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CORRIGENDA.

Page 4, line i6,for unelectrified (sixth word} read electrified

Page 33 lme io,/<?r intensity read tension

Page 127, line i,for Ad 2
read d 2 A

Page 128, line 7, insert 5. at beginning of line.

Page 130, line 8, for 5 read 6
..

Page 203, lines 5, 6-7, 24, cancel isotropic

Page 204, line \,for ^ - V
2
read Vu

Page 212, lines 6-7, cancel the expression in brackets.

Page 216, lines 27 and 30, cancel (39) and (40)

Page 221, line 28, for V^
- V

2
=

12
rao/ F

12
=

21

Page 244, line 4, ^r to 2;^;^ (one form of)

Page 290, line 14, for 3 read 6

Page 315, line 22, for 25 read 26

Page 426, line 9, ^/fcr and /;/^r/ even for small values of r

Page 426, line 10, for comparable with read greater than a
small fraction of

Page 441, line 29, for (9) read (a)

Page 450, lines 18-19, substitute small bodies with equal and

opposite charges are made to vibrate symmetrically with (ap-

proximately) simple harmonic motion in a straight line about a
fixed point, a wave system
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PREFACE.

In this treatise I have tried to present in systematic and defi-

nite form a simple, rigorous, and thoroughly modern introduc-

tion to the fundamental principles of electromagnetic theory,

together with some of the simpler of their more interesting and

important non -technical applications. The work makes no pre-

tense to completeness, but is written for the serious student of

physics, who will make liberal use of more detailed treatises, of

hand-books, and of journals, as occasion demands.

I am of course indebted to many books and memoirs. My
obligations are especially great, as the most cursory examination

of the book will show, to the works of Maxwell, Heaviside, and

Poynting. I am also much indebted to Professor A. G. Webster

for the use of a number of excellent diagrams from his treatise

on electrical theory.

S. J. BARNETT.

STANFORD UNIVERSITY, CALIFORNIA

June, 1903.
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ELEMENTS OF

ELECTROMAGNETIC THEORY.

CHAPTER I.

GENERAL ELECTROSTATIC THEORY.

V electrification by Contact. Positive and Negative Charges.

Let one end of an ebonite rod and a dry woolen cloth be rubbed

01 rongly pressed together and then separated ;
and let a second

roc nd cloth be treated in the same way : The rubbed part of

ea . cloth will be found, on trial, to be attracted toward the

n d part of each rod, while the rubbed part of each cloth will

be pelled from the rubbed part of the other cloth, and the

i jd part of each rod from the rubbed part of the other rod.

. .ese are examples of electric phenomena. The region in

which they are manifested is called an electric field (
1
1),

and

medium which permeates this region air and aether in the

al e case and through which electric influences are trans-

r
''

xl is called a dielectric. The parts of the ebonite and wool

jed together are said to be electrified, or to possess electric

'rges. The two pieces of woolen cloth are said to have like

rges, since they were similarly treated and since what is

.pelled from one is repelled from the other, and what is attracted

toward one is attracted toward the other. Similarly, the two

ebonite rods are said to have like charges. But the wool and the

ebonite are said to have unlike or opposite charges, since what is

repelled from one is attracted toward the other.
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Like ebonite and wool, any two different substances, or por-
tions of the same substance in different physical conditions,

exhibit electric properties after intimate contact and separation.

One of the bodies behaves like ebonite rubbed with wool, the

other like the wool.

An electric charge like that of wool after contact with ebonite

is called a positive charge, and a charge like that of the ebonite,

a negative charge. The terms positive and negative are justified

by the opposite properties of the two kinds of electrification, but

there is no reason except convention and resulting convenience

why the two terms should not be interchanged.

In addition to the forces between electrified bodies, forces are

found to exist, in general, between an electrified body and an

insulator
( 2) not electrified (Chapters IV. and VI.).

2. Conductors and Insulators. Electrification by Conduction.

A rod of ebonite electrified at one end exhibits electric properties

only at that end
;

while a rod of metal, held by an ebonite

handle and electrified at one end, becomes electrified at once

(apparently) all over its surface. Substances like the metals, by
which an electric charge is distributed with extreme rapidity, so

as to come into a state of equilibrium within (usually) a small

fraction of a second, are called electric conductors. A body

charged by connection with an electrified body through a con-

ductor, like the far end of the metal rod mentioned above, is said

to be electrified by conduction. Substances like ebonite, over or

through which an electric charge is transferred only with extreme

slowness, are called electric insulators or non-conductors.

Among ordinary molecular substances perfect insulators and

perfect conductors do not exist, no such substance completely

and for an indefinite time preventing all transfer of electrification,

and all offering more or less obstruction to such transfer. There

is every reason to believe, however, that free aether (a
" vacuum ")

and clean dry gases containing no (electrolytically) dissociated

molecules have the properties of a perfect insulator (Chapter IX.).
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Among substances possessing high conductivity are the metals,

graphite, and salt or acid solutions
; among those with high in-

sulating properties are (undissociated) gases, fused quartz (cold

and in the solid state), ebonite, cold glass, silk, and wool. A
substance which is an excellent insulator in one condition, how-

ever, may in another condition have the properties of a conductor.

Thus cold glass is an excellent insulator, but as the temperature

is raised its insulating properties disappear. Also, under very

great electric stress the insulating properties of all molecular

substances break down.

A body completely surrounded with insulators is said to be

insulated.

A conductor can be completely discharged by bringing it into

contact at any one point with the inner surface of a hollow closed

conductor
( 4), such as the walls of the room within which the

experiments are performed, provided there are no (insulated)

electrified bodies within. When connected to the walls of the

room, or the earth, the conductor is said to be earthed. From

an insulator the electrification can be entirely removed only by

applying a conductor at every electrified point, e. g., by immers-

ing it in a conducting gas or liquid.

3. Electrification by Induction. An insulated conductor, when

brought near an electrified body, i. e., into an electric field, itself

becomes electrified. Examined by the methods of I, the

charges of the more remote and nearer ends of the conductor are

found to be similar and opposite, respectively, to that of the

original electrified body. A conductor electrified in this manner

is said to be electrified by induction.

If the conductor, while still insulated, is removed from the

electric field, all signs of electrification disappear. But if, while

still in the field, it is connected with the walls, or earthed, the

electrification similar to that of the original charged body disap-

pears, while the opposite electrification of the near end remains.

If the conductor is now insulated and removed from the original
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electric field, this charge becomes more evenly distributed over

its surface
( 42). In this manner any number of conductors

may be given charges opposite to that of a given electrified body

without, as may be proved by the method of 5, diminishing or

increasing the latter' s electrification.

4-8. Experiments with Hollow Closed Conductors. Electric

Screens. Let A denote an insulated hollow conductor having a

closely fitting conducting lid, B, with an insulating handle. Let

A be connected with an electroscope or electrometer (Chapter

III.), C, by means of which any change in the state of electri-

fication of its exterior (or interior) surface may be detected
;
and

let A be kept closed except when another body is being intro-

duced into its cavity, or removed therefrom, or its position in-

side (or outside) altered.

4. (i) Let the electrometer be placed outside of A. If A is

initially unelectrified, and an insulated ^electrified conductor, D,

is now introduced into A without touching it, the inner and outer

surfaces of A will become electrified by induction (3) with

charges opposite and similar, respectively, to that of D. And
the electrification of the external surface, as indicated by the

electrometer, will be found to remain absolutely unaltered how-

soever D is moved about within, even when it is brought into

contact with A
;
but D, on being insulated after contact, and then

removed from A's interior, will be found completely discharged.

This process may be repeated indefinitely, D always becoming

completely discharged on coming into contact with the inner

surface of A. If A is initially electrified in any manner, the phe-

nomena will be precisely the same, except that the external

electrification and the corresponding indication of the electrom-

eter will be different.

(2) Let the electrometer be placed within A, either connected

with A metallically, or insulated therefrom. In this case it will

be found that if there are insulated charged bodies within A, the

electrometer will give a certain deflection
;
that if there are no
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insulated electrified bodies within A, the electrometer will give

no deflection
;
and that its indication in either case will remain

absolutely unaltered howsoever the electrification of the exterior

of A or of external bodies is changed, even if A is connected to

the walls of the room.

These experiments are due to Faraday, who constructed for the

purpose of performing (2) a closed conductor large enough to en-

able him to make the observations while himself inside the cavity.

An experiment similar in principle to those of Faraday, but

less general, performed earlier by Cavendish and repeated later

by Maxwell with all the precision of modern investigation, gave
identical results.

From the experiments just described it follows that, when

there is electrical equilibrium,

1. An electric charge cannot exist in the substance of a con-

ductor, or on the inner surface of a hollow closed conductor

(unless there are insulated electrified bodies within). For D, on

being removed from A, of whose substance it formed a part,

electrically, while in contact, was always unelectrified.

2. An electric field ( 11) does not exist within the hollow

of a closed conductor (unless there are charges inside). For in

(2) the electrometer was unaffected (by induction or otherwise)

no matter what the external electrification, except when there

were insulated charges within.

3. The electric charges and electric- fields within and without a

hollow closed conductor are absolutely independent of one another.

The conducting shell thus completely screens each of these re-

gions from all static effects in the other.

4. An electric field does not exist within the substance of a con-

ductor. See 15.

5. Equal Charges. Two electric charges of the same sign

are, by definition, of the same magnitude if they produce the

same effect on the electrification of the vessel A when intro-

duced in succession separately.
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Similarly, two charges of opposite signs are, by definition,

equal in magnitude if they produce no effect on the electrification

of A when introduced simultaneously.

These definitions are independent of the particular closed

conductor A used, as two charges defined as equal by means of

one such vessel are found to remain equal when tested in the

same way with any other hollow closed conductor.

6. Positive and Negative Charges are Always Developed

Simultaneously in Equal Amounts. If two bodies electrified by
contact are introduced into the vessel A simultaneously, the in-

dication of the electrometer remains unaltered.

If an electrified body is insulated within A
t
and if an insulated

uncharged conductor is then introduced in addition, the latter

becomes electrified by induction, in conformity with 3, but the

indication of the electrometer remains unaltered.

In these cases, therefore, positive and negative charges are

developed in equal amounts
( 5); and in the same way it may

be shown that this is always the case, howsoever the electrifica-

tion is produced.

7. The Total Quantity of Electrification is Unaltered by Con-

duction. If the two insulated bodies of the last experiment are

brought into contact with one another while inside the vessel A, or

if they are brought into contact with the inner surface of A itself,

conduction occurs, but no effect on the external electrification is

produced. From this it follows that when conduction occurs,

the total (algebraic) amount of electrification is unaltered.

Corollary. The charges induced on the inner and outer sur-

faces of A when an electrified body is introduced and insulated

within, as in 4, are each of the same magnitude as that of the

visulated body. For when D touches A, the charges of D and

the inner surface of A completely disappear by conduction, since

D on removal is unelectrified
;
thus their algebraic sum is zero.

And the (opposite) charges on the inner and outer surfaces,

being induced, must, by 6, be equal in magnitude.
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8. Electric Charges of Both Kinds Measured in Terms of a

Single Arbitrary Unit. In addition to the hollow conductor A
of 4-7, let there be provided another similar insulated vessel

B, sufficiently large to admit A through its opening ;
and let the

conductor D be given a certain charge (suppose positive for the

sake of definiteness), which will be adopted as a provisional unit.

If now D is brought within A and kept insulated, the outer

surface of A will have unit positive charge. If A is brought in-

side B and then into contact with it, this charge will disappear, as

will also the charge induced on B's inner surface, leaving the

outside of B with unit positive charge. If A is now removed

from j5's interior and then D from A, the negative charge in-

duced on A's inner surface will pass to the outer surface and

will disappear when A is discharged. This complete process

may be repeated any number of times. Each time B will acquire

an additional unit positive charge, and thus may be given a

measured positive charge which is any integral multiple of the

original unit.

To give B a negative charge measured in terms of the same unit,

the outer surface of A must be brought into contact with the

inner surface of a hollow closed conductor after the introduction

of D, when the positive charge will disappear from the outside,

leaving unit negative charge upon the inner surface. When D
is removed, this charge will pass to the outer surface of A, and

will be given up wholly to B when A is brought into contact

with B's interior. B will now have unit negative charge, and by

removing A and repeating the process may be given any number

of units negative charge desired.

To obtain any submultiple, i/, of the original charge, it is

only necessary to arrange symmetrically in contact the original

conductor D and n I precisely similar and equal conductors,

all other bodies, except the surrounding dielectric, supposed

homogeneous and isotropic, being so remote as to have no appre-

ciable effect. Then, by the principle of symmetry, each con-

ductor will take ijn of the original charge.
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9. The Law of Coulomb. Let two small spherical insulated

conductors which can be given any charge desired, measured in

terms of some provisional unit by the methods of 5 and 8,

be so connected with a dynamometer, such as a gravity balance,

that the force F between them can be measured as their charges,

q l
and qv the distance L between their centers, and the surround-

ing dielectric are varied. ,
Then it is found by experiment that

?

(1) However the distance L and the charges g l
and qz

are

varied, provided all the experiments are performed in the same

dielectric, and provided that this dielectric is homogeneous and

isotropic and extends to a great distance on all sides of the elec-

trified bodies, F is in the straight line joining the centers of the

conductors
;

is directly proportional to the product of their

charges, being repulsive (considered positive) when the charges

are like and attractive (considered negative) when the charges

are unlike, as already known from I
;
and the greater L in com-

parison with the linear dimensions of the charged bodies, the

more nearly inversely proportional to Z2
.

(2) In different dielectrics, with all other conditions the same,

the force is different, and always less than in vacuo (free aether).

The general expression for F
t
when the linear dimensions of

the (not necessarily spherical) charged bodies are negligible in

comparison with their distance apart, is therefore

- ::

'

F-AqjJcD :

'

(i')

where c is a constant depending on the medium in which the ex-

periments are performed, called its permittivity or dielectric con-

stant, and A is a positive constant depending on the units in

which qv q2 ,
L

y F, and c are expressed,

(i') expresses Coulomb's law-.

The Rational Electrostatic Unit Charge. Unit Permittivity. In

what follows, unless the contrary is stated, the centimeter will

be used as unit length, the dyne as unit force, the permittivity

of free aether, which will be denoted by C
Q ,

as unit permittivity,



GENERAL ELECTROSTATIC THEORY. 9

and as unit charge the charge which each of two indefinitely

small bodies must have in order that when at a distance of I cm.

apart in a vacuum the force between them may be 1/477 dyne.

This unit charge is called by its originator, Oliver Heaviside, the

rational electrostatic unit charge, and C
Q
is called the electrostatic

unit permittivity.

Methods of measuring permittivity are discussed in Chapter
VII.

The conventions just made give, by the above equation,

A = I/47T, and the equation reduces to

F' = qfalcqirL* (l)

which, in addition to being a particular case of (V), is a particular

case of (2).

The direct experimental investigation of the law of force is

due to Coulomb, but is not capable of great precision. The law,

as stated by Coulomb, is most satisfactorily established by the

consideration that all experimental knowledge is in perfect accord

with an electrical theory based largely upon the assumption that

the laws expressed in (i) are exact.* A reason for the law of

inverse squares and a justification of the term rational unit will

be given in 5, II., and 24.

The dimensions of electric charge and the other electric quan-

tities, as well as other systems of units, will be considered in

Chapter XIV.

For rational electrostatic the abbreviation RES will hereafter

be employed.

10. If any one of the experiments described above is repeated
in different dielectrics, the results in all cases will be identical,

except that, in conformity with 9, the force between two

charged bodies will always depend on the surrounding dielec-

tric.

*The common deduction of the law of inverse squares from the results of the

Cavendish experiment cannot be accepted as valid. See The Physical Review, Sep-
tember, 1902, p. 175.
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11. Electric Field, Electric Intensity. Any region in which

an electrified body is acted upon by a mechanical force in virtue

of its charge, or in which an uncharged conductor is charged by

induction, is called an electric field. Such a field exists, for ex-

ample, around an electrified body ( i),
but may also exist with-

out the presence of electrification (Chapters VI. and XIII.
).

As a result of experiment, it may be stated that the force F
acting upon a small charged body, or small portion of a charged

body, at any point of an electric field is proportional to its charge

q provided that the distribution of electric charge (real and

apparent, Chapter IV.) originally accompanying the electric field

remains undisturbed by the introduction of q. Expressed in the

form of an equation, this relation is

F- Eq (2)

where is a constant for the given point of the field called the

electric intensity, electricforce, or voltivity at the point.

The conditions for the rigorous proof of this relation by direct

experiment would be impossible to realise, and the remark at the

close of 9 with reference to the establishment of Coulomb's law

applies without alteration to
(2).

As (2) shows, E is not a mere number, but a physical quan-

tity specifying the state of the field and such that its product by
an electric charge is a mechanical force. E is clearly a vector

quantity, its direction being that of the force on a positively

charged body, and its magnitude the number of dynes per unit

charge. When q is expressed in the RES unit charge and F in

dynes, E is said to be expressed in the RES unit electric inten-

sity.

The term electric field is often used to denote the collective in-

tensity in a region, instead of the region itself. The direction of

the field at any point is the direction of the intensity, and the

strength of the field \s the magnitude of the intensity.

12. The Superposition of Electric Fields. Experiment also

shows that any number of electric fields (up to a certain limit,
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when the dielectric breaks down and conduction occurs) may be

superposed upon one another, the effect of each being indepen-

dent of all the rest. Electric intensities, being vectors, may
therefore be compounded like all other vectors for which the

principle of superposition holds, the resultant intensity at any

point being the geometric or vector sum of the component in-

tensities.

An electric field is uniform if its intensity is the same at every

point. Since E is a vector, this condition necessitates a constant

direction as well as a constant magnitude. In most cases E
varies from point to point. Examples of uniform and other elec-

tric fields, as well as of the superposition of electric fields, will

be given below.

13. Electric Displacement or Induction. Electrisation. The

physical nature of every electric quantity is at present unknown.

Many phenomena, however, support the hypothesis that c is an

elastic permittivity (i. c., the reciprocal of an elastic modulus)

and that E is an elastic stress. For the sake of constructing a

mechanical conception of the electric field we shall provisionally

assume c and E to be a permittivity and a stress, respectively.

The so-called permittivity c will then be the actual permittivity

of the aether or aether entangled in matter for the (unknown)
kind of strain concerned.

Now, in the case of ordinary elastic substances subjected to

slight mechanical strains we have, very approximately, the rela-

tion (Hooke's law) : strain!siress
= 1 1modulus = permittivity, or

strain = permittivity x stress. If then c is a permittivity of a cer-

tain type and E a stress of the corresponding type, their product

cE must measure the corresponding strain or displacement of the

dielectric.

Whether this conception is correct or not, the product cE is

called the electric displacement (also the electric induction), and is

denoted by D. That is

D=cE (3)
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E being a vector, and c being the same for every direction of

the intensity, since isotropic substances only are to be considered

here, D is a vector with the same direction as that of E. When
c and E are expressed in RES units, D is said to be expressed in

the RES unit displacement (or induction).

A substance in which there is electric displacement is also said

to be in a state of electrisation, or to be electrised. If the dis-

placement and permittivity are uniform throughout, the electrisa-

tion is said to be uniform.

14. Mechanical Conception of the Electric Field. A definite

conception of the electric field based on the assumptions made

above will now be given. According to this conception (which
leads to results by no means wholly consistent, however) the

aether is the simplest possible kind of dielectric and is composed
of two kinds of minute, incompressible, elastic cells, called

a. No electric displacement b. Electric displacement
directed to left

Fig. 1.

positive and negative cells, respectively, so arranged (in rows),

Fig. I, a, that only unlike kinds are in contact, and that no slip

between adjacent cells is possible.

When the aether supports an electric field, the cells remain un-

changed in volume, but their shapes are distorted and their centers

of volume displaced, Fig. I, b
y
the centers of the positive cells in

the direction of the electric intensity, and the centers of the

negative cells in the opposite direction. The electric displace-

ment is measured by the relative linear displacement of the

centers of volume of the cells of a positive row with reference

to the centers of volume of the adjacent negative rows divided
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by the distance between two adjacent rows. The electric inten-

sity is the force per unit area in the direction of D acting upon
the positive cells, or the force per unit area in the opposite direc-

tion to that of D acting upon the negative cells, in any plane

passing through the direction of D. For small displacements,

the displacement and intensity so measured will be proportional,

as required by (3) in all cases. The total mechanical force acting

upon the whole substance within any element of volume is zero.

From what precedes and from the nature of the distortion as

shown in the figure, it is clear that there is a tension in the

aether parallel to the intensity, and a pressure in all directions

normal to the intensity. That this deduction from our mechanical

conception is consistent with fact is demonstrated in 40-4 1 .

When the dielectric, instead of free aether, is a molecular sub-

stance permeated by aether, the same general conception is use-

ful. Like the aether which permeates the matter, its molecules

may be thought of as composed each of two constituents, positive

and negative atoms, or atomic groups, or corpuscles (Chapter

IX.), which suffer a displacement similar and in addition to that

of the aether cells entangled among them. However this may
be, the permittivity of all molecular substances yet investigated

is greater than that of free aether. Thus, in ordinary matter a

greater displacement than in free aether accompanies a given

intensity.

In perfect insulators, according to our conception, the cells

cannot slip over one another, and thus elastic displacement only

can accompany electric intensity. In an imperfect insulator the

cells can slip only with extreme slowness, and more slowly the

more highly insulating the substance. In a conductor electric

stress can exist only temporarily (unless an impressed electro-

motive force, Chapter VIII., is continuously acting), and is

always accompanied by rapid slip. That the substance of a con-

ductor cannot support electric displacement in a static field will

be shown in 15. The mechanical conception of electric con-

duction will receive further consideration later on (Chapter IX.).
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15. Electric Displacement and Intensity Zero within a Conduc-

tor in a Static Field. We may now restate
(4), 4, as a corol-

lary of (3), 4 : A static field cannot exist within the substance

of a conductor. For the fields within and without a hollow

closed conductor are absolutely independent of one another,

however thin the conducting shell. Hence they cannot be con-

nected by an electric field or electrically strained medium, and

the whole substance of a conductor, except an extremely thin

surface layer, is without electrical significance (in
a static field).

Thus the electric intensity and displacement in the outer region

terminate at the outer surface of the conductor, and the electric

intensity and displacement of the inner region (if
the conductor

is hollow and encloses insulated electrified bodies) terminate at

the inner surface.

16. Lines and Tubes of Intensity, Displacement, etc. A line

so drawn in an electric field as to have at every point along its

length the direction of the electric intensity (electric force), elec-

trisation, or displacement (induction) is called a line of intensity

(force), electrisation, or displacement (induction^.

A tubular surface the elements of which consist wholly of

lines of intensity or induction (etc.)
is called a tube of intensity

or induction (etc.).

The strength of a tube of induction or displacement is defined

in 23.

17. Voltage, Electromotive Force, and Difference of Potential.

The work done by the electric field in carrying an indefinitely

small body with electric charge q along an element dL (Fig. 2)

of a path L between two points /\ and P
2
of an electric field, if

dL makes an angle 6 with the electric intensity E, is

(4)

and the total work done in carrying q along L from P
l
to P

2
is

(5)
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the integral being taken from P
l
to P.

2
. To carry q from P

2
to

P
l along the same path would of course require the expenditure

of the same amount of work against the field by an outside agent.

In the same way the work

done by the field in carrying the

body with charge q from P
l
to

P
2 along another path L' is

W = q$E
f costf' dL'.

If the electric field is a static PI

field, W= W ,
and therefore

fcos QdL = f
f cos Q'dL*.

For if the work done along any path L were greater than that

done along any other path L'
,
a positive amount of work,

IV W
t
would be done on the charged body by the field dur-

ing each completion of a circuit from P
l
to P

2 along L and back

along L
1

,
and yet the energy of the field would remain unaltered.

Since this is inconsistent with the principle of the conservation

of energy, jpjS
cos 6 dL is the same for every path between two

given points in an electrostatic field.

The line integral of the electric intensity, E cos 6 dL = Wjq,

along a path L from P
1
to P

2
is called the electromotive force

(e.m.f.) or voltage along the path L from P
l
to P

2
. When, as in

the case just considered, this quantity is the same for every path

from P
l
to Pv it is called also the difference of potential between

P
1
and P

2 ,
or the/0// of potential from Pl

to Pv
Since a voltage is a quantity of work divided by a charge, it is

evidently not a vector.

When Wis expressed in ergs, and q in the RES unit charge,

or when E is expressed in the RES unit intensity, and L in cm.,

the voltage (
= Wjq = \

E cos dL) is said to be expressed in

the RES unit voltage. In magnitude, the voltage between two

points is equal to the work done in carrying unit charge from
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one point to the other along the given path, or any path if the

voltage is a potential difference.

18. Potential. Equipotential Surfaces. The fall of potential

from a given point P to any point at an infinite distance from all

electrified bodies is called the electric potential at P.

This term is also commonly applied to the fall of potential from

P to any point of the earth. That the two definitions are not

identical will be shown in 6, Chapter II.

The symbol V will be used to denote the potential at a point

P. In conformity with this notation, the fall of potential from a

point Pl
to a point P2

will be written V
l

V
2 ,
V

12 , or, where there

is no danger of confusion, simply V.

A surface which is everywhere normal to the electric intensity,

and between any two points of which there is therefore no voltage,

is called an equipotential surface, or simply an equipotential. It is

clear that an equipotential surface is always a closed surface or

else (in certain ideal fields) an infinite plane.

19. Electric Intensity in a Static Field the Space Rate of Dimi-

nution of Potential. For the voltage from P^ to P
2
we have

V
l

- V
2
= /cos BdL = f L dL

by writing EL for E cos 0, the component of electric intensity in

the direction of dL. That is, the potential of P
l
exceeds that at P

2

by EL dL from P
l
to P

2 ;
or the diminution of potential from P

l

to P
2

is j/j dL from P
l
to P

2
. If the two points are taken an

infinitesimal distance dL apart, the diminution of potential along

dL becomes dV
y
and the integral becomes simply EL dL. Thus

we have
- dV= EL dL

and therefore

EL = - dVldL (6)

That is, the component of electric intensity in any direction is the

space rate of diminution of the electric potential in that direction.
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V obviously diminishes most rapidly along a line of intensity,

and not at all along a line in an equipotential surface.

20. Electric Field Mapped out by a System of Equipotentials.

If a line of intensity is denoted by Nt
the last equation gives

EN=E= -dVjdN.

From this it follows that an electric field can be completely

mapped out by a system of equipotential surfaces so drawn that

the voltage between successive surfaces is constant. For the

direction of the intensity at any point is that of the normal to the

equipotential passing through the point ;
and its magnitude is,

by the above equation, proportional to the number of successive

equipotential surfaces crossed at the point per unit length by
this normal or line of intensity. Maxwell's method of drawing
such an equipotential system is described in 7, n, 13, 14, II.

21. Electric Flux. Let dS, Fig. 3, denote an element of area

at any point of an electric field where the displacement is D, and

let the angle between D and the normal N to dS be denoted by
0. The product of dS into

the component of D normal

to dS, that is, D cos 6 dS,

is called the electric flux

across dS.

To obtain the electric flux,

II, across an extended sur-

face S, over which D may
vary in any manner, the in-

tegral of D cos 6 dS must

be taken over the whole sur- Re- 3 -

face. Thus
n =

fl> cos dS (7)

22. Gauss's Theorem: The electric flux outward across any
closed surface 5 so drawn as to enclose a total charge q is equal

to q.
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The theorem will first be established for the case in which all

space is filled up with a single homogeneous isotropic dielectric

with permittivity c (or with any number of isotropic dielectrics all

of which have the same permittivity c).

Fig. 4.
.

Consider first the field about a charge q concentrated at P,

Fig. 4, any point within 5, a closed surface of any shape. For

the magnitude of the displacement, D, at any element of area

dS, distant L from P, we have from
(i), (2), and (3)

D=cE= c(ql4 TT cL2

)
= qj^irL

2

In direction, D and E are evidently radial from P (or to P if

q is negative).

For the flux across dS we have therefore

dH = D cos 6 dS = q dS cos 0/47rL
2 = q dS'l^D = ql^rr da>

where dSf = dS cos 6 is the projection of dS normal to L, and

d<> = dSf

JL? is the elementary solid angle subtended at P by dS
and dSf

',
that is, the angle of the elementary conical tube of in-

duction cutting out the area dS.

If the surface is folded, so that some of the tubes cut it more

than once, as the tube of angle da which cuts out the areas dS
it
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dS
2 ,

-

,
dS

b
in the figure, each of these tubes must obviously

cut it an odd number of times. And since the angle dw of the

cone is the same for all the elements dSv dS2 , etc., the magnitude

of the flux across each will be the same, viz., gj^Tr-dw, but the

flux will be outward (positive) across all the elements with odd

numbers, and inward (negative) across all the elements with even

numbers. Thus all the elements except one, across which the

flux is positive or outward, cut one another out in pairs, leaving

the total flux outward through the tube equal, as for a tube of

the same angle cutting the surface but once, to ^/4?r dot.

The outward flux across the complete surface is therefore

II = fdft
=

qjqir fdto
= q (8)

since the whole solid angle, f dco, subtended by any closed sur-

face at a point within it is 477-.

This result is independent of the position of P within S\ hence,

by the principle of superposition, it must hold for charges dis-

tributed in any manner within S, q denoting now the total (alge-

braic) charge within. The validity of the theorem for all isotropic

electrostatic fields will be established later
( 29, I. and i, IV.).

23. The Strength of a Tube of Induction. From (8) it fol-

lows that the flux across every cross-section of a given tube of

induction is the same. For by the definition of a tube there is

Fig. 5.

no flux across any part of its sides
;
and since in the space en-

closed within the sides and two diaphragms 6\ and Sv Fig. 5,

there is no electric charge, the flux which enters this region
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across vS
L
must equal that which leaves across S

2
. Thus there

is an analogy between the electric flux and the flux of an incom-

pressible fluid.

The strength of a tube of induction is defined as the magnitude
of the flux across any diaphragm of the tube. A unit tube is a

tube whose strength is unity.

24. Electric Charge and Discontinuity of Electric Flux. With

the exception of closed tubes of induction (Chapter VI.), all

tubes in a static field emanate from positively charged bodies and

terminate upon negatively charged bodies. To prove this state-

ment, consider two electrified bodies (there cannot be less than

two) alone in the field, there being no charges upon other

bodies. If one possesses the charge -j- q, the other possesses the

charge q ( 6). The total electric flux outward across any closed

surface surrounding -f q is q, and the total inward flux across

any closed surface surrounding q is q ;
or the total flux across

any closed surface separating the charge -f- q from the charge

q is equal to q in magnitude, and in direction is from -f q
toward q. That is, all the tubes emanate from the body
with charge -f q and terminate upon that with charge q, the

total strength of all the tubes being q.

Exactly the same mode of reasoning may be applied to a single

tube of induction. The strength of a tube is thus equal to the

magnitude of the positive charge at one end or to the magnitude
of the negative charge at the other. The whole electric field

indeed may be regarded as a single tube of induction passing

from one charge to the other.

Thus the electric charge resides only where the displacement

is discontinuous, and is measured by the amount of this discon-

tinuity. In fact Gauss's theorem simply states the identity of an

electric charge and the flux from the charge, or rather the dis-

continuity of the flux at the charge.

Rational Units. The system of units here adopted is called

rational for the reason that it makes the flux from a charge equal
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to the charge numerically, as it is dimensionally, instead of to 4?r

X the charge, as in the common systems, and, as a consequence,

does away with the factor TT except in the case of spherical or

circular distributions, where it would naturally occur.

25. Electric Field Mapped Out by Tubes of Induction. In the

elementary tube T, Fig. 6, let the diaphragms dSv dS2 ,
be drawn

Fig. 6.

at right angles to the axis of the tube. Then we have, by 23,

D
l
dS

l
D

2
dS

2 ,
whence

DJDt
= dSJdS, = EJE, (9)

Thus the intensity and induction at every point along a narrow

tube are inversely proportional to its right cross-section at the

point. Since therefore the magnitude of the right cross-section

of a tube at a point indicates the magnitude of the induction and

intensity, and the direction of the tube the direction of these

quantities, an electric field may be completely mapped out by

drawing a system of tubes, all of the same strength, filling the

field. Maxwell's method of drawing such a system of tubes will

be explained in 7, n, 13-14, II.

26. The Surface of a Conductor in a Static Field is an Equipo-

tential Surface. For, since in a static field there is no electric

intensity within the substance of a conductor, the voltage

CE cos OdL is zero along any line drawn wholly through the

substance of a conductor and connecting any two points of its

surface (and therefore along any other line connecting the two

points, since the field is static).

27. Equipotential Region. If in the region on one side of a

given equipotential surface there is no electric charge, the elec-
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trie induction and intensity in this region are also zero, and all

parts of it are therefore at the same potential as that of the

equipotential surface. For all the tubes which cross an equipo-
tential surface cross it normally and but once

;
and in the region

considered there is no electric charge with which such tubes

could originate or terminate. Hence there are no tubes in the

region, by Gauss's theorem, and no voltage.

That the space containing the substance of a conductor, or the

space included within a hollow closed conductor, is an equipo-

tential region, has already been established.

28. In a Static Field a Conductor may be Replaced by a Die-

lectric of any Permittivity. Since there is no electric field in a

region without charge bounded by an equipotential surface

(charged or uncharged), the substance filling this region may be

replaced by any other substance, with its surface charged in the

same manner as that of the substance replaced, without in any

way affecting the electric field. Thus it is extremely convenient

for the purpose of solving many electric problems, to imagine

the substance of an electrified conductor replaced by a dielectric

of the same permittivity as that of the surrounding medium, with

its surface coincident with that of the conductor and charged in

the same manner. This is in order to apply the law of inverse

squares, which can be done only when all space contains the

same dielectric of uniform permittivity. Extensive use will be

made of this principle in what follows and it will be generalised

in Chapter IV.

29. Gauss's Theorem Valid for a Finite Region and for a Field

Containing or Bounded by Conductors. As an immediate corollary

of what precedes, it follows that Gauss's theorem is valid

throughout an infinite electric field containing a homogeneous

isotropic dielectric and any number of conductors. And as an

immediate corollary of this last proposition and 4, it follows

that the theorem is valid throughout any finite electric field
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bounded by conductors, and throughout a finite portion of any

electric field, provided that this finite field or portion of a field

contains only a single homogeneous isotropic dielectric and con-

ductors. The validity of the theorem is still further extended

in Chapter IV. i

30. Electric Surface and Volume Density. Convergence and

Divergence of a Vector. The electric surface density at any

point of a charged surface is defined as the charge per unit area

at the point, and will be denoted by cr. If dS is an element of

area at the point and dq its charge,

(10)

The outward flux across any surface enclosing dq and no

other electric charges is dTL = dq = (?dS, by Gauss's theorem

(not yet proved for this case, since the surface encloses, in

general, two dielectrics).
Let' such a surface be formed by

a right cylinder of infinitesimal length drawn through the

boundary of dS and closed up by two planes parallel with

dS
y
one on each side, Fig. 7. The lateral area of this cylinder is

negligible in comparison with that of the ends, so that the out-

ward flux across the total surface is equal to the flux across the

ends. Therefore, if D^ and >
2
are the displacements on the two
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sides of dS, and
l
and

2
the angles they make with the normals

drawn from dS,

= (D l
cos

l + D2
cos

whence
<r = D

l
cos

l -f ->
2
cos

2
= c^ cos ^ + cf2

cos
2 (i i)

if c
l
and r

2
denote the permittivities of the media on the two sides

ofdS.

If the charged surface is that of a conductor in a static field,

the displacement, D, on one side is normal to the surface, and

on the other side is zero
;
so that in this case (i i) becomes

o- = D = e (12)

which might have been written down at once from Gauss's

theorem, already established for this case.

The electric volume density at any point of an electrified volume

is defined as the charge per unit volume at the point, and will be

denoted by p. If dq is the charge in the element of volume dr

at the point,

(13)

The electric flux outward from dq through the surface of dr is

dq = pdr, whence

p = dqjdr = dft/dr = div D (14)

The symbol div D is an abbreviation for the divergence of D,

which is another name for dUjdr, the outward flux of the

vector D per unit volume, or, in magnitude, the amount of

the flux leaving unit volume through part of its surface minus

the amount entering the same volume through the rest of its

surface.

If p is negative, div D is also negative, or the flux is, on the

whole, directed into dr. To the negative of the divergence the

term convergence is applied. It is written conv. Hence

p = div D = conv D (15)
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The convergence or divergence of any other vector is simi-

larly defined as the inward or outward flux of the vector per

unit volume at the given point.

An insulator may possess both volume density and surface

density of electrification, but the charge of a conductor in a static

field resides, as has been already shown, on the surface only.

This statement must not be taken too literally, however, as the

molecular structure of matter makes it necessary that the dis-

placement should terminate upon the atoms of a surface layer,

although this layer is extremely thin.

31. Cartesian Expression for the Divergence and Convergence

of a Vector. The Equations of Poisson and Laplace. First we

shall obtain the expression for the divergence of the vector D.

Let the components of D at the point whose coordinates are x
y

y, 2
t parallel to the rectangular axes X, Y, Z, be Dv Dv Z>

3 ,

respectively, Fig. 8. Consider the elementary parallelepiped

whose edges are parallel to the coordinate axes and have the

infinitesimal lengths dx, dy,

dz, the coordinates of the

corner nearest the origin of

coordinates being x, y y
z.

The flux into the parallel-

epiped through the face 13

is D
2
dxdz (or the flux out

across the face 13 is D
2

dxdz), and that out through

the opposite face, 57, is (D2

+ dDJdy dy) dxdz. Hence

the resultant outward flux

across the two faces parallel

to the JfZplane is (D^+dDJdydy^dxdzD^dxdz^dDjdy dxdydz.

In exactly the same way the resultant outward flux across the

two faces 26 and 35 is dDJdx dxdydz, and that across the faces

46 and 37, dDJdz dxdydz.

Fig. 8.
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Hence the total flux outward from the parallelepiped is

= (dDJdx + dDJdy + dDJdz) dxdydz
= (dDJdx + dDJdy + dDJdz) dr

and

p = div D = conv D = d H/dr
(16)= ^/^r + aizy^ + dDJdz

Similarly, for any other vector, as
,
we have

div E = - conv E = dEJdx + dEJdy + dEJdz

If is constant (independent of x
t y, z), we have, since D = cE

y

div D --= dDJdx + dDJdy +
(17)= c(dEJdx + dEJdy + dEJdz) = c div E

Equation (
1 7) may be written

p = div D =
= -

djdx(cdVld*)
-

d/dy (cdVjdy)
-

djdz (cdVjdz)

If c is independent of the coordinates, this equation becomes

p = div D = -c(d*Vjd^ + d*Vjdy* + d 2

Vldz
2

) (19)

(18) and (19) are the equations of Poisson. When p = o, the

equations become

(cdVldx) + <//*#/ (cdVjdy} + djdz (cdV/dz) = o (20)
and

d* Vjdx
2 + d 2

Vjdy* + d 2

Vjdz
2 = o (21)

which are the equations of Laplace.

32. The Equilibrium of Superposed Electric Fields, (i) If in

each of any number of electric fields separately each of a given

system of surfaces of fixed configuration is an equipotential, then

in the electric field resulting from the geometric superposition of

these fields each surface will remain an equipotential. For since

in each field separately the tubes meet the surfaces normally, by
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definition of an equipotential, the tubes in the geometrically

obtained resultant field will also meet the surfaces normally.

(2) That the superposition of any number of distributions of

electric charges in or upon insulators gives a resultant distribution

of charges in equilibrium is evident from the definition of an insu-

lator. That the resultant field (obtained by geometrical super-

position) connected with these charges is in equilibrium, and that

this is the only possible resultant field in equilibrium, follows

from 12.

(3)
If each or any of the equipotentials of (i) encloses no

charges, then it encloses no field, and it is immaterial so far as

the external
(/.

e.
y
the only) field is concerned whether the sub-

stance within this surface is an insulator or a conductor (28).
If the field is in equilibrium in the one case, it will be in equi-

librium in the other. Hence we may state that if each of any
number of electric fields surrounding or bounding a given system

of conductors with fixed configuration is separately in equilibrium,

then the electric field resulting from their geometric superposition

will also be in equilibrium, and will be the only possible resultant

field in equilibrium (i. e.
y static). The last statement is proved

again in 46.

33. The Superposition of Voltages and Potentials. If the vol-

tage from any point P to any other point P is V
l
when the field

surrounding the points is a given field Av V
2
when the field is

Av ' '

>
V
n
when the field is A

n>
tnen tne voltage from P to P

when all the fields are superposed is

V~ Vl+ ^ + + V
n (22)

For, all the integrals being taken along the same path L (which

may be any path from P to /*), we have, in the notation of

17-19,

= cos i> i
=

*
cos 2<> ' ' '

, n
= cos

and V=fcos0dL
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By the principle of superposition of electric intensities

E cos = E
l
cos 6

l + E2
cos

2 + -f H
cos 6

Hence

F= cos BdL = V, + F
2 + - . . + F

which is identical with (22).

If /* is any point in the region of zero potential, Fand V
lt

V
2 ,., V

n
denote the resultant and- component potentials, re-

spectively at P.

34. Voltages and Charges Proportional. It is clear from 32

and 33 that when the intensity at every point, and therefore the

voltage between every two points, of a static electric field is

altered in any ratio, the resulting electric field will be in equi-

librium, and the electric surface or volume density at every ele-

ment of charged surface or volume will be altered in the same

ratio, and vice versa. The original field has simply been super-

posed on itself a given number of times.

35. Capacity of an Electrical System. Permittance of a Dielec-

tric. S is Proportional to c. In an electric field terminated by
two conductors A and B all the tubes emanate from one of the

conductors and terminate upon the other, so that the charges of

A and B are equal and opposite whatever their common magni-

tude, q. This relation still holds when any number of other con-

ductors, uncharged except by induction, are in the field, the tubes

connecting A and B simply being rendered discontinuous at the

surfaces of these conductors
( 42). By the last article, if the

voltage V12
between A and B is altered in any ratio, q will be

altered in the same ratio, and vice versa. That is

(23)

where 5 is a constant, called the capacity of the system AB, or

much better, the capacity or permittance of the dielectric bounded

by A and B.
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The above equation may be written

lfEdL ,
(24)

dS being the element of area of any equipotential surface (neces-

sarily closed around one of the conductors or else extending to

infinity), and dL the element of length of any line of intensity, the

integrals extending over the whole surface and along the whole

length of the line, respectively.

The term permittance is applied to 5 (surface integral of dis-

placement/line integral of intensity) for the same reason for

which the term permittivity is applied to c (displacement/intensity).

When the charge and voltage are expressed in RES units in

(23) and (24), 5 is said to be expressed in the RES unit capacity

or permittance. The unit capacity is thus the capacity of a sys-

tem, or dielectric, upon each of whose terminating conductors

the charge is unity when the voltage is unity.

Two conductors which completely bound an electric field, like

the system AJ5, are called, with the intervening dielectric, an

electric condenser or leyden. These terms are commonly applied,

however, only when the conductors are near together, in which

case the displacement may be very great, or the electric charge

highly
" condensed" even when the voltage

is small (since L is small). The term condenser is also applied

to a system in which nearly all the tubes of induction pass from

one of the conductors to the other.

If the voltage V of a leyden is kept constant, and the permit-

tivity c of its dielectric altered everywhere in a given ratio, the

intensity E will remain constant, but the displacement D, and

therefore the charge q, will be altered everywhere in the same

ratio. Hence 5 is proportional to c.

Although a charge of one sign cannot exist without the com-

plementary charge of opposite sign, it is sometimes convenient
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to imagine one of the charges removed to an infinite distance,

when the electric field within a finite distance is connected with

only a single electrified body and conductors with induced

charges. The intensity and potential at every point will then be

proportional to the charge of the electrified body.

36. Mechanical Analogue of the Relation q = S17
12

. If a spring

(analogous to the dielectric of a condenser) which obeys Hooke's

law and has perfect elasticity (c = DJE= constant) is stretched

a distance L (analogous to q) by a force F (analogous to F
12)

then

L~KF (25)

where K (analogous to 5 ) is a constant depending on the spring.

A similar relation of course exists between the deformation and

the forcive in the case of any other perfectly elastic strain.

37. The Electrostatic Energy of a Field Bounded by Two Con-

ductors, Energy Contained in a Tube of Displacement Between

Two Equipotentials. The energy contained in the dielectric

bounded by the two conductors A and B due to its electric dis-

placement is equal to the work done in creating the electric

field, or the work done against the electric field in charging the

system (provided there is no dissipation of energy in dielec-

tric hysteresis, I, VI.). Let the process of charging consist in

carrying successive elements of charge dq from B to A, or dq

from A to B, or both. Each time this is done A gains a charge

-f dq and B a charge dq, and the work done in effecting the

transfer, if the charges of A and B
y
at the time are -f- q and q

respectively, and if the corresponding voltage from A to B is

y, is

dW= Vdq (26)

by (5).

If S= ql V= constant, which is true except when intrinsic

displacement (VI.) is present, (26) may be written

dW= Vdq= \ISqdq = SVdV
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Hence the total work done in establishing the field, or the total

electrostatic energy of the field, is

= i/S

r= S
Jo

The electric field may be considered as a single tube of dis-

placement connecting A and _Z>, the strength of the tube being

q and its voltage V. The energy of this tube is then one half

the product of its strength by its voltage. Or the field may be

divided up into tubes of displacement in any manner, and since

the above result is wholly independent of the shapes of the tubes,

the energy contained in each tube is in the same way one half of

the product of its strength by its voltage. Also, the energy con-

tained in the portion of any tube of strength q between two equi-

potential surfaces differing in potential by V is ^q V, whether the

tube terminates at these surfaces or not.

In any case, whether energy is dissipated or not, or whether

qjVS is constant or not, the work done in charging the con-

denser from a neutral state to charge q, or the work done in

changing the strength of a tube of displacement from to q,

and its voltage from to V, is

Vdq (28)

38. Electric Energy Density in a Dielectric. From 37 it fol-

lows that when D = cE (no intrinsic electrisation present, Chapter

VI.) the energy per unit volume at any point of an electric field is

U-\ED=\cE* (29)

To prove this, consider an elementary tube, of strength dq,

cutting two equipotential surfaces distant dL apart, the point con-

sidered being at the center of the element of volume dr enclosed

by the sides of the tube and the equipotentials. If the right
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cross -section of the tube is dS at the point, dr = dLdS. The

energy contained in dr is

dW= \dq EdL = \DdSEdL = \ED dr = *cE 2 dr

and the energy per unit volume is

U= dWjdr = \ED = J cE
2

which is identical with (30).

Without assuming the relation qj V= S = constant, of

c = DjE= constant, or that there is no dissipation of energy,

we can show that the work done per unit volume in creating a

displacement D is

U= ^EdD (30)
i/O

which reduces to (29) when c = DjE = constant.

For in the general case, 37 (28), the work done in changing
the strength of a tube of displacement from to q is

W=fVdq = fff EdDdLdS = // EdD dr

which, on differentiating with respect to r, gives (30).

39. Electric Tension and Pressure (Preliminary). From the

consideration of a static electric field (such as the field of Fig. 22,

24, or 47), in which tubes of induction stretch, in general, from

a positively charged body to another body negatively charged ;

in which there is always a force of attraction between the op-

positely charged bodies
;
and in which a small electrified body

(if
the force of gravity is eliminated) will move along a line of

intensity ;
it follows immediately that at every point of an elec-

tric field there is a tension in the dielectric in a direction parallel

to the intensity the tubes of induction tending to contract in

length indefinitely and to pull together the electrified bodies on

which they end.

It is clear also from the manner in which the tubes of induction

spread out laterally as they pass from one of the bodies to the
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other, filling all space except as the field is bounded by conduc-

tors, that at every point in the dielectric there is a pressure per-

pendicular in every direction to the intensity at the point. Were

the tension along the tubes the only stress, it is clear that all the

tubes would contract in cross-section as well as in length and

stretch straight across from one charge to the other
;
and the

electromotive force from charge to charge along all paths not

passing through the region occupied by these tubes would be

zero, which is of course impossible.

It is clear also that the i4ite#sity and pressure at any point are

greater the greater the intensity and induction at the point.

These stresses are referred to in 14, and will receive detailed

consideration in the next two articles.

40. Electric Tension, Method I. At any point in a dielectric in

which (29) holds there is a tension in the direction of the in-

tensity, with magnitude per unit area

To prove this, consider a uniform field which is terminated at

one end by a plane conducting plate of area A (necessarily) nor-

mal to the electric field (III, 2).
If the plate is moved in a direc-

tion parallel to the field an infinitesimal distance dL, the volume

of the dielectric under strain terminated by the plate of area A is

increased by AdL and the energy by dW'= AdL^ED, the dis-

placement of the plate being so small that E and D remain sen-

sibly unaltered. This increase in energy is equal to the work

done in moving the plate the distance dL against the force

normal to its surface due to the tension in the dielectric. If the

force per unit area on the plate, which must equal the tension in

the direction of the intensity in the dielectric, is denoted by T,

we have therefore

dW= TAdL = \EDAdL ;
and T= i/A dWjdL = \ED, etc.,

which is identical with (31).



34 ELEMENTS OF ELECTROMAGNETIC THEORY.

This result has been deduced for a uniform field, but since

every field is uniform throughout an infinitesimal volume, the

result is perfectly general.

The best form of apparatus for investigating the electric tension

experimentally is described in 2 and 4, III.

Electric Tension, Method II. The proposition just established

may also be demonstrated as follows : Let dS be an element

of the charged surface of a conductor, and let P and Q be two

points indefinitely near the surface, one without and the other

within the conductor at the center of dS. Consider the sub-

stance of the conductor replaced by a dielectric of the same per-

mittivity as that of the surrounding medium
(c), 28. Then

the electric intensity at P and at Q may be resolved into two

components, one which can be calculated from the charge upon

dS, and the other from the rest of the charges in the field (or, as

ordinarily expressed, one due to the charge on dS, and the other

due to the other charges). Let the two components at P be

denoted by El
and Ev and the resultant intensity by E. By

symmetry, El
is normal to dS, and there is an equal and oppo-

site component, Ev at Q. Since E and E
l
are both normal

to dS
t
Ev their vector difference, is also normal. Hence

E=E
l + E2

The resultant intensity at Q, inside the surface, is zero, and

has the components, E2 normally outward, and E
l normally in-

ward (that is, .Zfj).
Hence

= E
2
- E

l

Therefore E
l
^E

2
= \E

The charge upon the element of surface dS is crdS = DdS
;

and, since the intensity at the charged element due to crdS is

zero (being directed symmetrically toward the outside and in-

inside), and since the intensity due to the other charges is ^E, the

mechanical force per unit area upon the charged surface between

P and \S

\*IC-C. (3.)
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Electric Tension, Method III. The same result may be ob-

tained by still another method. As we have seen, the electric

charge is not strictly a surface distribution, but is confined to

a very thin surface layer. At the outer surface of the layer

Charged

as
i

Fig. 9.

the intensity and displacement, which are normal to the surface

throughout the layer, have their full surface values E and D
;
at

the inner boundary of the layer they are zero. IfE and D de-

note also the intensity and displacement at a distance x from the

inner boundary of the surface layer, of thickness L (Fig. 9),
the

charge within the small volume of thickness dx and cross-section

dq = dx dS divZ> = dx dScdEjdx

E being a function of x only. The outward force upon the por-

tion of the conductor within this charged volume is

dF' = Edq = dS cEdE\dxdx

and the total force upon that part of the surface layer whose

cross-section is dS is

IdF9 = dS f cEdEldxdx^dSc fJ i7o *A)

dF= IdF9 = dS cEdEdxdx^dSc EdE=dS\cE*

whence the force per unit area upon the charged surface, or the

tension in the dielectric at the surface, is

r= dFjds = \cE* = \ED ( 3 1)

41. Electric Pressure. Equilibrium of a Dielectric Supporting

Electric Displacement. In a dielectric supporting an electric
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field there is at every point, in addition to the tension }>ED in

the direction of the intensity, a pressure normal in every direc-

tion to this intensity and equal to

T= u
(32)

To establish this proposition, consider the radial field from a

charge upon a very small body at P, Fig. 10, and an elementary

(conical) tube of displacement T cutting two (spherical) equipo-

S
1

Fig, 10.

tentials S^ and S^ a distance dL apart, and enclosing areas dS
l

and dS
2
of these surfaces. Let Ev Dl

and
2 ,
D

2
be the inten-

sity and displacement at S
l
and S

2 , respectively. The portion Z
of the dielectric enclosed by the sides of the tube and S

l
and S

2

is in equilibrium under the action of the stresses of the field.

The force on Z arising from the tensions is, by (31),

measured toward P, and must be balanced by an equal force

directed from P. We shall assume that this equilibrating force

arises from a pressure p normal everywhere to the surface of the

tube, and shall proceed to find its value. If p^ and pz
are the

values of p at dS^ and dS^ respectively, its average value over

the surface of the small volume Z is approximately

KA+A)
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From the figure it is clear that the resultant force due to / is

outward along the axis of the tube and equal, approximately, to

if B is the lateral area of the surface of Z. Since

sin 6 = (dS2
- dS

very approximately,

sin 6 B = \ (A
Z is evidently, by symmetry, in equilibrium laterally, so that

it will be in complete equilibrium if

KA + A) (A - A) = i^'A -
Since

the last equation may be written

KA + A) (A - A) = i^A(A - A)
which becomes, when the tube T is made indefinitely narrow,

and the surfaces S
l
and S

2
are brought indefinitely close together,

which is identical with (32).

Since the field within the element of volume is uniform when

the element is made indefinitely small, and since this is true of

any electric field, the result just obtained for a radial field holds

universally.

A method of proving (32) by direct experiment is described

in 3> VII.

42. Electric Conduction and Induction. The tension in the

direction of the intensity at every point of a dielectric supporting

an electric field and the pressure perpendicular to this direction

throw much light on the disappearance or transfer of electric

charges by conduction and their development by induction.
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Conduction, First it will be shown that this stress system will

account for the result of 26. For if the surface of a conductor

were not an equipotential, i. e.
t
if the tubes of induction did not

meet the surface normally, there would be in the dielectric at the

interface a component of the intensity parallel to the surface, and

therefore a component of the tension parallel to the surface

and a component of the pressure perpendicular to the surface.

Since the charges, or the ends of the tubes, can move freely along

a conductor, the tubes would therefore contract, their ends, or

the charges, slipping along the conductor
;
and since within the

substance of the conductor the intensity, and therefore the pressure

perpendicular to the surface, is zero, the component perpendicular

to the interface of the pressure in the dielectric would be un-

balanced by any pressure from within, so that the tubes would

be continually pushed toward and into the conductor (there to

break up). Since these processes are inconsistent with the nature

of a static field, there can be no component of the intensity

parallel to the surface of the conductor.

Consider two electrified conductors A and B with positive

and negative charges respectively, A being the only positively

charged body in the field
;
and suppose q, the charge of A, nu-

merically greater than q
1

',
the charge of B. Of the q unit tubes

emanating from A, q' terminate upon B, and q q' upon other

bodies at a distance. If A and B are connected by a wire C, in

which permanent electric stress cannot exist, the tensions along

the tubes and pressures at right angles to them will cause the q'

tubes connecting A and B to be pushed, contracting as they go,

into the regions of no permanent stress, the conductors A, B,

and C, until the positive and negative ends of each tube meet

and the tube disappears.

The remaining q q' tubes emanating from A will be redis-

tributed by the system of tensions and pressures until there is

again equilibrium, when the remaining q q' tubes will emanate

normally from A, B, and C.
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During the process of conduction the field is not in equilib-

rium, nor is it zero within the conductors, and the tubes are not

normal to the surfaces of the conductors, but are inclined from

the normal at each end in the direction of motion of that end.

If the conductivity were perfect, the tubes would always end

normally at the conducting surfaces and would never disappear

in the conductors (Chapter VIII., 9).

The phenomena here described are only a part of the phe-

nomena occurring during conduction, and a more complete dis-

cussion will be given later (Chapters VIII., XIL).
Induction. Into an electric field, as that bounded by a concen-

trated charge A and the walls of the room, let a conductor B be

introduced. The state of strain previously existing in the space

now occupied by B is annulled by its introduction, the tubes

formerly crossing this space being cut in two by the conductor, and

those sufficiently near being pushed against its surface and there

also cut in two, until all the tubes so severed touch B normally

and there is again equilibrium. For every tube terminating upon
B there is therefore a tube of equal strength emanating from it.

That is, the positive and negative charges developed by induction

are equal.

All the tubes severed by B may be regarded as still belonging

to A
; they are simply rendered discontinuous at the surface of

B, where the induced charges therefore reside.

If B is connected to the walls by a wire C, the tubes stretching

from B to the walls will disappear by the process of conduction,

described above, leaving B charged oppositely to A. The tubes

between B and the walls having disappeared, more of the tubes

from A will crowd into their places until there is again equilib-

rium, part to end on B, part on C, and part on the walls. The

charge on B of the opposite kind to that of A is thus increased

by earthing B.

Fig. 1 1 (from Nichols and Franklin's Elements of Physics,

Vol. II., 165-6) illustrates the process of introducing a small
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charged conductor B, insulated, into a nearly closed hollow con

ductor A
y 4, putting on the conducting lid, moving B about

inside, and finally bringing B into contact with A's inner surface.

The distribution of the tubes here, as well as in the preceding

cases, can be roughly predicted from the considerations that all

the tubes meet both conductors normally and that the voltage

Fig. 11.

along every line from one conductor to the other is the same.

Since the voltage along a line of intensity is equal to the average

value of the intensity along the line x its length, the intensity

and the induction must be greater, or the tubes more concen-

trated, the shorter the distances through which they stretch.

If, instead of a conductor, an insulator of permittivity different

from that of the dielectric in the region is introduced into the
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field, phenomena similar in some respects are observed. This

subject will receive consideration in Chapter IV.

43. Electric Tension and Pressure and Forcives in the Electric

Field. The force upon a conductor in or bounding a static field

is due wholly to the tension in the dielectric, the force per unit

area at any point of the surface being T normal to the surface.

Since E and D are perpendicular to a conductor's surface, no

component of the force upon a conductor can be due to the elec-

tric pressure, which is tangential to the surface and balanced in

every direction. Inasmuch, however, as the distribution of the

tubes, and thus the distribution of T, over the surface of a con-

ductor is determined by both tensions and pressures, the latter

contribute to the force indirectly.

The force upon a dielectric is in general due to both tensions

and pressures. See Chapter IV., 9.

In Chapers II., III., IV., VI. and VII. many examples will be

found.

44. The Equilibrium of a Given Field is not Altered if its

Direction is Reversed at Every Point. For the tension parallel

to the intensity and the pressure perpendicular to the intensity,

at any point of the field are proportional to its square, and are

therefore not altered by the reversal of direction. The signs of

all charges are of course reversed with the reversal of the in-

tensity.

45. When the Algebraic Charge upon Each Conductor of an

Isolated System is Zero, there is no Charge and no Field. If the

total algebraic charge of each of a system of conductors is zero,

and if there are no other electrified bodies, or electrets (Chapter

VI.), or a changing magnetic flux (Chapter XIII.) anywhere,

then there is no electric charge or displacement anywhere. For

if the electric field were not zero, tubes of displacement would

emanate from each conductor and terminate upon conductors of

lower potential, since each conductor would have both positive

and negative charges. And since the algebraic charge of each
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conductor is zero, as many tubes as emanated from the conductor

at highest potential would terminate upon its surface, while there

would be no body at higher potential at which such tubes could

originate ;
and as many tubes as terminated upon the conductor

at lowest potential would emanate from its surface, while there

would be no body at lower potential for these tubes to terminate

upon. Thus the supposed case is impossible, and there is no

charge or intensity anywhere.

46. A Single Electric Field Corresponding to Given Charges.

If an electric field A
l
bounded by a system of fixed conductors

with given total charges, or by a system of insulators with both

charges and their distribution given, or by both, is in equilibrium,

this is the only field satisfying the given conditions which is in

equilibrium. For suppose that A
2
is a second field satisfying the

conditions : It will be shown that y4
2
= Ar For if A

2
with its

sign reversed is superposed upon Av the resultant field will be

in equilibrium, and the charge at each point of every insulator

and the total charge of each conductor (the last statement in

32 not being assumed as known) will be zero. Hence by the

last article there is no electric charge or displacement anywhere.

Thus at every point Dl -f (
Z>

2)
= o, or A

2
= Ar

A Single Field Corresponding to Given Potentials. If an elec-

tric field Av bounded by a given system of conductors, the po-

tential of each being given, or the voltage between each and

all the rest, is in equilibrium, this is the only equilibrium field

satisfying the given conditions. For let A
2 ,
another field, sup-

posedly, satisfying the conditions be superposed upon A l
with its

sign reversed. In the resultant field the potential of each con-

ductor, or the voltage between each and all the rest, is zero, by
the last article. Hence the intensity is zero everywhere, and

A, = A,
*

47. Equipotential Replaced by Infinitely Thin Conductor of

Same Shape. In any electric field any equipotential surface
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vS (always closed or else an infinite plane) can be replaced by an

infinitely thin conducting sheet Sr without disturbing the electric

field on either side. For all the tubes which before the substi-

tution crossed .S normally, after the substitution terminate nor-

mally on one side of Sf and emanate normally from the other

side (induced charges being developed). But since Sf
is coinci-

dent with S, this necessitates no change in the direction or posi-

tion of any tube, and the substitution therefore leaves the field

in undisturbed equilibrium, the tensions and pressures remaining

precisely the same as before the substitution. This result is

also a corollary of the next article.

Definition of Electric Images. The two charges, or systems

of charges, in the regions on opposite sides of S' (but not in-

cluding the charges upon Sf

)
are called the electric images of one

another in the surface S' .

Since the conducting sheet S' renders the fields on its opposite

sides absolutely independent of one another, either field may be

destroyed or modified in any manner without affecting the other.

If we are concerned with only one of these fields, the substance

of the conductor whose surface S' coincides with 5 may be ex-

tended in any manner into the region (previously) occupied by
the other field.

48. Additional Propositions Fundamental to the Method of Elec-

tric Images. If the potential of a surface vS and the charges on

one side of 5 (closed or an infinite plane, being an equipotential)

are given, the electric field on this side is fixed independently of

the way in which the surface is kept at the given potential. For

suppose that two fields A^ and A
2 satisfy the conditions. If A

2

with its direction everywhere reversed is superposed upon Av S
will be at zero potential, and there will be no electric charge on

the side of S considered. Hence there is no field on this side,

and A
2
= AY

Similarly, if the position of an equipotential surface ,S is given,

together with the flux across it and the charges on one side of it,
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the field on this side is fixed and independent of the way in which

5 is kept equipotential and of the way in which the flux across

it is kept of the given magnitude. For suppose that two fields

A
l
and A

2 satisfy the conditions. If A
2

is superposed upon
A

iy
the surface 5 will still be an equipotential, the flux across it

will be algebraically zero, and there will be no charge on the

side of vS considered. Hence not only the total flux across vS is

zero, but the flux across every part of S, and there is no field on

the side of .S considered. Thus, as before, A2
= Ar

In the above two cases, if the given charges are upon con-

ductors, only the total charges need be given ;
but if the

charges are upon insulators, the distribution as well as the mag-
nitude of each charge must be given.

49. The Electrostatic Energy of an Electric Field Surrounding

any Number of Conductors. We shall now proceed to find the

energy of an electric field containing any number of conductors,

Av Ay
-

-,
A

n ,
with any charges q lf qv

-

, qn ,
and at any po-

tentials Vv Vv ,
V
n \
V

l
and Vn being the highest and lowest

potentials, respectively. For the sake of keeping the field

within finite limits and eliminating the field of the earth, let all

the conductors Av A2 , etc., be enclosed within a hollow closed

conductor A
o ,
such as the walls of a room, at potential Vo

. This

limitation will be removed later for ideal cases. Some of the

conductors will, in general, be at higher, and some at lower po-

tentials than V
o

. Let the field be divided into regions of higher

and lower potential than V
o (by equipotential surfaces of poten-

tial F).

Consider first the conductors Ad,
A

e, ,
in a region above V

o

in potential. On A
d ,

the conductor at highest potential in the

region, no tubes terminate, and from it qd tubes emanate, some

terminating on A
o
and others cutting the part of the equipotential

V separating the region under consideration from the neighbor-

ing region at lower potential. Some of the qd tubes are discon-

tinuous at the surfaces of the conductors A^ A
jy etc., in 'the region
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(the discontinuities corresponding to induced charges), but all

finally reach the boundary, at potential F, of the region. The

voltage along every tube from Ad
to the boundary of the region

is therefore Vd V
o

. The energy contributed to the region by the

tubes emanating from Ad is thus \qJ^Vd F). Since A
e pos-

sesses a charge qe , qe
unit tubes emanate from A

e (in- addition to

the tubes from Ad,
which both terminate upon and emanate from

A
e ,
and have already been considered), and all finally reach the

boundary of the region at potential F. The energy contributed

to the region by the qe
unit tubes from A

e
is thus qe (Ve V^)\

and so on for the other conductors in the region.

Consider now a region of lower potential than F containing

conductors
-, A., Ak ,

A
p
A

l being the conductor at lowest poten-

tial in the region. No tubes emanate from A
iy
and the ql

unit

tubes terminating upon it all come from, some through, the

boundary of the region at potential F, though some are discon-

tinuous (induced charges) at the surfaces of A
k
and the other con-

ductors, at higher potentials than Vv in the region. The voltage

of each of these tubes from the boundary to A
l
is thus F V

lt

and since the total strength of all the tubes is q (q being nega-
tive since V

l
is less than F

o),
the energy contributed to the region

by the tubes of A
l
is \ql (Vl F). The energy contributed by

the qk
tubes belonging to A

k
is likewise \qk(Vk F) ;

and so

on for the other conductors of this region, and for other regions.

Summing up these expressions for the whole electric field

within A
o ,
we have for the total energy within A

o

fO (33)

If A
o

is connected to the earth, and if we define the potential

of the earth as zero potential, (33) becomes

W=\T.qV (33 )

If we suppose A o
removed to infinity, if we suppose the n con-

ductors to be the only electrified bodies in space, and if we define
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the potential of A
o ,

in a region infinitely remote from all electrified

bodies, as zero potential, (33*2) will give the total electrical energy
in space surrounding this ideal system.

50-56. A System of Conductors Av A2 , ,
A

n Surrounded by a

Closed Conductor A
o

. The voltage from any conductor of the

system, such as A
k ,

to A
o
will be denoted by V with the proper sub-

script, as Vv and its charge by q with the same subscript, as qk
.

50. Voltages in Terms of Charges and Charges in Terms of Volt-

ages. The voltage V
k
from any one A

k
of the system of con-

ductors to A
o

is a linear function of the charges of all the con-

ductors. For, by 34, 35, Vk is proportional to the charge of

any one conductor of the system Av A
2, ,

A
n
when all the

rest are insulated without charge (except induced charges), and

therefore, by 33, when all the conductors are charged the ex-

pression for V
k
consists of a series of terms each proportional to

the charge of one conductor. Hence

\q (i)in--* n \ /

(34)

The coefficients of the charges, viz., /u , /12 , etc., are called

voltage coefficients, or coefficients ofpotential. Each has two sub-

scripts, the first identical with that of the conductor in the ex-

pression for the voltage from which to A
o

it occurs, the second

identical with that of the conductor to whose charge the coef-

ficient belongs, and denotes the ratio of the voltage to A
o
from

the conductor with the first subscript to the charge of the con-

ductor with the second subscript when all the conductors except

that with the second subscript are insulated without (algebraic)

charge. Thus for example,

when qv qv -

-, qn_^ are zero in (34) (2).
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By solving the n equations (34), each of the charges may be

expressed as a linear function of all the voltages. Thus

(0

(2)

(35)

the s's being functions of the />'s.

Each s has two subscripts and denotes the ratio of the charge

upon the conductor with the first subscript to the voltage to A
o

from the conductor with the second subscript when the voltage

to A from each of all the conductors except that with the second

subscript is zero (all the conductors except that with the second

subscript connected metallically with A
o).

Those coefficients with the two subscripts equal are called

coefficients of capacity, while those with the subscripts unequal

are called coefficients of induction.

The /'s and s's are functions only of the configuration of the

conductors and of the dielectric constant of the medium in which

the system is placed.

51. The Coefficients. Any two coefficients of potential with

the same subscripts in different order are identical. That is

Pu=Piu (36)

To prove this relation, let all the conductors of the system

A
l

A
n except Ah

and A
l
remain insulated and uncharged (alge-

braically). The energy of the dielectric within A
o
when A

h
and

A
l
have the charges qh

and ql
will be independent of the manner

in which the field is established. The energy obtained by

charging Ah
first and then A

l may therefore be equated to that

obtained by charging A l
first and then A

h
. Denoting the energy

in the first case by Wl
and that in the second case by W2 ,

we

have
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W, = f^Vhdgh fa = o] + P Vfr, fa = ?J
t'O */0

=
f A^A+ f (A*ft

t/O ^0

+

X?J

/9/

Pu<2id<li+ I (Atfi
^o

from which (36) immediately follows.

If moreover the expressions in /'s for any two coefficients of

capacity with the same subscripts in opposite order, e. g., s
hl
and

s
lh ,

are examined, it will be found that they differ only in having

such coefficients of potential as phl
and plh interchanged. But

PM = Pw nence

** = * (37)

With the aid of (34) and (35) these results may be interpreted

as follows :

(36) The voltage to A
o
from any conductor A

h
when A

l
has a

given charge q and all the other conductors of the system

A
l

- - A
n , including A h ,

are insulated without algebraic charge,

is equal to the voltage from A
t
to A

o
when A

h
has the same

charge q and all the other conductors, including Av are without

charge.

(37) The charge upon any conductor A
h
when the voltage

from any other conductor A
l
to A

o
is F, and the voltage to A

o

from each of all the other conductors, including A
h ,

is zero (all

the conductors except A l
connected metallically to A

o),
is equal

to the charge upon A l
when the voltage from A

h
to A

o
is V

t
and

the voltage to A
o
from each of all the other conductors, includ-

ing A lf
is zero

(all
the conductors except Ah

connected to A
o).

The coefficients of voltage are all positive. For if one con-

ductor has a positive charge, all the rest being uncharged (alge-

braically), lines of intensity emanate from it and pass to A
o ,
some
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of them crossing (discontinuously) the other conductors as they

go. Thus lines pass from each conductor to A
o

. Hence the

voltage from any conductor to A
o
is greater than zero, or posi-

tive, and the coefficients of voltage are therefore positive

( (34) ff.).

The coefficients of capacity are all positive, and the coefficients

of induction are all negative. For if any conductor is so charged

that the voltage from it to A
o

is positive, while the voltage to A
o

from each of all the rest is zero (the conductors connected to A
o),

lines of intensity pass from this conductor to all the others.

Hence its charge is positive, and the charges of all the rest are

negative. Hence the coefficients of capacity are all positive, and

the coefficients of induction are all negative ( (35) ff.).

The coefficient of capacity of any conductor A
h

is numerically

equal to, or greater than, the sum of all the coefficients of in-

duction (with h as first subscript) between A
h
and the other con-

ductors. For when A
h

is insulated and charged, and the voltage

to A
o
from each of all the other conductors (connected to A^ is

zero, the number of unit tubes ending on the other conductors

cannot be greater than the number emanating from A
h (since all

emanate from A
h),

and can equal this number only when A
h

is

completely surrounded by one or more of the other conductors

(of the system Av Av ,
A

n]
as it is surrounded by A

o (or

when A
o

is removed to infinity and the other conductors are the

only two charged bodies in space).

When the dielectric is homogeneous and isotropic throughout,
the coefficients of induction and capacity are proportional, and

the voltage coefficients inversely proportional, to its permittivity.

Every voltage coefficient with its subscripts equal, as phh ,
is

diminished, and every coefficient of capacity, as s
hh ,

is increased,

by the introduction of another conductor into the field. For V
h ,

the voltage from A
h
to A

o
is equal to ELdL along any path

from A, to A
;
and when another conductor is introduced,li o '

whether it is insulated or connected to A
o ,

tubes of displacement

are pushed toward and into this conductor, making the field less
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intense, and jELdL less, along some paths not passing through

the new conductor (and therefore along all paths). Hence,

while qh remains unaltered, V
h

is diminished by the introduction

of the new conductor. When Ah
is insulated with charge qht

and

all the other conductors are insulated without algebraic charge,

phh
= V

h jqhJ and is therefore diminished by the introduction of

the new conductor. When A
h

is insulated with charge gh and

the voltage to A
o
from each of all the other conductors (con-

nected to A
o]

is zero, s^ = qh /Vh and is therefore increased by
the introduction of the new conductor.

It is easy to see that the effect in question is greater in each

case the nearer the new conductor is brought to the conductor

whose coefficients are under consideration, and, in general, the

greater its volume (space included within its exterior surface, if

hollow).

Similar and opposite effects, respectively, are produced by in-

troducing into a part of the field a dielectric of greater or less

permittivity than that of the rest of the dielectric within A
o ,

as

will be apparent after reading Chapter IV.

52. Additional Expressions for the Electric Energy. The

energy of the electric field within A
o surrounding the system of

conductors Av A
2 , ,

A
n (49) can also be expressed as a

quadratic function of all the charges gv , qn ,
or of all the

voltages Vv - -

,
V
n

. For by (30) and (35)

. U ,
g)

+ ^33+-"+ 2̂K + -"

and by (30) and (34)

W
v denoting the energy expressed in terms of the voltages, and

W
q
the energy expressed in terms of the charges.

By partial differentiation we find that
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WJ<tri
-s

li ri + su r,+ ... + s^rn
= qv dWJdVz= qv etc, and

dWJdq,
= pnq, + plzq2 + . . . + Plnqn

= Vv dWJdqz
= Vv etc. (4 1

)

53. 2Vq' = 2V'q. Let qv Vv qv F
2 ,

. . .

, ?n , F, and ?/, F/,

/> ^' "/ ^V denote the charges and voltages to ^4
o
for

two static fields surrounding the system of conductors A
lt ,

A within A . Then

EF/ = 2FV (42)

For 2 F/ = J^/ + V#i -f - + ^/. Whence, by (34),

and

by adding up in vertical columns the corresponding terms.

54. Change in Energy when Charges and Voltages are Altered.

If the charges and voltages to A
o
of the given system of con-

ductors are changed from one set of values qlt
Vv q2 ,

Vv etc., to

another set ^/, F/, #/, F
2

r

, etc., the increase in the energy of the

field is W - W= i
(2/ F'- ^q F) (43)

This equation may be put in two other forms, sometimes con-

venient, by (42). Thus

F) (44)

V+^qV- 2?' F- 2? F)

F). (45)

55. Electric Energy, Mechanical Energy, and Change of Con-

figuration. From 53 it follows that if the system of conductors
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A
lt
A

2 , ", An suffers a certain change of configuration, the

charges qv qv etc., remaining constant, and the voltages to A
o

therefore changing from Vv Vv etc., to F/, F
2', etc., the energy,

W
t
lost by the electric field minus the energy, W', gained by the

field when the same change of configuration occurs with voltages

V
lt
Vv etc., constant, and charges therefore changing from qv qv

etc., to qf t q , etc., is equal to

W-W = $2q(V- V) - 2 V(q'
-

q)

= i2(/-^)(F'-F) (46)

For in the first case, after the change of configuration, the

charges qv qv etc., correspond to the voltages F/, F/, etc.; and

in the second case, after the same change of configuration, the

charges ^/, q, etc., correspond to the voltages Vv Vv etc.

Hence by (42)

Substituting 2^' V for ^q V in the first term of the central

member of (46), we obtain (2?' V- 2?F' + ^qV- 2</' F),

which, on being factored, becomes identical with the last member

of (46).

If the energy dissipated in heat during the change of con-

figuration (owing to electric resistance (VIII.)) and that radiated

away (both of which are, or may be made, exceedingly small)

are neglected, the system gains in the first case an amount of

mechanical energy equal to W, the loss of electric energy. If

now, after the change of configuration, the voltages to A
o
are

brought back to their initial values by means of batteries (or other

agents possessing intrinsic e.m.f.s (VIII.)), the state of the system

will be the same as after the change of configuration in the second

case above, and the electrical energy will surpass the initial

energy by the amount W . The energy W" supplied to the

system by the batteries is equal to the sum of the increases in

mechanical and electrical energy, or

W" =
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But W'=W-\*df
hence W" = 2W- 2 (q

f -
q) (V- V) (47)

If the change of configuration is infinitesimal, Wt
Wf

,
and W"

are infinitesimals of the first order, and
J-
2 (q

f

q)(V' V)
an infinitesimal of the second order. Hence, putting W=
dW

q
and W = dW

v ,
and neglecting WW' = dW

q
dW

v

= J2 (?'- q) (V- V\ we have

-dW
q
=dW

v (48)

and W" = - 2dW
q
= 2dW

v (49)

That is, during any infinitesimal change of configuration the

decrease in the electric energy of the system when the charges

are kept constant is equal to the increase when the voltages to

A
o
are kept constant

;
and the energy supplied by the batteries,

or other sources of electric energy, in the latter case is equal to

twice the increase of electric energy one half going to increase

the mechanical energy of the system.

The principle developed in this article will be applied exten-

sively in what follows to find the forcive upon a given conductor

A in the field.

Thus suppose the forcive upon A to consist of a force F in the

direction OX of increase of the coordinate x of a point of A.

Let the configuration of all the other conductors remain fixed

while A is displaced in the direction OX a distance dx. Then

- dW
q
= dW

9
= Fdx

or F= - dW
q$dx

= dWJdx (50)

In the same way, if the forcive consists in a torque T in the

direction of an increase of an angle 0,

T=- dWJdO = dWJde (51)

56. The Discharge by Successive Contacts with A
Q
of two Con-

ductors, A l
and A^ of the System. Let all the other conductors
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within A
Q
be kept permanently connected with A

Q ,
thus becoming

permanent parts of A
Q

. Then we have at all times, by (37) and

(35) ' <-
-

Initially, let A
l
be insulated, with voltage V to A

Q
and with

charge q, and let A
2
be connected to A

Q
. In this state we have

from the above equations

the first subscript of ql
and q2 denoting the number of times the

conductor with the second subscript has been connected to A
Q

.

Next let A
2
be insulated, and let A

l
be then connected to A

Q
.

After this operation

Next let A
l
be insulated and A

2
then connected to A

Q
. Then

Then let ^4
2
be insulated, and let A

l
be connected to A

Q
. In

this state

2^2
= tj/^'?

and so on for any number of contacts.

Thus each time either conductor is connected to ^ its charge

is diminished in the ratio ^
12

2

/^u^22- After ;z contacts the charge

of^ is
*

' = '"

If after the 72th contact A
l
is insulated and A

2
connected to A

Qf

the voltage from A
l
to ^4 is

= W/VJ" F (53)
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When s
12

is nearly equal to sn and s
22 ,

which is the case when

the two conductors are parallel and close together, especially

when the dielectric constant of the medium between them is

larger than that of the rest of the dielectric within A
Q ,
the charge

diminishes very slowly with the increase of .

57. Electric Surface Density and Surface Curvature of Con-

ductors. The electric surface density upon any isolated electri-

fied conductor is, in general, greater at any point of the surface

the greater the curvature at the point. For it is obvious that

the equipotential surfaces drawn about any such conductor ap-

proach more and more nearly the form of spheres about the

conductor's " center of charge
"

as their distances from the con-

ductor increase. That is, at great distances the field is prac-

tically radial, and tubes of equal strength have equal cross-sec-

tions. If now tubes of equal strength are followed backward

toward the conductor, they become narrower
;
and those which

emanate from the more highly curved portions of the sur-

face become narrower more rapidly than those which emanate

from less highly curved portions, since the lines bounding
each tube emanate normally from the conductor. Thus the

area from which a tube of given strength starts is smaller, or

the electric surface density upon it greater, the more highly the

surface is curved (convex outward) at the point.

In the same manner the density is smaller the more concave

the surface.

At a sharp edge or point the density is very great. If the

edge or point were really sharp, the density there would, of

course, be infinite, as tubes would emanate from bases of no

dimensions.

Where two parts of a conducting surface make with one an-

other a reentrant angle the surface density vanishes, since any

displacement there would be perpendicular to both parts of the

surface, which is impossible.

In addition to the curvature at the given point, the curvature

of the neighboring parts of the surface is of importance in deter-
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mining the density. Thus the density would be small on a

"point
"
on the inside of a vessel nearly closed, and it might be

great in a small cavity in a highly convex portion of the outer

surface.

If the conductor is not isolated, the effects here described will

be rendered more or less conspicuous according to the signs,

magnitudes, and distributions of the charges on neighboring
bodies.

In the following chapter many examples illustrating the prin-

ciple of this article will be found.

58, The Capacity of a Conductor is a very commonly used

and convenient, but otherwise objectionable, abbreviation for the

permittance of the dielectric (supposed homogeneous and iso-

tropic) enclosed between the conductor and an infinitely remote

surrounding conductor when no other conductors or electrified

bodies are present.



CHAPTER II.

SIMPLE IDEAL ELECTRIC FIELDS AND CONDENSERS WITH
HOMOGENEOUS DIELECTRICS.

In the following articles describing various electric fields all

more or less ideal, the dielectric is supposed to be homogeneous
and isotropic throughout, and the electrified bodies in each case

are supposed to be infinitely remote from all other electrified

bodies, unless the contrary is stated. The potential at a point

will be taken in this chapter and in Chapter IV. as the line inte-

gral of the electric intensity from the point to a region infinitely

distant from all electrified bodies.

1. The Spherically Radial Electric Field. Let an electric

charge q be concentrated at a point P. The field can be found

at once from (i) and
(2), Chapter I., or from Gauss's theorem

and the principle of symmetry. By symmetry, the electric dis-

placement is directed radially from P (or to P if g is negative)

and has the same magnitude at eveiy point of any sphere with

center at P. All such spheres are evidently equipotential sur-

faces. Since the electric flux across any of these equipotentials

is q, the flux per unit area across a sphere of radius L, or the

electric displacement at a distance L from P, is

(I)
from which

(2)

From (2), the potential at a point distant L from P is

= f
JL L

57

(3)
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the integration being performed along a line of intensity for sim-

plicity.

Maxwell's plane diagram of the field is given in Fig. 14 and

described in 7.

2, The Spherical Condenser. If in the radial field of i infi-

nitely thin conducting sheets are placed coincident with two

equipotential spheres of radii L^ and L
2
= L

v -J- d, the electric

field will remain unaltered, except that it will be rendered dis-

continuous at the surfaces of the conducting sheet
( 47,

Chapter I.).
The charge upon the outer surface of the inner

sphere is now q, and that upon the inner surface of the outer

sphere is q y
the two surfaces with the intervening dielec-

tric forming a condenser whose field is radial and given by (i)

and (2).

The charge q at the center of the spheres is the electric image
in the inner sphere of the charge on the inner surface of the outer

sphere and all external charges ; or, if one of the conducting

sheets is removed, q is the electric image in the remaining sphere

of the complementary charges at an infinite distance (on the in-

finite sphere at zero potential surrounding q). The conducting

substance may be extended into the regions within the inner

sphere and without the outer sphere in any manner, or the fields

in these regions may be wholly destroyed, without affecting the

field of the condenser.

For the voltage between the two conductors (2) gives

V,-V2
= r^L=g/47rc.(i/L l-i/L2)

= ^/47rcL l
L

2 (4)
JL,

The capacity of the condenser is

S = ?/( ^i
- ^) = Vr^M- 4^L^jd-(i + <//,) (5)

and the capacity per unit area of the inner sphere is

S' = S/47T/V
2 =

cjd- (i + djL,) (6)
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The energy contained in the dielectric, or the energy of the

condenser, is

W= \q( V,
- F

2)
= fdltorcLft. + djL,)

=
,

d-
(
i + djL,) -(Vi-

Limiting Cases, (i) The parallel plate condenser. If d is

kept constant, and L made to increase, the electric field normal

to a given portion of the inner or outer sphere obviously ap-

proaches uniformity. When L becomes infinite, any finite por-

tion of the condenser becomes a parallel plate condenser
( 12)

of capacity per unit area S' = cjd. In any case when djL is

small, the field is approximately uniform (in magnitude) and the

capacity per unit area approximately cjd. This field is fully

discussed in 12.

(2) The isolated sphere. If Z
2

is made infinite while L re-

mains constant, (4), (5), (6),
and (7) become

(8)

(9)

V-'/A (10)
and

21TCL i i

The coefficients of potential and capacity for the system of

two spheres can be easily found from the equations of 50, I.,

together with those just developed. Thus

Ai = ^iM (<72
=

o)

V,
=

o)
= - 5 = - su

V
\
= )= S + S

2 (
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3. Laplace's Equation for the Spherically Radial Field. As

an example of the use of Laplace's equation we will determine

V
l

V
2 by a different method. Since the field is radial, the

equation may, with the aid of Fig. 12, be put in a much simpler

form than that of (21), Chapter I. The simplified form could be

obtained from (21), Chapter I., by a mathematical transformation,

the proper conditions being put in, but can be developed more

simply by starting from first principles.

The electric flux into the elementary volume dr across the

surface dS is DdS. The flux out from the volume across dSf
is

(D -f- dDjdL- dL)dS
f

,
and there is no flux across any other part

of the tube. Hence the resultant flux outward is

D(dS
r - dS) -f dDjdL dLdS = pdLdS = pdr = o

Dividing this equation by dS, writing for dS'jdS its equal

(L -f dL)
2

/L
2

,
and passing to the limit, we obtain, on putting

D = cE equal to cdVfdL,

which is the form taken by Laplace's equation for a radial field.

From (13) we obtain by integration

DdVjdL = Cv or dVjdL = CJD
where \ is a constant to be determined, and

(a)
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Integrating from L = .L
l
to L = L

2 ,
we have

Since when L = Lv d VjdL = o-fc, (a) gives

--.-Ay*
Hence

(<r)
becomes

?/4 (1/4-

which is identical with (4).

The potential at any point distant L, greater than Z
T
and less

than L
2 (the field being confined within the space between the

spheres of radii Z
:
and -Z

2)
from P is

F= V, + C, f^L/L
2

(14)
JL{

4. The Potential at a Point Due to Any Electric Distribution in

a Homogeneous Isotropic Dielectric. For the potential at a point

distant Lv L2 , ,
L

n
from point charges qv q2J , qn , respec-

tively, 33, Chapter L, gives, by means of (3),

V= I/C47T (qi IL, + qJL2 + . . - + ?JLn)
= I fair ^qjL (l 5)

If the charges, instead of being concentrated at points, which,

to be exact, is of course impossible, are distributed over surfaces

and through volumes, (15) becomes

S/Z +fpdrjL} (16)

the first integration extending over all electrified surfaces, and

the second throughout all electrified volumes.

While (15) and (16) have been deduced for a space filled up
with a single dielectric, they are also true, by 28, Chapter L,

when the field contains any number of conductors. The equa-

tions will be extended later to include all cases (IV.).

5, The Law of Inverse Squares. A consideration of equations

(l) and (2) shows that the law of inverse squares, which they



62 ELEMENTS OF ELECTROMAGNETIC THEORY.

state in its simplest form, is due to the continuity of the electric

displacement (or the "
incompressibility of electricity"), the flux

from a charge q being q across every surface surrounding the

charge, and to the spherical or three-dimensional nature of space,

the flux from a point charge being distributed equally in all direc-

tions (when the medium is homogeneous and isotropic, in which

case only the law is valid).

6. The Normal Electric Field and the Potential of the Earth.

Numerous investigations upon the electrical state of the earth's

atmosphere, made at altitudes above its surface ranging from

nothing up to 4000 meters, have shown that the atmosphere is

the seat of an electric field whose intensity, in normal conditions,

is directed toward the earth.

In good weather, the magnitude of this intensity at the earth's

surface ranges from about 0.00005 RES unit (about 50 volts/

meter) to about 0.00040 RES unit (about 400 volts/meter), ac-

cording to season, locality, etc. Thus the electric surface density

of the earth's surface, in normal weather, ranges from about

0.00005 RES unit to about 0.00040 RES unit. The magni-

tude of the intensity increases with the altitude above the earth's

surface up to heights of some 2000 meters, showing that the

atmosphere in this region, like the earth's surface, is negatively

charged. In the higher regions of the atmosphere, on the other

hand, the intensity decreases with the increase of altitude, with-

out becoming greatly reduced, however, at the greatest altitudes

yet investigated. Thus the higher regions of the atmosphere are

positively charged ;
but whether all the tubes of displacement

terminating upon the earth and in the lower regions of the at^

mosphere originate in the upper regions, or whether some of these

tubes emanate from other bodies in space, is not yet known. If

further investigation demonstrates that at greater altitudes the

intensity vanishes, the former alternative will be shown to be

correct. The altitudes here considered are so small that no sen-

sible variation in the intensity would occur within them owing to
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the increase in the cross-section of the tubes of induction with

the distance from the surface of the earth.

The earth itself in any case is negatively charged ;
and since

the electric intensity in the atmosphere is directed toward the

earth, its potential is negative if the (wholly unknown) electrifi-

cation of all other bodies in space beyond the atmosphere is not

considered. From the magnitude of the intensity given above and

from the great altitude to which the field extends without great

diminution in strength, it is obvious that the magnitude of this

potential is very great.

It follows from (15) that that part of the potential at the center

of a conducting sphere of radius L due to any charges 2</ upon
its surface is ^ql^-cL. Since the sphere is conducting, this ex-

pression gives the part of the potential at any point of the sphere

due to the surface distribution. From this and 6, L, it follows

that the potential of the earth is not appreciably affected by the

the development of any charges retained upon or near its sur-

face. For by 6, L, 2^ is always zero
;
and Z, the distance from

the center of the earth, is very great and practically the same

for all the charges.

The field surrounding the earth, as a matter of fact, is by no

means strictly static, and the surface of the earth is never strictly

an equipotential.

7. Maxwell's Plane Diagram of the Spherically Radial Field,

Maxwell's diagrams are all so drawn that the successive equipo-

tential surfaces differ in potential by the same amount (for ex-

ample, unity), and that the tubes of induction corresponding to

the intervals in the diagram between successive lines of displace-

ment are of equal strength (for example, unit tubes).

(
i
)
The equipotential surfaces. The radius of the sphere whose

potential is Fis
L =

Hence by giving Fin succession the values I, 2, 3, etc., the

radii of the equipotentials with these values of the potential can
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be obtained. The circles in which any plane passing through the

charge cuts these spheres form the equipotential lines in the

diagram. The circles may of course be drawn for any constant

increment of potential instead of unity.

Fig. 13.

(2) The lines and tubes of displacement. The lines of displace-

ment are straight lines radiating from the charge. The tubes of

displacement in Maxwell's method are formed by rotating the

diagram of lines of displacement about a straight line drawn

through the charge. We proceed to find the distribution of the

lines in the plane diagram when drawn so that the tubes thus

formed are of equal strength.

Let a circle of any radius AP, Fig. 13, be drawn about P, the

seat of the charge, as center
;
and let the diameter AB be divided

up into q equal parts by straight lines drawn perpendicular to AB
and cutting the circle in the points n, 22, etc. From P let

straight lines be drawn through 1 1, 22, 33, etc. These lines are

the lines of Maxwell's diagram.

For if the figure is rotated about AB as axis, the circle traces

out a sphere, the lines u, 22, etc., trace out equidistant parallel
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planes which cut the sphere up into zones lAi, 21 12, etc., of equal

area (ijq that of the sphere). Hence the lines Pi, P2, and P$ %

etc., trace out cones iPi, iP2, 2P$, etc., through each of which

the electric flux is the same and equal to I jq x q = unity. Hence

these cones are the tubes of displacement required, and the lines

Pi, P2, P$, etc., are the lines of displacement in the diagram.

The field may of course be divided up into tubes of any other

strength instead of unity by cutting AB up into the desired

number of equal parts in the above construction.

The diagram is given in Fig. 14 for the case in which the

strength of each tube is taken as q/S.

Fig. 14.

8. The Cylindrically Radial Field, or field surrounding a uni-

formly electrified infinite straight line or circular cylinder. Con-

sider first an electrified straight line, and let the charge on unit

length be denoted by q. By symmetiy D is everywhere normal

to the line and to the circular cylinders about it as axis, which

are the equipotential surfaces, and has the same magnitude at

every point of any such cylinder. Since the flux across a length

A of any equipotential is qA, the flux per unit area across a cylin-
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der of radius Z, or the electric displacement at distance L from

the axis, is D = qAJ2TrLA = q\2irL (17)

whence E= Djc = q j 2ircL (18)

The potential at a point distant L from the axis is

V=ql27rcf dLjL (19)
JL

9. The Cylindrical Condenser. If two equipotentials of radii

L^ and L
2
= L^ -f d are replaced by infinitely thin conductors,

the electric field will remain unaltered except that it will become

discontinuous at the surfaces of the conductors. The charge

upon unit length of the outer surface of the inner cylinder is now

q,
and that upon unit length of the inner surface of the outer

cylinder is q y
and the two conducting surfaces with the inter-

vening dielectric form a condenser whose field is given by (17)

and (18). The charge upon the straight line and that on the

inner surface of the outer cylinder together with all the external

charges are electric images of one another in the inner cylinder,

etc. The conducting substance may be extended into the

regions within the inner surface and without the outer surface in

any manner, or the fields of these regions may be wholly de-

stroyed, without affecting the field of the condenser.

For the voltage between the plates of the condenser, (18) gives

F'ttL/L = ql2irc
-

log(l + djL^ (20)
JL-,

-v,=
^ii

The capacity of a length A of the condenser is

and the capacity per unit area of the inner cylinder is

S f = S/27rL,A = cIL log (i -f d!L\
(22)



ELECTRIC FIELDS AND CONDENSERS. 67

If d is kept constant and Z
1
made to increase, the field normal

to a given portion of the inner (or outer) cylinder evidently ap-

proaches uniformity ;
and in the limit, when Z

x
=

infinity, any
finite portion of the condenser becomes a parallel plate condenser

( 12) of capacity cfd per unit area. In any case when djL is

small the capacity per unit area is approximately cjd.

The energy of a length A of the condenser is

W= \qA(V,
- F

2)
= fA\4*c. log (i

The field of an infinite isolated circular cylinder uniformly

charged is given by the above equations on making L
2

infinite

and V
2
zero.

V
l V^ can be easily obtained by the direct application of the

law of inverse squares. Let the field outside the condenser be

zero (though the results obtained will be independent of this

assumption); then V
2
= o, and V^ is the potential at any point

on or within the inner cylinder, and is therefore the potential at

any point P on this axis. Hence, from the figure (Fig. 1 5),

1

1
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Without transforming the general equation, we can obtain

directly, by a simple process similar to that employed in 3, the

special form it assumes in a cylindrically radial field. Thus we

find

Ld2

V\dL* + dVjdL = o (24)

Hence, by integration,
LdVldL = C]

or (a)

and

V,
-

V,
= C r

i

dLjL = gl27rc log Z2/ZX (b)
JL*

since when L = Lv (a) gives

C= -L
l<rjc=

-

.gl2>jrc (c}

The potential at any point between the two cylinders, distant

L from the axis, is

JL

11. Maxwell's Plane Diagram of the Cylindrically Radial Field.

This diagram, like that of 7, is drawn so that the tubes of dis-

placement corresponding to the intervals between the successive

lines of displacement are of equal strength, and so that the volt-

age between successive equipotential lines or surfaces is constant.

Since every line of displacement lies wholly in a plane perpen-

dicular to the axis of the cylinders or electrified straight line, and

since the lines of displacement are exactly similar in every such

plane, any such plane is chosen as the plane of the diagram, and

the tubes of displacement are supposed to be formed by moving
the diagram perpendicularly to its plane. We shall suppose the

diagram to represent unit depth of the field, all the tubes having

this thickness.

I. The equipotential lines in the diagram are circles centered

on the axis. Though the potential of every circle, as given by
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(19), is infinite, we may draw a system of circles differing in

potential successively by a constant finite quantity, as unity, by

starting with any equipotential circle of any radius a and potential

Fig. 16.

V
a (infinite) and applying (20) to find the radius L of the circle

whose potential is V
a

VL less than V
a . Thus we have

By giving to Va VL in succession the values I, 2, 3, etc. (or

any set of successive values differing by a constant), as many
circles of the system as desired may be obtained.

2. The lines of displacement are straight lines drawn from the

center of the circles and dividing each circle into q (or any inte-

gral number) of equal parts.

Such a diagram is shown in Fig. 16.

12. The Uniform Electric Field. Let the field be terminated

by an infinite plane conducting surface. The surface will be

uniformly electrified, the displacement everywhere uniform and

normal to the surface, and the equipotentials planes parallel to

the surface. The displacement is
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D=(T (26)

and the intensity is E= Djc = a/c (27)

The Parallel Plate Condenser. If an infinitely thin conduct-

ing sheet is placed coincident with the equipotential plane dis-

tant d from the electrified surface, the electric field will remain

unaltered except for the discontinuity introduced at the surfaces

of the sheet, and each side of the sheet will therefore have the

same electric surface density o- (numerically). The two adja-

cent surfaces and the dielectric between them form a condenser

whose field is uniform and given by (26) and (27), and which

will remain unaltered if the conductors are extended into the

region outside the condenser.

The voltage between the two conductors is

V,- V
2
= Ed=(Tdjc (28)

and the capacity of a portion of the condenser of right cross-

section A is

5 = q\( Vl

- F
2) =AjEd = ADI

Ed = Acjd (29)

The capacity per unit area is, as already proved less directly

in 2 and 9) Sf ~SfA=cfd (30)

The energy of a portion of the condenser of right cross-

section A is

= \Ac\d -(V,- Vtf = \EDAd (31)

The force F (positive when tending to increase d, or to separate

the plates) upon an area A of either plate, if the tubes in the

condenser are the only tubes terminating upon the plates (that

is, if there is no external field), is

F= dW\dd(<r constant) = -
\<^A\c = - \cE

2A = etc.

= + dWjdd [ (
V

l

- F
2) constant] (32)

= _ %AC (V,
- F

2)

2

/^
2 = -\cE*A = etc.

by 55, Chapter I.
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This result also follows from 40, I., or the result there given

follows from (32).

V
v

V.
2
can be obtained also by the direct application of the

law of inverse squares. We assume that there is no field ex-

ternal to the region within the plates, though the results will of

course be independent of this assumption, since the internal and

external fields are wholly independent of one another. From

any point P of the positive plate imagine a straight line drawn per-

pendicular to both plates. Imagine the surfaces of the conduc-

tors divided up into infinitesimal circular zones centered on this

line, and let x denote the radius of any zone and dx its width.

Then the potential at P, i. e.
t
the potential at all points of the

positive plate, is evidently

V^
= I [

<T2 r

jrxdxl^irc(x'
L
-f d )* -f- aZirxdxlqjrcx}

Jo

=
<r/2c f [I

-
xj(x

2 + d*)*\dx= + <rdJ2c

Similarly V
2
=

<rd/2c

Hence V
l
- V

2
=

<rdjc (28)

Laplace's Equation for a Uniform Field, The same result can

be obtained also from Laplace's equation. In a uniform field, if

we take X in the direction of D
y
the equation (21), Chapter I.,

simplifies to = o (33)

since >
2
= >

3
= o (or dV\dy = dVjdz = o).

By integration, (33) gives

dVldx=Ci=-<rlc (a)

By a second integration

V^
- V

2
=

C,(o
- d} = - CJ= vdjc (28)

At any point distant x from the positive plate, when x is less

than d, we have

V= V, + Crr (34)
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13, Maxwell's Plane Diagrams of the Uniform Field, (i) The

equipotentials are equidistant planes perpendicular to the lines of

displacement.

(2) The diagram of the tubes of displacement may be drawn in

two different ways. If the tubes are to be formed by moving

Fig. 17.

the diagram perpendicularly to its own plane, the corresponding
lines in the diagram must be drawn equidistant. But if the tubes

are to be mapped out by rotating the diagram about a line of

displacement as axis, the distances of the successive lines from

the axis (or the radii of the outer surfaces of the cylindrical

tubes) may be found by giving to the expression TrR2D( = the

flux through a tube of radius R) values which are multiples of

the successive whole numbers by a constant, and solving for the

corresponding values of R. A diagram of the former kind is

given in Fig. 1 7, and one of the latter kind in Fig. 1 8.

Fig. 18.

14. Maxwell's Plane Diagram of the Resultant of two Fields.

If the plane diagrams of two fields are given, both drawn for the

same strength of tubes and the same potential differences, and if
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both are diagrams which trace out the tubes of displacement by

their revolution about the same axis, or by motion at right

angles to their plane through the same distance, the resultant

diagram of the two fields superposed can easily be drawn.

(
i
)
The equipotentials. Since the potential of each line in both

diagrams is known, the potential of every point of intersection

when the diagrams are superposed is known. Hence by draw-

ing curves through all the points of intersection which have the

same potential we get the resultant equipotential curves. This

is equivalent to drawing the curves forming the diagonals of the

quadrilaterals made by the superposition of the two systems of

equipotentials, since in passing from one corner to the other the

potential of one diagram diminishes as much as that of the other

increases. There is no difficulty in choosing the proper diagonal.

The difference of potential between the successive curves in the

resultant diagram is the same as that between the successive

curves in the original diagrams. A particular case is illustrated

in Fig. 1 9, the lines of the resultant diagram being dotted.

(2) The lines of displacement. The lines of displacement in

the resultant diagram are the curves forming the diagonals of

the quadrilaterals resulting from the superposition of the two
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diagrams of lines of displacement. For across every element of

such a curve, as ab in the figure (Fig. 20), the flux is zero, since

the flux through one tube as T in one direction just cancels that

through another as T' in the other direction. It is also obvious

Fig. 20.

from the figure that the flux along any resultant tube is equal to

that along any of the original tubes. No difficulty can be ex-

perienced in choosing the proper corners of the quadrilaterals to

connect.

By compounding diagrams in pairs it is clear that the diagram

of the resultant of any number of fields superposed can be ob-

tained by the above method.

15, The Field Terminated by two Equal and Opposite Concen-

trated Charges. Let the charges, which will be denoted by q

and q y
be located at A and B, Fig. 2 1

,
distant 2d apart. The

field is evidently symmetrical about the line AB, and is the re-

sultant of two radial fields, I . The displacement and intensity

at any point P distant L
l
from A and L

2
from B are therefore

D = Vector sum of

and
At-

directed from A) and

directed toward B)

For the potential at P, (36) gives

(35)

(36)

(37)



ELECTRIC FIELDS AND CONDENSERS. 75

(37) is also the equation of the equipotential surface whose

potential is V.

The lines of intensity are the lines orthogonal to the surfaces

given by (37). The equation of a line of intensity can be ob-

tained at once by writing down the condition that there is no

E 2

component of electric intensity perpendicular to such a line. If

ds (Fig. 21) is an element at P of the line of intensity through

P, and if a^ and a
2
are the angles made by El

and E
2 with the

normal N at P, we have, to express this condition,

E
l
cos a

x -f E2
cos a

2
= o

If Zj and L
2
make with AB the angles 6

l
and #

2 ,
this condition

may be written, as the figure shows,

Multiplying by PD, the perpendicular to AB from P, and inte-

grating, we have

Constant = C= (/sin
6

l
d6

l +/sin 2d6^= cos 6^+ cos
2 (38)

which is the equation sought, in terms of O
l
and

2
.

By giving to C different values, the equation of any line of

intensity may be obtained. To find C for the line which cuts
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the plane normal to AB through its central point C at a distance

x from C, we have, for this point, 6
l
=

2 ,
and

Therefore

C= 2 cos
l
=2 cos

a
=

2^/(^/
2 + **} (39)

The lines of displacement and the equipotential lines, drawn

by the method of Maxwell, 14, are shown in Fig. 22. (See

(Maxwell's Treatise, 123.)

If the distance 2d is diminished indefinitely and the charges q
and q increased in such a way that q x 2d= constant = M,
the system becomes a point doublet of moment M. This doublet

and its field are discussed in 27.

From (37) it follows that the infinite plane perpendicular to

AB through its middle point Cis at zero potential.

At any point on this plane the resultant intensity and displace-

ment are normal in the direction AB. If P is distant x from C,

the displacement at P will be, by (35),

D = 2ql4ir(d
2 + xz

]
-

dj(d
2 + x^ = qdl2ir(d

z + x^ (40)

If for the infinite plane equipotential surface through C an in-

finitely thin conducting sheet is substituted, the field on either

side will remain unaltered, and the two point charges will be-

come electric images of one another in the sheet.

If the field on the side toward B is destroyed, or if the con-

ductor is extended toward B in any manner, the field on the side

toward A will not be affected, and we have the electric field

bounded by a concentrated charge q and the (induced) charge

upon an infinite plane conducting surface distant d from q and

maintained at zero potential. If q is positive the electric surface

density is negative at every point of the surface, since D there

has the direction AB. The magnitude of D = a is given in

(40). The total charge upon the infinite plane is q, since all

the tubes from A terminate upon the plane.
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Since the field about A was unaltered by the introduction of

the conducting sheet and the destruction of the field on the side

toward B, the force between the charged body at A and the plane

conductor is the same as the force formerly acting between A
and B. That is,

F = - q
2

1
16-rrcd

2

(41)

Since concentrated charges do not exist, we shall suppose the

charges at A and B distributed over extremely small conducting

Fig. 22.

spheres each of radius a, so that the field in the region outside

the spheres will be practically the same as that already discussed.

From (34), I., the potentials of the spheres A and B are

- and
i 2

- 22
the subscripts i and 2 being applied to A and B respectively.

Since the spheres are very small, these equations become ver

approximately
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and V
2
=

ql^irca -f ql^jrc2d = V
l

from which V
l

V
z

2 V
l
=

g/27rc-(i/a \J2d) (42)

The capacity of the system AB is

;;\ s-eKri-rj-nrcKi/a-iitoi) (43 )

and the energy of its field is

W= fl4Trc.(ila-il2d)=4TrcV?l(lla - iJ2d) (44)

When the conducting sheet is placed coincident with the zero

equipotential, the capacity of the dielectric between A and this

surface is

s
1 -e/rl

= 2S
(45 )

The energy of the dielectric is

The force tending to increase the distance between the charge

at A and the plate can also be found from (44) or (46) by the

method of 55, I. Thus

= dWjd(2d) =-
dWJdd= + dWjd(2d) = - - 2 >

in agreement with (41), the first differentiations being performed

with the charges constant, and the second with the potentials

constant.

16. The Electric Field Surrounding Two Concentrated Charges

of the Same Sign in the Ratio of 4 : 1, and its Derivatives. Max-

well's diagram with twenty tubes emanating from one of the

charges (A) and five from the other (j5) is given in Fig. 23 (from

Maxwell's Treatise, 118). One equipotential surface, indicated

by the dotted line, consists of two lobes meeting at the point P.

At P, which is distant from A two thirds of the distance AB,

the intensity vanishes. Within this surface, each charge is sur-

rounded by a separate system of equipotentials, which become
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more and more nearly spherical as they become smaller, though

no one of them is an exact sphere.

If two of these surfaces, one surrounding each point, are taken

to represent the surfaces of two conductors with charges of the

same sign in the ratio 4:1, the diagram will represent the equi-

Fig. 23.

potential surfaces and tubes of displacement of the field sur-

rounding the conductors, provided that all the lines within the

surfaces are annulled.

The diagram shows that the force between the two bodies will

be the same as that between the two points A and B with the

same charges. The distribution of the tubes shows that this

force tends to pull the bodies apart.

If a conducting surface is placed coincident with the two-lobed

equipotential, its electric surface density at P will be zero
(cf.

57, I.).

Outside the two-lobed surface a single system of equipoten-

tials surrounds both charges. By making any of these surfaces
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conducting and annulling all the tubes within, we obtain the field

surrounding the isolated conductor with a charge upon its sur-

face equal to that of A plus that of B. The equipotentials sur-

rounding both A and B approach the form of spheres as their

distances from A and B increase
(cf. 57, I.).

17. The Electric Field Surrounding Two Concentrated Charges

of Opposite Signs in the Ratio 4 to 1, and its Derivatives. Max-

well's diagram, with twenty tubes emanating from one charge at

A and five terminating with the other at B
y
is given in Fig. 24

(from Maxwell's Treatise, 119).

Here again one of the equipotentials, indicated by a dotted

line, has two lobes, an inner one surrounding the point B and an

outer one surrounding both the points A and B. All the sur-

faces in the region between the lobes surround A only and

become more nearly spherical as A is approached ;
while all

those in the region within the inner lobe surround B only and

become more nearly spherical as B is approached. The equi-

potentials lying outside the surface with two lobes become more

nearly spherical as their distances from A and B increase.

One of the surfaces, that with the potential zero, is a sphere,

and is indicated by the dotted circle Q.

If two of the surfaces, each surrounding one of the two points

A and B, are made conducting, and the fields within them an-

nulled, the diagram gives the tubes and equipotentials surround-

ing these conductors when charged oppositely in the ratio 4:1.

The diagram indicates that the force between two such

charged conductors is one of attraction, and the same as the

force between the two charged points A and B. The field sur-

rounding the charge at A or B when the sphere Q is made con-

ducting and the field on the other side annulled is discussed in

23.

If we consider points on the axis AB beyond the point B, we

find that the resultant intensity diminishes up to the point/
5
,
distant

from A twice the length AB, where it vanishes. It then changes
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sign and reaches a maximum at M, after which it continually di-

minishes. The distance of M from A is ^4/(^4 i)
- AB

== 2.70 x AB (approximately).

Fig. 24.

18. The Electric Field Surrounding Three Points A, B, and C,

with Charges Proportional to 15, 12, and 20, respectively, so

Situated in a Straight Line that AB : BC : AC : : 9 : 16 : 25, and its

Derivatives. Maxwell's diagram of the field is given in Fig. 25

(from Maxwell's Treatise, 121).

In this field one of the equipotentials, corresponding to the

potential I
/4<r,

consists of two spheres intersecting at right angles,

with centers A and C, and radii 1 5 and 20, respectively, as indi-

cated by dotted lines in the diagram. The point B is at the

center of the circle of intersection DD, the radius of which is 1 2,

and at all points of which the intensity is zero.

If the sphere A is made conducting and all the lines within it

annulled, the diagram will represent the field surrounding the
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insulated sphere A with charge 3 upon its surface in the pres-

ence of a concentrated charge 20 at C. The part of A within

the spherical surface about C will be negatively charged and the

rest positively charged, the electric surface density along the

circle DD being zero.

Fig. 25.

In the same way, if C is made conducting, the diagram repre-

sents the field surrounding the conducting sphere C insulated

with charge 8 upon its surface in the presence of the concen-

trated charge 15 at A.

These two fields are particular cases of that discussed in 24.

If both spheres are made conducting, and the lines within

annulled, the diagram represents the field surrounding a con-

ducting surface consisting of the external segments of two spheres

intersecting at right angles in DD and with charge 23. This is

a particular case of the field discussed in 36.



ELECTRIC FIELDS AND CONDENSERS. 83

19. The Electric Field Terminated by Two Infinite Parallel

Straight, Lines or Circular Conducting Cylinders, with Charges q

and q on Unit Length. Consider first two electrified straight

lines, distant za apart, and cut by a perpendicular plane in the

points A l
and A

2 , Fig. 26. By symmetry, the distribution of

the lines of displacement is the same in every such plane. More-

over, all the lines emanating from a point A l pass to the point

A
2
in the plane containing the two points and perpendicular to

the two lines.

Fig. 26.

The potential at any point P distant L^ from A
l
and L

2
from

A is

= V
l + F

2
=

f

JL,

adLjL
- f dL]L\

JL, )
4g)

dLjL

This is also the equation of the section by the plane of the

paper of the equipotential surface whose potential is V. By giv-

ing to V different values the corresponding surfaces may be

obtained.

The displacement at P is

D = Vector sum of D^( = qJ27rLl
directed from A

l )

and D
2(= q/27rL2

directed toward A
t )

and the intensity E is Djc.
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From (49) the equation of any line of intensity can be obtained

by the method of 15. Proceeding exactly as in that article,

we find the equation

i + 2
= C= constant (50)

which is evidently the equation of the arc of a circle terminating

at A
l
and A

2 ,
and cutting perpendicularly the line normal to

A^A2
at its middle point. If the line whose equation is sought

cuts the normal to A^A^ at its middle point O at a distance x

from 0, we have, for this point, 6
l
=

2 ,
and

C=20
l
= 20

2
= 20=2 cos-1

[*/(* + .r
2

)*] (51)

The equipotential surfaces given by (48) are circular cylinders,

or their lines of intersection with the plane A^AJP circles, orthog-

onal to the lines of intensity. For (48) may be written

fJL2
=e- 2-^^ = /i (52)

a constant for the curve, or surface, whose potential is V\ and

this is the equation of a circle cutting the line A^A^ and with its

center C on the line A^A 2 produced.

The radius of the circle whose potential is

-i) (53)

the distance of its center C from A
l
is

A^C-^Rh (54)

and the distance of C from A
2

is

A
2C=Rjk (55)

To obtain the resultant displacement D' at P we must obtain

the vector sum of D
l
and Z>

2 , Fig. 26, which will be along R
normal to the equipotential. Since D

l
and D

2
are directed along

L^ and L
2 respectively, and since, by (49), Dl jD2

= A/A> the

triangle whose sides are Dv D2 ,
and D' is similar to the triangle

A^PA2 ;
so that

2a
I
L

2 ,
and Z)

f

/D2
= 2a/Ll
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whence D' = 2aD
l /L2

= 2aD
2 /Z x

= qa (56)

and the resultant intensity E is equal to D'
jc.

The force F upon a length A of either electrified line, con-

sidered positive when tending to increase a, is

F= (57)

The plane diagram of the field, drawn by Maxwell's method,

14, is given in Fig. 27 (from Webster's Theory of Electricity and

Magnetism, 159). The tubes of displacement and the equipo-

tentials are mapped out by moving the diagram perpendicularly

to its plane.

Fig. 27.

If for any equipotential surface the coincident surface of a con-

ductor is substituted, the electric field on the side facing this sur-

face will remain unaltered. The above field therefore includes,

as particular cases, the fields bounded by

(i) An infinite straight line and a parallel infinite conducting

circular cylinder,



86 ELEMENTS OF ELECTROMAGNETIC THEORY.

(2) An infinite straight line and a parallel infinite conducting

plane,

(3) An infinite conducting circular cylinder and a parallel in-

finite conducting plane,

(4) Two parallel infinite conducting circular cylinders, internal

or external (either or neither surrounding the other), all with

charges q and q upon unit length.

The fields of 89 are particular cases of (4) when one of

the two lines is removed to infinity.

As systems of practical importance, we shall discuss (4) for

the case in which the two cylinders are external to one another,

each of the same given radius R, with their axes at a given dis-

tance 2d apart, and charged to potentials V and V, and
(3),

which is a particular case of (4).

To obtain the electric field terminated by the two cylinders, we

must find the distance a and the charge q upon unit length of

the positive cylinder.

From the similar triangles A^P and A
2
CP (Fig. 26) we have

a)
= I? (58)

whence
a = (d

2

-J?y (59)
From (54) and (55)

For the cylinder whose potential is J^we have

log h = 2TTcVjq
and therefore

q = 27rr F/log h = 27rcF/\og[{d + (d*
-

= 2TTC

From (49) and (56) the field can be determined, by making use

of (61), at all points.

The capacity of a length A of the system is
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=
TTcA/log/l

= 7TcA/[og[{d + (d
2- ^ 2

)*}/^] (62)

and the energy in the same length is

W= \qA 2 V- 2-n-cA F2

/log[{rf + (rf
2 - *)} JK\

= tfA/*c .loeW +(<**- &?}!*]

If the infinite plane surface of a conductor is placed coincident

with the surface of zero potential (the plane passing symmetric-

ally between the conductors) the field on the side facing the

conductor will remain unaltered
;

it is simply half the field just

considered.

The capacity of a length A of the condenser formed by the

infinite plane and the cylinder with the dielectric is

5,-^/F-25 (64)

and the energy is half that contained in the complete field sur-

rounding the two cylinders, or

',_,.... .

,

_. '4 W, = \w
_^ffff ;';- (65)

The force F acting upon a length of A of either conductor,

plane or cylindrical, is given by (57). It can also be obtained

by differentiating W^ with respect to d, or W with respect to 2d,

by the method of 55, I. Thus

v '

20. The Field of a Line Doublet. When 20, is small in com-

parison with L^ and L
2 ,
we have

= (approximately) g/27rc log (
I -f- 2a cos JR) (67)

=
qJ27rc

- 2acos 6jR(i 20, cos 6J2R -\- )

if R is written for L^ and if denotes the angle between Z
x
and

the line A^AV
If now the product q 2a is kept constant while a is diminished

indefinitely, (67) approaches the limit
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V= 2aq cos 6l27rcR = J/cos 6
/

'

2ircR (68)

where Mis written for 2aq. This system is called a line doublet,

and M is called the moment of the doublet.

and

Fig. 28.

The radial and tangential displacements at a distance R from

the doublet, at a point where R makes an angle 6 with the line

^ now infinitely short, are

D
r
= - cdVjdR = Mcos 6/27rR

2

(69)

D
t
=cd VjdT= cjR 'dVjdB = Msin dJ2TrR

2

(70)

The total displacement is equal to

D = (Dr

2 + Z>,
2

)*
= M

l
27rR*

(7 J
)

and makes an angle 20 'with the lineA^ (the axis of the doublet).

The lines of intensity are evidently circles tangent to the axis

at 0, and the equipotentials circles perpendicular to the axis at
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O. The plane diagram of the field is given in Fig. 28 (from

Webster's Theory of Electricity and Magnetism, 44), the tubes

of displacement and equipotential surfaces being supposed gen-

erated by moving the diagram perpendicularly to its plane.

The method of drawing the diagram is easily understood from

Fig. 29. Since there is an infinite number of lines of displace-

Fig. 29.

ment within a circle of any finite diameter a, only the lines lying

outside some such arbitrarily chosen circle can be drawn. The

same is true of the equipotential lines.

The flux through the tube between the cylinders of unit depth

with diameters a and y is

dyfy*
= M/27T

Hence by giving II any set of successive values differing by a

constant the diameters {y) of the corresponding lines of displace-

ment may be obtained.

The voltage from the circle of equal potential of diameter b to

the circle of diameter x is

Hence by starting with a circle of diameter b and giving V
b

Vx any set of successive values differing by a constant, the

diameters (x) of the corresponding equipotential circles may be

found.
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21. The Electric Field Surrounding an Isolated Conducting-

Spheroid. First it will be shown that within the region enclosed

by a homogeneous material shell whose surfaces are similar and

similarly situated ellipsoids there is no gravitational field of force.

Such a shell is called an ellipsoidal homoeoid.

Let a cone, Fig. 30, of infinitesimal angle da> at any point A"
in the region cut from the shell the volumes B"C" and D"E" .

If p denotes the density of the shell, g the gravitation constant,

L the distance from A" of any element of volume dr of the shell,

the intensity at A" in the direction A"C" due to the masses in

B"C" and D"E" is

f*A"C" s*A"E"

= g\ pdrjL^-gi pttr/LJA"B " JA"B "
dG

since the attractions due to the masses in J2"C"and D"E" are in

opposite directions. Since dr = I^dadL, the integrals reduce to

dG = gpd<*(B"C" - D"E")

and since the plane N"OC" intersects the ellipsoids in two

similar and similarly placed ellipses, the same diameter ON1 '

bisects B"D" and C"E". Hence B"C" = C"E" and

In the same manner it may be shown that the intensity at A"
due to the matter within any other infinitesimal cone with vertex

at A" vanishes. Hence

or the region contains no gravitational field.

When a conducting ellipsoid is charged the tubes of displace-

ment are distributed by the tensions and pressures until they

touch the surface normally, or until the surface becomes an equi-

potential. The conducting substance may then be considered

replaced by a dielectric of permittivity c equal to that of the exte-

rior medium, for the sake of applying the law of inverse squares,

28, I. At any point A within this region the intensity and dis-
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placement are zero. And therefore, since the law of inverse

squares prevails in electrostatics as in gravitation, the law of

variation of the electric surface density, or outward displacement

at the surface, must be identical with the law of variation of the

thickness of the shell in the above gravitational problem. In

discussing the electric case the shell must be considered as of

infinitesimal thickness, since the charge resides wholly at the

surface of the conducting ellipsoid.

The distribution of charge or displacement at the surface of an

ellipsoid of revolution, or spheroid, only will be determined here.

We proceed to find the distribution of the charge by investigating

the law of the variation of the thickness of a spheroidal homceoid.

c"

Let the given spheroid be generated by the revolution of the

ellipse BAB' , Fig. 30, about the line BBf

,
and the exterior sur-

face of the infinitely thin homceoid by the revolution of the sim-

ilar ellipse B^A^BJ about the same axis. We must find the ratio

of /, thickness of the shell at any point P, to /
,
the thickness at

B. Since the shell is infinitely thin, t is to be measured in the

direction of the normal PJPC to the spheroid at P.

From the similar triangles />/>/> and PCD we have

* = PAS/PC- ay(y,
-

y)\b(<?
- *V) = y(y,

-
y) OR\P

By the equations
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y? -f =VK W -*?}- v-l# ('f
-

**),

b\l
a

\
=

&/a (since the spheroids are similar),
and

x = xv y y^ (in the limit),

we have

-JO = b(b, -6) = bt,

and the equation for / becomes

t/t,
= bjPC= al(<?

- eW)> = OR
I
'b = DID, = <r/<r

or

D=cr = <r
Qa/(a

2 - e
2*2

)*
= D

Qal(a
2 * 2

e
2

)*
= DJb = cr

Q jb (72)

where cr
Q
and cr denote the electric surface densities at B and at

points of the spheroid distant x from the axis BB'
',
and J9 and

D the corresponding outward displacements.

Thus the surface density increases in passing from B to A, at

which point it has the value

er = <T
Q
a!

:

b (73)

To obtain the total charge q upon the spheroid, the charge

<rdS upon the elementary zone cut out by PP2
as the ellipse re-

volves about OB must be found and integrated over the whole

surface. Thus

<rdS = <T27rxPP
2
=

bcr^ JPC- 2-jrxdx- PC\y = -
2-rrcr^lb dy

and

q = I crdS = 27rtf
2
<7 / I dy = 4ira?<r (74)

J J+b

The potential of the spheroid when the charge is q may be ob-

tained by rinding the potential at the center 0, since the potential

is uniform over and within the spheroid.

The potential at due to the charge upon the zone dS is
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and the total potential is

*

(75)

The capacity of the isolated spheroid, or the permittance of the

dielectric bounded by the spheroid and an infinitely remote sur-

rounding surface
( 58, I.),

is

(76)

The isolated sphere. If b = a, the equations reduce to those

already developed ( 2) for an isolated sphere.

An infinitely thin circular plate. If b o, the spheroid re-

duces to an infinitely thin circular conducting plate of radius a,

and (72), (74), (75), and (76) become

D (or *)
= aD

9(or aJ/(*-**)* (77)

since e = [(a
2 &2

)/a
2

~\*
=

I,

q = 4^2 " = 4w^A
F= 7rtf<7 /2r (79)

S = 8tfr (80)

Near the edges the displacement is very great, D becoming
infinite when x = a. But the total charge is finite since an edge
has no area.

The ratio of the capacity of a thin circular plate to that of a

sphere of the same radius is

8ac/4.7rac= 2/7T
=

1/1.571

a relation established experimentally by Cavendish long before

the development of the theory.

If two thin circular plates of the same radius a are placed par-

allel to one another with the distance d between them so small

that the field is sensibly uniform between them, and relatively
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weak outside, the capacity of the system will be very approxi-

mately

The ratio of the capacity of a single isolated plate to this

capacity is

The energy of the field connected with two such plates very
remote from one another and with charges q and q, respec-

tively, is

The energy of the field when the two plates are parallel and

separated by the very small distance d is

ira'c

Hence the work which would be done by the electrical forces

in drawing the two plates into the latter configuration from the

former is

f( I fSac dJ2ira
2

c)
= <fj 2ac -(1/4 djira)

It may be shown that the equipotential surfaces surrounding

the isolated plates are the confocal spheroids with the edge of

the plate as focal line, and that the lines of displacement are the

corresponding confocal hyperbolas.

If any one of the spheroidal equipotentials is made conducting,

and the lines within annulled, the remainder of the field just

described will be the field surrounding this spheroid.

22. The Average Value of the Potential over a Spherical Sur-

face in any electric field whose charges are situated wholly out-

side of or upon the sphere and whose dielectric is homogeneous
and isotropic within the sphere is equal to the potential at its

center. To prove this, consider first the spherical surface 5 of

radius R in the radial field from a concentrated charge q distant

x from the center of the sphere, q being the only charge in the
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field. Let the charge be at A and the center of the sphere at

C, Fig. 31.

The area of an elementary zone of the sphere included be-

tween two planes perpendicular to A C, at distances y and y + dy

The potential of this zone is

V
y
=

The integral of the potential over the zone is therefore

VdS = qRdyJ2c (R
2 - # +

Fig. 31.

To obtain the average value, V, of the potential over the sur-

face of the whole sphere, the integral of this expression must be

taken over the sphere, and the result divided by the area of the

sphere. Thus

V= i/4^J VdS =
-f R

dyj(R
2 +

(Si)

which establishes the proposition for a single concentrated charge.

If, instead of a single concentrated charge, there is any other

electric distribution, subject to the limitations above mentioned,

we have by the principle of superposition
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which establishes the proposition for a homogeneous dielectric,

or such a dielectric and conductors, filling all space. That the

proposition is perfectly general will appear from Chapter IV., (17).

As an example, the average potential of the insulated sphere

of 24, which is the same as the potential of any point of the

sphere, since it is a conducting surface, is

V= qqircx +

since ^, the sum of the (induced) charges on the sphere, is zero.

If, in addition to the induced charges, the sphere possesses a

charge q, its potential is

V= q^qtrcx + qJ4TrcR

The same results are obtained by another method in 24.

They also follow immediately from (15) and 28, I.

23. The Electric Field Surrounding a Concentrated Charge in

the Presence of a Spherical Surface at Zero Potential. Consider

first the case in which the given charge, qv is at A
l
external to

the sphere, S, Fig. 26. Let R denote the radius of 6" and x the

distance between its center and the charge qr
If a charge q2

and its position within the surface .S can be

found such that in the field surrounding ql
and qz

S is a surface

of zero potential when there are no other charges in the field,

then, by 48, I., the portion of the field outside 5 will be the

only field satisfying the given conditions, and q^ and q2
will be

the electric images of one another in the surface 5 if it is made

conducting.

If a charge q2
is placed at A

2 ,
the potential at a point P of the

sphere will be

V= Vl+ V,= I/4W fo/Z, + gJLJ = 1/4^^ (9l + hg,}

where h = L^L^ has the same significance as in 19.

If q2
is so chosen that

+ = o
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V
'= o for every point upon the sphere. Hence the portion out-

side 5 of the field surrounding the charge ql
at A

l
and q2

at A
2 ,

where

A- -ft/* (
82

)

is the field required.

A
l
and A

2
are called inverse points, or geometrical images of one

another, in the sphere ( 30).

The part of the field within .S" is the field surrounding a con-

centrated charge q2
in the interior of a spherical surface at zero

potential, the charge being distant A
2
C

2
= xf from the center of

the sphere.

The resultant displacement, D, at any point of either of the

required fields (given charge inside or outside the sphere) is thus

the vector sum of D
l
and D

2 ,
the radial displacements which

would accompany the charges ql
and q2 separately. We shall

find the displacement only at the surface of the sphere, to which,

an equipotential, it is everywhere normal.

When gl
is positive, and q2

therefore negative, Dv D2 ,
and D

are in the directions A^P, PA 2 ,
and PC, respectively, their direc-

tions being reversed when ql
and qz change signs. Moreover, in

magnitude,

A/A = fe/4TA
2

)/(?,/4TA
2

)
= k = *IR = Rl*> = A/A

from the geometry of 19. Therefore the triangle with sides

Dv D2
and D is similar to the triangle AfAv and

in magnitude.

If D is reckoned positive along the outward normal to S, we

have, therefore,

D = - MhqjAnL* = -
9lR(

-
i)/4"A

3

(x
- R%* + R)jR

(
*

which is equal to the electric surface density on the outside of

the sphere at P, when the sphere is the surface of a conductor at
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zero potential in the presence of the charge q^ at Ar The total

charge upon the sphere is evidently qr
If D is reckoned positive along the inward normal to S, we

have

D = q(1? - I)/47TA
3 = qtf ~ &)\4*RL? (84)

which is equal to the electric surface density on the inside of the

sphere at P when the sphere is the inner surface of a conductor

at zero potential surrounding a charge q2
= ql jh at A

2
. Since

when the internal field is sought, qv x*
',
and L

2
are the given

quantities instead of qv x, and Lv (84) must be transformed by

substituting for qv x, and L v
their equals qjt

=
q^Rjx', R

2

/x',

and hL
2
= RLJx*', respectively. On making these substitu-

tions, we have

D = -

The total charge on the inner surface of the sphere is

The force between either charged body and the sphere is

Maxwell's plane diagram of the field, for the case in which

h= ^i/^2
= 2 /5 is given in Fig. 24, the sphere, of radius

R = ABfh = \AB, being indicated by the dotted circle Q.

If the radius R, in what precedes, is made to approach infinity,

while (x R) or (R xr

)
is kept constant, we have, in the limit,

a concentrated charge in the presence of an infinite plane surface

at zero potential, and the above equations reduce to the equa-

tions of 15.

24. Sphere at Any Potential, or with Any Charge, in the Pres-

ence of a Concentrated Charge. The field external to the sphere

in 23 is a particular case of the field surrounding a concen-

trated charge and a spherical equipotential surface (as that of a
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spherical conductor), the potential, V, of the surface, or the out-

ward flux across it (or charge upon it, if a conducting surface),

<?, being given.

I . If the potential V is given, the required field is found by

superposing upon the external field of 23 the radial field from

a charge qz
= ^nrcRV at the center of the sphere. For the po-

tential at every point of the sphere due to the fields from ql
and

q.2
is zero, and the potential due to the radial field from qz

is the

same at every point of the sphere and equal to

qJqircR = 47rcRV/4.7rcR = V

so that the resultant potential is the same all over the sphere and

equal to V. The field outside the sphere is therefore determined

( 48, I.) and is identical with the field surrounding the charge

qi
and a spherical conductor of radius R and at potential V.

The total charge upon the conductor is q = q2 + qy

2. If the outward flux q (or total charge, if the surface is that

of a conductor) is given, the required field is found by superpos-

ing upon the external field of 23 the radial field from a charge

gz = q q2 placed at the center of the sphere. For, as in
(i),

the surface will remain equipotential, and the flux across it (or the

charge upon it)
will be (q q^) -\- qc>

=
q. The position of the

equipotential surface being given together with the flux across it

and the outside charges, the external field is determined
( 48, I.)

and is identical with the field surrounding a conducting sphere

of radius R and charge q. The potential of the sphere is

V=
The outward displacement at the surface of the sphere (or the

electric surface density if the equipotential sphere is the surface

of a conductor) is

D = D
z + D'( = D of preceding article)

= fJfirlP
\

(2)
S 7)

= (q + giRlx)lvr& - qtf - PP)lvrRL* (3) .
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Maxwell's plane diagram of this field is given for two particu-

lar cases in Fig. 25, and is discussed in 18.

The force between the body with the charge q^ and the spher-

ical conductor is equal to the force between this body and those

with the charges q.z
and q^ Thus

F= ?i?2/4^(2tf)

2 + q , .

- R2

)

2 + q,(q + q,R/x) /'fire*
^ *

\ (88)
- R2

}

2 + q, VRjx
2

(2)

If the sphere is insulated without algebraic charge, q = q2 -f q^

o, and 3
= qz

= q^Rjx. In this case (87) and (88) become

D = qJvrR [i I*
-

(*
-

R*)ILft (89)
and

F= -
q?Rxl4irc(**

- R2

)

2 + q
2

Rl4-jrc^ (90)

If the given charge is internal, the internal field is exactly the

same as that in 23, and the external field is the radial field

from the charge q at the center of the sphere.

If a conducting sphere is in the presence of any number of

fixed charges, internal and external, the electric images and the

electric field can be got at once from what precedes by the prin-

ciple of superposition.

25. A Conducting Sphere in a Uniform Field. If q = o, 24,

and if q^ is kept constant and x made to increase without limit,

D
l approaches a uniform direction, parallel to x

y
and a uniform

magnitude, at all points within and near the sphere. But this

uniform magnitude is zero.' If, however, as x increases, ql
is

made to increase at such a rate that qjqirs? remains constant and

equal to D
Qy then, when x = infinity,

and we have an insulated spherical conductor in a field whose

displacement is uniform (except for the disturbances due to the

presence of the sphere) and equal to D
Q

.
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We can obtain the resultant displacement D at the surface of

the sphere by substituting in (89) for q^ its value ^irx^D^ and for

Z
t
its value (^ + R

2 +2Rx cos
0)*,

where is the angle PCE,

Fig. 26, reducing, and passing to the limit x = infinity. Thus

D = DJR -

{ [x(x
2 + R2 + 2Rx cos 0)*

2Rx cos 0)1}

cos e\x) 4- . . .

+ 2^ COS 0/4T+ .

)] (90
= (3^ cos 6 -f terms containing powers of x in de-

nominators)^ I + terms containing powers of x
in denominators)

= 3^o cos e

in the limit, the displacement for a given value of the angle

being thus independent of the radius R of the sphere.

Fig. 32.

At the poles of the sphere, where 6 = o and 180, D = +
3-Z? and 3^ , respectively ;

while its value at the equator,

where 9 = 90, is zero.

The displacement at a point of the infinite plane passing

through the equator and distant L from the center of the sphere

is
( 26) the sum of D

Q
and the displacement M sin go/47rL

5

due to the doublet of moment M= 4.TrR
zD

Q
at the
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center of the sphere with its axis in the direction of the displace-

ment D^. Thus at such a point

'';-
D=D^~R*!D) V (92)

The plane diagram of the field drawn by superposing accord-

ing to the method of Maxwell, 14, the diagram of the doublet

( 27) of moment M= 47r/?
3Z> and that of the uniform field of

displacement DQ
is given in Fig. 32 (from Webster's Theory of

Electricity and Magnetism, 194). The diagram of the field

surrounding the conducting sphere is obtained from this figure

by annulling the lines within the circle (see Fig. 62).

From symmetry, it is evident that there is no resultant force

upon the conductor.

A Hemispherical Boss upon an Infinite Plane. All the lines of

intensity in the above field (except of course those terminating

upon the sphere) cut the infinite plane (an equipotential, with the

potential zero) passing through the equator normally. Hence,

if this surface is made conducting, the fields on each side will re-

main unaltered and each will be the field proceeding from (or to)

an infinite plane conductor with a hemispherical boss upon it.

The surface density upon the boss is given by (91), and that upon

the rest of the surface by (92), or by this expression with the

opposite sign, according to the half of the original field con-

sidered.

26. The Field of an Electrical Point Doublet. Method I. In

the problem of 25, as x approaches the limit infinity, q^
= q2

= qYRjx= ^.D^irRx also approaches the limit infinity, while the

distance Af= R2

jx approaches the limit zero at the same rate.

The product qz
- A

2
C therefore remains finite and constantly equal

to 47rft
3Z) . Such a system, consisting of two equal and opposite

very great charges at a very small distance apart, when indefi-

nitely near its limit, is called an electric point doublet, and the finite

product of the positive charge by the distance between them is

called the moment of the doublet. The straight line directed from

the negative to the positive charge is called the axis of the doub-
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let. In the case considered, the axis of the doublet is the

line A
2 C, and the moment is

M-firKD, (93)

The total displacement D in the field of 25 is therefore the

vector sum of the displacement Dd due to the field connected

with the doublet and the uniform displacement DQ
directed paral-

lel to the axis of the doublet.

>Axis

Fig. 33.

In many cases it is necessary to know the field of a doublet

alone, that is, to know the displacement Dd . This quantity can

be easily found by taking the vector difference of D and Z>
,

25.

From the figure (Fig. 33) it is evident that the radial com-

ponent of D
d at P, a point whose coordinates are R and 6, is

D = /) cos 6 D cos d = 2D cos = 2Mcos

MCOS 0/2TTR
3

measured in the direction of increase of R.

The tangential component is

= MsinD
t

= sn

measured in the direction of increase of 6.

The total displacement Dd due to the doublet is

D
d
= (D? + Dft = M/47rR*

-

(3 cos2 + i)

(94)

(95)

(96)



104 ELEMENTS OF ELECTROMAGNETIC THEORY.

The horizontal and vertical components are

and

\ Q N (97)
3 cos2 6 i)

Z>
r
= D sin = 3Z> sin 6 cos = ^M/47rR

3
sin cos (98)

The angle made by Dd with the axis of the doublet is

6' = sin-
lDJ>d

= sin-
1

[3 sin cos Of (3 cos2 6 -
1)] (99)

27. The Field of an Electrical Point Doublet. Method II. In

26 the field of a doublet was obtained by using the results of

Fig. 34.

25. The field may be found independently as follows. We
shall first obtain an approximate solution for the case of two

charges q and q separated by a distance L, short in compari-

son with OP=R, Fig. 34, the product qL being equal to M.

Then if M is kept constant while L is increased indefinitely, the

system becomes a doublet and the solution, in the limit, exact.

The potential at P is
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But L
2 L^ = L cos 9 approximately, and L^L^ = R2

approxi-

mately, these relations approaching exactness indefinitely as L

approaches zero. Hence, in the limit; for a doublet,

V= qL cos 0/4-TrcR
2 = J/cos

/ ^ircR
2

(100)

The radial component of the displacement is

D
r
= cE

r
= - cdV\dR = Mcos 6/27rR

3

(94)

and the tangential component is

D
t

= cE
t

=- cdVjdT= - cdV\de dQ\dT= Msin (9/47r^
3

(95)

since dT= Rdd, or dOldT= i/R.
From the above equations the horizontal and vertical compo-

nents, Dh
and D

v ,
and the angle

r made by Dd with the axis of

the doublet, can be readily found. These quantities are given in

the preceding article.

Fig. 35.

The equation of a line of intensity or displacement, L, is easily

found from (94) and (95) with the assistance of Fig. 35. For

we have evidently

D
rjDt

= 2 cos 0/sin
= dRjRdO

from which we obtain

dRjR = 2 cos 6d0/sm

The integral of this equation is

(101)
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which is the equation sought, C being a constant for a given line

and equal to the distance from the doublet at which the line cuts

the plane perpendicular to the doublet's axis through its center.

When C is given for any line, the line can be drawn directly

by means of (101), or it can be drawn by the process indicated in

Fig. 36. Draw a line OA making an angle 6 with OX, which passes

through the axis of the doublet, and cutting in the point A a

circle with radius C and as center. Then let fall a perpen-

dicular AB on the line OY
y perpendicular to OX through the

doublet, and a second perpendicular from B on OA cutting it

in P. P is a point on the line required. For OB = C sin 6, and

OP= OB sin = C sin
2
0. See J. Buchanan, Nature, Vol. 21,

1880, p. 370.

If the figure is rotated about the axis OX, the flux through
the tube enclosed between the surfaces for which C = C and

C = a will be

11= C
Ja

dCjC
2

= M/27r-(i/a- i/C)

Hence by giving to II a series of successive values differing

by a constant quantity and starting with a curve for which C has

an arbitrary value a. the value of C can be determined, and the

lines of displacement drawn to correspond to tubes of equal

strength, for as much of the field as desired.
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The equipotential surfaces corresponding to successive equal

potential differences can be drawn by means of (100), which may
be written

and which becomes, for points along OX,

Fig. 37.

The plane diagram of the lines of displacement is given in

Fig. 37 from Webster's Theory of Electricity and Magnetism.

122) and the diagram of both lines of displacement and equipo-

tentials for the part of the field lying outside a sphere with the

doublet at its center in Fig. 67.
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28. The Electric Field Bounded by a Concentrated Charge q

and Two Infinite Planes at zero potential meeting at an angle

=
Tr/n, where n is an integer. We shall find the image sys-

tem of the charge q in the planes. From this system and the

given charge q the electric field at all points can then be deter-

mined by methods already discussed. Let P denote the position

of the given charge, and let its distances from the two planes be

denoted by a and b respectively.

Case I. When n = 1
,
6 = TT, the two planes are coincident,

a = b
y
and the image of q is a concentrated charge q distant from
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Case IV. The images when n is any other integer may be

obtained in the same manner. They consist in every case of

concentrated charges + q and q distant a and b from the

planes and situated symmetrically on the circle through the

given charge at P and with center at the intersection of the

planes. The charges, in going around the circle, are alternately

4- and .

Case V. When a and b are kept constant and n is made infi-

nite, we have a concentrated charge between two parallel planes,

I

Fig. 40.

Fig. 40. In this case the arc of the circle through P is a straight

line, and the images are located along this line at intervals of 2a

and 2b.

In all the above fields the total charge upon the two planes

is-?.

29. The Electric Field Surrounding a Conducting Surface Formed

of the External Segments of Two Spheres Intersecting at Right

Angles and Maintained at Any Potential V. The field will be

found by the method of images.
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Let a and b denote the radii of the two spheres with centers at

A and C, respectively, Fig. 25, distant d apart. Since the spheres

intersect at right angles, we have from the figure

BD = abj(a* + &2

)*
= abjd

and ABAC=P = ABd
CB CA = a2 == CB d

Hence B is the geometrical image of A in the sphere C and

the image of C in the sphere A. If therefore a charge ql

4.7rca V is placed at A, a charge q^
= Aprcb Fat (7, and a charge

<72
= 4?rr jZ) = qirc abjd= ql b[d= qz ajd at B, the

(uniform) potential of the sphere A due to the three charges will

be qjqjrca
= V, since the potential over A due to q2

and q^ is

zero
( 23); and the (uniform) potential of the sphere C will be

qjqircb
= V, in the same way. Hence both spheres are at

potential V in the presence of the three charges. Hence the

portion outside the surface of the field connected with these

charges is the field sought.

The plane diagram of the field connected with the charges

at A, B, and C, when bja = 20/15 and q l
= + 15, q^

= -f 20.

q2
= 12, is given in Fig. 25, in which the spheres are shown

in dotted lines. At D, the circle of intersection, the displace-

ment is zero, in accordance with 57, I. The field is further

discussed in 18 above.

The charges qv qv q^ will be found in another manner in 36.

The total charge upon the conductor is equal to the algebraic

sum of the charges at A, B, and C. Thus

q = ^ + ?2 + ?3
= A^cV\_a + b- abj(a* + J2

)*] (102)

The capacity of the conductor is

S=qjV= ^rc\a + b- ab/(a* + J2

)*] (103)

The charge upon the spherical segment A, or the flux across

this segment from the images at A, B, and C, is easily seen to be

27TC
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The charge upon the segment C, found by interchanging a and

b in (104) is
2TrcV\a + b + (a*

- P - ab)jd] (105)

If one of the spheres is made infinitely greater than the other,

the problem reduces to that of a hemispherical boss upon an

infinite plane, 25.

30. Geometrical Inversion. Let P, Fig. 41, denote any point

distant OP= r from a fixed point 0, and let a point P' be taken

on the line OP such that OP(= r) x OP'(= r')
= R\ Then P

and P' are said to be inverse points with respect to the sphere,

called the sphere of inversion, with center 0, called the center of

inversion, and radius R. P and P' are also called the geometri-

cal images of one another in the sphere. The process of obtain-

ing P from P f

,
or P' from P, by the relation

Fig. 41.

OP OP' = R2 or rrf = R2

( 106)

is called inverting P or P f with respect to the given sphere.

If every point of a given surface, volume, or curve is inverted

with respect to a given sphere, a new surface, volume, or curve

will be obtained which is called the inverse or geometrical image
of the given surface, volume, or curve with respect to the given

sphere.

31. Inverse of a Sphere. Inverse of a Plane. The image of a

sphere (or circle) is another sphere (or circle), the centers of the

two spheres (or circles) and of the sphere of inversion being on

the same straight line. To prove this, let C, Fig. 42, be the center

of the given sphere (or circle) of radius a, distant OCb from
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0, the center of inversion. With O as origin and OB as initial

line, the equation of the given circle (or sphere) in polar coordi-

nates (r, 0) is

r2 2br cos 6 + b2 a1 = o
(
IO7)

The equation of the inverse surface is obtained from (107)

by substituting for r its equal R2

/r
f

,
the coordinates of the in-

verse being rf

,
0. Thus we find

r'
2 - 2R2

bj(b
2 - a2

)
r' cos + R*j(b

2 - a2

)
= o ( 1 08)

Fig. 42.

which a comparison with (107) shows to be the equation of a

sphere (or circle) with center at C f distant

V = R2

l>/(P-a
2

) (109)

from 0, and with radius

a' =
[b'

2 -
R*j(b

2 - a2

)]
* = R2

aj(P -a2

) (no)

When the given sphere passes through the center of inversion,

i. e., when b = a, Fig. 43, (107) and (108) become

r 2acos6 o
(
IJI

)

and r' cos 6 R2

/2a = o
(
1 1 2)

(112) is the equation of a plane (or straight line) distant

p= I?l2a (113)
from 0.
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Conversely, (112) inverts into (in), so that the image of a

plane (or straight line) is a sphere (or circle) passing through the

center of inversion and with radius

Fig. 43.

(114)

The above propositions can also be easily demonstrated by

purely geometrical methods.

32. The Angle at which Two Curves or Surfaces Intersect is Un-

altered by Inversion. To establish this proposition for two curves

(which will also establish it for two surfaces), let AB and AC,

Fig. 44.

Fig. 44, be the elements of two curves intersecting in the point

A at an angle 6, and A 1B f and A r C' their inverses cutting at the

angle 0''. The triangles AOB and A' OB' are evidently similar,

since rrf = R2
,
and likewise the triangles OA C and OA' C' .

Hence

6' (- angle OA' C' - angle OA'B') = angle OAB

angle OAC= 6
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33. Electrical Inversion. The electric potential at a point B
due to a charge dq at a point A is dV

b
= dql^rrcAB, and the

potential at B', the inverse of B, due to a charge dq' at A', the

inverse of A, is dV
b
, = dq' j^trcA'B' . Thus

dV
b,\dVb = dq'jdq ASIA'S'

But, if (9 is the center of inversion, ABJA'B' = OAJOB'.

dV
b
, = dV

b dq'jdq OAJOB' (i 1 6)

If d/ is so chosen that

dq' jdq = -RjOA = - Rjr (117)

dq' is called the electric image by inversion of dq with respect to

the sphere of radius R and with center
;
and

(i 16) becomes

dV
b

,
= - dV

bRjOB
f = - dV

b4ircRl4ircOB' (
1 18)

If.now we have any electric distribution whatever, and it pro-

duces at B a potential V
b
= fdVb ;

and if we place at the geo-

metrical images of the charged points charges related to the

charges at the original points according to (117), i..c. t
form a

distribution which is the electric image by inversion of the orig-

inal distribution, the potential at B' will be V
b
,
= dV

b
,. Hence

(118) gives for the potential at S f due to the electric image by
inversion of the original distribution

(119)

which is the potential which would be produced at B f

by a

charge V^qircR at O
t

the center of inversion. If, therefore,

we place at (9 a concentrated charge q = -f V^cR, the point

B 1
will be at zero potential in the presence of this charge to-

gether with the inverted system. If the potential Vb
= V is the

same for all charged points of the original system, that is, if the

original charge is distributed over an equipotential surface, as the

surface of a conductor, at potential V, the potential at a point Sf

of the inverse surface due to the inverse distribution will be
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Hence if a charge q = +
placed at 0, the potential at all points, such as B'

',
of the inverse

surface will be zero. The introduction of q does not alter the

distribution upon the inverse surface, but renders this surface

equipotential so that it may be made conducting without disturb-

ing the distribution. The electric field after the introduction of

q is the field bounded by a concentrated charge

q 47rcR V (
1 20)

at and the inverse of the original surface at zero potential.

Conversely, if we have a charge q concentrated at a point

in the presence of a charged surface at zero potential, we can in-

vert the surface and its distribution (not including the charge q)

with reference to a sphere of radius R and center and obtain

the inverse surface charged to a uniform potential

V=ql4ircR (121)

alone in the field, the charge q being annulled.

Or, if we have a surface at zero potential in the presence of a

charge qt
concentrated at a point 0, and its image system (on the

other side the surface), we can invert the image system (not in-

cluding the charge q) and the given surface with respect to a

sphere of radius R with center 0, and as a result obtain the in-

verse surface at the uniform potential

and within (or on one side) the inverse image system which pro-

duces on the other side the same field as that connected with the

surface itself when charged to uniform potential V. From the

image system the distribution upon the surface, when charged in

this manner, or made conducting, can readily be found.

The direct inversion of the distribution on the surface at zero po-

tential would be, in general, a difficult matter. Hence the second

ofthe two processes of inversion just described is usually preferable.

34. The Electric Surface Density upon the Inverse Surface.

The electric surface density, a', at any element dSf of the inverse
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surface corresponding to the element dS, with density <r, of the

original surface, can easily be found in terms of <r, R, and rf

,
the

distance from to dS''. For we have

c'dS'lvdS= dq'ldq = -
Rjr, or <r'/a

= -R/r- dSjdS'

But dS is similar to dS
t

' hence dSjdS' = r2/^
2 and

<r'/<r
= -

Rr/r'
2 = - R*jr

fZ

Thus af = - aR3

/r'* (122)

As stated in 33, <r
f

is not altered by the introduction of the

charge q at 0.

35. The Sphere and Plane. Consider a sphere of radius a uni-

formly electrified to potential V. Let the sphere be inverted

with respect to a sphere of radius R with its center upon the

surface of the given sphere. The sphere inverts into an infinite

plane (31) distant/ = R2

/2a from O. If now we place at a

charge q = qircR V, the plane will be at zero potential in the

presence of the charge q. The electric surface density over the

given sphere was uniform and equal to <r = qirca Vj^Tra
2 = cVja.

Hence the density at a point on the plane distant r' from is

<r' = aR3

/r'
3 = - gR

2

/47rar'
3 = -

tf/2'irr'* (123)

which is the result obtained in 15, (40), proper attention being

paid to sign.

Conversely, we may start with the plane at zero potential

electrified to density <r
f = pq'^irr'*, and by inversion obtain

the distribution upon a freely electrified sphere of radius a. Thus

the plane inverts into the sphere, and the image of q in the plane,

viz., q distant / from the plane on the other side from q, in-

verts into the charge -f RqJ2p at the center of the sphere ;
and

this brings the sphere to the potential RqJ2p7r^ca = qjqircR = V.

Next let the center of inversion be taken outside the sphere or

inside the sphere, and let the sphere of inversion be so chosen

that the given sphere inverts into itself. This makes R2 = x2 a2

when the point is outside the sphere, and R2 = a2 x2 when
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is inside, if x denotes the distance from to the center of the

sphere. Thus the surface density at a point of the sphere dis-

tant r1 from 0, when a charge q = ^ircRV^ 4.7rc(x*

is placed at is

= -
q(x

i

(I24)

in accord with (83) and (84).

Conversely, we may pass at once from this distribution to that

upon the isolated sphere.

36. Two Spheres Intersecting at Right Angles. The field of

29 may also be obtained by inverting the distribution upon two

infinite planes meeting at right angles and at zero potential under

Fig. 45.

the influence of a charge q = ^rrcRV'at a point P distant a and b

therefrom (Fig. 45).

Let the planes and the image system in the planes of the

charge q at Pbe inverted with respect- to a sphere with center P
and radius R. The two planes invert into two spheres intersect-

ing at right angles (corresponding parts of surfaces are shown
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in full or dotted lines), and of radii a = R2

/2a and = R2

/2&,

respectively. The images of q at Pinvert into charges qRJ2a
= gajR at A

9 qRJ2b = qfijR at C, and - qR\2(c? + tf}\

=
ga,p/R(a? + y3

2

)*
at B. And in the presence of these

charges the two spheres are at the potential V= qj^TrcR, and

the field outside the spheres is the field required. The total

charge upon the spheres, when made conducting, the capacity,

etc., may now be found as in 29.

By inverting the system consisting of two planes meeting at

the angle TT//Z, etc., 28, the field surrounding two spheres cut-

ting at that angle may be obtained. When n infinity, this

problem merges into that of the next article.

37. Two Spheres in Contact. By inverting the two planes of

28 with respect to a sphere of radius R and center P we ob-

Flg. 46.

tain two spheres of radii A = R2

/2a and B R2

J2b in contact at

P, Fig. 46. All the images to the right of P invert into the

region within the sphere B and all to the left of P into the region

within the sphere A ;
and the system of two spheres in contact

is brought to the uniform potential V =.
qj^TrcR, and may be
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made conducting, and the inner field destroyed, without affecting

the external field.

In the original system the distances from P of the positive

charges, + q, are

2d, Afd, 6d, to the right

and

2d, 4d, 6d,> to the left

and the distances from P of the negative charges, q, are

2b, 2b + 2d, 2b + 4^, to the right
and

2a, 2a + 2d, 2a -\-4-d, to the left

This system inverts into the system of negative charges

RqJ2d, Rqj^d, Rqj6d, - - within the sphere B
and

RqJ2d, RqJ4d, Rqj6d}
. . . within the sphere A

and the system of positive charges

RqJ2b, Rqj(2b + 2d\ Rqj(2b + 4^),
. . . within the sphere B

and

RqJ2a, Rqj(2a + 2d}, Rqj(2a -f 4^),
. within the sphere A

The total charge of the images within the sphere A, or the

total charge upon the surface of A when made conducting, is

-{\_l/a+ i/(a + <i)+ I /(a + 2d) + .

]

and that of the images within B, or upon the surface of the

sphere B when a conductor, is

qb
= Rqj 2

{ [ I Ib + I l(b + d
) + I j(b + 2d) + - -

-]

-(ljd+ lJ2d+
Now
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_ + i)]
Hence =o

/ \B + n(A + ^) ( + i)]

S l/[^+K^ + ^)(+ 0]
n--0

Interchanging A and ^, we obtain

qb
= 47rcV&Al(B + A) ^i/[A + *( + ^) ( H- i)] (126)

n=0

The capacity of the two spherical conductors in contact is

S=qlV=(qa +qMV (127)

We shall consider further two particular cases : (i) when

A = B, (2) when BjA is very small.

(i) A = B. In this case

i /(i + 2) ( H- i)

1/3-4+ i/S-6 + ..-) (
I28

)

= 47TcA Flog 2 = 477-^ F x 0.693

and 5 = 2qJ F= STrcA log 2 = qircA x 1.386 (129)

Thus the capacity of the system of two equal spheres in contact

is equal to 1.386 times the capacity of a single isolated sphere

of the same radius.

The energy of the field surrounding the spheres is

W= \qF= 47rcA log 2 F2 = g
2

/i67rcA log 2 (130)
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From this expression and
(

1 1
)

it is easy to compute the work

done against the electrical forces, or the work done upon the

electric field, when two equal spheres with equal charges are

brought together from an infinite distance (or a great distance,

practically) apart.

(2) BjA very small. When BjA = o, the sphere A is alone

in the field at potential V\ hence qa ^nrcA V, a relation which

holds approximately when BjA is very small. In this case we
have for qb , approximately,

i/2
2 + )

= 47rc
2

/A-7T*/6- V (131)

The capacity of the system is, approximately,

S = 47rc(A + 7r
2

/6<B
2

/A) (132)

The electric surface density upon the larger sphere, except
near the point of contact, is, approximately,

'.-'VIA (i 33 )

while the average density upon the smaller sphere is, approxi-

mately,

(I 34)

The relation <r
b /<ra

= 7r
2

/6 will hold very approximately when

the small sphere B touches any conducting surface A which, like

a large sphere, is nearly plane in the neighborhood of the point

of contact, the nearly uniform density in that vicinity being,

before contact with the small sphere, a
a .



CHAPTER III.

STANDARD CONDENSERS. CONDENSER SYSTEMS.
ELECTROMETERS.

1. Actual Condensers. The electric fields and condensers or

leydens discussed in Chapter II. are ideal, the conditions assumed

being impossible to realise completely in practise. Concentrated

charges and infinite conductors do not exist; one or two con-

ductors cannot be infinitely removed from all other conductors
;

and all the tubes from the first conductor will not, in general,

terminate upon the second, unless the second conductor com-

pletely surrounds the first or, what amounts to the same thing, is

connected with the walls of the room, which thus becomes one,

electrically, with the second conductor. The field in this latter

case cannot be rigorously computed, however; and though it is

possible to construct a condenser of concentric spheres with a

high degree of accuracy, or of conductors of other form so

arranged that one completely surrounds the other, and such that

the electric field can be rigorously computed, yet, to use the

system, an insulated wire must pass through an opening in the

outer conductor to the inner, and through this opening, however

small, some tubes will emerge and pass to the external surface

of the outer conductor and to other bodies. The wire and the

opening also disturb the field in other ways.

But finite portions of all the fields can be very nearly pro-

duced, and the results established above for ideal condensers and

fields can be applied without sensible error to actual systems.

This can be done, for example, with the systems consisting of

two parallel similar conducting surfaces, as two spheres, two

planes, or two cylinders, by making the distance between them

122
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small in comparison with their linear dimensions. Then the part

of the field between the surfaces concentric spheres, coaxial

cylinders, or parallel planes becomes practically identical, ex-

cept near the edges, with those already described, and the part

of the field outside this region relatively very weak. The capacity

of such a condenser, of any form, is approximately the product

of the area of one of its conductors by the permittivity of its

dielectric divided by the distance between the conductors, the

intensity being practically constant in magnitude throughout the

dielectric.

A plane section of the tubes of displacement of a square par-

allel plate condenser taken parallel to one edge and perpendicu-

lar to the plates through their centers is shown in Fig. 47. The

Fig. 47.

tubes in the neighborhood of the section are supposed to be

formed by moving the diagram perpendicularly to its plane. The

diagram is drawn only approximately. The tubes are closely

concentrated and uniformly distributed between the plates, except

near the edges, where the field becomes less intense, and sparsely

distributed over the outer surface, becoming less numerous as

the central points A and B are approached. These results fol-

low from the principle of symmetry and the fact that the voltage

J EdL is the same along every line of intensity from one con-

ductor to the other, which makes the average intensity great

where the length of the line is small, and vice versa.
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As the capacities of ordinary condensers are computed only

roughly for construction purposes, and then determined or ad-

justed accurately, when necessary, by comparison with standard

capacities, it is of little importance whether their fields are such

that the capacities can be determined accurately by geometrical

measurement or not. But this is obviously necessary in the case

of condensers designed as absolute standards of capacity. Such

standards have been constructed of concentric spheres, coaxial

cylinders, and parallel plates. The first form does not need

further description here
;
the last two will be described in the

next article.

To eliminate the electric field surrounding the earth, all the

apparatus here described will be supposed enclosed within a

hollow conductor, such as the walls of a room in a house. The

phenomena would not be essentially different, however, outside

such an enclosure. The potential of the walls of the enclosure

(earthed) will be assumed zero.

2. The Standard Parallel Plate Condenser. The construction

of this condenser and its electric field near the center, drawn

like the field in I, are shown in Figs. 48 and 49. A and A'

HP A C B C A
|

r<*

A' A'

Fig. 48.

are the two plates distant d apart. The central portion, B, of A
is separated from the rest by an air gap CC whose breadth is

very small in comparison with d. Above and continuous with

the plate A is a metal cover D, which forms with A and B a

hollow conductor closed except for the gap CC. If B is put in

metallic contact with A, and the condenser then charged, the

electric field shown in the figures will result, and will remain

when B is again insulated from A. Since the region above B is

the interior of a hollow conductor practically closed, all the

tubes from B will proceed to the upper surface only of A'
,
and
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but few tubes will emanate from the upper surface of B and pass

through the gap CC to A' . The field below B, being remote

from the edges, will be sensibly uniform except in the immediate

neighborhood of the gap C, which, however, will not sensibly

disturb the uniform field near A' . By symmetry, sensibly half

Fig. 49.

(The width of the gap Cis greatly exaggerated.)

the tubes which terminate upon the small area of A r

just beneath

the gap CC must emanate from B and half from A. If b de-

notes the area of B, and a that of CC, the area of A' receiving

tubes from B is thus

A = b + \a (i)

The charge upon B is therefore the same as the charge upon
the area A = b + \a of A f

,
which is the same charge B would

have if its area were A = b + \a and there were no gap. The

capacity of the condenser formed by B, A', and the tubes con-

necting them is therefore

The conductor A which surrounds B, and by means of which

the field beneath B is made uniform, is called & guard ring.

Fig. 50.

The force of attraction between B and A' is the force acting

upon the area A = b + \a of A'
\
that is
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F= \EDA = \c&A = \c V*jd* A (3)

if V denotes the voltage between the plates AB and A'.

The Standard Cylindrical Condenser. The guard ring con-

struction can be applied equally well to the condenser formed of

coaxial cylinders. The construction of the condenser is shown

in Fig. 50, the inner cylinder serving also as guard ring and pro-

tector.

3. Electroscopes and Electrometers. An electrometer is an in-

strument for measuring voltages, or electric potential differences,

by means of the forcive acting between electrified bodies. Other

instruments for measuring voltages will be described later. An

electroscope is a crude electrometer, used principally for detect-

ing rather than measuring electrical effects.

4. The Kelvin Absolute Electrometer. This instrument con-

sists of a condenser constructed like the standard parallel plate

condenser of 2 with certain modifications and additions : The

plate B (in one of the commonest forms of the instrument) is

connected through a small opening in the sheath D with one

arm of a gravity balance, so that the force F between B and A 9

can be determined by weighing. A vertical micrometer screw

topped by an insulating support which carries A f enables the

distance d to be varied and measured. B is kept in electrical

connection with A, and an optical device is provided with the

aid of which the planes of A and B are always made coincident

(by altering the weights in the balance pans or by varying the

distance d) when the force upon B is to be measured.

To measure a voltage, A and A' are first metallically con-

nected, and the weights on the balance pans adjusted until the

planes of A and B are coincident. Then the connection between

A and A 1
is broken, and they are brought to the difference of

potential V, to be determined. The force. -F, due to the attrac-

tion between the plates is balanced by the addition of known

weights, and the distance d\s measured. Then by (3)
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whence F= d \/2F/cA (4)

The above method of using the electrometer is called the

idiostatic method, as the voltage to be determined is the only one

employed. Since F is proportional to the square of the voltage,

alternating as well as direct voltages can be measured.

In the heterostatic method an auxiliary agent with a constant

voltage V is also used. When this voltage alone is applied to

the electrometer terminals, we have from the last equation

Vr = d'V2F[cA

if F denotes the force upon B when the distance between the

plates is d' .

If now we connect up in series the agent whose voltage V is

to be determined and the agent whose voltage is V1

',
both

voltages being directed in the same way so that the resultant

voltage is V -\- F', we have, when the voltage F+ V is applied

to the electrometer terminals,

V f = d

if d n denotes the distance between the plates when the force F
remains the same as before.

Subtracting the first equation from the second gives

V=(d"-d')V2FI~tA (5)

The advantage which this method has over the other is due to

the much greater accuracy with which the micrometer permits

the measurement of the difference of the two distances d" d 1

than either separately.

Since F is proportional to F2

,
it becomes so small for small

voltages that it cannot be accurately measured with this instru-

ment. This form of absolute electrometer is therefore used only
for measuring large potential differences, and small voltages are
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measured by the quadrant electrometer, the Bichat and Blondlot

electrometer, the capillary electrometer of Lippmann, or a form

of absolute electrometer recently de-

vised by Perot and Fabry. The first

two instruments are described in the

succeeding articles.
"

Bichat and Blondlot 's Electrometer

(Modified). This instrument (Fig. 51)

consists of a metallic circular cylin-

der C suspended from the arm of a

balance (or connected to another

dynamometer) by a fine wire DE,
with its axis vertical and coincident

with the axis of a longer hollow me-

tallic circular cylinder AH, cut in two

at FG and projecting well beyond the

ends of C, the difference between the

radii (Zt
and L

2 , L^ > L
2)

of the two

cylinders being small in comparison

with either radius.

Let A, B and C be charged, the

voltage from B to A being denoted

by VBA ,
that from C to A by VA ,

and that from C to B by VB,
C being

charged by the wire DE, dipping in a

conducting liquid. The field, in plane section through the axis, for

the case in which VA > VB and VBA= VA VB therefore positive,

is shown approximately in the figure (all the lines of intensity

should touch the conductors normally). Except near and beyond

E and H
t
and G and F

t
the field is cylindrically radial, and its

capacity per unit length is constant and equal to

5 = 2TTC -

log LJL2

By symmetry, there is no resultant horizontal force acting on

C. In general the vertical forces acting on C at H and E are

Fig. 51,
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not equal and opposite. The resultant force can be found as

follows : Imagine C to be moved downward an infinitesimal dis-

tance dx. The capacity of the condenser AC is increased by

Sdx and that of the condenser BC by Sdx, no sensible change

occurring in the capacity of the non-cylindrical parts of the field.

The increase in the energy of the field, if the voltages are kept

constant, is

- VB2

)

Hence, by 55, 1., the resultant force acting downward upon C is

F- dwdx= s v; - v/) = SVBA(
VE + VA }

(1) If Fg is great in comparison with VABt the voltage to be

measured, this equation becomes, with a negligible error,

F=SVBA -VB (7)

Hence, if VB is kept constant and VBA varied, F is proportional

to VBA .

(2) If A and B are connected to the terminal plates of an

auxiliary battery consisting of an even number of similar voltaic

cells in series, and if one terminal of the cell, condenser, or other

agent whose voltage V is to be measured is connected to the

central point of this auxiliary battery, the other to the conductor

C, we have, if ^ denotes the e.m.f. of the auxiliary battery,

VBA = , VB = V- *
> VA = F+ J ;

and (6) becomes

F= SV - V (8)

so that F\s proportional to V\{ "SP" is kept constant.

(3) If B and C are connected together, VB = o, VA = VBAt
and (6) becomes

(9)

Equations (7), (8), and (9) indicate three methods of com-

paring voltages with the instrument, the force F being meas-
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ured with the balance (or other form of dynamometer). If 5 is

determined from direct measurement, and F measured in dynes,

the third method gives an absolute determination of the voltage

VBA . The first and second methods are called heterostatic
y
as an

auxiliary voltage, VB or
",

is employed in addition to that to be

measured. The third method is called idiostatic, since the volt-

age to be determined is the only one applied.

Jtf. The Kelvin Quadrant Electrometer. This instrument (Fig.

52) is constructed as follows : A right circular cylindrical me-

OR

<
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C, C are adjusted to lie symmetrically with respect to the two

quadrant pairs AA' and BB'
',
as shown in the figure. To the

rod R is attached a mirror M, by means of which and a lamp

and scale or telescope and scale any deflection, 6, of the needle

can be read, and on the other side of the quadrants a vertical

platinum wire W
y ending in a platinum vane V. The end of the

wire and the vane hang free in dry sulphuric acid contained in a

glass vessel G, the outer surface of which is partly covered with

tin foil. The sulphuric acid serves to make electrical contact

with the needle, to dampen the needle's motion, and to form with

the tin foil and glass vessel a condenser of considerable capacity,

whose function is to keep constant the potential difference be-

tween the needle and the case. The whole instrument is enclosed

in a tight case, often an extension of the vessel G (whose tin foil

covering is then outside) and is kept dry by the sulphuric acid

within. The case, largely metal, serves also to screen the needle

and quadrants from any external field.

If the instrument is symmetrically made and adjusted, the

arcs CC and C' C' form with the two quadrant pairs AA' and

BB' two condensers, the capacity of each of which, per unit

angle subtended at the center of the system, is the same, let

us say S, and constant, except near the edges of the arcs

and quadrants, for all but exceedingly large deflections of the

needle.

Also, if the instrument is symmetrically made and in adjust-

ment, the needle will obviously not be deflected, even when

charged, as long as the quadrants are all connected together.

If the needle and the quadrant pairs AA ' and BBr are charged,

the needle will, in general, be deflected, coming to rest when the

angle of deflection, 6, is such that the torque T upon it due to

the electrical stresses is balanced by the return torque due to the

twist of the suspension. To find the relation between the deflec-

tion and the voltage, we may proceed as follows, using the

method of 55, I.
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Let VAB denote the voltage from the quadrants AA' to the

quadrants BB'
',
VA the voltage from the needle to AA

,
and VB

the voltage from the needle to BB' .

When 6 is increased by an amount dQ, the capacity of the con-

denser formed by CC f with AA' is increased by Sdd, and that

of the condenser formed by CC' with BBf
is decreased by the

same amount. The increase in the energy of the two condensers

is then

* - \SdQ V* = \SdQ( VB - VA)(
VB + VA )

VA)
= SdO VAB(VB -\VAB)

= TdQ

= K6dO

since VB =^VA -\- VAB ,
and since TdO = KQ dQ is the work done

in twisting the bifilar (or other) suspension through the angle dQ

by the torque T of the electrical forces, K being the constant of

torsion of the suspension. The last equation gives

T/K=e= * SIK VAB(
VB + VA)

- SjK VAB(
VB - J VAB} (10)

(1) If VA and VB = VA + VAB are very large in comparison with

VAB,
the voltage to be measured, VAB may be neglected without

appreciable error in the expression (
VB ^ VAB)> an<^ ^

'

ls sensibly

proportional to VAB and to VB . Hence by making VB large, even

small potential differences VAB may be measured with accuracy.

In this case (10) becomes

vAB = Kisvs -e (it)

(2) If the needle is in metallic contact with one of the quad-
rant pairs, as AA ', VA = o, VB = VAB ,

and (10) becomes

vAi = 2Kjs.e (12)

Since the deflection in this case is proportional to the square

of the voltage, alternating as well as steady voltages can be

measured
;
but low voltages, either steady or alternating, cannot be

measured with accuracy (except with very sensitive instruments).

(3) The quadrant pairs AA ' and BB' are connected to the ter-

minal plates of an auxiliary voltaic battery consisting of an even

number of similar cells in series, and one pole of the voltaic cell
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or other agent whose voltage V is to be measured is connected

to the needle C, the other to the central point of the auxiliary

battery. Then, if M* denotes the e.m.f. of the auxiliary battery,

VAB V = V- VB = V+ y& ;
and (10) becomes

(13)

In this arrangement the deflection is accurately proportional to

V, whether Kis large or small in comparison with "^P.

The first and third methods of using the instrument, in which

a supplementary voltage is employed in addition to that to be

measured, are called heterostatic methods
;
the second is called

idiostatic.

While the quadrant electrometer cannot be used for absolute

measurements, the factor multiplying being impossible to de-

termine with accuracy directly, this factor can be determined in

any case by measuring the deflection produced by a known volt-

age, such as that of a standard cell.

7. Condensers in Multiple. When any number n of condensers

whose separate capacities are Sv S
2 ,

-

,
S
n

are connected in

b.

Fig. 53.

multiple, as in Fig. 53, a, a compound condenser is formed whose

capacity is

(14)
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provided that the field of each condenser is included, practically,

between its plates only, and therefore does not affect appreciably

the fields of the other condensers.

For if Fis the common voltage between the separate pairs of

plates of the compound condenser, q the total charge on each

compound plate, and qv qv
- -

, qn the charges on the separate

plates when the condensers are charged separately to the volt-

age Vt
we have, for such a system,

= + + ----
1- and

8. Condensers in Series, When n condensers of individual

capacities Sv S
2 , etc., are connected up in series, as in Fig. 53, b,

a compound condenser is formed of capacity

5-i/(i/5,+ ,/S, + + i/SJ (15)

provided that the plates of each condenser are so close together

that sensibly all the tubes from one plate terminate upon the

other.

For if Fis the total potential difference between the terminal

plates of the compound condenser, q the (numerical) charge on

each of them, and gv q2J etc., and Vv Vv etc., the charges and

voltages of the individual condensers, we have

9 = ft
=

ft
=

ft
= ' ' ' =

ft

since the intermediate plates are all charged by induction, and

sensibly all the tubes from one plate of each condenser terminate

upon the other.

Also F= V
l + F

2 + - . - + Fn
Hence

S = f/ V=ql( V, + F2 + . . . + FJ

from which (15) follows on cancelling q.
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9. Some Electrostatic Methods of Comparing Capacities. In

each of the following methods the capacity of the electrometer,

or electrometers, and connecting wires is supposed to be negli-

gible in comparison with the capacities to be compared, or else

to be included with them.

(i) The capacities Sl
and S

2
to be compared are connected in

series with a battery of electromotive force V
t
and an electrom-

eter is connected across the plates of each; or an electrom-

eter is connected across the plates of one, for example S
2 ,
and

another, with the battery, across the terminal plates. In the first

case we have

S.V^S.V,
whence

sj^-rjr, (16)
and in the second case

whence

SJS^VjVt-i (17)

If the leakage and absorption (Chapter VI.) of the condensers

are negligible, the two measurements may be made in succession

with a single electrometer.

(2) The capacities to be compared are arranged to be put in

multiple by a switch K. With K open let Sv to whose plates

the quadrants of an electrometer are connected, be charged to a

voltage V, and then connected in multiple with S
2 ,
when both

condensers will come to voltage Vr Then we have

whence

SJS^r/^-i (18)

(3) In this method the condensers whose capacities Sl
and S

2

are to be compared are charged in multiple to the voltage FJ

insulated, and then again connected in multiple, but in such a

way that the positive and negative plates of I are connected to
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the negative and positive plates of 2, the final voltage being Vv
Immediately after charging

ql
=

SL V and q2
= S

2
F

After the final connection in multiple

9t -9t -(Sl -SJV=(Sl
+ S

1)ri
Hence

S*ISi
= (V-V2)l(V+V2) (19)

It is obvious that the above three methods cannot be applied

when one or both of the condensers are of the guard ring type,

thus having more than two conductors. The following method of

testing the equality of the capacities of two guard ring condensers

was devised by Maxwell. It can also be applied when only one,

or neither, of the condensers is of the guard ring type. In

the last case it becomes identical with the last of the preced-

ing methods, which is an extension of a method due to Caven-

dish.

10. Maxwell's Method of Testing the Equality of the Capacity

of a Guard Ring Condenser and that of any Other Condenser.* Let

A be the disk, B the guard ring and sheath, and C the larger

plate of one of the condensers
;
and let A'

',
B'

,
and C' be the

corresponding parts of the other. If either condenser, as ABC,
is of the simpler form with only two conductors, we have only to

suppress B and to suppose A and C to be the two conduc-

tors, it being understood that sensibly all the tubes of induc-

tion pass from one plate to the other when the condenser is

charged.

Let B be kept always connected with C'
,
and B' with C. Then

(i) Let A be connected with B, and C' with/, the positive

(for the sake of definiteness) terminal of a battery or other source

of electrification, the other terminal of which is connected to

*
Maxwell, Treatise, 229.
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earth
;
and let A' be connected with B' and C and with the

earth. The two condensers are now charged oppositely, so that

A is positive and A' negative, and the field of each is sensibly

confined to the region between the plates.

(2) Let A, B, and C be insulated from/.

(3) Let A be insulated from B and Cf

,
and A' from B'

and C.

(4) Let B and C' be connected with Bf and C and with the

earth. The charges on A and A f remain unaltered in magni-

tude, but are now distributed over their whole surfaces, the

fields no longer being confined to the regions between the

plates.

(5) Let A be connected with A 1

'.

(6) Let A and A' be connected with one quadr.ant pair of an

electrometer E, the other quadrants of which are earthed. If the

charges of A and A' are equal in magnitude, the electrification

wholly disappears, since they have opposite signs, and the elec-

trometer is unaffected. In this case the fields connected with A
and A' have the same capacities. Otherwise, the electrometer

will indicate positive or negative electrification according as

A or A' has the greater charge and therefore the greater

capacity.

By making repeated tests and adjustments, if necessary, the

capacity of a condenser constructed with movable conductors so

as to have a variable capacity, or a condenser in the process of

construction, may be made equal to that of a standard condenser

of the guard ring form.

Other methods of comparing capacities are described in Chap-
ters XII. and XIII.

11. Some Methods of Extending
1 the Range of an Electrometer.*

If the ratios of the capacities of the condensers in the three first

arrangements described above are known, the three methods of

comparing capacities may be inverted for the measurement of

*Cf. Maxwell, Treatise, 220; Lord Kelvin, B, A. Report, 1885, p. 907.
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high voltages with electrometers constructed for low voltage

measurement. Thus we have, from (17), (18) and (19),

(0

(2)

(3)

(20)

By measuring Vv V may be determined
;
so that by properly

choosing or adjusting the ratio of the capacities the range of an

electrometer may be almost indefinitely extended.



CHAPTER IV.

GENERAL ELECTROSTATIC THEORY. IDEAL FIELDS

CONTAINING TWO OR MORE DIELECTRICS.

1. Generalisation of Gauss's Theorem.* In 23, Chapter I.,

this theorem was established for a surface enclosing a single

homogeneous isotropic dielectric, or such a dielectric and con-

ductors. We shall now show that it holds for a closed surface

cutting any number of such dielectrics, or such dielectrics and

conductors, To do this it is necessary to show only that the

strength of a tube of induction is not altered when it passes from

one dielectric into another.

For this purpose, consider the electric field between the plates

A and B of a closed condenser containing two dielectrics I and 2,

I being in contact with A only, and 2 in contact with B only.

If the charge of A is q, that of B is q, and there is no charge

upon the interface between the dielectrics I and 2. (If there are

charges due to contact, they are equal and opposite at any point

of the interface.) Applying Gauss's theorem to the region I, we

find the total strength of all the tubes emanating from A to be q ;

and, likewise, in the region 2, the total strength of all the tubes

terminating upon B to be q. Thus the total strength of all the

tubes is unchanged in passing across the interface from A to B.

And since this result is absolutely independent of the size or

shape of the dielectrics, that is of the shapes of the tubes, it

follows that the strength of every tube remains constant in cross-

ing the interface, howsoever the field is divided up into tubes.

It may be shown that the theorem is also valid in the general

case when the dielectrics are neither homogeneous nor isotropic,

*See The Physical Review, September, 1902, p. 173.

139
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but the demonstration lies outside the scope of this work. In all

that follows we shall assume the theorem to be perfectly general.

2. The (Uncharged) Interface Between Two Dielectrics. Laws

of Refraction of Lines of Intensity and Displacement. At an un-

charged interface S, Fig. 54, between two dielectrics I and 2

with permittivities c
l
and r

2 ,
certain conditions, which we pro-

ceed to find, must be satisfied by the electric intensity and dis-

placement.

In the first place, the line integral of the electric intensity

around the infinitesimal circuit adfca, in which ad and cf are par-

Fig. 54.

allel to the interface, and ac and df normal to the interface, is

zero, since the field is static. This integral, that is, the e.m.f.

around the circuit, is

E
l
sin e

i
ad -f El

cos
l
de + 2

cos
2 ef+E2

sin Qjc

-f- E2
cos

2
cb -f- EI cos

l
ba = o
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But de = ba, and ef cb, hence all the terms but the first

and fourth cancel, leaving

E
l
sin 6

l
ad -f E2

sin 6
2fc = o

or, since fc= ad,
E

l
sme

i
= E

2
sme

2 (i)

Thus the tangential component of the intensity does not

change on crossing the interface.

Moreover, E2
lies in the plane containing El

and the normal to

the interface, N 2̂
. For if E

2
were not in this plane, it would

have a component perpendicular to this plane, while
l
has no

such component. Therefore the e.m.f. around a circuit in a

plane perpendicular to the interface and lying partly in medium

I and partly in medium 2 would differ from zero, which is im-

possible in the static field.

Consider finally the electric flux outward across the surface of

an elementary parallelepiped acfd with center at o in the inter-

face
;
two of the faces, of breadth ad and height h (perpendicular

to the paper) being parallel to S, and the others, of breadth ac

and height h, normal to 5. This flux must be zero, by Gauss's

theorem. Hence

DI sin 9
l
abh D^ cos 6

l
adh -f D l

sin 6
l
de h

+ D2
sin

2 efh + >
2
cos

2 cfh D
2
sin 6

2
bch = o

But since de = ef= ab = be, and ad = cf, this reduces to

D
2
cos

2
D

l
cos

1
= o

or

D
l
cos 6

l
= D

2
cos 6

2
|

c^ cos O
l
= c

2
E

2
cos 6

2 \

Thus the normal component of the displacement does not

change in crossing the interface.

From (i) and (2) we have by division,

tan ej tan 6
2
= (DJE^KDJEj) = cjc, (3)
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In passing from one dielectric to another lines of displacement
are therefore refracted in such a way that

I. The incident and refracted lines are in the same plane per-

pendicular to the interface at the point of incidence
;
and that

II. The ratio of the tangent of the angle of incidence to the

tangent of the angle of refraction is a constant for the given

media, and equal to the ratio of the two permittivities.

Since tan 6
V
and tan

2
become infinite together when

*i
=

*,
= 90

no phenomenon similar to total reflection in optics occurs.

If
2

is kept constant, and c
2/cl diminished, tan 6

l
increases.

In the limit when c
2/cl

= o, tan O
l
=

infinity, and 6
l
= 90. In

this limiting case @
2
is of course meaningless, since when c^c^

= o,

there is no electric field in medium 2. As stated in 14, L, no

substance has a permittivity less than <T
O
=

I, but for the sake of

certain analogies (VIII. and IX.) the imaginary case of c^c^
= o is here considered.

If while 6
2
is kept constant, c^c^ is increased, 6

l increases, ap-

proaching o as c
2 approaches infinity. In this limit also 6

2
is

meaningless, and medium 2 contains no electric field, as D
would there be infinite if E were greater than zero. Since in a

static field the lines of intensity always meet the surface of a con-

ductor normally (6l
=

o) and since there is no electric field

within the conductor, a conductor behaves in a static field like a

substance of infinite permittivity. Since in this case the displace-

ment is discontinuous at the surface, the conductor's surface is

charged. This behavior, however, is not due to the conductor's

permittivity, but to its conductivity. Of the permittivity of most

conductors little is known.

An experimental method of verifying (3) is described in 5,

VII.

3. Fictitious or Apparent Electric Charges. The discontinuity

in the normal component of the electric intensity at any point of
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the interface, viz., L l
cos O

l
E.

2
cos 6

2 (El
and E

2 being reckoned

positive when directed from medium 2 to medium
i),

is exactly

the same as it would be if c
2
were equal to c

l
and there were a dis-

continuity in the normal component of the displacement at the

point equal to c
l (El

cos 6
l

E
2
cos

2).
This would leave E

l
and

E
2 everywhere unaltered, and would leave D

l
unaltered

;
but

since D^ would now equal c
l
E

2
instead of cJ5,v as before, it would

decrease D
2 ,
and therefore all the charges in medium 2, in the

ratio cjc2
.

Thus the electric intensity everywhere in the field containing

two dielectrics in contact (the interface being uncharged) is the

same as it would be if medium 2 were replaced by medium I,

if the (former) interface were charged to a surface density

<r' = c
l(El

cos 6
l

E
2
cos

2),
and if all the charges in medium 2

(or at the interfaces, if any, between medium 2 and conductors,

which could be replaced by medium 2
( 28, I.)

without altering

the field) were reduced in the ratio cjc^ Imagining these

changes made in any case, we can compute the intensity at any

point by the direct application of the law of inverse squares.

From the intensity and the permittivity at any point the displace-

ment can be found, and from the charges and the intensity the

mechanical forces upon the charged bodies. This is an extension

of the method of 28, I., which treats of the case in which

c
2
=

infinity, or cjc2
= o, only. The mechanical force at the

interface between the two dielectrics will be determined in 6

and 9.

The quantity tr' = c
l(El

cos O
l

E
2
cos

2) (4)

is called the apparent or fictitious electric surface density at the

point with respect to medium i. [In the irrational systems of

units, Chapter XIV., o-' is defined by the equation

471-0-'
= ^(^ cos

l
E

2
cos (9

2)]

By simply interchanging the subscripts I and 2 we could of

course refer everything to the dielectric 2. In all that follows,
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however, the medium designated as I will be taken as the stand-

ard medium, and the apparent charges, etc., will be computed
with respect to it.

If there are several dielectrics in the field, it can be shown by
the method used above that, to reduce everything to medium I

for the sake of computing the electric intensity by the law of

inverse squares, a surface density must be assumed at every point

of each interface equal to c
l
x the normal discontinuity of E at the

point, and the charges in any medium of permittivity c must be

reduced in the ratio cjc.

In the same way, if the permittivity varies continuously, in-

stead of suddenly at distinct interfaces, there will be an apparent

volume density of electrification equal, at a point where the in-

tensity is
,
to

p
f = ^ div E (5)

(In the irrational systems of units 47r// = c
l
div E.)

If both volume density and surface density of apparent elec-

trification are present, we have

q'
= v'dS +p'dr (6)

the first integral being extended over all fictitiously charged

surfaces, and the second throughout all fictitiously electrified

volumes.

Electric Poles. The fictitiously charged surfaces or volumes,

that is, the surfaces or volumes where the electric intensity is

discontinuous, are called electric poles. The total apparent charge

in any region is the strength of the pole (or portion of a pole) in

that region, and is equal to ^ x the outward flux ofthe electric in

tensity
* across a closed surface surrounding the pole, by (4) and

(5). Another expression is given below. The pole is positive

or negative according as the apparent charge is positive or nega-

tive.

* The flux of any vector across a surface is the integral over the surface of the nor-

mal component of the vector.
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4. Fictitious Charges (continued). Intensity of Electrisation.

Electric Susceptibility. (4) may be written

<r' =
CI(EI cos 6

l

- E
2
cos

2)
= (D2

- c 2̂)
cos

2 (7)

The quantity Dz c^Ev the difference between the actual dis-

placement in medium 2 and the displacement which would exist

there with the same value of intensity if c
2
were equal to cv is

called the intensity of electrisation of medium 2 with respect to

medium I, and is denoted by J. Thus

J=D,-c1
E

2 (8)

Another definition ofj is given in 12.

(In the irrational systems of units, Chapter XIV., y is defined

by the relation 4?r/= D2 cJE2.)

When none of the electrisation is intrinsic
( I, VI.), (8) may

be written ,. /\
(9)

J is evidently a vector with the same direction as that of D
2
or

the opposite direction, according as D
2

is greater or less than

c^E^ ; or, when (9) is valid, according as c
2

is greater or less

than cr

(9) may be written

J=(c2- c^ = lcE
2 (10)

K
(c2 c^)

is called the electric susceptibility of medium 2

with respect to medium I . [In the irrational systems of units,

* =
(
C
2
~

'i)/4<l

(8) and (10) may be transformed into

D
2
= c

2
E

2
= /+ c,E2 = (c, + K)E2 (i i)

In terms ofJt
the apparent surface density is

<r'=/cos02 (12)

and the apparent charge upon a surface is

(13)



146 ELEMENTS OF ELECTROMAGNETIC THEORY.

The volume density of fictitious electrification is

p'=c1
div =

div(Z> /) = divD div/= div/= conv/ (14)

since div D = o.

The total apparent charge within a volume r is

(15)

The total apparent charge in a pole distributed over a surface

5 and through a volume r is

q' = fj cos 6
2
dS + / convjdr (16)

The total apparent charge within the volume r and upon the

surface 5 of a dielectric 2 completely surrounded by a homoge-
neous dielectric I is zero. This may be proved by integrating the

first term of (16) over the whole interface and the second term

throughout the whole volume of the dielectric 2. The equation

may be written

q
1 = fD2

cos 6
2
dS -^ f 2

cos 6.
2
dS -/div D2

dr + r
1 /div Ejh

The first and third terms are evidently zero, and it will be shown

that the second and fourth terms cancel. For div
2
dr is the ex-

cess of the flux of intensity leaving the volume dr over that enter-

ing the volume dr. Hence j div E
2
dr throughout the volume r

is equal "to the total excess of the flux of intensity leaving the

whole volume over that entering the same volume
;
and this is

equal and opposite to c
l j E.

2
cos 6

2dS, which is the excess of

the intensity flux entering over that leaving the whole volume.

Thus the proposition is established.

A dielectric in which

p' = convJ= c^ div E= o

is said to possess solenoidal electrisation for the reason that in

this case all the tubes, or solenoids, of intensity (E) or electrisa-

tion (J) run through the dielectric from one pole face to the

other without discontinuity at fictitious charges between.
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A medium in which J or D, together with r, is constant is said

to be uniformly electrised.

5. General Expression for the Potential at a Point
( fcos 6dL

from the point to infinity). When fictitious charges are present,

we must, to find the potential at a point, suppose all the true

charges reduced in the ratio c
l jc,

and add to the expression for

the potential due to the true charges alone, (16), II., a term

Cdq' l^rrc^L. Thus, in the most general case,

V- I/4WT, (fcjc dqlL+Jdg'jL)^ 1/4* -f^/cL+^'/^L) (17)

where c is the permittivity at the seat of the true charge dq. Or,

if we call cjc-dq also an apparent charge, we have, instead of

(18)

6. The Integral Force Upon an Electric Pole. The electric in-

tensity E r at a point P " due to
"
an electric pole of strength q'

is

E'-fdJlvrc^ (19)

where L is the distance from the seat of dq' to P, and the inte-

gration is a vector integration, the direction as well as the mag-
nitude of L being different for each different element dq

1
.

The force upon a small body at P with a concentrated true

charge q is

where R is the intensity at the seat of dq
f due to the charge q.

Thus the total force F upon an electric pole is

F= Edq' (20)

where R is the intensity at the seat of dq
f due to the other poles

and true charges, the integration being a vector integration.
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The traction per unit area at any element of an interface is com-

puted in 9.

The force between two concentrated poles with apparent

charges q' and q" distant L apart in a dielectric of permittivity c

would be
F=q'q"JAr

>rrcI} (21)

7. The Infinite Parallel Plate Condenser with Two or More Di-

electrics in the Form of Infinite Plane Slahs. The simplest pos-

sible field involving two dielectrics is that of an infinite parallel

plate condenser with two dielectrics I and 2 of permittivities ^

Plate 1

Plate 2

Fig. 55.

and c
2
in the form of infinite plane slabs of thicknesses d

v
and d^

parallel to the condenser plates distant d= d
l -j- d2 apart (Fig.

55).

Here the tubes of induction evidently run straight across with-

out change of strength from one condenser plate to the other,

meeting both conductors normally. If D
l
D

2
= D denotes the

displacement, the intensities in media I and 2 are

E
l
= DJ^ = DjCl

and E
2
= DJc2

= Djc2

respectively. Hence the voltage of the condenser is

F
12
= E

}
d

l -f E2
d

2
= D/cl {d \_(c2 r^/rj d2 ]

The capacity of a right prism of the dielectrics of thickness d

and cross-section A is

5 = A Dl ra = Acj{d- [(,,
-
e^c^ d2 ] (22)

and the energy contained in the prism is

W= ADV^ = lA&lc^{d- \(cn - c,)lc2-\d2 }
(23)
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Thus the substitution of dielectric 2 for a portion of dielectric

I
(cf. 51, Chapter I.)

decreases the energy if the charges are

kept the same, and increases the energy if the voltage is kept
the same, provided c

2
is greater than cr If c

2
is less than c

lt
the

opposite is true.

If the second dielectric does not touch either condenser plate,

the force upon either plate due to the discontinuity of the dis-

placement, viz., \Ef) per unit area, is not altered by its intro-

duction when D is kept the same; but if Vu is kept the same,

the force upon the area A becomes

F= \Ac, VJI {d- [(,,
-

Cl)/cJ d,Y (24)

which is greater or less than when the whole dielectric had the

permittivity c
l according as c

2
is greater or less than cr

If the dielectric 2 is in contact with plate 2, and the displace-

mentD as before, the force per unit area upon plate I is, as before,

but the force per unit area upon plate 2, due to the discontinuity

of the displacement at its surface, is

which is less than /j if c
2

is greater than cr But the tension

along the lines of intensity in medium I is \Ef), and in medium

2, ^E2
D. Hence there is a mechanical force upon dielectric 2

acting toward plate I of magnitude, per unit area,

-
c^cfr (25)

and this force is transmitted mechanically by the dielectric to

plate 2, making the total force per unit area upon the plate

equal to

The apparent surface density at the interface is uniform and

equal to .
N

.
,

cr' = D(e - Cl)[c, =/ (26)
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The electrisation is solenoidal.

When the number of dielectrics is greater than two, the inten-

sity, fictitious charges, etc., can easily be determined by the same

method.

8. The Spherically and Cylindrically Radial Fields. The field

surrounding a point charge at the center of any number of con-

centric spherical shells of different permittivities, or the field of a

spherical condenser with any number of dielectrics in the form

of concentric spherical shells, together with the fictitious charges,

etc., as wrell as the cylindrically radial field in coaxial cylindrical

shells of dielectric, can be easily found by the method of the

foregoing article, i. e.
t by the direct application of Gauss's

theorem.

As an example, suppose we have a spherical field in three

dielectrics, the charge, q, being in medium 3, and medium I sur-

rounding media 2 and 3 and extending to infinity, Fig. 56. The

Fig. 56.

displacement at any point distant R from C is ql^cP?, and

the intensity is equal to the displacement divided by the permit-

tivity at the point.

We shall also find the intensity by means of the fictitious

charges. It can be computed by considering a charge

to exist at C instead of q ;
a uniformly distributed charge
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at the interface 23 ;
and a uniformly distributed charge

at the interface 21; all in a dielectric of permittivity cr Each

charge "produces
"

outside the surface on which it is distributed

the same effect as if it were concentrated at the center C, and

within the surface no effect at all. Thus the intensity at a point

distant R from C, when R is greater than Rv is

E-W + 4* + fciOM*^ = q\V*cJt (27 )

while the intensity at a point in medium 2 distant from the cen-

ter c by R, less than R
2
and greater than Ry is

E= fe' + OM^i^2 = qlwcf? (28)

9. The Mechanical Force at the Uncharged Interface Between

two Dielectrics. In the particular case considered in 7, where

the lines of induction were normal to the interface, there was

Fig. 57.

found to be a force at the interface normal to it and equal, per
unit area, to \cJiL* \cf measured in the direction 21. In this

article we shall find the force per unit area at any point P of the

interface in the general case when the lines of induction make
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any angles (Figs. 54 and 57), connected by the relations (i) and

(2) with the normal at P to the interface.

In Fig. 57 let the plane JfF(the plane of the paper) coincide

with the plane containing El
and E

2
at the given point of the

interface, the axis Z being perpendicular to XY through P and

the plane of the interface coinciding with the plane XZ. Let

dS = dxdz be a rectangular element of area of the interface at

the point, with its sides parallel to X and Z respectfully. We
shall find the components dX and dYof the force upon dS in the

directions X and Y, parallel and perpendicular, respectively, to

the interface. It is evident, from symmetry, that the component
in the direction Z is zero.

The force upon dS is clearly equal to the force upon the sur-

face abed formed by drawing rectangles a, b, c, d, all of breadth

dz, through the ends of dS, with their planes parallel and per-

pendicular to E
l
and E

2
. The areas of these rectangles are

a = dS cos V b = dS sin V c= dS cos
2 ,
d = dS sin

2

Let TI and p l
= T

t
=

\c\E-? denote the tension and pressure

parallel and perpendicular, respectively, to the intensity in me-

dium I
,
and T

2
and p2

= T
2
= \cf the corresponding quan-

tities in medium 2.

The force upon the face a is 7j
. a = T^S cos 6V with the

components

dX
u
= T^S cos 6

l
sin

l
and dY

a
= T^dS cos

l
cos

l

in the positive directions of X and K The force upon the face

b is p l
b = p v

dS sin Ov with the components

dX
b
= p^dS sin

l
cos 6

l
and dY

b
= p^dS sin 6

l

- sin 6^

in the positive directions of X and Y. In like manner, the com-

ponents of the force upon the faces c and d are

dX
e
= - T

2
dS cos

2
sin

2 ,
dY

c
= - T

2
dS cos 6

2
cos

2

and dXd
= - p2

dS sin
2

cos
2 ,

dYd = p.2dS sin
2

sin
2
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Hence we have, for the X and Y components of the total force

upon dS
y

dX= dX
a + dX

b + dX
c -f dXd

= \_\c^(2 sin
l
cos ^)

-lr
242

(2sin02
cos

and

dY
b + </F

e + </F,
= [fo^cos

2

L

- sin
2

The Jf and F components of the force per unit area upon the

interface at P are therefore

dXjdS = \c^2 sin
l
cos

l

- \c.* 2 sin
2
cos (9

2

(29)= faEf sin 2^ \c2
E* sin 2^

2

and

^/F/^/5
= l^^cos

2

l

- sin
2

t)
- l 2̂

2

(cos
2

(9
2
- sin

2 ^
2)

(30)= ^j^
2 cos 20

1 \cJEL* cos 20
2

On multiplying together equations (i) and (2), we find

cJE? sin 20
l
= r

2 2̂

2
sin 2<9

2 (3 1)

Hence

dXjdS = dZjdS =o (32)

and the total force at the interface is normal to the surface and

equal to dYfdS.

By making use of (31), (30) may also be written

dYjdS = \c& sin 2(0,
-

00/sin 20, (33)

When c
z
is greater than cv 2

6
l

is positive by (3),
and dYjdS

is positive, that is, directed toward medium i .

When
2
=01== o, (30) and (33) reduce to (25).

10. The Process of Changing the Dielectric Within the Plates of

an Ordinary Parallel Plate Condenser is of much interest. If the

plates have charges q and q, q unit tubes will pass from one
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to the other. When the permittivity of the medium inside the

plates is the same as that of the medium outside, cv the tubes

will have some such distribution as that indicated in Fig. 47.

If a slab of a dielectric of greater permittivity, c^ is introduced

between the plates, the tubes will crowd into this dielectric until

(3) is satisfied, leaving fewer tubes in the region outside than

before. That this takes place follows from the consideration that

if the induction between the plates were not to increase, the

lateral pressure in that region, which is proportional to D2

fc,

would be insufficient to maintain equilibrium, c
2 being greater

than cv and equilibrium having existed when
c^ was equal to

c
lt

or when the dielectrics outside and inside were the same.

Since the dielectric outside is unaltered, we can compare the

voltages of the condenser in the two cases conveniently, if we

measure them along the same path outside before and after the

introduction of the slab. Since the field in the external region

is weaker after the introduction than before, the voltage is seen

to be less. If ^ is greater than c
2 ,

the effects are of course

opposite.

To look at the matter in another way, the tubes connecting

the outside surfaces and those connecting the inside surfaces may
be regarded as the tubes of two condensers connected in parallel.

If the capacity of either is increased by increasing the permittivity

of its dielectric, the tubes will crowd into that one, and the com-

mon voltage of both will be reduced. If the distribution of the

tubes remained unaltered, the voltage between the two plates

would be greater along a line not passing through the slab than

along a line passing through the slab.

During the lateral introduction of the slab into the region

between the condenser plates, the tubes crowding into it exert a

pull upon it, by 9, which continues until it is symmetrically

situated with respect to the plates, when the pulls urging it in

all directions balance. If during the change the charges are kept

constant, the energy decreases, since the voltage decreases
;

if

the voltage is kept constant the charges increase and the energy
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ncreases. By computing the space rate of this increase or

decrease of the energy, the force acting upon the slab may be

found by the method of 55, Chapter I. This computation is

made in 4, Chapter VII. The force could not, in general, be

determined without very great difficulty by the method of 9.

11. Field Surrounding a Concentrated Charge Situated in One

of Two Infinite Dielectrics Separated by a Plane Interface. Let

the charge q be concentrated at the point A, Fig. 58, in the me-

D

Fig. 58.

dium of permittivity c
l
distant d from the interface separating the

medium of permittivity c
i
from that of permittivity c

2
.

By 48, I., there is only one field which can satisfy the given

conditions. The given equipotential in this case is the infinite

sphere at zero potential with A as center. To find the field by
means of the law of inverse squares, we must reduce the problem
to one with a single dielectric, until the displacement, or else the

intensity, everywhere is found. Then the unknown one of the

two can be found in each dielectric from the relation D = cE.

We shall combine the method of images with the method of 3.

Guided by the result of 15, II., which solves the problem
when ~

2
=

infinity, and by what we have learned of the refraction

of lines of displacement, the simplest rational assumption we can
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make is that to the left of CD the displacement is such as would

accompany a charge q at A and a charge ql
at B, both in a di-

electric of permittivity c
l ;

and that the displacement to the right

of CD is such as would emanate radially in the medium I from

a charge q2
at A. If

<?l
and q2

can be given such values as to

satisfy (i) and
(2), at every point of CD, the assumption will be

justified and the problem solved.

Choosing OB and OC as positive directions, we find, for the

normal displacement at P on the left side of CD,

* =
(q
-

and for that on the right side

(2) Will be satisfied if these are equal. Hence, if the prob-
lem can be solved by this method,

The intensity parallel to CD is, on the left,

and on the right,

Hence, to satisfy (i),
we must have

Equations (a) and (S) are both satisfied by the values

and
ft
= -*(', -'i)/(', + '

so that the above assumptions are justified and the problem
solved.

When c
2 fa = f , q l

= q /4 and q2
=

t>q /4. When <r
2 fa = f ,

ql
= qJ4 and ^2 =3^/8. The plane diagrams of the field for

these two cases are easily constructed from Figs. 23 and 24, or
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from the above charges directly, by Maxwell's method, 14, II.

The diagrams of the tubes of displacement for these two cases are

given in the upper and lower halves, respectively, of Fig. 59.

The dotted lines on the right of the vertical line and the full

Fig. 59.

lines on the left are the lines of displacement of Figs. 23 and 24.

The force upon the charged body at A, or the force between

the charged body at A and the dielectric 2, is

F= qq, U-Kc^Ldy = -
f(c2

-
cj llbTrd

2^ + Cl) (35)

If c
2
is greater than cv the force is one of attraction, the tubes

being concentrated on the side ofA toward medium 2
;
but if c

2

is less than cv the force is one of repulsion, the tubes being now
concentrated on the opposite side. When c

2
=

infinity (35) re-

duces to (41), II. In the first case the apparent charge upon
the interface is negative, in the second positive, and in the last the

charge is real and negative, q being supposed positive.
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The total force upon the interface can be obtained also by the

method of 6.

Thus the apparent surface density at P is

<r' = -
qd(ct

-
fl) /2TT(c2 + c^ (36)

The apparent charge dq' upon a zone in the interface of radius

OP and width d(OP) is

dq
f = (7

f 27rOP -d(OP) = ff
r 2irx

The normal intensity at the zone due to the charge q is

Hence the total force between the interface and the charged

body at A is

F= - fd\ct
- cflvrcfa + O f

Jd

as in (3 5).

The total apparent charge upon the interface is

' = I <T'2irxdx= qd(c2 c^ /(c2 + ^) I dx l#
Jd Jd

(37)

12. Dielectric Sphere in a Uniform Field of Different Permit-

tivity. Let a sphere of permittivity c
2
be introduced into an

infinite medium of permittivity c
l supporting (before the introduc-

tion of the sphere) a uniform electric displacement D.

If c
2
= cv the tubes will remain everywhere unaltered.

If c
2

is greater than cv the tubes will bend, crowding into the

sphere, thus making D2 greater than D, until the condition ex-

pressed in (3) is satisfied. (If Z>
2
were to remain equal to D

t
the

lateral pressure ^D2 jc2
across the tubes within the sphere would

be less than JZ?
2

/^, the lateral pressure without, and equilibrium

could not exist. Also, the voltage between two equipotentials
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would be greater along a line not traversing the sphere than

along a line passing through the sphere.)

If c
2

is less than cv D2
is less than D, tubes crowding out of

the sphere until (3) is satisfied.

We proceed to the exact determination of the electric field

within and without the sphere. In accordance with 48, L,

there is but a single field satisfying the conditions of the problem.

With respect to the field within the sphere, we shall make the

simplest possible rational assumption, viz., that the displacement

D
2

is uniform and in the same direction as the original external

displacement D. We shall further assume that the effect of the

Fig. 60.

sphere on the (originally) uniform field is the same, in the region

outside it, as that of a doublet of moment M placed in the

original dielectric at the point occupied by the center of the

sphere with its axis parallel to D. The probable correctness of

this assumption follows from the fact that conductors and dielec-

trics produce on static fields into which they are introduced

effects differing only in degree ;
and the fact that the effect of a

conducting sphere on a uniform field can be represented, in the

region outside the sphere, by a doublet at its center.

An attempt at a solution based on these assumptions will

obviously satisfy all the electrical conditions except (i) and (2).

If in addition D.
2
and J/can be so chosen as to satisfy these con-

ditions also, the problem will be solved.
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To see whether the assumptions made above will satisfy (i)

and (2), the radial components of the resultant internal and ex-

ternal displacements and the tangential components of the re-

sultant internal and external intensities at the surface of the

sphere must be determined. The radial and tangential displace-

ments at any point, outside the sphere, whose coordinates are R
and 6, in the notation of 25 and 26, II., will first be found.

For the radial component due to the doublet (94), II., gives

2M cos 0/4.7rR
3
,
to which must be added the component D cos 6

due to the uniform field. For the tangential component due to

the doublet (95), II., gives M sin Oj^rrR^, to which D sin 6,

due to the uniform field, must be added. For the total radial

displacement outside the sphere we have, therefore,

D = 2Mcos + D cos

and for the total tangential displacement,

D
t

= M sin 6/4>irlP
- D sin

(38)

(39)

Fig. 61.

At any point inside the sphere, with coordinates R and 0, the

radial and tangential components of the displacement are D
2
cos

and D
2

sin 0, respectively, independently of the value of R

(less than the radius of the sphere).
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Let the radius of the sphere be denoted by a. Then, to satisfy

(i) and (2), we must have, when R = a,

2M cos 0/47rtf
3 + D cos = D

2
cos 6, or M/27ra* -f D = D

2

and M sin O/c^Tra* Djcl
sin = D

2
sin 6/c2 ,

or

The solution of these equations gives

M= ^Jra\c2
-

cjDj(c2 + 2^) = 4
3

fo
-

'0A/3', (40)

and A = y2Dj(c2 + 2^)

(41)
whence . = EI(c + 2r

The assumptions made above are therefore justified, and the

problem is solved. The uniform field within the sphere is given

by (41), and the external field by (38) and (39) on substituting

for Mits value from (40). This substitution gives

D
r
= [2a\c2

- c
})jR\c2 + 2^) -f I ]D cos 6 (42)

which becomes, when R = a,

Dn =yJ) CQ*OI(ct+2cd (43)

also D
t

= [J(c2
- c^jR\c2 + 2^) - i ]D sin 6 (44)

which becomes, when R = a,

A = - 3^ sin 0/^+2^) (45)

When c
2
is greater than cv D2

is greater than D, E2
is less than

E, and M is positive. That is, the doublet is turned with its

positive end in the direction of the field. When c
2

is less than cv
D

2
is less than D, E2

is greater than E, and M is negative, or the

doublet is turned so as to oppose the field. When c
2
=

infinity,

(41) reduces to D
2
= ^D, and E

2
= o

;
and (38), (39), and (40)

to the equations of 25-27, II.

The plane diagrams of the tubes of displacement, drawn by the

method of 14, II., for c
2/cl

= o, 3, and infinity, respectively, are
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given in Figs. 60 (the lines inside the circle, Fig. 32, formed by

superposing the uniform field on the field of the doublet, being

here annulled), 61, and 62 (from Webser's Theory of Electricity

and Magnetism, 1 94).

The infinite plane passing through the equator of the sphere

is an equipotential surface (at zero potential). Hence if this sur-

face is made conducting we shall have on each side half the field

just considered terminated by this conducting sheet. Thus we

have solved the problem of finding the field terminated by an

Fig. 62

infinite plane conducting surface with a hemispherical boss upon

it of permittivity c
2 differing from that of the dielectric occupying

the rest of the field (^).

The electric surface density at any point of this plane distant

R from the center of the hemisphere is

when R is less than #, and

90) = \_a\c,
-

Cl}IR\c, + 2,,)
-

i]/> (47)

when R is greater than a.

The intensity of electrisation of the sphere is uniform and equal

to /= D, fa - OM] = 3D(c,
- O/k + 2^) (43)
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(40) may now be written, in terms ofJt

M= fTT</ (49)

so that the intensity of electrisation of the sphere might be defined

as its electric moment per unit volume, the electric moment denot-

ing the moment of the doublet producing the same effect on the

external field as that of the sphere.

The difference between the actual intensity E2
in the sphere

and the original intensity E of the uniform field is called the self-

deelectrising force or intensity in the sphere due to its poles or

apparent charges, and will be denoted by E' . Thus

The apparent electric surface density at a point whose coordi-

nates are a and 6 is

r' = />,[(',-',)/',] >S0-/ cos*

= 3 [fo -',)/(', + 2*
1)]/> cos*

The total apparent charge upon one half of the sphere between

a pole and the equator is

q< = y= TO2

[(<-2
- c^l^Dt ( 5 2)

13. Infinite Dielectric or Conducting Cylinder in a Uniform

Field. Making use of 20, II., we can obtain, by the method of

the preceding article, the electric field in and about an infinite

circular cylindrical dielectric of permittivity c
2
immersed in the

uniform field of an infinite medium whose permittivity is cr For,

as will be seen, it is possible to satisfy all the conditions by

assuming the displacement external to the cylinder to be the

resultant of the original uniform displacement and the displace-

ment of a line doublet of moment M, suitably chosen, at its axis,

all in the original dielectric, and the internal displacement to be

uniform and parallel to the original displacement. If the radius

of the cylinder is a, and if D and D
2
denote the original uniform
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displacement and the actual displacement within the cylinder,

respectively, the conditions (i) and (2) to be satisfied at the

interface are obviously

D cos 6 + Mcos 6/27ra
2 = D

2
cos 6

and
D sin e/^ + ^sin e/c^Tra

2 = D
2
sin 0/c2

from which we obtain

A = 2^M + O (53)

and M= 7ra*[(c2
-

c^jc^D, = ^a\(c, - ,,)/(,, + ,,)]/> (54)

Hence outside the cylinder, at a distance R from its axis, the

radial component of the total displacement is

D
r
= Mcos 6/27rR

2 + D cos

=
[a

2

/R
2

-(c2
- c^(c% + cj + i\D cos B (55)

and the tangential component is

D
t

= [*!&(*, - c,)l(ct + ,,)
-

i]Z> sin (56)

while within the cylinder the displacement is uniform and given

by (53).

The apparent electric surface density is

' =
\.(^

- 0/'JA cos * -/ cos ^
(57)

The total positive or negative apparent charge on half of unit

length of the cylinder is

ql =Jx2ax i =2/ (58)

The self-deelectrising force of the apparent charges is

E' = D
t lct

- Die, = - (ct
-

Cl ) 1 2cft D2

(59)

14, Dielectric Spherical Shell in a Uniform Field. Electric

Screen. If instead of the solid sphere of 12, we have a spherical

shell of permittivity cv with inner and outer radii b and a respec-
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lively, surrounding and surrounded by a medium of permittivity

c
l supporting an (originally) uniform field with' displacement D, we

can find the field by an extension of the method used in the two

preceding articles.

Guided by the results obtained for the solid sphere, we shall

assume
(

I )
that within the inner surface of the shell the dis-

placement, Dz
is uniform and parallel to that of the original field;

(2) that within the shell the displacement is the vector sum of a

uniform displacement D2 parallel to D and the displacement due

to a point doublet of moment M
b
at the center of the spheres ;

and (3) that the displacement outside the shell is the vector sum

of the uniform displacement D,the displacement due to the doublet

of moment M
b ,
and the displacement due to a second doublet of

moment M
a ,

also placed at the center of the spheres, the axes of

both doublets being parallel to D. It will now be shown that

these assumptions satisfy (i) and
(2).

At the outer interface the conditions to be satisfied by the

normal displacement and tangential intensity are, respectively,

(D + 2Ma /47ra* + 2Mb /fir<t) cos d = (D2 + 2^/4*) cos 6

and

(- D/CI + MJc^TTC? + MJc^TraP) sin B

sin

At the inner interface the conditions are

(D2 + 2MJ47T&) cos 6 = D
3
cos

and (- >Jc2 + MJc^irP) sin = - DJc l
. sin 6

Cos 6 and sin 6 will divide out, and the equations are satisfied by
the following values of the assumed moments and displacements :

A = 9V.0/IW, + 2fc
-

rf(i
- #/)] (60)

A =[(2^ + ^/3',]A (60

M
a
= 27ra3

(
JD

2
- D) (62)

and M
t
- - 4^/3 [(,, -<-,)/<-,]

D
t (63)

The relation betwen D^D and bja is given in the accompany-

ing table (Table I.)
for the cases in which cjcl

= 100 and 1000.
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These excessive values of c
2 jcl

do not occur in electrostatics, but

are assumed here for the sake of the much more important mag-
netic analogue, 23, XL The greater the ratio of c

2
to c

l
and

the smaller the ratio of b to a, the less is D
3
in comparison with

D, that is, the shell forms a more effective screen from electrical

influences for the region within it. When c
2 /cl

=
infinity, that is,

when the shell is conducting, DJD = o for all values of bja, and

the shell is a perfect electrical screen (when the field is
static).

15. Dielectric Cylindrical Shell in a Uniform Field. Electric

Screen. The field of an infinitely long circular cylindrical shell,

Fig. 63.

of permittivity c
2
and with inner and outer radii b and a, when

immersed in an infinite medium of permittivity ^ supporting an

(originally) uniform displacement D can be obtained in exactly
the same way, by making use of line doublets

( 20, II.) instead

of point doublets.

Let D, D2 , D^ MaJ
andM

b
have the same meanings as in 14,

except that cylinder and cylindrical must be substituted for

sphere and spherical and line doublet for point doublet. Then
we have, to satisfy (i) and (2), at the outer interface,

(D -f Mj27ra
2 + MJ27ra

2

)
cos = (Da + Mb /27ra

2

)
cos 6

and
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sin<9

and at the inner interface,

(>2 + Ma /27r&
2

)
cos 6 = Z>

3
cos (9

and (- D2 /c2 + Mb /c227r&
2

)
sin = sin

Solving these equations, we obtain, as the only solution of

the problem,

-

; ; ;

, /7,-4/v, /[(', + ',) -*/(', -'in (64)

A-fo + 'i)/2vA (65)

M
a
=27ra2

( 2 -D) (66)

and ^ = -^[(,,-0 /,,]/>, :_";:::..:-::.".-; (67 )

The relation between Z>
3 / D and /# is given in the accompa-

nying table (Table I.)
for the cases in which c

2 jcl
= 100 and

1000. When c^c^ = infinity, or when the shell is a conductor,

D^ I D = o for all values of b /a. The cylindrical shell, like the

spherical shell of 14, forms an electrical screen, the remarks at

the close of 14 applying equally well to both forms.

The plane diagram of the tubes of displacement when c
2 jc^

= 10

and b la = -|
is given in Fig. 63 (from Webster's Theory of Elec-

tricity and Magnetism, 198).
TABLE I.

SCREENING EFFECT OF SPHERICAL* AND CYLINDRICAL DIELECTRIC SHELLS.

b\a



CHAPTER V.

REVERSIBLE THERMAL EFFECT DURING ELECTRISATION.
ELECTROSTRICTION.

1. Reversible Thermal Effect During Electrisation. Let a con-

denser be carried through a reversible cyclic process as follows,

the external pressure upon the dielectric (e. g. t
the atmospheric

pressure) being kept constant :

(1) The voltage V being kept constant, let the condenser be

heated from the absolute temperature / to the absolute tempera-

ture t + dt. If p, s, and r denote the density, specific heat, and

volume, respectively, of the dielectric, the heat absorbed by the

condenser during this process is H= pST dt.

(2) At the temperature t -f dt, at which the capacity of the

condenser is S -\-dSldtdt, let the voltage be increased by dV.

The energy of the condenser increases by \(S + dSjdt dt)d( V
2

)

= (S+ dSjdtdt)VdV.

(3) Let the condenser be cooled to the original temperature /

while the voltage remains constant (V+ dV).

(4) Let the voltage be reduced to its original value V, the con-

denser thus losing an amount of energy equal to

The condenser is now in its original condition.

The total work done upon the condenser (exclusive of work

done in heating) during the complete cycle is

dW= (S + dSjdt dt) VdV SVdV= VdSjdtdt dV

The quantity of heat given to the condenser (exclusive of that

given out) is

168
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Hence, by the second law of thermodynamics, viz., Hjt = '

dWjdt, we have

ps-rdtjt
= - VdVdSjdt

or dtjdV= - tVips-r dSjdt (i)

If therefore we assume that dS j dtt s, etc., are independent of

V, which is certainly near the truth, the total reversible temper-

ature change when the condenser is charged from V= o to V=
Fis

f
Jo

(2)

If the dielectric is homogeneous and isotropic, we have

= \lcL- d(cL]\dt= ijc-dcjdt+ ijL- dLjdt = k
t

where L is the length of any line drawn in the dielectric (S and

dS being proportional by the same factor to the product of the

permittivity and such a length), and k
t
and a are written for ijc-

dcjdt, the coefficient of increase of c with temperature, and i/L-

dLjdt, the coefficient of linear expansion with temperature, re-

spectively. By substituting (3) in
(2), we obtain

tolt=-(kt
+ a)lfKT-$SV* (4)

If the field of the condenser is uniform, (4) becomes

A/// = -
(kt
+ a)/ps

-

\cE* = -
(kt
+ a) U/ps (5)

Since, moreover, any electric field is uniform in its infinitesimal

parts, (5) is perfectly general.

In all the above the effects of conduction, radiation, etc., are neg-

lected, and no intrinsic electrisation (VI.) is supposed to be present.

For all solids yet investigated (kt -\- a) is positive. Hence a

condenser with such a dielectric is cooled by charging and heated

by discharging. For nearly all liquids (k
t
-f a) is negative. Ac-

cording to experiments by W. Cassie (Phil. Trans., A, 1890) k
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(or k
t
-f a) at 50 C. is about 0.006 for glycerine and -f 0.0004

for mica. For recent literature see Ann. der Physik, Vol. 10,

p. 748, 1903.

[Analogous magnetic quantities being substituted in (5) for

the electric quantities there occurring, the equation is valid for

the magnetic case (see 23, XL).]

2. Electrostriction. Change in Volume of Dielectric when

Electrised. When a condenser is charged at constant tempera-

ture its dielectric, or dielectrics, would be expected, in general,

to suffer changes in volume and changes in linear dimensions.

These phenomena, as yet largely hypothetical, are included under

the general head of clcctrostriction. The alterations in volume,

etc., can be deduced from the principles already developed, in

connection with the principle of the conservation of energy.

Fig. 64.

In all that follows it will be assumed that the condenser plates

are always in contact with the dielectric and that they follow

accurately without appreciable elastic reaction the motion of its

surfaces, as, for example, coats of gold leaf or tin foil. Complete
absence of intrinsic displacement will also be assumed.

First we shall find the change in volume. Consider a con-

denser ABC, Fig. 64, whose dielectric C occupies the volume r

and possesses the permittance vS when charged to the voltage V
and subjected to the uniform pressure p (which may have any

value, including o) over its surfaces.
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(1) While Fis kept constant, let the volume be increased by
dr. The energy of the condenser will increase by pdr. The

increase of volume will, in general, be accompanied by an increase

dS in the permittance. Now let the volume (r 4- dr) be kept

constant while the voltage is increased by dV. The energy in-

creases by \ (S + <tS) d( F
2

)
= (S + dS) VdV. The total increase

in energy during the process is

dW^ -pdr + (S + dS)VdV

(2) Let us start with the condenser in the same condition as

at the beginning of (i) and bring it to the same final state by a

slightly different process. While the volume remains constant

(T),
let the voltage be increased by dV. This will increase the

energy of the condenser by SVdV, and, in general, the pressure

by an amount dp. Now let the voltage ( F+ dV) be kept con-

stant while the volume is increased by dr. The energy will in-

crease by (J> -f dp}dr. The total increase in the condenser's

energy is thus

dW
z
= SVdV- (p + dp) dr

By the principle of the conservation of energy, dlV
l
= dW

z
.

Hence
VdSdV= -dpdr

or

drjdV= - VdS/dp (6)

For ordinary charges dS / dp will be sensibly independent of

V. Hence we have for the total change in r when the condenser

is charged from a neutral state to the voltage V,

= -dSldp f
V

VdV'= \SV\- i/S-dSldp) (7)
Jo

Homogeneous Isotropic Dielectric. If the dielectric is homo-

geneous and isotropic, (7) may be simplified. For in this case

S and dS are proportional by the same factor to the product

of the permittivity and the linear dimensions of the condenser.
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Hence if we denote by L the length of any line drawn in the

dielectric, we have

- ijS'dSldp=- ijcL-d(cL)ldp

= - 1 1 c- del dp ilL-dLldp=(kp + bl$)

where b = the coefficient of compressibility of the dielectric

= sJL-dLjdp, and k
p
= I j c del dp = the coefficient of di-

minution with pressure, or increase with traction, of the permit-

tivity c. Thus (7) becomes

Ar=JSF2

(^ + ^/3) (8)

In order that (7) or (8) may hold when the dielectric is a

fluid, the dielectric must be completely surrounded by the con-

A and B are

the conductors, C
the dielectric, of the

condenser.

Fig. 65.

denser plates, or the plates must be so arranged that they are

kept apart by the pressure of the fluid only, and sensibly all the

tubes must be contained in the fluid, as in Fig. 65.

If the field of the condenser is uniform, J5F
2 = rc 2

,
and

(8) may be written, on division by r,

AT/T-j^^ + j/a) (9)

3. Change in Length of a Line Normal to a Uniform Electric

Field in a Solid Isotropic Homogeneous Dielectric During Electri-

sation. Let e denote the thickness of the dielectric of a parallel

plate condenser (the plates always remaining in contact with the

single dielectric), and L and L' the lengths of the edges normal

to e of a rectangular prism of the dielectric. We shall find the

change in L when the condenser is charged to the voltage V.

The dielectric in all that follows will be supposed homogeneous
and isotropic.
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(1) The voltage V being kept constant, let the dielectric be

subjected to a traction in the direction of L, the stress across the

area L'e, normal to L, being Qr This will increase the energy

of the prism by Q^dL, and will, in general, alter its capacity by
an amount dS. Now let the length L -f dL remain constant

while the voltage is increased by dV. This will increase the

energy by (S + dS)- VdV. The total increase in the energy is

dW
l
= Q,dL +(S+ dS) VdV

(2) Let the condenser be brought from the same initial state

to the same final state as before by a different process. First let

the voltage increase by dV, while L remains constant, which will

increase the energy by SVdV and, in general, the traction by

dQr Then, the voltage (V+ dV) being kept constant, let L be

increased by dL, which will increase the energy by (Ql + dQ^dL.
The total increase is

dW
2
= SVdV+ (Ql + dQ^dL

As in 2, dW2
= dWv hence

dLjdV= VdSjdQ^ (10)

Since, for small changes at least, dS / dQl
must be sensibly

independent of V, (10) gives for the total change in L when the

condenser is charged from V= o to V'= V,

AZ = dS/dQ l
VdV= \ SV\\

Since 5 = cLL' / e,

\IS-dSjdQl
= il

Moreover, i /Z/ dL f

/dQ l

= i je-dejdQ^ Hence we have,

putting dQ^ = L'e-dqv simplifying, and dividing by L,

&L/L=icF2

/e
2

-(i/c-dc/dgl + ilL-dLjdq,} (12)

Now 1 1L dLjdq^ is the reciprocal of the stretch modulus, and

will be denoted by M. Also, ijc- dc / dq^ is the coefficient of in-
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crease of the permittivity with traction normal to the lines of

displacement, and will be denoted by kr Thus (12) becomes

,) (13)

The above results, deduced for the uniform field of a parallel

plate condenser, will hold good, without sensible error, for a

condenser of any form, such as a cylindrical or spherical con-

denser, in which the conductors are parallel and so close to-

gether that E is sensibly of the same magnitude throughout the

dielectric.

4. Change in Length of a Line in the Direction of a Uniform

Electric Field in a Solid Isotropic Homogeneous Dielectric.

Making use of the parallel plate condenser of the last article,

and of the same general method, but applying a traction

Q2
= LL'q2 parallel to the lines of intensity, we obtain

dejdV= VdSjdQ2 (14)

(15)
and

= -^cF
2
/e

2
-

\M(2r

+i)-^2]

where r denotes Poisson's ratio, and k
z
= I / c-dc / dq2

is the co-

efficient of increase of c with traction parallel to the lines of in-

tensity.

The results just established hold good, like those of 3, for a

thin condenser with parallel plates of any form.

It is easy to see that

k
p =2k,+k2 (17)

5. Theory and Experiments. A rigorous treatment of the

general theory of electrostriction, together with a resume of most

of the experimental and theoretical investigations upon the sub-

ject, is contained in a recent memoir by P. Sacerdote (Ann. de

Chim. et de Phys. (7), 20, p. 289, 1900). Satisfactory experi-
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ments upon the values of the coefficients k
pt
kv and kv as well as

entirely satisfactory experiments upon the quantities AT/T, keje

and AZ,/Z, have not yet been performed (See the Philosophical

Magazine and Nuovo Cimento, 19001902, for some of the most

recent and best results).

2-4 are based largely upon portions of the above-mentioned

memoir by Sacerdote, with simplifications.



CHAPTER VI.

ELECTRIC ABSORPTION. ELECTRETS.

1. Electric Absorption. In all that precedes electric displace-

ment has been treated as a perfectly elastic phenomenon ;
that

is, the relation D = cE (analogous to Hooke's law) has been as-

sumed to hold universally with c at every point a constant, inde-

pendent of the time. On this assumption, the capacity of a

condenser, which is proportional to c
y
would be invariable with

the time of charging. This appears from experiment to be ac-

curately true for dielectrics whose homogeneity is perfect, for

example, gases, pure paraffine, and pure calc spar ;
but it is by

no means true in general, as the experiments described below

demonstrate.

Let a condenser whose dielectric is not homogeneous, with its

plates connected to the quadrants of an electrometer, be charged

to a given potential difference and then insulated from the bat-

tery. The potential difference will gradually diminish, approach-

ing a limit sometimes considerably below its initial value. If

now the condenser is short-circuited, the potential difference

becomes zero
;
but it gradually reappears, unchanged in sign but

much smaller in magnitude, after the condenser is again insulated.

The remnant of the original charge, whose presence is proved

by the existence of this potential difference, is called a residual*

charge. If the operation of short-circuiting and insulating is

repeated, the same phenomena recur, the potential difference de-

veloped after insulation being smaller each time and finally be-

coming insensible. The disappearance of the phenomena is of

course hastened by the "
leakage

"
of the condenser, if appre-

ciable, arising from the conductivity of its dielectric, from the

presence of moisture, etc.

176
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If the condenser is charged for a long time in one direction,

then for a much shorter time with the poles of the charging bat-

tery reversed, and then short-circuited and insulated, a potential

difference similar to that last applied will first appear, reach a

maximum, diminish to zero, change sign and continue to increase

in the direction of the potential difference first applied.

Or the following equivalent phenomena may be observed. On
the condenser's being connected with a constant battery, its

charge usually reaches very quickly almost its final value, but

the charge goes on gradually increasing, sometimes considerably

exceeding its initial magnitude. On short-circuiting the con-

denser most of the charge disappears ;
but after insulation for a

short time a second discharge in the same direction may be ob-

tained, and so on, till the discharges become too small to be

perceptible.

Also, if the condenser is charged for a long time in one direc-

tion, then for a much shorter time in the opposite direction, and

then short-circuited and insulated, a residual charge (and cor-

responding discharges, if the condenser is repeatedly short-cir-

cuited) similar in sign to the last charge will at first appear, but

will be succeeded by a residual charge similar in sign to that of

the charge first applied.

The appearance of the residual charge in all the above described

experiments is hastened by subjecting the condenser to mechan-

ical shocks.

Two possible explanations of the phenomena of electric absorp-

tion, as the phenomena just described are called on account of

what was once regarded as the soaking in of the electric charge
with the time, have been given.

(i) The general analogy between electric strain and stress and

mechanical strain and stress, together with the fact that absorp-

tion does not occur in free aether or in gases, whose elasticity is

perfect, and is very marked in a substance like glass, whose elas-

ticity is extremely imperfect, has led to the suggestion that elec-

tric absorption is due to the imperfect electric elasticity of the
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dielectrics which exhibit it. The phenomena of electric absorp-

tion are exactly analogous to the phenomena of elastic after-

action. Thus, if the spring of 36, I., is not perfectly elas-

tic (and no solid body is perfectly elastic) the elongation (analo-

gous to electric charge) produced by a certain applied force

(analogous to e.m.f. of charging battery), equal and opposite to

the elastic return-force of the spring (potential difference), will

not remain constant with the time, but after reaching almost

immediately a value usually very near the final value, will gradu-

ally increase. If now the force is removed (condenser short-

circuited), the elongation will not become zero at once, but the

spring can exert no force by virtue of the remaining elongation

(residual charge when potential difference = o). If now the

spring is clamped (condenser insulated), the elongation gradually

becomes elastic (residual charge becomes available, potential dif-

ference increases from zero), and the spring exerts a force upon
the clamp (residual potential difference). If the clamp is re-

moved (short-circuit), the elongation will again suddenly dimin-

ish, and so on. Also, if the spring is clamped, extended for a

long time, and then compressed for a much shorter time (con-

denser charged successively in opposite directions) and then re-

leased (short-circuit), the residual compression will gradually reach

zero, and then become a residual elongation which will diminish

much more slowly to zero (condenser's dischargers will be for a

short time in one direction, then for a much longer time, until the

whole residual charge has disappeared, in the opposite direction).

(2) Maxwell has developed a theory according to which the

phenomena of absorption can not occur if the dielectric is per-

fectly homogeneous throughout, but must occur whenever the

ratio of the permittivity to the conductivity is not constant for

all parts of the dielectric, even if none of the constituents alone

exhibits the phenomena. This conclusion, according to which

electric absorption is due to heterogeneity of structure, is sup-

ported by experiments of Rowland and Nichols, Muraoka,

and others. It is quite possible that deviation from perfect elas-
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ticity is closely connected with heterogeneity of structure, and

that the two explanations are not independent of one another.

Thus glass is extremely heterogeneous, possesses very imperfect

elasticity, and shows the phenomena of absorption in a marked

manner.

2. Dielectric Absorption Hysteresis. If a condenser whose di-

electric is absorbent is rapidly charged to a voltage Vf

t
short-

circuited, charged in the opposite direction to a voltage F',

short-circuited, charged again to voltage V, and the process re-

peated a number of times at the same rate (by connecting the

condenser to the poles of an alternating current dynamo, for ex-

ample), it is evident from what precedes and the principle of

symmetry that the relation between the charge q and voltage V of

the condenser may be represented by a closed symmetrical curve,

such as that in Fig. 66. When the voltage has dropped from the

Fig. 66.

value V at A to at B, a residual charge OB is left, and dis-

appears entirely only when the voltage reaches the negative

value OC. As the voltage increases negatively to V at D
y

the charge increases negatively, and falls to the value OE when

the voltage again becomes zero. The residual charge again dis-

appears when V= OF OC, etc., the charge thus always

lagging behind the voltage.
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If however the condenser is carried very slowly through the

cycle of charging, discharging, etc., or if the dielectric is one

which does not exhibit electric absorption, the curve is found to

reduce to a straight line, and the area of the cycle therefore to zero.

(Cf. Beaulard, Journal de Physique (3), 9, 422, 1900.)

The phenomena are therefore not analogous to those of mag-
netic hysteresis ( 39, XIII.), which are almost wholly indepen-

dent of the time in which a cycle is completed and are not de-

pendent, except to a very slight extent, upon anything similar to

viscosity or absorption. The term hysteresis may be used to

designate the electrical phenomenon described in this article, on

account of the lagging effect mentioned, but this term, if so used,

should be coupled with the word viscosity or absorption in order

to avoid the incorrect inference that the phenomenon is physi-

cally analogous to magnetic hysteresis.

3. Energy Dissipated in Dielectric Hysteresis. The area of

the curved figure ABCDEFA, Fig. 66, is

H=fVdq ., (I)

for the whole cycle, and thus represents the excess of the elec-

trical work done in charging the condenser (in both directions)

over the electrical energy given out when the condenser is dis-

charged (in both directions) (see 37, I.). This quantity of

energy must therefore be transformed into heat during each com-

pletion of the cycle,

(i) may be written

H= J'J*$EdL-dSdD
= ffEdD-dr

dL and dS being elements of a line of intensity and an equipoten-

tial surface, respectively, and dr being the element of volume

dLdS. We have therefore for the energy dissipated per unit

volume per cycle at a point in any dielectric where the intensity

and displacement are denoted by E and D,

dHjdr = EdD (2)
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the integration being extended throughout a complete cycle.

See 38, I.

4. Intrinsic Displacement and Intensity, Electrets, etc. A
dielectric electrised or retaining its electrisation, like the dielec-

tric of a condenser after absorption has occurred, partially or

wholly under the action of internal forces, no external field, and

therefore no potential difference or field intensity (E = dV jdL)

within the dielectric itself (as when the condenser is short-cir-

cuited), being necessarily present, is said to possess intrinsic

electrisation or displacement, and to be under the action of an in-

trinsic electric intensity or force, denoted by e, in the direction of

the displacement. A dielectric in this state is called an electret.

The intensity E= dVj dL, 3, is zero at two points of the

cycle for which D (the total displacement, redefined by Gauss's

theorem * as dq[dS at a conducting surface, the theorem being

assumed to hold for intrinsic as well as for elastic displacement)

has finite values, while D (or q) is zero at two points for which

E(QV V} has finite values.

Thus if we assume the relation c = D /E (by which D was

defined in the case of elastic displacement) to hold in the case

of intrinsic displacement, r, as the cycle is traversed, will pass

through all values from + oo at B to CD at E, Fig. 66.

If, however, we introduce the conception of intrinsic intensity

e, if we denote the field intensity dVj dL by E' instead of E
at a point where intrinsic displacement exists, and if we denote

the vector sum of e and E' by (e + E f

)
= E, the total or im-

pressed intensity, we may define e by the relation

D = cE=c(e + E') (4)

With this understanding, the relation D = cE holds univer-

* A more rigorous and general definition of Z>, analogous to the general definition

of
, (63), XIII., is obtained from (2), XV. Thus

(3)

the dielectric being in a neutral state at the time t = o.
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sally and leads to no impossible values of c, since e and D have

always the same direction. In this chapter E f
will be used to

denote the field intensity dVldL
;
but elsewhere, except where

the contrary is stated, e will be assumed equal to o and E r

equal to E.

5. Uniformly Electrised Spherical Electret. Suppose the elec-

trisation of the sphere of 12, IV., to become partially intrinsic.

Then let the external charges "producing" the (originally) uni-

form field be removed. Then the only remaining
"
charges

"

are the fictitious charges upon the surface of the sphere, whose

density is given by . r
a' =/cos (5)

where J denotes the intensity of the remaining electrisation.

Inside the sphere there is an intrinsic intensity e maintaining

the displacement and a self-deelectrising field intensity equal to

E' = -Jly, (6)

The external field is the part outside the sphere of the field con-

nected with the doublet of moment

Af-t-ir<tJ (7)

at the center of the sphere.

Maxwell's plane diagram of the complete field is given in Fig.

67 (from Maxwell's Treatise, 143). If the lines of displace-

ment within the sphere are directed from 5 to N
t
the lines of

intensity have the direction NS.

The quantities M, E', o-
f

,
and /can all be expressed in terms

of the internal displacement DQ
of the sphere.

Thus we find from the relations (2) IV., (94) II., and (7), when

6 = o and R = a : D
Q
= MJ2 na3

;
or

(8)

and

(9)

M= 2ira*D
Q
= I TTtf

3/ (8)

The relations (i) IV., (95) II., and (6) give when 6 = 90 and

= a
* E> = MI^C^ = -Dj2cl== -7/3^ (9)
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The relation/= D() cfl [(7), IV.] ,
or either of the last two

equations alone, gives

J-Dt + Dtl2-\Dt (10)

From this equation we have

<r' =y cos# = f
> cos (ll)

Fig. 67.

The magnitude of the strength of each pole of the sphere (dis-

tributed over a hemisphere) is

q'
= TTtf

2/= 1 7Trt
2Z> = f n (see below) (12)

The total electric flux through the sphere from the negative

to the positive pole, and back again outside the sphere from the
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positive pole to the negative pole, all the tubes of displacement

being closed, is

fy=f/ (13)

The total flux of the intensity from or to one of the poles is

q'jc, (
1 4)=

,

- =

In terms of the intensities and the permittivity c
2
of the sphere,

the internal displacement, denoted above by DQJ
is

D = c
2(c+E>) (15)

Since e and E have opposite directions, DQ
is less than if e

were acting alone. By short-circuiting a condenser (making
E =

o) after undergoing absorption and then measuring the

residual charge, c
2
e D' = intrinsic displacement, can be deter-

mined, but neither quantity can be determined separately except

on the assumption that c
2

is the same for intrinsic as for elastic

displacement.

If the spherical electret were placed in a uniform field of in-

tensity ,
and if its intensity of electrisation /, or internal dis-

placement Z>
,
were to remain rigidly fixed (cf. 8),

it would be

acted upon by the same forcive as that which would act upon the

doublet of momentM placed at its center in the same field. This

forcive is easily seen to be a torque

T= ME sin = - fccPJE sin 6 = - 27ia*D
Q
E sin 6 (16)

in the direction of the increase of 0, where denotes the angle

between the direction of electrisation, or the axis of the doublet,

and the direction of the uniform field.

The same result could of course be obtained, though less

simply, by integrating the expression dT= Ea'dSxsm 0over the

surface of the sphere, where x denotes the distance from the

equatorial plane to the element of area dS of the sphere.

If the sphere is left to itself after the removal of the charges

producing the uniform field, the intrinsic displacement, and there-

fore the internal and external fields, gradually disappear. This
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gradual disappearance is due to the gradual diminution of the

intrinsic intensity and the continuous action of the self-deelec-

trising intensity, which acts against the displacement, or tends to

reduce the apparent surface density. Or, better, as the intrinsic

forces diminish, the tubes of displacement are gradually freed

and, being closed tubes, contract to nothing.

If the sphere is covered with a conducting coat while the in-

ternal displacement has the value D^ the external field disap-

pears entirely and the sphere itself is left in the same condition

as the dielectric of a condenser short-circuited after absorption

has taken place.* There is no potential difference anywhere,
but the intrinsic displacement within the sphere has increased,

since E'
,
which before opposed the intrinsic force e producing

or maintaining the displacement, is now zero. The hemisphere
which before had a positive fictitious charge has now a true

negative charge, and the other hemisphere, before apparently

negative, has now a true positive charge. The law of the dis-

tribution of the true charge over the sphere is the same as the

law of the distribution of the previous fictitious charge. If the

displacement is now denoted by D' = c
2e, (15) gives

D>-c
t
e-D

t
-c

tE'-[ (2Cl + c
2) 1 2*,] Dt

=
[ (2^ +

where D
Q , J, E' are the values of the displacement, intensity of

electrisation, and self-deelectrising intensity immediately before

the short-circuiting, and c.
2
and e are assumed to remain constant

during the process. Since the final value of the self-deelectrising

intensity is zero, the final value of the intensity of electrisation is

J f = D' . D' and J' are wholly intrinsic, DQ
and J only par-

tially so. The density of the true charge is

er= - D' cos 6 (18)

No change is produced by removing the conducting cover.

After its removal, as the intrinsic electrisation continues to di-

*See Heaviside, Electrical Papers, Vol. I., p. 491.
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minish, an internal and external field of the same character as

that of the original field, but opposite in direction, is developed.

As the true surface density everywhere remains constant (in-

sulation being supposed perfect), while the intrinsic electrisation

gradually diminishes, this field will grow in strength ;
and if the

intrinsic displacement could disappear entirely, which is impossi-

ble as long as any electric field remains, the sphere being ab-

sorbent, the total field would finally become that connected with

the true charges given by

a = D' cos

only, the fictitious charges having entirely disappeared. The

displacement and intensity would now be in the same direction

at any point within the sphere, as well as without.

6. Infinite Circular Cylindrical Electret Uniformly Electrised

Transversely. In exactly the same way, we have in this case for

the apparent surface density

<r' =/cos 0=2D cos6 (19)

and for the deelectrising intensity, or intensity due to the ficti-

tious charges, within the cylinder

E' = -Ji2C^-DJc, (20)

D
Q
and J denoting the internal displacement and intensity of

electrisation, respectively.

The external field is that part outside the cylinder of the field

of the line doublet of moment

M= 7ra?J= 27ra2D
Q (2 1

)

placed along its axis.

The plane diagram of the field can be obtained from Fig. 28

by simply drawing a circle of radius a with the center of the dia-

gram as center, annulling all the lines within this circle, and con-

necting by straight lines the ends of each circular arc.

The magnitude of the fictitious charges on the positive and

negative halves of a unit length of the cylinder is
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q' = 2aJ= 4aD = 2tt (22)

the flux across unit length of the cylinder is

H = 2aD =
fr' (23)

and the flux of intensity from or to the fictitious charge upon
unit length (either half) is

IT = U/c,
- 2aE'= 2U/C, = q'jc, (24)

7. Natural Electrets. Pyroelectric Crystals. Kelvin's Theory.*

A state of intrinsic electrisation exists naturally in certain crystals,

for example, tourmaline, which are called, from the thermal

relations described below, pyroelectric crystals. In its ordinary

condition, however, after remaining some time at a constant tem-

perature, the external field of such an electret has disappeared,

on account of poor insulation, like that of the spherical electret

of 5 after being covered with a conducting coat. The electret

has now a positive charge at one end and a negative charge at

the other, terminating the tubes of intrinsic displacement (there

is no elastic displacement). Altering the temperature of the

electret alters its intrinsic intensity and state of electrisation, and

therefore, if the surface remains sufficiently well insulated to re-

tain its charges when some of the tubes of intrinsic displacement

become free, develops an external field. The direction of this

field depends on the direction in which the intrinsic forces and

electrisation alter with the increase or decrease of temperature.

In tourmaline, as would be expected in every case, the electri-

sation decreases with temperature increase. Hence by heating

tourmaline a field directed like that of the sphere of 5, after be-

ing short-circuited and then left insulated for a time, is developed.

If the insulation is not perfect, this external field will gradually

disappear. If the electret is now cooled, its electrisation will in-

crease and an external field opposite to the former field will ap-

pear, and then gradually disappear by conduction when the tem-

*See Heaviside, Electrical Papers, Vol. L, p. 493.
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perature is kept constant. The intrinsic displacement of a

pyroelectric crystal, and therefore the true surface charges, can-

not be made to disappear like those of an electret whose electri-

sation is due to absorption. By breaking a pyroelectric sub-

stance across its axis of electrisation, however, positive and

negative apparent charges, and an external field connecting them,

without true charges, may be developed.

Piezoelectric Crystals. A state of electrisation accompanied by
internal and external fields similar to those of the sphere of 3

is produced in some crystals, called piezoelectric crystals, by com-

pressing or stretching them, and disappears when the compres-

sion or stretch is removed. The external field corresponding

to a given state of strain may disappear by surface conduction,

leaving the surface with true charges, like the electrets described

above. If the state of strain is altered after this condition has

been reached, an external field is developed whose direction de-

pends on the direction of alteration of the strain. Some crystals,

like tourmaline, are both pyroelectric and piezoelectric.

8. Permanent Electret. The fictitious charge, or pole strength,

of half of a symmetrical isolated electret is not, as we have seen

in two particular cases, 5 and 6, equal to the flux through the

electret, but is greater than this flux. Thus, although the fic-

titious charge upon half of an originally neutral sphere placed in

a uniform field is less than the flux through the sphere, the fic-

titious charge upon half of an isolated spherical electret uniformly

electrised is one and one half times as great as the flux through

the sphere ;
and the fictitious charge upon half the surface of an

isolated infinite cylindrical electret uniformly electrised trans-

versely is twice as great as the flux through the cylinder. The

infinite cylinder may be regarded as an ellipsoid of revolution

about an infinite axis perpendicular to the direction of the electri-

sation, and the sphere may be regarded as an ellipsoid with its

three axes equal. We shall see below that in the case of a cir-

cular cylinder whose length is very great in comparison with its
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diameter and which is electrised longitudinally, the pole strength

at either end is approximately equal to the flux through the

cylinder. As the ratio of the length of the cylinder to its diam-

eter approaches infinity, the ratio of the pole strength of either

end to the electric flux through the cylinder approaches unity

indefinitely. In the limit we have an ellipsoid of revolution

about an infinite axis parallel to the internal displacement. Thus

the greater the ratio of the axis parallel to the electrisation to

the other axes, the more nearly does the pole strength equal the

electric flux across a pole or through the electret

It is clear that if an electret is brought into the field of an

electric charge or another electret, the distribution as well as the

strength of each of the electret' s poles (or each of the poles of

both electrets) will, in general, be altered.

Moreover, if the medium surrounding an electret is replaced,

in whole or in part, by a medium of different permittivity, the

flux through the electret, and therefore the fictitious charges or

pole-strengths, will increase or decrease, as well as change in

distribution, according as the permittivity of the new medium is

greater or less than that of the old medium. For the displace-

ment, internal and external, is maintained by the intrinsic forces

within the electret, which remain constant or appreciably con-

stant during the change, independently of the surrounding me-

dium, and must produce a greater or less flux the greater or

less the permittivity. An increase of the same kind, and greater

in extent, occurs when the external field is destroyed, the sur-

rounding medium being made conducting (or the permittivity

infinite).

The energy of the electret' s field may be divided into two

parts, the energy within the electret, mostly energy of intrinsic

displacement, and the energy of the external medium. It is

clear that the greater the ratio of the intrinsic energy of the

electret to the energy of its external field, the less will the elec-

trisation of the electret be affected, either in distribution or in

amount, by changes in this external field (resulting from changes
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in the medium) ;
also the greater the ratio of the energy density

of the intrinsic electrisation to the energy density of the external

field, the less will the electret be affected by the introduction of

other electrets or charges.

Consider now the ideal case of a cylindrical electret of very

small cross-section and great length uniformly electrised in the

direction of its length, except within very small regions close to

its ends in which the flux diverges or converges. The poles are

approximately concentrated at the ends of the electret, and, ex-

cept within the very small volume occupied by the electret itself,

the electric field is similar to the field surrounding two electric

charges approximately concentrated at a distance apart equal

to the length of the electret. If the length of the electret is

very great, the external field around each pole is practically

radial.

Since the energy density at any point of the surrounding

medium is proportional to the square of the intensity, and since

the intensity is inversely proportional to the square of the dis-

tance from a pole (provided the distance is small in comparison

with the length of the electret), the energy of the external me-

dium is confined almost wholly to small regions surrounding the

two poles. If the length of the electret is increased while the

intensity of its electrisation is kept constant, the external energy

will therefore remain very nearly constant.

The energy of the uniform intrinsic electrisation, however, is

proportional to the length of the "electret for a given value of the

internal electrisation or displacement.

Hence by increasing the length of the electret, and keeping

the flux and therefore the pole strengths constant, the ratio of

the energy of the intrinsic electrisation to that of the external

medium may be greatly increased.

Hence such an (ideal) long slender longitudinally electrised

electret, if made of a substance with intrinsic energy density very

great for a given intensity of electrisation (which would be called

an electrically hard substance), would be approximately a per-
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inanent electret, its internal energy, electric flux, poles, and pole

strengths, being practically independent of the external field (un-

less the external field should be destroyed, when, although the

internal energy and flux would remain sensibly constant, the pole

strengths would be reduced to zero).

The force between. such a pole (concentrated) and an extremely

small body with (concentrated) charge q distant L therefrom

would be

F= qq'14-jrcL
2

(25)

where q
f
is the pole strength and is constant (at a given tempera-

ture), and c is the permittivity of the surrounding medium.

Since the volume of the electret is negligible, and the flux from

each pole in the external medium radial, the reaction between the

two fields and therefore the force between the pole and the

charged body must be the same as the force between a very

small body with concentrated true charge equal to IT, the flux

through the electret, and the small body with concentrated

charge q. That is,

F=gU/47rcL
2

(26)

On comparing (26) with (25), we see that

9' = n
(27)

or, the flux through an (ideal) extremely slender longitudinally

electrised electret of great length is equal (strictly, sensibly

equal) to the fictitious charge, or pole strength, at either end.

It is clear from what precedes that any of the electric fields

described in preceding chapters would remain sensibly unaltered

if each concentrated true charge were replaced by the concen-

trated pole of an (ideal) permanent electret of very great length

and negligible cross-section, and with pole strength or longitudi-

nal flux equal to the charge replaced.



CHAPTER VII.

SPECIFIC INDUCTIVE CAPACITY. THE COMPARISON OF
PERMITTIVITIES.

1. Specific Inductive Capacity. The specific inductive capacity

of a substance is defined as the ratio of its permittivity to the

permittivity of the standard medium. If, as in this book, free

aether is chosen as the standard medium, the specific inductive

capacity of a dielectric is numerically equal to its permittivity

(measured in the electrostatic systems of units, XIV.), since <r
?

= i (in
the electrostatic systems).

The Comparison of Permittivities, or the Determination of Spe-

cific Inductive Capacity. Four general methods of comparing

permittivities will be considered here :

I. The permittance of a dielectric bounded by a fixed system

of conductors is proportional to its permittivity. Hence if the

whole field is filled in succession with two dielectrics, and the

two capacities compared experimentally, the ratio of the permit-

tivities will be known. If the condenser contains two different

dielectrics at the same time in one of the experiments, the method

may still be used in certain simple cases, with little modification.

See /and 8, IV.

II. The forcive between two given conductors is proportional

to the permittivity of the dielectric filling the field if the voltage

is kept constant, and inversely proportional to the permittivity

if the charges are kept constant. Hence by keeping the voltage

constant and comparing the forcives when the field is filled with

two dielectrics in succession the ratio of the permittivities may
be determined. The comparison by means of constant charges

is in general impracticable. When the field contains two dielec-

192
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tries at the same time, as in 7, IV., the method is still appli-

cable, with slight modification, in certain simple cases. See 2.

III. The forcive upon a dielectric of permittivity c
2 bounding,

or surrounded by, another dielectric of permittivity cv in an

electric field depends upon the ratio of c
2
to cr Thus by meas-

uring F in n, IV., c
2jcl may be determined. Two methods

based upon this principle, one for liquids, and the other for solids

(or fluids contained in a vessel made of a solid dielectric of

known permittivity), are described in 3 and 4.

IV. When lines of displacement are refracted in passing from

one dielectric to another, tan 0Jta.n 6
2
= cjcr Hence by measur-

ing O
l
and

2 ,
the ratio cjc2 may be determined. This method is

discussed in 5.

From 1-2, VI., it is clear that the .permittivity (
if defined

as DjE) of most dielectrics depends to a greater or less extent

upon the time of electrisation, being greater the greater the

time, up to a certain limit, and on the previous history of the

dielectric (cf. the curve in Fig. 66), except for slow processes.

From 2-5, V., it follows that the permittivity depends to

some extent upon the stresses in the dielectric, which may be

produced wholly by electrical causes, unless the coefficients there

defined vanish.

2. Method II. With the Quadrant Electrometer. Since S, 5,

III., is proportional to c, is also proportional to c for given

values of VAy VBy and VAE . Hence by submerging the quadrants in

two dielectrics of permittivities c
l
and c

2 successively and measur-

ing the resulting deflections for the same voltages, we have

V 'J'l-Wl | (0

With the Kelvin Absolute Electrometer or the Bichat and Blond-

lot Electrometer In the same way, by submerging the conduc-

tors of either of these electrometers in two dielectrics in succes-

sion and measuring the corresponding values of F
t 4, III., we

have, for constant voltages,

cjc,
= FJF, (2)
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In the case of the Kelvin electrometer the force may be kept

the same in the two experiments and the comparison made by

altering d. In this case, if d^ and d
2
denote the values of d when

the first and second dielectrics are in the field

,

1 ;;

JV:
":

:

,/,
-

:

.

:

,
',/',-W I.Jv^S (3)

By (25), IV. and (3), III. the Kelvin electrometer may also be

used when one of the dielectrics is in the form of a plane slab of

a given thickness d
z(< d). The equations corresponding to (4),

III. and (5), III. are easily developed for this case.

When any one of these instruments is used idiostatically,

alternating as well as unidirectional voltages may be applied,

and the permittivity thus determined when the time of electrisa-

tion is very short.

3. Method III. duincke's Method for Liquids. Fig. 68 is a

diagram of the apparatus. A and B are the conductors of a

parallel plate condenser separated by a distance d very small in

comparison with their breadth and length, and immersed in a

liquid D whose permittivity, cv is to be compared with that of a

Fig. 68.

gaseous dielectric, as dry air, of permittivity cr A tube E com-

municates through a small opening in A near its center with the

region between the two plates. This tube is continuous with a

manometer tube F and communicates with a bulb containing dry

air by the stop-cock G. The manometer tube contains a liquid

of density p. Its cross-section will be denoted by A.

In performing an experiment a wide flat air bubble C is first

formed between the plates by opening G and pressing the air

bulb. G is then closed, and the difference of level between the
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two liquid surfaces in F is read. If this difference of level is

denoted by h f

',
and if the acceleration of gravity is denoted by g,

the excess of the pressure in C (due to the hydrostatic pressure

of the liquid D and the capillary pressure inward at the edges of

the air bubble) over the atmospheric pressure is h'Apg. The

condenser is now charged to a voltage V. The electric intensity

between the plates is uniform, except near their edges and near

the edges of the bubble, and equal to E= Vj d. The electric

pressure (41, I.)
within the uniform part of the field of the dielec-

tric D is \c2
E z

,
while the electric pressure within the uniform

part of the field of the air bubble C is ^E 2
. Hence, if c

z
is

greater than cv the bubble will contract until sufficient air has

been forced out into the manometer tube to increase the differ-

ence of level by /z, and the gaseous pressure by hApg, where

when there will again be equilibrium. Hence by observing h,

A, p, g, and E = Vjdy
c
2

c
l may be obtained from the equation

c
2
-

c,
= 2kApglE* = 2hApgd*l V

2

(4)

In what precedes we have assumed the capillary pressure of

the bubble and the hydrostatic pressure of the liquid D, as well

as the total volume of the air, to remain constant throughout the

experiment. We have also assumed the slight alterations of

gaseous and liquid pressures occurring during the experiment to

bring about no alterations of the permittivities. The fact that

these conditions are not exactly fulfilled will evidently introduce

no sensible error.

(4) Can be deduced also by the method of 55, I., from

energy considerations.

4. Method III. for Solid Dielectrics. We shall consider only

the simplest case, when the dielectric is in the form of a plane

slab. Fig. 69 is a diagram of the apparatus. A and B are the

two conductors of a parallel plate condenser separated by a dis-



196 ELEMENTS OF ELECTROMAGNETIC THEORY.

tance d small in comparison with their length and breadth. C is

a plane slab of the dielectric, of permittivity cv hanging in air, of

permittivity cv with its sides parallel to A and B, from the arm of

a balance D. The thickness of the slab will be denoted by d
2

and its width (perpendicular to the plane of the paper) by L.

C is first balanced by adding weights to
A /\

/A the scale pan of D while A and B are at

the same potential. A and B are then

charged to a voltage K This will produce
a straight field between A and B, except

near their edges and near the edges of the

slab C, and will disturb the equilibrium.

Equilibrium is then restored by adding

weights to the scale pan if c
2

is greater

than cv or by removing weights there-

* from if c
2

is less than cv as follows from

7 and 10, IV., or from 7, IV., and

55, I. Let F denote the downward force

upon C due to the charging of the con-

denser. F can be found at once by the

method used in 3, or can be determined as follows by the

method of 55, I.

Imagine C to suffer an infinitesimal displacement dx downward

from its equilibrium position. This will increase the cross-section

of the uniform part of the field through C and air by Ldx, and

will diminish the cross-section of the uniform part of the field

passing through air only by the same quantity. The energy of

the weak field outside the condenser and that of the non-uniform

field near the edges will remain sensibly constant, and the non-

uniform field at the edges of C will move unaltered with C.

Hence the only appreciable change in the energy of the field is

that due to the fact that the cross-section of the uniform field

with two dielectrics has increased by Ldx, while that of the uni-

form field through air only has decreased by the same quantity.

Hence the total increase in energy is sensibly
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dW

Hence

F= -
(c,
-

(5)

When L, cv F, V, d, and d
z
are known, c

z
can be determined

from this equation.

In obtaining this result we have assumed the field uniform

throughout the whole length Z, except near the lower and upper

edges of the slab. To make the error arising from the non-fulfil-

ment of condition negligible L must be great in comparison with d.

5. The Method of Refraction of Lines of Displacement. (Perot,

Comptes Rendus, 113, p. 415, 1891.) To compare two permit-

Fig. 71.

tivities by this method it is necessary, as in 3 and 4, that one

of the dielectrics be a fluid, as air. The principle of the method

may be developed as follows.
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Let a large triangular prism A, Fig. 70, of permittivity c
2
and

with angle a be placed with one of its plane sides in contact,

or otherwise parallel, with a large metallic plane B\ and let

another large metallic plane C, separated from A (or A and the

other conductor) by a fluid dielectric D, as air, of permittivity rp

be arranged so that the angle between C and the nearer face

of A can be varied and measured. If B and C are charged to a

voltage V
y
the electric field will not, in general, be uniform either

in A or in D. The approximate field when B and C are parallel

is shown in Fig. 71. But evidently there will always be a cer-

tain value of /3 for which the field in A and also the field in D
will be uniform, except near the edges, as shown in Fig. 70. In

this case O
l
= a and

2
=

( 2, IV.). Hence

c
2 jcl

= tan /3/ tan a
(6)

To find this position, a very thin metal plate E is so attached

to fine insulating threads FF as to be movable with its plane

parallel to C only. If the field in D is uniform, this motion will

not disturb the voltage between the plates ;
otherwise the voltage

will be altered. To make the test, then, C is connected to earth

(the walls of the room) while B is charged to potential V (poten-

tial of earth = o). Then the condenser is insulated and C is

connected with the electrode of an electrometer, the other pole

of which is to earth. Then E is displaced while kept parallel to

C. If the electrometer still indicates that the potential of C is

zero, the field in D, as well as that in A, is uniform. If not, a

second adjustment of j3 must be made, and tests and adjustments

repeated until the potential of C remains zero, or until the dis-

turbance of its potential is a minimum, when E is displaced.

Then c
2 jcv

can be determined from
(6).

The close agreement between the values of <r
2 jcl

found by this

method and the same ratio determined by other methods serves

to verify the correctness of (3), IV., on which the method is based.



CHAPTER VIII.

THE ELECTRIC CURRENT. THE CONDUCTION CURRENT.

1. The Convection Current. If a small light conductor, such

as a gilded pith ball, is suspended by a long insulating thread

between the vertical plates A and B of a charged parallel plate

condenser, it will fly back and forth between the plates carrying

opposite charges in opposite directions and gradually discharging

the condenser.

The rate dqjdt at which positive charge is carried from A to B,

or the rate dqjdt at which negative charge is carried from B to A,

or the sum of the two rates, dqjdt + dqjdt, if both processes

occur simultaneously (as would be the case if several pith balls

were present), is called the electric convection current from A to B,

and will be denoted by 7
cp

. That is,

/
p
= dqjdt + dqjdt = dqldt ( I

)

Strictly, the convection current is limited to the space actually

occupied by the moving charge or charges.

If the electric volume density of the positive charge in the

element of volume at a given point is
/>,,

and the density of the

negative charge in the element p2 (the element containing, in

general, both positive and negative charges), and if the velocity

of the positive charge is u^ and that of the negative charge in

the opposite direction
2 ,
then the convection current per unit

area across a surface normal to u
l
in the element of-volume, or

the electric convection current density in the element, is

C = Pii + P2
U
2 (

2
)

in the direction of ur

199
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2. The Dielectric Current. If the electric flux II across a

surface is increasing at the rate dUjdt, there is said to be a dielec-

tric current or an electric displacement current through the surface

equal to

(3)

If the displacement D at any point is changing at the rate

y
the dielectric current density at the point is

(4)

which is evidently a vector with the direction of dD.

According to our mechanical conception, 14, I., the dielec-

tric current in free aether or material insulators would be a con-

vection current of aether cells or corpuscles.

Convection and dielectric currents will be more fully discussed

in a later chapter (XV.). The remainder of this chapter will be

devoted principally to the conduction current.

3. The Conduction Current. If two condenser plates A and B
with positive and negative charges, respectively, are connected

by a wire M, the electric field will disappear by the process de-

scribed in 42, I. During this process there is an electromo-

tive force along and through the wire in the direction AMB, and

the wire is traversed in part by positive charges in the direction

AMB and in part by negative charges in the opposite direction

BMA. The wire is said to be traversed by a conduction current.

As we shall see later (IX., 15) there is reason to believe that

the conduction current consists, in the general case, in a stream

of positively electrified particles in the direction of the e.m.f. and

a stream of negatively electrified particles in the opposite direc-

tion across every section of the conductor.

We shall define the strength of the conduction current, or the

conduction current, /, across any section of the conductor as the

rate at which electric charge is transferred across that section
;

and we shall define the direction of the current across the sec-

tion as the direction in which the positive charge is carried across
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the section, or the direction opposite to that in which the nega-

tive charge is carried. If both positive and negative charges are

simultaneously crossing a given section in opposite directions,

and if dq^ and dq2
are the magnitudes of the positive and nega-

tive charges carried across in the time dt, the conduction current

across the section is

/ = dqldt = dqjdt + dqjdt (5)

in the direction of transfer of the positive charge.

When the charges or the induction in
(i), (3), or (5) are ex-

pressed in RES units and the time in seconds, the electric current

is said to be expressed in the RES unit current.

A method of measuring the electric conduction current based

on the above definitions is described in 3, IX.

In the case of an ordinary condenser system the phenomenon
of discharge, or the electric current, lasts only a small fraction

of a second. In a variety of ways this time may be increased
;

and if the ends of the wire M, instead of being connected to the

plates of a condenser, are joined to the terminals of a voltaic

cell, or other agent capable of maintaining the voltage between

its ends constant, transient effects similar to those described in

42, I., will at first occur, but a steady or unchanging state will

soon set in.

4. The Conduction Current Density. If a small plane area dS
is imagined within the substance of a conductor carrying a cur-

rent, it is obvious that the quantity of electric charge crossing

dS per second will be different when dS is turned in different

directions, and will be a maximum when the normal to dS points

in the actual direction of transfer of charge at the point. The

ratio of the current dl
c crossing the area dS, with its normal

turned in this direction, to the area dS, is a vector called the

electric conduction current density at the point considered, and will

be denoted by i . Thus

i.-dlJJS (6)

If for the subscript c we substitute cv or d, (6) will define the
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convection or displacement current density in terms of the con-

vection or displacement current consistently with i and 2.

5. Kirchhoffs Law I. When an electric conduction current is

steady, it flows in a closed circuit and has the same value at

every section of the conductor which carries it. For if the cir-

cuit were not closed, or if the current across any two sections

were not the same, a positive or negative electric charge would

continually accumulate at either end or in the region between

the two sections, and the state would therefore not be steady.

This proposition will be extended to the general electric cur-

rent in 8, Chapter XV.
An obvious (but very incomplete) mechanical analogue of the

steady conduction current is the flow of an incompressible liquid

through an endless pipe.

KirchhofT's law L, applied to the unit volume of a conductor

carrying a steady current, may be written

div i
e

conv i
e
= o (7)

since the current entering any element of volume across one part

of its surface is equal to the current leaving the element across

the rest of the surface.

Stream-tubes and Stream-lines. From (6) and (7) it is now
evident that a steady current within a conductor may be mapped
out by a system of lines and tubes analogous to lines and tubes

of intensity, etc. These tubes and lines are called stream-tubes

and stream-lines, or lines and tubes of current or flow. The cur-

rent density at any point has the direction of the line of flow

through that point ;
and the strength of the current across every

section of a given tube is the same and equal to fi
c
dS over a

diaphragm 5 normal to the stream lines.

In what follows we shall drop the subscript c and denote the

conduction current and current density by / and i.

6. Electrodes. Two equipotential surfaces across one of which

the current enters a conductor and across the other of which the
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current leaves the conductor are called the electrodes of the con-

ductor. The electrode by which the current enters the con-

ductor is called the anode, and that by which the current leaves

is called the kathode.

7. Ohm's Law for a Steady Current in a Homogeneous Iwfeepic

Conductor at Uniform Temperature, Along a homogeneous iee-

trtirpH conductor at uniform temperature throughout, let a steady

current / flow, and let the corresponding voltage between two

electrodes in or terminating the conductor be denoted by F[2
.

Then, as a result of experiment, it may be stated that, if the

voltage or current is varied while the temperature is kept con-

stant (and in some substances at least certain other physical con-

ditions), the current / is proportional to the voltage PJ2
. That is,

The proportionality factor K is called the conductance of the por-

tion of the conductor between the given electrodes, and its recip-

rocal, R = I / K, the resistance of the conductor. The quanti-

ties on which R and K depend will be discussed below.

Definitions of the RES unit conductance and resistance follow

in the usual manner from the above equations. Thus when /

and V
12

are expressed in RES units, the conductance and resis-

tance also are said to be expressed in RES units.

(8) expresses the integral form of Olnris law for homogeneous

is^tropic conductors. The expression of the law for non-homo-

geneous circuits, etc., will be developed in following articles.

8. Conductance and Resistance of a System of Conductors

Connected in Multiple. If the electrodes of any number, n, of

conductors are joined together so that the anodes form a com-

mon anode and the kathodes a common kathode, the conductors

are said to be connected in multiple. Let Kv K2 , ,
K

n
and R^

Rv ,
R

n
denote the individual conductances and resistances of

the conductors, I
lt
/
2 ,

.

,
7
n the individual currents, and / the

total current through all the conductors, when the voltage be-
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tween the electrodes is^Jgj* Z^.
Then the conductance of the

system is

and the resistance of the system is

=
i/( l /R l +i/R2 ...+ i/Rn) (10)

9. Conductance and Resistance of a System of Conductors Con-

nected in Series. If any number, n, of conductors is connected

up end to end in such a manner that each surface of contact be-

tween two conductors is an equipotential for both and coincident

with the original electrodes of the conductors when separate, the

conductors are said to be connected in series. Let V
Qn
and V

Q1 ,

F
12 , ,

V
{n_^n

denote the voltage between the terminal elec-

trodes and the voltages between the ends of the successive con-

ductors, and let / denote the current along all the conductors.

Then the conductance of the system is,

-I/OAK; +

and its resistance is

R= 1/^-^4-^ + + * (12)

10. The Cylindrical Homogeneous Isotropic Conductor. Resist-

ivity and Conductivity. Suppose n precisely similar right cylin-

drical conductors joined in multiple with their ends as common
anode and kathode, thus making a cylindrical conductor of n

times the cross -section of each of the original conductors. If

R
Q
and K

Q
denote the resistance and conductance of each cylin-

der separately, and R and K the resistance and conductance of

the system of n conductors in multiple, that is, of a cylinder of
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n times the cross-section with its ends as electrodes, it follows

from (9) and (10) that

K= nK
Q

and R = RJn (13)

Thus the resistance of a cylindrical conductor of constant

length with its ends as electrodes is inversely proportional to its

cross-section, or its conductance is directly proportional to its

cross-section.

Suppose the n conductors connected up in series, thus making
a cylindrical conductor of the original cross-section, but of n

times the original length. If R denotes the resistance of the

system and K its conductance, (
1 1

)
and (12) give

K=KJn and R = nR (14)

Thus the resistance of a cylindrical conductor with its ends as

electrodes is proportional to its length, or its conductance is

inversely proportional to its length.

Putting the two above results together, we see that the resist-

ance R of a cylindrical conductor with its ends as electrodes is

proportional to its length and inversely proportional to its cross-

section, or that its conductance K is inversely proportional to its

length and directly proportional to its cross-section. That is, if

L denotes the length of the cylinder and A its cross-section,

K=kA\L or R = rLjA (15*)

where r and k are constants depending on the chemical constitu-

tion of the conductor and its physical condition, r is called the

specific resistance or resistivity of the substance, and k, its recipro-

cal, is called the conductivity of the substance. (15) may be

written

r=RAjL or k=KLjA (15*)

When R and K are expressed in RES units and A and L in

c.g.s. units, r and k are said to be expressed in the RES units

resistivity and conductivity, r is equal, in magnitude, to the re-
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sistance of a cube of the substance with unit edge when two

opposite faces are electrodes.

11. Differential Form of Ohm's Law. From the preceding arti-

cle and the principle of symmetry it follows that in the case

there considered the electric equipotential surfaces in the conduc-

tor are parallel to the electrodes, and the electric intensity E uni-

form and parallel to the length of the conductor.

From the same article it also follows that the current density

is uniform throughout the conductor, and the lines of flow paral-

lel to the length of the cylinder, and therefore coincident with

the lines of intensity.

Hence we may substitute in (8) for F
12

its equal ELy
for 7 its

equal Ai, and for Kits equal kAj L\ then Ai kAjL- EL, or

i=kE=Ejr (16)

In the case considered therefore the current density has the

same direction as the electric intensity, and is proportional to it

in magnitude. Since, moreover, any conductor carrying a steady

current may be divided up into elementary tubes of intensity and

by equipotential surfaces infinitesimally distant apart, and since

the cylindrical volume within one of these tubes between two

successive equipotentials is in exactly the same state as any tube

of the cylinder considered above, (16) is seen to hold in general

whether the tubes are straight or not.

Since at the surface of a conductor the current density is tan-

gential to the surface, the electric intensity within the conductor

at the surface is also tangential.

12. The Electric Field of the Steady Conduction Current. Ex-

cept as stated below, the electric field in the dielectric surround-

ing a conducting system traversed by a steady electric current

has all the properties of a purely static field connected with static

charges only. The tubes of displacement terminate at the sur-

faces of the conductors (if homogeneous) and the surface charges

at their ends are not in motion and take no part in the conduction.
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For within the conductor (supposed homogeneous) div i div kE
k div E = o. Hence div = o

; and, since the conductor is

homogeneous, div D = p must also be zero, whatever the relation

of D to E may be. Hence within the conductor the positive and

negative charges per unit volume at any point are equal. Thus

no tubes from the dielectric penetrate into the conductor, but all

end at its surface. That the external field is static and that the

surface charges take no part in the conduction, or do not move,

follow from the consideration that the field surrounding a con-

ducting system traversed by a steady current can be altered in

any manner, by moving the circuit or by bringing up charged

bodies insulated from it, without in any way affecting the (steady

value of the) current. Also the surfaces of insulated conductors

placed in the field are equipotential surfaces and traversed by no

currents
;
hence the tubes ending upon them (and connected

with the current-carrying conductors) are not in motion. The

same thing follows from Ohm's law, the resistance of a con-

ductor not being a function of its external surface, as it would

be if the surface charges took part in conduction.

The conductor itself, as shown in 1 1
,
also contains an electric

field invariable with the time. Little or nothing is known of the

electric displacement in good conductors traversed by steady

currents.

The electric field within and without the conductor is accom-

panied by a magnetic field (XI. and XII.) and is the seat of the

transfer of energy (XVI.), while the conductor is also the seat

of the dissipation of energy in heat
( 15).

The lines of intensity within the conductor are tangential at

the surface, as shown in 1 1
,
and the lines of intensity in the

dielectric do not meet the conducting surfaces normally.

Let E
l
denote the electric intensity in the dielectric just out-

side the conductor at a point P of the interface, and
l
the angle

made by El
with the normal to the surface of the conductor

;
and

let E denote the intensity just within the conductor at the same

point of the interface. E, as already shown, is parallel to the
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interface. By the principle of the conservation of energy we

may show, just as in 2, IV., that E
l
and E are in the same

plane normal to the interface, and that

lSm0^ (17)

If the conductor is a perfect (imaginary) conductor, that is, if

its conductivity is infinite, E = o, since otherwise the current

would be infinite. Hence in this case 6
l
= o, or the tubes of

displacement in the dielectric meet the surface of the conductor

normally.

13. The Laws of Refraction of Stream-lines. At the interface

between two substances of different conductivities k^ and /
2
a

stream-line of a steady current is refracted in such a manner that

the incident and refracted lines are in the same plane perpen-

dicular to the interface, and that

tan(9
1 /tan(92

= ^
1 /^2 (18)

where 6
l
and #

2
denote the angles made with the normal to the

interface by the incident and refracted portions of a stream line.

For, since the current is steady, so that no electric charge

accumulates anywhere, Kirchhoff's law I. gives

z'j
cos 6

l
z'
2
cos

2 (19)

and the principle of conservation of energy gives

E^ sin
l
= E

2
sin

2 (20)

and these equations, since i k E, give (
1 8) on division. Cf.

2, IV.

c being interchanged for k and i for D, the discussion in 2,

IV., and the description in following articles of fields in two or

more dielectrics apply to the fields of intensity and flow in con-

ductors. It must always be remembered, however, that one of

the /'s may be zero, while c can never be less than C
Q
= i

;
so

that kj k^ may be zero or infinity without either k
l
or /

2
's being

infinite.
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14. General Formula for Conductance and Resistance, Con-

ductance and Permittance. From (8) we have

while (6) gives

I-fulS

the integration being taken over an electrode, or over the portion

within the conductor of any equipotential surface. Moreover,

along a line of intensity or flow from one electrode to the other.

Hence

K= i JR = 7/F12 = fkEdSjfEdL = fkEdSjVl2 (21)

By comparing (16) and (21) with (3) and (24), Chapter I., it

will be seen that K bears the same relation to k that the per-

mittance 5 bears to the permittivity c. Since K= fkEdSJVIV
while vS = J cEdS \V^, the process of finding the conductance of

the portion of a conductor between two given electrodes or equi-

potential surfaces is identical with that of finding the permittance

of a dielectric occupying the same space as that occupied by the

conductor and having the same electric field as that within the

conductor, except that k must be substituted for c. In most

permittance problems it is impossible to deal accurately with

finite electrodes and finite electric fields, there being no substance

of zero permittivity with which an electric field may be sur-

rounded to prevent its spreading indefinitely. A conductor, on

the other hand, may easily be placed in a region of zero con-

ductivity, so that the current tubes are wholly restricted to its

own substance, and within the conductor the lines of flow and

lines of intensity are coincident. This makes conductance

problems much simpler in many cases than the corresponding

problems in electrostatics.

15. The Conductance and Resistance of Various Conductors. In

all the examples which follow the electrodes may be supposed
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to be surfaces of infinitely thin sheets of perfectly conducting
material (k = infinity), in order to insure their being true elec-

trodes, that is, equipotentials normal to the lines of intensity and

flow (see 12).

The corresponding permittances having been already deter-

mined (Chapter II.), the conductances are found as indicated in

the last article, from the following relation

(22)

1. For a right cylinder of cross-section A and length d, with

its ends as electrodes, (29), II., gives, with (22),

K=ijR = kAld (23)

as already shown directly in 10.

2. For a conducting spherical shell between two spherical elec-

trodes of radii L^ and L
2
= L^ -f- d, (5), II. gives, in the same way,

K=\IR- (#*ki d) L? (
i + rf/z,) (24)

For a hemispherical shell, half of the last, we have

K' = \K=^ (27rkjd) L?(i+ <//,) (25)

and so on for all fractions of the shell obtained by cutting it up

with cones having their apices at its center.

3. For the conductance of an infinite conductor in which two

spherical electrodes of radii L^ and L.
2
are immersed at a great

distance apart, a slight generalisation of (43), II. gives

^= 47r/(i/Z1
-f i/Za) (26)

If the infinite conductor is bounded by a plane surface, and if

two hemispherical electrodes are placed in the conductor with

their bounding circles in the plane of the conductor's surface,

the conductance is

K' = lK=27rkj(ijLl+ ilL,) (27)

4. The conductance of a right circular cylindrical shell of

radii L and L + d and of length / is, from (23), II.,

K= 27r^//log (i + djL) [2S)
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5. The conductance of an infinite plane slab of thickness / and

with two right circular cylindrical electrodes of radius R and

centers distant 2d apart, is, by (62), II.,

{R/ Id- (<P
- *)] } (29)

If the slab is cut symmetrically into halves by a plane passing

at right angles to the plane through the axes of the two elec-

trodes, and if this plane is made an electrode, the conductance

of either half is twice that of the whole
;
or

K' = 2K= 27n//log {Rf \d
-

(d
2 -

R^~] } (30)

In the same manner, from Chapter IV., the conductances of

some simple non-homogeneous conductors may be obtained.

16. Joule's Law : In a homogeneous conductor of resistance

R traversed by a current / heat is developed at the rate

This relation may be established as follows : In the time dt a

charge ^(+) anc^ a charge dq^} equivalent to a charge Idt

(-J-)
in the direction of the current cross every section of a con-

ductor carrying a steady current 7. Hence the work done in

the time dt by the electric field upon the conductor of resistance

R, if the voltage between its electrodes is F
12 ,

is

dW= V^Jdt = RI- Idt = RI*dt

by 1 2 and the law of Ohm. Hence the time rate at which

work is done by the electric field in the conductor of resistance

Ris

dWldt=Vl2
I=RI* (32)

Now heat is always developed in a conductor during the

passage of a current. Hence, if no other transformation of

energy occurs, between the electrodes of the conductor dW\dt
RP must be the rate at which heat is generated in the con-

ductor when traversed by the current /. That this is the case
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when the conductor is homogeneous (including constancy of

temperature throughout) has been proved by the researches of

Joule and others, whose experimental results are in strict accord

with the above equation when dWjdt is equated to dHjdt.
Hence the law, expressed in (31). If the conductor is not

homogeneous (and- for all but three directions of -the- stream -

1ir>o
0| f *^p y,jy/^?T fa %mf v/yfcv^. )

ft contains intrinsic

e.m.f.s, 19, and in addition to the Joulean heat transformation

other transformations take place.

Differential Form of Joule's Law. The dissipativity at any

point of a conductor is the time rate per unit current (squared)

at which heat is there generated per unit volume. To find the

dissipativity, which will be denoted by dhjdt, consider the ele-

mentary volume enclosing the given point and included within a

tube of flow, of cross-section dS, between two equipotentials dis-

tant dL apart. The resistance of this element of volume dr =
dL dS, is EdLjidS the current along the tube being idS.

Hence

dhldt = (EdLjidS] (idS}* I (dSdL) = Ei = kE 2 = n'
2

(33)

which expresses Joule's law as applied to the element of volume

at any point of a conductor.

Experiment justifies the statement that (31) and (33) are ap-

plicable to any conductor, homogeneous or not, the total heat de-

veloped being equal to the sum of the Joulean heat and the heat

developed owing to the operation of other factors than resistance.

By the last equation, (31) may be written

dHjdt = RP = fEidr = fkE
2dr = JV

2

jk'dr = frPdr (34)

the integrals being extended throughout the part of the conductor

considered. From this equation it is clear that the amount of

heat dissipated per unit time by the resistance of a conductor can

be obtained from the formula for the energy in the correspond-

ing case in electrostatics, viz., W'= cE zdr

r, by substituting k

for c, etc.
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17. Definition of Resistance by Joule's Law. The proportion-

ality between dHjdt and 7 2

having been established by experi-

ment, the resistance of a conductor, R, might have been defined

by the relation

(35)

without recourse to Ohm's law. This procedure would be in

perfect harmony with all that is known of the nature of resist-

ance, whose only function seems to be the dissipation of energy

in heat, as it is dissipated by mechanical friction.

Joule's Method of Determining Resistance in Absolute Measure.

By placing a conductor in a calorimeter and measuring the rate

dHjdt at which heat is developed therein when a known current

/ traverses the conductor, its resistance R may be obtained from

(35).

18. Mechanical Analogue of the Law of Ohm and the Law of

Joule. Consider a pipe through which an incompressible liquid

flows at a constant rate, the volume of liquid carried per unit time

across every section of the pipe being /. The flow of the liquid is

opposed by a'frictional pressure assumed to be proportional to

/. Let this pressure be denoted by RI, R being a constant

for the given pipe and liquid. To overcome this pressure, that

is, to keep up the constant rate of flow 7, an equal and opposite

pressure F12
= + RI must be applied in the direction of the cur-

rent. This pressure does work against friction at the rate V^I
= RI 2

,
which is therefore the rate at which energy is dissipated

in heat in the circuit.

19. Intrinsic and Impressed Electromotive Force. In order to

maintain an electric current, with its continual dissipation of

energy in heat according to Joule's law, and its possible per-

formance of work of various kinds, every circuit continuously

carrying a current must contain one or more regions in which

energy in some other form, as mechanical, chemical, or thermal

energy, is transformed into the energy of the electric current (the

energy of the electromagnetic field).
Such a region is said to
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contain, or to be the seat of, an intrinsic electromotiveforce ; and

the agent through which the energy transformation is effected,

or may be effected, as a dynamo, a voltaic cell, or a thermo-

couple, is said to possess the intrinsic electromotive force.

In strictness, the intrinsic electromotive force in a region is

defined as the rate at which energy in some other form is there

transformed into the energy of the electric current (the energy

of the electromagnetic field)
divided by the strength of the cur-

rent. Thus, if P denotes the rate at which electrical energy is

generated, or power taken into the circuit in the region by trans-

formation, I the current, and ^ the intrinsic electromotive force

9 "PII (36)

Any part of a circuit in which electrical energy is transformed

into energy of another form is also said to contain an intrinsic

e.m.f., provided that the agent effecting the transformation when

acting independently can reverse the direction of the transforma-

tion, or transform energy of the other form into electrical energy,

i. e., itself maintain an electric current. Thus an electric motor,

by which electrical energy is transformed into mechanical energy,

and a storage battery while charging, by which electrical energy

is transformed into chemical energy, possess intrinsic e.m.f.s,

since each acting alone can generate electrical energy, the one

when mechanically driven acting as a dynamo, the other as a

voltaic cell. The intrinsic e.m.f. T" is given in all cases by (36),

proper attention being paid to the sign of P. Thus if in any

region power is taken into the circuit by transformation, P in this

region is positive and W and / have the same direction. If in any

region electrical energy is transformed into some other form of

energy, or power given out by the electrical system, P in this

region is negative, ^ and / have opposite signs, or directions, and

the intrinsic e.m.f. opposes the current. It is by overcoming

this counter e.m.f. that the transformation of electrical energy

into energy of some other form is effected. In all cases a reversal

of the current reverses the sign of the energy transformation by
an agent with an intrinsic e.m.f.
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Also, any region in which energy is transformed from some

other form into electrical energy, or from electrical energy into

energy of some other form, at the time rate P when the current

has the value 7 is said to contain an e.m.f. Pj /, although in the

latter case the e.m.f. may not be intrinsic. Thus, according to

Joule's law, a homogeneous conductor of resistance R when tra-

versed by a current / transforms electrical energy into heat at

the rate RI 2
. Hence the conductor is the seat of an electro-

motive force equal to

- (dH\dt)\I- - *///= - R /= - F
12 (37)

This negative, or counter, e.m.f, R 1= F
12

is not, however,

included among intrinsic e.m.f.s, since if the conductor is heated

a current is not produced, or if the direction of the current is

reversed, heat is still generated at the same rate, not absorbed, as

it would be if the e.m.f. were reversible and intrinsic.

Other electromotive forces exist, like potential differences

(non-intrinsic e.m.f.s of static fields or fields of conductors carry-

ing steady currents) and the non-intrinsic e.m.f.s of induction

(XIII.), by which energy is transferred in the electromagnetic

field, but never transformed. These e.m.f.s, together with in-

trinsic e.m.f.s, may act as impressed e.m.f.s. The impressed e.m.f.

between the electrodes of a conductor is equal, by definition, to

the sum
( 21) of the intrinsic e.m.f.s included between them,

P 11, plus the time rate P f

,
at which electromagnetic energy is

transferred to the region between them from the surrounding

field (developed by intrinsic e.m.f.s in other parts of the circuit or

in other circuits transforming energy of another kind into electro-

magnetic energy if P 1

jl is positive) divided by the current /.

Thus the impressed e.m.f. in a homogeneous conductor of re-

sistance R carrying a steady current / is FJ 2
= RI (exactly

equal and opposite to the counter e.m.f. of resistance, /?/),

the difference of potential F
12 , by which the energy is transferred

to the conductor at the rate F
12
/= RP

y being developed by an

intrinsic e.m.f. situated outside the portion of the circuit consti-

tuting the homogeneous conductor considered. See XVI.
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A general characteristic of non-intrinsic e.m.f.s is that they

have, like the force of friction in mechanics (analogous to the

counter e.m.f. of resistance, RI\ or like the elastic reaction of

a stretched spring (analogous to a difference of potential), no in-

dependent existence of their own, but are developed only through
the action of an agent possessing a true intrinsic electromotive

force, such as a dynamo or a voltaic cell. This is equivalent to

the statement that electrical energy is never generated at the

expense of energy in some other form through the agency of a

non-intrinsic e.m.f.

In what follows many cases of intrinsic and impressed e.m.f.s

will be considered.

20. Intrinsic Electric Intensity and E.M.F. The intrinsic e.m.f.

in a region may be regarded as the line integral of an intrinsic

electric intensity in the region. If this intensity is denoted by e,

we have therefore

V=fe-cos0-dL (38)

where 6 denotes the angle between the direction of e and that of

the element of the path, dL, at any point.

Consider a tube of flow of cross-section dS at a point where

the intrinsic intensity is e. If denotes the angle between the

directions of e and of /, the intrinsic e.m.f. between two right

cross-sections of this tube distant dL apart is e cos 6 dL. The

current through the tube is i-dS. Hence the rate at which

power is transformed into the circuit per unit volume at the point

is

dP /dr
= e-cos O'dL-idS jdSdL = ei'Cos 6 (39)

From this power equation e cos 6, the component of e in the

direction of i, might be defined as

*"cos e = (dPj dT)ji (40)

If P denotes the total power transformed into electrical energy

in an isolated electric circuit, and / the current, then, since
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P= dW\dt and /= dqjdt, V = P/f = dWjdq. That is, is

the work per unit charge done in carrying a charge around the

circuit. Hence our definition of an intrinsic e.m.f., and therefore

our definition of an intrinsic intensity, is in agreement with the

general definition of 17, I. The same is true of the impressed

e.m.f.

When P is expressed in ergs per second, and / in the RES
unit current, or when dWis expressed in ergs and dq in the RES
unit charge, "^ is, by definition, expressed in the RES unit e.m.f.

21, Intrinsic Electromotive Forces in Series. If any number,

n, of agents with individual electromotive forces Wv ^2 , , M^
are connected up in series, so that the same current traverses

each, the resultant e.m.f. is

*-, + ,+ ... + *. (39)

proper attention being paid to signs. For if P, Pv P2 , etc., de-

note the power supplied to the circuit by the resultant e.m.f. and

the powers supplied by the individual e.m.f.s, and /the current,

from which (39) immediately follows.

The above proposition, demonstrated for intrinsic e.m.f.s, is

obviously also true for the more general impressed e.m.f.s.

Intrinsic Electromotive Forces in Multiple. If any number, n,

of similar agents having the same e.m.f. M*' are connected up in

multiple, so that one /2th of the current traverses each in the

same direction, the resultant e.m.f. "SP" is eqnal to W'. For

l 2 n

=
'// + '//* + . + '//

= '/

22. Ohm's Law, General Form, Deduced from Joule's Law. Let

the resistance of a conductor I 2, Fig. 72, between two electrodes

I and 2 be denoted by R. Let the conductor be traversed by a

current, reckoned positive when in the direction I 2, with the
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same value / at any instant across every section, and let the con-

ductor be acted upon by an impressed e.m.f. ^
12 -f M^/ = P\I

_j_ f jft
ty

i2
and W

12 being reckoned positive when in the direc-

tion of the current I (i. e., 162). "^
12

is the intrinsic e.m.f. be-

tween the electrodes, and AJr
12

/ the electromagnetic energy per

unit current transferred per unit time to the region I 2 (negative

when power is transferred from I 62).

Fig. 72.

While the current / traverses the circuit, the conductor I 2

receives energy at the rate

and its resistance dissipates energy in heat at the rate

dHjdt = RI2

Hence, by the principle of the conservation of energy,

(40
whence

* + *'-*/ ()
or (42)

(42) (a) states that the impressed e.m.f. in any conductor is

equal and opposite to the counter e.m.f. of resistance
( RI~).

(42) () states that the current in any conductor is equal to the

impressed e.m.f. acting upon the conductor divided by its re-

sistance.

Either of these statements constitutes Ohm's law in its general

integral form.

20. General Differential Form of Ohm's Law. Impressed Elec-

tric Intensity. The impressed e.m.f. in a region may be regarded
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as the line integral of a total or impressed electric intensity E =
vector sum of e and E

,
the field intensity F/g, in the direction

of the current density it produces. Thus

. (43)

along a line of impressed identity, (e + -') being a vector sum.

Applying (41) and (43) to a stream-tube whose cross-section

is dS at a point /* where the impressed intensity is E= e -f E',

we have, for the element of volume dT = dL'dS enclosing P and

bounded by the sides of the tube and two right cross-sections

distant dL apart,

EdL - idS = -f Ef

)dL idS = rPdLdS = i^k dLdS
whence

i=kE= k(e + E') = E/r = (e + E')/r (44)

which is the general differential form of Ohm's law.

When E= E
y
or e = o, (44) reduces to (16).

23. Ohm's Law for Constant Current. Let the electrodes I

and 2 of the conductor I 2, Fig. 72, be maintained at the poten-

tial difference F
12 (with the assistance of an intrinsic e.m.f. located

outside I 2, if necessary) while the conductor I 2 is traversed

tu

by a constant current /. Then electromagnetic energy is gen-

erated in the conductor at the rate PI= '^r
12/, and electromag-

netic energy is transferred from the field into the conductor at

the rate P = ^
I2

ff== F
12/,

the total impressed e.m.f. in the con-

ductor in the direction I 2 being thus FJ2 -J- "*F
12

.
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In this case, therefore, Ohm's law (42, b) becomes

"-''; (45)

(1) If F
12
= o, that is, if the electrodes I and 2 are connected

together as in Fig. 73, to form a closed circuit, (45) becomes

,, f-VJR -.", (46)

which is Ohm's law for a closed isolated circuit traversed by a

constant current.

(2) If ^2 = o, that is, if the conductor i 2 is homogeneous
without an intrinsic e.m.f., (45) becomes

which is Ohm's law for a homogeneous conductor traversed by
a constant current.

(3) If J^2 -f ^12
is greater than zero, / has the direction I 2

;

if V
12 + M/^ is less than zero, / has the opposite direction.

(4) If F
12 -f 12

= o, that is, if F| 2
= -

12
= ^

21 , 7=0, and

the agent with intrinsic e.m.f. ^
12

is on open circuit. Thus the

difference of potential between the terminals of a voltaic cell, or

other agent possessing an intrinsic e.m.f. when no current is flow-

ing, or when on open circuit, is equal in magnitude to the intrinsic

e.m.f. for zero current, but has the opposite direction.

24. Mechanical Analogue of the Relation V
12 + ^12

= El, etc.

Let an incompressible liquid flow at the constant rate / units

Fig. 74.

volume per second in the direction 12 of the arrows, Fig. 74,

across every section of a pipe AB containing a screw propeller,

or pump, C producing a difference of pressure "^
12 ,

in the direc-

tion of the current (1^2), on its two sides. If the sections P
l

and P
2
are maintained at pressures Fj and Vv or at the pressure
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difference F
12
= V

l V^ the total fall of pressure along the

pipe from P
l
to P

2
is F

12 + ^ 12
= + Rf, and the rate at which

work is done against friction within the volume PP
2

is (F12 +
W

l2)f
= RP, R having the significance attached to it in 18.

If the pipe is bent around and P
1
and P

2 joined together, so as

to form a closed circuit, V
l
= V

2
or F

12
= o, and ^

12
= RI.

If elastic membranes are stretched across the pipe at P
1
and P

2

(either before or after P
l
and P

2
are joined together), the propeller

will force liquid from the region A into the region B (analogous

to the positive and negative charges of the terminals of an agent

possessing an intrinsic e.m.f, when on open circuit) until the

pressure in B exceeds the pressure in A by the amount V
12
= ^

12,

numerically, when the current will cease.

25. The Fall of Potential Around a Closed Circuit. Consider

a closed circuit containing an agent with an intrinsic e.m.f. M/"

and traversed by a constant current /. Let the resistance of the

agent, called the internal resistance, be denoted by B, and that

of the rest of the circuit, called the external resistance, by R
y

both conductors being supposed homogeneous. Then we have,

by (46),
V

b + V
r) (48)

Now BI denotes the fall of potential, Vw in the direction of

the current through the resistance B of the agent, and RI the

fall of potential, F, in the direction of the current through the

external resistance R. But the total fall of potential around a

complete circuit is zero (18, I.).
Hence at the seat of the in-

trinsic e.m.f. there is a rise in potential in the direction of the

current equal to = (B + R)I. The equation -l\
-

Pj JBf2, Y/2
*

23, (4),
is a particular case of this proposition (R = infinity).

To make the fall of potential as great as possible through the

external circuit it is clear that R JB should be made as great as

possible, if M* is independent of the current.

The e.m.f. of an agent is, in general, a more or less compli-

cated function of the current, although there are some cases in
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which the e.m.f. is constant for all values of the current. The

limiting value which an e.m.f. approaches as the current ap-

proaches zero, and the resistance infinity, or the e.m.f. on open

circuit, is, as we have seen, equal and opposite to the potential

difference between its terminals on open circuit. If V denotes

this potential difference, and if ^ above is independent of the

current, we have, for all values of the current,

V= V
b + V

r (49)

26. Kirchhoff's Law II. In any closed circuit in a network of

conductors traversed by steady currents, as the circuit I 2 3 4 n

in Fig. 75, the algebraic sum of all the intrinsic e.m.f.s is equal

%
Fig. 75.

to the algebraic sum of the products RI. That is, if N?
12 , "^

.

-,
^f

nl
denote the intrinsic e.m.f.s in the branches 12, 23, ;/i,

Rlv R^ .

,
R

nl
the resistances of the same branches, and 7

12 ,
7
23 ,

. . .

,
7
Bl

the currents, both currents and e.m.f.s being reckoned

positive in the same direction, as 12 > ni, around the circuit,

then
^ = J?7 (50)

For, by (45)

from which, by adding up both members separately, we obtain

(So).
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27. Wheatstone's Bridge consists of a network of six conduc-

tors arranged as in Fig. 76 or Fig. 77, with an intrinsic e.m.f.
"

in the branch 13, Fig. 76, or the branch 24, Fig. 77. Let the

currents in the branches be denoted by A, B, C
y D, Ft

and G, as

shown in the figure, the current in any branch being positive

when in the direction of the arrow-head in that branch
;
and let

the corresponding resistances of the branches be denoted by a,

b
t
c

t d,f, and g. First we shall find, from Kirchhoff's laws, the

current G in the branch 24 when the e.m.f., M*, is in the branch

13, Fig. 76.

Applying Kirchhoff's law I. to each of the sets of conductors

meeting in the points i, 2, and 4, we obtain the relations

C=A + G

D=B-G
(a)

Applying KirchhofPs law II. to each of the closed circuits

1241, 2342, and 1431, we obtain

Gg + Aa Bb = o

G + Cc Dd=o

On eliminating C, D, and F by (a),
and rearranging, these

equations become
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gG + aA bB = o

(g- -f c + d)G + cA dB = o

- dG +/A + (b +d +f)B =
from which

(51)

if Q is written for the determinant of the coefficients of the cur-

rents in the last set of equations, viz.,

= Q

(52)

-g a -b

(g+c + d) c -d
d f (b + d+f]

The current in any other branch can be found in the same

manner.

The difference of potential between the points 4 and 2 is

(53)

and may be made as small a fraction of "SP as desired by giving a

suitable value to (be ad}.

From (41) and (52) and a comparison of Figs. 76 and 77, we

see that when the e.m.f. "SP" is in the branch 24, Fig. 77, the

current in the branch 13 is

F=V(bc-ad)IQ (54)

Thus the current in the conductor 24 due to e.m.f. in the

conductor 1 3 is equal to the current in the conductor 1 3 due to

the same e.m.f. in the conductor 24, all the resistances remaining

unaltered.

By a similar method, this reciprocal relation may be shown to

hold for any two branches of the network, or any network.

When be = ad, the current in either of the two conductors 1 3

or 24, due to an e.m.f. in the other, is zero. The two conduc-

tors are then said to be conjugate. In this case the conductor

in which there is no current may be removed, or its resistance
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may be altered in any manner, without affecting the state of the

rest of the system.

From the relation 7
12
= (V12 + ^ l2}/^i2

and the principle of

superposition of potentials and e.m.f.s, it follows immediately

that if any number of e.m.f.s is placed in the network, each will

produce in any part of the system the same current it would have

produced if acting alone. The current in any branch is thus the

algebraic sum of the currents due to each e.m.f. separately.

Suppose an e.m.f. placed in one of the branches 12, 23, 34,

or 41, Fig. 76. It will produce a current in the other branches,

including 24. But if be = ad, the e.m.f. in 13 will produce no

current in 24, whatever this e.m.f. may be. Suppose the e.m.f.

^ to have such a magnitude and direction as to produce a cur-

rent in the branch 1 3 exactly neutralising the current in the same

branch due to the e.m.f. in the other branch. Then there is no

current in the branch 13, and it may be removed, or its resistance

may be made infinite, without affecting the currents in the other

branches. Thus, when be = ad, the current in 24 is independent

of the resistance, as well as of the electromotive force, in the

branch 13. This result is applied below to Mance's method of

measuring the resistance of a conductor containing an intrinsic

e.m.f.

The condition that the two conductors 1 3 and 24 may be con-

jugate, viz., be = ad, can be found very simply as follows. Let

the voltages between the points 12, 23, 34, etc., Figs. 76 and

77, be denoted by V
12 ,
V& VM ,

etc. Then we have, as the con-

dition that G may be zero in the arrangement of Fig. 76, V^ o.

We have also, in this case, A = C, and B = D. Therefore

v
l2
= aA = VU = I>B

and

Dividing aA = bB by cA = dB, we obtain a / c
= b / d, or

bc = ad (55)

UNIVERSITY OF CALIFORNIA

ARTMENT OF CIVIL ENGINEERS**
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In exactly the same way we find that only this same condi-

tion must be satisfied in order that F may vanish in the arrange-

ment of Fig. 77.

Hence the conductors 13 and 24 are conjugate when this con-

dition is satisfied.

The Wheatstone's bridge is very extensively applied to the

comparison of electrical resistances.

28. The Comparison of Electrical Resistances. Thus suppose

we have an unknown resistance a which is to be compared with

a standard resistance c. The resistances a and c are connected up
with two other resistances b and d, whose ratio must be known,

as in Fig. 76 or Fig. 77, and the terminals of a battery, or other

agent with an intrinsic e.m.f., are connected to the points I, 3 or

2, 4, and an electrometer (or galvanometer, XII.) to the points

2, 4 or 1,3. Then the resistance c, or the resistances b and d, or

all three, are varied until the needle of the electrometer (or gal-

vanometer, which is almost invariably used) remains undeflected

whether the branch containing the battery is opened or closed.

Then, by (5 5),
a = c b / d.

29. Mance's Method of Determining the Resistance of an

Agent with an Intrinsic E.M.F. The agent whose resistance,

a, is to be determined is connected up as in Fig. 76 with three

other resistances c, b, and d, at least one of which, together with

the ratio of the other two, is known. A galvanometer or elec-

trometer G is connected to the points 2, 4, and a wire containing

a key, but no e.m.f., to the points 1,3. Then the resistances r, b,

and d, or at least one of them, are varied until the deflection of

the galvanometer or electrometer is the same whether the key

connecting the points I and 3 is open or closed. When this

condition is reached, the current through the branch 24, or the

voltage V^ is independent of the resistance of the conductor 13,

and the two conductors are conjugate. Hence

a = c bid
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30, Kelvin's Method of Measuring the Resistance of a Galvano-

meter or other Current Indicator. The galvanometer or electrom-

eter of 28 is removed and is replaced by a wire W containing a

key, and the instrument whose resistance is to be determined is put

in place of the unknown resistance a. Then one or more of the

resistances, b, c, d, are varied until, the battery circuit being closed,

the permanent indication of the instrument (a deflection, if a gal-

vanometer or similar instrument is under experiment ; silence,

if a telephone) remains constant when the key in the wire W is

opened or closed. Then no current traverses the wire in either

case, and a cbjd, as in 28.

31. Kelvin's Double Bridge furnishes the most accurate known

means of comparing two very small resistances.* The conductor

A, Fig. 76, of a Wheatstone's bridge arranged for the comparison
of resistances, 28, is disconnected from the conductor B at the

point I, and the terminals of one of the resistances to be com-

pared, x, are connected to the free end of A, denoted by i', and

the original point I. In like manner, 7 is separated from D and

the other resistance under comparison, y y
is connected to the

point 3 and the free end of C, denoted by 3'. The bridge is

completed by joining the points i' and 3' with a third conductor

of low resistance. The resistances a, b, <r,
d (all, in practise, of

considerable magnitudes, which can be determined with precision

by other methods), or either c and d or a and b, are then varied,

the ratio bjd being kept constantly equal to a/c, until no current

traverses the galvanometer. Then, since the currents through a

and c are equal, and also the currents through b and d, and there-

fore the currents through x and yt
it is clear that

xly = ale = bjd (56)

For a thorough discussion of the Kelvin bridge in its general

form, see Zeiischr. fur Instrumentenkunde
,
Feb. and Mar., 1903.

Equation (56) does not express the general condition for a

balance.

*With the possible exception of the shunted differential galvanometer method

(F. Kohlrausch, Wied. Ann., Vol. 20, p. 76, 1883).



CHAPTER IX.

ELECTROLYTIC AND METALLIC CONDUCTION.

1. Metallic Conduction. The electric current in a metallic con-

ductor, whether a pure metal or an alloy, in the solid or liquid

state, is not, so far as is known, associated with any chemical

change in the conductor or with the convection of its molecules

or atoms from one part to another. All substances which con-

duct in this manner are said to conduct metallically. A theory

of metallic conduction, based on the motion of electrons, will be

referred to in 15.

2. Electrolytic Conduction. Electrolysis. Ions. The electric

current in most chemical compounds, however, is invariably as-

sociated with their separation into two constituents, atoms or

groups of atoms, called ions. These ions do not appear separ-

ately in the body of the conductor, but only at the electrodes by
which the current enters and leaves it. Hence one of the ions

moves toward the anode, and is therefore called the anion ;

while the other moves toward the kathode, and is called the

kation.

Substances in which the electric current is associated with the

transportation of atoms or molecules are called electrolytes, the

process of electro-separation of the constituents is called electroly-

sis, and the substances are said to conduct electrolytically.

The simplest electrolytes, in some respects, are molten salts,

e. g., KC1 at a temperature above 734 C. During the elec-

trolysis of this salt, K appears at the kathode and Cl at the

anode. Thus K is the kation and Cl the anion. As in this

case, so in the electrolysis of salts, acids, and bases generally,

the kation invariably consists of a metal or hydrogen, and the

228
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anion of an acid element or radical (sometimes combined with a

metal).

The commonest electrolytes are aqueous and other solutions

of salts, acids, and bases. In such a solution, all together an

electrolyte, the dissolved substance, not the solvent, is separated

into the moving ions. Hence the dissolved substance itself is

often spoken of as the electrolyte. It must be remarked, how-

ever, that pure dry acids, salts, and bases at ordinary tempera-

tures, as well as pure water and other solvents whose solutions

are frequently electrolytes, are either not conductors, or else

possess extremely small conductivities.

The actual determination of the constituents forming the ions

is sometimes a matter of considerable difficulty. For in many
cases the ions do not themselves separate out at the electrodes,

but on reaching the electrodes, combine with them chemically,

if such reaction is possible, or with the solvent, if the first reac-

tion is impossible. If neither reaction is possible, the ions col-

lect at the electrodes or are there liberated.

Thus if molten KC1 is electrolysed with a platinum anode and

a kathode of graphite, metallic potassium may be collected at the

kathode, but at the anode the Cl unites with the platinum.

Also, if an aqueous solution of H
2
SO

4
is electrolysed between

platinum electrodes, H (the kation) appears at the kathode,

where it is given off as a gas (no reaction with platinum or with

water being possible) ;
and SO

4 (the anion) appears at the anode.

But SO
4
can neither combine with platinum, nor can it exist alone

in the presence of water
;
hence it reacts with the latter to form

H
2
SO

4
and O, the first going into solution, and the second being

evolved as a gas.

3. The Laws of Faraday. Electrolytic Measurement of Current.

According to the experiments of Faraday, confirmed by all later

investigation,

I. The mass of an ion deposited on an electrode, or there dis-

solved, during the passage of a current, is proportional to the
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electric charge crossing the electrode during the deposit or solu-

tion. Thus, ifM
a denotes the mass of an ion a deposited at an

electrode, or there dissolved, in the time t, while the charge q
crosses the electrode (or passes through the electrolyte).

where K
a
=M

a jq is a constant for the ion a, equal to the mass

of the ion deposited per unit charge, and called its electrochemical

equivalent.

If a condenser of capacity 5 is repeatedly charged to a voltage

Fand discharged in a constant direction through an electrolyte

at the rate n times per second, the massM
a
of the ion a deposited

or dissolved in the time t will be

.-,,

'''"'"-^ -'^M
n
= Knq = Ka

SVnt
--;

'

(2)

from which, by measuring MaJ S, V, n, and t, Ka may be de-

termined. IfM
a

is expressed in grams, t in seconds, and S and

Fin RES units, Ka ,
will be expressed in the RES unit electro-

chemical equivalent.

If a constant Current /traverses the electrolyte, we have

KJt (3)
from which

I-MM (4)

Hence by measuring Ma ,
t and K

a ,
I may be determined. If

M
a
and t are measured in grams and seconds, respectively, and

K
a
in the RES unit, / will be expressed in the RES unit current.

II. The electrochemical equivalent of any ion is directly pro-

portional to its atomic (or combining) weight and inversely pro-

portional to its valence
;

i. e.
t
the electrochemical equivalent of

a substance is proportional to its chemical equivalent. Thus if

a and b denote two ions, A and B their atomic (or combining)

weights, a' and b' their valences, and K
a
and K

b
their electro-

chemical equivalents, then
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^tS^wd K^ =W f^TS:f^&
whence

K^Aja'-b'IB-K, (6)

If therefore the combining weights and valences of all ions are

known, and the electrochemical equivalent of any one of them,

the electrochemical equivalents of all the rest may be found from

(6). The ion whose electrochemical equivalent has been most

accurately determined is the silver ion, of which the valence is

I, the combining (atomic) weight 107.93 (0 = 16.000), and the

electrochemical equivalent 0.001119 gram/coulomb (XIV.).
Hence if b-'m (6) denotes silver, the electrochemical equivalent

of any other ion a is

K
a
= A^' 1/107.93 x o.ooi 1 19 gram/coulomb

= A/a
f x 0.00001037 gram/coulomb

By omission, law II. states that K
a
is independent of the nature

of the compound in which a is found, the nature of the solvent

if the compound is in solution, the strength of the current, the

temperature, and other physical conditions.

If an element has two or more valences in different compounds,
then it exists as two or more distinct ions, each with its own elec-

trochemical equivalent. Thus iron in ferric compounds, as FeCl
3 ,

has a valence 3, while in ferrous compounds, as FeCl
2 ,

its valence

is 2. Hence
. .

valence ferrous iron
K( ferric iron)/K(terrous iron) = -. ^ ; -. =4

valence ferric iron

since the atomic weight of iron is the same for both classes of

compounds.
Since the same quantity of electric charge crosses every sec-

tion of a conductor carrying a steady current in any given time,

it follows from law II. that in the electrolysis of any compound
the ions are deposited simultaneously at the two electrodes in the

same proportions in which they occur in the compound. Thus
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when KC1 is electrolysed, for every atom of K deposited at the

kathode, an atom of Cl is deposited at the same time at the

anode. Likewise, in the electrolysis of an aqueous solution of

H
2
SO

4 ,
for every ion SO

4 deposited at the anode, two atoms of

H are deposited at the same time upon the kathode. Since one

sulphion reacts with a molecule of water to form a molecule of

H
2
SO

4
and an atom of O, it follows that H and O are evolved at

the kathode and anode respectively in the proportions in which

they occur in water, while the total quantity of H
2
SO

4
in solu-

tion remains constant. In like manner, when an aqueous solu-

tion of silver nitrate is electrolysed between silver electrodes, for

every silver atom (kation) deposited upon the kathode, one

nitrion NO
3 (anion) is liberated at the silver anode, and reacts

with an atom of this electrode to form a molecule of silver nitrate.

The nitrate goes into solution. Thus the total quantity of salt

and the total quantity of silver in solution remain constant, while

the kathode gains as much silver as the anode loses.

4. The Arrhenius Theory of Electrolytic Dissociation. Ac-

cording to this theory, which, though not universally accepted,

serves to explain many electrochemical phenomena, the mole-

cules of a molten salt, or a salt in aqueous solution, or other

electrolyte, are always, in greater or less numbes, independently

of the passage of a current, broken up, or dissociated, each into

two kinds of atoms or atomic groups, called ions. One kind of

ion is positively charged, and is called a kation, the other is neg-

atively charged and is called an anion. Thus a molecule of

H
2
SO

4
dissociates into two positively charged H kations and one

negatively charged SO
4
anion

;
and a molecule of KC1 into a

negative chlorine anion and a positive potassium kation the metal-

lic or hydrogen atoms being in general the kations, and the acid

atoms or radicals the anions.

Every ion of the same valence carries a charge of the same

magnitude, and this charge is directly proportional to the va-

lence of the ion. Thus the negative charge of a chlorine ion is
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equal to the positive charge of a potassium ion, the valence of

each being I
;
the negative charge of a sulphion, whose valence

is 2, is equal to the positive charge of two hydrogen ions, whose

valence is I
;
the charge of a silver ion is equal to the charge of

a nitrion, and to the charge of a hydrogen, potassium, or chlo-

rine ion
;
and so on.

The electric conduction current, or transfer of electric charge,

through an electrolyte consists in a convection current of the

ions the kations with their positive charges moving toward

the (negative) kathode, and the negative anions moving toward

the (positive) anode. On reaching an eiectode the ions give up
their charges to the electrodes, and react with one another, or

with the solvent, or with the electrode, to form molecules.

If we assume that the current at each electrode consists in

the motion of only one kind of ion, which will presently be

proved to be true, the theory affords a simple explanation of the

laws of Faraday :

Since a given kind of ion always carries an electric charge of

the same magnitude and sign, the quantity ofan ion deposited upon
an electrode will be proportional to the charge which crosses the

electrode. This is Faraday's first law.

Since the charge of an ion is proportional to its valence, and

since the mass of an ion is proportional to its combining weight,

the mass of ions of one kind carrying a given charge, or the ion

mass deposited per given charge, must be proportional to its

combining weight and inversely proportional to its valence.

This is the second law of Faraday.

5. A Gram Atom of an element is a quantity of the element

equal, in grams, to the number denoting its atomic weight. Thus

a gram atom of potassium is 39. 1 5 grams potassium.

A Gram Ion is in the same way a quantity of the ion equal, in

grams, to the number denoting its combining weight. Thus a

gram ion of silver is 107.93 grams silver, and a gram sulphion

is 96.06 = (32.06 + 4 X 1 6.00) grams SO4
.
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A gram molecule of a substance is a quantity of the substance

equal, in grams, to the number denoting its molecular weight.

Thus the molecular weight of KC1 is 39.15 + 35.45 =74.60,
and therefore 74.60 grams KC1 is a gram molecule of this sub-

stance.

Tt will now be obvious that the magnitude of the charge car-

ried by a gram ion of every univalent ion is the same. The

charge carried by a gram ion of a bivalent ion is twice as great,

and so on. The charge carried by a gram ion is equal, numer-

ically, to the gram ion divided by the mass, in grams, carrying

unit charge, or equal to the gram ion divided by the electro-

chemical equivalent of the ion. Thus the silver gram ion is

107.93 grams, and the electrochemical equivalent of silver is

0.001119 gram per coulomb. Hence the charge carried by a

gram ion of silver or any other univalent ion, which will be de-

noted by Q, is

Q = 107.93 grams -=- o.ooi 1 19 gram/coulomb
(8)= 96450 coulombs

The concentration of a solution is the quantity of dissolved

substance per unit volume of solution. The concentration may
be expressed in grams /c.c., grams /liter, gram molecules / liter,

etc., and will be denoted here by C.

6. Velocities of the Ions. Hittorf s Ratio. Hittorfs Num-

bers, etc. If in the electrolysis of a solution ordinary convection

and diffusion effects are prevented, it is found that no change
takes place in the concentration of the solution except in the

vicinity of the electrodes. Owing to the deposit or liberation

of the ions at the electrodes, however, the total quantity of dis-

solved substance diminishes (reactions at the electrodes which

produce the substance being neglected). Hence it follows that

the concentration of the dissolved substance, or rather, the con-

centration of the solution, diminishes near the electrodes (the

reactions mentioned being neglected, if occurring).
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To study the matter more closely and to make the conditions

perfectly definite, consider the electrolysis of an aqueous solu-

tion of silver nitrate between platinum electrodes, A and K. If

we imagine a porous partition P, preventing diffusion and con-

vection currents across it but not hindering the motion of the

ions, placed between A and K, but not close to either, the

quantity of AgNO3
in each of the compartments into which P

divides the electrolytic vessel will diminish during electrolysis.

Before electrolysis begins, each compartment contains as many
anions as kations (+ Ag and NO

3),
one of each being neces-

sary to form a molecule of silver nitrate. During electrolysis

let K be the kathode and A the anode.

Let the velocities of the kations and anions in the main body
of the solution, at the partition for example, be denoted by U
and /^respectively, and let Uj V= h. Then for every h kations

which cross the partition in the direction AK, i anion crosses in

the direction KA. During this process the number of molecules

of AgNO3
in the compartment KP is diminished by //, since both

ions are necessary to form a molecule
;
and likewise the number

of molecules of the salt in the compartment AP is diminished by
i. Hence (Hittorfs law)

Loss of salt near anode/Loss of salt near kathode = Uj V= h (9)

The ratio k= UjV is called Hittorfs ratio, and will be further

discussed below.

When h kations have crossed the partition in the direction AK,
and one anion therefore in the direction KA, h -f I anions are

left without the corresponding kations at the anode A, and h -f- i

kations are left without the corresponding anions at the kathode

K. The free kations immediately give up their positive charges
to the kathode, and are deposited upon it

;
and the free anions

immediately give up their negative charges to the anode, and

react with water to form nitric acid and oxygen.
Since each ion carries the same numerical charge, the electric

current in the main body of the electrolyte is the same as if all
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the anions were moving with the velocity U+ V toward A, and all

the kations were at rest
;
or as if all the kations were moving with

the same velocity U -\- Ftoward K, and all the anions were at rest.

Since, moreover, by what precedes, h -f I kations give up their

charges to the kathode, and h 4- I anions give up their charges

to the anode, while only h kations cross the partition in the direc-

tion AK and only I anion in the direction KA, and since the

current is the same across every section of the conductor, the

current at the anode consists in the motion of anions only, and

the current at the kathode consists in the motion of kations only.

It does not follow, however, that the velocity of either anion or

kation at an electrode is [/+ V. For the quantity of kations

deposited at the kathode is greater than the quantity crossing the

partition toward the kathode in the ratio (It + i)//i
= (U+ V)j U\

and the quantity of anions deposited on the anode is greater than

the quantity crossing the partition toward the anode in the same

time in the ratio (h + i)/ i = (U+ V) j V.

Thus a fraction UI (U+ F) of the total quantity of the kation

deposited at the kathode in any interval comes from the main

body of the electrolyte, and a fraction i Uj(U + V) =

Vj(U+ V} comes from the vicinity of the kathode. In like

manner, a fraction VI (
U -\- F) of the total quantity of the anion

deposited at the anode in any interval comes from the main body
of the electrolyte, and a fraction i Vj(U+ F) = U

J (U+ V)
comes from the vicinity of the anode.

The velocity, Uv of the kations at or very near the kathode,

and the velocity, Fj, of the anions at the anode, can be obtained

from the condition that the charge crossing every section of the

conductor in the same interval is the same. This condition gives,

for the interval in which N anions, and therefore hN kations, cross

the partition,

whence

F) = [(^
2 +

i U
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and

+ i)
= NV+ hNU

whence

)=U, (10)

The ratios Uj(U+ V) and V/(C7+ V\ which represent the

fractions of the total current carried in the main body of the elec-

trolyte by the kations and anions respectively, are called the

transport numbers of the kation and anion, respectively, for the

given electrolyte. Put

UI(U+V) = n (ii)
then

F/(7+F)=i- (12)
and

UIV-k-nl(i-n) (13)

If the electrolysis of silver is carried on between silver elec-

trodes instead of platinum electrodes, the loss of the salt around

the kathode will be the same, for a given charge, as before
;
but

since the total quantity of salt in solution now remains constant,

there will be a gain of salt around the anode equal to the loss

around the kathode. If from the amount of AgNO3 correspond-

ing to the total quantity of silver deposited on the kathode (or

dissolved at the anode), which would be the gain at the anode if

the silver ions did not move, we subtract the actual gain at the

anode, we obtain the loss of salt at the anode due to the motion

of the silver ions. The actual gain in salt at the anode (equal

to the loss at the kathode) divided by this quantity is Hittorf's

ratio, from which n and I n are easily computed. Since any

quantity of the salt is proportional to the quantity of silver in the

salt, we may use the quantities of silver deposited on the kathode

and gained by the solution around the anode instead of the cor-

responding quantities of salt, and much more conveniently.

Also, the loss at the kathode instead of the gain at the anode

may be obtained, if preferable, by direct experiment.

Hittorf's ratio, and therefore the transport numbers n and I n,

are found to vary slightly with the temperature, h and n increas-
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ing as the temperature rises. Thus, for NaCl, n = 0.392 at 20

C. and 0.449 at 95 C.; and for AgNO3 ,
n 0.470 at 10 C.

and 0.490 at 90 C.

For certain electrolytes, especially aqueous solutions of alka-

line salts, n is almost independent of the concentration. Thus,

in the case of an aqueous solution of KC1, n changes from 0.497

to 0.486 when the concentration increases from 0.03 to 2.5 grm.

mol./lit.

For other electrolytes n decreases rapidly with the concentra-

tion. Thus, for an aqueous solution of CuSO
4
n decreases from

0.36 to 0.27 as the concentration increases from o.i to 2.0 grm.

mol. per liter.

For still other electrolytes ;/ increases rapidly with the increase

of concentration. Thus, for an aqueous solution of AgNO3 ,
n

changes from 0.474 to o. 5 3 as the concentration increases from

o.oi to 2 grm. mol. /liter.

In all cases n is independent of the current strength.

7. The Dissociation Ratio, By several methods, into a discus-

sion of which we cannot here enter, for example the lowering of

the freezing point produced by the solution of a substance, the

ratio of the number of dissociated molecules in a solution to the

total number of molecules of the dissolved substance can, ac-

cording to the modern dissociation theory, be determined with-

out the use of an electric current. This ratio, called the disso-

ciation ratio, will be denoted by m. For a given solution m in

general increases slowly with the temperature.

If the concentration of a given kind of electrolytic solution

is diminished, m in general increases, very rapidly at first, then

more and more slowly, reaching, when the solution becomes very

dilute, sensibly the constant value I. That is, in very dilute

solutions all the molecules of a dissolved electrolytic substance

are dissociated.

8. Ohm's Law for a Homogeneous Electrolyte. Conductivity

and Molecular Conductivity. Since according to the dissociation
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theory the electric current in an electrolyte consists in the motion

of the ions, the undissociated molecules playing no part in the

conduction, the current density, 2, must be equal to the continued

product of the concentration of the salt, C, In gram molecules

per cc., the dissociation ratio, m, the valence of the ions, a'
'

,
the

quantity of charge carried by a univalent gram ion, Q, and the

sum of the ionic velocities, U -\- V. For mC is the number of

gram ions of each kind per cc., mCa1 Q is the charge upon all

the kations in one cc., and, numerically, the charge upon all the

anions in one cc.; hence mCa'QU and mCa'QV are the total

positive and negative charges, respectively, crossing unit area per

second in opposite directions. Hence

i=mCa'Q(U+V) (14)

Now Ohm's law holds rigorously for liquid electrolytes (though

not, in general, for gases), as well as for metallic conductors.

Hence the above equation may be written

i= kE= mCa'Q(U+ V) (15)

Therefore the sum of the velocities of the ions, U+ V
y
is pro-

portional to the electric intensity E. Hence, since or h is

independent of the electric intensity or current (6), the velocity

of each ion must be proportional to E. If therefore u and v

denote the velocities of the kation and anion respectively per unit

intensity, we have, when the intensity is E

U=uE and V=vE (16)

(15) may therefore be written

i = kE = mCa'Q(u + v) E (i
so that

k = mCa'Q(u + v) (18)

The ratio of the conductivity k to the concentration C (in grm.

mol./cc.) is called the molecular conductivity, and will be denoted

by M. Thus
M= kjC = ma'Q(u + v) (19)
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When the solution becomes very dilute, ;// becomes sensibly

equal to unity ; hence, if the corresponding values of M, k
y C, it,

and v are denoted by these letters with the subscript zero, we

have from (19)

^ = w="'fiK + o (20)

From the last two equations

m = M/MQ -(uQ + v )/(u + v) (21)

The conductivity, k, of an electrolyte is readily measured by

methods similar to those used in the case of metallic conductors,

except that to avoid the troublesome effects of polarisation an

alternating current and a telephone or electrodynamometer are

employed instead of a direct current and a galvanometer. From

the conductivity and the concentration the molecular conductivity

is obtained by division from (19). From the molecular conduc-

tivity My at given dilution, and M
Qt
m can be computed, if

(V+ *)/(*+*)
is known.

9. Variation of Electrolytic Conductivity with Temperature

Pressure, and Viscosity. The conductivity of an electrolytic

solution always increases rapidly with the temperature. Since

in equation (18) a' and <2 are constants, and mC does not vary

much with the temperature, this increase in conductivity must be

almost wholly due to an increase in (u -f v). Such an increase

in the velocities would be expected from the fact that the vis-

cosity of a liquid rapidly diminishes with the increase of tempera-

ture.

The conductivity of an electrolytic solution also increases with

the pressure to which it is subjected. Since this increase occurs

in the case of very dilute solutions (m i), although to a less

degree than for strong solutions, it must be due, in part at least,

to the diminutions of the liquid's viscosity (which always dimin-

ishes with increase of pressure) and the consequent increase of

the ionic velocities.
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For solutions in which different solvents contain the same

number of gram ions of a given substance per cc., the conductiv-

ity is always less the greater the viscosity of the solvent, the

conductivity of the solvent being eliminated if appreciable.

The intimate connection between the ionic velocities and vis-

cosity is shown further by the fact that the conductivities of anal-

ogous compounds in solution bear to one another the same

ratios as do their velocities of diffusion.

10. Molecular Conductivity and Concentration. The Dissocia-

tion Ratio. The relation between the molecular conductivityM
of an aqueous solution of KC1 and the dilution of the solution,

expressed in terms of the number of liters of water containing a

i.oo

0.95

0.90

0.85
20 eo 80

Dilutio r
)(Liters of Water Containing One Gram Molecule KCi.l

Fig. 78.

gram molecule of the salt, is shown graphically in Fig. 78. As
the dilution increases, or the concentration diminishes, M in-

creases, rapidly at first, then more and more slowly, reaching a

constant value M
Q
when the solution becomes very dilute.

Curve /of Fig. 78 shows the relation between M/MQ
and the

dilution, and curve // the relation between the dissociation ratio

m, calculated from the lowering of the freezing point, and the

dilution, for the same salt KC1 in aqueous solution.
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The close similarity of the curves shows that, very approxi-

mately, in this case

m = M;'MQ (22)

Hence, to the same degree of approximation, equation (21) gives

(11^ _j_ z/
)
= (u -f v) ;

that is, the sum of the velocities of the ions

is nearly independent of the concentration. In practise this ap-

proximation is frequently employed, and the dissociation ratio is

calculated from (22) on the assumption that (UQ -f ^
)
=

(u -f v)

sensibly. Equation (22), however, appears in many cases to be

not even approximately true except for very great dilutions.

11. The Velocities of the Ions. The Law of Kohlrausch. From

(19) it follows that

(u + v)
= M/ma'Q (23)

and from (9) and (16) that

h = UlV= uEjvE = u/v (24)

From these equations we have

u = hMJma' Q cm. per second per unit intensity (25)
and

v (i H) Mjma' Q cm. per second per unit intensity (26)

from which u and v can be readily computed, all the quantities

in the second members being capable of experimental determina-

tion.

The ionic velocities, when calculated by these formulae, for

extremely dilute solutions are found to be wholly independent

of the compounds in which they occur. This is the law of Kohl-

rausch. Thus the velocity of the chlorine ion is the same

whether in a very dilute solution of HC1 or a very dilute solu-

tion of NaCl. The velocities of the hydrogen, silver, hydroxyl

(OH), and chlorine ions, all in cms. per second, when the elec-

tric intensity is one volt per cm., are 0.00320, 0.00057. 0.00181,

and 0.00069, respectively, by calculation from (25) and (26).
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The above results have been confirmed by the direct experi-

ments of Lodge and of Whetham (Philosophical Transactions, A,

1893, and A, 1895).

12. Thermal Analogue of Ohm's Law. Let the two parallel

faces, i and 2, distant L apart, of a large plane slab of a homo-

geneous isotropic substance with thermal conductivity k' be main-

tained at the temperatures ^ and t Near the center of the

slab the flow of heat from I to 2 is perpendicular to the faces,

and the fall of temperature per unit length, or temperature gradi-

ent, from i to 2 is uniform and equal to (^ t^)/L = E' . The

time rate per unit area, i'
,
at which heat crosses a plane surface

within the slab parallel to its faces is

i' = k' E'

which is strictly analogous to Ohm's law.

13. The Variation of Metallic Conductivity with Temperature.

The resistivity of all pure metals increases with the temperature,

the relation between the resistivity and temperature being approxi-

mately linear for ordinary temperatures according to the equation

The coefficient a is called the resistance temperature coefficient.

For many metals a is approximately equal to 1/273, the tem-

perature coefficient of the expansion of a gas at constant pressure,

when / is taken as o C. or 273 absolute. For such a sub-

stance we have approximately from the above formula

where t is the absolute temperature at which the resistivity is r
t,

and r273 is the resistivity at the temperature 273 absolute.

14. The Law of Wiedemann and Franz. Not only is the law

of Ohm analogous to the law of thermal conductivity, but for

nearly all metals and alloys the ratio of the thermal conductivity

k' to the electrical conductivity k is approximately the same at a



244 ELEMENTS OF ELECTROMAGNETIC THEORY.

given temperature, and is proportional to the absolute tempera-

ture. This indicates that the processes involved in the two kinds

of conduction are largely identical.

15, The Electron Theory of Conduction. According to A the

comprehensive and rapidly developing electron theory, an atom

is constituted of a multitude of minute particles, called electrons,

each carrying a permanent and constituent electric charge, whose

magnitude is that of the charge carried by a univalent ion in

the electrolysis of liquids. In a neutral atom, the number of

positive particles is equal to the number of negative particles ;

in a charged atom or radical, the number of positive electrons

exceeds the number of negative electrons, or vice versa, by I, 2,

3, etc., according as the ion is univalent, bivalent, trivalent, etc.

The charge of a single electron is the smallest electric charge

which can exist, and no charges exist except the charges of

electrons.

In the electrolytic conduction of liquids no free electrons take

part, but the current consists, as we have already seen according

to the dissociation theory, in the convection of the ions, all of

atomic magnitude.

In electric conduction through gases, which is also electro-

lytic, the positive ions are atomic in magnitude (atoms or radi-

cals plus or minus one or more electrons of the same sign), but

the negative ions are frequently single electrons, though either

may be loaded down with an agglomeration of neutral mole-

cules. The electric current consists in the convection in oppo-

site directions of these ions. The kathode rays, emitted from

the kathode in a highly exhausted vacuum tube, consist of nega-

tive electrons only, moving with velocities of the same order as

that of light.

In metallic conduction the main body of the metal does not

participate in the conduction. The current consists in the con-

vection of (temporarily) free positive electrons in the direction

of the current, or in the convection of (temporarily) free nega-
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tive electrons in the opposite direction, or in both processes

simultaneously. The number of electrons taking part in metal-

lic conduction is small in comparison with the number taking

part in electrolytic conduction proper, and the velocity is rela-

tively great

Thermal conduction also takes place by the motion of elec-

trons, but under a temperature gradient both positive and nega-

tive electrons move in the same direction.

For an extended discussion of the electron theory as applied

to electric and thermal conduction in metals, reference must be

made to memoirs by Drude, Ann. der Physik, I., p. 566, 1900,

III., p. 369, 1900, and VII., p. 687, 1902. For a general treat-

ment of the electron theory, see also Lord Kelvin, Philosophical

Magazine (6), III., p. 257, 1902, and Larmor's ALther and Mat-

ter. For a sketch of the development of the electron idea, with

abundant references, see Kaufmann, Physikalische Zeitschrift,

III., p. 9, 1901, or a translation of the same in The Electrician,

November 8, 1901. An elementary treatment of the subject is

given by Lodge in The Electrician, Vols. 50 and 51, 19021903.



CHAPTER X.

THERMAL AND VOLTAIC ELECTROMOTIVE FORCES.

1. The Law of Volta. Around a circuit made up of any num-

ber of different metals connected end to end, there is no resultant

e.m.f., and therefore no electric current, when all parts of the

circuit are at the same temperature (unless there is a changing

magnetic flux through the circuit, XIII.).

2. The Seebeck Effect, Around a circuit formed of two dif-

ferent metals a current flows, in general, when the two junctions

are at different temperatures.

Such a circuit is called a thermocouple, or a thermoelement.

In a thermocouple consisting of a copper wire and an iron

wire, if the mean temperatute of the junctions is less than 275

C., a current flows from the copper to the iron across the hot

junction.

3. The Peltier Effect. When an electric current flows across

the junction of two metals, heat is there, in general, either ab-

sorbed (thermal energy transformed into electrical energy) or

emitted (electrical energy transformed into heat), according to

the direction of the current. The rate of the energy transfor-

mation is proportional to the current strength, and the process is

completely reversible.

Thus at a copper-iron junction heat is absorbed when the cur-

rent passes from Cu to Fe
;
and heat is emitted at the same rate

when the same current crosses the junction (maintained at the

same temperature) in the opposite direction.

The energy transformations occurring during the circulation of

the current in the thermoelement of copper and iron, 2, thus

tend to cool the hot junction and to heat the cold junction.

246
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The Peltier E.M.F. The junction of two metals is therefore

the seat of an intrinsic e.m.f., called the Peltier e.m.f., which is

constant at a given temperature of the junction for all values of

the current. The e.m.f. varies with the nature of the metals and

with the temperature of the junction. At the junction of two

metals A and B, at the temperature t, the Peltier e.m.f. acting

from A to B will be denoted by t
Pab . See I, I.

If the two junctions of a thermoelement have the same tem-

perature t
y t
Pab ,

the e.m.f. from A to B, will have the same value

at both junctions. Hence no current will traverse the circuit,

but a difference of potential will be developed, B coming to a

potential f^ higher than that of A.

Since, however, t
Pab is a function of the temperature, there will,

when the two junctions are at different temperatures /
x
and tv be

a resultant Peltier e.m.f. around the circuit, equal, when mea-

sured in the direction around the circuit from A to B across the

junction at temperature tv to

tfab + tflm
=s

tfab tfab (0

4. The Thomson Effect. When an electric current traverses a

conductor along which there is a temperature gradient, heat is

either absorbed (transformed into electrical energy) or emitted

(electrical energy transformed into heat), according to the direc-

tion of the current, throughout the portion of the conductor in

which the temperature gradient exists. The rate of energy trans-

formation is directly proportional to the strength of the current,

and depends, so far as temperature is concerned, only on the

temperatures of the ends of the conductor. The energy trans-

formations are perfectly reversible, changing sign, but not mag-

nitude, with the direction of the current.

The absorption or emission of heat just described takes place

in addition to the evolution of heat according to Joule's law at a

rate proportional to the square of the current.

The Thomson E.M.F. A conductor in which there is a tem-

perature gradient is therefore the seat of an intrinsic e.m.f. which
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is constant for all values of the current for given temperatures

of its terminals. This e.m.f. is called the Thomson e.m.f. in the

conductor, and is considered positive when it is directed from

the lower to the higher temperature. If ^ and t
2
denote the

temperatures of the cooler and hotter ends of a conductor A, the

Thomson e.m.f. from the cooler to the hotter end is denoted by
T

hh * a-

The fact that the Thomson e.m.f. (or the corresponding en-

ergy transformations) depend, so far as temperature is concerned,

only on the temperatures of the ends of the conductor, follows

from the law of Magnus, which states that in a circuit com-

posed of a single homogeneous metal there is no electric current,

howsoever the temperature varies from point to point. Thus the

Thomson e.m.f. from a point A to another point B of the circuit

is the same either way around the circuit. (The law of Magnus,
and the deduction therefrom, do not hold in certain extreme

cases, as when the cross-section of the conductor changes sud-

denly, etc.; also, at least in certain cases, when a portion of the

circuit is magnetised, when it is, strictly, non-homogeneous.)
Let ISadt denote the rate of heat absorption in the elementary

length dL of a conductor A, the mean temperature within the

length dL being / and the rise in temperature from one end to

the other being dt, when the current 7 flows up the temperature

gradient. Then the Thomson e.m.f. up the temperature gradient
'

vS is, in general, a function of the temperature and varies from

substance to substance. If the temperatures of the cooler and

hotter ends of the conductor are t
l
and tv respectively, we have,

on integrating (2) from one end of the conductor to the other,

i (3)

By an obvious thermal analogy, Su
is called the specific heat

of electricity in the metal A at the temperature /.
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In certain substances, e. g. copper, 5 is positive ;
that is, heat

is absorbed when the current flows up the temperature gradient.

In others, as iron, 5 is negative ;
that is, heat is absorbed when

the current flows, down the temperature gradient.

In a copper-iron thermoelement, therefore, with junctions at

temperatures /
L
and tv the Thomson e.m.f. in each metal has the

same direction as the current in that metal up the gradient in

the copper, and down the gradient in the iron.

If Sa
and S

b
denote the value of 6" at the temperature / for two

metals A and B forming a thermocouple with the cold and hot

junctions at temperatures t
l
and tv respectively, the total Thom-

son e.m.f. around the circuit in the direction from A to B across

the hot junction is

&h

5. The Total Thermal Electromotive Force in a Circuit consisting

of two homogeneous metals is the sum of the two Peltier e.m.f.s

at the junctions and the two Thomson e.m.f.s along the con-

ductors. Thus if "V
ab

denotes the total e.m.f. in the circuit,

measured in the direction around the circuit from A to B
across the hot junction,

\\f p p
ab to ab t\ ab

6. The Law of Intermediate Metals (Becquerel's Law I.).
If at

one of the junctions, at temperature t, of two metals A and B
forming a thermoelement a third metal C is inserted between A
and B, and if the two resulting junctions are kept at the original

temperature / of the junction AB before the insertion of C, the

total e.m.f. of the circuit is not altered. The total Thomson
e.m.f. in C is evidently zero, since its two ends are at the same

temperature ;
hence the law states that

fab
= fac + fcb (6)

Thus two wires may be soldered together, instead of being
welded or twisted, without affecting the e.m.f. of the junction.
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3, 4, and 6 completely account for the law of Volta.

7. The Law of Successive Temperatures (Becquerel's Law
II.).

Consider a thermoelement of two metals A and B with the junc-

tions at temperatures ^ and tv respectively. Let the total e.m.f.

around the circuit in the direction from A to B across the junc-

tion at temperature /2 be denoted by tlt^ab . Then, with similar

nomenclature, if experiments are made with one junction of the

element at temperature t
l
and the other at /', then with the first

at temperature t
f and the other at /", and so on, and finally with

the first at temperature t
n
and the other at temperature /

2 ,
it will

be found that, whatever the values of
, /', t

n
', ,

/
n ,

^2 a&
=

tit'^ab ~f~ t't't^ab T~ * * " T tnt^ab \7)

8. Thermoelectric Power. If d^
ab

denotes the total thermal

electromotive force around the circuit of a thermoelement AB in

the direction from A to B across the junction whose temperature

is /, when the temperature of the other junction is / dt, the

differential coefficient d^
ab jdt, the e.m.f. per unit difference of

temperature, is called the thermoelectric power of the metal A
with respect to the metal B at the temperature /, or the thermo-

electric power of the thermoelement AB at the temperature /, and

will be denoted be
tpab

. Thus we have

For the total e.m.f. in the circuit in terms of the thermoelec-

tric power /, we have from (7) and (8)

S

/' (9)

9. The Thermoelectric E.M.F. of a Copper-Iron Element at

Moderate Temperatures. The relation between the total thermal

electromotive force of a copper iron thermoelement and the tem-

perature t of one of the junctions, when the other junction is kept

at the constant temperature of o C., is shown graphically in

Fig. 79, for temperatures up to 600 C. As / increases, the

e.m.f. around the circuit in the direction from copper to iron at
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the junction whose temperature is t increases from a nega-

tive value, for t less than o C, to a maximum positive value

when /= 275 C. As t continues to increase, the e.m.f. de-

creases, falling to zero at t= 550 C. Beyond this temperature
the e.m.f. is negative, as when t was less than o C., that is, the

current flows (or the e.m.f. is directed) from iron to copper across

the junction at temperature /.

3000

"nnn
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The temperature corresponding to the point B(t = 275 C.Y

for which
tpci o, is called the neutral temperature for copper

and iron. The temperature corresponding to the point C
(t 550 C.),

in passing which the electromotive force around the

circuit is reversed in direction when one of the junctions is at

o C., is called the temperature of inversion of copper and iron

with respect to the temperature o C. of the cooler junction.

X
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The curve showing the relation between the thermoelectric

power of an element and the temperature is called the thermo-

electric line of that element. The thermoelectric lines of nearly

all thermoelements consisting of either pure metals or alloys are

straight lines over a considerable range of temperature, like that

of the copper-iron couple, Fig. 80.

If the thermoelectric line of a given element is a straight line,

the curve showing the relation between the total thermal electro-

motive force in the circuit and the temperature t of one junction,

the temperature ^ of the other being kept constant, is a parabola.

For we have, by integration of (10) between the limits t
l
and t,

ti

which is the equation of a parabola with its axis in the negative

direction of the axis of e.m.f.s.

10, Becquerel's Law III. At a given temperature the thermo-

electric power of a metal A with respect to a metal C is equal to

Temperature

Fig. 81.

the thermoelectric power of the metal A with respect to any
other metal B plus the thermoelectric power of B with respect to

C. That is, . . . , / _ \

,Ac=*A& + <Ac (
I2

)

Hence if the thermoelectric lines are drawn for two metals A
and B with respect to the same metal C (Fig. Si), tpab

at any
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temperature / can be obtained by subtracting from the ordinate

tPac the ordinate
tpbc

.

The total e.m.f.
tlt^ab is given by the area EFGHE of the

figure.

P, the point of intersection of the two lines A and B^ is the

neutralpoint, or the point corresponding to the neutral tempera-

ture, for the metals A and B, since there

11. The Thermoelectric Circuit Treated as a Reversible Thermo-

dynamic Engine. So far as the Thomson and Peltier effects are

concerned, the absorption and evolution of heat in a thermoelec-

tric circuit are, as we have seen, proportional to the current

strength and the time, or to the total charge which has passed

through the circuit, and completely reversible, changing sign

with the direction of the current. There are other thermal proc-

esses going on in the circuit, however, which are not reversible :

the conduction of the heat from the hotter to the cooler junction,

which bears no direct relation to the electrical phenomena ;
the evo-

lution of heat according to Joule's law at a rate proportional to the

square of the current
;
and the radiation of heat, which, like its

conduction, bears no direct relation to the electrical phenomena.
Since by diminishing the current the second effect, being propor-

tional to the square of the current, may be made as small as we

please in comparison with the Thomson and Peltier effects, which

are proportional to the first power of the currents
;
and since the

first and third effects have no direct relation to the electrical

phenomena ;
we shall assume that the total Thomson and Pel-

tier e.m.f.s are not affected by these irreversible processes, and

that the relations between them can be obtained by treating the

circuit as a perfectly reversible thermodynamic engine, all irre-

versible effects being neglected. The application in this manner

of the principles of thermodynamics to the matter in question is

justified by the approximate agreement with experiment of the

results to which it leads.
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The first law of thermodynamics, or the principle of the con-

servation of energy, together with experiment, has furnished us

with the relation

(13)

If we apply (13) to the case in which
t^
=

t, and t
2
= t +dty

or if we simply differentiate (13) with respect to /, v/e obtain

Sa -Sb (14)

The second law of thermodynamics furnishes another relation.

Let dH denote the quantity of heat absorbed into the circuit at

the temperature /, while a charge dq (= current X time) is

carried around the circuit once. Then we have, for the whole

cycle, by the second law of thermodynamics,

= dq

-AM + fVa -
&

the temperature being expressed on the absolute scale.

Applying this equation to the case in which t
v
= t and /

2
=

/ -f dt, or simply differentiating the equation with respect to /,

we obtain

d(fJt)ldt+(Sa -Sb)lt=o (16)

(16) may be written

d(f^ldt - ,PJt + S
a
- S

b
= o (17)

The combination of this equation with (14) gives

or

f^J'J=td^atldt (19)

The combination of (16) and (19) gives

(20)
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Since at the neutral temperature for the metals A and B

.p^ = o, (19) gives, for this temperature,

That is, when one junction of two metals is at the neutral

temperature, there is at this junction no Peltier e.m.f. and no

absorption or evolution of heat, /, the absolute temperature, being

always greater than zero.

If 6
ub
denotes the angle made with the axis of temperatures by

the tangent to the thermoelectric line of A with respect to B at

the point on the line corresponding to the temperature /, then

(18) gives
(22)

(20) and (22) give

s,-sb
=-tte*e

ab (23)

In the common case in which ^p^ is a linear function of the

temperature, or the thermoelectric line straight, tan 9
ab

is constant

(Kab)
for all temperatures, and (23) becomes

S.-S>--KJ (24)

If 6
ab

is greater than 90, tan 6^ = Kab
is negative, and Sa S

b

therefore positive. For copper-iron (Fig. 80) Sa S
b

is thus

always positive.

The experiments of Le Roux and of Tait have shown that for

lead and for certain platinum-iridium alloys 5 is excessively small

or zero. Hence denoting the metal lead by Z, and putting St

= o,

we have

5.- S.
- 5,- - ld(,pa}ldt = -

td( tPJt)dt - - t tan 6
al

Hence, as a matter of convenience, lead is chosen as a standard

metal, and the thermoelectric lines of all other metals and alloys

are, in general, drawn with respect to this metal.

12. The Thermoelectric Diagram. In Fig. 83 are drawn the

thermoelectric lines with respect to lead of a number of metals

and alloys. The line for lead of course coincides with the axis of
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temperatures, and all other substances for which S = o have lines

parallel to this axis. The system of thermoelectric lines is

known as the thermoelectric diagram.

As an introduction to the use of the thermoelectric diagram,

we shall consider in detail the ideal thermoelectric lines A and

B of two metals A and B with respect to lead, A being a straight

line, as in the common case, and B an irregular curve, Fig. 82.

The construction of the remainder of the figure is sufficiently

S~ o" Q"' V.D Absolute Temperature

Fig. 82.

obvious, all the lines being either parallel or perpendicular to the

axis of temperatures, or tangential to the line B.

The thermoelectric power of A with respect to lead, tpal,
is

OA
Q
at the absolute temperature zero. From this value it regu-

larly decreases as a linear function of the temperature, passing

through the value LA at the temperature t, and reaching o at

the temperature ty This point is the neutral temperature of A
with respect to lead. Beyond /

5 , tpal
is negative.

The thermoelectric power of B with respect to lead, tpbv is

^ a negative quantity, at o absolute. At /
,
a neutral tem-
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perature of B with respect to lead, tpm = o. Between / and /
6 ,

tPbi
*s positive, having a maximum value at /

4
. At t

&
and /

10 ,

other neutral temperatures of B with respect to lead, tpbl
is again

zero, reaching between them, at the temperature /
8 ,

a negative

maximum.

At the temperature /, fal
= t

tpal
= aA x AL area ALOaA.

When / = o, this area is x OA
Q
= o

;
when / = /

5 ,
its value is

OA
5 x = o

; beyond /
5 ,
ALOaA is below the line OT, or is

negative. Thus at t
gy t
Pal
= /

9 ,9/a,
= <9/

9
x //49 ,

the thermo-

electric power t^A^ being negative, and the area lying wholly

below OT.

Similarly, at /, t
P

bl
= t

tpbl
= area BLObB. When / = o, this

area is x OB
Q
= o

;
between / = o and / = /

,
the area is nega-

tive, or below OT; at t^ t
&,
and t

lQ ,
the neutral temperatures for

B and lead, the area is zero
;
from / to t

&
the area is positive,

and from /
6
to /

10 negative.

At *, t
Sa
= t x (-tan ^J =AQ

A" x AA"/AQ
A"=AA". Since

tan
t
O
al

is constant and negative (0al greater than 90 and less

than 1 80), Sa
= AA" is always positive, or AA" is always

drawn upward from A.

The quantity t
Sa dt is equal to AA" x A"A'" = area Aaa'A'A.

In like manner, at t\ t
S

b
=t x (-tan fl^BJB"* BB

ff

jBQ
'Bff

= BB". When the point B" is below the point B (t
6

bl
less

than 90), 5
6
= BB" is negative. Thus from /=o to /=/

4 ,

and from t = /
7

to / = /
10 ,

5
6

is negative ;
while from t = /

4
to

/ = /
g ,
5

6
is positive. At the temperature / = /

/r
it has the posi-

tive value BJ'BJ.
The quantity-^, dt is equal to area BB'B'"B"B = area

At the temperature /, ^^ =^ -
tpbl
=LALB = BA. BA

is positive, or A is above B, from / = o to / = /
3 (a neutral tem-

perature for the thermocouple AB) y
and from t = /

7
to / = /

9 (ad-

ditional neutral temperatures for the couple ^^), but is negative

(A below .#) from / = /
3
to / = *

7
.
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The total thermal electromotive force in a circuit consisting of

the two metals A and B, with junctions at temperatures t^
and

This result can be obtained also from the relation (13). For

5 _ <fc = area Aaa'A'A + area Bbb'B'B

, (i) + area MW?i (2)

andA ~ if* = area ^WA4. (3)
~ area A.a^B.A, (4)

HenceA = (0 + (
2
) + (3)

-
(4)

- area A^
as proved otherwise above.

If one junction of the thermoelement AB is kept at the con-

stant temperature tv while the temperature t of the other junc-

tion, at first equal to tv is gradually increased, ht^ab
w^ increase

from zero, its value when t = tv until t = ty when it has the value

Va^oft
= area A

\
Af\Ar If t is increased beyond /

3,
to t' for

instance, the e.m.f. will diminish, since

Aff^A^A^A^ (2)

tPab being negative between / = /
3
and t = tr When area (2)

becomes equal in magnitude to area
(i), t^ab

is zero, and t' is

a temperature of inversion for A and B with respect to tr As /

is still further increased, the e.m.f. increases negatively until /=/
7 ,

beyond which it increases algebraically, or decreases negatively,

with another inversion at^
8'(area BJA^A^B^' = ar^A^^A^A^),

until / = /
9

. Beyond this temperature tlfl?ab increases negatively,

inverting again at BIV and thereafter remaining negative.
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When ^ = t
z
and /= /

7 ,
the Peltier e.m.f.s at both junctions

are zero, no heat being there absorbed or evolved, and
t^ab

=

A =
(negative) area Af^A^ (i)

=
^(S^-S^dt. The
J ts

Temperature in Degrees Centigrade

Fig. 83.
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e.m.f. is negative, or the current flows (if the circuit is closed)

from B to A across the hot junction at temperature tr

When
t,
= /

7
and t = tv tlt

^
ab
=

tlt
T
ab
= area A^BJ'A^ (2),

and is positive, or directed from A to B across the hot junction.

If t
l
= /

3
and / = /

9 ,
the Thomson e.m.f. s are still the only

e.m.f.s in the circuit and
t.^ab

=
(i) (2). Since (i) is greater

than (2), the resultant e.m.f. is negative, or the current flows from

B to A across the hot junction.

For an extended discussion of the electron theory of thermal

electromotive forces reference must be made to a previously

mentioned article by Drude, Ann. der Physik, III., p. 369, 1900.

13. The Intrinsic E.M.F. of a Reversible Voltaic Cell. The

Theory of Kelvin and von Helmholtz. By a reversible cell is meant

a cell in which all the processes, both chemical and physical,

are completely reversed when the direction of the current is

reversed, the Joulean evolution of heat excepted. Such, for

example, is a Daniell cell, which consists of a zinc electrode

immersed in a solution of zinc sulphate and a copper electrode

immersed in a solution of copper sulphate, all contained in the

same vessel, interdiffusion of the two solutions being prevented

by a porous cup between them or by other means. When a

charge Q ( 5, IX.) passes through the cell from the zinc (V= 2)

to the copper (c
1
'=

2),
one half gram ion of zinc goes into solu-

tion and one half gram ion of copper is deposited on the copper

electrode
;
and when the same charge is passed through the cell

in the opposite direction, one half gram ion of copper goes into

solution and one half gram ion of zinc is deposited on the zinc

electrode. The thermoelectric processes occurring at the con-

tacts of the dissimilar substances are also reversible with the

current. The Joulean heat, which is proportional to the square
of the current and irreversible, may be made as small as desired

in comparison with the energy transformed reversibly, which is

proportional to the first power of the current, by diminishing the

strength of the current.
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Let the e.m.f. of a reversible cell at the absolute temperature

/ be denoted by W. Let the electrodes be connected up to the

plates of a continuously adjustable condenser so that by grad-

ually diminishing or increasing the capacity a charge may be

sent very slowly in either direction through the cell, the Joulean

heat being made negligible.

Let the system now be carried through a reversible cycle as

follows : (i) With the cell at the temperature t, let the capacity

of the condenser be slowly increased until a small charge Q/n,

where n is a large number, has passed through the cell. The

voltage of the cell remaining constant through the process, ex-

ternal work will be done by the cell equal to WQ/n. The

energy of the condenser is increased by ^9Qfri9
and the me-

chanical energy of the system increases by the same amount

( 55, !)
The source of the energy transformed by the cell is, in general

partly chemical and partly thermal. (The law of Volta for a

metallic circuit at uniform temperature does not hold for a circuit

partly electrolytic.) Let J denote the net energy transformed

from chemical into electrical energy when a charge Q traverses

the cell at the temperature / in the direction of the e.m.f. Then,

if /is not equal to WQ, an amount of heat

is absorbed by the cell during the above process, according to

the principle of the conservation of energy.

(2) Let the cell be cooled to the temperature t dt. During

the process an amount of thermal energy which may be made

wholly negligible by sufficiently diminishing dt, is abstracted

from the cell.

(3) With the cell at the temperature t + dt, let the capacity

of the condenser be diminished until a charge Qjn has passed

through the cell in the opposite direction. Then, if H' denotes

the quantity of heat abstracted from the cell during this process,

fft = Qfn
.

(\p _ d^jdt dt)
_ i/(/_ dj\dt dt)
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(4) Finally, let the cell be heated to the original temperature

t, a negligible quantity of heat, sensibly equal to that abstracted

in (2), being absorbed. The cycle is now complete.

Applying the second law of thermodynamics to the cycle, we

have

(H-Hf

}lH=dtjt
that is

or

which, since djjdt is, according to experiment, sensibly zero,

may be written

(28)

If d"Wjdt is positive, ^Q is greater than 7, or the work done by
the cell is greater than the energy supplied by the chemical re-

actions, and a quantity of heat H= WQ J is absorbed by the

cell and transformed to make up for the deficiency. If dWfdt is

negative, heat is given out by the cell. If dtyjdt is zero, which

is nearly true in the case of a Daniell cell,^QJ}
and no ther-

mal energy is on the whole transformed.

(28) may be written

(29)

which is von Helmholz's formula. From this formula the e.m.f.

of a reversible cell can be calculated after observing J, Q, t
y
and

dty jdt. The agreement between the e.m.f. calculated in this

manner and the e.m.f. determined by direct experiment is, in

many cases, very close.

14. Intrinsic E.M.F. at a Single Interface. Single Difference

of Potential. The formula of von Helmholz, just developed for a

complete electrolytic cell, which may contain several electrolytes

and -always contains two electrodes, with an intrinsic e.m.f. at

each interface (and sometimes throughout each electrolyte) can
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obviously be applied also to the intrinsic e.m.f. at any one of the

interfaces. For example, W may denote the intrinsic e.m.f. act-

ing from zinc to zinc sulphate in a Daniell cell, J the heat de-

veloped (if the energy is not used electrically) by the passage of

one-half gram ion of zinc from the solid state into zinc ions, and

d"tyjdt the temperature rate of change of the e.m.f. Then

The actual e.m.f. of the complete cell is equal to the algebraic

sum of all such included e.m.f.s, and the actual temperature co-

efficient to the algebraic sum of all the individual temperature

coefficients.

The intrinsic e.m.f. acting from the zinc (or other substance) to

the electrolyte will develop a potential difference equal to M* in

magnitude but directed from the electrolyte to the zinc (or other

substance). Such a potential difference is called a single differ-

ence ofpotential. There is no satisfactory method of determining

experimentally such a difference of potential, nor can it be com-

puted from the above equation, sinceJ can not be determined for

any one kind of ions, as zinc ions, alone. For when one kind of

ions goes into solution, another kind goes out of solution.

(29) is seen to include (19) as a particular case.

For additional information on the theory of the voltaic cell,

single potential differences, etc., reference must be made to treat-

ises on electrochemistry, where also references to the original

literature may be found.



CHAPTER XI.

MAGNETS. MAGNETOSTATIC FIELDS.

1. Magnets. A bar of steel placed in a long helix of wire tra-

versed by an electric current is found, on removal from the helix,

to have acquired certain properties analogous, in many respects,

to those of an electret, and is said to have been magnetised or to

have become a magnet. The same name is applied to any body

possessing these properties, however acquired, some of which

will be described in the following pages.

2. Electric and Magnetic Analogues. Just as an electret and

the region outside it are the seat of electric induction or dis-o

placement, so a magnet and the region around it possess mag-
netic induction. To the electrisation of the one corresponds the

magnetisation of the other. Tubes of induction run through the

magnet, entering at one end and issuing at the other, being

continuous like an electret' s tubes of displacement. There is,

however, no magnetic analogue of a true electric charge, or dis-

continuity of electric displacement. Magnetic conduction and

magnetic conductors do not exist, a tube of induction cannot be

cut in two thus developing true magnetic charges, hence the in-

duction is always continuous or the tubes of induction are always

closed. Analogous to the electric intensity is the magnetic in-

tensity, connected with the induction by a relation similar to that

which connects electric intensity and displacement. Substances

differ magnetically, or possess different inductivities, just as they

possess different permittivities. Discontinuities in the magnetic

intensity occur where the tubes of induction pass from one sub-

stance to another of different inductivity or through a substance

whose inductivity continuously changes. Where these discon-

265
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tinuities of intensity exist are apparent magnetic charges, or quan-

tities of magnetism, analogous to apparent electric charges, arising

from discontinuities in the electric intensity. The regions or

surfaces in which the discontinuities occur are called the poles of

the magnet. If the magnet is long and slender and the induction

within it uniform and in the direction of its length, the poles are

approximately concentrated at its ends. In every case, however,

poles are more or less distributed.

Upon the poles of a magnet in a magnetic field, as upon the

poles of an electret in an electric field, forces are found to exist,

and from these forces and their seats the strengths of the poles

are defined and their distribution determined, greater or less forces

corresponding, in general, to greater or less pole strengths, and

more or less restricted seats of the forces to more or less con-

centrated poles.

3. Positive and Negative Magnetic Poles. That pole of a mag-
net toward which, while in the magnetising helix, a right-handed

screw placed with its axis coincident with that of the helix would

have to be translated in order to rotate in the direction of the

current around the helix is called the positive pole of the magnet,

and the other pole the negative pole. The terms positive and

negative in this connection are purely conventional, but are justi-

fied as in electrostatics ( I, I.).

4. The Earth's Magnetic Meridian at a Point. The Axis of a

Magnet. North and South Magnetic Poles. A magnet so sus-

pended or otherwise supported near the earth as to have perfect

freedom of motion about its center of gravity will always take

up a position with a definite line connecting the positive and

negative poles, or rather a definite direction in the magnet, point-

ing in a definite geographical direction. This direction is, in

general, northerly and southerly, and the vertical plane through it

is called the earth's magnetic meridian at the point. The posi-

tive and negative poles point in the northerly and the southerly

direction, respectively, and are therefore called north and south
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poles, respectively. The definite direction in the magnet, from

the negative to the positive pole, is called the a&is of the magnet.

This term is also applied to a certain line, with this direction, in

the magnet ( 24).

5. The Force Between Two Magnetic Poles. Between two

magnetic poles a force always exists, repulsive or positive if the

two poles have the same sign, and attractive or negative if the

poles have opposite signs.

This force between two magnetic poles can be measured by

any kind of a dynamometer provided that the magnets are so

long and their poles so nearly concentrated at the ends that the

poles under experiment are sensibly outside the field of influence

of the other poles.

The force decreases rapidly with the increase of the distance

between the poles.

At a given distance apart the force between the poles depends

upon the medium in which they are immersed.

At a given distance apart and in a given medium the force is

different for different pairs of poles.

6. Coulomb's Law of Force for Concentrated Poles of Permanent

Magnets in an Infinite Homogeneous Isotropic Medium, Consider

three approximately concentrated poles A, B, C, belonging to

three very long, very slender, cylindrical magnets of very hard

steel magnetised in a slender solenoid or helix, longer than the

magnets, traversed by an electric current. The more nearly the

poles are concentrated, the greater the ratio of the length to

the diameter of each magnet, the greater the coercive intensity

of the steel
( 25, XIII.), and the more nearly homogeneous

and isotropic the surrounding medium, the more nearly are the

following relations found by experiment to be true :

The force between any two of the poles varies inversely as the

square of the distance between them.

The force between two of the poles, as A and B
t
at any dis-

tance d apart in a given medium I bears to the force between the
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same poles at the same distance d apart in another medium, 2,

the same ratio (p2 /v< } ,
see below) which the force between another

pair, as A and C, at any given distance d' apart in medium I

bears to the force between A and C at the same distance d' apart

in medium 2.

If FM denotes the force between the poles A and C in any

medium at any distance d apart, and F
bc

the force between the

poles B and C in the same medium at the same distance d apart,

then, whatever this distance d, and whatever the medium, Fac

bears to F
br
a certain definite and constant ratio, and this ratio is

unaltered if the pole C is exchanged for any other similar (con-

centrated) pole.

Hence there is associated with each of the two poles A and B
a constant, which we shall call its pole strength, or quantity of

magnetism, such that the force between one of these poles and

a third concentrated pole is proportional to this constant or pole

strength. But the same thing is true of the third pole also.

Hence the force between two poles is proportional to the strength

of each, that is to the product of their pole strengths. The

strength of a pole will de denoted by m with a subscript to iden-

tify the pole when necessary.

Putting the above results together, we have, if F denotes the

force between two concentrated poles of strengths m^ and m
z

when the distance between them is L, the law of Coulomb :

F=Am
l
m

2/pL
2

(i)

H being a constant of the medium in which the poles arc im-

mersed, called its inductivity (analogous to electric permittivity),

and A a constant depending on the units in which all the other

quantities are expressed.

If, as in this book, the c.g.s. system of mechanical units is

adopted, if n is expressed in terms of the inductivity of free

aether (denoted by /XQ)
as unit inductivity, and if A is put equal to

-f i /47T, ml
and mv are, by definition, expressed in terms of the
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rational electromagnetic (REM) unit magnetic pole strength. With

these conventions, the above equation (i) becomes

F= m
l
m

2/47riJLL
2

(2)

If m
v
and m

2
are poles of the same kind (both positive or both

negative), F is positive or repulsive ;
if the signs of the poles are

opposite, F is negative, or the force is one of attraction.

From the nature of the conditions assumed above it is clear

that the law can not be established rigorously by direct experi-

ment. The best proof of the law is the general agreement be-

tween experiment and a magnetic theory based largely upon the

law. The physical reason for the existence of the law of inverse

squares is similar to that for the law of inverse squares in electro-

statics, as will be apparent when the magnetic flux and Gauss's

theorem for magnetism have been discussed
( 13 and 14).

7. The Magnetic Field. Magnetic Intensity. Any region in

which a magnetic pole is acted upon by a mechanical force in

virtue of its magnetism is called a magnetic field. Such a field is

the neighborhood of a magnetic pole, or the region about the

earth, or the region about a wire carrying an electric current.

It follows from experiment that the force F acting upon a con-

centrated magnetic pole at any point of a magnetic field is pro-

portional to its pole strength m (provided that the distribution of

magnetism originally accompanying the field remains sensibly

unaltered on the introduction of the pole). That is,

F-Hm (3)

The proportionality factor H is called the magnetic intensity at

the point. H is evidently a vector specifying the state of the

field at the point, its direction being that of the force upon a

positive pole (or opposite to that of the force upon a negative

pole), and its magnitude the magnitude of the force upon unit

pole placed at the point.

When F is expressed in dynes and m in the REM unit, H=
F/m is, by definition, expressed in the REM unit magnetic in-

tensity.
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(2) is a particular case of (3).

The term magnetic field is also used to denote the collective

intensity in a region instead of the region itself. The direction

of the field at any point is then the direction of the intensity, and

the strength of the field \s, the magnitude of the intensity.

8. The Strength of a Distributed Pole, By (3), which may be

written

m = FjH ;_. (4)

the strength of any magnetic pole when placed in a uniform field

may be defined as the ratio of the force acting upon the pole to

the magnetic intensity of the field (which can be determined by

(3) with a concentrated pole). A general definition of pole

strength consistent with (2) and (4) is given in 21.

9. The Positive and Negative Poles of a Magnet Have the Same

Numerical Strength, or the total quantity of magnetism in any

magnet is zero. For if a magnet is placed on a float in a vessel

of water, so as to be perfectly free to move in any direction, it

experiences no translatory force in any direction when the sur-

rounding field is that of the earth alone. Thus the force upon

the; positive pole is exactly equal and opposite to the force upon
the negative pole. Hence, since the intensity of the earth's field

throughout the region occupied by the magnet (and, in general,

throughout a much larger region) is sensibly uniform, the pole

strengths are equal and opposite by (4), and their algebraic sum

is zero. See also 21.

10. Magnetic Induction. Analogous to electric induction or

displacement is a quantity called the magnetic induction, defined

as the product of the inductivity and the magnetic intensity.

Thus, if the magnetic induction is denoted by B, we have

B = H (5)

B is obviously a vector with the same direction as that of H,

since p (in isotropic media, which alone will be considered here)

has no relation to direction.
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When /JL
and H are expressed in REM units, B /zH is said

to be expressed in the REM unit magnetic induction.

A substance in which magnetic induction exists, that is, a sub-

stance which supports a magnetic field, is said to be magnetised or

to be in a state of magnetisation. If the induction and inductivity

are uniform throughout, the magnetisation is said to be uniform.

The intensity of magnetisation is defined in 21.

11. Lines and Tubes of Magnetic Intensity and Induction are

defined in exactly the same way as lines and tubes of electric

intensity and induction, except that magnetic quantities are sub-

stituted for electric throughout.

12. The Superposition of Magnetic Fields. The statements of

12, I., and those of the paragraph following (2), n, I., with

reference to the electric field hold also for the magnetic fielcl, ex-

cept that the medium supporting a magnetic field never breaks

down as a result of magnetic stress (another illustration of the

non-existence of magnetic conductivity).

13. The Magnetic Flux, <3>, across a surface 5 is defined in ex-

actly the same manner, analogous terms being substituted, as

the electric flux, 22, I., that is, as the integral over the surface

of the normal component of the induction. Thus

d>= B cos e dS =/ fiffcos 6 dS (6)

denoting the angle between B or H and the normal to dS.

14. Gauss's Theorem. The magnetic flux <f> outward across a

closed surface 5" surrounding any number of concentrated mag-
netic poles of total strength m is equal to m.* This follows for

an infinite or finite region containing a homogeneous isotropic

medium (/u
= constant, except within the magnets, whose vol-

* With the qualification made below. In every case, however, the flux of mag-
nectic intensity outward across a closed surface surrounding a real pole distributed in

any manner, multiplied by the inductivity of the medium surrounding the magnet,
is equal to the strength of the pole. For the analogous electric case see VI. and IV.
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umes are supposed negligible) from
(2), (3), (5), and (6), and a

process of reasoning exactly analogous to that employed in es-

tablishing the corresponding theorem in electrostatics.

The theorem holds only for concentrated poles, the flux from

a distributed pole being, in general, very different from m. (See

8, VI., for the corresponding electric case.)

The strength of a tube of induction. It follows from Gauss's

theorem exactly as in electrostatics that the flux across every

diaphragm of a given tube of magnetic induction in a homogene-
ous isotropic medium is the same. The magnitude of this flux

is called the strength of the tube. A unit tube is a tube whose

strength is unity.

We here assume, as in strict accord with experiment, that the

strength of a tube is constant throughout its length whatever

media it may traverse, whether the field is a pure magnetic field

or 'an electromagnetic field (XII.). For a pure magnetic field

(in which there is no intrinsic magnetisation) this result follows

from considerations exactly similar to those adduced to establish

the analogous proposition in electrostatics, except that two con-

centrated permanent magnetic poles, one in each medium, must

be employed instead of the closed electric condenser.

In deriving Gauss's theorem the (infinitely small) volumes of

the magnets and all their contents were neglected. It must

always be remembered, however, that, as stated in 2, magnetic

poles are the analogues of the poles of electrets, not of true elec-

tric charges. We may, for convenience, consider only the flux

from (or to) a pole in the surrounding medium, as we have just

done
;
but we must remember that the same quantity of flux

which emanates from a magnet at its positive pole enters the

magnet again at its negative pole, making the total flux across

any closed surface surrounding a single pole (or any number of

poles) zero.

That this statement is correct for a magnet with concentrated

poles follows from Gauss's theorem and the fact that if any mag-

net is broken across its axis into any number of pieces, each



MAGNETS. MAGNETOSTATIC FIELDS. 2/3

piece is a magnet with its positive and negative poles equal in

strength (numerically) and pointing in the same directions as the

corresponding poles of the original magnet.

When both the original magnet and these pieces are very long
and thin, as they must be to have approximately concentrated

poles, the pole strengths of the pieces and the original magnet
are sensibly equal.

We here assume that all tubes of magnetic induction are closed

like the tubes just considered, whether in a pure magnetic field

or in an electromagnetic field. This assumption is in strict

accord with experiment and with a more general definition of

magnetic induction given in Chapter XIII. Thus there is noth-

ing in magnetism analogous to the discontinuity of electric dis-

placement, or true electric charge.

Applying the above results to the element of volume at a

point, we get, obviously,

div B = o = div pH (7)

the flux into any element of volume across a part of its surface

being equal to the flux out of the volume across the rest of the

surface.

15. Magnetomotive Force or Gaussage. Magnetic Potential

and Equipotential Surfaces. The line integral of magnetic inten-

sity, ^H cos 6 dL
y along a path L from a point Pl

of a magnetic

field to a point P2
is called the magnetomotive force (m.m.f.) or

gaussage from P
l
to P

2 along the path L. When this integral is

the same along every path from P
l
to P

2
it is also called the

difference of magnetic potential between P
l
and P

2 ,
or the fall of

magnetic potential from P
l
to P

2
. From a process of reasoning

similar to that of 17, L, this is evidently the case in the field

of a magnet (unaccompanied by electric currents).

The unit gaussage is the gaussage which exists between two

points when unit work must be done to transfer a unit magnetic

pole from one to the other.
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The fall of magnetic potential from a given point P to a point

at an infinite distance from all magnetic poles is called the mag-
netic potential at P, and will be denoted by H. This symbol will

also be used to denote m.m.f. in the more general case.

A surface which is everywhere normal to the magnetic intensity

is called a magnetic equipotential surface.

16. The Mapping of Magnetic Fields. A magnetic field can be

completely mapped out by a system of tubes of induction of

equal strength or by a system of equipotential surfaces between

the successive surfaces of which the gaussage is constant. (See

20 and 25, I.)

Maxwell's method of drawing such systems of tubes and sur-

faces applies equally to the electric and magnetic cases. (See

7, n, 13 and 14, II.)

17. Magnetic Conductors. An imaginary substance, analogous

otherwise to an electric conductor, within whose volume there is

no magnetic induction or intensity when immersed in a static

magnetic field, and at whose surface all lines of magnetic inten-

sity and induction are therefore discontinuous normally, is called

a magnetic conductor. It will appear later (XVI.) that a perfect

electric conductor behaves like a substance of zero inductivity

and can under no circumstances support an electric or magnetic

field.

The (imaginary) true magnetic charge and surface density upon

such an imaginary surface are defined as the magnetic flux from

surface and the induction at the surface, respectively, in a manner

exactly analogous to that followed in electrostatics.

18. Magnetic Energy Density, Magnetic Tension, and Magnetic

Pressure. From the strict mathematical analogy existing between

the strength of a concentrated permanent magnetic pole and a

concentrated electric charge or the concentrated pole of a per-

manent electret, magnetic inductivity and electric permittivity,

magnetic intensity and electric intensity, magnetic induction and
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electric induction or displacement, it follows that, when ft is con-

stant,

(i) The magnetic energy per unit volume at any point of a

magnetic field is

(2) There is a tension parallel to the intensity equal to

r= \BH=^ pH2 = 1
B*jn (9)

(3) There is a pressure in every direction normal to the inten-

sity equal to ..

NT=\BH= \ nH~ = etc. (10)

It follows also, whether
//,

is constant or not, that the work

per unit volume done in magnetising a substance from a value

of the induction B = B
l
to a value B = B

2
is

dWjdT=\ HdB (n)

which reduces to (8) when /* is independent of H. This expres-

sion does not give the change in the magnetic energy when hys-

teresis
( 39, XIII.) is present, by far the greater part of the

energy used during the magnetising process being in most cases

dissipated.

(8) and (n) will be demonstrated later
(

12 and 29, XIII.)
in a different manner.

19. Magnetic Energy. Permeance. Reluctance. In exactly

the same manner, or by direct integration from (8), the energy con-

tained in the volume T of a tube of magnetic induction of strength

<I> between two equipotential surfaces between which the m.m.f.

if p is constant (independent of H) ;
and

fffHdLdSdB
(14)

SdB =
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in the general case, assuming no dissipation of energy. (14)

gives the work done in magnetisation in every case.

The ratio of the magnetic flux <l> through the tube to the

m.m.f. fl between the two equipotentials is called the permeance,
and its reciprocal the reluctance, of this portion of the tube.

Thus, if the permeance is denoted by Pand the reluctance by R,

P=i/R=3>/l (15)

The combination of (13) and (15) gives for the energy IV,

W= ifl<S> = IPS? = 13>'
2

JP= I&IR = i^4> 2

(16)

The electric analogue of permeance is evidently permittance.

[In the irrational systems of units also, Chapter XIV., Pand
R are defined by (15), the electrical analogy, requiring the intro-

duction of 477-, not being strictly maintained.]

20. The Laws of Refraction of Lines of Intensity and Induction.

It follows also, by a procedure exactly analogous to that of IV.,

2, or by inspection of the final equations of IV., 2, and the

analogies mentioned in 2, that in crossing an interface from a

medium I to a medium 2 a line of magnetic intensity or induction

is refracted in such a way that

I. The incident and refracted lines are in the same plane per-

pendicular to the interface at the point of incidence
;
and that

II. The ratio of the tangent of the angle of incidence to the

tangent of the angle of refraction is a constant for the given

media (when the inductivity ratio is constant) and equal to the

ratio of the two inductivities.

The equivalent equations are

HI sin
L
= H

2
sin

2 (tangential intensity continuous) (17)

B
l
cos 6

l
= B

2
cos *0

2 (normal induction continuous) (18)

tan 0j/tan 2
= /A^ (19)

21. Magnetic Surface and Volume Density, Intensity of Mag-

netisation, etc. Proceeding in the same manner and following

IV., 3-4, we get what follows.
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The normal discontinuity in the magnetic intensity at the inter-

face separating two media I and 2 (H^ and H
2 being reckoned

positive when directed from medium 2 to medium i) is

HI cos
l

- H
2
cos e

z

which is equal to [(/*2 /-OM/^]^ cos ^2 wnen there is no in-

trinsic magnetisation ( 22).

The magnetic surface density (analogous to apparent electric

surface density) at the interface is

*> = ^(ff, cos
l

- H
2
cos

2)
= (B2

- ^H2}
cos 6

2 (20)

which is equal to
[_(^z /O/A^]^ cos ^2 wnen there is no intrin-

sic magnetisation present. [In the irrational systems of units,

Chapter XIV., <r
f

is defined by the relation

47TCT' = /^(//j COS
l

- H
2
COS

ft,)]

The intensity of magnetisation of medium 2 with respect to

medium I is, by definition,

J=B2 -^H2 (21)

which is equal to [Gv/'O/pJ-^j when there is no intrinsic mag-
netisation. An equivalent definition ofJ is the magnetic moment

of medium 2 per unit volume (23, and 12, IV.). (21) shows

thatJ is the difference between the actual induction in 2 and the

induction which would exist there if /i2
were equal to /^ with the

same value of the intensity. [In the irrational systems of units

(Chapter XIV.), /is defined by the equation 47r/= B
2 fAl

ffy ']

If we write B
2
= p2

H
z , (21) may be written

(22)

*, which is written for (^fj,^, is called the magnetic suscepti-

bility of medium 2 with respect to medium I . [In the irrational

system of units K =
(/*2 <

"
1)/47r.]

(22) may be written

(23)
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(20) may be written

a'=J cos
2 (24)

The quantity of magnetism upon a surface S, or the pole

strength of the surface S, is

JS=fjcos0jiS (25)

which may be written equal to
\_(^2 A^)//^] 3> when there is no

intrinsic intensity.

The magnetic volume density in a region where
/-t

varies from

point to point is

p
> = ^ div H .&<&&*&$

(26)

(In the irrational systems of units, Chapter XIV., 47rp' =
A*!

div H.)
The total quantity of magnetism in a volume T is

fp'dr
= ^f div // dr (27)

The total quantity of magnetism within a volume r and upon
its surface 5 is

m =f<r'dS +fp'dr
=// cos

2
dS -f ^ /div J7 rfr (28)

The force upon a magnetic pole of strength m in a field of

intensity //is zr / x

(29)

The intensity at a point /* distant L from the element <^w of a

pole of strength dm "due" to dm is directed along L and is equal to

dH= dml^TT^L
2

(30)

The magnetic potential at a point due to any magnetic distri-

bution whatever is

II = I/4W/4J -fdm/L (31)

If medium 2 is uniformly magnetised, the magnetic flux

through the positive pole will be

cos
2
dS =fj cos

2
dS + ^fH2

cos BjtS

(32)
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which is equal to m only when the pole is concentrated. In

isolated magnets H2
is negative, hence <S> is less than m (except

in the ideal case mentioned).

The complete developments 7, IV., and I, V., are valid for

the magnetic case, magnetic quantities being substituted for the

analogous electric quantities.

22. Intrinsic Magnetisation, Etc. Corresponding to intrinsic

electrisation, intrinsic electric intensity, etc., are intrinsic magnet-

isation, of which we have an example in every magnet, intrinsic

magnetic intensity or force (denoted by Ji) maintaining the induc-

tion, etc. Intrinsic magnetic phenomena do not appear in most

substances, but are far more marked than the corresponding elec-

tric phenomena in others, notably iron, nickel, and cobalt, reach-

ing their maximum development in hard steel. The magnetisation

of these substances will be briefly discussed in 35-39, XIII.

Permanent Magnets. A permanent magnet is a magnet whose

pole strengths at any definite temperature are constant independ-

ently of the time, of the nature of the surrounding medium, and

of the proximity of other magnets and electric currents. Such a

magnet is purely ideal, but approximately permanent magnets

can be made of long cylinders of properly tempered hard steel.

Such a magnet, if not brought into too strong magnetic fields,

and if kept when not in use in an iron case will retain its moment

constant in air, even when the ratio of its length to the square root

of its cross-section is less than ten to one, for at least a year within

one tenth per cent. (Klemencic, Ann. der Physik, XII.
, 174,

1901). From the discussion of the permanent electret, 8, VI.,

it is clear that a magnet will be more nearly permanent the

greater the ratio of its length to its diameter (or other linear di-

mensions perpendicular to its length). It is also evident that,

other things being equal, the greater the coercive force (25,
XIII.) of a substance or the "harder" it is magnetically, the

nearer will be its approach to permanency of magnetisation,

when made up into magnets.
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23. Pure Magnetic Fields. It is now evident that the magnetic
fields for a great variety of ideal distributions can be obtained

from the analogous electric fields already discussed in previous

chapters, by substituting magnetic conductors for electric con-

ductors, inductivity for permittivity, true magnetic charge for true

electric charge, magnetic pole strength for fictitious electric

charge, magnetic intensity for electric intensity, magnetic induc-

tion for electric displacement, intensity of magnetisation for in-

tensity of electrisation, etc. Since the concentrated poles of

permanent electrets can be substituted for concentrated electric

charges, the electrisation within the volume of the electrets being

neglected ( 8, VI.), concentrated electric charges can be re-

placed in the magnetic analogues by concentrated magnetic poles,

the magnetic induction within the volumes of the linear magnets

being neglected. The approximate effects of magnetic conduc-

tors, except as regards the continuity or discontinuity of the

magnetic induction, can be obtained by using substances of great

inductivity. (The value of p for soft iron may, with vibration,

reach nearly 80,000 /u,
()

. See Ewing, Phil. Trans., 1885.)

Thus, Fig. 14 represents the field of a single concentrated

magnetic pole, the induction within the magnet, supposed infin-

itely thin, being neglected, and the opposite pole being supposed

infinitely remote.

Fig. 22 shows the field surrounding a single magnet with con-

centrated poles.

Fig. 60 shows the field about a concentrated magnetic

pole in an infinite medium of inductivity ^ separated by a plane

interface from an infinite medium of inductivity ^ for the

particular case in which A^//^
= 4, the field within the mag-

net being neglected and its opposite pole being infinitely

remote.

Figs. 60, 61, and 62 show the magnetic field in and around a

sphere of inductivity ft2 placed in an infinite medium of inductivity

ft 1 supporting an originally uniform field for the three cases in

which A^//
4
!
= o, 3, and infinity.
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Fig. 63 shows the field of an infinite circular cylindrical shell

of inductivity /JLZ placed in an infinite medium of inductivity /^

supporting (originally) a uniform magnetic field perpendicular to

the axis of the cylinders for the particular case in which /^//^
=

10. 14-15 were in fact developed largely on account of the

magnetic fields exactly analogous to the electric fields there in-

vestigated. The table (Table I., 14-15) is constructed with

values of c
2 /cl

or /^//^ common in magnetism but never occur-

ring in electrostatics. The use of spherical and cylindrical iron

shells as magnetic screens in protecting galvanometer magnets
from external fields is mentioned in 30, XII.

Fig. 67 shows the field of a uniformly magnetised isolated

sphere, Fig. 28, with the additions and modifications indicated in

6, VI., that of an infinite circular cylinder uniformly magnetised

at right angles to its length, etc., etc., every electric field having

its magnetic analogue, either ideal or real.

24. Resultant Magnetic Poles, Magnetic Axis. The total forcive

upon a magnet in a uniform field, as the earth's magnetic field,

is a torque tending to bring its axis into the direction of the

field. It is evident that the axis of the magnet, as defined in 4,

is the direction of the straight line drawn from the center of the

parallel forces due to the uniform field, as the earth's field, on all

the elements of the distributed negative pole to the center of the

opposite parallel forces upon all the elements of the positive

pole.

These centers may be regarded as the positions of the resultant

poles of the magnet ;
but it must be remembered that if the

forces upon all the elements are not parallel, as they are when
the magnet is in a uniform field, the positions of the centers, or

points of application of the resultant forces, are different, and

different for every different field. If the magnetism were uni-

formly distributed through spheres or in concentric spherical

shells, or over spherical surfaces, at the two ends of the magnet,
then it could easily be shown, as in the corresponding cases in
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electrostatics and gravitation, that the field outside the spheres,

and the resultant forces, would in all cases be the same as if the

poles were concentrated at the centers of the spheres. The

forces between the poles of two magnets at a distance, however,

will be approximately the same as if the poles were concentrated

in the positions of the resultant poles for a uniform field, just as

the gravitational force between two masses of irregular shape,

when the distance between them is considerable, so that the field

due to each is nearly uniform at the other, is nearly the same as

if the masses were concentrated at their centers of gravity or

centers of mass.

For convenience, the straight line drawn from the negative re-

sultant pole to the positive resultant pole, as well as its direction,

will be called the axis of the magnet. If the magnet is a cylin-

der of symmetrical cross-section and magnetised symmetrically

with respect to its geometrical axis, the geometrical and magnetic

axes will coincide.

25. The Torque Upon a Magnet in a Uniform Field, Magnetic

Moment. Let m denote the magnitude of the strength of each

pole, L the distance between the resultant poles, H the intensity

of the uniform field, and 6 the angle between the direction of the

axis and the direction of the uniform field. The torque tending

to diminish 6 is evidently 2.mH\L sin 0, and the torque tending

to increase 0, or the torque measured in the same direction as

that in which 6 is measured, is

T= - 2mH\L sin d = - mLH sin = -MH sin 9 (33)

if we put mL = M.

The quantity M= mL = T/ff sin is called the magnetic mo-

ment of the magnet (analogous to the electric moment of an

electret).

26. Gauss's Method of Determining Simultaneously the Moment

M of a Magnet and the Horizontal Component H of the Earth's

Magnetic Intensity. I. Determination ofMH . The magnet, A,

of moment Mis first suspended with its axis horizontal by a ver-
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tical fiber as free from torsion as possible, and set to vibrating

through a very small horizontal arc. The time T of a complete

vibration of the magnet, and its moment of inertia K about the

axis of vibration, are then determined. Then the productM H

is given by the equation

Mtt = 4T
2

K/r
2

(34)

to a high degree of approximation.

For, since T = Kd 26jdt
2

, (33) gives for the equation of mo-

tion of the magnet

Kd 2

6jdt
2 + M H sin (9 = o (a)

For very small amplitudes of vibration sin 6 = 6 very ap-

proximately and (a) becomes

= o (b)

which shows that the motion is simple harmonic in the period

T= 27r(K/MH )*,
a relation identical with (34).

If the torsion of the suspension and the arc of vibration are

large enough to have appreciable effects, they can be determined

and allowed for by methods given in Maxwell's Treatise, 452

and 738, and in laboratory manuals.

II. Determination of M/H. The magnet A is removed from

the suspension and mounted with its axis horizontal and per-

pendicular to the magnetic meridian in a line passing through the

center of a very small magnet B suspended by a fiber of negli-

gible torsion (the torsion, if not negligible, can be determined and

allowed for), the whole forming a magnetometer, in the position

occupied by the center of A in I., and the distance R
v
between

the centers of A and B is measured. R
v
must be great in com-

parison with Z, the distance between the resultant poles of A,

which is approximately equal to the length of the magnet.

The magnetic intensity, Hlt
at B due to the poles of A is per-

pendicular to H. Hence the resultant horizontal intensity at B
makes with the magnetic meridian the angle 6

l
whose tangent is

tantf.-^/H (35)
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The axis of the magnet B, in the meridian before the introduc-

tion of A, takes up a position parallel to the resultant intensity.

That is, on the introduction of A, B is deflected through the

angle Ov which must be measured.

Denoting the numerical strength of each pole of A by m and

assuming the magnetisation of A to be symmetrical, so that the

distance of each resultant pole is LJ2 from the center of A, we
have for H

i 4-

= M/2irpR* (i + L
2

/2R
2

)
= H tan

l (c)

if the fourth and higher powers of LjR l
are neglected.

Since (c) contains the unknown quantity L in addition to M
and H, the experiment is repeated with a different distance, R2 ,

between the centers of A and B, and the corresponding angle of

deflection #
2
is determined. Then

*

(i + 2

/2R
2

)
= H tan

2 (d)

Eliminating L from
(c)

and
(//),

we obtain

M/H = nrn(R* tan
l
- X' tan ^

2)/(^
2 -

Xfl (36)

From (34) and (36) both J/and H can be calculated, since
//.

for air is known and sensibly equal to
ytt
= i .

To eliminate the error arising from the (possible) lack of sym-

metry in the magnetisation of A, and errors in determining 6V

2 ,
Rv and R

2 ,
the angles are read for each value of R, with A

either east or west of B, first with the one pole of A toward B,

then with the other pole toward B. Then A is placed on the

opposite side of B and the angles read, for both directions of the

axis of A, with the same values of ^ and R
2

. The mean

values of 6
l
and

2
derived from all the readings are used in the

calculation of M\\\ by (36).
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27. The Comparison of Two Intensities. By vibrating the same

magnet successively in two fields of intensities H
l
and Hv we

obtain from (34),

(37)

By using the same magnet A to deflect a small magnet B in

two different fields of intensities H^ and Hv A being placed with

reference to the center of B and the direction of the field in each

case as described in II., and the distance between the centers of

the magnets being the same in both cases, we obtain from (35)

tan ejtomO^HJH^ (38)

The Comparison of Two Magnetic Moments. By vibrating in

the same field two magnets of moments M
l
and Mv and moments

of inertia about the axis of suspension K^ and Kv we obtain

from (34)

? (39)

The comparison may also be made by means of equation (36).



CHAPTER XII.

THE MAGNETIC FIELD OF THE CONDUCTION CURRENT.

1. Relation Between the Direction of a Current and the Direc-

tion of its Lines of Intensity, An electric conduction current is

invariably accompanied by a magnetic field surrounding and

penetrating into the conductor. In the case of a long straight

circular cylindrical wire carrying a current and immersed in a

medium of uniform inductivity the lines of magnetic intensity, as

will be shown in 15, are circles centered on the axis of the

wire in planes perpendicular to the axis, and the direction of each

line is related to the direction of the current as the rotation to

the translation of a right-handed screw or as the direction of

Line of Magnetic
Intensity

Current

Fig. 84.

motion of the hands of a clock to the direction of a line drawn

from the face to the back. If for circle the words closed curve

are substituted, these statements hold good in all cases. The

relation between the direction of a current and that of its lines

of intensity is shown in Fig. 84.

2. Positive Directions Around and Through a Circuit. The

positive direction around a circuit bears to the positive direction

through the circuit, by definition, the same relation as the direc-

tion of rotation of a right-handed screw bears to its direction of

286
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translation. Thus if AB, Fig. 85, is chosen as the positive di-

rection through the circuit CDEC, the positive direction around

the circuit is CDEC as indicated by the arrows. If the direction

r\

Fig. 85.

of the current in a circuit is chosen as the positive direction

around the circuit, as will be done in this chapter, the magnetic

flux connected with the current will always thread the circuit in

the positive direction.

3. Vector Product of Two Vectors. Let A and B denote two

vectors intersecting at an angle 6 less than TT. If C
t
a third

vector, is equal in magnitude to the product AB sin 0, and is

perpendicular to their plane and so directed that a right-handed

-VAB sin

,=VBA sin

Fig, 86.

screw progressing along C in the positive direction would rotate

from A to B, Fig. 86, then C is called the vector product of A
and B, and is written

C= VAB sine
(i)
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If C has the opposite direction, as indicated by the dotted line

in the figure, it may, consistently with (i), be written

C= - NAB sin = MBA sn

4. The Law of Ampere, If a very long and thin cylindrical

conductor carrying a current is immersed in a uniform magnetic
field perpendicular to its direction, the two fields will combine to

form the resultant field shown in cross-section in Fig. 87, the

resultant field being stronger where the component intensities

have the same general direction, and weaker where their gen-
eral directions are opposite. The pressures and tensions in the

field will then give rise to a force upon the conductor directed

from the stronger to the weaker part of the resultant field, and

thus, as the figure shows, perpendicular to the wire and to the

originally uniform field. In the figure the conductor, perpen-
dicular to the paper, is shown as a small circle

;
the current

flows downward and the original field is directed to the left, or

the current flows upward and the original field is directed to the

right. In either case the force upon the conductor is directed

toward the top of the page. This is a simple case coming
under the law of Ampere, to which we proceed.

Consider a wire of negligible cross -section carrying a current /

in a magnetic field of any kind. Let dL denote the element of

length of the wire at any point P, and let B denote the magnetic

induction at the point* Let 6 denote the angle between / and

B. (For convenience we shall here treat / as if it, as well as the

current density i, of which it is the surface integral, were a vec-

tor.) Then the results of experiment may be summed up in the

following statement, which constitutes Ampere's law in the first

form :

The wire is acted upon by a force F or a torque T which may
be found by assuming each element of the wire of length dL to

be acted upon by a force

dF= i {a- VIB sin dL (2)

* See Lord Rayleigh, Philosophical Magazine, June, 1898.
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where a is a constant depending on the units in which the other

quantities in (2) are expressed, and taking the vector summation

or integration of all the elementary forces dF along the part of

Fig. 87.

the wire considered, or of all the elementary torques dT arising
from the forces dF. The force upon dL is always from the

stronger to the weaker part of the resultant field.
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If the wire is not so thin that its cross-section can be neg-

lected, it may be considered split up into elementary current

tubes and the summation or integration applied to all the ele-

ments of each tube.

5, The Rational Electromagnetic Unit Current. If in the above

equation dF and dL are expressed in c.g.s. units, / in the RES
unit, and B in the REM unit, a is found to have the magnitude

3 x io10

(see 4, XIV.). The REM unit current is defined as

a unit current a times as great as the RES unit current. Hence,

if we express / in terms of this unit, I la [if
a is assumed to have

zero dimensions (XIV.)] will disappear from the above equation,

which thus becomes
dF=VIB sin 6 dL (3)

(?
"fc^

Electric Units in the Rational Electromagnetic Unit System.

If the electric current is expressed in terms of the electromag-

netic unit, however, the relations q = //, dHjdt=RI
2

,
= RI

t

etc., will not remain true unless the units of charge, resistance,

e.m.f., etc., are redefined. Units so chosen as to make these re-

lations, or any of the relations which precede or follow, correct

when /, or any other quantity occurring in the relations, is ex-

pressed in the REM unit current are defined as the REM unit

charge, resistance, etc.

Magnetic and Electromagnetic Units in the Rational Electro-

static System. We have not hitherto defined any pure magnetic

unit, such as magnetic pole strength or magnetic intensity, in the

electrostatic system ;
but from the above definitions of the REM

unit current, charge, etc., in terms of the RES units we can pro-

ceed immediately to such definition : Units so chosen as to make

(3)
and all the equations which follow in this work, as well as all

those of Chapter XL, correct when 7, or any other quantity

occurring in the equations, is expressed in the RES unit are

defined to be the rational electrostatic units of the quantities

concerned.
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Henceforth every equation will be expressed in one system of

units throughout, like all preceding equations except (2), all the

quantities being expressed in RES units, or else all in REM units.

The general subject of electric units is discussed in Chap. XIV.

7. The Force Upon a Straight Wire in a Uniform Magnetic Field.

As a particular case falling under Ampere's law, we shall con-

sider first a straight wire in a uniform magnetic field, and shall

find the force upon a length L of the wire.

(1) If the wire is parallel to B, sin 6 o everywhere, hence

F=o.

(2) If the wire is perpendicular to the field, sin = i every-

where, and F= IBL ^
The resultant field (a uniform field and the field of 14 super-

posed) and the direction of F are shown in Fig. 87 (from Max-

well's Treatise, 496).

(3) If the wire makes an angle 6 with B

F= IB sin 6L =IBL sin (5)

The force is the same, both in magnitude and direction, as

would be exerted on the wire in a field B sin 6 perpendicular to

L, or upon a wire of length L sin 6 in a field perpendicular thereto.

8. A Linear Circular Circuit in the Radial Field from a Concen-

trated Magnetic Pole of Strength m Placed (1) at its Center. (Fig.

88.) The magnetic induction and the electric current in the lin-

Currertt down

Force on Olrcutl

Fig. 88.
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ear circuit are obviously everywhere perpendicular. The force

upon the circuit is

F= if B sin dL = I(m/47rR
2

)27rR = mI/2R (6)

The direction of the force is downward into the paper in Fig.

88 and to the right in Fig. 88$, when the current has the direc-

tion indicated and m is positive. If the sign of either is changed,

the direction of /MS reversed.

(2) On the Axis of the Circle at the Distance d from its Center.

If the pole is placed on the axis of the circle at the distance d

Fig. 89.

from its center, Fig. 89, B sin = B = mj^d2 + R2

),
and the

force upon each element of length dL of the wire is

dF= IB sin OdL = Im/47r(d
2 + R2

)
dL

This force may be resolved into two components, one

dF' = dF sin a = mlRj^d 2 + R2

)*
dL

in the direction of the axis
;
and the other

in the direction of the radius. The second component tends to

increase or diminish the radius of the wire according as the flux

from the pole threads the circuit in the positive or negative direc-

tion through the circuit, but gives rise to no resultant force upon

the circuit as a whole in any direction. The first component,
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summed up for the whole length of the wire, gives, for the total

force upon the wire in the direction of the axis,

F= f dF f = mIR2

/2(d
2 + R2

)*. (7)

When d= o, (7) reduces to (6).

9, An Infinite Straight Linear Wire in the Radial Field from a

Concentrated Magnetic Pole of Strength m Distant d from the Wire.

(Fig. 90.) In this case F has the magnitude

Fig. 90.

F= I$B sin dL= Imj^ -fi/(L
2 + d2

) dj(L
2 + d2

)* dL

= Imdl2ir fi /(L
2 + d2

)*
- dL = Im^ird -

f^ sin dQ (8)

since L = d cotan 0.

The relative directions of F
t B, and the current are obvious.

10. A Closed Plane Circuit of Any Form in a Uniform Magnetic

Field. (Fig. 91.) Let the plane of the circuit be vertical and

the field horizontal. Let z
t x, be the coordinates of any point

P of the circuit, referred to its highest point as origin, the

positive direction of Z being taken as the direction of the current

at O, and the positive direction of X vertically downward. Let

a denote the angle between B and the positive direction of the

Z axis.
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Let B be resolved into two components B sin a and B cos a

perpendicular and parallel, respectively, to the plane of the circuit.

Owing to the component B sin a, there will be an outward

force dF
xz

IB sin a dL upon every element of the circuit per-

. 91.

pendicular to its length dL and to B sin a in the plane of the

circuit. Resolving this force along OX and OZ> we have, if dL

(taken in the direction of the current) makes an angle /3 with OX,

dF
e

dF
xtt

cos /3 = IB sin a cos /3 dL = IB sin a dx
and

dFx = dF
xn

cos (90 + /3)
= - IB sin asm &dL= IB smadz

By integration along the whole circuit

F
n
= IB sin

a.$dx
= o

and F
x
= IB sin a fdz = o

Hence the forcivc due to B sin a, if not zero, is a torque. Since
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all the forces dF
xs

are in the plane of the circuit, there can be no

torque about an axis in this plane. Let therefore O Y (the posi-

tive direction through the circuit), perpendicular to 6Mfand OZ
at 0, be taken as the axis of moments. The force dF

xz
on the

element dL gives rise to a torque

dT= dF
x
z dF

z
x = IB sin a zdz IB sin a. xdx

= IB sin a (zdz + xdx]

By integration around the circuit we obtain

T= dT= IB sin a. (zdz +fxdx)
= o

Hence, so far as the component B sin a. is concerned, there is

no resultant torque or force upon the whole circuit. Under the

action of the force dF
xx

IB sin a dL, however, each element of

the circuit tends to move outward or inward according as sin a

is positive or negative, i. e., according as the flux of the uniform

field threads the circuit in the positive of negative direction

through the circuit
;
thus the circuit, if made of elastic material,

would expand or contract.

The component B cos a gives rise to a force dF
y
on the ele-

ment dL perpendicular to the plane XZ of the circuit. If OY is

taken as the direction of a positive force,

dF = IB cos a cos /3 dL = IB cos a dx

and the total force upon the circuit in the direction OYis

F = CdF = - IB cos a fdx = o
y \) y u

Hence the forcive, if anything, is a torque. Since there is no

force on any element in the direction OZ or Z0
t
there can be no

torque about OY. The torque about OZ is

T
g =fdT, =$xdFy

= $xIB cos a dx = IB cos afxdx = O

The torque about the axis OX is

T
x =fdTx

= -fsdFy
= IB cos afzdx

= IB cos afdS = IB cos a. S

if vS denotes the area of the circuit.
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Thus the total forcive upon the circuit is a pure torque

T=fcosaS (9)

around a line in the plane of the circuit and perpendicular to the

original magnetic field, the positive direction of the torque being

always related to the positive direction of OX as the rotation to

Current down

\C* *^v Torque

Current up

Fig. 92.

the translation of a right-handed screw with OX as axis. When

the torque is positive it tends to increase the angle a (see Fig.

93 ).

If there are n turns in the circuit, the torque is ;/ times as

great.

If denotes the angle between the normal to the circuit (in the

positive direction, 2) and B, the torque tending to increase the

angle 6 is
T== _ JBS ^ Q= _ IflSH sin (lo)

so that the circuit behaves like a magnet of moment 7/^5.

When = o, T o, and the circuit is in stable equilibrium ;

and when 6= 180, T=o, and the circuit is in unstable equil-

ibrium. For in the former position the torque brought into

existence by a slight change of 6 will tend to restore equilibrium ;

while in the latter the torque developed by a similar change in

will tend to increase the displacement.

When = o and T=o, the circuit encloses the maximum

magnetic flux possible, a quantity US due to the uniform field,
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and that connected with its own current
;
the uniform flux, in

this position of the circuit, being directed through the circuit in

the positive direction.

When 6 = 90 or 270, the circuit encloses no flux of the

uniform field, and the torque is a maximum.

The circuit thus tends to move in such a way as to enclose

the maximum flux possible.

We have already noted the tendency of a closed circuit carry-

ing a current to expand or contract when placed in a radial field

or a uniform field, according as the magnetic flux of this field

threads the circuit in the positive or negative direction through
the circuit. That is, the circuit expands or contracts according

as the expansion or contraction will increase the flux through
the circuit in the positive direction, or diminish the flux through
the circuit in the negative direction. For the same reason

(Ampere's law) the circuit would tend to expand if only in its

own field, and thus to enclose as great a quantity of magnetic
flux as possible.

Similar considerations would show that in every case a circuit

carrying a current moves or tends to move in such a manner as

to make the magnetic flux threading it as great as possible.

11, Magnetic Intensity Due to any Current Distribution. From

Ampere's law
(first form) and the third law of motion we can

find, for any point P, an expression for the magnetic intensity

connected with any current distribution (Ampere's law, second

form).

To do this imagine the conductor immersed in a radial field

from a concentrated magnetic pole of strength m at the given

point P distant r from dL, an element of length of the wire or

current tube under consideration. Then the induction at dL due

to the pole is B = m/^r
2 directed radially from P. If we write r

in the numerator to indicate the direction ofB
t
r (= r numerically)

being measured from the pole to dL, this expression becomes

B =
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The force upon dL is therefore

dF= mf/47rr
3

- VdLr sin 6

for a linear current, dL being measured in the direction of the

current. Hence

F= ml/4.7r X vector integral of I /r
3

- VdLr sin jr*

Since F is the total force upon the circuit, there must be an

equal and opposite force, F
y upon the pole at P. Hence, ifH

denotes the magnetic intensity at P due to the current,

Current Tube

Fig. 93.

F=Hm =ml/4.7r x vector integral of (VrdL sin O)

or, if r is measured from dL to the point Py
instead of from P to dL,

Hm = ml/47r x vector integral of (V'dLr sin

whence

HII^TT x vector integral of (VdLr sin 6)/r
3

(i i)

The magnetic intensity at P is thus the same as if each ele-

ment of the current (IdL) produced at P an intensity

dH= //47rr
3 MdL r sin 6 (i 2}
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magnitude and direction (r being measured from dL to P) ; or,

numerically, 7/4?rr
2

sin 6 dL.

If the conductor has not a negligible cross-section, we have,

clearly,

(13)

and HIj^irr^- vector integral (VzV sin 6}dr (14)

Equations (i i)-(i4) express Ampere's law in its second form.

It must be remembered that the integral force F and the inte-

gral intensity H, not the elements dF and dH, are all that experi-

ment furnishes.

The relations between the quantities of equation (13) are

shown in Fig. 93. dL, 2, and r, are taken in the XY plane, and

the direction of PX
t perpendicular to the XY plane, is chosen to

coincide with that of i and dL.

If i (or 7) has everywhere one direction, then it is obvious

from (12) or (13), that there is no component of magnetic in-

tensity in this direction anywhere.

From all the above equations it is manifest that H does not

depend in any way upon the inductivity of the medium in which

the conductors are placed, provided that the medium is homo-

geneous and isotropic (so that the field from a concentrated pole

anywhere is radial).

In what follows all media will be supposed homogeneous and

isotropic unless the contrary is stated.

12. The Magnetic Field Around an Infinitely Long Straight

Linear Conductor Carrying a Current I. From equation (12), or

from the direct application of the third law of motion to (8), 9,

it is evident that the lines of intensity are circles centered on the

wire and perpendicular thereto, the direction of the lines around

the wire being related to the. direction of the current as the rota-

tion to the translation of a right-handed screw. The magnitude

of the intensity is, by (i i) or
(8),

H=F/m = I/2ird (15)

at a distance d from the wire.
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Maxwell's plane diagram of a part of the field is shown in Fig,

1 6, Chapter II.

Fig. 94.

13. The Magnetic Intensity at a Point on the Axis of a Circular

Linear Conductor Carrying a Current I. From (12), or, more
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readily, from the direct application of the third law of motion to

(7), 8, the intensity at a point on the axis distant d from the

center of the circle is, numerically,

H= F/m = IR2

/2(R
2 + d^ (16)

and is directed along the axis in the positive direction through

the circuit.

If the circular circuit contains n turns, closely wound, instead

of one
> H= nIR2

l2(R
2 + d^ (17)

and if there are two similar coils at the same distance d on oppo-

site sides of P, with their currents of the same magnitude and in

the same direction, H= n/j^^ +^ (18)

Fig. 95.

Putting d= o, we obtain for the intensity at the center of a

circular coil of n turns, //=

Maxwell's diagram of the field connected with a single coil is

given in Fig. 94, and that of the field connected with two similar
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parallel coils carrying the same current in the same direction in

Fig. 95 (see Maxwell's Treatise, 487, 702, and 713, from

which the figures are taken).

14. The M.M.F. Around an Infinite Linear Straight Wire Carrying

a Current I. The magnetomotive force along the arc P^P2 from

P
l
to Pv two points on the same line of intensity of radius d, Fig.

96 '
1S NX arc />/> = / arc P

l
P

2 J2-jrd
= I

j 2-rr (20)

where 6 denotes the angle subtended at the wire by the arc P^P2
.

The equation shows that the m.m.f. along the arc of any line

of intensity from a plane ABE to a plane CBE, intersecting in

Fig. 96.

the wire at the angle 0, is equal to I 0/2ir, independently of the

value of d.

The m.m.f, moreover, along any path not enclosing the cir-

cuit, as P^KP^ from Pv any point in the plane ABE, to Py any

point in the plane CBE, is the same, and equal to the value given

in (20). For the line integration of the intensity along any path

is compounded of integrations along lines of intensity, integrations

along radii, and integrations parallel to the wire. The integrals

in the last two directions are zero, since they are perpendicular

to the intensity, and the total integral along the lines of intensity

is as before, I dJ2ir.

The m.m.f. between two points Pl
and P

2
therefore depends

only on the strength of the current / and the fraction of a

circumference 6/2?r traversed in passing from P
l
to P

2
or from

PI to Pv
Thus the m.m.f. along a closed circuit not enclosing the cur-

rent, as the line P^KPff^ is zero, no fraction of a circumference
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being traversed, on the whole, in passing from P
l
to P

l again.

This may be shown also as follows : The m.m.f. along the path

PfiPfi is / 0/27T, and the m.m.f. along Pf^ is - f0/2ir. Hence

the total m.m.f. is zero.

The m.m.f. around a closed path linking with the current

a=/27T/27T=/ (21)

the directions of the m.m.f. and current being related like the

rotation and translation of a right-handed screw. If the closed

path links n times with the current, the m.m.f. is

O = nl (22)

This proposition will be generalised in Chapters XIII. and XV.
It will there be shown that the m.m.f. along any closed path

linking n times with any current is equal to n times the current.

The relation is known as the first law of circulation, and will be

assumed in what follows.

15. The Magnetic Field of an Infinitely Long Cylindrical

Homogeneous Conductor of Circular Cross-section. According to

11, Chapter VIII., the current density, z, is uniform throughout

the conductor and has the direction of its axis. Hence it follows

from the symmetry of the conductor and equation (13) that the

intensity at any point has no component in the direction of the

radius or axis of the conductor. The lines of intensity are there-

fore circles centered on the axis in planes perpendicular thereto.

The intensity at a point distant d from the axis of the conductor

can now be determined by applying (21).

Outside the conductor, that is, for a circle of radius d greater

than R, the radius of the conductor, we have, for the m.m.f.

around the circle in the direction of the intensity,

from which

(23)

just as for a linear wire carrying the same current.
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Inside the conductor, that is, for a circle of radius d less than R
t

H = H2ird = iird
2 = Id2

/

'R2

and H= idJ2 = l
r

d/27rX
2

(24)

At the surface of the conductor, where d R, (23) and (24)

become identical as

H=iRJ2 (25)

At the axis of the conductor, where d= o, (24) gives H= o.

Maxwell's plane diagram of the magnetic field within and with-

out the conductor is easily drawn by the method developed in

Chapter II. The lines of intensity and equipotential lines outside

the wire are exactly similar to the equipotential lines and lines

of intensity, respectively, of the diagram of the electrostatic field

of II, Chapter II. The development of the formulae for draw-

ing the lines of intensity so that the spaces between successive

lines correspond to tubes of equal strength is left to the reader.

If the same current flows along a homogeneous circular cylin-

drical shell of infinite length, the field outside the conductor is

the same as that given by (23), but inside the intensity gradually

diminishes until it vanishes at the inner surface of the shell.

Within the space inclosed by the inner surface of the shell there

is no field. For if there were a field, it would be circular and

perpendicular to the axis, and the intensity at the distance d from

the axis would be given by (24). Since in this region i = o, H
is also zero.

The same method may be applied to the case of a conductor

consisting of any number of coaxial circular shells, each infinite in

length and homogeneous. The external field is the same as that

which would surround a linear wire at the axis carrying the

same current.

16. A Tore of Inductivity /i2 Symmetrically Placed in a Circu-

lar Field in a Medium of Inductivity /* lf
etc. If a tore, or circu-

lar ring of constant cross-section, of inductivity /x2
is placed around

the cylindrical conductor or any of the conductors of 14-1 5 im-
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mersed in a medium of inductivity ^ with its axis coincident with

that of the cylinder (or other conductor), the field external to the

tore will remain unaffected, except during the introduction of the

tore, and the intensity within the tore will also remain unaffected,

by the principle of symmetry and equations (17) XL, and (21).

but the induction at any point within the tore will be increased

by its introduction in the ratio /*2/Air

Since the magnetic pressure perpendicular to the intensity and

to the interface at a point P just outside the tore in medium I is

J/-^//
2 and the pressure just within the tore an infinitesimal dis-

tance from P, J/-t2
// 2

,
there will be a normal mechanical force

upon the interface equal, per unit area, to

T= K//2 - ^ff 2 = \H\^ -
/,) (26)

if considered positive when directed from medium 2 to medium

I. Thus if fa is greater than pv the volume of the tore will in-

crease slightly on its introduction into the field.

This case and that of 7, IV., are the limiting cases of

9, IV.

In exactly the same way the matter within any (closed) tube

of induction in a homogeneous medium of inductivity ^ may be

replaced by a substance of inductivity /n2
. The external field, as

well as the intensity within the tube, will not be disturbed
;
but

the induction within the tube will be increased in the ratio p2/f*lt

and a normal traction will be developed at each point of the in-

terface. IfH denotes the intensity at any point of the interface,

the traction at the point is given by (26).

17. The Magnetic Field of Two Infinitely Long Coaxial Circular

Cylindrical Shells Traversed by the Same Current in Opposite

Directions. Let / denote the current, and FF and GG the

shells, Fig. 97.

The magnetic field in the region A is zero, as proved in a

similar case in the last article.
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The field in the region C outside both conductors is also zero,

since a closed curve drawn around the outer shell encloses equal

currents flowing in opposite directions.

In the region BB the field is circular, and the intensity at the

distance d from the axis is H= IJ2'jrd.

Fig. 97.

Within the shells F and G the field is also circular in the same

direction, but gradually diminishes in intensity from B to C and

from B to A. These intensities are computed in 21 and 22,

XIII.

The vanishing of the field in the region C might be regarded

as due to the superposition of the field connected with FF and

the field connected with GG, the intensities of the two being

equal and opposite at any point of the region CC. This would

also account for the gradual diminution of the intensity in pass-

ing through the outer shell from B to C.

18. The Magnetic Field of Two Parallel Circular Cylindrical

Conductors carrying any currents in the same or opposite direc-

tions can be obtained at once by superposing the two fields, each

already obtained in 15. Maxwell's diagram of the lines of

intensity when the wires are linear is given in Fig. 98 for the

case in which the same current traverses both wires in the same

direction
;
and the complete diagram is given in Fig. 27, II., for

the case in which the same current traverses the two wires in

opposite directions. When the conductors are not linear, the same

diagrams hold good for the region outside the conductors, and the

construction of the internal part of the diagram offers no difficulty.
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When the currents are equal and opposite, the lines of intensity,

as shown in the diagram, are circles about the wires. Hence the

Fig. 98.

equipotential surfaces, or the equipotential lines in the diagram,

are arcs of circles cutting the wires. Compare 19, II.

Fig. 99.

That the lines of intensity in this case are circles may be shown

analytically as follows : Let the plane of the paper cut the wires

perpendicularly in the points A and B, Fig. 99, and let PP' = ds
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be the element of a line of intensity. The rest of the figure is

sufficiently clear to need no further explanation. Since there is

no intensity perpendicular to a line of intensity, we have at PP 1

',

H^ dLJds(= sin
a)
= H

2 dLJds(= sin 0J

x dL^jds
=

// 2?rZ2 dLJds
. . , .

<*A/A = "A/Ai

or

from which

Integrating, we have = constant

which is the equation of a circle with center on AB produced.

The direction of the resultant intensity H is that of the normal

CPG to the equipotential (circular) arc APB through Pt Fig. 100.

It makes with PB the angle 90 + Ov since, as is easily proved

from the figure, arc PB = arc FE.

In magnitude

= /cos
2/27rAP+ /cos Oj2TrBP

Exactly the same method used in 19, Chapter II., might

have been used in the above investigation ;
and the method here
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used can be applied with equal facility to the problem of that

article.

19. The Magnetic Field of an Infinite Solenoid. Consider an

infinitely long straight coil of wire wound uniformly and closely

at right angles to its length, the coil being of uniform cross-

section and shape. Let there be n turns per unit length. Then,

since we have supposed the wires perpendicular to the axis of

the coil, the current can be regarded as forming a current sheet

circulating as indicated in the figure (Fig. 101).

Fig. 101.

From symmetry, all the lines of intensity inside and outside

the coil must be either parallel to the axis of the coil or in planes

perpendicular to the axis and continuous around it. By 1 1,

equation (
1
2),

the second alternative is impossible, hence all the

lines must be parallel to the axis.

Let H and H' denote the intensities just within and just with-

out the coil at the point A, considered positive when in the posi-

tive direction through the coil (the direction of the current in

the solenoid being chosen as the positive direction around the

solenoid) ;
and let the m.m.f. be computed for the path abcda,

which encloses n ab wires and therefore a current n ab I. Thus

m.m.f. = H ab + o be -f Hfcd -f o da = (H H'}ab = nl ab

Hence H- Hf = nl

Since the m.m.f. along be and ad is zero, the total m.m.f.

around the circuit is independent of the length of be and ad;

hence H H' is constant in magnitude as well as in direction,

and is equal to nl.

If 5 denotes the area of the coil, fiffS is the magnetic flux

through the coil and the return flux outside, since the tubes of
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induction are continuous. Hence H' is opposite to H in direc-

tion, and since the flux returns parallel to the axis across an in-

finitely great area S', pH' = pHS S'
y
or zero. Hence H' = o,

and H=nl (28)

everywhere within the solenoid. The intensity in the wire dimin-

ishes gradually to zero in passing from the inside to the outside

of the solenoid.

Since there is no external field, the inductivity of the external

medium may differ in any way from that of the internal medium

without affecting the field.

In the case of an actual solenoid which is long but not infinite,

the above results are obviously approximately true.

20. A. The Magnetic Field of a Finite or Infinite Circular Sol-

enoid. The magnetic intensity at any point along the axis of the

solenoid, of radius R and n turns per unit length, can be found by
direct integration from equation (16). From this equation the

intensity at the given point P due to the current in the infinitesi-

mal ring of width dx distant x from P is

dH=
the current in the ring being nldx. The total intensity at P is

therefore

f
Ll

<

J-t, (29)

if P is distant L^ and Z
2
from the ends of the solenoid.

If L
2 Zj = L, this equation becomes

H=nf/(i+R*/Ly (30)

(29) shows that if the length of the solenoid, LL -j- L2
= 2L, is

great in comparison with R, the intensity along the axis, and

therefore (the magnetic pressure ^ pH
2

being remembered) the

intensity throughout the volume of the solenoid, is very nearly

constant and equal to nl, except near the ends of the solenoid.
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In this case the external field of the solenoid is very weak

except near the ends, and the external medium may be altered

in any manner, except in these regions, without sensibly affecting

the internal field.

If the flux through a long slender solenoid .is <f>, the magnetic

field at external points is very nearly the same as the field of a

permanent magnet placed coincident with the solenoid and having

two approximately concentrated poles, of strength -f <J> and 4>,

at its ends.

When Z
2
= L^ = infinity, (29) reduces to (28).

B. A Very Long and Slender Cylindrical Rod of Inductivity /i

Placed Within a Longer and Wider Uniformly Wound Solenoid

Containing a Medium of Inductivity /^ Parallel to its Axis.

Except near the ends of the rod, the demagnetising intensity

due to its poles is small, and if the ratio of its length to its

diameter is sufficiently great, negligible.

The magnetic intensity within and without the rod, except
near its ends and the ends of the solenoid, is

The magnetic induction within the rod is

B=ii,

and that within the rest of the core

the region near the ends being excepted.

The intensity of magnetisation of the rod, except near its

ends, is

/ = B - B, = (fji
- ^)H

and the numerical strength of each of the poles, distributed over

the ends of the rod, is

m =/ 5= (B
- ^H)S = (fji

- n^HS (31)

where 5 denotes the area of the cross-section of the rod.



312 ELEMENTS OF ELECTROMAGNETIC THEORY.

21. The Magnetic Field Between Two Infinite Parallel Planes

Traversed by Equal and Opposite Currents. The result obtained

for the infinite solenoid, (19), being independent of the shape and

area of the cross-section of the coil, may be applied to a coil

with a rectangular cross-section of finite height and infinite

width. We have then two parallel plane current sheets in

Fig. 102.

opposite directions. If the current directions are as shown in the

figure (Fig. 102), and if the current per unit length of the coil

perpendicular to the plane of the figure is nl, the uniform mag-
netic field of intensity H= nl is directed perpendicularly into

the plane of the paper. This result could of course have been

readily obtained independently.

22. The Magnetic Field of an Endless Coil Uniformly Wound

Upon a Solid of Revolution Generated by Revolving a Plane

Area S about an Axis in its Plane but Not Passing Through It

j

Fig. 103.

(Toroidal Coil). The current is assumed to circulate in a sheet

accurately perpendicular to the coil, as shown in the figure (Fig.

103). The cross-section of the coil is shown rectangular in the

figure, but may have any shape.
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By symmetry, all the lines of intensity must be either circles

about the axis of revolution in planes perpendicular to the axis,

or closed curves around or within the coil in planes cutting it

perpendicularly. The second alternative is impossible, by 14,

since such curves would enclose no current. For the same rea-

son there can be no circular lines of intensity centered on the

axis outside the coil. All such circles inside the coil, however,

enclose the total current circulating around the coil. If the

total number of turns of wire in the coil is N
t
and if the current

strength is 7, the m.m.f. along any circle of intensity of radius d

within the coil is LT j ATTH2ird= NI

whence H= NI\2Trd (32)

If the radius of the shortest line of intensity is R, and if there

are n turns per unit length of this line, N= 2irRn, and

H=nIRId (33)

IfR becomes infinite, and if the area of the cross-section of the

coil remains constant, so that R and d approach equality as they

approach infinity, ,.,__
,

as otherwise shown in 19, which with 21, is thus a special

case of the present article.

Since there is no external field, it is immaterial what medium

surrounds the toroid.

23. The Force Between Two Infinite Parallel Linear Conductors

Carrying Electric Currents. Let the currents, of strengths 7
L
and

7
2 ,

intersect the plane of the paper at A and B respectively, dis-

tant d apart, and first suppose that the currents have the same

direction, down into the plane of the paper. Then the intensity

7/2 due to the current 7
2
is Ij2ird at all points of the wire A,

and is directed vertically upward at right angles to the wire.

Hence the force upon a length L of the wire A is
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t g^ter (34)

the last expression being the numerical value of the force.

V/j/^ is directed toward B
t
thus the force is one of attraction

between the wires.

The direction of F is not affected if the directions of both

currents are reversed. If however the direction of one of the

currents only is reversed, F becomes a force of repulsion.

The fields surrounding the wires when the currents have the

same magnitude and flow in the same and opposite directions are

shown in Figs. 98 and 27. The force upon each wire is seen to

be always from the stronger to the weaker part of the field.

dX

24. The Forcive Between Two Infinite Straight Linear Conduc-

tors Perpendicular to One Another and distance d apart. Let one

of the conductors, AC, Fig. 104, lie in the plane of the paper,

and let the other, D, be perpendicular to this plane, the currents,

/! and /
2 , being directed to the right and downward respectively.

By considering the field of one current in the neighborhood of

the other, the forcive is seen to be a pure torque tending to make

the two currents flow in the same direction. To obtain the

torque T upon a length L of AC, with center at B
y
we have, for

the force upon an element of AC of length dx distant x from B,

dF= BJ^dx xj(d* -f ;r
2

)*
= /x//2^/ 27r(X

2 + *2

)

and dT= xdF= pl^dx} 2Tr(d
z + x*)

BD being chosen as axis of moments, and a positive torque tend-

ing to move C down. Hence the total torque upon a length L
of AC with center at B is

r-(L + ird- 2d tan' 1

LJ2d) (35)
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By considering the field of one wire in the neighborhood of

the other it is easy to see that when the currents make with one

another an angle 6 different from 90, there is, in addition to the

torque (which vanishes when # = o or 180), a force between

the wires, attractive when 6 is less than 90 and repulsive when

6 is greater than 90, the force upon each element being always

from the stronger to the weaker part of the resultant field.

25. The Force Between Two Linear Circular Coaxial Wires dis-

tant d apart, where d is very small in comparison with the

radius of either circle. Since the field very near any thin wire

is approximately the same as the field very near an infinite straight

wire, the approximate force in this case is easily obtained.

If the circles have the same radius, R, and if the currents are

/! and /
2 ,

the force is

/<-= //2/2W- 2irR = IJJtfd (36)

and is attractive or repulsive according as the currents flow in

the same or opposite directions.

If the radii of the coils are R
l
and R

2
= R

l -f a, and if the

distance between their planes is b,

'";;;'";'':;;';.
F- */,#/( + ?) ;

;

;

:;"", (37)

which is a maximum, for given values of R
l
and Rv when b = a.

-B& The Torque upon a Circular Cylindrical Coil of n Turns and

Radius r Placed with its Center in the Axis of Two Coaxial Circular

Coils each of radius R and N turns, at a point equidistant from

the planes of the coils, with which its own right cross-section

makes an angle 0, when R is much larger than r. The field of

the larger coils will be sensibly uniform throughout the region

occupied by the smaller coil and equal to its value at the center

of the axis. If the distance between the planes of the two large

coils is 2d, and if the currents of the larger and smaller coils are

/ and z respectively, then, by 13, if the currents in the larger

coils have the same direction, the field intensity at the center of

the axis is
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Hence, by 10, there is a torque upon the smaller coil equal to

T= ni^H cos (90
-

0) -rrr
2

2
sin 0/(R

2 + </
2

)*

which is a maximum when the smaller coil is perpendicular to

the other two. There is no translatory force acting upon the

coil as a whole.

If the same current / traverses both coils, and if the medium

surrounding the coils is air or free aether (a vacuum), in which

T= P nNir^R2
sin 0/(R

2 + d^ (39)

numerically.

From the above equations, and the equations developed in

foregoing articles, for the forcive between two conductors carry-

ing the same current, the electromagnetic unit current and the

inductivity of the surrounding medium can be defined without

reference to magnets of any kind.

It can easily be shown that the field at the center of the axis

is most nearly uniform when d is made equal to R. In this case

(39) becomes
T= P nNirr2

sin 0/2*R (40)

numerically.

27. Galvanometers. A galvanometer is an instrument for meas-

uring or detecting electric currents by means of the forcive acting

between a permanent magnet and a conductor traversed by an

electric current. There are two general types of such instru-

ments : In one the magnet is fixed and the conductor is mov-

able, in the other the conductor is fixed and the magnet is

movable.

28. The Deprez-D'Arsonval Galvanometer. This is an instru-

ment of the first type. It consists essentially of a permanent

horseshoe magnet NS, Fig. 105, with a very strong magnetic

field between its poles ;
a coil C, consisting of many turns of fine
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insulated wire, suspended vertically by a very fine metallic ribbon

AD .continuous with the wire of the coil
; and, attached to the

coil, a pointer or light mirror B, by which any angular change

in the position of its plane may be determined.

Fig. 105.

The coil is adjusted until, when no current is flowing, its plane

is parallel to the magnet's field, which is so strong that the field

of the earth and other magnets or currents in the neighborhood

is negligible in comparison. When traversed by a current, the

coil is deflected about AB as axis until the torque exerted upon
it by the magnetic field is balanced by the return torque due to

the twist of the elastic suspension. Let 6 denote the permanent

angle of deflection when the current strength is /, vS and n the

(average) area of a single turn of the coil and the number of

turns, respectively, and B the magnetic induction, supposed

uniform, between N and 5. Then the torque upon the coil

due to the field is, by (9), 10,

If R is the torsional constant of the suspending ribbon, we

have also

T=Rd
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Hence, equating the two values of Tand solving for /, we have

f=R/nSB-0/cos0 (41)

For small values of 6j cos is sensibly equal to I, and / is

sensibly proportional to 6.

By giving a special shape to the magnet's pole faces and insert-

ing within the coil symmetrically a cylinder of steel magnetised

transversely, or a cylinder of soft iron, the induction in the region

moved through by the vertical portions of the coil may be made

practically uniform in magnitude and parallel to the plane of the

coil in any position. In this case T= ;/5B/= R6 and

/= RjnSB6 (42)

for all angles.

29. The Tangent Galvanometer. The simplest galvanometer
of the second type, in which the magnet is movable and the

conductor fixed,, is the tangent galvanometer. This instrument,

in its simplest form, consists essentially of a circular coil of wire,

each turn having practically the same radius R, wound upon a

suitable frame (of non-magnetic material) ;
a small permanent

magnet suspended by a long thread of quartz or silk as free from

torsion as possible, or otherwise mounted in such a way as to

move very freely, at the center of the coil
;
and a mirror or a

pointer mounted upon the magnet, by which its angular motion

may be determined. The coil is placed with its plane, or the

nearly coincident planes of its turns, in the magnetic merid-

ian, NS.

When there is no current in the coil the magnet will come to

rest with its axis in this plane, under the action of the horizontal

component of the earth's magnetic intensity, which will be denoted

by H. When a current /traverses the coil, there is developed

at the center of the coil a magnetic intensity perpendicular to H
and equal to

GI

////= n/2R) being a constant for the given coil.
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The resultant, H f

,
of the two fields makes with H an angle

and the magnet will be deflected through this angle, coming to

rest when its axis lies in the vertical plane through H f
. Hence

we have /== 2R
j
nH= 2RUfn- tan = H/-tan (43)

If the magnet is suspended at the center of the axis of two

similar parallel coils carrying the same current in the same direc-

tion, we have

/= (R* + <**) H/^2
- tan = H/C' -tan 6 (44)

It can easily be shown that the field near the center of the axis

is as nearly uniform as possible when d is made equal to R. In

this case (44) becomes,

7= 2i^H/-tan0= H/"-tan0 (45)

The Determination of a Current in Absolute Electromagnetic

Measure. By measuring all the quantities in the second member

of either of the above equations, a current may be determined in

terms of the REM unit.

30. Sensitive Galvanometers (Second Type). Such a galvanom-

eter as that just described, though valuable as a means of determin-

ing a current in absolute measure, is by no means sufficiently sen-

sitive for most purposes for which a galvanometer is needed. The

sensitiveness of a galvanometer, or the ratio of the deflection to

the current, or change in deflection to change in current, may

evidently be increased by increasing the number of turns and

bringing them closer to the magnet, or by diminishing the

effect of the external magnetic field acting upon the magnet.

The latter method will be considered first.

One method of diminishing the strength of the earth's magnetic

field is by placing one or more magnets, called control magnets, in

such positions as to neutralise to a greater or less extent the earth's

field. This method, while very generally practised, is open to the

often serious objection that slight changes in the earth's field,
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which are constantly occurring, produce very large percentage
variations in the weak resultant field at the magnet, thus mak-

ing the behavior of the instrument extremely inconstant.

A better method is to surround the galvanometer with a thick-

walled case of iron, or several such cases, to act as a magnetic
shield. This greatly reduces the field of the earth without in-

creasing the relative prominence of its variations (23, XL;
14-1 5, IV.).

A still better method, now always adopted for the most sen-

sitive instruments, usually in conjunction with at least one of the

other two already mentioned, is to mount on the same suspen-
sion two galvanometer magnets of as nearly as possible the same

moment, with their poles turned in opposite directions. If the

axes of these magnets lie accurately in the same plane, and if

their moments about the axis of suspension are rigorously equal,

the earth's field can exercise no directive influence upon the sys-

tem. Such a magnetic system is said to be astatic. With this

condition approximately realised in practice, the directive effect

of the earth's field can be made extremely small. The current

is passed around one magnet only, or else, in highly sensitive

instruments, in opposite directions around the two magnets. A
control magnet is used to adjust the position of the mirror as

well as to regulate the sensitiveness of the instrument.

31. The Winding- of a Sensitive Galvanometer of the Second

Type. With respect to the winding of a sensitive galvanometer
of the second type, it is evident that the magnetic intensity at a

point 0, the position of the magnet, Fig. 106, due to unit current

in length L of wire wound upon a circular arc whose radius sub-

tends an angle 6 at O and every point of which is distant r from

0, is

H= L sin 6/47rr
2

(46)

If the same wire is wound in parallel circles with their axes

through anywhere on the surface of revolution the equation of

whose generating curve is sinO/r
2 =

47T///Z,
= constant, the
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field intensity, H, at will be the same as that given by (46).

This equation may be written

sin 0/r
2 = i // or r2 = p

2
sin d (47)

where p* = constant = Lj^rrH.
A plane section through the axis of revolution of this surface,

drawn for a given value of /
2

,
is shown in Fig. 106.

Since all points within a surface drawn for a given value of

/ lie upon surfaces with smaller values of/, and therefore greater

values of H\ and since all points without the surface lie upon
surfaces with greater values of p and smaller values of H

;
it

follows that a given length of wire, in order that it may produce

Fig. 106.

the maximum field at 0, should be wound so that its whole mass

just, fills up the volume within the surface given by the equation

(47), where the magnitude of / depends upon the quantity and

the length of wire. In the actual winding, of course, some space,

indicated in the figure by dotted lines, must be left for the magnet
and suspension. These, however, in modern sensitive galva-

nometers, are so small as to weigh but a very small fraction of

a gram, so that this space is not large.

Since a given length of fine wire occupies less volume than

the same length of coarser wire, it is an advantage, if a galva-

nometer of a certain resistance is to be constructed, to use fine
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wire for the smaller values of /, that is, near the magnet, and

coarser wire further from the magnet. Three sizes of wire are

frequently so used in the same coil, although a single wire of

uniform cross-section is usually employed.
It is evident that the current traversing the coils of a galva-

nometer constructed as above is not, in general, strictly pro-

portional to the tangent of the angle of deflection. The law

/= \r\jG'F(6), where =////, connecting the current with

the deflection can, however, easily be determined by experiment.

32, The Ballistic Galvanometer. The electric charge of a con-

denser, or the charge circulating through a coil owing to electro-

magnetic induction (XIII. ),
that is, in general, the time integral

of a transitory current, can be measured with a galvanometer,

provided that sensibly the whole charge can be made to circulate

through the galvanometer's coil before the magnet (or coil, if

the instrument is of the first type) has moved appreciably* from

its position of equilibrium, and provided that the damping (or

retardation due to friction, induced currents (XIII., 5), etc.) of

the magnet's (or coil's)
motion is but slight. To insure that

these conditions shall be satisfied, and to make the deflections of

the mirror easy to read, a galvanometer designed for this purpose,

called a ballistic galvanometer, is constructed with a magnet (or

coil) of considerable moment of inertia (and long period), and

damping is prevented as far as possible.

We shall consider here only an instrument of the second type.

Let H denote the magnetic intensity at the magnet due to the

earth and the control magnets, M the moment of the magnet,

K its moment of inertia, H the magnetic intensity at the magnet

due to a current 7 in the galvanometer coils, and G the constant

ratio ofH to /, as in 29. Then

H= GI= G dgjdt

when a current /= dqjdt traverses the coils.

*The cosine of the angle moved through by the magnet in the discharge lime t?

must not differ sensibly from unity, or a correction must be applied.
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The torque upon the magnet, which remains sensibly in its

position of equilibrium during the passage of the whole (appre-

ciable part of the) charge, due to the current / is

= GMdqjdt

When a total charge q is passed through the coils, the (appre-

ciable part of the) transitory current lasting for a time t' so small

that the magnet does not sensibly move within this time, the

total angular impulse upon the magnet is

f Tdt = GM\ (dqjdt}dt
= GM ^dq = GMq

t/O *J$ t/

If a) denotes the angular velocity imparted to the magnet by
the discharge

I
Jo

Tdt = GMq =K

and the kinetic energy of the magnet just after the discharge,

while still sensibly in its position of equilibrium, is

If, as we assume for the present, there is no damping, the

magnet will come to rest at a certain angle of deflection 6, such

that the work done against the magnetic field of intensity H is

equal to the original kinetic energy \KaP. (The torsion of the

fiber suspending the magnet is supposed negligible.) Hence

\(GMqJIK= PVlH sin OdO = MH(i - cos 0)

= 2MH sin
2

J0
from which

sin \G (48)

Thus the charge is proportional to the sine of one-half the angle

of deflection
(first elongation).

To obtain the charge in absolute measure from (48), it would

be necessary to know both KandM, or their ratio, as well as H
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and G
;
but the first two of these quantities can be eliminated by

making use of (34), XL, according to which

(KjM)l = TV H/27T

T being the time in which the magnet, vibrating through an in-

finitesimal arc, executes a complete oscillation. Thus we have

q= HT/irG-sm \6 (49)

H/ can be readily determined by passing a known steady

current / through the coil and noting the steady deflection 0.

Then, with the nomenclature of 33, (i),

The period T of a complete vibration of the magnet for an

infinitesimal arc can be computed without difficulty from the

observed time of vibration for a finite arc. For small arcs the

difference between the two times of vibration is not appreciable.
If the damping and the torsion of the suspension are not negli-

gible, further corrections must be applied. All these matters

are discussed in Gray's Absolute Measurements in Electricity and

Magnetism.
The development of the formula corresponding to (49) for the

ballistic Deprez-D'Arsonval galvanometer is not difficult and is

left to the reader. It is

q = i/KR/nSB 6 = RjnSB T/TT . 10 (50)

The constant R/nSB can be easily determined from (41) by
means of a known steady current and the corresponding known
deflection.

In what follows (49) is adopted as a standard formula for the

ballistic galvanometer. If an instrument of the first type, which

offers important advantages in many cases, is used, the equa-
tions must be modified by the substitution of (50) for (49).

33. The Best Resistance for a Galvanometer Wound with Uni-

form Wire. We shall now determine the best resistance to be

given to a set of galvanometer coils, or a galvanometer coil, of

given type, in order to produce the maximum sensitiveness,

when in addition to the type of galvanometer, the space to be
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filled by the wire, its disposition as to the magnet, and its specific

resistance are given. The volume occupied by the insulation

will be supposed negligible.*

Let r denote the volume to be occupied by the wire, and L the

length, 5 the cross-section, r the specific resistance, and g the

total resistance, of the wire. Then

g-rL\S-rDlT (a)

(i) First consider a galvanometer designed to measure steady

currents. The current / in the galvanometer is proportional to

some function of 0, the angle of deflection, as tan 0, sin 0,

6
1
'cos 0, etc. Let this function be denoted by F(0). Then we

have, by what has just been said,

F(6)
= BI

(b)

in which B is a constant for the given galvanometer and coil. B
is evidently proportional to the length of the wire in the coil.

That is

B = KL

where K is a constant depending on the size of the coils, the

type of instrument, etc. (a) may therefore be written

F(&)
= BI= KLI

or

If the galvanometer is connected in circuit with a generator

with an e.m.f. M* and a resistance such that the total resistance

in the circuit outside the galvanometer is R, we have

or

F(&)
= K-VL\(g + R) = KVL/(rL

2

/T + R)

* For a more complete discussion reference must be made to Gray's Absolute

Measurements in Electricity and Magnetism ,
Vol. II., and to The Physical Review,

Vol. V., p. 300.
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So far as its dependence upon the length of the wire is con-

cerned, F(&) will be a maximum when dF\6)jdL = o, that is when

dF(6)jdL = 0= K^(R - rL2

/r)/(R + rZ2

/r)
2 = o

which gives rL2

/r
= g R (51)

So that the greatest sensitiveness will be attained by giving

the wire such a length, or such a cross-section, that its resistance

is equal to the external resistance. It is obvious that r should

be as small as possible to produce the maximum current with a

given e.m.f. Hence the coils are usually wound of copper wire.

(2) If the galvanometer is one designed for measuring con-

denser charges so that the total charge q crosses every section

of the wire, whatever its length or resistance, we have
( 32)

F
t (ff)

= CBq = CKLq (52)

where C is a constant and B KL can be determined by measur-

ing F(0), 33, (i), when a steady current /is passed through the

coils.

From (52) it is clear that the wire should be as fine as possible,

or, for a given kind of wire, the resistance as great as possible.

The specific resistance is immaterial, provided that the total re-

sistance is not so great as to make the time constant (41, Chap-

ter XIII.) noticeable.

(3) If the galvanometer is to be used for measuring discharges

produced by changing the magnetic flux through a coil (9,

Chapter XIII.), we have,

F
2(6)

= CBq = CKLN\(g + R)

or, for a given value ofN (the change of coil flux producing the

discharge),

F
2(0)

= constant *L/(g + R) = constant xL/(R + rL2

/r)

Hence dF
2(0)/dL

= o, and the sensitiveness is a maximum,

when g-R (53)
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as in an instrument used for steady currents. In this case also,

r should be as small as possible.

34. The Electrodynamometer. The formulae developed in 26

are utilised for the absolute determination of current strength by

the electrodynamometer.

The Electrodynamometer of Weber, in its simplest form, con-

sists essentially of two large coils and a much smaller coil,

similar to those described in 26, together with a fine metallic

ribbon joined to one end of the smaller coil and suspending this

coil from a fixed torsion head, with its center at the center of

the axis of the two large coils, a straight vertical piece of wire

joined to the other end of the small coil and dipping into a cup

of mercury below, and a light mirror mounted upon the small

coil for reading its deflections.

The suspension is adjusted by turning the torsion head until,

when there is no current, the planes of the smaller and larger

coils are perpendicular. When the same current / is passed

through all the coils in series, flowing in the same direction

through the two larger coils, the smaller coil will be deflected

through an angle 6 such that the return torque due to the torsion

of the suspending ribbon just balances the torque of the field.

If Kis the constant of torsion of the ribbon, this torque is T
KO. Hence, by 26,

cos

and /= K\R* + dj /

'

rR(nN^(0 /
'cos 0)1 (54)

If d= R, when the field throughout the smaller coil is most

nearly uniform,
/= 2i(RK)l/r(nNfJL'7r)\0/cos (9)4 (55)

fi being sensibly equal to I
, numerically, when the coils are in air.

The Siemens Electrodynamometer. Instead of keeping the

upper end of the suspension fixed, and measuring the angle of

twist of the lower end, the torsion head is often turned in the di-
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rection opposite to that of the deflection until the deflection is

reduced to zero. If 6 is the angle through which the torsion

head is turned to effect this result, we have, by 26, since the

planes of the movable and fixed coils remain perpendicular,

T=K6 =
and

/= (j? + d^(KO^I(nN^rR (56)
If d= R,

/= 2*(KR)Wlr(nNiirn)* (57)

Since all the quantities in the second members of (54) and (56)

can be determined by direct measurement, they suffice to deter-

mine / in absolute measure. Since T is proportional to the

square of /, an alternating current can be measured with the

electrodynamometer.

Instead of a suspension made of a single ribbon, a bifilar sus-

pension is often used in the Weber electrodynamometer. It con-

sists of two fine wires, parallel, or nearly parallel, connected to

the two ends of the coil, serving to carry the current to and from

the coil. For small angles the formulae are the same for the

two kinds of suspension.

When an electrodynamometer is not to be used for the abso-

lute determination of current strength, but only for relative

measurements, or when it is to be calibrated by comparison with

standard instruments, its construction is often greatly modified to

increase or diminish the sensitiveness, to reduce the size, etc.

In an electrodynamometer of the Siemens type, in which the

movable coil is always in the same position when measurements

are made, the current is always proportional to the square root

of the angle of torsion, whatever the form of the coils.

35. The Comparison of E.M.F.s by Poggendorff's Method, Ray-

leigh's Modification. A constant current / is passed through the

circuit ABCDA, Fig. 107, containing two accurately adjustable

resistances R and R'
, by a battery D of constant e.m.f. VP

greater than any of the e.m.f.s to be compared. The agents I'\
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and F
2
whose e.m.f.s "^

1
and W

2
are to be compared are placed,

one at a time, in a shunt circuit A GB, containing a galvanometer

G and a key KA, in such a direction as to oppose a current

through the shunt due to D. The resistances R and Rf are then

adjusted, while their sum R + Rf
is kept constant and high, until

the galvanometer needle remains undeflected whether the key

Fig. 107.

KA is open or closed. Then
",
the e.m.f. of the agent Ft

is

equal to RI, the potential difference between A and B due to the

field of the current. Hence, if R
l
denotes the value of R for the

balance when F^ is in the circuit, and R
z
the corresponding value

when F
2

is in the circuit,

and ^i/*, = *i/*, (58)

Slight modifications of this method (potentiometer methods)
enable comparisons to be made between two resistances or two

currents, and are extensively used.

36. The Comparison of a Capacity and a Resistance by the

Method of Direct Deflections. A constant current / traverses a

circuit of high resistance including in series the resistance R under

experiment. The plates of the condenser, of capacity S, are con-

nected to the terminals of R, thus coming to a difference of poten-

tial RI and acquiring a charge SRI. The condenser is then

insulated from the battery circuit and discharged through a

ballistic galvanometer G, producing an angular deflection such

that

SRI= HTyCV-sinitf (a)
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The galvanometer is then disconnected from the condenser and

its terminals connected to two points of the battery circuit be-

tween which the resistance is r, a very small fraction of the re-

sistance W(which may be made as large as desired) from terminal

to terminal through the galvanometer. This will not alter the

current / appreciably, but will produce in the galvanometer a

constant current

= \\IG- F(6') (b)

6 f

being the corresponding steady deflection. Eliminating H/6Y
from (a) by means of (b\ we obtain

SR = \rj(r + W)-} T/TT
- sin

JF(0>) (59)

The ratio r/(r + W\ T
y 0, and F(0

f

) being observed, SR is

given in absolute measure by (59).

The Determination of a Resistance in Absolute Measure. Since

the capacity of a condenser can be calculated from its dimen-

sions, the method affords an absolute determination of a

resistance.

The Comparison of Capacities, E.M.F.s, etc., by Direct Deflec-

tions. The above disposition of apparatus, slightly modified,

enables a comparison to be made between two capacities, two

e.m.f.s, two resistances, or two currents.

Thus, if two condensers with capacities Sl
and S

2
are charged

to the same voltage (as RI) and then discharged separately

through the same ballistic galvanometer, producing angular

throws of the needle equal to 6
l
and

2 ,
we have, from (a),

SJS2
= sin J^/sin J02 (60)

Or, if the same condenser is charged to different voltages V^

and V
2
in succession, and discharged each time through the same

ballistic galvanometer,

sinJ^/sm^ (61)
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37. The Bridge Method of Comparing Capacities. The conden-

sers whose capacities Sl
and S

2
are to be compared are arranged

as shown in Fig. 107, Rj_ and R
2 being adjustable resistances. K^

is first closed, K2 being open. The condensers are now charged
to voltages V

l
and Vv such that S

t V^
= S

2
V

2 ,
since they are

connected in series. K^ being kept closed, K2
is then closed

also. If V
l
=

./?!/ and V
2
= R

zf,
where / is the steady current

Si



CHAPTER XIII.

ELECTROMAGNETIC INDUCTION.

1. Magnetic Flux Through a Coil, Consider a thin conductor

in the form of a coil of n approximately closed turns, I, 2, -,?/.

Let the positive direction around any one of the turns, k, be

chosen arbitrarily, and let the positive direction around each of

the others be chosen to coincide with the direction of its current

when the current through the coil traverses turn k in the positive

direction. Let the magnetic flux through each turn be denoted

by <> with the appropriate subscript, as Q v <I>
2 ,

.

,
or <3>

n ,
and

let <3> denote the average flux through a single turn. Then the

^magnetic flux through the coil, or the coil flux, which will be de-

noted by N, is defined by the equation

N= (^ + <

2 + . . . + 4>
n
= ;?< (l)

If the area of the surface with its edge in any turn is not so

great in comparison with the width of the conductor that the

flux across the conductor itself can be neglected in comparison

with the flux through the turn, an approximately correct result

can be obtained by assuming the conductor (supposed circular)

replaced by a linear conductor coinciding with its axis.

2. The Inductance, or Coefficient of Self Induction, of a coil or

circuit is defined to be the quotient of the coil flux, Nt
due to the

coil's own magnetic field divided by the current / in the coil,

and will be denoted by L. Expressed in the form of an equation,

this relation is

L=N/I (2)

If the inductivity /* is constant throughout the magnetic field (in-

dependent of /) so that B and N are proportional to the current

332
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/, the inductance is the coilflux per unit current, and is constant.

If the coil contains iron, L is far from constant.

3. Mutual Inductance or Coefficient of Mutual Induction.

The coefficient of induction of a coil I with respect to a coil 2 is

defined as the quotient of the coil flux 7V
12 through coil 2 due to

the magnetic field of coil I divided by the current 7
X
of coil I,

and will be denoted by J/
12

. Thus

Mv-NJI^ *1o,fi : :. ,TO- (3)

which is constant, for a fixed configuration of the conductors,

when /JL
is constant.

It will be shown later (13) that when p is constant the coeffi-

cient of induction of coil 2 with respect to coil I is equal to that

of coil i with respect to coil 2. Hence we may write

5 ;;!-,
Jfa = M* = M= NJI, = Na/ft (4)

This relation is true only when /4 is constant. M= M
12
= M

2l

is called the coefficient of mutual induction, or the mutual induct-

ance, of the two coils I and 2.

The coefficients of self and mutual induction will be defined

from energy considerations in 17.

4. Electromagnetic Induction. Motional Electric Intensity. It

follows as a generalisation from experiment that whenever a con-

ductor moves in a medium (aether or aether permeated by mat-

ter) supporting a magnetic field there is developed at every point

P of the conductor an intrinsic electric intensity (arising from the

transformation of mechanical energy into electrical or electrical

into mechanical) equal to

e = MuB sin 7 (5)

where B denotes the magnetic induction at P, u the velocity of

the point P of the conductor with respect to the medium (and

the fixed magnetic induction at P), and 7 the angle between the

directions of u and B,

It is often convenient to think of the conductor as fixed and

the medium supporting the magnetic field as moving, together
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with the field, in the opposite direction with the velocity u at the

point P. In this case we must replace (5) by

e = NBu sin 7 (50)

This will be done in what follows.

The electric intensity e is called a motional electric intensity.

It is also very generally called an induced intensity.

A motional electric intensity in insulators has not yet been

observed. See Blondlot, Journal de Physique, Jan., 1902.

Motional E.M.F. It follows from (50) that the component of

e at the point P in any direction is equal to the vector product

Fig. 109.

of the component of B perpendicular to this direction and the

component of u perpendicular to the plane containing B and the

given direction.

Hence it follows also that whenever an element, of length dL,

of a line in any conductor is moving in a medium supporting a

magnetic field, a motional electromotive force is developed along

dL equal to dL multiplied by the vector product of the com-

ponent of B perpendicular to dL and the component of u, the

velocity of the medium (and tubes of induction) relative to dL

considered as fixed, perpendicular to the plane containing B and



ELECTROMAGNETIC INDUCTION. 335

dL. Thus, if denotes the angle between B and the component
of e parallel to dL, and ft the angle between u and the plane

containing B and the component of e just mentioned (or the ele-

ment dL), the e.m.f. along dL is given in magnitude and direction

by the equation ., jr\//r> a\/ o\ /*\aw = dLM(B sin &)(u sin p) (6)

The relative directions of the quantities occurring in this equation

are shown in Fig. 1 09, the axis of Z being made to coincide with

the direction of dL and dW, and the plane ofXZ with the plane

containing B and dL.

The second member of (6) is evidently the time rate at which

magnetic flux sweeps across the element of length dL, or, nu-

merically, the number of unit tubes of induction moving across

dL per unit time. If we denote this rate, per unit length of dL,

by dfyjdt (6) may be written

d^=*dL-d$ldt (6a)

which, however, does not give the direction of dW (see Lens's

law below).

From the two preceding equations it is clear that the motional

electromotive force along a line L of any length or form in a

conductor moving in a medium supporting a magnetic field is

=
fdLV(B sin 0)(u sin

/3)
= fdL dfyjdt

= d&fdt (7)

where dQjdt denotes the time rate at which magnetic flux sweeps
in the same general direction across the line L, or, numerically,

the number of unit tubes of magnetic induction moving across L

per unit time, the last two expressions not giving the direction

of >Jr . (See Lenz's law below.)

Motional e.m.f. and Ampere's Law. The existence of a mo-

tional e.m.f. and its origin in the transformation of mechanical

work
(in moving the conductor against the electromagnetic forces

of 4, XII.) into electrical energy or vice versa being established

by experiment, its magnitude and direction can be deduced from

Ampere's law if we assume that all the work done in moving a



336 ELEMENTS OF ELECTROMAGNETIC THEORY.

conductor against electromagnetic forces is transformed into

electrical energy, and that all the energy acquired by a moving
conductor owing to the action of electromagnetic forces is trans-

formed without loss from the energy of the electromagnetic field.

Thus suppose dL at the point P to be the element of length

of a thin wire carrying a current / (due wholly or in part to the

motional e.m.f.). The force upon the element, as given by
Ampere's law, 4, XII., is

dF=dLVIB sm6

The component of dF in the direction of the velocity u is then

dFr = dF sin ft = dL sin IB sin 6

and if the element is moved against the force dF1 with the

velocity u work will be done upon the element at the rate

P= dF'u = dL u sin $ IB sin

Hence the intrinsic e.m.f. developed in the length dL by the

relative motion of conductor and field is

= P//= dL u sin /3 B sin 6

in magnitude, and

dV = dLV(B sin 0)(u sin 0)

in both magnitude and direction, since d'W must have the same

direction as / when energy is transformed from mechanical to

electrical form.

The agreement between this result and (6) justifies the above

assumption.

5. Induced Electric Intensity and E.M.F. It follows from ex-

periment that in a conductor at rest in the surrounding medium

the same electric intensities (and e.m.f.s) are developed by a

given motion of the tubes of magnetic induction (without motion

of the medium) relatively to the conductor, due to the motion in

the medium of the magnets or electric circuits producing the field,

as by the same relative motion of the conductor with reference to
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the fixed medium and field. This would be expected from the

fact that the motional intensity can always be calculated from the

motion of the tubes of induction with reference to the conductor,

and the fact that the forcive upon the conductor is in both cases

equal and opposite to the forcive upon the magnets or circuits

producing the field, so that the work done by or against the

electromagnetic forces during a given relative motion of the -con-

ductor and the magnets or circuits is in both cases the same.

These intensities and e.m.f.s are not intrinsic, no energy being

transformed from mechanical to electrical, or vice versa, in the

regions which are their seats, since the conductor does not move

(appreciably) against or under the action of any force. Through
their agency electrical energy is transferred to or from the con-

ductor at rest, the transformation taking place at the circuit which

moves
(in

which there is a motional e.m.f).

Also, when the magnetic flux through a circuit changes owing
to any other cause than the relative motion of the circuit and a

magnetic field, as when the current in the given circuit itself
(if

a conductor) or the current in a neighboring circuit varies, the

tubes of magnetic induction must be conceived to move inward

or outward across the circuit, since all tubes of magnetic induc-

tion are continuous or closed, and since each tube has the same

strength throughout its length. Hence the change of the mag-
netic field in this manner would be expected to develop intensi-

ties and e.m.f.s similar to those developed by the relative mo-

tion of a conductor and magnets or circuits carrying steady

currents
;
and this expectation is fully confirmed by experi-

ment. These e.m.f.s are not intrinsic, energy being merely

transferred, not transformed, through their agency, and all

the (electrical) energy so transferred coming originally (by trans-

formation) from the intrinsic e.m.f.s in the circuit, or one of the

circuits.

The intensities and e.m.f.s considered in this section are called

induced electric intensities and e.m.f.s, although, as stated in 4,

the same term is very generally applied to the motional intensity
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and e.m.f. also. When the intensity is not intrinsic, E should

be substituted for e in (5) and (50).

Satisfactory direct experiments upon the induced intensity in

insulators have not yet been made
;
but the very important con-

sequences of assuming that the results established by experiment
for conductors apply to insulators as well are justified by their

agreement with experiment. See Chapter XVI.

Lenz's Law. The general form of Lens's law, which is only a

particular case of the law of the conservation of energy, is as

follows : Whenever an e.m.f. is induced in any body, either a con-

ductor or a dielectric, by a variation of the magnetic field or by
relative motion between the body and magnets or circuits tra-

versed by electric currents, the e.m.f. has such a direction that

in the resultant magnetic field the variation of the field, or the

motion, which produced the e.m.f. is opposed.

Thus when a wire is moved in a magnetic field, the field is

strengthened on the side toward which the wire is moving and

weakened on the other side, since the force on the wire is from

the stronger to the weaker part of the resultant field
( 3, XII.).

This gives the direction of the motional e.m.f. at once
;
for it

gives the direction around the wire of the lines of intensity it

produces, and this direction bears a definite relation
( i, XIII.)

to the direction of the current developed by the motional e.m.f.,

which is the direction of the e.m.f. itself.

6. The Second Law of Circuitation. Integral Form. Consider

any closed curve, or circuit, in a conductor or dielectric traversed

by a magnetic field. Let the positive direction around the cir-

cuit be chosen arbitrarily, and the positive direction through the

circuit according to the convention of 2, XII., the first direc-

tion being related to the second as the direction of rotation to

the direction of translation of a right-handed screw. Then, if the

circuit moves relatively to the magnetic field in any manner, or if

the field varies in any manner, or if both changes occur together,

fdLM(B sin 0)(u sin
/3)

taken in the positive direction once around
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the circuit evidently denotes the rate at which the magnetic flux

in the positive direction through the circuit is diminishing. If we

assume that electromotive forces are induced in insulators accord-

ing to precisely the same laws as in conductors, it follows that

when the magnetic flux through any circuit changes owing to

any causes an e.m.f. is induced around the circuit equal to the

rate at which the magnetic flux through the circuit is decreasing.

That is, if 4> denotes the magnetic flux through the circuit (posi-

tive when in the positive direction) and M* the e.m.f. around the

circuit (positive when in the positive direction), at the time /

(8)

which is the second law of circuitation
(in

its integral form). The

e.m.f. may be wholly, or only partially, or not at all, intrinsic.

As an immediate deduction from (8) it follows that the e.m.f.

induced in a coil of wire through which the coil flux changes at

the rate dNjdt is

^ = _
dN\dt (So)

The relative directions of induced electromotive force and

change of magnetic flux, as given by (8) and (So), can also be

obtained immediately from Lenz's law.

E.M.F. of Self Induction. Thus when the current 7 in an iso-

lated coil, of inductance L, increases at the rate dlfdt, and the

coil flux therefore at the rate dNjdt=d(Lr)jdt, an e.m.f.

d(LI}dt is induced in the coil. Thus the change of the cur-

rent or of the magnetic flux is opposed by the induced e.m.f.

E.M.F. of Mutual Induction. Also, if the current /
x
in one (i)

of two coils, with mutual inductance M, increases at the rate

dfjdt, and therefore the coil flux -W
12
= MI^ through the other

coil (2) due to the first coil at the rate dNujdt = d(MI^jdt, an

e.m.f. d(MI^)jdt is induced, owing to this change of flux, in

coil 2 (in addition to the e.m.f. d(L2I^fdt\ At the same time

there is induced in coil I the e.m.f. \_d(LJ^ldt + d(MI2)/dt] .
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7. Differential Form of the Second Law of Circulation for Media

at Eest. The Curl of a Vector. Curl E. Consider an infinites-

imal plane circuit of area dS in a changing magnetic field in a

medium at rest. Let B denote the induction at dS and dB its

increase (in magnitude and direction) in the time dt. The line

integral of induced electric intensity, ,
around the edge of dS

y

viz., \ E cos 6 dL, is evidently a maximum when dS is perpen-

dicular to dB, in which case

f cos dL = -
d<$>jdt

= - dBjdt-dS

Hence the maximum e.m.f. around the edge of dS per unit area is

f cos dLjdS = -
dBjdt

Now the maximum line integral of a vector per unit area

around the edge of an infinitesimal circuit at a point is called the

curl of the vector at the point. Hence the above equation may
be written , ^ J-DIJ* < \curl E = dBjdt (9)

Thus curl E is a vector with the magnitude and direction of

dBjdt.
The three components of curl E along the rect-

angular coordinate axes of X, Y, and Z are

(10)

Cartesian expressions for these components will be developed

in 4, XVI.

E in the above equations denotes the (non -intrinsic) induced

electric intensity, and does not include the motional intensity or

any other intrinsic intensity, or any intensity connected with

electric charges, true or fictitious, if present. Since, however,

the line integral of the latter intensity around any closed circuit

is zero, its curl is zero, and (9) will remain true if E is taken to

denote the vector sum of the induced intensity and the intensity

(whose curl is zero) due to the presence of charges, true or
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fictitious. The second law of circuitation will be generalised in

Chapter XV.

8. The Absolute Determination of a Kesistance by Lorenz's

Method. A circular coil C, Fig. 1 10, mounted with the planes

of its turns in the magnetic meridian, is traversed by a constant

current /, the resistance R to be determined being included in

the circuit. With its axis coincident with that of the coil, a cir-

cular metallic disc D rotates with a constant angular velocity,

Fig. 110.

making / revolutions per second. Wires bearing upon the edge

and axle of the disc connect it through a galvanometer G with

the terminals of the resistance R.

Let M denote the magnetic flux across the disc between its

edge and the edge of its axle per unit current in the coil. Then

the magnetic flux cut across by every radius of the disc, between

axle and circumference, in one complete revolution is MI (pro-

vided there is no current in the disc). Hence an e.m.f. is devel-

oped along every radius of the disc equal, from axle to circum-

ference or from circumference to axle, to Mpl. The connections

from the disc to the terminals of R, for a given direction of rota-

tion of the disc, are so arranged that the induced e.m.f. Mpl and

the e.m.f. RT are in opposition through the galvanometer ;
then

the resistance or the speed of the disc is adjusted until the gal-

vanometer shows no deflection when the galvanometer circuit is

either open or closed. Then

MpI=RI
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and R = Mp (n)

/ can be measured directly, and Mean be calculated from the

linear dimensions and number of turns of the coil. Hence R can

be determined in absolute measure.

If C is a long solenoid, and if D is placed well within C,

M= tip X Trr
2

//. x 7rr
/2 =

H/JLTT^ r/2

)

where ^ denotes the number of turns of wire per cm. upon the

solenoid, and r and rf denote the radii of the disc and its axle.

The method serves also for the comparison of low resistances,

in which case J/need not be known.

9, Induction Discharge Through a Circuit. When the coil flux

through a coil of resistance R changes from one value N^ to

another value N
2
as the time changes from t

l
to t$ an electric

charge

due to electromagnetic induction, circulates in the positive direc-

tion around the circuit. Here / denotes that part of the current,

and M/* that part of the electromotive force, in the circuit due to

the change of flux.

Thus q depends wholly upon the resistance and the total

change in the flux, and not at all upon the time or the way in

which this change takes place.

10. The Electrokinetic Energy of the Field of an Isolated

Circuit. The magnetic energy residing in the field of a single

coil or circuit whose coil flux is N when its current is 7 is

w= \IN= \LP = \N*IL (13)

provided that L N\I= constant, that is, provided ft is con-

stant.

For, if no energy is dissipated, the energy of the field is equal

to the work done against the counter e.m.f. dNjdt in increas-
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ing the current from o to / or the coil flux from o to N. IfN
and / denote also the instantaneous values of the coil flux and

current, the work done against the e.m.f. dNjdt, or the energv

stored in the field, in the time dt is

dW= IdNjdt dt = IdN (14)
Hence

CidN= Fudi=
Jo Jo

which is identical with (13).

The same result follows from 19, XL, which gives

etc.

W is called the electrokinetic energy of the field. A mechan-

ical conception of this energy is given in 1 1
,
B.

11. A. Mechanical Analogues of L, I, N, , dN/dt, and W.

(i) Let L, 7, and N'= LI denote the moment of inertia, angular

velocity, and angular momentum, respectively, of a rigid body B
about a given axis. If the angular velocity / is increased at

the rate dljdt, and the angular momentum at the rate dNjdt
=

d(LI)ldt, the increase will be opposed by a torque of inertia

equal to M* = dNjdt. To overcome this torque, that is to in-

crease the velocity or momentum, an equal and opposite torque

+ dNjdt must be applied. The rate at which work is done in

increasing the velocity or momentum is dWjdt = IdNjdt^ and

the total work done in increasing the velocity from o to /, or the

momentum from o to N= LI, is

W= ffdN =$LIdI= \IN= \LP

which is the kinetic energy of B when its angular velocity is 7.

(2) Let Z-, 7, and N= LI denote the mass, linear velocity,

and momentum, respectively, of an incompressible liquid flowing

in a closed pipe of constant cross -section. If the velocity 7 is

increased at the rate dljdt, and the momentum at the rate
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dNjdt, the increase will be opposed by a force of inertia equal
to dNjdt = M*. To overcome this inertia, that is, to increase

the velocity or momentum, an equal and opposite force -f dNjdt
must be applied. The rate at which work is done in increasing

the momentum is dWjdt= IdNjdt, and the total work done in

increasing the momentum from o to TV= LI is

which is the kinetic energy of the liquid when its velocity is /.

Neither of these analogues is at all complete. Thus the

energy in (i) resides wholly in the rigid body and the energy
in (2) resides wholly inside the pipe, while the energy of an elec-

tromagnetic field may reside almost wholly in the dielectric sur-

rounding the conductor.

B. Mechanical Conception of the Magnetic Field. Let
//-, H,

and B = pH denote the moment of inertia per unit volume, angu-
lar velocity, and angular momentum per unit volume, respectively,

at a point P in an incompressible medium in a given type of rota-

tory motion. If the angular velocity H is increased at the rate

dHjdt, and the angular momentum per unit volume therefore at

the rate dBjdt = pdHjdt the increase will be opposed by a torque

of inertia equal, per unit volume at P, to curl E = dBjdt (E

being the force per unit area acting tangential to the surface of

the rotating element).

Adhering to the fundamental conception of the electric field,

13-14, I., according to which E is a kind of shearing stress

between positive and negative aether cells, we shall therefore

assume that at any point of a magnetic field in free aether the

positive and negative cells are rotating with equal angular speeds

in opposite directions (unlike cells being in contact or geared to-

gether) the axes of rotation being parallel to the direction of the

intensity at the point, and the direction of rotation of the positive

cells being related to the direction of the intensity as the rotation

to the translation of a right-handed screw. We shall assume
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the magnetic intensity H to be the angular velocity of the posi-

tive cells, equal and opposite to the angular velocity of the

negative cells. We shall further assume p to be the sum per

unit volume of the moments of inertia of the cells. Then \B
= \^H will be the sum of the angular momenta of the positive

cells per unit volume, and \B \pH will be the sum of

the angular momenta of the negative cells per unit volume. The

total kinetic energy per unit volume will be J(J//J7 x H) -f

J( J/A//X H}=lfiH
2

. The centrifugal force arising from

the rotation of the cells will account for the pressure normal to

the lines of magnetic intensity, and therefore for the tension along

the lines of intensity, and these tensions and pressures will account

for the mechanical forces upon magnets, for Ampere's law, etc.

For a fuller account of this conception and its application to nu-

merous electrical phenomena see Lodge's Modern Views of Elec-

tricity, and an article by W. S. Franklin, Physical Review, Vol. 4.

12. Electrokinetic Energy Density in a Medium With Constant

Inductivity (ft). Fig. 1 1 1 represents a plane section through a

coil RR with n turns (n = 3 in the figure), an equipotential sur-

face S, and a tube of induction ABCDA threading the circuit RR
and cutting out from the equipotential an element of area dS.
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If / denotes the current through the coil, the m.m.f. around

the tube ABCDA is

The magnetic flux across the equipotential 5 is

Njn =$BdS

Hence the energy of the magnetic field is

W= \IN= \nIN\n = \HdL$BdS

\BHdr

the integration being extended throughout the magnetic field.

The energy per unit volume is therefore

T= dWjdr = \BH= |/z7/
2 = *&/p (16)

as otherwise proved in 18, XI.

For the work done during the process of magnetisation when

/i is a function of //"see 18, XL, or 29.

13, The Electrokinetic Energy of the Field of Two or More

Circuits in a Medium of Constant Inductivity (JJL).
Consider first

two circuits, I and 2, Fig. 1 12, with n
v
and n

2
turns and currents

7
X
and 7

2 , respectively. Let Lv L2 ,
M2V and M

12
denote the self

inductances and coefficients of induction
( 3, XIII.) of the two

circuits. Let H
v
denote the magnetic intensity at any point P

due to the current 7
X alone, H2

that due to the current /
2 alone,

and H the resultant intensity due to 7
t
and 7

2 together. Then

H* = ff* + 7/
2

2 + 2H
1
H

2
cos

12

if B
12

denotes the angle between 7^ and 77
2

. The total energy

in the magnetic field is, by 12,

cos

the integrations extending throughout the magnetic field.
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The first and second integrals are equal, respectively, to

iVi
2 and iA/2

2

> by 10 and 12.

To evaluate the third integral, consider a magnetic equipoten-

tial surface 5 for the field of 7
X
alone drawn through P, and T, a

tube of induction of this field enclosing P and cutting out from vS

Fig. 112.

an element of area dS. With N, the normal to dS, H2
and B^

make the angle 12
. The integral pH^H^ cos

12
dr may evi-

dently be written

cos dSdL=HdLH cos dS

in which the first integration extends around the tube T and the

second over the surface 5. Now, by (22), XII.,

and, by the definitions of magnetic flux and coil flux,

Hence ff^Lpff, cos

and W= fenHV-r = LJ? + \LJ} + MJ& (17)
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If, in evaluating the third integral, we interchange the roles of

circuits I and 2, we obtain

(if)

Since the two expressions for ^Fare equal,

Ma -Ma (18)
as stated in 3.

The term M^I^I^ = M^J^I^ is called the mutual energy of the

two coils or fields. In the same way, in general, the expression

NyJi denotes the mutual energy of the fields I and 2.

In exactly the same manner it may be shown that if we have

any number of circuits 1
, 2, ,

n with currents Iv /
2 , ,

/
n ,

inductances Lv L2 , ,
Z

n ,
and coefficients of mutual induction

M
12,
M

iy
-

,
M2y Mw -

, etc., then the electrokinetic energy is

W=\Lj;+\L + ... + \LJt

+ j/
12//2 + j/

13//3 + . . . + J4/2
/
3 + (19)

14. The Coefficient of Self Induction of a Coil is Proportional

to the Square of its Number of Turns, the dimensions of the coil

being kept constant. For if < denotes the average flux through

a single turn of the coil,

3> = knl

where k is a constant. Hence

= kn2

(20)

15. The Coefficient of Mutual Induction of Two Coils is Pro-

portional to the Product of the Numbers of Turns in the Two Coils,

the dimensions and positions of the coils remaining constant. For

if <I>
12
denotes the average flux through a single turn of coil 2

due to a current /
L
in coil I,

3>
12
= kn^

where k is a constant. Hence
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16. The Coefficient of Self Induction of a Coil is Proportional to

its Linear Dimensions, the shape of the coil and its number of

turns remaining constant. To prove this, consider a coil A, and

another coil A' with linear dimensions k times as great. If P
and P' are corresponding points, 5 and S' corresponding equi-

potential surfaces, dS and dS' corresponding elements of area,

B and B f

corresponding inductions, <I> and <>'
corresponding

average fluxes through a single turn for the same current 7, and

L and L' the corresponding inductances for the two coils, then

B'=ijkB t by n, XII., and dS f = PdS. Hence

and L' = n<$>' !I=kn<$>lI=kL (22)

which was to be proved.

In like manner it may be shown that the coefficient of mutual

induction of two coils is proportional to the linear dimensions,

the relative dimensions and distances retaining the same ratios.

17. Energy Definitions of Self and Mutual Inductance. From

(13), 10, the coefficient of self induction of a coil or other con-

ductor may be defined as the ratio of twice the energy of its

magnetic field to the square of its current. Thus

L = 2 IV/I
2

=JV//VT//
2

(23)

This definition is not identical with that of 2 unless
JJL

is con-

stant. It is often more convenient than the previous definition

in getting the inductance of non-linear circuits or conductors.

In like manner the coefficient of mutual induction of two cir-

cuits or conductors may be defined as the ratio of their mutual

magnetic energy to the product of their currents, by 13. Thus

Ma ~(WU =MM I/A = (fpffft cos VT)///, (24)

From the definitions just given the relations proved in 14-

16 on the basis of the earlier definitions may be readily estab-
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lished. Thus if the number of turns of a coil is altered in any
ratio n, the dimensions and the current remaining unaltered, the

magnetic intensity H in every element of volume dr will be

altered in the same ratio. Hence L =^^H
2

drjP will be altered

in the square of the same ratio. The other relations may be

established in like manner.

18. The Inductance of Any Number of Coils Connected in Series.

If all the coils of 1 3 are connected in series, fl
= 7

2
= = /.

Hence, if L denotes the inductance of the system in series,

...

If the individual coils are so constructed or so far apart that

all the mutual inductances vanish,

L = L, + L
2 +... + L

n (26)

The principle of (26) is commonly applied in the construction

of standards of inductance variable by fixed amounts, and that

of (25) in the construction of continuously adjustable standards

of inductance. For this purpose two circular coils with induc-

tances L
}

and L
2
are mounted (i) with their axes coincident and

the distance between their centers adjustable, or (2) with their

centers coincident and the angle between the planes of their turns

adjustable. Thus the mutual inductance M is adjustable, and

therefore the resultant self inductance,

L = L, + L, + 2M (27)

M is positive or negative according as the magnetic flux due

to one coil threads the other in the positive or negative direction,

the direction of the current around each circuit being chosen as

the positive direction around the circuit.

It will be shown in 44, that a condenser of capacity 5 con-

nected in series with a coil of inductance L produces the same

effect in the case of harmonic alternating currents, as an induc-

tance L i jSp
2

,
where / = 2ir x the frequency of the current.
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19. 1^2 M2
is not Less than Zero, Let L

L
and Z

2
denote

the self inductances of two coils, and M their mutual inductance.

Then

L^-M^o (28)

For the electrokinetic energy of the field, given by (17), is a

signless or positive quantity, whatever the values of the currents
;

.and (28) is the condition that this expression may never be less

than zero, whatever the values of the currents.

The proposition may also be demonstrated as follows. In the

nomenclature of 15,

A = *i*,/4 A = ,*,/' and M= ,*//, = *,*//;
Hence

AA - M* = ,,///, .(*,*,
- 4>

21
*

I2 )

= ,,*,*,///, -(I
- */*,. */*,)

which is greater than zero, or equal to zero, since each of the

last fractions is less than unity, or unity.

The sign of equality holds, or Z
X
Z

2
= M.2

, only when all the

magnetic flux threads every turn of both coils (4> 12
= <I>

21
== <X>

X

= <I>
2),

as when the coils are toroidal and uniformly wound on

the same core.

20, The Inductance of a Uniformly Wound Solenoid and Its

Electrokinetic Energy. The flux through each turn of the infinite

solenoid of 19, XII., is < = pHS = pSnf, and the coil flux

through the nA turns in a length A of the solenoid isN= S^nlnA
= pSIn

2A. Hence the inductance of a length A of the solenoid is

L = N/f=fjLSn
2A

(29)

The same result may be obtained otherwise thus : The mag-
netic energy per unit volume within the solenoid is J/^//"

2 =
^/-i/z

2/ 2
,

and there is no energy outside the coil. The volume of a length
A of the solenoid is SA, and the energy contained in this vol-

ume is
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W= lfiH
2SA = ifin

2f 2SA (30)

Hence Z = 2 ^//
2 = fiSn^A (3 1

)

Since the magnetic field is confined wholly to the region
within the coil, the inductivity of the surrounding medium does

not affect the inductance.

If the length, A, of a finite solenoid, 20, XIL, is great in

comparison with its cross-section S, the intensity within the

solenoid is sensibly uniform and equal to H= nl except near the

ends, where it is weaker, and the external field, except near the

ends, is very weak. Hence the inductance of the solenoid is

approximately that given by (31), the approximation becoming
more exact as the length of the solenoid increases, since the

internal energy increases almost proportionally to the length

(slightly faster) and the external energy increases but slightly

with increase of length (see 8, VI.). The inductivity of the

external medium affects the inductance only slightly, inappreci-

ably when the solenoid is very long.

The permeance of the solenoid is sensibly

P= </0 = nHSjHA = fji S/A (32)

21. The Electrokinetic Energy Contained in an Isolated Circular

Cylindrical Conductor. (1) Solid Cylinder. The energy con-

tained in an elementary cylindrical shell of length A, radius r,

and thickness dr is

dW

Within the conductor at a distance r from its axis

if R denotes the radius of the wire and / the current. Hence

W= fdW= nf
2

A/47rR
4 f i*dr = pI

2

A/i67i (33)

Thus the energy within the wire, for a given current, is inde-

pendent of the radius of the wire and is proportional to its indue-
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tivity. The external energy is less the greater the radius of the

wire.

? - Rff f*V -
Jn,

(2) Hollow Cylinder. Let the inner and outer radii be denoted

by ^ and R
2 , respectively. Then, within the shell, at a point

distant r from the axis

Hence W=

(34)

In this case the electrokinetic energy depends on the ratio of

R
2
to Rv being greater the greater this ratio, and approaching

zero as the ratio approaches unity. The correctness of the last

statement is easier to see from the following considerations than

from (34). For a given value of the current and R
2 ,
the external

field is wholly independent of the magnitude of Rr The internal

intensity steadily decreases from the outer to the inner surface,

being equal to the external intensity at the outer surface and to

zero at the inner surface. The volume of the shell approaches

zero as R
2

R
l approaches zero. Hence the internal energy,

which is equal to the volume of the shell times the 'average

energy density, approaches zero as R
2jRl approaches unity or as

R
2

R
l approaches zero, while R

l
or R

2
remains constant.

22. The Electrokinetic Energy and Inductance of a Cable con-

sisting of a circular cylindrical core of inductivity^ /JL and radius

R and a coaxial circular cylindrical shell of the same inductivity

and internal and external radii R^_ and R
2 ,

the inductivity of the

intervening dielectric being /n.

The magnetic energy contained in a length A of the core (sup-

posed solid) is



354 ELEMENTS OF ELECTROMAGNETIC THEORY.

The magnetic energy in a length A of the dielectric is

(b) =^'H 2A27rrdr =
fjL

ff 2

A/4ir log RJR

The intensity within the shell at a point distant r from the

axis is _ R
*ft (3 5)

Hence the magnetic energy within the shell is

(c)
= p

The total magnetic energy in the length A of the cable is

W=(a) + (6) + (
f
)

:-.
.;n.

..'.v

The inductance of a length A of the system is therefore

L= 2 WjP = fjiA/STT + /AM/27T log ^/tf + M/STT -

[(R*

- 3^2

2

)/(^
2 - ^2

) + 4^2

4

/(^2

2 -W log *,/*J

If the outer shell is extremely thin, the third term becomes

negligible, and we have, very approximately,

L = pA/Sir + p'A/2ir log RJR (37)

If the core of the cable is a very thin hollow cylinder, instead of

a solid cylinder, the first term also vanishes approximately, and

L = p'A/2ir log RJR (38)

(38) is rigorously true when the conducting shells are infinitely

thin, or when the conductors are perfect conductors, both of

course ideal cases.

23. The Magnetic Energy, Inductance, etc., of a Rectangular

Toroid (Fig. 103, 22, XII.). Let the uniform thickness of the

toroid parallel to the axis of revolution be denoted by b, and the

inner and outer radii by Rl
and Rv and let the whole number of

turns in the coil be denoted by n.

Then the m.m.f. along a closed line of intensity is

'

fi= nl
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The intensity at a distance x from the axis, when x is greater

than R and less than R^ is

(39)
and the induction is

B = JLff=

The magnetic flux across an elementary strip of length b

parallel to the axis, and breadth dx perpendicular to the axis is

Bbdx = fjLn&f/27r dxjx

if the strip is distant x from the axis. The total flux through

a single turn of the coil is thus

r log RJRl
.

(40)

and the coil flux is

-log R2/Rl

whence
L = N/f = f*

2

/2ir-log R2fRl (41)

The permeance and reluctance of the magnetic field are given

by the equation

p = i IR = <D/n = ^/27r log RJR I (42)

The electrokinetic energy within the tore is

W= \LP = }IME> = ^W 2

/27r log R2jRl (43)

24. The Inductance and Electrokinetic Energy of a System Con-

sisting of Two Parallel Circular Cylindrical Wires traversed by
the same current in opposite directions.

Let the distance d between the axes of the wires be great in

comparison with R, the common radius of the wires. Then the

energy contained in a length A of each wire is very nearly the

same as if the wires were infinitely remote from one another,

viz.,
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The energy within a length A of the dielectric is very ap-

proximately equal to ^</, where <l> is the magnetic flux across

the rectangular area A(d 2R) connecting a length A of the

wires.

The magnetic induction B at every point of the area A x (d

2R) is normal thereto. Let x denote the distance of a point in

this plane from one of the wires, and /*' the inductivity of the

dielectric
;
then the induction at the point is

B = /*'//27rr -f A<///27r(y x)

Hence the magnetic flux through the area is

<f> = B- Adx = n'AIJTr
. log [(d

-
R)/R]

JR

The energy contained in the tubes crossing the area A(d
2R

)
ls

(b]
= !<!>/= fji'AS

2

/27r- log \_(d- R)/R]

The total energy in a length A of the system is

W= 2(0) 4- (b}
= M/2

/87r + v'AS
2

/27r log \_(d
-

R)/R] (44)

and the inductance of a length A is

Z = M/4"- + pfAI-ir log [(d- R)jK\ (45)

25. Two Standard Mutual Inductances, (a) If a coil (2) of n'

turns is wound around the endless solenoid (i) of 20, the coil

flux through this outer coil (2) will be

and the coefficient of mutual induction of the two coils will be

-WB -A'U//1 -A*S
/

(46)

If the solenoid has the length 2Z and a circular cross-section

of radius R, small in comparison with 2Z, the field at all points

of the central portion is very nearly uniform and equal to the

intensity at the center of the axis, viz.,
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Hence if a coil of n r turns is wound about the central portion

of this solenoid,

and the coefficient of mutual induction is

(47)

which, when L is large in comparison with R, becomes practi-

cally identical with (46), 5 being put equal to irR2
.

(&) In the same way, if a coil (2) of n' turns is wound around

the closed coil (i) of 23, the coil flux through this outer coil

be
N'n' = N

12
=

pnn'IJ}\2Tr log RJR l

and the coefficient of mutual induction of the two coils will be

/2ir-log R2/Rl

26. The Work Done in Increasing the Coil Flux Through a Coil

with a Constant Current. Let the constant current be denoted

by /. If the coil flux is changing at the rate dNjdt, an e.m.f.

dNjdt is developed tending to diminish the current, To keep

the current constant, energy must be supplied (in addition to that

supplied when the flux remains constant) to the circuit (by in-

creasing the e.m.f. of the battery or other source) at the rate

dWfdt = IdNjdt

just sufficient to balance this induced e.m.f. The work done on

the circuit, that is on the magnetic field, while the flux increases

by dN during the time dt will be

dWjdt dt=dW= IdNjdt dt = IdN

Hence if the flux changes from N^ to Nv the magnetic field

must receive an increment of energy equal to

W
t -W^I(Nt -N^ (47)

which is a particular case of the equation following (14).



355 ELEMENTS OF ELECTROMAGNETIC THEORY.

If N
2 NI is negative, the work W

2
W

l
is also negative, or

the work is done by the magnetic field, and its energy diminishes

by this amount.

27. The First Law of Circuitation. The Magnetomotive Force

Around a Closed Path Linking with an Electric Current. Consider

an ideal permanent flexible *
magnet with concentrated poles in

the field of a circuit consisting of a single turn of a conductor

traversed by a current which is kept constant. Suppose the

negative pole of the magnet to remain fixed in position and the

positive pole to be moved from its initial position along a closed

path linking once with the circuit back to its initial position.

During this process the flux through the circuit changes by the

flux passing through the body of the magnet (equal to ;;?, the

strength of its poles), and this is the only change in the flux

through the circuit that occurs. Since the pole is in its initial

position, and the current is unchanged, the energy of the mag-
netic field is unaltered. Hence the work done by the magnetic

field on the pole is equal to the work done upon the magnetic

field during the change of flux. That is, if H denotes the inten-

sity due to the current /,

mfff cos 6dL = / (N2
- NJ = Im

Hence

O = fff cos OdL = / (48)

If there are n turns to the coil, or if the path links n times with

a coil of one turn,
H = 7

Thus the m.m.f. once around a closed path in the positive

direction through a circuit, or in the direction of the lines of

intensity, is equal to the total current in the positive direction

around the circuit.

*Not essential but convenient. See Nichols and Franklin's Elements of Physics,

Vol. II., \ 124.
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28. Differential Form of the First Law of Cireuitation. Con-

sider an infinitesimal circuit of area dS in a conductor traversed

by a steady current whose density at dS is i. The current

across dS will be a maximum, idS, when dS is turned with its

normal pointing in the direction of i. In this case the m.m.f. in

the positive direction around the circuit is

H cos 6dL = idS

Hence the line integral, or m.m.f, per unit area is

curl 77= i (49)

In the above equations H denotes the magnetic intensity of

the current, and does not include the field intensity, or intrinsic

intensity, connected with magnets. Inasmuch, however, as the

former intensity has no curl (m.m.f. around a closed path zero),

(49) will remain true if H is taken to denote the total intensity

exclusive of the intrinsic intensity.

The above relation, (48) or (49), established here for con-

duction currents, is true for the general electric current
( 7,

XV.), and is called \hzfirst law of circulation.

29. General Expression for the Work Done in Magnetisation.

The work per unit volume done in changing the magnetic induc-

tion at any point of any medium from B^ to B
2
was shown in

18, XL, to be
rs
HdB (50)dWfdr = f

*

* '2?i

The same result will now be deduced by a different process.

For convenience we shall make use of a very long solenoid of

cross-section .S uniformly wound with n turns per cm., and we

shall suppose the space within the coil completely filled with a

homogeneous isotropic material.

The work done in magnetising the core, in which we shall first

suppose that no currents are induced during the change of mag-
netisation, is equal to the work done against the counter e.m.f.
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developed in the coil by the changing induction. The rate at

which work is thus done upon a portion of the core of length L
and volume r = SL is

dWjdt = IdNjdt

where N denotes the coil flux through the portion of the sole-

noid surrounding the volume considered. Hence the work done

in changing the flux from N^ to N
2 ,
or in changing the induction

from B to B is

Ni

=T HdB

since nl
'= //and N= nLBS. From this equation (50) follows

immediately.

If the core is conducting, currents (called eddy currents or

Foucault currents) will be induced in the core itself durine the
/ o

change of the induction, and more work than that given by (50)

will be done, the extra energy going to Joulean heat. These

currents and the consequent dissipation of energy can be greatly

reduced by going through the process slowly, or by dividing the

substance up into parts insulated from one another in the direc-

tion of flow of the eddy currents.

(50) gives the change in magnetic energy during the change
of induction only when there is no dissipation arising from any
cause.

(50) has been derived with the aid of the uniform field of a

very long solenoid, but since all fields are uniform in their

infinitesimal parts, the result is perfectly general.

When /A is independent of //or B, (50) reduces to (16).

30. Electrokinetic Energy, Mechanical Energy, and Change of

Configuration of Circuits. First consider two circuits, I and 2.

For the electrokinetic energy we have

If, while the currents are kept constant, the circuits so move



ELECTROMAGNETIC INDUCTION. 361

(or one of the circuits) that M is altered by an infinitesimal

amount dM
t
W is altered by an amount

During this motion the coil flux through circuit I is increased

by the amount '..'

Hence an amount of work

is done upon the magnetic field.

In like manner, the coil flux of circuit 2 is increased by the

amount

and a second amount of work

is done upon the magnetic field.

Hence the total work done upon the magnetic field (by the

batteries, in keeping the currents constant) is

while the increase in its energy is only

Hence the additional energy I^I^dM has gone to increase the

mechanical energy of the system. If F denotes the force acting

upon either circuit and tending to increase the distance x between

the circuits, measured in its line of action, the increase of me-

chanical energy is _ Fdx =

the negative sign being chosen because dMis negative when dx

is positive. Hence the force tending to increase the distance

between the circuits is

(51)
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If the forcive between two circuits is a torque, instead of a

simple force, we have for the torque tending to increase the

angle 6 between the planes of the two circuits,

T=-I
l
I
2dMld6 (52)

31. The proposition of the last article is a particular case of

the following more general theorem : If any number of circuits

suffer any infinitesimal change of configuration, both L's and M's

varying in the general case, while the currents are kept constant,

the increase in the electrokinetic energy, dWy
is equal to the in-

crease in the mechanical energy, dW \
while the work done by the

batteries (over and above that expended in overcoming resistance

and dissipated in heat), dWn
\ is equal to

dW" = dW+ dW = 2dW=2dW (53)

We proceed to establish this proposition. When the most

general infinitesimal change of configuration occurs, the increase

in the electrokinetic energy is, when the currents are kept con-

stant,

dw= I/V

The work done upon the magnetic field by the batteries is

dW" = IJNi + I
2
dN

2 + + IdNn

Now
idM

ln

Hence
dW" = /.(/

I,dL,
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The difference between dW" = 2dW, the energy supplied to

the magnetic field, and dW, the increase in its energy, must

equal the mechanical work dW done by the field on the circuits,

or the increase in the mechanical energy. Hence equation (53)

immediately follows.

32. The Electrodynamic Balance. As an example of (51) we

shall find the forcive upon a circular coil (2) of n turns and radius

r placed with its center in the axis of a much larger circular coil

(i) of TV turns and radius R, the planes of the coils being parallel.

Let the currents of the larger and smaller coils be denoted by 7
T

and 7
2 respectively, and the distance between them by d. Then

Nu = pHnrr
2n = TrrR^nNIJ2(R

2 + d 2

)*

M= NJ^ = 7rr
iR2

^nNl2(R
2 + d2

)* (54)

H being practically uniform in the small region occupied by the

small coil, and /JL (for air) being sensibly equal to unity. The

force tending to increase the distance d is, by (51),

F= - I^dMjdd = - ^Trr-R^nNdl^l 2(R
2 + d2

)* (55)

If /j and /
2
have the same direction, F is attractive, otherwise

repulsive. If the same current / is caused to flow through the

two coils in series in the same direction, the force is

F= -
^7rr

2R2^nNdI2

l2(R
2 + ^2

)
i

(56)

If a third coil C, exactly similar to the larger coil A is placed

with its plane parallel to that of A and distant therefrom 2d
f

with B half way between the centers of A and C, and if the same

current /is made to flow through A and C in opposite directions,

and also through B, the force F will be twice as great as that

given by (56); or, in magnitude,

d2

)* (57)
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If the coils are mounted with their planes horizontal, and if the

small coil B is connected with one end of the beam of a balance,

the force F can be easily measured, and / determined in absolute

measure. We have in this case

/ = (R* + d^F^rR(^7riJidnN^ (58)

Since F is proportional to the square of 7, alternating as well

as direct currents can be measured. The instrument is known

as an electrodynamic balance.

For descriptions of two electrodynamic balances by which cur-

rents have been determined in absolute measure with great pre-

cision, see Lord Rayleigh, Phil. Trans., Part II., 1884, and H.

Pellat, Comptes Rendus, Vol. 103, 1886. The most recent of

electrodynamic balances, that of von Helmholz, is described by

Kahle, Zeitschriftfur Instrumentenkunde, Vol. 17, 1897.

33, The Torsion Electrodynamometer. If the planes of the

coils A and B of the last article make with one another an

angle 0, M= 7rr*R2nN p, cos 0/2(R
2 + d^ (59)

and there is, in addition to the force

F= - IJjtMjdO = i7rr*R
2nNd ^//2

cos 0/2(R
2 + d^ (60)

a torque in the direction of increase of the angle equal to

T= - I^dMjde = irr*B*nNIJjL sin 0/2(R
2
-f d^ (61)

If the smallest coil is at the center of the two coils A and C,

32, we have

and

T^-I^dMjdO
7r^R2nNp cos 0/(R

2 + </
2

)*] (62)

sin &/(R
2
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from which the equations for the Weber and Siemens forms

of electrodynamometer immediately follow, as in 34, Chap-

ter XII.

For a description of one of the most recent and accurate of

torsion electrodynamometers see Patterson and Guthe, Physical

Review, Vol. 7, 1898.

34. General Definitions of B and <E>. In XI. ^ was defined by

(2), and B by (5).
These definitions are not valid, however, in

their unmodified form without qualification when the magneti-

sation is wholly or partially intrinsic
( 22, XL). We shall now

redefine B by (9).
Thus

B=-Tcur\Edt (63)
JQ

the substance considered being in its neutral state at the time

/= o.

Consistently with the preceding definition of B and XL, we

shall redefine 3> by the equation

3> = f# cos OdS = - f "^dt (64)

the substance being in its neutral state at 'the time t = o.

<l> and B, defined by these equations, can evidently be deter-

mined experimentally (by the ballistic methods referred to be-

low). Starting with these definitions it can be shown by experi-

ment that tubes of magnetic induction are always closed, as

assumed in 14, XL These definitions are perfectly consistent

with the earlier definitions, and are more general, including all

cases of intrinsic as well as elastic magnetisation.

35. Magnetisation Curve. Redefinition of /*. Permeability.

If we start with a substance in a neutral state and increase the

magnetic intensity H from zero in a series of steps, observing

the corresponding values of B, we obtain, on platting the results

graphically, a curve showing the relation between B and H and

called the magnetisation curve of the substance.
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We shall now redefine /*, for any given value of H, as the ratio

of B to H for the given point on the magnetisation curve. The
relation B = pH thus holds for the process of magnetisation rep-

resented by the curve.

The curve showing the relation between J= B( = /x//) ^H
and H is also called the magnetisation curve of the substance.

Either curve can of course be readily obtained from the other.

The permeability of a substance is the ratio of its inductivity to

the inductivity of the standard medium. If, as in this book, free

aether is chosen as the standard medium, the permeability p/fJ>Q

of a substance is numerically equal to its inductivity. The in-

ductivity of air is only slightly greater than unity, being equal, at

ordinary temperatures and pressures, to about /XQ(I -f- 3 x io~6

).

36. Diamagnetic and Paramagnetic Substances, The inductivity

fjL
of nearly every substance is independent of the value of H and

is very nearly equal to /*
= I - Thus the magnetisation curve

of such a substance is a straight line, and, if B and H are platted

to the same scale, makes an angle of very nearly 45 with the

axis of H.

A substance whose inductivity is less than JJL or whose per-

meability is less than I
,
is called a diamagnetic substance

;
and

a substance whose inductivity is greater than /AO
is called a mag-

netic, a paramagnetic, or, if its inductivity is great and its mag-
netic properties resemble those of iron, a ferromagnetic sub-

stance. The inductivity of every diamagnetic substance is very

nearly equal to unity, water being the commonest example.

The inductivity of a diamagnetic or weakly magnetic substance

is best investigated by methods analogous to those of 3 and

4, VII. (see A. P. Wills, Physical Review, 6, 1898; Jager u.

Meyer, Wied. Ann., 67, 1900; Du Bois, The Magnetic Circuit).

In 37 and 38 are described two methods commonly applied to

iron, nickel, and cobalt, in which
IJL

reaches great magnitudes.

For detailed information on the magnetic properties of iron

and other ferromagnetic substances, together with the methods
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of experimental investigation, reference may be made to Ewing's

Magnetic Induction in Iron and Other Metals and to Du Bois's

The Magnetic Circuit. The more important magnetic properties

of iron are briefly described in Ch. Maurain's recent Le Magnet-

isme du Per. A resume of the magnetic properties of matter

generally, with abundant references, is given by Du Bois in Vol.

II. of the Rapports of the International Congress of Physics, 1900.

37. The Determination of B, /*, and J (Intensity of Magnetisa-

tion) by the Magnetometric Method. A very long solenoid,

similar to that of 20 B, XII., is mounted with its axis vertical,

and a magnetometer ( 26, XL) is mounted with its needle in

vertical plane passing through the solenoid perpendicular to the

magnetic meridian and in a horizontal plane passing through the

upper part of the solenoid. The solenoid is connected in series

with another coil, called a compensating coil, so arranged that

both coils together produce no deflection of the needle when

traversed by a current.

The iron or other substance whose magnetisation is to be

investigated, in the form of a long cylindrical rod similar to that

of 20 B, XII., is then placed vertically in the solenoid traversed

by a steady current with its axis in the vertical plane perpen-

dicular to the meridian passing through the needle, and its

height is adjusted until a position is reached in which the deflection

of the needle is a maximum. In this position the upper resultant

pole of the rod is approximately in the horizontal plane passing

through the magnetometer needle. Let \L denote the distance

from this plane to the center of the rod. Then the other result-

ant pole is, by symmetry, distant approximately \L from the

center on its other side. Let R denote the distance from the

center of the magnetometer to the axis of the rod.

The circuit is broken, and the rod is demagnetised (if
this is

necessary for the purpose in view) and left, or reinserted, in the

position already determined for maximum deflection. The demag-
netisation can be accomplished by heating the rod to redness, or
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by sending a current, gradually diminished to zero while its

direction is rapidly reversed, through the solenoid with the rod

in place, or by other means.

The circuit is now closed and the current increased to produce
the desired value of H = nl

(
20 B, XII.), thus developing

poles of strengths -f m and m in the rod, and the quantities

under investigation are determined as follows.

The magnetic intensity at the magnetometer needle due to the

two poles of the rod is

perpendicular to the meridian.

If H denotes the horizontal component of the earth's mag-
netic field at the needle, the needle will be deflected through an

angle such that

H= H tan (9

By measuring 6, H, L, R, and S, n, and the current /, the

quantities B, J= B y^//, JJL ^ can then be calculated from

the above equations and those of 20 B, XII.

If the experiments are not performed at the earth's magnetic

equator, where the total intensity is horizontal, the intensity

parallel to the rod will not be given completely by H nl on

account of the vertical component of the earth's intensity. This

component can be neutralised by winding another coil in the

solenoid and passing through it a suitable current.

If after adjusting the apparatus we start with the current zero

and the rod in a neutral state, and then increase the current by

steps, observing both currents and corresponding deflections, we

obtain, on platting the results graphically, the magnetisation

curve of the substance. The magnetisation curve, and the curve

showing the relation between /A = B /
H and H obtained there-

from, are shown in Fig. 113 for a particular sample ofwrought iron.

When great accuracy is essential, an ellipsoid, instead of a

cylinder, of the substance under investigation must be used.

See Ewing's treatise above referred to.



ELECTROMAGNETIC INDUCTION. 369

38. The Determination of B, /JL, etc., by the Ballistic Method

(Rowland's Form). The substance to be investigated, in the form

of a rectangular tore, 23, whose thickness R
2

R
l
= a is small

in comparison with Rv is wound with a toroidal coil of n turns.

This coil is connected in circuit through a reversing key with

a battery of constant e.m.f, a current meter, and a rheostat

whose resistance can be suddenly varied.

All the quantities a e exp'

n E.M. units)

Magnetic Intensity

Fig. 113.

A secondary coil of n 1 turns is wound around the toroidal coil

and connected in circuit with the coil of a ballistic galvanometer.

Let the resistance of this secondary circuit be denoted by R.

The relation between the deflection of the galvanometer and

the charge q circulated through its coils is supposed known from

direct experiment.

Since R
2 R^ = a is small in comparison with R

lt
the mag-

netic intensity, given accurately by (39), is nearly constant

throughout the tore and sensibly equal to

H +
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The magnetic flux across every section of the tore is Bab, and

the coil flux through the secondary is n 1Bab.

If, by altering the resistance of the circuit, the current is sud-

denly changed from a value / to a value /, the magnetic inten-

sity will be increased by

R^ (65)

and the magnetic induction will be increased by

(66)

where q is the charge sent through the galvanometer circuit

when the coil flux through the secondary changes from n'B
Q
ab

to n fBab
( 9),

and is known from the observed galvanometer
throw.

All the quantities in the second members of (65) and (66)

being determined by experiment, H H
Q
and B B

Q
are known.

Starting with any value of H
(V
and the corresponding value

of B
Q ,

and increasing or decreasing the current suddenly in a

series of steps, current and galvanometer throw being read at

each step, the relation between B B
Q
and H H

Q
can thus

be obtained for as wide a range ofH H
Q
as desired.

If we start with the current zero, and the substance under in-

vestigation in a neutral state, //"
O
and B

Q
are zero, and if we increase

H in a series of steps, we get the magnetisation curve of the

substance. From corresponding values of B and // on this

curve //. can be found by division.

For additional ballistic and other methods, see the references

given above. See Du Bois, Zeitschrift fur Instrumentenkunde
',

Vol. 20, 1900, for a description of his latest magnetic balance

and its theory.

39. Magnetic Hysteresis. If a sample of iron, nickel, or

cobalt is carried repeatedly through a given magnetising cycle,

the intensity being increased to GB, Fig. 1 1 4, then reversed to

HE = GB, then reversed to GB, then reversed again to HE,
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and so on for a number of cycles, and the relation between B and

H then investigated for a complete cycle by the magnetometric

or ballistic method, a closed symmetrical curve with general

characteristics similar to those of the figure will result. The

arrow heads indicate the direction in which the cycle is traversed.

Thus the magnetisation is in part intrinsic. The induction

OC or OF is called the residual or remanent induction, and is the

maximum value of the intrinsic induction. The ratio of the

remanent induction C or OF to the maximum induction OG or

HYSTERESIS OF ANNEALED

PIANOFORTE STEEL

40 60

Magnetic lntensity(
in E..M. units

'Fig. 114.

OH is called the retentiveness of the substance for the given

cycle. The reversed intensity OD or OA necessary to reduce

the intrinsic induction to zero is called the coercive force or coer-

cive intensity of the substance for the given cycle.

The closed curve is called a hysteresis cycle since, as it is de-

scribed, the induction always lags behind the intensity.

The area of the curve, viz.^HdB from any point such as B
around the cycle once to the same point again, represents the

work per unit volume done in carrying the substance from the
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state denoted by B (or the state denoted by any other point on

the curve) through the complete magnetising and demagnetising

processes indicated by the cycle to the same state again. Hence
HdB for the complete cycle, or the area of the cycle, represents

the energy dissipated in heat per unit volume per cycle by
hysteresis.

The area of the cycle is the same or very nearly the same when
the cycle is traversed very slowly and when it is traversed very

rapidly (see references given below and Comptes Rendus, April

20, 1903). Thus the phenomenon of magnetic hysteresis is not

due, except perhaps to a slight extent, to anything akin to vis-

cosity (Cf. 2, VI.).

For references to the literature on magnetic hysteresis, see

Chapter IV. of Maurain's Le Magnetisme du Per and the resume

by Warburg in Vol. II. of the Rapports presented to the Inter-

national Congress of Physics, 1900.

If we assume the relation B = pH to hold for the hysteresis

cycle, as it holds, by definition of p, for the magnetisation

curve, fi goes through all values from -f oo at C to co at F dur-

ing the cyclic process. By introducing the intrinsic intensity, k,

however, always acting in the direction of the induction, and by

writing H for the vector sum of h and the field intensity //',

which we have hitherto denoted by //, we may so define h that

the relation B = pH= p(h -f H'} (vector sum) holds univer-

sally, and leads to no impossible values of ft (cf. 4, VI.).

The magnetic phenomena of iron, nickel, cobalt, etc., includ-

ing the trend of the magnetisation curves, hysteresis, the relation

of the magnetic phenomena to temperature, etc., have been

largely explained by the molecular theory developed by Weber,

Maxwell, and Ewing. For an extended treatment of the molec-

ular theory and a discussion of its experimental confirmation

reference must be made to Ewing' s Magnetic Induction in Iron

and Other Metals, Chapter XI.

40-44. The Current, etc., in an Electrical System Containing,

in the General Case, Resistance, Inductance, and Capacity, Immersed
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in a Medium, or Media, of Constant Inductivity and Permittivity,

Let a condenser AB, Fig. 115, of capacity 5 be connected in

series with a conductor CDF whose inductance is L and whose

capacity is negligible in comparison with that of the condenser,

and an agent with an intrinsic e.m.f. M/\ the total resistance of

the circuit being R. Let the e.m.f. ^ be reckoned positive when

directed around the circuit in the direction CDF. The agent

containing the e.m.f. is supposed to be capable of being instan-

R&L

D

Fig. 115.

taneously inserted in or removed from the circuit, the resistance

being kept constant, by suitable switches. Let the time, /, be

reckoned from the instant at which is inserted or cut out.

Let q denote the charge of the plate A, I= dq\dt the current in

the conductor in the direction CDF, Fthe voltage from A to B,

at the time t
;
and let q^ 7

,
and V

Q
denote the initial values of

q, 7, and V.

At the time t the electric energy of the system is

the electrokinetic energy is

T= \LP =

the rate of dissipation of energy in heat is
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and the rate at which energy is supplied to the system by the

agent with the intrinsic e.m.f. is

41. Non-Inductive Circuit. Case I. Let "SP = constant, L = o,

sensibly, and therefore T~o.
A. Let M* be suddenly cut out of the circuit, the initial charge

of A, qQ, being equal to S"V. By the principle of the conversa-

tion of energy, we have at the time /

or

(66)

a relation which might have been written down at once from

Ohm's law \_dq\dt
= /= (VB - VA)fR = - V\R = -

0.00001 0.00002 0.00003 0.00004
Time in Seconds

. 116.

The solution of (66), with the condition q = qQ

/ = o, is

q
whence

and
/= dqjdt = - ^IR e-l'SR '< = I

Q
e-l/SR ' f

when

(67)

(68)

(69)
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The relation between q, /, and t is shown graphically for a

particular case in Fig. 1 16, Curve I.

The time SR in which qjqQ VjVQ = IjIQ becomes i/e is

called the time constant of the system.

B. Let M^ be suddenly inserted into the circuit. In this case

By the principle of the conservation of energy

Vdqldt**
or

" = qjS -f R dqjdt (70)

another equation which can be obtained immediately from

Ohm's law.

To solve (70), put q S^f = q' ,
and the equation becomes

Rdq'ldt+ q'lS= O

the solution of which, with the condition q = o when t = o, is

whence

^-i/^-') (72)

r*-' (73)

The relations between ^, /, and t are shown in Fig. 116,

Curve II., for the same system whose discharge is illustrated in

Curve I.

42. Case II. Inductive Circuit Without Capacity. Let = con-

stant, 5= infinity (condenser short-circuited), and therefore W=. o.

A. Let ^ be suddenly cut out of the circuit, the initial value

of the current being / = W/R. In this case we have, by the

principle of the conservation of energy,

-
d($LP}ldt = RP

or
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e/-o (74)

which also follows immediately from Ohm's law [/= (

The solution of this equation, with the condition / = W/R, is

I= I e~R/L ' t = "ty IR' e~R/L ' t
(7$}

The relation between / and t is shown for a particular system
in Fig. 1 17, Scale A.

The time L/R in which / falls to i/e of its initial value is

called the time constant of the circuit.

1.0

0.8

|-
4

3
O

0.2

R =10 Ohms
L 0.1 Henry
V 10 Volts
-i. 0.01 Secor

-0.4- ,5

E

0.01 0.02

Time in Seconds

Fig. 117.

The total electric discharge in the positive direction around

the circuit after the time t = o is

q = f Idt = ^flR f e-R/L -*dt= DVJR* = LIJR (76)
Jo Jo

The same result follows from (12):

= LIJR = LV/R
2

B. Let the agent with e.m.f. be suddenly inserted into the

circuit, the initial value of the current being / = o. In this case

the principle of the conservation of energy gives
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or

V^RI+Ldlfdt (78)

which may be obtained from Ohm's law directly [/=(
LdHdi)\R~\.
The solution of this equation is

! -"*) (79)

Thus / may be regarded as the sum of a steady current ^JR
and an induced current

The relation between / and / for the same system illustrated

in Case II. is shown in Fig. 1 17, Scale B.

The total electric charge traversing the coil in the positive

direction due to the induced current is

q = - LV/R
2

(So)

43. Case III. Circuit Containing Both Capacity and Inductance.

Let M/
1

be cut out of the circuit at the time t = o. In this case

the principle of the conservation of energy gives

-R(dqldff
or

Ld2

qjdt
2 + Rdqjdt + qjS = O (8 1)

which, like equations (66), (78), etc., also follows immediately

from Ohm's law.

To solve (81), assume q = constant x e
mt and substitute in the

equation. Thus we obtain

i/S=o (82)

The values of m which satisfy this equation are

m
l =-R/2L + (R

2!^ _ i /SZ)* = - a + (a*
-

P)*

and
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= _ a - (a
2 -

t

if we put R/2L = a and I /SL =
2

.

If m
2
is not equal to mv the general solution of (81) is there-

fore

q = A
l
f* +Af (83)

in which A
l
and A

2
are constants to be determined by the initial

conditions of the problem.

When m
2
= m

l
m = a, the solution of (81) is

q = (pi + Bfr- (84)

where B
l
and B^ are constants to be determined by the initial

conditions.

Three cases are to be considered : A, when a2 = IP
; B, when

0,000005 0.000010 0.000015 0.00002

Time in Seconds

A. a2 = &*. Since qQ

2
~~~

1 0\

Fig. 118.

and 7 = o, (84) gives

and
7= -

(85)

(86)

(87)

The relations between ^, 7, and the time for a particular system

are shown in Fig. 118, I. and II. (Scale A).
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B. #2 > &. To determine the constants A
l
and A

2
we have,

when t = o,

and
/
o
= O = /tf^j 4-

Hence (83) becomes

from which we obtain

(89)
and

/ = dqfdt = S^m^mJ^ - m^ -

(f* - *"*) (90)

The curves showing the relation between q and t and the

relation between 7 and / are very similar to the corresponding

curves of Fig. 118. Their drawing is left to the reader.

C. Oscillatory Discharge, a2 < #*. Equation (83) may be

written

q = e-^A/W-^' +A2
e-w2-a^t

)

where i denotes
( i)*. This equation is equivalent to

q = e~at

\A cos (^
- a^t + B sin (P

- a2

)*f\ (91)

where A and B are real constants to be determined by the initial

conditions. From (91)

/= dq\dt = e~at

{ [^(^
2 - a2

)^
-

Ad\ cos (^
- a^t -

(
.

a*)* + Ba\ sin (b
2 - az

^t]

From the initial conditions q = qQ SW, and /= 7 = o, when

t= o, the above equations may be written

- ^2

)^
sin (P

-
a^t] (93)

and .
;

7= - SVP/(P - aj - e~at sin (<P
- ^2

)*/ (94)

We have also
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The relations between qy /, and t are shown for a particular

case in Fig. 1 19. (See the data given in the figure.)

0.1 OOi

-10*
O.OOC5 0.0010

Time in Seconds and in Periods of Oscillation

Fig. 119.

0.0015

The discharge is seen to be oscillatory, as well as damped, the

charge of the condenser and the current in the wire each revers-

ing its sign at intervals of \Tt
where T is the period of the oscil-

lation and is given by the equation

27T/T= (tf

or

(95)

and the amplitude of the oscillation being gradually reduced

to zero.

The charge q is zero at times / such that

/ = T/27T \TT
- tan- 1

^
2 - a2

)

1
*
/a]

and / is zero at times t' such that

t' = \Tn

where n is zero or any integer.

Each quantity reaches a maximum or minimum value half way
between two successive zero values.
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The current reaches a maximum, minimum, or zero value ahead

of the charge by the interval

T (
(
TT -

27r \
tal1
"

- M-

6/27T- T is called the phase difference between the current and the

charge, and the angle of lag of the charge behind the current,

or the angle of lead of the current over the charge.

The ratio of the magnitude of a maximum or minimum value

of the current or charge to the magnitude of the next following

minimum or maximum, occurring \T later, is

The natural logarithm of this ratio is called the logarithmic

decrement of the oscillation and is denoted by X. Thus

i)* (96)

If R = o, a = o, no energy is dissipated, and the oscillation

takes place without damping (energy radiated being assumed

zero). The period when R = o is

r
o =2,r(SZ)* (97)

By (95), (96),
and (97) we have

T= T
t(i + X'/**)*

= TJi + JXY** + -) (98)

Hence the effect of a small decrement on the period is propor-

tional to the square of the decrement. See Fig. 1 19 for the rela-

tion between T and T
Q
for the circuit whose discharge is there

illustrated.

If R is increased while L and 5 remain constant, the period

of the oscillation, as well as the damping, is increased until, when

a" = b2
,
the oscillatory character of the discharge disappears. As

the resistance is still further increased, the discharge assumes

more and more nearly the character of the discharge of a con-

denser through a non-inductive resistance (Case L, A).
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The maximum and minimum ordinates
'

of the current curve

are equal to the corresponding (to the same time) ordinates of

the logarithmic curves -f S^fe~at and S^fe~at
,
or the logarith-

mic curves are tangential to the current curve at the maximum
and minimum points.

The maximum and minimum ordinates of the charge curve

exceed the corresponding ordinates of the logarithmic curves,

which are therefore not tangential to the charge curve. The

ratio of a maximum or minimum ordinate of the charge curve

to the corresponding ordinate of the logarithmic curves is

bl^ #2

)*,
which is nearly unity when ajb is small. For the

case illustrated in the figure this ratio is about 1000 to 995, a

difference scarcely perceptible in the drawing.

.For one of the most recent and accurate experimental investi-

gations confirming the above theory, which is due to Lord Kelvin

(1853), the reader is referred to a memoir by Webster (Physical

Review, 6, p. 297, 1898), where references to the earlier literature

will be found.

44. Case IV. Periodic E.M.F. Let the electromotive force be a

simple harmonic function of the time, M* ="*P
Q
cos //, where / =

27r/T= 27rn, T being the time of one complete period, and n

the number of periods per second, or the frequency, of the elec-

tromotive force.

In this case we have, by either of the methods already fre-

quently employed,

Ld*qjdt
2 + Rdqjdt + qfS = ^ cos // (99)

The general solution of this equation is the general solution

of (81) already obtained, viz. (83), -f a particular solution of

(99).
To obtain a particular solution of (99), assume

q=A cos (pt0)

substitute in (99), and equate to zero the coefficients of sin //

and cos pt separately (since the resulting equation must be true
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for all values of /). In this way we find that the above equation

is a particular solution of (99) if

(ioo)
and

B = ta

Hence

cos t -

Since the last two terms become sensibly zero a very short time

after closing the circuit, we may write, except during this interval,

q = T cos (ft
-

e)lp\S? + p\L - I /5/)
2

]* (102)

COS (ft0+ IT 1 2)

'-^-r^+T^HTOT
and

V-qlS=-9,cos(pt-ff)ISp[.It?+f\L- l/S/)
2

]* (104)

The angle is called the phase difference (a term more properly

applied to 6/27T- T) between q and M', or the angle of lag of ^

behind "SP, or the ##/,? oflead of M* over ^. Similarly 6
JTT
= 0'

is the angle of lag of / behind *P, or the angle of lead of ^ over /.

The quantity [R
2 + /(Z i/S/

2

)

2

]* is called the impedance

of the circuit (or portion of the circuit considered), the quantity

p(L i jSp
2

}
its reactance, and the quantity I /S/

2
its condensance.

From the way in which ,S and L enter into the above equa-

tions it is evident that a condenser of capacity 5 in series in the

circuit has the same effect upon a simple harmonic current as

would a negative inductance equal to I
/

'

Sp
2

. Thus condensance

and inductance can be made to neutralise one another's effects.

For given values of ^ and R the amplitude of / reaches a

maximum when L I
/

'

Sp
2

o, that is when / = / =
27r/?" ,

where T
Q
= 27r(LS)* is the natural period in which the system

would execute oscillations if its resistance were zero. In this
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case 6 f = o, the current is in phase with the e.m.f., and has at

all times the same value as if there were no inductance or con-

densance in the circuit. In this case the circuit is said to be in

resonance with the e.m.f. The relation between the maximum

value, or amplitude,/^, of the current and TjTQ
for a given value

of L/SR
2

[see equation (100)] is shown in Fig. 120.

i.o

o.s

0.2
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r=r = 2^(5Z)i

the natural period of the system without damping. In this case

which, in accordance with the above assumption (2L/R
2S large),

is much greater than unity. This is another illustration of the

effects of resonance.

Equation (103) may be written

7=/ cos (//-*')

The power supplied to the circuit by the e.m.f. at the time t is

/>=/= ^ / cos (//
-

0') cos pt (i 06)

It is easy to show, either graphically or by means of (106),

that when 6 f = o, P is always positive ;
that when O f

is equal to

d= 7T/2 (its limiting values in the system considered), Pis posi-

tive during half the period and negative during half the period,

no power on the whole being developed by the e.m.f. (to make

6 f = db 7T/2, R must be zero and either the inductance or the con-

densance must be zero) ;
and that when 6 f

is less than Tr/2

and greater than zero, P is positive during more than half the

period.

45. Dynamical Analogues. Consider the angular motion of a

cylinder C about the vertical axis of a suspending wire AB.

Let the moment of inertia of C about this axis be denoted by L,

and suppose the inertia of the wire negligible. When the cylin-

der is turned through an angle q, the twist of the wire gives rise

to a return torque V= qjS, i/S being a constant of the wire

depending upon its rigidity and dimensions and called its elas-

tance or the reciprocal of its permittance, tending to diminish q.

Let the motion of the cylinder be resisted by a frictional torque

proportional to its angular velocity dqjdt = 7, that is by a

torque Rf= Rdqjdt, where R is a constant. At the time
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t = o, let a torque "SP, capable of producing a final angular dis-

placement qQ
= SW, be applied to the system, or removed after

having been applied sufficiently long to produce the maximum

displacement qQ
. Then the equation of motion of the cylinder

after ^ has been applied or removed may be found as follows :

The potential energy of the system is

the kinetic energy of the system is

the rate of dissipation of energy in heat is

F=RP= R(dqjdtf

the rate at which energy is supplied to the system is

By the principle of the conservation of energy

/= dWjdt + dTjdt + F
whence

*
-f Rdqjdt

which is the equation of motion sought.

The equation may be obtained also by the direct application

of the second law of motion. Thus, ^P, the total torque acting

upon the cylinder, consists of three parts : A torque V= qjS to

balance the counter torque due to the torsion of the wire, a

torque Rl = Rdqjdt to balance the torque RI due to friction,

and a torque Ldljdt = Ld^qjdt* to balance the torque Ldljdt

due to the inertia of the cylinder, or to produce the angular

acceleration dl\dt. Hence

= Ld*qjdt* + Rdqjdt -f qjS

The equation of motion after the removal of is ^

Ld^qjdt* + Rdqjdt -f qjS = o
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In the same way, if a periodic torque M* = "

cos pt acts upon
the cylinder, the equation of motion is

Ld*qjdt- + Rdqjdt + qjS = ^ cos//

The solutions of these equations are given above.

I. Let the inertia of the cylinder be negligible (Tj J/F" sensibly

zero). A. The cylinder is displaced initially through the angle

# ,
and the wire possesses the potential energy \q*/S. If the

cylinder is suddenly released, it will begin to move with the

angular velocity /= q^j SR, which gradually diminishes toward

zero as
<?Q

diminishes. The potential energy is dissipated by
friction during the process. The relation between q, 7, and / is

shown in Fig. 1 16, I.

B. If a constant torque Mf is applied to the cylinder at rest in

its equilibrium position, it will suddenly acquire an angular ve-

locity /= *&
IR, which will decrease toward zero, owing to the

return torque exerted by the wire, as the angular displacement

increases toward the limiting value qQ
=S^. The potential energy

will increase during the process toward the limiting value
-^q,

2

J S,

and an equal quantity of energy will be dissipated by friction.

The relations between q, 7, and t are shown in Fig. 116, II.

II. Let the elastance of the wire be negligible, or let the wire

be removed and let the cylinder be supported on pivots (WjT
sensibly zero). A. If a constant torque "SP is applied to the cylin-

der, its velocity and kinetic energy will increase from zero toward

the limiting values f=V/R and T=\LP. The torque will

continue to dissipate energy, the limiting rate being "W2

/R.
B. If the torque is suddenly removed, the cylinder will con-

tinue to rotate with continually diminishing velocity and energy
until the energy is wholly dissipated in heat by friction.

The relations between / and t for the two cases are given in

Fig. 117.

III. Let both the elastance of the wire and the inertia of the

cylinder be noticeable (W and T both appreciable). A and B.

Let R2

/4L
2 be equal to or greater than ifSL. If the cylinder,
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initially displaced though an angle qQJ
the potential energy being

^q^jS, is suddenly released, the potential energy will decrease,

the velocity and kinetic energy will increase, reach a maximum,
and decrease, with q, indefinitely toward zero, all the energy be-

ing finally converted into heat.

If the torque is suddenly applied to the cylinder at rest in its

equilibrium position, the velocity and kinetic energy increase

gradually from zero to a maximum, decrease, and approach zero

as the displacement and potential energy approach their limiting

values qQ
and \q^fS. During the process an amount of energy

^q*jS is dissipated in heat.

The relations between q, 7, and t for the first case are shown

in Fig. 1 1 8.

C. Let i/SL be greater than R2

/4L
2

. First assume R to be

zero. The initial displacement qQ
and potential energy \q

2

jS
will decrease to zero as the velocity / and the kinetic energy T
increase to maxima when the cylinder is in the equilibrium posi-

tion. The kinetic energy will carry the cylinder beyond this posi-

tion until the displacement is ^ ,
when the kinetic energy and

velocity will be zero and the potential energy equal to its initial

value. The same phenomena will then recur in inverse order,

and so on indefinitely, the time of a complete oscillation being

When P^I^I? is not zero, the phenomena will be similar ex-

cept that the motion will be damped, each elongation being less

than that immediately preceding, since energy is continually dis-

sipated by friction. The time of an oscillation will be increased,

and the time between zero elongation and zero velocity will not

be exactly one quarter of a period.

The relations between q, /, and / are shown in Fig. 1 1 9.

IV. If an alternating torque "SP = M^ cos pt is applied to the

cylinder, it will make simple harmonic vibrations, after the

motion has become steady, with the period T= 2irjp of the

applied e.m.f. (99) may be written

q]S = T= cos // - Ld-qjdt
2

Rdqjdt
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If TjTQ
is very great, the velocity / = dqjdt, the acceleration

d2

qjdfi, and the second and third terms of the second member,

which are the counter torques of inertia and friction, are very

small, so that V= q/S, the return torque of the twisted wire, is

approximately equal to M*, the applied e.m.f, and its maximum

value V
Q

is approximately equal to ^
,
while the maximum

elongation is approximately equal to SW
Q

.

If T/T is very small, or /// very great, the counter torque

of inertia Ld^qjdt* is great ;
for the acceleration d2

qjd? is

proportional to p and to the amplitude of the velocity dqjdt and

is therefore great even if this amplitude is small. Hence the

maximum values of q and V, the twist and torque of the wire,

are small. The velocity dqjdt is also small.

If T= T
,
the torque of inertia is just balanced by the return

torque of the wire, or the first member of the above equation

and the second term of the second member cancel. Hence the

velocity reaches its maximum value, the whole torque ^ cos pt

being applied to keeping up the velocity or overcoming friction.

The amplitude of the velocity, and therewith the maximum

elongation of the cylinder and return torque of the wire, increase

until the rate of dissipation of energy by friction is equal to the

rate at which energy is supplied by the e.m.f. M*. If the friction

is small, the maximum elongation and return torque may be

much greater than SW and W
Q ,
which would be produced by a

steady torque WQ
.

46. The E.M.F. Developed by Rotating a Coil in the Earth's

Magnetic Field. One of the most obvious ways of developing a

simple harmonic e.m.f. of known period and amplitude is to

rotate with constant angular velocity about a vertical axis in the

earth's magnetic field a coil of insulated wire wound upon a

rigid frame with the planes of its turns parallel and vertical, the

ends of the coil being connected to conducting rings revolving

on the same axis, the springs bearing on these rings, connecting

the terminals of the coil with the rest of the circuit.
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Let n denote the number of turns in the coil, 5 the average

area enclosed by a single turn, / the angular velocity, 6 = pt the

angle made by the planes of the turns with the magnetic

meridian at the time t, and B = //.H the horizontal component of

the earth's magnetic induction (sensibly equal in magnitude to

H, the horizontal component of the intensity) in the region

occupied by the coil.

Then at the time t the coil flux due to the earth's field is

N= nSB sin

and the intrinsic e.m.f. developed in the coil by its rotation is

= _ dNjdt = nSB cos dOjdt
= pnSB cos // = WQ

cos pt
(107)

For an accurate determination of a resistance in absolute

measure by a method involving essentially the use of such a coil

with known constants, see Lord Rayleigh, Phil. Trans., 1882,

Part II.

47, A Simple Harmonic E.M.F. Acting on Two Conductors With-

out Mutual Inductance Connected in Multiple. If an e.m.f.

S 2

Fig. 121.

*P cos pt is applied to the terminals of the conductors, I and 2, it

is clear from 44 that the currents 7
t
and /

2
in the conductors
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will be simple harmonic with the period T= 2Trjp of the e.m.f.,

and that their amplitudes A l
and A

2
will be in the inverse ratio of

the impedances. Thus

Suppose L
2
= S

1
= R

i
= R

2
= o, approximately (Fig. 121).

Then

AM=i//^A (109)
approximately.

When / is such that fSJL^ = I, or T= 2ir(S2L^ = T
,
the

natural period in which the system 12 would execute electrical

oscillations if isolated and without resistance, etc., A l
= A

2
= A.

The currents in the two branches have in this case the same

direction around the circuit 12, and the e.m.f. W cos pt can be

removed after the oscillations are started without affecting the

phenomena (dissipation and radiation of energy being supposed

zero). That /
x
and /

2
are in this case opposite when measured

from A to B, or have the same direction around the circuit 1 2, is

clear from (100). For in this case we have

l
= tan- !

( -RjpL^ = TT - \axr lR
llpLl

= TT

and 6
2
*= tan~ lpR2

S
2
= o

so that

/!
= A cos (pt O

l + %ir)
= A cos (pt \ir]

= - A cos (pt +ITT) = - A cos (pt
- 6

2 + 1
TT)
= - /

2

Since the current in the external circuit connected at A and B
is 7^/2= o, no power is supplied by the external e.m.f. This

also follows from the consideration that /
x lags 90 behind

and 7
2

is in the lead of ^ by 90.
This is another example of electrical resonance.

48. Distribution of the Total Discharge Through Two Coils m
Multiple. Let the terminals of the two coils, I and 2, be joined
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at A and B, Fig. 122, and let the e.m.f. from A to at the time

t be denoted by ". The discharge may be that from a condenser,

as shown in the figure, or any other form of discharge, and the

Fig. 122.

circuits may have any inductances and mutual inductance what-

ever. The capacity in each coil is supposed negligible, so that

the current is the same across every section of each conductor,

no charge accumulating at any point.

The total charge traversing coil i is

dt = iIRV dt

and the total charge traversing circuit 2 is

^, fv and I
2 being considered positive when directed from A to B.

Thus the total discharge q = gl + q2
is divided between the

two coils in the ratio

that is, in the inverse ratio of their resistances. Thus the total

discharge (considered positive when in one direction, negative

when in the other) does not depend upon the inductances, but

only upon the resistances.

49. An Electrical System (Transformer) Consisting of Two Cir-

cuits, One of Which Contains an Intrinsic E.M.F. M>. We shall

consider only the case in which the capacities of both circuits are

negligible. Let the resistances and inductances of the two cir-
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cuits be denoted by Rv R2 ,
Lv L2 , respectively, and their mutual

inductance by M\ and let the time be reckoned from the instant

at which the e.m.f. is applied (to circuit
i),

or removed, or the

resistance of circuit I suddenly altered.

Case I. "\P = Constant, The total energy of the system is

electro-kinetic and equal to

The rate at which energy is dissipated in heat in the two circuits is

F F 4- F R 7 2
-\- R f 2

fl "I *
2

7V
l
y
l

"*V
2
7
2

The rate at which power is supplied to the two circuits is

Therefore, by the principle of the conservation of energy,

or

I^dljdt + Mdljdt + R^ -
)

+ I&LJIJdt + Mdljdt + R
2
I
2)
= o

We proceed to show, quite independently of what precedes,

that each of the expressions within parentheses in this equation

vanishes separately ;
that is, that

LJIJdt + Mdljdt + RJ, - = o (in)
and

-f Mdljdt + R2
f
2
= o (112)

equations from which I
I
and 7

2
are determined below.

The validity of these equations can be established in several

ways. Thus the rate at which electromagnetic energy is gener-

ated in circuit I plus the rate at which energy is transferred from

circuit 2 to circuit I is (9 Mdljdt}!^ while the rate at which

the electromagnetic energy of circuit I increases plus the rate at

which energy is dissipated by its resistance is d^L^I^jdt + R^-
Hence
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(
-

Mdljdt)!,

from which (i 1
1) results immediately.

(111) also follows immediately from Ohm's law, the impressed

e.m.f. in the circuit being M* L^dl^dt Mdljdt.

(112) is obtained in exactly the same way as (i 1
1),

the intrin-

sic e.m.f. in circuit 2 being put equal to zero.

If we place

/,
- */*, = //

(in) and (i 12) may be written

L^jdt + Mdljdt + RJ1 = o (a)
and

L
2dIJdt + Mdl^jdt + R

2
I
2
= o (b)

To solve these equations, put

// = Af" and I
2
= Bemt

(c)

where A, B, and m are constants to be determined, and substi-

tute in (a) and (). On dividing the resulting equations by e
mt

,

we obtain, as the conditions which the constants must satisfy in

order that (c) may give the solution,

(Ljm + R^)A + MmB = o (d)

MmA + (L2
m + R^B = o

(e)

Eliminating A and B, we obtain, to determine m, the equation

(L,L,
- M*)m> + (R2L, + R.L^m + X& = o

whose roots are

-
(RJL, + RJj + [(/?/,

- RJJ + 4JW/1
]* , ,

and
- - -
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Since (RJ^ - R^Ltf = (RJ^ -f R^Ltf 4Rl
R2L1

Lh and since

L^L2
M 2 = o, the quantity under the radical is positive and

numerically less than, or equal to, the first term of the numera-

tor, and the denominators are positive ;
hence both m

l
and m

2
are

real and negative.

Making use of (g) and
(^),

we can now obtain from
(</) and (e)

the values of AjB satisfying (a) and (). Thus, putting m = m
l

in (d) and (e\ and denoting the resulting value of AjB by A l j
B

lt

we obtain

(i)

and similarly, putting m = m
2 ,

Thus the general solutions of (in), (112), (#),
and

(^) are

(k)
and

7
2
= BJ** + ^/Wi2<

where ^j and A 2 are to be determined from the initial conditions.

A. The circuit containing M/* is suddenly closed. The initial

conditions are 7
t
= 72 = o when t = o, Hence, from

(z), (/),

(), and (/), we obtain

and

7,
= -

i \

*
I /

+ i \ emv

(H3)

The relations between
7j and f

2
and the time after closing the

circuit i are shown approximately for the general case in Fig.
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123. 7j approaches asymptotically a final value "^/Rv and J
2

has a maximum at the time given by dl^dt = o.

The total charge traversing circuit 2, obtained either by inte-

grating (114) from the time t = o to the time t = infinity, or

from (12) directly, is

q =

= - MV/R& = - MI/R2

if /denotes the final current ^JRY
in circuit I.

Fig. 123.

B. The electromotive force ^ is suddenly cut out of circuit I

(without opening the
circuit).

The values of the currents, in

terms of I
I
and 7

2, given in (113) and (114), are

and ',"--', (U7)

/ now denoting the time reckoned from the instant of cutting out

the electromotive force.

50. Case II. The Electromotive Force is a Simple Harmonic

Function of the Time, "^ cos pt. In this case we have

LjlIJdt + Mdl^dt + RJi = cos // (
1 1 8)

and Ljtljdt + Mdljdt +R2
?
2
=o (119)
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The general solution of these equations is that given in (k)

(for //) and (/) added to a particular solution now to be obtained.

Since the applied e.m.f. is harmonic, we may assume that the

currents to which it gives rise will also be harmonic in the same

period. Hence we put

/!= A cos (// 0J (120)
and

7
2
= B cos (pt

-
2) (121)

where A, B, 6
l
and 2 are constants to be determined. To deter-

mine these constants, substitute (120) and (121) in (118) and

(119), and equate to zero the coefficients of cos pt and sin //

separately, since the resulting equations are true for all values

of t. Thus, putting

L' = L,
- pWL,l(Rf + /Z/) (122)

and
R' = R, +/M*X2/(X* +/L?) (123)

we find, as conditions that (120) and (121) may be solutions of

(1
1 8) and (i 19),

l
(124)

(125)

= tan-1

/'/#' (126)

(127)

which, inserted in (120) and (121), give the particular solution

sought.

The terms given by (k) and (/) become negligible in a very short

time, hence after this time (120) and (121) are the complete solu-

tion of (118) and (119).

On comparing (120) and (124) with (103), we see that the

current in circuit I is the same as it would be if circuit 2 were

not present and the resistance of circuit I were increased from

R, to R'
,
and its inductance diminished from L^ to L'.
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When /
2Z

2
is great in comparison with R

2 , (122) and (123)
become approximately

L' = A - M*/L2
and R' = ^ + X2

M2

/L*

If in addition the coils are wound together so that the mag-
netic leakage is zero, or L^L^ = M2

, approximately, L 1 becomes

approximately zero. In this case, O
l
= o, the current in circuit

I being in phase with the e.m.f., and
2
=

TT, so that the current

in circuit 2 lags behind the current (and e.m.f.) in circuit I by
half a period.

If either circuit contains in series a condenser of capacity S,

the solution is obtained, as follows from 44, by writing in place

of L^ or Z
2 ,
Z

: i/S/
2 or L

2 i/S/
2

,
in the expressions for A,

B, V and y

If the magnetic field contains iron, or other substance in which

hysteresis occurs, a simple harmonic applied e.m.f. will not de-

velop a simple harmonic current. For the current is propor-

tional to the magnetic intensity Hy by the first law of circuita-

tion, and the induced part of the total e.m.f. is proportional

to the rate of change dBjdt of the magnetic induction B. But

if dBjdt is a simple harmonic function of the time, then, if there

is hysteresis, //"cannot be, as is evident from Fig. 114. This of

course applies to single circuits as well.

51. The Ratio of Transformation of Two Coils for Which L^L2
=

M 2 and R
l
= R

2
= o, approximately. Let two coils I and 2 be

so wound that all the magnetic flux <3> threads every turn of both

coils (magnetic leakage = o). Let coil I contain n
v
turns and

coil 2 n
2
turns

;
then the flux through coil I will be N

v

=
nfl*

and the flux through coil 2 will be N
2
= nfi.

The e.m.f. applied between the terminals of coil I will be

^ = R^ + dNjdt

and the e.m.f. between the terminals of coil 2 will be



ELECTROMAGNETIC INDUCTION. 399

the same direction being chosen as positive around both circuits.

Hence if R^ and R.J2 are negligible in comparison with the

electromotive forces of induction, we have, in magnitude,

^/ 2
= n

ld<$>ldtln2d$>ldt = njn2 (128)

which is called the ratio of transformation of e.m.f.s of the two

coils.

R
l
and R

2
above denote only the resistance of the coils, or

those parts of circuits I and 2 threaded by the tube? of magnetic

induction common to both circuits.

The power supplied to the system by the e.m.f. ^ is ^/j, and

the power supplied to that part of circuit 2 outside the coil is

^
2
/
2

. When no energy is dissipated in the coils we have

\Er / _ \Er /^Iyi~ *2J
2

whence 7^7, = ^/^ = njn^ (129)

which is the ratio of transformation of currents for the case con-

sidered.

52. Electromagnetic Repulsion Between Two Circuits. When
an alternating current is induced in a circuit (2) owing to the

circulation of an alternating current in a neighboring circuit (i)

connected with an alternating current generator, a force is

developed between the two circuits, positive or repulsive when

the two currents have opposite directions, and negative or

attractive when the two currents have the same direction. We
proceed to show that the average force is one of repulsion.

For the sake of simplicity let the two circuits be circular with

their afces coincident, and let circuit (2) consist of a single turn

of wire. Let the magnetic flux through circuit (2) be a har-

monic function of the time,

N=A cos nt

Then the outward radial component of the magnetic induction at

all points of circuit (2) will be
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B
r
= a cos nt

where a is a constant

The e.m.f. induced in circuit (2) will be

^ = _
dN]dt= nA sin nt

and the current in circuit (2),

/= C sin (nt 0)

where C and 6 are positive constants (0 < 90).
The force upon circuit (2) in the direction I 2 is therefore

F= VIB
r
x length of circuit (2)

== cos ;// sin (nt 6) x positive constant

When cos nt and sin (nt 0) have the same sign, or opposite

signs, the force upon coil (2) is thus an attraction toward (i),

or a repulsion from (i), respectively. On platting cos nt,

sin(nt 0), and their product, which is proportional to F, as

functions of the time, it will be seen that, owing to the lag of the

current, the average force is a repulsion between the circuits.

The same result follows from integrating Fdt throughout a

complete period, the average force being

i CT
i CT

I Fdt =s I cos nt sin (nt 0) dt x positive constant
* /o * Jo

Analogous theory applies to a great variety of cases, one of

the simplest being that of a light coil, or disc, of copper, alu-

minium, or other good conductor placed horizontally over an

electromagnet with coils horizontal. When the magnet is power-

fully excited by an alternating current the disc or coil is thrown

violently up into the air. Another interesting case is that of a

horizontal copper disc mounted on a pivot and placed eccentric-

ally over the electromagnet, with a second disc, held likewise

horizontal, near by. Owing to the asymmetry thus introduced,

the pivoted disc rotates continuously while the magnet is power-

fully excited.

53. The Comparison of a Mutual Inductance and a Resistance

One (i) of the two coils, of mutual inductance M, is connected
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in circuit with a constant battery B through a key Ky
while the

other (2) is connected in circuit with a ballistic galvanometer, the

total resistance of circuit (2) being R.

When a current /is suddenly started or stopped in coil (i)

by closing or opening the key Ky
a charge q = MIjR circulates

through coil (2) and produces an angular throw of the needle

such that MI
j
R = H jy TT sin \Q

or M/R=H/GS-T/7r-sml0 (130)

Circuit (2) is now cut at some point and the resulting ter-

minals connected to two points on circuit (i) with a resistance r,

very small in comparison with the total resistance of circuit (i),

between them. This will not sensibly affect the current in cir-

cuit (i), but will cause a steady current

r/(r +*)/= H/G-f[0')(See 33, XII.) (131)

to traverse the galvanometer, producing the steady deflection O f
'

.

Eliminating H/GI from (130) by (131), we obtain, finally,

M\R = r/(r + R) T/TT sin 0/^(0') (132)

6, F(6'), T, and the ratio of r to r + R being observed, M\R is

given in absolute measure by (132).

Absolute Determination of a Resistance. From the dimensions

of the coils, if circular, toroidal, or rectangular, M can be calcu-

lated
;
hence the method affords an absolute determination of a

resistance. See Glazebrook, Phil. Trans., 1883, for an important

investigation in which this method was adopted.

The Comparison of Two Mutual Inductances. By sending the

same current in succession through the primaries of two coils

and connecting the secondaries in succession through the same

galvanometer, the total resistances of the secondary circuits in

the two cases being Rl
and R

2 ,
the two mutual inductances M

l

and Mv and the two deflections 6
l
and

2 ,
the ratio of the two

mutual inductances can be obtained from the relation

MJMt
= R, sin Jtf,/*, sin 10

2 (133)
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By putting an adjustable resistance in one circuit, or in each

circuit, and changing the resistance until 6
l
= @

2 ,
we have

MJM^RJR, (134)

By connecting the two secondaries in series with the galvano-

meter permanently, and passing the same current in succession

through the two primaries, we have

MJM^sml-OJsm^ (135)

The Comparison of Resistances, The method can also be em-

ployed for the comparison of two resistances in the secondary

circuits. In this case

^/^sin^/sini^ (136)

54. The Measurement of Magnetic Induction by the Ballistic

Method. A small coil consisting of n turns of fine insulated wire

uniformly wound in parallel planes, the mean area enclosed by

a single turn being 5, is connected by twisted wires to the ter-

minals of a ballistic galvanometer. The coil is introduced into

the magnetic field at the place where the induction is to be de-

termined with the planes of its turns perpendicular to the induc-

tion, and the galvanometer needle is brought to rest. Then the

coil is suddenly jerked out of the magnetic field, and the result-

ing deflection 6 of the galvanometer needle is read. Let B
denote the mean induction perpendicular to the planes of the

coil's turns in the part of the field in which the coil was placed,

and let R denote the resistance of the circuit. Then, by (12),

and (49) XII., the charge traversing the circuit and producing

the deflection is

q = nSBfR = H T/TrG sin
-|

from which
B = RttT/irnSG- sin J0 (137)

If fji (sensibly equal to unity in nearly all cases) is known, the

magnetic intensity can be found by dividing B by p.
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'55. Maxwell's Method of Comparing Two Mutual Inductances.

In the practise of this method (Fig. 124) two of the coils (the

primaries), one from each pair, are connected in series with the

battery through a key K, and the terminals of each of the other

coils (the secondaries) are connected to the terminals of a

galvanometer G through an adjustable resistance, connections

being so arranged that the discharges of the two secondaries, on

Fig. 124.

opening or on closing K, when tested separately, traverse the

galvanometer in opposite directions. Then the resistances in the

secondaries are adjusted until the galvanometer needle remains

undeflected, i. e.
t
until the total discharge through the galvanome-

ter reckoned in one direction is zero, when K is opened or closed.

Then, if R^ and R
2
denote the adjusted resistances from A to B

through C and from A to B through D, respectively,

MJM^RJR% ( I3 8)

To prove this, let 7 denote the current through the battery and

primaries, Iv 72,
and 7

3
= 7

X
7
2
the currents from A to B through

C, from A to B through D, and from A to B through the gal-

vanometer, at the time/; and let Lv L
2 ,
and Z

3
denote the in-

ductances of ACB, ADB, and AGB, and J?
3
the resistance of

AGB. Then the impressed e.m.f. from A to B at the time / is

M,dl\dl
-

L.dljdt
- RJ, = V(/, - Wdt + R,(T,

- 7
2)
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and the impressed e.m.f. from B to A at the time / is

Multiplying each equation by dt and integrating from the time

of closing the circuit (t = o) to the time at which the battery

current becomes steady (t
=

^), remembering that the initial

c*
and final values of 7

T
and /

2
are zero and that I (7X I^dt, the

total discharge through the galvanometer, is zero, and denoting

the steady value of the battery current by /
,
we have

- R
2
C I

2
dt = o

*/0

from which (138) immediately follows, since

r/^= ["//'
t/O t/0

The Comparison of Resistances. We can vary the method

slightly for the comparison of two resistances. Suppose the

balance given by (138) effected. Introduce an unknown re-

sistance X into the branch ADB, and balance by adding a

known resistance R to R Then

Combining this equation with (138) we find

(139)

If X and RJ are both known, (139) gives MJM1
without a

knowledge of

56. Maxwell's Method of Comparing an Inductance and a Capac-

ity. The given coil, with inductance L and resistance R, is con-

nected up in a Wheatstone's bridge with three non-inductive
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resistances P
t Q, T, Fig. 125, and a resistance balance for steady

currents is obtained in the usual way by adjusting the resistances

until the galvanometer needle remains undeflected when K
2

is

Fig. 125.

closed after Kr Then, if V
ab

denotes the fall of potential from

A to B, etc., and /the current through ABC,

. VJ V* = RffTf- RIT= VJ V,c
= P/Q

During the variable state of the currents just after closing or

opening Kv however, K2 being open,

Hence, if K^ is opened or closed while K
z

is closed, the gal-

vanometer needle will be deflected.

If, however, a condenser is introduced as a shunt to DC, as

shown by the dotted lines, a part of the current through P will

be shunted into this condenser during the rise of the current after

the closing of Kv thus reducing the current through Q and

increasing the ratio V^j Vdc ;
and during the decrease of the cur-

rent after the opening of K^ the discharge of the condenser will

increase the current through Q and decrease the current through

P
t
thus diminishing the ratio V

adj Vdc . Hence, since the law of

the increase or decrease of the induced current in an inductive

resistance with the time, and the law of the increase or decrease
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of the charging current of a condenser with the time, are identi-

cal, 41-42, an exact balance for both transient and steady

currents can be obtained by using, with given inductance and

resistances, a condenser of a particular capacity. By readjusting

the non-inductive resistances, however, a balance for both steady

and transient currents may be obtained for any inductance and

capacity. Thus, if R and P are fixed, the ratio of the effect of

the inductance to that of the capacity is decreased by increasing

Q and T and keeping always Q/T= PjR. When this double

balance has been attained, then, as shown below,

L/S=RQ = PT (140)

Anderson's Modification. To avoid the necessity of this tedious

process of readjustment and trial, an additional non-inductive

resistance W may be inserted between D and the condenser and

galvanometer, Fig. 126. This will not affect the balance for

Fig. 126.

steady currents, but will enable the effect of the condenser on

the balance for variable currents to be altered. After the balance

for steady currents has been attained, the resistance IV is altered

until the balance is good for transient currents also. Then

L/S= W(R+ T)+PT (141)

W thus increases the effect of the condenser. If the condenser

has too great an effect when W'= o, PT(or QR) must be de-

creased in the balance for steady currents.

To establish (141), let x
y x,y -f z,y, and z denote the currents

in the branches R, T, P, Q, and W, respectively, at the time / after

closing or opening Kv the double balance having been attained.
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Then, since the fall of potential along the path ABE is equal

to that along the path ADE, we have

Rx + Ldxjdt = P(y + z) + Wz (a)

In the same way the fall of potential from D to C through Q
is equal to that from D to C through W and the condenser

;

that is

Qy= W* + q,+dtlS (8)

where q^ denotes the initial charge of the condenser.

Likewise, the fall of potential from E to C through the con-

denser is equal to that from E to C through the galvanometer

and 7"; or

=TX
(t)

Eliminating x and y from (a) by (b) and
(c), differentiating

with respect to t, and equating to zero separately the coefficients

of z and dzjdt (since the equation holds for all values of z and

dzjdt, including zero), we obtain the conditions of a double

balance :

RjT=PQ (d)

the condition for a balance for steady currents
;
and (141), viz.,

L/S=(R + T)W+PT
which reduces to (140) when W= o.

Russell's Modification. If a given inductance is to be com-

pared with an adjustable standard capacity, or if a capacity is to

be compared with a standard inductance which can be adjusted

to different values without an alteration of resistance, the balance

for steady currents is first effected, then the galvanometer circuit

is closed and the standard capacity or inductance altered until

the galvanometer needle remains undeflected when the battery

key is opened or closed.
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57. Maxwell's Method of Comparing Inductances, The two

coils whose inductances 7
X
and Z

2
are to be compared are joined

up with four non-inductive adjustable resistances and a battery

and galvanometer as shown in Fig. 127. (The connections of

Fig. 127.

the battery and galvanometer may be interchanged.) Rv R^
etc., denote the total resistances in the branches AB, BC, etc.

The resistances are varied until the galvanometer shows no deflec-

tion for steady currents (K2
closed after K^) or for transient or

variable currents (Kv
closed afterK

2
or opened before K^. Then

L,IL, = R,IR, = R,IR, (, 42 )

For, when such a double balance has been effected, the voltage

from A to B is equal to the voltage from A to D at any time /
;

that is,

where /
x
and 7

3
denote the currents through ABC and ADC re-

spectively. In like manner the voltage from B to C is equal to

the voltage from D to C, that is

Combining these two equations and dividing the resulting equa-

tion by 7
3 ,
we obtain

L^dl^dt = j +
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Since this equation is true for all values of the current I
I
and

its rate of change, including zero, we have

which is the condition for a balance with steady currents, and

which is the additional condition for a balance for variable cur-

rents. From these equations (142) follows immediately.

Standard coils are constructed whose inductances can be varied

within wide limits without an alteration of resistance. If one of

the coils to be compared is a standard of this kind, a balance for

steady currents is first obtained in the ordinary way ; then, with-

out altering the resistance in any part of the network, a balance

for transient currents is made by altering the inductance of the

standard. See 18.

58. Gary Foster's Methods of Comparing a Mutual Inductance

and a Capacity. Let connections be made as in Fig. 128, vS and

Fig. 128.

M denoting the capacity and mutual inductance, R^ the total re-

sistance from A through K^ to B, and R
2
the resistance between

the points A and C, both resistances being, at least in part, ad-

justable. If K^ is open and K
2 closed, then when K is opened

or closed a charge SR
2
I will traverse the galvanometer, / de-

noting the steady value of the current in the battery circuit. If

K
2

is open and K
v closed, a charge MIj(Rl + g) y

where g de-

notes the galvanometer resistance, will traverse the galvanometer.
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By reading the two galvanometer deflections the ratio ofM to 6*

may therefore be obtained.

In Gary Foster's null method connections are so made that

on closing K or on opening K the capacity and inductance dis-

charges are in opposite directions through the galvanometer.

Then K
v
and K

z
are both closed, and the resistances R

l
and J?

2

are adjusted until on opening or closing K there is no deflection

of the galvanometer needle, showing that the total discharge

through .the galvanometer is zero. Then

RIS

g not entering the expression. Hence

MjS^R.R, (143)

The demonstration is left to the reader, who should refer to

55.

59. Brillouin's Modification of Maxwell's Method of Comparing-

the Mutual Inductance, M, of Two Coils with the Self-Inductance,

L, of One of Them. The coil with inductance L and resistance R

Fig. 129.

is connected up with three non-inductive resistances P, Q, T in

a Wheatstone's bridge, Fig. 129, and the other coil is connected

through an adjustable resistance to the points A and C. Balance

is first obtained for steady currents in the usual way, then the
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resistance 5 of the branch ASC is adjusted until the galvanometer

shows no deflection when the galvanometer circuit is closed and

the battery key is opened or closed. In order that the mutual

inductance of the two coils may thus neutralise the effect of the

self-inductance of one of them, the two coils must be so con-

nected that their currents flow always in opposite directions

around the tubes of induction which thread them. Then

L\M~ (R + T)/S (144)

For the increase of voltage from A to B due to the self-induc-

tance is L dxjdt, and the decrease in the voltage due to the

mutual inductance is Mdzjift, where x and z denote the currents

through ABC and ASC respectively. Hence, when the balance

for transient currents is attained,

Ldxldt=Mdz\dt

Integrating through the time t in which the currents rise from

zero to their steady values X
Q
and #

0>
or in which they drop from

their steady values to zero, we have

L I dxjdt dt = Lx
Q
= M I dzjdtdt =

t/O /0

Hence L/M= * /* = (R + T)/S

60. The Comparison of a Capacity with a Resistance. A ca-

pacity may be compared with a resistance by a method exactly

analogous to that of 53, as shown in 36, XII. The following

null method, due to Maxwell, is, however, much to be preferred.

One branch of the Wheatstone's bridge, as the branch 23, Fig.

76 is cut and a condenser AB inserted, the plate B being con-

nected by a wire of negligible resistance to the point 3, and the

plate A being connected in the same way with a rapidly and

uniformly moving commutator, which puts it alternately into

electrical contact with the point 3 and the point 2. When A is

connected to 3 the condenser is short-circuited and the galvanom-
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eter is traversed by a current in the direction 24 ;
while during

a part of the time the plate A is connected with 2 the galvanom-
eter is traversed by a current in the opposite direction 42, the

plate A being charged through the galvanometer and the branch

1 2. If the period of the galvanometer needle (or coil) is great in

comparison with the period of the commutator, a steady deflec-

tion will, in general, result. By suitably adjusting the resistances

a, b, and d, however, the average current through the galvanom-

eter, reckoned as positive in one direction and negative in the

other, may be made zero, when the galvanometer will show no

deflection whether the battery is connected to the bridge or

not. This is the only adjustment to be made in the practise of

the method.

When this balance has been effected, the average voltage

from I to 2 is equal to the average voltage from I to 4, i. e., to

if ^ denotes the e.m.f. of the battery, and if the battery resistance

is negligible (a condition easy to attain) in comparison with that

of the bridge (from point I to point 3).
Hence the average value

of the current in the branch 1 2 is

and this is equal to the average charging current of the con-

denser, since the average current through the galvanometer is

zero.

The voltage of the condenser when fully charged is the volt-

age between the points I and 2 when the current in every part of

the bridge has reached its steady state. This voltage is readily

seen to be

d(a +b + g)

Hence, if n denotes the frequency of the commutator, or the

number of times the condenser is charged per second, and 5 the
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capacity of the condenser, the average value of the charging cur-

rent of the condenser is

bg + d(a -f b 4- g)
b
(
a + g) + d(a+ b + g)

Equating the two expressions for / and solving for S, we

obtain

~
na(b

-

When the condenser has a guard ring, this method cannot be

used without an inconvenient modification, f A much simpler

method, however, equal in accuracy, can be used in all cases. A
galvanometer with two independent coils acting on the same

needle (differential galvanometer) has the intermittent condenser

current sent through one coil and a steady current from the

battery in the opposite direction through the other. The deflec-

tion is reduced to zero by suitably adjusting the resistance con-

nected with this second coil. This method, due to Klemencic,

has been used with great precision by Himstedt % and by H.

Abraham in the determination of a (XIV., 4).

Comparison of Capacities. These methods also serve admira-

bly for the comparison of capacities, only the ratios of the re-

sistances being necessarily known.

61. The Comparison of an Inductance with a Resistance, The
coil AB, with inductance L, is connected up with three non-in-

ductive resistances P, Q, and T, a galvanometer, and a constant

battery, as shown in Fig. 125 (the dotted lines being annulled),

and a balance for steady currents is effected in the usual way.
With the key K2 closed, K

l
is then either opened or closed, when

the flux through the coil will change from LI to o or from o to

*H. Abraham, Ann. de Chim. et de Phys., Vol. 27, 1892.

| For an important investigation in which the method was modified and used with

a guard ring condenser, see Thomson and Searle, Phil. Trans., A, 1890.

\Wied. Ann., Vol. 35, 1888.

3 Loc. cit.
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LI, I denoting the steady value of the current in AB. Owing
to the change of flux and the e.m.f. developed thereby in the

coil AB, a charge q proportional to Z/will traverse the galva-

nometer, producing an angular throw 0, such that

IT

where K is a constant depending on the resistances.

The balance for steady currents is then disturbed by increasing

or decreasing the resistance R of the branch AB by a very small

quantity A^. If /' denotes the new value of the steady current

in AB, an e.m.f. If&R will thus exist in the branch during the

steady state, and a steady deflection Q' of the galvanometer
needle will result, such that

K being the same constant occurring in the previous equation.

Eliminating K from the two equations and solving for L, we

have
/' Tsin 10

The ratio /'// of the final and initial values of the steady

current in AB can be calculated from the resistances in the

bridge. It is obvious that ordinarily the ratio will be sensibly

equal to

which is very nearly unity.

The method was originated by Maxwell, and was first used

with precision in an important investigation by Lord Rayleigh

(Phil. Trans., Part II., 1882).



CHAPTER XIV.

UNITS AND DIMENSIONS.

1. The Electrostatic Systems of Units, (i) The rational electro-

static system. The rational electrostatic unit charge, fully dis-

cussed in Chapter L, is defined by the equation

q~(#ircDFy (I)

where L and .Fare expressed in c.g.s. units and c is expressed

in terms of the permittivity of free aether (r )
as unit permittivity.

From this fundamental definition and the further definition that

all the equations hitherto developed (except those specified as

belonging to irrational systems) hold good for all rational systems

of units (electromagnetic as well as electrostatic), the definitions

of the rational electrostatic units of all the other electrical quan-

tities follow. Thus the definition of the RES unit current is

given by the equation /= qjt, /being expressed in RES unit

current when q is expressed in the RES unit charge and t in the

c.g.s. unit time
; similarly, the definition of the RES unit mag-

netic intensity then follows from the relation H = m.m.f. = H
X 27rd=I( 14 or 15, XII.); the definition of the RES unit

magnetic pole strength then follows from the equation m = FjH\
and then the definition of the RES unit magnetic inductivity from

the equation /x
= nfi

j AfrrD'F ;
etc.

(2) The common or irrational electrostatic system. If, however,

while the units of permittivity, force, and length remain un-

changed, A, equation (i
r

), L, is put equal to unity instead of 477-,

we obtain, as the definition of the (irrational or common) electro-

static unit charge, the equation

q=(cL^ (2)

415
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On comparing this equation with (i) we see that the electro-

static unit just denned is equal to
(477-)*

times the rational unit.

The system of ejectrical units built up from this unit charge
as fundamental unit in a manner exactly similar to that in which

the rational system is built up from the RES unit charge, with

the exception of a few units, such as intensity of electrisation or

magnetisation, which, as stated in appropriate places in the text,

are differently denned, is called the electrostatic (ES) system of

units.

2, The Electromagnetic Systems of TJnits. (i) The rational

electromagnetic system. The rational electromagnetic unit mag-
netic pole strength is defined by the equation

m = (47r^
2

^)* (3)

where L and .Fare expressed in c.g.s. units and p is expressed

in terms of the inductivity of free aether
(/* )

as unit inductivity.

From this fundamental definition and the general equations

already developed for systems defined as rational, the definitions

of the rational electromagnetic units of all the other electrical

quantities follow. Thus the REM unit magnetic intensity is

defined by the equation H= F/m, H being expressed in the

REM unit magnetic intensity by definition, when m is expressed

in the REM unit pole strength and F'm c.g.s. units
;
the REM

unit current is defined by the relation 7= FjBL or /= 2ird x H\
the REM unit electric charge from the relation q = It; the REM
unit electric permittivity from the equation c = $

2

/4.7rL
2

F; etc.

(2) The common (or irrational} system. If, without changing

the units of inductivity, force, or length, we put A,(i) t XL, equal

to unity instead of 473-, we obtain, as the definition of the electro-

magnetic (EM] unit pole strength, the relation

m = (nL
2

F)* (4)

On comparing this equation with (3) we see that the electro-

magnetic unit just defined is equal to (471-)*
times the electromag-

netic rational unit pole strength.
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The system of electrical units built up from this unit pole

strength as fundamental unit in a manner exactly similar to that

in which the rational system is built up from the REM \am\. pole

strength, with the exceptions referred to in the closing para-

graph of i
,
is called the electromagnetic system of units.

3. Relations Between the Units of Different Systems. Every

equation developed in the preceding chapters holds good, as

already stated, by definition, when every electrical quantity oc-

curring therein is expressed in its rational electrostatic unit, or

when every electrical quantity is expressed in its rational electro-

magnetic unit, all other quantities being expressed in c.g.s. units.

Every one of these equations that contains the definition of a

unit, moreover, except those defining unit charge, unit pole

strength, and the other units referred to in the closing paragraph

of I and mentioned in the appropriate places in the text, is

valid also when expressed in irrational units throughout, either

all electrostatic or all electromagnetic. Thus, on any system

of units, electric intensity is defined as the force per unit charge,

magnetic intensity as the force per unit pole strength, electric

displacement as permittivity x intensity, capacity as charge per

unit voltage, etc. The following definitional equations, in which

plain letters denote quantities expressed in rational units and

primed letters quantities expressed in irrational units, will serve

as examples : F =. Eq = E q'

F= Hm = H'm'

dr = dqjp = dq
f

jp
f

=Df

jE
f

F/L = IB = FB
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(but 5 = DdSI Fand S'
=fD'JS/47r V'

etc., nearly all the equations being identical on the two systems.

On the other hand, while some of the derived equations are

identical in the rational and irrational systems, many are not

identical. Thus, for example, on developing the equations for

the irrational systems, we find that

IF = 471-^', while II = q

S' = TL'/4irV,

'

while S=U/F
V =

q'lcL, while F= q\qircL

U' = ^/2 ^ while U= cE2

T ! = J/x^
2

/47r, while T=

curl H' = 47n
7

,
while curl H= i

while also

w= J5
r F/2 = |/

2

/ 5/
= %$' v' =

w= jz'/'
2

curl E =
dB'jdt, curl E= dBjdt etc., etc.

The ratio of the rational electrostatic unit of a given quantity

to the irrational electrostatic unit of the same quantity is always

equal to the ratio of the corresponding rational electromagnetic

unit to the irrational electromagnetic unit. This ratio for each

of the principal electrical quantities is given in Table II.
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S
^ Practical unit of work= Joule *M ^
IT io 7

ergs. Practical unit of ac-

6 tivity = Watt= Joule per sec-

ond= io 7
ergs per second.

ô

.1,

'
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The ratio of the rational electrostatic unit to the rational

electromagnetic unit of a given quantity is always equal to the

ratio of the irrational electrostatic unit to the irrational electro-

magnetic unit of the same quantity. This ratio can easily be

found in any case from the equations defining and connecting the

units, and the relation given in 4, XII., between the electro-

magnetic and electrostatic unit current. Thus the electromag-

netic unit charge or current is a times as great as the corre-

sponding electrostatic unit
;
the electrostatic unit magnetic pole

strength is a times as great as the electromagnetic unit pole

strength ;
the electromagnetic unit permittivity is a2 times as

great as the electrostatic unit permittivity ;
the electrostatic unit

inductivity is a2 times as great as the electromagnetic unit in-

ductivity, etc., etc.; the ratio of the electrostatic to the electro-

magnetic unit being always a, a2

,
a~1

}
or a~2

.

The ratio of the electrostatic to the electromagnetic unit of

each principal electrical quantity is given in Table II. The table

also contains the ratio of the rational electrostatic unit of each

quantity to the irrational electromagnetic unit.

As shown by the table, or by the preceding statement, the per-

mittivity of free sether, which is unity on the electrostatic systems,

is 1 1
a2 x unity on the electromagnetic systems. Also, the in-

ductivity of free sether, which is unity on the electromagnetic

systems, is I jo* x unity on the electrostatic systems. Thus the

product of the permittivity of free aether by its inductivity, both

measured on the same system of units, is equal, numerically,

to I /a
2

.

Of the dimensions
( 6) of a nothing is known. In all that

precedes we have assumed its dimensions to be zero, and we

shall adhere to this assumption in what follows, that is we shall

treat a as a mere number, except where the contrary is stated.

4. Experimental Determination of the Magnitude of a. To de-

termine the value of a experimentally, it is necessary only to find

the ratio between the electrostatic and electromagnetic measures
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of any one electrical quantity. This will furnish a or a known

power of a according to what precedes. Hence the ratio a can

be determined in a great variety of ways. For example, the

capacity of a standard condenser can be determined in absolute

electrostatic measure from the measurement of its geometrical

dimensions (12, III.), and can be determined in absolute elec-

tromagnetic measure by comparison with a resistance (60, XIII.),

or a mutual inductance (58, XIII.), or other electrical quantity,

independently determined in absolute measure according to the

methods described above, or other methods. By such methods,

and a number of others, some of which will be apparent from

the methods of measurement previously discussed in this book,

a has been determined with considerable precision. The best

results all lie close (within a few tenths per cent.) to 3 x io10
.

For some of the most recent and best determinations, see

Thomson and Searle, Phil. Trans., A, 1890; H. Abraham, Ann.

de Chim. et de Phys., Vol. 27, 1892 ;
and D. Hermuzescu, Ann.

de Chim. et de Phys., Vol. io, 1897.

According to the theory developed in Chapter XVI., electro-

magnetic waves are propagated in free aether with the velocity

v=
I/fa,/*,,)*,

which is equal to a numerically. This velocity has

been determined approximately for long waves, and very accu-

rately for extremely short waves
(light), and found to agree with

a as otherwise determined within the limits of error of experiment.

5. Practical Units. The rational systems of units are at present

unfortunately but little used, and the irrational electrostatic system
is used only in pure science and mostly for theoretical purposes.
The irrational electromagnetic system, on the other hand, is more

extensively used. For the purposes of ordinary experimental

work, however, especially for the purposes of electrical engi-

neering, many of the electromagnetic units, as well as many of

the c.g.s. mechanical units, are inconveniently large or small.

Hence a practical system of units, each a decimal multiple or

submultiple of the corresponding (irrational) electromagnetic unit,
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or the c.g.s. mechanical unit, has been developed in which each

of the units most frequently employed in practice has a magni-
tude of the same order as that of the quantities with which it is

ordinarily to be compared. These units are so chosen as to form

a self-consistent system satisfying all the equations satisfied by
the electromagnetic system, except those equations which are not

wholly made up of quantities whose units are defined in the prac-

tical system. The units of mass, length, permittivity, and indue*

tivity are the same in both systems. The relations between the

other practical units and the electromagnetic units are given in

Table II. together with the names of the practical units.

A unit one million (iO
6

)
times as great as any one of these

units is designated by the name of the unit with the prefix mega
or meg. Thus a megohm is one million ohms.

A unit one millionth (io~
G

)
as great as any one of these units

is designated by the name of the unit with the prefix micro.

Thus a microvolt or microfarad is one millionth of a volt or a

farad.

In like manner the prefixes deka, deci, centi, etc., are attached

to the names of the units with the same effects as they have upon
the common units of the metric system.

6. The Dimensions of Electrical Quantities.* As already stated,

nothing is known of the physical nature, or dimensions in mass,

length, and time, of the quantities c, JJL,
and a. Hence, since

* Vector Dimensions. In the system of dimensions adopted here no account has

been taken of the fact that a length, unlike a mass or a time, is a vector, or directed

quantity. Thus, on this system, the dimensions of a plane angle, which is a length

divided by a length, are zero in [M"\, [], and [7
1

], although one of the lengths is

perpendicular to the other ; the dimensions of a solid angle are zero, although it is a

surface divided by the square of a length perpendicular thereto ; the dimensions of

work
(
force X distance in direction of force) are equal to the dimensions of torque

(force X distance perpendicular to force), etc.
,
etc. Yet there is an essential difference

between a mere number, which of course has no dimensions, and a plane or solid

angle, and there is an essential difference between the physical nature of a quantity of

work and a torque.

These anomalies vanish, however, if we express all dimensions in terms of [J/],

[7
1

], and \_X~\, [ V], and [Z], three lengths at right angles to one another, thus

taking account of the vector nature of L. On this system, a plane angle has such
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every electrical unit involves one or more of these quantities, the

complete dimensions of every electrical quantity are unknown.

If, however, [V], [/A],
and

\a~\
are written for the unknown

dimensions in mass, length, and time of c, /A, and a, respectively,

a complete expression for the dimensions of every electrical quan-

tity can be written down. Thus, if the dimensions of any quan-

tity are obtained from the equations of either of the electrostatic

systems, they will be expressed in terms of
[-#/], \L\ , \_T~\,

and

[a\ and
\_c\ ;

if they are obtained from the equations of either

electromagnetic system, they will be expressed in terms of
[J/] ,

[Z,], [T~\, [#], and
[/A].

The dimensions of all the principal

electrical quantities, both in terms of [a] and
[c]

and in terms

of [#] and
[ft],

are given in Table II.

Since the actual dimensions in
\_M~\, [], and [T~\ of any

electrical quantity must be the same whether expressed in terms

of
\a~\

and
[r]

or in terms of [a\ and
[/A],

the dimensions of

any quantity in terms of
\_a]

and [r] may be equated to its di-

mensions in terms of
\_a\

and
[/A]

. Thus, equating the dimen-

sions of electric charge in terms of
[<?]

and
[V] to its dimensions

in terms of [a] and
[/A],

we obtain

[a/W] [Z/7-] (5)

That is, the quantity a/c*fri
is a linear velocity. Exactly the same

relation, (5), and only this relation, follows from equating the two

expressions for the dimensions of any other electrical quantity.

The velocity of electromagnetic waves as determined from the

equations of Chapter XVI. is I
/(/JLC)*.

In these equations, how-

ever, as stated above, the dimensions of a are ignored. If this

is not done, it is easy to see that the velocity comes out equal

to i/(/Lur)*x [#], which is numerically equal to
i/(V/A)* and is

dimensionally correct by (5).

dimensions as [Jfl^-
1

] or [YZ l
~\;

a solid angle such dimensions as [XYZ~2
~\
or

( FZJf-2
); a quantity of work such dimensions as \MX'2T r

\\ a torque such dimen-

sions as \MXYT~^~\\ etc. This is therefore a rational system of dimensions. This

system of dimensions, as applied to mechanical and electrical quantities, is discussed

at length by W. Williams, in the Philosophical Magazine, September, 1892.



CHAPTER XV.

THE GENERAL ELECTRIC CURRENT.

1. Displacement Current and Magnetic Intensity. It has been

shown in 27, XIII.
,
that when no other kind of current is

present the conduction current across a surface is equal to the

m.m.f. around the edge of the surface, and that the conduction

current density is equal to the curl of the magnetic intensity.

That a changing electric displacement, or a pure displacement

current, also gives rise to a magnetic field similar, qualitatively,

to that of a conduction current Hertz proved by direct experi-

ments. Consistently with these experiments, we shall here as-

sume that a given displacement current develops a magnetic

field similar, both qualitatively and quantitatively, to that con-

nected with a conduction current of the same magnitude and

distribution. The very important consequences of this assump-
tion are in rigorous accord with experiment (XVI.). Thus we

may write for a closed curve through which the electric flux is

changing and through which there is no other form of current

than a displacement current,

(i)

and curl H=id
= dDjdt (2)

which are analogous to (8) and
(9),

XIII.

fl is called an induced m.m.f. ,
and H an induced magnetic

intensity.

2. The Magnetic Field Induced by the Motion of a Concentrated

Charge. Let an approximately concentrated charge q = pdr

424
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move with a velocity v, Fig. 130. Let II denote the electric

flux through a circle of any radius a with its axis passing through

dr parallel to v, and let the direction of v be chosen as the posi-

,tive direction through the circle. Owing to the motion of the

charge with its field the flux through the circle will increase at

the rate dKjdt and a m.m.f. equal to fl = dtt/dtwi\\ be induced

in the positive direction around the circle. By symmetry, the

Fig. 130.

induced magnetic intensity His equal in magnitude at all points

of the circle which, like all other parallel circles centered on the

same axis, is a line of magnetic intensity. Let denote the

angle between v and the direction ofD at every point of the cir-

cle
;
then

dTLjdt = v sin 6 2TraD = fl = 2iraH

and the directions of the vectors are so related that this equation

gives
H=\/vD>smO (3)

which is analogous to (50), XIII.

Thus the magnetic intensity is developed by the motion of the

tubes of electric displacement at right angles to their length.

Since in the case considered

D =
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where
r_ (= r numerically) is the distance of the circle from dr,

(3) is equivalent to

H= I /4?rr
3

Vvq r_
sin 6 = drj^rrr

2
Vpv -rsinO

r sin

'4''

Thus, as shown by a comparison of (4) with (13), XII.
,
the

same magnetic effects are produced by a moving charge with

convection current density ta as by a conduction current of den-

sity t
e
= i

cv
.

In strictness the above results are only approximate and
A
re-

quire an appreciable correction when v is (^niparablc-with the

velocity of free electromagnetic disturbances (the velocity of

light), II, XVI., since the field at a distance from a moving

charge lags behind the charge.

A similar magnetic field would be developed by the motion

of the pole of an electret, and an electric field exactly analogous

to this last by the motion of the pole of a magnet, only the

space outside the magnet or electret being considered.

3. The Magnetic Field of a Cylindrical Convection Current.

The electric field of a cylindrical condenser is discussed in 8-9,

II. Let the charge upon unit length of the inner conductor be

-f q and that upon unit length of the outer conductor therefore

q ; and, for simplicity, suppose the conductivity ot the outer

cylinder perfect. Then the tubes of displacement will terminate

normally upon the outer cylinder whether the inner cylinder is

at rest or in motion. Let the inner cylinder move with a velocity

v in the direction AB of its axis. Then the convection current

through any closed curve surrounding the inner cylinder is

L = &
in the direction AB.

By the last article, the m.m.f. around any closed curve sur-

rounding the inner cylinder and within the outer cylinder is

therefore

XI = 7=
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The magnetic intensity has the same magnitude at all points

of any circle of radius r coaxial with the cylinders, and all such

circles are lines of magnetic intensity. Hence

fl == 27rrH
'= qv = 2TrrDv ^

and, with due respect to the directions of the vectors,

H=VvD (5)

In this case there is no displacement current through the cir-

cle of intensity, but the magnetic field is developed as before by
the motion of tubes of displacement perpendicularly to their

length. (5) is a particular case of (3), since in this case sin 6

= i.

4. Experiments upon the Convection Current. That an electric

convection current, in conformity with the above theory, is accom-

panied by a magnetic field of the same character, both qualita-

tively and quantitatively, as that connected with a pure conduc-

tion current of the same magnitude and distribution, has been

proved in several series of experiments by Rowland, using charged

rotating discs, and has been confirmed by many others.

Just as the magnetic field of a conduction current may be

deduced as a consequence of Ampere's law, n, XII., so, con-

versely, Ampere's law may be deduced as a consequence of the

(experimentally investigated) magnetic field of the current. Since

therefore a convection current develops a magnetic field identical

with that of a conduction current of the same magnitude and

distribution, Ampere's law must apply to such a current. Hence

a beam of cathode rays (consisting of very fine negatively charged

particles, or electrons, moving with velocities approaching that of

light) should be deflected when immersed in a magnetic field

perpendicular to the beam. That such a deflection occurs, in

qualitative agreement with the theory, has been known for many

years. A deflection in a magnetic field, in the direction indicated

by theory, of the much more massive and more slowly moving

positively charged particles forming the canal rays has also been
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recently observed. The assumption, justified by the experiments
of Rowland, that the agreement between these experiments and

theory is also quantitative has recently led to very important
advances in knowledge.

In accordance with what precedes, we may write for the m.m.f.

around the edge of a surface across which there is a convection

current only r >a
%11 = y

c (6)

and curl H= i
cv (7)

5. Magnetic Intensity and the Motion of Electric Displacement.

Motional Magnetic Intensity. In 2 it has been shown that for

the case there considered (i), and therefore (2), is equivalent to

(3). In the same way, just as (8) and (9), XIII.
,
are equivalent

to (5#), XIII.
,
so (i) and (2) may be readily shown to be

equivalent, in the general case, to the more general relation

H = VvD sin d
(8)

where H is the magnetic intensity at a point P in the dielectric,

at which the displacement is D, developed by the motion of the

tubes of displacement relatively to the medium at P with the

velocity v, whose component perpendicular to D is v sin 6.

If the medium at P is in actual motion with reference to the

surrounding medium, containing the inducing system, such as

fixed charges, it is an intrinsic magnetic intensity, and is called a

motional magnetic intensity. The existence of a motional mag-
netic intensity was first established by Roentgen, in whose ex-

periments a magnetic field in qualitative agreement with
(8), to

judge from its continuation in the air, was developed in a slab of

rigid dielectric rotated in air between fixed charged discs. For

the most recent experiments upon the subject, see A. Eichen-

wald, Ann. der Physik, Nos. 5 and 6, 1903. The experiments

indicate that for D, in
(8),

if c
2
and c

l (= C
Q , sensibly) denote the

permittivities of the slab and the air, respectively,



THE GENERAL ELECTRIC CURRENT. 429

should be substituted. That is, a fictitious convection current

produces the same magnetic effects as a true convection current

of the same magnitude and distribution.

Thus magnetic intensity is induced by moving tubes of electric

displacement, as electric intensity is induced by moving tubes of

magnetic induction
( 6, XIII.). It cannot be said, however,

that magnetic intensity is always due to moving tubes of electric

displacement, or that electric intensity is always due to moving
tubes of magnetic induction, an attempt to make ($#), XIII.

,
and

(8) general expressions for magnetic and electric intensity lead-

ing to apparently insurmountable difficulties. It is sufficient to

mention the field of a static electric charge or magnetic pole.

6. (Induced ?)
Intensities in the Field of a Steady Conduction

Current. Let the current / traverse the inner and outer con-

ductors of a cylindrical condenser axially in opposite directions,

the inner cylinder in the direction AB, and suppose both

cylinders perfect conductors. Then the electric field will be

radial and perpendicular to both cylinders as in a purely static

field.

Imagine the conduction current to consist in the motion of the

positive and negative ends of the electric tubes along AB and

CC respectively, the electric tubes travelling in the direction AB
with the velocity v. Then the magnetomotive force around a

circle of magnetic intensity of radius r is

fl = / = 2-rrrH'= qv = 2TrrDv

q being the charge upon unit length of the inner cylinder and D
the displacement at the distance r from the axis. With due re-

spect to the signs of the vectors, the last equation gives

H= VvD
(9)

Thus by assuming that the magnetic field of the steady con-

duction current is a consequence of the (assumed) motion of its

electric field we are led to the same relation between H
t
v and D

as already deduced for the displacement current.
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Jf we imagine the electric field, likewise, to be developed by
the (assumed} motion of the magnetic field with velocity u, (50),

XIII., gives E=VBu
(10)

Equations (9) and (10) give for the relations between u and v

UV = I
fffl

ulv= \EDl\HB

u\HB = v\ED = \EH

Since the electric and magnetic energy densities are not in

general equal, except in the case of pure electromagnetic waves

(XVI.), the above conceptions lead to the anomalous result that

u and v are different and may have any ratio to one another.

Since in some cases (according to the dissociation theory), and

probably in all
(

1 5, IX.), the steady electric current in an actual

conductor consists in the motion throughout the conductor in

opposite directions of positively and negatively charged particles,

and since the surface charges connected with the external field

of the steady current do not take part in the conduction (9,
VIII.), the above results must be taken as at present only sug-

gestive.

7. The First Law of Circuitation for Media at Rest and in Mo-

tion. When a given surface in a medium at rest is crossed by

conduction, convection, and displacement currents simultaneously,

the total current / through the surface and the m.m.f. fl around

its edge (the direction of the m.m.f. being related to that of the

current as the direction of rotation to that of translation of a

right-handed screw) are connected by the equation

and the total current density i and the magnetic intensity H are

connected by the equation
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where i -\- ij -4- i is a vector sum. Here H denotes either the
c ' a ' cv

intensity due to the currents, or the total intensity due to both

currents and magnets, if such are present (since the curl of the

intensity due to the poles of a magnet is zero).

If the medium is in motion, with the velocity v at the point

where the electric displacement is D (5), and if //still denotes

the total magnetic intensity, the curl of the motional magnetic

intensity, which we shall call the motional current density, or

the fictitious convection current density, and denote by im ,
must be

added to the first member of (12). Thus we have,

i =
*, + * + C + C= curl H

(
x 3)

the first member being a vector sum. This is the most general

form of the first law of circulation.

8. The Circuital Character of the Total Current. Kirchhoff's

Law I. Generalised. That a steady conduction current flows in

a closed circuit (div i
c
= o everywhere) is shown in 5, VIII.

From the Cartesian expression for the divergence of a vector

(31, I.),
and the Cartesian expression for the curl of a vector

(4, XVI.), it follows that the divergence of the curl of any
vector is zero. Hence it follows.from (12) and (13), since z, the

total current density, is equal to curl //, that

div i= div curl H o (14)

That is, in any case, the total current flows in closed tubes.

Thus, for example, let an electric condenser AB be discharged

through a wire C, and first suppose the capacity of the wire

negligible in comparison with that of the rest of the system.

Then during the discharge the conduction current /= dqjdt
will be sensibly the same across every section of the wire (if the

capacity of the wire were zero, any charge there accumulating
would produce an infinite potential difference), and the displace-

ment and displacement current will be confined sensibly to the

region occupied by the tubes stretching from A to B. During
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the discharge the flux from A to B decreases at the rate dqjdt
and the flux from B to A increases at the same rate dqjdt.
Thus the displacement current dH.fdt = dqjdt from B to A
through the dielectric across any closed surface surrounding one

of the plates is equal to the conduction current across every sec-

tion of the wire from A to B. Thus the total current flows in a

closed circuit, the displacement current starting where the con-

duction current stops.

Similar phenomena occur when the wire is cut and its ends

connected to the terminals of a voltaic cell. The conduction

current through the wire and cell as the condenser is charged is

equal to the displacement current in the same direction around

the circuit through the dielectric.

If the capacity of the wire C differs from zero (which is always

the case to a greater or less extent), then, if the condenser is dis-

charged by bringing the wire into contact with the plates at A
and B simultaneously, tubes of displacement will move out along

the wire stretching from the part near A to the part near B, giving

rise to a displacement current through the dielectric from the

one part to the other as well as to a conduction current through

the wire
;
and the sum of the two currents, through the wire and

through the external dielectric from A to B, is equal to the dis-

placement current from B to A through the rest of the dielectric.

During this process the conduction current is not constant from

section to section of the wire, being zero across the more remote

parts of the wire while it has an appreciable value across the

nearer parts immediately after the beginning of the disqharge.



CHAPTER XVI.

THE TRANSFERENCE OF ELECTROMAGNETIC ENERGY.
ELECTROMAGNETIC WAVES. MAXWELL'S THEORY.

1. Poynting' s Theorem * when E is Perpendicular to H. Fig.

131 represents one end of a system consisting of two long coaxial

perfectly conducting circular cylinders A and F
t
with external

and internal radii R
l
and R

2 respectively, closed by a non-con-

ducting slab E of zero permittivity, and plugged with a closely

fitting right cylindrical conductor D of length L and resistance
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normal to both cylinders and straight, as in a purely static field.

The lines of magnetic intensity are circles centered on the axis

of the cylinders in planes perpendicular thereto.

Let the steady current be denoted by /, and the steady differ-

ence of potential from A to F (there is no fall of potential along

A or along F) by V= WI.

Energy, generated by the voltaic cell (or other generator), is

supplied to the system ABF at the rate VI, and is dissipated by
the resistance Wat the rate WP = VL Since there is no energy

within the conductors A and F or outside the closed system,

energy must therefore be transferred in the direction ABC across

every section of the dielectric at the rate

f (i)

Since V=jEdr along a line of electric intensity, and /= 2'jrrH,

where E and H denote the electric and magnetic intensities at a

circle in the dielectric distant r from the axis, (
I
) may be written

(R)
= VI=EH- 2irrdr =

where 6" denotes the cross-section feirrdr of the dielectric. There-

fore, due attention being paid to the signs of the vectors, the time

rate per unit area, R, at which electromagnetic energy is trans-

ferred across an area whose plane contains E and H
t perpendic-

ular to one another, or the electromagnetic energy flux density',
is

R = d(R)jdS=VEH (2)

This is Poynting's theorem for the case in which E is perpen-

dicular to H. A more general form of the theorem will be de-

veloped in 5.

Let L and 6* denote the inductance and capacity of unit length

of the system, then \LP and JSF2 denote the magnetic and

electric energies contained in a unit length of the dielectric. Let

:- denote the velocity with which the electric energy moves in

the direction AB, and u the velocity with which the magnetic
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energy moves in the same direction (see 6, XV.). Then we

may write

(R) = HJSF2

) + uQJ*) (3)

which is equal to VI if

uv = I JSL = i
/cfji (see below) (4)

In exactly the same way we have for the energy flux density

R = v(\c&) + u(lnH*) (5)

which is equal to EH if uv = I jc^.

Thus the conception of moving tubes is consistent with Poynt-

ing's theorem if the relation (4) holds between the velocities.

When Z/ 2 = SF2 or

'(6)

2. Mechanical Analogue. Consider a circular cylindrical rod

rotating uniformly about its axis AB and transmitting power in

the direction AB. Let the constant angular velocity be denoted

by /and the torque acting across eveiy section by V
y
the com-

mon direction of both being related to the direction AB as the

direction of rotation to that of translation of a right-handed

screw.

The rate at which energy is transferred across every section

of the rod in the direction AB is

dr

Owing to the torque across every section, the rod is twisted,

or any two sections are sheared with respect to one another.

f*&
(g

Fig. 132.

For all points at a given distance r from the axis the (angle of)

shear, or relative shift per unit length between two cross-sections,

A
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is the same and will be denoted by D. Fig. 132 shows the

natural and sheared states of a ring of radius r and infinitesimal

thickness dr. D is zero at the axis and is proportional to r
y

having its greatest value at the surface of the rod. The direction

of D is everywhere radial from the axis, since a right-handed
screw at any point rotating in the direction of the twist or shear

at the point, as shown by the arrows in the figure, would move

radially toward the surface.

Let the modulus of rigidity of the rod be denoted by ;/, and its

reciprocal, or the shear permittivity, by c. Then, at any point

of the ring considered, the shearing stress (shearing force per

unit area, or shearing torque per unit volume), which will be

denoted by E, has the same direction as that of D and is equal to

E=nD = Djc

Since the area of the cross-section of a ring of radius r and

thickness dr is 2'irrdr, the torque about the axis acting upon the

cross-section is

dV 27rrdrEr

Let the linear velocity at any point distant r from the axis be

denoted by H. Then
H=rl

The rate at which energy is transferred across the zone of

radius r and width dr is

IdV= 2Trr
2

drEHjr

and the rate of transfer per unit area is

R=VEH (a)

if due attention is paid to signs.

The potential energy per unit volume is ^cE
2 = %nD

2
.

Let the density of the rod be denoted by ft. Then the kinetic

energy per unit volume is J/^//
2

.

If we assume the potential energy to travel in the direction AB
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with the velocity v and the kinetic energy with the velocity u,

we have also

R =

which is consistent with (a) if uv = i
/CJJL.

Ifu = v

R = v($c& +

which, combined with
(a), gives

v = MEHj^cE
2 +

3. Two Perfectly Conducting Parallel Circular Plates Connected

by a Right Circular Coaxial Conducting Cylinder. Let Z, Fig.

133, denote the distance between the plates, or the length of the

I B

cylinder, a the radius of the cylinder, both supposed small in

comparison with the radius of the plates, and IV the resistance

of the cylinder. Let the plates be maintained at the constant

difference of potential V.

The electric field between the plates (except near their edges)

is uniform and parallel to the axis of the cylinder in the direction

AB. The electric intensity is E = VjL(= Djc in the dielectric).
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The current flows in radial stream-lines in the plane AA toward

the axis of the cylinder, through the cylinder parallel to its axis

in the direction AB
y
and from the cylinder in radial stream lines

in the plane BB.

The lines of magnetic intensity are circles parallel to the planes

and centered on the axis of the cylinder. The intensity at all

points of a circle of radius r is H= 7/27rr
= VJ27rrW, if r is

greater than a. If r is less than a, H= rIJ27ra
2

.

Within the perfect conductors there is no field of either kind.

Energy is dissipated in the cylinder at the rate (R)
= WP

VI. Hence energy is transferred inwardly across every cylin-

drical surface with its ends in the planes A and B and enclosing

the cylinder at the same rate

(R) = VI (a)

If the surface is a right circular cylinder of radius r coaxial

with the conducting cylinder, (a) becomes

(R) = EL x 27rr x H= EH- 2-rrrL

But 2irrL is the area of the surface considered. Hence the

energy flux density is, if due attention is paid to signs,

R=MEH (6)

as already proved for perpendicular intensities in i.

The energy contained in each tube of displacement per unit

cross-section is \ VD. The velocity of the tubes of displacement

(see 6, XV.), or of the electric energy, inward at the distance r

(greater than a) from the axis, if we assume that (8), 5, XV.,

applies to the field of the steady conduction current, is

(c)

Hence the rate at which electric energy crosses the surface

inward, or the rate at which electric energy is dissipated in the

conductor, is, according to the conception of moving tubes,
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The magnetic energy density is ^H*. The velocity of the

magnetic tubes at the distance r (greater than a) from the axis is

u = E\B= 2'jr^rW 00

if we assume that (8), XV., and (6), XIII., apply to the field of

the steady conduction current.

Hence the rate at which magnetic energy crosses the surface

inward, or the rate at which magnetic energy is dissipated in heat

in the conductor, is, according to the conception of moving tubes,

ifjiH
2 x 27rrx u=\WI <1

Thus the energy dissipated by resistance is, according to this

conception, half electric and half magnetic. The same thing

may be shown to be true in the system considered in I, the

velocities of the electric and magnetic tubes being there, as here,

inversely proportional to the corresponding energy densities

Within the cylinder the electric intensity is constant, the num-

ber of tubes entering per second being equal to the rate at which

tubes are broken up. The magnetic tubes contract as they ap-

proach the axis, thus giving up their energy without being broken

up ;
and as the magnetic intensity decreases the velocity of the

tubes increases in such a way as to make the number of unit tubes

cutting unit length of a line of electric intensity per second con-

stant (E= Bu = constant). This appears also from the relation

u = EjB = 27ra2

WjprL (e)

Inside the conductor
(c)

is of course unmeaning.

On multiplying together (c)
and

(</),
we see that

uv = i
fcfJL

as in i.

4, The Cartesian Expressions for the Rectangular Components

of the Curl of a Vector. Curl H and Curl E. The X
t Y, Z com-

ponents of a vector H being denoted by Hv H^ Hy the X, Y, Z
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components of its curl will be denoted by curl^/7, cur!
2 /7, cur!

3/7,

respectively.

To find the Cartesian expression for curl
x
//at a point P(xy y, z),

or i, Fig. 8, at which the components of //are Hv //
2 ,
and //

3 ,

we may take the line integral ofH around the infinitesimal rect-

angle 1 7, the plane of which is parallel to the KZ plane and the

sides of which, of lengths dz and dy, are parallel to Z and Y,

divide the result by the area of the rectangle, dS^ = dydz, and

pass to the limit.

This integration, which must be performed in the direction of

the arrows around the circuit, gives

!,
= (Ht + \dHJdy dy}dy + [Ht + dHJdy dy

?sjdy dy)jdz dz~\
dz [//2 -f dH2jdz dz

i)jdy dy\ dy (//3 -j- \dH^dz dz)dz

the separate terms being the integrals along the sides I, 2, 3, 4
in the order given. Cancelling equal and opposite terms, divid-

ing by dSv and passing to the limit, we obtain

dCl
ljdSl

= cur\H= dHJdy - dH^dz (a)

By an exactly analogous process, or by the principle

of symmetry and inspection of
(a),

we find

cur!
2
//= dH^dz dH^dx (ft)

and cur!
3
//= dHJdx - dHJdy (r)

From these equations we may write down at once the com-

ponents of the curl of any other vector E. Thus

curL/i = dEJdy dEJdz (a) "1
1 61 / LI \ /

cur\
2
E=dE

lldz-dEsldx (b) L
(8)

curl^E= dE^dx dE
ljdy (c) J

5, The Flux of Electromagnetic Energy. Poynting's Theorem.

Let R denote, in both magnitude and direction, the time rate per
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unit area at which electromagnetic energy is transferred at a

point P (x, yy z) across a surface normal to the direction of trans-

fer. Let the direction cosines of R, E, and H at the point P be

denoted by /, m t n, V
',
mr

,
n f

, I", m", n", respectively ;
and let

the angle between E and H be denoted by 6. E and H will be

used to denote the non-intrinsic intensities of the field, intrinsic

intensities, when present, being denoted by e and h. With these

conventions we have (Poynting's theorem)

R = V/7sin<9 (9)

to the demonstration of which we proceed.

Consider first a region containing no intrinsic electric or mag-

netic intensity. From the definition of R and that of the conver-

gence of a vector it is evident that the rate at which electromag-

netic energy enters an infinitesimal volume dr at P through its

surface (minus the rate at which energy leaves the volume) is

conv R dr. Hence, since no electromagnetic energy is de-

veloped within dr
(e
= h = o), this quantity is equal to the rate

of increase of electromagnetic energy plus the rate of dissipation

of energy in heat within the volume. That is

conv R >dr = dr d(\cE* -f &&*)/<** + dr - kE2

or

conv R = d(cE
2 + ^H2

)jdt + kE2 =

+ E2
dE

2jdt -f EJEJdt) + ^(H^HJdt (a)

+ HJHJdt + HJHJdi) -f J5& + /C2 + /C8
Since

pdHJdt = curl^, etc.

and
cdE. Idt -f L = curl,//", etc. (since i i = o)I/ Cl 1' \ CUtti/

- ^^v

(|l) may be written

conv R = EL curlj.tf + ,
cur\

2
ff + 3

c\ir\
3
ff H^ curl^

(6)
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But also, by definition of the convergence of a vector,

conv R = - (dRJdx+dRJdy + dR^dz)

Hence R
1

- #, = E2
H

3
- E

B
H

2
= EH(m'n" - n'm")

R
2
-a

2
= E^ - E& = EH(n'l"

-
I'n"}

R
3
- a

s
= E^H2

- E^ = EH(l'm" - m'l")

where a, with components av av ay is a vector whose conver-

gence is zero.

Without affecting in any way the generality of the conclusions,

we may, for simplicity, give the rectangular coordinate system
such an orientation as to make the plane XY parallel with the

plane containing E andH
t
and the direction ofX coincident with

that of E. Then E
l
= E, E2

= E
3
= o, or I' =

/, m' = n' = o
;

and 7/3
= o, or n" = o, while I" = cos and m" = cos (90 6)

sin 6. With these simplifications the above equations become

R! a
l
= o = R

2
av and R

3
a
3
= R <? = 77 sin 6

Hence, with due respect to the directions of the vectors,

R = MEH sin<9 + tf (10)

Since div a = conv a = o, a, if it is not zero, represents a flux

of energy in closed tubes and therefore contributes nothing to the

net energy entering any volume. In what follows this circuitous

energy flux will be neglected, or, what amounts to the same

thing, a will be assumed equal to zero, unless the contrary is

stated. With this assumption, (10) is identical with
(9).

If at any point P there is an intrinsic electric intensity e and

an intrinsic magnetic intensity h in addition to the field intensities

E and //, then an element of volume at P
t
in addition to receiv-

ing electromagnetic energy by transference across its surface at

the time rate conv R per unit volume or R per unit area, receives

electromagnetic energy by transformation on the spot at the

time rate

ei cos B 1 + kdBjdt-cos 6"
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per unit volume, where 9 f denotes the angle between e and i
t

and 6" that between h and dB\dt.

The vector R is called, as stated in I, the electromagnetic

energy flux density.

Since R is perpendicular to E and to H, the lines along which

the energy flows, or the energy stream-lines, are the intersections

of the electric and magnetic equipotential surfaces. (Even when

the field is not static or steady, so that the term potential cannot

be used legitimately, we may still use the expression equipotential

surface to denote a surface perpendicular at every point to the

intensity.)

6. A Long Circular Cylindrical Conductor Traversed by a Steady

Current. Fig. 134 shows a section of a small jpart of the electric

field within and without the conductor when the current has the

Fig. 134.

direction AB. The lines of magnetic intensity are circles about

the axis AB of the cylinder, going down into the paper below

AB and coming up out of the paper above AB. The electric

and magnetic intensities are everywhere perpendicular.

Outside the wire, the energy flux density R has the direction

indicated at C, with a component R
t
in the direction of the axis

AB, and a component R
2
toward the axis. Thus in the dielectric

energy is transferred in the direction AB to parts of the field far-

ther along the circuit by the component Ry and energy is also
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transferred toward and into the conductor by the component R
2

.

Within the conductor, as at D, R is directed toward the axis

with no component parallel to the axis. Hence within the con-

ductor there is no transfer of energy along the circuit, all the

energy entering the conductor from the dielectric and being dis-

sipated in heat by resistance.

If a conductor, either insulated from the circuit or connected

thereto at a single point, is placed in the electromagnetic field,

then there will be a magnetic field inside the conductor, but no

electric field, and the tubes of electric displacement will terminate

normally upon the outer surface of the conductor. Within the

conductor there is no transference of energy, since E is zero. In

the dielectric at the surface of the conductor the energy stream-

lines are parallel to its surface, since they are perpendicular

to E, which is normal to the surface. Thus the energy streams

around the conductor as a liquid streams around an impervious

solid.

7, The Transfer of Energy in and About a Voltaic Cell and a

Simple Electrolytic Cell. Figs. 135-138 represent diagrammatic-

ally for several cases the electric field and the transfer of electro-

magnetic energy in and about a Daniell cell under the assump-

tions (for which evidence, though not wholly satisfactory, can be

adduced) that the single difference of potential from the copper

electrode to the copper sulphate solution is positive and equal

to that from the zinc sulphate solution to the zinc, and that the

single difference of potential from the copper sulphate solution

to the zinc sulphate solution is negligible. ABC represents the

copper electrode, HIJ the zinc electrode, DEFG the solutions,

and the dotted line the porous partition between them. The

distance between the electrolyte and the electrodes is of course

enormously exaggerated in the diagrams. The intrinsic electro-

motive forces are directed from the copper sulphate solution to

the copper and from the zinc to the zinc sulphate solution exactly

opposite to the electric fields they develop.
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The electric field on open circuit is shown in Fig. 135. There

is no electric intensity within the conductors, no current, no mag-
netic field, and no transfer of energy.

The field after closing the circuit above A and H is shown in

Fig. 136. Above BI the magnetic intensity is directed
(in the

plane of the diagram) normally into the paper, while below BI it

is directed up out of the paper. The 'direction of the transfer-

ence of electromagnetic energy is shown by the arrows cutting

Fig. 135. Fig. 136.

the lines of intensity normally. Electromagnetic energy, trans-

formed from chemical energy with the deposition of copper and

the solution of zinc at the electrodes, moves out from between the

electrolyte and the electrodes into the dielectric, part there con-

verging upon and moving into the electrolytic and metallic con-

ductors, there to be dissipated in Joulean heat, and part being

carried into other parts of the field.

The field and transference of energy when-an agent with a con-

siderably greater e.m.f. than that of the given cell sends a cur-

rent through it (or assists in so doing) in the same direction as

befrre is shown in Fig. 137. Electrical energy generated by the



44^ ELEMENTS OF ELECTROMAGNETIC THEORY.

external e.m.f., as well as all the energy generated by the in-

trinsic e.m.f. of the cell itself, is dissipated in the conductors.

The field and the transference of energy when a current is sent

through the cell in opposition to its intrinsic e.m.f., that is from

copper to zinc, is represented in Fig. 138. Here a portion of

the energy supplied to the cell by the external e.m.f. is dissipated

in the conductors and the rest is transformed into chemical en-

ergy with the deposition of zinc at the kathode and the solution

of copper at the anode.

Fig. 137. Fig. 138.

In Fig. 139 the electric field and the transference of energy in

and' about an electrolytic cell, consisting of copper electrodes

AC and ///dipping in a solution DEFG of copper sulphate, are

represented diagrammatically for the case in which a current

traverses the system from A to H. Between the kathode HJ
and the electrolyte energy is transformed from chemical to

electrical with deposition of copper, whence it moves out into the

dielectric, and thence partly into the conductors and partly into

the region between the anode A C and the electrolyte, where re-

conversion into chemical energy occurs. The quantity of chemi-

cal energy transformed into electrical at the kathode is equal to

the quantity of electrical energy transformed into chemical energy
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at the anode. Hence, since a portion of the electrical energy

generated at the kathode is dissipated in heat, as much electrical

energy coming from the external e.m.f. producing the current is

transferred into the region about the anode, and there converted

Fig. 139.

into chemical energy, as is dissipated in the conductors of the

electrical energy generated at the kathode. On the whole, no

work is done in the cell except that done upon resistance. (If

the electrodes are at different levels, work will be done by or

against gravity during the conduction, etc.)

8. A Circuit Containing a Motional E.M.F. We shall con-

sider only the simple case of a slider, AB, Fig. 140, running on

BU
Fig. 140.

two parallel rails AC and BD
y
connected by a cross piece CD and

immersed in a uniform magnetic field directed downward into the
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plane of the paper. Let AB move to the right. Then there is

induced in AB an intrinsic e.m.f. in the direction BA, producing

a current around the circuit in the direction BACDB, with lines

of magnetic intensity related to the current in the usual manner.

The intrinsic e.m.f. in the direction BA produces an electric field

intensity with the general direction from A to B along the slider

and around the circuit, both within and without the conductor.

The lines of electric intensity diverge from the upper half of AB
in the dielectric and converge upon the lower half. Hence, since

R = VEH sin 6, the electromagnetic energy generated in AB
moves outwards from AB and toward its ends, then contracts

upon the rest of the circuit, all the energy being finally dissipated

in heat. While the energy is moving outward through the con-

ductor AB a part of the energy is dissipated owing to the resist-

ance of AB, not all the energy developed in AB reaching the

dielectric.

9. A Concentrated Electric Charge in the Presence of a Concen-

trated Magnetic Pole. If the charge and pole are concentrated

at two points A and B, respectively, and if the energy flux den-

sity is given by MEH sin 6, the energy stream-lines are circles

about AB and AB produced as axis. Since both fields are

purely static in this case, however, there is no reason to believe

that any flow of energy, even in closed tubes, exists. To recon-

cile this view with Poynting's theorem, we have only to remem-

ber that the energy flux density, in the general case, is VEH
sin plus a circuital flux density a, and to suppose that in the

present case a = V'EH sin 0, or R = o.

10. Electric Radiation. Electric Waves. The damping of the

mechanical vibrations described in 45, III., C, XIII., was as-

sumed to be due wholly to friction. A vibrating mechanical

system, however, unless completely surrounded by a perfect

vacuum, which is not possible, will set the adjacent parts of the

surrounding medium into vibration, thus emitting a train of waves



THE FLUX OF ELECTROMAGNETIC ENERGY. 449

Owing to the energy thus radiated to the surrounding medium,

the motion of the system will be damped, and the damping so

caused may greatly exceed the damping due to friction. This is

true, for example, in the case of a vibrating air column, most

of whose energy is emitted in waves of sound.
O*'

Other things being equal, it is clear that the damping due to

radiation will be greater the greater the surface communicating
the energy to the surrounding medium.

The damping of the electrical oscillations discussed in 43 C,

XIII., was also assumed to be due wholly to the dissipation of

energy by resistance. But since the electromagnetic field of the

system extends into all space, it is evident that when its oscil-

lations, or variations in the nearer portions of its electromagnetic

field, occur, a train of electromagnetic waves must be emitted by
the system and propagated into space, and that the oscillations

will therefore be damped owing to the energy thus radiated.

r
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At a considerable distance from an electrical oscillator the

electromagnetic waves crossing a limited area will be approxi-

mately plane, just like the sound waves emitted by a vibrating

bell or diapason*

In the electromagnetic wave train emitted by a symmetrical
" dumb-bell

"
oscillator like that of Fig. 141, consisting of

spheres at the ends of circular cylindrical rods, it is obvious that

at any point the electric intensity will lie in the plane containing

A \

E
To Induction

Coil

Fig. 142.

the point and passing through the axis of the oscillator, and

the magnetic intensity will lie in the plane perpendicular to the

axis, both intensities being perpendicular to the direction of propa-

gation of the waves by Poynting's theorem.

Such a wave train passing through a given point at which the

electric and magnetic intensities oscillate in fixed planes is said

to be plane polarised.

Electromagnetic waves can also be developed by means of the

convection of electric charges or magnetic poles. Thus if two

eqwa^r spheres, with equal and opposite charges, are made to

approach-and recede from one another alternately, a wave system

very similar to that of the " dumb-bell
"

oscillator will be emitted.

Also, if a system consisting of two equal spheres with equal

and opposite charges, mounted upon an insulating rod, is rotated

uniformly about an axis passing perpendicularly through the
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center of the rod, another interesting and important wave system

will be emitted. At any point along the axis of revolution each

intensity, always perpendicular to this axis, remains constant in

magnitude, but passes uniformly through all azimuths during

every revolution. The radiation along the axis is therefore said

to be circularly polarised. At all points in the plane of revolu-

tion of the centers of the spheres, the radiation is plane polarised.

At points not in this plane and not on the axis of revolution,

each intensity passes uniformly through all azimuths during each

period, reaching a minimum and a maximum value twice each,

but never becoming zero, and the radiation is therefore said to be

elliptically polarised. The first and second cases are particular

cases of the third.

On the electron theory, waves of light, which are electromag-

netic waves of extremely short wave-length and period, are devel-

oped by the vibrations of the electrons, that is by electric con-

vection, within the atom.

For the continuous production of electric waves, or rather for

the rapid production of successive trains of such waves, the two

conductors of the oscillator are connected permanently to the

terminals of an electrical influence machine or induction coil in

operation, as shown in the figures. Every time the voltage be-

tween the terminals of the oscillator reaches a certain value, the

insulating properties of the dielectric break down along a line

between the terminals, and the oscillations occur, the path of the

current being evident from the spark. With the cessation of the

oscillation the insulation is restored, the voltage again increases, a

spark occurs, another wave train is emitted, and so on indefinitely.

For the detection of electric waves, any sufficiently sensitive

electric vibrator may be employed. When used for this purpose,
such an electrical system is called a resonator. One of the com-

monest forms of resonator is the dumb-bell form, similar to the

dumb-bell vibrator, Fig. 141, but with a shorter spark gap E.

If such a resonator is placed in a region traversed by electric

waves with the rods EF parallel to the direction of the electric
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intensity, or in any direction not perpendicular to the intensity,

an e.m.f. of the same kind as that of the vibrator will be im-

pressed upon the resonator parallel to its length, and oscillations

will be set up therein. If the maximum value of the voltage de-

veloped between the terminals of the spark gap E is sufficient,

the insulator within the gap will break down and the oscillations

of the resonator will become manifest by the passage of a spark.

This effect will be a maximum when the rods EF are parallel to

the electric intensity of the waves, and zero when they are per-

pendicular to this intensity. For a given angle between the

electric intensity and the axis of a resonator, the effect will also

be a maximum when the period of the resonator is equal to that

of the waves (or that of the vibrator), in accordance with the

principles of 44, XIII. One tuning fork set into resonant vi-

bration by the waves from another in unison is an exact mechan-

ical analogue.

The sensitiveness of a resonator can be greatly increased, or

the minimum intensity for which it will give noticeable indications

greatly diminished, by the addition of any one of several devices.

One of the most effective and widely used of these adjuncts

is the coherer of Branly. This consists of a small glass tube

plugged at the ends with metallic electrodes and loosely packed

with metallic filings, or other small pieces of metal. The elec-

trodes are connected to the resonator, usually on opposite sides

of the spark gap, and also to the terminals of a circuit contain-

ing a battery and a galvanometer or other current indicator.

Before the incidence of electric waves upon the resonator, the

electric resistance of the coherer is very great and only a very

small current traverses the galvanometer. But when oscillations

are set up in the resonator by the impact of electric waves, the

resistance of the coherer is greatly diminished, and the current

through the galvanometer is therefore greatly increased. The

resistance of the coherer retains its reduced value after the cessa-

tion of the waves, but the original high resistance can be imme-

diately restored by tapping the instrument with a light hammer.
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In practice this is done by a continuously operating hammer

driven electrically by a separate circuit. The diminution of re-

sistance on which the action of the coherer depends is probably

brought about by the welding together of the metallic particles

on the passing of very minute sparks between them when even

very feeble oscillations are set up in the resonator. When the

particles are shaken apart by the hammer, the resistance goes

back to its previous magnitude.

An indication of the relative magnitude of the electric intensity

is given by the maximum distance between the spark gap termi-

nals of the resonator (which are made adjustable when the in-

strument is used for this purpose) at which sparking will occur
;

or, if a coherer is employed, by the diminution of resistance, or

increase of galvanometer current, produced.

For a detailed account of the theory of electric waves and

oscillations and of the extensive experimental investigations (in

full accord with the theory) upon the subject, the reader is re-

ferred to Poincare's Les Oscillations Electriques, J. J. Thomson's

Recent Researches in Electricity and Magnetism, Winckelmann's

Handbuch, and, for recent digests, to the Rapports of the Inter-

national Congress of Physics, Vol. II. The most complete treat-

ment of the theory of the propagation of waves along wires is con-

tained in Heaviside's Electromagnetic Theory and Electrical Papers.

For the electromagnetic theory of light, see Drude's Optik.

The following paragraphs contain the theory of some of the

simplest and most fundamental phenomena of electric waves.

11. The Propagation of Electromagnetic Disturbances in a Non-

Conducting Dielectric Containing no Other Electric or Magnetic
Fields than Those of the Disturbance Itself. In this case the

electric convection and conduction current densities are zero, and

e and /n are constant in space and time. Hence the first and

second laws of circuitation are

i = dD\dt = cdEjdt = curl H ( 1 1
)

and
-

dB\dt = iJLdHjdt
= curl E (12)
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(i i) is equivalent to the three component equations

cdEJdt = dHjdy - dHJdz (a)

cdEJdt = dHJdz - dHJdx (b)

cdEJdt = dHJdx - dHJdy (c)

and (12) is equivalent to the three equations

= dEJdy - dEJdz (^
= dE^ jdz

- dEJdx (b)

(
c
)

(13)

(
1 4)

Simple Plane Wave. We shall consider first only the simplest

of plane polarised electromagnetic waves, viz., a disturbance in

which everywhere E2
= E

z
= o, and E^= E) is independent of

x and y, or has the same magnitude and direction at all points

of any plane distant z from XY plane, i. e., a plane polarised

plane wave. In this case (13) (a) becomes

dDJdt(= dDj df)
= cdEJdt(= cdEfdt) = - dHJdz (15)

since the magnetic intensity must be independent of x and y when

the electric intensity is independent of x and y ;
and (14) (b) be-

comes
dB

2ldt
= ^dHjdt= -dEJdz (16)

Differentiating (15) with respect to / and (16) with respect to

z, and combining the resulting equations, we obtain

(17)

tPDJdt* =i/w d*DJd (18)

Differentiating (15) with respect to z and (16) with respect to

/ and combining the resulting equations, we obtain

( 1 9)

d2B
2jdt

2 = i
jcii, d*BJdz

2

(20)

These four equations have all the same form and show that

the electric and magnetic intensities and inductions are propa-



THE FLUX OF ELECTROMAGNETIC ENERGY. 455

gated in a direction parallel to the axis of Z with the velocity

v=il(citf (21)

To demonstrate this, we have only to obtain the general solu-

tion of one of the equations. Choosing (17), introducing two

new variables

a = z vt
and

b = z -f vt

where v is given by (21), and eliminating z and / from (17) by
means of these equations, we have

d2

EJdadb = o, or djda (dEJdb) = djdb (dEJda) = o

Hence dE^da is a function of a only, and dE^db is a function

of b only. Therefore E
{
consists of the sum of two terms, one

a function of a only, and the other a function of b only. Thus

the general solution of (17) is

E
l
= Ffc - vt} + F&s + vt) (2 2)

where F^z vf) and F
2(z + vt) are arbitrary functions of (z vt)

and (z + ztf), respectively. Either function may be zero, but

neither can be constant or contain a constant term, since a con-

stant field is excluded by the conditions assumed above.

FJz vt) represents a disturbance in the dielectric traveling

unchanged in form in the positive direction of Z with the velocity

v. For at the time / -f /', Fl
has the same value

F
l [(* -f vf)

-
v(t + /')]

=
FI(*

~
vt)

at the plane whose Z coordinate is z -\-vt' which, at the time
/*,

it had at the plane whose Z coordinate is z.

Similarly, F2(z -f vt) represents a disturbance traveling in the

negative direction of Z with the same speed v.

At the time / = o, (22) gives

:
' = F^ + F^) (23)

If at the time to
t dEJdt= o, or the initial electric field is

static, (22) gives also

^.'W-^.'W (24)
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Hence we have at the time t = o in this case, by integrating

(24) and making use of (23),

-

. F&i) = FJd-\E, -*c^>e (25)

there being no constant of integration, since there is no perma-
nent field.

As an example, suppose that at the time t=o
y
E

l
=D

l jc

2A cos 27TZJL between the limits z = + Z/4 and z =
/4,

and E
l

= o everywhere else
;
also that at the same time dE^dt

= o everywhere. Then

F^z) = A cos 2irzjL = F&s) = F(z)

and at any time /

E
l
= E= F(s - vf) + F(z + vt)

= A COS 27T/L (% Vt) + A COS 27T/L (Z -f Vt)

Thus at the time / = o the initial static displacement or in-

tensity divides up into two equal waves, one running in the posi-

tive direction of Z with the speed v, and the other running in the

negative direction of Z with the same speed. At the time / the

intensity is zero everywhere except between the planes # = vt

-f L/4 and z = vt L/4 and between the planes z = (vt +
L/4) and z (vt LJ4). The initial disturbance and the

disturbance at the time / are shown in Fig. 143.
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12, The Relation Between E and H in the Electromagnetic

Wave. From the exact similarity in the form of equations (17)

.and (19) it is now evident that

+*<) (26)

where fL
and f.2 are arbitrary functions of (z vf) and (z -f vt\

respectively.

H
2

is the total magnetic intensity. For since
2
= E

s
= o,

and E^ = E is independent of x and y, (
1
4), (a) and

(c)
become

which gives

/f.-./r.-o

the constant of integration being zero, since there is no perma-
nent field.

The arbitrary functions /x
and /2

are closely related to F
l
and

Fv as will appear from the following deduction of H
2
H from

(16) and (22). From (16) we have

^jdz dt (27)

there being no constant of integration. Consider the disturbance

E^F^-vi) (28)

traveling with the velocity v in the positive direction of Z. Dif-

ferentiation of (28) gives

which, substituted in (27), gives for the disturbance /j connected

with F^

^z vt)jdt dt = i/pv FJ(JS vf)

In exactly the same way we obtain for the disturbance f
2
con-

nected with F9
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H
2 =f*(2 + *)

= I/K - v) F& + vt)
= - I IILV F2(z + vi) (30)

which is exactly analogous to
(29), since the velocity of the dis-

turbancefz -f vi) and /^(^ -f vf) is z>.

Thus in the general case, when E=E
l

is given by (22),

H~H -/*-*/ +/2(* + */)

+ ztf),
for the times t = o and ^ = /, is shown

in Fig. 143 for the case in which F^(z)
= F

2(s)
= A cos 27rz/L.

Since f^z)
= f2(z)

=
cvF^z), the initial magnetic disturbance

is zero.

With due regard to the directions as well as to the magnitudes

of the electric and magnetic intensities and the velocity of the

electromagnetic disturbance (Fl
and flt

or F
2
and /2),

which will

be denoted by v, both (29) and (30) give the relations

c\/vE
l
= cVvE = MvD (3 2)

and
VBv (3 3 )

since v* =
Quantitatively, either of these equations is equivalent to the

relation

(34)

between the electric and magnetic energy densities.

The electromagnetic energy flux density at any point of the

wave is

R = \IEH= v(cE
2 + J/^2

) (35)

and has always the direction of the velocity of the wave.

13. A Plane Simple Harmonic Wave Train, As another ex-

ample, we shall assume

E = E
l
= A cos 27T/Z (vt z) (36)

Then we have
H=H

2
= cvA cos 2TrlL'(ytz) (37)



THE FLUX OF ELECTROMAGNETIC ENERGY. 459

The relation between E, Hy
and the time, for the plane z = o,

as well as the relation between E, H, and z
t
for the time t = o,

is shown in the curves of Fig. 144.

The electromagnetic energy flux density at the time / across a

plane distant z from the XY plane is

(38)R = V77= cvA* cos2

27T/L (vt z)

E and H being given by (36) and (37).

,-H

Z and t

As shown by the equation, R is always positive except at

points at which E and H
t
and therefore MEH= R, are zero. This

is of course obvious, since the energy travels with the waves.

The mean value of V at any point during a complete period is

(R) = cvAz x mean value of cos2

2irjL (vt z)

= cvA 2 x mean value of (39)

1
[l

COS 47T/L (Vt Z)\
= CVA*\2

Since in a pure electromagnetic wave the electric and magnetic

intensities travel with the same velocity v, the above result may
also be obtained from the relation

R = (40)
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The mean value of E2
is A 2

/2, and the mean value of H 2
is

<?v*A2

J2. Hence (R) = cvA 2

J2, as before.

14. A Plane Electromagnetic Wave Train in a Non-conducting

Dielectric Incident and Reflected Normally at a Plane Interface

Separating the Dielectric from (1) a Perfect Conductor or a Di-

electric of Infinite Permittivity, or (2) a Perfect Insulator with

Infinite Inductivity. (i) Reflectionfrom a perfect conductor. Let

the electric intensity in the incident wave train be denoted by

Eu = A cos (ntpz) (41)

the incident wave being propagated in the positive direction of Z.

If EH were the total intensity, the intensity at the interface

would be A cos nt
y
a quantity differing from zero except at two

instants in every period. But since the conductivity of the con-

ductor, or the permittivity of the second dielectric, is infinite, a

finite intensity parallel to the interface would necessitate an infi-

nite current in the conductor, according to Ohm's law, or an

infinite displacement in the second dielectric, which is inadmis-

sible. Hence there must be a reflected wave train whose in-

(42)

added to the intensity Eu of the incident train makes the total in-

tensity

E
l
= E

li + Elr
= A [cos (nt

-
pz)

- cos (nt + /*)] (43)

a quantity equal to zero, when z = o, for all values of t.

The total magnetic intensity is

H
2
= HK + H2r

=p^n A [cos (nt
-

pz) + cos (nt + /*)] (44)

Equations (43) and (44) may be written

E^ = 2A sin nt sin pz = 2A sin 27r//7"-sin 2irz / L (45)
and H

2
=

2ApjfJLH COS 27Tt/ T- COS 2TTZJL (46)

Thus the incident and reflected wave trains interfere to produce

a system of standing waves. The electric nodes, or points (planes)
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at which the electric intensity and displacement are permanently

zero, are distant from the interface o, L/2, L, $L/2, etc.; and the

antinodes
y
or points (planes) at which the electric intensity reaches

its maximum and minimum values, are distant from the inter-

face L/4, $L/4, etc.

The magnetic nodes have the positions of the electric antinodes

at distances Z/4, 3^/4, etc., from the interface
;
and the mag-

netic antinodes have the positions of the electric nodes at dis-

tances o, L/2, L, etc., from the interface. Thus the magnetic

intensity is a maximum or minimum where the electric intensity

is zero, and the electric intensity is a maximum or minimum

where the magnetic intensity is zero.

(2) Reflection from a perfect insulator with infinite induetivity.

In this case the magnetic intensity at the interface must be zero,

since otherwise the induction (B = fjiH) in the dielectric with infi-

nite inductivity, and the "
magnetic current,"

* would be infinite

except at two instants in every period. Therefore the magnetic

intensities of the incident and reflected wave trains must be equal

and opposite at the interface. Hence, if we use the nomenclature

of (i), we have

HI = Apjiin
-

[cos (nt pz) cos (nt + pz)~\
( 47 )= 2Apj fjLn sin 27rt/ T- sin 27rzjL

and E
l
=A [cos (nt

-
pz) + cos (nt +

= 2A COS 27T// T- COS ZTTZIL

Thus the interference of the two trains of waves produces a

system of standing waves in which the magnetic nodes and the

electric antinodes are located at the interface and at distances

LJ2 t
L

t etc., therefrom, while the magnetic antinodes and electric

nodes are located at distances Z-/4, 3-/4 5^/4, etc., from the

interface. Thus the nodes in this case occupy the positions of

the antinodes in (i), and the antinodes the positions of the nodes

in
(I).

* That is, the rate of change of magnetic flux, by analogy with dielectric current.
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15. The Flux of Energy in a System of Standing Waves. For

the electromagnetic energy flux density at the time t across a

plane distant z from the XY plane, (45) and (46), or (47) and

(48), 14, give

R = V E^H2
= A^pj fjin sin 4?r// T sin

(49)= cvA 2
sin TrtT sin .TrzL

since n*jp
2 = v2 = i

/ pc.

Thus R is permanently zero at all points for which sin ^.irzjL

= o, that is at all electric and magnetic nodes (or antinodes).

At any point between an electric node and a magnetic node, R

goes through a complete cycle of positive and negative values in

the time TJ2, its amplitude being greatest at points for which

sin ^.Trz/L
=

i, that is points half way between electric and mag-
netic nodes.

At any instant R has opposite signs on opposite sides of any

node, and also on similar sides of successive nodes. During one

quarter of a period the energy, wholly electrostatic at the start,

streams from the electric antinodes (magnetic nodes) toward the

electric nodes (magnetic antinodes), being completely trans-

formed into magnetic energy at the end of the quarter period.

During the next quarter period the energy, wholly magnetic at

the beginning, streams from the magnetic antinodes toward the

electric antinodes, being completely reconverted into electro-

static energy at the end of the quarter period. The energy

density has now everywhere the same value as a half period

earlier, but the sign of the electric intensity is everywhere oppo-

site. During the next half period the same energy transfer and

transformations occur, and at its close the electric intensity and

the energy density have the same values as at the beginning of

the period.

16. The Propagation of a Plane Simple Harmonic Wave Train in

a Conducting Medium Containing no Other Electromagnetic Field

than That of the Wave Train. In this case we have
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i = kE+ cdEjdt = curl H (50)

(51)

from which the six component equations can be easily written

down.

From these equations, by a process exactly analogous to that

carried out in 1 1
,
we obtain for the simple case in which E

2
=

3
= o, and E^ E is independent of x and y,

k^dEJdt + pcd
2^ I dt

2 = d^EJdt? (52)

and a similar equation for H
2,

the other components of H being

zero.

To solve (52) for the simple case of a harmonic wave train of

given period 7", or given wave-length L, progressing in the posi-

tive direction of Z with the velocity v (to be determined), assume

E
l
= E= Ae~mz cos 2K/L-(vt z) (53)

For the sake of brevity put

n = pv = 2?r/ r= 2TTV I L (54)

then (53) becomes

E
l
= E= Ae~ms cos (nt pz) (55)

The damping factor e~ma is inserted on account of the dissipat-

ing effect of resistance, m being a quantity to be determined.

Substituting for E
l

in (52) its value as given by (55), and

equating to zero separately the coefficients of sin (nt pz) and

cos (nt pz) in the resulting equation, we obtain as the condi-

tions that (55) may be a solution of (52),

n2

fjic m2
-f p

z = o

and fink + 2mp = o

Hence m=n{ pc/2 + [(/:/ 2)
2 + (^ / 2nf]^ (56)

and p=n{ncl2+ [(^/ 2
)

2 + (^ / 2n)^}* (57)

both m and p being positive quantities, since the waves are

damped and since they progress in the positive direction of z.
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From (54) and (57), the velocity of the waves is

v= //= I / {pc I 2 + [(pc I 2f + (pkJ2nf\^ (58)

being thus a function of n as well as of ft, c, and k.

The total magnetic intensity is

(59)
cos

(rit pz) + m sin (/
~

If we put

/ = N cos and m = N sin

we have

_V=(
2

+/)i
and

0= tan- 1

^//

By means of these equations (59) may be written

H
2
= A(m

2 + /)* / /**
' cos (' -p*-0) (60)

For good conductors, such as liquid electrolytes and metals,

the ratio (pcj 2)j(pkj 2n)
=

z/
is exceedingly small except for

enormous values of n. Thus, even for so great a value of n as

io6
, cnjk for common aqueous solutions of salts and acids is of

the order io~3
,
and for metallic conductors is too small to have

been detected by experiment. For good conductors, therefore,

we may write without sensible error, except for enormous values

of n,

m =/ = n(pkJ2n)*
= (/*#/ 2)*

and

6 = tan- 1

m\p = tan-1
I = Tr/4 (61)

(55) and (59) thus become

E
l
= Ae-(^V** cos n\t- (ii,k\2n}z\ (62)

and

ff = A(kl^e-^
kn^z cos {n\t

- (^/2n)h]
- TT

/'4} (63)
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The velocity of the wave train in the conductor is

v = njp = (2n/pfy (64)

The relations between E^ = ,
H

2 ff, and z at the time

/= o, are similar to the relations between q, /, and /, Fig. 1 19.

At a distance z from the origin the amplitudes of the electric

and magnetic intensities are less than their amplitudes at the

origin in the ratio C****&* to i. The distance i/m= (2.//*#)*,

in which the amplitude of either wave is reduced to I fe of its

value at the origin, is called the relaxation distance for the given

medium and the given value of n. The distance in which the

amplitude of either intensity falls to any fraction of its value at the

origin is, like the relaxation distance I /m, inversely proportional

to
IJL, k, and n. Thus if

JJL,
k

t
or n is very great the intensity of

the waves falls off very rapidly. If either k
y JJL,

or n is infinite,

that is if the conductor is a perfect conductor, its inductivity in-

finite, or the frequency of the waves infinite, all ideal cases, the

electromagnetic disturbance does not enter the conductor at all.

Thus a perfect conductor or a medium of infinite inductivity

would form a perfect electric and magnetic screen in either a

static or a variable electric or magnetic field.

For copper, when n = 2ir x 100, m = 7r/2 approximately.

In this case the amplitudes of the intensities are reduced to the

fractions 0.208, 0.043, an^ less than 1/500 the origin values at

the distances I, 2, and 4 cms., respectively, from the origin.

When n 2?r x 1,000,000, m = SOTT approximately, and the

amplitudes are reduced to less than 1/6,000,000 the origin

values in going a distance of I mm.
In the case of iron, if //.= 1000, m = 20, approximately, when

n = 27r x 100. The amplitude of either intensity falls off to

about thirteen hundredths and one twenty-thousandth part of

the value at the origin in traversing the distances I mm. and

5 mm., respectively. When n = 2ir X 1,000,000, m 2000 ap-

proximately, and the amplitudes fall off in i/io mm. to about

one five hundred millionth part of their values at the origin.
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These examples are given by J. J. Thomson, Elements of the

Mathematical Theory of Electricity and Magnetism, p. 418.

17. The Propagation of an Electromagnetic Field into a Con-

ducting Cylinder. The magnetic field of a long circular solenoid

traversed by a steady current is described in 20, XII. The

electric field, if the resistance of the solenoid is small, is weak,

and the only flux of energy into the solenoid is the flux develop-

ing the Joulean heat in the wire. In what follows the resistance

of the solenoid will be supposed very small and its counter e.m.f.

negligible in comparison with the e.m.f. of induction. The radius

of the solenoid will be denoted by a.

If the magnetic flux through the coil varies, that is if tubes of

magnetic induction move outwards or inwards, an electric field

will be developed within and without the solenoid. The lines of

electric intensity will be circles centered on the axis in planes

perpendicular thereto, and the e.m.f. around any circle of radius r

will be given, in magnitude and direction, by

where dQ jdt is the rate at which magnetic flux in the positive

direction crosses the circle inwardly, or by

where u is the velocity of the tubes of magnetic induction at

the circle of radius r. The electric intensity is always zero on

the axis.

The energy flux density, whose direction coincides with the di-

rection of motion of the electric and magnetic tubes, is R = VEH,
which is always radial, toward or from the axis.

If now an alternating e.m.f. acts upon the coil, the electric and

magnetic inductions will be propagated inwards and outwards

alternately, the direction, as well as the direction of motion, of

each being reversed once every half period.

If the period of the alternation is large, so that the distance

traversed by the tubes of induction during one period is great in
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comparison with the radius of the solenoid and the radii of all

circles of electric intensity considered (all supposed small in com-

parison with the length of the solenoid), the magnetic induction

will have sensibly the same value throughout the solenoid at any

instant. The electric intensity at a distance r from the axis will

be approximately

E= -

if r is less than a
;
and

if r is greater than a
;

<> being total flux in the positive direction

through the solenoid at the time t.

If the period of the alternation is small, so that the distance

traversed by the tubes during one period is of similar magnitude

to that of the radius of the solenoid, then the magnitude and

direction of both intensities will vary with r.

If in addition the core of the solenoid is a conductor, or if it

exhibits hysteresis, or both, as when made of iron, then the

e'nergy of the tubes will be partly dissipated during their propa-

gation in the core. Hence, since the direction of each intensity

is periodically reversed, the amplitude of the magnetic intensity

as well as that of the electric intensity, will steadily diminish as

the axis is approached.

If the radius of the core is great, or the curvature of its surface

small, the law of the diminution of the intensities with the dis-

tance from the surface is approximately the same as that deduced

for a conductor traversed by plane waves, 16, the ratio of the

amplitude of either intensity at the distance z from the surface to

its surface value being approximately e-(^
kni^z

j i.

Precisely the same form of reasoning applies to the propaga-
tion of an alternating electromagnetic field into the cylindrical

conductor of 3.

The same form of reasoning also applies to a cylindrical con-

ductor
( 6) to whose surface the electric intensity is not parallel,
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since the parallel component only is concerned in the propagation
of energy into the conductor.

Thus a rapidly alternating current is not distributed uniformly

throughout the conductor, but is more or less concentrated near

its surface. This increases the resistance of the conductor, and

decreases its inductance, the former being greater the less the

area of the section across which the current flows, and the latter

being less the thinner and farther from the axis the walls of the

tube through which the principal part of the current now flows

[2I, (2), XIII.].

In the case of a very thin wire, all points of the surface are

very near to the axis, hence both the above effects are small.

18. The Propagation of Waves Along Wires. Since the elec-

tromagnetic waves discussed in 11-15 are propagated un-

changed at right angles to the intensities, it is clear that the

results there obtained hold good for any plane plane polarised

wave, whether the wave front is infinite or not and whether the

direction of E (as well as that of //) is the same for all parts of

the wave front or not.

Thus they apply to plane waves propagated between two

parallel perfectly conducting planes, or to waves propagated

along two parallel perfectly conducting cylinders concentric like

those of 22, XIII., and I, or side by side like those of 24,

XIII. That the electric and magnetic intensities of these systems

are perpendicular at any point in the case of electric waves as in

the case of a steady current is apparent from previous discus-

sions without reference to (32) or (33), 12.

If the resistance of the conductors is not zero, but small, the

relations deduced in the articles referred to above will apply

approximately. Thus electric waves travel along wires of small

resistance surrounded by a given medium with approximately the

same velocity as in free space containing the same medium.

If the two wires are joined at the end remote from the oscil-

lator by a large plane conductor perpendicular to their lengths,
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or even by bending them together, a system of standing waves,

resembling that of 14, (i) will result, with an approximate

electric node and magnetic antinode at this end.

If, on the other hand, the wires are insulated from one another

at this end, a system of standing waves, resembling that of 14,

(2) will result, with an approximate magnetic node and electric

antinode at this end.

19. Mechanical Analogue of an Electromagnetic Wave, Waves

in Frictionless Elastic Media, Consider a plane transverse wave

traversing an infinite elastic medium in the positive direction of Z.

Let the displacement of the medium take place parallel to the Y

Fig. 145.

axis. Then at the time / while the disturbance is crossing any

plane distant s from the XY plane, every point of the medium in

this plane will be shifted in the same direction and through the

same distance, y y
from its equilibrium position.

Fig. 145 shows a section parallel to the YZ plane of a portion

of the medium in its undisturbed state AB, and in a disturbed

state A'Bf at the time t while a wave is passing. Every infini-

tesimal parallelepiped with its sides parallel to the coordinate

planes which is bounded on the sides parallel to XY by planes

distant z and z -f dz from the XY plane is shifted and sheared
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precisely like the parallelepiped abed, which is shifted and

sheared into the parallelepiped a' b' c' d' .

Let the shear (equal to the angle between ab and a'b') at the

plane z be denoted by D. Then

D = -
dyjdz (65)

the negative sign being chosen since D, which is a vector per-

pendicular to ab and a'b1

,
is positive, as in the case represented

in the figure, when a right-handed screw rotating from ab to a'b'

would move in the positive direction of X (up from the plane of

the paper in the figure).

Let the area of each face of the parallelepiped parallel to the

XY plane be denoted by dS\ and let the modulus of rigidity, or

shear modulus, of the medium be denoted by n = I jc t
c being

the shear permittivity. Then, if E denotes the shearing stress

in the plane z,

E=nD= ndyjdz = I jc dyjdz (66)

The shearing force upon the face a' c' is therefore

EdS=nDdS

and that upon the face b'd' is

-(+ dEjdz dz)dS = -n(D + dDjdz dz)dS

the force being positive when directed in the positive direction of

the Faxis. The total force upon the parallelepiped a'b f
c'd' is

therefore JKIJ j vcah
I
dz azas

Let the density of the medium be denoted by p. Then, since

the volume of the parallelepiped is dz dS, its mass is

ndzdS

Let the velocity of the parallelepiped be denoted by H (posi-

tive when in the positive direction of F). Then

ff= dy\dt (67)
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Hence, by the second law of motion,

iriz dS dHjdt = - dEjdz dz dS
whence

fidHjdt = - dEjdz (68)

By differentiating (66) with respect to t we obtain

cdEjdt = dD\dt = - d\dt* (dy\dz)

= - dldz -

(dyldt)
= - dHjdz

^
By differentiating (69) with respect to t and (68) with respect

to z and combining the resulting equations we obtain

c^Efdt
2 = d 2

Ejdz
2

(69)

or cpd
2

Djdt* = d z

Djdt* (70)

By differentiating (69) with respect to z and (68) with respect

to t and combining the resulting equations we obtain

cpd^Hldt* = d^Hldz* (71)

or cpd
2

Bjdt
2 = d 2

Bjdz
z

(72)

Equations (69^(72) are identical with equations (i7)-(2o),

and show that all the results of 11-15 apply also to the

dynamical waves here considered, the shear permittivity and

density of an elastic medium being substituted for the electric

permittivity and magnetic inductivity of a dielectric, shearing

stress and shear for electric intensity and displacement, and lin-

ear velocity and momentum per unit volume for magnetic inten-

sity and induction.

By introducing internal friction, the analogy may be readily

extended to the damped electromagnetic waves of 16.

20. The Stresses in an Electromagnetic Wave. Electromag-
netic Radiation Pressure. At every point in an electromagnetic

wave there is a pressure normal to the plane containing the elec-

tric and magnetic intensities, that is normal to the wave front,
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equal to the sum of the electric and magnetic pressures, or the

sum of the electric and magnetic energy densities, at the point,

by 40-41, I., and 18, XI. Thus, if/ denotes this pressure,

/=^ 2+i^ (73)

In a single wave, or train of waves, ^cE
2 = \^H2

at any point,

and, as seen in all the electromagnetic waves considered above,

the electric and magnetic intensities at any point are perpendicu-

lar to one another. Hence the electric tension in the direction of

the electric intensity is just neutralised by the magnetic pressure

perpendicular to the magnetic intensity, and the magnetic tension

in the direction of the magnetic intensity is just neutralised by the

electric pressure perpendicular to the electric intensity. Thus

the pressure p normal to the plane of the intensities is the total

(dynamical) stress in the wave.

In wave systems in which at any point %cE
2

is not equal to

J/i//
2

,
as the systems of 14, there is in addition to the normal

pressure /, a tension \cE
2 \pH2

,
or a pressure \pPP %c

2

,

parallel to the electric intensity, and a tension \pH2

\cE
2

,
or

a pressure %cE
2 ^^H2

, parallel to the magnetic intensity.

If electromagnetic waves in a given dielectric (i) are incident

normally upon the interface separating this dielectric from another

medium (2),
at the surface of which, or within which, the inten-

sities, and therefore the pressures, are reduced to zero (by total

reflection from the interface, partial reflection and partial absorp-

tion, or total absorption), the interface will, in accordance with

what precedes, experience a force directed toward medium (2)

and equal to p x the area of the interface exposed to the waves.

If the waves are partially transmitted through medium (2), emerg-

ing at a second interface, the total pressure upon medium (2) in

the direction of the propagation of the incident waves is equal to

the difference between the values of / at the two interfaces.

If medium (2) is a perfect conductor, the waves are totally re-

flected, the electric intensity at the interface is zero, and the mag-
netic intensity at the interface is twice the magnetic intensity of



THE FLUX OF ELECTROMAGNETIC ENERGY. 473

the incident wave, that is, 2H cos nt, if H cos nt denotes the

magnetic intensity at the interface of the incident wave. Thus

the radiation pressure upon the interface at the time / is

p = |/i(2H cos nt)
2 = 2/xH

2 cos2 nt (74)

and the mean value of the pressure during a complete period is

Q))
= 2/u.H

2 x mean value of cos2 nt

== 2/iH
2 x mean value of

(J -f J cos 2nt)
= /-iH

2

If medium (2) is a non-conductor with infinite inductivity, the

waves are totally reflected, the magnetic intensity at the interface

is zero permanently, and the electric intensity there is twice the

electric intensity of the incident wave, that is 2E cos nt, if E cos nt

denotes the electric intensity of the incident wave at the inter-

face. Thus the pressure upon the interface at the time / is

p' = \c(2& cos nt)
2 = 2rE 2 cos2 nt = p (76)

and the mean value of/' during a complete period is

j>')

= '*'-(j) (77)

If the energy of the incident wave is totally absorbed by me-

dium (2), there is no reflected wave, and the pressure upon me-

dium (2) is

p" = 1<E cos nff + J/*(H cos nff
(78)= J(VE

2+ /*H
2

)
cos2 nt = \p' = \p

The mean value of the pressure during a complete period is

(79)

For experimental investigations confirming in a striking man-

ner the theory of radiation pressure, developed independently
and in different ways by Maxwell and Bartoli, see P. Lebedew,
Ann. der Physik, Vol. 6, p. 433, 1901 ;

and especially Nichols

and Hull, AstrophysicalJournal, Vol. 17, p. 315, 1903.

For the theory of vibration pressure in general, see Lord

Rayleigh, Philosophical Magazine, Vol. 3, p. 338, 1902.
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Equipotential surface

electric 1 6

magnetic 273

Ferromagnetic substances 366

Fictitious

charges 142

convection current 429

Field

electric 10

magnetic 269

Fields

electrostatic, various 57-167, 182-

191

magnetostatic, various 280-281

magnetic (of currents), various 288-

3 l6 > 35 T-357

electromagnetic, various 424-42?^

429, 433, 437, 443-469

equilibrium of 22, 26, 32-44, 274

superposition of 10, 26, 72, 271, 274

Flux
electric 17

of electromagnetic energy 440

magnetic 271, 365

magnetic, through a coil 332

Force

coercive 371

electric and magnetic (see intensity}

on various conductors and insulators

(SKSfields}

Galvanometers 316-327
Gauss's theorem

in electrostatics 17, 22, 139 (gener-

alised)

in magnetostatics 27

Gaussage 273

Gram atom 233

ion 233

molecule 233

Hollow conductors, experiments with 4

Hysteresis

dielectric 179

magnetic 370

Images
electric 43

various (seefields, electric}

electric, by inversion 114

geometrical 97

Impedance 383

Impressed
electric intensity 181, 218

electromotive force 213

Inductance 332, 349

and linear dimensions 349

and number of turns, 348

comparison of, with : another induct-

ance 408 ; capacity 404 ;
mutual

inductance 410 ;
resistance 413

Inductances

in series 350

standard 350

Induction

coefficient of (see coefficient}

electric n
electrification by 3, 37

electromagnetic 333

magnetic 270, 365

remanent 371

residual 371

measurement of magnetic

by the ballistic method 369, 402

by the magnetometric method

367

Inductive circuits 375

Inductivity, magnetic 268, 365

Insulators 2
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Intensity

coercive 371

electric 10

impressed 218

induced 334, 336
intrinsic 218

motional 333

magnetic 269
due to currents 297

induced 424
intrinsic 428
motional 428

measurement of 282, 402

comparison of, with another mag-
netic intensity 285

Intrinsic

displacement, etc. 181

electric intensity 216

electromotive force 213

magnetic intensity 279, 428

magnetisation 279, 371

Inverse squares, law of

in electrostatics 8, 6 1

in magnetostatics 267

Inversion

electrical 113

geometrical no
thermoelectric 252

Ions 228, 232

velocity of 234

Joule's law 21 1

Kathode 203
Kation 228, 232

Kirchhofi's laws 202, 222, 431

Lag, angle of 381, 383

Laplace's equation 25, 60, 67, 7 1

Lead, angle of 381, 383

Lenz's law 338

Leyden 29

Line

of current or flow 202

of intensity, induction, etc., 14, 271

thermoelectric 253

Lorenz's method of determining a resis-

tance 341

Magnet 265

permanent 279

torque on 282

Magnetic substances 366

Magnetisation

curves 365

intensity of 276

measurement of 367, 369
intrinsic 371

work done in 359

Magnetism

quantity of 268, 278

j

. remanent 371

residual 371

Magnetometer 283

Magnetometric method 366

Magnetomotive force 273
induced 424

Mance's method of measuring the resis-

tance of a generator 226

Moment

of a doublet 76, 88

of a magnet 282, 285

Motional

electric intensity and e.m.f. 333

magnetic intensity and m.m.f. 428
Mutual inductance 333, 349

and linear dimensions of circuits 349

and number of turns 348

comparison of, with : another mutual

inductance 401, 403 ;
a capacity

409 ;
an inductance 410 ;

a resis-

tance 341, 400

Neutral temperature 252

Non-inductive circuit 374

Ohm's law

for a homogeneous conductor 203,

206, 238

for a steady current 219

for variable currents 374-379, 383,

394-396

general forms of 217, 218

Oscillatory discharge 379

Parallel cylinders

electric field of 83
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Parallel cylinders

magnetic field of 306

Paramagnetic substances 366

Peltier effect 246

Permeability 365

Permeance 275

Permittance 28

Permittivity 8

Permittivities, comparison of 192

Piezoelectric crystals 1 88

Phase difference 381, 383

Plane

infinite charged 69

in presence of a concentrated charge

116

Planes

intersecting at various angles 107

magnetic field between parallel 312

Poisson, equation of 25

Poles

electric 144

magnetic 266, 281 (resultant)

Pole strength

electric 144

magnetic 268, 278
Potential

electric 16, 61, 147

magnetic 273, 278

Potential difference

electric 14

magnetic 273

single 263

Poynting's theorem 433-448, 458, 459,

462, 466
Pressure

electric 32, 35

magnetic 274

electromagnetic (radiation) 471

Pyroelectric crystals 187

Radiation, electric 448

Radiator, electric 449
Ratio

dissociation 238
Hittorf's 235

of ES and EM units 420
of transformation 398, 399

Reactance, 383
Refraction

of lines of electric displacement 140
of lines of magnetic induction 276
of stream-lines 208

Reluctance 275
Remanent magnetism 371
Residual

charge 176

magnetism 371

Resistance 203, 213
absolute determination of 213, 341,

401 (see also comparisons ff.
)

to alternating currents 466

comparison of, with : another resis-

tance 226, 227, 402, 404 ;
a ca-

pacity 329, 411; an inductance

413 ;
a mutual inductance 400

of conductors in multiple 203
of conductors in series 204
of various conductors 209

specific 205

temperature coefficient 242

Resistivity 205

Resonance, 384
Resonator 45 1

Retentiveness 371

Screens, electric 4, 164, 166

Seebeck effect 246
Self induction (see inductance}

Single potential difference 263
Solenoid

circular 316
infinite 309

inductance and energy of field of 35 1

Solenoidal electrisation 146

Specific

heat of electricity 248
inductive capacity 192

resistance 205

Sphere

conducting

isolated 59
in presence of concentrated

charge 96, 98, 116

in uniform field 100



INDEX.

Sphere

insulating, in uniform field 158

Spheres

in contact 118

intersecting at right angles 117

Spherical

condenser (see condenser]
electret (see electrets}

shell (dielectric) in uniform field 164

Spheroid, isolated 90
Stream-lines and stream-tubes 202

Strength of a tube of induction

electric 19

magnetic 272

Susceptibility

electric 145

magnetic 277

Systems, electrical

with inductance and capacity 373,

391

with mutual inductance 392, 396
of insulated conductors 44-55

Tension

electric 32-35

magnetic 274
Thermal effect, reversible, in dielectrics

168

Thermal e.m.f.s 246

Thermocouple 246

Thermoelectric

diagram 2.0, 260

line 253

Thermoelectric

power 250

Thermoelement 246
Thomson effect 247
Time constant 375, 376

Toroid, field and inductance of 312, 354
Transformer 392
Tubes of intensity, etc.

electric 14

magnetic 271

electromagnetic systems 290, 416
electrostatic systems 290, 415

practical 421

ratio of ES and EM 420
table of 419

Vector product 287
Vibrator 449

Voltage 14

Voltages, superposition of 27, 217
Voltaic cell, reversible

flux of energy in 444
von Helmholz's theory of 261

Waves, electric 448

along wires 468
in non-conducting dielectric 453, 458
in conducting media 462
reflection of 460

standing 460462
stresses in 471

Wheatstone's bridge 223



ELEMENTS OF PHYSICS

FOR USE IN HIGH SCHOOLS

BY

HENRY CREW, PhJX

Professor of Physics in Northwestern University

i2ino. Cloth, xiv -f 347 pp. Price, $1.10.

The treatment differs from other elementary books on the same subject

in that it is more consecutive. The aim has been to build upon the average

experience of a student, and to unify the discussions of Mechanics, Sound,

Heat, Light, and Electricity in such a way that even the beginner does not

feel, in passing from one to the other, that he is undertaking a totally new

study. By this plan it is hoped that the high-school student will obtain the

soundest and most economical training, whether for the sake of liberal cul-

ture or for later use in college work, engineering, or medicine. The treat-

ment is at every point experimental and quantitative.

TABLE OF CONTENTS

INTRODUCTORY

Chapter I. Motion. Chapter II. Simple Harmonic Motion. Chap-
ter III. General Properties of Matter. Chapter IV. Special Properties

of Matter. Chapter V. Waves. Chapter VI. Sound. Chapter VII.

Heat. Chapter VIII. Magnetism. Chapter IX. Electrostatics. Chap-
ter X. Electric Currents. Chapter XI. Light. Appendix to Chapter IV.

COMMENT
' '

It seems to me that heretofore new text-books on elementary physics
and new editions of old ones (with some few exceptions), have been new

merely in that they appeared in new covers and had been filled out a little

by the incorporation of a few new and remarkable discoveries. Professor

Crew has written a new book from beginning to end, and I doubt if his

method of treating the subject could be improved upon."
PROFESSOR R. W. WOOD, University of Wisconsin.

THE MACMILLAN COMPANY
66 FIFTH AVENUE, NEW YORK



<S OUTLINES OF PHYSICS
AN ELEMENTARY TEXT-BOOK

BY

EDWARD L. NICHOLS

Professor of Physics in Cornell University

i2mo. Cloth, xi + 452 pp. Price, $1.40

Questions to same, price 10 cents

In this volume the author has outlined a short course in physics which

should be a fair equivalent for the year of advanced mathematics now

required for entrance to many colleges. The subject is divided into five

parts as follows :

Part I. Mechanics.

Part II. Heat.

Part III. Electricity and Magnetism.
Part IV. Sound.

Part V. Light.

Appendices.

A combined class-book and laboratory manual which is logical in arrange-
ment and clear in its statement ofprinciples and descriptions of experiments.

COMMENTS

"Nichols's 'Outlines of Physics' is the first satisfactory elementary

physics I have ever seen, after searching seven years for one. We shall

use it next year.
' '

PROFESSOR JAMES BYRNIE SHAW, Illinois College, Jacksonville, III.

"
I note extreme clearness and simplicity of explanation in the text

;
all

useless details are omitted and the author aims at his point at once, so that

one cannot help reading ideas instead of words. Another plan, which seems

to me to be an excellent one, is the placing of the descriptive text before

the experiment to be performed, so that the experiments serve to verify the

author's statements. . . . Good judgment is shown in selecting simple

apparatus for performing the experiments. As an all-around up-to-date

book it is the best I have ever seen."

R. WESLEY BURNHAM, High School, Gloucester, Mass.

THE MACMILLAN COMPANY
66 FIFTH AVENUE, NEW YORK



ELEMENTARY LESSONS IN ELECTRICITY

AND MAGNETISM

Efy Professor SILVANUS THOMPSON

f First Edition, 1881 ; reprinted 1882 (2), 1883, 1884, 1885, 1886, 1887, 1889, 1890 (2), 1891 (2), 1892

(3), 1894. Second Edition, January, 1895 ; reprinted November, 1895,1897,1899.]

New Edition Revised Throughoiit with Additions.

8vo. Cloth, xv + 634 pp. Price, $1.40

"From beginning to end the subjects are judiciously chosen, admirably dealt with,

and logically arranged, forming as a whole what is unquestionably the standard ele-

mentary text-book of the day. We do not say it is the best
;
we go further, and say

it is the only book we can honestly recommend to the junior student."

NATURE " Whoso seeks a class-book on electricity and magnetism, containing

an elementary exposition of recent work, will find their want supplied by Professor

Thompson's lessons."

A PARTIAL LIST OF ADOPTIONS

University of California.

Washington, D. C.

Athens, Ga.

University of Illinois.

Rose Polytechnic Institute, Terre Haute,

Ind.

University of Indiana.

Purdue University.

Iowa City, la.

University of Kansas, Lawrence.

Baldwin, Kas.

Center College, Danville, Ky.

Lexington, Ky.

Baltimore, Md.

Harvard College, Cambridge, Mass.

University of Michigan.

Rolla, Mo.

Stevens School, Hoboken, N. J.

Y. M. C. A., Brooklyn, N. Y.

Manual Training High School, Brooklyn.

Boys' High School, Brooklyn.

Pratt Institute, Brooklyn.

Commercial School, Buffalo, N. Y.

Board of Education, N. Y. City.

Horace Mann School, N. Y. City.

Y. M. C. A., New York City.

Rochester, N. Y.

Utica, N. Y.

Clarkson Memorial School, Potsdam, N.Y.

Rensselaer Polytechnic Institute, Troy,

N. Y.

Trinity College, Durham, N. C.

Raleigh, N. C.

Ohio Wesleyan University, Delaware, O.

Pennsylvania Military Academy, Chester,

Pa.

Temple College, Philadelphia.

Erie, Pa.

Pittsburgh, Pa.

Clemson College, S. C.

Clarksville, Tenn.

University of West Virginia.

Y. M. C. A., Richmond, Va.

THE MACMILLAN COMPANY
66 FIFTH AVENUE, NEW YORK

3



A LABORATORY MANUAL OF PHYSICS
AND APPLIED ELECTRICITY

ARRANGED AND EDITED BY

EDWARD L. NICHOLS, B.S., Ph.D.

Professor of Physics in Cornell University

IN TWO VOLUMES

VoL L JUNIOR COURSE IN GENERAL PHYSICS
BY

ERNEST MERRITT AND FREDERICK J. ROGERS
Cloth. $3.00

Vol. IL SENIOR COURSES AND OUTLINE OF
ADVANCED WORK

BY

GEORGE S. MOLER, FREDERICK BEDELL, HOMER J. HOTCHKISS,
CHARLES P. MATTHEWS, AND THE EDITOR

Cloth. Pp.444. $3.25

" The work as a whole cannot be too highly commended. Its brief outlines of the

various experiments are very satisfactory ;
its descriptions of apparatus are excellent ;

its numerous suggestions are calculated to develop the thinking and reasoning powers
of the student. The diagrams are carefully prepared, and its frequent citations of

original sources of information are of the greatest value." Street Railway Journal.
"The work is clearly and concisely written, the fact that it is edited by Professor

Nichols being a sufficient guarantee of merit." Electrical Engineering.

i, THE ELEMENTS OF PHYSICS
By EDWARD L. NICHOLS, B.S., Ph.D.

Professor of Physics in Cornell University

AND

WILLIAM S. FRANKLIN, M.S.

Professor of Physics and Electrical Engineering at the Lehigh University

Complete in Three Volumes. ( Vol. I. Mechanics and Heat.

Vol. II., $1.90 net.
-j

II. Electricity and Magnetism.
Vols. I. and III., each $1.50 net. (

III. Sound and Light.

The ELEMENTS OF. PHYSICS is a book which has been written for use in such institu-

tions as give their undergraduates a reasonably good mathematical training. It is

intended for teachers who desire to treat their subject as an exact science, and who

are prepared to supplement the brief subject-matter of the text by demonstration,

illustration, and discussion drawn from the fund of their own knowledge.

THE MACMILLAN COMPANY
66 FIFTH AVENUE, NEW YORK

4



THE ELEMENTS OF ALTERNATING
YTDIST CURRENTS A â A
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