Mitteilungen

üher'

Forschungsarbeiten

auf dem Gebiete des Ingenieurwesens

insbesondere aus den Laboratorien der technischen Hochschulen

herausgegeben vom

Verein deutscher Ingenieure.

Heft 114.

Hochschild: Versuche über die Strömungsvorgänge in erweiterten und verengten Kanälen.

Berlin 1912 Springer-Verlag Berlin Heidelberg GmbH

Preis: 1 *M* f
ür Lehrer und Sch
üler t
echnischer Schulen; 2 *M* f
ür sonstige Bezieher. Eine Zusammenstellung des Inhaltes der Hefte 1 bis 107 der Mitteilungen über Forschungsarbeiten zugleich mit einem Namen- und Sachverzeichnis wird auf Wunsch kostenfrei von der Redaktion der Zeitschrift des Vereines deutscher Ingenieure, Berlin N.W., Charlottenstr. 43, abgegeben. Heft 110 und 111: Untersuchungen an elektrisch und mit Dampf betriebenen Fördermaschinen.

Heft 112: E. Heyn und O. Bauer: Untersuchung eines gerissenen Flammrohrschusses.
 R. Baumann: Versuche mit Aluminium, geschweißt und ungeschweißt, bei gewöhnlicher und bei höherer Temperatur.

Heft 113: Walther: Versuche über den Arbeitsbedarf und die Widerstände beim Blechbiegen.

Bezugsbedingungen:

Preis des Heftes 1 Mk;

zu beziehen durch Julius Springer, Berlin W. 9, Linkstr. 23/24;

für Lehrer und Schüler technischer Schulen 50 Pfg,

zn beziehen gegen Voreinsendung des Betrages vom Verein deutscher Ingenieure, Berlin N.W. 7, Charlottenstraße 43.

5 10 20 vH Nachlaß. Denagen, Freis und enfortemente Anzahl sind unter Einsendung eines Musters bei der Verlagsbuchhandlung von Julius Springer zu erfragen. Auflage des Blattes 27000.

Mitteilungen

über

Forschungsarbeiten

auf dem Gebiete des Ingenieurwesens

insbesondere aus den Laboratorien der technischen Hochschulen

herausgegeben vom

Verein deutscher Ingenieure

Heft 114.

Berlin 1912 Springer-Verlag Berlin Heidelberg GmbH ISBN 978-3-662-01687-9 ISBN 978-3-662-01982-5 (eBook) DOI 10.1007/978-3-662-01982-5

Inhalt.

Seite Versuche über die Strömungsvorgänge in erweiterten und verengten Kanälen. Von Dr.-Ing. Heinrich Hochschild

Versuche über die Strömungsvorgänge in erweiterten und verengten Kanälen.

Von Dipl.-Ing. Heinrich Hochschild.

Einleitung.

Die im Folgenden dargestellten Untersuchungen sollten zur Klärung der Strömungsvorgänge in erweiterten Kanälen beitragen, Vorgänge, wie sie bei Turbinenpumpen und Turbogebläsen in Frage kommen und für die Technik von großer Bedeutung sind. Anderseits sind derartige Untersuchungen nicht ohne theoretischen Wert, zumal im Vergleich mit den Vorgängen in verengten Kanälen, die demgemäß mit in den Bereich der Untersuchungen gezogen wurden. Als Versuchsplan wurden die Gedanken zugrunde gelegt, die Hr. Prof. L. Prandtl in seinen Studien über die strömende Bewegung von Gasen und Dämpfen über den Zusammenhang der Strömungserscheinungen mit der inneren Flüssigkeitsreibung entwickelt hat. Diese Gedanken sollen nach dem Manuskript, das mir Hr. Prof. Prandtl zur Verfügung gestellt hat, mit seinem Einverständnis hier wiedergegeben werden.

Gleiten zwei benachbarte Flüssigkeitsteilchen so übereinander weg, daß in der Entfernung dy ein Geschwindigkeitsunterschied dw herrscht, so entsteht dadurch in den Gleitflächen eine Schubspannung $\tau = k \frac{dw}{dy}$. Die Größe k heißt Koeffizient der inneren Reibung oder auch Zähigkeit kurzweg.

Bei den technisch wichtigen Flüssigkeiten, wie Wasser und Luft, ist die Zähigkeit zwar sehr gering; trotzdem zeigen die Versuche, daß die Reibung nicht vernachlässigt werden darf, da nur in seltenen Fällen die Erfahrung die Theorie der reibungslosen Flüssigkeit bestätigt. Ist der Einfluß der inneren Reibung in der freien Flüssigkeit verschwindend, so kommt er doch an den festen Wänden in Betracht, wo ein schroffer Uebergang der Geschwindigkeit auf null stattfindet, um so schroffer, je geringer die Zähigkeit ist.

Die Reibungsvorgänge in den »Grenzschichten« haben sich als die Quelle der meisten hydraulischen Verluste erwiesen. Die bekannte Beobachtung, daß sich der Flüssigkeitstrom in stark erweiterten Kanälen oder auf der Rückseite eines der Strömung entgegenstehenden Körpers ablöst, findet im Folgenden seine Erklärung: Ueberall, wo die freie Strömung neben den Grenzschichten verzögert wird, greifen auch die verzögernden Kräfte an den Teilchen der Grenzschicht an, die durch die Reibung schon einen Teil ihrer lebendigen Kraft eingebüßt haben. Die verzögernden Kräfte (Anstieg des Flüssigkeitsdruckes z. B.) bringen die Teilchen zum Stillstand und Umkehren, während die freie Flüssigkeit weiter strebt. Es lösen sich Teilchen der Grenzschicht ab, 1

Mitteilungen. Heft 114.

bilden Wirbel, die die ganze Strömung wesentlich beeinflussen. Bei starker Verzögerung tritt ein Ablösen der ganzen Strömung von der Wandung auf.

Bei gleichförmiger Geschwindigkeit scheint sich die Grenzschicht im labilen Zustand zu befinden, da auch hier Wirbelbildung beobachtet wird.

Bei genügend stark beschleunigter Bewegung ist nichts dergleichen zu erwarten, da die Teilchen, die eine Geschwindigkeitseinbuße erlitten haben, durch die beschleunigenden Kräfte doch immer wieder in der Strömungsrichtung in Bewegung gesetzt werden. Es werden also die an den Kanalwänden entstehenden Verluste bei beschleunigter Bewegung kleiner ausfallen als bei gleichförmiger Bewegung, und diese wieder kleiner als bei verzögerter.

Die Versuche wurden im Institut für angewandte Mechanik der Universität Göttingen mit Unterstützung des Vereines deutscher Ingenieure durchgeführt.

Ich möchte an dieser Stelle dem Vereine deutscher Ingenieure für die Gewährung der erforderlichen Mittel meinen Dank aussprechen.

Zu aufrichtigem Danke bin ich Hrn. Prof. Prandtl verpflichtet, der mir die Bearbeitung der Aufgabe übertrug, mit größtem Interesse das Fortschreiten der Arbeit verfolgte und mir jederzeit wohlwollende Unterstützung zuteil werden ließ.

I) Die Versuchseinrichtung.

a) Das Versuchsgerät.

Das Versuchsgerät sollte es ermöglichen, an jedem Punkte der oberen Fläche eines Kanales den Flüssigkeitsdruck und an jedem Punkte des Querschnittes die nutzbare Energie zu messen. Dies wurde durch folgende Anordnung erreicht. Der zu untersuchende Kanal wird aus zwei auswechselbaren Seitenteilen (Wangen) W, Fig. 1 bis 11, der Zunge Z und der Deckplatte Dgebildet. Mit Hülfe eines Schraubenantriebes S^1) kann der Kanal gegen die obere Deckplatte verschoben werden.

Für die Messungen wird die Zunge mit den aufgesetzten Seitenteilen in die Vorrichtung von vorn eingeschoben. Um einen Spalt zwischen der oberen Fläche der Wangen und der Deckplatte zu verhindern, werden Papierblätter unter die Wangen gelegt. Der Kanal wird dann mit Hülfe einer Lampe durchleuchtet und mit kleinen Blechsonden C abgetastet (Blechstärke 0,06 mm), Fig. 10 und 11.

Ein kleines mit dem Antrieb gekuppeltes Zeigerwerk a, Fig. 12, macht die Stellung des Kanales nach außen hin kenntlich. In der Deckplatte D sind die Meßvorrichtungen angeordnet. Sie bestehen aus einer drehbaren Scheibe b mit einer feinen Oeffnung O nahe dem Rande, wodurch sämtliche Punkte der Deckfläche erreicht werden können. Eine Reihe früherer, von andrer Seite ausgeführter Messungen²) hat ergeben, daß die Größe der Oeffnung ohne Einfluß auf das Meßergebnis ist; wesentlich ist eine gute Abrundung der Oeffnung. Ein Kupferrohr c führt durch eine Manometerumschaltvorrichtung d zum Manometer.

Eine zweite Meßvorrichtung ist ein rechtwinklig gebogenes Röhrchen R, Fig. 13 und 14, das der Strömung entgegensteht. Es kann durch das Gewinde ggehoben und gesenkt und in dem Kegel K, Fig. 2, geschwenkt werden, erreicht also jeden Punkt des Querschnittes. Es ist aus drei miteinander hart verlöte-

¹) Als Baustoff gelangte für die Zunge, die Wangen und die Spindel des Schraubenantriebes Deltametall zur Verwendung. Die übrigen Teile wurden aus Gelbguß angefertigt.

²) Karl Büchner, Zur Frage der Lavalschen Turbinendüsen. Mitteilungen über Forschungsarbeiten Heft 18 S. 89 ff.

ten Stahlröhrchen a, b, c hergestellt. Auf das äußerste Röhrchen wurde das Gewinde g hart aufgelötet, und unterhalb des Gewindes wurde es zweeks Führung vierkantig ausgeschniedet. In das Röhrchen c wurde das eigentliche Meßröhrchen, das auswechselbar sein mußte, weich eingelötet. Zur Versteifung dienten zwei hart angelötete Winkel e, f, die außerdem den Vorteil hatten,

einen guten Strömungsverlauf zu sichern. Um für die Untersuchung der Punkte an der Wandung ein gutes Anliegen zu ermöglichen, wurde das ganze an den Seiten zugeschärft. Bei der Wahl der Länge des wagerechten Teiles kommen zwei Gesichtspunkte in Frage. Es ist von Vorteil, die Länge groß zu wählen, um den Einfluß der Störungen anf die Mündung gering zu halten, die notwendigerweise an der Ausführungsstelle des Röhrchens entstehen. Anderseits wird aber die 1*

- 3 -

Beanspruchung auf Festigkeit mit zunehmender Länge wesentlich ungünstiger. Auch ist das Röhrehen bei geringerer Länge den schwingungserregenden Angriffen besser gewachsen. Aus diesen Gesichtspunkten wurde eine Länge von 20 mm gewählt

Um die Stellung des Röhrchens jederzeit zu erkennen, war oberhalb des Gewindes ein dreispitziger Zeiger e, Fig. 12, angeklemmt, dessen mittelste Spitze dazu diente, die Koordinaten des Röhrchens anzuzeigen, während die beiden andern eine gute Prüfung der Richtung desRöhrchens gestatteten. Die Meßöffnung wie auch das Meßröhrchen haben sich wahrend der ganzen Zeit durchaus bewährt und zu Beanstandungen keinerlei Anlaß gegeben.

Fig. 12.

Zur Dichtung der Vorrichtung genügte ein dünnes Blatt Guttapercha, das auf die mittels der Lötlampe auf rd. 60° erwarmten Dichtungsflächen gebracht wurde.

Das Gørat trägt auf der Deckplatte noch ein Manometer, das den Druck vom Vaknum bis 10 kg/qem absolut anzeigte. Es wurde durch Vergleich mit dem Quecksilbermanometer und dem Vakuometer des Instituts geeicht und gestattete eine Ablesung auf 0,01 kg/qem unter Schätzung der Hundertstel.

b) Die übrigen Versuehseinrichtungen.

Aus einem unter dem Fußboden des Maschinensaales befindlichen Behälter B, Fig. 17, wird das Wasser von einer Differentialpumpe augesaugt, Fig. 15. Die Differentialpumpe ist von gleicher Anordnung wie die des Maschmenlaborato-

rums der Königl. Technischen Hochschule Hannover, die von Prof. Frese beschrieben worden ist⁴). Sie hat auswechselbare Kolben von verschiedenem Durchmesser, außerdem kann die Größe des Hubes verändert werden. Die Umlaufzahl der Pumpe ist in weiten Grenzen durch Aenderung der Umlaufzahl des elektrischen Antriebinotors regelbar. Während der Versuche konnten mit Hülfe eines feinen Erregerwiderstandes W die Wirkungen kleinerer Spannungsschwankungen des elektrischen Leitungsnetzes ausgeglichen werden. Um eine gleichförmige Wasserlieferung zu erhalten, wurden die Versuche bei einer Umlaufzahl der Pumpe n = 100 bis 130 durchgefuhrt. Die Höchstlieferung der Pumpe betrug 7,5 ltr ltr/sk

Fig. 15,

Von der Pumpe aus fheßt das Wasser durch die Druckleitung L_1 einem Windkessel von 2 cbm Iohalt, 1 m Dnu, und 2,5 m Höhe zu. Zwei Wasserstandsrohre lassen die Höhe des Wasserstandes erkennen, die diesen entsprechenden Wassermengen sind durch Entleeren des Kessels und Wagung des ausfließenden Wassers bestimmt worden.

Von der Druckleitung ist eine Rohrleitung U abgezweigt, die unmittelbar nach dem Behalter zurückfuhrt. Mit Hülfe eines Ventiles V_1 m dieser Umlaufleitung kann die durch den Versueliskanal fließende Wassermenge eingestellt werden. Ein kleines Abflußrohr mit Ventil V_2 , das unten am Kessel angebracht wurde, dient zur Feinregelung der Liefermenge.

¹) F. Frese, Das Ingenieurlaboratorium der Königl Technischen Hochschule zu Hannover. Zeitschrift des Vereines deutscher Ingenieure 1900 S 201 u. f.

Um zu vermeiden, daß das Wasser in stark wirbeluder Bewegung in den Kessel eintritt, wurde das Zuleitungsrohr mit einem Rohrbundel und einer Brause versehen.

Durch einen an andrer Stolle¹) beschriebenen Hahn H, Fig. 16, von 40 mm Bohrung strömt das Wasser vom Kessel aus durch ein Uebergangstück K_1 , das

Fig 16.

Fig. 17

den runden Querschnitt des Hahnes in den rechteckigen des Apparales vermittelt. An dem Hebergangstück ist der Versuchskanal beiestigt. Es ist darauf Wert gelegt, daß an keiner Stelle der Querschnitt erweitert wird, oder daß Störungen des Strömungsverlaufes durch plötzliche Querschnittänderungen und

¹) Ernst Magin, Optische Untersuchung über den Ausfluß von Luft durch eine Lavaldüse. Mittellungen über Vorschungsarbeiten Heft 62 S. 4.

schroffe Uebergänge auftreten können. Auf diese Weise, wie auch durch sorgfältige Bearbeitung des Hahnes wird eine störungsfreie Wasserzuströmung gewährleistet. Hinter dem Kanal durchfließt das Wasser ein zweites Uebergangstück K_2 , das zur Aufnahme der vorgeschobenen Zunge dient, einen Absperrschieber S mit einem kleinen Umlaufventil V_3 zur Feineinstellung der Drosselung. Durch eine Rohrleitung L_2 wird das Wasser einem mit geeichten Bodenmündungen versehenen Meßbottich M, Fig. 17, zugeführt und fließt von hier aus in den Behälter B zurück. Das Ende der Rohrleitung wurde ebenfalls mit Sieben versehen, wie auch die Ausflußöffnungen des Meßbottiches von einem großen Siebe umgeben sind, das die leicht eintretende Trichterbildung zurückdrängt.

c) Der Meßbottich und seine Eichung.

Der Meßbottich, Fig. 17, hat zwei kreisförmige Bodenöffnungen von f = 16,seund 26,54 qcm Fläche. Die ausfließende Wassermenge ist der Wurzel aus der Spiegelhöhe proportional. Solange die Zuflußmenge von der Abflußmenge verschieden ist, ändert sich die Spiegelhöhe, ihr entsprechend die Ausflußmenge, bis schließlich der Spiegel sich auf gleichbleibende Höhe einstellt und die Abflußmenge gleich der Zuflußmenge ist. Mit Hülfe eines Fernrohres F, Fig. 16, konnte vom Meßkanal aus die Spiegelhöhe h an einem Maßstab Z, Fig. 17, durch Beobachten einer Schwimmermarke abgelesen werden. Es mußte noch die Spiegelhöhe durch Eichung mit der Ausflußmenge in Beziehung gesetzt werden. Dies geschah in der Weise, daß zunächst am Bottich ein Ausflußversuch vorgenommen wurde, d. h. die Spiegelsenkung und die zugehörige Ausflußzeit gemessen wurden.

Fließt in der Zeit dt die Menge $V = \mu v f dt$ aus (wobei v die Geschwindigkeit, μ der Kontraktionskoeffizient ist), so entspricht dies der Absenkung einer Wassermenge F dh.

Es ist also

nun ist

$$\boldsymbol{v} = \boldsymbol{V} \overline{2 \, \boldsymbol{g} \, (\boldsymbol{h} - \boldsymbol{a})} \quad . \quad (2),$$

wobei h die Höhe auf dem Maßstabe abgelesen, und a die wirkliche Höhe der Bodenmündung über dem Nullpunkt des Maßstabes ist, also

$$\frac{\mu f \sqrt{2g} dt}{F} = -\frac{dh}{\sqrt{h-a}},$$

hieraus folgt für die Zeit t des Absinkens von h_0 auf h

$$t = \frac{2F}{\mu f \sqrt{2g}} \left(\sqrt{h_0 - a} - \sqrt{h - a} \right).$$

Bezeichnet man zur Vereinfachung $\frac{2 F}{\mu f \sqrt{2 g}}$ mit A, so erhält man

$$(t-A \sqrt[]{h_0-a})^2 = A^2 (h-a)$$

oder in abgekürzter Schreibweise die Gleichung der Ausflußparabel

$$(t+\alpha)^2 = \beta (h-a).$$

Diese Parabel wurde durch Versuch in der oben angegebenen Weise bestimmt, und es ergaben sich für mehrere Beobachtungen (je 3 für jede Oeffnung und beide zusammen) keine Abweichungen. (Genauigkeit bis 0,1 vH.) Aus diesen Parabeln wurde durch Auftragen der zweiten Differenzen $\frac{d^2 h}{d t^2} = \operatorname{rd} \frac{d^2 h}{d t^2} = \frac{2}{\beta}$, die Größe von $\frac{2}{\beta}$ bestimmt.

Konstruiert man hieraus die Parabel: $t^2 = \beta h$, die durch geeignete Koordinatenverschiebung aus der obigen Parabel hervorgeht, so kann man die Höhe *a* der Bodenmündung in der Weise einfach ermitteln, daß man diese berechnete Parabel mit der gemessenen zur Deckung bringt.

Setzt man h - a = h, und stellt den Maßstab entsprechend ein, daß er die wirklichen Höhen fiber der Bodenmündung anzeigt, so ist

$$t = A \left(V \overline{h_{0s}} - V \overline{h_{ts}} \right).$$

Setzt man $h_w = 0$, so ist

$$t = A \, \sqrt[p]{h_{0w}} = \sqrt[p]{\beta} \, h_0$$

hieraus folgt

$$A = \beta^2 = \frac{2 F}{\mu f \sqrt{2 g}}$$

so folgt für μ

$$\mu = \frac{F}{f^2 \sqrt[4]{2g}} \left(\frac{2}{\beta}\right)^2$$

 $\frac{2}{\beta}$ ist durch die Messung bestimmt worden, die Größe von f ergab sich durch Ausmessen, die von F durch Auffüllen abgewogener Wassermengen. Für die sekundliche Wassermenge folgt:

$$Q = \frac{d v}{d t} = -F \frac{d h}{d t} = f \mu \sqrt{2 g h_w} = \left(\frac{2}{\beta}\right)^2 \frac{F}{f 2 \sqrt{2 g}} f \sqrt{2 g h_w} = \left(\frac{2}{\beta}\right)^2 \frac{F}{2} \sqrt{h_w}.$$

d) Das Differenzmanometer.

Mit Hülfe des Meßbottichs konnte wohl eine genaue Bestimmung der Durchflußmenge durchgeführt werden, jedoch war es nicht möglich, geringere

Fig. 18.

vorübergehende Schwankungen wahrzunehmen. Es handelte sich also darum, ein Meßgerät zu finden, das jede Schwankung sofort zu erkennen gab. Ein solches bot sich in der Verwendung eines Quecksilbermanometers, Fig. 18. Der eine Schenkel führte zu einer Bohrung im Hahnkörper, während der andre mit einer Bohrung in der Kesselwandung in Verbindung stand. Der Höhenunterschied der Quecksilberspicgel gab also den Druckabfall vom Kessel nach dem Einströmkanal an und war somit dem Quadrat der Durchflußmenge proportional. Dieses Gerät hat sich vorzüglich bewährt und ermöglichte erst eine genaue Durchführung der Versuche.

II) Die Durchführung der Versuche.

a) Allgemeines.

Die Versuche wurden folgendermaßen durchgeführt. Bei geschlossenem Kesselhahn H, Fig 19, wurde der mit besondern Manometer versehene Versuchskessel bis zum gewänschten Druck aufgepumpt. Gleichzeitig wurde durch das Schntiffelventil der Pumpe der Windkessel der Pumpe mit Luft aufgefüllt. War der gewünschte Druck erreicht, so wurde der Hahn geöffnet und aus

Fig. 19. Schema der Versuchsanordnung.

der sich einstellenden Quecksilberhöhe im Differenzmanometer die durchfließende Wassermenge bestimmt. Um diese nun einzustellen, wurde das große Umlaufventil U in der Druckleitung entsprechend geöffnet und gleichzeitig der Absperrschieber S hinter dem Kanal so eingestellt, daß bei der gewünschten Durchflußmenge auch der Kesseldruck sich unverändert auf der beabsichtigten Höhe hielt. Die Feineinstellung erfolgte durch geeignete Betätigung des kleinen Umlaufventiles am Absperrschieber V_3 , des am Kessel unten angebrachten Ventiles V_2 und durch Aenderung der Umlaufzahl des Elektromotors mit Hülfe des feinen Erregerwiderstandes. Sodann wurde der Wasserspiegel im Meßbottich durch Verschließen der Ausflußöffnungen auf die ungefähr zu erwartende Höhe gebracht.

Bis zur Erreichung des vollkommenen Beharrungszustandes verstrichen etwa weitere 10 bis 15 Minuten.

Die Messung wurde in der Weise durchgeführt, daß der zu untersuchende Kanal mittels des Schraubentriebes von em zu em verschoben wurde. Beim Verschieben machten sich A&nderungen in der Drosselung hinter dem Kanal in der Einstellung des Differenzmanometers und des Kesselmanometers bemerkbar, die leicht durch Verstellen des kleinen Umlaufventiles beseitigt werden konnten. Für jede Stellung wurde beim Beobachten des Flüssigkeitsdruckes die Kreisscheibe an die zu untersuchenden Punkte über die Breite des Kanales gedreht oder bei der Untersuchung mittels des Röhrchens dieses in dem Kegel über die Breite des Kanales geschwenkt, seine Höhe jedoch während des Versuches unverändert gehalten. Für die genaue Untersuchung des Flüssigkeitsdruckes wurde, um etwaige Störungen an der Ausführungsstelle zu vermeiden, das Röhrchen herausgenommen und die Stelle mit einer vorgelöteten kleinen Platte verschlossen.

b) Die Abmessungen, Orientierung und Bezeichnungen.

Zur Bestimmung der Abmessungen des Kanales wurde nach beendigtem Versuch die Zunge mit beiden Wangen herausgenommen und die Höhen durch Ausmessung festgestellt. Dies geschah mit Hülfe einer kombinierten Schublehre und Mikrometerschraube, die vor Gebrauch auf Kalibern eingestellt wurde. Die Genauigkeit der Bestimmung betrug etwa \pm 0,01 mm. Die Ermittlung der Breiten wurde mit der gleichen Lehre an Gipsabgüssen, Fig. 20, vorgenommen-

Fig. 20.

Es wurde hierzu feiner Modelliergips verwendet, der Kanal vorher mit feinstem Knochenöl ausgewischt, das sich in kapillarer Schicht über die Oberfläche verbreitete. Nach dem Erhärten des Gipses wurden die Befestigungsschrauben der Wangen gelöst, und der Abguß konnte abgenommen und ausgemessen werden. Die Unterseite der Abgüßse zeigte den Abdruck der drei Befestigungsschrauben der Zunge, und dieser wurde dazu benutzt, die Abgüsse auf ein gemeinsames Koordinatensystem zu beziehen. Der Anfangspunkt dieses Systems wurde auf der Oberfläche der Zunge in der Symmetrieachse angenommen, und zwar an der Stelle, an der die verengte Einströmung des Kanales beginnt. Von hier aus wurde die Länge l in der Strömungsrichtung positiv gerechnet, die Breite b von der Symmetrieachse aus nach rechts negativ, links positiv, die Höhe h senkrecht nach oben.

Die Bezeichnung der Kanäle erfolgte mit römischen Ziffern (I bis IV), und zwar ist der parallele Kanal mit I, der am stärksten (in der Strömungsrichtung) erweiterte mit IV bezeichnet, Fig. 21. Sind die Kanäle in umgekehrter Richtung (verengt) verwendet, so führen sie als Bezeichnung außer der Zahl den Index »'«.

Fig. 31. Abmessungen der Kanklo.

Die Verteilung des Flüssigkeitsdruckes über die obere Fläche der Kanäle wurde für eine bestimmte Wassermenge mit Hülfe der Kreisscheibe für die erweiterten Kanäle gemessen.

In einer weiteren Reihe von Messungen wurde für verschiedene Wassermengen der Verlauf des Flüssigkeitsdruckes längs der Mittellinie der Deckfläche in den verengten und erweiterten Kanälen ermittelt. Hierbei wurden die Abhängigkeit des Vorganges vom Anfangsdruck und der Einflaß der im Wasser gelösten Luft untersucht.

Die letzte Gruppe von Messungen bezieht sich auf Untersuchung des Strönungsverlaufes mit Hülfe des der Strömung entgegenstehenden Röhrchens. Der Druck auf die Mündung eines solchen Röhrchens, dessen Achse in der Stromrichtung und dessen Mündungsebene senkrecht dazu liegt, ist der Summe der Druckhöhe und der Geschwindigkeitshöhe an der betreffenden Stelle gleich.

III) Die Bearbeitung des Zahlenmaterials.

Die Druckablesungen sind für die einzelnen Versuche in den Zahlentaieln in Hundertstel kg/qcm zusammengestellt. Der Barometerstand wurde für die Auswertung der Versuche nicht weiter berücksichtigt, da er während der Dauer eines Versuches unverändert blieb und es für die Auswertung der Versuche nur auf den Unterschied des Druckes zwischen zwei Stellen des Kanales ankam und nicht auf die wirkliche Höhe des Druckes selbst. Es wurde also der Druck der Atmosphäre gleich 1 kg/qcm angenommen und die Angaben der Zahlentafeln auf den so gewonnenen Nullpunkt des absoluten Druckes bezogen.

A) Druckverteilung über die obere Fläche der Kanäle.

Die Ergebnisse sind in den Zahlentafeln 1 bis 4 zusammengestellt; in den Fig. 22 bis 25 sind sie in der Weise verwertet, daß die Punkte gleichen Druckes durch Linienzüge (Isobaren) verbunden sind.

Fig. 22. Kanal I. Verteilung des statischen Druckes über die obere Fläche des Kanals (Isobaron).

Fig. 24. Kanal III. Verteilung des statischen Druckes über die obere Fläche des Kanals (Isobaren).

Fig. 25. Kanal IV. Verteilung des statischen Druckes über die obere Fläche des Kanals (Isobaren).

Ba) Verlauf des Flüssigkeitsdruckes längs der Symmetrielinie der Deckfläche des Kanales. Um zu untersuchen, inwieweit die Vorgänge bei einem bestimmten Druckgefälle im Versuchskanal von der absoluten Höhe des Anfangs- und Enddruckes abhängen, sind für verschiedene Höhen des Kesseldruckes, für mehrere Durchflußmengen die Flüssigkeitsdrücke in der Mittelachse der oberen Fläche bestimmt und die Ergebnisse in Zahlentafel 5 und in Fig. 26 veranschaulicht worden.

Fig. 26. Kanal II. Messung des statischen Druckes (p_{st}) bei verschiedenen Kesseldrücken (p_k) . (Zum Nachweis der Unabhängigkeit des Strömungsvorganges vom Anfangsdruck.) o o o Durchflußmenge = 3,35 ltr/sk. $\times \times \times$ Durchflußmenge = 6,35 ltr/sk.

Bb) Zahlentafel 6 und 7 und Fig. 27 und 28 stellen den Vorgang dar, falls der Druck an der engsten Stelle so weit erniedrigt wird, daß die im Wasser gelöste Luft entweicht.

Bc) Die Messung der Druckverteilung über die Symmetrieachse der oberen Fläche des Kanales wurde zur Bestimmung der Verluste in folgender Weise benutzt, Zahlentafel 8 bis 13, Fig. 29 bis 34:

Fig. 27. Kanal IV. Messung des statischen Druckes bei gleich gehaltener Durchflußmenge und verschiedener Drosselung durch den Schieber hinter dem Kanal. Wassermenge = 7,87 ltr/sk.

Fig. 28. Kanal IV. Größte Durchflußmengen bei verschiedenen statischen Drücken in der Einströmung (Stelle l = -14 mm) bei offenem Schieber hinter dem Kanal.

Fig. 29. Kanal I. Messung des statischen Druckes bel verschiedenen Durchflußmengen. Kesseldruck 9 kg/qcm.

- 14 --

Fig. 30. Kanal II (erweitert). Messungen des statischen Druckes bei verschiedenen Durchflußmengen. Kesseldruck 9 kg/qcm.

Fig. 31. Kanal III (erweitert). Messung des statischen Druckes bei verschiedenen Durchflußmengen. Kesseldruck 9 kg/qem.

Fig. 32. Kanał IV (erweitert). Messung des statischen Druckes bei verschiedenen Durchflußmengen. Kesseldruck 9 kg/qcm.

16

Fig. 33. Kanal II (verengt). Messung des statischen Druckes bei verschiedenen Durchflußmengen. Kesseldruck 9 kg/qcm.

Fig. 34. Kanal III (verengt). Messung des statischen Druckes bei verschiedenen Durchflußmengen. Kesseldruck 9 kg/qcm.

Die Energiegleichung für die Strömung lautet:

$$\frac{\varrho v^2}{2} + p_{st} + g H + \Sigma$$
 Verluste = konst,

wobei v die Geschwindigkeit, ϱ die Dichte des Wassers, p_{\star} (statischer Druck) der Flüssigkeitsdruck ist. gH das Potential der Schwere ist hier, da es sich um wagerechte Kanäle handelt, unveränderlich, kann also mit der Konstanten auf der rechten Seite der Gleichung zusammengefaßt werden.

 $\frac{\varrho v^2}{2}$, die Geschwindigkeitshöhe (dynamischer Druck), ist für die Folge mit p_D bezeichnet und die Verluste Σ mit p_V .

Es ergibt sich die Beziehung

$$p_D + p_{st} + p_{Verl} = \text{konst.}$$

Die Größe p_{st} wird als Funktion der Länge durch den Versuch ermittelt. Der Geschwindigkeitsdruck p_D kann aus den Abmessungen der Kanäle berechnet werden. Nimmt man an, was sowohl durch die Theorie¹) gerechtfertigt erscheint, als auch durch die Versuche²) bestätigt wird, daß in dem geraden erweiterten Teile der Versuchskanäle der Druck derartig verteilt

ist, daß die Isobaren Kreisbögen um den Schnitt der Verlängerungen der geraden Begrenzungsflächen sind, so ergibt sich der für die Strömung an einer beliebigen Stelle in Betracht kommende Querschnitt als Produkt des zugehörigen Kreisbogens mit der Kanalhöhe. Aus den in Zahlentafel 14 zusammengestellten Breiten s der Ka-

näle, von Zentimeter zu Zentimeter gemessen, ergibt sich der mittlere Winkel, unter dem die Kanalwände gegeneinander geneigt sind:

$$\operatorname{tg} \frac{\alpha}{2} = \frac{s_1 - s_0}{2 a} \ (a = 1 \ \operatorname{cm}), \ \alpha = \operatorname{arc} \operatorname{tg} \frac{s_1 - s_0}{2 a},$$

aus α ergibt sich der Winkel im Bogenmaß zu $c = \frac{\pi \alpha}{180}$. Die Länge des Kreisbogens b_0 ergibt sich zu

$$b_0 = cx_0 = c \frac{a s_0}{s_1 - s_0}$$
, da $(x_0 + a)$: $x_0 = s_1 : s_0$, Fig. 35,

und die Durchflußfläche zu F = bh (Zahlentafel 15).

Die Höhe war nicht vollkommen gleich, sie ändert sich von 27,84 bis 27,27 mm auf eine Länge von 125 mm. Für die verschiedenen Kanäle ergaben sich im übrigen übereinstimmende Werte.

Es ergibt sich die mittlere Geschwindigkeit v in m/sk zu

$$v = \frac{10 Q^{\text{ltr/sk}}}{F^{\text{cm}^2}}$$
 (Fig. 36).

Die Geschwindigkeitshöhe p_D in kg/qcm zu

$$p_D = \frac{0,1 \, \boldsymbol{v}^{2\mathbf{m}^2/\mathbf{s}\mathbf{k}^2} \, \boldsymbol{\gamma}^{\mathbf{k}\boldsymbol{\mu}/\mathbf{d}\mathbf{m}^3}}{2 \, \boldsymbol{g}^{\mathbf{m}/\mathbf{s}\mathbf{k}^2}} \, \boldsymbol{s}^{\mathbf{k}\boldsymbol{\mu}}$$

Fig. 36. Durchflußgeschwindigkeiten bei den verschiedenen Kanälen. Durchflußmenge 5 ltr/sk.

¹) Vergl. Abschnitt V: Theoretisches zur Potentialströmung,

²) Vergl. S. 29.

Mitteilungen. Heft 114.

wobei γ das Gewicht eines ltr Wasser = 1 kg/cdm und g die Gravitationskonstante = 9,81 m/sk².

Die Rechnung ist teils logarithmisch, teils mit der Rechenmaschine auf 5 Dezimalen durchgeführt. In der Zahlentafel 15 sind die Werte für v auf 2 Dezimalen abgerundet. Die Werte beziehen sich auf eine Durchflußmenge Q = 5 ltr/sk.

Die Geschwindigkeitshöhe ist dem Quadrate der Durchflußmenge proportional. Falls die Verluste ebenfalls der Geschwindigkeitshöhe proportional sind, so erhält man, wenn man den gemessenen Flüssigkeitsdruck p_{it} abhängig von dem Quadrate der Durchflußmenge für eine Stelle x = l aufträgt, eine Gerade. Diese Art der Abhängigkeit der Verluste von der Geschwindigkeitshöhe ergibt sich in der Tat aus den Versuchen; als Beispiel diene Fig. 37. Aus der Lage der

Durchflußmenge.

Geraden für die Stelle x = l wird der Flüssigkeitsdruck p_{st} für die Durchflußmenge 5 ltr/sk bestimmt; durch Subtraktion vom Anfangsdruck (Flüssigkeitsdruck für die Durchflußmenge 0) ergibt sich für die betreffende Stelle die Summe der gemessenen Geschwindigkeitshöhe und Verlusthöhe. Zur genauen Festlegung der Geraden sind Versuche für 2, 3, 4, 5, 6, 6,5, 7 ltr/sk durchgeführt worden.

Wird von der so erhaltenen Größe $(p_D + p_r \text{ gemessen})$ das berechnete p_D abgezogen, so erhält man die Verluste p_r . Die Verluste sind für den geraden Teil der Kanäle bestimmt und in Abhängigkeit von der Länge aufgetragen worden. Die Punkte wurden durch eine Kurve derart ausgeglichen, daß die Differenzenkurve einen glatten Verlauf aufwies.

Die Unterschiede für 1 cm Länge ergeben die Verluste auf 1 cm Kanallänge, Fig. 38. Hierbei ist noch zu berücksichtigen, daß bei der Messung die Lage des Kanales mittels des Schraubentriebes verändert wird, und zwar wurde bei sämtlichen Versuchen der Kanal der Strömungsrichtung entgegen verschoben, der Zuströmungskanal (von einem Querschnitt 30×35 mm³) daher entsprechend verkürzt.

¹)
$$z = \beta l \frac{u}{F} \frac{v^2}{2g} \gamma; \ 4 \beta = 0.012 + \frac{0.0018}{\sqrt[4]{v} v}.$$

Verluste auf 1 cm Kanallänge (aufgetragen über den 0,5 cm). Die mit dem Index ' verschenen Kurven beziehen sich auf verengte Kanäle.

Verluste auf 1 cm Kanallänge/Geschwindigkeitshöhe.

Fig. 38 und 39.

Hierdurch werden die Verluste zu klein beobachtet, und es sind zu den Verlusten auf 1 cm Kanallänge noch die Verluste dieses Zuströmungsteiles zu addieren. Diese sind rechnerisch zu 0,00052 kg/qcm ermittelt worden.

Die Stelle 30 (Beginn des geradlinigen Teiles der Kanäle) wurde als Anfangspunkt für die zu untersuchende Strömung gesetzt, die Verluste von hier aus durch Addition der Verluste für 1 cm berechnet. Diese so ausgeglichenen Verluste wurden zur Bestimmung des Wirkungsgrades herangezogen. Durch diese Festsetzung ist bei den erweiterten Kanälen die verfügbare Energie durch die Geschwindigkeitshöhe an der Stelle 30 gegeben. Dieser Wert ist gleich 100 vH gesetzt, und in Fig. 40 und 41 sind, in Abhängigkeit von der Länge ldes Kanales, Geschwindigkeitshöhe, Druckhöhe und Verluste in vH so aufgetragen, daß ihre Summe 100 ergibt:

$$p_D + p_{st} + p_r = \text{konst} = p_{D30} = 100 \text{ vH}; \ p_{st30} = 0.$$

Für den parallelen Kanal ist, da keinerlei Umwandlung von statischer Energie in kinetische oder umgekehrt stattfindet, an jeder Stelle $p_{st} = 0$, $p_D + p_T = 100$ gesetzt, während bei den verengten Kanälen die Gesamtenergie durch die Geschwindigkeitshöhe am Ende des Kanales (Stelle 100) und der Summe der Verluste von der Stelle 30 bis zur Stelle 100 gegeben ist:

 $p_{st100} = 0; p_{D100} + p_{V100} = \text{konst} = 100.$

Für alle drei Fälle ist der Wirkungsgrad das Verhältnis der verfügbaren Energie zur Gesamtenergie und wird durch die Kurven konst $-p_{F}$ dargestellt.

In dieser prozentualen Auftragung lassen sich die verschiedenen Kanäle unmittelbar miteinander vergleichen, da ihre Abmessungen so gewählt sind, daß der engste Querschnitt für alle ungefähr gleich ist.

In Fig. 39 ist das Verhältnis: Verluste auf 1 cm Kanallänge zur Geschwindigkeitshöhe aufgetragen.

Um die Ergebnisse mit den Verhältnissen beim geraden Kanal vergleichen zu können, schließt sich die weitere Verarbeitung der Versuchsergebnisse an den üblichen Ansatz für die Verluste im geraden Kanal an, wobei diese pro-

portional der Länge, der Geschwindigkeitshöhe und dem Verhältnis: benetzter Umfang zum Querschnitt gesetzt werden.

Für den rechteckigen Querschnitt lautet die Formel in Differentialform:

$$dz = \frac{\gamma}{2g} \beta \frac{u}{F} v^2 dx \quad . \quad . \quad . \quad . \quad . \quad . \quad (1)$$

nun ist $v = \frac{Q}{F}$, also

Für einen rechteckigen Kanal beliebiger Form erhält man für die Verluste durch Integration

$$\Delta z = z_2 - z_1 = \frac{\gamma}{2g} \beta Q^2 \int_{x_1}^{x_2} dx \ . \ . \ . \ . \ (2).$$

Der Koeffizient β kann nur unter der Voraussetzung als konstant vor das Integralzeichen gesetzt werden, daß der Integrationsweg $x_1 - x_2$ klein genug gewählt ist. Es ist hier die Integration von Zentimeter zu Zentimeter durchgeführt und β als Funktion der Kanallänge dargestellt, Fig. 42.

Der Umfang für die Stelle x ist durch die Beziehung

$$u_x = 2h + 2xc$$

und der Querschnitt F durch $F_x = hxc$ gegeben.

Fig. 42. Darstellung des Koeffizienten β aus der Beziehung $dp_F = \frac{\gamma}{2g} \beta \frac{Q^2}{F^3} u \, dx$. Der Wert von β ist für je 1 em Kanallänge bestimmt und über den 0,5 em aufgetragen. Die mit Index ' verschenen Kurven beziehen sich auf verengte Kanäle.

Die Integration ist em zu em durchgeführt, und die Werte für 1 em über den 0,5 em aufgetragen. Q Wassermenge = 5,10⁻³ ccm/sk. γ = Gewicht eines ccm = 1,0 · 10⁻³ kgcm⁻³. g Gravitationskonstante = 981 cmsk⁻². u benetzter Umfang in cm. F Querschnitt in qcm. Für diese Berechnung ist die Veränderlichkeit der Höhe von 27,34 auf 27,27 (0,27 vH) auf 125 mm Länge unberücksichtigt geblieben und die Höhe unveränderlich = 27,30 mm angesetzt worden.

Aus Gl. (2) erhält man also

Setzt man

so erhält man

$$\frac{\gamma}{g}\frac{Q^2}{h^3}=A,$$

$$\Delta z = \beta \frac{A}{c^2} \left[\frac{\hbar}{2c} \left(\frac{1}{x_1^2} - \frac{1}{x_2^2} \right) + \left(\frac{1}{x_1} - \frac{1}{x_2} \right) \right], \\ \Delta z = \beta \frac{A}{c_2} \left[\frac{\hbar}{2c} \frac{x_1 + x_2}{x_1 x_2} + 1 \right] \cdot \left[\frac{x_2 - x_1}{x_1 x_2} \right] = \beta D \quad . \quad . \quad . \quad (4).$$

Die Größe D ist in Spalte 11 der Zahlentafeln 16 bis 21 und in Fig. 43 zusammengestellt.

C) Die Messungen mittels des Röhrchens sind in den Zahlentafeln 22 bis 27 aufgeführt. Es wurden in den Kanälen verschiedene Querschnitte untersucht, die erhaltenen Drücke sind in Fig. 44 bis 64 für verschiedene Höhen über die Breite der Kanäle an verschiedenen Stellen dargestellt. Da der Flüssigkeitsdruck auf eine Breitenlinie nahezu unveränderlich ist, wurde darauf verzichtet, den im Röhrchen gemessenen Druck in Druckhöhe und Geschwindigkeitshöhe zu trennen, zumal die Summe beider die noch verfügbare Energie ergibt. Die von der Kurve der verfügbaren Energie, der wagerechten, strichpunktierten Linie des absoluten Drucknullpunktes und den beiden Ordinaten an den Rändern des Durchflußquerschnittes eingeschlossene schraffierte Fläche gibt eine Vorstellung (die nicht ohne weiteres quantitativ verwertbar ist) von der Verteilung der nutzbaren Energie über den Querschnitt; ferner die Rechteckfläche, die nach oben hin durch die wagerechte Linie des Kesseldruckes abgeschlossen wird, von der Gesamtenergie des Querschnittes; schließlich der unschraffierte Teil der Rechteckfläche von den auftretenden Verlusten.

Die den Kanal I bildenden Wangen sind am Ende des Kanales senkrecht abgeschnitten, so daß der Querschnitt des Kanales I plötzlich auf den des äußeren Kanales übergeführt wird. Es war hierdurch ermöglicht, eine Messung für plötzliche Querschnittänderung (Zahlentafel 22 und Fig. 44) durchzuführen. Für Kanal IV sind die Messungen über den Einfluß des Druckabfalles bis zum Entweichen der gelösten Luft in Zahlentafel 26 und Fig. 57 bis 64 zusammengefaßt.

Bei einem Teil der Messungen sprang in kurzen Abständen das Manometer zwischen zwei oder drei voneinander vollkommen getrennten Gleichgewichtlagen hin und her. Diese Punkte sind vermerkt und bei der Auftragung so verbunden, daß die von den Kurven eingeschlossenen Flächenstücke ungefähr gleich groß wurden. Dies gelang vollkommen zwanglos, und es ergaben sich zwei bezw. drei stetige Kurvenzüge. Es rührt dies offenbar davon her, daß der von der Wandung abgelöste Strahl während des Versuches nicht unveränderlich an seinem Orte blieb, sondern bald nach rechts, bald nach links pendelte oder sich in der Mitte hielt¹).

¹) Eine Erscheinung, die sich auch bei Versuchen mit Luftströmung zeigte und dort photographisch festgehalten wurde, vergl. Diss. Steichen, Göttingen.

Fig. 44. Kanal I. Verteilung der nutzbaren Energie über die Breite des Kanals (gemessen mittels des Röhrchens) an verschiedenen Stellen innerhalb und außerhalb des Kanals.

Fig. 45. Kanal I Verlauf der nutzbaren Energie des mittelsten Stromfadens über die Länge des Kanals. Strahl symmetrisch zur Achse. Messung mit Röhrchen.

Fig. 46. Kanal II. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrehen). Höhe 13,4 mm. Wassermenge. 7,16 ltr/sk Kesseldrock: 9 kg/qcm.

- 23 -

Fig. 47. Kanal II. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrchen). Höhe: 20,4 mm. Wassermengs: 7,15 ltr/sk. Kesseldruck 9 kg/qcm.

Fig. 48. Kanal II. Verteilung der nutzbaren Energie über die Breite des Kanals Höhe: 24,4 mm. Wassermenge: 7,15 ltr/sk. Kesseldrack: 9 kg/qcm.

Fig. 49. Kanal II. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrchen). Höhe: 26,4 mm. Wassermenge; 7,15 ltr/sk. Kesseldruck: 9 kg/qem.

Fig. 50 Kanal II, Verlauf der nutzbaren Energie des mittelsten Stromfadens über die Länge des Kanals. Strahl symmetrisch zur Achse. Messung mit Röhrchen.

Fig. 51. Kanal II. Verteilung der nutzbaren Energie über die Breite des Kanals, gemessen mit Röhrchen. Höhe: 13,4 mm. Wassermenge: 5,6 ltr/sk. Kesseldruck: 8 kg/qcm.

Fig. 52. Kanal III. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrchen). Höhe: 12,4 mm Wassermenge: 5,38 ltr/sk. Kesseldruck: 9 kg/qcm.

Fig. 58, Kanal III. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrehen). Höhe: 12,4 mm. Wassermenge: 6,8 ltr/sk. Kesseldruck: 9 kg/qcm.

Fig. 54. Kanal III. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrchen'. Höhe: 12,4 mm. Wassermenge: 7,25 ltr/sk. Kesseldruck: 9 kg/qcm.

Fig. 55 und 56. Verlanf der nutzbaren Energie des mittelsten Stromfadens über die Länge des Kanals. Strahl symmetrisch zur Achse. Messung mit Röhrchen

Fig. 57. Kanal IV. Verteilung der nutzbaren Euergie über die Breite des Kanals (Messung mit Röhrchen) (Verschiedene Drosselung des Schiebers, gleich gehalteue Durchflußmenge.)
Höhe: 13,6 mm. — — Höhe: 22,6 mm. Wassermenge: 7,87 ltr/sk. Kesseldruck: 6,8 kg/qcm. ps: an der Stelle 112: 0,25 kg/qcm

Fig. 58. Kanal IV. Verteilung der nutzbaren Euergie über die Breite des Kanals (Messung mit Röhrchen) Verschiedene Drosselung des Schiebers, gleich gehaltene Durchflußmenge.
Höhe: 13,6 mm. Wassermenge: 7,37 ltr/sk. Kesseldruck: 6,8 kg/qcm. psi au der Stolle 112: 1,0 kg/qcm.

Fig 59. Kaual IV. Verteilung der nutzbaren Energie über die Breite des Kauals (Messung mit Röhrchen). Verschiedene Drosselung des Schiebers; gleich gehaltene Durchfinßmenge.
Höhe: 13.6 mm. — — Höhe 24.6 mm (nahe dem Rande). Wassermenge: 7,37 ltr/sk. Kesseldruck: 6,8 kg/qcm. ps: an der Stelle 112: 2,0 kg/qcm.

 Fig. 60. Kanal IV. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrehen). Verschiedene Drosselung des Schiebers; gleich gehaltene Wassermenge.
 Höhe: 13,6 mm. Wassermenge: 7,87 ltr/sk. Kesseldruck: 6,8 kg/qcm. pst an der Stelle 112: 3,0 kg/qcm.

 Fig. 61. Kanal IV. Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Rührehen). Verschiedene Drosselung des Schlebers; gleich gehaltene Durchflußmenge.
 Höhe 13,6 mm. Wassermenge 7,87 ltr/sk. Kesseldruck 6,8 kg/qcm. psi an der Stelle 112: 4,0 kg/qcm.

Fig. 62. Kanal IV Verteilung der nutzbaren Energie über die Breite des Kanals (Messung mit Röhrchen). Verschiedene Drosselung des Schiebers; gleich gehaltene Wassermenge.
Höhe: 18,6 mm. — — Höhe: 24,6 mm (nahe dem oberen Rande). Wassermenge: 7,37 ltr/sk. Kesseldruck: 9 kg/qcm. pst an der Stelle 112: 5 kg/qcm.

Fig. 63 und 64. Kanal IV. Verlauf der nutzbaren Energie des mittelsten Stromfadens über die Länge des Kanals. Strahl symmetrisch zur Achse. Verschiedene Drosselung des Schiebers. Drücke auf gleichbleibenden Kesseldruck bezogen.

IV) Die Ergebnisse der Messungen.

A) Die Druckverteilung über die Oberfläche zeigt für den geraden Teil der Kanäle, daß die Isobaren ohne großen Fehler als Kreisbögen um den Schnittpunkt der geraden seitlichen Begrenzungslinien des Kanales betrachtet werden können, stärkere Abweichungen zeigen sich gegen Ende des Kanals IV, Fig. 22 bis 25. (Weiteres im Abschnitt V: Theoretische Betrachtung zur Potentialströmung).

Ba) Bei der Strömung gleicher Durchflußmengen bei verschiedenem Anfangsdruck (Kesseldruck) ergibt sich innerhalb gewisser Grenzen, daß die Druckkurven sich nur durch eine additive Konstante unterscheiden, d. h. der Strömungsvorgang ist innerhalb der Beobachtungsgenauigkeit unabhängig vom Anfangsdruck, Fig. 26.

Bb) Erreicht jedoch der Druckabfall an der engsten Stelle den Atmosphärendruck oder unterschreitet ihn, so entweicht die im Wasser gelöste Luft, ferner beginnt sich Wasserdampf zu entwickeln, sobald die Dampfspannung des Wassers erreicht wird. Abgesehen davon, daß die Dampf- und Luftblasen eine Querschnittsverminderung, also ein Anwachsen des Ausdruckes $\frac{\rho v^2}{2}$, somit eine Vermehrung der Verluste bedeuten, so bedingen auch im erweiterten Teile die stärkere Wirbelung und die Relativbewegung zwischen Wasser und Luft einen vermehrten Energieaufwand. Auf diese Weise ergeben sich in Fig. 27 die unterhalb der gestrichelten Kurve liegenden Kurven, und zwar entsprechen die tieferliegenden, größeren entweichenden Dampf- oder Luftmengen. Die Kurven sind dadurch erhalten, daß mit dem hinter dem Kanal liegenden Drosselschieber S eine verschiedene Drosselung des Enddruckes eingestellt wurde. Je nach der Größe der Drosselung, bei höherem Gegendruck, verringert sich die entweichende Luftmenge, bis eine Grenze (gestrichelte Kurve) erreicht wird, bei der keine Luft mehr entweicht. Aeußerlich konnte dies dadurch beobachtet werden, daß das durch die heftige Durcheinanderbewegung erzeugte Geräusch (Rasseln) plötzlich nachließ. Für die verschiedenen Drosselungen, Gegendrücke, unterhalb dieser Grenze bleibt bei demselben Anfangsdruck die Wassermenge unverändert. Es wurde bei diesen Messungen darauf verzichtet, die Aenderungen der Drosselung, die durch das Verschieben des Kanales entstehen, durch Regeln auszugleichen,

Wird nach Erreichung der Grenzkurve eine weitere Drosselung vorgenommen, der Gegendruck also weiter erhöht, und sorgt man dafür, daß sich die Durchflußmenge nicht ändert, so erhält man die Kurven, die sich von der Grenzkurve nur durch eine additive Konstante unterscheiden. Es ergibt sich die für die Praxis wichtige Regel, daß man es bei Geschwindigkeitsteigerung vermeiden muß, sich im Druckabfall dem Vakuum zu nähern, da jegliches Entweichen von Luft oder Dampf bei einer folgenden Geschwindigkeitsverminderung starke Verluste durch Ablösung des Strahles zur Folge hat¹).

Durch das Entweichen der Luft ist für jeden Anfangsdruck - bei offenem Drosselschieber - der durchfließenden Wassermenge eine obere Grenze gesetzt. Diese ist für den Kanal IV in Abhängigkeit von dem Druck vor der Einströmung im parallelen Teil des Zuflusses (Stelle 14) (ohne Anwendung von Drosselung) beobachtet und in Fig. 28 zusammengestellt worden. Der Ausflußvorgang richtet sich nach zwei Gesetzen, je nachdem der Druck bis zum Entweichen der Luft erniedrigt wird oder nicht. In dem einen Falle, bei hohen Kesseldrücken (ungefähr
ge 2 kg/qcm), steht ein Druckabfall bis ins Vakuum zur Verfügung; und diese Druckhöhe kann in Geschwindigkeitshöhe umgesetzt werden; es ergibt sich für den für die verschiedenen Durchflußmengen erforderlichen Druck eine Parabel durch den absoluten Nullpunkt des Druckes, d.h. das Quadrat der Wassermenge ist dem absoluten Drucke proportional. Bei geringeren Wassermengen tritt an der engsten Stelle als Gegendruck der Atmosphärendruck auf. Entsprechend diesem um den Atmosphärendruck verminderten Druckgefälle ist die Geschwindigkeitshöhe, somit auch die Wassermenge geringer. Diese Abhängigkeit der Wassermenge vom Anfangsdruck wird durch eine zweite Parabel durch den Nullpunkt des Atmosphärendruckes dargestellt. Eine beiden Parabeln sich anschmiegende Kurve gibt den Uebergang vom einen Zustande zum andern.

Bc) Wie bereits oben erwähnt, ergibt sich in gleicher Weise wie in dem Beispiel Fig. 37 für alle Versuche, daß die Kurven p_{st} in Abhängigkeit vom Quadrat der Durchflußmenge Gerade, daß also die Verluste an jeder Stelle der Geschwindigkeitshöhe proportional sind.

Für die bei der Strömung auftretenden Verluste ergibt sich weiter Folgendes: Die Kurven des Wirkungsgrades zeigen, daß die Gesamtverluste für Kanal I, II, IV nahezu gleich, für Kanal III etwas höher sind. Für die verengten Kanäle ergeben sich wesentlich kleinere Verluste.

Auch die Kurven: Verluste auf 1 cm in Abhängigkeit von der Länge zeigen, daß die Verluste für die verengten Kanäle wesentlich kleiner sind, Fig. 38.

Schaltet man nun den Einfluß der Geschwindigkeitshöhe in den verschiedenen Kanälen aus, indem man das Verhältnis: Verluste auf 1 cm Kanallänge zur Geschwindigkeitshöhe aufträgt, so weist die Reihenfolge der Kurven den ungünstigeren Einfluß der Erweiterung nach: IV, III, II, II¹, III¹, Fig. 39.

In diesen Auftragungen ist noch in den Werten der Verluste der Einfluß der geometrischen Anordnung enthalten. Dividiert man die Verluste durch den Wert

$$D = \frac{\gamma}{2 g} \int_{x}^{x+1 \text{ cm}} Q^2 dx$$

(vergl. S. 22), der in Fig. 43 für die verschiedenen Kanäle aufgetragen ist, so läßt die Darstellung des Koeffizienten β in Fig. 42 den ungünstigen Einfluß

¹) Aehnliche Vorgänge bei Wasserdampf sind von K. Büchner (Zur Frage der Lavalschen Turbinendüsen, Mitteilungen über Forschungsarbeiten Heft 18 S. 79) und A. Stodola (Zeitschrift des Vereines deutscher Ingenieure 1903 S. 6) bei Lavaldüsen beobachtet worden,

der Erweiterung auf die Größe der Verluste am deutlichsten zutage treten. Für das Ende des Kanals IV hat der Koeffizient β bereits den fünffachen Betrag desjenigen des parallelen Kanales erreicht.

Das anfangs schnelle, dann allmählichere Ansteigen der Kurven IV bis I läßt erkennen, wie der wirbelnde »turbulente« Zustand mit der Länge des Kanales anwächst, bis schließlich die ganze Flüssigkeit von kleinen Wirbeln durchsetzt ist und der Koeffizient sich einem unveränderlichen Höchstwert nähert. Aus dem Charakter der Kurven II¹ und III¹ für die verengten Kanäle lassen sich keine Schlüsse ziehen, da die Absolutwerte der Verluste so klein sind, daß sie durch die mehrmalige Differenzenbildung nur ungenau bestimmt werden können. Sie sollen also nur die Größenordnung des Koeffizienten β angeben, der für die verengten Kanäle kleiner ist als für den parallelen.

Zum Vergleich sind für den parallelen Kanal die Koeffizienten β nach verschiedenen Formeln berechnet und gleichfalls in Fig. 42 eingetragen worden.

Weisbach¹) $4\beta = \lambda = 0,01439 + \frac{0,00094711}{\sqrt{v}},$ $\beta = 0,004084,$ Darcy ') $4 \beta = \lambda = 0,01980 + \frac{0,0005078}{d}; \ d = \frac{4 F}{u}$ $\beta = 0,0156,$ II. Lang ') $4 \beta = \lambda = a + \frac{0,0018}{1/v a}$ I a = 0,012 $\beta = 0,0048$ $\beta=0,0066,$ II a = 0.02Biel²)..., $\beta = \frac{k 2 g}{1000}$ wobei $k = a + \frac{f}{\sqrt{\frac{F}{u}}} + \frac{b}{v\sqrt{\frac{F}{u}}} \frac{[\eta]}{v},$ a, f, b, Konstante, $\frac{[\eta]}{g}$ der Zähigkeitsmodul, für eine Rauhigkeit Ι Π ist a der Grundfaktor 0,12 0,12 f der Rauhigkeitsfaktor 0,0064 0,018 $=\frac{0,00765\cdot 0,0273}{2\cdot (0,0273+0,765)}$ 0,003 m 0,117 m 0,328 m **v** = 23,9 b [ŋ] 0,009 0.00672 k (),246 (),4547 $\beta = .$ 0,00483 0,0089

¹) Hütte, 20. Aufl. 1908 S. 271.

²) R. Biel, Ueber den Druckhöhenverlust bei der Fortleitung tropfbarer und gasförmiger Flüssigkeiten. Mitteilungen über Forschungsarbeiten Heft 44 S. 37, Während die Formel von Darcy unvergleichbar hohe Werte liefert (was zu erwarten, da sie für Geschwindigkeiten < 0.5 m/sk gilt) und die Formel von Weisbach einen zu niedrigen Wert ergibt, liegt der hier ermittelte Koeffizient zwischen den beiden Werten von Lang und Biel.

C) Aus den bisherigen Messungen ergibt sich der quantitative Einfluß der Erweiterung auf die Verluste der Strömung. In bezug auf die Quelle der Verluste, die Stelle, wo sie entstehen, geben die Versuche mit dem Röhrchen eine wesentliche Ergänzung.

Kanal I, Fig. 44, zeigt in den beiden ersten Figuren links für zwei Querschnitte in der mittleren Höhe unter Abzug der unveränderlichen Druckhöhe eine durchaus gleichmäßige Geschwindigkeitsverteilung. Für eine Höhe nahe dem oberen Rande ergaben sich keine abweichenden Werte. Die weiteren Figuren zeigen den Einfluß einer plötzlichen Erweiterung. Der Strahl strömt geschlossen aus, und zwar um so vollständiger, je größer die ursprüngliche Geschwindigkeit ist, und um so langsamer erfolgt eine Auffüllung der seitlichen Räume mit wirbelndem Wasser. Jedoch die gleichmäßige Geschwindigkeitsverteilung zeigt der Strahl nicht mehr, er wird nach beiden Seiten hin stark abgerundet, und zwar um so stärker, je größer die Verluste an den Seiten sind (bei größerer Anfangsgeschwindigkeit). Bei der getroffenen Anordnung konnten weitere Querschnitte nicht mehr untersucht werden. Es hätte sich dann ergeben, daß der mittlere Teil der schraffierten Fläche sich allmählich verflacht, während gleichzeitig die Seitenteile sich auffüllen, bis schließlich eine gleichmäßige, aber turbulente Strömung über dem ganzen Querschnitt vorhanden ist. Hierbei nimmt entsprechend dem zunehmenden Verluste die gesamte schraffierte Fläche noch etwas ab. Im wesentlichen ist der Sitz der Verluste die Unstetigkeitstelle des Querschnittes. Mit vermehrter Geschwindigkeit ergibt sich eine Zunahme dieser Verluste.

Die nutzbare Energie des mittelsten Stromfadens, in Abhängigkeit von der Kanallänge dargestellt, Fig. 45, gibt eine Gerade, die nur wenig in der Strömungsrichtung geneigt ist, entsprechend den geringen Verlusten beim geraden Kanal.

Für den Kanal II ist in Fig. 46 bis 49 veranschaulicht, wie die Verluste nach dem oberen Rande hin zunehmen. Die Messung erfolgte für diesen Kanal wie auch für III und IV an vier Querschnitten: l = 25 (engste Stelle); 60 (im geraden Teil des Kanales); 100 (Ende des geraden Teiles); 130 (hinter der stärkeren Erweiterung, im großen Kanal). Für Kanal II ist die Messung für verschiedene Höhen durchgeführt: 13,4 (ungefähr Mitte); 20,4; 24,4; 26,4 (1 mm vom oberen Rande)¹), für Kanal III für verschiedene Wassermengen, d. h. Geschwindigkeiten, Fig. 52 bis 56.

Während die Verluste an der engsten Stelle unmerklich sind, zeigt sich deutlich, wie sie allmählich an den Wandungen entstehen und mit zunehmender Länge und nach dem oberen Rande hin das Geschwindigkeitsprofil immer stärker angreifen. Der Einfluß der stärkeren Erweiterung ist ohne weiteres aus den Kurven ersichtlich, ebenso das Anwachsen der Verluste mit zunehmender Geschwindigkeit.

Der bei Kanal II vorhandene abgerundete Uebergang nach dem weiten Kanale hin ist benutzt, um im Vergleich zu der plötzlichen Querschnittsänderung bei Kanal I zu zeigen, wie durch eine auch nur kurze aber stetige Erweiterung die Verluste wesentlich herabgemindert werden.

¹) Für die erstere Höhe konnte wegen der starken Drosselung des Röhrehens die Messung für den engsten Querschnitt nicht durchgeführt werden.

Für Kanal IV ist die Messung unter dem gleichen Gesichtspunkte wie bei der Bestimmung des Flüssigkeitsdruckes durchgeführt, es sollte der Einfluß der Druckerniedrigung bis zum Entweichen der Luft festgestellt werden. Der Kurvenschar in Fig. 27 entsprechen die in Fig. 57 bis 64 dargestellten Ergebnisse:

Der Flüssigkeitsdruck bleibt für die ganze Länge im Vakuum: völlige Ablösung des Strahles, große Verluste. Sie werden kleiner in dem Maße, als das Entweichen von Luft, Wasserdampf usw. durch Drosselung mit Hülfe des Schiebers verhindert wird, bis schließlich in Fig. 62, wo durch genügend hohen Anfangsdruck ein Abfall des Druckes im verengten Teile auf die Nähe des Atmosphärendruckes vermieden ist, die Verluste den kleinsten Wert annehmen

Das Verhalten des mittelsten Stromfadens zeigen Fig. 63 und 64. Er scheint um so später von dem allgemeinen Zerfall angegriffen zu werden, je mehr Luft entweicht; allerdings fällt die Kurve, entsprechend einem Flüssigkeitsdruck von 2 kg/cm aus der Reihe der übrigen heraus¹).

V) Theoretische Betrachtung zur Potentialströmung.

Für die Strömung einer volumbeständigen Flüssigkeit gilt die Beziehung:

Ist die Strömung wirbelfrei, und kann der Einfluß der Reibung vernachlässigt werden, so läßt sich die Geschwindigkeit v von einem Potentiale ableiten:

Setzt man diese Werte in die obige Gl. (1) ein, so erhält man die bekannte Laplacesche Differentialgleichung:

Da in den hier betrachteten Kanälen die Höhe stets gleich ist, kann das Problem 2 dimensional weiter behandelt werden ($v_3 = 0$)

Als Lösung dieser Differentialgleichung dient sowohl der reelle als auch der imaginäre Bestandteil jeder beliebigen Funktion einer komplexen Variabeln z = x + yi.

Es sei

$$w = \Psi + i\Psi = F(z) \qquad \dots \qquad (4)$$

eine solche Funktion, dann ist

อ

$$\frac{\partial w}{\partial x} = \frac{\partial \Phi}{\partial x} + i \frac{\partial \Psi}{\partial x} = \frac{dF(z)}{dz} \frac{\partial z}{\partial x} = \frac{dF(z)}{dz} = F'(z)$$

ferner

$$\frac{\partial w}{\partial y} = \frac{\partial \Phi}{\partial y} + i \frac{\partial \Psi}{\partial y} = \frac{dF(z)}{dz} \frac{\partial z}{\partial y} = i \frac{dF(z)}{dz} = iF'(z),$$

Mitteilungen. Heft 114.

¹) Eine wesentliche Rolle spielen diese Vorgänge in dem von Clemens Herschel erfundenen und ausgebildeten »Venturi-Wassermesser«. Die verschiedenen auf diese Erfindung Bezug nehmenden Veröffentlichungen dieses Ingenieurs sind mir erst nach Abschluß der Arbeit bekannt geworden. Vergl. Clemens Herschel, The Venturi Water Meter, American Society of Civ. Engineers Transactions Vol XVII November 1887. — —, Measuring Water, Reprinted by Builders Iron Foundry, Providence R. I. 1909. - -, The Fall-Increaser, The Harvard Engineering Journal, June 1908.

hieraus folgt

$$F'z = -i\frac{\partial\varphi}{\partial y} + \frac{\partial\varphi}{\partial y},$$

also

$$\frac{\partial \Psi}{\partial y} - i \frac{\partial \Phi}{\partial y} = \frac{\partial \Phi}{\partial x} + i \frac{\partial \Psi}{\partial x},$$

dies ist nur möglich, wenn sowohl die reellen als auch die imaginären Teile gleich sind, d. h.

$$\frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y}; \quad \frac{\partial \Psi}{\partial x} = -\frac{\partial \Phi}{\partial y} \quad \dots \quad \dots \quad \dots \quad \dots \quad (5).$$

Differentiiert man die erste Gleichung nach x, die zweite nach y und addiert, so erhält man

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$$
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0$$

die Gl. (3a) und umgekehrt

eine entsprechende Gleichung für Ψ.

Die Funktion Ψ bezeichnet man als Stromfunktion,

die Kurven $\Psi =$ konst als Stromlinien, die Kurven $\Psi =$ konst als Aequipotentiallinien¹).

Zeichnet man in der xy-Ebene ein Netz von Kurven $\Psi = \text{konst}$ und $\Psi = \text{konst}$, so folgt aus $\frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y}$ und $\frac{\partial \Phi}{\partial y} = -\frac{\partial \Psi}{\partial x}$, daß die Kurven sich rechtwinklig schneiden, Fig. 65. Es läßt sich weiter zeigen, daß die Maschen des Netzes, wenn sie hinreichend klein gewählt werden, Quadrate bilden (Orthogonalsystem). Bildet man dieses Kurvennetz auf der $\Psi \Psi$ -Ebene ab, so erhält man Quadrate, Fig. 66. Die Beziehung beider Netze zueinander bezeichnet man als

Fig. 65 und 66.

winkeltreue oder konforme Abbildung (weil bei ihr die Winkel erhalten bleiben, während die Längen sich proportional ändern können), eine Beziehung, die in der Mathematik von großer Bedeutung ist. Zieht man in der $\Psi \Psi$ -Ebene die Diagonalen, so stehen diese aufeinander senkrecht und bilden ein gleichartiges Quadratnetz wie die Kurven $\Psi =$ konst und $\Psi =$ konst. Aus der Theorie der konformen Abbildung folgt, daß die Kurvenscharen des Diagonalnetzes in der x y-Ebene dann ebenfalls ein Orthogonalsystem bilden müssen. Hieraus ergibt

¹) Föppl, Vorlesungen über technische Mechanik Bd. 4, Wirbelbewegung und wirbelfreie Bewegung S. 403 ff. II. Aufl. — H. Lamb, Lehrbuch der Hydrodynamik.

sich, daß die Diagonalen aufeinander senkrecht stehen und in erster Annäherung einander gleich sind.

Betrachtet man die Strömung zwischen zwei aufeinander folgenden, sich um einen stets gleichen Wert von Ψ unterscheidenden Strömlinien, so ist die durchfließende Wassermenge $\partial Q = hv_1 \wedge y$, wobei h die unveränderliche Höhe des Kanals, daher $\frac{\partial Q}{\partial y} = hv_1$,

ferner ist

daher

$$\partial Q = -hv_2 \partial x,$$

 $\frac{\partial Q}{\partial x} = hv_2,$

nun war

$$v_1 = \frac{\partial \Phi}{\partial x} = \frac{\partial \Psi}{\partial y}; v_2 = -\frac{\partial \Psi}{\partial x} = \frac{\partial \Phi}{\partial y},$$

also ergibt sich $Q = \Psi h + \text{konst}$, d. h. die Durchflußmenge durch eine von je zwei um einen festen Wert voneinander verschiedene Stromlinien gebildete Stromröhre ist unveränderlich. Für die Strömung durch einen beliebigen Kanal läßt sich das Netz $\Psi = \text{konst}$, $\Psi = \text{konst}$ einzeichnen, da die Kanalwandungen selbst Stromlinien sind und die mathematische Aufgabe, zwischen zwei vorgegebenen Stromlinien ein Netz von Quadraten einzuschalten, zu einer eindeutigen Lösung führt.

Die Konstruktion des Ψ Ψ -Netzes wird in der Weise vorgenommen, daß man ein ungefähres Kurvennetz wie das verlangte nach Augenmaß in den Kanal einzeichnet. Von einer Kurve ausgehend, berichtigt man dann die Werte nach dem unten angegebenen Verfahren und erhält auf diese Weise ein verbessertes Netz, bei dem das Verfahren wiederholt wird, bis schließlich bei der Verbesserung keine Abweichungen gegen das vorherige Netz mehr entstehen.

Das Verfahren ist von Prof. Runge in seinen Vorlesungen über »graphische Methoden« angegeben und soll ohne Beweis hier angedeutet werden.

»Es sei eine Kurve Ψ = konst bekannt und auf ihr drei Schnittpunkte A, B, Cder Kurven Ψ = konst, Fig. 67, dann lassen sich zwei weitere Schnittpunkte F, Gfinden, indem man den Halbierungspunkt D der Sehne AC mit B verbindet, DBum sich selbst bis E verlängert, von E eine Senkrechte auf AC fällt und auf dieser von E aus nach beiden Seiten hin $EF = FG = \frac{AC}{2}$ aufträgt. Die Punkte F, Gsind dann in erster Annäherung die gesuchten Punkte.«

Das Ziehen der Linien AC und FG kann gespart werden, wenn man Millimeterpauspapier zu Hülfe nimmt. Die Punkte D, E, F, G können dann auf den Geraden des Millimeterpauspapiers mit dem Zirkel eingestochen werden.

Man erhält auf diese Weise Stromlinien, die, von den nach Augenmaß gezeichneten abweichen, und zwar jede folgende stärker. Für die Symmetrielinie ergibt sich eine berichtigte Stromlinie, die nur dann mit ihr zusammenfallen kann, wenn die Einteilung der Ausgangskurve die richtige war. Dies ist im allgemeinen nicht der Fall. Man muß also an den Teilpunkten der Ausgangskurve (Randkurven) eine sachgemäße Berichtigung vornehmen und das ganze Verfahren auf diese Weise mehrmals wiederholen, bis schließlich die letzte Kurve mit der Symmetrielinie zusammenfällt und das Netz nach den parallelen Teilen des Kanales hin genau quadratisch wird.

Lag ein cinmalig berichtigtes Netz vor, so konnte das Verfahren weiter vereinfacht werden, indem man mittels Millimeterpauspapier die Diagonalen untersuchte, ob sie gleich waren und aufeinander senkrecht standen, bezw. die Punkte entsprechend berichtigte. Da der Rand und die Symmetrieachse des Kanales Stromlinien sind, und da das Netz im parallelen Teil des Kanales genau quadratisch ist, so hat nan eine ständige Prüfung, wie schnell man sich bei der Berichtigung den wahren Werten nähert.

Hat man für einen Kanal das Netz konstruiert, so fließt durch jede, von je zwei aufeinander folgenden Stromlinien gebildeten Stromröhre die gleiche Wassermenge. Nun ist Q = v a; da aber a = rd. b, Fig. 68, so folgt: Q = v b, nun ist $\frac{q v^2}{r} = p_b$

oder

$$p_D = \frac{\varrho}{2} \left(\frac{Q}{a}\right)^2;$$

nun ist

$$d^4 = a^2 + b^2 = 2 a^2$$

ferner $\varrho Q^2 = \text{konst}$, also die Geschwindigkeitshöhe

$$p_{\mathcal{D}} = \frac{e_1}{d^2}.$$

Die Energiegleichung lautete $p_D + p_u = \text{konst} = c_i$, also

Fig. 69

Die Bestimmung von p_u aus der Größe der Diagonalen d kann zeichnerisch schnell auf folgendem Wege durchgeführt werden. Man zeichnet einen Kreis mit dem Halbmesser 1 und ein Achsenkreuz X, Y, Fig. 69. Ueber diese Zeichnung legt man ein Stück Millimeterpauspapier. Auf der einen Achse (Y) sticht man mittels einer Nadel die Entfernung d vom Mittelpunkt aus ab und dreht das Millimeterpauspapier um diesen Punkt, bis eine Gerade desselben den Punkt dmit dem einen Schnittpunkt des Kreises mit der X-Achse x = +1, y = 0 verbindet, dann schneidet die dazu senkrechte Gerade des Koordinatenpapieres die x-Achse in einem Punkte, dessen Entfernung vom Nullpunkte $x = -d^{2}$ ist. In diesen Punkt sticht man die Nadel ein und verbindet durch nochmalige Drehung des Millimeterpapieres diesen Punkt d mit dem Schnittpunkt x = 0, y = -1 der Y-Achse mit dem Kreise. Die parallele Gerade des Millimeterpauspapieres durch den Punkt x = -1, y = 0 der X-Achse schneidet die Y-Achse im Abstande $\frac{1}{d^{2}}$ vom Mittelpunkte.

Die Konstante c₁ ist gleich 1 gesetzt in geeignetem Maßstab, c₂ beliebig. Man verbindet schließlich die Punkte gleichen Flüssigkeitsdruckes und erhält so das Strömungsbild in Fig. 70.

Man vergleiche hiermit Fig. 22 und 23: es zeigt sich, daß in der Tat in den verengten Teilen der Kanäle das Strömungsbild durch das der Potentialströmung wiedergegeben werden kann. Da diese Strömung nun Reibungs- und Wirbelfreiheit voraussetzt, so ergibt sich auch auf diesem Wege, daß die bei der Strömung durch verengte Kanäle auftretenden Verluste nur gering sein können, da das durch die Potentialströmung gegebene Bild des Strömungsverlaufes nur unwesentlich verändert erscheint.

Zusammenfassung und Schluß.

Die Untersuchungen geben eine volle Bestätigung der in der Einleitung dargestellten Theorie von Hrn. Prof. Prandtl. Die Messung des Flüssigkeitsdruckes zeigte, daß in den verengten Kanälen die Strömung nahezu verlustfrei ist (Potentialströmung), während mit zunehmender Erweiterung die Strömung ungünstiger verläuft. Durch die Untersuchung des Strömungsverlaufes mit Hülfe des Röhrchens konnte dann weiter nachgewiesen werden, daß die Verluste (in Form von Wirbelbildung durch Reibung) im wesentlichen an den Wandungen der Kanäle entstehen und allmählich die ganze Strömung durchsetzen (Turbulenz), und zwar in um so stärkerem Maße, je stärker die Kanäle erweitert sind, je schneller die Geschwindigkeitsabnahme und die Druckzunahme erfolgt. Der schädliche Einfluß des Druckabfalles in der engsten Stelle bis zum Entweichen der gelösten Luft, plötzlicher Querschnittsänderungen konnte durch die zur Verwendung gelangten Untersuchungsverfahren nachgewiesen werden.

Das somit gewonnene anschauliche Bild der Strömungsvorgänge kann für die Verwendung in der Technik wertvoll sein, wenn auch im Hinblick auf die geringen einstweilen vorliegenden Unterlagen darauf verzichtet wurde, die Ergebnisse so in mathematischer Ausdrucksweise darzustellen, daß sie der rechnerischen Verwertung unmittelbar zugänglich wären.

Zahlentafeln.

Zahlentafel 1.

Kanal I. Verteilung des Flüssigkeits- (statischen) Druckes über die obere Fläche. Datum 16. 2. 09. Kesseldruck 8 kg/qcm. Wassermenge 4,95 ltr/sk. Drücke in 0,01 kg/qcm. Versuch Nr. 1.

	_								_		
Länge	• • •	112	100	90	80	70	60	50	40	30	25
Winkel	190	471	479	486	494	501	512	519	521	531	555
*	185	471	479	486	494	501	512	519	521	531	563
»	180	471	479	486	494	501	512	519	521	531	563
	175	471	479	486	494	501	512	519	521	531	556
*	170	471	479	486	494	501	512	519	521	531	540
Länge	• • •	20	15	10	5	0	5	-14			
Winkel	230	-		761	773	770	768	772			
»	220	-	_	764	770	770	768	772			
*	210	-	748	758	766	769	766	772			İ
*	20 0	664	732	750	760	768	766	772			
»	190	657	720	748	758	766	766	772			
*	180	652	718	744	758	764	766	772			
»	170	654	722	747	758	765	766	772			
*	160	666	736	750	760	766	766	772			
»	150	_	750	758	765	768	766	772			
*	140	_	_	764	770	770	768	772			
»	130	_	_	750	773	771	768	772			

Zahlentafel 2.

Kanal II. Verteilung des Flüssigkeits- (statischen) Druckes über die obere Fläche. Datum 2. 12. 08. Kesseldruck 8 kg/qcm. Wassermenge 6,4 ltr/sk. Drücke in 0,01 kg/qcm. Versuch Nr. 2.

Länge		100	90	80	70	60	50	40	30	25	20
		1			1		<u> </u>				
Winkel	195	470	442	-		-	-	-	-	-	
*	190	468	440	414	378	348	305	262	190	164	21 2
»	185	468	438	410	373	346	302	260	185	162	240
*	180	470	438	410	370	340	300	255	182	160	230
»	175	466	438	410	372	342	302	260	190	168	200
»	170	468	439	412	375	348	302	265	195	170	170
»	165	470	440	-	-	-	-	-	-		-
Länge		15	10	5	0	- 5	-10				
Winkel	230	-		_	761	762	758				
»	22 0	_	_	745	755	762	758				
*	210	- 1	690	732	750	756	758				
*	200	480	648	720	745	755	759				
	100	480	619	705	749	759	756				
	190	400	012	100	744	7.52	730				
»	180	480	600	698	739	700	755				
»	170	480	612	712	742	752	756				
*	160	490	6 62	730	745	755	757				
»	150	I - 1	700	748	748	760	758				
*	140	-	_	752	752	764	758				
»	130	I _		_	755	765	758				

Zahlentafel 3.

Kanal III. Verteilung des Flüssigkeits- (statischen) Druckes über die obere Fläche. Datum 14 12. 08. Kesseldruck 8 kg/qcm. Wassermenge 6,4 ltr/sk. Drücke in 0,01 kg/qcm. Versuch Nr. 3.

Länge .		100	90	80	70	60	50	40	30	25
Winkel	205	712	695	675		_	_	_	_	
»	200	712	692	676	653		-	- 1	l	- 1
»	195	712	695	677	658	626	590	538	-	
»	190	712	698	678	653	623	590	541	452	385
»	185	712	69 8	678	651	620	589	538	450	382
*	180	712	698	678	651	620	588	536	448	380
»	175	712	698	678	651	621	586	538	450	380
»	170	712	697	676	651	623	585	538	452	382
	165	712	695	676	651	620	588	539	-	-
»	160	712	693	675	656	-	-	_	-	
»	155	712	695	677	- 1	-		I _	I	- 1

Zahlentafel 4.

Kanal IV. Verteilung des Flüssigkeits- (statischen) Druckes über die obere Fläche. Datum 17. 12. 08. Kesseldruck 9 kg/qcm. Wassermenge 6,35 ltr/sk. Drücke in 0,01 kg/qcm. Versuch Nr. 4.

	_			_	0.		_				
Länge		112	100	90	80	70	60	50	40	35	30
Winkel	22 0	778	768	760	758	_	-	_	-	_	
*	2 10	772	768	760	752	732			-		
*	200	778	773	760	752	730	712	663		_	_
»	195		_	_				668	605	546	
»	190	778	771	760	749	729	716	668	612	56 6	480
*	185	_	_	_	_	- 1	_	670	612	568	480
»	180	768	766	756	749	728	716	672	608	562	482
>	175	_	_		_		_	672	612	558	488
*	170	772	772	757	748	728	716	672	612	558	488
*	165			_				662	614	578	
»	160	772	772	758	746	723	716	662		_	
*	150	772	762	760	746	728			_		
»	140	782	765	762	754		_	_		_	_

Zahlentafel 5.

Kanal II. Flüssigkeits- (statischer) Druck in der Symmetrieachse der Deckfläche bei verschiedenem Kesseldruck. Datum 1. 12. 08.

Kesseldruc Versuch N Wassermen	k kg/qcm ir nge ltr/sk	10 5 6,35	8 6 6,35	8 7 3, 35	6 8 3,35	4 9 3, 3 5
Stellung der Meßöffnung	112 105 100 95 90 80 70 60 50 40 85 80 26 23 20 15 10 5	698 688 670 652 632 612 582 546 510 458 430 890 850 850 860 460 698 840 018	$\begin{array}{c} 500\\ 485\\ 470\\ 448\\ 485\\ 410\\ 876\\ 850\\ 300\\ 258\\ 220\\ 170\\ 148\\ 160\\ 250\\ 500\\ 649\\ 719\end{array}$	700 696 695 690 688 680 674 668 658 644 624 624 624 620 625 652 718 752 769	$\begin{array}{c} 5,55\\ 500\\ 499\\ 496\\ 491\\ 486\\ 478\\ 470\\ 462\\ 452\\ 440\\ 452\\ 440\\ 434\\ 426\\ 420\\ 428\\ 440\\ 513\\ 550\\ 570\end{array}$	300 298 295 288 284 276 270 260 250 240 226 213 210 211 239 300 349
1	0	940 953	739 760	770 772	573 579	370 376

Zahlentafel 6.

Kanal IV. Flüssigkeitsdruck in der Symmetrieachse der Deckfläche bei gleichbleibender Durchflußmenge und verschiedener Drosselung (Einfluß gelöster Luft). Datum 16. 12. 08. Kesseldruck 7 kg/qcm. Wassermenge 7,37 ltr/sk.

Drücke in 0,01 kg/qcm. Versuch Nr. 112: 652 112:745 Stellung der Meßöffnung $\mathbf{26}$ 28: 228 28: 318 24:286 24:408 $\mathbf{5}$

Zahlentafel 7.

Kanal IV. Größte Durchflußmenge bei verschiedenem statischem Druck an der Stelle l = -14 mm bei offenem Schieber hinter dem Kanal. Datum 17. 12. 08. Versuch Nr. 19. Drücke in 0,01 kg/qcm.

Kessel- druck	Druck an der Stelle —14	Wasser- menge ltr/sk	Kessel- druck	Druck an der Stelle —14	Wasser- menge ltr/sk	Kessel- druck	Druck an der Stelle -14	Wasser- menge ltr/sk
660	605	7 97	460	418	6 9 9		190	4 17
600	550	7.12	400	365	5.85	_	157	3.86
590	540	7,1	350	310	5,89		141	3,5
560	510	6,85	290	255	4,95	_	126	3,02
500	460	6,52	260	230	4,68	-	105	2,7

	Zah	len	tafe	18.
--	-----	-----	------	-----

Versuch Nr.	[20	21	22	23	24	25
Wassermen ge	ltr/sk	3	3,95	5,05	6,06	6,58	7,12
1	12	753	663	521	354	260	155
/ 1	00	759	670	534	371	280	178
	90	763	677	541	388	300	199
	80	76 8	681	546	398	316	211
and and a set of the s	70	771	687	551	408	330	226
, a	60	773	691	561	420	340	245
2	50	775	693	571	437	350	258
69	40	781	696	578	450	368	282
R (30	781	698	588	458	375	298
	27	784	_	602	490	412	344
Ð	25		728	-		_	
a a	23	790	_	678	572	531	513
	20	838	798	747	697	660	642
ste	15	860	841	808	780	755	740
	10	865	851	841	822	802	790
	5	870	861	849	840	831	820
1	0	872	868	858	848	840	836
- ۱	14	880	870	864	853	850	848

Kanal I. Flüssigkeits- (statischer) Druck in der Symmetrieachse der Deckfläche. Datum 1. 4. 09. Kesseldruck 9 kg/qcm. Drücke in 0,01 kg/qcm.

Zahlentafel 9.

Kanal II erweitert. Flüssigkeits- (statischer) Druck in der Symmetrieachse der Deckfläche. Datum 23. 3. 09. Kesseldruck 9 kg/acm. Drücke in 0.01 kg/acm.

Datum	23.	3. 09.	Kesselaruck	9	kg/qcm.	Drucke	ın	0,01 kg/qcm.	

Versuch Nr Wassermenge ltr/sk		26 2,94	27 3,95	28 5,07	29 6,06	30 6, 6	81 7,1
	/ 112	829	788	730	672	628	590
	105	828	781	722	652	610	572
	100	827	774	708	638	5 95	548
	95	826	770	706	622	578	533
	90	821	767	701	616	568	520
	80	816	759	695	600	547	497
	70	811	756	678	586	5 2 8	470
8	60	803	748	664	566	508	446
na	50	79 9	741	650	548	484	420
242	40	796	736	639	528	462	398
eB	35	792	728	630	518	448	387
X	30	791	720	618	500	432	368
er	28	790		_		419	341
5	27	788	716	609	490	402	331
8	24	783	710	602	486	39 8	328
llu	22	781	712	601	480	420	348
ite	20	787	719		496	462	399
02	18	_	_	641	582	_	_
	15	822	776	713	642	590	540
	10	856	828	800	768	744	718
	5	869	856	841	820	807	797
	ő	874	868	856	841	832	828
	- 5	876	872	858	850	839	839
	-14	877	876	862	855	848	844

Zahlentafel 10.

Kanal III erweitert. Flüssigkeits- (statischer) Druck in der Symmetrieachse der Deckfläche.

Versuch Nr		32	33	34	35	36	37
wasserme	iige itr/sk	ə,0	3,98	3,07	0,07	6,57	7,1
	/ 112	839	812	778	740	72 0	694
	100	838	810	770	728	707	677
i	90	836	808	759	710	689	650
	80	835	798	752	698	668	629
80 20	70	830	788	736	674	633	592
nu	60	824	771	716	642	600	550
2 1 2	50	810	758	686	606	553	509
eB	40	798	741	658	554	500	438
R	35	789	729	632	522	458	382
er	30	778	710	598	478	409	330
- -	28	770	702	580	463	388	29 8
8	24	767	684	559	412	327	239
1	20	778	762	591	438	358	267
ate	15	818	779	707	630	590	517
	10	848	880	794	75 2	740	718
	5	865	856	838	811	806	801
ļ	0	869	866	852	838	835	8 2 4
	-14	877	871	862	851	846	846

Datum 29. 3. 09. Kesseldruck 9 kg/qcm. Drücke in 0,01 kg/qcm.

Zahlentafel 11.

Kanal IV erweitert. Flüssigkeits- (statischer) Druck in der Symmetrieachse der Deckfläche.

Versuch N	fr	38	39	40	41	42	43
Wassermen	nge ltr/sk	2,94	3,96	5,06	6,06	6,6	7,1
	112	85 9	842	821	792	772	762
	105	858	834	814	78 6	767	758
	100	856	836	811	780	761	750
1	95	854	835	809	774	759	743
	90	852	834	804	768	754	738
	80	850	827	796	758	747	718
80	70	848	819	778	745	724	698
, and a second sec	60	838	807	763	712	688	658
B Ö	50	830	792	743	681	650	614
leB	40	822	767	698	618	570	522
× ,	35	809	747	659	556	503	439
ler /	30	796	718	612	488	420	344
,0 	28	789	714	603	478	401	330
a E	26	794	728	622	498	423	348
Ilu	23	804	748	668	572	500	440
Ste	20	829	781	728	653	598	560
	15	854	829	788	758	731	712
I	10	863	850	830	809	790	773
1	5	869	865	849	832	824	821
1	0	872	869	856	848	840	833
	- 5	874	870	860	851	844	837
	-14	879	872	861	259	840	890

Datum 29. 3. 09. Kesseldruck 9 kg/qcm. Drücke in 0,01 kg/qcm.

La Control La Control La	\mathbf{Z}	ah	le	n	t	af	e	L	12.
--------------------------	--------------	----	----	---	---	----	---	---	-----

Kanal II verengt. Flüssigkeitsdruck in der Symmetrieachse der Deckfläche. Datum 31. 3. 09. Kesseldruck 9 kg/qcm. Drücke in 0,01 kg/qcm.

Versuch N	Nr	44	45	46	47	48	49
Wasserme	nge ltr/sk	2,96	3,95	5,07	6,06	6,6	7,1
	/ 112	792	721	62 8	524	458	390
	108	786	716	621	496	424	354
	104	779	704	598	476	392	318
50	100	780	708	600	478	400	335
8	98	784	711	606	482	408	345
ų.	94	787	718	619	499	425	365
8 0	90	790	725	62 8	522	448	389
Me	80	799	740	650	548	484	424
H	(70	803	750	670	578	520	471
de	60	818	761	689	602	551	500
మం	50	824	771	706	626	581	586
Iur	40	830	782	721	652	603	561
tell	30	834	792	734	673	632	589
δ	20	849	813	769	729	700	674
	10	870	850	839	819	804	790
	0	877	861	858	848	839	832
	-14	879	870	866	856	850	846

Zahlentafel 13.

Kanal III verengt. Flüssigkeitsdruck in der Symmetrieachse der Deckfläche. Datum 24. 3. 09. Kesseldruck 9 kg/qcm. Drücke in 0,01 kg/qcm.

Versuch Nr. Wassermenge	ltr/sk	50 2,98	51 3,96	52 5,05	58 6,08	54 6,6	55 7,1
/ 11	2	782	730	625	518	420	346
10	7	_	700	508	448	850	265
10	4	772	698	578	442	347	260
월 10	0	775	699	588	460	374	287
g g	5	788	717	614	5 20	440	370
5 s	0	798	736	646	551	482	428
8 <u>6</u>	0	81 2	761	690	614	559	516
P 7	0	825	781	727	660	621	578
<u>5</u> (6	0	834	79 8	750	700	666	630
	i0	840	810	775	730	704	681
<u><u> </u></u>	0	844	821	787	750	730	704
	10	850	830	800	768	749	730
ž 2	0	862	845	819	788	777	760
- 1	10	874	85 6	840	820	812	807
	0	875	869	856	840	838	831
1 - 1	4	876	871	860	854	848	842

	Taba	Kan	al I	Kan	al 11	Kana	al III	Kan	al IV	Kan	al II'	Kana	1 Ш,
Lange	Hone	Sehne	Bogen	Sehne	Bogen	Sehne	Bogen	Sehne	Bogen	Sehne	Bogen	Sehne	Bogen
$125 \\ 120 \\ 115 \\ 110 \\ 105 \\ 100 \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5$	27,843 27,340 27,337 27,337 27,334 27,338 27,328 27,317 27,310 27,305 27,299 27,298 27,298 27,284 27,282 27,279 27,279 27,279	7,40 7,48 7,52 7,60 7,65 7,66 7,66 7,68 7,68 7,74 7,97 11,24 17,22 22,40 26,13	7,52 7,60 7,65 7,65 7,66 7,66 7,68 7,74	28.68 26,31 21,90 15,32 11,61 10,75 10,38 9,94 9,48 9,09 8,65 8,17 7,97 7,86 10,87 18,14 24,63	11,16 10,75 10,33 9,94 9,48 9,65 8,65 8,17	29,02 26,28 22,82 19,15 16,43 15,74 14,56 13,40 12,25 11,12 10,02 8,93 7,87 7,36 7,43 11,20 18,54 24,78	15,722 14,543 13,884 12,236 11,107 10,008 8,920 7,861	27,81 25,17 22,99 20,86 18,68 16,49 14,86 12,24 10,12 8,04 7,98 10,87 17,18 23,64 28.17	25,078 22,903 20,780 18,609 16,427 14,805 12,194 10,082 8,0096	27,25 22,63 15,23 9,05 8,04 8,25 8,66 9,10 9,54 9,95 10,30 10,70 11,10 11,32 12,19 17,98 23,66 27,37	8,25 8,66 9,10 9,54 9,95 10,30 10,70 11,10	27,46 23,84 16,32 9,95 7,44 7,73 8,79 9,86 10,92 12,09 13,24 14,42 15,51 16,11 16,95 20,18 24,07 27,85	7,726 8,786 9,855 10,915 12,084 18,284 14,413 15,503
0	27,270	28,88		28,61		27,83		30,00	1	29,09		29,50	

Zahlentafel 14. Ergebnisse der Ausmessung der Kanäle.

Zahlentafel 15. Durchflußgeschwindigkeiten.

	Kanı	al I	Kana	лп	Kana	1 111	Kana	1 IV	Kana	1 II '	Kanal	III'
Länge	Fläche	Geschw.	Fläche	Geschw.	Fläche	Geschw.	Fläche	Geschw.	Fläche	Geschw.	Fläche	Geschw.
	qmm	m/sk	qmm	\mathbf{m}/\mathbf{sk}	qmm	\mathbf{m}/\mathbf{sk}	qmm	m/sk	qmm	m/sk	qmm	m/sk
125			784,20	6,38	793,50	6,30			745,10	6,71	790,92	6,32
120	202,32	24,65	719,32	6,95	718,50	6,93	743,82	6,72	618,70	8,07	638,16	7,84
115			601,41	8,32	623,83	8,14			416,84	12,01	446,16	11,2
110	204,46	24,4	418,75	11,94	523,44	9,55	685,38	7,30	247,37	20,2	271,95	18,4
105			317,31	15,76	449.06	11,10			219,74	22,75	203,34	24,6
100	205,51	24,35	304,98	16,39	430,14	11,34	625,74	7,98	225,46	22,20	211,14	23,65
90	207,65	24,1	293,71	17,05	397,80	12,56	5 67,7 6	8,80	236,61	21,1	340,14	20,8
80	208,98	23,9	282,18	17,70	366,04	13,62	508,34	9,83	248,58	20,1	269,40	18,57
70	208,92	23,9	271,47	18,41	334,56	14,92	448,65	11,1	260,54	19,18	298,09	16,76
60	209,16	23,9	257,85	19,40	303,63	16,46	390,61	12,78	271,68	18,4	329,93	15,15
50	209,11	23,90	248,14	20, 1	273,53	18,28	332,87	14,98	281,18	17,75	361,26	13,83
40	209,61	23,85	236,08	21,18	243,72	20,5	275,16	18,13	292,04	17,1	893,83	12,7
30	211,20	23,68	222,93	22,40	214,75	23,24	218,55	22,80	302,89	16,5	422,98	11,8
25	217,45	23,0	217,45	23,00	200,81	24,90	217,7	22,95	308,85	16,1	439,50	11,36
20	306,65	16,3	214,43	23,30	202,70	24,65	296,5	16,83	332,57	15,0	462,38	10,8
15	469.74	10.68	296.52	16,88	305,52	16,35	468,6	10,63	490,48	10,2	550.40	9,08
10	610.98	8.17	494.79	10,10	505,70	9,88	644,8	7,75	645,35	7,73	656.44	7.61
5	712.64	7.0	671.73	7.45	674.47	7.73	768.3	6.51	746.46	6.69	745.86	6.7
ő	787.56	6.34	769.28	6.50	758.93	6.59	818.1	6.11	793.28	6.30	804.46	6.21
		-,01	,	-,001	,			- , = = =		- 100		

Berechnung der Verluste.

1	2	3	4	5	6	7	8	9	10	11	12	
Länge	Geschv keits kgc	vindig- bhöhe m ⁻² ge-	aus- geglichene Verluste	ərluste für m einschl. rschiebung	Verluste korrig	Wirkungs- grad	Verluste für 1 cm	Geschw Höhe	Verluste ür 1 cm : schwHöhe	D	β	
mm	rechnet	messen	kg/aem	V c Ve	kg/gem	vH	vH	vH	Ge			
			1-0,1	,	-0/1							<u> </u>
				$Z\epsilon$	ahlenta	afel 1	6. K	anal	I.			
100	3,0171	3,4850	0,4680		0,4016	88,8						
90	2,9551	3,3500	0,4000	0,0685	0,3331	89,9	2,08	5	0,0232	、	0,00614	itt 8 0
80	2,9175	3,2500	0,3325	0,0645	0,2686	91,6	2,02	Ite	0,0221		0,00578	
70	2,9192	3,2000	0,2810	0,0595	0,2091	93,3	1,9	Ъв	0,0204	58	0,00533	ı s
60	2,9127	3,1300	0,2170	0,0565	0, 1526	95,03	1,842		0,0189	2	0,00506	des es 0 ⁰
50	2,9141	3,0800	0,1660	0,0535	0,0990	96,7	1,775	8.6	0,0183		0,00480	l kt
40	2,8972	3,0150	0,1180	0,0505	0,0485	98,3	1,71	٨6	0,0174)	0,00453	Ber
30	2,8565	2,9250	0,0685	0,0485	0,0	100	1,70		0,0170	•	0,00435	
				Za	hlenta	fel 17	7. Ka	anal I	I.			
100	1.3700	1.6900	0.3200		0.2656	89.7		53.4				l. a
90	1.4770	1,7950	0,3180	0,0255	0.2401	90.6	0,99	57.5	0.01725	3.62	0.00703	3 ''n litt
80	1,6002	1,8900	0,2880	0,0295	0,2106	91,8	1,15	62,4	0,01841	4,06	0,00726	71 5.0°
70	1,7290	1,9850	0,2560	0,0335	0,1771	93,1	1,3	67,4	0,01938	4,52	0,00742	S 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
60	1,9017	2,1050	0,2030	0,0385	0,1386	94,6	1,5	74,1	0,02020	5,12	0,00754	161 10,0
50	2,0693	2,2550	0,1860	0,0415	0,0970	96,2	1,61	80,7	0,02000	5,77	0,00719	
40	2,2861	2,4500	0,1290	0,0465	0,0505	98,0	1,81	89	0,02040	6,57	0,00708	အ ျခင်
30	2,5649	2,6500	0,0810	0,0505	0,0	100	1,97	100	0,01965	7,56	0,00668	- F
				Za	hlenta	fel 18	. Ka	nal I	II.			
0.0	0 0001	1 1 4 5 0	0 9410		0 2681			20.0			1	t.s.
80	0,0034	1,1450	0,3410	0.0345	0,3001	87 9	1 9 5	29,2	0.0364	1 905	0.0191	it "+
70	1.1189	1.3900	0,2710	0.0435	0.2901	89.4	1,58	40.6	0.0389	2 4 8 0	0.0175	chi es 2 n 2 4 4
60	1.3790	1.6000	0.2210	0.0535	0.2366	91.4	1,94	50.9	0.0382	3.14	0.0170	26, S
50	1,6989	1,8500	0,1510	0,0655	0,1710	93.8	2,38	61,7	0,0386	3,975	0.0165	0, 0, 20 des
40	2,1402	2,2100	0,0750	0,0755	0,0955	96,55	2,74	77,6	0,0353	5,460	0,0138	
30	2,7566	2,7350	-0,0215	0,0955	0,0	100	3,45	100,0	0,0345	7,74	0,0128	C 2 G
				7.0	hlanta	fol 10	, K	nal T	v			
	0	0.0100		La.			· Ka		۰.		5	I d
110	0,2776	0,6100	0,3324	0.0177	0,3052	88,6	0.50	10,4	0.0470	0.400	0.0001	
00	0,3234	0,6550	0,3296	0,0105	0,2896	89,2 80.0	0,28	12,2	0,0476	0,468	0,0531	
80	0,3355	0,7050	0,3003	0,0195	0,2101	90.8	0,15	18.5	0,0495	0,000	0,0322	chr -7, 3' 1 13 5
70	0.6330	0.9000	0.2670	0.0305	0.2150	92.0	1.14	23.7	0.0480	1.042	0.0293	2
60	0,8351	1,0500	0,2149	0.0385	0,1766	93.4	1,44	31,3	0,0460	1.466	0.0262	de 12 12
50	1,1500	1,3000	0,1500	0,0485	0,1280	95,2	1,82	43,1	0,0423	2,186	0,0222	c II tes
40	1,6830	1,7960	0,1070	0,0585	0,0695	97,4	2,19	63,0	0,0348	3,522	0,0166	۲ ra
30	2,6676	2,7000	0,0324	0,0695	0,0	100	2,61	100	0,0261	6,350	0,0109	nđ
			7	ahlen	tafel 2	20. K	anal	II' (v	erengt)			
100	2 5067	9 7150	0 90 90		0 1 1 1 2	95 74		95 74				1.
90	2,2760	2,4500	0.1740	0.0275	0.0841	96.8	1.050	87 1	0 0 1 9 1	7.51	0.00366	n itt
80	2.0620	2,2150	0.1530	0.0225	0.0616	97.64	0,860	78.7	0.0109	6.5	0.00346	1 2 m a bh
70	1,8815	2,1050	0,1324	0,0165	0,0451	98.28	0,630	71.8	0,0088	5,71	0.00289	S, 4 3,4 19'
60	1,7263	1,8600	0,1340	0,0135	0,0316	98,79	0.516	66,0	0,0078	5,1	0.002655	es 30.330,
50	1,6116	1,7300	0,1184	0,0115	0,0200	99,23	0,440	51,6	0,0072	4,54	0,00254	
40	1,4940	1,5900	0,0960	0,0105	0,0095	99,64	0,400	57,0	0,0070	4,07	0,00259	88 = 5 5 = 5
30	1,3798	1,4700	0,0900	0,0095	0,0	100	0,362	52,6	0,0069	3,68	0,00257	~ F
			Z	ahlant	ofal 9	1 Ka	nal I	II (v	oren ort)			
100	1) or ma 1	9 0000	100000			1. 110 0.7 0.5		(V 07.07	orongt).	1	I	Γ.
100	2,8571	2,9200	0,0630	0.0150	0,0591	91,97	0 5 1 5	97,97	0.00001	0.	0.00100	itt.
80 80	2,2026 1 7600	2,2650 1 8050	0,0620	0,0100	0,0441	90,48	0,010	10,6	0,00681	ె, ర సంం	0,00183	1 20 m
70	1 4986	1 4650	0.0440	0 0100	0.0991	99.91	0 34 3	49 n	0.00001	4 25	0,00204	Sc 5,5 6' 196
60	1.1689	1,1950	0.0270	0.0080	0.0146	99.5	0.274	40.0	0.00685	3,284	0.00244	es 17(117(,10
50	0,9766	0,9950	0,0180	0,0060	0.0080	99.72	0,223	33.5	0,00666	2,60	0,00250	p n + 9 0
40	0,8258	0,8450	0,0190	0,0045	0,0035	99.88	0,154	28,4	0,00545	2,07	0,00218	8 "
30	0,7102	0,7250	0,0150	0,0035	0,0	100	0,120	24,4	0,00493	1,695	0,00208	rī ^
		-										-

	Drücke in 0,01 kg/qcm.
Zahlentafel 22.	Kanal I. Verteilung der nutzbaren Energie über die Breite des Kanales.

Nr	56a 20. 11. 08	57 20.11.08	58 20. 11. 08			59a 23. 11. 08	59 b 23. 11. 08	60a 23.11.08	60 b 23. 11. 08	61a 23.11.08	61b 23.11.08	Nutzbare 1	Inergie
			1		-							im mitte	lsten
nck kg/qem	2	l	7			2	2	2	2			Stroma	den.
lenge ltr/sk	5,1	5,1	5,1			5,1	5,1	5,8	5,8	6,3	6,3		
• • • •	12,4	17,4	24,4			24,4	24,4	24,4	24,4	24,4	24,4		
	100	100	100			135	142	135	142	135	142	Versuch Nr	62
(—3,5	694	694	694	_	+13	370	370	12: 150	150			Datum	20.11.08
°.	694	694	694		œ	370	390	150	160	10: 60	10: 60		
2	694	694	694		9	370	390	160	190	5: 70	6: 120	Aonahlasa W	r
•	694	694	680		5	380	450	218	330	4,5:280	5: 170	Wassermong	- u
2	694	694	690		4	570	670	540	580	450	630	- GHOIT TO SCH LL	160
ŝ	694	694	690		en	680		685 660	665	678	680	Höhe	12,4
+3,5	690	680	664	91	CN	690 670		685 660	665	650	680 630	190	604
•				iəı	0	670 690	680 - 690	680	665	650	650	110	604
				B	61		670	640 680	660	650	1: 600 660	100	109
Nr	56 b				en en	680	540	630 670		650 600	2: 670	001	202
					4	530	400	440	270	500	3: 590	92	605
					S	410	400	207		112	4: 250		202
•	12,4				9	400	400	205	200	10: 95	5: 112	e e	109 109
•	00	1			80	390	400	205			10: 100		2020
(3,5	969			_	-13	390	400	12:205	200			40	697
en 1	696											30	697
ଚ <u>ା</u>	969												
•	6969												
61	969												
.	696												
1 + 3,5	696		-		_						_	-	

- 47 -

Versuch Nr	63 a 3. 12. 09	63b 3.12.09	68 c 3. 12. 09			64 a 7. 12. 08	64b 7.12.08	64 c 7. 12. 08	64 d 7. 12. 08
Kesseldruck kg/qcm Wassermenge ltr/sk	9 7,15	9 7,15	9 7,15			9 7,15	9 7,15	9 7,15	9 7,15
Höhe	13,4 130	1 3,4 100	13, <u>4</u> 60			20,4 130	20,4 1Q0	20,4 60	$\begin{array}{c} 20,4\\20 \end{array}$
et for the second secon	$\begin{array}{cccccccc} 570 & 580 \\ 670 & 530 \\ 750 & 560 \\ 820 & 700 & 650 \\ 870 & & \\ 870 & & \\ 870 & & \\ 720 & 870 & \\ 720 & 870 \\ 600 & 700 & 850 \\ 540 & & 780 \\ 520 & 520 & 620 \\ 520 & 520 & 560 \end{array}$	720 800 872 876 860 840 720	875 878 881 878 870 810	Breite	+15 13 11 9 7 5 4 3 2 0 2 3 4 5 7 9 11 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	700 780. 830 850 830 730 670	850 851 853 855 848 820 780	892 894 896 894 893

Zahlentafel 23. Kanal II. Verteilung der nutzbaren

Zahlentafel 26b.

Kanal IV. Verteilung der nutzbaren Energie über die Breite des Kanales. Drücke in 0,01 kg/qcm.

Versuch	n Nr	72 8.	72b	72 c	72 d	73a	73 b	73 c	73 d	74a	74b	74 c	74d
Datum	• • • • •	18. 12. 08	18.12.08	18. 12. 08	18.12.08	18.12.08	18. 12. 08	18. 12. 08	18. 12. 08	18.12.08	18. 12. 08	18.12.08	18. 12.0
Kesse kg	eldruck /qem	6,8	6,7	6,7	6,5	6,8	6,8	6,7	6,55	6,8	6,85	6.75	6,65
Wasse lti	ermenge r/sk	7,37	7,87	7,37	7,87	7,37	7,87	7,37	7,87	7,37	7,37	7,87	7,37
Höhe .	• • • • •	13,6	13,6	13,6	13,6	24,6	24,6	24,6	24,6	13,6	13,6	13,6	13,6
Länge		130	100	60	25	130	100	60	25	130	100	60	25
p _{st} an d.	Stelle 112	2	2	2	2	2	2	2	2	3	3	3	3
	/ +15	220				230	}			350			
	12	220	170			230	165			350	330		
	9	220	170			230	165			380	330		
	7		1	30				220				140	
	6	240	180			230	180			410	360		
	5			30	4:630			580	4:620			270	: 638
	3	270	240	640	635	250	260	650	630	440	420	630	642
te	2		l i	650	640			650	632			650	648
irei	(0	310	340	655	642	280	320	650	638	460	470	660	650
Ħ	2			660	638	1	1	630	638			658	643
	3	360	540	650	635	310	400	600	630	475	540	654	640
	5	100		620	4:630		410	550	4:628	400		640	: 030
	6	420	560			360	440	400		490	990	990	
		100	E 9.0	50			950	400		5.90	590	200	
	19	400	420			280	900			510	480		
	15	480	*30			350	000			470		1	

- 48 -

65a 7. 1 2. 08	65 b 7. 12. 08	65 c 65 d	66 a 7. 12. 08	66b 7.12.08	66 c 7. 12. 08	66 d 7.12.08	Nutzbare Energie
9 7,15 24 4	9 7,15 24 4	9 9 7,15 7,15 24 4 24 4	9 7,15 26.4	9 7,15 26 4	9 7,15 26 4	9 7,15 26 4	im mittelsten Stromfaden.
$\begin{array}{cccccccc} 24,4 \\ 180 \\ 520 & 520 & 520 \\ 520 & 520 & 520 \\ 540 & 540 \\ 580 \\ 620 & 570 & 570 \\ 640 & 580 \\ 5500 & 650 \\ 5500 & 620 \\ 470 & 560 & 560 \\ 470 & 560 & 560 \\ 470 & 510 \\ 470 & 530 \\ 470 & 470 \\ 4$	24,4 100 640 670 620 670 650 620 680 630 630 680 620 640 670 720 680 760 630	24,4 24,4 60 25 870 892 872 892 878 894 880 896 872 894 840 893	$\begin{array}{c} 26,4\\ 130\\ 580 580 580\\ 580 580 580\\ 540 580 580\\ 560 540\\ 570 520\\ 540 540 490\\ 500 540 490\\ 480 540 490\\ 480 540 480\\ 450 450 450\\ 450 450 450\\ 450 450 450\\ 450 450 450\\ 450 450 450\\ 450 450 450 450\\ 450 450 450 450\\ 450 450 450 450\\ 450 450 450 450\\ 450 450 450 450 450 450\\ 450 450 450 450 450 450\\ 450 450 450 450 450\\ 450 450 450 450 450 450$	$\begin{array}{c} 26,4\\ 100\\ 660 & 610 & 570\\ 620 & 620 & 570\\ 580 & 580\\ 570 & 620\\ 520 & 620 & 580\\ 620 & 660\\ 600 & 660\\ 570 & 590\\ 550 & 570\\ \end{array}$	26,4 60 840 840 800 610 700 770 700 830 830	26,4 25 892 894 896 894 895	Versuch Nr. 67 Datum . 7.12.08 Kesseldruck 9 Wassermenge 7,15 Höhe . 13,4 130 870 120 872 110 876 100 876 90 878 80 880 70 881 60 881 50 884 40 886 30 887
470 470 470 470 470			450 450 450 450 450 450 450 450 450				

Energie über die Breite des Kanales. Drücke in 0,01 kg/qcm.

Zahlentafel 26c.

Kanal IV. Verteilung der nutzbaren Energie über die Breite des Kanales.

Drücke in 0,01 kg/qcm.

													_
Versuch Datum	Nr	75 a 18. 12. 08	75 b 18. 12. 08	75 c 18. 12. 08	75 d 18. 1 2. 0 8	76 a. 18. 12. 08	76b 18.12.08	76 c 18. 12. 08	76 d 12. 18. 08	77 a 18. 12. 08	77 b 18. 12. 03	77 c 18. 12. 08	77 d 18. 12. 08
Kesse kg	oldruck /qcm	6,85	6,8	6,7	6,8	9	9	9	9	9	9	9	9
Wasse lti	rmenge r/sk	7,37	7,37	7,37	7,37	7,37	7,37	7,37	7,37	7,37	7,37	7,37	7,37
Höhe . Länge	••••	13,6 130	13,6 100	13,6 60	13,6 25	13,6 130	13,6 100	13,6 60	13,6 25	24,6 130	24.6 100	24,6 60	24,6 25
$p_{\rm st}{ m an}{ m d}.$	Stelle 112	4	4	4	4	5	5	5	5	5	5	5	5
	1 + 15	440				790				770			
	12	460	460			830	790			780	740		
	9	480	475	1		880	870	1		780	745		
	7			480				830				740	
	6	500	510			870	880			785	750		
	5			550				870				720	
	4			1	660				875				88 2
	3	520	550	610	668	880	882	880	878	780	740	700	884
ţ	, 2			650	672			885	880		1	680	888
rei	(0	530	580	655	678	880	880	885	882	780	730	660	892
Ä	2			655	675			880	878			630	888
	3	540	580	655	672	880	875	878	875	770	735	610	884
	4				670				870				880
	5			610				872				590	
	6	540	570			880	880			765	780		
	7			590				780				570	
	9	530	530			860	870			760	780		
	12	520	450			820	780			760	740		
	-15	490				780				760			

Mitteilungen. Heft 114.

	Drücke in 0,01 kg/qcm.
Zahlentafel 24.	II. Verteilung der nutzbaren Energie über die Breite des Kanales.
	Kanal

I	Kanal II.	Vertei	ilung der	nutzba	ren En	Zał ergie	ilenta über	fel 2: die Br	4. feite	des K	anales	Ð -	rücke	in 0,01	ı kg/	qcm.			
Versuch Nr Datum	63 a. 3. 12. 08	63 b	ۍ 	ల బ		63 đ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	63e . 12.	08		63 f			63 g			63 h	
Kesseldruck kg/qcm Wassermenge ltr/sk	8,0 5,6	8,0 5,6				8,0 5,6			8,0 5,6			8,0 5,6			8,0 5,6			8,0 5,6	
Höhe	13,4 50	13,4 110	= = 	8,4 15		13,4 120			13,₄ 123	_		13,4 130			13,4 135			13,4 142	
/ +1.5 13					57	0 570	570	570	570	570	570	570	570	580	580	580	600	580	580
12 11			10: 580		11: 60	0 580	570	610	570	570	570	570	570	740	580	580	750	600	580
G		600	8: 700 700	640 600	.9:6 	0 63(580	200	-	023	580	580	580	770	700	580	022		580
с ю 4	270	700	180	140 120		0 081	000	0.01	1 30	000	022	020	009	077		086	ne i		0/0
9118	780	780 780	780	780 780 780 780	32	0 780	780	770	780	720 780	780	780 780	680 720	740	770	6 80 740	680 650	740 750	600 7 0 0
F 3	780 778	780	660	200 760	64	0 720	780	770	780	780	680	770	170	600	780	770	600	680	750
H 10 0 1		770	9009	630 660		0 650	750	600	720	770	600		780	570		750	600		770
- 6 11		000	8: 580 10: 580		9: 58 11: 58	00	600 580	580 580	650 600	650 600	590 570	690 570	730 600	570 570	570 570	750	580	580	740
12 					10 10	0 580	-	580	580	580	570	570	570	570	570	650	580 580	580 580	60U 580

4 d 65 a 65 b 65 c 65 d Nutzbar 9 9 9 9 9 9 9 9 15.12.08 in in in 9 <)		,				,									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64a 5.12.	08	64 b	64 c	64 đ	65a 15.12.08	65b 15.12.08	65 c	65d	66a. 15.12.08	66b 15.12.08	66 c 15.12.08	66 d 15.12.08	Nutzbal im mitte	re Ener lsten St	gie rom-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,					Įa	den.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		6	5	6	6	6	6	6	6	6	6	6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,33		5,33	5,33	5,83	6,8	6,8	6,8	6,8	7,25	7,25	7,25	7,25	Versuch Nr.	67	68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12,4		12,4	12,4	12,4	12,4	12,4	12,4	12,4	12,4	12,4	12,4	12,4	Datum	15.12.08	15.12.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130		100	60	25	130	100	60	25	130	100	60	25			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	778					740				670 670				Kesseldruck	6	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	840					840				780 720				kg/qcm		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	848					862				850 800				Wassermenge	6.8	5.33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			800				750				770			Itr/8k		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	850		850	810		865	840	848		850 850	840	820		НОПе	12,4	12,4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			858	860	870		860	855	860		850	850	850	/ 130	868	860
862 866 874 860 860 868 854 855 855 855 855 110 864 866 874 868 870 850 856 855 860 100 864 866 874 868 870 850 856 856 860 100 865 874 868 870 850 856 856 856 90 865 870 850 860 868 850 856 850 90 850 860 860 863 870 850 856 856 90 850 860 860 860 862 868 856 850 90 850 860 860 860 850 850 850 850 80 810 810 810 860 850 850 849 780 80 700 810 810 80 800 800 70 80 70 710 810	850				872	865	•		864	855 855.			852	120	862	865
864 866 874 868 870 850 856 858 860 100 862 860 870 850 850 856 856 856 90 862 860 860 860 862 868 870 850 856 855 90 863 870 860 862 868 870 850 854 840 850 90 850 850 860 820 850 820 849 780 840 70 810 810 810 80 70 800 750 849 780 840 70 790 710 800 750 800 720 840 70 80 730 730 730 700 800 700 800 80 80 730 730 700 800 700 800 80 80 730 700 700 800 700 700 80 80			862	866	874		860	860	868		854	855	855	110	863	868
862 860 870 860 862 868 854 840 855 90 850 868 850 850 850 850 850 90 850 850 860 820 850 849 780 840 70 810 810 70 860 820 850 849 780 840 70 790 70 800 750 800 70 849 780 840 70 790 710 800 750 800 70 800 70 70 80 70 790 730 730 70 800 70 70 80 70 80 730 730 70 800 700 800 70 80 80 700 700 800 70 70 80 80 80	854		864	866	874	868	862	868	870	850 850	856	858	860	100	862	874
850 849 780 840 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 70 80 70 70 80 70 <t< td=""><td></td><td></td><td>862</td><td>860</td><td>870</td><td></td><td>860</td><td>862</td><td>868</td><td></td><td>854</td><td>840</td><td>855</td><td></td><td>863</td><td>874</td></t<>			862	860	870		860	862	868		854	840	855		863	874
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	860				868	830 860			860	820 850			850	80 	863	876
810 810 770 860 750 840 780 60 790 790 730 730 730 730 730 730 730 730 730 730 730 700 800 720 730 700			850	850	860		860	820	850		849	780	840	19 20	864	876
790 720 720 50 760<760	852		810	810		770 860	760	800		750 820	840	780		60	868	876
760 700 800 40 730 730 700 670			190				730				720			50	868	876
730 730 730 730 730 730 730 730 730 730	810					760 760				700 800				40	868	878
730 730	780					730 730	•••			700				30	874	878
	770					730 730				700 670				•		

Zahlentafel 25. Kanal III. Verteilung der nutzbaren Energie über die Breite des Kanales. Drücke in 0,01 kg/gcm.

- 51 -

	Drücke in 0,01 kg/qem
Zahlentafel 26a.	Kanal IV. Verteilung der nutzbaren Energie über die Breite des Kanales.

F	Canal IV.	Verteilung d	er nutzbare	Za en Energ	hlentaiel ie über die	26a. Breite des	Kanales.	Drücke	e in 0,01	kg/qem.		
Versuch Nr Datum	69a 18.12.08	69b 18.12.08	69 c 18. 12. 08	69 d 18. 12. 08	70 a 18. 12. 08	70b 18.12.08	70 c 18. 12.08	70 d 18. 12. 08	71 a 18. 12.08	71 b 18. 12. 08	71 c 18. 12.08	71d 18.12.02
Kesseldruck kg/qcm Wassermenge ltr/sk	6,8 7,37	$^{6,8}_{7,37}$	6,65 7,37	6,4 7,37	6,75 7,37	6,75 7,37	6,6 7,37	6,45 7,37	6,80 7,37	6,75 7,37	6,55 7,37	6,45 7,37
Höhe	13,6 130	13,6 100	13,6 60	13,6 25	$22,6 \\ 130$	22,6 100	22,6 60	$^{22,6}_{25}$	13,6 130	$13,6\\100$	$\substack{13,6\\60}$	13,6 25
$p_{ m st}$ an der Stelle 112	0,25	0, 25	0,25	0,25	0,25	0, 25	0,23	0,25	1	1	1	1
/ +15	20 20				30 30				100			
12	20 20 20 20	20 20 20 20			3 0 30 30 30	70 70 70 70			100 100	50 50		
i- 3	06 06	00 00	15 15		900 100	950 100	30		0 1		30	
e 19	07 07	07 07	12 12	4:610	00T 007	001 002	30	4:600	100	130	45	4:638
00 C	660 450	660 550	620 300	615	400 400	600 400	630	615	150	630	650	640
eiter 0 a	665 665	660 600	645 648	628 628	650 600	658 658	640 648	618 622	200	658	655 655	642 645
B B	300 650	660 660	650 649	623 613	ere ere	660 660	646 690	618 615	950	020	655	643
2 C			630	615	000	200	630	4:610	0.0.7	000	640 640	4:637
91	400 600	500 650	1		640 640	550 650			420	640		
. 6	30 30	30 30	450		400 500	300 600	20		500	200	30	
-15	20 20 20 20	25 25			100 100	100 250		-	460	120		

— 52 —

Zahlentafel 27.

Kanal IV. Nutzbare Energie des mittelsten Stromfadens. Drücke in 0,01 kg/qcm bezogen auf unveränderlichen Kesseldruck.

Versuch 1 Datum .	Nr	78 18. 12. 08	7 9 18. 12. 08	80 18. 12. 08	81 18.1 2.0 8	82 18.12.08	83 18. 12. 08	84 18. 12. (
	or raisem			6.0	6.0			
Messeluru	CK Kg/QUII	7.07	0,0	7.07	0,0	0,0	9,0	9,0
wasserme	inde mular	1,31	1,51	1,01	1,81	1,51	1,51	3,27
H5he		13,6	18,6	13,6	13,6	13,6	13,6	13,6
	130	665	500	490	530	535	880	880
	120	660					880.	880
	110	660					880	882
	100	660	663	570	550	580	882	880
6.6	90	662	ŀ	ł	ł	•	882	886
an a	50	662	665	590			882	888
1	70	668	665	650	630	1		888
	60	665	665	670	665	665	885	880
	50.	668	667	670	665	662	885	884
	40	668	667	670	665	665	886	886
	. 30	668	670	678	665	665	887	886
$p_{\rm st}$ an der	Stelle 112	0,25	1	2	3.	4	5	5

_

Sonderabdrücke

aus der Zeitschrift des Vereines deutscher Ingenieure,

die in folgende Fachgebiete eingeordnet sind:

- 1. Bagger.
- 2. Bergbau (einschl. Förderung und Wasserhaltung).
- 3. Brücken- und Eisenbau (einschl. Behälter).
- 4. Dampfkessel (einschl. Feuerungen, Schornsteine, Vorwärmer, Überhitzer).
- Dampfmaschinen (einschl. Abwärme-5. kraftmaschinen, Lokomobilen).
- 6. Dampfturbinen.
- Eisenbahnbetriebsmittel. 7.
- Eisenbahnen (einschl. Elektrische 8. Bahnen).
- 9. Eisenhüttenwesen (einschl.Gießerei). 10. Elektrische Krafterzeugung und
- -verteilung. 11. Elektrotechnik (Theorie, Motoren
- usw.). 12. Fabrikanlagen und Werkstatteinrichtungen.
- 13. Faserstoffindustrie.
- Gebläse (einschl. Kompressoren, 14. Ventilatoren).

- 15. Gesundheitsingenieurwesen (Heizung, Lüftung, Beleuchtung, Wasserversorgung und Abwässerung).
- 16. Hebezeuge (einschl. Aufzüge).
- 17. Kondensations- und Kühlanlagen.
- 18. Kraftwagen und Kraftboote.
- 19. Lager- und Ladevorrichtungen (einschl. Bagger).
- 20. Luftschiffahrt.
- 21. Maschinenteile.
- 22. Materialkunde.
- 23. Mechanik.
- 24. Metall- und Holzbearbeitung (Werkzeugmaschinen).
- 25. Pumpen (einschl. Feuerspritzen und Strahlapparate).
- 26. Schiffs- und Seewesen.
- 27. Verbrennungskraftmaschinen (einschl. Generatoren).
- 28. Wasserkraftmaschinen.
- 29. Wasserbau (einschl. Eisbrecher).
- 30. Meßgeräte.

Einzelbestellungen auf diese Sonderabdrücke werden gegen Voreinsendung des in der Zeitschrift als Fußnote zur Überschrift des betr. Aufsatzes bekannt gegebenen Betrages ausgeführt.

Vorausbestellungen auf sämtliche Sonderabdrücke der vom Besteller ausgewählten Fachgebiete können in der Weise geschehen, daß ein Betrag von etwa 5 bis 10 M eingesandt wird, bis zu dessen Erschöpfung die in Frage kommenden Aufsätze regelmäßig geliefert werden.

Zeitschriftenschau.

Vierteljahrsausgabe der in der Zeitschrift des Vereines deutscher Ingenieure erschienenen Veröffentlichungen 1898 bis 1910.

Preis bei portofreier Lieferung für den Jahrgang für Mitglieder. 10,- *M* für Nichtmitglieder.

3,- M für Mitglieder.

Seit Anfang 1911 werden von der Zeitschriftenschau der einzelnen Hefte einseitig bedruckte gummierte Abzüge angefertigt.

Der Jahrgang kostet 2,— *M* für Mitglieder.

4,- M für Nichtmitglieder.

Portozuschlag für Lieferung nach dem Ausland 50 Pig für den Jahrgang. Bestellungen, die nur gegen vorherige Einsendung des Betrages ausgeführt werden, sind an die Redaktion der Zeitschrift des Vereines deutscher Ingenieure, Berlin NW., Charlottenstraße 43 zu richten.

Mitgliederverzeichnis d. Vereines deutscher Ingenieure.

Preis 2,50 M. Das Verzeichnis enthält die Adressen sämtlicher Mitglieder sowie ausführliche Angaben über die Arbeiten des Vereines.

Bezugsquellen.

Zusammengestellt aus dem Anzeigenteil der Zeitschrift des Vereines deutscher Inrussisch ein alphabetisches und ein nach Fachgruppen geordnetes Adressenverzeichnis. Das Bezugsquellenverzeichnis wird auf Wunsch kostenlos abgegeben.