.706. 

The problem can now be solved. For the given data the value 
of statistic (3) is as follows: 

(67 - 65)2 (33 - 35)2 (128 - 130)2 (72 "'- 70)2 
65 + 35 ~ 130 + 70 = .264 

Since this is less than 2.706, the €ample does not fall in the 
selected region of rejection and the null hypothesis is again 
accepted. 1 As before, the difference between the two samples is 
attributed to the chance effects of sampling. 

1 It is interesting to compare probabilities in this problem. By the first 
method X/d = .517, and the probability of as great or greater value in either 
direction (+ or -) is approximately .60. By the second method the value 
of x2 is .264, and the probability of as gre~t or greater value is again roughly 
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DIFFERENCE BETWEEN TWO INDEPENDENT SAMPLE" MEANS 

When the Populations Have a Common Known Variance. 
The Problem. The foregoing section was concerned with the 
difference between two samples from a discrete population. 
Similar problems arise in the case of continuous data. A problem 
that often occurs is whether the means of two independent 
samples are significantly different. This problem is attacked in 
different ways, depending on the conditions involved. In this 
section it will be assumed that the variances of the populations 
from which the two samples have, been drawn are the same and 
that this common value' is known. The question to be tested 
will be: Are the means of the populations also the same? Only 
normal populations will' be con~idered here; nonnormal cases 
will be discussed in Chap. XVIII. 

Some years ~go the N ew York Sun published employment 
data for a large number of industrial companies. Data were 
given for each company for the years 1929 and 1935. A random 
sample of 10* of the smaller companies was taken from both these 
2 years; the mean of the first was found-to be 89.1 men, and the 
mean of the second 123.5 men. A different set of cQmpanies was 
taken for each year so as to make the samj>les independent of 
each other. If the standard deviations \of the populations are 
known in this instance to be both 100 and if the populations are 
taken to be normal, can it be inferred from these two samples 
that industrial employment among small companies was in 
general larger in 1935 than in 1929? This is the problem ·that 
the following argument will seek to solve. 

The Null Hypothesis. To determine whether the means of 
the two samples are significantly different, it wiil fir~t be assumed 
that they are not different, and then the consequences of this 
assumption will be compared with the actual results. The null 
hypothesis will. thus be that the two samples are from identical 
normal populations with s~andard. deviations of 106 . 

. 60. In fact W is, for n = 1, distributed like double the upper half of a 
normal curve, and in the given problem v':264 equals approximately .514, 
whIch is the same as .517,. except for errors arising from the use of decimals. 

* Usually a larger sample than this would be taken. A small sample is 
tltken here to show that the analysis is applicable to both large and sm:;tll 
samples. 
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The Statistic. The statistic that is generally selected in 
problems of this sort is the difference between the sample means. 
If the mean employment of the 10 companies in 1929 is indicated 
as Xl and the mean employment of the 16 companies in 1935 is 
indicated as X2, then the selected statistic ,is defined as 

The Sampling Distribution of Xl_2. It can be shown by mathe
matical analysis 1 that, when the population from which the two 
samples are independently drawn are normal populations, then the 
sampling distribution of X 1-2 is also normal, the mean of the 
distribution being zero and its variance being equal to the identi-

cal variance of the two populations multiplied by ~ 1 + ~ 2' 

Tha.t is, if all possible pairs of samples of 10 each were selected 
from the assumed, populations and the differences between the 
means of these samples were computed, it would be found that 
the differences would form a ,normal .frequency distribution with 

a mean of zero and a variance e~ual to (12 (~1 + ~ ). Since in 

the given problem (I is 100 and N 1 = N 2 = 10, it follows that 
X 1-2 has a sampling distribution whose mean is zero and whose 
variance is (100)2(/0 + T~) ~ 2,000. 

The Region of Rejection. Let the risk of rejecting the null 
hypothesis when it is true be placed at .05. This means that the 
total region of rejection should be of this size. Furthermore, 
there appears to be no special reason in this instance to put all 
the region of rejection at one end of the sampling distribution. 
For, in the absence of any special motive in making the statistical 
in\iestigation, it would appear to be as bad an error. to accept 
the null hypothesis when in f~ct employment was greater in 1929 
than in 1935 as it would be to accept the null hypothesis when in 
fact employment was greater it! 1935 than in 1929. On this 
basis the total region of rejection will be split up equally so as to 
include the .025 tails' at each end of the sampling dis~ribution. 
The points marking these two tails, it will be recalled, are 
xjd = ± 1.96. 

1 The analysis is essentially the same as that showing that the mean of a 
sample itself is normally di!jtributed (c/. Chap. X). 
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The Test of the Null Hypothesis. The difference between 
the sample means is 89.1 - 123.,5 = -34.4. The variance of the 
sampling distribution of Xl - 2 was computed to be 2,000. The 
standard deviation is the square root of this, or 44.7. The ratio 
of the difference between the two means to its standard deviation 
is thus -34,4/44.7 = -.77, which is well within the 1.96 point 
marking the region of rejection. Accordingly, there is no basis 
for rejecting the null hypothesis, and the difference between the 
two sample means can presumably be attributed t9 chance. 

When the PopUlations Have a Common but Unknown Vari
ance. -In some'problems it may be assumed that the varianqes 
of the populations from which the two samples have been taken 
are identical, but the value of this common variance may not be 
known. In this instance the population variance must be 
estimated from the samples. For small samples, this requires 
some modification in the 'foregoing analysis. . 

When two samples are taken from normal populations with 
identical variances, the maximum-likelihood estimate of this 
common variance based on the sampling variation in the variance 
that is independent of the difference be~.e~n the sample means 
isl 

(4) 

where uI and u~ are the two sample variances and N land N 2 are 
the number in the samples. Except for the -2, this is merely a 
weighted mean of the two sample variances. The reason for the 
division by N 1 + N 2 - 2 instead of N 1 + N 2 lies in the fact that 
each of the sample variances is measured from its own mean 
instead of the true population mean. Since the sample mean 
itself varies from sample to,sa;mple, this reduces somewhat 1he 
average value of the sample variances as compared with the true 
population variance. To correct for this bias in both the sample 
variances, the factor N 1 + N 2 - 2 is substituted fQr N 1 + N 2. 

The value of if2 is said in ,this instance to be an estimate tif 02 

based on N 1 + N 2 - 2 degrees of freedom. 

1 The probability of getting the two samples can be broken up into two 
parts, one depending only on the two sample means, the other only on the 
two sample variances. When the common population variance is chosen 
so as to maximize this second part of the total probability, its value ill found 
to be that,given in the text. 
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bet the foregoing estimate of the population variance be multi

plied by ~l + ~2' and-take the ratio of the difference between 

the ·two sample means to the square root of this quantity. The 
resultiI).g ratio, which may be written 

(5) 

is similar to the ~ that was found in the previous problem to be 

distributed in accordance with the standard normal curve. The 
only difference is that the estimated rather than the actual 
population variance is noW used. This difference, however, 

causes the statistic V Xl - X2 to have a sampling 
if (1IN l ) + (1IN2) 

distribution that is nonnormal for sm'all samples. Actually, 
the sampling distribution of this statistic is of the form of the 
t distribution, with n in the t formula, i.e., the degrees of freedom, 
equal to Nl + N2 - 2. 

Since the t distribution approaches the normal curve when n 
is large (say greater than 30), the use of the estimated value of 
the population variance leads to no change in the analysis if the 
samples are large. l When the samples are small, however, i.e., 
when N 1 + N 2 - 2 is less than 30, it is better to use the t distri
bution in place of the normal distribution for te~ting the given 
hypothesis. This. is the 'only fundamental change required in 
the previous ,analysis. -

To illustrate the estimation of the common population varia
tion, consider once again the data on industrial- employment in 
1929 and 1935. Let it be assumed that the variance in employ:' 
ment of small industrial companies is the same in both years but 

1 The t distribution is leptokurtic, and its variance equals ~2' Hence 
n-

a better approximation can be obtained for values of n between 30 and 100 by 

multiplying the statistic (Xl - X2)/i5- y
N
l + Nl 

by yn - 2 before looking 
l' n 

up the value in the normal table. It will be noted that here 

• 
n = Nl + N. - 2: 
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that its value is not known and must therefore be estimated from 
the samples. Suppose that the variance of the 1929 sample -is 
9,834.5 and the variance of the 1935 sample is 18,832.1. As 
stated above, the maximum-likelihood estimate of the common 
variance is found as follows, 

-2 = 10(9,834.5) + 10(18,832.1) = 15926 
CT 10 + 10 -.2 ,. 

The square root of this is 126.2; and the statistic 

Xl - X 2 

has the value 

if /2_ + 2_ 
'iNl N2 

. 89.1 - 123.5 = .64 
126.2 vi lo + To 

For n = 10 + 10 - 2 = 18, the .025 points of the t distribution 
are ± 2.101. Values of t numerically greater than 2.101 wiII thus 
constitute a symmetrical .05 region of rejection. It is-clear that 
the sample value of t do~s not in this instance fall in the region of 
rejection, and again the null hypothesis is rot rejected. As 
before, the difference between the two sampl~ means is appar
ently due to chance. 

If the samples had numbered 50 cases each instead of 10, the 
value of 

would have been 

89.1 - 123.5 = 1.46 
118 vI-r/o + to 

Since the samples are large, the normal' curv-e can in this case 
be used instead of the t curve, even though the population vari
ance has been estimated. The region of rejection wili therefore 
constitute values of X/d numerically greater than 1.96. The 
sample value of x/dis 1.46, and this again fails to fall in the region 
of rejection. The null hypothesis continues to be accepted even 
though the samples are now larger. 
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. When the Populations~Do N-ot Have the Same'Variance, If it 
<!annot be assumed that the populations from 'which the two 
samples have' been drawn have identical variances, only a rough, 
test can-be employed to determine whethedhe populations might 
have the same means. If the samples are fairly large (say 100 
or more), it ca;h be assumed with a fair degree of accuracy that 
the Elampling distribution of th~ difference betwe.en two sampie 
means is'~ normal distribution with a mean of zero and a variance 
that is approximately equal to the variance of sample 1 divided 
by N 1 plus the variance of sample 2 divided by N 2. 

That is, for large samples, (/'2x -x can be taken as equal to 
1 2 

(/'1!T~ . 
Nl + N2' and the.ratlO 

(6) 

can be treated as if it 'were normally dis,tributed. Except for the 
different method of estimati:q~ ifx,-x" the procedure is essentially 
the same as that outlined in the foregoing sections, and illustra
tions wm be omitted. 

CORRELATED SAMPLES 

The Problem. If in the foregoing problem the same companies 
had been taken in 1935 as were tak~n in 1929, the two,samples 
would not have been independent and the foregoing analy.sis 
could not have been validly applied. Data often occur in this 
form. A group of students, for example, may be tutored for one 
examination and not tutored for another. Again, a set of hogs 
may be fed one diet for one month and the same set of hogs fed 
another diet for another month. How in these case~ is a statis
tical test to be made of the effect of tutoring on-students' grades 
or the effect of diet on the rate of growth of hogs? It is these 
questions that the following analysis seeks to answer. 

T.esting Individual Differences. " When two samples relate, to 
the same set of individuals, the simplest method of analysis is to 
take the difference between the two results for each individual. 
If each sample numbers N cases, this process will give a set of N 
individual differences. If the two sets of data are not really 
different, the whole population of individual differences will have ~ 
mean of zero. Sample sets of differences will, of course, have 
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means that are not zero, but these ~ample means will tend to be 
distributed around this population mean of zero. 

If 0 2 is the variance of the whole population of differences, the 
distribution of sample mean differences 'will have a variance of 
02 

This distribution will be pormal in form, so that, if the 

~ariance of the population of differences is known, the mean of 
arty particular sample of differences can be tested by taking the .. 
ratio of this mean value to IN and looking up the,result in a 

normal frequency table. 
If the variance of the population. of differences is not known, it 

must be estimated from the given sample. The maximum-likeli
hood. estimate of the population variance that can be made 

independently of the sample mean is if2 = N ~ 1 0',2', where 

(]'2 is the variance of the sample of differences. The ratio of the 

sample mean difference to . ~ gives a statistic the sampling 
, vN 

distribution of which is of the form of the t distribution with n, the 
degrees of freedom, equal to N - 1. W~en the variance of the 
popUlation of differences is not known, i~erefo[e, but must be 
estimated from the sample, the t distributio~ is used to test the 
significance of the sample mean difference. O~ course, if N is 
large, the normal curve can be used as an apprpximation to the 
t curve. Illustrations of these procedures follow. 

Illustrations. Employment figures for 10 small industrial 
companies in 1929 and 1935 are given in Taple 47. This also 
shows the individual differences for the 2 years. The mean of 
these differences is 10.5, and the question is: Does this sample 
mean difference differ significantly from zero, or can its positive 
value be reasonably attributed to chance? 

First suppose that the standard deviation of the whole popula
tion of differences is known to be 50. Then the standard de-via
tion of the distribution of sample means of differences is equal to 
50/VI0 = 15.8, and the ratio of the given sample mean to this 
standard error is 10.5/15.8 = .66. This ratio, as pointed out 
above, is -distributed in accordance with the standard normal 
curve. If the region of rejection is taken as the values of x/o 
that are numerically greater than 1.96 (a symmetrical region 
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appears to be justified here), then this sample x/d does not fall 
in the region of rejection and the null hypothesis is not rejected. 
That is, the sample mean difference is not significantly different 
from zero, and the apparent difference in employment may 
reasonably be attributed to the chance effects of sampling. 

TABLE 47.-INDlVIDUAL'l;>IFFERENCE IN EMPLOYMENT OF 10 INDUSTRIAL 
COMPANIES, 1929 AND 1935 

Number employed 
Difference in number Differences squared 
employed, 1929-1935 

1929 1935 

110 48 62 3,844 
166 93 73 5,329 
130 120 10 , 100 
95 85 10 100 
36 52 -16 256 

188 240 -52 2,704 
85 135 -50 2,500 

185 130 55 3,025 
201 217 -16 256 
144 115 29 841 

~ +105 ~ 18,955 

If the population standard deviation is not known, as is gen
erally the case, then it must be estimated from the sample. In 
the present instance, the standard deviation of the sample 
differences is equal to 42.25. * The best estimate, therefore, that 
can be made of the standard deviation of population differences is 

. /TO (42 25) . d th" if - v¥ (42.25) - 14 08 d V 9 . ,an IS gIves v'N - v'IO - . ,an 

Xd 10.5 
if/VN == 14.08 = .75. This last quantity, as noted aQove, is 

distributed like t. Since for n = 9 the .025 points of the t dis

* 'ihis is calculated by use of the shortJ'ormula 
~X2. _ 

0"2 = ~ - X' 

which gives 

0"2 = 18i~55 - (10.5)2 = 1,785.25 

and 
0" = 42.25 



406 ADVANCED SAMPLING PROBLEMS 

tribution are ± 2.262, values of t numerically greater than 2.262 
may be taken as a symmetl'icar region of rej~ctiop: with the coeffi
cient of risk equal to .05. The sample t = .75 and obviously does 
not fall in this region of rejection. The null hypothesis that the 
difference between the two samples is due to chance cannot there
fore be rejected, and the assumption that there is no real differ
ence in employment in the 2 years continues to be a reasonable 
one. 

If there had been 50 companies instead of 10, the ratio ~ 
(if/ N) 

could have been treated as if it were normally distributed. For 
example, if the mean and standard deviation of a sample of 50 

'equaled 10.5 and 42.25, then if would have the value v:H (42.25), 
and 

if ~ 42.25) = 6.03. 
VN = 50 

The ratio ~~_ 
if/vN 

would then equal !~O~ = 1. 74. This,is less than 1. 96, so that, if 

th~ two .025 tails of the normal curve are taken as the approxi
mate region of rejection, the null hypotnesis would be accepted. 
It would be concluded once again that emp~oyment in 1929, 
among small firms, was not really greater than employment 
among small firms in 1935. 

It is interesting to note at this point that, when Xl and X~ are 
correlated, the variance of the differences Xl - 'X 2 is equal to the 
varianc<,? of Xl plus the variance of X 2 minus twice the product 
of the standard deviations by the correlation between Xl and X 2• 

Symbolically, 
(7) 

Hence it follows that, in problems of correlated samples, the 
variance of the differences is less if the correlation between Xl 
and X 2 is greater. The practical importance of this conclusion 
is that differences in central tendencies can be more readily 
detected if the correlation between individual members of the. 
samples is increased. 

DIFFERENCE BETWEEN TWO SAMPLE VARIANCES 

Another problem that often arises in statistical analysis is to 
determine whether two samples have come from populations with 
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different variances. To refer to a previous example, it might be 
claimed that a new process for the manufacture of electric-light 
bulbs will reduce the variability in _length of life of the bulbs. 
To check this claim two lots of bulbs could be produced, on,e by 
the old process, the other by the new, and the difference in 
variability could b.e subjected to a statistical test. Again, two 
different brands of r:1.zor blades might be tested as to their 
sharpness, and the variability in the two brands might be com
pared. It is with such problems that the following sections are 
concerned. As before, it will always be assumed that the 
populations are norma\; for nonnormal cases the readE(r is referred 
to Chap. XVIII. 

Testing a Difference in One Direction. The method of testing 
the difference between two sample variances varies to' some 
extent with the particular problem involved. If the problem is 
concerned with testing a d,ifference in one direction only, one 
method is applicable; if it is 'concerned with a difference in either 
direction, another method is required. The present section will 
deal with the testing of a difference in one direction only. 

The Specific Problem. To keep the discussion concrete, con
sider once again the data on industrial employment among small 
companies. Suppose it is claimed that, owing to the instability 
introduced by the depression, there was a greater variability in 
the size of companies in 1935 than in 1929, size of companies 
being measured by amount of employment. The variance in 
employment among the ten 1929 companies, it will be recalled, 
was 9,834.5, and the variance among the ten 1935 companies was 
18,832.1, which would seem offhand. to substantiate this claim. 
The immediate statistical problem is to determine whether this 
apparent difference in variability is great enough to be attributed 
to some specific causal factor such as the depression or whether 
such· a difference could reasonably be attributed to the chance' 
effects of sampling. 

The Nul~ Hypothesis. In carrying out this statistical test the 
first step is to set up the null ?ypothesis that the differepce in 
variance is due, not to some specific causal factor, but only to 
chance. In other words, the hypothesis states tha~ the 1929 and 
1935 populations have the same variance. It will be noted that 
it does not state that the populations are the same, for nothing 
is said about the means of the populations. The following test is 
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therefore indepentle~t of whether the means of the populations 
are the same or not. It thus differs from tests of the difference 
between two means, which are based upon the assumption that 
the variances are the same. 

It should be noied also· tha~ the hypothesis assumes that the 
samples are independent of each other. If the data on employ
ment pertain to the &ame companies in' both years, then the 
samples would not be independent of each other and the following 
analysis could not be validly used. 

The Statistic. The statistic that is most convenient touse in the 
present instance is the ratio of the maximum-likelihood estimates 
of the population variances in the 2 years. The maximum-like
lihood estimate of the populat on variance .made independ-

ently from' the first sample1 IS ~iN_l l' and the maximur,n-likelihood 

estimate of the population variance made independently from the 

second sample is N~~~2 l' where O"~ and O"i are the two sample 

variances and N 1 a~a. N 2 are the number of cases in each sample. 
The statistic that-is used for this problem is the ratio of these 

----two maximum-likelihood estimates, i.e.; 

(8) 

If the two populations have identical variances, these two esti
mates will be approximately equal and the above statistic wiH be 
close to 1. The statistics:! problem is to determine whether it 
differs from unity by. an amount greater than can reasonably be 
attributed to chance. 

The Sampling Distribution of the Ratio of Two. M aximum-likel(· 
hood Estimates of Variance. The reason why the ratio of the tw;o 
estimates of variance is used rather than their arithmetic dIffer
ence is that the sampling distribution of the former can more 
readily be determined. Mathematical analysis shows that this 
sampling distribution is of the form of the F distribution .'~ith 
n1 and n2 of the F equation equal to N1 - 1 and N2 - 1, respec
tively. As in other cases, n1 is the degrees of freedom involved 
in estimating 0"1 and n2, the degrees Of freedom involved in esti
mating 0"2. 

1 That is, independently of-the mean. 
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. That is, if pairs of samples are drawn.independently from popu
lations with identical variances and if the ratio of the maximum
likelihood estimates of variance is calculated for each pair, these 
ra:tios will have a frequency distribution that is of the form of the, 
F distribution, with nl = N 1 - 1 and n2 = N 2 - 1. It might 
be well for the rea.der to turn back at this point to Chap. VI and 
reread the section there on the F distribution. It is also well to 
note again that this sampling distribution is v~lid only for ratios 
that are computed' from independent samples. 

The Region of Rejection. The present problem is concerned 
with whether the 193~ variance is greater than the 1929 variance. 
If the statistic selected is the ratio of the 1935 variance to the 
1929 variance, t'h_en the best region of rejection to employ is the 
upper tail of the F distribution. For it has been shown that, if 
the presumably larger variance is actually the larger, there will 
be more chance of rejecting the null hypothesis if the upper tail 
of the F distribution is used than if any other region is adopted. l 

Of course, it would be possible to take the ratio of the presumably 
smaller variance to the presumably larger one, and in this case 
the lower tail of the F distribution would be the more appropriate 
one to employ. This alternative course is not followed, however, 
for the tables of the F distribution are computed only for the 
upper tail and~ as noted, the distribution is not symmetrical. In 
the present instance the upper tail of the F distribution will be 
employed as the region of rejection, and, as usual, the size of this 
region will be taken as .05. 

For the given problem, the maximum-likelihood estimate of the 

population variance based upon the 1935 sample.is (1O)(1~,832.1), 

and the maximum-likelihood estimate of the population variance 

based upon the 1929 ~ample is (10)(99~34.5). The r~tio of the 

first to the second is 1.915. In this problem, t_his is the same as 
the ratio of the two sample 'Yariance~ themselves, since the 
samples are of the same size. In another problem in which the 
samples are of different sizes, this equality would not 
exist. 

1 Cf. NEYMAN, J., and E. PEARSON, "On thenProblem of .the Most Efficient 
Test of Statistical Hypotheses," Philosopnical Transactions of the Royal 
Society of Loiulon, Series A, Vol. 231 (1933), pp. 289-337. 
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Testing the Hypothesis. To test the given hypothesis it is 
necessary merely to note whether the above ratio is greater or _less 
'than the .05 point of the F distribution for which nl = 9 and 
n2 = 9. * The tables, unfortunately, do not give the .05 point 
'of this particular F distribution, so that its value must be inte.r
polated. For nl = 8, n2 = 9, the .05 point is F = 5.467; f9r 
nl = 12, n2 = 9, the .05 point is 5.111. Therefore, for the F 
curve'for which nl = 9 and n2 = 9, the .05 point must lie between 
these two values. Whatever its exact value, ·it is Qlear that the 
sample ratio of 1.915 is well within the area of acceptance, so that 
the sample value does not fall in the region of rejection, which has 
been taken to consist of all values of F equal to or greater than 
the .05 value. The null hypothesis is thus not rejected in the 
present problem, and the difference in sample variance is to be 
attributed to chance. 

If neither nl nor n2 have values that are given directly in the F 
table, it would be necessary to interpolate ih both directions. 
For example, if nl = 9 and n2 = 40 for the given samples, then 
it would be necessary to find the following .05 values: 

_,.-

For The .05 point is 

nl = 8 and n2 = 30 3. 173 
nl = 12 and n2 ='30 2.843 
nl = 8 and n2 = 60 2.823 
nl = 12 and n2 = 60 .2.496 

. It is obvious that the .05 point for nl = 9, n2 = 40 lies some
where between 3.173 and 2.496. If the given sample ratio lies 
beyond 3.173, it will certainly lie beyond the .05 value for nl = 9 
and n2 = 40. Similarly, if the sample ratio lies inside 2.496, it 
certainly lies within the .05 point for nl = 9 and n2 = 40. 

In such cases there is no ne~d for exact interpol~tion; but if the 
sample lies between 3.173 and 2.496, then the .05 point for nl = 9 
and nz = 40, may be roughly obtained by straight-line interpola-

'" It will be noted that nl = Nl - 1 and that Nl refers to the size of the 
sample whose variance is put on .top of the fraction expressing the ratio, 
in this case to the 1935 sample. Thus Nl refers to the sample that has the 
presumably larger of the two estimates of variance. Likewise, n2 = N2 - 1, 
where N2 refers to the ~ize of the sample whose variance is put in the denomi
nator of the fraction. 
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tion. 1 First illterpolate for n2 = 40. Since the .05 point for 
nl = 8, n2 = 30 is.3.173 and the .05 point for nl = 8, n2 = 60 is 
2.843 ap.d since,40 is distant from 30 by # of the distance between 
3Q and 60, the .05 point for nl = 8, n2 = 40 will be approximately 
equal to 3.173 - (#)(3.173 - 2.843) = 3.063. Likewise, the 
.05 point for nl.= 12, n2 = 40 ·will be approximately equal 
to 2.823 - (#)(2."823 - 2.496) = 2.714. Values for nl = 8, 
n2 = 40 and nl = 12, n2 = 40 having been obtained, it remains 
to interpolate for n1"= 9. The .05 point for nl = 9, n2 = 40 
will thus be approximately equal to 

3.063' - (i)(3.063 - 2.714) = 2.976. 

This is the .05 point desired. As noted above, straight-line 
interpolation is not perfectly accurate. Consequently, if a 
sample value falls close to the interpolated value, it is well to 
forego any definite conclusion. In such an event it is better to 
judge the result a borderline case. 

Testing a Difference in Either Direction. The Problem. The 
foregoing test of difference between two sample variances was 
based upon the assumption that· the investigator was interested 
iIi a significant difference in one direction ·only. It was on this 
basis, it will be recalled, that .the upper tail of the F distribution 
was selected as the region of rejection.. There may be cases, how
ever, in which the ip.vestigator is indifferent as to whether any 
difference that migh~ exist is in orie direction or the other. This 
is the problem that will now be considered. 

The Test. It might be thought offhand that, when the investi
gator is indifferent as to the way in which the two variances might 
differ, a satisfactory test could be' devised by distributing' the . 
regi~n of rejection equally between the two tails of the F distribu
tion. This is not true; for sllch a test is biased in tha-t the prob
ability of accepting the null hypothesis in such an instance may 
be greater in some cases ip. which the null hypothesis is not true '
than when 'it is true. The te.st described below avoids this 

1 Better results may possibly be obtained by taking the va:riable 

and using tables of the incomplete beta function. Cf. RIDER, PAUL R., 
Introduction to Modern Statistical Methods (1939), p. 119. 
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difficulty. It is unbia(led in that the probability of accepting the 
null hypothesis when it is true is greater than for any instance 
when it is not true and in that the probability of rejecting the null 
hypothesis when it is true is less than for any instance when it is 
not true. 

Let two samples be taken from nQrmal populations. Let the 
variance of one sample be ui and the variance of the other sample 
be u~. The investigator, it will be presumed, is interested in 
testing the null hypothesis that the two population variances are 
the same, and he IS indifferent as to whether any possible differ
ence between them is in one direction or the other. On these 
assumptions, the best statistic to employ is 

L = (nl + n2) loge if2 - nl loge ifi - n2 loge if~ (9) 
l+a 

. h' h N 1 N 1 -2 N lui + N 2U~ (th . 
In w IC nl = 1 - t, n2 = 2 - ,u = Nl + N2 _ 2 at IS, 

if2 is the maximum-likelihood estimate of the population vari
ance based upon the two 'sample variance,S taken togethtlr), 

O'i = N~ ~i 1 and O'~ = N~ ~~ 1 (the maximum-likelihood esti

mates of the population variance based upon t~e two sample 
variances separately), and 

1( 1 -+- 1 1 ,) 
a == 3" Nl - 1 N2 - 1 - Nl + N2 - 2 . 

The statistic shown in Eq .. (9) has been found to have a sam
pling distribution that is approximately of the form of the x2 

distribution with the degrees of freedom n equal to 1. It leads 
to an unbiased test if the upper tail of the distribution is taken 
as the region of rejection'! 

An Example. To illustrate this test, consider again the vari
anGe in employment among small industrial companies in 1929 
and 1935, The variance of a sample of 10 companies from the 
first year, it will be recalled, was 9,834.5 and the variance of a 
sample of 10 companies from the second year was 18,832.1. The 
question is: Do these two sample variances differ sufficiently to 

1 Cf. PITMAN, E. J. G., "Test of Hypotheses concerning Location and 
Scale Parameters," Biometrika, Vol. 31 (1939), pp. 200-215. The L used 
above is equal to Pitman's 2L and is not the same as his L. 
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in_dicl:l<te that the population variances are not the same? This 
will be answered by setting up the null hypothesis that the 
populations have the same variance and then determining 
wh~her this hypothesis can reasonably be accepted on tJJ.e basis 
of the sample results. In making this test it will be presumed that 
the' investigator is inqifferent as to whether any possible "differ
ence between the variances is in one direction or the other. 

The quantities requ,ired for the calcutation of the statistic L 
are 

v2 = 10(9,834.5) + 10(18,832.1) = 15926 
(j 10 + 10 - 2 ' 

loge if2 = 2.30259 loglo 15,926 = 9.675730 

1 v2 - 1 N lifi - 230259 1 10(9,834.5) 9 299017 oge (j 1 - oge N 1 _ 1 -. og 10 9 = . . 

loge if~ = loge N N~~ 1 = 2.30259 loglo lQ(18~32.1) = 9.948582 

a = (~) G + § - 9 ! ~) = 1~ 
Numerator of L = (9 + 9)(9.675730) - [9(92.299017) 

= 174.163140 - 173.228391 
= .934749 

+ 9(9.948583)] 

and L equals this number divide~ by 1 + a, that is, 

L = .93;:49 = .88555 
18 

The coefficient of risk will be taken equal to .05 as previously, 
and this region of rejection will be the upper .05 tail of the -x 2 

distribution for n = 1. The table of the x2 distribution in the 
Appendix (Table VIII) shows that the lower limit- of thi&..region 
is 3.841. Since the value of L is well below this limit, the null 
hypothesis is not reje"Cted and it is concluded that the two 
samples may reasonably have come. from popu~ations with the 
same variance. 

ARE TWO SAMPLES FROM THE SAME POPULATION? 

The Problem. The problems so far considered have been con
cerned with whether the normal populations from which two 
samples have been drawn differ with 'respect to a single cha,rac-
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t~ristic, for example, with respect to their means or with respect 
to their variances. The questIons 1?osed were: (1') On the 
assumption that the variances of the populations are the same, 
are the means also the same? (2) Without any assumption 
regarding the means of the populations, are their :variances the 
same f The question now to be raised is: Are both ,the means 
and variances the same? This question differs from (1) in that 
there the variances were assumed to'be the same, whereas in the 
* new question the equality of the variances is part of the hypoth-

esis to be tested. 
For example, suppose a manufacturer of automobile tires is 

comparing two processes. If he knows or has good reason to 
b~lieve that the variability in mileage is the same for tires manu
factured by one process as for those manufactured by the otper, 
and if he is interested only in a possible difference in average 
mileage, he will use one of the procedures above for testing 
the differencEf between means. If he does not care' about a possible 
difference in average mileage but is interested only in a possible 
difference in variability, he will use "One of .the ,procedures for 
testing the difference betwe13n- variances. Finally, if he is 
interested in whether the tires manufactured by the two proc
esses differ either with respect to average mil1age or with respect 
to variability, or with respect to both, he wIll employ the test 
o\ltlined below. -

The Test. When, the populations are normal, the best test 
that can be made of joint equality of means and variances app~ars 
to be offered by the statistic 1 

(10) 

in which 0"0 is the standard deviation of the two samples treated 
as a single sample and 0"1 and 0"2 are the two individual sample 
standard deviations. 2 The value of 0"5 and hence of 0"0, may be 
found by throwing the two samples together and calculating the 

1 The symbol hH is used in·the original articre and is continued here. The 
H has no significance other than to distinguish the statistic. 

2 NEYMAN, J., and E. S. PEARSON, "On the Problem of Two Samples," 
Bulletin internatzonal de L' Academie polonaise des sciences et des lettres, 
Classe des sciences mathematiques et naturelles. Series A: Sciences mathe
matiques (1930), pp. 73-96. 
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1:(X· - xy -
value of N l' + N 2 where X is the mean of the combined 

samples. If only the value of the sample means and standard 
deviations are known, 170 may be computed from the telationship 

2 = N l 17r + N217~ + NIN2 (X- _ X- )2 
17 0 N 1 + N 2 (N 1 + N 2) 2 1 2 

(11) 
, 

Table 48 shows tp.e lower l .05 and .01 points of tge sampling 
distribution of AH for various values of N 1 and N 2. The use 
of this distribution in testing a joint hypothesis will now be 
illustrated. 

TABLE 48.'-ApPROXIMATE VALUES OF THE LOWER .05 (IN BOLDFACE TYPE) 

AND .01 POINTS OF THE SAMPLING DISTRIBUTION OF AH FOR SELECTED 

VALUES OF Ni AND N21 

Approximate values of AH 

~ 
Probability 

5 10 20 50 00 points 
P(AII G;) N 

5 .0167 .0222 .0241 .0247 .0248 .05 
.0019 .0029 .0033 .0034 .0034 .01 

10' .0222 .0312 .0349 .0364 .0368 .05 
.0029 .0048 .0058 .0061 .0062 .01 

20 :0241 .0349 .0401 .0425 .0432 .05 
.0033 . .0058 .0071 .0078 .0080 .01 

50 .0247 .0364 .0426 .0469 .0473 .05 
.0034 .0061 .0078 .0088 .0092 01 

00 .0248 .0368 .0432 .0473 .0500 .05 
.0034 .0062 .0080 .0092 .0100 .01 

1 Adapted by permission from J. Neyman and E. S. Pearson. "On the Problem of 
Two Samples," Bulletin international de l~cademie polonaise de8 sciences et des lettres. 
Cla886 de8 8ciences mathematiques et naturelles. BeTie A: Sciences mathematiques (1930), 
p. 92. Tables II and III. 

An Example. Consider once again the-employment data of 
small industrial companies in 1929 and 1935. The two samples 
of 10 already analyzed for ~ifferences in means and variances 

1 The greater the differences, the smaller the values of A •• 



416 ADV ANOED SAMPLING PROBLEMS 

had means of 89.1 and 123.5 and variances of 9,834.5 (= 99.16 2) 

and 18,832.1 (= 137.22). The question is: In view of these 
sample results could these two samples have reasonably come 
from the same population? To. answer this question the null 
hypothesis is set up that the populations are the same, and the 
value of An is calculated. For the given data, the value of 0'& is 

(1O)(9,83~.5~ + (10)(18,832.1) + (10)(10) (891 _ 1235)2 
10 + 10 ' (10 + lQ)2' . 

= 14,629.1 
which gives 0'0 = 120.9. Hence, 

log An = (10)(log 99.16 - log 120.9) + (10)(10g 137.2 
- log 120.9) = -.31170 = 9.68830 - 10 

and 
All ,;; .4879 

Table 48 indicates that, the greater the difference between the 
means'and variances, the smaller the value of An; that is,-small 
values of An are significant. -Since the foregoing value of An is 
larger than either the .05 or the .01 value for N 1 = 10 and 
N 2 = 10, the null hypothesis must be ~cepted. In other words, 
there 'is little reason in this case to believe t~at the two samples 
are not from identical populatiolls. 

In conclusion, it should be noted that, if'this test should show a 
significant~difference between the two samp\es, there is nothing 
in the result itself that will tell whether the difference lies in the 
means or in the variances, or in both. In fact, the result is 
purely a joint product; for the significance of the difference 
between the means will depend to some extent on the amount of 
difference in the variances, and vice versa. In the present 
instance, the individual tests showed no significant difference 
between either the means or the variances, and it could not 
therefore be expected that the two samples as a whole would 
be deemed significantly different. In some cases, howeYeJ), one 
of the individual tests might show a significant difference, while 
the joint ~est would fail to show any difference. As suggested 
above, the conclusions to be drawn from the yarious tests 
depend entirely upon the' problem. Each type of problem has 
its own appropriate test and should not be confused with tests 
appropriate fQr other types of problem. 
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DIFFERENCE BETWEEN TWO INDEPENDENTLY DERIVED 
CORRELATION COEFFICmNTS , 

The, difference, between two sample correlation cqefficients can 
readily be tested by making use of the z transformation. 1 A 
sample z, corresponding to a sample r, it will be recalled, has a 
sampling distribution that is approximately normal in form, 

with a variance equal to N'~ 3' Accordingly, the difference 

between -two sample z's is also practically normal in form with a 
variance equal t0 2 

2 1 + 1 
0'. = N - 3 N' - 3 _ (12) 

Thus to test whether Z12 is significantly different from Zi2 it is 
merely necessary to note whether3 

, 
Z12 - Z12 :>., 1.96 '1 l' 

'\jN - 3 + N' - 3 

The problem is the same as the difference between two sample 
means when the variances are known. Thus, if r12 = .7658 and 
ri2 = .7398, an.d hence Z12 = 1.01 and Zi2 = .95; and if N = 40 
and N' = 60, the quantity 

'_1_+ 1 
'\jN -,3 N' - 3 

would be equal to 
1.01 - .95 

y-s\r +-r;\r 

Or 2.86. Since this is greater than 1.96, it may be concluded 
that the two correlation coefficients r12 and r~2 are significantly 
different. 

DIFFERENCE BETWEEN TWO INDEPENDENTLY DERIVED 
REGRESSION PARAMETERS 

The difference between two.. independently derived regression 
parameters can be tested in the same way as the difference 

1 See Chap. XII. 
2 If two variables are independent, the distribution of the difference 

between two normally distributed variables is normally distributed and has 
a variance that is the sum of the variances of the two variables (cf. Ap:gendix 
to this chapter, pp. 419-421). 

3 This assumes a.region of rejection equally distributed at each ena. 
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between two means. First, the sample higher-order variance-s 
are pooled to give an, estimate_ of the population higher-order 
v'1riance. Thus 

N'( , )2 + N"( II )2 0" 1.23 • • • 01.23" ••• 

N' + Nil - 2k (13) 

Then the standard error of the difference between the two 
regression parameters, say, between b~2.3 ••• and b~2.3 ••• would 
be given by 

- ~-2 + -2 q _" = Uf (JfI II.... . .. b ..... ,. b 12.3 . . . bi •. J ••• (14 ) 
in which 

_ 0'1.23 .•• 
O"b' = ,'-'... , - IN' 

- 0'2·34 • •• v 
(f"" = 0- 1,23 • . . 

b n.' .. ' 11 - IJiii' 
0"2.34 • .• V lV 

The test of the difference could then be made by ,comparing 
the difference between the' b's with the standard error of the 
difference, using the t distribution,if the sample is small or the 
normal curve if the sample is large. 

For example, suppose that, in 8:-..g-iven problem, N' = 50, 
b~2.3 = 2.7, (0"~.23)2 = 25, and (0"~.3)2 = 43, while Nil = 70, 
b~~.3· =' 3.1, (0";'.23)2 = 36, and (0'~3)2 = 48. Then 

-2 _ (50) (25) + (70) (36)' - 3307 
0"1.23 - 50 + 70 - 6 - . 

since k = 3, which is the number of regression statistics in the 
regression equation. Also, 

a:o.d 

Hence, 

and 

33.07 
(43) (70) 

.0154 

33.07 
O'h, .• = (48)(70) = .0098 , 

O'~' _1/' = .0154 + .0098 = .0252 
12.1 12.8 

O'b'n .• -b"12., = v'.0252 = .16 

The difference between bi2.S and bi~.3 is -.4, and the ratio, of this 
difference to its'q is - .4;'16 = -2.5. Since the samples are large, 
the sampling distribution of bi2.3 - bi~.3 may be assumed to be 
normal. Hence a deviate of -2.51~es beyond b<?th the .05 point 
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and the .025 point-i.e., beyond -1.$)45 and beyon"d -1.96-and 
the hypothesis that b~2.a and b~~.3 came from the same population 
is to bOe rejected. That is, bi2.a must be deemed '~ignificantly 
different" from bi~.3' ' 

APPENDIX 

THE MEAN AND VARIANCE OF THE SUM OR DIFFERENCE OF 
TWO VARIABLES 

1. The mean., ~et Z b~ equal to the sum {or difference) of the 
variables X and Y\ so that Zii = Xi ± Y i. Let X take on the 
values Xl, X 2, and Xa and Y the values Y1, Y 2, and Y a; and let 
the joint relative frequencies, or probabilities, of pairs of X and 
Y be as follows: 

Y 3 P13 P23 p.a 
I----

Y. __EE_ ~ ~ 
Y I pu P21 P31 

Xl 
I 

X. X. 

Thus P12 means the probability of an X 1Y 2 combination, PSI 

the proboability of an XaY l combination, etc. In the interests 
of simplicity, only three values are taken for each variable. The 
argument is equally valid, however, for any number of values 
for each variable and for ,continuous as well as for discrete 
distributions. 

Since Zii = Xi ± YiJ the various values of Z and their prob
abilities are as follows: 

Z P(Z) Z P(Z) Z P(Z) 

Xl ± Y I pu X. ± Y I P.l X. ± Y I 

, 
P31 

Xl ± Y 2 Pl2 X 2 ± Y 2 P22 X. ± Y2' paz 
Xl ± Y. Pl. X. ± Y. P2. X. ± Y. Pas 

~ 

This is the distribution of Z." 
The individual distributions of X and Yare as"follows: 

x P(X) Y P(Y) 

Xl PI = pu + Pl2 + P13 Y I P; = pu + P21 + pu 
X2 P2 = P21 + P22 + P23 Y2 p; = Pl2 + P22+ pa2 
X. p. = P31 + P.2 + PB. YB p~ = PI~ + P2B + pa. 
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The proble~ of this section is to express the mean of Z in 
terms of the means of X and Y. I 

By definition, Z = "1:,P(Z)Z, and when written out in full this 
becomes 

. . 

pu(Xl ± Y l) + P21(X2 ± Y l) + Pal(Xa ± Y l) 
+ P12(X I ± Y 2) + P22(X2 ± Y 2) + P32(Xa ± Y2) 

+ P13(Xl ± Y a) + P23(X2 ± Y a) + Paa(Xa ± Y a) 

Upon removal of parentheses and collection of common terms, the 
mean of Z is seen to be equal to 

[Cpu + Pl2 + P13)Xl + (P21 + P22 + P2a)X2 
+ (P31 + pa2 + pa3)Xa] ± [(Pu + P21 + P31)Y I 

+ (Pl2 + P22 + P~2) Y 2 + (PIS + p2a + paa) Y 81 
Hence, 

Z = (PlXl + P2X 2 + paXa) ± (P~Yl + P~Y2 + p~Ya) 
= X ± Y •. 

That is, the rp,ean of the sum or difference of two variables is the sum 
or difference of their means. (This is true whether the variables 
are independent or correlated.) 

II. Variance. Let X and Y both be ~easured from their 
mean values, and let z be the sum (or differende) of X and Y when· 
so measured. Hence Zij = Xi ± Yi> From I, it follows that 
Z = x ± y;' and since x = y = 0, z also equals 0. Thus the 
variances of the variables become ' ' 

, 
The problem is to express d; in terms of d; and d!. 

When written out in full, d; is as follows: 

Pl1(XI ± Yl)2 + P21(X2 ± Yl)2 + PSl(XS ± Yl)2 
+ P12(XI ± Y2)2 + P22(X2 ± Y2)2 + Pa2(Xa ± Ya)2 

+ P13(Xl ± Yd)2 + PZ3(X2 ± ya)2 + Pas(Xa ± Ya)2 
. ! 

Upon clearing parentheses and collecting common terms, this 
becomes 

(pu + pu + pla)xi + (pu + P22 + P23)xi + (Pu + pa2 + P33)X~ 
+ (Pa + P21 + 'P31)yi + CPl2 + P22 + Pa2)Y~ 

+ (Pl3 + p2a + Pa3)Y~ ± 2(PUXlYl + P21X2Yl + p31XaYl + P12XlYZ 
+ P2ZX2Y2 + P32XaY2 + p13XIYa + p2aXzYa. + Pa.XaYa) 
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which reduces to 

2+ 2+"" 2+ 12+ 12+ 12+~O"" P1X1 P2X 2 l-'3Xa P1Yl P2Y2 PaYa _ P>f.JPiiXiYi 

Accordingly, 
~P"X'Y' d2 = d2 + ($2 + 2rd d since r = '1' ! 

• :J). 1/ - :J) 1/ (J"z(fl/ 

That is, the variance of a sum oj-two variables equals the sum of 
their variances plus twice the correlation coefficient times the product 
of tke two standartl deviations, Also, the variance of a difference of 
two variables equals the sum of their variances minus twice' the 
correlation coefficient times the product of the two standard deviations. 
Finally, if the two variables are independent, r = 0 and the variance 
of their sum or difference equals the sum of their van'ances, 



CHAPTER XVII 

ANALYSIS OF VARIANCE 

In recent years, much use has been made of a so-called" analy
sis of variance."l This has been particularly true in the field of 
biological and agricultural experiments. The method has such 
wide applicatIon, however, that there is hardly any field of 
statistical investigation in which it cannot be employed. 

Analysis of variance is essentially a method of testing for the 
existence of correlation or association. The technique consists 
in classificati<?n and cross classification on either a qualitative or 
a quantitative basis and in comparison of the variation from class 
to class with the variation within classes. The analysis is so 
arranged that variation within classes can be presumably attri
buted to chance. The test of association or correlation consists 
in comparing the variation between classes with the supposed 
chance variation within classes. The problem~ discussed below 
will illustrate the details of this procedure. , 

PROBLEMS INVOLVING A SINGLE BASIS OF CLASSIFICATION 
• 

Nature of. Problems. In the simplest cases of analysis of 
variance there is only one basis of classification. This will 
accordingly be the first type of problem to be discussed. 

In-Table 49, on page 426 are listed the grades of 15 representa
tive students2 in an elementary course in economics. These are 

1 Historically, the method can be traced at least to the 1910 edition of 
G. Udney Yule's Introduction to the Theory of Statistics, in which Chap. V on 
Manifold Classification introduces the use of contingency tables that are 
the ancestors of modern analysis of variance tables. A certain similarity 
also is revealed between analysis of variance and Lexis's analysis of s~b
normal and supernormal dispersion. Cj. REITZ, L. M athematieal Statistica, 
pp. 146-155. For the original work see W. Lexis, "'Ober die, Theorie der 
Stabilitat statisticher Reihen," Jahr~ucher jur NationaWkonomie una 
Statistik, Vol. 32 (1879), pp. 60-98; and W. Lexis, Abhandlungen zur Theorie 
der Bevolkerungs- und Moralstatistik, (1903), Chaps. V-IX. 

2 Actually, each grade is the average of the grades of several students, 
but for the present analysis it will be considered a single individual grade. 

422 
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classified according to the teacher of the student, and the problem 
is to determine whether the difference in teaching has an effect 
on the grades of the students. If the difference in teaching has 
an effect, it will be reflected in variation in the mean grades of the 
students as between teachers. The problem is therefore to 
determine whether the variation in mean student grades from 
teacher to teacher is greater than can reasonably be attributed to 
chance. • 

Theoretical Basjs for the Analysis. It may be assumed that 
the variation betw~en grades of students having the same teacher 
is due to the chance difference in ability of the students. This 
would, be the case if the students were assigned to the teachers 
at random. If this variation of grades within each group is 
pl:>oled fot all groups, a good estimate will be secured of how 
much variation can be expected purely as a result of chance. 
This will form a standard with which to compare the variation 
in the mean student grade from teacher to teacher. Of course, 
the latter cannot be expected to vary as much as individual 
grades, since they are mean values. l Allowance for the smaller 
variation among means can be made, however, by proper weight
ing of the variation in the mean grades before the comparison 
is made. 

The theoretical basis for the precise method of comparison 
that is used may be outlined as follows: The first step in the 
analysis il? to set up the null hypothesis that the difference in' 
teaching has no effect on the grades. Under these conditions 
both the variation in the means of student grades from teacher 
to teacher and the variation of grades within the groups of stu
dents having the same teacher will stem back to the variation in 
general in student grades, or to what may be -called the II popula
tion variance." If this is large, variation in the mean -student 
grades from teacher to teacher will tend to be large, as will also 
variation around these means." If, on the otlrer hand, the popu-

~lation variance is small, the variation in mean student grades 
from teacher to teacher will tend to be small and so will variation 
around these means. 

Accordingly, if the null hypothesis is correct, either the sample 
variation in the mean student grades from teacher to teacher 
or the variation around these mean grades could be used to esti-

1 It will be recalled that the standard error of a mean is equal to If/...;N. 
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mate the underlying population variance. Of course, the two 
estimates could not be expected to be the same. 1 In one sample 
the estimate based upon variation in the meaD$ would be larger 
than that based upon variation around the means, and in another 
sample the opposite might be true. If the null hypothesis is 
true, however, the ratio of the first to the second would tend to 
average in the neighborhood of unity, and large deviations from 
unity would not be very likely. 'Fhis suggests that, in any 
particul~r problem, the null hypothesis could be tested by 
computing the ratio of the two estimates of variance and seeing 
whether or not the sample ratio deviated unreasonably from unity. 

Such, in general, is the theoretical basis of analysis of variance. 
To put it to use, however, requires more exact specifications 
regarding the nature of the two estimates of variance and the 
form of the sampling di~tribution of their ratio. 

The estimates of variance that are used are maximum. likeli
hood estimates. If a large number of this kind of sample esti
mates are obtained, their mean will have approximately the same 
value as that of the population variance. In other words, the 
mean of the sampling distribution of ·ay.maximum-likelihood 
estimate of variance is the population vanance. For this reason 
a maximum-likelihood estimate of varianqe is \ also called an 
"unbiased" estimate. 

Mathematical analysis shows that the maximum-likelihood 
estimate of the population variance that is based :upon the varia-

t" . th .. b !.Nr(Xr - X)2 th t· b th IOn In e means IS gIven y r _ 1 ' a IS, y e 

weighted sum of ,the squares of the deviations of the individual 
means about the,mean of the entire sample of grades divided by 

. the number of means minus 1. The N r is the numb~r of student 
grades used to calculate the rth mean; r is the number of means 
calculated and in this case would also be the number of teachers. 
Such an estimate is said to be based on r - 1 degrees of freedom. 

There are r - 1 and not r degrees of freedom ·because the 
sample estimate is calculated froin the variation around the 
grand mean of the entire sample and no~ the mean of the popula
tion. To allow for variation in the mean of the enti~e sample, 
the factor r - 1 is used instead of r. 

1 It can be shown that the two estimates are independent of each other, 
so that the.value of one is not related to the value of the other. 



ANALYSIS OF VARIANCE 425 
• 

A second maximum-likelihood estimate of the population 
variance is that based upon the variation around the means, 

Z Z (X,r - Xr)2 
which is 'given by ; r N -that is, by the pooled sum 

-r 
of the squared deviations from the individual.means divided by 

- the ,number of cases minus the number of means. This is an 
estimate of the population variance based on N - r degrees of 
freedom. 

These are the two estimates of the population variance that 
are used in- the analysis of variance. The next qU,estion is: What 
is the sampling distribution of their ratio? The answer given by 
mathematical analysis is as follows: If the original population is 
normal and if the null hypothesis is correct, the ratio of the two 
maximum-likelihood estimates of the population variance will 
tenq. to fluctuate from sample to sample in accordance with the 
F distributIon. If the estimate based upon the variation- in the 
means is put in the numerator of the ratio and the estimate based 
upon the variation around th~ means is put in the den~minator, 
the appropriate F curve' is that for which nl = r - 1 and 
n2 = N'- r. 

The Numerical Analysis, Before proceeding to the application 
of the foregoing theory to a concrete problem, certain mathe
matical relationships should - oe noted that will 'be helpful in 
carrying out the numerical calculations. A study of the theo
retical formulas shows that the numerator of each of the estimates 
of variance is a sum of squares, These could be calculated 
directly, of course, but it is usually easier to make use of the 
following identity, 

~ (X, - X)2 == Z Nr(Xr - X)2 + ~ ~ (X,r - 'Xr) 2 (1) 
. r r i 

which says that the total variation in the data, as represented 
by the total sum sf squares, may be broken up into two parts, 
one consisting of the variation in the means (as represented by the 
weighted sum of the squared deviations of the individual means 
from the grand mean) and the other consisting of the variation 
around the means (as represented by the pooled sum of the 
squared deviations of the individual items from the mean of 
each group). 
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Since it is usually easier to calculate the total sums of squares 
and that pertaining to the means than it is to compute th~ sum 
of squares of the residual deviations, it is commonly the practice 
to calculate the latter by taking the difference between the other 
two more easily calculated values. 

In calculating the sums of sq~ares the following special for
mulas are found useful. Thus the total sum of squares can be 
computed from the equation 1 

2: (X. - X)2 = 2: X~ - NX2 = 2: X~ - (I-:~)2 (2). 

and the weighted sums of squares of the deviations of the indi
vidual means from the grand mean can be computed from the 
equation2 

r 

in which. [I-Xi]; refers to the square of the sum of the grades 
in the rth row. 

TABLE 49.-GRADES OF REPRESENTATIVE STuDl'JNTS1 CLASSIFIED 

BY TEACHERS 
I 
I 

Teachers Grades of students Mean grade 

I 83.25 77.50 71.00 77.25 
II 88.75 74.75 70.00 77.83 

III 76.25 67.25 69.25 70.92 
IV 78.75 68.75 62.25 69.92 
V 81.50 75.75 64.75 74.00 

1 Grades are actually means of several students' grades, but they are considered as if they 
were individual student's grades--i.e., each teacper has three students. 

The application of these equations to the data of Table 49 is 
carried out in the calculations of Table 50. This latter table 

shows that I,Xi = 82,850.1875 and (I,:i)2 = 82,103.0042. 

Hence the total sum of squares I,(X, - X)2 is equal to 
-82,850.1875 - 82,103.0042 = 747.1833. 

1 2:(Xi - X)2 = '2:X~ - 22:XiX + NX2 = 2:X; - Nii2 , since 
NX = 2:Xi. 

2 The equation follows from the fact that N,X, = (2:Xi ), for each row, and 
the k>tal for all rows is 'E.N,it, = Nit. 
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Table 50 also shows that 

427 

~ [:Z:i]~ _ ("1:,:i)2 = '82,257.3125 _ 82,103.0042 = 15~.3083, 

which is the SUl1\ of the weighted squared deviations of the 
individual means from the grand mean. The difference between 

TABLE 50.-WORKSHEET FOR CALCULATING THE VARIOUS SUMS OF SQUARES 

• FOR ANALYSIS OF VARIANCE , 
, 

Grades Partial sums 

83.25 
77.50 
71.00 

231.75 
88.75 
74.75 
70.00 

233.50 
76.25 
67.25 
69.25 

212.75 
78.75 
68.75 
62.25 

209.75 
81.50 

- 75.75 
64.75 

222.00 
1,109.75 

= ];X. 

(2:X.)' = (1,109.75)' = 1,231,545.0625 
(2:X,)' = (1,109.75)' = 821030042 

N 15 ,. :s [Z;:P = 246.77;.9375 = 82,257.3125 

r 

Squ.ares of 

Individual grades Partial sums 

6,930.&625 
6,006.2500 
5,041.0000 

53,708.0625 
7,876.5625 
5,587.562~ 
4,900.0000 

54,522.2500 
5,814.0625 
4,522.5625 
4,795.5625 

45,262.5625 
6,201.5625 
4,726.5675 
3,875.0625 

43,995.0625 
6,642.2500 
5,.738.0625 
4,192.5625 

49,284.0000 
82,850.1875 246/171.9375 

= ];X~ = Z[];Xil~ 
r 

these two results gives the pooled sum of the squared deviations 
of the individual items from the row means. This last sum of 
squares, 
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Z Z (Xir - Xr)2, is thus equal to' 747.1833 - 154.3083 
r i 

= 592.875. 

To make the appropriate estimates· of the population variance 
the last two sums of squares are each divid~d by the proper 
degrees of freedom. Thus 154.3083 is divided by 5 - 1 = 4 to 
give 38.5771 as the estimate of the population variance based 
on the variation among teachers in mean student grad~s. Simi-
larly, 592.8750 is divided by 15 - 5 = 10 to give 59.2875 as the 
estimate of variance based on the variation around the means. 
The ratio of these two estimates is 38.5771/59.2875 = .65. 

To determine whether this sample ratio justifies the rejection 
or acceptance of the. null hypothesis requires the selection of a 
suitable region of rejection. On the ?-ssumption that the risk 
of rejecting the null hypothesis when it is true will be put at the 
usual figures of 1 in 20, the size of the region of rejection will be 
.05. This is purely arbitrary, however, and might be set at 
.01 or .10 or any other figure, depending on the coefficient of risk 
adopted. A more significant question relates to the distrIbution 
of the region. Since the difference in teaching, if it 'had any 
effect, would tend to be revealed in a larger variation among the 
teachers in mean student grades, values of th~ ratio that are 
smaller than 1 would seem to be of little significance. The risk 
that is to be minimized by the proper choice 9f the region of 
rejection is the risk of accepting the null hypothesis when in fact 
the variation among teachers in the mean student grade is larger 
than may be due to ·chance. It would seem, therefore, that the 
proper region of rejection in this instance would be the upper 
.05 tail of the F distribution. This is the region that will be 
adopted in this and in all subsequent analyses of variance. 

For nl = 4 and n2 = 10, the upper .05 point of the F distribu
tion is 3.478. The sample ratio in the present problem is .65 
and obviously-does not fall in the region of rejection.! Therefore 
,the null hypothesis is accepted, and the variation in mean 
student grades from teacher to teacher is to be attributed to 
chance and not to any difference in teaching. 

1 If the ratio is less than unity, it will never fall in the region of rejection. 
In such cases, calculation of the two estimates of variance will of itself give 
sufficient evidence for acceptance of the null hypothesis. 
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PROBLEMS INVOLVING MORE THAN ONE BASIS 
OF CLASSIFICATION 

429 

A Single Case in Each Class. In the previous problem it 
might have been suspected that, if allowance were made for the 
general standing of the students, the differenqe in teaching might 
be revealed. Suppose, as is actually the case, that the first 
student of each greup is a high-standing student, the second is 
one of average standing, and the third one of low standing. Then 
the 15 grades may be 'classified according to two criteria, standing 
and teacher, and meari,grades may be calculated for the divisions 
of each classification. l'his is done in Table 51, on page 432. 

Under such circumstances, two questions may be asked: (1) 
If allowance is made for the difference in standing, has the differ
ence in teaching any significant effect on grades in the given 
course? (2) If allowance is made for, the difference in teaching, 
has the difference in standing any significant effect on grades in 
the given course? The former question is the one that primarily 
concerns us here, but the secon,d may also be of interest. 

Theoretical Basis for the Analysis. In this more e~tended 
problem there are three types of vaFiation to be considered. 
First, there is the variation in the means of the rows, the mean 
student grades for different teachers; second, the variation in the 
means of the columns, the mean grades of students of different 
standings; third, the variation in the individual grades about 
what would be expected from the combined row (teaching) and 
column (standing) effects. 

This thircl. variation needs further explanation. If a student's 
grasle differed from the grand mean of all the students' grades 
by just tue same amount that the average grades of all, students 
having the same teacher differed from the grand mean plus the 
amount that the average grades of all students having the same 
standing differed from the grand mean, the grade of this student 
would be ',equal to' X + (XT -~ X) + (Xc - X). In nearly 
every case a student's grade does not come exactly to the sum of 
this combined row and colurim effect but differs from it. This 
difference will be given byl 

1 Indh[idual grades are now designated by' X" instead of Xi since any 
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It is the variation in such differences that constitutes the third 
type of variation distinguished above. 

Whereas the variation in the row means might be due to the 
difference in teaching and the variation in the column means 
might be due to the difference in standing, tliis last variation is 
presumably due to chance. For brevity it will be called the 
. " remainder" variation. 

If the null hypothesis is set up that the difference in teaching 
has no effect on the grades, the size of both the variation in the 
row means and the size 0{ the remainder variation will'depend 
on the size of the variation in students' grades in general-i.e., on 
the size of the population variance. As in the previous problem, 
each of these two l~inds of variation could be used to make an 
independent estimate of the popUlation variance, and their ratio 
could be used to test the null hypothesis. The analysis is essen
tially the same as in the' previous instance except that now, 
according to the hypothesis, the measure of the <;hance va~iation 
does not contain any possible effect of the difference in standing. 
This test of teaching is independent of any possible effect of 
standing. ---

In the same manner, the Il,ull hypothesis that the difference 'in 
standing does not have any effect on the students'l grades can be 
tested by comparing an estimate of the population variance 
based on the variation in the column (standing) means with an 
es~imate based on the remainder (chance) variation. This is a 
test Qf standing that is independent of the possible effect of 
teaching. 

In making the foregoing tests, th~ maximum-likelihood esti
mates of the population varia1we _that are used are as,follows.1 

The estimate of the population variance basl'ld upon the variation 
. h . I:.Nr(Xr - X)2 Th . b d 
III t e row means IS l' e estlmate ase upon 

r.-

h .. . th 1 . IiNc(Xc - X)2 ..:l th t e vanatlOn III e co umn meaps IS c _ 1 ,an,+ e 

individual student has both a teacher and a standing and there is only one 
student for any given comb~ation of the two. 

1 That these are the proper formulas can be demonstrated by strict 
mathematical analysis similar to that of Chap. X.- For further-discussion, 
see J. O. Irwin, "Mathematical Theorems Involved in the Analysis of 
Variance," Jaurnal of the Royal Statistical Society, Vol. 94 (1931), p. 284. 
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estimate based upon the remainder variation~is 

(r - l)(c - 1) 

If ,the null hypothesis that teaching has no effect is correct, 
and if the populatio~ is normal, the ratio of the first estimate to 
the last will have a sampling distribution that is of the form of 
the F distribution with nl = r - 1 and n2 = (r - l)(c - 1). 
Likewise, if the null hypothesis that standing has no effect is 
correct and if the population is normal, the'ratio of the second 
estimate to the last will have a sampling distribution of the form 
of the F-distribution with nl = C - 1 and n2 = (r - l)(c - 1). 
It is upon these theoretical conclusions that the following 
numeric~l analysis rests. 

The "Numerical Analysis. In putting the foregoing theory into 
practice, use is made of the identity 

Z Z (X T• - X)2 ~ Z Nr(Xr - X)2 + Z Nc(Xc - X)2 
r 0 r c 

+ Z ~ (XTC - Xr - Xc '+ X)2 (4) 
r c 

which merely says that the total sum of squares is equal to,the 
sum of the sum of squares for each of the three variations-.the 
variation in the means of the rows, the variation in the means of 
the columns, and the remainder variation. The total sum of 
squares and the sum of squares for the means of the rows have 
already been computed. If the sum of squar~s for the means 
of the columns is aJso computed, the remainder s_um of ~quares 

. can be calculated from the foregoing identity. 
The equation for the' calculation of the sum of squares for the 

means of the columns is similar to that for the means of the rows 
and takes the form \. 

c 

in which [z X'D J: refers to the squared sum of the l' grades in 
r 
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the cth column. For the given data, this is equal to 

82,621.1625 - 82,103.0047 = 518.1583 

From Tables 51 and 52, it is seen that 

[L: XrcJ2 Z r N c c = 413,10
5
5.8125 = 82,621.1625 

From Table 50 it was found that 

~ (.z~rc)2 = 82,103.0042 

Henc{l, by Eq. (5), 

.zN cCXc - X) 2 = 82,621.1625 - 82,103.0042 = 518.1583 

TABLE 51.-GRADES OF STUDENTS CLASSIFIED BY TEACHER AND STANDING -
Standing 

Teacher Mean grade 

High Medium :~ -
I 83.25 77.50 71.00 \ 77.25 

II 88.75 74.75 70.00 77.83 
III 76.25 67.25 69.25' 70.92 
IV 78.75 

/ 
68.75 62.25 69.92 

V 81.50- 75.75 64.75 74.00 
Mean grade 81.70 72.80 67.45 73.98 

~ABLE 52.-CALCULATION OF SUM OF SQUARES FOR MEANS OF COLUMNS 

Sums of Squares 
columns of sums 

High standing ................. 408.50 166,872.2500 
Medium standing ...... . . . . . . . . 364.00 132,496. DODO, 
Low standing .................. 337.25 113,737.5625 

413',105.8125 

= Z[ZXrcy 
ere 

The remainder variation, L: ~ (XTC - Xr - Xc + X~2, is cal-
r c 
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culated from the identity (4) and is found to be equal tol 

747.1833 - 518.1583 - 154.3083 = 74.7167 

The foregoing data may be assembled in an "analysis of 
variance" table (Tabl~ 53), in which the various estimates of 
d 2 can be calculated. 

TABLE 53.-ANALYSIS OF VARIANCE 

, Sum of Degrees of freedoIIl Unbiased 
squares esti rna te of d' 

Means of rows .. _ .......... 154.3083 r - 1 = 4 38.5771 
Means of columns ......... 518.1583 c - 1 = 2 259.0792 
Remainder;' ... , ........... 74.7167 (r - 1)(c - 1) = 8 9.3396 

Total. ................. 747.1833 N - 1 = 14 

To test the null hypothesis that tht: variation in the means of 
the columns is due to chance, i.e." that the difference in stand
ing has no effect on the grades ill the given course, the ratio 
259.0779/9.350'7 is calculated. The result is 27.707. For 
nl _= 2 and n2 = 8, the .05 value for the_F distribution is 4.459. 
The sample ratio 27.707 is much greater than 4.459 and thus 
Cl~arly lies in' the region of rejection. The null hypothesis can
not be accepted, and it is to be concluded that the diff~rence in 
standing does have definite bearing on the grades obtained in 
the given course. . 

To test the null hypothesis that the variation in the means oL 
the rows is due to chance, i.e., that the difference in teaching has 
no effect On the grades, the ratio 38.5765/9.3507 is calculated. 
The result is 4.126. For nl = 4 and n2 = 8, the .05 point of the 
F distribution is 3.838. The proximity of the sample value 
4.126 to the .05 point, 3.838, suggests that this problem offers a 
borderline case. Nevertheless, it does lie in the region of rejec
tion, since the sample value is the larger; and if the rule of pro
'cedure i~ strictly followed the second null hypothesis cannot be 
accepted. It may be concluded in this case that the difference 
in mean teacher grades is to be attributed to the difference in 
teaching. 

1 ';rhe total sum of squares is 747.1833 and was calculated on p. 426. Tho 
sum of squares for tho row means is 154.3083 and was calculated on p. 427. 
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It will be recalled that in the previous case the hypothesis that 
the difference in teaching had no effect on the grades was not 
rejected. Here it is rejected. The reason for the different con
clusion lies in the different measure of chance variation. In the 
former problem all the variation over and above the variation 
in the mean student grades from teacher to teacher was taken 
to be chance variation. This represented chance variation in 
student ability in the course, due to any cause whatever. Com
pared with such chance variation, the variation in mean student 
grades from teacher to teacher was not deemed significant. 
That is, the vari;:Ltion in mean student grades froIl). teacher to 
te'acher might easily have been explained by the chance difference 
in ability of the students assigned to each teachet. 1 

In the second problem, in which not only different teachers but 
differences i~ standing are involved, the measure of chance 
variation is taken to be the variation remaining after the varia
tion due to difference in. teaching and the va,riation due to 
difference in standing have both been eliminated. That is, it is 
the chance variation in student ability within the groups or high, 
average, and low standing. It is the c4ance variation remaining 
after student standing has been roughly accounted for. Com
pared with such a chance variation the difference in teaching does 
appear to have some effect on the students' grades. 

In conclusion, it should be pointed out that in the present 
problem the variation of the means of the rowil is independent of 
whether the variation in the means of the columns is due to 
chance or Il:ot. The test is valid in any case. If it should appear 
from a previous test that variation in the means of the columns 
is due to chance, then it is better to combine this variation with 
the remainder variation so as to get an estimate of chance varia
tion based upon a greater number of degrees of freedom, For it 
is better to use the test pertinent to a single basis of classification 
than to use the present test, if the variation in the'means of the 
columns is due to chance, because the estimate based on a larger 
number of degrees of freedom gives a more reliable estimate of 

1 Strictly speaking, the analysis in that problem was not vaJid owing to 
the way in which the students grades were selected. The students were no't 
assigned to the teachers entirely at random, but in order to serve for further 
analysis the students were so chosen that each teacher had ap. equal number 
of high-, average-, and low-standing sturlents'. 
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the chance variation. What has been said about variation in the 
means of the rows applies in turn to the variation in the means of 
the columns. The test is equally independent of whether the 
variation in the means of the rows is due to chance or not. If 
the latter is due to chance, however, the test of the former is 
best based upon a'chance variation that includes the variation 
in the means of the rows. 

More than One Case in Each Class. The Problem. In the 
preceding problems' it was assumed that there was orily one 
student of ,each standing assigned to each teacher. As a matter 
of fact, four students. of each standing were assigned to each 
teacher, and the grades of the previous problem were 'actually 
the mean grades of these groups of' four students, rather than 
grades of individual students. The full data are given in Table 
54, on page 437. 

The problem now to be considered is the analysis of variance 
of this full set of data shown in Table 54. Three questions may 
be asked: (1) Is the varill.tion in the means of the rows greater 
than may be reasonably attributed to chance? (2) Is the varia
tion in the column means greater than m,ay reasonably be attri
buted to chance? (3) Are the individual cell means what may 
be reasonably expected on the assumption that each individual 
item is a mere sum of a row effect plus a column effect, or do these 
cell means give evidence of an interaction between row and cell 
effects? In other words, the three questions are: (1) Has the 
difference in teaching an effect on grades? (2) Does difference 
in general ability affect grades,? (3) Is there any interaction 
between teacher and student ability-i.e., does one teacher do 
better with high- (or low-) standjng students than another? 

Theoretical Basis for the Analysis. In this problem there are 
four types of variation to be considered. There are the variation 
in the row means, the variation in the column means, the varia
tion in the means of each cell about what may be expected from 
a linear combination of row and column effects (the so-called 
"interaction"), and, finally, the variation in:the individual items 
about the means of each cell. 

The variation in the indixidual items about the means of the 
cells is presumably due to chance and may be spoken 9f as the 
"chance" or "remainder" variation. It will be noted that this 
is not the same' as the' remainder variation of the preceding 
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problem. The remainder variation in the preceding problem 
is now the "interaction." Previously, the remainder variation 
wa§l presumed to represent chance, for there was no other basis 
for measuring chance variation. Here there is another basis for 
measuring chance variation, and the former remainder variation 
may now be tested for the possible existence of correlation or 
interaction. . 

In the present problem three hypotheses may be tested. First 
there is the null hypothesis that the difference in teaching has no 
effect on grades; second, the null hypothesis that the difference 
in standing has no effect on grades; third, the null hypothesis 
that there is no real interaction- between teaching and standing. 

To test the first hypothesis an estimate is made of the popula
tion variance based upon the variation in the row means; and 
this is compared with an estimate based upon the remainder or 
chance variation. To test the second hypothesis an estimate 
of the population variance based upon the variation in the column 
means is compared with the estimate based upon chance varia
tion. To test the third hypothesis an estimate based upon tlie 
int~raction is compared with the chance e~mate. The estimates 
based upon the different sources of variation ~e the following; 
each is a maximum-likelihood, or unbiased, estimate: 
Estimate based on the variation in the means of rows: 

Estimate based upon the ,!"ariation in the means of the columns: 

Estimate based upon the interaction: . 

r c 

(r - l)(c - 1) 

Estimate based upon the remainder or chance variation: , 
~ t ~ (X. - Xrc)2 
r 0 i 

N ,- rc 



ANALYSIS OF VARIANCE 437 

Mathematical analysis shows that, if the first null hypothesis 
is correct and if the population is normal, the ratio of the first 
esti,mate -to the last has a sampling distribution of the form of 
the F distribution with nl = r - 1 and n2 = N - re. If the 
second null hypothesis is correct and the population is normal, 
the ratio of the second estimate to the last has a sampling distri
bution of the form of the F distribution with nl = e - 1 and 

TABLE 54.-GRADES OF STUDENTS IN A GIVEN COLLEGE COURSE CLASSIFIED 

ACCORDING TO T~EIR GENERAL STANDING AND TEACHERS 

" 
Teacher High. Medium Low Means of rows standing standing standing 

I 90 87 80 
76 77 77 
85 75 68 
82 71 59 

Average 83. 25 77.50 71.00 77.25 
, 

II 88 58 72 
85 77 58 
90 81 80 
92 83 70 

Average 88.75 74.75 70.00 77.83 

III 84 62 61 
80 73 77 
60 70 72 
81 64 67 -

Average 76.25 67.25 69.25 70.92 

IV 80 65 63 
76 69 70 -
90 77 46 
69 64 70 

Average 78.75 68.75 62.25 69.92 
" 

V 80 80 47 
80 80 62 
75 76 81 
91 67 69 

Average 81.50 75.75 64.75 74.00 
Means of coI- 81.70 72.80 67.45 Grand mean 73.98 

umns . 
-
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n2 = N - rc; and jf the third null hypothesis is correct and the 
population is normal, the ratio of the third estimate to the last 
has a sampling distribution· of the form of the F distribution vvith 
nl = (r - 1)(c - 1) and n2 = N - rc. The ana;lysis thus 
proceeds in much the same manner as in the previous problems. 

8,100 
8,464 
8,100 
5,929 
3,844 
4,096 
4,624 
5,929 
2,209 

TAllLE 55.-CALCULATIONS FOR ANALYSIS OF V ARrANCE 

Squares of individual grades 

5,776 7,225 6,724 7,744 7,225-
7,056 6,400 3,600 6,561 6,400 
4,761 6,400 6,400 5,625 8,281 
5,625 5,041 3,364 5,929 6,561 
5,329 4,900 4,096 4,225 4,761 
6,400 6,400 5,776 4,489 6,400 
3,481 5,184 3,364 6,400 4,900 
5,184 4,489 3,969 4,900 2,116 

8,100 
5,776 
7,569-
6,889 
5,929 
5,929 
3,721 
4,900 

3,844 6,561 4,761 Total = 334,735 = ~X: 

Sums of row grades and squares of sums of row grades 

927 
934 
851 
839 
888 

Total 4,439 = LX; 

859,329 
§1-2-;356 
'724,201 
703,921 
788,-544 

3,948,351 = L [~Xil; 
r 

Sums of column grades and squares of sums of column grades 

1,634 
1,456 
1,349 

Total 4,439 = LX; 

2,669.956 
2,119,936 
1. 819,801 

6,609,694 = 2: [~Xil~ 
c 

The Numerical Analysis. In the numerical calculations use is 
again made of an identity in which the total sum of squares is 
broken up into its various components. This identity is as 
follows: 

L (X; - X)2 "'" L Nr(Xr. - X)2 + L: NcCXc - X)2 
r c 

+ L L Nrc(Xrc - Xr - Xc + X)2 + L L L (Xi - Xrc)2 (6) 
r ere i 
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As in the other problems, the first four sums of squares are cal
culated directly, and the remainder sum of squares is calculated 
as a residual. These calculations are shown in Table 55. 

From Table 54 it is seen that the number of grades in each row 
is 12; each teachey has 4 students' grades of high, low, and 
medium standing, making 12 altogether, and hence, NT = 12: 
The number of graQ_es in each column is 20; therefore, N c = 20. 
The number of grades in the column of one row is 4; thus, 
Nrc = 4. The total ~umber of grades is 60, and N = 60. The 
following calculations :rp.ay now be made: 
The total sum of squares is best calculated from the formula 

1;(X. - X)2 = ~X~ _ (~Xi)2 , • N (7) 

Table 55 shows that this is equal to 

~ K2 _ (Z Xiy = 334735 _ (4,439)2 
L..r' N ' 60 

= 334,735 - 328,412.02 = 6,322.98 

The weighted sum of the squared deviations of the means of 
the rows is calculated from the equation 

where [Z Xi]~ represents the square of the sum of the indi

vidual items in the rth row. Table 55 shows this second sum of 
squares to be 

3,948,351 (4439)2 
12 .. --00-

= 329,029.25 - 328,422.02 = 617.23 

The weighted sum of the squared deviations of the means of 
the columns may be calculated from the equation 

(9) 
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in which [2: Xi]: represents the square of the sum of the indi..: 

vidual items in the cth column. Table 55 shows that this third 
sum of squares is equal to. 

(2: X.y 
c 

N 
6,609,694 

20 
(4,439)2 

60 

= 330,484.70 - 328,412.02 = 2;072.68 

The fourth sum of squares 'is best calculated indirectly. The 
first step is to calculate the weighted sum of the squared devia
tions of the cell means from the grand mean. This may be 
obtained from the equation 

~ ~ - - ~ ~ - (2: X.y· 
,L,t,L,tNrc{Xrc - X)2 = ,L,t,L,tNrc(Xrc)2 - N 0.0) 
r ere 

Since Nrc is constant in the present problem, the first term on the 
right may be written Nrc 2: 2: (Xrc)2. To..-calculate this term 

r c 

it is thus necessary only to square each of the-cell Ifeans, sum the 
results, and multiply by Nrc. This squaring and summing of the 
cell means was already done in Table 50, however,l where it was 
found that l:X;. (designated as l:X~ in Table 50) equaled 
82,850:1875. Accordingly, as indicated in Table 55 the weighted 
sum of .the squares of the cell .means about the grand mean is 
equal to 

- (2: X.y Z N rc(Xrc)2 
- N = 4(82,850.1875) 

- 328,412.02 = 2,988.73 

The second step in the calculation of the fourth sum of.squares 
is to subtract from 2,988.73 the weighted sum of the sguared 
cJeviatjons of the means of the rows a,nd the weighted sum of the 
squared deviations of the means of the columns. The result, 
according to a modification of Eq. (4), is the fourth sum of squares. 

1 Because, in Table 50, the cell means of Table 54 were treated as if they 
were individual items; hence the sum of the squared items in Table 50 is 
equivalent to the sum of the squared means of Table 54. 
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Thus 

Z Z Nrc(Xro - X~ - Xr -f X)2 = 2,988.73 - 2,072.68 
r tI 

- 617.23 = 298.82 

The final, or remainder, sum of squares is now obtained by 
subtraction of all the other component sums of squares from the 
total sum of squares. That is, 

Z Z Z (X. - Xrc)2 =\6,322.98 - 2,072.68 - 617.23 - 298.82 
rei 

= 3,334.·25 

All the foregoing sums of squl!-res are collected in Table 56, 
where they are divided by the appropriate degrees of freedom to 
obtain various estimates of the population variance. Compari
sons of these esti¥lates afford tests of the various hypotheses to 
be considered. 

TABLE 56.-ANALYSIS OF. VARIANCE ' 

Sums of Degrees of Estimates 
squares freedom of dO 

Means of rows .................. 617.23 5- 1 = 4 154.31 
Means of columns ............... 2.,072.70 3- 1 = 2 1,036.35 
Means of cells, or interaction ...... 298.82 4X 2= 8 37.35 
Remainder ...................... 3,334.25 60 - 15 = 45 74.09 

Total" ........................ 6,322.98 60 - 1 = 59 

To test the null hypothesis that the variation in the row means 
is greater than can reasonably be attributed to chance-i.e., that 
the <;lifference in teaching has no effect on grade~-the ratio of 
the first estimate to the last estimate is computed. This is 
found to be 2.083. The .05 point-of the F distribution for nl = 4 
and n2 = 45 lief't between 2.0 and 2.69. Since the sample value 
of 2.083 is obviously less than this ~05 point and hence does not 
Ilie in the region of rejection, the null hypothesis is accepted in 
this instance. The fluctuations in grades from teacher to teacher 
is thus apparently due to chance, and there is no basis for 
attributing it to a difference in teaching. This conclusion con
tradicts the result of the previous problem, but since it is based 
upon a larger set of data greater' confidence is to be placed in its 
validity than in the result obtained in: the p:z:eceding problem. 
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To test the null hypothesis that the variation in the column 
means is due to chance-i.e., that the difference in general 
standing has no effect upon student grades in the given courtle
the ratio of the second estimate to the last estimate is computed. 
This gives 13.99, which is far beyond the .05 point of the F dis
tribution for ni = 2 and n2 = 45. * Hence the null hypothesis 
must be rejected, and it can be concluded that general standing 
does have an effect upon the grades obtained in the given course. 

The variation in the cell means may be tested in a like manner 
by comparing the estimate of the population variance based 
upon this variation with that based upon the remainder variance. 
In the presel!-t problem the ratio is obviously less than 1 so that 
further analysis is unnecessary. The v~riation in cell means 
may be attributed to chance, and there is no basis for concluding 
that students of different standing react differently to differ~nt 
teachers. 1 

TESTS OF CORRELATION COEFFICIENTS 
AS AN ANALYSIS OF VARlj\NCE 

In Chap. XII certain tests were given to,determine whether or 
not correlation coefficients were significantly different from zero. 
These tests were in reality an analysis of variance. The variance 
of points on a line or plane of regression, it will be recalled,2 was 
given by U;I = u2r2. Similarly, the variation in' the means of 
rows or columns was given by u~ = Uil1i2' and the variation of· 
the points on a curve of regression was given by u';; = uili2· t 
If there was correlation between the data, these variances might 
be taken as measures of that correlation. If there was no corre
lation, however, sample data might still yield values for these 
variances that would be merely the result of chance. Whether 
there was correlation or not, variation around the line or plane 
or curve of regression or around the progression of means could 

\ 

* Table IX of the Appendix shows that this point is in the neighborhood 
of 3. 

1 For further discussion of special problems dealing with the analysis of 
variance, see R. A. Fisher's Statistical Methods for Research Workers (1932) 
and The Design of Experiments (1935), also C. H. GouldeJl's Methods of 
Statistical Analysis (1939) and Paul R. Rider's An Introduction to Mode;n 
Statistical Methods (1939). 

2 See p. 21. 
t See SMITH, J. G., and A. J. DUNCAN, Elementary Statistics and Applica

tion, p. 396. 
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be taken as a measure 'of the amount of variation caused by 
cHance forces. 

Accordingly, to determine whether variation ,accounted for 
by a line, plane, curve, or progression of means is due to correla
tion or is merely the result of chance, it may be compared wit)1 
the variation around the line, plane, curve, or progression of 
means. More specifically, the null hypothesis may be set up that 
all variation is due to- chance. Then an estimate of the popula
tion variance based upon the variation of the points on the curve, 
line, or plane or upon the variation of the mean values may be 
compared with ~ similar estimate based upon the variation 
around these measures of correlation. In all cases, the ratio of 
these two estimates will be distributed like the F distribution. 

(72r2 
For a line of regression, for example, the quantity -1- is a 

maximum-likelihood, or unbiased, estimate of the population 
variance-assuming no correlation-based on variation, along 

h 1· f . d th t' (72(1 - r2) . . t e me 0 regreSSIOn; an e quan Ity N _ 2 Is.a maXlmum-

likelihood, or unbiased, estimate of the population variance 
based on variation around the line of regression. Since these 
two estimates have independent sampling distributions,l their 
ratio has a sampling distribution of the form of the F distribution, 
with ~l = Land n2 = N - 2. For a plane of regression, the 
two maximum-likelihood estimates of the population variance 

are <T~Ri,23' .. and di(l - Ri,23 ... ), and their ratio is dis-
k-I N-k 

tributed like the F distribution with nl = k - 1 and n2 = N - k, 
where k is the number of regression statistics a1.23, b12•3 ••• used 
in the regression equation. For a progression of means the 

(72f/2 (72(1 - f/2 ) 
maximum-likelihood estimates a~e k ~121 and IN _ kl2 , and 

their ratio is distributed like the F distribution with nl = k - 1 
and n2 = N - k, k being the number of means. Similar for
mulas apply to a curvilinear regression. The statistics that were 
used in Chap. XII to test the significance of the multiple corre
lation coefficient, the correlation ratio, and the correlation index 
'will thus be recognized as the ratio of two maximum-likelihood 
estimates of the population variance-assuming no correlation-

1 This cannot be proved here. 



444 ADVANCED SAMPLING PROBLEMS 

and the analysis there given will be recognized as being essen-
tially an analysis of variance. • 

The test of linearity was also an analysis of variance, but the 
assumptions are somewhat different. In this case a linear 
correlation is assumed to exist, but not a curvilinear correlation. 
On the basis of this assumption an estimate of the population 
first-order variance is made from the variation of the means
or curve if such is used-from the line of regression and another 
estimate is made from the variation 'around the means_:_or 
around the curve of regression. These two estimates have 
independent sampling fluctuations, and their ratio is thus dis
tributed like the F distribution. -More specifically, 

CUM2 - uiri2) 
k-2 ' or CuiIi2 - uiri2) 

N - k ' 

is a maximum· likelihood estimate of the population first-order 
variance based on the variation of the means or curve around the 

line of regression' and uiCl - 1112) or uiCl - n2) is a maximum-
., N-k' N-k' 

likelihood estimate of the population first:brder variance based 
on the variation around the means or curve, k being the numbei' 
of means or the number of regression statistics.\ The ratios of 
these two estimates, respectively, are distributed like the F 
distribution with nl = k - 2 and n2 = N - k. If. tlte reader 
will turn back to page 307, he Will note that this ratio is the 
statistic that was used to test the linearity'of any regression. It 
should be evident now that this is another form of an analysis of 
variance. 



CHAPTER XVIII 

THE PROBLEM OF NONNORMALITY 

Up to this point ,most of the discussion has been based upon 
the assumption that the sampled population is normally dis
tributed. This would appear to be a serious restriction, inas
much as data that are not normally distributed are frequently 
encountered. It is the purpose of this chapter, therefore,' to 
consider the effect of a departure from normality upon the 
sampling distributions of some of the more important statistics. 

EXACT SAMPLING DISTRIBUTIONS 

Exact sampling distributions have been worked out for certain 
statistics from particular nonnormal populations. 1 The popu
lations studied have been of all sorts, rectangular, triangular, 
U-shaped populations, populations that conform to a type A 
Gram-Charlier series, populations that conform to a type III 
Pearsonian curve, and the like. The distributions derived were 
mainly for the mean and standard deviation. 

Exact Distributions of the Mean. The distribution of the mean 
for samples of size N from a rectangular population, y = t, 
x = 0 to x = a, has been found to consist of -a series of N poly
nomials, each of degree N - 1 and applicable to a subinterval of 
lengjh a/N. The curve is bell shaped and resembles the normal 
curve when N ~ 3. For N = 2, the curve reduces to an isosceles 
triangle.2 It has also beep. found that the distribution of means 
from a Pearsonian type III population is a type III curve,3 and 

'" 
1 This section is based primarily upon H. L. Rietz, "Topics in Sampling 

Theory," Bulletin of the American Mathematical Society, Vol. 43 (1937), pp. 
209-230. 

2 Ibid., p. 219. 
3 Cf. CHURCH, A. E. R., "On the Means and Standard Deviations of 

Small Samples from any PopUlation," Biometrika, Vol. 18 (1926), pp. 321-
394, and CRAIG, C. C., "Distribution of Means of Samples from a Type A 
Population," Annals of Mathematical Statistics, Vol. 2 (1931), pp. 99-101. 

445 
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distributions of means have been worked out for samples from 
triangular and U-shaped populations.! 

Integrations for distributions of means have been worked out 
for means of samples from the following populations: 2 

1. A rectangular population represented by 

f(x) = ~ 
a 

(0 ~ x ~ a) 

2. A J-shaped population represented by the declining expo
nential curve 

(0 ~ x < 00) 

3. A positively skewed population represented by the Pearson
ian type III or x2 type curve 

1 '" 
f(x) = kx-'}.e -'}. (0 ~ x < 00) 

4. A peaked population represented by the double decliI).ing 
exponential curve 

/ 

f(x) = ~ exp (-Jx1J (- \ < x < 00) 

for N = 2, 3, and 4 only. 
5. A triangula:r_:-shaped population represented by the two 

straight lines 

and 

for N = 2 only. 

f(x) 
4x 

= a2 

a 
when 0 ~ x ~ '2 

4 
f(x) = - (a - x) 

a2 

a 
when '2 ~ x ~ a 

Exact Distributions of Standard Deviation and Variance. For 
samples of 2 from a rectangular population . (represented by 
y = 1, x = 0 to x = 1) it has been found3 that the distribution 
of 0' was f(O') = 4(1 - 20'). The exact distribution has also been 

1 Cf. RIDER, PAUL, "On Small Samples from Certain Nonnormal Uni
verses," Annals of Mathematical Statistics, Vol. 2 (1931), pp. 48-65. 

2 See CRAIG, A. T., "On the Distribution of Certain Statistics," American 
Journal of Mathematics, Vol. 54 (1932), pp. 353--366. 

3 See RIDER, op. cit. 
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found for the standard deviation of samples of 3 from a rectangu
lar population: l 

Studies of sampling experiments with a Pearsonian type III 
population suggest that the distribution of sample variances from 
such a population. may be adequately described by a Pearsonian 
type VI distribution. 2 Studies have also been made of the 
mpments of the sampling distribution of the variance with a view 
to obtaining Pearsonian curves to represent the sampling dis
tribution when the population itself is a Pearsonian type curve. 
By this analysis, light is shed on how the sampling distribution 
changes with changes in population type and changes in size of 
sample. 3 

Exact Distributions of the Statistic t = v'N' (~ - X). Studies 
(]" 

have been made of the distribution of sample t's from a rectangu
lar distribution. For samples of 2 the distribution of twas 

f(t) = 2(1 ~ \ti)2; for samples of 3 it was much more complicated. 

These studies indicated that the distribution of t was more 
peaked, i.e., had more cases near the mid.dle and at the ends, 
when the population was rectangular than when it was normal. 4 

It has also been found that the distribution of t from aU-shaped 
population was similar to that for a rectangular population. 5 

In summarizing a recent account of sampling from nonnormal 
populations, Rietz concludes as follows: "Although the prospects 
of obtaining' the exact distribution functions of such statistics as 
the standard deviation s or the 'Student' ratio z for samples from 
a considerable variety of nonnormal populations do not seem 
promising, nevertheless, by the use of moments of moments, and 
experimental sampling, along with the exact determination of 

t See RIETZ, H. L., "Note on the Distribution of the Standard Deviation 
of Sets of Three Variates Drawn at Random from a Rectangular Pop\lla
tion," Biometrika, Vol. 23 (1931), pp.424-426. 

2 See SOPHISTER, '"Discussion of Small Samples Drawn from an Infinite 
Skew Population," Biometrika, Vol. 20A (1928), pp. 389-423. 

3 LE Roux, J. M., "A Study of the Distribution of the Variance in Small 
Samples," Biometrika, Vol. 23 (1931), pp. 134-190. 

4 PERLO, V., "On the Distribution of Student's Ratio for Samples of Three 
Drawn from a Rectangular Distribution," Biometrika, Vol. 25 (1933), pp. 
203-204. 

5 See RIDER, op. cit. 
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some distribution functions, significant contributions are being 
made toward an understanding of the probable nature of certain 
important features of the. distributions in question."! 

The Use of Normal Theory for N onnormal Populations. In 
cases in which the population is nonnormal, but the exact forms 
of the various sampling distributions are not known, it is quite a 
common practice to view the results obtained on the assumption 
that the population is normal as fairly good· approximations to 
those that would be act~ally obtained from the nonnormal popu
latiol1:' The extent to which this practice is justified will now be 
considered. 

When the sample is large, as has been demonstrated above the 
distribution of sample means will tend to be normal in form, 
with a mean equal to the mean of the population ancl a variance 
equal to the variance of the population divided by N. * What
ever the nature of the population the moments of the distribu
tion of sample means are:2 

x X t'2 
X =. Xt'2 = N 

t'4 3(N - 1) ( )2 
Xt'4 = N3 + N3 t'2 (1) 

from which it follows that 

and (2) 

These suggest a fairly rapid approach to normality in general, 
while experiments in sampling from nonnormal populations that 
have only a moderate degree of skewness and kurtosis-for 
example, when ~1 ~ .2 and ~2 - 3 ~ .4-suggest that the sam
pling distribution of the mean approaches normality very 
rapidly. This appears to be true, for example, of samples as 
small as 10. t Similar statements can be made for a regression 
coefficient, the difference between two means, and other statistics 
that, like the mean, are linear functions of the sample data. It 

1 RIETZ, H. L., "Topics in Sampling Theory," Bulletin of the American 
Mathematical Society, Vol. 43 (1937), p. 230. 

* See pp. 262-263. 
2 X't'z meltns l}2 for X, X't'3 means l}3 for X, etc. Similarly, X'~l means 

~ 1 for :it, etc. 
t Cf. CHURCH, op. cit. 
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is assumed in all these' cases that the variance of the population 
is known .• 

The Statistic t = VN (~ - X). When the variance of the 
q 

population is not known, it will be recalled that fluctuations in 
the mean are a~alyzed. through fluctuations in the statistic 

VN (~ - X). A number of studies have been made of the 
q 

sampling fluctuations in this statistic when the population is not 
normal.1 When th~ population was rectangular or U-shaped, it 
was found that the distribution of t failed to agree with the dis
tribution of t for samples from normal populations, especially 
near the middle and at the ends of the distribution. 2 In general 
it has been fop.nd that the agreement between t for nonnormal 
samples and t for normal samples is poorest when the nonnormal 
populations are very peaked. S On the other hand, in the case of 
skew triangular populations it was found that, although the 
distribution of t was skewed, when the cumulative .probability 
was considered (i.e., when the two tail areas were added) the 
results were about the same as for a normal population. 4' This 
suggests that in the case of skew populations, at least, the use 
of the normal theory may not give bad approximations to the 
correct results. The danger of error apparently is greatest in 
very peaked populations. 

Analysis of Variance. Although the foregoing conclusions are 
based on experiments relating to sample means and regression 
coefficients, they apply equally ·well tQ analyses of variance in 
which nl = 1, the case when the sampling distribution of F, 
or more precisely VF, reduces to the t distribution or half the 
t distribution because VF may have no sign. That -such 
conclusions can be extended to other analyses of variance 
requires additional evidence." This has already been pro-

1 See references for section above, pp. 446-447. 
• Also sec SHEWHART, W. A., and WINTERS, F. W., "Small Samples

New Experimental Results," Journal of the Americah Statistical Association, 
Vol. 23 (1938), pp. 144-153. 

3 Based on an extensive investigation of Egon S. Pearson. See "The 
Distribution of Frequency Constants in Small Samples from Nonnormal 
Symmetrical and Skew Populations," Biometrika, Vol. 21 (1929), pp. 259-
286. 

i See RIDER, op. cit. 
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vided in part by other studies. 1 From a study of empirical 
data pertaining to a set of means grouped according to one 
principle of classification, Egon S. Pearson concludes that an 
analysis based on the assumption of normality gives fairly satis
factory results even when the population is not normaL This, he 
points out, arises fropJ. the correlation. that may exist between 
the variation in the means and the variation about the means 
when the population is nonnormal. 

Variances. General equations have also been derived for the 
moments and {1-coefficients of the sampling distribution of the 
variance. 2 These also suggest that the sampling distribution of 
the variance tends toward the normal form as N increases. The 
approach to normality is not very rapid, however, and it is not 
safe to assume that the distribution of the variance is normal 
unless the sample is quite large. Furthermore, experimental 
evidence indicates that for smaller samples from certain types of 
nonnormal populations the sampling distribution 6f the variance 
does not I\ecessarily approximate the x2 distdbution, which is 
the form it takes when the population is normal. 

Accordingly, it has been concluded by students of the subject 
that "we are liable to go far wrong when usinl? the (normal 
theory' variance distribution to represent D(S2) [i.e., the sam
pling distribution of the variance] in samples from nonnormal 
parent populations. . . . "3 There is some doubt also as 
to the adequacy of the F distribution for testing the ratio of 
two independent sample variances from nonnormal populations. 4 

• 
1 PEARSON, EGON S., "Anaiysis of Variance in Cases of Nonnormal Varia

tion," Biometrika, Vol. 23 (1931), pp. 114-133. 
2 These are conveniently summarized by LeRQux, op. cit. 
3 Ibid., p. 189. The use of the moments of the sampling distribution of 

the'variance to describe its general form is based on the assumption that it 
can be represented by a Pearsonian frequency curve. G. A. Baker has 
attacked the problem from another angle. He has derived a general formula 
for the sampling distribution of the variance on the assumption 'that the 
distribution of the population can be represented by a Gram-Charlier·series. 
This formula is expressed in terms of the constants of the Gram-Charlier 
series representing the population and the number of terms of the series. 
Cj. "Note on the Distribution of the Standard Deviations and Second 
Moments of Samples from a Grll;m-Charlier Population," Annals of Mathe
matical Statistics, Vol. 2 (1931), pp. 48-65. Little use has yet beerrmade 
of this approach to the problem. . 

4 Cj. PEARSON, Biometrika, Vol. 23 (1931), pp. 114-133. 
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Correlation Coefficients. The dis·tribution of the correlation 
coefficient of samples from nonnormal populations has been 
studied primarily by sa~pling experiments.' When the popula
tion correlation coefficient is zero, these experiments suggest that 
the distribution of the correlation coefficient has approximately. 
the same form as when -the population is norma},1 

When the population corr~lation coefficient is not zero, on 
the other hand, and when the samples are small, the agreement 
between the experimental distributions derived from nonnormal 
populations and the theoretical distribution for a normal popula
tion does not appear to be so good, although the closeness of the 
agreement improves as the size of the sample increases. 2 These 
conclusions are based on a very limited set of data and can at the 
most be considered as tentative only. 

INDIRECT ATTACKS ON THE PROBLEM OF NONNORMALITY 

Several indirect attacks on the problem of nonnormality have 
been attempted. One of these is the transformation of the 
original data. It has long beE.(n recognized, for example, that in 
certain cases the logarithms of given data are normally dis
tributed although the data themselves are not. In such cases, 
the problem of nonnormality may readily be solved by a logarith
mic transformation. A general transformation by which any 
nonnormal distribution might be made approximately normal 
has been proposed, and it has been suggested that the sampling 
difltributions of estimates of the parameters of the nonnormal 
distributions might be expressed in terms of the transformation 
and the sampling distributions of estimates of the parameters 
of the normal distribution into which the nonnormal distribution 
has been transformed.'3 This line of attack, however, has not 
as yet been developed to a point where it can be put to practical 
use. 

Another line of attack has turned its attention to the qualita
tive or semiqualitative aspects of the data and by thus ignoring 

1 PEARSON, EGON S., "The Test of Significance for the Correlation Coeffi-. 
dient," Journal of the American Statistical Association, Vol. 26 (1931), pp. 
128-134. 
: 2 CHESHIRE, LEONE, ELENA OLDIS, and EGON S. PEARSON, "Further 
~xperiments on the Sampling ,Distribution of the Correlation Coefficient," 
journal of the American Statistical Association Vol. 27 (1932), pp. 121-128. 

3 Ct. Annals of Mathematical Statistics, Vol. 3 (1932), pp. 113-123. 
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some of the quantitative aspects has avoided the necessity of 
special assumptions as to the form of the population. Instead 
of determining, for example, whether two samples are from the 
same population by testing the difference between their means, 
.variances, etc., it would be possible to group the data into classes 
and to apply a x2 test of independence .• A method involving no 
assumption as to population form would thus be substituted for 
one necessitating such an assumption. It is to be noted, how
ever, that this qualitative method is not as efficient as the 
quantitative method, since a certain amount of the information 
provided by the data is ignored. If the population appears to be 
normal, therefore, the more refined methods based upon normal 
assumptions are to be preferred. The qualitative method 
requires also that sufficient data be available to permit grouping 
to test for independence. 

For large samples a semi qualitative method is available for 
testing the existence of correlation. If in corre1ating Xl and X 2, 

for example, only the rank or order of size of the variables is 
considered, it is possible to compute a coefficient of "rank 
correlation" whose significance may 0; tested without any 
assumption as to the form of the X lX 2 pOJ>.ulatipn. If di repre
sents the difference in rank between sample pairs of Xl and X 2 

values, then the coefficient of rank correlation is 'measured by . 

, _ 1 _ 6~dl 
r - N3 - N 

For a population rank correlation of zero this has a sampling 
distribution that is approximately normal in form. The mean. 
of this sampling distribution is zero, and it~ standard deviation 
is dr' = 1/~. The approximation is valid only for large 
samples. For a discussion of this procedure the student is 
referred to the work of Rotelling and Pabst. l 

It may be noted, however, that the discarding of certain 
quantitative information again reduces the efficiency of the 
test, although it is c!=mtended that the loss of efficiency is not 
very great-not more than, say, 9 per cent. It is also to be 
noted that this method merely affords a test of the existence of 
correlation. It does not offer a substitute for the sampling dis-

1 "Rank Correlation and Tests of Significance Involving No Assumption 
of Norzp.ality," Annals of Math:ematical Statistics, Vol. 7 (1936), pp. 29-43. 
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tribution of the Pearsqnian correlation coefficient when it is to 
be assumed that the population correlation coefficient is other 
than zero. 

It has also been suggested that the principle of rank correlation 
may be used to solve the problem of nonnormality in the analysis 
of variance. 1 This would involve the replacement of the actual 
value of a' case by its rank in the conventional analysis of variance 
table. With such a plan, the efficiency o( the test is again 
reduced in comparison with the ordinary analysis of variance 
applied to a sample from a normal population. 'rhis may be 
offset by the inaccuracy introduced when the usual test is applied 
to nonnormal populations. A great advantage of the rank 
method of handling analysis of variance is that it reduces greatly 
the amount of arithmetical computation involved in the test, 
since it converts all figures into simple small integers. 

TCH:EBYCHEF'S AND OTHER INEQUALITIES 

An interesting attack on the problem of nonnormality has been 
through the establishment of upper limits of probability for 
specified sampling fluctuations that are valid for almost any 
type of sampling distribution. The best known of these attempts 
is Tchebychef's inequality. This says that the probability of a 
variable deviating from its mean by as much as Ad is equal to or 
less than 1/A2• For example, if the mean of a variable is 100 and 
its standard deviation is 10, the probability that the variable will 
deviate from 100 by as much as 3d is equal to or less than t = .11. 
The basis for this conclusion is as follows. By definition, 

02 = Pl(X1 - X)2 + P2(k - X)2 + ... + PN(XN - X)2 (3) 

Let X', X", X"', ... and p', p", p"" ... represent those 
deviations and their probabilities that differ from X by as much 
as Ad. Then, since the part is less than or at the most equal to 
the whole, 

~2 G p'(x' - X:)2 + pl/(X" - X)2 + . . . (4) 

or if (Ad)2 is put in place of (X' - X)2, (X" - X)2,. " which 
are equal to or greater than (Ao)2, 

1 FRIEDMAN, MILTON, "The Use of .Ranks to Avoid the Assumption of 
Normality," Journal of the American Statistical Association, Vol. 32 (1937), 
pp. 675-701. 
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and 
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02 ~ p'(AO)2 + p"(M)2 + .. 
02 ~ (p' + p" + ... )(AO)2 (5) 

(6) 

where PAc} = p' + p" + '" . . is the probability of a deviation 
equal to or greater than Ad.l 

The problem of closer inequalities has been dealt with in recent 
papers by several mathematicians. Camp, Guldberg, Meidel, and 
Narumi have succeeded particularly well by placing certain mild 
restrictions on the nature of the population function F(x). The 
restrictions are of such a nature as to leave the distribution 
function sufficiently general to be useful in the actual problems 
of statistics. The main restriction placed on F(x) by Camp is 
that it is to be a monotonic decreasing function of lxl when 
Ixl ~ c, c ~ O. The general effect of this restriction is to exclude 
distributions that are not represented by decreasing functions of 
Ixl at points more than a certain assigned distance from the 
origin. 

With the origin so chosen that zero is at the mean, Camp 
reaches the general inequality2 I 

( 
28 )2' 

P < ~2'-~ 28TI + _cp_ P (7) 
Ad = A2. 1 + cp 1 + cp cd 

where 

and cp= 

1 Cf. RIETZ, HENRY LEWIS, Mathematical Statistics (1936), 'pp. 28-30, 
140-144; and ARNE FISHER, The Mathematical Theory of Probabilities (1922), 
pp. 108-109, 115-116. The original work on the subject'is in Jules Bien
ayme, "Considerations a l'appui de la decouverie de Laplace·sur la loi de 
probabiliM dans la methode des moindres carras," Comptes Rendus des 
seances de l' Academie des Sciences, Vol. 37 (1853), pp. 301).-,324; P. L. De 
Tchebychef, "Des Valeurs moyennes." Traduction du Russe par 
N. de Khanikof, Journal de mathematiq').les pures et appliquees, Deuxieme 
Serie, Vol. 12 (1867), pp. 177-184; and P. Pizzetti, "Ifondamenti matematici 
per la critica dei risultati sperimentali," Atti della Universita di Genova (1892), 
pp. 113-333. 

! RIETZ, op. cit., pp. 140-144. 
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and P cd is the probability of a deviation equal to or greater than cd. 
If c is 0, this reduces to 

p < ~28-2 (~)2. 
xc! = ;V' 28 + 1 (8) 

The difficulty with the use of either Tchebychef's formula or 
its extensions is that'their use usually depends on knowledge of 
certain population parameters other than those for which hypoth
eses are being tested. For example, the variance of the 
sampling distribution of variances from any population equals 
approximately 

(9) 

From this it is evident that, to test a- hypothesis regarding the 
population standard deviation, knowledge must be had of the 
population ~2. This greatly reduces the usefulness of inequalities 
of this kind, since only limited knowledge regarding ~2 may be 
available. All that can validly be done in cases like this is to 
test various joint hypotheses regarding the population variance 
and the population ~2. 





APPENDIX 
• , 

TABLE -I.-FoUR-PLACE COMMON LOGARITHMS OF NUMBERS 1 

Tenth. of the 
0 1 2 3 4 Ii 6 'I 8 9 10 Tabular 

Difference 
12345 

- --------------------• 
1.0 0.0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 04U 
1".1 0414 0453 0492 0531 0569 0607 0645 0682 0719 ,0755 0792 
1.2 0792 0828 0864 0899 (l934 0969 1004 1038 1072 1106 1139 , 
1.3 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 1461 
1.4 1461 1492 1523 1553 1584 ,1614 1644 1673 1703 1732 1761 

1.5 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 2041 
1.6 2041 2068 2095 ..2122 2148 2175 2201 2227 2253 2279 2304 
1.7 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 2553 
1.8 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 2788 
1.9 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 3010 

2.0 0.3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 3222 246811 
2.1 3222 3243 3263 3284 3304 3324 3345 3365 3385 M04 3424 246810 
2.2 2424 3444 3464 3483 3502 8522 2541 3560 3579 2598 3617 24 68 10 
2.3 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 3802 2 4 5 7 9 
2.4 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 3979 2 4 II 7 9 

2.5 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 4150 2357 9 
2.6 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 '4314 2 3 57 8 
2.7 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 4472 2 3 56 8 
2.8 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 4624, 2356 8 
2.9 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 .4771 1 3 46 'I 

3.0 0.4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 4914 1 3 46 'I 
3.1 4914 4928 4942 4955 4969 4983 .4997 5011 5024 5038 5051 1 3 46 'I 
3.2 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 5185 1 3 45 'I 
3.3 15185 15198 15211 5224 15237 15250 52133 15276 15289 15302 15315 1 3 4 5 6 
3.4 15311' 15328 15340 5353 5366 5378 5391 5403 5416 5428 5441 1 3 4 5 6 

3.5 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 5563 1 2 45 6 
3.6 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 5682 1245 6 
3.7 !i682 !i694 5705 5717 5729 5740 5752 5763 15775 5786 5798 1 235 6 
3.8 !i798 5809 5821 5832 15843 5855 5866 5877 5888 !i899 5911 1 23 Ii 6 
3.9 !i911 !i922 15933 6944 159155 5966 15977 6988 5999 6010 6021 1234 6 

4.0 0.6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 6128 1 2 3 4. 5' 
4,1 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 6232 1 234. 5 
4.2 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 6335 1234. 5 
4.3 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 6435 1 234. 5 
4.4 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 6532 1234. 5 

4.5 6532 6542 6551 6561 6571 6580 659Q 6599 6609 6618 6628 1 234. 5 
4.6 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 6721 1 234. 5 
4.7 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 6812 1 2 3 4- 5 
4.8 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 6902 1 2 3 4 4-
4.9 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 .6990 1234 4. 

5.0 0.6990 6998 7007 7016 7024 '1033 7042 7050 7059 7067 7076 1 2 3 3 4. 
5.1 _ 7076 7084 7093 7101 '1110 '1118 7126 7135 7143 7152 7160 1 233 4. 
5.2 7160 7168 7177 7185 '1193 '1202 7210 7218 7226 7235 7243 1 2·23 4. 
5.3 7248 7251 7259 7267 7275 7284 7292 7300 7308 7316 7324 1 2 23 4-
5.4 7324 '1332 7340 7348 7356 '1364 7372 7380 7388 7396 7404 1 2 23 4. 

1 Taken, with pernilssion, from E. V. Huntington's Fou.r Place Tables 01 LOllarithm. ana 
Trigonometric Function. (Harvard Cooperative Society, Inc., 1907). 
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458 SAMPLING STATISTICS AND APPLICATIONS 

TABLE I.-POUR-PLACE COMMON LOGARITHMS OF NUMBERS.

(Continued) 

Tenths of the 

0 1 2 3 4 5 6 7 8 9 10 Tabular 
Difference 
1 23 4 5 

- ------------_---------
5.5 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 7482 1 223 4 
5.6 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 7559 1 2 2 3 4 
5.7 7559 7566 7574 7582 7589 7597 7604 7612' 7619 7627 7634 1 2 2 3 4 
5.8 7634 7642 7649 '7657 766~ 7672 7679 7686 7694 7701 7709 1 1 2 3 4 
5.9 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 7782 1 12 3 4 

6.0 0.7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 78M 1 12 3 4 
6.1 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 7924 1 1 2 3 4 
6.2 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 7993 1 1 2 3 3 
6.3 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 8062 1 123 3 
6.4 8062 8061l 8075 8082 8089 80116 8102 8109 8116 8122 8129 1 1233 

6.5 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 8195 1 123 3 
6.6 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 8261 1 1 2 3 3 
6.7 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 8325 1 1 233 
6.8 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 8388 1 1233 
6.9 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 8451 1 1 2 3 3 

7.0 0.8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 8513 1 1 2· 2 3 
7.1 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 8573 1 122 3 
7.2 8573 8579 8585 8591 8597 8603 8609 8615 _Jl821 8627 8633 1 1 2 2 3 
7.3 8633 8639 8845 8851 8857 8883 86~~ 8875 8681 8686 8692 1 1 2 2 3 
7.4 8692 8698 8704 8710 8716 8722 872 8733 8739 8745 8751 1 1223 

7.5 8751 8756 8762 8768 8774 8779 8785 87n 8797 8S02 8808 1 1 223 
7.6 8808 8814 8820 8825 8831 8837 8842 8848 ~ 8859 8865 1 122 3 
7.7 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 8921 1 122 3 
7.8 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 8976 1 1 2 2 3 
7.9 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 '9031 1 122 3 

8.0 0.9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 9085 1 1 2 '2 3 
8.1 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 9138 1 1223 
8.2 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 9191 1 1 223 
8.3 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 9243 1 1 2 2 3 
8.4 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 9294 1 12 23 

8.5 9294 9299 9304 9a_09 9315 9320 9325 9330 9335 9340 9345 1 1223 
8.6 9345 9350 9355 9360 9365 9370 9375 9380 1)385 9390 9395 1 1 2 23 
8.7 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 o 1 1 22 
8.8 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 9494 o 1 1 2 2 
8.9 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 9542 o 1 1 2 2 

9.0 0.9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 9590 o 1 1 22 
9.1 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 9638 o 1 1 22 
9.2 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 9685 o 1 1/2 2 
9.3 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 9731 o 1 1 22 
9.4 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 9777 o 1 1 22 

9.5 9777 9782 9786 g791 9795 9800 9805 9809 9814 9818 9823 o 1 1 22 
9.6 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 9868 o 1 1 22 
9.7 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 9912 o 1 1 22 
9.8 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 9956 o 1 1 2 2 
9.9 9956 9961 9965 99p9 9974 9978 9983 9987 ~991 9996 o 1 1 22 



-_ 
1.00 
1.01 
1.02 
1.03 
1.04 

1.05 
1.06 
1.07 
1.08 
1.09 

1.10 
1.11 
1.12 
1.13 
1.14 

1.15 
1.16 
1.17 
1.18 
1.19 

1.20 
1.21 
1.22-
1.23 
1.24 

1.25 
1.26 
1.27 
1.28 
1.29 

1.30 
1.31 
1.32 
1.33 
1.34 

1.35 
1.36 
1.37 
1.38 
1.39 

1.40 
1.41 
1.42 
1.43 
1.44 

1.45 
1.46 
1.47 
1.48 
1.49 

APPENDIX 

TAllLE !.-FOUR-PLACE COMMON LOGARITHMS OF NUMBERS.

(Continued) 

0 1 2 3 4 5 6 7 S I) 

459 

10 

------.------------------
0.0000 0004 0009 0013 0017 0022 0026 0030 0035 0039 0043 

0043 0048 0052 0056 0060 0065 0069 0073 0077 0082 0086 
0086 0090 0095 0099 0103 0107 0111 0116 0120 0124 0128 
0128 0133 0137 0141 0145 0149 0154 0158 0162 0166 0170 
0170 0175 01~9 0183 0187 0191 0195 0199 0204 0208 0212 

0212 0216 0220 0224 0228 0233 0237 0241 0245 0249 0253 
0253 0257 0261 0265 0269 0273 0278 0282 0286 0290 0294 
0294 0298 0302 0306 0310 0314 0318 0322 0326 0330 0334 
0334 0338 0342 0346 0350 0354 0358 0362 0366 0370 0374 
0374 0378 0382 0386 0390 0394 0398 0402 0406 0410 0414 

0.0414 0418 0422 0426 0430 0434 0438 0441 0445 0449 0453 
0453 0457 0461 0465 0469 0473 0477 0481 0484 0488 0492 
0492 0496 0500 0504 0508 0512 0515 0519 0523 0527 0531 
0531 0535 0538 0542 0546 0550 0554 0558 0561 0565 0569 
0569 0573 0577 0580 0584 _ 0588 0592 0596 0599 0603 0607 

0607 0611 0615 0618 Q622 0626 0630 0633 0637 0641 0645 
0645 0648 0652 0656 0660 0663 0667 0671 0674 0678 0682 
0682 0686 0689 0693 0697 0700 0704 0708 0711 0715 0719 
0719 0722 0726 0730 0734 0737 0741 0745 0748 0752 0755 
0755 0759 0763 0766 0770 0774 0777 0781 0785 0788 0792 

0.0792 0795 0799 0803 0806 0810 0813 0817 0821 0824 0828 
0828 0831 0835 0839 0842 0846 0849 0853 0856 0860 0864 
0864 0867 0871 0874 0878 0881 0885 0888 0892 0896 0899 
0899 0903 0906 0910 0913 0917 0920 0924 0927 0931 0934 
0934 0938 0941 0945 0948 0952 0955 0959 0962 0966 0969 

0969 0973 0976 0980 0983 0986 0990 0993 0997 1000 1004 
1004 1007 1011 1014 1017 1021 1024 1028 1031 1035 1038 
1038 1041 1045 1048 1052 1055 1059 1062 1065 1069 1072 
1072 1075 1079 1082 1086 1089 1092 1096 1099 1103 1106 
1106 1109 1113 1116 1119 1123 1126 1129 1133 1136 1139 

0.1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 
1173 1.176 1179 1183 1186 1189 1193 1196 1199 1202 1206 
1206 1209 1212 1216 1219 1222 1225 1229 1232 1235 1239 
1239 1242 1245 1248 1252 1255 1258 1261 1265 1268 1271 
1271 1274 1278 1281 1284 1287 1290 1294 1297 ,1300 1303 

1303 1307 1310 1313 1316 1319 1323 1326 1329 1332 1335 
1335 1339 1342 1345 1348 1351 1355- 1358 1361 1364 1367 
1367 1370 1374 1377 1380 1383 1386 1389 1392 1396 1399 
1399 1402 1405 1408 1411 1414 1418 1421 1424 1427 1430 
1430 1433 1436 1440 1443 1446 1449 1452 1455 1458 1461 

~ 

0.1461 1464 1467 1471 1474 1477 1480 1483 1486 1489 1492 
1492 1495 1498 1501 1504 1508 1511 1514 1517 1520 1523 
1523 1526 1529 1532 1535 1538 1541 1544 1547 1550 1553 
1553 1556 1559 1562 1565 1569 1572 f575 1578 1581 1584 
1584 1587 1590 1593 1596 1599 1602 1605 1608 1611 1614 

1614 1617 1620 1623 1626 1629 1632 1635 1638 1641 1644 
1644 1647 1649 1652 1655 1658 1661 1664 1667 1670 1673 
1673 1676 1679 1682 1685 1688 1691 1694 1697 1700 1703 
1703 1706 1708 1711 1714 1717 1720 1723 1726 1729 1732 
1732 1735 1738 1741 1744 1746 1749 1752 1755 1758 1761 



460 SAMPLING STATISTICS AND APPLICATIONS 

TABLE I.-FoUR-PLACE COMMON LoGARITHMS OF NUMBERS.

(Continued) 

0 1 2 3 4 5 6 7 8 9 10 

-------------------------
1.50 0.1761 1764 1767 1770 1772 1775 1778 1781 1784 1787 1790 
1.51 1790 1793 1796 1798 1801 1804 1807 1810 1813 1816 1818 
1.li2 1818 1821 1824 1827 1830 1833 1836 1838 1841 1844 1847 
1.53 '1847 1850 1853 1855 1858 1~1 1864 1867 1870 1872 1875 
1.54 1875 1878 1881 1884 1886 1 9 1892 1895 1898 1901 1903 

1.55 1903 1906 1909 1912 1915 1917 1920 1923 1926 1928 1931 
1.56 1931 1934 1937 1940 1942 1945 1948 1951 1953 1956 1959 
1.57 1959 1962 1965 1967 1970 1973 1976 1978 1981 1984 1987 
1.58 1987 1989 1992 1995 1998 2000 2003 2006 2009 2011 2014 
1.59 2014 2017 2019 2022 2025 2028 2030 2033 2036 2038 2041 

1.60 0.2041 2044 2047 2049 2052 2055 2057 2060 2063 2066 2068 
1.61 2068 2071 2074 2076 2079 2082 2084 2087 2090 2092 2095 
1.62 2095 2098 2101 2103 2106 2109 2111 2114 2117 2119 2122 
1.63 2122 2125 2127 2130 2133 2135 2138 2140 2143 2146 2148 
1.64 2148 2151 2154· 2156 2159 2162- 2164 2167 2170 2172 2175 

1.65 2175 2177 2180 2183 2185 2188 2191 2193 2196 2198 2201 
1.66 2201 2204 2205 2209 2212 2214 2217 2219 2222 2225 2227 
1.67 2227 2230 2232 2235 2238 2240 2243 2245 2243 2251 2253 
1.68 2253 2256 2258 2261 2263 2266 2269 2211 2274 2276 2279 
1.69 2279 2281 2284 2287 2289 229~ -2294 2297 2299 2302 2304 

1.70 0.2304 2307 2310 2312 2315 2317 2320 2322 2325 2327 2330 
1.71 2330 2333 2335 2338 2340 2343 2345 ~348 2350 2353 2355 
1.72 2355 2358 2360 2363 2365 .2368 2370 373 2375 2378 2380 
1.73 2380 2383 2385 2388 2390 2393 2395 2398 2400 2403 2405 
1.74 2405 2408 2410 2413 2415 2418 2420 2423 2425 2428 2430 

1.75 2430 2433 2435 2438 2440 2443 2445 2448 2450 2453 2455 
1.76 2455 2458 2460 2463 2465 2467 2470 2472 2475 2477 2480 
1.'17 2480 2482 2485 2487 2490 2492 2494 2497 2499 2502 2504 
1.78 2504 2507 2509 2512 2514 2516 2519 2521 2524 2526 2529 

'1.79 2529 2531 2533 2536 2538 2541 2543 2545 2548 2550 2553 

1.80 0.2553 2555 2558 2560 2562 2565 2567 2570 2572 2574 2577 
1.81 2577 2579 2582 2584 2586 2589 2591 2594 2596 2598 2601 
1.82 2601 2603 2605 2608 2610 2613 2615 2617 2620 2622 2625 
1.83 2625 2627 2629 2632 2634 2636 2639 2641 2643 2646 2648 
1.84 2648 2651 2653 2655 2658 2660 2662 2665 2667 2669 2672 

1.85 2672 2674 267(1 2679 2681 2683 2686 2688 2690 2693 2695 
1.86 2695 2697 2700 2702 2704 2707 2709 2711 2714 2716 2718 
1.87 2718 2721 2723 2725 2728 2730 2732 2735 2737 2739 2742 
1:88 2742 2744 2746 2749 2751 2753 2755 2758 2760 2762 2765 
1.89 .2765 2767 2769 2772 2774 2776 2778 2781 2783 2785 2788 

~-

1.90 0.2788 2790 2792 2794 2797 2799 2801 2804 2806 2808 2810 
1.91 2810 2813 2815 2817 2819 2822 2824 2826 2828 2831 2833 
1.92 2833 2835 2838 2840 2842 2844 2847 2849 2851 2853 2856 
1.93 '2856 2858 2860 2862 2865 2867 2869 2871 2874 2876 2878 
1.94 '2878 2880 2882 2885 2887 2889 2891 2894 2896 2898 2900 

~ to, 
1.95 2900 2903 2905 2907 2909 2911 2914 2916 2918 29~0 2923 
1.96 2923 2925 2927 2929 2931 2934 2936 2938 2940 2942 2945 
1.97 2945 2947 2949 2951 2953 2956 2958 2960 2962 2964 2967 
1.98 2967 2969 2971 2973 2975 2978 2980 2982 2984 2986 2989 
1.99 2989 2991 2993 2995 2997 2999 3002 3004 3006 3008 3010 



APPENDIX 461 

TABLE 1I.-8QUARES OF NUMBERS! 

N 0 1 2 3 <1 5 6 7 8 9 

----------------- ---------------
100 . 10000 10201 10404 10609 10816 11025 11236 11449 11664 11881 
110 12100 12321 12544 12769 12996 13225 13456 13689 13924 14161 
120 14400 14641 14884 '15129 15376 15625 15876 16129 16384 16641 
130 16900 17161 17424 17689 17956 18225 18496 18769 19044 19321 
140 19600 19881 20164 20449 20736 21025 21316 21609 21904 22201 

150 22500 22801 23104 23409 23716 24025 24336 24649 24964 25281 
160 25600 25921 26244 26569 26896 27225 27556 27889 28224 28561 
170 28900 29241 29584 29929 30276 30625 30976 31329 31684 32041 
ISO 32400 82761 33124 33489 33856 34225 34596 34969 35344 35721 
190 36100 36481 36864 37249 37636 38025 38416 38809 39204 39601 

200 40000 40401 40804 41209 41616 42025 42436 42849 43264 43681 
210 44100 44521 44944 45369 45796 46225 46656 47089 47524 47961 
220 48400 48841 49284 49729 50176 50625 51076 51529 51984 52441 
230 52900 53361 53824 54289 54756 55225 55696 56169 56644 57121 

,240 57600 58081 58564 59049 59536 60025 60516 61009 61504 62001 

250 62500 63001 63504 64009 64516 65025 65536 66049 66564 67081 
260 67600 68121 68644 69169 69696 70225 70756 71289 71824 72361 
270 72900 73441 73984 74529 75076 75625 76176 76729 77284 77841 
280 78400 78961 79524 80089 80656 81225 81796 82369 82944 83521 
290 84100 84681 85262 85849 86436 87025 87616 88209 88804 89401 

300 90000 90601 91204 91809 92416 93025 93636 94249 94864 95481 
310 96100 96721 91344 97969 98596 99225 99856 100489 101124 101761 
320 102400 103041 103684 104329 i04976 105625 106276 106929 107584 108241 
830 108900 109561 110224 110889 111556 112225 112896 113569 114244 114921 
340 115600 116281 116964 117649 118336 119025 119716 120409 121104 121801 

350 122500 123201 123964 124609 125316 126025 126736 127449 128164 128881 
360 129600 130321 131044 131769 1324~6 133225 133956 134689 135424 136161 
370 136900 137641 138384 139129 139876 140625 141376 142129 142884 14364.1 
380 144400 145161 145924 146689 147456 148225 148996 149769 150544 151321 
390 152100 152881 153664 154449 155236 156025 156816 157609 158404 159201 

400 160000 160801 161604 162409 163216 164025 164836 165649 W6464 167281 
410 168100 16'8921 169744 170569 171396 172225 173056 173889 174724 175561 
420 176400 177241 178084 178929 179776 . 180625 181476 182329 183184 184041 
430 184900 185761 186624 187489 188356 189225 190096 190969 191844 192721 
440 193600 194481 195364 196249 1971~6 198025 198916 199809 200704 201610 

450 202500 203401 204304 205209 206116 207025 207936 208849 209764 210681 
460 211600 212521 213444 214369 215296 216225 217156 218089 219024 219961 
470 220900 221841 222784 223729 224676 225625 226576 227529 228484 229441 
480 230400 231361 232324 233289 234256 235225 236196 237169 238144 239121 
490 240100 241081 242064 243049 244036 245025 246016 247009 248004 249001 

500 250000 251001 2~2004 253009 254016 255025 256036 257049 258064 259081 
510 260100 261121 262144 263169 264196 265225 266256 267289 268324 269361 
520 270400 271441 272484 273529 274576 275625 276676 277729 278784 279841 
530 280900 281961 283024 284089 285156 286225 287296 288369 289444 290521 
540 291600 292681 293764 294849 295936 297025 298116 299209 300304 301401 

1 Source: WAUGH, ALBERT E., Laboratorll Manua! and Problems/or Elements 0/ Statistical 
Method (MoGraw-Hill Book Company, Inc., 1944). 



462 SAMPLING STATISTICS AND APPLICATIONS 

TABLE II.---SQuARES OF NUMBERS.-(Continued) 

N· 0 1 2 . 3 4, Ii 6 7 8 9 

- ------------------------------
550 302500 303601 304704 305809 306916 308025 300136 310249 311364 312481 
560 313600 314721 315844 316969 318096 319225 320356 321489 322624 323761 
570 324900 326041 327184 328329 329476 330625 331776 332929 334084 335241 
580 336400 337561 338724 339889 841056 842225 843396 844569 845744 346921 
590 348100 349281 350464 351649 352836 354025 355216 356409 357604 358801 

600 360000 361201 362404 363609 364816 366025 367236 368449 369664 370881 
610 372100 373321 374544 375769 876996 378225 379456 380689 381924 383161 
620 384400 385641 386884 388129 389376 390625 391876 393129 894384 395641 
630 396900 398161 399424 400689 401956 403225 404496 405769 407044 408321 
640 409600 410881 412164 413449 414736 416025 417316 418609 419904 421201 

650 422500 423801 425104 426409 427716 429025 430336 431649 432964 434281 
660 435600 436921 438244 439569 440896 442225 443556 444889 446224 447561 
670 448900 450241 451584 452929 454276 455625 456976 458329 459684 461041 
680 462400 463761 465124 466489 467856 469225 470596 471969 473344 474721 
690 476100 477481 478864 480249 481636 483025 484416 485809 487204 488601 

700 490000 491401 492804 494209 495616 497025 498436 498849 501264 502681 
710 504100 505521 506944 508369 509796 511225 512656 514089 515524 516961 
720 518400 519841 521284 522729 524176 525625 527076 528529 529984 531441 
730 532900 534361 535824 537289 538756 540225 541696 543169 544644 546121 
740 547600 549081 550564 552049 553536 555025 556516 ¥8009 559504 561001 

750 562500 564001 565504 567009 568516 570025 571536 573049 574564 576081 
760 577600 579121 580644 582169 583696 585225 586756 5~8289 589824 591361 
770 592900 594441 595984 597529 599076 600625 602176 603729 605284 606841 
780 608400 609961 611524 613089 614656 616225 617796 619369 620944 622521 
790 624100 625681 627264 628849 630436 632025 633616 635209 636804 638401 

800 640000 641601 643204 644809 646416 648025 649636 651249 652864 654481 
810 656100 657721 659344 660969 662596 664225 665856 667489 669124 670761 
820 672400 674041 675684 677329 678076 680625 682276 683929 685584 687241 
830 688900 690561 692224 693889 695556 697225 698896 700569 702244 703921 
840 705600 707281 708964 710649 712336 714025 716716 717409 719104 720801 

850 722500 724201 725904 727609 729316 731025 732736 734449 736164 737881 
860 739600 741321 743044 744769 746496 748225 749956 751689 753424 755161 
870 756900 758641 760384 762129 763876 765625 767376 769129 770884 772641 
880 774400 776161 777924 779689 781456 783225 784996 786769 788544 790321 
890 792100 793881 795664 797449 799236 801025 802816 804009 8Q6404 808201 

900 810000 811801 813604 815409 817216 819025 820836 822649 824464 826281 
910 828100 829921 831744 833569 835396 837225 839056 840889 842724 844561 
920 846400 848241 850084 851929 853776 855625 857476 859329 861184 863041 
930 864900 866761 868624 870489 872356 874225 876096 877969 879844 881721 
940 883600 885481 887364 889249 891136 893025 894916 896809 898704 900601 

950 902500 904401 906304 908209 910116 912025 913936 915849 917764 919681 
960 921600 923521 925444 927369 929296 931225 933156 935089 937024 938961 
970 940900 942841 944784 946729 948676 950625 952576 954529 956484 958441 
980 960400 962361 964324 966289 968256 970225 972196 974169 '976144 978121 
990 980100 982081 984064 986040 988036 000025 992016 904000 996004 998001 
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TABLE III.-8QUARE ROOTS OF NUMBERS FROM 10 TO 1001 

N 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

~ --------- ---------------------
10 3.162 3.178 3.194 3.209 3.225 3.240 3.256 3.271 3.286 3.302 
11 3.311 3.332 3.341 3.362 3.316 3.391 3.406 3.421 3.435 3.450 
12 3.464 3.479 3.493 3.507 3.521, 3.536 3.550 3.564 3.578 3.592 
13 3.606 3.619 3.633 3.647 3.661 3.614 3.688 3.101 3.715 3.128 
14 3.742 3.755 3.768 3.782 3.795 3.808 3.821 3.834 3.847 3.860 

15 3.813 3.886 3 • .899 3.912 3.924 3.931 3.950 3.962 3.975 3.981 
16 4.000 4.012 4.025 4.031 4.050 4.062 4.074 4.081 4.099 4.111 
17 4.123 4.135 4.147 4.159 4.171 4.183 4.195 4.207 4.219 4.231 
18 4.243 4.254 4.266 4.278 4.290 4.301 4.313 4.324 4.336 4.347 
19 4.359 4.370 4.382 4.393 4.405 4.416 4.427 4.438 4.450 4.461 

l 

20 4.472 4.483 4.494 4.506 4.517 4.528 4.539 4.550 4.561 4.572 
21 4.583 4.593 4.604 4.615 4.626 4.637 4.648 4.658 4.669 4.680 
22 4.690 4.701 4.712 4:722 4.733 4.743 4.754 4.764 4.775 4.785 
23 4.796 4.806 4.817 4.827 4.831 4.848 4.858 4.868 4.879 4.889 
24 4.899 4.909 4.919 4.930 4.940 4.950 4.960 4.910 4.980 4.990 

25 5.000 5.010 5.020 5.030 5.040 5.050 5.060 5.070 5.079 5.089 
26 5.099 5.109 5.119 5.128 5.138 5.148 5.158 5.167 5.177 5.187 
21 5.196 5.206 5.215 5.225 5.234 5.244 5.254 5.263 5.273 5.282 
28 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.357 5.367 5.376 
29 5.385 5.394 5.404 5.413 5.422 5.431 5.441 5.450 5.459 5.468 

30 5.477 5.486 5.495 5.505 5.514 5.523 5.532 5.541 5.550 5.559 
31 5.568 5.577 5.586 5.595 5.604 5.612 5.621 5:630 5.639 5.648 
32 5.657 5.666 5.614 5.683 5.692 5.701 5.710 5.718 5.727 5.736 
33 5.745 5.753 5.762 5.771 5.779 5.788 5.797 5.805 5.814 5.822 
S4 5.831 5.840 5.848 5.857 5.865 5.874 5.882 5.891 5.899 5.908 

35 5.916 5.925 5.933 5.941 5.950 5.958 5.967 5.975 5.983 5.992 
36 6.000 6.008 6.011 6.025 6.033 6.042 6.050 6.058 6.066 6.075 
31 6.083 6.091 6.099 6.107 6.116 6.124 6.132 6.140 6.148 6.156 
38 6.164 6.173 6.181 6.189 6.197 6.205 6.213 6.221 6.229 6.237 
39 6.245 6.253 6.261 6.269 6.277 6.285/ 6.293 6.301 6.309 6.317 

40 6.325 6.332 6.340 6.348 6.356 6.364 6.372 6.380 6.387 6.395 
41 6.403 6.411 6.419 6.427 6.434 6.442 6.450 6.458 6.465 6.473 
42 6.481 6.488 6.496 6.504 6.512 6.519 6.527 6.535 6.542 6.550 
43 6.557 6.565 6.573 6.580 6.588 6.595 6.603 6.611 6.618 6.626 
44 6.633 6.641 6.648 6.656 6.663 6.611 6.678 - 6.686 6.693 6.701 

45 6.708 6.716 6.723 6.731 6.738 6.745 6.753 6.760 6.768 6.775 
46 6.782 6.790 6.797 6.804 6.812 6.819 6.826 6.834 6.841 6.848 
47 6.856 6.863 6.870 6.818 6.885 6.892 6.899 6.907 6.914 6.921 
48 6.928 6.935 6.943 6.950 6.951 6.964 6.911 6.919 6.986 6.993 
!lit 7.000 7.007 7.014 7.021 7.029 7.036 7.043 7.050 7.057 7.064 

"' 
50 7.071 7.078 7.085 7.092 7.099 7.106 7.113 7.120 7.127 7.134 
51 7.141 7.148 7.155 7.162 7.169 7.176 7.183 7,190 7.197 7.204 
52 7.211 7.218 7.225 7.232 7.239 7.246 7.253 7.259 7.266 7.213 
53 7.280 7.281 7.294 7.301 7.308 7.314 7.321 7,328 7.335 7.342 
54 7.348 7.355 7.362 7.369 7.376 7.382 7.389 7,396 7.403 7.409 

1 Source: WAUGH, ALBERT E., Laboratory Manual and Problems/or Elements 0/ Statistical 
Metho,~ (MoGraw-Hill Book Company, Ine., 1944); 
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TABLE lH.-SQUARE ROOTS OF NUMBERS FROM 10 TO 100.-(Continued) 

N 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

--------------------------------
55 7.416 7.423 7.430 7.436 7.443 7.450 7.457 7.463 7,470 7.477 
56 7.483 7.490 7.497 7.503 7.510 7.517 7.523 7.530 7.537 7.543 
57 7.550 7.556 7.563 7.570 7.576 7.582 7.589 7.596 7.603 7.609 
58 7.6!6 7.622 7.629 7.635 7.642 7.649 7.655 7.662 7.668 7.675 
59 7.681 7.688 7.694 7.701 7.707 7.714 7.720 '1.727 7.733 7.740 

60 7.746 7.752 7.759 7.765 7.772 7/l78 7.785 '1.791 7.797 7.804 
61 7.810 7.817 7.823 7.829 7.836 7.842 7.849 7.855 7.861 7.868 
62 7.874 7.880 7.887 7.893 7.899 7.906 7.912 7.918 7.925 7.931 
63 7.937 7.944 7.950 7.956 7.962 7.969 7.975 7.981 7.987 7.994 
64 8.000 8.006 8.012 8.019 8.025 8.031 8.037 8.044 8.050 8.056 

65 8.062 8.068 8.075 8.081 8.087 8.093 8.099 8.106 8.112 8.118 
66 8.124 8.130 8.136 8.142 8.149 8.155 8.161 8.167 8.173 8.179 
67 8.185 8.191 8.198 8.204 8.210 8.216 8.222 8.228 8.234 8.240 
68 8.246 8.252 8.258 8.264 8.270 8.276 8.283 8.289 8.205 8.301 
69 8.307 8.313 8.319 8.325 8.331 8.337 8.343 8:349 8.355 8.361 

79 8.367 8.373 8.379 8.385 8.390 8.396 8.402 8.408 8.414 8.420 
71 8.426 8.432 8.438 8.444 8.450 8.456 8.462 8.468 8.473 8.479 
72 8.485 8.491 8.497 8.503 8.509 8.515 8.521 8.526 8.532 8.538 
73 8.544 8.550 8.556 8.562 8.567 8.573 8.579 8.585 8.591 8.597 
74 8.602 8.608 8.614 8.620 8.626 8.631 _.8rtl37 8.643 8.649 8.654 

75 8.660 8.666 8.672 8.678 8.683 8.689 8.695 8~01 8.706 8.712 
76 8.718 8.724 8.730 8.735 8.74.1. 8.746 8.752 8. 58 8.764 8.769 
77 8.775 8.781 8.786 8.792 8.798 8.803 8.809 8.815 8.820 8.826 
78 8.832 8.837 8.843 8.849 8.854 8.860 8.866 8.871 8.877 8.883 
79 8.888 8.894 8.899 8.905 8.911 8.916 8.922 8.927 8.933 8.939 

80 8.944 8.950 8.955 8.961 8.967 8.972 8.978 8.983 8.989 8.994 
81 9.000 9.006 9.011 9.017 9.022 9.028 9.033 9.039 9.044 9.050 
82 9.055 9.061 9.066 9.072 9.077 9.083 9.088 9.094 9.099 9.105 
83 9.110 9.116 9.121 9.127 9.132 9.138 9.143 9.149 9.154 9.160 
84 9.165 9.171 9.176 9.182 9.187 .9.192 9.198 9.203 9.209 9.214 

85 9.220 9.225 9.230 9.236 9.241 9.247 9.252 9.257 9.263 9.268 
86 9.274 9.279 9.284 9.290 9.295 9.301 9.306 9.311 9.317 9.322 
87 9.327 9.333 9.338 9.343 9.349 9.354 9.359 9.365 9.370 9.376 
88 9.381 9.386 9.391 9.397 9.402 9.407 9.413 9.418 9.423 9.429 
89 9.434 9.439 9.445 9.450 9.455 9.460 9.466 9.471 9.463 9.482 

!l0 9.487 9.492 9.497 9.503 9.508 9.513 9.518 9.524 9.529 9.534 
!II 9.539 9;545 9.550 9.555 9.560 9.566 9.571 9'.'576 9.581 9.586 
92 9.592 9.597 9.602 9.607 9.612 9.618 9.623 9.628 9.633 9.638 
93 9.644 9.649 9.654 9.659 9.664 9.670 9.675 9.680 9.685 9.690 
94 9.695 9.701 9.706 9.711 9.716 9.721 '9.726 9.731 9.737 9.742 

" 
95 9.747 9.752, 9.757 9.762 9.767 9.772 9.778 9.783 9.788 9.'i93 
96 9.798 9.803 9.808 9.813 9.818 9.823 9.829 9.834 9.839 9.844 
97 9.849 9.854 9.859 9.864 9.869 9.874 9.879 9.884 9.889 9.894 
98 9.899 9.905 9.910 9.915 9.920 9.925 9.930 9.935 9.940 9.945 
99 9.950 9.955 9.960 9.965 9.970 9.975 9.980 9.985 9.990 9.095 
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TABLE IV.-SQUARE ROOTS. OF NUMBERS FROM 100 TO 10001 

I 

N 0 1 2 3 4 5 6 7 8 9 

-- ------------------------------
100 10.00 10.05 10.10 10.15 10.20 10.25 10.30 10.34 10.39 10.44 
110 10.49 10.54 10.58 10.63 10.68 10.72 10.77 10.82 10.86 10.91 
120 10.95 11.00 11.05 11.09 11.14 11.18 11.22 11.27 11.31 11.36 
130 11.40 11.45 11.49 11.53 11.58 11.62 11.66 11.70 11.75 11.79 
140 11.83 11.87 11.92 11.96 12.00 12.04 12.08 12.12 12.17 12.21 

150 12.25 12.29 12.33 12.37 12.41 12.45 12.49 12.53 12.57 12.61 
160 12.65 12.69 12.73 ~2.77 12.81 12.85 12.88 12.92 12.96 13.00 
170 13.04 13.08 13.11 13.15 13.19 13.23 13.27 13.30 13.34 13.38 
ISO 13.42 13.45 13.49 13.53 13.56 13.60 13.64 13.67 13.71 13.75 
190 13.78 13.82 13.86 13.89 13.93 13.96 14.00 14.04 14.07 14.11 

200 14.14 14.18 14.21 14.25 14.28 14.32 14.35 14.39 14.42 14.46 
210 14.49 14.53 14.56 14.59 14.63 14.66 14.70 14.73 14.76 14.80 
220 14.83 14.87 14.90 14.93 14.97 15.00 15.03 15.07 15.10 15.13 
230 15.17 15.20 15.23 15.26 15.30 15.33 15.36 15.39 15.43 15.46 
240 15.49 15.52 15.56 15.59 15.62 15.65 15.68 15.72 15.75 15.78 

250 15.81 '15.84 15.87 15.91 15.94 15.97 16.00 16.03 16.06 16.0Q 
260 16.12 16.16 16.19 16.22 16.25 16.28 16.31 16.34 16.37 16.40 
270 16.43 16.46 16.49 16.52 16.55 16.58 16.61 16.64- 16.67 16.70 
280 16.73 16.76 16.79 16.82 16.85 16.88 16.91 16.94 16.97 17.00 
290 17.03 17.06 17.09 17.12 17.18 17.18 17.20 17.23 17.26 17.29 

300 17.32 17.35 17.38 17.41 17.44 17.46 17.49 17.52 17.55 17.58 
310 17.61 17.64 17.66 17.69 i7.72 17.75 17.78 17.80 17.83 17.86 
320 17.89 17.92 17.94 17.97 18.00 18.03 18.06 18.08 18.11 18.14 

'330 18.17 18.19 18.22 18.25 18.28 18.30 18.33 18.36 18.38 18.41 
340 18.44 18.47 18.49 18.52 18.55 18.57 18.60 18.63 18.65 18.68 

350 18.71 18.74 18.76 18.79 18.81 18.84 18.87 18.89 18.92 18.95 
360 18.97 19.00 19.03 19.05 19.08 19.10 19.13 19.16 19.18 19.2.1 
370 19.24 19.26 19.29 19.31 19.34 19.36 19.39 19.42 19.44 19.47 
380 19.49 19.52 19.54 19.57 19,60 19.62 19.65 19.67 19.70 19.72 
3oo 19.75 19.77 19.80 19.82 19.85 19.87 19.90 19.92 19.95 19.98 

400 20.00 20.02 20.05 20.07 20.lO 20.12 20.15 20.17 20.20 20.22 
410 20.25 20.27 20.30 20.32 20.35 20.37 20.40 20.42 .20.44 20.47 
420 20.49 20.52 20.54 20.57 20.59 20.62 20.64 20.66 20.69, 20.71 
430 20.74 20.76 20.78 20.81 20.83 20.86 20.88 20.90 20.93 20.95 
440 20.98 21.00 21.02 . 21.05 21.07 21.10 21.12 21.14 21.17 21.19 

450 21.21 21.24 21.26 21.28 21.31 21.33 21.35 21.38 21.40 21.42 
460 21.45 21.47 21.49 21.52 21.54 21.56 21.59 21.61 21.63 21.66 
470 21.68 21.70 21.73 21.75 21.77 21.79 21.82 21.84 21.86 21.89 
480 21.91 21.93 21.95 21.98 22.00 22.02 22.05 22.07 22.09 22.11 
,490 22.14 22.16 22.18 22.20 22.23 22.25 22.27 22.29 22.32 22.34 

500 22.36 22.38 22.41 22.43 22.45 22.47 22.49 22.52 22.54 22.56 
510 22.58 22.61 22.63 22.65 22'.67 22.69 '22.72 22.74 22.76 22.78 
520 22.80 22.S3 22.S5 22.87 22.89 22.91 22.93 22.96 22.pS 23.00 
530 23.02 23.04 23.07 23.09 23.11 23.13 23.15 23.17 23.19 23.22 
540 23.24 23.26 23.28 23.30 23.32 23.35 23.37 23.39 23.41 23.43 
550 23.45 23.47 23.49 23.52 23.54 23.56 23.58 23.60 23:62 23.64 

1 Source: WAualf. ALBERT E .• Laboratory Manual and Problems/or Element. 01 Statistical 
,Method. (McGra.w-Hill Book Company, Inc., 1944). • 
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TABLE IV.-8QUARE ROOTS OF NUMBERS FROM 100 TO 1000.-(Continued) 

N 0 1 2 :.: 4 5 G 7 8 9 

~ ------------------------------
550 23.45 23.47 23.49 23.52 23.54 23.56 23.58 23.60 23.62 23.64 
560 23.66 23.69 23.71 23.73 23.75 23.77 23.79 23.81 23.83 23.85 
570 23.87 23.90 23.92 23.94 23.96 23.98 24.00 24.02 24.04 24.06 
580 24.08 24.10 24.12 24.15 24.17 24.19 24.21 24.23 24.25 24.27 
590 24.29 24.31 24.33 24.35 24.37 24.39 24.41 24.43 24.45 24.47 

600 24.49 24.52 24.54 24.56 24.58 24.60 24.62 24.64 24.66 24.68 
610 24.70 24.72 24.74 24.70 24.78 24.80 24.82 24.84 24.86 24.88 
620 24.90 24.92 24.94 24.96 24.98 25.00 25.02 25.04 25.06 25.08 
630 25.10 25.12 25.14 25.16 25.18 25.20 25.22 25.24 25.26 25.28 
640 25.30 25.32 25.34 25.36 25.38 25.40 25.42 25.44 25.46 25.48 

650 25.50 25.51 25.53 25.55 25.57 25.59 25.61 25.63 25.65 25.67 
660 25.69 25.71 25.73 25.75 25.77 25.79 25.81 25.83 25.85 25.86 
670 25.88 25.90 25.92 25.94 25.96 25.98 26.00 26.02 26.04 26.06 
680 26.08 26.10 26.12 26.13 26.15 26.17 26.19 26.21 26.23 26.25 
690 26.27 26.29 26.31 26.32 26.34 26.36 26.38 26.40 26.42 26.44 

700 26.46 26.48 26.50 26.51 26.53 26.55 26.57 26.59 26.61 26.63 
710 26.65 26.66 26.68 26.70 26.72 26.74 26.76 26.78 26.80 26.81 
720 26.83 26.85 26.87 26.89 26.91 26.93 26.94 26.96 26.98 27.00 
730 27.02 27.04 27.06 27.07 27.09 27.11 ~.13 27.15 27.17 27.18 
740 27.20 27.22 27.24 27.26 27.28 27.29 '27.31 27.33 27.35 27.37 

750 27.39 27.40 27.42 27.44 27.46 27.48 27.50 2'1'.51 27.53 27.5"5 
760 27.57 27.59 27.60 27.62 27.64 27.66 27.68 27.69 27.71 27.73 
770 27.75 27.77 27.78 27.SO 27.82 27.84 27.86 27.87 27.89 27.91 
7SO 27.93 21.95 21.96 27.98 28.00 28.02 28.04 28.05 28.01 28.09 
790 28.11 28.12 28.14 28.16 28.18 28.20 28.21 28.23 28.25 28.21 

SOO 28.28 28.30 28.32 28.34 28.35 28.37 28.39 28.41 28.43 28.44 
810 28.46 28.48 28.50 28.51 28.58 28.55 28.51 28.58 28.60 28.62 
820 28.64 28.65 28.61 28.69 28.11 28.72 28.74 28.76 28.78 28.79 
830 28.81 28.83 28.84 28.86 28.88- 28.90 28.91 28.93 28.95 28.97 
840 28.98 29.00 29.02 29.03 29.05 29.01 29.09 29.10 29.12 29.14 

850 29.15 29.17 29.19 29.21 29.22 29.24 29.26 29.21 29.29 29.31 
860 29.33 29.34 29.36 29.38 29.39 29.41 29.43 29.44 29.46 29.48 
870 29.50 29.51 29.53 29.55 29.56 29.58 29.60 29.61 29.63 29.65 
880 29.66 29.68 29.10 29.12 29.73 29.75 29.77 29.78 29.80 29.82 
890 29.83 29.85 29.81 29.88 29.90 29.92 29.93 29.95 29.91 29.98 

900 30.00 30.02 30.03 30.05 30.01 30.08 30.10 30.12 30.13 30.15 
910 30.17 30.18 30.20 30.22 30.23 30.25 30.21 30.28 30.30 30.32 
920 30.33 30.35 30.36 30.38 30.40 30.41 30.43 30.45 30.46 30.48 
930 30.50 30.51 30.53 30.54 30.56 30.58 30.59 30.61 30.63 30.64 -940 30.66 30.68 30.69 30.71 30.72 30.74 30.76 30.71 30.79 30.81 

9{i0 30.82 30.84 30.85 30.87 30.89 30.90 30.92 30.94 30.95 30.97 
960 30.98 31.00 31.02 31.03 31.05 31.06 31.08 31.10 31.11 31.13 
910 31.14 31.16 31.18 31.19 31.21 31.22 31.24 31.26 31.21 31.29 
980 31.30 31.32 31.34 31.35 31.31 31.38 31.40 31.42 31.43 31.45 
990 31.46- 31.48 31.50 31.51 31.53 31.54 31.56 31.58 31.59 31.61 
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TABLE V.-RECIPROCALS OF NUMBERSl 

N .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

- ------------------------------
1.00 1.0000 .9901 .9804 .9709 .9615 .9524 .9434 .9346 .9259 .9174 
1.10 .9091 .9009 .8929- .8850 .8772 .8696 .8621 .8547 .8475 .8403 
1.20 .8333 .8264 .8197 .8130 .8065 .8000 .7937 .7874 .7812 .7752 
1.30 .7692 .7634 .7576 .7519 .7463 .7407 .7353 .7299 .7246 .7194 
1.40 .7143 .7092 .7042 .6993 .6944 .6897 .6849 .6803 .6757 .6711 

1.50 .6667 .6623 .6579 .6536 .6494 .6452 .6410 .6369 .6329 .6289 
1.60 .6250 .6211 .6173 .6135 .6098 .6061 .6024 .5988 .5952 .5917 
1.70 .5882' .5848 .5814 .5780 .5747 .5714 .5682 .5650 .5618 .5587 
1.80 .5556 .5525 .5495 .5464 .5435 .5405 .5376 .5348 .5319 ' .5291 
1.90 .5263 .5236 .5208 .5181 .5155 .5128 .5102 .5076 .5051 .5025 

2.00 .5000 .4975 .4950 .4926 .4902 .4878 .4854 .4831 .4808 .4785 
2.10 .4762 .4739 .4717 .4694 .4673 .4651 .4630. .4608 .4587 .4566 
2.20 .4545 .4525 .4504 .4484 .4464 .4444 .4425 .4405 .4386 .4367 
2.30 .4348 .4329 .4310 .4292 .4274 .4255 .4237 .4219 '.4202 .4184 
2.40 .4167 .4149 .4132 .4115 .4098 .4082 .4065 .4049 .4032 .4016 

2.50 .4000 .3984 .3968 .3953 .3937 .3922 .3906 .3891 .3876 .3861 
2.60 .3846 .3831 .3817 .3802 .3788 .3774 .3759 .3745 .3731 .3717 
2.70 .3704 .3690 .3676 .3663 .3650 .3636 .3623 .3610 .3597 .3584 
2.80 .3571 .3559 .3546 .3534 .3521 .3509 .3496 .3484 .3472 .3460 
2.90 .3448 .3436 .3425 .3413 .3401 .3390 .3378 .3367 .3356 .3344 

3.00 .3333 .3322 .3311 .3300 .3289 .3279 .3268 .3257 .3247 .3236 
3.10 .3226 .3215 .3205 .3195 .3185 .3175 .3165 .3155 .3145 .3135 
3.20 .3125 .3115 .3106 .3096 .3086- ,.3077 .3067 .3058 .304a .3040 
3.30 .3030 .3021 .3012 .3003 .21>9;1, .21>85 .2976 .2967 .2959 .2950 
3.40 .2941 .2933 .2924 .2915 .2907 .2899 .2890 .2882 .2874 .2865 

3.50 .2S57 .28ol9 .2M1 .2833 .28,25 .28,17 .28.09 .28.01 .2793 .2786 
3.60 .2778 .2770 .2762 .2755 .2747 .2740 .2732 .2725 .2711 .2710 
3.70 .2703 .2695 .2688 .2681 .2674 .2667 .2660 .2653 .2646 .2639 
3.80 .2632 .2625 .2618 .2611 .2604 .2597 .2591 .2584 .2571 .2571 
3.90 .2564 .2558 .2551 .2M5 .2538 .2532 .2525 .2519 .2513 .2506 

4.00 .2500 .2494 .2488 .2481 .2475 .2469 .2463 .2457 .2451 .2445 
4.10 .2439 .2433 .2427 .2421 .2415 .2410 .2404 .2398 .2392 .2387 
4.20 .2381 .2375 .2370 .2364 .2358 .2353 .2347 .2342 .2336 .2331 
4.30 .2326 .2320 .2315 .2309 .2304 .2299 .2294 .2288 .2283 .2278 
4.40 .2273 .2268 .2262 .2257 .2252 .2241 .2242 .2231 .2232 .2227 

~ 

4.50 .2222 .2217 .2212 .2208 .2203 .2198 .2193 .2188 .2183 .2179 
4.60 .2174 .2169 .2164 .2160 .2155 .2151 .2146 .2141 .2137 .2132 
4.70 .2128 .2123 .2119 .2114 .2110 .2105 .2101 .2096 ,,2092 .2088 
4.80 .2083 .2079 .2075 .2070 .2066 .2062 .2058 .2053 .2049 .2045 
4.90 .2041 .2037 .2033 .2028 .2024 .2020 .2016 .2012 .2008 .2004 

5.00 .2000 .1996 .1992 .1988 .1984 .1980 .1976 .1972 .1968 .1965 
5.10 .1961 .1957 .1953 .1949 .1946 .1942 .1938 .1934 .1930 .1927 
5.20 .1923 .1919 .1916 .1912 .1908 .1905 .1901 .1898 .1894 .1890 
5.30 .1887 .1883 .1880 .1876 .1873 .1869 .1866 .1862 .1859 .1855 
5.40 .1852 .1848 .1845 .1842 .1838 .1835 .1832 .1828 .1825 .1821 

1 Source: W"UGH, ALBERT E., Laboratoru Manual ana Problem6/or Element. 0/ Stati&tical 
Methoa (MoGraw-HiIl Book Company, Ino., 1944). 



468 SAMPLING STATISTICS AND APPLICATIONS 

TAllLE V.-RECIPROCALS OF NUMBERS.-(Continued) 

N .00 .01 .02 .03 .04 .05 .06 .07 .OS .09 

-- --------- --------- ---~ -----
5.50 .1818 .1815 .1812 .1808 .1805 .1802 .1799 .1795 .1792 .1789 
5.60 .1786 .1783 .1779 .1776 .1773 .1770 .1767 .1764 .1761 .1757 
5.70 .1754 .1751 .1748 .1745 .1742 .1739 .1736 .1733 .1730 .1727 
5.80 .1724 .1721 .1718 .1715 .1712 .1709 .1706 .1704 .1701 .1698 
5.90 .1695 .1692 .1689 .1686 .1684 .1681 .1678 .1675 .1672 .1669 

6.00 .1667 .1664 .1661 .1658 .1656 .1653 .1650 .1647 .1645 .1642 
6.10 .1639 .1637 .1634 .1631 .1629 .1626 .1623 .1621 .1618 .1616 
6.20 .1613 .1610 .1608 .1605 .1603 .1600 .1597 .1595 .1592 . limo 
6.30 .1587 .1585 .1582 .1580 .1577 .1575 .1572 .1570 .1567 .1565 
6.40 :1562 .1560 .1558 .1555 .1553 .1550 .1548 .1546 .1543 .1541 

6.50 .1538 .1536 .1534, .1531 .1529 .1527 .1524 .1522 .1520 .1517 
6.60 .1515 .1513 .1511 .1508 .1506 .1504 .1502 .1499 .1497 .1495 
6.70 .1493 .1490 .1488 .1486 .1484 .1481 .1479 .1477 .1475 .1473 
6.80 .1471 ..1468 .1466 .1464 .1462 .1460 .1458 .1456 .1453 .1451 
6.90 .1449 .1447 .1445 .1443 .1441 .1439 .1437 .1435 .1433 .1431 

7.00 .1429 .1427 .1424 .1422 .1420 .1418 •. 1416 .1414 .1412 .1410 
7.10 .1408 .1406 .1404 .1403 .1401 .1399 .1397 .1395 .1393 .1391 
7.20 .1389 .1387 .1385 .1383 .1381 .1379 .1377 .1376 .1374 .1372 
7.30 .1370 .1368 .1366 .1364 .1362 .;361 .1359 .1357 .1355 .1353 
7.40 .1351 .1350 .1348 .1346 .1344 .1342 .1340 .1339 .1337 .1335 

7.50 .1333 .1332 .1330 .1328 .1326 .1324 .13~3 .1321 .1319 .1318 
7.60 .131& .1314, .1312 .1311 .1300 .1307 .1305 .1304. .1302 .1300 
7.70 .1299 .1297 .1295 .1294 .1292 .1290 .1289 .1287 .1285 .1284 
7.80 .1282 .1280 .1279 .1277 .1276 .1274 .1272 .1271 .1269 .1267 
7.90 .1266 .1264 .1263 .1261 .1259 .1258 .1256 .1255 .1253 .1252 

8.00 .1250 .1248 .1247 .1245 .1244 .1242 .1241 .1239 .1238 .1236 
8.10 .1235 .1233 .1232 .1230 ."1228 .1227 .1225 .1224 .1222 .1221 
8.20 .1220 .1218 .1217 .1215 .1214 .1212 .1211 .1209 .1208 .1206 
8.30 .1205 .1203 .1202 .1200 .1199 .1198 .1196 .1195 .1193 .1192 
8.40 .1190 .1189 .1188 .1186 .1185 .1183 .1182 .1181 .1179 .1178 

8.50 .1176 .1175 .1174 .1172 .1171 .1170 .1168 .1167 .1166 .11601, 
8.60 .1163 .1161 .1160 .1159 .1157 .1156 .1155 .1153 .1152 .1151 
8.70 .1149 .1148 .1147 .1145 .1144 .1143 .1142 .1140 .1139 .1138 
8.80 .1136 .1135 .1134 .1132 .1131 .1130 .1129 .1127 .1126 .1125 
8.90 .1124. .1122 .1121 .1120 .1119 .1117 .111& .1115 .1114 .111a 

9.00 .1111 .1110 .1109 .1107 .1106 .1105 .1104 .1103 .110tl .1100 
9.10 .1099 .1098 .1096 .1095 .1094 .1093 .1092 .1091 .1089 .1088 
9.20 .10jl7 .1086 .1085 .1083 .1082 .1081· .1080 .1079 .1078 .1076 
9.30 .1075 .1074 .1073 .1072 .1071 .1070 .1068 .1067 .1066 .1065 
9.40 .1064 .1063 .1062 .1060 .1059 .1058 .1057 .1056 .1055 .1054 

9.50 .1053 .1052 .1050 .1049 .1048 .1047 .1046 .1045 .1044 .1043 
9.60 .1042 .1041 .1040 .1038 .1037 .1036 .1035 .1034 .1033 .1032 
9.70 .1031 .1030 .1029 .1028 .1027 .1026 .1025 .1024 .1022 .1021 
9.80 .1020 .1019 .101& .1017 .1016 .1015 .1014 .1013 .1012 .1011 
9.90 .10lD .1009 .1008 .1007 .1006 .1005 .1004 .1003 .1002 .1001 



TABLE VI.-AREAS, ORDINATES, A'ND DERIVATIVES OF THE NORMAL CURVEt 
The following table ~ives proportions of the area under the normal curve from "'/0 = 0 

to values of x/o given m column (1). Values of the ordinattl!l and of the third and fourth 
derivatives are also given. 

~ ___QL ]3) J:4) ~ 
'" Area 

Ordi-
10' (n* IO·Gr d nate 

----:00- --:0000 --:3989 ---:0000 1.1968 
.01 .0040 .3989 .0120 1.1965 
.02 .0080 .3989 .0239 1.1956 
.03 .0120 .3988- .0359 1.1941 
.04 .0160 .3986 .0478 1.1920 

.05 .0199 .39&,1 .0597 1.1894 

.06 .0239 .3982 .0716 1.1861 

.07 .0279 .3980 .0834 1.1822 

.08 .0319 .3977 .0952 1.1778 

.09 .0359 .3973 , .lO70 1.1727 

.10 .0398 .3970 .1187 1.1671 

.11 .0438 .3965 '.1303 '1.1609 

.12 .0478 .3961 .1419 1.1541 

.13 .0517 .3956 .1534 1.1468 

.14 .0557 .3951 .1648 1.1389 

.15 .0596 ;3945 .1762 1.1304 

.10 .0636 .3939 .1874 1.1214 

.17 .0675 .3932 .1986 1. 1118 

.18 .0714 .3925 .2097 1.1017 

.19 .0754 .3918 .2206 1. 0911 

.20 .0793 .39lO .2315 1.0799 

.21 .0832 .3902 .2422 1.0682 

.22 .0871 .3894 .2529 1.0560 

.23 .09lO .3885 .2634 1.0434 

.24 .0948 .3876 .2737 1.0302 

.25 .0987 .3867 .2840 1.0165 

.26 .lO26 .3857 .2941 1.0024 

.27 .lO64 .3847 .3040 0.9878 

. 28 .1103 .3836 . .3138 0.9727 

.29 .1141 .3825 .3235 0.9572 

.30 .1179 .3814 .3330 0.9413 

.31 .1217 .3802 .3423 0.9250 

.32 .1255 .3790 .3515 0.9082 

.33 .1293 .3778 .3605 0.89lO 

.34 .1331 .3765 .3693 0.8735 

.35 .1368 .3752 .3779 0.8556 

.36 .1406 .3739 .3864 0.8373 

.37 .1443 .3726 .3947 0.8186 

.38 .1480 .3712 .4028 0.7996 

.39 .1517 .3697 .4107 0.7803 

.40 .1554 .3683 .4184 0.7607 

.41 . 1591 .3668 .4259 0.7408 

.42 .1628 .3653 .4332 0.7206 

.43 .1664 .3637 .4403 0.7001 

.44 .1700 .3621 .4472 0.6793 

.45 .1736 .3605 .4539 0.6583 

.46 .1772 .3589 .4603 0.6371 

.47 .1808 .3572 .4666 0.6156 

.48 .1844 .3555 .4727 O. 59~.o 

.49 .1879 .3538 .4785 0.5721 

..50 .1915 .3521 .4841 0.5501 

~ 0_ (3) 

'" Area Ordi-
d nate 

----:-so --:1915 .3521 
.51 .1950 .3503 
.52 .1985 .3485 
.53 .2019 .3467 
.54 .2054 .3448 

.55 .2088 .3429 

.56 .2123 .3411 

.57 .2157 .3391 

.58 .2190 .3372 

.59 .2224 .3352 

.60 .2258 .3332 

.61 .2291 .3312 

.62 .2324 .3292 

.63 .2357 .3271 

.64 .2389 .3251 

.65 .2422 .3230 

.66 .2454 .3209 

.67 .2486 .3187 

.68 .2518 .3166 

.69 .2549 1. 3144 

.70 .2580 .3123 

.71 .2612 .3lOl 
.72 .2642 .3079 
.73 .2673 .3056 
.74 .2704 .3034 

.75 .2734 .3011 

.76 .2764 .2989 

.77 .2794 .2966 

.78 .2823 .2943 

.79 .2852 .2920 

.80 .2881 .2897 

.81 .2910 .2874 

.82 .2939 .2850 

.83 .2967 .2827 

.84 .2996 .2803 

.85 .3023 .2780 

.86 .3051 .2756 

.87 .3079 .2732 

.88 .3106 .2709 

.89 .3133 .2685 

.90 .3159 .2661 

.91 .3186 .2637 

.92 .3212 .2613 

.93 .3238 .2589 

.94 .3264 .2565 

.95 .3289 .2541 

.96 .3315 .2516 

.97 .3340 .2492 

.98 .3365 .2468 

.99 .3389 .2444 

1.00 .3413 .2420 

~ 

10' cn* 
-:4841 

.4895 

.4947 

.4996 

.5043 

.5088 

.5131 

.5171 

.5209 

.5245 

.5278 

.5309 

.5338 

.5365 

.5389 

.5411 

.5431 

.5448 

.5463 

.5476 

.5486 

.5495 

.5501 

.5504 

.5506 

.5505 
.5502 
.5497 
.5490 
.5481 

.5469 

.5456 

.5440 

.5423 

.5403 

.5381 

.5358 

.5332 

.5305 

.5276 

.5245 

.5212 . 

.5177 

.5140 

.5102 

.5062 

.5021 

.4978 

.4933 

.4887 

• .4839 

~ 
10' (J)* 
----:55Oi. 

.5279 

.5056 

.4831 

.4605 

.437 
.415 

8 
o 

.3921 

.3691 
.3461 

.3231 

.300 

.277 
o 
o 

.2539 

.230 

.207 

.184 

.162 

\) 

8 
9 
o 

.1391 

.116 

.093 

.071 

4 

7 
2 
7 
5 
3 

.048 

.026 

.004 

-.017 
-.039 
-.061 

6 
4 
1 
5 
7 

-.082 
-.103 

-.124 
-.145 
-.166 
-.186 
-.206 

-.226 
-.245 
-.264 
-.283 
-.302 

7 
5 
o 
2 
3 

o 
5 
6 
1) 
1 

-.320 3 
3 
9 
1 
1 

-.338 
-.355 
-.373 
-.390 

-.406 
-.422 
-.438 
-,454 
-.469 

6 
8 
7 
1 
2 

-.483 9 
I Reproduced by permission from Mathematical Tablel from Handbook of Chemistry and 

Physics compiled by Charles D. Hodgman, 7th ed., 1941, pp. 200-204. 

* If the ordinate shown in oolumn ~3) is designated as 100 (~), then 10' Ca) is defined 

as 100 (a) multiplied by C~ -*) and 10' (a) is defined as 10' (~) mUltiplied by 

(3 - 0:,' +~) 
By Buccessive differentIation of rpo (~) it can be ,ehown that tpl (~) is also the third deriva .. 

tive of 10' Ca) and 10' Ca) is the fourth derivative.of 10' Ca) (see Chap. VII, pp. 142-145), 
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TABt.E Vr.-AREAS, ORDINATES, AND DE~IVATIVES OF THE NORMAL CURVE! 

• (Continued) 

.J!2. ~ _QL_ N (5) ______QL_ ___@__ __m_ (4) ~ 

'" Area 
Ordi-

1" G)~ 1'4 G)* :t Area 
OTdi- I'·cn* I'·cn* Ii nate d nate 

-----y:oo -.34I3 .2420 --:-4s39 -.4839 ---r:-5O -:43B2 ·.1295' --.-1457 -.7043 
1.01 . 3438 .2396 .4790 . -.4983 1.51 .4345 .1276 .1387 -.6994 
1.02 .3461 .2371 .4740 -.5122 1.52 .4357 .1257 .1317 -.6942 
1.03 .3485 .2347 .4688 -.5257 1. 53 .4370 .1238 .1248 -.6888 
1.04 .3508 .2323 .4635 -.5389 1.54 .4382 .1219 .1180 -.6831 

1.05 .3531 .2299 .,(580 -.5516 '1.55 .4394 .1200 .1111 -.6772 
1.06 .3554 .2275 .4524 -.5639 1.56 ,4406 .1182 .1044 -.6710 
1.07 .3577 .2251 .4467 -.5758 1.57 .4418 .1163 .0977 -.6646 
1.08 .3599 .2227 .4409 -.5873 , 1. 58 .4430 .1145 .0911 -.6580 
1.09 .3621 .2203 .4350 -.5984 1.59 .4441 .'1127 .0846 -.6511 

1.10 .3643 ,2179 .4290 -.6091 1.60 .4452 .1109 .0781 -.6441 
1.11 .3665 .2155 .4228 -.6193 1.61 ,4463 .1092 .0717 -.6368 

'1.12 .3686 .2131 .4166 -.6292 1.62 ,4474 .1074 .0654 -.6293 
1.13 .3708 .2107 .4102 -.6386 1.63 .4485 .1057 .0591 -.6216 
1.14 .3729 .2083 .4038 -.6476 1.64 .4495 .1040 .0529 '-.6138 

1.15 .3749 .2059 .3973 -.6561 1.65 .4505 ' , .1023 .0468 -.6057 
1.16 .3770 .2036 .3907 -.6643 1.66 .4515 .1006. .0408 -.5975 
1.17 .3790 .2012 .3840 -.6720 1.67 .4525 .0989 .0349 -.5891 
1.18 .3810 .1989 .3772 -.6792 1.68 .4535 •. 0973 .0290 -.5806 
1.19 .3830 .1965 .3704 ~.6861 1.6~ .4545 .0957 .0233 -.5720 

1.20 .3849 .1942 .3635 -.6926 1.70 .4554 .0941 .0176 -.5632 
1.21 .3869 .1919 .3566 -.6986 1.71 .4564 .0925 .0120 -.5542 
1.22 .3888 .1895 .3496 -.7042 1.72 .4573 .0909 .0065 -.5452 
1.23 .3907 .1872 .3425 -.7094 1. 73 .4582 .0893 .0011 -.5360 
1.24 .3925 .1849 .3354 - .. 7141. 1.74 .4591 .0878 -.0042 -,.5267 

1.25 .3944 .1827 .3282 -.7185 1.75 .4599 .0863 -.0094 -.5173 
1.26 .3962 .1804 .3210 -.7224 HT .4608 .0848 -.0146 -.5079 
1.27 .3980 .1781 .3138 -.7259 .4616 .0833 -.0196 -.4983 
1.28 .3997 .1759 .3065 :-.7291 1.78 .4625 .0818 -.0245 -.4887 
1.29 .4015 .1736 .2992 -.7318 1.79 .4633 .0804 -.0294 -.4789 

1.30 .4032 .1714 .2918 -.7341 1.80 .4641\ .0790 -.0341 -.4692 
1.31 .4049 .1692 .2845 -.7361 1.81 .,4649 .0775 -.0388 -.4593 
1.32 .4066 .1669 .2771 -.7376 1.82 .4656 .0761 -.0433 -.4494 
1.33 .4082 .1647 .2697 -.7388 1.83 .4664 .0748 -.0477 -.4395 
1.34 .4099 .1626 .2624 -.7395 1.84 .4671 .0734 -.0521 -.4295 

1.35 .4115 .1604 .2550 -.7399 1.85 .4678 .07~ -.0563 -:4195 
1.36 .4131 .1582 .2476 -.7400 1.86 .4686 .0707 -.0605 -.4095 
1.37 .4147 .1561 ~2402 -.7396 1.87 .4693 .0694 -.0645, -.3995 
1.38 .4162 .1540 .2328 -.7389 1.88 .4700 .0681 -.0685 -.3894 
1.39 .4177 .1518 .2254 -.7378 1.89 .4706 .0669 -.0723 -.l3793 

1.40 .4192 .1497 .2180 -.7364 . 1.90 .4713 .0656 -.0761 -.3693 
1.41 .4207 .1476 .2107 -.7347 1.91 .4719 .0644 -.0797 -.3592 
1.42 .4222 .1456 .2033 -.7326 1.92 .4726 .0632 -.0832 -.3492 
1.43 .4236 .1435 .1960 -.7301 1.93 .4732 .0620 -.0867 -.3392 
1.44 .4251 .1415 .1887 -.7274 1.94 .4738 .0608 -.0900 -.3292 

1.45 .4265 .1394 .1815 -.7243 1.95 .4744 .0596 -.0933 -.3192 
1.46 .4279 .1374 .1742 -.7209 1.96 .4750 .0584 ~.0964 -.S093 
1.47 .4292 .1354 .1670 -.7172 1.97 .4756 .0573 -.0994 -.2994 
1.48 .4306 .1334 .1599 -.7132 1.98 .4762 .0562 -.1024 -.2895 
1.49 .4319 .1315 .1528 -.70S9 1.99 .4767 .0551 -.1052 ,-.2797 

1. 50 .4332 .1295 .1457 -.7043 2.00 .4773 .0540 -.1080 '-.2700 

1 Reproduced by permission from Mathemalical Table8 from Handbook of Chemistry 'ana 
Physic" compiled by Oharles D. Hodgman, 7th ed., 1941, PP. 200--204. 

* If the ordinate shown in colu:"n (3) is designated as 1'0 CD, then 1" CO is defined 

as "'0 cn multiplied by (~ - ~) and "" GD is defined as 1'0 (;0 multiplied by 

By successive differentiation of q:;o (~) it can be shown that (/'3 (a) is also the third deriva

tive of 1'0 c~) and 1" c~) i. the fourth derivative of 'PO c~) (see Chap. VII, pp. 142-145). 
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TABLE Vl,-AREAS, ORDINATES, AND DERIVATIVES OF THE NORMAL CURVE' 

(Continued) 
~ 

__QL ..Ql (3) ~ ~. ,.--iL ~ __Q2_ .Q2_ (5) 

'" Area 
Ordi- ~3 G)* ~4 (D* '" Area 

Ordi- ~. (i) * ~4(j) d nate ~ nate 

~ .4773 .0540 -.1080 ~ 2.'50 .4938 .0175 -.1424 --:osoo-
2.01 .4778 .0529 -.1106 -.2603 2.51 .4940 .0171 -.1416 .0836 
2.02 .4783 .0519 -.1132 -.2506 2.52 .4941 .0167 -.1408 .0871 
2.03 .4788 .0508 -.1157 -.2411 2.53 .4943 .0163 -.1399 .0905 
2.04 .4793 .0498 -.1180 -.2316 2.54 .4945 .0159 -.1389 .0937 

2.05 .4798 .0488 -.1203 -.2222 2.55 .4946 .0155 -.1380 .0968 
2.06 .4803 .0478 -.1225 -.2129 2.56 .4948 .0151 -.1370 .0998 
2.07 .4808 .0468 -.1245 -.2036 2.57 .4949 .0147 -.1360 .1027 
2.08 .4812 .0459 -.1265 -.1945 2.58 .4951 .0143 -.1350 .1054 
2.09 .4817 .0449 -.1284 -.1854 2.59 .4952 .0139 -.1339 .1080 

.2.10 '.4821 .0440 -.1302 -.1765 2.60 .4953 .0136 -.1328 .1105 
2.11 .4826 .0431' -.1320 --'-.1676 2.61 .4955 .0132 -.1317 .1129 
2.12 .4830 .0422 -.1336 -.1588 2.62 .4956 .0129 -.1305 .1152 
2.13 .4834 .0413 -.1351 -.1502 2.63 .4957 .0126 -.1294 .1173 
2.14. .4838 .0404 - -.1366 -.1416 2.64 .4959 .0122 -.1282 .1194 

2.15 .4842 .0396 -.1380 -.1332 2.65 .4960 .0119 -.1270 .1213 
2.16 .4846 .0387 -.1393 -.1249 2.66 .4961 .0116 -.1258 .1231 
2.17 .4850 .0379 -.1405 -.1167 2.67 .4962 .0113 -.1245 .1248 
2.18 .4854 .0371 -.1416 -.1086 2.68 .4963 .0110 -.1233 .1264 
2.19 .4857 .0363 -.1426 -.1006 2.69 .4964 .0107 -.1220 .1279 

2.20 .4861 .0355 -.1436 -.0927 2.70 .4965 .0104 -.1207 .1293 
2.21 .4865 .0347 -.1445 -.0850 2.71 .4966 .0101 -.1194 .1306 
2.22 .4868 .0339 -.1453 -.0774 2.72 .4967 .0099 -.1181 .1317 
2.23 .4871 .0332 -.1460 -.0700 2.73 .4968 .0096 -.1168 .1328 
2.24 . 4875 .0325 . -.1467 -.0626 2.74 .4969 .0094 -.1154 .1338 

2.25 .4878 .0317 -.1473 -.0554 2.75 .4970 .0091 -.1141 .1347 
2.26 .4881 .0310 -.1478 -.0484 2.76 .4971 .0089 -.1127 .1356 
2.27 .4884 .0303 -.1483 -.0414 2.77 .4972 .0086 -.1114 .1363 
2.28 .4887 .0297 -.1486 -.0346 2.78 .4973 .0084 -.1100 .1369 
2.29 .4890 .0290 -.1490 -.0279 2.79 .4974 .0081 -.1087 .1375 

2.30 .4893 .0283 -.1492 -.0214 2.80 .4974 .0079 -.1073 .1379 
2.31 .4896 .0277 -.1494 -.0150 2.81 .4975 .0077 -.1059 .1383 
2.32 .4898 .0271 -.1495 .-.0088 2.82 .4976 .0075 -.1045 .1386 
2.33 .4901 .0264 -.1496 -.0027 2.83 .4977 .0073 -.1031 .1389 
2.34 .4904 .0258 -.1496 .0033 2.84 .4977 .0071 -.1017 .1390 

2.35 .4906 .0252 -.1495 .0092 2.85 .4978 .0069 -.1003 .1391 
2.36 .4909 .0246 -.1494 .0149 2.86 .4979 .0067 -.0990 .1391 
2.37 .4911 .0241 -.1492 .0204 -2.87 .4980 .0065 -.0976 .1391 
2.38 .4913 .0235 -.1490 .0258 2.88 .4980 .0063 -.0962 .1389 
2.39 .4916 .0229 -.1487 .0311 2.89 .4981 .0061 -.0948 .1388 

2.40 .4918 .0224 -.1483 .0362 2.90 .4981 .0060 -.0934 .1385 
2.41 .4920 .0219 -.1480 .0412 2.91 .4982 .0058 -.0920 .1382 
2.42 .4922 .0213 -.1475 .0461 2.92 .4983 .0056 -.0906 .1378 
2.43 .4925 .0208 -.1470 .0508 2.93 .4983 .0055 -.0893 .1374 
2.44 .4927 .0203 -.1465 .0554 2.94 .4984 .0053 -.0879 .1369 

2.45 .4929 .0198 -.1459 .0598 2.95 .4984 .0051 -.0865 .1364 
2.46 .4931 .0194 -.1453 .0641 2.96 .4985 .0050 -.0852 .1358 
2.47 .4932 .0189 -.1446 .0683 2.97 .4985 .0049 -.0838 .1352 
2.48 .4934 .0184 -.1439 .0723 2.98 .4986 .0047 -.0825 .1345 
2.49 .4936 .0180 -.1432 .0762 2.99 .4986 .0046 -.0811 .1337 

2.50 .4938 .0175 -.1424 .0800 3.00 .4987 .0044 -.0798 .1330 

1 Reproduced by permission from Mathematical Tables from Handbook of Chemistry and 
Physics compiled by Charles D. Hodgman, 7th ed., 1941, pp. 200-204. 

* If the ordinate shown in column (3) is designated as ~o (~), then ~. (~) is defined 

as ~o (~) multiplied by (~ - f,) and ~4 CD is defined as 1'0 (~) multiplied by 

( 
6x' X') 3-(j2+jj4 . 

. By successive differentiation'of 1'0 (~) it can be shown that"1'3 (a) is also the third deriva

tive of ~o (a) and~. (~) is the fourth derivative of ~o (~) (see Chap. VII, pp.142-J(5). 
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TABLE VI.-AREAS, ORDIN:ATES, AND DERIVATIVES OF THE NORMAL CURVE 1 

(Continued) 

.Q!_ ____g__ cPt .(x)* ____®__ _QL ~ .~ ~ ~ 
'" Area r 1- <P.(i)* '" Area Ordi-

<p,G)* <p·GD* d nate <P' OJ OJ nate 

~ .4987 .0044 -.0798 .'330 3':"50 .4998 .0009 -.0283 -:0694 
3.01 .4987 .0043 -.0785 .1321 3.51 .4998 .0008 -.0276 .0681 
3.02 .4987 .0042 -.071.1 .1313 '3.52 .4998 .0008 -.0269 .0669 
3.03 .4988 .0041 -.0758 .1304 3.53 .4998 .0008 -.0262 .0656 
3.04 .4988 .0039 -.0745 .1294 3.54 .4998 .0008 -.0256 .0643 

3.05 .4989 .0038 -.0732 .1285 3.55 .4998 ,,0007' -.0249 .0631 
3.06 .4989 .0037 -.0720 .1275 3.56 .4998 .0007 -.0243 .0618 
3.07 .4989 .0036 -_0707 .1264 3.57 .4998 .'0007 -.0237- .0606 
3.08 .4990. .0035 -.0694 .1254 3.58 .4998 .0007 -.0231 .0594 
3.09 .4990 .0034 -.0682 .1243 3.59 .4998 .0006 -.0225 .0582 

3.10 .4990 .0033 -.0669 .1231 3.60 .4998 .0006 -.0219 .0570 
3.11 .4991 .0032 -.0657 .1220 3.61 .4999 .0006 -.0214 .0559 
3.12 .4991 .0031 -.0645 .1208 3.62 .4999 .0006 -.0208 .0547 
3.13 .4991 .0030 -.0633 .1196 3.63 .4999 .0006 -.0203 .0536 
3.14 .4992 .0029 -.0621 .1184 3.64 .4999 .0005 -.0198 .0524 

3.15 .4992 .0028 -.0609 .1171 3.65 .4999 .0005 -.0192 .0513 
3.16 .4992 .0027 --;,.0598 .1159 3.66 .4999 .0005 -.0187 .0502 
3.17 .4992 .0026 -.0586 .1146 3.67 .4999 .0005 -.0182 .0492 
3.18 .4993 .0025 -.0575 .ll33 3.08 .4999 .0005 -.0177 .0481 
3.19 .4993 .0025 -.0564 .ll20 3.69 .4999 .0004 -.0173 .0470 

3.20 .4993 .0024 -.0552 .1107 3.70 .4999 .0004 -.0168 .0460 
3.21 .4993 .0023 -.0541 .1093 3.71 .4999 .0004 -.0164 .0450 
3.22 .4994 .0022 -.0531 .1080 3.72 .4999 .0004 -.0159 .0440 
3.23 .4994 .0022 -.0520 .1066 3.73 .4999 .0004 -.0155 .0430 
3.24 .4994 .0021 -.0509 .1053 3.74 .4999 .0004 -.0150 .0420 

3.25 .4994 .0020 -.0499 .1039 3.75 .4099 .0004 -.0146 .0410 
3.26 .4994 .0020 -.0488 .1025 3.76 .4999 .0003 -.0142 .0401 

.3.27 .4995 .0019 -.0478 .1011 3.77 .4999 .0003 -.0138 .0392 
3.28 .4995 .0018 -.0468 .0997 3.78 .4999 .0003 -.0134 .0382 
3.29 .4995 ,0018 -.0458 .0983 3.79 .4999 .0003 -.0131 .0373 

3.30 .4995 .0017 -.0449 .0969 3.80 .4999 \ .0003 -.0127 .0365 
3.31 .4995 .0'017 -.0439 .0955 3.81 .4999 .0003 -.0123 .0356 
3.32 .4996 .0010 -.0429 .0941 3.82 .4999 .0003 -.0120 .0347 
3.33 .4996 .0016 -.0420 .0927 3.83 .4999 .0003 -.0116 .0339 
3.34 .4996 .0015 -.0411 .0913 3.84 .4999 .0003 -.0113 .0331 

3.35 .4996 .0015 -.0402 .0899 3.85 .4999 1.0002 -.0110 .0323 
3.36 .4996 .0014 -.0393 .0885 3.86 .4999 .0002 -.0107 .0315 
3.37 .4996 .0014 -.0384 .0871 3.87 .5000 .0002 -.0104 .0307 
3.38 .4996 .0013 -.0376 .0857 3.88 .5000 .0002 -.0100 .0299 
3.39 .4997 .0013 -.0367 .0843 3.89 .5000 .0002 -.0098 .0292 

3.40 .4997 .0012 -.0359 .0829 3.90 .5000 .0002 -.0095 .0284 
3.41 .4997 .0012 -.0350 .0815 3.91 .5000 .0002 -.0092 .0277 
3.42 .4997 .0012 -.0342 .0801 3.92 .5000 .0002 -.0089 .0270 
3.43 .4997 .00ll -.0334 .0788 3.93 .5000 .0002 -.0086 .0263 
3.44 .4997 .0011 -.0327 .0774 3.94 .5000 .0002 -.0084 .0256 , 
3.45 .4997 .0010 -.0319 .0761 3.95 .5000 .0002 -.0081 .0250 
3.46 .4997 .0010 -.0311 .0747 3.96 .5000 .0002' -.0079 .0243 
3.47 .4997 .0010 -.0304 .0734 3.97 .5000 .0002 -.0076 .0237 
3.48 .4998 .0009 -.0297 .0721 3.98 .5000 .0001 -.0074 .0230 
3.49 .4998 .0009 -.0290 .0707 3.99 .5000 .0001 -.0072 .0224 

3.50 .4998 .0009 -.0283 .0694 4.00 .5000 .0001 -.0070 ,.0218 
1 Reproduced by permission from MathematicaL Tables fTom Handbook of Chemi3tTY and 

Physics compiled by Charles D. Hodgman, 7th ed., 1941, pp. 200-204. 

* If the ordinate shown in column (3) is designated as 1"0 (~), then 1"3 (~) is defined 

as <pO (~) multiplied by (?f - f,) and <P' (;) is defined as <po (~) multiplied by 

By successive differentiation 011"0 (~) it can be shown that 1'" (~) is also the third deriva_ 

- tive of <po (~) and 1'" (~) is the fourth derivative of <po (~) (see Chap. VII, pp. 142-145). 
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TAJILE Vr.-AREAS, ORDINATES, AND DERivATIVES OF THE NORMAL CURVE' 

, (Concluded) 

J..!!_ _@_ ~ ~ '_(_5_)_ J..U. ___Q)_ (~ _iQ ~ 

'" Area 
r ,- ~,tO* ~O G)* '" Area' Ordi-

'P' cn* ~O c~)* ii nate ii nate 

~O --:5000 .0001 -.0070' .0218 f4.5o .5000 .0000- -:::::::OoT2 --:0047 
4.01 .5000 .0001 -.0067 .0212 4.51 .5000 .0000 -.0012 .0045 
4.02 .5000 .1)001 -.0065 .0207 4.52 .5000 .0000 -.0012 .0044 
4.03 .5000 .0001 -.0063 .0201 4.53 .5000 .0000 -.0011 .0042 
4.04 .5000 .OQ01 -.0061 .0195 4.54 .5000 .0000 -.0011 .0041 

4.05 .5000 .0001 -.0059 .0190 4 .. 55 .5000 .0000 -.0010 .0039 
4.06 .5000 .0001' -.0058 .0185 4.56 .5000 .0000 -.0010 .0038 
4.07 .5000 .0001 -.0056 .0180 4.57 .5000 .0000 -.0010 .0037 
4.08 .5000 .0001 -.0054 .0175 4.58 .5000 .0000 -.0009 .0035 
4.09 .5000 .0001 -.0052 .0170 4.59 .5000 .OUOO -.0009 .0034 

4.10 .5000 .0001 -.0051 .0165 4.60 .5000 .0000 -.0009 .0033 
4.11 .5000 .0001 -.0049 .0160 4.61 .5000 .0000 -.0008 .0032 
4.12 .5000 .0001 -.0047 .0156 4.62 .5000 .0000 -.0008 .0031 
4.13 .5000 .0001 -.0046 .0151 4.63 .5000 .0000 -.0008 .0030 
4.14 .5000 .QQ01 -.0044 .0147 4.64 .5000 .0000 -.0007 .0028 

4.15 .5000 .0001 -.0043 .0143 4.65 .5000 .0000 -.0007 .0027 
4.16 .5000 .0001 -.0042 .0138 4.66 .5000 .0000 -.0007 .0026 
4.17 .5000 .0001 -.0040 .0134 4.67 .5000 .0000 -.0006 .0026 
4.18 .5000 .0001 -.0039 .0130 4.68 .5000 .0000 -.0006 .0025 
4.19 .5000 .0001 -.0038 .0127 4.69 .5000 .0000 -.0006 .0024 

4.20 .5000 .0001 -.0036 .0123 4.70 .5000 .0000 -.0006 .0023 
4.21 .5000 .0001 -.Q035 .0119 4.71 .5000 .0000 -.0006 .0022 
4.22 .5000 .0001 -.0034 .0116 4.72 .5000 .0000 -.0005 .0021 
4.23 .5000 .0001 -.0033 .0112 4.73 .5000 .0000 -.0005 .0020 
4.24 .5000 .0001 -.0032 .0109 4.74 .5000 .0000 -.0005 .0020 

4.25 .5000 .0001 -.0031 .0105 4.75 .5000 .0000 -.0005 .0019 
4.26 .5000 .0001 -.0030 .0102 4.76 .5000 .. 0000 -.0005 .0018 
4.27 .5000 .0000. -.0029 .0099 4.77 .5000 .0000 -.0004 .0018 
4.28 .5000 .0000 -.0028 .0096 4:78 .5000 .0000 -.0004 .0017 
4.29 .5000 .0000 -.0027 .0093 4.79 .5000 .0000 -.0004 .0016 

4.30 .5000 .0000 -.0026 .0090 4.80 .5000 .0000 -.0004 .0016 
4.31 .5000 .0000 -.0025 .0087 4.81 .5000 .0000 -.0004 .0015 
4.32 .5000 .0000 -.0024 .0085 4.82 .5000 .0000 -.0004 .0015 
4.33 .5000 '.0000 -.0023 -:gg~~ 4.83 .5000 .0000 -.0003 .0014 
4.34 .5000 .0000 -.0022 4.84 .5000 .0000 -.0003 .0013 

4.35 .5000 .0000 -.0022 .0077 4.85 .5000 .0000 -.0003 .0013 
4.36 .5000 .0000 -.0021 .0074 4.86 .5000 .0000 -.0003 .0012 
4.37 .5000 .0000 -.0020 .0072 4.87 .5000 .0000 -.0003 .0012 
4.38 .5000 .0000 -.0019 .0070 4.88 .5000 .0000 -.0003 .0012 
4.39 .5000 .0000 -.0019 .0067 4.89 .5000 .0000 -.0003 .0011 

4.40 .5000 .0000 -.0018 .0065 4.90 .5000 .0000 -.0003 .0011 
4.-41 .5000 .0000 -.0017 .. 0063 4.91 .5000 .0000 -.0002 .0010 
4.42 .5000' .0000 -.0017 .0061 4.92 .5000 .0000 -.0002 .0010 
4.43 .5000 .0000 -.00·16 .0059 4.93 .5000 .0000 -.0002 .0009 
4.44 .5000 .0000 -.0016 .0057 4.94 .5000 .0000 -.0002 .0009 

4.45 .5000 .0000 -.0015 .0055 4.95 .5000 .0000 -.0002 .0009 
4.46 .5000 .0000 -.0014 .0053 4.96 .5000 .0000 .:......0002 .0008 
4.47 .5000 .0000 -.0014 .0052 4.97 .5000 .0000 -.0002 .0008 
4.48 .5000 .0000 -.0013 .0050 4.98 .5000 .0000 -.0002 .0008 
4.49 .5000 .0000 -.0013 . .0048 4.99 .5000 .0000 . -.0002 .0007 

4.50 .5000 .0000 -.0012 .0047 
1 Reproduced by permission from Mathematical Tables from Handbook of Chemistry and 

Physics compiled by Charles D. Hodgman, 7th ed., 1941, PP. 200-204. 

* If the ordinate sho,wn in column (3) is designated as <po Ca)' then 'P' Gi) is defined 

IjB <po G) ~ultiplied by (~ - ~:) and 'PO (n is defined as ~o cn multiplied by 

By successive differentiation of 'Po c~) it can be shown that 'PI Ca) is also th; third deriva_ 

tive of 'PO C~) and <p. GO is the fourth._derivative of ~. Ca) (see Chap. VII, Pp. 142-145). 
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474 SAMPLING STATISTICS AND APPLICATIONS 

TABLE VII.-TABLE OF t* 
The column headings in this table are probabilities. The figures in the 

body of the table are values of t. The stub 0.£ the table shows n, the degrees 
of freedom. The probabilities refer to the sum of the two tails of the t 
distribution, i.e., for both + and - values of t. For example, for n = 10, 
probability .05 shows in the table t = 2.228, which means P(t ~ 12.2281) 
equals .05; P(t ~ +2.228) equals .025; and P(t ~ -2.228) equals .025. The 

last row of the t ta.ble, for n = 00, shows r; values corre.sponding to the ~ 
values obtained from the area table of the normal curve (Table VI). 

n P ~ .9!.8 .7 .6 .5 1.4 .3 .2 .1 .05 I .02 .01 
----,---------- --- --- --- --- ---1--- ---. 

1 .158 .325 .510 .727 1.000 :1.376 1.963 3.078 6.314 12.706 31. 821 63.657 
2 .142 .289 .445 .617 .816 1 061 1.386 1.886 2.920 4.303 6.965 9.925 
3 .137 .277 .424 .584 .765 .978 1 250 1.638 2.353 3.182 4.541 5.841 
4 .134 .271 .414 .569 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 
5 .132 .267 .408 .559 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 

> 

6 .131 .265 .404 .553 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 
7 .130 .263 .402 .549 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 
8 130 .262 .399 546 .706 .889 1.108 1 397 1.860 2.306 2.896 3.355 
9 129 261 .398 .543 .703 .883 1.100 1.383 1 833 2.~62 2.821 3.250 

10 129 .260 .397 .542 .700 .879 1.09iY -~.372 1.812 2.228 2 764 3.169 . 
11 .129 .260 .396 .540 .697 .876 1.088 1.363 1,796 2.201 2.718 3.106 
12 .128 259 .395 .539 .695 .873 1.083 1.356 1.782 2.179 2.681 3.055 
13 .128 259 394 .538 .694 .870 1.079 1.350 1.771 2.160 2.650 3 012 
14 .128 258 .393 .537 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 
15 .128 .258 .393 .536 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 

16 .128 258 .392 .535 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 
17 .128 257 .392 .534 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 
18 .127 .257 .392 .534 .688 .862 1 067 1.330 1.734 2 101 2.552 2.878 
19 .127 .257 .391 .533 .688 .861 1.066 1.328 1.729 2 093 2.539 2.861 
20 .127 .257 .391 .533 .687 .860 1.064 1.325 1. 725 2.086 2.528 2.845 

21 .127 .257 .391 .532 .686 .859 1.063 1.323 1.721 2 080 2.518 2.831 
22 .127 .256 390 .532 .686 .858 1.061 1.321 1..717 2 074 2 508 2.819 
23 ,127 .256 .390 .532 .685 .858 1.060 1 319 1.714 2069 2 500 2.807 
24 ~127 .256 .390 .531 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 
25 .127 .256 .390 .531 .684 .856 1 058 1.316 1.708 2 .. 060 2.485 2.787 

26 .127 .256 390 .531 .684 .856 1.058 1.315 1. 706 2.056 2.47~ 2.779 
27 .127 .256 389 .531 .684 .855 1.057 1.314 1. 703 2.052 24\' 2.771 
28 .127 .256 .389 .530 .683 .855 1.056 1.313 1 701 2.048 2.467 2.763 
29 .127 .256 .389 .530 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 
30 .127 .256 .389 .530 .683 .854 1.055 1.310 1.697 2.042 2:457 2.750 

"" .12566 .25335 38532 .52440 .67449 .84162 1.03643 1.28155 1. 64485 i. 95996 2.32634 2.57582 

• Reprinted from Table IV of R. A. Fisher, Statistical Method. for Research Worker. (Oliver & Boyd, Ltd., 
Edinburgh), by kind permission of the author and publishers. 
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TABLE VIII.-TABLE OF x2* 
The column headings in. this table are probabilities. The figures in the 

body of. the table are values of x 2• The stub of the table shows n, the 
degrees of freedom. The probability of a value of x' equal to or. greater 
than the valu~ specifi"d is given. Thus for n = 10, P(x2 ;;; 3.940) is .95; 
and accordingly by subtraction P(x· ~ 3.940) is 1.00 - .95 = .05. 

n P = .99 .98 .95 .90 .80 .70 .50 .30 .20 .10 .05 .02 .01 

-- --- --- -------- -- -- ------ -- -_. 
1 .000157 .000628 .00393 .0158 .0642 .148 .455 1.074 1.642 2.706 3.841 5.412 6.635 
2 .0201 .0404 .103 .211 .446 .713 1.386 2.408 3.219 4.605 5.991 7.824 9.210 
3 .115 .185 .352 .584 '1.005 1.424 2.3'ti6 3.665 4.642 6.251 7.815 9.837 11:341 
4 .297 .429 .711 1.064 1.649 2.195 3.3b7 4.878 5.989 7.779 9.488 11.668 13.277 
5 .554 .752 1.145 1.610 2.343 3.000 4.35'1 6.064 7.289 9.236 11.070 13.388 15.086 

6 .872 1.134 1.635 2.204 3.070 3.828 5.348 7.231 8.058 10.645 12.592 15.033 16.812 
7 1.239 1.564 2.167 2.833 3.822 4.671 6.346 8.383 9.803 12.017 14.067 16.622 18.475 
8 1.646 2.032 2.733 3.490 4.594 5.527 7.344 9.524 11.030 13.362 15.507 18.168 20.090 
9 2.088 2.532 3.325 4.168 5.380 6.393 8.343 10.656 12.242 14.684 16.919 19.679 21.666 

10 2.558 3.059 3.940 4.865 6.179 7.267 9.342 11.781 13.442 15.987 18.307 21.161 23.209 

11 3.053 3.609 4.575 5.578 6.989 8.148 10.341 12.899 14.631 17.275 19.675 22.618 24.725 
12 3.571 4.178 5.226 6.304 7.807 9.034 11.340 14.011 15".812 18.549 21.026 24.054 26.217 
13 4.107 4.765 5.892 7.042 8.634 9.926 12.340 15.119 16.985 19.812 22.362 25.472 27.688 
14 4.660 b.368 6.571 7.790 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141 
15 5.229 5.985 7.261 8.547 10.307 11.721 14.339 17.322 19.311 22.307 24.996 28.259 30.578 

16 5.812 6.614 7.962 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 29.633 32.000 
17 ' 6.408 7.255 8.672 10.085 12.002 13.531 t6.338 19.511 21.615 24.769 27.587 30.995 33.409 
18 7.015 7.906 9.390 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 32.346 34.805 
19 7.633 8.567 10.117 - 11.651 13.716 15.352 18.338 21.689 23.900 27.204 30.144 33.687 36.191 
20 8.260 9.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37.566 

21 8.897 9.915 11.591 13.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 36.343 38.932 
22 9.542 10.600 12.338 14.041 16.314 18.101 21.337 24.939 27.301 30.813 33.924 37.659 40.289 
23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.968 41.638 
24 10.856 11.992 13.848 15.659- 18.062 9.943 23.337 27.096 29.553 33.196 36.415 40.270 42.980 
25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 3,7.652 41.566 44.314 

26 12.198 13.409 15.379 17.292 19.820 21.792 25.336 29.246 31.795 35.563 38.885 42.856 45.642 
27 12.879 14.125 16.151 18.114 20.703 22.719 26.336 30.319 32.912 36.741 40.113 44.140 46.963 
28 13.565 14.847 16.928 18.939 21.588 23.647 27.336

1

31.391 34.027 37.91641.337 45.419 48.278 
29 14.256 15.574 17.708 19.768 22.475 24.577 28.836 32.461 85.139 89.087 42.557 46.693 49.588 
30 14.953 16.306 18.493 20.599 23.364 25.508 29.336 33.530 36.250 40.25Y3.773 47.962 50.892 

For larger values of n, the expression .y2x' - v'2n=1 may be used-as a normal deviate with unit stan
dard error . 

• Reprinted from Table III of R. A. FiBber, Statistical M ethock for Research Workers (Oliver &; Boyd, Ltd., 
Edinburgh), by kind permission of the author and publishers. 
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TABLE X.-5 PER CENT AND 10 PlllR CENT POINTS OF THE SAMPLING DIS

TRIBUTION OF 'v'/i, FOR SAMPLES OF VARIOUS SIZES' 

(Approximate values) 

Size of 
Values of VIii for p(,/ih ~) 

sample 
.05 .10 

---
25 .711 1.061 
30 .661 .982 
35 .621 .921 
40 .587 .869 
45 .558 .825 
50 .533 .787 
60 .492 .723 
70 .459 .673 
80 .432 .631 
90 .409 .596 

100 .,389 .567 

1 Reproduced from P. Williams, "Note on the Sampling Distribution of VJh, Where the 
Population Is Normal," Biometrika, Vol. 27 (1935), pp. 269-271. 

TABLE XL-LowER AND UPPER 1 PER CENT AND 5 PER\CENT POINTS OF 

1.'HE SAMPLING DrS'l'RIBUTION O~' fJ2 FOR SAMPLES ,OF VARIOUS SI~ESi 
(Approximate values) 

Values of {l, 

Size of sample For P(fJ,;:;; ) For P(fJ,;';) . 
.01 .05 .05 .01 

100 2.18 2.35 3.77 4.39 
125 2.24 2.40 3.70 4.24 
HiD 2.29 2.45 3.65 4.14 
175 2.33 2.48 3.61 4.05 
200 2.37 2.51 3.57 3.98 

250 2.42 2.55 3.52 '3.87 
300 2.46 2.59 3.41 3.79 
400 2.52 2.64 3.41 3.67 
500 7·57 2.67 3.37 3.60 
800 2.65 2.74 3.29 3.46 

1,000 2.68 2.76 3.26 3.41 
2,000 2.77 2.83 3.18 3.28 

~ 5,000 2.85 '2.89 3.12 3.17 

1 Abridged from E. S. Pearson, "A Further Development of Tests for Normality," 
Biometrika, Vol. 22.(193(}-1931), pp. 239-249. Table assumes population to be normal. 
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TABLE XII.-LoWER AND UPPER 1 PER CENT, 5 PER CENT, AND 10 PER 

CENT POINTS OF SAMPLING DISTRIBUTION OF a -= A.D';rr FOR 

SAMPLES OF VARIOUS SIZESl 

(Approximate values) 

• Values of a 

For Pea ;ii ) ForP(a!1; ) 

.01 .05 .10 .01 .05 .10 

10 .6675 .7153 .7409 .8899 .9073 .9359 
15 .6829 .7236 .7452 .8733 .8884 .9137 
20 .6950 .7304 .7495 .8631 .8768 .9001 
25 .7040 .7360 .7530 .8570 .8686 .8901 
30 .7110 .7404 .7559 .8511 .8625 .8827 

35 .7167 .7440 .7583 .8468 .8578 .8769 
40 .7216 .7470 '.7604 .8436 .8540 .8722 
45 .7256 .7496 .7621 .8409 .8508 .. 8682 
50 .7291 .7518 .('636 .8385 .8481 .8648 
60, .7347 .7554 .7662 .8349 .8434 .859~ 

70 .7393 .7583 .7683 .8321 .8403 .8549 
80 .7430 .7607 ,.7700 .8298 .8376 .8515 
90 .7460 . 7626 .7714 . .8279 .8353 .8484 

100 .7487 .7644 .7726 .8264 .8344 .8460 
200 .7629 .7738 ·.7796 .:8178 .8229 .8322 

3QO .7693 .7781 .7828 .8140 .8183 .8260 

1 Abridged from R. C. Geary. "Moments of the Ratio of the Mean Deviation to the 
Standard Deviation for Normal Samples," Biometrika, Vol. 28 (1936), pp. 295-307. 

* The size of sample is N, and n = N - 1. 
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TABLE XIII.-SAMPLING DISTRffiUTION OF THE RANGE W 
u 

Lower tail of distribution Upper tail of distribution 

Mean 
pew;;;;) P(w~) 

N ant~ Uw w 

.001 .005 .010 .025 .050 .100 .100 .050 .025 • OlD .005 .001 

--- ----- -- -- -- -- ---- ------ -- -- ----
2 1.128 .886 .853 .00 .01 .02 .04 .09 .18 2.33 2.77 3.17' 3.64 3.97 4.65 
3 1.693 

. 
.51ll .888 .06 .13 .19 .30 .43 .62 2.90 3.31 3.68 4.12 4.42 5.06 

4 2.059 .486 .880 .20 .34 .43 .59 .76 .98 3.24 3.63 3.98 4.40 4.69 ~.31 

5 2.326 .430' .864 .37 .55 .66 .85 1.03 1.26 3.48 3.86 4.20 4.60 4.89 5.48 
6 2.534 .395 .848 .54 .75 .87 1.06 1.25 1.49 3.66 4"03 4.36 4.76 5.03 5.62 
7 2.704 .370 .833 .69 .92 1.05 1.25

1

1.44 1.68 3.81 4.17 4.49 4.88 5.15 5.73 

8 2.847 .351 .820 .83 1.08 1.20 1.411.60 1.83 3,93 4.29 4.61 4.99 5.26 5.82 
9 2.970 .337 .808 .96 1.21 1.34 1.55 1. 74 1.97 4.04 4.39 4.70 5.08 5.34 5.9Q 

10 3.078 .325 .797 1.08 1.33 1.47 1.67 1.86 2.09 4. ~3 4.47 4.79 5.16 5.42 5.97 

11 3.173 .315 .787 1.20 1.45 1.58 1. 78 1.97 2.20 4.21 4.55 4.86 5.23 5.49 6.04 
12 3.258 .307 .778 1.30 1.55 1.68 1.88 2.07 2.30 4.29 4.62 4.92 5.29 5.54 6.09 
13 3.336 .300 .770 1.38 1.64 1. 77 1.97 2.16 2.39 4.35 4.69 4.99 5.35 5.60 6.15 

14 3.407 .294 .762 1.47 1. 72 1.86 2.06 2.24 2.47 4.41 4.74 5.04 5.40 5.65 B.20 
15 3.472 .288 .755 1.55 1.80 1.93 2.14 2.32 2.54 4.47 4.80 5.09 5.45 5.70 6.24 
16 '3:532 .283 .749 1.63 1. 88 2.01 2.21 2.39 2.61 4.52 4.85 5.14 5.49 5.74 6.28 

17 3.588 .279 .743 1.69 1. 94 2.07 2,27 2.45 2.67 4.57 4.89 5.18 5.54 5.79 6.31 
18 3.640 .275 .738 1. 75 2.01 2.14 2.34 2.51 2.73 4.61 4.93 5.22 5.58 5.82 6.35 
19 3.689 .271 .733 1.82 2.07 2.20 2.39 2.57 2.79 4;.9>5 4.97 5.26 5.61 5.86 6:38 

20 3.735 .268 .729 1.88 2.13 2.25 2.45 2.63 2.84 4.69 5.01 5.30 5.65 5.89 6.41 

* Reproduced by permission from E. S. Pearson's" The Probability rAtegral of the Range 
in Samples of-N Observations from a Normal Population," Biomelrika, Vol. 32 (1941-1942), 
pp. 301-308; and" The Percentage Limits for the Distribution of Range in Samples from a 
Normal PopUlation," ibid., Vol. 24 (1932), pp.·404-417. Table 2 in Biometrika, Vol. 32, 
(1941-1942), p. 308, has been extended from N = 12 to N = 20 by interpolating for the 
necessary values in Table 1, pp. 302-307, of the same article. The values for the mean'w 
and the standard deviation of w were obtained from a table in Biometrika, Vol. 24 (1932), 
p. 416. It is to be noted that X n refers to the largest and X 1 to the smallest X in the 
s~mple. -

In 1925, tables giving the expected or mean value and the standard deviation of range 
in random samples from a normal population wore cpJculntcd by L. H. C. Tippett, Depart
ment of Applied Statistics, University College, London. Since the probability distribution 
!n(W) is itself far from normal in form, it was evident that its mean and standard deviation 
alone would not provide all the information generally needed in practice. Tippett included 
in his paper some values of the constants 131 and Ii, of the distribution, and his work was 
extended by E. S. Pearson in 1926 and 1932. E. S. Pearson also developed an approximate 
method of determining probability levels for wand provided some provisional tables of 
these. Finally, in 1942, a full and accurate table of the probability integral of the range 
was completed and published in the article cited below. The actual method of computa
tion was planned by H. O. Hartley, and the caloulations were carried out under his super
vision by Scientific -Computing Service, Ltd. The scope of the main table, like that of 
Table XIII, was limited to N = 20. As N increases beyond this value, there is an inCreasing 
risk that the table may be misleading in praotioe, since /n(W) becomes very sensitive to 
relatively slight departures from normality in the taiis of the population distribution. Ct. 
E. S. Pearson, "The Probably Integral q£ the Range in Samples o£ n Observations from a 
Normal PopUlation," Biometrika, Vol. 32 (1941-1942), p. 308. 
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TA1ILE XlV.-HYPERllOLIC TANGENTS1 

---

z r=tanhz z r=tnnhz z r=="tanhz 

0.00 0.00000 0.55 0.50052 1.10 0.80050 
0.10 .0lDOO 0,56 .50798 1.11 .80406 
0.02 .02000 0.57 .51536 1.12 .80757 
0.03 .02999 0.58 .52267 1.13 .81102 
0.04 .03998 0.59 .52990 1.14 .81441 

0.05 0.04996 0.60 0.53705 1.15 0.81775 
0.06 .05993 0.61 .54413 1.16 .82104 
0.07 .06989 0.62 .55113 1.17 .82427 
0.08 .07983 O.~ .55805 1.18 .82745 
0.09 .08976 O. 4 .56490 1.19 .83058 

0.10 0.09967 0.65 , 0.57167 1.20 0.83365 
0.11 .10956 0.66 .57836 1.21 .83668 
0.12 .11943 0.67 .58498 1.22 .83965 
0.13 .12927 0.68 .59152 1.23 .84258 
0.14 .13909 0.69 .59798 1.24 .84546 

0.15 0.14889 0.70 0.60437 1.25 0.84828 
0.16 .15865 0.71 .61068 1.26 .85106 
0.17 .16838 0.12 .61691 1.27 .85380 
0.18 .17808 0.73 .62307 1.28 .85648 
0.19 .18775 0.74 .62915 1.29 .85913 

0.20 0.19738 0.75 0.63515 1.30 0.86172 
0.21 .20697 0.76 .64108 1. 31 .86428 
0.22 .21652 0.77 .64693 1.32 .86678 
0.23 .22603 0.78 .65271 1.33 .86925 
0.24 .23550 0.79 .65841 1.34 .87167 

0.25 0.24492 0.80 0.66404 1.35 0.87405 
0.26 .25430 0.81 .66959 1.36 .87639 
0.27 .26362 0.82 .67601 1.37 .87869 
0.28 .27291 0.83 .68048 1.38 .88095 
0.29 .28213 0:84 .68581 1.39 .88317 

0.30 0.29131 0.85 0.69107 1.40 0.88535 
0.31 .30044 0.86 .69626 1.41 .88749 
0.32 .30951 0.87 .70137- 1.42 .88960 
0.33 .31852 0.88 .70642 1.43 .89167 
0.34 .32748 0.89 .71139 1.44 .89370 

0.35 0.33638 0.90 0.71630 1.45 0.89569 
0.36 .34521 0.91 .72113 1.46 .89765 
0.37 .35399 0.92 .72590 1.47 .89958 
0.38 .36271 0.93 .73059 1.48 .90147 
0.39 .37136 0.94 .73522 1.49 .90332 

0.40 0.37995 0.95 0.73978 1.50 0.90515 
0.41 .38847 0.96 .74428 1.51 .90694 
0.42 .39693 0.97 .74870 1.52 .90870' 
0.43 .40532 0.98 .75307 1.53 .91042 
0:44 .413134 0.99 ~ .75736 1.54 .91212 

0.45 0.42190 1.00 0.76159 1.55 0.91379 
0.46 .43008 1.01 .76576 1.56 .91&42 
0.47 .43820 1.02 .76987 1.57 .91703 
0.48 .44624 1.03 .77391 1.58 .91860 
0.49 .45422 1.04 .77789 1.59 .92015 

0.50 0.46212 1.05 0.78181 1.60 0.92167 
0.51 .46995 1.05 .78566 1.61 .92316 
0.52 .47770 1.07 .78946 1.62 .92462 
0.53 .48538 1.08 .79320 1.63 .92606 
0.54 .49299 1.09 .79688 1.64 .92747 

1 Source: HODGMAN, CHARLES C., Mathematical Tables from Handbook 0/ Chemistry and 
Physics (1941). 
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TABLE XIV.-HYPERBOLlC TANGENTS.-(Continued) 

• .. =tanhz • T-tanhz . ' r =, tanh • 

1.65 0.92886 2.20 0.97574 2.75 0.99186 
1.66 .93022 2.21 .97622 2.76 .99202 
1.67 .93155 2.22 .97668 2.77 .99218 
1.68 .93286 2.23 .97714 2.78 .99233 
1.69 .93415 2.24 .97759 2.79 .99248 , 
1.70 0.93541 2.25 0.97803 2.80 0.99263 
1.71 .93665 2.26 .97846 ·2.81 , .99278 
1.72 .9378(; 2.27 .97888 2.82 .99292 
1.73 .9390(; 2.28 .97929 2.83 .99306 
1.74 .940211 2.29 .97970 2.84 .99320 

1.75 0.94138 2.30 0.98010 2.85 0.99333 
1.76 .94250 2.31 .98049 2..86 - .99346 
f.77 .94361 2.32 .98087 2.87 .99359 
1.78 .94470 2.33 .98124 '2.88 .99372 
1.79 .94575 2.34 .98161 2.89 .99384 

1.80 0.94681 2.35 0.98197 2.90 0.99396 
1.81 .94783 2.36 .98233 2.91 .99408 
1.82 .94884 2.37 .98267 2.92 .99420 
1.83 .94983 2.38 .98301 2.93 .99431 
1.84 .95080 2.39 .98335 2.94 .99443 

1.85 0.95175 2.40 0.98367 2.95 0.99454 
1.86 .95268 2.41 .98400 2.96 .99464 
1.87 .95359 2.42 .99431 2.97 .99475 
1.88 .95449 2.43 .98462 ~ ~:~g .99485 
1.89 .95537 2.44 .98492 , .99496 

1.90 0.95624 2.45 0.98522 3.0 0.99505 
1.91 .95709 2.46 .98551 3.1 \ .99595 
1.92 .95792 2.47 .98579 {.2 .99668 
1.93 .95873 2.48 .98607 .3 .99128 
1.94 .95953 2.49 .98635 3.4 .99777 

1.95 0.96032 2.50 0.98661 3.5 0.99818 
1.96 .96109 2.51 .98688 3.6 .99851 
1.97 .96185 2.52 .98714 3.7 .99878 
1.98 .96259 2.63 .98739 3.8 .99900 
1.99 .96331 2.54 .98764 3.9 .99918 

2.00 0.96403 2.55 0.98788 4.0 0.99933 
2.01 .96473 2.56 .98812 4.1 .99945 
2.02 .96541 2.57 .98835 4.2 .99955 
2.03 .96609 2.58 .98858 4.3 .99963 
2.04 .96675 2.59 .98881 4.4 .99970 

2.05 0.96740 2.60 0.98903 4.5 0.99975 
~.06 .96803 2.61 .98924 4.6 .99980 

2.07 .96865 2.62 .98946 4.7 .99983 
2.08 .96926 2.63 .98966 4.8 .99986 
2.09 .96986 2.64 .98987 4.9 .99989 

2.10 0.97045 2.65 0.99001 5.0 0.99991 
2.11 .97103 2.66 .99026 
2.12 .97159 2.67 .99045. 
2.13 .97215 2.6& - .99064 
2.14 .97269 2.69 .99083 

2.15 0.97323 2.70 0.99101 
2.16 .97375 2.71 .99118 
2.17 .97426 2.72 .99136 
2.18 .97477 2.73 .99153 
2.19 .97526 2.74 ,.99170 
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A 

Analysis of variance, chance varia
tion, measure of, more 
than one basis of classifica
tion, more than one 'case 
in each class, 435-436 

single case in each class, 434 
one basis of classification, 434 

F distribution, use of, more than 
one basis of classification, 
more than one case in each 
class, 437-438, 441-442 

one case in each class" 431, 
433 

selection of region of rejection, 
428 

single basis of classification, 425 
testing correlation coe'fficients, 

etc., 443 
testing linearity, 444 

"interaction," 435-436 
more than one basis of classifica

tion, more than one case 
in each' class, analysis of 
variance table, 441 

numerical analysis, 438-442 
study of results, 441-442 

. theoretical basis, 435-438 
single case in each class, analy

sis of variance table, 433 
comparison of results with 

those of single basis, 434 
numerical analysis, 431-433 
theoretical basis, 429-431 

nonnormal propulation, 449-450 
remainder variance, more than 

one case in each class, 435-
436 

one case in each class, 429-433 
487 

Analysis of variance, single basis 
of classification, numerical 
analysis, 425-128 

theoretical basis, 423-425 
worksheet for calculating sums 

of squares, 427 
tests of correlation coefficients 

as, 442;-444 . 
tests of linearity, 444 

Asymmetrical binomial distribution, 
betas, formulas for, 45 

derivation, 67 
characteristics, 44-46 
derivation, 40-44 
as distribution of sample per-

centages, 190 
effect of changing N, 49 
formula, 43 
graphs, 44, 45 
mean, formula for, 45 

derivation, 65-66 
mode, formula for, 45 

derivation, 68 
and the normal curve, 46-47, 

68-74 
numerical examples, 42, 43 
and Pearson's type III curve, 

47-50 
relative slope, 76-77 

'second approximation, 72-73 
standard deviation, formula for, 

45 
derivation, 66-67 

Average deviation, 12-13 
Averages (see individual' titles such 

as: Mean, Median, and Mode) 

B 

Beta coefficients, (31 and f32, 10-11 
sampling distribution of Vfj;, 

242-244 
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Beta coefficients, sampling distri
buti6n of v{i;., table of' .05 and 
.10 points, 480 

sampling distribution of /32, 242-
245 

table of .01 and .05 points, 480 
standard error of v{i;., 242, 244 
standard error of /32, 242, 244 

Binomial 'distribution (see Sym
metrical binomial distribution; 
Asymmetrical binomial dis
tribution) 

Binomial expansion, 25-26 
Bivariate frequency distribution, 

13-22 
Boldfaced type, 10 
Breve, 10 

C 

Calculus of Observations, The, 93 
Camp, B. H., 454-
Chi square (x?) distribution (see 

Frequency curves, chi square 
(x2) distribution) 

Chi square test (see Frequency 
curves, testing goodness of fit, 
by x2 test) 

Coefficient, of correlation (see Cor
relation, coefficient of) 

of mUltiple correlation (see Mul
tiple correlation, coefficient 
of) 

of risk' (see Statistical inference, 
testing hypotheses, coefficient 
of risk) 

Comoina tions{ 24-25 
Confidence coefficient (see Statis

tical inference, confidence iii
tervals, confidence coefficient) 

Confidence intervals (see Statistical 
inference, confidence 'intervals) 

Contingency tables, 337, 422n. 
(See also Independence, test of) 

two-fold classification, 395-397 
Correlation, coefficient of, Pear

Bonian, 19 
and the breakup of variance, 20-21 
confidence limits for, 301-302 

Correlation, coefficient' of, Pear
sonian, ml1ximum likelihood 
"estimate of, 302-303 

as measure of goodness of fit, 20 
as measure of proportion of total 

variance, 21 
relationship to first-order variance, 

19-20 
sampling distribution, 298-300 
significance, 21 
testing hypotheses about, 300-301 

Correlation index, testing signifi
cance of; 306 

Correlation ratio, 21-22 
testing significance of, 306 

Cumulants, of contributory causes, 
relationship to cumulants of 
variable, 83, 94-96 

definition of, 83 
as s,emi-invariants, 83 

D 

Danish c~nsus (1923), 184 
Deciles, 8 
Degrees of freed0F.' in analysis of 

variance, 424, 434, 441 
in a contingency table, 337 
explained, 314, 318-319 
fitting a frequency curve, 332-333 
identified with n, 327-328 

Density of samples, in distribution 
of al~ possible samples, 256-258 

Dependent variable, estimation of, 
from sample line or plane 
of regression, 387-388 

with allowance for sampling 
errors, 388-389 

Design of experiments, 162 
Dispersion, subnormal and super

normal, 422n. 

E 

Elderton, W. P., 128, 134, 148 
Ezekiel, M., 305 

F distribution (see Frequency curves, 
F distributiQn) 
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First-order standard deviation, 18-
19' (See also Higher-order vari
ances) 

defh;_itioJ)., 18 
relationship' to r, 19-20 

Fisher; Arne, 92 
Fisher, R. A., 1.1, 114n., 242, 299 
Flat space, 253 
Frequency curves, chi square .(x2) 

distribution, description, 111-
112 

formula, 11.1 
graphs, 112 
mean, 112 
mode, 112 
probabilities, table of, 475 
standard deviation, 112 

explanation of, 3-5 
F 'distrib~tlon, description, 112-

114 
formula, 113 
graph, 113 
mean, 113 
jIlode, 113 
probabilities, table of, 476-479 

. standard deviation, 113 . 
fitting' .of, Gram-Charlier curves, 

133-134 
nonnormal curves, 132-137 
normal curve, 1-31-132 
P.earsonian curves, 134-137 
sampling curves, 137 
Sheppard's corrections, 10, 12, 

131-132, 134 
Gram-Charlier (see Gram-Charlier 

frequency _curves) 
graph, 4 
graphing of, labeling of vertical 

scale, 110n. 
normal curve, 115-116 
other curves, 118-119 
t, x2 and F curves, 116-117 

nO)lnormal, examples .from every
day life, 105-106 

examples from sampling analy
sis, 107-114 

normal .(see Normal frequency 
curves) 

Frequency curves, Pearsonian (see 
Pearsonian frequency curves) 

probabilities, computation of, 119-
120 

for x2 curve, 125-126 
for F curve, 127 
for normal curve, 120--123 
for other curves, 127-131 
for t curve, 123-124 , 
by quadrature formulas, 128 

as probability distributions, 28 
sampling distributions (see Sam

pling distribution) 
distribution, approximation by 

normal curve for n between 
30 and 100, 401n. 

description, 109-110 
formula, 111 
graph,110 
kurtosis, 111 
mean, 111 
probabilities, table"'of, 474 
variance, 111 

testing goodness of fit, 331-333 
by x,2 test, Gram-Charlier 

curves, 144-145 
normal curve, 139-142 
Pearsonian curves, 151, 152 

by graphic comparison, Gram
Charlier curves, 142-144 

normal curve, 137-139 
Pearsonian curves, 146-151 

theory of, conditions leading to 
nonnormality, 1{l0--105 

conditions leading to normality, 
37-39, 100 

contributory causes, Gram
Charlier curves, 83-84, 90--
92,93-98 

nonnormal curves in general, 
10G-l03 

- normal curve, 35-39, 100 
Pearsonian curves,. 60-65 
sampling distribution of the 

mean, 107-108 
summ~ry, 1OG-105 

z distribution, 114n. 
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Frequency Curves and Correlation, 
134, 148 

Frequency distribntions, 1-5 
bivariate, 13-14 

illustration of, 13 
Frequency series, continuous, 1-2 

discrete, 1 
Fourier integral theorem, 93, 97 

G 

Galton, Francis, 18 
Gamma function, 78-79n., 254-255 
Goodness of fit, of frequency curves 

(see Frequency curves, testing 
goodness of fit) 

,Gram-Charlier frequency curves, 
assumptions, 82-83 

comparison with Pearsoniah 
curves, 90-92 

comparison with Pearsonian type 
III curve, 82 

components of, 85-90 
combinations of, 86, 87, 88, 89 
graphs, 85, 87 

derivation, 82-8q, 92-99 
formula for type A, 84 
general significance, 90-92 
probabilities, computation of, 145-

146 
relationship to asymmetrical bi

nomial distribution, 91-92 
type B, 90 I 

g statistics, 11-12, 243 
sampling distributions, 242-243 
standard errors, 243 

Guldberg, M. A., 454 

H 

Higher-order variances, confidence 
limits, 386-387 

definition, 18 
maximum-likelihood estimates, 

387 
sampling distribution, 385-386 
testing hypotheses about, 386 
use in estimating depertdent vari

ables, 387-390 

Histogram, 2-3 
graph, 2 
of relative frequencies, graph, 4 

Homogeneity, meaning, 101-103 
test of, 338-339 

• Hotelling, H., 452 
Hyperbo)ic tangents (table), 483-

484 . 
Hy~ergeometrical distribution, char-

acteristics, 55 
criterion for, 81 
derivation, 51-55 
as distribution, of sample per-

centages, 210-211 
formula, 54 
graph, 55 
mean, 55 
moments, 56 
numerical example, 53 
and the Pearsonian 'curves, 57-58 
relative slope, 79-81 

HypergegJIletrical series, 54n. 
Hypcrp1ane, 253 
Hypersphere, 25~ I 

Hypotheses, tes~ng of (see Statisti
cal inference, testing hypotheses) 

I 

Incomplete gamma function, 255 
Independence, Iheaning of, 334-3;35 

test of, distribution of 
~ (Ni - Npi)' 
L.i Npi 

use of, 337-338 
estimating population percent

ages, 335-337 
the null hypothesis, 334 
the problem, 333-334 . 

J 

Journal of the Royal Stati{ltical 
Society, 159 

K 

Kendall, M. G., 159, 160 
k statistics, 11-12, 242-243 
Kurtosis, 11 
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L 

Law, of large numbers, 27-28 
of small chances, 212 
of small numbers, 212 

Lel\_st squares, methoa of, 15, 374 
minimizing horizontal deviations; 

illustrated, 16 
minimizing vertical deviations, 

illustrated, 15 
Leptokurtic distributions, 11 
Lexis' analysis, 422n. 
Likelihood ratio, 345 
Linear function, sampling distri-
, bution, 108-109 

Lines of regression, 16-18 
Literary Digest poll, 157 
Logarithms, of factorials, 117 

or numbers, four-place common 
(table), 457-460 

representation by an infinite series, 
70-71n. 

M 

Mathematical Statistics, 92 
Mathematical Theory of Probabilitifs, 

92 
Maximum-likelihood estimates (see 

Statistical inference, maximum 
likelihood estimates of popula
tion parameter~) 

Mean, arithmetic, calculation, 6-7 
definition, 5-6 
joint sampling distribution of 
... mean and standard deviation, 

340-344 
sampling distribution, any pop

ulation, .107-108 
normal population, 231, 262-

263 
special nonnormal popula

tions, 445-446 
standard error, 231, 268 

geometric, 9 
harmonic, 9 

Mean value, of a sum or difference, 
formula, 392 

proof of formula, 419-420 

Means, progressions oi, 16 
charts, 14, 15 

,.Median, definition, 7 
sampling distribution, 241-242 
standard error, 242 

Meidel, M. B., 454 
Methods of Correlation Analysis, 305 
Mode, 8 
Moment coefficients, 9 
Moment generating function, 93-94 
Moments, 9 
Most powerful test, 198n. 
Multinomial distribution, 309-323 

(See also Random sampling, 
from a discrete manifold 
population, dif>tribution of 
sample percentages, and test
ing hypotheses about pi's) 

Multinomial expansion, 26 
Multiple correlation, coefficient of, 

confidence limits for, 305 
maximum-likelihood estimate, 

305-306 
testing significance of, 305 

Multivariate freque~cy distribution, 
13-14 

N 

Narumi, S., 454 
N-dimensional geometry, 253-254 
Neyman, J., 353, 362 
Nonnormality, problem oi, 445-455 

indirect attacks on, 451-455 
qualitative or semiqualitative 

methods, 451-453 
Tchebychef's and other m

equalities, 453-455 
transformation of the data, 451 

sampling distributions of various 
'statistics for specific non
normal populations, 445-448 

use of normal theory for non
normal populations, in case 
of analysis of variance, 449-
450 

in case of correlation coeffi
cients,,451 
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Nonnormality, use of normal theory 
for nonnormal populations, 
in case of means, 448-449 

in case of v'NU?-X)/o-, 449 
in case of variances, 450 

Normal frequency curve, areas under 
(table), 469-473 

characteristics, 10, 12 
conditions leading tp, 37-39 
derivation, 34-35 
derivatives of (table of 'l'a and 

'1'4), 469-473 
first approximation to binomial 

distribution, 73 
fitting of, 131-132 
formula; 35 
graph,121 
graphing of, 115-116 
ordinates of (table), 469-473 
probabilities, computl1tion of, 123-

124 
significance, 35-37 
standard form, 137-139 
testing goodness of fit, by x' test, 

139-142 
by graphic comparison, 137-139 

truncated, 104-105 
Norml1lity, determining departure 

from, by _:fitting a normal 
curve, 131-132, 137-142 

by -specil1l stl1tistics, 242--245, 
296-297 

Null hypothesis, in analysis of 
variance, 423-424, 43{}--431, 436 

in comparing two samples, 391-
392 

in testing difference between two 
sample means, 398 

percentages, 393 
varian'ces, 407-408 

in testing independerrce, 334 

P 

Pabst, Ml1rgaret R., 452 
Parameters, 5, 10 
Partial correlation, coefficient of, 

inferences about, 303-304 

Pearso~, E. S., 353, 362 
Pearson, Karl, 57, 58, 64, 134, 148, 

158,255 
Pearsonian coefficient of correlation 

(see Correlation, coefficient of, 
Pearsonian) 

Pearsonian frequency curves, equa
tions for, determination of, 
146-151 

as an explanation of nonnormal 
curves, 65 

general formula, 134 
and the hypergeometrical dis

tribution, 57-58 
computation of probabilities, 151, 

152 
relative slope, formula for, 57 
types, chart for distinguishing, 136 

criterion for distinguishing, 58, 
135 

main, 58-60 
table of, 135 
transitional, 60 
type I, graph', 59 
type III) derivation; 48-50, 

76-79, 
formula, 49 
graph,49 

type. IV, graph, 59 
Peroentage, sampling distribution, 

_ 190-194, 210, 211-212 
standard error, 190, 195, 21D-21i, 

215, 315, 319 
statistical inferences about (see 

Random sampling, from a 
discrete twofold popUlation; 
Random sampling, from a 
discrete manifold population) 

Percentiles, 8 t 

Permutations, ,23 
Platykurtic distributions, 11 
Poisson distribution, betas, 215, 217 

derivation, 215-216 
formula, 212 
mean, 215 

derivation, 217 
moments, 217-218 
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Poisson distribution, and the normal 
distribution, 215, 217 

as sampling distribution of per
centages, 211-213 

testing hypotheses with, 213-215 
variance, 215 

derivation, 217-218 
Polls, public opinion (8ee Random 

sampling, of public opinion) 
Polygons of regression, i6 
Population, bivariate, samples from. 

298 
meaning of, 5 
types, 154-155 

Power of a test, 198n. 
Probability, definition of mathe-

matical probability, 26-27 
dependent probabilities, 30--31 
empirical approximated, 27 
equations involving, 28-29 
independent probabilities, 30 
and law of large numbers, 27-28 
probability set, 26-27, 30 

Probability calculus, addition the
orem,29 

meaning of mutually exclusive in, 
29 

multiplication theorem in, 30 
dependent probabilities, 30-31 
independent probabilities, 30 

Probability curves (.se'e Frequency 
curves) 

Probability distributions, definition, 
28 • 

Probability set, 26, 30 
derived or second order, 30 

Progressions of the means (see 
Means, progressions of) 

Public opinion polls (see Random 
sampling, of public opinion) 

Q 

Quadrature formulas, 128 
Quality control, use of range in, 

295-296 
Quartiles, 7-8 

R 

Random sampling, from a discrete 
manifold population, assump
tions, 308-309 

confidence zone for pi's, 328-329 
distribution of sample 

" ~ (N, - Np,)2, 
Li Np. 

explanation, 323-326 
distribution of sample per

centages, derivation, 309-
312 

formula, 311 
illustration of a skewed dis

tribution, 317-319 
illustration of symmetrical 

distribution, 312-314 
mean of, 314-317 
standard deviation of, 314-

317 
maximum-likelihood estimates 

of pi's, 329-330 
testing hypotheses about pi's, 

using distribution of' 

~ (N,-Npi)', 326-328 330-
~ Np. ' 

331 
using multinomial distribu

tion, 319-323 
from a discrete twofold popula

tion, assumptions, 186-187 
confidence coefficient and the 

confidence interval, 207-208 
distribution of difference be

tween two sample percent
ages, 393-394 

distribution of sample per
centages, derivation, 188-
190 

formula, 190 
and the population percent

age, 191-194 
and the size .of the sample, 

190-191 
estimation of population per

centage, confidence inter
vals, 202-207 
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Random sampling, from a discrete 
twofold population, esti
mation of population per
centage, maximum likeli
hood estimate, 208-209 

size of sample and the con
fidence interval, 207 

small population percentage, 
211-215 

small populations, 209-211 
testing the difference between 

two sample percentages, 
392-395 

alternative metho<;i, 395-397 
testing hypotheses, coefficient 

of risk, 195 
regions of rejection, 195-201 
the test, 2Q2 

from a normal population, con
fidence limits for 41', 287-290 

confidence limits for X, rela
tionship between intervai, 
coefficient, and N, 272-273 

41 known, 269-272 
d unknown, 280-283, 284 

distribution of all possible sam
ples, derivation, 255-256 

geometrical representation, 
256-258 

properties, 257-259 
in terms of their means and 

variances, 259-262 
distribution of samples of N -= 2, 

derivation, 221-224, 246-
247 

geometrical measurement of 
"';N (X - X) /u, 228-229 

geometrical measurement of 
cr, 226-228 

geometrical measurement of 
cr', 226-228, 248 

geometrical measurement or 
X, 225-226, 248 

numerical illustration, facing 
224 

properties, 224-229, 247-248 
in terms of their means and 

variances, 248-250 

Random sampling, from a normal 
population, distribution of 
sample a's (-=A.D./cr), 
244-245 

use in· testing departure from 
normality, 296-297 

distribution of sample means, 
derivation, 262-263 

fotInula, 231 
(N -= 2), derivation, 229-231, 

250-251 
use in making inferences 

about population mean, 
267-273 

distribution of sample medians, 
241-242 

distribution of sample 
v'N (X - X)/tf, 

derivation, 264-266 
formula, 241 

~ (N = 2), derivation, 236-
241, 252-253 

use \n making inferences 
about population mean, 
273-284 

distribution of sample ranges, 
242 

use in analysis of variance, 
295 

use in making inferences 
about population standard 
deviation, 294-295 

use in quality control, 295-
296 • 

distribution of sample standard 
deviations, derivation, 264 

formula, 236 
(N -= 2), derivation, 236 

distribution of sample variances, 
derivation, 263-264 

formula, 234 
(N -= 2), derivation, 232-

233, 251-252 
relation to x2 distribution, 

234-236, 264 
use in making inferences 

about population variance; 
284-294 
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Random sampling, from a normal 
population, distributions of 
g sta tis tics, 243 

use in testing departure from 
normality, 296-297 

distributions of sample betas, 
242, 243-245 

use in testing departure from 
normality, 296-297 

joint confidence zone for X 
and 0, 366-370 

joint distribution of means 
and standard deviations, 
derivation, 340--344 

formula, 344 
numerical illustrations, 343, 

346 
joint maximum-likelihood esti

mates of X and d, 370--371 
maximum-likelihood estimate of 

0 2 , 290--294 
maximum-likelihood estimate of 

X, d known, 273 
d unknown, 283-284 

testing departures from nor
mality, by use of /31, /3z, and 
a, 296-297 

testing difference between 
means of two correlated sam
ples, 403-406 

testing difference between 
means of two independent 
samples, a common known 
d,398--400 

a common unknown d, 400--
402 ~ 

unequal d's, 403 
testing the difference between 

variances of two inde
pendent samples, both di
rections considered, 411-
413 

only one direction considered, 
406-411 

t~sting hypotheses about both 
X and d, 344-366 

equations for A contours, 353 

Random sampling, from a normal 
population, testing hy
potheses about both X and 
el, lambda (A) probability 
tables, 361, 362 

regions of rejection, 344-361 
using corner region, 364-366 
using A contours, 345-354 

testing hypotheses about clZ, 
284-287, 289-290 

testing hypotheseS' about X, 0 

known, 267-269 
d known compared with 0 

unknown, 277-279 
d unknown, 273-276, 284 

testing whether two samples 
are from same population, 
413-416 

from a normal bivariate popula
tion, confidence limits for, 

correlation coefficient (r), 
301-302 

regression parameters, two 
variables, 377 

more than two variables, 
380 

confidenc~ limits for Xl, 387-
390 

distribution of regression sta
tistics, 375-376 

distribution of sample correla
tion coefficients, 298-300 

distributlon of sample lines of 
regression, 380-381 

distribution of sample z's, 299-
300 

limiting loci for population 
line of regression, 382-384 

maximum-likelihood estimate of 
correlation coefficient (r), 
302-303 

regression statistics, 372--374 
testing hypothes\ls about, cor

relation coefficient (r), 300-
301 

popUlation regression para
meters, 376-377 

X;, 381-382 
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Random sampling, from a normal 
bivariate population, test
ing difference between cor
relation coefficients of two 
independent samples, 417 

regression statistics of two 
independent samples; 417-
419 

testing for linearity, 306-307 
testing significance of 1], 306 
testing significance of I, 306 

-from a normal multivariate popu
lation, confidence limits 
for, higher order variances, 
386-387 

multiple correlation coeffi
cient (R"jk , , , ), 305 

population regression para
meters, 380 

distribution of higher order 
variances, '385-386 

distrib~tions of regression sta
tistics, 377-378 

distribution of X~, 385 
inferences about partial cor

relation coefficients, 303--304 
limiting loci for the population 

plane of regression, 385 
maximum-likelihood estimates 

of; higher order variances, 
387 

multiple correlation coeffi
cient, R',jk , , , , 305-306 

regression statistics, 374--375 
testing hypotheses a}:lOut, higher 

order variance~, 386 
multiple correlation coeffi

cient R" ,I: , , . , 304--305 
a regression parameter, 378-

380 
X~, 385 

meaning, 154, 155-156 
and probability, 154 
of public opinion, 330--331 
representative, 183-184 
statistical inferences from (s,ee 

Statistical inference) 
stratified, 183--184 

Random sampling, technique of, 
mechanical randomizing de
vices, 157-158 

natural selection, 161-162 
ordinal selection, 156-157 
random sampling numbers, 159-

161 
tables of numpers, 158-159 

Random Sampling Numbers, 159 
Range, absolute, definition, 13 

relative, ,definition, 13 
sampling distribution,,242, 482 

probabilities, table of, 482 
use in quality control, 295-291i 

Rank correlation, 452-453 
Reciprocals of numbers, table, 467-

468 
Region of acceptance, 164, 
Region of rejection (see Statistical 

inference, testing hypotheses, 
region of rejection) 

Reitz, Henry L" 92 
Rob~n, G., 93 

S 

Sampling; purposive, 184--1'85 
random (see Random sampling) 
reasons for,,153--154 

Sampling distribution, of a = 
A,D,/u, 244--245 

table of .01, .01), and ,10 
points, 481 

of ...;p;, 242-244 
table of ,05 ~nd ,10 points, 480 

of fJ2, 242-245 
table of ,01 and .05 points, 480 

of the correlation coefficient (r), 
298-300 

of the difference 'betweenl two 
means, 399, 401 

percentages, 393--394 
z's, ""417 

explanation of, 164 
of g statistics, 242-243 
of a higher order variance, 385-

386 
of k statistics, 242-243 
of L, 412 
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Sa.mpling distribution, of AH, 415 
probabilities, table of, 415 

of a linear function, 108--109 
of the mean, any population, 

107-108 
normal population, 231, 262-263 
special nonnormal populations, 

445--446 
of the median, 241-242 
of the multiple correlation coeffi

cient, 304-305 
of vN (X - X) liT, nonnormal 

populations, 449, 
normal population, 241, 264-

266 
special .nonnormal populations, 

447-448 
one g~neral distribution, 11.}n. 
of partial correlation coefficient, 

303 
of a percentage, 190-194, 210, 

211-212 
of the ratio of two maximum

likelihood estimates of vari
ance, 409 

of a regression coefficient, 108--109 
of the standard deviation, nor~al 

population, 236, 264 
special nonnormal populations, 

445-447 
standard error of, 164 
of z = ta!1h-1 r, 299-300 
use of various distributions in 

making iIiferences (see Anal
ysis of variance; Random 
sampling; Statistical infer
ence) 

of the variance, nonnormal popu
lations, 450 

normal population, 234-236, 
263-264 

special nonnormal populations, 
445-447 

Semi-invariants (see Cumulants) 
Sheppard, W. F., 132 
Sheppard's corrections (see Fre

quency curves, fitting of, Shep
pard~s corrections) 

Skewness, 11 
Smith, B. Babington, 159, 160 
Squares of numbers, 100-1000 table, 

461-462 
Square roots of numbers, 100-1000 

table, 689-690 
Standard deviation, definition, 12 

first order, 18-19 
higher order, 18 
sampling distribution, 236, 264, 

445-447 
Standard error, of ~, 242, 244 

of {32, 242, 244 
definition, 164 
of the difference' between two 

sample means, 399 
percentages, 394 
regression statistics, 418 
z's, 417 

of gI, 243 
ofg2,243 
of the mean, 231, 268' 
of the median, 173, 242 
of a percentage, 190, 195,210-211, 

215, 315, 319, 
of the range, 242, 482 
of regression statistics, more than 

two variables, 378 
two variables, 375 

of a sum or difference, correlated 
variables, formula, 406 

independent variables, formula, 
392 

proof of formulas, 420-421 
of the variance, 289 
of X;, 381, 382, 385 
or z = tanh-1 r, 301 

" Statistic, 5, 181~ 
Statistical inference, confidence 

intervals, confidence coeffi
cient, 175, 176 

confidence limits, 176 
definition, 174-175 
determination of, 175--176 

arbitrary elements in, 177-
178 

effect of siz~ of sample, 179 
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Statistical inference, estimation of 
population parameters, 174-185 

maximum-likelihood estimates of 
population parameters, con
siste:qcy of, 182 

efficiency of, 182 
method, 179-182 
as "optimum" statistics, 182-

183 
as "unbiased estimates," 424 
sufficiency of, 183-
symbolic representation, 10 

sampling distributions, explana
tion, 164 

standard error, 164 
testing hypotheses, arbitrary ele-

ments in, 165-168 
caution in, 339 
coefficient of risk, 164 
effect of size of sample, 171-172 
effect of statistic selected, 

172-174 
error I, definition, 163-164 

limiting risk of, 164-168 
error II, definition, 164 

minimizing risk of, 168-171 
power of a test, 198, 199 
'the problem, 163 
region of acceptance, 164 
region of rejection, definition, 

164 
selection of, 166-171 
unbiased region, 201 

theory of, 163-185 
(See also Random sampling) 

Stirling's approximation for fac
torials, 70--71 

Symbols, table of, used in this book, 
xi 

Symmetrical binomial distribution, 
betas, 34 

Symmetrical binomillJ distribution, 
characteristics, 34 
conditions leading to, 37-38 
derivation 01, 32-33 

. formula, 33 
mean, 34 
numerical example, 33 
relative slope of, 74-75 
significance of, 35-36 
standard deviation, 34 

T 

Tables for Statisticians and Bio
metricians, 148, 149 

Tchebychef's inequality, 453:-455 
extension of, 454-455 

t distribution (see' Frequency curves, 
t distribution) 

Test of goodness of fit (see Fre
quency curves, testing good
nl,)ss of fit) 

TestIng hypothe~es (see Statistical 
inference,\ testing hypotheses) 

Test of independence (see Inde
pendence, test of) 

Tippett, L. H, C,' ,159 
Tracts for Computers, 117, 159 

U 

United States census (1940), 162 
Universe (see Population) 

W 

Whittaker, E. T., 93 
Williams, P., 244 

z 
z transformation, 299-300 






