Entwerfen und Berechnen der Dampfmaschinen

H. Dubbel

Entwerfen und Berechnen der Dampfmaschinen.

Entwerfen und Berechnen der Dampfmaschinen.

Ein Lehr- und Handbuch für Studierende und angehende Konstrukteure.

Von

Heinrich Dubbel,

Dritte, umgearbeitete Auflage.

Mit 470 Textfiguren.

Springer-Verlag Berlin Heidelberg GmbH 1910

Additional material to this book can be downloaded from http://extras.springer.com ISBN 978-3-662-32207-9 ISBN 978-3-662-33034-0 (eBook) DOI 10.1007/978-3-662-33034-0 Softcover reprint of the hardcover 3rd edition 1910

> Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Vorwort zur ersten Auflage.

Die Monographien von Leist, Stodola, Tolle und Weiß über Steuerungen, Dampfturbinen, Regelung und Kondensation stellen in ihrer Gesamtheit ein Lehrbuch des Dampfmaschinenbaues dar, wie es keine andere Literatur aufzuweisen hat. Diese Werke, deren Studium äußerst anregend für den erfahrenen Konstrukteur und besonders für den Spezialisten ist, gehen jedoch bezüglich der behandelten Gebiete für den keine Sonderzwecke verfolgenden Studierenden zu weit.

Diesem wie auch dem angehenden Konstrukteur fehlte es bisher an einem den Dampfmaschinenbau in knapper Form behandelnden Lehrbuch und diesem Mangel konnte auch das Studium der diesbezüglichen ausländischen Literatur nicht abhelfen, da der deutsche Dampfmaschinenbau durch die Bevorzugung der Überhitzung, der Ventilsteuerung, sowie durch die häufige Anwendung stehender Maschinen ein durchaus nationales Gepräge angenommen hat.

Mein Bestreben ging deshalb dahin, das für Entwurf und Berechnung Wesentlichste möglichst gedrängt zusammenzustellen. Die Aufnahme von Tabellen und ausführlichen Zeichnungen mit Verhältniszahlen, welche den Studierenden zur Gedankenlosigkeit verleiten und den "Sinn für Abmessungen" überhaupt nicht aufkommen lassen, war ausgeschlossen. Ebenso Angaben über Herstellung, Montage usw. Mit Recht sagt v. Bach im Vorwort zur ersten Auflage seiner Maschinenelemente: "Die Schule macht — meiner Meinung nach — einen großen Fehler, wenn sie das lehren will, was die Werkstatt viel wirksamer lehrt und für den normalen Menschen oft nur allein verständlich lehren kann." Man könnte noch hinzufügen, daß durch ein solches Vorgehen der Schule der Studierende zur Unterschätzung der Praxis und der in ihr verlangten, menschlichen Eigenschaften und zur Überschätzung des "grünen Tisches" gelangt.

Die Teile des Kurbeltriebes werden ebenfalls nicht besprochen. Der Kurbeltrieb gehört in ein Werk über Maschinenteile hinein und steht mit der Dampfmaschine in keinem engeren Zusammenhang als auch mit Gasmaschinen, Pumpen, Kompressoren usw.

Vorwort.

Von der höheren Mathematik ist nur bescheidener Gebrauch gemacht worden. Die zum Verständnis erforderlichen Elemente kann sich auch der Mittelschüler — etwa mit Hilfe der vorzüglichen "Höheren Analysis für Ingenieure" von Perry (Teubner) — leicht erwerben.

Über den Inhalt ist folgendes zu bemerken.

In den Kapiteln A und B ist ein Abriß der technischen Thermodynamik gegeben, um das Verständnis der Diagrammuntersuchung, sowie der kalorimetrischen Untersuchung und der verschiedenen Vergleichskreisprozesse zu erleichtern. Das Boulvinsche Entropiediagramm, welches neuerdings von Koob zu einem wertvollen Hilfsmittel der Dampfturbinenberechnung ausgestaltet worden ist, hat besonders eingehende Behandlung gefunden.

Die Ausführungen über die Steuerungen (Kapitel C) sind so kurz gehalten, als es mit Rücksicht auf dieses reichhaltige Gebiet möglich ist. Als Beispiele für die verschiedenen Steuerungsarten sind nicht immer die verbreitetsten, sondern diejenigen Systeme gewählt worden, welche das Prinzip ihrer Art am besten erkennen lassen. Die Corliß-Steuerungen haben nur als zwangläufige Niederdrucksteuerungen Erwähnung gefunden, da die freifallenden Corliß-Steuerungen trotz großer Vorzüge für deutsche Verhältnisse kaum in Betracht kommen.

Die beiden folgenden Kapitel (D und E) handeln von der Kondensation und der Verbundwirkung, diesen beiden mächtigsten Faktoren für die Wirtschaftlichkeit. Im Kapitel Kondensation ist die Berechnung der Brown - Kuhnschen Pumpe unter vereinfachten Annahmen durchgeführt, welche mir bei der unsicheren Grundlage solcher Rechnungen überhaupt erlaubt schienen. Besondere Erwähnung fanden die für den Betrieb so äußerst wichtigen Entölungsvorrichtungen; auch die Wirtschaftlichkeit der Kondensationsanlagen ist kurz besprochen.

Spannungssprung und Aufnehmerheizung sind ebenfalls nur kurz gestreift worden. Gerade aus dem Umstand, daß über dieses Gebiet die größte Meinungsverschiedenheit herrscht, läßt sich auf dessen geringe Bedeutung für die Praxis schließen.

Im Kapitel F ist der Stoß an Kurbel- und Kreuzkopfzapfen nach Stribeck behandelt. Trotzdem die Stribecksche Abhandlung schon in der "Zeitschrift des Vereines deutscher Ingenieure" 1893 erschien, sind heute noch die Radingerschen Ansichten — mit Unrecht — sehr verbreitet.

Die Grundzüge des Taylor - Schlickschen Massenausgleiches sind weniger wegen dessen Bedeutung für den ortfesten Dampfmaschinenbau aufgenommen worden, als weil dieses Verfahren einen klaren Einblick in die einschlägigen Verhältnisse gestattet.

Die Regulierung (Kapitel G) ist bei uns ein Gebiet für Spezialisten, der Regulator ein Gegenstand der Massenherstellung. Dementsprechend enthält dieses Kapitel zunächst das Wichtigste für Auswahl und Be-

Vorwort.

handlung der Regulatoren. Eingehender sind die Flachregeler besprochen, welche ohne Übersetzung der Umlaufzahl für jede derselben berechnet werden müssen. Als Beispiel für die graphische Berechnung nach Tolle ist ein Proellscher Gewichtsregulator, als Beispiel für die analytische Berechnung ein Flachregeler gewählt.

Die Theorie der Dampfturbinen (Kapitel H) ist nach dem grundlegenden Werk Stodolas nur soweit entwickelt, als es für die Unterscheidung der einzelnen Turbinenarten voneinander und zur Erklärung ihrer Wirkungsweise erforderlich ist. In der Einleitung sind die dem Dampfmaschineningenieur rasch fremd werdenden Grundbegriffe abgeleitet.

Die drei folgenden Kapitel enthalten kurze Ausführungen über die von Studierenden (naturgemäß) häufig unterschätzte Wirtschaftlichkeit des Dampfbetriebes, über die für den modernen Betrieb so wichtigen Schmiervorrichtungen und über besondere Anordnungen. Von diesen sind auch einige mit vorläufig geringer Bedeutung für die Praxis aufgenommen, um mit neueren Bestrebungen bekannt zu machen.

Besonderen Dank schulde ich den Firmen, welche mich mit Material unterstützt haben, sowie der Redaktion der "Zeitschrift des Vereines deutscher Ingenieure" und den Verfassern von in dieser Zeitschrift erschienen Abhandlungen für die Überlassung von Galvanos zu Textfiguren. Nur durch diese Bereitwilligkeit ist es mir möglich geworden, von der Zeichnung, "der Sprache des Ingenieurs" so reichlichen Gebrauch machen zu können. Zahlreiche Figuren sind auch den im Springerschen Verlag erschienenen Werken von Stodola, Tolle und Weiß entnommen. Der Verlagsbuchhandlung danke ich für die vorzügliche Ausstattung des Buches und für das weitgehende Entgegenkommen, welches sie meinen Wünschen stets entgegenbrachte.

Aachen, im Mai 1905.

H. Dubbel.

Vorwort zur zweiten Auflage.

Die vorliegende Neuauflage hat gegenüber der ersten Auflage keine wesentliche Änderung erfahren.

Die günstige Aufnahme, welche das Buch bei der Kritik gefunden hat, und der kurze Zeitraum zwischen dem Erscheinen der ersten und dieser Auflage machten eine durchgreifende Neubearbeitung überflüssig.

Im einzelnen sind folgende Zusätze gemacht bezw. Abänderungen getroffen worden: Das Kapitel "Steuerungen" wurde durch die Besprechung des Hochwaldschen Schiebers, mehrerer neuer Ölpufferund Ventilkonstruktionen, sowie der Ventilsteuerungen von Lentz, Strnad, Stumpf, Hochwald-Neuhaus und der Maschinenfabrik Augsburg (M. A. N.) ergänzt.

In Kapitel "Kondensation" wurde eine weitere Anzahl neuerer Bauarten von Kondensatoren und Luftpumpen aufgenommen. Der Behandlung des Abschnittes "Rückkühlung" wurde die hervorragende Abhandlung von Otto H. Mueller in Z. 1905 zugrunde gelegt.

Das Kapitel "Regulierung" wurde durch die Aufnahme einer zeichnerischen Berechnung der Regulatoren von Hartung und Tolle vermehrt.

Von den neueren Turbinen fanden die Elektraturbine, die A. E. G. Curtis-Turbine sowie die Turbinen mit vereinigter Druck- und Überdruckwirkung kurze Besprechung. Eine neu hinzugefügte, graphische Berechnung der Dampfturbinen soll vor allem mit dem Gebrauch des Entropiediagramms bekannt machen.

Aachen, im April 1907.

H. Dubbel.

Vorwort zur dritten Auflage.

Die für die Abfassung der früheren Auflagen des Buches maßgebend gewesenen Gesichtspunkte wurden auch bei dieser Neuauflage befolgt.

Den inzwischen gemachten Fortschritten im Dampfmaschinenbau entsprechend, sind namentlich die Kapitel Steuerungen, Kondensation und Regulierung ergänzt und umgearbeitet worden.

Essen, im September 1910.

H. Dubbel.

VIII

	A. Die Hauptsätze der Mechanik der Gase und Dämnfe		Se	ite 1
I.	Die Mechanik der Gase			1
	a) Gleichwertigkeit von Wärme und Arbeit	•	•	1
	b) Die spezifische Wärme	:	:	2
	c) Zustandsänderungen		•	3
	1. Gesetz von Gay-Lussac		•	3
	3. Das vereinigte Gav. Lussac. Mariottesche Gesetz	·	·	4 5
	4. Das Poissonsche Gesetz.	:	:	6
	d) Der Carnotsche Kreisprozeß			9
	e) Der Lorenzsche oder polytropische Kreisprozeß	•		12
	f) Das Wärmegewicht und das Entropiediagramm	•	•	13
[].	. Mechanik des Wasserdampfes			15
	a) Die Hauptgleichungen			15
	b) Zustandsänderungen	•	•	18
		•	•	18
	2. Die Adlabate	·	·	18
	c) Die Zustandsgleichung des überhitzten Wesserdemnfes	•	•	13 91
	d) Die Zustandsänderungen des überhitzten Dampfes	:	:	$\frac{1}{22}$
	1. Die Isotherme	•	•	$\frac{22}{22}$
	e) Das Entropiediagramm des Wasserdampfes	•	•	23
	f) Ausfluß des Wasserdampfes durch Düsen	:	:	$\tilde{26}$
	g) Das Molliersche J-S-Diagramm	•	•	29
	B. Das Verhalten des Dampfes in der Dampfmaschine	•		30
	a) Konstruktion, Verlauf und Untersuchung des Dampfdiagramms	•		30
	b) Berechnung der Maschinenleistung aus dem Diagramm	· ·	÷	38
	c) Die Berechnung des theoretischen Dampfverbrauches und die Wei wirkung zwischen Dampf und Zwlinderwand	chse	×1-	20
	d) Die kalorimetrische Untersuchung der Dampfmaschine	÷	:	44
	e) Die Vergleichskreisprozesse der Dampfmaschinen		•	47
	1. Der Carnot prozeß			47
	2. Der Prozeß nach Clausius-Kankine	•	•	49
	5. Der vom verein deutscher ingenieure aufgestellte Prozeis .	•	•	01 57
	g) Bemerkungen zu den Normen für Leistungsversuche an Dampfk	6996	In	99
	und Dampfmaschinen		•	62

C. Die Steuerungen	Seite 64
I Die Steuerungen mit zweifschen Damnfwegen	64
a) Die Steuerungen mit einem Schieher	64
1. Die Diagramme von Müller und Zeuner	64
2. Die Schieberellipse	$6\overline{8}$
 Die Berücksichtigung der endlichen Stangenlängen Die Abarten des gewöhnlichen Muschelschiebers (Der Tricksche Schieber. Schieber mit Überströmung Der Pennsche Schieber. Der Hoch waldsche Schieber. Die entlasteten Schieber.) Die Ein- atellung des Muschelschieber. 	70 72
b) Die Eingehieben Europaiene Stevenungen	61 84
c) Die Expansionsschiebersteuerungen mit zwei Schiebern	· 86
1. Steuerungen mit veränderlicher Entfernung der steuernden Kanten	87
2. Die Berücksichtigung der endlichen Stangenlängen	92
3. Die Eröffnungskurve	95 95
5. Die Rider-Steuerungen	101
6. Steuerungen mit veränderlichem Hub und Voreilwinkel des Ex- pansionsschiebers	106
a) Zweikammersteuerung von Doerfel	106
b) Einkammersteuerung	107
d) Die Austuhrung und Einstellung der Expansionsschiedersteuerungen.	111
II. Die Steuerungen mit vierfachen Dampfwegen	115
a) Die Ventilsteuerungen	115
1. Die zwangläufigen Ventilsteuerungen	121
(Unrunde Scheibe. Wälzhebel. Gewöhnliche Schubkurve. Schub- kurven von Lentz, Recke, Proell, Müller, Stein, Grevenbroich, Doerfel, Pfeiffer.) Die zwangläufigen Ventilsteuerungen mit veränderlicher Expansion Steuerungen mit verstellbarer Exzenterstangenführung (Bromley,	134
Radovanovic)	$134 \\ 136 \\ 138 \\ 142 \\ 144$
9 Die freifellenden Ventilsteuerungen	150
Schlußvorrichtungen	150
Die Steuerungen mit plötzlicher Klinkenverdrängung (Collmann). Die Steuerungen mit allmählicher Klinkenverdrängung (Kaufhold,	155
Die Steuerungen mit zwangläufiger Klinkenbewegung (Gutermuth,	190
Sulzer, Maschinenfabrik Augsburg-Nürnberg)	158
3. Die Einstellung der Ventilsteuerungen	163
 b) Die zwangläufigen Rundschiebersteuerungen für unveränderliche Füllung c) Entwurf und Ausführung der Dampfzylinder. (Bemessung, Armaturen, Schieberzylinder, Ventilzylinder, Corlißzylinder) 	169 173
D. Die Kondensation	191
a) Wirkungsweise	191
b) Die Abdampfleitung	192
c) Der Kondensator	194
1. MISCHKONGENSATION MIL Parallelstromwirkung	190
3. Oberflächenkondensation	198

	1 Don Käntingsshe Wassemtrahlkendenseter	Seite
	4. Der Korting seine Wassersträmkondensator	209
	6 Der Parsonssche Hilfskondensstor	210
d)	Die Pumpen	219
ч,	1. Ahmessungen	219
	2. Kraftbedarf	221
	3. Entwurf der nassen Luftpumpen	222
	(Ausführungen von Schüchtermann & Kremer, Horn-Brink-	
	mann, Siegener Maschinenbau-AG., Egestorff, Recke, Doerfel,	
	Augsburg-Nürnberg, Soest, Brown-Kuhn, Borsig, Sack &	
	Kießelbach, Ruston & Co., Josse).	
	4. Die Pumpen für Luftförderung allein	241
	Luftpumpen mit Überströmung (Bettinger & Balcke, Köster) .	242
e)	Die Entölung des Abdampfes	243
f)	Die Rückkühlung	247
g)	Zentralkondensationen	255
h)	Der Nutzen der Kondensation	260
	E. Die Verbundwirkung	264
2)	Vorteile den Verbundwinkung	964
a) h	Die Berechnung der Mehrfachernensionsmaschinen	204 920
0) a)	Die Derechnung der Mehrhachex pansionsmaschinen	208
(U 1)	Snannungssnrung Aufnehmerheizung Überhitzung und Zwischen	210
u)	dampfentnahme	977
e)	Zylinder-Anordnung und konstruktive Gesichtspunkte	286
0)	by main moraling and konstruktive designing punkter.	200
	F. Die Wirkungen der Massen und des Schwungrades	294
a)	Die Geschwindigkeits- und Kraftverhältnisse des Kurbelgetriebes	294
ω,	Bei unendlich langer Pleuelstange	294
	Bei Pleuelstangen von endlicher Länge	295
b)	Der Beschleunigungsdruck	296
c)	Das Tangentialdruckdiagramm und die Schwungradberechnung	299
d)	Ausführung und Festigkeitsberechnung der Schwungräder	306
e)	Die Andrehvorrichtungen	311
f)	Die Stöße an Kurbel- und Kreuzkopfzapfen	313
g)	Die Ausgleichung der Massenwirkungen	317
h)	Der Massenausgleich nach Taylor-Schlick	321
		000
	G. Die Regulierung	326
a)	Die Grundbegriffe.	326
b)	Die C-Kurven nach Tolle	337
c)	Die Änderung der Umlaufzahl	345
d)	Die Flachregeler	347
e)	Die Berechnung der Flachregeler	359
f)	Die Leistungsregulatoren	363
g)	Die Duffingsche Stellhemmung	369
		0=1
	H. Die Dampfturbinen	371
a)	Grundbedingungen für Turbinen	372
bý	Wirkungsweise der Düse	376
cŚ	Elementare Theorie der Dampfturbinen	381
,	1. Die einstufige Druckturbine	381
	2. Die einfache Druckstufe mit mehreren Geschwindigkeitsstufen .	383
	3. Mehrfache Druckturbinen mit einfachen Geschwindigkeitsstufen .	385
	4. Die Turbinen mit mehrfachen Druck- und Geschwindigkeitsstufen	387
	5. Die vielstufigen Druckturbinen	387
	6. Die Reaktionsturbinen	389

хı

4. Die Überdruckturbine 415 Die Parsons-Turbine 415 5. Turbinen mit vereinigter Druck- und Überdruckwirkung (Verbundturbinen) 416 e) Die Vorteile der Dampfturbinen 422 f) Die Berechnung der Dampfturbinen 422 Die einstufige Druckturbine (Laval) 422 Die zweistufige Druckturbine 422 Die wehrstufige Druckturbine 422 Die wehrstufige Druckturbine 422 Die vielstufige Druckturbine 423 Die Uberdruckturbine 424 Die Uberdruckturbine 425 Die Uberdruckturbine 426 Die Uberdruckturbine 427 Die Uberdruckturbine 428 Jie Uberdruckturbine 429 Die Uberdruckturbine 429 Die Uberdruckturbine 429 Die Uberdruckturbine 429 Die Uberdruckturbine 433 1. Dampfmaschinen mit rotierendem Kolben 433 2. Lokomobilen 433 3. Die Gleichstrommaschine 444 5. Die Rateausche Abdampfverwertung 444 6. Das Regenerativ-Verfahren 444	4. Die Überdruckturbine 412 Die Parsons-Turbine 412 5. Turbinen mit vereinigter Druck- und Überdruckwirkung (Verbundturbinen) 412 5. Turbinen mit vereinigter Druck- und Überdruckwirkung (Verbundturbinen) 418 e) Die Vorteile der Dampfturbinen 422 f) Die Berechnung der Dampfturbinen 425 Die einstufige Druckturbine (Laval) 425 Die weistufige Druckturbine 425 Die mehrstufige Dampfturbine. 425 Die weistufige Dampfturbine 428 Die vielstufige Dampfturbine. 429 Die Uberdruckturbine 431 I. Besondere Anordnungen 432 1. Dampfmaschinen mit rotierendem Kolben 432 2. Lokomobilen 434 3. Die Gleichstrommaschine 439 4. Die Mehrstoffkraftmaschine 440 5. Die Rateausche Abdampfverwertung 443 6. Das Regenerativ-Verfahren 444 K. Die Schmiervorrichtungen 444 K. Die Schmiervorrichtungen 444 I. Dampftabelle 457 I. Hau pttabelle 457	 d) Die wichtigsten Ausführungen der Dampfturbine 1. Die einstufigen Turbinen Die Lavalturbine 2. Die Turbinen mit mehrfacher Geschwindigkeits- und Druckstufung a) Die Elektraturbine b) Die Curtis- und A.E.GTurbinen 3. Die vielstufigen Druckturbinen a) Die Zoelly-Turbine b) Die S.M.FTurbine c) Die Rateau-Turbine d) Dampfturbine der Bergmaun-Elektrizitäts-Werke 	seite 393 393 393 393 397 397 398 401 401 406 406 410
5. Turbinen mit vereinigter Druck- und Uberdruckwirkung (Verbundturbinen)	5. Turbinen mit vereinigter Druck- und Uberdruckwirkung (Verbundturbinen)	4. Die Überdruckturbine	412 412
e) Die Vorteile der Dampfturbinen 422 f) Die Berechnung der Dampfturbinen 422 Die einstufige Druckturbine (Laval) 422 Die zweistufige Druckturbine 422 Die mehrstufige Druckturbine 422 Die weistufige Druckturbine 422 Die weistufige Druckturbine 422 Die weistufige Dampfturbine. 422 Die vielstufige Dampfturbine. 423 Die Überdruckturbine 423 Die Überdruckturbine 433 I. Dampfmaschinen mit rotierendem Kolben 433 2. Lokomobilen 433 3. Die Gleichstrommaschine 433 4. Die Mehrstoffkraftmaschine 444 5. Die Rateausche Abdampfverwertung 444 6. Das Regenerativ-Verfahren 444 K. Die Schmiervorrichtungen 444 L. Die Wirtschaftlichkeit des Dampfbetriebes 455 M. Dampftabellen 457 J. Haupttabelle 457	e) Die Vorteile der Dampfturbinen	5. Turbinen mit vereinigter Druck- und Uberdruckwirkung (Ver- bundturbinen)	418
I. Besondere Anordnungen 433 1. Dampfmaschinen mit rotierendem Kolben 433 2. Lokomobilen 433 3. Die Gleichstrommaschine 433 4. Die Mehrstoffkraftmaschine 433 4. Die Mehrstoffkraftmaschine 444 5. Die Rateausche Abdampfverwertung 444 6. Das Regenerativ-Verfahren 444 K. Die Schmiervorrichtungen 444 L. Die Wirtschaftlichkeit des Dampfbetriebes 455 M. Dampftabellen 455 J. Haupttabelle 455	I. Besondere Anordnungen 432 1. Dampfmaschinen mit rotierendem Kolben 432 2. Lokomobilen 433 3. Die Gleichstrommaschine 439 4. Die Mehrstoffkraftmaschine 439 4. Die Mehrstoffkraftmaschine 440 5. Die Rateausche Abdampfverwertung 443 6. Das Regenerativ-Verfahren 443 K. Die Schmiervorrichtungen 444 L. Die Wirtschaftlichkeit des Dampfbetriebes 445 M. Dampftabellen 457 I. Haupttabelle 457 1. Dampftabelle 457	 e) Die Vorteile der Dampfturbinen f) Die Berechnung der Dampfturbinen Die einstufige Druckturbine (Laval) Die zweistufige Druckturbine Die mehrstufige Druckturbine mit mehreren Geschwindigkeitsstufen Die vielstufige Dampfturbine. Die Überdruckturbine 	$\begin{array}{c} 413 \\ 422 \\ 425 \\ 425 \\ 425 \\ 425 \\ 428 \\ 429 \\ 431 \end{array}$
1. Dampfmaschinen mit rotierendem Kolben 43: 2. Lokomobilen 43: 3. Die Gleichstrommaschine 43: 4. Die Mehrstoffkraftmaschine 44: 5. Die Rateausche Abdampfverwertung 44: 6. Das Regenerativ-Verfahren 44: K. Die Schmiervorrichtungen 44: L. Die Wirtschaftlichkeit des Dampfbetriebes 45: M. Dampftabellen 45:	1. Dampfmaschinen mit rotierendem Kolben 432 2. Lokomobilen 434 3. Die Gleichstrommaschine 439 4. Die Mehrstoffkraftmaschine 440 5. Die Rateausche Abdampfverwertung 443 6. Das Regenerativ-Verfahren 443 K. Die Schmiervorrichtungen 444 L. Die Wirtschaftlichkeit des Dampfbetriebes 445 M. Dampftabellen 457 I. Haupttabelle 457 10. Dampftabelle 457	I. Besondere Anordnungen	432
K. Die Schmiervorrichtungen	K. Die Schmiervorrichtungen	1. Dampfmaschinen mit rotierendem Kolben 2. Lokomobilen 3. Die Gleichstrommaschine 4. Die Mehrstoffkraftmaschine 5. Die Rateausche Abdampfverwertung 6. Das Regenerativ-Verfahren	432 434 439 440 443 445
L. Die Wirtschaftlichkeit des Dampfbetriebes 45 M. Dampftabellen	L. Die Wirtschaftlichkeit des Dampfbetriebes	K. Die Schmiervorrichtungen	448
M. Dampftabellen	M. Dampftabellen	L. Die Wirtschaftlichkeit des Dampfbetriebes	454
I. Haupttabelle	I. Haupttabelle	M. Dampftabellen	457
ll. Dampftabelle für Temperaturen von 1-100° 46	- •	I. Haupttabelle	. 457 . 460

XII

A. Die Hauptsätze der Mechanik der Gase und Dämpfe.

I. Die Mechanik der Gase.

a) Gleichwertigkeit von Wärme und Arbeit.

Wird einem Körper die Wärmemenge dQ zugeführt, so bewirkt diese:

- eine Erhöhung der Temperatur, d. h. der meß- und fühlbaren Wärme. Diese Temperaturerhöhung hat ihre Ursache in der Verstärkung der Molekularbewegung. Die kleinsten Teilchen de-Körpers, welche um eine Gleichgewichtslage schwingen, erhalten größere Geschwindigkeiten und Schwingungsweiten;
- 2. eine Vergrößerung des Volumens. Hierbei sind zunächst diejenigen Kräfte zu überwinden, welche die kleinsten Teilchen ins folge ihrer gegenseitigen Anziehung aufeinander ausüben. Die Abstände der Gleichgewichtslagen, um welche die Moleküle schwingen, werden vergrößert, und zur Hervorbringung dieser Lagenänderung ist eine Verschiebungsarbeit zu leisten. Weiterhin müssen diejenigen Kräfte überwunden werden, welche von außen auf die Körperoberfläche einwirken, was die Leistung einer äußeren Arbeit erfordert.

Die dem Körper zugeführte Wärmemenge steht nun in einem bestimmten Verhältnis zu der Summe dieser Arbeitsmengen, denn der erste Hauptsatz der mechanischen Wärmetheorie¹) lautet:

Wärme und Arbeit sind äquivalent.

Joule u. a. haben sowohl durch Versuche als durch Rechnung festgestellt, daß mit einer Wärmeeinheit — W. E. — eine Arbeit von 424 mkg geleistet werden kann. Diese Arbeit, durch $\frac{1}{A}$ dargestellt, wird

¹) Zuerst aufgestellt von R. Mayer.

Dubbel, Dampfmaschinen. 3. Aufl.

der Arbeitswert der Wärmeeinheit und der reziproke Wert $\frac{1}{424}$ = A der Wärmewert der Arbeitseinheit genannt.

Nach dem ersten Hauptsatz wird:

$$dQ = A (dW + dJ + dL) \quad . \quad . \quad . \quad . \quad (1)$$

- d. h. die einem Körper mitgeteilte Wärmemenge wird umgesetzt:
 - 1. in eine Zunahme der Schwingungsarbeit A.dW, welche eine Temperatursteigerung bewirkt;
 - 2. in eine Zunahme der Verschiebungsarbeit A·dJ, welche den Zusammenhang der Moleküle lockert;
 - 3. in die äußere Arbeit A.dL, welche den auf der Körperoberfläche lastenden Druck überwindet.

Werden die zwei ersten Arbeitsmengen zusammengefaßt als solche, welche im Gegensatz zur dritten Arbeit im Innern des Körpers geleistet werden und wird ihre Summe mit dU bezeichnet, so besteht die Beziehung:

und Gl. 1 nimmt die Form an:

Mit dem Wert U wird die "innere Arbeit" des Körpers bezeichnet.

Da bei der Vergrößerung des Volumens v um dv eine äußere Arbeit $p \cdot dv$ geleistet wird, wenn der auf die Körperoberfläche wirkende Druck p konstant ist, so folgt:

b) Die spezifische Wärme.

Diejenige Wärmemenge, welche 1 kg eines Stoffes mitgeteilt werden muß, damit sich dessen Temperatur um 1° C erhöht, wird die Gewichtskapazität oder die spezifische Wärme bei gleichem Gewicht genannt. Bei Gasen unterscheidet man, je nachdem diese Erwärmung unter konstantem Druck oder bei konstantem Volumen stattfindet: spez. Wärme bei konstantem Druck, mit c_p bezeichnet, und spez. Wärme bei konstantem Volumen, durch c_v dargestellt.

Da Gase hochüberhitzte Dämpfe sind, bei welchen die Moleküle eine gegenseitige Anziehung nicht mehr ausüben, so fällt bei deren Erwärmung die Verschiebungsarbeit $A \cdot dJ$ fort, so daß Gl. 1 in die Form übergeht:

Wird demnach 1 kg eines vollkommenen Gases bei konstantem Volumen erwärmt, so kann, da dJ = o und $dL = p \cdot dv = o$, diese Wärmemenge nur die Temperatur erhöhen, und es wird, wenn sich das Gas um 1^o erwärmt:

Bei der Erwärmung von 1 kg eines Gases unter konstantem Druck wird sich hingegen das Volumen unter Leistung äußerer Arbeit ausdehnen, während die Erwärmungsarbeit wieder gleich c_v wird. Da, wie später nachgewiesen wird, die bei der Temperatursteigerung eines Gases um 1^o geleistete Arbeit einen mit R bezeichneten, konstanten Wert hat, so wird:

Nach Versuchen ist für alle vollkommenen Gase das Verhältnis

Hieraus folgt:

c) Zustandsänderungen.

Die Zustandsgleichung eines Gases drückt die zwischen Temperatur, Druck und Volumen herrschenden Beziehungen aus. Die Zustandsänderungen, welche durch Zufuhr oder Abfuhr von Wärme hervorgerufen werden, können durch Auftragung der Volumina als Abszissen, der Drucke als Ordinaten graphisch dargestellt werden. Die von dem entstehenden Linienzug eingeschlossene Fläche gibt diejenige Arbeit wieder, welche bei der betreffenden Zustandsänderung erzeugt oder aufgewendet wurde. Die technisch wichtigsten Zustandsänderungen folgen:

- 1. dem Gesetz von Gay-Lussac. Der Druck bleibt konstant;
- 2. dem Gesetz von Mariotte Boyle. Die Temperatur bleibt konstant. Isothermische Zustandsänderung;
- 3. dem vereinigten Gay Lussac Mariotteschen Gesetz;
- 4. dem Poissonschen Gesetz. Dem Gas wird weder Wärme zugeführt noch entzogen. Adiabatische Zustandsänderung.

1. Gesetz von Gay-Lussac.

Alle vollkommenen Gase werden bei der Erwärmung unter konstantem Druck gleich stark ausgedehnt.

Nach Versuchen von Gay - Lussac beträgt für jeden Temperaturgrad der Ausdehnungsgkoeffizient $\alpha = \frac{1}{23} = 0,003665.$

Ist v_0 das Volumen von 1 kg Gas unter atm. Druck und bei einer Temperatur von 0^o C, so wird durch eine Erhöhung der letzteren um t^o das Volumen v_0 zunehmen auf:

$$\mathbf{v} = \mathbf{v}_0 \ (\mathbf{l} + \alpha \mathbf{t}),$$

und es verhält sich allgemein:

$$\frac{\mathbf{v}}{\mathbf{v}_{1}} = \frac{\mathbf{v}_{0} \left(1 + \alpha t\right)}{\mathbf{v}_{0} \left(1 + \alpha t_{1}\right)} = \frac{1 + \alpha t}{1 + \alpha t_{1}} = \frac{273 + t}{273 + t_{1}} = \frac{T}{T_{1}} \cdot \cdot \cdot \cdot \cdot (13)$$

Die Volumina aller vollkommenen Gase sind bei gleichbleibendem Druck ihren absoluten Temperaturen direkt proportional.

Äußere Arbeit. Diese ist gleich:

 $dL = p \cdot dv$,

oder, da p konstant,

 $Q = AW + AL = c_v (T - T_0) + Ap (v - v_0)$. (15)

Die graphische Darstellung ist eine Gerade, welche im Abstand p der Abszisse parallel läuft, Fig. 1; die äußere Arbeit wird durch den Inhalt des Rechteckes dargestellt.

2. Gesetz von Mariotte-Boyle.

Das Volumen eines Gases ist dessen Spannung umgekehrt proportional.

$$\frac{\mathbf{v}_0}{\mathbf{v}} = \frac{\mathbf{p}}{\mathbf{p}_0}; \ \mathbf{v}_0 \ \mathbf{p}_0 = \mathbf{v} \cdot \mathbf{p} = \mathbf{p}_1 \ \mathbf{v}_1 = \text{konst.} \quad . \quad . \quad . \quad (16)$$

Äußere Arbeit. Da infolge der gleichbleibenden Temperatur sämtliche zugeführte Wärme in äußere Arbeit umgesetzt wird, so wird letztere bei einer isothermischen Ausdehnung von v_0 auf v wie folgt bestimmt:

Um den Ausdruck $dL = p \cdot dv$ integrieren zu können, muß die Veränderliche p durch die Veränderliche v ausgedrückt werden; nun ist:

$$\mathbf{p} = \frac{\mathbf{p}_0 \, \mathbf{v}_0}{\mathbf{v}},$$

worin p_0 und v_0 konstant und, als dem Anfangszustand entsprechend bekannt sind.

$$d\mathbf{L} = \frac{\mathbf{p}_0 \, \mathbf{v}_0}{\mathbf{v}} \cdot d\mathbf{v}$$

oder:

$$\mathbf{L} = \mathbf{p}_0 \mathbf{v}_0 \int_{\mathbf{v}_0}^{\mathbf{v}} \frac{\mathrm{d} \mathbf{v}}{\mathbf{v}} = \mathbf{p}_0 \mathbf{v}_0 \log n \ \frac{\mathbf{v}}{\mathbf{v}_0} = \mathbf{p}_0 \mathbf{v}_0 \log n \ \frac{\mathbf{p}_0}{\mathbf{p}} \quad . \quad . \quad (17)$$

Zuzuführende Wärmemenge:

Bei der isothermischen Ausdehnung muß diese der geleisteten Arbeit entsprechende Wärmemenge zugeführt werden, während sie bei der isothermischen Kompression, dem Arbeitsaufwand entsprechend, entzogen werden muß. Die graphische Darstellung der Isotherme ergibt eine gleichseitige Hyperbel (Fig. 2). Soll durch den Punkt A, welcher durch das Anfangs-

volumen v und den Anfangsdruck p gegeben ist, eine Isotherme gelegt werden, so ziehe man durch A eine Wagerechte A B und eine Senkrechte A C. Strecke A B wird in eine Anzahl gleicher Teile zerlegt, und durch die Teilpunkte b, c, d usw. werden Ordinaten gezogen. Die vom Mittelpunkt o des Koordinatensystems nach diesen Teilpunkten gezogenen Strahlen ob, oc, od schneiden die Senkrechte A C in Schnittpunkten b', c', d', welche auf diejenigen Ordi-

naten Db, Ec, Fd übertragen werden, nach deren Endpunkten die Strahlen gezogen worden sind.

Der Beweis für die Richtigkeit dieser Konstruktion ergibt sich aus der Ähnlichkeit der Dreiecke: O D b und O C b'. Daraus folgt: O C: O D = C b' : D b.

3. Das vereinigte Gay-Lussac-Mariottesche Gesetz.

Die äußere Arbeit, welche bei der Erwärmung eines vollkommenen Gases um 1^o C geleistet wird, ist konstant.

 \mathbf{Ist}

$$\mathbf{v} = \mathbf{v}_0 (1 + \alpha t)$$

das Volumen von 1 kg Gas bei atm. Druck, so ist nach dem Mariotteschen Gesetz bei einem Druck p

$$v = \frac{\mathbf{v}_0 (1 + \alpha t)}{p}$$

und bei einem Druck p_1 und einer Temperatur t_1

$$\mathbf{v}_1 = \frac{\mathbf{v}_0 \left(\mathbf{1} + \alpha \mathbf{t}_1\right)}{\mathbf{p}_1}$$

so daß die Beziehungen bestehen:

/ 1

١

Diese Zustandsgleichung der vollkommenen Gase besagt:

Wird 1 kg eines vollkommenen Gases bei konstantem Druck p vom absoluten Nullpunkt aus auf T⁰ erwärmt, so verrichtet dasselbe eine äußere Arbeit von p·v mkg, welche für jeden absoluten Temperaturgrad den konstanten Wert $\frac{p \cdot v}{T} = R$ besitzt.

R wird die Konstante des Gay-Lussac-Mariotteschen Gesetzes genannt.

In der Gleichung

$$\mathbf{p} \cdot \mathbf{v} = \mathbf{R} \mathbf{T} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (20)$$

bezeichnet v das spezifische Volumen, d. h. das Volumen für eine Gewichtseinheit des betreffenden Gases. Nehmen demnach G kg eines Gases einen Raum von V cbm ein, so ist

$$\mathbf{V} = \mathbf{G} \mathbf{v},$$

und man erhält, wenn Gl. 20 auf beiden Seiten mit G multipliziert wird: $V \cdot p = G \cdot R \cdot T.$

Ist für eine Gasart die Konstante R bekannt, so läßt sich mit dieser Gleichung das Gewicht einer Gasmenge berechnen, welche bei einer Temperatur von T⁰ und unter einem Druck von p kg/qm den Raum V einnimmt.

Ist V = 1 cbm, so ist G das spezifische Gewicht, welches mit γ bezeichnet wird. Es ist dann weiterhin:

und daraus folgt:

$$\mathbf{v} \cdot \boldsymbol{\gamma} = \mathbf{1} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (22)$$

4. Das Poissonsche Gesetz.

Wird 1 kg eines vollkommenen Gases bei einer Zustandsänderung weder Wärme entzogen noch zugeführt, so sind die Volumina den k^{ten} Wurzeln aus ihren Spannungen und den (k—1)^{ten} Wurzeln aus ihren absoluten Temperaturen umgekehrt proportional.

$$k = \frac{c_p}{c_v} = 1,41$$

Da hiernach, z. B. bei einer Arbeitsverrichtung, keine Wärme zugeführt wird, so kann diese Arbeit nur auf Kosten des Wärmeinhaltes c_v geleistet werden. Bei einer Temperaturerniedrigung um dT⁰ wird somit der Wärmewert der äußeren Arbeit:

$$-\mathbf{c}_{\mathbf{v}} \cdot \mathbf{d} \mathbf{T} = \mathbf{A} \cdot \mathbf{p} \cdot \mathbf{d} \mathbf{v} \cdot \mathbf{r} \cdot \mathbf{r$$

Wird dieser Ausdruck mit Gl. 20 multipliziert, so erhält man: $AR \cdot T \cdot p \cdot dv = -c_v \cdot dT \cdot p \cdot v,$

oder:

$$\mathbf{A} \, \mathbf{R} \boldsymbol{\cdot} \frac{\mathbf{d} \, \mathbf{v}}{\mathbf{v}} = - \mathbf{c}_{\mathbf{v}} \boldsymbol{\cdot} \frac{\mathbf{d} \, \mathbf{T}}{\mathbf{T}},$$

und da nach Gl. 11:

$$AR = c_p - c_v$$

$$(c_p - c_v) \cdot \frac{dv}{v} = -c_v \cdot \frac{dT}{T}$$

$$\frac{c_p - c_v}{c_v} \cdot \frac{dv}{v} = -\frac{dT}{T} = (k - 1) \cdot \frac{dv}{v}.$$

6

Integriert man diesen Ausdruck innerhalb v, T als Anfangswerte und v
_1 T_1 als Endwerte, so erhält man:

Wird Gl. 20 differenziert, so erhält man:

$$d\mathbf{T} = \frac{\mathbf{p} \cdot d\mathbf{v} + \mathbf{v} \cdot d\mathbf{p}}{\mathbf{R}}.$$

Nach Einsetzung dieses Wertes nimmt Gl. 22a die Form an:

$$-c_{v} \cdot \frac{p \cdot dv + v \cdot dp}{R} = A p \cdot dv,$$

und da $\frac{A R}{c_v} + 1 = k$, so wird:

Durch Integration zwischen den Grenzen pv und p_1v_1 ergibt sich:

Aus der Verbindung der Gl. 23 und 24 folgt:

Äußere Arbeit. Für diese gilt, wie schon erwähnt:

$$\mathbf{A} \cdot \mathbf{d} \mathbf{L} = \mathbf{A} \mathbf{p} \cdot \mathbf{d} \mathbf{v} = -\mathbf{c}_{\mathbf{v}} \cdot \mathbf{d} \mathbf{T}.$$

Sinkt bei einer Ausdehnung des Gases von v
 auf v_1 die Temperatur T auf ${\rm T}_1,$ so wird:

Nun ist $T_1 = \frac{p_1 v_1}{R}$ und $T = \frac{p v}{R}$ und die Einsetzung dieser Werte ergibt:

$$\mathbf{L} = \frac{\mathbf{c}_{\mathbf{v}}}{\mathbf{A} \cdot \mathbf{R}} \cdot (\mathbf{p} \, \mathbf{v} - \mathbf{p}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}) = \frac{1}{\mathbf{k} - 1} (\mathbf{p} \, \mathbf{v} - \mathbf{p}_{\mathbf{1}} \, \mathbf{v}_{\mathbf{1}}) \quad . \quad . \quad (25b)$$

Wird in Gl. 25a eingesetzt:

$$\mathbf{T}_{1} = \mathbf{T} \left(\frac{\mathbf{v}}{\mathbf{v}_{1}} \right)^{k-1} = \mathbf{T} \left(\frac{\mathbf{p}_{1}}{\mathbf{p}} \right)^{\frac{1}{k-1}},$$

so wird zunächst:

$$\mathbf{L} = \frac{\mathbf{c}_{\mathbf{v}}}{\mathbf{A}} \left[\mathbf{T} - \mathbf{T} \left(\frac{\mathbf{v}}{\mathbf{v}_{1}} \right)^{k-1} \right] = \frac{\mathbf{c}_{\mathbf{v}}}{\mathbf{A}} \cdot \mathbf{T} \left[\mathbf{1} - \left(\frac{\mathbf{v}}{\mathbf{v}_{1}} \right)^{k-1} \right]$$

Wird weiterhin eingeführt:

$$T = {p \over R} und {c_v \over AR} = {1 \over k - 1}$$

so folgt:

$$L = \frac{p \cdot v}{k - 1} \left[1 - \left(\frac{v}{v_{1}}\right)^{k - 1} \right] = \frac{p \cdot v}{k - 1} \left[1 - \left(\frac{p_{1}}{p}\right)^{\frac{k - 1}{k}} \right] \quad . \quad (26)$$
Die Gesamtarbeit eines Diagramms nach
Fig. 3 wird demnach:
Volldruckarbeit = p \cdot v.
Expansionsarbeit = $\frac{p \cdot v}{k - 1} \left[1 - \frac{1}{\left(\frac{v_{1}}{v}\right)^{k - 1}} \right]$.
Gegendruckarbeit = $p_{1} v_{1}$

Gesamtarbeit:
$$\frac{\mathbf{L}^{1}}{\mathbf{10\ 000}} = \mathbf{p} \cdot \mathbf{v} + \frac{\mathbf{p}\,\mathbf{v}}{\mathbf{k}-\mathbf{1}} \left[\mathbf{1} - \frac{\mathbf{1}}{\left(\frac{\mathbf{v}_{1}}{\mathbf{v}}\right)^{\mathbf{k}-1}} \right] - \mathbf{p}_{1}\,\mathbf{v}_{1}.$$
 (27)
$$= \mathbf{p} \cdot \mathbf{v} \left[\frac{\mathbf{k}}{\mathbf{k}-\mathbf{1}} - \frac{\mathbf{1}}{\mathbf{k}-\mathbf{1}} \cdot \frac{\mathbf{1}}{\left(\frac{\mathbf{v}_{1}}{\mathbf{v}}\right)^{\mathbf{k}-1}} - \frac{\mathbf{p}_{1}\,\mathbf{v}_{1}}{\mathbf{p}\cdot\mathbf{v}} \right].$$
 (27a)

Gl. 27a ist für die Dampfmaschinentheorie von Wichtigkeit, da nach ihr die Arbeit von 1 kg Dampf in der verlustlosen Maschine berechnet wird.

Gesetze von der allgemeinen Form $p \cdot v^n = konst.$ werden als polytropische Zustandsänderungen bezeichnet, von welchen die Isotherme mit

n = 1 und die hier behandelte Adiabate mit n = 1,41 besondere Fälle sind.

 $\left(\overline{\mathbf{v}} \right)$

Graphische Darstellung. Fig. 4. Durch Punkt A, welcher dem Druck p_1 und dem Volumen v_1 entspricht, wird eine Polytrope gelegt, indem vom Pol O aus der Strahl OB um den bestimmten Winkel β gegen die Senkrechte geneigt und der Strähl OC um den beliebigen Winkel α gegen die Wagerechte geneigt gezogen werden. Durch Punkt A wird hierauf eine Wagerechte AD bis zum

^{&#}x27;) Da die Maschinenleistung in mkg angegeben wird, während der im Ausdruck enthaltene Wert von p sich auf kg/qcm bezieht, so ist L durch 10000 zu dividieren.

Schnittpunkt D mit Ox und eine Senkrechte A E bis zum Schnittpunkt E mit OC gelegt. Zieht man durch D und E Linien, welche um 45° gegen die Horizontale geneigt sind und welche OB und Oy in den Punkten F und G schneiden, so gehört der Punkt H den Linien F H und G H der Kurve an.

Entspricht H den Koordinaten p_2 und v_2 , so ist:

$$\mathbf{J}\,\mathbf{E} = \mathbf{J}\,\mathbf{G} = \mathbf{v}_2 - \mathbf{v}$$

und

$$KD = KF = p_1 - p_2$$

 $tg \, \alpha = \frac{v_2 - v_1}{v_1}; \quad tg \, \beta = \frac{p_1 - p_2}{p_2},$

oder

 $\mathbf{v}_2 = \mathbf{v}_1 (\mathbf{l} + \mathbf{tg} \, \alpha)$ und $\mathbf{p}_1 = \mathbf{p}_2 (\mathbf{l} + \mathbf{tg} \, \beta)$.

Es soll nun sein:

$$\mathbf{p_1} \mathbf{v_1}^n = \mathbf{p_2} \mathbf{v_2}^n$$

oder, nach Einsetzung der für v2 und p1 gefundenen Werte:

$$\mathbf{p}_2 \cdot (\mathbf{l} + \mathbf{tg}\,\beta) \cdot \mathbf{v_1}^n = \mathbf{p}_2 \cdot \mathbf{v_1}^n \, (\mathbf{l} + \mathbf{tg}\,\alpha)^n \cdot \mathbf{v_1}^n$$

Hieraus folgt:

 $1 + \operatorname{tg} \beta = (1 + \operatorname{tg} \alpha)^n \cdot$

Ist demnach der Exponent n der Polytrope bekannt, so wird nach beliebiger Annahme des Winkels α der Winkel β aus dieser Gleichung berechnet, wodurch die Lage der Strahlen OB und OC bestimmt ist. Die Punkte der Kurve werden durch die in Fig. 4 ausgeführte Zickzackkonstruktion ermittelt. Winkel α soll nicht zu groß gewählt werden, damit man möglichst viele Punkte der Kurve erhält.

Die folgende Zahlentafel gibt für häufige Werte des Exponenten n den Winkel β , wenn $\alpha = 30^{\circ}$ gewählt.

		3		β			
n	Grad	Grad Min.		Grad	Min.		
$1,00 \\ 1,05 \\ 1,10 \\ 1,15 \\ 1,2 \\ 1,22 \\ 1,24$	30 31 33 34 37 36 37	$ \frac{\overline{30}}{\overline{30}} $ $ \frac{\overline{30}}{\overline{40}} $ $ \frac{\overline{40}}{10} $	$\substack{1,26\\1,28\\1,3\\1,33\\1,35\\1,38\\1,41}$	$37 \\ 38 \\ 39 \\ 39 \\ 40 \\ 41 \\ 42$	$50 \\ 25 \\ \\ 50 \\ 20 \\ 20 \\$		

d) Der Carnotsche Kreisprozeß.

Wird ein kg eines Gases einer Reihe von aufeinanderfolgenden Zustandsänderungen ausgesetzt, und gelangt es am Schlusse dieser Änderungen in seinen ursprünglichen Zustand zurück, so hat das Gas einen Kreisprozeß durchlaufen. Stellt man den Verlauf dieses Kreisprozesses durch eine geschlossene Kurve dar, wiederholt sämtliche Zustandsänderungen in umgekehrter Reihenfolge, — so daß z. B., da Expansion stattfindet, wo vorhin komprimiert wurde — und ist hierbei der Zustand des Gases in allen durch Punkte der Kurve gegebenen Perioden der Verwandlung derselbe wie vorhin, so wird der Kreisprozeß umkehrbar genannt.

Treten hingegen in dem Kreisprozeß Zustandsänderungen auf, in deren Verlauf z. B. Wärme unmittelbar aus Körpern von höherer Temperatur in kältere Körper durch Leitung oder Strahlung übergeht, so handelt es sich um einen nicht umkehrbaren Kreisprozeß, da es bei einem rückwärtigen Verlauf des lezteren ausgeschlossen wäre, daß die in den kälteren Körper übergegangene Wärme von selbst auf den wärmeren Körper übertragen würde.

Der von Clausius ausgesprochene zweite Hauptsatz der Mech. Wärmetheorie lautet nämlich:

Wärme kann nicht von selbst aus einem kälteren Körper in einen wärmeren Körper übergehen, hierzu ist vielmehr stets ein Arbeitsaufwand erforderlich.

Der bekannteste, umkehrbare Kreisprozeß ist von Carnot aufgestellt (Fig. 5). Bei diesem Kreisprozeß dehnt sich 1 kg Gas aus:

- Nach einer Isotherme von v₁ auf v₂. Die Wärmemenge Q₁ wird zugeführt. Die Temperatur T₁ bleibt konstant.
 Nach einer Adiabate von v₂ auf v₃. Da weder Wärme zugeführt noch entzogen wird, so nimmt die Temperatur von T₁ auf T₂ ab. Hierauf wird das Gas komprimiert:
- Nach einer Isotherme von v₃ auf v₄. Die Wärmemenge Q₂ wird abgeführt; die Temperatur T₂ bleibt konstant.
 Nach einer Adiabate von v₄ auf v₁. Die Temperatur T₂ steigt
- auf T_1 .

In diesem Prozeß gehen demnach zwei Verwandlungen vor sich: einmal wird Wärme in Arbeit umgesetzt, und außerdem geht Wärme

aus einem Körper von höherer Temperatur in einen solchen von niedriger Temperatur Die in Arbeit verüber. wandelte Wärme wird durch den Inhalt des Diagramms dargestellt.

Die beiden Adiabaten dienen zur Herbeiführung des Niveau unterschiedes $T_1 - T_2$; auf die Arbeitsleistung selbst haben sie insofern keinen Einfluß, als die bei der adiabatischen Expansion gewonnene Arbeit bei der adiabatischen Kompression wieder aufgewendet wird. Die Wirkung der Adiabaten läßt sich

demzufolge mit dem Spannen und Entspannen einer Feder vergleichen. Nach dem ersten Hauptsatz muß die Beziehung bestehen:

 $Q_1 = \mathbf{A} \cdot \mathbf{p}_1 \, \mathbf{v}_1 \log n \, \frac{\mathbf{v}_2}{\mathbf{v}_1},$ e Fläche A B F E

dargestellt durch die Fläche ABFE $\Omega = A \cdot \mathbf{p} \cdot \mathbf{v} \log \mathbf{p}$

$$\mathbf{Q}_2 = \mathbf{A} \cdot \mathbf{p}_3 \, \mathbf{v}_3 \log \mathbf{n} \cdot rac{\mathbf{v}_3}{\mathbf{v}_4},$$

 $p_1 v_1 = R T_1; p_3 v_3 = R \cdot T_9,$

dargestellt durch CDHJ.

Nun ist:

$$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} = \frac{\mathbf{A} \cdot \mathbf{R} \cdot \mathbf{T}_1 \log n \frac{\mathbf{v}_2}{\mathbf{v}_1}}{\mathbf{A} \mathbf{R} \mathbf{T}_2 \cdot \log n \frac{\mathbf{v}_3}{\mathbf{v}_3}}$$

und da

so folgt:

Aus

folgt:

$$\mathbf{Q}_2 = rac{\mathbf{Q}_1 \cdot \mathbf{T}_2}{\mathbf{T}_1}$$

 $Q_1 \cdot T_2 = Q_2 \cdot T_1$

und dies in Gl. 28 eingesetzt, ergibt:

Der Wirkungsgrad des Carnotprozesses ist gleich dem Verhältnis der nutzbar gemachten Wärmemenge zur gesamten zugeführten Wärmemenge:

$$\eta = \frac{\mathbf{Q}_1 - \mathbf{Q}_2}{\mathbf{Q}_1} = \frac{\mathbf{T}_1 - \mathbf{T}_2}{\mathbf{T}_1} = 1 - \frac{\mathbf{T}_2}{\mathbf{T}_1}.$$
 (31)

Der Carnot prozeß ist demnach um so günstiger, je höher die Temperatur bei der Wärmezufuhr und je tiefer dieselbe bei der Wärmeabfuhr liegt:

Zur Veranschaulichung der hier in Betracht kommenden Vorgänge kann man sich des Vergleiches mit einer Wassersäulenmaschine nach Fig. 6 bedienen.

Der Zylinder dieser Maschine liege um H_2 unter dem Unterwasserspiegel und um H_1 unter dem Oberwasserspiegel. Sinkt 1 kg Wasser um H_1 m, so leistet dasselbe eine Arbeit von H_1 mkg, der Kolben bewegt sich nach rechts und hebt hierbei 1 kg Wasser um H_2 m, so daß die nutzbare Arbeit gleich H_1 — H_2 wird.

Werden statt der Höhen H_1 und H_2 die absoluten Temperaturen T_1 und T_2 eingeführt, so ergibt sich sofort die Übereinstimmung, wenn in Gl. 29a $\frac{Q_1}{T_1}$ nach Zeuner als "Wärmegewicht" bezeichnet wird, welches von unveränderlicher Größe ist und, um das "Temperaturgefälle" T_1 — T_2 sinkend, die Arbeit $\frac{Q}{T_1}$ (T_1 — T_2) in W. E. verrichtet.

e) Der Lorenzsche oder polytropische Kreisprozeß¹).

Der Carnotprozeß setzt unendlich großen Wärmeinhalt des Heizkörpers und des aufnehmenden Kühlkörpers voraus, da während der Wärmeaufnahme und Abgabe die Temperatur des vermittelnden Körpers konstant bleiben soll. Wenn demnach auch der Satz: daß die Wärmeteilchen bei höchster Temperatur zuzuführen, bei tiefster Temperatur abzuführen sind, gültig bleibt, so ist damit noch nicht gesagt, daß diese höchste Temperatur gleichbleibend sein soll, denn gerade in dem Bestreben, der ersteren Forderung nachzukommen, wird man bei veränderlichen Temperaturen des Heiz- und Kühlkörpers auch die Temperatur bei der Wärmezufuhr und Abgabe fortwährend ändern.

Im folgenden bedeuten:

- T_1 die Zuflußtemperatur der Heizgase,
- T_{1a} die Abflußtemperatur derselben,
- T₂ die Zuflußtemperatur des Kühlwassers,
- T_{2a} die Abflußtemperatur desselben,
- c_h die spezifische Wärme der Heizgase,
- ck diejenige des Kühlwassers,
- H die Menge der Heizgase,
- K die Menge des Kühlwassers.

Bei Abgabe einer Wärmemenge von dQ_1 wird der Wärmeinhalt des Heizkörpers um $dQ_1 = c_h H \cdot dT$ verringert, während derjenige des Kühlkörpers bei Aufnahme der Wärmemenge dQ_2 sich vergrößert um $dQ_2 = c_k K \cdot dT$.

In dem Kreisprozeß Fig. 7, der von zwei Adiabaten und zwei "Polytropen" begrenzt ist, wird der vermittelnde Körper zunächst verdichtet,

bis er von der höchsten Kühlwassertemperatur T_{2a} welche er erreichen muß, falls bei dieser noch Wärmeaustausch stattfinden soll — auf die höchste Heizkörpertemperatur T_1 gelangt. Nunmehr findet bei beständiger Temperaturabnahme des Heizkörpers steter Wärmeaustausch mit diesem statt, bis der Körper die Temperatur T_{1a}

besitzt. Hierauf erfolgt adiabatische Zustandsänderung, bei welcher die Körper die tiefste Kühlwassertemperatur T_2 erreicht. Infolge des weiteren Wärmeaustausches steigt die Temperatur des Kühlwassers von T_2 auf T_{2a} , und in gleicher Weise nimmt die Temperatur des arbeitenden Körpers zu.

¹) S. Lorenz, Z. 1894, S. 62 u. f. und Eug. Meyer, Z. 1897. S. 1108.

Soll der Lorenzsche Prozeß mit dem Carnotprozeß verglichen werden, so dürfen die Isothermen keinesfalls durch die höchsten und tiefsten Temperaturpunkte gelegt werden, denn bei endlich großen Heizgas- und Kühlwassermengen kann die obere und untere Temperatur nur dann konstant bleiben, wenn die niedrigste Heizkörpertemperatur T_{1a} und die höchste Kühlwassertemperatur T_{2a} vorausgesetzt werden.

Dementsprechend sind durch die se Temperaturpunkte die Isothermen zu ziehen, so daß beim Lorenzschen Prozeß die schraffierten Flächen im Vergleich mit dem Carnotprozeß gewonnen werden.

Dieser ist nur bei gegebenen Temperaturgrenzen und bei konstanter oberer und unterer Temperatur der günstigste Prozeß. Seine Durchführung würde allgemein erstrebenswert dann sein, wenn die von den Maschinen vertragenen Temperaturen sich durch die vorgeschriebene adiabatische Kompression erreichen ließen. Hierzu sind aber meist Drucke erforderlich, welche den Prozeß praktisch unmöglich machen.

Für die Sattdampfmaschine, bei welcher die Wärmezufuhr bei gleichbleibender Spannung und also auch bei gleichbleibender Temperatur erfolgt, ist der Carnotprozeß der günstigste.

f) Das Wärmegewicht und das Entropiediagramm.

Das Wärmegewicht $\frac{Q}{T}$ kann als solches nicht definiert werden, es kennzeichnet den Zustand eines Körpers ebenso wie Druck, Volumen und

Temperatur, für welche ebenfalls Definitionen nicht möglich sind.

Trägt man die bei einer Zustandsänderung vorkommenden absoluten Temperaturen als Ordinaten und die Wärmegewichte als Abszissen auf, so erhält man die "Abbildung" des Spannungsdiagramms oder das Entropiediagramm. Wie das vom Indikator aufgezeichnete Spannungsdiagramm die Werte der Drucke und Volumina angibt, so sind aus dem Entropiediagramm die Temperaturen und die Werte der Entropie ersichtlich, und wie die vom Druckdiagramm eingeschlossene Fläche die geleistete oder aufgewendete Arbeit in mkg angibt, so wird durch die Fläche des Entropiediagramms die Arbeit in W. E. dargestellt.

Das Entropiediagramm eines Carnotprozesses ist in Fig. 8 dargestellt. Während der isothermischen Zustandsänderungen bleibt die Temperatur konstant, so daß die Isothermen im Entropie-

diagramm durch die zur Abszisse Parallelen ab, cd abgebildet werden.

Bei den Zustandsänderungen nach der Adiabate wird Wärme weder zu- noch abgeführt. In dem gleichen Maße, wie durch die Arbeitsleistung Wärme entzogen wird, verringert sich auch die Temperatur: das Wärmegewicht bleibt konstant, und die Abbildung der Adiabaten ergibt die Senkrechten ad und bc. Das Rechteck abcd stellt die ge-

wonnene Arbeit, gemessen in W. E., dar als Differenz der Flächen a b e fund c d a f. Fläche a b e f gibt diejenige Arbeit wieder, welche von der Wärmemenge Q_1 geleistet wird, und welche voll und ganz erhalten würde, wenn auf der Erde die absolute Temperatur — 273° vorhanden wäre. Nur von diesem Standpunkt aus hat der Satz: daß eine W. E. eine Arbeit von 424 mkg zu verrichten vermöge, Geltung. Tatsächlich hat eine W. E. einen um so größeren Wert, je höher die Temperatur ist, bei welcher sie zur Verfügung steht, je kleiner für gleiche Wärmemengen das Wärmegewicht $\frac{Q}{T}$ ist. Wärme von der Temperatur unserer Umgebung ist vollständig wertlos, ebenso wie das Wasser eines Flußlaufes in der Ebene wegen mangelnden Gefälles für Wasserkraftmaschinen nicht verwertbar ist.

Herrschte demnach die absolute Temperatur, so würde sämtliche zugeführte Wärme als Ergebnis einer einzigen Verwandlung in Arbeit umgesetzt.

In den Fig. 9 und 9a sind zwei Entropiediagramme von gleichem Flächeninhalt, aber verschieden großen Wärmegewichten und Temperaturgefällen wiedergegeben.

Fig. 9 und 9a.

Vom rein theoretischen Standpunkt aus betrachtet, leisten in beiden gleiche Wärmemengen gleiche Arbeiten, dargestellt durch die schraffierten Flächen, deren untere Basis auf der absoluten Nulllinie liegt. Das Bild ändert sich jedoch, wenn die tatsächlichen Verhältnisse durch Einführung der atm. Temperatur, welche die untere Grenze bestimmt, berücksichtigt werden. Es wird nunmehr in Fig. 9 mit der gleichen Wärmemenge die

Arbeit abcd gewonnen, mit welcher in Fig. 9a nur die Arbeit a'b'c'd' verrichtet wurde.

Demnach ist nicht nur die Wärmemenge Q_1 von Bedeutung, sondern auch die "Temperaturzone", in deren Grenzen sie verfügbar ist. Dadurch, daß z. B. in der Dampfmaschine die obere Temperatur durch den Dampfdruck festgelegt ist und nicht durch die Temperatur der Heizgase, verringert sich der "Verwandlungswert" der zur Verfügung stehenden Wärmemenge, d. h. des im günstigsten Fall in Arbeit zu verwandelnden Teiles derselben. Der Dampfkessel verursacht also selbst dann eine Verschlechterung des Kreisprozesses, wenn sämtliche Wärme der Heizgase an das Wasser abgegeben würde, es geht eben ein Teil des verfügbaren Gefälles verloren.

Ein weiteres Beispiel ist durch das Verhalten der Zylinderwandungen von Wärmekraftmaschinen gegeben.

Wird z. B. an die Zylinderwand einer Dampfmaschine Wärme während der Füllung seitens des arbeitenden Dampfes abgegeben, und wird im Beharrungszustand die gleiche Wärmemenge während der Expansion an den Dampf zurückerstattet, so tritt eine Verschlechterung des Wirkungsgrades selbst dann ein, wenn es sich um genau gleiche Wärmemengen handelt. Die Abgabe der Wärme erfolgte bei höherer, die Rückgabe bei niederer Temperatur — der Verwandlungswert wurde verringert.

Solche nicht umkehrbaren Zustandsänderungen sind stets mit einer Vergrößerung des Wärmegewichtes verbunden, wodurch die an den Kühlkörper abzuführende Wärmemenge größer wird. Als Maß für diese Wärmemenge, in den Flächen unterhalb c d bezw. c' d' dargestellt, kann die Größe des Wärmegewichtes bei der Temperatur T₂ gelten. Eine Verkleinerung der die nutzlos abzuführenden Wärmemengen wiedergebenden Flächen kann nur durch eine möglichst tiefliegende Temperatur T₂ oder durch einen möglichst kleinen Wert des Wärmegewichtes erreicht werden. Erstere kann jedoch niemals kleiner genommen werden, als die Temperatur der uns umgebenden Atmosphäre, während für eine bestimmte Wärmemenge eine Verkleinerung des Wärmegewichtes sich nur durch Wahl einer höheren Anfangstemperatur ermöglichen läßt. Doch ist auch hier häufig eine Grenze gesteckt, nicht sowohl durch die Temperatur selbst, welche besonders in der Dampfmaschine noch höhere Werte annehmen könnte, als durch die mit den höheren Temperaturen auftretenden Drucke.

II. Mechanik des Wasserdampfes.

a) Die Hauptgleichungen.

Die Gesamtwärmemenge λ , welche aufgebracht werden muß, um Wasser von 0° in Dampf von t° zu verwandeln, setzt sich zusammen: aus der Flüssigkeitswärme q, welche dazu dient, das Wasser von 0° auf t° zu erwärmen und der latenten Wärme r, welche das Wasser von t° in Dampf von t° verwandelt. Die latente Wärme r zerfällt wieder in die innere latente Wärme ϱ , welche zur Änderung des Aggregatzustandes gebraucht wird und in die äußere latente Wärme A·p·u, welche zur Überwindung des auf dem verdampfenden Wasser lastenden Druckes dient. u stellt den Unterschied des spez. Dampfvolumens und des spez. Wasservolumens ϱ dar, demnach:

Die Wärme $A \cdot p \cdot u$ ist im Dampf nicht mehr als solche enthalten, in ihm bleibt nur die Dampfwärme $J = q + \varrho$ zurück. Es bestehen folgende Beziehungen:

$\lambda = \mathbf{q} + \mathbf{r} \cdot \cdot$			•			(33)
$\mathbf{r} = \varrho + A \mathbf{p} \mathbf{u}$	•					(34)
$\mathbf{J} = \mathbf{q} + \boldsymbol{\varrho} .$						(35)

Hieraus ergibt sich das folgende Schema:

$$\underbrace{\underbrace{q}_{\mathbf{J}} \underbrace{e}_{\mathbf{J}} \underbrace{Apu}_{\mathbf{r}}}_{\mathbf{J}}$$

Die einzelnen Wärmemengen können mittelst der nachstehenden Gleichungen berechnet werden:

$$\lambda = 606, 5 + 0,305 \, \mathrm{t}.$$

Die spez. Wärme des Wassers ist nach Regnault: $c = 1 + 0,00004 t + 0,0000009 t^2$ Für die Flüssigkeitswärme ergibt sich:

$$q = \int_{0}^{b} c \cdot dt = t + 0,00011 t^{2}.$$

Ferner ist:

$$\varrho = 575,4 - 0,791 t$$

A p u = 31,1 + 1,096 t - q

Das spez. Gewicht des Dampfes, d. h. das Gewicht pro cbm, kann nach Zeuner genau genug nach der Formel

Das spez. Volumen s ist gleich dem reziproken Wert von γ , somit

$$s = \frac{1}{\gamma}$$

Der in 1 kg einer Mischung vorhandene Gehalt an Dampf wird die "spez. Dampfmenge x" genannt. Wird das spez. Dampfvolumen wieder mit s, das spez. Wasservolumen mit σ bezeichnet, so ist die Größe des Gesamtvolumens

$$\mathbf{v} = \mathbf{x} \cdot \mathbf{s} + (\mathbf{1} - \mathbf{x}) \cdot \sigma$$

oder, da nach Gl. 32 s— $\sigma = u$,

Diese Gleichung kann als Zustandsgleichung des gesättigten Wasserdampfes bezeichnet werden.

Der Mehrbetrag an Wärme, bezw. an innerer Arbeit, welcher in dieser Mischung gegenüber Wasser von 0^{0} enthalten ist, wird gleich:

 $\mathbf{A}\mathbf{U} = \mathbf{q} + \mathbf{x}\,\boldsymbol{\varrho} \quad \dots \quad (38)$

Bei einer unendlich kleinen, umkehrbaren Zustandsänderung ist somit:

Diese Gleichung gilt nur für gesättigte Dämpfe, bei welchen der Druck eine eindeutige Funktion der Temperatur ist.

Wird bei dieser Zustandsänderung eine äußere Arbeit geleistet, so wird nach Gl. 39 und 5

Wird Gl. 37 differenziert, und der wenig veränderliche Wert von σ hierbei als konstant angesehen, so ist

$$\mathbf{d}\mathbf{v} = \mathbf{d} (\mathbf{x} \cdot \mathbf{u})$$

und nach Multiplikation beider Seiten mit Ap

$$\mathbf{A}\,\mathbf{p}\,\mathbf{d}\,\mathbf{v}=\mathbf{A}\,\mathbf{p}\,\mathbf{d}\,(\mathbf{x}\,\mathbf{u}),$$

wofür gesetzt werden kann:

 $\mathbf{A} \mathbf{p} \, \mathbf{d} \, \mathbf{v} = \mathbf{A} \cdot \mathbf{d} \left(\mathbf{p} \, \mathbf{u} \, \mathbf{x} \right) - \mathbf{A} \, \mathbf{x} \, \mathbf{u} \cdot \mathbf{d} \, \mathbf{p}.$

Setzt man diesen Wert in Gl. 40 ein, so folgt:

$$\mathbf{dQ} = \mathbf{dq} + \mathbf{d} (\mathbf{x} \boldsymbol{\varrho}) + \mathbf{Ad} (\mathbf{pux}) - \mathbf{Ax} \cdot \mathbf{udp}.$$

Da $(\varrho + A p u) = r$, so kann das zweite und dritte Glied in d (xr) zusammengefasst werden, und es folgt:

Um für das letzte Glied dieser Gleichung einen anderen Ausdruck einführen zu können, stelle man sich vor, daß in dem Elementarstück eines Carnotprozesses für 1 kg Flüssigkeit

Punkt A das Volumen σ mit dem Druck p bezeichne. Fig. 10. Bei konstantem Druck und konstanter Temperatur werde bei der nun folgenden isothermischen Zustandsänderung A B die latente Wärme r zugeführt, bis im Punkt B nur noch Dampf vom Volumen s vorhanden ist. Die adiabatische Expansion gehe

bis auf die Temperatur $T - \varDelta T$ vor sich, worauf die isothermische Kompression bis Punkt D und die adiabatische Kompression von $T - \varDelta T$ auf T folgen. Dann ist eine Arbeit vom Wärmewert Au $\cdot \frac{d p}{dT} \cdot \varDelta T$ geleistet worden, da s $-\sigma =$ u die Länge und $\varDelta T \cdot \frac{d p}{dT}$ die Höhe des umschriebenen Diagramms bedeuten.

Der Wirkungsgrad dieses Prozesses muß nach dem früheren sein:

woraus die Clapeyronsche Gleichung folgt:

$$\frac{\mathbf{r}}{\mathbf{T}} = \mathbf{A} \mathbf{u} \cdot \frac{\mathbf{d} \mathbf{p}}{\mathbf{d} \mathbf{T}}, \quad \dots \quad \dots \quad \dots \quad \dots \quad (42)$$
$$\cdot \frac{\mathbf{d} \mathbf{T}}{\mathbf{T}} = \mathbf{A} \mathbf{u} \cdot \mathbf{d} \mathbf{p},$$

und wenn beide Seiten mit x multipliziert werden:

r

$$\mathbf{r}\cdot\mathbf{x}\cdot\frac{\mathbf{d}\mathbf{T}}{\mathbf{T}}=\mathbf{A}\mathbf{u}\mathbf{x}\cdot\mathbf{d}\mathbf{p}.$$

Setzt man diesen Wert in Gl. 40a ein, so folgt, da außerdem $dq = c \cdot dt$:

$$d\mathbf{Q} = \mathbf{c} \cdot d\mathbf{t} + d(\mathbf{x} \mathbf{r}) - \frac{\mathbf{x} \cdot \mathbf{r}}{T} \cdot dT, \quad . \quad . \quad (42a)$$

oder auch:

Nach Einführung einer Temperaturfunktion von der Form

$$\tau = \int_{0}^{t} \frac{\mathrm{d}\,q}{\mathrm{T}}$$

ergibt sich

2

Differenziert man das zweite Glied der Gl. 42a, so folgt:

$$d\mathbf{Q} = \mathbf{c} \cdot d\mathbf{t} + \mathbf{r} \cdot d\mathbf{x} + \mathbf{x} \cdot d\mathbf{r} - \mathbf{x} \cdot \frac{\mathbf{r}}{\mathbf{T}} \cdot d\mathbf{T}$$

und wenn auf der rechten Seite x.c.dt einmal addiert, das andere Mal subtrahiert wird:

$$d\mathbf{Q} = (\mathbf{l} - \mathbf{x}) \mathbf{c} \cdot d\mathbf{t} + \mathbf{r} \cdot d\mathbf{x} + \mathbf{x} \left(\mathbf{c} + \frac{d\mathbf{r}}{d\mathbf{t}} - \frac{\mathbf{r}}{\mathbf{T}}\right) \cdot d\mathbf{t}.$$

Dubbel, Dampfmaschinen. 3. Aufl.

Setzt man:

$$c + \frac{dr}{dt} - \frac{r}{T} = h,$$

so ist

Die Gleichung läßt besonders klar die Art der Verwendung der zugeführten Wärme erkennen. Ein Teil (1 - x).c.dt dient zur Temperaturerhöhung dt der noch vorhandenen Flüssigkeitsmenge (1 - x). Der zweite Teil r.dx verdampft die Flüssigkeitsmenge x, während der dritte Teil h.x.dT die Temperatur der Dampfmenge x um dT steigert. h stellt somit die spez. Wärme des trocken gesättigten Dampfes dar.

b) Zustandsänderungen.

Die technisch wichtigsten Zustandsänderungen erfolgen:

1. nach der Isotherme; 2. nach der Adiabate; 3. nach der Kurve gleicher spez. Dampfmenge.

1. Die Isotherme.

a) Äußere Arbeit. Da die Temperatur konstant bleibt, so wird die Darstellung der Druckkurve eine wagerechte Gerade, und die bei der Ausdehnung von v_1 auf v_2 geleistete Arbeit wird durch den Inhalt eines Rechteckes wiedergegeben. Nun ist:

$$\begin{aligned} \mathbf{v}_2 &= \mathbf{x}_2 \,\mathbf{u} + \sigma, \\ \mathbf{v}_1 &= \mathbf{x}_1 \,\mathbf{u} + \sigma, \end{aligned}$$

demnach:

$$\mathbf{v_2} - \mathbf{v_1} = \mathbf{u} \; (\mathbf{x_2} - \mathbf{x_1})$$

und die äußere Arbeit:

b) Zuzuführende Wärmemenge. Diese dient hier nicht wie bei den Gasen nur zur Verrichtung äußerer Arbeit, sondern auch zur Verrichtung innerer Arbeit:

$$\mathbf{Q} = \mathbf{A} \mathbf{L} + \mathbf{A} \left(\mathbf{U}_2 - \mathbf{U}_1 \right),$$

oder

$$\mathbf{Q} = \mathbf{A} \mathbf{p} \mathbf{u} \left(\mathbf{x}_2 - \mathbf{x}_1 \right) + \boldsymbol{\varrho} \left(\mathbf{x}_2 - \mathbf{x}_1 \right)$$

und da Apu $+ \varrho = r$

woraus durch

c) Graphische Darstellung. Diese ergibt, wie schon bemerkt, eine zur Abszisse parallele Gerade.

2. Die Adiabate.

Hierbei findet weder Zufuhr noch Entziehung von Wärme statt, und es wird:

$$d\mathbf{Q} = \mathbf{A} (\mathbf{d} \mathbf{U} + \mathbf{d} \mathbf{L}) = \mathbf{d} \mathbf{q} + \mathbf{d} (\mathbf{x} \rho) + \mathbf{A} \mathbf{d} \mathbf{L} = 0,$$

$$\mathbf{A} \cdot \mathbf{d} \mathbf{L} = - \mathbf{d} \mathbf{q} - \mathbf{d} (\mathbf{x} \cdot \rho),$$

Integration folgt:

Da die Adiabate in der Dampfmaschinentheorie häufige Verwendung findet, so ist es wünschenswert, die Gleichung der Kurve in der Form p = f(v) darzustellen.

Rankine hat zuerst eine den Gasadiabaten entsprechende Gleichung aufgestellt von der Form:

$$\mathbf{p}_1 \cdot \mathbf{v}_1^{\ \mu} = \mathbf{p} \cdot \mathbf{v}^{\mu} = \text{konst.}, \quad \dots \quad \dots \quad \dots \quad (49)$$

worin μ jedoch keine Konstante wie bei den Gasen ist, wie dies Rankine annahm. Vielmehr setzt Zeuner:

macht somit die Größe des Exponenten von dem auf den Anfangszustand bezogenen Wert der spez. Dampfmenge abhängig.

Gl. 50 gilt für Ŵerte von x innerhalb der Grenzen x = 0,7 und x = 1.

Hiernach lassen sich nun die Formeln verwerten, wie sie für adiabatische Zustandsänderungen der Gase angegeben worden sind.

Setzt man in Gl. 27a k = μ , so wird, da für anfänglich getrockneten Dampf x = 1, $\frac{\mu}{\mu - 1}$ = 8,41, $\frac{1}{\mu - 1}$ = 7,41. Bei der Dampfmaschine bezeichnet das Verhältnis $\frac{v_1}{v}$ nichts anderes als den Expansionsgrad ε , so

daß in der Anwendung auf die Dampfmaschine Gl. 27a die Form annimmt:

$$\frac{\mathrm{L}_{\mathrm{i}}}{10\,000} = \mathrm{p}\,\mathrm{v}\,\Big(8,41 - \frac{7,41}{\varepsilon^{0,135}} = \frac{\mathrm{p}_{1}}{\mathrm{p}}\cdot\varepsilon\Big).$$

Ist N_i die Anzahl der PS_i , welche von 1 kg Dampf pro Stunde in der verlustlosen Maschine geleistet werden, so ist:

Gl. 51 hat der "Verein deutscher Ingenieure" in den Anhang zu den Normen für Leistungsversuche an Dampfkesseln und Dampfmaschinen aufgenommen.

Die graphische Darstellung ist die gleiche wie für die Polytrope auf S. 8 angegeben.

3. Die Kurve konstanter Dampfmenge.

In Fig. 11 gibt die Gerade a b die Volumenänderungen wieder, welchen 1 kg Wasser bei der Erwärmung und nachheriger Verdampfung

unter konstantem Druck unterworfen ist. Punkt a bezeichnet denjenigen Zustand, bei welchem das Wasser gerade noch als solches vorhanden ist; jede weitere Wärmezufuhr bewirkt Verdampfung, während Punkt b denjenigen Zustand angibt, in welchem jedes Flüssigkeitsteilchen in Dampfform übergegangen ist. Der Dampf ist trocken ge-

sättigt, und die Fortsetzung der Wärmezufuhr würde Überhitzung herbeiführen. Werden die Punkte a und b für verschiedene Drucke aufgetragen und sodann miteinander verbunden, so entstehen die sog. untere Grenzkurve $a a_2$ und die obere Grenzkurve $b b_2$.

Für eine bestimmte Dampfart seien die beiden Grenzkurven durch Gleichungen von der Form:

$$p = \psi(\sigma) \text{ und } p = \varphi(\sigma)$$

gegeben und darnach aufgezeichnet worden, dann wird, sobald Druck p und Volumen v von 1 kg Flüssigkeit bekannt sind, die Beschaffenheit letzterer sich sofort erkennen lassen. Fällt ein Druck und Volumen darstellender Punkt a' zwischen beide Grenzkurven, so ist ein Gemisch von Dampf und Flüssigkeit vorhanden, in welchem der Dampf um so mehr zunimmt, je mehr sich a' der oberen Grenzkurve nähert. Liegt a' auf letzterer, so ist nur noch Dampf vorhanden, welcher überhitzt ist, sobald a' rechts von der Grenzkurve fällt.

Für die genauere Untersuchung aufgenommener Indikatordiagramme ist ein Vergleich der tatsächlichen Expansionslinie mit der "Kurve konstanter Dampfmenge" vorteilhaft. Diese Kurve veranschaulicht Zustandsänderungen, bei welchen sich die spez. Dampfmenge nicht ändert. Für den Spezialfall x = 1 ergibt sich sonach die obere Grenzkurve als Darstellung.

Zunächst kann die letztere als Polytrope von der Form $p \cdot v^{\mu} = konst.$ entworfen werden.

Setzt man in Gl. 32

für das spez. Volumen s den Wert $\frac{1}{\gamma} = \frac{1}{\alpha \cdot n^n}$

ein, so wird:

$$u = \frac{1}{\alpha \cdot p^n} - \alpha$$

und da $v = (1 - x) \cdot \sigma x + s$, weiterhin:

Für x = 1 wird v = $\frac{1}{a p^n}$ und pvⁿ = konst. = A, worin A =

1,76133 und n = 1,065, wenn p in kg/qcm eingesetzt wird.

Hiernach läßt sich die Grenzkurve wie die Adiabate als polytropische Kurve darstellen.

Verbindet man die Gleichungen: x = xu + a

$$s = u + \sigma$$

so folgt:

$$\mathbf{x}' = \mathbf{a} \colon \mathbf{b} = \mathbf{a}' \colon \mathbf{b}'.$$

Bezüglich Anwendung dieser Kurven auf Dampfdiagramme s. S. <u>36</u>.

Außere Arbeit. Wird Gl. $\mathbf{v} - \sigma = \mathbf{x} (\mathbf{s} - \sigma)$ bei konstant angenommenen σ differenziert, so folgt bei gleichzeitiger Multiplikation mit p $\mathbf{p} \cdot \mathbf{dv} = \mathbf{x}' \cdot \mathbf{p} \cdot \mathbf{ds}$

und durch Integration:

Hierin stellt L_1 die bei einer Expansion nach der Grenzkurve geleistete Arbeit dar und L diejenige Arbeit, welche bei der Expansion einer Mischung von der spez. Dampfmenge x' geleistet wird.

Die zuzuführende Wärmemenge folgt für die Expansion nach der Grenzkurve aus:

c) Die Zustandsgleichung des überhitzten Wasserdampfes.

Wird gesättigtem Dampf, welcher nicht mehr mit der Flüssigkeit in Verbindung steht, Wärme zugeführt, so nehmen bei gleichbleibendem Druck die Temperatur und das spez. Volumen zu.

Die Gesamtwärme λ_1 , die zur Erzeugung des überhitzten Dampfes dient, wird:

worin λ die Gesamtwärme des gesättigten Dampfes von der Temperatur t, c_p die spez. Wärme,

 t_1 die Überhitzungstemperatur bedeuten.

Was die Größe der spez. Wärme c_p betrifft, die früher allgemein = 0.48 gesetzt wurde¹), so haben Versuche von Knoblauch und Jakob ergeben, daß c_p bei gleichbleibender Temperatur mit dem Drucke zunimmt; bei gleichem Drucke wird c_p vom Sättigungspunkte aus zunächst kleiner und wächst sodann wieder von 250° bis 300° an, wie aus der folgenden Zahlentafel ersichtlich ist.

p = atm. abs. $t_s = Sättig. Temperatur$	$\begin{array}{c}2\\120\end{array}$	4 143	$\frac{6}{158}$	8 169	10 179	12 187	14 194
$egin{array}{rcl} t &=& 150\ 200\ 250\ 300\ 350\ 400 \end{array}$	$\begin{array}{c} 0,478\\ 0,475\\ 0,474\\ 0,475\\ 0,477\\ 0,481 \end{array}$	0,515 0,502 0,495 0,492 0,492 0,492	$0,530 \\ 0,514 \\ 0,505 \\ 0,503 \\ 0,504$	$\begin{array}{c} 0,560\\ 0,532\\ 0,517\\ 0,512\\ 0,512\end{array}$	0,597 0,552 0,530 0,522 0,520	0,635 0,570 0,541 0,529 0,526	0,677 0,588 0,550 0,536 0,531

Als Zustandsgleichung hat R. Linde folgende Formel aufgestellt:

$$\mathbf{pv} = \mathbf{R} \cdot \mathbf{T} - \mathbf{p} \ (\mathbf{l} + \mathbf{a} \cdot \mathbf{p}) \left[\mathbf{C} \left(\frac{373}{\mathbf{T}} \right)^3 - \mathbf{D} \right] \quad . \quad . \quad . \quad (57)$$

worin: R = 47,10; $a = 0,000\,002$; C = 0,031; D = 0,0052.

') Schon in Z. 1902, S. 729 wies v. Bach darauf hin, daß der Wert $c_{\rm p}=0,48$ zu klein und richtiger durch $c_{\rm p}=0,6$ zu ersetzen sei.

Als ausreichende Näherungsformel gibt Linde die Gleichung:

$$pv = 47,1 T = 0,016 . p. (p in kg/qm) (58)$$

Die Gleichung gilt nur, solange bei der Zustandsänderung das Sattdampfgebiet nicht berührt wird.

d) Die Zustandsänderungen des überhitzten Dampfes.

1. Die Tsotherme.

Bezeichnen p1, v1 und T1 Druck, Volumen und Temperatur im Endzustand,

p, v und T dasselbe für den Anfangszustand, so wird:

$$\mathbf{p}\,\mathbf{v}=\mathbf{R}\boldsymbol{\cdot}\mathbf{T}-\mathbf{p}^{\mathbf{n}},$$

$$\mathbf{v}_1 = \mathbf{R}_1 \mathbf{T}_1 - \mathbf{C} \mathbf{p}_1^{\mathbf{n}_2}$$

und durch Subtraktion folgt:

als Gleichung für die isothermische Zustandsänderung, da hier $T = T_1$. Die zuzuführende Wärmemenge wird ebenso wie bei den gesättigten

Dämpfen nur teilweise zur Verrichtung äußerer Arbeit aufgebraucht.

2. Die Adiabate.

Die Gleichung der adiabatischen Expansion lautet, falls der Dampf im ganzen Verlauf derselben überhitzt bleibt:

$$\mathbf{p} \cdot \mathbf{v}^{\mathbf{k}} = \mathbf{konst}, \text{ wenn } \mathbf{k} = \frac{3}{4} = 1,333.$$

Die äußere Arbeit wird wie bei den Gasen nach Gl. 26 und Fig. 3:

$$L = \frac{\mathbf{p} \cdot \mathbf{v}}{\mathbf{k} - 1} \left[1 - \left(\frac{\mathbf{v}}{\mathbf{v}_1} \right)^{\mathbf{k} - 1} \right]$$

.,333 eingesetzt:
$$L = \frac{\mathbf{p} \cdot \mathbf{v}}{0.333} \left[1 - \left(\frac{\mathbf{v}}{\mathbf{v}_1} \right)^{0.333} \right]$$

oder, k = 1

$$\mathbf{L} = \frac{\mathbf{p} \mathbf{v}}{\mathbf{0},333} \left[1 - \left(\frac{\mathbf{v}}{\mathbf{v}_1}\right)^{\mathbf{0},555} \right]$$

und da $\frac{v}{v_1} = \epsilon' = F$ üllungsgrad

$$\mathbf{L} = 3 \, \mathbf{p} \, \mathbf{v} \bigg[\mathbf{1} - \frac{3}{\sqrt{\varepsilon'}} \bigg].$$

Die Druckkurve der adiabatischen Zustandänderung fällt schneller als die Grenzkurve, da der Exponent der

ersteren größer ist als derjenige der letzteren. Um das Volumen v_{g} zu finden, bis zu welchem der Dampf expandieren darf, ohne in den gesättigten Zustand überzugehen, muß

der Punkt S bekannt sein, in welchem Grenzkurve und Adiabate einander schneiden. diesem Schnittpunkt haben die Koordinaten

beider Kurven die gleiche Größe. Fig. 13. Die Gleichung der Grenzkurve lautet:

$$p v_{g}^{n} = A_{g}$$

diejenige für die Adiabate:

$$p v_g^k = p_1 v_1^k,$$

so daß, da die Grenzspannung sich hieraus zu $p = \frac{A}{v_c^n}$ ergibt,

Aus dem spez. Volumen v_1 des Frischdampfes und dem nach Gl. 60 zu berechnenden Volumen v_g , bei welchem der Dampf in Sättigung übergeht, findet sich dann der Expansionsgrad des überhitzten Dampfes:

$$\varepsilon_1 = \frac{\mathbf{v}_g}{\mathbf{v}_1},$$

d. i. der reziproke Wert des Füllungsgrades.

Aus diesem Ausdruck und aus $\varepsilon = \frac{v}{v_1}$ folgt weiterhin der Expansionsgrad für die auf die Expansion des überhitzten Dampfes folgende Expansion des gesättigten Dampfes:

$$\varepsilon_2 = \frac{\varepsilon}{\varepsilon_1} = \frac{\nabla}{\nabla_g}.$$

Die Gesamtarbeit des Dampfes kann sonach aus den Einzelarbeiten des überhitzten und des gesättigten Dampfes zusammengesetzt werden, deren Darstellungen im Diagramm durch eine durch den Sättigungspunkt hindurchgehende Wagerechte getrennt werden.

Analog wie auf S. 19 findet sich dann die Anzahl der PS_i , welche von 1 kg überhitztem Dampf eine Stunde lang in der verlustlosen Maschine verrichtet wird:

$$\mathbf{N}_{\mathbf{i}} = \frac{\mathbf{p}_{\mathbf{i}}\mathbf{v}_{\mathbf{i}}}{27} \left[\frac{\mathbf{k}}{\mathbf{k}-\mathbf{i}} + \frac{\mathbf{k}-\mu}{(\mathbf{k}-\mathbf{i})\cdot(\mu-\mathbf{i})} \cdot \frac{\mathbf{i}}{\varepsilon_{\mathbf{i}}\mathbf{k}-\mathbf{i}} - \frac{1}{\mu-\mathbf{i}} \cdot \frac{1}{\varepsilon_{\mathbf{i}}\mathbf{k}-\mathbf{i}\cdot\varepsilon_{\mathbf{p}}\mu-\mathbf{i}} - \varepsilon \cdot \frac{\mathbf{p}}{\mathbf{p}_{\mathbf{i}}} \right].$$

Nach Einsetzung der Werte für μ und k wird:

$$N_{i} = \frac{p_{1} v_{1}}{27} \left[4 + 4.4 \cdot \frac{1}{\varepsilon_{i}^{0.033}} - 7.41 \frac{1}{\varepsilon_{i}^{0.033} \cdot \varepsilon_{2}^{0.0135}} - \varepsilon \cdot \frac{p}{p_{1}} \right] \quad . \quad (61)$$

Gl. 61 hat der "Verein deutscher Ingenieure" ebenfalls in den Anhang zu den Normen für Leistungsversuche aufgenommen.

e) Das Entropiediagramm des Wasserdampfes¹).

Bei der Aufzeichnung des Entropiediagramms werden zunächst die Hauptlinien festgelegt, indem nach passend gewähltem Maßstab für 1° C im Abstand —273° von der Nulllinie die Wagerechte O x gezogen und die Achse O y entsprechend eingeteilt wird (Fig. 14).

¹) S. Ancona. Z. 1897, S. 447.

Die Hauptsätze der Mechanik der Gase und Dämpfe.

Nach Gl. 43 ist d $G = dq + T \cdot d\left(\frac{x \cdot r}{T}\right)$ und somit die Summe aller Wärmegewichte:

$$\int \frac{\mathrm{d}\mathbf{Q}}{\mathrm{T}} = \int \frac{\mathrm{d}\mathbf{q}}{\mathrm{T}} + \frac{\mathbf{x}\cdot\mathbf{r}}{\mathrm{T}}.$$

Da für die untere Grenzkurve x = 0 und für die obere x = 1, so nehmen die Abszissen der unteren Grenzkurve den Wert $\int \frac{dq}{T}$, diejenigen der oberen Grenzkurven den Wert $\int \frac{dq}{T} + \frac{r}{T}$ an und können somit der Dampftabelle entnommen werden. In dieser können ebenfalls die zu den

Temperaturen auf der O y-Achse gehörigen Drucke aufgesucht werden, so daß die Druckkurve pp über der — O x Achse verzeichnet werden kann.

Wird an diese pp Kurve in einem dem Druck p und der Temperatur T entsprechenden Punkt A eine Tangente gelegt, so ist die Subtangente $BC = x \cdot \frac{d y}{d x} = p \cdot \frac{d T}{d p}$, und der Inhalt J' des Rechteckes $DEFG = p \cdot \frac{d T}{d p} \cdot \frac{r}{T}$, da nach dem Vorigen $DE = \frac{r}{T}$. Es folgt, da auch $u \cdot d p = \frac{r}{AT} \cdot dT$: J' = Apu.
Das Entropiediagramm gibt sonach nicht nur die zur Dampferzeugung erforderliche Gesamtwärme wieder, sondern läßt auch die einzelnen Wärmemengen erkennen, aus welchen jene sich zusammensetzt.

Die unterhalb der unteren Grenzkurve liegende, senkrecht schraffierte Fläche stellt die Flüssigkeitswärme q dar, und da J' = A p u, so gibt die wagerecht schraffierte Fläche unter G F die innere Verdampfungswärme ϱ wieder.

Nach der Clapeyronschen Gleichung ist weiterhin:

$$\frac{\mathbf{r}}{\mathbf{u}} = \mathbf{A} \mathbf{T} \cdot \frac{\mathbf{d} \mathbf{p}}{\mathbf{d} \mathbf{T}} \text{ oder } \mathbf{A} \mathbf{u} = \frac{\mathbf{r}}{\mathbf{T}} \cdot \frac{\mathbf{1}}{\mathbf{d} \mathbf{p}} = \frac{\mathbf{r}}{\mathbf{T}} \cdot \mathbf{tg} \beta \quad . \quad . \quad . \quad (61 \text{ a})$$

Der Wert Au läßt sich sonach, da für jedes T die Strecke $\frac{r}{T}$ abgegriffen und Winkel β konstruiert werden kann, leicht ermitteln, und es

kann die Au-Kurve in den linken Quadranten eingezeichnet werden. Soll der z. B. dem Punkt E des Entropiediagramms entsprechende

Punkt der A u - Kurve aufgesucht werden, so wird im Punkt G eine Senkrechte G H = A C = p errichtet und Linie H F gezogen. Da $\Delta H G F \propto \Delta F E J$,

so folgt:

 $\frac{\mathbf{H}\,\mathbf{G}}{\mathbf{D}\,\mathbf{G}} = \frac{\mathbf{H}\,\mathbf{G}}{\mathbf{E}\,\mathbf{F}} = \frac{\mathbf{G}\,\mathbf{F}}{\mathbf{J}\,\mathbf{E}} \text{ und da } \mathbf{E}\,\mathbf{F}\cdot\mathbf{G}\,\mathbf{F} = \mathbf{J}' = \mathbf{A}\,\mathbf{p}\,\mathbf{u} = \mathbf{H}\,\mathbf{G}\cdot\mathbf{J}\,\mathbf{E} = \mathbf{p}\cdot\mathbf{J}\,\mathbf{E}$ $\mathbf{J}\,\mathbf{E} = \mathbf{A}\,\mathbf{u}.$

Wird J E = R S gemacht, so ist S der gesuchte Punkt der Au-Kurve.

Wie die letztere der oberen Grenzkurve entspricht, so entspricht die — O x Achse der unteren Grenzkurve.

Eine Kurve konstanten Volumens, welche z. B. für die Vorausströmung in der Dampfmaschine¹) gezeichnet wird, ist im linken Quadranten durch eine Parallele v v zur x Achse dargestellt. Bei dem Druck p = AC wird die spez. Dampfmenge durch das Verhältnis $x = \frac{RK}{RS}$ wiedergegeben. Soll die Kurve konstanten Volumens im Entropiediagramm abgebildet werden, so wird durch S eine Wagerechte S T = D E $= \frac{r}{T}$ gezogen und Punkt T mit R verbunden. Dann ist:

$$\mathbf{x} = \frac{\mathbf{R}\mathbf{K}}{\mathbf{R}\mathbf{S}} = \frac{\mathbf{K}\mathbf{Z}}{\mathbf{S}\mathbf{T}}; \quad \mathbf{K}\mathbf{Z} = \frac{\mathbf{x}\cdot\mathbf{r}}{\mathbf{T}}.$$

Die Abtragung der Strecke K Z von D aus ergibt den, dem Punkt K entsprechenden Punkt M. Die Strecke E D muß eben durch M in demselben Verhältnis geteilt werden, in welchem K die Länge R S teilt. Wird dieses, hier nur für Punkt K angegebene Verfahren auf andere

¹) Der tatsächliche Vorgang ist allerdings anders. Bei Öffnung des Auslaßkanals wird ein Teil der Wärme in Bewegungsenergie umgesetzt. Da aber auch diese vom Kühlwasser aufgenommen wird, so kann man die Annahme machen: daß soviel Wärme bei konstantem Volumen an das Kühlwasser abgegeben werde, bis der Kondensatordruck erreicht sei.

Punkte der v v - -Linie ausgeführt, so erhält man im Entropiediagramm die Kurve LM. Die Subtangente in dem Punkt einer eine beliebige Zustandsänderung darstellenden Kurve gibt die betreffende spez. Wärme an. denn es ist:

die Subtangente =
$$\mathbf{y} \cdot \frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \mathbf{y}} = \frac{\mathbf{d} \mathbf{Q}}{\mathbf{d} \mathbf{T}}$$
, da $\mathbf{x} = \int \frac{\mathbf{d} \mathbf{Q}}{\mathbf{T}}$, $\mathbf{y} = \mathbf{T}$.

Die Neigung einer Kurve gegen die x-Achse läßt somit gleich erkennen, ob bei der dargestellten Zustandsänderung eine Entziehung oder eine Zufuhr von Wärme stattfindet. Im ersteren Fall zeigt die Tangentenrichtung nach rechts, die spez. Wärme ist negativ, im zweiten Fall trifft das Umgekehrte zu.

Wie bei den Gasen, so ist auch hier die Abbildung der Adiabate eine Parallele zur O y - Achse, die der Isotherme eine Parallele zur O x -Achse, da bei ersterer $\frac{Q}{T}$, bei letzterer T konstant ist.

Ist der Dampf auf die Temperatur T₁ beim Druck p' überhitzt, so wird zunächst auf der oberen Grenzkurve jener Punkt E' aufgesucht, welcher in einem, dem Druck p' entsprechenden Abstand T' über der absoluten Nulllinie liegt. In E' nimmt die rasch aufsteigende Kurve konstanten Druckes ihren Anfang.

Gegenüber gesättigtem Dampf ist die Entropie des überhitzten

Dampfes um $\int_{-T}^{T'} c_p \frac{dT}{T} = c_p \cdot \log n \frac{T'}{T}$ größer, so daß dieser Mehrwert für

jede Temperaturhöhe T' nach rechts von der durch Punkt E' gelegten Senkrechten abzutragen ist.

f) Ausfluß des Wasserdampfes durch Düsen.

Von dem Gewicht $\mathbf{F} \cdot \boldsymbol{\varDelta} \mathbf{l} \cdot \boldsymbol{\gamma}$ fällt nur die Komponente $\mathbf{F} \cdot \boldsymbol{\varDelta} \mathbf{l} \cdot \boldsymbol{\gamma} \cdot \sin \alpha$ in die Bewegungsrichtung, wenn $\sin \alpha = \frac{\partial \mathbf{h}}{\partial \mathbf{l}}$; es wirkt somit insgesamt beschleunigend:

$$\mathbf{F} \cdot \mathbf{p} - \mathbf{F} (\mathbf{p} + \Delta \mathbf{p}) - \mathbf{F} \cdot \Delta \cdot \mathbf{l} \gamma \cdot \frac{\Delta \mathbf{h}}{\Delta \mathbf{l}}.$$

 $\frac{\mathbf{F} \cdot \mathbf{\Delta} \mathbf{i} \cdot \mathbf{\gamma}}{\mathbf{g}}$ ist die Masse des Teilchens und $\frac{\mathbf{d} \mathbf{c}}{\mathbf{d} \mathbf{t}}$ seine Beschleunigung. Setzt man: Masse \times Beschleunigung = Kraft und dividiert zugleich auf beiden Seiten durch F, so erhält man:

$$\frac{\Delta \mathbf{l} \cdot \boldsymbol{\gamma}}{\mathbf{g}} \cdot \frac{\mathbf{d} \mathbf{c}}{\mathbf{d} \mathbf{t}} = -\Delta \mathbf{p} - \Delta \mathbf{l} \cdot \boldsymbol{\gamma} \cdot \frac{\Delta \mathbf{h}}{\Delta \mathbf{l}}.$$

Wird der Weg von C nach D in der Zeit Δt zurückgelegt, dann ist $\frac{\Delta l}{\Delta t} = c$ um so genauer, je kleiner Δl , und um so mehr stimmt $\frac{\Delta c}{\Delta t}$ mit $\frac{d c}{d t}$ überein.

Es wird:

$$\Delta \mathbf{l} \cdot \frac{\mathrm{d} \mathbf{c}}{\mathrm{d} \mathbf{t}} = \frac{\Delta \mathbf{l}}{\Delta \mathbf{t}} \cdot \Delta \mathbf{c} = \mathbf{c} \cdot \Delta \mathbf{c},$$

und daraus folgt:

$$\Delta \mathbf{p} + \gamma \, \Delta \mathbf{h} + \frac{\gamma}{\mathbf{g}} \cdot \mathbf{c} \cdot \Delta \mathbf{c} = 0.$$

Diese Gleichung wird um so genauer, je kleiner Δl wird:

$$rac{\mathrm{d}\,\mathrm{p}}{\gamma} + \,\mathrm{d}\,\mathrm{h} + rac{\mathrm{c}}{\mathrm{g}} \cdot \mathrm{d}\,\mathrm{c} = \mathrm{o}.$$

Die Integration dieser Gleichung ergibt:

Nun ist:

$$\gamma = \frac{1}{v}$$

somit:

$$h + \frac{c^2}{2g} + \int \mathbf{v} \cdot d\mathbf{p} = \text{konst.}$$
 (62a)

Kann die Fallhöhe h vernachlässigt werden, was in vielen Fällen gestattet ist, so kann für Gl. 62a auch gesetzt werden:

Aus Gl. 23a auf S. 7 folgt, wenn für trocken gesättigter Dampf k durch $\mu = 1,135$ ersetzt wird, zunächst $\mu \cdot pdv + v \cdot dp = 0$ oder: $(\mu - 1) \cdot vdp = \mu d(pv).$

Setzt man den hieraus zu bestimmenden Wert für v.dp in Gl. 63 ein, so erhält man:

Ist $p_1 = Druck$ im Ausflußgefäß,

p = Druck im Aufnahmegefäß,

 $v_1 = spez$. Volumen zum Druck p_1 ,

so folgt durch Integration der Gl. 64, da im Ausflußgefäß
$$c_1 = 0$$
:

Nach Gl. 49 ist weiterhin:

so daß Gl. 65 für c aufgelöst, ergibt

Die Durchflußgeschwindigkeit c
 ist sonach bestimmbar, sobald der Druck p im Querschnit
tF bekannt ist.

Ist G das in der Sekunde durch das Rohr strömende Gewicht von Wasser und Dampf, so ist das den Querschnitt F durchströmende Volumen sowohl G·v als auch F·c,

 $\mathbf{G} = \frac{\mathbf{F} \cdot \mathbf{c}}{\mathbf{v}}$

$$\mathbf{v} = \left(\frac{\mathbf{p}_1}{\mu}\right)^{\frac{1}{\mu}}, \mathbf{v}$$

und da nach Gl. 49

$$\mathbf{G} = \frac{\mathbf{F}}{\mathbf{v}_1} \left(\frac{\mathbf{p}}{\mathbf{p}_1}\right)^{\frac{1}{\mu}} \cdot \mathbf{c}$$

Unter Benutzung der Gl. 66 ergibt sich:

$$\mathbf{G} = \mathbf{F} \sqrt{\frac{2 \mathbf{g} \cdot \boldsymbol{\mu}}{\boldsymbol{\mu} - 1} \cdot \frac{\mathbf{p}_1}{\mathbf{v}_1} \left[\left(\frac{\mathbf{p}}{\mathbf{p}_1} \right)^{\frac{2}{\boldsymbol{\mu}}} - \left(\frac{\mathbf{p}}{\mathbf{p}_1} \right)^{\frac{\boldsymbol{\mu} + 1}{\boldsymbol{\mu}}} \right]} \quad . \quad . \quad . \quad (67)$$

Da das Gewicht G für alle Querschnitte denselben Wert hat, so ist durch diese Gleichung die Abhängigkeit des Druckes p vom Querschnitt F gegeben. Das sek. austretende Gewicht wird ein Maximium und der zugehörige Querschnitt ein Minimum, sobald für einen gewissen Wert von p der Klammerausdruck unter der Wurzel ein Maximum wird. Dies ist der Fall, wenn

Dieser Wert von p wird als "kritischer Mündungsdruck" bezeichnet, da die Geschwindigkeit unveränderlich bleibt auch dann, wenn der Druck im Aufnahmegefäß kleiner als 0,5774 p_1 ist. Das sekundlich durch den kleinsten Querschnitt F_k strömende Mischungsgewicht ergibt sich aus:

$$G = F_k \sqrt{2g \cdot \frac{\mu}{\mu - 1} \frac{p_1}{v_1} \frac{(\mu - 1)}{(\mu + 1)} \left(\frac{2}{\mu + 1}\right)^{\frac{2}{\mu - 1}}} \qquad (p \text{ in } kg/qm)$$

Für $\mu = 1,135$ folgt:

$$\frac{\mathrm{G}}{\mathrm{F}_{k}} = 1,99 \sqrt{\frac{\mathrm{p}_{1}}{\mathrm{v}_{1}}}.$$

Die größte Ausflußgeschwindigkeit bestimmt sich aus der Gleichung:

$$\mathbf{e}_{\max} = \sqrt{\frac{2\,\mathbf{g}\cdot\boldsymbol{\mu}}{\boldsymbol{\mu}-1}\cdot\mathbf{p}_{1}\,\mathbf{v}_{1}\,\left[1-0.5774^{\frac{\boldsymbol{\mu}-1}{\boldsymbol{\mu}}}\right]} = 3.23 \ \sqrt{\mathbf{p}_{1}\,\mathbf{v}_{1}} \quad (\text{p in } \mathrm{kg/qm}). \tag{69}$$

Die folgende Zahlentafel zeigt die geringe Veränderlichkeit von cm:

28

Mechanik des Wasserdampfes.

p ₁	\mathbf{p}	$\mathbf{c}_{\mathbf{m}}$
5	2,887	$442,4 \mathrm{m}$
6	3,465	444,9
7	4,042	447,0
8	4,619	448,8
9	5,197	450,4
10	5,774	451,8
11	6,352	453,1
12	6.929	454.3

Nach Gutermuth¹) kann für Überschlagsrechnungen die Ausflußgeschwindigkeit c oberhalb des kritischen Mündungsdruckes mit großer Annäherung aus der Formel bestimmt werden.

Für überhitzten Dampf gelten dieselben Gleichungen mit $\mu = 1,333$. Es ergibt sich:

g) Das Molliersche J-S-Diagramm²).

Die namentlich bei der Dampfturbinen-Berechnung häufig vorkommende Bestimmung von Wärmegefällen erfordert im Entropiediagramm die Planimetrierung der entsprechenden Wärmeflächen.

Mollier trägt nun in seinem sogen. J-S-Diagramm die Wärmeinhalte als Ordinaten, die Entropiewerte als Abszissen auf, wodurch es möglich wird, die Wärmegefälle und auch die Dampfgeschwindigkeiten unmittelbar aus dem Diagramm als Strecken abzugreifen.

Die Verbindung der Punkte gleicher Dampffeuchtigkeit, gleicher Temperatur und gleichen Druckes ergibt die Kurvenscharen x = konst., T = konst., p = konst., sodaß beliebige Zustandsänderungen durch Kurven dargestellt werden, welche durch die betreffenden Zustandspunkte gezogen werden.

Adiabatische Zustandsänderungen werden durch senkrechte Geraden wiedergegeben. Die Entropie bleibt konstant.

Bei wagerechten Geraden bleibt der Wärmeinhalt konstant, während sich der Entropiewert ändert, d. h. es wird die nicht umkehrbare Zustandsänderung bei der Drosselung wiedergegeben.

¹) Z. 1904, S. 75 u. f.

²) R. Mollier, Neue Tabellen und Diagramme für Wasserdampf.

B. Das Verhalten des Dampfes in der Dampfmaschine.

a) Konstruktion, Verlauf und Untersuchung des Dampfdiagramms.

Fig. 16 zeigt das Diagramm einer Auspuffmaschine. Kurz vor der Kolbentotlage wird im Punkt V E der Einlaßkanal geöffnet, damit schon

der Einlaßkanal geöffnet, damit schon im Anfang des Hubes sich der volle Eintrittsdruck im Zylinder einstellt. In Ex wird der Einlaßkanal geschlossen, und die Expansion beginnt. In dem ebenfalls vor der Kolbentotlage gelegenen Punkt va öffnet der Auslaßschieber, so daß der Gegendruck schon im Hubwechsel seinen niedrigsten Wert erreicht. Nach Schließung des Auslaßkanals beginnt in Co die Kompression des im Zylinder zurückgebliebenen Dampfes.

^{Fig. 16.} Das Diagramm zeigt demnach die Vorgänge auf einer Kolbenseite während einer Umdrehung.

In Fig. 16 ist weiterhin die Konstruktion des Diagramms wiedergegeben. Expansions- und Kompressionslinie werden bei Verwendung gesättigten Dampfes als gleichseitige Hyperbel nach den Angaben auf S. 5 gezeichnet.

Diese Übereinstimmung der Expansionslinie des Dampfes mit der Isotherme für Gase ist zufällig. Erstere ist selbstverständlich als Darstellung einer an und für sich adiabatischen Zustandsänderung aufzufassen, welche in ihrem Verlauf durch den Wärmeaustausch mit den Wandungen beeinflußt wird.

Der Verlauf der Expansionslinie bei überhitztem Dampf läßt sich nicht durch einfache Beziehungen ausdrücken, da selbst unter Voraussetzung der allgemeinen Form pv^n der Exponent im ersten Teil der Expansion größer ist als gegen Ende. Liegt die Expansionslinie noch im Gebiete des gesättigten Dampfes, so ergibt sich in der Regel zwischen Anfangs- und Endpunkt die der Adiabate mit der bezüglichen Dampfnässe entsprechende Beziehung.

Bei sehr hohen Überhitzungen erreicht der Exponent im ersten Teil der Expansionslinie etwa den Wert 1,2 bis 1,25.

Der Druckmaßstab, d. h. die Länge in mm für 1 kg/qcm wird so gewählt, daß die Höhe des Diagramms 60 bis 70 mm nicht übersteigt; die Länge wird meist zu 100 mm angenommen. s_0 gibt die Größe des schädlichen Raumes an; als solcher wird derjenige Raum bezeichnet, welcher in der Totlage des Kolbens von diesem und den Steuerungsorganen eingeschlossen wird.

Für Maschinen, bei welchen der Hub annähernd doppelt so groß ist wie der Zylinderdurchmesser, und deren Kolbengeschwindigkeit $2:3^{m}$ beträgt, kann der schädliche Raum in v. Ht. des Hubvolumens (= Hub × Kolbenfläche) geschätzt werden zu:

4 v. Ht. bei Anwendung von Rundschiebern,

7 v. Ht. ,, ,, ,, Ventilen,

8	v.	Ht.	,,	,,	,,	Flachschiebern	Grundschieberinhalt
12	v.	Ht.	,,	"	,,	Kolbenschiebern	eingerechnet.

Vorstehende Werte nehmen mit kleiner werdendem Hub und mit wachsender Kolbengeschwindigkeit zu.

Die Größe der Füllung wird durch Rücksichten auf wirtschaftlichen Betrieb bestimmt. Die Betriebskosten einer Dampfanlage setzen sich aus den Ausgaben für Brennstoff, Wartung, Schmierung und Unterhaltung zusammen. Mit größer werdender Füllung nehmen für gleiche Leistung die Abmessungen und der Preis der Maschine ab, so daß Verzinsung und Abschreibung sich verringern. Da hierbei aber die Ausnutzung des Dampfes, welcher am Ende der Expansion noch mit verhältnismäßig hohem Druck aus der Maschine entlassen wird, eine schlechtere ist, so vermehren sich entsprechend die Ausgaben für Brennstoff. Bei kleinen Füllungen liegt der Fall umgekehrt, doch nur bis zu einer bestimmten Grenze, da bei allzuweit getriebener Expansion aus der Dia-

Eintrittsspannung p in atm. absol.	Einzylinder-Auspuff- maschinen mit Expansionssteuerung	Einzylinder-Kondensationsmaschinen ohne Hemd mit Hemd		
$\begin{array}{c}3\\4\\5\\6\\8\\10\end{array}$	$\begin{array}{c} 0,47-0,43\\ 0,39-0,33\\ 0,33-0,28\\ 0,28-0,22\\ 0,22-0,17\\ 0,18-0,13 \end{array}$	$\begin{array}{c} 0,26-0,22\\ 0,20-0,17\\ 0,17-0,15\\ 0,15-0,13\\ 0,14-0,12 \end{array}$	$\begin{array}{c} 0,20 - 0,18 \\ 0,15 - 0,13 \\ 0,13 - 0,11 \\ 0,11 - 0,09 \\ 0,09 - 0,08 \end{array}$	

Mittlere Werte wirtschaftlich vorteilhaftester Füllungen.

Anmerkung. Die größeren Füllungen gelten für kleinere, die kleineren hingegen für große Maschinen. Die normalen Füllungen können etwas kleiner genommen werden bei hohen Brennstoffpreisen und ununterbrochenem Maschinenbetriebe; dagegen können etwas größere Füllungen als normal angenommen werden bei billigem Brennstoff oder für stark absätzigen Maschinenbetrieb. grammspitze im Verhältnis zu den Mehranschaffungskosten nur wenig Arbeit mehr gewonnen wird. Außerdem treten die im Kapitel "Verbundwirkung" erwähnten Übelstände auf.

Als wirtschaftlich vorteilhafteste Füllungen können nach A. Kas die der umstehenden Zahlentafel angenommen werden.

Die Eintrittsspannung ist stets kleiner als der Kesseldruck, da die Spannung des Dampfes in der Rohrleitung durch Reibung und Drosselung vermindert wird. Der Druckabfall beträgt für gut bemessene, kurze Rohrleitungen 0,2 bis 0,3 kg/qcm, sonst normal 0,5 kg/qcm, welcher Wert bei langen Rohrleitungen auf das Doppelte und mehr steigen kann.

Die gleichen Ursachen führen Druckabfall während der Füllung herbei, so daß die Eintrittslinie je nach der zugelassenen Dampfgeschwin-

digkeit und der Schnelligkeit des Kanalschlusses abfallend zu zeichnen ist. Der hierdurch entstehende Verlust an Diagrammfläche wird wenigstens teilweise durch die bei der Drosselung auftretende Dampftrocknung ausgeglichen.

Die Vorausströmung wird um so reichlicher gewählt, je größer die Umlaufzahl ist: bei Auspuffmaschinen 5—10 v. Ht., bei Kondensationsmaschinen 10—15 v. Ht., um bei diesen rechtzeitiges Auftreten der vollständigen Luftleere im Zylinder herbeizuführen.

Der Gegendruck beträgt in Auspuffmaschinen ungefähr 1,15 kg/qcm absol.; in Kondensationsmaschinen 0,15—0,2 kg/qcm absol. Diese Werte sind zu erhöhen, falls der Auspuffdampf für Heizzwecke durch lange Rohrleitungen geführt wird, oder wenn bei Kondensationsmaschinen besonders hohe Kühlwassertemperaturen vorliegen.

Die Kompression wird vielfach sehr hoch — bis zur Anfangsspannung — getrieben, womit die folgenden Vorteile verbunden sein sollen:

1. Der schädliche Raum braucht bei der Voreinströmung nicht mit Frischdampf aufgefüllt zu werden, und die Wechselwirkung zwischen Dampf und Zylinderwand wird günstig beeinflußt;

2. der Gang der Maschine wird sanfter.

Was den ersteren Punkt angeht, so trifft zunächst zu, daß das Diagramm einer Maschine mit beliebig großem schädlichen Raum, aber vollständiger Kompression und ebensolcher Expansion, dem Diagramm einer Maschine ohne schädlichen Raum völlig gleichwertig ist. Der Beweis läßt sich nach Fig. 17 leicht zeichnerisch führen.

Es sei A D E C das Diagramm einer Maschine ohne schädlichen Raum. Das Füllungsvolumen A D = 3 Einheiten dehne sich von 4 auf 1 Atm. aus, so daß das Endvolumen = 12 Einheiten wird. Die gewonnene Arbeit ist durch die Fläche A D E C dargestellt. Nimmt man nunmehr einen schädlichen Raum von $\frac{1}{2}$ Einheit an, so dehnt sich, vollständige Expansion vorausgesetzt, das Anfangsvolumen von $\frac{31}{2}$ Einheiten auf $4 \times \frac{31}{2} = 14$ Einheiten aus, und der vom Kolben durchlaufene Raum hat eine Länge von $\frac{131}{2}$ Einheiten. Schließt man den Auslaß $\frac{11}{2}$ Einheiten vor dem Totpunkt, so wird der Restdampf auf 4 Atm. komprimiert. Bei diesem Diagrammverlauf geht sonach die Kompressionsarbeit A C C'verloren und die Expansionsarbeit D E E' wird gewonnen. Die beide

Arbeiten darstellenden Flächen sind einander gleich, da sie dieselbe Höhe und für jede Höhe dieselbe Breite haben (m n = p q). Das Vorhandensein eines schädlichen Raumes von $\frac{1}{2}$ Einheit bedingt also zunächst nur eine Zunahme des Zylindervolumens von $\frac{1}{2}$ Einheiten.

Das Ergebnis fällt jedoch anders aus, wenn zwei Maschinen mit gleichem schädlichen Raum miteinander verglichen werden, von welchen die erste ohne Kompression, die zweite mit Kompression bis zur Anfangsspannung arbeitet. Die hierbei in Betracht kommenden Verhältnisse lassen sich aus der Fig. 18 ersehen. In der Maschine ohne

Kompression muß der schädliche Raum bei jedem Hub mit Frischdampf gefüllt werden, welcher keine Volldruckarbeit leistet. Der betreffende Verlust beträgt:

$$V_0 (p_1 - p_2).$$

Die Füllung des schädlichen Raumes fällt zwar bei der mit Kompression arbeitenden Maschine fort, doch muß dafür eine Kompressionsarbeit geleistet werden von der Größe:

$$V_0 p_1 \log n \frac{p_1}{p_2} - V_0 \left(\frac{p_1}{p_2} - 1 \right) \cdot p_2 = V_0 \left(p_1 \log n \frac{p_1}{p_2} - p_1 + p_2 \right).$$

Soll der durch diese Kompression hervorgerufene Verlust an Diagrammfläche durch eine Zusatzfüllung V_x ausgeglichen werden, so wird durch letztere eine Arbeit von der Größe

$$V_x p_1 \log n \frac{p_1}{p_2}$$

geleistet, welche der Kompressionsarbeit gleich sein muß. Das Verhältnis der Größe V_x zu V_0 drückt sich dann aus durch:

Dubbel, Dampfmaschinen. 3. Aufl.

$$\mathbf{V}_{\mathbf{x}} = \frac{1}{\eta \cdot \eta} \frac{\mathbf{p}_1 \log n \frac{\mathbf{p}_1}{\mathbf{p}_2} - \mathbf{p}_1 + \mathbf{p}_2}{\mathbf{p}_1 \log n \frac{\mathbf{p}_1}{\mathbf{p}_2}} \cdot \mathbf{V}_0,$$

worin durch den Faktor $\frac{1}{\eta \cdot \eta}$ der doppelte Reibungsverlust berücksichtigt wird, der dadurch entsteht, daß die Kompressionsarbeit vom Schwungrad geleistet wird.

Für die Hochdruckseite einer Verbundkondensationsmaschine, bezw. für eine Auspuffmaschine mit $p_1 = 8$, $p_2 = 1$, $\eta = 0$, 85 ist $V_x = 0.8 V_0$. Dieser geringe aus dem Diagramm berechnete Vorteil der Kompression wird dadurch aufgewogen, daß, gleiche Füllung vorausgesetzt, nicht nur bei gleicher Expansionsendspannung der Zylinder und mit diesem die Anlagekosten und Abkühlungsverluste größer werden, sondern auch wegen des größeren Druckunterschiedes zwischen beiden Kolbenseiten Undichtheiten während der Kompression fühlbarer werden.

In diesen Ausführungen wurde zudem Expansion bis auf den Gegendruck vorausgesetzt. Die Expansionsendspannung liegt aber stets erheblich höher, so daß ein weiterer Verlust dadurch eintritt, daß zwar vom Gegendruck an komprimiert wird, die Expansionsarbeit des schädlichen Raumes aber nur bis zur Expansionssendpannung reicht.

Versuche über die Wirtschaftlichkeit der Kompression sind von Doerfel, Dwelshauvers-Dery, Barr, Carpenter und Boulvin gemacht worden, welche sämtlich Zunahme des Dampfverbrauches mit Steigerung oder Kompression feststellten¹).

Aus den Doerfelschen Versuchen folgte u. a., daß die zur Erzielung hoher Kompression erforderliche Arbeit größer war als jene, die sich nach dem Gesetz p v = konst. ergab, so daß alle auf letztere Annahme sich stützenden Berechnungen zu günstig sind.

Doerfel fand nun als besonders wichtiges Ergebnis, daß sich der Eintrittsverlust bei den größeren Kompressionen verringerte. Es zeigte sich sogar, daß die Niederschlagverluste bei hoher Kompression und ohne Mantelheizung kleiner waren als bei kleiner Kompression und mit Heizung, wozu bei letzteren noch der Mantelverbrauch mit 10 v. Ht. des Dampfverbrauches hinzukommt, so daß der Vorteil deutlich auf seiten der hohen Kompression liegt. Bemerkenswert ist jedoch, daß durch die Kompressionsarbeit der theoretische Verbrauch so groß wird, daß der Gesamtdampfverbrauch bei hoher Kompression noch etwas ungünstiger ist als bei kleiner Kompression. Die seit diesen Versuchen häufig von anderen geäußerte Ansicht, daß sich durch hohe Kompression der Eintrittsverlust und dementsprechend auch der Gesamtverbrauch verringere, ist nicht stichhaltig, da ein wesentlicher Unterschied zwischen Wärmeentzug während der Kompression und während des Dampfeintrittes nicht besteht.

In neuerer Zeit hat Dr. Ing. Klemperer eingehende Versuche über den wirtschaftlichen Einfluß der Kompression angestellt. Er kommt zu dem Schluß: Die Bedingung, daß Kompression dampfsparend sei, be-

¹) S. des Verf. Aufsatz in Z. 1901, S. 189 ff.

ruht darauf, daß die Temperatur des Dampfes im Kompressionsendpunkt die Wandungstemperatur, nicht überschreite, daß also der Kompressionsenddruck nicht über den dieser Temperatur entsprechenden Druck hinausgehe. Da nun der Enddruck bei einem und demselben Kompressionsgrad hauptsächlich von der Größe des schädlichen Raumes und des Gegendruckes abhängt, so wird die Wirtschaftlichkeit der Kompression nicht durch die Dauer, sondern nur durch die Höhe des erreichten Enddruckes beeinflußt.

Zu ähnlichen Ergebnissen gelangt Boulvin auf Grund seiner Versuche. (Revue de Mécanique 1907.)

Bezüglich des Einflusses der Kompression auf die Ruhe des Ganges siehe unter Kapitel F: Die Stöße an Kurbel- und Kreuzkopfzapfen.

Über das Verhalten des Dampfes in der Maschine gibt bezüglich der wichtigsten Punkte eine Untersuchung der Expansionskurve Aufschluß. Der Verlauf der letzteren hängt außer von der Größe des schädlichen Raumes — dessen Einfluß schon beim Entwurf des Diagramms hervortritt — weiterhin von Undichtheiten und von der Wechselwirkung zwischen Dampf und Zylinderwand ab.

Bei Undichtheiten des Kolbens fällt die Expansionslinie unter die entsprechende Hyperbel bis zum Schluß, an welchem, falls auf der anderen Zylinderseite die Kompression erheblich ist, wieder ein Steigen stattfindet. Sind die Einlaßorgane undicht, so wird infolge des Nachströmens von Dampf die Expansionslinie hochgelegt. Undichtheiten von Kolben und Schieber zugleich können sich mitunter annähernd ausgleichen, doch ergeben sich bei sorgfältiger Untersuchung, welche auch auf die Kompressionslinie auszudehnen ist, in der Regel genügende Anhaltspunkte zur Beurteilung. Unter allen Umständen soll vor oder nach der Aufnahme von Indikatordiagrammen die Prüfung des Dichtheitszustandes durch direkten Dampfdruck bei betriebswarmem Zylinder vorgenommen werden.

Soll die Expansionskurve einer mit gesättigtem Dampf arbeitenden Maschine bezüglich ihrer Übereinstimmung mit der Mariotteschen Linie untersucht werden, so empfiehlt sich die Einzeichnung der Doerfelschen Charakteristik. Fig. 19.

Durch den Endpunkt der Füllung a wird eine Senkrechte a b gezogen. Die Strecke b c wird in eine Anzahl Teile zerlegt, und es werden die Schnittpunkte d', e',

f' der Teilordinaten mit der Expansionskurve auf die Senkrechte a b übertragen nach d, e, f.

Die von o aus durch d, e, f gezogenen Strahlen treffen die zugehörigen Teilordinaten in der Charakteristik. Diese ist eine wagerechte Gerade, wenn die Expansionslinie eine gleichseitige Hyperbel, sie hebt sich, wenn die Expansionslinie infolge Nachverdampfens oder Schieberundichtheiten hochliegt.

Vor der Eintragung der gleichseitigen Hyperbel selbst hat das beschriebene Verfahren den Vorzug, daß die Expansionskurve frei von allen Linien und deutlich erhalten bleibt. Das Verhalten des überhitzten Dampfes während der Expansion wird durch die Einzeichnung der Grenzkurve nach Fig. 20 klargelegt. Diese wird, wie folgt, bestimmt:

Das dem Kessel pro Hub der Maschine zugeführte Speisewasser wird beim Versuch durch direkte Messung ermittelt und betrage z. B. 0,05 kg. Das arithmetische Mittel der Füllungsgrade aus sämtlichen Diagrammen sei 0,3, während das zu untersuchende Diagramm eine Füllung von 0,33 aufweise. Dann wird das für letztere gebrauchte Dampfgewicht annähernd gleich $0,05 \cdot \frac{0,33}{0,3} = 0,055$ kg sein. Für den Eintrittsdruck

von 11,9 Atm. absol. des Diagramms geben die Dampftabellen ein spez. Volumen $(u + \sigma) = 0,166$ an, so daß für 0,055 Füllungsgewicht ein Rauminhalt von 0,166.0,0055 = 0,00913 cbm = 9,13 l folgt.

Bezüglich des im schädlichen Raum bei Eröffnung des Einlaßventils enthaltenen komprimierten Dampfes werde die Annahme gemacht wie meist üblich —, daß derselbe trocken gesättigt sei.

 $\label{eq:Gesamtvolumen:11,63} Gesamtvolumen: 11,63 l, oder wenn das Hubvolumen des Zylinders = 40 l sei, so macht dies Gesamt-$

volumen $\frac{11,63 \cdot 100}{40} = 29$ v. Ht. des Hubvolumens aus. Letzteres sei im Diagramm durch eine Länge von = 100 mm dargestellt, so daß für das Füllungsvolumen eine Länge von 29 mm folgt. Diese Länge soll nun

das spez. Volumen 0,166 cbm von trocken gesättigtem Dampf bei 11,9 Atm. wiedergegeben, sonach entspricht

$$1 \text{ cbm} = \frac{29}{0,166} = 175 \text{ mm}.$$

Für jeden Druck kann nunmehr das spez. Volumen den Dampftabellen entnommen werden, um, mit 175 multipliziert, in mm eingezeichnet zu werden. In Fig. 20¹) ist die uu-Kurve in dieser Weise

¹) Vergl. Schröter, Z. 1895, S. 14. Seemann, Z. 1897, S. 1408.

festgelegt. Wird im Abstand x = 1 (am zweckmäßigsten zu 100 mm gewählt) eine Wagerechte gezogen, und weiterhin durch den zu untersuchenden Punkt c der Expansionslinie ebenfalls eine Wagerechte gelegt welche die Grenzkurve im Punkt b schneidet, so folgt aus der Ähnlichkeit der beiden rechtwinkligen Dreiecke: $\frac{ac}{ab} = \frac{x}{1}$; die Höhe, in welcher die Senkrechte durch c den Strahl durch o schneidet, gibt somit unmittelbar die spez. Dampfmenge an. Im vorliegenden Fall, wo die Expansionskurve unterhalb der Grenzkurve liegt, ist der Dampf gesättigt. Würden beide Kurven sich schneiden, so gäbe der Schnittpunkt diejenige Stelle an, bei welcher Übergang in die Sättigung erfolgt.

In den folgenden Diagrammen a bis n sind die häufigsten Fehler in der Dampfverteilung wiedergegeben. Die schraffierten Arbeitsflächen gehen verloren.

Die Kompression steigt über die Eintrittsspannung. Die Schieber können dadurch abgeworfen werden.

Der Indikatorkolben klemmt sich in seiner oberen Stellung fest.

Die Wellen in der Expansionslinie können vom sprungweisen Arbeiten des Indikatorkolbens oder vom Wasser im Dampf herrühren.

Bei kleineren Füllungen geht die Expansionslinie unter die atm. Linie: es stellt sich eine Luftleere im Zylinder ein, und es entsteht eine negative Arbeitsfläche.

Die Vorausströmung erfolgt zu früh.

b) Berechnung der Maschinenleistung aus dem Diagramm.

Die vom Diagramm eingeschlossene Fläche stellt diejenige Arbeit dar, welche pro qcm Kolbenfläche während einer Umdrehung geleistet

wird. Zur Bestimmung dieser Arbeit ist die Feststellung der mittleren Diagrammhöhe erforderlich, welche dem gewählten Druckmaßstab gemäß den mittleren Druck p_m ergibt. Fig. 21. In einem Abstand von $1/10}$ der Dia-

In einem Abstand von $1/10}$ der Diagrammlänge *s* werden die Ordinaten a_1 bis a_{10} , in einer Entfernung vom Rande gleich 1/4 der Breite eines Teiles die Ordinaten a_0 und a_{11} gezogen. Jede

Ordinate wird als mittlere Höhe eines Trapezes betrachtet. Aus der Summe dieser Trapeze setzt sich die Diagrammfläche J zusammen. Es wird sonach:

 $J = \frac{s}{20} (a_0 + a_{11}) + \frac{s}{10} (a_1 + a_2 + \ldots + a_9),$

$$J = \frac{s}{10} \left(\frac{a_0}{2} + a_1 + a_2 + \ldots + a_9 + \frac{a_{11}}{2} \right).$$

Nun kann $J = s \cdot h$ gesetzt werden, wenn h die mittlere Diagrammhöhe ist. Aus dieser und der vorhergehenden Gleichung folgt somit: $h = \frac{1}{10} \left(\frac{a_0}{2} + a_1 + a_2 + \ldots + a_9 + \frac{a_{11}}{2} \right).$

Nach Umrechnung von h in p_m und nach Einführung der mittleren Kolbengeschwindigkeit = $\frac{2n \cdot s}{60} = \frac{n \cdot s}{30}$ wird die Arbeit pro qcm Kolben-fläche in mkg:

$$\mathbf{L} = \mathbf{p}_{\mathbf{m}} \cdot \mathbf{c}$$

und die Arbeit der Kolbenfläche 0 in Pferdestärken (PS):

$$N_i = \frac{O \cdot c \cdot p_m}{75}$$

wenn 0 in qcm ausgedrückt wird. Andere Arten, h zu ermitteln: mittelst der Simpsonschen Regel oder des Planimeters.

Vielfach wirt der mittlere Druck noch mit einem Völligkeitsgrad (= 90 bis 95 v. H.) multipliziert, um den Verlust an Diagrammfläche infolge Spannungsabfalls usw. zu berücksichtigen. Da jedoch das Diagramm der ausgeführten Maschine häufig genug größer ausfällt als das entworfene (Einfluß des Nachverdampfens usw.), so kann die Einführung des Völligkeitsgrades wenigstens bei Einzylindermaschinen unterbleiben, namentlich wenn das theoretische Diagramm schon Rücksicht auf den Spannungsabfall während der Füllung zeigt.

Die im Zylinder verrichtete "indizierte Arbeit" N_i (in PS_i ausgedrückt) wird in N_e , d. h. in die an die Welle abgegebene "effektive Arbeit" umgewandelt, indem N_i mit dem Wirkungsgrad η multipliziert wird:

$$\mathbf{N}_{\mathbf{e}} = \eta \cdot \mathbf{N}_{\mathbf{i}} = \eta \cdot \frac{\mathbf{O} \cdot \mathbf{c} \cdot \mathbf{p}_{\mathbf{m}}}{75}.$$

Je nach Ausführung, Steuerungsart und Vollkommenheit der Schmierung kann geschätzt werden:

 η zu 85 bis 92 v. Ht. bei liegenden Maschinen,

 η zu 90 bis 95 v. Ht. bei stehenden Maschinen.

Über Ermittelung des Wirkungsgrades s. S. 62.

c) Die Berechnung des theoretischen Dampfverbrauches und die Wechselwirkung zwischen Dampf und Zylinderwand.

Das Diagramm der Dampfmaschine gibt durch die Größe der Füllung diejenige Frischdampfmenge an, welche pro Hub in den Zylinder strömt. Ist v₂ das Hubvolumen, ε der Füllungsgrad, v₀ = $\varepsilon_1 \cdot v_2$ der schädliche Raum, so ist das Dampfvolumen pro Hub v₀ + v₁ = v₂

 $(\varepsilon + \varepsilon_1)$, wenn von der Kompression zunächst abgesehen wird. Bei starker Drosselung, nach Fig. 22, wird die Füllung festgestellt, indem durch Punkt b, welcher nach Augenschein bestimmt der Eintrittslinie angehört, und durch Punkt c, welcher auf der Expansionslinie liegt, Tangenten an Kurve bc gelegt werden. Der Schnittpunkt d der letzteren bezeichnet Füllungsende und p den Anfangsdruck der Expansion.

Aus der Dampftabelle ist das diesem Anfangsdruck entsprechende spez. Gewicht γ zu entnehmen, so daß das Füllungsgewicht = $(v_1 + v_0) \cdot \gamma$ wird. Von diesem wird diejenige Dampfmenge abgezogen, welche sich beim Beginn der Kompression im Zylinder vorfand. Ist ε_2 der Kompressionsgrad, γ_1 das der Ausströmungsspannung bei Kompressionsbeginn entsprechende spez. Dampfgewicht, so ist das pro Hub in den Zylinder eintretende Gewicht

$$\mathbf{G} = \mathbf{v}_2 \left[(\varepsilon + \varepsilon_1) \cdot \gamma - (\varepsilon_2 + \varepsilon_1) \cdot \gamma_1 \right].$$

Bei n Uml./min. wird sonach in der Stunde verbraucht:

 $\mathbf{G}_{\mathrm{st}} = 2 \cdot \mathbf{n} \cdot 60 \left[(\mathbf{\varepsilon} + \mathbf{\varepsilon}_1) \ \gamma - (\mathbf{\varepsilon}_2 + \mathbf{\varepsilon}_1) \cdot \mathbf{\gamma}_1
ight] \cdot \mathbf{v}_2.$

Dieses aus dem Indikatordiagramm berechenbare Dampfgewicht wird als "nutzbarer" oder "sichtbarer" Dampfverbrauch bezeichnet, welcher in Wirklichkeit um 20:50 v. Ht. und mehr überschritten wird. Dieser Mehrbedarf hat seine Ursache in Verlusten durch Abkühlung und Undichtheiten, von welchen die ersteren die weitaus größten sind. Tritt nämlich der Frischdampf von hoher Temperatur in den Zylinder ein, so gelangt er mit Wandungen in Berührung, welche während der vorhergehenden Ausströmperiode stark abgekühlt waren, so daß ein Teil des eintretenden Dampfes sich an den Zylinderwänden niederschlägt. Die an diesen sich festsetzende dünne Wasserschicht hat an ihrer Oberfläche fast genau denselben Temperaturverlauf wie der Eintrittsdampf, da der Wärmeübergang nur wenig Widerstand findet.

Beginnt die Expansion, so wird die Wärmeabgabe an die Wandungen fortdauern, bis die Dampftemperatur kleiner als die Wandtemperatur ist, und der Wasserbeschlag an der Wand verdampft. Die Rückerstattung der Wärme seitens der Wand an den Dampf wird in erheblichem Maße jedoch erst am Ende der Expansion und während der Ausströmung vor sich gehen, so daß die rückerstattete Wärme nicht nur nutzlos mit dem Auspuffdampf entweicht, sondern auch durch Erhöhung des Gegendruckes schädlich wirkt. Durch die hierbei stattfindende Verdampfung des Wasserbeschlages wird die Zylinderwand bei Kompressionsbeginn annähernd trocken sein, wodurch der Wärmeaustausch Die im Dampf noch etwa enthaltenen Wasserteilverringert wird. chen werden während der Kompression verdampft, so daß am Ende derselben nur noch trocken gesättigter Dampf im Zylinder vorhanden sein wird.

Um die Verdampfung des im Dampf enthaltenen Wassers während der arbeitverrichtenden Expansion und nicht während der arbeitverzehrenden Ausströmung herbeizuführen, umgibt man den Zylinder mit einem Dampfmantel, welcher die mittlere Zylinderwandtemperatur erhöht. Als weitere und wirksamere Mittel für die Verringerung des Wärme-

austausches sind die Verbundwirkung und die Anwendung des überhitzten Dampfes zu nennen.

Ein anschauliches Bild von der Wärmebewegung in Zylinderwandungen gibt die folgende Darstellung Grashofs, zunächst für einen ungeheizten Zylinder. Fig. 23.

G L bedeutet die Stärke der Deckelwand oder einer nahe der Einströmung gelegenen Zylinderwand. Während der Ausströmung hat die dampfberührte Innenfläche die Auspufftemperatur $t_2 = LA_2$ angenommen, und die Temperaturverteilung längs

der Wanddicke wird durch die Kurve A_2 b B dargestellt. Strecke G B gibt die konstant bleibende Temperatur an der Wandaußenseite wieder. Im Verlauf der Dampfeinströmung wird die Temperatur der inneren Oberfläche plötzlich von t_2 auf die Frischdampftemperatur t_1 erhöht. Da nun die der Innenseite nächstliegenden Eisenschichten ihre Temperatur nicht mit gleicher Schnelligkeit ändern können, so wird sich zwischen der Oberfläche und diesen Schichten ein großes Temperaturgefälle und ein dementsprechender, rascher Wärmeübergang einstellen, so daß trotz der infolge der Expansion abnehmenden Temperatur eine lebhafte Wärmebewegung von innen nach außen stattfindet. Letztere dauert an, bis das Temperaturgefälle der inneren Schichten gleich Null geworden, diese also gleiche Temperatur besitzen. Kurve $A_1 b B$ geht nach etwa $\frac{5}{8}$ Hub in Kurve $A_0 b B$ über, aus welcher ersichtlich ist, daß in der Eindringungstiefe $A_0 a_1$ die gleiche Temperatur herrscht. Bei Beginn der Vorausströmung verteilt sich die Temperatur nach A b B und geht infolge starker Wärmebewegung von außen nach innen in Kurve A, b B über.

Da die zwischen diesen Kurven liegenden Flächen die an die Wand übergehenden und die von ihr zurückgegebenen Wärmemengen darstellen, so ist bei der Einströmung eine Wärmemenge $A_1 b A_2$ an die Wand abgegeben worden, welche während der Expansion auf $A_0 b A_2$ zunahm. Letztere Wärmemenge wurde bis zum Beginn der Vorausströmung um $A_0 b A$ verkleinert, so daß die Fläche $A_0 b A$ die während der Expansion zurückerstattete Wärmemenge darstellt. Der weitaus größere Teil $A b A_2$ geht während der Ausströmung an den Dampf zurück, ist also nicht ausnutzbar.

Diese Überlegung Grashofs ist in unerwartet vollständiger Weise durch Versuche von Callendar und Nicholson bestätigt worden, welche die Zylinderwand-Temperatur mittelst thermoelektrischen Meßverfahrens feststellten¹).

Fig. 24 veranschaulicht eine ähnliche Darstellung für die Wand eines mit Frischdampf geheizten Zylinders. Die konstante Außenwand-

temperatur ist hier durch $BG=t_1$ wiedergegeben. Die Gerade BbC stellt den Verlauf der mittleren Temperatur dar, so daß die Kurven der zeitweilig auftretenden Temperaturen an diese Gerade im Punkt b sich tangential anschließen müssen. Während der Füllung nimmt Kurve A_3bB die Form A_1bB an. Der gegen vorhin weniger steile Verlauf der letzteren zeigt, daß die Temperatur in den der dampfberührten Fläche nächst gelegenen Schichten geringere Unterschiede aufweist, so daß schon bald Kurve A_1bB in A_0bB übergeht, welche gleiche Temperatur bis

zu der Tiefe $A_0 a_1$ angibt. Von jetzt ab, d. h. kurz nach Beginn der Expansion, geht die Wärme von der Wand an den expandierenden Dampf

¹) Bantlin, Z. 1899, S. 774.

über. Der Temperaturpunkt A entspricht etwa der Vorausströmung, so daß die aus der Wand während der Expansion ausgetretene Wärmemenge durch Fläche $A_0 b A$ dargestellt wird. Die Kurve A b B senkt sich bei der nun folgenden Ausströmung und geht in die Form $A_2 b B$ über. Die ganze Wärmemenge, welche während eines Doppelhubes aus der Wand tritt und zunächst durch die Fläche $A_0 b a_2 A_2$ wiedergegeben wird, muß noch durch diejenige Wärmemenge ergänzt werden, welche während der Ausströmung infolge der Heizung an der Außenseite eintritt und an der Innenseite austritt. Da durch die Verdampfung der auf der Wandinnenseite sitzenden Wasserschicht die Abgabe der von der Heizung herrührenden Wärme an den Auspuffdampf erschwert ist, so steigt die Oberflächentemperatur von t_2 auf $A_3 L$, und die Wärme strömt aus den nächstgelegenen inneren Schichten zur Oberfläche hin. Die Kurve $A_2 b B$ erhebt sich gegen Ende der Ausströmung zur Kurve $A_3 b B$.

Ein Vergleich dieses Diagramms mit dem in Fig. 23 zeigt, daß die Rückgabe der Wärme während der Expansion in reichlicherem Maße vor sich geht, und daß der Wärmeübergang während der Ausströmung sich verringert hat. Der Punkt *b* rückt der Innenwand näher, d. h. die am Wärmeaustausch teilnehmende Metallmasse bezw. Wärmemenge wird vermindert. Hierzu wird keine Wärme des Mantelinhaltes verbraucht. Allerdings wird an den Auspuffdampf auch die von der Heizung herrührende und durch die Flächenzunge $b a_2$ dargestellte Wärmemenge übertragen.

Im übrigen ist die Wechselwirkung zwischen Dampf und Zylinderwand abhängig:

1. von dem durchschnittlichen Temperaturüberschuß des Dampfes über die mittlere Zylinderwandtemperatur;

2. von der Zeit, während welcher dieser Temperaturunterschied stattfindet;

3. von der Größe der schädlichen Oberflächen, d. h. derjenigen Wandflächen, mit welchen der Dampf bei der Voreinströmung in Berührung kommt;

4. von der Umdrehungszahl;

5. von der Dichtheit des Dampfes.

Hieraus folgt, daß der Wert der Mantelheizung sich vermindern wird:

1. mit wachsender Füllung, mit welcher auch die mittlere Zylinderwandtemperatur steigt¹);

2. mit zunehmender Umlaufszahl. Die Zeit, während welcher die Dampftemperatur die mittlere Oberflächentemperatur überragt, wird kürzer.

¹) Ist $O = \frac{d^2 \pi}{4}$ die Kolbenfläche eines Zylinders vom Durchm. d und Kolbenhub s und ϵ s der Füllungsgrad, so ist die Oberfläche F des Zylinders ohne

Kanäle pro Einheit des Füllungsvolumens: $F = \frac{\pi \cdot d \cdot \varepsilon s + 2 \cdot 0}{0 \cdot \varepsilon s} = \frac{4 + 2 \frac{d}{\varepsilon \cdot s}}{d}$. F nimmt sonach mit kleiner werdender Füllung zu und damit auch der Ab-kühlungsverlust. Aus neuerer Zeit liegen Versuche von Prof. Capper¹) vor (Versuchsmaschine [mit Auspuff] 165 × 356, Füllung konstant $\frac{3}{2}$, Schieber-

kastenspannungen von 1,9 Atm. bis 9,5 Atm. abs., Umlaufzahl von 50 bis 250 wechselnd), bei welchem sich ebenfalls zeigte, daß mit Zunahme der Dampfspannung und der Umlaufzahl der Wert des Dampfmantels abnahm. So wurde bei 250 Uml./min. von 5,85 Atm. an, bei 200 Uml./min. von 7 Atm. an der Dampfmantel unwirksam. Dasselbe stellte sich ein, wenn bei 250 Uml./min. der mittlere Druck 3.13 kg/qcm, bei 200 Uml./min. 4,6 kg/qcm erreichte.

Für die heutigen Dampfmaschinen mit ihren großen Kolbengeschwindigkeiten und ihren bei Verbundwirkung großen Füllungen hat die Mantelheizung viel an Wert verloren. Wenn trotzdem ihre Anwendung bei Maschinen, welche mit gesättigtem Dampf arbeiten, eine sehr häufige ist, so wird dies mehr der Rücksicht auf erleichtertes Anwärmen als derjenigen auf Dampfersparnis zuzuschreiben sein.

Von weit größerer Bedeutung für die Verminderung des Wärmeaustausches ist die Anwendung des überhitzten Dampfes.

Die Kondensationsfähigkeit der Wandungen nimmt mit der Dampffeuchtigkeit zu. Je trockener der Dampf, um so geringer der Feuchtigkeitsbeschlag und Wärmeaustausch. Wird der Dampf überhitzt, so muß zunächst seine Überhitzungswärme verloren gehen, ehe Feuchtigkeitsbeschlag sich ansetzen kann, und die gefürchtete Eintrittskondensation wird vermieden.

Die Verminderung der Wechselwirkung ist weiterhin auf die geringere Dichtigkeit des überhitzten Dampfes und auf dessen schlechtere Wärmeleitungsfähigkeit zurückzuführen. Bei einer Steigerung der Überhitzungstemperatur von $25,5^{\circ}$ auf $142,5^{\circ}$ C stellte z. B. Doerfel eine Verringerung der während der Füllung an die Wandungen abgegebenen Wärmemengen von 2106,5 W. E. auf 480,6 W. E. fest, so daß durch höhere Überhitzung der Wärmeaustausch vielleicht überhaupt vermieden worden wäre, wenn von dem dem Ausstrahlungsverlust entsprechenden Teil abgesehen wird. Ebenso zeigte sich bei Versuchen von Seemann, daß bei einer Erhöhung der Überhitzung von 0° auf 170° die an die Zylinderwände abgegebene Wärme von 36,2 v. Ht. auf 9,3 v. Ht. der ganzen zugeführten Wärmemenge zurückging.

Der Einfluß der Dampfdichte geht aus weiteren Versuchen Doerfels hervor, bei welchen sich zeigte, daß bei gleicher Füllung und gleichem Temperaturgefälle der Wärmeaustausch bei Auspuffbetrieb bedeutend größer war als bei Kondensationsbetrieb, niedrigen Eintrittsdruck vorausgesetzt. Der Unterschied schwand bei höherer Überhitzung.

Größere Dampfdichte bedingt somit erhöhten Wärmeaustausch, der aus gleichem Grunde durch höhere Überhitzung verringert wird. Bei einer Eintrittstemperatur von 300° war es bezüglich der Anfangskondensation gleich, ob mit Auspuff oder Kondensation gearbeitet wurde, trotzdem das Temperaturgefälle im letzteren Falle 108° gegenüber 76° bei Auspuffbetrieb betrug.

¹) Bantlin, Z. 1906. S. 1066.

Ein weiterer Vorzug liegt in der Volumenzunahme, welche der überhitzte Dampf erfährt, und deren Größe sich aus den Gleichungen 57 oder 58 berechnen läßt. Teilweise wird dieser Vorzug allerdings dadurch aufgewogen, daß wegen der stärker abfallenden Expansionslinie des überhitzten Dampfes die Füllung bei Anwendung des letzteren zur Erzielung gleicher Arbeit größer sein muß als beim gesättigten Dampf. Je nach den Verhältnissen leistet bei gleicher Füllung eine Heißdampfmaschine um 5 bis 20 v. Ht. weniger als eine Sattdampfmaschine von gleichen Abmessungen.

Was die Verringerung der Durchlässigkeitsverluste bei Anwendung überhitzten Dampfes betrifft, so zeigten die Versuche von Callendar-Nicolson, sowie neuerdings die von Capper, daß bei Schiebern die Ölschicht zwischen den Gleitflächen eine dichtende Wirkung ausübt und daß bei Heizung des Zylinders die Durchlässigkeit abnimmt.

Bantlin¹) erklärt dies dadurch, daß sich der Dampf auf den freigelegten Flächen des Schieberspiegels niederschlägt und daß dieser Belag verdampft, so bald er in den Auspuff gelangt. Bei stillstehendem Schieber genügt die Ölschicht zur Erzielung einer zuverlässigen Dichtung. Wird jedoch der Schieber bewegt, so zerreißt die Ölschicht, der Dampf kondensiert fortwährend an den freigelegten Schieberspiegelflächen und der Belag arbeitet sich unter dem Einfluß der Pressung und der Schieberbewegung zwischen den Gleitflächen durch, wobei die Verdampfung des Belages die Temperatur der Flächen niedrig hält und dadurch die Kondensation noch mehr befördert.

Weitere Versuche bewiesen, daß die Durchlässigkeit in Form von Wasser größer ist als diejenige in Form von Dampf.

Bei Kolbenschiebern und Ventilen läßt sich die größere Dichtheit bei Überhitzung häufig auf eine rein mechanische Ursache zurückführen. Es liegt dann der Umstand vor, daß die Steuerungsorgane bei höherer Temperatur geschliffen waren; bei niedrigerer Dampftemperatur vermindert sich der Durchmesser der Kolbenschieber mehr als jener der Büchse, so daß der Undichtheitsverlust steigt. Bei Ventilen ist ziemlich regelmäßig zu beobachten, daß sie, wenn sie im Betrieb mit Naßdampf dicht waren, bei Einführung von Überhitzung durchlässig werden und umgekehrt.

d) Die kalorimetrische Untersuchung der Dampfmaschine.

Die kalorimetrische Untersuchung der Dampfmaschine bezweckt die Ermittelung der von den Zylinderwandungen aufgenommenen und

von den Zymuch wandungen aufgehömmenen und abgegebenen Wärmemengen, indem für die charakteristischen Punkte a b c d e des aufgenommenen Indikatordiagramms (Fig. 25) die bei den betreffenden Kolbenstellungen im Zylinder vorhandenen Wärmemengen festgestellt werden.

1. Vorgang während der Füllung. Durch die Messung der Speisewassermenge, von welcher die ebenfalls ermittelte Kondenswassermenge der Rohrleitung und des Dampfmantels in Abzug ge-

44

langt, wird das pro Hub in den Zylinder strömende Dampfgewicht G ermittelt, woraus die der Maschine pro Hub zugeführte Wärmemenge zu $G \cdot \lambda$ oder bei Anwendung überhitzten Dampfes zu $G \cdot \lambda_1$ bestimmt wird. Bei Beginn der Voreinströmung befindet sich im schädlichen Raum das Dampfgewicht g, dessen Wärmeinhalt den Wert $g \cdot (q_0 + x_0 \cdot \varrho_0)$ hat.

Infolge der Arbeitsleistung während der Füllung und der an die Wände abgegebenen Wärmemenge Q_a geht die Wärmemenge

 $G \lambda + g (q_0 + x_0 \rho_0)$ auf $(G + g) \cdot (q_1 + x_1 \rho_1)$,

zurück, so daß die Beziehung besteht:

 $\mathbf{L}_{\mathbf{a}} + \mathbf{Q}_{\mathbf{a}} = \mathbf{G}\,\boldsymbol{\lambda} + \mathbf{g}\,(\mathbf{q}_{\mathbf{0}} + \mathbf{x}_{\mathbf{0}}\,\boldsymbol{\varrho}_{\mathbf{0}}) - (\mathbf{G} + \mathbf{g}) \cdot (\mathbf{q}_{\mathbf{1}} + \mathbf{x}_{\mathbf{1}}\,\boldsymbol{\varrho}_{\mathbf{1}}),$

wenn La den Wärmewert der absoluten Arbeit bezeichnet.

2. Vorgang während der Expansion. Bei Anwendung eines Dampfmantels wird während der Expansion an den Dampf die Wärmemenge Q_b zurückerstattet und die Expansionsarbeit L_b geleistet, wobei der Wärmeinhalt sich auf $(G + g) \cdot (q_2 + x_2 \cdot \varrho_2)$ verringert. Demnach:

$$\mathbf{L}_{\mathbf{b}} = \mathbf{Q}_{\mathbf{b}} + (\mathbf{G} + \mathbf{g}) \cdot (\mathbf{q}_{1} + \mathbf{x}_{1} \, \boldsymbol{\varrho}_{1} - \mathbf{q}_{2} - \mathbf{x}_{2} \cdot \boldsymbol{\varrho}_{2}).$$

3. Vorgang während der Ausströmung. Der Wärmeinhalt am Ende der Expansion hat die Größe $(G + g) \cdot (q_2 + x_2 \cdot q_2)$. Am Ende der Ausströmung befindet sich noch das Dampfgewicht g im Zylinder mit der Wärmemenge g $(q_3 + x'_3 \cdot q_3)$, so daß während des Auspuffes eine Verringerung des Wärmeinhaltes auf $(G + g) \cdot (q_2 + x_2 q_2) - g (q_3 + x_3 q_3)$ stattgefunden hat. Ist t_4 die Kondensatortemperatur, so hat das dem Zylinder entströmte Gewicht G bei vollständiger Kondensation den Wärmewert $G \cdot q_4$. Die Kühlwassermenge G_i in kg pro Kolbenhub ist von t_5 auf t_6 erwärmt worden, wozu eine Wärmemenge $G_i (q_6 - q_5)$ gedient hat, außerdem habe der ausströmende Dampf an den Wandungen der Leitungen und des Kondensators die Wärmemenge Q_i durch Strahlung verloren. Die Summe dieser Wärmemengen:

$$\mathbf{G} \cdot \mathbf{q_4} + \mathbf{G_i} (\mathbf{q_6} - \mathbf{q_5}) + \mathbf{Q_i}$$

wird also während des Auspuffes abgeführt.

Während desselben wurde aber weiterhin die Gegendruckarbeit L_c in Wärme verwandelt und gleichzeitig an den ausströmenden Dampf die Wärmemenge Q_c seitens der Wandungen übergeführt. Werden Q_c und L_c zu dem bei Beginn der Ausströmung vorhandenen Wärmeinhalt $(G + g) \cdot (q_2 + x_2 q_2)$ addiert, so stellt der Ausdruck

$$Q_c + L_c + (G + g) \cdot (q_2 + x_2 \rho_2)$$

die Gesamtwärmemenge dar, welche gleich sein muß: der während der Ausströmung abgeführten Wärmemenge $G q_4 + G_i (q_6 - q_5) + Q_i$ und dem am Ende der Ausströmung im Zylinder befindlichen Wärmeinhalt g $(q_3 + x_3 \varrho_3)$. Es folgt:

$$\mathbf{L}_{c} + \mathbf{Q}_{c} = \mathbf{G} \cdot \mathbf{q}_{4} + \mathbf{G}_{i} (\mathbf{q}_{6} - \mathbf{q}_{5}) + \mathbf{Q}_{i} + \mathbf{g} (\mathbf{q}_{3} + \mathbf{x}_{3} \, \boldsymbol{\varrho}_{3}) - (\mathbf{G} + \mathbf{g}) (\mathbf{q}_{2} + \mathbf{x}_{2} \, \boldsymbol{\varrho}_{2}).$$

4. Vorgang während der Kompression. Bei dieser wird die Kompressionsarbeit in Wärme verwandelt und eine Wärmemenge Q_d an die Zylinderwände abgegeben. Sonach:

$$\mathbf{L}_{\mathbf{d}} - \mathbf{Q}_{\mathbf{d}} = \mathbf{g} \ (\mathbf{q}_{\mathbf{0}} + \mathbf{x}_{\mathbf{0}} \ \boldsymbol{\varrho}_{\mathbf{0}} - \mathbf{q}_{\mathbf{3}} - \mathbf{x}_{\mathbf{3}} \cdot \boldsymbol{\varrho}_{\mathbf{3}}).$$

Nach diesen Gleichungen wird die indizierte Arbeit:

$$\mathbf{L}_{\mathbf{i}} = \mathbf{L}_{\mathbf{a}} + \mathbf{L}_{\mathbf{b}} - \mathbf{L}_{\mathbf{c}} - \mathbf{L}_{\mathbf{d}}.$$

Ist Q_v der Wärmeverlust durch Ausstrahlung nach außen,

Q_m die durch Mantelheizung zugeführte Wärmemenge,

Q_r die durch die Kolbenreibung an die Zylinderwände übertragene Wärmemenge, so gilt für den Beharrungszustand:

$$\mathbf{Q_a-Q_b-Q_c}\,+\,\mathbf{Q_d}+\mathbf{Q_m}\,+\,\mathbf{Q_r-Q_v}=\mathbf{0}.$$

Bei der Ausführung kalorimetrischer Untersuchungen können nach Feststellung der Größe des schädlichen Raumes die vom Dampf bei beliebigen Kolbenstellungen ausgefüllten Volumina sowohl aus dem Diagramm als auch durch Untersuchung der Steuerung ermittelt werden. Letzterer Weg ist namentlich dann vorzuziehen, wenn die Übergänge von einer Dampfverteilungsphase zur andern allmählich vor sich gehen. Findet z. B. starke Drosselung während der Füllung statt, so kann diese durch Ermittelung der Kolbenstellung im Augenblick des Schieberschlusses bestimmt werden.

Das Diagramm Fig. 25 gibt weiterhin die Drucke in den Punkten a, b, c, d, e, und die Wärmewerte der absoluten Arbeiten L_a , L_b , L_c und L_d an, welche durch Planimetrierung der unter den betreffenden Diagrammlinien liegenden und bis zur Nulllinie reichenden Flächen festgestellt werden können.

Wäre das bei Kompressionsbeginn im Zylinder enthaltene Gewicht g bekannt, so ließen sich die Werte der spez. Dampfmengen x_1 bis x_4 aus den folgenden Gleichungen berechnen:

$$\begin{array}{l} V_1 + v_0 = (G + g) \ (x_1 \ u_1 + \sigma) \\ V_2 + v_0 = (G + g) \ (x_2 \ u_2 + \sigma) \\ V_3 + v_0 = g \ (x_3 \ u_3 + \sigma) \\ V_4 + v_0 = g \ (x_0 \ u_0 + \sigma). \end{array}$$

Wird σ als sehr klein vernachlässigt, so finden sich durch Einführung des spez. Gewichtes γ die folgenden einfacheren Gleichungen zur Berechnung von x:

Die Werte von γ und u sind für die bekannten Drucke der Dampftabelle zu entnehmen. Wie schon bemerkt, läßt sich G durch Speisewassermessung genau bestimmen, ebenso der Wärmeinhalt dieses Dampfgewichtes, falls überhitzter Dampf verwendet wird. Da die genauere Bestimmung des Dampffeuchtigkeitsgehaltes z. Zt. nicht möglich ist, so ist man bezüglich der spez. Dampfmenge x_1 auf Schätzung angewiesen. Bei mäßig beanspruchten Kesseln wird x_1 nur wenig kleiner als Eins sein. Größere Schwierigkeiten verursacht die Ermittelung des am Ende der Ausströmung im Zylinder vorhandenen Dampfgewichtes g, welches aus den Volumina V_3 und v_0 nur dann berechnet werden kann, wenn x_3 bekannt ist. Im allgemeinen kann vorausgesetzt werden, daß der Dampf beim Kompressionsbeginn trocken gesättigt ist, demnach $x_3 = 1$.

Diese Annahme wird u. a. unterstützt durch Versuche von Barr, bei welchen sich zeigte, daß durch die plötzliche Druckentlastung bei Öffnung des Auslaßkanals das an den Zylinderwänden sitzende Wasser fast augenblicklich verdampfte. In allen Fällen wird das Ergebnis der kalorimetrischen Untersuchung durch die Annahme von x_3 sehr stark beeinflußt.

Was die Wärmemengen Q_r , Q_v und Q_m betrifft, so kann erstere aus dem Kolbengewicht, aus dem Flächendruck der Ringe gegen die Zylinderwand (= 0,5 kg/qcm) und aus dem Reibungskoeffizienten (= $^{1}/_{50}$) berechnet werden. Der Ausstrahlungsverlust Q_v wird in der Weise ermittelt, daß die Niederschlagsverluste im Dampfmantel während eines mehrstündigen Stillstandes durch Messung des Kondenswassers festgestellt werden. Die beim Betrieb aus dem Mantel in den Zylinder tretende Wärmemenge Q_m wird gleich $G_m \cdot r - Q_v$ sein, wenn G_m das aus dem Mantel während des Betriebes abfließende Kondenswasser und r die dem Manteldruck entsprechende latente Wärme bedeuten.

Da bei größeren Maschinen die Messung der Kühlwassermenge G_i sehr umständlich ist, andererseits aber die während des Auspuffes von den Wandungen wiedergegebene Wärmemenge Q_c eine besondere Bedeutung deshalb hat, weil sie für den Maschinenbetrieb gänzlich verloren geht, so kann Q_c auch aus der Gleichung:

 $\begin{array}{c} {\rm Q}_{\rm c} + {\rm Q}_{\rm v} - {\rm Q}_{\rm r} = \\ {\rm G}\cdot\lambda - ({\rm G}+{\rm g})\; ({\rm q}_2 + {\rm x}_2 \, \varrho_2) + {\rm g}\; ({\rm q}_3 + {\rm x}_3 \, \varrho_3) - ({\rm L}_{\rm a} + {\rm L}_{\rm b} - {\rm L}_{\rm d}) + \, {\rm Q}_{\rm m} \\ {\rm bestimmt \ werden}^{\,1} {\rm)}. \end{array}$

e) Die Vergleichskreisprozesse der Dampfmaschinen.

Um über die gute Ausnutzung des Dampfes in der Maschine Aufschluß zu erhalten, werden die Ergebnisse von Dampfverbrauchsversuchen häufig mit dem Verbrauch idealer Dampfmaschinen — in welchen möglichst vollkommene Prozesse ausgeführt werden — verglichen.

Für derartige Vergleiche kommen hauptsächlich in Betracht:

 Der Carnotprozeß, 2. der Prozeß von Clausius - Rankine,
 der von Prof. E. Meyer vorgeschlagene und vom "Verein deutscher Ingenieure" als Norm aufgestellte Prozeß.

1. Der Carnotprozeß.

Die einfachste Form der vollkommenen Dampfmaschine würde erhalten, wenn die zur Durchführung des Carnotprozesses erforderlichen Zustandsänderungen in einem und demselben Zylinder vorgenommen werden könnten, welcher hierbei nacheinander als Kessel, Kondensator

¹) Doerfel, Z. 1899, S. 1521 u. f.

und Kompressor zu dienen hätte. Diese praktisch nicht angängige Ausführung kann durch die in Fig. 26 dargestellte Anordnung ersetzt werden. A ist der Kessel, in welchem seitens des Heizkörpers die Wärme an den Wasserdampf abgegeben wird, dessen Zustand durch $x_1 T_1 p_1$ bestimmt ist. Im Expansionszylinder B wird die Expansionsarbeit verrichtet, wodurch das Gemisch in den Zustand $x_2 T_2 p_2$ übergeht. Im Kondensator Cnimmt der Kühlkörper die während der isothermischen Kompression entstehende Wärme auf. Der Kompressor D entnimmt aus dem Konden-

sator ein Gemisch von der bestimmten spez. Dampfmenge x_3 , um dasselbe während der Kompression in Wasser von der Frischdampftemperatur zu verwandeln und in den Kessel zu drücken.

Die während der Admission geleistete Arbeit hat die Größe $p_1 \cdot (\sigma + x_1 u_1)$ und die während der adiabatischen Expansion vom Zustand $x_1 T_1 p_1$ auf $x_2 T_2 p_2$ verrichtete Arbeit bestimmt sich zu:

$$\frac{1}{A} (q_1 + \rho_1 x_1 - q_2 - x_2 \rho_2).$$

Dieser positiven Arbeit steht die Gegendruckarbeit $p_2 (\sigma + x_2 u_2)$ gegenüber, so daß sich nach Abzug derselben und nach Einsetzung von $r = \varrho + A p u$ ergibt:

$$A L_1 = (q_1 + x_1 r_1) - (q_2 + x_2 r_2) + A \cdot \sigma (p_1 - p_2).$$

Im Wärmediagramm (Fig. 27) wird diese Arbeit durch die Flächen A D C E A + F G H J dargestellt.

Der Kompressor saugt aus dem Kondensator das Gemisch G ($x_3 u_2 + \sigma$) an und komprimiert dasselbe auf G $\cdot \sigma$. Während des An-

48

saugens wird somit die Arbeit $G \cdot p_2$ $(x_3 \cdot u_2 + \sigma)$ gewonnen, und während der Volldruckperiode die Arbeit $G p_1 \sigma$ aufgewendet.

Die während der Kompression zu leistende Arbeit hat den Wert

$$\frac{1}{\mathbf{A}} \cdot \mathbf{G} \left(\mathbf{q_1} - \mathbf{q_2} - \mathbf{x_3} \cdot \boldsymbol{\varrho_2} \right),$$

so daß für jedes kg die Arbeit im Kompressor sich bestimmt zu:

A L₂ = q₁ - q₂ - x₃ r₂ + A
$$\sigma$$
 (p₁ - p₂),

dargestellt durch Flächen E A B E + F G H J. Die nutzbare Arbeit wird demnach:

$$\begin{split} \mathbf{A}\,\mathbf{L} &= \mathbf{A}\,\mathbf{L}_1 - \mathbf{A}\,\mathbf{L}_2 = \mathbf{A}\,\mathbf{D}\,\mathbf{C}\,\mathbf{E}\,\mathbf{A} - \mathbf{E}\,\mathbf{A}\,\mathbf{B}\,\mathbf{E} = \mathbf{A}\,\mathbf{D}\,\mathbf{C}\,\mathbf{B} = \frac{\mathbf{Q}_1}{\mathbf{T}_1}(\mathbf{T}_1 - \mathbf{T}_2),\\ \mathbf{L} &= \frac{\mathbf{Q}_1}{\mathbf{A}\cdot\mathbf{T}_1}\,(\mathbf{T}_1 - \mathbf{T}_2). \end{split}$$

Dieser Prozeß ergibt somit die gleiche Arbeit wie der Carnotprozeß, ist letzterem also gleichwertig. Der Wirkungsgrad des ausgeführten Prozesses in bezug auf den, unter denselben Temperaturen arbeitenden Carnotprozeß wird nun erhalten, indem die aus ersterem erhaltene Arbeit dividiert wird durch jene Arbeitsmenge, welche mit dem Carnotprozeß erzielbar wäre.

2. Der Prozeß nach Clausius-Rankine.

Der zur Durchführung des Carnotprozesses erforderliche Kompressor, welcher auch wohl als "thermodynamischer Speisewasserenhitzer" bezeichnet wird, ist nicht mit der bei ausgeführten Maschinen zu findenden Speisepumpe zu verwechseln. Er hat vielmehr die Aufgabe, das angesaugte Gemisch in Flüssigkeit von der höchsten im Prozeß vorkommenden Temperatur zu verwandeln, damit die weitere Zufuhr von Wärme bei konstanter, höchster Temperatur erfolgen kann, wie es der Carnotprozeß verlangt. Aus letzterem Grunde wird der Carnotprozeß zur Unmöglichkeit bei allen mit überhitztem Dampf arbeitenden Maschinen, und da der Kompressor den ungefähren Hubraum eines Hochdruckzylinders erhalten müßte und sein wärmetheoretischer Nutzen durch die Verschlechterung des mechanischen Wirkungsgrades aufgewogen würde, so läßt sich auch bei Anwendung gesättigten Dampfes der Carnotprozeß praktisch nicht durchführen.

Clausius und Rankine haben deshalb einen anderen Kreisprozeß vorgeschlagen, bei dessen Aufstellung folgendes vorausgesetzt wurde:

Die Wandungen sollen keinen Einfluß auf den arbeitenden Dampf ausüben, der zudem auch sonst Wärme weder durch Strahlung noch durch Leitung verliert. Die Expansion ist vollständig und erfolgt adiabatisch bis auf die Gegenspannung. Ein schädlicher Raum ist nicht vorhanden. Das in den Kessel gelangende Wasser wird bis auf die Aus-

Dubbel, Dampfmaschinen. 3. Aufl.

strömtemperatur des Dampfes vorgewärmt. Eintrittsdruck und Kesseldruck einerseits, sowie Auspuffspannung und Kondensatordruck andererseits sind einander gleich.

Das Diagramm einer solchen Maschine zeigt ebenfalls Fig. 27. Der Kreisprozeß für gesättigten Dampf weicht nur darin vom Carnotprozeß ab, daß kein Speisewassererhitzer vorhanden ist, es wird also das Speisewasser dem Kondensator mit dessen Temperatur entnommen. Dementsprechend muß nunmehr Fläche A B C D durch Fläche A E C D ersetzt werden, da der Auspuffdampf nicht mehr teilweise, sondern vollständig verflüssigtwird. Infolge der dadurch veränderten zuzuführenden Flüssigkeitswärme — dieselbe war beim Carnotprozeß gleich Null, hier $q_1 - q_2$ — wird im Kessel pro 1 kg Dampf die Wärmemenge $q_1 - q_2$ mehr aufgewendet, wofür jedoch die Kompressorarbeit in Wegfall kommt.

Die im Zylinder verrichtete Arbeit hat dieselbe Größe wie beim Carnotprozeß:

$$AL_1 = G\left[\frac{\mathbf{x}_1 \cdot \mathbf{r}_1}{\mathbf{T}_1} (\mathbf{T}_1 - \mathbf{T}_2) + \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{T}_2 (\tau_1 - \tau_2) + A\sigma (\mathbf{q}_1 - \mathbf{p}_2)\right]^1),$$

wenn τ_1 und τ_2 wie üblich die Abszissen der unteren Grenzkurve bezeichnen.

Die Speisepumpe hingegen saugt das Wasservolumen $G \cdot \sigma$ unter konstantem Druck p_2 an und drückt dasselbe unter dem ebenfalls konstanten Druck p_1 in den Kessel, so daß der Wärmewert dieser geleisteten Arbeit durch A $L_2 = A \cdot G \cdot \sigma (p_1 - p_2)$ dargestellt wird.

Werden beide Gleichungen voneinander subtrahiert, so erhält man die nutzbare Arbeit wie vorhin:

$$\mathbf{A} \mathbf{L} = \mathbf{A} \mathbf{L}_1 - \mathbf{A} \mathbf{L}_2 = \mathbf{G} \left[\frac{\mathbf{x}_1 \mathbf{r}_1}{\mathbf{T}_1} \left(\mathbf{T}_1 - \mathbf{T}_2 \right) + \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{T}_2 \left(\mathbf{r}_1 - \mathbf{r}_2 \right) \right].$$

Die Gleichung der Leistung für eine nach dem Carnotprozeß arbeitende Maschine ergab:

$$AL_{e} = G \frac{X_{1} r_{1}}{T_{1}} (T_{1} - T_{2}).$$

Der Vergleich beider Gleichungen beweist, daß die Leistung einer nach Clausius - Rankine arbeitenden Maschine größer ist als die in einem Carnotprozeß gewonnene. Trotzdem ist im letzteren die für die Arbeitseinheit aufzuwendende Wärmemenge kleiner, da diese hier den Wert $Q_1 = G x_1 r_1$ hat, während beim Clausius - Rankine - Prozeß $Q_1' = G (x_1 r_1 + q_1 - q_2)$ war.

Die größte Arbeit, welche mit dieser Wärmemenge für jedes kg hätte gewonnen werden können, ergibt sich zu:

$$AL_{m} = \frac{x_{1}r_{1} + q_{1}}{T_{1}} - \frac{q_{2}}{T_{2}} (T_{1} - T_{2}) = \frac{Q'_{1}}{T_{1}} (T_{1} - T_{2}).$$

¹) Da bei der adiabatischen Zustandsänderung die Entropie konstant bleibt, so folgt:

$$\tau_1 + \frac{\mathbf{x}_1}{\mathbf{T}_1} \frac{\mathbf{r}_1}{\mathbf{T}_1} = \tau_2 + \frac{\mathbf{x}_2}{\mathbf{T}_2} \frac{\mathbf{r}_2}{\mathbf{T}_2}.$$

Aus dieser und der auf S. 48 für ${\rm \hat{A}L}_1$ gegebenen Gleichung folgt nach Multiplikation mit G die oben angegebene Gleichung.

Der Arbeitsverlust infolge der Unvollkommenheiten des Prozesses hat somit die Größe:

$$AL_v = A(L_m - L),$$

und der Effektverlust:

$$\mathbf{E} = \frac{\mathbf{L_v}}{\mathbf{L_m}}$$

Zur Bestimmung des stündlichen Dampfverbrauches pro 1 PS. in der verlustlosen Maschine bei vollständiger Expansion schlägt Mollier die Formel vor:

für gesättigten Dampf:

$$D = \frac{6.87 - 0.9 \lg p_2}{\lg \frac{p_1}{p_2}}$$

für überhitzten Dampf:

$$\mathbf{D}' = \frac{\mathbf{D}}{\mathbf{1} + 0,000755 \left[(\mathbf{T}' - \mathbf{T}) - \mathbf{T}_0 \ln \frac{\mathbf{T}'}{\mathbf{T}} \right] \cdot \mathbf{D}}$$

Rateau gibt für gesättigten Dampf:

$$\mathrm{D}=0.85+\frac{6,95-0,92\,lg\,p_1}{lg\left(\frac{p_1}{p_2}\right)}$$

Hierin bedeuten: $p_1 = Anfangsdruck$ in kg/qcm,

- $\mathbf{p}_2 = \mathbf{E}\mathbf{n}\mathbf{d}\mathbf{d}\mathbf{r}\mathbf{u}\mathbf{c}\mathbf{k}$ in kg/qcm, $\mathbf{T} = \mathbf{A}\mathbf{b}\mathbf{s}\mathbf{o}\mathbf{l}\mathbf{u}\mathbf{t}\mathbf{e}\mathbf{r}$ Sättigungstemperatur des eintretenden Dampfes,
- T' = Absoluter Uberhitzungstemperatur des eintretenden Dampfes,
- $T_0 = Absoluter Temperatur des Auspuffdampfes.$

3. Der vom Verein deutscher Ingenieure aufgestellte Prozeß.

Die englische "Institution of Civil-Engineers" hat den Clausius-Rankine - Prozeß als Vergleichsprozeß gewählt mit der Maßgabe, daß die obere Grenze für Druck und Temperatur durch Messung am Absperrventil und zwar auf der dem Dampfkessel zugekehrten Seite, die untere Temperatur durch Messung im Ausströmrohr dicht an der Maschine zu Gegen den Vergleich mit dem Clausius - Rankine ermitteln sei. Prozeß hat Prof. E. Meyer mit Recht den Vorwurf erhoben, daß derselbe wegen der vorausgesetzten vollständigen Expansion hierzu nicht geeignet sei. Vollständige Expansion kann der Konstrukteur für eine gegebene Leistung durch Schaffung eines großen Hubraumes immer erreichen. Dieser Weg zur Vervollkommnung des praktischen Prozesses wird aber aus wirtschaftlichen Gründen nicht beschritten. Nach dem englischen Vorschlag haben weiterhin Einzylinder- und Dreifachexpansionsmaschinen bei denselben Temperaturgrenzen den gleichen Idealprozeß, trotzdem die Bedingungen, unter welchen der Dampf in beiden Maschinenarten arbeitet, gänzlich verschieden voneinander sind. Die Einzylindermaschine

würde demnach bei bester Ausführung und Wirkungsweise stets der Dreizylindermaschine unterlegen sein, selbst wenn diese einen für eine derartige Maschine viel zu hohen Dampfverbrauch aufweisen würde.

In Fig. 28 ist ein zwischen den Drucken 0,1 kg/qcm und 10 kg/qcm arbeitendes Diagramm wiedergegeben. Sinkt in dem wirklich ausgeführten Diagramm $a \ b \ c \ e \ f' \ a$, welches eine zwölffache Expansion zeigt, der Gegendruck von 0,2 kg auf 0,1 kg, so wird die Fläche $a \ f' \ f \ a \ ge$ wonnen, während das theoretische Diagramm um die Fläche $a \ d' \ d \ a$

zunimmt. Eine Verbesserung der Luftleere würde somit den Wirkungsgrad verschlechtern.

Als Vergleichsprozeß hat aus diesen Gründen der "Verein deutscher Ingenieure" in seinen Normen für Leistungsversuche einen solchen vorgeschlagen, bei welchem der Expansionsgrad derselbe ist wie bei der untersuchten Maschine, hingegen sollen Verluste durch Drosselung, Überströmung, durch den schädlichen Raum oder durch die Wandungen usw. nicht berücksichtigt werden. Ist in Fig. 29 p_1 der Druck unmittelbar vor der Maschine, so wird für Einzylindermaschinen der Expansionsgrad $\varepsilon = \frac{V_2}{V_1}$ erhalten, indem das auf den Druck p_1 bezogene Füllungsvolumen V_1 aus der Gleichung $V_1 = \frac{V_b \cdot p_b}{p_1}$ berechnet wird. V_b und p_b beziehen sich auf einen bestimmt der Expansionslinie angehörigen Punkt B^1).

Als Expansionsgrad¹) gilt für Verbundmaschinen:

$$\varepsilon = \frac{V_2}{V_1} = \frac{\text{schädlicher Raum} + \text{Hubraum des Niederdruckzylinders}}{\text{schädlicher Raum} + \text{Hubraum des Hochdruckzylinders}}.$$

Indikator- und Entropiediagramm der Vergleichsmaschine sind in Fig. 30 wiedergegeben. Dem Spannungsabfall DE entspricht die Kurve konstanten Volumens $D_1 E_1$, welche zeigt, daß das Wärmegewicht nicht mehr bei durchweg tiefster Temperatur entzogen wird. Ist der Dampf überhitzt, so wird als Folge der Volumenvergrößerung B C auf B C' zu-

Fig. 30.

nehmen, der Kurve konstanten Druckes $C_1 C_1'$ im Entropiediagramm entsprechend. Umgekehrt liegt eine Verringerung des Volumens von BCauf BC'' und eine solche des Wärmegewichtes von B_1C_1 auf B_1C_1'' vor, wenn die spez. Dampfmenge x < 1. Für eine mit gesättigtem Dampf arbeitende Maschine hat der

"thermische Wirkungsgrad", d. h. das Verhältnis der für 1 kg geleisteten indizierten Arbeit A Li⁰ zu der in 1 kg Dampf enthaltenen Wärmemenge, den Wert:

$$\eta_{\rm t} = \frac{{\rm A } {\rm L}_{\rm i}^{\rm 0}}{\lambda - {\rm t}_{\rm 0}}^2),$$

¹) Heilmann macht darauf aufmerksam, daß sich bei der verlustlosen Maschine infolge des stärkeren Abfalls der Adiabate gegenüber der Expansionslinie stets ein kleinerer Expansionsdruck einstellt, so daß bei kleinen Füllungen Schleifen bildung auftritt. Richtiger wäre demnach, den Expansionsenddruck als maßgebend für den Vergleich anzuschen. (Z. 1906, S. 319.) ²) S. Mollier, Z. 1898, S. 685. Meyer, Z. 1900, S. 598.

oder, wenn für λ der Mittelwert 658 und für die Speisewassertemperatur $t_0 = 20^{\circ}$ gesetzt wird:

$$\eta_{\rm t} = \frac{\mathbf{A} \cdot \mathbf{L}_{\rm i}^{\,0}}{638}.$$

Der Wärmewert einer Pferdekraftstunde ist gleich 637 W. E., so daß weiterhin folgt:

$$A L_i^0 = \frac{637}{D_i^0}.$$

und daraus:

$$\eta_{t} = rac{1}{D_{i}^{0}} = N_{i}^{0}$$

Der thermische Wirkungsgrad ist gleich dem reziproken Wert des Dampfverbrauches.

Ist D_i der durch Versuche bestimmte wirkliche Dampfverbrauch in kg pro PS_i -Stunde, somit $N_i = \frac{1}{D_i}$, so sind die Arbeitsverluste pro 1 kg Dampf:

$$\mathbf{N_v} = \mathbf{N_i^0} - \mathbf{N_i},$$

oder, verglichen mit der von der verlustlosen Maschine geleisteten Arbeit

$$\eta_{\mathbf{v}} = \frac{\mathbf{N_i^0} - \mathbf{N_i}}{\mathbf{N_i^0}}.$$

Der Gütemaßstab der Maschine wird dann:

$$\eta_{g} = \frac{\mathbf{N}_{i}}{\mathbf{N}_{i}^{0}} = \frac{\mathbf{D}_{i}^{0}}{\mathbf{D}_{i}}.$$

Über die Berechnung von N_i^0 s. S. 19 u. 23.

Die Feststellung des Gütegrades auf zeichnerischem Wege ist in Fig. 31 dargestellt¹).

Das durch die Speisewassermessung bekannte, auf jeden Hub entfallende Dampfgewicht wird als Volumen V in das aufgenommene Diagramm eingetragen, das man nach der Gleichung pv 1,135 — Konst. bis auf den Enddruck p_e des aufgenommenen Diagramms expandieren läßt.

Den Anfangspunkt a der Strecke V legt man zweckmäßig so, daß der Strecke s' die Dampfmenge entspricht, die im wirklichen Diagramm beim Beginne der Kompression im Zylinder eingeschlossen wurde.

Die schraffierten Flächen stellen die Verluste durch Abkühlung während der Expansion, durch mangelhafte Fortpflanzung der Luftleere und durch den schädlichen Raum dar.

Das Verhältnis der Fläche des Indikatordiagramms zur Fläche des eingezeichneten theoretischen Diagramms gibt den Gütegrad an.

Eine genaue Übersicht über die Verteilung der Wärmeverluste und über das Verhalten des Dampfes im Zylinder wird durch das Boulvinsche Entropiediagramm gegeben.

54

¹ Schüle. Technische Wärmemechanik. S. 259.

f) Das Boulvinsche Entropiediagramm¹).

In den bisherigen Ausführungen über das Entropiediagramm der Dampfmaschine wurde ein geschlossener Kreisprozeß vorausgesetzt. Das Gewicht des arbeitenden Dampfes sollte sich nicht ändern, wie das in der wirklich ausgeführten Maschine nur während der Expansion der Fall ist. Mit der Änderung des arbeitenden Gewichtes ist nun auch eine Änderung

der Entropie $\frac{Q}{T}$ verbunden, denn die bei einer Temperatur T zuzuführende

Wärmemenge Q muß um so größer werden, je größer das zu erwärmende Gewicht der Mischung ist. Änderungen der Entropie bedeuten sonach nicht nur solche in der Wärmezufuhr, sondern können auch von der wechselnden Größe der in der Maschine arbeitenden Dampfmenge herrühren.

Um unter Berücksichtigung dieser Verhältnisse das richtige Entropiediagramm eines aufgenommenen Indikatordiagramms zu erhalten, kann in der Weise vorgegangen werden, daß der wirkliche Prozeß durch einen erdachten ersetzt wird, welcher in den Punkten a, b, c, d, e des Diagramms Fig. 32 mit dem wirklichen Prozeß übereinstimmt. Die Wärmemengen, welche dem erdachten Prozeß zuzuführen wären, müssen dann denjenigen Wärmemengen gleich sein, welche dem tatsächlich ausgeführten

Prozeß zugeführt worden sind, denn es folgt für beide das gleiche Entropiediagramm.

Es sei g das Gewicht des zu Beginn der Kompression im Zylinder eingeschlossenen Gemisches, G das Füllungsgewicht, so wird angenommen, daß das aus den einzelnen Diagrammpunkten berechenbare Dampfgewicht $\mathbf{v} \cdot \boldsymbol{\gamma}$ den in Dampf verwandelten Teil des Wassergewichtes $\mathbf{G} + \mathbf{g}$ darstelle, während der außerhalb der

Maschine im Kessel oder Kondensator befindliche Rest des Wassergewichtes der im Zylinder vorhandenen Dampfmenge in Druck und Temperatur beständig gleich sei.

¹) Nach Sichröter und Koob, Z. 1903, S. 1409.

Im Punkt d der Kompressionslinie ist die sichtbare Dampfmenge v· γ . Im Zylinder befindet sich ein Gemisch von g kg, während im Dampfkessel eine Wassermenge von G kg gleiche Druck -und Temperaturerhöhung erfahren soll wie der Kompressionsdampf. Von diesem Gesamtgewicht ist nun in Dampf verwandelt: v· $\gamma = (G + g) \cdot x$, woraus

$$\mathbf{x} = \frac{\mathbf{v} \cdot \boldsymbol{\gamma}}{\mathbf{G} + \mathbf{g}}.$$

In gleicher Weise wird x während der Füllung bestimmt, hingegen stimmt bei der Expansion der tatsächliche Prozeß mit dem angenommenen überein, da in beiden (G + g) arbeitet.

Für irgend einen Punkt der Ausströmungslinie wird wieder vorausgesetzt, daß die Dampfmenge $v_1 \gamma_1 = x_1 (G + g)$ noch im Zylinder vorhanden und das Gewicht $(G + g) - x_1 (G + g)$ bereits im Kondensator niedergeschlagen sei. Es wird $x_1 = \frac{v_1 \cdot \gamma_1}{G + g}$.

^{*} ^{J#} Wird mit Hilfe der derart für beliebige Punkte des Diagramms festgestellten spezifischen Dampfmengen das Entropiediagramm entworfen, und soll dieses mit dem Diagramm der vollkommenen Maschine verglichen werden, so werden für letztere die Wärmegewichte der Frischdampfmenge G vom Druck p entsprechend aufgetragen¹).

Ist in Fig. 33 ll die untere Grenzkurve für das Gewicht G, LL die gleiche Kurve für (G + g), so geben die wagerechten Abstände

zwischen ll und LL die Entropien der Flüssigkeitsmenge g wieder.

L 1 ist die Entropie $(G + g) \frac{xr}{T_2}$, nach oben angegebener Weise aus $v \cdot \gamma = (G + g) \cdot x$ berechnet, beim Beginn der Kompression, und wird 1 mparallel zu ll gezogen, so ist nach Auftragung der Entropie der Dampfmenge G von m aus 1 m c ddas Diagramm der vollkommenen Maschine, da in dieser adiabatische Expansion, dargestellt durch

c d, vorausgesetzt wird. Von 1 aus wird nun das Diagramm der untersuchten Maschine eingetragen. Fig. 34. Fläche 1246 stellt die in Arbeit verwandelte Wärme dar, $\frac{\text{Fläche } 1246}{\text{Fläche } 11L'S'S'} = \eta = \text{Wirkungs-}$ grad, bezogen auf die gesamte, dem Clausius-Rankine-Prozeß zuzuführende Wärmemenge. Die durch die schraffierte Fläche dargestellte

Wärmemenge geht — mit Ausnahme des senkrecht schraffierten Teiles — verloren.

Wäre die ausgeführte Maschine mit dem in den deutschen Normen vorgeschlagenen Diagramm zu vergleichen, so müßte die Kurve konstanten Volumens eingezeichnet werden.

Sollen die Kurven von Indikatordiagrammen einer Verbundmaschine in das Entropiediagramm übertragen werden, so kann dies wie vorhin geschehen, nur muß bezüglich der Ausströmung aus dem Hoch-

¹) Revue de Mécanique. 1898. S. 556.

druckzylinder angenommen werden, daß dieselbe in einen Kondensator erfolge, und bezüglich der Einströmung in den Niederdruckzylinder, daß der in dem gedachten Kondensator verflüssigte Dampf in einem Dampfkessel wieder verdampft werde. Die Einzeichnung der beiden entsprechenden Linien kann dann genau wie bei der Einzylindermaschine vor-

genommen werden. Da sowohl G als auch g im Niederdruckzylinder andere Werte als im Hochdruckzylinder haben, so müssen für jeden Zylinder andere Grenzkurven entworfen werden.

Ist bei einer Verbundmaschine:

D der Gesamtdampfverbrauch,

D₁ die in den Hochdruckzylinder eintretende Dampfmenge,

 D_2 die in den Niederdruckzylinder eintretende Dampfmenge,

d₁ die Restdampfmenge im Hochdruckzylinder,

d₂ diejenige im Niederdruckzylinder,

so sind in Fig. 35 L und S die Grenzkurven für die Dampfmenge $D_1 + d_1$. B_1 stellt den Kompressionsbeginn im Hochdruckzylinder dar, so daß B_1 B_2 die Entropie für die Dampfmenge D_1 angibt. Ist O L' die untere Grenzkurve für die Flüssigkeitsmenge D_1 , und wird durch B_1 eine Äquidistante B_1 L'' zu O L' und außerdem die der gleichen Dampfmenge D_1 entsprechende obere Grenzkurve B_2 S' gezogen, so stellt die Fläche O_0 ' L'' S' S'_0 die der Dampfmenge D_1 mitgeteilte Wärmemenge dar, zu welcher noch die dem Mantelkondensat $D - D_1$ zugeführte und durch die Fläche S_0' S' S'' stellt dann die gesamte zugeführte Wärmemenge dar. Für die im Niederdruckzylinder arbeitende Dampfmenge $D_2 + d_2$ ergeben sich die neuen Grenzkurven L''' S'''. Ihre Lage ist dadurch bestimmt, daß der den Kompressionsbeginn im Niederdruckzylinder anzeigende Punkt B_2 auf der Kurve O' L'' liegen soll.

Fig. 36 gibt als Beispiel die Ergebnisse eines von Schröter und Koob an einer 250 P S. Tandemmaschine angestellten Versuchs wieder, bei welchem die von van den Kerchove gebaute Maschine mit gesättigtem Dampf betrieben wurde. Die Dampfmengen, auf welche die verschiedenen Grenzkurven sich beziehen, sind aus den Bezeichnungen der letzteren leicht zu erkennen. Die bis zur Kondensatortemperatur reichenden schraffierten Flächen geben den gleichartigen Clausius-Rankine - Prozeß wieder.

Linie T_r , in der Mitte zwischen Austrittstemperatur des Hochdruckzylinders und Eintrittstemperatur des Niederdruckzylinders liegend, gibt die Temperatur des Aufnehmerdampfes an, und die bis zu ihr reichende schraffierte Fläche stellt die im Hochdruckzylinder nicht ausgenutzte, daher im Aufnehmerdampf enthaltene Wärme dar, wodurch Punkt X₁ festgelegt ist. Die diesem entsprechende spez. Wärme x₁ findet sich aus der Beziehung:

$$(D_1 + d_1) (Q_1 - A L_1) = D_1 (q_r + x_1 \rho_r).$$

wenn $Q_1 = \text{der}$ für 1 kg Arbeitsdampf eingeführten Wärmemenge A $L_1 = \text{dem}$ Wärmewert der auf 1 kg Dampf indizierten Arbeit.

Ist das Indikatordiagramm einer mit überhitztem Dampf arbeitenden Maschine zu übertragen, so muß aus jedem Diagrammpunkt p und v entnommen und zu diesem nach Gl. 58 die Überhitzungstemperatur T' berechnet werden, um den Mehrwert c_p ln $\frac{T'}{T}$ der Entropie des überhitzten Dampfes zu erhalten. Boulvin schlägt folgendes einfaches Verfahren vor:

Angenommen, der Dampf sei im Punkt a, Fig. 37, gesättigt, so wird er bei der weiteren Zustandsänderung a $m_1 b$ überhitzt, bis er im Punkt bwieder gesättigt ist. Wird nun die Über-

tragung der Diagrammpunkte in derselben Weise wie vorhin und ohne Rücksicht auf die Überhitzung fortgesetzt, so wird x > 1, und die Zustandsänderung wird nunmehr durch die Kurve $a \ m \ b$ dargestellt. Die von den beiden Kurven $a \ m_1 \ b$ und $a \ m \ b$ eingeschlossenen Flächen haben gleichen Inhalt, da sie gleiche Arbeitsmengen wiedergeben und gleichen Anfangs- und Endzustand haben. Ebenso müssen einzelne entsprechende Teile der Gesamtfläche, wie die beiden schraffierten einander gleich sein. m' n ist eine Kurve konstanten Druckes.

Soll der dem Punkt m entsprechende Punkt m' aufgesucht werden, so muß letzterer auf m'n liegen. Um seine Höhe über der durch n gelegten Wagerechten zu ermitteln, wird, wie folgt, vorge-

5 a m m fig. 37.

gangen. Fig. 37. $n m_1$ und $n' m'_1$ sind Kurven konstanten Druckes, deren wagerecht gemessener Abstand bei konstantem c_p gleich bleibt. Der Inhalt der von beiden Kurven begrenzten Fläche $n m_1 m_1' n'$ ist sonach

$$d F = (T' - T) n' n'',$$

und der Inhalt der gleich großen Fläche n m m' n' ist mit großer Annäherung:

$$\mathbf{d} \mathbf{F} = \mathbf{n} \mathbf{m} \cdot \mathbf{d} \mathbf{T}.$$

Aus beiden Ausdrücken folgt:

$$\frac{\mathbf{T'}-\mathbf{T}}{\mathbf{n}\,\mathbf{m}}=\frac{\mathbf{d}\,\mathbf{T}}{\mathbf{n'}\,\mathbf{n''}}$$

Werden durch Punkt n an die Grenzkurve und an die Kurve konstanten Druckes Tangenten gelegt und durch m eine Parallele zur Tangente der Grenzkurve gezogen, so folgt obiges Verhältnis aus der Ähnlichkeit der Dreiecke n m X und n n' n''. Es findet sich sonach aus der Höhe T' - T der Punkt m_1 da, wo eine durch den Schnittpunkt Xgelegte Wagerechte die Kurve konstanten Druckes trifft.

Die genaue Lage der Tangenten läßt sich durch Auftragung der Subtangenten c_p und h erhalten, welche nach S. 18 die spez. Wärme bei der betreffenden Zustandsänderung darstellen. Enthält die Zeichnung nicht die absolute Nulllinie, so sind die Strecken c_p und h entsprechend zu verkleinern. Für h gibt Boulvin folgende Werte an:

Wie schon auf S. 25 angedeutet, entspricht die von der Sättigungskurve und der Abszisse eingeschlossene Fläche der zwischen den beiden Grenzkurven befindlichen Fläche des Entropiediagramms. Nach Einzeichnung von Indikatordiagramm und Sättigungskurve in den linken unteren Quadranten wird dem Punkt a des Indikatordiagramms ein Punkt A im Entropiediagramm entsprechen, welcher die zwischen den Grenzkurven befindliche Strecke im gleichen Verhältnis teilt, wie a die Strecke zwischen Abszisse und Grenzkurve. Fig. 39 und 40.

Wird sonach auf Grund der Gl. Au $= \frac{\mathbf{r}}{\mathbf{T} \cdot \mathbf{tg} \beta}$ Winkel β an α_1 angetragen¹), so erhält man in der gegenüberliegenden Seite Au, und wird weiterhin das schraffierte Dreieck an die Abszisse gelegt, so findet man durch die Konstruktion mit den Hilfslinien aA' und A'A den dem Punkt a des Druckdiagramms entsprechenden Punkt A des Entropiediagramms.

¹) Winkel β in Fig. 39 ist der Komplimentärwinkel des in Fig. 14 mit β bezeichneten Winkels.

Das Verfahren stellt somit für diesen Fall eine erhebliche Vereinfachung des auf S. 24 gegebenen dar.

g) Bemerkungen zu den Normen für Leistungsversuche an Dampfkesseln und Dampfmaschinen.

Bei der Feststellung der effektiven Leistung und des Wirkungsgrades durch Ermittelung der Leerlaufarbeit ist von der Einführung des noch in vielen Lehrbüchern zu findenden: zusätzlichen Reibungskoeffizienten μ abgesehen worden. Es wurde durch μ vorausgesetzt, daß die Reibung in der Maschine bei normaler Beanspruchung größer sei als im Leerlauf.

War p_i die mittlere Spannung bei Normalleistung, σ die aus den Leerlaufdiagrammen berechnete Leergangswiderstandsspannung, so fand sich die der Normalleistung entsprechende effektive Leistung:

$$N_{e} = \frac{O \cdot c}{75} \cdot \frac{(p_{i} - \sigma)}{1 + \mu},$$

worin μ je nach Maschinengröße zwischen 0,212 und 0,063 schwankte. Versuche haben jedoch häufig ergeben, daß keine Zunahme der Reibungsverluste bei wachsender Leistung zu finden war, mitunter nahmen die Reibungsverluste sogar ab. Man folgert daraus, daß eine zusätzliche Reibung im hergebrachten Sinne nicht vorhanden ist.

Tatsächlich ist der Zusammenhang in der Veränderung der Dampfverteilung und der Massendrucke auf die Zapfen zumeist feststellbar.

Ist die zu untersuchende Dampfmaschine mit einer Dynamomaschine unmittelbar gekuppelt, und sind der Dynamowirkungsgrad η und die Anzahl n der geleisteten Kilowatt bekannt, so wird, da 1 PS_e. einer Leistung von 0,736 K. W. entspricht:

$$N_e = \frac{n}{\eta \cdot 0.736}$$

Ein einfaches Verfahren zur Berichtigung des Diagramm-Maßstabes hat Schröter angegeben¹). Als Prüfungsergebnisse einer 2 kg-Feder ergaben sich z. B.

bei einem Überdruck von kgqcm	Maßstab in mm pro kg/qcm	
	Druck	Vakuum
$^{+\ 1,085}_{-\ 0,598}_{-\ 0,866}_{-\ 0,632}_{-\ 0,938}$	23,6 23,8 — — —	$\begin{array}{c}\\ 25,7\\ 25,0\\ 24,6\end{array}$

Die Auftragung der Drucke der Zahlentafel auf der atm. Linie als Abszissen und der zugehörigen Längen als Ordinaten ergibt die veränderliche Maßstabkurve mm in Fig. 41.

¹) Z. 1902. S. 806.

In Fig. 41a ist das Diagramm auf einen beliebigen, unveränderlichen Maßstab *M* umgezeichnet. Der mittlere indizierte Druck ergibt sich aus diesem zu $p_i = \frac{H}{M} = \frac{h}{m}$. $m = M \cdot \frac{h}{H}$ ist der gesuchte mittlere Maßstab des Originaldiagramms in mm pro kg/qcm.

Sind bei der Prüfung die Längen der Feder pro kg/qcm für Druck und Vakuum zwar unveränderlich, unter sich aber verschieden, so werden die über und unter der atm. Linie liegenden Diagrammflächen einzeln planimetriert, wobei sich als mittlere Höhen, bezogen auf die Diagrammlänge; h_1 und h_2 ergeben. Werden die letzteren durch ihre Maßstäbe m_1 und m_2 dividiert, so wird

$$p_i = \frac{h_1}{m_1} + \frac{h_2}{m_2} = \frac{h_1 + h_2}{m}$$
,

wo m der mittlere Maßstab ist. Fig. 42.

C. Die Steuerungen.

Die Steuerung dient dazu, in der Maschine die gewünschte Dampfverteilung herbeizuführen. Je nach der Anzahl der in das Zylinderinnere führenden Kanäle unterscheidet man Steuerungen mit zweifachen und mit vierfachen Dampfwegen. Zu den ersteren gehören die Flach- und Kolbenschiebersteuerungen, zu den letzteren die Ventil- und Corlißsteuerungen.

I. Die Steuerungen mit zweifachen Dampfwegen.

a) Die Steuerungen mit einem Schieber.

1. Die Diagramme von Müller und Zeuner.

In Fig. 43^{I} ist die einfachste Form eines Muschelschiebers dargestellt und zwar in der Mittellage, bei welcher die Dampfkanäle von der Weite *a* um die Beträge *e* und *i* überdeckt sind. *e* wird als äußere, *i* als innere Überdeckung bezeichnet. Der Schieber wird durch einen Exzenter angetrieben.

Ist I III V VIII in Fig. 44 der Kreis, auf welchem sich der Exzentermittelpunkt bewegt, so findet man bei Annahme unendlicher Pleuelstangenlänge zu jeder Exzenterstellung die zugehörige Schieberstellung durch Projektion des Exzentermittelpunktes auf den wagerechten Durchmesser III VIII, welcher gleichzeitig die Schieberbahn darstellt. Zu der Mittelstellung des Schiebers in Fig. 43 gehört demnach die Exzenterstellung OI.

Steht der Kolben in der Totlage O K, so soll der betreffende Einlaßkanal schon um das "lineare Voreilen" v_e geöffnet sein. Fig. 43^{II}. Zu diesem Zweck muß sich der Schieber um den Betrag $e + v_e$ aus seiner Mittellage entfernt haben, wobei das Exzenter in die Lage O II gelangt, welche der Kurbeltotlage O K entspricht. Das Exzenter eilt sonach bei normaler Ausführung der Kurbel um den Winkel 90° + δ vor; δ wird der Voreilwinkel genannt.

Die Steuerungen mit zweifachen Dampfwegen.

Das Müllersche Schieberdiagramm gestattet in einfachster Weise, die Schieberbewegung graphisch zu verfolgen. Schieber und Exzenterstellungen sind gleich bezeichnet.

Lage I. Mittellage. Kanäle um e und i überdeckt.

Lage II. Kurbel in der Totlage. Exzenter in der Voreilstellung. Einlaßkanal um v_e geöffnet. Entfernung des Schiebers aus der Mittellage = $e + v_e$.

Lage III. Totlage des Schiebers und des Exzenters. Einlaßkanal ganz geöffnet. Entfernung des Schiebers aus der Mittellage = e + a = r, wenn r = Exzentrizität.

Lage IV. Der Schieber ist aus der Totlage um *a* nach links zurückgegangen. Die Füllung ist beendigt und hat während der Zurücklegung des Winkels II *O* IV gedauert. Den

I 7777777 II 7/1/17 III 7777 IV V VI 777777 VII VIII 717 IX 7//////

Fig. 43.

gleichen Winkel hat selbstverständlich die Kurbel beschrieben, so daß sich durch Projektion des Punktes IV auf den Durchmesser II VII der während der Füllung zurückgelegte Kolbenweg in II A findet.

Lage V. Mittellage wie unter I.

Lage VI. Der Schieber hat sich um i aus der Mittellage entfernt. Das Exzenter steht in O VI, und es beginnt die Eröffnung des Auslaßkanals.

Lage VII. Die Exzenterstellung O VII entspricht der rechten Kurbeltotlage. Der Schieber hat den Auslaßkanal schon um die Vorausströmung v_a geöffnet, dem Kolbenweg VII B entsprechend.

Lage VIII. Exzenter und Schieber in der linken Totlage; der Schieber überschleift den Kanal um den Betrag e-i.

Lage IX. Der Kanal ist geschlossen, und es beginnt die Kompression, welche während des Kurbelwinkels IX O II andauert. Entsprechender Kolbenweg = II C.

Wird die Exzentrizität r = e + a gewählt, wie hier vorausgesetzt, so ist der Dampfkanal in der Mittelstellung des Kolbens, in welcher dieser seine größte Geschwindigkeit hat, nur noch zum Teil geöffnet.

Soll die daraus folgende Eintrittsdrosselung vermieden werden, so muß das Exzenter die Größe r' $= \frac{e+a}{\cos \delta} = OE$ erhalten, falls der Dampfkanal in der der Kolbenmittelstellung entsprechenden Exzenterlage ganz geöffnet sein soll.

Eine andere ebenfalls viel gebräuchliche Darstellung der Schieberbewegung ergibt sich mittelst des Zeunerschen Diagramms, Fig. 45*a*.

Bewegt sich die Kurbel um den Winkel ω aus der Totlage heraus, so entfernt sich das Exzenter um den gleichen Winkel aus seiner Voreillage, und der Schieberausschlag berechnet sich aus der Fig. 44 zu

$$\zeta = \mathbf{r} \cdot \sin(\omega + \delta),$$

so daß für jeden Kurbelwinkel ω — und also auch für jede Kolbenstellung — der zugehörige Schieberaussschlag festgestellt werden kann. Diese Gleichung für ζ ist nun die Polargleichung zweier Kreise vom Durchmesser r, welche sich im Pol O berühren. Die Lage der Kreise ist dadurch bestimmt, daß die Zentrale $C_1 C_2$ mit O Y den Winkel δ einschließt.

Zieht man unter dem Winkel ω einen Radius Vektor O D, so ist

im Dreieck $O C_1 D$ die Strecke $O D = O C_1 \cdot \sin O C_1 D = O C_1 \cdot \sin (O C_1 v + v C_1 D) = r \cdot \sin (\omega + \delta).$

Der Radius Vektor für irgend einen Kurbelwinkel ω gibt also den Schieberausschlag für diesen Winkel an, und zwar sind aus dem oberen positiven Schieberkreis die Ausschläge des Schiebers nach rechts, aus dem unteren negativen Kreis die Ausschläge nach links zu entnehmen. Schlägt man in der ersichtlichen Weise mit e und i um 0 Kreise, so ist in den Schnittpunkten dieser mit den Schieberkreisen die Dampfverteilung vollständig gegeben.

In der Lage O B ist der Kanal um das lineare Voreilen V_e geöffnet. Nach Zurücklegung des Winkels $B O C_1$ ist der Kanal ganz geöffnet, und nach Zurücklegung des Winkels B O F geschlossen; die Füllung dauerte demnach während des Kolbenweges B G an. V_a stellt die Vorausströmung dar. Im Punkt H beginnt die Kompression, welche während des Kolbenweges J B stattfindet. Das Schieberdiagramm ist in unmittelbare Verbindung mit dem Dampfdiagramm gebracht, woraus sich sehr deutlich die Abhängigkeit der Dampfverteilungsphasen voneinander ergibt.

Das Müller - Reuleauxsche Diagramm nach Fig. 45b, welches gegen Fig. 44 um 90° + δ verdreht ist, veranschaulicht ebenfalls die unmittelbare Abhängigkeit des Dampfdiagramms vom Schieberdiagramm. Der Schieber bewegt sich in Richtung der Linie m m. Wird von der beabsichtigten Dampfverteilung ausgegangen, so ist, nach Annahme der Füllung, der Voreilwinkel δ nahezu festgelegt, da das lineare Voreilen keine bedeutenden Änderungen zuläßt. Linie $V_a C_o$ muß parallel zur e-Linie liegen, so daß nach Annahme der Kompression auch die Vorausströmung — oder umgekehrt — bestimmt ist.

Die Schieberabmessungen werden in der Weise festgestellt, daß nach Aufzeichnung des Schieberdiagramms die in diesem beliebig angenommene Kanalbreite mit der aus der Berechnung sich ergebenden Kanalbreite verglichen wird. Mit dem Verhältnis dieser beiden Werte sind sodann die Strecken e und i im Diagramm zu multiplizieren, um die Ausführungsmaße der Überdeckungen zu erhalten.

Der Kanalquerschnitt F wird aus der von Radinger aufgestellten Beziehung

$$\mathbf{F} = \mathbf{a} \cdot \mathbf{h} = \frac{\mathbf{O} \cdot \mathbf{c}}{\mathbf{v}}$$

ermittelt, worin:

h = Kanalhöhe, a = Kanalweite.

0 =Kolbenfläche.

 $c = \frac{n s}{30} =$ mittlerer Kolbengeschwindigkeit.

v = mittlerer Dampfgeschwindigkeit.

Hieraus wird a bestimmt, indem man h bei Schiebermaschinen zum 0,55 bis 0,8 fachen des Zylinderdurchmessers wählt. Die Weite des Auspuffkanals im Zylinder wird mit Rücksicht darauf bestimmt, daß in der Schiebertotstellung III, Fig. 43, bei welcher die stärkste Verengung des Auspuffkanals stattfindet, dieser noch um $a + \sigma$ geöffnet ist. σ stellt eine Zugabe dar, um mit Sicherheit eine Drosselung des abziehenden Dampfes zu verhüten.

Was die Dampfgeschwindigkeit betrifft, so setzt man nach Radinger meist v = 30 msek. Nach Doerfel hängt v von der Größe des Dampfdruckes ab.

Doerfel setzt für:

p = 5 8 11 kg/qcm Eintrittsspannung

 $v = 40 \quad 30 \quad 25 \text{ msek.}$

Zu annähernd denselben Werten gelangt Schüle auf Grund theoretischer Untersuchungen ¹).

Bei den Steuerungen mit vierfachen Dampfwegen werden die Auslaßquerschnitte namentlich bei Kondensationsmaschinen reichlicher bemessen, um die Luftleere des Kondensators möglichst unvermindert in den Dampfzylinder hineinzubringen.

Eine Grenze ist durch die Größe des mit wachsendem Auslaßquerschnitte zunehmenden schädlichen Raumes gegeben.

Meist wird hier v = 25 msek. gewählt.

Beispiel. Für eine Schiebermaschine von 300 mm Durchmesser, 500 mm Hub und 120 ^{Uml.}/_{Min.} ist der Muschelschieber zu zeichnen. Die Kanalhöhe h werde zu 0,65 D = 195 mm gewählt. Die Füllung betrage 65 v. Ht., die Kompression 15 v. Ht.

Nach diesen Angaben werden

$$O = \frac{D^2 \cdot \pi}{4} = 706 \text{ qcm} \qquad F = \frac{O \cdot c}{30} = \frac{706 \cdot 2}{30} = 47 \text{ qcm}$$
$$c = \frac{n s}{30} = \frac{120 \cdot 0.5}{3} = 2^{\text{m}}. \qquad a = \frac{F}{h} = \frac{47}{19.5} \simeq 25 \text{ mm}.$$

Die verlangte Dampfverteilung sei im Diagramm der Fig. 45 in natürlicher Größe dargestellt, in welchem die Kanalweite a = 10 mm, so daß der Maßstab, mit welchem die Strecken e = 15 und i = 3,5 mm zu multiplizieren sind, sich zu $\frac{25}{10} = 2,5$ ergibt. Demnach sind auszuführen:

die äußere Überdeckung $e = 2.5 \cdot 15 \circ 38$ mm,

die innere Überdeckung $i = 2.5 \cdot 3.5 \circ 9$ mm.

die Exzentrizität r = e + a = 38 + 25 = 63.

der Voreilwinkel δ .

2. Die Schieberellipse.

Während aus dem Diagramm von Müller und Zeuner Beginn und Abschluß der einzelnen Dampfverteilungsphasen leicht ersichtlich sind, zeigt die Schieberellipse die Kanalöffnungen während der Füllung und Ausströmung. Die Schieberellipse entsteht, wenn zu den Kolbenstellungen als Abszissen die zugehörigen Ausschläge des Schiebers aus seiner Mittellage als Ordinaten aufgetragen werden. Fig. 46a.

Die Umfänge von Kurbelkreis und Exzenterkreis, deren Durchmesser beliebig sein kann, werden in eine gleiche Anzahl von Teilen zerlegt, wobei auf dem Kurbelkreis von der linken Totlage, auf dem Exzenterkreis von der Voreilstellung des Exzenters *O* ausgegangen wird.

Die Schnittpunkte der durch die Teilpunkte $\vec{0}$, $\vec{1}$, $\vec{2}$, $\vec{3}$ des Exzenterkreises gelegten Wagerechten mit den durch die gleichbezeichneten

¹) Zeitschr. Ver. deutsch. Ing. 1906. S. 1900 u. f.

Teilpunkte 0, I, II, III des Kurbelkreises gelegten Senkrechten sind Punkte der Ellipse. Werden im Abstande e und i vom Mittelpunkt des Kurbelkreises Wagerechte gezogen, so geben die Hervorragungen der Ellipse über diese Linien die Kanaleröffnungen an.

Ermittelt man zu jeder Stellung des Kolbens dessen Geschwindigkeit, so läßt sich mittelst den aus dem Diagramm abzugreifenden Kanaleröffnungen die Dampfgeschwindigkeit für jede Kolbenstellung feststellen.

Wird die größte Kolbengeschwindigkeit $c_{max} = \frac{\pi s \cdot n}{60}$ durch den Radius *O* III dargestellt, so kann für jede andere Stellung *x* des Kolbens dessen Geschwindigkeit durch das Verhältnis der zugehörigen Ordinate

x a zum Radius O III erhalten werden, unendliche Pleuelstangenlänge vorausgesetzt. Für die im Beispiel S. 68 erwähnte Maschine wird

$$c_{\max} = \frac{0.5 \cdot \pi \cdot 120}{60} = 3.14 \text{ m.}$$

und da x a: OIII = 35:50, so ist in Stellung x die Geschwindigkeit des

Kolbens $c_x = \frac{35}{50} \cdot 3,14 = 2,2^m$. Die erforderliche Kanaleröffnung muß die

∙y'

Fig. 46.

b

Größe $a_x = \frac{0 \cdot c_x}{w \cdot h}$ erhalten, worin w diejenige Dampfgeschwindigkeit bedeutet, bei welcher beschleunigte Drosselung stattfindet. Der Eintritt stärkerer Krümmung der Füllungslinie ist nicht an eine bestimmte

Dampfgeschwindigkeit gebunden, sondern hängt nach Schüle¹) von der Dampfgeschwindigkeit ab, welche der Bemessung der Steuerungskanäle zugrunde gelegt wurde. Für die meist gebräuchlichen Werte v = 30 bis 40 msek. beträgt w = 60 bis 80 msek.

¹) Zeitschr. Ver. deutsch. Ing. 1906. S. 1992.

Nach Versuchen Gutermuths (Z. 1904, S. 329 u. f.) ergibt sich das Verhältnis der Drucke vor und hinter der Durchflußöffnung:

wenn $\varDelta p = p_1 - p_2$.

Bei 8 atm. Dampfdruck würde demnach ein Druckabfall von $0,013 \cdot 8 = 0,104$ atm. bei 60^{m}

Geschwindigkeit und von $0,025 \cdot 8 = 0,2$ atm. bei 100^m

Geschwindigkeit stattfinden.

Für w = 60 wird im vorliegenden Fall:

$$a_{x} = \frac{706 \cdot 2,2}{60 \cdot 19,5} = 13,3 \text{ mm.}$$

Die Auftragung der für die verschiedenen Kolbenstellungen erforderlichen Kanalöffnungen ergibt die sogenannte Drosselungskurve, Fig. 46b, in deren Schnittpunkt z mit der Schieberellipse der Druckabfall auf obigen Betrag steigt. Soll die Drosselung nur während des Kolbenweges y' andauern, so wäre, der größeren Kolbengeschwindigkeit und der kleineren Eröffnung entsprechend, der freigelegte Kanalquerschnitt von a_1 auf a_2 zu vergrößern.

3. Die Berücksichtigung der endlichen Stangenlängen.

In den bisherigen Ausführungen wurde unendliche Pleuelstangenlänge vorausgesetzt, so daß die Kurbelendpunkte auf den wagerechten Durchmesser mit Geraden projiziert werden konnten. Beträgt die Füllung nach den bisher angegebenen Diagrammen 50 v. Ht., findet also Ein-

Fig. 47.

strömung während der Drehung der Kurbel um einen Winkel von 90^o statt, so wird in Wirklichkeit der Kolben einmal die Strecke s_1 , das andere Mal die Strecke s_2 von der Totlage aus zurückgelegt haben: die Füllung wird infolge der endlichen Pleuelstangenlänge auf der Deckelseite größer als auf der Kurbelseite. Fig. 47.

¹) Z. Ver. deutsch. Ing. 1906. S. 1992.

Die Steuerungen mit zweifachen Dampfwegen.

Dieser Unterschied in den Füllungen kann wenigstens zum Teil durch unsymmetrische Einstellung des Schiebers oder durch Überdeckungen von verschiedenen Abmessungen ausgeglichen werden. Um diese zu ermitteln, werden die Schieberdiagramme sowohl für die Deckel, als auch für die Kurbelseite nach Fig. 48 aufgezeichnet. Die Dampfverteilungsphasen ergeben sich nunmehr in v. Ht. des Kolbenhubes als wagerechte Abstände der Punkte Ex, Va, C_0 usw. von den beiden Kreisen K_1 und K_2 , welche die Schieberkreise tangieren, oder auch als Projektion derselben Punkte mittelst Bogen auf die Wagerechte, wie auf der Deckelseite für Ex angegeben. Die Radien L dieser Bogen stehen zum Radius des Schieberkreises, welcher gleichzeitig Kurbelkreis ist, in demselben Verhältnis wie die Pleuelstangenlänge zum Kurbelradius (also meistens, wie gezeichnet, L = 5r).

Soll außer der endlichen Pleuelstangenlänge auch die endliche Länge der Exzenterstange berücksichtigt werden, so werden durch die Endpunkte der Strecken e und i statt der Geraden Kreisbögen gezogen, deren Radius $1 = \lambda \cdot r$, worin $\lambda = \frac{\text{Stangenlänge } l}{\text{Exzentrizität } r}$, wie dies im Diagramm Fig. 48 punktiert angedeutet ist.

Das Zeunersche Diagramm, dessen Kurbelkreis bei Berücksichtigung der Pleuelstangenlänge allein ebenfalls durch Kreisbögen K_1 K_2 zu tangieren ist, läßt die Beachtung der endlichen Exzenterstangenlänge nur in sehr umständlicher Weise zu, da die Schieberkreise durch Kurven ersetzt werden müßten, deren Punkte einzeln durch Rechnung zu bestimmen wären.

Die einfachste Berücksichtigung der endlichen Stangenlängen ge-

stattet das Brix sche bizentrische, polare Schieberdiagramm. In diesem wird als Scheitel der Kurbelwinkel nicht der Mittelpunkt m des Kurbelkreises, sondern ein Pol O gewählt, welcher im Abstand R^2

 $\frac{m}{2L}$ vom Punkt *m* aus — im Sinne der

Bewegungsrichtung beim Hingang — verschoben ist. Fig. 49. Dem beliebigen Kurbelwinkel ω entspricht dann der Kolbenweg x. Es wird:

 $\mathbf{x} = \mathbf{R} - \mathbf{R} \cos \left(\mathbf{a} \mathbf{m} \mathbf{D} \right) = \mathbf{R} \left[1 - \cos \left(\omega + \gamma \right) \right].$

Nach Fig. 47 ist der genaue Wert für den Kolbenweg:

 $\mathbf{x} = \mathbf{R} (\mathbf{1} - \cos \omega) \pm \mathbf{L} (\mathbf{1} - \cos \beta)^{1}$

so daß die Abweichung gleich der Differenz beider Werte ist:

R $[\cos(\omega + \gamma) - \cos \omega] \pm L (1 - \cos \beta).$

Nimmt ω die Werte 0°, 90°, 180° und 270° an, so wird die Differenz gleich Null.

Für $\frac{R}{L} = \frac{1}{5}$ erreicht sie den Höchstwert <u>+</u> 0,0019 R, kann somit

vernachlässigt werden.

Wird von m aus unter dem Winkel ω ein Radius m B gezogen, so wird der, durch Projektion ermittelte, zugehörige Kolbenweg ebenfalls = x, woraus sich die Richtigkeit des Verfahrens ergibt.

Bei der Einzeichnung des Zeunerschen Diagramms nach Fig. 50 ist nur die endliche Pleuelstangenlänge in Betracht gezogen. Die Projektionen der Punkte Va, Ex und Co auf den Durchmesser geben die Dauer der Vorausströmung, der Expansion und Kompression an.

In Fig. 51 ist mit Hilfe des Müllerschen Diagramms außerdem die endliche Exzenterstangenlänge berücksichtigt, indem der Mittelpunkt O_2 des Exzenterkreises ebenfalls in Richtung der Schieberbewegung im Sinne des Rückganges um den Betrag $z_1 = CO_2 = \frac{r^2}{21}$ verschoben ist.

¹) Es ist: $L \cdot \sin \beta = R \cdot \sin \omega$, sonach: $\sin \beta = \frac{R}{L} \cdot \sin \omega = \lambda \cdot \sin \omega$

$$\cos\beta = \sqrt{1 - \lambda^2 \cdot \sin^2 \omega}.$$

Durch Reihenentwickelung folgt: $\cos \beta = 1 - \frac{1}{2}\lambda^2 \cdot \sin^2 \omega$. Nach Einsetzung dieses Wertes ergibt sich: $\mathbf{x} = \mathbf{R} \left(1 - \cos \omega + \frac{1}{2} \frac{\mathbf{R}}{\mathbf{E}} \cdot \sin^2 \omega \right)$.

dieses Wertes ergibt sich: $\mathbf{x} = \mathbf{R} \left(1 - \cos \omega \pm \frac{1}{2} \frac{\mathbf{R}}{\mathbf{L}} \cdot \sin^2 \omega \right)$. Die Strecke *m* in Fig. 47, das sog. Fehlerglied, hat demnach den angenäherten Wert $\mathbf{m} = \frac{1}{2} \frac{(\mathbf{R} \cdot \sin \omega)^2}{\mathbf{L}} = \frac{(\mathbf{a} \ \mathbf{b})^2}{2 \mathbf{L}}$. Für $\omega = 90^\circ$ wird $\mathbf{m} = \frac{\mathbf{R}^2}{2 \mathbf{L}}$. Eine Berücksichtigung der endlichen Exzenterstangenlänge wird im allgemeinen nicht erforderlich sein; nur wenn $\frac{r}{l} < \frac{1}{10} \div \frac{1}{15}$ wird genauere Ermittlung empfehlenswert.

Im Falle der Anwendung des Muschelschiebers und seiner Abarten wird meistens der Schieber symmetrisch ausgeführt, so daß die Ungleichheiten in der Dampfverteilung bei der Einstellung beseitigt werden müssen,

was wenigstens teilweise ausführbar ist. Werden die Schieberlappen auf Grund der endlichen Pleuelstangenlänge ungleich ausgeführt, so ergeben sich bei beiderseits gleicher Füllung und Kompression ungleiches Voreilen und ungleiches Vorausströmen, so daß im Interesse eines passenden Voreilens auch hier vielfach nur angenäherter Füllungsausgleich angestrebt wird.

4. Die Abarten des gewöhnlichen Muschelschiebers.

Der Tricksche Schieber.

Diesem Schieber, Fig. 52, ist eigentümlich, daß er zur Erzielung doppelter Einströmung mit einem Hilfskanal, dessen Weite meist $\frac{a}{2}$ beträgt,

versehen ist. Wird der Einlaßkanal durch die steuernde Außenkante des Schiebers freigelegt, so überschleift der Hilfskanal auf der entgegengesetzten Seite den Schieberspiegel, so daß auch durch ihn der Dampf zuströmen kann. Mit dem Trickschen Schieber kann entweder eine schnellere Wirkung der Steuerung, also ein rascheres Öffnen und Schließen der Steuerkanäle und damit eine Vermeidung der Drosselung, oder eine Verkürzung des Schieberhubes und dadurch Verringerung der Schieberreibung und der Abmessungen des Schieberkastens erreicht werden.

Im ersteren Falle erhält die Exzentrizität dieselbe Größe wie die des entsprechenden Muschelschiebers. Das Schieberdiagramm Fig. 53

Die Steuerungen.

zeigt, daß vom Punkte der Voreinströmung ab sich die Kanalöffnungen verdoppeln, bis sie die Größe a erreicht haben. In gleicher Weise wird der Kanal geschlossen. Sonach ist nach Zurücklegen eines Kurbelwinkels α , entsprechend k v. Ht. Kolbenweg, der Kanal schon ganz geöffnet, so daß eine Drosselung des Frischdampfes nicht stattfinden kann. Der Dampfauslaß erfolgt in gleicher Weise wie beim Muschelschieber.

Im zweiten Fall erhalten Exzentrizität und Überdeckungen die Hälfte der Größe wie beim einfachen Muschelschieber, also $i_1 = \frac{i}{2}$; $e_1 = \frac{e}{2}$; $r_1 = \frac{r}{2}$. Öffnung und Schluß gehen hierbei in derselben Weise wie beim Muschelschieber vor sich, da die Vorteile der doppelten Eröffnung durch die auf die Hälfte verminderte Schiebergeschwindigkeit aufgehoben werden. Bei dieser Anordnung mit halbem Schieberhub wird die Ausströmung des Abdampfes verschlechtert, und es ist darauf zu achten, daß $r_1 > a + i_1$, da sonst der Auslaßkanal nicht mehr ganz geöffnet wird.

In beiden Fällen muß der Kanal im Schieberspiegel die Weite a + s haben, damit keine Verengerung desselben um die Stegbreite s stattfindet. Im übrigen können auch Zwischenwerte für die Exzentrizität gewählt werden; es findet dann sowohl Hubverkürzung als auch Beschleunigung der Steuerwirkung statt.

Schieber mit Überströmung.

Eine Erweiterung des Hilfskanals um soviel, daß er in der Mittellage des Schiebers — also wenn die Kurbel um den Winkel δ vor der Totlage steht — beide Zylinderkanäle nach Fig. 54 miteinander verbindet, führt während der Zurücklegung des Schieberweges 2*c* Überströmung herbei: der Dampf strömt von der Kolbenseite mit höherer Spannung auf diejenige mit niederer Spannung über. Dadurch wird bei Kondensationsmaschinen die Kompression bei gleichzeitiger Verbesserung der Ausströmung erhöht, während bei Auspuffmaschinen die Kompression ermäßigt wird.

Soll der Tricksche Schieber mit Überströmung für kleinere Füllungen zur Anwendung gelangen, so wird die äußere Überdeckung e und damit auch die Stegbreite s sehr

groß. Der Einlaßkanal muß an der Mündung die Weite a + s erhalten, und der Schieber wird sehr lang. Dieser Übelstand wird durch Anwendung des Trick-Weißschen Schiebers vermieden, welcher außer der Überströmung, wie sie aus der Mittelstellung des Schiebers in Fig.

55¹) ersichtlich ist, auch noch doppelte Eröffnung des Auslaßkanals gestattet.

In den Stegen am Schieberspiegel befinden sich muschelförmige Erweiterungen, auf deren inneren Kanten die Schenkel einer in den Schieber eingebauten Muschel stehen. Entfernt sich der Schieber um iaus seiner Mittellage, so ist der Zylinderkanal schon um i + c geöffnet,

und es beginnt die Ausströmung, welche an zwei Kanten vor sich geht: über und unter dem Steg her. Damit der Spannungsausgleich vor Beginn der Ausströmung stattfindet, muß die innere Überdeckung $i = c + \sigma$ werden, wenn hier c die Weite der Überströmspalte und σ eine Sicherheitsüberdeckung bedeuten.

Die doppelte Eröffnung des Auslasses macht sich bis zur Zurücklegung des Schieberweges $\frac{a}{2} + i$ geltend; bis dahin muß auch die Mündung des Zylinderkanals freigegeben sein, so daß die Beziehung besteht:

$$\frac{\mathbf{a}}{2} + \mathbf{i} = \mathbf{a} - \mathbf{c},$$

und daraus:

$$\mathbf{c} = rac{\mathbf{a}}{2} - \mathbf{i}$$
, oder da $\mathbf{i} = \mathbf{c} + \sigma$,
 $\mathbf{c} = rac{\mathbf{a}}{2} - \mathbf{c} - \sigma$, woraus $\mathbf{c} = rac{\mathbf{a}}{4} - rac{\sigma}{2}$

1) Weiß, Kondensation. (Verlag von Julius Springer in Berlin.)

0

Bei schnelllaufenden Maschinen wird es vorteilhaft, c $\operatorname{um} \frac{1}{3}$ größer zu wählen.

Der Pennsche Schieber.

Dieser gibt ebenso wie der Trick-Weißsche Schieber doppelte Eröffnung, sowohl für den Einlaß als auch für den Auslaß, ohne jedoch Überströmung zu ermöglichen. Der Zylinderkanal läuft an der Mündung in zwei engere Kanäle von der Weite a' $=\frac{a}{2}$ aus. Zwei quer in den Schieber eingebaute Stege sind seitlich erweitert und stehen mit dem Schieberkasten in Verbindung, so daß durch sie der Frischdampf zuströmen kann. Die Art der Ein- und Ausströmung des Dampfes, sowie die Abmessungen sind aus Fig. 56 ersichtlich. Es ist darauf zu achten, daß die Öffnungen am Schieberspiegel durch überschleifende Kanten nicht verengt werden; es muß sein: $c_1 = r - e' + \sigma$, $c_2 = r - i' + \sigma$, worin σ = Sicherheitszu-Der Pennsche Schieber findet am häufigsten Verwendung bei gabe. Schiffsmaschinen, um einen möglichst geringen Schieberhub zu erhalten. Selbstverständlich läßt sich auch hier durch Vergrößerung des Schieberweges eine Beschleunigung der Steuerwirkung erreichen. Die große Auflagerfläche dieses Schiebers und die Entlastung eines Teiles der Schieberfläche verursachen bei halber Exzentrizität geringere Abnutzung der Flächen und kleinere Reibungsarbeit als beim Muschelschieber. Versieht man den Pennschen Schieber¹) nach Fig. 57 noch mit einem Trick-Kanal, so erhält man dreifache Einströmung und doppelte Ausströmung.

Der Hochwaldsche Schieber²).

Dieser Schieber, Fig. 58, besitzt: einen Trick - Kanal t für Einund Überströmung, einen Kanal k, der für jede Schieberseite gesondert bei der Einströmung und bei der Ausströmung wirksam ist und einen ebenfalls der Überströmung dienenden Auslaßkanal m, der mit einem Quersteg o versehen ist und dessen Kanten stets negative Deckungen haben.

Der Auspuffkanal g, welcher mit drei Öffnungen auf den Schieberspiegel mündet, wird von dem seitlich offenen Frischdampfkanal c durchsetzt.

Sonach bildet der Schieber drei Durchgänge für die Einströmung, drei Durchgänge für die Ausströmung und zwei Durchlässe (t und m) für die Überströmung, um die Kompression durch Spannungsausgleich zu regeln.

In Fig. 58a ist der Schieber in der Mittelstellung gezeichnet, bei welcher der Dampf überströmt.

In Fig. 58b beginnt die Einströmung auf der rechten Zylinderseite. Die drei Durchgänge E_1 , E_2 , E_3 sind durch Pfeile gekennzeichnet.

¹) Nach einer Ausführung der "Sundwiger Eisenhütte", Sundwig i. W.

²) Ausführung von A. Borsig. Berlin. Z. 1905, S. 1324.

78

In Fig. 58c beginnt die Ausströmung für die linke Zylinderseite. Hierzu stehen die drei Durchgänge A_1 , A_2 und A_3 zur Verfügung.

Infolge der dreifachen Eröffnung läßt sich vollständige Kanalöffnung schon in der Kolbentotlage erreichen.

Die nicht entlastete Schieberfläche ist sehr gering. Da die Exzentrizität verkleinert werden kann und die Entlastung durch die Überströmung bei schnellster Schieberbewegung stattfindet, so ist die Schieberbewegungsarbeit klein.

Die Überströmung ermöglicht bei Verbundmaschinen selbsttätige Anpassung der Kompressionsendspannung an den Aufnehmerdruck. Eine Änderung des Kompressionsweges beim Übergang vom Auspuff zur Kondensation oder umgekehrt wird unnötig.

Die entlasteten Schieber.

Die Anwendung der Flachschieber verursacht bei höherem Dampfdruck — etwa über 8 Atm. — große Schwierigkeiten, da infolge des großen spez. Flächendruckes das Schmieröl zwischen den gleitenden Flächen fortgepreßt wird und das mit Zerstörung der Gleitflächen verbundene "Fressen" des Schiebers eintritt, welches sich nach außen hin durch knurrendes Geräusch bemerkbar macht. Der Flächendruck pro qcm läßt sich zwar durch Vergrößerung der tragenden Flächen vermindern; hiermit tritt aber gleichzeitig eine Vermehrung des auf dem Schieber lastenden Gesamtdruckes und der Reibungsarbeit auf. Die für den zulässigen Flächendruck geltenden Werte sind von der Ausführung, Schiebergeschwindigkeit, Art der Schmierung und besonders von der Güte des Schmiermaterials abhängig.

Da über die zwischen Schieber und Schieberspiegel herrschende Spannung Bestimmtes nicht bekannt ist, so setzt man bei Berechnung des Flächendruckes am zweckmäßigsten voraus, daß auf der Schieberfläche ein Druck von der Größe der höchsten Eintrittspannung laste, und daß ein Gegendruck nicht vorhanden sei. Unter diesen Annahmen ist bei bester Ausführung und Schmierung ein spez. Auflagerdruck bis zu 25 kg/qem zulässig, doch ist es ratsam, in gewöhnlichen Ausführungen, namentlich bei größeren Schiebergeschwindigkeiten, 20 kg/qem nicht zu überschreiten.

Anwendung der Schieber auch für höchsten Dampfdruck und Verringerung der Reibungsarbeit wird durch Entlastung erreicht.

Der Kolbenschieber. Dieser entsteht, wenn der Querschnitt eines Flachschiebers als erzeugende Fläche eines Umdrehungskörpers benutzt

wird. Zum Zweck vollständiger Entlastung müssen die Kanäle im Schieberspiegel rundgeführt werden, so daß die von allen Seiten wirkenden Dampfdrucke sich aufheben. Der schädliche Raum wird dadurch stark vergrößert. Der Kolbenschieber eignet sich besser für senkrechte als für wagerechte Anordnung, da in diesem Fall das Schiebergewicht einseitige Abnutzung und Undichtheiten verursacht. Für größere, wagerechte Schieber wird

es deshalb empfehlenswert, besondere Tragflächen zur Aufnahme des Schiebergewichtes anzuordnen.

Die Abdichtung erfolgt entweder durch Einschleifen oder vermittelst Liderungsringe (Fig. 59). Die Ausführung nach Fig. 58c ist wegen des Aufbringens nur bei Schiebern von größerem Durchmesser angebracht; die verhältnismäßig geringe Auflagerfläche an den Stirnseiten dieser Ringe führt schnellen Verschleiß und Schlag herbei.

Sehr häufig werden die Kolbenschieber mit Inneneinströmung ausgeführt. Der Schieberkasten ist mit Abdampf gefüllt, so daß die Stopfbüchsen nur gegen diesen abzudichten brauchen, eine Bauart, welche sich besonders für hohen Druck und überhitzten Dampf eignet. Fig. 60. Der Abdampf kann hierbei entweder durch einen, die beiden Schieberkastenenden verbindenden angegossenen Kanal, oder durch eine besondere Rohrleitung abgeführt werden; in gleicher Weise findet bei äußerer Einströmung die Zuführung des Frischdampfes statt.

Wird der Dampf nur von einer Seite her zu- oder abgeführt, so muß statt der zwei Scheibenkolben ein rohrförmiger Schieber angewendet werden, dessen innerer Querschnitt nach Abzug der Rippen die erforderliche Durchgangsfläche für den Dampf ergeben muß.

Dem am Umfang stetig zunehmenden Dampfzufluß entsprechend, nehmen die rundgeführten Kanäle entweder in radialer oder axialer Richtung zu. Letztere Ausführungsweise, welche eine bequemere Verkleidung des Schieberkastens erlaubt, setzt wegen der gleichbleibenden Kanalbreite im Schieberspiegel den Einbau einer Büchse voraus. Diese findet ihrer leichten Auswechselbarkeit halber auch sonst häufig Verwendung. Der Kanal ist hierbei — um den Zusammenhang zwischen den einzelnen Teilen der Büchse herzustellen — mit Stegen zu versehen, welche zur Vermeidung von Gratbildung am Schieber schräg gesetzt werden. Die Verengerung der Kanäle durch die Stege ist bei der Bemessung der Kanalquerschnitte zu berücksichtigen. Im übrigen soll die Kanalweite so gewählt werden, daß der Schieberkasten nicht länger als der Zylinder wird.

¹) Ausführung der Hannoverschen M.-A.-G. vorm. G. Egestorff. (Hochdruckkolbenschieber für vierzyl. Schnellzuglokomotive.)

Schieber mit Entlastungsraum. Bei diesen wird die Rückseite des Schiebers ganz oder zum Teil gegen den Schieberkastendruck abgedichtet,

sodaß über dem Schieber ein Entlastungsraum entsteht, welcher mit der äußeren Atmosphäre, dem Abdampfrohr oder dem Kondensator in Verbindung steht. In letzterem Fall kann der Entlastungsraum — und damit die Größe der Dichtungsflächen — besonders klein gewählt werden. In den Fig. 56 und 61 sind derartige Entlastungen dargestellt.

In Fig. 56 ist ein besonderer Aufsatz mit Kegelfläche durch Verschraubung auf dem Schieber befestigt; auf dieser Kegelfläche sitzt ein nach innen spannender Ring, welcher den Frischdampfraum gegen den Entlastungsraum abdichtet. In Figur 61. wird der Ring gegen den Schieberkastendeckel mittelst Spiralfedern angepreßt. Die Gleitfläche am

Schieberkastendeckel ist durch Halbkreise zu begrenzen, deren Mittelpunkte um weniger als den Schieberhub voneinander entfernt sind, so daß die angedrückten Ringe etwas überschleifen, und keine Ansätze entstehen können.

Offene Schieber. Der Schieber von rechteckigem Querschnitt gleitet zwischen Schieberspiegel und einstellbarer Gegenplatte. Die Herstellung ist sehr kostspielig, die Verwendung in Deutschland selten.

Die Einstellung des Muschelschiebers.

Die Verbindung von Schieber und Stange.

Ist der Schieber ohne Berücksichtigung der endlichen Stangenlängen entworfen worden, so wird, wie auf S. 70 nachgewiesen, bei symmetrischer Einstellung die Füllung auf der Deckelseite größer als auf der Kurbelseite, wodurch die Gleichmäßigkeit der Drehgeschwindigkeit ungünstig beeinflußt wird. Soll Gleichheit der Füllungen erzielt werden, so muß der Schieber um einen bestimmten Betrag c aus der Mittellage nach der Deckelseite hin verschoben werden, damit beim Schieberrückgang auf der Deckelseite früher geschlossen wird. Hierbei wird

Dubbel, Dampfmaschinen. 3. Aufl.

der Schieber den Kanal auf der Kurbelseite um c überschleifen, während der Kanal auf der Deckelseite nur um a - c geöffnet wird. Soll auch bei letzterem volle Eröffnung stattfinden, so muß die Exzentrizität r = a+ e + c sein (s. Fig. 48). Da bei dieser Einstellung das lineare Voreilen

auf der Deckelseite den Wert $v_e - c$, auf der entgegengesetzten Seite den Wert $v_e + c$ annimmt, so empfiehlt es sich, so zu vermitteln, daß sowohl Voreilen als Füllung möglichst gleich werden.

Über die Dampfverteilung bei Ausführung des Schiebers mit ungleichen Lappen s. S. 73.

Zeigt sich bei der Einstellung des Schiebers, daß das Voreilen auf beiden Seiten zwar annähernd gleich, aber entweder zu groß oder zu klein

ist, so muß das während der Einstellung mittelst Hohlkeils oder besser mittelst Zahnkeils nach Fig. 176 aufgekeilte Exzenter um die Welle gedreht werden.

Allgemein gilt als Regel für die Aufkeilung des Exzenters, daß dieses um den Winkel 90° — δ gegen die Schieberbewegungsrichtung geneigt sein soll, wenn der Kolben in der Totlage steht. Ist somit der Schieberantrieb um den Winkel α gegen die Wagerechte geneigt (Fig. 62), so muß das Exzenter um den Winkel $\delta_1 = \delta + \alpha$ gegen die Wagerechte aufgekeilt werden.

Bei Kolbenschiebern mit innerer Einströmung muß e nach innen angebracht werden. Der veränderten Bewegungsrichtung entsprechend, wird hierbei das Exzenter entgegengesetzt aufgekeilt, so daß es der Kurbel um 90° — δ nacheilt.

Die gleiche Aufkeilung wird erforderlich, wenn die Bewegungsrichtung des Schiebers durch einen in das Steuerungsgestänge eingeschalteten Hebel umgekehrt wird, wobei auch die Hebelübersetzung zu berücksichtigen ist. Der Schieberhub 2 (e + a) ist mit dem Hebelarmverhältnis zu multiplizieren, um die Größe der Exzentrizität zu erhalten.

Als Folge der Bewegungsumkehr muß in der Brixschen Darstellung Fig. 51 das Müllersche Diagramm um 180° gedreht werden, d. h. der Punkt O₂ gelangt nach O₁. Da mit der Größe der Exzentrizität OO₂ die Ungleichheit der Füllungen wächst, jene aber bei Nacheilung des Exzenters abnimmt, so folgt, daß bei nacheilendem Exzenter die Dampfverteilung gleichmäßiger wird und zwar im allgemeinen um so mehr, je kürzer die Exzenterstange ist. Die Strecke OO₁ wird am kleinsten, wenn OO₁ senkrecht zu O₁C steht, Fig. 51, wenn also: O₁C = O C.sin (O₁ O C) = O C sin δ wird, oder:

$$\frac{\mathbf{r}^2}{21} = \frac{\mathbf{R}^2}{2\mathbf{L}} \cdot \sin \delta.$$

Als günstigstes Verhältnis ergibt sich sonach:

$$\frac{\mathbf{r}}{\mathbf{l}} = \frac{\mathbf{R}}{\mathbf{r}} \cdot \frac{\mathbf{R}}{\mathbf{L}} \cdot \sin \delta.$$

Im übrigen ist diese ausgleichende Wirkung schon aus Fig. 48 abzuleiten, in welcher bei nacheilendem Exzenter die mit 1 geschlagenen Kreise entgegengesetzte Krümmung aufweisen würden.

Eine starre Verbindung des Schiebers mit seiner Stange ist unstatthaft, da bei eingetretener Abnutzung entweder die Schieberstange stark durchgebogen oder der Schieber nicht mehr an der Gleitfläche aufliegen würde. Die Verbindung muß vielmehr derart sein, daß der Schieber in der Richtung senkrecht zum Schieberspiegel eine gewisse Beweglichkeit besitzt und ständig vom Dampfdruck angepreßt wird.

Auch kann dadurch die Schieberstange ihre Lage beibehalten, wenn die Schieberhöhe durch nachträgliche Bearbeitung der Gleitflächen verringert wird.

In Fig. 67 wird der Grundschieber durch einen eingepaßten Hammerkopf mitgenommen, eine bei nicht zu großen Schiebern sehr gebräuchliche Konstruktion. Die vorteilhafte, aber auch teuere Verbindungsweise mittelst Rahmens ist in Fig. 63 wiedergegeben. Damit der Schieber auch bei Stillstand der Maschine angepreßt und im Falle hoher Kompression nicht abgedrückt wird, sind unter den Querbrücken Blattfedern angebracht. Bei diesen beiden Verbindungsarten muß die Schieberstange um 360 bezw. 180^o gedreht werden, falls bei der Einstellung der Schieber auf seiner Stange verschoben werden soll. Die Schieberstangen sind deshalb mit feinem Gewinde zu versehen, um möglichst genau einstellen zu können.

In Fig. 57 ist die von einer Hülse (Gasrohr) umschlossene Schieberstange durch eine ovale Öffnung im Schieber hindurchgesteckt. Dieser wird durch zwei Unterlagscheiben mitgenommen, welche durch Muttern auf die Hülse — nicht auf den Schieber — gepreßt werden. Durch diese sehr häufig zu findende Verbindung werden namentlich bei kleineren Schiebern die Durchgangsquerschnitte stark verengt.

b) Die Einschieber-Expansions-Steuerungen.

Werden Voreilwinkel und Hub des Exzenters verstellt, so wird die gesamte Dampfverteilung geändert, was zur Ausführung von Expansionssteuerungen mit einem Schieber Veranlassung gegeben hat. Die Änderung

von Voreilwinkel und Schieberhub kann von Exzenterregulatoren entweder dadurch vorgenommen werden, daß das Exzenter geradlinig oder im Bogen verschoben wird, Fig. 64a und b, oder daß ein Exzenter drehbar auf einem zweiten festgekeilten angeordnet ist. Fig. 64c und d. Bei Verdrehung eines innen angeordneten Exzenters muß das äußere Exzenter durch einen Arm geführt werden. Diese Ausführung hat den Vorteil, daß der Regulator nicht an derjenigen Scheibe angreift, an deren Umfang die Exzenterreibung wirkt.

Bei der geradlinigen Verstellung nach Fig. 65a nimmt die Exzentrizität bei einer Senkung um s von R auf r ab, gleichzeitig vergrößert sich der Voreilwinkel von δ auf \mathcal{A} . In Fig. 65b ist O d das festaufgekeilte, der Kurbel um 60° bis 90° voreilende Exzenter, welches vom Exzenter d D drehbar umfaßt wird. Bei der Verstellung des letzteren bewegt sich

dessen Mittelpunkt auf dem von d aus beschriebenen Kreisbogen $D D_1$, so daß für die Bewegung des Schiebers die resultierenden Exzenter O Dbis $O D_1$ in Wirkung treten. Die sich ergebende Dampfverteilung ist in Fig. 66a mittelst des Müllerschen Diagramms für die geradlinige

Verschiebung, in Fig. 66b mittelst des Zeunerschen Diagramms für den bogenförmigen Ausschlag dargestellt. Beide Diagramme werden am zweckmäßigsten in üblicher Weise für die größte verlangte Füllung entworfen, wobei sehr mäßige Kompression und die Exzentrizität r > e + a anzunehmen ist. Hierauf ist probeweise der Exzenterkreis K für die normale Füllung aufzusuchen, bei welcher der Einlaßkanal nur noch um einen zu wählenden Betrag seiner Weite geöffnet wird. Ergibt sich eine allzugroße Dampfgeschwindigkeit, so ist die Exzentrizität entsprechend zu vergrößern. Die Kompression beginnt schon in Co, die Vorausströmung in Va. Bei der kleinsten Füllung wird der Einlaßkanal nur noch um das lineare Voreilen geöffnet; die Füllung selbst wird gleich der Voreinströmung, in v. Ht. des Kolbenweges gemessen. Wie aus dem Diagramm ersichtlich, ist bei geradliniger Verschiebung das lineare Voreilen Ve für sämtliche Füllungen konstant. Absolute Nullfüllung läßt sich demnach nicht erreichen. Die Voreinströmung erfolgt hingegen bei der größten Füllung während des Kurbelwinkels α' , bei der kleinsten während des Winkels α , ist somit stark veränderlich.

Im Zeunerschen Diagramm werden in den Mittelpunkten i der Strecken $O D, O D_1$ Kreise gezogen. Ist O P = i, O H = e, so bestimmen die Schnittpunkte dieser Kreise wie üblich die Dampfverteilung. Wird $O D_1$ wie gezeichnet kleiner als e, so gibt die Steuerung infolge der Bogenform der Scheitelkurve absolute Nullfüllung: Der Einlaßkanal wird selbst um das lineare Voreilen nicht mehr geöffnet, welches um den Betrag v_1 veränderlich ist. Diese Veränderlichkeit ist im allgemeinen vorteilhaft. Da die Einschieber-Expansionssteuerungen hauptsächlich an kurzhubigen Schnellläufern mit entsprechend großem schädlichem Raum zur Anwendung gelangen, so kann die Auffüllung des letzteren mit Frischdampf während der Voröffnung Durchgehen im Leerlauf herbeiführen. Der Wechsel der Kompression wird wegen der verschiedenen Endspannungen namentlich bei Auspuffmaschinen von Bedeutung. Die Zunahme der Kompression mit abnehmender Füllung ist für Maschinen. welche genaueste Regelung verlangen, erwünscht, da hierbei zwei Ursachen für die Veränderung des mittleren Druckes tätig sind. Eine Steigerung der Kompression über den Einlaßdruck hinaus ist auch bei den kleineren Füllungen zu vermeiden, bei welchen jedoch die mit der Füllungsverkleinerung wachsende Voreinströmung vielfach allzuhohe Kompression verhindert. Bei frühzeitiger Voröffnung wird nämlich der Kompressionsdampf, sobald sein Druck höher als die Schieberkastenspannung ist, aus dem Zylinder hinausgeschoben.

c) Die Expansionsschiebersteuerungen mit zwei Schiebern.

Bei guten Ausströmungs- und Kompressionsverhältnissen lassen sich mit dem Muschelschieber kleinste Füllungen von $40 \div 45$ v. Ht. erreichen, wobei die Überdeckungen und Schieberreibung bedeutend zunehmen. Kleinere, für gute Dampfausnutzung geeignetere Füllungen erfordern die Anwendung der Expansionssteuerungen, doch sind solche mit einem Schieber für mittlere Umlaufzahlen nicht geeignet, da die mit großer Verstellkraft auszuführenden Exzenterregulatoren hierbei außerordentliche Größe erhalten müßten. Auch die bei kleinen Füllungen auftretende große Vorausströmung würde bei Maschinen, welche dauernd mit hoher Expansion arbeiten, — wie z. B. Kondensationsmaschinen erheblichen Verlust an Diagrammfläche verursachen. Aus diesen Gründen sind in vielen Fällen die Zweischiebersteuerungen vorzuziehen, welche aus einem Grund- und einem Expansionsschieber bestehen.

Im Grundschieber, welcher wie ein gewöhnlicher Muschelschieber Voreinströmung, Ausströmung und Kompression unveränderlich steuert, befinden sich Durchlaßkanäle, welche vom Expansionsschieber geschlossen werden können, wenn die zum Zylinder führenden Kanäle noch geöffnet sind. Dem Expansionsschieber fällt somit nur die Einstellung der Füllung zu.

Veränderliche Füllung kann nun erzielt werden:

entweder dadurch, daß die Entfernung der steuernden Kanten auf dem Rücken des Schiebers von Hand bezw. durch den Regulator verändert wird,

oder durch Änderung von Hub und Voreilwinkel des Expansionsschiebers mittels Exzenterregulatoren.

1. Steuerungen mit veränderlicher Entfernung der steuernden Kanten.

Die Grundform dieser Steuerungen ist die Meyersche Expansionsschiebersteuerung nach Fig. 67. Die beiden Expansionsplatten werden von der Schieberstange durch Muttern mitgenommen, deren Gewinde für jede der Platten entgegengesetzt gerichtete Steigung aufweist. Durch Drehung der Schieberstange, an deren Ende außerhalb des Schieberkastens sich ein Handrad befindet, werden die Platten einander genähert oder voneinander entfernt. Je größer der Abstand der steuernden Kanten ist, um so beträchtlicher wird die Füllung, weil bis zum Schluß des Durchlaßkanals ein längerer Schieberweg zurückgelegt werden muß.

Da der Grundschieber wie ein Muschelschieber wirkt, so ist damit die Bemessung seiner Überdeckungen e und i an der dem Schieberspiegel zugekehrten Seite und die Art seiner Bewegung auf dem Spiegel be-Für die weitere Betrachtung bleibt nur die Ermittelung der stimmt. Bewegung des Expansionsschiebers auf dem Rücken des Grundschiebers übrig. Zu dem Zweck stelle man sich vor, daß beide Schieber aus dem Schieberkasten herausgenommen seien, und daß man die Bewegung des Grundschiebers mitmache, so daß man in bezug auf diesen in relativer Dann wird der Expansionsschieber auf dem ruhenden Ruhelage sei. Grundschieber von einem besonderen Exzenter angetrieben erscheinen, dessen Exzentrizität gleich der größten Abweichung beider Schiebermittel voneinander sein muß. Steht in Fig. 68 die Kurbel in der Totlage, und eilt das Grundexzenter O E wie üblich um Winkel δ , das Expansionsexzenter O E' um δ' vor, so ist der Grundschieber um die Strecke a. der Expansionsschieber um die Strecke b von der Schieberspiegelmitte entfernt. Die Entfernung beider Schiebermitten beträgt sonach b - a. Diese Strecke b - a wird am größten, wenn die Endpunkte E und E' der beiden Exzenter in einer Wagerechten liegen, das Relativexzenter wird

demnach die Länge E E' besitzen, und seine Lage bei der Kurbeltotstellung wird gefunden, indem durch den Mittelpunkt O eine Parallele zu E E' gezogen wied. Die Expansionsexzentrizität wird die Diagonale eines Parallelogramms, dessen Seiten Grund- und Relativexzentrizität sind. Es kann dann angenommen werden

daß im Mittelpunkt O die Grundschiebermitte festgelegt sei, und daß sich auf dem Grundschieber der vom Relativexzenter bewegte Expansionsschieber bewege.

Für jede Kurbellage wird die Entfernung beider Schiebermittel wiedergegeben durch den wagerechten Abstand des Relativexzenterendpunktes E_1 von der senkrechten Mittellinie. Dieser Abstand hat sonach für die Kurbeltotlage die Größe b - a.

Soll aus dem Diagramm die Entfernung x der Schiebermittellinien für eine Füllung von 3 v. Ht. bestimmt werden, so dreht man die drei Exzenter um einen den 3 v. Ht. entsprechenden Kurbelwinkel α . Die Entfernung x wird nun sowohl im wagerechten Abstand der Endpunkte E und E'von Grund- und Expansionsexzenter als auch im Abstand des Relativexzenterendpunktes $\tilde{E_1}$ von der Mittellinie y y gefunden. Die Schiebermittelentfernung y für eine größte Füllung von z. B. 60 v. Ht. kann demnach direkt dadurch ermittelt werden, daß 60 v. Ht. auf dem Relativkreisdurchmesser abgetragen und im Endpunkt dieser abgetragenen Strecke eine Senkrechte errichtet wird. Das Relativexzenter nimmt nach 60 v. Ht. Kolbenweg die Stellung OE_5 ein. Fig. 69. In Fig. 70a und b sind die vom Schieber im Augenblick des Füllungs-

schlusses eingenommenen Stellungen wiedergegeben. Sollen die Schieber

mit zusammenfallenden Mittellinien dargestellt werden, so ist der Expansionsschieber auf dem Grundschieber um x nach links für die kleinste

Füllung, um y nach rechts für die größte Füllung zu verschieben. Zur Herbeiführung der gewünschten Füllungen ist sonach der Expansionsschieber aus den Lagen a und b in die Lagen c und d zu bringen: es wird

insgesamt eine Verschraubung der Platten um x + y erforderlich. x wird die positive, y die negative Überdeckung genannt.

Im Punkt m, Fig. 69, erfolgt die Wiedereröffnung des Durchlaßkanales im Grundschieber; hat dieser hierbei die Kanäle im Zylinder noch nicht geschlossen, so tritt Nachfüllung ein, und das Dampfdiagramm nimmt die Gestalt der Fig. f, S. 37 an. Da der Grundschieber während des Kurbelwinkels DOP Füllung gibt, so braucht Winkel DOP nur von OE_1 abgetragen zu werden, um die Relativexzenterstellung OE_4 zu finden, bei welcher der Grundschieber absperrt. Da im Punkt m die erfolgende Wiedereröffnung hinter E_4 fällt, so ist Nachfüllung ausge-

 E_4 fallt, so ist Nachfullung ausgeschlossen. Wäre $y = OE_1$, so würde der Expansionsschieber nur für einen Augenblick den Kanal schließen, um ihn gleich danach wieder zu eröffnen, was wegen der dabei stattfindenden starken Dampfdrosselung unter allen Umständen zu vermeiden ist.

In Fig. 71 ist die gleiche Steuerung vermittelst des Zeunerschen Diagramms behandelt. Das Relativexzenter $O E^1$ ist wieder die Seite eines Parallelogramms, dessen eine Seite aus dem Grundexzenter OE und dessen Diagonale aus dem Expan- K_2 ist der positive, K_1 der negative

sionsexzenter O E' besteht. K_2 Relativexzenterkreis.

Jede Sehne, welche durch den oberen Kreis K_1 von dem irgend eine Kurbellage wiedergebenden Strahl abgeschnitten wird, stellt einen relativen Ausschlag nach links, jede des unteren Kreises K_2 einen rechten Ausschlag des Expansionsschiebers von der Grundschiebermitte dar.

In Fig. 70d ist der Expansionsschieber um y nach links gegen den Grundschieber zu verschieben, wenn Schluß der linken Durchlaßkanals stattfinden soll. Die zu dieser Füllung gehörige Kurbellage wird im Schnittpunkt eines um den Punkt O mit y geschlagenen Kreises mit dem oberen Relativezzenterkreis gefunden.

Umgekehrt muß in Fig. 70c der Expansionsschieber um x nach rechts verschoben werden, bis die steuernden Kanten übereinanderstehen, so daß hier zur Ermittelung der Kurbellage bei Füllungsschluß der Schnittpunkt des unteren Kreises mit dem x-Kreis aufgesucht werden muß. Für y = a tritt Füllungsschluß in der Kurbellage OI, für y = O3in der Kurbellage O3 ein. Bei der letzteren Füllung wird der Durchlaßkanal im Grundschieber in der Kurbelstellung O4 wieder eröffnet. Da der Grundschieber selbst jedoch schon in der Kurbelstellung OII — Schnittpunkt des *e*-Kreises mit dem Grundschieberkreis — geschlossen hat, so ist die Wiedereröffnung belanglos. Wäre $y = OE^1$, so würden die Durchlaßkanäle momentan geschlossen und sofort wieder geöffnet.

Bei der Bestimmung der Schieberabmessungen wird zunächst die kleinste Füllung gewählt und die entsprechende Kurbelstellung OI aufgesucht. Der Schnittpunkt des Strahles OI mit dem Kreise K_2 ergibt die Länge oa = x. Soll Schluß der Maximalfüllung in der Kurbellage O3

erfolgen, so wird O = y, wenn 3 der Schnittpunkt des Strahles O = 3 mit dem oberen Relativkreis ist.

Fig. 72 zeigt die Anwendung des Müller - Reuleauxschen Diagramms auf die Expansionssteuerung. Das Diagramm für den Grundschieber wird wie auf S. 66 dargestellt entworfen und die Relativexzentrizität in der ersichtlichen Weise konstruiert. Die Strecken x und yergeben sich sodann aus den senkrechten Abständen des den einzelnen Kurbelstellungen entsprechenden Punktes m_1 von der Voreilstellung mm des Relativexzenters.

Die aus dem Diagramm festgestellten Strecken x und y geben nicht nur in ihrer Summe das Maß für die Verschraubung an, sondern sind auch für weitere Schieberabmessungen bestimmend. In Fig. 70c sind die Schieber mit zusammenfallenden Mittellinien und zwar für kleinste Füllung gezeichnet, so daß der Durchlaßkanal um x überdeckt ist. Bewegt sich der Expansionsschieber in der Pfeilrichtung um die Relativexzentrizität R nach links, so darf die rechte Kante k den Durchlaßkanal nicht nur nicht öffnen, sondern muß von diesem um eine Sicherheitsüberdeckung $\sigma = 10 \div 15$ mm entfernt bleiben; demnach wird die Plattenlänge:

$$l = x + a + R + \sigma.$$

Da bei ganz zusammengeschraubten Platten deren Kanten noch um y von denen der Durchlaßkanäle entfernt sein müssen, so bestimmt sich die Ausladung nach Fig. 70d zu:

$$\mathbf{L} = (\mathbf{l} + \mathbf{y}).$$

Die wirklichen Längen der dem Diagramm entnommenen Überdeckungen ergeben sich wie i. O. die Längen von e und i durch den Maßstab des Diagramms, welcher durch das Verhältnis der berechneten zur gezeichneten Kanalweite bestimmt ist.

Was die Größe der Relativexzentrizität betrifft, so nimmt diese mit dem Voreilwinkel und mit der Größe des Expansionsexzenters zu. Kleine Relativexzenter führen zwar zur Verringerung der Expansionsexzentrizität und der Schieberreibungsarbeit, verursachen aber andererseits infolge der langsameren Schieberbewegung starke Dampfdrosselung.

Unter Benutzung des gleichen Exzenterringmodells sowohl für das Expansions- als für das Grundexzenter kann die Exzentrizität des ersteren größer als die des letzteren gewählt werden, indem auf dem Exzenterscheibenmodell die Kernmarke für die Wellenbohrung verschoben wird, so daß für das Expansionsexzenter eine kleinere Stegstärke folgt, welche bei dessen geringerer Belastung zulässig ist. Die Relativexzentrizität soll 1,6 a' bis richtiger 2 a' betragen, wenn a' die Weite des Durchlaßkanals ist (oder einer Spalte davon, s. auch S. 96). Der Wert 1,6 a' findet sich häufig bei der Ridersteuerung, 2 a' bei den Steuerungen Meyer und Guhrauer.

Der Voreilwinkel des Relativexzenters wird mit Rücksicht darauf gewählt, daß am Schluß der gebräuchlichsten Füllung die Relativbewegung des Expansionsschiebers auf dem Grundschieber mit größtmöglichster Geschwindigkeit vor sich geht.

Wird nach Fig. 69 die halbe Kanalbreite von der Senkrechten nach links abgetragen, so erhält man diejenige Exzenterstellung OE_3 , bei welcher schnellster Abschluß erfolgt. Die Lage des Relativexzenters ist dann dadurch bestimmt, daß eine auf den Relativexzenterweg vom Punkt E_3 aus zu fällende Senkrechte die normale Füllung auf jenem angibt. Zu dem Zweck braucht von E_3 aus nur die Tangente an einen um O geschlagenen Kreis vom Radius (R — ε) gelegt und durch den Berührungspunkt ein Durchmesser gezogen werden, wenn R = Relativexzentrizität, $\varepsilon = F$ üllungsgrad.

2. Die Berücksichtigung der endlichen Stangenlängen¹),

In Fig. 73 ist der relative Voreilungsdurchmesser in 10 gleiche Teile geteilt und der erste und letzte dieser Teile nochmals halbiert worden. Die zu diesen Kolbenwegpunkten gehörigen Kurbelstellungen werden bei Berücksichtigung der endlichen Stangenlänge gefunden, indem durch die Teilpunkte Kreisbögen mit dem Radius $L = \lambda \cdot R$ gezogen werden. Die Abstände der Punkte 1, 2, 3 und I, II, III usw. von dem senkrechten Durchmesser ergeben die relativen Kantenentfernungen für die betreffenden Füllungen; sie sind auf der Kurbelseite verschieden von denen auf der Deckelseite.

Um die dadurch bedingte verschiedenartige Steigung der Schraube bei der Meyerschen Steuerung festzustellen, zieht man im beliebigen Abstand s zwei Parallele und trägt auf der oberen derselben nach rechts x_d für die kleinste Füllung — hier Nullfüllung — auf der unteren nach links die Kantenentfernung y_d für die größte Füllung ab, beide auf die Deckelseite bezogen. Auf der Verbindungslinie ab werden dann in ersichtlicher Weise die übrigen Kantenentfernungen aufgetragen und durch die Punkte c, d, e, f Wagerechte gelegt, auf welche in gleicher Weise die relativen Kantenentfernungen für die Kurbelseiten projiziert werden und zwar derart, daß auf einer Wagerechten z. B. f f' die relativen Entfernungen für ein und dieselbe Füllung — 20 v. Ht. angegeben sind. Die Verbindungslinie a' b' der zuletzt erhaltenen Punkte weicht stets von einer Geraden ab.

Da bei der Änderung der Kantenentfernungen durch die Verschraubung die Punkte b', f', a' auf einer Geraden liegen müssen, so ist diese Verbindungslinie durch eine Gerade zu ersetzen, welche in der Nähe der gebräuchlichsten Füllungen möglichst wenig von der Kurve abweicht. Weiterhin soll die Gerade die obere Parallele so schneiden, daß die dadurch bestimmte Kantenentfernung eine solche kleinste Füllung be-

¹) Nach K. Reinhardt. "Steuerungstabellen für Dampfmaschinen".

stimmt, daß die Maschine im Leerlauf nicht durchgeht. Läßt sich dies bei der gewählten Höhe s nicht ermöglichen, so sind beide sich kreuzende

Geraden nach oben zu verlängern, bis x eine geeignete Größe erhält. Der Regulatorhub erfährt hierdurch eine starke Zunahme.

Die untere Parallele soll in der Weise von der Geraden geschnitten werden, daß für das größte y der Expansionsschieber nicht wieder öffnet, ehe der Grundschieber geschlossen hat; auch soll vermieden werden, daß auf der Kurbelseite überhaupt nicht mehr geschlossen wird, was eintrifft, wenn y größer als die Relativexzentrizität wird. Um das letztere mit Sicherheit zu vermeiden, ist in Fig. 73 die Gerade, welche die Kurve a' f_2 b' ersetzt, durch Punkt a' gelegt. Zu früh erfolgendes Wiedereröffnen tritt am ersten auf der Kurbelseite auf, so daß diese Seite allein darauf untersucht zu werden braucht. Der Endpunkt der die Kurve a' b' ersetzenden Geraden wird auf den Relativexzenterkreis gelotet, welcher im Punkt VII zum zweiten Mal geschnitten wird. Dann erfolgt in VII Wiedereröffnung, und es muß der Winkel o O VII größer als derjenige Winkel sein, währenddem Füllung durch den Grundschieber gegeben wird.

Sind beide Geraden in ihrer Lage bestimmt, so lassen sich umgekehrt für zwei auf derselben Wagerechten liegenden Punkte durch Herunterloten derselben auf den Kreisumfang die Füllungen bestimmen.

So werden auf der	Deckelseite	Kurbelseite
die kleinste Füllung	Null v. Ht.	1 v. Ht.
die mittlere Füllung	20 v. Ht.	18½ v. Ht.
die größte Füllung	60 v. Ht.	60 [′] v. Ht.

Aus der Fig. 73 sind nun zu entnehmen: 1. die relativen Kantenentfernungen x_k und x_d für die kleinste, y_k und y_d für die größte Füllung, 2. die Summen $(x_k + y_k)$ und $(x_d + y_d)$ als Maß für den Unterschied in der Schraubensteigung. Mit diesen Werten sind nunmehr Plattenlänge 1 und Ausladung der Kanäle L zu bestimmen, welche ungleich werden.

Soll neben der endlichen Pleuelstangenlänge auch die endliche Länge der Exzenterstangen in Betracht gezogen werden, so wird der Einfachheit halber vorausgesetzt, daß Grund und Expansionsexzenterstange gleich lang seien.

Die Entfernung der beiden Schiebermittel voneinander, bezw. die relative Kantenentfernung wird nicht mehr als wagerechter Abstand y der beiden Exzentermittelpunkte E und E', sondern als Strecke a B = y'gefunden, indem von E und E' aus mit der Exzenterstangenlänge l Kreisbögen geschlagen werden, welche die Richtungslinie der Schieberbewegung in a und B schneiden. Fig. 74.

Wird durch E' ein Kreisbogen vom Radius l gelegt und durch E eine Wagerechte gezogen, so ist E C ebenfalls gleich y', woraus folgendes Verfahren abgeleitet werden kann. Fig. 74a.

Zu beliebigen Stellungen a, b des Grundexzenters werden die zugegehörigen Lagen des Expansionsexzenters in den Schnittpunkten 1, 2 des Expansionsexzenterkreises mit den aus a und b geschlagenen Bögen vom Radius E E' = a 1 = b 2 ermittelt. Werden durch die Punkte a und b Wagerechte, durch 1 und 2 Kreisbögen von Radius 1 gelegt, so geben die wagerechten Abstände a c und b d der Schnittpunkte c, d vom Grundschieberkreis die relativen Kantenentfernungen an. Diese werden in üblicher Weise zur Bestimmung der Schieberabmessungen benutzt. Die Abstände sind positiv, wenn sie vom Umfang des Grundschieberkreises sich nach innen erstrecken, sonst negativ.

3. Die Eröffnungskurve.

Zur Beurteilung der Schnelligkeit des Schieberschlusses und der dadurch bedingten Größe der Eintrittsdrosselung ist es besonders bei Expansionssteuerungen wünschenswert, nach Art der Schieberellipse für jede Kolbenstellung die zugehörige Kanaleröffnung

festzustellen. Zu diesem Zweck wird zunächstending festzustellen. Zu diesem Zweck wird zunächst nach der auf S. 69 gegebenen Anleitung die Schieberellipse für den Grundschieber entworfen, und zwar hier nur für die Eröffnung, so daß nach beiden Seiten der Senkrechten die äußere Überdeckung e abgetragen wird (Fig. 75), falls auch hier die endliche Pleuelstangenlänge berücksichtigt werden soll. In die Schieberellipse werden von der Senkrechten mm ab die relativen Kantenentfernungen für eine bestimmte Füllung — am häufigsten für die Normalfüllung — eingetragen, wobei vom Füllungsschluß ausgegangen wird. Soll z. B. die Eröffnungskurve für eine Füllung von 30 v. Ht. aufgezeichnet werden, so ist bei einer Kolbenstellung, welche um 10 v. Ht.

von der Totlage entfernt ist, die relative Kantenentfernung y" einzutragen, welche sich nach einem Kolbenweg von 20 v. Ht. auf y" verkleinert. Die Endpunkte dieser eingetragenen Kantenentfernungen liegen auf der Eröffnungskurve, und die Abstände derselben von der Senkrechten mm geben die Kanaleröffnungen wieder. Letztere sind bis zum Punkt Z durch die Bewegung des Grundschiebers bestimmt; von Punkt Z an beginnt das Zuschieben des Durchlaßkanals durch den Expansionsschieber.

Für die Einzeichnung der Drosselungskurve und genauere Ermittelung der Kanalquerschnitte kann man sich desselben Verfahrens, wie auf S. 69 angegeben, bedienen.

4. Die Abarten der Meyerschen Steuerung.

Zur Erzielung der größten Kantenentfernung x + y = s sind bei dem kleinen Gewindedurchmesser der Meyerschen Steuerung mehrere Umdrehungen der Schieberstange erforderlich, welche nur von Hand ausgeführt werden können. Soll ein Regulator unmittelbar auf die Steuerung einwirken, so muß der Durchmesser der Schraube erheblich vergrößert werden, damit bei nicht zu steilem Gewinde der Drehwinkel in mäßigen Grenzen bleibt. Der Drehwinkel wird um so kleiner, je steilgängiger die Schraube ist; doch muß die Steigung $\frac{h}{d\pi} < \frac{1}{7}$ sein, damit Selbstsperrung und keine Rückwirkung auf den Regulator stattfindet. Eine Drehung der Schieberstange um 360° läßt den Schieber um eine Ganghöhe fortschreiten, und es muß demnach zur Herbeiführung der Gesamtverschiebung s = x + y die Schieberstange um einen Winkel $\alpha = \frac{x + y}{h} \cdot 360^{\circ}$ verdreht werden. Ein sehr häufig angewendetes Mittel zur Verringerung des Drehwinkels besteht in der Gabelung der Durchlaßkanäle des Grundschiebers an der dem Expansionsschieber zugekehrten Seite nach Fig. 76¹). Die

dadurch ermöglichte mehrfache Einströmung dient denn auch weitaus seltener zur Beschleunigung der Steuerwirkung als zur Verkleinerung der Relativexzentrizität und der Gesamtverschiebung (x + y). Ist n die Anzahl der Kanäle, so braucht deren Weite nur $\frac{a}{n}$ zu betragen, und dem veränderten Diagrammmaßstab entsprechend nehmen nun auch die obigen Werte auf $r' = \frac{r}{n}$, $s' = \frac{s}{n}$, $\alpha' = \frac{\alpha}{n}$ ab. Trotz des verkleinerten Drehwinkels ist es auch bei diesen Steuerungen nicht möglich, den Regulator an der Schieberstange mittelst Hebels angreifen zu lassen, da hierbei

der angreifende Hebelarm in den äußersten Hebelstellungen zu sehr verkürzt würde. Meist wird ein Zahnrad auf der Schieberstange aufgekeilt, welches so lang ausgeführt werden muß, daß es während des Schieberhubes nicht außer Eingriff mit der senkrecht geführten Regulatorstange kommt.

Die Verkleinerung der Relativexzentrizität bedingt einen kleineren Voreilwinkel des Expansionsexzenters. Fig. 77. Die Größe des letzteren selbst nimmt gegenüber einfacher Einströmung nur wenig ab. Die

¹) Ausführung von Pokorny & Wittekind. Frankfurt a. M.-Bockenheim.
Reibungsarbeit erfährt jedoch eine beträchtliche Verminderung, wie sich schon aus der Betrachtung der Lage von Grund- und Expansionsexzenter ergibt, die jetzt mehr in derselben Richtung sich bewegen.

Wird aus den auf S. 80 angegebenen Gründen der Expansionsschieber mit Inneneinströmung ausgeführt, so muß das Relativexzenter eine der üblichen Aufkeilung entgegengesetzte Lage erhalten. Die sich hieraus ergebende Anordnung des

Expansionsexzenters ist aus Fig. 78 zu ersehen. Seltener ist die Ausführung der Steuerung auch mit Inneneinströmung am Grundschieber. Hierbei müssen nach Fig. 79 Expansions- und Grund-

exzenter um 180[°] verdreht werden. Diese entgegengesetzte Aufkeilung ist nur in der Ausführung und nicht im Diagramm zu berücksichtigen; letzteres kann vielmehr in gebräuchlicher Weise mit den punktiert angegebenen Exzenterlagen aufgezeichnet werden.

Was die Abmessungen des Expansionsschiebers mit mehrfacher Eröffnung betrifft, so wird zunächst die Länge der einzelnen Platten in gleicher Weise wie auf S. 91 angegeben, unter Zugrundelegung der kleinsten Füllung, festgestellt, nur daß hier Relativexzentrizität und Überdeckungen infolge der verringerten Kanalweite $\frac{1}{n}$ mal so groß auszuführen sind wie beim Schieber mit gewöhnlicher Einströmung. Es wird also $l_1 = \frac{x}{n} + \frac{a}{n} + \frac{R}{n} + \sigma$. In gleicher Weise wird die Ausladung der inneren Kanäle $L_1 = l_1 + y_1$, falls die Platten bei größter Füllung ganz zusammengeschraubt sind. Die Lückenweite s wird mit Rücksicht

darauf bestimmt, daß die Durchlaßkanäle im Grundschieber nicht in unzulässiger Weise verengt werden, ein Fall, welcher am leichtesten bei der Einstellung für größte Füllung (Fig. 80) eintritt. Soll der innere Durchlaßkanal, welcher beim Linksgang des Expansionsschiebers der eingestellten Füllung entsprechend ordnungsmäßig von der steuernden Kante α geschlossen wird, beim Rechtsgang überhaupt nicht von der Kante β überschleift werden, so wird nach Fig. 80 $s = y_1 + R_1$. Dieser Bedingung,

Dubbel, Dampfmaschinen. 3. Aufl.

welche zu übermäßigen Schieberlängen führt, braucht jedoch nicht entsprochen zu werden. Ist c_{max} die größte Kolbengeschwindigkeit, so genügt die Eröffnung des äußersten Kanals solange allein, als die augenblick-

liche Kolbengeschwindigkeit nicht größer als $\frac{c_{max}}{n}$ ist, wobei die mittlere

Dampfgeschwindigkeit c_m in diesem Kanal auf den zulässigen Wert $\frac{\pi}{2} \cdot c_m$

steigt, wenn unendliche Pleuelstangenlänge angenommen wird. Die Kurbelstellung 0 K_2 , in welcher dies eintritt und die Eröffnung des zweiten Kanals beginnen muß, wird durch Teilung des zum Relativexzenterkreisdurchmesser senkrechten Halbmessers in *n* Teile gefunden. Fig. 81. Nun beginnt bei Linksgang des Schiebers die Eröffnung des Durchlaßkanals, wenn Kante β über dessen rechter Kante γ steht. Fig. 80. Der Kanal wird geschlossen, wenn seine linke Kante von Kante α überschleift wird; die Eröffnung dauert demnach während des Weges a' + s. Da andererseits in der Kurbellage $O K_1$ die Maximalfüllung beendigt ist, so wird durch wagerechte Abtragung des Schieberweges a' + s von K_1 an diejenige Kurbellage bestimmt, bei welcher die Eröffnung des zweiten Durchlaßkanals beginnt.

Beim Entwurf des Diagramms wird die Länge s in einfachster Weise durch Abtragung von a' vom Punkt K_1 ab und Ermittelung der Kurbelstellung $O K_2$ gefunden. In Fig. 82 ist s mit Hilfe des Zeunerschen Diagramms festgestellt.

Im übrigen geht aus den Figuren hervor, daß s im Verhältnis zu den übrigen Größen um so mehr wächst, je größer die Anzahl n der Kanäle wird; infolge der kleineren Teilung auf dem Halbmesser nähert sich eben die Kurbellage $O K_2$ mehr der Wagerechten, zudem wird das von K₁ abzutragende a' kleiner, so daß die Strecke s größer werden muß. Ein Weg zur Verkleinerung der Lückenweite und damit zur Verkürzung des Schiebers ergibt sich, wenn der äußerste Kanal die Weite a der Zylinderkanäle beibehält.

Der zu diesem Kanal gehörige Schieberlappen wird zur Vermeidung der Nachfüllung entsprechend länger bemessen.

Die Lückenweite kann dann bis auf $\frac{a}{n}$ verringert werden. (Fig. 83.)

In der gezeichneten Stellung beginnt das Zuschieben des äußeren Kanals und gleichzeitig die Eröffnung des innern Kanals, so daß letzterer während

des Schieberweges $\frac{a}{2}$ stets um so viel freigelegt, als ersterer geschlossen wird.

Nach Zurücklegung dieses Weges geht der Schluß des Durchlaßkanals mit derselben Geschwindigkeit vor sich, wie bei der Ausführung mit gleich weiten Kanälen.

Eine ebenfalls mit der Meyersteuerung grundsätzlich übereinstimmende Kolbenschiebersteuerung ist in Fig. 84 dargestellt.

Damit der Expansionsschieber nicht an der Drehung der Schraube teilnimmt, sondern sich nur verschiebt, wird er im Grundschieber durch

¹) Ausführung von Pokorny & Wittekind, Frankfurt a. M.-Bockenheim.
 ²) Ausführung von Sack & Kießelbach, Düsseldorf-Rath. 7*

Ansätze geführt, welche derart angebracht sein müssen, daß der Expansionsschieber sich leicht in den Grundschieber einbringen läßt. In der vorliegenden Ausführung strömt der Dampf zwischen Hülse und Gewinde hindurch; der Querschnitt zwischen beiden muß demnach nach Abzug der den Gewindegang haltenden Rippen groß genug sein, um der durchströmenden halben Dampfmenge die nötige Durchgangsfläche zu bieten.

Häufig wird der Schieber in der Weise ausgeführt, daß die Gewindegänge von kleinerem Durchmesser unmittelbar an der Hülse sich befinden und in Ausschnitte der Rippen am Expansionsschieber eingreifen. Der Dampf strömt nunmehr zwischen Gewinde und Innenwand

des Expansionsschiebers hindurch. Eine hiervon abweichende Ausführungsform mit innerer Einströmung an beiden Schiebern zeigt Fig. 85.

Dem verkleinerten Durchmesser entsprechend wird hierbei der Drehwinkel größer.

Eine namentlich bei Walzenzugsmaschinen angewandte Steuerung zeigt Fig. 86. Jeder der beiden Expansionsschieber wird von einer besonderen Schieberstange angetrieben, welche außerhalb des Schieberkastens mittelst Kreuzköpfen geführt werden. Die an diesen angreifenden Zugstangen sind mit zwei Armen eines dreiarmigen Hebels verbunden, welcher in einer an der Regulatorsäule aufgehängten und vom Expansionsexzenter bewegten Schwinge nach Fig. 87 gelagert ist. Die Verdrehung des dreiarmigen Hebels durch den Regulator, dessen Zugstange an dem dritten Arm angreift, bewirkt eine Verschiebung der Schieber in entgegengesetzter Richtung, wodurch der Schiebermittelabstand geändert wird.

5. Die Rider-Steuerungen.

Auch diese nach ihrem Erfinder Rider benannten Steuerungen stellen nichts als eine andere konstruktive Lösung der Meyer - Steuerung dar. Die Durchlaßkanäle, welche unten wie gewöhnlich parallel sind, laufen oben in einem Winkel aus. Die steuernden Kanten des Expansionsschiebers sind den schrägen Mündungen der Durchlaßkanäle parallel, so daß durch Heben und Senken des Expansionsschiebers die Kantenentfernung geändert wird. Die vertikale Verschiebung des Expansionsschiebers stellt sich infolge Verdrehung der Schieberstange durch den

Regulator ein. Fig. 88 zeigt schematisch eine Rider - Flachschiebersteuerung. Die senkrecht schraffierten Kanäle gehören dem Grundschieber an. A BCD ist der trapezförmige Expansionsschieber, welcher bei einer senkrechten Verschiebung um u eine Längsverschiebung s = (x + y) ergibt. Es ist

$$u = s \cdot tg \alpha$$
,

wenn α = Neigungswinkel der Kanäle.

Die Bestimmung der Kantenentfernungen x und y wird in genau derselben Weise, wie auf S. 88 für die Meyer - Steuerung angegeben, vorgenommen.

Beim Entwurf einer derartigen Steuerung wird zunächst in der Weise vorgegangen, daß die senkrecht gemessene Höhe h und die wagerecht gemessene Weite a des Kanals aus der Beziehung F = a h bestimmt werden, worin F = Kanalquerschnitt. Der Neigungswinkel der Kanäle wird $\alpha = 50 \div 60^{\circ}$ gewählt. Da u = s·tg α , so wird mit dem Winkel α die durch den Regulator zu bewirkende Verstellung, bezw. die Verdrehung der Schieberstange zunehmen. Aus kleineren Werten für α folgen hingegen eine größere Schieberlänge und damit vermehrte Reibungsarbeit und größere Schieberkastenabmessungen. Mit der wagerechten Kantenentfernung y wird nunmehr der Schieber in seiner höchsten Stellung aufgezeichnet, wobei er die untere Durchlaßkante des Grundschiebers noch um die Sicherheitsüberdeckung $\sigma = 10$ -:-15 mm überdeckt. Da dasselbe bezüglich der oberen Durchlaßkanalkanten der Fall sein muß, wenn der Schieber in seiner tiefsten Stellung mit der Kantenentfernung x steht, so folgt hieraus die Höhe

$$\mathbf{H} = \mathbf{h} + \mathbf{u} + 2 \sigma.$$

Die Ausladung der Durchlaßkanäle ist dadurch bestimmt, daß z. B. die linke Kante D des Expansionsschiebers bei dem Ausschlag um die Relativexzentrizität aus der gezeichneten Mittellage die Kante des Durchlaßkanals auf der entgegengesetzten Seite nicht überschleifen darf, da dadurch Nachfüllung herbeigeführt würde und zwar am ersten bei der höchsten Schieberstellung.

Eine erhebliche und wünschenswerte Verkürzung der Schieber ergibt sich, wenn die Ecken der schrägen Durchlaßkanäle stark abgerundet werden. Die hierdurch bedingte kleine Querschnittverminderung hat auf die Eintrittsdrosselung keinen merklichen Einfluß. Da der Expansionsschieber niemals dauernd in seiner höchsten oder tiefsten Stellung arbeiten wird, so empfiehlt sich weiterhin, die rechteckigen Ansätze an demselben unten breiter zu nehmen, als der Entfernung y entspricht, wodurch die Ausladung l eine weitere Verringerung erfährt.

Die in Fig. 88 angedeutete Ausführung des Rider - Flachschiebers ist wenig gebräuchlich und wird fast ausschließlich durch die Bauart nach Fig. 89 ersetzt. Jeder Durchlaßkanal hat hiernach zwei parallele, schräge Mündungen, während der Expansionsschieber mit der Außenkante und mit der inneren Kante des Schlitzes steuert. Wegen der größeren Gesamtlänge der Durchlaßkanäle kann deren Weite entsprechend geringer gehalten werden, so daß die Größe der Relativexzentrizität und der Verschiebung durch den Regulator der verringerten Kanalweite gemäß abnimmt.

Die Rider - Steuerung wird häufiger mit Rundschiebern als mit Flachschiebern ausgeführt. Fig. 90. Auf dem Rücken des zylindrisch gestalteten Grundschiebers bewegt sich der kreisförmig aufgerollte Expansionsschieber, so daß Fig. 88 nunmehr die Abwickelung der beiden Schieberflächen darstellt und auch für diese Steuerung in gleicher Weise, wie oben ausgeführt, aufgezeichnet wird. Die senkrechte Verschiebung wird durch Verdrehung der Schieberstange um den Winkel γ erzielt, welcher aus der Gleichung $\gamma = 360^{\circ} \frac{\mathbf{u}}{D \pi}$ ermittelt wird. Winkel γ soll 60° nicht überschreiten. Aus dieser Gleichung geht hervor, daß γ mit wachsendem Durchmesser D abnimmt, während u, wie schon dargelegt, durch die Größe des Neigungswinkels α der Kanäle bestimmt ist. Geeignete Abmessungen für D werden erhalten, wenn die in den halbkreisförmig begrenzten Grundschieber auslaufenden Kanäle sich über einen Winkel 180°—2.15° = 150° erstrecken, so daß Kanalhöhe

$$\mathbf{h} = \frac{150}{360} \cdot \mathbf{D} \,\pi,$$

demnach

D = 0,75 h.

In den Fig. 91 und 92 sind Abwickelungen weiterer Ausführungsarten dargestellt, bei welchen die Schieber als Kolbenschieber ausgebildet

sind, um vollständige Entlastung und leichte Einwirkung des Regulators zu erhalten.

In Fig. 91 muß die Beziehung bestehen: $n \cdot (h + \sigma + u) = D \pi$,

wenn n = Anzahl der Kanäle.

Als freie Durchgangsfläche bleibt:

 $\mathbf{F} = \mathbf{a} \cdot \mathbf{n} \cdot \mathbf{h} = \mathbf{a} \cdot (\mathbf{D} \ \pi - \mathbf{n} \ \sigma - \mathbf{n} \cdot \mathbf{u}).$

Die Kanalhöhe h wird durch probeweises Aufzeichnen der Abwickelung festgestellt, da nach Annahme von h die Kanalweite — und

Fig. 91.

Fig. 92.

durch den nunmehr bestimmten Maßstab des Diagramms auch u — erst ermittelt werden kann.

Der am häufigsten zu findende entlastete Rider - Kolbenschieber ist in Fig. 93 wiedergegeben, in welcher Bauart derselbe namentlich bei stehenden Schnellläufern sowie bei Walzenzugmaschinen angewandt wird. Wie bei dem Flachschieber in Fig. 89 befinden sich auch hier die steuernden Kanten an den Innenseiten von Schlitzen, so daß eine Entfernung der Mündungskanten um u $+\sigma$ nicht mehr erforderlich ist und die senkrechte Abmessung des Schiebers kleiner wird, d. h. bei gegebenem Durchmesser kann die Gesamthöhe der schrägen Kanäle größer werden. Die Abwickelung des Expansionsschiebers zeigt Fig. 92.

Auch hier wird beim Entwurf probeweise vorgegangen. Der innere Durchmesser des Expansionsschiebers ist durch die Forderung bestimmt, daß für den durchströmenden Dampf genügend Querschnitt vorhanden ist. Nach Annahmen über die Stärke der einzusetzenden Büchsen, der Höhe des Grundschiebers — welche von der Befestigungsart der Grundschieberstange abhängig ist — und der Anzahl der Stege in der den Zylinderkanälen vorgelagerten Büchse kann die Weite des Grundschieberkanals a aus der Beziehung

$$\frac{\mathbf{O}\cdot\mathbf{c}}{\mathbf{30}}=\mathbf{F}=\mathbf{a}\cdot\mathbf{d}\cdot\boldsymbol{\pi}\cdot\boldsymbol{g}$$

abgeleitet werden. Durch φ wird die Verengung durch Stege berücksichtigt.

Ist der Durchmesser d mit Rücksicht hierauf festgelegt, so kann die Anzahl n der auf den Umfang zu verteilenden Kanäle gewählt werden, wodurch deren senkrechter Abstand voneinander bestimmt ist. Der Neigungswinkel α betrage 30 bis 40°.

Auf Grund der jetzt bestimmbaren Kanalweite a' werden dem Diagrammmaßstab gemäß die Überdeckungen x und y und damit u

Fig. 93.1)

ermittelt. Die Schlitze des Expansionsschiebers werden für die größte Füllung, der Kantenentfernung y entsprechend, aufgezeichnet; ihre Weite s wird mit Rücksicht darauf bestimmt, daß die nicht steuernde Kante der Schlitze den Durchlaßkanal schon vor der Totlage der Kurbel eröffnet hat, damit die vom Grundschieber abhängige Voreinströmung rechtzeitig stattfindet. Die Art der Ermittelung der Schlitzweite s ist ähnlich wie im Diagramm, Fig. 81, durchzuführen. Es ist Punkt K_2 vor die der Kurbeltotlage entsprechende Relativexzenterstellung zu legen.

Der Diagrammmaßstab läßt sich am bequemsten dadurch feststellen, daß die Relativexzentrizität R = Grundexzentrizität r mal dem Verhältnis der Kanalweiten gesetzt wird, sonach, wenn a Kanalweite im Grundschieber:

$$R=r\cdot\frac{a'}{a}.$$

Bei der Einzeichnung der tiefsten Stellung des Expansionsschiebers ist darauf zu achten, daß dieser bei einer Abweichung um die Relativexzentrizität R aus der gezeichneten Mittellage die Durchlaßkanäle mit den nicht steuernden Kanten der Schlitze nicht wieder eröffnet. Der

¹) Nach Kießelbach. Z. 1890, S. 1055.

wagerechte Abstand der entsprechenden Kanten muß demnach $R + \sigma$ betragen.

In der Abwicklung nach Fig. 92 legen die Schlitze des Expansionsschiebers die Öffnungen im Grundschieber auch in senkrechter Richtung bei kleineren Füllungen nicht mehr ganz frei. Dadurch wird eine bei geringen Belastungen ganz erwünschte Drosselung des Dampfes erzielt.

Die Riderkolbenschieber nach Stein werden mit Zusatzabsperrung versehen. Der Dampf strömt den Riderkanälen durch achsial angeordnete Schlitze im Mantel des beiderseits geschlossenen Expansionsschiebers und des Grundschiebers zu. Bei Füllungen unter 5 v. Ht. legen sich die Stege des einen Schiebers auf die Schlitze des anderen, so daß der Dampf gedrosselt und bei Nullfüllung weder der schädliche Raum noch der Grundschieber mit Frischdampf aufgefüllt werden.

6. Steuerungen mit veränderlichem Hub und Voreilwinkel des Expansionsschiebers.

a) Zweikammersteuerung von Doerfel¹). Fig. 94. Bei dieser Bauart laufen die Schieber nicht ineinander, sondern sind in zwei getrennten

¹) Ausführung der Dinglerschen Maschinenfabrik in Zweibrücken.

Kammern untergebracht. Der Grundschieber wird meistens unveränderlich, der Expansionsschieber mittelst Flachregulators gesteuert, doch wird auch häufig das Grundexzenter derart mit dem Expansionsexzenter verbunden, daß bei der Füllungsregelung auch die Kompression in mäßigen Grenzen verändert wird, um die Leistung der Belastung schnell anzupassen und den Leerlauf zu erleichtern. Der Entwurf dieser mit Inneneinströmung arbeitenden Steuerung gestaltet sich sehr einfach. Die

Überdeckungen des Grundschiebers werden für günstigste Vorausströmung und Kompression bestimmt, ebenso weicht das Diagramm für den Expansionsschieber Fig. 95 nicht von dem des gewöhnlichen Muschelschiebers ab. nur werden wesentlich frühere Voröffnungen gegeben, damit bei kleinen Füllungen trotzAusgleich der Füllungen durch ungleiche Deckungen genügende Eröffnung erzielt wird. Damit absolute Nullfüllung stattfinden kann, ist die kleinstmögliche resultierende Exzentrizität kleiner als die Überdeckung gewählt worden. so daß

der Kanal zum Grundschieber überhaupt nicht mehr geöffnet wird. Wie aus Fig. 94 ersichtlich, wird doppelter Abschluß des Expansionsschiebers erreicht, indem dieser mit einem dritten Kolben auch den Dampfeintritt in die erste Kammer steuert.

b) Einkammersteuerung. Bei der in Fig. 96 wiedergegebenen Bauart läßt der Expansionsschieber in seiner relativen Mittellage den Durchlaßkanal um die Strecke y frei, so daß dieser Weg zurückgelegt werden muß, ehe die Expansion beginnt, und außerdem jene Strecke, um welche je nach Größe von Voreilwinkel und Exzentrizität die Schiebermitten bei der Kurbeltotlage voneinander entfernt sind.

In Fig. 97 und 98 sind gebräuchliche Arten der bei diesen Steuerungen zu findenden Exzenter-Aufkeilung wiedergegeben. In Fig. 97 umfaßt das Expansionsexzenter drehbar das Grundexzenter, bei welcher Anordnung der Durchmesser des ersteren außergewöhnlich groß wird. Die Endpunkte des resultierenden Exzenters, dessen Voreilwinkel von δ_1 auf \varDelta zunimmt, und dessen Exzentrizität von R auf r abnimmt, liegen auf dem Kreisbogen a b, und wird nun zu jeder Stellung desselben das zugehörige Relativexzenter aufgesucht, so zeigt sich, daß auch dessen Endpunkte auf einem Kreisbogen vom Halbmesser R_1 liegen, so daß Bogen a b in der Richtung des Grundexzenters um dessen Länge verschoben erscheint. Die gleiche Lage der Scheitelkurve zeigt sich bei der in Fig. 98 abgebildeten Aufkeilung. Das Expansionsexzenter schwingt hierbei nach Fig. 64b auf S. 84 um einen festen Drehpunkt, so daß sein Durchmesser kleiner als bei der Aufkeilung nach Fig. 97 gehalten werden kann. Die Dampfverteilung einer Steuerung nach Fig. 97 und 98 ist in Fig. 99 mittelst des Müllerschen Diagramms dargestellt. Größe und

Voreilwinkel des Grundeszenters werden in üblicher Weise festgestellt. R_1 und R_2 sind die äußersten Lagen für das Relativeszenter. Denkt man sich wieder den Expansionsschieber auf dem ruhenden Grund-

schieber bewegt, so wird, wenn die Relativexzentrizität $= R_1$, bei der Kurbeltotlage die Expansionsschiebermitte um a von der Grundschiebermitte nach rechts hin entfernt sein, und es muß bis zum Füllungsschluß

ein Schieberweg a + y zurückgelegt werden. Diesem Schieberweg entspricht der Kurbelbogen b d. Im Falle der Relativexzentrizität R_2 hat

die Expansionsschiebermitte die Grundschiebermitte bei der Kurbeltotlage schon um b nach links überschritten. Die Expansion beginnt demnach nach Zurücklegung des Schieberweges y - b.

¹) Hochdruckschieber einer stehenden Verbundmaschine der Lübecker Maschinenbau-A. G.

 $⁽OG = 35 \text{ mm}, \delta = 35^{\circ}; OE_1 = 24 \text{ mm}, OE_2 = 30 \text{ mm}; OR_1 = 52 \text{ mm}, OR = 17 \text{ mm.})$

Die Wiedereröffnung beginnt im Punkte E und ist am gefährlichsten bei den kleinsten Füllungen. Winkel α muß größer als γ sein, währenddem der Grundschieber Füllung gibt. Wäre $\alpha < \gamma$, so müßten entweder y oder der relative Voreilwinkel verkleinert werden.

In Fig. 100 ist die gleiche Steuerung mittelst des Zeunerschen Diagramms behandelt, nur daß hierbei die Exzenterbewegung nach Fig. 98 berücksichtigt ist. Die Art der Aufzeichnung gestattet unmittelbaren Zusammenhang mit dem Dampfdiagramm.

Mit y als Radius ist ein Kreis geschlagen, dessen Schnittpunkte mit den Relativexzenterkreisen den Expansionsbeginn bestimmen. Es zeigt sich, daß bei dieser Exzenterverstellung die größeren Exzentrizitäten zu den kleineren Füllungen gehören und umgekehrt. Die vorstehenden Diagramme sind ohne weiteres auch dann noch gültig, wenn beide Schieber mit innerer Einströmung oder nur der Expansionsschieber mit Inneneinströmung steuert. In ersterem Fall muß das Relativexzenter nach Fig. 79 entgegengesetzte Lage einnehmen, doch kann zur Bestimmung der Abmessungen das punktierte Diagramm auch hier ohne Einschränkung benutzt werden, da unter Zugrundelegung der entgegengesetzten Relativexzentrizität die Strecke y nach rechts von der Mittellinie aus abgetragen werden müßte.

Selbst wenn der in Fig. 96 dargestellte Schieber abschließt, ehe der Grundschieber um das Voröffnen geöffnet hat, — absolute Nullfüllung so wird doch der Grundschieberkanal bei der Voreinströmung mit Frischdampf gefüllt werden, und sich sein Inhalt in den Zylinder entleeren. Bei Kondensationsmaschinen mit hoher Eintrittsspannung wird diese Auffüllung selbst bei dichten Schiebern genügen, die Maschine zum "Durchgehen" im Leerlauf zu bringen. Aus dieser Erwägung heraus ist die in Fig. 101 dargestellte Steinsche Schiebersteuerung entworfen worden, bei welcher der Expansionsschieber die Durchlaßkanäle in seiner Mittelstellung um y überdeckt; ist also das Relativexzenter kleiner als y, so wird der Durchlaßkanal überhaupt nicht geöffnet.

Das Grundeszenter O G wird bei dieser Steuerung für äußere Einströmung mit dem gewöhnlichen Voreilwinkel δ_{y} aufgekeilt, während das Regelereszenter O E nacheilt. Bei der Aufzeichnung des Diagramms für innere Einströmung, Fig. 102, zeigt sich, daß die größeren Relativeszenter O R zu den größeren Füllungsgraden, die kleineren Relativeszenter zu den kleineren Füllungen gehören. Als weiterer Vorteil stellt sich dadurch ein, daß bei den kleineren Füllungen infolge der geringen Kanaleröffnungen und Schiebergeschwindigkeiten der Eintrittsdampf stark gedrosselt wird, so daß ein Durchgehen der Maschine im Leerlauf nicht zu befürchten ist.

Das Relativexzenter der absoluten Nullfüllung soll bei dieser Steuerung etwa so erhalten werden, daß die Expansionsexzentrizität der kleinsten Füllung den Voreilwinkel Null hat, also der Kurbel um 90° vorbezw. nacheilt. Im Zeunerschen Diagramm steht dann das Relativexzenter ungefähr in der Lage der Voreinströmung.

Da der Expansionsschieber doppelte Eröffnung gibt, so sind die in Fig. 102 für eine bestimmte Füllung (schraffiert) wiedergegebenen Kanalweiten zu verdoppeln. Die Deckung y soll je nach Maschinengröße 2 bis 3,5 mm größer als die kleinste Relativexzentrizität sein. Die Relativexzentrizität der größten Füllung wird nach dieser und danach bestimmt, daß die Expansionsexzentrizität dabei etwa senkrecht zur Schieberbewegungsrichtung steht.

d) Die Ausführung und Einstellung der Expansionsschiebersteuerungen.

Wie aus Fig. 67 und 90 ersichtlich ist, werden die Gleitflächen der Schieber mit schrägen Nuten versehen, bezw. die Durchlaßkanäle von tragenden Leisten umgeben, wodurch die Schieber erheblich entlastet werden. Die schräge Lage dieser Aussparungen bezweckt die Verhinderung der Gratbildung am Expansionsschieber. Um die Meyer - Steuerung einbauen zu können, werden die Mitnehmermuttern entweder zweiteilig oder die Gewinde mit verschiedenem Durchmesser ausgeführt, damit die Mutter des einen Schiebers über das Gewinde des anderen gestreift werden kann. Die Expansionsplatten werden in Leisten am Grundschieber geführt und zur Vermeidung des Abklappens durch Federn angepreßt.

Das Handrad zur Einstellung der Füllung muß in seiner Lage festgehalten und durch Nut und Feder so mit der Schieberstange verbunden werden, daß diese seine Drehung mitmacht. Ein von dem Handrad mit Übersetzung bewegter Zeiger gibt auf einer Skala den Füllungsgrad an.

Mitunter wird das Gewinde außerhalb des Schieberkastens gelegt. Es ist dann jede Expansionsplatte durch eine besondere Schieberstange zu steuern, welche nach Art der Fig. 86 übereinander liegen und an ihren Enden Zahnräder tragen. Durch Drehung der letzteren werden die Schieberstangen in dem gemeinsamen, vom Exzenter bewegten Geradführungsstück gleichmäßig verschraubt. Die Schieber werden durch Doppelmuttern mitgenommen, welche auf Hülsen sitzen, die sich mit den Stangen drehen. Fig. 103 zeigt den Regulatorangriff einer Rider - Steuerung. Die ausgebüchsten Schieberführungen befinden sich an der Regulatorsäule.

Die Büchse für das Führungsstück der Expansionsschieberstange ist durch zwei Hebel mit einer parallelen Führungsstange fest verbunden, in deren Mitte die Regulatorzugstange angreift. Ein auf der Expansionsschieberstange sitzender Hebel verschiebt sich auf der Führungsstange und macht deren Drehung mit. Die Einsatzbüchse, in welcher sich die Schieberstange dreht, ist durch Gegenmutter in ihrer Verbindung mit dem Führungsstück gesichert. Durch ihre auch während des Betriebes leicht vorzunehmende Verschraubung läßt sich der Expansionsschieber einstellen.

Greift die Regulatorzugstange unmittelbar an einem auf der Schieberstange sitzenden und mit dieser pendelnden Hebel an, so entsteht dadurch, daß das Ende der Stange einen Bogen beschreibt, während die Schieberstange sich geradlinig bewegt, eine Rückwirkung auf den Regulator. Dieser wird sich entweder um die Pfeilhöhe dieses Bogens verschieben, was für die Regulierung nicht ungünstig ist, oder bei reichlicher Energie in seiner Stellung verharren und den Schieber entsprechend drehen.

Bei den Rider - Flachschiebersteuerungen müssen die Expansionsschieber derart mit ihrer Stange verbunden werden, daß diese den Schieber mitnehmen und ihn gleichzeitig in senkrechter Richtung verschieben können. Die für letzteren Zweck früher häufig angewandten Zahnräder und Zahnstangen sind durch Nocken nach Fig. 89 ersetzt worden. Der Schieber greift mit einem Ansatz zwischen zwei Segmente auf der Stange und wird derart mitgenommen.

Die in Fig. 76 dargestellte Meyer-Steuerung mit großer Schraube wird vielfach mit Spielraum (etwa 1 mm) zwischen Gewindegang und Mitnehmer ausgeführt, damit der Regulator bei der Bewegungsumkehr leicht eingreifen kann.

Die Verbindung der Stange mit Rider-Expansionsschieber durch ein Hooksches Gelenk zeigt Fig. 104. Der Schieber kann sich nach allen Seiten richtig einstellen.

Bei den Kolbenschiebersteuerungen wird der Expansionsschieber von seiner Stange stets zentral gefaßt. Soll auch beim Grundschieber zentraler Angriff vorhanden sein, so sind die

beiden Stangen ineinander zu führen, wodurch sich für den Regulatorangriff die Fig. 105¹) wiedergegebene Anordnung ergibt.

Das Gleitstück p ist durch einen Mitnehmer o mit der rohrförmigen Grundschieberstange a verbunden, welche am Austritt der Expansionsschieberstange durch eine Stopfbüchse abgedichtet wird. Der vom Regulator bewegte Hebel f dreht die nicht verschiebbare Rotgußbüchse m, welche durch zwei Federn das Gleitstück n mitnimmt. Letzteres ist

¹) Ausführung der Maschinenfabrik Augsburg-Nürnberg. (Aus Freytags "Hilfsbuch für den Maschinenbau".)

durch Keil mit der Expansionsschieberstange verbunden. In Fig. 106¹) wird der Expansionsschieber mittelst Zahnstange und Zahnrad verdreht. Die Zahnstange, welche zur Verringerung der Zahnreibung als Um-

widerstände auftretende Kippmoment nicht von den Schieberkanten oder Liderungsringen aufgenommen wird und dadurch einseitigen Verschleiß verursacht. Häufig wird der Grundschieber durch zwei Schieberstangen bewegt, welche außen durch eine Brücke verbunden sind, an welcher die Exzenterstange angreift. Um kurze Dampfkanäle und kleine schädliche Räume zu erhalten, ist es zweckmäßig, den Expansionsschieber durch das dem Lager zunächst sitzende Exzenter zu steuern.

Was die Vorzüge der einzelnen, besprochenen Schieberarten betrifft, so werden die entlasteten Rider - Schieber mit Zacken, deren Abwicke-

¹) Ausführung von K. & Th. Möller, Brackwede. Dubbel, Dampfmaschinen. 3. Aufl.

lung in Fig. 91 wiedergegeben ist, wegen der ungenügenden Ausnutzung ihres Umfanges bezüglich der Kanallänge und wegen des Zurückkrümmens der Zacken bei höheren Temperaturen nur noch selten angewandt. Vor den Kolbenschiebern nach Rider haben die nach Meyer den Vorzug geradliniger Kanäle auch im Expansionsschieber, so daß diese leichter hergestellt und zudem mit Dichtungsringen versehen werden können.

Von den Nachteilen, welche ineinanderlaufende Schieber überhaupt besitzen, sind die auch für Rider - Schieber verwendbaren Zweikammersteuerungen frei, bei welchen außerdem die Hintereinanderschaltung zweier Schieber die Undichtheitsverluste beschränkt.

Besondere Aufmerksamkeit verlangt die Konstruktion der Schieber für Betrieb mit überhitztem Dampf.

Lange Schieber sind überhaupt wegen des sich krümmenden Schiebergehäuses zu vermeiden. Die Rippen dürfen nur an nicht dichtende Flächen gelegt werden, damit die dichtenden Flächen sich nicht krumm ziehen. Die Kolbenfederringe werden aufgeschnitten und zweckmäßig so am Schieberkörper befestigt, daß eine bestimmte Federung nicht überschritten wird. Zu stark nach außen federnde Ringe zerstören bei hoher Temperatur die Laufbüchsen. Letztere sind mit kleinem Spielraum einzusetzen und erhalten an jeder Seite der Dampfkanäle Ansätze, welche mit Asbest gedichtet werden.

Günstiges Verhalten der Rider - Expansionsschieber zeigt sich, wenn diese nach dem Vordrehen und dem Einfräsen der Kanäle ausgeglüht werden, wodurch Verziehen auch bei höchster Temperatur nicht mehr eintritt.

Vorteilhaft ist stets innere Einströmung, um den Schieber durch den Abdampf möglichst kühl zu halten. Das Einlaufen solcher Schieber soll nur unter langsamer Steigerung der Überhitzungstemperatur vorgenommen werden.

Hier sei noch erwähnt, daß bei Rider - Steuerungen zum Anlaufen der Maschine geeignete, große Füllungen ohne übermäßigen Regulatorhub dadurch herbeigeführt werden können, daß der Expansionsschieber bei tiefster Regulatorstellung die unteren Kanalkanten nicht überdeckt, so daß die vom Grundschieber abhängige Füllung wirkt.

Der Grundschieber wird in derselben Weise, wie für den Muschelschieber auf S. 81 angegeben, eingestellt, nur fällt hier die Rücksicht auf möglichst geringen Unterschied der durch den Grundschieber gegebenen Füllungen fort, da diese vom Expansionsschieber bestimmt werden. Das lineare Voreilen und die Kompression werden für beide Seiten möglichst gleich eingestellt. Der Expansionsschieber wird so justiert, daß er für diejenige Füllung, mit welcher die Maschine voraussichtlich am meisten arbeitet, auf beiden Seiten gleich abschneidet. Die kleinste Füllung wird mit Rücksicht darauf bestimmt, daß die Maschine im Leerlauf nicht durchgeht und ist demgemäß davon abhängig, ob die Maschine in stetiger Verbindung mit der Transmission bleibt oder von dieser abgekuppelt werden kann.

Im übrigen ist die Minimalfüllung um so kleiner zu wählen, je größer der schädliche Raum ist.

II. Die Steuerungen mit vierfachen Dampfwegen.

Für die Maschinen größerer Leistung erhalten die Schieber bedeutende Abmessungen und müssen bei Anwendung höherer Dampfdrucke als Kolbenschieber ausgeführt werden. Die großen schädlichen Räume, welche diese Steuerungen bedingen, beeinflussen sehr ungünstig den Dampfverbrauch, so daß bei größeren Maschinen die Anwendung der Steuerungen mit vierfachen Dampfwegen bevorzugt wird. Außer der Verringerung der schädlichen Räume und der Reibungsarbeit gestatten diese Steuerungen leichte Einstellung, da jedes der getrennten Steuerungsorgane für sich eingestellt werden kann. Der Vorteil der getrennten Dampfwege, welche darin bestehen soll, daß der Einlaßkanal nicht zugleich als Auslaßkanal dient und deshalb nicht im gleichen Maße wie bei den Steuerungen mitzweifachen Dampfwegen vom durchströmenden Auspuffdampf abgekühlt wird, ist hingegen nicht hoch zu veranschlagen, da während des Auspuffes auch der Einlaßkanal von Dampf mit Auspuffdruck erfüllt ist.

a) Die Ventilsteuerungen.

Die gebräuchliche Ausführung der Ein- und Auslaßventile ist in Fig. 107¹) dargestellt. Im geschlossenen Zustand haben sich die Dampfdrucke, welche oben und unten auf den Kreisring von der Breite *b* wirken — s. Fig. 114, S. 119 — gegenseitig auf, und es bleibt nur der Druck auf die Kreisringfläche $\pi \frac{D^2 - d^2}{4}$ übrig, so daß das Ventil weitgehend entlastet ist. Um diesen Druck gering zu halten, werden die Durchmesser *d* und *D* möglichst gleich und die Sitzbreite sehr schmal ausgeführt. Ventil und Sitz werden ausschließlich aus Gußeisen hergestellt und unter Dampfdruck eingeschliffen, damit der dichte Schluß auch im Betrieb bei der Ausdehnung durch die Wärme gewahrt bleibt.

Aus dem gleichen Grunde werden beide Teile zweckmäßig aus demselben Tiegel gegossen, um gleichmäßige Ausdehnung zu gewährleisten.

Der Ventilsitz wird entweder mit langer konischer Fläche oder kurzer wagerechter Fläche eingeschliffen. Die Steigerung, auf die Durchmesser bezogen, beträgt im ersteren Fall meist 3 : 10. Die wagerechten Flächen haben den Vorteil, bequemere Herausnahme und leichtere Herstellung zu ermöglichen. An der oberen Dichtungsfläche wird der Sitz häufig mit einem aufragenden Rand nach Fig. 108 versehen, um den Dampf möglichst senkrecht einzuführen und Kippen des Ventils durch den Dampfstrom zu vermeiden.

Collmann gibt der oberen und unteren kegelförmigen Dichtungsfläche der Ventile eine gemeinsame Spitze und will dadurch erreichen, daß infolge der Wärmeausdehnung die Dichtungsflächen sich gegeneinander verschieben, aber nicht abheben, da beim Kegel die Vergrößerung der Höhe proportional derjenigen des Durchmessers bleibt. Richtiger ist annähernd gleicher Neigungswinkel beider Sitze, so daß beide gleiche Schlagkraft erhalten. Fig. 114. Diese Bauart empfiehlt sich auch mit Rücksicht auf besseren Dampfweg und günstigere Wärmeausdehnung.

¹) Nach einer Ausführung der Maschinenfabrik Rheydt O. Recke.

Werden die Sitzflächen wagerecht ausgeführt (stumpfsitzig), so stimmt die Aufschlaggeschwindigkeit mit der Geschwindigkeit der Spindel über-

ein. Bei scharfspitzigen Sitzen sind entsprechend dem Neigungswinkel, welcher bis zu 45° beträgt, höhere Aufschlaggeschwindigkeiten zu-

lässig, weil beim Aufsetzen nur deren Normalkomponente in Betracht kommt.

Sichere Führung des Ventils kann nach der in Fig. 108 dargestellten Ausführung oder auch dadurch erreicht werden, daß Rippen

an der Außenseite des Ventils durch Gleitflächen der Ventilkörbe geführt werden. Die Führung nach Fig. 108 erfordert einen größeren Ventildurchmesser und dementsprechend eine kleine Zunahme des schädlichen Raumes. Das Ventil nach Fig. 108 ist außerdem mit Überdeckkungsringen ausgeführt. Durch diese wird die Dampfeinströmung schon beendigt, wenn die Sitzflächen noch um die Ringhöhe voneinander entfernt sind. Die Verzögerung des Ventils kann ungefähr gleichzeitig mit dem Füllungsschluß erfolgen und bleibt somit Einfluß anf ohne die Schärfe des letzteren. Da die Überdeckungsringe namentlich bei Verwen-

dung überhitzten Dampfes mit geringem Spielraum eingesetzt werden müssen, so ist eine doppelte Dichtung nicht vorhanden.

Dem Betrieb mit überhitztem Dampf ist das Einlaßventil des in Fig. 191 dargestellten Zylinders angepaßt. Ventil und Sitz sind so ausgeführt, daß beide stets dieselbe Temperatur haben müssen, gleichgültig mit welcher Überhitzung oder Füllung gearbeitet wird. Zu dem Zweck ist der Ventilsitz so geformt, daß er ebenso wie das Ventil selbst auf der einen Seite von Frischdampf, auf der anderen Seite von dem in der Temperatur stets wechselnden Zylinderdampf umspült wird. In den Wandungen beider herrscht somit stets dieselbe Temperatur.

Das in Fig. 109 dargestellte Hagemannsche Ventil gibt dreifache Eröffnung und eignet sich in der dargestellten Ausführung besonders für die mit hoher Kompression arbeitenden Gleichstrommaschinen.

¹) Ausführung von Scharrer & Groß, Nürnberg.

Die Ausführung kann auch so getroffen werden, daß zuerst das Doppelsitzventil geöffnet und Druckausgleich zwischen Zylinderraum

und Frischdampfraum hergestellt wird, worauf das nur noch auf der Sitzfläche belastete Tellerventil angehoben wird. Bei Anwendung des Hagem annschen Ventils erübrigen sich besondere Sicherheitsventile.

Das Ventil nach Fig. 196 ist als einfacher Umdrehungskörper ohne jede Rippe ausgeführt: die Verbindung mit der Spindel wird durch zwei besondere Armkreuze hergestellt. Die Stege der Ventilsitze sind hohl, so daß sie denselben Temperaturverhältnissen wie die Ventile unterworfen sind.

Bei Maschinen von bedeutender Leistung werden nach Fig. 202 vielfach viersitzige Ventile angeordnet, um leicht undicht werdende

Ventile von sehr weitem Durchmesser, bezw. große Hubhöhen zu umgehen. O. Recke (Rheydt) ordnet auch bei kleineren Ventilen zwischen oberer und unterer Sitzfläche zwei weitere Sitzflächen an, um ähnlich wie beim

Trickschieber die Durchgangsquerschnitte zu verdoppeln. Ventilhöhe und schädlicher Raum bleiben annähernd dieselben wie bei den gebräuchlichen Doppelsitzventilen. Fig. 110.

Fig. 111 stellt die Hochwaldsche Erweiterung des Strnadschen Rohrschieberventils¹) dar, mit welchem bei nur zwei Sitzflächen die Steuerwirkung eines Viersitzventils erzielt wird.

Die Nachteile der üblichen Viersitzventile, welche in der Vergrößerung der Wandungen und des Inhaltes, sowie in der Erhöhung des Anhubwiderstandes bestehen, werden dadurch vermieden.

Um dies zu erreichen, wird dem Doppelsitzventil ein Rohrschieber mit vierfacher Eröffnung vorgeschaltet. Die Ringe des Rohrschiebers erhalten hierbei eine Überdeckung, welche halb so groß ist, wie der gewollte ganze Ventilhub.

Bei Beginn der Einströmung ist die Überdeckung und damit der halbe Ventilhub bereits durchlaufen. Wird das Ventil um den weiteren

halben Ventilhub hinausbewegt, so ist im Ventil und vermöge der vierfachen Eröffnung auch im Schieber der ganze Eröffnungsquerschnitt frei.

Fig. 112 zeigt das Lentzsche Auslaßventil für stehende Maschinen, bei welchem der obere Durchmesser kleiner als der untere ist, so daß der seitlich austretende Arbeitsdampf das Ventil sicher schließt, und starke Schlußfedern unnötig werden.

Der Ring D wird mit dem Ventil A durch Rippen verbunden, so daß beide ein Gußstück bilden. Nach der gemeinsamen Bearbeitung wird der Ring abgestochen und durch Schrauben auf dem Hauptsitz E befestigt.

Bei der Berechnung der Ventile ist die Verengung des Ventilquerschnittes durch Rippen und Naben durch die Annahme zu berücksichtigen, daß vom vollen Kreisquerschnitt 20 v. Ht. bei größeren, 40 v. Ht. bei kleineren Ventilen verloren gehen, so daß der freie Ventilquerschnitt

nur 0,8 bis 0,6 $\frac{\pi}{4}$ D₁² beträgt. Demnach wird im Mittel:

$$0.7\frac{\pi}{4} \cdot D_1^2 = F, \quad D_1 = \sqrt[2]{\frac{4 F}{0.7 \pi}}.$$

Bei der Hebung des Ventils um h wird bei geneigten Sitzflächen unten und oben eine Öffnung freigelegt, deren Erstreckung senkrecht zu Strömungsrichtung $x = h \cos \alpha$ wird, wenn α = Neigungswinkel. Fig. 113. Die Summe beider Öffnungen muß gleich dem freien Ventilquerschnitt sein, demnach:

$$2 \pi D_1 \cdot h \cos \alpha = 0.7 \frac{D_1^2 \pi}{4}.$$

oder, da Winkel α meist nicht wesentlich verschieden von 45° ist, und cos $45^{\circ} = 0.7$:

$$h = \frac{D_1}{8} = 0,125 D_1.$$

¹) Ausgeführt von A. Borsig, Berlin-Tegel.

Damit die doppelte Eröffnung richtig ausgenutzt wird, erhält der freie Querschnitt zwischen Nabe und Ventilrohr dieselbe Größe wie die Durchgangsfläche zwischen Ventilsitz und Ventilrohr.

Die Höhe y wird mit Rücksicht darauf bestimmt, daß beim größten Ventilhub zwischen den Kanten a und b' ein Abstand von $0,125 D_1$ bleibt.

Eine Spindeldichtung mit geschliffener, selbst dichtender Büchse zeigt Fig. 115. Bauart König der Ascherslebener Maschinenbau-

A.-G. Die Reibung gewöhnlicher Stopfbüchsen verursacht das sog. Hängenbleiben der Ventile. Bei den kleineren gewöhnlichen Füllungen und Ventilhüben schleißt die Ventilspindel auf der betreffenden Strecke ab, und die Stopfbüchse muß stärker angezogen werden. Gelangt nun bei den selteneren, größeren Ventilhüben die Spindel mit dem unverändert gebliebenen Durchmesser in die angezogene Stopfbüchse, so bleibt sie hängen: der Frischdampf strömt ununterbrochen ein und während der Auspuffperiode ins Freie, bezw. in den Aufnehmer bei Verbundmaschinen, wodurch diese leicht "durchgehen".

Diesem Übelstand wird durch Dichtungen nach Fig. 115 abgeholfen. Die mit Labyrinthdichtung versehene Spindel ist an einer bestimmten Stelle von einem Hohlraum umgeben, welcher mit dem

Kondensator in Verbindung steht. Das Schmiermittel wird somit der Spindel in sicherer Weise unter dem Einflusse des atm. Druckes zugeführt. Die jeweils nötige Schmiermenge läßt sich durch Verstellen eines in die Rohrleitung eingeschalteten Hahnes regeln.

Derartige, zuerst von Lentz eingeführte Dichtungen sind namentlich für Betrieb mit überhitztem Dampf geeignet. S. auch Fig. 125.

Die Ventilsteuerungen werden zwangläufig oder kraftschlüssig ausgeführt. Bei den kraftschlüssigen oder freifallenden Steuerungen wird der Füllungsschluß durch die vom Regulator bewirkte Aufhebung der Verbindung von Steuerwelle und Ventilspindel herbeigeführt, und das Ventil fällt gemäß der von der Schlußfeder ihm erteilten Beschleunigung frei herunter. Bei den zwangläufigen Steuerungen hingegen schließt das Ventil mit einer von dem äußeren Steuerungsgetriebe abhängigen Geschwindigkeit.

Die einfachste Form der zwangläufigen Steuerungen findet sich bei den Auslaßventilen und außerdem bei den Einlaßventilen mit unveränderlicher Expansion, wie sie an den Niederdruckzylindern der Verbundmaschinen ausgeführt werden.

1. Die zwangläufigen Ventilsteuerungen.

Die Übertragung der Bewegung auf das Ventil.

Die Fig. 107, 115—130 und die Fig. 134—135 geben verschiedene Ausführungsarten von Ventilantrieben wieder, welche (mit Ausnahme der

in Fig. 116 dargestellten selbständigen Steurung mittelst unrunder Scheibe) für unveränderliche Füllung und für den Auslaß durch ein auf

der Steuerwelle aufgekeiltes Exzenter, für veränderliche Expansion durch besondere Mechanismen betätigt werden.

Bei der Steuerung mit unrunder Scheibe, Fig. 116, wird das Ventil angehoben, sobald der Vorsprung der auf der Welle befestigten Nabe die zur Steuerwelle radial angeordnete Rolle berührt. Die Füllung, bezw. Ausströmung dauert an, bis die Rolle von der unrunden Scheibe abläuft. Im geschlossenen Zustand des Ventils ist zwischen Rolle und Nocken ein Spielraum von etwa $\frac{1}{2}$ mm vorhanden, damit zuverlässiger Schluß des Ventils gesichert ist. Zwecks Veränderung der Dampfverteilung werden die unrunden Scheiben häufig nach Fig. 117 verstellbar ausgeführt. Die eine Hälfte des aus zwei Teilen bestehenden und schwalbenschwanzförmig in die Nabe eingelassenen Nockens ist mit Vorsprüngen versehen, welche in Aussparungen der anderen Hälfte eingreifen, so daß bei einer Verstellung der Scheiben keine durchgehende Lücke entstehen kann.

Nach Bestimmung des Ventilhubes und nach Annahme der Kompression und Vorausströmung, bezw. Voreinströmung und Füllung, sind die Höhe des Nockens und der Winkel, über welchen derselbe sich erstreckt, gegeben. Die Kurven sollen so auslaufen, daß der Zwischenraum

von Nocken und Rolle vor der Ventilerhebung nahezu auf Null vermindert wird, um sanftes Anheben zu ermöglichen. Die Neigung der Kurven selbst ist auf Grund der zulässigen Beschleunigung der zu bewegenden Massen zu wählen, demnach bei schnelllaufenden Maschinen kleiner als bei langsamlaufenden zu nehmen. Die Bewegung von Nocken und Rolle kann man sich als Verschiebung der Rolle auf der Kurve der feststehend gedachten Scheibe vorstellen. Fig. 118.

Wird hierbei die Geschwindigkeit v_t der Rolle in v_n und v_u zerlegt, so folgt aus der Ähnlichkeit der Dreiecke

OBC und FDC

$$\mathbf{v}_{n} = \frac{\mathbf{r} \cdot \mathbf{v}_{u}}{\mathbf{R}}$$
, oder da $\mathbf{v}_{u} = \mathbf{R} \cdot \boldsymbol{\omega}$,
 $\mathbf{v}_{n} = \mathbf{r} \cdot \boldsymbol{\omega}$.
 $\mathbf{v}_{r} = \mathbf{v}_{n} \cdot \cos \boldsymbol{\alpha}$.

Die Umfangsgeschwindigkeit desjenigen Kreises, welcher eine auf die Kurve gefällte Senkrechte tangiert, gibt nach Multiplikation mit dem Cosinus des Steigungswinkels die Momentangeschwindigkeit der Rolle für die betreffende Stelle an.

Wird der Kurbelkreisumfang in eine Anzahl gleicher Teile, gleichen Zeiten entsprechend, zerlegt und für jeden Zeitpunkt die radiale Geschwindigkeit festgestellt, so ergibt die Auftragung dieser Geschwindigkeiten v als Ordinaten zu den Zeiten als Abszissen unter Berücksichtigung der Übersetzung eine Kurve der Ventilgeschwindigkeiten. Durch Tangenten an dieser Kurve lassen sich die Beschleunigungen $\frac{d v}{d t}$ ermitteln.¹)

¹) S. auch Fig. 131 S. 132.

Da beim Ventilschluß die beschleunigende Kraft von der Schlußfeder aufgebracht werden muß, so ist diese hiernach zu bemessen. Von besonderer Bedeutung sind die Übergänge der Kurven an den Nabenkreis und an die "Rast", an welchen die Beschleunigung ihren größten Wert erreicht und die mit großem Krümmungsradius auszuführen sind. Der Neigungswinkel der Kurve α soll nicht größer als 45° gewählt werden, häufiger wird $\alpha = 20$ -: 30°. Die Forderung, daß der Winkel α an allen Stellen der Kurve die gleiche Größe besitzen soll, führt auf die Ausführung der Kurve als logarithmische Spirale, bei welcher die Tangente in einem beliebigen Punkt mit dem Radius einen konstanten Winkel einschließt. Praktisch wird jedoch der Nocken vielfach in der Weise verzeichnet, daß aus einer Geraden mittelst Kreisbogens in die Rast übergegangen wird (s. Fig. 117).

Die Wälzhebel, Fig. 115 und 119—122, bezwecken zur Schonung der Ventilsitzflächen sowie der Steuerungsbolzen und zur Vermeidung von Stößen langsames Anheben und Schließen des Ventils, womit namentlich bei schnelllaufenden Maschinen eine entsprechende Dampfdrosselung verbunden ist. Der erwähnte Zweck wird dadurch erreicht, daß während der Bewegung des Wälzhebels dieser auf einer Unterlagplatte rollt, wodurch das Hebelarmverhältnis fortwährende Änderung erfährt. Die Zugstange greift zuerst an einem längeren, zum Schluß an einem kürzeren Hebelarm an, dadurch anfangs langsames, dann sehr schnelles Ventilerheben, bezw. im umgekehrten Sinn Ventilschluß bewirkend. Je nachdem beide Bolzen des Wälzhebels beweglich sind, oder dieser einen festen Drehpunkt besitzt, unterscheidet man Wälzhebel mit beweglichem und festem Drehpunkt.

Letztere haben gegenüber der ersteren Anordnung den Vorteil, daß die zu beschleunigenden Massen verringert werden, so daß sie namentlich bei hohen Umlaufzahlen angewandt werden. Außerdem läßt sich bei ihnen anfänglich unendlich große Übersetzung durchführen, da das Ventil mit der Geschwindigkeit Null, also mit endlicher Beschleunigung angehoben wird, wenn sich beide Wälzhebel beim Beginn der Bewegung im

Drehpunkt des von der Exzenterstange bewegten Hebels berühren.

Gleiche Übersetzung erreicht man bei den Wälzhebeln mit fester Unterlagplatte nur durch Gabelung und Durchführung der letzteren bis zur Spindelmitte. Fig. 119. Soll der Wälzhebel auf der festen Wälzfläche rollen und nicht gleiten. wodurch starker Verschleiß entsteht, so müßte der mit der Spindel verbundene Bolzen sich auf einer Geraden bewegen. Es könnte dies erreicht werden, wenn die Wälzfläche mit einem doppelt so großen Radius als der des Wälzhebels gekrümmt würde, da in

Die Steuerungen.

diesem Falle die vom Bolzen beschriebene Zykloide eine Gerade würde. Der leichteren Herstellung wegen wird jedoch fast stets vorgezogen, nur die Unterlagplatte mit sehr großem Radius gewölbt anzufertigen. Der Bolzen des Wälzhebels bewegt sich dann auf einer Evolvente und

der Hebel selbst ist so zu legen, daß zur Vermeidung des Gleitens die Evolvente sich möglichst der Geraden nähert.

Bei den Hebeln mit festem Drehpunkt kann man sich deren Bewegung auch in der Weise hervorgebracht denken¹), Fig. 120, daß der Hebel o_1 b zunächst auf der oberen Wälzfläche abgerollt wird, wobei der jetzt beweglich gedachte Drehpunkt b bei einer Senkung eine Zykloide

beschreiben wird. Hierauf sind. um die richtige Schlußlage beider Hebel zu erhalten, diese zusammen um Punkt o nach oben zu drehen, wobei Punkt b sich nunmehr auf einem Kreisbogen bewegt. Das Gleiten wird vermieden, wenn dieser Kreisbogen mit der vorhin beschriebenen Zykloide möglichst übereinstimmt. Ist die Lage des Drehpunktes nicht durch andere Rücksichten bestimmt. so ist sie so zu wählen. daß diese Übereinstimmung stattfindet. Als allgemeine Regel ergibt sich, daß zur Vermeidung des Gleitens die jeweiligen Berührungspunkte auf der Verbindunkgslinie obder beiden festen Drehpunkte wandern sollen. In diesem Fall wird, wie erforderlich, die Bewegungsrichtung für

jeden Berührungspunkt die gleiche sein, da sie senkrecht zu ob steht. Gebräuchliche Formen von Wälzhebeln für Ein- und Auslaß-

steuerung sind in Fig. 121—122 wiedergegeben²). Die Kreisbögen der Abwälzungsbahnen tangieren bei a den Ventilhebel in der Lage A Bbeim Ventilanhub und bei b den Hebel in der horizontalen Lage C D.

²) Ausführung von Schüchtermann & Kremer, Dortmund.

¹) Nach Dr. Ing. O. Recke, Rheydt.

Ist letztere erreicht, so ändert sich das Übersetzungsverhältnis nicht mehr. Der Betrag des "Klaffens", d. h. die Entfernung der Endkante bder Unterlagsplatte vom Wälzhebel bei dessen Lage A B beeinflußt stark die Beschleunigungsverhältnisse. Läßt man die Hebel nur um einen geringen Betrag klaffen, so werden die horizontale Hebellage und damit das endgültige Übersetzungsverhältnis sehr schnell erreicht, es treten außerordentlich große Beschleunigungen auf, welche die Steuerung beim Anhub schwer belasten, während beim Niedergang des Ventils unter Umständen die Federkraft nicht ausreicht, um die Berührung zwischen Wälzhebel und Unterlagplatte dauernd zu sichern. Das Ventil fällt dann "knallend"

frei nach, was außer durch die auf S. 120 erwähnte Wirkung der Stopfbüchse auch dadurch bedingt wird, daß der strömende Dampf auf das Ventil einen sehr erheblichen, zur Federspannung sich addierenden Druck ausübt, welcher bei größeren Ventilhüben fehlt — vorausgesetzt, daß letztere wie bei den später zu besprechenden Einlaßsteuerungen mit Regulatoreingriff veränderlich sind. Bei schnelllaufenden Maschinen ist es deshalb geboten, den Betrag des Klaffens größer zu nehmen, wobei jedoch die drosselnde Wirkung des langsamen Öffnens und Schließens länger andauert. Vorteile in bezug auf ruhigen Ventilgang bietet der Antrieb des Einlaßventils nach Fig. 107.

Um der Anforderung in bezug auf Steigerung der Umlaufzahl zu entsprechen, mußte man darauf bedacht sein, 1. den Ventilschluß völlig sicher zu machen, 2. übermäßige Federspannungen zu vermeiden, oder

¹) Zu einer Maschine von 570 mm Durchm., 800 mm Hub mit Radovanovic-Steuerung gehörend.

sogar ohne solche zu arbeiten. Im letzteren Fall, d. h. bei kettenschlüssigem Antrieb, mußte die einseitige Belastung der Gelenke aufgegeben werden, bei welcher kein Druckwechsel auftritt.

Um die Federspannungen zu vermindern, wurden die Schubkurvenhebel eingeführt, welche eine Abart der unrunden Scheiben darstellen,

gegenüber diesen aber eine bedeutende Verringerung der zu beschleunigenden Massen gestatten. In Fig. 123 tritt Ventilerhebung ein, sobald die Kurve des vom Exzenter bewegten Daumens die Rolle des Winkelhebels berührt. Beim Rückgang des Daumens wird das Ventil durch die Feder geschlossen, wobei die Rolle mit der Kurve in Berührung bleibt, so daß die Schlußgeschwindigkeit ebenso wie die Geschwindigkeit beim Ventilan-

¹) Nach einer Ausführung von Scharrer & Groß, Nürnberg. heben durch die Art der Kurve — welche wieder nach der logarithmischen Spirale gekrümmt werden kann — bedingt ist. Fig. 124 zeigt die genauere Ausführung einer derartigen Schubkurve. Fig. 125 stellt die von Lentz herrührende Vereinfachung dar, bei welcher die Rolle nicht an einem Winkelhebel, sondern unmittelbar an der Verlängerung der Ventilspindel angebracht ist. Hierbei muß gute Führung zur Aufnahme der wagerechten, Größe und Richtung wechselnden Komponente vorgesehen werden. Fig. 126 zeigt die Anhubvorrichtung von

O. Recke, zur Maschinenanordnung Fig. 151 gehörend. Auf der Welle a, deren Mittelachse in gleicher Ebene mit der Ventilspindel und rechtwinkelig zu dieser liegt, ist ein Wälzdaumen d angebracht. Die Ventilspindel umgeht hakenförmig die Welle a und endigt in einem Gleitstück, an welchem in o die Stelze d_1 aufgehängt ist.

Das Ventil kann bei geeigneter Profilierung der Rollflächen mit der Anhubgeschwindigkeit Null geöffnet werden; für den weiteren Ventilhub sind Winkelbeschleunigung und Winkelbewegung der Stelze d_1 sehr gering. Der Führungsdruck wechselt seine Richtung nicht.

Weitere Ausführungsformen von Schubkurven sind in den Figuren 127-130 dargestellt. Bei der Proellschen Steuerung, Fig. 127, ergeben sich günstige Eröffnungs- und Beschleunigungsverhältnisse dadurch, daß der Winkel zwischen den Bewegungsrichtungen der Rolle und der Kurvenscheibe im Rollenmittelpunkte stumpf ist. Die Bewegungsverhältnisse würden ungünstiger, wenn die Exzenterstange auf

Zug statt auf Druck beansprucht, der erwähnte Winkel also spitz sein würde. Im folgenden sind die größten Ventilhübe bei verschiedenen Füllungen in v. Ht. des Gesamtventilhubes angegeben:

Füllung v. Ht.	5	10	15	20	25	30	35	4 0	45	50	55	60	65
Größter Ventilhub	5	20	43	69	84	94	100	100	100	100	100	100	100

Der Müllersche Ventiltrieb, Fig. 128, besteht aus zwei Schubkurven, von denen die erste, von der Exzenterstange angetrieben, auf die Rolle der zweiten Kurve wirkt, die ihrerseits die Bewegung auf die Rolle der Ventilspindelführung überträgt.

Bei der Steinschen Steuerung, Fig. 129, besitzt die Rückenfläche der Schubkurvenstange eine ebene zur Bewegungsrichtung der Steuerstange parallele Bahn und die Bewegungsrichtungen der Ventilspindel und der Schubkurvenstange schließen einen rechten oder stumpfen Winkel miteinander ein.

¹) Bauart Proell.

²) Von Zivilingenieur Paul H. Müller, Hannover. Dubbel, Dampfmaschinen. 3. Aufl. Diesen drei Bauarten ist gemeinsam, daß die Ventilspindel von seitlichen Kräften entlastet ist.

Fig. 130 zeigt die Anordnung der Schubkurve an der Ventilspindel. Zur Sicherung des Ventils gegen Hängenbleiben ist außer der Hubkurve noch eine Schlußkurve angebracht.

Bei dem Entwurfe der Steuerungen geht man am zweckmäßigsten von der Annahme der Ventilerhebungskurve aus, indem man die Ventil-

hübe s als Ordinaten, die Zeiten t, die durch Zerlegung des während der Füllung zurückgelegten Kurbelwinkels gefunden werden, als Abszissen aufträgt, Fig. 131.

Durch Tangenten an diese Wegkurve ergeben sich die Ordinaten $v = \frac{ds}{dt}$ der Geschwindigkeitskurve, durch Tangenten an diese die Ordinaten $p = \frac{dv}{dt}$ der Beschleunigungskurve.

¹) Bauart B. Stein, Zivilingenieur in Berlin-Schöneberg.

²) Bauart der Maschinenfabrik Grevenbroich.

Um die Beschleunigungskräfte zu erhalten, sind die Gewichte der zu beschleunigenden Massen auf die Ventilspindel zu beziehen.

Beim Anhub z. B. des Einlaßventils sind folgende Kräfte zu überwinden:

- 1. Der Federdruck, der schon bei geschlossenem Ventil vorhanden ist und der weiteren Ventilerhebung entsprechend zunimmt.
- 2. Das Gewicht des Ventils.
- 3. Die Reibung der Spindel in der Stopfbüchse und der Bolzen in ihren Lagern.

Der Dampfdruck auf die Ventilspindel wirkt im Sinne der Ventilbewegung.

Nach Erreichen der größten Ventilgeschwindigkeit muß die Beschleunigung negativ werden, d. h. die bewegten Massen müssen durch den Federdruck verzögert werden. Ist das Ventil in seiner höchsten Lage, so hat der Federdruck während des ersten Teiles der Abwärtsbewegung die hierzu erforderliche Beschleunigungskraft aufzubringen, während im zweiten Teile die Rollenbahn der Schubkurve verzögert.

In Fig. 131 geben die Ordinaten zwischen der Beschleunigungsund der Federdruckkurve die gesamten, an der Ventilspindel wirkenden Kräfte an.

Würde dieser Abstand an irgend einer Stelle gleich Null, so würden Rolle und Rollenbahn der Schubkurve keinen Druck mehr aufeinander ausüben. Bei einem Abstande kleiner als Null würden Rolle und Rollenbahn sich trennen¹).

Fig. 132²) stellt den kettenschlüssigen Ventilantrieb mittelst des Doerfelschen Rolldaumens dar. Dieser hat eine hebende und eine schließende Daumenseite, auf welcher die Rollen des Antriebhebels ohne Spiel gleiten. Die schließende Kurve wird als Umhüllende der Stellungen der Schlußrolle während der Ventilerhebungen ausgeführt und zwar in der Weise, daß man sich den Rolldaumen stillstehend denkt und den Rollenhebel relativ bewegt.

Damit einerseits das Ventil stets sicher schließt, andererseits Brüche unmöglich gemacht werden, wird der Ventilspindel ein größerer Hub erteilt als dem Ventil, so daß zwischen beide eine Feder eingeschaltet werden muß.

Die öffnende Kurve darf nicht in einen um den festen Drehpunkt des Daumens geschlagenen Kreis übergehen, damit das offene Ventil nicht zum Stillstand gelangt und der Berührungswechsel von der hebenden zur schließenden Rolle möglichst nahe der Hubumkehr, d. h. bei kleinster Geschwindigkeit erfolgt.

Fig. 133 zeigt den von der Maschinenfabrik Gebr. Pfeiffer-Kaiserslautern angewandten paarschlüssigen Ventilantrieb, bei dem die Schubkurve zu einer Kulisse kinematisch erweitert ist. Nach Aufsetzen des Ventils tritt die Rolle aus der Kulisse heraus.

¹) S. auch Dubbel, Großgasmaschinen. (Verlag von Julius Springer, Berlin.)

²) Ausführung der Sundwiger Eisenhütte. Sundwig i. W.

Der Hebel wird in der Weise hergestellt, daß die untere Rollenbahn nach Angabe in Gußeisen gefräst wird und darnach auf einer Kopier-Geschwindigkeits- und Beschleunigungsdiagramm zur Bestimmung der Kurvenbahn und Ventilfeder für die Niederdruck-Einlaßventile.

fräsmaschine als Vorlage dient. Hier werden dann beide Rollenbahnen durch einen einzigen Fräser vom Rollendurchmesser gleichzeitig hergestellt.

Die Rolle selbst wird um ¹/10 mm kleiner gedreht als der Fräser. ¹) Nach Wiegleb.

Fig. 134 zeigt für eine Auslaßsteuerung den Einfluß des Voreilwinkels auf die Dampfverteilung. Durch die Wahl der Dauer von Vorausströmung und Kompression ist der Kurbelwinkel festgelegt, während dessen Zurücklegung das Auslaßventil geöffnet sein muß. Die Kolbenweglinie, welche die Stellung des Exzenters bei der Kurbeltotlage angibt, ist sodann so zu legen, daß die Bogenprojektionen der Endpunkte Va und Co des mit der Exzenterstangenlänge geschlagenen Kreisbogens sie in der gewünschten Weise schneiden.

Die zwangläufigen Ventilsteuerungen mit veränderlicher Expansion.

Als solche kommen hauptsächlich in Betracht:

- 1. Steuerungen mit verstellbarer Führung der Exzenterstange. (Ausführungen: Hartung, Radovanovic, Sondermann, Bromley.)
- 2. Steuerungen mit umlegbarem Lenker. (Widnmann, Recke, Hunger, Sondermann, Pröll.)
- 3. Steuerungen mit zwei Exzenterantrieben. (Collmann, Kliebisch.)
- 4. Steuerungen mit unrunder Scheibe. (Knoller, Zwonicek, Strnad.)
- 5. Steuerungen mit Achsenregeler. (Pröll, Doerfel, Lentz, Recke, B. Stein, Paul H. Müller.)

Steuerungen mit verstellbarer Exzenterstangenführung. In Fig. 135 ist die Steuerung der Maschinenfabrik Bromley in Moskau wiedergegeben. Die Ventilstange greift an dem Endpunkt D einer kurzen Exzenterstange A D an, welche mittelst Schwinge C an dem Hebel B aufgehängt ist. Letzterer ist auf der Welle F aufgekeilt, welche vom Regulator durch die Zugstange G verdreht wird. Bei dieser Verstellung durch den Regulator bewegt sich der Aufhängepunkt der Schwinge C auf einem vom Mittelpunkt der Steuerwelle F aus geschlagenen Kreisbogen, wodurch die ebenfalls kreisbogenförmige Führungsbahn des Exzenterstangenpunktes, welcher mit der Schwinge C verbunden ist, eine andere Neigung erhält. Je nach dieser Neigung beschreibt der Bolzen D Kurven. welche eine Ventilerhebung bewirken, sobald sie - wie durch Schraffur angedeutet — über den vom Endpunkt der Ventilzugstange mit deren Länge geschlagenen Bogen hinausragen. Fast allgemein wird der Forderung zu entsprechen gesucht, daß die Voreinströmung - in Winkelgraden gemessen - bei allen Füllungen wenigstens annähernd konstante Größe habe. Wird die Kurbel in eine diesem Voreinströmungswinkel entsprechende Stellung vor der Totlage gebracht und hierauf der Regulator aus der tiefsten in die höchste Stellung geschoben, so daß das Steuerungsgestänge den verschiedenen Füllungen gemäß sich einstellt, so darf im Falle konstanter Voreinströmung der Ventilantriebshebel sich nicht bewegen. Bei der Bromlevschen Steuerung trifft dies nicht zu, da die Hebel C und B verschieden lang sind.

Weiterhin soll im Beginn des Ventilanhebens, wo der auf den Ventilsitzflächen lastende Dampfdruck zu überwinden ist, die Rückwirkung auf den Regulator gleich Null sein. Es ist dies hier der Fall, da in diesem Zeitpunkt der Hebel C eine solche Lage hat, daß seine Mittellinie durch den Mittelpunkt der Regulierwelle F geht, in bezug auf diese also kein Hebelarm vorhanden ist.

Fig. 136 zeigt die weit verbreitete Steuerung von Radovanovic. Ein ungefähr in der Mitte der Exzenterstange liegender Punkt wird hier in einer Geraden geführt. Auf der Regelerwelle, welche vom Regulator

durch den Hebel R verdreht wird, ist ein Kulissenstein aufgekeilt. Dieser gleitet in dem Schlitz einer in der Exzenterstange drehbar gelagerten Scheibe und nimmt bei der Verstellung durch den Regulator die Scheibe mit, wodurch auch die Neigung dieser und damit die Führung der Exzenterstange geändert werden. In der Fig. 137 sind die vom Endpunkt beschriebenen Kurven für die größte Füllung und für absolute Nullfüllung wiedergegeben; diese tritt ein, wenn die Kurve den mit der Zugstange um den Angriffspunkt des Wälzhebels geschlagenen Kreisbogen nicht überragt.

¹) Stodola, Dampfmotoren auf der Pariser Weltausstellung 1900. (Sonder-Abdruck.)

Die Voreinströmung ist bei der Radovanovic - Steuerung konstant, da bei der betreffenden Kurbelstellung der Stein in der Mitte der Scheibe steht, diese sich also nur in der Exzenterstange um ihren Mittelpunkt dreht, wenn die Regulatorhülse verschoben wird.

Der große Durchmesser der Kulissenscheibe wirkt insofern günstig, als durch die Reibung am Umfang die Rückwirkung auf den Regulator vermindert wird. Hängt man nämlich eine Steuerungsseite ab und läßt

die Maschine einfachwirkend arbeiten, so ist die Rückwirkung selbst beim Leerlauf bedeutend größer als im normalen Betrieb mit zwei Ventilen.

Während bei diesen Steuerungen der Punkt, von dem die Ventilbewegung abgeleitet wird, veränderliche Kurven beschreibt, wird bei den

Steuerungen mit umlegbarem Lenker¹) die Bewegung mittelst Lenkers von einer unveränderlichen Kurve abgenommen, von welcher, je nach Regulatorstellung, mehr oder weniger große Teile für die Ventilbewegung nutzbar gemacht werden. Die Anordnung ist gewöhnlich derart, daß das Exzenter den Auslaß wie üblich steuert, wobei ein Punkt auf dem Exzenterbügel eine kreis- oder ellipsenförmige Kurve beschreibt, von welcher die Ventilbewegung abgeleitet wird.

¹) Dieses fruchtbare Prinzip ist zuerst von L. Stanek, dem Erfinder des bekannten Reduktors, eingeführt worden.

Eine besonders einfache Steuerung dieser Art, die Widnmann-Steuerung, ist in Fig. 138 dargestellt. Der mit dem Exzenterring verbundene Lenker greift an einem wagerecht gelagerten Hebel an, dessen anderes Ende mit der Ventilzugstange verbunden ist. Der mittlere Stützpunkt dieses Hebels wird durch den Regulator verstellt und dadurch die Neigung des Lenkers gegenüber der Kurve verändert. Im Schema Fig. 139 sind die Stellungen des Lenkers für die Füllungen Null, 30 v. Ht.

Fig. 137.

und 70 v. Ht. eingezeichnet und zwar für die dem Voröffnen entsprechende Stellung. Die Kreise, welche mit der Lenkerlänge vom Punkt f aus geschlagen werden, geben in ihren Schnittpunkten mit der Kurve Beginn und Schluß der Ventilöffnung an.

Für reichliche Ventilöffnung ist demnach geringe Lenkerlänge vorteilhaft, da hierbei die Pfeilhöhe des in die Kurve hineinragenden Kreisbogens vergrößert wird, doch nehmen andererseits die Neigung des Lenkers gegen die Senkrechte und die Rückwirkung auf den Regulator zu.

Nach Wahl der Längen des Hebels fb, des Lenkers und der Ventilzugstange, welche mit Rücksicht auf die räumlichen Verhältnisse der Steuerung bestimmt werden, sind die Kreisbögen, auf welchen sich in der Stellung für Voreinströmung die Punkte f und b bewegen, bekannt und es kann die Bahn, welche der Punkt d beschreibt, punktweise aufgesucht werden. Diese Bahn wird durch einen Kreisbogen vom Radius de ersetzt, um konstantes Voröffnen zu erhalten. Wird nämlich in der gezeichneten Stellung der Regulierhebel um Punkt e gedreht, so bewegt sich der Punkt b auf dem Kreisbogen a bc; das Ventil bleibt unbeeinflußt. Nach Die Steuerungen.

Feststellung dieser Hebellängen ist die Steuerung noch bezüglich ihrer Rückwirkung auf den Regulator im Beginn des Ventilanhebens zu untersuchen. Vollständige Entlastung des Regulators wird hier dadurch erzielt, daß im Augenblick des Ventilanhebens die Richtungslinien des Lenkers, des Hebels de und der Zugstange sich in einem Punkt o schneiden, so daß das Drehmoment für die Regulierwelle gleich Null wird.

Bei der Recke - Steuerung, Fig. 140, wird die ellipsenförmige Bewegung des Auges c durch den Lenker cd auf den Hebel dfg und

Fig. 138.

mittelst Lenkers e f auf den in k gelagerten Doppelhebel und von diesem auf das Ventil übertragen. Der Punkt g des vom Regulator verdrehbaren Hebels h g dient als Stützpunkt für die ganze Bewegungsübertragung von dem Exzenterbügel auf das Einlaßventil, und durch seine Verstellung wird die Veränderung in der Lage des Hebels c d herbeigeführt.

Unveränderliches Voröffnen wird durch die bei der betreffenden Kurbelstellung vorhandene parallele Lage der drei gleichlangen Lenker c d, e f und h g erhalten, welche an dem vom Regulator bewegten Hebel g d angreifen. Da die Hebelverhältnisse zwischen Ventilstange und Exzenter, von ersterer ausgehend, bei kleineren Füllungen vergrößert, bei größerern Füllungen kleiner werden, so werden Ventilhub und Ventilschlußgeschwindigkeit für die verschiedenen Füllungen gleichmäßiger.

Steuerungen mit zwei Exzenterantrieben. Die bekannteste Steuerung dieser Art rührt von Collmann her, welcher damit als Erster die Konstruktion der zwangläufigen Ventilantriebe einführte. Fig. 141¹).

Bei der Collmann - Steuerung wird die Bewegung des Exzenters nach zwei Richtungen zerlegt, und die Bewegungskomponenten werden

Fig. 139.

in einem Gelenk vereinigt, welches veränderliche Kurven beschreibt. Der Regulator ändert die Größe der Seitenbewegung.

1) Ausführung der Görlitzer Maschinenbau-Anstalt und Gießerei.

Die Steuerungen.

Die Hauptbewegung wird vom Exzenter mittelst des Hebels c d eund des Kniehebels e g h auf das Ventil übertragen. Diese aufwärts gerichtete Bewegung, welche bestrebt ist, das Ventil zu öffnen, vereinigt sich im Kniegelenk g mit einer quer zu ihr gerichteten Bewegung, welche den Ventilschluß verursacht. Die Größe dieser Bewegung wird vom

Regulator durch Verstellen der Hülse f auf der Exzenterstange veränderlich gemacht. Letztere ist aus Herstellungsgründen gerade ausgeführt und nicht bogenförmig, wie es mit Rücksicht auf unveränderliche Voreinströmung erforderlich wäre.

Da beim Ventilanhub die drei Punkte egh des Kniehebels in einer Richtung liegen, so findet keine Rückwirkung auf den Regulator in dieser Stellung statt.

¹) Leist, Die Steuerungen der Dampfmaschinen.

Zylinder- durch- messer	Exzen- trizität	a	a ₁	d1	D ₁	d_2	D ₂	1	h	b	В
300—380	25	150	150—200	40	120	30	150	80	40	50	70
400-460	33	200	200—250	55	160	40	200	105	55	60	80
500-600	42	250	250 - 300	65	200	50	250	130	70	70	90

Radovanovic-Steuerung.

Widnmann-Steuerung.

Zylinder- durchmesser	Exzen- trizität	с	d	e	g	b	i1)	k	h
300	24	140	85	175	100	185	700	0	26
400	32	170	115	240	120	220	850	15	32
500	40	205	140	285	135	260	1000	20	36

Die bisher behandelten Steuerungsarten, welche man gemeinsam als Lenkersteuerungen bezeichnet, werden nach Annahme der Abmessungen probeweise in der Stellung für beginnende Voreinströmung aufgezeichnet. In den vorstehenden Zahlentafeln sind für die Radovanovic - und Widnmann - Steuerung gebräuchliche Abmessungen zusammengestellt. Fig. 142 und 143.

Ein vorzügliches Mittel zur Beurteilung der Zweckmäßigkeit angenommener Verhältnisse ergibt sich aus der Aufzeichnung der Ventilerhebungsdiagramme, indem aus dem Steuerungsschema für jedes Zehntel des Kolbenweges die zu den verschiedenen Füllungen gehörigen Ventilöffnungen oder auch die Wege des mit der Zugstange verbundenen Wälzhebelendpunktes aufgetragen werden. Nach Einzeichnung der Drosselungskurve ist aus der Lage der Schnittpunkte dieser Kurve mit dem Ventilerhebungsdiagramm die Schärfe des Abschlusses erkennbar. Das Diagramm, Fig. 144, zeigt nun die Nachteile der Lenkersteuerungen mit Wälzhebeln. Um nicht zu kleine Ventileröffnungen bei kleinen Füllungen zu erhalten, wird bei größeren Füllungen ein großer Überhub nötig, wodurch starke, den Regulator belastende Federspannungen entstehen. Sollen die veränderlichen Ventilschlußgeschwindigkeiten beurteilt werden — welche bei kleinen Füllungen klein, bei großen Füllungen

¹) i = Entfernung der Steuerwellenmitte von Zylindermitte.

groß sind, und die 0,20 m pro sec. nicht übersteigen sollen — so müssen die Ventilhübe als Ordinaten auf die Zeit als Abszisse bezogen werden. Zu diesem Zweck brauchen nur zu jedem Zehntel des über der Grundlinie des Ventilerhebungsdiagramms geschlagenen Kurbelkreises die zugehörigen Kolbenstellungen und die bei diesen vorhandenen Ventilhübe

Fig. 143.

bestimmt zu werden. Die Tangenten an den Kurven geben sodann die Momentangeschwindigkeiten. Fig. 145, von einer Lentz-Steuerung herrührend, läßt die Vorteile der Schubkurvenhebel erkennen.

Die Steuerungen mit unrunder Scheibe. Steuerung von Zwonicek, Fig. 146. Der Bügel C des auf der Steuerwelle A sitzenden Exzenters B ist zu einer unrunden Scheibe mit dem konzentrischen Teil m n ausgebildet und kann von dem am Zapfen c angreifenden Regulator verdreht werden. Die Ventileröffnung beginnt, sobald die Rolle g der Ventilstange T mit dem Teil m n in Berührung gelangt und erfolgt in derselben Weise, als ob g unmittelbar mit dem Exzenter A B in Ver-

bindung wäre. Läuft die Rolle an der Kurve n o ab, so wird das Ventil geschlossen, was nach der durch den Regulator bewirkten Verdrehung des Bügels C früher oder später der Fall ist.

Die Kraft zur Bewegung des Ventils wirkt — abgesehen vom Reibungswinkel — senkrecht zur Berührungsfläche zwischen Rolle und

Umfang der Scheibe, so daß ihre Richtungslinie durch b geht, und eine Rückwirkung auf den Regulator nicht eintreten kann.

Die Steuerung gibt Ventileröffnungen, welche bei den einzelnen Füllungsgraden den zugehörigen Kolbengeschwindigkeiten annähernd proportional sind. Je nach der Neigung der Strecke n o kann die Schlußgeschwindigkeit verschieden gewählt werden. Die Steuerungen mit Exzenterregulator werden ebenso entworfen, wie auf S. 84 für Schiebersteuerungen angegeben; in gleicher Weise können auch die Exzenter verstellt werden.

Die Verstellung der Exzenter kann sowohl durch zentrische als auch durch exzentrische Stellrohre erfolgen. Im letzteren Falle ist das Stellrohr unmittelbar auf dem Grundexzenter verdrehbar, daher das Rohr mit dem verdrehbaren Exzenter aus einem Stück hergestellt werden kann. Diese Bauart wird hauptsächlich von Proell ausgeführt. (S. Kapitel Regulierung.) Um die Exzenter möglichst klein zu halten, werden mitunter die beiden Grundexzenter mit der Welle aus einem Stücke geschmiedet.

Bei der Doerfelschen Bauart nach Fig. 150 werden beide Exzenter durch Mitnehmer verdreht, die auf dem durchgehenden, zentrischen Stellrohr angebracht sind. In dieser ist die Welle abgesetzt; das Stellrohr hat den gleichen äußeren Durchmesser wie die Welle zwischen Kegelrad und Regeler.

Die Anordnung des Regelers zwischen den Exzentern weist bei einigen gebräuchlichen Bauarten unangenehme Eigenschaften auf. Der Regeler baut sich sehr breit, seine links und rechts ziehenden Stellstangen klemmen leicht infolge kleiner Ungenauigkeiten selbst dann, wenn die Exzenter auf zentrischen Stellröhren sitzen. Wirkt der Regeler unmittelbar auf die Drehexzenter ein, so muß wegen des Füllungsausgleiches das vordere einen größeren Verdrehungswinkel beschreiben als das hintere. Die Kuppelung mit zwei Stangen auf jeder Seite geht dann auch in der Zeichnung nicht mehr, weil die Längen zu ungleich ausfallen. Ist hingegen nur eine Hängestange angeordnet, so erhält diese allein die Stöße von der Ventileröffnung und überträgt sie auf dasjenige Pendel, an welchem sie hängt. Die Lagerungsschneiden leiden dann einseitig etwas mehr.

Bei der Doerfelschen Anordnung, Fig. 150, bedarf es nur zweier Stellstangen, und auch diese werden sehr geschont, weil die Umfangsreibung des einen Exzenters nebst Stellrohrs bremsend gegen die Rückwirkung auf den Regulator durch das andere Exzenter wirkt, wie dies bezüglich der Radavanovic-Steuerung schon auf S. 136 bemerkt wurde.

Außerdem beeinflußt die Lage des Reglers vorne günstig das Äußere der Maschine, und die Trommelverschalung läßt sich besser anbringen.

Fig. 147 zeigt einen Schnitt durch Regeler und Exzenter.

Das Stellrohr R, welches durch Zugstangen mit den Schwunggewichten verbunden ist, verdreht durch Mitnehmer die Drehexzenter E. Das Grundexzenter G, das die Stellröhre R umgibt, ist mit dem Regulatorgehäuse verschraubt, während das zweite Grundexzenter auf der Welle aufgekeilt ist.

Die Auslaßexzenter sind mit den Einlaßexzentern gekuppelt und ebenfalls um die Grundexzenter verdrehbar, so daß sich mit der Füllung auch die Kompression innerhalb bestimmter Grenzen verändert. Die Kupplung erfolgt durch Klemmschrauben und Schlitze und ist einstellbar.

Durch die veränderliche Kompression wird bei kleinen Füllungen weicher Gang erhalten, während bei großen Füllungen namentlich im Hochdruckzylinder Überkompression und Schlingenbildung (Diagramm i S. 38) vermieden werden.

Aus den Fig. 148—149, welche Einzelheiten darstellen, ist die Anordnung für sehr große Maschinen ersichtlich, wobei der Regeler besser getragen wird.

Dieser sitzt bei der Bauart nach Fig. 147 auch am Lager, aber der Lagerabstand ist größer. Da bei dieser Anordnung das Lager aber am Rahmen und nicht am heißen Zylinder befestigt ist, sich außerdem das Stellrohr leichter abnehmen läßt, so wird sie trotzdem der Bauart nach Fig. 148—149 meist vorgezogen.

¹) Körner, Zeitschr. Ver. deutsch. Ing. 1906. S. 1711. Dubbel, Dampfmaschinen. 3 Aufl.

In Fig. 151 ist die Anordung der Recke-Steuerung wiedergegeben. Da die Ventile nichts anderes als geteilte Muschelschieber darstellen, deren Überdeckungen nicht am Steuerungsorgan selbst, sondern in der äußeren Steuerung auftreten, so können sie durch nur ein Steuer-

getriebe, wie dies Fig. 151 zeigt, betätigt werden. Die Bewegungsübertragung vom Exzenter auf die Ventile ist so einzurichten, daß das eine Ventil beim Aufwärtsgang, das andere beim Abwärtsgang der Ventilstange geöffnet wird.

Fig. 150.

Die Steuerungen.

Diese Anordnung¹), mit welcher eine erhebliche Vereinfachung verknüpft ist, läßt sich mit allen Steuerungen durchführen, für welche bei Anwendung von nur einem Exzenter die Voreinströmung, in Winkelgraden gemessen, für Deckel- und Kurbelseite annähernd gleich ist.

Fig. 152 zeigt die neue Recke-Steuerung. Die Bauart des Zylinders ist in Fig. 197, der Regulator im Kapitel Regulierung wiedergegeben.

Durch die Anwendung der kurzen Exzenterstangen wird gleiche Dampfverteilung auf beiden Zylinderseiten erhalten. (Vgl. S. 83.)

¹) Zuerst von Collmann vorgeschlagen.

Fig. 152.

Die Steuerungen.

Sehr verbreitet ist die bekannte Lentz - Steuerung, Fig. 153, welche in der Hauptsache aus einer Vereinigung des Schubkurvenhebels nach Fig. 125 mit einem Trägheitsregeler (s. unter Regulierung) besteht.

Auf der Steuerwelle a ist ein Stein fest aufgekeilt, welcher in einen Schlitz des Exzenters eingreift, so daß bei dessen Verschiebung der Ex-

zentermittelpunkt b sich auf einer Geraden bewegt und eine Veränderung der Exzentrizität und des Voreilwinkels nach Fig. 65a auf S. 84 stattfindet.

Der Exzenterregeler verdreht eine die Steuerwelle umschließende Hülse. Diese trägt an jedem Ende einen Zapfen, welcher in einen zweiten zu dem oben erwähnten Schlitz senkrecht stehenden Schlitz f des Exzenters eingreift.

2. Die freifallenden Ventilsteuerungen.

Je nach der Art der Klinkenbewegung und der Auslösung können hier unterschieden werden:

- 1. Steuerungen mit plötzlicher Verdrängung der Klinke.
- 2. Steuerungen mit allmählicher Verdrängung der Klinke.
- 3. Steuerungen mit zwangläufiger Bewegung der Klinke.

Während bei den zwangläufigen Ventilantrieben die Schlußgeschwindigkeiten für die verschiedenen Füllungen zwar nicht gleichbleibend, aber doch vom äußeren Steuerungsgetriebe abhängig sind und deshalb eine bestimmte Grenze nicht überschreiten, werden dieselben bei den auslösenden Steuerungen von der Größe des Ventilhubes und des Stopfbüchsenanzuges stark beeinflußt. Die Geschwindigkeit des herabfallenden Ventils wird vor dem Aufsetzen durch Luftpuffer verzögert, indem ein in den Zylinder der Ventilhaube genau passender Kolben beim Aufwärtsgang durch eine Öffnung von einstellbarem Querschnitt

Luft ansaugt und diese beim Abwärtsgang verdichtet, sie hierbei durch die erwähnte Drosselöffnung auspressend.

Die Schlußgeschwindigkeit ist insofern vom Maschinisten abhängig, als dieser, je nach Füllung und Ventilhub, die Drosselöffnung einstellt. Soll auch bei kleinen Füllungen Ventilschlag vermieden werden, so muß der Austrittsquerschnitt für die Luft stark verengt werden, wodurch dann Drosselung bei größeren Füllungen eintritt.

Dieser Übelstand wird durch die von Collmann eingeführten Ölpuffer vermieden. Fig. 154 und 154a. Mit der Ventilspindel ist ein Pufferkolben K verbunden,

dessen Rand mit einer Reihe runder Öffnungen b, b — Fig. 154a — versehen ist. Die oberen Auszackungen dieser Öffnungen ragen bei geschlossenem Ventil über die Kante ii des Gehäuses hervor. Beim Aufwärtsgang des Ventils tritt das über dem Kolben K befindliche Öl durch die Öffnungen b, b des Kolbens unter denselben. Bewegt sich das Ventil nach der Auslösung abwärts, so strömt das Öl zunächst widerstandslos nach oben, um erst unmittelbar vor dem Aufsetzen des Ventils dessen Geschwindigkeit infolge des größeren Widerstandes in den immer enger werdenden Durchflußöffnungen zu verzögern, wie aus den Enden der Ventilerhebungskurven in Fig. 155 hervorgeht. Die

Aufsetzgeschwindigkeit bleibt annähernd gleich, nur im Leerlauf befindet sich Luftleere unter dem Ölpuffer, welche harten Schlag verursacht und zu deren Beseitigung Ventile mit Überdeckungsringen

angewendet werden, so daß auch im Leerlauf größere Ventilhübe gemacht werden.

Eine zweckentsprechende Abänderung des Collmannschen Puffers stellt die von Schüchtermann & Kremer herrührende Ausführungsform nach Fig. 156 dar. Die Drosselöffnungen sind nicht im Kolben, sondern

in einem eingesetzten Zylinder angeordnet, so daß es nach Abnahme des oberen Gehäusedeckels möglich wird, die Pufferwirkung während des Betriebes zu regeln.

In dem Ölpuffer¹) nach Hochwald-Neuhaus, Fig. 157 ab c, tritt das Öl (ebenso wie in den Bauarten nach Fig. 159 und 160) am ganzen Umfang des Kolbens aus. Mit diesem verbunden ist ein Ventilsitz, auf

¹) Ausgeführt von A. Borsig, Berlin-Tegel.

welchem die mit Löchern J versehene Ventilplatte E ruht, während der Kolbenboden D mit einer Anzahl Schlitze F versehen ist.

Sobald bei der Abwärtsbewegung des Ventils die untere Kolbenkante in die Zylinderführung tritt, legt sich infolge des entstehenden Überdruckes unter dem Pufferkolben die Ventilplatte E gegen den Boden D. Durch Verdrehung der beiden Teile E und D gegeneinander kann der Durchflußquerschnitt in den weitesten Grenzen verändert werden.

Um Prellschläge und Reißen der Spindel durch zu plötzliches Abbremsen zu vermeiden, wird in den Ölpuffern von H. Wiegleb und

L. Soest eine gewisse Nachgiebigkeit beim Auftreffen des Kolbens auf das Öl herbeigeführt.

Bei dem Ölpuffer nach Wiegleb, Fig. 158, kann die gegen Drehung gesicherte Hülse g durch Verdrehung der inneren, die Spindel umfassenden Hülse eingestellt werden. Gegen einen an g befindlichen Anschlag, auf welchen sich auch die Schlußfeder stützt, legt sich eine kräftige Hilfsfeder und drückt den verschiebbaren Kolben b nach unten.

Umlaufkanäle sind sowohl in der Zylinderwand, als auch in der Büchse g an der Stelle angeordnet, wo der Kolben b geführt wird.

Beim Ventilniedergang wird nach Abschluß der äußeren Kanäle das unter b befindliche Öl gepreßt, die Hilfsfeder zusammengedrückt und eine plötzliche, aber elastische Verzögerung der Ventilschlußbewegung verursacht. Die Absperrung der inneren Umlaufkanäle soll ungefähr mit Ventilschluß zusammenfallen.

Durch die erwähnte Verstellung der Hülse g und damit des Kolbens b kann die Puffer-Wirkung während des Betriebes genau geregelt werden.

Bei dem Soestschen Ölpuffer, Fig. 159, steht der Hauptkolben unter der Wirkung der Schlußfeder. Die innere Feder, welche einen

kleineren die Führungshülse der Spindel umschließenden Kolben belastet, gibt beim Abschließen des Hauptkolbens nach.

Sehr eigenartig ist die Bremsvorrichtung, Bauart v. Bavier, Fig. 160.

Unter dem Pufferkolben liegt eng übereinander eine große Anzahl von Metallplättchen, zwischen welche im entlasteten Zustand bei hochgehobenem Ventil Luft tritt. Diese wird beim Herabfallen des Ventils durch den Pufferkolben herausgepreßt, wodurch die Ventilgeschwindigkeit schnell verzögert wird. Die Schichthöhe der Plättchen und damit die Auftreffgeschwindigkeit können durch die Einstellung des unteren mit Gewinde und Schneckenrad versehenen Gehäusedeckels verändert werden.

Bei dem Stumpfschen Ölpuffer nach Fig. 161 ist an der höchsten Stelle des den Kolben umgebenden Ringraumes ein Rückschlagventil angebracht, durch welches beim Abwärtsgang des Kolbens die Luft hinausgepreßt wird, so daß im Betrieb unter dem Kolben eine Luftleere entsteht. Nach Auslösung des Ventils wird dieses mit einer Kraft geschlossen, die dem Kolbenquerschnitt und der Größe der Luftleere entspricht. Besondere Schlußfedern erübrigen sich infolgedessen. Der Drosselquerschnitt kann während des Betriebes durch Verschraubung des Puffergehäuses von außen eingestellt werden.

Da sich auf der oberen Wand des Ringraumes zum Zweck der Dichtung ebenfalls Öl befindet, so ist in dieser Wand eine Öffnung von einstellbarem Querschnitt angeordnet, durch welche Öl dem Pufferraum wieder zufließt, falls solches durch das Rückschlagventil ausgeworfen wurde.

Bei allen Ölpuffern ist natürlich zu beachten, daß bei der dem Ventilschluß entsprechenden Lage des Pufferkolbens die Räume unter und über diesem noch miteinander verbunden sind, damit richtiger Ventilschluß mit Sicherheit erhalten wird.

Die Schlußfeder der freifallenden Steuerungen wird wie folgt berechnet (s. Trinks, Z. 1898, S. 1163):

 \mathbf{Ist}

P der mittlere Federdruck in kg,

Q die notwendige Schlußkraft in kg,

G das Ventilgewicht in kg,

t die Schließdauer in Sek.,

h der Ventilhub in m,

p die zum Schließen erforderliche Beschleunigung in m, so folgt:

$$h = \frac{1}{2} p t^2$$
, somit $p = \frac{2 h}{t^2}$.

Ferner ist:

$$Q = p \cdot \frac{G}{g}$$
, und $P = \frac{p-g}{g} G = \left(\frac{p}{g} - 1\right) \cdot G$.

Schließt das Ventil nach oben, so ist mit Q statt mit P zu rechnen

Für 100 Uml./Min. und 40 bis 45 m Dampfgeschwindigkeit im Augenblick der Ausklinkung sind Schlußzeiten zulässig, welche der Zurücklegung eines Kurbelwinkels von 12-15^o entsprechen.

Die Steuerungen mit plötzlicher Klinkenverdrängung. Steuerung von Collmann. Fig. 162¹). Die Exzenterstange wird am Ventilgehäuse durch Lenker geführt und trägt eine Klinke, welche bei annähernd höchster Stellung übergreift und beim Abwärtgang des Exzenters den Ventilhebel so lange mitnimmt, bis sie auf einen vom Regulator einstellbaren Auslösedaumen trifft und dadurch abgleitet. Die Klinke muß durch eine kleine Blatt- oder auch Spiralfeder zum rechtzeitigen Aufsetzen gezwungen werden. Bei vorliegender Ausführung hat der Ventilhebel hinten eine Verlängerung, welche in einen Schlitz der Expansionsklinke so eingreift, daß sie das hängenbleibende Ventil schließen muß. Ventilerhebungsdiagramm s. Fig. 155.

Falls es möglich wäre, die Klinke bei der oberen Totlage des Exzenters aufsetzen zu lassen, würde das Ventil geräuschlos mit der Anfangsgeschwindigkeit Null angehoben.

¹⁾ Ausgeführt von Schüchtermann & Kremer, Dortmund.

Aus praktischen Gründen — Ungenauigkeit der Ausführung, Ausdehnung durch die Wärme — wird jedoch ein Überhub der Klinke erforderlich, welcher etwa 1-2 mm beträgt.

Diese Steuerungen lassen sich leicht entwerfen. Nach Bestimmung der Exzentrizität auf Grund der freizulegenden Eröffnungsquerschnitte und nach Wahl der Hebelverhältnisse wird die Stellung des Auslösers für die verlangte größte und kleinste Füllung bestimmt, womit auch der für den Regulatorhub bestimmende Drehwinkel festgelegt ist.

Fig. 162.

Die Steuerungen mit allmählicher Klinkenverdrängung. Bei der Kaufhold - Steuerung, Fig. 163, hängt die Klinke in der Gabelung der durch Lenker geführten Zugstange und gleitet im Laufe der Abwärtsbewegung durch Auftreffen gegen eine Fläche des Auslösers ab, welcher ebenfalls im gemeinsamen Drehpunkt der Exzenterstange und der Lenker gelagert ist und vom Regulator verstellt wird. Die Regulatorstange reicht in ihrere höchsten Stellung unmittelbar an den Ventilhebel heran, so daß das Ventil, falls es hängen bleiben sollte, durch sie geschlossen wird. Während der gebräuchlichsten Füllungen findet der Ventilanhub ohne Bewegung der Klinke gegenüber dem Ventilhebel statt — Strecke a b im Schema Fig. 164 — indem sich die Klinke beim Einfallen gegen eine Anschlagfeder legt und dadurch stets in gleicher Tiefe eingreift.

Das Abgleiten der Klinke geht während Zurücklegung der Strecke b c vor sich und zwar in derselben Weise, als ob Klinke und Auslöser fest miteinander verbunden wären. Diese Verbindung kann in Wirklichkeit nicht ausgeführt werden, weil die Klinke bei ihrem Aufwärtsgang nach außen hin beweglich sein muß, um wieder über den Ventilhebel gelangen zu können.

Im Schema der Steuerung wird der Punkt c, in welchem die Auslösung bei einer bestimmten Füllung erfolgen soll, mittelst des Exzenterdiagramms, welches in gleicher Weise wie bei den Steuerungen mit plötzlicher Verdrängung entworfen wird, bestimmt. Der Auslöseweg b c kann dann rückwärts aufgezeichnet werden, wobei Klinke und Ventilhebel als fest verbunden und aufwärtsgehend gedacht werden. Punkt b wird als Schnittpunkt dieser "Wälzkurve" und des eingezeichneten Kreisbogens bestimmt, dessen Halbmesser nach Annahme der Ventilhebellänge und

Fig. 163.

des Einfallweges bekannt ist. Wird diese Aufzeichnung für die kleinste Füllung — bei Nullfüllung muß die Klinke am Ventilhebel vorbeigehen und für die größte Füllung vorgenommen, so ist dadurch der Ausschlagwinkel des vom Regulator zu verdrehenden Hebels bestimmt.

Hochwald - Neuhaus - Steuerung, ausgeführt A. Borsig, Berlin-Tegel. Fig. 165. Der die Auslöserrolle l tragende Hebel sitzt auf dem Zapfen einer vom Regulator verdrehbaren Kurbelscheibe und ist mit der Schwinge d gelenkig verbunden. Die dadurch bedingte Bewegung der Rolle l bewirkt ein beschleunigtes Abschieben der Klinke h, so daß auch bei kleinen Füllungen große Einfalltiefen möglich werden.

Rolle l und Klinke h bleiben in steter Berührung.

Fig. 166 zeigt das Ventilerhebungsdiagramm dieser Steuerung, deren Ventile nach Fig. 111 ausgeführt werden.

Die zwischen den beiden Wagerechten liegenden Kurvenstücke beziehen sich auf die Zurücklegung der Überdeckungen des Kolbenschiebers.

Die Steuerungen mit zwangläufiger Klinkenbewegung. Bei den vorhergehenden Steuerungen bewegte sich die Klinke in einer an beiden Seiten abgeschnittenen Bahn, während bei den Steuerungen mit zwangläufiger Bewegung der Klinke diese eine geschlossene Kurve durchläuft.

Die einfachste hierhingehörige Ausführungsweise wird durch die Gutermuthsche Steuerung dargestellt. Fig. 199. Das freie Ende der

in der Mitte durch einen Lenker geführten, kurzen Exzenterstange beschreibt unveränderliche Kurven und ist in einer Gabel derart gelagert, daß die Anschlagplatte sich nur in einer Richtung um den Bolzen drehen kann, damit, falls die Maschine beim Anlassen rückwärts läuft, keine Brüche eintreten können. In der Ventilspindel ist der Auslöser gelagert, welcher vom Regulator in wagerechter Richtung verschoben werden kann, wodurch er sich mehr oder weniger der Anschlagplatte auf der Exzenterstange nähert und größere oder kleinere Füllung gegeben wird, bis die Kurve des Endpunktes der Exzenterstange und der Kreisbogen des Mitnehmers einander schneiden. Mit den breiten Flächen liegen die Anschlagplatten nur im Beginn des Öffnens, also zur Zeit des größten Widerstandes auf. Die Rückwirkung auf den Regulator ist gering, da der wagerechte Zug der Reibung zwischen den Anschlägen durch die Reibung zwischen Mitnehmer und Ventilspindel, der senkrechte Druck

durch die Bahnreibung des vom Regulator verstellbaren Gleitklotzes aufgehoben werden soll.

Die neue Sulzer-Steuerung, Fig. 167 und 167a, vereinigt die Vorteile der Klinkensteuerung mit denen der Wälzhebel¹). Das Exzenter steuert das Auslaßventil unter Vermittelung eines Winkelhebels, von welchem gleichzeitig die Bewegung für den Aufhängepunkt der Klinke abgeleitet wird. Der Aufhängepunkt bewegt sich, durch Lenker geführt, um einen festen Drehpunkt, an welchem auch der die Anschlagplatte tragende Hebel angelenkt ist. Die Klinke erhält ihre zweite Bewegung

¹) In seinem österreichischen Patent von 1893 gab Collmann zuerst derartige Kombinationen des Ausklinkmechanismus mit Wälzhebeln und Daumen an.

vom Exzenter durch ein vom Regulator verstellbares Gestänge und beschreibt herzförmige Kurven, welche, wie Fig. 167a zeigt, zwecks Füllungsveränderung in ihrer Lage verschoben werden können. Die Ventilzugstange greift unter Vermittelung eines Luftpuffers an den Wälzhebeln an.

Wird die Klinke ausgelöst, so wird das Gestänge infolge seiner Trägheit über die dem Ventilschluß entsprechende Lage hinausschießen,

Fig. 167 und 167 a.

wobei der Luftpuffer bremsend wirkt. Die Klinke wird demnach beim Auftreffen auf die Anschlagplatte nicht sofort das Ventil anheben, sondern muß zunächst das äußere Steuerungsgestänge um den Betrag der erwähnten Leerschwingung nach abwärts ziehen, wodurch geräuschloses und stoßfreies Auftreffen gewährleistet wird. Außerdem wird während dieser Abwärtsbewegung der Puffer genügend Luft ansaugen, um auch bei kleinen Ventilhüben ruhigen Gang zu sichern.

Fig. 168 zeigt eine Steuerung der Maschinenfabrik Augsburg-Nürnberg. Die Ventilzugstangen werden nicht durch Exzenter, sondern durch unrunde Scheiben gesteuert, während die am oberen Ende der Zugstangen angelenkten Klinken durch kleine Exzenter auf der Steuerwelle in Schwingungen versetzt werden. Die Bahn der Klinken wird durch Verstellung des Hebels oo1 seitens des Regulators geändert.

Die unrunden Scheiben ermöglichen leichten Füllungsausgleich für beide Zylinderseiten.

Da innerhalb der gebräuchlichen Füllungsgrenzen der Ventilhub annähernd konstant bleibt, so wird mit dieser Steuerung auch bei An-

wendung gewöhnlicher Luftpuffer eine nur wenig veränderliche Aufsetzgeschwindigkeit erzielt. Durch entsprechende Wahl der Anhubkurven der unrunden Scheibe läßt sich die Geschwindigkeit beim Auftreffen der Klinke sehr klein halten.

Der Überhub und damit die Aufsetzgeschwindigkeit werden bei den meisten Steuerungen dieser Art bedeutend größer, als bei den vorherbehandelten, da die Klinke nur bei ihrer wagerechten Bewegung ausgelöst werden kann, wie dies sehr deutlich Fig. 169 zeigt. Beim Auftreffen hat die Klinke ihre Höchstgeschwindigkeit. Eine Ausnahme bilden die Sulzer - Steuerung nach Fig. 167 und die Augsburger Steuerung nach Fig. 168. Infolge der herzförmigen Kurve, in welcher sich in Fig. 167a die Klinke bewegt, und die durch die geringe Länge der Exzenterstange erhalten wird, kann die Klinke vor dem Aufsetzen in kleinem Abstand über die entsprechend geformte Anschlagplatte herschwingen.

Was das Anwendungsgebiet der verschiedenartigen Steuerungen betrifft, so sind lange Zeit die zwangläufigen Steuerungen als besonders Dubbel, Dampfmaschinen. 3. Aufl.

geeignet für hohe Umdrehungszahlen gehalten worden. Neuerdings sind jedoch die freifallenden Steuerungen an Maschinen mit 150 Uml./Min. zur Anwendung gelangt, eine Umlaufzahl, welche für Wälzhebel entweder einen großen Betrag des Klaffens und damit starke Drosselung des Frischdampfes oder klappernden Gang zur Folge haben würde. Höhere Umdrehungszahlen — Lentz hat seine Steuerung an Maschinen mit 320 Uml./Min. angebracht und zu gleichen Leistungen ist die Doerfel-Steuerung befähigt — hat für den zwangläufigen Mechanismus die Einführung der Schubkurvenhebel ermöglicht, bei welchen eine Abschneidung des überflüssigen Exzenterhubes und eine Verminderung der Federkraft sowohl dadurch, als auch durch die Beschränkung der zu beschleunigenden Massen stattfindet.

Der Eingriff wird dem Regulator bei den freifallenden Steuerungen bedeutend mehr erleichtert, als bei den zwangläufigen. Da aber die Regulierfähigkeit im Grunde genommen hauptsächlich von der Regulatorgröße abhängig ist, und die neueren Federregulatoren mit Beharrungs-

wirkung bedeutende Verstellkräfte namentlich als Achsenregeler entwickeln, so läßt sich vorzügliche Wirkung auch durch zwangläufige Steuerungen erreichen. Letztere ermöglichen zudem gleichmäßigeren Leerlauf als die meisten freifallenden Steuerungen, bei denen zwischen Nullfüllung und der durch noch so geringes Einschnappen der Klinke entstehenden größeren Füllung keine Zwischenstufen vorhanden sind. Dieser gleichmäßige Leerlauf ist besonders für das Parallelschalten von Dynamomaschinen wichtig.

Das Verhalten der auslösenden Steuerungen ist bei kleineren Füllungen überhaupt nicht einwandfrei. Gesteuerte Klinken treffen stets mit größerer Geschwindigkeit auf, als die im letzten Rücklaufende einfallenden Klinken. Sie leiden deshalb bei kleinen Füllungen meist mehr, weil sich die Ecke der Klinke abrundet und dann abgleitet. Dadurch wird der Regulator unruhig. Sonach erschweren gesteuerte Klinken fast immer die Regulierung; das Steuerungstriebwerk wird überdies sehr verwickelt.

Scharfe schmale Klinkenflächen, wie sie bei den Steuerungen mit plötzlicher Verdrängung zur Verwendung gelangen, bewähren sich bei entsprechender Ausführung sehr gut (wie auch ihre Anwendung bei den schwerer gehenden Corliß - Steuerungen mit Ausklinkung beweist).

3. Die Einstellung der Ventilsteuerungen.

Die durch die endliche Pleuelstangenlänge bedingte Verschiedenheit der Füllungen kann bei den Ventilsteuerungen in verschiedener Weise verringert werden.

Bei der Widnmann-Steuerung z. B. beschränkt man sich meist darauf, die Regulierhebel ed, Fig. 139, nicht in einer Ebene, sondern so aufzukeilen, daß der normale oder ein diesem naheliegender Füllungsgrad vorne und hinten bei gleicher Regulatorstellung eintritt. Die Füllungsgrade sind am gleichmäßigsten, wenn bei 10 v. Ht. Füllung genaue Übereinstimmung vorhanden ist.

Da der Gesamtverstellungsweg vorne größer ist als hinten, so kann noch bessere Übereinstimmung erzielt werden, wenn die Exzentrizität auf der Kurbelseite etwas kleiner als diejenige auf der Deckelseite genommen wird. Für die Einlaßsteuerung hat diese Anordnung noch den Vorteil, daß die Ventilhübe von vornherein beiderseits gleicher werden, wobei allerdings die Auslaßhübe um so ungleicher sind. Angenäherte Gleichheit der Hubhöhen sowohl für Einlaß als für Auslaß kann durch verschiedene Wölbung und durch Verschiebung der Wälzbahnen erreicht werden, wodurch die Übersetzung der Wälzhebel geändert wird.

Ungefähr gleicher Beginn des Voreintrittes wird durch Aufkeilung der Exzenter nicht unter 180[°], sondern unter 178¹/₂[°] erhalten; da hierbei jedoch die Auslaßsteuerung wieder verschlechtert wird, so wird meist unter Beibehaltung des ungleichen Voreintrittes — die Aufkeilung unter 180[°] vorgezogen.

Bei der Radovanovic - Steuerung wird Füllungsausgleich durch Verstellung der Exzenter oder der Kulissensteine gegeneinander erzielt, so daß auch diese — ebenso wie Exzenter und Regulierhebel bei der Widnmann - Steuerung — nicht unter 180^o gegeneinander versetzt aufgekeilt werden. Die große Übereinstimmung, welche dadurch erhalten wird, geht aus der folgenden Zahlentafel hervor.

			Fü	llung	•				
0 v	. Ht.	4 0 v	. Ht.		0 v.	Ht.	43	v.	Ht.
10	,,	50	,,		10	"	54		,,
20	,,	60	,,		20	,,	65		,,
30	"			;	32	,,			

In den meisten Fällen begnügt man sich bei allen diesen Steueungen, die Füllungen für bestimmte Grenzen, z. B. zwischen 20 und 30 v. Ht., durch Verlängerung der hinteren Ventilzugstange bei symmetrisch aufgekeilten Exzentern usw. auszugleichen, wodurch auf der Deckelseite Voreintritt, Füllung und Ventilhub kleiner werden.

In der folgenden Zahlentafel und Fig. 170 ist die bei Füllungsausgleich vorzunehmende Aufkeilung von Niederdruckexzentern für feste Füllung (Proell-Steuerung) für einen bestimmten Fall angegeben. Die Ventile haben Überdeckung, so daß die Füllung vor dem Aufsetzen der Ventile beendigt ist.

Soll eine andere Füllung als 40 v. Ht. eingestellt werden, so ist der Voreilwinkel, gemessen in mm auf dem Umfang der Steuerwelle, von 40 v. Ht. als Ausgangspunkt gerechnet, positiv im Drehsinn, negativ dem Drehsinn entgegen zu ändern. Ebenso ist die Exzenterstangen-

länge zu vergrößern, wenn das angegebene Maß positivist, und umgekehrt. Soll z. B. die Füllung von 40 auf 50 v. Ht. vergrößert werden, so ist nach der Zahlentafel "vorn" die Exzenterstange um 6, hinten um 5 mm zu verlängern. Gleichzeitig ist der Voreilwinkel so zu ändern, daß das Exzenter "vorn" 3,6 mm, "hinten" 3,4 mm dem Drehsinn entgegen versetzt wird.

Füllung	Voreinströmen		Aufsetzer	n d. Vent.	Vorei	lwinkel	Stangenlänge		
hinten	vorn	hinten	vorn	hinten	vorn	hinten	vorn	hinten	
35 v. Ht.	lv.Ht.	lv.Ht.	45 v. Ht.	>44 v.Ht.	+1,8	+1,7	-3	-2,4	
45 "	1 "	1 "	55 "	53,5 ,,	-1,8	-1,7	+3	+2,4	
50 "	1 "	1 "	59,5 ,,	58,5 ,,	-3,6	-3,4	+6	+5	
55 "	1 "	1 "	64,5 ,,	>63 "	-5,4	-5,1	+9	+8	
60	1	1	69	67	-7.1	-6.8	+12	+11	

Ausgangsstellung 40 v. Ht. Füllung.

Änderung der Stangenlänge ist auch das bei Einstellung der Kompression und Vorausströmung am meisten angewendete Mittel. Um die Kompression ohne Verstellung der Steuerung selbst ändern zu können, gibt Widnmann den zum Wenden eingerichteten Auslaßhebelsätteln

Fig. 175.

oben und unten je eine Wälzbahn von verschiedener Wölbung. Liegt die schwach gewölbte Seite oben, so findet große, umgekehrt kleine Kompression statt.

Bei den älteren Ventilsteuerungen mit Exzenterregulatoren konnte aus dem auf S. 144 angegebenen Grunde der Verdrehungswinkel des vorderen Exzenters nur wenig größer als derjenige des hinteren Exzenters gemacht werden, so daß der Füllungsausgleich hauptsächlich durch ungleiche Stangenlängen und verschiedenes Voröffnen angestrebt werden muß, woraus dann für die Deckelseite sehr kleine, stark drosselnde Ventilhübe folgen.

Die Figuren 171-172 zeigen den Füllungsausgleich für gleich große Grundexzentrizitäten unter Berücksichtigung der Verdrehung der Auslaßexzenter.

Bei kleinster Füllung fällt das resultierende Exzenter ungefähr in die Richtung der Zugstange.

In den Schnittpunkten der Drehexzenter mit dem im Augenblick der Ventileröffnung mit der Exzenterstangenlänge gezogenen Kreisbogen — hier fast eine Gerade — erfolgen Voreintritt V.E.) und Expansion (*Exp.*). In gleicher Weise werden Voraustritt (*V.A.*) und Kompression (*Komp.*) ermittelt.

Die Figuren 173-174 stellen eine zweite Art des Füllungsausgleiches dar. Die Drehexzenter sind wie vorhin mit gleicher Exzentrizität

ausgeführt, die Grundexzenter sind aber von etwas verschiedener Größe. Durch die damit erzielte ungleiche Lage der Zentralkurve wird der Füllungsausgleich unterstüzt.

Für stehende Maschinen erhält Doerfel bei beiderseits gleicher Überdeckung nahezu vollkommenen Ausgleich durch Einschaltung eines Zwischenhebels nach Fig. 175¹), welcher die Anwendung einer kurzen, schrägziehenden Exzenterstange ermöglicht. Die Wirkungsweise kann aus den Bemerkungen auf S. 83 gefolgert werden. Diese Anordnung der Steuerung wird auch an liegenden Maschinen ausgeführt.

Den einfachsten Füllungsausgleich ermöglichen die unrunden Scheiben.

Bei den freifallenden Steuerungen wird die zur Steuerung der Kurbelseite gehörige Klinke vom Regulator in weiteren Grenzen verstellt als die Klinke auf der Deckelseite.

Eine Exzenterkonstruktion, welche die Einstellung des Voreil winkels sehr erleichtert, zeigt Fig. 176²).

- ¹) Hierzu gehört die Zylinderkonstruktion Fig. 201.
- ²) Ausgeführt von Schüchtermann & Kremer, Dortmund.
Die Exzenterscheibe ist dadurch auf der Welle befestigt, daß eine an der Stirnfläche geriffelte und in der Exzenterscheibe gleitend angebrachte Beilage mittelst Keiles gegen die fein genutete Steuerwelle gepreßt wird.

b) Die zwangläufigen Rundschiebersteuerungen für unveränderliche Füllung.

Während die auslösenden Corliß-Steuerungen in England, Frankreich und besonders in den Vereinigten Staaten von Amerika als Expansionssteuerung allgemein ausgeführt werden, ist in Deutschland die Anwendung der Rundschieber (und zwar mit zwangläufigem Antrieb)

Fig. 177.

auf die Niederdruckzylinder der Verbundmaschinen beschränkt. Die Vorteile der Rundschieber gegenüber den Ventilen sind in der billigeren Herstellung, der größeren Dichtheit und den kleineren schädlichen Räumen begründet.

Die ausschließlich aus Gußeisen hergestellten Rundschieber werden von den Spindeln durch eingepaßte Blätter mitgenommen, welche entweder über die ganze Länge des Schiebers oder nur über den vorderen Teil desselben eingelegt werden. Häufig wird auch der Schieber an seinen beiden Enden von kurzen Blättern gefaßt, welche durch die Spindel miteinander verbunden sind. S. Einlaßschieber Fig. 177.

Damit der Schieber durch den Dampfdruck richtig angepreßt werden kann, muß die Spindelmittellinie in die Richtung o o' fallen, wenn o' die Mitte des arbeitenden Umfanges bedeutet. Fig. 178.

Die Stopfbüchsen werden mit Vorteil durch konische, selbstdichtende Bunde ersetzt, welche mittelst Spiralfedern gegen die entsprechenden Flächen eingeschobener Büchsen gepreßt werden. Das Die Steuerungen.

während des Betriebes durchdringende Wasser sammelt sich in den Hohlräumen der Gehäusedeckel an und wird durch Röhrchen abgeleitet.

Um die Spindel von biegenden Kräften zu entlasten und den Verschleiß in der Büchse zu verringern, wird vielfach die in Fig. 179 dargestellte Ausführungsform bevorzugt, bei welcher der Antriebshebel in den Gehäusedeckel hineinragt.

Die Anordnung der Auslaßschieber weicht von derjenigen der Einlaßschieber grundsätzlich ab. Legte man erstere mit ihrer Arbeitsfläche gegen die aus dem Zylinder führenden Kanäle, so würden sie vom Druck

des im Zylinder arbeitenden Dampfes von der Sitzfläche abgepreßt. Hahnartig eingeschliffene Schieber halten zwar den Unterdruck aus, verreiben aber sehr schnell. Die Auslaßschieber sind deshalb in der Weise anzuordnen, daß der Arbeitsdampf sie gegen die aus dem Schiebergehäuse führenden Kanäle preßt. Beim Entwurf ist zu beachten, daß der Muschelinhalt des Auslaßschiebers schädlicher Raum ist. Der Auslaßkanal wird deshalb seitlich angesetzt.

Fig. 177 zeigt die Ausführung des Einlaßschiebers als Trick-Schieber, für dessen Entlastung ein Teil der Gleitfläche fortgelassen ist. Ganz entlastete Rundschieber bewähren sich nicht, da sie nach kurzer Betriebszeit undicht werden.

Bei der Berechnung der Kanalweite wird gewöhnlich die Kanallänge gleich Zylinderdurchmesser gewählt. Werden die vier einzelnen Schieber unmittelbar oder durch Einschaltung eines Übertragungshebels von einem Exzenter angetrieben, so sind die Überdeckungen in gleicher Weise wie beim Muschelschieber mittelst des Müllerschen oder Zeunerschen Diagramms zu bestimmen. Um gute Dichtheit zu erhalten, soll sich im Querschnitt die arbeitende Fläche über einen Winkel von höchstens 120^o erstrecken, da der Auflagerdruck der Corliß-Schieber sich wie beim Zapfen nach

Fig. 180 verteilt, in welcher die Ordinaten die Pressungen in den betreffenden Flächenelementen darstellen. Einhaltung dieser Regel ist sonach mit Rücksicht auf die notwendige Größe des Dichtungsdruckes geboten.

In Fig. 178 überdeckt die steuernde Schieberkante den Kanal um e, so daß die auf dem Umfang gemessene Länge seiner Arbeitsfläche $l = 2 (e + a) + \sigma$ sein muß; talls eine Nacheröffnung des Kanals beim Rückgang des Schiebers vermieden werden soll. $\sigma = 10 \div 15$ mm = Sicherheitsüberdeckung.

Hiernach wird: $l = \pi d \cdot \frac{100}{360}$ bis

 $\pi d \cdot \frac{120}{360}$, woraus der Schieberdurchmesser

d bestimmt wird.

¹) Ausführung der Maschinenfabrik Augsburg-Nürnberg.

Die Steuerungen.

Nach Feststellung des Durchmessers ist der Ausschlagwinkel des Schiebers und nach Wahl der Länge des Antriebshebels auch dessen Weg 2 r und damit die auszuführende Exzentrizität bestimmt, wobei natürlich das Übersetzungsverhältnis eines eingeschalteten Übertragungshebels zu berücks chtigen wäre. Der Mittelpunkt der Exzenterbewegung

Fig. 182.

soll, wenn möglich, in der Verbindungslinie der Endpunkte des Hebelausschlages liegen.

Der Schieberumfang wird wesentlich verringert durch Anwendung der sog. Schwingscheibe, Fig. 181, welche, in der Mitte des Zylinders gelagert, vom Exzenter angetrieben und so mit den Antriebshebeln der Schieber verbunden wird, daß die Bewegung mit Kniehebelwirkung vor sich geht. Die Wirkungsweise geht aus dem Steuerungsschema, Fig. 182 hervor¹).

Der Exzenterstangenendpunkt bewegt sich auf dem Bogen S S. Der Einlaßschieber ist im Augenblick beginnender Voreinströmung wiedergegeben, und er wird, während der Antriebspunkt a₁ der Schwing-

¹) Seemann, Z. 1898, S. 669.

scheibe sich von a_1 nach c und zurück bewegt, schnell geöffnet und geschlossen. Bei der weiteren Bewegung des Punktes a_1 über a_2 nach a nimmt der Angriffsradius der Schwingscheibe ab und verlangsamt die Schieberbewegung immer mehr. Bei einer etwas weitergehenden Bewegung des Punktes a würden Mittellinie der Steuerungsstange und der durch den Angriffspunkt gehende Radius der Schwingscheibe in einer

Richtung liegen, so daß dieser Totlage des Gestänges entsprechend der Schieber still stünde. Mitunter läßt man a noch über diese Totlage hinausgehen, wobei der Schieber eine kurze, der vorhergehenden entgegengesetzte Bewegung macht. Dieses "Nicken" der Schieber ist jedoch für die Schmierung nachteilig.

Beim Auslaßschieber findet die "Corliß-Schränkung" auf dem Wege $b_2 b_1 b'$ des Antriebspunktes statt.

Wird auf dem Bogen ac die Lage a_1 des Antriebspunktes beim Schluß der Füllung, auf Bogen b'b die Lage b_2 beim Schluß der Ausströmung ermittelt, so gibt das nach Fig. 183 über ac gezeichnete Müller-

sche Diagramm die Dampfverteilung wieder. Da $a a_2 = b b_2$, so entspricht a_2 dem Punkt b_2 . Das lineare Voreilen v wird erhalten, indem Punkt a_0 des Diagramms Fig. 182 in Fig. 183 übertragen wird.

Beim Entwurf einer neuen Steuerung geht man in der Weise vor, daß auf Grund des Schieberdiagramms die Überdeckungen festgestellt werden. Nach Annahme der Hebellängen wird die Lage des Angriffspunktes der Schieberstange für die Mittelstellung des Steuerungstriebes so gewählt, daß beim Hingang die Kanalöffnung möglichst schnell vor sich geht (d. h. die Richtungslinien der Hebel mit der Schieberstange müssen hierbei annähernd rechte Winkel miteinander einschließen), dagegen beim Rückgang die Totlage des Gestänges erreicht wird.

Aus der Stellung des Schiebers für die Totlage kann nach Wahl der Sicherheitsüberdeckung der Schieberumfang bestimmt werden.

Da die schädlichen Räume sehr klein sind und bei kleinen Füllungen hohe Kompression verursachen, so wird mitunter Antrieb der Schieber durch zwei Exzenter mit verschiedenen Voreilwinkeln erforderlich, was größere Unabhängigkeit in der Wahl der Dampfverteilung herbeiführt.

c) Entwurf und Ausführung der Dampfzylinder.

Die Zylinder werden meistens stehend aus Gußeisen mit Zusatz von zähem Schweißeisen gegossen und mit großem, verlorenem Kopf versehen, damit auch die oberen Teile dicht werden. Die Dampfkanäle großer Ventil- oder Corliß - Zylinder werden zweckmäßig von kräftigen Rippen durchsetzt, die einerseits der weit unterbrochenen Wandung größere Festigkeit geben und andererseits bewirken sollen, daß sich beim Gießen des Zylinders Unreinigkeiten nicht in der Lauffläche festsetzen, sondern durch die Rippen in weniger wichtige Teile oder in den verlorenen Kopf gelangen. Wird der Dampfmantel angegossen, so ist der innere Abstand der beiden Mantelwände mindestens 40 mm weit zu wählen; die in den Flanschen befindlichen Kernlöcher sind durch eingeschraubte Putzen zu verschließen. Bei dieser Ausführung wird das Gußstück sehr kompliziert, und es stellen sich im Betrieb infolge der verschiedenen Temperaturen in den einzelnen Teilen und der verschiedenen Massenverteilung sehr leicht gefährliche Spannungen ein, die unter

Umständen zu Rissen Veranlassung geben. Auch muß der ganze Zylinder verworfen werden, falls sich bei der Wasserdruckprobe undichte Stellen zeigen. In dieser Beziehung ist das Einsetzen besonderer, leicht auswechselbarer Büchsen vorteilhafter, welche durch Einschrumpfen oder durch verstemmte Kupferringe abgedichtet werden. Fig. 184 und 185. Der schädliche Raum nimmt bei eingesetzten Büchsen zu. Eingepreßte Büchsen sind nur bei bester Arbeit fest, meist lockern sie sich und wandern; sie sind deshalb durch vorgelegte Leisten testzuhalten.

Das Einschieben der Buchse in den Zylinder von der Kurbelseite her ist insofern vorteilhaft, als die Buchse vom vorderen Deckel und von

einem Absatz im Zylinder sicher festgehalten werden kann. Das freie, hintere Buchsenende, dessen Dichtung bequem zugänglich ist, kann sich verschieben.

Fig. 186 zeigt eine Mantel-Konstruktion Doerfels. Der mittlere

Teil des Außenmantels wird hierbei durch einen mit Handlöchern zur Ausführung der Vernietung versehenen Blechmantel gebildet. Der Außenmantel ist gewölbt, um leicht der Wärmeausdehnung folgen zu können.

Die Zylinder werden womöglich auf Horizontalbohr- und Fräsmaschinen bearbeitet, da häufiges Umspannen des Arbeitsstückes die Genauigkeit der Ausführung beeinträchtigt. Die Zylinder stehender Maschinen sollen stehend ausgebohrt werden. Größere Zylinder werden mit Vorteil unter der Arbeitstemperatur fertiggestellt, da die im kalten Zustand ausgebohrten Zylinder während des Betriebes unrund werden.

Der Durchmesser der beiden Zylinderenden muß einige Millimeter größer als derjenige der Lauffläche sein, damit in der Totlage des Kolbens dessen Ringe etwa $\frac{1}{2} \div 1$ mm in diese "Vorbohrung "hineinragen, und kein Grat entstehen kann. Beträgt das Überlaufen der Ringe mehr, so werden sie während der Kompression und Voreinströmung vom Dampf nach innen zusammengepreßt, sie "klatschen" und brechen leicht. Auch ermöglicht die Vorbohrung die Benutzung der gleichen Deckel, falls der Zylinder nachgebohrt werden muß. Die Dampfkanäle müssen in die Vorbohrung und dürfen nicht in die Lauffläche münden. Zwischen Deckel und Kolben soll in dessen Totlage ein Spielraum von etwa 5 mm vorhanden sein. Damit die schädlichen Oberflächen klein bleiben, müssen die Deckel nach Fig. 195 (und nicht wie in Fig. 190) eingepaßt werden, so daß der Dampf durch eine schmale, ringförmige Leiste gehindert wird, in den Raum zwischen Zylinderwand und Deckel einzudringen. Diese sind in kleinen Berührungsflächen aufzuschleifen, oder, wenn dies infolge Anwendung von Stiftschrauben nicht möglich ist, durch Zwischenlage von Asbest, Gummi, Papier usw. zu dichten. Große Zylinder sind mit starken Rippen zu versehen, damit Formveränderungen durch das Eigengewicht und durch die Bearbeitung vermieden werden.

Zylinder bis zu etwa 600 mm Hub können freihängend mit dem entsprechend unterstützten Rahmen verbunden werden; größere Zylinder verlangen Unterstützung durch einen breiten Fuß oder besser durch zwei an jedem Zylinderende angebrachte Füße. Diese sollen nicht unmittelbar mit dem Fundament verankert, sondern mit den Gleitflächen einer Unterlage so verschraubt werden, daß die Zylinder der Ausdehnung durch die Wärme folgen können. Bei schmalen Füßen entstehen leicht Kippmomente, welche diese Längsbewegung des Zylinders gänzlich hindern.

Sehr große Zylinder werden mitunter zur Erleichterung der Bearbeitung aus besonderen Endstücken, welche z. B. die Drehschieber oder bei vertikalen Zylindern die Ventile enthalten, und einem Mittelstück zusammengesetzt.

Um die Wärmeausstrahlung der arbeitenden Maschine nach außen hin zu verringern, wird der Zylinder mit einer Wärmeschutzmasse — Kieselguhr, Torf, Kork, usw. — umgeben welche des Aussehens halber durch einen Mantel von Stahlblech verkleidet wird. Auflagerflächen für diesen Stahlblechmantel sind an den Flanschen vorzusehen.

Bemessung. Die Wandstärke δ wird weniger mit Rücksicht auf die Festigkeit, als auf Formveränderung bei der Bearbeitung gewählt. Bei D cm lichtem Zylinderdurchmesser wird:

$$\delta = rac{1}{50}\,\mathrm{D} + 1$$
,3 cm

bei stehend gegossenen Zylindern,

$$\delta=rac{1}{40}\,\mathrm{D}+1,5\,\,\mathrm{cm}$$

bei liegend gegossenen Zylindern.

Flanschstärke $s = 1,4 \div 1,5 \delta$.

Die ebenen Wandungen des Zylinderdeckels werden durch den darauf lastenden Dampfdruck auf Biegung beansprucht. Das durch den Dampfdruck auftretende Moment, angreifend im Schwerpunkt der halben Kreisfläche, ist:

$$\mathbf{M}_{1} = \frac{\mathbf{r}^{2} \pi}{2} \cdot \mathbf{p} \cdot \frac{4 \mathbf{r}}{3 \pi}.$$

Diesem Moment wirkt das im Schwerpunkt des Halbkreisbogens angreifende Moment des Auflagerdruckes: Die Steuerungen.

$$\mathbf{M}_2 = \frac{\mathbf{r}^2 \, \pi}{2} \cdot \mathbf{p} \cdot \frac{2 \, \mathbf{r}}{\pi}$$

entgegen, so daß das resultierende Biegungsmoment wird:

$$\mathbf{M}_{\mathbf{b}} = \mathbf{M}_{\mathbf{2}} - \mathbf{M}_{\mathbf{1}} = rac{1}{3} \cdot \mathbf{r}^3 \cdot \mathbf{p} = \mathbf{W} \cdot \mathbf{k}_{\mathbf{b}} = rac{2 \operatorname{r} \mathbf{s}^2}{6} \cdot \mathbf{k}_{\mathbf{b}},$$

woraus folgt:

$$\mathbf{k_b} = \frac{\mathbf{r}^2}{\mathbf{s}^2} \boldsymbol{\cdot} \mathbf{p}.$$

In diese Gleichung ist noch ein Berichtigungskoeffizient $\varphi = 0.8 \div 1.2$ einzuführen, welcher von der Art der Auflagerung, bezw. der Einspannung abhängig ist und für vorliegenden Fall meist = 1 gesetzt wird. Sonach:

$$\mathbf{s} = \mathbf{r} \sqrt{\frac{\mathbf{p}}{\mathbf{k}_{b}}}.$$
 $\mathbf{k}_{b} \leq 250.$

Ist der Deckel z. B. durch vier Rippen versteift, so kann diese Berechnungsweise beibehalten werden, indem jeder Quadrant der Deckelfläche als eine kreisrunde, ebene Platte angesehen wird.

In vorstehender Berechnung ist das durch den Schraubenanzug entstehende Biegungsmoment Pa, Fig. 187, nicht berücksichtigt worden, da dasselbe bei größerem Abstand *a* durch Anbringung einer Leiste wesentlich verringert werden kann, deren Höhe h_1 etwas kleiner als *h* ist, so daß sie erst bei einer bestimmten, dem Dichtungsdruck entsprechenden Durchbiegung aufliegt. Die Anzahl der auf Zug beanspruchenden Deckelschrauben ist so

zu wählen, daß ihre Entfernung voneinander zwecks Erzielung gleichmäßigen Dichtungsdruckes höchstens 15 cm beträgt. Zugbeanspruchung $k_z \leq 300 \text{ kg/qcm}$.

Armaturen. An solchen soll jeder Zylinder besitzen: Indikatorstutzen. Die $8 \div 10$ mm weiten Indikatoröffnungen müssen dicht an den Innenseiten der Zylinderdeckel in die Vorbohrung münden, damit sie in der Kolbentotstellung nicht verschlossen werden. Gewinde des Anschlusses = 1". Entwässerungshähne für den Dampfmantel, bezw. für den Zylinder selbst. Anschlüsse für Schmierölleitungen. Sicherheitsventile, welche bei Wasserschlag oder allzuhoher Kompression abblasen.

Sollen Kondensationsmaschinen, welche mit hoher Kompression bei kleinen schädlichen Räumen arbeiten, zeitweise mit Auspuff betrieben werden, so empfiehlt sich die Anordnung von Ventilen in den Zylinderdeckeln, wodurch der schädliche Raum um den zu dem geöffneten Ventil gehörigen Raum des Deckels vergrößert und die Kompression entsprechend verringert wird.

Der Entwurf des Zylinders wird in hohem Maße durch die Wahl der Steuerung beeinflußt.

Schieberzylinder. Fig. 188. Der Schieberspiegel muß vorstehen, damit derselbe, falls die Gleitfläche schadhaft geworden ist, bequem nachgearbeitet werden kann. Häufig bewegt sich der Schieber auf einer besonderen, leicht auswechselbaren Platte. Bei größeren Maschinen wird der Schieberkasten meistens getrennt vom Zylinder ausgeführt und mit diesem verschraubt, um die Bearbeitung der Schieberfläche zu erleichtern.

Damit das im Zylinder sich ansammelnde Kondenswasser vom Kolben leicht ausgestoßen werden kann, sind die unteren Kanten der Dampfkanäle so zu legen, daß sie den Durchmesser der Vorbohrung tangieren.

Bei sehr großen Abmessungen — wie bei Walzenzugmaschinen usw. — ist der Schieberkasten durch einen besonderen Fuß zu unterstützen, am vorteilhaftesten durch Federn, um Aufnahme des Gewichtes auch wirklich zu sichern.

Die Schieberkastendeckel werden in folgender Weise berechnet. Fig. 189.

Die Hälfte des auf dem Deckel lastenden Gesamtdruckes P = a b p greift im Schwerpunkt S der halben Deckelfläche an, und da aus Versuchen von

Dubbel, Dampfmaschinen. 3. Aufl.

Die Steuerungen.

v. Bach hervorgeht, daß der Bruch nach der Diagonale erfolgt, so hat das auf letztere bezogene Biegungsmoment die Größe:

 $\frac{\mathbf{P}}{2}\cdot\frac{\mathbf{c}}{3}$.

Das Moment des Auflagerdruckes greift in der Mitte der beiden Seiten a und b an, so daß resultiert:

Die Steuerungen mit vierfachen Dampfwegen.

$$\mathbf{M}_{\mathsf{b}} = \frac{\mathbf{P}}{2} \cdot \frac{\mathbf{c}}{2} - \frac{\mathbf{P}}{2} \cdot \frac{\mathbf{c}}{3} = \frac{\mathbf{P} \cdot \mathbf{c}}{12}.$$

Wird $P = a \cdot b \cdot p$ gesetzt und *c* durch die Längen *a* und *b* ausgesetzt, so folgt nach Einführung des Koeffizienten φ :

$$\begin{split} \mathbf{M}_{\mathbf{b}} &= \varphi \cdot \frac{\mathbf{p} \cdot \mathbf{a}^2 \cdot \mathbf{b}^2}{12 \sqrt{\mathbf{a}^2 + \mathbf{b}^2}} = \frac{\sqrt[4]{\mathbf{a}^2 + \mathbf{b}^2} \cdot \mathbf{s}^2}{6} \cdot \mathbf{k}_{\mathbf{b}} \\ \mathbf{k}_{\mathbf{b}} &= 0.5 \cdot \varphi \cdot \frac{\mathbf{p} \cdot \mathbf{a}^2 \cdot \mathbf{b}^2}{(\mathbf{a}^2 + \mathbf{b}^2) \, \mathbf{s}^2}. \end{split}$$

q, welches innerhalb der Grenzen 0,75 bis 1,125 liegt, wird meistens = 1 gesetzt.

In gleicher Weise werden die flachen Wände des Schieberkastens berechnet.

Ventilzylinder. Ausführungsformen für liegende Zylinder sind in Fig. 190—198, für stehende in Fig. 199—202 dargestellt. Die Ventile werden meistens oben und unten in der Mittelebene der Zylinder gelagert, seltener seitlich. In Fig. 190 wird der Dampfmantel durch eine besondere Leitung mit Heizdampf versehen. Der Arbeitsdampf strömt durch eine gesonderte Leitung zu dem Absperrventil.

Häufiger und für die Ausführung des Gußstückes vorteilhafter ist es, den Arbeitsdampf direkt in den Mantel strömen zu lassen und diesen durch ein Ventil gegen die Einlaßventile abzuschließen, oder das Abschlußventil in der Rohrleitung vor dem Mantel anzubringen, dessen Inhalt allerdings nach Absperrung des Ventils noch weiter arbeiten wird.

Die von Doerfel herrührende seitliche Ventillage nach Fig. 191¹) ist wegen des bequemen Ventilantriebes durch Exzenter gewählt worden, doch bietet diese Anordnung weitere Vorzüge bei Verwendung überhitzten Dampfes. In diesem Fall verlangen nämlich die Ventilzylinder eine ganz besonders sorgfältige Durchbildung, namentlich in bezug auf Massenverteilung, um die schon erwähnten Spannungen infolge der verschiedenen Temperaturen zu ver-Dieser Forderung entsprechende meiden. Ausführungen zeigen überdies Fig. 192 bis 194. Die Zylinder sollen soweit wie möglich rohrförmig ohne jeden Ansatz gestaltet werden.

In Fig. 192 wird der Dampf der Einlaßventilen durch ein besonderes, angegossenes Rohr zugeführt, welches ebenso wie das Abdampfrohr der Wärmeausdehnung des Zylinders leicht folgt. Die den unteren Ventil-

179

¹) Ausgeführt von Easton & Co., London. Maschinenfabrik Schlan.

korbsitz tragende Wand steht frei vor, wodurch im Vergleich zur entsprechenden Ausführung in Fig. 190 gleichmäßigere Ausdehnung dieser Sitzfläche erreicht wird.

Eine sehr vorteilhafte Form zeigt Fig. 193¹). Die Ventile sind in die Deckel verlegt, so daß der Zylinder als einfaches Rohr sich frei und ohne jegliche Spannung ausdehnen kann. Das die Auslaßventilgehäuse

verbindende Rohr ist dementsprechend federnd ausgeführt. Bei der seitlichen Ventillage, Fig. 191, ist der Zylinder an seinen Enden nur durch die Kanalwandungen mit den Ventilgehäusen verbunden, erhält demnach auch hier einfache Gestalt.

Ähnliche Formgebung, wie nach Fig. 193, jedoch mit günstigeren Verhältnissen in bezug auf schädlichen Raum und schädliche Flächen, zeigt Fig. 194.

Die Vorteile der Zylinderbauart³) nach Fig. 195 bestehen in der Vereinfachung der Dampfzuführung und in der gleichmäßigen Erwärmung des Zylinders.

Durch die Gewölbeform des Mantels werden in einfachster Weise gefährliche Wärmespannungen in demselben vermieden.

Zur Anwendung gelangen Ventile nach Fig. 191.

- ¹) Ausgeführt von Maschinenfabrik Gritzner, A.-G., Durlach.
- ²) Ausführung der Maschinenfabrik Augsburg-Nürnberg.
- ³) Bauart K. & Th. Möller. Brackwede. (D. R. P.)

Die Steuerungen mit vierfachen Dampfwegen.

In Fig. 196 ist die Anordnung des Einlaßventils im Deckel nach L. A. Riedinger-Augsburg wiedergegeben. Das Auslaßventil ist entsprechend gelagert. Der Zylinder von O. Recke-Rheydt, Fig. 197, weist besonders

weitgehende Verkleinerung des schädlichen Raumes auf. Die einsitzigen

¹) Ausgeführt von Scharrer & Groß, Nürnberg.

Fig. 196.

Ventile werden durch Kolben entlastet, die auf einer Seite durch die Anordnung besonderer Umführungskanäle dem im Zylinder herrschenden Drucke, auf der anderen Seite dem Frischdampfdrucke (Einlaßventil) bzw. der Auspuffspannung (Auslaßventil) ausgesetzt sind.

Die schädlichen Flächen sind nicht unbedeutend. Fig. 152 auf S. 149 stellt die äußere Steuerung dar.

Fig. 198 zeigt die ebenfalls mit Rücksicht auf möglichst weitgehende Verringerung der schädlichen Räume und Flächen entworfene Bauart¹) des Verfassers.

¹) D. R. P. Mit Kolbenschiebern ausgeführt von der Maschinenfabrik Gardier Frères in Verviers (Belgien).

Die Querschnitte in den wagerechten Ebenen sind so bemessen, daß dem ein- und ausströmenden Dampfe die ganze Kanalhöhe zur Verfügung steht.

Die Ventilgehäuse stehender Maschinen werden je nach der Art des Steuerungsantriebes nach äußeren Fig. 199 oder nach Fig. 200 aus-In Fig. 199¹) liegt die geführt. Steuerwelle parallel zur Maschinenwelle, von welcher sie durch konische Räder angetrieben wird; namentlich bei Mehrzylindermaschinen ergibt sich durch die nebeneinanderliegenden Einbezw. Auslaßventilgehäuse ein sehr einfaches Aussehen und bequemer Ventilantrieb. Die hierfür erforderliche Verlängerung einer Einlaß- und einer Auslaßventilspindel bringt jedoch

¹) Ausgeführt von der "Gutehoffnungshütte", Sterkrade.

besonders bei höheren Umlaufzahlen eine unliebsame Vermehrung der Massen mit sich.

Sollen die konischen Zahnräder mit ihrem häufig lärmenden Gang durch Exzenterantrieb umgangen werden, so sind die Ventile nach

Fig. 200¹) an der Seite der Maschine unterzubringen. Eine Abänderung dieser Bauart ist in Fig. 201²) dargestellt und besonders für den Betrieb

^{&#}x27;) Ausgeführt von der Maschinenbauanstalt F. Ringhoffer in Smichow bei Prag.

²) Ausgeführt von der Prager M.-B.-A.-G., Felser & Co., Riga, Märky, Bormovsky & Schulz, Königgrätz.

Die Steuerungen.

mit überhitztem Dampf geeignet. Die beiden Einlaßventilgehäuse sind durch eine besondere Frischdampfleitung miteinander verbunden, so daß der von Stegen und Rippen freie Zylinder sich leicht ausdehnen kann. Die Auslaßventile lassen den Abdampf in den als Aufnehmer dienenden

Mantel des Zylinders, dessen Schmierung dadurch sehr erleichtert wird. Auch diese Bauart rührt von Doerfel her.

Die Sulzersche Ausführung großer Ventilzylinder zeigt Fig. 202. Die Ventile sind in den Zylinderdeckeln untergebracht, und zwar sind zwei derselben hängend angeordnet, d. h. das Ventilgewicht wirkt in der Eröffnungsrichtung. Sehr einfache und kurze Dampfwege, sowie erleichterte Anordnung der äußeren Steuerung werden dadurch erreicht. Das Ventilgewicht wird durch doppelte Plattenfedern getragen, von denen jede allein imstande ist, das Ventil beim Bruch der anderen Feder zu schließen. **Corliß-Zylinder.** Da sich bei stehend gegossenen Corliß-Zylindern für die beim Guß unten liegenden Schiebergehäuse und Gleitflächen eine größere Dichtheit als für die oberen ergibt, so wird in Fig. 203 (Ausführung nach Bollinckx in Brüssel) der Zylinder aus zwei stehend ge-

gossenen Teilen zusammengesetzt, derart, daß diese der Wärmeausdehnung leicht nachgeben können. Um die Oberfläche des Mantels behufs guter Wärmeaufnahme zu vergrößern, ist sie mit Rippen versehen. Die Auslaßschieber ragen in den Zylinder hinein. Ihre äußerste Stellung soll womöglich so sein, daß sie, falls sie infolge eines Bruches im äußeren Gestänge hängen bleiben, vom auftreffenden Kolben geschlossen werden.

Eine dem Ventilzylinder, Fig. 193, ähnliche Bauart ist in Fig. 204 dargestellt. Die getrennten Schiebergehäuse ermöglichen einen sehr einfachen Zylinder, welcher ohne Holzmodell hergestellt werden kann. Die

Herstellung wird namentlich bei großen Zylindern infolge dieser Teilung sehr erleichtert.

Der schädliche Raum wird erheblich verkleinert, wenn die Dampfkanäle der im Deckel gelagerten Schieber den Dampf senkrecht auf den Kolben führen, doch leidet hierbei die Zugänglichkeit des Kolbens; auch wird der Wasserschlag gefährlicher.

¹) Aus "Leist, Steuerungen."

Fig. 205 zeigt die sehr häufige Schieberanordnung nach Wheelock. Die Steuerung wird außen sehr einfach, das Modell wird aber kompliziert, und außerdem ist die Verteilung des Materials sehr ungünstig, so daß derartige Zylinder sich leicht verziehen.

Vielfach ist auch die Ausführung mit nur zwei Rundschiebern zu finden, von welchen jeder sowohl Einlaß als auch Auslaß auf der betreffenden Zylinderseite steuert.

Bei billigeren Maschinen kann die Verkleidung des Zylinders nach amerikanischem Muster viereckig ausgeführt werden, welche jedoch unschöner als die Ausführung mit Durchdringungen ist.

Die vorstehend erwähnten Ausführungsformen können ohne weiteres auch bei stehenden Maschinen Anwendung finden, da viele Konstrukteure es mit Recht nicht für nötig halten, daß das Schiebergewicht senkrecht zur Gleitfläche wirkt.

Fig. 206 und 207 zeigen Ausführungsformen von Zylindern mit vierfach geteiltem Kolbenschieber, eine Steuerungsanordnung, welche infolge der mit ihr an einer van den Kerchoveschen Maschine¹) erzielten Ergebnisse weitgehende Beachtung gefunden hat.

In Fig. 206 ist die Konstruktion der Firma van den Kerchove in Gent wiedergegeben. Die mit doppelter Eröffnung arbeitenden Schieber sind zur Erzielung kleiner schädlicher Räume in die Zvlinderdeckel eingebaut und werden senkrecht bewegt, so daß eine Abnutzung ausgeschlossen erscheint.

Der Umstand, daß bei dieser Anordnung die Zugänglichkeit des Kolbens leidet, hat zu der (von der Elsässischen Maschinenbau-Gesellschaft in Mülhausen gebauten) Anordnung nach Frikart, Fig. 207 geführt. Die Schieber sind wagerecht, rechtwinklig zur Zylinderachse und tangential zum Zylinder gelagert. Diese Bauart ist der van den Kerchoveschen in bezug auf schädlichen Raum und schädliche Flächen gleichwertig, übertrifft sie bezüglich Zugänglichkeit des Kolbens und leichter Herausnahme der Schieber; geringe Abnutzung und dauernde Dichtheit der Schieber lassen sich jedoch mit der senkrechten Anordnung leichter erreichen. Die Antriebe der beiden Steuerungen sind freifallend ausgeführt, so daß der Vorteil hoher Umlaufzahl, welche der Kolbenschieber infolge Fehlens einer die Bewegung begrenzenden Schlußlage gestattet, nicht ausgenutzt wird.

Da die Reibung der Kolbenringe sehr gering ist, so treten bei der Bewegung der Schieber in der Hauptsache nur Massenwiderstände auf, so daß sich hier die Verbindung der Schieber mit einem kettenschlüssigen Antrieb nach Art des Doerfelschen Rolldaumens besonders empfehlen würde.

einen Dampfverbrauch für 1 P.S_i-Stunde von 3,85 kg bei 359° Überhitzung von 3,63 kg bei 403° Überhitzung.

Das Ausführungsrecht der Steuerung van den Kerchove hat für Deutschland die Sächsische Maschinenfabrik vorm. R. Hartmann in Chemnitz erworben.

¹) Die Versuche von Schröter und Koob sind in Z. 1903 S. 1281 wiedergegeben. Versuche, welche nachher von Vincotte an derselben Maschine, aber ohne Dampfmantel angestellt wurden, ergaben:

D. Die Kondensation.

a) Wirkungsweise.

Die Kondensation hat die Aufgabe, vor dem Kolben einen luftleeren Raum zu schaffen, so daß der Auspuffdampf nicht in die äußere Atmosphäre gedrückt zu werden braucht und der Gegendruck verringert

wird. Der Abdampf tritt in ein Gefäß, den Kondensator, in welchem er durch Abkühlung niedergeschlagen wird.

Das Diagramm¹), Fig. 208, veranschaulicht für einen bestimmten Fall die hierdurch verursachte Dampfersparnis. Das ausgezogene Diagramm der Auspuffmaschine hat denselben Flächeninhalt wie das punktierte der Kondensationsmaschine, während die Füllung von 25 v. Ht. auf 12,3 v. Ht. zurückgegangen ist. Die infolgedessen eintretende Dampfersparnis erstreckt sich allerdings nur auf den "sichtbaren" Verbrauch,

¹) Weiß, Die Kondensation. S. 150.

hingegen nehmen die Verluste durch Undichtheiten und Eintrittskondensation wegen des nunmehr größer gewordenen Druck- und Temperaturunterschiedes zu; außerdem kommt der Kraftbedarf der zur Kondensation nötigen Pumpen in Betracht.

Die Dampfersparnis ist, außer von der Höhe der Luftleere, abhängig von der Größe des Eintrittsdruckes und der Füllung, da die durch die Kondensation hinzukommende Diagrammfläche im Verhältnis zum ganzen Diagramm um so geringer wird, je größer das letztere ist.

Im allgemeinen läßt sich annehmen, daß bei gleichbleibender Füllung — also bei nachträglicher Anlage einer Kondensation zwecks Vergrößerung der Leistung — der mittlere Druck des Auspuffdiagramms sich um den Betrag der Verringerung des Gegendruckes hebt, kleine Kompression vorausgesetzt. Diese Zunahme des mittleren Druckes gibt dann annähernd den theoretischen Arbeitsgewinn wieder.

Der Dampf kann nun dadurch niedergeschlagen werden, daß er direkt mit eingespritztem Kühlwasser gemischt wird — Einspritz- oder Mischkondensation —, oder daß er an wassergekühlten Flächen vorbeistreicht — Oberflächenkondensation. Je nachdem Kühlwasser und Dampf sich hierbei in gleicher oder entgegengesetzter Richtung bewegen, unterscheidet man Parallelstrom- und Gegenstromkondensation.

Demnach ergeben sich als Bestandteile einer Kondensation:

1. Die Abdampfteitung, welche von den Auslaßorganen des Dampfzylinders zum Kondensator oder Niederschlagsraum führt; 2. der Kondensator selbst; 3. die Pumpen für die Entleerung des Kondensators und für die Förderung des Kühlwassers; 4. die Kühlwasserzuleitung; 5. die Ausgußleitung; 6. eine Rückkühlanlage, falls Kühlwasser mangelt.

b) Die Abdampfleitung¹).

Diese soll so bemessen und angeordnet sein, daß die im Kondensator erzeugte Luftleere sich schnell zum Zylinder fortpflanzt und womöglich, bei reichlicher Vorausströmung, schon im Kolbentotpunkt vorhanden ist. Der Spannungsfall zwischen Zylinder und Kondensator, welcher sich zur Erzeugung der Dampfgeschwindigkeit und zur Überwindung der Widerstände im Rohr einstellt, muß möglichst klein sein.

Der zur Hervorbringung der Geschwindigkeit verforderliche Druckabfall kann vernachlässigt werden, während für den durch die Reibungswiderstände bedingten Druckverlust Z das Gesetz

$$\mathbf{Z} = \mathbf{a} \cdot \gamma \frac{\mathbf{l}}{\mathbf{d}} \cdot \mathbf{v}^2$$

zugrunde gelegt werden kann.

Hierin ist: a ein für Dampf von geringer Dichtheit noch nicht bestimmter Koeffizient,

- l die Länge der Rohrleitung in m,
- d der Durchmesser der Rohrleitung in m,
- γ das spez. Dampfgewicht.

¹) Die hier angegebene Berechnungsweise bezieht sich in erster Linie auf die Rohrleitungen der Zentralkondensationen. Bei Einzelkondensationen geht man vom Kanalquerschnitt aus, welcher reichlich zu wählen ist.

Nach Weiß ist der Spannungsfall Z₁ bei kurzen Leitungen bis etwa 30 m und von etwa 0,4 m lichter Weite bei einer Dampfgeschwindigkeit von 90 m kaum merklich, so daß, wenn bei einer Kondensationsleitung von 1 m Länge und d m Durchmesser ein ebenso geringer Spannungsfall eintreten soll, zu setzen ist:

$$\mathbf{a} \gamma \cdot \frac{\mathbf{l}}{\mathbf{d}} \cdot \mathbf{v}^2 = \mathbf{a} \cdot \gamma \cdot \frac{\mathbf{l}}{\mathbf{d}_1} \cdot \mathbf{v}_1^2,$$

woraus folgt:

$$\mathbf{v} = \frac{\mathbf{v}_1}{\sqrt{\mathbf{d}_1}} \cdot \sqrt{\mathbf{d}},$$

und nach Einsetzung obiger Werte für v_1 und d_1 :

$$\mathbf{v} = \frac{90}{\sqrt{0,4}} \cdot \sqrt{\mathbf{d}} = \mathbf{143} \sqrt{\mathbf{d}}.$$

Die Bemessung des erforderlichen Querschnittes soll nicht wie bei Auspuffmaschinen vom sek. Hubvolumen, sondern vom Volumen des sek. durchströmenden Dampfgewichtes abhängig gemacht werden. Ist V das Volumen von 1 kg Dampf, bezogen auf den Druck im Abdampfrohr, D der minutliche Dampfverbrauch in kg, so wird:

$$\mathbf{v} \frac{\mathrm{d}^2 \pi}{4} = \frac{\mathbf{V} \cdot \mathbf{D}}{60},$$
$$\mathbf{d}^2 = \frac{\mathbf{4} \cdot \mathbf{V} \cdot \mathbf{D}}{\pi \cdot 60 \cdot \mathbf{v}} = \frac{\mathbf{V} \cdot \mathbf{D}}{47, \mathbf{1} \cdot \mathbf{v}} \text{ oder, } \mathbf{da} \mathbf{V} = \frac{1}{\gamma};$$
$$\mathbf{d}^3 = \frac{\mathbf{D}}{47, \mathbf{1} \cdot \gamma \mathbf{v}}$$

und nach Einsetzung des Wertes für v

$$\mathrm{d}^2 = rac{\mathrm{D}}{6720\cdot\gamma\cdot\sqrt{\mathrm{d}}}, \ \mathrm{d}^{rac{5}{2}} = rac{\mathrm{D}}{6720\cdot\gamma}.$$

Wird im Mittel $\gamma = 0.13$ angenommen, so findet sich:

$$d^{\frac{5}{2}} = \frac{D}{873}.$$

Bei langen Leitungen wird zunächst d ebenfalls nach dieser Gleichung ermittelt und hiernach der Durchmesser de bestimmt aus:

$$\mathbf{d}_{\mathbf{e}} = \left(1 + \frac{1}{600}\right) \cdot \mathbf{d}.$$

In die Abdampfleitung sollen eingeschaltet sein: ein Sicherheitsventil, welches den Betrieb selbsttätig auf Auspuff umschaltet, sobald sich der geringste Überdruck im Kondensator einstellt, und weiterhin ein Wechselventil, damit die Maschine schnell auf Betrieb mit Auspuff umgestellt werden kann. Bei dieser Umstellung ist zu beachten, daß die Kompression namentlich bei kleineren schädlichen Räumen infolge der größeren Anfangsspannung unzulässig hoch steigen kann, falls sich die Steuerung nicht ändern läßt oder keine besonderen Vorrichtungen wie nach S. 176 — vorhanden sind. Da auf eine Verdampfung des im 13

Dubbel, Dampfmaschinen. 3. Aufl.

Abdampf befindlichen Wassers in der Luftleere nicht zu rechnen ist, ein Teil des Dampfes hingegen in der Abdampfleitung schon kondensiert, so soll letztere mit Gefälle zum Kondensator hin angeordnet sein, damit alles Kondenswasser diesem zufließt. Wird diese Anordnung z. B. bei hochliegenden Kondensatoren nicht möglich, so muß für reichliche Entwässerung durch Pumpen oder Gefäße mit Doppelküken gesorgt werden, welche den Austritt des Wassers ermöglichen, ohne daß Luft eintritt.

Sammelt sich Wasser in der Leitung an, so wird dieses den Rohrquerschnitt verengen und einen hohen Gegendruck im Zylinder ver-

ursachen, während das Vakuummeter große Luftleere anzeigt. Hat diese Verengung eine gewisse Größe erreicht, so reißt der Abdampf das Wasser zum Kondensator über: der Zeiger des Vakuummeters sinkt plötzlich, um dann langsam der wieder erfolgenden Verengerung entsprechend zu steigen.

Zweigleitungen sollen an das Hauptabdampfrohr durch tangential und nicht senkrecht sich ansetzende Stutzen angeschlossen werden.

Fig. 209 zeigt eine Vorrichtung¹), um das bei unrichtiger Bedienung vorkommende Aufsteigen des Kühlwassers in den Zylinder zu verhindern.

In diesem Falle hebt der Schwimmer G das Ventil V an, wodurch die Luftleere sich dem Raume unter dem Kolben C_2 mitteilt. Kolben C_2 schließt dadurch die Einspritzhähne I.

Andere Ausführungen sehen im gleichen Falle Aufhebung der Luftleere durch einen Schwimmer vor.

c) Der Kondensator.

Bringt man in einen geschlossenen Raum eine verdampfende Flüssigkeit, so kann derselbe bei jeder Temperatur nur eine bestimmte Menge Dampf, die sog. Sättigungsmenge, aufnehmen. Nach dem Daltonschen Gesetz ist letztere ganz unabhängig davon, ob in demselben Raum noch irgend ein Gas von irgend einem Druck vorhanden ist. Ein Gefäß kann also stets dieselbe Menge Wasserdampf enthalten, gleichviel ob es luftleer oder mit Luft von atm. Spannung angefüllt ist; nur findet im letzteren Fall die Dampfentwickelung weniger schnell statt.

¹) Josse, Zeitschr. Verein deutsch. Ing. 1909. S. 323.

Der Kondensator.

Die Gesamtspannung ist gleich der Summe der Einzelspannungen.

Hieraus folgt zunächst, daß der Kondensator stets mit Dampf gefüllt ist, der aus dem Kondensat entsteht und daß die Spannung dieses Dampfes durch die Temperatur des Kondensates bestimmt ist.

Außerdem dringt Luft in den Kondensator ein und zwar hauptsächlich auf zwei Wegen: mit dem Kühlwasser und durch Undichtheiten an Flanschen, Stopfbüchsen usw. Ist l die Pressung dieser Luft, d die des Dampfes, so wird nach dem Daltonschen Gesetz die Kondensatorspannung

$$p_0 = l + d.$$

Eine gute Kondensation soll diese Gesamtspannung mit einem Minimum von Anlage- und Betriebskosten möglichst niedrig halten. An dem vom Dampf herrührenden Anteil am Gesamtdruck läßt sich nicht viel ändern, da derselbe durch die Kondensattemperatur festgelegt und diese wieder durch die Kühlwassertemperatur bestimmt ist, welche aus wirtschaftlichen Gründen eine obere Grenze hat. Um so sorgfältiger sind diejenigen Mittel zu behandeln, welche eine gute Abführung der Luft aus dem Kondensator bezwecken.

1. Mischkondensation mit Parallelstromwirkung.

Das Kühlwasser wird durch die Luftleere des Kondensators angesaugt und durch eine Brause fein verteilt. Das aus Wasser, Dampf und Luft bestehende Kondensat wird gemeinsam von der Luftpumpe abgesaugt und ins Freie befördert.

Es sei: t_e die Eintrittstemperatur des Kühlwassers,

t_a dessen Austrittstemperatur.

Aus der Mischung wird sich entsprechend der Temperatur t_a Dampf vom Druck d bilden; die eindringende Luft nimmt einen Druck $p_0 - d = 1$ an. Das Volumen v dieser Luft bei atm. Spannung wird sich infolge des niedrigeren Druckes auf $v' = \frac{v}{p_0 - d}$ ausdehnen, während die infolge der Steigerung von der Außentemperatur t auf t_a stattfindende Volumenzunahme auf v' $\left(1 + \frac{1}{273} \cdot (t_a - t)\right)$ vernachlässigt werden kann.

Die Kühlwassermenge für 1 kg Dampf wird wie folgt bestimmt: Tritt 1 kg Dampf aus dem Zylinder in den Niederschlagsraum, so wird seine Temperatur bis auf die des austretenden Kühlwassers herabgezogen, welches sich gleichzeitig von t_e^0 auf t_a^0 erwärmt, als pro 1 kg ($t_a - t_e$) Wärme-Einheiten aufnimmt. Im Dampf bleibt nur die der Temperatur t_a entsprechende Flüssigkeitswärme, so daß die Beziehung gilt:

$$\lambda - t_a = n (t_a - t_e),$$

wenn n = Anzahl kg Kühlwasser für 1 kg Dampf;

$$\mathbf{n} = \frac{\boldsymbol{\lambda} - \mathbf{t}_{\mathbf{a}}}{\mathbf{t}_{\mathbf{a}} - \mathbf{t}_{\mathbf{e}}}.$$

Setzt man für die hier in Betracht kommenden Dampfspannungen $\lambda = 600^{1}$) und außerdem für gewöhnliche Verhältnisse $t_{a} = 35^{0}$, $t_{e} = 15^{0}$, so folgt:

$${
m n}={600-35\over 20}\,{
m ∞}\,28.$$

Zur Kondensation von 1 kg Dampf sind sonach im Mittel 28 kg Kühlwasser erforderlich.

Bei Rückkühlung ist annähernd $t_e = 30^{\circ}$ und $t_a = 45^{\circ}$ (seltener 40°).

2. Gegenstromkondensation.

Fig. 210²) gibt einen Weißschen Gegenstromkondensator wieder. Dampf und Luft einerseits und das ablaufende Kühlwasser andererseits

werden durch getrennte Pumpen abgesaugt. Fig. 210a stellt die Druckverteilung im Innern des Kondensators dar. Infolge des Gegenstroms

¹) Die noch häufig zu findende, aber unrichtige Berechnungsweise, nach welcher statt λ die Dampfwärme $q + \rho$ eingeführt wird, berücksichtigt nicht das Wärmeäquivalent Apu der vom Kolben zu leistenden Gegendruckarbeit. ²) Weiß, Kondensation.

sind Temperatur und Dampfdruck im oberen Teil des Kondensators, wo das Kühlwasser zufließt, am niedrigsten, der Luftdruck am größten. Die Luft wird also an der kühlsten Stelle in möglichst verdichtetem Zustand abgesaugt.

Wird angenommen:

$$t_e = 20^{\circ}, \ p_0 = 0.12 \ kg/qcm,$$

und nimmt man die Temperatur¹) im oberen Teil des Kondensators um 5° höher als t_e an, so wird den $(t_e + 5) = 25°$ hier ein Dampfdruck von 0,03 atm. entsprechen, so daß der Luftdruck $l = p_0 - d = 0,12 - 0,03$ = 0.09 atm.

Bei der Parallelstromkondensation entstehen aus dem ablaufenden Kühlwasser von rd. 40º Dämpfe von 0,07 atm., so daß der Luftdruck l = 0.12 - 0.07 = 0.05. Die Luft ist also im Gegenstromkondensator an der Stelle, wo abgesaugt wird, $\frac{0.09}{0.05} = 1.8$ mal dichter, und der Hubraum der Luftpumpe braucht nur das $\frac{1}{1.8} \sim 0,56$ fache von dem der Luft-

pumpe bei Parallelstromwirkung zu haben.

Hinzu kommt noch der Einfluß der niedrigen Temperatur, da bei Gegenstrom die Luft mit 25°, bei Parallelstrom mit 40° abgezogen wird. wodurch der Hubraum eine weitere Verringerung im Verhältnis von $\frac{273 + 25}{273 + 40} \circ 0,95$ erfährt.

Bei der Bestimmung der Kühlwassermenge ist zu berücksichtigen. daß bei der Parallelstromkondensation die Abflußtemperatur stets kleiner als die dem Kondensatordruck entsprechende Dampftemperatur sein muß, denn die aus dem Kühlwasser sich entwickelnden Dämpfe können nur einen Teildruck $d = p_0 - l$ des Gesamtdruckes ausmachen.

Bei Gegenstromwirkung hingegen kann nach Fig. 210a das Kühlwasser unten mit einer Temperatur abfließen, die gleich der des Dampfes mit dem Druck $d = p_0$ ist, da aus dem unteren Teil des Kondensators alle Luft nach oben gestiegen ist.

Wird in einem Kondensator gleichwelcher Art das Kühlwasser von 20° auf 40° erwärmt, so werden für 1 kg Dampf 28 kg Kühlwasser gebraucht.

In einem normalen Parallelstromkondensator wird hierbei eine Luftleere von etwa 0,12 atm. herrschen. Für diesen Kondensatordruck sind bei Gegenstrom nur 18 kg Kühlwasser erforderlich, da dieses sich hier bis auf die dem Dampfdruck von 0,12 atm. entsprechende Temperatur von 50° erwärmen kann.

Als Hauptvorteil der Gegenstromwirkung folgt: bedeutende Verringerung der Abmessungen und des Arbeitsbedarfes der Pumpen, welche allerdings stets getrennt für Luft und Wasser ausgeführt werden müssen.

¹) Nach Weiß ist die Temperatur im oberen Teil des Kondensators um $\alpha = 4 + 0.1 (t_a - t_e)$ Grade höher als die Temperatur des eintretenden Kühlwassers.

Die Kondensation.

3. Oberflächenkondensation.

Die Mischkondensation wird ihres einfachen und übersichtlichen Betriebes wegen bei kleineren Anlagen überall da bevorzugt, wo reines Kesselwasser zur Verfügung steht. Ist das nicht der Fall, so empfiehlt sich die Anwendung der Oberflächenkondensation, bei welcher die verbrauchte Dampfmenge als mehr oder minder heißes Kondensat wiedergewonnen und dem Dampfkessel zugeführt werden kann.

Je nach der Ausführung unterscheidet man geschlossene und offene Kondensatoren; letztere können als stehende Kesselkondensatoren oder auch als Berieselungs- und Bassinkondensatoren gebaut werden.

Für die Wahl dieser Systeme ist z. T. die Beschaffenheit des Kühl-Die hier in Betracht kommenden Bestandteile wassers entscheidend. desselben sind: kohlensaurer Kalk, kohlensaure Magnesia und schwefelsaurer Kalk. Kohlensaurer Kalk löst sich in kohlensäurehaltigem Wasser, indem ein Teil der im Wasser enthaltenen Kohlensäure zur Bildung von doppelkohlensaurem Kalk beiträgt, ein Teil frei bleibt. Entweicht dieser, so fallen kohlensaure Salze aus. Dieses Entweichen der freien Kohlensäure wird durch Druckverminderung und durch Erhöhung der Wassertemperatur über etwa 60° gefördert. In ähnlicher Weise verhält sich die kohlensaure Magnesia. Eine Erhöhung der Temperatur über 60° ist zwar in jedem zweckmäßig gebauten Kondensator ausgeschlossen; soll aber bei Kühlwasser, welches große Mengen von Kalk und Magnesia enthält, ein Ausfallen mit Sicherheit vermieden werden, so gelangen am zweckmäßigsten Kondensatoren zur Verwendung, in welchen das Kühlwasser unter Druck steht.

Die größte Löslichkeit des Gipses tritt bei ungefähr 36° ein, und nimmt dann nach unten und oben hin ab, so daß sie bei 20 und 70° wieder annähernd dieselbe ist. Die Löslichkeit wird somit nach Eintritt des Wassers in den Kondensator zunehmen und später wieder abnehmen. Bezüglich der Wahl der Kondensatoren folgt hieraus:

Geschlossene Kondensatoren eignen sich aus dem schon angegebenen Grunde am besten für Kühlwasser mit starkem Gehalt an kohlensauren Salzen, während offene Kondensatoren in stehender Anordnung wegen der leichten Reinigung bei stark schlammhaltigem Wasser Verwendung finden. Bei den Berieselungskondensatoren kann die Kohlensäure leicht entweichen, so daß die kohlensauren Salze ausfallen, sie dürfen deshalb bei Wasser mit größerem Gehalt an letzteren nicht verwendet werden. Schwefelsaurer Kalk hingegen schlägt sich nur in geringen Mengen nieder, welche überdies bei der guten Zugänglichkeit des Kondensators leicht entfernt werden können.

Bassinkondensatoren können bei jedem Wasser verwendet werden, nur bei Wasser mit starkem Gehalt an kohlensaurem Kalk sind geschlossene Kondensatoren vorzuziehen.

Die Kühlwassermenge bei Oberflächenkondensation wird in gleicher Weise wie für Mischkondensation ermittelt, nur muß wegen der Flächenkühlung die Abflußtemperatur t_a des Küklwassers um etwa 12^o niedriger als die im Kondensator herrschende Temperatur t_e angenommen werden, so daß

$$n = \frac{600 - t_c}{(t_c - 12) - t_c}.$$

Für gewöhnliche Verhältnisse wird n = 45.

Ausführungen. Fig. 211 und 212 zeigen einen geschlossenen Oberflächenkondensator nach einer Ausführung von Balcke & Co. in

Bochum. Die durch Gummi abgedichteten und in den Flanschen festgeklemmten Rohrplatten werden durch ein gußeisernes Mittelankerrohr gegeneinander versteift. Der Dampf wird durch Scheidewände zum mehrmaligen Vorbeistreichen an dem Rohrbündel gezwungen. In diesem

befindet sich eine Lücke, um den Eintritt des Dampfes zu erleichtern. Das Kondensat wird unten, die Luft, hiervon getrennt, oben abgesaugt.

Fig. 212.

In Fig. 213a und b ist der liegende Kondensator von Louis Schwarz & Co., Dortmund, dargestellt. Der oben eintretende Dampf umspült die Kühlrohre im Gegenstrom.

Das Kondensat wird an der tiefsten Stelle, dem Kondensatsammelstutzen, abgesaugt.

Fig. 214 zeigt im Schema einen stehenden Kondensator. Der oben offene Kondensator wird zweckmäßig durch einen leicht abnehmbaren

Deckel gegen Verstaubung geschützt. Die Rohre können während des Betriebes durch Stangenbürsten innen gereinigt werden. Der Schlamm sammelt sich unterhalb des Rohrbündels in einem großen, kegelförmigen Schlammsack, welcher durch Schieber entleert wird.

Die Kondensation.

In diesen Kondensatoren umspült demnach der Dampf die Kühlröhren, während bei den Berieselungs- und Bassinkondensatoren das Gegenteil der Fall ist. Bei ersteren rieselt das Kühlwasser über Rohrschlangen oder Kühlplatten und entzieht dem im Innern zirkulierenden Dampf einmal durch direkte Kühlung, das andere Mal durch Ver-

dunstung Wärme. Letztere Wirkung ist so kräftig, daß etwa nur $^{2}/_{3}$ der bei anderen Kondensatoren erforderlichen Kühlwassermenge nötig sind, so daß auch die Kühlwasserpumpen in Abmessungen und Kraftbedarf kleiner werden. Auch können diese Kondensatoren für kurze Zeit ohne Schwankung der Luftleere stark überlastet werden. Die Reinigung erfolgt durch einfaches Abbürsten.

Fig. 215 zeigt den von der Firma Schaffstaedt in Gießen ausgeführten Kondensator¹), welcher sich durch hohe spezifische Leistungsfähigkeit auszeichnet.

¹) Josse, Neuere Wärmekraftmaschinen.

Messingröhren von 30 und 40 mm l. W. sind ineinander gesteckt. Der Dampf strömt durch die inneren Röhren und umspült die äußeren Röhren, während das Kühlwasser im Gegenstrom den zwischen den Röhren befindlichen Ringraum durchfließt.

Versuche ergaben einen Niederschlag von 126 kg Dampf pro Stunde auf 1 qm bei 10° Kühlwassertemperatur am Eintritt und einer Kühlwassermenge gleich dem 16 fachen Dampfgewicht. Dieses Ergebnis entspricht einem Wärmedurchgang von 70 000 W. E. pro Stunde und qm.

Bei dem Kondensator nach Fig. 216¹) werden die zwei größeren Rohrplatten durch Bolzen gehalten; die kleineren Platten hängen lose.

¹) Ausführung der Maschinenfabrik Augsburg-Nürnberg.

Das von der im Querschnitt wiedergegebenen Kolbenpumpe geförderte Kühlwasser fließt durch die Röhren und tritt oben aus, während der Dampf (im Längsschnitt) oben links zutritt. Das Kondensat wird rechts aus der unteren Kammer, welche mit der oberen in Verbindung steht, abgezogen. (Kühlfläche 41,5 qm, 302 Rohre von 17,5 mm äuß. Durchm. und 2575 mm ganzer Länge.)

Die Bassinkondensatoren bestehen wie die Berieselungskondensatoren aus Bündeln von Messingrohren, die hier jedoch wagerecht gelegt und in einem solchen Abstand voneinander angeordnet sind, daß jede Rohrreihe leicht gereinigt werden kann. Der Kondensator wird in einem gemauerten Bassin in das Kühlwasser hineingelegt.

Bei Kühlflächen über 700 qm empfiehlt sich doppelte Ausführung der Kondensatoren. Geschlossene Kondensatoren werden in diesem Fall mit Vorteil übereinander gelegt, in der Weise, daß das Kühlwasser in den unteren Kessel, in welchem die stärkste Erwärmung stattfindet, zuerst eintritt, so daß ein Ausfallen kohlensaurer Salze infolge des hier herrschenden höheren Druckes mit Sicherheit vermieden wird. Die Kessel werden bei kleineren Anlagen aus Gußeisen, bei größeren Ausführungen aus genietetem Eisenblech hergestellt; bei stehenden Maschinen mäßiger Größe werden die Röhrenkondensatoren auch in den Ständern untergebracht.

Rohrteilung

Als Maße für die Messingröhren sind üblich:

Wandstärke

1 mm

38 20 d + 15 für größere Kondensatoren, d + 9 für kleinere Kondensatoren.

Länge bis zu 6 m. Beträgt die freie Länge mehr als das 100 fache des äußeren Durchmessers, so sind die Rohre durch Platten zu unterstützen.

Damit der Dampf nicht auf die Röhren stößt und sich besser verteilt, wird vor dem Dampfeintritt häufig eine durchlöcherte Blechplatte angebracht, welche ihn auffängt.

Werden die Kühlrohre in die Rohrplatten eingewalzt, so müssen diese eine gewisse Beweglichkeit besitzen, um die Wärmeausdehnung der Röhren zu ermöglichen. Vielfach werden die Röhren nach Fig. 217 stopfbüchsenartig mittelst Baumwolle oder Gummischnur abgedichtet, wobei die Rohrplatten durch eingeschraubte oder eingewalzte Ankerrohre versteift werden müssen.

Fig. 218 zeigt die Verbund-Gummidichtung der Kondensationsbau-Gesellschaft vorm. Otto Sorge, Berlin-Grunewald.

Die Gummiringe R sind fest mit der den Rohrboden bedeckenden Gummiplatte verbunden und werden mit dieser um die Röhren gestülpt. Die Ringe werden sowohl durch ihre eigene Spannkraft als auch durch den Überdruck zwischen Wasserkammer und dem luftleeren Kodensator fest gegen die Rohrenden gepreßt, so daß der Dichtungsdruck mit der Luftleere zunimmt.
Die mit einfachen zylindrischen Öffnungen auszuführenden Rohrböden werden bei dieser Bauart nicht durch Ausfräsen für Stopfbüchsen

geschwächt und sind durch die Gummiplatten gegen das Kühlwasser abgeschlossen, was besonders bei großen gußeisernen Böden und bei Anwendung von schmiedeeisernen Böden bei Salzwasser von Bedeutung ist.

Die Durchflußgeschwindigkeit des Wassers soll 0,8 bis 1 m betragen, da bei geringeren Geschwindigkeiten die festen Bestandteile des Wassers sich ansetzen und die Luftleere infolge des verringerten Wärmedurchgangs verschlechtern bezw. eine häufige Reinigung notwendig machen.

Gewöhnlich wird bei den Oberflächenkondensatoren Luft und Kondensat getrennt abgesaugt. Nach Otto H. Mueller¹) ist

Fig. 218.

diese getrennte Absaugung zwecklos, da, wie aus folgender Zahlentafel hervorgeht, bei den meist zu findenden Kondensatortemperaturen bis zu 35^o die Luft schwerer als Dampf ist, also zweckmäßig zusammen mit dem Kondensat unten abgezogen wird.

Temperatur Dampfspannung Luftspannung	0° C atm. "	$25 \\ 0,031 \\ 0,069$	30 0,0414 0,0586	$\begin{array}{c} 35 \\ 0,055 \\ 0,045 \end{array}$	$\begin{array}{c} 40 \\ 0,072 \\ 0,028 \end{array}$	$\begin{array}{c} 45 \\ 0,094 \\ 0,006 \end{array}$
kg/cbm		0,0225 0,0828	0,0298 0,0673	0,0389 0,0517	0,0504 0,0316	0 0647 0,0066

Da bei stehenden Kondensatoren das Kondensat unten abgesaugt werden muß und der größere Teil des Dampfes nur die erste Hälfte der Kühlfläche umspült, so wird hier das Kondensat eine weit höhere Tem-

peratur annehmen. Es empfiehlt sich deshalb aus den bei der Gegenstromkondensation angegebenen Gründen vollständig getrennte Absaugung.

Bezüglich der Bestimmung der Kühlflächengröße hat Josse bemerkenswerte Versuche gemacht.

¹) Z. 1903, S. 1713.

In Fig. 219 ist der Wärme
übergang durch eine Wand von der Stärke δ dargestellt.

Der gesamte Durchgangskoeffizient k setzt sich aus folgenden Übergangszahlen, bezogen auf 1 qm Kühlfläche, 1^o Temperaturunterschied und 1 Stunde, zusammen:

- 1. α_1 beim Übergang vom Dampf zur Wand;
- 2. λ beim Durchgang durch die Wand;
- 3. α_2 beim Übergang zwischen Wand und Wasser.

Es ist:

$$\frac{1}{k} = \frac{1}{\alpha_1} + \frac{1}{\lambda} + \frac{1}{\alpha_2}.$$

Aus Versuchen von Ser folgt $\alpha_1 = 19000$ W.E.

Für 1 qm Fläche und 1 m Stärke ist $\lambda = 90$ für Messingwandung, so daß für 1 mm Stärke $\lambda = 90000$ wird.

Für α_2 gilt nach Ser: $\alpha_2 = 4500 \sqrt{v}$, worin v die Geschwindigkeit, mit der das Wasser an den Wandungen vorbeigeführt wird, bedeutet. Für v = 0.5 msek. folgt $\alpha = 3180$, so daß nach Einsetzung dieser Werte $(\delta = 1 \text{ mm und } v = 0.5 \text{ msek.})$ wird:

$$\frac{1}{k} = \frac{1}{19000} + \frac{1}{90000} + \frac{1}{3180}; \ k = 2640 \ W. E.$$

Der gesamte Durchgangskoeffizient wird also in der Hauptsache von α_2 beeinflußt. Mit dieser Zahl kann bei gegebenen Temperaturen des Kühlwassers und des Dampfes die Größe der Kühlfläche berechnet werden, sobald die Abhängigkeit der Wärmeübertragung vom Temperaturunterschied bekannt ist.

Fig. 220 zeigt das Ergebnis diesbezüglicher Versuche von Josse. Der Wärmeübergang wächst linear mit dem Temperaturunterschied, und die Kühlwassertemperatur nimmt dementsprechend nach einer Exponentialfunktion zu. Kurve 2 veranschaulicht die Weißsche Annahme, nach welcher der Wärmeübergang dem Quadrate des Temperaturunterschiedes proportional sei.

Die Oberflächenkondensation hat aber nicht nur die Aufgabe, den Dampf zu kühlen, sondern es muß auch die durch Undichtheiten in den Kondensator eindringende Luft gekühlt werden.

Die zur Luftkühlung erforderliche Kühlfläche ist von der Luftpumpengröße abhängig, deren Einfluß Fig. 221 zeigt.

In dem Dampf-Luftgemisch an der Luftabsaugestelle muß die Lufttemperatur niedriger als die dem Kondensatordruck entsprechende Sättigungstemperatur des Dampfes sein, da bei Gleichheit beider Temperaturen der Dampfdruck gleich dem Kondensatordruck, der Luftdruck gleich Null, das abzusaugende Luftvolumen also unendlich groß würde.

Als Abszissen sind die Temperaturen am Austritt des Kondensators, als Ordinaten in der unteren Figur die absoluten Teildrücke von Luft und Dampf, in der oberen Figur die Luftvolumina aufgetragen.

Angenommen sind eine Luftleere von 95 v. Ht., eine stündliche Luftmenge von 1 kg und ein stündliches Absaugevolumen der Luftpumpe von 50 cbm.

Kurve 1 gibt die Dampfdrucke d für die unterhalb der Sättigungstemperatur der Kondensatorspannung p_0 liegenden Temperaturen an, damit also gleichzeitig auch die Luftdrucke $l = p_0 - d$.

Kurve 2 ist aus Kurve 1 berechnet.

Kurve 3 stellt zum Vergleich die Volumenänderung von 1 kg trockener Luft bei den verschiedenen Temperaturen dar. Bei 0° wären 16 cbm, bei einer der Dampfspannung von 0,05 atm. entsprechenden Temperatur von 32,5° wären 18 cbm abzusaugen.

Im vorliegenden Fall werden — wie angenommen — 50.cbm stündlich abgesaugt, woraus an der Absaugestelle eine Temperatur der Luft von 25,6° folgt. Soll bei einer Verdoppelung der Luftmenge die Luftleere dieselbe bleiben, so müßte bei 50 cbm stündlichem Fördervolumen der Pumpe die Luft auf 14,7° heruntergekühlt werden.

Die Temperatur der Luft an der Absaugestelle ist um so höher, je weniger Luft im Kondensator vorhanden ist.

Nach Versuchen von Josse wird man bei den in Oberflächenkondensatoren üblichen Unterdrucken bei einer Luftgeschwindigkeit von 5 msek. nur mit einem Durchgangskoeffizienten von etwa 3 rechnen können.

In dem Teile des Kondensators, welcher der Luftkühlung dient, ist die Wassergeschwindigkeit ohne Bedeutung; hier kommt es ausschließlich auf große Luftgeschwindigkeiten an, denen aber bei hoher Luftleere wegen des Strömungswiderstandes, der mit dem Quadrate der Geschwindigkeit zunimmt, eine Grenze gezogen wird. Selbst unter Annahme bestimmter Verhältnisse — Menge der eindringenden Luft, die sich natürlich nur schätzen läßt, Größe der Luftpumpe — läßt sich aber die Größe der Kühlfläche nicht vorausbestimmen, da infolge der Verteilung der Luft im Kondensator die Wärme in den verschiedenen Teilen desselben ganz verschieden übertragen wird.

Dr. Ing. K. Schmidt¹) hat weiterhin aus den Versuchen von Weighton (The efficiency of surface condensers) den Schluß gezogen, daß der Wärmeübergang mit der Geschwindigkeit des den Kondensator durchströmenden Dampfes bzw. mit der pro 1 qm Kühlfläche abgeleiteten Wärme zunimmt, was er auf gleichmäßigere Beanspruchung der Kühlfläche zurückführt, die bei geringerer Belastung nicht in allen Teilen zur Kühlleistung herangezogen wird.

Der Wärmeübergangskoeffizient, der von den meisten Firmen für die Berechnung der Kühlfläche eingesetzt wird, beträgt 1500 bis 1800 W. E.

Durch Einbau von Wirbelstreifen in die Kühlröhren hat Josse eine Erhöhung des Durchgangskoeffizienten auf 2500-3000 W.E. erzielt. In diesen Kondensatoren wird zunächst das Kondensat unterkühlt, worauf letzteres zur Abkühlung der Luft benutzt wird.

¹) Die Berechnung der Luftpumpen für Oberflächenkondensationen. (Verlag Jul. Springer.)

Die bei dieser Bauart angewandte Luftpumpe zeigt Fig. 250. Da sie als "nasse" Luftpumpe ausgeführt wird, so muß das Kondensat unterkühlt werden, damit es nicht in der Pumpe unter dem Einflusse der Luftleere nachverdampft und das Luftfördervolumen verringert.

4. Der Körtingsche Wasserstrahlkondensator.

Diese Kondensatoren gehören zu den Einspritzkondensationen insofern, als Dampf und Kühlwasser zusammen in einen luftleeren Raum eintreten, wobei sich der Dampf mit dem Kühlwasser mischt. Die Hinausschaffung des Gemisches erfolgt jedoch nicht durch Kolbenpumpen, sondern durch die Strömungsenergie des austretenden Dampfes selbst. Das Einspritzwasser strömt in einem geschlossenen Strahl durch ein Führungsrohr mit düsenartigen Öffnungen, durch welche der Dampf zutritt. Das Kondensat tritt an der der Einströmung gegenüberliegenden Seite durch eine nach unten hin sich erweiternde Öffnung aus, wodurch die Geschwindigkeit abnimmt und in Spannung zur Überwindung des äußeren Luftdruckes umgesetzt wird.

Je nach der Art, in welcher diese Austrittsgeschwindigkeit erzeugt wird, unterscheidet man Gefälle- und Unterwasserkondensatoren. Bei den ersteren strömt das Wasser mit einem Druck zu, welcher für sich allein zur Erteilung der erforderlichen Austrittsgeschwindigkeit genügt. Bei den Unterwasserkondensatoren wird die Geschwindigkeit durch die Stoßkraft des Abdampfes erzeugt, welche von der Dampfmenge und dem Druckunterschied vor und hinter den Düsen abhängig ist. Die Beschleunigung des austretenden Wasserstrahls erfordert demnach infolge dieses Druckunterschiedes einen Verlust an Luftleere, welche nicht höher als 65 bis 68 cm gehalten werden kann.

Bei Gefällekondensatoren ist an Kühlwasser etwa das 30 fache des zu kondensierenden Dampfgewichtes erforderlich. Die Vorrichtung kann nie versagen, und es wird die ganze Luftleere ohne irgend welchen Abzug für Pumpenbetrieb usw. nutzbar gemacht.

Bei den Unterwasserkondensatoren kommt als Triebkraft des austretenden Wassers die Bewegungsgröße $A = m \cdot v$ in Betracht. Angenommen, der Druckunterschied vor und hinter der Düse zur Erzeugung der Dampfgeschwindigkeit v sei für einen bestimmten Dampfverbrauch auf das Vierfache der erforderlichen Druckhöhe festgesetzt, so daß — da $v = \sqrt{2 g h^{1}}$) — statt der Bewegungsgröße $A = m \cdot v$ eine solche A' = 2 m v vorhanden sei und es nehme der Dampfverbrauch um die Hälfte ab, so wird nunmehr $A' = \frac{m \cdot v}{2}$, da in diesem Fall m und v auf die Hälfte, A' also auf $\frac{1}{4}$ sich verringern. Die Vorrichtung versagt. Wird aber die Hinausschaffung des Gemisches nur für kurze Zeit unterbrochen, so füllt sich der Verdichtungsraum mit Wasser, und die Strahlwirkung hört auf.

Kondensatoren mit festen Düsen müssen somit, falls der Dampfverbrauch nicht konstant ist, für den geringsten Dampfverbrauch

¹) Bezüglich der Bedeutung von h s. Gl. 66 auf S. 28.

Dubbel, Dampfmaschinen. 3. Aufl.

berechnet werden und geben dann bei vermehrtem Dampfzufluß eine sehr schlechte Luftleere. Sollen Unterwasserkondensatoren praktisch verwendbar sein, so muß beim geringsten Dampfverbrauch die Düsen-

öffnung für den Dampf so verkleinert werden, daß A = mv seinen Wert auch bei höchster Luftleere beibehält, d. h. es muß v, bezw. h² mit abnehmendem m zunehmen.

Dieses Ziel wird mit dem in Fig. 222 dargestellten Universalstrahlkondensator erreicht, bei welchem die Aufnahmedüse im Führungsrohr verschoben werden kann, wodurch die Düsenöffnungen mehr oder weniger freigelegt werden. Bei kleinstem Dampfverbrauch werden, um hohe Dampfgeschwindigkeit zu erhalten, die meisten Düsenöffnungen verdeckt. Es nimmt also auch in diesem Fall die Luftleere ab, doch erreicht sie höheren Grad bei stärkerem Dampfverbrauch. Die Aufnahmedüse wird durch einen Hebel bewegt, der mit dem Stellzeug des Regulators gekuppelt werden kann. Zum Anlassen dieser Kondensatoren ist eine besondere Düse für Frischdampf angebracht, welche nach erfolgtem Wasserzulauf abgestellt wird. Die Saughöhe soll bei Verwendung der Universalkondensatoren so gering wie möglich sein und niemals 3 m übersteigen, wobei darauf zu achten ist, daß das abfließende Wasser mindestens bis auf die Höhe des Unterwassers zurückgeführt wird.

Große Saughöhe beeinträchtigt die Nutzwirkung und die Regulierfähigkeit.

Fig. 223 zeigt den neuen Körtingschen Vielstrahlkondensator, dessen Arbeitsweise grundsätzlich mit dem Vollstrahlkondensator nach Fig. 222 übereinstimmt.

Durch die Zerlegung des stärkeren Vollstrahls in eine größere Anzahl feinerer Strahlen wird bei entsprechender Ausbildung des Düsensystems die Luftleere verbessert, so daß der Vielstrahlkondensator hauptsächlich als Turbinenkondensator Verwendung findet.

Versagt der Kondensator, so wird der Eintritt von Wasser in die Abdampfleitung durch Aufhebung der Luftleere selbsttätig mittelst Schwimmerventils und einem davon betätigten Lufteinlaßventil verhindert.

Bei dem Oberflächenkondensator von Louis Schwarz & Co., A.-G., sind außer den Kühlrohren im unteren Teile des Kondensators ein oder mehrere Düsenrohre angeordnet, in denen der Druck des Wassers in Geschwindigkeit umgesetzt wird, so daß die Luft mitgerissen wird, Fig. 213a und b. Diese Geschwindigkeit wird durch die Gestaltung der Düsenrohre wieder in Druck zurückverwandelt, worauf das Wasser seinen Weg durch den Kondensator nimmt.

Um zu verhindern, daß Wasser in den Dampfraum übertritt, sind die Öffnungen der Düse mit kleinen als Rückschlagventile dienenden Gummiklappen ausgerüstet, die sich bei Störungen schließen.

Die Änordnung einer besonderen Luftpumpe wird also bei dieser Bauart unnötig.

Die Kühlwasser-Umlaufpumpe wird als Hochdruck-Zentrifugalpumpe ausgeführt.

Die Fig. 224—225 stellen die Mischkondensation, Bauart Westinghouse-Leblanc dar.

Das Einspritzwasser fließt von einem Ringraume durch eine Anzahl kleinerer Düsen in eine größere Düse von ringförmigem Querschnitt, wobei durch die entstehende Saugwirkung Dampf und Luft mitgerissen werden, so daß im oberen Teile des Kondensators sogar eine höhere Luftleere herrschen kann als im unteren Teile.

Nach Versuchen ist die Luftleere am Turbinenstutzen unter Umständen sogar höher als die theoretische, d. h. als die der Temperatur des ablaufenden, warmen Wassers entsprechende Luftleere.

Das Wasser wird durch eine Balckesche Schleuderradpumpe, Luft und Dampf werden durch eine Westinghouse-Leblanc-Pumpe abgesaugt.

In dem Schleuderrad-Kondensator nach Fig. 226—227 erfolgt die Kondensation des einströmenden Dampfes in dem Raume vor dem Schleuderrad durch das eingebrachte Wasser. Soll der Kondensator das Betriebswasser selbst ansaugen, so muß er durch die bezeichnete Rohrleitung mittelst Frischdampf angelassen werden.

Bei beiden Kondensationen wird das Wasser mittelst eines teilweise beaufschlagten Schleuderrades in kleinen Pfropfen durch eine Düse geschleudert und saugt hierbei die Luft an, die von dem Wasserpfropfen

Fig. 224-225.

umschlossen wird. Durch die Verlangsamung der Geschwindigkeit in den zunehmenden Düsenquerschnitten wird die Bewegungsenergie in Druck umgesetzt¹). Die Pumpen können sowohl durch Elektromotore als auch durch kleine Dampfturbinen angetrieben werden.

Fig. 228 stellt die Turbokondensation der A.E.G. dar.

Die Antriebsturbine A ist mit einer Druckstufe und mehreren Geschwindigkeitsstufen ausgeführt; der Abdampf wird in der Hauptturbine weiter ausgenutzt.

 D_2 ist die Köndensat-Zentrifugalpumpe, die das heiße Kondensat entweder dem Saugraume der Kesselspeisepumpe oder, falls diese nicht

¹⁾ Ausführung Maschinenbau-A. G. Balcke, Bochum.

unmittelbar in den Kessel fördert, einem hochgelegenen Speisewasserbehälter zuführt. Schleuderrad und Verteiler der Luftpumpe D_1 sind in Fig. 228a dargestellt. Das Schleuderrad saugt Wasser an, das bei seinem mit großer Geschwindigkeit erfolgendem Austritt aus dem Rade die Luft aus dem Kondensator mitreißt und in den Verteiler fördert.

Fig. 228a veranschaulicht die Art, in welcher kleine Luftvolumina, von Wasserpfropfen eingeschlossen, sich infolge der ihnen erteilten Geschwindigkeitsenergie längs den Kanälen bewegen und hierbei immer mehr verdichtet werden.

Als Vorteil der Schleuderrad-Kondensationen ist zu erwähnen. daß das Kondensat vollständig ölfrei ist. Da der angesaugte Dampf in dem Arbeitswasser sofort kondensiert, so wird nur Luft gefördert, deren Verdichtungswärme zudem vom Wasser aufgenommen wird.

Als Arbeitswasser kann gekühltes Wasser oder auch Kondensat Verwendung finden. Bei Versuchen an einer Kondensation mit Westinghouse - Leblanc - Schleuderpumpen wurde festgestellt, daß der Unterschied zwischen der Kühlwassertemperatur und der der Luftleere entsprechenden Temperatur des gesättigten Dampfes nur 1,25° betrug¹).

Nach Otto H. Mueller²) werden die Wasserstrahlkondensatoren wie folgt berechnet, Fig. 229. Es bedeuten:

 $E_1 = \frac{Q \cdot v_e^2}{2g} = Energie beim Beginne der Verdichtung. (Q in kg/sek;$ ve in msek.)

 $E_2 = Q \cdot H = Energie infolge der Höhenlage über dem Austrittspiegel.$

 ¹) Zeitschr. Ver. deutsch. Ing. 1909. S. 1246.
 ²) Nach Otto H. Mueller. Zeitschr. Ver. deutsch. Ing. 1909, S. 1153. (Vergl. Stodola, Dampfturbinen, 4. Aufl. S. 564.)

Der Kondensator.

 $E_3 = V_e p_e \ln \frac{p_a}{p_e} = Energie für die verlustlose Verdichtung der Luft.$ $(V_e = Luftvolumen in ltr/sek., p_e und p_a in m Wassersäule.$ $<math>E_4 = Q (p_a - p_e) = Energie, um das Arbeitswasser vom Drucke p_e$ auf p_a zu bringen.

$$E_5 = Q \cdot \frac{v_a^2}{2g} = Energie$$
, die in dem ablaufenden Wasser steckt.

Dann muß sein: $E_1 + E_2 = E_3 + E_4 + E_5$ beim vollkommenen Arbeitsgang.

Da aber die isothermische Luftverdichtung unvollkommen sein wird, die Luft im Wasser Auftrieb erfährt und Reibungsverluste zu berücksichtigen sind, so ist zu setzen:

Die in der Mischdüse herrschende Geschwindigkeit findet sich nach Einsetzung der Werte für E_1 bis E_5 zu:

$$v_e^2 = \frac{2g}{\eta} \left(\frac{V_e}{Q} \cdot p_a \ln \frac{p_a}{p_e} + p_a - p_e \right) - 2g H + v_a^2 \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

Der Wirkungsgrad η beträgt bis zu 80 v. H
t. Zweckmäßig ist vereichlich groß zu wählen.

Wird nur Luft abgesaugt, so ist an Stelle von H die Größe $\rm H+h$ einzusetzen, um die Eintrittsgeschwindigkeit v_0 zu erhalten.

Bei Strahlkondensatoren ist noch die sek. eintretende Dampfmenge M (in kg) und die Dampfgeschwindigkeit v_d zu berücksichtigen.

Der Hals wird nunmehr von der Wassermenge Q + M durchströmt und als Geschwindigkeit im Halse folgt:

Wegen der Höhenlage des Wassereintrittes über dem Düsenhals wird:

 v_e ist aus Gleichung (2), v_r aus Gleichung (4) und v_o aus Gleichung (3) zu berechnen. Aus Q und v_o wird die Pumpenleistung berechnet unter Berücksichtigung der Widerstände und der Höhenlage des Einspritzwasserspiegels.

Die Gleichungen (1) und (2) gelten auch für die Berechnung der Schleuderradpumpen, vorausgesetzt, daß die Verteilerkanäle genügend lang sind und sich mindestens etwa zehn Wasserpfropfen im Kanal befinden, da sonst der Rückschlag des Wasserdruckes beim Austritt jeder Luftblase zu berücksichtigen ist.

5. Die Kondensatoren mit Beharrungswirkung.

$${
m Aus\,n}=\!\!rac{\lambda-t_a}{t_a-t_e}$$
berechnet sich die Abflußtemperatur zu $t_a=\!rac{\lambda+nt_e}{n+1}$

Wird die zu kondensierende Dampfmenge durch stoßweisen Betrieb plötzlich gesteigert, wie dies z. B. bei Walzenzug- und Fördermaschinen der Fall ist, so muß entweder die Kühlwassermenge reichlicher werden, oder es nimmt die Abflußtemperatur zu, so daß sich die Luftleere verschlechtert. Saugt der Kondensator das Kühlwasser selbst an, so wird mit der Luftleere auch der Kühlwasserzufluß abnehmen, bis die Abflußtemperatur t_a eine solche Höhe erreicht hat, daß die Saugwassersäule abfällt. Der Kondensator versagt. Der Betriebssicherheit halber muß deshalb die fortwährend zulaufende Kühlwassermenge dem höchsten Dampfverbrauch angepaßt werden, wodurch die Abmessungen und der Arbeitsbedarf der Pumpen sehr groß werden, oder man bringt im Kondensator große Wassermassen unter, welche gewissermaßen als Kältespeicher wirken sollen. Beträgt z. B. die Wassermenge in einem Kondensator

Fig. 230.

10 cbm und erwärmt sich dieselbe in $\frac{1}{2}$ Minute um 5° C, so nimmt sie rd. 85 kg Dampf auf, entsprechend 10 000 kg Stundendampf. Schwankt also der Dampfverbrauch stündlich um den letzteren Betrag, so kann die augenblickliche Höchstbelastung in einem Zeitraum von $\frac{1}{2}$ Minute durch die aufgespeicherte Wassermenge überwunden werden. Die Luftleere sinkt bei einer Temperaturerhöhung von 5° fast unmerklich. Bei dieser Berechnung sind die wasserberührten Eisenflächen nicht in Betracht gezogen; ist das Gewicht des Eisens = G, so wird bei einer spezifischen Wärme des Eisens von 0,12 der "Wasserwert" desselben = 0,12 · G, welcher ebenso wie die Wassermenge wirkt.

Es wurde hierbei vorausgesetzt, daß die Erwärmung des Wassers sich durch dasselbe in der angegebenen Zeit fortpflanze, eine Annahme, welche bei Oberflächenkondensation infolge der Zerlegung des bewegten Wasserstromes in einzelne Fäden jedenfalls eher zutrifft als bei Einspritzkondensation.

Eine Wärmeaufnahme durch die ganze Wassermenge ließe sich bei diesen nur durch Rührwerke oder durch eine sehr feine Verteilung der ganzen Wassermenge erreichen. Die Aufspeicherung großer Wassermengen mit geringer Oberfläche hat wegen der schlechten Wärmeleitung des Wassers somit nur wenig Zweck.

Beharrungswirkung wird durch die Kondensatoren von Kießelbach und von Weiß erzielt. Der Kießelbachsche Kondensator ist in Fig. 230 dargestellt. Der Kondensator ist durch Querwände in verschiedene Abteilungen zerlegt. Diese Querwände sind mit siebartigen Überfällen versehen, über welche das Wasser fein verteilt aus einer Abteilung in die andere gelangt. In die Abteilungen sind Stege eingebaut. welche verhindern, daß das kalte Wasser untätig unten bleibt und das oben befindliche warme Wasser abfließt. Die unter den Überfallblechen sich stauende Luft wird durch Kamine nach oben abgeführt und strömt durch den Schlitz einer hinter der Brause befindlichen Scheidewand zum Dampfabsaugerohr ab. Der eintretende Dampf ist, da er den Behälter gänzlich füllt, gezwungen, mit dem Wasser unmittelbar in Berührung zu treten, und es findet in allen Schichten eine vollständige und schnelle Kondensation statt. Da das verteilt abfallende Wasser an der Fallstelle schnell eine Luftleere bildet, so wird der Dampf besonders nach dieser Stelle angesaugt. Die Vorrichtung kann auch derart ausgeführt werden, daß der Abdampf das herunterrieselnde Wasser durchströmen muß, um von einer Abteilung in die andere zu gelangen. Es werden dann über den einzelnen Sieben Scheidewände angeordnet, hinter welchen der unter jene tretende, nicht kondensierte Dampf durch Kanäle geführt wird. Das Wasser kommt wiederholt mit dem Dampfe in Berührung; es kann nur solches Wasser ausfließen, welches mehrmals gewirkt hat. Es fließt also nur das verbrauchte erwärmte Wasser ab. während das kühlere zur Benutzung aufgespeichert wird.

Es werde angenommen, daß der Dampf während einer Minute ununterbrochen zuströme, und daß auf diese Betriebszeit eine Arbeitspause von 3 Minuten folge; weiterhin seien während des einminutlichen Betriebes 400 kg Dampf mit 12 cbm Kühlwasser niederzuschlagen. In diesem Fall wird der Kondensator mit drei Abteilungen ausgeführt, welche, einem minutlichen Zufluß von 3 cbm entsprechend, in der dreiminutlichen Pause frisch gefüllt werden, so daß 3/4 = 9 cbm Kühlwasser im Kondensator vorhanden sind; strömt dann während der Betriebszeit noch 1/4 = 3 cbm Kühlwasser zu, so wird während derselben das erforderliche Kühlwasser zur Verfügung stehen.

Als Hauptvorteil ergibt sich für diese als auch für die folgende Weißsche Anordnung, daß das Kühlwasser ununterbrochen zufließen kann und nur dem durchschnittlichen Dampfverbrauch angepaßt zu werden braucht.

Fig. 231 zeigt den Beharrungskondensator von Weiß¹). Der Dampf tritt bei B ein. Die durch das Rohr D zuströmende Wassermenge fließt nach ihrer Erwärmung nicht durch A aus, sondern läuft zunächst in einen Behälter R, aus welchem das Wasser in den Verteilungskasten Jtritt, um dann erst durch A abzufließen. Der Behälter R ist mit Siebblechen m versehen, welche das nach Perioden niedrigen Dampfverbrauches oben einlaufende kalte Wasser auf seinem Weg nach unten hin

¹) Weiß, Z. 1902, S. 1449 u. f.

Fig. 231.

verteilen sollen, so daß der Behälterinhalt eine gleichmäßige Temperatur annimmt, während in Perioden vermehrten Zuflusses das heiße, spez. leichtere Wasser in geschlossener Masse oben bleibt, welche nur nach Maßgabe des unten weggehenden kühlen Wassers abwärts strömt; es findet hierbei also keine Wassermischung im Behälter statt.

Daraus folgt, daß in Perioden niederen Dampfverbrauches das aus dem Behälter in den Kondensator strömende Kühlwasser eine höhere Temperatur besitzt, als die des frisch eintretenden Kühlwassers nach der Mischung mit dem Dampf beträgt, womit die Luftleere etwas abnimmt. Dem steht der große Vorteil gegenüber, daß bei stärkster Beanspruchung der Maschine die Luftleere auf angemessener Höhe bleibt. Würde nun das durch Rohr Dzufließende Kühlwasser ohne Außenbehälter Rsofort beim Beginn einer Periode höchsten Dampfverbrauches auf 95° C gebracht, so würde - wenn in der vorhergehenden Periode niedrigen Dampfverbrauches die Temperatur des Behälterinhaltes = 45° geworden sei, und wenn der Behälter die minutlich erforderliche Kühlwassermenge fasse, - nach Verlauf

einer Minute die Abflußtemperatur auf $\frac{95 + 45}{2} = 70^{\circ}$ gestiegen sein, auf welche Temperatur auch das Behälterwasser gebracht worden ist. Dauerte die Periode vermehrten Dampfzuflusses 2 Minuten, so würde der Behälterinhalt zum zweiten Male einen Kreislauf machen, und seine Temperatur sich dabei auf $\frac{95 + 70}{2} = 82,5^{\circ}$ erhöhen. Zwei weitere Kreisläufe würden die Temperatur auf $\frac{95 + 82,5}{2} = 88,75^{\circ}$ und

auf $\frac{95+88,5}{2} = 91,875^{\circ}$ bringen. Hat die Periode hohen Dampfver-

brauches $1\frac{1}{2}$ Minute angedauert, so wird der untere Teil des Behälters mit Wasser von 70°, die obere Hälfte mit Wasser von 82,5° angefüllt sein. Dieses wärmere Wasser wird über dem kühleren Wasser so lange stehen bleiben, bis es durch die Mischung mit dem kälteren Einlaufwasser bis auf die Temperatur des unten stehenden Wassers abgekühlt ist. Von diesem Augenblick an findet Mischung und Kühlung des Wassers durch den ganzen Behälter hindurch statt, und es nimmt die Temperatur des unten ablaufenden Wassers ab. Sie wird also während dieser Zeit höher bleiben, als die Temperatur des oben in den Behälter frisch einfließenden Wassers.

Die Pumpen.

6. Der Parsonssche Hilfskondensator¹).

Fig. 232 zeigt die Anordnung, welche hauptsächlich bei Schiffsturbinen zur Anwendung gelangt, um bei diesen auch bei großer Luftleere Abmessungen und Gewicht der Luftpumpe klein zu halten.

Das Kondensat fließt den Saugventilen der Luftpumpe unter hydrostatischem Druck zu.

Das an einer höher liegenden Stelle des Hauptkondensators abgesaugte Luft- und Dampfgemisch wird mittelst eines besonderen durch Frischdampf betriebenen Strahlapparates ebenfalls auf die Höhe des erwähnten hydrostatischen Druckes gebracht und in einem Hilfskondensator niedergeschlagen.

Versuche an einer 1500 KW-Parsonsturbine der Sheffield Corp. ergaben bei Anwendung des Vakuumvermehrers, welcher 1,6 v. Ht. des Gesamtdampfverbrauchs der Turbine brauchte, eine Verringerung des Gegendruckes um 0,07 kg/qm. Die hierdurch verursachte Dampfersparnis dürfte, auf die Turbine allein bezogen, etwa 5 v. Ht. ausmachen.

d) Die Pumpen.

1. Abmessungen.

Bei der Bestimmung der Pumpenabmessungen müssen zunächst Annahmen über die in den Kondensator eindringenden Luftmengen gemacht werden.

Der Luftgehalt des Kühlwassers ist verschwindend gering, er beträgt dem Volumen nach nur 1 bis 2 v. Ht. Grundwasser führt sogar noch geringere Luftmengen mit sich.

¹) Stodola, Dampfturbinen. 4. Aufl., S. 570.

Von größerer Bedeutung sind die von Undichtheiten herrührenden Luftmengen, deren Größe von dem Zustand der Anlage abhängig ist. Weiß schlägt für deren Schätzung folgende, auf Grund von Versuchen gewonnene Zahlen vor:

$$L = \frac{1}{1000} \cdot (\lambda \cdot W + \mu \cdot D),$$

worin

L = minutl. Luftmenge in cbm,

W = minutl. Kühlwassermenge in kg,

D = minutl. zu kondensierende Dampfmenge in kg,

 $\lambda = 0.02$ Absorptionskoeffizient,

 $\mu =$ Undichtheitskoeffizient.

 $\mu = 1.8 + 0.01$ Z bei groben Betrieben, wie in Hüttenwerken.

 $\mu = 1.8 + 0.006$ Z bei feineren Betrieben, wie in Elektrizitätswerken.

Z = Gesamtlänge der Abdampfleitungen in m.

Für neuere Anlagen sind die Weißschen Werte um etwa 20 bis 30 v. Ht. zu groß.

In Dampfturbinen kann die Luft nur durch die Stopfbüchsen eintreten, vorausgesetzt, daß Kesselspeisepumpe und Luftpumpe ohne Schnüffelventile arbeiten.

Dichten die Stopfbüchsen durch Sperrdampf ab, so ist auch hier Eindringen von Luft ausgeschlossen. Außerdem ist das in geschlossenem Kreislauf benutzte Kondensat entlüftet, so daß mit dem Dampf keine Luft eintritt.

Undichte Stellen können noch an den Flanschen der Abdampfleitung, sowie am Kondensator selbst vorkommen.

Bei einem Versuch an einer 300 KW.-Parsonsturbine hat Josse die von der Luftpumpe geförderte Luft gemessen¹).

Auf 3000 kg/st. Dampf kam eine Luftmenge von 0,25 kg/st.

Stodola schätzt die durch Undichtheiten eindringende Luftmenge bei Dampfturbinen auf 3-5 kg in der Stunde für je 1000 KW Leistung²).

Bestimmung der Abmessungen.

 $\begin{array}{ll} \mbox{Im folgenden bedeuten: } c = & Kolbengeschwindigkeit der Luftpumpe \\ & in \ dcm/sek. \end{array}$

 $D_e = Durchmesser der Luftpumpe in dcm,$

 $\eta =$ Wirkungsgrad.

a) Nasse Luftpumpe $\eta = 0.7$.

$$0.7 \frac{D_{e^{2}} \pi}{4} \cdot c = \frac{\frac{1000}{p_{0}} L}{60} + W + D}{60}.$$

¹⁾ Josse, Zeitschr. d. Ver. deutsch. Ing. 1909. S. 330.

²) Stodola, Die Dampfturbinen. 4. Auflage, S. 549.

Die Pumpen.

b) Trockene Luftpumpe: Diese wird meist mit Überströmung ausgeführt, so daß ihr Wirkungsgrad $\eta = 0.92$.

$$0,92\frac{D_{e^{2}}\cdot\pi}{4}\cdot c = \frac{\frac{1000 L}{p_{0}-d}}{60}.$$

c) Wasserpumpen: Wirkungsgrad

$$\eta = 0.95$$

bei Kolbenpumpen,

 $\eta = 0,65 - 0.7$

bei Rotationspumpen, so daß für erstere, falls $D_w = Durchmesser$:

$$\eta \cdot \frac{\mathbf{D}_{\mathbf{w}}^{2} \cdot \pi}{4} \cdot \mathbf{c} = \frac{\mathbf{W}}{60}.$$

Bei Gegenstromkondensation findet sich häufig statt der Wasserpumpe ein barometrisches Abfallrohr (s. S. 256).

d) Die Kondensat- und Luftpumpe bei Oberflächenkondensation saugt auch noch das aus dem Dampf entstehende Kondenswasser an, sonach wird:

$$0,92 \frac{D_{e}^{2} \cdot \pi}{4} \cdot c = \frac{\frac{1000 \text{ L}}{p_{0} - d} + D}{60}.$$

2. Kraftbedarf der Pumpen.

In trockenen Luftpumpen mit reichlicher Wasserkühlung wird die Kompression nach einer Polytrope vor sich gehen, deren Exponent etwa 1,25 beträgt. Dampf und Luft werden hierbei demselben Gesetz folgen, da die Temperatur des Gemisches gleichartig bleibt. Bei der Unsicherheit, welche überhaupt der rechnerischen Feststellung des Arbeitsbedarfes anhaftet, wird man für überschlägliche Rechnungen isothermische Kompression des Gemisches annehmen, so daß nach Gl. 17, S. 4 L' in kgm folgt aus:

$$\frac{\mathrm{L}'}{10\,000} = \mathbf{a} \cdot \mathbf{p_0} \, \mathbf{v_0} \log n \, \frac{\mathbf{p}}{\mathbf{p_0}} \, {}^{\mathrm{l}}),$$

worin durch a = 1,1 bis 1,2 der geringere Arbeitsbedarf für isothermische Kompression berücksichtigt wird.

Bei nassen Luftpumpen kann, da während der Kompression Wärmeabgabe an das Kühlwasser erfolgt, überhaupt isothermische Kompression angenommen werden. Wegen der hierbei gleichbleibenden Temperatur wird der Dampf seinen Druck beibehalten und dementsprechend bei der Kompression kondensieren, während der Luftdruck von $l = p_0 - d$ auf $l_1 = 1 - d$ erhöht wird. Nach dem Daltonschen Gesetz erfolgt die Kompression, als wenn in der Mischung kein Dampf vorhanden wäre, sonach:

$$\frac{L''}{10\,000} = v_0 \,(p_0 - d) \cdot \log n \,\frac{1 - d}{p_0 - d}.$$

¹) Wegen des Koeffizienten $\frac{1}{10000}$ s. Bemerkung auf S. 8.

Ist weiterhin: $\frac{W}{60} = Q$ die sekundlich zu fördernde Wassermenge in Liter, h die Förderhöhe in m, so wird die theoretische Leistung in PS_i für die Wasserförderung:

$$L_w = rac{Q \cdot h}{75}.$$

Die Zusammenstellung der entwickelten Gleichungen ergibt für den gesamten Arbeitsbedarf in mkg:

a) für Gegenstrom und Oberflächenkondensatoren mit getrennten Pumpen:

$$\mathbf{L}_1 = \mathbf{1}, \mathbf{4} \ (\mathbf{L}' + \mathbf{Q} \cdot \mathbf{h})$$

b) für Parallelstromkondensatoren mit nassen Luftpumpen:

$$L_2 = 1.4 (L'' + Q \cdot h)$$

Durch den Faktor 1,4 wird der Mehrbedarf an Arbeit geschätzt, welcher durch Widerstände in den Röhren, Ventilen usw. nötig wird.

Eine Reihe von Versuchen Kießelbachs ergab für gewöhnliche Einspritzkondensation einen Kraftbedarf von 0,6 bis 2 v. Ht. der Maschinenleistung, normal rd. 1 v. Ht. und bei Rückkühlung einen Kraftbedarf von 1 bis 3,5 v. Ht. je nach den Temperaturen und verbrauchten Wassermengen. Für Oberflächenkondensation ergaben sich günstigere Zahlen: hier macht der Arbeitsbedarf 0,2 bis 0,7 v. Ht. bei Verwendung stets frischen Wassers, 0,6 bis 2,2 v. Ht. bei Rückkühlung aus.

3. Entwurf der nassen Luftpumpen.

Um die Wirkung des schädlichen Raumes zu verringern, werden folgende Mittel angewendet:

- 1. Verbundwirkung.
- 2. Ausfüllung des schädlichen Raumes mit Wasser.
- 3. Überströmung.

Was die Anordnung der verschiedenen in den Fig. 233-246 dargestellten Bauarten betrifft, so ist zunächst zu bemerken, daß bei hängenden, im Kondensatorboden angeordneten Saugventilen, Fig. 233, die über diesen befindliche Wasserschicht den Eröffnungswiderstand vermindert. Ist der Ventilquerschnitt von richtiger Größe, so tritt bei jedem Hub die auf diesen entfallende Kühlwassermenge in den Pumpenraum über, und die Luft strömt nach. Bei zu engen Querschnitten wird die Höhe der Wasserschicht der erforderlichen Geschwindigkeitssteigerung entsprechend zunehmen und den Abfluß der Luft hemmen. Der Kondensatordruck wird nunmehr steigen und einen stärkeren Wasserabfluß verursachen, bis sich ein Beharrungszustand einstellt, in welchem, allerdings unter größerem Kondensatordruck, die auf jeden Hub entfallenden Wasser- und Luftmengen abgezogen werden.

Die Luftpumpe¹) nach Fig. 233 zeichnet sich durch einfache Anordnung und gute Zugänglichkeit der Ventile aus und ist auch zum unmittelbaren Antrieb durch die verlängerte Dampfkolbenstange geeignet.

¹) Ausgeführt von Schüchtermann & Kremer, Dortmund.

Die Saugventile sind schräg gelegt, so daß die Luft zu den Druckventilen leicht aufsteigen kann und letztere geräuschlos aufgestossen werden.

Richtige Ausnutzung der hydrostatischen Druckhöhe und dementsprechende Verbesserung der Luftleere werden in den Luftpumpen von

Die Pumpen.

Horn, Fig. 234¹), sowie der Siegener Maschinenbau-A.-G., Fig. 235, erreicht, in welchen Wasser und Luft getrennt abgesaugt werden.

¹) Ausgeführt von Brinkmann & Co. in Witten. Dubbel, Dampfmaschinen. 3. Aufl.

15

Steht bei der Hornschen Luftpumpe, Fig. 234, der Kolben in der gezeichneten Totlage, so ist der Raum zwischen den Ventilen und dem Kolben vollständig mit Wasser gefüllt. Bei der Weiterbewegung des Kolbens wird der Wasserspiegel unter den Druckventilen sinken und sich hier eine Luftleere einstellen, so daß die unterhalb der Druckventile liegenden Luftventile sich öffnen, sobald die Luftleere in der Pumpe kleiner als im Kondensator ist. Infolge des hierbei stattfindenden Druckausgleiches müssen die Trägheit der Saugwassersäule und der Ventilwiderstand durch die Wassersäule im Kondensator überwunden werden.

Örtliche und zeitliche Trennung der Ansaugung von Luft von der des Wassers ist in Fig. 235 durchgeführt. Das Kondensat wird der Pumpe durch ein unten kegelförmig erweitertes Rohr zugeleitet, welches an die tiefste Stelle des Kondensators angeschlossen ist. Die hydrostatische Druckhöhe über den Saugventilen dient auch hier zur Überwindung der Ventilwiderstände und der Massenträgheit der Saugwassersäule. Die Entlüftungsleitung geht von der kältesten Stelle des Kondensators aus und ist durch ein besonderes Ventil gegen den Hubraum abgeschlossen. Geht der Kolben aufwärts, so saugt er zunächst nur Wasser an, bis nach Ansaugung der auf den Hub entfallenden Wassermenge das Luftventil freigelegt wird. Im zweiten Teil des Hubes wird nur Luft und Dampfgemisch angesaugt, welches sonach (wie auch bei der Hornschen Pumpe) durch die Saugwassersäule nicht hindurch zu treten braucht. In der gezeichneten Ausführung befindet sich über den Druckventilen ein großer Windkessel, da die Pumpe das Wasser 4 bis 5 m hoch zu drücken hat.

Während sonach bei den meisten Pumpen mit gemeinsamer Luftund Wasserabsaugung der Saugventilwiderstand durch einen Spannungsfall zwischen Kondensator und Luftpumpe sich geltend macht, herrscht in den Pumpen mit getrennter Absaugung derselbe Druck wie im Kondensator, so daß die Luftleere in diesem verbessert wird. Außerdem können die für Luft und Wasser gesondert auszuführenden Ventile der durchströmenden Flüssigkeit mehr angepaßt und infolge der in den Luftventilen gestatteten höheren Durchflußgeschwindigkeit (20 m/sek) kleiner gehalten werden.

In der Pumpe Fig. 236¹) wird bei reichlicher, hier wegen der zylindrischen Form der Ventilsitzplatten leicht zu erreichenden Querschnittsbemessung das zufließende Kondensat nach teilweiser Zurücklegung des Kolbenhubes die oberen Saugventile für den Luftdurchtritt freigeben, so daß bei kleinem Ventilwiderstand hier ähnliche Vorgänge eintreten.

(Durch die in jedem Pumpendeckel angeordneten Klappen strömt das Kondensat einer zweiten Maschine zu, falls an dieser die Luftpumpe schadhaft werden sollte.)

In Fig. 237 sind über dem Pumpenraum Rückschlagklappen angebracht, welche sich beim Kolbenniedergang schließen. Oberhalb des abwärtgehenden Kolbens wird sich sonach eine Luftleere einstellen, so daß der zur Öffnung der Kolbenventile erforderliche Überdruck unter denselben geringer ausfällt, als wenn auf ihnen der Druck einer Wassersäule lastete.

¹) Ausgeführt von der Hannoverschen Maschinenbau-A.-G. vorm. Egestorff.

Auch findet eine Verringerung der Massenwirkung statt, da die Druckwassersäule nach Schluß der Klappen in Ruhe bleibt.

Letzterer Umstand braucht bei Pumpen nach Fig. 238¹) nicht berücksichtigt zu werden, da hier infolge der Gegenläufigkeit beider Kolben die Größe des über ihnen befindlichen Raumes sich nicht ändert. Die

in der Druckrohrleitung befindliche Wassermenge wird sonach nicht hin- und herpendeln.

Der Plungerdurchmesser ist durch den Ausschlag der Zugstange bestimmt. Differentialwirkung, wie sie bei Wasserpumpen²) stattfindet, läßt sich bei Luftpumpen nicht erreichen. Die Unterseite arbeitet mit nur etwa 1/4 bis 1/3 Wasserfüllung, so daß beim Abwärtsgang des Kolbens die Luft nicht den zur Öffnung der Rückschlagklappen erforderlichen Druck annehmen kann. Die Pumpe wirft sonach nur beim Kolbenaufgang aus.

¹) Ausgeführt von der Maschinenfabrik Rheydt, O. Recke.

²) Beim Kolbenaufgang wird bei diesen die Wassermenge $\frac{D^2 \pi}{4} \cdot s$ angesaugt und die Wassermenge $\left(\frac{D^2 - d^2}{4}\right) \cdot \pi \cdot s$ fortgedrückt, der Inhalt $\frac{d^2 \pi}{4}$ wird sodann bei Abwärtsgang fortgedrückt.

Die. Kondensation.

Bei größerem Plungerdurchmesser erfährt der Druckraum eine Verkleinerung gegenüber dem Saugraum, so daß die Wassersäule über dem Kolben beim Beginn des Druckhubes eine größere Höhe erreicht und das Wasser bei größter Kolbengeschwindigkeit gegen die Rückschlagklappen

anprallt, namentlich wenn nur wenig Luft mit eingeschlossen war. (Diagramm Fig. 252a.)

Große Plungerdurchmesser sind deshalb häufig Ursache stärkeren Stoßes und es empfiehlt sich im allgemeinen, den Zapfen, wie in Fig. 239, an das obere Ende des Plungers zu legen.

Bei der Doerfelschen Verbundluftpumpe (Fig. 239) saugt der Kolben beim Aufgang aus dem Kondensator an; das Gemisch tritt beim folgenden Niedergang des Kolbens in den Raum über diesen, wobei sich ein hier angeordneter Luftsack ausdehnt, so daß die Spannung über dem Kolben bis etwa auf die doppelte Saugspannung abnimmt. Die Kolbenventile öffnen demnach, sobald die Druckspannung unter dem Kolben auf denselben Betrag gestiegen ist.

Dieser niedrige Enddruck auf der Unterseite verursacht eine nur geringfügige Expansion aus dem "schädlichen Raum" (d. h. aus dem

luftenthaltenden Wasserraum der Totlage), so daß der räumliche Wirkungsgrad verbessert wird. Diagramm 239 a zeigt den Vorgang.

Die Kompression des Luftsackes beim Kolbenaufgang mildert den Stoß bei der Klappeneröffnung auch bei großer Wassermenge, außerdem wird das Gestänge stets gespannt gehalten, so daß auch dessen Gang weich und stoßfrei ist.

Die Luftpumpe nach Fig. 240 arbeitet mit doppelter Saugwirkung bei einfacher Druckwirkung. Die Saugventile sind am Kolben angebracht. Geht dieser abwärts, so wird das Volumen $\frac{(D^2 - d^2) \pi}{4} \cdot s$ angesaugt. Beim Aufwärtsgang öffnen sich die Saugventile, da unter ihnen eine Luftleere entsteht, und es tritt das Volumen $\frac{D^2 \pi}{4} \cdot s$ über. Soll die Saugwirkung gleichmäßig verteilt sein, so muß $\frac{D^2 \pi}{4} = \frac{d^2 \pi}{2}$, also d = 0.7 D, sein.

Die Fig. 241, 242 und 246-249 zeigen Luftpumpen, bei welchen die Saugventile durch Saugschlitze ersetzt sind, so daß auch bei diesen Pumpen infolge Fortfalls eines Überdruckes zum Öffnen von Ventilen

die Luftleere verbessert wird. Diesem Vorteil, sowie der Einfachheit der Ausführung steht der Nachteil einer Hubvergrößerung um die Schlitzlänge gegenüber.

Fig. 241 zeigt eine liegende Pumpe mit Saugschlitzen, deren Oberkante in gleicher Höhe mit dem Kondensatorboden liegt. Durch Anordnung von Querwänden werden die zum Pumpenzylinder konzentrisch

¹) Ausführung der Maschinenfabrik Augsburg-Nürnberg, Werk Nürnberg.

liegenden Druckventile, deren Sitzplatte Fig. 241 a wiedergibt, stets unter Wasser gehalten.

In Fig. 242 ist die weitverbreitete Brown-Kuhnsche Pumpe für Riemenantrieb dargestellt.

Die Kondensation.

Im Pumpengehäuse ist ein durch Schlitze unterbrochener Einsatz angeordnet, dessen Bohrung als Kolbenlauffläche dient. Die Schlitze werden bei der Abwärtsbewegung des unten kegelförmigen Plungers freigelegt, wobei das im Gehäuse gleichzeitig nach oben gedrängte Wasser durch dieselben in den Kolben strömt. Die Druckventile befinden sich auf der oberen Zylinderwand, welche sich nach unten als Verdränger

fortsetzt. Wie bei den vorigen Konstruktionen, so fällt auch hier jeder durch den Saugventilwiderstand sonst entstehende Spannungsfall weg, und die Luftleere wird verbessert. Der Gang ist ruhiger, da die unter den Druckventilen befindliche Luft zuerst ausgestoßen wird und als Puffer wirkt. Ein schon erwähnter Nachteil besteht hingegen darin, daß die Förderung des Gemisches erst nach Schluß der Schlitze beginnt und also nicht während des ganzen Kolbenweges andauert. Die Kolbengeschwindigkeit wird groß und dementsprechend müssen hohe Wassergeschwindigkeiten angenommen werden, um so mehr, als infolge der Anordnung

¹) Ausführung von Balcke & Co., Bochum.

Die Pumpen.

eines Verdrängers die Druckventilquerschnitte im Verhältnis zur Kolbenfläche gering ausfallen.

Die Berechnung dieser Pumpen gestaltet sich wesentlich anders als bei den übrigen Bauarten.

Im folgenden bedeuten:

L = pro Hub fortzuschaffende Luftmenge,

h = pro Hub fortzuschaffende Wassermenge,

W = wirksamer Hub, h₁ \cong 0,8 h : 1 h = Höhe der Saugschlitze,

 $\mathbf{H} = \mathbf{h} + \mathbf{h}_1 = \text{Gesamthub},$

 $D_3 = Kolbendurchmesser, D_1, D_2, D_4, D_5$ weitere aus Fig. 243 zu entnehmende Durchmesser.

 $F_3 = Kolbenquerschnitt.$ F_1 , F_2 , F_4 , F_5 die zu D_1 , D_2 , D_4 , D_5 gehörigen Querschnitte.

V bezeichnet denjenigen Raum, welcher sich in der oberen Totlage des mit Wasser ausgefüllt gedachten Kolbens zwischen diesem und den Druckklappen befindet.

Die Berechnung des Hubraumes wird wie bei den übrigen einfachwirkenden Luftpumpen vorgenommen, indem das pro Hub anzusaugende Wasser- und Luftgemisch

gesetzt wird.

$$L + W = F_3 \cdot h$$

Der Gesamthub H ist durch die Wahl der mittleren Kolbengeschwindigkeit c = $\frac{\text{H} \cdot \text{n}}{30}$ = 1,0 : 1,5 m bestimmt, wodurch nach Annahme von h und h₁ auch F₃ bezw. D₃ festgelegt ist.

Bestimmung des Verdrängerdurchmessers D_1 . Hat der Kolben die obere Schlitzkante erreicht. Fig. 243 c, so muß im Pumpenraum das Wasser um x von der oberen Kolbenkante k entfernt sein, falls mit Sicherheit ein Zurückströmen aus dem Pumpenraum in das Gehäuse vermieden werden soll. In der gezeichneten Stellung ist die Kolbenoberkante um h + 10 mm — ein Spielraum von 10 mm in der oberen Totlage vorausgesetzt - von der oberen Pumpenwand entfernt. Geht der Kolben um h aufwärts, so verdrängt er ein Volumen von der Größe $V' = F_3 \cdot h$. Hierbei wird der Raum V zwischen dem inneren Wasserspiegel und den Druckventilen ausgefüllt und außerdem die Wassermenge W ausgestoßen. Es besteht die Beziehung

$$\begin{aligned} \mathbf{F}_3 \cdot \mathbf{h} &= \mathbf{W} + \mathbf{V} + (\mathbf{F}_2 - \mathbf{F}_1) \cdot \mathbf{x} + (\mathbf{F}_3 - \mathbf{F}_1) \cdot \mathbf{h}, \\ \mathbf{F}_1 &= \frac{\mathbf{D}_1^2 \pi}{4} = \frac{\mathbf{W}_1 + \mathbf{V} + \mathbf{F}_2 \mathbf{x}}{\mathbf{x} + \mathbf{h}}. \end{aligned}$$

Bestimmung der Druckventilquerschnitte. In Fig. 243 c beginnt soeben die Kompression der eingeschlossenen Luftmenge L. Das Wasser tritt zuletzt aus und die Ausströmung beginnt, wenn der Kolben um $x' = \frac{W}{F_a}$ von seiner oberen Totlage entfernt ist. Um unter Voraussetzung unendlicher Pleuelstangenlänge die Kolbengeschwindigkeit bei Beginn der Wasserförderung zu ermitteln, multipliziert man c_{max} = $\frac{\mathbf{H} \cdot \mathbf{n} \cdot \pi}{60}$ mit dem Verhältnis der größten Ordinate zu der zum Kolbenweg x' gehörigen Ordinate z, so daß

$$\mathbf{c}_{\mathbf{x}} = \mathbf{c}_{\max} \cdot \frac{\mathbf{z}}{\mathbf{H}}.$$

Ist c = $3 \div 4$ m die Wassergeschwindigkeit bei Beginn der Ausströmung, so wird die freie Ventilfläche

$$\mathbf{f} = \frac{\mathbf{F}_3 \, \mathbf{c}_{\mathbf{x}}}{\mathbf{c}}.$$

Berechnung des Gehäusedurchmessers D_5 . Die Einströmung des Wassers in den Pumpenraum beginnt und hört auf, wenn der Wasserspiegel im Gehäuse mit der Kolbenoberkante gleichsteht. Hierbei müssen die Saugschlitze noch um einen gewissen Betrag h' — Fig. 243 b — ge-

Fig. 243.

öffnet sein, damit die Luft vor und nach dem Wasserdurchfluß einströmen kann. Außerdem soll bei tiefster Kolbenstellung — also beim höchsten Wasserstand im Gehäuse — zwischen Wasserspiegel und oberer Gehäusewand ein Spielraum y vorhanden sein, damit das Wasser nicht anschlägt.

Beträgt die für die Lufteinströmung bestimmte Schlitz-Öffnung h' $\left(=\frac{1}{4}h_1 \div \frac{1}{3}h_1\right)$, so ist nach Fig. 243 b der Kolben von seiner oberen

Totlage um h + h' entfernt.

Es besteht sonach die Beziehung, falls in der unteren Kolbentotlage der erwähnte Spielraum y vorhanden sein soll:

$$\begin{split} & F_3 \left(h_1 - h' \right) = (F_5 - F_4) \cdot \left(h' + y' - y \right) \\ & F_5 = \frac{D_5^2 \, \pi}{4} = \frac{F_3 \left(h_1 - h' \right)}{h' + v' - v} + F_4. \end{split}$$

Legt der Kolben den Weg $(h_1 - h')$ nach unten hin und zurück, so wird das Wasser aus dem Gehäuse in die Pumpe strömen. Der Kolben

234

Die Pumpen.

wird hierbei von der Kurbel $r = \frac{H}{2}$ bewegt, während die Bewegung des äußeren Wasserspiegels von einer Kurbel $r' = r \cdot \frac{F_3}{(F_5 - F_4)}$ hervorgebracht gedacht werden kann.

Es ändert an dem tatsächlichen Vorgang nichts, wenn man sich weiterhin den Wasserspiegel stillstehend und den Kolben von einer Kurbel r + r' angetrieben vorstellt. Für den Kolbenweg $(h_1 - h')$ ist in Fig. 244

Fig. 244.

das Kolbenwegdiagramm entworfen. Die Ordinaten desselben geben die jeweiligen Höhenunterschiede zwischen Wasserspiegel und Kolbenoberkante wieder und die einlaufende Wassermenge kann nach der Überlaufformel

$$\mathbf{w} = \frac{2}{3} \cdot \boldsymbol{\mu} \cdot \sqrt{2 \, \mathbf{g} \, \mathbf{h}} \cdot \mathbf{b} \, \mathbf{t} \cdot \mathbf{h}$$

berechnet werden. Hierin bedeuten:

- $\mu = 0.6 = \text{Ausflußkoeffizient},$
- b = Breite sämtlicher Schlitze,
- t = Einlaufzeit, welche vermittelst der Kurbelwinkel festgestellt werden kann.

Hiernach wird für jeden Kurbelwinkel die mittlere Höhe h ermittelt (z. B. ist in Fig. 244 für den Winkel 2—3 die mittlere Höhe $= h_2$) und w berechnet. Es muß $\Sigma w > W$ sein. Nimmt die Pumpe die zuzuführende Wassermenge nicht auf, so ist zur Vermeidung von Wasseransammlungen im Gehäuse, welche Stöße verursachen, die Schlitzbreite größer

Fig. 246.

zu wählen oder, falls hierdurch der Einsatz zu sehr geschwächt wird, für höhere Schlitze zu sorgen. Im letzteren Fall ist die Rechnung den gänzlich veränderten Verhältnissen entsprechend nochmals durchzuführen.

Steigt der Wasserspiegel im äußeren Gehäuse weit über den Schlitz, so werden die einlaufenden Wassermengen nach der Formel

$$\mathbf{w} = \frac{2}{3} \, \boldsymbol{\mu} \cdot \sqrt{2 \, \mathbf{g}} \left(\mathbf{h}_{\mathbf{x}}^{\frac{3}{2}} - \mathbf{h}_{\mathbf{y}}^{\frac{3}{2}} \right) \cdot \mathbf{b} \, \mathbf{t}$$

berechnet.

Fig. 245 zeigt die Konstruktion für diesen Fall.

Die Größe des Kurbelradius r' wird wie vorhin berechnet. Die Bewegung beider Kurbeln ist nunmehr gesondert in Sinuslinien darzustellen, welche sich im Abstand h' von der oberen Schlitzkante schneiden Dementsprechensd muß der Mittelpunkt o' der Kurbelbemüssen. wegung r' um die Strecke *a* unter h' liegen.

In Fig. 246 ist eine sowohl mit Verbundwirkung nach Doerfel als mit Saugschlitzen ausgeführte Luftpumpe¹) wiedergegeben.

Grundsätzlich gleiche Ausführungsweise zeigt die Luftpumpe nach Fig. 247²). Die mit dieser Anordnung erhaltenen Diagramme sind in Fig. 248 dargestellt.

In Fig. 249³) ist eine doppeltwirkende Luftpumpe mit Saugschlitzen wiedergegeben.

Die Druckräume A und B stehen miteinander in Verbindung; Luft und Kondensat treten dem die Schlitze umgebenden Ringraume zu. Die Druckklappen umgeben konzentrisch den Pumpenkörper.

Bei der Josseschen Luftpumpe nach Fig. 250 fließen bei der oberen Kolbentotlage das Kondensat und ein Teil der Luft durch Schlitze in den Raum unterhalb des Kolbens, der beim Niedergange auf seiner oberen Seite den Rest der Luft durch Ventile ansaugt.

Kurz vor der unteren Totlage legt der Kolben einen Umführungskanal frei, so daß Wasser von der unteren Kolbenseite auf die obere gespritzt wird, dort den schädlichen Raum ausfüllt und die durch die Luftverdichtung erwärmte, obere Kolbenseite abkühlt.

Die Diagramme, Fig. 251, bei n = 250 aufgenommen, lassen in dem fast senkrechten Verlauf der Rückenpansionslinie die Ausfüllung der schädlichen Räume erkennen.

Ist die Ausführungsweise nach einem der gegebenen Beispiele gewählt, so sind beim Entwurf noch folgende Regeln zu beachten: Richtungswechsel in der Wasserbewegung innerhalb der Pumpe ist zu vermeiden, da er Anlaß zu stoßendem Gang gibt. Dieser tritt auch bei kleinem "schädlichen Raum" auf, der wegen seines geringen Luftinhaltes außerordentlich rasche Kompression herbeiführt, so daß das Wasser gegen die Ventile schlägt. Diagramm Fig. 252 a. Durch Anwendung von Schnüffelventilen lassen sich diese Stöße, allerdings bei gleichzeitiger Verschlechterung der Luftleere, verhindern. Die von diesen Ventilen eingesaugte Luft bildet unter den Druckventilen einen Puffer, und der Ausgußdruck wird durch allmähliche Kompression dieser Luft erreicht. Zuviel Luft verursacht zwar sanften Gang, verschlechtert aber auch wegen der Expansion aus dem schädlichen Raum den Wirkungsgrad. Diagramm Fig. 252 b. Ist das Kondensat um mehr als 1-1,5 m über Luftpumpenausguß zu heben, so empfiehlt sich Aufstellung einer besonderen Pumpe, um so mehr, als sonst auch die Luft entsprechend komprimiert werden muß.

Die Ventile müssen leicht zugänglich und so angeordnet sein, daß Luftsäcke nicht entstehen können.

Ausführung von A. Borsig, Tegel bei Berlin.
 Ausführung von Sack & Kießelbach, Rath.
 Ausführung der Prager Maschinenbau-A.-G. vorm. Ruston & Co., Prag.

Fig. 247.

Fig. 249.

Die Kondensation.

Als Material für die Klappen sind Gummi, für heißes Wasser Dermatine gebräuchlich. Ventilsitze mit runden Öffnungen nach Fig. 253 b sind solchen nach Fig. 253 a vorzuziehen, da bei ersteren die Klappen gleichmäßiger beansprucht werden. Der Auflagerdruck soll 2-2,5 kg/qcm

nicht überschreiten, wobei als Auflagerfläche die halbe Stegbreite rings um die Öffnung anzunehmen ist. Stegbreite ≥ 8 mm.

Der Ventilsitz wird durch Gummischnüre oder durch verstemmten Rostkitt gedichtet, letzterer findet namentlich bei eingeschobenen Platten Verwendung. Klappenventile, welche sich vor der Durchbiegung um einige mm heben, werden weniger beansprucht. Ihre Ausführung empfiehlt sich besonders bei Anwendung des weniger biegsamen Dermatine.

Die Fangteller sind zu lochen, damit die Klappen nicht anhaften. Metallventile werden seltener angewendet, sie eignen sich für höhere Temperaturen, aber nur für reines Wasser.

Die Luftpumpenkolben werden meistens als gußeiserne Hohlkörper mit Ringen aus Rotguß oder Phosphorbronze ausgeführt, bei unreinem Wasser Dichtung mit Holz oder Leder. Die Stopfbüchsen werden vielfach von Wasserkasten umgeben, so daß keine Luft eindringen kann.

Bei nicht zu hohen Kolbengeschwindigkeiten ist der Antrieb der Luftpumpe durch die verlängerte Dampfkolbenstange bei liegenden Maschinen wegen der einfachen Aufstellung, billigen Fundamentierung und guten Zugänglichkeit sehr gebräuchlich, doch ergeben sich infolge der hochzuführenden Abdampfleitung die auf S. 194 erwähnten Nachteile. Ist die Kolbengeschwindigkeit größer als 2,5—3 m, so werden meist unter Flur stehende Luftpumpen vorgezogen, eine Aufstellung, welche bei größeren Saughöhen zur Notwendigkeit wird. Der Antrieb erfolgt dann mittelst Winkelhebels vom Kurbelzapfen, Kreuzkopf oder von der rückwärtigen Kolbenstangenführung aus, seltener ist der Antrieb

¹) Taschenbuch der Hütte. 18. Auflage.
Die Pumpen.

durch Exzenter. Der Luftpumpenhub ist hierbei möglichst klein zu halten, um die Beschleunigung zu verringern und um bei stehenden Pumpen genügenden Kolbenquerschnitt für die Unterbringung der Ventile zu erhalten. Es muß die größte Beschleunigung $\frac{v^2}{r}$ kleiner als die Beschleunigung g = 9,8 der Schwerkraft sein, da sonst beim Niedergang Kolben und Wasser sich trennen und erst am Hubende mit Stoß zusammentreffen. Die Zapfen des Gestänges sind für einen Flächendruck von 15 - 20 kg/qcm zu berechnen. Antrieb durch Riemen, s. Fig. 242, und durch kleinere Dampfmaschinen ist namentlich in Amerika beliebt und gelangt auch in Deutsch-

maschinen ist namentlich in Amerika beliebt und gelangt auch in Deutschland wegen der großen Unabhängigkeit bezüglich der Wahl des Aufstellungsortes mehr in Aufnahme.

Die Ventilquerschnitte sind so zu berechnen, als ob der ganze Zylinder mit Wasser gefüllt wäre. Die Durchgangsgeschwindigkeit darf im freien Querschnitt der Ventilsitze bis zu 4 m/sek., am Umfang der Klappen bis zu 3 m/sek. betragen. Ventilhub 8—12 mm. Geschwindigkeit in Saug- und Druckrohr bis zu 2,5 m. Da der freie Sitzquerschnitt der Kolbenventile stehender Pumpen nur $\frac{1}{4}$ des Kolbenquerschnittes ausmachen kann, so ist hier zur Vermeidung übermäßiger Wassergeschwindigkeit die Kolbengeschwindigkeit ≤ 1 m zu wählen.

4. Die Pumpen für Luftförderung allein.

Die Verdichtung der Luft vom Kondensatordruck p_0 auf den atm. Druck bedingt eine ungefähr zehnfache Kompression, bei welcher der Einfluß des schädlichen Raumes auf den volumetrischen Wirkungsgrad und die Erwärmung der Luft von großer Bedeutung sind. Beträgt z. B.

Fig. 254.

der schädliche Raum 5 v. Ht. des Hubvolumnes v und wird bei durchgreifender Wasserkühlung isothermische Kompression angenommen, so wird die Saugleistung bei einer Luftleere $p_0 = 0,1$ kg/qcm ungefähr auf die Hälfte vermindert, gemäß der Gleichung

$$0,05 v \cdot 1 = v' \cdot 0,1; v' = 0,5 v.$$

Die am Ende des Druckhubes im schädlichen Raum zurückgebliebene Luft von atm. Spannung dehnt sich aus, so daß erst nach Zurücklegung von 45 v. Ht. Kolbenweg die Saugspannung erreicht wird und das Saug-

Dubbel, Dampfmaschinen. 3. Aufl.

16

Die Kondensation.

ventil öffnet. Bei einer Luftleere $p_0 = 0.05$ sinkt der Wirkungsgrad sogar auf Null, d. h. es wird nicht mehr angesaugt, sondern die im schädlichen Raum befindliche Luft dehnt sich abwechselnd aus.

Diese Wirkung des schädlichen Raumes wird durch Überströmung der Luft beim Hubwechsel vom schädlichen Raum auf die andere Kolbenseite verringert.

Luftpumpen mit Überströmung.

Bei diesen zuerst von Weiß eingeführten Pumpen wird durch einen meist im Schieber selbst liegenden Umführungskanal unmittelbar hinter dem Kolbentotpunkt der Druckausgleich zwischen beiden Kolbenseiten bewirkt. Die Luft strömt mit atm. Spannung aus dem schädlichen Raum

Fig. 255.

auf die andere Kolbenseite, wo eben die Kompression beginnt, dort die Spannung erhöhend, bis sie dem sich verminderten Druck im schädlichen Raum gleich ist. Fig. 254¹). Der räumliche Wirkungsgrad steigt bis zu 97 v. Ht.

Luftpumpe von Balcke & Co., Fig. 255. Der Lufteintritt wird durch einen Rundschieber, der Austritt durch besondere, direkt an den Luftkanälen sitzende Ventile gesteuert. Diese sind am tiefsten Punkt der Kanäle angeordnet, so daß Wasser, welches in den Luftzylinder gelangt, leicht abfließen kann. Eine Zerstörung des Zylinders durch Wasserschlag ist dadurch ausgeschlossen. Der Rundschieber, welcher in einem für sich abgeschlossenen Raume liegt und beständig

¹) Diagramm einer Kösterschen Luftpumpe (Pokorny & Wittekind).

unter Öl gehalten werden kann, ist mit einem Überströmkanal ausgeführt, welcher in der Kolbentotlage beide Zylinderseiten miteinander verbindet.

Fig. 256. Luftpumpe von Köster, ausgeführt von Pokorny & Wittekind.

Der Schieber läuft nicht in einem Schieberkasten, sondern liegt frei sichtbar, was dadurch erreicht wird, daß Saugstutzen S und Druckstutzen D auf derselben Seite des Schieberspiegels untergebracht sind.

Die Luft gelangt aus dem Kondensator in die Öffnung S und verteilt sich von hier in die Saugräume S_1 und S_2 . In Fig. 256 geht der Kolben nach links, saugt durch M_2 und K_2 aus S_2 Luft an und drückt zugleich auf der linken Seite die beim vorhergehenden Hube angesaugte Luft durch K_1 , P und D ins Freie. Das Exzenter des Schiebers ist gegen die Kurbel um 90° versetzt. Außer den Muscheln M_1 und M_2 , durch welche die Luft in den Zylinder gelangt, und der Muschel P, durch welche der Austritt erfolgt, besitzt der Schieber noch den Kanał A, welcher die Überströmung vermittelt.

Das Rückschlagventil V verhindert, daß Luft von außen in den Zylinder gelangen kann, wenn der Schieber den Druckkanal öffnet und in diesem noch keine atm. Spannung herrscht.

Bei beiden beschriebenen Pumpen ist reichliche Wasserkühlung durch Mantel und Deckel vorgesehen.

e) Die Entölung des Abdampfes¹).

Die Verwendung des Kondensates für die Dampfkesselspeisung ist insofern vorteilhaft, als die im Kondensat enthaltene Wärmemenge ausgenutzt, und insbesondere bei Oberflächenkondensation ein völlig kesselsteinfreies Speisewasser gewonnen werden kann. Vor der Einführung in

¹) H. Kühl, Z. 1904, S. 551.

den Kessel muß das Kondensat von dem in ihm enthaltenen Öl befreit werden, denn die zur Schmierung des Dampfzylinders verwendeten Ölmengen werden nur teilweise in der Maschine verbraucht, der weitaus größte Teil zieht mit dem Abdampf ab. Ölhaltiges Speisewasser verursacht Ölbelag auf den Kesselheizflächen, welcher schon in geringer Stärke die Wärmedurchlässigkeit verringert und bei größerer Ansammlung "Wärmestauungen" herbeiführt, d. h. die Wärme bleibt infolge der verringerten Durchlässigkeit verlieren, so daß unter Umständen Kesselexplosionen die Folge sein können.

Das Öl kann in verschiedenen Arten abgeschieden werden:

- 1. Durch Abstehen in großen Klärteichen oder Gefäßen. Öl und Wasser trennen sich entsprechend dem Unterschied der spez. Gewichte.
- 2. Durch Zusatz chemischer Mittel. Als solche werden Tonerdehydrat, Schwerspat usw. verwendet, welche im Wasser Flocken bilden, an welche die Ölteilchen sich hängen.
- 3. Durch Filtration. Das Kondensat wird durch Schichten von Sand, Kiesel, Sägemehl, Koks oder durch Filtertücher geleitet, welche das Öl aufnehmen, so daß dasselbe nicht zurückgewonnen wird. Nur im Fall der Verwendung von Koks kann dieser nachher als Brennstoff verbraucht und somit auch das Öl verwertet werden. Die Filtriergeschwindigkeit soll 10 bis 15 m/st. betragen, wird jedoch mit Rücksicht auf die Filtergröße häufig überschritten.

Fig. 257—258, Filter von L. Schwarz & Co. Dortmund für eine stündliche Kondensatmenge von 25 cbm. Der in drei Stückgrößen verwendete Koks liegt auf Holzrosten mit gelochten Eisenblechen, welche mittelst Handgriffen leicht herausgenommen werden können. Das Kondensat fließt stets von oben zu, so daß die nicht in Form von Emulsion vorhandene Ölmenge am Überlauf abgezogen werden kann und nicht in die Koksschichten gelangt.

4. Durch Richtungs- und Geschwindigkeitsänderung des Abdampfes Ein guter Ölabscheider muß der Forderung genügen, daß auch an den Kühlflächen der Oberflächenkondensatoren kein Ölbelag entstehen soll, welcher die Wärmedurchlässigkeit verringert. Dieser Bedingung genügen allein die hier zu besprechenden Ölabscheider, welche vor dem Kondensator in die Leitung eingebaut werden, wodurch jedoch keine Behinderung der Dampfströmung bezw. Verlust an Luftleere verursacht werden darf. Das gewonnene Öl, welches durch Pumpen abgezogen wird, kann als Schmiermaterial, die Emulsion als Bohröl benutzt werden. Nachfiltration des Kondensates mit den unter 3. genannten Mitteln ist empfehlenswert.

Fig. 259, Entöler von Klein, Schanzlin & Becker. Der Dampf strömt gegen schräggelegte Winkeleisenroste. Durch den Anprall scheiden sich die schweren Ölteilchen ab und sinken mit dem gleichzeitig ausgeschiedenen Kondensat zu Boden. Über diesem wird häufig ein Sieb-

245

blech angebracht, damit der durchströmende Dampf nicht mit der Öloberfläche in Berührung gelangt.

Fig. 260 zeigt den Entöler der Crimmitschauer Maschinenfabrik.

In demselben befindet sich ein birnenförmiger Hohlkörper, dessen Wandungen mit Fangtellern versehen sind. Über diesen befinden sich Öffnungen, die nach innen zum Ölabfluß führen. Ebensolche Fangteller befinden sich an der Innenwand des äußeren Mantels; dieser trägt seitlich

ein Rohr, durch welches das aufgefangene Öl in den unteren Teil geleitet wird. Der mit verringerter Geschwindigkeit durchströmende Dampf stößt gegen die Teller, welche ihn zu Schlangenwegen zwingen, wodurch die Ölabscheidung bewirkt wird.

Fig. 261, Entöler von H. Reisert. Bei diesem wird die Ölabscheidung durch die Zentrifugalkraft herbeigeführt. Der eintretende Abdampf wird durch eine Spirale in eine kreisende Bewegung versetzt, wobei die schwereren Ölteilchen gegen ein Siebblech geschleudert werden und sich unten sammeln.

Die Wirkungsweise des Kießelbachschen Entölers, Fig. 262 (ausgeführt von Sack & Kiesselbach, Rath) ist grundsätzlich dieselbe wie bei der Reisertschen Vorrichtung, doch wird durch die Zerlegung des Dampfstromes in eine große Anzahl von Einzelströmen eine gründlichere Entölung bewirkt. In dem Entöler von Balcke & Co., Bochum, sind vor die Widerstände Kühlröhren eingeschaltet, welche mit Kühlwasser aus der Druckleitung der Wasserpumpe gespeist werden und die Aufgabe haben, den Dampf abzuschrecken. Das Kondensat wird zwecks vollständiger Reinigung nachträglich durch Kammern mit Sägemehlfilter geführt.

Pokorny & Wittekind, Frankfurt, versehen ihren Zentrifugal-Entöler mit Wassereinspritzung, so daß alle Flächen stetig berieselt werden, und die Ölteilchen nicht auf die Wandung gelangen, sondern auf eine Wasserschicht, mit welcher sie sofort weggeschwemmt werden. Dadurch wird verhindert, daß der Dampf beim Vorbeistreichen an den Wandungen von diesen Öl mitnimmt. Das dem Kühlwasser entnommene Einspritzwasser nimmt auf dem Wege zum Entöler nahezu Dampftemperatur an, so daß es dem Dampf außer dem Öl nur verschwindend wenig Niederschlagwasser entzieht.

Was die Wirksamkeit der Ölabscheider betrifft, so können nach einem Versuch von v. Bach¹) mit derselben Vorrichtung bei Verwendung verschiedenartiger Öle ganz verschiedene Ergebnisse erzielt werden. Der Wirkungsgrad ist besonders vom Gehalt des Schmieröles an verseifbaren Fetten abhängig, welche die Bildung einer Emulsion sehr befördern und dadurch die Ausscheidung erschweren.

Die das Öl abziehenden Pumpen arbeiten vielfach ohne Saugventile; das Öl- und Wassergemisch tritt durch Schlitze in den Pumpenstiefel. Am Ende des jeweiligen Pumpenhubes wird eine Verbindung des Pumpeninneren mit der Luftleere hergestellt, so daß während der Einströmung des Ölwassers eine ebenso hohe Luftleere im Pumpenraum wie im Kondensator vorhanden ist. Das Ölwasser läuft mit seinem natürlichen Gefälle ein und ein Versagen ist ausgeschlossen.

f) Die Rückkühlung²).

Ist für den Kondensationsbetrie b nicht genügend Kühlwasser vorhanden, so kann die zur Kühlung gebrauchte Wassermenge nach Austritt aus dem Kondensator künstlich abgekühlt werden, so daß dieselbe Wassermenge einen beständigen Kreislauf beschreibt und nicht erneuert zu werden braucht. Zu diesem Zweck wird das Wasser durch sogenannte "Rückkühlanlagen" geführt, in welchen es fein verteilt mit der durchströmenden Luft in innige Berührung gebracht wird. Die im Kondensator aufgenommene Wärme wird dem Wasser in der Hauptsache durch Verdunstung und durch Erwärmung der Luft entzogen.

Der Wärmeentzug durch die Verdunstung kann in einfachster Weise berechnet werden. Streichen L kg Luft von t^o_e durch das Kühlwerk und treten sie aus diesem mit der Temperatur t^o_a aus, so haben sie insgesamt

$$\mathrm{L} \cdot \mathrm{c}_{\mathrm{p}} \; (\mathrm{t}_{\mathrm{a}} - \mathrm{t}_{\mathrm{e}})$$

W. E. aufgenommen, wenn $c_p = 0,24$ spez. Wärme.

¹) Z. 1903, S. 206.

²) Nach Otto H. Müller jr. in Z. 1905, S. 5 u. f. Dieser Abhandlung sind die Fig. 263-266, sowie Fig. 268 entnommen.

Nach dem Daltonschen Gesetz können Luft und Dampf in demselben Raume unabhängig voneinander bestehen. Ist z. B. die Luft mit Wasserdampf von 15^o gesättigt, so entspricht dieser Dampftemperatur ein Druck von 12,7 mm Quecksilbersäule, so daß, wenn das Barometer einen Druck von 760 mm anzeigt, der Druck der Luft allein 760 — 12,7 = 747,3 mm betragen muß.

İst die Atmosphäre nur halb mit Wasserdampf gesättigt, so wird der Dampfdruck jetzt nur die Hälfte — 6,35 mm — betragen und der Luftdruck ist entsprechend größer. Dem Druck von 6,35 mm entspricht eine Temperatur von 5⁰, da aber der Dampf die Temperatur 15⁰ des Gemisches aufweist, so muß er überhitzt sein. Kühlt man das Gemisch ab, so nimmt die Sättigung relativ zu, bis die Atmosphäre bei 5⁰ voll gesättigt ist. Bei 5⁰ liegt der Taupunkt, denn weitere Abkühlung bewirkt Kondensation des Wasserdampfes.

Umgekehrt folgt, daß gesättigte Atmosphäre durch Erwärmung an Sättigung verliert und befähigt wird, weitere Dampfmengen aufzunehmen. Hierin besteht ihre wertvollste Eigenschaft für den Rückkühlbetrieb.

Die in der Atmosphäre vertretene Wärme beträgt $d_e = \alpha_e \cdot \lambda_e \cdot \gamma_e \cdot v_e,$ worin

 $\begin{array}{l} \alpha_{\rm e} = {\rm S\"attigungsgrad}, \\ \lambda_{\rm e} = {\rm Gesamtw\"arme} \ {\rm des} \ {\rm Wasserdampfes}, \\ \gamma_{\rm e} = {\rm spez.} \ {\rm Gewicht}, \\ v_{\rm e} = \frac{{\rm R}\cdot {\rm T}_{\rm e}}{p_{\rm e}} = {\rm Volumen} \ {\rm von} \ 1 \ {\rm kg} \ {\rm Luft}. \end{array}$

Ist in der austretenden Luft die Wärmemenge $d_a = \alpha_a \lambda_a \gamma_a v_a$ enthalten, so hat die Atmosphäre an Wärme insgesamt aufgenommen:

 $\mathbf{L} \left[\mathbf{c_p} \left(\mathbf{t_a} - \mathbf{t_e} \right) + \left(\mathbf{d_a} - \mathbf{d_e} \right) \right].$

Aus der graphischen Darstellung, Fig. 263, können die in der Atmosphäre vertretenen Wärmemengen abgelesen werden. Als Abszissen sind die trocken gemessenen Temperaturen, als Ordinaten die Anzahl der W. E. bei verschiedenen Sättigungsgraden aufgetragen.

Die durch den Nullpunkt gehende schräge Gerade stellt die Wärme $c_p \cdot t$ der trockenen Luft dar, die darüber liegenden Strecken geben sonach die durch den Wasserdampf in der Atmosphäre vertretenen Wärmemengen $\alpha_0 \lambda_0 \gamma_0 v_0$ an.

mengen $\alpha_0 \ \lambda_0 \ \gamma_0 \ v_0$ an. In Fig. 264 ist ein Teil dieser graphischen Darstellung vergrößert wiedergegeben. Zieht man durch den zu 15° gehörigen Punkt *a*, welcher zugleich 50 v, Ht. Sättigung angibt, eine Parallele zu *o l*, so gelangt man auf der 100 v. Ht. Sättigung anzeigenden Kurve zum Punkt *b*, dem Taupunkt, zu welchem eine Temperatur von 5° gehört.

Eine Wagerechte, durch denselben Punkt a gezogen, ergibt den zur Temperatur von 9,5° gehörenden Punkt c, d. h. Atmosphäre von 15° und 50 v. Ht. Sättigung hat denselben Wärmewert wie solche von 9,5° und 100 v. Ht. Sättigung.

Im vorliegenden Fall bezeichnet Punkt c die "Kühlgrenze", die tiefste Temperatur, auf welche gekühlt werden kann.

Diese kann durch das sog "feuchte Thermometer" bequem festgestellt werden. Die Kugel eines im Schatten hängenden Quecksilberthermometers wird mit feuchter Gaze umwickelt und befächelt, wobei die Temperatur sinkt. Die Kühlgrenze ist erreicht, wenn ein weiteres Sinken nicht mehr stattfindet. Weiteres Fächeln befördert zwar die Verdunstung, führt aber keine Temperaturerniedrigung herbei, da die durch die Verdunstung entzogene Wärme dem Wasser durch die Luft wieder ersetzt wird.

Durch Vergleich der Temperatur des feuchten Thermometers mit der trocken gemessenen ergibt sich nach Fig. 263 leicht der Feuchtigkeitsgehalt der Atmosphäre.

Die Kühlgrenze zeigt die physikalisch mögliche Temperatur an, bis auf welche das Wasser abgekühlt werden kann. Als Maximalkühlgrenze im Hochsommer kann für Nord- und Mitteldeutschland 20° C, für Süddeutschland 22° C angenommen werden.

Werden nun im Beharrungszustand eines Betriebes z. B. 600 000 W. E. stündlich an das Kühlwerk abgegeben, und beträgt die umlaufende Wassermenge 30 cbm, so wird sich deren Temperatur um 20^o erhöhen. Nur die Lage, nicht die Breite dieser Kühlzone kann geändert werden. Bei einem guten Kühler werden die Temperaturen vielleicht zwischen 20^o und 40^o, bei einem schlechten zwischen 60^o und 40^o liegen. Der Abstand der Mitteltemperatur von der Kühlgrenze ist für den Gütegrad des Kühlers maßgebend.

Als zweckmäßige Breite der Kühlzone ist nach Otto H. Müller ein Abstand der Wassertemperaturen von 14 bis 15^o C anzusehen.

In Fig. 265 sind Versuchsergebnisse dargestellt, welche an dem eisernen Worthington-Kühlturm des Stuttgarter Elektrizitätswerkes festgestellt wurden. Die Abdampfmengen waren hierbei nach beistehender Zahlentafel sehr verschieden, während das Verhältnis der Kühlwassermenge zur Abdampfmenge (40:1) annähernd konstant blieb.

Versuchs- gruppe	Mittelwert der Abdampfmenge	Versuchs- gruppe	Mittelwert der Abdampfmenge
a	2330	k	5550
b	2650	1	6100
с	2950	m	6700
d	3250	n	7350
е	3550	0	8100
f	3850	p	8950
g	4200	a	9850
ĥ	4600	r	11150
i	5050		

Die Kurven geben für die verschiedenen Anzeigen des feuchten Thermometers nur die Wassertemperaturen an, da diese sowohl für die Höhe der Luftleere als auch für die Haltbarkeit der Gummiklappen hauptsächlich in Betracht kommen.

Der Temperaturabstand betrug durchschnittlich 15,6° C. Die in dieser Entfernung zur τ -Linie gezogene, strichpunktierte Parallele gibt somit die für ein vollkommenes Kühlwerk eben noch möglichen Warmwassertemperaturen an, wenn mit einer Kühlwassermenge gleich 40 fachem Dampfgewicht gearbeitet wird.

Wie ersichtlich, nehmen die Warmwassertemperaturen bei größerer Belastung zu, trotzdem das Kühlwasserverhältnis und damit die Kühlzonenbreite unveränderlich sind. Die dann abzuführenden, größeren Wärmemengen erfordern größere Luftgewichte, d. h. verstärkten Auftrieb, der beim "Anlauf" bis zum Erreichen des Beharrungszustandes zunehmen muß. Die Stärke des Auftriebes hängt aber von den Wassertemperaturen bezw. der Temperatur im Innern des Kühlers ab.

Das Diagramm Fig. 266 gibt Versuche an dem Worthington-Kühler des Elektrizitätswerkes Leipzig-Lindenau wieder. Bei diesen Versuchen wurde die Wasserumlaufmenge geändert. Aus dem Diagramm geht hervor,

daß die Schwankungen der Mitteltemperatur kleiner als diejenigen der Wärmezufuhr sind. Im Falle gleichbleibender Wärmezufuhr bewegen sich die Warmwasser- und Kühlwasser-Temperaturlinien bei Änderung der Umlaufmenge um gleiche Beträge nach jeder Seite der Mitteltemperatur.

Durch Erhöhung des Wasserumlaufes wird somit die Warmwassertemperatur herabgezogen und die Luftleere verbessert, ein Umstand, welcher besonders bei Anwendung von Dampfturbinen von Wichtigkeit ist, so daß hier die größere Pumpenarbeit wohl aufgewendet werden darf.

Erhöhung des Kühlwasserumlaufes im Kühler allein, also nicht gleichzeitig im Kondensator, ist hingegen nicht nur nutzlos, sondern unmittelbar schädlich.

Bei der Anschaffung einer Rückkühlanlage sind sonach die stündliche Abdampf- und Kühlwassermenge dem Erbauer anzugeben. Dieser hat auf Grund der Angaben die Höhenlage der Kühlzone — und zwar für die verschiedenen Außenlufttemperaturen und Feuchtigkeitsgrade der Atmosphäre — zu gewährleisten. Die Kondensation.

Weißsetzt: die Ansichtsfläche eines offenen Gradierwerkes $\mathbf{F} = \frac{1}{24} \cdot \mathbf{V}$, die Grundfläche von Kaminkühler $\mathbf{F} = \frac{1}{17} \cdot \mathbf{V}$,

worin V = minutl. Luftmenge in cbm, um pro Minute die verlangte Anzahl von kg Wasser zu kühlen.

Zur Rückkühlung werden verwendet:

1. Gradierwerke. Dieselben bestehen aus einem Holzgerüst, auf welchem in mehreren Stockwerken Reiser, Latten usw. untergebracht sind. Das aus dem Kondensator kommende Wasser gelangt aus einem Haupttrog in mehrere kleine Tröge, von welchen es durch seitlich und am Boden befindliche Öffnungen auf die Reiser gelangt. Die Kühlwirkung ist eine sehr energische und kann bis unter die Lufttemperatur erfolgen. Der feine Wasserstaub und Dunst sind für die Umgebung belästigend. 2. Kühlwerke mit künstlichem Zug. Diese werden neuerdings meistens als Kaminkühler ausgeführt, bei welchem sich über dem Gradierwerk ein kaminähnlicher Aufsatz befindet, so daß die im Innern des Kühlers befindliche warme Luft nach oben strömt und kalte Luft nachsaugt. Infolge ihrer Unabhängigkeit von der Windstärke brauchen sie nicht wie die Gradierwerke frei aufgestellt zu werden.

Die Fig. 267 und 272 zeigen zwei Ausführungen von Balcke & Co., Bochum. Die in etwa $\frac{1}{4}$ der Höhe eingebaute Wasserkühlvorrichtung besteht im wesentlichen aus den Trögen, den Rieselrinnen und Rieselböden. Die Luft strömt durch seitliche Öffnungen ein. Das gekühlte

Wasser sammelt sich unten in einem Behälter. Von der Ausführung in Fig. 272 unterscheidet sich die in Fig. 267 dadurch, daß die Wasserkühlvorrichtung unterhalb des Erdbodens in einer gemauerten Grube untergebracht ist. Diese Anordnung hat für die gewöhnlichen Naßluftpumpen den großen Vorzug, daß das warme Wasser der Kühlvorrichtung nicht zugehoben zu werden braucht.

Ist der Raum für die Unterbringung des Kühlers sehr beschränkt, so kann der erforderliche Luftzug durch Ventilatoren erzeugt werden, deren Kraftverbrauch jedoch ziemlich bedeutend ist. Für Wasserhebung und Ventilator zusammen werden 4,5 bis 6 v. Ht. der Maschinenleistung erforderlich.

Die Kaminkühler können in Holz, Mauerwerk oder Eisen ausgeführt werden. Infolge der großen Höhe eiserner Kühler nach Fig. 267 kann durch den entstehenden scharfen Luftzug eine bedeutende Leistung auf kleiner Grundfläche erreicht werden, ein Umstand, der im Verein mit der größeren Haltbarkeit und Feuersicherheit den Hauptvorteil gegenüber den hölzernen Kühlern bildet. Das Wasser wird häufig durch verzinkte Siebbleche verteilt, deren Wärmeleitfähigkeit den Wärmeaustausch begünstigt.

Besonders weite Verbreitung haben die eisernen Worthington-Kühler gefunden, deren Füllung aus Rohren besteht, welche jedoch nicht in geschlossener Form angewandt, sondern auf dem Bauplatz aus rechteckigen Blechen von $\frac{1}{2}$ mm Stärke gerollt werden. Die Rohre, welche mit Schlitzen ineinandergreifen, werden in Schichten von 200 bis 300 mm Höhe aufeinandergebaut und von einem aus Flacheisen zusammen gesetzten Rost getragen.

Bei Anwendung eines Ventilators darf die bei natürlichem Zug 4,5 bis 5 m hohe Blechfüllung auf 6 m erhöht werden.

Ein nach Art der Segner-Räder sich drehendes Röhrenkreuz verteilt das Aufschlagwasser gleichmäßig über den Kaminquerschnitt, Fig. 268. Das warme Wasser gelangt durch ein in der Mitte des Kühlturmes aufwärts geführtes Rohr in einen Sammler, aus welchem es durch mehrere Rohrarme auf den Kühler gelangt. Das Wasser fließt durch eine große Anzahl kleinerer, von außen an den Rohrarmen angebrachten Ansatzröhrchen aus, welche leicht herausgeschlagen und gereinigt, bezw. ersetzt werden können.

Die Ausbildung des Hohlzapfens als Differentialzapfen ermöglicht teilweise Aufhebung des Verteilergewichtes durch den aufwärts gerichtetem Druckunterschied.

3. Streudüsen-Anlage nach Körting. Im Inneren der Düse, Fig. 269, ist ein festsitzender Schraubengang angebracht, welcher dem hindurch-

strömenden Wasser eine drehende Bewegung erteilt, so daß der Wasserstrang nach Verlassen der Düse durch Zur Erzielung einer die Fliehkraft zerstäubt wird. möglichst feinen Verteilung ist es zweckmäßig, Düsen von höchstens 10 mm Durchmesser zu benutzen und so aufzustellen, daß der verfügbare Raum völlig von dem Wasserstaub ausgefüllt wird. Das zerstreute Wasser soll sich ohne Verlust in einem dicht gemauerten oder eisernen Behälter sammeln können. Die Düsen sind in solcher Weise zu verteilen, daß die am Rande des Behälters angebrachten eine Neigung nach der Mitte hin von ungefähr 70° gegen die Wagerechte besitzen, während die mittleren senkrecht stehen. Die Entfernung der Düsen voneinander soll mindestens 1,5 m betragen. Der Wasserdruck vor den Düsen braucht zur Erzielung einer feinen Verteilung nicht größer als 1 atm. zu sein. Körting-

sche Anlagen kühlen das Wasser bei warmer, trockener Luft auf Luftwärme, bei warmer, mitteltrockener Luft auf 3 bis 4° C über Luftwärme und bei kühler, feuchter Luft auf 8 bis 9° über Luftwärme ab.

Die erforderliche Grundfläche beträgt bei freier Aufstellung für eine Düse bis 10 mm Durchmesser etwa 6 qm, für eine Düse bis zu 18 mm Durchmesser etwa 9 qm. Pumpenarbeit = 1,5 bis 2 v. Ht. der Maschinenleistung.

4. Kühlteiche. Diese stellen die einfachste Form der Rückkühlanlagen dar. Das heiße Wasser fließt in einen großen Teich, an dessen entgegengesetztem Ende das gekühlte Wasser wieder angesaugt wird. Die Kühlung erfolgt durch Verdunstung und Lufterwärmung nur an der Oberfläche und ist namentlich im Sommer sehr gering. Der Boden muß wasserdicht ausgemauert oder ausbetoniert sein. 1 PS erfordert ungefähr 3 qm Grundfläche.

g) Zentralkondensationen.

In den räumlich ausgedehnten Betrieben der Berg- und Hüttenwerke würde die Ausführung von Einzelkondensatoren sehr umständlichen Betrieb verursachen, ganz abgesehen von den Schwierigkeiten, wie sie z. B. bei den Kondensatoren von Reversiermaschinen auftreten würden. In solchen Fällen ist es von Vorteil, sämtliche Abdampfleitungen einem gemeinschaftlichen Kondensator zuzuführen. Wie der Dampfdruck der Kesselbatterien selbst bei dem aussetzenden Betrieb der Förder- oder Walzenzugmaschinen nur wenig schwankt, da diese Maschine einerseits nur einen Teil der gesamten Dampferzeugung beanspruchen, während sich andererseits die Schwankungen ausgleichen, so wird auch die Luftleere der Zentralkondensation beständiger bleiben. Die Trennung gibt weiterhin die Möglichkeit, die Pumpenanlage infolge ihrer Unabhängigkeit von anderen Maschinen ihren Eigenheiten entsprechend besser durchzubilden; auch wird die ganze Anlage übersichtlicher.

Bei der Berechnung der Zentralkondensation ist wieder die sekundliche Dampfmenge zugrunde zu legen, wie sie sich aus der Speisewassermessung bezw. aus den Garantiezahlen — in diesem Fall mit reichlichem Zuschlag — ergibt.

Die durch Undichtheiten eindringende Luftmenge kann nach der Weißschen Formel S. 220 berechnet werden; andere Konstrukteure nehmen je nach Umfang und Zustand der Rohrleitungen für das anzusaugende Luftvolumen in 1 das 50- bis 70 fache des Dampfgewichtes an.

Fig. 270 stellt eine Weißsche Gegenstromkondensation dar. Wird der Kondensator so hoch über Flur gestellt, daß seine Unterkante in einer Höhe von ungefähr 10,5 m über dem Warmwasserbehälter liegt, so kann das Wasser durch ein barometrisches Abfallrohr statt durch eine Pumpe abgezogen werden. Durch den äußeren Atmosphärendruck wird das Wasser im Abfallrohr je nach Größe der Luftleere mehr oder weniger hochgedrückt. Dieselbe Wassermenge, welche oben eintritt, läuft unten ab. Hierbei sind meist zwei Wasserpumpen erforderlich: die eine hebt das Wasser auf den Kühler, während die andere das gekühlte Wasser in den hochstehenden Kondensator schafft. Letztere Pumpe wird entbehrlich, wenn durch ein hochstehendes Gradierwerk selbsttätiges Ansaugen durch den Kondensator ermöglicht wird (H + a = 0 oder negativ). Diese Vereinfachung beeinträchtigt aber die Betriebssicherheit, da der Kondensator das Wasser gänzlich fallen läßt, falls die Luftleere durch

vermehrten Dampfzufluß derart sinkt, daß das Kühlwasser nicht mehr angesaugt wird.

Ist die Luftleere Schwankungen unterworfen, so wird die Wassersäule im Abfallrohr auf und niedergehen und unter Umständen das Abdampfrohr *B* unter Wasser setzen. Um dies zu verhindern, ist am Fuße des Abfallrohres eine Rückschlagklappe angebracht, so daß das Wasser zurückfallen, aber nicht aufsteigen kann.

Im Wasserabscheider J sondert sich das mit der Luft durch das Rohr E_1 abgezogene Wasser ab, ehe die Luft durch Rohr E der trockenen Luftpumpe zuströmt. Die Fortsetzung des Wasserabscheiders als Fallrohr J_1 hat folgenden Zweck:

Ist die Luftpumpe zu groß geraten, so wird sie aus dem oberen Teil des Kondensators nicht nur die dort vorhandene Luft ansaugen, sondern auch Dampf nach oben ziehen, der sich an dem dort eintretenden Kühlwasser kondensiert und durch Rohr E_1 abfließt. Wäre Rohr E die direkte Fortsetzung von E_1 , so würde der Luftpumpenzylinder voll Wasser laufen. Überschreitet die Luftleere den physikalisch möglichen Betrag, so fließt sogar alles Wasser durch Rohr J_1 ab, während der Austritt durch Rohr A bei gleichzeitiger Verschlechterung der Luftleere aufhört¹.

Dieser anormale Zustand, welcher andauern will, kann beseitigt werden, indem durch den Lufthahn P_1 soviel Luft zugelassen wird, als die Luftpumpe mehr anzusaugen bestrebt ist. Um diese Luftzufuhr

¹) Der unterste Grenzwert für die Kondensatorspannung ist die der Austrittstemperatur t_a entsprechende Spannung des gesättigten Wasserdampfes ($p = d_{ta}$). Dieser physikalisch mögliche Betrag der Luftleere kann bei Parallelstromkondensation nur bei unendlich großer Luftpumpe, bei Gegenstrom durch eine Luftpumpe von endlicher Größe erreicht werden.

Nach dem Mariotteschen Gesetz wird $v \cdot l = L \cdot p = L \cdot l$, wenn

v das Volumen der minutlich in den Luftpumpenzylinder tretenden Luft vom Druck 1,

L das Volumen der minutlich in den Kondensator eindringenden Außenluft vom atm. Druck p = 1 ist.

Hieraus folgt der Luftdruck: $1 = \frac{L}{v}$, und es wird der Kondensatordruck:

$$\mathbf{p}_{\mathbf{par}} = \frac{\mathbf{L}}{\mathbf{v_0}} + \mathbf{d_{ta}}$$

bei Parallelstrom,

$$p_{geg} = \frac{L}{v_0} + d_{te + \alpha}$$

bei Gegenstrom. (Bezüglich α s. Anmerkung auf S. 197.)

Setzt man hierin den Wert $p = d_{ta}$ ein, so wird die Luftpumpenleistung v_{max} zur Erzielung des erwähnten Grenzwertes:

$$\mathbf{v}_{\mathrm{par}} = \infty$$
 $\mathbf{v}_{\mathrm{geg}} = rac{\mathrm{L}}{\mathrm{d}_{\mathrm{a}} - \mathrm{d}_{\mathrm{te} + lpha}}$

für Parallelstrom

Dubbel, Dampfmaschinen. 3. Aufl.

Die Kondensation.

selbsttätig zu bewirken, ist an dem Lufthahn P ein Querhebel angebracht, der auf der einen Seite ein Gegengewicht, auf der anderen einen Eimer trägt, in dessen Boden eine Öffnung ist. Tritt das Wasser durch Rohr J_1 aus, so füllt sich der Eimer, öffnet den Lufthahn und schließt denselben erst, wenn der Wasserzufluß aufhört, da dann das im Eimer befindliche Wasser durch die Bodenöffnung abläuft.

Wie leicht ersichtlich, beträgt die Druckhöhe der Umlaufpumpe H + a und wird = a, wenn die Wasserspiegel im Warm- und Kühlwasserbehälter auf gleicher Höhe liegen.

Fig. 271. Kondensation von Pokorny & Wittekind, Frankfurt. An den Oberflächenkondensator ist ein Nachkondensator mit Einspritzung

angeschlossen, in welchem eine entsprechend kalte Temperatur herrscht. Hierdurch wird erreicht, daß der Dampfdruck in diesem Raum sehr klein wird, da nun aber der Druck in den beiden unmittelbar in Verbindung stehenden Räumen ein und derselbe ist, so wird die Luft gezwungen, den Druckausgleich herzustellen und nach Eintritt in den Hauptkondensator sogleich in den Nachkondensator zu strömen, wo sie von der Luftpumpe im gekühlten Zustand, also mit kleinstem Volumen ab-

Der Oberflächenkondensator wird ohne Scheidewände ausgeführt. Eine oben angebrachte Wulst dient dazu, den Dampfstrom gleichmäßig verteilt und mit wenig Querschnittsverengerung in das Rohrbündel einzuführen. Der Wasserraum des Oberflächenkondensators ist durch eine oben angeschlossene Rohrleitung mit dem Vakuumraum verbunden, so daß bei der Inbetriebsetzung die Luftpumpe auch den Wasserraum luftleer pumpt. Tauchen nun die beiden Enden der Kühlwassersaug- und

gesaugt wird.

Druckleitung in das Wasser ein, so wird dieses durch den atm. Druck in den Wasserraum gehoben, und ist das genannte Verbindungsrohr 10 m über Wasserspiegel geführt, so kann das Kühlwasser nicht in den Vakuumraum gelangen, sondern es wird, wenn die beiden Wasserspiegel im Kaltund Warmwasserbehälter sich in gleicher Höhe befinden, stehen bleiben und nur den Wasserraum des Kondensators und das Verbindungsrohr anfüllen. Liegt der Kaltwasserspiegel höher als der Warmwasserspiegel, so wird auch ohne Pumpe ein Kühlwasserumlauf nach Heberart erfolgen; liegen beide Wasserspiegel auf derselben Höhe, so braucht die einzuschaltende Pumpe nur die Bewegungswiderstände zu überwinden.

Fig. 272 gibt eine Zentralkondensation von Balcke & Co., Bochum, wieder. Der Abdampf tritt aus dem Dampfentöler in den geschlossenen Oberflächenkondensator, aus welchem das Kondensat unten abgezogen wird. Kondensat- und Ölwasserpumpe sind vereinigt, der gemeinsame Plunger wird vom Kreuzkopf der Dampfmaschine angetrieben. Gemeinsam mit dem Kondensat wird das von der oben abziehenden Luft im Wasserabscheider zurückgelassene Wasser abgesaugt. Die mit Druckausgleich ausgeführte Luftpumpe zeigt die in Fig. 255 wiedergegebene Bauart. Das austretende Heißwasser wird vor Einlauf in den Kaminkühler entlüftet. Der Abdampf der Betriebsmaschine wird wegen der Entölung nicht direkt in den Kondensator, sondern in die Hauptabdampfleitung geführt.

Mitunter legt man den Misch-Kondensator so hoch über das Gradierwerk, daß das heiße Wasser direkt zum Kühlwerk abfällt und nicht erst von einer zweiten Pumpe gehoben zu werden braucht. Das zum Gradierwerk führende Rohr muß natürlich als barometrisches Abfallrohr ausgeführt werden.

h) Der Nutzen der Kondensation.

Beträgt der nach S. 39 bestimmte Nutzdampfverbrauch D_n kg, und stellt sich bei der Aufzeichnung eines dem aufgenommenen Auspuffdiagramm gleichgroßen Diagramms mit Kondensation heraus, daß die infolge der kleineren Füllung erzielte Ersparnis an Nutzdampf $\varrho \cdot D_n$ beträgt, so ergibt sich die auf den Gesamtdampfverbrauch $D = (1 + \alpha) \cdot D_n$ bezogene Dampfersparnis zu:

$$\eta = \frac{\varrho \cdot \mathbf{D}_{\mathbf{n}}}{\mathbf{D}} = \frac{\varrho \cdot \mathbf{D}_{\mathbf{n}}}{(1+\alpha) \cdot \mathbf{D}_{\mathbf{n}}} = \frac{\varrho}{1+\alpha}$$

Der Koeffizient α , welcher die durch Abkühlung und Undichtheit entstehenden Verluste proportional dem Nutzdampfverbrauch schätzt und durch Speisewassermessung in jedem einzelnen Fall ermittelt werden kann, hat nach Weiß für Auspuffmaschinen den Mittelwert:.

 $\alpha = 0.55$ bei Einzylindermaschinen,

 $\alpha = 0.35$ bei Zweifachexpansionsmaschinen,

 $\alpha = 0.25$ bei Dreifachexpansionsmaschinen.

Sonach würde bei einer Einzylindermaschine, wenn die Ersparnis an Nutzdampf aus dem Diagramm zu 35 v. Ht. bestimmt worden wäre, der Nutzen durch Anhängung einer Kondensation: Der Nutzen der Kondensation.

$$\eta = rac{arrho}{1+lpha} = rac{0,35}{1+0,55} = 0,226.$$

Diese Berechnungsweise bezieht sich hauptsächlich auf nachträgliche Anbringung einer Kondensation an einer vorhandenen Anlage, da für neue Maschinen meist bestimmte Verbrauchsziffern bekannt sind, bezw. aus dem Folgenden berechnet werden können.

Bei Kondensationsmaschinen ist der Koeffizient α' wegen der größeren Temperatur- und Druckunterschiede mit einem Faktor a > 1 zu multiplizieren, so daß $\alpha' = a \cdot \alpha$.

Werden die oben angegebenen Werte von *a* für einen Gegendruck von 1 atm. angenommen, und sollen sich dieselben proportional der Gegendruckabnahme so vergrößern, daß $\alpha' = 1.4 \alpha$ für $p_1 = 0.2$ wird, so erhält man:

$$\mathbf{a}=\mathbf{1}+\frac{\mathbf{1}-\mathbf{p_1}}{2},$$

so daß für Kondensationsmaschinen:

$$a' = \left(1 + \frac{1 - \mathbf{p}_1}{2}\right) \cdot a.$$

Als Dampfverlustkoeffizient folgt hiernach z. B. für eine Dreizylindermaschine mit Kondensation bei einem Gegendruck $p_1 = 0.15$ atm.:

$$lpha' = \left(1 + \frac{1 - 0.15}{2}\right) \cdot 0.25 = 0.36.$$

Hohe Luftleere ist nun nicht immer ein Beweis für die Wirtschaftlichkeit einer Kondensationsanlage. Ist z. B. bei einem Gegenstromkondensator die Kühlwassertemperatur $t_0 = 30^{\circ}$, so erfordert ein Kondensatordruck von 0,16 atm. 22 kg Wasser pro 1 kg Dampf; soll die Luftleere auf 0,08 atm. sinken, so werden für jedes kg Dampf 47,5 kg Kühlwasser nötig. Um sonach 0,08 Luftleere zu gewinnen, müssen die Kühlwassermenge und damit Bemessung und Arbeitsbedarf der Pumpe um mehr als das Doppelte vergrößert werden, so daß sowohl die zu verzinsenden und zu tilgenden Anschaffungskosten, als auch die laufenden Betriebskosten steigen.

Die größere Luftleere verursacht hingegen keine Zunahme der durch Undichtheiten eindringenden Luftmenge, denn diese erreicht ihren größten Endwert, wenn das Verhältnis:

$$\frac{\text{Kondensatordruck } p_0}{\text{Außendruck } 1} = 0.5$$

ist, und bleibt von da ab konstant.

Sonach dringt bei einer Kondensatorspannung $p_0 = 0,1$ kg/qcm dieselbe Luftmenge ein wie bei $p_0 = 0,5$ kg/qcm. Die von der Luftmenge abhängigen Pumpenabmessungen brauchen

Die von der Luftmenge abhängigen Pumpenabmessungen brauchen demnach nur soweit vergrößert zu werden, als durch die Ausdehnung der Luft auf den niedrigeren Partialdruck $l = p_0 - d$ bedingt ist.

Wird das Kondensat zur Kesselspeisung benutzt, so kommt außerdem noch der Verlust an Vorwärmung des Speisewassers in Betracht.

Bezeichnen N_i die Anzahl der PS_i , n der Dampfverbrauch pro PS_i -Stunde in kg, so gehen mit je 1 Grad Temperaturerniedrigung $(n \cdot N_i)$

W. E. für die Vorwärmung verloren. Bezeichnet η den thermischen Wirkungsgrad, d. h. das Verhältnis der ausgenutzten Wärme zur ganzen, der Maschine zugeführten Wärme, so hätten von diesen $(n \cdot N_i)$ W. E. in der Maschine umgesetzt werden können: $\eta \cdot n N_i \cdot 424$ mkg.

Verursachte 1° Temperaturerniedrigung eine Zunahme des mittleren Druckes um dp, so wurde andererseits eine stündliche Mehrleistung von der Größe: $O \cdot c \cdot dp \cdot 3600$ mkg erzeugt, worin O =Kolbenfläche, c =sek. Kolbengeschwindigkeit. Sind beide Arbeitsmengen einander gleich, d. h. ist:

$$\eta \cdot \mathbf{n} \mathbf{N}_{i} \cdot 424 = \mathbf{O} \cdot \mathbf{c} \cdot \mathbf{dp} \cdot 3600,$$

so ist die Grenze für die Temperaturerniedrigung gegeben.

Eingehende Versuche sind von Prof. Josse¹) an einer rd. 180 PS_{i} leistenden Dreifachexpansionsmaschine mit Oberflächenkondensation angestellt worden.

Wurde das aus dem Kondensator ablaufende von Öl gereinigte Kondensat mit dem Dampfwasser der Heizmäntel in den Kessel zurückgeführt, so stellte sich beim Betrieb mit gesättigtem Dampf der gesamte Rückgewinn an Wärme auf 7,6 v. Ht. bei 90 v. Ht. Luftleere, 10 v. Ht. bei 80 v. Ht. Luftleere und 12,5 v. Ht. bei 70 v. Ht. Luftleere.

Dementsprechend ergab sich der günstigste Wärmeaufwand für die PS_i -Stunde nicht bei 0,1 kg/qcm, sondern bei 0,2 kg/qcm Gegendruck. Bei Betrieb mit überhitztem Dampf zeigte sich zwischen dem kleinsten Gegendruck bei 90 v. Ht. Luftleere und dem größten bei 70 v. Ht. Luftleere überhaupt kein merklicher Unterschied im Wärmeverbrauch.

Bezieht man den Wärmeverbrauch auf die PS_e -Stunde, so wird mit Rücksicht auf die bei größerer Luftleere zunehmende Arbeit der Kühlwasserförderung die geringere Luftleere wirtschaftlich vorteilhafter. Bei ortfesten Anlagen, bei welchen die Kondensation nicht zu weit von der Dampfmaschine entfernt liegt, dürfte die günstigste Luftleere 80 v. Ht. betragen, vorausgesetzt, daß der Rückführung des Kondensates in den Kessel die gebührende Beachtung geschenkt wird.

Bei den Dampfturbinen, bei welchen die Luftleere sich auf eine größere Diagrammlänge geltend macht und außerdem eine Verringerung der Reibungs- und Ventilationsverluste bei Verringerung der Dampfdichte stattfindet, soll die Luftleere möglichst groß sein.

Höchste Luftleere ist nur wirtschaftlich bei sehr hohen Kohlenpreisen und bei reichlich vorhandenem Kühlwasser. Besonders bei großen Anlagen mit Rückkühlung wird die Aufstellung einer Rentabilitätsrechnung stets erforderlich.

Eine derartige Rechnung, welche von Weiß²) für die Zentralkondensation einer aus 3 gleichen Verbundmaschinen und 4 gleichen Einzylindermaschinen bestehenden Anlage von 5500 PS durchgeführt ist, zeigt beistehende Zahlentafel.

¹) Josse, Neuere Wärmekraftmaschinen, S. 38 u. f.

²) Weiß, Kondensation. S. 200.

Der Nutzen der Kondensation.

1.	$Kondensatordruck \ p_0 =$	0,48	0,4	0,32	0,24	0,16	0,08	Atm.
2.	Anlagekapital	88 000	91 000	98 000	110 000	$137\ 800$	190 000	Mk.
3.	Bruttonutzen	74100	84 900	103 000	$117\ 200$	133 000	146100	Mk. pr. Janr
4. 5.	ab:Eigenkraftverbrauch Nachwärmung des	14 650	16 250	17 650	21 200	27 800	70 500	"
6.	Speisewassers	19 200 14 960	23400 15510	$\begin{array}{c} 27\ 600 \\ 16\ 720 \end{array}$	33400 18 810	39400 23 320	$51\ 600\ 32\ 340$	"
7.	Spesen 4, 5 und 5.	48 810	55160	91 970	73 410	90 520	$15\overline{4}440$	"
8.	Nettonutzen $3-7 = .$	25290	$29\ 740$	41 030	43 790	43 280	8 340	"
9.	Das Anlagekapital ver- zinst sich zu	29	32	42	40	32		v. Ht. pro Jahr

Aus dieser ist ersichtlich, daß zwar der Bruttonutzen, d. h. die Kohlenersparnis, mit abnehmendem Kondensatordruck steigt, daß aber andererseits die Ausgaben für den Eigenkraftverbrauch der Kondensationsanlage und für Verzinsung und Tilgung derart zunehmen, daß der Nettonutzen nicht nur vermindert wird, sondern sogar negativ werden kann: die Maschinenanlage arbeitet wirtschaftlicher mit Auspuff als mit übertriebener Luftleere. Als vorteilhaftester Kondensatordruck ergibt sich $p_0 = 0.32$ atm. In Zeile 9 ist der Prozentsatz angegeben, zu welchem das Anlagekapital sich über den üblichen Zinsfuß hinaus verzinst.

Im übrigen soll bei Kondensationsmaschinen die gewährleistete Dampfverbrauchsziffer sich stets auf die PS_e -Stunde beziehen. Ist nämlich die Garantiezahl für die PS_i -Stunde gegeben, so kann dieselbe zwar durch große Luftpumpen erreicht werden, aber unter gleichzeitiger Verschlechterung des mechanischen Wirkungsgrades.

E. Die Verbundwirkung.

a) Vorteile der Verbundwirkung.

Beste Dampfausnutzung wird durch Anwendung hohen Druckes bei niedriger Expansionsendspannung erzielt. Die Vorteile der hohen Dampfspannung ergeben sich aus dem Diagramm Fig. 273. Bei einer Druck-

steigerung z. B. von p = 5 auf $p_1 = 12$ atm. wird die Arbeitsfläche a b d c gewonnen, während der Mehraufwand an Wärme für 1 kg Speisewasser nur 11 W. E. beträgt, im praktischen Kesselbetrieb also vernachlässigt werden kann. Andererseits ist aus dem Diagramm ersichtlich, daß der Arbeitsgewinn bei einer Drucksteigerung von 5 auf 6 atm. bedeutend größer wird, als bei einer Spannungserhöhung von 11 auf 12 atm., so daß, wenn auch im letzteren Fall die aufzuwendende Wärmemenge kleiner ist als im ersteren Fall, der Arbeitsgewinn mit wachsendem Druck für 1 W. E. Mehraufwand wieder abnimmt. Die den betreffenden Spannungen entsprechenden Arbeitswerte, dividiert durch die zugehörigen Gesamtwärmen, ergeben bei ihrer Auftragung eine Kurve, welche deutlich zeigt, wie mit wachsender Spannung die Vorteile der Zunahme abnehmen. Die obere Grenze wirtschaftlicher Spannung liegt bei etwa 15 atm., von einer weiteren Steigerung sind kaum merkliche Vorteile zu erhoffen. Die Expansionsendspannung bestimmt die Größe der Maschine und beeinflußt dadurch die Betriebskosten, insofern diese von der Tilgung und Verzinsung des in der Maschine angelegten Kapitals abhängig sind. Dieser Teil der Betriebsausgaben tritt jedoch bei hohen Brennstoffpreisen gegenüber den Ausgaben für den Kohlenbedarf zurück, und es wird eine Verlängerung des Diagramms in wagerechter Richtung, gleichbedeutend mit einer Vergrößerung des Hubraumes, wünschenswert, so daß man unter besonders schwierigen Verhältnissen selbst bis $0.6 \div 0.4$ atm. absol. herunter expandieren läßt.

Die Verwirklichung eines Diagramms mit sehr niedriger Expansionsendspannung in einer Einzylindermaschine würde bedeutende Nachteile Die kleinen Füllungen erschweren die Arbeit der im Gefolge haben. Steuerung: so würden z. B. bei vielen kraftschlüssigen Ventilsteuerungen die Klinken schnell abnutzen. Die Regulierung würde sehr unruhig, da eine Veränderung der Füllung um nur wenige v. Ht. große Leistungsschwankungen zur Folge hätte. Die Abmessungen des Kurbeltriebes müßten dem hohen Dampfdruck entsprechend schwer ausfallen. Der große Druckunterschied vor und hinter dem Kolben macht Undichtheiten von Kolben und Steuerungsteilen besonders gefährlich. Der größte Nachteil für wirtschaftliche Wirkungsweise liegt aber in dem großen Temperaturunterschied zwischen Frischdampf und Auspuffdampf, wodurch starke Eintrittskondensation herbeigeführt wird. Diese Nachteile werden durch Anwendung der Mehrfachexpansionsmaschine gemildert. Bei diesen schaltet man dem Zylinder, in welchem sich der Dampf auf die Endspannung ausdehnt, einen oder mehrere kleinere Zylinder vor, welche der Dampf nacheinander durchströmt. Die ältesten Maschinen dieser Art, die Woolfschen Maschinen, waren derart eingerichtet, daß die Auslaßorgane des Hochdruckzylinders zugleich als Einlaßorgane des Niederdruckzylinders dienten, welcher infolgedessen mit annähernd voller Füllung arbeitete. Der schädliche Raum war naturgemäß sehr groß. namentlich wenn die Kolben nicht gegenläufig waren. Die Kurbeln konnten um 0° oder 180° gegenüber versetzt werden.

Sollte kleinere Füllung im Niederdruckzylinder oder Kurbelversetzung um 90° stattfinden, so mußte einerseits der Niederdruckzylinder eine besondere Steuerung erhalten, andererseits zwischen diesem und dem Hochdruckzylinder eine Zwischenkammer — Receiver oder Aufnehmer — angeordnet werden, in welcher der Auspuffdampf des Hochdruckzylinders nach Schluß der Niederdruckfüllung sich aufhalten konnte. Diese "Aufnehmermaschinen" können als "Tandemmaschinen" mit hintereinander liegenden Zylindern und mit unter 0° versetzten Kurbeln, oder als "Zwillingsverbundmaschinen" mit nebeneinanderliegenden Zylindern und mit unter 90° versetzten Kurbeln gebaut werden.

Der stets höher steigende Dampfdruck ließ zu einer weiteren Teilung des Temperatur- und Druckgefälles und Steigerung der Zylinderzahl übergehen, doch dürfte auch für Sattdampf mit der Dreifachexpansionsmaschine die Grenze erreicht sein, während Heißdampfmaschinen ausschließlich als Zweifachexpansionsmaschinen ausgeführt werden.

Nimmt man an, daß der Dampf im Hochdruckzylinder von 12 auf 2, im Niederdruckzylinder von 2 auf 0,2 atm. absol. expandiere, so gibt die Zahlentafel die Temperaturen und Drucke in jedem Zylinder wieder. Wie ersichtlich, hat der Temperaturunterschied von 127^o auf 67 bezw. 60^o abgenommen, so daß die Eintrittskondensation, die häufig dem Quadrat des Temperaturunterschiedes gleichgesetzt wird, sich vermindert, trotzdem die Gesamtfläche der dampfberührten Wandungen größer als bei einer gleich starken Einzylindermaschine geworden ist.

	Verbundmaschine		
Einzylindermaschine.	Hochdruckzylinder	Niederdruckzylinder	
Anfangsdruck 12 atm. absol. Auspuffspannung 0,2 atm. Druckunterschied 11,8 atm. Temperaturunterschied 127° C.	12 atm. 2 atm. 10 atm. 67 °	$2 \\ 0,2 \\ 1,8 \\ 60$	

Der Druckunterschied ist zwar im Hochdruckzylinder nur wenig geringer, doch werden Undichtheiten hier wesentlich dadurch beschränkt, daß der Zylinderquerschnitt und damit Kolbenumfang und Größe der Schieber bedeutend kleiner geworden sind.

Weitere Vorteile liegen in der Vergrößerung der Füllungen, durch welche die mittlere Zylinderwandtemperatur erhöht wird, so daß auch aus diesem Grunde eine Verringerung der Eintrittskondensation stattfindet. Das während der Expansion im Hochdruckzylinder sich bildende Kondenswasser verdampft wenigstens teilweise während des Auspuffes und wird im Niederdruckzylinder wieder verwertet. Das allerdings doppelt auszuführende Gestänge wird leichter, und die Drehgeschwindigkeit ist gleichmäßiger, falls die Kurbeln versetzt sind.

Als Nachteile der Verbundmaschinen ergeben sich ihre größeren Anlagekosten, die schwierigere Wartung und der größere Ölverbrauch. Der Wirkungsgrad ist nur wenig kleiner als bei entsprechenden Einzylindermaschinen.

Von größerer Bedeutung sind die Nachteile bezüglich der Regulierung, welche besonders bei Dreifachexpansionsmaschinen merkbar werden. Vergrößert man die Füllung des Hochdruckzylinders, so wird zunächst nur dessen Leistung beeinflußt, und da die mehr einströmende Dampfmenge nicht sofort zum Niederdruckzylinder abfließen kann, so wird ein Teil des zugeführten Dampfes im Aufnehmer zurückgehalten, bis der Druck in diesem die dem neuen Beharrungszustand entsprechende Höhe erreicht hat. Dieser zurückgehaltene Dampf ist somit von der Arbeitsleistung ausgeschlossen. (Da der schwächende Einfluß des Gegendruckes im Hochdruckzvlinder von einer gewissen Grenze an sogar mehr betragen kann als die Erhöhung des mittleren Druckes durch die zunehmende Füllung, so überschreitet die Hochdruckarbeit ein Maximum und nimmt wieder ab. Hingegen nimmt die Niederdruckarbeit mit wachsender Aufnehmerspannung stetig zu, wodurch Arbeitsverteilung und Belastung der Triebwerke ungleich werden.) Bei Verkleinerung der Hochdruckfüllung arbeitet der im Aufnehmer befindliche Dampf zunächst noch weiter, bis eine der geringeren Leistung entsprechende kleinere Aufnehmerspannung sich eingestellt hat. In beiden Fällen wirkt demnach der Aufnehmerinhalt der Regulierung entgegen, und

diese Verhältnisse liegen um so ungünstiger, je größer der Aufnehmer gewählt ist.

Dieser ist sonach im Interesse einer guten Regulierung bei Maschinen mit stark schwankender Belastung nicht zu groß zu nehmen. Häufig genügt die Überströmleitung zwischen den Zylindern.

Die Regulierung der Verbundmaschinen wird bedeutend verbessert, wenn der Regulator wenigstens in engen Grenzen die Niederdruckfüllung beeinflussen kann. Der im Hochdruckzylinder bei einer Vergrößerung der Füllung mehr zufließende Dampf kann dann unmittelbar in den Niederdruckzylinder überströmen, ohne daß die Aufnehmerspannung wesentlich verändert wird. Es bleibt dann auch die Temperatur im Aufnehmer gleichmäßiger, und die Verluste durch den Einfluß der Wandungen werden geringer.

Aus der Betrachtung der Fig. 273 folgt, daß der Niederdruckzylinder theoretisch denselben Hubraum haben muß wie der Zylinder der gleichstarken Einzylindermaschine.

Im Diagramm stellt nämlich die Länge v den Hubraum des Hochdruckzylinders, V den des Niederdruckzylinders dar. Ist das Gesamtdiagramm behufs Erzielung gleicher

Arbeitsverteilung auf beide Zylinder gleich verteilt worden, so wird, wenn z. B. V = 2 v, d. h. wenn das Zylinderverhältnis = 1:2, der mittlere Druck im Hochdruckzylinder doppelt so groß als der mittlere Druck im Niederdruckzylinder. Da nun andererseits der Querschnitt des Hochdruckkolbens nur die Hälfte desjenigen des Niederdruckkolbens beträgt, so werden die mittleren Kolbendrucke und (infolge der gleichen Umdrehungszahl und des gleichen Hubes) die

Leistungen beider Zylinder einander gleich sein, so daß die Summe der Leistungen beider Zylinder gleich der Leistung der Einzylindermaschine mit gleichem Hubraum wie der Niederdruckzylinder und gleichem Gesamtdiagramm sein muß.

Unter Zugrundelegung der Fig. 274 treffen diese Darlegungen auch hier zu, wenn die schädlichen Räume von den zugehörigen Hubinhalten den gleichen Prozentsatz ausmachen. In diesem Falle setzt sich die Kompression durch beide Zylinder ununterbrochen fort, und es wird die gemeinsame Kompressionslinie von demselben Nullpunkt aus entworfen. Sind die v. Ht. der schädlichen Räume nicht einander gleich, wie dies bei Anwendung verschiedener Steuerungen vorkommt, so sind die Kompressions- und Expansionskurven von verschiedenen Nullpunkten aus zu entwerfen.

b) Die Berechnung der Mehrfachexpansionsmaschinen.

Bei der vorläufigen Bestimmung der Zylinderabmessungen wird das durch die Wahl der Eintrittsspannung und Expansionsendspannung bestimmte Diagramm nach Fig. 274 durch eine Wagerechte so geteilt, daß womöglich folgende Bedingungen erfüllt werden:

1. Die Arbeit soll auf beide Zylinder möglichst gleichmäßig verteilt werden. Diese Forderung ist für Maschinen mit versetzten Kurbeln die wichtigste.

2. Das Temperaturgefälle soll in beiden Zylindern gleich sein.

3. Der Unterschied in den Kolbendrücken soll gering sein, um das symmetrisch auszuführende Kurbelgestänge zweckmäßig auszunützen.

Die wagerechte Trennungslinie als Auspufflinie des Hochdruckzylinders und Füllungslinie des Niederdruckzylinders setzt unendlich großen Aufnehmerinhalt voraus. Bei der genauen Ermittelung der Diagramme wird sich zeigen, daß durch den Aufnehmerinhalt Druckschwankungen auftreten, welche eine Änderung des Zylinderverhältnisses bewirken und bei der Teilung des Diagramms wenigstens schätzungsweise zu berücksichtigen sind.

Die senkrechten Begrenzungslinien der Diagramme liegen fast immer so, daß der dadurch festgelegte Inhalt der schädlichen Räume mit dem später vorhandenen annähernd übereinstimmt. Größere Unterschiede sind, wie oben erwähnt, durch Konstruktion der Kompressions- und Expansionslinien von verschiedenen Punkten der Nulllinie aus zu berücksichtigen.

Mit dem aus dem Gesamtdiagramm festgestellten mittleren Druck werden nun die Abmessungen des Niederdruckzylinders in der Weise berechnet, als ob dieser die Gesamtarbeit allein zu leisten habe. Da das tatsächliche Diagramm kleiner ausfällt als das theoretische Diagramm nach Fig. 274, so ist der dem letzteren entsprechende mittlere Druck durchschnittlich zu multiplizieren:

mit 0,75 bei Verbundmaschinen,

mit 0,7 bei dreizylindrigen Dreifachexpansionsmaschinen.

Hierbei ist die Verschiedenheit der bei Berücksichtigung der endlichen Aufnehmergröße erhaltenen Diagramme gegenüber dem Diagramm Fig. 274 in Betracht zu ziehen. Vergl. die Diagramme in Fig. 275 und 276.

Bei Tandemmaschinen z. B. ist das Hochdruckdiagramm der Fig. 274 im Falle gleicher Arbeitsverteilung um 10 v. Ht. zu vergrößern. Umgekehrt ist bei den Hochdruckdiagrammen der Zwillingsverbund- und Dreifachexpansionsmaschinen vorzugehen.

Gelangt hoch überhitzter Dampf zur Verwendung, so wird die Expansionslinie des Hochdruckzylinders als Polytrope nach den Angaben auf S. 8 aufgezeichnet.

Das Zylinderverhältnis ist durch die Teilung des Diagramms bekannt.

Häufig vorkommende Werte von $\frac{v}{V}$ sind in den folgenden Zahlentafeln nach Hrabak¹) angegeben.

¹) Hrabak, Hilfsbuch für Dampfmaschinentechniker. II. S. 106 u. f.

Volumenverhältnisse $\frac{v}{V}$ der Zweizylindermaschinen ohne Spannungsabfall für gleiche Arbeitsverteilung auf beide Zylinder. A. Auspuff.

	Absolute		Kurbelverstellungswinkel w			
	Eintritts-	Reduzierte	w = 90°	w = 0 ⁰ oder 180 ⁰		
	spannung		Aufnehmerinhalt == Inhalt des Hochdruck- zylinders			
Expansions- endspannung = 1,8 atm.	10 11 12 13 14	$\begin{array}{c} 0,18\\ 0,164\\ 0,150\\ 0,139\\ 0,129\end{array}$	$0,60 \\ 0,58 \\ 0,56 \\ 0,55 \\ 0,54$	$\begin{array}{c} 0,43\\ 0,41\\ 0,39\\ 0,375\\ 0,36\end{array}$		
Expansions- endspannung = 1,2 atm.	$ 10 \\ 11 \\ 12 \\ 13 \\ 14 $	$\begin{array}{c} 0,12\\ 0,109\\ 0,100\\ 0,092\\ 0,086\end{array}$	$\begin{array}{c} 0,46\\ 0,43\\ 0,41\\ 0,39\\ 0,37\end{array}$	$\begin{matrix} 0,29\\ 0,27\\ 0,26\\ 0,25\\ 0,24 \end{matrix}$		
		B. Mit K.	ondensation.			
Expansions- endspannung = 0,6 atm.	8 9 10	0,075 0,067 0,06	$0,50 \\ 0,47 \\ 0,45$	0,32 0,30 0,28		
Expansions- endspannung = 0,4 atm.	$89\\10$	$0,05 \\ 0,044 \\ 0,04$	0,37 0,35 0,34	$0,\!24 \\ 0,\!22 \\ 0,\!21$		

Zylinder-Volumenverhältnisse bei den Dreikurbel-Kondensations-Maschinen für gleiche Arbeitsverteilung auf alle Zylinder und mit voreilender Mitteldruckkurbel.

	Absolute	Reduzierte	Zylinderverhältnis		
Expansionsgrad	Eintritts- spannung	Füllung	Hochdruck Mitteldruck	Mitteldruck Niederdruck	
Expansions end- spannung $p = 0,6$	$10\\12\\14$	$0,06 \\ 0,05 \\ 0,043$	$0,27 \\ 0,25 \\ 0,24$	$0,73 \\ 0,68 \\ 0,64$	
Expansions end- spannung $p = 0,5$	$10 \\ 12 \\ 14$	0,05 0,042 0,036	$0,26 \\ 0,25 \\ 0,24$	0,65 0,60 0,57	
Expansions end- spannung $= 0,4$	$\begin{array}{c}10\\12\\14\end{array}$	0,04 0.033 0,029	$0,26 \\ 0,25 \\ 0,24$	$0,55 \\ 0,51 \\ 0,48$	

Zur genaueren Feststellung der Zylinderabmessungen und der Steuerungsverhältnisse eignet sich das Schröter - Zeunersche Diagramm, aus welchem für jeden Zeitpunkt die Stellung der Kolben und der zwischen denselben befindliche Raum bestimmt werden kann. Ist das Verhältnis $\frac{v}{V}$ vorläufig festgelegt, so trägt man nach Fig. 275 u. f. die Hubräume der Zylinder, deren schädliche Räume und den Aufnehmerinhalt ihrem Größenverhältnis entsprechend in verschiedenen Lagen wagerecht auf.

Die Größe des Aufnehmers wird meist gleich dem Inhalt des Hochdruckzylinders angenommen. Die Kurbelhalbkreise werden in eine gleiche Anzahl von Teilen geteilt, und die Teilpunkte auf wagerechte Linien gelotet, die in gleichen, aber beliebigen Abständen voneinander gezogen sind. Dann stellt die Senkrechte A B offenbar die Dauer einer Umdrehung dar und die wagerechten Abstände der Kurvenpunkte von dieser Senkrechten den zu jedem Kurbelwinkel gehörigen Kolbenweg.

a) Verfahren für Tandemmaschinen (Kurbeln unter 0° oder 180°) Fig. 275.

Von Punkt O aus läßt sich mit der aus dem Einzylinderdiagramm, Fig. 274, bekannten Füllung, welche mit $\frac{V}{v}$ zu multiplizieren ist, die Expansionslinie ab aufzeichnen. Im Punkt b wird der Auslaß des Hochdruckzylinders geöffnet, und der Dampf strömt in den Aufnehmer. Beide Kolben stehen gleichzeitig im Totpunkt, so daß der Dampf den Hochdruckzylinder, den Aufnehmer und den schädlichen Raum des Niederdruckzylinders — dessen Einlaß der Voreinströmung wegen schon geöffnet ist — ausfüllt. Im Kolbenwegdiagramm werden diese Räume durch die Linie v_1 dargestellt. Gehen beide Kolben aus ihrer Totlage heraus, so vergrößert sich der vom Dampf auszufüllende Raum, da die Verdrängung des Hochdruckkolbens kleiner ist als der vom größeren Niederdruckkolben freigelegte Raum. Dementsprechend expandiert der Dampf, und die Linie b c senkt sich.

Der Zustand des Dampfes in der Kolbentotlage ist nach Druck p_1 und Volumen v_1 gegeben, ebenso lassen sich bei der Weiterbewegung der Kolben die vom Dampf auszufüllenden Räume als wagerechte Abstände

beider Kurven abgreifen, so daß sich die Drucke p $=\frac{p_1 v_1}{v}$ in der ange-

deuteten Weise berechnen lassen, wodurch Linie b c bestimmt wird. Im Punkte c, dessen Lage noch ermittelt werden muß, erfolgt Abschluß des Niederdruckzylinders. Der Auspuffdampf des Hochdruckzylinders wird nunmehr im Aufnehmer komprimiert, bis der Auslaß im Punkt d schließt und Kompression im Hochdruckzylinder allein stattfindet. Konstruktion der Kompressionslinie e d von 0 aus. Der Anfangspunkt dieser Kurve liegt in gleicher Höhe wie b, damit der beim folgenden Hub in den Aufnehmer strömende Dampf hier wieder die Spannung p₁ vorfindet. Ist der Aufnehmerdruck größer, so läuft das Hochdruckdiagramm in eine Schleife¹) aus, während bei geringerem Druck ein mitunter absichtlich herbeigeführter Druckabfall eintritt.

Hierauf Konstruktion der Linie c d als Kompressionslinie vom Punkt O_1 aus. Diese schneidet die berechnete Kurve b c in c.

Während des Kolbenweges b c standen beide Zylinder miteinander in Verbindung, so daß in beiden gleiche Drucke herrschten. Die Linie b c wird daher in der Weise in das Niederdruckdiagramm übertragen, daß man zu jeder Stellung des Hochdruckkolbens die des Niederdruckkolbens mit Hilfe der Kolbenweglinien aufsucht, und die zugehörigen Druckordinaten gleich macht.

Die Konstruktion des Niederdruckdiagramms erfolgt nun im weiteren Vetlauf in der üblichen Weise: vom Punkt c' ab Expansion im Niederdruckzylinder. Entwurf der Kompressionslinie zweckmäßig bis zur Anfangsspannung. Konstruktion beider Linien von O₁ aus.

Die Diagramme lassen gegenüber Fig. 274 den Einfluß der endlichen Aufnehmergröße erkennen. Die Expansionsendspannung im Hochdruckzylinder hat in beiden Diagrammen dieselbe Größe, gleiche Füllung vorausgesetzt, so daß das Hochdruckdiagramm infolge der nach unten ausgebauchten Auspufflinie größer geworden ist. Diese Druckschwankung in der Auspufflinie wird um so stärker, je kleiner der Aufnehmer ist.

b) Verfahren für Zwillingsverbundmaschinen (Kurbeln unter 90° versetzt) Fig. 276.

Die Kolbenweglinien werden versetzt gezeichnet. Konstruktion der Expansionslinie a b des Hochdruckzylinders wie vorhin vom Punkt O aus. Bei der Totlage des Hochdruckkolbens im Punkt b hat der Einlaß des Niederdruckzylinders noch nicht geöffnet. Es findet deshalb zu-

¹) In der Kolbentotlage strömt dann Dampf aus dem Aufnehmer in den Hochdruckzylinder zurück, was leicht Abheben der Auslaßorgane zur Folge hat.

nächst noch Kompression im Hochdruckzylinder und Aufnehmer statt, bis zum Punkt c, in welchem der Einlaß des Niederdruckzylinders geöffnet und dessen Lage mittelst der Kolbenweglinien festgestellt wird. Linie bc wird vom Punkte O_1 aus als Kompressionslinie gezeichnet.

Beide Zylinder stehen von jetzt an miteinander in Verbindung, so daß wie vorhin der Verlauf der Linie c.d. rechnungsmäßig $\left(p = \frac{p_1 v_1}{v}\right)$ fest-gestellt werden muß. Im Punkt c sind Druck p_1 und Volumen v_1 des Dampfes gegeben.

Linie c d steigt anfangs, da der schnell voraneilende Hochdruckkolben mehr Dampf in den Aufnehmer drängt, als in den Niederdruckzylinder einströmen kann.

Punkt d wird als Schnittpunkt dieser berechneten Kurve mit der von Punkt O aus rückwärts konstruierten Kompressionslinie ed gefunden.

Die Linie c d wird mittelst der Kolbenbeweglinien in das Niederdruckdiagramm übertragen. Von d' aus Expansion im Niederdruckzylinder und Aufnehmer. Konstruktion der Linie d' e' von Punkt O aus bis zum Punkt e', der in gleicher Höhe wie Punkt b liegen soll, damit die diesem Punkt entsprechende Spannung im Aufnehmer vorhanden ist, wenn der Hochdruckdampf in diesen strömt. Von e' aus Expansion im Niederdruckzylinder allein. Konstruktion dieser Linie als auch der Kompressionslinie von O₁ aus.

Der Vergleich dieser Diagramme mit dem der Fig. 274 zeigt, daß bei Berücksichtigung der endlichen Aufnehmergröße das Hochdruckdiagramm der Zwillingsverbundmaschine kleiner wird.

c) Verfahren für Dreifachexpansionsmaschinen mit Kurbeln unter 120°.

Das Gesamtdiagramm wird hier in drei Teile geteilt, derart, daß sich die Arbeit gleichmäßig auf die Zylinder verteilt. Bei den Dreikurbelmaschinen werden zwei Anordnungen unterschieden:

Mit vorangehender Hochdruckkurbel, Reihenfolge: Hoch-, Mittel-, Niederdruckkurbel; mit vorangehender Niederdruckkurbel, Reihenfolge: Nieder-, Mittel-, Hochdruckkurbel. Bei ersterer Anordnung kommen leicht Aufnehmerspannungen vor, welche den Expansionsenddruck im Hochdruckzylinder übersteigen und zur Schleifenbildung Veranlassung geben. Die zweite Ausführungsweise wird deshalb vorgezogen. Fig. 277.

Aufzeichnungen der Linien ab und bc wie vorhin. In d wird der Mitteldruckzylinder geöffnet, vorher — von c bis d — erfolgte Kompression in den Aufnehmer. Für Punkt d sind p_1 und v_1 bekannt, so daß die Linie d e rechnerisch festgestellt und als Linie gemeinsamen Vorganges in das Mitteldruckdiagramm übertragen werden kann.

Linie e' g wird vom Punkt o_2 aus gezeichnet. In Punkt i erfolgt Eröffnung des Niederdruckzylinders. Übertragung der rechnungsmäßig festgestellten Kurve i h als Linie i' h' in das Niederdruckdiagramm.

Liegen die Punkte c, e, e', bezw. g, h, h' nicht auf einer Wagerechten, so ergibt sich eine etwas andere Dampfverteilung. Nach Abschluß des Mitteldruckzylinders erfolgt Kompression im Hochdruckzylinder und ersten Aufnehmer, bis der zu Punkt c gehörige Aufnehmerdruck erreicht ist. Dann erst schließt das Auslaßorgan des Hochdruckzylinders. Der dem Punkt e' des Mitteldruckdiagramms entsprechende Punkt des Hoch-

Dubbel, Dampfmaschinen. 3. Aufl.

druckdiagramms wird als Schnittpunkt der berechneten Kurve mit der aus Punkt o₂ entworfenen Kompressionslinie gefunden.

Das Einlaßorgan des Niederdruckzylinders schließt, wenn die dem Punkt g entsprechende Aufnehmerspannung erreicht ist. Liegt Punkt h über der Linie g h', so folgt im Niederdruckdiagramm auf die Linie des gemeinsamen Vorganges eine von o_2 aus zu entwerfende Expansionslinie, bis der erwähnte Aufnehmerdruck erreicht ist.

d) Verfahren für Dreifachexpansionsmaschinen mit zwei Kurbeln unter 90°.

Bei dieser Anordnung, welche für liegende Dreifachexpansionsmaschinen mittlerer Größe die gebräuchlichste ist, liegen Hoch- und Mitteldruckzylinder auf der einen, der Niederdruckzylinder auf der andern

Seite. Der gleichmäßigen Arbeitsverteilung auf beide Kurbeln wegen müssen die beiden ersteren Zylinder zusammen die Hälfte der Leistung erzeugen, während die andere Hälfte vom Niederdruckzylinder allein übernommen wird. Dementsprechend ist das Gesamtdiagramm zu teilen.

Die Feststellung der Diagramme verursacht nach dem Vorausgegangenen keine Schwierigkeiten. Ausströmlinie des Hochdruckzylinders und Einströmlinie des Mitteldruckzylinders werden in gleicher Weise wie bei den Tandemmaschinen aufgezeichnet, während Ausströmlinie des Mitteldruck- und Einströmlinie des Niederdruckzylinders wie bei den Zwillingsverbundmaschinen gefunden werden.

e) Verfahren für vierzylindrige Dreifachexpansionsmaschinen mit zwei Kurbeln unter 90°.

Diese Bauart, deren Vorteile späterhin dargelegt werden, ist nur für größte Leistungen, über 1200 PS_i, gebräuchlich. Die Dampfverteilung in den einzelnen Zylindern ist aus den Diagrammen der Fig. 278 ersichtlich, herrührend von einer 2000 PS_i-Maschine der Krimmitschauer Maschinenfabrik. (Die strichpunktierten Linien verdeutlichen die Arbeitsweise der Maschine mit drei Zylindern in der ersten Betriebszeit: Hoch-, Mittel- und einem Mitteldruckzylinder.) Auslaß des Hochdruckzylinders und Einlaß des Mitteldruckzylinders arbeiten wie bei der Zwillingsverbundmaschine, in gleicher Weise arbeitet der erste Niederdruckzylinder mit dem Mitteldruckzylinder zusammen, während der zweite mit letzterem wie bei Tandemmaschinen in Verbindung steht.

Die nach diesem Verfahren erhaltenen Diagramme werden für die Berechnung wieder in der Weise benutzt, daß der Gesamtinhalt der Diagramme durch die Länge des Niederdruckdiagramms dividiert wird. Mit dem dadurch erhaltenen mittleren Druck wird der Niederdruckzylinder für die Gesamtleistung berechnet.

Falls trockener oder schwach überhitzter Dampf verwendet wird, hat man den mittleren Druck der so erhaltenen Diagramme zu multiplizieren:

durchschnittlich mit 0,82 bei Verbundmaschinen,

, 0,77 bei dreizylindrigen Dreifachexpansionsmaschinen.

Bei überhitztem Dampf empfiehlt sich wieder die Konstruktion der Hochdruckexpansionslinie als Polytrope.

c) Das Rankinisieren der Diagramme.

Um Aufschluß über die Ausnutzung des Dampfes in der Maschine zu erhalten, und um Diagramme von Maschinen, die unter ähnlichen Verhältnissen arbeiten, miteinander vergleichen zu können, rankinisiert man dieselben, d. h. man zeichnet die entsprechend umgeänderten Diagramme in ein Hilfsdiagramm abcde ein, bei dessen Entwurf angenommen wird:

- 1. Die Füllung hat dieselbe Größe wie die "reduzierte" Füllung.
- 2. Die Expansion erfolgt nach der Mariotteschen Linie oder nach einer Polytrope bei überhitztem Dampf.
- 3. Es findet weder Vorausströmung noch Kompression statt. Der schädliche Raum wird also bei jedem Hub frisch gefüllt.
- 4. Der Gegendruck ist = 1 Atm. abs. bei Auspuffmaschinen und = 0 bei Kondensationsmaschinen.

Das Verhältnis der Fläche des Verbund-Diagramms zu der des Hilfsdiagramms nennt man den Völligkeitsgrad. Je nach der Feuchtigkeit des Dampfes, der Höhe der Kompression usw. schwankt derselbe innerhalb weiter Grenzen, er beträgt annähernd:

für Verbundmaschinen: 65 -:- 75 v. Ht.,

für dreizylindrige Dreifach-Expansionsmaschinen: 55 -:- 65 v. Ht., für vierzylindrige Dreifach-Expansionsmaschinen: 58 -:- 62 v. Ht.

Die in Deutschland gebräuchlichste Art der Rankinisierung ist in Fig. 279 dargestellt. Da die an der Maschine aufgenommenen Diagramme gewöhnlich gleiche Längen haben, diese aber dem Zylinderverhältnis angepaßt werden müssen, so "verstreckt" man das Niederdruckdiagramm, indem man die Länge des Hochdruckdiagramms als Einheit annimmt. Das Verstrecken erfolgt in der Weise, daß das betreffende Diagramm durch Parallele in etwa 10 gleiche Teile geteilt und ihr Abstand a im

Fig. 279.

Verhältnis $\frac{V}{v}$ vergrößert wird. Die Federmaßstäbe, d. h. die Höhe in mm pro 1 atm., sind bei beiden Diagrammen verschieden. Einheitlicher Maßstab wird dadurch erhalten, daß man den Maßstab des Niederdruck-

Bei überhitztem Dampf wird diese Linie durch den Anfangspunkt der Expansion im Hochdruckzylinder gelegt, bei gesättigtem Dampf auch durch deren Endpunkt. Als Einheit für den Federmaßstab und für die Diagrammlänge nimmt man bei Dreifachexpansionsmaschinen meistens die betreffenden Größen des Mitteldruckzylinders.
Spannungssprung, Aufnehmerheizung, Überhitzung u. Zwischendampfentnahme. 277

Fig. 280 stellt das rankinisierte Diagramm einer Dreifachexpansionsmaschine dar. Die ausgezogene Kurve zeigt den Verlauf adiabatischer Expansion, die strichpunktierte Kurve ist eine gleichseitige Hyperbel. Der bedeutende Völligkeitsgrad ist auf die Heizung der Aufnehmer und der Zylindermäntel, sowie der Zylinderdeckel und -böden zurückzuführen.

d) Spannungssprung, Aufnehmerheizung, Überhitzung und Zwischendampfentnahme.

Eine Veränderung in der Dampfverteilung wird in nachdrücklichster Weise durch einen "Spannungssprung" erreicht, worunter man einen durch Vergrößerung der Niederdruckfüllung herbeigeführten Druckabfall bei der Ausströmung des Hochdruckdampfes versteht. Die Einführung dieses Druckabfalles vergrößert die Hochdruckarbeit auf Kosten der Niederdruckarbeit; die Höchstkolbendrücke werden ebenso wie die

Fig. 281.

Temperaturverhältnisse durchgreifend geändert, so daß der Spannungssprung ein bequemes Mittel an die Hand gibt, um unerwünschte Verhältnisse zu ändern.

Als Vorteile desselben lassen sich überdies anführen: Verkleinerung des Hochdruckzylinder-Volumens von v_{h} auf v_{h} , infolgedessen Vergrößerung der Füllung dieses Zylinders und dadurch Erhöhung der mittleren Zylinderwandtemperatur (Fig. 281)¹). Während der Ausströmung des Hochdruckdampfes tritt durch den Druckabfall mit Sicherheit Nachverdampfen des während der Expansion entstandenen Kondenswassers ein. Infolge der niedrigen Aufnehmerspannung steigt die Kompression im Hochdruckzylinder weniger hoch an.

Endigt das Hochdruckdiagramm einer Verbundmaschine in einer Spitze, und wird sodann durch Vergrößerung der Niederdruckfüllung Spannungsabfall herbeigeführt, so steigt der Regulator bis zu einer gewissen Größe der Niederdruckfüllung und stellt kleinere Füllungen²) ein, wodurch die genannten Vorteile in die Erscheinung treten.

²) N. O. muß dann der schädliche Raum mit Frischdampf aufgefüllt werden, was jedoch nach S. 34 keine Erhöhung des Dampfverbrauches zur Folge hat.

¹) Lynen, Z. 1890, S. 490.

Hierbei ist bei Zwillingsverbundmaschinen zu beachten, daß der Niederdruckzylinder nachgefüllt wird, wenn sein Einlaßorgan nicht vor Beginn der Ausströmung des Hochdruckdampfes geschlossen hat. Diese Nachfüllung, obgleich mit einem kleinen Verlust an Diagrammfläche verknüpft, ist häufig ganz zweckmäßig und erwünscht.

Spannungsabfall kann auch durch Vergrößerung der Kompression im Hochdruckzylinder herbeigeführt werden, da hierdurch eine größere Füllung erforderlich wird.

Läuft das Hoch- und Mitteldruckdiagramm in eine Schleife aus, so kann diese, von zu hoher Aufnehmerspannung herrührend, durch Vergrößerung der Füllung des folgenden Zylinders beseitigt werden.

Wie im allgemeinen über den Spannungssprung, so gehen auch über die Zweckmäßigkeit der Aufnehmerheizung die Meinungen weit auseinander. Viele Konstrukteure ziehen dieselbe nur deshalb vor, um größere Völligkeit der Diagramme und dadurch einen geringeren nutzbaren Dampfverbrauch zu erhalten. Trotzdem ist ein Nutzen der Aufnehmerheizung durch Versuche nicht erwiesen. Prof. Witz stellt z. B. durch eingehende Versuche an einer Zwillingsverbundmaschine mit Corliß-Steuerung fest, daß der Dampfverbrauch bei Aufnehmerheizung zunahm¹). Auch Gebr. Sulzer führen sie nicht aus.

Von großem Interesse sind Versuche, welche 1901 von Prof. Lorenz an einer von Riedinger-Augsburg gebauten Dreifachexpansionsmaschine angestellt wurden. Es sollte festgestellt werden, ob die Maschine bei stark schwankender Belastung mit oder ohne Heizung der Aufnehmer und Zylinder günstiger arbeite. Hoch- und Mitteldruckzylinder, sowie die beiden Aufnehmer waren mit Frischdampf, der Niederdruckzylinder mit Arbeitsdampf aus dem ersten Aufnehmer geheizt.

Die hier in Betracht kommenden Versuchsergebnisse sind in folgender Zahlentafel zusammengestellt. Die Maschine indizierte rd. 600 PS, der mittlere Kesseldruck betrug 12 atm., und es wurde ein Dampfverbrauch pro PS_i -Stunde von 5,45 kg mit Heizung, gegenüber 5,67 kg ohne Heizung ermittelt.

¹) Hat z. B. der Aufnehmerdampf einen Druck von 2,5 atm. absol. entsprechend 128 W.E. Flüssigkeitswärme und 517 W.E. Verdampfungswärme, und hat der Heizdampf 11 atm. absol. Druck bei 183 W.E. Flüssigkeitswärme und 477 W.E. Verdampfungswärme, so kann 1 kg Heizdampf $\frac{477}{571} = 0.92$ kg Kondenswasser im Aufnehmer verdampfen. Ohne Heizung wäre dieses mit der Flüssigkeitswärme $0.92 \cdot 128 = 118$ W.E. abgelaufen. 1 kg des kondensierten Heizdampfes

wasser im Aufnehmer verdampfen. Ohne Heizung wäre dieses mit der Flüssigkeitswärme $0.92 \cdot 128 = 118$ W.E. abgelaufen. 1 kg des kondensierten Heizdampfes entweicht hingegen mit 183 W.E. Flüssigkeitswärme, so daß, namentlich wenn noch der Wärmeverlust des Heizdampfes durch Ausstrahlung in Betracht gezogen wird, sich Verluste ergeben, welche nicht immer durch die Verringerung des nutzbaren Verbrauches und durch die Vorteile trockneren Arbeitsdampfes ausgeglichen werden. (Z. 1894, S. 1436.)

Die Wirkung der Zylindermantelheizung ist eine gänzlich andere. Die großen Temperaturschwankungen des im Zylinder arbeitenden Dampfes verursachen einen viel lebhafteren Wärmeaustausch, als dies bei der nahezu konstanten Temperatur des Aufnehmerdampfes der Fall ist. Nicht umkehrbare Zustandsänderungen mit größerem Temperaturgefälle sind hier ausgeschlossen. Spannungssprung, Aufnehmerheizung, Überhitzung u. Zwischendampfentnahme. 279

Versuchsbedingung:	mit Mantelheizung	ohne Mantelheizung
Kondensat des Arbeitsdampfes aus Aufnehmer I		
pro st. Kondensat des Arbeitsdampfes aus Aufnehmer II	33,6	172,2
pro st. Heizdampf für Hoch- und Mitteldruckzylinder	0	136,2
zusammen pro st.	228	0
Heizdampf für Aufnehmer I pro st.	$61 \\ 65$	0
Heizdampf für Aufnehmer II pro st.	126	0

Aus der Zahlentafel geht hervor, daß durch die Heizung die Kondenswassermenge im Aufnehmer I um 172,2-33,6=138,6 kg abnahm, wozu 65 kg Heizdampf gebraucht wurden. Dieses günstige Ergebnis

war jedoch nur auf eine teilweise Überhitzung des Arbeitsdampfes im Hochdruckzylinder durch dessen Mantelheizung zurückzuführen. Im Aufnehmer II verschwindet bei Heizung das Kondensat des Aufnehmerdampfes sogar vollständig, wozu 126 kg Heizdampf gebraucht wurden, so daß hier der Aufwand an Heizdampf ungefähr dem Betrag des wiederverdampften Kondenswassers entspricht. Die allerdings nur unbedeutende

Verringerung des Dampfverbrauches bei Heizung um noch nicht 4 v. Ht. gegenüber ohne Heizung ist also der Mantelheizung zuzuschreiben. Auf Grund dieser Versuche führt auch L. A. Riedinger die Aufnehmerheizung gewöhnlich nicht aus.

Versuchsergebnisse, welche Weighton im Ingenieurlaboratorium des Durham College of Science in Newcastle on Tyne ermittelt hat, sind in Fig. 282 dargestellt. Wie ersichtlich, wird die spez. Dampfmenge bei Aufnehmerheizung größer, gleichzeitig wächst aber auch der Dampfverbrauch pro PS_i -Stunde.

Die Zahlentafel gibt Versuche wieder, welche von Barrus an drei Maschinen von 600 bis 1000 PS_i bei Betrieb mit gesättigtem oder nur schwach überhitztem Dampf angestellt worden sind. Ein Unterschied im Dampfverbrauch wurde nicht festgestellt, der Nutzen der Aufnehmerheizung deckte ungefähr den durch das nicht ausgenutzte Heizungswasser entstehenden Wärmeverlust¹).

Bezeichnung der Maschine	Lieg Verb mas (Bauart	ende ound- chine Greene)	Tandem- Corliß- maschine		Corliß- Verbund- maschine	
Zyl. Durchmesser: Hub:	660 u 15	1. 1270 23	457 u 12	. 1016 19	406 u 12	. 1016 219
Mantelheizung:	oh Dampf	ne mäntel	oh Damp	ne fmäntel	ohne 1 heiz	Mantel-
Zylinderverhältnis: Heizfläche des Aufnehmers:	1:5	3,64	1:5 7		1:6,29 51	
Behälterheizung: Uml./Min.	ohne 76,7	mit_{77}	ohne 73	mit 73.2	ohne 80.1	mit 80.2
Dampfdruck in d. Maschine (kg/qcm abs.) Indizierte Leistung PS:	9,55 1073,3	9,75 1106,7	$11,2 \\ 624.1$	$11,25 \\ 601.9$	13,09 574.8	13,11 573
Mehrleistung des NDZ. $in PS_i$ durch die Behälter- $v. Ht. der Ge-$	_	37,6	_	78,4	_	59,6
heizung (samtleistung		3,5		12,8		10,6
in v. Ht. des Dampfverbrauches: Dampfverbrauch in kg für PS ₁ -Stunde		4		8,7		10,3
einschließlich Aufnehmerkondensat: abzüglich Aufnehmerkondensat: Wärmegernermin durch die Rehälten	$^{6,23}_{6,23}$	$^{6,36}_{6,11}$	$6,05 \\ 6,05$	$^{6,05}_{5,52}$	$5,05 \\ 5,05$	$\substack{5,02\\4,50}$
heizung bei Ausnutzung der Flüssig- keitswärme des Niederschlagwassers						
in v. Ht.:		$0,\!82$		1,98		$4,\!6$

Zahlentafel.

Sehr häufig findet sich die Anordnung, den Dampf vor Eintritt in den Zylinder in dessen Dampfmantel zu führen. Diese Art der Heizung ergibt etwas günstigeren Dampfverbrauch als diejenige mit ruhendem Kesseldampf.

In allen Fällen ist für reichlichste Entwässerung zu sorgen. Bezüglich der Verwendung überhitzten Dampfes²) in Verbund-

¹) Berner, Z. 1905, S. 1471.

²) Berner, Z. 1905, S. 1061 u. f.

Spannungssprung, Aufnehmerheizung, Überhitzung u. Zwischendampfentnahme. 281

maschinen ist zu bemerken, daß solche mit kleinem Hochdruckvolumen bei steigender Belastung größeren Wärmeverbrauch aufweisen als solche mit großem Hochdruckzylinder. Stark zu belastende Maschinen sind sonach mit großem Hochdruckzylinder auszuführen.

Umgekehrt zeigt sich, daß Verbundmaschinen mit großem Zylinderverhältnis bei kleineren Belastungen größeren Nutzen von starker Überhitzung haben. Die Temperatur, mit welcher der Dampf den Hochdruckzylinder verläßt, ist um so höher, je größer Leistung und Zylinderverhältnis sind. Die Verluste im Aufnehmer und in den Zwischenleitungen nehmen damit zu.

Als Folge der erwähnten Veränderung ergibt sich, daß bei gleichbleibender Gesamtleistung die Arbeit des Hochdruckzylinders mit wach-

sender Dampftemperatur zunimmt. Gleiche Leistungsverteilung wie beim gesättigten Dampf läßt sich bei überhitztem Dampf durch Änderung des Zylinderverhältnisses herbeiführen. So wurde durch Versuche an einer Verbundmaschine mit dem Zylinderverhältnis 1 : 3 festgestellt, daß bei Betrieb mit gesättigtem Dampf die Leistung beider Zylinder verschieden war, während sich die Arbeit bei mittlerer Überhitzung gleichmäßig verteilte. Versuche an einer Maschine mit dem Zylinderverhältnis 1 : 2,47 ergaben bei Sättigung gleiche Arbeitsverteilung, hingegen leistete bei 350° Überhitzung der Hochdruckzylinder eine um 44 v. Ht. größere Arbeit als der Niederdruckzylinder.

In Fig. 283 sind Versuchsergebnisse wiedergegeben, welche von Gebr. Sulzer an ein und derselben Maschine mit verschiedener Zylinder-

zahl erhalten wurden. Es sollte hierbei die Abhängigkeit des Wärmeverbrauches von der Temperatur festgestellt werden. Die angegebenen Verbrauchswerte beziehen sich auf die günstigste Leistung.

Wie ersichtlich, nimmt die relative Wärmeersparnis bei größerer Zylinderzahl ab. Die Einzylindermaschine weist bei starker Überhitzung (350°) denselben Wärmeverbrauch auf wie die Sattdampf-Verbundmaschine, während die Heißdampf-Verbundmaschine schon bei mittlerer Überhitzung den Verbrauch der Sattdampf-Dreifachexpansionsmaschine erreicht. Durch die Einführung der Überhitzung ist die Anwendung der Dreifachexpansionswirkung überhaupt eine beschränktere geworden, denn die großen Füllungen im Hochdruckzylinder und die hohe Temperatur des aus diesem austretenden Mitteldruckdampfes sind mit Rücksicht auf betriebssichere Zylinderwandtemperaturen höheren Überhitzungsgraden hinderlich.

Um in den Niederdruckzylindern der Verbundmaschinen die Eintrittsverluste zu verringern, wird mitunter Zwischenüberhitzung ausgeführt, d. h. der den Aufnehmer durchströmende Niederdruckdampf wird mittelst Röhrenheizung durch den Frischdampf überhitzt.

Die an die Anwendung der Zwischenüberhitzung geknüpften Erwartungen sind nicht in Erfüllung gegangen. Die großen Füllungen des Niederdruckzylinders, die geringe Dichte des Niederdruckdampfes beeinflussen die Wechselwirkung zwischen diesem und Zylinderwand in günstigster Weise, so daß Zwischenüberhitzung nur in solchen Fällen angebracht erscheint, in welchen der Hochdruckzylinder die zugeführte Überhitzungswärme nicht verarbeiten kann. Größere Erfolge hat nur die Lokomobilfabrik R. Wolf in dieser Beziehung zu verzeichnen, welche die Temperaturerhöhung des Aufnehmerdampfes durch die Abgase des Kessels bewirkt, eine Anordnung, welche Schwörer schon Ende der neunziger Jahre vorgeschlagen hat und welche ohne wesentliche Verbesserung des Dampfverbrauches an einigen ortfesten Maschinen zur Ausführung gelangt ist.

Die Ascherslebener Maschinenbau-A.-G. führt nach dem Vorschlag von Schmidt Dampfmaschinen mit "Füllungsüberhitzung" aus, wobei von folgenden Erwägungen ausgegangen wird.

Bei Füllungen von 15 bis 20 v. Ht. und bei einer Dampftemperatur bis zu 350° wird die Überhitzung noch vor Beendigung der Expansion aufgezehrt, und der Dampf schlägt sich nieder. Bei größeren Füllungen dagegen bleibt der Dampf bis Ende der Expansion überhitzt, so daß die Arbeitsflächen des Zylinders trocken bleiben, und jede Selbstschmierung aufhört. Außerdem steigt die Wandtemperatur infolge der größeren Füllung. Wenn sonach eine doppeltwirkende Maschine bei 15 bis 20 v. Ht. Füllung und 350° noch anstandslos arbeitet, so ist doch stets die Gefahr vorhanden, daß bei größeren Füllungen die Arbeitsflächen im Dampfzylinder zerstört werden. Es muß also dem Dampf bei jeder größeren Füllung Wärme vor seinem Eintritt in den Hochdruckzylinder entzogen werden, und zwar um so mehr, je größer die Füllung ist. Diese dem Hochdruckdampf entzogene Wärme wird am vorteilhaftesten zur Heizung des Aufnehmerdampfes verwendet, denn mit der Hochdruckfüllung wachsen Spannungssprung, Aufnehmerheizung, Überhitzung u. Zwischendampfentnahme. 283

gleichzeitig Aufnehmerspannung und Temperaturgefälle im Niederdruckzylinder.

Da nun der Regulator die Hochdruckfüllung einstellt, so ist er auch am besten zur Regelung der Überhitzung geeignet, indem er je nach der Größe der Füllung mehr oder weniger Hochdruckdampf durch den Aufnehmer strömen läßt.

Eine diesbezügliche Bauart des Aufnehmers zeigt Fig. 284. Der Hochdruckdampf tritt vom Hauptdampfrohr durch ein Absperrventil in einen Mischschieber, dessen Gehäuse an den Deckel des Aufnehmers

angegossen ist. Die Büchse dieses Schiebers hat zwei Ringkanäle; der obere Kanal steht mit der oberen und der untere mit der unteren Rohrkammer in Verbindung. Von dem unteren Kanal führt ein Dampfrohr nach dem Hochdruckzylinder. Schließt nun der Schieber den oberen Kanal ab, so tritt der Hochdruckdampf durch den unteren Kanal und gelangt unabgekühlt nach dem Hochdruckzylinder; nur ein kleinerer Teil, nämlich so viel als im Aufnehmer kondensiert wird, tritt durch die untere Rohrkammer zurück in die Rohre des Aufnehmers.

Bei Füllungen von über 20 v. Ht. stellt der Regulator den Schieber so ein, daß er den oberen Kanal öffnet und den unteren verengt, so daß ein Teil des Hochdruckdampfes seinen Weg durch die Rohre nimmt, hier seine Überhitzung an den Aufnehmerdampf abgibt, und dann nach Mischung mit dem übrigen direkt durch den Schieber gehenden Dampf zusammen nach dem Hochdruckzylinder gelangt.

Füllungsüberhitzung ist nur bei zeitlich weit auseinander liegenden Belastungsänderungen von Vorteil, da bei Schwankungen von kurzer Dauer eine Änderung der Wandtemperatur infolge der in den Eisenmassen des Zylinders aufgespeicherten Wärmemenge kaum eintreten wird.

In Fig. 285 ist das Wesen der Zwischendampfentnahme dargestellt.

Aus dem Aufnehmer wird ein Teil des aus dem Hochdruckzylinder tretenden Dampfes von 1,5—4 atm. abs. entnommen, um für Koch- und Heizzwecke zu dienen. Der Zwischendampfentnahme entsprechend, muß die

> Niederdruckfüllung oder das Zylinderverhältnis verringert werden. Letzteres ist bei ausgeführten Anlagen bis auf 1,5 (V = 1,5 v) verkleinert worden.

In Fällen, in denen stets gleichmäßiger Druck des zu verwendenden Heizdampfes auch bei schwankender Maschinenbelastung verlangt wird,

Linie

Fig. 285.

ist ein Dampfdruckregler nach Fig. 286 anzuordnen. (Bauart Maschinenfabrik Augsburg-Nürnberg.)

Der durch das Rohr D zuströmende Aufnehmerdampf hebt bei zu großem Druck den Kolben gegen die Federn an, wobei durch den Winkelhebel R die Füllung des Niederdruckzylinders vergrößert wird.

Durch die Spindel *H* können die Füllungsgrenzen verändert werden.

Wird durch diese Vorrichtung kleinste Füllung eingestellt und sinkt der Aufnehmerdruck weiter, so läßt ein selbsttätiges Druckminderventil gedrosselten Frischdampf in den Aufnehmer einströmen.

In der Zahlentafel sind Versuchsergebnisse wiedergegeben.

Beträgt der Wärmeverbrauch der normal arbeitenden Maschine W_1 W.E. und bei Zwischendampfentnahme $W_x = W_2 - W_3$, worin W_2 die gesamte Wärmezufuhr, W_3 der

durch die Zwischendampfentnahme verursachte Wärmeentzug bedeuten, so beträgt die Dampfersparnis:

¹) Eberle, Zeitschr. Ver. deutsch. Ing. 1907. S. 2005 u. f.

Spannungssprung, Aufnehmerheizung, Überhitzung u. Zwischendampfentnahme. 285

$$100 \frac{W_1 - W_x}{W_2}$$
 v. H.

Bei den Versuchen ergaben sich Ersparnisse von 18 bis 56 v. Ht., je nach der Größe der Zwischendampfentnahme und der Höhe des Zwischendampfdruckes, mit denen der Gesamtverbrauch zunimmt.

Art des Dampfes	Mantelheizung	von der Maschine	im Aufnehmer	Hochdruckzyl.	Niederdruckzyl.	Zwischendampf- entnahme in v. Ht. des Gesamtverbrauches	Hochdruckzyl. B	Niederdruckzyl.	Wärme für 1 truning sonz W2	emenge PS, in E. uago ztua W ₈	von der Maschine ver- brauchte Wärmemenge $W_x = W_2 - W_3$	Dampfverbrauch der Maschine pro PS _i - Stunde	Wärmeersparnis infolge der Zwischendampf- entnahme
Gesättigter Dampf	Beide Mäntel geheizt	$12,1 \\ 12,1 \\ 12,1 \\ 12,1 \\ 12,1 \\ 12,1 \\ 14,1 \\ 14,1 \\ 14,1 \\ 12,1 \\ 14,1 \\ 14,1 \\ 11,1 \\ $	$3,59 \\ 2,55 \\ 3,61 \\ 2,50 \\ 3,43 \\ 4,00$	33,9 54,3 45,0 34,8 28,4 43,3	$29,4 \\12,7 \\18,8 \\12,6 \\18,3 \\20,6$	$\begin{array}{r} 47,6\\77,7\\69,8\\68,2\\60,7\\64,4\end{array}$	0,73 0,76 0,79 0,73 0,72 0,76	$0,55 \\ 0,49 \\ 0,48 \\ 0,56 \\ 0,53 \\ 0,47$	6280 7130 7500 6760 7350 7230	$\begin{array}{c} 2870 \\ 5300 \\ 5010 \\ 4410 \\ 4300 \\ 4455 \end{array}$	$\begin{array}{c} 3410 \\ 1830 \\ 2490 \\ 2350 \\ 3050 \\ 2775 \end{array}$	5,1 2,7 3,7 3,5 4,6 4,2	$19 \\ 56 \\ 40,5 \\ 43 \\ 36 \\ 33$
Überhitzter Dampf	Niederdruckmantel geheizt	$10,1 \\ 10,1 \\ 12,1 \\ 12,1 \\ 12,1 \\ 12,1 \\ 12,1 \\ 14,1 \\ $	2,12 2,55 2,69 3,53 2,65 3,64 1,90 3,97 4,04	$\begin{array}{c} 36.0\\ 32.7\\ 52.5\\ 45.9\\ 33.3\\ 26.6\\ 47.3\\ 63.7\\ 43.1 \end{array}$	$\begin{array}{r} 9,5\\12,4\\12,3\\17,7\\12,7\\18,6\\39,3\\21,6\\21,5\end{array}$	$\begin{array}{c c} 72,8\\67,4\\76,2\\68,6\\65,8\\54,5\\0\\73,5\\63\end{array}$	0,89 0,85 0,91 0,92 0,90 0,92 0,87 0,88 0,90	$\begin{array}{c} 0,54\\ 0,52\\ 0,49\\ 0,51\\ 0,55\\ 0,53\\ 0,73\\ 0,54\\ 0,50\end{array}$	$\begin{array}{c} 5595\\ 6010\\ 5720\\ 6010\\ 5550\\ 5910\\ 3600\\ 6045\\ 5965\end{array}$	$\begin{array}{c} 3680\\ 3690\\ 3960\\ 3780\\ 3320\\ 2950\\ 0\\ 4072\\ 3460 \end{array}$	$\begin{array}{c} 1915\\ 2320\\ 1760\\ 2230\\ 2230\\ 2960\\ 3600\\ 1973\\ 2505\\ \end{array}$	$2,7 \\ 3,3 \\ 2,5 \\ 3,1 \\ 3,1 \\ 4,1 \\ 5,0 \\ 2,8 \\ 3,5 \\ 3,5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$ \begin{array}{r} 48 \\ 37 \\ 50 \\ 36,5 \\ 38,5 \\ 18 \\ - \\ 45 \\ 27 \\ \end{array} $

Infolge der mit größerer Füllung und höherem Gegendruck abnehmenden Abkühlungsverluste stieg der Gütegrad des Hochdruck-

zylinders bis auf $\eta_{\rm g} = 92$ v. Ht. Der Gütegrad des Niederdruckzylinders, der naturgemäß bei geringster Zwischendampfentnahme am höchsten war, ist bedeutend ungünstiger, was darauf zurückzuführen ist, daß die untersuchte Maschine nicht für Zwischendampfentnahme eingerichtet war und einen zu großen Niederdruckzylinder besaß.

Fig. 287 zeigt aufgenommene Diagramme.

e) Zylinder-Anordnung und konstruktive Gesichtspunkte.

Das Gesamtbild der Verbundmaschine ist gegeben, sobald die Zylinderanordnung bestimmt ist. Für die Verbundmaschine kommt hier die Ausführung als Tandemmaschine oder als Zwillingsverbundmaschine fast ausschließlich in Betracht.

Als Vorteile der Tandemmaschine sind anzuführen: geringer Raumbedarf, einfache Fundamente und einfacheres Triebwerk. Vorteile bezüglich der Massenwirkung bestehen nicht. Als Nachteil ergibt sich die

schwierige Zugänglichkeit des an die Geradführung angeschlossenen Zylinders. Seit der Einführung der Überhitzung ist es gebräuchlich geworden, den Niederdruckzylinder mit der Geradführung zu verbinden und nicht mehr, wie ehedem, den Hochdruckzylinder. Hieraus ergibt sich eine geringere Erwärmung der Geradführung und des Kreuzkopfes infolge der niedrigeren Niederdruck-Dampftemperatur. Die Übertragung der größeren Längsdehnung des Hochdruckzylinders auf den Niederdruckzylinder wird vermieden. Auch die Folgen der senkrechten Ausdehnung verschwinden mehr. Man nimmt nämlich an, daß der Hochdruckzylinder sich im Verhältnis der weiteren Entfernung von der Geradführung mehr hebt als der Niederdruckzylinder. Die Mittellinie der Maschine wird also stetig gekrümmt sein.

Schließlich kann die hintere Kolbenstangenführung wegfallen, da der kleinere Hochdruckkolben diese entbehren kann. Die Zylinder werden durch Strebestangen oder durch "Laternen" (Verbindungsmulden) nach Fig. 288 bis 291 miteinander verbunden.

Erstere Bauart ist trotz guter Zugänglichkeit der Stopfbüchsen nicht häufig. Fig. 288 zeigt eine Laterne bei vorne liegendem Niederdruck-

zylinder. Die Kolbenstange muß in diesem Falle zweiteilig ausgeführt werden, damit der Niederdruckkolben durch die Öffnung der Laterne herausgeholt werden kann. Absteifung des Ausschnittes durch Abstandsbolzen ist bei größeren Ausführungen empfehlenswert. Zur Entlastung der Stopfbüchsen und zur Verminderung der Kolbenreibung ist eine

Unterstützung der Kolbenstange in der Laterne vorteilhaft und zwar, wie dargestellt, in nachgiebiger Weise durch genau einstellbaren Federdruck.

In Fig. 289 ist die gebräuchlichste Laterne für die umgekehrte Anordnung wiedergegeben. Der Hochdruckkolben wird in der Weise herausgenommen, daß der hintere Hochdruckdeckel und die beiden Niederdruckdeckel gelöst werden. Beide Kolben mit Stangen und Deckeln werden sodann durch den Niederdruckzylinder geschoben. Die Kolbenstange kann also hierbei einteilig hergestellt werden. Der Flansch für den vorderen Niederdruckdeckel befindet sich am Zylinder selbst, so daß zur Ermöglichung der oben beschriebenen Kolbenherausnahme der Durchmesser des Hochdruckzylinders oft kleiner gewählt werden muß, als mit Rücksicht auf richtige Arbeitsverteilung erwünscht ist. Diesem Übelstand helfen die beiden Laternen nach Fig. 290 und 291 ab. In

Fig. 290¹) ist der Niederdruckdeckel an einen zweiteiligen Ring geschraubt, der durch die Laterne eingeschoben wird und sich gegen einen niedrigen Ringansatz des Zylinders stützt. Die Herausnahme des Kolbens wird dadurch erleichtert.

Fig. 291 stellt eine amerikanische Ausführung dar. Der vordere Deckel des Niederdruckzylinders ist ohne Flansch in die Zylinderbohrung eingesetzt und an dem mit Butzen versehenen Flansch a des Zwischenstückes festgeschraubt. Der hintere Deckel des Hochdruckzylinders läßt sich durch die Öffnung des Flansches a derart hindurchziehen, daß die an dem Umfange seines Flansches angeordneten Butzen für die Befestigungsschrauben zwischen den Schraubenbutzen des Flansches ahindurchgehen.

Bei dem Entwurf der Laternen ist darauf zu achten, daß der Schwerpunkt des Querschnittes womöglich in die Mittellinie der Kolbenstange fällt. Ist der Raum für eine größere Baulänge der Maschine vorhanden, so ist es vorteilhaft, beide Zylinder durch eine Geradführung zu verbinden und in dieser den die beiden Kolbenstangen kuppelnden Kreuzkopf zu führen. Die Kolben werden dadurch gut geführt und sind leicht herauszunehmen.

Das Bestreben, die Raumbeanspruchung möglichst zu verringern und in dieser Hinsicht dem Wettbewerb der Dampfturbinen besser zu begegnen, hat andererseits zu dem Entwurf der "kurzgebauten" Tandemmaschinen von Max Schmidt und Lentz geführt.

¹) Nach einer Ausführung der Maschinenfabrik Rheydt, O. Recke.

Die Bauart der Laterne nach M. Schmidt ist in Fig. 292 dargestellt. In das Zwischenstück wird vom Hochdruckzylinder aus eine gußeiserne Kompensationshülse b eingeschoben, an welche auf der Niederseite die eigentliche Stopfbüchse (nach Schwabe) angeschraubt ist.

Dubbel, Dampfmaschinen. 3. Aufl.

289

Die Verbundwirkung.

Durch den Überdruck der Hochdruckseite würde die Hülse am Hochdruckdeckel schon genügend in dem Konus abdichten. Zur Sicherheit sind jedoch noch zwei seitliche Keile angebracht.

290

Zur Ermöglichung freier Wärmeausdehnung ist die Hülse im Niederdruckdeckel nicht starr befestigt, sondern durch einen Kupferring abgedichtet.

Die Spannung des aus dem Hochdruckzylinder entweichenden Dampfes wird durch Drosselringe stark verringert, so daß die vom Heißdampf nicht berührte Stopfbüchse nur zwei Räume niederer Spannung voneinander zu trennen hat.

Die Kolbenstange setzt sich aus einem äußeren Stahlrohr und der darin liegenden Verlängerung der Niederdruck-Kolbenstange zusammen, so daß beide Kolben durch eine einzige Mutter gleichzeitig und einheitlich vom freien Ende des Hochdruckzylinders aus angezogen werden können.

Nach Lösung der Keile und Verschiebung der Hülse b nach dem Hochdruckzylinder hin kann die Stopfbüchse leicht einer Besichtigung unterworfen werden.

In Fig. 293 ist das Zylindergußstück der "kurzgebauten" Tandemmaschine, Bauart Lentz, dargestellt.

Die Hubräume beider Zylinder, von denen der Hochdruckzylinder mit der Geradführung verschraubt ist, werden durch einen Zwischendeckel mit packungsloser "Lentz'scher Stopfbüchse getrennt.

Der Dampf tritt unten am Hochdruckzylinder ein, durchströmt den Aufnehmerkanal über beiden Zylindern und tritt unten am Niederdruckzylinder wieder aus.

Die Zylinder der Tandemmaschinen sollen auf einer gemeinsamen Grundplatte gleitbar angeordnet sein. Kräfte dürfen durch diese nicht übertragen werden.

Der Antrieb der Steuerung kann bei Tandemmaschinen in verschiedenster Weise erfolgen, während für liegende Zwillingsverbundmaschinen dieselbe Steuerungsanordnung wie bei Einzylindermaschinen üblich ist. Haben die Zylinder Expansionsschiebersteuerung, so dienen beide Exzenter zum Antrieb der vier Schieber, falls diese an einer Seite der Maschine liegen. Damit die Kanäle kurz werden, bewegt das dem Lager zunächst sitzende Exzenter die Expansionsschieber. Günstiger ist eine weitere Anordnung, bei welcher die zur Steuerung des Hochdruckzylinders gehörigen Exzenter auf einer kleineren, durch Gegenkurbel gedrehten Welle sitzen. Das Exzenter zur Bewegung des Niederdruckschiebers ist hierbei auf der Hauptwelle aufgekeilt. Als Vorzüge ergeben sich größere Unabhängigkeit in der Dampfverteilung und verkleinerte Ausführung zweier Exzenter, doch leidet die Zugänglichkeit der Maschine. Sind die Zylinder mit Ventilsteuerung versehen, so gestaltet sich deren Antrieb mittelst durchgehender Welle sehr einfach; letztere ist mit einer Ausdehnungskuppelung auszuführen, um der Längsdehnung der Maschine durch die Wärme Rechnung zu tragen.

Ist der Niederdruckzylinder mit Corliß-Steuerung, der Hochdruckzylinder mit Ventilsteuerung ausgeführt, und liegt der Steuerungsantrieb auf derselben Maschinenseite, so empfiehlt es sich, von der Steuerwelle mittelst Winkelräder eine kurze, senkrecht zur Achse des Niederdruckzylinders liegende Welle anzutreiben, von welcher die Bewegung für die Schieber durch Exzenter abgeleitet wird. Ist die Hauptwelle hingegen gekröpft, so gestatten die zwei freien Wellenenden besonderen Antrieb für jede der Steuerungen.

Bei liegenden Dreifachexpansionsmaschinen werden bei Leistungen bis zu etwa 1200 PS_i Hoch- und Mitteldruckzylinder auf die eine, der Niederdruckzylinder auf die andere Maschinenseite gelegt.

Bei größeren Leistungen wird, wie schon erwähnt, der Niederdruckzylinder geteilt und doppelt ausgeführt. Als Vorteile dieser Anordnung sind hervorzuheben: Erleichterte Ausführung durch Vermeidung des außergewöhnlich großen Niederdruckzylinders. Gleichmäßigere Verteilung der Leistung bei verschiedenen Belastungen. Die bei dieser Anordnung übliche Teilung der Kondensation erhöht zudem die Betriebssicherheit und schafft Reserve, da nach entsprechender Ankuppelung des Regulators an die Mitteldrucksteuerung auch diese Seite den Betrieb wenigstens teilweise mit gedrosseltem Dampf fortsetzen kann, wenn die andere Seite schadhaft geworden ist.

Mitunter werden größere Verbundmaschinen namentlich bei Anwendung überhitzten Dampfes als Zwillingstandemmaschinen ausgeführt. Der Dampfverbrauch ist in diesem Fall erfahrungsgemäß ebenso günstig wie bei einer gleich großen und dann zweckmäßig mit vier Zylindern ausgeführten Dreifachexpansionsmaschine. Gegen letztere hat aber die Zwillingstandemmaschine den Vorzug besserer Einwirkung des Regulators. Nimmt man in beiden Fällen Regulierung nur der Hochdrucksteuerung und gleiche Arbeitsverteilung auf beide Maschinenseiten an, so beeinflußt der Regulator bei der Zwillingstandemmaschine sofort die Hälfte, bei der Dreifachexpansionsmaschine nur ein Viertel der Leistung, und es pflanzt sich bei ersterer Maschine der Einfluß des Regulatoreingriffes schneller fort. Die Arbeitsverteilung auf beide Kurbeln ist günstiger.

Dieselben Gründe sprechen auch für die Teilung des Hochdruckzylinders bei Dreifachexpansionsmaschinen mittlerer Größe. Es stellt sich auch hier der weitere Vorteil ein, daß die mit überhitztem Dampf arbeitenden Kolben und Ventile in ihren Abmessungen kleiner werden.

Bei stehenden Maschinen ist die Nebeneinanderlagerung der drei Zylinder und die Versetzung der Kurbeln unter 120^o wegen der damit verbundenen Gleichmäßigkeit in der Drehgeschwindigkeit die vorteilhafteste Bauart. Wird der Durchmesser des Niederdruckzylinders größer als 2 m, so ist dessen Teilung wieder vorteilhaft, und so werden zwei andere Anordnungen möglich: die vier Zylinder nebeneinander oder je zwei in Tandem-Anordnung wie bei der entsprechenden liegenden Maschine. Infolge der großen Bauhöhe wird bei letzterer Ausführung die Wartung und Übersichtlichkeit sehr erschwert.

Bei der Nebeneinanderlagerung der drei Zylinder folgen diese am besten in der Reihenfolge: Hoch-, Mittel- und Niederdruckzylinder, wodurch zwar die äußere Symmetrie der Maschine gestört wird, andererseits die Überströmkanäle aber am kürzesten werden. Die Abkühlungsverluste nehmen ab, und die Regulierung wird verbessert.

Die Anbringung einer Niederdruck-Corlißsteuerung wird dadurch sehr erleichtert.

Die Aufstellung der Zylinder unter sich soll so erfolgen, daß freie Ausdehnung eines jeden Zylinders ermöglicht wird. Dementsprechend werden die Ständer starr unter sich durch Verstrebungen verbunden, und jeder einzelne Zylinder mit seinem Ständer befestigt, ohne mit den anderen Zylindern anders als durch die kupfernen Überströmrohre in Verbindung zu stehen.

Die Zylinderanordnung der stehenden Verbundmaschinen wird im übrigen wesentlich durch die Lage der Schieber bedingt. Möglichst enger Zusammenbau, wie er z. B. bei Maschinen mit unter 180[°] versetzten Kurbeln erwünscht ist, wird erreicht, wenn die Schieber außen liegen, wodurch sie zudem leichter zugänglich werden, falls sie als Flachschieber ausgeführt worden sind.

Die Kurbeltriebwerke werden hingegen übersichtlicher und zugänglicher, wenn die Schieber innen liegen. Häufig findet man die nur von oben zugänglichen Kolbenschieber am Hochdruckzylinder nach innen liegen, während der Niederdruckflachschieber außen angebracht ist, so daß dieser und auch das Kurbeltriebwerk zugänglich sind.

Eine besondere Anordnung, von der Görlitzer Maschinenfabrik, Dingler und einigen amerikanischen Firmen gebaut, bei welcher der Hochdruckzylinder liegend, der Niederdruckzylinder stehend ausgeführt wird, vereinigt die Vorteile der stehenden mit denen der liegenden Maschine. Raumbedarf und die Pressungen auf Kurbel und Wellenzapfen werden geringer als bei Tandemmaschinen, und es läßt sich weitgehender Massenausgleich ermöglichen. Diese Maschinen besitzen zudem alle Vorteile der Zwillingsverbundmaschinen, bei welchen zur Erzielung gleichförmiger Drehgeschwindigkeit kleinere Schwungräder als bei Tandemmaschinen erforderlich sind und die in jeder Stellung angelassen werden können.

F. Die Wirkungen der Massen und des Schwungrades.

a) Die Geschwindigkeits- und Kraftverhältnisse des Kurbelgetriebes.

Bei unendlich langer Pleuelstange.

Dieser Fall liegt vor, wenn der Kurbelzapfen in den Schlitz einer Kurbelschleife eingreift. Die bei irgend einem Kurbelwinkel α zurückgelegte Wegstrecke x wird durch die Projektion des Kurbelendpunktes auf den wagerechten Durchmesser gefunden. Es wird:

$$\mathbf{x} = \mathbf{R} \ (1 - \cos \alpha).$$

Die Geschwindigkeit c der Kurbelschleife ist gleich der wagerechten Komponente der Kurbelzapfengeschwindigkeit w, sonach:

 $\mathbf{c} = \mathbf{w} \cdot \sin \alpha$.

Wird die gleichbleibend angenommene Umfangsgeschwindigkeit durch den Halbmesser R dargestellt, so ist $c = R \cdot \sin \alpha$, d. h. die zu einer bestimmten Kurbelstellung gehörige Ordinate gibt durch ihr Verhältnis zu R die augenblickliche Geschwindigkeit der Kurbelschleife an.

Die Beschleunigung b, welche die Kurbelschleife während des Hubes s = 2 R erfährt, ist gleich der wagerechten Komponente der Zentripetalbeschleunigung $\frac{W^2}{R}$:

$$\mathbf{b}=\frac{\mathbf{w}^2}{\mathbf{R}}\cdot\cos\alpha.$$

Nun ist:

$$\mathbf{x} = \frac{\mathbf{s}}{2} (1 - \cos \alpha); \cos \alpha = 1 - \frac{2\mathbf{x}}{\mathbf{s}}.$$

Setzt man diesen Wert in die Gleichung für b ein, so erhält man:

$$\mathbf{b} = \frac{\mathbf{w}^2}{\mathbf{R}} \left(\mathbf{1} - \frac{2 \mathbf{x}}{\mathbf{s}} \right),$$

die Gleichung einer Geraden von der Form $y = a + b \cdot x$.

Bei Pleuelstangen von endlicher Länge.

Nach Seite 72 ist:

$$\mathbf{x} = \mathbf{R} \Big(\mathbf{1} - \cos \, \mathbf{lpha} \pm rac{\mathbf{1}}{2} rac{\mathbf{R}}{\mathbf{L}} \cdot \sin^2 \mathbf{lpha} \Big).$$

Der Kolbenweg kann entweder durch zwei den Kurbelkreis tangierende Bögen vom Radius L (S. 71) oder mittelst des Brixschen Verfahrens zeichnerisch bestimmt werden. (S. 72.)

Die Kolbengeschwindigkeit wird durch Differentiation des obigen Ausdruckes für x nach der Zeit erhalten:

$$\mathbf{v} = \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} \mathbf{t}} = \mathrm{R} \bigg(\sin \alpha \pm \frac{1}{2} \frac{\mathrm{R}}{\mathrm{L}} \cdot \sin 2 \alpha \bigg) \cdot \frac{\mathrm{d} \alpha}{\mathrm{d} \mathbf{t}};$$

nun ist:

Fig. 294.

Die Differentiation dieses Ausdruckes nach der Zeit ergibt die Beschleunigung:

$$\mathbf{b}_{\mathbf{e}} = \frac{\mathbf{d} \mathbf{v}}{\mathbf{d} \mathbf{t}} = \mathbf{w} \left(\cos \alpha \pm \frac{\mathbf{R}}{\mathbf{L}} \cdot \cos 2 \alpha \right) \cdot \frac{\mathbf{d} \alpha}{\mathbf{d} \mathbf{t}}, \text{ oder, } \mathbf{da} \frac{\mathbf{d} \alpha}{\mathbf{d} \mathbf{t}} = \frac{\mathbf{w}}{\mathbf{R}};$$

 $\mathbf{b}_{\mathbf{e}} = \frac{\mathbf{w}^2}{\mathbf{R}} \left(\cos \alpha \pm \frac{\mathbf{R}}{\mathbf{L}} \cdot \cos 2 \alpha \right).$

Wird nach Fig. 294 die Kolbenkraft P in der ersichtlichen Weise zerlegt, so wird:

der Normaldruck auf die Gleitbahn:

 $\mathbf{N} = \mathbf{P} \cdot \mathbf{tg} \ \boldsymbol{\beta} = \mathbf{S} \cdot \sin \ \boldsymbol{\beta},$

worin S =Schubstangenkraft.

Für $(\alpha + \beta) = 90^{\circ}$ wird

$$\mathbf{N} = \mathbf{P} \cdot \frac{\mathbf{R}}{\mathbf{L}}.$$

Weiterhin ist:

$$\begin{split} \mathrm{S} &= \frac{\mathrm{P}}{\cos\beta}.\\ \mathrm{F\ddot{u}r} \ \alpha &= 90^{\circ} \ (\beta = \beta_{\mathrm{max}}) \ \mathrm{wird}:\\ \mathrm{S}_{\mathrm{max}} &= \frac{\mathrm{P}}{\sqrt{1 - \left(\frac{\mathrm{R}}{\mathrm{L}}\right)^{2}}} \end{split}$$

Fur $L = \infty$.

$$S = P.$$

Der Tangentialdruck an der Kurbel hat den Wert:

$$\Gamma = \mathbf{P} \cdot \frac{\sin{(\alpha + \beta)}}{\cos{\beta}}.$$

Es wird für: $\alpha = 90^{\circ}$ $(\alpha + \beta) = 90^{\circ}$

$$\begin{aligned} \alpha &= 90^{\circ} & T = P. \\ (\alpha + \beta) &= 90^{\circ} & T_{max} = S = P \sqrt{1 + \left(\frac{R}{L}\right)^2}. \\ L &= \infty & T = P \cdot \sin \alpha. \end{aligned}$$

b) Der Beschleunigungsdruck.

Die Massen des Kolbens nebst Stange, des Kreuzkopfes und der halben Schubstange erfahren in der kurzen Zeit v. rd. $\frac{1}{4}$ Umdrehung eine Steigerung ihrer Geschwindigkeit von Null bis auf die Kurbelzapfengeschwindigkeit. Der hierzu erforderliche Beschleunigungsdruck K muß vom Kolbendruck oder, falls dieser mangelt, von der im Schwungrad aufgespeicherten lebendigen Kraft hergegeben werden, und zwar in der Größe:

$$\mathbf{K}_{\mathbf{u}} = \frac{\mathbf{G}}{\mathbf{g}} \cdot \frac{\mathbf{w}^2}{\mathbf{R}} \left(\mathbf{1} - \frac{2\mathbf{x}}{\mathbf{s}} \right)$$

bei unendlicher Pleuelstangenlänge, und

$$\mathbf{K}_{\mathbf{e}} = \frac{\mathbf{G}}{\mathbf{g}} \cdot \frac{\mathbf{w}^2}{\mathbf{R}} \left(\cos \alpha \pm \frac{\mathbf{R}}{\mathbf{L}} \cdot \cos 2 \alpha \right)$$

bei endlicher Pleuelstangenlänge.

Da dieser Beschleunigungsdruck von der ganzen Kolbenfläche F aufzubringen ist, so entfällt auf 1 qcm der Druck:

$$k_{u} = \frac{G \cdot w^{2}}{g \cdot R \cdot F} \left(1 - \frac{2x}{s}\right), \text{ bezw.}$$
$$k_{e} = \frac{G \cdot w^{2}}{g \cdot R \cdot F} \cdot \left(\cos \alpha \pm \frac{R}{L} \cdot \cos 2\alpha\right).$$

Für den Totpunkt, in welchem x und $\alpha = 0$, wird

$$\begin{split} \mathbf{k}_{u} &= \frac{\mathbf{G} \cdot \mathbf{w}^{2}}{\mathbf{g} \cdot \mathbf{R} \cdot \mathbf{F}}\text{,} \\ \mathbf{k}_{e} &= \frac{\mathbf{G} \cdot \mathbf{w}^{2}}{\mathbf{g} \cdot \mathbf{R} \cdot \mathbf{F}} \left(\mathbf{1} \pm \frac{\mathbf{R}}{\mathbf{L}}\right)\text{.} \end{split}$$

Unter Voraussetzung unendlicher Pleuelstangenlänge wird demnach im Totpunkt der Beschleunigungsdruck gleich der Fliehkraft der im Kurbelzapfen vereinigt gedachten schwingenden Massen. In diesem Fall können fernerhin die Beschleunigungsdrucke ebenso wie die Beschleunigungen selbst durch die Ordinaten einer Geraden dargestellt werden, welche die Wagerechte in der Mitte schneidet, da für $x = \frac{1}{2}s$, $k_u = o$ wird und deren Anfangs- und Endordinate den Wert $k_u = \frac{G \cdot w^2}{g \cdot R \cdot F}$ haben. Fig. 298.

296

Bei Annahme endlicher Pleuelstangenlänge genügt in den meisten Fällen die Kenntnis der 11 Ordinaten der Beschleunigungsdruckkurve, die durch eine Zehnteilung des Kolbenweges entstehen. Diesen zehn

Teilen entsprechen Kurbelwinkel von verschiedener, durch das Verhältnis $\frac{R}{L}$ bestimmter Größe, Fig. 295. Setzt man die durch die Zehnteilung erhaltenen Werte von α in die Rechnung ein, so ergibt sich nebenstehnde Zahlentafel¹).

Diese Werte, als Ordinaten der Beschleunigungsdruckkurve, Fig. 296, beziehen sich auf

$$\frac{\mathbf{G}}{\mathbf{g}\cdot\mathbf{F}}\cdot\frac{\mathbf{w}^{2}}{\mathbf{R}}=1$$

Eine weitere einfache Art der Aufzeichnung wird davon abgeleitet, daß in den Totpunkten

$$\mathbf{k}_{\mathbf{e}} = \mathbf{k}_{\mathbf{u}} \left(\mathbf{1} \pm \frac{\mathbf{R}}{\mathbf{L}} \right).$$

¹) Nach Otto H. Mueller, Z. 1889, S. 944 u. f.

	Ordinate	$\frac{R}{L} = \frac{1}{4}$	$\frac{R}{L} = \frac{1}{5}$	$\frac{R}{L} = \frac{1}{6}$	Ordinate	
Hingang	$ \begin{array}{c c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	$\begin{array}{c} 1,25\\ 0,941\\ 0,664\\ 0,409\\ 0,129\\ -0,101\\ -0,318\\ -0,471\\ -0,610\\ -0,715\\ -0,75\end{array}$	$\begin{array}{c} 1,2\\ 0,92\\ 0,639\\ 0,379\\ 0,126\\ -0,091\\ -0,3\\ -0,465\\ -0,613\\ -0,717\\ -0,8\end{array}$	$\begin{array}{c} 1,167\\ 0,84\\ 0,633\\ 0,376\\ 0,134\\ -0,078\\ -0,284\\ -0,458\\ -0,608\\ -0,742\\ -0,833\end{array}$	$ \begin{array}{c} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array} $	→ Rückgang

Werte von
$$\left(\cos \alpha \pm \frac{\mathbf{R}}{\mathbf{L}} \cdot \cos 2 \alpha\right)$$
.

und für $\alpha = 90^{\circ}$

$$k_{e} = -k_{u} \cdot \frac{R}{L}$$

Ist z. B. $\frac{R}{L} = \frac{1}{5}$, so braucht die Anfangsordinate der zuerst für

 $L = \infty$ aufgezeichneten Beschleunigungskurve nur um $\frac{1}{5}$ ihrer Länge ver-

größert, die Endordinate um dasselbe Stück verkleinert zu werden. Hierauf wird unter Berücksichtigung der Pleuelstangenlänge die Kolbenstellung für $\alpha = 90^{\circ}$ ermittelt und auf der betreffenden Senkrechten die gleiche Strecke nach Fig. 298 abgetragen. Zwei weitere Punkte der Kurven ergeben sich bei den Kurbellagen $\alpha = 45^{\circ}$ und 135°, für welche die Beschleunigungsdrucke bei endlicher und unendlicher Pleuelstangenlänge einander gleich sind. Aus diesen fünf Punkten kann sodann die parabelähnliche Linie gezogen werden.

Da die Beschleunigungsdruckkurve gewöhnlich in das Dampfdiagramm eingezeichnet wird, so muß für die Darstellung von k_u , bezw. k_e der Druckmaßstab des Diagramms gewählt werden.

Die zur Berechnung der Beschleunigungsdrucke erforderliche Kenntnis der Gewichte könnte bei ausgeführten Maschinen durch Wägung, bei entworfenen Maschinen durch Gewichtberechnung festgestellt werden. Da es sich meist aber nur um eine angenäherte Wiedergabe der Kurven handelt, so kann der Wert $\frac{G}{F}$ — das Gewicht der hin- und hergehenden Maschinenteile pro 1 qcm Kolbenfläche — nach Radinger gesetzt werden:

Für Hochdruckmaschinen:Kolbenhub $\leq 0,7 \text{ m}, \frac{G}{F} = 0,28 \text{ kg},$,,,, $\geq 0,7 \text{ m}, \frac{G}{F \cdot s} = 0,4 \text{ kg}.$ Für Niederdruckmaschinen:,,,, $\leq 0,9 \text{ m}, \frac{G}{F} = 0,2 \text{ kg}$,,,, $\geq 0,9 \text{ m}, \frac{G}{F \cdot s} = 0,22 \text{ kg},$

wenn s = Hub in m.

Als Niederdruckmaschinen kommen die Niederdruckseiten der Mehrfachexpansionsmaschinen in Betracht.

Werden Pumpen, Gebläse usw. von dem Kolbengestänge angetrieben, so sind deren Massen, wie auch die zu beschleunigenden Wassermassen besonders in Rechnung zu stellen.

c) Das Tangentialdruckdiagramm und die Schwungradberechnung.

Fig. 299—301. Steht der Kolben in der durch die Senkrechte y - y bezeichneten Stellung, so wirken auf ihn die fördernde Hinterdampfspannung p_h und die hindernde Vorderdampfspannung p_v . Um die den Kolben treibende Differenz beider Spannungen, den Überdruck $p_h - p_v$, für jede Kolbenlage zu erhalten, wird die Linie der Hinterdampfspannungen des einen Diagramms in der Weise über die der Vorderdampfspannungen des anderen Diagramms gelegt, daß, dem tatsächlichen Vorgang ent-

299

sprechend, Kompression und Füllung an entgegengesetzten Enden liegen. Die zwischen beiden Linienzügen liegenden Ordinaten geben dann für jede Kolbenstellung den Überdruck $p_h - p_v$ an. Ihre am zweckmäßigsten von der absoluten Nullinie aus vor-

Das schließliche Diagramm Fig. 301 gibt in seinen Ordinaten für jede Kolbenstellung den wagerechten Druck auf den Kurbelzapfen an. Da der Tangentialdruck die Größe

Fig. 300 und 301.

$$T = P \cdot \sin \alpha$$
für unendliche Pleuelstangenlänge,
$$T = P \cdot \frac{\sin (\alpha + \beta)}{2}$$

werden, so daß die Überdrucklinie

$$P \cdot \frac{1}{\cos \beta}$$

In dieses ist noch die Beschleuni-

für endliche Pleuelstangenlänge hat, so lassen sich die Tangentialdrücke berechnen. Schneller führt die zeichnerische Ermittelung zum Ziel. In Fig. 302 wird für jede Kolbenlage die zugehörige Kurbelstellung aufgesucht und auf dieser der Überdruck P abgetragen; die Entfernung des Endpunktes dieser abgetragenen Strecke von der Wagerechten gibt dann den Tangentialdruck T= $\mathbf{P} \cdot \sin \cdot \alpha$ wieder.

Soll die endliche Pleuelstangenlänge berücksichtigt werden, so wird in Fig. 303 P vom Zapfen z aus auf dem Kurbelradius abgetragen. Der senkrecht gemessene Abstand des Endpunktes e von der Schubstangenrichtung stellt T dar. Der Beweis ergibt sich aus dem Sinussatz.

Um das Tangentialdruckdiagramm zu erhalten, wird der Kurbelhalbkreis in eine Anzahl gleicher Teile geteilt und

zu der Länge L = $\frac{\pi \cdot s}{2}$ ausgestreckt. Die zu den verschiedenen Kurbellagen gehörigen Tangentialkräfte werden sodann in den zugehörigen Teilpunkten als Ordinaten aufgetragen.

Da das derart entstehende Tangentialdruckdiagramm die Dampfarbeit während eines Hubes wiedergibt, so muß seine Fläche ebenso groß wie die des Dampfdiagramms Fig. 299 sein.

Wirkt der Widerstand tangential an der Kurbelwelle, wie dies bei Ableitung der Kraft durch Riemen, Seile oder Zahnräder der Fall ist, und wird Gleichmäßigkeit der Belastung angenommen, so ist das Diagramm des tangentialen Widerstandes ein Rechteck, welches, auf der

Wirkt der Widerstand unmittelbar an der Kolbenstange, wie dies häufig bei Pumpen, Gebläsen usw. zutrifft, so werden nach Fig. 304 die beiden Überdruckdiagramme über derselben Grundlinie aufgetragen, nachdem die Ordinaten des Widerstandsdiagramms durch Multiplikation mit dem Zylinderverhältnis auf den Dampfzylinder zurückgeführt und durch Multiplikation mit dem reziproken Wert $\frac{N_i}{N_e}$ des Wirkungsgrades vergrößert worden sind.

Wird hingegen z. B. eine Pumpe unter Vermittelung einer Kurbel angetrieben, so sind aus den Ordinaten des annähernd rechteckigen

Pumpenüberdruckdiagramms die Tangentialdrucke in derselben Weise, wie im vorhergehenden für das Dampfüberdruckdiagramm angegeben, zu ermitteln. Für 2 unter 180^o angeordnete, einfachwirkende Pumpen ergibt sich dann für einen bestimmten Fall¹) das in Fig. 305 wiedergegebene Diagramm, während Fig. 306 die Tangentialdrucke von zwei unter 90^o angeordneten Differentialpumpen darstellt. Wie aus Fig. 306

¹) Budil, Z. 1894, S. 1362.

hervorgeht, ist bei dieser Ausführungsweise der Tangentialdruck bedeutend gleichmäßiger als in Fig. 305. Auch hier muß Flächengleichheit zwischen Dampf- und Widerstandsdiagramm vorhanden sein.

Diejenigen Flächen, welche im Tangentialdruckdiagramm die Linie des Widerstandes überragen, stellen nun die Mehrarbeit dar, welche zeit-

Eig. 307.

weise geleistet und als lebendige Kraft ins Schwungrad übertragen werden muß, damit dieses zur Zeit fehlender Arbeit solche abgeben kann. Die Umfangsgeschwindigkeit des Kurbelzapfens kann sonach nicht konstant sein. Im Punkte a des Diagramms Fig. 302 ist die Geschwindigkeit am kleinsten, da bis dahin die fehlende Arbeit durch die lebendige Kraft des Schwungrades geleistet werden mußte. In a beginnt die Beschleunigung der umlaufenden Massen, welche im Punkte b gleich Null wird, während die Geschwindigkeit hier ihren Höchstbetrag erhält.

Die Tangentialdruckdiagramme der Mehrfachexpansionsmaschinen werden aus den Einzeldiagrammen der verschiedenen Zylinder zusammengesetzt, Fig. 307. Bei dieser Zusammensetzung sind die Kurbelversetzung, die verschiedenen Druckmaßstäbe der Hoch- und Niederdruckdiagramme, sowie das Zylinderverhältnis zu berücksichtigen. Meist werden die Diagramme auf den Niederdruckzylinder bezogen, indem unter Voraussetzung gleichen Druckmaßstabes die Ordinaten des Hochdruckdiagramms im Verhältnis der Hubvolumina verkleinert werden Die Wirkungen der Massen und des Schwungrades.

Soll bei der Aufzeichnung der Tangentialdruckdiagramme die endliche Pleuelstangenlänge berücksichtigt werden, so sind wegen der verschiedenartigen Einzeichnung der Beschleunigungsdruckkurve die Überdruck- und Tangentialdruckdiagramme sowohl für Hingang als auch für Rückgang des Kolbens zu entwerfen. Für die Schwungradberechnung kommt hierbei die größte der Überragungs- oder der Unterschneidungsflächen in Betracht, da diese die größte Arbeit darstellt, welche das Schwungrad aufzunehmen bezw. abzugeben hat.

Wird mit λ die Länge der Grundlinie, mit h die mittlere Höhe der Überschußfläche A, Fig. 302, bezeichnet, so ist:

 $\mathbf{A} = \boldsymbol{\lambda} \boldsymbol{\cdot} \mathbf{h}.$

Der Arbeitsmaßstab für A ergibt sich aus dem Verhältnis $\lambda:\frac{\pi s}{2}$ (da die Diagrammlänge $\frac{\pi \cdot s}{2}$ = Kurbelhalbkreis) und aus dem gewählten Druckmaßstab.

B eispiel. Maschine 300 mm Zyl.-Durchm.s = 600 mm Hub, n = 120. Die Länge des Tangentialdruckdiagramms stellt sodann $\frac{\pi}{2} \cdot s = 0,942$ m vor. Nach der Zeichnung sei $\lambda = 0,45 \cdot \frac{\pi}{2} \cdot s = 0,424$. Die mittlere Höhe der überschießenden Fläche A betrage 16 mm = 1,6 kg/qcm, da in sämtlichen Diagrammen als Maßstab 1 kg/qcm = 10 mm gewählt sei. Sonach ist: A = $\lambda \cdot h = 1,6 \cdot 0,424$ und, auf die ganze Kolbenfläche $\frac{30^2 \pi}{4} = 706$ bezogen, A = 1,6 $\cdot 0,424 \cdot 706 \propto 480$ mkg.

Für Einzylinder und Tandemverbundmaschinen ergibt sich eine bequemere Ermittelung der Fläche A, wenn nach Fig. 308 der mittlere Tangentialdruck T rückwärts in das Kolbendruckdiagramm eingetragen wird¹). T kann aus der Maschinenleistung und der Kurbelzapfengeschwindigkeit berechnet werden; ist der mittlere Druck p_m des Dampfdiagramms bekannt, so ist $T = \frac{2 p_m}{\pi}$.

Die schraffierte Fläche in Fig. 308 hat dieselbe Größe wie die Überschußfläche des entsprechenden Tangentialdruckdiagramms. Diese Aufzeichnungsweise ist besonders vorteilhaft, wenn die Überschußfläche für verschiedene Füllungen zu bestimmen ist, in welchem Fall die Ordinaten der Kurve den verschiedenen mittleren Drucken p_m entsprechend zu ändern sind.

Im Punkt a, Fig. 302, betrug die Geschwindigkeit v_{min} , im Punkt $b v_{max}$. Die lebendige Kraft, die sonach an die umlaufenden Massen M — als welche mit großer Annäherung nur das Schwungrad in Betracht kommt — übertragen wurde, hat die Größe

$$\mathbf{M} \cdot \frac{\mathbf{v}_{\mathrm{max}}^2 - \mathbf{v}_{\mathrm{min}}^2}{2}$$

¹) A. Baumann, Dinglers polytechn. Journal 1902.

Dieser Wert muß der durch die Überschußfläche dargestellten Arbeitsgröße gleich sein, so daß, wenn noch gesetzt wird:

$$rac{\mathbf{v}_{\max} + \mathbf{v}_{\min}}{2} = \mathbf{v}, ext{ und } rac{\mathbf{v}_{\max} - \mathbf{v}_{\min}}{\mathbf{v}} = \delta,$$
 $\mathbf{A} = \mathbf{M} \, \mathbf{v}^2 \cdot \delta.$

folgt:

Die Größe δ wird als Ungleichförmigkeitsgrad bezeichnet, welcher das Verhältnis der während einer Umdrehung auftretenden größten Geschwindigkeitsschwankung zur mittleren Geschwindigkeit angibt. Unter sonst gleichen Verhältnissen beeinflußt δ allein das Schwungradgewicht, welches um so größer ausfallen muß, je kleinere Ungleichförmigkeit in der Umdrehungsgeschwindigkeit gewünscht wird. Als mittlere Werte von δ gelten für die verschiedenen Betriebe:

Antrieb	von	Pumpen und Schneidewerken:	$\delta = 1:25$
,,	,,	Webstühlen und Papier-	
		maschinen:	$\delta = 1:40$
,,	,,	Werkstättentriebwerken:	$\delta = 1:35$
,,	,,	Mahlmühlen:	$\delta = 1:50$
,,	,,	Spinnmaschinen für niedrige	
		Garnnummern :	$\delta = 1:60$
,,	,,	Spinnmaschinen für hohe	
		Garnnummern:	$\delta = 1:100$
,,	,,	Dynamos für Lichtbetrieb:	$\delta = 1:150$
			(bis $1:300$).

Ist z. B. die mittlere Umlaufgeschwindigkeit des Schwungradkranzes v = 20 und $\delta = 1:120$, so wird die größte vorkommende Geschwindigkeitsschwankung:

$$v_{max} - v_{min} = \delta \cdot v = \frac{20}{120} = 0,166 m.$$

Demnach:

$$v_{max} = 20,083 \text{ m}; v_{min} = 19,917 \text{ m}.$$

Von der aus A berechneten Masse M braucht wegen des Einflusses der Arme nur etwa 0,9 M ausgeführt zu werden, so daß das Schwungradkranzgewicht:

$$\mathrm{G}=0,9~\mathrm{M}\cdot\mathrm{g}=8,83~\mathrm{M}$$

wird.

Für Überschlagsrechnungen kann das Kranzgewicht bestimmt werden aus der Formel:

$$\mathbf{G} = rac{\mathbf{100} \cdot \mathbf{i} \cdot \mathbf{N}}{\boldsymbol{\delta} \cdot \mathbf{n} \, \mathbf{v}^2}.$$

Hierin ist:

$N = Anzahl der PS_e$	i = 65 für Einzylindermaschinen,
n = Uml./min.	i = 55 für Tandemmaschinen,
1	i = 35 für Zwillingsverbundmaschinen

Das Gesamtgewicht kann zu 1,35 G geschätzt werden.

Dubbel, Dampfmaschinen. 3. Aufl.

Wird $v_{\min} = 0$, d. h. $\delta = 2$ gesetzt, so ist $G = \frac{g \cdot A}{2 v^2}$ derjenige Grenzwert für das Gewicht des Schwungrades, bei welchem dieses kurz nach dem Totpunkt stehen bleibt.

Aus $A = \frac{G}{g} \cdot v^2 \cdot \delta$ folgt überschläglich nach Einsetzung von $v = \frac{D\pi \cdot n}{60}$ und $\delta = 2$ die kleinste Umlaufsahl bei gegebenem Gewicht:

$$\mathbf{n}^2 = \frac{\mathbf{60} \cdot \mathbf{60} \cdot \mathbf{g} \cdot \mathbf{A}}{2 \, \pi^2 \cdot \mathbf{G} \, \mathbf{D}^2} = \mathbf{1800} \, \frac{\mathbf{A}}{\mathbf{G} \cdot \mathbf{D}^2}.$$

Von den Elektrikern wird häufiger das Schwungmoment G D², seltener der Ungleichförmigkeitsgrad δ vorgeschrieben.

d) Ausführung und Festigkeitsberechnung der Schwungräder.

Da beim Guß der Schwungräder die Arme infolge ihrer geringeren Masse und ihrer im Verhältnis zur letzeren großen Abkühlungsflächen eher als Kranz und Nabe erstarren, so ziehen sie sich zusammen und ver-

Fig. 309.

ursachen Zugspannungen besonders da, wo die Arme an den Kranz übergehen. Diese Gußspannungen lassen sich zum Teil durch früheres Abdecken des Kranzes verhindern; zweckmäßiger ist es jedoch, auch bei Rädern mit ungeteiltem Kranz die Nabe mit Fuge zu gießen, damit die Arme sich freier dehnen können. Die in der Nabe entstehende Lücke wird durch Bleche ausgefüllt.

Scharfe Querschnittsübergänge sind zu vermeiden. Richtiger Ansatz der Arme am Kranz wird durch eine Wulst herbeigeführt. Der Kranzquerschnitt muß profiliert hergestellt werden.

306

Schwungräder bis zu 3 m Durchmesser werden meist einteilig hergestellt.

Die durch Schrauben oder Schrumpfringe vorzunehmende Verbindung der Radhälften zweiteiliger Räder soll das Rad nach außen hin glatt lassen. Schrumpfringe werden nach dem Zusammenpassen der Radhälften warm über Hornansätze gebracht und durch das Erkalten bis zur Elastizitätsgrenze angespannt.

Die Richtungslinie der von diesen Verbindungen ausgeübten Kraft soll, wenn möglich, den Schwerkreisdurchmesser tangieren, da exzentrische Verbindung der Kranzhälften zusätzliche Biegungsbeanspruchungen verursachen. Fehlerhafte Ausführung s. Fig. 309 und Fig. 310. Die Schraubenverbindung Fig. 309 gibt außerdem keine Sicherheit gegen radial auftretende Kräfte. Empfehlenswert ist die Verbindung mit Keilplatte nach Fig. 311¹), ebenso mit Schrumpfringen.

Fig. 311.

Bei der Verbindung Fig. 310 wird die Stoßfuge nach außen hin etwas geöffnet bleiben, da die durch das Horn ausgeübte Kraft von der Radinnenseite nach außen hin abnimmt.

Die Laschen können nur dadurch in Wirksamkeit treten, daß diese Stoßfuge im Betriebe sich weiter öffnet. Da das Schrumpfband vorher schon bis zur Elastizitätsgrenze angespannt war, so erhält es eine bleibende Verlängerung, und die Laschen nehmen einen Teil der auf Zerreißen des Ringes wirkenden Kraft auf. Infolge ihrer Keilform erfahren sie hierbei eine Querzusammendrückung, werden aus ihrer Lage gebracht und liegen zum Schluß überhaupt nicht mehr an, in welchem Fall das nunmehr überlastete Horn leicht reißt. (Z. 1898, S. 352.)

Die Teilfuge wird meist zwischen zwei Arme gelegt; richtiger ist es namentlich bei größeren Rädern, sie auf Mitte Arm oder doch so zu legen, daß die Kranzverbindungen möglichst nahe an die Arme herangebracht

¹⁾ Ausführung der Maschinenfabrik Rheydt, O. Recke.

werden. Eine sehr zweckmäßige Kranz- und Nabenverbindung ist in Fig. 312 dargestellt.

Die Arme werden vielfach mit elliptischem Querschnitt ausgeführt, bezüglich der Festigkeit ist der I---I-förmige Querschnitt günstiger. Große

Räder mit breiten Kränzen sind durch mehr als zwei Armsysteme zu unterstützen. Die Bauart eines außergewöhnlich großen, aus drei Einzelrädern bestehenden Seilschwungrades ist in Fig. 313 wiedergegeben¹).

¹) Ausführung der Maschinenfabrik Augsburg-Nürnberg.

Die Naben werden in der Mitte ausgespart, damit sie nicht voll durchbohrt zu werden brauchen.

H. Bollinckx (Brüssel) klemmt das Rad durch die Schrauben der Nabe ohne Keil auf die Welle.

Bei großen Rädern werden statt der Nasenkeile, Tangentialkeile verwendet.

Die Massenschwungräder der Walzenzugmaschinen erhalten eine besondere Ausbildung. Die Nabe und der mehrteilige Kranz werden gesondert gegossen. Die aus Flacheisen bestehenden Arme werden an den Enden eingepaßt, und zwar vorteilhaft nicht keilförmig, um seitliche Kraftkomponenten zu vermeiden. Die Versteifung der Arme gegeneinander erfolgt durch Abstandshülsen. Die Schrauben sollen nur auf Zug beansprucht werden, gegen Scherkräfte sind sie durch eingepaßte Scherhülsen zu entlasten. Fig. 314.

Fig. 314.

Da bei Einzylinder- und Tandemmaschinen die Belastung des hinteren Lagers oft wesentlich größer als die des Kurbellagers ist, außerdem im letzteren wegen der wechselnden Kraftrichtung die Schmierung erleichtert wird, so soll das Schwungrad dem hinteren Lager nicht zu nahe gesetzt werden.

Der Kranz wird hauptsächlich durch die Fliehkraft beansprucht und kann — falls zunächst vom Einfluß der Arme abgesehen wird in derselben Weise wie ein um seine Achse rotierender Ring berechnet werden. Dieser würde durch die Fliehkraft der beiden Hälften an zwei gegenüberliegenden Stellen vom Querschnitt F (in gcm) reißen, wenn hier nicht die Spannungswiderstände aufträten.

Somit besteht die Beziehung:

$$2 \operatorname{F} \cdot \mathbf{k}_{z} = \operatorname{M} \cdot \mathbf{x}_{0} \omega^{2}$$
, worin $\operatorname{M} = rac{\operatorname{G} + rac{\operatorname{G}_{1}}{3}}{2 \operatorname{g}}$,

a

wenn $G_1 = Gewicht der Arme,$ G = Schwungradkranzgewicht.

¹) Schwungrad einer 2000 PS-Maschine, ausgeführt von der Crimmitschauer Maschinenfabrik.

 $x_0 = \frac{2 R}{\pi} = \text{Entfernung des Radmittelpunktes vom Schwerpunkt der}$ Radhälfte in cm, g = 981 cm.

Weiterhin ist nun:

$$\mathbf{M} = \frac{\mathbf{F} \cdot \mathbf{R} \cdot \boldsymbol{\pi} \cdot \boldsymbol{\gamma}}{\mathbf{g}},$$

worin $\gamma = \frac{7,25}{1000} =$ Gewicht pro ccm.

R = mittlerer Radmesser in cm.

Nach Einsetzung dieser Werte in obige Gleichung nimmt diese die Form an:

$$2 \mathbf{F} \cdot \mathbf{k}_{z} = \frac{2 \gamma \cdot \mathbf{F} \cdot \mathbf{R}^{2} \cdot \boldsymbol{\omega}^{2}}{\sigma},$$

und da $R^2 \omega^2 = v^2$, so ergibt sich:

$$\mathbf{k_z} = \frac{\gamma \cdot \mathbf{v}^2}{\mathbf{g}} = 0.074 \ \mathbf{v}^2,$$

wenn v in m ausgedrückt ist.

Für v = 30 m wird $k_z = 67$ kg/qcm.

Die Arme verursachen Biegungsspannungen, welche die Beanspruchung bis auf das Dreifache steigern können.

Soll unter Voraussetzung einer starren Verbindung die durch den Einfluß der Arme und der Verbindungskonstruktion erzeugte Biegungsspannung berücksichtigt werden, so kann bei der Armzahl i ein Kranzsegment von der Länge $l = \frac{D \pi}{i}$ als ein beiderseits eingespannter Träger mit gleichmäßiger Belastung C und einer Einzellast C' in der Mitte angesehen werden, wenn C = Zentrifugalkraft des Kranzsegmentes, C' = Zentrifugalkraft der Verbindungskonstruktion. Es folgt für den Einspannungsquerschnitt:

$$\frac{Cl}{12} + \frac{C'l}{8} = M_b = W \cdot k_b.$$

Die Arme werden durch die Fliehkraft auf Zug, durch das übertragene Moment auf Biegung beansprucht. Ist F der Armquerschnitt, so wird, wenn C wie vorhin die Fliehkraft eines Segmentes bedeutet:

1,25 C = F
$$\cdot \sigma_{z}$$
,

worin durch 1,25 der Einfluß des Armgewichtes selbst berücksichtigt wird.

Bei der Berechnung auf Biegung wird angenommen, daß das Moment von der Hälfte der Armzahl i aufgenommen wird. Ist N = Anzahl der effekt. Pferdestärken, so wird

$$\begin{split} \mathbf{N} &= \frac{\mathbf{P} \cdot \mathbf{v}}{75}; \qquad \mathbf{P} &= \frac{75 \text{ N}}{\mathbf{v}}, \\ \mathbf{P} \cdot \mathbf{R}_{1} &= \frac{\mathbf{i}}{2} \cdot \mathbf{W} \cdot \boldsymbol{\sigma}_{b}, \end{split}$$

wobei R₁ die Entfernung der Armansätze bedeutet.

Die Gesamtbeanspruchung wird gewählt:

 $\sigma_z + \sigma_b \leq k_b = 100 \text{ kg/qcm}$ für Gußeisen. = 400 kg/qcm für Schweißeisen.

310

Die Schrumpfbänder üben eine Kraft aus, deren Größe durch Multiplikation des Bandquerschnittes mit der Spannungszahl an der Elastizitätsgrenze (bei Schweißeisen = 1400) erhalten wird.

Durch diese Kraft wird der Hornansatz auf Abscherung beansprucht. Ist 2 $f_1 = Bandquerschnitt$,

 $f_2 =$ Hornquerschnitt, so wird 2 $f_1 \cdot 1400 = f_2 \cdot \tau$. Die Keil- und Schraubenverbindungen müssen als Spannungsverbindungen mit einer Kraft angezogen werden, welche größer als die durch die Fliehkraft erzeugte Zugkraft im Kranz ist.

Wandstärke w der Nabe = 0.45 d. wenn d = Wellendurchmesser. Schraubenstärke s = 0.6 w.

e) Die Andrehvorrichtungen.

Die Andrehvorrichtungen haben bei Einzylinder- und Tandemmaschinen in erster Linie den Zweck, die Kurbel in eine für das An-

lassen geeignete Stellung zu bringen. Bei Zwillingsverbundmaschinen erleichtern sie die Einstellung der Steuerung und die genaue Untersuchung aller Teile der Dynamomaschinen, falls die Maschinen als Dampfdynamos ausgeführt sind.

Die Vorrichtungen müssen derart eingerichtet sein, daß jede Gefahr für den Maschinisten ausgeschlossen ist, wenn das Rad infolge der zunehmenden Dampfwirkung sich mit wachsender Geschwindigkeit zu drehen beginnt. Da der Riemenzug bestrebt ist, die Maschine etwas

zurückzudrehen, so empfiehlt sich die Ausführung doppeltwirkender Schaltwerke nach Fig. 315^{1}).

Fig. 316²) zeigt eine einfachwirkende Anhubvorrichtung, deren Wirkung auf der Reibung zwischen dem Radkranz und dem mit Leder

bekleideten Schuh des Kniehebels beruht. Der Drehpunkt c schwingt im Kreisbogen um den festen Punkt d, so daß während der kleinen Drehung des Handhebels der Reibungsdruck, welcher durch die radiale Komponente r dargestellt wird, konstant bleibt. Da die Tangential-

- ¹) Ausführung der Maschinenfabrik Scharrer & Groß, Nürnberg.
- ²) Zechlin, Z. 1893. S. 736.
kraft t, welche die Drehung bewirkt, dem Reibungsdruck r proportional ist, so folgt, daß bei richtiger Anordung der Schuh sich weder festklemmt, noch abgleitet. Die Schaltvorrichtungen größerer Maschinen werden häufig durch kleine Dampfzylinder angetrieben, Fig. 317¹). An jeder Seite des durch einen Muschelschieber gesteuerten Dampfzylinders befinden sich zwei Dampfkanäle, der äußere für den Eintritt, der innere für den Austritt. Wird am Ende der Bewegung der innere Kanal durch den Kolben geschlossen, so wird dieser durch die zunehmende Kompression zum Stillstand gebracht.

Fig. 318 gibt schematisch eine sich selbst ausrückende Andrehvorrichtung wieder. Beim Andrehen wirken auf das Anlaßrad f die

Fig. 318²).

Reaktion des Zahnkranzes am Schwungrad und die des Schneckenrades e, das auf einer von Hand oder durch eine Dampfmaschine gedrehten Welle sitzt. Die in einem Langloch ruhende Achse des Anlaßrades f wird durch die Resultierende beider Kräfte nach rechts gedrängt. Wird die Geschwindigkeit des Schwungrades größer als die des Anlaßrades, so treten die beiden Kräfte in entgegengesetzter Richtung auf, und die Resultierende drängt das Rad in die Anfangslage 1.

f) Die Stöße an Kurbel- und Kreuzkopfzapfen³).

In der zweiten Hälfte des Überdruckdiagramms, Fig. 320, nimmt die Kolbenkraft trotz der sich addierenden Massendrucke infolge der Kompression auf der anderen Kolbenseite sehr schnell ab, und im Punkt C ist der Druck auf den Kolben gleich Null geworden. Dieser, welcher vorher durch den Dampfdruck vorgeschoben wurde, muß nun samt Kreuzkopf und einem Teile der Pleuelstange vom Schwungrad bis zum Hubende geschleppt werden.

¹) Ausgeführt von der Duisburger M.-A.-G. vorm. Bechem & Keetmann.

²) Kemmann, Die Berliner Elektrizitätswerke.
³) Stribeck, Z. 1893, S. 10.

Bis zum Punkt Clag die Lagerschale am Kurbelzapfen an. Während dieser mit gleichmäßig vorausgesetzter Geschwindigkeit seinen Weg fortsetzt, wird der Kolben durch die negativen Horizontaldrucke verzögert.

Durchläuft der Zapfen den stets vorhandenen Spielraum y, so legt gleichzeitig die verzögerte Lagerschale ein weiteres Stück Weg zurück, und beide treffen erst nach Verlauf einer bestimmten Zeit t zusammen, wobei unter Umständen sehr heftige Stöße entstehen können.

In Fig. 319 ist die Änderung der Horizontaldrucke auf den Kurbelzapfen dargestellt, und zwar auf die Zeit und nicht auf den Kolbenweg als Abszisse bezogen. Im Punkt C haben Schale und Zapfen noch

die gleiche Geschwindigkeit. Die Kolbenmassen werden nunmehr durch Kräfte von der Größe p = bt verzögert, wenn b die Druckzunahme pro 1 sec. bedeutet. p ist demnach diejenige Kraft, welche zu der durch die Kolbenbewegung bedingten Verzögerung noch die durch die Massenwirkung auftretende Verzögerung hinzufügt.

Ist k die von p herrührende Beschleunigung der Relativbewegung

von Zapfen und Lager zur Zeit t, so folgt: $k = \frac{p}{m} = \frac{bt}{m} = qt$, wenn $q = \frac{b}{m}$; $m = \frac{G}{g \cdot F} = Masse pro qcm Kolbenfläche.$

Aus dieser Beschleunigung der Relativgeschwindigkeit ergibt sich diese selbst zu:

$$\mathbf{w} = rac{\mathbf{q} \mathbf{t}^2}{2}$$

und durch weitere Integration findet sich der Weg:

w

$$s = \frac{q t^3}{6}$$

Hieraus bestimmt sich die Zeit zur Zurücklegung des Relativweges y

$$t = \sqrt[3]{\frac{6y}{q}}$$

woraus für die Relativgeschwindigkeit im Augenblick des Stoßes folgt: $w = \frac{q t^2}{2} = \sqrt[3]{4,5 y^2 \cdot q}$

und nach Einsetzung des Wertes für g

$$=\sqrt[3]{4,5\,y^2\cdot\frac{b}{m}}.$$

Wächst die Stoßkraft von Null bis P an, und entsteht hierbei eine Formänderung von der Größe δ , so wird die Formänderungsarbeit $= \frac{P}{2} \cdot \delta$, und wenn $\delta = \varphi \cdot P$ gesetzt wird, zu $\frac{\varphi P^2}{2}$. Somit wird:

$$\frac{\mathrm{m}\,\mathrm{w}^2}{2} = \frac{\varphi\,\mathrm{P}^2}{2},$$
$$\mathrm{P} = \alpha\,\sqrt{\mathrm{m}\cdot\mathrm{w}}.$$

Die Stoßkraft wächst mit der Quadratwurzel aus den hin- und hergehenden Massen und einfach proportional zur Relativgeschwindigkeit w. Der Koeffizient α berücksichtigt die Dehnbarkeit, die Abmessung, Gestalt usw. der aufeinandertreffenden Körper.

Da y und m in jedem Fall gegebene Größen sind, so erkennt man aus der Gleichung für w, daß die Relativgeschwindigkeit nur von der dritten Potenz des Wertes b beeinflußt wird. b ist aber die Tangente des Winkels, unter welchem die Überdrucklinie die wagerechte Zeitachse schneidet. Da, wie bemerkt, die Stoßkraft der Relativgeschwindigkeit proportional ist, so wird das Zusammentreffen zwischen Schale und Zapfen mit um so geringerem Stoß erfolgen, je kleiner dieser Winkel ist, je weiter der Druckwechsel vom Totpunkt stattfindet. Die Stoßkraft nimmt mit der Stoßarbeit zu; sie wird dagegen bei gleichbleibender Stoßarbeit um so kleiner, je größer die Strecke ist, auf welche sich die Stoßarbeit verteilt. Tritt z. B. der Stoß in Mitte Hub auf, so wird infolge der großen Geschwindigkeit der zusammentreffenden Teile ein größerer Weg während der Formänderung zurückgelegt und der Stoß weniger hart.

Wird $\alpha = 90^{\circ}$, so ist die Stoßkraft unendlich groß.

Am unvorteilhaftesten ist der von Radinger empfohlene Druckwechsel im Totpunkt.

Einen günstigen Einfluß auf die Stoßhärte übt die Fliehkraft der Pleuelstange aus, welche verursacht, daß die Lager beim Druckwechsel nicht von einer Seite auf die andere springen, sondern stets seitliche Berührung mit dem Zapfen halten, um welchen sie sich gewissermaßen herumwälzen.

Diese Ausführungen nehmen Bezug auf den Fall, daß der Druckwechsel vor dem Totpunkt eintritt. Tritt der Druckwechsel später ein, d. h. ist im Totpunkt der Beschleunigungsdruck größer als der Dampfdruck, so liegen dieselben Verhältnisse vor, nur daß jetzt die Horizontaldrucke nicht verzögern, sondern beschleunigen.

Der Druckwechsel kann weiterhin in der Kreuzkopfbahn Stöße verursachen. Übernimmt das Schwungrad die Führung, so wechselt die Normalkomponente N in Fig. 294 ihre Richtung und drückt den Kreuzkopf gegen die obere Gleitbahn. Ist dieser aufwärtsstrebende Druck größer als das Gewicht des Kreuzkopfes und des auf ihn entfallenden Teiles der Pleuelstange, so tritt, falls Spielraum vorhanden ist, ein Stoß auf.

Beispiel 1.

Zyl.-Durchm. 300 mm. Gewicht der hin- und hergehenden Teile G = 184 kg. Hub 600 mm. Spielraum zwischen Kurbelzapfen und Lager y = 0,2 mm = 0,0002 m.

Minutl. Umlaufzahl 150. $\frac{G}{F} = 0,26$ kg.

Hieraus: Kurbelzapfengeschwindigkeit v = 4,712 m.

Fig. 320 gibt die Druckkurven wieder. Da in Fig. 319 die Kurbelzapfenwege als Abszissen gewählt werden, so stellt die Länge v in m eine

Sekunde dar. Sind z. B. der Kurbelkreis in Fig. 320 und seine Ausstreckung in Fig. 319 im Maßstab 1:5 aufgezeichnet worden, so ist in Fig. 319 $^{1}/_{5}$ v m = 1 Sek.

Die auf 1 Sek. bezogene Druckzunahme ist nach Fig. 319 b= 87 kg.

Sonach wird

$$q = \frac{b}{m} = \frac{b \cdot g \cdot F}{G} = \frac{87 \cdot 9.81}{0.26} = 3283.$$
$$t = \sqrt[3]{\frac{6 \cdot 0.0002}{3283}} = 0.00715$$
 Sek.
$$w = \sqrt[3]{4.5 \cdot 0.0002^2 \cdot 3283} = 0.084 \text{ m}.$$

Beispiel 2. Dasselbe bezieht sich ebenfalls auf die Größen von Beispiel 1, nur sind andere in Fig. 321 wiedergegebene Druckkurven vorausgesetzt.

Man erhält hier:

$$b = 25 \text{ kg.}$$

 $t = 0.0108 \text{ Sek.}$
 $w = 0.055 \text{ m.}$

Trotzdem der Zapfendruck erst nach der Totlage und von dieser weiter als in Fig. 320 entfernt wechselt, ist w kleiner als im Beispiel 1. Die Härte des Stoßes ist demnach trotz der viel geringeren Kompression kleiner geworden.

g) Die Ausgleichung der Massenwirkungen.

Bei langsamem Gang der Dampfmaschine, z. B. beim Anlassen, sind der Dampfdruck auf den Kolben und der Horizontaldruck auf den Kurbelzapfen annähernd einander gleich. Läuft die Maschine schneller, so wird nach dem Vorhergehenden ein Teil des Dampfdruckes dazu verwendet, die hin- und hergehenden Massen zu beschleunigen, so daß

jetzt nicht mehr der volle Dampfdruck als Horizontaldruck auf den Kurbelzapfen gelangt. Der Beschleunigungsdruck tritt als freie Kraft auf, welche bestrebt ist, die Maschine in der Richtung der Kolbenstange zu verschieben. Würde die Maschine auf einen Wagen gesetzt, so würde dieser hin- und herpendeln. Bei ortfesten Maschinen wird das Fundament durch ein gewisses Moment $P \cdot r$ beansprucht, so daß das Fundament eigentlich die punktiert angedeutete, stehende Lage haben müßte. Fig. 322.

Bei höheren Geschwindigkeiten, mit welchen die freie Kraft im Quadrat wächst, und bei großen Massen wird es deshalb vorteilhaft, diese in ihrer Wirkung durch ein Gegengewicht auszugleichen.

Die Fliehkraft der sich drehenden Massen — halbe Pleuelstange und Kurbel ---, deren wagerechte Komponente die Wirkung der hin- und hergehenden Massen verstärkt, kann durch ein dem Kurbelzapfen gegenüberliegendes, gleichschweres Gegengewicht völlig ausgeglichen werden. Dieses braucht nur um das Gewicht der hin- und hergehenden Massen vergrößert zu werden, um bei unendlicher Pleuelstangenlänge auch deren Ausgleich herbeizuführen. Die Horizontalkomponente $C \cdot \cos \alpha$ der Fliehkraft C dieses Gewichtes ist gleich der Massenkraft und wird in der ersten Hubhälfte den fehlenden Beschleunigungsdruck erzeugen, in der zweiten den überschüssigen aufnehmen. Die Vertikalkomponente $C.\sin \alpha$ wird unmittelbar vom Fundament aufgenommen. Da es aus konstruktiven Rücksichten meist unmöglich ist, ein derartiges Gewicht der Kurbel gegenüber anzubringen, so begnügt man sich entweder mit teilweisem Ausgleich — etwa der Kurbel und $\frac{1}{3}$ der hin- und hergehenden Massen — oder man bringt das Ausgleichgewicht im Schwungrad unter, so daß es an einem größeren Hebelarm angreift. Vollständiger Ausgleich läßt sich hierbei ermöglichen, wenn die Kurbelwelle gekröpft ist, und an jeder Seite der Kröpfung sich je ein Schwungrad befindet. Ist diese zweiseitige Anordnung unmöglich, so müssen zur Vermeidung von Kippmomenten zwei Gegengewichte verwendet werden, von welchen das der Kurbel nächste dieser gegenüber, das andere so angebracht wird, daß die Resultierende die gewünschte Wirkung gibt.

Wegen der endlichen Pleuelstangenlänge verteilen sich die Beschleunigungsdrucke ungleichmäßig über beide Hubhälften. Ein vollständiger Massenausgleich kann hier durch Gegengewichte nicht erreicht werden; der nicht ausgeglichene Teil nimmt für beide Totlagen den Höchstwert $K_u \cdot \frac{R}{L}$ an, beträgt somit den $\left(1 + \frac{L}{R}\right)$ Teil des ganzen Massendruckes. Für $\frac{R}{L} = \frac{1}{5}$ z. B. wird der sechste Teil des ganzen Druckes nicht ausgeglichen.

Bei stehenden Maschinen äußert sich die freiwirkende Massenkraft dadurch, daß sie beim Kolbenaufgang die Grundplatte belastet, während sie beim Kolbenniedergang bestrebt ist, die Maschine vom Fundament abzuheben.

Ist z. B. das Gewicht der Maschine, bezogen auf 1 qcm Kolbenfläche = 2.8 kg, das Gewicht der hin- und hergehenden Massen = 0.28 kg pro qcm Kolbenfläche und der Kurbelhalbmesser = 0.3 m, so tritt dieses Abheben bei einer Kurbelgeschwindigkeit ein, welche sich berechnet aus der Gleichung:

$$2,8=\frac{0,28\cdot v^2}{9,81\cdot 0,3},$$

und daraus folgt die Umdrehungszahl:

$$v = 5,4 = \frac{n \cdot s \cdot \pi}{60}; n = 172.$$

Bei einer höheren Umlaufzahl würde sonach während jeder Umdrehung die Maschine einmal von ihrem Fundament aufspringen, wenn hieran die Fundamentschrauben nicht hinderten. Durch Anordnung eines rotierenden Gegengewichtes werden zwar die Massendrucke annähernd ausgeglichen, doch tritt dann eine für die Ruhe des Ganges noch nachteiligere Horizontalkomponente der Fliehkraft auf. Bei stehenden Maschinen ist deshalb nur das Gewicht der rotierenden Massen auszugleichen. In mehrkurbeligen Maschinen treten außer den Massendrucken noch deren Momente auf, welche die Maschine in der Ebene der Kolbenstangen zu verdrehen suchen.

Soll demnach eine mehrkurbelige Maschine "in sich ausgeglichen" sein, so müssen die Summe der Vertikalkräfte und die Summe von deren

Momenten gleich Null sein, vorausgesetzt, daß die Fliehkraft der rotierenden Teile durch ein Gegengewicht schon unschädlich gemacht ist. In den folgenden Figuren sind die Momente für drei häufige Maschinenanordnungen wiedergegeben, die Massendruckdiagramme beziehen sich auf unendliche Pleuelstangenlänge.

Maschine mit zwei unter 180° versetzten Kurbeln¹). Fig. 323.

Infolge der gegenläufigen Kolbenbewegung heben sich die Massenkräfte P auf, und es bleibt nur das Moment P·a bestehen, wenn a = Zylindermittenentfernung. Dieses Moment erlangt in den Kurbeltotlagen seinen Höchstwert mit den Kräften i c und h k und wird in Mitte Hub gleich Null. Um die Größe des Momentes überhaupt klein zu halten, müssen die Zylinder möglichst nahe liegen.

¹) Meifort, Z. 1899, S. 813.

Eine besondere Lösung liegt von Collmann vor, welcher die Zylinder übereinander legt und deren Mitten so nahe heranrückt, als dies mit Rücksicht auf die Entfernung der Kolbenstange des oben liegenden

Niederdruckzylinders von der Wand des unterhalb angeordneten Hochdruckzylinders möglich ist.

Maschine mit zwei unter 90° versetzten Kurbeln. Fig. 324.

Bei dieser heben sich die Vertikalkräfte nicht mehr auf. In der Kurbellage 1 erreicht die Massenkraft des Zylinders I ihren Höchstwert, während die des Zylinders II gleich Null ist. Das größte vorkommende Moment tritt in Kurbellage 2 auf. Im übrigen sind die Drehmomente nicht mehr so groß wie bei der Kurbelversetzung unter 180^o.

Maschinen mit drei Kurbeln unter 120°. Fig. 325.

Das ungünstigste Moment ist in Kurbellage 1 vorhanden. In Kurbellage 2 sind zwei entgegengesetzt gerichtete Kräftepaare vorhanden. Für diese Lage kann die Maschine ausgeglichen werden, wenn das Gestängegewicht des in die Mitte zu legenden größten Zylinders gleich der Summe der Gestängegewichte der beiden äußeren Zylinder ist, und diese Gewichte wieder unter sich gleich sind. Würde die mittlere Kurbel zudem um 180^o gegen die beiden anderen gleichgerichteten Kurbeln versetzt, so wäre Ausgleich für alle Lagen erreicht. Da die Maschine aber nicht mehr in jeder Stellung angelassen werden kann, so ist diese Anordnung praktisch nicht ausführbar.

Mit Ausnahme dieses Falles ist — immer unter Voraussetzung unendlicher Pleuelstangenlänge — vollkommener Ausgleich nur dann möglich, wenn die Maschine mehr als drei Kurbeln besitzt.

h) Der Massen-Ausgleich nach Taylor-Schlick¹).

Um die resultierende Vertikalkraft bei einer Mehrkurbelmaschine zu erhalten, werden die nach oben und unten gerichteten Komponenten G cos ω der einzelnen schwingenden Gewichte ermittelt, indem nach Fig. 326 letztere auf den zugehörigen Kurbelstellungen aufgetragen werden. Die Projektionen dieser aufgetragenen Strecken auf die Senkrechte geben sodann die Vertikalkräfte G \cdot cos ω wieder. Da sämtliche Kurbeln gleiche Radien und Umfangsgeschwindigkeiten haben, so braucht die algebraische Summe dieser Komponenten nur mit $\frac{V^2}{r \cdot g}$ multipliziert zu werden, um die in vertikaler Richtung freiwirkende Massenkraft $\frac{G \cdot V^2}{g \cdot r} \cdot \cos \omega$ zu erhalten.

Einfacher ist das Taylorsche Verfahren mittelst Seilpolygons. Nach diesem werden wie vorhin auf den einzelnen Kurbelradien die zugehörigen Gewichte in einem bestimmten Maßstab aufgetragen (z. B. 1 mm = 100 kg). Steht die Kurbel A O im oberen Totpunkt, so wird, da in diesem Falle $\cos \omega = 1$, $G \cdot \cos \omega = G$. Fig. 327. Auf O B werden sodann, den in Fig. 328 angegebenen Gewichten entsprechend, 1500 kg, auf O C 2000 kg usw. aufgetragen. Durch den Endpunkt A wird hierauf eine Parallele zur Kurbel O B gezogen, deren Länge A B' = 1500 kg und deren Projektion auf die Senkrechte die Komponente 1500 $\cos \omega$ ergibt, so daß in Verbindung mit OA die Massenkraft 1000 + 1500 $\cos \omega$ der beiden Kurbeln O A und O B gegeben ist. Eine durch B' gelegte Parallele zu O C von der Länge 2000 kg stellt in ihrer Projektion die negative

¹) Fränzel, Z. 1898. S. 907. Die Methode wurde in den Grundzügen von Taylor angegeben. Schlick hat sie erweitert und vor allem ihre praktische Durchführung ermöglicht.

Dubbel, Dampfmaschinen. 3. Aufl.

Vertikalkraft 2000.cos ω' dar, worin $\omega' = (\omega + \alpha)$ und $\alpha =$ Versetzungswinkel der Kurbel O C gegen O B. Verfährt man in dieser Weise weiter, so wird zum Schluß die Resultierende E'F erhalten, welche mit $\frac{v^2}{r \cdot g}$ multipliziert, die freiwirkende Vertikalkraft darstellt. Soll diese beseitigt werden, so könnte dies einmal durch Änderung der Kurbelwinkel erfolgen, so daß ein Polygon nach Fig. 329 erzielt würde, oder es müßte

nach Fig. 330 ein weiteres Gewicht E' O eingeführt werden, welches an der in gleicher Richtung liegenden Kurbel O G angriffe.

Bei der Zusammensetzung der auf irgend einen Drehpunkt bezogenen Momente, deren Summe ebenfalls gleich Null sein muß, wird in gleicher Weise durch Aufzeichnung eines Momentenpolygons vorgegangen. In Fig. 328 ist angenommen, daß der Drehpunkt um $l_1 = 1$ von der ersten Kurbel entfernt sei, und daß die Kurbelabstände unter sich gleich seien. Aus der Fig. 331 ist ersichtlich, daß ein Moment E' F übrig bleibt, welches die Maschine zu kippen sucht. Soll dieses Moment gleich Null

322

Fig. 331.

323

werden, d. h. soll die Maschine auch bezüglich der Momente ausgeglichen werden, so können zu diesem Zweck die Kurbelwinkel, die Kurbelradien, die Hebelarme 1 oder die Gewichte geändert werden. Eine Maschine ist

erst dann vollständig ausgeglichen, wenn die Polygone der Kräfte und Momente geschlossen sind und parallele Seiten haben, da die Kurbelwinkel dann, wie erforderlich, in beiden Polygonen übereinstimmen.

Eine Vereinfachung der Aufzeichnung wird erreicht, wenn nach Fig. 332 der Drehpunkt in die Ebene des ersten Zylindermittels gelegt wird, so daß das Moment der ersten Kurbel gleich Null wird.

Eine sechskurbelige Maschine mit den in Fig. 332 angegebenen Gestängegewichten und Zylinderabständen hat die Momente:

$\mathbf{M}_1 = 0$	$\mathbf{M}_{\mathbf{A}} = 5000 \cdot 3.$
$M_{2} = 4500 \cdot 1$	$M_5^* = 5000 \cdot 4.$
$M_{3} = 4500 \cdot 2$	$M_{6} = 5000 \cdot 5.$

Das Gewicht der ersten Kurbel sei noch zu bestimmen.

Das mit Rücksicht auf eine Kurbelversetzung von 60° entworfene Momentenpolygon ist in Fig. 333 durch den Linienzug O B C D E F wiedergegeben. Durch Änderung der Kurbelwinkel muß dieses offene Polygon geschlossen werden. Fällt Kurbel VI in die frühere Richtung der Kurbel IV, so lassen sich durch einfache Dreieckskonstruktion die Lagen der Kurbeln IV und V ermitteln, und es entsteht der geschlossene Linienzug O B C D₁ E₁ O.

Die bezüglich der Kippmomente ausgeglichene Maschine werde nun durch Auftragung der Gewichte auf Parallelen zu den neuen Kurbelstellungen betreffs der Wirkung der Vertikalkräfte untersucht. Das Kräftepolygon O B C,, D,, E., F., ergibt dann eine Resultierende O F., deren Länge das anzubringende Gewicht und deren Richtung die der ersten Kurbel angibt.

Vollkommener Ausgleich mit Berücksichtigung der endlichen Pleuelstangenlänge ist nur bei fünf- und sechskurbeligen Maschinen möglich ¹).

¹) Allgemein gilt nach einem von Knoller auf Grund der Lorenzschen Abhandlung in Z. 1897, S. 998, abgeleiteten Satz: Eine Maschine ist dann vollkommen balanciert, wenn sie selbst und gleichzeitig auch jene Maschine, welche aus ihr durch Verdoppelung der Kurbelwinkel entsteht, angenähert (d. i. für unendliche Schubstangenlänge) ausgeglichen ist. Z. 1897, S. 1371.

G. Die Regulierung.

a) Die Grundbegriffe.

Während die Anwendung des Schwungrades die Beibehaltung konstanter Winkelgeschwindigkeit während einer Umdrehung bezweckt, hat der Regulator die Aufgabe, die Umlaufzahl möglichst konstant zu halten.

Wird der Beharrungszustand durch Änderung der Belastung oder des Dampfdruckes gestört, so muß der Regulator das Gleichgewicht zwischen Kraft und Widerstand durch Änderung des mittleren Druckes wieder herstellen. Jeder Muffenstellung entspricht sonach ein bestimmter, mittlerer Druck. Die Regelung wird um so genauer sein, je schneller der Regulator die Dampfzufuhr der neuen Belastung anpaßt und je kleiner die hierbei auftretenden Geschwindigkeitsschwankungen sind.

Die erforderliche Veränderung der Diagrammfläche kann durch Drosselung oder durch Füllungsänderung erreicht werden. Bei der Drosselregulierung wird der Eintrittsdruck geändert. Damit eine dauernde oder vorübergehende Erhöhung der Leistung möglich wird, kann die Maschine auch bei ihrer mittleren Beanspruchung nur mit gedrosseltem Dampf arbeiten, der Kesseldruck kann somit auch bei normaler Belastung nicht ausgenutzt werden. Sieht man vom Einfluß der durch die Drosselung herbeigeführten Dampftrocknung und von der durch den kleineren Temperaturunterschied bedingten Verringerung der Eintrittskondensation ab, so nimmt bei einer Leistungsverringerung der Dampfverbrauch nur mit der geringeren Dampfdichte ab.

Wird hingegen die Füllung geändert, so wird alle Wärme bei der höchsten Temperatur zugeführt; die Regelung wird wirtschaftlicher und ist daher in fast ausschließlichem Gebrauch.

Je nach Anordnung und Ausführung können die Regulatoren eingeteilt werden in:

1. Gewichts- oder Federregulatoren, je nachdem die Gegenkraft der Zentrifugalkraft in der Hauptsache durch Gewichte oder Federn gebildet wird. 2. Kegel- und Flachregeler. (Letztere zutreffender Achsen- oder Exzenterregeler genannt.) Bei ersterer greifen die Pendelarme an einer Muffe an, die eine hin- und hergehende Bewegung macht und mit dem "Stellzeug" verbunden wird. Die Flachregeler verstellen unmittelbar das steuernde Exzenter, meist dessen Hub und Voreilwinkel ändernd.

3. Fliehkraft- und Beharrungsregeler. Die zur Beeinflussung der Steuerung erforderliche Verstellkraft wird bei den letzteren zum größten Teil durch die Trägheit sich drehender Massen bewirkt.

4. Geschwindigkeits- und Leistungsregeler. Diese ermöglichen in weiten Grenzen eine Veränderung der Umlaufzahl, wie dies bei Kompressoren, Gebläsen, Pumpen wünschenswert ist.

Fig. 334.

5. Direkt und indirekt wirkende Regulatoren. Letztere schalten für Verstellung der Steuerung eine Hilfskraft ein. (Beispiele s. unter Dampfturbinen.)

Als Übertragungsteil von den Schwunggewichten nach der Muffe kommen das Schubkurbelgetriebe und die Kurbelschleife in Betracht. Drehen sich die Schwungmassen um einen festen Drehpunkt an der Spindel, Fig. 335, so hat man unmittelbare, sonst umgekehrte Aufhängung, Fig. 347. Ein brauchbarer Regulator soll "stabil" sein, d. h. zunehmender Geschwindigkeit muß fortschreitende Entfernung der Schwungmassen von der Spindel entsprechen. "Labile" Regulatoren sind unbrauchbar. In Fig. 334¹), die eine labile Anordnung darstellt, nehmen die senkrecht gemessenen Hebelarme, an welchen die Feder angreift, so schnell ab, daß bei einer Vergrößerung des Kugelabstandes Gleichgewicht nur durch Verkleinerung der Winkelgeschwindigkeit möglich ist, d. h. mit steigender Muffe müssen die Umlaufzahlen abnehmen.

¹) Tolle, Regelung der Kraftmaschinen.

Ändern sich Federspannung und Zentrifugalkraft in genau demselben Verhältnis, so ist der Regulator "astatisch". Derartige Regulatoren sind bei jeder beliebigen Muffenstellung im Gleichgewicht, aber nur bei ein und derselben Umlaufzahl; jede noch so kleine Änderung derselben treibt den Regulator in eine der Endstellungen.

Aus Fig. 334 erhält man einen astatischen Regulator durch Wahl eines kleineren Winkels β ; damit die Momente dann in jeder Lage gleich groß sind, müssen die Federspannungen schneller zunehmen als die Zentrifugalkräfte.

Ein Regulator ist statisch, wenn das Moment der Federspannung schneller als die Zentrifugalkraft wächst. Pseudo-astatisch werden diejenigen statischen Regeler genannt, welche sich dem astatischen Zustand nähern, d. h. deren Umlaufzahlen in engen Grenzen liegen.

Diese Grenzen werden schon im Entwurf festgelegt. Denkt man sich den Regulator reibungslos und freischwingend ohne Verbindung mit dem Stellzeug, und hat derselbe bei höchster Muffenlage die min. Umlaufzahl n_2 , bei tiefster n_1 , so wird das Verhältnis

$$\delta = \frac{\mathbf{n_2} - \mathbf{n_1}}{\mathbf{n}}$$

als "Ungleichförmigkeitsgrad" (Stabilitätsgrad) bezeichnet, wenn n die mittlere Umlaufzahl angibt. Der Unterschied in den Umlaufzahlen wird größer, wenn die Reibung in den Gelenken und Gleitflächen des Regulators, sowie die zur Verstellung der Steuerung nötige Kraft berücksichtigt wird. Um diese Widerstände zu überwinden, müssen die Zentrifugalkraft C und damit die Umlaufszahl um einen bestimmten Betrag d C zu- oder abnehmen.

Angenommen, der Regulator befinde sich in mittlerer Stellung, der Umlaufzahl n entsprechend, so müßte, falls die höchste Stelle erreicht werden sollte, nach der Gleichung für δ die Umlaufzahl um n₂—n steigen, während unter Berücksichtigung der Reibung eine Steigerung um (n₂—n) + dn nötig wird. Umgekehrt wird eine Abnahme um (n₁—n) + dn erforderlich, so daß sich ein gesamter Ungleichförmigkeitsgrad ergibt von der Größe:

$$\delta_g = \frac{(n_2 - n + dn) - (n_1 - n - dn)}{n} = \frac{n_2 - n_1}{n} + \frac{2 dn}{n}.$$

Dieser Ausdruck setzt sich aus zwei Teilen zusammen: aus dem theoretischen Ungleichförmigkeitsgrad und aus dem "Unempfindlichkeitsgrad" $\varepsilon = \frac{2 dn}{n}$. Da der Regulator innerhalb der Grenzen (n + dn) und (n - dn) unbeweglich oder unempfindlich bleibt, so kann ε auch definiert werden als: Ungleichförmigkeitsgrad für zwei unendlich nahe Muffenlagen.

Wird für die Umlaufzahl n die Winkelgeschwindigkeit ω eingesetzt, so bestehen folgende Beziehungen:

$$\omega_{2}^{2} = (\omega + d\omega)^{2} = \frac{C + dC}{mr}; \quad \omega_{1}^{2} = (\omega - d\omega)^{2} = \frac{C - dC}{mr},$$
$$\frac{\omega_{2}^{2} - \omega_{1}^{2}}{\omega^{2}} = \frac{2 dC}{mr\omega^{2}} = \frac{2 dC}{C},$$
$$\frac{\omega_{2}^{2} - \omega_{1}^{2}}{2 \omega^{2}} = \frac{dC}{C} = \varepsilon.$$

Denn es ist:

$$arepsilon = rac{\omega_2 - \omega_1}{\omega} = rac{(\omega_2 - \omega_1) \ (\omega_2 + \omega_1)}{\omega \ (\omega_2 + \omega_1)} = rac{\omega_2^2 - \omega_1^2}{2 \ \omega^2}.$$

Der Unempfindlichkeitsgrad ist also gleich dem Verhältnis zwischen der zur Überwindung des gesamten Muffenwiderstandes erforderlichen Zunahme der Zentrifugalkraft zu dieser selbst.

Energie. Als "Energie" wird diejenige Kraft bezeichnet, welche den auf die Muffe reduzierten abwärts wirkenden Kräften beim ruhenden Regulator das Gleichgewicht hält. Die Energie kann durch Rechnung oder praktisch durch Auswägen des Muffendruckes ermittelt werden.

Sie steht zu der Zentrifugalkraft für jede Muffenstellung in einem ganz bestimmten Verhältnis, so daß

 $E = a \cdot C$, worin a = konst.

Die Energie ist von der Konfiguration des Regulators abhängig und hat selten für den ganzen Muffenhub einen konstanten Wert. So ist z. B. für Fig. 335

$$\mathbf{E} = 2 \cdot \frac{\mathbf{l}}{\mathbf{a}} \cdot \mathbf{G} \cdot \frac{\mathbf{tg} \, \alpha}{\mathbf{tg} \, \alpha + \mathbf{tg} \, \beta} + \mathbf{Q}.$$

E ändert sich sonach mit dem Ausschlagwinkel α . Bei der sog. "rhombischen" Aufhängung, Fig. 336, ist $\alpha = \beta$, und

$$\mathbf{E} = \mathbf{G} + \mathbf{Q} = \mathbf{konst.}$$

Ist die Energie veränderlich, so soll sie mit wachsendem Muffenhub zunehmen, da der Regulator meist in den oberen Lagen reguliert. Das Produkt aus Energie und Muffenhub s wird "Arbeitsvermögen" genannt, so daß allgemein gilt:

$$\mathbf{A} = \int \mathbf{E} \cdot \mathbf{d} \mathbf{s}.$$

Bei einer Zunahme der Zentrifugalkraft um d C ändert sich die Energie um den Betrag P, da das Übersetzungsverhältnis zwischen C und E dasselbe ist wie zwischen d C und P:

$$dC: P = C: E$$

Daraus folgt:

$$\frac{\mathbf{P}}{\mathbf{E}} = \frac{\mathrm{d}\,\mathbf{C}}{\mathbf{C}} = \varepsilon; \quad \mathbf{P} = \varepsilon \cdot \mathbf{E} = \frac{2\,\mathrm{d}\,\mathbf{n}}{\mathbf{n}} \cdot \mathbf{E}.$$

P ist die bei einer Zunahme der Zentrifugalkraft um d C entstehende "Verstellkraft". Sie ist gleich der Energie, multipliziert mit dem doppelten Betrag der prozentuellen Geschwindigkeitsänderung und dient sowohl zur Überwindung der Eigenreibung R, als auch für die Verstellung der Steuerung, wozu die Kraft W nötig sei. Dann ist

$$P = W + R$$

Demnach setzt sich auch der Unempfindlichkeitsgrad aus zwei Teilen:

$$\epsilon_{\mathrm{w}} = rac{\mathrm{W}}{\mathrm{E}} \ \mathrm{und} \ \epsilon_{\mathrm{r}} = rac{\mathrm{R}}{\mathrm{E}}$$

zusammen, von welchen der letztere als sehr schädlich anzusehen ist. Es ist die nutzbare Verstellkraft

$$W = P - R = E\left(\frac{2 d n}{n} - \varepsilon_r\right),$$
$$E = \frac{W}{\varepsilon - \varepsilon_r}.$$

und es wird:

Die Größe der Verstellkraft ist nur abhängig von der zugelassenen Unempfindlichkeit, so daß kleine Unempfindlichkeitsgrade immer durch große Verstellkräfte erreicht werden können.

Die Prospekte der meisten Regulatorenfabriken geben einen Unempfindlichkeitsgrad von 2 v. Ht. an, wobei die Änderung der Umlaufzahl auf- und abwärts gemeint ist, sonach ist

$$P = E \cdot \frac{2 d n}{n} = E \cdot 0.04 = \frac{1}{25} E.$$

Weiterhin wird dieser Unempfindlichkeitsgrad ohne Rücksicht auf die Eigenreibung angegeben, wodurch die nützliche Verstellkraft eine Verringerung erfährt.

$$\mathrm{W} = \mathrm{E}\left(rac{1}{25} - \mathbf{\epsilon}_{\mathrm{r}}
ight) = \mathrm{P}\left(1 - 25 \mathbf{\epsilon}_{\mathrm{r}}
ight).$$

Ist sonach in einem Prospekt die Verstellkraft zu 8 kg angegeben, und beträgt die Eigenreibung $\varepsilon_r = 0.02$, so hat die für die Verstellung der Steuerung übrig bleibende Kraft nur die Größe:

$$W = 8 (1 - 25 \cdot 0.02) = 4 \text{ kg.}$$

Wäre hingegen
$$\varepsilon_r = 0.01$$
, so würde
W = 8 (1 - 25 · 0.01) = 6 kg.

330

Befindet sich ein Regulator mit $\varepsilon = \delta = 0.04$ in der Mitte seines Hubes, wobei n = 100, und tritt etwa durch Einrücken neuer Arbeitsmaschinen eine Vermehrung der Belastung ein, so wird die Umlaufzahl abnehmen, und der Regulator fängt an, die Muffe nach unten zu drücken. Dieser Druck ist aber erst bei n = 98 imstande, die Steuerung zu verstellen. War die Änderung der Muffenlage sehr gering, so wird die Maschine in dem neuen Beharrungszustand mit n = 98 weiter arbeiten. War die Belastungsänderung jedoch so bedeutend, daß größte Füllung eingestellt werden mußte, so geht der Regulator in seine tiefste Stellung, und auf dem Wege dahin kommt nunmehr auch der Ungleichförmigkeitsgrad zur Geltung, so daß in der tiefsten Muffenlage n₁ = 96 wird.

Hierbei wirkt der Muffendruck immer noch nach unten hin; tritt jetzt eine plötzliche Entlastung der Maschine ein, so wird die steigende Umlaufzahl zunächst eine Abnahme des nach unten wirkenden Muffendruckes herbeiführen, dieser wird gleich Null und kehrt bei n = 98 seine Bewegungsrichtung um, worauf bei n = 100 das Stellzeug verstellt wird. Auf diesem Wege bis zur höchsten Muffenlage bewirkt der Ungleichförmigkeitsgrad eine weitere Steigerung der Umlaufzahl um 4, so daß $n_2 = 104$ wird.

Die Umlaufzahl kann sonach von 4 v. Ht. über bis 4 v. Ht. unter der normalen schwanken.

Wäre der Ungleichförmigkeitsgrad des Schwungrades $\delta_s = \frac{1}{25} = 0.04$, so würde bei jeder Umdrehung die Winkelgeschwindigkeit nach oben und unten hin um $\frac{1}{50}$ vom normalen Wert abweichen, so daß diese Geschwindigkeitsschwankung gerade hinreichen würde, um einen Muffendruck von der Größe der Verstellkraft zu erzeugen. Bei einem größeren δ_s würde der Regulator tatsächlich das Stellzeug während eines jeden Hubes verstellen, so daß als Regel gilt:

 $\epsilon \geq \delta_s.$

Dieses "Tanzen" des Regulators ist für die Regulierung günstig und wird häufig mit Absicht herbeigeführt. Als Reibungskoeffizient kommt nunmehr derjenige der Bewegung zur Geltung. Nimmt z. B. die Winkelgeschwindigkeit um einen geringen Betrag ab³ so wird in der Hülse ein nach unten gerichteter Druck $\varDelta P$ auftreten. Infolge des Tanzens wirkt sonach bei jeder Umdrehung ein Druck $P + \varDelta P$ nach unten, ein solcher von der Größe $P - \varDelta P$ nach oben. Die Folge ist, daß der Regulator seinen Schwingungsmittelpunkt nach unten, der neuen Gleichgewichtslage entsprechend, verschiebt.

Hierzu genügte also eine Änderung des Muffendruckes um *d*P.

Andererseits verursacht das Tanzen einen schnelleren Verschleiß der Bolzen und Gleitflächen.

Die Zuckungen treten auch dann auf, wenn der Regulator zu kräftig gewählt worden ist, d. h. eine zu große Energie besitzt, in welchem Fall der Unempfindlichkeitsgrad bei gleicher Verstellkraft P gemäß der Beziehung $P = \varepsilon \cdot E$ zu klein wird. Hierbei empfiehlt sich Änderung der Hebelübersetzung zwischen Regulator und Steuerung, es wird jetzt zwar nur noch ein kleinerer Teil des Muffenhubes benutzt, was jedoch die Regulierfähigkeit verbessert.

In den vorhergehenden Ausführungen wurde vorausgesetzt, daß der Regulator sofort eine neue Gleichgewichtslage einnehme; tatsächlich ist sein Verhalten anders.

Wird die Belastung verringert, so steigt der Regulator. Während dieser Zeit des Steigens wird die Kraft immer noch größer als der Widerstand sein, so daß eine fortwährende Zunahme der Geschwindigkeit stattfindet. Infolgedessen wird der Regulator über seine neue Gleichgewichtslage hinausschießen und den mittleren Druck zu klein einstellen, die Geschwindigkeit nimmt ab, und der Regulator sinkt. Auch jetzt sinkt er tiefer, als dem Gleichgewicht entspricht: der Regulator pendelt.

Diese Pendelungen werden um so geringer ausfallen:

1. je schwerer das Schwungrad ist, da dadurch die Geschwindigkeitsänderungen verringert werden;

2. je kleiner die zu beschleunigenden Massen des Regulators sind:

3. je kleiner der Regulatorhub ist;

4. je größer der Ungleichförmigkeitsgrad ist. Je größer δ , um so schneller nimmt der Regulator die neue Gleichgewichtslage ein.

Der erforderliche kleinste Ungleichförmigkeitsgrad kann nach Tolle berechnet werden aus:

$$\delta = \sqrt[3]{\frac{\mathbf{s}_{\mathbf{r}}}{\mathbf{g}\,\mathbf{t}^2}}.$$

Hierin ist: s_r = reduzierter Muffenhub in cm,

g = 981 cm,

t = Zeit in Sekunden, in welcher die Maschine vom Stillstand aus mit größter Füllung und ohne Belastung die normale Umlaufzahl erlangt.

Es ist

 $\mathbf{s_r} = \frac{\underset{\text{den Quadraten ihrer Wege}}{\underset{\text{Arbeitsvermögen des Regelers}}}.$

Schon hieraus ergibt sich die bessere Regulierfähigkeit der Federregeler, da deren geringe Massen einen kleinen reduzierten Muffenhub und also auch einen kleineren Ungleichförmigkeitsgrad zur Folge haben. Bei den Gewichtsregulatoren hat sr ungefähr die Größe des wirklichen Hubes. t kann bei ausgeführten Maschinen durch Beobachtung, in allen Fällen durch Berechnung festgestellt werden.

Ist L die Leistung bei größter Füllung in PS,

M die Masse des Schwungringes,

v dessen Geschwindigkeit in m/sek.,

so ist während der Anlaufzeit t die mittlere Leistung der Maschine = $\frac{\mathbf{t}\cdot\mathbf{L}\cdot75}{2}$ mkg; diese dient ausschließlich dazu, die lebendige Kraft des

Schwungrades auf $\frac{m v^2}{2}$ zu bringen, so daß

$$\frac{\mathbf{t} \cdot \mathbf{L} \cdot 75}{2} = \frac{\mathbf{m} \, \mathbf{v}^2}{2},$$
$$\mathbf{t} = \frac{\mathbf{m} \, \mathbf{v}^2}{75 \cdot \mathbf{L}}.$$

Die Grundbegriffe.

Die oben erwähnten Pendelungen können bei Gewichtsregulatoren auch durch Anwendung von Ölbremsen verringert werden, deren Widerstand proportional mit der Geschwindigkeit wächst, im Gegensatz zur nahezu konstant wirkenden Reibung. Immerhin zehren die Ölbremsen Verstellkraft auf, so daß die Regulatoren schwerer gewählt werden müssen.

Von größerer Bedeutung ist die Verringerung der trägen Regulatormassen in den Federregulatoren, welche nur insofern den Gewichtsregu-

1.B. 0011

latoren nachstehen, als ihr Verhalten in hohem Maße von der Feder abhängig ist.

In Fig. 337 bis 341 sind einige bekannte Federregulatoren wiedergegeben.

Der Hartungsche Regulator, Fig. 337, wird mit Querfedern ausgeführt. Die Schwunggewichte, in deren zylindrischen Bohrungen je eine Spiralfeder liegt, sind in ihren Schwerpunkten auf Bolzen M gelagert und bewegen sich wagerecht. Feder und Zentrifugalkraft übertragen sich direkt ohne Zwischenschaltung, so daß bedeutendere Bolzendrücke Die Regulierung.

vermieden werden. Die Bolzen M gehören festgelagerten Winkelhebeln an, welche durch Schienen mit der Muffe verbunden sind. Die Spannung der Federn kann durch Drehung der leicht zugänglichen Mutter m geändert werden.

Auch bei dem Regulator von Tolle, Fig. 338, wird die Fliehkraft möglichst unmittelbar angenommen, so daß die Eigenreibung sehr gering

wird. Die Anwendung von Zugfedern ist vorteilhafter als die von Druckfedern, da die Spannung der ersteren stets proportional der Verlängerung wächst, während Druckfedern leicht seitlich ausknicken. Der Tolle-Regulator — und das ist sein wesentlicher Vorteil gegenüber anderen Bauarten — gestattet Einstellung des Ungleichförmigkeitsgrades ohne Beeinflussung der Umlaufzahl.

¹) Figur aus "Tolle, Regelung der Kraftmaschinen".

Fig. 339 zeigt eine Ausführung der Regulatorenbau-Gesellschaft de Temple, Leipzig-Plagwitz.

Äußerst geringe Unempfindlichkeit wird durch Anordnung besonderer Stützen zum Tragen der Schwunggewichte erreicht.

Ohne jegliche Belastung der Gelenke durch Zusatzkräfte wird in der dargestellten Ausführung die Umlaufzahl durch ein in der hohlen Regulatorspindel geführtes Drahtseil geändert, das unmittelbar an den äußeren Enden der Zusatzfedern angreift.

Bei dem neuen Recke-Regulator, Fig. 340, schwingt ein Zweischeibenkörper um eine senkrecht zur Regulatorspindel angeordnete Welle. Die Federn werden auch hier auf Zug beansprucht und die Fliehkraft unmittelbar aufgenommen. Die Eigenreibung ist infolgedessen sehr gering.

Der Ungleichförmigkeitsgrad ist in allen Reglerstellungen nahezu gleich groß, was eine wertvolle Eigenschaft des Reglers ist.

Dieser wird nach Fig. 341 auch zur direkten Verstellung eines Drehexzenters eingerichtet.

Wird in Fig. 342 die Muffe m durch einen Regler beliebiger Bauart

Fig. 339.

Fig. 341.

verschoben, so wird die auf

verschoben, so wird die auf der Querwelle w sitzende Hülse mit dem Arme a verdreht, und der Stein s verstellt das Exzenter.

Die Mechanismen nach Fig. 340 und 342 sind in dem Regler nach Fig. 341 zusammengefaßt, indem hier die Querwelle durch die Mittellinie der Steuerwelle geht und eine der Schwungscheiben mit dem den Kulissenstein tragenden Arm zusammengegossen ist.

Durch Gegengewichte im Schwungradgehäuse wird das durch die Zentrifugalkraft des Zweischeibenkörpers auf die Steuerwelle ausgeübte verbiegende Moment aufgehoben. Ebenso wird die Fliehkraft des Exzenters ausgeglichen.

b) Die C-Kurven nach Tolle¹).

Werden für die verschiedenen Muffenstellungen die Zentrifugalkräfte, welche den Gegenkräften das Gleichgewicht halten, ermittelt und als Ordinaten, die zugehörigen Ausschläge der Schwungmassen senkrecht zur Spindel als Abszissen aufgetragen, so entsteht die C-Kurve, aus welcher die Eigenschaften des Regulators nahezu vollständig zu ersehen sind. Fig. 343.

Denkt man sich die Zentrifugalkraft im Mittelpunkt der Schwungkugeln angreifend und jede dieser letzteren um x von der Drehachse entfernt, so ist, wenn ω = Winkelgeschwindigkeit, n = Umlaufzahl/min.

$$\mathbf{C} = \mathbf{m} \cdot \mathbf{x} \cdot \boldsymbol{\omega}^2 = \frac{\mathbf{G}}{\mathbf{g}} \cdot \boldsymbol{\omega}^2 \cdot \mathbf{x},$$

woraus folgt:

$$\omega = \sqrt{\frac{\mathbf{C}}{\mathbf{x}} \cdot \frac{\mathbf{g}}{\mathbf{G}}},$$

 $\mathbf{n} = \cdot \frac{30}{\pi} \sqrt{\frac{\mathbf{C}}{\mathbf{x}} \cdot \frac{\mathbf{g}}{\mathbf{G}}}.$

und

¹) Die hier aufgestellten Beziehungen gelten nur dann, wenn die Schwungkörper Umdrehungskörper sind, deren Drehachsen senkrecht zur Pendelebene stehen.

²) Nach "Tolle, Regelung der Kraftmaschinen". Dubbel, Dampfmaschinen. 3. Auf.

Nach Fig. 343 ist:

$$\operatorname{tg} \varphi = \frac{\mathrm{C}}{\mathrm{x}}.$$

Nach Einsetzung dieses Wertes in die obigen Gleichungen wird:

$$\omega = \sqrt{\frac{g}{G}} \cdot \sqrt[4]{tg \varphi},$$
$$\mathbf{n} = \frac{30}{\pi} \sqrt{\frac{g}{G}} \cdot \sqrt[4]{tg \varphi} = \mathbf{k} \sqrt[4]{tg \varphi}, \text{ worin } \mathbf{k} = \text{konst.}$$

Aus dieser Gleichung folgt, daß unter gegebenen Verhältnissen die Umlaufzahl durch t $g \varphi$ eindeutig bestimmt ist. Hat nach Fig. 343 Winkel φ für die beiden Punkte P und P₁ dieselbe Größe, so bleibt für die betreffenden Regulatorstellungen die Umlaufzahl dieselbe. Ist die C-Kurve eine durch O gehende Gerade, so ist t $g \varphi = \text{konst.}$, folglich auch n = konst., d. h. die Regulierung ist astatisch. Da die pseudoastatische Regulierung sich dem astatischen Zustand nähern soll, so muß im allgemeinen die C-Kurve sich einer durch O gehenden Geraden nähern.

Nimmt Winkel φ mit x zu, so wächst auch die Umlaufzahl: die Regulierung ist statisch, im umgekehrten Fall labil. Fig. 343. Weist die C-Kurve einen Punkt auf, an welchen von O aus eine Tangente gelegt werden kann, so hat die Kurve einen sog. astatischen Punkt, d. h. für zwei unendlich naheliegende Stellungen hat der Regulator die gleiche Winkelgeschwindigkeit.

Der Ungleichförmigkeitsgrad hat auch den Wert:

$$\delta = \frac{\omega_2 - \omega_1}{\omega}$$
, worin $\omega = \frac{\omega_1 + \omega_2}{2}$,

sonach:

$$\delta = \frac{(\omega_2 - \omega_1) \cdot \frac{\omega_1 + \omega_2}{2}}{\omega^2} = \frac{\omega_2^2 - \omega_1^2}{2 \omega^2}.$$

Setzt man:

 $\omega_1^2 = \frac{g}{G} \cdot t g \varphi_1, \qquad \omega_2^2 = \frac{g}{G} \cdot t g \varphi_2, \qquad \omega^2 = \frac{g}{G} \cdot t g \varphi_m,$ so wird: $\delta = \frac{t g \varphi_2 - t g \varphi_1}{2 t g \varphi_m}.$

Wird im beliebigen Abstand *a* eine Senkrechte zu ON gezogen, Fig. 344, und werden auf diese die Punkte P_1 und P_2 durch Strahlen von O aus übertragen, so wird $c_m = \frac{c_1 + c_2}{2}$ und $c_0 = c_2 - c_1$. Weiterhin wird:

$$tg \varphi_1 = \frac{c_1}{a}; \qquad tg \varphi_2 = \frac{c_2}{a}; \qquad tg \varphi_m = \frac{c_m}{a}.$$
$$\delta = \frac{c_2 - c_1}{2 c_m} = \frac{c_0}{2 c_m}.$$

Auch das Arbeitsvermögen läßt sich aus der C-Kurve unmittelbar ermitteln.

Nach S. 330 ist

$$\mathbf{A} = \int \mathbf{E} \cdot \mathbf{d} \, \mathbf{s}.$$

338

Da zwischen der Energie E und der Zentrifugalkraft C Gleichgewicht herrscht, so wird bei einem Ausschlag dx der Schwungmassen in Richtung von C:

$$A = \int E \cdot ds = \int C \cdot dx.$$

Das Integral $\int C \cdot dx$ wird in Fig. 344 dargestellt durch diejenige Fläche zwischen $P_1 P_2$ und O N, welche von den durch die Punkte P_1 und P_2 gelegten Senkrechten seitlich begrenzt wird.

Bei der Untersuchung eines Regulators wird nicht nur die bis jetzt betrachtete resultierende C-Kurve aufgezeichnet, sondern es werden auch die C_g - und die C_q -Kurven eingetragen, welche diejenigen Zentrifugalkräfte darstellen, die den Schwunggewichten G bezw. der Hülsenbelastung Q das Gleichgewicht halten.

Fig. 345-346 zeigen die Ermittelung der Kurven eines Wattschen Regulators mit Gewichtsbelastung der Muffe.

G und $C_{\rm g}$ sind am Schwunggewicht im Gleichgewicht, wenn die Richtung ihrer Resultierenden durch Zapfen I geht. Trägt man G vom Zapfen I nach unten senkrecht ab und wird durch den Endpunkt dieser Senkrechten eine Wagerechte gelegt, so gibt diese bis zum Schnittpunkt mit den Richtungen des Armes I II die Größe $C_{\rm g}$ bei den verschiedenen Regulatorstellungen wieder.

Die Belastung Q ruft in der Stange II III (Fig. 346) die Spannung S hervor, welche am Arm I II mit C_q nur durch Vermittelung einer durch Zapfen I gehenden Reaktion R' im Gleichgewicht sein kann. Trägt man vom Zapfen I aus Q senkrecht nach oben ab, verlängert die Richtung von R' über I hinaus und legt durch I eine Parallele zu II III, so wird auf einer durch den Endpunkt der Strecke Q gelegten Wagerechten die Größe C_q in ersichtlicher Weise abgeschnitten.

Fig. 346 zeigt gleichzeitig die Ermittelung der Energie E. Es verhält sich nämlich

$$Cq: Q = C: E.$$

Da die Muffenbelastung Q häufig den weitaus größten Teil der Energie E ausmacht, so empfiehlt sich in diesem Falle die besondere

¹) Nach "Tolle, Regelung der Kraftmaschinen".

Ermittelung des von C_g herrührenden Teiles E_g der Energie. Es wird: $E = Q + E_g$.

 $C_{\rm g}$ läßt sich gemäß der Beziehung: $\rm C_g\colon Q=\rm C_g\colon E_g,$ mit Hilfe ähnlicher Dreiecke erhalten.

Als weiteres Beispiel einer derartigen Untersuchung sei Proells Regulator, Fig. 347—349, gewählt, welcher mit "umgekehrter" Aufhängung ausgeführt wird.

Der Endpunkt III der Stange II III wird in einer Geraden ff geführt, Fig. 347, während Endpunkt II bei einem Kugelausschlag um I gedreht wird. G und C_g bezw. Q und C_q sind nur dann im Gleichgewicht, wenn ihre jeweilige Resultierende durch den augenblicklichen Drehpunkt \mathfrak{P} geht. C_g wird erhalten, indem M mit \mathfrak{P} verbunden und (in

dem rechts gezeichneten Dreieck) durch den Endpunkt der Strecke G eine Parallele a' zu a gezogen wird. Diese schneidet auf der Wagerechten die Strecke C_g ab.

In gleicher Weise wird C_q aufgesucht, Fig. 348, indem von dem Schnittpunkt *B* der Senkrechten ff mit der durch *M* gelegten Wagerechten eine Verbindungslinie *b* nach \mathfrak{P} gezogen wird. Die Parallele *b'* zu *b* bestimmt auf der durch den Endpunkt der Strecke *Q* gelegten Wagerechten C_q . Da die Führung ff des Zapfens *III* nur eine wagerechte Reaktion leisten kann, so muß das Gesamtgewicht Q + G durch den Zapfen *I* aufgenommen werden. Q + G ist also die Vertikalkomponente des Zapfendruckes

 $Z_1,$ welcher gleich Z_2 sein muß, da in der Lenkstange $I \ II$ keine anderen Kräfte wirken.

Wird demnach Q + G als Vertikale aufgetragen, Fig. 349, so ergibt sich der Zapfendruck $Z_1 = Z_2$ in der Verlängerung der Lenkstange I II. H stellt die Horizontalkomponente des Zapfendruckes dar. Auf Zapfen III wirken: das Gewicht Q und der Horizontalschub h = H - C. Z_3 ist somit die Resultierende aus h und Q.

Die Größe der Eigenreibung ε_r kann in folgender Weise bestimmt werden (Fig. 350).

Dreht sich die Hängestange I II um den Winkel d α , so wird dieser Drehung eine Winkeländerung der Stange II III um d β , bezogen auf den Pol \mathfrak{P} , entsprechen. Der Zapfen II dreht sich sonach in seinem Lager um den Winkel (d $\alpha + d\beta$).

Bezeichnen d_1, d_2, d_3 die Durchmesser der Zapfen I, II und III, $\mu = 0,1$ den Zapfenreibungskoeffizient, so hat die infolge der Drehung der Stange III entstehende Reibungsarbeit die Größe:

$$rac{\mu}{2}\,\mathrm{d}\,lpha\,(\mathrm{Z_1\,d_1}+\mathrm{Z_2\,d_2}).$$

Von der Lagenänderung der Stange *II III* werde also zunächst abgesehen.

Die Kraft, welche dieser Reibungsarbeit entspricht, kann durch eine in Richtung der Stange II III wirkende Kraft R_1 ersetzt werden, welche mit Bezug auf Zapfen I am Hebelarm p_1 angreift und bei einer Drehung um d*a* die Arbeit $R_1 p_1 \cdot d\alpha$ leistet, so daß:

$$\mathbf{R}_1 \, \mathbf{p}_1 \, \mathbf{d} \, \alpha = rac{\mu}{2} \cdot \mathbf{d} \, \alpha \, (\mathbf{Z}_1 \, \mathbf{d}_1 + \mathbf{Z}_2 \, \mathbf{d}_2)$$
,

oder

$${
m R}_1 = rac{\mu}{2\,{
m p}_1}\,({
m Z}_1\,{
m d}_1 + {
m Z}_2\,{
m d}_2).$$

In gleicher Weise findet sich für die Drehung der Stange II III um den Pol \mathfrak{P} :

$$R_2 = \frac{\mu}{2 p_2} \cdot (Z_2 d_2 + Z_3 d_3).$$

Wird R_1 im Punkt III in eine wagerechte und eine senkrechte Komponente zerlegt, so ergibt sich durch Addition der letzteren zu R_2 des gesamte, auf die Muffe reduzierte Reibungswiderstand R.

Die senkrechte Komponente von R_1 hat die Größe:

$$\begin{aligned} \mathbf{R_1^1} &= \mathbf{R_1} \cdot \cos \gamma = \frac{\mu}{2} \frac{\mathbf{Z_1 d_1} + \mathbf{Z_2 d_2}}{\mathbf{h_1}}, \\ & \mathbf{da} \mathbf{h_1} = \frac{\mathbf{p_1}}{\cos \gamma}. \end{aligned}$$

Es ist

$$\varepsilon_{\rm r} = \frac{{\rm R}}{{\rm E}}.$$

Aus obiger Aufzeichnung der C-Kurven ist ersichtlich, daß für deren Entstehung die Spindellage gar nicht in Betracht kommt. Hieraus folgt ein einfaches Mittel, den Ungleichförmigkeitsgrad beim Entwurf zu ändern. Wie nämlich aus Fig. 344 ersichtlich ist, wird δ verringert, wenn Punkt O nach rechts, und vergrößert, wenn O nach links verschoben wird.

Wird sonach die Spindel nach den Schwungmassen hingerückt, so wird δ verringert. Diese Verschiebung der Spindel wird praktisch auf zwei Wegen erreicht: entweder durch Kreuzung der Arme, s. Fig. 336, welche den Kley-Regulator darstellt, oder durch Knickung der Pendelarme, s. Fig. 334, welche schematisch den Tolle-Regulator darstellt. Letztere Anordnung ist vorzuziehen, da die konstruktiv unbequeme Kreuzung dadurch vermieden wird.

Wie im übrigen aus Fig. 349 ersichtlich, hat bei der vorliegenden "umgekehrten" Aufhängung die Cg-Kurve einen astatischen Punkt, während dieCq-Kurve und infolgedessen auch dieC-Kurve einen statischen Charakter besitzen. Vorteilhafter ist es, eine möglichst astatische Cq-Kurve zu erhalten, da infolge des Überwiegens von Q gegenüber G hauptsächlich diese die C-Kurve bestimmt, außerdem ergeben sich Vorteile bezüglich der Umlaufzahl-Änderung.

Vorzüge gegenüber der unmittelbaren Aufhängung weist die umgekehrte Aufhängung nicht auf. Letztere hat vielmehr den Nachteil, daß bei gleichen Gewichten G kleinere Werte für Cg folgen, so daß die Energie kleiner und die Eigenreibung größer wird. Diese nimmt nämlich um so mehr zu, je größer G gegen Q, um so kleiner also die Umlaufzahl ist.

Bei den Federregulatoren setzt sich die resultierende C-Kurve zusammen: aus der Cg-Kurve, aus der C_f -Kurve, deren Ordinaten diejenigen Zentrifugalkräfte angeben, welche der Federspannung das Gleichgewicht halten, und aus einer Cq-Kurve.

Da die mit steigender Muffe zunehmende Zusammendrückung der Feder eine starke Zunahme der Zentrifugalkraft bedingt, so hat die $C_{\rm f}$ -Kurve meist einen stark statischen Charakter. Soll die resultierende C-Kurve einen pseudoastatischen Verlauf nehmen, so muß infolgedessen die C_q -Kurve einen labilen Charakter aufweisen.

In Fig. 351 sind die C-Kurven des Hartung-Regulators (Fig. 337) wiedergegeben. Nach dem Schema in Fig. 352 wird:

$$Cq \cdot a \cdot \cos \alpha = Q \cdot b \cdot \cos \alpha,$$

$$Cq = \frac{b}{a} \cdot Q = \text{konst.}^{1})$$

$$Cg \cdot a \cos \alpha = - G \cdot a \sin \alpha$$

$$Cg = - G \cdot tg \alpha.$$

Berechnet man für ein gegebenes Schwunggewicht und einen bestimmten Ungleichförmigkeitsgrad die Zentrifugalkräfte C_u und C_0 , so ergeben sich nach Abzug von Cq + Cg die Federspannungen F_u und F_0 . Die C_f -Kurve wird eine Gerade.

$$e_{r} = \frac{R}{E} = \frac{\mu}{2} \cdot \frac{Q \cdot d + (Q + G) \cdot d + G \cdot d}{E \cdot l}$$
, worin $l = \text{Armlänge I II.}$)

Fig. 353 zeigt die Durchrechnung eines Tolle - Regulators Nr. O. (G = 4,48 kg, Q = 1,6 kg, n = 360).

 $C_{\rm g}$, $C_{\rm q}$ und $C_{\rm f}$, sowie C sind nach Fig. 345-346 ermittelt.

Die $C_{\rm f}$ -Kurve findet sich aus den auf Zapfen I als Drehpunkt bezogenen Federspannungen F'.

Die Zahlentafel gibt über die einzelnen Stellungen Aufschluß, diese sind so gewählt, daß die Federspannung um die gleiche Größe zunimmt.

¹) Neuerdings werden die Hartung-Regulatoren mit stumpfwinkligem Hebel MIII ausgeführt, wodurch die Cq-Kurve astatisch wird.

Regulatorstellung	1	2	3	4	5	a.
$\begin{array}{c ccccc} Abstand \ der \ Scheiben & . & . \\ Zentrifugalkraft & . & . & . \\ Umlaufzahl & . & . & . \\ II = Z III \\ Zapfendrücke \left\{ \begin{array}{c} Z \ II = Z \ III \\ Z \ IV \\ Arme & . & . & . \\ h_3 \\ Energie & . & . & . \\ Reibungsbetrag \ R. & . & . \\ Verstellkraft \ W. & . & . & . \end{array} \right.$	$\begin{array}{c} 70\\ 42,5\\ 349\\ 38,5\\ 5,65\\ 37,4\\ 143,5\\ 207\\ 31,4\\ 0,2238\\ 1,26\\ \end{array}$	74,347,535646,66,6543,7147,522132,50,25921,26	$\begin{array}{c} 78,5\\52\\363\\55,6\\7,35\\50\\151,5\\235\\33,3\\0,294\\1,26\end{array}$	$\begin{array}{r} 83,2\\ 56\\ 368\\ 65\\ 56,7\\ 155,5\\ 254\\ 33,7\\ 0,331\\ 1,26\end{array}$	$\begin{array}{c} 88\\ 60,5\\ 371\\ 75\\ 10,2\\ 63\\ 158\\ 273,5\\ 34,2\\ 0,3728\\ 1,26\end{array}$	mm kg pro/Min kg kg g mm mm kg kg kg kg

(Eigenreibung: Zapfen IV wird durch die Federspannung F' belastet. Die Zapfendrucke $Z_2 = Z_3$ werden nach Fig. 350 aus der Muffenbelastung Q + F ermittelt. Die senkrechte Komponente des Zapfendruckes Z_1 hat die Größe (Q + G + F), die wagerechte Komponente beträgt C - F' - H, wenn H = wagerechter Reaktion des Zapfens III.)

c) Die Änderung der Umlaufzahl.

Änderung der Umlaufzahl kann durch Veränderung des Gewichtes der Schwungmassen oder durch Änderung der Hülsenbelastung bezw. der Federspannung bei den Federregulatoren erreicht werden.

Nach S. 329 ist

$$\mathbf{E} = \mathbf{a} \cdot \mathbf{C} = \mathbf{a} \, \mathbf{m} \, \mathbf{r} \, \omega^2,$$

wird sonach die Umlaufzahl eine andere, so ändert sich auch die Energie und zwar im quadratischen Verhältnis zur Umlaufzahl.

Bei einer Verminderung der Umlaufzahl 200 um 20 v. Ht., d. h. um 40 Uml./min., sinkt z. B. die Energie, welche bei 200 Uml./min. den Wert 1 habe, auf $\left(\frac{160}{200}\right)^2 = 0.64$. Da die zur Verstellung der Steuerung erforderliche Kraft $P = \varepsilon \cdot E$ ihren Wert auch für die verringerte Umlaufzahl behält, so folgt, daß der Unempfindlichkeitsgrad auf das $\frac{1}{0.64}$ des früheren Betrages steigt. Es ist dies insofern erwünscht, als durch die Herabsetzung der Umlaufzahl auch die Gleichförmigkeit des Schwungrades auf 0.64 des früheren Betrages gesunken ist, so daß zwischen Gleichförmigkeit des Schwungrades und Unempfindlichkeitsgrad wieder das frühere Verhältnis herrscht.

Von größerer Bedeutung ist die bei derartigen Tourenänderungen eintretende Veränderung des Ungleichförmigkeitsgrades. Da die Änderung der Hülsenbelastung die Regel bildet, so sei diese zunächst in Betracht gezogen.

In Fig. 354 zeigen sowohl die Cq-Kurve als die C-Kurve astatischen Verlauf. Die Vergrößerung der Hülsenbelastung Q um q z. B. kann bei Gewichtsregulatoren durch unmittelbares Anhängen eines Gewichtes von der Größe q, bei Federregulatoren durch entsprechendes Spannen der Feder erfolgen, da dadurch eine konstante Kraft hinzutritt. Die Zentrifugalkräfte steigen auf $Cq + c_q$. Durch Vergrößerung der Ordinaten der Cq-Kurve und der C-Kurven um c_q werden somit die neuen Lagen dieser Kurven ermittelt. Diese behalten, wie Fig. 354 zeigt, ihren früheren Charakter bei.

In Fig. 355 ist die C-Kurve wieder astatisch, die Cq-Kurve labil, Strecke l' gibt den Labilitätsgrad an. Die einer Vermehrung der Hülsenbelastung entsprechende Cq''-Kurve geht von demselben Punkt wie die Cq-Kurve aus.

Werden die Überschüsse derselben über die frühere Cq-Kurve zur C-Kurve addiert, so ergibt sich die neue C''-Kurve, welche labil verläuft. Durch eine Verminderung der Hülsenbelastung wird andererseits die C'-Kurve erhalten, welche statisch verläuft.

Bei den meisten Federregulatoren ist nun die Cq-Kurve stark labil, ohne Ausnahme trifft dies bei den Regulatoren mit Längsfeder zu. Der Grund für die Labilität der Cq-Kurve ist leicht einzusehen: da die stark zunehmende Federspannung eine sehr statische $C_{\rm f}$ -Kurve ergibt, so kann nur durch deren Ausgleich mit einer labilen Cq-Kurve eine pseudoastatische C-Kurve erhalten werden. Das Spannen bezw. das Entspannen der Feder ist demnach bei allen Regulatoren mit labiler Cq-Kurve unstatthaft, da hierdurch zwar eine Änderung der Umlaufzahl, aber auch eine weitgehende Änderung des Ungleichförmigkeitsgrades eintritt; unter Umständen wird der Regulator labil, also unbrauchbar.

Fig. 355 gibt aber das Mittel an Hand, auch bei diesen Regulatoren brauchbare Verhältnisse zu erhalten. Wird nämlich die C''-Kurve in die Lage C''' gebracht, so ist wieder astatische Regelung vorhanden. Zu diesem Zweck muß die Hülsenbelastung so eingerichtet sein, daß mit steigender Muffe die senkrecht schraffierten Zentrifugalkräfte auftreten. Dies kann erreicht werden:

1. Durch Anbringung sogenannter Federwagen. An die Hülse wird eine zweite Feder angeschlossen, deren Spannung mit wachsendem Muffenhub natürlich zunimmt. Der Hebelarm, falls die Feder an einem

solchen angreift, kann ebenfalls veränderlich gemacht werden. Bei dieser Anordnung nimmt durch die hinzukommende Zapfenbelastung die Eigenreibung namentlich bei größeren Änderungen der Umlaufzahl stark zu.

2. Durch Längenänderung der Feder, indem sie mit mehr oder weniger Gängen in einen Teller hineingeschraubt wird. Durch Spannen der Feder wird eine konstante Kraft hinzugefügt; die dadurch labil werdende C-Kurve erhält wieder ihre richtige Lage, indem die Feder durch Einschrauben verkürzt wird. Die Kräfte zur Zusammendrückung der Feder nehmen zu, und die dadurch hervorgerufene statische Wirkung gleicht sich mit der labilen C-Kurve aus.

Ist die Cq-Kurve astatisch, so ist nach Fig. 354 Hinzufügung einer konstanten Belastung ohne weiteres zulässig. Astatische Cq-Kurven werden aber nach S. 342 erhalten: durch Kreuzung der Arme oder durch Knicken der Pendelarme. Letzteren Weg hat Tolle bei dem in Fig. 334 (schematisch) und Fig. 338 dargestellten Regulator eingeschlagen.

Um genauere Einstellungen zu ermöglichen, und um Hinzufügung träger Massen zu vermeiden, ist nach Fig. 338 die konstante Belastung durch eine senkrecht angeordnete Feder ersetzt. Da deren Zusammendrückung bei steigender Muffe dem Regulator einen stark statischen Charakter erteilt, so ist die wagerechte Feder so berechnet, daß sie allein labiles Verhalten herbeiführen würde. In ihrer Wirkung gleicht sie sich sonach mit den Eigenschaften der Längsfeder aus. Wird die Querfeder gespannt, so wird der Ungleichförmigkeitsgrad verringert und umgekehrt, die hierbei eintretende Änderung der Umlaufzahl wird durch Änderung der Längsfederspannung beseitigt. Anziehen der Längsfeder allein vergrößert Energie und Umlaufzahl ohne Beeinflussung des Ungleichförmigkeitsgrades.

Was die Tourenverstellung bei Gewichtsregulatoren betrifft, so läßt sie sich bei denselben durch Änderung der Hülsenbelastung meist ohne weiteres herbeiführen, da hier die Cq-Kurve annähernd den Charakter der C-Kurve hat.

Soll bei beiden Regulatorarten Änderung der Umlaufzahl durch Änderung der Schwunggewichte erreicht werden — was seltener geschieht —, so muß die Cg-Kurve astatisch sein.

d) Die Flachregeler.

Diese werden vielfach als Beharrungsregeler ausgeführt. Die einfachste Anordnung ergibt sich nach Fig. 356. Ein Massenteilchen mliefert bei der Winkelbeschleunigung b eine Trägheitskraft $r \cdot b m$, welche mit einem Hebelarm p am Drehpunkt o_1 angreift. Dieses Moment muß die Bewegung des Pendels nach außen unterstützen und soll dieser nicht entgegenwirken, was von der Anordnung des Regelers abhängt.

Schlägt man in Fig. 356 einen Halbkreis über $o o_1$, so übt bei vorauseilendem Pendel das Beharrungsvermögen einen günstigen Einfluß aus, wenn der Schwerpunkt S der Schwunggewichte außerhalb dieses Kreises fällt. Diese Bauart ist insofern die günstigste, als Anbringung besonderer Massen nicht nötig ist.

Wird die Beharrungsmasse mit dem Exzenter vereinigt, so entsteht das Schema in Fig. 357 (vergl. Fig. 360).

 $A_1 A_2$ sind die beiden, gleich schweren Schwunggewichte, so daß der Schwerpunkt S in der Mitte ihres Abstandes liegt. O ist der Wellenmittelpunkt, O_1 der Pendeldrehpunkt.

Eine unendlich kleine Drehung des Regulators um die Welle O, Fig. 358, mit der Winkelgeschwindigkeit ω , wobei $O_1 S$ in die Lage $O'_1 S'$ gelangt, läßt sich bekanntlich ersetzen: durch eine Parallelverschiebung, bei welcher jedes Massenteilchen die gleichgerichtete Geschwindigkeit $r \omega$ hat, und durch eine Drehung um S' mit der Winkelgeschwindigkeit ω . Erfolgt die Drehung des Regulators um O mit der Winkelbeschleunigung b, so wird entsprechend S S' = r b = $O_1 O_1''$ und $O''_1 O_1' = S' O_1' \cdot b$.

Die Parallelverschiebung verursacht nunmehr Beschleunigungswiderstände, deren zum Radius r senkrechte Resultierende im Schwerpunkt S angreift. Ist m die Gesamtmasse des Pendels, so ergibt sich ein Drehmoment um den Aufhängepunkt O_1 des Pendels

$$\mathbf{M}_{1} = \mathbf{m} \cdot \mathbf{r} \cdot \mathbf{b} \cdot \mathbf{p},$$

wenn p die von ${\cal O}_1$ auf die Resultierende gefällte Senkrechte bedeutet.

Die Drehung um den Schwerpunkt S verursacht einen Beschleunigungswiderstand von der Größe J \cdot b, wenn J das Trägheitsmoment des

Pendels in bezug auf den Schwerpunkt ist. Das gesamte, von diesen Beschleunigungswiderständen erzeugte Kraftmoment hat sonach die Größe:

$$\mathfrak{M} = (\mathbf{J} + \mathbf{m} \, \mathbf{r} \cdot \mathbf{p}) \cdot \mathbf{b}.$$

Ersetzt man dasselbe durch einen Ausdruck von der Form $C_a \cdot c$, worin c den Hebelarm von C_a in bezug auf Punkt O_1 bedeutet, so kann C_a als Beharrungskraft, $C_a \cdot c$ als Beharrungsmoment bezeichnet werden.

Verschwindet p in der Gleichung für \mathfrak{M} , so fällt S mit O₁ zusammen, verschwindet r, so fällt S mit O zusammen: in beiden Fällen hat das
Beharrungsvermögen die Größe J.b. Ist sonach das Pendel in seinem Schwerpunkt aufgehängt, so ist die Größe des Beharrungsmomentes unabhängig von der Lage des Aufhängepunktes; dieser kann mit dem Wellenmittel zusammenfallen, ein Fall, welcher bei den Trägheitsringen vorliegt.

Die Anwendung der Beharrungsmassen ist nun insofern vorteilhaft, als diese eingreifen, sobald die Maschine beschleunigt wird, sie treten also in Wirksamkeit, ehe Geschwindigkeit und Zentrifugalkraft sich merklich geändert haben. Bei einer auftretenden Beschleunigung rückt

die Beharrungsmasse die Schwunggewichte sofort nach außen und zwar so weit, daß in dem neuen Beharrungszustand die Zentrifugalkraft der Federspannung das Gleichgewicht hält. Das ist allerdings nicht ohne weiteres der Fall.

Die Beharrungskräfte wachsen im gleichen Verhältnis wie die Beschleunigungen bezw. wie die Triebkraftüberschüsse, diese sind aber bei einer eintretenden Belastungsänderung der Entfernung der Schwungmassen von ihrer neuen Gleichgewichtslage proportional¹). Denn je weiter diese Entfernung, desto

größer ist die dem früheren Beharrungszustand entsprechende Füllung gegenüber der neu einzustellenden.

Annähernd können die Beharrungskräfte durch Ordinaten eines Dreieckes (z. B. des Dreieckes adc₂ in Fig. 359) dargestellt werden.

Auf S. 331 wurde dargelegt, daß im Ruhestand des Regulators zwei äußerste Fälle möglich sind: der Regulator drückt mit der Verstellkraft P nach oben oder nach unten; jede kleinste Zu- oder Abnahme der Winkelgeschwindigkeit bewirkt sofortige Verstellung der Steuerung.

Trägt man die zur Erzeugung der Verstellkraft P erforderliche Zunahme \Box C der Zentrifugalkraft unter und über der C-Kurve ab, so erhält man zwei Kurven, c₁ und c₂, welche die Grenze für diejenigen Zentrifugalkräfte bezeichnen, bei welchen der Regulator in Ruhe bleibt²). Fig. 359. Das Dreieck, welches die Beharrungskräfte darstellt, ist sowohl über der c₁-Linie als auch über der c₂-Linie aufgetragen.

Angenommen, die Muffe drücke mit der Kraft P nach unten, und es erfolge eine plötzliche Entlastung, so wird, falls diese groß genug ist, die Beharrungskraft P' die Eigenreibung und den Widerstand der Steue-

¹) Es trifft dies nur annähernd zu. Die Triebkraft wächst weit mehr bei einer Steigerung der Füllung von 5 auf 10 v. Ht. als von 90 auf 95 v. Ht., auch ist das Übersetzungsverhältnis zwischen Muffe und Schwungkugel häufig so, daß in den oberen Lagen gleichen Schwungkugelausschlägen größere Muffenhübe entsprechen als in den unteren Lagen. Andererseits erfordern kleinere Füllungen größere Bewegungen der Muffe.

sprechen als in den unteren Lagen. Anderersets chordern Alcher Fuhlagen größere Bewegungen der Muffe. ²) Die Verstellkraft P stellt je nach der Richtung, in welcher sie ausgeübt wird, eine Belastung oder Entlastung der Muffe dar. Bezüglich der C₁- und C₂-Kurve gilt also alles, was auf S. 346 bezüglich Änderung der Muffenbelastung gesagt wurde. Sollen demnach die C₁- und C₂-Kurve denselben Stabilitätsgrad wie die C-Kurve aufweisen, so muß die Cq-Kurve wieder astatisch sein.

rung überwinden, also die sonst erforderliche Steigerung der Zentrifugalkraft um $2 \ \ \ C$ ersetzen. Der weitere Überschuß P' — $2 \ \ \ C$ erzeugt eine Beschleunigung der Regulatormassen. Die lebendige Kraft derselben muß nun während der zweiten Hälfte des Regulatorweges — wo die Beharrungskraft stark abnimmt — die Verstellarbeit leisten, d. h. es muß Dreieck abc = cc_2c_1 sein, also P' = $4 \ \ \ C$. Ist P' größer, so werden die Beharrungsmassen in der neuen Gleichgewichtslage noch Arbeits-

Fig. 360.

vermögen besitzen und über diese Lage hinausschießen. Sie regulieren also über, was nur durch kräftig wirkende Ölbremsen verhindert werden kann.

Überregulieren würde bestimmt stattfinden, wenn im vorliegenden Fall eine plötzliche Belastung der Maschine eingetreten wäre. Infolge des nach unten wirkenden Druckes ist dann die ganze Arbeit der Beharrungskraft überschüssig, und der Regulator schießt um den angegebenen Regulatorweg über die neue Gleichgewichtslage hinaus. Dasselbe ist der Fall, wenn der Regulator in der Ruhelage einen Druck P nach oben ausübt, und die Maschine erfährt plötzliche Entlastung: dann dient die durch Dreieck adc, dargestellte Arbeit der Beharrungskraft ebenfalls zur unnützen Beschleunigung der Massen. Sind andererseits die Belastungsänderungen sehr gering, die Beschleunigungen also sehr klein, so treten die Beharrungsmassen nicht in Wirkung, und der Fliehkraftregeler muß die Steuerung verstellen. Da dieser aber bei Anwendung von Beharrungsmassen mit Absicht schwach bemessen wird, so muß die Geschwindigkeit sich stark ändern, um die zur Verstellung erforderliche Zentrifugalkraft zu erzeugen. Erschwerend tritt hinzu, daß der Fliehkraftregeler nun auch die Beharrungsmassen zu verstellen hat.

Hieraus geht hervor, daß Beharrungsregeler sich nur für solche Maschinen eignen, welche — wie die ohne Pufferbatterie arbeitenden Straßenbahnmaschinen elektrischer Zentralen — starken und plötzlichen Belastungsschwankungen unterworfen sind. Zur Verhinderung des Über-

regelns sind Ölbremsen anzubringen, welche die Regulierfähigkeit allerdings wieder verschlechtern.

Im folgenden sind einige der bekanntesten Bauarten beschrieben. Fig. 360 zeigt den in den Vereinigten Staaten vielfach ausgeführten Ball-Regulator¹), welcher dem Schema Fig. 357 entspricht, nur daß die

¹) Stodola, Z. 1899, S. 506.

Achse des Beharrungsgewichtes senkrecht zur Schubrichtung des Exzenters steht. Damit der Schwerpunkt S richtige Lage zum Drehpunkt B erhält, müssen die Schwungmassen C_1 und C_2 verschiedenes Gewicht haben. Die Federbefestigung ist mit drei Bohrungen versehen, um die Umlaufzahl ändern zu können.

Bei allen Regulatoren, deren Beharrungsmasse unmittelbar mit dem Exzenter verbunden ist, hat bei richtiger Ausnützung des Beharrungsmomentes die Scheitelkurve eine der üblichen entgegengesetzten Lage, wie aus Fig. 357 hervorgeht. Mit kleiner werdenden Exzentrizität

Fig. 362.

nimmt auch das lineare Voreilen ab, so daß absolute Nullfüllung möglich wird.

In Fig. 361 ist der Doerfelsche Regulator dargestellt, welcher dem Schema in Fig. 356 entspricht. Das vorauseilende Pendelgewicht wirkt als Beharrungsmasse.

Soll die Umlaufzahl dieses Regulators geändert werden, so wird mittelst Handrad und Schneckenübersetzung der Kegel K verschoben. Auf diesen stützten sich zwei um n drehbare Hebel, an welchen die Federn befestigt sind. Es wird somit außer der Federspannung auch der Hebelarm geändert, an dem die Federn in bezug auf die Punkte o angreifen.

Bei dem Doerfelschen Regulator nach Fig. 362 hängen die Federn an kleinen Exzentern, die durch Schneckenräder zwecks Änderung der Federspannung verstellt werden können. (Vergl. Fig. 147.)

Eine senkrecht zur Steuerwelle angeordnete Welle, welche die erwähnten Schneckenräder trägt, wird durch ein federndes Reibrad verdreht, wenn dieses zum Streifen an einem von Hand einstellbaren Hebel mit entsprechenden Reibungsflächen gebracht wird.

Da das Reibrad den Hebel bei jedem Umlaufe nur einmal berührt, so wird die Federspannung langsam geändert.

Wird die Lösung der Regulatorschaltung vom Maschinisten vergessen, so wird eine unzulässige Zunahme der Umlaufzahl in einfachster

Weise dadurch verhütet, daß das Exzenter seine Bewegungsrichtung umkehrt und die Feder wieder entspannt.

Fig. 363 stellt eine weitere Ausführung von Doerfel dar, bei welcher der Hebelarm der Federspannung und diese selbst durch Verlegung des Federangriffspunktes geändert werden können.

Dubbel, Dampfmaschinen. 3. Aufl.

Fig. 364 gibt die zum Regulator Fig. 363 gehörige Verstellvorrichtung wieder.

Fig. 365 zeigt den Lentzschen Regulator mit Trägheitsscheibe. An dem auf der Welle festgekeilten Gehäuse D ist eine Flachfeder B befestigt, deren anderes Ende mit dem Trägheitsring C verbunden

Fig. 367 a.

Die Regulierung.

ist. An diesem greifen die in Schneiden gelagerten Schwunggewichte Aan. Tritt eine Geschwindigkeitszunahme ein, so wird der Ring C zurückbleiben, die Pendel nach außen drängen und den neuen Füllungsgrad einstellen. In dem nun folgenden, neuen Beharrungszustand sind Fliehund Federkraft im Gleichgewicht, und der Trägheitsring hängt frei zwischen der Feder und den Pendeln.

Die Umlaufzahl kann auch bei diesem Regulator in einfachster Weise geändert werden. Fig. 366. Um die bei Steigerung der Umlauf-

zahl nötig werdende stärkere Zunahme der Federspannung zu erhalten. wird ein Hebel V während des Ganges dadurch verstellt, daß die mitrotierende, steilgängige Schraube k mittelst Handrad c und Schraubenspindel g achsial verschoben wird. Handrad c ist mit der Mutter d im Kugellager b gelagert. Schraubenspindel q wird durch Nut e und Feder h gerade geführt.

Der Hebel V gleitet mit zwei Rollen auf der Bahn L, wodurch ein Teil der Feder K abgedeckt, d. h. verkürzt werden kann. Durch diese Verkürzung wird die Feder steifer, so daß zur Durchbiegung größere Kräfte als bei der unverkürzten Feder erforderlich sind.

Fig. 367 stellt den Reckeschen Beharrungsregeler dar. Auf der Steuerwelle ist der Hebel HNH aufgekeilt, welcher mittelst zweierLenker die Schwunggewichte mitnimmt. Diese sind durch die Zapfen 00 mit der als Regulatorgehäuse ausgebildeten Beharrungsmasse B verbunden. Diese Zapfen OO sind um die Lenkerlänge vom Wellenmittelpunkt entfernt, so daß bei einem Ausschlag der Schwunggewichte bezw. der Trägheitsmasse jeder Punkt der Gewichte einen Kreisbogen $O_1 O_1'$ beschreibt. Die Schwunggewichte werden also annähernd gerade geführt und wirken den radial angeordneten Federn direkt entgegen. Bei diesem Ausschlag wird das vom steuernden Exzenter E, umfaßte innere Exzenter E₁ mittelst des kurzen Lenkers ab verdreht. Die Fliehkräfte beider Exzenter sind durch Gegengewichte ausgeglichen.

Exzenter E₂ wird durch den in einem Schlitz der Beharrungsmasse gleitenden Kulissenstein C geführt. Bei eintretenden Belastungsänderungen drehen sich Exzenter E_1 und Beharrungsmasse in entgegengesetzter Richtung, bewegen sich also nach derselben Seite hin. Die Entstehung der Scheitelkurve ZZ ist aus Fig. 368 erkennbar.

Das äußere Exzenter E_2 erfährt sonach beim Regulatoreingriff eine Parallelverschiebung, durch welche - wenn vom Einfluß der endlichen Exzenterstangenlänge abgesehen wird - jede Relativbewegung zwischen Exzenter und Ring vermieden wird.

Eine Verdrehung der beiden Exzenter E_1 und E_2 gegeneinander findet bei der Verstellung nur insoweit statt, als die von ihren Mittelpunkten beschriebenen Kreisbögen Unterschiede bezüglich der Radien aufweisen.

Eine Rückwirkung auf den Regulator tritt nicht ein, da die Umfangsreibung am äußeren Exzenter durch die Führung des Kulissensteines C aufgenommen wird.

Die Anordnung der Feder derart, daß ihre Achse stets durch das Wellenmittel geht, ist insofern vorteilhafter als die seitliche Anordnung, als bei dieser die Feder durch die Zentrifugalkraft ausgebaucht wird. Radiale Lagerung gestattet überdies genauere Berücksichtigung bei der Berechnung und unmittelbares Abfangen der Kräfte.

Die Fig. 369-370 zeigen den neuerdings weit verbreiteten Flachregeler von Paul H. Müller in Hannover.

Die Schwunggewichte, die durch zwei Lenker mit einer Traverse auf der Welle verbunden sind, nehmen das auf der Wel'e lose drehbar angeordnete Beharrungsgehäuse mit, das bei Entlastung der Maschine eine der Umlaufsrichtung entgegengesetzte Drehung, die maximal 34⁰ beträgt, erfährt.

Die Fliehkräfte der Schwunggewichte wirken den radial angebrachten Federn un mittelbar entgegen.

Durch achsiale Verschiebung einer in der hohlen Welle liegenden Zugstange wird die Lage zweier Winkelhebel, welche die Widerlager der Federn tragen, geändert, so daß die Spannung der Federn und damit die Umlaufzahl während des Betriebes in engen Grenzen verstellt werden kann.

Die Regulierung.

Die beiden Handräder der Verstellvorrichtung, Fig. 371, werden während der Verstellung festgehalten und dann gegeneinander verdreht.

Die Stellrohre, die die Einlaßexzenter um einen Festpunkt auf den Auslaßexzentern verdrehen, bestehen mit dem Reglergehäuse aus einem Stück oder werden an rohrförmige Ansätze desselben angeschlossen.

e) Die Berechnung der Flachregeler¹).

Die Figuren 372 a-c zeigen schematisch den zu berechnenden Regeler. Um das Wellenmittel O dreht sich das in O_1 aufgehängte Pendel mit dem Schwunggewicht G. Die radial gelagerte Feder wirkt in der Richtung B O E, greift also an O_1 mit dem Hebelarm a an. Die Drehung des Pendels um O_1 wird durch eine Hängestange auf das zu verdrehende Exzenter übertragen.

Wird durch G eine Parallele A B zu O_1O gezogen, so wird wegen Gleichheit der Winkel: $\triangle O A B \simeq O_1 E O$, woraus folgt: x : z = d : a; x = z d.

Ebenfalls wegen Gleichheit der Winkel ist:

 $\varDelta O_1 D O \circ G A O$, so daß: z: b = r:d; rb = zd; also auch: rb = xa; x = $\frac{rb}{a}$.

Als rechtsdrehende Momente ergeben sich in bezug auf Punkt O_1 : 1. das von der Zentrifugalkraft des Schwunggewichtes G herrührende Moment $C \cdot b = \frac{G}{g} \cdot \omega^2 \cdot \mathbf{r} \cdot \mathbf{b}$.

2. das von der Zentrifugalkraft des Pendelarmes herrührende Moment.

Hier greift die Fliehkraft nicht im Schwerpunkt an. Für irgend ein Massenteilchen des Pendels ist das Zentrifugalmoment $M_c = m r' \omega^2 \cdot b'$. Fig. 372 c.

¹) Nach Dr. Proell, "Zivilingenieur", 1886.

Da die oben aufgestellten Verhältnisse zwischen den Strecken x, z, d, a, b usw. auch für Fig. 372c entsprechende Gültigkeit haben, so folgt: r' b' = z' d und daraus das Zentrifugalmoment: m $\omega^2 z' d = \frac{p}{g} \omega^2 z' d$. Hierin ist der Faktor $\frac{\omega^2}{g} \cdot d$ konstant, so daß durch Summation folgt:

 $\frac{\omega^2}{g} \mathbf{d} \cdot \boldsymbol{\varSigma} \left(\mathbf{p} \, \mathbf{z'}\right) = \mathbf{M}_{\mathbf{c}}.$

 Σ (pz') ist das statische Moment des Pendelarmes in bezug auf O₁ O. Ist Q das Gewicht dieses Armes, s der wagerechte Abstand des Schwerpunktes von O₁ O, so wird:

$$\Sigma(\mathbf{p} \mathbf{z}') = \mathbf{Q} \mathbf{s}.$$

Die rechtsdrehenden Momente haben sonach die Größe:

$$\frac{\omega^2}{\mathbf{g}} \cdot \mathbf{Grb} + \frac{\omega^2}{\mathbf{g}} \mathbf{Q} \cdot \mathbf{s} \cdot \mathbf{d}.$$

Diesen wirken außer der Federkraft F die Zentrifugalmomente des kürzeren Hebelarmes des Pendels, sowie der am Exzenter angreifenden Hängestange entgegen.

Sind Q' und Q'' deren Gewichte, s' und s'' die Abstände ihrer Schwerpunkte von O_1O , so findet sich das von diesen Stangen herrührende und linksdrehende Moment wie vorhin zu:

$$\frac{\omega^2}{g}$$
 (Q's'd + Q''s''d).

360

Wird zunächst noch von der Fliehkraft der Federwindungen abgesehen, so ergibt sich als Gleichgewichtsbedingung:

$$\frac{\omega^2}{g} \left(\operatorname{Gr} \mathbf{b} + \operatorname{Qs} \mathbf{d} - \operatorname{Q's'} \mathbf{d} - \operatorname{Q''s''} \mathbf{d} \right) = \mathbf{F} \cdot \mathbf{a},$$

oder:

$$\frac{\omega^2}{g} \Big(\mathrm{G} \cdot \frac{\mathrm{r}\,\mathrm{b}}{\mathrm{a}} + \, \mathrm{Q} \cdot \frac{\mathrm{s}\cdot\mathrm{d}}{\mathrm{a}} - \, \mathrm{Q}' \cdot \frac{\mathrm{s}'\,\mathrm{d}}{\mathrm{a}} - \, \mathrm{Q}'' \cdot \frac{\mathrm{s}''\,\mathrm{d}}{\mathrm{a}} \Big) = \mathrm{F}.$$

Nun ist:

$$\frac{\mathbf{r} \cdot \mathbf{b}}{\mathbf{a}} = \mathbf{x}; \qquad \frac{\mathbf{s} \, \mathbf{d}}{\mathbf{a}} = \mathbf{x}'.$$
$$\frac{\omega^2}{\mathbf{g}} \left(\mathbf{G} \cdot \mathbf{x} + \mathbf{Q} \cdot \mathbf{x}' - \mathbf{Q}' \mathbf{x}'' - \mathbf{Q}'' \mathbf{x}''' \right) = \mathbf{F}.$$

Von der linken Seite dieser Gleichung gelangt noch das linksdrehende Zentrifugalmoment der Federwindungen in Abzug.

Stellt man sich die Feder aus einzelnen, konzentrischen Ringen bestehend vor, von welchen jeder das Gewicht G_f hat, so ist $\frac{G_f}{g} \cdot \varrho' \cdot \omega^2$ die Fliehkraft eines solchen Ringes im Abstand ϱ' vom Wellenmittel O. Die Fliehkraft der ganzen Feder hat demnach die Größe $K = M \cdot \omega^2 \Sigma \varrho'$.

Bezeichnen: n die Anzahl der Windungen,

 ϱ der Abstand des äußersten Ringes vom Wellenmittel O, so daß

 $\frac{\boldsymbol{\varrho}}{n}$ der Abstand zweier Ringe voneinander ist,

so wird:

$$\begin{split} \varSigma(\varrho') &= \frac{\varrho}{n} \left(1 + 2 + 3 + \ldots + n \right) = \frac{\varrho}{n} \cdot \frac{n \left(n + 1 \right)}{2} = \varrho \frac{n + 1}{2} \\ \mathrm{K} &= \mathrm{M} \, \omega^2 \cdot \varrho \, \frac{n + 1}{2} = \frac{\mathrm{G}_{\mathrm{f}}}{\mathrm{g}} \cdot \omega^2 \, \varrho \frac{n + 1}{2}. \end{split}$$

Werden sämtliche Werte dieser Gleichung mit Ausnahme von ϱ und $\frac{\omega^2}{g}$ in der Konstanten A zusammengefaßt, also

$$\mathbf{K} = \frac{\omega^2}{\mathbf{g}} \cdot \boldsymbol{\varrho} \cdot \mathbf{A},$$

so folgt die endgültige Gleichgewichtsbedingung:

$$\frac{\omega^2}{g} \left(\mathbf{G} \cdot \mathbf{x} + \mathbf{Q} \cdot \mathbf{x}' - \mathbf{Q}' \, \mathbf{x}'' - \mathbf{Q}'' \, \mathbf{x}''' - \mathbf{A} \cdot \boldsymbol{\varrho} \right) = \mathbf{F}.$$

Als Wert für die Energie, in der Federachse gemessen, ergibt sich hier ohne weiteres: $\mathbf{E}=2\cdot\mathbf{F},$

ebenso die Verstellkraft

$$\mathbf{P} = 2 \, \boldsymbol{\varepsilon} \cdot \mathbf{F}.$$

Für die Bestimmung des von der Eigenreibung herrührenden Betrages ε_r des Unempfindlichkeitsgrades sind die Zapfenreibungen bei O_1 und E zu ermitteln.

Auf Zapfen O_1 wirkt die Resultierende R der am Pendel angreifenden Kräfte. Zapfen E wird nur durch die Federkraft F belastet.

Ist μ der Reibungskoeffizient, d_1 der Durchmesser des Zapfens O_1 , d, der Durchmesser des Zapfens E, und wird die Neigungsänderung der Federachse EOB beim Pendelausschlag vernachlässigt, so folgt als **Reibungsmoment:**

$$\mathbf{M} = \mu \cdot \mathbf{R} \frac{\mathbf{d_1}}{2} + \mu \cdot \mathbf{F} \cdot \frac{\mathbf{d_2}}{2}.$$

Dieses Moment kann durch eine in Richtung der Federachse am Hebelarm *a* angreifende Kraft $\frac{K}{2}$ ersetzt werden, so daß:

$$\begin{split} \frac{\mathrm{K}}{2} \cdot \mathbf{a} &= \frac{\mu}{2} \cdot (\mathrm{R} \, \mathrm{d}_1 + \mathrm{F} \, \mathrm{d}_2), \\ \mathrm{K} &= \frac{\mu}{\mathrm{a}} (\mathrm{R} \, \mathrm{d}_1 + \mathrm{F} \, \mathrm{d}_2), \\ \varepsilon_\mathrm{r} &= \frac{\mathrm{K}}{2 \, \mathrm{F}}. \end{split}$$

Bei der Berechnung sind als bekannt vorauszusetzen oder sind wählbar: mittlere Umlaufzahl n, der Ungleichförmigkeitsgrad $\frac{n_0 - n_u}{n}$, der Ausschlag der Pendelarme und die kleinste Energie. Letztere ist zugleich die kleinste Federspannung F_{min} für die innerste Lage des Regulators. Die Strecken x werden durch geometrische Konstruktion für die innerste, mittlere und äußerste Stellung der Pendel ermittelt, indem durch die Schwerpunkte der betreffenden Stangen Parallele zu O, O gezogen werden. Diese schneiden auf der Federachse FOB die Strecken x ab, von O aus gemessen.

Aus der Gleichgewichtsbedingung für die kleinste Umlaufzahl n_n kann die Größe des Schwunggewichtes G berechnet werden. Die größte Federspannung F_{max} wird aus der Gleichgewichtsbedingung für n₀ berechnet.

Die mittlere Federkraft F $=rac{\mathrm{F}_{\max}+\mathrm{F}_{\min}}{2}$ muß sodann bei der mitt-

leren Umlaufzahl n im Gleichgewicht gehalten werden.

Die Umlaufzahlen sind aus mehreren Zwischenlagen zu ermitteln. Besonders einfach gestaltet sich die Berechnung solcher Regeler deren Federkraft der Fliehkraft unmittelbar entgegenwirkt. Fig. 3731).

Bezeichnen Cf die Fliehkraft der Federwindungen,

 C_g diejenige des Schwunggewichtes, F die Federspannung, so muß sein:

$$C_f + C_g = F$$

Bei einer Zunahme des Abstandes r auf r_1 ist die neue Gleichgewichtsbedingung:

$$C'_f + C_g \frac{r_1}{r} = F';$$
 es wird: $C_g \frac{r_1}{r} = F' - C'_f; \frac{r}{r_1} = \frac{C_g}{F' - C'_f}$

¹) Vergl. Otto H. Mueller jr., Z. 1889, S. 944.

362

Damit der Regulator nicht astatisch wird, muß

$$\frac{\mathbf{r}}{\mathbf{r}_1} > \frac{\mathbf{C}_g}{\mathbf{F}' - \mathbf{C}'_f}$$

sein.

Fig. 374 zeigt schematisch die Anwendung des Tolleschen Verfahrens auf Flachregeler.

Ist r der Abstand des Schwerpunktes s_0 vom Wellenmittel A, h der Hebelarm der Fliehkraft C in bezug auf Drehpunkt I, so hat das Zentrifugalmoment die Größe:

$$\mathfrak{M} = \mathbf{M} \, \omega^2 \mathbf{r} \, \mathbf{h}.$$

Nun ist $rh = ax = doppeltem Inhalt des \triangle A s_0 I$, folglich $\mathfrak{M} = \mathbf{M} \omega^2 ax$. Trägt man auf den Loten, welche von den Schwerpunktlagen

 s_0 auf die Wagerechte O N gefällt werden, die Momente \mathfrak{M} ab, so bilden die Endpunkte dieser Ordinaten die \mathfrak{M} -Kurve, welche in derselben Weise zu beurteilen ist, wie die C-Kurven der Muffenregeler.

Die Momente lassen sich am bequemsten aus den Federkräften berechnen.

Aus der Gleichung für \mathfrak{M} folgt, daß die Umlaufzahl durch Änderung der Schwunggewichte oder auch der Abmessung *a* verstellt werden kann, ohne daß die \mathfrak{M} -Kurve beeinflußt wird.

f) Die Leistungsregulatoren.

Dampfmaschinen, welche zum Betrieb von Pumpen und Kompressoren dienen, arbeiten mit gleichbleibender Füllung, vorausgesetzt, daß der Kesseldruck und der Druck des geförderten Wassers, bezw. der Luft sich nicht ändern. Ein gewöhnlicher Geschwindigkeitsregeler, an einer solchen Maschine angebracht, nimmt stets die gleiche Lage ein. Ändert man nun z. B. bei einer vom Regulator betätigten Rider-Steuerung die Länge der Zugstange, welche Stellzeug und Steuerhebel verbindet, so wird, da der Regulator infolge der Trägheit der Massen seine Lage beibehält, der Schieber z. B. auf kleinere Füllung gestellt. Die Maschine läuft langsamer, der Regulator sinkt und stellt die erforderliche Füllung wieder ein. Der tieferen Regulatorstellung entsprechend läuft jetzt die Maschine langsamer. Diese bequeme Änderung der Zugstangenlänge gestattet sonach jederzeit, die Leistung dem Bedarf anpassen zu können.

Je statischer ein derartiger Regeler ist, um so größer ist der Bereich der Umlaufzahlen, mit denen die Maschine laufen kann.

Wird die Dampfmaschine - etwa durch Bruch eines Druckrohres --- entlastet, so muß sie zur Verhinderung des ...Durchgehens" auf kleinste Füllung gestellt werden. Die hierzu erforderliche Höchstlage des Regulators kann wegen dessen Stabilität nur durch eine gefährliche Steigerung der Umlaufzahl erreicht werden. Stand der Regulator schon hoch, so kann er bis zur Erreichung der Höchstlage die Füllung nur um einige v. Ht. verkleinern, und die Maschine geht durch.

Diesem Übelstand kann dadurch abgeholfen werden, daß der Regulator vor Erreichen der Höchstlage eine Ausklinkvorrichtung löst, welche die Füllung auf Null stellt, so daß die Maschine zum Stillstand kommt. Die unsichere Wirkung dieser

Vorrichtungen und die unliebsame Betriebsunterbrechung im Falle der Betätigung haben zur Konstruktion des in Fig. 375 dargestellten Leistungsregelers¹) von Stumpf Veranlassung gegeben.

Der reichlich große Hub des Regulators zerfällt in zwei Teile. Nur der untere Teil ist stark statisch und wird zur Leistungsregulierung verwandt. Der obere Teil ist pseudoastatisch wie der Hub eines gewöhnlichen Geschwindigkeitsregulators, er dient als Sicherheitshub und hat die Aufgabe, die Maschine bei Überschreitung der größten Betriebsgeschwindigkeit auf Leerlauf einzuregulieren.

Die Feder greift an den Schwungpendeln direkt an, so daß die Eigenreibung klein wird.

¹) Ausgeführt von Steinle & Hartung, Quedlinburg a. H.

Der Übergang des statischen Teiles in den pseudoastatischen wird dadurch erzielt, daß der Angriffspunkt der Feder bei weiterem Ausschlag nach unten rückt. Der Hebelarm der Feder in bezug auf den Hebeldrehpunkt wird dadurch so stark verkleinert, daß die Spannungszunahme der Feder nicht zur Geltung kommen kann.

Bei Anwendung des Regelers sind zwei Regeln zu befolgen:

- 1. Das Übersetzungsverhältnis zwischen Maschine und Regulator muß so gewählt sein, daß die höchste vorkommende Betriebsumlaufzahl der höchsten Umlaufzahl des unteren, stark statischen Hubteiles entspricht.
- 2. Das Übersetzungsverhältnis zwischen Regulatorhub und Angriffspunkt des die Füllung verstellenden Steuerteiles muß so gewählt sein, daß der obere, pseudoastatische Hubteil des Regulators allein imstande ist, die Maschine von der größten vorkommenden Betriebsfüllung bis zur Nullfüllung abzustellen.

Sind diese beiden Bedingungen erfüllt, so kann ein Durchgehen der Maschine nicht eintreten.

Nimmt bei einer Kompressor-Anlage der Luftdruck infolge sinkender Dampfspannung oder vermehrten Verbrauches ab, so muß die Umlaufzahl der Maschine gesteigert werden. Es wird dies in der Weise herbeigeführt, daß der abnehmende Luftdruck auf einen Kolben wirkt, welcher den festen Drehpunkt des von der Muffe zur Zugstange führenden Stellhebels verlegt. Der die Zugstange mit diesem Stellhebel verbindende Zapfen dient hierbei als fester Drehpunkt. War die Abnahme des Luftdruckes eine Folge sinkender Dampfspannung, so wird die Füllung vergrößert, während bei vermehrtem Verbrauch der Regulator in eine höhere Lage gelangt, welche der erforderlichen Geschwindigkeitszunahme entspricht. Bei steigendem Luftdruck ist der beschriebene Vorgang umgekehrt.

Als weitere Leistungsregeler sind zu nennen: der weitverbreitete Gewichtsregulator von Weiß — der erste Regulator dieser Art — und der Tollesche Regulator. Letzterer wird im Gegensatz zu dem Tolleschen Geschwindigkeitsregeler mit stark statischer C_q -Kurve ausgeführt. Um diese zu erhalten, muß natürlich das Gegenteil von dem angewandt werden, was zur Erzielung einer astatischen C-Kurve nötig ist: die Pendelarme werden nach außen geknickt und die Schwungmassen von der Spindel abgerückt.

Fig. 376 stellt den pseudo-astatischen Leistungsflachregeler von Proell dar. Die um die Bolzen b schwingenden Gewichte p sind durch die Kuppelstangen k mit den Drehexzentern verbunden. Bei einer Verschiebung der Stange i werden vermittelst der Winkelhebel w und der Stangen s die Federangriffspunkte o auf Rollbahnen, die sich an den Schwunggewichten befinden, verschoben. Gleichzeitig wird durch Verdrehung der andern Federangriffspunkte g um die Bolzen d die Federspannung in der Weise geändert, daß sie mit der Vergrößerung des Federhebelarmes wächst. Beim Ausschlag der Gewichte werden die Rollenbolzen durch die Lenker o h auf Kreisbögen um Bolzen h geführt.

Die Vorzüge dieses Regelers ergeben sich aus der nachfolgenden Berechnung. Die Zeiger a, b und c geben die Innen-, Mittel- und Außenlage der Pendel, 1, 2 und 3 dieselben Stellungen der Verstellvorrichtung an. Fig. 377.

 $a_1 b_1 c_1$, $a_2 b_2 c_2$ und $a_3 b_3 c_3$ sind Kreisbögen, von den Punkten h_1 , h_2 und h_3 aus geschlagen und stellen die Rollenbahnen für die drei erwähnten Lagen dar.

Für die Berechnung ist ein Pendelgewicht von 40 kg bei 15^{0} Pendelausschlag angenommen. Die Umlaufzahlen sollen zwischen n = 66und n = 130 veränderlich sein. Die Lenkermittellinie c_1 h_1 wird verlängert bis zum Schnittpunkt b_1 mit der Linie CC, die durch den Pendeldrehpunkt senkrecht zur Rollenbahn c_1 c_3 gezogen ist.

Der Abstand Hc_1 des Punktes C_1 von der Federmittellinie $g_1\,c_1$ gibt dann den wirksamen Hebelarm.

Das wirksame Moment setzt sich nämlich aus dem Produkt von Bahndruck und dessen Entfernung vom Pendeldrehpunkt zusammen. Da die Linie CC senkrecht zur Rollenbahn $c_1 c_3$, also parallel zum Bahndruck angenommen ist, so kann als Moment auch das Produkt aus Bahndruck und dessen Entfernung vom Punkte C_1 genommen werden.

Der Bahndruck setzt sich aber aus zwei Komponenten zusammen: aus der vom Lenker hc ausgeübten Kraft, die durch C_1 hindurchgeht und dementsprechend das Moment Null hat, und aus der Federkraft, deren Hebelarm inbezug auf C_1 die Länge Hc_1 hat. In gleicher Weise sind die Linien AA und BB senkrecht zu den Rollbahnen $a_1 a_3$ bzw. $b_1 b_3$ durch den Pendeldrehpunkt gezogen und die Schnittpunkte A_1 $A_2 A_3$, $B_1 B_2 B_3$ und $C_1 C_2 C_3$ ermittelt.

Aus der Zeichnung lassen sich nun für die verschiedenen Stellungen entnehmen:

	ule redenangen.	
$L_{a_1} = 368.3 \text{ mm}$	$L_{b_1} = 376.1 \text{ mm}$	$L_{c_1} = 384.1 \text{ mm}$
$L_{a_2} = 380,5 \text{ mm}$ $L_{a_3} = 394,6 \text{ mm}$	$L_{b_2} \equiv 392,3 \text{ mm}$ $L_{b_3} = 410,3 \text{ mm}$	$L_{c_2} \equiv 404,3 \text{ mm}$ $L_{c_3} = 426,5 \text{ mm}$
	die Hebelarme:	
	$egin{array}{lll} { m H}_{{ m b}_1}=&57,7 \ { m mm} \ { m H}_{{ m b}_2}=&88,5 \ { m mm} \ { m H}_{{ m b}_3}=118,3 \ { m mm} \end{array}$	
$n_{a_8} = 120,0 \text{ mm}$	$11_{b_3} = 110,0$ mm	$11_{C_3} - 12_{4,1}$ mm

Die Gleichsetzung der Momente der Federkraft P und der Zentrifugalkraft ergibt:

P. H =
$$\frac{G}{g}$$
. $\omega^2 \cdot z' \cdot a = \frac{G}{g} \cdot z' \cdot a \cdot \frac{n^2 \pi^2}{900}$.

Hierin ist z' = Abstand des Pendelschwerpunktes von der die Pendeldrehpunkte verbindenden Geraden (vgl. S. 359).

a = Abstand des Pendeldrehpunktes von Wellenmitte.(In Fig. 377 a = 250 mm.)

In dieser sind sämtliche Größen bis auf die Federkraft P bekannt. Diese steht zur Federlänge in der Beziehung: $P = A (L - L_0),$

worin A und die Länge L_0 der ungespannten Feder konstant sind. Wird L = 338 gesetzt, so folgt $P_{b_2} = 180,0$ kg für die mittlere Federlage $b_2 g_2$, für die $n = \frac{66 + 130}{2}$ angenommen ist.

Die Konstante A_2 ermittelt sich aus:

$$\mathbf{A}_2 = \frac{\mathbf{P}_{\mathbf{b}_2}}{\mathbf{L}_{\mathbf{b}_2} - \mathbf{L}_0} = \frac{180,0}{54,3} = 3,22.$$

Aus den bekannten Federkräften ergeben sich nunmehr die Umlaufzahlen:

$n_{a_1} = 65$	$n_{b_1} = 66$	$n_{c_1} = 69$
$n_{a_2} = 96$	$n_{b_2} = 98$	$n_{c_2} = 103$
$n_{a_3} = 129$	$n_{b_3} = 131$	$n_{c_3} = 137.$

Trotz der weiten Veränderlichkeit der Umlaufzahlen bleibt also der Ungleichförmigkeitsgrad von 6 bis 7 v. Ht. praktisch konstant.

g) Die Duffingsche Stellhemmung.

Da das "Tanzen" des Regulators, falls es ein gewisses Maß überschreitet, die Regelung der Maschine erschwert, so erfordern Steuerungen mit starker Rückwirkung Regulatoren mit sehr großem Arbeitsvermögen. Bei der Duffingschen Stellhemmung, Fig. 378, ist jeder Rückdruck auf den Regulator ausgeschlossen; dieser kann mit sehr kleiner Verstellkraft ausgeführt werden, da der Rückdruck selbst zur Verstellung der Steuerung herangezogen wird.

Die hohle Stange des in den Zylinder passenden Sperrkolbens, mit dem sich zwei Rückschlagventile bewegen, ist mit der Steuerung verbunden. Der Regulator hat nur die in der hohlen Kolbenstange steckende Spindel zu verstellen, die an ihrem unteren Ende zu einem Kolbenschieber, auf dem sich die erwähnten Rückschlagventile führen, erweitert ist.

In der gezeichneten Mittellage wird der Kolben durch eine Sperrflüssigkeit festgehalten.

Verschiebt der Regulator z. B. die Spindel nach oben, so entsteht zwischen dem oberen Rückschlagventil und dem Kolbenschieber ein Spalt, so daß der Rückdruck der Steuerung den Sperrkolben nach oben verschieben kann, während die Bewegung nach unten gesperrt bleibt.

Ein Voreilen des Sperrkolbens gegenüber der vom Regulator verstellten Spindel ist ausgeschlossen, da bei Erreichen der relativen Mittellage keine Durchflußspalten mehr vorhanden sind.

Dubbel, Dampfmaschinen. 3. Aufl.

Stete Ausfüllung des Zylinders mit Sperrflüssigkeit, sowie Vermeidung von Stopfbüchsen, ist für betriebssichere Wirkungsweise unerläßlich.

Über dem Zylinder ist ein Ölvorratsraum vorgesehen, aus dem durch Öffnungen in der Spindel und im Kolbenschieber Öl in den Raum zwischen den Rückschlagventilen nachgefüllt wird.

Da dieser Vorratsraum nicht unter Sperrdruck steht, so kann die Kolbenstange ohne Stopfbüchse durchgeführt werden.

Die dargestellte Vorrichtung (70 mm Kolbendurchmesser) ist für Rückdrücke von 200 bis 250 kg bestimmt.

H. Die Dampfturbinen.

Jede Turbine besteht aus zwei Hauptteilen: dem Leitrad oder Leitapparat und dem Lauf- oder Turbinenrad. Der Leitapparat hat die arbeitende Flüssigkeit, deren lebendige Kraft in Arbeit verwandelt werden soll, aus der ursprünglichen Bewegungsrichtung abzulenken und dem Laufrad in einer ganz bestimmten Richtung zuzuführen.

Erfolgt die "Beaufschlagung" nur an einem Teile des Laufrades, so ist die Turbine eine "Partialturbine", sonst eine "Vollturbine".

Je nachdem die Arbeitsflüssigkeit in radialer Richtung oder parallel zur Radachse fließt, werden weiterhin Radial- und Achsialturbinen unterschieden.

Im folgenden bedeuten:

w die relative Geschwindigkeit,

u die Umfangsgeschwindigkeit,

h die Gefällhöhe.

Der Index 1 bezieht sich auf die Eintrittsstelle, 2 auf die Austrittsstelle.

Während bei den "Aktionsturbinen" die Geschwindigkeit c der ganzen Gefällhöhe h entspricht,

$$c = \sqrt{2 g h},$$

wird bei den "Reaktions- oder Überdruckturbinen" nur ein Teil der Gefällhöhe in Geschwindigkeit umgesetzt, demnach

$$c < \sqrt{2 g h}$$

Im Spalt zwischen Leit- und Laufrad ist also eine gewisse Pressung p vorhanden, welche bestrebt ist, die relative Geschwindigkeit w zu steigern. Es ist:

$$p = h - \frac{c^2}{2g} = \frac{w_2^2 - w_1^2}{2g}.$$

Das Verhältnis $\frac{p}{h}$ wird als "Reaktionsgrad" bezeichnet und hat meist den Wert 0.5.

a) Grundbedingungen für Turbinen.

Stoßfreier Eintritt. Fig. 379. Damit Stöße, welche stets erheblichen Arbeitsverlust verursachen, vermieden werden, soll die Richtung des ersten Schaufelelementes in die der relativen Eintrittsgeschwindigkeit fallen. In diesem Fall wird:

Der Stoß gegen die Schaufelstirnseiten wird um so geringer, je kleiner α gewählt wird.

Austrittsverlust. Dadurch, daß die Flüssigkeit mit einer bestimmten, absoluten Geschwindigkeit c_2 aus dem Laufrad strömt, entsteht ein Verlust $\frac{c_2^2}{2g}$, so daß c_2 möglichst klein gehalten werden muß.

Nach Fig. 379 ergibt sich als Austrittsquerschnitt, senkrecht zu $\rm c_2$ gemessen:

$$e f = a e \cdot \sin \varphi.$$

Dieser Querschnitt wird am größten, und damit die Austrittsgeschwindigkeit am kleinsten, wenn $\varphi = 90^{\circ}$, d. h. wenn $c_2 \perp u$. Ist c_2 schräg gerichtet, so geht die wagerechte Komponente c_2 d für die Ausnutzung im Rad verloren.

Bei den Dampfturbinen liegt wegen unzulänglicher Umfangsgeschwindigkeit c_2 stets rechts von d. Durch Vergrößerung von u läßt sich demnach bei diesen c_2 verringern.

Die Schaufelform¹). Würde die Flüssigkeit durch einen eckigen Kanal nach Fig. 380 fließen, so würde pro 1 kg Flüssigkeit ein Energieverlust von der Größe:

$$\frac{c_{n1}^{2}}{2g} = \frac{(c_{0} \sin \alpha_{1})^{2}}{2g}, \text{ bezw. } \frac{c_{n2}^{2}}{2g} = \frac{(c_{1} \sin \alpha_{2})^{2}}{2g}$$

entstehen.

Nun ist:

 $\mathbf{c}_2 = \mathbf{c}_1 \cdot \cos \alpha_2 = \mathbf{c}_0 \cdot \cos \alpha_1 \cdot \cos \alpha_2.$

¹) Freytags Hilfsbuch für den Maschinenbau.

In einer stetig gekrümmten Schaufel ist der Gesamtverlust $\frac{\sum (c \cdot \sin \alpha)^2}{2g}$ als Summe unendlich kleiner Größen zweiter Ordnung eine solche erster Ordnung, welche gegenüber $c_2 = c_0 \cdot \cos \alpha_1 \cdot \cos \alpha_2 \dots = c_0$ vernachlässigt werden kann. Die Stoßverluste verschwinden, die Geschwindigkeit bleibt konstant.

Wirkung der Flüssigkeit auf die Schaufel¹). Durch ein feststehendes, kanalartiges Gefäß nach Fig. 381, dessen Achse durch den

Linienzug $F_1\,F\,F_2$ dargestellt wird, fließt unter Einwirkung beliebiger Kräfte eine Flüssigkeit.

Wird die Geschwindigkeitcim Querschnitt ${\cal F}$ in die Koordinatengeschwindigkeiten

$$\mathbf{c}_{\mathbf{x}} = \mathbf{c} \cdot \sin \alpha, \qquad \mathbf{c}_{\mathbf{y}} = \mathbf{c} \cdot \cos \alpha$$

zerlegt und wären c_y und c_x als Abhängige der Zeit t gegeben, so folgten als Werte der Beschleunigungen:

$$\frac{\mathrm{d}\,\mathbf{c}_{\mathbf{x}}}{\mathrm{d}\,\mathbf{t}} = \frac{\mathrm{d}\,(\mathbf{c}\cdot\sin\alpha)}{\mathrm{d}\,\mathbf{t}}; \qquad \frac{\mathrm{d}\,\mathbf{c}_{\mathbf{y}}}{\mathrm{d}\,\mathbf{t}} = \frac{\mathrm{d}\,(\mathbf{c}\cdot\cos\alpha)}{\mathrm{d}\,\mathbf{t}},$$

und die Elementarkraftkomponenten:

$$d X = dm \cdot \frac{d (c \sin \alpha)}{dt}, \qquad d Y = dm \frac{d (c \cdot \cos \alpha)}{dt}.$$

Ist die sek. Flüssigkeitsmenge M gegeben, so fließt durch den Querschnitt F in der Zeit dt die Menge $M \cdot dt$, so daß $dm = M \cdot dt$.

Nunmehr wird:

$$d X = M \cdot d (c \cdot \sin \alpha) d Y = M \cdot d (c \cdot \cos \alpha).$$

Durch Integration erhält man die in Richtung der Koordinaten wirkenden Drucke:

$$\begin{aligned} \mathbf{X} &= \mathbf{M} \cdot (\mathbf{c}_2 \sin \alpha_2 - \mathbf{c}_1 \sin \alpha_1) \quad \dots \quad \dots \quad \dots \quad \dots \quad (1) \\ \mathbf{Y} &= \mathbf{M} \cdot \mathbf{c}_2 \cos \alpha_2 - \mathbf{c}_1 \cos \alpha_1) \quad \dots \quad \dots \quad \dots \quad \dots \quad (2) \end{aligned}$$

¹) Zeuner, Theorie der Turbinen, S. 76.

373

Der Beschleunigungsdruck ist gleich der sek. Wassermenge mal der Änderung der in Richtung des Beschleunigungsdruckes fallenden absoluten Geschwindigkeiten.

Fig. 382.

Das Gefäß muß sonach durch gleichgroße Gegenkräfte im Gleichgewicht gehalten werden.

Bewegt sich das Gefäß in geradliniger Richtung, Fig. 382, so gelten auch hier die Gl. 1 und 2, nur daß zu ersetzen ist:

 $\begin{array}{c} c_{2}\sin\alpha_{2} & {\rm durch} & w_{2}\cdot\sin\alpha_{2}--u, \\ c_{1}\sin\alpha_{1} & ,, & w_{1}\cdot\sin\alpha_{1}--u, \\ c_{2}\cos\alpha_{2} & ,, & w_{2}\cdot\cos\alpha_{2}, \\ c_{1}\cos\alpha_{1} & ,, & w_{1}\cdot\cos\alpha_{1}. \\ & {\rm Es} \ {\rm folgt:} \\ X = M \left(w_{2}\sin\alpha_{2}-w_{1}\sin\alpha_{1}\right) \, . \ (3) \\ Y = M \left(w_{2}\cos\alpha_{2}-w_{1}\cos\alpha_{1}\right) \, . \ (4) \end{array}$

An die Stelle der absoluten

Tangentialgeschwindigkeiten in den

Gl. 1 und 2 treten somit die relativen Geschwindigkeiten, deren Differenz gleich derjenigen der absoluten Geschwindigkeiten ist.

Die vom Schaufeldruck X verrichtete Arbeit hat die Größe:

$$\mathbf{L} = \mathbf{X} \mathbf{u} = \mathbf{M} \mathbf{u} (\mathbf{w}_2 \sin \alpha_2 - \mathbf{w}_1 \sin \alpha_1) \quad . \quad . \quad . \quad . \quad (5)$$

Sind die absoluten Geschwindigkeiten c_1 und c_2 entgegengesetzt gerichtet, wie dies fast ausschließlich der Fall ist, so kommt die Summe ihrer Umfangskomponenten in Betracht.

Werden diese mit c_1' und c_2' bezeichnet, so findet sich für die Arbeit:

$$L = X u = M u (c_1' + c_2') = M u (w_1' + w_2') (6)$$

Sämtliche Gleichungen gelten nur für stoßfreien Eintritt.

Aus diesen Beziehungen folgt, daß streng genommen ein Unterschied zwischen Aktions- und Reaktionsturbinen nicht besteht; in den ersteren wird nur die Richtung der Geschwindigkeit geändert. Für $w_2 = w_1 = w$ folgt: $X = M w (\sin \alpha_2 - \sin \alpha_1)$.

In den Reaktionsturbinen ändern sich sowohl Größe als auch Richtung der Geschwindigkeiten.

Günstigster Wirkungsgrad. Das verfügbare Arbeitsvermögen pro 1 kg Flüssigkeit ist:

$$\mathbf{h_1} = \frac{\mathbf{c_1}^2}{2\,\mathbf{g}}.$$

Hiervon geht der Austrittsverlust $h_2 = \frac{c_2^2}{2g}$ ab, so daß als ausnutzbares Arbeitsvermögen bleibt:

$$h = h_1 - h_2 = \frac{c_1^2 - c_2^2}{2 g}.$$

Als Wirkungsgrad folgt:

$$\eta = \frac{h}{h_1} = \frac{c_1^2 - c_1^2}{c_1^2}.$$

Wird $\alpha_1 = \alpha_2$, und c_2 nach Fig. 383 umgeklappt, so findet sich: $c_2^2 = c_1^2 + (2u)^2 - 2c_1(2u) \cdot \cos \alpha$.

und hieraus:

Ist α festgelegt und wird α_1 stets so bestimmt, daß stoßfreier Eintritt erfolgt, so wird η durch das Verhältnis $\frac{u}{c}$ bestimmt. Der Höchstwert:

$$\eta = \cos^2 \alpha \, ext{ wird bei } rac{\mathrm{u}}{\mathrm{c}_1} = rac{1}{2} \cdot \cos lpha$$

erhalten, d. h. der Wirkungsgrad läßt sich durch weitgehende Verkleinerung des Winkels a steigern, da in diesem Falle die senkrecht zur Schaufel entstehende Komponente, welche die Flüssigkeit ohne Arbeitsverrichtung durch die Schaufel treibt, ebenfalls klein wird. Mit

$$lpha=0_0 ext{ wird } \cos lpha=1, \ \eta=1 \ ext{ und } \ ext{u}=rac{ ext{c}_1}{2}.$$

Fig. 384 stellt diese Schaufelform dar. Die relative Geschwindigkeit in der Schaufel hat überall die Größe w = u = $\frac{1}{2}$ c; es folgt demnach für die absolute Austrittsgeschwindigkeit der Wert Null. Der Schaufeldruck X ist bei $u = \frac{c}{2}$ halb so groß wie bei u = 0.

Wird u = c, d. h. steigt die Umlaufgeschwindigkeit auf das doppelte des normalen Betrages, so wird die Arbeitsleistung gleich Null, da die Flüssigkeit die Schaufel nicht mehr erreicht. Die Geschwindigkeit, mit welcher eine Turbine im Leerlauf , durchgeht", findet dadurch eine obere Grenze.

Fig. 385 stellt ein "Reaktionsgefäß" dar. Durch den Ausfluß des Arbeitsmittels wird eine Gegenkraft auf die Gefäßwandung ausgeübt, welche nach bekannten Sätzen der Mechanik die Größe $P = mc_2$ hat, wenn m=sek. ausfließender Masse, c₂=absoluter Austrittsgeschwindigkeit.

1) Stodola, Dampfturbinen.

Wird das Gefäß in der angegebenen Richtung mit der Geschwindigkeit u bewegt, so kommt w_2 in Betracht und der Rückdruck leistet die Arbeit:

$$Pu = mw_2u$$
.

Bei genügend großem Gefäßquerschnitt kann die senkrechte Geschwindigkeit w_1 als sehr klein vernachlässigt werden ($w_1 = 0$, $c_1 = u$), so daß im Beharrungszustand das Arbeitsmittel nur auf die Geschwindigkeit u zu beschleunigen ist, wozu die Arbeit

$$\mathbf{A'} = \frac{\mathbf{m}\,\mathbf{u}^2}{2}$$

erforderlich ist, welche von der Gefäßwand aufgebracht werden muß. Als nutzbare Arbeit bleibt:

$$\mathbf{A} = \mathbf{P} \cdot \mathbf{u} - \mathbf{A}' = \mathbf{m} \, \mathbf{u} \left(\mathbf{w}_2 - \frac{\mathbf{u}}{2} \right).$$

Dieser Ausdruck wird ein Maximum für $u = w_2$, in welchem Fall

$$A_{\max} = \frac{m w_2^2}{2}; \ \eta = 1, \ da \ c_2 = 0.$$

Bei vollständiger Ausnutzung der Reaktionswirkung wird sonach die Umfangsgeschwindigkeit doppelt so groß als bei den Aktionsturbinen, bei welchen $u = \frac{c}{2}$.

b) Wirkungsweise der Düse.

Während der Dampf in der Kolbendampfmaschine durch seine Spannungsenergie Arbeit leistet, wirkt er in den Turbinen mit seiner Strömungsenergie.

Nach Gl. 69, S. 28, ist die bei Durchfluß einer geradlinig begrenzten Düse erreichbare Höchstgeschwindigkeit $c_{max} = 3,23 \sqrt{p_1 v_1} \propto 450$ m. Das Gewicht des sek. austretenden Gemisches wird ein Maximum, sobald

der "kritische Mündungsdruck" $p = 0,5774 p_1$ ist. Die Ausflußgeschwindigkeit nimmt auch dann nicht zu, wenn der Außendruck gegenüber dem Gefäßdruck eine weitgehende Verminderung erfährt.

Laval hat nun größere Geschwindigkeiten dadurch erreicht, daß er die Düse ständig erweitert. Nach Durchströmung des ersten Ansatzstückes, Fig. 386 a, nimmt der Dampf eine Geschwindigkeit von rd. 450 m an, wobei

sein Druck sich etwa auf die Hälfte verringert. Mit dieser Geschwindigkeit strömt der Dampf durch das zweite Ansatzstück, in welchem er in Gleichgewicht gelangt, um bei der darauffolgenden Erweiterung eine abermalige Drucksenkung und Geschwindigkeitszunahme zu erfahren. Diese wird stetiger erfolgen, wenn die Düse die in der Fig. 386b wiedergegebene Gestalt erhält. Die hierdurch erzielbare Höchstgeschwindigkeit beträgt z. B. bei der Expansion von 8 kg/qcm absol. auf 0,15 kg/qcm absol. rd. 1100 m, so daß gegenüber der Ausströmung aus zylindrischer Düse eine $\left(\frac{110}{45}\right)^2$ mal größere Energieausnutzung erreicht wird.

Die Abmessungen der Düse werden durch rechnerische oder zeichnerische Ermittelung des engsten und des weitesten Querschnittes, F_k und F_{max} , bestimmt, so daß bei Annahme eines Kegelwinkels α (= 10:-15°) und nach Einführung der Durchmesser die Länge 1 der Düse folgt aus:

$$1 = \frac{1}{2 \cdot \operatorname{tg} \frac{\alpha}{2}} (D_{\max} - D_k).$$

Der engste Querschnitt F_k ist durch die auf S. 28 gegebene Gleichung bestimmbar. Ist c die dem Gegendruck pentsprechende Geschwindigkeit am Ende der Düse, c_m die Geschwindigkeit im kleinsten Querschnitt, so folgt unter Benutzung der Gl. 66 und 69, S. 28, das Verhältnis beider Geschwindigkeiten und nach Einsetzung von $\mu = 1,135$

$$\frac{c}{c_{m}} = \sqrt{\frac{\mu+1}{\mu-1} \cdot \left(1 - \left(\frac{p}{p_{1}}\right)^{\frac{\mu-1}{\mu}}\right)} = 3,9768 \sqrt{1 - \left(\frac{p}{p_{1}}\right)^{0,1189}}.$$

Wird die Durchflußmenge G für den Querschnitt F und für den kleinsten Querschnitt F_k nach den Gleichungen auf S. 28 bestimmt, so ergibt sich (für trocken gesättigten Dampf) nach Einsetzung von $\mu = 1,135$

$$\frac{\mathbf{F}}{\mathbf{F}_{k}} = \frac{0,1550}{\sqrt{\left(\frac{\mathbf{p}}{\mathbf{p}_{1}}\right)^{\frac{2}{\mu}} - \left(\frac{\mathbf{p}}{\mathbf{p}_{1}}\right)^{\frac{\mu+1}{\mu}}}}$$

Diese Berechnungsweise setzt voraus, daß $p < 0,5774 p_1$ ist, und weiterhin, daß der Dampf während des ganzen Verlaufes der Expansion entweder nur gesättigt oder nur über-

entweder nur gesattigt oder nur überhitzt sei. Geht demnach, wie das meist der Fall ist, der Dampf während der Expansion aus der Überhitzung in die Sättigung über, so erfolgt auch die Umwandlung der potentiellen in kinetische Energie in verschiedener Weise, den verschiedenen Dampfarten entsprechend.

$$\frac{\mathbf{c}^2}{2\,\mathbf{g}} = \frac{\mu}{\mu - 1} \left(\mathbf{p}_1 \, \mathbf{v}_1 - \mathbf{p}_2 \, \mathbf{v}_2 \right) = \mathbf{L}_0,$$

und hieraus

$$\mathbf{c} = \sqrt{2} \, \mathbf{g} \, \mathbf{L}_{\mathbf{0}}.$$

 ${\rm L}_0,$ in Fig. 387 durch die Diagrammfläche dargestellt, wird als "Druckgefälle" bezeichnet.

In vielen Fällen ist es zweckmäßig, die Geschwindigkeit c als Funktion der Dampfwärme zu erhalten.

Wird wieder angenommen, daß der Dampf aus einem sehr weiten Gefäß in die Düse ströme, so kann die Eintrittsgeschwindigkeit als sehr klein vernachlässigt werden. Die dem Endzustand des Dampfes entsprechende Austrittsgeschwindigkeit aus der Düse wird dann ermittelt. indem man sich den Dampf vor der Düse aus Wasser von 0° erzeugt denkt, wozu eine Dampfwärme λ_1^1) erforderlich sei. Wird sodann der Dampf nach Austritt aus der Düse kondensiert, so wird hierbei die Dampfwärme λ_2 zurückgewonnen. Die Differenz $\lambda_1 - \lambda_2$ ist in der Düse zur Geschwindigkeitserzeugung verbraucht worden, so daß folgt:

$$\mathbf{A} \cdot \frac{\mathbf{c}^2}{2\,\mathbf{g}} = \lambda_1 - \lambda_2.$$

Eine einfache, graphische Berechnung des Düsenquerschnittes ergibt sich nunmehr nach Koob²) mit Hilfe des Boulvinschen Diagramms.

In Fig. 388 ist in den Quadranten I das Entropiediagramm des gesättigten oder überhitzten Dampfes, in den Quadranten II die p = f(t)Kurve, in III die p = f(v) Kurve eingetragen.

 $a_1 a_2$ ist die Abbildung der Adiabate, nach welcher der Dampf in der Düse expandiert, vorausgesetzt, daß kein Wärmeaustausch stattfindet und daß keine Reibung vorhanden ist.

 $a_1 a_2$ wird mittelst des auf S. 60 angegebenen Verfahrens als Kurve $a_1'' a_2'''$ in das Spannungsdiagramm übertragen. Der dem Punkt *a* entsprechende Punkt *a''* wird z. B. mittelst der [p = f (t)] Kurve und des Linienzuges a a'a'' ermittelt.

Da die Größe $(\lambda_1 - \lambda)$ im Entropiediagramm durch die schraffierte Fläche vom Inhalt Φ dargestellt ist, so ergibt sich nach Eintragung der den verschiedenen Differenzen $(\lambda_1 - \lambda)$ entsprechenden Geschwindigkeiten in den Quadranten III dortselbst die c-Kurve³). Nun bestehen die Beziehungen:

$$\mathbf{G} = \mathbf{F} \cdot \frac{\mathbf{c}}{\mathbf{v}}$$
 oder $\mathbf{F} = \mathbf{G} \cdot \frac{\mathbf{v}}{\mathbf{c}} = \mathbf{G} \cdot \mathbf{tg} \alpha$.

Wird zur Achse der Volumina im Abstand G eine Parallele gezogen, so schneidet der Strahl OY auf dieser Strecke F ab. Die aus den Querschnitten F berechneten Düsendurchmesser ergeben nach Auftragung über den zugehörigen Volumina das Längsprofil der Düse. (Über diese ist strichpunktiert eine zweite, denselben Bedingungen entsprechende Düse gezeichnet, welche Stodola bei seinen Versuchen benutzte. (G = 0,153 kg/sk, t₁ = 198°, p₁ = 10,5 kg/qcm, p₂ = 2,44 kg/qcm absol.) Durch die größere Erweiterung nach der Mündung hin wird bei dieser die Verringerung der Strömungsgeschwindigkeit infolge der Reibung berücksichtigt.)

Im Punkt x tangiert der von O aus gezogene Strahl die c-Kurve, so daß die Querschnitte nach oben hin wieder zunehmen. Daraus ergibt sich der engste Düsenquerschnitt Fk, in welchem die Geschwindigkeit c auf 450 m steigt und der Druck auf $p_k = 0.5774 p_1 \text{ sinkt.}$

¹) Dampfwärme $\lambda = q + r \cdot x$. ²) Z. S. 1904, 275. ³) In Fig. 352 als w-Kurve bezeichnet. $F_x = F_k$.

379

Wird die Reibung des Dampfes an den Düsenwandungen in Betracht gezogen, so rückt infolge der Zunahme der Entropie der Punkt a_2 nach rechts, etwa nach c, und die unter $a_2 c$ liegende, bis zur absoluten Nulllinie reichende Fläche Φ' stellt den Verlust an Strömungsenergie dar. Stodola schätzt auf Grund seiner Versuche die Düsenverluste zu 10 bis 20 v. Ht., so daß bei Annahme eines solchen von 15 v. Ht. die Fläche $\Phi' = 0,15 \Phi$ sein muß. Die Endgeschwindigkeit berechnet sich sodann aus:

$$\mathbf{A} \cdot \frac{\mathbf{c}^2}{2 \mathbf{g}} = 0,85 \cdot \mathbf{\Phi}$$

Ist der Verlust geringer, rückt demnach a_2 nach σ , so stellt die Kurve $a_1 \circ$ die Zustandsänderung dar.

Die Koobsche Darstellungsweise ist weiterhin sehr geeignet zur Ermittelung des Druckverlaufes längs der Achse einer gegebenen Düse, wenn der Anfangszustand des Dampfes bekannt ist. Die durchströmende Dampfmenge G wird aus dem kleinsten Querschnitt F_k festgestellt, indem von O aus die Tangente O X an die c-Kurve gezogen wird. Wird eine Senkrechte so gelegt, daß sie auf der Verlängerung der Tangente O X die Strecke F_k abschneidet, so gibt der Abstand dieser Senkrechten von der senkrechten Koordinatenachse das Gewicht G an.

Die Strahlen, welche von O aus nach den Endpunkten der auf der Senkrechten aufgetragenen Strecken F gezogen werden, schneiden die c-Kurve in zwei Punkten, Z und Y. Dementsprechend sind für jeden Punkt des Düseninneren zwei Dampfzustände möglich, und der Druckverlauf kann nach den Kurven A B C oder A B E vor sich gehen. Für eine bestimmte Düse sind sonach bei gegebener Anfangsspannung nur zwei Enddrücke möglich, auf welche der Dampf adiabatisch und bei voller Ausfüllung des Querschnittes expandieren kann.

Ist der Druck in der Vorlage kleiner als der Enddruck der freien Expansion, so verläuft diese, wie Versuche Stodolas zeigen, nach der Kurve ABC. Der weitere Druckausgleich findet erst außerhalb der Düse statt.

Liegt der Druck in der Vorlage zwischen den beiden möglichen Enddrücken, so folgt nach Versuchen Stodolas der Druckverlauf der Linie A H J, Fig. 388, so daß schon im Düseninneren eine Annäherung an den Außendruck stattfindet. Bei H tritt ein "Verdichtungsstoß" auf, welcher nach Stodola dadurch verursacht wird, daß Dampfteilchen mit großer Geschwindigkeit auf solche mit verringerter Geschwindigkeit stoßen. Diese Verdichtungsstöße treten stets dann auf, wenn die Düse zu lang, bezw. ihre Querschnittserweiterung für den vorhandenen Anfangs- und Enddruck zu groß ist, da damit eine Umsetzung von Geschwindigkeit in Druck verbunden ist. Da die Stöße und die damit verbundenen Verluste nur dann stattfinden, wenn die augenblickliche Geschwindigkeit c größer als die Schallgeschwindigkeit $c_s = \sqrt{g \mu p v}$ ist¹), so folgt hieraus ein großer Vorteil der vielstufigen Turbinen, bei welchen $c < c_s$.

Ist endlich der Vorlagedruck größer als der größere der beiden möglichen Enddrücke, so wird im kleinsten Querschnitt eine Geschwindigkeit von 450 m überhaupt nicht mehr erreicht.

Die Fig. 389 und 390^2) zeigen die Art des Druckausgleiches außerhalb der Düse, wenn der Vorlagedruck nur wenig vom Enddruck abweicht. Nur wenn letzterer um ungefähr 1 Atm. überschritten wird, pflanzt sich die Stauung bis in die Düse fort, in der sonst die Expansion ungehindert vor sich geht. Auf den Dampfstoß folgen Schallschwingungen.

c) Elementare Theorie der Dampfturbinen³).

Je nach Wirkungsweise und Ausführung werden unterschieden:

- 1. Einstufige Druckturbinen.
- 2. Einstufige Druckturbinen mit mehrfachen Geschwindigkeitsstufen.
- 3. Mehrstufige Druckturbinen.
- 4. Mehrstufige Druckturbinen mit mehrfachen Geschwindigkeitsstufen.
- 5. Vielstufige Druckturbinen.
- 6. Vielstufige Überdruckturbinen.

1. Die einstufige Druckturbine (Laval, Riedler-Stumpf).

Schema s. Fig. 391. Der Dampfdruck wird in der erwähnten Lavalschen Düse vollständig in Geschwindigkeit umgesetzt, so daß die Eintrittsgeschwindigkeit bei ausgeführten Turbinen 1000 bis 1100 m beträgt. Wird gewählt: $\alpha = 20^{\circ}$, $c_1 = 1000$ m, so wäre nach S. 375 $\eta_{max} = 88,36$ v. Ht. bei $u = \frac{c_1}{2} \cdot \cos \alpha = 470$ m. Wird die Umfangsgeschwindigkeit auf den zulässigen Wert 400 m herabgesetzt, so folgt $\eta = 86,4$

¹) Dr. Proell, Zeitschrift für das gesamte Turbinenwesen. 1904. Heft 11.

²) Wagner, Dampfturbinen.

³⁾ Nach Stodola.

Die Dampfturbinen.

v. Ht. Diese unbedeutende Abnahme des Wirkungsgrades wird durch die infolge der kleineren Umlaufgeschwindigkeit stattfindende Verringerung der Leerlaufarbeit mehr wie aufgehoben.

Durch die Reibung in der Düse erreicht die Geschwindigkeit \mathbf{c}_1 nicht ihren berechneten Wert, sondern es wird, wenn

$$c_0 = \sqrt{2 g L_0} = \sqrt{2 g \frac{\lambda_1 - \lambda_2}{A}}$$

ist,

 $\mathbf{c_1} = \boldsymbol{\varphi} \boldsymbol{\cdot} \mathbf{c_0}\text{,}$

worin φ zwischen 0,9 und 0,97 schwankt.

In der Schaufel wird die bei Aktionswirkung an und für sich gleich bleibende relative Geschwindigkeit durch die Reibung auf $\psi w_1 = w_2$ vermindert, Fig. 392; ist weiterhin c_2 die absolute Austrittsgeschwindigkeit, so folgen die Verluste in der Düse:

$$\frac{c_0^2 - c_1^2}{2 g} = (1 - \varphi^2) \frac{c_0^2}{2 g},$$

in den Schaufeln:

$$\frac{\mathbf{w_1}^2 - \mathbf{w_2}^2}{2\,\mathrm{g}} = (1 - \psi^2) \, \frac{\mathbf{w_1}^2}{2\,\mathrm{g}},$$

beim Austritt:

$$\frac{c_2^2}{2g}.$$

Sonach ergibt sich als "indizierte Arbeit" für 1 kg Dampf:

$$\mathbf{L}_{i} = \frac{\mathbf{c_{0}}^{2}}{2\,g} - \frac{\mathbf{c_{0}}^{2} - \mathbf{c_{1}}^{2}}{2\,g} - \frac{\mathbf{w_{1}}^{2} - \mathbf{w_{2}}^{2}}{2\,g} - \frac{\mathbf{c_{2}}^{2}}{2\,g}.$$

1) Stodola, Dampfturbinen.

Das für 1 kg verfügbare Arbeitsvermögen in kgm beträgt

$$\mathbf{L}_{0} = \frac{\lambda_{1} - \lambda}{\mathbf{A}} = \frac{\mathbf{c}_{0}^{2}}{2 \, \mathbf{g}}.$$

Als "indizierter Wirkungsgrad" folgt:

$$\eta_{\rm i} = \frac{\rm L_{\rm i}}{\rm L_0}$$

und die indizierte Leistung:

$$\mathbf{N_i} = \frac{\mathbf{G_{sek}} \cdot \mathbf{L_i}}{75}.$$

Werden die Verluste N_r durch Rad- und Lagerreibung von N_i abgezogen, so folgt die effektive Arbeit:

$$\mathbf{N}_{\mathbf{e}} = \mathbf{N}_{\mathbf{i}} - \mathbf{N}_{\mathbf{r}}.$$

Der effektive Wirkungsgrad wird $\eta_e = \frac{N_e}{N_0}$.

 $\begin{array}{l} \text{Durch } \mathbf{G}_{\text{sek}} = \frac{75 \text{ N}_{\text{i}}}{\mathbf{L}_{\text{i}}} \text{ und die gewählte Anzahl der Düsen sind deren} \\ \text{Abmessungen festgelegt.} \end{array}$

2. Die einfache Druckstufe mit mehreren Geschwindigkeitsstufen.

Schema s. Fig. 393.

Wie aus den Bemerkungen über den Austrittsverlust auf S. 372 gefolgert werden kann, nimmt die Austrittsgeschwindigkeit mit kleiner wordenden Umfangsgeschwindig

werdender Umfangsgeschwindigkeit zu. Bei weitgehender Verringerung der letzteren lohnt es sich, den mit hoher Geschwindigkeit aus dem Laufrad strömenden Dampf in einem zweiten Leitrad umzulenken und auf ein weiteres Laufrad zu führen.

Der Dampf wird in Düsen A₁, Fig. 394, genau wie bei der einstufigen Turbine vollständig entspannt und tritt in das Rad B_1 . Er wird sodann in einem Leitrad

 A_2 umgelenkt und einem zweiten Laufrad B_2 zugeführt usw. Der Dampf strömt sonach durch sämtliche Lauf- und Leiträder mit demselben Enddruck; seine Geschwindigkeit nimmt hierbei, der Arbeitsabgabe und der Reibung entsprechend, schnell ab, so daß die vom Dampf durchströmten Querschnitte ständig zunehmen müssen.

Wird vorausgesetzt, daß für Ein- und Austritt eines jeden Leitrades sowohl die absoluten Geschwindigkeiten, als auch die Winkel einander gleich seien, und wird dasselbe bezüglich der relativen Geschwindigkeiten und Winkel eines jeden Laufrades angenommen, so ergibt sich ein Geschwindigkeitsplan nach Fig. 395. Der in der Düse bis auf den Gegendruck expandierte Dampf erreicht die absolute Eintrittsgeschwindigkeit c_1 , welche mit — u die relative Geschwindigkeit w_1 ergibt. Nun ist $w_1 = w_2$, und so folgt für die Austrittseite aus u und w_2 auch $c_2 = c_1'$,

woraus das Geschwindigkeitsdreieck des Laufrades II aufgezeichnet werden kann.

Nach Fig. 395 wäre c der kleinste Wert, den c_2'' annehmen könnte. Hierbei würde:

$$\mathbf{u}=\frac{\mathbf{c_1}\cdot\cos\alpha}{6}.$$

Die Umfangsgeschwindigkeit kann demnach durch die Geschwindigkeitsstufung bedeutend vermindert werden.

Da nach Fig. 395 die absoluten und relativen Geschwindigkeiten abnehmen, so müssen in demselben Maße die Querschnitte, quer zur Geschwindigkeitsrichtung gemessen, zunehmen. Der Austrittsquerschnitt des voll beaufschlagten Leitrades hat für unendlich dünne Schaufeln die Größe, Fig. 396: F = z. t. a sin α , worin

¹⁾ Stodola, Dampfturbinen.
Elementare Theorie der Dampfturbinen.

$$t =$$
Schaufelteilung, a radiale Schaufellänge $z =$ Schaufelanzahl. α Schaufelwinkel.

Ist
$$D = mittlerer Durchmesser$$
, so folgt:

 $\mathbf{F} = \pi \mathbf{D} \cdot \mathbf{a} \sin \alpha.$

Entsprechend findet sich für das Laufrad:

 $\begin{aligned} \mathbf{F}_1 &= \pi \ \mathbf{D}_1 \cdot \mathbf{a}' \sin \alpha_1 \ \text{für Eintritt,} \\ \mathbf{F}_2 &= \pi \ \mathbf{D}_2 \cdot \mathbf{a}'' \sin \alpha_2 \ \text{für Austritt.} \end{aligned}$

Wird das spez. Volumen v als konstant und Vollbeaufschlagung vorausgesetzt, so folgt:

für den Ein- und Austrittsquerschnitt des ersten Laufrades (da $w_1 = w_2$)

$$\mathbf{F_1} = \mathbf{F_2} = \frac{\mathbf{G}\,\mathbf{v}}{\mathbf{w_1}} = \frac{\mathbf{G}\,\mathbf{v}}{\mathbf{w_2}},$$

für den Ein- und Austrittquerschnitt des folgenden Leitrades, in welchem wegen des konstant bleibenden Druckes $c'_1 = c_2$ ist:

$$\mathbf{F}' = \mathbf{F}'' = \frac{\mathbf{G} \cdot \mathbf{v}}{\mathbf{c_1}'} = \frac{\mathbf{G} \cdot \mathbf{v}}{\mathbf{c_2}}.$$

Die Verluste durch Wirbelbildung, Schaufelreibung usw. werden bei der Geschwindigkeitsstufung bedeutend, so daß gewöhnlich für jede Druckstufe nicht mehr als zwei Geschwindigkeitsstufen angewandt werden.

3. Mehrfache Druckturbinen mit einfachen Geschwindigkeitsstufen.

Schema s. Fig. 397.

Die Fig. 398 zeigt dieses zuerst von Curtis eingeführte Prinzip, welcher anfänglich mehrere einstufige Druckturbinen (Lavalturbinen) hintereinander schaltete. Die Dampfleitung f mündet in die Düse d ein, in welcher der Druck um einen gewissen Betrag sinkt. Nach Durchströmung des ersten Rades findet in der Düse q ein weiterer Druckabfall statt, ebenso später in den Düsen h und i.

Jede Teilturbine unterscheidet sich demnach nur insofern von der einzelnen Lavalturbine, als hinter dem Laufrad der niedrigste Druck noch nicht erreicht ist. Der Vorteil der Anordnung liegt darin, daß der den Düsen entströmende Dampf, da er die Strömungsenergie noch z. T. enthält, eine viel geringere Geschwindigkeit besitzt, welche auf kleinere Umfangsgeschwindigkeiten führt. Die Arbeit wird am zweckmäßigsten so verteilt, daß die von den Einzelrädern geleisteten Arbeiten einander gleich sind. Zu dem Zweck wird das Spannungsdiagramm nach Fig. 387 - oder bei Einführung der Dampfwärme das Entropiediagramm - in die entsprechende Anzahl gleicher Teile zerlegt, und es kann nun jede einzelne Turbine in derselben Weise wie die einstufige Turbine berechnet werden.

Angenommen, das Diagramm Fig. 387 wäre in einer einstufigen Turbine verwertet worden, so wäre die theoretische Austrittsgeschwindigkeit

$$\mathbf{c_1} = \sqrt{2 \, \mathrm{g} \, \mathrm{L_0}};$$

385

Fig. 396.

hingegen ist bei z Stufen:

$$\mathbf{L_0'} = \frac{\mathbf{L_0}}{\mathbf{z}}\text{,}$$

sonach:

$$\mathbf{c_1}' = \sqrt{2 \, \mathbf{g} \, \mathbf{L_0}}' = \sqrt{2 \, \mathbf{g} \frac{\mathbf{L_0}}{\mathbf{z}}} = \frac{\mathbf{c_1}}{\sqrt{\mathbf{z}}}.$$

Die entsprechenden Geschwindigkeiten sind der Quadratwurzel aus der Stufenzahl umgekehrt proportional.

Soll für jedes Einzelrad der Wirkungsgrad τ_i der einstufigen Turbine erreicht werden, so muß sein:

$$u' = \frac{u}{\sqrt{z}}$$

Als Austrittsverlust der einstufigen Turbine ergibt sich L $= \frac{c_2^2}{2g}$.

Der Austrittsverlust der Einzelturbine wird bei z Stufen:

$$L_{z1} = \frac{{c_2}'^2}{2 g} = \frac{1}{2 g} \left(\frac{{c_2}^2}{z} \right),$$

und da der Gesamtverlust z mal so groß ist, so wird:

$$\mathbf{L}_{\mathbf{z}} = \frac{\mathbf{c_2}^2}{2\,\mathbf{g}}$$

also so groß wie bei der einstufigen Turbine.

Wird zunächst nur das erste Laufrad betrachtet und angenommen, daß die Austrittsgeschwindigkeit jedesmal vollständig vernichtet wird, so folgt als Wärmewert der Verluste:

Wärmewert der Düsenreibung: $\varphi \land L_0$; $\varphi \backsim 15 v.$ Ht.,,,,Schaufelreibung: $\frac{A}{2g}(w_1^2 - w_2^2)$ Umsetzung der Austrittsgeschwindigkeit: $\frac{A}{2g} \cdot c_2^2$ zusammen: Q_r .

386

Diese Wärmemenge, welche bei der einstufigen Turbine nutzlos entweicht, wird bei der mehrstufigen Turbine dazu verwendet, den Dampfzustand zu ändern. Bei gesättigtem Dampf wird die spez. Dampfmenge x vermehrt, bei überhitztem Dampf steigt dessen Temperatur. Die Entropie nimmt hierbei zu.

4. Die Turbinen mit mehrfachen Druck- uud Geschwindigkeitsstufen.

Diese haben mehrere Druckstufen und innerhalb jeder Druckstufe sind 2:3 Geschwindigkeitsstufen vorhanden. Die Anzahl der Düsen kann hierbei für jede Druckstufe zunehmen, in diesen selbst wird die erforderliche Querschnittsvergrößerung durch Zunahme der Schaufellängen und Vergrößerung der Winkel erreicht.

5. Die vielstufigen Druckturbinen.

Wird das Druckgefälle in soviele Stufen zerlegt, daß der Spannungsfall zwischen den Einzelturbinen oberhalb des kritischen Druckverhält-

nisses bleibt, Fig. 399, so braucht die Expansion des Dampfes nicht mehr in Düsen vor sich zu gehen, sondern dieser kann durch geeignete Leitvorrichtungen dem nächsten Laufrad zugeführt werden. Da infolge der weitgehenden Teilung des Druckgefälles jede Teilturbine nur einen kleinen Teil der Gefällhöhe verarbeitet, so nimmt die Umfangsgeschwindigkeit stark ab, wenn auch nicht wie bei der Geschwindigkeitsstufung.

Aus der Kontinuitätsgleichung: $F = \frac{G \cdot v}{c}$ folgt, daß dem bei der Ex-

pansion sich vergrößernden Volumen entsprechend auch hier die Querschnitte bedeutend zunehmen müssen, und da einerseits die vielstufige Turbine meist mit partieller Beaufschlagung arbeitet, andererseits der einfacheren Herstellung halber stets eine größere Anzahl von Rädern zu einer Gruppe zusammengefaßt werden, innerhalb welcher die Räder gleichen Durchmesser und gleiche Schaufellänge haben, so kann in jeder Gruppe die Querschnittszunahme durch Vergrößerung der Beaufschlagung von Rad zu Rad erreicht werden.

Die einzelnen Gruppen unterscheiden sich dadurch voneinander, daß ihre Räder verschiedene Schaufelwinkel und Schaufellängen haben. Um die Anzahl und die Schaufellänge der letzten Niederdruckräder, in welchen nach Fig. 399 die Dampfvolumina besonders stark wachsen, klein zu halten, wird in diesen das umzusetzende Druckgefälle vergrößert. Fig. 400 zeigt schematisch den Druck- und Geschwindigkeitsverlauf in einer mit voller Beaufschlagung arbeitenden Turbine¹).

¹) Bantlin, Z. 1905, S. 117.

Die Dampfturbinen.

Um die Austrittsgeschwindigkeit aus dem Leitrad für das folgende Laufrad nutzbar zu machen, läßt man die Öffnungen der Leiträder in

der Richtung der Drehung so aufeinanderfolgen, daß der aus einem Laufrad strömende Dampf nicht gegen die geschlossene Wand des nächsten Leitrades stoßen kann. Fig. 402.

1) Stodola, Dampfturbinen.

6. Die Reaktionsturbinen.

Schema s. Fig. 402. Der Dampf expandiert auch in den Laufrad schaufeln. Für die einstufige Aktionsturbine fand sich:

$$\mathbf{c_1} = \sqrt{2 \operatorname{g} \operatorname{L_0}}; \ \mathbf{u} = \frac{1}{2} \operatorname{c_1} \cdot \cos \alpha.$$

Wird bei der einstufigen Reaktionsturbine der Reaktionsgrad $=\frac{1}{2}$ gewählt, so ist:

$$\mathbf{c_1}' = \sqrt{2 \mathbf{g} \frac{\mathbf{L_0}}{2}} = \frac{\mathbf{c_1}}{\sqrt{2}}; \ \mathbf{u} = \mathbf{c_1}' \cos \alpha = \mathbf{u} \cdot \sqrt{2}.$$

Da somit die Überdruckturbine bei dem häufigen Reaktionsgrad $=\frac{1}{2}$ eine rd. 1,4 mal größere Umfangsgeschwindigkeit als die Druckturbine

aufweist, so kann sie nur in vielstufiger Anordnung ausgeführt werden. Gegenüber der Druckturbine

hat die Überdruckturbine außer dergrößeren Umfangsgeschwindigkeit zwei weitere grundsätzliche Nachteile: es müssen besondere Ausgleichvorrichtungen zur Aufnahme des Achsschubes vorhanden sein, und es kann nicht partiell beaufschlagt werden. Während in der Druckturbine, da bei ihr die Umsetzung der Wärme in Strömungsenergie in den Leitradschaufeln vor sich geht, nur vor

und hinter den feststehenden Leiträdern Druckunterschiede vorhanden sind, treten diese in den Überdruckturbinen auch vor und hinter den

Laufrädern auf, wodurch ein starker, achsialer Schub entsteht, der besondere Ausgleichkolben erfordert. Diese Druckunterschiede verursachen außerdem bei a und bSpaltverluste. Fig. 403.

Wegen der nötig werdenden vollen Beaufschlagung tritt der Frischdampf der Turbine durch die ganze Ringöffnung des ersten Schaufelrades zu. Selbst bei beträchtlichen Leistungen wird infolgedessen, falls die Umfangsgeschwindigkeit der ersten Schaufelräder einen höheren Betrag annimmt, die Schaufellänge außergewöhnlich klein. Da nun der Spielraum zwischen Gehäusewand und Rad der Spaltverluste wegen einen bestimmten Betrag nicht

unterschreiten darf, so wird das Verhältnis: Spielraum zur Schaufellänge um so größer, je kleiner die letztere ist, womit die Undichtheitsverluste zunehmen. Als Anfangsgeschwindigkeit der ersten Räder darf deshalb nicht mehr als 35:40 m gewählt werden. Dem zunehmenden Volumen entsprechend nehmen vom Hochdruck- zum Niederdruckende die Umfangsgeschwindigkeit u, die absolute Geschwindigkeit c und die radiale Schaufellänge zu.

Die Regelung muß durch Drosselung erfolgen.

Fig. 404¹).

Die Aktionsturbinen hingegen können durch Düsenschaltung reguliert werden. Hierbei bleibt die Expansion des Dampfes dieselbe, es wird nur die arbeitende Dampfmenge geändert.

Wenn trotz der erwähnten Nachteile die Überdruckturbinen bezüglich des Dampfverbrauches den Druckturbinen gleichwertig sind, so kann dies wenigstens z. T. dem Umstand zugeschrieben werden, daß in ersteren die Druckunterschiede vor und hinter Leit- und Laufrädern

¹⁾ Stodola, Dampfturbinen.

weniger Gelegenheit zur Wirbelbildung, zu falschen Strömungen usw. geben.

Das theoretische Wärmegefälle hat die Größe $H_0 = \lambda_1 - \lambda_2'$, worin λ_2' den der adiabatischen Expansion von p_1 auf p_2 entsprechenden Wärmeinhalt beim Druck p_2 bedeutet. Als wirksames Gefälle bleibt nach Abzug der Verluste durch Reibung usw.:

$$H_w = (1 - \zeta) \cdot H_0$$
. $\zeta = 0.2$ bis 0.3.

Zur Erzeugung der Eintrittsgeschwindigkeit c_{0a} in das erste Leitrad, Fig. 404, ist die Geschwindigkeitshöhe (wenn h_1 in W. E. ausgedrückt wird):

$$\mathbf{h_1} = \mathbf{A} \cdot rac{\mathbf{c}_{0\mathbf{a}}^2}{2\,\mathbf{g}}$$

erforderlich, und sind h_a , h_b , h_c usw. die in den Einzelturbinen verarbeiteten Gefällhöhen, so folgt:

$$\mathbf{h_1} + \mathbf{h_a} + \mathbf{h_b} + \mathbf{h_c} + \mathbf{h_d} \dots = \mathbf{H_w} \text{ oder } \mathbf{h_1} + \mathbf{z} \cdot \mathbf{h} = \mathbf{H_w} \text{ ; } \mathbf{z} = \frac{\mathbf{H_w} - \mathbf{h_1}}{\mathbf{h}}.$$

Hierbei wurde dieselbe Geschwindigkeit für ganze Gruppen von Einzelrädern vorausgesetzt. Nimmt die Geschwindigkeit zu, wie dies in ausgeführten Turbinen stets der Fall ist, so wird die Stufenzahl

$$\mathbf{z} = \frac{\mathbf{H}_{\mathbf{w}} - \mathbf{h}_{\mathbf{1}}}{\mathbf{h}_{\mathbf{m}}} \, \boldsymbol{\backsim} \frac{\mathbf{H}_{\mathbf{w}}}{\mathbf{h}_{\mathbf{m}}}.$$

Hierin ist h_m das mittlere Wärmegefälle, dem Mittelwert aus den Gesamtfällen der einzelnen Rädergruppen entsprechend.

Nach Fig. 404 ist:

$$\begin{split} \mathbf{h_{i}} &= \mathbf{A} \cdot \frac{\mathbf{c_{0a}^{2}}}{2\,\mathbf{g}}, \\ \mathbf{h_{a}'} &= \mathbf{A} \cdot \frac{\mathbf{c_{1a}^{2}} - \mathbf{c_{0a}^{2}}}{2\,\mathbf{g}}, \\ \mathbf{h_{a}''} &= \mathbf{A} \cdot \frac{\mathbf{w_{2a}^{2}} - \mathbf{w_{1a}^{2}}}{2\,\mathbf{g}}, \\ \mathbf{h_{b}'} &= \mathbf{A} \cdot \frac{\mathbf{c_{1b}^{2}} - \mathbf{c_{2a}^{2}}}{2\,\mathbf{g}}, \\ \mathbf{h_{b}''} &= \mathbf{A} \cdot \frac{\mathbf{w_{2b}^{2}} - \mathbf{w_{1b}^{2}}}{2\,\mathbf{g}}. \end{split}$$

Das von der Einzelturbine b verarbeitete Gefälle beträgt sonach:

$$\mathbf{h}_{b} = \mathbf{h}_{b}{'} + \mathbf{h}_{b}{''} = \mathbf{A} \left[\frac{\mathbf{c}_{1b}^{2} - \mathbf{c}_{2a}^{2} + \mathbf{w}_{2b}^{2} - \mathbf{w}_{1b}^{2}}{2 \, \mathrm{g}} \right],$$

Wird allgemein die Annahme gemacht, daß

$$w_2 = c_1; \ c_2 = w_1, \ c_{0a} = c_{2a}$$

so folgt:

$$h_b' = h_b''.$$

Die Turbine arbeitet also mit halbem Reaktionsgrad, es wird:

$$\begin{split} \mathbf{c}_{1b}^2 &= 2 \cdot \mathbf{c}_{2a}^2; \qquad \mathbf{c}_{1b} = \frac{\mathbf{c}_{2a}}{\mathbf{0}, 707}, \\ \mathbf{w}_{2b}^2 &= 2 \cdot \mathbf{w}_{1b}^2; \qquad \mathbf{w}_{2b} = \frac{\mathbf{w}_{1b}}{\mathbf{0}, 707}. \end{split}$$

Das von der Turbine b aufgezehrte Gefälle hat auch den Wert:

$${
m h}_{
m b}=2\,{
m A}rac{{
m c}_{1b}^2-{
m w}_{1b}^2}{2\,{
m g}}$$

Das bis zum x ten Rade verarbeitete Gefälle hat die Größe:

$$\mathbf{H_x} = \mathbf{h_1} + \mathbf{h_a} + \mathbf{h_b} + \mathbf{h_c} + \ldots + \mathbf{h_{x-1}}\text{,}$$

woraus sich der zu H_x gehörige Druck p_x und somit v_x bestimmen lassen gemäß der Gleichung:

$$\mathbf{p}\mathbf{v}^{\mathbf{n}} = \mathbf{p}_{\mathbf{x}} \cdot \mathbf{v}_{\mathbf{x}}^{\mathbf{n}}$$

Dann folgen die Querschnitte:

$$\begin{array}{cccc} \text{Austritt aus dem x ten Leitrad} \\ ..., &..., &..., &... Laufrad \end{array} \right\} \ f_{x}{}' = \frac{G_{sk} \cdot v_{x}}{c_{1x}}. \\ \text{Eintritt in das x te Leitrad} \\ ..., &..., &..., &... Laufrad \end{array} \right\} \ f_{x}{}'' = \frac{G_{sk} \cdot v_{x}}{w_{1x}}. \\ \end{array}$$

Nach S. 385 ist:

 $f = \pi \cdot D a \sin \alpha$.

unendlich dünne Schaufeln vorausgesetzt.

a ist wegen der Schaufeldicke und der Verengung durch die vorbeistreichenden Schaufeln mit 1,5 zu multiplizieren.

Ist c_{2z} die Austrittsgeschwindigkeit aus dem letzten Rad, Q_z der gesamte Energieverlust in der Turbine, so wird der Gesamtverlust in W. E. pro 1 kg Dampf

$$\mathbf{H}_{\mathbf{z}} = \mathbf{Q}_{\mathbf{z}} + \mathbf{A} \cdot \frac{\mathbf{c}_{2\,\mathbf{z}}^2}{2\,\mathbf{g}}.$$

 \mathbf{Ist}

$$\mathbf{H_0} = \lambda_1 - \lambda_2'$$

die verfügbare Energie, so wird die indizierte Arbeit in W. E.:

$$H_i = H_0 - H_z$$

und in mgk:

$$L_i = \frac{H_i}{A}.$$

Die indizierte Leistung in PS. folgt zu:

$$\mathbf{N}_{i} = \frac{\mathbf{G}_{sk} \cdot \mathbf{L}_{i}}{75},$$

und der Dampfverbrauch pro PS_i-Stunde:

$$D_i = \frac{3600 \cdot G_{sk}}{N_i} = \frac{270\,000}{L_i} = \frac{637}{H_i}$$

und pro PS_e-Stunde:

- - - -

$$\mathbf{D}_{\mathbf{e}} = \frac{\mathbf{3600} \cdot \mathbf{G}_{\mathbf{s}\,\mathbf{k}}}{\mathbf{N}_{\mathbf{e}}}.$$

Im Schema 405 ist die grundsätzliche Wirkungsweise der Turbine von Lindmark dargestellt. In dieser sind die Düsen der Leiträder so stark erweitert, daß in ihnen eine Rückwandlung der Geschwindigkeit in Druck vor sich geht (Diffusorwirkung). Im folgenden Laufrad wird dann dieser Druck wieder in Geschwindigkeit umgesetzt.

Wird das auf jeden Satz der Leit- und Laufräder verteilte Druckgefälle zu groß, Verluste verursachen und daher unter allen Umständen zu vermeiden sind.

Der Vorteil der Lindmarkschen Tur-

bine, welche sowohl mit Aktons- als Reak-tionswirkung ausgeführt werden kann, besteht hauptsächlich in 'der kleinen Strömungsgeschwindigkeit von 250 ÷ 350 m, welche geringe Umfangsgeschwindigkeiten zuläßt.

d) Die wichtigsten Ausführungen der Dampfturbine.

1. Die einstufigen Turbinen.

Die Lavalturbine.

Der Dampf expandiert in der Düse vom Eintrittsdruck bis auf den Gegendruck und beaufschlagt das Rad seitlich. Fig. 406.

Die gefrästen Schaufeln werden in gefrästen Nuten des Rades verstemmt und sind leicht auswechselbar. Die Vorsprünge am Kopfende legen sich gegeneinander und bilden einen Ring, welcher den Ventilationswiderstand der Schaufeln verringert. Das nach dem Umfang hin stark verjüngte Rad wird in größeren Ausführungen mit der Welle verschraubt, Fig. 407. so daß eine Bohrung, welche (bei Scheiben gleicher Dicke die Beanspruchung des Materials an dieser Stelle auf das Doppelte steigert), unnötig wird. Kleinere Räder werden, um die Federungslänge der Welle zu vergrößern, mit dieser nach Fig. 408 verbunden. Das Rad wird hierbei auf eine Büchse gepreßt, welche auf die Welle aufgeschrumpft ist. Die Düsen wurden früher am Umfang verteilt, neuerdings werden sie nebeneinander angeordnet, um, so weit dies möglich ist, einen zusammenhängenden Dampfstrahl für die Beaufschlagung zu erhalten. Turbinen, welche sowohl mit Kondensation als auch mit Auspuff arbeiten sollen. werden mit zwei Satz Düsen von verschiedener Konizität versehen.

Da zur Erzielung eines günstigen Wirkungsgrades die Umfangsgeschwindigkeit etwa 350:400 m betragen muß, so arbeiten die Lavalturbinen mit 20 000-30 000 Uml./min. Um diese Umlaufzahlen auf einen für die praktische Verwendbarkeit brauchbaren Wert zu bringen. wird eine meist 1:10 bis 1:13 gewählte Übersetzung erforderlich.

Die Dampfturbinen.

Fig. 406.

Für diese werden breite Zahnräder mit kleiner Teilung und mit schräg gerichteten Zähnen genommen, welche den durch die seitliche Beauf-

schlagung entstehenden Achsschub aufzunehmen haben. Bei größeren Leistungen liegt nach Fig. 407 das Antriebrad zwischen den beiden

größeren Zahnrädern, so daß die Kraft von zwei, sich in gleicher Richtung drehenden Wellen abgenommen wird.

Da bei den erwähnten hohen Umlaufzahlen die Zentrifugalkraft für jedes $1/_{10}$ mm Exzentrizität bis zum 100 fachen des Gewichtes beträgt, eine ganz genaue Ausgleichung sich aber nicht ermöglichen

läßt, so verwendet Laval in seinen Turbinen Wellen von 5 bis 15 mm Stärke, welche sich nach Überschreitung der "kritischen Umlaufzahl" in die Hauptachse der freien Drehung einstellen ¹).

Ist der Schwerpunkt S eines mit der beiderseits gelagerten Welle Wrotierenden Gewichtes G um die Strecke e von der geometrischen Wellenachse entfernt, Fig. 409, und wird bei einer mäßigen Winkelgeschwindigkeit ω die Welle um x durchgebogen, so hat die durchbiegende Zentrifugalkraft die Größe

$$\mathbf{Z} = \mathbf{m} \cdot \mathbf{r} \cdot \boldsymbol{\omega}^2 = \frac{\mathbf{G}}{\mathbf{g}} \cdot (\mathbf{x} + \mathbf{e}) \cdot \boldsymbol{\omega}^2.$$

Wird mit P diejenige Kraft bezeichnet, welche die Welle um 1 cm durchbiegt, so übt bei x cm Durchbiegung die elastische Reaktion der Welle eine Kraft $P \cdot x$ aus, vorausgesetzt, daß die Ausbiegung die Proportionalitätsgrenze nicht überschreitet. Demnach folgt:

$$\mathbf{P} \cdot \mathbf{x} = \frac{\mathbf{G}}{\mathbf{g}} \cdot (\mathbf{x} + \mathbf{e}) \cdot \omega^2,$$

und daraus:

$$\mathbf{x} = \frac{\mathbf{G} \cdot \mathbf{e} \cdot \boldsymbol{\omega}^2}{\mathbf{P} \cdot \mathbf{g} - \mathbf{G} \cdot \boldsymbol{\omega}^2}.$$

¹) Kirsch, Z. 1896, S. 702 und 722.

Die Dampfturbinen.

Sonach nimmt die Ausbiegung x mit größer werdender Winkelgeschwindigkeit schnell zu und wird unendlich $\operatorname{gro} \beta^1$), wenn der Nenner gleich Null wird, also wenn

$$\mathbf{P} \cdot \mathbf{g} = \mathbf{G} \cdot \boldsymbol{\omega}^2.$$
$$\boldsymbol{\omega} = \sqrt{\frac{\mathbf{P} \cdot \mathbf{g}}{\mathbf{G}}}.$$

Aus diesem Wert für die kritische "Geschwindigkeit", bei welcher $x = \infty$, folgt die "kritische Umlaufzahl"

$$\mathbf{n}_{\infty} = \frac{30}{\pi} \cdot \boldsymbol{\omega}_{\infty} = \frac{30}{\pi} \sqrt{981 \cdot \frac{\mathbf{P}}{\mathbf{G}}} = 299 \sqrt{\frac{\mathbf{P}}{\mathbf{G}}}$$

Nach diesen Gleichungen und nach Einführung der kritischen Geschwindigkeit mittelst der Gleichung $P \cdot g = G \omega_{\infty}^2$ wird:

$$\mathbf{x} = \frac{\omega^2}{\omega_{\infty}^2 - \omega^2} \cdot \mathbf{e},$$

oder auch:

$$\mathbf{x} = \frac{\mathbf{n}^2}{\mathbf{n}_\infty^2 - \mathbf{n}^2} \cdot \mathbf{e}.$$

Wird $e_n = x + e$, Fig. 410, gesetzt, so ergibt sich:

$$\mathbf{e}_{\mathbf{n}} = \mathbf{x} + \mathbf{e} = \frac{\mathbf{n}_{\infty}^2}{\mathbf{n}_{\infty}^2 - \mathbf{n}^2} \cdot \mathbf{e}.$$

Diese Ausdrücke für x und e_n werden negativ, sobald n über n_{∞} steigt, d. h. die Welle schlägt plötzlich durch, so daß der Schwerpunkt S auf die andere Seite gelangt. Fig. 411. Werden die negativen Werte — x und — e_n mit x' und e_n' bezeichnet, so folgt für $n > n_{\infty}$

$$\begin{split} \mathbf{x}' &= \frac{\mathbf{n}^2}{\mathbf{n}^2 - \mathbf{n}_\infty^2} \cdot \mathbf{e}, \\ \mathbf{e}_{\mathbf{n}}' &= \frac{\mathbf{n}_\infty^2}{\mathbf{n}^2 - \mathbf{n}_\infty^2} \cdot \mathbf{e}. \end{split}$$

Hieraus folgt, daß mit zunehmendem n der Schwerpunkt S sich immer mehr der geometrischen Achse nähert, bis für $n = \infty$ schließlich $e_n' = o$ und x' = e wird.

Ist v die Geschwindigkeit, mit welcher Punkt S den Kreisumfang $2 e_n' \pi$ durchläuft, so ist:

$$\mathbf{P} \mathbf{x}' = \frac{\mathbf{G}}{\mathbf{g}} \cdot \frac{\mathbf{v}^2}{\mathbf{e}_n'}.$$

Wird dieser Beharrungszustand durch Auftreten einer radial wirkenden Kraft A gestört, so wird, da diese senkrecht zu v steht, v selbst nicht geändert. Hingegen wird der Krümmungsradius ein anderer, gemäß der Bezeichnung:

$$P x' + Q = \frac{G}{g} \frac{v^2}{\varrho}$$
, so daß $\varrho < \varepsilon_n'$.

¹) Ein Bruch der Welle erfolgt dann nicht, wenn eine Hubbegrenzung die Durchbiegung hindert, oder wenn die Steigerung der Umlaufgeschwindigkeit so schnell erfolgt, daß die Welle "keine Zeit" zu dieser Durchbiegung hat.

Verschwindet A, so muß S sich wieder auf dem früheren Kreis vom Radius e_n' bewegen.

Die Kreisbahn vom Radius ϱ schließt sich durch eine Kurve an die neue Kreisbahn e'_n an. Letztere wird dadurch nicht mehr genau konzentrisch zur früheren sein und da x' infolgedessen nicht mehr unveränderlich ist, so treten durch die wechselnde Federkraft neue periodische Störungen auf. S bewegt sich nunmehr in Spiralen, deren Schlingen Kreise vom annähernden Radius e'_n sind. Da P x' nicht mehr normal zum exzentrischen Kreisumfang steht, so ist jetzt auch v veränderlich¹).

2. Die Turbinen mit mehrfacher Geschwindigkeitsund Druckstufung.

a) Die Elektra-Turbine²).

Fig. 412 zeigt die Elektra-Turbine, Bauart Kolb, welche von der Gesellschaft für elektrische Industrie in Karlsruhe gebaut wird und durch radiale Beaufschlagung gekennzeichnet ist.

Der Dampf strömt durch Düsen D den am Laufrad seitlich vorstehenden Schaufeln S zu und wird in den Leitkanälen $k_1 k_2 k_3$ um-

gelenkt, so daß die Schaufeln wiederholt innen und außen beaufschlagt werden.

Die Düsen D, in welchen der Dampf vollständig entspannt wird, sind mit einer Regulierzunge ausgeführt, durch welche der Düsen-Kanal

¹) Daß diese Bewegung stabil ist, beweist Kirsch durch Vergleich mit der in elliptischer Bahn erfolgenden Bewegung des Mondes, bei welchem die Anziehungskraft mit Verringerung der Entfernung vom Erdmittelpunkt zunimmt, während bei der Lavalwelle Px' mit x abnimmt.

²) Gutermuth, Z. 1904, S. 1556.

mehr oder weniger verengt werden kann und zwar stets so, daß sich das Verhältnis zwischen größtem und kleinstem Querschnitt nicht ändert. Fig. 413.

In der Ausführung nach Fig. 412 ist nur Geschwindigkeitsstufung vorgesehen, größere Turbinen werden außerdem mit Druckstufung ausgeführt.

b) Die Curtis- und A. E. G.-Curtis-Turbinen.

In Fig. 414 ist der Schnitt einer von der General-Electric-Co. gebauten Curtis-Turbine in stehender Anordnung wiedergegeben. Diese Turbine arbeitet mit zwei Druck- und drei Geschwindigkeitsstufen in jeder Druckstufe. Auf jedem Rade befinden sich sonach vier Schaufelreihen.

Die beiden Druckstufen sind durch eine gußeiserne gewölbte Wand voneinander getrennt, in der von Hand einstellbare Ventile zur Regelung des Druckunterschiedes angebracht sind.

Die mittelst Schnecke und Schneckenrades und durch Gewinde einstellbare Spurplatte besitzt eine kreisförmige Aussparung, in welche Öl mit so hohem Drucke hineingepreßt wird, daß das Gewicht der sich drehenden Teile in der Schwebe gehalten wird.

Die Turbine wird dadurch reguliert, daß der Regulator die zu den verschiedenen Düsengruppen gehörigen Absperrventile nacheinander öffnet bzw. schließt.

Die Allgemeine Elektrizitäts Gesellschaft, Berlin, besitzt das Ausführungsrecht der Curtis-Turbinen, die jedoch in liegender Bauart hergestellt werden, so daß sowohl die dampfführenden Teile als auch der konstruktive Aufbau völlig neu gestaltet werden mußten.

Fig. 415 zeigt Düsen und Schaufeln einer A. E.-G.-Curtis-Turbine mit n = 3000; das Niederdruckgebiet enthält nur ein zweites, ebenfalls

Fig. 414.

zweikränziges Rad. Turbinen mit geringerer Umlaufzahl als n=3000 werden nach Fig. 416 mit einer größeren Anzahl von Rädern ausgeführt.

Figur 417 stellt den Aufbau einer kleineren Turbine, n= 3000, mit zweikränzigen Rädern in jeder der beiden Druckstufen dar. Bei

schlechter Luftleere wird das Niederdruckrad mit nur einem Kranze ausgeführt.

Das Hochdruckrad wird teilweise, das Niederdruckrad häufig voll beaufschlagt.

Bei den größeren Turbinen werden die Geschwindigkeitsstufen mit Rücksicht auf die Verluste in den Umkehrschaufeln eingeschränkt.

Bei der 3000 K.W.-Turbine (n = 1500), Fig. 418, läuft das "Curtis-Rad" in einer durch den vorderen Deckel und der ersten inneren Trennungswand begrenzten Kammer.

Durch die Anordnung des größeren mit zwei oder drei Kränzen ausgeführten und teilweise beaufschlagten Curtis-Rades werden Druck und Temperatur des aus den Düsen austretenden Dampfes weit herab-

gezogen, so daß die Abdichtung der Welle an dieser Stelle erleichtert wird.

Die Niederdruckräder sind nach Abnahme der oberen Gehäusehälfte leicht zugänglich. Die Leitringe mit den eingegossenen Nickelstahlschaufeln sind in den beiden Gehäusehälften befestigt.

Die einzelnen Stufen werden durch Labyrinthdichtung an der Welle voneinander getrennt.

Die letztere Bauart ist des Zusammenhanges wegen hier besprochen, trotzdem sie zu den im folgenden Kapitel behandelten vielstufigen Turbinen gehört.

3. Die vielstufigen Druckturbinen.

a) Die Zoelly-Turbine.

Diese ist eine reine Druckturbine ohne Geschwindigkeitsstufung und arbeitet mit einer größeren Teilung des Gefälles.

Zoell y wendet nur eben so viel Druckstufen an, daß in jeder dieser das kritische Druckverhältnis überschritten wird. Die Dampfgeschwindigkeit steigt demnach nicht über 450 m. Aus diesem Grunde werden die Düsenschaufeln vermieden, sowie günstige Stufenzahlen und Umfangsgeschwindigkeiten erhalten.

Fig. 419 zeigt eine 3000 P.S.-Zoelly - Turbine von 1500 Uml. Min., ausgeführt von Escher, Wyss & Co., Zürich.

Dubbel, Dampfmaschinen. 3. Aufl.

Das in der wagerechten Mittelebene geteilte Gehäuse ruht mit vier gleitend angeordneten Füßen auf der Grundplatte. Der Festpunkt befindet sich an der Abdampfseite, so daß die Turbine sich im warmen Zustande nach der Hochdruckseite hin ausdehnt. Dementsprechend wird die Hochdruckdampfleitung nachgiebig ausgeführt.

Die senkrechten Ausdehnungen zwischen Turbine und Kondensator werden durch Ausführung der Abdampfleitung mit einer Stopfbüchse, die durch Wasserverschluß gegen das Eindringen der Luft gesichert wird, unschädlich gemacht.

Scheibe und Kranz der Leiträder sind durch die eingegossenen Schaufeln miteinander verbunden. Während sich bei der älteren Befestigung die Beaufschlagung wegen dieser Stege auch in den letzten Stufen auf höchstens $^{3}/_{4}$ des Umfanges erstreckte, wird nunmehr volle Beaufschlagung erzielt und zwecks Vermeidung von Ventilationsverlusten möglichst schon in den ersten Stufen angestrebt. Hierfür ist maßgebend, daß mit Rücksicht auf die Herstellung die Schaufellänge 6 bis 7 mm nicht unterschreiten soll.

Die Bauart im einzelnen nach der Ausführung der Maschinenfabrik Augsburg-Nürnberg zeigen Fig. 420 bis 425. Der Kranz mit den

eingelegten Schaufeln wird nach Fig. 420 zunächst voll gegossen und erhält hierauf durch Abdrehen die in Fig. 421 dargestellte Form, so daß die Schaufeln an der Dampfaustrittsstelle vorstehen und leicht bearbeitet werden können. Nach dieser Bearbeitung werden Ringe nach Fig. 422 aufgebracht. In die Naben der Leitradscheiben sind mit Weiß-

Fig. 420 u. 421.

metall ausgegossene Büchsen mit Labyrinthdichtung eingesetzt.

In den ersten, mit teilweiser Beaufschlagung arbeitenden Stufen sind an der Dampfaustrittsstelle der Leiträder ringförmige Eindrehungen angebracht, in welche genau gearbeitete Begrenzungsringe eingepaßt sind.

Die Laufräder sind auf der Welle aufgekeilt und bestehen aus der eigentlichen, aus Siemens-Martin-Stahl hergestellten Scheibe, dem Befestigungsring s, den Schaufeln und den Abstandstücken g h, Fig. 423. Der am äußeren Umfang der Scheibe angenietete Ring s bildet mit einer Eindrehung der Scheibe einen \bot -förmigen, hohlen Querschnitt, in den die entsprechend gestalteten Abstandsstücke g h eingesetzt werden. Zwischen diesen sind die Schaufeln eingeklemmt, welche sich nach außen hin verjüngen, wodurch sich eine geringere Zugbeanspruchung an der Wurzel ergibt.

Die Laufradscheiben werden zum Ausgleiche des Druckunterschiedes vor und hinter jedem Laufrade mit Öffnungen versehen. Dieser Druckunterschied ist auf die saugende Wirkung des strömenden Dampfes im Spalt zurückzuführen.

Das Biegungsmoment, das der strömende Dampf verursacht, wird durch die Zwischenstücke von den Schaufeln an der Stelle g h aufgenommen, wo die Schaufeln infolge ihrer größeren Querschnitte und ihrer gewölbten Form ein bedeutendes Widerstandsmoment gegen Biegung besitzen. Die Schwabe-Stopfbüchse der Niederdruckseite ist in Fig. 424 dargestellt.

Die zwischen den gußeisernen Abstandsringen c liegenden, vierteiligen Dichtungsringe b aus schwer schmelzbarem Metall umschließen genau die Welle. Die vier Teile werden in den Teilfugen durch Schlauchfedern fest gegeneinander, aber nicht auf die Welle gepreßt.

Während des Betriebes wird in den Hohlraum a Kühlwasser geleitet, das durch eine Bohrung in die Laterne d fließt. Je nachdem die Büchse gegen inneren oder äußeren Überdruck abzudichten hat, gelangt mehr oder weniger Kühlwasser in den äußeren Raum mit dem Sammelring f. Im ersteren Fall verdichtet das Kühlwasser den bis zur Laterne gelangten Dampf, während es im zweiten Fall als hydraulische Dichtung den Eintritt von Luft verhindert.

Die Stopfbüchse am Hochdruckeinlaß, deren Kühlraum durch Klingerit vom Dampfraum isoliert ist, wird durch geringe Mengen Zylinderöl geschmiert, das mit dem Kühlwasser durch die Sammelringe abgeführt wird.

Eine auf der Turbinenwelle angeordnete zweistufige Öl-Kreiselpumpe saugt das Öl, nachdem es vorher gekühlt und durch ein Haarsieb geflossen ist, aus einem unter der Turbine liegenden Behälter an und

Fig. 424.

drückt es in der ersten Stufe mit etwa 1,5 Atm. zu den verschiedenen Schmierstellen. Ein kleiner Teil des Öles wird in der zweiten Stufe auf 4 Atm. Druck gebracht und dem Hilfsmotor des Regulators zugeführt.

Fig. 425 gibt die Reguliervorrichtung wieder. Die Spindel des Regulierventils k ist mit dem Kolben h eines Servomotors verbunden. von dessen Zylinder g zwei Leitungen f und e zu dem vom Regulator bewegten Steuerschieber m führen. An diesen sind die beiden Leitungen a und b angeschlossen, von welchen a zu einem mit Drucköl gefüllten Akkumulator führt. Das Rohr dient als Rücklaufleitung und führt das Öl in das Saugreservoir einer Kreiselpumpe zurück, die den erforderlichen Druck erzeugt. Steigt der Regulator, so dient das rechte Ende des oberen Querhebels als Drehpunkt, der Schieber wird gehoben. und dadurch eine Verbindung zwischen den Rohrleitungen a und f einerseits, b und e andererseits hergestellt. Die Druckflüssigkeit tritt über den Kolben h und bewegt diesen und das Ventil k abwärts, so daß der Dampf gedrosselt wird. Bei dieser Abwärtsbewegung bildet das linke Ende des oberen Hebels den Drehpunkt, wodurch der Schieber wieder in seine mittlere Schlußlage gebracht wird. Ein Sicherheitsventil verhindert Überschreitung der normalen Umlaufzahl.

Der Regulator betätigt noch ein besonderes Ventil, das bei Überlastung Frischdampf unmittelbar in die zweite oder dritte Druckstufe führt.

b) Die S. M. F.-Turbine¹).

Die von der Sächsischen Maschinenfabrik in Chemnitz ausgeführte Turbine ist in Fig. 426 dargestellt. Leistung: 1000 P.S.

Die Wirkungsweise ist grundsätzlich dieselbe wie bei der Zoelly-Der Dampf wird in 5 Hochdruck- und 5 Niederdruckrädern Turbine. ausgenutzt, wobei in jeder Gruppe die anfänglich partielle Beaufschlagung in die volle übergeht.

Im Fall der Überlastung wird dem dritten Leitrade Frischdampf durch ein besonderes Überlastungsventil zugeführt.

Die Bauart der Leiträder stimmt mit der der Zoelly-Turbine überein.

Die Laufräder sind an den Außenkanten der Schaufeln mit Bandagen versehen, die in besonderen Aussparungen eine mit Vorspannung aufgezogene Drahtbewicklung tragen, wodurch Schaufel- oder Bandagenbrüche verhütet werden sollen. Außerdem wird das ganze Rad dadurch versteift.

c) Die Rateau-Turbine²).

Eine noch weitergehende Teilung des Druckgefälles findet in der Rateau-Turbine statt; da infolgedessen innerhalb eines jeden Radsatzes das spez. Dampfvolumen in geringerem Maße zunimmt als in der Zoelly-

¹) Josse, Zeitschr. d. Ver. deutsch. Ing. 1910. S. 121. ²) Josse, Z. 1904, S. 1517.

Turbine, so braucht in jeder Radgruppe die Beaufschlagung allein zuzunehmen; nur die letzten Niederdruckräder, welche sämtlich voll beaufschlagt werden, erfordern wachsende Schaufelhöhe.

Nach Passieren des Drosselventils tritt der Dampf in den Deckel, von welchem er durch einige wenige Leitschaufeln dem ersten Laufrad zuströmt. Am Niederdruckende tritt der Dampf in den Deckel aus, welcher mit großem Querschnitt für den Übergang zum Kondensator ausgeführt wird. Fig. 427^{1}).

Durch ein zwischen Hoch- und Mitteldruckstufe angeordnetes Ventil wird den Mitteldruckrädern im Falle der Überlastung Frischdampf zugeführt.

Die Schaufeln der Laufräder werden gestanzt, gebogen und mit dem doppelt umgebördelten Rand der Laufräder vernietet; in derselben Weise wird ein um den Schaufelradumfang gelegtes,

dünnes Stahlband mit den Schaufeln verbunden. Die aus Eisenblech bestehenden Laufräder werden mit den auf der Welle aufgekeilten Stahlgußnaben vernietet.

Um diese Naben legen sich leicht schließend diejenigen der Leiträder. Diese werden als Stahlgußscheiben ausgeführt, welche seitlich durch Bleche verdeckt sind. Öffnungen in diesen Scheiben verhüten Gußspannungen. Auch hier sind die Leiträder zweiteilig, so daß sie mit dem oberen Gehäusedeckel abgezogen werden können. Die aus Bronze angefertigten Leitschaufeln werden nach Fig. 428 eingesetzt und am äußeren Umfang von

schmiedeeisernen Segmenten umfaßt, welche sich in Aussparungen des Gehäuses legen.

Die Lager sind mit Ringschmierung ausgeführt und werden durch Wasser gekühlt; ebenso wird das im Kreis laufende Öl durch einen Röhrenkühler gekühlt.

Die Welle wird am Austritt aus dem Gehäuse zunächst dadurch abgedichtet, daß ein zweiteiliger Aluminiumring mit der Nabe des ersten bezw. des letzten Laufrades eine Labyrinthdichtung bildet. In die Kammer vor diesem Aluminiumring wird Dampf von 0,2:0,3 atm. Überdruck geführt, so daß die äußere Stopfbüchse nur gegen diesen geringen Druck abzudichten braucht. Der am Hochdruckende gebrauchte Dampf strömt zur Niederdruckkammer. Zur Aufrechterhaltung eines konstanten Sperrdampfdruckes dient der in Fig. 427 wiedergegebene Druckregulator, dessen kugelförmiger Raum mit beiden Dichtungskammern in Verbindung steht. Tritt zu viel Dampf aus der Hochdruckkammer in diesen Kugelraum, so wird der unten befindliche Kolben gegen die Spiralfeder abwärts gedrückt. Der über diesem Kolben auf dessen Stange sitzende Kolbenschieber läßt nunmehr diesen überflüssigen Dampf in die Niederdruckstufe strömen. Derselbe Schieber läßt Frischdampf eintreten, wenn zu wenig Dampf aus der Hochdruckkammer strömt. Die äußere Stopfbüchse besteht aus einem dreiteiligen Gußring. welcher durch kreisförmige Spiralfedern radial und durch eine weitere Spiralfeder achsial angepreßt wird.

Der für Änderung der Umlaufzahl mit Zusatzfedern versehene Regulator verstellt den als Kolbenschieber ausgeführten Drosselschieber, dem zur Verminderung der Reibung von der Regulatorwelle aus mittelst doppelter Schneckenübersetzung eine drehende Bewegung erteilt wird.

Auf der Regulatorspindel, welche von der Turbinenwelle ebenfalls durch Schneckenräder angetrieben wird, befindet sich unten ein zweiter Sicherheitsregulator, der bei ungewöhnlicher Überschreitung der Umlaufzahl einen Bajonettverschluß auslöst, worauf eine Feder das Hilfsabsperrventil schließt.

d) Dampfurbine der Bergmann-Elektrizitäts-Werke.

Die Bergmann-Elektrizitätswerke haben vordem die Rateau-Turbine ausgeführt, sind aber bei ihrer neuen Bauart, Fig. 429, selbständig vorgegangen.

Der Dampf wird in prismatischen Düsen auf 1 bis 1,5 atm entspannt, so daß schon bei einer Leistung von 500 KW an aufwärts die erste Druckstufe des Niederdruckteils der Turbine voll beaufschlagt wird. Die Dampfgeschwindigkeiten hinter dem zweikränzigen Geschwindigkeitsrad betragen 300 bis 350 msek.

Die Leitschaufeln, die die Düse begrenzen, sind mit den Wänden des Düsensegmentes durch Niete verbunden, Fig. 430. Die Schaufeln des Geschwindigkeitsrades sind schwalbenschwanzförmig eingesetzt, während die der Leiträder eingegossen werden, und zwar bei größeren Durchmessern in besondere mit den Leiträdern vernietete Ringe, um für die Bearbeitung handlichere Stücke zu bekommen, Fig. 431.

In die Bohrung der Leiträder ist ein gußeiserner, auswechselbarer Ring a eingesetzt, der innen mit Weißmetall ausgegossen ist.

Der Weißgußring b, der die Druckstufen gegeneinander abdichtet, schleift auf der Nabe der Laufräder.

Die Laufschaufeln sitzen mit dem Rücken in Schlitzen der Laufräder und haben an den Seiten Ansätze, die durch zwei Niete mit dem Rande des Laufrades verbunden werden. Das obere Niet hält gleichzeitig das aus Bronzeblech hergestellte Zwischenstück.

Die Stopfbüchsen sind durch Labyrinthe abgedichtet. Von Hand einzustellende Zuschaltventile führen zu Düsengruppen, von denen jede eine andere Anzahl von Einzeldüsen enthält. Durch Vereinigen der Düsengruppen kann die Zahl der eingeschalteten Düsen in weiten Grenzen verändert werden.

Das Drosselventil wird vom Regler durch einen Servomotor ähnlich wie bei der Zoelly-Turbine verstellt. Die Dampfturbinen.

4. Die Überdruckturbine.

Die Parsons-Turbine.

Dieselbe ist in Fig. 432 und 433 nach einer Ausführung der amerikanischen Westinghouse Machine Co. dargestellt¹). Der Frischdampf strömt durch das Hauptventil V der Trommel zu, deren Durchmesser

¹) Feldmann, Z. 1904.

stufenweise zunimmt. Die Ausgleichkolben P haben annähernd die gleiche Oberfläche wie die Trommeln derjenigen Turbinenstufen, mit welchen sie durch Rohre bezw. Kanäle E verbunden sind, so daß sie den achsialen Schub aufnehmen.

Die Laufradschaufeln werden von gezogenen oder gewalzten Profilstäben aus Bronze mit 5000 kg/qcm kleinster Zerreißfestigkeit abgeschnitten, am Befestigungsende mit zwei Einkerbungen versehen und in schwalbenschwanzförmig eingedrehte Rillen der Trommel eingesetzt.

Fig. 433.

Der richtige Abstand der Schaufeln wird durch Abstandstücke aus weicher Kupferlegierung erhalten, die, ebenfalls aus Profilstäben hergestellt, in die Schwalbenschwanznuten der Trommel und Einkerbungen der Schaufeln eingetrieben werden. Die Sicherheit dieser Befestigung wird durch die Ausdehnung der Paßstücke infolge der Erwärmung im Betrieb noch erhöht.

Ein Drahtring, welcher durch Einfräsungen der Schaufeln gelegt und mit jeder derselben verlötet wird, versteift den Schaufelkranz besonders für das Abdrehen desselben auf den richtigen Durchmesser.

Die Schaufeln der Leiträder werden radial an der inneren Gehäusewand befestigt; diese ist zweiteilig und in Gelenken drehbar, so daß das Innere der Turbine nach Lösung einiger Schrauben leicht zugänglich ist. Fig. 434¹). Die Trennungsflächen sind aufgeschliffen.

Die genaue Einstellung des achsialen Spielraumes wird durch das am rechten Ende befindliche Kammlager T vorgenommen. Fig. 432. Der radiale Spielraum zwischen Gehäuse und Laufrad, von welchem der Spaltverlust abhängig ist, beträgt auf der Hochdruckseite, wo die Schaufelraddurchmesser klein und die Druckunterschiede groß sind, 0,6—3 mm und steigt nach der Niederdruckseite hin.

Die Abdichtung der Ausgleichkolben und der Welle, wo diese aus dem Gehäuse tritt, erfolgt durch Labyrinthdichtungen. Rillen der

¹) Nach einer Ausführung von Brown, Boveri & Cie., A.-G., Baden (Schweiz).

Kolben bezw. der Welle greifen in Nuten des Gehäuses ein und zwar ohne sich zu berühren. Die Geschwindigkeit des Dampfes geht in Erweite-

rungen verloren, und da für dessen weitere Beschleunigung Druckhöhe verbraucht wird, so verringert sich allmählich die Spannung. Außerdem erfahren die Dampfteilchen durch die Reibung an dem rotierenden Teil eine Zentrifugalbeschleunigung, wodurch sich ein "Dampfschleier" bilden soll, welcher das achsiale Strömen des Dampfes verhindert. Den Labyrinthdichtungen der Welle wird zu diesem Zwecke Abdampf der Steuerung zugeführt.

Die Lager bestehen bei kleineren Turbinen aus mehreren ineinandergeschobenen Buchsen, die mit Löchern versehen sind, durch welche Öl zwischen die Schalen gepreßt wird. Diese Ölschichten gestatten den Buchsen eine gewisse Beweglichkeit und ermöglichen dadurch genaue Anpassung an die Lage der Turbinenwelle. Größere Turbinen werden mit Kugellagern, die durch gekühltes Öl geschmiert werden, ausgeführt.

In Fig. 432 ist außer dem Ventil V noch ein Hilfsventil V_s , der sog. Bypaß, sichtbar, durch das weiteren Stufen der Turbine Frischdampf zugeführt werden kann. Wenn hierbei auch der Wirkungsgrad verringert wird, so kann doch andererseits eine weitgehende Überlastung zugelassen werden. Dieses Hilfsventil tritt in Tätigkeit, sobald das

Regulierventil nicht mehr schließt, sondern nur noch kleine hin- und hergehende Bewegungen ausführt. Übersteigt die Umlaufzahl ihren normalen Wert um 15 v. Ht., so wird durch einen einfachen Auslösemechanismus das Hauptabsperrventil plötzlich geschlossen.

Fig. 435 zeigt die neue Bauart der Firma Brown, Boveri & Cie. Welle und Trommel werden bei dieser Bauart durch Schrumpfen miteinander verbunden; da sich der aufgezogene Teil beim Warmwerden stärker erwärmt als der Zapfen, so heizt man, um das Lockerwerden der Schrumpfung zu vermeiden, den Hohlraum des Zapfens entweder von der Trommel aus oder durch besondere Öffnungen am Zapfenumfang durch Frischdampf. Die Verbindung ist weiterhin durch einen Bajonettverschluß gesichert.

Die dritte, größte Radgruppe wurde in früheren Ausführungen durch einen an der Dampfeintrittseite angeordneten Entlastungskolben ausgeglichen, der infolge seines großen Durchmessers eine für das Gießen und die Wärmeausdehnungen nachteilige Erweiterung des Gehäuses auf der Einlaßseite bedingte. Dieser Entlastungskolben wird bei der Turbine nach Fig. 435 dadurch ersetzt, daß das Trommelinnere durch Öffnungen mit dem Dampfraum vor der dritten Radgruppe verbunden wird und auf der Austrittseite ein Entlastungskolben nach Bauart Fullagar angebracht ist, während die an der Dampfeintrittstelle befindlichen Entlastungskolben unverändert wie früher ausge-

führt sind. Die Turbinen werden in der Weise geregelt, daß der Ölkolben des Einlaßventiles je nach der Pressung des unter ihn tretenden Drucköles gegen die Federspannung mehr oder weniger angehoben wird. Die neue Ölsteuerung der von Brown, Boveri & Cie. ausgeführten

Turbinen ist in Fig. 436 und 437 dargestellt. Auf der Reglerspindel,

die den Sicherheitsregler h und die Ölpumpe r antreibt, gleitet die vom Hauptregler bewegte Muffe k, die sich in einer feststehenden Büchse dreht. Diese steht durch einen Schlitz mit einem Ringraum in Verbindung, von dem die Ölleitung zum Zylinder des Einlaßventiles abzweigt. Je nach Lage der Reglermuffe wird der freie Schlitzquerschnitt und damit der Öldruck geändert. Bei Abnahme der Belastung wird die Muffe nach unten gezogen, der Schlitzquerschnitt nimmt zu,

und da die zufließende, von der Ölpumpe geförderte Ölmenge dieselbe bleibt, so nimmt der Druck unter dem Kolben des Einlaßventils ab, und letzteres wird von der Schlußfeder gesenkt.

Zum Vergrößern der Empfindlichkeit des Reglers macht die Einlaßventilspindel 300 bis 700 Schwingungen in der Minute, die dadurch hervorgerufen werden, daß die Regelkante der Muffe k abgewickelt eine Wellenlinie darstellt, so daß bei jeder Umdrehung unter entsprechender Änderung des Öldruckes der Durchflußquerschnitt einmal vergrößert und verkleinert wird. Durch ein Handrad kann die die Muffe umgebende Büchse gehoben oder gesenkt und damit die Umlaufzahl geändert werden. Das aus dem Schlitz fließende Öl schmiert die Zapfen und Gelenke des Reglers, die Lager der Spindel und fließt sodann zum Ölbehälter, aus dem es durch die Pumpe wieder angesaugt wird, um durch den Ölkühler in die Zentralschmierleitung gefördert zu werden.

Dubbel, Dampfmaschinen. 3. Aufl.

Mangelt es in der Zentralschmierung an Druck, so schließt das Einlaßventil.

Um ein Überregeln durch Massenwirkung zu vermeiden, wird bei sich hebendem Einlaßventil dem Drucköl eine zunehmende Abflußöffnung geboten, so daß infolge des dadurch sich einstellenden Druckabfalles des Arbeitsmittels das Ventil nicht über seine neue Gleichgewichtlage hinausgeht. Zu diesem Zweck hat die Ventilspindel eine kegelige Eindrehung, deren Tiefe nach dem Ölzylinder hin abnimmt. Zum Ausnutzen des vollen Dampfdruckes, auch bei niedrigerer Belastung, ist ein selbsttätiges Umlaufventil angeordnet. das sich bei stärkerer Drosselung des Frischdampfes, also bei Abnahme der Be-Das Ventil hebt sich, wenn bei Abnahme der lastung, schließt. Drosselung infolge steigender Belastung der auf seine untere Sitzfläche wirkende Arbeitsdruck in Verbindung mit einer öffnenden Feder den auf der oberen Fläche lastenden Frischdampfdruck überwindet. Durch Einstellen dieser Feder läßt sich die Belastung, bei der das Ventil eingreift, ändern.

5. Turbinen mit vereinigter Druck- und Überdruckwirkung (Verbundturbinen).

Wie Versuche zeigen, werden Hochdruckgefälle am besten in Druckturbinen, Niederdruckgefälle in Überdruckturbinen ausgenutzt. Aus diesem Grunde wird in mehreren, neueren Turbinenarten der Frischdampf

Fig. 438.

zunächst ein- oder mehrkränzigen, teilweise beaufschlagten Druckrädern zugeführt und in diesen so weit entspannt, daß sein Volumen zur Vollbeaufschlagung eines Kranzes von genügend großem Durchmesser und genügend langen Schaufeln hinreicht, worauf die Überdruckradgruppen durchströmt werden. Die mit Bezug auf diese S. 389 erwähnten Schwierigkeiten fallen sonach fort.

In Fig. 438 ist die Turbine von Gebr. Sulzer ¹), Winterthur, dargestellt. Der Dampf wird dem mehrkränzigen Druckrad durch eine <u>¹</u>) Z. 1906. S. 1573.

Anzahl Düsen zugeführt, die zur Erzielung eines zusammenhängenden Dampfstrahles dicht nebeneinander liegen und rechteckigen Querschnitt haben. Der Achsialschub der Überdruckräder wird durch eine unter Öldruck stehende, selbsttätig arbeitende Entlastungsplatte aufgenommen.

Das doppelsitzige Drosselventil steht unter dem Einfluß eines mit Hilfsmaschine arbeitenden Beharrungsreglers. Dieses Drosselventil beeinflußt auch den Druck des Dampfes, der bei Überlastung mittelst eines von Hand zu bedienenden Überlastventils einer besonderen Düsengruppe zugeführt werden kann, so daß auch bei geöffnetem Überlastventil Störungen in der Regelung ausgeschlossen sind.

Fig. 439 zeigt die von den Maffei-Schwartzkopf-Werken gebaute Melms-Pfenninger-Turbine¹) (M.-P.-Turbine).

Der Dampf tritt bei a ein. c c sind die Überdrucktrommeln, deren Achsialschub durch die Ringfläche e aufgenommen wird, so daß besondere Entlastungsvorrichtungen überflüssig werden.

Die Schaufeln der zuerst durchströmten Hochdruckstufe sind ebenfalls auf dem Umfang einer Trommel angebracht, wodurch die Reibungsverluste gegenüber der Anordnung mehrerer Einzelräder erheblich verringert werden. Während bei den letzteren die Abdichtung zwischen je zwei Rädern am Umfang der Welle durchzuführen ist, erstreckt sie sich bei der M.-P.-Turbine auf den Trommelumfang. Die Druckunterschiede sind hier jedoch so klein, daß die Dichtung keine Schwierigkeiten macht.

Die Regelung erfolgt in der Weise, daß ein von einem Achsenregeler beeinflußter Drehschieber Dampf unter den Regelkolben des Einlaßventils strömen läßt, so daß dieses mehr oder weniger weit geöffnet wird.

419

¹) Z. 1906, S. 1811.

In den Fig. 440-443 ist die neue Verbundturbine von Brown, Boveri & Cie. dargestellt, bei welcher der Reaktionstrommel ein zweikränziges Geschwindigkeitsrad vorgeschaltet ist. Die Einrichtung stimmt in den wesentlichen Teilen mit der nach Fig. 435 überein.

Die Eyermann-Turbine, Fig. 444, zeigt sowohl im Aktions-Hochdruckteile als im Reaktions-Niederdruckteile radiale Beaufschlagung. Der Dampf expandiert in den Düsen bis auf etwa 1—2 atm. abs. Das auf der Welle fliegend angeordnete Laufrad trägt nur auf einer Seite Schaufeln; durch Verstärkungsringe auf der andern Seite wird die Durchbiegung der Scheibe verhindert.

Bei Ausführungen über 2500 K.W. werden beide Seiten mit Schaufeln besetzt.

Die Leitradscheibe ist mit dem Gehäuse verschraubt.

In sehr sinnreicher Weise wird die achsiale Verschiebung der Welle selbstätig verhindert.

e) Die Vorteile der Dampfturbinen.

Bezüglich des Dampfverbrauches stehen die mit größeren Turbinen erhaltenen Ergebnisse denen gleichgroßer Kolbendampfmaschinen annähernd gleich. Im Dauerbetrieb wird allerdings die Turbine überlegen sein, da die bei Abnahmeversuchen ermittelten Dampfverbrauchsziffern bei den Kolbendampfmaschinen nach einiger Zeit infolge der durch Verschleiß sich einstellenden Undichtheiten zunehmen werden, was für die Turbine ausgeschlossen ist.

Eine Betrachtung des Diagramms, Fig. 28, S. 52 läßt die grundsätzlichen Vorteile der Turbine in bezug auf den Dampfverbrauch erkennen. Der Dampf expandiert bis auf den Gegendruck, ohne daß die Nachteile, welche eine so weit getriebene Expansion bei der Kolbendampfmaschine verursachen würde, eintreten. Das Diagramm erklärt auch, wenn man von der Verringerung der Schaufelreibung in dem weniger dichten Dampf absieht, den großen Einfluß hoher Luftleere, welche sich im Diagramm, Fig. 28, für die Kolbendampfmaschine nur auf die Länge a f', in dem für die Turbine auf die Länge a d erstreckt. Mit der Abnahme des Druckes unterhalb 0,2 atm. abs. nehmen die spezifischen Volumina des Dampfes außerordentlich rasch zu, so daß bei den kleinen Auslaßquerschnitten der Kolbendampfmaschine die Geschwindigkeit des Dampfes und damit der Spannungsunterschied zwischen Zylinder und Kondensator ebenfalls entsprechend wachsen müssen. Die Dampfturbine ermöglicht dagegen die Ausführung sehr

großer Querschnitte für den in den Kondensator überströmenden Dampf. Verringerung der Luftleere verursacht daher stete Abnahme des Dampfverbrauches, während in der Kolbenmaschine von einer bestimmten Luftleere ab — im Diagramm Fig. 445 unterhalb 0,2 atm. — der Gegendruck unverändert bleibt.

Fig. 445¹) zeigt das Ergebnis bezüglicher Versuche von Josse.

Der günstige Dampfverbrauch, die ausgezeichnete Regulierung, die hohe Umlaufzahl und die geringe Raumbeanspruchung sichern in elektrischen Krafthäusern der Turbine den Vorrang vor der Kolbenmaschine. Hinzu kommt, daß infolge des Fehlens hin- und hergehender Teile die Fundamente sehr klein werden.

1) Josse, Zeitschr. d. Ver. deutsch. Ing. 1909. S. 324.

Die hohe Umlaufzahl verbilligt ganz erheblich die mit der Turbine direkt gekuppelte Dynamomaschine; besonders wertvoll ist aber der geringe Raumbedarf.

Der Lichtbedarf der Großstädte hat sich in einer Weise entwickelt, wie dies bei der ersten Anlage der Zentralen auch nicht annähernd vorausgesehen werden konnte. Die Vergrößerung des Betriebes wird besonders da kostspielig, wo die Zentralen in der Stadt selbst liegen. Hier hilft nun die Turbine aus, da sie auf kleiner Grundfläche große Leistungen

zu erzeugen ermöglicht. Hierfür ist von Bedeutung auch ihre geringe Höhe, da dieser Umstand den Bau mehrstöckiger Krafthäuser gestattet.

Als weitere Vorteile der Turbine sind anzuführen:

- Der geringe Ölverbrauch. Da bei den neueren Turbinen die allein zu schmierenden Lager außerhalb der Gehäuse liegen, so gelangt überhaupt kein Öl in die letzteren. Wird der ölfreie Abdampf in einem Oberflächenkondensator niedergeschlagen, so kann das Kondensat ohne weiteres als Kesselspeisewasser verwendet werden.
- Die einfache Wartung und Bedienung.
- Das geringe Gewicht. Der Transport ist billiger, die Aufstellung schneller beendigt. Die Laufkrane können erheblich leichter werden.
- Die rasche Inbetriebsetzung. Die Turbine kann in jeder Stellung und nach kurzer Vorwärmung anlaufen.

f) Die Berechnung der Dampfturbinen¹).

Die einstufige Druckturbine (Laval).

Die Berechnung dieser Turbinenart nach dem Koobschen Verfahren ist auf S. 378 angegeben. Gewöhnlich berechnet man nur den engsten und weitesten Querschnitt der Düse, welche nach den Angaben auf S. 377 konisch ausgeführt wird.

Die Schaufelung wird nach S. 382 entworfen.

Die zweistufige Druckturbine.

Es sei eine zweistufige Druckturbine zu berechnen, in welcher der auf 300[°] überhitzte Dampf von 11,5 atm. absolut. auf 0,1 atm. absolut. expandiere. Die Rechnung beziehe sich auf 1 kg Dampf.

Das verfügbare Wärmegefälle beträgt nach dem Entropiediagramm bei adiabatischer Expansion 192 W.E.; von diesen sollen 98 W.E. in der Hochdruckstufe, 94 W.E. in der Niederdruckstufe verwertet werden. Fig. 446.

¹) Vergl. Koob, Z. 1904, S. 660 u. f. Der Turbinenkonstrukteur wird die hier mit dem Entropiediagramm durchgeführte Rechnung natürlich mit dem Mollierschen J-S-Diagramm durchführen. Der Studierende tut besser daran, die Berechnung in der hier angewandten, weitläufigeren Weise vorzunehmen und die Molliersche Tafel zur Kontrolle zu benutzen.

Stufe I.

Der Düsenverlust betrage 10 v. Ht., so daß $0.9\cdot 98=88.2$ W.E. verfügbar bleiben.

Dementsprechend wird die Eintrittsgeschwindigkeit

 $c_e = \sqrt{2 g L_0} = \sqrt{2 \cdot 9,81 \cdot 88,2 \cdot 424} = 855 m.$

Dem Wärmegefälle von 11,5 atm. auf 1,5 atm. entspricht eine Expansion von, 11,5 atm. auf 1,5 atm., wobei die spez. Dampfmenge den Wert x = 0.96 annimmt.

Der Düsenverlust von 10 v. Ht. = 9,8 W.E. erhöht diese spez. Dampfmenge auf x' nach der Beziehung:

$$9,8 = r (x' - x).$$

worin r = 529 die Verdampfungswärme bei 1,5 atm. bedeutet

x' = 0,98.

Eine weitere Erhöhung der spez. Dampfmenge findet durch die Reibungsverluste, sowie durch die Umsetzung der Austrittsgeschwindigkeit in Wärme statt.

Fig. 447 zeigt die Geschwindigkeitsdreiecke. Es sind gewählt: $\alpha = 20^{\circ}$; $\beta = 30^{\circ}$; u = 260 m.

Infolge der Schaufelreibung werde die relative Austrittsgeschwindigkeit $w_2 = 0.85 w_1$. Dann wird

A
$$\cdot \frac{c_2^2}{2g} = 12,84$$
 W.E.; A $\cdot \frac{w_1^2 - w_2^2}{2g} = 12,6$ W.E.

Insgesamt werden somit dem Dampf 25,44 W.E. zugeführt, welche eine Trocknung und hierauf folgende Überhitzung des Dampfes bewirken. Es wird:

$$25,44 = r (1 - x') + c_p (T' - t),$$

worin T' die gesuchte Überhitzungstemperatur, t $= 111^{\circ}$ die Sättigungstemperatur für 1,5 atm. bedeuten.

$$\begin{array}{l} 25,\!44 = 529\;(1-0,\!98) + \mathrm{c_p}\;(\mathrm{T'-111}),\\ \mathrm{T'} = 140^{\,0}. \end{array}$$

Stufe II.

Die aus Stufe I hinzukommende Fläche entspricht 6 W.E., so daß das Gesamtgefälle 94 + 6 = 100 W.E. beträgt. Wird der Düsenverlust wieder zu 10 v. Ht. geschätzt, so wird die Eintrittsgeschwindigkeit $c_1 = 863$ m. Dieser Wert ist von dem der Stufe I so wenig verschieden, daß bei der Unsicherheit in der Schätzung der Düsen- und Schaufelverluste dieselben Geschwindigkeitsdreiecke, Fig. 447, auch für Stufe II angenommen werden können.

Der Düsenverlust von 10 W.E. bewirkt eine Erhöhung der spez. Dampfmenge von 0,89 auf 0,91. Die Austritts- und Schaufelverluste vermehren die spez. Dampfmenge weiter von 0,91 auf 0,954. Düse I.

Für überhitzten Dampf berechnet sich nach S. 29 der engste Düsenquerschnitt zu

$$\mathbf{F_{k}} = \frac{\mathbf{G}}{210,85 \sqrt{\frac{\mathbf{p_{1}}}{\mathbf{v_{1}}}}}.$$

Das Volumen wird nach S. 21

$$v_1 = 0,2228$$
 cbm.

Da G = 1, so wird

Fig. 447.

Beim Austritt aus Düse I hat der Dampf die spez. Dampfmenge x' = 0.98. Wird das sehr kleine Wasservolumen vernachlässigt, so wird (S. 16):

$$x = x \cdot s = 0,98 \cdot 1,163 = 1,14$$
 cbm.

Aus der Kontinuitätsgleichung G \cdot v = F \cdot c folgt mit G = 1, c = 855,

F = 13,33 qcm.

Düse II.

Der Dampf ist auf 140° überhitzt, so daß:

 $v_2 = 1,26$ cbm.

Querschnitt an engster Stelle:

$$F_k = \frac{1}{210,85 \sqrt[7]{\frac{1.5}{1.26}}} = 43.1 \text{ qcm.}$$

Beim Austritt aus Düse II ist

$$x = 0.91$$
, $s = \frac{1}{\gamma} = 13.43$ cbm. $v = x \cdot s = 12.22$ cbm.

Aus der Kontinuitätsgleichung folgt:

$$\mathbf{F} = \mathbf{143} \text{ qcm.}$$

Stufe			I		II
für 1 kg erforderlicher kleinster Querschnitt	$\mathbf{F}_{\mathbf{k}}$	qcm	6,6		13,33
" 1 kg " Austrittsquerschnitt	F		43,1		143
Verlust infolge Düsenreibung	W.E.		9,8		10
,, ,, Schaufelreibung	,,		12,6		12,6
", ", Umsetzung der Austritts-					
geschwindigkeit	,,		12,84		12,84
Gesamtverlust	,,		35,24		35,44
TA 1 1 /				70,68	
Endverlust	,,			64	
Verfügbare Wärme			192		
In indizierte Arbeit verwandelt	••		128		
Indizierter Wirkungsgrad in v. Ht.	••		66,6		

Zusammenstellung der Rechnungsergebnisse.

Die mehrstufige Druckturbine mit mehreren Geschwindigkeitsstufen.

Wird die vorhin berechnete zweistufige Druckturbine mit zwei Geschwindigkeitsstufen in jeder Druckstufe ausgeführt, so ergibt sich für jede Druckstufe das Geschwindigkeitsdiagramm nach Fig. 448.

Fig 448.

Dieses soll nur dem Vergleich mit Fig. 447 dienen, da bei genauerer Ermittlung die Feststellung der in den neu hinzukommenden Umkehrschaufeln und Laufrädern entstehenden Reibungsverluste vermittelst des Entropiediagramms erforderlich ist.

Wie ersichtlich, ist die Umfangsgeschwindigkeit auf die Hälfte verringert worden. c_1 und α haben dieselbe Größe wie im vorhergehenden Beispiel.

Die achsialen Ein- und Austrittsquerschnitte müssen den Dampfvolumina direkt, den Achsialkomponenten der betreffenden Geschwindigkeiten umgekehrt proportional sein.

Die vielstufige Dampfturbine.

Fig. 449 stelle einen Teil des Wärmegefälles dar. In der Hochdruckstufe I würde die reibungsfreie, adiabatische Expansion vom Punkt b nach a führen. Infolge der Reibung wird der Zustand des Dampfes nach Verlassen des Leitrades durch Punkt a_1 , nach Verlassen des Laufrades durch a_2 gekennzeichnet.

In Stufe II wird die adiabatische Expansion des aus dem Laufrade der Stufe I tretenden Dampfes durch die Strecke $a_2 a'$ dargestellt. Die Leitradreibung führt hingegen nach a_1' , die Laufradreibung nach a_2' .

Bei den vielen Stufen, welche hier in Betracht kommen, ließe sich die Berechnung nach dieser Art nur mit großen Schwierigkeiten durchführen. Die durch die unstetige Linie ba a₂ a' a₂' wiedergegebene Zustandsänderung kann mit großer Annäherung durch die Kurve ba₂ a₂' dargestellt werden, wobei nur die Größe des Gesamtreibungsverlustes, nicht dessen Verteilung auf die Leit- und Laufräder berücksichtigt wird.

Die Kurve b $a_2 a_2'$ wird entworfen, indem die bis zu einem beliebig gewählten Druck p

reichende Wärmefläche f des Entropiediagramms mit φ (= 0,35, wenn 15 v. Ht. Verlust im Leitrad, 20 v. Ht. im Laufrad vorausgesetzt werden)

multipliziert wird. Punkte der Kurve ba_2a_2' werden gefunden, indem man die in W. E. ausgedrückte Fläche $\varphi \cdot \mathbf{f} = c_p (T'-T)$ setzt, falls der schon überhitzte Dampf durch die Reibung weiter überhitzt wird.

Geht der Dampf aus dem gesättigten Zustand in den überhitzten über, so ist

$$\varphi f = r (1 - x) + c_p (T' - T);$$

für den Sättigungszustand gilt:

$$\varphi \mathbf{f} = \mathbf{r} (\mathbf{x}' - \mathbf{x}).$$

Beispiel: Bei adiabatischer Expansion von p = 11,5 atm. T = 300° auf 6 atm. (Fig. 450) stehen 36 W.E. zur Verfügung, wobei der Dampf von 6 atm. auf 215° überhitzt ist.

Der Reibungsverlust $0.35 \cdot 36 = 12.6$ W.E. dient sonach dazu, den Dampf von 215° weiter zu überhitzen gemäß der Beziehung:

$$12,6 = c_n (T' - T); T' = 240^{\circ}.$$

Bei der Berechnung erweist es sich als zweckmäßig, an der Niederdruckseite zu beginnen.

Was die Wahl der Dampfgeschwindigkeiten betrifft, so liegt zunächst nur fest, daß c < 450 m sein soll. Große Dampfgeschwindigkeiten verringern die Stufenzahl, erhöhen jedoch andererseits die mit dem Quadrat der Geschwindigkeit zunehmenden Reibungsverluste. Das starke Anwachsen des Dampfvolumens in den Niederdruckstufen zwingt hier zu größeren Geschwindigkeiten, falls die Schaufeln nicht unausführbar lang oder die Austrittswinkel sehr groß werden sollen.

Es werde gewählt:

$$\alpha = 30^{\circ}$$
, $u = 120 \text{ m}$, $c_1 = 400 \text{ m}$,

so daß nach Fig. 451

$$w_1 = 300 \text{ m}, w_2 = 240 \text{ m}.$$

Die Achsialkomponente der Laufrad-Eintrittsgeschwindigkeit = Leitrad-Austrittsgeschwindigkeit beträgt 197 m. Soll der achsial gemessene Leitradquerschnitt am Eintritt ebenso groß wie am Austritt sein, so ist mit Rücksicht auf die Dampfvolumina die Achsialkomponente der Leitrad-Eintrittsgeschwindigkeit = Austrittsgeschwindigkeit aus dem vorletzten Laufrad festgelegt, was in allen Stufen zu beachten ist. Aus dem durch die Geschwindigkeiten c_1 und c_2 gegebenen Gefälle $A \cdot \frac{c_1^2 - c_2^2}{2 g}$ werden die zu jeder Stufe gehörigen Flächen des Entropiediagramms bestimmt.

Aus den hieraus folgenden Drucken p und Überhitzungstemperaturen T berechnen sich die Volumina v bei überhitztem Dampf, $v = x \cdot s$ bei gesättigtem Dampf, so daß sich nach Fig. 450 die Achsialkomponenten leicht ermitteln lassen.

Wie aus dem Geschwindigkeitsdreieck, Fig. 451, ersichtlich, nehmen die Achsialkomponente und damit Austrittswinkel und das für jede Stufe umgesetzte Wärmegefälle ab.

Wird der Austrittswinkel unzulässig klein, so ist eine Änderung des Querschnittes erforderlich. Als Mittel hierzu kommen in Betracht:

1. Verringerung der Beaufschlagung,

2. Verringerung der Schaufellänge.

Ersteres Mittel ist, wenn möglich, nicht anzuwenden. Versuche von Lasche und von Josse haben dargetan, daß die Verkleinerung der Beaufschlagung infolge des größeren Ventilationsverlustes den Wirkungsgrad verschlechtert.

Vorteilhafter ist die Verringerung der Schaufellänge. Die Veränderung der Querschnitte läßt sich durch dieses Mittel auch allein erreichen. Der Austrittswinkel kann in diesem Falle für eine Reihe von Rädern konstant bleiben, ein Umstand, welcher wegen der gleichbleibenden Schaufelquerschnitte für die Herstellung wertvoll ist.

Die Auftragung der aus $\frac{c_1^2 - c_2^2}{2 g}$ berechneten Flächen läßt sich im Sättigungsgebiet leicht ermöglichen, da hier die Begrenzung des Entropiediagramms einfache Gestalt hat.

Im Überhitzungsgebiet läßt sich dasselbe erreichen, wenn umgekehrt wie bei dem Vorgange nach Boulvin (S. 59) die Überhitzungsfläche in eine rechts von der Grenzkurve gelegene Fläche mit x > 1umgewandelt wird.

Die Überdruckturbine.

Die Berechnung der Überdruckturbinen gestaltet sich ähnlich wie die der vielstufigen Druckturbinen.

Da die Überdruckturbinen mit größerer Stufenzahl ausgeführt werden, so empfiehlt es sich, für eine Stufe, innerhalb der Raddurchmesser und Schaufellänge sich nicht ändern, ein für Lauf- und Leiträder zugleich geltendes Geschwindigkeitsdreieck mit mittleren Winkeln aufzuzeichnen, aus welchem das in dieser Stufe aufgezehrte Wärmegefälle zu berechnen ist. Es ist hierbei zu berücksichtigen, daß auch der achsiale Querschnitt derselbe bleibt.

I. Besondere Anordnungen.

1. Dampfmaschinen mit Drehkolben.

Als Beispiel für diese Maschinenart werde die in Fig. 452-453 dargestellte Maschine von Hult erwähnt. Wie ersichtlich, handelt Auf einer es sich um eine Verbesserung der Daviesschen Maschine. hohlen Welle, die an einem Ende eine Kuppelung trägt, während am anderen Ende ein Stahlring aufgeschraubt ist, der den achsialen Dampfdruck aufnimmt, ist eine Walze befestigt, in der drei Klappen Die Walze kreist innerhalb eines exzentrisch zu ihr und gleiten. der Welle liegenden Zylinders, der ebenso wie die Welle durch Roll-Die Rollbahnen d und die ringe e gegen das Gestell abgestützt ist. zwischen ihnen laufenden Rollringe e bestehen aus Stahl und sind an Einer Verschiebung der Rollringe gegenden Laufflächen gehärtet. einander wird durch die Rollen f begegnet, die zur Vermeidung unnötiger Reibung etwas kleinere Durchmesser als die Ringe haben und an Führungsscheiben befestigt sind.

Im Ruhestand wird stets eine der drei Klappen durch ihre eigene Schwere gegen die Zylinderwand gedrückt, und diese Abdichtung genügt, um die Maschine in Betrieb zu setzen. Während des Betriebes werden die Klappen durch die Zentrifugalkraft gegen die Zylinderwandung gedrückt. Um die Reibung zwischen Klappe und Zylinder zu vermindern, ist letzterer umlaufend angeordnet; er wird durch die Reibung zwischen ihm und der Walze mitgenommen, so daß für die Reibungsarbeit nur die relative Geschwindigkeit zwischen Klappe und Zylinder in Frage kommt.

Die Vorrichtung zur Dampfverteilung besteht aus einer inneren, am Gestelldeckel befestigten Hülse b und einer mit der Welle umlaufenden Futterhülse c mit drei Öffnungen für den Dampfdurchtritt, die sich an der Öffnung in der inneren Hülse b vorbeibewegen, während welcher Zeit die Füllung stattfindet. Der am Ende der Welle sitzende Regulator wirkt drehend auf ein Ventil, das in der Verlängerung der Hülse c untergebracht ist. In dieser Weise wird die Reibung zwischen der feststehenden Verteilhülse und dem Regelventil vermieden, und der Regulator hat beim Ausschlag nur eine relative Bewegung herbeizuführen.

Auf die Leistung kann außer durch Drosselung auch durch Füllungsänderung eingewirkt werden, was hauptsächlich bei größeren Maschinen geschieht.

Die Ausströmkanäle g münden an den Stirnen der Walze aus. Durch die zur Welle und Walze exzentrische Lagerung des Zylinders Dubbel, Dampfmaschinen. 3. Aufl. 28 mit seinem Deckel wird nämlich eine Fläche gebildet, die von den zwei inwendig sich berührenden Kreisen der Welle und der Deckelöffnung begrenzt wird, so daß eine an der Stirne der Walze befindliche Öffnung durch ihre Bewegung gegenüber dem Zylinderdeckel geöffnet und geschlossen wird. Der Dampf strömt aus dem Gestell in das Auslaßrohr. Das Maschinengestell, welches sämtliche bewegte Teile umschließt, ist mit einer Verschalung versehen, nach deren Entfernung man an die Regulierschraube gelangt, welche mittelst Kegels die seitliche Dichtung nachzustellen gestattet. Zwei weitere Schrauben dienen zum Nachstellen in radialer Richtung, um am Berührungspunkt zwischen Walze und Zylinder den Dichtungsdruck herzustellen.

Falls nicht ein hoher Gleichförmigkeitsgrad verlangt wird, sind besondere Schwungmassen nicht erforderlich. Der Dampfverbrauch übersteigt den guter Schnelläufer nicht. Die Maschinen können auch mit Umsteuerung versehen werden.

2. Lokomobilen.

Dampfmaschinen, welche mit ihrem Kessel fest verbunden sind, werden auch dann als "Lokomobilen" bezeichnet, wenn das Ganze nicht, wie dies die Benennung eigentlich voraussetzt, auf einem fahrbaren Untergestell angeordnet ist.

Da der Kessel, welcher fast ausschließlich mit Rauchröhren ausgeführt wird, als Maschinenfundament dienen muß, so ist bei der Bemessung der Kesselwandstärke zu beachten, daß der auf Verbiegung der oberen Kesselwand wirkende Kolbendruck an einem Hebelarm gleich Maschinenhöhe angreift. Dieses Biegungsmoment ist von der Kesselwand aufzunehmen, wenn Zylinder und Hauptwellenlager für sich, ohne Verbindung miteinander, aufgenietet werden. Der Kessel muß dann eine größere Wandstärke erhalten, als ihm unter alleiniger Berücksichtigung des Arbeitsdruckes zukommt und wird außerdem zweckmäßig durch an der Innenseite der oberen Wand längsgelegte I-Eisen widerstandsfähiger gemacht.

Vorteilhafter ist die Anordnung von Strebestangen, welche Zylinder und Lager miteinander verbinden, so daß nur der freiwirkende Massendruck auf die Kesselwand übertragen wird (Ausführung Lanz-Mannheim). Die Lager werden hierbei gleitbar auf ihrem Sattel angeordnet und mit diesem durch Schrauben nur so fest verbunden, daß deren Anzug zwar genügt, die Lager auf dem Sattel zu halten, nicht aber, um die Wärmeausdehnung des Kessels zu hindern. Da die letztere bei längeren Kesseln 3:-6 mm beträgt, und um diesen Betrag auch annähernd die Entfernung zwischen Zylinder und Hauptlager wächst, falls keine Verbindung zwischen ihnen vorhanden ist, so ergibt sich hieraus auch die große Bedeutung der Strebestangen für die richtige Einstellung der Steuerung.

Weitere Entlastung des Kessels wird bei Verbundmaschinen durch Versetzung der Kurbeln unter 180^o erreicht, dadurch gelangt auch der Einfluß der Regulierung um $\frac{1}{4}$ Umdrehung eher zur Geltung; doch werden schwerere Schwungräder nötig. Bei kleineren Maschinen kann bei dieser Anordnung das mittlere Lager fortfallen.

Fig. 454.

Der senkrechte Druck des Kreuzkopfes kann vernachlässigt werden, da der Zugänglichkeit und des Aussehens halber die Pleuelstangenlänge $= 7 \div 8$ mal Kurbelradius wird.

Als Kreuzkopfführung wurde früher die Schlittenführung bevorzugt, welche leichte Zugänglichkeit der Zylinderstopfbüchsen gestattet; neuerdings wird die Rundführung ausgeführt. Die Lager sind nicht einzeln mit dem Kessel zu verbinden, sondern mit einem Untersatz ("Sattel") zu verschrauben, der seinerseits mit dem Kessel vernietet ist.

Bezüglich der Befestigung der Zylinder am Kessel sind zwei Ausführungsweisen gebräuchlich: die Zylinder werden entweder unmittelbar mit dem Kessel vernietet, oder auf einem vernieteten Untersatz aufgeschraubt. Letztere Anordnung hat den Vorzug, daß sich ein schadhaft gewordener Zylinder leichter ersetzen läßt; sie wird bei größeren Lokomobilen wegen des Transportes (Ladeprofil!) zur Notwendigkeit.

Die erste Anwendung überhitzten Dampfes für Lokomobilbetrieb rührt von R. Wolf in Magdeburg-Buckau her. Der spiralförmig gewundene Überhitzer ist in einer zwischen Röhrensystem und Rauchkammer liegenden Überhitzerbüchse untergebracht. Der Dampf wird der höchsten Stelle des Zylinderdomes entnommen und durch eine Rohrleitung dem Überhitzer zugeführt; eine zweite Rohrleitung, welche wie die erste durch den Dampfraum des Kessels geht, leitet den überhitzten Dampf in den Zylinder.

Besonders günstige Verbrauchsziffern ergeben die Wolfschen Tandem-Lokomobilen mit zweifacher Überhitzung. Fig. 454-455.

Der aus dem Kessel strömende Dampf tritt in den ersten Überhitzer, wo er durch die mit rd. 450° Temperatur abziehenden Gase auf etwa 320° überhitzt wird. In einem zweiten Überhitzer wird die Temperatur des Aufnehmerdampfes auf rd. 200° erhöht.

Die durch eine Innenstopfbüchse gegeneinander abgedichteten Zylinder sind ohne Dampfmantel ausgeführt und liegen in der erweiterten Rauchkammer, so daß sie von den abziehenden Heizgasen umspült werden.

Die Steuerung erfolgt durch Achsenregeler und Kolbenschieber. An einer 100 P.S.-Lokomobile dieser Bauart stellte Gutermuth einen Wärmeverbrauch von im Mittel 2950 W.E./P.S_i/st., bezogen auf 0^o Speisewassertemperatur, fest ¹).

¹) Zeitschr. d. Ver. deutsch. Ing. 1908. S. 1590.

Fig. 456 zeigt einen Querschnitt durch einen Wolfschen Verbundzylinder mit Kolbenschiebersteuerung.

In Fig. 457—459 ist die Lanzsche Heißdampflokomobile mit Lentz-Ventilsteuerung dargestellt.

Die wagerecht liegenden Ventile sind mit langen, in auswechselbaren Büchsen laufenden Spindeln verschraubt, deren Rollen durch

Schubkurven auf einer senkrecht zur Zylinderlängsachse liegenden Schwingwelle gesteuert werden.

Für die Hochdruckeinlaßventile ist eine besondere vom Achsenregulator gesteuerte Schwingwelle vorgesehen, während die Hochdruckauslaßventile und die vier Ventile des Niederdruckzylinders von einer zweiten Schwingwelle gemeinsam unveränderlich gesteuert werden.

Die Ventile liegen unmittelbar auf dem Gußkörper der Zylinder (ohne besondere Ventilkörbe) auf. Die ohne Dampfmantel ausgeführten Zylinder sind mit den Ventilkammern und den Hülsen für die Schwingwellen und Ventilspindeln so aus einem Stück gegossen, daß sich die Zylinder etwas ausdehnen können.

Bemerkenswert ist die Einfachheit der Dampfwege zwischen den einzelnen Ventilen.

Auch mit dieser Bauart sind hervorragende Ergebnisse erzielt worden.

Die Vorteile, welche mit dem Lokomobilbetrieb verbunden sind, bestehen hauptsächlich im Fortfall der Rohrleitung zwischen Kessel und Maschine und der in dieser entstehenden Niederschlagsverluste. Ebenso fallen Fundament, Kesselhaus und Kesseleinmauerung fort, bezw. nehmen geringere Abmessungen an. Die Aufstellung ist bedeutend einfacher als bei ortfesten Maschinen.

Von großer Bedeutung ist weiterhin, daß die ganze Maschinenanlage von einem Fabrikanten geliefert wird, wodurch Einheitlichkeit derselben und genauere Einhaltung der Garantie gewährleistet wird.

3. Die Gleichstrommaschine.

Fig. 460 zeigt den Zylinder dieser Maschine, deren allgemeinere Einführung den verdienstvollen Bestrebungen von Prof. Stumpf-Charlottenburg zu verdanken ist.

Die Auslaßventile werden durch Schlitze ersetzt, die in der Mitte des Zylinders angebracht sind und vom Kolben gesteuert werden. Die Länge des letzteren muß gleich (Hublänge minus Schlitzbreite) sein.

Über diese Maschinenart, die einen bisher an Einzylindermaschinen nicht erreichten Dampfverbrauch aufweist (4,2 bis 4,5 kg für 1 PS_i-St.), hat sich Verfasser in der "Zeitschr. Ver. deutsch. Ing. 1910" S. 1532 wie folgt geäußert:

Für die Gleichstrommaschine werden Vorteile mechanischer und thermodynamischer Art geltend gemacht. Die behauptete gleichmäßigere Beanspruchung des Triebwerkes wird durch die Gestaltung des Arbeitsdiagramms, der Umlaufzahl und des Gewichtes der hinund hergehenden Massen bestimmt. Nach Stumpf ist das Gewicht des Kolbens nebst Stange bei der Gleichstrommaschine um rund 5 v. Ht. größer als bei normaler Ausführung, und da weder Arbeitsdiagramm noch Umlaufzahl von denen normaler Maschinen abweichen, so hat die Gleichstrommaschine vor letzteren hinsichtlich der Triebwerkbeanspruchung nichts voraus.

¹) Roesler, Zeitschr. Ver. deutsch. Ing. 1909.

Der Ersparnis zweier Auslaßventile stehen die Verlängerung von Zylinder und Kolben, über deren Verhalten längere Betriebserfahrungen noch nicht vorliegen, gegenüber. Wärmetechnisch von Wert ist jedoch die durch den Fortfall der Auslaßventile erreichte Verkleinerung des schädlichen Raumes und der Abkühlflächen, ein Vorteil, der bei Auspuffmaschinen mit Rücksicht auf die hohe Verdichtung wieder entfallen muß.

Die bei Versuchen an Heißdampfmaschinen festgestellte Erscheinung, daß der am Hubende nasse Dampf während des Auspuffes überhitzt war, läßt auf die bedeutende Wechselwirkung zwischen Dampf und Wand bei der während der Vorausströmung entstehenden Druck-(Zeitschr. Ver. deutsch. Ing. 1901, S. 194.) entlastung schließen. Dieser Verlust tritt bei der Gleichstrommaschine in genau derselben Weise auf wie bei der normalen Maschine. Der Gleichstromkolben wird bei der Ausströmung in derselben Weise (oder wegen des zentralen Auspuffes noch mehr) abgekühlt, wie die Deckelfläche der normalen Maschine während der Vorausströmung. Kolben- und Deckelfläche haben während dieses Vorganges einfach ihre Rollen vertauscht und nur die Kanalwandungen verhalten sich günstiger. Die nach dem Schließen der Auspuffschlitze noch an den Dampf übergehende Wärmemenge bleibt im Zylinder, was günstig wirkt, aber nach Versuchen von Callendar-Nicholson¹) nicht überschätzt werden darf.

Da eine einfach wirkende Auspuffmaschine Schmidtscher Bauart von 16 PS Leistung bei 310° Dampftemperatur einen Gütegrad von 78,5 v. Ht., bei 353° einen solchen von 82,1 v. Ht. ergeben hat, so wären Versuche an sorgfältig ausgebildeten Einzylindermaschinen von größerer Leistung und üblicher Bauart für Drucke und Temperaturen, wie sie in der Gleichstrommaschine angewendet werden, von größtem Wert. Vorausgesetzt, daß ein Gütegrad von etwa 80 bis 85 v. Ht. erreicht wird, würde die Verbundmaschine ihre Vorteile, soweit sie thermodynamischer Art sind, verlieren, und die Einzvlindermaschine wäre das letzte Glied in der Entwicklung, die von der Vierund Dreifachexpansionsmaschine zur Verbundmaschine geführt hat. Die Überhitzung läßt sich wegen der niedrigeren Auspufftemperatur namentlich bei der Einzylinder-Kondensationsmaschine weiter treiben als beim Hochdruckzylinder der Verbundmaschine, und die Temperatur wird weniger vom Verhalten der Maschine als dem des Überhitzers bestimmt.

4. Die Mehrstoffkraftmaschine²).

In der Dampfmaschine entsteht ein großer Verlust dadurch, daß aus den auf S. 265 angegebenen Gründen die Expansion lange vor Erreichen des Kondensatordruckes aufhören muß, und daß die Konden-

 ¹) Zeitschr. Ver. deutsch. Ing. 1901, S. 194.
 ²) Das Verdienst, immer wieder auf die Ausführbarkeit der Mehrstoff-kraftmaschine hingewiesen zu haben, gebührt den Ingenieuren Behrend und Zimmermann, deren Maschine dann Prof. Josse betriebsfähig gestaltete. In neuerer Zeit sind die Kaltdampfmaschinen durch die Abdampfturbinen vollständig verdrängt worden.

sationstemperatur wesentlich höher als die Außentemperatur liegt. Selbst bei einer Kühlwassertemperatur von 10 bis 15° wird die Kondensatortemperatur nicht unter 45° heruntergehen.

Dieses Gefälle von 30:35° kann sonach in der Dampfmaschine praktisch nicht verwertet werden.

Benutzt man hingegen Flüssigkeiten, deren Sättigungsdrücke höher liegen, so kann die Endtemperatur nunmehr tiefer gelegt werden, da bei dieser immer noch Spannungen über der Atmosphäre vorhanden sind.

Solche Dämpfe, die sog. Kaltdämpfe, sind Ammoniak, schwefelige Säure, Ätherdampf usw. Die Schweflig-Säure-Dämpfe, welche für ausge-

führte Abwärmekraftmaschinen allein in Frage gekommen sind, haben bei einer Temperatur von 60° einen Druck von 11 kg/qcm abs., bei 15° einen solchen von 2,87 kg/qcm abs., so daß sie in einem Zylinder arbeitverrichtend von ersterer Spannung auf letztere expandieren können.

Für die Verwendung dieser Dämpfe spricht besonders die Eigenschaft, daß sie selbstschmierend wirken, so daß die Beifügung von Schmieröl, welches die Kondensatorflächen belegen würde, unnötig wird.

Die Wärmemenge, welche bei der Dampfmaschine zur Erhitzung des Kaltdampfes zur Verfügung steht, ist sehr bedeutend, da, abgesehen von den Strahlungsverlusten, nur ein unbedeutender Teil der zugeführten Gesamtwärme in Arbeit umgewandelt wird.

Fig. 461 zeigt das Schema einer derartigen Anlage. Der aus dem Zylinder der Wasserdampfmaschine ent-

hessel d. Wasser= dampf= mäsch Sneise Wasser= Cylind. a nimpe d. Wasser= Wasser damnf= dampf = damnf= masch, maschine masch Kondens d.Wasser Ł T'u. Kessel d Aethter dampfin Speise Aether= Cylinde pumpe d Aether= d. Aether damnf. dampf= dampf= maschine nasch masch Kondens d. Aether damnfmasch Fig. 461.

weichende Auspuffdampf strömt in den Oberflächenkondensator, wo er seine Wärme an den kälteren Kaltdampf unter gleichzeitiger Verdampfung desselben abgibt. Die hier entwickelten Dämpfe expandieren im Zylinder der Kaltdampfmaschine bis auf einen Druck, welcher nahezu der Kühlwassertemperatur entspricht. Der ausströmende Kaltdampf wird ebenfalls in einen Oberflächenkondensator geführt, dort durch Kühlwasser verflüssigt und hierauf durch eine Pumpe in den Verdampfer zurückgebracht.

Versuche, welche Prof. Josse im Maschinenlaboratorium der Techn. Hochschule Berlin an einer Dreizylindermaschine mit angehängter SO₂-Maschine ausführte, und bei welchen mit 310[°] Überhitzung und 11 Atm. Dampfüberdruck gearbeitet wurden, ergaben u. a. im günstigsten Fall einen Dampfverbrauch der Dampfmaschine allein von 5 kg. Die Abwärmemaschine leistete hierbei 34,2 v. Ht. der Dampfmaschinenarbeit. Der Dampfverbrauch der vereinigten Maschine wurde zu 3,74 kg pro PS_i -Stunde ermittelt.

Die Gesamtleistung betrug rd. 170 $\mathrm{PS}_i.~$ Das Kühlwasser wurde von 10^o auf 15,7° erwärmt.

Aus diesen Versuchen kann gefolgert werden, daß bei günstigen Verhältnissen 14 kg Abdampf 1 $\mathrm{PS_{i}}\text{-}\mathrm{Stunde}$ in der $\mathrm{SO_{2}}\text{-}\mathrm{Maschine}$ leisten können.

In der Wasserdampfmaschine können aber nicht nur Temperaturen unter 45^o nicht verwertet werden, sondern es ist auch andererseits zwecklos, mit dem Eintrittsdruck eine bestimmte Grenze zu überschreiten. Nimmt man statt des auf S. 264 genannten Höchstdruckes von 15 kg/qcm einen solchen von 20 kg/qcm an, so dürfte dieser Wert schon mit Rücksicht auf die Schwierigkeiten, welche sich bezüglich Kesselherstellung und der Dichtung ergeben, die obere Grenze mit Bestimmtheit erreichen.

Da dem Druck von 20 kg/qcm eine Temperatur von 210^o entspricht, das im Maschinenbau verwendete Material aber wesentlich höhere Temperaturen ohne Beeinträchtigung seiner Festigkeit ertragen kann, so kommt Schreber in seiner Schrift: "Die Theorie der Mehrstoffdampfmaschine" zu dem Schluß, daß das in der Dampfmaschine verwertbare Temperaturgefälle überhaupt nicht mit einer Dampfart, sondern durch verschiedene Flüssigkeiten in aufeinanderfolgenden Stufen auszunützen ist.

Als derartige Arbeitsmittel eignen sich besonders diejenigen Dämpfe, bei welchen der kritische Bruch $k = \frac{c}{r} = \frac{\text{spez. Flüssigkeitswärme}}{\text{Verdampfungswärme}}$ sehr klein ist. Je geringer nämlich c ist, um so kleiner fällt im Entropiediagramm Fig. 27, S. 49, das Dreieck ABE aus, je größer r, um so länger wird das Rechteck A B C D, und um so mehr nähert sich der Wirkungsgrad dem des Carnot-Prozesses. In Übereinstimmung mit der Erfahrung zeigt sich, daß der Wasserdampf innerhalb der benutzten Drucke das am meisten geeignete Arbeitsmittel ist. Die in der nächst höheren Stufe zu verwendende Flüssigkeit muß bei 180° mindestens 0,5 kg/qcm Druck aufweisen, denn jene Temperatur soll in der Wasserdampfmaschine als obere Temperatur nicht unterschritten werden. Dieser Bedingung entspricht Anilin, welches zudem selbstschmierende Eigenschaften besitzt, und dessen Druck für 310° rd. 10—12 kg/qcm betragen soll.

Für die untere Stufe schlägt Schreber statt der schwefligen Säure Äthylamin vor, welches zwar teurer im Preis ist, dafür sich aber sonst günstiger verhält. Als Schema folgt:

310° Anilin, 190° Wasserdampf 80° Äthylamin 30°.

Die Zahlen geben diejenigen Temperaturen an, zwischen welchen die eingeschriebenen Körper arbeiten.

Wesentlich ist die von für Schreber befürwortete Anordnung, daß nicht nur die im Abdampf der höheren Stufe enthaltene Wärme der nächsten Stufe zugeführt wird, sondern daß auch die Heizgase stufenweise ausgenutzt werden. Diese kühlen sich am Anilin-Kessel bis auf 460° C ab, bleiben demnach um 150° über der höchsten Anilintemperatur. Hierauf werden sie dem gleichzeitig als Kondensator für Anilin dienenden Wasserkessel zugeführt, um schließlich mit 290° den Äthylaminkessel zu umspülen. Mit einer Temperatur von 180° treten sie sodann in den Schornstein. Noch günstigere Ergebnisse werden erhalten, wenn das Kondensat nicht sofort in die Verdampfer zurückgespeist, sondern mittelst Vorwärmer im Gegenstrom zu den Heizgasen geführt wird. Da das Kondensat auf diesem Wege die in den Heizgasen enthaltene Wärme ohne Temperatursturz vollständig aufnehmen kann, so wird dieWärmeausnützung günstiger, und die Kesselheizfläche in den Verdampfern kann wegfallen.

Schreber berechnet für die Mehrstoffdampfmaschine einen thermischen Wirkungsgrad von 33,4 v. Ht., so daß gerade $\frac{1}{3}$ der in den Heizgasen enthaltenen Energie in Arbeit umgesetzt wird. Soll nur eine Zweistoffdampfmaschine ausgeführt werden, so ist die Kombination des Wasserdampfes mit Anilin günstiger als diejenige mit Äthylamin.

Wie aus der folgenden Besprechung des Rateauschen Verfahrens hervorgeht, würde in diesem Falle die Kolbendampfmaschine zweckmäßig durch eine Turbine zu ersetzen sein, welche sowohl das mittlere Temperaturgefälle als auch infolge der vollständigen Expansion das untere Gefälle besser auszunutzen vermag.

5. Die Rateausche Abdampfverwertung.

Das Wesentliche dieser Maschinenordnung besteht darin, daß der Abdampf der mit Unterbrechungen arbeitenden Maschinen der Zechen und Hüttenwerke, wie Fördermaschinen, Walzenzugmaschinen, Hämmer, Scheren, Pressen in Niederdruckturbinen mit Kondensation geleitet wird, in welchen er bis auf die Kondensatorspannung expandiert. Da wegen der Betriebspausen der Dampf nicht unmittelbar in die Turbine strömen kann, so ist in die Rohrleitung zwischen der Turbine und der Primärmaschine ein Wärmespeicher eingeschaltet, der den stoßweise zufließenden Dampf mit annähernd gleichem Druck der Turbine zuführt. Im Wärmespeicher befindet sich Wasser, das während der Arbeitsperiode der Primärmaschine die Wärme des nicht in die Turbine gelangenden Dampfes aufnimmt, diesen gleichzeitig kondensierend. Temperatur und Druck im Wärmespeicher steigen. In den Betriebspausen fällt der Druck, und die aufgespeicherte Wärme verdampft die entsprechende Menge Wasser. Die dadurch sich einstellenden Druckschwankungen sind für einen bestimmten Fall im Diagramm, Fig. 462, dargestellt.

Da die Wärmeleitungsfähigkeit des Wassers an und für sich gering ist, so muß dasselbe entweder in dünne Streifen zerlegt oder in einen lebhaften Umlauf gebracht werden, wenn innige Mischung zwischen Dampf und Wasser stattfinden soll. Die Ausführungen der ersteren Art, bei welcher der Dampf über flache, wassergefüllte Schalen aus Gußeisen streicht, sind durch solche nach Fig. 463 ersetzt worden. Mit der Auspuffleitung der Primärmaschine werden die Rohre b verbunden, welche elliptischen Querschnitt haben. Aus diesen Rohren tritt der Dampf an den einander zugekehrten Seiten durch kleine Öffnungen aus und versetzt dadurch das Wasser in lebhafte Bewegung. Dachförmige Bleche c sind zur Verhinderung des Überkochens angebracht. Damit kein Wasser in die Auspuffleitung zurücktreten kann, ist in dieser das Rückschlag-

ventil h angebracht. Durch die Öffnung d fließt der Dampf der Turbine zu.

Übersteigt der Druck im Wärmespeicher eine gewisse Höhe, so öffnet sich ein doppelsitziges Sicherheitsventil, welches von Hand auf den höchsten Druck eingestellt werden kann. Sinkt der Druck, so

wird zur Aufrechterhaltung des Betriebes durch ein selbsttätig öffnendes Ventil Frischdampf eingelassen. Wenn die Primärmaschine mit sehr großen Betriebspausen z. B. von 10 Minuten arbeitet, oder wenn die Turbine auch bei stillgesetzter Primärmaschine betrieben werden soll, so wird die Niederdruckturbine mit einer Hochdruckturbine gekuppelt, deren Dampfeinlaßventil sich öffnet, wenn die Spannung im Wärmespeicher sich dem Eintrittsdruck der Niederdruckturbine allzusehr nähert.

Der Abdampfverbrauch beträgt für die KW-Stunde etwa 20 kg.

6. Das Regenerativ-Verfahren.

Um in der Dampfmaschine einen Wirkungsgrad zu erreichen, der dem des entsprechenden Carnot-Prozesses gleich ist, stehen zwei Mittel zur Verfügung: entweder führt man den dynamischen Speisewassererhitzer ein, dessen Verwendung in der Praxis aber mehr Nachteile als Vorteile zur Folge haben würde, oder man strebt einen ähnlichen Arbeitsvorgang an, wie ihn Stirling bei seinen Heißluftmaschinen ausgeführt

Fig. 464.

hat, d. h. man begrenzt das Entropiediagramm seitlich nicht durch Adiabaten, sondern durch Isoadiabaten. Isoadiabatisch werden diejenigen Zustandsänderungen genannt, deren Darstellung im Entropiediagramm horizontal äquidistante Kurven ergibt.

Sind demnach die Grenztemperaturen T_1 und T_2 bestimmt, so gibt es unendlich viele Prozesse, welche ebenso wie der Carnot-Prozeß ein Maximum an Arbeit liefern. Beim Ersatz der Adiabaten durch beliebig verlaufende Isoadiabaten bleibt eben das Wärmegewicht wie beim Carnot-Prozeß konstant, und das den letzteren im Entropiediagramm darstellende Rechteck wird durch eine Fläche ersetzt, welche mit jenem gleiche Basis $\left(\frac{Q}{T}\right)$ und gleiche Höhe $(T_1 - T_2)$, also auch gleichen Inhalt hat.

Eine eigenartige Einrichtung weist die von Thurston untersuchte Pumpmaschine der Nordberg Mfg. Co. auf, bei welcher das Speisewasser durch Wärmeabgabe expandierenden Dampfes erhitzt wird. Vom Oberflächenkondensator wird nämlich das Dampf- und Wassergemisch in einen Behälter hinaufgepumpt, in welchem sich Platten befinden, die vom Auspuffdampf des vierten Zylinders unter Luftleere geheizt werden.

Hierauf durchströmt das Speisewasser hintereinander vier Vorwärmer, von denen der erste in der Weise geheizt wird, daß nach $7/_8$ Hub des großen Zylinders Dampf durch eine besondere Leitung hineinströmt. Die übrigen Vorwärmer werden durch den Dampf der Aufnehmer und der Mäntel geheizt. Das Sankey-Diagramm¹), Fig. 464, zeigt, daß 22 v. Ht. der von dem Kessel gelieferten Wärme nutzbar gemacht werden kann. Der Dampfverbrauch betrug bei 14 kg/qcm Kesseldruck und einer Leistung von 712 PS_i 5,54 kg/PS-Stunde. Bei einem Versuch ohne die Speisewasservorwärmung nahm der Verbrauch bis 5,2 kg ab. Gleichzeitig ergab sich aber eine geringere Leistung für die dem Kessel zugeführte Wärmeeinheit.

¹) Dieses nach seinem Urheber Sankey genannte Diagramm wird neuerdings seiner Anschaulichkeit wegen vielfach angewendet und gibt die Wärmeverteilung in Form von Strömen an.

Der Wirkungsgrad des Kreislaufes dieser Maschine soll nach Thurston 84 v. Ht. eines gleichartigen Carnot-Prozesses betragen. Daß eine derartige Vorwärmung große Annäherung an den Carnot-Prozeß zur Folge hat, zeigt das Entropiediagramm, Fig. 465, aus welchem u. a. ersichtlich ist, daß ein Teil der günstigen Wirkung durch Ausnutzung des sonst eintretenden Verlustes infolge der großen Expansions-Endspannung entsteht. Der eingeschlagene Weg ist besonders deshalb interessant, weil damit eines der wenigen Mittel verwendet ist, den Wirkungsgrad des Carnot-Prozesses zu erreichen. Cotteril und Ancona (Z. 1897 S. 554) haben übrigens schon früher auf diese Art der Vorwärmung hingewiesen.

In neuerer Zeit haben E. Lewicki, Imle, v. Knorring und Nadrowski das Regenerativverfahren im Turbinenbetrieb verwendet. Nach der Patentschrift wird der aus der Turbine tretende, noch überhitzte Abdampf durch Heizkörper geleitet, welche im Wasser- oder Dampfraum des Kessels liegen und Frischdampf erzeugen oder überhitzen. Der austretende Abdampf wird hierauf nach Durchströmen eines Vorwärmers in die Atmosphäre oder den Kondensator entlassen. Es wird demnach möglich, das gesamte Wärmegefälle des Abdampfes oberhalb der Siedetemperatur für den Frischdampf zu verwerten und in den Arbeitsprozeß zurückzuführen.

Versuche mit diesem Verfahren, bei einer zweistufigen Turbine nach Laval angewendet, sind von gutem Erfolg gewesen.

K. Die Schmiervorrichtungen.

Die Steigerung des Dampfdruckes und der Geschwindigkeit, die verschärften Betriebsbedingungen überhaupt, sowie die Einführung der stehenden Maschinen mit ihrer schwierigen Zugänglichkeit haben zu einer bedeutenden Vervollkommung der Schmiervorrichtungen Veranlassung gegeben und für größere Maschinen ist Durchführung der Zentralschmierung unerläßlich geworden.

Bei stehenden Maschinen ist allgemein die Anordnung derart getroffen, daß den Verteilapparaten das Öl von einem hochgelegenen Behälter aus zufließt. Den nicht unter Druck stehenden Maschinenteilen läuft das Öl mit natürlichem Gefälle zu, während es den unter Druck stehenden Zylindern und Stopfbüchsen durch Pumpen zugeführt wird. Das gebrauchte Öl wird in der Mulde zwischen den Kurbelwellenlagern aufgefangen, nach einem Behälter im Fundamentkeller geleitet, filtriert und durch eine Pumpe wieder nach dem oberen Behälter zurückgeschafft.

Eine Druckschmiervorrichtung von L. Becker in Offenbach a. M. zeigt Fig. 466. Sie besteht aus einem Ölbehälter mit Fülltrichter und drehbarem Verschlußdeckel, durch welchen das zur Verwendung kommende Öl in einen Siebkasten gebracht wird, der gröbere Unreinigkeiten In zwei seitlich vom Ölbehälter liegenden Kammern bezurückhält. finden sich zwei Plungerpumpen, die mittelst Exzenterschleifen angetrieben werden. Sie sind nach Abnahme der seitlichen Verschlußdeckel zugänglich. Beide von einer gemeinschaftlichen und durch den ganzen Kasten hindurchgehenden Welle angetriebene Pumpen drücken das Öl in die vor dem Ölbehälter liegende Vorlage, an der sich die Regelungsventile befinden, die es auf die einzelnen Schmierstellen verteilen. Das für jede derselben abgemessene Öl tritt durch eine Düse in den unteren Teil eines senkrecht stehenden, mit Wasser gefüllten Glasrohres und steigt in demselben in Tropfenform auf. An die obere Glasfassung schließt sich ein Kupferrohr an, das nach der Verwendungsstelle Der Raum hinter diesen Schaugläsern ist mit einer Platte aus fijhrt. weißem, undurchsichtigem Glas verschlossen, hinter welcher sich eine Anzahl von elektrischen Glühlampen befinden, so daß die aufsteigenden Öltröpfchen sich scharf von dieser Glasplatte abheben. Die beiden Plungerdruckpumpen haben federbelastete Überlaufventile, welche die

über den Ölbedarf hinausgehend geförderte Ölmenge nach dem Behälter zurückführen.

Die Konstruktion einer Druckvorrichtung mit gemeinschaftlichen Pumpen hat gegenüber der Anordnung einer selbständigen Pumpe für jede Ölstelle hauptsächlich den Vorteil größerer Betriebssicherheit, da Dubbel, Dampfmaschinen. 3. Aufl. 29

bei den kleinen Fördermengen der einzelnen Pumpen und den hierdurch bedingten kleinen Abmessungen bei unreinem Öl leicht ein Versagen eintritt.

Fig. 467 zeigt die Lentzsche Druckschmiervorrichtung, gebaut von Schäffer & Budenberg, Magdeburg-Buckau.

Bei dieser Schmierpumpe ist ein hin- und hergehender Stufenkolben zur Anwendung gebracht, der das Öl an die zu schmierende Stelle drückt.

Der Vorrat befindet sich in der oberen Glasvase, aus welcher das Öl in seitliche Verteilungsarme geleitet und durch kleine, über den Schaugläsern befindliche Hähnchen reguliert wird.

Die Verdrängung der Kolbenstufen ist so groß, daß das zugeführte, in den Glasröhren niedertröpfelnde Öl mit Sicherheit fortgedrückt wird. In die nach den Verbrauchsstellen führenden Einzelleitungen sind kleine Rückschlagventilchen eingesetzt, welche das Zurücktreten des geförderten Öles beim Kolbenrückgang verhindern. Während an der einen Seite des Hauptkörpers das Ansaugen stattfindet, wird auf der anderen Seite das Öl fortgedrückt. Saugventile besitzt die Vorrichtung nicht.

Fig. 468.

Für die Zylinderschmierung werden fast ausschließlich Schmierpressen verwendet, bei denen ein Taucherkolben durch eine Schraubenspindel in den Ölzylinder allmählich hinabgedrückt wird und dabei das Öl zur Schmierstelle treibt. Der Antrieb erfolgt durch ein Schneckenrad, das mit der Spindel durch Reibung gekuppelt ist. Nach Lösung dieser Reibungskuppelung kann die Spindel von Hand gedreht werden, um entweder aufzufüllen oder mehr Öl zu geben. Eine derartige Schmierpresse für Graphit-Öl¹) mit besonderer Umlaufpumpe zeigt

¹) Der anfängliche Mißerfolg der Graphitschmierung war wohl teils dem Mangel an geeigneten Schmiervorrichtungen, teils dem Umstand zuzuschreiben, daß das Graphit häufig nicht rein genug, sondern mit erdigen Bestandteilen vermischt war. Da dasselbe außerdem keine lösende Wirkung hat, so setzt es sich vielfach an klebrigen Ansätzen, Ölkrusten usw. fest, so daß Zylinder und Kanäle vor Anwendung des Graphits gründlich zu reinigen sind.

Bei Versuchen hat man mit 1/2—I v. Ht. Graphitzusatz zu beginnen; mehr als 5 v. Ht. braucht nie zugesetzt zu werden. Die Ölmenge kann hierbei stark verringert werden.

Weitere Vorteile bestehen darin, daß die Laufflächen blank poliert und alle Unebenheiten ausgefüllt werden; auch hält das Packungsmaterial der Stopfbüchsen länger. Fig. 468. (Ausführung Schneider & Helmecke, Magdeburg.) Diese läßt das Öl einen fortwährenden Kreislauf in dem Zylinder ausführen, so daß durch die ständige Bewegung das Graphit in dem Öl gleichmäßig verteilt bleibt und vor allem nicht zu Boden sinken kann.

Die Flügel a saugen das Öl aus dem Zylinder durch das Kugelventil b_1 an, um es durch b_2 weiter zu befördern und durch die Öffnung c

in den Zylinder zurück zu drücken. Der Flügel der Pumpe wird durch das Gestänge def von der Welle g des Schneckengetriebes hin- und herbewegt.

Von den Schmiervorrichtungen für nicht unter Druck stehende Teile sind wieder diejenigen von Becker zu nennen, welche in einigen Ausführungen der Bauart nach Fig. 466 ähnlich sehen, nur daß die Druckpumpen fehlen.

Fig. 469 zeigt den Beckerschen Ölverteiler mit konstanter Druckhöhe und gläsernem Ölgefäß. Durch Auf- und Niederschrauben der Stellhülse wird der auf dieser ruhende Klappknopf und mit ihm die Ventilspindel gesenkt, wobei die Auslaßöffnung durch einen kegelförmigen Stift mehr oder weniger verengt wird. Die Vorrichtung für die Erhaltung der konstanten Druckhöhe a beruht auf dem Prinzip des bekannten Mariotteschen Gefäßes. Die Schmierung erfolgt dadurch bei leerem Ölbehälter ebenso kräftig wie bei einem neu aufgefüllten Gefäß.

Die Hauptlager liegender Maschinen werden meist durch besondere Vorrichtungen geschmiert. Fig. 470. (Ausführung der Maschinenfabrik Grevenbroich.) Eine tiefstehende Flügelpumpe saugt das gebrauchte Öl aus einem Behälter an und drückt es nach dem Schmiergefäß, von wo aus es durch zwei kleine Regelungsventile dem Lager wieder zugeführt wird. Das Gefäß ist mit einem feinen Sieb, sowie mit Filzeinlagen zum Aufsaugen aller Unreinigkeiten ausgestattet; um den sich festsetzenden dickeren Bodensatz nicht in das Lager gelangen zu lassen, ist der Abfluß an die tiefste Stelle gelegt.

Der Lagerlauf der Wellen größerer Maschinen ist nach Riemers Vorschlag zweckmäßig mit achsialen Ölnuten zu versehen.

L. Die Wirtschaftlichkeit des Dampfbetriebes.

Für Kraftanlagen kommen außer der Dampfmaschine hauptsächlich die Wassermaschinen und Gasmaschinen in Betracht.

Die Verwendung der ersteren setzt natürlich das Vorhandensein von Wassermengen unter Gefälle voraus. Die Wassermaschinen arbeiten am wirtschaftlichsten, da die Betriebskosten sich nur aus Verzinsung, Abschreibung, sowie aus den Ausgaben für Schmierung und Ausbesserungen zusammensetzen. Die Ausgaben für Bedienung fallen wenigstens bei kleineren und mittleren Anlagen fort. Das Betriebsmittel steht in den weitaus meisten Fällen kostenlos zur Verfügung.

Für den Betrieb der Wärmekraftmaschinen entstehen hingegen große, wenn auch nicht immer ausschlaggebende Kosten durch den Brenstoffverbrauch. Bezüglich des letzteren selbst ist die Gasmaschine der Dampfmaschine zweifellos überlegen. Da aber die Wärmeeinheit in den von der Gasmaschine meist gebrauchten Brennstoffen (Koks und Anthrazit) höher bezahlt werden muß als in der gewöhnlichen Steinkohle, die bei Dampfkesselfeuerungen verwendet wird, so kann bei der Berechnung der Betriebskosten die günstigere thermische Wirkung der Gasmaschine nicht entsprechend in die Erscheinung treten.

Eine Änderung hierin und zwar zugunsten der Gasmaschine hat allerdings in neuerer Zeit das Gelingen der Braunkohlenvergasung gebracht.

Ein weiterer Umstand, der bei Gasanlagen in Betracht gezogen werden muß, ist die geringe Steigerungsfähigkeit ihrer Leistung. Die Gasmaschine arbeitet am günstigsten bei ihrer Höchstleistung, kann jedoch der nötigen Kraftreserve wegen nicht mit dieser dauernd betrieben werden, worin eine Gefahr für ihre Wirtschaftlichkeit überhaupt liegt.

Angenommen, daß z. B. eine Anlage während der Tagesstunden 100 PS zu leisten hat und daß durch den Lichtbetrieb abends eine Gesamtleistung von 140 PS erzeugt werden muß, so wäre die Maschine mit einer Höchstleistung von mindestens 160 PS zu bestellen. Eine Gasmaschine, welche während des weitaus größten Teiles der gesamten Betriebstundenzahl nur mit rd. $^{2}/_{3}$ ihrer Höchstleistung beansprucht wäre, würde in diesem Falle entschieden ungünstiger als die Dampfmaschine arbeiten, deren Dampfverbrauch pro PS_e-Stunde in weiten Belastungsänderungen unveränderlich bleibt. (So stellte Schröter an einer Sulzerschen Tandemverbundmaschine von 1000 PS fest, daß diese Maschine zwischen 400 und 1000 PS_i einen nahezu unveränderlichen thermischen Wirkungsgrad, auf die Effektivleistung bezogen, aufwies. Diese Tatsache ist seitdem häufiger festgestellt worden.)

Unbedingt ist aber die Dampfmaschine allen anderen Wärmekraft maschinen — unter Umständen sogar den Wassermaschinen — dann überlegen, wenn ihr gesamter Abdampf oder ein Teil desselben zu Kochoder Heizzwecken verwendet werden kann. Die Heizung einer Fabrik mit 1¹/₂ atm. Überdruck des Heizdampfes erfordert für 1 kg Dampf einen Wärmeaufwand von 645 W.E. Läßt man diesen Heizdampf vor seiner Verwendung in einer Dampfmaschine von 8 Atm. auf 11/2 Atm. expandieren, so werden, einem Kesseldruck von 81/2 Atm. entsprechend, pro 1 kg Dampf 660,4-645 = 15,4 W.E. mehr nötig. Durch einen Mehraufwand von 15,4 W.E. pro kg Dampf läßt sich demnach z. B. in einer Einzylindermaschine mit rd. 200 kg Heizdampf pro Stunde eine Arbeit von 100 PS leisten. Die Betriebskosten fallen hier noch geringer dadurch aus, daß Abschreibung und Verzinsung der Kesselanlage wenigstens teilweise der Heizanlage zur Last geschrieben werden können.

In nachstehender Zahlentafel ist eine überschlägige Betriebskostenberechnung für kleinere Leistungen durchgeführt.

Betriebsart:	Sauggas-Anlagen			Lokomobilen			
 Normale Leistung in PS_e Höchstleistung in PS_e Anlagekosten, einschl. Rohrleitungen, Funda- mert Aufstellung und Aufstel	25 29	$\begin{array}{c} 40\\ 46\end{array}$	100 115	25 38	$\begin{array}{c} 40\\52\end{array}$	100 125	
Schornstein	$10\ 800$ 0,5	$14\ 100\ 0,46$	$26\ 900$ 0,41	9600 0,75	11 600 0,7	22 100 0,69	
 Brennstoffkosten pro Jahr (300 Tage zu 10 Std.) Schmierung Bedienung Verzinsung u. Abschreibung (11¹/₂ v. Ht.) 	$1282 \\ 360 \\ 1200 \\ 1242$	$1882,8 \\ 450 \\ 1200 \\ 1621,50$	4194,30 750 1500 3093,50	1113,7524012001104	$1663,20 \\ 350 \\ 1200 \\ 1334$	4098,60 500 1500 2541,50	

Vergleich der Betriebskosten von Sauggas-Anlagen und Lokomobilen.

Betriebsart:	Sauggas-Anlagen			Lokomobilen			
 Gesamtbetriebskosten pro Jahr Gesamtbetriebskosten pro PS_a-Stunde Brennstoffkosten pro PS_e-Stunde 	4084 5,445 1,709	5154,30 4,295 1,569	9537,80 3,179 1,398	3657,75 4,877 1,485	4547,20 3,789 1,386	8640,10 2,880 1,366	

Anmerkung. Zum Vergleich sind Heißdampflokomobilen herangezogen. Die Brennstoffpreise beziehen sich auf Berlin und zwar betragen dieselben: Kohle für Lokomobilbetrieb von rd. 7500 W. E. Heizwert Mk. 180.— für 10000 kg Deutscher Anthrazit für Sauggasbetrieb von rd. 8000 W. E. Heizwert Mk. 310. für 10000 kg.

In den Brennstoffverbrauch sind 10 v. Ht. für Anheizen eingeschlossen.

Da die Kosten für Maschinengebäude und für deren Abschreibung (2 v. Ht.) ebenso wie die Ausgaben für Ausbesserungen, Beleuchtung usw. für beide Betriebsarten annähernd gleich sind, so sind dieselben nicht aufgeführt.

Vor allem sei darauf hingewiesen, daß die Brennstoffkosten in keinem Fall auch nur die Hälfte der Gesamtkosten ausmachen, demnach in ihrem Einfluß auf diese nicht zu überschätzen sind. Eine weitere Herabsetzung des Sauggasverbrauches um 10 v. Ht. würde die Betriebskosten nur um 3:4 v. Ht. verändern. Die folgende Zahlentafel berücksichtigt Verwertung des Abdampfes. Der Brennstoffverbrauch der Sauggasanlage ist hier etwas höher als in der vorhergehenden Tabelle angenommen worden.

Für den Vergleich größerer Leistungen — etwa über $200 \div 250 \text{ PS}_{e}$ — wären statt der Lokomobilen ortfeste Dampfmaschinen ebenfalls mit Verwendung überhitzten Dampfes heranzuziehen. Trotz größerer Maschineneinheiten dürfte der Kohlenverbrauch jedoch nicht herabzusetzen sein, da bezüglich desselben die in der Zahlentafel berücksichtigten Heißdampflokomobilen größten ortfesten Anlagen gleichstehen. Aber auch die Gasmaschinen weisen bei größeren Leistungen keine Abnahme des Verbrauches auf. Mit zunehmender Leistung wird die kühlende Zylinderoberfläche im Verhältnis zum Hubraum kleiner, so daß die Kompression, deren Höhe auf den Gasverbrauch von größtem Einfluß ist, infolge der Gefahr der Vorzündungen eher eine Grenze findet.

Den für die verschiedenen Verwendungsgebiete erforderlichen Betriebsbedingungen: Gleichmäßigkeit des Ganges und genaue Regulierbarkeit für Dynamoantrieb, Umsteuerbarkeit und geringste Empfindlichkeit für Bergbau und Hüttenwerksbetrieb, sowie leichte Inbetriebsetzung und großer Wechsel in der Umlaufzahl wird wenigstens vorläufig noch am besten von der Dampfmaschine entsprochen.
Additional material from *Entwerfen und Berechnen der Dampfmaschinen,* ISBN 978-3-662-32207-9, is available at http://extras.springer.com

M. Dampftabellen.

I. Haupttabelle.

Tabelle für gesättigten Wasserdampf.

Druck	Tem-	Flüssig-	Gesamt-	Verdan	npfungsw	/ärme		Spez. Ge- wicht	En- tropie		Ab- solute
(ab- solut)	peratur	wärme	wärme	gesamte	innere	äußere	u	$\gamma = \frac{1}{v}$	$\tau = \int c d t$	$\frac{\mathbf{r}}{\mathbf{T}}$	Tem- peratur
kg qcm	t	q	λ	r	ę	APu	cbm/kg	kg/cbm	JT		Т
0.1	15 59	45.65	620.40	574 75	520 25	25 / 1	15 019	0.067	0 155	1 904	219 59
0,1	59 76	59.89	624 73	564 84	528 13	36 70	7 781	0,007	0,100	1 698	332 76
0,2	68 74	68.93	627.47	558.53	521.03	37.51	5.301	0 189	0.225	1,634	341.74
0,4	75,47	75,71	629,52	553,81	515,71	38,10	4,039	0,248	0,245	1,589	348,47
0,5	80,90	81,19	631,17	549,99	511,41	38,58	3,271	0,306	0,260	1,554	353,90
0,6	85,48	85,82	632,57	546,75	507,78	38,97	2,754	0,363	0,273	1,525	358,48
0,7	89,47	89,84	633,79	543,94	504,63	39,31	2,381	0,420	0,285	1,501	362,47
0,8	93,00	93,43	634,67	541,44	501,84	39,60	2,099	0,476	0,294	1,479	366,00
0 ,9	96,19	96,64	635,84	539,20	499,32	39,88	1,879	0,532	0,303	1,461	369,19
1,0	99,09	99,58	636,72	537,15	497,02	40,13	1,701	0,587	0,311	1,444	372,09
1,1	101,76	102,28	637,54	535,26	494,91	40,35	1,555	0,643	0,318	1,428	374,76
1,2	104,24	104,79	638,29	533,50	492,95	40,55	1,433	0,697	0,325	1,414	377,24
1,3	106,55	107,14	639,00	531,86	491,12	40,74	1,329	0,752	0,331	1,401	379,55
1,4	108,72	109,34	639,66	530,33	489,41	40,92	1,239	0,806	0,337	1,389	381,72
1,5	110,76	111,42	640,28	528,87	487,79	41,08	1,161	0,860	0,342	1,378	383,76
1,6	112,70	113,38	640,87	527,49	486,26	41,24	1,093	0,914	0,348	1,368	385,70
1,7	114,54	115,25	641,43	526,18	484,80	41,38	1,032	0,968	0,352	1,358	387,54
1,8	116,29	117,03	641,97	524,94	483,42	41,52	0,978	1,021	0,357	1,348	38 9, 29
1,9	117,97	118,84	642,48	523,74	482,09	41,65	0,9 30	1,075	0,361	1,339	390,97
2,0	119,57	120,37	642,97	522,60	480,82	41,78	0,886	1,128	0,365	1,331	392,57
2,1	121,11	121,94	643,44	521,50	479,60	41,90	0,846	1,181	0,369	1,323	394,11
2,2	122,59	123,44	643,90	520,46	478,43	42,03	0,810	1,233	0,373	1,316	395,59
2,3	124,02	124,90	644,33	519,43	477,30	42,13	0,777	1,286	0,377	1,308	397,02
2,4	125,40	126,30	644,75	518,44	476,21	42,23	0,746	1,339	0,380	1,301	3 98,4 0
2,5	126,73	127,66	645, 15	517,49	475,16	42,33	0,718	3,391	0,384	1,295	399,73
2,6	128,02	128,97	645,55	516,57	474,14	42,43	0,692	1,443	0,387	1,288	401,02
2,7	129,26	130,25	645,93	515,68	473,15	42,53	0,668	1,495	0 ,3 90	1,282	402,26

											_
Druck	Tem-	Flüssig- keits-	Gesamt-	Verdan	npfungsv	värme	п	Spez. Ge- wicht	En- tropie	r	Ab- solute
(ab-	peratur	wärme	wärme	gesa nte	innere	äußere		$\gamma = \frac{1}{2}$	$t = \int dt$	T	Tem-
kg qcm	t	q	r	r	ę	APu	cbm/kg	kg/cbm	$\int \bar{J} \bar{T}$		Т
	/										
2,8 2.9	130,48 131.65	131,48 132.68	646,30 646.65	514,81 513.97	472,19 471.26	42,62 42.71	$0,645 \\ 0.624$	1,545 1.599	0,393	1,276 1.270	403,48
-,-		,									
3,0	132,80	133,85	647,00	513,15	470,36	42,79 42,88	0,605	1,651	0,399	1,265	405,80
3.2	135.00	136,10	647,68	511,57	468,62	42,96	0,569	1,754	0,405	1,254	408,00
3,3	136,06	137,18	648,00	510,81	467,78	43,04	0,553	1,805	0,407	1,249	409,06
3,4	137,09	138,24	648,31	510,07	466,96	43,11	0,538	1,857	0,410	1,244	410,09
3,5	138,10	139,27	648,62	509,35	466,16	43,19	0,523	1,908	0,413	1,239	411,10
3,6	139,09	140,28	648,95	508,67	465,38	43,29	0,510	1,959	0,415	1,234	412,09
3,7 3,8	140,05	141,27	649,22	507,95	463 88	43,33	0,497	2,010	0,417	1,230	413,05
3,9	141,92	143,18	649,78	506,61	463,15	43,46	0,473	2,112	0,422	1,221	414,92
4.0	142.82	144.10	650,06	505,96	462,43	43,53	0,461	2,163	0,424	1,217	415,82
4,1	143,71	145,01	650,33	505,32	461,73	43,59	0,451	2,213	0,426	1,213	416,71
4,2	144,58	145,90	650,60	504,70	461,04	43,66	0,441	2,264	0,429	1,209	417,58
4,5 4.4	145,45	140,78	651,11	504,08	459.70	43,72	0,431 0,422	2,314	0,431	1,205	419,45
-,-	,,		054.00	F00.00	450.05	40.00	0.449	0.445	0.495	4.405	400,00
4,5	147,09	148,48	651 61	502,89	459,05	43,38 43 89	0,413	2,415	0,435	1,197	420,09
4.7	148.69	150,12	651,85	501,73	457.79	43,95	0,396	2,105	0,439	1.190	421.69
4,8	149,47	150,92	652,09	501,17	457,17	44,00	0,389	2,566	0,440	1,186	422,47
4,9	150,24	151,71	652,32	500,62	456,56	44,05	0 ,3 81	2,616	0,442	1,183	423,24
5,0	150,99	152,48	652,55	500,07	455,97	44,11	0,374	2,667	0,444	1,179	423,99
5,1	151,73	153,24	652,78	499,54	455,38	44,16	0,367	2,717	0,446	1,176	424,73
5,2 5,3	152,47	153,99	653.22	499,01	454.80	44,21	0.354	2,700	0,448	1,173	425,47
5,4	153,90	155,46	653,44	497,98	453,67	44,31	0,348	2,866	0,451	1,167	426,90
5.5	154.59	156,18	653,65	497,57	453,12	44,36	0,342	2,916	0.453	1.163	427.59
5,6	155,28	156,89	653,85	496,97	452,57	44,40	0,336	2,965	0,455	1,160	428,28
5,7	155,96	157,59	654,07	496,48	452,04	44,45	0,331	3,015	0,456	1,157	428,96
5,8 5,9	156,63	158,27	654,47	496,00	451,51	44,49	0,325	3,064 3,114	0,458 0,459	1,155 1,152	429,63
e A	157.04	150.63	654 66	495.05	450 47	44 58	0.315	3 164	0.461	1 1 1 0	420.04
6,0 6,1	158.59	160.29	654.87	494.58	449.96	44.62	0.310	3,213	0,462	1,145	431.59
6,2	159,22	160,94	655,06	494,12	449,46	44,67	0,306	3,262	0,464	1,143	432,22
6,3	159,85	161,59	655,25	493,67	448,96	44,71	0,301	3,312	0,465	1,141	432,85
6,4	160,47	162,22	655,44	394,22	448,47	44,75	0,297	3,361	0,467	1,138	433,47
6,5	161,08	162,85	655 ,63	492,78	447,99	44,79	0,292	3,410	0,468	1,135	434,08
6,6 6 7	161,68	163,47	656 00	492,34	447,51	44,83	0,288	3,460	0,470	1,133	434,68
6.8	162.87	164.70	656.18	491.48	446.57	44.91	0.280	3,508	0,473	1,128	435.87
6,9	163,45	165,30	656,35	491,06	446,11	44,95	0,276	3,607	0,474	1,125	436,4 5

Druck	Tem-	Flüssig- keits-	Gesamt.	Verdampfungswärm		7ärme		Spez. En- Ge- wicht	r	Ab- solute	
(ab-	peratur	wärme	wärme	gesamte	innere	äußere	u	$\gamma = \frac{1}{v}$	$\tau = \int c dt$	T	Tem- peratur
kg/qcm	t	q	λ	r	ę	APu	ebm/kg	kg/cbm	$\int \mathbf{T}$		Т
7,0	164,03	165,89	656,53	490,64	445,65	44,99	0,273	3,656	0,475	1,123	437,03
7,1	164,60	166,48	656,70	490,22	445,20	45,02	0,269	3,705	0,477	1,120	437,60
7,2	165,16	167,06	656,87	489,82	444,76	45,06	0,265	3,755	0,478	1,118	438,16
7,3	165,72	167,63	657,04	489,41	444,32	45,09	0,262	3,803	0,479	1,116	438,72
7,4	166,27	168,20	657,21	489,01	443,88	45,13	0,259	3,852	0,481	1,113	439,27
7,5	166,82	168,76	657,38	488,62	443,45	45,17	0,255	3,901	0,482	1,111	439,82
7,6	167,36	169,32	657,54	488,22	443,02	45,20	0,252	3,949	0,483	1,109	440,36
7,7	167,89	169,87	657,71	487,83	442,60	45,23	0,249	3,998	0,484	1,107	440,89
7,8	168,42	170,42	657,87	487,45	442,18	45,27	0,246	4,046	0,486	1,104	441,42
7,9	168,94	170,96	658,03	487,07	441,77	45,30	0,243	4,096	0,487	1,102	441,94
8,0	169,46	171,49	658,18	486,69	441,36	45,33	0,240	4,144	0,488	1,100	442,46
8,1	169,97	172,02	658,34	486,32	440,95	45,37	0,238	4,192	0,489	1,098	442,97
8,2	170,48	172,55	658,50	485,95	440,55	45,40	0,235	4,242	0,490	1,096	443,48
8,3	170,98	173,07	658,65	485,58	440,15	45,43	0,232	4,289	0,492	1,094	443,98
8,4	171,48	173,58	658,80	485,22	439,76	45,46	0,230	4,338	0,493	1,092	444,48
8,5	171,98	174,09	658,95	484,86	439,37	45,49	0,227	4, 387	0,494	1,090	444,98
8,6	172,47	174,60	659,10	484,50	438,98	45,52	0,224	4,436	0,495	1,088	445,47
8,7	172,95	175,10	659,24	484,15	438,60	45,55	0,222	4,484	0,496	1,086	445,95
8,8	173,43	175,60	659,40	483,80	438,22	45,58	0,220	4,532	0,497	1,084	446,43
8,9	173,91	176,09	659,54	483,45	437,84	45,61	0,211	4,580	0,498	1,082	446,91
9,0	174,38	176,58	659,69	483,11	437,47	45,64	0,215	4,629	0,49 9	1,080	447,38
9,1	174,85	177,06	659,83	482,77	437,10	45,67	0,213	4,677	0,501	1,078	447,85
9,2	175,31	177,54	659,97	482,43	436,73	45,70	0,211	4,725	0,502	1,076	448,31
9,3	175,77	178,02	660,11	482,09	436,37	45,73	0,209	4,773	0,503	1,074	448,77
9,4	176,23	178,49	660,25	481,76	436,01	45,76	0,206	4,821	0,504	1,072	449,23
9,5	176,68	178,96	660,39	481,43	435,65	45,78	0,204	4,870	0,505	1,071	449,68
9,6	177,13	179,42	660,52	481,10	435,29	45,81	0,202	4,918	0,506	1,069	450,13
9,7	177,57	179,88	660,66	480,78	434,94	45,84	0,200	4,964	0,507	1,067	450,57
9.8	178,01	180,34	660,80	480,45	434,59	45,86	0,198	5,014	0,508	1,065	451,01
9,9	178,45	180,79	660,93	480,14	434,25	45,89	0,197	5,062	0,509	1,064	451,45
10,00	178,89	1 81, 24	661,06	479,82	433,90	45,92	0,195	5,109	0,510	1,062	451,8 9
10,25	179,96	182,35	661,39	479,03	433,05	45,98	0,190	5,229	0,512	1,058	452,96
10,50	181,01	183,44	661,71	478,27	432,22	46,04	0,186	5,349	0,515	1,053	454,01
10,75	182,04	184,51	662,02	477,51	431,41	46,10	0,182	5,469	0,517	1,049	455,04
11,00	183,05	185,56	662,33	476,77	430,61	46,16	0,178	5,589	0,519	1,045	456,05
11,25	184,05	186,60	662,64	476,04	429,82	46,22	0,174	5,707	0,522	1,042	457,05
11,50	185,03	187,61	662,93	475,32	429,04	46,28	0,171	5,826	0,524	1,038	458,03
11,75	185,99	188,61	663,23	474,62	428,28	46,33	0,167	5,944	0,526	1,034	458,99
12,00	186,99	189,59	663,52	473,92	427,53	46,39	0,164	6,063	0,528	1,030	459,99
12,25	187,87	190,56	663,80	473,24	426,80	46,44	0,161	6,183	0,530	1,027	460,87
12,50	188,78	191,51	664,08	472,57	426,07	46,49	0,158	6,300	0,532	1,023	461,78
12,75	189,69	192,45	664,35	471,90	425,36	46,54	0,155	6,417	0,534	1,020	462,69

Druck	Tem-	Flüssig-	Gesamt	Verdan	npfungsw	ärme		Spez. Ge- wicht	En- tropie		Ab- solute
(ab- solut)	peratuı	wärme	wärme	gesamte	innere	äußere	u	$\gamma = \frac{1}{\mathbf{v}}$	$\tau = \int_{-\frac{1}{2}} \frac{\operatorname{cd} t}{\operatorname{cd} t}$	$\frac{\mathbf{r}}{\mathbf{T}}$	Tem- peratur
kg/qcm	t	q	λ	r	ę	APu	ebm/kg	kg/cbm	JТ		Т
13,00 13,25 13,50 13,75 14,00 14,25 14,50 14,75	190,57 191,45 192,31 193,16 194,00 194,83 195,64 196,45	193,38 194,29 195,18 196,07 196,94 197,81 198,66 199,50	664,63 664,90 665,16 665,41 665,69 665,92 666,17 666,42	471,25 470,61 469,97 469,34 468,73 468,12 467,52 466,92	424,66 423,96 423,28 422,61 421,95 421,29 420,65 420,01	46,59 46,64 46,69 46,74 46,78 46,83 46,83 46,87 46,91	0,152 0,149 0,147 0,144 0,142 0,139 0,137 0,135	6,534 6,656 6,773 6,890 7,006 7,126 7,244 7,362	0,536 0,538 0,540 0,542 0,544 0,544 0,546 0,548 0,549	1,017 1,013 1,010 1,007 1,004 1,001 0,998 0,995	463,57 464,45 465,31 466,16 467,00 467,83 468,64 469,45
15,00 16,00 17,00 18,00 19,00 20,00	197,24 200,32 203,26 206,07 208,75 211,34	200,32 203,53 206,67 209,54 212,35 215,07	666,66 667,60 668,49 669,35 670,17 670,96	466,34 464,07 461,83 459,81 457,82 455,89	419,38 416,95 414,62 412,40 410,28 408,23	46,96 47,12 47,21 47,41 47,54 47,66	0,133 0,125 0,118 0,112 0,106 0,101	7,477 7,943 8,418 8,865 9,328 9,794	0,551 0,558 0,565 0,571 0,577 0,582	0,992 0,980 0,970 0,960 0,950 0,951	470,24 473,32 476,26 479,07 481,75 484,34

II. Dampftabelle¹) für Temperaturen von 1-100°.

Tem-	Spannung d _t		cbm	kg	Tem-	Spannung d		cbm	kg	
peratur t	Atm. abs.	cm Vakuum- meter- anzeige	pro kg	pro cbm γ	peratur t	Atm. abs.	cm Vakuum- meter- anzeige	pro kg	cbm γ	
0 1 2 3 4 5	0,006 6 7 7 8 8	75,54 75,51 75,47 75,43 75,40 75,35	212,67 151,66	0,0047 0,0066	16 17 18 19 20	0,017 19 20 21 22	74,65 74,56 74,46 74,37 74,26	59,28	0,0169	
6 7 8 9 10	0,009 9 10 11 12	75,30 75,25 75,20 75,14 75,08	109,54	0,0091	21 22 23 24 25	0,024 25 27 29 31	74,15 74,03 73,91 73,78 73,65	44,38	0,0225	
11 12 13 14 15	0,012 13 14 15 16	75,02 74,95 74,88 74,81 74,73	80,10	0 ,0 125	26 27 28 29 30	0,032 34 37 39 41	73,50 73,30 73,19 73,03 72,85	35,58	0 ,0 298	

1) Weiß, Kondensation.

peratur t	Atm. abs. 0,044	cm Vakuum- meter- anzeige	pro kg	pro cbm		peratur		cm
91	0,044	1 1	pro pro ebm kg γ			t	Atm. abs.	Vakuum- meter- anzeige
51	10	72,66				66	0,257	56,5
32	40	72,46				67	268	55,6
33	49	72,26				68	281	54,6
34	52	72,04				69	293	53,7
35	55	71,82	25,68	0,0389		70	306	52,7
36	0,058	71,58				71	0,320	51,7
37	61	71,33				72	334	50,6
38	64	71,07				73	348	49,5
39	08 79	70,80	10.92	0.0504		74 75	304	48,3
40	14	70,51	19,05	0,0504		15	519	47,1
41	0,076	70,21				76	0,395	45,9
42	80	69,89				77	412	44,6
43	84	69,57				78	430	43,3
44	89	69,22				79	448	42,0
45	93	68,86	15,46	0,0647		80	466	40,5
46	0 ,09 8	68,48				81	0,485	39,1
47	104	68,09				82	505	37,6
48	109	67,68				83	526	36,0
49	115	67,25	10.10	0.0000		84. 95	547	34,4
50	121	66,80	12,16	0,0822		85		32,7
51	0,127	66,3				86	0,592	31,0
52	133	65,8				87	616	29,2
53	140	65,3				88	640	27,3
54 55	147	64,8	0.65	0 104		89 00	601	25,4
- 55	104	04,5	9,00	0,104			091	23,5
56	0,162	63,7	9,17	0,109		91	0,718	21,4
57	170	63,1	8,77	0,114	}	92	745	19,3
58	178	61.9	8,41	0,119	1	93	802	17,2
- 59 60	105	61 1	7 79	0,124		94 95	822	12.6
	190	01,1	1,10	0,129				14,0
61	0,205	60,4	7,41	0,135		96	0,865	10,2
62	214	59,7	7,11	0,141		97	897	7,8
63	224	58,9	6,81	0,147	l I	98	930	5,3
64	235	58,1	6,53	0,153	i i	99	964	2,7
65	246	57,3	0,23	0,160		100	1,000	U

kg

pro

cbm

γ

0,198

0,241

0,293

0,354

0,424

0,506

0,600

cbm

pro

 \mathbf{kg}

5,06

4,14

3,41

2,83

2,36

1,98

1,67

Großgasmaschinen. Ihre Theorie, Wirkungsweise und Bauart. Von Heinrich Dubbel, Ingenieur. Mit 400 Textfiguren und 6 Tafeln.

In Leinwand gebunden Preis M. 10 .---.

Die Gasmaschine. Ihre Entwicklung, ihre heutige Bauart und ihr Kreisprozeß. Von R. Schöttler, Geh. Hofrat, o. Professor an der Herzogl. Technischen Hochschule zu Braunschweig. Fünfte, umgearbeitete Auflage. Mit 622 Figuren im Text und auf 12 Tafeln.

In Leinwand gebunden Preis M. 20.-..

- Das Entwerfen und Berechnen der Verbrennungsmotoren. Handbuch für Konstrukteure und Erbauer von Gas- und Ölkraftmaschinen. Von Hugo Güldner, Oberingenieur, Direktor der Güldner-Motoren-Gesellschaft in München. Dritte, neubearbeitete Auflage. In Vorbereitung.
- Formeln und Tabellen der Wärmetechnik. Zum Gebrauch bei Versuchen in Dampf-, Gas- und Hüttenbetrieben. Von Paul Fuchs, Ingenieur. In Leinwand gebunden Preis M. 2.--.
- Zwangläufige Regelung der Verbrennung bei Verbrennungs-Maschinen. Von Dipl.Ing. Karl Weidmann, Assistent an der Technischen Hochschule zu Aachen. Mit 35 Textfiguren und 5 Tafeln. Preis M. 4.-..
- Verdampfen, Kondensieren und Kühlen. Erklärungen, Formeln und Tabellen für den praktischen Gebrauch. Von E. Hausbrand, Kgl. Baurat. Vierte, vermehrte Auflage. Mit 36 Textfiguren und 74 Tabellen. In Leinwand gebunden Preis M. 10.-.
- Kondensation. Ein Lehr- und Handbuch über Kondensationen und alle damit zusammenhängenden Fragen, auch einschließlich der Wasserrückkühlung. Für Studierende des Maschinenbaues, Ingenieure, Leiter größerer Dampfbetriebe, Chemiker und Zuckertechniker. Von F. J. Weiß, Zivilingenieur in Basel. Zweite, ergänzte Auflage. Bearbeitet von E. Wiki, Ingenieur in Luzern. Mit 141 Textfiguren und 10 Tafeln.

In Leinwand gebunden Preis M. 12.--.

- Die Kondensation der Dampfmaschinen und Dampfturbinen. Lehrbuch für höhere technische Lehranstalten und zum Selbstunterricht. Von Dipl.-Ing. Karl Schmidt. Mit 116 Textfiguren. Erscheint im Herbst 1910. In Leinwand gebunden Preis ca. M. 5.--.
- Die Berechnung der Luftpumpen für Oberflächenkondensationen unter besonderer Berücksichtigung der Turbinenkondensationen. Von Dr.-Ing. Karl Schmidt, Diplom-Ingenieur. Mit 68 Textfiguren.

Preis M. 4.80.

Technische Schwingungslehre. Einführung in die Untersuchung der für den Ingenieur wichtigsten periodischen Vorgänge aus der Mechanik starrer, elastischer, flüssiger und gasförmiger Körper sowie aus der Elektrizitätslehre. Von Dr. Wilhelm Hort, Dipl.-Ing. Mit 87 Textfiguren. Preis M. 5.60; in Leinwand gebunden M. 6.40. Die Steuerungen der Dampfmaschinen. Von Carl Leist, Professor an der Kgl. Technischen Hochschule zu Berlin. Zweite, sehr vermehrte und umgearbeitete Auflage, zugleich als fünfte Auflage des gleichnamigen Werkes von E. Blaha. Mit 553 Textfiguren.

In Leinwand gebunden Preis M. 20.-..

Die Regelung der Kraftmaschinen. Berechnung und Konstruktion der Schwungräder, des Massenausgleichs und der Kraftmaschinenregler in elementarer Behandlung. Von Professor Max Tolle, Privatdozent an der Techn. Hochschule in Karlsruhe. Zweite, verbesserte und vermehrte Auflage. Mit 463 Textfiguren und 19 Tafeln.

In Leinwand gebunden Preis M. 26.-

Hilfsbuch für Dampfmaschinen-Techniker. Herausgegeben von Joseph Hrabák, k. und k. Hofrat, emer. Professor an der k. und k. Bergakademie in Přibram. Vierte, bedeutend erweiterte Auflage. In drei Teilen. Mit Textfiguren.

In drei Leinwandbände gebunden Preis M. 20.-.

- Theorie und Berechnung der Heißdampfmaschinen. Mit einem Anhange über die Zweizylinder-Kondensations-Maschinen mit hohem Dampfdruck. Von Josef Hrabák, k. k. Hofrat, emer. Professor an der k. k. Bergakademie zu Přibram. In Leinwand geb. Preis M. 7.-.
- Die Thermodynamik der Dampfmaschinen. Von Fritz Krauß, Ingenieur, behördlich autorisierter Inspektor der Dampfkessel-Untersuchungs- und Versicherungs-Gesellschaft in Wien. Mit 17 Textfiguren. Preis M. 3,-.
- Technische Wärmemechanik. Die für den Maschinenbau wichtigsten Lehren aus der Mechanik der Gase und Dämpfe und der mechanischen Wärmetheorie. Von W. Schüle, Ingenieur, Oberlehrer an der Königl. Höheren Maschinenbauschule zu Breslau. Mit 118 Textfiguren und 4 Tafeln. In Leinwand gebunden Preis M. 9.—.
- Neue Tabellen und Diagramme für Wasserdampf. Von Dr. R. Mollier, Professor an der Technischen Hochschule zu Dresden. Mit 2 Diagrammtafeln. Preis M. 2.—.
- Der Entropiesatz oder der zweite Hauptsatz der mechanischen Wärmetheorie. Von Dr. phil. H. Hort, Dipl.-Ing. in Dortmund. Mit 6 Textfiguren. Preis M. 1.-.
- Über die Verwertung des Zwischendampfes und des Abdampfes der Dampfmaschinen zu Heizzwecken. Eine wirtschaftliche Studie von Dr.-Ing. Ludwig Schneider. Mit 85 in den Text gedruckten Figuren und einer Tafel. Preis M. 3.20.

- Technische Messungen bei Maschinen-Untersuchungen und im Betriebe. Zum Gebrauch in Maschinenlaboratorien und in der Praxis. Von Prof. Dr.-Ing. Anton Gramberg, Dozent an der Technischen Hochschule Danzig. Zweite, umgearbeitete Auflage. Mit 223 Textfiguren. In Leinwand gebunden Preis M. 8.-.
- Technische Untersuchungsmethoden zur Betriebskontrolle, insbesondere zur Kontrolle des Dampfbetriebes. Zugleich ein Leitfaden für die Arbeiten in den Maschinenlaboratorien technischer Lehranstalten. Von Ingenieur Julius Brand, Oberlehrer der Kgl. Vereinigten Maschinenbauschulen zu Elberfeld. Zweite, vermehrte und verbesserte Auflage. Mit 301 Textfiguren, 2 lithogr. Tafeln und zahlreichen Tabellen.

In Leinwand gebunden Preis M. 8 .---.

Anleitung zur Durchführung von Versuchen an Dampfmaschinen und Dampfkesseln. Zugleich Hilfsbuch für den Unterricht in Maschinenlaboratorien technischer Schulen. Von Franz Seufert, Ingenieur, Oberlehrer an der Kgl. Höheren Maschinenbauschule zu Stettin. Zweite, erweiterte Auflage. Mit 40 Textfiguren.

In Leinwand gebunden Preis M. 2.--.

Die Dampfkessel. Ein Lehr- und Handbuch für Studierende technischer Hochschulen, Schüler höherer Maschinenbauschulen und Techniken, sowie für Ingenieure und Techniker. Bearbeitet von F. Tetzner, Oberlehrer an den Kgl. Vereinigten Maschinenbauschulen zu Dortmund. Vierte verbesserte Auflage. Mit 162 Textfiguren und 45 lithogr. Tafeln.

In Leinwand gebunden Preis M. 8.-..

- Handbuch des Materialprüfungswesens für Maschinenund Bauingenieure. Von Dipl.-Ing. Otto Wawrziniok, Adjunkt an der Königl. Technischen Hochschule zu Dresden. Mit 501 Textfiguren. In Leinwand gebunden Preis M. 20.-.
- F. Haier, Dampfkessel-Feuerungen zur Frzielung einer möglichst rauchfreien Verbrennung. Zweite Auflage, im Auftrage des Vereines deutscher Ingenieure bearbeitet vom Verein für Feuerungsbetrieb und Rauchbekämpfung in Hamburg. Mit 375 Textfiguren, 29 Zahlentafeln und 10 lithographischen Tafeln.

In Leinwand gebunden M. 20.-.

- Feuerungsuntersuchungen des Vereins für Feuerungsbetrieb und Rauchbekämpfung in Hamburg, durchgeführt unter der Leitung des Vereinsoberingenieurs und Berichterstatters F. Haier. Mit 30 Zahlentafeln, 85 Textfiguren und 14 lithograph. Tafeln. Gebunden Preis M. 12.---.
- Heizung und Lüftung von Gebäuden. Ein Lehrbuch für Architekten, Betriebsleiter und Konstrukteure. Von Professor Dr.-Ing. Anton Gramberg, Dozent an der Königl. Technischen Hochschule in Danzig-Langfuhr. Mit 236 Figuren im Text und auf 3 Tafeln.

In Leinwand gebunden Preis M. 12 .-- .

- Die Dampfturbinen. Mit einem Anhange über die Aussichten der Wärmekraftmaschinen und über die Gasturbine. Von Professor Dr. phil. Dr.-Ing. A. Stodola, Professor am Eidgenöss. Polytechnikum in Zürich. Vierte, umgearbeitete und erweiterte Auflage. Mit 856 Textfiguren und 9 Tafeln. In Leinwand geburden Preis M. 30.-.
- Bestimmungen des Maximalwertes des thermodynamischen Wirkungsgrades und der günstigsten Stufenzahl bei Dampfturbinen. Von Dr. Ing. A. Wenger, Oberingenieur. Mit 18 Textfiguren und 2 lithographierten Tafeln. Preis M. 3.-..
- Die Gebläse. Bau und Berechnung der Maschinen zur Bewegung, Verdichtung und Verdünnung der Luft. Von A. v. Ihering, Kaiserl. Regierungsrat, Mitglied des Kaiserl. Patentamtes, Dozent an der Universität zu Berlin. Zweite, umgearbeitete und vermehrte Auflage. Mit 522 Textfiguren und 11 Tafeln. In Leinwand gebunden Preis M. 20.--.
- Die Entropietafel für Luft und ihre Verwendung zur Berechnung der Kolben- und Turbo-Kompressoren. Von Prof. P. Ostertag in Winterthur. Mit 11 Textfiguren und 2 lithographierten Tafeln. Preis M. 2.80.
- Elastizität und Festigkeit. Die für die Technik wichtigsten Sätze und deren erfahrungsmäßige Grundlage. Von Dr.-Ing. C. Bach, Königl. Württ. Baudirektor, Prof. des Maschinen-Ingenieurwesens an der Königl. Techn. Hochschule Stuttgart. Sechste, vermehrte Auflage. In Vorbereitung.
- Elementar-Mechanik für Maschinen-Techniker. Von Dipl.-Ing. R. Vogdt, Oberlehrer an der Maschinenbauschule in Essen (Ruhr). Mit ca. 160 Textfiguren. Erscheint im Herbst 1910. Gebunden ca. M. 3.—,
- Aufgaben aus der technischen Mechanik. Von Prof. F. Wittenbauer.
 - I. Allgemeiner Teil. 770 Aufgaben nebst Lösungen. Mit zahlreichen Textfiguren. Preis M. 5.-; in Leinwand gebunden M. 5.80.
 - II. Teil: Festigkeitslehre. 545 Aufgaben nebst Lösungen. Mit 457 Textfiguren. Preis M. 6.-; in Leinwand gebunden M. 6.80.
 - III. Teil: Flüssigkeiten und Gase. Mit über 200 Textfiguren.

Erscheint im Herbst 1910.

Festigkeitslehre nebst Aufgaben aus dem Maschinenbau und der Baukonstruktion. Ein Lehrbuch für Maschinenbauschulen und andere technische Lehranstalten sowie zum Selbstunterricht und für die Praxis. Von Ernst Wehnert, Ingenieur und Lehrer an der Städt. Gewerbe- und Maschinenbauschule in Leipzig.

I. Band: Einführung in die Festigkeitslehre. 2. Auflage. Mit 247 Textfig. In Leinwand gebunden M. 6.--.

II. Band: Zusammengesetzte Festigkeitslehre. Mit 142 Textfiguren.

In Leinwand gebunden M. 7.-..

- Die Pumpen. Berechnung und Ausführung der für die Förderung von Flüssigkeiten gebräuchlichen Maschinen. Von Konr. Hartmann und J. O. Knoke. Dritte, neubearbeitete Auflage von H. Berg, Professor an der Königl. Techn. Hochschule in Stuttgart. Mit 704 Textfiguren und 14 Tafeln. In Leinwand gebunden Preis M. 18.-.
- Die Zentrifugalpumpen. Von Dipl.-Ingenieur Fritz Neumann. Zweite, neubearbeitete Auflage. In Vorbereitung.
- Wasserkraftmaschinen. Ein Leitfaden zur Einführung in Bau und Berechnung moderner Wasserkraft-Maschinen und -Anlagen. Von L. Quantz, Dipl.-Ing., Oberlehrer an der Kgl. Höheren Maschinenbauschule zu Stettin. Mit 130 Textfiguren. In Leinwand gebunden Preis M. 3.60.
- Die Theorie der Wasserturbinen. Ein kurzes Lehrbuch von Rudolf Escher, Professor am Eidgenössischen Polytechnikum in Zürich. Mit 242 Textfiguren. In Leinwand gebunden Preis M. 8.-.
- Die Turbinen für Wasserkraftbetrieb. lhre Theorie und Konstruktion. Von A. Pfarr, Geh. Baurat, Professor des Maschinen-Ingenieurwesens an der Großherzoglichen Technischen Hochschule zu Darmstadt. Zweite, neubearbeitete Auflage. Unter der Presse.
- Zur Theorie der Francis-Turbinen mit Versuchen an einer 300pferdigen Turbine. Von Dr.-Ing. Fritz Oesterlen. Mit 31 Textfiguren und 19 lithogr. Tafeln. Preis M. 7.-.
- Neuere Turbinenanlagen. Auf Veranlassung von Professor E. Reichel bearbeitet von Wilhelm Wagenbach, Konstruktionsingenieur an der Kgl. Technischen Hochschule Berlin. Mit 48 Textfiguren und 54 Tafeln. In Leinwand gebunden Preis M. 15.-.
- Turbinen und Turbinenanlagen. Von Ingenieur Viktor Gelpke. Mit 52 Textfiguren und 31 lithogr. Tafeln.

In Leinwand gebunden Preis M. 15.-..

- Die automatische Regulierung der Turbinen. Von Dr.-Ing. W. Bauersfeld, Assistent an der Kgl. Technischen Hochschule Berlin. Mit 126 Textfiguren. Preis M. 6.—.
- Die Technologie des Maschinentechnikers. Von Ingenieur Karl Meyer, Professor, Oberlehrer an den Kgl. Vereinigten Maschinenbauschulen zu Cöln. Mit 377 Textfig. In Leinwand gebunden Preis M. 8.—.
- Die Entwicklung der Dampfmaschine. Eine Geschichte der orts festen Dampfmaschine und der Lokomobile, der Schiffsmaschine und Lokomotive. Im Auftrage des Vereines deutscher Ingenieure bearbeitet von Conrad Matschoß. Zwei Bände. Mit 1853 Textfiguren und 38 Bildnissen. In Leinwand gebunden Preis M. 24.—; in Halbleder gebunden M. 27.—.

- Hilfsbuch für den Maschinenbau. Für Maschinentechniker sowie für den Unterricht an technischen Lehranstalten. Von Professor Fr. Freytag, Lehrer an den Technischen Staatslehranstalten zu Chemnitz. Dritte, vermehrte und verbesserte Auflage. Mit 1041 Textfiguren und 10 Tafeln. In Leinwand gebunden Preis M. 10.—; in Leder gebunden M. 12.—.
- Die Hebezeuge. Theorie und Kritik ausgeführter Konstruktionen mit besonderer Berücksichtigung der elektrischen Anlagen. Ein Handbuch für Ingenieure, Techniker und Studierende. Von Ad. Ernst, Professor des Maschinen-Ingenieurwesens an der Kgl. Technischen Hochschule in Stuttgart. Vierte, neubearbeitete Auflage. Drei Bände. Mit 1486 Textfiguren und 97 lithogr. Tafeln. In 3 Leinwandbände gebunden Preis M. 60.-.
- Die Werkzeugmaschinen und ihre Konstruktionselemente. Ein Lehrbuch zur Einführung in den Werkzeugmaschinenbau. Von Fr. W. Hülle, Ingenieur, Oberlehrer an der Königl. Höheren Maschinenbauschule in Stettin. Zweite, verbesserte Auflage. Mit 590 Textfiguren und 2 Tafeln. In Leinwand gebunden Preis M. 10.-.
- Die Werkzeugmaschinen. Von Hermann Fischer, Geh. Reg. Rat und Professor an der Königl. Teschnischen Hochschule zu Hannover. Band I. Die Metallbearbeitungsmaschinen. Zweite, vermehrte und verbesserte Auflage. Mit 1545 Textfiguren und 50 Tafeln. In zwei Leinwandbände gebunden Preis M. 45.-. Band II. Die Holzbearbeitungsmaschinen. Mit 421 Textfiguren.

In Leinwand gebunden Preis M. 15.-..

- Der Fabrikbetrieb. Praktische Anleitung zur Anlage und Verwaltung von Maschinenfabriken und ähnlichen Betrieben sowie zur Kalkulation und Lohnverrechnung. Auflage. Von Albert Ballewski. Zweite, verbesserte Preis M. 5.-; in Leinwand gebunden M. 6.-.
- Fabrikorganisation, Fabrikbuchführung und Selbstkostenberechnung der Firma Ludw. Loewe & Co., Aktiengesellschaft, Berlin. Mit Genehmigung der Direktion zusammengestellt und erläutert von J. Lilienthal. Mit einem Vorwort von Dr.-Ing. G. Schlesinger, Professor an der Technischen Hochschule Berlin.

In Leinwand gebunden Preis M. 10.-.

- Die Inventur im Fabrikbetriebe. Von Ingenieur Werner Grull. Mit zahlreichen Formularen im Text. Preis ca. M. 6.—; in Leinwand gebunden ca. M. 7.—.
- Darmstaedters Handbuch zur Geschichte der Naturwissenschaften und der Technik. In chronologischer Darstellung. Zweite, umgearbeitete und vermehrte Auflage. Unter Mitwirkung von Prof. Dr. R. du Bois-Reymond und Oberst z. D. C. Schaefer herausgegeben von Prof. Dr. L. Darmstaedter.

In Leinwand gebunden Preis M. 16 .-- .