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CORRIGENDA.

Page 4, line 16, for unelectrified (sixth word) read e]ectr]ﬁed

Page 33, line 10, for intensity re¢ad tension

Page 127, line 1, for Ad? read d2- 4

Page 128, line 7, insert 5. at beginning of line.

Page 130, line 8, for 5 read 6

Page 203, lines 5, 6-7, 24, cancel isotropic

Page 204, line 1, for V, — V, read 17,

Page 212, lines 6~7, cancel the expression in brackets.

Page 216, lines 27 and 30, cancel (39) and (40)

Page 221, line 28, for V, — V, = Vorad V, =V

Page 244, line 4, after to insert (one form of)

Page 290, line 14, for 3 read 6

Page 313, line 22, for 25 read 26

Page 426, line 9, after and insert even for small values of 7

Page 426, line 10, for comparable with read greater than a
small fraction of .

Page 441, line 29, for (9) read ()

Page 450, lines 18-19, substitute small bodies with equal and
opposite charges are made to vibrate symmetrically with (ap-
proximately) simple harmonic motion in a straight line about a
fixed point, a wave system
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PREFACE.

In this treatise I have tried to present in systematic and defi-
nite form a simple, rigorous, and thoroughly modern introduc-
tion to the fundamental principles of electromagnetic .theory,
together with some of the simpler of their more interesting and
important non-technical applications. The work makes no pre-
tense to completeness, but is written for the serious student of
physics, who will make liberal use of more detailed treatises, of
hand-books, and of journals, as occasion demands.

I am of course indebted to many books and memoirs. My
obligations are especially great, as the most cursory examination
of the book will show, to the works of Maxwell, Heaviside, and
Poynting. I am also much indebted to Professor A. G. Webster
for the use of a number of excellent diagrams from his treatise
on electrical theory.

~

S. J. BARNETT.
STANFORD UNIVERSITY, CALIFORNIA
June, 1903.
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PR

"ELEMENTS OF
ELECTROMAGNETIC THEORY.

EEIAEIRITRSAE

GENERAL ELECTROSTATIC THEORY.

1

. Electrification by Contact. Positive and Negative Charges.
Let one end of an ebonite rod and a dry woolen cloth be rubbed
o1 -trongly pressed together and then separated ; and let a second
roc ond cloth be treated in the same way : The rubbed part of
ea .. cloth will be found, on trial, to be attracted toward the
rv  d part of each rod, while the rubbed part of each cloth will
be pelled from the rubbed part of the other cloth, and the
1t :.bed part of each rod from the rubbed part of the other rod.
- .ese are examples of electric phenomena. The region in
which they are manifested is called an electric field (§ 11), and
medium which permeates this region — air and ather in the
2! ve case —and through which electric influences are trans-
r " »d is called a diclectric. The parts of the ebonite and wool
sed together are said to be electrified, or to possess electric
vges.  The two pieces of woolen cloth are said to have Z4e
irges, since they were similarly treated and since what is
>pelled from one is repelled from the other, and what is attracted
toward one is attracted toward the other. Similarly, the two
ebonite rods are said to have like charges. But the wool and the
cbonite are said to have unlike or opposite charges, since what is
repelled from one is attracted toward the other.
I
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Like ebonite and wool, any two different substances, or por-
tions of the same substance in different physical conditions,
exhibit electric properties after intimate contact and separation.
One of the bodies behaves like ebonite rubbed with wool, the
other like the wool.

An electric charge like that of wool after contact with ebonite
is called a positive charge, and a charge like that of the ebonite,
a negative charge. The terms positive and negative are justified
by the opposite properties of the two kinds of electrification, but
there is no reason except convention and resulting convenience
why the two terms should not be interchanged.:

In addition to the forces between electrified bodies, forces are
found to exist, in general, between an electrified body and an
insulator (§ 2) not electrified (Chapters IV. and VL.).

2. Conductors and Insulators. ZElectrification by Conduction.
A rod of ebonite electrified at one end exhibits electric properties
only at that end; while a rod of metal, held by an ebonite
handle and electrified at one end, becomes electrified at once
(apparently) all over its surface. Substances like the metals, by
which an electric charge is distributed with extreme rapidity, so
as to come into a state of equilibrium within (usually) a small
fraction of a second, are called electric conductors. A body
charged by connection with an electrified body through a con-
ductor, like the far end of the metal rod mentioned above, is said
to be electrified by conduction. Substances like ebonite, over or
through which an electric charge is transferred only with extreme
slowness, are called electric zusulators or non-conductors.

Among ordinary molecular substances perfect insulators and
perfect conductors do not exist, no such substance completely
and for an indefinite time preventing all transfer of electrification,
and all offering more or less obstruction to such transfer. There
is every reason to believe, however, that free aether (a “ vacuum ”’
and clean dry gases containing no (electrolytically) dissociated
molecules have the properties of a perfect insulator (Chapter IX.).
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Among substances possessing high conductivity are the metals,
graphite, and salt or acid solutions ; among those with high in-
sulating properties are (undissociated) gases, fused quartz (cold
and in the solid state), ebonite, cold glass, silk, and wool. A
substance which is an excellent insulator in one condition, how-
ever, may in another condition have the properties of a conductor.
Thus cold glass is an excellent insulator, but as the temperature
is raised its insulating properties disappear. Also, under very
great electric stress the insulating properties of all molecular
substances break down.

A body completely surrounded with insulators is said to be
insulated.

A conductor can be completely discharged by bringing it into
contact at any oze point with the inner surface of a hollow closed
conductor (§ 4), such as the walls of the room within which the
experiments are performed, provided there are no (insulated)
electrified bodies within. When connected to the walls of the
room, or the earth, the conductor is said to be carthed, From
an insulator the electrification can be entirely removed only by
applying a conductor at every electrified point, ¢. g., by immers-
ing it in a conducting gas or liquid.

3. Electrification by Induction. An insulated conductor, when
brought near an electrified body, 7. ¢., into an electric field, itself
becomes electrified. Examined by the methods of § 1, the
charges of the more remote and nearer ends of the conductor are
found to be similar and opposite, respectively, to that of the
original electrified body. A conductor electrified in this manner
is said to be electrified by znduction.

If the conductor, while still insulated, is removed from the
electric field, all signs of electrification disappear. But if, while
still in the field, it is connected with the walls, or earthed, the
electrification similar to that of the original charged body disap-
pears, while the opposite electrification of the near end remains.
If the conductor is now insulated and removed from the original
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electric field, this charge becomes more evenly distributed over
its surface (§ 42). In this manner any number of conductors
may be given charges opposite to that of a given electrified body
without, as may be proved by the method of § 5, diminishing or
increasing the latter’s electrification.

4-8. Experiments with Hollow Closed Conductors. Electric
Screens. Let A denote an insulated hollow conductor having a
closely fitting conducting lid, 5, with an insulating handle. Let
4 be connected with an electroscope or electrometer (Chapter
II1.), C, by means of which any change in the state of electri-
fication of its exterior (or interior) surface may be detected ; and
let 4 be kept closed except when another body is being intro-
duced into its cavity, or removed therefrom, or its position in-
side (or outside) altered.

4. (1) Let the electrometer be placed outside of 4. If A is
initially unelectrified, and an insulated smelectrified conductor, D,
is now introduced into A4 without touching it, the inner and outer
surfaces of A will become electrified by induction (§ 3) with
charges opposite and similar, respectively, to that of D. And
the electrification of the external surface, as indicated by the
electrometer, will be found to remain absolutely unaltered how-
soever [ is moved about within, even when it is brought into
contact with 4 ; but D, on being insulated after contact, and then
removed from A’s interior, will be found completely discharged.
This process may be repeated indefinitely, 2 always becoming
completely discharged on coming into contact with the inner
surface of 4. If A is initially electrified in any manner, the phe-
nomena will be precisely the same, except that the external
electrification and the corresponding indication of the electrom-
eter will be different.

(2) Let the electrometer be placed within A, either connected
with 4 metallically, or insulated therefrom. In this case it will
be found that if there are insulated charged bodies within 4, the
electrometer will give a certain deflection ; that if there are no
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insulated electrified bodies within 4, the electrometer will give
no deflection ; and that its indication in either case will remain
absolutely unaltered howsoever the electrification of the exterior
of A or of external bodies is changed, even if A4 is connected to
the walls of the room.

These experiments are due to Faraday, who constructed for the
purpose of performing (2) a closed conductor large enough to en-
able him to make the observations while himself inside the cavity.

An experiment similar in principle to those of Faraday, but
less general, performed earlier by Cavendish and repeated later
by Maxwell with all the precision of modern investigation, gave
identical results.

From the experiments just described it follows that, when
there is electrical equilibrium,

1. An electric charge cannot exist in the substance of a con-
ductor, or on the inner surface of a hollow closed conductor
(unless there are insulated electrified bodies within). For D, on
being removed from A; of whose substance it formed a part,
electrically, while in contact, was always unelectrified.

2. An electric field (§ 11) does not exist within the hollow
of a closed conductor (unless there are charges inside). For in
(2) the electrometer was unaffected (by induction or otherwise)
no matter what the external electrification, except when there
were insulated charges within.

3. The electric charges and electric: fields within and without a
hollow closed conductor are absolutely independent of one another.
The conducting shell thus completely screens each of these re-
gions from all static effects in the other.

4. An clectric field does not exist within the substance of a con-
ductor. See § 15,

5. Equal Charges. Two electric charges of the same sign
are, by definition, of the same magnitude if they produce the
same effect on the electrification of the vessel A when intro-
duced in succession separately.
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Similarly, two charges of opposite signs are, by definition,
equal in magnitude if they produce no effect on the electrification
of A when introduced simultaneously.

These definitions are independent of the particular closed
conductor A used, as two charges defined as equal by means of
one such vessel are found to remain equal when tested in the
same way with any other hollow closed conductor.

6. Positive and Negative Charges are Always .Developed
Simultaneously in Equal Amounts. If two bodies electrified by
contact are introduced into the vessel 4 simultaneously, the in-
dication of the electrometer remains unaltered.

If an electrified body is insulated within 4, and if an insulated
uncharged conductor is then introduced in addition, the latter
becomes electrified by induction, in conformity with § 3, but the
indication of the electrometer remains unaltered,

In these cases, therefore, positive and negative charges are
developed in equal amounts (§ 5); and in the same way it may
be shown that this is always the case, howsoever the electrifica-
tion is produced.

7. The Total Quantity of Electrification is Unaltered by Con-
duction. If the two insulated bodies of the last experiment are
brought into contact with one another while inside the vessel 4, or
if they are brought into contact with the inner surface of A4 itself,
conduction occurs, but no effect on the external electrification is
produced. From this it follows that when conduction occurs,
the total (algebraic) amount of electrification is unaltered.

Corollary. The charges induced on the inner and outer sur-
Saces of A when an dlectrified body is introduced and insulated
within, as in § 4, are cach of the same magnitude as that of the
insulated body. For when D touches A, the charges of D and
the inner surface of 4 completely disappear by conduction, since
D on removal is unelectrified ; thus their algebraic sum is zero.
And the (opposite) charges on the inner and outer surfaces,
" being induced, must, by § 6, be equal in magnitude.
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8. Electric Charges of Both Kinds Measured in Terms of a
Single Arbitrary Unit. In addition to the hollow conductor A4
of §§ 4—7, let there be provided another similar insulated vessel
B, sufficiently large to admit 4 through its opening ; and let the
conductor D be given a certain charge (suppose positive for the
sake of definiteness), which will be adopted as a provisional unit.

If now D is brought within 4 and kept insulated, the outer
surface of 4 will have unit positive charge. If 4 is brought in-
side B and then into contact with it, this charge will disappear, as
will also the charge induced on A’s inner surface, leaving the
outside of B with unit positive charge. If 4 is now removed
from A’s interior and then D from A4, the negative charge in-
duced on A’s inner surface will pass to the outer surface and
will disappear when 4 is discharged. This complete process
may be repeated any number of times. Each time B will acquire
‘an additional unit positive charge, and thus may be given a
measured positive charge which is any integral multiple of the
original unit.

To give 5 a negative charge measured in terms of the same unit,
the outer surface of A must be brought into contact with the
inner surface of a hollow closed conductor after the introduction
of D, when the positive charge will disappear from the outside,
leaving unit negative charge upon the inner surface. When D
is removed, this charge will pass to the outer surface of 4, and
will be given up wholly to & when A4 is brought into contact
with B’s interior. B will now have unit negative charge, and by
removing A and repeating the process may be given any number
of units negative charge desired.

To obtain any submultiple, 1/7, of the original charge, it is
only necessary to arrange symmetrically in contact the original
conductor D and 7 — 1 precisely similar and equal conductors,
all other bodies, except the surrounding- dielectric, supposed
homogeneous and isotropic, being so remote as to have no appre-
ciable effect. Then, by the principle of symmetry, each con-
ductor will take 1/7 of the original charge.
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9. The Law of Coulomb. Let two small spherical insulated
conductors which can be given any charge desired, measured in
terms of some provisional unit by the methods of §§5 and 8,
be so connected with a dynamometer, such as a gravity balance,
that the force / between them can be measured as their charges,
¢, and g¢,, the distance L between their centers, and the surround-
ing dielectric are varied. , Then it is found by experiment that,

(1) However the distance Z and the charges ¢, and ¢, are
varied, provided all the experiments are performed in the same
dielectric, and provided that this dielectric is homogeneous and
isotropic and extends to a great distance on all sides of the elec-
trified bodies, # is in the straight line joining the centers of the
conductors ; is directly proportional to the product of their
charges, being repulsive (considered positive) when the charges
are like and attractive (considered negative) when the charges
are unlike, as already known from §1; and the greater Z in com-
parison with the linear dimensions of the charged bodies, the
more nearly inversely proportional to Z%

(2) In different dielectrics, with all other conditions the same,
the force is different, and always less than in vacuo (free ather).

The general expression for #, when the linear dimensions of
the (not necessarily spherical) charged bodies are negligible in
comparison with their distance apart, is therefore

F= Aglqz/fl’z (I,)

where ¢ is a constant depending on the medium in which the ex-
periments are performed, called its permittivity or diclectric con-
stant, and A is a positive constant depending on the units in
which ¢,, ¢,, L, £7, and ¢ are expressed.

(1") expresses Coulomb’s law.

The Rational Electrostatic Unit Charge. Unit Permittivity., In
what follows, unless the contrary is stated, the centimeter will
be used as unit length, the dyne as unit force, the permittivity
of free zther, which will be denoted by ¢, as unit permittivity,
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and as unit charge the charge which each of two indefinitely
small bodies must have in order that when at a distance of 1 cm.
apart in a vacuum the force between them may be 1/47 dyne.
This unit charge is called by its originator, Oliver Heaviside, the
rational electrostatic unit charge, and ¢, is called the clectrostatic
unit permittivity.

Methods of measuring permittivity are discussed in Chapter
VII.

The conventions just made give, by the above equation,
A = 1/4m, and the equation reduces to

F= glg2/€477['2 (I)

which, in addition to being a particular case of (1), is a particular
case of (2).

The direct experimental investigation of the law of force is
due to Coulomb, but is not capable of great precision, The law,
as stated by Coulomb, is most satisfactorily established by the
consideration that all experimental knowledge is in perfect accord
with an electrical theory based largely upon the assumption that
the laws expressed in (1) are exact.* A reason for the law of
inverse squares and a justification of the term rational unit will
be given in §§ 5, IL., and 24.

The dimensions of electric charge and the other electric quan-
tities, as well as other systems of units, will be considered in
Chapter XIV.

For rational electrostatic the abbreviation RES will hereafter
be employed.

10. If any one of the experiments described above is repeated
in different dielectrics, the results in all cases will be identical,
except that, in conformity with § o, the force between two
charged bodies will always depend on the surrounding dielec-
tric.

*The common deduction of the law of inverse squares from the results of the

Cavendish experiment cannot be accepted as valid. See Zke Physical Review, Sep-
tember, 1902, p. 175.
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11. Electric Field. Electric Intensity.— Any region in which
an electrified body is acted upon by a mechanical force in virtue
of its charge, or in which an uncharged conductor is charged by
induction, is called an electric field. Such a field exists, for ex-
ample, around an electrified body (§ 1), but may also exist with-
out the presence of electrification (Chapters VI. and XIIL.).

As a result of experiment, it may be stated that the force #
acting upon a small charged body, or small portion of a charged
body, at any point of an electric field is proportional to its charge
g — provided that the distribution of electric charge (real and
apparent, Chapter IV.) originally accompanying the electric field
remains undisturbed by the introduction of g. Expressed in the
form of an equation, this relation is

F=FEq (2)

where £ is a constant for the given point of the field called the
clectric intensity, electric force, or voltivity at the point.

The conditions for the rigorous proof of this relation by direct
experiment would be impossible to realise, and the remark at the
close of §g with reference to the establishment of Coulomb’s law
applies without alteration to (2).

As (2) shows, £ is not a mere number, but a physical quan-
tity specifying the state of the field and such that its product by
an electric charge is a mechanical force. £ is clearly a vector
quantity, its direction being that of the force on a positively
charged body, and its magnitude the number of dynes per unit
charge. When ¢ is expressed in the RES unit charge and /in
dynes, £ is said to be expressed in the RES unit electric inten-
sizy.

The term electric field is often used to denote the collective in-
tensity in a region, instead of the region itself. The direction of
the field at any point is the direction of the intensity, and the
strength of the field is the magnitude of the intensity.

12, The Superposition of Electric Fields.— Experiment also
shows that any number of electric fields (up to a certain limit,
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when the dielectric breaks down and conduction occurs) may be
superposed upon one another, the effect of each being indepen-
dent of all the rest. Electric intensities, being vectors, may
therefore be compounded like all other vectors for which the
principle of superposition holds, the resultant intensity at any
point being the geometric or vector sum of the component in-
tensities.

An electric field is wznzform if its intensity is the same at every
point. Since £ is a vector, this condition necessitates a constant
direction as well as a constant magnitude. In most cases £
varies from point to point. - Examples of uniform and other elec-
tric fields, as well as of the superposition of electric fields, will
be given below.

13. Electric Displacement or Induction. Electrisation. The
physical nature of every electric quantity is at present unknown.
Many phenomena, however, support the hypothesis that ¢ is an
elastic permittivity (7. ¢., the reciprocal of an elastic modulus)
and that £ is an elastic stress. For the sake of constructing a
mechanical conception of the electric field we shall provisionally
assume ¢ and E to be a permittivity and a stress, respectively.
The so-called permittivity ¢ will then be the actual permittivity
of the mther or @ther entangled in matter for the (unknown)
kind of strain concerned.

Now, in the case of ordinary elastic substances subjected to
slight mechanical strains we have, very approximately, the rela-
tion (Hooke's law): strain/stress = 1/modulus = permuttivity, or
strain = permittivity x stress.  If then ¢ is a permittivity of a cer-
tain type and £ a stress of the corresponding type, their product
cE must measure the corresponding'strain or displacement of the
dielectric.

Whether this conception is correct or not, #ke product cE is
called the electric displacement (also the electric induction), and is

denoted by O. That is
D= cE (3)
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E being a vector, and ¢ being the same for every direction of
the intensity, since isotropic substances only are to be considered
here, D is a vector with the same direction as that of Z. When
¢ and £ are expressed in RES units, D is said to be expressed in
the RES unit displacement (or induction).

A substance in which there is electric displacement is also said
to be in a state of electrisation, or to be electrised. 1If the dis-
placement and permittivity are uniform throughout, the electrisa-
tion is said to be uniforin.

14. Mechanical Coneception of the Electric Field. A definite
conception of the electric field based on the assumptions made
above will now be given. According to this conception (which
leads to results by no means wholly consistent, however) the
@ther is the simplest possible kind of dielectric and is composed
of two kinds of minute, incompressible, elastic cells, called

a. No electric displacement b, Eiectric displacement
directed to left
el
positive and negative cells, respectively, so arranged (in rows),
Fig. 1, 2, that only unlike kinds are in contact, and that no slip
between adjacent cells is possible.

When the =ther supports an electric field, the cells remain un-
changed in volume, but their shapes are distorted and their centers
of volume displaced, Fig. 1, &, the centers of the positive cells in
the direction of the electric intensity, and the centers of the
negative cells in the opposite direction. The electric displace-
ment is measured by the relative linear displacement of the
centers of volume of the cells of a positive row with reference
to the centers of volume of the adjacent negative rows divided
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by the distance between two adjacent rows. The electric inten-
sity is the force per unit area in the direction of [ acting upon
the positive cells, or the force per unit area in the opposite direc-
tion to that of D acting upon the negative cells, in any plane
passing through the direction of 2. For small displacements,
the displacement and intensity so measured will be proportional,
as required by (3) in @// cases. The total mechanical force acting
upon the w/hole substance within any element of volume is zero.

From what precedes and from the nature of the distortion as
shown in the figure, it is clear that there is a Zemsion in the
ather parallel to the intensity, and a pressure in all directions
normal to the intensity. That this deduction from our mechanical
conception is consistent with fact is demonstrated in §§ 40—41.

When the dielectric, instead of free @ther, is a molecular sub-
stance permeated by ther, the same general conception is use-
ful. Like the @ther which permeates the matter, its molecules
may be thought of as composed each of two constituents, positive
and negative atoms, or atomic groups, or corpuscles (Chapter
IX.), which suffer a displacement similar and in addition to that
of the @ther cells entangled among them. However this may
be, the permittivity of all molecular substances yet investigated
is greater than that of free wther. Thus, in ordinary matter a
greater displacement than in free aether accompanies a given
intensity.

In perfect insulators, according to our conception, the cells
cannot slip over one another, and thus ¢/astic displacement only
can accompany electric intensity. In an imperfect insulator the
cells can slip only with extreme slowness, and more slowly the
more highly insulating the substance. In a conductor electric
stress can exist only temporarily (unless an impressed electro-
motive force, Chapter VIIIL., is continuously acting), and is
always accompanied by rapid slip. That the substance of a con-
ductor cannot support electric displacement in a static field will
be shown in § 15. The mechanical conception of electric con-
duction will receive further consideration later on (Chapter IX.).



14 ELEMENTS OF ELECTROMAGNETIC THEORY.

15. Electric Displacement and Intensity Zero within a Conduc-
tor in a Static Field =~We may now restate (4), § 4, as a corol-
lary of (3), § 4: A static field cannot exist within the substance
of a conductor. For the fields within and without a hollow
closed conductor are absolutely independent of one another,
however thin the conducting shell. Hence they cannot be coz-
nected by an electric field or electrically strained medium, and
the whole substance of a conductor, except an extremely thin
surface layer, is without electrical significance (in a static field).
Thus the electric intensity and displacement in the outer region
terminate at the outer surface of the conductor, and the electric
intensity and displacement of the inner region (if the conductor
is hollow and encloses insulated electrified bodies) terminate at
the inner surface.

16. Lines and Tubes of Intensity, Displacement, etec. A line
so drawn in an electric field as to have at every point along its
length the direction of the electric intensity (electric force), elec-
trisation, or displacement (induction) is called a /Zine of intensity
(force), electrisation, or displacement (induction).

A tubular surface the elements of which consist wholly of
lines of intensity or induction (etc.) is called a zube of intensity
or induction (etc.).

The strength of a tube of induction or displacement is defined
in § 23.

17. Voltage, Electromotive Force, and Difference of Potential.
The work done by the electric field in carrying an indefinitely
small body with electric charge ¢ along an element ZZ (Fig. 2)
of a path L between two points 2, and 2, of an electric field, if
dL makes an angle € with the electric intensity Z, is

dW= gFE cos 0 dL : (4)
and the total work done in carrying ¢ along L from P, to 7, is
W= g [EcosbdL (3)
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the integral being taken from P, to P, To carry ¢ from 7, to
P, along the same path would of course require the expenditure
of the same amount of work against the field by an outside agent.

In the same way the work £
done by the field in carrying the
body with charge ¢ from 7 to
P, along another path L’ is

W' = g [E cos 8'dL’.

If the electric field is a sfatic P
field, W= 17", and therefore

K
JEcos0dL = [E’ cos6'dL’. i)

For if the work done along any path L were greater than that
done along any other path Z’, a positive amount of work,
W — W’, would be done on the charged body by the field dur-
ing each completion of a circuit from 7, to 7, along Z and back
along L/, and yet the energy of the field would remain unaltered.
Since this is inconsistent with the principle of the conservation
of energy, f E cos 8 dL is the same for every path between two
given points in an electrostatic field.

The line integral of the electric intensity, f Ecos 0 dL = W]q,
along a path L from P, to P, is called the electromotive force
(e.m.f)) or woltage along the path Z from P, to . When, as in
the case just considered, this quantity is the same for every path
from P, to P, it is called also the difference of potential between
P, and P, or the fall of potential from P, to P, :

Since a voltage is a quantity of work divided by a charge, it is
evidently not a vector.

When W is expressed in ergs and ¢ in the KZS unit charge,
or when Z is expressed in the RES unit intensity, and Z in cm.,
the voltage (= W/g = f E cos 0 dL) is said to be expressed in
the RES unit voltage. In magnitude, the voltage between two
points is equal to the work done in carrying unit charge from
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one point to the other along the given path, or any path if the
voltage is a potential difference.

18. Potential. Equipotential Surfaces. The fall of potential
from a given point £ to any point at an infinite distance from all
electrified bodies is called the electric potential at P.

This term is also commonly applied to the fall of potential from
P to any point of the ecarth. That the two definitions are not
identical will be shown in § 6, Chapter II.

‘The symbol V7 will be used to denote the potential at a point
P. In conformity with this notation, the fall of potential from a
point £ to a point £, will be written }, —V,, I/, or, where there
is no danger of confusion, simply .

A surface which is everywhere normal to the electric intensity,
and between any two points of which there is therefore no voltage,
is called an equipotential surface, or simply an equipotential. 1t is
clear that an equipotential surface is alwaysa closed surface or
else (in certain ideal fields) an infinite plane.

19. Electric Intensity in a Static Field the Space Rate of Dimi-
nution of Potential. — For the voltage from £, to £, we have

Vi—Vy=[Ecos0dL = [E, dL

by writing £, for £ cos 0, the component of electric intensity in
the direction of ZZ. 'That is, the potential of 7, exceeds that at 2,
by f E, dL from P, to P,; or the diminution of potential from 7,
to P, is f E, dL from P, to P,. If the two points are taken an
infinitesimal distance &L apart, the diminution of potential along
dL becomes — &V, and the integral becomes simply £, dZ. Thus

we have
—dV=E;dL
and therefore
E, = —dV/dL (6)

That is, the component of electric intensity in any direction is the
space rate of diminution of the electric potential in that direction.
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I obviously diminishes most rapidly along a line of intensity,
and not at all along a line in an equipotential surface.

20. Electric Field Mapped out by a System of Equipotentials.
If a line of intensity is denoted by /V, the last equation gives

Ey= E= — dV]dN.

From this it follows that an electric field can be completely
mapped out by a system of equipotential surfaces so drawn that
the voltage between successive surfaces is constant. For the
direction of the intensity at any point is that of the normal to the
equipotential passing through the point; and its magnitude is,
by the above equation, proportional to the number of successive
equipotential surfaces crossed at the point per unit length by
this normal or line of intensity. Maxwell’s method of drawing
such an equipotential system is described in §§ 7, 11, 13, 14, II.

21. Electric Flux. Let &S, Fig. 3, denote an element of area
at any point of an electric field where the displacement is 2, and
let the angle between D and the normal /V to &S be denoted by
8. The product of 45 into
the component of 2 normal
to &S, that is, Dcos @ 45,
is called the -electric flux
across 4S.

To obtain the electric flux,
I1, across an extended sur-
face S, over which D may
vary in any manner, the in-
tegral of D cos 6 4S must
be taken over the whole sur- Fig. 3.
face. Thus

H=chos€dS ()

22. Gauss’'s Theorem: The electric flux outward across any
closed surface .S so drawn as to enclose a total charge ¢ is equal
to ¢.
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The theorem will first be established for the case in which all
space is filled up with a single homogeneous isotropic dielectric
with permittivity ¢ (or with any number of isotropic dielectrics all
of which have the same permittivity c).

Fig. 4.

Consider first the field about a charge ¢ concentrated at 2,
Fig. 4, any point within S, a closed surface of any shape. For
the magnitude of the displacement, D, at any element of area
4S, distant L from P, we have from (1), (2), and (3)

D = cE=¢(g/4mcl?) = glgml?

In direction, 2 and £ are evidently radial from P (or to 2 if
g is negative).
For the flux across &S we have therefore

dIl = D cos 0 dS = ¢qdS cos 0/4m[* = ¢ dS' 4w [* = g/47 - do

where dS’ = dS cos 6 is the projection of &S normal to Z, and
dw = dS’/[? is the elementary solid angle subtended at P by &S
and 45, that is, the angle of the elementary conical tube of in-
duction cutting out the area 4S.

If the surface is folded, so that some of the tubes cut it more
than once, as the tube of angle dw which cuts out the areas 45,
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ds,, ---, dS, in the figure, each of these tubes must obviously

cut it an odd number of times. And since the angle dw of the
cone is the same for all the elements &S, 4S,, etc., the magnitude
of the flux across each will be the same, viz., ¢/4m-dw, but the
flux will be outward (positive) across all the elements with odd
numbers, and inward (negative) across all the elements with even
numbers. Thus all the elements except one, across which the
flux is positive or outward, cut one another out in pairs, leaving
the total flux outward through the tube equal, as for a tube of
the same angle cutting the surface but once, to ¢/47 - de.
The outward flux across the complete surface is therefore

O= [dll=g/4m [do=gq (8)

since the whole solid angle, f dw, subtended by any closed sur-
face at a point within it is 4.

This result is independent of the position of 2 within S; hence,
by the principle of superposition, it must hold for charges dis-
tributed in any manner within S, ¢ denoting now the total (alge-
braic) charge within. The validity of the theorem for all isotropic
electrostatic fields will be established later (§§ 29, I. and 1, IV.).

23. The Strength of a Tube of Induction. From (8) it fol-
lows that the flux across every cross-section of a given tube of
induction is the same. For by the definition of a tube there is

S2

Sy

. Fig. 5.

no flux across any part of its sides; and since in the space en-
closed within the sides and two diaphragms S, and S,, Fig. s,
there is no electric charge, the flux which enters this region
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across .5, must equal that which leaves across S,. Thus there
is an analogy between the electric flux and the flux of an incom-
pressible fluid.

The strength of a tube of induction is defined as the magnitude
of the flux across any diaphragm of the tube. A unit tube is a
tube whose strength is unity.

24. Electric Charge and Discontinuity of Electric Flux. With
the exception of closed tubes of induction (Chapter VL), all
tubes in a static field emanate from positively charged bodies and
terminate upon negatively charged bodies. To prove this state-
ment, consider two electrified bodies (there cannot be less than
two) alone in the field, there being no charges upon other
bodies. If one possesses the charge -+ ¢, the other possesses the
charge — ¢(§6). The total electric flux outward across any closed
surface surrounding 4 ¢ is ¢, and the total inward flux across
any closed surface surrounding — ¢ is ¢ ; or the total flux across
any closed surface separating the charge + ¢ from the charge
— ¢ is equal to ¢ in magnitude, and in direction is from + ¢
toward — ¢. That is, all the tubes emanate from the body
with charge + ¢ and terminate upon that with charge — ¢, the
total strength of all the tubes being ¢.

Exactly the same mode of reasoning may be applied to a single
tube of induction. The strength of a tubeis thus equal to the
magnitude of the positive charge at one end or to the magnitude
of the negative charge at the other. The whole electric field
indeed may be regarded as a single tube of induction passing
from one charge to the other.

Thus the electric charge resides only where the displacement
is discontinuous, and is measured by the amount of this discon-
tinuity. In fact Gauss’s theorem simply states the identity of an
electric charge and the flux from the charge, or rather the dis-
continuity of the flux at the charge.

Rational Units. The system of units here adopted is called
rational for the reason that it makes the flux from a charge equal
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to the charge numerically, as it is dimensionally, instead of to 4
x the charge, as in the common systems, and, as a consequence,
does away with the factor 7 except in the case of spherical or
circular distributions, where it would naturally occur.

25. Electric Field Mapped Out by Tubes of Induction. In the
elementary tube 7, Fig. 6, let the diaphragms 4&S,, 4.5,, be drawn

dsy

dss
. D,

Fig. 6.

at right angles to the axis of the tube. Then we have, by §23,
DdS, = D,dS,, whence

D,JD,=dS,/dS, = E\[E, (9)

Thus the intensity and induction at every point along a narrow
tube are inversely proportional to its right cross-section at the
point. Since therefore the magnitude of the right cross-section
of a tube at a point indicates the magnitude of the induction and
intensity, and the direction of the tube the direction of these
quantities, an electric field may be completely mapped out by
drawing a system of tubes, all of the same strength, filling the
field. Maxwell’s method of drawing such a system of tubes will
be explained in §§ 7, 11, 13—14, II.

26. The Surface of a Conductor in a Static Field is an Equipo-
tential Surface. For, since in a static field there is no electric
intensity within the substance of a conductor, the voltage
f E cos 8dL is zero along any line drawn wholly through the
substance of a conductor and connecting any two points of its
surface (and therefore along any other line connecting the two
points, since the field is static).

27. Equipotential Region. If in the region on one side of a
given equipotential surface there is no electric charge, the elec-
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tric induction and intensity in this region are also zero, and all
parts of it are therefore at the same potential as that of the
equipotential surface. For all the tubes which cross an equipo-
tential surface cross it normally and but once; and in the region
considered there is no electric charge with which such tubes
could originate or terminate. Hence there are no tubes in the
region, by Gauss’s theorem, and no voltage.

" That the space containing the 'substance of a conductor, or the
space included within a hollow closed conductor, is an equipo-
tential region, has already been established.

28. In a Static Field a Conductor may be Replaced by a Die-
lectric of any Permittivity. Since there is no electric field in a
region without charge bounded by an equipotential surface
(charged or uncharged), the substance filling this region may be
replaced by any other substance, with its surface charged in the
same manner as that of the substance replaced, without in any
way affecting the electric field. Thus it is extremely convenient
for the purpose of solving many electric problems, to imagine
the substance of an electrified conductor replaced by a dielectric
of the same permittivity as that of the surrounding medium, with
its surface coincident with that of the conductor and charged in
the same manner. This is in order to apply the law of inverse
squares, which can be done only when all space contains the
same dielectric of uniform permittivity. Extensive use will be
made of this principle in what follows and it will be generalised
in Chapter IV.

29. Gauss's Theorem Valid for a Finite Region and for a Field
Containing or Bounded by Conductors. As an immediate corollary
of what precedes, it follows that Gauss’s theorem is valid
throughout an infinite electric field containing a homogeneous
isotropic dielectric and any number of conductors. And as an
immediate corollary of this last proposition and § 4, it follows
that the theorem is valid throughout any finite electric field
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bounded by conductors, and throughout a finite portion of any
electric field, provided that this finite field or portion of a field
contains only a single homogeneous isotropic dielectric and con-
ductors. The validity of the theorem is still further extended
in Chapter IV.

30. Electric Surface and Volume Density. Convergence and
Divergence of a Vector. The clectric surface density at any
point of a charged surface is defined as the charge per unit area
at the point, and will be denoted by a. If &S is an element of
area at the point and dyg its charge, -

o = dg/dS ' (10)

The outward flux across any surface enclosing ¢ and no
other electric charges is dII = dg = odS, by Gauss’s theorem
(not yet proved for this case, since the surface encloses, in
general, two dielectrics). Let" such a surface be formed by
a right cylinder of infinitesimal length drawn through the

Fig. 7.

boundary of &S and closed up by two planes parallel with
dS, one on each side, Fig. 7. The lateral area of this cylinder is
negligible in comparison with that of the ends, so that the out-
ward flux across the total surface is equal to the flux across the
ends. Therefore, if D, and D), are the displacements on the two
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sides of &5, and 6, and 6, the angles they make with the normals
drawn from &S,

dll = 0dS = (D, cos 6, + D, cos 6,)dS
whence
o =D, cos 8, + D, cos b, =c,E, cos 0, + c,E, cos 6, (11)

if ¢, and ¢, denote the permittivities of the media on the two sides
of dS.

If the charged surface is that of a conductor in a static field,
the displacement, D, on one side is normal to the surface, and
on the other side is zero ; so that in this case (11) becomes

0’=_D=(,‘_E (12)

which might have been written down at once from Gauss’s
theorem, already established for this case.

The electric volumne density at any point of an electrified volume
is defined as the charge per unit volume at the point, and will be
denoted by p. If dg is the charge in the element of volume dr

at the point,
p = dgldr (13)

The electric flux outward from &g through the surface of 27 is
dIl = dg = pdr, whence

p = dg/dr = d1l [dr = div D (14)

The symbol diz D is an abbreviation for the divergence of D,
which is another name for 411 /dr, the outward flux of the
vector D per unit volume, or, in magnitude, the amount of
the flux leaving unit volume through part of its surface minus
the amount entering the same volume through the rest of its
surface.

If p is negative, div D is also negative, or the flux is, on the
whole, directed znto dr. To the negative of the divergence the
term convergence is applied. It is written conv. Hence

—p= —div.D=conv D (13)
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The convergence or divergence of any other vector is simi-
larly defined as the inward or outward flux of the vector per
unit volume at the given point.

An insulator may possess both volume density and surface
density of electrification, but the charge of a conductor in a static
field resides, as has been already shown, on the surface only.
This statement must not be taken too literally, however, as the
molecular structure of matter makes it necessary that the dis-
placement should terminate upon the atoms of a suzface layer,
although this layer is extremely thin.

31. Cartesian Expression for the Divergence and Convergence
of a Vector. The Equations of Poisson and Laplace. First we
shall obtain the expression for the divergence of the vector D.
Let the components of D at the point whose coordinates are z,
9, 2, parallel to the rectangular axes X, ¥, Z, be D,, D,, D,
respectively, Fig. 8, Consider the elementary parallelepiped
whose edges are parallel to the codrdinate axes and have the
infinitesimal lengths dz, dy,
dz, the coordinates of the
corner nearest the origin of VoA X
coordinates being x, 7, 2. Al

The flux znfo the parallel- day
epiped through the face 13
is D, dxdz (or the flux out
across the face 13 is — 2,
dxdz), and that out through
the opposite face, 57, is (D,

+ dD,/dy dy) dxdz. Hence
the resultant owtward flux x
across the two faces parallel
to the XZ plane is (D,+dD,/dy dy)dxdz— D,dxdz=dD,/dy dxdydz.

In exactly the same way the resultant outward flux across the
two faces 26 and 35 is dD,/dx dxdydz, and that across the faces
46 and 37, dD Jdz dxdyds.

<

Fig. 8.
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Hence the total flux outward from the parallelepiped is

dll = (dD,/dx + dD,|dy + dD,/dz) dxdydz
= (dD,/dx + dD,|dy + dD,/dz) dr
and
p=div. D= —conv D = Jd1l/dr

16
.=dD,jdx + dD,|dy + dD,/dz o)

Similarly, for any other vector, as £, we have
div £ = — conv £ = dE /dx + dE /dy + dE,|dz

If ¢ is constant (independent of x, , 2), we have, since D = ¢E,

div D = dD,/dx + dD,|dy + dD,/dz

I
= o(dE [dx + dE,|dy + dEJdz) = c div E (x7)
Equation (17) may be written ‘
p=div D = d/dx (cE)) + d|dy (cE)) + d|dz (cE,) (18)
18

= — djdx (cdV]dx) — d|dy (cdV]dy) — d|dz (cdV]dz)
Ifcis inciependent of the coordinates, this equation becomes
p=div D= —c(d*V]da* + d*V]dy’ + d*V]dz")  (19)

(18) and (19) are the eguations of Poisson. When p = o, the
equations become
d|dx (cdV]dx) + dldy (cdV]dy) + d|dz (cdV]dz) =0 (20)
e d*V]dz* + d*V]dy* + d*V]dz* = o (21)
which are the equations of Laplace.

32. The Equilibrium of Superposed Electric Fields. (1) If in
each of any number of electric fields separately each of a given
system of surfaces of fixed configuration is an equipotential, then
in the electric field resulting from the geometric superposition of
these fields each surface will remain an equipotential. For since
in each field separately the tubes meet the surfaces normally, by
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definition of an equipotential, the tubes in the geometrically
obtained resultant field will also meet the surfaces normally.

(2) That the superposition of any number of distributions of
electric charges in or upon insulators gives a resultant distribution
of charges in equilibrium is evident from the definition of an insu-
lator. That the resultant field (obtained by geometrical super-
position) connected with these charges is in equilibrium, and that
this is the only possible resultant field in equilibrium, follows
from §12. '

(3) If each or any of the equipotentials of (1) encloses no
charges, then it encloses no field, and it is immaterial so far as
the external (i. ¢., the only) field is concerned whether the sub-
stance within this surface is an insulator or a conductor (§28).
If the field is in equilibrium in the one case, it will be in equi-
librium in the other. Hence we may state that if each of any
number of electric fields surrounding or bounding a given system
of conductors with fixed configuration is separately in equilibrium,
then the electric field resulting from their geometric superposition
. will also be in equilibrium, and will be the only possible resultant
field in equilibrium (2. e., static). The last statement is proved
again in § 46.

33. The Superposition of Voltages and Potentials. If the vol-
tage from any point 7 to any other point /7 is V|, when the field
surrounding the points is a given field 4,, V, when the field is
A, ---, V., when the field is 4, then the voltage from P to P
when all the fields are superposed is

Ve Vit Vit o+ V, (22)

For, all the integrals being taken along the same path L (which
may be any path from P to /'), we have, in the notation of
§§ 17-19,

V]=fElcos 0,dL, Vz=szcos€2dL,---, I/;=fEﬂcosf)"a’L
and V=fEcos€a’L
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By the principle of superposition of electric intensities

Ecos =FE cos 6 + E,cos 6,4+ ... + E cos 6,
Hence

V=fEcos€dL= Vi+ Vo+ -+ 7V,

which is identical with (22).

If /7 is any point in the region of zero potential, /”and V,
V,,---, V denote the resultant and' component potentials, re-
spectively at P.

34. Voltages and Charges Proportional. It is clear from §§ 32
and 33 that when the intensity at every point, and therefore the
voltage between every two points, of a static electric field is
altered in any ratio, the resulting electric field will be in equi-
librium, and the electric surface or volume density at every ele-
ment of charged surface or volume will be altered in the same
ratio, and vice versa. The original field has simply been super-
posed on itself a given number of times.

35. Capacity of an Electrical System. Permittance of a Dielec-
tric. S is Proportional to c¢. In an electric field terminated by
two conductors 4 and B all the tubes emanate.from one of the
conductors and terminate upon the other, so that the charges of
A and B are equal and opposite whatever their common magni-
tude, ¢. This relation still holds when any number of other con-
ductors, uncharged except by induction, are in the field, the tubes
connecting 4 and B simply being rendered discontinuous at the
surfaces of these conductors (§ 42). By the last article, if the
voltage V,, between A and B is altered in any ratio, ¢ will be
altered in the same ratio, and vice versa. That is

= SVlz (23)

where S is a constant, called the capacity of the system AB, or
much better, the capacity or permittance of the dielectric bounded
by A and B.
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The above equation may be written
S=g/Va= [DaS) [ EaL (24)

dS being the element of area of any equipotential surface (neces-
sarily closed around one of the conductors or else extending to
infinity), and JZ the element of length of any line of intensity, the
integrals extending over the whole surface and along the whole
length of the line, respectively.

The term permittance is applied to S (surface integral of dis-
placement/line integral of intensity) for the same reason for
which the term permittivity is applied to ¢ (displacement/intensity).

When the charge and voltage are expressed in RES units in
(23) and (24), S is said to be expressed in the RES wunit capacity
or pernuttance. The unit capacity is thus the capacity of a sys-
tem, or dielectric, upon each of whose terminating conductors
the charge is unity when the voltage is unity.

Two conductors which completely bound an electric field, hke
the system APZB, are called, with the intervening dielectric, an
electric condenser or leyden. These terms are commonly applied,
however, only when the conductors are near together, in which
case the displacement may be very great, or the electric charge
highly “condensed” even when the voltage

(fEdL =1[c[DaL)

is small (since L is small). The term condenser is also applied'
to a system in which #ear/y all the tubes of induction pass from
one of the conductors to the other.

If the voltage J of a leyden is kept constant, and the permit-
tivity ¢ of its dielectric altered everywhere in a given ratio, the
intensity £ will remain constant, but the displacement D, and
therefore the charge ¢, will be altered everywhere in the same
ratio. Hence .S is proportional to c.

Although a charge of one sign cannot exist without the com-
plementary charge of opposite sign, it is sometimes convenient
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to Zmagine one of the charges removed to an infinite distance,
when the electric field within a finite distance is connected with
only a single electrified body and conductors with induced
charges. The intensity and potential at every point will then be
proportional to the charge of the electrified body.

36. Mechanical Analogue of the Relation ¢ = S77,. If a spring
(analogous to the dielectric of a condenser) which obeys Hooke’s
law and has perfect elasticity (¢ = D/E = constant) is stretched
a distance Z (analogous to ¢) by a force £ (analogous to 17,) then

L=KF (23)

where K (analogous to S)is a constant depending on the spring.
A similar relation of course exists between the deformation and
the forcive in the case of any other perfectly elastic strain.

37. The Electrostatic Energy of a Field Bounded by Two Con-
ductors. Energy Contained in a Tube of Displacement Between
Two Equipotentials. The energy contained in the dielectric
bounded by the two conductors 4 and B due to its electric dis-
placement is equal to the work done in creating the electric
field, or the work done against the electric field in charging the
system (provided there is no dissipation of energy in dielec-
tric hysteresis, § 1, VI.). Let the process of charging consist in
carrying successive elements of charge dg from B to A, or — dg
from A to B, or both. Each time this is done 4 gains a charge
+ dg and B a charge — dg, and the work done in effecting the
transfer, if the charges of 4 and 5, at the time are 4 ¢ and — ¢
respectively, and if the corresponding voltage from A to B is
v, is

by (5).

If S= ¢/V = constant, which is true except when intrinsic

AW = Vdyg (26)

displacement (V1.) is present, (26) may be written
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Hence the total work done in establishing the field, or the total
electrostatic energy of the field, is

q 7
W_—.f Vg = I/Sf gdg = 14| S
0 0

v (27)
o f VdV = 3SV? = gV
0

The electric field may be considered as a single tube of dis-
placement connecting A and B, the strength of the tube being
¢ and its voltage V. The energy of this tube is then one half
the product of its strength by its voltage. Or the field may be
divided up into tubes of displacement in any manner, and since
the above result is wholly independent of the shapes of the tubes,
the energy contained in each tube is in the same way one half of
the product of its strength by its voltage. Also, the energy con-
tained in the portion of any tube of strength ¢ between two equi-
potential surfaces differing in potential by V7 is 1V, whether the
tube terminates at these surfaces or not.

In any case, whether energy is dissipated or not, or whether
¢/ V=S is constant or not, the work done in charging the con-
denser from a neutral state to charge ¢, or the work done in
changing the strength of a tube of displacement from O to ¢,
and its voltage from O to V] is

7
W= f Vg (28) .
0

38. Electric Energy Density in a Dielectric. From § 37 it fol-
lows that when D = ¢Z (no intrinsic electrisation present, Chapter
V1.) the energy per unit volume at any point of an electric field is

U=1ED = }cE? (20)

To prove this, consider an elementary tube, of strength dg,
cutting two equipotential surfaces distant dZ apart, the point con-
sidered being at the center of the element of volume 4t enclosed
by the sides of the tube and the equipotentials. If the right
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cross-section of the tube is &S at the point, dr = dL 4S. The
energy contained in 47 is

dW = Ydq EdL = }DdS EdL = 1 ED dr = ycE*dv
and the energy per unit volume is
U=dW/[dr=3}ED =1} cE*

which is identical with (30).

Without assuming the relation ¢/V = .S = constant, or
¢ = D[E = constant, or that there is no dissipation of energy,
we can show that the work done per unit volume in creating a
displacement D is

U= IDEdD (30)

which reduces to (29) when ¢ = D/ = constant.
For in the general case, § 37 (28), the work done in changing
the strength of a tube of displacement from O to ¢ is

W= [Vdg= [ [ [ EdDdLdS = [ [ EdD dr
which, on differentiating with respect to 7, gives (30).

39. Electric Tension and Pressure (Preliminary). From the
consideration of a static electric field (such as the field of Fig. 22,
24, or 47), in which tubes of induction stretch, in general, from
a positively charged body to another body negatively charged;
in which there is always a force of attraction between the op-
positely charged bodies; and in which a small electrified body
(if the force of gravity is eliminated) will move along a line of
intensity ; it follows immediately that at every point of an elec-
tric field there is a tension in the dielectric in a direction parallel
to the intensity — the tubes of induction tending to contract in
length indefinitely and to pull together the electrified bodies on
which they end.

It is clear also from the manner in which the tubes of induction
spread out laterally as they pass from one of the bodies to the
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other, filling all space except as the field is bounded by conduc-
tors, that at every point in the dielectric there is a pressure per-
pendicular in every direction to the intensity at the point. Were
the tension along the tubes the only stress, it is clear that a// the
tubes would contract in cross-section as well as in length and
stretch straight across from one charge to the other; and the
electromotive force from charge to charge along all paths not
passing through the region occupied by these tubes would be
zero, which is of course impossible..

It is clear also that the intensity and pressure at any point are
greater the greater the intensity and induction at the point.
These stresses are referred to in § 14, and will receive detailed
consideration in the next two articles.

40. Electric Tension, Method I. At any point in a dielectric in
which (29) holds there is a tension in the direction of the in-
tensity, with magnitude per unit area

T=%ED=%—CE2=U (31)

To prove this, consider a uniform field which is terminated at
one end by a plane conducting plate of area 4 (necessarily) nor-
mal to the electric field (IT1, § 2). If the plate is moved in a direc-
tion parallel to the field an infinitesimal distance dZ, the volume
of the dielectric under strain terminated by the plate of area A is
increased by AdL and the energy by dW = AdL LED, the dis-
placement of the plate being so small that Z and D remain sen-
sibly unaltered. This increase in energy is equal to the work
done in moving the plate the distance dL against the force
normal to its surface due to the tension in the dielectric. If the
force per unit area on the plate, which must equal the tension in
the direction of the intensity in the dielectric, is denoted by 7,
we have therefore

dW = TAdL = }EDAdL ;and T=1[/AdW|dL = JED, etc.,
which is identical with (31).
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This result has been deduced for a uniform field, but since
every field is uniform throughout an infinitesimal volume, the
result is perfectly general.

The best form of apparatus for investigating the electric tension
experimentally is described in §§ 2 and 4, III.

Electric Tension, Method II. The proposition just established
may also be demonstrated as follows: Let &S be an element
of the charged surface of a conductor, and let 2and Q be two
points indefinitely near the surface, one without and the other
within the conductor at the center of &S. Consider the sub-
stance of the conductor replaced by a dielectric of the same per-
mittivity as that of the surrounding medium (¢), § 28. Then
the electric intensity at 2 and at Q may be resolved into two
components, one which can be calculated from the charge upon
dS, and the other from the rest of the charges in the field (or, as
ordinarily expressed, one due to the charge on 45, and the other
due to the other charges). Let the two components at ” be
denoted by £, and £, and the resultant intensity by £Z. By
symmetry, % is normal to &S, and there is an equal and oppo-
site component, — £, at ¢. Since £ and £, are both normal
to dS, £, their vector difference, is also normal. Hence

E=E, +E,

The resultant intensity at (), inside ‘the surface, is zero, and
has the components, £, normally outward, and £ normally in-
ward (that is, — £). Hence

O=FE,—E
Therefore Vo AT

The charge upon the element of surface &S is dS = DdS;
and, since the intensity at the charged element due to ¢S is
zero (being directed symmetrically toward the outside and in-
inside), and since the intensity due to the other charges is 1 Z, the
mechanical force per unit area upon the charged surface between

Pand Qis T=1ED =1c"[c = etc. (31)
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Electric Tension, Method III. The same result may be ob-
tained by still another method. As we have seen, the electric
charge is not strictly a surface distribution, but is confined to
a very thin surface layer. At the outer surface of the layer

Charged

=

7 Z

the intensity and displacement, which are normal to the surface
throughout the layer, have their full surface values £ and D; at
the inner boundary of the layer they are zero. If £ and D de-
note also the intensity and displacement at a distance x from the
inner boundary of the surface layer, of thickness Z (Fig. g), the
charge within the small volume of thickness dx and cross-section

o dg = drdS divD = dx dScdE|dx

£ being a function of x only. The outward force upon the por-
tion of the conductor within this charged volume is

dF' = Edg = dS cEdE[dx dx
and the total force upon that part of the surface layer whose
cross-section is &S is

L E
dF = f dF' = dS f cEdE|dxdr=dSc | FEdE=dS \cE?
.. 0 o

whence the force per unit area upon the charged surface, or the
tension in the dielectric at the surface, is
T=dF[dS = }cE*=1ED (31)

41. Electric Pressure. Equilibrium of a Dielectric Supporting
Electric Displacement. In a dielectric supporting an electric
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field there is at every point, in addition to the tension }ZED in
the direction of the intensity, a pressure normal in every direc-
tion to this intensity and equal to

p=3ED=T=U (32)

To establish this proposition, consider the radial field from a
charge upon a very small body at 2, Fig. 10, and an elementary
(conical) tube of displacement 7" cutting two (spherical) equipo-

Fig. 10.

tentials S, and S, a distance dZ apart, and enclosing areas 45,
and 4, of these surfaces. Let £, D, and £, D, be the inten-
sity and displacement at .S, and S,, respectively. The portion Z
of the dielectric enclosed by the sides of the tube and S, and S,
is in equilibrium under the action of the stresses of the field.
The force on Z arising from the tensions is, by (31),

3cE’dS, — 1cEjdS,

measured toward 7, and must be balanced by an equal force
directed from 2. We shall assume that this equilibrating force
arises from a pressure p normal everywhere to the surface of the
tube, and shall proceed to find its value. If p, and p, are the
values of p at &S, and 4S,, respectively, its average value over
the surface of the small volume Z is approximately

Wp+2)
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From the figure it is clear that the resultant force due to p is
outward along the axis of the tube and equal, approximately, to

3(p+ 7)) sin6 B
if B is the lateral area of the surface of Z. Since

sin 0 = (dS, — 4S))[B
very approximately,

3(2 +2,) sin 0 B =3 (2 + 1)(dS,—dS)

Z is evidently, by symmetry, in equilibrium laterally, so that
it will be in complete equilibrium if

(4 + £) (@S, — dS,) = JcEdS, — jcE}dS,
Since
EdS, = EJdS,

the last equation may be written
%(pl + 2, (4S, — dS)) = ¥ cEE(dS,— dS))

which becomes, when the tube 7 is made indefinitely narrow,
and the surfaces S, and .S, are brought indefinitely close together,

p=L1eE*=}ED

which is identical with (32).

Since the field within the element of volume is uniform when
the element is made indefinitely small, and since this is true of
any electric field, the result just obtained for a radial field holds
universally.

A method of proving (32) by direct experiment is described
in § 3, VIL

42. Electric Conduction and Induction. The tension in the
direction of the intensity at every point of a dielectric supporting
an electric field and the pressure perpendicular to this direction
throw much light on the disappearance or transfer of electric
charges by conduction and their development by induction.
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Conduction. First it will be shown that this stress system will
account for the result of § 26. Forif the surface of a conductor
were not an equipotential, 7. e., if the tubes of induction did not
meet the surface normally, there would be in the dielectric at the
interface a component of the intensity parallel to the surface, and
therefore a component of the tension parallel to the surface
and a component of the pressure perpendicular to the surface.
Since the charges, or the ends of the tubes, can move freely along
a conductor, the tubes would therefore contract, their ends, or
the charges, slipping along the conductor; and since within the
substance of the conductor the intensity, and therefore the pressure
perpendicular to the surface, is zero, the component perpendicular
to the interface of the pressure in the dielectric would be un-
balanced by any pressure from within, so that the tubes would
be continually pushed toward and into the conductor (there to
break up). Since these processes are inconsistent with the nature
of a static field, there can be no component of the intensity
parallel to the surface of the conductor.

Consider two electrified conductors 4 and B with positive
and negative charges respectively, 4 being the only positively
charged body in the field ; and suppose ¢, the charge of A4, nu-
merically greater than ¢/, the charge of 5. Of the ¢ unit tubes
emanating from 4, ¢’ terminate upon 5, and ¢ — ¢’ upon other
bodies at a distance. If 4 and B are connected by a wire C, in
which permanent electric stress cannot exist, the tensions along
the tubes and pressures at right angles to them will cause the ¢’
tubes connecting 4 and 5 to be pushed, contracting as they go,
into the regions of no permanent stress, the conductors 4, 5,
and C, until the positive and negative ends of each tube meet
and the tube disappears.

The remaining ¢ — ¢’ tubes emanating from A4 will be redis-
tributed by the system of tensions and pressures until there is
again equilibrium, when the remaining ¢ — ¢’ tubes will emanate
normally from A4, B, and C.
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During the process of conduction the field is not in equilib-
rium, nor is it zero within the conductors, and the tubes are not
normal to the surfaces of the conductors, but are inclined from
the normal at each end in the direction of motion of that end.
If the conductivity were perfect, the tubes would always end
normally at the conducting surfaces and would never dlsappear
in the conductors (Chapter VIII,, § 9).

The phenomena here descrlbed are only a part of the phe-
nomena occurring during conduction, and a more complete dis-
cussion will be given later (Chapters VIIIL., XII.).

Induction. Into an electric field, as that bounded by a concen-
trated charge A and the walls of the room, let a conductor B be
introduced. The state of strain previously existing in the space
now occupied by B is annulled by its introduction, the tubes
formerl)}‘crossing this space being cut in two by the conductor, and
those sufficiently near being pushed against its surface and there
also cut in two, until all the tubes so severed touch B normally
and there is again equilibrium. For every tube terminating upon
B there is therefore a tube of equal strength emanating from it.
That is, the positive and negative charges developed by induction
are equal.

All the tubes severed by B may be regarded as still belonging
to A4 ; they are simply rendered discontinuous at the surface of
B, where the induced charges therefore reside.

If B is connected to the walls by a wire C, the tubes stretching
from B to the walls will disappear by the process of conduction,
described above, leaving 5 charged oppositely to 4. The tubes
between B and the walls having disappeared, more of the tubes
from A4 will crowd into their places until there is again equilib-
rium, part to end on B, part on (, and part on the walls. The
charge on B of the opposite kind to that of A is thus increased
by earthing 5.

Fig. 11 (from Nichols and Franklin's ZElements of Physics,
Vol. II., §§ 165-6) illustrates the process of introducing a small
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charged conductor B, insulated, into a nearly closed hollow con
ductor 4, §4, putting on the conducting lid, moving B about
inside, and finally bringing 5 into contact with 4’s inner surface.
The distribution of the tubes here, as well as in the preceding
cases, can be roughly predicted from the considerations that all
the tubes meet both conductors normally and that the voltage

8ILK [THREAD

LU A —

(2 )]
———] T —
~

Fig. 11.

along every line from one conductor to the other is the same.
Since the voltage along a line of intensity is equal to the average
value of the intensity along the line x its length, the intensity
and the induction must be greater, or the tubes more concen-
irated, the shorter the distances through which they stretch.

If, instead of a conductor, an insulator of permittivity different
from that of the dielectric in the region is introduced into the
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field, phenomena similar in some respects are observed. This
subject will receive consideration in Chapter IV.

43. Electric Tension and Pressure and Forcives in the Electric
Field. The force upon a conductor in or bounding a static field
is due wholly to the tension in the dielectric, the force per unit
area at any point of the surface being 7 normal to the surface.
Since £ and D are perpendicular to a conductor’s surface, no
component of the force upon a conductor can be due to the elec-
tric pressure, which is tangential to the surface and balanced in
every direction. Inasmuch, however, as the distribution of the
tubes, and thus the distribution of 7, over the surface of a con-
ductor is determined by both tensions and pressures, the latter
contribute to the force indirectly.

The force upon a dielectric is in general due to both tensions
and pressures. See Chapter IV., § o.

In Chapers II., III., IV., V1. and VII. many examples will be

found.

44, The Equilibrium of a Given Field is not Altered if its
Direction is Reversed at Every Point. For the tension parallel
to the intensity and the pressure perpendicular to the intensity,
at any point of the field are proportional to its square, and are
therefore not altered by the reversal of direction. The signs of
all charges are of course reversed with the reversal of the in-
tensity.

45. When the Algebraic Charge upon Each Conductor of an
Isolated System is Zero, there is no Charge and no Field. If the
total algebraic charge of each of a system of conductors is zero,
and if there are no other electrified bodies, or electrets (Chapter
VL), or a changing magnetic flux (Chapter XIII.) anywhere,
then there is no electric charge or displacement anywhere. For
if the electric field were not zero, tubes of displacement would
emanate from each conductor and terminate upon conductors of
lower potential, since each conductor would have both positive
and negative charges. And since the algebraic charge of each
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conductor is zero, as many tubes as emanated from the conductor
at highest potential would terminate upon its surface, while there
would be no body at higher potential at which such tubes could
originate ; and as many tubes as terminated upon the conductor
at lowest potential would emanate from its surface, while there
would be no body at lower potential for these tubes to terminate
upon. Thus the supposed case is impossible, and there is no
charge or intensity anywhere.

46. A Single Electric Field Corresponding to Given Charges.
If an electric field 4, bounded by a system of fixed conductors
with given total charges, or by a system of insulators with both
charges and their distribution given, or by both, is in equilibrium,
this is the only field satisfying the given conditions which is in
equilibrium. For suppose that 4, is a second field satisfying the
conditions : It will be shown that 4,= A4,. For if A4, with its
sign reversed is superposed upon A4,, the resultant field will be
in equilibrium, and the charge at each point of every insulator
and the total charge of each conductor (the last statement in
§ 32 not being assumed as known) will be zero. . Hence by the
last article there is no electric charge or displacement anywhere.
Thus at every point D, + (— D,) =0, or A, = A4,.

A Single Field Corresponding to Given Potentials. If an elec-
tric field 4,, bounded by a given system of conductors, the po-
tential of each being given, or the voltage between each and
all the rest, is in equilibrium, this is the only equilibrium field
satisfying the given conditions. For let A4,, another field, sup-
posedly, satisfying the conditions be superposed upon A4, with its
sign reversed. In the resultant field the potential of each con-
ductor, or the voltage between each and all the rest, is zero, by
the last article. Hence the intensity is zero everywhere, and
A=A

47. Equipoten.tial Replaced by Infinitely Thin Conductor of
Same Shape. In any electric field any equipotential surface
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S (always closed or else an infinite plane) can be replaced by an
infinitely thin conducting sheet .S” without disturbing the electric
field on either side. For all the tubes which before the substi-
tution crossed S normally, after the substitution terminate nor-
mally on one side of S and emanate normally from the other
side (induced charges being developed). But since S’ is coinci-
dent with S, this necessitates no change in the direction or posi-
tion of any tube, and the substitution therefore leaves the field
in undisturbed equilibrium, the tensions and pressures remaining
precisely the same as before the substitution. This result is
also a corollary of the next article.

Definition of Electric Images. The two charges, or systems
of charges, in the regions on opposite sides of S’ (but not in-
cluding the charges upon ") are called the electric images of one
another in the surface 5.

Since the conducting sheet .S’ renders the fields on its opposite
sides absolutely independent of one another, either field may be
destroyed or modified in any manner without affecting the other.
If we are concerned with only one of these fields, the substance
of the conductor whose surface S’ coincides with S may be ex-
tended in any manner into the region (previously) occupied by
the other field.

48. Additional Propositions Fundamental to the Method of Elec-
tric Images. If the potential of a surface .S and the charges on
one side of S (closed or an infinite plane, being an equipotential)
are given, the electric field on this side is fixed independently of
the way in which the surface is kept at the given potential. For
suppose that two fields 4, and 4, satisfy the conditions. If 4,
with its direction everywhere reversed is superposed upon 4,, S
will be at zero potential, and there will be no electric charge on
the side of S considered. Hence there is no field on this side,
and 4,=4,. ‘

Similarly, if the position of an equipotential surface S is given,
together with the flux across it and the charges on one side of it,
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the field on this side is fixed and independent of the way in which
S is kept equipotential and of the way in which the flux across
it is kept of the given magnitude. For suppose that two fields
A, and 4, satisfy the conditions. If — A4, is superposed upon
A,, the surface .S will still be an equipotential, the flux across it
will be algebraically zero, and there will be no charge on the
side of .S considered. Hence not only the total flux across .S is
zero, but the flux across every part of .S, and there is no field on
the side of .S considered. Thus, as before, 4, = A4,.

In the above two cases, if the given charges are upon con-
ductors, only the total charges need be given; but if the
charges are upon insulators, the distribution as well as the mag-
nitude of each charge must be given.

49. The Electrostatic Energy of an Electric Field Surrounding
any Number of Conductors. We shall now proceed to find the
energy of an electric field containing any number of conductors,
4,4, .-, A, with any charges ¢,, ¢,, - -+, ¢,, and at any po-
tentials V7, V,, ---, V.; V, and V, being the highest and lowest
potentials, respectively. For the sake of keeping the field
within finite limits and eliminating the field of the earth, let all
the conductors 4, 4,, etc., be enclosed within a hollow closed
conductor A, such as the walls of a room, at potential /7. This
limitation will be removed later for ideal cases. Some of the
conductors will, in general, be at higher, and some at lower po-
tentials than V. Let the field be divided into regions of higher
and lower potential than V/, (by equipotential surfaces of poten-
tial 7).

Consider first the conductors 4,, 4, ---, in a region above J
in potential. On A, the conductor at highest potential in the
region, no tubes terminate, and from it ¢, tubes emanate, some
terminating on A4 and others cutting the part of the equipotential
V. separating the region under consideration from the neighbor-
ing region at lower potential. Some of the ¢, tubes are discon- -
tinuous at the surfaces of the conductors 4, 4, etc., in'the region
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(the discontinuities corresponding to induced charges), but all
finally reach the boundary, at potential 7, of the region. The
voltage along every tube from 4, to the boundary of the region
is therefore V,— V. The energy contributed to the region by the
tubes emanating from A, is thus 3¢ (7, — V). Since A, pos-
sesses a charge ¢, ¢, unit tubes emanate from A, (in addition to
the tubes from A4, which both terminate upon and emanate from
A, and have already been considered), and all finally reach the
boundary of the region at potential 7. The energy contributed
to the region by the ¢, unit tubes from 4, is thus 1¢, (V, — I);
and so on for the other conductors in the region.

Consider now a region of lower potential than IV containing
conductors - - -, Aj, A,, A, A, being the conductor at lowest poten-
tial in the region. No tubes emanate from A, and the ¢, unit
tubes terminating upon it all come from, some through, the
boundary of the region at potential 7, though some are discon-
tinuous (induced charges) at the surfaces of A4, and the other con-
ductors, at higher potentials than 7, in the region. The voltage
of each of these tubes from the boundary to 4, is thus V, — 1}
and since the total strength of all the tubes is — ¢ (¢ being nega-
tive since V, is less than 1), the energy contributed to the region
by the tubes of 4, is 1¢,(V,— V,). The energy contributed by
the ¢, tubes belonging to 4, is likewise 3¢,(V, — V,); and so
on for the other conductors of this region, and for other regions.

Summing up these expressions for the whole electric field
within 4, we have for the total energy within A,

W=3a (V= V) + 4V — V) + -
+10(V—V)=4TeV=V)  (33)

If A, is connected to the earth, and if we define the potential
of the earth as zero potential, (33) becomes

W=3>qV (33a)

If we suppose A, removed to infinity, if we suppose the = con-
ductors to be the only electrified bodies in space, and if we define
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the potential of A4, in a region infinitely remote from all electrified
bodies, as zero potential, (33«) will give the total electrical energy
in space surrounding this ideal system.

50-56. A System of Conductors A4, 4,, ---, A4, Surrounded by a
Closed Conductor 4. The voltage from any conductor of the
system, such as A4, to 4 will be denoted by V" with the proper sub-
script, as V,, and its charge by ¢ with the same subscript, as ¢,.

50. Voltages in Terms of Charges and Charges in Terms of Volt-
ages. The voltage I/, from any one A, of the system of con-
ductors to A, is a linear function of the charges of all the con-
ductors. For, by §§ 34, 35, V, is proportional to the charge of
any one conductor of the system A4, 4, ---, 4 when all the
rest are insulated without charge (except induced charges), and
therefore, by § 33, when all the conductors are charged the ex-
pression for V, consists of a series of terms each proportional to
the charge of one conductor. Hence

Vl =tud + P9+ 0+ P4 (I)
Vz =Pty + s+ - + Pula (2)

(34)
Vn = pnlql +pn292 + | '<. + Pnnqn (”)

The coefficients of the charges, viz., p,,, £, etc., are called
voltage coefficients, or coefficients of potential. Each has two sub-
scripts, the first identical with that of the conductor in the ex-
pression for the voltage from which to 4 it occurs, the second
identical with that of the conductor to whose charge the coef-
ficient belongs, and denotes the ratio of the voltage to A  from
the conductor with the first subscript to the charge of the con-
ductor with the second subscript when all the conductors except
that with the second subscript are insulated without (algebraic)
charge. Thus for example, :

pZn o VlZ/gn
when ¢,, ¢,, - -+, ¢,_, are zero in (34) (2).
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By solving the # equations (34), each of the charges may be
expressed as a linear function of all the voltages. Thus

91=S11V1+312V2+”'+31nVn (I)
92=321V1+522V2+"'+52nVn (2)

(35)
qn=slthl.+Sn2[/2+..'+snnV1-u (72)

the s’s being functions of the p's.

Each s has two subscripts and denotes the ratio of the charge
upon the conductor with the first subscript to the voltage to A4,
from the conductor with the second subscript when the voltage
to A4, from each of all the conductors except that with the second
subscript is zero (all the conductors except that with the second
subscript connected metallically with 4).

Those coefficients with the two subscripts equal atre called
coefficients of capacity, while those with the subscripts unequal
are called coefficients of induction.

The p’s and s’s are functions only of the configuration of the
. conductors and of the dielectric constant of the medium in which
the system is placed.

51. The Coefficients. Any two coefficients of potential with
the same subscripts in different order are identical. That is

Pu=2n (36)

To prove this relation, let all the conductors of the system
A, --- A except A, and A, remain insulated and uncharged (alge-
braically). The energy of the dielectric within 4 when 4, and
A, have the charges ¢, and ¢, will be independent of the manner
in which the field is established. The energy obtained by
charging A, first and then A4, may therefore be equated to that
obtained by charging 4, first and then 4,. Denoting the energy
in the first case by W, and that in the second case by I¥,, we
have
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an 43
W= Ve (o= o) + [ Vidafo,= 2]

an 71
= i Phhqhdqh s ﬁ (plhgh +]7,,9,)d9, = %phhghz
. ! + 2utit + $249)°
= I/Vz G j‘: Vquz [qh=O] i jo‘ V;zdgh [qz == 91]

42 1
— A pllqidgl ot ‘f; (phlgl +?hh9h)dgh = %p”glz
, _ _ + 2utst + & Pl
from which (36) immediately follows.

If moreover the expressions in p’s for any two coefficients of
capacity with the same subscripts in opposite order, ¢. g, s,, and
s,, are examined, it will be found that they differ only in having
such coefficients of potential as p,, and p, interchanged. DBut

2w = P hence
Su=Su (3 7)

With the aid of (34) and (35) these results may be interpreted
as follows :

(36) The voltage to A, from any conductor 4, when 4, has a
given charge ¢ and all the other conductors of the system
A,---A, including 4,, are insulated without algebraic charge,
is equal to the voltage from A, to A, when 4, has the same
charge ¢ and all the other conductors, including 4, are without
charge.

(37) The charge upon any conductor 4, when the voltage
from any other conductor 4, to A, is V, and the voltage to A,
from each of all the other conductors, including 4,, is zero (all
the conductors except A4, connected metallically to 4 ), is equal
to the charge upon 4, when the voltage from 4, to 4 is V, and
the voltage to 4, from each of all the other conductors, includ-
ing A,, is zero (all the conductors except 4, connected to 4).

The coefficients of voltage are all positive. For if one con-
ductor has a positive charge, @// the rest being uncharged (alge-
braically), lines of intensity emanate from it and pass to 4, some
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of them crossing (discontinuously) the other conductors as they
go. Thus lines pass from each conductor to 4, Hence the
voltage from any conductor to A is greater than zero, or posi-
tive, and the coefficients of voltage are therefore positive
((34) f).

The coefficients of capacity are all positive, and the coefficients
of induction are all negative. For if any conductor is so charged
that the voltage from it to A is positive, while the voltage to A4,
from each of all the rest is zero (the conductors connected to 4),
lines of intensity pass from this conductor to all the others.
Hence its charge is positive, and the charges of all the rest are
negative. Hence the coefficients of capacity are all positive, and
the coefficients of induction are all negative ( (33) ff.).

The coefficient of capacity of any conductor A, is numerically
equal to, or greater than, the sum of all the coefficients of in-
duction (with % as first subscript) between 4, and the other con-
ductors. For when 4, is insulated and charged, and the voltage
to A, from each of all the other conductors (connected to A4,) is
zero, the number of unit tubes ending on the other conductors
cannot be greater than the number emanating from A, (since all
emanate from A,), and can equal this number only when 4, is
completely surrounded by one or more of the other conductors
(of the system A, A, ---, A)) as it is surrounded by A, (or
when 4 is removed to infinity and the other conductors are the
only two charged bodies in space).

When the dielectric is homogeneous and isotropic throughout,
the coefficients of induction and capacity are proportional, and
the voltage coefficients inversely proportional, to its permittivity.

Every voltage coefficient with its subscripts equal, as p,,, is
diminished, and every coefficient of capacity, as s,,, is increased,
by the introduction of another conductor into the field. For 7,
the voltage from A4, to 4, is equal to f E,dL along any path
from A, to A ; and when another conductor is introduced,
whether it is insulated or connected to A, tubes of displacement
are pushed toward and into this conductor, making the field less
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intense, and f E;dL less, along some paths not passing through
the new conductor (and therefore along all paths). Hence,
while ¢, remains unaltered, V, is diminished by the introduction
of the new conductor. When 4, is insulated with charge ¢,, and
all the other conductors are insulated without algebraic charge,
2w =V, /2, and is therefore diminished by the introduction of
the new conductor. When 4, is insulated with charge ¢, and
the voltage to 4 from each of all the other conductors (con-
nected to A ) is zero, s,, = g, /V, and is therefore increased by
the introduction of the new conductor.

It is easy to see that the effect in question is greater in each
case the nearer the new conductor is brought to the conductor
whose coefficients are under consideration, and, in general, the
greater its volume (space included within its exterior surface, if
hollow). '

Similar and opposite effects, respectively, are produced by in-
troducing into a part of the field a dielectric of greater or less
permittivity than that of the rest of the dielectric within 4, as
will be apparent after reading Chapter IV.

52. Additional Expressions for the Electric Energy. The
energy of the electric field within A4 surrounding the system of
conductors A,, A4, ---, A, (§49) can also be expressed as a
quadratic function of all the charges ¢, ---, ¢, or of all the
voltages V,, ---, V.. For by (30) and (35)

17

M/;= %—EqV: %s“Vlz-}-%sszz_F IR slele

{38)
+313V1V3+ +523V2V;+"'
and by (30) and (34)
VVq . % Eq V= %‘puqlz it %]722922 glasioe +P127192 (39)

3 +1’139193 Feegias +p239293+ g

W, denoting the energy expressed in terms of the voltages, and
W, the energy expressed in terms of the charges.
By partial differentiation we find that
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dVVn/dVl=anl+512V2+“'+san; (40)
=g, AW, |dV,= g,, etc, and

dVVg/d% =/utt+Pudst ot Puda= Vvd”/q/dqz <t Vz’ etc. (41)

53. 2Vq' =2V'q. Letg,V, 9, V, ---, 9, V,and ¢/, V/,
2/, V!, ---, q.), V;] denote the charges and voltages to A4, for
two static fields surrounding the system of conductors 4, - .-

A, within 4. Then

Vg =3V'q (42)
For ZVy' = Vig/ + Vg, + --- + V,g,/. Whence, by (34),

Vl?ll =P119191’ +?129291I ik o +ﬁ1nqn91/
Vig! =009 + 0299 + - + £0,9.9)

V;gn, = pnlglqnl + Pn2q2qn, + N + Pm.gnqnl
and 2V =V + Vigs+ -+ Ve, =2V"g
by adding up in vertical columns the corresponding terms.
54. Change in Energy when Charges and Voltages are Altered.
If the charges and voltages to 4, of the given system of con-

ductors are changed from one set of values ¢, V,, g¢,, V,, etc., to
another set ¢/, V//, ¢,/, V', etc., the increase in the energy of the

field is W —W=3}2g'V'—2¢V) (43)

This equation may be put in two other forms, sometimes con-
venient, by (42). Thus

EgV'—SqV) = 3(Eg' V'— SqV'+ 2¢'V— 3g7)

=32 —(V'+V) (44)
=1CEg V' +3gV'— 3¢ V—3gV)
=32 +)(V'=7). (45)

55. Electric Energy, Mechanical Energy, and Change of Con-
figuration. From §53 it follows that if the system of conductors
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A, A4, ..., A, suffers a certain change of configuration, the
charges g¢,, ¢,, etc., remaining constant, and the voltages to 4,
therefore changing from V), 1, etc., to I/, V)/, etc., the energy,
W, lost by the electric field minus the energy, W', gained by the
field when the same change of configuration occurs with voltages
Vi, V,, etc., constant, and charges therefore changing from ¢,, g,

etc., to ¢/, ¢/, etc., is equal to
W—W =§2¢(V—-V")— $2U¢' — q)
=127 -9 (V'=7) (46)

For in the first case, after the change of configuration, the
charges ¢, ¢,, etc., correspond to the voltages I}/, V!, etc.; and
in the second case, after the same change of configuration, the
charges ¢/, ¢,/, etc., correspond to the voltages V7, V,, etc.

Hence by (42)
2gV=2q¢'V"

Substituting Zg’ V'’ for ¢V in the first term of the central
member of (46), we obtain }(2g'V'— ZgV'+ ZqV —Zg' V),
which, on being factored, becomes identical with the last member
of (46).

If the energy dissipated in heat during the change of con.
figuration (owing to electric resistance (VIIL)) and that radiated
away (both of which are, or may be made, exceedingly small)
are neglected, the system gains in the first case an amount of
mechanical energy equal to W, the loss of electric energy. If
now, after the change of configuration, the voltages to A, are
brought back to their initial values by means of batteries (or other
agents possessing intrinsic e.m.f.s (VIIL.)), the state of the system
will be the same as after the change of configuration in the second
case above, and the electrical energy will surpass the initial
energy by the amount J#7. The energy W' supplied to the
system by the batteries is equal to the sum of the increases in
mechanical and electrical energy, or

W =W+ W
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But W=W-=312(@ —q)(V'=V)
hence W=2W—312(@' —q)(V'=V) (47)

If the change of configuration is infinitesimal, W, W'’ and W
are infinitesimals of the first order, and } 2 (¢’ — g)(V'—V)
an infinitesimal of the second order. Hence, putting W=
— dW, and W' = dW,, and neglecting W —W' = — dW, —dW,
=132(¢d—¢q)(V'—V), we have

— dW, = dW, (48)
and W = — 2dW, = 2dW, (49)

That is, during any infinitesimal change of configuration the
decrease in the electric energy of the system when the charges
are kept constant is equal to the increase when the voltages to
A, are kept constant ; and the energy supplied by the batteries,
or other sources of electric energy, in the latter case is equal to
twice the increase of electric energy — one half going to increase
the mechanical energy of the system.

The principle developed in this article will be applied exten-
sively in what follows to find the forcive upon a given conductor
A in the field.

Thus suppose the forcive upon 4 to consist of a force # in the
direction OX of increase of the coérdinate x of a point of 4.
Let the configuration of all the other conductors remain fixed
while 4 is displaced in the direction OX a distance d». Then

_ AW, = AW, = Fix
or F= — dVVq/dx= aw, |dx (50)

In the same way, if the forcive consists in a torque 7 in the
direction of an increase of an angle 6,

T= —dW,|d = dW,|d8 (51)

56. The Discharge by Successive Contacts with 4, of two Con-
ductors, A, and A, of the System. Let all the other conductors
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within 4, be kept permanently connected with 4, thus becoming
permanent parts of 4, Then we have at all times, by (37) and

(35)’ @i=su" +slez
7=V + 5,7,
Initially, let A4, be insulated, with voltage V" to 4, and with

charge ¢, and let 4, be connected to A, In this state we have
from the above equations

i=g=sV
192 = S1z V= (512 /"‘11)9
the first subscript of ¢, and ¢, denoting the number of times the
conductor with the second subscript has been connected to A,.
Next let A4, be insulated, and let 4, be then connected to 4,.
After this operation

122 = (512 [$1)7
19 = S Vo = (81" [SuS)?-
Next let 4, be insulated and 4, then connected to 4. Then

171 = (522" [Susn)?
= (515" [$1°52)7-
Then let 4, be insulated, and let 4, be connected to 4. In

this state b
oJ2 = (s12 /511 522)?
201 = (s124/31125122)9
and so on for any number of contacts.

Thus each time either conductor is connected to A, its charge
is diminished in the ratio s,?/s,s,,. After z contacts the charge

bl = (52505 (52)

If after the #th contact 4, is insulated and 4, connected to 4,,
the voltage from 4, to 4, is

3 :
n Vl = }; (5122/511522)"9 = (slzz/suszz)” 4 (53)
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When s,, is nearly equal to s,, and s,,, which is the case when
the two conductors are parallel and close together, especially
when the dielectric constant of the medium between them is
larger than that of the rest of the dielectric within 4, the charge
diminishes very slowly with the increase of 7. ‘

57. Electric Surface Density and Surface Curvature of Con-
ductors. The electric surface density upon any isolated electri-
fied conductor is, in general, greater at any point of the surface
the greater the curvature at the point. For it is obvious that
the equipotential surfaces drawn about any such conductor ap-
proach more and more nearly the form of spheres about the
conductor’s “ center of charge” as their distances from the con-
ductor increase. That is, at great distances the field is prac-
tically radial, and tubes of equal strength have equal cross-sec-
tions. If now tubes of equal strength are followed backward
toward the conductor, they become narrower; and those which
emanate from the more highly curved portions of the sur-
face become narrower more rapidly than those which emanate
from less highly curved portions, since the lines bounding
each tube emanate normally from the conductor. Thus the
area from which a tube of given strength starts is smaller, or
the electric surface density upon it greater, the more highly the
surface is curved (convex outward) at the point.

In the same manner the density is smaller the more concave
the surface.

At a sharp edge or point the density is very great. If the
edge or point were really skarp, the density there would, of
course, be infinite, as tubes would emanate from bases of no
dimensions.

Where two parts of a conducting surface make with one an-
other a reéntrant angle the surface density vanishes, since any
displacement there would be perpendicular to both parts of the
surface, which is impossible.

In addition to the curvature at the given point, the curvature
of the neighboring parts of the sarface is of importance in deter-
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mining the density. Thus the density would be small on a
‘“point ”’ on the inside of a vessel nearly closed, and it might be
great in a small cavity in a highly convex portion of the outer
surface. '

If the conductor is not isolated, the effects here described will
be rendered more or less conspicuous according to the signs,
magnitudes, and distributions of the charges on neighboring
bodies.

In the following chapter many examples illustrating the prin-
ciple of this article will be found.

58. The Capacity of a Conductor is a very commonly used
and convenient, but otherwise objectionable, abbreviation for the
permittance of the dielectric (supposed homogeneous and iso-
tropic) enclosed between the conductor and an infinitely remote
surrounding conductor when no other conductors or electrified

bodies are present.



CHAPTER 1II

SIMPLE IDEAL ELECTRIC FIELDS AND CONDENSERS WITH
HOMOGENEOUS DIELECTRICS.

In the following articles describing various electric fields all
more or less ideal, the dielectric is supposed to be homogeneous
and isotropic throughout, and the electrified bodies in each case
are supposed to be infinitely remote from all other electrified
bodies, unless the contrary is stated. The potential at a point
will be taken in this chapter and in Chapter IV. as the line inte-
gral of the electric intensity from the point to a region inﬁrﬁtcly
distant from all electrified bodies.

1. The Spherically Radial Electric Field. ILet an electric
charge ¢ be concentrated at a point . The field can be found
at once from (1) and (2), Chapter I., or from Gauss’s theorem
and the principle of symmetry. By symmetry, the electric dis-
placement is directed radially from 7 (or to P if ¢ is negative)
and has the same magnitude at every point of any sphere with
center at 2. All such spheres are evidently equipotential sur-
faces. Since the electric flux across any of these equipotentials
is ¢, the flux per unit area across a sphere of radius Z, or the
electric displacement at a distance Z from 2, is

D=gfawl? (1)

B Gy (2)

from which

From (2), the potential at a point distant Z from P is

V= LmEdL=g/c47rj:dL/L2=q/€4WL (3)

57
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the integration being performed along a line of intensity for sim-
plicity.

Maxwell’s plane diagram of the field is given in Fig. 14 and
described in § 7.

2. The Spherical Condenser. If in the radial field of §1 infi-
nitely thin conducting sheets are placed coincident with two
equipotential spheres of radii Z, and L,= Z, + 4, the electric
field will remain unaltered, except that it will be rendered dis-
continuous at the surfaces of the conducting sheet (§ 47,
Chapter I.). The charge upon the outer surface of ‘the inner
sphere is now ¢, and that upon the inner surface of the outer
sphere is — ¢, the two surfaces with the intervening dielec-
tric forming a condenser whose field is radial and given by (1)
and (2).

The charge ¢ at the center of the spheres is the electric image
in the inner sphere of the charge on the inner surface of the outer
sphere and all external charges; or, if one of the conducting
sheets is removed, ¢ is the electric image in the remaining sphere
of the complementary charges at an infinite distance (on the in-
finite sphere at zero potential surrounding ¢). The conducting
substance may be extended into the regions within the inner
sphere and without the outer sphere in any manner, or the fields
in these regions may be wholly destroyed, without affecting the
field of the condenser.

For the voltage between the two conductors (2) gives

Ly
Vim Vi= [ BiL=glame-(/2,—1/L) = gd]ameL L, ()
Ly
The capacity of the condenser is
S=q/(Vi = V) = 4meL\L,|d = 4mcL*[d-(1 + d[L)) (5)
and the capacity per unit area of the inner sphere is

S = SjamLt=c|d-(1 + d|L) (6)
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The energy contained in the dielectric, or the energy of the
condenser, is

W foVim V)= ga[SmeL s + 4| L) = § SV, = Vy
— omer a1 + /) (V= vy

Limiting Cases. (1) The parallel plate condenser. If & is
kept constant, and L made to increase, the electric field normal
to a given portion of the inner or outer sphere obviously ap-
proaches uniformity. When L becomes infinite, any finite por-
tion of the condenser becomes a parallel plate condenser (§ 12)
of capacity per unit area S’ =c/d. In any case when &/L is
small, the field is approximately uniform (in magnitude) and the
capacity per unit area approximately ¢/d. This field is fully
discussed in § 12.

(2) The isolated sphere. If Z,is made infinite while Z re-
mains constant, (4), (5), (6), and (7) become

Vi=gq/4mel, (8)
S, = 9/ Vi=4mcl, (9)
Sll = L‘/L1 ([o)

and
W=} gV, = ¢[Smel, = }S, V2 = 2meL, V2 (11)

The coefficients of potential and capacity for the system of
two spheres can be easily found from the equations of § 50, 1.,
together with those just developed. Thus '
Bhi= gl/ 4 (When V= 0)=S

tu= V; /91 (gz == O) A I/4'""'L1
Sp=q,/V;(when Vj=0)=—S=—5,
Pu=V/g:(9,=0)=1/4mcL,
So2 = 92/ V,(when 7} = 0)=3S + Sy (= 4mely)=s,, + 1/py
u="V3[2,(qy=0) = 1/4mcL, = p,,

(12)
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3. Laplace’s Equation for the Spherically Radial Field. As
an example of the use of Laplace’s equation we will determine
V. — V, by a different method. Since the field is radial, the
equation may, with the aid of Fig. 12, be put in a much simpler
form than that of (21), Chapter I. The simplified form could be
obtained from (21), Chapter I., by a mathematical transformation,
the proper conditions being put in, but can be developed more
simply by starting from first principles.

Fig. 12.

The electric flux into the elementary volume dr across the
surface dS is DdS. The flux out from the volume across 45’ is
(D + dD|]dL-dL)dS’, and there is no flux across any other part
of the tube. Hence the resultant flux outward is

D(dS' — dS) + dD|dL-dLdS = pdLdS = pdr = o

Dividing this equation by 4SS, writing for 45'/dS its equal
(L + dLY[I? and passing to the limit, we obtain, on putting
D = cE equal to — cdV/[dL,

2dV]dL + Ld*V|dI* = o (13)

which is the form taken by Laplace’s equation for a radial field.
From (13) we obtain by integration

L*dV]dL = C, or dV[dL =C,[[* (a)
where (| is a constant to be determined, and

VeC fdL]L? (%)
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Integrating from L= 7, to L = L, we have

Vz_V1=Cl(I/L1_I/L2) ©
Since when L = L,, d V[dL = — o [c, (@) gives
G =—oLe @

Hence (¢) becomes
V,— Vy= oLl (1)L, — 1/L) = glame-(x/L, — 1/L) (&)

which is identical with (4).

The potential at any point distant Z, greater than Z, and less
than Z, (the field being confined within the space between the
spheres of radii Z, and-Z,) from P is

L
V=", + le dL|L* (14)
Ly

4. The Potential at a Point Due to Any Electric Distribution in
a Homogeneous Isotropic Dielectric. For the potential at a point
distant L, L, ..., L from point charges ¢, ¢,, ---, ¢,, respec-
tively, § 33, Chapter L., gives, by means of (3),

V=1feam (/L + @:/L,+ -+ + ¢,/L,) = 1/eam Zg/L (15)

If the charges, instead of being concentrated at points, which,
to be exact, is of course impossible, are distributed over surfaces
and through volumes, (15) becomes

V=1/cqm [dg|L =1 /c47r( [odS|L + fpd'r/L) (16)

the first integration extending over all electrified surfaces, and
the second throughout all electrified volumes.

While (15) and (16) have been deduced for a space filled up
with a single dielectric, they are also true, by § 28, Chapter 1.,
when the field contains any number of conductors. The equa-
tions will be extended later to include all cases (IV.).

5. The Law of Inverse Squares. A consideration of equations
(1) and (2) shows that the law of inverse squares, which they
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state in its simplest form, is due to the continuity of the electric
displacement (or the ““incompressibility of electricity”’), the flux
from a charge ¢ being ¢ across every surface surrounding the
charge, and to the spherical or three-dimensional nature of space,
the flux from a point charge being distributed equally in all direc-
tions (when the medium is homogeneous and isotropic, in which
case only the law is valid).

6. The Normal Electric Field and the Potential of the Earth.
Numerous investigations upon the electrical state of the earth’s
atmosphere, made at altitudes above its surface ranging from
nothing up to 4000 meters, have shown that the atmosphere is
the seat of an electric field whose intensity, in normal conditions,
is directed toward the earth.

In good weather, the magnitude of this intensity at the earth’s
surface ranges from about 0.00005 RZS unit (about 50 volts/
meter) to about 0.00040 RES unit (about 400 volts/meter), ac-
cording to season, locality, etc. Thus the electric surface density
of the earth’s surface, in normal weather, ranges from about
—0.00005 RES unit to about — 0.00040 RLS unit. The magni-
tude of the intensity increases with the altitude above the earth’s
surface up to heights of some 2000 meters, showing that the
atmosphere in this region, like the earth’s surface, is negatively
charged. In the higher regions of the atmosphere, on the other
hand, the intensity decreases with the increase of altitude, with-
out becoming greatly reduced, however, at the greatest altitudes
yet investigated. Thus the higher regions of the atmosphere are
positively charged ; but whether all the tubes of displacement
terminating upon the earth and in the lower regions of the at-
mosphere originate in the upper regions, or whether some of these
tubes emanate from other bodies in space, is not yet known. If
further investigation demonstrates that at greater altitudes the
intensity vanishes, the former alternative will be shown to be
correct. The altitudes here considered are so small that no sen-
sible variation in the intensity would occur within them owing to
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the increase in the cross-section of the tubes of induction with
the distance from the surface of the earth.

The earth itself in any case is negatively charged; and since
the electric intensity in the atmosphere is directed toward the
earth, its potential is negative if the (wholly unknown) electrifi-
cation of all other bodies in space beyond the atmosphere is not
considered. From the magnitude of the intensity given above and
from the great altitude to which the field extends without great
diminution in strength, it is obvious that the magnitude of this
potential is very great.

It follows from (15) that that part of the potential at the center
of a conducting sphere of radius Z due to any charges Z¢ upon
its surface is 2¢/47cL. Since the sphere is conducting, this ex-
pression gives the part of the potential at any point of the sphere
due to the surface distribution. From this and §6, I., it follows
that the potential of the earth is not appreciably affected by the
the development of any charges retained upon or near its sur-
face. For by §6, 1., 2¢ is always zero; and Z, the distance from
the center of the earth, is very great and practically the same
for all the charges.

The field surroundiﬁg the earth, as a matter of fact, is by no
means strictly szatic, and the surface of the earth is never‘strictly
an equipotential.

7. Maxwell's Plane Diagram of the Spherically Radial Field.
Maxwell’s diagrams are all so drawn that the successive equipo-
tential surfaces differ in potential by the same amount (for ex-
ample, unity), and that the tubes of induction corresponding to
the intervals in the diagram between successive lines of displace-
ment are of equal strength (for example, unit tubes).

(1) The equipotential surfaces. The radius of the sphere whose

potential is [ is
L=gqg|gmcV

Hence by giving V in succession the values 1, 2, 3, etc., the
radii of the equipotentials with these values of the potential can
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be obtained. The circles in which any plane passing through the
charge cuts these spheres form the equipotential lines in the
diagram. The circles may of course be drawn for any constant
increment of potential instead of unity.

£

s

o

w

7.

3 4

Fig. 13.

(2) The lines and tubes of displacement. The lines of displace-
ment are straight lines radiating from the charge. The tubes of
displacement in Maxwell’s method are formed by rotating the
diagram of lines of displacement about a straight line drawn
through the charge. We proceed to find the distribution of the
lines in the plane diagram when drawn so that the tubes thus
formed are of equal strength.

Let a circle of any radius AP, Fig. 13, be drawn about 2, the
seat of the charge, as center; and let the diameter A5 be divided
up into ¢ equal parts by straight lines drawn perpendicular to A58
and cutting the circle in the points 11, 22, etc. From 27 let
straight lines be drawn through 11, 22, 33, etc. These lines are
the lines of Maxwell’s diagram.

For if the figure is rotated about A5 as axis, the circle traces
out a sphere, the lines 11, 22, etc., trace out equidistant parallel
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planes which cut the sphere up into zones 141, 2112, etc., of equal
area (1/g that of the sphere). Hence the lines 71, P2, and P3,
etc., trace out cones 171, 12, 2P3, etc., through each of which
the electric flux is the same and equal to 1/¢ X ¢ = unity. Hence
these cones are the tubes of displacement required, and the lines
P1, P2, P3, etc., are the lines of displacement in the diagram.

The field may of course be divided up into tubes of any other
strength instead of unity by cutting AZ up into the desired
number of equal parts in the above construction.

The diagram is given in Fig. 14 for the case in which the
strength of each tube is taken as ¢/8.

Fig. 14.

8. The Cylindrically Radial Field, or field surrounding a uni-
formly electrified infinite straight line or circular cylinder. Con-
sider first an electrified straight line, and let the charge on unit
length be denoted by ¢. By symmetry D is everywhere normal
to the line and to the circular cylinders about it as axis, which
are the equipotential surfaces, and has the same magnitude at
every point of any such cylinder. Since the flux across a length
A of any equipotential is ¢4, the flux per unit area across a cylin-
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der of radius Z, or the electric displacemént at distance Z from

the axis, is D=qgA|2mlA=g|2wL (17)

whence Eaxe Dfo=gl2mal (18)

The potential at a point distant Z from the axis is

V= g/z'n'cf dL[L (19)
/L

9. The Cylindrical Condenser. If two equipotentials of radii
L and L,= L + d are replaced by infinitely thin conductors,
the electric field will remain unaltered except that it will become
discontinuous at the surfaces of the conductors. The charge
upon unit length of the outer surface of the inner cylinder is now
g, and that upon unit length of the inner surface of the outer
cylinder is — ¢, and the two conducting surfaces with the inter-
vening dielectric form a condenser whose field is given by (17)
and (18). The charge upon the straight line and that on the
inner surface of the outer cylinder together with all the external
charges are electric images of one another in the inner cylinder,
etc. The conducting substance may be extended into the
regions within the inner surface and without the outer surface in
any manner, or the fields of these regions may be wholly de-
stroyed, without affecting the field of the condenser.

For the voltage between the plates of the condenser, (18) gives

Ly
V,—V,= g/z'm'f a’L/L= q/-?’ﬂ'f‘k)g(I + d/Lx) (20)
i

The capacity of a length A of the condenser is
S=qd[(V,— V,)= 2mcA[log(1 + d[L)) (21)
and the capacity per unit area of the inner cyliﬁder is

S'==S/2mL A=c[Llog (1 +d[L)

(22)
= ofd(1— JAIL, + 4@ L = )
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If 4 is kept constant and Z, made to increase, the field normal
to a given portion of the inner (or outer) cylinder evidently ap-
proaches uniformity ; and in the limit, when Z, = infinity, any
finite portion of the condenser becomes a parallel plate condenser
(§ 12) of capacity ¢/ per unit area. In any case when d/L is
small the capacity per unit area is approximately ¢/d.

The energy of a length A4 of the condenser is

W=19A(V,— V)= ¢*A[4mc-log (1 + d[L))

= mAc[log (1 +d/],1).(Vl_V2)z (23)

The field of an infinite isolated circular cylinder uniformly
charged is given by the above equations on making L, infinite
and V), zero.

V, — V, can be easily obtained by the direct application of the
law of inverse squares. Let the field outside the condenser be
zero (though the results obtained will be independent of this
assumption); then V, = o, and V] is the potential at any point
on or within the inner cylinder, and is therefore the potential at |
any point £ on this axis. Hence, from the figure (Fig. 15),
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V= Vy= V= 2 [ qamLde]ame(e + L2
— qemldx[gme(x®+ L] = g[2mc-log L,[L,
as in (20) above.

10. Laplace’s Equation for the Cylindrically Radial Field.
V, — V, can also be obtained directly from Laplace’s equation.’
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Without transforming the general equation, we can obtain
directly, by a simple process similar to that employed in § 3, the
special form it assumes in a cylindrically radial field. Thus we
find

Ld*V[d[? + dV]dL = o : (24)
Hence, by integration,
LidV]dL=C
or (a)
AV =CdL /L.
and
Ly
V,— V2=Cf dL|L = gq[2m log L,[L, (&)
Ly

since when L = L, (a) gives
=—Lofc=-.g[2mc (¢)

The potential at any point between the two cylinders, distant

L from the axis, is
L

V=V,+ C | dL{L £25)

\
Ly

11, Maxwell's Plane Diagram of the Cylindrically Radial Field.
This diagram, like that of § 7, is drawn so that the tubes of dis-
placement corresponding to the intervals between the successive
lines of displacement are of equal strength, and so that the volt-
age between successive equipotential lines or surfaces is constant.

Since every line of displacement lies wholly in a plane perpen-
dicular to the axis of the cylinders or electrified straight line, and
since the lines of displacement are exactly similar in every such
plane, any such plane is chosen as the plane of the diagram, and
the tubes of displacement are supposed to be formed by moving
the diagram perpendicularly to its plane. 'We shall suppose the
diagram to represent unit depth of the field, all the tubes having
this thickness.

1. The equipotential lines in the diagram are circles centered
on the axis. Though the potential of every circle, as given by
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(19), is infinite, we may draw a system of circles differing in
potential successively by a constant finite quantity, as unity, by
starting with any equipotential circle of any radius 2 and potential

Fig. 16.

V. (infinite) and applying (20) to find the radius Z of the circle
whose potential is }7, — V/, less than V. Thus we have

L = ae 2we/q- (Vg — V)

By giving to V, — V7, in succession the values 1, 2, 3, etc. (or
any set of successive values differing by a constant), as many
circles of the system as desired may be obtained.

2. The lines of displacement are straight lines drawn from the
center of the circles and dividing each circle into ¢ (or any inte-
gral number) of equal parts.

Such a diagram is shown in Fig. 16.

12. The Uniform Electric Field. Let the field be terminated
by an infinite plane conducting surface. The surface will be
uniformly electrified, the displacement everywhere uniform and
normal to the surface, and the equipotentials planes parallel to
the surface. The displacement is
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D=oac (26)
and the intensity is E= Dfc=g/e (27)

The Parallel Plate Condenser. If an infinitely thin conduct-
ing sheet is placed coincident with the equipotential plane dis-
tant & from the electrified surface, the electric field will remain
unaltered except for the discontinuity introduced at the surfaces
of the sheet, and each side of the sheet will therefore have the
same electric surface density o (numerically). The two adja-
cent surfaces and the dielectric between them form a condenser
whose field is uniform and given by (26) and (27), and which
will remain unaltered if the conductors are extended into the
region outside the condenser.

The voltage between the two conductors is

V.— V,= Ed=cd|c (28)

and the capacity of a portion of the condenser of right cross-
section A is

S=gq/(V,— V)=A|Ed= AD[Ed = Ac[d (29)
The capacity per unit area is, as already proved less directly
in§§2and9, S’=S/A=€/d (30)

The energy of a portion of the condenser of right cross-
section A is

W=4g(V; — V)= jdo’dc
= }de[d-(V, = V' = }EDAd (31)
The force 7 (positive when tending to increase 4, or to separate
the plates) upon an area A4 of either plate, if the tubes in the
condenser are the only tubes terminating upon the plates (that
is, if there is no external field), is
F= — dW|dd (o constant) = — }o?d[c = — }cE?4 = etc.
= + dW/[dd [ (V, — V,) constant] (32)
= —3d4c(V, — V)!/d* = —}cE?A = etc.
by § 55, Chapter L
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This result also follows from § 40, 1., or the result there given
follows from (32).

V, — V, can be obtained also by the direct application of the
law of inverse squares. We assume that there is no field ex-
ternal to the region within the plates, though the results will of
course be independent of this assumption, since the internal and
external fields are wholly independent of one another. From
any point P of the positive plate imagine a straight line drawn per-
pendicular to both plates. Imagine the surfaces of the conduc-
tors divided up into infinitesimal circular zones centered on this
line, and let x denote the radius of any zone and dxr its width.
Then the potential at 2, 7. ¢., the potential at all points of the
positive plate, is evidently

V,= f w[— o2mxdx[qgme(x® + d ) + o2mxdx[4mex)
0

LGP fm[x — )@ + dYW]dx = + od[2c
Similarly t V,=—oad[2c
Hence V—V,=ddlc (28)
Laplace’s Equation for a Uniform Field. The same result can
be obtained also from Laplace’s equation. In a uniform field, if

we take X in the direction of D), the equation (21), Chapter 1.,

simplifies to d*V]dx*=o (33)

since D, = D, =0 (or dV[dy = dV[dz = o).
By integration, (33) gives

dV|dz=C = —a/c (@)
By a second integration
Vi—V,=Clo—d)=— Cd=od|c (28)

At any point distant x from the positive plate, when z is less
than &, we have

V="V, + Cr (34)
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13. Maxwell's Plane Diagrams of the Uniform Field. (1) The
equipotentials are equidistant planes perpendicular to the lines of
displacement.

(2) The diagram of the tubes of displacement may be drawn in
two different ways. If the tubes are to be formed by moving

Fig. 17.

the diagram perpendicularly to its own plane, the corresponding
lines in the diagram must be drawn equidistant. ~But if the tubes
are to be mapped out by rotating the diagram about a line of
displacement as axis, the distances of the successive lines from
the axis (or the radii of the outer surfaces of the cylindrical
tubes) may be found by giving to the expression mR’D(= the
flux through a tube of radius R) values which are multiples of
the successive whole numbers by a constant, and solving for the
corresponding values of R. A diagram of the former kind is
given in Fig. 17, and one of the latter kind in Fig. 18.

Fig. 18.

14. Maxwell’s Plane Diagram of the Resultant of two Fields.
If the plane diagrams of two fields are given, both drawn for the
same strength of tubes and the same potential differences, and if
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both are diagrams which trace out the tubes of displacement by
their revolution about the same axis, or by motion at right
angles to their plane through the same distance, the resultant
diagram of the two fields superposed can easily be drawn.

(1) The equipotentials. Since the potential of each line in both
diagrams is known, the potential of every point of intersection
when the diagrams are superposed is known. Hence by draw-
ing curves through all the points of intersection which have the
same potential we get the resultant equipotentjal curves. This
is equivalent to drawing the curves forming the diagonals of the

Fig. 19,

quadrilaterals made by the superposition of the two systems of
equipotentials, since in passing from one corner to the other the
potential of one diagram diminishes as much as that of the other
increases. There is no difficulty in choosing the proper diagonal.
The difference of potential between the successive curves in the
resultant diagram is the same as that between the successive
curves in the original diagrams. A particular case is illustrated
in Fig. 19, the lines of the resultant diagram being dotted.

(2) The lines of displacement. The lines of displacement in
the resultant diagram are the curves forming the diagonals of
the quadrilaterals resulting from the superposition of the two
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diagrams of lines of displacement. For across every element of
such a curve, as a4 in the figure (Fig. 20), the flux is zero, since
the flux through one tube as 7 in one direction just cancels that
through another as 7 in the other direction. It is also obvious

from the figure that the flux along any resultant tube is equal to
that along any of the original tubes. No difficulty can be ex-
perienced in choosing the proper corners of the quadrilaterals to
connect.

By compounding diagrams in pairs it is clear that the diagram
of the resultant of any number of fields superposed can be ob-
tained by the above method.

15. The Field Terminated by two Equal and Opposite Concen-
trated Charges. Let the charges, which will be denoted by ¢
and — g, be located at 4 and B, Fig. 21, distant 24 apart. The
field is evidently symmetrical about the line A5, and is the re-
sultant of two radial fields, § 1. The displacement and intensity
at any point 2 distant Z, from 4 and Z, from B are therefore

D = Vector sum of D,(= ¢[4wL? directed from A) and
Dy(= gq/4mL; directed toward B) (35)

and

For the potential at 2, (36) gives
V=V + V,=g[ame (1/L,—1/L)) (37)



ELECTRIC FIELDS AND CONDENSERS. 75

(37) is also the equation of the equipotential surface whose
potential is V-

The lines of intensity are the lines orthogonal to the surfaces
given by (37). The equation of a line of intensity can be ob-
tained at once by writing down the condition that there is no

Fig. 21.

component of electric intensity perpendicular to such a line. If
ds (Fig. 21) is an element at P of the line of intensity through
P, and if a, and a, are the angles made by Z and £, with the
normal /V at 7, we have, to express this condition,

E cosa, + E,cosa,=0

If Z, and Z, make with A5 the angles 6, and 6,, this condition
may be written, as the figure shows,

d9,/L,+ d8,]L,= o

Multiplying by £D, the perpendicular to AB from P, and inte-
grating, we have

Constant = C'= — (fsin 0,46, +fsin 0,d6,)= cos 8,4 cos 6,(38)

which is the equation sought, in terms of 8, and 6,
By giving to C different values, the equation of any line of
intensity may be obtained. To find C for the line which cuts
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the plane normal to 428 through its central point C at a distance
x from C, we have, for this point, 6, = 6,, and

L =L, = (d*+ £
Therefore
C=2cos 0, =2 cos §,= 2d[(d? + 2%} (39)

The lines of displacement and the equipotential lines, drawn
by the method of Maxwell, § 14, are shown in Fig. 22. (See
(Maxwell’s Zreatise, §123.) .

If the distance 24 is diminished indefinitely and the charges ¢
and — g increased in such a way that ¢ x 2d = constant = 7,
the system becomes a point doublet of moment M. This doublet
and its field are discussed in § 27.

From (37) it follows that the infinite plane perpendicular to
AB through its middle point C is at zero potential.

At any point on this plane the resultant intensity and displace-
ment are normal in the direction AB. If Pis distant x from C,
the displacement at 2 will be, by (335),

D = 29/4m(d® + £°)-d|(@* + 3 = gd | 2m(d* + 2 (40)

If for the infinite plane equipotential surface through C an in-
finitely thin conducting sheet is substituted, the field on either
side will remain unaltered, and the two point charges will be-
come electric images of one another in the sheet.

If the field on the side toward B is destroyed, or if the con-
ductor is extended toward B in any manner, the field on the side
toward A will not be affected, and we have the electric field
bounded by a concentrated charge ¢ and the (induced) charge
upon an infinite plane conducting surface distant # from ¢ and
maintained at zero potential. If ¢ is positive the electric surface
density is negative at every point of the surface, since D there
has the direction 4B. The magnitude of D= o is given in
(40). The total charge upon the infinite plane is — ¢, since all
the tubes from A terminate upon the plane.
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Since the field about 4 was unaltered by the introduction of
the conducting sheet and the destruction of the field on the side
toward B, the force between the charged body at 4 and the plane
conductor is the same as the force formerly acting between A

and B. Thatis,
F= —q¢'[167cd? (41)

Since concentrated charges do not exist, we shall suppose the
charges at 4 and 7 distributed over extremely small conducting

I
0‘ "
I\\\v

Fig. 22.

spheres each of radius «, so that the field in the region outside
the spheres will be practically the same as that already discussed.
From (34), I, the potentials of the spheres 4 and B are

V1=p11g +}’12(— 9) and T/;=p129 +P22(_ é])

the subscripts 1 and 2 being applied to 4 and B respectively.
Since the spheres are very small, these equations become very
approximately

Vi=q[4mca — q[qmc2d
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and V,=—ql4amca + g[4mc2d = — 1
from which V, — V, =2V =g/2mc-(1]a — 1]2d) (42)
The capacity of the system A5 is
S=g[(Vi— V)= 2mc[(1]a—1]2d) (43)

and the energy of its field is

g -
W= g[ame(1]a— 1[2d)=4mcV?P[(1]a — 1/2d) (44)
When the conducting sheet is placed coincident with the zero

equipotential, the capacity of the dielectric between A4 and this
surface is

Si=g¢[/V,=2S (45)
The energy of the dielectric is
W,=3iW (46)

The force tending to increase the distance between the charge
at A and the plate can also be found from (44) or (46) by the
method of § 55, I. Thus

F=—dW,dd = — dW|d(2d) = — ¢* |16mcd?
= + dW,[dd = + dW|d(2d) = — wc V2 [d¥(1]a —1/2d)* (47)

in agreement with (41), the first differentiations being performed
with the charges constant, and the second with the potentials
constant.

16. The Electric Field Surrounding Two Concentrated Charges
of the Same Sign in the Ratio of 4:1, and its Derivatives. Max-
well’s diagram with twenty tubes emanating from one of the
charges (A) and five from the other (B) is given in Fig. 23 (from
Maxwell’s Zreatise, § 118). One equipotential surface, indicated
by the dotted line, consists of two lobes meeting at the point 2.
At P, which is distant from A two thirds of the distance A5,
the intensity vanishes. Within this surface, each charge is sur-
rounded by a separate system of equipotentials, which become
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more and more nearly spherical as they become smaller, though
no one of them is an exact sphere.

If two of these surfaces, one surrounding each point, are taken
to represent the surfaces of two conductors with charges of the
same sign in the ratio 4:1, the diagram will represent the equi-

Fig. 23.

potential surfaces and tubes of displacement of the field sur-
rounding the conductors, provided that all the lines within the
surfaces are annulled.

The diagram shows that the force between the two bodies will
be the same as that between the two points 4 and B with the
same charges. The distribution of the tubes shows that this
force tends to pull the bodies apatt.

If a conducting surface is placed coincident with the two-lobed
equipotential, its electric surface density at 2 will be zero (cf.
§57,E):

Outside the two-lobed surface a single system of equipoten-
tials surrounds both charges. By making any of these surfaces
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conducting and annulling all the tubes within, we obtain the field
surrounding the isolated conductor with a charge upon its sur-
face equal to that of A4 plus that of B. The equipotentials sur-
rounding both A4 and B approach the form of spheres as their
distances from 4 and B increase (cf. § 57, L.).

17. The Electric Field Surrounding Two Concentrated Charges
of Opposite Signs in the Ratio 4 to 1, and its Derivatives, Max-
well’s diagram, with twenty tubes emanating from one charge at
A and five terminating with the other at 5, is given in Fig. 24
(from Maxwell's Zreatise, § 119).

Here again one of the equipotentials, indicated by a dotted
line, has two lobes, an inner one surrounding the point 5 and an
outer one surrounding both the points 4 and 5. All the sur- .
faces in the region between the lobes surround A4 only and
become more nearly spherical as A4 is approached; while all
those in the region within the inner lobe surround Z only and
become more nearly spherical as B is approached. The equi-
potentials lying outside the surface with two lobes become more
nearly spherical as their distances from A and B increase.

One of the surfaces, that with the potential zero, is a sphere,
and is indicated by the dotted circle Q.

If two of the surfaces, each surrounding one of the two points
A and B, are made conducting, and the fields within them an-
nulled, the diagram gives the tubes and equipotentials surround-
ing these conductors when charged oppositely in the ratio 4:1.

The diagram indicates that the force between two such
charged conductors is one of attraction, and the same as the
force between the two charged points 4 and B. The field sur-
rounding the charge at 4 or B when the sphere Q is made con-
ducting and the field on the other side annulled is discussed in
§ 23.

If we consider points on the axis 45 beyond the point B, we
find that the resultant intensity diminishes up to the point 2, distant
from A twice the length A5, where it vanishes. It then changes
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sign and reaches a maximum at 7/, after which it continually di-
minishes. The distance of M from A is ¥V4/(¥4— 1) - AB
= 2.70 x AB (approximately).
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18. The Electric Field Surrounding Three Points A, B, and C,
with Charges Proportional to 15, — 12, and 20, respectively, so
Situated in a Straight Line that AB:BC:AC::9:16:25, and its
Derivatives. Maxwell’s diagram of the field is given in Fig. 25
(from Maxwell’s Zreatise, § 121).

In this field one of the equipotentials, corresponding to the
potential 1 /4¢, consists of two spheres intersecting at right angles,
with centers 4 and (| and radii 15 and 20, respectively, as indi-
cated by dotted lines in the diagram. The point B is at the
center of the circle of intersection DD, the radius of which is 12,
and at all points of which the intensity is zero.

If the sphere A is made conducting and all the lines within it
annulled, the diagram will represent the field surrounding the
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insulated sphere 4 with charge 3 upon its surface in the pres-
ence of a concentrated charge 20 at . The part of A within
the spherical surface about C will be negatively charged and the
rest positively charged, the electric surface density along the
circle DD being zero.

Fig. 25.

In the same way, if C is made conducting, the diagram repre-
sents the field surrounding the conducting sphere C insulated
with charge 8 upon its surface in the presence of the concen-
trated charge 15 at 4.

These two fields are particular cases of that discussed in § 24.

If both spheres are made conducting, and the lines within
annulled, the diagram represents the field surrounding a con-
ducting surface consisting of the external segments of two spheres
intersecting at right angles in DD and with charge 23. This is
a particular case of the field discussed in § 36.
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19. The Electric Field Terminated by Two Infinite Parallel
Straight Lines or Circular Conducting Cylinders, with Charges ¢
and — ¢ on Unit Length. Consider first two electrified straight
lines, distant 2a apart, and cut by a perpendicular plane in the
points 4, and 4, Fig. 26. By symmetry, the distribution of
the lines of displacement is the same in every such plane. More-
over, all the lines emanating from a point 4, pass to the point
A, in the plane containing the two points and perpendicular to
the two lines.

Fig. 26.

The potential at any point 7 distant L, from A, and Z, from
A, is

R Vit V2=q/27r((f dL|L _f dL/L)
Iy L

Lg
= g/2mwc | dL[L=g/2mc-log L,/L,

Iy

(48)

This is also the equation of the section by the plane of the
paper of the equipotential surface whose potential is V. By giv-
ing to V7 different values the corresponding surfaces may be
obtained.

The displacement at 2 is

D = Vector sum of Dl( — g/2mL, directed from 4, )
and D,(= g/2wL, directed toward A4,) (49)

and the intensity £ is Dje.
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From (49) the equation of any line of intensity can be obtained
by the method of § 15. Proceeding exactly as in that article,
we find the equation

6, + 0, = C = constant (50)

which is evidently the equation of the arc of a circle terminating
at A, and 4, and cutting perpendicularly the line normal to
A A, at its middle point. If the line whose equation is sought
cuts the normal to 4,4, at its middle point O at a distance x
from O, we have, for this point, §, = 8,, and

C= 260, = 20,= 20 = 2 cos™'[a)(&® + +*)t] (51)
The equipotential surfaces given by (48) are circular cylinders,

or their lines of intersection with the plane 4,4,P circles, orthog-
onal to the lines of intensity. For (48) may be written

[1/L2=€—21rchq=/Z (52)

a constant for the curve, or surface, whose potential is V; and
this is the equation of a circle cutting the line A 4, and with its
center C on the line A A4, produced.

The radius of the circle whose potential is }is

R = 2haf(# — 1) (53)
the distance of its center C from A, is
A,C =Rk (54)
and the distance of C from 4, is
A,C = Rk (55)

To obtain the resultant displacement [’ at 7 we must obtain
the vector sum of ), and D, Fig. 26, which will be along R
normal to the equipotential. Since D, and D, are directed along
L, and L, respectively, and since, by (49), D, /D,= L, [L,, the
triangle whose sides are D,, D,, and 2 is similar to the triangle
A,PA,; so that '

DD =2a|L,and U [D,=2a[L
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whence D =2aD, [L,=2aD,[L =ga|wL ], (56)

and the resultant intensity £ is equal to 2’ [c.
The force /7 upon a length A4 of either electrified line, con-
sidered positive when tending to increase &, is

F= —qd-g|comea = — A | 4mca (57)

The plane diagram of the field, drawn by Maxwell’s method,
§ 14, is given in Fig. 27 (from Webster’s Theory of Electricity and
Magnetism, § 159). The tubes of displacement and the equipo-
tentials are mapped out by moving the diagram perpendicularly
to its plane.

Y

x

Flg. 27.

If for any equipotential surface the coincident surface of a con-
ductor is substituted, the electric field on the side facing this sur-
face will remain unaltered. The above field therefore includes,
as particular cases, the fields bounded by

(1) An infinite straight line and a parallel infinite conducting
circular cylinder,
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(2) An infinite straight line and a parallel infinite conducting
plane,

(3) An infinite conducting circular cylinder and a parallel in-
finite conducting plane,

(4) Two parallel infinite conducting circular cylinders, internal
or external (either or neither surrounding the other), all with
charges ¢ and — ¢ upon unit length.

The fields of §§ 8—9g are particular cases of (4) when one of
the two lines is removed to infinity.

As systems of practical importance, we shall discuss (4) for
the case in which the two cylinders are external to one another,
each of the same given radius R, with their axes at a given dis-
tance 24 apart, and charged to potentials /7 and — /] and (3),
which is a particular case of (4).

To obtain the electric field terminated by the two cylinders, we
must find the distance « and the charge ¢ upon unit length of

the positive cylinder.
From the similar triangles AICP and A,CP (Fig. 26) we have

(d+a)(@— @)= & (58)
a=(d~ Ry (50)

whence

From (54) and (55)

— (@+@)fR=R[(d—a)=[d+ @~ RH/R
=R [[d— (d* = B

For the cylinder whose potential is — J” we have
log b= 2mcV/q
and therefore
g = 2mcV[log & = 2mcV]log[{d + (d* — R’} /R] ©1)
= 2mcV[log[R]{d — (d* — R*)}}]

From (49) and (56) the field can be determined, by making use
of (61), at all points.
The capacity of a length A of the system is
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S=gAd[2V=mcA[log h = wcA [log[{d +(d*— R*}} [R] (62)
and the energy in the same length is

W= 1gA-2V=2mcAV*[log[{d + (d* — R*)}} | R] (63)
= 1424 me -log[{d + (4% — R}/ R]

If the infinite plane surface of a conductor is placed coincident
with the surface of zero potential (the plane passing symmetric-
ally between the conductors) the field on the side facing the
conductor will remain unaltered ; it is simply half the field just
considered. A

The capacity of a length A of the condenser formed by the
infinite plane and the cylinder with the dielectric is

S, = gd| V=25 (64)

and the energy is half that contained in the complete field sur-
rounding the two cylinders, or

W =3iw (65)

The force F acting upon a length of 4 of either conductor,
plane or cylindrical, is given by (57). It can also be obtained
by differentiating I, with respect to &, or I¥ with respect to 24,
by the method of § 55, I. Thus

F= — ¢4 [4mca
= —wcAV*[(d* — RP)tlog[{d + (d* — RP)} [R]?

20. The Field of a Line Doublet. When 22 is small in com-
parison with Z, and Z,, we have

V=g/[2mc-log L,/L,

= (approximately) g/2mc-log (1 + 2a cos §/R) (67)
= g/2mc-2acos 0[R(1 — 2acos 0[2R +--.)

(66)

if R is written for Z, and if # denotes the angle between Z, and
the line A4,4,.

If now the product g2z is kept constant while @ is diminished
indefinitely, (67) approaches the limit
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V= 2aqcos 0[2mcR = Mcos 0]2mcR (68)

where M is written for 2a¢g. This system is called a Zne doublet,
and M is called the mzoment of the doublet.

Fig. 28.

The radial and tangential displacements at a distance R from
the doublet, at a point where R makes an angle 6 with the line
A,4,, now infinitely short, are

D, = — cdV[dR = M cos 8 [ 2mR* (69)
D,=—cdV]|dT=—c|R-dV]d0 = Msin 0[2nR* (70)

- and

The total displacement is equal to
D= (D}+ D) = M[2mwR? (71)

and makes an angle 26 with the line 4,4, (the axis of the doublet).
The lines of intensity are evidently circles tangent to the axis
at O, and the equipotentials circles perpendicular to the axis at
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0. The plane diagram of the field is given in Fig. 28 (from
Webster's Theory of Electricity and Magnetism, § 44), the tubes
of displacement and equipotential surfaces being supposed gen-
erated by moving the diagram perpendicularly to its plane.

The method of drawing the diagram is easily understood from
Fig. 29. Since there is an infinite number of lines of displace-

Fig. 29.

ment within a circle of any finite diameter @, only the lines lying
outside some such arbitrarily chosen circle can be drawn. The
same is true of the equipotential lines.

The flux through the tube between the cylinders of unit depth
with diameters @ and y is

1 =fayM/27r'dy/ﬁ= Mjzm-(1/a—1[3)

Hence by giving II any set of successive values differing by a
constant the diameters () of the corresponding lines of displace-
ment may be obtained.

The voltage from the circle of equal potential of diameter & to
the circle of diameter x is

V,— V,=M|[2mwc-(1]6—1]x)

Hence by starting with a circle of diameter & and giving 7}
— V_ any set of successive values differing by a constant, the

diameters (x) of the corresponding equipotential circles may be
found.
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21. The Electric Field Surrounding an Isolated Conducting
Spheroid. First it will be shown that within the region enclosed
by a homogeneous material shell whose surfaces are similar and
similarly situated ellipsoids there is no gravitational field of force.
Such a shell is called an e/ipsoidal homaoid.

Let a cone, Fig. 30, of infinitesimal angle dw at any point 4"
in the region cut from the shell the volumes B”C’" and D"E".
If p denotes the density of the shell, g the gravitation constant,
L the distance from A" of any element of volume dr of the shell,
the intensity at 4’ in the direction 4" due to the masses in
B"C" and D'E" is

470 AVE!
dG =gf pdr[L* — & pdr|L?
A

1914 A”B"

since the attractions due to the masses in 5" and D/'E" are in
opposite directions. Since dr = L*dwdL, the integrals reduce to

dG = gpdw(B// CI/ 24 DI/EN)

and since the'plane N"OC" intersects the ellipsoids in two
similar and similarly placed ellipses, the same diameter ON”
bisects B0 and C"E'". Hence B'"C" = C"E", and

dG = o0

In the same manner it may be shown that the intensity at 4"
due to the matter within any other infinitesimal cone with vertex

at A’ vanishes. Hence
G=o0

or the region contains no gravitational field.

When a conducting ellipsoid is charged the tubes of displace-
ment are distributed by the tensions and pressures until they
touch the surface normally, or until the surface becomes an equi-
potential. The conducting substance may then be considered
replaced by a dielectric of permittivity ¢ equal to that of the exte-
rior medium, for the sake of applying the law of inverse squares,
§28, 1. At any point 4 within this region the intensity and dis-
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placement are zero. And therefore, since the law of inverse
squares prevails in electrostatics as in gravitation, the law of
variation of the electric surface density, or outward displacement
at the surface, must be identical with the law of variation of the
thickness of the shell in the above gravitational problem. In
discussing the electric case the shell must be considered as of
infinitesimal thickness, since the charge resides wholly at the
surface of the conducting ellipsoid.

The distribution of charge or displacement at the surface of an
ellipsoid of revolution, or spheroid, only will be determined here.
We proceed to find the distribution of the charge by investigating
the law of the variation of the thickness of a spheroidal homceoid.

Fig. 30.

Let the given spheroid be generated by the revolution of the
ellipse BAB’, Fig. 30, about the line BB/, and the exterior sur-
face of the infinitely thin homceeoid by the revolution of the sim-
ilar ellipse B A B about the same axis. We must find the ratio
of ¢ thickness of the shell at any point 2, to #, the thickness at
B. Since the shell is infinitely thin, # is to be measured in the
direction of the normal 2, PC to the spheroid at P.

From the similar triangles PP, P, and PCD we have

t=PPy|PC=ay(y,— )| — x*)}t = y(y, — y) OR[F
By the equations
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2= P = bial (0} — 5D — Blat (@ — 1),
b,/a, = &]a (since the spheroids are similar),

and
xr=1x, y=y, (in the limit),

Ko —2) =00, —b) =t

and the equation for # becomes

we have

t/t,=6/PC=a|(@* — %) = OR[b= D|D, = aa,
or

D=o0=o0g/a— 2 = Daf(a® — 1’ =D, /b=0c /b (72)

where o, and ¢ denote the electric surface densities at B and at
points of the spheroid distant x from the axis £5’, and D, and
D the corresponding outward displacements.

Thus the surface density increases in passing from 75 to A4, at
which point it has the value

o =oaalb (73)

To obtain the total charge ¢ upon the spheroid, the charge
adS upon the elementary zone cut out by P7F, as the ellipse re-
volves about OB must be found and integrated over the whole
surface. Thus

0dS = a2mxPP, = bo,|PC - 2mxdy- PCly = — 2ma /6~ dy
and

—b
g= fo’dS = — 2ma’c,/b dy = 4mwdla, (74)
+b

The potential of the spheroid when the charge is ¢ may be ob-
tained by finding the potential at the center O, since the potential
is uniform over and within the spheroid.

The potential at O due to the charge upon the zone &S is

AV = odS|ame (2 + )} = — o0, @%dy/26c(2* + )}
= — o,0¥/ac(a — By [P — ) —
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and the total potential is

V= f AV = — o d[2qa® — &) +;bdj// [2°6%/(a* — &%) —y"]}
= 0,@%[c(@* — F)-sin~' [(&® — &%)}/a]

(75)

The capacity of the isolated spheroid, or the permittance of the
dielectric bounded by the spheroid and an infinitely remote sur-
rounding surface (§ 58, L), is

S = ¢/ V= 4mc(a® — F)/sin7[(&® — F)}a] (76)

The isolated sphere. 1f &= a, the equations reduce to those

already developed (§ 2) for an isolated sphere.

An infinitely thin circular plate. If &= o, the spheroid re-
duces to an infinitely thin circular conducting plate of radius e,

and (72), (74), (75), and (76) become
D (or 0) = aDor a)[(a® — x*)} (77)
since ¢ = [(&® — &%) [a"]} =1,

g = 4ma’o, = g4ma’D, (78)
V=mao,[2c (79)
S = 8ac (80)

Near the edges the displacement is very great, 2 becoming
infinite when ¥ = «@. But the total charge is finite since an edge
has no area.

The ratio of the capacity of a thin circular plate to that of a
sphere of the same radius is

8ac[4mac = 2[m=1]1.571

a relation established experimentally by Cavendish long before
the development of the theory.

If two thin circular plates of the same radius @ are placed par-
allel to one another with the distance & between them so small
that the field is sensibly uniform between them, and relatively
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weak outside, the capacity of the system will be very approxi-

mately )
Ta'c

The ratio of the capacity of a single isolated plate to this

capacity is
8d|ma

The energy of the field connected with two such plates very
remote from one another and with charges ¢ and — ¢, respec-

tively, is .
2(34°/8ac)

The energy of the field when the two plates are parallel and
separated by the very small distance 4 is

1*d|[ma’c

Hence the work which would be done by the electrical forces
in drawing the two plates into the latter configuration from the
former is

7*(1/8ac — d|2ma’c) = ¢*[2ac- (1[4 — d|ma)

It may be shown that the equipotential surfaces surrounding
the isolated plates are the confocal spheroids with the edge of
the plate as focal line, and that the lines of displacement are the
corresponding confocal hyperbolas.

If any one of the spheroidal equipotentials is made conducting,
and the lines within annulled, the remainder of the field just
described will be the field surrounding this spheroid.

22. The Average Value of the Potential over a Spherical Sur-
face in any electric field whose charges are situated wholly out-
side of or upon the sphere and whose dielectric is homogeneous
and isotropic within the sphere is equal to the potential at its
center. To prove this, consider first the spherical surface S of
radius R in the radial field from a concentrated charge ¢ distant
x from the center of the sphere, ¢ being the only charge in the
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field. Let the charge be at 4 and the center of the sphere at
¢, Fig. 31.

The area of an elementary zone of the sphere included be-
tween two planes perpendicular to AC, at distances y and y + dy
from 4, is dS =Ry
The potential of this zone is

V,= g[4me(R? — 22 + 2xp)}

The integral of the potential over the zone is therefore

V,dS = gRdy[2c (R — #* + 2xy)h

Fig. 31.

To obtain the average value, 1 of the potential over the sur-
tace of the whole sphere, the integral of this expression must be
taken over the sphere, and the result divided by the area of the
sphere. Thus

-+ R
1= I/47TR2f Vdas = g/SWch X dy[(R? — x* + 2zp)} 81)

=g [qmcx
which establishes the proposition for a single concentrated charge.
If, instead of a single concentrated charge, there is any other

electric distribution, subject to the limitations above mentioned,
we have by the principle of superposition

V= I/47rc-qu/x
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which establishes the proposition for a homogeneous dielectric,
or such a dielectric and conductors, filling all space. That the
proposition is perfectly general will appear from Chapter IV, (17).

As an example, the average potential of the insulated sphere
of §24, which is the same as the potential of any point of the
sphere, since it is a conducting sutface, is

V=g, /4mcx + g[4mcR = ¢, [ 47rcx

since ¢, the sum of the (induced) charges on the sphere, is zero.
If, in addition to the induced charges, the sphere possesses a
charge g, its potential is

V=g [amcx + g[4mcR

The same results are obtained by another method in § 24.
They also follow immediately from (15) and § 28, I.

23. The Electric Field Surrounding a Concentrated Charge in
the Presence of a Spherical Surface at Zero Potential. Consider
first the case in which the given charge, ¢, is at .4, external to
the sphere, S, Fig. 26. Let R denote the radius of .S and x the
distance between its center and the charge ¢,.

If a charge ¢, and its position within the surface .S can be
found such that in the field surrounding ¢, and ¢, S'is a surface
of zero potential when there are no other charges in the field,
then, by § 48, 1., the portion of the field outside S will be the
only field satisfying the given conditions, and ¢, and ¢, will be
the electric images of one another in the surface S if it is made
conducting.

If a charge g, is placed at 4,, the potential at a point 2 of the
sphere will be

V=V + V,=1/4mc-(q,[ L, + ¢,/ L;) = 1[4mcL, (9, + 1qy)

where /2 = L [L, has the same significance as in § 19.

If ¢, is so chosen that
7y + 92h =0}
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V' = o for every point upon the sphere. Hence the portion out-
side S of the field surrounding the charge ¢, at 4, and ¢, at 4,

where
I 91/ h (82)
is the field required.

A, and A, are called inverse points, or geometrical images of one
another, in the sphere (§ 30).

The part of the field within S is the field surrounding a con-
centrated charge g, in the interior of a spherical surface at zero
potential, the charge being distant 4,C, = #’ from the center of
the sphere.

The resultant displacement, 7, at any point of either of the
required fields (given charge inside or outside the sphere) is thus
the vector sum of D, and D, the radial displacements which
would accompany the charges ¢, and ¢, separately. We shall
find the displacement only at the surface of the sphere, to which,
an equipotential, it is everywhere normal.

When ¢, is positive, and g, therefore negative, D,, D,, and D
are in the directions 4,7, PA, and PC, respectively, their direc-
tions being reversed when ¢, and ¢, change signs. Moreover, in
magnitude,

Dz/Dl = (g2/47r[,22)/(q1/47r[,12) =/h= x/R = R/x’ = Ll/Lz

from the geometry of § 19. Therefore the triangle with sides
D,, D, and D is similar to the triangle 4,4, and

D=2aD,|L,=2aD,[L,
in magnitude.
If D is reckoned positive along the outward normal to S, we
have, therefore,

D= —2ahg [4ml} = — q R’ — 1)[47L}
S By Y M e

which is equal to the electric surface density on the outside of
the sphere at 7, when the sphere is the surface of a conductor at
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zero potential in the presence of the charge ¢, at 4. The total
charge upon the sphere is evidently g,.
If D is reckoned positive along the inward normal to S, we

have .
D= qRUF = 1)[4mL} = g — R)[4mRLS  (84)

which is equal to the electric surface density on the inside of the
sphere at £ when the sphere is the inner surface of a conductor
at zero potential surrounding a charge ¢, = — ¢,/% at A,. Since
when the internal field is sought, ¢,, 47, and Z, are the given
quantities instead of ¢, #, and L, (84) must be transformed by
substituting for ¢, #, and Z, their equals — ¢, =—¢q,R [+, R*[ ¥,
and AL,= RL,[«, respectively. On making these substitu-
tions, we have

D= — g,RUE — 1)[4m/PL} = — gR? — %) [ 4mRL}

— — o famL} (R— YR + )[R ]

The total charge on the inner surface of the sphere is — ¢,.
The force between either charged body and the sphere is

F=g,4,/]4mc(2a) | ) (36)
= — ¢ Rx[4me(x* — R* = — ¢ R’ [4mwc(RE — #'%)

Maxwell’s plane diagram of the field, for the case in which
h= —gq,[q,= 20[5 is given in Fig. 24, the sphere, of radius
R = AB[h = }AB, being indicated by the dotted circle Q.

If the radius R, in what precedes, is made to approach infinity,
while (x — R) or (R — x’) is kept constant, we have, in the limit,
a concentrated charge in the presence of an infinite plane surface
at zero potential, and the above equations reduce to the equa-
tions of § 15.

24. Sphere at Any Potential, or with Any Charge, in the Pres-
ence of a Concentrated Charge. The field external to the sphere
in § 23 is a particular case of the field surrounding a concen-
trated charge and a spherical equipotential surface (as that of a
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spherical conductor), the potential, I of the surface, or the out-
ward flux across it (or charge upon it, if a conducting surface),
¢, being given.

1. If the potential V7 is given, the required field is found by
superposing upon the external field of § 23 the radial field from
a charge ¢, = 4mcRV at the center of the sphere. For the po-
tential at every point of the sphere due to the fields from ¢, and
g, is zero, and the potential due to the radial field from ¢, is the
same at every point of the sphere and equal to

g.J4amcR = gmcRV[4gmeR =V

so that the resultant potential is the same all over the sphere and
equal to V. The field outside the sphere is therefore determined
(§ 48, 1) and is identical with the field surrounding the charge
¢, and a spherical conductor of radius & and at potential V.
The total charge upon the conductor is ¢ = ¢, + ¢,.

2. If the outward flux ¢ (or total charge, if the surface is that
of a conductor) is given, the required field is found by superpos-
ing upon the external field of § 23 the radial field from a charge
7,= ¢ — ¢, placed at the center of the sphere. For, as in (1),
the surface will remain equipotential, and the flux across it (or the
charge upon it) will be (¢ — ¢,) + ¢,=¢. The position of the
equipotential surface being given together with the flux across it
and the outside charges, the external field is determined (§ 48, I1.)
and is identical with the field surrounding a conducting sphere
of radius R and charge ¢. The potential of the sphere is

V=g,/amcR = (¢ — ¢,)[47cR
The outward displacement at the surface of the sphere (or the

electric surface density if the equipotential sphere is the surface
of a conductor) is ’

D= D, + D'(= D of preceding article) = ¢,/4mR* (1)
— g(#* — RY[4mRL} @

=cV[R — ¢ (¥ — R*)[4wRL} (2)

= (¢ + R/ 7)[4mR — ¢ (&* — R")[4mRL} 3
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Maxwell’s plane diagram of this field is given for two particu-
lar cases in Fig. 25, and is discussed in § 18.

The force between the body with the charge ¢, and the spher-
ical conductor is equal to the force between this body and those
with the charges ¢, and ¢,. Thus

F= q\g,]47c(20) + 4,9, 4me’ (1)
= — ¢’Rz[4me(* — K°) + ¢(9 + ¢, R[x)[4mex’ (88)
= — ¢'Rx[4me(x* — R’ + ¢, VR [+ (2)

If the sphere is insulated without algebraic charge, ¢ = ¢, + ¢,
=0, and ¢, = — ¢, = ¢, R/x. In this case (87) and (88) become

s D= g[4mR [1]x— (&* — R)/L] (89)
= — g Ra[ame(a* — R + gR[4mea  (00)

If the given charge is internal, the internal field is exactly the
same as that in § 23, and the external field is the radial field
from the charge ¢ at the center of the sphere.

If a conducting sphere is in the presence of any number of
fixed charges, internal and external, the electric images and the
electric field can be got at once from what precedes by the prin-
ciple of superposition.

25. A Conducting Sphere in a Uniform Field. If ¢= o, § 24,
and if ¢, is kept constant and » made to increase without limit,
D, approaches a uniform direction, parallel to x, and a uniform
magnitude, at all points within and near the sphere. But this
uniform magnitude is zero.” If, however, as x increases, g, is
made to increase at such a rate that ¢,/4m+* remains constant and
equal to D, then, when x = infinity,

D, = q,/4mL}= q,/4mx* = D,

and we have an insulated spherical conductor in a field whose
displacement is uniform (except for the disturbances due to the
presence of the sphere) and equal to D,
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We can obtain the resultant displacement D at the surface of
the sphere by substituting in (89) for ¢, its value 47+*D,, and for
L, its value (a2* 4 R* +2Rx cos 0)}, where 6 is the angle PCE,
Fig. 26, reducing, and passing to the limit x# = infinity. Thus

D= DR {[H+# + R* + 2Rx cos 0)}

— 2 — R)]/(#* + R* + 2Rx cos 6)i}

= D, x[1 + §(R*/#* + 2R cos 0/x) + - -

— 1+ R¥2]R[1 + 3(RYx* + 2R cos 0/x + - )] (91)

= (3D, cos 6 4 terms containing powers of x in de-
nominators)/(I + terms containing powers of x
in denominators)

= 3D, cos 0

in the limit, the displacement for a given value of the angle 6
being thus independent of the radius & of the sphere.

MF—_

eV
TN

A

Fig. 32.

- At the poles of the sphere, where 8§ = 0° and 180°, D= +
3D, and — 3D,, respectively; while its value at the equator,
where 6 = g0°, is zero.

The displacement at a point of the infinite plane passing
through the .equator and distant Z from the center of the sphere
is (§ 26) the sum of 2D, and the displacement — M/ sin go°/4mL?
= — D R**® due to the doublet of moment M = 4wR’D, at the
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center of the sphere with its axis in the direction of the displace-
ment D,. Thus at such a point
D= D(1 — RYL% (92)

The plane diagram of the field drawn by superposing accord-
ing to the method of Maxwell, § 14, the diagram of the doublet
(§ 27) of moment M = 4mwR*D, and that of the uniform field of
displacement 2, is given in Fig. 32 (from Webster’s Thweory of
LElectricity and Magnetism, § 194). The diagram of the field
surrounding the conducting sphere is obtained from this figure
by annulling the lines within the circle (see Fig. 62).

" From symmetry, it is evident that there is no resultant force
upon the conductor.

A Hemispherical Boss upon an Infinite Plane. All the lines of
intensity in the above field (except of course those terminating
upon the sphere) cut the infinite plane (an equipotential, with the
potential zero) passing through the equator normally. Hence,
if this surface is made conducting, the fields on each side will re-
main unaltered and each will be the field proceeding from (or to)
an infinite plane conductor with a hemispherical boss upon it.
The surface density upon the boss is given by (91), and that upon
the rest of the surface by (92), or by this expression with the
opposite sign, according to the half of the original field con-
sidered.

26. The Field of an Electrical Point Doublet. Method I. In
the problem of § 25, as x approaches the limit infinity, g, = — ¢,
" =¢,R/x = 4D Rx also approaches the limit infinity, while the
distance A,C = R?/x approaches the limit zero at the same rate.
The product ¢,-A4,C therefore remains finite and constantly equal
to 4mR*D,.  Such a system, consisting of two equal and opposite
very great charges at a very small distance apart, when indefi-
nitely near its limit, is called an electric point doublet, and the finite
product of the positive charge by the distance between them is
called the soment of the doublet. The straight line directed from
the negative to the positive charge is called the axss of the doub-
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let. In the case considered, the axis of the doublet is the
line A,C, and the moment is

M= 4mR°D, (93)

The total displacement 2 in the field of § 25 is therefore the
vector sum of the displacement D, due to the field connected
with the doublet and the uniform displacement [, directed paral-
lel to the axis of the doublet.

Fig. 33.

In many cases it is necessary to know the field of a doublet
alone, that is, to know the displacement 2,. This quantity can
be easily found by taking the vector difference of D and D,
§ 25.

From the figure (Fig. 33) it is evident that the radial com-
ponent of D, at 7, a point whose codrdinates are R and 6, is
D, = 3D, cos § — D,cos § = 2D, cos 0 = 2M cos 0 4mR®

= M cos 0 [2mR® (94)

measured in the direction of increase of &.
The tangential component is

D, = D,sin 0 = Msin 0 [4mR® (95)

measured in the direction of increase of 6.
The total displacement D, due to the doublet is

D,=(D}?+ D}t = M[4wR-(3 cos* § + 1) (96)
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The horizontal and vertical components are
D,=Dcosf —D,= Dy3cos*8 —1)

= M[4mR*- (3 cos’ 0 —1) (07)

and
D,=Dsin 6 = 3D, sin 6 cos 6 = 3M[4mR*-sin 6 cos 6 (98)

The angle made by [, with the axis of the doublet is
0’ = sin~'D, [ D, = sin~'[3 sin 0 cos /(3 cos* & —1)] (99)

27. The Field of an Electrical Point Doublet. Method II. In
§ 26 the field of a doublet was obtained by using the results of

Dy

Axis

Fig. 34.

§ 25. The field may be found independently as follows. We

shall first obtain an approximate solution for the case of two

charges ¢ and — ¢ separated by a distance Z, short in compari-

son with OP = R, Fig. 34, the product ¢L being equal to M.

Then if A7 is kept constant while L is increased indefinitely, the

system becomes a doublet and the solution, in the limit, exact.
The potential at Pis

V=gl4gme-(L,— L)[LL,
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But Z, — L, = L cos 6 approximately, and L, Z, = R* approxi-
mately, these relations approaching exactness indefinitely as L
approaches zero. Hence, in the limit; for a doublet,

V= éL cos 0 [4mc K2 = M cos 0 [ 4mcR? (100)
The radial component of the displacement is
D, =cE = — cdV|dR = Mcos 0 [2mR® (94)
and the tangential component is
D, =cE=—cdV][dT= — cdV[d0-d0|dT = M sin 0 [4mR* (95)

since d7'= Rd0, or d0[dT=1/R.

From the above equations the horizontal and vertical compo-
nents, D, and 2, and the angle 8’ made by D, with the axis of
the doublet, can be readily found. These quantities are given in
the preceding article.

The equation of a line of intensity or displacement, Z, is easily
found from (94) and (95) with the assistance of Fig. 35. For
we have evidently

D,[D,= 2 cos 8 [sin 0 = dR[Rdb
from which we obtain
dR[R = 2 cos 0d0 [sin 6
The integral of this equation is

R= Csin® 0 (101)
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which is the equation sought, C being a constant for a given line
and equal to the distance from the doublet at which the line cuts
the plane perpendicular to the doublet’s axis through its center.

When C is given for any line, the line can be drawn directly
by means of (101), or it can be drawn by the process indicated in
Fig. 36. Draw aline 04 making an angle 8 with OX, which passes
through the axis of the doublet, and cutting in the point 4 a
circle with radius ¢ and O as center. Then let fall a perpen-
dicular A8 on the line OV, perpendicular to OX through the
doublet, and a second perpendicular from B on OA4 cutting it
in 2. Pis a point on the line required. For OB = C sin 0, and
OP= OBsin @ = Csin®6. See ]. Buchanan, Nature, Vol. 21,
1880, p. 370.

Qf
-
3

?

Fig. 36.

If the figure is rotated about the axis OX, the flux through
the tqbe enclosed between the surfaces for which € = € and
C = a will be

i f M4 2w CiC = Mj2m f “acjc
=M[2m-(1]/a—1/C)

Hence by giving to II a series of successive values differing
by a constant quantity and starting with a curve for which C has
an arbitrary value @, the value of € can be determined, and the
lines of displacement drawn to correspond to tubes of equal
strength, for as much of the field as desired.






108 ’ELEMENTS OF ELECTROMAGNETIC THEORY.

28. The Electric Field Bounded by a Concentrated Charge q
and Two Infinite Planes at zero potential meeting at an angle
6 = m[n, where 7 is an integer. We shall find the image sys-
tem of the charge ¢ in the planes. From this system and the
given charge ¢ the electric field at all points can then be deter-
mined by methods already discussed. Let 2 denote the position
of the given charge, and let its distances from the two planes be
denoted by a and é respectively.

Case I. When =1, § = 7, the two planes are coincident,
a = b, and the image of ¢ is a concentrated charge — ¢ distant from

——————

[

.l

Fig. 38.

¢ 2a = 26 on the other side of the plane on the line through
P perpendicular to the plane.  This field is fully discussed in § 15.

Case II. When 7 = 2, § = 7[2, and the image system con-
sists of the charges + ¢ and — ¢ situated as shown in Fig. 38 at
the corners of a rectangle with sides 22 and 24 and on the
circle of radius (@® 4 &%) with center at the intersection of the
planes.

Case III. When 7= 3, § = 7/3, and the image system con-
sists of charges situated as shown in Fig. 39.
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Case IV. The images when # is any other integer may be
obtained in the same manner. They consist in every case of
concentrated charges + ¢ and — ¢ distant 2 and & from the
planes and situated symmetrically on the circle through the
given charge at 2 and with center at the intersection of the
planes. The charges, in going around the circle, are alternately
+ and —.

Case V. When @ and ¢4 are kept constant and 7 is made infi-
nite, we have a concentrated charge between two parallel planes,

-q

el e e e

Fig. 40.

Fig. 40. In this case the arc of the circle through P is a straight
line, and the images are located along this line at intervals of 2a
and 24.

In all the above fields the total charge upon the two planes
is—gq.

29. The Electric Field Surrounding a Conducting Surface Formed
of the External Segments of Two Spheres Intersecting at Right
Angles and Maintained at Any Potential V. The field will be
found by the method of images.
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Let @ and 4 denote the radii of the two spheres with centers at
A and C, respectively, Fig. 23, distant & apart. Since the spheres
intersect at right angles, we have from the figure

BD = (lb/(dz — 52)}= aé/d
and ABAC=80=ABd
CBCA=ad"=CBd

Hence 5 is the geometrical image of 4 in the sphere C and
the image of C in the sphere A. If therefore a charge ¢,
= 4mcal’ is placed at 4, a charge g, = 4mc6V at C, and a charge
gy =— 4mc BD = — 4mc ab|d = — ¢, b|d = — g, a|d at B, the
(uniform) potential of the sphere A4 due to the three charges will
be ¢,/4mca =V, since the potential over 4 due to ¢, and ¢, is
zero (§ 23); and the (uniform) potential of the sphere C will be
g,/4mc6 =V, in the same way. Hence both spheres are at
potential 77 in the presence of the three charges. Hence the
portion outside the surface of the field connected with these
charges is the field sought.

The plane diagram of the field connected with the charges
at 4, B, and C, when &/a =20/15 and ¢, = + 15, ¢, = + 20.
¢, = — 12, is given in Fig. 23, in which the spheres are shown
in dotted lines. At D, the circle of intersection, the displace-
ment is zero, in accordance with § 57, I. The field is further
discussed in §18 above.

The charges ¢,, ¢,, ¢, will be found in another manner in § 36.

The total charge upon the conductor is equal to the algebraic
sum of the charges at 4, B, and . Thus

g=q,+ ¢+ g =amcV[a+b—abl(d + F)}F] (102)
The capacity of the conductor is
S=¢q|V=ymcl[a+ b — ab](a® + &*)}] (103)

The charge upon the spherical segment 4, or the flux across
this segment from the images at 4, B, and C, is easily seen to be

ql(a + AB)/za or 573(5 i BC)/Zé i %92 e

2mcV[a + &+ (8 — a* — ab)[d] (104)
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The charge upon the segment C, found by interchanging « and
bin (104) 1S o Pla 4 b + (@ — 8 — ab)/d] (105)
If one of the spheres is made infinitely greater than the other,

the problem reduces to that of a hemispherical boss upon an
infinite plane, § 25.

30. Geometrical Inversion. Let 72, Fig. 41, denote any point
distant OP = » from a fixed point O, and let a point 7’ be taken
on the line OP such that OP(=7) x OP'(=#')=R®. Then P
and P’ are said to be.inverse points with respect to the sphere,
called the sphere of inversion, with center O, called the center of
inverston, and radius R. P and P’ are also called the geometri-
cal images of one another in the sphere. The process of obtain-
ing P from P’, or P’ from P, by the relation

Fig. 41.

OP OP' = R or v = R (106)

is called znverting P or P’ with respect to the given sphere.

If every point of a given surface, volume, or curve is inverted
with respect to a given sphere, a new surface, volume, or curve
will be obtained which is called the nverse or geometrical image
of the given surface, volume, or curve with respect to the given
sphere.

31. Inverse of a Sphere. Inverse of a Plane. The image of a
sphere (or circle) is another sphere (or circle), the centers of the
two spheres (or circles) and of the sphere of inversion being on
the same straight line. To prove this, let C, Fig. 42, be the center
of the given sphere (or circle) of radius @, distant OC = & from
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O, the center of inversion. With O as origin and O2Z as initial
line, the equation of the given circle (or sphere) in polar codrdi-
nates (7, 0) is

r—2brcos @+ —a=o0 (107)

The equation of the inverse surface is obtained from (107)
by substituting for » its equal &?/#/, the codrdinates of the in-
verse being 7/, 8. Thus we find

¥ — 2R%[(6* — a*) -7 cos O + R*[(F# —a®) =0 (108)

which a comparison with (107) shows to be the equation of a
sphere (or circle) with center at ¢’/ distant

¥ = R%[(§® — ) (109)
from O, and with radius
a = [0 — R|(# — )]} = Ra/(F* — &°) (110)

When the given sphere passes through the center of inversion,
2. ., when & = a, Fig. 43, (107) and (108) become

r—z2acosf=o (111)
and 7 cos @ — R*[2a=0 (112)

(112)is the equation of a plane (or straight line) distant

p=K]2a (113)
from O.
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Conversely, (112) inverts into (111), so that the image of a
plane (or straight line) is a sphere (or circle) passing through the
center of inversion and with radius

Fig. 43.

a=2FRap (114)

The above propositions can also be easily demonstrated by
purely geometrical methods.

32. The Angle at which Two Curves or Surfaces Intersect is Un-
altered by Inversion. To establish this proposition for two curves
(which will also establish it for two surfaces), let A8 and AC,

N V4 N 4
\\ /A/ \ ‘A
X /W
7
B,‘ \\C C/ \B
af M / \
’ \
/ \
Fig. 44.

Fig. 44, be the elements of two curves intersecting in the point
A at an angle 0, and A’B’ and A’ C’ their inverses cutting at the
angle 6’. The triangles 408 and A’ OB’ are evidently similar,
since 77/ = R? and likewise the triangles OAC and OA'C’.
Hence

0’ (= angle 04’ C’ — angle OA'B') = angle 0AB

—angle 0AC=10 (115)
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33. Elsctrical Inversion. The electric potential at a point B
due to a charge dg at a point 4 is dV, = dg/4mcAB, and the
potential at /’, the inverse of B, due to a charge dg’ at A’, the
inverse of 4, is dV,, = dg’ [4mcA’B’'. Thus

dVy|dV,=dq' |dg- AB] A’ B
But, if O is the center of inversion, AB[A'B' = OA]OB'.

= e dV, = dV,dq' |dg- OA] OB’ (116)
If d¢’ is so chosen that -
dq'|[dg= —R|OA= — R|r (117)

dq' is called the clectric image by inversion of dg with respect to
the sphere of radius R and with center O ; and (116) becomes

AV, = — dV,R|OB' = — dV,qmeR[4mcOB'  (118)

If now we have any electric distribution whatever, and it pro-
duces at 5 a potential V, = f dV, ; and if we place at the geo-
metrical images of the charged points charges related to the
charges at the original points according to (117), z e., form a
distribution which is the electric image by inversion of the orig-
inal distribution, the potential at 5’ will be V,, = f W FE ence
(118) gives for the potential at 5’ due to the electric image by

inversion of the original distribution

Vy=[dV,= — gmcR[4wcOB - [dV,
= — V4mwcR[4mc OB’ (119)

which is the potential which would be produced at 5’ by a
charge — Vi 4mcR at O, the center of inversion. If, therefore,
we place at O a concentrated charge g = + V 4mcR, the point
B’ will be at zero potential in the presence of this charge to-
gether with the inverted system. If the potential }, = I” is the
same for all charged points of the original system, that is, if the
original charge is distributed over an equipotential surface, as the
surface of a conductor, at potential V] the potential at a point 5’
of the inverse surface due to the inverse distribution will be
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Vy= — 4mcRV][4mwcOB’. Hence if a charge ¢ = + 4mcRVis
placed at O, the potential at all points, such as £’, of the inverse
surface will be zero. The introduction of ¢ does not alter the
distribution upon the inverse surface, but renders this surface
equipotential so that it may be made conducting without disturb-
ing the distribution. The electric field after the introduction of
¢ is the field bounded by a concentrated charge

g = 4mcRV (120)

at O and the inverse of the original surface at zero potential.

Conversely, if we have a charge ¢ concentrated at a point O
in the presence of a charged surface at zero potential, we can in-
vert the surface and ##s distribution (z0¢ including the charge ¢)
with reference to a sphere of radius R and center O and obtain
the inverse surface charged to a uniform potential

V=q[4mcR (121)
alone in the field, the charge ¢ being annulled.

Or, if we have a surface at zero potential in the presence of a
charge ¢, concentrated at a point 0, and its image system (on the
other side the surface), we can invert the image system (not in-
cluding the charge ¢) and the given swzface with respect to a
sphere of radius R with center O, and as a result obtain the in-
verse surface at the uniform potential

V=g/amcR

and within (or on one side) the inverse image system which pro-
duces on the other side the same field as that connected with the
surface itself when c/arged to uniform potential V. From the
image system the distribution upon the surface, when charged in
this manner, or made conducting, can readily be found.

The direct inversion of the distribution on the surface at zero po-
tential would be, in general, a difficult matter. Hence the second
of the two processes of inversion just described is usually preferable.

34. The Electric Surface Density upon the Inverse Surface.
The electric surface density, o/, at any element &S5’ of the inverse
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surface corresponding to the element &S, with density o, of the
original surface, can easily be found in terms of o, R, and #/, the
distance from O to 4S’. For we have

c'dS'[cdS = dg'|dg = — Rjr, or o' |oc = — R|r-dS|dS’
But &S is similar to 4S,’ hence 45/dS’ = #*/#'* and
d'lo = — Rrjr'* = — Rr"®
Thus o = —oRr? (122)

As stated in § 33, ¢’ is not altered by the introduction of the
charge ¢ at O.

35. The Sphere and Plane. Consider a sphere of radius @ uni-
formly electrified to potential /. Let the sphere be inverted
with respect to a sphere of radius & with its center O upon the
surface of the given sphere. The sphere inverts into an infinite
plane (§ 31) distant p = R*/2a from O. If now we place at O a
charge ¢ = 4wcRV, the plane will be at zero potential in the
presence of the charge ¢. The electric surface density over the
given sphere was uniform and equal to o = 4mcaV/qma® = cV]a.
Hence the density at a point on the plane distant #/ from O is

o/ = — R = — gRqmar’® = — gp/2mr’®  (123)

which is the result obtained in § 15, (40), proper attention being
paid to sign.

Conversely, we may start with the plane at zero potential
electrified to density ¢/ = — pg/2m#'3, and by inversion obtain
the distribution upon a freely electrified sphere of radius . Thus
the plane inverts into the sphere, and the image of ¢ in the plane,
viz., — ¢ distant p from the plane on the other side from g, in-
verts into the charge + Rg/2p at the center of the sphere; and
this brings the sphere to the potential Rg/2pm4ca = g/gmcR = V.

Next let the center of inversion be taken outside the sphere or
inside the sphere, and let the sphere of inversion be so chosen
that the given sphere inverts into itself. This makes R* = 2*—a’
when the point O is outside the sphere, and R* = a* — 2* when
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O is inside, if x denotes the distance from O to the center of the
sphere. Thus the surface density at a point of the sphere dis-
tant 7/ from O, when a charge ¢ = 4mcRV = gmc(2* ~ a*)iV
is placed at O is

o/ = — R 1 = — g(#* ~ a°) [ gmrar’® (124)

in accord with (83) and (84).
Conversely, we may pass at once from this distribution to that
upon the isolated sphere.

36. Two Spheres Intersecting at Right Angles. The field of
§ 29 may also be obtained by inverting the distribution upon two
infinite planes meeting at right angles and at zero potential under

Fig. 45.

the influence of a charge ¢ = 4mcRV at a point 2 distant & and &
therefrom (Fig. 45).

Let the planes and the image system in the planes of the
charge ¢ at P be inverted with respect-to a sphere with center 2
and radius R. The two planes invert into two spheres intersect-
ing at right angles (corresponding parts of surfaces are shown
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in full or dotted lines), and of radii a = R*/22 and B = R*[2¢,
respectively. The images of ¢ at Pinvert into charges gR/2a
=gaf[R at A, gR[26=gB/R at C, and — gR[2(a* + &%)
= —gaB[R(a®+ B% at B. And in the presence of these
charges the two spheres are at the potential V= ¢/4mcR, and
the field outside the spheres is the field required. The total
charge upon the spheres, when made conducting, the capacity,
etc., may now be found as in § 29g.

By inverting the system consisting of two planes meeting at
the angle 7 /x, etc., § 28, the field surrounding two spheres cut-
ting at that angle may be obtained. When 7 = infinity, this
problem merges into that of the next article.

37. Two Spheres in Contact. By inverting the two planes of
§ 28 with respect to a sphere of radius R and center 7 we ob-

e

Fig. 46.

tain two spheres of radii 4 = R?/2a and B = R*[25 in contact at
P, Fig. 46. All the images to the right of 7 invert into the
region within the sphere B and all to the left of 7 into the region
within the sphere 4; and the system of two spheres in contact
is brought to the uniform potential V= ¢/4mcR, and may be
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made conducting, and the inner field destroyed, without affecting
the external field.
In the original system the distances from 7 of the positive

charges, - ¢, are

2d, 4d, 6d, - -+ to the right
and

2d, 4d, 6d, - - - to the left

and the distances from 2 of the negative charges, — ¢, are

26, 26 + 2d, 26 + 44, - - - to the right
and
2a, 2a 4+ 2d, 2a +4d, - - - to the left

This system inverts into the system of negative charges

— Rg|[2d, — Rq[4d, — Rq[6d, - .. within the sphere B
and ‘
— Rg[2d, — Rg[4d, — Rq |64, - .. within the sphere A

and the system of positive charges

Rq[26, Rg[(26 + 2d), Rg[(26 + 4d), - - - within the sphere B
and

Rg[z2a, Rg[(2a + 2d), Rg[(2a + 4d), - - - within the sphere 4

The total charge of the images within the sphere A4, or the
total charge upon the surface of 4 when made conducting, is

7.=Rg[z2-{[1/a+ 1/(a+d)+ 1/(a+ 2d) + .- ]
—(1/d+ 1[2d + 1/3d + .. )}

and that of the images within 5, or upon the surface of the
sphere B when a conductor, is

g, =Rgl2-{[1/6+ 1]+ d)+ 1[](6+2d)+ -]
—(1/d+1]2d + 1/3d + ---)}

Now
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[1/a+ 1/(@a+ d) + 1/(a + 2d) + e ]=(1]d + 1]2d
t1/3d+ ) =(1/a—1/d) + [1/(a+d) —1/2d]

+[1/(a+ 2d) — 1/3d] + ---=7§)[1/(a + nd)

n=w

—1/(n+ 1)d] =&/d’§l/(n+ 1)(a+ nd)

; =24°B|R(4 + B) 3. 1[[B4+n(4 + B)(n + 1)]
g.= ¢4B|R(A+ B)-3° 1/[B + n(d + B) (n + 1)]
e (x25)

n=wo

= 4meVAB[(A+ B)- X 1/[B+ n(A+B)(n + 1)]

n—

Interchanging A4 and B, we obtain

n=wo

g,= amc VB4 |(B +A)-§ 1/[A+nB+ A)(n+1)] (126)

The capacity of the two spherical conductors in contact is

S=¢/V=(.+2)V (127)
We shall consider further two particular cases: (1) when
A= B, (2) when B[4 is very small.
(1) 4= B. In this case

90=9,,=27rcAViI/(I + 2n)(n + 1)
n=0
=4mcAV(;+1/3-44+1/5-6 + ... (128)
=4mcAV log 2 = 4mcAV x 0.693
and S = 29«1/ V= 8mrcA log 2 == 47rcA X 1386 (129)

Thus the capacity of the system of two equal spheres in contact
is equal to 1.386 times the capacity of a single isolated sphere
of the same radius.

The energy of the field surrounding the spheres is

W=131gV=4mcAlog2-V*=g*[16mcAlog2  (130)
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From this expression and (11) it is easy to compute the work
done against the electrical forces, or the work done upon the
electric field, when two equal spheres with equal charges are
brought together from an infinite distance (or a great distance,
practically) apart.

(2) B[A very small. When 5[4 = o, the sphere A is alone
in the field at potential }7; hence ¢, = 4mc AV, a relation which
holds approximately when B/A is very small. In this case we
have for ¢,, approximately,

g,=4mcB*V[A- i 1/(n+ 1)
n=0
=qmcBV[A- (1|1 + 1]/2°+ .- )= gqwe B | A-7*[6-V (131)
=qmcB[A x 1.645V

The capacity of the system is, approximately,
S =y4mce(A + 7|65 A) (132)

The electric surface density upon the larger sphere, except
near the point of contact, is, approximately,

while the average density upon the smaller sphere is, approxi-

mately,
o, =cV[A-7[6 (134)

The relation o, /o, = #*[6 will hold very approximately when
the small sphere B touches any conducting surface A which, like
a large sphere, is nearly plane in the neighborhood of the point
of contact, the nearly uniform density in that vicinity being,
before contact with the small sphere, o,



CHAPTER IIIL

STANDARD CONDENSERS. CONDENSER SYSTEMS.
ELECTROMETERS.

1. Actual Condensers. The electric fields and condensers or
leydens discussed in Chapter II. are ideal, the conditions assumed
being impossible to realise completely in practise. Concentrated
charges and infinite conductors do not exist; one or two con-
ductors cannot be infinitely removed from all other conductors;
and all the tubes from the first conductor will not, in general,
terminate upon the second, unless the second conductor com-
pletely surrounds the first or, what amounts to the same thing, is
connected with the walls of the room, which thus becomes one,
electrically, with the second conductor. The field in this latter
case cannot be rigorously computed, however; and though it is
possible to construct a condenser of concentric spheres with a
high degree of accuracy, or of conductors of other form so
arranged that one completely surrounds the other, and such that
the electric field can be rigorously computed, yet, to use the
system, an insulated wire must pass through an opening in the
outer conductor to the inner, and through this opening, however
small, some tubes will emerge and pass to the external surface
of the outer conductor and to other bodies. The wire and the
opening also disturb the field in other ways.

But finite portions of all the fields can be very nearly pro-
duced, and the results established above for ideal condensers and
fields can be applied without sensible error to actual systems.
This can be done, for example, with the systems consisting of
two parallel similar conducting surfaces, as two spheres, two
planes, or two cylinders, by making the distance between them

122
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small in comparison with their linear dimensions. Then the part
of the field between the surfaces— concentric spheres, coaxial
cylinders, or parallel planes—becomes practically identical, ex-
cept near the edges, with those already described, and the part
of the field outside this region relatively very weak. The capacity
of such a condenser, of any form, is approximately the product
of the area of one of its conductors by the permittivity of its
dielectric divided by the distance between the conductors, the
intensity being practically constant in magnitude throughout the
dielectric.

A plane section of the tubes of displacement of a square par-
allel plate condenser taken parallel to one edge and perpendicu-
lar to the plates through their centers is shown in Fig. 47. The

(@ ] D

Fig. 47.

tubes in the neighborhood of the section are supposed to be
formed by moving the diagram perpendicularly to its plane. The
diagram is drawn only approximately. The tubes are closely
concentrated and uniformly distributed between the plates, except
near the edges, where the field becomes less intense, and sparsely
distributed over the outer surface, becoming less numerous as
the central points 4 and B are approached. These results fol-
low from the principle of symmetry and the fact that the voltage
f EdL is the same along every line of intensity from one con-
ductor to the other, which makes the average intensity great
where the length of the line is small, and vice versa.
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As the capacities of ordinary condensers are computed only
roughly for construction purposes, and then determined or ad-
justed accurately, when necessary, by comparison with standard
capacities, it is of little importance whether their fields are such
that the capacities can be determined accurately by geometrical
measurement or not.  But this is obviously necessary in the case
of condensers designed as absolute standards of capacity. Such
standards have been constructed of concentric spheres, coaxial
cylinders, and parallel plates. The first form does not need
further description here ; the last two will be described in the
next article.

To eliminate the electric field surrounding the earth, all the
apparatus here described will be supposed enclosed within a
hollow conductor, such as the walls of a room in a house. The
phenomena would not be essentially different, however, outside
such an enclosure. The potential of the walls of the enclosure
(earthed) will be assumed zero.

2. The Standard Parallel Plate Condenser. The construction
of this condenser and its electric field near the center, drawn
like the field in § 1, are shown in Figs. 48 and 49. 4 and A’

to A C BENNG A ]
id
'A’ Al
Fig. 48.

are the two plates distant & apart. The central portion, 5, of 4
is separated from the rest by an air gap CC whose breadth is
very small in comparison with 4. Above and continuous with
the plate 4 is a metal cover D, which forms with 4 and 7 a
hollow conductor closed except for the gap CC. If 5 is putin
metallic contact with A, and the condenser then charged, the
electric field shown in the figures will result, and will remain
when B is again insulated from 4. Since the region above B is
the interior of a hollow conductor practically closed, all the
tubes from B will proceed to the upper surface only of A’, and
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but few tubes will emanate from the upper surface of 5 and pass
through the gap CC to A’. The field below B, being remote
from the edges, will be sensibly uniform except in the immediate
neighborhood of the gap C, which, however, will not sensibly
disturb the uniform field near A’. By symmetry, sensibly half

[of

Il

Fig. 49.
(The width of the gap Cis greatly exaggerated.)

b~ — - = >

the tubes which terminate upon the small area of A’ just beneath
the gap CC must emanate from B and half from 4. If & de-
notes the area of B, and a that of CC, the area of A’ receiving

tubes from B is thus
A=0b+%a (1)

The charge upon B is therefore the same as the charge upon
the area A =6 + }a of A’, which is the same charge 5 would
have if its area were 4 = & + 1a and there were no gap. The
capacity of the condenser formed by B, 4’, and the tubes con-
necting them is therefore

S=Ac|d = c(b + }a)/d (2)

The conductor 4 which surrounds B, and by means of which
the field beneath B is made uniform, is called a gzard ring.

It
A

c B (S

Fig. 50.

The force of attraction between B and A4’ is the force acting
upon the area 4 =06 + }a of A’ ; that is
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F=3EDA= }cE*A=}cV?|d* A (3)

if V7 denotes the voltage between the plates A5 and A4’.

The Standard Cylindrical Condenser. The guard ring con-
struction can be applied equally well to the condenser formed of
coaxial cylinders. The construction of the condenser is shown
in Fig. 5o, the inner cylinder serving also as guard ring and pro-
tector.

3. Electroscopes and Electrometers. An electrometer is an in-
strument for measuring voltages, or electric potential differences,
by means of the forcive acting between electrified bodies.  Other
instruments for measuring voltages will be described later. An
electroscope is a crude electrometer, used principally for detect-
ing rather than measuring electrical effects. '

4. The Kelvin Absolute Electrometer. This instrument con-
sists of a condenser constructed like the standard parallel plate
condenser of § 2 with certain modifications and additions : The
plate Z (in one of the commonest forms of the instrument) is
connected through a small opening in the sheath 2 with one
arm of a gravity balance, so that the force /* between 5 and A’
can be determined by weighing. A vertical micrometer screw
toﬁped by an insulating support which carries A’ enables the
distance 4 to be varied and measured. B is kept in electrical
connection with A4, and an optical device is provided with the
aid of which the planes of 4 and 5 are always made coincident
(by altering the weights in the balance pans or by varying the
distance &) when the force upon 75 is to be measured.

To measure a voltage, 4 and A4’ are first metallically con-
nected, and the weights on the balance pans adjusted until the
planes of 4 and B are coincident. Then the connection between
A and A’ is broken, and they are brought to the difference of
potential V] to be determined. The force. 7, due to the attrac-
tion between the plates is balanced by the addition of known
weights, and the distance 4 is measured. Then by (3)
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~

F=3cV?4d2 4% 4
whence V=dv2F[cA (4)

The above method of using the electrometer is called the
idiostatic method, as the voltage to be determined is the only one
employed. Since £ is proportional to the square of the voltage,
alternating as well -as direct voltages can be measured.

In the /eterostatic method an auxiliary agent with a constant
voltage V7 is also used. When this voltage alone is applied to
the electrometer terminals, we have from the last equation

V! =d'V2F|cA

if /7 denotes the force upon B when the distance between the
plates is &’.

If now we connect up in series the agent whose voltage I is
to be determined and the agent whose voltage is I/, both
voltages being directed in the same way ‘so that the resultant
voltage is V' + V/, we have, when the voltage I+ V7 is applied
to the electrometer terminals,

V4 V' =d"V2F[cA

if " denotes the distance between the plates when the force #
remains the same as before.
Subtracting the first equation from the second gives

V=(d" —d"\V2F|cA (5)

The advantage which this method has over the other is due to
the much greater accuracy with which the micrometer permits
the measurement of the difference of the two distances 4" — &'
than either separately.

Since F'is proportional to "% it becomes so small for small
voltages that it cannot be accurately measured with this instru-
ment. This form of absolute electrometer is therefore used only
for measuring large potential differences, and small voltages are
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measured by the quadrant electrometer, the Bichat and Blondlot
electrometer, the capillary electrometer of Lippmann, or a form
of absolute electrometer recently de-
vised by Perot and Fabry. The first
two instruments are described in the
succeeding articles.

" Bichat and Blondlot's Electrometer
(Modified). This instrument (Fig. 51)
consists of a metallic circular cylin-
der C suspended from the arm of a
balance (or connected to another
*dynamometer) by a fine wire DE,
with its axis vertical and coincident
with the axis of a longer hollow me-
tallic circular cylinder A5, cut in two
at /G and projecting well beyond the
ends of C, the difference between the
radii (£, and Z,, L, > L,) of the two
cylinders being small in comparison
with either radius. !

Let A4, B and C be charged, the

voltage from B to A being denoted
by Vg4 that from C to 4 by IV,
and that from C to B by Vj, € being
charged by the wire DZ, dipping in a
conducting liquid. The field, in plane section through the axis, for
the case in which I, > Ip and V=V, — Vp therefore positive,
is shown approximately in the figure (all the lines of intensity
should touch the conductors normally). Except near and beyond
E and A, and G and F, the field is cylindrically radial, and its
capacity per unit length is constant and equal to

S=2mc-log L, [L,

By symmetry, there is no resultant horizontal force acting on
C. In general the vertical forces acting on C at /7 and £ are
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not equal and opposite. The resultant force can be found as
follows : Imagine C to be moved downward an infinitesimal dis-
tance dx. The capacity of the condenser AC is increased by
Sdx and that of the condenser BC by — Sdx, no sensible change
occurring in the capacity of the non-cylindrical parts of the field.
The increase in the energy of the field, if the voltages are kept

constant, is
: AW = Sdx (Vi — V")

Hence, by § 53, I., the resultant force acting downward upon C is

FedW|de=3S(VE — Vi) = }SVau(Va + V) o
= SVeu(Ve+ 3 Vaa)

(1) If Vyis great in comparison with }7,z, the voltage to be
measured, this equation becomes, with a negligible error,

F=SVy, -V, )

Hence, if 17y is kept constant and V, varied, /" is proportional
tON

(2) If A and B are connected to the terminal plates of an
auxiliary battery consisting of an even number of similar voltaic
cells in series, and if one terminal of the cell, condenser, or other
agent whose voltage V7 is to be measured is connected to the
central point of this auxiliary battery, the other to the conductor
C, we have, if ¥ denotes the e.m.f. of the auxiliary battery,
Vea=Y, Vpg=V—3¥, V,=V+ }¥; and (6) becomes

F=SY.V (8)

so that /is proportional to V'if W is kept constant.

(3) If B and C are connected together, Vz =0, V, = Vg,
and (6) becomes
F=3SVi, 9)

Equations (7), (8), and (9) indicate three methods of com-
paring voltages with the instrument, the force /7 being meas-
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ured with the balance (or other form of dynamometer). If Sis
determined from direct measurement, and / measured in dynes,
the third method gives an abso/ute determination of the voltage
Vg4 The first and second methods are called /eterostatic, as an
auxiliary voltage, V3 or ¥, is employed in addition to that to be
measured. The third method is called Zdiostatic, since the volt-
age to be determined is the only one applied.

(> 5. The Kelvin Quadrant Electrometer. This instrument (Fig.
52) is constructed as follows: A right circular cylindrical me-

Ar—c - —z IB'
w
{ H2S04
SN
a b

Fig. 52.

tallic box, with its axis vertical, is cut symmetrically into four
quadrants A4, A’, B, B’, separately insulated on glass rods, but
‘connected by wires in pairs, 4 to 4’ and 5 to B’, so that when
the field is static there is never a potential difference between op-
posite quadrants. A light aluminium needle C, consisting of
two equal opposite flat quadrantal arcs CC and C’(” attached by
thin radii at their extremities to a central vertical rod R, is sus-
pended from a support by two silk fibers (or other insulating
torsion device) in such a way that the arcs CC and €'’ are
horizontal, concentric with the quadrant cylinder, and midway
between the top and bottom of the box. When the quadrants
and the needle are all connected together, so that there is no
potential difference between any two parts of the system, the arcs
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C, ¢’ are adjusted to lie symmetrically with respect to the two
quadrant pairs 44" and BB’, as shown in the figure. To the
rod R is attached a mirror M, by means of which and a lamp
and scale or telescope and scale any deflection, 8, of the needle
can be read, and on the other side of the quadrants a vertical
platinum wire ¥, ending in a platinum vane 7. The end of the
wire and the vane hang free in dry sulphuric acid contained in a
glass vessel G, the outer surface of which is partly covered with
tin foil. The sulphuric acid serves to make electrical contact
with the needle, to dampen the needle’s motion,and to form with
the tin foil and glass vessel a condenser of considerable capacity,
whose function is to keep constant the potential difference be-
tween the needle and the case. The whole instrument is enclosed
in a tight case, often an extension of the vessel G (whose tin foil
covering is then outside) and is kept dry by the sulphuric acid
within. The case, largely metal, serves also to screen the needle
and quadrants from any external field.

If the instrument is symmetrically made and adjusted, the
arcs CC and C’C’ form with the two quadrant pairs 44’ and
BB’ two condensers, the capacity of each of which, per unit
angle subtended at the center of the system, is the same, let
us say S, and constant, except near the edges of the arcs
and quadrants, for all but exceedingly large deflections of the
needle.

Also, if the instrument is symmetrically made and in adjust-
ment, the needle will obviously not be deflected, even when
charged, as long as the quadrants are all connected together.
If the needle and the quadrant pairs 44’ and BB’ are charged,
the needle will, in general, be deflected, coming to rest when the
angle of deflection, 8, is such that the torque 7" upon it due to
the electrical stresses is balanced by the return torque due to the
twist of the suspension. To find the relation between the deflec-
tion and the voltage, we may proceed as follows, using the
method of § 53, I.
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Let V7,5 denote the voltage from the quadrants A4’ to the
quadrants BB, V, the voltage from the needle to 44’, and I}
the voltage from the needle to BA5".

When @ is increased by an amount 20, the capacity of the con-
denser formed by CC’ with AA’ is increased by S48, and that
of the condenser formed by CC’ with BB’ is decreased by the
same amount. The increase in the energy of the two condensers
is then

AW = LSOV} — LSdOV,2 = LSd6(V, — I/A)(V)-B"f' 7))
= §SAIV, (V3 + Vi) = SdO - Vyy(Ve — § Vag) = Td6
= K0df

since Vz =V, 4 V,5, and since 7d0 = KO is the work done
in twisting the bifilar (or other) suspension through the angle 26
by the torque 7 of the electrical forces, A being the constant of
torsion of the suspension. The last equation gives

T|K = 0=}S|K Vi Va+ V) = S|K - Vis Vo — 1 Vas) (10)

(1) If Vyand V=V, 4 V,; are very large in comparison with
V.5, the voltage to be measured, V,, may be neglected without
appreciable error in the expression (V3 — 1 V), and @ is sensibly
proportional to V,; and to I’  Hence by making V7 large, even
small potential differences V7,, may be measured with accuracy.
In this case (10) becomes

Vip=K[SVz - 8 (11)
(2) If the needle is in metallic contact with one of the quad-
rant pairs, as AA’, V, =o0, V3 = V3, and (10) becomes
Vi3=12K|S-60 (12)
Since the deflection in this case is proportional to the square
of the voltage, alternating as well as steady voltages can be
measured ; but low voltages, either steady or alternating, cannot be
measured with accuracy (except with very sensitive instruments).
(3) The quadrant pairs A4’ and BB’ are connected to the ter-
minal plates of an auxiliary voltaic battery consisting of an even
number of similar cells in series, and one pole of the voltaic cell
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or other agent whose voltage /7 is to be measured is connected
to the needle C, the other to the central point of the auxiliary
battery. Then, if ¥ denotes the e.m.f. of the auxiliary battery,
Vig=", Vy=V—3}¥, Vz=V+ }¥; and (10) becomes

V= Ay S¥nd (13)

In this arrangement the deflection is accurately proportional to
V, whether V'is large or small in comparison with V.

The first and third methods of using the instrument, in which
a supplementary voltage is employed in addition to that to be
measured, are called /feferostatic methods ; the second is called
idiostatic.

While the quadrant electrometer cannot be used for absolute
measurements, the factor multiplying € being impossible to de-
termine with accuracy directly, this factor can be determined in
any case by measuring the deflection produced by a Anown volt-
age, such as that of a standard cell.

7. Condensers in Multiple. When any number # of condensers

whose separate capacities are S, S,, --+, S, are connected in
_ L EETN 2 Zamny 3
\_/
a.
1 2 3
b.
Fig. 53.

multiple, as in Fig. 53, @, a compound condenser is formed whose_

capacity is Sta oprgtd s apinie (14)
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" provided that the field of each condenser is included, practically,
between its plates only, and therefore does not affect appreciably
the fields of the other condensers.

For if I7is the common voltage between the separate pairs of
plates of the compound condenser, ¢ the total charge on each
compound plate, and ¢,, ¢,, - - -, ¢, the charges on the separate
plates when the condensers are charged separately to the volt-
age V, we have, for such a system,

Bt it £V oA and

S=e9/V=(a+ o+ - +2)/V=(SV+SV+ -+ SV
=S+ S+ + S,

8. Condensers in Series. When # condensers of individual
capacities .S, .S,, etc., are connected up in series, as in Fig. 53, 4,
a compound condenser is formed of capacity

St (LSRR St 1S (15)

provided that the plates of each condenser are so close together
that sensibly all the tubes from one plate terminate upon the
other.

For if Iis the total potential difference between the terminal
plates of the compound condenser, ¢ the (numerical) charge on
each of them, and ¢, ¢,, etc.,, and V], V,, etc,, the charges and
voltages of the individual condensers, we have

I=H=9H=9= =49,

since the intermediate plates are all charged by induction, and
sensibly all the tubes from one plate of each condenser terminate
upon the other, '

Also V=V +V,+ -+ V,

Hence

S=gV=e(i+ Vo + - +V)=9/q/S + 9IS, + - +4/S,)

from which (15) follows on cancelling ¢.
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9. Some Electrostatic Methods of Comparing Capacities. In
each of the following methods the capacity of the electrometer,
or electrometers, and connecting wires is supposed to be negli-
gible in comparison with the capacities to ke compared, or else
to be included with them. 1

(1) The capacities S; and S, to be compared are connected in
series with a battery of electromotive force V; and an electrom-
eter is connected across the plates of each; or an electrom-
eter is connected across the plates of one, for example .S,, and
another, with the battery, across the terminal plates. In the first
case we have

] SlVl = Ssz
whence
S/Si=NV, (16)

and in the second case

SZV2= V/(I/Sl+ I/Sz)
whence

S/ Si=V[V,—1 (17)

If the leakage and absorption (Chapter V1I.) of the condensers
are negligible, the two measurements may be made in succession
with a single electrometer.

(2) The capacities to be compared are arranged to be put in
multiple by a switch A, With &K open let S, to whose plates
the quadrants of an electrometer are connected, be charged to a
voltage 7, and then connected in multiple with S,, when both
condensers will come to voltage V. Then we have

Sl V= (Sl o Sz) V;
whence

S,/Si=V|V,—1 (18)

(3) In this method the condensers whose capacities .S, and S,
are to be compared are charged in multiple to the voltage 7
insulated, and then again connected in multiple, but in such a
way that the positive and negative plates of 1 are connected to
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the negative and positive plates of 2, the final voltage being 7.
Immediately after charging

g= S and .g. =51
After the final connection in multiple

Gabaae o= (51 = Sz)V_—_ (SJ =t Sz)Vz )
Hence

52/51=(V— Vz)/(V"' Vz) (I9)

It is obvious that the above three methods cannot be applied
when one or both of the condensers are of the guard ring type,
thus having more than two conductors. The following method of
testing the equality of the capacities of two guard ring condensers
was devised by Maxwell. It can also be applied when only one,
or neither, of the condensers is of the guard ring type. In
the last case it becomes identical with the last of the preced-
ing methods, which is an extension of a method due to Caven-
dish.

10. Maxwell’s Method of Testing the Equality of the Capacity
of a Guard Ring Condenser and that of any Other Condenser.* Iet
A be the disk, B the guard ring and sheath, and C the larger
plate of one of the condensers; and let 4’, 5/, and C’ be the
corresponding parts of the other. If either condenser, as ABC,
is of the simpler form with only two conductors, we have only to
suppress B and to suppose 4 and C to be the two conduc-
tors, it being understood that sensibly all the tubes of induc-
tion pass from one plate to the other when the condenser is
charged.

Let B be kept always connected with C”, and B’ with C. Then

(1) Let A be connected with 5, and ¢’ with /, the positive
(for the sake of definiteness) terminal of a battery or other source
of electrification, the other terminal of which is connected to

* Maxwell, 77reatise, § 229.
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earth; and let A’ be connected with B’ and C and with the
earth. The two condensers are now charged oppositely, so that
A is positive and A’ negative, and the field of each is sensibly
confined to the region between the plates.

(2) Let 4, B, and C’ be insulated from /.

(3) Let A be insulated from 7B and (’, and A’ from B’
and C.

(4) Let B and C”’ be connected with 5’ and C and with the
earth. The charges on 4 and A’ remain unaltered in magni-
tude, but are now distributed over their whole surfaces, the
fields no longer being confined to the regions between the
plates.

(5) Let A be connected with A’.

(6) Let A and A’ be connected with one quadrant pair of an
electrometer %, the other quadrants of which are earthed. If the
charges of 4 and A4’ are equal in magnitude, the electrification
wholly disappears, since they have opposite signs, and the elec-
trometer is unaffected. In this case the fields connected with 4
and A4’ have the same capacities.. Otherwise, the electrometer
will indicate positive or negative electrification according as
A or A’ has the greater charge and therefore the greater
capacity.

By making repeated tests and adjustments, if necessary, the
capacity of a condenser constructed with movable conductors so
as to have a variable capacity, or a condenser in the process of
construction, may be made equal to that of a standard condenser
of the guard ring form.

Other methods of comparing capacities are described in Chap-
ters XII. and XIII.

11. Some Methods of Extending the Range of an Electrometer.*
If the ratios of the capacities of the condensers in the three first
arrangements described above are known, the three methods of
comparing capacities may be inverted for the measurement of

® Cf. Maxwell, 7reatise, § 220 ; Lord Kelvin, B. 4. Report, 1885, p. 907.
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high voltages with electrometers constructed for low voltage
measurement. Thus we have, from (17), (18) and (19),

(I) V= [(Sz + Sl)/Sl:l Vz
(2 V=[(S+ S)/S]V, (20)
(3) V= [(Sl <+ SZ)/(SI iy Sz)] Vz

By measuring V,, 7V may be determined ; so that by properly
choosing or adjusting the ratio of the capacities the range of an
electrometer may be almost indefinitely extended.



CHAPTER IV.

GENERAL ELECTROSTATIC THEORY. IDEAL FIELDS
CONTAINING TWO OR MORE DIELECTRICS.

1. Generalisation of Gauss’s Theorem.* In § 23, Chapter I,
this theorem was established for a surface enclosing a single
homogeneous isotropic dielectric, or such a dielectric and con-
ductors. We shall now show that it holds for a closed surface
cutting any number of such dielectrics, or such dielectrics and
conductors. To do this it is necessary to show only that the
strength of a tube of induction is not altered when it passes from
one dielectric into another.

For this purpose, consider the electric field between the plates
4 and B of a closed condenser containing two dielectrics 1 and 2,
1 being in contact with 4 only, and 2 in contact with 5 only.
If the charge of A is ¢, that of B is — ¢, and there is no charge
upon the interface between the dielectrics 1 and 2. (If there are
charges due to contact, they are equal and opposite at any point
of the interface.) Applying Gauss’s theorem to the region 1, we
find the total strength of all the tubes emanating from 4 to be ¢;
and, likewise, in the region 2, the total strength of all the tubes
terminating upon 5 to be ¢. Thus the total strength of all the
tubes is unchanged in passing across the interface from A4 to 5.
And since this result is absolutely independent of the size or
shape of the dielectrics, that is of the shapes of the tubes, it
follows that the strength of every tube remains constant in cross-
ing the interface, howsoever the field is divided up into tubes.

It may be shown that the theorem is also valid in the general
case when the dielectrics are neither homogeneous nor isotropic,

*See The Physical Review, September, 1902, p. 173.

139
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but the demonstration lies outside the scope of this work. In all
that follows we shall assume the theorem to be perfertly general.

2. The (Uncharged) Interface Between Two Dielectrics. Laws
of Refraction of Lines of Intensity and Displacement. At an un-
charged interface S, Fig. 54, between two dielectrics 1 and 2
with permittivities ¢, and ¢,, certain conditions, which we pro-
ceed to find, must be satisfied by the electric intensity and dis-
placement.

In the first place, the line integral of the electric intensity
around the infinitesimal circuit adfce, in which a4 and ¢f are par-

2 1
LS
At
:.b
cra
\\01
N2 6 B N1
192

D2E; f }d/

Fig. 54.

allel to the interface, and ac and @f normal to the interface, is
zero, since the field is static. This integral, that is, the e.m.f.
around the circuit, is
E sin 6, ad + E, cos 0, de 4 E,cos0,¢f + E,sin 0, fc

+ £, cos0,cb + E cos 0, ba =0
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But de = — ba, and ¢f = — cb, hence all the terms but the first
and fourth cancel, leaving

E sin @ ad + E,sin 0, fc =0
or, since fc = — ad,
E, sin 0, = E, sin 0, (1)

Thus the tangential component of the intensity does not
change on crossing the interface.

Moreover, £, lies in the plane containing % and the normal to
the interface, V|.V,. For if £, were not in this plane, it would
have a component perpendicular to this plane, while £ has no
such component. Therefore the e.m.f. around a circuit in a
plane perpendicular to the interface and lying partly in medium
1 and partly in medium 2 would differ from zero, which is im-
possible in the static field.

Consider finally the electric flux outward across the surface of
an elementary parallelepiped acfd with center at 0 in the inter-
face ; two of the faces, of breadth ad and height / (perpendicular
to the paper) being parallel to S, and the others, of breadth ac
and height /%, normal to S. This flux must be zero, by Gauss’s
theorem. Hence

— D, sin6 abh — D, cos 8 adk + D, sin 0, de
+ D,sinb,efh + D, cos,cfk— D, sinf,bch=o0
But since de = ¢f = ab = bc, and ad = cf, this reduces to
D,cos,— D, cos 8, =0
or <
D, cos 6, = D, cos 6,
(2)

K o5 =\¢c, ) co5'0,

Thus the normal component of the displacement does not
change in crossing the interface.
From (1) and (2) we have by division,

tan 01/ tan 92 T (DI/EI)/(D2/E2) == cl/‘z (3)
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In passing from one dielectric to another lines of displacement
are therefore refracted in such a way that

L. The incident and refracted lines are in the same plane per-
pendicular to the interface at the point of incidence ; and that

I1. The ratio of the tangent of the angle of incidence to the
tangent of the angle of refraction is a constant for the given
media, and equal to the ratio of the two permittivities.

Since tan 6, and tan 6, become infinite together when

91 = 92 =90o

no phenomenon similar to total reflection in optics occurs.

If 0, is kept constant, and ¢,/c, diminished, tan 6, increases.
In the limit when ¢,/c, = 0, tan 0, = infinity, and 6, = 90°. In
this limiting case 6, is of course meaningless, since when ¢,/c, = o,
there is no electric field in medium 2. As stated in § 14, 1., no
substance has a permittivity less than ¢, = 1, but for the sake of
certain analogies (VIIL. and IX.) the imaginary case of ¢,/c,
= 0 is here considered.

If while 6, is kept constant, ¢,/¢, is increased, 8, increases, ap-
proaching o as ¢, approaches infinity. In this limit also 6, is
meaningless, and medium 2 contains no electric field, as D
would there be infinite if £ were greater than zero. Sinceina
static field the lines of intensity always meet the surface of a con-
ductor normally (f,=o0) and since there is no electric field
within the conductor, a conductor behaves in a static field like a
substance of infinite permittivity. Since in this case the displace-
ment is discontinuous at the surface, the conductor’s surface is
charged. This behavior, however, is not due to the conductor’s
permittivity, but to its conductivity. Of the permittivity of most
conductors little is known.

An experimental method of verifying (3) is described in §s5,
VIL

3. Fictitious or Apparent Electric Charges. The discontinuity
in the normal component of the electric intensity at any point of
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the interface, viz., £, cos 8, — £, cos 8, (£, and E, being reckoned
positive when directed f7om medium 2 #o0 medium 1), is exactly
the same as it would be if ¢, were equal to ¢, and there were a dis-
continuity in the normal component of the displacement at the
point equal to ¢, (£, cos 8§, — £, cos 8)). This would leave £ and
E, everywhere unaltered, and would leave [, unaltered; but
since 0, would now equal ¢, Z, instead of ¢,Z,, as before, it would
decrease 1),, and therefore all the charges in medium 2, in the
ratio ¢//c,.

Thus the electric intensity everywhere in the field containing
two dielectrics in contact (the interface being uncharged) is the
same as it would be if medium 2 were replaced by medium 1,
if the (former) interface were charged to a surface density
¢’ = ¢ (£ cos8, — E, cos 8,), and if all the charges in medium 2
(or at the interfaces, if any, between medium 2 and conductors,
which could be replaced by medium 2 (§ 28, 1.) without altering
the field) were reduced in the ratio ¢/c,, Imagining these
changes made in any case, we can compute the intensity at any
point by the direct application of the law of inverse squares.
From the intensity and the permittivity at any point the displace-
ment can be found, and from the charges and the intensity the
mechanical forces upon the charged bodies. Thisis an extension
of the method of § 28, 1., which treats of the case in which
¢, = infinity, or ¢ /c,= 0, only. The mechanical force at the
interface between the two dielectrics will be determined in §§ 6
and o.

The quantity o’ = ¢, (£, cos 8, — E, cos 6,) (4)

is called the apparent or fictitious electric surface density at the
point with respect to medium 1. [In the irrational systems of
units, Chapter XIV., ¢’ is defined by the equation A

4mo’ = ¢ (E, cos 8, — E, cos 6,)]

By simply interchanging the subscripts 1 and 2 we could of
course refer everything to the dielectric 2. In all that follows,
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however, the medium designated as 1 will be taken as the stand-
ard medium, and the apparent charges, etc., will be computed
with respect to it.

If there are several dielectrics in the field, it can be shown by
the method used above that, to reduce everything to medium 1
for the sake of computing the electric intensity by the law of
inverse squares, a surface density must be assumed at every point
of each interface equal to ¢, x the normal discontinuity of % at the
point, and the charges in any medium of permittivity ¢ must be
reduced in the ratio ¢, /c.

In the same way, if the permittivity varies continuously, in-
stead of suddenly at distinct interfaces, there will be an apparent
volume denstty of electrification equal, at a point where the in-
tensity is £, to

pl=c divE (5)
(In the irrational systems of units 4mp’ = ¢, div £.)

“If both volume density and surface density of apparent elec-

trification are present, we have

q =fa"d5+fp’d’r (6)

the first integral being extended over all fictitiously charged
sutfaces, and the second throughout all fictitiously electrified
volumes.

Electric Poles. The fictitiously charged surfaces or volumes,
that is, the surfaces or volumes where the electric intensity is
discontinuous, are called electric poles. The total apparent charge
in any region is the strength of the pole (or portion of a pole) in
that region, and is equal to ¢, x the outward flux of the electric in-
tensity * across a closed surface surrounding the pole, by (4) and
(5). Another expression is given below. The pole is positive
or negative according as the apparent charge is positive or nega-
tive.

*The flux of any vector across a surface is the integral over the surface of the nor-
mal component of the vector.
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4. Fictitious Charges (continued). Intensity of Electrisation.
Electric Susceptibility. (4) may be written

o/ = ¢/(E, cos 0, — E, cos 8,) = (D, — ¢,E,) cos 0, &)

The quantity D, — ¢, £, the difference between the actual dis-
placement in medium 2 and the displacement which would exist
there with the same value of intensity if ¢, were equal to ¢, is
called the zntensity of electrisation of medium 2 with respect to
medium 1, and is denoted by /. Thus

J=D,—ck, (8)
Another definition of / is given in § 12.
(In the irrational systems of units, Chapter XIV., /is defined
by the relation 47/ = D, — ¢, £,.)
When none of the electrisation is intrinsic (§ 1, V1.), (8) may
be written
J=D,— k= [("2_‘1)/"2]02 (9)
J is evidently a vector with the same direction as that of D, or
the opposite direction, according as [, is greater or less than
¢,F,; or, when (9) is valid, according as ¢, is greater or less
than ¢,.
(9) may be written
J=(6—1¢)E,=«E, (10)

k = (¢, —¢,) is called the clectric susceptibility of medium 2
with respect to medium 1. [In the irrational systems of units,

€= (6 — )]
(8) and (10) may be transformed into

D,=c,Fy= ]+ ¢\E, = (c, + k)£, (11)
In terms of /, the apparent surface density is
al.= f cosd, ron o 1)

and the apparent charge upon a surface is

¢ =[] cos6,dS (13)
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The volume density of fictitious electrification is
p'=c, div £ = div(D—J/) = div D—div /=—div /= conv / (14)

since div D = o.
The total apparent charge within a volume 7 is

q =fpfa’q-=fconvjd'r (15)

The total apparent charge in a pole distributed over a surface
S and through a volume 7 is

g = f] cos 8,45 + fconv]d’i’ (16)

The total apparent charge within the volume 7 and upon the
surface .S of a dielectric 2 completely surrounded by a homoge-
neous dielectric 1is zero. This may be proved by integrating the
first term of (16) over the whole interface and the second term
throughout the whole volume of the dielectric 2. The equation
may be written

g = [D, cos 0,dS —c, [E, cos6,dS — [div Dr + ¢, [div Edr

The first and third terms are evidently zero, and it will be shown
that the second and fourth terms cancel. For div £, 47 is the ex-
cess of the flux of intensity leaving the volume &7 over that enter-
ing the volume 7. Hence j div £, dr throughout the volume 7
is equal“to the total excess of the flux of intensity leaving the
whole volume over that entering the same volume; and this is
equal and opposite to — ¢, f E, cos 0,4S, which is the excess of
the intensity flux entering over that leaving the whole volume.
Thus the proposition is established.
A dielectric in which

p'=conv /=¢ divE=o0

is said to possess solenoidal electrisation for the reason that in
this case all the tubes, or solenoids, of intensity (£) or electrisa-
tion (/) run through the dielectric from one pole face to the
other without discontinuity at fictitious charges between.
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A medium in which / or D, together with ¢, is constant is said
to be uniformly electrised.

5. General Expression for the Potential at a Point ( f Ecos0dL
from the point to znzfinity). When fictitious charges are present,
we must, to find the potential at a point, suppose all the true
charges reduced in the ratio ¢, /¢, and add to the expression for
the potential due to the true charges alone, (16), II., a term
J"dg’ [4me, L. Thus, in the most general case,

Ve=1/4me,-([¢,[c-dg|L+ [dg'|L)y=1/4m - [(dg/cL+dg'c,L) (17)

where ¢ is the permittivity at the seat of the true charge dg. Or,
if we call ¢/c-dg also an apparent charge, we have, instead of
(17),

V=1 /qmc, -fdg’/[, (18)

6. The Integral Force Upon an Electric Pole. The electric in-

tensity £’ at a point P “due to”’ an electric pole of strength ¢’
is :

E' = [dg|gme L ' (19)

where L is the distance from the seat of d¢’ to 7, and the inte-
gration is a vector integration, the direction as well as the mag-
nitude of Z being different for each different element dg’.
The force upon a small body at 7 with a concentrated #ue
charge g is
E'q =fq/47rclL2-dg’ = fEdq’

where £ is the intensity at the seat of @¢’ due to the charge g¢.
Thus the fotal force & upon an electric pole is

F= [Edg ~ (20)

where £ is the intensity at the seat of d¢’ due to the other poles
and true charges, the integration being a vector integration.
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The traction per unit area at any e/ement of an interface is com-
puted in § 0.

The force between two concentrated poles with apparent
charges ¢’ and ¢/ distant Z apart in a dielectric of permittivity ¢

would be F— g g"|qmel? (21)
7. The Infinite Parallel Plate Condenser with Two or More Di-
electrics in the Form of Infinite Plane Slabs. The simplest pos-

sible field involving two dielectrics is that of an infinite parallel
plate condenser with two dielectrics 1 and 2 of permittivities ¢,

Plate 1

T
1 |

— -5

[ % 1

Plate 2
Fig. 55.

and ¢, in the form of infinite plane slabs of thicknesses Z, and &,
parallel to the condenser plates distant d = 4, + 4, apart (Fig.

55)-

Here the tubes of induction evidently run straight across with-
out change of strength from one condenser plate to the other,
meeting both conductors normally. If D, = D, = D denotes the
displacement, the intensities in media 1 and 2 are

Bl =D [c, = Djc, and E, =D, [c, = Dje,
respectively. Hence the voltage of the condenser is
Vie=Edy + Edy= Dle,- {d —[(¢, — ¢))/c,] 4}
The capacity of a right prism of the dielectrics of thickness &
and cross-section 4 is
S=AD|V,,=Ac/{d — [(¢c, — 6)[c,] 4y} (22)
and the energy contained in the prism is
W= 34DV, = $ADc, - {d — [(c,— ¢))/c,]4;} (23)
=34e, V' {d —[(e, — a)/e,] 4y}
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Thus the substitution of dielectric 2 for a portion of dielectric
1 (cf. § 51, Chapter 1.) decreases the energy if the charges are
kept the same, and increases the energy if the voltage is kept
the same, provided ¢, is greater than ¢;. If ¢, is less than ¢, the
opposite is true.

If the second dielectric does not touch either condenser plate,
the force upon either plate due to the discontinuity of the dis-
placement, viz., $/ D per unit area, is not altered by its intro-
duction when D is kept the same; but if }}, is kept the same,
the force upon the area 4 becomes

F= %Acl sz/{d—— [(52 - ’:1)/‘:2] dz}z (24)
which is greater or less than when the whole dielectric had the
permittivity ¢, according as ¢, is greater or less than ¢,.

If the dielectric 2 is in contact with plate 2, and the displace-
ment D as before, the force per unit area upon plate 1 is, as before,
fi=3ED=31Dc
but the force per unit area upon plate 2, due to the discontinuity

of the displacement at its surface, is

Sfo=3ED= 31D,

which is less than f,if ¢, is greater than ¢, But the tension
along the lines of intensity in medium 1 is }%.0, and in medium
2, $£,D. Hence there is a mechanical force upon dielectric 2
acting toward plate 1 of magnitude, per unit area,

./:f; == %E1D - %EZD = %Dg(cz - cl)/clcz (25)

and this force is transmitted mechanically by the dielectric to
plate 2, making the total force per unit area upon the plate
equal to :

So+fo=1D ey + §De,— o) [e6y = 3D [c, =/
The apparent surface density at the interface is uniform and

equal 5 o/ = D(Cz =3 "1)/52 =/ (26)
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The electrisation is solenoidal.

When the number of dielectrics is greater than two, the inten-
sity, fictitious charges, etc., can easily be determined by the same
method.

8. The Spherically and Cylindricaily Radial Fields. The field
surrounding a point charge at the center of any number of con-
centric spherical shells of different permittivities, or the field of a
spherical condenser with any number of dielectrics in the form
of concentric spherical shells, together with the fictitious charges,
etc., as well as the cylindrically radial field in coaxial cylindrical
shells of dielectric, can be easily found by the method of the
foregoing article, 7. ¢., by the direct application of Gauss’s
theorem.

As an example, suppose we have a spherical field in three
dielectrics, the charge, ¢, being in medium 3, and medium 1 sur-
rounding media 2 and 3 and extending to infinity, Fig. 56. The

Fig. 56.

displacement at any point distant R from C is ¢/4mcR?, and
the intensity is equal to the displacement divided by the permit-
tivity at the point.

We shall also find the intensity by means of the fictitious
charges. It can be computed by considering a charge

9 = g6,/

to exist at C instead of ¢; a uniformly distributed charge



FIELDS WITH TWO OR MORE DIELECTRICS. 151

9 = 4TRc(q/4me, R — q[4me,R) = ge,[(ey — ) [ es]
at the interface 23 ; and a uniformly distributed charge

7’ = gc.[(e; — &) [ 16, ] = q[(c;, — ¢) /<]
at the interface 21; all in a dielectric of permittivity ¢, Each
charge “ produces”” outside the surface on which it is distributed
the same effect as if it were concentrated at the center C, and
within the surface no effect at all. Thus the intensity at a point
distant R from C, when R is greater than &,, is

E= (g + g4 + 921,)/47"511?2 = 9/4W€1R2 ~ (27}

while the intensity at a point in medium 2 distant from the cen-
ter ¢ by &, less than R, and greater than &,, is

E=(g) + ¢5')[4mc,R* = ¢ 4me,R? (28)
9. The Mechanical Force at the Uncharged Interface Between

two Dielectries. In the particular case considered in § 7, where
the lines of induction were normal to the interface, there was

Y

>

~

Fig. 57.

found to be a force at the interface normal to it and equal, per
unit area, to 3¢, £ — §c,E,? measured in the direction 21. In this
article we shall find the force per unit area at any point 2 of the
interface in the general case when the lines of induction make
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any angles (Figs. 54 and 57), connected by the relations (1) and
(2) with the normal at 2 to the interface.

In Fig. 57 let the plane XV (the plane of the paper) coincide
with the plane containing Z, and Z, at the given point of the
interface, the axis Z being perpendicular to X'}V through 2 and
the plane of the interface coinciding with the plane XZ. Let
dS = dxdz be a rectangular element of area of the interface at
the point, with its sides parallel to X and Z respectfully. We
shall find the components dX and &Y of the force upon &5 in the
directions X and Y, parallel and perpendicular, respectively, to
the interface. It is evident, from symmetry, that the component
in the direction Z is zero.

The force upon &S is clearly equal to the force upon the sur-
face abcd formed by drawing rectangles @, 4, ¢, 4, all of breadth
dz, through the ends of &S, with their planes parallel and per-
pendicular to £ and £, The areas of these rectangles are

a=dScos 0, b=dSsinb, c=dScos b, d=dSsinb,

Let 7, and p, = 7, = }¢ £ denote the tension and pressure
parallel and perpendicular, respectively, to the intensity in me-
dium 1, and 7, and p,= 7, = }c,E,;’ the corresponding quan-
tities in medium 2.

The force upon the face @ is 7,.a = 7,dS cos 8,, with the
components '

dX,= 7,dS cos 6,-sin 0, and dYV, = 7,dS cos 6, cos 6,

in the positive directions of X and ¥. The force upon the face
bis p,-b= pdSsin b, with the components

dX, = pdSsin 6, -cos 0, and dY, = — p,dSsin 6, -sin 8,

in the positive directions of X and Y. In like manner, the com-
ponents of the force upon the faces ¢ and & are

dX = — T@dScosf,sinb, dY,=— T,dScosé, cosb,
and dX,= — pdSsinb,-cos b, dYV,= pdSsinb, sinb,



FIELDS WITH TWO OR MORE DIELECTRICS. 153

Hence we have, for the X and ¥ components of the total force
upon 4.5,

dX=dX, + dX, + dX + dX,= [Lc,£}(2sin 6, cos 6)

— dc,EX(2 sin 6, cos 0,)1dS
and
dY=dY, 4+ dY, + dY + dY, = [1c,E*(cos® 8, — sin® 0))

— }¢,E}? (cos® 0, — sin?0,)]dS

The X and Y components of the force per unit area upon the
interface at 7 are thereforc

dX[dS = }c E?*2 sin 0, cos 0, — 1c,E}? 2 sin 8, cos 6,

(29)

= 1¢, E?sin 20, — 1c,E2 sin 20,
and
dY[dS = }c,E*(cos® 0, — sin® 6) — 1c,E*(cos® 8, — sin® §,) 50
o
= }c,EP cos 20, — Lc,E cos 26, ;
On multiplying together equations (1) and (2), we find

c,Ersin 20, = ¢,E* sin 26, (31)
Hence

dX[dS =dZ[dS=o0 (32)

and the total force at the interface is normal to the surface and
equal to 4Y/dS.
By making use of (31), (30) may also be written

dY[dS = L¢,E}? sin 2(0, — 0,)/sin 26, (33)

When ¢, is greater than ¢,, 8, — 0, is positive by (3), and ZY/dS
is positive, that is, directed toward medium 1,
When 6, =6, = 0°, (30) and (33) reduce to (25).

10. The Process of Changing the Dielectric Within the Plates of
an Ordinary Parallel Plate Condenser is of much interest. If the
plates have charges g and — ¢, ¢ unit tubes will pass from one



154 ELEMENTS OF ELECTROMAGNETIC THEORY.

to the other. When the permittivity of the medium inside the
plates is the same as that of the medium outside, ¢, the tubes
will have some such distribution as that indicated in Fig. 47.

If a slab of a dielectric of greater permittivity, ¢,, is introduced
between the plates, the tubes will crowd into this dielectric until
(3) is satisfied, leaving fewer tubes in the region outside than
before. That this takes place follows from the consideration that
if the induction between the plates were not to increase, the
lateral pressure in that region, which is proportional to 1?*/c,
would be insufficient to maintain equilibrium, ¢, being greater
than ¢, and equilibrium having existed when ¢, was equal to
¢,, or when the dielectrics outside and inside were the same.
Since the dielectric outside is unaltered, we can compare the
voltages of the condenser in the two cases conveniently, if we
measure them along the same path owtside before and after the
introduction of the slab. Since the field in the external region
is weaker after the introduction than before, the voltage is seen
to be less, If ¢, is greater than ¢, the effects are of course
opposite.

To look at the matter in another way, the tubes connecting
the outside surfaces and those connecting the inside surfaces may
be regarded as the tubes of two condensers connected in parallel.
If the capacity of either is increased by increasing the permittivity
of its dielectric, the tubes will crowd into that one, and the com-
mon voltage of both will be reduced. If the distribution of the
tubes remained unaltered, the voltage between the two plates
would be greater along a line not passing through the slab than
along a line passing through the slab.

During the lateral introduction of the slab into the region
between the condenser plates, the tubes crowding into it exert a
pull upon it, by § 9, which continues until it is symmetrically
situated with respect to the plates, when the pulls urging it in
all directions balance. If during the change the charges are kept
constant, the energy decreases, since the voltage decreases; if
the voltage is kept constant the charges increase and the energy
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increases. By computing the space rate of this increase or
decrease of the energy, the force acting upon the slab may be
found by the method of § 55, Chapter I. This computation is
made in § 4, Chapter VII. The force could not, in general, be
determined without very great difficulty by the method of § o.

11. Field Surrounding a Concentrated Charge Situated in One
of Two Infinite Dielectrics Separated by a Plane Interface. Let
the charge ¢ be concentrated at the point 4, Fig. 58, in the me-

dax

D
Fig. 58.

dium of permittivity ¢, distant & from the interface separating the
medium of permittivity ¢, from that of permittivity c,.

By § 48, L., there is only one field which can satisfy the given
conditions. The given equipotential in this case is the infinite
sphere at zero potential with 4 as center. To find the field by
means of the law of inverse squares, we must reduce the problem
to one with a single dielectric, until the displacement, or else the
intensity, everywhere is found. Then the unknown one of the
two can be found in each dielectric from the relation D = cE.
We shall combine the method of images with the method of § 3.

Guided by the result of § 135, II., which solves the problem
when ¢, = infinity, and by what we have learned of the refraction
of lines of displacement, the simplest rational assumption we can
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make is that to the left of CD the displacement is such as would
accompany a charge ¢ at 4 and a charge ¢, at B, both in a di-
electric of permittivity ¢, ; and that the displacement to the right
of CDis such as would emanate radially in the medium 1 from
a charge g,at A. If ¢, and ¢, can be given such values as to
satisfy (1) and (2), at every point of €D, the assumption will be
justified and the problem solved.

Choosing OB and OC as positive directions, we find, for the
normal displacement at 2 on the left side of CD,

qd/4my’ — g djama = (¢ — ¢,)d/4mx*
and for that on the right side
9.d/47x*

(2) Will be satisfied if these are equal. Hence, if the prob-

lem can be solved by this method,
7—9 =19, (@)
The intensity parallel to €D is, on the left,

(¢ + ¢,)OP|gme 2*
and on the right,

7,0P [4mex?
Hence, to satisfy (1), we must have
(¢ + 9)/ev=4,/c, (%)
Equations (@) and (%) are both satisfied by the values

g, =—g9(c,— &) (e, + <))
9, = 29¢, /(Cz ot 51)

and (34)
so that the above assumptions are justified and the problem
solved.

When ¢,/c,=%,9,= — ¢ /4 and ¢, = 59 /4. When ¢, /¢, = §,
g,=¢/4 and g,= 3¢ /8. The plane diagrams of the field for
these two cases are easily constructed from Figs. 23 and 24, or
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from the above charges directly, by Maxwell’s method, § 14, 1L
The diagrams of the tubes of displacement for these two cases are
given in the upper and lower halves, respectively, of Fig. 59.
The dotted lines on the right of the vertical line and the full

Fig. 59.

lines on the left are the lines of displacement of Figs. 23 and 24.
The force upon the charged body at A, or the force between
the charged body at A and the dielectric 2, is

F=gqq /‘4'""'1(2d)2 =—g(c,—¢) [16md%\(c, 4+ ¢;)  (35)

If ¢, is greater than ¢, the force is one of attraction, the tubes
being concentrated on the side of 4 toward medium 2 ; but if ¢,
is less than ¢, the force is one of repulsion, the tubes being now
concentrated on the opposite side. When ¢, = infinity (35) re-
duces to (41), II. In the first case the apparent charge upon
the interface is negative, in the second positive, and in the last the
charge is real and negative, ¢ being supposed positive.
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The total force upon the interface can be obtained also by the
method of § 6.
Thus the apparent surface density at 2 is

o/ = — gd(c, — ¢)) [2m(c, + )% (36)

The apparent charge dg’ upon a zone in the interface of radius
OP and width 4(OP) is

dy’ = c'2wOP - d (OP) = o' 2wxdr = — gd (¢, —c))dx [(c, +¢))**
The normal intensity at the zone due to the charge ¢ is
qd |gme 2’

Hence the total force between the interface and the charged
body at 4 is

F=—g4d 2(52 o 61)/47TC1(£2 + Cl)f dx [x°
a

= — ¢%(¢c; — ¢)) 167, d (e, + )
as in (33).
The total apparent charge upon the interface is

7 = f o' 2mrdy = — gd(c, — ¢,) (¢, + Cl)‘fd‘ dx [4*
d

(37)
=—ga—a)/(gta)=q

12, Dielectric Sphere in a Uniform Field of Different Permit-
tivity. Let a sphere of permittivity ¢, be introduced into an
infinite medium of permittivity ¢, supporting (before the introduc-
tion of the sphere) a uniform electric displacement 2.

Iffci="fc,;ithe tubes will remain everywhere unaltered.

If ¢, is greater than ¢, the tubes will bend, crowding into the
sphere, thus making D), greater than [, until the condition ex-
pressed in (3) is satisfied. (If 2, were to remain equal to 2, the
lateral pressure }.0,/c, across the tubes within the sphere would
be less than }/?/c, the lateral pressure without, and equilibrium
could not exist. Also, the voltage between two equipotentials



FIELDS WITH TWO OR MORE DIELECTRICS. 159

would be greater along a line not traversing the sphere than
along a line passing through the sphere.)

If ¢, is less than ¢, D, is less than D, tubes crowding out of
the sphere until (3) is satisfied.

We proceed to the exact determination of the electric field
within and without the sphere. In accordance with §48, I.,
there is but a single field satisfying the conditions of the problem.

With respect to the field within the sphere, we shall make the
simplest possible rational assumption, viz., that the displacement
D, is uniform and in the same direction as the original external
displacement . We shall further assume that the effect of the

—— -

e —

Fig. 62).

sphere on the (originally) uniform field is the same, in the region
outside it, as that of a doublet of moment A7 placed in the
original dielectnic at the point occupied by the center of the
sphere with its axis parallel to D. The probable correctness of
this assumption follows from the fact that conductors and dielec-
trics produce on static fields into which they are introduced
effects differing only in degree ; and the fact that the effect of a
conducting sphere on a uniform field can be represented, in the
region outside the sphere, by a doublet at its center.

An attempt at a solution based on these assumptions will
obviously satisfy all the electrical conditions except (1) and (2).
If in addition D, and M can be so chosen as to satisfy these con-
ditions also, the problem will be solved.
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To see whether the assumptions made above will satisfy (1)
and (2), the radial components of the resultant internal and ex-
ternal displacements and the tangential components of the re-
sultant internal and external intensities at the surface of the
sphere must be determined. The radial and tangential displace-
ments at any point, outside the sphere, whose coordinates are R
and 8, in the notation of §§ 25 and 26, II., will first be found.

For the radial component due to the doublet (94), II., gives
2] cos 0/4mR?, to which must be added the component D cos ¢
due to the uniform field. For the tangential component due to
the doublet (g95), II., gives M/ sin 6/47R’, to which — D sin 6,
due to the uniform field, must be added. For the total radial
displacement outside the sphere we have, therefore,

D_ = 2M cos 8/4mR* + D cos 0 (38)
and for the total tangential displacement,

D, = M sin 6/4mR* — D sin 8 (39)

=

[ T
x )
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= =

Fig. 61.

At any point inside the sphere, with coordinates & and 6, the
radial and tangential components of the displacement are 2, cos ¢
and — D, sin 8, respectively, independently of the value of R
(less than the radius of the sphere).
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Let the radius of the sphere be denoted by @. Then, to satisfy
(1) and (2), we must have, when R = q,
2M cos 0/4ma® + D cos 0 = D, cos 8, or M2ma*+ D =D,
and M sin /c,q4ma® — Dle, - sin = — D, sin 0/c,,
or Mcgma® — Dje, = — D,e,
The solution of these equations gives
M= gma¥(c, — ¢)D(c, + 2¢)) = 4wa’(c,— ) D, /3¢,  (40)
and D, = 3¢,D/(c, + 2¢,)
(41)
whence E, = 3¢,E/(c, + 2¢)

The assumptions made above are therefore justified, and the
problem is solved. The uniform field within the sphere is given
by (41), and the external field by (38) and (39) on substituting
for M its value from (40). This substitution gives

D =[2d%c,—¢,)/Rc,+ 2¢,)+ 1]D cos 8 (42)

which becomes, when R = q,
o = 36,0 cos 0/(c, + 2¢,) (43)
also D, = [a¥c,— ¢,)|R¥c, + 2¢,) — 1]Dsin 8 (44)

which becomes, when R = ¢,

D, = — 3¢,Dsin 0/(c, + 2¢) (45)

When ¢, is greater than ¢, D, is greater than D, £, is less than
E, and M 1is positive. That is, the doublet is turned with its
positive end in the direction of the field. When ¢, is less than ¢,
D, is less than D, E, is greater than £, and M is negative, or the
doublet is turned so as to oppose the field. When ¢, = infinity,
(41) reduces to D, = 3D, and E,=0; and (38), (39), and (40)
to the equations of §§ 25—27, II.

The plane diagrams of the tubes of displacement, drawn by the
method of § 14, IL,, for ¢,/c, = 0, 3, and infinity, respectively, are
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given in Figs. 60 (the lines inside the circle, Fig. 32, formed by
superposing the uniform field on the field of the doublet, being
here annulled), 61, and 62 (from Webser's Zleory of Electricity
and Magnetism, § 104).

The infinite plane passing through the equator of the sphere
is an equipotential surface (at zero potential). Hence if this sur-
face is made conducting we shall have on each side half the field
just considered terminated by this conducting sheet. Thus we
have solved the problem of finding the field terminated by an

_

———
———————

SR O (L

A

Fig. 62

infinite plane conducting surface with a hemispherical boss upon
it of permittivity ¢, differing from that of the dielectric occupying
the rest of the field (¢)).

The electric surface density at any point of this plane distant
'R from the center of the hemisphere is '

o= D, =% 3cD/(c; + 26,) (46)
when R is less than «, and
o= D0 =90°) ==& [a(c, — )| R¥(c; + 2¢,) — 1]D (47)

when R is greater than a.
The intensity of electrisation of the sphere is uniform and equal

to ./= Dz [("2 = 51)/52] = 3D(52 =i cl)/(CZ T 251) (48)
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(40) may now be written, in terms of /,

M= gma’] (49)

so that the intensity of electrisation of the sphere might be defined
as its electric moment per unit volume, the electric moment denot-
ing the moment of the doublet producing the same effect on the
external field as that of the sphere. A

The difference between the actual intensity Z, in the sphere
and the original intensity £ of the uniform field is called the se//-
deélectrising force or intensity in the sphere due to its poles or
apparent charges, and will be denoted by £’. Thus

E'=E,— E=—Dyc,—¢)/3¢,
= —L(c,— ) [(¢, + 2¢))= — ] ] 3¢,
The apparent electric surface density at a point whose coordi-
nates are @ and 6 is
o/ = D,[(¢,— ¢)/c,] cos 8 = ] cos 6 ‘
= 30 —a)/(cs + 26)] D cos 6 £

(50)

The total apparent charge upon one half of the sphere between
a pole and the equator is

g =xwad’ J=£7wd[(c,— ¢))]c,] D, (52)

13. Infinite Dielectric or Conducting Cylinder in a Uniform
Field. Making use of § 20, II1., we can obtain, by the method of
the preceding article, the electric field in and about an infinite
circular cylindrical dielectric of permittivity ¢, immersed in the
uniform field of an infinite medium whose permittivity is ¢,. For,
as will be seen, it is possible to satisfy all the conditions by
assuming the displacement external to the cylinder to be the
resultant of the original uniform displacement and the displace-
ment of a line doublet of moment 7, suitably chosen, at its axis,
all in the original dielectric, and the internal displacement to be
uniform and parallel to the original displacement. If the radius
of the cylinder is @, and if D and D, denote the original uniform



164 ELEMENTS OF ELECTROMAGNETIC THEORY.

displacement and the actual displacement within the cylinder,
respectively, the conditions (1) and (2) to be satisfied at the
interface are obviously

D cos 0 + Mcos 8 2ma* = D, cos 0
and
— Dsin 0/c, + Msin 6 c2ma® = — D, sin /e,

from which we obtain
-Dz= ZCZD/(€2+ Cl) (53)
and M= 7mad*[(c, — )[c,] D, = 2ma[(c, — ) [(¢c, + ¢)] D (54)

Hence outside the cylinder, at a distance R from its axis, the
radial component of the total displacement is

D = Mcos 8[2wR* + D cos 6
= [@[R* (6, — &)[(e, + &) + 1] D cos 0 (55)
and the tangential component is
D,= [a*|R*(c,—c))[(c, + ¢;) — 1] D sin 0 (56)

while within the cylinder the displacement is uniform and given

by (53)-

The apparent electric surface density is

o' = [(¢,— ¢))[¢,] D, cos 6 = J cos 8 (57)

The total positive or negative apparent charge on half of unit
length of the cylinder is

= x2ax1=2a] (58)
The self-deélectrising force of the apparent charges is
E'=D,/c,—Djc,=— (¢, — ¢))] 2¢,¢,- D,
=—E(c,—c)/(cg+ ¢)=—]]2¢,

14, Dielectric Spherical Shell in a Uniform Field. Electric
Screen. If instead of the solid sphere of § 12, we have a spherical
shell of permittivity ¢,, with inner and outer radii 4 and a respec-

(59)
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tively, surrounding and surrounded by a medium of permittivity
¢, supporting an (originally) uniform field with displacement 0, we
can find the field by an extension of the method used in the two
preceding articles.

Guided by the results obtained for the solid sphere, we shall
assume (1) that within the inner surface of the shell the dis-
placement, 2, is uniform and parallel to that of the original field;
(2) that within the shell the displacement is the vector sum of a
uniform displacement D), parallel to D and the displacement due
to a point doublet of moment J/, at the center of the spheres;
and (3) that the displacement outside the shell is the vector sum
of the uniform displacement 2, the displacement due to the doublet
of moment A7, and the displacement due to a second doublet of
moment A7, also placed at the center of the spheres, the axes of
both doublets being parallel to D. It will now be shown that
these assumptions satisfy (1) and (2).

At the outer interface the conditions to be satisfied by the
normal displacement and tangential intensity are, respectively,

(D + 2M,|4ma® + 2M, [47a®) cos 8 = (D, + 2M, [4ma®) cos §
and '
(= D/e, + M [cqma® + M, |cq4ma’) sin 6

= (— D,[c, + M, [c,q7a’) sin 8
At the inner interface the conditions are
(D, + 28, [476*) cos @ = D, cos 8

and (= D,[e, + M, |c,amt?) sin @ = — D, /c,.sin 8
Cos 6 and sin 8 will divide out, and the equations are satisfied by
the following values of the assumed moments and displacements:

D, = 96,0 [[9¢,6, + 2(c; — ¢,)*(1 — bs/aa)] (60)

D, = [(2¢, + 51)/3‘71] D, (61)

M, = 2ma¥(D, — D) (62)

and M, = — 473 - [("2 —epie] Dy (63)

The relation betwen [,/D and 4/a is given in the accompany-
ing table (Table I.) for the cases in which ¢,/r;, = 100 and 1000.
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These excessive values of ¢, /¢, do not occur in electrostatics, but
are assumed here for the sake of the much more important mag-
netic analogue, § 23, XI. The greater the ratio of ¢, to ¢, and
the smaller the ratio of 4 to a, the less is D, in comparison with
D, that is, the shell forms a more effective screen from electrical
influences for the region withinit. When ¢, /¢, = infinity, that is,
when the shell is conducting, D,/D = o for all values of /e, and
the shell is a perfect electrical screen (when the field is static).

15. Dielectric Cylindrical Shell in a Uniform Field. Electric
Screen. The field of an infinitely long circular cylindrical shell,

Fig. 63.

of permittivity ¢, and with inner and outer radii 4 and @, when
immersed in an infinite medium of permittivity ¢, supporting an
(originally) uniform displacement D can be obtained in exactly
the same way, by making use of line doublets (§ 2o, I1.) instead
of point doublets.

Let D, D,, D,, M, and M, have the same meanings as in § 14,
except that cylinder and cylindrical must be substituted for
sphere and spherical and line doublet for point doublet. Then
we have, to satisfy (1) and (2), at the outer interface,

(D + M, |2ma® + M, [2mwa®) cos 6 = (D, + M, [2mwa®) cos 8

and
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(= D e, + M, [c 2mwa® 4 M, [c,2ma”) sin §
= (— D, /c, + M, |c,2ma") sin O
and at the inner interface,
(D, + M, [2m6*) cos 6 = D, cos 0
and (= D,Jey + M, [c,2mwd?) sin @ = — D, /e, sin 8
Solving these equations, we obtain, as the only solution of
the problem,

Dy=4Dcc,[ [ (e, + ¢} — & la (c, — o) ] (64)

D, = (¢, + ¢)) [2¢,- D, (63)
M, = 2wa* (D, — D) ~(66)
and M, = — [ (c; — D /e] Dy (67)

The relation between D, / D and &/a is given in the accompa-
nying table (Table L.) for the cases in which ¢, /¢, = 100 and
1000. When ¢, /e, = infinity, or when the shell is a conductor,
D,/ D = o for all values of &/a. The cylindrical shell, like the
spherical shell of § 14, forms an electrical screen, the remarks at
the close of § 14 applying equally well to both forms,

The plane diagram of the tubes of displacement when ¢, /¢, = 10
and & /a = £ is given in Fig. 63 (from Webster's Zheory of Elec-
tricity and Magnetism, § 198).

TasLe L

SCREENING EFFECT OF SPHERICAL* AND CYLINDRICAL DIELECTRIC SHELLS.

5 Dy/D when ¢,lc; = 100, D3l D when c¢,le; = 1000.
= SRy ik
Spher. Shell. Cyl. Shell. Spher. Shell. Cyl. Shell,

ol 1 £
0.0 3 ey 273 3T
o.1 75 o5 733 bz
0.2 2 - 1 1

z3 5 73T z§T
0.3 . 27 23 215 3%
0.4 27 b2 70T 1T
0.5 0 73 . T%‘K
0.6 ¥ 'I:T 175 15T
0.7 15 1z 7% 1%
0.8 ! s 1

1z T 109
0.9 7 151' Lig 75
0.99 3 3 o5 1
1.0 1.0 T.0) = 1.0 1.0

* The data for the spherical shell are taken from J. J. Thomson’s Elements of
the Mathematical Theory of Electricity and Magnetism, § 161.



CHAPTER V.

REVERSIBLE THERMAL EFFECT DURING ELECTRISATION.
ELECTROSTRICTION.

1. Reversible Thermal Effect During Electrisation. ILeta con-
denser be carried through a reversible cyclic process as follows,
the external pressure upon the dielectric (¢. g., the atmospheric
pressure) being kept constant :

(1) The voltage 7 being kept constant, let the condenser be
" heated from the absolute temperature 7 to the absolute tempera-
ture z + d7.  If p, 5, and T denote the density, specific heat, and
volume, respectively, of the dielectric, the heat absorbed by the
condenser during this process is A = psTdt.

(2) At the temperature ¢+ 4%, at which the capacity of the
condenser is S 4 dS/dtd?, let the voltage be increased by JV.
The energy of the condenser increases by (S + 4S/dt df)d(V?)
= (S + dS/dt d)VdV.

(3) Let the condenser be cooled to the original temperature ¢
while the voltage remains constant (V7 + 41).

(4) Let the voltage be reduced to its original value I the con-
denser thus losing an amount of energy equal to

1SAV*y= SVaV
The condenser is now in its original condition.

The total work done upon the condenser (exclusive of work
done in heating) during the complete cycle is

AW = (S + dS/dt d)VdV — SVdV = VdS/dtdt-dV
The quantity of heat given to the condenser (exclusive of that
given out) is Bt
168
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Hence, by the second law of thermodynamics, viz., /H/t = —

dW)dt, we have
psTdtft = — VdVdS|dt

or dt|dV = — tV]pst-dS|dt (1)

If therefore we assume that &S/ d%, s, etc., are independent of
V, which is certainly near the truth, the total reversible temper-
ature change when the condenser is charged from ['=o0to V=
Vis

b
At = — t/psT - dS/dt f Vd V= —tlpst-1/S-dS|dt-LSV?* (2)
()

If the dielectric is homogeneous and isotropic, we have
1/S-dS/dt=1]cL-d(cL)|dt = 1]c-dec/dt+ 1/L-dL|dt = k,+a (3)

where L is the length of any line drawn in the dielectric (.S and
dS being proportional by the same factor to the product of the
permittivity and such a length), and 4, and « are written for 1/c-
de/dt, the coefficient of increase of ¢ with temperature, and 1/L-
dL/dt, the coefficient of linear expansion with temperature, re-
spectively. By substituting (3) in (2), we obtain

At = —tpst- (£, + @) 3ST?
or Atft = — (k, + a)/psT-1ST? (4)

If the field of the condenser is uniform, (4) becomes
At = — (b + @)ps 3B = — (b + ) Ups  (5)

Since, moreover, any electric field is uniform in its infinitesimal
parts, (5) is perfectly general.

In all the above the effects of conduction, radiation, etc., are neg-
lected, and no intrinsic electrisation (V1.)is supposed to be present.

For all solids yet investigated (£, + @) is positive. Hence a
condenser with such a dielectric is cooled by charging and heated
by discharging. For nearly all liquids (£, + «) is negative. Ac-
cording to experiments by W. Cassie (F%il. Trans., A, 1890) %,
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{or £, + a) at 50° C. is about — 0.006 for glycerine and + 0.0004
for mica. For recent literature see Ann. der Physik, Vol. 10,
p- 748, 1903.

[Analogous magnetic quantities being substituted in (5) for
the electric quantities there occurring, the equation is valid for
the magnetic case (see § 23, XI.).]

2. Electrostriction. Change in Volume of Dielectric when
Electrised. When a condenser is charged at constant temperé—
ture its dielectric, or dielectrics, would be expected, in general,
to suffer changes in volume and changes in linear dimensions.
These phenomena, as yet largely hypothetical, are included under
the general head of clectrostriction. The alterations in volume,
etc., can be deduced from the principles already developed, in
connection with the principle of the conservation of energy.

Fig. 64.

In all that follows it will be assumed that the condenser plates
are always in contact with the dielectric and that they follow
accurately without appreciable elastic reaction the motion of its
surfaces, as, for example, coats of gold leaf or tin foil. Complete
absence of intrinsic displacement will also be assumed.

First we shall find the change in volume. Consider a con-
denser ABC, Fig. 64, whose dielectric C occupies the volume 7
and possesses the permittance S when charged to the voltage 17
and subjected to the uniform pressure p (which may have any
value, including 0) over its surfaces.
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(1) While Vis kept constant, let the volume be increased by
dr. The energy of the condenser will increase by — pdr. The
increase of volume will, in general, be accompanied by an increase
dS in the permittance. Now let the volume (7 + 47) be kept
constant while the voltage is increased by 4V. The energy in-
creases by (S + dS)d(V?) = (S+ dS)VdV. Thetotal increase
in energy during the process is

AW, = — pdr + (S + dS)VaV

(2) Let us start with the condenser in the same condition as
at the beginning of (1) and bring it to the same final state by a
slightly different process. While the volume remains constant
(7), let the voltage be increased by V. This will increase the
energy of the condenser by SV dV, and, in general, the pressure
by an amount dp. Now let the voltage (V4 41) be kept con-
stant while the volume is increased by &r. The energy will in-
crease by — (p + dp)dr. The total increase in the condenser’s

energy is thus
: AW,=SVdV — (p + dp)dr

By the principle of the conservation of energy, dW, = dW¥;.

Hence .
VdSdV= — dp dr
or

dr|dV=—VdS|dp - (6)

For ordinary charges dS/dp will be sensibly independent of
V. Hence we have for the total change in 7 when the condenser
is charged from a neutral state to the voltage V]

Ar= — dS/dpnya’V= %SV”(— 1/S-dS|dp) )

Homogeneous Isotropic Dielectric. 1f the dielectric is homo-
geneous and isotropic, (7) may be simplified. For in this case
S and &S are proportional by the same factor to the product
of the permittivity and the linear dimensions of the condenser.
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Hence if we denote by L the length of any line drawn in the
dielectric, we have

—1/8dS|dp=—1/cL-d(cL)|dp

=—1/cdc]dp—1|L-dL|dp= (k,+&]3)
where &= the coefficient of compressibility of the dielectric
= —3/L-dL|dp, and £, = — 1/c-dc|dp = the coefficient of di-
minution with pressure, or increase with traction, of the permit-
tivity ¢.  Thus (7) becomes
Ar=1SV*(%, 4 &/3) _ (8)

In order that (7) or (8) may hold when the dielectric is a

fluid, the dielectric must be completely surrounded by the con-

A and B are
the conductors, C
the dielectric, of the
condenser.

/x\\\\\\“\\\\\\\\\\\\\\\\\\t%\'\\\\\%
)07 )

Fig. 65.

denser plates, or the plates must be so arranged that they are
kept apart by the pressure of the fluid only, and sensibly all the
tubes must be contained in the fluid, as in Fig. 65.

If the field of the condenser is uniform, 2SV? = 7 lcE? and
(8) may be written, on division by T,

At/r=§cEXE, + 6/3) (©)

3. Change in Length of a Line Normal to a Uniform Electric
Field in a Solid Isotropic Homogeneous Dielectric During Electri-
sation. Let ¢ denote the thickness of the dielectric of a parallel
plate condenser (the plates always remaining in contact with the
single dielectric), and Z and Z’ the lengths of the edges normal
to ¢ of a rectangular prism of the dielectric. 'We shall find the
change in Z when the condenser is charged to the voltage V.
The dielectric in all that follows will be supposed homogeneous
and isotropic.
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(1) The voltage " being kept constant, let the dielectric be
subjected to a traction in the direction of Z, the stress across the
area L'¢, normal to L, being Q,. This will increase the energy
of the prism by Q,4L, and will, in general, alter its capacity by
an amount 4S. Now let the length Z + dL remain constant
while the voltage is increased by V. This will increase the
energy by (S + &S5)- VdV. The total increase in the energy is

AW, = QdL + (S+ dS)VdV
(2) Let the condenser be brought from the same initial state
to the same final state as before by a different process. First let
the voltage increase by &V, while Z remains constant, which will
increase the energy by SVdV and, in general, the traction by
dQ,. Then, the voltage (V' + &17) being kept constant, let Z be
increased by dZ, which will increase the energy by (O, 4+ 4Q,)dL.
The total increase is i
AW, = SVdV+ (0, + dQ,)dL
As in § 2, dW, = dW,, hence
dL[dV = VdS[dQ, (10)
Since, for small changes at least, @S /dQ, must be sensibly

independent of V) (10) gives for the total change in Z when the
condenser is charged from '=o0to I'= 1

AL= a’S/dQlfrVdV=% SV¥1/S-dS/dQ)  (11)
Since S = cLL'[¢,
1/S-dS|dQ, = 1/c-dec|dQ, + 1/ L-dL]dQ,
+ 1/L'-dLl [dQ, — 1 [e-de[dQ,
Moreover, 1/L'-dL'|]dQ ,=1]e-de/dQ,. Hence we have,
putting 4Q, = L'¢-dg,, simplifying, and dividing by Z,
AL/L=31cV?&-(1)c-dc|dg, + 1/L-dL]dg)  (12)

Now 1/L-dL/dg, is the reciprocal of the stretch modulus, and
will be denoted by M. Also, 1/c-dc/dg, is the coefficient of in-
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crease of the permittivity with traction normal to the lines of
displacement, and will be denoted by 2. Thus (12) becomes

AL|L=3}cV?]E-(M+ k) =3cE*(M+ k) (13)

The above results, deduced for the uniform field of a parallel
plate condenser, will hold good, without sensible error, for a
condenser of any form, such as a cylindrical or spherical con-
denser, in which the conductors are parallel and so close to-
gether that Z is sensibly of the same magnitude throughout the
dielectric.

4. Change in Length of a Line in the Direction of a Uniform
Electric Field in a Solid Isotropic Homogeneous Dielectric.
Making use of the parallel plate condenser of the last article,
and of the same general method, but applying a traction
Q, = LL'qg, parallel to the lines of intensity, we obtain

de|dV = VdS|dQ, (14)
Ae=1SV?*(1/S-dS|dQ,) (15)

and
Ae/e= —%cVz/ez- [M(zr+ 1) — /4,]

- ARGy <] OO

where 7 denotes Poisson’s ratio, and £, = 1/¢-dc [ dg, is the co-
efficient of increase of ¢ with traction parallel to the lines of in-
tensity. '

The results just established hold good, like those of § 3, for a
thin condenser with parallel plates of any form.

It is easy to see that
'ép=2'é1+éz (17)

5. Theory and Experiments. A rigorous treatment of the
general theory of electrostriction, together with a résumé of most
of the experimental and theoretical investigations upon the sub-
ject, is contained in a recent memoir by P. Sacerdote (Ann. de
Chim. et de Phys. (7), 20, p. 289, 1900). Satisfactory experi-






CHAPTER VL
ELECTRIC ABSORPTION. ELECTRETS.

1. Electric Absorption. In all that precedes electric displace-
ment has been treated as a perfectly elastic phenomenon ; that
is, the relation D = ¢Z (analogous to Hooke’s law) has been as-
sumed to hold universally with ¢ at every point a constant, inde-
pendent of the time. On this assumption, the capacity of a
condenser, which is proportional to ¢, would be invariable with
the time of charging. This appears from experiment to be ac-
curately true for dielectrics whose homogeneity is perfect, for
example, gases, pure paraffine, and pure calc spar; but it is by
no means true in general, as the experiments described below
demonstrate.

Let a condenser whose dielectric is not homogeneous, with its
plates connected to the quadrants of an electrometer, be charged
to a given potential difference and then insulated from the bat-
tery. The potential difference will gradually diminish, approach-
ing a limit sometimes considerably below its initial value. If
now the condenser is short-circuited, the potential difference
becomes zero; but it gradually reappears, unchanged in sign but
much smaller in magnitude, after the condenser is again insulated.
The remnant of the original charge, whose presence is proved
by the existence of this potential difference, is called a residual-
charge. 1If the operation of short-circuiting and insulating is
repeated, the same phenomena recur, the potential difference de-
veloped after insulation being smaller each time and finally be-
coming insensible. The disappearance of the phenomena is of
course hastened by the ‘‘leakage” of the condenser, if appre-
ciable, arising from the conductivity of its dielectric, from the

presence of moisture, etc.
176
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If the condenser is charged for a long time in one direction,
then for a much shorter time with the poles of the charging bat-
tery reversed, and then short-circuited and insulated, a potential
difference similar to that last applied will first appear, reach a
maximum, diminish to zero, change sign and continue to increase
in the direction of the potential difference first applied.

Or the following equivalent phenomena may be observed. On
the condenser’s being connected with a constant battery, its
charge usually reaches very quickly almost its final value, but
the charge goes on gradually increasing, sometimes considerably
exceeding its initial magnitude. On short-circuiting the con-
denser most of the charge disappears; but after insulation for a
short time a second discharge in the same direction may be ob-
tained, and so on, till the discharges become too small to be
perceptible.

Also, if the condenser is charged for a long time in one direc-
tion, then for a much shorter time in the opposite direction, and
then short-circuited and insulated, a residual charge (and cor-
responding discharges, if the condenser is repeatedly short-cir-
cuited) similar in sign to the last charge will at first appear, but
will be succeeded by a residual charge similar in sign to that of
the charge first applied.

The appearance of the residual charge in all the above described
experiments is hastened by subjecting the condenser to mechan-
ical shocks.

Two possible explanations of the phenomena of electric absorp-
tion, as the phenomena just described are called on account of
what was once regarded as the soaking in of the electric charge
with the time, have been given. X

(1) The general analogy between electric strain and stress and
mechanical strain and stress, together with the fact that absorp-
tion does not occur in free ®ther or in gases, whose elasticity is
perfect, and is very marked in a substance like glass, whose elas-
ticity is extremely imperfect, has led to the suggestion that elec-
tric absorption is due to the imperfect electric elasticity of the
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dielectrics which exhibit it. The phenomena of electric absorp-
tion are exactly analogous to the phenomena of elastic after-
action. Thus, if the spring of § 36, I, is not perfectly elas-
tic (and no solid body is perfectly elastic) the elongation (analo-
gous to electric charge) produced by a certain applied force
(analogous to e.m.f. of charging battery), equal and opposite to
the elastic return-force of the spring (potential difference), will
not remain constant with the time, but after reaching almost
immediately a value usually very near the final value, will gradu-
ally increase. If now the force is removed (condenser short-
circuited), the elongation will not become zero at once, but the
spring can exert no force by virtue of the remaining elongation
(residual charge when potential difference =0). If now the
spring is clamped (condenser insulated), the elongation gradually
becomes elastic (residual charge becomes available, potential dif-
ference increases from zero), and the spring exerts a force upon
the clamp (residual potential difference). If the clamp is re-
moved (short-circuit), the elongation will again suddenly dimin-
ish, and so on. Also, if the spring is clamped, extended for a
long time, and then compressed for a much shorter time (con-
denser charged successively in opposite directions) and then re-
leased (short-circuit), the residual compression will gradually reach
zero, and then become a residual elongation which will diminish
much more slowly to zero (condenser’s dischargers will be for a
short time in one direction, then for a much longer time, until the
whole residual charge has disappeared, in the opposite direction).

(2) Maxwell has developed a theory according to which the
phenomena of absorption can not occur if the dielectric is per-
fectly homogeneous throughout, but must occur whenever the
ratio of the permittivity to the conductivity is not constant for
all parts of the dielectric, even if none of the constituents alone
exhibits the phenomena. This conclusion, according to which
electric absorption is due to heterogeneity of structure, is sup-
ported by experiments of Rowland and Nichols, Muraoka,
and others. It is quite possible that deviation from perfect elas-
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ticity is closely connected with heterogeneity of structure, and
that the two explanations are not independent of one another.
Thus glass is extremely heterogeneous, possesses very imperfect
elasticity, and shows the phenomena of absorption in a marked
manner.

2. Dielectric Absorption Hysteresis. If a condenser whose di-
electric 1s absorbent is rapidly charged to a voltage V/, short-
circuited, charged in the opposite direction to a voltage — /7,
short-circuited, charged again to voltage '/, and the process re-
peated a number of times at the same rate (by connecting the
condenser to the poles of an alternating current dynamo, for ex-
a;nple), it is evident from what precedes and the principle of
symmetry that the relation between the charge ¢ and voltage I of
the condenser may be represented by a closed symmetrical curve,
such as that in Fig. 66. When the voltage has dropped from the

L

OR-===—————

Fig. 66.

value V7 at A to O at B, a residual charge OB is left, and dis-
appears entirely only when the voltage reaches the negative
value OC. As the voltage increases negatively to — V7 at D,
the charge increases negatively, and falls to the value OF when
the voltage again becomes zero. The residual charge again dis-
appears when V= OF= — OC, etc., the charge thus always
lagging behind the voltage.
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If ‘however the condenser is carried very slowly through the
cycle of charging, discharging, etc., or if the dielectric is one
which does not exhibit electric absorption, the curve is found to
reduce to a straight line, and the area of the cycle therefore to zero.
(Cf. Beaulard, Journal de Physique (3), 9, 422, 1900.)

The phenomena are therefore not analogous to those of mag-
netic hysteresis (§ 39, XIIL.), which are almost wholly indepen-
dent of the time in which a cycle is completed and are not de-
pendent, except to a very slight extent, upon anything similar to
viscosity or absorption. The term /Zysteresis may be used to
designate the electrical phenomenon described in this article, on
account of the Jagging effect mentioned, but this term, if so used,
should be coupled with the word viscosity or absorption in order
to avoid the incorrect inference that the phenomenon is physi-
cally analogous to magnetic hysteresis.

3. Energy Dissipated in Dielectric Hysteresis—The area of
the curved figure ABCDEFA, Fig. 66, is

H= [Vdg (1)

for the whole cycle, and thus represents the excess of the elec-
trical work done in charging the condenser (in both directions)
over the electrical energy given out when the condenser is dis-
charged (in both directions) (see § 37, I.). This quantity of
energy must therefore be transformed into heat during each com-
pletion of the cycle.

(1) may be written

H= ([ [EdL-dSdD = [ [EdD-dr

dL and d4S being elements of a line of intensity and an equipoten-
tial surface, respectively, and &7 being the element of volume
dLdS. We have therefore for the energy dissipated per unit
volume per cycle at a point in any dielectric where the intensity
and displacement are denoted by %~ and 2,

dH|dr = [EdD

-~
)
N
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the integration being extended throughout a complete cycle.
See § 38, L.

4, Intrinsic Displacement and Intensity, Electrets, ete. A
dielectric electrised or retaining its electrisation, like the dielec-
tric of a condenser after absorption has occurred, partially or
wholly under the action of internal forces, no external field, and
therefore 7o potential difference or field intensity (£ = — &V [dL)
within the dielectric itself (as when the condenser is short-cir-
cuited), being necessarily present, is said to possess utrinsic
electrisation or displacement, and to be under the action of an -
trinsic electric intensity or force, denoted by ¢, in the direction of
the displacement. A dielectric in this state is called an eleczret.

The intensity £= — dV/dL, § 3, is zero at two points of the
cycle for which D (the total displacement, redefined by Gauss’s
theorem * as dg /S at a conducting surface, the theorem being
assumed to hold for intrinsic as well as for elastic displacement)
has finite values, while D (or ¢) is zero at two points for which
E (or V) has finite values.

Thus if we assume the relation ¢ = D/ E (by which D was
defined in the case of elastic displacement) to hold in the case
of intrinsic displacement, ¢, as the cycle is traversed, will pass
through all values from + c at B to — « at &, Fig. 66.

If, however, we introduce the conception of intrinsic intensity
¢, if we denote the field intensity — &1V /dL by E’ instead of £
at a point where intrinsic displacement exists, and if we denote
the vector sum of ¢ and £’ by (¢ + £') = E, the total or im-
pressed intensity, we may define ¢ by the relation

D=¢cE=cde + £ 4)
With this understanding, the relation D = ¢£ holds univer-

* A more rigorous and general definition of 0, analogous to the general definition
of B, (63), XIII., is obtained from (2), XV. Thus

13
D:j;mrl[[dt . (3)

the dielectric being in a neutral state at the time # = o.
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sally and leads to no impossible values of ¢, since ¢ and D have
always the same direction. In this chapter £’ will be used to
denote the field intensity — dV'/dL ; but elsewhere, except where
the contrary is stated, ¢ will be assumed equal to o and £’
equal to £.

5. Uniformly Electrised Spherical Electret. Suppose the elec-
trisation of the sphere of § 12, IV., to become partially intrinsic.
Then let the external charges “ producing ” the (originally) uni-
form field be removed. Then the only remaining ¢ charges”
are the fictitious charges upon the surface of the sphere, whose

density is given by o’ = Jcos 6 )

where / denotes the intensity of the remaining electrisation.
Inside the sphere there is an intrinsic intensity ¢ maintaining
the displacement and a self-deélectrising field intensity equal to

E'= — []3¢ (6)

The external field is the part outside the sphere of the field con-
nected with the doublet of moment

M=4 ma’] )

at the center of the sphere.

Maxwell’s plane diagram of the complete field is given in Fig.
67 (from Maxwell’s Zreatise, § 143). If the lines of displace-
ment within the sphere are directed from S to /V, the lines of
intensity have the direction /VS.

The quantities 47, £/, ¢/, and / can all be expressed in terms
of the internal displacement D, of the sphere.

Thus we find from the relations (2) IV., (94) II., and (7), when
0=oand R=a: Dy=M|27a*; or

M= 272a°D, = § =a®] (8)

The relations (1) IV, (95) II., and (6) give when 6 = go° and
R=a,

E!'=M|47c@® = — D, [ 2¢c, = — J[3¢, (9)



ELECTRIC ABSORPTION. ELECTRETS. 183

The relation / = D, — ¢, £ [(7), IV.], or either of the last two

equations alone, gives

J=Dy+ D,/2=}D, (10)
From this equation we have
o/ = Jcos8 =3 D, cosd (11)

Fig. 67.

The magnitude of the strength of each pole of the sphere (dis-
tributed over a hemisphere) is

g =mwad*[ =} mwa’D, = } Il (see below) (12)

The total electric flux through the sphere from the negative
to the positive pole, and back again outside the sphere from the
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positive pole to the negative pole, all the tubes of displacement

being closed, is
II = 7a’D, = % wa’/ = %¢' (13)

The total flux of the intensity from or to one of the poles is
I’ = wa’D, | ¢, — w&’E' = § /e, = ¢’ /e, (14)

In terms of the intensities and the permittivity ¢, of the sphere,

the internal displacement, denoted above by D, is

Dy=efc+ &) (15)
Since ¢ and £ have opposite directions, 2, is less than if ¢
were acting alone. By short-circuiting a condenser (making
E' = 0) after undergoing absorption and then measuring the
residual charge, c,e = 0’ = intrinsic displacement, can be deter-
mined, but neither quantity can be determined separately except
on the assumption that ¢, is the same for intrinsic as for elastic
displacement.

If the spherical electret were placed in a uniform field of in-
tensity £, and if its intensity of electrisation /, or internal dis-
placement D, were to remain rigidly fixed (¢f. § 8), it would be
acted upon by the same forcive as that which would act upon the
doublet of moment J/ placed at its center in the same field. This
forcive is easily seen to be a torque

T= — ME sin 0 = — 47a’JE sin 0 = — 2za’D, E sinf (16)

in the direction of the increase of 8, where 6 denotes the angle
between the direction of electrisation, or the axis of the doublet,
and the direction of the uniform field.

The same result could of course be obtained, though less
simply, by integrating the expression 47" = La’dSx sin 6 over the
surface of the sphere, where x denotes the distance from the
equatorial plane to the element of area &S of the sphere. :

If the sphere is left to itself after the removal of the charges
producing the uniform field, the intrinsic displacement, and there-
fore the internal and external fields, gradually disappear. This
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gradual disappearance is due to the gradual diminution of the
intrinsic intensity and the continuous action of the self-deélec-
trising intensity, which acts against the displacement, or tends to
reduce the apparent surface density. Or, better, as the intrinsic
forces diminish, the tubes of displacement are gradually freed
and, being closed tubes, contract to nothing.

If the sphere is covered with a conducting coat while the in-
ternal displacement has the value J,, the external field disap-
pears entirely and the sphere itself is left in the same condition
as the dielectric of a condenser short-circuited after absorption
has taken place.* There is no potential difference anywhere,
but the intrinsic displacement within the sphere has increased,
since £/, which before opposed the intrinsic force ¢ producing
or maintaining the displacement, is now zero. The hemisphere
which before had a positive fictitious charge has now a true
negative charge, and the other hemisphere, before apparently
negative, has now a true positive charge. The law of the dis-
tribution of the true charge over the sphere is the same as the
law of the distribution of the previous fictitious charge. If the
displacement is now denoted by 1’ = ¢, (15) gives

D =cie=Dy—c, B! = [(2¢,+ ¢,) | 2¢,] D,
= [(261 + &)/ 3617

where D, /, £’ are the values of the displacement, intensity of
electrisation, and self-deélectrising intensity immediately before

(17)

the short-circuiting, and ¢, and ¢ are assumed to remain constant
during the process. Since the final value of the self-deélectrising
intensity is zero, the final value of the intensity of electrisation is
J!'=D'. D’and J’ are wholly intrinsic, J, and / only par-
tially so. The density of the true charge is

o= — 2D cos @ (18)

No change is produced by removing the conducting cover.
After its removal, as the intrinsic electrisation continues to di-

* See Heaviside, Llectrical Papers, Vol. 1., p. 491.
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minish, an internal and external field of the same character as
that of the original field, but opposite in direction, is developed.
As the true surface density everywhere remains constant (in-
sulation being supposed perfect), while the intrinsic electrisation
gradually diminishes, this field will grow in strength ; and if the
intrinsic displacement could disappear entirely, which is impossi-
ble as long as any electric field remains, the sphere being ab-
sorbent, the total field would finally become that connected with
the true charges given by

c=—D cos @

only, the fictitious charges having entirely disappeared. The
displacement and intensity would now be in the same direction
at any point within the sphere, as well as without.

6. Infinite Circular Cylindrical Electret Uniformly Electrised
Transversely. In exactly the same way, we have in this case for
the apparent surface density

o/ =] cos 0 = 2D, cos 0 (19)

and for the deélectrising intensity, or intensity due to the ficti-
tious charges, within the cylinder

E = — J|2¢) = — D /e, (20)
D, and J denoting the internal displacement and intensity of
electrisation, respectively.

The external field is that part outside the cylinder of the field
of the line doublet of moment

M:?Tﬂ?]: 271'(1200 (21)
placed along its axis.

The plane diagram of the field can be obtained from Fig. 28
by simply drawing a circle of radius a with the center of the dia-
gram as center, annulling all the lines within this circle, and con-
necting by straight lines the ends of each circular arc.

The magnitude of the fictitious charges on the positive and
negative halves of a unit length of the cylinder is
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9 = 2a/= 4aD,= 21l (22)

the flux across unit length of the cylinder is
I =2aD =iq’ (23)

and the flux of intensity from or to the fictitious charge upon
unit length (either half) is

II' =11/, — 2aF' = 2Il/c, = ¢'[e, - (24)

7. Natural Electrets. Pyroelectric Crystals. Kelvin’s Theory.*
A state of intrinsic electrisation exists naturally in certain crystals,
for example, tourmaline, which are called, from the thermal
relations described below, pyroclectric crystals. In its ordinary
condition, however, after remaining some time at a constant tem-
perature, the external field of such an electret has disappeared,
on account of poor insulation, like that of the spherical electret
of § 5 after being covered with a conducting coat. The electret
has now a positive charge at one end and a negative charge at
the other, terminating the tubes of intrinsic displacement (there
is no elastic displacement). Altering the temperature of the
electret alters its intrinsic intensity and state of electrisation, and
therefore, if the surface remains sufficiently well insulated to re-
tain its charges when some of the tubes of intrinsic displacement
become free, develops an external field. The direction of this
field depends on the direction in which the intrinsic forces and
electrisation alter with the increase or decrease of temperature.
In tourmaline, as would be expected in every case, the electri-
sation decreases with temperature increase. Hence by heating
tourmaline a field directed like that of the sphere of § 5, after be-
ing short-circuited and then left insulated for a time, is developed.
If the insulation is not perfect, this external field will gradually
disappear. If the electret is now cooled, its electrisation will in-
crease and an external field opposite to the former field will ap-
pear, and then gradually disappear by conduction when the tem-

* See Heaviside, Electrical Papers, Vol. 1., p. 493.
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perature is kept constant. The intrinsic displacement of a
pyroelectric crystal, and therefore the true surface charges, can-
not be made to disappear like those of an electret whose electri-
sation is due to absorption. By breaking a pyroelectric sub-
stance across its axis of electrisation, however, positive and
negative apparent charges, and an external field connecting them,
without true charges, may be developed.

Piezoelectric Crystals. A state of electrisation accompanied by
internal and external fields similar to those of the sphere of § 3
is produced in some crystals, called piesoclectric crystals, by com-
pressing or stretching them, and disappears when the compres-
sion or stretch is removed. The external field corresponding
to a given state of strain may disappear by surface conduction,
leaving the surface with true charges, like the electrets described
above. If the state of strain is altered after this condition has
been reached, an external field is developed whose direction de-
pends on the direction of alteration of the strain. Some crystals,
like tourmaline, are both pyroelectric and piezoelectric.

8. Permanent Electret. The fictitious charge, or pole strength,
of half of a symmetrical isolated electret is not, as we have seen
in two particular cases, §§ 5 and 6, equal to the flux through the
electret, but is greater than this flux. Thus, although the fic-
titious charge upon half of an originally neutral sphere placed in
a uniform field is less than the flux through the sphere, the fic-
titious charge upon half of an isolated spherical electret uniformly
electrised is one and one half times as great as the flux through
the sphere ; and the fictitious charge upon half the surface of an
isolated infinite cylindrical electret uniformly electrised trans-
versely is twice as great as the flux through the cylinder. The
infinite cylinder may be regarded as an ellipsoid of revolution
about an infinite axis perpendicular to the direction of the electri-
sation, and the sphere may be regarded as an ellipsoid with its
three axes equal. We shall see below that in the case of a cir-
cular cylinder whose length is very great in comparison with its
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diameter and which is electrised longitudinally, the pole strength
at either end is approximately equal to the flux through the
cylinder. As the ratio of the length of the cylinder to its diam-
eter approaches infinity, the ratio of the pole strength of either
end to the electric flux through the cylinder approaches unity
indefinitely. In the limit we have an ellipsoid of revolution
about an infinite axis parallel to the internal displacement. Thus
the greater the ratio of the axis parallel to the electrisation to
the other axes, the more nearly does the pole strength equal the
electric flux across a pole or through the electret.

It is clear that if an electret is brought into the field of an
electric charge or another electret, the distribution as well as the
strength of each of the electret’s poles (or each of the poles of
both electrets) will, in general, be altered.

Moreover, if the medium surrounding an electret is replaced,
in whole or in part, by a medium of different permittivity, the
flux through the electret, and therefore the fictitious charges or
pole-strengths, will increase or decrease, as well as change in
distribution, according as the permittivity of the new medium is
greater or less than that of the old medium. For the displace-
ment, internal and external, is maintained by the intrinsic forces
within the electret, which remain constant or appreciably con-
stant during the change, independently of the surrounding me-
dium, and must produce a greater or less flux the greater or
less the permittivity. An increase of the same kind, and greater
in extent, occurs when the extérnal field is destroyed, the sur-
rounding medium being made conducting (or the permittivity
infinite).

The energy of the electret’s field may be divided into two
parts, the energy within the electret, mostly energy of intrinsic
displacement, and the energy of the external medium. It is
clear that the greater the ratio of the intrinsic energy of the
electret to the energy of its external field, the less will the elec-
trisation of the electret be affected, either in distribution or in
amount, by changes in this external field (resulting from changee
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in the medium) ; also the greater the ratio of the energy density
of the intrinsic electrisation to the energy density of the external
field, the less will the electret be affected by the introduction of
other electrets or charges.

Consider now the ideal case of a cylindrical electret of very
small cross-section and great length uniformly ‘electrised in the
direction of its length, except within very small regions close to
its ends in which the flux diverges or converges. The poles are
approximately concentrated at the ends of the electret, and, ex-
cept within the very small volume occupied by the electret itself,
the electric field is similar to the field surrounding two electric
charges approximately concentrated at a distance apart equal
to the length of the electret. If the length of the electret is
very great, the external field around each pole is practically
radial.

Since the energy density at any point of the surrounding
medium is proportional to the square of the intensity, and since
the intensity is inversely proportional to the square of the dis-
tance from a pole (provided the distance is small in comparison
with the length of the electret), the energy of the external me-
dium is confined almost wholly to small regions surrounding the
two poles. If the length of the electret is increased while the
intensity of its electrisation is kept constant, the external energy
will therefore remain very nearly constant.

The energy of the uniform intrinsic electrisation, however, is
proportional to the length of the ‘electret for a given value of the
internal electrisation or displacement.

Hence by increasing the length of the electret, and keeping
the flux and therefore the pole strengths constant, the ratio of
the energy of the intrinsic electrisation to that of the external
medium may be greatly increased.

Hence such an (ideal) long slender longitudinally electrised
electret, if made of a substance with intrinsic energy density very
great for a given intensity of electrisation (which would be called
an electrically hard substance), would be approximately a per-
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manent electret, its internal energy, electric flux, poles, and pole
strengths, being practically independent of the external field (un-
less the external field should be destroyed, when, although the
internal energy and flux would remain sensibly constant, the pole
strengths would be reduced to zero).

The force between. such a pole (concentrated) and an extremely
small body with (concentrated) charge ¢ distant L therefrom
would be

F=gqgml® (25)

where ¢’ is the pole strength and is constant (at a given tempera-
ture), and ¢ is the permittivity of the surrounding medium.
Since the volume of the electret is negligible, and the flux from
each pole in the external medium radial, the reaction between the
two fields and therefore the force between the pole and the
charged body must be the same as the force between a very
small body with concentrated frxe charge equal to II, the flux
through the electret, and the small body with concentrated
charge ¢. That is,
F = gl [qmwel? (26)

On comparing (26) with (25), we see that
¢’ =1I (27)

or, the flux through an (ideal) extremely slender longitudinally
electrised electret of great length is equal (strictly, sensibly
equal) to the fictitious charge, or pole strength, at either end.

It is clear from what precedés that any of the electric fields
described in preceding chapters would remain sensibly unaltered
if each concentrated true charge were replaced by the concen-
trated pole of an (ideal) permanent electret of very great length
and negligible cross-section, and with pole strength or longitudi-
nal flux equal to the charge replaced.



CHAPTER VIL

SPECIFIC INDUCTIVE CAPACITY. THE.- COMPARISON OF
PERMITTIVITIES.

1. Specific Inductive Capacity. The specific inductive capacity
of a substance is defined as the ratio of its permittivity to the
permittivity of the standard medium. If, as in this book, free
@ther is chosen as the standard medium, the specific inductive
capacity of a dielectric is numerically equal to its permittivity
(measured in the electrostatic systems of units, XIV.), since ¢,
= 1 (in the electrostatic systems).

The Comparison of Permittivities, or the Determination of Spe-
cific Inductive Capacity. Four general methods of comparing
permittivities will be considered here :

I. The permittance of a dielectric bounded by a fixed system
of conductors is proportional to its permittivity. Hence if the
whole field is filled in succession with two dielectrics, and the
two capacities compared experimentally, the ratio of the permit-
tivities will be known. If the condenser contains two different
dielectrics at the same time in one of the experiments, the method
may still be used in certain simple cases, with little modification.
See §§ 7 and 8, IV.

I1. The forcive between two given conductors is proportional
to the permittivity of the dielectric filling the field if the voltage
is kept constant, and inversely proportional to the permittivity
if the charges are kept constant. Hence by keeping the voltage
constant and comparing the forcives when the field is filled with
two dielectrics in succession the ratio of the permittivities may
be determined. The comparison by means of constant charges
is in general impracticable. When the field contains two dielec-

192
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trics at the same time, as in § 7, IV., the method is still appli-
cable, with slight modification, in certain simple cases. See § 2.

ITI. The forcive upon a dielectric of permittivity ¢, bounding,
or surrounded by, another dielectric of permittivity ¢, in an
electric field depends upon the ratio of ¢, to ¢, Thus by meas-
uring # in § 11, IV., ¢,/c;, may be determined.” Two methods
based upon this principle, one for liquids, and the other for solids
(or fluids contained in a vessel made of a solid dielectric of
known permittivity), are described in §§ 3 and 4.

IV. When lines of displacement are refracted in passing from
one dielectric to another, tan 6 /tan 8, = ¢,/c,, Hence by measur-
ing 6, and 6, the ratio ¢,/c, may be determined. This method is
discussed in § 5.

From §§ 1-2, VL, it is clear that the permittivity (if defined
as D/E) of most dielectrics depends to a greater or less extent
upon the time of electrisation, being greater the greater the
" time, up to a certain limit, and on the previous history of the
dielectric (¢f. the curve in Fig. 66), except for slow processes.

From §§ 2—5, V., it follows that the permittivity depends to
some extent upon the stresses in the dielectric, which may be
produced wholly by electrical causes, unless the coefficients there
defined vanish.

2. Method II. With the Quadrant Electrometer. Since S, § 5,
III., is proportional to ¢, @ is also proportional to ¢ for given
values of I, Iz, and V, ;. Hence by submerging the quadrants in
two dielectrics of permittivities ¢, and ¢, successively and measur-
ing the resulting deflections for the same voltages, we have

cfe, = 0,0, (I)

With the Kelvin Absolute Electrometer or the Bichat and Blond-
lot Electrometer In the same way, by submerging the conduc-
tors of either of these electrometers in two dielectrics in succes-
sion and measuring the corresponding values of 7, § 4, III., we
have, for constant voltages,

ey = F|F (2
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In the case of the Kelvin electrometer the force may be kept
the same in the two experiments and the comparison made by
altering 4. In this case, if 4, and &, denote the values of 4 when
the first and second dielectrics are in the field

6y 6 = djild} (3)

By (23), IV. and (3), III. the Kelvin electrometer may also be
used when one of the dielectrics is in the form of a plane slab of
a given thickness d(< ). The equations corresponding to (4),
III. and (5), IIL are easily developed for this case.

When any one of these instruments is used idiostatically,
alternating as well as unidirectional voltages may be applied,
and the permittivity thus determined when the time of electrisa-
tion is very short.

3. Method III. Quincke's Method for Liquids. Fig. 68 is a
diagram of the apparatus. A and B are the conductors of a
parallel plate condenser separated by a distance & very small in .
comparison with their breadth and length, and immersed in a
liquid D whose permittivity, ¢,, is to be compared with that of a

Fig. 68.

gaseous dielectric, as dry air, of permittivity ¢ A tube £ com-
municates through a small opening in A4 near its center with the
region between the two plates. This -tube is continuous with a
manometer tube # and communicates with a bulb containing dry
air by the stop-cock G. The manometer tube contains a liquid
of density p. Its cross-section will be denoted by A.

In performing an experiment a wide flat air bubble C is first
formed between the plates by opening G and pressing the air
bulb. & is then closed, and the difference of level between the
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two liquid surfaces in # is read. If this difference of level is
denoted by 7/, and if the acceleration of gravity is denoted by g,
the excess of the pressure in C'(due to the hydrostatic pressure
of the liquid D and the capillary pressure inward at the edges of
the air bubble) over the atmospheric pressure is #'Apg. The
condenser is now charged to a voltage V. The electric intensity
between the plates is uniform, except near their edges and near
the edges of the bubble, and equal to £= }'/d. The electric
pressure (§ 41, I.) within the uniform part of the field of the dielec-
tric D is 3c,£? while the electric pressure within the uniform
part of the field of the air bubble C is ¢, £% Hence,if ¢, is
greater than ¢, the bubble will contract until sufficient air has
been forced out into the manometer tube to increase the differ-
ence of level by /%, and the gaseous pressure by 2A4pg, where

hApg = Lc,B? — Le E?

when there will again be equilibrium. Hence by observing 7%,
A, p, g, and E= V/d, ¢, — ¢, may be obtained from the equation

¢, — ¢, = 2hApg | E* = 2hApgd®| V* (4)

In what precedes we have assumed the capillary pressure of
the bubble and the hydrostatic pressure of the liquid D, as well
as the total volume of the air, to remain constant throughout the
experiment. We have also assumed the slight alterations of
gaseous and liquid pressures occurring during the experiment to
bring about no alterations of the permittivities. The fact that
these conditions are not exactly fulfilled will evidently introduce
no sensible error.

(4) Can be deduced also by the method of § 55, I., from
energy considerations.

4. Method IIIL for Solid Dielectrics,. We shall consider only
the simplest case, when the dielectric is in the form of a plane
slab. Fig. 69 is a diagram of the apparatus. A4 and B are the
two conductors of a parallel plate condenser separated by a dis-
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tance & small in comparison with their length and breadth. C'is
a plane slab of the dielectric, of permittivity c,, hanging in air, of
permittivity ¢, with its sides parallel to 4 and B, from the arm of
a balance D. The thickness of the slab will be denoted by 4,
and its width (perpendicular to the plane of the paper) by L.

C is first balanced by adding weights to
F[ Z h the scale pan of D while A and B are at
the same potential. 4 and B are then
charged to a voltage V. This will produce
a straight field between A and 25, except
near their edges and near the edges of the
slab C, and will disturb the equilibrium.
Al [18 Equilibrium is then restored by adding
f weights to the scale pan if ¢, is greater

C|

than ¢, or by removing weights there-
from if ¢, is less than ¢, as follows from
§§ 7 and 10, IV,, or from § 7, IV., and
§55, I.  Let / denote the downward force
upon C due to the charging of the con-
denser. F can be found at once by the
method used in § 3, or can be determined as follows by the
method of § 55, I.

Imagine C to suffer an infinitesimal displacement Zx downward
from its equilibrium position.  This will increase the cross-section
of the uniform part of the field through C and air by ZLdx, and
will diminish the cross-section of the uniform part of the field
passing through air only by the same quantity. The energy of
the weak field outside the condenser and that of the non-uniform
field near the edges will remain sensibly constant, and the non-
uniform field at the edges of C will move unaltered with C.
Hence the only appreciable change in the energy of the field is
that due to the fact that the cross-section of the uniform field
with two dielectrics has increased by Ldx, while that of the uni-
form field through air only has decreased by the same quantity.
Hence the total increase in energy is sensibly

Fig. 69.
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AW = }e,ViLdx/{d — [(c, — ¢)/c,}d,} — 3, VPLidx/d
= Yo V¥, — ¢)d,Ldx/{d[cd — (¢, — ¢))d,] } = Fdx

Hence
F=dW|dx = Le|(c,— ) V?/{2d[cd — (, — c)d,]}  (5)

When Z, ¢, F, V, d, and d, are known, ¢, can be determined
from this equation.

In obtaining this result we have assumed the field uniform
throughout the whole length Z, except near the lower and upper
edges of the slab. To make the error arising from the non-fulfil-
ment of condition negligible Z must be great in comparison with 4.

5. The Method of Refraction of Lines of Displacement. (Perot,
Comptes Rendus, 113, p. 415, 1891.) To compare two permit-

Fig. 70. Fig. 71.

tivities by this method it is necessary, as in §§ 3 and 4, that one
of the dielectrics be a fluid, as air. The principle of the method
may be developed-as follows. ‘
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Let a large triangular prism 4, Fig. 70, of permittivity ¢, and
with angle a be placed with one of its plane sides in contact,
or otherwise parallel, with a large metallic plane 5Z; and let
another large metallic plane C, separated from 4 (or A4 and the
other conductor) by a fluid dielectric D, as air, of permittivity ¢,
be arranged so that the angle 8 between C and the nearer face
of A can be varied and measured. If B and C are charged to a
voltage 1 the electric field will not, in general, be uniform either
in A orin D. The approximate field when 5 and C are parallel
is shown in Fig. 71. But evidently there will always be a cer-
tain value of B for which the field in 4 and also the field in D
will be uniform, except near the edges, as shown in Fig. 7o0. In
this case §, = @ and 6, = B (§ 2, IV.). Hence

¢,/c, = tan B/tan a (6)

To find this position, a very thin metal plate £ is so attached
to fine insulating threads FF as to be movable with its plane
parallel to C only. If the field in D is uniform, this motion will
not disturb the voltage between the plates ; otherwise the voltage
will be altered. To make the test, then, C is connected to earth
(the walls of the room) while 5 is charged to potential /7 (poten-
tial of earth = 0). Then the condenser is insulated and C is
connected with the electrode of an electrometer, the other pole
of which is to earth. Then £ is displaced while kept parallel to
C. If the electrometer still indicates that the potential of Cis
zero, the field in D, as well as that in A, is uniform. If not, a
second adjustment of 8 must be made, and tests and adjustments
repeated until the potential of C remains zero, or until the dis-
turbance of its potential is a minimum, when % is displaced.
Then ¢, /¢, can be determined from (6).

The close agreement between the values of ¢, /¢, found by this
method and the same ratio determined by other methods serves
to verify the correctness of (3), IV., on which the method is based.



CHAPTER VIIIL

THE ELECTRIC CURRENT. THE CONDUCTION CURRENT.

1. The Convection Current. If a small light conductor, such
as a gilded pith ball, is suspended by a long insulating thread
between the vertical plates 4 and B of a charged parallel plate
condenser, it will fly back and forth between the plates carrying
opposite charges in opposite directions and gradually discharging
the condenser.

The rate dg,/dt at which positive charge is carried from A to /8%,
or the rate dg,/d¢ at which negative charge is carried from B to 4,
or the sum of the two rates, dg,/d¢ + dg,/d¢, if both processes
occur simultaneously (as would be the case if several pith balls
were present), is called the electric convection current from A to B,
and will be denoted by 7. That is,

I = dg,[dt + dg,/dt = dg|dt (1)

Strictly, the convection current is limited to the space actually
occupied by the moving charge or charges.

If the electric volume density of the positive charge in the
element of volume at a given pointis p,, and the density of the
negative charge in the element p, (the element containing, in
general, both positive and negative charges), and if the velocity
of the positive charge is #, and that of the negative charge in
the opposite direction #,, then the convection current per unit
area across a surface normal to # in the element of-volume, or
the electric convection curvent denstty in the element, is

5 \ . Ly = Pyt + Pyt (2)
in the direction of .

199
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2. The Dielectric Current. If the electric flux Il across a
surface is increasing at the rate Z11/d7, there is said to be a dielec-
tric curvent or an electric displacement current through the surface

equal to
7,= dTljar 3)

If the displacement D at any point is changing at the rate
dD|dt, the dielectric curvent density at the point is

2, = dD)|dt (4)

which is evidently a vector with the direction of &D.

According to our mechanical conception, § 14, I, the dielec-
tric current in free ®ther or material insulators would be a con-
vection current of @ther cells or corpuscles.

Convection and dielectric currents will be more fully discussed
in a later chapter (XV.). The remainder of this chapter will be
devoted principally to the conduction current.

3. The Conduction Current. If two condenser plates 4 and B
with positive and negative charges, respectively, are connected
by a wire A7, the electric field will disappear by the process de-
scribed in § 42, I. During this process there is an electromo-
tive force along and through the wire in the direction AMDB, and
the wire is traversed in part by positive charges in the direction
AMB and in part by negative charges in the opposite direction
BMA. The wire is said to be traversed by a conduction current.
As we shall see later (IX., § 15) there is reason to believe that
the conduction current consists, in the general case, in a stream
of positively electrified particles in the direction of the e.m.f. and
a stream of negatively electrified particles in the opposite direc-
tion across every section of the conductor.

We shall define the s#rengt/ of the conduction current, or the
conduction current, I, across any section of the conductor as the
rate at which electric charge is transferred across that section ;
and we shall define the direction of the current across the sec-
tion as the direction in which the positive charge is carried across
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the section, or the direction opposite to that in which the nega-
tive charge is carried. If both positive and negative charges are
simultaneously crossing a given section in opposite directions,
and if dg, and dg, are the magnitudes of the positive and nega-
tive charges carried across in the time @7, the conduction current
across the section is

I = dg|dt = dg,/dt + dg,/dt (5)

in the direction of transfer of the positive charge.

When the charges or the induction in (1), (3), or (5) are ex-
pressed in RES units and the time in seconds, the electric current
is said to be expressed in the RES unit current.

A method of measuring the electric conduction current based
on the above definitions is described in § 3, IX.

In the case of an ordinary condenser system the phenomenon
of discharge, or the electric current, lasts only a small fraction
of a second. In a variety of ways this time may be increased;
and if the ends of the wire /7, instead of being connected to the
plates of a condenser, are joined to the terminals of a voltaic
cell, or other agent capable of maintaining the voltage between
its ends constant, transient effects similar to those described in
§ 42, 1., will at first occur, but a steady or unchanging state will
soon set in.

4. The Conduction Current Density. If a small plane area &S
is imagined within the substance of a conductor carrying a cur-
rent, it is obvious that the quantity of electric charge crossing
dS per second will be different when &S is turned in different
directions, and will be a maximum when the normal to &.S points
in the actual direction of transfer of charge at the point. The
ratio of the current &7, crossing the area &S, with its normal
- turned in this direction, to the area &5, is a vector called the
electric conduction current density at the point considered, and will

be denoted by Z. Thus
A (6)

If for the subscript ¢ we substitute cv or &, (6) will define the
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convection or displacement current density in terms of the con-
vection or displacement current consistently with §§ 1 and 2.

5. Kirchhoff's Law I. When an electric conduction currqnt‘is
steady, it flows in a closed circuit and has the same value at
every section of the conductor which carries it. For if the cir-
cuit were not closed, or if the current across any two sections
were not the same, a positive or negative electric charge would
continually accumulate at either end or in the region between
the two sections, and the state would therefore not be steady.

This proposition will be extended to the general electric cur-
rent in § 8, Chapter XV.

An obvious (but very incomplete) mechanical analogue of the
steady conduction current is the flow of an incompressible liquid
through an endless pipe.

Kirchhoff’s law I., applied to the unit volume of a conductor
carrying a steady current, may be written

div 7, = conv {, =0 (7)

since the current entering any element of volume across one part
of its surface is equal to the current leaving the element across
the rest of the surface.

Stream-tubes and Stream-lines. From (6) and (7) it is now
evident that a steady current within a conductor may be mapped
out by a system of lines and tubes analogous to lines and tubes
of intensity, etc. These tubes and lines are called stream-tubes
and stream-lines, or lines and tubes of current or flow. The cur-
rent density at any point has the direction of the line of flow
through that point; and the strength of the current across every
section of a given tube is the same and equal to f 7.dS over a
diaphragm S normal to the stream lines.

In what follows we shall drop the subscript ¢ and denote the
conduction current and current density by / and z.

6. Electrodes. Two equipotential surfaces across one of which
the current enters a conductor and across the other of which the
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current leaves the conductor are called the électrodes of the con-
ductor. The electrode by which the current enters the con-
ductor is called the anode, and that by which the current leaves
is called the kathode.

7. Ohm’s Law for a Steady Current in a Homogeneous Isetrepic
Conductor at Uniform Temperature. Along a homogeneous ise-
sepic conductor at uniform temperature throughout, let a steady
current / flow, and let the corresponding voltage between two
electrodes in or terminating the conductor be denoted by V..
Then, as a result of experiment, it may be stated that, if the
voltage or current is varied while the temperature is kept con-
stant (and in some substances at least certain other physical con-

ditions), the current / is proportional to the voltage V,. Thatis,

]=KV12=V12/R (8)

The proportionality factor X is called the conductance of the por-
tion of the conductor between the given electrodes, and its recip-
rocal, R =1/ K, the resistance of the conductor. The quanti-
ties on which R and X depend will be discussed below.

Definitions of the RES unit conductance and resistance follow
in the usual manner from the above equations. Thus when /
and I, are expressed in RES units, the conductance and resis-
tance also are said to be expressed in RES units.

(8) expresses the integral form of Okn?’s law for homogeneous
Jsetrepic conductors. The expression of the law for non-homo-
geneous circuits, etc., will be developed in following articles.

8. Conductance and Resistance of a System of Conductors
Connected in Multiple. If the electrodes of any number, 7, of
conductors are joined together so that the anodes form a com-
mon anode and the kathodes a common kathode, the conductors
are said to be connected in multiple. Let K, K,, ---, K and R,
R, ---, R denote the individual conductances and resistances of
the conductors, 7, 7,, ---, 7 the individual currents, and / the
total current through all the conductors, when the voltage be-
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tween the electrodes is #gs+ /. Then the conductance of the
system is

K=[/V;2=([1+]2+_"'+]1»)/V;2
— K+ K+ + K, ©

and the resistance of the system is

R=t|K=1[(K, + Kyt -+ K,)
=I/(I/R1+I/R2"'+I/Rn) (Io)

9. Conductance and Resistance of a System of Conductors Con-
nected in Series. If any number, #, of conductors is connected
up end to end in such a manner that each surface of contact be-
tween two conductors is an equipotential for both and coincident
with the original electrodes of the conductors when separate, the
conductors are said to be connected in series. Let V and V,
Viy +++y Via—1)e denote the voltage between the terminal elec-
trodes and the voltages between the ends of the successive con-
ductors, and let 7 denote the current along all the conductors.

Then the'conductance of the system is,

K=1Vo,=1[(Vo[T+ Vo[ T+ -+ Viurppal 1)
= 1/(1/E + 1K + - + 1K) (11)

and its resistance is
R=1/K—_—R1+R2+...+Rn (12)

10. The Cylindrical Homogeneous Isotropic Conductor. Resist-
ivity and Conductivity. Suppose 7 precisely similar right cylin-
drical conductors joined in multiple with their ends as common
anode and kathode, thus making a cylindrical conductor of #
times the cross-section of each of the original conductors. If
R, and K, denote the resistance and conductance of each cylin-
der separately, and R and KX the resistance and conductance of
the system of 7z conductors in multiple, that is, of a cylinder of
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2 times the cross-section with its ends as electrodes, it follows
from (9) and (10) that

K=nK, and R=R|n (13)

Thus the resistance of a cylindrical conductor of constant
length with its ends as electrodes is inversely proportional to its
cross-section, or its conductance is directly proportional to its
cross-section.

Suppose the # conductors connected up in series, thus making
a cylindrical conductor of the original cross-section, but of #
times the original length. If R denotes the resistance of the
system and X its conductance, (11) and (12) give

K=K[n and R==nR, (14)

Thus the resistance of a cylindrical conductor with its ends as
electrodes is proportional to its length, or its conductance is
inversely proportional to its length.

Putting the two above results together, we see that the resist-
ance R of a cylindrical conductor with its ends as electrodes is
proportional to its length and inversely proportional to its cross-
section, or that its conductance X is inversely proportional to its
length and directly proportional to its cross-section. That is, if
L denotes the length of the cylinder and A its cross-section,

K=rAfL ov R=yrL{A (152)

where » and % are constants depending on the chemical constitu-
tion of the conductor and its physical condition. 7 is called the
specific resistance or resistivity of the substance, and £, its recipro-
cal, is called the conductivity of the substance. (15) may be
written

p= RALLC or =KL (158)
When R and K are expressed in RES units and 4 -and L in
c.g.s. units, » and £ are said to be expressed in the RES units
resistivity and conductivity. 7 is equal, in magnitude, to the re-
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sistance of a cube of the substance with unit edge when two
opposite faces are electrodes.

11. Differential Form of Ohm’s Law. From the preceding arti-
cle and the principle of symmetry it follows that in the case
there considered the electric equipotential surfaces é% #ie conduc-
tor are parallel to the electrodes, and the electric intensity £ uni-
form and parallel to the length of the conductor.

From the same article it also follows that the current density
is uniform throughout the conductor, and the lines of flow paral-
lel to the length of the cylinder, and therefore coincident with
the lines of intensity.

Hence we may substitute in (8) for V, its equal ELZ, for / its

12

equal A7 and for K its equal £4/L; then Ai = £A[L- EL, or
i=kE=FE[r (16)

In the case considered therefore the current density has the
same direction as the electric intensity, and is proportional to it
in magnitude. Since, moreover, any conductor carrying a steady
current may be divided up into elementary tubes of intensity and
by equipotential surfaces infinitesimally distant apart, and since
the cylindrical volume within one of these tubes between two
successive equipotentials is in exactly the same state as any tube
of the cylinder considered above, (16) is seen to hold in general
whether the tubes are straight or not.

Since at the surface of a conductor the current density is tan-
gential to the surface, the electric intensity within the conductor
at the surface is also tangential.

12. The Electric Field of the Steady Conduction Current. Ex-
cept as stated below, the electric field in the dielectric surround-
ing a conducting system traversed by a steady electric current
has all the properties of a purely static field connected with static-
charges only. The tubes of displacement terminate at the sur-
faces of the conductors (if homogeneous) and the surface charges
at their ends are not'in motion and take no part in the conduction.
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For within the conductor (supposed homogeneous) div 7 = div ££
= £ div £ = 0. Hence div £= 0, and, since the conductor is
homogenecous, div D = p must also be zero, whatever the relation
of D to £ may be. Hence within the conductor the positive and
negative charges per unit volume at any point are equal. Thus
no tubes from the dielectric penetrate into the conductor, but all
end at its surface. That the external field is static and that the
surface charges take no part in the conduction, or do not move,
follow from the consideration that the field surrounding a con-
ducting system traversed by a steady current can be altered in
any manner, by moving the circuit or by bringing up charged
bodies insulated from it, without in any way affecting the (steady-
value of the) current. Also the surfaces of insulated conductors
placed in the field are equipotential surfaces and traversed by no
currents ; hence the tubes ending upon them (and connected
with the current-carrying conductors) are not in motion. The
same thing follows from Ohm’s law, the resistance of a con-
ductor not being a function of its external surface, as it would
be if the surface charges took part in conduction.

The conductor itself, as shown in § 11, also contains an electric
field invariable with the time. Little or nothing is known of the
electric displacement in good conductors traversed by steady
currents.

The electric field within and without the conductor is accom-
panied by a magnetic field (XI. and XI1.) and is the seat of the
transfer of energy (XVL.), while the conductor is also the seat
of the dissipation of energy in heat (§ 15).

The lines of intensity within the conductor are tangential at
the surface, as shown in § 11, and the lines of intensity in the
dielectric do not meet the conducting surfaces normally.

Let Z denote the electric intensity in the dielectric just out-
side the conductor at a point /7 of the interface, and 6, the angle
made by £, with the normal to the surface of the conductor; and
let £ denote the intensity just within the conductor at the same
point of the interface. £, as already shown, is parallel to the
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interface. By the principle of the conservation of energy we
may show, just as in § 2, IV., that £ and £ are in the same
plane normal to the interface, and that

Esinf =F - (17)

If the conductor is a perfect (imaginary) conductor, that 1s, if
its conductivity is infinite, £ = 0, since otherwise the current
would be infinite. Hence in this case §, = o, or the tubes of
displacement in the dielectric meet the surface of the conductor
normally.

13. The Laws of Refraction of Stream-lines. At the interface
between two substances of different conductivities £ and 4, a
stream-line of a steady current is refracted in such a manner that
the incident and refracted lines are in the same plane perpen-
dicular to the interface, and that

tan 0, /tan 0, = £,/ £, (18)

where 6, and 6, denote the angles made with the normal to the
interface by the incident and refracted portions of a stream line.

For, since the current is steady, so that no electric charge
accumulates anywhere, Kirchhoff’s law 1. gives

7, cos 8, = 7, cos 6, (19)
and the principle of conservation of energy gives
Erain = £ i 0, (20)

and these equations, since 7= % E, give (18) on division. Cf.
§ 2, IV. i

¢ being interchanged for % and 7 for D, the discussion in § 2,
IV., and the description in following articles of fields in two or
more dielectrics apply to the fields of intensity and flow in con-
ductors. It must always be remembered, however, that one of
the #'s may be zero, while ¢ can never be less than ¢, =1; so
that %,/ %, may be zero or infinity without either £, or £,’s being
infinite.
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14, General Formula for Conductance and Resistance. Con-
ductance and Permittance. From (8) we have
K=1/R=1/V,
while (6) gives
[= fz'dS

the integration being taken over an electrode, or over the portion
within the conductor of any equipotential surface. Moreover,

Viy= [ EdL

along a line of intensity or flow from one electrode to the other.
Hence

K=1/R=1|V,,= [kEdS|[EdL = [kES|V;, (21)

By comparing (16) and (21) with (3) and (24), Chapter I, it
will be seen that A bears the same relation to 4 that the per-
mittance S bears to the permittivity ¢. Since K = f REAS |V,

while S = f cEdS |V, the process of finding the conductance of
the portion of a conductor between two given electrodes or equi-
potential surfaces is identical with that of finding the permittance
of a dielectric occupying the same space as that occupied by the
conductor and having the same electric field as that within the
conductor, except that # must be substituted for ¢. In most
permittance problems it is impossible to deal accurately with
finite electrodes and finite electric fields, there being no substance
of zero permittivity with which an electric field may be sur-
rounded to prevent its spreading indefinitely. A conductor, on
the other hand, may easily be placed in a region of zero con-
ductivity, so that the current tubes are wholly restricted to its
own substance, and within the conductor the lines of flow and
lines of intensity are coincident. This makes conductance
problems much simpler in many cases than the corresponding
problems in electrostatics.

15. The Conductance and Resistance of Various Conductors. In
all the examples which follow the electrodes may be supposed
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to be surfaces of infinitely thin sheets of perfectly conducting
material (# = infinity), in order to insure their being true elec-
trodes, that is, equipotentials normal to the lines of intensity and
flow (see § 12).

The corresponding permittances having been already deter-
mined (Chapter IL.), the conductances are found as indicated in
the last article, from the following relation

K=£S}c (22)
1. For a right cylinder of cross-section 4 and length 4, with
its ends as electrodes, (29), I1., gives, with (22),
_ K=1/R=+FAld (23)
as already shown directly in § 10.

2. For a conducting spherical shell between two spherical elec-
trodes of radii Z, and L, = L + 4, (5), II. gives, in the same way,

K=1/R=(4mk[d) L} (1 +d]L,) (24)
For a hemispherical shell, half of the last, we have
K =1K=(2wk/d) L} (1 + d]L)) (25)

and so on for all fractions of the shell obtained by cutting it up
with cones having their apices at its center.

3. For the conductance of an infinite conductor in which two
spherical electrodes of radii Z, and Z, are immersed at a great
distance apart, a slight generalisation of (43), II. gives

K= amt|(1/Z,+ 1/L,) (26)

If the infinite conductor is bounded by a plane surface, and if

two fhemispherical electrodes are placed in the conductor with

their bounding circles in the plane of the conductor’s surface,

the conductance is

K = }K = 2w [(1[ L, + 1/L,) (27)

4. The conductance of a right circular cylindrical shell of
radii Z and L + 4 and of length / is, from (23), II.,

K = 27kl[log (1 + d[L) 728)
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5. The conductance of an infinite plane slab of thickness / and
with two right circular cylindrical electrodes of radius R and
centers distant 24 apart, is, by (62), IL.,

K =m#l[log (R[[d— (@ — R} (20)

If the slab is cut symmetrically into halves by a plane passing
at right angles to the plane through the axes of the two elec-
trodes, and if this plane is made an electrode, the conductance
of either half is twice that of the whole; or

K' = 2K = 2wkl[log {R][d— (d® — R*)}]) (30)

In the same manner, from Chapter IV., the conductances of
some simple non-homogeneous conductors may be obtained.

18. Joule’s Law: In a homogeneous conductor of resistance
R traversed by a current 7 heat is developed at the rate

dH|dt = RI*? - (31)

This relation may be established as follows: In the time 47 a
charge dg,(+) and a charge dg,(—) equivalent to a charge /dt
(+) in the direction of the current cross every section of a con-
ductor carrying a steady current /. Hence the work done in
the time &7 by the electric field upon the conductor of resistance
R, if the voltage between its electrodes is V,, is

AW =V, Idt = RI" Idt = RI*dt

by §12 and the law of Ohm. Hence the time rate at which
work is done by the electric field in the conductor of resistance
Ris
dW|dt = V,,] = RI* (32)
Now heat is always developed in a conductor during the
passage of a current. Hence, if no other transformation of
energy occurs. between the electrodes of the conductor JW/dt =
R7* must be the rate at which heat is generated in the con-
ductor when traversed by the current 7. That this is the case
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when the conductor is homogeneous (including constancy of
temperature throughout) has been proved by the researches of
Joule and others, whose experimental results are in strict accord
with the above equation when JW/dt is equated to dH[ad.
Hence the law, expressed in (31). If the conductor is not
homogeneous (and for-all-but-threedirections—of-the—stream-
lines,—if the conductor—is—not—isotropie-), it contains intrinsic
e.m.f.s, § 19, and i addition to the Joulean heat transformation
other transformations take place.

Differential Form of Joule’'s Law. The dissipativity at any
point of a conductor is the time rate per unit current (squared)
at which heat is there generated per unit volume. To find the
dissipativity, which will be denoted by d%/dt, consider the ele-
mentary volume enclosing the given point and included within a
tube of flow, of cross-section &S, between two equipotentials dis-
tant L apart. The resistance of this element of volume dt =
dL dS, is EdL|idS the current along the tube being 72S.
Hence

dh|dt = (EdL[idS) (idS V[ (dSAL) = Ei = kE*= ri* (33)

which expresses Joule’s law as applied to the element of volume
at any point of a conductor.

Experiment justifies the statement that (31) and (33) are ap-
plicable to any conductor, homogeneous or not, the total heat de-
veloped being equal to the sum of the Joulean heat and the heat
developed owing to the operation of other factors than resistance.

By the last equation, (31) may be written

dH|dt=RI*= [ Eidr = [kE*dr= [7|k-dr = [ri%d1 (34)

the integrals being extended throughout the part of the conductor
considered. From this equation it is clear that the amount of
heat dissipated per unit time by the resistance of a conductor can
be obtained from the formula for the energy in the correspond-
ing case in electrostatics, viz., W = f 3cE*dr, by substituting £
for 1c, etc.
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17. Definition of Resistance by Joule's Law. The proportion-
ality between JHdt and 7* having been established by experi-
ment, the resistance of a conductor, &, might have been defined

by the relation
R = (dH|d)| I (35)

without recourse to Ohm’s law. This procedure would be in
perfect harmony with all that is known of the nature of resist-
ance, whose only function seems to be the dissipation of energy
in heat, as it is dissipated by mechanical friction.

Joule's Method of Determining Resistance in Absolute Measure.
By placing a conductor in a calorimeter and measuring the rate -
dH |dt at which heat is developed therein when a known current
I traverses the conductor, its resistance & may be obtained from

(35)-

18. Mechanical Analogue of the Law of Ohm and the Law of
Joule. Consider a pipe through which an incompressible liquid
flows at a constant rate, the volume of liquid carried per unit time
across every section of the pipe being /. The flow of the liquid is
opposed by a‘frictional pressure assumed to be proportional to
1. Let this pressure be denoted by — R/, R being a constant
for the given pipe and liquid. To overcome this pressure, that
is, to keep up the constant rate of flow 7, an equal and opposite
pressure V, = + R/ must be applied in the direction of the cur-
rent. This pressure does work against friction at the rate 1,/
= R/? which is therefore the rate at which energy is dissipated
in heat in the circuit.

19. Intrinsic and Impressed Electromotive Force. In order to
maintain an electric current, with its continual dissipation of
energy in heat according to Joule’s law, and its possible per-
formance of work of various kinds, every circuit continuously
carrying a current must contain one or more regions in which
encrgy in some other form, as mechanical, chemical, or thermal
energy, i transformed into the energy of the electric current (the
energy of the electromagnetic field). Such a region is said to
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contain, or to be the seat of, an ntrinsic clectromotive force ; and
the agent through which the energy transformation is effected,
or may be effected, as a dynamo, a voltaic cell, or a thermo-
couple, is said to possess the intrinsic electromotive force.

In strictness, the intrinsic electromotive force in a region is
defined as the rate at which energy in some other form is there
transformed into the energy of the electric current (the energy
of the electromagnetic field) divided by the strength of the cur-
rent. Thus, if 7 denotes the rate at which electrical energy is
generated, or power taken znfo the circuit in the region &y trans-
Jormation, I the current, and ¥ the intrinsic electromotive force

Any part of a circuit in which electrical energy is transformed
info energy of another form is also said to contain an intrinsic
e.m.f., provided that the agent effecting the transformation when
acting independently can reverse the direction of the transforma-
tion, or transform energy of the other form into electrical energy,
7. e., itself maintain an electric current. Thus an electric motor,
by which electrical energy is transformed into mechanical energy,
and a storage battery while charging, by which electrical energy
is transformed into chemical energy, possess intrinsic e.m.fs,
since each acting alone can generate electrical energy, the one
when mechanically driven acting as a dynamo, the other as a
voltaic cell. The intrinsic e.m.f. W is given in all cases by (36),
proper attention being paid to the sign of 2 Thus if in any
region power is taken Zzto the circuit by transformation, 2 in this
region is positive and W and 7 have the same direction. If in any
region electrical energy is transformed into some other form of
energy, or power given ou/ by the electrical system, 2 in this
region is negative, V¥ and 7 have opposite signs, or directions, and
the intrinsic e.m.f. opposes the current. It is by overcoming
this counter emf. that the transformation of electrical energy
into energy of some other form is effected. In all cases a reversal
of the current reverses the sign of the energy transformation by
an-agent with an intrinsic e.m.f.
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Also, any region in which energy is transformed from some
other form into electrical energy, or from electrical energy into
energy of some other form, at the time rate 2 when the current
has the value 7 is said to contain an e.z2,f. P/, although in the
latter case the e.m.f. may not be intrinsic. Thus, according to
Joule’s law, a homogeneous conductor of resistance K when tra-
versed by a current / transforms electrical energy into heat at
the rate R7%. Hence the conductor is the seat of an electro-
motive force equal to

— (@H[d)[T= = RI*[I= —RI=—"V, (37
This negative, or counter, em.f.,, — R /= — V, is not, however,
included among intrinsic e.m.f.s, since if the conductor is heated
a current is not produced, or if the direction of the current is
reversed, heat is still generated at the same rate, not absorbed, as
it would be if the e.m.f. were reversible and intrinsic.

Other electromotive forces exist, like potential differences
(non-intrinsic e.m.f.s of static fields or fields of conductors carry-
ing steady currents) and the non-intrinsic e.m.f.s of induction
(XIIL), by which energy is transferred in the electromagnetic
field, but never transformed. These e.m.f.s, together with in-
trinsic e.m.f.s, may act as smpressed e.m.f.s.  The dmpressed e.m.f.
between the electrodes of a conductor is equal, by definition, to
the sum (§ 21) of the intrinsic e.m.f.s included between them,
P|I, plus the time rate P’, at which electromagnetic energy is
transferred to the region between them from the surrounding
field (developed by én#rinsic e.mf.s in other parts of the circuit or
in other circuits #ransforming energy of another kind into electro-
magnetic energy if P’// is positive) divided by the current /.

Thus the impressed e.m.f. in a homogeneous conductor of re-
sistance R carrying a steady current / is V, = R/ (exactly
equal and opposite to the counter e.m.f. of resistance, — R/),
the difference of potential V7},, by which the energy is transferred
to the conductor at the rate 7,/ = R/? being developed by an
intrinsic e.m.f. situated outside the portion of the circuit consti-
tuting the homogeneous conductor considered. See XVI.
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A general characteristic of non-intrinsic e.m.f.s is that they
have, like the force of friction in mechanics (analogous to the
counter e.m.f. of resistance, — R/), or like the elastic reaction of
a stretched spring (analogous to a difference of potential), no in-
dependent existence of their own, but are developed only through
the action of an agent possessing a true intrinsic electromotive
force, such as a dynamo or a voltaic cell. This is equivalent to
the statement that electrical energy is never generated at the
expense of energy in some other form through the agency of a
non-intrinsic e.m.f.

In what follows many cases of intrinsic and impressed e.m.f.s
will be considered.

20. Intrinsic Electric Intensity and EM.F. The intrinsic e.m.f.
in a region may be regarded as the line integral of an éuzrinsic
electric intensity in the region. If this intensity is denoted by e,
we have therefore

\If=fe-cos 0-dL (38)

where 6 denotes the angle between the direction of ¢ and that of
the element of the path, dZ, at any point.

Consider a tube of flow of cross-section 45 at a point where
the intrinsic intensity is e. If 8 denotes the angle between the
directions of ¢ and of 7, the intrinsic e.m.f. between two right
cross-sections of this tube distant 4 apart is ¢ cos 6 -dL. The
current through the tube is z-&S. Hence the rate at which
power is transformed into the circuit per unit volume at the point
is

dP [dt = ¢-cos 0-dL-idS [dSdL = ¢i-cos ¢ &gy

From this power equation ¢-cos 8, the component of ¢ in the

direction of 7, might be defined as

¢-cos 0 = (dP[ dr)[i 0

If P denotes the total power transformed into electrical energy
in an isolated electric circuit, and / the current, then, since
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P=dW]|dt and I=dg|dt, ¥ = P[] = dW]|dg. Thatis, ¥ is
the work per unit charge done in carrying a charge around the
circuit. Hence our definition of an intrinsic e.m.f., and therefore
our definition of an intrinsic intensity, is in agreement with the
general definition of § 17, I.  The same is true of the impressed
e.m.f.

When P is expressed in ergs per second, and /in the RES
unit current, or when W is expressed in ergs and dyg in the RES
unit charge, ¥ is, by definition, expressed in the RES wunit e.mn f.

21. Intrinsic Electromotive Forces in Series. If any number,
n, of agents with individual electromotive forces ¥,, ¥, ..., ¥
are connected up in serées, so that the same current traverses
each, the resultant e.m.f. is

\I’=‘I’1+‘I'2+-~-+‘I’” (39)

proper attention being paid to signs. For if P, P, P, etc., de-
note the power supplied to the circuit by the resultant e.m.f. and
the powers supplied by the individual e.m.f.s, and / the current,

P=WI=VI4Y I+ ...+ V]

from which (39) immediately follows.
The above proposition, demonstrated for intrinsic e.m.fs, is
obviously also true for the more general émpressed e.m.f.s.
Intrinsic Electromotive Forces in Multiple. If any number, 7,
of similar agents having the same e.m.f. W/ are connected up in
multiple, so that one nth of the current traverses each in the
same direction, the resultant em.f. ¥ is eqnal to ¥/. For

P=\I’[=Pl+1)2+..+P"
— W n 4V n g+ W n = (4O

22. Ohm’s Law, General Form, Deduced from Joule’s Law. ILet
the resistance of a conductor 12, Fig. 72, between two electrodes
I and 2 be denoted by K. Let the conductor be traversed by a
current, reckoned positive when in the direction 1(2, with the
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same value 7 at any instant across every section, and let the con-
ductor be acted upon by an impressed em.f. ¥V, 4+ ¥/ = P//
+ P |1, ¥, and ¥, being reckoned positive when in the direc-
tion of the current 7 (. e, 1C2). ¥, is the intrinsic e.m.f. be-
tween the electrodes, and ¥/ the electromagnetic energy per
unit current fransferred per unit time to the region 12 (negative
when power is transferred from 1C2).

Fig. 72.

While the current 7 traverses the circuit, the conductor 12
receives energy at the rate

P+ P = (\1,12 S \ylz,)[

and its resistance dissipates energy in heat at the rate

dH|dt = RI*
Hence, by the principle of the conservation of energy,
(¥, + \1,12,)]:: RI? (41)
whence
\sz + ¥, = RI (a)
or (42)
/= (\I,lz = \Ifuf)/R (b)

(42) (a) states that the impressed e.m.f. in any conductor is
equal and opposite to the counter e.m.f. of resistance ( — R/).

(42) (&) states that the current in any conductor is equal to the
impressed e.m.f. acting upon the conductor divided by its re-
sistance.

Either of these statements constitutes O/’s law in its general
integral form.

20. General Differential Form of Ohm’s Law. Impressed Elec-
tric Intensity. The impressed e.m.f. in a region may be regarded
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as the line integral of a fotal or impressed electric intensity £ =
vector sum of ¢ and Z’, the field intensity F/g, in the direction
of the current density it produces. Thus

V,+ V)= [EdL=[(e+ E)dL . (43)

along a line of impressed identity, (¢ + £) being a vector sum.

Applying (41) and (43) to a stream-tube whose cross-section
is 45 at a point £ where the impressed intensity is £= ¢ + £/,
we have, for the element of volume &7 = dL'dS enclosing P and
bounded by the sides of the tube and two right cross-sections
distant &L apart,

EdL-idS = (¢ + E')AL -4dS = ri*dLdS = ¢ [k- dLdS
whence :
i=kE=ke+ E)=E[r=(c+ E)[r (44)
which is the general differential form of Ohm’s law.

When £ = £, or ¢ = 0, (44) reduces to (16).

23. Ohm’s Law for Constant Current. Let the electrodes 1
and 2 of the conductor 1(2, Fig. 72, be maintained at the poten-
tial difference V,, (with the assistance of an intrinsic e.m.f. located
outside 1C2, if necessary) while the conductor 1C2 is traversed

L 2P

C

———
21
Fig. 73.
by a constant current /. Then electromagnetic energy is gen-
erated in the conductor at the rate 2/ =W/, and electromag-
netic energy is transferred from the field into the conductor at
therate 7 =V /= V,/, the total impressed e.m.f. in the con-
ductor in the direction 12 being thus 7, + V¥,
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In this case, therefore, Ohm’s law (42, &) becomes
I=(Vy+¥y) /R (45)

(1) If V,,=o, that is, if the electrodes 1 and 2 are connected
together as in Fig. 73, to form a closed circuit, (45) becomes

/= \PIZ/ R (46)

which is Ohm’s law for a closed isolated circuit traversed by a
constant current.

(2) If ¥, = o, thatis, if the conductor 1(2 is homogeneous
without an intrinsic e.m.f., (45) becomes

/= Kz/R (47)

which is Ohm’s law for a homogeneous conductor traversed by
a constant current.

(3) If V, + ¥, is greater than zero, / has the direction 1(2;
if V,+ ¥, is less than zero, 7 has the opposite direction.

(4) If V,+¥,=o0, thatis, if V,=—¥,=Y¥,, /=0,and
the agent with intrinsic e.m.f. W, is on open circuiz.  Thus the
difference of potential between the terminals of a voltaic cell, or
other agent possessing an intrinsic e.m.f. when no current is flow-
ing, or when on open circuit, is equal in magnitude to the intrinsic
e.m.f. for zero current, but has the opposite direction.

24. Mechanical Analogue of the Relation V,, + ¥, = RI, etec.
Let an incompressible liquid flow at the constant rate / units

2 1
C |

P2 <—-B <———a Py
1
1

Fig. 74.

volume per second in the direction 12 of the arrows, Fig. 74,
across every section of a pipe A5 containing a screw propeller,
or pump, C producing a difference of pressure ¥,,, in the direc-
tion of the current (1(2), on its two sides. If the sections 7
and P, are maintained at pressures 7, and V), or at the pressure
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difference V, = V, — V,, the total fall of pressure along the
pipe from P to P,is V,,+ ¥,,= + R/, and the rate at which
work is done against friction within the volume P27, is (V, +
W)/ = RI* R having the significance attached to it in §18.

If the pipe is bent around and 7, and 7, joined together, so as
to form a closed circuit, V= V, or V,=0, and ¥, = R/.

If elastic membranes are stretched across the pipe at 7, and 7,
(either before or after 7, and 7, are joined together), the propeller
will force liquid from the region A into the region 5 (analogous
to the positive and negative charges of the terminals of an agent
possessing an intrinsic e.m.f.,, when on open circuit) until the
pressure in 5 exceeds the pressure in A by the amount /, ="V,
numerically, when the current will cease.

25. The Fall of Potential Around a Closed Circuit. Consider
a closed circuit containing an agent with an intrinsic em.f. ¥
and traversed by a constant current /. Let the resistance of the
agent, called the infernal resistance, be denoted by 5, and that
of the rest of the circuit, called the external resistance, by R,
both conductors being supposed homogeneous. Then we have,

by (46),
VY=BlI+RI(=V,+7V) (48)

Now B/ denotes the fall of potential, V,, in the direction of
the current through the resistance B of the agent, and R/ the
fall of potential, 77, in the direction of the current through the
external resistance R But the total fall of potential around a
complete circuit is zero (§18, I.). Hence at the seat of the in-
trinsic e.m.f. there is a rise in potential in the direction of the
current equal to ¥ = (5 + R)/. The equation J—=—="¥,
§ 23, (4), is a particular case of this proposition (R = infinity).

To make the fall of potential as great as possible through the
external circuit it is clear that R /B should be made as great as
possible, if ¥ is independent of the current.

The e.m.f. of an agent is, in general, a more or less compli-
cated function of the current, although there are some cases in



222 ELEMENTS OF ELECTROMAGNETIC THEORY.

which the e.m.f. is constant for all values of the current. The
limiting value which an e.m.f. approaches as the current ap-
proaches zero, and the resistance infinity, or the e.m.f. on open
circuit, is, as we have seen, equal and opposite to the potential
difference between its terminals on open circuit. If V7 denotes
this potential difference, and if ¥ above is independent of the
current, we have, for all values of the current,

Ve X (49)

26. Kirchhoff’s Law II. In any closed circuit in a network of
conductors traversed by steady currents, as the circuit 1 23 4 ... 7
in Fig. 75, the algebraic sum of all the intrinsic e.m.f;s is equal

5 4
’,\
n 4 3
1
2
Fig. 75.
to the algebraic sum of the products R/, Thatis, if ¥, V¥,
..., ¥  denote the intrinsic e.m.f.s in the branches 12, 23, ... 21,

R, R,, ---, R, the resistances of the same branches, and /,,, 7,

, 7, the currents, both currents and e.m.f.s being reckoned
positive in the same direction, as 12 ...#1, around the circuit,
then

TV =X R/ (50)
For, by (45)

Vlz itz \1,12 T R12[12
V23+ \Ifza = Rz:s[zs
an + \I,nl b Rnl nl

from which, by adding up both members separately, we obtain

(50)-
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27. Wheatstone’s Bridge consists of a network of six conduc-
tors arranged as in Fig. 76 or Fig. 77, with an intrinsic e.m.f. ¥
in the branch 13, Fig. 76, or the branch 24, Fig. 77. Let the
currents in the branches be denoted by 4, B, C, D, F, and G, as
shown in the figure, the current in any branch being positive
when in the direction of the arrow-head in that branch; and let
the corresponding resistances of the branches be denoted by «,

=
3

G

<

Fig. 77.

b, ¢, d, f, and g. First we shall find, from Kirchhoff’s laws, the
current G in the branch 24 when the e.m.f., ¥, is in the branch
13, Fig. 76.

Applying Kirchhoff’s law I. to each of the sets of conductors
meeting in the points 1, 2, and 4, we obtain the relations

F=A+ B
C=A+4G (@)
D=B—-G

Applying Kirchhoff’s law II. to each of the closed circuits
1241, 2342, and 1431, we obtain

— Gg+ Aa— Bb=o0
Gg+ Cc—Dd=o
Ff+Bb+Dd=¥

On eliminating C, D, and F by (@), and rearranging, these
equations become
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—gG+ad—b6B=o0
(g+c+d)G+cAd—-dB=o

—dG+fA+ (6 +d+f)B=Y
from which

G="Y (bc—ad)|Q (51)

if Q is written for the determinant of the coefficients of the cur-
rents in the last set of equations, viz.,

== a —b =Q
(g+c+4d) ¢ —d (52)
—d b e+d+r)

The current in any other branch can be found in the same
manner.
The difference of potential between the points 4 and 2 is

Vo= Gg="Y¥(bc —ad)g|Q (53)

and may be made as small a fraction of ¥ as desired by giving a
suitable value to (éc — ad).

From (41) and‘(sz) and a comparison of Figs. 76 and 77, we
see that when the em.f. ¥ is in the branch 24, Fig. 77, the
current in the branch 13 is

F="¥ (b — ad)Q (54)

Thus the current in the conductor 24 due to e.m.f. in the
conductor 13 is equal to the current in the conductor 13 due to
the same e.m.f. in the conductor 24, all the resistances remaining
unaltered.

By a similar method, this reciprocal relation may be shown to
hold for any two branches of the network, or any network.

When &c = ad, the current in either of the two conductors 13
or 24, due to an e.m.f. in the other, is zero. The two conduc-
tors are then said to be comjugate. In this case the conductor
in which there is no current may be removed, or its resistance
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may be altered in any manner, without affecting the state of the
rest of the system.

From the relation /, = (V},+ ¥ ,)/R,, and the principle of
superposition of potentials and e.m.fs, it follows immediately
that if any number of e.m.f.s is placed in the network, each will
produce in any part of the system the same current it would have
produced if acting alone. The current in any branch is thus the
algebraic sum of the currents due to each e.m.f. separately.

Suppose an e.m.f. placed in one of the branches 12, 23, 34,
or 41, Fig. 76. It will produce a current in the other branches,
including 24. But if éc = ad, the em.f. in 13 will produce no
current in 24, whatever this e.m.f. may be. Suppose the e.m.f.
V¥ to have such a magnitude and direction as to produce a cur-
rent in the branch 13 exactly neutralising the current in the same
branch due to the e.m.f. in the other branch. Then there is no
current in the branch 13, and it may be removed, or its resistance
may be made infinite, without affecting the currents in the other
branches. Thus, when éc = ad, the current in 24 is independent
of the resistance, as well as of the electromotive force, in the
branch 13. This result is applied below to Mance’s method of
measuring the resistance of a conductor containing an intrinsic
e.m.f.

The condition that the two conductors 13 and 24 may be con-
jugate, viz., éc = ad, can be found very simply as follows. Let
the voltages between the points 12, 23, 34, etc., Figs. 76 and
77, be denoted by V,,, V,,, 7}, etc. Then we have, as the con-
dition that G may be zero in the arrangement of Fig. 76, V,, = o.
We have also, in this case, A = C, and B = 0. Therefore

V12=“A= V14=éB
and
V24=€A= V43=dB

Dividing a4 = 6B by cA = dB, we obtaina /¢ = b4/ d, or

bc = ad (5 5)
UNIVERSITY OF CALIFORNIA
GEPARTMENT OF CIVIL ENGINEERiN
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In exactly the same way we find that only this same condi-
tion must be satisfied in order that # may vanish in the arrange-
ment of Fig. 77.

Hence the conductors 13 and 24 are conjugate when this con-
dition is satisfied.

The Wheatstone’s bridge is very extensively applied to the
comparison of electrical resistances.

28. The Comparison of Electrical Resistances. Thus suppose
we have an unknown resistance @ which is to be compared with
a standard resistance ¢. The resistances @ and c are connected up
with two other resistances ¢ and &, whose ratio must be known,
as in Fig. 76 or Fig. 77, and the terminals of a battery, or other
agent with an intrinsic e.m.f., are connected to the points 1, 3 or
2, 4, and an electrometer (or galvanometer, XII.) to the points
2,4 or 1, 3. Then the resistance ¢, or the resistances 4 and &, or
all three, are varied until the needle of the electrometer (or gal-
vanometer, which is almost invariably used) remains undeflected
whether the branch containing the battery is opened or closed.
Then, by (55), a=cé/d.

29. Mance’s Method of Determining the Resistance of an
Agent with an Intrinsic EM.F. The agent whose resistance,
a, is to be determined is connected up as in Fig. 76 with three
other resistances ¢, 4, and d, at least one of which, together with
the ratio of the other two, is known. A galvanometer or elec-
trometer G is connected to the points 2, 4, and a wire containing
a key, but no e.m.f, to the points 1, 3. Then the resistances ¢, 4,
and d, or at least one of them, are varied until the deflection of
the galvanometer or electrometer is the same whether the key
connecting the points 1 and 3 is open or closed. When this
condition is reached, the current through the branch 24, or the
voltage 1/, is independent of the resistance of the conductor 13,
and the two conductors are conjugate. Hence

a=cbld
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30. Kelvin's Method of Measuring the Resistance of a Galvano-
meter or other Current Indicator. The galvanometer or electrom-
eter of § 28 is removed and is replaced by a wire IV containing a
key, and the instrument whose resistance is to be determined is put
in place of the unknown resistance a. Then one or more of the
resistances, &, ¢, d, are varied until, the battery circuit being closed,
the permanent indication of the instrument (a deflection, if a gal-
vanometer or similar instrument is under experiment; silence,
if a telephone) remains constant when the key in the wire W is
opened or closed. Then no current traverses the wire in either
case, and @ = ¢4/d, as in § 28.

31. Kelvin’s Double Bridge furnishes the most accurate known
means of comparing two very small resistances.* The conductor
A, Fig. 76, of a Wheatstone’s bridge arranged for the comparison
of resistances, § 28, is disconnected from the conductor 5 at the
point 1, and the terminals of one of the resistances to be com-
pared, z, are connected to the free end of A, denoted by 1/, and
the original point 1. In like manner, C is separated from 2 and
the other resistance under comparison, y, is connected to the
point 3 and the free end of C, denoted by 3’. The bridge is
completed by joining the points 17 and 3’ with a third conductor
of low resistance. The resistances @, &, ¢, & (all, in practise, of
considerable magnitudes, which can be determined with precision
by other methods), or either ¢ and & or @ and &, are then varied,
the ratio &/d being kept constantly equal to /¢, until no current
traverses the galvanometer. Then, since the currents through &
and care equal, and also the currents through ¢ and 4, and there-
fore the currents through x and y, it is clear that

xly = ae = bjd (56)

For a thorough discussion of the Kelvin bridge in its general
form, see Zeuschr. fiir Instrumentenkunde, Feb. and Mar., 1903.
Equation (56) does not express the general condition for a
balance.

*With the possible exception of the shunted differential galvanometer method
(F. Kohlrausch, Wied. Ann., Vol. 20, p. 76, 1883).



CHAPTER IX.
ELECTROLYTIC AND METALLIC CONDUCTION.

1. Metallic Conduction. The electric current in a metallic con-
ductor, whether a pure metal or an alloy, in the solid or liquid
state, is not, so far as is known, associated with any chemical
change in the conductor or with the convection of its molecules
or atoms from one part to another. All substances which con-
duct in this manner are said to conduct metallically. A theory
of metallic conduction, based on the motion of eectrons, will be
referred to in §15.

2. Electrolytic Conduction. Electrolysis. Ions. The electric
current in most chemical compounds, however, is invariably as-
sociated with their separation into two constituents, atoms or
groups of atoms, called soms. These ions do not appear separ-
ately in the body of the conductor, but only at the electrodes by
which the current enters and leaves it. Hence one of the ions
moves toward the anode, and is therefore called the awion ;
while the other moves toward the kathode, and is called the
kation.

Substances in which the electric current is associated with the
transportation of atoms or molecules are called electrolytes, the
process of electro-separation of the constituents is called electroly-
sis, and the substances are said to conduct electrolytically.

The simplest electrolytes, in some respects, are molten salts,
e. g., KCl at a temperature above 734° C. During the elec-
trolysis of this salt, K appears at the kathode and Cl at the
anode. Thus K is the kation and Cl the anion. As in this
case, so in the electrolysis of salts, acids, and bases generally,
the kation invariably consists of a metal or hydrogen, and the

228
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anion of an acid element or radical (sometimes combined with a
metal).

The commonest electrolytes are aqueous and other solutions
of salts, acids, and bases. In such a solution, all together an
electrolyte, the dissolved substance, not the solvent, is separated
into the moving ions. Hence the dissolved substance itself is
often spoken of as the electrolyte. It must be remarked, how-
ever, that pure dry acids, salts, and bases at ordinary tempera-
tures, as well as pure water and other solvents whose solutions
are frequently electrolytes, are either not conductors, or else
possess extremely small conductivities.

The actual determination of the constituents forming the ions
is sometimes a matter of considerable difficulty. For in many
cases the ions do not themselves separate out at the electrodes,
but on reaching the electrodes, combine with them chemically,
if such reaction is possible, or with the solvent, if the first reac-
tion is impossible. If neither reaction is possible, the ions col-
lect at the electrodes or are there liberated.

Thus if molten KCl is electrolysed with a platinum anode and
a kathode of graphite, metallic potassium may be collected at the
kathode, but at the anode the Cl unites with the platinum.

Also, if an aqueous solution of H,SO, is electrolysed between
platinum electrodes, H (the kation) appears at the kathode,
where it is given off as a gas (no reaction with platinum or with
water being possible) ; and SO, (the anion) appears at the anode.
But SO, can neither combine with platinum, nor can it exist alone
in the presence of water ; hence it reacts with the latter to form
H,SO, and O, the first going into solution, and the second being
evolved as a gas.

3. The Laws of Faraday. Electrolytic Measurement of Current.
According to the experiments of Faraday, confirmed by all later
investigation,

I. The mass of an ion deposited on an electrode, or there dis-
solved, during the passage of a current, is proportional to the
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electric charge crossing the electrode during the deposit or solu-
tion. Thus, if 47, denotes the mass of an ion a deposited at an
electrode, or there dissolved, in the time ¢, while the charge ¢
crosses the electrode (or passes through the electrolyte).

.Ma =Kgq (1)

where K, = M, [¢ is a constant for the ion «, equal to the mass
of the ion deposited per unit charge, and called its électrockemical
equivalent.

If a condenser of capacity S is repeatedly charged to a voltage
V and discharged in a constant direction through an electrolyte
at the rate » times per second, the mass 7, of the ion a deposited
or dissolved in the time # will be '

M =K g=K SlVnt (2)

from which, by measuring M, S, V, n, and ¢, K, may be de-
termined. If A7 is expressed in grams, # in seconds, and S and
Vin RES units, K, will be expressed in the RES unit electro-
chemical equivalent.

If a constant current / traverses the electrolyte, we have

j‘{l =3 Kag = K,,[t (3)
from which
I=M,[K2 (4)

Hence by measuring A/, ¢ and K, / may be determined. If
MM, and ¢ are measured in grams and seconds, respectively, and
K in the RES unit, 7 will be expressed in the RES wunit current.

II. The electrochemical equivalent of any ion is directly pro-
portional to its atomic (or combining) weight and inversely pro-
portional to its valence; < ¢., the electrochemical equivalent of
a substance is proportional to its chemical equivalent. Thus if
@ and & denote two ions, 4 and B their atomic (or combining)
weights, @’ and &’ their valences, and K, and KX, their electro-
chemical equivalents, then
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Ala
KB =i (5)
whence
K =4[ -V|B-K, (6)

If therefore the combining weights and valences of all ions are
known, and the electrochemical equivalent of any one of them,
the electrochemical equivalents of all the rest may be found from
(6). The ion whose electrochemical equivalent has been most
accurately determined is the silver ion, of which the valence is
1, the combining (atomic) weight 107.93 (O = 16.000), and the
electrochemical equivalent 0.001119 gram/coulomb (XIV.).
Hence if &-in (6) denotes silver, the electrochemical equivalent
of any other ion a is

K,=A[a’ 1[107.93 X 0.001119 gram/coulomb
= A[a’ - x 0.00001037 gram/coulomb 2

By omission, law II. states that X is independent of the nature
of the compound in which @ is found, the nature of the solvent
if the compound is in solution, the strength of the current, the
temperature, and other physical conditions.

If an element has two or more valences in different compounds,
then it exists as two or more distinct ions, each with its own elec-
trochemical equivalent. Thus iron in ferric compounds, as FeCl,,
has a valence 3, while in ferrous compounds, as FeCl,, its valence
is 2. Hence

. 1 f ]
K (ferric iron) /K (ferrous iron) = b et e

valence ferric iron ~ 3
since the atomic weight of iron is the same for both classes of
compounds.

Since the same quantity of electric charge crosses every sec-
tion of a conductor carrying a steady current in any given time,
it follows from law II. that in the electrolysis of any compound
the ions are deposited simultaneously at the two electrodes in the
same proportions in which they occur in the compound. Thus
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when KCl is electrolysed, for every atom of K deposited at the
kathode, an atom of Cl is deposited at the same time at the
anode. Likewise, in the electrolysis of an aqueous solution of
H,SO,, for every ion SO, deposited at the anode, two atoms of
H are deposited at the same time upon the kathode. Since one
sulphion reacts with a molecule of water to form a molecule of
H,SO, and an atom of O, it follows that H and O are evolved at
the kathode and anode respectively in the proportions in which
they occur in water, while the total quantity of H,SO, in solu-
tion remains constant. In like manner, when an aqueous solu-
tion of silver nitrate is electrolysed between silver electrodes, for
every silver atom (kation) deposited upon the kathode, one
nitrion NO, (anion) is liberated at the silver anode, and reacts
with an atom of this electrode to form a molecule of silver nitrate.
The nitrate goes into solution. Thus the total quantity of salt
and the total quantity of silver in solution remain constant, while
the kathode gains as much silver as the anode loses.

4. The Arrhenius Theory of Electrolytic Dissociation. Ac-
cording to this theory, which, though not universally accepted,
serves to explain many electrochemical phenomena, the mole-
cules of a molten salt, or a salt in aqueous solution, or other
electrolyte, are always, in greater or less numbes, independently
of the passage of a current, broken up, or dissociated, each into
two kinds of atoms or atomic groups, called zozs. One kind of
ion is positively charged, and is called a £ation, the other is neg-
atively charged and is called an awion. Thus a molecule of
H,SO, dissociates into two positively charged H kations and one
negatively charged SO, anion; and a molecule of KCl into a
negative chlorine anion and a positive potassium kation the metal-
lic or hydrogen atoms being in general the kations, and the acid
atoms or radicals the anions.

Every ion of the same valence carries a charge of the same
magnitude, and this charge is directly proportional to the va-
lence of the ion, Thus the negative charge of a chlorine ion is
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equal to the positive charge of a potassium ion, the valence of
each being 1 ; the negative charge of a sulphion, whose valence
is 2, is equal to the positive charge of two hydrogen ions, whose
valence is I ; the charge of a silver ion is equal to the charge of
a nitrion, and to the charge of a hydrogen, potassium, or chlo-
rine ion ; and so on. :

The electric conduction current, or transfer of electric charge,
through an electrolyte consists in a convection current of the
ions — the kations with their positive charges moving toward
the (negative) kathode, and the negative anions moving toward
the (positive) anode. On reaching an electode the ions give up
their charges to the electrodes, and react with one another, or
with the solvent, or with the electrode, to form molecules.

If we assume that the current az each electrode consists in
the motion of only oze kind of ion, which will presently be
proved to be true, the theory affords a simple explanation of the
laws of Faraday :

Since a given kind of ion always carries an electric charge of
the same magnitude and sign, the quantity of an ion deposited upon
an electrode will be proportional to the charge which crosses the
electrode. This is Faraday’s first law.

Since the charge of an ion is proportional to its valence, and
since the mass of an ion is proportional to its combining weight,
the mass of ions of one kind carrying a given charge, or the ion
mass deposited per given charge, must be proportional to its
combining weight and inversely proportional to its valence.
This is the second law of Faraday.

5. A Gram Atom of an element is a quantity of the element
equal, in grams, to the number denoting its atomic weight. Thus
a gram atom of potassium is 39.15 grams potassium.

A Gram Ion is in the same way a quantity of the ion equal, in
grams, to the number denoting its combining weight. Thus a
gram ion of silver is 107.93 grams silver, and a gram sulphion
is 96.06 = (32.06 4+ 4 X 16.00) grams SO,.
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A gram molecule of a substance is a quantity of the substance
equal, in grams, to the number denoting its molecular weight.
Thus the molecular weight of KCl is 39.15 + 35.45 = 74.60,
and therefore 74.60 grams KCl is a gram molecule of this sub-
stance.

It will now be obvious that the magnitude of the charge car-
ried by a gram ion of every univalent ion is the same. The
charge carried by a gram ion of a bivalent ion is twice as great,
and so on. The charge carried by a gram ion is equal, numer-
ically, to the gram ion divided by the mass, in grams, carrying
unit charge, or equal to the gram ion divided by the electro-
chemical equivalent of the ion. Thus the silver gram ion is
107.93 grams, and the electrochemical equivalent of silver is
0.001119 gram per coulomb. Hence the charge carried by a
gram ion of silver or any other univalent ion, which will be de-
noted by Q, is

Q = 107.93 grams =+ 0,001119 gram/coulomb

(®)

The concentration of a solution is the quantity of dissolved
substance per unit volume of solution. The concentration may
be expressed in grams/c.c., grams/ liter, gram molecules |/ liter,
etc., and will be denoted here by C.

= 96450 coulombs

6. Velocities of the Ioms. Hittorf’s Ratio. Hittorf's Num-
bers, ete. If in the electrolysis of a solution ordinary convection
and diffusion effects are prevented, it is found that no change
takes place in the concentration of the solution except in the
vicinity of the electrodes. Owing to the deposit or liberation
of the ions at the electrodes, however, the total quantity of dis-
solved substance diminishes (reactions at the electrodes which
produce the substance being neglected). Hence it follows that
the concentration of the dissolved substance, or rather, the con-
centration of the solution, diminishes near the electrodes (the
reactions mentioned being neglected, if occurring).
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To study the matter more closely and to make the conditions
perfectly definite, consider the electrolysis of an aqueous solu-
tion of silver nitrate between platinum electrodes, 4 and XK. If
we imagine a porous partition 7, preventing diffusion and con-
vection currents across it but not hindering the motion of the
ions, placed between 4 and XK, but not close to either, the
quantity of AgNOQO, in each of the compartments into which 2
divides the electrolytic vessel will diminish during electrolysis.
Before electrolysis begins, each compartment contains as many
anions as kations (+ Ag and — NO,), one of each being neces-
sary to form a molecule of silver nitrate. During electrolysis
let A be the kathode and A the anode,.

Let the velocities of the kations and anions in the main body
of the solution, at the partition for example, be denoted by U
and J respectively, and let U/ V= /. Then for every / kations
which cross the partition in the direction AKX, 1 anion crosses in
the direction KA. During this process the number of molecules
of AgNO, in the compartment K7 is diminished by 7, since both
ions are necessary to form a molecule ; and likewise the number
of molecules of the salt in the compartment 42 is diminished by
1. Hence (Hittorf’s law)

Loss of salt near anode /Loss of salt near kathode = U/ V=% (9)

The ratio 2= U[V is called Hittorf's ratio, and will be further
discussed below.

When / kations have crossed the partition in the direction 4K,
and one anion therefore in the direction KA, /2 4+ 1 anions are
left without the corresponding kations at the anode 4, and % + 1
kations are left without the corresponding anions at the kathode
K. The free kations immediately give up their positive charges
to the kathode, and are deposited upon it; and the free anions
immediately give up their negative charges to the anode, and
react with water to form nitric acid and oxygen.

Since each ion carries the same numerical charge, the electric
current in the main body of the electrolyte is the same as if all
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the anions were moving with the velocity U/ 4 " toward A4, and all
the kations were at rest ; or as if all the kations were moving with
the same velocity U 4 V'toward K] and all the anions were at rest.

Since, moreover, by what precedes, /2 + 1 kations give up their
charges to the kathode, and / + 1 anions give up their charges
to the anode, while only /% kations cross the partition in the direc-
tion AK and only 1 anion in the direction A4, and since the
current is the same across every section of the conductor, the
current a¢ the anode consists in the motion of anions only, and
the current af the kathode consists in the motion of kations only.
It does not follow, however, that the velocity of either anion or
kation at an electrode is U+ V. For the quantity of kations
deposited at the kathode is greater than the quantity crossing the
partition toward the kathode in the ratio (2 + 1)/2 =(U + V)| U;
and the quantity of anions deposited on the anode is greater than
the quantity crossing the partition toward the anode in the same
time in the ratio (% + N/ 1=U+ V)V

Thus a fraction U/(U + V') of the total quantity of the kation
deposited at the kathode in any interval comes from the main
body of the electrolyte, and a fraction 1 — U/(U+ V) =
V(U4 V) comes from the vicinity of the kathode. In like
manner, a fraction V' /(U + V) of the total quantity of the anion
deposited at the anode in any interval comes from the main body
of the electrolyte, and a fraction 1 — V/(U+ VY= U/(U+ V)
comes from the vicinity of the anode.

The velocity, U, of the kations at or very near the kathode,
and the velocity, V7, of the anions at the anode, can be obtained
from the condition that the charge crossing every section of the
conductor in the same interval is the same. This condition gives,
for the interval in which /V anions, and therefore %V kations, cross
the partition,

UN(k + 1) h=INU+ NV
whence

U= (U4 V) [(U+ V)= [(F+ 1) [(h+ )]V
= [(#F+ 1)k + R
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and
VN(#i+1)=NV+ANU
whence
V= (U4 V) [(U+ V)= T, (10)

The ratios U/(U+ V) and V/(U + V'), which represent the
fractions of the total current carried in the main body of the elec-
trolyte by the kations and anions respectively, are cailed the
transport numbers of the kation and anion, respectively, for the
given electrolyte. Put

g UI(U+V)=mn (11)
then

ViU+V)=1—n (12)
and

UlV=h=mn/[(1—n) (13)

If the electrolysis of silver is carried on between silver elec-
trodes instead of platinum electrodes, the loss of the salt around
the kathode will be the same, for a given charge, as before; but
since the total quantity of salt in solution now remains constant,
there will be a gaiz of salt around the anode equal to the loss
around the kathode. If from the amount of AgNO, correspond-
ing to the total quantity of silver deposited on the kathode (or
dissolved at the anode), which would be the gain at the anode if
the silver ions did not move, we subtract the actual gain at the
anode, we obtain the loss of salt at the anode due to the motion
of the silver ions. The actual gain in salt at the anode (equal
to the loss at the kathode) divided by this quantity is Hittorf’s
ratio, from which # and 1 — 7 are easily computed. Since any
quantity of the salt is proportional to the quantity of silver in the
salt, we may use the quantities of silver deposited on the kathode
and gained by the solution around the anode instead of the cor-
responding quantities of salt, and much more conveniently.
Also, the loss at the kathode instead of the gain at the anode
may be obtained, if preferable, by direct experiment.

Hittorf’s ratio, and therefore the transport numbers #z and 1 — 7,
are found to vary slightly with the temperature, %z and 7 increas-
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ing as the temperature rises. Thus, for NaCl, » = 0.392 at 20°
C. and o0.449 at 95° C.; and for AgNO,, # =0.470 at 10° C.
and 0.490 at go° C.

For certain electrolytes, especially aqueous solutions of alka-
line salts, 7 is almost independent of the concentration. Thus,
in the case of an aqueous solution of KCl, 2 changes from 0.497
to 0.486 when the concentration increases from 0.03 to 2.5 grm.
mol. /lit.

For other electrolytes 7 decreases rapidly with the concentra-
tion. Thus, for an aqueous solution of CuSO, 7 decreases from
0.36 to 0.27 as the concentration increases from 0.1 to 2.0 grm,
mol. per liter.

For still other electrolytes 7 increases rapidly with the increase
of concentration. Thus, for an aqueous solution of AgNO,, #
changes from 0.474 to 0.53 as the concentration increases from
0.01 to 2 grm. mol. / liter.

In all cases # is independent of the current strength

7. The Dissociation Ratio. By several methods, into a discus-
sion of which we cannot here enter, for example the lowering of
the freezing point produced by the solution of a substance, the
ratio of the number of dissociated molecules in a solution to the
total number of molecules of the dissolved substance can, ac-
cording to the modern dissociation theory, be determined with-
out the use of an electric current. This ratio, called the disso-
ctation ratio, will be denoted by . For a given solution 2 in
general increases slowly with the temperature.

If the concentration of a given kind of electrolytic solution
is diminished, 7 in general increases, very rapidly at first, then
more and more slowly, reaching, when the solution becomes very
dilute, sensibly the constant value 1. That is, in very dilute
solutions all the molecules of a dissolved electrolytic substance
are dissociated.

8. Ohm’s Law for a Homogeneous Electrolyte. Conductivity
and Molecular Conductivity. Since according to the dissociation
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theory the electric current in an electrolyte consists in the motion
of the ions, the undissociated molecules playing no part in the
conduction, the current density, 7, must be equal to the continued
product of the concentration of the salt, €, In gram molecules
per cc., the dissociation ratio, s, the valence of the ions, &/, the
quantity of charge carried by a univalent gram ion, Q, and the
sum of the ionic velocities, &/ + V. For m(C is the number of
gram ions of each kind per cc., mCa’ Q is the charge upon all
the kations in one cc., and, numerically, the charge upon all the
anions in one cc.; hence mCa’ QU and mCa’ QV are the total
positive and negative charges, respectively, crossing unit area per
second in opposite directions. Hence

i=mCad QU+TV) (14)

Now Ohm’s law holds rigorously for liquid electrolytes (though
not, in general, for gases), as well as for metallic conductors.
Hence the above equation may be written

i=kE=mCd QU+T) (15)

Therefore the sum of the velocities of the ions, U + V; is pro-
portional to the electric intensity £. Hence, since » or 7 is
independent of the electric intensity or current (§6), the velocity
of each ion must be proportional to £. If therefore # and v
denote the velocities of the kation and anion respectively per unit
intensity, we have, when the intensity is Z

U=u#E and V=vE (16)
(15) may therefore be written
t=RkE=mCa'Qu + v) E (17)
so that
k=mCa Q(u + v) (18)

The ratio of the conductivity 4 to the concentration C (in grm.
mol. [cc.) is called the molecular conductivity, and will be denoted

by . Thus
M="Fk[C=maQu+ v) (19)



240 ELEMENTS OF ELECTROMAGNETIC THEORY.

When the solution becomes very dilute, 72 becomes sensibly
equal to unity ; hence, if the corresponding values of M, %, C, «,
and v are denoted by these letters with the subscript zero, we
have from (19)

M, = k[ C,= a/.Q(uo + ) (20)
From the last two equations
= M) My (4, + )| (4 + 9) (21)

The conductivity, 4, of an electrolyte is readily measured by
methods similar to those used in the case of metallic conductors,
except that to avoid the troublesome effects of polarisation an
alternating current and a telephone or electrodynamometer are
employed instead of a direct current and a galvanometer. From
the conductivity and the concentration the molecular conductivity
is obtained by division from (19). From the molecular conduc-
tivity A, at given dilution, and A7, 72 can be computed, if

(1, + 2 (1 +9)
is known.

9. Variation of Electrolytic Conductivity with Temperature
Pressure, and Viscosity. The conductivity of an electrolytic
solution always increases rapidly with the temperature. Since
in equation (18) @’ and Q are constants, and 7.2C does not vary
much with the temperature, this increase in conductivity must be
almost wholly due to an increase in (# + ). Such an increase
in the velocities would be expected from the fact that the vis-
cosity of a liquid rapidly diminishes with the increase of tempera-
ture.

The conductivity of an electrolytic solution also increases with
the pressure to which it is subjected. Since this increase occurs
in the case of very dilute solutions (72 = 1), although to a less
degree than for strong solutions, it must be due, in part at least,
to the diminutions of the liquid’s viscosity (which always dimin-
ishes with increase of pressure) and the consequent increase of

the ionic velocities.
1 ]
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For solutions in which different solvents contain the same
number of gram ions of a given substance per cc., the conductiv-
ity is always less the greater the viscosity of the solvent, the
conductivity of the solvent being eliminated if appreciable.

The intimate connection between the ionic velocities and vis-
cosity is shown further by the fact that the conductivities of anal-
ogous compounds in solution bear to one another the same
ratios as do their velocities of diffusion.

10. Molecular Conduectivity and Concentration. The Dissocia-
tion Ratio. The relation between the molecular conductivity 7
of an aqueous solution of KCl and the dilution of the solution,
expressed in terms of the number of liters of water containing a

1.00

\

Aﬂ;and m 3
%

\Z~
-d

o M
[}
S

/

0.85 20 40 60 80
Dilution(Liters of Water Containing One Gram Molecute KCi)

Fig. 78.
gram molecule of the salt, is shown graphically in Fig. 78. As
the dilution increases, or the concentration diminishes, A7 in-
creases, rapidly at first, then more and more slowly, reaching a
constant value 4/, when the solution becomes very dilute.

Curve 7 of Fig. 78 shows the relation between /M and the
dilution, and curve /7 the relation between the dissociation ratio
m, calculated from the lowering of the freezing point, and the
dilution, for the same salt KCl in aqueous solution,
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The close similarity of the curves shows that, very approxi-

mately, in this case
= MM, (22)

Hence, to the same degree of approximation, equation (21) gives
(#, + v,) = (# + v) ; that is, the sum of the velocities of the ions
is nearly independent of the concentration. In practise this ap-
proximation is frequently employed, and the dissociation ratio is
calculated from (22) on the assumption that (%, + v,) = (# + ?)
sensibly. Equation (22), however, appears in many cases to be
not even approximately true except for very great dilutions.

11. The Velocities of the Ions. The Law of Kohlrausch. From
(19) it follows that
: ' (# + v) = M|ma' Q (23)

and from (g) and (16) that
fo=U|V=uEvE = ufv  (24)
From these equations we have

u = hM[ma' Q cm. per second per unit intensity (25)
and
v = (1 — /i) Mjma’ Q cm. per second per unit intensity (26)

from which # and  can be readily computed, all the quantities
in the second members being capable of experimental determina-
tion.

The ionic velocities, when calculated by these formulza, for
extremely dilute solutions are found to be wholly independent
of the compounds in which they occur. This is the law of Koll-
rausch. Thus the velocity of the chlorine ion is the same
whether in a very dilute solution of HCI or a very dilute solu-
tion of NaCl. The velocities of the hydrogen, silver, hydroxyl
(OH), and chlorine ions, all in cms. per second, when the elec-
tric intensity is one volt per cm., are 0.00320, 0.00057, 0.00181,
and 0.00069, respectively, by calculation from (25) and (26).
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The above results have been confirmed by the direct experi-
ments of Lodge and of Whetham (Philosophical Transactions, A,
1893, and A, 1895).

12. Thermal Analogue of Ohm’s Law. Let the two parallel
faces, 1 and 2, distant Z apart, of a large plane slab of a homo-
geneous isotropic substance with thermal conductivity 2’ be main-
tained at the temperatures # and 7. Near the center of the
slab the flow of heat from 1 to 2 is perpendicular to the faces,
and the fall of temperature per unit length, or temperature gradi-
ent, from I to 2 is uniform and equal to (4, — #)/L = £’. The
time rate per unit area, #/, at which heat crosses a plane surface
within the slab parallel to its faces is

=N

which is strictly analogous to Ohm’s law.

13. The Variation of Metallic Conductivity with Temperature.
The resistivity of all pure metals increases with the temperature,
the relation between the resistivity and temperature being approxi-
mately linear for ordinary temperatures according to the equation

ri=r1+az—2)]

The coefficient a is called the resistance temperature coefficient,
For many metals a is approximately equal to 1/273, the tem-
perature coefficient of the expansion of a gas at constant pressure,
when £ is taken as 0° C. or 273° absolute. For such a sub-
stance we have approximately from the above formula

o= 1/273_7273

where # is the absolute temperature at which the resistivity is 7,
and 7, is the resistivity at the temperature 273° absolute.

14. The Law of Wiedemann and Franz, Not only is the law
of Ohm analogous to the law of thermal conductivity, but for
nearly all metals and alloys the ratio of the thermal conductivity
£ to the electrical conductivity £ is approximately the same at a
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given temperature, and is proportional to the absolute tempera-
ture. This indicates that the processes involved in the two kinds
of conduction are largely identical. i N
e, Frrm o)

15. The Electron Theory of Conduction. According to,th
comprehensive and rapidly developing ¢/ectron theory, an atom
is constituted of a multitude of minute particles, called electrons,
each carrying a permanent and constituent electric charge, whose
magnitude is that of the charge carried by a univalent ion in
the electrolysis of liquids. In a neutral atom, the number of
positive particles is equal to the number of negative particles;
in a charged atom or radical, the number of positive electrons
exceeds the number of negative electrons, or vice versa, by 1, 2,
3, etc., according as the ion is univalent, bivalent, trivalent, etc.
The charge of a single electron is the smallest electric charge
which can exist, and no charges exist except the charges of
electrons. ;

In the electrolytic conduction of liquids no free electrons take
part, but the current consists, as we have already seen according
to the dissociation theory, in the convection of the ions, all of
atomic magnitude.

In electric conduction through gases, which is also electro-
lytic, the positive ions are atomic in magnitude (atoms or radi-
cals plus or minus one or more electrons of the same sign), but
the negative ions are frequently single electrons, though either
may be loaded down with an agglomeration of neutral mole-
cules. The clectric current consists in the convection in oppo-
site directions of these ions. The kathode rays, emitted from .
the kathode in a highly exhausted vacuum tube, consist of nega-
tive electrons only, moving with velocities of the same order as
that of light.

In metallic conduction the main body of the metal does not
participate in the conduction. The current consists in the con-
vection of (temporarily) free positive electrons in the direction
of the current, or in the convection of (temporarily) free nega-
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tive electrons in the opposite direction, or in both processes
simultaneously. The number of electrons taking part in metal-
lic conduction is small in comparison with the number taking
part in electrolytic conduction proper, and the velocity is rela-
tively great.

Thermal conduction also takes place by the motion of elec-
trons, but under a temperature gradient both positive and nega-
tive electrons move in the same direction.

For an extended discussion of the electron theory as applied
to electric and thermal conduction in metals, reference must be
made to memoirs by Drude, Ann. der Physik, 1., p. 566, 1900,
II1., p. 369, 1900, and VIL, p. 687, 1go2. For a general treat-
ment of the electron theory, see also Lord Kelvin, Philosophical
Magazine (6), 111, p. 257, 1902, and Larmor’s Zther and Mat-
ter. For a sketch of the development of the electron idea, with
abundant references, see Kaufmann, Physikalische Zeitschrift,
IIL., p. 9, 1901, or a translation of the same in 7he Electrician,
November 8, 1901. An elementary treatment of the subject is
given by Lodge in 7%e Electrician, Vols. 50 and 51, 19g02—1903.



CHAPTER X.
THERMAL AND VOLTAIC ELECTROMOTIVE FORCES.

1. The Law of Volta. Around a circuit made up of any num-
ber of different metals connected end to end, there is no resultant
e.m.f, and therefore no electric current, when all parts of the
circuit are at the same temperature (unless there is a changing
magnetic flux through the circuit, XIIL.).

2. The Seebeck Effect. Around a circuit formed of two dif-
ferent metals a current flows, in general, when the two junctions
are at different temperatures.

Such a circuit is called a thermocouple, or a thermoelement.

In a thermocouple consisting of a copper wire and an iron
wire, if the mean temperatute of the junctions is less than 275°
C., a current flows from the copper to the iron across the hot
junction.

3. The Peltier Effect. When an electric current flows across
the junction of two metals, heat is there, in general, either ab-
sorbed (thermal energy transformed into electrical energy) or
emitted (electrical energy transformed into heat), according to
the direction of the current. The rate of the energy transfor-
mation is proportional to the current strength, and the process is
completely reversible.

Thus at a copper-iron junction heat is absorbed when the cur-
rent passes from Cu to Fe; and heat is emitted at the same rate
when the same current crosses the junction (maintained at the
same temperature) in the opposite direction.

The energy transformations occurring during the circulation of
the current in the thermoelement of copper and iron, § 2, thus

tend to cool the hot junction and to heat the cold junction.
246
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The Peltier EM.F. The junction of two metals is therefore
the seat of an intrinsic e.m.f,, called the Peltier e.m f., which is
constant at a given temperature of the junction for all values of
the current. The e.m.f. varies with the nature of the metals and
with the temperature of the junction. At the junction of two
metals 4 and B, at the temperature ¢ the Peltier e.m.f. acting
from A to B will be denoted by ,7,,. See § 1, L.

If the two junctions of a thermoelement have the same tem-
perature ¢, P, the em.f. from A to B, will have the same value
at both junctions. Hence no current will traverse the circuit,
but a difference of potential will be developed, B coming to a
potential ,7,, higher than that of A.

Since, however, .2, is a function of the temperature, there will,
when the two junctions are at different temperatures # and 7, be
a resultant Peltier e.m.f. around the circuit, equal, when mea-
sured in the direction around the circuit from A to B across the
junction at temperature 2, to

t2P ab + tlf)ba = 12P¢zb s t1P ab (I)

4. The Thomson Effect. When an electric current traverses a
conductor along which there is a temperature gradient, heat is
either absorbed (transformed into electrical energy) or emitted
(electrical energy transformed into heat), according to the direc-
tion of the current, throughout the portion of the conductor in
which the temperature gradient exists. The rate of energy trans-
formation is directly proportional to the strength of the current,
and depends, so far as temperature is concerned, only on the
temperatures of the ends of the conductor. The energy trans-
formations are perfectly reversible, changing sign, but not mag-
nitude, with the direction of the current.

The absorption or emission of heat just described takes place
in addition to the evolution of heat according to Joule’s law at a
rate proportional to the square of the current.

The Thomson E.M.F. A conductor in which there is a tem-
perature gradient is therefore the seat of an intrinsic e.m.f. which
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is constant for all values of the current for given temperatures
of its terminals. This e.m.f. is called the ZJkomson e.inf. in the
conductor, and is considered positive when it is directed from
the lower to the higher temperature. If 7 and ¢, denote the
temperatures of the cooler and hotter ends of a conductor 4, the
Thomson e.m.f. from the cooler to the hotter end is denoted by
tltgj;'

The fact that the Thomson e.m.f. (or the corresponding en-
ergy transformations) depend, so far as temperature is concerned,
only on the temperatures of the ends of the conductor, follows
from the Jaw of Magnus, which states that in a circuit com-
posed of a single homogeneous metal there is no electric current,
howsoever the temperature varies from point to point. Thus the
Thomson e.m.f. from a point 4 to another point 5 of the circuit
is the same either way around the circuit. (The law of Magnus,
and the deduction therefrom, do not hold in certain extreme
cases, as when the cross-section of the conductor changes sud-
denly, etc.; also, at least in certain cases, when a portion of the
circuit is magnetised, when it is, strictly, non-homogeneous.)

Let /S d¢ denote the rate of heat absorption in the elementary
length dZ of a conductor A4, the mean temperature within the
length dZ being ¢ and the rise in temperature from one end to
the other being 47, when the current / flows up the temperature
gradient. Then the Thomson e.m.f. up the temperature gradient
dt along dL is 4T, = S.dt )

S is, in general, a function of the temperature and varies from
substance to substance. If the temperatures of the cooler and
hotter ends of the conductor are ¢, and ¢, respectively, we have,
on integrating (2) from one end of the conductor to the other,

t
2 T f a7, = f St (3)
4

By an obvious thermal analogy, S, is called the specific heat
of electricity in the metal A at the temperature 2
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In certain substances, ¢. g. copper, .S is positive ; that is, heat
is absorbed when the current flows up the temperature gradient.
In others, as iron, S is negative ; that is, heat is absorbed when
the current flows down the temperature gradient.

In a copper-iron thermoelement, therefore, with junctions at
temperatures ¢, and Z,, the Thomson e.m.f. in each metal has the
same direction as the current in that metal — up the gradient in
the copper, and down the gradient in the iron.

If S, and S, denote the value of S at the temperature ¢ for two
metals 4 and B forming a thermocouple with the cold and hot
junctions at temperatures 7 and ¢, respectively, the total Thom-
son e.m.f. around the circuit in the direction from A to B across
the hot junction is

t;
nts Ta + :2:,7} o tltgy; = mgyl = f (Sa i Sb)dt (4)
t

5. The Total Thermal Electromotive Force in a Circuit consisting
of two homogeneous metals is the sum of the two Peltier e.m.f.s
at the junctions and the two Thomson e.m.f.s along the con-
ductors. Thus if ¥, denotes the total e.m.f. in the circuit,
measured in the direction around the circuit from A to B
across the hot junction,

2
Vo= ulo—ofat | (S.— Sy 5)
1

6. The Law of Intermediate Metals (Becquerel's Law L). If at
one of the junctions, at temperature 7, of two metals 4 and B
forming a thermoelement a third metal C is inserted between A4
and B, and if the two resulting junctions are kept at the original
temperature Z of the junction 45 before the insertion of C, the
total e.m.f. of the circuit is not altered. The total Thomson
e.m.f. in C is evidently zero, since its two ends are at the same
temperature ; hence the law states that

Fos=iLoct L ©)

Thus two wires may be soldered together, instead of being
welded or twisted, without affecting the e.m.f. of the junction.
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§§ 3, 4, and 6 completely account for the law of Volta.

7. The Law of Successive Temperatures (Becquerel's Law IL).
Consider a thermoelement of two metals 4 and 5 with the junc-
tions at temperatures # and 7, respectively. Lét the total e.m.f.
around the circuit in the direction from A4 to /5 across the junc-
tion at temperature # be denoted by ,,V,. Then, with similar
nomenclature, if experiments are made with one junction of the
element at temperature 7 and the other at #, then with the first
at temperature #/ and the other at #/, and so on, and finally with
the first at temperature Z, and the other at temperature 7, it will
be found that, whatever the values of %, #, ¢/, ..., ¢,

tltg\I’ab £ llt’wab + Vo + - - + t,,tg\I,ab (7 )
8. Thermoelectric Power. If 4V, denotes the total thermal
electromotive force around the circuit of a thermoelement A5 in
the direction from A4 to B across the junction whose temperature
is # when the temperature of the other junction is # — 4%, the
differential coefficient ¥ ,/d?, the e.m.f. per unit difference of
temperature, is called the #hermoclectric power of the metal 4
with respect to the metal B at the temperature ¢, or the #hermo-
electric power of the thermoelement A5 at the temperature 7 and
will be denoted be ,p,,. Thus we have

tpab S5 d\I,ab/dz (S)

For the total e.m.f. in the circuit in terms of the thermoelec-
tric power p, we have from (7) and (8)

2o
tltg\I,ab = fd\,Pab = 1‘ 4 abdt (9)
1

9. The Thermoelectric EM.F. of a Copper-Iron Element at
Moderate Temperatures. The relation between the total thermal
electromotive force of a copper iron thermoelement and the tem-
perature ¢ of one of the junctions, when the other junction is kept
at the constant temperature of 0° C., is shown graphically in
Fig. 79, for temperatures up to 600° C. As ¢ increases, the
e.m.f. around the circuit in the direction from copper to iron at
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the junction whose temperature is # increases from a nega-
tive value, for ¢ less than 0° C., to a maximum positive value
when ¢= 275° C. As ¢ continues to increase, the e.m.f. de-
creases, falling to zero at #= 550° C. Beyond this temperature
the e.m.f. is negative, as when # was less than 0° C., that is, the
current flows (or the e.m.f. is directed) from iron to copper across
the junction at temperature z,

2000

|/ ELECTRDMOTIVE FORCE OF A

/ COPPER-|RON THERWO COUPLE]

-100 0 100 200 300 400
Temperatute in Degrees Centigrade
/ 1000

From the curve in Fig. 79, the thermoelectric power of cop-
per with respect to iron, , s ., can be readily obtained for all tem-
peratures within the limits of the curve. For if a tangent is
drawn from the point of the curve corresponding to any tem-
perature 7, the tangent of the angle made by this line with the
axis of temperatures is ’

E.M.Fin Licrovolts
(=}
o

o
o
o
o

Fig. 79.

d\I,ci/di s tpci

The relation between ,p, and ¢ is given in the curve of Fig.
80, which is a straight line. That is, the thermoelectric power
of copper with respect to iron is a linear function of the tempera-

ture, or 2y=dY, [dt = At + A, (10)

where 4, and 4, are constants for the given element (copper-iron).
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The temperature corresponding to the point B(¢= 275° C)
for which p.= o, is called the neutral temperature for copper
and iron. The temperature corresponding to the point C
(2= 550° C.), in passing which the electromotive force around the
circuit is reversed in direction when one of the junctions is at
0° C,, is called the temperature of inversion of copper and iron
with respect to.the temperature 0° C. of the cooler junction.

4
7 THERMQELECTRIC POWER OF |COPPER
WITH RESPECT TO IRON,

100

Temperatire in Degrees Céntigrade

H
\I.’\ 1

NN

Thermoelectric Power in Microvolts per Degree C

Fig. 80.

The total e.m.f. W of the couple is represented in this figure
by the area included between the curve and the axis of tempera-
tures, and between the two perpendiculars dropped from the
curve to the points on this axis corresponding to the tempera-
tures of the junctions. Thus, if the junctions are at temperatures
7 and A4,

ar Y= area ATFA
In like manner,

1Y = area ABFA
4 ¥, = area ABFA + (negative) area BT HB

etc. This follows directly from (9).
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The curve showing the relation between the thermoelectric
power of an element and the temperature is called the #zermo-
electric line of that element. The thermoelectric lines of nearly
all thermoelements consisting of either pure metals or alloys are
straight lines over a considerable range of temperature, like that
of the copper-iron couple, Fig. 8o.

If the thermoelectric line of a given element is a straight line,
the curve showing the relation between the total thermal electro-
motive force in the circuit and the temperature ¢ of one junction,
the temperature #, of the other being kept constant, is a parabola.
For we have, by integration of (10) between the limits # and ¢,

t
i 2 f AV [didt= A(F — 1)+ Aft—~1)  (11)
4y

which is the equation of a parabola with its axis in the negative
direction of the axis of e.m.f.s.

10. Becquerel's Law III. At a given temperature the thermo-
electric power of a metal 4 with respect to a metal Cis equal to

>

A.tric Power with Respect ],!C\

\
W

Temperature \

Thermoele

Fig. 81.

the thermoelectric power of the metal 4 with respect to any
other metal B plus the thermoelectric power of B with respect to

C. Thati
A et tﬁac = tpab + tpbc (IZ)

Hence if the thermoelectric lines are drawn for two metals A
and B with respect to the same metal C (Fig. 81), ,#,, at any
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temperature ¢ can be obtained by subtracting from the ordinate
2., the ordinate #, .

The total em.f. ,, ¥, is given by the area EFGHE of the
figure.

P, the point of intersection of the two lines 4 and B, is the
neutral point, or the point corresponding to the neutral tempera-
ture, for the metals A and B, since there

2 ab=tﬁac_tﬁbc=o

11, The Thermoelectric Circuit Treated as a Reversible Thermo-
dynamic Engine. So far as the Thomson and Peltier effects are
concerned, the absorption and evolution of heat in a thermoelec-
tric circuit are, as we have seen, proportional to the current
strength and the time, or to the total charge which has passed
through the circuit, and completely reversible, changing sign
with the direction of the current. There are other thermal proc-
esses going on in the circuit, however, which are not reversible :
the conduction of the heat from the hotter to the cooler junction,
which bears no direct relation to the electrical phenomena ; the evo-
lution of heat according to Joule’s law at a rate proportional to the
square of the current; and the radiation of heat, which, like its
conduction, bears no direct relation to the electrical phenomena.
Since by diminishing the current the second effect, being propor-
tional to the square of the current, may be made as small as we
please in comparison with the Thomson and Peltier effects, which
are proportional to the first power of the currents; and since the
first and third effects have no direct relation to the electrical
phenomena ; we shall assume that the total Thomson and Pel-
tier em.f.s are not affected by these irreversible processes, and
that the relations between them can be obtained by treating the
circuit as a perfectly reversible thermodynamic engine, all irre-
versible effects being neglected. The application in this manner
of the principles of thermodynamics to the matter in question is
justified by the approximate agreement with experiment of the
results to which it leads.
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The first law of thermodynamics, or the principle of the con-
servation of energy, together with experiment, has furnished us

with the relation
lﬂg‘Irab S tgP t; w T f (S o Sb)dt (13)

If we apply (13) to the case in which # =7 and z,= 7 +d¥,
or if we simply differentiate (13) with respect to # we obtain

AV, |dt=d(P,)|dt+ S, —S, (14)

The second law of thermodynamics furnishes another relation.
Let dH denote the quantity of heat absorbed into the circuit at
the temperature 7, while a charge dg (= current X time) is
carried around the circuit once. Then we have, for the whole
cycle, by the second law of thermodynamics,

ty
o= [atjt = o[ Pafts— Palt+ [ Sem St at]
o

or

tg
Palto=Palt+ [ So=S)jrdi=0  (13)
[}

the temperature being expressed on the absolute scale.

Applying this equation to the case in which 7, =¢ and ¢, =
¢ 4+ d¢, or simply differentiating the equation with respect to ¢,
we obtain

AP,y )]dt + (S, — S)[t="o (16)
(16) may be written
aP,)|dt— Pt + S,—S,=0 (17)
The combination of this equation with (14) gives
4 L= AdY,[d)=F,, [ (18)
L= Lt =14V, [d1 (19)

The combination of (16) and (19) gives
Sa—Sy= —td(,p,)[dt=—td(F,[t)[dt=—taX(¥,)[at (20)
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Since at the neutral temperature for the metals 4 and B
D=0, (19) gives, for this temperature,

Py=t, 0 =0 (21)
That is, when one junction of two metals is at the neutral
temperature, there is at this junction no Peltier e.m.f. and no
absorption or evolution of heat, 7 the absolute temperature, being
always greater than zero.
If 6, denotes the angle made with the axis of temperatures by
the tangent to the thermoelectric line of A4 with respect to B at
the point on the line corresponding to the temperature #, then

(18) gives tan 0, = d(.p,,)[dt =d(P,[?)]d (22)
(20) and (22) give
S,—S,=—t¢tan @, (23)
In the common case in which D is @ linear function of the
temperature, or the thermoelectric line straight, tan 6 , is constant
(K,) for all temperatures, and (23) becomes

S, —S,=—K_,¢ (24)

If 6, is greater than go°, tan @, = K, is negative, and S, — S,
therefore positive. For copper-iron (Fig. 80) S, — S, is thus
always positive.

The experiments of Le Roux and of Tait have shown that for
lead and for certain platinum-iridium alloys S is excessively small
or zero. Hence denoting the metal lead by Z, and putting S,= o,
we have

Sa = Sa = Sl = l‘d(tpal)/d = td(tpal/t)dt = —Ztan eal

Hence, as a matter of convenience, lead is chosen as a standard
metal, and the thermoelectric lines of all other metals and alloys
are, in general, drawn with respect to this metal.

12. The Thermoelectric Diagram. In Fig. 83 are drawn the
thermoelectric lines with respect to lead of a number of metals
and alloys. The line for lead of course coincides with the axis of
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temperatures, and all other substances for which S = o have lines
parallel to this axis. The system of thermoelectric lines is
known as the thermoclectric diagram.

As an introduction to the use of the thermoelectric diagram,
we shall consider in detail the ideal thermoelectric lines 4 and
B of two metals 4 and B with respect to lead, A being a straight
line, as in the common case, and B an irregular curve, Fig. 82.
The construction of the remainder of the figure is sufficiently

o8

>

3]

©

Thermoeiectric Power with Respect to Lead
oL
S|

Fig. 82.

obvious, all the lines being either parallel or perpendicular to the
axis of temperatures, or tangential to the line B,

The thermoelectric power of A4 with respect to lead, ,p,, is
OA, at the absolute temperature zero. From this value it regu-
larly decreases as a linear function of the temperature, passing
through the value ZA at the temperature # and reaching o at
the temperature #. This point is the neutral temperature of 4
with respect to lead. Beyond £, ,p,, is negative.

The thermoelectric power of B with respect to lead, ,p,, is
OB, a negative quantity, at 0° absolute. At 4, a neutral tem-
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perature of B with respect to lead, ,#,,=o0. Between # and #,
Dy 15 positive, having a maximum value at 7. At # and 7,
other neutral temperatures of B with respect to lead, , #,, is again
zero, reaching between them, at the temperature £, a negative
maximum.

At the temperature ¢, P, =1¢p,=ad x AL =area ALOaA.
When ¢ = o, this area is O x 04, =0; when = ¢, its value is
OA;x O=o0; beyond ¢, ALOaA is below the line 07, or is
negative. Thus at ¢, , P, =1 ,pua= 0f, X t, A, the thermo-
electric power #,4, being negative, and the area lying wholly
below OT.

Similarly, at #°, B, = ¢ ,p,,= area BLObB. When ¢= o, this
area is O x OB = 0; between #= 0 and # =/, the area is nega-
tive, or below OT; at #, #, and ¢, the neutral temperatures for
B and lead, the area is zero; from 7 to 7 the area is positive,
and from Z; to 7, negative.

At % S=t¢x(—tan 8,)=A4A4"x AA"[A A"=AA". Since
tan 6, is constant and negative (6, greater than 9o° and less
than 180°), S, = AA" is always positive, or 44" is always
drawn upward from 4.

The quantity S, d¢is equal to AA” x A" A" = area Aaa’ A’ A.

In like manner, at #°, S,=¢ x (—tan 8,)=B'B"x BB" [B/B"
= BB". When the point B” is below the point B (0, less
than 9o°), S,= BB" is negative. - Thus from /=0 to z=7¢,
and from z=1¢ to?=1¢,, S, is negative; while from z=7¢, to
t=t, S, is positive. At the temperature = #/ it has the posi-
tive value B,”/5B,/.

The quantity — S, df is equal to area BB'DB'''B'B = area
BboY' B'B.

At the temperature t, g, = ,p — Ly =LA — LB =BA. BA
is positive, or 4 is above B, from #= 0 to = ¢, (a neutral tem-
perature for the thermocouple A5), and from ¢ = #, to ¢ = 7, (ad-
ditional neutral temperatures for the couple A5), but is negative

(4 below B) from ¢ = ¢, to t = £,
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The total thermal electromotive force in a circuit consisting of
the two metals 4 and B, with junctions at temperatures # and

Z,

kis

25 2y :
ot ¥ ap = f Dt =f BAdt = area A B B,A,A,
4 t

This result can be obtained also from the relation (13). For
(S, — S,)dt = area Aaa’ A’ A 4 area BbY'B'B
Lo
f (S, — S,)dt = area A\aa,4,4, (1) + area B5,6,5,B, (2)
4 .

and
ooy — 1Py = area Ay b, B, A, (3) — area Aab,B A4, (4)

al 1" ab

Hence

Vo= (1) +(2) + (3) — (4) = area 4,5,5,4,4,

as proved otherwise above.
If one junction of the thermoelement A5 is kept at the con-

stant temperature 7, while the temperature 7 of the other junc-
tion, at first equal to ¢, is gradually increased, ,,¥,, will increase
from zero, its value when ¢ = ¢, until # = 7, when it has the value
0, ¥ =area A ABA. If ¢is increased beyond z, to # for
instance, the e.m.f. will diminish, since

4
¥ =AABA, + ]; Dadt=AAB A (1)

a3

i AsB4B4"A4IA4A3 (2)

D, being negative between f=4¢ and #=1¢. When area (2)
becomes equal in magnitude to area (1), ,,¥,, is zero,and # is
a temperature of inversion for 4 and 7B with respect to 7. As ¢
is still further increased, the e.m.f. increases negatively until z=¢,
beyond which it increases algebraically, or decreases negatively,
withanother inversion at B/ (area B/ A/ A B, = areca A,B/ A/ A),
until /=4, Beyond this temperature ,, ¥, increases negatively,
inverting again at B, and thereafter remaining negative.
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When # =7, and 7= ¢, the Peltier e.m.f.s at both junctions
are zero, no heat being there absorbed or evolved, and ,, ¥, =

1357\1,

al

L~
50 /

ty
, = (negative) area A,B,4. 4,4, (1) = f (S.— S)dr. The
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e.m.f. is negative, or the current flows (if the circuit is closed)
from B to A across the hot junction at temperature 4,

When ¢ =¢, and ¢=1¢,,,V, =,,7,=area A A BA A e
and is positive, or directed from A to 5 across the hot junction.

If #, =¢ and ¢=¢, the Thomson e.m.fs are still the only
e.m.fs in the circuit and ,, ¥, = (1) — (2). Since (1) is greater
than (2), the resultant e.m.f. is negative, or the current flows from
B to A across the hot junction.

For an extended discussion of the electron theory of thermal
electromotive forces reference must be made to a previously

mentioned article by Drude, Ann. der Physik, 111., p. 369, 1900.

13. The Intrinsic EXM.F. of a Reversible Voltaic Cell. The
Theory of Kelvin and von Helmholtz. By a reversible cell is meant
a cell in which all the processes, both chemical and physical,
are completely reversed when the direction of the current is
reversed, the Joulean evolution of heat excepted. Such, for
example, is a Daniell cell, which consists of a zinc electrode
immersed in a solution of zinc sulphate and a copper electrode
immersed in a solution of copper sulphate, all contained in the
same vessel, interdiffusion of the two solutions being prevented
by a porous cup between them or by other means. When a
charge Q (§ 5, IX.) passes through the cell from the zinc (/= 2)
to the copper (¢/= 2), one half gram ion of zinc goes into solu-
tion and one half gram ion of copper is deposited on the copper
electrode ; and when the same charge is passed through the cell
in the opposite direction, one half gram ion of copper goes into
solution and one half gram ion of zinc is deposited on the zinc
electrode. The thermoelectric processes occurring at the con-
tacts of the dissimilar substances are also reversible with the
current. The Joulean heat, which is proportional to the square
of the current and irreversible, may be made as small as desired
in comparison with the energy transformed reversibly, which is
proportional to the first power of the current, by diminishing the
strength of the current.
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Let the e.m.f. of a reversible cell at the absolute temperature
¢ be denoted by W¥. Let the electrodes be connected up to the
plates of a continuously adjustable condenser so that by grad-
ually diminishing or increasing the capacity a charge may be
sent very slowly in either direction through the cell, the Joulean
heat being made negligible.

Let the system now be carried through a reversible cycle as
follows: (1) With the cell at the temperature ¢, let the capacity
of the condenser be slowly increased until a small charge Q/#,
where 7 is a large number, has passed through the cell. The
voltage of the cell remaining constant through the process, ex-
ternal work will be done by the cell equal to WQ/z The
energy of the condenser is increased by YW (Q/7, and the me-
chanical energy of the system increases by the same amount
(§55, L)

The source of the energy transformed by the cell is, in general
partly chemical and partly thermal. (The law of Volta for a
metallic circuit at uniform temperature does not hold for a circuit
partly electrolytic.) ILet /denote the net energy transformed
from chemical into electrical energy when a charge Q traverses
the cell at the temperature 7 in the direction of the em.f. Then,
if /is not equal to ¥ Q, an amount of heat

H=YQ[n— ][n
is absorbed by the cell during the above process, according to
the principle of the conservation of energy.

(2) Let the cell be cooled to the temperature /— 4. During
the process an amount of thermal energy which may be made
wholly negligible by sufficiently diminishing 47, is abstracted
from the cell.

(3) With the cell at the temperature # 4 4%, let the capacity
of the condenser be diminished until a charge Q/# has passed
through the cell in the opposite direction. Then, if 7’ denotes
the quantity of heat abstracted from the cell during this process,

H = Q[n-(Y —d¥[dtdd) — 1[n-(] — d]|dt df)
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(4) Finally, let the cell be heated to the original temperature
¢, a negligible quantity of heat, sensibly equal to that abstracted
in (2), being absorbed. The cycle is now complete.

Applying the second law of thermodynamics to the cycle, we

G (H—H)|H=dt|t
-that is
(YO —/+ [Q¥—aY [dtdt)—(J—d][dtdt)] [(¥Y Q—])} =/t

VO — )= Qtd¥[dt+ td]]dt (27)

which, since d//dt is, according to experiment, sensibly zero,

may be written
VO —~]=Qtd¥V/dt (28)

If '\ [dt is positive, ¥ O is greater than /, or the work done by
the cell is greater than the energy supplied by the chemical re-
actions, and a quantity of heat /7= ¥ — / is absorbed by the
cell and transformed to make up for the deficiency. If ¥ /dfis
negative, heat is given out by the cell. If d¥/dt is zero, which
is nearly true in the case of a Daniell cell, ¥ Q = /, and no ther-
mal energy is on the whole transformed.

(28) may be written

y V=]/Q+td¥]ds (29)

which is von Helmholz’s formula. From this formula the e.m.f.
of a reversible cell can be calculated after observing /, 0, ¢, and
d¥ [dt. The agreement between the e.m.f. calculated in this
manner and the em.f. determined by direct experiment is, in
many cases, very close, i

14, Intrinsic EM.F. at a Single Interface. Single Difference
of Potential. The formula of von Helmholz, just developed for a
complete electrolytic cell, which may contain several electrolytes ‘
and-always contains two electrodes, with an intrinsic e.m.f. at
each interface (and sometimes throughout each electrolyte) can
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