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PREFACE

Ta1s book forms the first volume of the new edition of my book
on Fourier’s Series and Integrals and the Mathematical Theory of the
Conduction of Heat, published in 1906, and now for some time out
of print. Since 1906 so much advance has been made in the Theory
of Fourier’s Series and Integrals, as well as in the mathematical
discussion of Heat Conduction, that it has seemed advisable to
write a completely new work, and to issue the same in two volumes.
The first volume, which now appears, is concerned with the Theory
of Infinite Series and Integrals, with special reference to Fourier’s
Series and Integrals. The second volume will be devoted to the
Mathematical Theory of the Conduction of Heat. -

No one can properly understand Fourier’s Series and Integrals
without a knowledge of what is involved in the convergence of
infinite series and integrals. With these questions is bound up
the development of the idea of a limit and a function, and both
are founded upon the modern theory of real numbers. The first
three chapters deal with these matters. In Chapter IV. the Definite
Integral is treated from Riemann’s point of view, and special
attention is given to the question of the convergence of infinite
integrals. The theory of series whose terms are functions of a
single variable, and the theory of integrals which contain an arbi-
trary parameter are discussed in Chapters V. and VI. It will be
seen that the two theories are closely related, and can be developed
on similar lines.

The treatment of Fourier’s Series in Chapter VII. depends on
Dirichlet’s Integrals. There, and elsewhere throughout the book,
the Second Theorem of Mean Value will be found an essential part
of the argument. In the same chapter the work of Poisson is
adapted to modern standards, and a prominent place is given

to Fejér’s work, both in the proof of the fundamental theorem
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and in the discussion of the nature of the convergence of Fourier’s
Series.  Chapter IX. is devoted to Gibbs’s Phenomenon, and the
last chapter to Fourier’s Integrals. In this chapter the work of
Pringsheim, who has greatly extended the class of functions to
which Fourier’s Integral Theorem applies, has been used.

Two appendices are added. The first deals with Practical Hor-
monic Analysis and Periodogram Analysis. In the second a biblio-
graphy of the subject is given.

The functions treated in this book are °‘ordinary’ functions.
An interval (a, b) for which f(x) is defined can be broken up into a
finite number of open partial intervals, in each of which the function
is monotonic. If infinities occur in the range, they are isolated
and finite in number. Such functions will satisfy most of the
demands of the Applied Mathematician.

The modern theory of integration, associated chiefly with the
name of Lebesgue, has introduced into the Theory of Fourier’s
Series and Integrals functions of a far more complicated nature.
Various writers, notably W. H. Young, are engaged in building up
a theory of these and allied series much more advanced than any-
thing treated in this book. These developments are in the meantime
chiefly interesting to the Pure Mathematician specialising in the
Theory of Functions of a Real Variable. My purpose has been to
remove some of the difficulties of the Applied Mathematician.

The preparation of this book has occupied some time, and much
of it has been given as a final course in the Infinitesimal Calculus
to my students. To them it owes much. For assistance in the
revision of the proofs and for many valuable suggestions, I am
much indebted to Mr. E. M. Wellish, Mr. R. J. Lyons and Mr. H.
H. Thorne of the Department of Mathematics in the University
of Sydney. | H. S. CARSLAW.

[4

EummanvieL CoLLEGE,
CAMBRIDGE, Jan. 1921.
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HISTORICAL INTRODUCTION

IN the middle of the eighteenth century there was a prolonged
controversy as to the possibility of the expansion of an arbitrary
function of a real variable in a series of sines and cosines of
multiples of the variable. The question arose in connection with
the problem of the Vibrations of Strings. The theory of these
vibrations reduces to the solution of the Differential Equation
%Y _ 2%
ot " e
and the earliest attempts at its solution were made by D’Alem-
bert,* Kuler,i and Bernoulli.f Both D’Alembert and Euler
obtained the solution in the functional form

y=¢(x+at)+yr(x—at).

The principal difference between them lay in the fact that
D’Alembert supposed the initial form of the string to be given
by a single analytical expression, while Euler regarded it as
lying along any arbitrary continuous curve, different parts of
which might be given by different analytical expressions.
Bernoulli, on the other hand, gave the solution, when the string
starts from rest, in the form of a trigonometrical series

y=Asinxcosat+4,sin 2x cos 2at+...,

and he asserted that this solution, being perfectly general, must
contain those given by Euler and D’Alembert. The importance
of his discovery was immediately recognised, and Euler pointed
out that if this statement of the solution were correct, an
arbitrary function of a single variable must be developable in
an infinite series of sines of multiples of the variable. This he

* Mém. de I’ Académie de Berlin, 3, p. 214, 1747.
tloc. cit., 4, p. 69, 1748. tloc. cit., 9, p. 173, 1753.
a1 A
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held to be obviously impossible, since a series of sines is both
periodic and odd, and he argued that if the arbitrary function
had not both of these properties it could not be expanded in
such a series.

While the debate was at this stage a memoir appeared in 17597
by Lagrange, then a young and unknown mathematician, in
which the problem was examined from a totally different point of
view. While he accepted Euler’s solution as the most general, he
objected to the mode of demonstration, and he proposed to obtain
a satisfactory solution by first considering the case of a finite
number of particles stretched on a weightless string. From the
solution of this problem he deduced that of a continuous string by
making the number of particles infinite.t In this way he showed
that when the initial displacement of the string of unit length is
given by f(x), and the initial velocity by F(x), the displacement
at time ¢ is given by

1 o
Y = 2] (sin na’ sin nre cos nwat) f(x))da’
6 1

2 (P&, , , o
+— j Z — (sin n7e’ sin ne sin nwat) F(x")da’.
amJe T N

This result, and the discussion of the problem which Lagrange
gave in this and other memoirs, have prompted some mathe-
maticians to deny the importance of Fourier’s discoveries, and to
attribute to Lagrange the priority in the proof of the development
of an arbitrary function in trigonometrical series. It is true
that in the formula quoted above it is only necessary to change
the order of summation and integration, and to put ¢=0, in order
that we may obtain the development of the function f(x) in a
series of sines, and that the coeflicients shall take the definite
‘integral forms with which we are now familiar. Still Lagrange
did not take this step, and, as Burkhardt remarks,i the fact that
he did not do so is a very instructive example of the ease with
which an author omits to draw an almost obvious conclusion
from his results, when his investigation has been undertaken
with another end in view. Lagrange’s purpose was to demon-

* Cf. Lagrange, uvres, T. 1., p. 37. tloe. cit., §37.

+ Burkhardt, ¢ Entwicklungen nach oscillirenden Functionen,” Jahresber. 1).
Math. Ver., Leipzig, 10, Hft. I1., p. 32, 1901,
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strate the truth of Euler’s solution, and to defend its general
conclusions against 1’Alembert’s attacks. When he had obtained
his solution he therefoce proceeded to transform it into the func-
tional form given by Euler. Having succeeded in this, he held
his demonstration to be complete.

The further development of the theory of these series was due
to the astronomical problem of the expansion of the reciprocal
of the distance between two planets in a series of cosines of
multiples of the angle between the radii. As early as 1749
and 1754 D’Alembert and Euler had published discussions of this
question in which the idea of the definite integral expressions
for the coefficients in Fourier’s Series may be traced, and Clairaut,
in 1757,* gave his results in a form which practically contained
these coefficients. Again, Euler,T in a paper written in 1777 and
published in 1793, actually employed the method of multiplying
both sides of the equation

f(x)=a,+2a,cos z+ 2a,c08 2+ ... 2a,c08 N +- ...

by cosna and integrating the series term by term between the
limits 0 and 7. In this way he found that

Uy = lr f(x) cos nx du.
TJo

It is curious that these papers seem to have had no effect
upon the discussion of the problem of the Vibrations of Strings
in which,*as we have seen, D’Alembert, Euler, Bernoulli, and
Lagrange were about the same time engaged. The explanation
is probably to be found in the fact that these results were not
accepted with confidence, and that they were only used in deter-
mining the coeflicients of expansions whose existence could be
demonstrated by other means. It was left to Fourier to place
our knowledge of the theory of trigonometrical series on a firmer
foundation, and, owing to the material advance made by him in
this subject the most important of these expansions are now
generally associated with his name and called Fourier’s Series.

His treatment was suggested by the problems he met in the
Mathematical Theory of the Conduction of Heat. It is to be

* Paris, Huist. Acad. sci., 1754 [59], Art. iv. (July 1757).
+ Petrop. N. Acta., 11, 1793 [98], p. 94 (May 1777).
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found in various memoirs, the most important having been
presented to the Paris Academy in 1811, although it was not
printed till 1824-6. These memoirs are practically contained in
his book, Théorie mathématique de la chaleur (1822). In this
treatise several discussions of the problem of the expansion of a
function in trigonometrical series are to be found. Some of
them fail in rigour. One is the same as that given by Euler.
However, it 1s a mistake to suppose that Fourier did not estab-
lish in a rigorous and conclusive manner that a quite arbitrary
function (meaning by this any function capable of being re-
presented by an arc of a continuous curve or by successive
portions of different continuous curves), could be represented
by the series we now associate with his name, and it is equally
wrong to attribute the first rigorous demonstration of this
theorem to Dirichlet, whose earliest memoir was published in
1829.% A closer examination of Fourier’s work will show that
the importance of his investigations merits the fullest recogni-
tion, and Darboux, in the latest complete edition of Fourier’s
mathematical works,T points out that the method he employed in
the final discussion of the general case is perfectly sound and
practically identical with that used later by Dirichlet in his
classical memoir. In this discussion Fourier followed the line
of argument which is now customary in dealing with infinite
series. He proved that when the values

1 " 4 /
“ozﬂj_wf@)dm=

1( , ‘
Uy = ;j f(x") cos na’ dm’,l
B n=1

™

b, = }Jﬂ 7 (a;’) sin na’ cloc’,J

™

are inserted in the terms of the series
o+ (a4, cos w4 b, sin @) + (a, cos 2z + b, sin 2z) + ...,

the sum of the terms up to cos ne and sin nx is
%J" f(cc’)Sin 1@2n41)(z' —x)

sin & (2 — )

7

dax’.

He then discussed the limiting value of this sum as n becomes

* Dirichlet, J. Math., Berlin, 4, p. 157, 1829.
+ Gluvres de Fourier, T. 1., p. 512, 1888,
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infinite, and thus obtained the sum of the series now called
Fourier’s Series.
Fourier made no claim to the discovery of the values of the

coeflicients I A
“o:gj_ fla)dx',

1 ,
= —j f(x") cos n da;’,]
) -
- m== 1.
1{= . . ,
b, = ~7—J f(&') sin na daz’,J

™

We have already seen that they were employed both by Clairaut
and Euler before this time. Still there is an important differ-
ence between Fourier’s interpretation of these integrals and
that which was current among the mathematicians of the
eighteenth century. The earlier writers by whom they were
employed (with the possible exception of Clairaut) applied them
to thé determination of the coefficients of series whose existence
had been demonstrated by other means. Fourier was the first
to apply them to the representation of an entirely arbitrary
function, in the sense in which we have explained this term.
In this he made a distinet advance upon his predecessors.
Indeed Riemann* asserts that when Fourier, in his first paper to
the Paris Academy in 1807, stated that a completely arbitrary
tunction could be expressed in such a series, his statement so
surprised Lagrange that he denied the possibility in the most
definite terms. It should also be noted that he was the first to
allow that the arbitrary function might be given by different
analytical expressions in different parts of the interval; also that
he asserted that the sine series could be used for other functions
than odd ones, and the cosine series for other funections than
even ones. Further, he was the first to see that when a function
is defined for a given range of the variable, its value outside
that range is in no way determined, and it follows that no one
before him can have properly understood the representation of
an arbitrary function by a trigonometrical series. -

The treatment which his work received from the Paris Academy
is evidence of the doubt with which his contemporaries viewed

* Cf. Riemann, ¢ Uber die Darstellbarkeit einer IFunction durch eine trigono-
metrische Reihe,” Géttengen, Abh. Ges. Wiss., 13, §2, 1867.
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his arguments and results. His first paper upon the Theory of
Heat was presented in 1807. The Academy, wishing to en-
courage the author to extend and improve his theory, made the
question of the propagation of heat the subject of the grand
prie  de mathématiques for 1812.  Fourier submitted his
Mémoire sur la propagation de la Chalewr at the end of 1811
as a candidate for the prize. The memoir was referred to
Laplace, Lagrange, Legendre, and the other adjudicators; but,
while awarding him the prize, they qualified their praise with
criticisms of the rigour of his analysis and methods,* and the
paper -was not published at the time in the Mémoires de
UAcadémaie des Sciences. Fourier always resented the treatment
he had received. When publishing his treatise in 1822, he
incorporated in it, practically without change, the first part of
this memoir; and two years later, having become Secretary of
the Academy on the death of Delambre, he caused his original
paper, in the form in which it had been communicated in 1811,
to be published in these Mémoires.T Probably this step was
taken to secure to himself the priority in his important discoveries,
in consequence of the attention the subject was receiving at
the hands of other mathematicians. It is also possible that he
wished to show the injustice of the criticisms which had been
passed upon his work. After the publication of his treatise,
when the results of his different memoirs had become known, it
was recognised that real advance had been made by him in the
treatment of the subject and the substantial accuracy of his
reasoning was admitted.}

* Their report is quoted by Darboux in his Introduction (p. vii) to Buwvres de
Fourier, T. 1. :—* Cette piéce renferme les véritables équations différentielles de la
transmission de la chaleur, soit & Pintérieur des corps, soit 4 leur surface ; et la
nouveauté du sujet, jointe a son importance, a déterminé la Classe 4 couronner cet
Ouvrage, en observant cependant que la maniére dont I’Auteur parvient a ses
équations n’est pas exempte de difficultés, et que son analyse, pour les intégrer,
laisse encore quelque chose & désirer, soit relativement & la généralité, soit méme
du c6té de la rigueur.”

t Mémorvres de I’ Acad. des Se., 4, p. 185, and b, p. 153.

1 It is interesting to note the following references to his work in the writings
of modern mathematicians :

Kelvin, Coll. Works, Vol. IIL., p. 192 (Article on ‘“ Heat,” Knc. Brit., 1878).

¢ Returning to the question of the Conduction of Heat, we have first of all to
say that the theory of it was discovered by Fourier, and given to the world
through the French Academy in his Théorie analytique de la Chalewr, with
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The next writer upon the Theory of Heat was Poisson. He
employed an altogether different method in his discussion of the
question of the representation of an arbitrary function by a
trigonometrical series in his papers from 1820 onwards, which
are practically contained in his books, Traité de Mécanique
(T.1. (2° éd.) 1838),and Théorie mathématique de la Chaleur (1835).
He began with the equation

1- A2
1—2h cos (2’ —a)+h?

=1+42> hrcosn (e —ax),
1

solutions of problems naturally arising from it, of which it is difficult to say
whether their uniquely original quality, or their transcendently intense mathe-
matical interest, or their perennially important instructiveness for physical
science, is most to be praised.”

Darboux, Introduction, Fuvres de Fourver, T. 1., p. v, 1888.

““ Par 'importance de ses découvertes, par 'influence décisive qu’il a exercée sur
le développement de la Physique mathématique, Fourier méritait I'hommage qui
est rendu aujourd’hui & ses travaux et & sa mémoire. Son nom figurera digne-
ment 4 cOté des noms, illustres entre tous, dont la liste, destinée & s’accroitre
avec les anndes, constitue dés & présent un véritable titre d’honneur pour notre
pays. La Théorie analytique de la Chalewr . . ., que 'on peut placer sans
injustice & coté des écrits scientifiques les plus parfaits de tous les temps, se
recommande par une exposition intéressante et originale des principes fonda-
mentaux ; il éclaire de la lumiere la plus vive et la plus pénétrante toutes les
idées essentielles que .nous devons & Fourier et sur lesquelles doit reposer
désormais la Philosophie naturelle ; mais il contient, nous devons le reconnaitre,
beaucoup de négligences, des erreurs de calcul et de détail que Fourier a su éviter
dans d’autres écrits.”

Poincaré, Théorie analytique de la propagation de la Chaleur, p. 1, § 1, 1891,

¢ La théorie de la chaleur de Fourier est un des premiers exemples de appli-
cation de l'analyse & la physique; en partant d’hypothéses simples qui ne.sont
autre chose que des faits expérimentaux généralisés, Fourier en a déduit une
série de conséquences dont ’ensemble constitue une théorie compléte et cohérente.
Les résultats qu’il a obtenus sont certes intéressants par eux-mémes, mais ce qui
Pest plus encore est la méthode qu’il a employée pour y parvenir et qui servira
toujours de modéle a tous ceux qui voudront cultiver une branche quelconque de
la physique mathématique. J’ajouterai que le livre de Fourier a une importance
capitale dans I’histoire des mathématiques et que Panalyse pure lui doit peut-étre
plus encore que l'analyse appliquée.”

Boussinesq, Théorie analytique de la Chaleur, T. L., p. 4, 1901.

“ Les admirables applications qu’il fit de cette méthode (z.e. his method of inte-
grating the equations of Conduction of Heat) sont, a la fois, assez simples et assez
générales, pour avoir servi de modele aux géometres de la premiere moitié de ce
siécle ; et elles leur ont été d’autant plus utiles, qu'elles ont pu, avec de 1égéres
modifications tout au plus, étre transportées dans d’autres branches de la
Physique mathématique, notamment dans 'Hydrodynamique et dans la Théorie
de D'élasticité.”
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h being numerically less than unity, and he obtained, by
integration,
—h?

™ , 1
j_ ﬂf(ac =%, cos (=) + 12

= j‘i f@)yda' + 2§3h”r f(@') cos n(a’ — ) da'.

While it is true that by proceeding to the limit we may
deduce that

da’

f@) or 3[f=0)+f+0)]

is equal to

Lt [~~j f@') da’ + - Zh”J f(@) cos (' — ) (l%}

i1 -

we are not entitled to assert that this holds for the value h=1,
unless we have already proved that the series converges for this
value. This is the real difficulty of Fourier’s Series, and this
limitation on Poisson’s discussion has been lost sight of in some
presentations of Fourier’s Series. There are, however, other
directions in which Poisson’s method has led to most notable
results. The importance of his work cannot be exaggerated.®

After Poisson, Cauchy attacked the subject in different memoirs
published from 1826 onwards,t using his method of residues, but
his treatment did not attract so much attention as that given
about the same time by Dirichlet, to which we now turn.

Dirichlet’s investigation is contained in two memoirs which
appeared in 1829 { and 1837.§ The method which he employed
we have already referred to in speaking of Fourier’s work. He
based his proof upon a careful discussion of the limiting values
of the integrals

“ sin ux
jf(w) e dw...c¢>0,

sin s
sin z

Wb >a>0,

|/ @)

* For a full treatment of Poisson’s method, reference may be made to BScher’s
paper, ‘‘ Introduction to the Theory of Fourier’s Series,” Ann. Math., Princeton,
N. J. (Ser. 2), 7, 1906.

1 See Bibliography, p. 303. 1J. Math., Beriin, 4, 1829.

§ Dove’s Repertorium der Physik, Bd. 1., p. 152, 1837.
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as u increases indefinitely. By this means he showed that the
sum of the series

ay+ (@, cos z+b,sin @) 4 (aycos 2+ b, sin 2x)4-...
where the coefficients «,, etc., are those given by Fourier, is

HAz=0)+f(240)]... =7 <ol
HA(—7+0)+f(m=0)]...0==£m,
provided that, while — 7 <2<, f(z) has only a finite number
of ordinary discontinuities and turning points, and that it does
not become infinite in this range. In a later paper,* in which he
discussed the expansion in Spherical Harmonics, he showed that
the restriction that f(z) must remain finite is not necessary,

provided that J-wf(ac) dx converges absolutely.

The work of Dirichlet led in a few years to one of the most
important advances not only in the treatment of trigonometrical
series, but also in the Theory of Functions of a Real Variable:
indeed it may be said to have laid the foundations of that theory.
This advance is to be found in the memoir by Riemann already
referred to, which formed his Habilitationsschrift at Gottingen
in 1854, but was not published till 1867, after his death.
Riemann’s aim was to determine the mnecessary conditions which
f(x) must satisfy, if it can be replaced by its Fourier’s Series.
Dirichlet had shown only that certain conditions were sufficient.
The question which Riemann set himself to answer, he did not
completely solve: indeed it still remains unsolved. But in the
consideration of it he perceived that it was necessary to widen
the concept of the definite integral as then understood.

Cauchy, in 1823, had defined the integral of a continuous
function as the limit of a sum, much in the way in which it is
still treated in our elementary text-books. The interval of in-
tegration (a, b) is first divided into parts by the points
x, =0.

W=Xy, Ty, Tgy oo Tpyoq,

The sum :
S= (2, —we)f () + (2 — ) f(2) + ... + (20—, ) f(2,)
b
is formed. And the integral j f(z)dx is defined as the limit of

*®.J, Math., Berlin, 17, 1837.
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this sum when the number of parts is increased indefinitely and
their length diminished indefinitely. On this understanding
every continuous function has an integral.

For discontinuous functions, he proceeded as follows :

If a function f(z) is continuous in an interval (¢, b) except at
the point ¢, in the neighbourhood of which f(z) may be bounded
or not, the integral of f(x) in («, b) is defined as the sum of the

two limits el b
Lt j f(x)de, Lt j f(x) de,
c+h

h—>0Ja L—>0
when these limits exist.

Riemann dismisses altogether the requirement of continuity,
and in forming the sum S multiplies each interval (z,—,_,) by
the value of f(x), not necessarily at the beginning (or end) of the
interval, but at a point £, arbitrarily chosen between these, or by
a number intermediate between the lower and upper bounds of

b
f(@) in (x,_,, 2,). The integral j f(x)da 1s defined as the limit

of this sum, if such exists, when the number of the partial
intervals is increased indefinitely and their length tends to zero.

Riemann’s treatment, given in the text in a slightly modified
form, is now generally adopted in a scientific treatment of the
Calculus. It is true that a more general theory of integration
has been developed in recent years, chiefly due to the writings
of Lebesgue,* de la Vallée Poussin and Young; that theory is
mainly for the specialist in certain branches of Pure Mathe-
matics. But no mathematician can neglect the concept of the
definite integral which Riemann introduced.

One of the immediate advances it brought was to bring within
the integrable functions a class of discontinuous functions whose
discontinuities were infinitely numerous in any finite interval.
An example, now classical, given by Riemann, was the function
defined by the convergent series: ‘

xl |22 nw

4l 2,
where [nz] denotes the positive or negative difference between
na and the nearest integer, unless na falls midway between two
consecutive integers, when the value of [nz] is to be taken as

*See footnote, p. 77.
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zero. The sum of this series is discontinuous for every rational
value of 2 of the form p/2n, where p is an odd integer prime
to n.

With Riemann’s definition the restrictions which Dirichlet had
placed upon the function f(x) were considerably relaxed. To
this Riemann contributed much, and the numerous writers who
have carried out similar investigations since his time have still
further widened the bounds, while the original idea that every
continuous function admitted of such an expansion has been
shown to be false. Still it remains true that for all practical
purposes, and for all ordinary functions, Dirichlet’s investigation
established the convergence of the expansions. Simplifications
have been introduced in his proof by the introduction of the
Second Theorem of Mean Value, and the use of a modified form
of Dirichlet’s Integral, but the method which he employed is still
the basis of most rigorous discussions of Fourier’s Series.

The nature of the convergence of the series began to be ex-
amined after the discovery by Stokes (1847) and Seidel (1848) of
the property of Uniform Convergence. It had been known since
Dirichlet’s time that the series were, in general, only conditionally
convergent, their convergence depending upon the presence of
both positive and negative terms. It was not till 1870 that
Heine showed that, if the function is finite and satisfies
Dirichlet’s Conditions in the interval (—m, =), the Fourier’s
Series converges uniformly in any interval lying within an
interval in which f(x) is continuous. This condition has, like
the other conditions of that time, since been somewhat modified.

In the last thirty or forty years quite a large literature has
arisen dealing with Fourier’s Series. The object of many of the
investigations has been to determine sufficient conditions to be
satisfied by the function f(z), in order that its Fourier’s Series
may converge, either throughout the interval (—m, 7), or at
particular points of the interval. It appears that the convergence
or non-convergence of the series for a particular value of « really
depends only upon the nature of the function in an arbitrarily
small neighbourhood of that point, and is independent of the
general character of the function throughout the interval, this
general character being limited only by the necessity for the
existence of the coefficients of the series. These memoirs—
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associated chiefly with the names of Du Bois-Reymond, Lipschitz,
Dini, Heine, Cantor, Jordan, Lebesgue, de la Vallée Poussin,
Hobson and Young—have resulted in the discovery of sufficient
conditions of wide scope, which suffice for the convergence of the
series, either at particular points, or, generally, throughout the
interval. The necessary and sufficient conditions for the con-
vergence of the series at a point of the interval, or throughout
any portion of it, have not been obtained. In view of the general
character of the problem, this is not surprising. Indeed it is not
improbable that no such necessary and sufficient conditions may
be obtainable.

In many of the works referred to above, written after the
discovery by Lebesgue (1902) of his general theory of integra-
tion, series whose terms did not exist under the old definition of
the integral are included in the discussion.

The fact that divergent series may be utilised in various
ways in analysis has also widened the field of investigation, and
indeed one of the most fruitful advances recently made arises
from the discussion of Fourier’s Series which diverge. The word
“sum,” when applied to a divergent series, has, of course, to be
defined afresh; but all methods of treatment agree in this, that
when the same process is applied to a convergent series the
“sum,” according to the new definition, is to agree with the
“sum ” obtained in the ordinary way. One of the most important
methods of “summation” is due to Cesaro, and in its simplest
form is as follows:

Denote by s, the sum of the first n terms of the series

U+ Wy +Ug+ ... .
Let 5=t ntde

When Lt S,=S8, we say that the series is “summable,” and

N—>w
that its “sum ” is S.

It is not difficult to show that if the series

Uy + Wy +Ug+ ...
1s convergent, then Lt S,= Lt s,,
NnN—>w0 N—>w

so that the “ condition of consistency ” is satisfied. [Cf. £ 102.]
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Fejér was the first to consider this sequence of Arithmetic
Means,
5718 S S+

9 3 A
for the Fourier's Series. He established the remarkable thporem
that the sequence is convergent, and its limit is

5(f@+0)+f(z—0))
at every point in (—7, ) where f(z+40) and f(x—0) exist, the
only conditions attached to f(z) being that, if bounded, it shall

“be integrable in ( —7, 7), and that, if it is unbounded, r () dx
shall be absolutely convergent. -
Later, Hardy showed that if a series

U+ Ug+Us ...
is summable by this method, and the general term w, is of the

order 1/n, the series is convergent in the ordinary sense, and thus
the sum S (= Lt S,) and the sum s (= Lt s,) will be the same.

nN—>w0 nN—>®D
[CL. §102.]

Hardy’s theorem, combined with Fejér’s, leads at once to a
new proof of the convergence of Fourier’s Series, and it can also
be applied to the question of its uniform convergence. Many of
the results obtained by earlier investigators follow directly from
the application to Fourier's Series of the general theory of
summable series.?

Recent investigations show that the coefficients in Fourier’s
Series, now frequently called Fourier’s Constants, have im-
portant properties, independent of whether the series converges
or not. For example, it is now known that if f(x) and ¢(2)
are two functions, bounded and integrable in (—m, ), and «,
a,, b, are Fourier’s Constants for f(x), and «,, «,’, b, those
for ¢(z), the series

2a,a 0/ + Z (CLnCLn + bnbn )
T

converges, and its sum is lj f(@)p(x)de. To this theorem,
T n

* Math. Anwn., Leipzig, 58, 1904.

tChapman, Q. J. Math., London, 43, 1912 ; Hardy, London, Proc. Math. Soc.
(Ser. 2), 12, 1913.
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and to the results which follow from it, much attention has
recently been given, and it must be regarded as one of the most
important in the whole of the theory of Fourier’s Series.*

The question of the approximation to an arbitrary function by
a finite trigonometrical series was examined by Weierstrass in
1885.1 He proved that if j(z) is a continuous and periodic
function, given the arbitrary small positive quantity e, a finite
Fourier’s Series can be found in a variety of ways, such that the
absolute value of the difference of its sum and f(z) will be less
than e for any value of # in the interval. This theorem was
also discussed by Picard, and it has been generalised in recent
memoirs by Stekloftf and Kneser.

In the same connection, it should be noted that the application
of the method of least squares to the determination of the
coeflicients of a finite trigonometrical series leads to the Fourier
coefficients. ~ This result was given by Topler in 1876.f As
many applications of Fourier’s Series really only deal with a
finite number of terms, these results are of special interest.

From the discussion of the Fourier’s Series it was a natural
step to turn to the theory of the Trigonometrical Series

o+ (a, cos & + b,sin &)+ a,cos 2z + b,sin 2x)+ ...,
where the coefficients are no longer the Fourier coefficients.
The most important question to be answered was whether such an
expansion was unique; in other words, whether a function could
be represented by more than one such trigonometrical series.
This reduces to the question of whether zero can be represented
by a trigonometrical series in which the coefficients do not all
vanish. The discussion of this and similar problems was carried
on chiefly by Heine and Cantor,§ from 1870 onwards, in a series
of papers which gave rise to the modern Theory of Sets of Points,
another instance of the remarkable influence Fourier’s Series have
had upon the development of mathematics.|| In this place it will

*Cf. Young, London, Proc. R. Soc. (A), 85, 1911.

+J. Math., Beriin, T1, 1870.

+ Topler, Wien, Anz. Ak. Wiss., 13, 1876. § Bibliography, p. 305.

[ Van Vleck, ““The Influence of Fourier’s Series upon the Development of Mathe-
matics,” American Association for the Advancement of Science (Atlanta), 1913,

See also a paper with a similar title by Jourdain, Seientiz, Bologna (Ser. 2), 22,
1917.
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be sufficient to state that Cantor showed that all the coefficients
of the trigonometrical series must vanish, it it is to be zero for
all values of « in the interval (—m, ), with the exception of
those which correspond to a set of points constituting, in the
language of the Theory of Sets of Points, a set of the o™ order,
for which points we know nothing about the value of the series.
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CHAPTER 1

RATIONAL AND IRRATIONAL NUMBERS
THE SYSTEM OF REAL NUMBERS

1. Rational Numbers. The question of the convergence of
Infinite Series is only capable of satisfactory treatment when
the difficulties underlying the conception of irrational number
have been overcome. For this reason we shall first of all give a
short discussion of that subject.

The idea of number is formed by a series of generalisa-
tions. We begin with the positive integers. The operations
of addition and multiplication upon these numbers are always
possible; but if « and b are two positive integers, we cannot
determine positive integers « and ¥, so that the equations
a=b+x and a=>by are satistied, unless, in the first case, @ is
greater than b, and, in the second case, a is a multiple of b.
To overcome this difficulty fractional and negative numbers are
introduced, and the system of rational numbers placed at our
disposal.* |

The system of rational numbers is ordered, t.e. if we have two
different numbers « and b of this system, one of them is greater
than the other. Also, if «>0b and b>¢, then a>¢, when «, b
and ¢ are numbers of the system.

Further, if two different rational numbers a and b are given,
we can always find another rational number greater than the
one and less than the other. It follows from this that between

*The reader who wishes an extended treatment of the system of rational
numbers is referred to Stolz und Gmeiner, Theoretische Arithmetik, Leipzig,
1900-1902, and Pringsheim, Vorlesungen idiber Zahlen- wnd Funktionenlehre,
Leipzig, 1916.

16
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any two different rational numbers there are an infinite number
of rational numbers.*

2. The introduction of fractional and negative rational num-
bers may be justified from two points of view. The fractional
numbers are necessary for the representation of the subdivision
of a unit magnitude into several equal parts, and the negative
numbers form a valuable instrument for the measurement of
magnitudes which may be counted in opposite directions. This
may be taken as the argument of the applied mathematician.
On the other hand there is the argument of the pure mathe-
matician, with whom the notion of number, positive and negative,
integral and fractional, rests upon a foundation independent
of measurable magnitude, and in whose eyes analysis is a
scheme which deals with numbers only, and has no concern
per se with measurable quantity. It is possible to found mathe-
matical analysis upon the notion of positive integral number.
Thereafter the successive definitions of the different kinds of num-
ber, of equality and inequality among these numbers, and of the
four fundamental operations, may be presented abstractly.t

3. Irrational Numbers. The extension of the idea of number
from the rational to the irrational is as natural, if not as easy, as
is that from the positive integers to the fractional and negative
rational numbers.

Let a and b be any two positive integers. The equation 2’=a
cannot be solved in terms of positive integers unless « is a perfect
b" power. To malke the solution possible in general the irrational
numbers are introduced. But it will be seen below that the system
of irrational numbers is not confined to numbers which arise as
the roots of algebraical equations whose coefficients are integers.

So much for the desirability of the extension from the abstract
side. From the concrete the need for the extension is also evident.
We have only to consider the measurement of any quantity to

*When we say that a set of things has a finite number of members, we mean
that there is a positive integer n, such that the total number of members of the
set is less than n.

When we say that it has an infinite number of members, we mean that it has
not a finite number. In other words, however large = may be, there are more
members of the set than n.

1 Cf. Hobson, London, Proc. Math. Soc. (Ser. 1), 35, p. 126, 1913 ; also the same
author’s Theory of I'unctions of @ Real Variable, p. 13.

C. 1 B
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which the property of unlimited divisibility is assigned, e.g. a
straight line L produced indetfinitely. Take any segment of this
line as unit of length, a definite point of the line as origin or
zero point, and the directions of right and left for the positive
and negative senses. To every rational number corresponds a

| !
| | !

1
-2 -1 0 1 2

Fia. 1.

definite point on the line. If the number is an integer, the point
is obtained by taking the required number of unit segments one
after the other in the proper direction. If it is a fraction +p/q,
it is obtained by dividing the unit of length into ¢ equal parts
and taking p of these to the right or left according as the sign is
positive or'negative. These numbers are called the measures of
the corresponding segments, and the segments are said to be
commensurable with the unit of length. The points correspond-
ing to rational numbers may be called rational points.

There are, however, an infinite number of points on the line
L which are not rational points. Although we may approach
them as nearly as we please by choosing more and more
rational points on the line, we can never quite reach them in
this way. The simplest example is the case of the points coin-
ciding with one end of the diagonal of a square, the sides of
which are the unit of length, when the diagonal lies along the
line L and its other end coincides with any rational point.

Thus, without considering any other case of incommensur-
ability, we see that the line L is infinitely richer in points than
the system of rational nwmbers in numbers.

Hence it is clear that if we desire to follow arithmetically all
the properties of the straight line, the rational numbers are
insufficient, and it will be necessary to extend this system by the
creation of other numbers.

4. Returning to the point of view of the pure mathemaﬁcian,
we shall now describe Dedekind’s method of introducing the
irrational number, in its most general form, into analysis.*

* Dedekind (1831-1916) published his theory in Stetigheit und irrationale
Zahlen, Braunschweig, 1872 (Fnglish translation in Dedekind’s Hssays on Naumber,
Chicago, 1901). ‘
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Let us suppose that by some method or other we have divided
all the rational numbers into two classes, a lower class A and an
upper class B, such that every number « of the lower class 13 less
than every number 3 of the upper class.

When this division has been made, if a number a belongs to
the class A, every number less than o does so also; and if
a number (3 belongs to the class B, every number greater than
does so also.

Three different cases can arise:

(D) The lower class can have a greatest number and the wpper
class no smallest nwmber.
This would occur if, for example, we put the number 5 and
every number less than 5 in the lower class, and if we put in the
upper class all the numbers greater than 5.

(I1) The wpper class can have a smallest number and the

lower class no greatest number.

This would occur if, for example, we put the number 5 and
all the numbers greater than 5 in the upper class, while in the
lower class we put all the numbers less than 5.

It is impossible that the lower class can have a greatest
number m, and the upper class a smallest number n, in the
same division of the rational numbers: for between the rational
numbers m and n there are rational numbers, so that our hypo-
thesis that the two classes contain all the rational numbers is
contradicted.

But a third case can arise:

(IIT) The lower class can have no greatest number and the

wpper class no smallest number.

For example, let us arrange the positive integers and their
squares in two rows, so that the squares are underneath the
numbers to which they correspond. Since the square of a frac-
tion in its lowest terms is a fraction whose numerator and deno-
minator are perfect squares,* we see that there are not rational
numbers whose squares are 2, 3, 5,6, 7, 8, 10, 11, ...,

1 2 3 4 ...
1234567891011 1213 14 15 16 ....

*If a formal proof of this statement is needed, see Dedekind, /oc. cit., Knglish
translation, p. 14, or Hardy, Course of Pure Mathematics (2nd Ed.), p. 6.
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However, there are rational numbers whose squares are as near
these numbers as we please. For instance, the numbers

2, 1'5, 142, 1415, 14143, ...,

I, 14, 1'41, 1'414, 14142, ...,
form an upper and a lower set in which the squares of the terms
in the lower are less than 2, and the squares of the terms in the
upper are greater than 2. We can find a number in the upper
set and a number 1n the lower set such that their squares differ
from 2 by as little as we please.® -

Now form a lower class, as described above, containing all
negative rational numbers, zero and all the positive rational
numbers whose squares are less than 2; and an upper class
containing all the positive rational numbers whose squares are
oreater than 2. Then every rational number belongs to one class
or the other. Also every number in the lower class is less than
every number in the upper. The lower class has no greatest
number and the upper class has no smallest number.

5. When by any means we have obtained a division of all the
rational numbers into two classes of this kind, the lower class
having no greatest number and the upper class no smallest
number, we create a new number defined by this division. We
call it an wrrational number, and we say that it is greater than
all the rational numbers of its lower class, and less than all the
rational numbers of its upper class. |

Such divisions are usually called sections.t The irrational
number ,/2 is defined by the section of the rational numbers
described above. Similar sections would define the irrational
numbers /3, /5, ete. The system of irrational numbers is
~given by all the possible divisions of the rational numbers into a
lower class A and an upper class B, such that every rational
number is in one class or the other, the numbers of the lower
class being less than the numbers of the upper class, while the
lower class has no greatest number, and the upper class no
smallest number.

In other words, every irrational number is defined by its
section (A, B). It may be said to “correspond ” to this section.

* Cf. Hardy, loc. cit., p. 8.
1 French, coupure ; German, Sehnitt.
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The system of rational numbers and 4rrational numbers
together make up the system of real numbers.

The rational numbers themselves ‘correspond” to divisions of rational
numbers.

For instance, take the rational number m. In the lower class A put
the rational numbers less than m, and m itself. In the upper class B put all
the rational numbers greater than . Then m corresponds to this division
of the rational numbers.

Extending the meaning of the term section, as used above in the definition
of the irrational number, to divisions in which the lower and upper classes
have greatest or smallest numbers, we may say that the rational number
corresponds to a rational section (A, B),¥ and that the irrational numbers
correspond to ¢rrational sections. When the rational and irrational numbers
are defined in this way, and together form the system of real numbers, the
real number which corresponds to the rational number m (to save confusion
1t is sometimes called the rational-real number) is conceptually distinct from
m, However, the relations of magnitude, and the fundamental operations
for the real numbers, are defined in such a way that this rational-real number
has no properties distinct from those of m, and it is usually denoted by the
same symbol.

6. Relations of Magnitude for Real Numbers. We have extended our
conception of number. We must now arrange the system of real numbers
in order; <e we must say when two numbers are equal or unequal to,
greater or less than, each other.

In this place we need only deal with cases where at least one of the
numbers is irrational.

An irrational number is never equal to a rational number. They are
always different or unequal.

Next, in § 5, we have seen that the rrational number given by the section
(A, B)is said to be greater than the rational number ., when m is a member
of the lower class A, and that the rational number m is said to be greater than
the rational number given by the section (A, B), when m is a member of
the upper class B.

Two irrational numbers are equal, when they are both given by the same
section. They are different or unequal, when they are given by different
sections. :

The rrational number o given by the section (A, B) is greater than the
arrational number o given by the section (A’, B'), when the class A contains
numbers of the class B. Now the class A has no greatest number. But if
a certain number of the class A belongs to the class B, all the numbers of A

*The rational number m could correspond to two sectiong: the one named in
the text, and that in which the lower class A contains all the rational numbers
less than m, and the upper class B, m and all the rational numbers greater than m.
To save ambiguity, one of these sections only nmust be chosen.
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greater than this number also belong to B. The class A thus contains an
infinite number of members of the class B, when a>«'.

If a real number « is greater than another real number «/, then o is less
than .

Tt will be observed that the notation >, =, < is used in dealing with real
numbers as in dealing with rational numbers.

The real number f3 is said to lie between the real numbers o and 7y, when
one of them is greater than 3 and the other less.

With these definitions the system of real numbers is ordered. If we have
two different real numbers, one of them is greater than the other ; and if we
have three real numbers such that a > 3 and 3>, then a>1v.

These definitions can be simplified when the rational nunbers themselves
are given by sections, as explained at the end of § 5.

7. Between any two different rational numbers there is an infinite number
of rational numbers. A similar property holds for the system of real
numbers, as will now be shown :

(1) Between any two different real numbers a, a' there are an infinite number

of rational numbers.

If ¢ and o are rational, the property is known.

If e is rational and o irrational, let us assume o >a’. Let o’ be given by
the section (A’, B'). Then the rational number « is a member of the upper
class B, and B’ has no least number. Therefore an infinite number of
members of the class B’ are less than «. It follows from the definitions
of §5 that there are an infinite number of rational numbers greater than o
and less than a.

A similar proof applies to the case when the irrational number o is greater
than the rational number a.

There remains the case when o and « are both irrational. Let « be
given by the section (A, B) and « by the section (A, B’). Also let
a>a.

Then the class A of a contains an infinite number of members of the
class B" of o’ ; and these numbers are less than o and greater than o',

A similar proof applies to the case when a < o'

The result which has just been proved can be made more general :—

(I1) Detween any two different real nuwmbers there are an infinste number of

vrrational numbers. ,

Let a, ¢’ be the two given numbers, and suppose a<<a'.

Take any two rational numbers /3 and 3, such that a<fS<f'<a’. If we
can show that between 3 and [3' there must be an irrational number, the
theorem is established.

Let 7 be an irrational number. TIf this does not lie between 3 and (3, by
adding to it a suitable rational number we can make it do so. For we
can find two rational numbers m, 2, such that m<<i<n and (n-m) is
less than (B —). The number —m+7 is irrational, and lies between

3 and 3.
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8. Dedekind’s Theorem. We shall now prove a very im-
portant property of the system of real™ numbers, which will be
used frequently in the pages which follow. |

If the system of real numbers is divided into two clusses A
and B, in swch « way that
(i) each class contains «t least one number,
(1) every number belongs to one cluss or the other,
(ii1) every number in the lower class A is less than every
nwmber in the wpper class B ;
then there is a number a such that
every number less than a belongs to the lower cluss A, and
every number greater than o belongs to the wpper class B.-
The separating number a itself may belong to either class.
Consider the rational numbers in A and B.
- These form two classes—eg. A’ and B—such that every
rational number is in one class or the other, and the numbers in
the lower class A" are all less than the numbers in the upper
class B'. |
As we have seen in § 4, three cases, and only three, can arise.

(1) The lower cluss A" can hawve « greatest number m and the

wpper class B’ no smallest nwmber.

The rational number m 1s the number « of the theorem. For
it is clear that every real number a less than m belongs to the
class A, since m is a member of this class. Also every real
number b, greater than m, belongs to the class B.  This is evident
if b is rational, since b then belongs to the class B’, and B’ is part
of B. If b is irrational, we can take a rational number n between
m and b. Then 7 belongs to B, and therefore b does so also.

(1) The wpper class B can have « smallest number m and
the lower class A" no greatest nwmber. ,
It follows, as above, that the rational number m 1s the number
a of our theorem.

(ii1) The lower class A" cam have no greatest number and the
wpper class B no smallest number.

Let m be the irrational number defined by this section (A’, B).

Every rational number less than m belongs to the class A,

* It will be observed that the system of ratzona/ numbers does not possess this
property.
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and every rational number. greater than m belongs to the
class B.

We have yet to show that every irrational number less than m
belongs to the class A, and every irrational number greater than
m to the class B.

But this follows at once from §6. For if m’ is an irrational
number less than m, we know that there are rational numbers
between m and m’. These belong to the class A, and therefore
m’ does so also.

A similar argument applies to the case when m'>m.

In the above discussion the separating number a belongs to
the lower class, and is rational, in case (i); it belongs to the
upper class, and is again rational, in case (ii); it is irrational,
and may belong to either class, in case (iii).

9. The Linear Continuum. Dedekind’s Axiom. ,We return
now to the straight line L of § 3, in which a definite point O has
been taken as origin and a definite segment as the unit of length.

We have seen how to effect a correspondence between the
rational numbers and the “rational points” of this line. The
“rational points” are the ends of segments obtained by marking

| 1 ]
T T ]
0 1 A
Fra, 2.

off from O on the line lengths equal to multiples or sub-multiples
of the unit segment, and the numbers are the measures of the
corresponding segments.

Let OA be a segment incommensurable with the unit segment.
The point A divides the rational points of the line into two
classes, such that all the points of the lower class are to the left
of all the points of the upper class. The lower class has no last
point, and the upper class no first point. |

We then say that A is an irrational point of the line, and
that the measure of the segment 04 is the irrational number
defined by this section of the rational numbers.

Thus to any point of the line L corresponds a real number, and
to different points of the line correspond different real numbers.

There remains the question—70 cvery real nuwmber does there
correspond a point of the line?
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For all rational numbers we can answer the question in the
affirmative. When we turn to the irrational numbers, the
question amounts to this: If all the rational points of the line
are divided into two classes, a lower and an wpper, so that the
lower class has no last point and the upper class no first point,
18 there one, and only one, point on the line which brings about
this separation ?

The existence of such a point on the line cannot be proved.
The assumption that there is one, and only one, for every section
of the rational points is nothing less than an axiom by means of
which we assign its continuity to the line.

This assumption is Dedekind’s Axiom of Continuity for the
line. In adopting it we may now say that to every point P of
the lime corresponds a mumber, rational or irrational, the
measure of the segment OP, and that to every real number
corresponds « point P of the line, such that the measwre of O
18 that nwmber.

The correspondence between the points of the line L (the linecr
continuum) and the system of real numbers (the arithmetical
continuum) is now perfect. The points can be taken as the
images of the numbers, and the numbers as the signs of the
points. In consequence of this perfect correspondence, we may,

in future, use the terms number and point in this connection as
identical. |

10. The Development of the System of Real Numbers. It
is instructive to see how the idea of the system of real numbers,

as we have described it, has grown.® The irrational numbers,
belonging as they do in modern arithmetical theory to the
realm of arithmetic, arose from the geometrical problems which
required their aid. They appeared first as an expressicn for the
ratios of incommensurable pairs of lines. In this sense the Fifth
Book of Kuclid, in which the general theory of Ratio is
developed, and the Tenth Book, which deals with Incom-
mensurable Magnitudes, may be taken as the starting point of
the theory. But the irrationalities which Kuclid examines are
only definite cases of the ratios of incommensurable lines, such

*Cf. Pringsheim, ¢ Irrationalzahlen u. Konvergenz unendlicher Prozesse,”
Enc. d. math. Wiss., Bd. L, TL 1., p. 49 et seq., 1898.
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as may be obtained with the aid of ruler and compass; that
is to say, they depend on square roots alone. The idea that
the ratio of any two such incommensurable lines determined
a definite (irrational) number did not occur to him, nor to any
of the mathematicians of that age.

Although there are traces in the writings of at least one of
the mathematicians of the sixteenth century of the idea that
every irrational number, just as much as every rational number,
possesses a determinate and unique place in the ordered sequence
of numbers, these irrational numbers were still considered to
arise only from certain cases of evolution, a limitation which is
partly due to the commanding position of Euelid’s methods in
Geometry, and partly to the belief that the problem of finding
the nthroot of an integer, which lies between the nth powers of
two consecutive integers, was the only problem whose solution
could not be obtained in terms of rational numbers.

The introduction of the methods of Coordinate Geometry by
Descartes in 1637, and the discovery of the Infinitesimal Calculus
by Leibnitz and Newton in 1684-7, made mathematicians regard
this question in another light, since the applicability of number
to spatial magnitude is a fundamental postulate of Coordinate
Geometry. “The view now prevailed that number and quantity
were the objects of mathematical investigation, and that the two
were so similar as not to require careful separation. Thus
number was applied to quantity without any hesitation, and,
conversely, where existing numbers were found inadequate to
measurement, new ones were created on the sole ground that
every quantity must have a numerical measure.” *

It was reserved for the mathematicians of the nineteenth
century-—notably Weierstrass, Cantor, Dedekind and Heine—to
establish the theory on a proper basis. Until their writings
appeared, a number was looked upon as an expression for the
result of the measurement of a line by another which was
regarded as the unit of length. To every segment, or, with the
natural modification, to every point, of a line corresponded a
definite number, which was either rational or irrational ; and by
the term irrational number was meant a number defined by an

* Cf. Russell, Principles of Mathematics, Ch. XIX., p. 417, 1903.
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infinite set of arithmetical operations (e.g. infinite decimals or
continued fractions). The justification for regarding such an
unending sequence of rational numbers as a definite number was
considered to be the fact that this system was obtained as the
equivalent of a given segment by the aid of the same methods of
measurement as those which gave a definite rational number for
other segments. However it does not in any way follow from
this that, conversely, any arbitrarily given arithmetical represen-
tation of this kind can be regarded in the above sense as an
irrational number ; that is to say, that we can consider as evident
the existence of a segment which would produce by suitable
measurement the given arithmetical representation. Cantor *
has the credit of first pointing out that the assumption that a
definite segment must correspond to every such sequence is
neither self-evident nor does it admit of proof, but involves an
actual axiom of Geometry. Almost at the same time Dedekind
showed that the axiom in question (or more exactly one which is
equivalent to it) first gave a meaning, which we can comprehend,
to that property which, so far without any suflicient detinition,
had been spoken of as the continuity of the lne.

To make the theory of number independent of any geometrical
axiom and to place it upon a basis entirely independent of
measurable magnitude was the object of the arithmetical theories
assoclated with the names of Weierstrass, Dedekind and Cantor.
The theory of Dedekind has been followed in the previous pages.
Those of Weierstrass and Cantor, which regard irrational
numbers as the limits of convergent sequences, may be deduced
from that of Dekekind. In all these theories irrational numbers
appear as new numbers, to each of which a definite place in
the domain of rational numbers is assigned, and with which we
“can operate according to definite rules. The ordinary operations
of arithmetic for these numbers are defined in such a way as to
be in agreement with the ordinary operations upon the rational
numbers. They can be used for the representation of definite
quantities, and to them can be ascribed definite quantities, ac-
cording to the axiom of continuity to which we have already
referred.

* Math. Ann., Léipziy, 5, p. 127, 1872.
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CHAPTER 1I
INFINITE SEQUENCES AND SERIES

11. Infinite Aggregates. We are accustomed to speak of the
positive integral numbers, the prime numbers, the integers which
are perfect squares, etc. These are all examples of infinite sets
of numbers or sets which have more than a finite number of terms.
In mathematical language they are termed aggregates, and the
theory of such infinite aggregates forms an important branch of
modern pure mathematics.®

The terms of an aggregate are all different. Their number
may be finite or infinite. In the latter case the aggregates are
usually called infinite aggregates, but sometimes we shall refer to
them simply as aggregates. After the discussion in the previous
chapter, there will be no confusion if we speak of an aggregate
of points on a line instead of an aggregate of numbers. The
two notions are identical. We associate with each number the
point of which it is the abscissa. It may happen that, however
far we go along the line, there are points of the aggregate further
on. In this case we say that it extends to infinity. An aggregate
is said to be bounded on the right, or bounded above, when
there is no point of it to the right of some fixed point. It is
said to be bownded on the left, or bounded below, when there
18 no point of it to the left of some fixed point. The aggregate

* Cantor may be taken as the founder of this theory, which the Giermans call
Menge-Lehre. In a series of papers published from 1870 onward he showed its
importance in the Theory of Functions of a Real Variable, and especially in
the rigorous discussion of the conditions for the development of an arbitrary
function in trigonometric series.

Reference may be made to the standard treatise on the subject by W. H. and
Girace Chisholm Young, Theory of Sets of Points, Cambridge, 1906,

29
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of rational numbers greater than zero is bounded on the left.
The aggregate of rational numbers less than zero is bounded on
the right. 'The aggregate of real positive numbers less than
unity is bounded above and below; in such a case we simply
say that it is bounded. The aggregate of integral numbers is
unbounded.

12. The Upper and Lower Bounds of an Aggregate. When
an aggregate (E)* is bounded on the right, there is a nwmber M

which possesses the following properties :

no nwmber of (E) is greater than M ;
however small the positive number ¢ may be, there is a number
of (E) greater than M —e.

We can arrange all the real numbers in two classes, A and B,
relative to the aggregate. A number @ will be put in the class A
if one or more numbers of (&) are greater than x. It will be put
in the class B if no number of () is greater than @.  Since the
aggregate is bounded on the right, there are members of both
classes, and any number of the class A is smaller than any
number of the class B.

By Dedekind’s Theorem (§8) there is a number } separating
the two classes, such that every number less than M belongs to
the class A, and every number greater than M to the class B,
We shall now show that this is the number M of our theorem.

In the first place, there is no number of (#) greater than A7,
For suppose there is such a number M7 (2>0). Then the
number M+ 3%, which is also greater than M, would belong to
the class A, and M would not separate the two classes A and B.

In the second place, whatever the positive number ¢ may be, the
number M —¢ belongs to the class A. It follows from the way
in which the class A is defined that there is at least one number
of (&) greater than M —e. ,

This number M is called the wpper bownd of the aggregate (K).
It may belong to the aggregate. This occurs when the aggregate
contains a finite number oi terms. But when the aggregate
contains an infinite number of terms, the upper bound need not
belong to it. For example, consider the rational numbers whose

* This notation is convenient, the letter # being the first letter of the French
term ensemble.
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squares are not greater than 2. This aggregate is bounded on
the right, its upper bound being the irrational number ,/2, which
does not belong to the aggregate. On the other hand, the aggre-
gate of real numbers whose squares are not greater than 2 is
also bounded on the right, and has the same upper bound. But
/2 belongs to this aggregate.

If the upper bound M of the aggregate () does not belong to
it, there must be an infinite number of terms of the aggregate
between M and M —e, however small the positive number ¢ may
be. If there were only a finite number of such terms, there
would be no term of (£) between the greatest of them and A,
which is contrary to our hypothesis. |

It can be shown in the same way that when an aggregate (1)
18 bounded on the left, there 1s « nuwmber m possessing the follow-
g properties :

no number of () vs smaller than m ;

lowever small the positive number e may be, there 1s « number

of () less than m+e.

The number m defined in this way is called the lower bound
of the aggregate (£). As above, it may, or may not, belong to
the aggregate when it has an infinite number of terms. But
when the aggregate has only a finite number of terms it must
belong to it.

13. Limiting Points of an Aggregate. Consider the aggregate
1 1 1

A

There are an infinite number of points of this aggregate in any
interval, however small, extending from the origin to the right.
Such a point round which an infinite number of points of an
aggregate cluster, is called a lvmating point* of the aggregate.
More definitely, a will be a limating point of the aggregate (K)
of, however small the positive number e may be, there 1s in (E)
a pownt other than a whose distance from a is less than e If
there be one such point within the interval (a—e, a+¢), there
will be an infinite number, since, if there were only . of them,

1,

*Sometimes the term point of condensation is used 5 French, point-limite, point
d’accumulation 5 German, Hdvfungspunkt, Verdichtungspunkt.
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and «, were the nearest to «, there would not be in () a point
other than « whose distance from « was less than |a —«,|.* In
that case a would not be a limiting point, contrary to our
hypothesis.

An aggregate may have more than one limiting point. The
rational numbers between zero and unity form an aggregate with
an infinite number of limiting points, since every point of the
segment (0, 1) is a limiting point. It will be noticed that some
of the limiting points of this aggregate belong to it, and some,
namely the irrational points of the segment and its end-points,
do not.

In the example at the beginning of this section,

1 1 1

SRS URITISPITRy

the lower bound, zero, is a limiting point, and does not belong to
the aggregate. The upper bound, unity, belong% to the aggregate,
and is not a limiting point.

The set of real numbers from 0 to 1, 1n0]u81ve, 1s an aggregate
which is identical with its limiting points.

1,

14. Weierstrass’s Theorem. An wnfinite aggregate, boundecd
above and below, hus at least one limiting point.

Let the infinite aggregate (&) be bounded, and have M and m
for its upper and lower bounds.

We can arrange all the real numbers in two classes relative to
the aggregate (£). A number « will be said to belong to the
class A when an infinite number of terms of (£) are greater than
a. It will be said to belong to the class B in the contrary case.

Since m belongs to the class A and M to the class B, there are
members of both classes. Also any number in the class A is less
than any number in the class B.

By Dedekind’s Theorem, there is a number u separating the
two classes. However small the positive number e may be, u—e
belongs to the class A, and wu+4e to the class B. Thus the
interval (u—e, u-+e¢) contains an infinite number of terms of the
aggregate.

* Tt is usual to denote the difference between two real numbers @ and b, taken
positive, by |a@ -], and to call it the absolute value or modulus of (¢ —0). With
this notation |@-+y| = || +|y|, and |xy|=|x||y].
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Hence w is a limiting point. 4
- As will be seen from the example of § 13, this point may
coincide with 3 or m. |
An infinite aggregate, when unbounded, need not have a limit-
ing point; e.g. the set of integers, positive or negative. But if
the aggregate has an infinite number of points in an interval of
finite length, then it must have at least one limiting point.

15. Convergent Sequences. We speak of an infinite séquence

of numbers Wy, Uy, Ugy eon Uyy oo

when some law 18 given according to which the general term w,,
may be written down.
The sequence Uy Uy, Ug, oo

ts saad to be convergent and to have the limit A, when, by
indefinitely increasing mn, the difference between A and w,
becomes, and thereafter remains, as small as we please.

This property is so fundamental that it is well to put it more
precisely, as follows: The sequence is said to be convergent and
to have the limit A, when, any positive number e¢ having been
chosen, as small as we please, there 18 a positive integer v such that

|A —u,| <e, provided that n=v.
For example, the sequence

1 1 1
1, =, -, ... = ..
| ’ 27 3; n,
has the limit zero, since 1/n is less than ¢ for all values of n
greater than 1/e.

The notation that is employed in this econnection is
Lt w,=A4,

n—>w
and we say that as n tends to infinity, v, has the limit A.*

The letter e is usually employed to denote an arbitrarily small
positive number, as in the above definition of convergence to a
limit as n tends to infinity. Strictly speaking, the words as
small as we please are unnecessary in the definition, but they are
inserted as making clearer the property that is being defined.

We shall very frequently have to employ the form of words
which occurs in this definition, or words analogous to them, and

*The phrase ‘1, tends to the limit 4 as n tends to infinity 7 is also used,
C. 1 ¢
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the beginner is advised to make himself familiar with them by
formally testing whether the following sequences are convergent
or not:

1 1 1 1 1
((L) 1, 2, QE’ cen s (C) 1, 1+§,, 1+~2—+?, -
1 1 :
() 1, —gr g (dy 1, =1, 1, —1,....
A sequence cannot converge to two distinct limits 4 and B.

)A B\

If this were possible, let e<'~-—'. Then there are only

a finite number of terms of the sequence outside the interval
(A —e, A +e), since the sequence converges to the value 4. This
contradicts the statement that the sequence has also the limit 3,
for we would only have a finite number of terms in the interval
of the same length with B as centre.

The application of the test of convergency contained in the
definition involves the knowledge of the limit A. Thus it will
frequently be impossible to use it. The required criterion for
the convergence of a sequence, when we are not simply asked to
test whether a given number is or is not the limit, is contained
in the fundamental general principle of convergence . —*

A mecessary and sufficient condition for the existence of «

Limat to the sequence Wy, Uy, Uy, ...

18 that « positive integer v exists sweh that |, 1, —1u,| becomes as
small as we please when n =y, for every positive integer p.
More exactly :

A mecessary and sufficient condition for the existence of «

Limit to the sequence Uy, Uy, Uy,

s that, of any positive number e has been chosen, as small as
we please, there shall be a positive integer v such that

[ pp— | <&, when n=v, for every positive integer p.

*This is one of the most important theorems of analysis. In the words of
Pringsheim, ‘“Dieser Satz, mit seiner Ubertragung auf beliebige (z.B. stetige)
Zahlenmengen—von du Bois-Reymond als das ‘allgemeine Convergenzprinzip’
bezeichnet (Allg. Funct.-Theorie, pp. 6, 260)—ist der eigentliche Fundamentalsatz
der gesamten Analysis und sollte mit geniigender Betonung seines fundamentalen
Characters an der Spitze jedes rationellen Lehrbuches der Analysis stehen,”
loc. cit., Eme. d. math. Wiss. p. 66, ‘
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We shall first of all show that the condition is necessary
t.e. if the sequence converges, this condition is satistied ; secondly
that, if this condition is satisfied, the sequence converges; in
other words, the condition is sufficient.

(i) The condition is necessary.

Let the sequence converge to the limit 4.

Having chosen the arbitrary positive number ¢, then take Je.
We know that there is a positive integer v such that

| A —wu,| <}e, when n=v.
Bllt (u.n_*_p _ /ll//n) = (/lljn_*_z) - A) + (A - 71/7)/).
Therefore |1, ,— 1, = |y p— A+ |4 — 10y
< 17 € + "ETG’
if n =y, for every positive integer v,
<e.
(i1) The condition 1s sufficient.
We must examine two cases; first, when the sequence contains
an infinite number of terms equal to one another; second, when

it does not.
(a) Let there be an infinite number of terms equal to A.
Then, if
|tpsp—1,| < e, when n =y, and p is any positive integer,
we may take w,.,=4 for some value of p, and we have
| A —1,| <e when n=vw.

Therefore the sequence converges, and has A for its limit.

(0) Let there be only a finite number of terms equal to-one
another.

Having chosen the arbitrary positive number e, then take le.

We know that there is a positive integer IV such that

|2 p— 2y | < e, when n = N, for every positive integer .
It follows that we have
|10y—wy| < e, when n Z IV,
Therefore all the terms of the sequence
Uy, WUyps, Uyis, «-.

lie within the interval whose end-points are 1 y—Le and wy + le.
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There must be an infinite number of distinet terms in this
sequence. Otherwise we would have an infinite number of
terms equal to one another.

Consider the infinite aggregate (&) formed by the distinect

terms 1n
Wy, Uy, AUy, oee .

This aggregate is bounded and must have at least onme
limiting point A within, or at an end of, the above interval.
(Cf. §14.)

There cannot be another limiting point A4’, for it there were,
we could choose e equal to |4 —4’| say, and the formula

|24 p— | < e, when n —v, for every positive integer p,
shows that all the terms of the sequence
Wy, Uy, Usgyeen

except a finite number, would lie within an interval of length
1]A—A’|. This is impossible if 4, A" are limiting points of the
aggregate.
Thus the aggregate (#) has one and only one limiting point 4.
We shall now show that the sequence

Wy, Wy, U, oo

converges to A as n tends to .

We have Wp— A = (w,—wy) + (wy—A4).

Therefore |wn—A| = |wn—10y] + |y —A|
< e + e when n —_ N,
< €, when n = N.

Thus the sequence converges, and has 4 for its limit.
We have therefore proved this theorem :

A mecessary and sufficient condition for the convergence of

the sequence ,
quenc Uy, Uy, Ug, .o

is that, to the arbitrary positive number e, there shall correspond
a positive integer v such that
|21 p— Un| < &, when nZv, for every positive integer p.

It is easy to show that the above condition may be replaced by the
following :

In order that the sequence
Uy Uy, Usgy e
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may converge, it s necessary and sufficient that, to the arbitrary positive
number €, there shall correspond a positive integer n such that
|20 4p— | < € for every positive integer p.
It is clear that if the sequence converges, this condition is satisfied by n=v.
Further, if this condition is satisfied, and € is an arbitrary positive number,
to the number fe there corresponds a positive integer n such that
|04+ — .| < Fe for every positive integer p.
But | Wit pr = Uy | = | W = | + [y = U
< oz + 36
when p/, p” are any positive integers.
Therefore the condition in the text is also satisfied, and the sequence
converges. ‘

16. Divergent and Oscillatory Sequences.* When the

sequence Wy, Uy, Uy, ..

does not converge, several different cases arise.
(i) In the first place, the terms may have the property that

if any positive number A, however large, is chosen, there is
a positive integer v such that

w, > A, when 5 =v.

In this case we say that the sequence is divergent, and that it
diverges to + oo, and we write this

Lt w,=+ .

N>R
(ii) In the second place, the terms may have the property that
if any negative number —A is chosen, however large 4 may
be, there is a positive integer v such that
U, < —A, when n=v.

In this case we say that the sequence is divergent, and that it
diverges to — 0 , and we write this

Lt w,= —w.
e J72]

The terms of a sequence may all be very large in absolute
value, when 7 is very large, yet the sequence may not diverge
to 4+ orto —c. A sufficient illustration of this is given by
the sequence whose general term is (—1)"n.

*In the first edition of this book, the term divergent was used as meaning
nmerely not convergent. In this edition the term is applied only to the case of
divergence to +w or to - w, and sequences which oscillate infinitely are placed
among the oscillatory sequences.
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After some value of n the terms must all have the same sign,
if the sequence is to diverge to 4o or to — o, the sign being
positive in the first alternative, and negative in the second.

(ii1) When the sequence does not converge, aund does not diverge

0 + =% orto —w, it 18 sard to oscillate.

An oscillatory sequence is said to oscillate finitely, if there is
a positive number A such that [un|<'A, Jfor all valwes of n;
and it 18 said to oscillate infinitely when there is no such nuwmber.
For example, the sequence whose general term is (—1)" oscillates
finitely ; the sequence whose general term is (—1)"n oscillates
infinitely.

We may distinguish between convergent and divergent se-
quences by saying that a convergent sequence has « finite limit,

1.e. Lt w,= 4, where 4 is a definite number ; @ divergent sequence
n~—>w0

has an infinite limit, v.e. Lt w,= 4o or Lt u,=—ow,
' —> N—>n

But it must be remembered that the symbol », and the terms
infinite, infinity and tend to infinity, have purely conventional
meanings. There is no number infinity. Phrases in which the
term is used have only a meaning for us when we have previously,
by definition, attached a meaning to them.

When we say that n tends to infinity, we are using a short
and convenient phrase to express the fact that u assumes an
endless series of values which eventually become and remain
greater than any arbitrary (large) positive number. So far we
have supposed 7, in this connection, to advance through integral
values only. This restriction will be removed later.

A similar remark applies to the phrases divergence to + o or
to —ow, and oscillating infinitely, as well as to our earlier
use of the terms an wnfinite number, infinite sequence and
nfinite aggregates. In each case a definite meaning has
been attached to the term, and it is employed only with that

meaning.
It is true that much of our work might be simplified by the
introduction of new numbers 4o, —oo, and by assuming the

existence of corresponding points upon the line which we have
used as the domain of the numbers. But the creation of these
numbers, and the introduction of these points, would be a matter

for separate definition.
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17. Monotonic Sequences. If the terms of the sequence
Uy, Wy, AUy, ..
satisfy either of the following relations
Wy = Uy = Uy oo = Uy, oo
or Wy = Uy = Uy o =W,y ee
the sequence is swid to be monotonic.

In the first case, the terins never decrease, and the sequence
may be called monotonic increasing; in the second case, the
terms never increase, and the sequence may be called monotonic
decreasing.® |

Obviously, when we are concerned with the convergence or
divergence of a sequence, the monotonie property, if such exist,
need not enter till after a certain stage.

The tests for convergence or divergence are extremely simple
in the case of monotonic sequences.

If the sequence Wy, Uy, U, ..

18 monotonic ineredsing, and its terims are all less than some fixed
nwmber B, the sequence is convergent and has for its limit «
number B such that w, = B =B for every positive integer .

Consider the aggregate formed by distinet terms of the
sequence. It is bounded by u, on the left and by B on the
right. Thus it must have an upper bound 5 (cf. §12) equal to or
less than B, and, however small the positive number ¢ may be
there will be a term of the sequence greater than 8—e.

Let this term be w,. Then all the terms after w,_, ave to the:
right of 8—e and not to the right of 5. If any of them coincide
with 3, from that stage on the terms must be equal.

Thus we have shown that

|B—1w,|<e when n=y, |

and therefore the sequence is convergent and has 8 for its limit.
The following test may be proved in the same way :

If the sequence Wy, Wy, U,y o
18 monotonic decreasiny, and its terms are all greater than some
Jixed mumber A, then the sequence is convergent and has for

*The words steadily increasing and steadily decreasing are sometimes employed
in this connection, and when none of the terms of the sequence are equal, the
words i the stricter sense are added.
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its limit @ number a such that w,Za=A for every positive
wnteger n. | |
It is an immediate consequence of these theorems that a

monotonic sequence either tends to a limit or diverges to 4+ » or
to —».

18. Let Ay, A,, A, ... be an infinite set of intervals, each lying
entirely within the preceding, or lying within it and having
with it a common end-point; also let the length of A, tend to
zero as m tends to infinity. Then there is one, and only one,
pownt which belongs to all the imtervals, either as an internal
povnt of all, or from and after o definite stage, as a common
end-point of all.

Let the representative interval 4, be given by

Uy :t: v :é bn'
Then we have U =dy=a, ... <b,
and bi=b,=b; ... >aq,.

- Thus the sequence of end-points

PPN ¢ §
has a limit, say a, and «, = « for every positive integer n (§ 17).

| !
= 1 T
a, a, a,

!
} i

B by, b, ,b1

+—
a
Fia. 3.

Also the sequence of end-points

by by Dy ooy o (2)

has a limit, say @, and b,=8 for every positii*e integer =
($17)
Now it is clear that, under the given conditions, 8 cannot be
less than a.
Therefore, for every value of n,
by—cty, > B—a=0.
But Lt (by—ay,)=0.

N>

It follows that a=(3.*

*This result also follows at once from the fact that, if Lt a,=a and Lt b,=j,
then Lt (#), —by)=a . (Cf. §26, Theorem I.)
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Therefore this common limit of the sequences (1) and (2)
satisties the inequalities
a, =a=b, for every positive integer 7,
and thus belongs to all the intervals.

Further, no other point (eg. v) can satlsfy ca,,,__'y — b, for
all values Of n.

Since we would have at the same time
Lt , =y and Lt b,=1y

N—> D N> w0

which is impossible unless v =a.

~19. The Sum of an Infinite Series.
Let . Uy, Wy, Usg, oo
be an infinite sequence, and let the successive swms
S1=ul’
Sy =1, + u,,

....................

‘ Sy=uy+ w2+ ... F 1w,
be formed.

If the sequence ISTTR R A
18 convergent and has the limat S, then S s called the suwm of the
nfinite series Wy A+ Uy .

and this series is suid to be convergent.

It must be carefully noted that what we call the sum of the
infinite series is « limat, the limit of the sum of n terms of

U+ Uy +Ug+ ..
as n tends to infinity. Thus we have no right to assume without
proof that familiar properties of finite sums are necessarily true
for sums such as S.
When Lt S,= -4 or Lt S,= —w, we shall say that the

L~ 00 n—> &L
infinite series is divergent, or diverges to +ow or — =« ,as the case
may be.

If S, does not tend to a limit, or to +w or to —w, then it
oscillates finitely or infinitely according to the definitions of these
terms in §16. In this case we shall say that the series oscillates
Sfinitely or infinitely.*

* Cf. footnote, p. 37.
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The conditions obtained in §15 for the convergence of a
sequence allow us to state the criteria for the convergence of the
series in either of the following ways:

(1) The series converges and has S for its sum, if, any
positive number e having been chosen, aus small as we please,
there is « positive integer v such that

1S =8| <e when n=w.

(11) A mecessary and sufficient condition for the comvergence
of the series 1s that, if any positive number e hus been chosen,
as small as we please, there shall be « positive integer v such
that

|Shap—Su| <6, when n=v, for every positive integer p.*

It is clear that, iof the series converges, Lt w,=0. This is con-
0-—>»w

tained in the second ecriterion. It is a necessary condition for
convergence, but it is not a sufficient condition; e.g. the series

14+14+5+...
is divergent, though Lt w,=0.

If we denote

W41 +un+2+ s +/U’7L+2)7 or Sn‘w'-}) o Sn? by ])Rn

the above necessary and sufficient condition for convergence of
the series may be written

|, 0| <e, when n =y, for every positive integer p.

Again, if the s‘ewles U+ Wy 2+

converges and has S for its swm, the series
Ungy g+ Wy g+

converges and has S—8,, for its sum.

For we have Spyp =8+, 1,

Also keeping n fixed, it 1s clear that
Lt S,.,=-8.
—>w

»

Therefore Lt (,R,)=8-1S,.

p—>L

* As remarked in §15, this condition can be replaced by: 7o the arbitrary
positive number e there must correspond « positive mteger n such that

| Ship = Sn| < € for every positive integer p.
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Thus if we write R, for the sum of the series
Wy T Wiy + -
we have S=8,+R,.
The first criterion for convergence can now be put in the form
|R,| <e when n=v.

R, is usually called the remainder of the series after n terms,
and R, a partial remainder.

20. Series whose Terms are all Positive,.
Let U+ g+ttt
be a series whose terms are ull positive.  The sum of n terms of
this series either tends to a lamat, or it daverges to 4 o .
Since the terms are all positive, the successive sums
S =,
S,=u,+u,,
Sy =, + 1, +usg,

form a monotonic increasing sequence, and the theorem stated
above follows from § 17.

When a series whose terms are all positive 1s convergent, the
series we obtain when we take the terms vn any order we please
18 also convergent and has the sume suwmn.

This change of the order of the terms is to be such that
there will be a one-one correspondence between the terms of the
old series and the new. The term in any assigned place in the
one series is to have a definite place in the other.

f —_—
Let S =14,
J
S, =1, + 10y,
Sy =, + Uy + Us,

----------------------

Then the aggregate (U), which corresponds to the sequence
S R
is bounded and its upper bound S is the sum of the series.
Let (U’) be the corresponding aggregate for the series ob-
tained by taking the terms in any order we please, on the
understanding we have explained above. Every number in
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(U’) is less than S. In addition, if 4 is any number less than
S, there must be a number of (U) greater than A4, and « fortiort
a number of (U’) greater than 4. The aggregate (U’) is thus
bounded on the right, and its upper bound is S. The sum of
the new series is therefore the same as the sum of the old.

It follows that if the series

Uy Uy +Ug ..o,
whose terms are wll positive, diverges, the series we obtain by
changing the order of the terms must also diverge.
The following theorems may be proved at once by the use
of the second condition for convergence (§19):

Lf the series Uy U+ U+ ..

18 convergent and all its terms are positive, the series we obtain
Jrom this, either
(1) by keeping only a part of its terms,
or (2) by wreplacing certain of its terms by others, either
positive or zero, which are respectively equal or in
ferior to them,
or (3) by changing the signs of some of its terms,
are «lso convergent.

21. Absolute and Conditional Convergence. The trigono-
metrical series, whose properties we shall investigate later, belong
to the class of series whose convergence is due to the presence of
both positive and negative terms, in the sense that the series
would diverge if all the terms were taken with the same sign.

A series with positive and negative terms s said to be
absolutely convergent, when the series im which all the terms
are taken with the same sign converges.

In other words, the series

Ui+ Uy +Us+ ...
is absolutely convergent when the series of absolute values
) oy | 4 Jag| + |uy] + ..
18 convergent,
It is obvious that an absolutely convergent series is also con-
vergent in the ordinary sense, since the absolute values of the
partial remainders of the original series cannot be greater than
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those of the second series. There are, however, convergent
series which are not absolutely convergent:

ey. 1—1+% ... 1s convergent.
1+2142...18 divergent.

Series wn which the convergence depends wpon the presence
of both positive and negative terms are sard to be conditionally
convergent.

The reason for this name is that, as we shall now prove, an
absolutely convergent series remains convergent, and has the
same sum, even although we alter the order in which its terms
are taken; while a conditionally convergent series may con-
verge for one arrangement of the terms and diverge for another.
Indeed we shall see that we can make a conditionally convergent
series have any sum we please, or be greater than any number
we care to name, by changing the order of its terms. There is
nothing very extraordinary in this statement. The rearrange-
ment of the terms introduces a new function of m, say S’

instead of the old function S, as the sum of the first 2 terms.
There is no @ prior: reason why this function S, should have
a limit as n tends to infinity, or, if it has a limit, that this

should be the same as the limit of S, .*

22. Absolutely Convergent Series. The sum of an absolutely
convergent series remains the same when the order of the
terms 1s changed.

Let (S) be the given absolutely convergent series; (S’) the
series formed with the positive terms of (S) in the order in
which they appear; (S”) the series formed with the absolute
values of the megative terms of (8), also in the order in which
they appear.

If the number of terms either in (S) or (S”)is limited, the
theorem requires no proof, since we can change the order of
the terms in the finite sum, which includes the terms of (S) up to
the last of the class which is limited in number, without altering
its sum, and we have just seen that when the terms are of the
same sign, as in those which follow, the alteration in the order
in the convergent series does not affect its sum.

*Cf. Osgood, Introdwuction to Infinite Series, p. 44, 1897.
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Let 2 be the sum of the infinite series formed by the absolute
values of the terms of (S).

Let S, be the sum of the tirst n terms of (S):

In this sum let %" terms be positive and n” negative.

Let S,, be the sum of these n’ terms.

Let S, be the sum of the absolute values of these n” terms,
taking in each case these terms in the order in which they
appear in ().

Then S,=8, =8,

Sy < 2,
Sy <X

Now, as m increases S,, S, never diminish. Thus, as =
increases without limit, the successive values of S, S, form two
infinite monotonic sequences such as we have examined in §17,
whose terms do not exceed the fixed number 2. These sequences,
therefore, tend to fixed limits, say, S” and S”.

Thus Lt (S)=8"—8"

nN—>w

Hence the sum of the absolutely convergent series (S) is equal
to the difference between the sums of the two infinite series
formed one with the positive terms in the order im which they
appear, and the other with the absolute valwes of the megative
terms, also wn the order in which they appear in (S).

Now any alteration in the order of the terms of (S) does
not change the values of S”and S”; since we have seen that in
the case of a convergent series whose terms are all positive we do
not alter the sum by rearranging the terms. It follows that
(S) remains convergent and has the same sum when the order of
its terms is changed wn any way we please, provided that a one-
one correspondence exists between the terms of the old series
and the new. |

We add some other results with regard to absolutely con-
vergent series which admit of simple demonstration :

Any series whose terms ave either equal or inferior in
absolute wvalue to the corresponding terms of an  absolwtely
convergent series is also absolutely convergent.

An absolutely convergent series remains absolutely ('oowe?“gent
when we suppress a certain number of its terms.
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1f 1w+, + ..
U+ V4o
wre two absolutely convergent series whose sums wre U and V,

the series (1, 4,) (1, - )+ ..
and (g —v) + (g —vy) ...

are also absolutely convergent and their sums are equal to
U=V respectively.

923, Conditionally Convergent Series. 1Te sum of « condi-
tionally convergent series depends essentially on the ovder of ats
terms.

Let (S) be such a series. The positive and negative terms
must both be infinite in number, since otherwise the series
would converge absolutely.

TFurther, the series formed by the positive terms in the order
in which they occur in (S), and the series formed in the same
way by the negative terms, must both be davergent.

Both could not converge, since in that case our series would
be equal to the difference of two absolutely convergent series,
some of whose terms might be zero, and therefore would be
absolutely convergent (§22). Also (S) could not converge, if
one of these series converged and the other diverged.

We can therefore take sufficient terms from the positive
terms to make their sum exceed any positive number we care
to name. In the same way we can take sufficient terms from
the negative terms to make the sum of their absolute values
exceed any number we care to name.

Let @ be any positive number.

First take positive numbers from (S) in the order in which
they appear, stopping whenever the sum is greater than «.
Then take negative terms from (S§), in the order in which they
appear, stopping whenever the combined sum is less than a.
Then add on as many from the remaining positive terms as
will make the sum exceed «, stopping when the sum first exceeds
«; and then proceed to the negative terms; and so on. |

In this way we form a new series (S') composed of the same
terms as (), in which the sum of = terms is sometimes greater
than « and sometimes less than «.
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Now the series (S) converges. Let its terms be Wy Wy, W,y e
Then, with the usual notation,
l2,] <e, when n=2y.
Let the points B, and A, (Fig. 4) correspond to the sums
obtained in (S), as described above, when groups of positive
terms and v groups of negative terms have been taken.

1
Ay a
Fia. 4. .

o1
<

Then it is clear that («—4,) and (B,—a) are each less than
lw,|, since each of these groups contains at least one term of (S),
and («—4,), (B,—«) are at most equal to the absolute value of
the last term in each group.

Let these 2v groups contain in all /' terms.

The term 2/, in (S’), when #'=)/, is less in absolute value
than e. Thus, if we proceed from A,, the sums S8, lie within
the interval (@ —e¢, ¢ +¢), when n' =V

In other words, |87, —a|<<e, when n' =y,

Therefore Lt 8, =a.

N>
- A similar argument holds for the case of a negative number,
the only difference being that now we begin with the negative
terms of the series.
We have thus established the following theorem :

If a conditionally convergent series s given, we ca
arrange the order of the terms as to make the sum of the
serves converge to any valwe we care to name.
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CHAPTER III

FUNCTIONS OF A SINGLE VARIABLE
LIMITS AND CONTINUITY

24. The Idea of a Function. In Elementary Mathematics,
when we speak of a function of z, we usually mean a real
expression obtained by certain operations, eg. a? /x, logz,
sin“'2z. In some cases, from the nature of the operations, the
range of the variable x is indicated. In the first of the above
examples, the range is unlimited ; in the second, £=0; in the
third @ > 0; and in the last 0 = =1.

In Higher Mathematics the term “ function of ” has a much
more general meaning. Let a and b be any two real nwmbers,
where b>«. If to every value of x im the interval a =x =0

2 corresponds « (real) number 1y, then we say that y 1s «
‘ttion of @ in the interval (a, b), and we write y=f (z).

'‘Sometimes the end-points of the interval are excluded from
the domain of «, which is then given by a <<« <b. In this case
the interval is said to be open at both ends; when both ends
are included (i.e. @ =x =) it is said to be closed. An interval
may be open at one end and closed at the other (e.g. « <<z =0).

Unless otherwise stated, when we speak of an interval in the
rest of this work, we shall refer to an interval closed at both
ends. And when we say that = lies in the interval (a,b),
we mean that a =x =05, but when =z is to lie between « and b,
and not to coincide with either, we shall say that = lies in
the open interval (a, b).*

*In Ch. IL., when a point « lies between « and b, and does not coincide with
either, we have referred to it as within the interval (a, ). This form of words is
convenient, and not likely to give rise to confusion.

C.o I 49 D
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Consider the aggregate formed by the values of a function
f(x), given in an interval («, b). If this aggregate is bounded
(cf. §11), we say that the function f(z) is bounded in the interval.
The numbers M and m, the wpper and lower bounds of the
aggregate (cf. §12), are called the wpper and lower bounds of
the function in the interval. And a function can have an upper
bound and no lower bound, and »ice versc.

The difference (M —m) is called the oscillation of the function
i the interval.

It should be noticed that a function may be determinate
in an interval, and yet not bounded in the interval,

ll.g. let f(0)=0, and f(a;):%} when 2> 0.

Then f(x) has a definite value for every 2 in the interval
0 =z =a, where « 1s any given positive number. But f(z) is
not bounded in this interval, for we can make f(z) exceed any
number we care to name, by letting = approach sufficiently near
to zero.

Further, a bounded function need not attain its upper and
lower bounds ; in other words, M and m need not be members of
the ageregate formed by the values of f(x) in the interval.

fig. let f(0)=0, and f(x)=1—2 when 0 <<a=1.

This function, given in the interval (0, 1), attains its lower
bound zero, but not its upper bound unity.

25. Lt f(x). In the previous chapter we have dealt with the
>
limit when n—w of a sequence u,, u,, Ug, .... In other words,
we have been dealing with a function ¢ (n), where n is a positive
integer, and we have considered the limit of this function as
N—>0 .

We pass now to the function of the real variable z and the
limit of f(x) when x—a. The idea is familiar enough. The
Differential Calculus rests upon it. But for our purpose we
must put the matter on a precise arithmetical footing, and a
definition of what exactly is meant by the limit of a function
of z, as x tends to a definite value, must be given.

Jf(x) 1s sard to have the limit b as x tends to a, when, any
positive number e having been chosen, as small as we please,
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there is « positive nuwmber y such that |f(x)—b] <e, for all
valwes of x for which 0 < |z —a| =y,

In other words |f(z)—b| must be less than ¢ for all points in
the interval («—»n, a+2#) except the point a.

When this condition is satisfied, we employ the notation
Lt f(z) =0, for the phrase the limit of f(x), us @ tends to a, is b,
2>

and we say that f(x) converges to b as = tends to «.
One advantage of this notation, as opposed to Lt f(x)=b,

is that it brings out the fact that we say nothing about
what happens when x is equal to a. In the definition it will be
observed that a statement is made about the behaviour of f(z)
for all values of « such that 0 <|z—a|=# The first of these
inequalities is inserted expressly to exclude z=a.

Sometimes  tends to ¢ from the right hand only (i.e. z > «),
or from the left hand only (i.e. @ << ).

In these cases, instead of 0 <|z—a|=y, we have 0<(z —a) =y
(right hand) and 0 < (¢ —a) =y (left hand), in the definition.

The notation adopted for these right-hand and left-hand limits

18 Lt f(x) and Lt f(m)
a~>a-+0 >~
The assertion that Lt f(oc)-_- b thus includes
o—>0
Lt flx)= Lt f(m)—b
x>0 x>0t —

It is convenient to use f(a+0) for Lt f(oc) when this limit

e—>a+40

exists, and similarly f(«—0) for Lt f(x) when this limit exists.

> -0

When f(x) has not a limit as z—«, it may happen that it

diverges to 4+, or to — o, in the sense in which these terms

were used in §16. Or, more precisely, it may happen that if

any positive number A, however large, is chosen, there corre-
sponds to it a positive nwmber y such that

In this case we say that 1t f(z)= 4.

>
Again, it may happen that if any megative number — A is
chosen, however large A may be, there corresponds to it a positive

nuwmber y such that flry <<—A4, when 0 <|x—a| =2,
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In this case we say that 1Lt f(x)= —oc.
r>

The modifications when f(«+0)= %o are obvious.
When Lt f(z) does not exist, and when f(x) does not diverge

to +w,or to —w, as z—q, it is said to oscillate as x—>a. It
oscillates finitely if f(x) is bounded in some neighbourhood of
that point.* It oscillates infinitely if there is no neighbourhcod
of ¢ in which f(x) is bounded. (Cf. §16.)

The modifications to be made in these definitions when z—s«
only from the right, or only from the left, are obvious.

26. Some General Theorems on Limits. I. The Limit of a Sum.
If 1t f(x)=a and Lt g(z)=p, then Lt [ f(x)+g(x)]=a+ B4

> x—=>a r—=>a

Let the positive number ¢ be chosen, as small as we please.
Then to ¢/2 there correspond the positive numbers y,, 5, such that

x—a| =,

(@) —a < —26—, when 0 <

|g(x)— 3] <g, when 0 <|x—a|=7,.

Thus, if 5 is not greater than y, or #,,

f@)+9@)—a=B =] (@) —al +[g)—B],

< g + %, when 0 <|z—a|=y,
< & when 0 <<|z—a|=y.
Therefore Lt [ f(z)+g(x)]=a+B.

This result can be extended to the sum of any number of

functions. The Limit of « Swm is equal to the Sum of the
Limats.

*f(x) 1s said to satisfy a certain condition in the neighbourhood of x=a
when there is a positive number /& such that the condition is satisfied when

Sometimes the neighbourhood is meant to include the point w=a itself. In
this case it is defined by |x - a|=h.

The corresponding theorem for functions of the positive integer n, as n—so
o b
is proved in the same way, and is useful in the argument of certain sections of
the previous chapter.
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I1. The Limit of a Product. /f Lt f(z)=a and Lt g(x)=4,

then Lt [f(@)g(@)]=aB. | o
Let f(@)=a+¢(x) and g(x)=B+ ()
Then Lt ¢p(x)=0 and Lt gb(w) =0(.

T—>

Ao f(e) o) = i+ Bp@) + ap(e) - $(0) (@)
From Theorem L our result follows if Lt [¢(2)y (z)]=0.

x>
Since ¢(x) tends to zero as x—¢ and  (2) tends to zero as
x—>, a proof of this might appear unnecessary. But if a formal
proof is required, it could run as follows:
Given the arbitrary position number ¢, we have, as in I,

|p (2)] < Se, when 0 <|z—a|=y
()] < Se, when 0 < |z —a|=y,.
Thus, if 5 1s not greater than », or »,,
|p(x) Yr(x)] <e, when 0 < |z
Therefore I:)t [p(2) Y (2)]=0.

This result can be extended to any number of functions. The
Lamat of a Product is equal to the Product of the Limits.

III. The Limit of a Quotient.

() If It f@)=a=0, then Lt f(@) =
This follows easily on puttlng f(@)=¢(@)+a and examining
the expression 1 1
AT e
3 “_7 o Y — Q= , ]L(@}JU
(i1) If xI;taj(m)—-a, cmdwnL:b g(@)=B=0, then J;I;tw [g(m) 5

This follows from IL and IIL (i).
This result can obviously be generalised as above.

1V. The Limit of a Function of a Function. Lt f[¢X)].

T—>

Let Tt p(a)=b and Lt f(0)=f(b).
Then Lt fld@)]=f] Lt $(a)].

We are given that Lt f(u)=7(b).
u—>b
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Therefore to the arbitrary positive number € there corresponds a positive
number 7, such that

| flp(@)]—F(D)| < e when |Pp(2)—b]| =21 cveeveinininnnnnnn (1)
Also we are given that Lt ¢(z)=b.

Therefore to this positive number 7; there corresponds a positive number
7 such that |p(@)—b]l < ny, when 0 < | —a|=n. .ccocoveviniiinnis (2)

Combining (1) and (2), to the arbitrary positive number e there corre-
sponds a positive number 7 such that

| /T(@)]~F(B)| < & when 0< |o—a|=n.
Thus Lt Fl$=fB)=/T Lt ()]

EXAMPLES.

1. If »n is a positive integer, Lt 2"=0.
x—>0

2. If n is a negative integer, Lit a"=+w ; and Lt 2= -« or +w
) )
. . x—>+40 x>0
according as 7 is odd or even.
[If =0, then 2"=1 and Lt 2"=1.]

x—>0

3. Lt (aqz"+a " +.. .+ a1+ a,)=a,.

x—>0

4 Tt (aqx’"‘ + @™ L +a,n> y,

bo;'l,‘n—l'— blxn—l + S Z)‘)L—-1x+ bn _ZTn, ullless bn:‘:O_

x—>0

5. Lt a"=«", if n is any positive or negative integer.

6. If Px)=a@™+ax™ + ...+ dpya1l + U,
then Lt P(x)=P(a).
7. Let P(@)=a@™+a2™ o ey @ iy,
and  Q@)=b"+ b L+ b+ Dy,
P(x)y Pa) .
Theun Lt =" if Q(a)+0.
RO ORI
8. If Lt f(x) exists, it is the same as Lt f(z+«).
T—ra —>0
9. If f@)< g@) for a-h<e<a+h,
and Lt f(@)=a, Lt g(x)=p,
then a=p.
10. If Lt f(2)=0, then Lt |f(2)] =0, and conversely.

1. It Lt f(2)=L=0, then Lt |f(2)|=|lI

x—>ra

The converse does not hold.
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12. Let 7(x) be defined as follows :
fla)=wsinl/z, when o=0)
J(0)= 0 '
Then Lt f(x)=f(a) for all values of «.

T—>

27. Lt f(x). A precise definition of the meaning of the term
L—D

“the limit of f(x) when « tends to 4+ (or to —w)” is also
needed. f

f(@) is said to have the limat b as x tends to +o0, if, any
positive number e having been chosen, as small as we please,
there is a positive number X such that

| f(x)=b] <e, when =X

When this condition is satisfied, we write

Lt f(z)=».
L=> 40
A similar notation, Lt f(x)=0,

is used when f(x) has the limit b as 2 tends to —oo, and the
precise definition of the term can be obtained by substituting
“a negative number —X ” and “2=—X " in the corresponding
places in the above.

When it is clear that only positive values of & are in question the notation
Lt f(x)is used instead of Lt f().

L0 Xx—>+w

From the definition of the limit of f() as @ tends to + w0, it follows that
Lt f(a)=0
x—>4->
carries with it Lt f<]—> =0.
x->40" \W
And, conversely, if Lt f(x)=0,
x—>-+0
71\ .
then - Lt J(—)zb.
T—>+w v
Similarly we have Lt f(v)= Lt f (1>
T x>0 X
The modifications in the above definitions when
(i) Lt f(#)=+w or -,
L=}
and (i) Lt fa)=+w or -—ow,

will be obvious, on referring to § 25.
And oscillation, finite or infinite, as # tends to + o or to —w, is treate
as before.
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28. A necessary and sufficient condition for the existence
of a limit to f(x) as x tends to a. The general principle of
convergence.*

A mnecessary and sufficient condition for the existence of «
Limit to f(x) as x tends to a, is that, when any positive nuwmber
¢ has been chosen, as small as we please, there shall be a positive
number y such that |f(x")—f(@)| <e for all values of «, ”
Jor which 0 < |a" —a| <|2'—a| =3

(1) The condition s necessary.

Let Lt f(x)=0.

r—>a
Let € be a positive number, as small as we please,

Then to ¢/2 there corresponds a positive number » such that
)f(m)—b|<§~, when 0 < x—a|=y.

Now let «’, 2" be ahy two values of @ satisfying
0<la'—a| <] —u|=

Then |f(@)—f@) | =] f(@")=b +]f(a) D]
< 5 o+ 5
< €.

(i1) The condation is sufficient.
Let €15, €95 €3, -0

be a sequence of positive numbers such that

€1 < €6, and Lt e,=0.

N—>P0
Let Ny, Mgy Mgy ee
be corresponding positive numbers such that
@) =f@)] < eny when 0< [af'—a] < [/ =a| Zn) )
(n=1,2,3,...).
Then, since ¢,1, < e,, We can obviously assume that »,=», ;.
Now take ¢, and the corresponding #,.
In the inequalities (1) put @' =a+y, and 2" =w.
Then we have

0 < |f(z)—fla+n)| <e, when 0 <|z—a| <n,.

* See footnote, p. 34.
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Therefore

Jlatn) —e, < f(w) < fa+mn)+e, when 0 <|z—af <. (2)
In Fig. 5 f(z) lies within the interval 4, of length 2¢,, with
centre at f(a+y,), when 0 <|z—a| <u,.

A,
/ A \
Fatm)-e Farn) ) Flati e,
F1a. b.

Now take e, and the corresponding #,, remembering that
My =y

We have, as above,

fla4n,)—e, < f(x) < f(a4n,)+e, When 0 < |x—a| <n, (3)

Since #,=3,, the interval for « in (3) cannot extend beyond
the interval for  in (2), and f(a+,) 1s in the open interval 4.

Therefore, in Fig. 6, f(x) now lies within the interval A4,,
which lies entirely within 4, or lies within it and has with it a
common end-point. An overlapping part of

{flatn)—e, flatn)+e}
could be cut off, in virtue of (2).

A,
- A
/ / A—— \
f(al’i‘”‘)'ﬁ f(“iﬂz)'ez f(a41-772)f(a+?7,)f(a+772)+62 fﬁz+?7")+€’
: Fic. 6.

In this way we obtain a series of intervals
4,, 4,, 4., ...,
each lying entirely within the preceding, or lying within it and
having with it a common end-point; and, since the length of

A, = 2¢,, we have Lt 4,=0, for we are given that Lt ¢,=0.
N—>w0 N—>0

If we denote the end-points of these intervals by a,, a,, g, ...
and 8;, B,, B, ..., where 8, > a,, then we know from 18 that

Lt a,= 1t B,.

N—>w0 N—>n0
Denote this common limit by a.
We shall now show that « is the limit of f(z) as z—«.
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We can choose ¢, in the sequence e, €,, €, ... 80 that 2¢, <e,
where ¢ is any given positive number.
Then we have, as above in (2) and (3),

an < f(2) < By, when 0< | —a] <.

But a = a =P8,
Therefore |f(z)—ua| < Br— ay
< 2,
< when 0 < |z—a| <y,.
It follows that It f(z)=a.
>

As a matter of fact, we have not obtained
| f(#)—a| <€ when 0<
in the above, but when 0 < | —a| < 1,,.

However, we need only take % smaller than this N, and we obtain the
inequalities used in our definition of a limit.

v =l =y,

29. In the previous section we have supposed that @ tends to
@ from both sides. The slight moditication in the condition for
convergence when it tends to « from one side only can easily
be made.

Similarly, « necessary and sufficient condition for the existence
of @ limil to f(x) as @ tends to +w, is that, vf the positive
nwmber e has been chosen, as small as we please, there shall be
positive nwmber X such that

| f(@")—f(a)| <e, when o' >a' = X.

In the case of Lt f(x), we have,in the same way, the condition
T—> -0

|f(a)—f(x)] <e when "< 2’ = — X.

The conditions for the existence of a limit to £(z) as @ tends
to 4o or to —o can, of course, be deduced from those for the
existence of a limit as « tends to +0 or to — 0.

Actually the argument given in the preceding section is simpler
when we deal with 4+« or — o * and the case when the variable
tends to zero from the right or left can be deduced from these

two, by substituting a:=}b; when it tends to «, we must sub-

] 1
stitute x=a + "

* Cf. Osgood, Lehrbuch der Funktionentheorie, Bd. 1., p- 27, Leipzig, 1907.
The generul principle of convergence of § 15 can also be established in this way.
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30. Continuous Functions. The function f(x) is said to be
continuous when =, if f(x) has a limit as = tends to @, from
either side, and each of these limits is equal to f(x,).

Thus f(x) s continuous when x=uw,, if, to the arbitrary posi-
trwe number e, there corresponds a positive number y such that

|f(2)=f(z)| < e when |w—a)]=n.

When f(x) is defined in an interval («, b), we shall say that it
18 continuous 1n the interval (a, b), if it is continuous for every
valwe of « between a and b (o <ax <b), and if f(a+0) exists
and 8 equal to f(a), and f(b—0) exists and is equal to f(b).

In such cases it is convenient to make a slight change in our
definition of continuity at a point, and to say that f(x) is con-
tinuous at the end-points @ and b when these conditions are
satisfied.

It follows from the definition of continuity that the sum or
product of any number of functions, which are continuous at a
point, is also continuous at that point. The same holds for the
quotient of two functions, continuous at a point, unless the
denominator vanishes at that point (cf. § 26). A continuous
function of a continuous function is also a continuous function
(cf. § 26 (IV.)).

The polynomial

Ple)y=a@ "+ aa " +... +a,_xc+a,
is continuous for all values of a.

The rational function
B(x)=P(x)/Q(x)
1s continuous in any interval which does not include values
of @ making the polynomial @Q(z) zero.
The functions sinz, cosz, tanz, etc. and the corresponding
functions sin~'z, cos~'w, tan~'z, efc. are continuous except, in
certain cases, at particular points.

e¢* 18 continuous everywhere; log ¢ is continuous for the in-
terval « > 0. '

31. Properties of Continuous Functions.* We shall now
prove several important theorems on continuous functions, to

* This section follows closely the treatment given by Goursat (loc. cit.), T. I.
(3¢éd.), §8.
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which reference will frequently be made later. It will be seen
that in these proofs we rely only on the definition of continuity
and the results obtained in the previous pages.

TaroreM 1. Let f(x) be continwous in the interval (a, b)¥,
and let the positive number e be chosen, as small as we please.
Then the imterval (a, b) can always be broken wp into a fiwite
number of partial intervals, such that |f(x")—f(x")] <e when
x" and &" are any two points in the same partial interval.

Let us suppose that this is not true. Then let c=(a+b)/2.
At least one of the intervals (a, ¢), (¢, b) must be such that it
is impossible to break it up into a finite number of partial inter-
vals which satisfy the condition named in the theorem. Denote
by (a,, b;) this new interval, which is half of (@, b). Operating
on («¢,, b)) in the same way as we have done with (a, b), and
then proceeding as before, we obtain an infinite set of intervals
such as we have met in the theorem of §18. The sequence of
end-points «, @, ¢,, ... converges, and the sequence of end-
points b, b, by, ... also converges, the limit of each being the
same, say a. Also each of the intervals («,, b,) has the property
we have ascribed to the original interval («, b). It is im-
possible to break it up into a finite number of partial intervals
which satisty the condition named in the theorem.

Let us suppose that « does not coincide with « or b. Since the
function f(x) is continuous when & =a, we know that there is a
positive number 5 such that | f(x)—f(a)] < e/2 when |x—a|=1.
Let us choose 2 so large that (b, —a,) is less than 5. Then the
interval (a,, b,) is contained entirely within (a —#, a+7), for we
know that a,=a=b,. Therefore, if o and «” are any two
points in the interval (a,, b,), it follows from the above that

€

@) =f@)] <& and | f@)—f@)] <5

But [ /(@)= f") | = [ /(@)= a) [+ /(") = fla) |
Thus we have | fa)—fx")]| < &

and our hypothesis leads to a contradiction.

*In these theorems the continuity of f(x) is supposed given in the closed
interval (¢ =« =10), as explained in § 30.
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There remains the possibility that « might coincide with either
« or b. The slight modification required in the above argument
is obvious.

Hence the assumption that the theorem is untrue leads in
every case to a contradiction, and its truth is established.

Cororrany 1. Leta,z, z,, ... x b be a mode of subdivision

n-1’
of (a, ) into partial intervals satisfying the conditions of
Theorem 1I.

Then

@) [ =[fe) [+]f(@)—f(a)]
<[ f(e) [+ e,  when 0 <(z—a) =(x,—a).
Therefore

In the same way

A |2 1f@) 1+ ) —F@)]
<|fle) |+ € when 0 < (z—a,) = (x,—z,)
<|f(a) |+ 2e, when 0 < (x—a)) = (2, — o).
Therefore

)| <|f(@) [+  2e

Proceeding in the same way for each successive partial interval,
we obtain from the ™ interval

[f@)| <[ f(a)|+ne, when 0 <(z—a, ) =(D—2,)

Thus we see that in the whole interval (a, )

| f) | <| fla)[+mne.

It follows that a function which is continwons 1 « given
interval is hounded in that interval.

CoroLLARY II. Let us suppose the interval (a, b) divided up
into n partial intervals (a, @,), (2, @,), ... (x,_4, D), such that
| f(2)—f(x")| < e/2 for any two points in the same partial inter-
val. Let 5 be a positive number smaller than the least of the
numbers (¢, —a), (€, —x,), ... (b—wx,_,). Now take any two points

o’ and x” in the interval («, b), such that |@'—a"| =». If these
two points belong to the same partial interval, we have

/@)= f(a")| < ef2.
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On the other hand, if they do not belong to the same partial
interval, they must lie in two consecutive partial intervals. In
this case it is clear that |f(2)—f(z")] <e/2+¢/2=¢.

Hence, the positive number e having been chosen, as small «s
we please, there is a positive number y such that | f(x") —f(2")| <,
when o, 2" are any two valwes of « in the interval (a, b) for
whach (o' —a"| =4,

We started with the assumption that f(x) was continuous in
(a, b). It follows from this assumption that if x/is any point in
this interval, and ¢ any arbitrary positive number, then there is
a positive number » such that

f@)=f@)| < e, when | —o| =,

To begin with, we have no justification for supposing that the
same # could do for all values of @ in the interval. But the
theorem proved in this corollary establishes that this is the case.
This result is usually expressed by saying that f(x) is uniformly
continuous in the interval (a, b).

We have thus shown that a function which is continuwous in
an wnterval is also uniformly continwous in the interval.

TurorEM II.  If f(a) and f(b) are wnequal and f(x) is con-
tinwous wn the wnterval (a, b), as « passes from « to b, f(x) takes
at least once every value between f(a) and f(D).

First, let, us suppose that f(a) and f(b) have different signs,
e.g. f(a)<<0 and f(b) >0. We shall show that for at least one
value of = between a and b, f(x)=0.

From the continuity of f(z), we see that it is negative in the
neighbourhood of « and positive in the neighbourhood of b.
Consider the set of values of @ between ¢ and O which make
F(z) positive. Let A be the lower bound of this aggregate.
Then « <A <b. From the definition of the lower bound
f(z) is negative or zero in a« =z <X. But Lt f(x) exists and

2—>A-0
is equal to f(\). Therefore f(A) is also negative or zero. But
f(\) cannot be negative. For if f(A)= —m, m being a positive
number, then there is a positive number 5 such that

| /(@)= /)| <m, when [z—A[=7,
since f(x) is continuous when #=X. The function f(x) would
then be negative for the values of @ in (a, b) between A\ and A+
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and A would not be the lower bound of the above agglegate'
We must therefore have f(A)=0.

Now let N be any number between f(a) and f(b), which nmy
be of the same or different signs. The continuous function
¢(r)=f(z)— N has opposite signs when 2=« and z=0. By the
case we have just discussed, ¢(z) vanishes for at least one value
of @ between « and ), 7.e. in the open interval (a, b).

Thus our theorem is established.

Again, if f(x) is continuous in («a, b), we know from Corollary I.
above that it is bounded in that interval. In the next theorem
we show that it attains these bounds.

THEOREM I1I. If f(x) vs continwous wn the interval (a, b), and
M, m are its wpper and lower bounds, then f(x) takes the valwe
M and the value m at least once wn the interval.

We shall show first that f(x)=/ at least once in the interval.

Let ¢c=(a+0)/2; the upper bound of f(x) is equal to A/, for at
least one of the intervals (¢, ¢), (¢, b). Replacing («, b) by this
interval, we bisect it, and proceed as before. In this way, as in
Theorem I., we obtain an infinite set of intervals (a, ), (a,, b)),
(tty, by), ... tending to zero in the limit, each lying entirely
within the preceding, or lying within it and having with it a
common end-point, the upper bound of f(«) in each being .

Let A be the common limit of the sequences «, a,, a,, ... and
b, b, by, .... We shall show that f(A\)= M.

For suppose f(\)=M—1., where L >0. Since f(x) is continuous
at @ =N\, there is a positive number » such that

| f(x) f(>\)|<2, when |z —\|=7.

Thus f(z) < M———Z—), when |z—\|=y.

Now take n so large that (b,—«,) will be less than 5. The
interval («,, b,) will be contained wholly within (A —y, X4 y).
The upper bound of f(x) in the interval (a,, b,) would then be
different from M, contrary to our hypothesis.

Combining this theorem with the precedmg we obtain the
following additional result:

TuroreM IV. If f(x) s continwous in the interval (a, b),
and M, m are its wpper and lower bownds, then it takes at least
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once 1w, this interval the valwes M, m, and cvery value between
M and m.

Also, since the oscillation of a function in an interval was
defined as ‘the difference between its upper and lower bounds
(cf. §24), and since the function attains its bounds at least once
in the interval, we can state Theorem I. afresh as follows:

If f(x) is continwows im the interval (a, D), then we can divide
(«t, b) mnto « finite number of partial intervals

(@, ), (g, Zg)y «on (®yq, D),

wm each of whicl the oscillation of f(@) 18 less than any given
positive number.

And a similar change can be made in the statement of the
property known as uniform continuity.

32. Continuity in an Infinite Interval. Some of the results of the last
section can be extended to the case when f(z) is continuous in w = «, where

@ is some definite positive number, and Lt f(2) exists.
]

Let u=a/z. When z& «a, we have 0 <u =1.
With the values of » in 0 < w =1, associate the values of f(«) at the corre-
sponding points in # = «, and to ©=0 assign Lt f(x).

X—>0

‘We thus obtain a function of u, which is continuous in the closed interva
(0, 1).

Therefore it is bounded in this interval, and attains its bounds X
Also it takes at least once every value between 4/ and m, as u passes over ..
interval (0, 1). '

Thus we may say that f(x) is bounded in the range * given by # =« and
the new “point” #=q0, at which f(2) is given the value Lt f(x).

X—>0

Also f(x) takes at least once in this range its upper and lower bounds
and every value between these bounds.

D)

a

For example, the function —s— is continuous in (0, ). It does n
, a?+ z?

attain its upper bound—unity-—when x>0, but it takes this value when
x=w, as defined above.

33. Discontinuous Functions. When f(z) is defined for
z, and the neighbourhood of =z, (eg. 0<|z—=zo|=h), and
f(xy+0)=f(2,—0)=f(z,), then f(z) is continuous at .

On the other hand, when f(z) is defined for the neighbourhood
of z,, and it may be also for z,, while f(z) is not continuous at

*It is convenient to speak of this range as the interval (@, o), and to write

Sf(ee) for Lt f(x)

A=
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Ty, 1t 1s natural to say that f(z) is discontinuous ab x,, and to
call z, a point of discontinwity of f(x).
Points of discontinuity may be classified as follows:

L f(zy+0) and f(x,—0) may exist and be equal. If their
common value is different from f(=,), or if f(z)is not defined
for z,, then we have a point of discontinuity there.

Ex. Jx)=(x—a2)sin 1 /(z — ), when x=ux,.

Here f(#,+0)=/(2,—0)=0, and if we give f(z,) any value other than
zero, or if we leave f(«,) undefined, 2, is a point of discontinuity of f(x).

IL. f(xy+0) and f(x,—0) may exist and be unequal. Then
is a point of discontinuity of f(z), whether f(x,) is defined or not.

1
EX. f((l}) :m, when & z g

Here Sf(we+0)=0 and flz,—0)=1.

In both these cases f(z) is said to have an ordinary or simple
discontinuity at z,. And the same term is applied when the
point z, is an end-point of the interval in which f(x)is given,

and f(z,+0), or f(z,—0), exists and is different from f(z,), if f(z)
is defined for x,. '

"II. f(z) may have the limit +w, or — w0, as x—>x, on either

% and it may oscillate on one side or the other. Take in this

wetion the cases in which there is no oscillation. These may be
arranged as follows:

(1) flag+0) =f(2e—0)= 4 (or —o0).

Ex. fl2)=1/(z —x,)3, when z=a,.
(1) f(wg+0)=+ o (or —w ) and f(x,—0)=—» (or +=x).
Ex. f(x)=1/(z— 2,), when 2= z,.

(1) f(wy+0)=+ o (or —cw )} or f(xy—0)=+w (or —w )}
f(xo—0) exists | f(@y+0) exists '

Ex. f(@)=1/(x—-x,), when x> z,)|

flo)y=a—xy,  when o=unx,)

In these cases we say that the point z, is an nfinity of f(x),
and the same term is used when 2, is an end-point of the interval
in which f(x) is given, and f(z,+0), or f(z,—0), is +x or —w.

It is usual to say that f(x) becomes infinite at a point z, of
the kind given in (i), and that f(z,)= +w (or —w ). But this

E

C. I
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must be regarded as simply a short way of expressing the fact
that f(z) diverges to + o (or to —o0 ) as x—w,.

It will be noticed that tanz has an infinity at I=, but that
tan 17 is not defined. On the other hand,

tan (J7—0)=40o and tan(}v—0)=—w.

IV. When f(z) oscillates at z, on one side or the other, z, is
said to be a point of oscillatory discontinuity. 'The oscillation
is finite when f(z) is bounded in some neighbourhood of %,; it is
infinite when there is no neighbourhood of z, in which f(z) is
bounded (cf. § 25).

Ex. (i) f(z)=sin1/(z — z,), when x = z,.
(i1) f(#)=1/(x — @) sin 1/(x — 2,), When x=ux,.

In both these examples , is a point of oscillatory disecon-
tinuity. The first oscillates finitely at z,, the second oscillates
infinitely. The same remark would apply if the function had
been given only for one side of .

The infinities defined in III. and the points at which f(x)
oscillates infinitely are said to be points of infinite discontinwily.

34. Monotonic Functions. The function f(x), given in the
wnterval (a, b), is said to be monotonic in that interval if

either (1) f(@)=f(a”), when a=a' <az"=Db;
or (1) f(&)=f(2"), when a=a' <az"=Db.

In the first case, the function never decreases as x increases
and 1t is said to be monotonic increasing ; in the second case, it
never increases as « increases, and it is said to be monotonic
decreasing.®

The monotonic character of the function may fail at the end-
points of the interval, and in this case it is said to be monotonic
mn the open interval.

The properties of monotonic functions are very similar to those
of monotonic sequences, treated in §17, and they may be estab-
lished in precisely the same way :

(i) If f(x) is monotonic increasing when x— X, and f(x) s
less than some fixed number A when =X, then Lt f(x) exists
and s less than or equal to 4. o

* The footnote, p. 39, also applies here.
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(ii) If f(z) s monotonic increusing when x= X, and f(x) is
greater than some fized number A when ¢ =X, then 1t f(x)
exists and is greater than or equal to A. v

(iii) If f(z) s monotonic increasing im an open interval
(a, b), and f(z) is greater than some fixed number 4. wn that
open anterval, then f(a+0) exists and is greater than or equal
to A.

(iv) If f(x) is monotonic increasing in an open interval
(a, b), and f(x) is less than some fixzed nuwmber A in that open
interval, then f(b—0) exists and s less than or equal to A.

These results can be readily adapted to the case of monotonic
decreasing functions, and it follows at once from (iii) and (iv)
that if f(z) is bounded and monotonic in an open interval, it
can only have ordinary discontinwities n that interval, or at
its ends..

It may be worth observing that if f(«) is monotonic in a closed
interval, the same result follows, but that if we are only given
that it is monotonic in an open interval, and not told that it
is bounded, the function may have an infinity at either end.

E.g. f(x)=1/z is monotonic in the open interval (0, 1), but
not bounded.

At first one might be inclined to think that a function which
is bounded and monotonic in an interval can have only a finite
number of points of discontinuity in that interval.

The following example shows that this is not the case:

Let f(x)=1, when % <ax=1;

ooy 1 1 _1.
let ](m),—é, when % <w:§ ;
and, in general,

1 1 1
let f(x)= g when Gu <ax= o
(n being any positive integer).
Also let f(0)=0.
Then f(«) is monotonic in the interval (0, 1),
This function has an infinite number of points of discontinuity,

namely at oc=2l1i (n being any positive integer).
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Obviously there can only be a finite number of points of dis-
continuity at which the jump would be greater than or equal
to k, where & is any fixed positive number, if the function is
monotonic (and bounded) in an interval.

35. Inverse Functions. Let the function f(x), defined in the interval
(ct, b), be continuous and monotonic in the stricter sense* in (a, D).

For example, let y=/#(«) be continuous and continually increase from A
to B as & passes from « to b.

Then to every value of y in (4, B) there corresponds one and only one
value of # in (@, b). [§ 31, Theorem I1.]

This value of # is a function of y—say ¢(z), which is itself continually
increasing in the interval (4, B).

v
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The function ¢(y) is called the vnverse of the function f(z).

We shall now show that ¢(y) @s « continuous function of # in the interval
in which it is defined.

For let 7, be any number between 4 and B, and =z, the corresponding
value of #. Also let € be an arbitrary positive number such that x,—e and
2o+ ¢ lie in (a, b) (Fig. 7).

Let 5 —; and y,+7; be the corresponding values of .

Then, if the positive number 7 is less than the smaller of %, and 1), it is

clear that || < ¢, when |y—yo| = .

Therefore D7) — P (o)l < € when |y—y|=.
Thus ¢ (y) is continuous at z,.
A similar proof applies to the end-points 4 and B, and it is obvious that

the same argument applies to a function which is monotonic in the stricter
sense and decreasing.

* Cf footnote, p. 39.
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The functions sin~la, cos~lx, ete., thus arise as the inverses of the functions
sin 2 and cos #, where 0 =& = £, and so on.

In the first place these appear as functions of g, namely sin~ly, where
0=y=1, cos™ly, where 0 =y =1, etc. The symbol y is then replaced by
the usual symbol # for the independent variable.

In the same way log # appears as the inverse of the function e

There is a simple rule for obtaining the graph of the inverse function
7~1(«) when the graph of f()is known. f~1(x) is the vmage of f(x) in the
line y=ax. The proof of this may be left to the reader.

The following theorem may be compared with that of §26 (IV.):

Let f(w) be a continuous jfunction, monotonic in the stricter sense, und let
Lt [l (2)]=f(0).
T—>a

Then Lt ¢(x) exists and is equal to b.

x>
A strict proof of this result may be obtained, relying on the property
proved above, that the inverse of the function f(u) is a continuous function.
The theorem is almost intuitive, if we are permitted to use the graph
of f(uw). The reader is familiar with its application in finding certain
limiting values, where logarithms are taken. In these cases it is shown
that Lt log w=1log b, and it is inferred that Lt «=0.*

36. Let the bounded function f(#), given in the interval («, b), be such that
this interval can be divided up into a finite number of open partial
intervals, in each of which P
f(2) is monotonic.

Suppose that the points

L1y Xgy ... &p—y divide this in- /f\
terval intotheopen intervals : ‘

(a, 21), (%, Zg)y «.. (Tu1, D),
in which f(«) is monotonic.
Then we know that f(z) can
only have ordinary discon-
tinuities, which can occur at
the points a, 2,, #g, ... ¥p_1, b,
and also at any number of
points within the partial
ntervals. (§34.) 0
I. Let us take first the
case where f(r) is con-
tinuous at @, %y, ... &,-1, b, and alternately monotonic increasing and
decreasing. To make matters clearer, we shall assume that there are
only three of these points of section, namely 2, ,, 25, f(z) being monotonic
inereasing in the first interval (a, ), decreasing in the second, (wy, ),
and so on (Iig. 8).

X

%_____..____.._____._

i

t

i

|
a X, X, X

* Cf Hobson, Plane Trigonometry, (3rd Ed.), p. 130.
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It is obvious that the intervals may in this case be regarded as closed,
the monotonic character of f(x) extending to the ends of each.
Consider the functions /'(z), G'(») given by the following scheme :

F(x) ()

o ; v
S () Sy = f(x) 2 ==
S @) = [ (o) + /(@) | f(wy)—[(wy) Wy S0 =2y
J@y) =g +f(wg) | f(w) = f@y) + /() = f(@) | w=2=0

It is clear that F(r) and G(2) are monotonic tncreasing in the closed
interval («, b), and that f(z)=F(2)— G(z) in (a, b).

If f(x)is decreasing in the first partial interval, we start with

F)=f(a), G@)=fa)~f(x), when a=s=a,,
and proceed as before, 7.e. we begin with the second line of the above
diagram, and substitute « for x,, etc.

Also, since the function f(2) is bounded in (a, b), by adding some number
to both F'(z) and G/(z), we can make both these functions positive if, in the
original discussion, one or both were negative.

It is clear that the process outlined above apphes equally well to n partial
intervals.

We have thus shown that when the bounded function f(x), given in the
wnterval (a, b), ts such that this interval can be divided up into a finite number
of partial intervals, f(x) being alternately monotonic increasing and mono-
tonic decreasing in these intervals, and continuous at thevr ends, then we can

express [(x) as the difference
Y ;\ of two (bounded) functions,

which are positive and mono-

/ : :/\ tonec vnereasing i the inter-
1 ' 1 !
{

! val (a, b).
: I1. There remains the case
: when some or all of the
! points a, 2y, %2, ... £,_1, b
1 are points of discontinuity
| of f(z), and the proviso that
: the function is alternately
- x X, % 2 monoto.nic .increasing and
Tic. o, decreasing is dropped.
We can obtain from f(x)
a new function ¢(r), with the same monotonic properties as f(2) in the open
partial intervals (a, o), (z, @), ... (%,-1, b), but continuous at their ends.
The process is obvious from Fig. 9. We need only keep the first part of
the curve fixed, move the second up or down till its end-point (2, f(x;+0))

X
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coincides with (#,, f(2, —0)), then proceed to the third curve and move it up
or down to the new position of the second, and so on.
If the values of f(x) at «, 2y, 24, ... 2,—1, b are not the same as

Aa+0), fley+0) or fz,~0), etc,
we must treat these points separately.

In this way, but arithmetically,* we obtain the function ¢(z) defined as
follows : |

In o =Zx <2, $@)=F(x), supposing for clearness f(a)=f(a+0).

At @) —f) .
In » <2<, P@)=Ff(2)+0,+a,.
At Zy 5 P@)=fw)+ o+ agtas.

And so on,
1y Oy, O, ... being definite numbers depending on f(xy +0), f(x), ete.

We can now apply the theorem proved above to the function ¢(z)and
wite b(2)=(2)— ¥ (2) in (, D),
®(x) and W (2) being positive and monotonic increasing in this interval.

It follows that :

In o =<, fl2)=P(z) - ¥ ().

At a, AD=P@)-W(@)-a,.

In 2z <o <, J(@)=P(2)—-F(v) - o, — a,.

And so.on.

If any of the terms a;, a,, ... are negative we put them with & (x):
the positive terms we leave with W (). Thus finally we obtain, as before,

that J(@)=F(z)=-G(z) in (a,b),
where I'(x) and G/(z) are positive and monotonic increasing in this interval.
We have thus established the important theorem :

If the bounded function f(x), giwen in the tnterval (a, b), is such that this
wnterval can be divided wp into a finite number of open partial intervals,
i each of which f(x) is monotonic, then we can express f(x) as the difference of
two (bounded) functions, which are positive and monotonic increasing in the
interval (a, b).

Also it will be seen from the above discussion that the discontinuities of
F(x) and G'(2), which can, of course, only be ordinary discontinuities, can
occur only at the points where f(2) is discontinuous.

It should, perhaps, also be added that, while the monotonic properties
ascribed to f(x) allow it to have only ordinary discontinuities, the number
of points of discontinuity may be infinite (§ 34).

37. Functions of Several Variables. So far we have dealt
only with functions of a single variable. If to every value of «
in the interval « =@ =0 there corresponds a number y, then we

* It will be noticed that in the proof the curves and diagrams are used simply
as illustrations.
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have said that ¥ is a function of « in the interval («, b), and we
have written y = f(x).
The extension to funetions of two variables is immediate :—
To every pair of values of x and y, such that |

a=r=d, b=Zy=U,

let there correspond a number z. Then z is said to be a function
of @ and y in this domain, and we write z=f(x, ).

If we consider « and y as the coordinates of a point in a
plane, to every pair of values of « and y there corresponds a
point in the plane, and the region defined by a=a=c’. b =y =0V’
will be a rectangle.

In the case of the single variable, it is necessary to distinguish
between the open interval (a4 <@ <D) and the closed interval
(e =x=0D). So, in the case of two dimensions, it is well to
distinguish between open and closed domains. In the former
the boundary of the region is not included in the domain; in the
latter it is included.

In the above definition we have taken a rectangle for the
domain of the variables. A function of two variables may be
defined in the same way for a domain of which the boundary is
a curve C: or again, the domain may have a curve C for its
external boundary, and other curves, ¢, (", ete., for its internal
boundary. "

A function of three variables, or any number of variables, will
be defined as above. For three variables, we can still draw
upon the language of geometry, and refer to the domain as
contained within a surface S, ete.

We shall now refer briefly to some properties of functions
of two variables.

A function is said to be bounded in the domain in which it is
defined, if the set of values of 2, for all the points of this domain,
forms a bounded aggregate. The wupper and lower bounds,
M and m, and the oscillation, are defined as in § 24. .

flx, y) is said to have the limit | as (x, y) tends to (x,, y,),
when, any positive nwmber e having been chosen, as small as we
please, there is « positive number y such that | f(x, y)—1] <e for
all values of (x, y) for which

w—ag| S [y—yo|Zn and  0<|w—a,|+|y—y, .
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In other words, | f(z, ¥)—{| must be less than e for all points in
the square, centre (z,, y,), whose sides are parallel to the co-
ordinate axes and of length 2y, the centre itself being excluded
from the domain.

A necessary and sufficient condition for the existence of « limat
to flx, y) as (x, y) tends to (x,, y,) s that, to the arbitrary
positive nwmber e, there shall correspond a positive number
n such that | f(o, y)—f(&", )| <e where (&', y') and (x”, y") ure
any two points other than (xy, yo) vn the square, centre (x,, Y,),
whose sides are parallel to the coordinate axes and of length 2.

The proof of this theorem can be obtained in exactly the same
way as in the one-dimensional case, squares taking the place
of the intervals in the preceding proof.

A function f(z, y) is said to be continuous when x=wx, and
y=1,, if f(z, y) has the limit f(xy, yo) as (x, y) tends to (zy, ¥,).

Thus, f(z, y) s continuous when x=x, and y=1,, 1, to the
arbitrary posét@'ve fnumbe'}“ e, there corresponds a positive number
n such that | f(x, v) —f(x, yo) | <e for all values of (x, y) fm
which |x—wx,| =y cmd FENE=TE

In other words, | f(x, ) —f (%o, ¥o)| must be less than e for all

points in the square, centre (z,, y,), Whose sides are parallel to
the coordinate axes and of length 25.*
It is convenient to speak of a function as continuous at «
point (x,, y,) instead of when x=ux, and y=1y, Also when a
function of two variables is continuous at (x, ), as defined above,
for every point of a domain, we shall say that it is a continuous
tunction of (z, ) in the domain.

It is easy to see that we can substitute for the square, with
centre at (zy, y,), referred to above, a circle with the same centre.
The definition of a limit would then read as follows: |

Tz, y) is said to have the limat I as (x, y) tend to (x4, y,), if, to
the arbitrary positive number e, there corresponds « positive
number y such that | f(z, y —l]< for all valwes oj (z, y) for
which 0 < (w—20)*+ () —Yo)* | = 1.

If a function converges at (x,, ¥,) according to this definition
(based on the circle), it converges according to the former defini-

* There are obvious changes to be made in these statements when we are dealing
with a point (x,, ¥,) on one of the boundaries of the domain in which the function

is defined.
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tion (based on the square); and conversely. And the limits in
both cases are the same.
Also continuity at (z,, 4,) would now be defined as follows:

f(z, y) is continuwous at (xz,, y,), if, to the arbitrary positive
number e, there corresponds a positive number n swch that

|f(a, y)— [y, y,) | < e for all values of (x, y) for which
0 <[(@ =0+ —yoP|=n.
Every function, which is continuous at (z,, 7,) under this

definition, is continuous at (z,, y,) under the former definition,
and conversely.

It is important to notice that if a function of 2 and # is continuous with
respect to the two variables, as defined above, it is also continuous when con-
sidered as a function of 2 alone, or of ¥ alone.

For example, let /(x, %) be defined as follows :

{ Sz, g/):xffé/z, when at least one of the variables is not zero,
10, 0)=0.

Then f(z, ) is a continuous function of z, for all values of », when y
has any fixed value, zero or not ; and it is a continuous function of 7, for all
values of 7, when x has any fixed value, zero or not.

But it is not a continuous function of (z, ) in any domain which includes
the origin, since f(«, ) is not continuous when =0 and y=0.

For, if we put x=1cos 6, y=rsin 6, we have f(«x, y)=sin 26, which is inde-
pendent of 7, and varies from —1 to +1.

However, it is a continuous function of (2, ) in any domain which does
not include the origin.

On the other hand, the function defined by

j f(z, ) :~m—y when at least one of the variables is not zero
- N[CEes :
L0, 0)=0,
is a continuous function of (#, ) in any domain which includes the origin.

The theorems as to the continuity of the sum, product and, in certain
cases, quotient of two or more continuous functions, given in §30, can be
readily extended to the case of functions of two or more variables. A
continuous function of one or more continuous functions is also continuous.

In particular we have the theorem : v

Let w=d(x, y), v=V(2, y) be continuous at (z,, y,), and let wy=dP(zy, Yo)s
v =Y (2o, Yo)-

Let z=f(u, v) be continuous 1n (u, v) at (wy, v,).

Then z=f[p(z, ¥), V(z, y)] is continuous 1n (v, y) at (vy, yo).

Further, the general theorems on continuous functions, proved in §31,
hold, with only verbal changes, for functions of two or more variables.
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For example :

If a function of two variables is continuous at every point of a closed doman,
it s uniformly continuous in the domain.

In other words, when the positive number € has been chosen, as small as we
please, there is a positive number n such that | (&, y')— (2", y")| < e, when
@, ¥) and (27, y") are any two points in the domain for which

NI =22+ =y ) =
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CHAPTER 1V
THE DEFINITE INTEGRAL

38. In the usual elementary treatment of the Definite Integral,
defined as the limit of a sum, it is assumed that the function of
considered may be represented by a curve. The limit is the
area between the curve, the axis of x and the two bounding
ordinates.

Forlong this demonstration was accepted as sufficient. To-day,
however, analysis is founded on a more solid basis. No appeal
is made to the intuitions of geometry. Further, even among the
continuous functions of analysis, there are many which cannot
be represented graphically.

E.g. let fle)y=u sm1 when = 0 1
and f(0)=0.

Then f(ac) is continuous for every value of z, but it has not a
differential coefficient when x=0.

It is continuous at #=0, because
|f@) =) [=1f(») =] ];
and | f(2)—f(0)| < ¢ when 0 <|2zl=qy, if n<e
Also it is continuous when a = 0, since it is the product of two continuous
functions [cf. §30].
It has not a differential coefficient at =0, because

J)—f0) _ .
G = sin g,
and sin 1/ has not a limit as A—>0.
It has a differential coefficient at every point where #==0, and at such
points 1
J'(7)=sin 1»——(30s1~

76
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More curious still, Weilerstrass discovered a function, which is
continuous for every value of @, while it has not a differential
coefficient anywhere.* This function is defined by the sum of

the infinite series o
E acos brrx,
)

@ being a positive odd integer and b a positive number less than
unity, connected with a by the inequality ab > 14 37.7

Other examples of such extraordinary functions have been
given since Weierstrass’s time. And for this reason alone it
would have been necessary to substitute an exact arith-
metical treatment for the traditional discussion of the Definite
Integral.

Riemann { was the first to give such a rigorous arithmetical
treatment. The definition adopted in this chapter is due to him.
The limitations imposed upon the integrand f(x) will be indicated
as we proceed.

In recent years a more general definition of the integral has
been given by Lebesgue,§ and extended by others, notably
de la Vallée Poussin and W. H. Young, the chief object of
Lebesgue’s work being to remove the limitations on the integrand
required in Riemann’s treatment.

39. The Sums S and s.|| Let f(z) be a bounded function,
given in the interval (a, b).

* It seems impossible to assign an exact date to this discovery. Weierstrass
himself did not at once publish it, but communicated it privately, as was his
habit, to his pupils and friends. Du Bois-Reymond quotes it in a paper published
in 1874.

t Hardy has shown that this relation can be replaced by 0 <a <1, b>1
and ab =1 [cf. Trans. Amer. Math. Soc., 17, 1916]. An interesting discussion of
Weierstrass’s function is to be found in a paper, ‘“ Infinite Derivates,” Q. J. Math.,
London, 47, p. 127, 1916, by Grace Chisholm Young.

+In his classical paper, < Uber die Darstellbarkeit] einer Function durch eine
trigonometrische Reihe.”  See above, p. 9.
But the earlier work of Cauchy and Dirichlet must not be forgotten.

§Cf. Lebesgue, Lecons sur UIntégration, Paris, 1904 ;. de la Vallée Poussin,
Intégrales de Lebesgue, Paris, 1916. And papers by Bliss and Hildebrandt in
Bull. Amer. Math. Soc., 24, 1917.

i The argument which follows is taken, with slight modifications, from Goursat’s
Cours d’ Analyse, T. 1. (3°éd.)," pp. 171 et seq.
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Suppose this interval broken up into » partial intervals

(@, @), (@, @), ... (€1, D),
where o<, <y ... <&, <D
Let M, m be the upper and lower bounds of f(«) in the whole
interval, and M., m, those in the interval (z,_, @,), writing a =2,
and b=x,,.

Let  S=M,(,—a)+My(@y—2)+...+ M, (b—x,_))
and s=m, (2, — a)+my(x,— @)+ ... 4+m, (b— z, )

To every mode of subdivision of (a, b) into such partial
intervals, there corresponds a sum S and a sum s such that
s=AS.

The sums S have a lower bound, since they are all greater than
m(b—a), and the sums s have an upper bound, since they are all
less than M (b—a).

Let the lower bound of the sums S be J, and the upper bound
of the sums s be 1.

We shall now show that I =.J.

Let O, Ly, Doy eee Tpy_q, b

be the set of points to which a certain S and s correspond.
Suppose some or all of the intervals (a, x,), (z;, @), ... (x,_{, )
to be divided into smaller intervals, and let

@ Y Yas oo Yot By Yus Yrkts oor Yoo Bay Yy e b
be the set of points thus obtained.

The second mode of division will be called consecutive to the
first, when it is obtained from it in this way.

Let 2, & be the sums for the new division.

Compare, for example, the parts of S and X which come from
the interval (a, x,).

Let M’;, m/, be the upper and lower bounds of f(x) in («, y,),
My, m'y in (4, 9,), and so on.

The part of £ which comes from («, «,) is then

M\ (yi— )+ M o (ys—y1) - + M (= Ypo1)-

But the numbers M’,, M’,, ... cannot exceed M,.

Thus the part of £ which we are considering is at most equal
to M, (2, —a).

Similarly the part of ¥ which comes from (x,;, @,) is at most
equal to M,(x,—,), and so on.
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Adding these results we have Z=S.

Similarly we obtain o =s.
Consider now any two modes of division of («, b).
Denote them by

@, @, Xy, ... Xy, b, with sums S and s, ....... (1)
and @, Y1y Ysr +or Yuor, b, with sums S and s ....... (2)

On superposing these two, we obtain a third mode of division (3),
consecutive to both (1) and (2).
Let the sums for (3) be ¥ and 0.

Then, since (3) is consecutive to (1),
S=ZX and o =s.

Also, sinece (3) is consecutive to (2),
=2 and o =5.

But . =o.

Therefore S=¢ and S'=s

Thus the sum S arising from any mode of division of (a, b) is
not less than the sum s arising from the same, or any other, mode
of division.

It follows at once that I =J.

For we can find a sum s as near I as we please, and a sum S
(not necessarily from the same mode of division) as near J as we
please. If I>J, this would involve the existence of an s and an
S for which s> S.

The argument of this section will offer less difficulty, if the reader follow
it for an ordinary function represented by a curve, when the sums S and s
will refer to certain rectangles associated with the curve.

40. Darboux’s Theorem. Thesums S and s tend respectively
to J and I, when the points of division are multiplied inde-
Jinately, in such a way that all the partial intervals tend to zero.

Stated more precisely, the theorem reads as follows:

If the positive number e is chosen, as small as we please, there
18 « positive number n such that, for all modes of division in
whach all the partial intervals are less than or equal to y, the
sum S 18 greater than J by less than e, and the sum s is smaller
than I by less than e.

Let ¢ be any positive number as small as we please.
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Since the sums S and s have J and I for lower and upper
bounds respectively, there is a mode of division such that the
sum S for it exceeds J by less than Je.

Let this mode of division be

@, @, oy ... (bp_y, b, withsums S, and s;. ...... (1)
Then S, <J+1e

Let 5 be a positive number such that all the partlal interval
of (1) are greater than .

Let
=Ty, ®, Ly, ... T,_1, b=w,, withsums S, and s,, ...(2)
be any mode of division such that
(2, —x,_,) =y, when r=1, 2, ... n.
The mode of division obtained by superposing (1) and (2) e.q.
W, Xy, Ty, Ay, By, Gy, X, .. &, 1, b, with sums S, and s;, ...(3)

is consecutive to (1) and (2).
Then, by § 89, we have S, = S,.

But Sl <J+1le
Therefore Sy < J + e
Further,

S, =S, =2 [M(x,_y, @) (2, — @, _1) — M(,_, )t — 2, _;)
- M(a’k ’ .T/,.)(.’B,. - a’k)],
M(x/, ") denoting the upper bound of f(x) in the interval (a, 2”),
and the symbol ¥ standing as usual for a summation, extending
in this case to all the intervals (z,_,, 2,) of (2) which have one of
the points a,, a,, ... a,_; as an internal point, and not an end-
point. From the fact that each of the partial intervals of (1) is
greater than #, and that each of those of (2) does not exceed 7,
we see that no two of the a’s can lie between two consecutive «’s
of (2).
There are at most (p—1) terms in the summation denoted
by =. Let |f(z)| have A for its upper bound in («, b).
We can rewrite S,—S; above in the form
S, =Sy =Z[{ M (@1, 2,) = M (2,1, )} (tp—2,_y)
+ {]”(w'r—l’ wa') —M(a’k: fl},)} (wv' - ak)]
But {M(z,_,, ,)—M(x,._,, @)} and {M(x,_,, x.)—M(a,, x,)}
are both positive or zero, and they cannot exceed 24.
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Therefore S,— S, =242 (e, —a,_y),

the summation having at most (p—1) terms, and (z,—w,_;) being
at most equal to #.

Thus ' S,—S,=2(p—1)4n
Therefore S, < J+4e+2(p—1) Ay,
since we have seen that  S,<J+ e

So far the only restriction placed upon the positive number 3
has been that the partial intervals of (1) are each greater than .
We can thus choose 5 so that

€
1< 4p—1)4
With such a choice of 5, S,<<J+-e

Thus we have shown that for any mode of division such that
the greatest of the partial intervals is less than or equal to a
certaim positive nuwmber y, dependent on e, the sum S exceeds J
by less thamn e.

Similarly for s and I'; and it is obvious that we can make the
same y satisfy both S and s, by taking the smaller of the two to
which we are led in this argument.

41. The Definite Integral of a Bounded Function. We now
come to the definition of the definite integral of a bounded
function f(z), given in an interval (a, D).

A bounded function f(x), given in the interval (a, b), is said
to be integrable in that interval, when the lower bound J of the
sums S and the wpper bound I of the sums s of § 89 are equal.

The common wvalwe of these bounds I and J 1is called the
definate integral of f(x) between the limits a and b, and is written

j: f(x) da. "

b

It follows from the definition thatj f(x)dx cannot be greater

a

than the sum S or less than the sum s corresponding to any

* The bound J of the sums S is usually called the wupper integral of f(x)
and the bound 7 of the sums s the lower integral. :

C I F
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mode of division of (a, ). These form approximations by excess
and defect to the integral.
We can replace the sums

S=M (2, —a)+M(zy—2)+...+ M, (b—2, _1)}
s=m (2, —a)+my(xy—x)+ ... +m, (b—x,_,),
by more general expressions, as follows:

Let &, &, ... & ... & be any values of x in the partial intervals
(@, @), (@), 2y), ... (@o_q, @), ... (T, b) respectively.
The sum

JE) (@, — a) + (&) (wy—w) + o+ (END —@pg) oo (1)
obviously lies between the sums S and s for this mode of division,
since we have m, = f(£,) = M, for each of the partial intervals.

But, when the number of points of division (z,) increases in-
definitely in such a way that all the partial intervals tend to

b

zero, the sums S and s have a common limit, namely j f(x)de.
Therefore the sum (1) has the same limit. ¢
Thus we have shown that, for an integrable function f(z),

the sum f(&)(,— @) +F(E) (=) ... +A(E) (b —20s)
b
has the definite integral j f(@)da for its limat, when the number

of points of division (x,) increases indefinitely in such a way
that all the partial intervals tend to zero, £, &,... &, being any
values of  in these partial intervals.™

In particular, we may take a, 2;, z,, ...
for the values of &, &, ... &n.

b,

Lp—1, O xl‘m mn—l’

42. Necessary and Sufficient Conditions for Integrability.
Any one of the following is a necessary and sufficient condition
for the integrability of the bounded function f(x) given in the
interval (a, D):

I When any positive number e has been chosen, as small as
we please, there shall be a positive number y such that 8 —s < e
for every mode of division of (a, b) wn which all the partial
intervals are less than or equal to ».

* We may substitute in the above, for f(£;), (%), ... f(&.), any values uy, wy, ... tn
intermediate between (M;, m,), (},, m,), ete., the upper and lower hounds of f(z)
in the partial intervals,
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We have S—s < ¢, as stated above.
But S=J and s=1.
Therefore J—-1 <e.

And J must be equal to I.

Thus the condition is sufficient.

Further, if 7=, the condition is satisfied.

For, given ¢, by Darboux’s Theorem, there is a positive number
n such that S—J <{e and I —s < e for every mode of division
in which all the partial intervals are less than or equal to #.

But S—s=(S=J)+(I —5s), since [=J.

Therefore S—s<e.

II. When any positive number e has been chosen, as small as
we please, there shall be a mode of division of (a, b) such that
S—s <e.

It has been proved in I. that this condition is sufficient. Also
it is necessary. For we are given I=.J, as f(x) is integrable, and
we have shown that in this case there are any number of modes
of division, such that S—s < e.

IT1. Let o, o be any pair of positive numbers. There shall be a mode of
division of (a, b) such that the swm of the lengths of the partial intervals in
which the oscillation is greater than or equal to w shall be less than ¢ *

This condition is suficient. For, having chosen the arbitrary positive

number ¢, take

o and o=

€ €
~2(M —m) 2(b—ay
where M, m are the upper and lower bounds respectively of f(z) in (a, d).

Then there is a mode of division such that the sum of the lengths of the
partial intervals in which the oscillation is greater than or equal to o
shall be less than o. Let the intervals (2,_1, #,) in which the oscillation
is greater than or equal to o be denoted by ., and those in which it is
less than o by d,, and let the oscillation (M, —m,) in (2,_1, #,) be denoted
by o,.

Then we have, for this mode of division,

S —s=2w,D,+2w,d,

/ € €
<O =m) s =my o —a)® =9

. € €
< > g
< €,

and, by IL., f(») is integrable in («, D).

* Cf. Pierpont, Theory of Functions of Real Variables, Vol. 1., § 498.
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Also the condition is necessary. For, by IL., if f(x) is integrable in («, b),
there is a mode of division such that S—s < wo. Using D, d, as above,

S—-s=0,D,+>0,d,

= Sw,.D,

= w2D,.

Therefore wo > wxD,,
and 2D, <o

43. Integrable Functions. /

L. If f(x) s continuous in (a, b), 1t 18 wntegrable in (a, ).

In the first place, we know that f(x)is bounded in the interval,
since 1t is continuous in (a, b) [cf. §31]. |

Next, we know that, to the arbitrary positive number e, there
corresponds a positive number 5 such that the oscillation of f(x)
1s less than ¢ in all partial intervals less than or equal to y
[cf. §31].

Now we wish to show that, given the arbitrary positive
number ¢, there is « mode of division such that S—s<e
[§42, I1.]. Starting with the given ¢, we know that for ¢/(b—a)
there is a positive number » such that the oscillation of f(x) is
less than ¢/(b—a) in all partial intervals less than or equal to #.

If we take a mode of division in which the partial intervals
are less than or equal to this 5, then for it we have

€
S—s < (b—c&)b_—&—e.
Therefore f(z) is integrable in («, D).
II. If f(x) is monotonic in (a, b), it is integrable in (a, D).
In the first place, we note that the function, being given in the

closed interval (a, D), and being monotonic, is also bounded. We
shall take the case of a monotonic increasing function, so that

we have F@) = fla) = flwy) ... = flae, ) = f(b)

for the mode of division given by

b.

M, Xy, Loy e Ty,

Thus we have

S=f(x) (@, — a)+[(@y) (@ —y) ... +f(0)(b—w,), |

8 =f((1/) (‘/'El - CI/) +f<£l31)(.’1}2 - ml) e +J(wn—1) (b - a)n——l)'J
Therefore, if all the partial intervals are less than or equal to s,

S —=s=nf(0)—f(0)],
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since J@)—=fa),  fl@,)—f(@), ... f(O)=f(x,-y)

are none of them negative.

If we take ] <m>

it follows that S—s<e.

Thus f(z) is integrable in (a, D).

The same proof applies to a monotonic decreasing function.

We have seen that a monotonic function, given in (a, ), can
only have ordinary discontinuities, but these need not be finite in
number (cf. §34). We are thus led to consider other cases in
which a bounded function is integrable, when discontinuities
of the function occur in the given interval. A simple test of
integrability is contained in the following theorem :

II1. 4 bounded function is integrable in («, D), when all its
points of discontinwity in (a,b) can be enclosed 1n a finite
number of intervals the sum of which 1s less than awy arbitrary
positive number.

Let ¢ be any positive number, as small as we please, and let
the upper bound of | f(x) | in (a, b) be A.

By our hypothesis we can enclose all the points of discontinuity
of f(x) in a finite number of intervals, the sum of which is
less than ¢/44.

The part of S—s coming from these intervals is, at most, 24
multiplied by their sum.

- On the other hand, f(«) is continuous in all the remaining
(closed) intervals.

We can, therefore, break up th1b part of (¢, b) into a finite
number of partial intervals such that the couespondlng portion
of S—s<%e (cf. L)

Thus the combined mode of division for the whole of («, b)
is such that for it S—s <e.

Hence f(x) is integrable in («, D).

In particular, « bounded function, with only a finite number
of discontinuities in (a, b), is integrable in this interval.

The discontinuities referred to in this theorem III. need not
be ordinary discontinuities, but, as the funection is bounded, they
cannot be infinite discontinuities.
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IV. If a bounded function is integrable in euch of the partial
wntervals (a, ay), (ay, ag), -« (ap_y, D), it s integrable im the whole
wnterval (a, b).

Since the function is integrable in each of these p inter-
vals, there 1s a mode of division for each (eg. «,_;, a,), such
that S—s for it is less than e/p, where ¢ is any given positive
number.

Then S—s for the combined mode of division of the whole
interval («, b) is less than e.

Therefore the function is integrable.

From the above results it is clear that if « bounded function
18 such that the interval (a, b) can be broken wp imto « finite
number of open partial intervals, in eacl of which the function
18 monotonic or continuous, then it is integrable in (a, ).

V. If the bounded function f(x) is integrable in (w, b), then
| f(@)| 18 also integrable in (a, b).

This follows at once, since S—s for | f(«)|is not greater than
S—s for f(x) for the same mode of division.

It may be remarked that the converse does not hold.

L.g. let f(x)=1 for rational values of « in (0, 1),
and f(a)= —1 for irrational values of & in (0, 1).

Then | f(x)| is integrable, but f(x) is not integrable, for it is obvious that
the condition II. of §42 is not satisfied, as the oscillation is 2 in any
interval, however small.

44. If the bounded function f(x) is integrable in (a, b), there are an
infinite number of points in any partial interval of (a, b) at which f(x)
is continuous.*

Let 0> 0,> 03 ... be an infinite sequence of positive numbers, such that
Lt w,=0.

N0
Let (v, [3) be any interval contained in («, b) such that e =a < S <.
Then, by §42, 111., there is a mode of division of (@, b) such that the sum

of the partial intervals in which the oscillation of f(x) is greater than or

equal to o is less than (8- a).

If we remove from (¢, b) these partial intervals, the remainder must cover
at least part of (a, 3). We can thus choose within (a, 8) a new interval
(ay, By) such that (B1—a;)<3(B—a) and the oscillation in (a;, [3;) is less
than o;.

Proceeding in the same way, we obtain within (a;, 3;) a new interval

* Cf. Pierpont, loc. cit., Vol. 1., § 508.
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(ag, B5) such that (B, —a,) <5(B;— ;) and the oscillation in (a,, B,) is less
than w,. And so on.

Thus we find an infinite set of intervals 4, d,, ..., each contained entirely
within the preceding, while the length of A4, tends to zero as n—>cc, and the
oscillation of f(«) in 4, also tends to zero.

By the theorem of §18, the set of intervals defines a point (e.g. ¢) which
lies within all the intervals.

Let € be any positive number, as small as we please.

Then we can choose in the sequence o, w,, ... & number o, less than e.
Let :, be the corresponding interval (a,, 3,), and 7 a positive number
smaller than (¢ - a,) and (3, —c¢).

Then | f(x)—f(c)|<e when [x--c|=n,
and therefore we have shown that f(2) is continuous at ¢,

Since this proof applies to any interval in («, b), the interval (u, 8) contains
an infinite number of points at which f(x) is continuous, for any part of
(a, f3), however small, contains a point of continuity.

45. Some Properties of the Definite Integral. We shall now

b
establish some of the properties of j f(x) dz, the integrand being
bounded in (a, b) and integrable. “*

L If f(x)1s integrable in (a, b), it is also integrable in any
wmterval (a, B) contained in (a, b).

From §42, I. we know that to the arbitrary positilve number e
there corresponds a positive number » such that the difference
S—s<e for every mode of division of (a, b) in which all the
partial intervals are less than or equal to #.

We can choose a mode of division of this kind with («, B) as
ends of partial intervals.

Let X, & be the sums for the mode of division of («, )
included in the above.

“Then we have 0=2Z—c=S—-s<e

Thus f(x) is integrable in («, 8) [§42, IL].

IL. If the valwe of the antegrable function f(x) is altered
at o finite number of points of («, b), the function ¢(x) thus
obtained s integrable in (a, b), and its integral is the same as
that of f(x).

We can enclose the points to which reference is made in a
finite number of intervals, the sum of which is less than e/44,
where ¢ is any given positive number, and 4 is the upper

bound of ' ¢(x)| in (a, b).
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The part of S—s for ¢(z), arising from these intervals, is at
most 24 multiplied by their sum, 7.c. it is less than fe.

On the other hand, f(z) and ¢(x), which is identical with f(z)
in the parts of («, b) which are left, are integrable in each of
these parts.

Thus we can obtain a mode of division for the whole of them
which will contribute less than le¢ to S—s, and, finally, we have
a mode of division of (a, b) for which S—s <e.

Therefore ¢(z) is integrable in (a, b).

b b
Further, j () de= j () de.

4 b
For we have seen in § 41 that j ¢ (x) de is the limit of

gb(éfl)(xl - C(/) + (1b(52>(m2 _x1>+ TN qs(fn)(b —mn—1>
when the intervals (a, @), (z,, @), ... (2,_;, b) tend to zero, and
&, &, ... &, are any values of  in these intervals.

We may put f(&), /(&) - [(£&) for ¢(£), (&), - p(&) In
this sum, since in each interval there are points at which ¢(x)
and f(x) are equal.

In this way we obtain a sum of the form Lt Zf(§)(x,—x,_y),
b
which is identical with j fle) de.

III. It follows immediately from the definition of the integral,
that if f(z) is integrable in (a, b), so also is Cf(x), where C is any
constunt.

Again, if fi(z) and f,(x) are integrable in (a, b), their sum is
also integrable.

For,let S, s; §'¢"; and 2, ¢ be the sums corresponding to the
same mode of division for f;(2), f,(x) and f,(z)+fo ().

Then it is clear that

Z—a=(8—s)+ (8" =¥%),
and the result follows.

Also 1t is easy to show that

jiC'f(as) da = C’ﬁ f(x) de,
wd [ 1@ @ de=] f@rdot | Ao e
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IV. The product of two integrable functions f(x), fo(x) s
wntegrable. /

To begin with, let the functions f,(z), f,(x) be positive in (a, b).

Let M,, m,; M',, m/,; M,, m, be the upper and lower bounds of
f1(x), fo(x) and f,(z)f,(x) in the partial interval (z,_, ;).

Let 8, s; 8,8 and =, & be the corresponding sums for a certain
mode of division in which (#,_;, #,) is a partial interval.

Then it is clear that

M, —m,=MM,—mm .= M.(M.—m,)+m (M, —m,).

A Jortiors, NI, —m, = MM, — )+ M'(M,—m,),
where M, M’ are the upper bounds of f,(z), f,(%) in (a, b).

Multiplying this inequality by (x,-z,_,) and adding the corre-

sponding results, we have

S—oc=M(S" —&)+M(S—s).
It follows that ¥ —¢ tends to zero, and the product of f, (), f,(x)
1s integrable in (a, D).

If the two functions are not both positive throughout the
interval, we can always add constants ¢, and ¢,, so that f,(2)+¢,,
fa(@)+ ¢, remain positive in («, b).

The product \

(fi(@) + ) (fo(@) + ¢) =f1 (@) fo (@) + ey fo(w) + oo fr (@) + 0164
is then integrable.

But ¢,f,(x)+c,f, (@) +¢c, 1s integrable.

1t follows that f,(z)f,(x) is integrable. |

On combining these results, we see that if f,(x), f,(z) ... fu(2)
are integrable functions, every polynomial in

fl(m)’ fz(x) cor Ju(@)

18 also an integrable function.*

46. Properties of the Definite Integral (continued).

I r Fa) dar= —L (@) da.

In the deﬁnitiron O; the sums S' and s, and of the definite
integral K f(x) dx, we assumed that ¢ was less than b, This

restriction is, however, unnecessary, and will now be removed.

*This result can be extended to any continuous function of the n functions
[ef. Hobson, loc. cit., p. 345].
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If @ > b, we take as before the set of points
b,

U, Xy, Loy ooo Tpyy,

and we deal with the sums
S=M (2, —a)+My@zy—a)+ ...+ M (b=, )| (1)
s=my(x; —a)+my(x,—xz)+...+m,(b—z,_)
The new sum S is equal in absolute value, but opposite in sign,
to the sum obtained from
b, x
The existence of the bounds of S and s in (1) follows, and the
definite integral is defined as the common value of these bounds
when they have a common value.
It is thus clear that, with this extension of the definition

of §41, we have b
j f(x) dae= —j f(x) da,*

a
b

4y €y,

n—L’ n—3a>» *°°

>

«, b being any points of an interval in which f(«) is bounded and
integrable.

IL. Let ¢ be any point of an interval (a, b) 4n which f(x) is
bounded and integrable.

Then ji f(x)= j: f(x) d% + jt f(x)dx.

Consider a mode of division of («, b)) which has not ¢ for a
point of section. If we now introduce ¢ as an additional point
of section, the sum S is certainly not inecreased.

But the sums S for (a, ¢) and (¢, b), given by this mode of

division, are respectively not less than .r f(x)dx and jb f(2) de.
Thus every mode of division of («, b) giaves asum S n;t less than
jc Fa) dx+r Fw) das
It follows that ’ c
ﬁf(x) i = j F) do+ f’ F@)da.

But the modes of division of («, ¢) and (¢, D) together form a
possible mode of division of (a, b). And we can obtain modes

* The results proved in §§42-45 are also applicable, in some cases with slight
verbal alterations, to the Definite Integral thus generalised.
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of division of (a, ¢) and (¢, b), the sums for which differ from
c b
j f(x)dx and j f(x) dz, respectively, by as little as we please.

It follows that the sign of inequality in the above relation
must be deleted, so that we have

jif () dow = j: f(x) de+ jj f(@) da.

If ¢ lies on (a, b) produced in either direction, it is easy to
show, as above, that this result remains true, provided that f(z)
is integrable in (a, ¢) in the one case, and (¢, b) in the other.

47. If f(x) = g (x), and both functions are integrable in (a, b),
then j bf x)dx= jbg (x) dx.

Let B (@) =F(@) =g (@) = 0.
Then ¢(x) is integrable in (a, b), and obviously, from the
sum s,

b
j ¢ () de =0.
b b
Therefore j f(x)dz— j g(x) dax=0.
CoroLrAry 1. If f(z) is integmble in (a, b), then

[ rrae| =1 7@y 2z

We have seen in § 43 that if f(z) is integrable in («, b), so also
is | f(z)].
And —lf@|=f@)=]f@)].

The result follows from the above theorem.

CoroLLARY II.  Let f(x) be imtegrable and mever negative
wm (a, b). If f(x) is continwous at ¢ in (a, b) and f(c)>0, then

|| ftwy de>o

We have seen in §44 that if f(x) is integrable in («, b), it must
have points of continuity in the interval. What is assumed here
is that at one of these points of continuity f(x) is positive.

Let this point ¢ be an internal point of the interval («, b), and
not an end-point. Then there is an interval (¢, ¢”), where
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a<c'<<c<Lc'<b, such that f(x)>% for every point of (¢, ¢”),

k being some positive number.

Thus, since f(2) =0 in (a, ¢), c f(x)dx = 0.

"CI/

And, since f(x)>kin (¢, "), | flx)de=k(c"—c)>0.

L

"D
Also, since f(z)=0 in (¢”,b), | f(z)dz=0.

o/

o
Adding these results, we have | f(z)dxz>0.

The changes in the argument when ¢ is an end-point of («, )
are slight.

CoroLLARY III. Let f(z)=g(z), and both be integrable in
(, b). At « point ¢ wn (a, b), let f(x) and g(x) both be con-

b b
timwous, and f(e)y>g(c). Then j f(x) da;>j g(x) de.
This follows at once from Corollary II. by writing
p(@)=[(®)—g(®).
By the aid of the theorem proved in § 44, the following simpler result

may be obtained :
If f(x) > g(@), and both are vntegrable vn {a, b), then
1/ "o
f f@ydo= | gt de.
For, if f(x) and g(«) are integrable in (¢, b), we know that f(»)—g(v)is
integrable and has an infinite number of points of continuity in (e, b).

At any one of these points f(a)—g(x) is positive, and the result follows
from Corollary II.

48. The First Theorem of Mean Value. Let ¢(x), Y (x) be
two bounded functions, integrable in (a, b), and let (z) keep
the same sign in this interval ; e.g. let \r(z) =0 in (a, b). '

Also let M, m be the upper and lower bounds of ¢(x) in («, b).

Then we have, in (a, b),

m=¢)=M,
and multiplying by the factor 1/ (x), which is not negative,

(1) = () 1 () = My @)
It follows from § 47 that

b b b
mj V() de —/_:j ¢ () () do = M j V() dee,
since ¢ (x)yr(x) is also integrable in («, b).
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. b b
Therefore j ¢ (@) (@) de = “j Jr (@) da

where u is some number satisfying the relation m =u = .
It is clear that the argument applies also to the case when
Vr(x) =0 in (a, b).
If ¢(x) is continuous in (¢, b), we know that it takes the value

u for some value of « in the interval (cf. § 31).
We have thus established the important theorem :

If ¢ (x), yr(2) are two bounded functions, integrable in (a, b),
p () being continwous and r(x) keeping the same sign in the
wnterval, then jb

agb (@) Yo () de=¢ (€ )ﬁg{; () de,

where £ 1s some definite value of @ in a =x =b.

Further, if ¢(x) is not continuous in (a, b), we replace ¢(§)
by m, where u satisfies the relation m=u=M, m, M being the
bounds of ¢(x) in (a, b).

This is usually called the First Theorem of Mean Value.

As a particular case, when ¢ () is continuous,

r(‘b @)de=(0—a) (), where a=§¢=0.

It will be seen from the corollaries to the theorem in §47 that in certain
cases we can replace « =§ =0 by a< < b.¥

However, for most applications of the theorem, the more general state-
ment in the text is sufficient.

49, The Integral considered as a Function of its Upper Limit.
Let f(x) be bounded and integrable in («, b), and let

o
o

F(x)= j f() de,

where @ is any point in (a, D).
Then if (z+h) is also in the interval,

-1
F(e+h)—F(z)= j f(2) da.

Thus Fx+h) - F(x)= ul,

where m = u = M, the numbers M, m being the upper and lower
bounds of f(x) in (x, x+1).
It follows that F(x) s a continuous function of x im (a, D).

* Cf. Pierpont, loc. cit., Vol. L., pp. 367-8.
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Fuarther, if f(x) is continuous in («, b),
F(e+h)—F@)=Lf(£), where a=g¢=a+h.

When / tends to zero, f(£) has the limit f(x).

Lt F(x+h)— F(x) — F(a).

h—>0 h
T
Thus when f(x) is continwous in (a, b), j f(x) dx is continuous
a

Therefore

m (a, b), and has a differential coefficient for every value of © in
(a, b), this differential coefficrent being equal to f(x).

This is one of the most important theorems of the Calculus.
It shows that every continuous function is the differential co-
efficient of a continuous function, usually called its primitive, or
indefinite integral.

It also gives a means of evaluating definite integrals of con-
tinuous functions. If f(x) is continuous in (a, b) and

F(x)= j: f(x) da,

then we know that %F(x) =f(x). Suppose that, by some means

or other, we have obtained a continuous function ¢ (x) such that
b (2) = f(®).

We must then have F(z)=¢(z)+ C, since (F(x) ¢(x))=0 in
d
(a, b).*
To determine the constant C, we use the fact that F(x)
vanishes at x =a.

Thus we have L f (@) de= ¢ (x) — ¢ ().

(loc

50, The Second Theorem of Mean Value. We now come to
a theorem of which frequent use will be made.

I Let ¢(x) be monotonic, and therefore integrable, in (a, b)
and let \(z) be bounded and integrable, and not change sign
more than a finite number of times in (a, b).1

* Cf. Hardy, loc. cit., p. 228.
t This restriction on ¢(x) can be removed. For a proof in which the only

condition imposed upon y(x) is that it is bounded and integrable in (a b), see
Hobson, loc. cit., p. 360, or Goursat, loc. cit., T. I., p. 182.
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b ¢ b
Then j P (x) () de = (/>(a)j V() cl:x;—l—gb(b)j Jr (@) de,

@ « 3

where £ is some definite value of x in « =x =D.

For clearness we shall take ¢(2) monotonic increasing in
(a, b). The modifications in the proof for a monotonic decreasing
function will be obvious.

Since we assume that - (z) does not change sign more than a
finite number of times in («, b), we can take

AG=Cy, by, gy eoe Cy_qy @, =Db,
such that y,(z) keeps the same sign in the partial intervals

(g, @), (g, @), oo (Ay_y, @)

Then f'qs @) (@) do=3 j o () () dee.

a 1 C(,,_

Now, by the First Theorem of Mean Value,

[ sorvede=p|" vy

Uy

where H(r_1) = pr = ().

¢ (@) (@) dw = p, [ F(ct,) = F(a,_1)]

Therefore J '

Ay

where we have written /' (x) =f\/; () de.

Thus we have

ﬁq; () Y () dac = Z W[ Fl) = F(ar )] v o, (1)

Since F(¢)=0, we may add on the term ¢(a) # (), and rewrite
(1) in the form:

[\ p@) y @ dr=F@p@=p)
+ _F(a1) [y — mo]

+F () [un— ¢ ()]
+ 7 (b) ¢ ().
The multipliers of F(«), F(«,), ... F(0) in all but the last line

must be negative or zero.
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We may therefore replace the sum of these (n+1) terms by
M{[p() = p ]+ —mo ]+ oo+ n— AR
t.e. by M{p () —op(D)],
where M is some definite number intermediate between the

greatest and least of F(a), F(a,), ... F(a,_,), F(b), or coinciding
with one or other. |

But, since F(w)=r~7b(x) dx, we know that F(r) is continuous
in (a, D). ¢

Therefore M may be taken as F(£), where £ is some definite
value of z in a = =0 (cf. § 31).

It follows from (2) that

[/ 09 0) do = F @9 () = p0) 1+ FO) 6

=¢(0) F(E)+ () F (D)= F(£)]
& 1) )
= (/)(cc)j () doe + ¢(b)j Vr(2) da,
a ¢
where £ is some definite value of = in o Za = 0.
Thus the theorem stated above is proved.
b
We have seen in §45 that j f(x)dx is unaltered if we chdw
the value of f(x) at a finite number of points in (a, b).
Now ¢ (x) is monotonic in (a, b), and therefore ¢ (¢4 0), ¢ (b—0)
exist. Also we may give ¢(z) these values at 2=« and z=1(
respectively, without altering its monotonic character or changin

b
j ¢ () U () de.
We thus * obtain the result:

I1. Let ¢ (x) be monotonic, and therefore integrable, in (a, !
and let () be bounded and integrable, and not change its siga
more than « finite number of times in (a, ).

Then

@@ de=p+0)| p@) dot p0-0)] pi)

where £ is some definite value of © in a =x =0.

* This and the other theorems which follow could be obtained at once by
making suitable changes in the terms ¢ () and ¢ (b) on the right-hand side of (2).
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Also it is clear that we could in the same way replace ¢ («-4-0)
and ¢(b—0), respectively, by any numbers A and B, provided
that 4 =¢(e+0) and B=¢(b—0) in the case of the monotonic
increasing function; and 4 =¢(a+0), B=¢(b—0) in the case
of the monotonic decreasing function.

We thus obtain, with the same limitation on ¢(x) and \Jr(x)
as before, b

I11. jb¢ (@) r(x)yde=A Fg&(w) da 4+ ngb(az) de,

a a &
where A =¢(a+0) and B=¢(b—0), if ¢(x) s monotonic in-
creasing, and A =¢(a+0), B=¢(b—0), if ¢p(x) s monotonic
decreasing, £ being some definite valwe of x in o« = =b.

The value of ¢ in I, I, IIL. need not, of course, be the same,
and in ITI. it will depend on the values chosen for 4 and B.

Finally, as in III., we may take A=0 and B=¢(b), when
¢ () =0 and is monotonic increasing in (a, b).

Thus, with the same limitations on yr(x) as before, when

CNZ 0 and s monotonic increasing in (a, b), we have

|p@ (@) o= | vi) de

wre £ 18 some definite value of @ in a =x=0b.

Again, when ¢ (z) =0 and is monotonic decreasing in (a, b), we
may take 4 =¢(a) and B=0, obtaining in this way, with the
same limitations on r(x) as before,

v, [[p@ v de=g@| v

- here € 18 some definite value of « in a = =D.

“Theorems IV. and V. are the earliest form of the Second
Theorem of Mean Value, and are due to Bonnet,* by whom they
were employed in the discussion of the Theory of Fourier’s
Series. The other Theorems I., II., ITI. can be deduced from
Bonnet’s results.

Theorem I. was given by Weierstrass in his lectures and Du
Bois-Reymond,T independently of Bonnet.

Theorem II. is the form in which we shall most frequently
use the Second Theorem of Mean Value.

¥ Bruxelles, Mém. cour. Acad. roy., 23, p. 8, 1850; also J. Math., Paris, 14
p. 249, 1849. ‘

tJ. Math., Berlin, 69, p. 81, 1869 ; and 79, p. 42, 1875.
o1 G
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INFINITE INTEGRALS. INTEGRAND BOUNDED.
INTERVAL INFINITE.

]
51. In the definition of the ordinary integral | f(z) dz, and

in the preceding sections of this chapter, we have supposed
that the integrand is bounded in the interval of integration
which extends from one given point « to another given point b.
We proceed to extend this definition so as to include cases in which
(1) the interval increases without limit,
(i1) the integrand has a finite number of infinite discontinuities.*

I. Integrals to + . j f(x) dx.

Let f(x) be bounded and integrable in the interval (a, D),
where a 18 fized and b s any number greater than a. We

define the integral j f(@) de as Lt j F() d, when this Limil

exasts.t ¢ Fm>e

We speak of f f(2)dz in this case as an wnfinite integral, and say that it
converges. i '

On the other hand, when f f(#)dz tends to o as #—>w, we say that the
infinite integral [ f(x)dxz diverges to x, and there is a similar defini-

tion of divergence to — o of f f(x)de.

"> " dx

Ex. 1. ede=1; — =2
JO J1 ‘1’12
Q0D Nx
For e*dr= Lt | e*dor= Lt (1-e¢*)=1,
JO x—>w Jo r—>0
'.wd "x
And L N [ 2(1-%):2.
J1 a2 r=>o )y g2 x> 2
Ex. 2. f e dr=cw ar_ ©.
0 RN
For f Fde= Lt | edo= Lt (6*°—1)=c0c.
0 >0 Z~> 0

* For the definition of the term ‘“infinite discontinuities,” see § 33.

It is more convenient to use this notation, but, if the presence of the
varlable x in the integrand offers difficulty, we may replace these integrals

by f(t ydt and Lt ff(t

z->x Ja
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" da *
And - = 1Lt [ v Lt 2(Jr—-1)=cw
Lo = o 0 L a(e- 1=,
.o % 1 " da
Similar] / O = — o - / e
J Ji 10gxdbb N DUV

These integrals diverg@ to « or — o, as the case may be.
Finally, when none of these alternatives occur, we say that the infinite

integral ja f(#z)dz oscillates finitely or infinitely, as in $§ 16 and 25.

Ex. 3. / sin & da oscillates finitely.

a

f @ sin x dr oscillates infinitely.

a

II. Integrals to — . jb f(x) dx.

When f(x) 18 bounded and integrable in the interval (a, b),
where b s fized and « is any number less than b, we define the

b b '
integral j f(x)dx as Lt j (@) da, when this limit exists.

z-—>-cwdzx
b
We speak of f f(xz)dz as an infinite integral, and say that it converges.

(4
The cases in which f f(x)dz is said to diverge to « or to —w, or to
—0

oscillate finitely or infinitely, are treated as before.

o . 0 dr 1
Ex. 1. f_me de=1, f—wzl—:%‘)_‘z_é'
0
Ex. 2. f e dx diverges to o«

0 .
[ sinh # dx diverges to —c.

Vo—0

0
[ sin x dx oscillates finitely.

0
f asin x da oscillates infinitely.
)

IIL. Integrals from — o to oo. j f(x)dx.

If the infinite integrals J. f(@)dx and j J(@ydax are both
convergent, we say that the infinite mtegmzj f(x) dx s com-
vergent and is equal to their sum. -

X

Since r f(x)de = r f(x) de+ j F@yde, a<a<ez,
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it follows that, if one of the two integrals j f(x) dx or j Jf(az) do
converges, the other does. * ¢

Also | rf(m) do = rf(m) daz—l—rf(w) da.
Similarly, r f(@) de= r f(x) dax+ ja f@)de, x<<a<a,

a

and, if one of the two integrals Fl@)de or ja o) da
converges, the other does. v -

Also j(i . f(x) de= J
Thus r_wf(w) da + j:f(a,) da =j f (@) dax +rf(w) dax,

o
— w0 a

i

o a

f@)de+| f(x)de.

o

-0

and the value of j f(z) dz is independent of the point a used

in the definition.

Ex. /m %zﬂ‘, fn e~ dx=2[:e—x2 da.

52. A necessary and sufficient condition for the convergence
ofj £(x) dx.

Let F(m)-_—j"" ) da.

The conditions under which F/(z) shall have a limit as z—o0
have been discussed in §§ 27 and 29. In the case of the infinite
integral we are thus able to say that:

vl

I. The intego"dlj f(@) dax as convergent and has the value I,

when, any positive number e having been chosen, as small as we
please, there is a positive number X such that

I -—L f(z) da

And further:
II. A necessary and sufficient condition for the convergence

@0

<e, provided that x= X,

of the o}ntegwblj f(x) da 1s that, when any positive number ¢
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has been chosen, as small as we please, there shall be « positive
number X such that o }
|
J(@) dao ' <e
fJa ;

for all values of @, " for which «” >x = .

@

We have seen in § 51 that if j f(z) dx converges, then

E:]L(OG) dx = j: f@) do+ J:f(x) de, a<a.

It follows from I. that, if j f(x) da converges, to the arbitrary

positive number ¢ there corresponds a positive number X such

that ”ﬂf \d
E (w mt

Also, if this condition is satisfied, the integral converges.
These results, and the others which follow, can be extended
immediately to the infinite integral

Jci . () da.

<e, when a=JX.

53. j f(x)dx. Integrand Positive. If the integrand f(z) is

42

positive when « >a, it is clear that J- f(x) dz is a monotonic in-

w0

creasing function of #. Thus j f(x) d must either converge or
diverge to co. ¢

L. It will converge if there is a positive number A such that
r f(@) de<< A when x>a, and in this case j flx)de = A.

It wnll diverge to oo if there is no such nwmber.

These statements follow from the properties of monotonic
functions (§ 34).

Further, there is an important “comparison test” for the con-
vergence of integrals when the integrand is positive.

IL Let f(x), g(x) be two functions which are posilive,
bounded and integrable in the arbitrary interval (a, b). Also

@0

let g(x) = f(x) when x=a. Then, if J f(x)ydx s convergent, it

el a

Jfollows that j g () da s convergent, and j q(x) da ‘“J f(x) de.

]



102 THE DEFINITE INTEGRAL

For from § 47 we know that

& (*

j g(z) de = ’ f(x) dee, when x>«.

[Y

Therefore j g@)de < | flx)de.

o

Then, from I.,j g@yde =\ flx)de.

&L

IIL If g(x) = f(x), and j f(@) da diverges, so also does

(2

ng (x) da.*

a

This follows at once, since jf g(z)dr= j’ f(x) da.

o]
One of the most useful integrals for comparison is J f—?f , Where
a>0. | « @
*
We have ig’f:i}h{xl‘“—al"“}, when n=£1,
J
2 o
and | log x —loga, when n=1.

(2 s1-n
Thus, when n>>1, [P

— = )
:,;_>w~aw,nl n—-].

(“ dx _atn

e | = :
Joxz® m—1
o d
< l.n
And, when n=1, Lt | =00,
e—>*J a0 X
(* AN
: dr .
ve. | — diverges.
CBIL
Ja

* Qince the relative behaviour of the positive integrands f(x) and g(z) matters
only as x>, these conditions may be expressed in terms of limits :

When ¢(z)/f(x) has a limit as z—w, / () dx converges, if [f(x) dx converges.

s o]
When g(«)/f(x) has a limit, not zero, or diverges, as x—>o0, / g(x) dx diverges,
; Ja

iff fl(x)dx diverges.
a
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1
converges, since , when x =a > 0.

fcx/(1+ ?) x/(1+%’5)

. . 1 1
2' f < S — - } P 2.
N/———@ 1) diverges,  since J=D) >, whena

Ex. 1. /

2, 2
sm sin®x__ 1
3. [ Y dw converges, since e = =9 when #=a > 0.

54. Absolute Convergence. The integral j f(@) da is sard to

be absolutely convergent when f(x) is bounded and integrable in

the arbitrary interval (a, b), and J | f(x) | dx 18 convergent.

Since

J‘x”f(ac) dx’*j |f(x) | da, for 2" >a'=a
3 (cf. §47, Cor. 1),

it follows from §52, I1. that if j | f(®) | e converges, so also does
J. f(z) de.

But the converse is not true. Amn infinite integral of this
type may converge, and yet not converge absolutely.
For example, consider the integral

*sin @
j da.
0

x
The Second Theorem of Mean Value (§50) shows that this
integral converges.
For we have

*'sin @ 1(s . 1.
j TS Sde=—,| sinedr+ | sinxde,
xl m m J;I w é
where 0 <o/ = £=u".
But

Fré .
J smccdwl and

w!

are each less than or equal to 2.

gy
j sin x da
tJ ¢

Therefore i r SH; Y da 3 é 2{ ! - wl,,
4
@’

<=

Thus <e, when x >u =

fod
sin @
| g

x,

provided that X > -
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o0 -

sin @
Therefore J
0o &
1ts value is 1.

cda converges, and we shall find in § 88 that

wisinmidm

But the integral j diverges.

0
To prove this, it is only necessary to consider the integral
r”[ sin @ ‘da},
0 X

where 7 is any positive integer.

| g1 n  [rr . ,
We have j S @ ! do = j @ﬁ_l da.
0 &€ 1 (r-Dnm £
But jrn [sina| dor = J Toosiny dy,
G-Dm L “ o(r—=1)m+y ¥

on putting z=(r—1)7 4.
sin 1 (.
sina] dax > - jo siny dy

rm

Therefore j.

o-)m &L
2
>
(1% 2 i 1
Thus | sin @ |
hus jo . e > o

But the series on the right hand diverges to 0 as n—>».

Therefore Lt jm lm_nw_] dax= w

n—s> J 0

But when o >nm,
“ | sin @ o sin |
j L——% |da;>j SR e,
0

0 £
s
Therefore Lt j )ﬁm z| de=c0.
r—>w J 0 €@

When infinite integravls of this type converge, but do not con-
verge absolutely, the convergence must be due to changes of sign
in the integrand as x—w .

55. The u-Test for the Convergence of j f(x) dx.

L. Let f(x) be bounded and integrable in the arbitrary interval
(@, Oy where a>0. If there is @ number w greater than 1 such
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that a*f(x) s bounded when x=a, then j J@) de converges
absolutely. ¢

Here |a*f(x) |[<<A, where 4 is some definite positive number
and @ = «.

Thus | () ]<£;

da
But we know that j g Converges.
a v/
sl

It follows that j | f(z)| dec converges.

42
oD

Therefore j. f(@) dz converges, and the convergence is absolute.

IL. Let f(x) De bounded and integrable in the arbitrary
wterval (a, b), where a>0. If there is a number u less than
or equal to 1 such that xz:f(x) has « positive lower bound

@0

when & = a, then j fx)da diverges to «o .

a
Here we have, as before,

aif () = A >0, when o=,

. A
It follows that o =f(x).

0

da .
But L o diverges to oo when u=1.

@n

It follows that j J () dae diverges to .

a

IIL. Let f(z) be bounded and integrable wn the arbitrary
wnterval (a, b), where a>0. If there vs a number u less than or
equal to 1 such that a+f(x) has a megative wpper bound

@D

when x=a, then j f(x) de diverges to — o .

a

This follows from II., for in this case

— aif(w)
must have a positive lower bound when = = «.
But, if Lt (2#f(x)) exists, it follows that z*f(z) is bounded in
L=>w
z=a; also, by properly choosing the positive number X, 2f(x)
will either have a positive lower bound, when this limit is
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positive, or a negative upper bound when this limit is negative
provided that 2 = X.

Thus, from L-III., the following theorem can be immediately
deduced :

Let f(x) be bounded and integrable in the arbitrary interval
(a0, D), where a.>0.

If there is a number u greater than 1 such that Lt (z+f(x))
T—>w

exists, then j f(x) de converges.
If there s a mnwmber u less than or equal to 1 such

that Lt (x¢f(x)) exists and is not zero, then I f(x) dx diverges ;

XT—>wn a
and the same 18 true if xtf(x) diverges to +o, or to —w, as
L—>0 .
We shall make very frequent use of this test, and refer to
it as the “pu-test.” It is clear that we are simply compar-

w0

ing the integral L f(x) dz with the integral j %, and deducing

the convergence or divergence of the former from that of the
latter.

» 9 9
Py ) ‘ 2
Ex. 1. ] ——, da converges, since Lt (aﬂx T ‘>::-1.
o (a?+a%)? (a

L= 00

8 . ] P
2.] —— da diverges, since Lt <a;>< P ) =1,
0 (a -*— ¥ )‘ X=P 0

o

0 o
3. f mdx diverges, since Lt (x’zx
a

>0 b

-
w\&'

)J_
:I__CZ “b2'

It should be noticed that the theorems of this section do not apply

to the integral / Sin da.

56. Further Tests for the Convergence of j f(x) dx.

I If ¢(x) is bounded when x=a, and integrable in the

N

arbitrary interval (a, b), and j \//(a:)‘ dx converges absolutely,

@D a

then j ¢ () [ (2) dc s absolutely convergent.

[22
For we have |¢(x)| <A, where A is some definite positive
number and x = q.
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mso [T p@lde<al v@) s
when 2" >x">a.

Since we are given that I Jr(z) dx converges, the result
follows. ¢

smx CoS &
Ex. 1. j geearl J goee ’ du converge absolutely, when » and « are

positive

2. _/ e~ cos bz dw converges absolutely, when « is positive.

cos ma
3. f p dx converges absolutely.

II. Let ¢(xj be monotonic and bounded when x=a. Let \[(x)
be bounded and integrable im the arbitrary interval (a, b),
and not change sign more than « finite number of times in the

€n

wnterval. Also let j () d converge.

a

Then rgb(x) () da converges.

This follows from the Second Theorem of Mean Value, since
P &
|| #le) vie) do= (e[| @) dot gl i) da
where a<<a' =¢=a.
But | ¢(2’)| and | ¢p(2”) | are each less than some definite positive
number 4.
Also we can choose X so that

r V() da l and Hggb(x) da ’

are each less than ¢/24, when 2" >2"'= X, and ¢ is any given
positive number, as small as we please.
It follows that

r,,sb(m)yb(m) dxl<e, when z”" >0’ = X,

»
&

and the given integral converges.

Ex. L [ SR converges.

when a>0.
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II1. Let $(x) be monotonic and bounded when r=a, and

Lt ¢(x)=0.

Let \J/(x) be bounded and integrable in the arbitrary interval
(at, D), amd mot change sign more than a finite number of tvmes

wn the interval. Also let r Jr(2) dae be bounded when x> a.

Then j ¢ (x) (@) dx is convergent.
As above, in II., we know that
x & A
[ sty do = gl | o) dat pla)]| i) do,

where a <<a' = £=x"

But rgb(x)da; < A, when &>a, where 4 is some definite
positive nilmber.
And F’\p(x)dw = f () |+ f’@(w) da
x <2;1. )
Similarly jzux/, (@) dwl<2A.
Also Lt ¢(2)=
el

Therefore, if ¢ is any positive number, as small as we please,
there will be a positive number X such that

| ()] <ﬁ, when » = X.
It follows that

ri/g{)(m) () dm{ <e, when 2" >a"'= X,

v

and Jw ¢ () () doe converges.

sin 2 o a
Ex. 1. f / d? converge when n and a are positive.

v
2. ———sin 2 dr converges.
1 1+ a2 o
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The Mean Value Theorems for the Infinite Integral.
57. The First Theorem of Mean Value.

Let ¢(x) be bounded when »=a, and ntegrable in the arbitrary interval
(a, D).

Let () keep the same sign in v —a, and f V() dx converge.
va

Then ‘ [l i p(2)Yr(2) de= /uf{:o V() da,

where m=p =M, the upper and lower bounds of ¢(x) in x=a being M

and m.
We have m=d¢(x)=2M, when r=aqa,
and, if Y (2) =0,

() = () Y () = M (o).
Therefore m f ' Y (x)dr = [ ’ b)Y (v)de =M j ’ V(%) dz, when x=a.

But, by §56, L, [ ¢ (x) Y (x)dx converges, and we are given that
/ Y (z) dz converges.

Thus we have from these inequalities

m,fa " U@ de= [ f b Ylo) dr = /w () da.

In other words, f b(z) Y(r)de=p [ Y(x) da,

where m =p= M.
58. The Second Theorem of Mean Value.
LemMa.  Let f f(x) dax be a convergent integral, and F(x)= f f(x) dz(z=a).

Then F(x) is continuous when x = a, and bounded in the interval («, ). Also
it takes at least once in that interval every value between its upper and lower
bounds, these being included.

The continuity of F(xz) follows from the equation
x+h
F(e+h)— F(x)= -/ f(x) da.

Further, Lt #(r) exists and is zero.
Z—> 0

It follows from § 32 that #(z) is bounded in the interval (a, « ), as defined
in that section, and, if M, m are its upper and lower bounds, it takes at least
once in (a, « ) the values M and m and every value between I/, m.

Let ¢(x) be bounded and monotonic when x = a.

Let \r(x) be bounded and integrable in the arbitrary wnterval (a, b), and not
change sign more than a finite number of times 7n the interval. Also let

ron
j Y (w)dx converge.
@
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D

£
V(@) A (e >L W) do,

Then j“ b(@) v (x) dv=Pp(a+0) j

where u =& = %

Suppose ¢ () to be monotonic increasing.

We apply the Second Theorem of Mean Value to the arbitrary interval
(a, D).

Then we have

a

b £ b
j& b(2) Yr(v) de=d(a+0) ,L Vr(2) de+ ¢ (b—0) _L Y (v) de,
where @ = £ = 0.

Add to both sides B=¢(x )j Vr(x) de,
b

observing that ¢ () exists, since ¢ () is monotonic increasing in =« and
does not exceed some definite number (§ 34).

Also Lt B=0and jwqb(x) Y (x)dx converges [§ 56, IL.].
b—>w a
Then B+jb b (@) Y (x)daw
£ b ®
~pa+0)| v o+ (h-0) |y o) | piran
a & b

~s(ero)] | ooy ao |+p0-0 | peao-| vear]

+ (o )j:g//(x) de
=¢(a.+o>j:¢(m) B U+ T, vt ese s ese e 1)
where U=t 6-0) pla+0}| vy
and Tl b0 -0,y e

w

Now we know from the above Lemma that J. Y(x)dx is bounded in (a, « ).
o

Let M, m be its upper and lower bounds.

Then 7 é—[ Y (x)de = M,
¢

and m= j Y(r)de = M.
b

Therefore {p(b—0)~¢(a+0)im= U={p(b—0)—d(a+0)H,
(o) —pb-0)m=TV={p(0)-p(b-0)}M.

* Cf. Pierpont, loc. cit., Vol. 1., §654.
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Adding these, we see that

{b(0) — platOm= Ut V= {gp(0 )~ pla+ O L
Therefore U+ V=pi{p(w)—¢d(a+0)}, where m=p=MN.
Insert this value for U+ ¥ in (1), and proceed to the limit when b—>w.

Then | 400 pe)do=a+0)| Yo doiid(o) - bla+o),
where p'= Lt p.

b—>w .
This limit must exist, since the other terms in (1) have limits when b—>c.
Also, since m=p =M,
it follows that m=p =M.

But —[ () da takes the value p’ at least once in the interval (a, « ).
@

€0

Thus we may put H’zj Y (x)dz, where a =§ = w.
é/
Therefore we have finally

1) & »
[ perv0 do=p(ar )|y s pio)| pran

where a =& = . ,
It is clear that we might have used the other forms I. and III., §50, of the
Second Theorem of Mean Value and obtained corresponding results.

INFINITE INTEGRALS. INTEGRAND INFINITE.

]
59. j f(x)dx. In the preceding sections we have dealt with

@

f(z) de, r_ f(x)da and Yj f(x) dw, when

the integrand f(x) is bounded in any arbitrary interval, however
large.

A further extension of the definition of the integral is required
so as to include the case in which f(z) has a finite number of
infinite discontinuities (cf. §33) in the interval of integration.

First we take the case when a is the only point of infinite
discontinuity in (a, b). The integrand f(a) is supposed bounded
and integrable in the arbitrary interval (a+§ 0), where

a<a+E<LD.
b
On this understanding, if the integral j f(x)dax has a limit as

atg

the infinite integrals j

b b
£—0, we define the infinite integfra,lj flx)dax as Lt j f(x) da.

f—>0Ja+¢
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Similarly, when the point b is the only point of infinite dis-
continuaty n (a, b), aid f(x) is bounded and integrable in the
arbitrary wnterval («, b— &), where a<b— £<b, we define the in-

b b- &
a

finate integmclj f(x)dx as Lt j f(@) dx, when this limait exists.
&0

a

Again, when a and b are both points of infinite discontinwity,

b
we define the infinite integral j f(x)dx as the sum of the

nfinate integrals j

b
« c

f(x) dx and J () da, when these integrals
exist, as defined above, ¢ being a point between a and b.

This definition is independent of the position of ¢ between
@ and’b, since we have

j_ f(x)dxz-jc f(x)dw-(—r 1) de,
where a<<c¢'<c (cf. § 51, I1L.).
Finally, let there be a finite number of points of infinite dis-
continuaty wn the interval (a, b).  Let these points be x,, x,, ... x,,

where a =, <x,, ... <x,=b. We define the infinite integral

jb f(z) da by the equation
a
b 2y Zo b
I f(x)d.x=j f(m)dm—}-j flx)dae+ ... —|—j f(x) de,
a [22 a1 Ly
when the integrals on the right-hand exist, according to the
definitions just given. |

It should be noticed that with this definition there are only to
be a finite number of points of infinite discontinuity, and f(x) is
to be bounded in any partial interval of (@, b), which has not one
of these points as an internal point or an end-point.

This definition was extended by Du Bois-Reymond, Dini and Harnack to
certain cases in which the integrand has an infinite number of points of
infinite discontinuity, but the case given in the text is amply sufficient for
our purpose. The modern treatment of the integral, due chiefly to Lebesgue,*

has rendered further generalisation of Riemann’s discussion chiefly of
historical interest.

It is convenient to speak of the infinite integrals of this and
the succeeding section as convergent, as we did when one or other

*Cf. footnote, p. 77.
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of the limits of integration was infinite, and the terms divergent
and oscillatory are employed as before.

Some writers use the term proper wntegral for the ordinary integral
b

J S(@)dz, when f(z) is bounded and integrable in the interval (a, b), and
«

improper tntegral for the case when it has points of infinite discontinuity in
(a, b), reserving the term infinite integral for

j:f (2) da, K J(w)yda or -‘.f @y da.

French mathematicians refer to both as intdyrales géneralisdes ; Germans
refer to both as uneigentliche Integrale, to distinguish them from eigentliche
Integrale or ordinary integrals.

@0

60. j:f(x) dx. r_wf(x) dx. j

Let f{x)have infinite discontinuities at a finite number of points
in any interval, however large.
For example, let there be infinite discontinuities only at

%y, @y, ... @, in x=a, f(z) being bounded in any interval (c, b),

where ¢ >z,
Let a=w <z, ... v, <b.
Then we have, as above (§59),

f(x) dx.

ﬁf(w) Clm"z rlf(w) o+ j‘”ﬂf(iv) dz+... +jc fl(x) dac—l—ﬁf(m) de,

a “ Tn

where x,<c<b, provided that the integrals on the right-hand
side exist.

It will be noticed that the last integral jb f(x) de is an ordinary
integral, f(«) being bounded and integraublec in (¢, ).

If the integral jj f(x) da also converges, we define the infinite

integral j f(x)da by the equation :

a

rf(a;) dx = j

a

X

1f(m) dw—l—rzf(m) dr+ ...+ _r f(x) dw—}—rf(x) dz.

It is clear that this definition is independent of the position
of ¢, since we have

r F(x) Cloc-l—j

Ly,

where @, <c <.
C. I H

) o 0

c' f(a;) = J"r f(m) dm‘l’j(‘ f(w) (Z.T,
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Also we may write the above in the form

jj(w)da, jb f(a,)da:-}—j f(zc)dx—}-...-{-j:lf(w)dw.

1

~ The verbal alterations required in the definition of j f(x) da

are obvious, and we deﬁnej 'f(a;)c‘lm, as before, as the sum of

f(x)dz and jw f(x).

It is easy to show that this definition is independent of the
position of the point «.

the integrals r

- oC

b
61. Tests for Convergence of j f(x)dx. It is clear that we

need only discuss the case when there is a point of infinite dis-
continuity at an end of the interval of integration.
If x=a is the only point of infinite discontinuity, we have
r Fl@)de= Tt r F) e,
a E—=>0Ja+t&
when this limit exists,
It follows at once, from the definition, that :

b
L. The integral j f@) dax is convergent and has the valwe I

when, any positive number ¢ having been chosen, as small ws we
please, there is a positive number y such that

I—jb flx) da

<e, provided that 0 <=y

at§&
And further:
II. A mecessary and sufficient condition for the convergence

b
of the @'ntegralv[ f@) de is that, if any positive number ¢ has

been chosen, as small as we please, there shall be « positive
number y sweh that

'}ja% ) da

a+&"”

<e when 0<E"<CE=

b
Also, if this infinite integral J. f(x) da converges, we have

{1

j J(x) (Zx-—J f(z) JCU-I—jf(w)dx, 0L,
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It follows from I. that, if j f(x) dx conver ges, to the arbitrary

positive number e, there corresponds a positive number 5 such that

r f(x) de ‘ <e when 0<(x—a)=y

Absolute Convergence. 7he infinite integral J f(x) dx 18 said

12

to be absolutely conwvergent, if f(x) is bounded and integrable
e the arbitrary interval (a+§ D), where 0 ELb—a, and

b
j | f(x) | da converges.

It follows from II. that absolute conv ergence carries with it
ordinary convergence. But the converse is not true. An infinite
wntegral of this kind may converge, but not converge absolutely,™
as the following example shows.

An example of such an integral is suggested at once by § 54.

1 w3 N
Tt is clear that / sin 1/a dx
0 x

converges, but not absolutely, for this integral is reduced to

* sinx

x

by substituting 1/z for .

b
Again, it is clear that j (m_l e converges, if 0<n<1.

For we have

b y
j d.]? 1 . {(b—-CL)l"“—gl'"}.

ate (T —a)? T1-m

de  (b—a)t-»
Therefore gLfo L+§ o~ T—m when 0 <<n<1.

Also the integral diverges when n =1.

From this we obtain results which correspond to those
of §55.

III. Let f(x) be bounded and integrable in the arbitrary
interval (a+& b), where 0 E<b—a. If there is a number
between 0 and 1 such that (x— a)*f(x) 1s bounded when a << =05

b
then j f(x) dx converges absolutely.

*Cf. §43, V.; §47, Cor. I.; and § 54.
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Again,

IV. Let f(x) be bounded and integrable in the arbitrary
wterval (a+§& b), where 0<E<b—a. If there is a nuwmber
o greater tham or equal to 1 such that (x—a)+f(x) has «
positive lower bound when a<<ax=0b, or a megalive wpper

b ,
bound, then[ f(x) dx diverges to +o in the first case, and to

— o0 2m the second case.
And finally,

V. Let f() be bounded and integrable in the arbitrary interval
(a+& b), where 0<<E<b—q.

Ifthere is @ number u between 0 and 1 such that Lt (x—a)*f(a)
b c—>a+0
exists, them j f(x) dx converges absolutely.

If there vs a number u greater than or equal to 1 such that
b
Lt (z—a)=f(x) exists and s not zero, then j f(x) de diverges;
t—>a+0 a
and the same 1s true if (x —a)*f(x) tends to +w, or to —w , as
r—>a -4 0.
We shall speak of this test as the u-test for the infinite integral
b
j fle)dx, when x=q is a point of infinite discontinuity. It is

clear that in applying this test we are simply asking ourselves
the order of the infinity that occurs in the integrand.

The results can be readily adapted to the case when the upper
limit b is a point of infinite discontinuity.

Also, it 1s easy to show that

VI. If ¢(x) is bounded and integrable im (a, b), and

b b
j V() da converges absolutely, th(mj ¢ (@) () da s absolutely

convergent. (Cf. §56, 1)

The tests given in IIL.-VI. will cover most of the cases which
we shall meet. But it would not be diflicult to develop in detail
the results which correspond to the other tests obtained for the

convergence of the infinite integral j Sz de.

b
No special discussion is required for the integral j flz) de,

42

when a certain number of points of infinite discontinuity occur
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w A

() da, andj F(z)dwx, as detined

-

in («a, b), or for j fla) da, r

a -

n §60. These integrals all reduce to the sum of integrals of
the types for which we have already obtained the required
criteria.

We add some examples illustrating the points to which we
have referred.

t
Ex. 1. Prove th%t/ (1+ )\/ converges and that /

i diverges.
0 2(142) &

. . 1
(1) Let ](@):W.
Then Lt N f(2)=1.

a—>0

1 I

The p-test thus establishes the convergence of /0 U—Td’%\/_ﬂ .
(i) Let =515y
Then Lt @ f(2)=1.

x->0

Therefore the integral diverges by the same test.
1
: T sin w
Ex. 2. Prove that gRED dax converges, when 0 <n < 1.
Jo

The integral 1s an ordinary ﬁnite integral if n =0,

Also Lt wn<sm L> _

d4n
x—>0 att

Therefore the integral converges when 0<n<1.

It diverges when
nw=1.

Ex. 3. Prove that ] converges.
NA z(l— V) °

The integrand has infinities at =0 and v=1.
We have thus to examine the convergence of the two infinite integrals
a da [ ! d
o TEaA . Sy
where « is some number between 0 and 1.
The p-test is sufficient in each case.

dx ) 1,
———————converges, since Lt {22 f(2) =1
/(; \/{J(/(l -—-.Z)} g€s, o0 U f( )f )

! dx . 1.
e 2 Oy — 2 y —
fa T =] converges, - since th_o((l x)? f(z))=1,

where we have written f(a)=

fo(l Jiz(I—z)}
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i
Ex. 4. Show that [ log sin & do converges and is equal to — 47 log 2.
JO

The only infinity is at #=0, and the convergence of the integral follows
from the p-test.

Further,
- -
f log sin 2 dwzﬂj log sin 22 dw
0 0
3T T
= log 2—1—2/ log sin a,da,+2-/ log cos & dx
v 0
Ir
=7log2+ 4/ log sin & da.
0
T 3
But _/ log sin & do = 2/ log sin o da.
0 0
I
Therefore { log sin @ do= — 4w log 2.
JO

From this result it is easy to show that the convergent integrals

J log (1 —cosa)d2 and f log (14-cos @) dw
0 0

are equal to —m log 2.

Ex. 5. Discuss the convergence or divergence of the Gamma Function
R
integral f e~ duw.
0
(i) Let n=1.
Then the integrand is bounded in 0<2 =a, where « is arbitrary, and we
=" )
0
need only consider the convergence of f e~ """t da.
a

The p-test of §55 establishes that this integral converges, since the order
of ¢® is greater than any given power of .
Or we might proceed as follows :

2
Since e*=1 +x+% +ny
. "
when 2 >0, et > o (r=any positive integer),
!
and e~ < Wl

But whatever # may be, we can choose # so that » —n+1>1.
It follows that, whatever # may be,

70

j e~ dw converges.
a

(i) Let 0 <n < 1.

In this case ¢~®2"~! has an infinity at 2=0.

(1
The p-test shows that / e~“a"1dz converges, and we have just shown that
ks JO

f e~%4""1dx converges.
1
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Therefore fo
0
(iii)) Let n=0.

In this case e~*2»*~! has an infinity at 2=0, and the p-test shows that

e~ 1dx converges.

1
[ e~ dx diverges to +oc.

JO

1
Ex. 6. Discuss the integralf 2" og o da.*
0
Since Lt (¢"log2)=0, when >0, the integral is an ordinary integral,
x—>0
when n > 1.
Also we know that

fl logxdx:[w(logx— l):]l‘ =x2(1—-loga)—1.

1
It follows that fo logade= 1Lt {v(1 -logw)—1}=—1.

x—>0

Again, Lt (erxan-llogz)= Lt (axtn-llogx)=0, if p>1-n
>0

x—>0
And when 0 <n<1, we can choose a positive number p less than 1 which
satisfies this condition.
1
Therefore / 2"1og # dx converges, when 0 <n =1.
0 .
Finally, we have

Lt (zx 21| loga|)= Lt 2"|loga|=qw, when n=0.
—>0 a—>0

~

1
Therefore / 2" tog 2 dr diverges, when n=0.
J0
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EXAMPLES ON CHAPTER IV.

1. Show that the following integrals converge

[[Losine g, /ML de, | e da,
Jo 14-cosw4¢° 1 142423 4-sine 0

Y

"1 - 71
/ e~ cosh bz d, ] log & dz, log v -
Jo o 142 o 1—a2

2. Discuss the convergence or divergence of the following integrals
K d

[} (= a)J(b— ) /;—ﬁdr /

70

u,l

d@ where 0 <ec <1,
x.__.

© a1 © -l 5
[ —f f dz, / sin™ @ cos™ 6 6.
Jo x+1 0o x—1 0

3. Show that the following integrals are absolutely convergent

~

/b . 1 dx
sin~ —,
Jo AN

A AW
/ e~ cos ba d, f e~ amsin na de (m>0),
0 0

and /a SE%; da,

where ’(») is a polynomial of the m™ degree, and ¢)(x) a polynomial of the
th

degree, n—m+2, and « is a number greater than the largest root of
(g(a,) 0.

4. Let f(2) be defined in the interval 0<<o =1 as follows

f(x):‘l) }?<‘7§l}a f(x):”‘f): <z =4,

and so on, the values being alternately positive and negative

1
Show that the infinite integral [ Jf(z)da converges, but not absolutely
Jo

5. Using the substitution 2=e-%, show that

1
f 2" 1(log &) dx
0

converges, provided that n >0 and »> -1

And by means of a similar substitution, show that

fale o]
j a™=1(log x)*du
1

converges, provided that m <0 and 2> —1

6. Show that j

(log a,)l + converges when p>0 and that it diverges

when p=0, the lower limit « of the integral being some number greater than
unity.

Deduce that if there isa number p > 0, such that Lt {@“(log @) f(2) ) exists,
then f f(x)dz converges, and give'a cor respondlng test for the divergence of
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this integral, f(+) being bounded and integrable in any arbitrary interval
(a, b), where b> a.

cos &
Show that ] - 5 da converges,
2 (z+sin?2)(log #)
fe o}
dx .
and / — diverges.
2 (24sin?2)log 2

7. On integrating /: cos 2 log # dv by parts, we obtain

* . T sin @
f cos v log v de=sina log a — /1 o da.
1 J &

Deduce that [1 cos # log # d.v oscillates infinitely.

1 2 U I
: sin @
Also show that / cos v log » do converges, and is equal to — / —Zda,
0 Joo &
!

8. On integrating , cos 2*dx by parts, we obtain

v

! . 1 sm @
[ cos x‘dx=W sin a2 — sm a2 +2 f

Jal

where 2" > 2’ > 0.

Deduce the convergence of J cos wda.
0

9. Let f(x) and g(+) be bounded and integrable in (a, b), except at a
certain number of points of infinite discontinuity, these points being different
for the two functions.

b W
Prove that f f(@)g(2)dz converges, if f | f(#
converge. ¢ -

10. Let /() be monotonic when #=a, and Lt f(x)=0.

X—>0

Then the series JS@)+fle+1)+fla+2)+...

is convergent or divergent according as f f(2)dx converges or diverges.
a
Prove that for all values of the positive integer #,

2\/(7a+1)~2<~/i1+ ! —1—<2,\/n—1.

NN

1 1 1
Also sl thy s T
SO show At 2«/1+3~/2+4\/3m

converges to a value between 4 (7w +1) and .



CHAPTER V

THE THEORY OF INFINITE SERIES, WHOSE TERMS ARE
FUNCTIONS OF A SINGLE VARIABLE

62. We shall now consider some of the properties of series
whose terms are functions of z.
We denote such a series by

wy (@) 2wy () +ug(@) + ...
and the terms of the series are supposed to be given for values
of x in some interval, e.g. (a, b).*
When we speak of the sum of the infinite series

wy (@) 4wy () +wg() + ...
it 1s to be understood : T

(1) that we settle for what value of z we wish the sum of
the series;
(i1) that we then insert this value of « in the different terms
of the series;
(i11) that we then find the sum—s¢S, (z)—of the first n terms;
and
(1iv) that we then find the limit of this sum as n—>w, keeping
x all the time at the value settled upon.
On this understanding, the series
wy (@) + uy () +uy (@) + ..
18 said to be convergent for the valwe z, and to have f(x) for its
sum, if, this value of & having been first inserted in the different

* As mentioned in §24, when we say that « lies in the interval (a, b) we mean
that e =2 =0. In some of the results of this chapter the ends of the interval
are excluded from the range of . When this is so, the fact that we are dealing
with the open interval (@ < x<b) will be stated.

+ Cf. Baker, Nature, 59, p. 319, 1899.
122-
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terms of the series, and any positive nwmber e having been
chosen, as small as we please, there is a positive integer v such that
| flx) = Sp(z) | <e, when n=y.

Further,

A necessary and sufficient condition for convergence is that,
if any positive number e has been chosen, as small as we please,
there shall be a positive integer v such that

| Sip(@)=Sp(2) | <e, when n=y,
for every positive integer p.

A similar convention exists when we are dealing with other limiting

processes. In the definition of the differential coefficient of f(x) it is under-

stood that we first agree for what value of @ we wish to know f'(»); that we
then calculate f(v) and f(x+4) for this value of x; then obtain the value of

i (w"'ﬁ]z A ; and finally take the limit of this fraction as /—s0.

5
Again, in the case of .the definite integral f f(@, a)dz, it is understood

that_we insert in f(z, a) the particular value of a for which we wish the
integral before we proceed to the summation and limit involved in the
integration.

We shall write, as before,

J (@)= 8u(®) = Ru(®),
where f(x) is the sum of the series, and we shall call R, (x) the
remainder after n terms.
As we have seen in § 19, R, (2) 1s the sum of the series

U (@)t 5 (@) 104y (2) e

Also we shall write

pLon(@) = Sy p(@) — S, (),

and call this a partial remainder.

With this notation, the two conditions for convergence are

(i) | Ry(x) | <e, when n=v;

(i1) |y B, () | <e, when m=y,
for every positive integer p.

A series may converge for every value of » in the open interval ¢ <2 <b

and not for the end-points a or b.
£.g. the series 14+z4224...

converges and has for its sum, when —1 <2z < 1.

—

When #=1, it diverges to + o ; when #= —1, it oscillates finitely.
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63. The Sum of a Series whose Terms are Continuous Func-
tions of x may be discontinuous. Until Abel * pointed out that
the periodic function of x given by the series

2(sinz—1sin 22+ 1 sin 3z —...),

which represents o in the interval — 7 <z <, is discontinuous
at the points z=(2r+1)m, r being any integer, it was supposed
that a function defined by a convergent series of functions,
continuous in a given interval, must itself be continuous in
that interval. Indeed Cauchy ¥ distinctly stated that this was
the case, and later writers on Fourier's Series have sometimes
tried to escape the difficulty by asserting that the sums of these
trigonometrical series, at the critical values of «, passed con-
tinuously from the values just before those at the points of
discontinuity to those just after.:

This mistaken view of the sum of such series was due to two
different errors. The first consisted in the assumption that, as »
increases, the curves y=¢S,(z) must approach more and more
nearly to the curve y=f(z), when the sum of the seriesis f(x),
an ordinary function capable of graphical representation. These
curves y=S,(x) we shall call the approximation curves for the
series, but we shall see that cases may arise where the approxi-

mation curves, even for large values of n, differ very considerably
from the curve y =f(x).

It 1s true that, in a certain sense, the curves
(1) y=28u(z) and (i) y=f(=)

approach towards coincidence ; but the sense is that, if we choose
any particular value of = in the interval, and the arbitrary small
positive number ¢, there will be a positive integer v such that, for
this value of @, the absolute value of the difference of the ordi-
nates of the curves (1) and (i1) will be less than ¢ when n = y.

Still this is not the same thing as saying that the curves
coincide geometrically. They do not, in fact, lie near to each
other in the neighbourhood of a point of discontinuity of f(x);
and they may not do so, even where f(x) is continuous. '

* Abel, J. Math., Berlin, 1, p. 316, 1826.

1 Cauchy, Cours d’Analyse, 1 Partie, p. 131, 1821. Also Guvres de Cauchy,
(Sér. 2), T. IIL., p. 120.

I Cf. Sachse, loc. cit.; Donkin, Acoustics, p. 53, 1870.
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The following examples and diagrams illustrate these points :
Ex. 1. Consider the series

X X
:)?—}—1+(.z'+1)(2x+ 1)+'" ’

1 1

I_{ 11 ) D1 i
ere (@) (n-1a+1 ar+1’
1

and P)=1—-— " .
Su()=1 nr4+1

Thus, when >0, Lt S,(z)=1;

N~—>0

when 2 =0, Lt 8,(2)=0, since &,,(0)=0.

N—>0 B

2= 0.

The curve y=7#(x), when & = 0, consists of the part of the line y =1 for which
# >0, and the origin. The sum of the series is discontinuous at 2=0.
Now examine the approximation curves

1
ne+1

Y==Su(r)=1-

This equation may be written

1 1
-D{e+1)=-.
As n increases, this rectangular hyperbola (cf. Fig. 10) approaches more and
more closely to the lines y=1, #=0. If we reasoned from the shape of the

Y

1 1 ﬁ_—_——t X

) -1 0 1 2

16, 10,

approximate curves, we should expect to find that part of the axis of y for
which 0 <7 <1 appearing as a portion of the curve y=f(x) when 2=0.

As 8y(x) is certainly continuous, when the terms of the series are comn.
tinuous, the approximation curves will always differ very materially frem
the curve y=7(«), when the sum of the series is discontinuous.
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Ex. 2. Consider the series
(@) Fug(w) fug(2) + ..., %ZZ 0,

nw (n—1)a

vhere (X)) = NI
' ) 1+2222 14 (n—1)%?
. na
In this case Sp(2)= T
and Lt S,.(2)=0 for all values of =.
Ne>0

Thus the sum of this series is continuous for all values of 2, but we shall
see that the approximation curves differ very materially from the curve
y=f(») in the neighbourhood of the origin.

Y
:5
0 5 1.0
Fie. 11,
The'curve — —__
?/ S“ (x) 1 + 7?/2."0'2

has a maximum at (1/z, §) and a minimum at (- 1/n, —1) (cf. Fig. 11). The
points on the axis of # just below the maximum and minimum move in
towards the origin as » increases. And if we reasoned from the shape of the
curves y=4:,(x), we should expect to find the part of the axis of y from —1
to § appearing as a portion of the curve y=/f(x).

Ex. 3. Consider the series
w () Fug(w)+ug(2)+..., x % 0,

n4r (n—1)2
\Vhel’e )y=———5", — I T 7 TXa-9°
U () L4+ndz? 14-(n—1)%*
2.0
Here S ()=
Su() 1 +nia?’
and Lt S,(x)=0 for all values of .
N—>n0

_The sum of the series is again continuous, but the approximation curves
-(¢f. Fig. 12), which have a maximum at (1/5/#3, $/2) and a minimum at



ARE FUNCTIONS OF A SINGLE VARIABLE 127
(—1/J?, —3dn), differ very greatly from the curve y=f(x) in the neigh-
bourhood of the origin. Indeed they would suggest that the whole of the
axis of  should appear as part of y=f(z).

J
1-51

1-04

X
0 5 1.0
F1g. 12

64. Repeated Limits. These remarks dispose of the assump-
tion referred to at the beginning of the previous section that the
approximation curves y =8,(x), when n is large, must approach
closely to the curve y=f(x), where f(x) is the sum of the series.

The second error alluded to above arose from neglect of the
convention implied in the definition of the sum ofgan infinite
series whose terms are functions of x. The proper method of
finding the sum has been set out in § 62, but the mathematicians
to whom reference is now made proceeded in quite a different
manner. In finding the sum for a value of z, say x,, at which
a discontinuity occurs, they replaced « by a function of %, which
converges to x, as n increases. Then they took the limit when
n—>0 of §,(x)in its new form. In this method = and n approach

their limits concurrently, and the value of Lt S,(x) may
{r—>mwy, n—>w }

quite well differ from the actual sum for xz=x, Indeed, by
choosing the function of » suitably, this double limit may be
made to take any value between f(x,+0) and f(x,—0).
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For instance, in the series of § 63, Ex. 1,

a

X ’
PO R PR Y

we have seen that =0 is a point of discontinuity.
If we put z=p/n in the expression for S,(z), and then let

n—>», p remaining fixed, we can make Lt S,(x) take any
{a—>0,n—>» }
value between 0 and 1, according to our choice of p. For we

..., =0,

have S,(p/n) =]3f_ I which 1s independent of n, and

R
{Hgf f%?”(w) p+T
which passes from 0 to 1 as p increases from 0 to .

It will be seen that the matter at issue was partly a question
of words and a definition. The confusion can also be traced, in
some cases, to ignorance of the care which must be exercised in
any operation involving repeated limits, for we are really dealing
here with two limiting processes.

If the series is convergent and its sum is f(x), then

flx)= Lt S,(»),

N—>w0

and the limit of f(x) as = tends to @,, assuming that there is such
a limit, is given by

Lt f(z)= Lt [Lt Su(@)] worrreerrrernennns (1)

T—>x, T—>xy N—>w

If we may use the curve as an illustration, this is the ordinate
of the point towards which we move as we proceed along the
curve y = f(x), the abscissa getting nearer and nearer to x,, but
not quite reaching w,. According as = approaches a, from the
right or left, the limit given in (1) will be f(z,+0) or f(x,—0).

Now f(x,), the sum of the series for @ =w,, is, by definition,

Lt [Su(y)],

n—0
and since we are now dealing with a definite number of con-
tinuous functions, S,(x) is a continuous function of z in the
interval with which we are concerned.
] Y p— )
Thus Su(zy)= Lt S, (2).

r—>x)
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Therefore the sum of the series for x =z, may be written
Lt [Lt Sp()]. oo (2)

n—>w  —>x,
The two expressions in (1) and (2) need not be the same. They
are so only when f(x) is continuous at x,.

65. Uniform Convergence.* When the question of changing
the order of two limiting processes arises, the principle of uniform
convergence, which we shall now explain for the case of infinite
series whose terms are functions of a, is fundamental. What is
involved in this principle will be seen most clearly by returning
to the series @ @

=
m+1+(w+1)(2x+1)+"" 2=0.
: . 1
q .
In this series Sp(z)=1 pryma
and Lt S,(x)=1, when z>0.
N—>n0

Also R, () =n71ﬁ’ when >0, and R, (0) =0.

If the arbitrary positive number e is chosen, less than unity,

and some positive x is taken, it is clear that 1/(nz+1) <e for a
positive m, only if 1 ;
n>5 ..
@

1
E.g. let €= i—(m—.
If #=0-1, 001, 0001, ..., 1072, respectively, 1/(nz+1) <e only when
7n>10% 10, 106, ..., 10+,

And when e=
H(nze+1)<e.

As we approach the origin we have to take more and more terms of the
series to make the sum of » terms differ from the sum of the series by less

than a given number. When x=107%, the first million terms do not
contribute 1% of the sum.

1 .
10q+1, &nd 177:10‘-2)’ n lllllSt be grea‘ter tlla;n 10p+q ]f

o1

' The inequality | n>-€-—m——

shows that when ¢ is any given positive number less than unity,

* The simplest treatment of uniform convergence will be found in a paper by
Osgood, Bull. Amer. Math. Soc., 3, 1896.
C I T
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and @ approaches nearer and neaver to zero, the smallest positive
integer which will make R, (x), R, (%), ... all less than ¢ increases
without limit.

There is no positive integer y which will make R, (), R,i1(x), ...
all less than this ¢ in @ =0, the same v serving for all values of «
wn this range.

On the other hand there is a positive integer » which .will
satisfy this condition, if the range of z is given by «= a, where
a is some definite positive number.

!

Such a value of v would be the integer next above <1—-1> / a.

€
Our series is said to converge uniformly in x=a, but it does
not converge uniformly in x =0.
We turn now to the series

wy () + Uy () + Ug(@) +- ..., )
and define uniform convergence * in an interval as follows:
Let the series Wy (@) + () +ug(z)+ ...

converge for all values of x in the interval o =x=b and its
sum be f(x). It s said to converge uniformly in that interval, if,
any positive number e having been chosen, as small as we please,
there is a positive integer v such that, for all values of x in the
interval, | f() =S, (z) | <e, when n=yp.t

It is true that, if the series converges, | R, (x) |< e for each « in
(&, b) when 1 = . |

The additional point in the definition of uniform convergence
is that, any positive number ¢ having been chosen, as .small as
we please, the same value of v is to serve for all the valwes
of « in the interval.

For this integer v we must have

R, ()|, |Bia(z)], ...

all less than e, no matter where « lies in (a, b).

*The property of uniform convergence was discovered independently by Stokes
(cf. Cambridge, Trans. Phil. Soc., 8, p. 533, 1847) and Seidel (cf. Miinchen, Abh.
Ak. Wiss., 5, p. 381, 1848). See also Hardy, Cambridge, Proc. Phil. Soc. 19,
p. 148, 1920. ‘

t+ We can also have uniform convergence in the open interval a < x << b, or the
half-open intervals a <@®=0b, a =x<b; but, when the terms are continuous
in the closed interval, uniform convergence in the open interval carries with it
uniform convergence in the closed interval (cf. § 68).
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The series does not eonverge uniformly in («, b) if we
know that for some positive number (say ) there is no
positive integer v which will make

| By(x)|, |B,a(@)|, ...

all less than ¢, for every « in («, b).
It will be seen that the series

@ @

s +1 T @+ )Ze+ 1)
converges uniformly in any interval ¢ =x =0, where «, b are any
given positive numbers. |

It may be said to converge infinitely slowly as « tends to zero,
in the sense that, as we get nearer and still nearer to the origin,
we cannot fix a limit to the number of terms which we must
take to make [R,(xz)|<e. It is this property of infinitely slow
convergence at a point (e.g. x,) which prevents a series converging
uniformly in an interval (z,— 6, z,+4) including that point.

Further, the above series converges uniformly in the infinite
interval x=c, where a is any given positive number.

It 1s sometimes necessary to distinguish between uniform con-
vergence in an infinite interval and uniform convergence in a
fized interval, which may be as large as we please.

The exponential series is convergent for all values of z, but it
does not converge uniformly in the infinite interval « = 0.

For in this series B,(x) is greater than #”/n!, when x is positive.

Thus, if the series were uniformly convergent in =0, z"/n!
would need to be less than ¢ whenn =v, the same v serving for
all values of # in the interval. .

But it is clear that we need only take x greater than (v!e) to
make R,(x) greater than e for 2 equal to ».

However, the exponential series is uniformly convergent in the
interval (0, b), where b is fixed, but may be fixed as large as we
please. |

For take ¢ greater than 6. We know that the series converges
for x=c.

Therefore R,(c)<e, when n—y.

But R, ()< Ry(c), when 0=z=0b<c.

Therefore R,(r)<e, when =y, the same » serving for all
values of z in (0, 0).

+...
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From the uniform convergence of the exponential series in the
interval (0, b), it follows that the series also' converges uniformly
in the interval (—0, D), where in both cases b is fixed, but may
be fixed as large as we please.

Ex. 1. Prove that the series
14+a+4224...

converges uniformly to 1)(1 —2) in 0 Z v =<1,

Ex. 2. Prove that the series

(1-2)+e(-2)+22(01-2)+...

converges uniformly to 1 in 0 =z =< 1.

Ex. 3. Prove that the series

(1 —-2)+2(l—2)2+22(1 -2 +...

converges uniformly to (1—-2) in 0 =r=1.

Ex. 4. Prove that the series

L S S
1422 2422 342a%

converges uniformly in the infinite interval »=0.

Ex. 5. Prove that the series

1.2 2.3+3.4+"'

converges uniformly in the interval (0, b), where & is fixed, but may be fixed
as large as we please, and that it does not converge uniformly in the infinite
interval « = 0.

-+

66. A necessary and sufficient condition for Uniform Con-
vergence. When the sum f(«) is known, the above definition
often gives a convenient means of deciding whether the con-
vergence is uniform or not.

When the sum is not known, the following test, corresponding
to the general principle of convergence (§15), is more suitable.

Let wy (@) +uy (@) + g () 4+ ...
be am infinite series, whose terms are given in the interval (a, b).
A mecessary and sufficient condition for the wniform con-
vergence of the series im this intervael is that, if any positive
number e has been chosen, as small as we please, there shall be a
positive integer v such that, for all values of x in the interval,
| pBa(x)|<e, when n=y, for every positive integer p.
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(1) The condition 1s necessary.

Let the positive number ¢ be chosen, as small as we please.
Then take ¢/2.

Since the series is uniformly convergent, there is a positive
integer v, such that

| f(2) <9,when n=y,

the same v serving for all values of @ in (a, b), f(x) being the sum
of the series.
Let n”, n’ be any two positive integers such that n”>n'=

Then I Sn”(w) - Sn’(“) l = l Sn”<w) —f<w) ' + lf(w) — Sn’(w) l
€ €
< 3 + 5
<e
Thus |S,.,(x)—8,. ()| <e, when n=y, for every positive
integer p, the same v serving for all values of « in (a, D).

(i) The condition is sufficient.

We know that the series converges, when this condition is
satisfied.

Let 1ts sum be f(x).

Again let the arbitrary positive number ¢ be chosen. Then
there 1s a positive integer v such that

| Spqp (@) =8, () | < —5—, when n =y, for every positive integer p,

the same » serving for all values of z in (a, b).

Thus S, (x)— % <8, (@) < S, (%) + %
Also Lt S, p(x)=f(2).

p—>o
Therefore Sy(®) — = =f() = S, (2)+ §

But | 8,(@)—f@) | =] Sal@) =8, ()| + | S, (@) = f() .

It follows that, when n is greater than or equal to the value v
specified above,
| S (@) —f(a |< +—
<e

and this holds for all values of « in (a, b).
Thus the series converges uniformly in this interval.
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67. Weierstrass’s M-Test for Uniform Convergence. The
following simple test for uniform convergence is due to
Weierstrass :

The series wy (@) 4 wg () +ug ()4 ...

will converge uniformly in (a, b), if there 1s a convergent series
of positive constants

M +M,+M,+...,
such that, no matter what value @ may have in («, b),
\wn () | = M, for every positive integer mn.
Since the series M, +M,+M,+...
is convergent, with the usual notation,
Mn+1 + j”nJrz +...o+ jwnﬂ) <
when m =y, for every positive integer p.
But |, B(@)| =ty (@) |+ e (@) [+ oo [ 2040 () ]
Thus |, R.(@)| =M, +M ot ...+ M, .,
<e, when n =y, for every positive integer p,
the inequality holding for all values of « in (ct, D).

Thus the given series is uniformly convergent in («, b).
For example, we know that the series

14+2a+3a2+...
is convergent, when « is any given positive number less than
unity.
It follows that the series
14 2x4-32%4...

is uniformly convergent in the interval (—«, a).

Ex. 1. Show that the series
zcos @+ a?cos 204 a3 cos 30+ ...

is uniformly convergent for any interval (4, #1), where —1<a,<x;<1 and
@ is any given number.

Ex. 2. Show that the series
208 G+ x2cos 20+ a3 cos 360 +...

xz? &’
and 2 cos 6+ 2—00829+§COS39+...

are uniformly convergent for all values of ¢, when || is any given positive
number less than unity.
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This theorem leads at once to the following result:

A series 1s absolutely and uniformly convergent im an interval,
when the absolute values of its terms in the interval do not exceed
the corresponding terms of a convergent series whose terms are
all positive and independent of w.

It should be noted that Uniform Convergence does not imply
Absolute Convergence.

11 1

1+a® 240 3427 7

is not absolutely convergent; but it is uniformly convergent in
the infinite interval 2= 0.*

Also a series may be absolutely convergent without being
uniformly convergent.

.. the series m2+

Eg. (1—z)+z(l—-2)+2*(1—2a)+...
is absolutely convergent in the interval —c¢ == =1, where
—1<—-c<0,

but it is not uniformly convergent in this interval.

68. Uniform Convergence of Series whose Terms are Con-
tinuous Functions of x. In the previous sections dealing with

uniform convergence the terms of the series have not been
assumed continuous in the given interval. We shall now

prove some properties of these series when this condition is
added.

L. Uniform convergence vmplies continwity in the swm.
If the terms of the series
Wy (@) + uy (@) + 1wy () + ...
are continuous wm (a, b), and the series converges uniformly to
fl@) in this interval, then f(x) is a continuwous function of x
wm (a, D).
Since the series converges uniformly, we know that, however

small the positive number ¢ may be, there is a positive integer ,

such that ' ¢
lf(m)—sn(x) } < 3’ when n = v,

the same v serving for all values of « in (, b).

IR, (v) | <

1 , for all values of .
n+1



136 THEORY OF INFINITE SERIES, WHOSE TERMS

Choosing such a value of n, we have

J(@) =8, (x)+ Ry (),
where | R, (z)| < ¢/3, for all values of z in (a, b).
Since S, (x) is the sum of n continuous functions, it is also
continuous in (a, b).
Thus we know from § 31 that there is a positive number 5 such

that ¢
| S (') = S () | <§’

when z, 2" are any -two values of « in the interval («, b) for which
l x' —x ] = n

But f(@) =8, ()4 R, (),
where | R, (2| <e/3.

Also J(@')=F(@)=(Sp(x) = Su(x))+ R, (2') — B, ().

Thus |[f(2')—f(z)| =[S (@) = Su(2) [+ "Rn(wl) |+ | R () .

€ € €
<e, when |2’ —z|=y
Therefore f(x) is continuous in («, b). .

II. If & series, whose terms are continuous fumctions, has
discontinuwous sum, it camnot be uniformly convergent in an
wmterval which contains a point of discontimuaty.

For if the series were uniformly convergent, we have just seen
that its sum must be continuous in the interval of uniform
convergence.

IT11. Uniform convergence is thus a sufficient condition for
the continuity of the sum of a series of contimuwous functions.
It s mot a necessary condition ; since different non-uniformly
convergent series are known, which represent cont@nuous
Sfunctions in the interval of non- u%%fofrm convergence.

For example, the series discussed in Ex. 2 and Ex. 3 of §63
are uniformly convergent in = >0, for in both cases

'Rn(%)l<—— 3@%’ when z=a>0.

nw

Thus | B,(x)|<e, when m>1/ae, which is independent
of .
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But the interval of uniform convergence does not extend up to
and include =0, even though the sum is continuous for all
values of «.

This is clear in Ex. 2, where R, (ac)——-——a—1 -:2?2902’ for if 1t is

asserted that | R, (x) | <e, when n =y, the same y serving for all
values of  in =0, the statement is shown to be untrue by
pointing out that for z=1/y, R, (x)=1/2, and thus |R,(z)|<e,
when n =y, right through the interval, if e<{1/2.
)=1%f3x2’ if it is asserted that
| B, (x) | <<e, when 1 =y, the same y serving for all values of z in
=0, we need only point out that for x=1//i% R, (z)=1%1/"
Thus |R,(x)|<e when n =y, right through the interval, if
e<1/2.

There 1is, in both cases, a positive integer » for which
R, (1/m)<<e<1/2, when n =y, but this integer'is greater than
1/m.

Thus it is clear that the convergence becomes infinitely slow
as x—0.

Similarly in Ex. 8, where R, (z

IV. If the terms of the series are continwous wn the closed
wnterval (a, b), and the series converges uniformly in a<x<b,
then it' must converge for x=a and x=">b, and the uniformity
of the convergence will hold for the closed interval (a, b).

Since the series is uniformly convergent in the open interval
a<x<b, we have, with the usual notation,

;»S'm(w)—Sn(w)]<7§, when m>n=v, ..........(1)

the same v serving for every @ in this open interval.
Let m, n be any two positive integers satisfying this relation.
Since the terms of the series are continuous in the closed
interval (a, b), there are positive numbers 5, and 5,, say, such that

| Si() = S(c) ]<§, when 0 =(z—a)=y,,

and | Sh(z)—S,(a) \<—§—, when 0=(x—a)=y,.
Choose a positive number 5 not greater than s, or z,, and
let 0=(z—a)=y.
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Then 1S, (CL)—SN(OI/)\
= Su(a) = Sn(@) | 4| Sin(@) = Su(2) |+ Su(z) — Snla) |

<gtgts

<e, when m>N=p v 2)
A similar argument shows that

| Sp (D) —=8Sn(b)|<<e, when m>n=p. ............(3)

From (2) and (3) we see that the series converges for x=a
and z=0, and, combining (1), (2) and (3), we see that the con-

dition for uniform convergence in the closed interval (a, D) is
satisfied.

If the terms of the series

w (@) +ug (@) +us (@) + ...
are continuous in (a, b), and the series converges uniformly in every interval
(a, 3), where a < a < 3 < b, the series need not converge for x=a or £=>0.

FE.g. the series 1422 +32%+...
converges uniformly in (- a, a), where a <1, but it does not converge for
r=-—1 or z=1.

However we shall see that in the case of the Power Series, if it converges

for #=a or x=0, the uniform convergence in (a, [3) extends up to a or b, as
the case may be. (Cf. §72.)

But this property is not true in general.
The series of continuous functions
g (@) + wo (@) Fus(z) + ...
may converge uniformly for every interval (a, ) within (a, b), and converge

for x=a or £="0b, while the range of uniform convergence does not extend up
to and include the point a or b.

£.g. the series R X N T e PN (1)
formed from the logarithmic series
=Lt — (2)

by taking two consecutive positive terms and then one negative term, is
convergent when —1<a» =1, and its sum, when x=1, is 3 log 2.%

Further, the series (2) is absolutely convergent when |« | <1, and therefore
the sum is not altered by taking the terms in any other order. (Cf. § 22.)

Tt follows that when |2 | <1 the sum of (1) is log (1+«), and when =1 its
sum is  log 2.

Hence (1) is discontinuous at =1 and therefore the interval of uniform
convergence does not extend up to and include that point.

* Cf. Hobson, Plane T'rigonometry (3rd Ed.), p. 251.
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69. Uniform Convergence and the Approximation Curves. Let a
series of continuous functions be uniformly convergent in («, b).

Then we have, as before,

| S (2) — S, ()| <& when m>n=v,

the same v serving for all values of & in the interval,

In particular, | S, (2) = Sy(2)| <e, when m>v,
and we shall suppose v the smallest positive integer which will satisfy this
condition for the given € and every « in the interval.

Plot the curve y=28,(x) and the two parallel curves y=S,(2)+ ¢, forming
a strip o of breadth 2¢, whose central line is y =S, (2). (Fig. 13.)

Y
Sy (%)
Syi(x)
0 L« b ¥
Fi1a. 13.

All the approximation curves y=.J3,,(2), m > v, lie in this strip, and the
curve y=/(x), where f(x) is the sum of the series, also lies within the strips
or at most reaches its boundaries. (Cf. § 66 (ii).)

Next choose € less than ¢ and let the corresponding smallest positive integer
satisfying the condition for uniform convergence be /. Then v’ is greater
than or equal to v. The new curve y=.S, () thus lies in the first strip, and
the new strip o’ of breadth 2¢, formed as before, if it goes outside the first
strip in any part, can have this portion blotted out, for we are concerned
only with the region in which the approximation curves may lie as m
increases from the value v.

In this way, if we take the set of positive numbers

e>e¢>¢"..., where Lt =0,
K—>W
and the corresponding positive integers

v=v=v"...,

we obtain the set of strips o, oy o’y
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Any strip lies within, or at most reaches the boundary of the preceding
one, and their breadth tends to zero as their number increases.

Further, the curve y=f(x) lies within, or at most reaches, the boundary of
the strips,

This construction, therefore, not only establishes the continuity of the sum
of the series of continuous functions, in an interval of uniform convergence,
but it shows that the approximation curves, as the number of the terms
increase, may be used as a guide to the shape of the curve for the sum right
through the interval.*

70. A sufficient Condition for Term by Term Integration of a
Series whose Terms are Continuous Functions of x. When the
series of continuous functions

wy () + vy (@) +ug(2)+ ..
is uniformly convergent in the interval (a, b), we have seen that
its sum, f(x), is continuous in (@, b). It follows that f(z) is
integrable between «, and «;, when « =z,<x; =0.
But it does not follow, without further examination, that the
series of integrals

1@03(w)dx+

X
Lo

rl w () dx—{—jjz wy () da +j

.
2 x

is convergent, and, even if it be convergent, it does not follow,

without proof, that its sum is j 1 fz) de.

The geometrical treatment of the approximation curves in § 69
suggests that this result will be true, when the given series is
uniformly convergent, arguing from the areas of the respective
curves.

We shall now state the theorem more precisely and give its
demonstration : .

Let the functions w,(x), wy(x), ug(x), ... be continuous 1 (a, b),
and let the series gy ()4 wy(2)+wy(x) + ...
be uniformly convergent m (a, b) and have f(x) for its sum.

Then

X

u, () dw+r1 w, () dac+-[ 1 wg(x) de+ ...,

X

-

J‘wlf(w) do = j 1

o &Ly

— —
where a = x,<a, =0.

* Of course the argument of this section applies only to such functions as can be
graphically represented.
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Let the arbitrary positive number ¢ be chosen.
Since the series is uniformly convergent, we may put

fl@)=S,(x)+ Ra(2),
) €
where | B ( )|<7)-_~&, -when n =y,

the same v serving for all values of @ in («, b).

Also f(x) and S,(z) are continuous in («,b) and therefore
integrable. |

Thus we have

rlf(m) dx = rl Sy () de+ rl R, (x)du,

Xy Lo Zo

where a =, <z, =

2y 7y Lo '
Therefore !j f(fr)da:—j S7l(fc)da:§= j R, () da
s i)
<e b—a
<€, when n=v.
But j ’ Su(z) de = ZJI w,(x) de.
Lo 1 Y%

| [ - ' n (‘g '
Therefore ‘\j f(x)clx—Zj u, (@) de <e, when n=v.

o) 1 o

. Ly
Thus the seriesof integralsis convergent and its sum is j fx) de.
, i

CorOLLARY L. Let w (), uy(), uy(2),... be continuous in (a,b)
and the series 1y () 4 g () + g () + ..
converge uniformly to f(x) wn (a, b).

Then the series of integrals

| S w, () dw—{—r Uy () dw+jp wq(x) dc ...

converges uniformly to j f(z)dz in (a, b), when a = x,<x=0.
-
This follows at once from the argument above.

CoROLLARY IL  Let u,(x), w,(x), uy(z), ... be continuous in
(a,0) and the series '

| (@) uy (@) Fuy (@) + .
converge uniformly to f(z) in (a, b).
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Also let g(z) be bounded and integrable in (a, b).

w0

Then j F)g () do = Zj () g () do,

1
where o =wxy<ax = b, and the convergence of the series of integrals
18 uniform in (a, b).
Let the arbitrary positive number e be chosen, and let M be
the upper bound of |g(«x)| in (a, b).

Since the series > w,(z) converges uniformly to f(x) in (a, b),
1

we may put flx)=8(2)+ R, (),

where l Rn(w) l<ﬁ(—6§_—;—a’—), when n jf_- v,

the same » serving for all values of z in (a, b).
Therefore we have

| @) do=[" s,@pgt)dot | Rugla) da,

Ty on) Lo

; = ==
where a=x,<<x=b.

| nrgt@rdo—|" s.(m)gte) o) =

Lo

Thus

r R,(x)g(x)dx .

and || g do— 33| wni@rg@)ae

.V Ty 1 Lo

<M(b (L)X]u(m x())

<e, when n=y,
which proves our theorem.

It is clear that these integrations can be repeated as many
times as we wish.

Ex. To prove that
f log (1 =2y cos z+4?%) dv=0, when |y|<1*
0

=logy? when jy{>1.
We know that
Y —COS &
1-2ycosx -l-J
when |y |< 1.

—COSZ—YCOS 20 —y2COS B+ 1oty iivereinenns (1)

*It follows from Ex. 4, p 118, that we may replace the symbols <<, > by =
and = respectively.
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Also the series (1) converges uniformly for any interval of 7 within
(" 1’ 1) (S 67)

Therefore /ﬂy JTEBY = S cos /“y y*tdy, when |y|<1
b 1—2ycosa+y? 1 Jo ’ 4 )

Therefore 1 log (1 -2y cos 2 +2)= — X, Cos nw
1

— when |y|<I. ... (2)

But the series (2) converges uniformly for all values of #;, when |7 | is some
positive number less than unity (§ 67).

Thus —é—/ log (1 -2y cos & +y?) du = —ﬁ% cos ne dz, when |y|<1.
(0] 1

0 .

Therefore f log (1 -2y cosw+y?) dz=0, when |y|<1.
o .

But j"' log (1~ 2y cosw+y?)dw= f” [10g.7/2_|_ log (1 —?jcos‘”c-i-»q/]())] dz.
0 0 K by

Therefore I log (1 -2y cos v+ y?) dor=mlogy?, when |y|>1.
J0

71. A sufficient Condition for Term by Term Differentiation.

If the series Wy () 4w () + g () + ...
converges in (a, b) and each of its terms has a differential
coefficient, continuous in (a, b), and if the series of differential
coefficients wy () +wy () +wg () + ...
converges uniformly in (a, b), then f(x), the swm of the original
series, has a differential coefficient at every point of (a, b), and

J'(@)=u(@)+uy (x)+uy'(2)+ ...
Let p(x) =2, (@) 4wy (@) 4wy ()4 ...
Since this series of continuous functions converges uniformly

in (a, b), we can integrate it term by term.
Thus we have

rl ¢ () doe = rl w,(x) de+ rl wy () dac+ rl wy (z)dae+ ...,

Ty ) forg )
where a =z, <z, =0.

&x

Therefore j 1 b (x) dx = [y (1) — 1y (@) ]+ [wo(@)) — o ()]

" +[wg(@,) —wg(@y) ]+ -
But J(@y) =wq (@) + () +2g(2y) + ..
and Fy) = (@) + wy () + wg(2y) + ...
Therefore rl ¢ (x) dae=f(x;)—f(a,).

Lo
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Now put w,=x and o, =+ A
Then, by the First Theorem of Mean Value,
p(§)Az=jf(z+ Az)—f(z),

where z ==z + Aw.

f(r+Aw)—f(z)
Az

But Lt ¢(£)=g ()

Ax—>0

Therefore H(E)=

since ¢(z) is continuous in (a, b). |
Therefore f(x) has a differential coeflicient f’(2) in (a, ),

and J (@)= ¢(x)
=, () 4w, (@) + w5 () + ....

It must be remembered that the conditions for continuity, for
term by term differentiation and integration, which we have
obtained are only sufficient conditions. They are not necessary
conditions. We have imposed more restrictions on the functions
than are required. But no other conditions of equal simplicity
have yet been found, and for that reason these theorems are of
importance.

It should also be noted that in these sections we have again
been dealing with repeated limits (cf. § 64), and we have found
that in certain cases the order in which the limits are taken may
be reversed without altering the result.

In term by term integration, we have been led to the equality,
in certain cases, of

sl

j Lt S,(z)de and Lt j S, () de.

2o N—>P n—>w J
Similarly in term by term differentiation we have found that,
in certain cases,

L [7l£tw<8%(w+h)——6’n(w)>] and Lt | 14 <S,n(cc+h)—Sn(x)>}

h—>0 ] t n—>w L0 h

are equal.

72. The Power Series. The properties of the Power Series
o+ Ay + a4 ...

are so important, and it offers so simple an illustration of the results we have
just obtained, that a separate discussion of this series will now be given.
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1. If the serics o+ a v+ a4 ...

s convergent for w=uy, it vs absolutely convergent for ecvery wvalue of a such
that |z] <|a,|.

Since the series is convergent for x=ua,, there is a positive number M

such that L)t | < M, when 2 =0.
n n
2 a N L
But | @, = | a,a"| X —
T |

|
Therefore if |17 =c< 1, the terms of the series
0

|y |+ ape|+] age®|+...
are less than the corresponding terms of the convergent series
CM{l4c+e4.. 0,
and our theorem follows.
I1I. If the series does not converge for w=umx,, it does not converge for any
value of x such that | x| >|x,!.

This follows from 1., since if the series converges for a value of x, such
that |z|>|x,|, it must converge for »=ux,.

II1. It follows from I. and II. that only the following three cases can
oceur :
(i) The series converges for =0 and no other value of .
Eg. 1+1la+212°+...,
l+a+2%%+ ...
(i1) The series converges for all values of .

E.g. l+x+‘g+....

(iii) There is some positive number p such that, when |z|< p, the series
converges, and, when |#|> p, the series does not converge.
Eg. z—-12+3a%—....

The interval —p <2z <p is called the dnterval of convergence of the series.
Also it is convenient to say that, in the first case, the interval is zero, and, in
the second, infinite. It will be seen that the interval of convergence of the
following three series is (-1, 1):

' g2
142 +a°4...,

r  x?

1+T +§+...,
x 2’
1+i—2+§2+... .

But it should be noticed that the first of these does not converge at the ends
of the interval; the second converges at one of the ends; and the third
converges at both.

In the Power Series there cannot be first an interval of convergence, then

an interval where the convergence fails, and then a return to convergence.
C. 1 K



146 THEORY OF INFINITE SERIES, WHOSE TERMS

Also the interval of convergence is symmetrical with regard to the origin.
We shall denote its ends by £/, L. The series need not converge at L' or L,
but it may do so ; and it must converge within Z'L.

IV. The series is absolutely convergent in the open interval —p <x < p.

V. The series is absolutely and uniformly convergent in the closed interval
—p+8=w=p—23, where § s any assigned positive nuwmber less than p.

1 1 ]
T ' |

L O N L
Fiag. 14.

To prove IV., we have only to remark that if IV is a point x,, where
—p<wy<p, between N and the nearer boundary of the interval of con-
vergence, there are values of & for which the series converges, and thus by I.
it converges absolutely for x=ux,.

! 1 1 [l |
T T I T T

M’ 0 M N L
Fic. 15.

r‘\-‘ I~

To prove V., let M’, M correspond to £= —p+35 and x=p—3J respectively.
We now choose a point & (say #,) between M and the nearer boundary L.
The series converges absolutely for #=ux,, by IV.

Thus, with the usual notation,

| 0™ |+ | g1+ ... <€, When n=—1.

But | ™ |+ | Q™ |+
is less than the above for every point in M’M, including the ends M’, J.

It follows that our series is absolutely and uniformly convergent in the
closed interval (M, M).*¥* And the sum of the series is continuous in this
closed interval.

It remains to examine the behaviour of the series at the ends of the
interval of convergence, and we shall now prove Abel’s Theorem : t

V1. If the series converges for either of the ends of the interval of convergence,
the interval of uniform convergence extends up to and includes that point, and the
continuity of f(x), the sum of the series, extends up to and includes that point.

"Let the series converge for z=p.

Then, with the usual notation,

pl{n(p):Cl/np72_|_an+lp7z+l + .. _|_“n+p_1pn+p~1,
and |,#.(p)| <e, when = —v, for every positive integer p.

*When the interval of convergence extends to infinity, the series will be
absolutely convergent for every value of @, but it need not be uniformly con-
vergent in the infinite interval. However, it will be uniformly convergent in any
interval ( — b, b), where b is fixed, but may be fixed as large as we please.

E.g. the exponential series converges uniformly in any fixed interval, which
may be arbitrarily great, but not in an infinite interval [cf. § 65].

1. Math., Berlin, 1, p. 311, 1826,
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But R, ()=t 4ty y 1™ A A gt

e\t e\ e+l Y n4p—1
. p [ e b P _l 5% __l
—LL,L/)”<~> -y pt <-—> FoiF gy PP ,
p P

P
4\ 1 p\7+1 A\ -1 .
and the factors <1> , <i> ' y oo <3> 7 are all positive and decreasing,
f P P
when 0 <o < p.
Thus ol (2)y=18,(p)c"
+ [Qlfn(/)) - 1R;7,(P)]Cn 1

+ ...
+[p 20 (p) = (p-0B0(p)]e" 2,

(24

where ¢="-.
p

This expression may be re-written in the form

() =1 R = "]
B (e o]
+...
R (p) et =)
R ()"

Buat ¢"— ¢+l ¢+t iz et~ are all positive, and
i 1Rn({))’ ’ ' 2Rn(P) ‘ ) o '2)[{7?‘(p) [
are all less than ¢, when 7 = v,
Therefore, when n =,
DBA)| <€ [(¢ = ) (@ ) L (et ) g ]
< ec"
<¢, provided that 0 <z <<p.
But we started with |, (p)| <<€, when n=v.
Thus we have shown that the series is uniformly convergent in the interval
O<or=np.

Combining this result with V., we see that the series is now uniformly
convergent in the interval —p+8 === p, where § is any assigned positive
number less than p. And it follows that f(»), the sum of the series, is con-
tinuous in this closed interval.

In particular, when the series converges at »=p,

Lt 7(x)=/(p)
—>p-0
=aytapta,pi+....
In the case of the logarithmic series,
log(l+a)=w—3a24+ 105 — . .
the interval of convergence is —1 <a<1.
Further, when #=1, the series converges.
It follows from Abel’s Theorem that
Lt log(14x)=1-

—>1

!
te. log2=1-1+1



148 THEORY OF INFINITE SERIES, WHOSE TERMS

Similarly, in the Binomial Series,

(1) =1 4m. +9n(7n—]),4.,

o1 JJ“.+...,
when —1 <a<1.

m(m—1)

2!

is conditionally convergent when -1<Im <0, and absolutely convergent
when m > 0.

And it is known * that 1+ m+

Hence q[£1<1+r)7n_1+ +./n(7721‘ ) 5
o amel =D

21 T
in both these cases.

On the other hand, if we put #=1 in the series for (1+ )71, we get a series
which does not converge. The uniformity of the convergence of the series

1—w+a?—...

is for the interval -l{=w=/, where / is any given positive number less
than 1.

VII. Term by term differentiation and integration of the Power Series.

We have seen in V. that the Power Series is uniformly convergent in any

closed interval M', M[—p+3d=x=p— 9] contained within its interval of
convergence L', L[ —p <z <p]

It follows from §70 that the series may be integrated terin by term in the
interval M’y M ; and the process may be repeated any number of times.
We shall now show that a corresponding result holds for differentiation.
From the theorem proved in § 71, it is clear that we need only show that
the interval of convergence (— p <& < p) of the series
o+t age® 4 ..
is also the interval of convergence of the series
ay+ 2057 + a2 + ...
To prove this, it will be sufficient to show that
|y |+2 | agw |+ 3| age® | +...
is convergent when |z | < p and is divergent when |z|> p.
When || < p, let p’ lie between || and p.

Then the series 1_/+g “ +§/ =

poplplplp

is convergent, because the ratio of the 2 term to the preceding has for its

2

4

+...

X

limit , which is less than 1.

If we multiply the different terms of this series by the factors

Ialhol’ ‘C"zlP/Z, [CLS‘PG)-“)

*Cf. Chrystal, Algebra, Vol. II. p. 131.
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which are all less than some fixed number, since (by 1V.) the series
[l ag |+ a2
is convergent, it is clear that the series which we thus obtain, namely
|42 4 | +3 a4
is convergent when |z | < p.
We have yet to show that this last series diverges when |a|> p.

If this series were convergent for #= ||, where |z, |> p, the same would

hold for the series g, | 42| agr2 |+ 3] agzg® |+ ..

i

and also for the series |aw, |+ @@+ |ag®|+ ...,

since the terms of the latter are not greater than those of the former.
But this is impossible, since we are given that the interval of convergence
of the original series Is —p <z <p.
Thus the series ay+a e +an? +agad ...
and the series y + 2052 + 30?4 ...,
obtained by differentiating it term by term, have the same interval of con-
vergence,* and it follows from § 71 that
If f@)y=ay+ax+ a?+...,
f/(x): a/1+20/2«7/'+...,
when x is any point in the open tnterval —p <z <p.
~ Also this process can be repeated, as in the case of integration, as often
as we please.

73. Extensions of Abel’s Theorem on the Power Series.
I. We have seen in §72 that if the series

dota;+ay+...
converges, the Power Series

ty+ Ay + cor® - ...
is uniformly convergent, when 0 =2 :=1; and that, if
f(@)y=ay+ ax+ a4+ ...,
It fle)=ay+a,+ag+....

x~—>1—0

The above theorem of Abel’s is a special case of the following :
<) .
Let the series %an converge, and o, 0y, sy, ... be a sequence of positive numbers
e o)
such that 0 =ay <oy <dy.... Then the series 2 a,e-ant is umiformly convergent,
[=e] Y <o
when t=0, and if f(t)=2 aye~oty we have Lt f(t)=2a,.
0

t—>+0 0 &
Consider the partial remainder ,R,(¢) for the series > a,e-ont,
0

*If we know that Lt

H—>rx

.a'n i

exists, this result follows immediately from the
Uty :

ratio-test for convergence, since in each series
@,

Lt

H—>®0

|
Dot o1, f |w) < Lt

Uy | =20

Q41
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Then R, (O)=w,.e-ant 4ty ie-anrit4 . + Uy ypp—1€~ Gtp -1t
=y, ~onl (27'11, - 17‘11/)@ — Ot 4, 4 (])7'71 —(p-1)Tp)eT tntr -1,
where 17, =a,, v, =a,+ a1, ..., these bein g the partial remainders for the

©
series >, d,,.
0

Rewriting the expression for ,R,(¢), we obtain, as in § 72, VL.,

DRn(t) = 17'aL(9 ot —g —'a"+1t) + ‘.’.7'n<9 ~Ontlb — e_w”'mt) + ... +p7'ne ~dn+p -1t
o
But the series Ya, is convergent.
0

Therefore, with the usual notation,
L <e, when n=v, for every positive integer p.
L2 ). "
Also the numbers e-wuf, ¢- et ¢=ans2l/ .., are all positive and decreasing,
when ¢ > 0.
1t follows that, when ¢ >0,

DRa (D) <e[(e-out —e-antit) 4 (e —antil =g - aut2l) 4, ¢~ ontp-1t]
< ee~ant
<€, when n—=v, for every positive integer p.
And this also holds when ¢=0.

Therefore the series X a,¢-ont is uniformly convergent when ¢ =0.
0
Let its sum be /().
Then Lt f@)=/0)=2 «, .*
t—> 10 0

o
I1. In Abel’s Theorem and the extension proved above, the series X, @, are
0

supposed convergent. We proceed to prove Bromwich’s Theorem dealing
with series which need not converge.¥ 1In this discussion we shall adopt the
following notation :

Sp=ayt+a;+ gt ...+ a,,

Tp=8pt 8 +8+ ... 48,
and we write .S, for the Arithmetic Mean of the first n terms of the sequence
S0y Sty Suyeee

Thus S, :so + 8, +327-:- e 851 ___o';;_l.

It can be shown (cf. § 102) that, if the series Xa, converges and its sum is
0

S, then, with the above notation, Lt S,=S. But the converse does not hold.
N—>c0

o«
*If ag, @y, ... arefunctions of x and the series X a,, converges uniformly to #'(x) in
0

o]
a given interval.  Then it follows from the above argument that Lt Xa,e—aut
t—>-+0 0

converges uniformly to #'(z)in this interval.
tMath. Ann., Leipzig, 65, p. 350, 1908.  See also a paper by C. N. Moore in Bull.
Amer. Math. Soc., 25, p. 258, 1919.
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. [es]
The sequence of Arithmetic Means may converge, while the sum X a,, fails to
0

converge.*
Bromwich’s Theorem. Let the sequence of Avithmetic Means S, for the
series 2a, converge to S.  Also let w, be a function of t with the following proper-
0

ties, when >0

() (21771 | A%, | < Kt (p, q any positive tntegers ; N, positive)
" " number independent of p, q and t ’

(B) Lt nw,=0,

P——> 00
(v) Lt w,=1.
©t—>+0
[en) feo)
. ~ O
Then the series X a, i, converges when >0, and Lt X «,u,=:S.
] 0 . t—>+3 0
We have 0o=35¢ = Uy,

O-l - 20-0:81 bl Sozal,
gy — 20-1 +0.0282 - Slzaz’
Ty — 207+ 0 =84 - 8y =@y, etc.
H
m o . -
Thus % Uy, = 0ty + (0] — 2001ty + (g — 201 + 0g) g+ ... + (), ~ 20, .+ 0 _0) e
Therefore
113
) . Y A9, : , .
% a1, =0 ANug+ oy A%u + .o+, Ny 4 200,24 — Tty — Tpoqtlyr . (1)

But the sequence of Arithmetic Means

81 ) S 27 83’ toe
converges, and Lt §,=2S.

7-—>00

It follows that there is a number C; not less than [S|, such that
lo,| <(#n+1)0 for every integer n.
Also from (f3) it is clear that
Lt (ot 5)= Lt (00,0)= Lt (00, 12%ny1) =0. ceveviiniiininin. (2)

N~—> N~ n-——>0

(%
Further, the series%}(n-l-l)}Agu,L} converges, since, from (a), the series

[ea]
2| A%, ! converges.
0

o0
*If a,=(- 1), n=0, it isobvious that Lt S,,=1%, but the series > a, is not con-

Ji——3 OO 0
vergent. But see Hardy’s Theorem, §102, II.  When Lt 8, =S, the series Za, is
n—>o 0

often said to be  summable (C'1)” and its sum (C'1) is said to be S. For a
discussion of this method of treating series, due to Cesaro, reference may be made
to Whittaker and Watson, Course of Modern Analysis, p. 155, 1920. Also see
below, §§ 101-103 and § 108.

T A%, is written for (w, — 2,11+ %,42). Since all the terms in the series

>
2 1l A%,| are positive, this condition () implies the convergence of this series.
0
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Also |, A2, | < O(n+1) | A%y, |.
Therefore the series X o, A%, converges absolutely.
0

It follows from (1) and (2) that

2 Al = Zo-,lA )y e eeneeneen et er e aanaean (3)
Taking the special case a0=1, ) =dy=...=0,
we have o,=n+1 and = (n+ DA%, . i, (4)
0 .
Thus, from (3) and (4), '
2 Aty — Sttg= E (0= +1D)8) A% i ()
0
Now Lt 2 =8.
N> 7?’+ 1

Therefore, to the arbitrary positive number ¢, there corresponds a positive
integer v such that
O-N

€
n+1 _Sl<m’

when n=v.

rnmn i e
Thus - o, —(rn+1)8 [<E‘(%+1)’ when n—v.

Also |o,| <(n+1)C, for every positive integer, and |S|=C
It follows, from these 1nequaht1es and (5), that

Ian%n Sup | =] Z (00— (n+1) S)NquHE (00— (n+1)8) A%, |

<20 2 (n+ 1) A2 u"|+4K D+ D|A%,]. i (6)
But 2 (n+1)|A%,| <2 En|A2u,,l
<2, by {0). oo (7)
And Lt A%,=0, since Lt u,=1, by (y).
t—>+0 t=>+0

It follows that, v being fixed, there is a positive number 7 such that

| A%, | < whenO0<¢t=nand n=v-1. ... (8)

€
2v(v+1)C°
Thus from (6), (7) and (8), we see that

[<e]
‘% @it — Sttg| < Fe+Fe <€, when 0<t=1).

Therefore Lt (Xa,, — Sug) =0.
t~>+0 0
And, finally, Lt Xa,u,=S,
t—>—+0 0
since, from (y), Lt wy=1.
t—>+0

II1. ZLet the sequence of Arithmetic Means for the series Ean converge to S,

and let w, be e~ (or e, Then the series Za,mn converges, when t>0, and

Lt Zan Ln—‘g

t—>+0 0
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This follows at once from Bromwicl’s Theorem above, if ¢~ (or e™"*) satisfy
the conditions (a), (8) and () of that theorem.

It is obvious that ([3) and (y) ave satisfied, so it only remains to establish
that (a) is satisfied.

(i) Let w,=e "™, 1>0.

Then A%, =1, — 20,41+ U g

=e" (1 -e )%
Therefore A%, is positive.

k13 n
Also 2| A%, | =2nA%,
1 1
=0y 40— (4 DUy 1+ 2.

(=]
Therefore Xn|A%u,| =e™*, and the condition («) is satisfied.
- \

(i1) Let w,=e="* t>0.

In this case A2u,, = e~ +07% (4 (n+ 0)%% - 2¢),
where 0<0< 2.%

Therefore the sign of A%, depends upon that of (4(n+ 6)%2 - 27).
Tt follows that it is positive or negative according as

2(n+60)t -/ (20)=0.

Also (}L+0)>N/(2) when n>\/(2t)

\/TZZ)’ when %+2<\/(12t

Therefore A%, cannot change sign more than three times for any positive
value of ¢

But it follows at once from the equation

nA%u, =ne~ 1+t (4(n + 0)?¢* — 2¢)

that a positive number, independent of ¢, can be assigned such that 2 |A%,,|
is less than this number for all values of 7.

Hence KA can be chosen so that the condition («) is satisfied, provided that
the sum of any sequence of terms, all of the same sign, that we can choose

from 2nA%y,, is less in absolute value than some fixed positive number for
all values of ¢.

and (n+0)<

s .
Let 2nA%, be the sum of such a set of consecutive terms.

7

Then we have

8
S\, =re " — (5 — 1) g~ 0F — (54 1) =0 F 1 4 gg s+,
r

* This follows from the fact that
Sl +2h) = 2f (x+ 1) +f(x)
h?
where 0<0<2, provided that f(x), f'(x ) are continuous from @ to x+2h.
- (Cf. Goursat, loc, cit., T. 1., §22.)

=f"(x + 0h),
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which differs from
(e — e= (D) — (s 4 1) (o~ 6+ — = (s+2%0)
by at most unity.
But, when » is a positive integer and ¢>0,
O<n(e="t — g=tH1P) =2 (5 + Q) te= w08, (0<H<1)
<2(n+ O)telntore
<Ze L.
Therefore, for the set of terms considered,

El nA%u,|<de 14 1.
"
Then the argument above shows that the condition («) is satisfied.

IV. Let the sequence of Arithmetic Means for the series 2a, converge to S.
0

=}
Then the series X2 will converge when 0<x <1, and
0 o)
Lt Xa,a2"=S.
x—>1—0 9

This follows from the first part of ITL. on putting x=e~"
oo
V. Let the terms of the series Xa, be functions of @, and the sequence of
0
Arithmetic Means for this series converge uniformly to the bounded function

) <. . '
S)ma=z=0. Then Lt Xa,u, converges uniformly to S(x)in this vn-
t—+0 0

terval, provided that w, is « function of t satisfying the conditions (v.), ([3) and
(y) of Bromuwick’s Theorem, when ¢>0.

This follows at once by making slight changes in the argument of 11

The theorems proved in this section will be found useful in the solution
of problems in Applied Mathematics, when the differential equation, which
corresponds to the problem, is solved by series. The solution has to satisfy
certain initial and boundary conditions. What we really need is that, as
we approach the boundary, or as the time tends to zero, our solution shall
have the given value as its limit. What happens upon the boundaries, or at
the instant ¢=0, is not discussed. (See below § 123.)

74. Integration of Series. Infinite Integrals. Finite Interval. In
the discussion of § 70 we dealt only with ordinary finite integrals. We shall
now examine the question of term by term integration, both when the
integrand has points of infinite discontinuity in the interval of integration,
supposed finite, and when the integrand is bounded in any finite interval,
but the interval of integration itself extends to infinity. In this section we
shall deal with the first of these forms, and it will be sufficient to confine the
discussion to the case when the infinity occurs at one end of the interval

(e, b), say w=0.

A ) . 0
L. Let v (), uy(a), ... be continuous n (a, b) and the series X 1, (x) converge
wniformly to f(x) in (a, b). !
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Also let g () have an infinite discontinuity at =0 and f g(2)da be absolutely
convergent.*

Then / fleyg(x)de= ‘/ w, (@) g(x) dev.

o

From the uniform convergence of Zun(x) in (@, b), we know that its sum
1
f(#) is continuous in (¢, b), and thus bounded and integrable.

b b

Also j f(2)g(x)dz is absolutely convergent, since [ g(2)dawisso (§61,VL).
a b va

Let / |g(x) | do=

Then, having chosen the positive number ¢ as small as we please, we may put
J(@)=8,(x)+ R, (),

where | R, (2)| < ;EI, when 2= v, the same v serving for all values of 2 in (a, b).
b b
But j J(2)g(x)dz and j S,.(x) g () dx both exist.
b
It follows that j R,.(2) g(2)dz also exists, and that

b K/ b
/a J(@)g(2)duw= ja Su(x) g(2) de + fa B, (2)g(x)de.

Thus we see that

n

[ Hg s [ gt e,

1 bR,l (2)g(z)dx

e (P g
< [lg@)de
<e, when n—v,

which pmves that the series E j w, () g(2)de is convergent and that its
sum is / f("c)g(a)db

Ex. This case is illustrated by
1 w0
[ log #log (1 +2) do= Z (- 1)”—1 locr zdx
JO

()
__d" (_ )n . /l e vdy= — 1
_%’n(n—i-l) , since | logwdv= 1)
& WL 1 B
T4 (=D n o+l (n4+1)2

1 1
=2-2log 2~ ]271“ using the series for 1—377“ .

* It is clear that this proof also applies when ¢(x) has a finite number of infinite

discontinuities in (a, b) and / ¢) dx is absolutely convergent.

+ Cf. Carslaw, Plane Trigonometry (2nd Ed.), p. 279.
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Here the series for log(1+ ) converges uniformly in 0 =& =1, and

[ 1 log x dx
J0

converges absolutely (as a matter of fact log 2 is always of the same sign in
0 <ax=1), while |log 2| —>wx as x-—0.

On the other hand, we may still apply term by term integration in certain
cases when the above conditions are not satisfied, as will be seen from the
following theorems :

o
IL. Let uy(), ug(x), ... be conténuwous and positive and the series 2, (x)
1

converge uniformly to f(x) in the arbitrary interval (a, w), where o < a<<b.
Further, let g(x) be positive, bounded and integrable in (a, a).

Then [ frg@ do=S[ w(rg @ de,

b o (b
provided that either the integral / f(2)g(x)da or the series X f w, (%) g (x) dw
converges. “ L

b
Let us suppose that j J(@) g (@) da converges.

In other words, we are given that the repeated limit

b-¢& 7
Lt J [ Lt Xu.(r)]g(z)dy exists.
n—>w 1

&0 Jo
Since the functions u,(x), iy(2), ... ave all positive, as well as g(v), in (¢, a),

b
from the convergence of / F(2) g () do there follows at once the convergence
Of (24

b
f w(x)g(x)de (r=1,2, ...)
Again, let F@)y=u (@) +uy (@) + ...+ (@) + B (2).

' b
Then / R, (x) g(x)dx also converges, and for every positive integer 7
Ja

/ ’ f(z)g(2)dw - {12 v/:u?. (z)g(z)de= ~/:Rn(ay) 9(x)du. SRIITE (1)

b
But from the convergence of [ f(z)g(z)dz it follows that, when the

v

arbitrary positive number e has been chosen, as small as we please, there will
be a positive number & such that

b
0< f@)g(e)da <5
b-§& =

b
A fortions, 0< fb @) (00 <5y v 2)

and this holds for all positive integers a.
Let the upper bound of g(#) in (¢, b—§) be M.

The series X u,(#) converges uniformly in (¢, b-- ).
1



ARE FUNCTIONS OF A SINGLE VARIABLE 157

Keeping the number e we have chosen above, there will be a positive
integer v such that

) —
O<Rn(@)<2M(b oy when 7=y,

the same v serving for all values of # in (a, b—§).

~

, vt ¢ [o-t
Thus 0= R(@) g v < 3=, [ g (x) d

€ ‘b-§
<20 -a)le dw

€ .
<—2 , When 22 v, cooiviviniiiin, 3)

Combining these results (2) and (3), we have

b
O<f R, (x)g(x)dr <<e, when n=v.
Then, from (1), ’

b n (b
0< f Jlx)g(z)dz— Z 4 (@) g (v)dw << e, when n=v.

Therefore / f(z)q(r)dr— 1 [ u. () g (z) da.

The other alter natlve, stated in the enunciation, may be treated in the
same way.

Bromwich has pointed out that in this case where the terms are all
positive, as well as the multiplier g(»), the argument is substantially the
same as that employed in dealing with the convergence of a Double Series of

yositive terms, and the same remark applies to the corresponding theorem
I 3 g
in §75.%

EX. 1. Show that ]’log & dl/_zj 71100 vdr t
JO L
= 1
20’(7@+1)'~’
__m
=
14+ doc o 1 2
Show th tf .
B, 2. Show the 101— 2%(2%—1)‘) 4

The conditions imposed upon the terms u,; (), uy(w), ... and g(x), that they
are positive, may be removed, and the following more general theorem stated :

111 Let u, (%), uy(2), ... be continuwous and the sertes Z [un(2)| converge uni-

Jormly in the arbitrary interval (a, o), where a < o < b. Also let Zun(w) = f(@).

*Cf. Bromwich, Infinite Series, p. 449, and Mess. Math., Cambridge, 36, p. 1,
1906.

+ The interval (0, 1) has to be broken up into two parts, (0, @) and (a, 1). In
the first we use Theorem I. and in the second Theorem II.

Or we may apply
§72, VL.
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Further, let g(x) be bounded «nd integrable i (¢, o).

"b o (b
Then | ) g@ydw=3 | (@) g () do,
va 1Ya
b »
provided that either the integral f 2l ()] | g(@) da or the series
a 1

»n (b
> [ | un(2) | g (@) | dw converge.
1 a

This can be deduced from II., using the identity :

Ung = {n+| 1|19+ 17 = lnt | [T g | = o0 [{g +1g [T+ wa] g1,
since that theorem can be applied to each term on the right-hand side.

E 1 log @ ® |t
X. 1. Show that / 1-?— p de=3(—-1)" o log # dw
JO X 0

_ %) (___ 1)’)!—{»-1
o 0 (7?/+1>2

e —E.

Ex. 2. Show that

‘/‘1
0

when p+1>0.%

x? _ < n—1 ! s+ p—1 . od __(___li)ﬁ
1+xlogxdx—§(——l) L log'@d'%f§(7z+p)2’

75. Integration of Series. Infinite Integrals. Interval Infinite.

For the second form of infinite integral we have results corresponding to
the theorems proved in § 74.

L. Let u (), uy(x), ... be continuous and bounded in » = a, and let the series
k2]
2un(x) converge unzformly to f(x) in x =Za. Further, let g(x) be bounded and
1
integrable in the arbitrary interval (a, a), where a<<a, and a may be chosen as

large as we please ; and let f g (x) dx converge absolutely.
a

Then j ) S(@)g(x)de= ? f w, (@) g () da.

The proof of this theorem follows exactly the same lines as I. of §74.

R, —x w [P —x dm
Ex. ¢ de= / ¢ .
./1 @ de 12 1 (z4n—-1)(a+n)
This follows from the fact that the series

1 1
a(x+ 1)+(.7:+ D(n +2)+
converges uniformly to 1/z in & = 1.

*If p>0, Theorem III. can be used at once.
If 0>p> -1, the interval has to be broken up into two parts (0, a) and (a, 1).
In the first we use Theorem I. and in the second Theorem III. Or we may apply

§72, VL
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But it is often necessary to justify term by term integration when either
htes)

- X
/ lg(v)] de is divergent or X, () can only be shown to converge uniformly
Ja 1

in the arbitrary interval (a, o), where a can be taken as large as we please.
Many important cases are included in the following theorems, which
correspond to IT. and III. of §74:

. D
I1. Let u,(z), uy(), ... be continuous and positive and the series X u, () con-
1

verge uniformly to f(x) in the arbitrary interval (a, o), where o. may be taken as
large as we please.
Also let g(z) be positive, bounded and integrable vn (a, o).

Then | 7@ 9@ dor=3 | () g () do,
1Ja
provided that either the integr al[ f(x)g(2)da or the series Z/ u, () g(v) de
converge.
Let us suppose that / J(x) g(x)dx converges.

In other words we are given that the repeated limit

/ [ Lt zy (#)]g (%) dx exists.

a—> w1 n—>w 1

Since the terms of the series 2207.(.7;) are all positive, as well as g(z), in
1

x =, from the convergence of / f(x) g(x) dw there follows at once that of

e}

j w(2) g(x)dr (r=1,2, ...)

Again let J(@)=1 () +us(@)+ ... F (@) + LR, ().

Then / R, (x) g(x) dz also converges, and for every positive integer »
Ja

N

f f(x)g(@)de -2 /: () g (%) dr=/a R.(2)g(x)dr. .......... (1)

But from the convergence of / f(@)g(x)de, it follows that, when the

arbitrary positive number e has been chosen, as small as we please, there will
be a positive number « such that

0 <‘L J(@)g(x)de < %

el

A fortiore, 0<‘/ R (r)g(2 )dr<2

and this holds for all positive integers ».
With this choice of a, let the upper bound of g(+) in («, o) be M.

oz
The series Zun(m) converges uniformly in (a, a).
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Keeping the number € we have chosen above, there will be a positive
integer v such that

, =
()<R7,(7J)<2M( ) when »# =y,
the same v serving for all values of » in (@, ).
Thus 0< / R,1(7)g(7)dr< 3 when #—v.
But 0< [ R.(z)g(v)de < o

and this holds for all values of .

Combining these two results, we have

0< / R, (¢)g(v)de <e, when n=—v,
and from (1), ‘

0< / f(2)g(x) dw - i f u, (%) g(2) dw < e, when n—v.
a 1Ja

Therefore [ flx)g(x)de= § f (%) g () da.
Ja 1Ja

The other alternative can be treated in the same way.

® 0
Ex. L f ¢~ cosh ba dx Z o f e “r*dy if 0<|b]<a.
0 0
® : 0 bZn * - o
Ex. 2. / e~ coshbrdr =2 ;- f e~V da.
Jo 0 20!l Je

Further, the conditions imposed upon wu,(z), u#,(x), ... and g(z), that they
shall be positive, may be removed, leading to the theorem :

II1. Let ui(%), uo(z), ... be continuous and the series }?]un(m)l converge
Formly in the arbitrary interval (a, o), where o may be taken as large as
please.  Also let w?u,,(x): f(x).

Further, let g(x) be bounded and integrable in (a, a).

Then ‘ [a f(@)g(x)dz= 53 [ un(x) g(2) de,

provided that either the integral / S lun(z)] | q(r) dx or the series

?]aw" ;

This is deduced, as before, from the identity
wng = {20 [ g+ g [F =t [} g [ —[wa {g g+ ual g1,
since the Theorem II. can be applied to each term in the right-hand side.

n7].2n
1) [0 e w2 dy, if 0< |b| <a

Ex. 1. Show that /0 e~ cos b dx —Z( o
0
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Ex. 2. Show that { 0% cos b da = i( — 1o
L

{w

—ae? ., 2n
e~ .
) 0 20! Jo

76. Certain cases to which the theorems of §75 do not apply are covered
by the following test :

€
- Let u, (), ug(2), ... be continuous in x = a, and let the series 2w, (x) converge
1

uniformly to f(x) in the arbitrary interval (a, a), where o may be taken as large
as we please. |
Further, let the integrals

/ u, (x)de, / uy(2) dz, ete.,
a v a

converge, and the series of integrals

[xul () d@'—}— f‘vug(x) dr ...

converge uniformly in x — a.
Then the series of 1ntegrals

e o}

‘[mul(x)d‘““/ o () da+ ...

Ja

~

0
converges, and the integral / f(2)dx converges.
Ja

Also / f(x) dx:j w, (%) dz + } wo(2)dw+ ...
Let Sp(2)= f ’ uy(v) da 4+ j xuz(m’) de+...+ / xu-n(x) dz.

Then we know that Lt S,(r) exists in # = a, and we denote it by F(2).

Nn—>0

\lso we know that Lt S,(z) exists, and we denote it by G'(»).

‘“We shall now show that Lt F(x) and Lt G¢'(») both exist, and that the
wo limits are equal. A e
From this result our theorem as to term by term integration will follow
at once.

1. To prove Lt F(x) exists.

Xr—>®

Since Lt S,(2) converges uniformly to #(2) in #=«, with the usual

N—>0

notation, we have | F ()= Su()| <:e§ . when 7=,

the same v serving for every « greater than or equal to a.
Choose some value of % in this range.

Then we have Lt S,(2)=G(n).
Therefore we can choose X so that

|Sp(2") = Sp(2) | < %, when 2" >4’ =Z X >a,

C. I L
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But | F(a”) — F(2) |
S|P — Su() | ] Su(”) = Sou(@) |4+ Su() = F(a) |

€ €€
3 3 3

<€ when "> =ZX>a.
Thus F(x) has a limit as #—>w.

<

II. 7o prove Lt G(n) exists.

N O

Since Lt S,(«) converges uniformly to F(x) in #—a,
N—>w

| Su() = Sw(z)| < %, when 2" >2'Zv,

the same v serving for every # greater than or equal to a.
But Lt S,.(x)=G(n).

T—>c

Therefore we can choose X;, X, such that

|G(n) —Sp(z) |< %, when = X, > q,

| G (") = Sn(w) | < % when #= X,> a.

Then, taking a value of # not less than X, or X,
G- G
S G = Su) |+ 8, () = Sy (@) |+ So () = G ()|
€ € ¢
< 3 + 3 + 3
<e, when 2" >n'=Zv.

Therefore Lt G'(n) exists.

N—>N0

IT1. 7o prove Lt F(x)= Lt G(n).

MN—>0

Since Lt G/(n) exists, we can choose v, so that

7—>%

w0 v}
€
> j w(x)dr|< =, when n=v,.
n+1 « 3
o
Again E"- u.(2) dr converges uniformly to #(z) in = a.
1 Ja

Therefore we can choose v, so that

‘ § jx () d

in+lJa

€
< -, when n=v
‘3’ = Y2

the same v, serving for every x greater than or equal to a.
Choose v not less than v, or v,.
@y

From the convergence of the integral j > uy(x) dz, we can choose A” so that
1 .

a

j 2w (x) da
z 1

< %, when v = X >a.
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) D
But i > j wp () do — ()
1 Ja
Ry . w0 @ o @ i
= {J Du(x)dr+ 2 j w(2)do— j w, (%) d
lJz 1 v+1Ja v+1J)a
»® oy w (R ! w (z
= j D (r)yde|+| X j w () de |+ 2 j w. () dr
x 1 v+1Ja \ v+1lJa
€ € €
<e¢ when o= X >a.
Therefore Lt F(a:):Ej u.(2)de= Lt G(n).
r—> w0 1 a N—> w0

IV. But we are given that the series

wy (@) + ug(2)+ ...

converges uniformly to f(#) in any arbitrary interval (e, o).
Therefore we have

j.f(x) dx—_—f (@) d.a;+f wy(w)de+... in x=a.
Thus, with the above notation,
Fo)=| " fa)de.

It follows from I. that / f(2)dx converges, and from TIT. that
/ f(x) d@zf uy () dx+/ uy(@)daw'+... .
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EXAMPLES ON CHAPTER V.
UNIFORM CONVERGENCE.

1. Examine the convergency of the series
i x
T (e +D)[(n+1D)e+1][(n+2)2+1]
and by its means illustrate the effect of non-uniform convergence upon the
continuity of a function of « represented by an infinite series.

w =0,

2. Prove that the series

22+

22 22

(*m“g)+' )2+...

(1422
is convergent for all values of 2, but is not uniformly convergent in an
interval including the origin.

3. Determine whether the series
5 1
T 03+ nia?

is uniformly convergent for all values of .

N
4. Find for what values of # the series X u, converges where
1

" — x—ol—l
Uy = ( 2"+ x-n) (x‘n+ 1 + x—n——lﬂ)
1 1

(—1)(z"+2") (2—1)(a"+ o= tnsly

Find also whether the series is
(1) uniformly convergent through an interval including +1 ;
(ii) continuous when x passes through the value + 1.

5. Discuss the uniformity or non-uniformity of the convergence of the
series whose general term is

=L —(1+a)" 1—(l+z)"!
"I+ (14a)t L4 (l4a)t
6. Let ot a ...
be an absolutely convergent series of constant terms, and let

Jol®), fi(@), ...

be a set of functions each continuous in the interval a =+=/, and each
comprised between certain fixed limits,

A=f(x) =B, =0,1,...,
where A, B are constants. Show that the series
o folw) +ay fr(@) +...

represents a continuous function of & in the interval « == f3.
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7. Show that the function defined by the series
< &
%71(1 + nx?)
is finite and continuous for all values of . Examine whether the series is
uniformly convergent for all such values.

8. Show that if (@) + 2y (2)+

is a series of functions each continuous and having no roots in the interval
a=2=b, and if
U1 (2)
| ()
where v, v do not depend on w, then the given sevies is uniformly con-
vergent in this interval.

Apply this test to the series

=vy<1, when 2=y,

3
14+2o+a(e— 1)~~+JJ(¢L 1) (x— 2)%—}—...,
where 0 <o < 1.

THE POWER SERIES.

9. From the equation  sin-—

j\/l %)

show that the series for sin—lz is

1a3 1.3 a5
vhg gt 5T when |a|<1.
Prove that the expansion is also valid when |z |=1.%
10. From the equation  tan—lx= /x —d‘L—a
Jo 14a*

obtain Gregory’s Series,
tan "lr=a — 1234+ 1ad —

Within what range of » does this hold ?
11. Show that we may substitute the series for sin—lx and tan~lz in the
integrals z gin Ly
[y
0

* tan ~lo A

and a2y

x
and integrate term by term, when |2|<1.

Also show that

1ginTle 21.3...2n-1 1 T tan ~le 0
,/0 o dx_% 2.4...20 (2n+1)¥ ,/0 PR E("1)(2n+1)”

in—1 1
s tan™
and -=- —, prove that these

and from the integration by parts of
series also represent

llog=| " log x|
/0 J(1 =) v and .,0-

*When =1, Lt Wt =1, but Raabe’s test (cf. Bromwich, loc. cit., p. 35, or

n—wo Up
Goursat, loc. cit., p. 404) shows that the series converges for this value of .
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12, If |2 | <1, prove that
(% .2 4 40
1 tan=1z dw =" * &
JO

1.2°3.475.6"

Show that the result also holds for =1, and deduce that
1—1—l+141-, =043882....

]

13. If |l <1, prove that

/% ! 1 d a2 a3 at
Jo Jog (Mt a)du=qmy =5yt =

Does the result hold for w= +117

14. Prove that

/A'v]og(i—"

o

1
- da el R P
[Frogr4a) P= Sy, o<as<t

T
1+JJ CZJL’ o0 x‘:‘,n—l
og(13) 2= o3 U, 0<e<l
/o B\1=s) o 212(27@—1)2’ <<

v

Express the 1ntegmls

/10(

as Infinite series.

= N . L |
/ log (1 +a;)@ and / log (_1_+£> du
0 .

. & Jo 1—-w/ o

15. Show that -1t — &+
1] —at
T Jo T4a8 Y
- log (2+/3)-
NG

INTEGRATION AND DIFFERENTIATION OF SERIES.

0
16. Prove that the series X (ae-me® — Be-nB2) is uniformly convergent in
1

(¢, ¥), where a, 3, y and ¢ are positive and ¢<+y.
Verify that

f e = 71(7.’_18(3 npx )d) [ (CL@ nax_IB(, nB:L)dVL
. 1.

"y

2
1
Is i
1

e —nor — 186 = nBr) dy = 2 / (ae —noX — Be - npx) o ?
1Jo

17. If it be given that for values of # between O and ,

acosx acos 2y 3

7 cosh axz=2sinh cm-{—l— — gt T e T 0
20" T4a? T 2qar S

prove rigorously that

7 sinh @z =2 sinh amr

sina  2sin 22 4 3 sin 3? }
T4+a? 22402 3P4a’ )
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18. Show that if f(a)= § then it has a ditferential coefficient
1 .

n3+94 28+ nip?

equal t
qual to 2;0?%_‘(1_[_

19. When « stands for a positive number, then the series

2] a»—? ( 1)7 a}mr
%7 12

) for all values of .

v—Z) +JU2’
are uniformly convergent for all values of & ; and if their sums are f(x) and
F(2) respectively, ) =1 d a”"
J (@)= 27' du <co:"’"+x2>’
. zld (( — 1)"@‘")
£ )—% Vde \ a7 2%/

20. Find all the values of & for which the series
e*sin x4 ¢* sin 22+ ...

converges. Does it converge uniformly for these values? For what values
of # can the series be differentiated term by term ?

21.*% Show that the series

w? a2
Que~" = Z 2w <7:; e W ———(%_}1_ 1)26—(““’2>

can be integrated term by term between any two finite limits. Can the
function defined by the series be integrated between the limits 0 and oo ?
If so, is the value of this integral given by integrating the series term by
term between these limits ?

22. If each of the terms of the series

0y (@) + () +
is a continuous function of # in # = ¢>0, and if the series
zu(a)Fafug(x)+... (k>1)
satisfies the M-test (3 67), then the original series may be integrated term by
term from a to .
23. Show that the series
1 1
T wtioT
(14+2) (2+x)
can be integrated term by term between any two positive finite limits. Can
this series be integrated term by term between the limits O and «? Show
that the function defined by the series cannot be integrated between these
limits.
24. Show that the function defined by the series
1 1
v p @it
can be integrated from O to w, and that its value is given by the term by
term integration of the series.

(z=0)

* Ex. 21-27 depend upon the theorems of §§ 74-76.
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25. Prove that

1 xa,—l 1 1 1
fol+xd‘%_&"w+1+m—-.. (a>0).

Explain the nature of the difficulties involved in your proof, and justify
the process you have used. '

26. By expansion in powers of a, prove that, if |a|< 1,

N —X —0x dx__ o
/Oe (1—-e );—Ioo(l+a),

3 dz
f tan~!(asin #) ———— =34 sinha,
0 sinz. =
examining carefully the legitimacy of tern: by term integration in each case.

N ba\2n
27. Assuming that Jy(ba)=3 ———,
0 (n!)

fale 8]

show that / Je““”JU(bg;)dxz
~ JU
when a > 0.

1



CHAPTER VI

DEFINITE INTEGRALS CONTAINING AN ARBITRARY
PARAMETER.

7. Gonf:inuity of the Integral. Finite Interval. In the
ordinary definite integral r p(x, y)da let a, ¢’ be constants.

Then the integral will be a function of y.*

The properties of such integrals will be found to correspond
very closely to those of infinite series whose terms are functions
of a single variable. Indeed this chapter will follow almost the
same lines as the preceding one, in which such infinite series
were treated.

L If ¢(x, y) s @ continuous function of (x, y) in the region

c=x=d, b=y=V,

o

then j ¢(x, y)de is a continuous function of y in the interval

(0, b). |

Since ¢(x, ) is a continuous function of (z, ¥)T, as defined
in §37, 1t is also a continuous function of # and a continuous
function of y.

Thus ¢ (x, ¥) is integrable with regard to .

Let r)=| gty de

* As already remarked in § 62, it is understood that before proceeding to the
limit involved in the integration, the value of y, for which the integral is required,
is to be inserted in the integrand.

T When a function of two variables x, ¥ is continuous with respect to the two
variables, as defined in § 37, we speak of it as a continuous function of (x, y).
It will be noticed that we do not use the full consequences of this continuity in
the following argument.
' 169
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We know that, since ¢ (z, ¥) is a continuous function of (z, )
in the given region, to any positive number ¢, chosen as small
as we please, there corresponds a positive number 5 such that

[p(@, y+Ay)— ¢, y) [<e, when [Ay|=y,
the same » serving for all values of z in (a, «).*
Let, Ay satisfy this condition, and write

fly+Ay)= ) ¢ (x, y + Ay) da.

o/

Then — f(y+Ay) —f(y) = (¢, y+Ay)— (@, y)] d.
Therefore J'
| fly+Ay)—f(y) | = ) | oz, y+Ay) — ¢ (@, y) | d

<(&'—a)e, when |Ay|=y
Thus f(y) is continuous in the interval (b, b’).

IL If ¢(x, y) @s o continwous function of (x,y) m a=x=d/
b=y =V, and r(x) is bownded and integrable in (a, &), then

r o (@, y)Yr(z) da is « continuous function of y in (b, b).
Let =] p e

The integral exists, since the product of two integrable func-
tions is integrable. |
Also, with the same notation as in I,

F+8)=7)=| g, y+ 09— g ] @) d
Let M be the upper bound of | (x) | in (¢, ).
Then |f(y+Ay)—f(y)|<M(o'—a)e, when |Ay|=y.
Thus f(y) is continuous in (b, 0").
78. Differentiation of the Integral.
I. Let f(y):J-t/ (@, y) da, where ¢(x,y) is a continwous func-
9¢

tron of (x,y)im a=x=a, b=y=0, and 3 exists and satisfies

the same condition.

* This follows from the theorem on the uniform continuity of a continuous
funetion (cf. § 37, p. 75).
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y : : “ e
Then f'(y) exists and is equul to 3y de.

Since éi) is a continuous function of («, %) in the given region,
Y

to any positive number e, chosen as small as we please, there cor-
responds a positive number s, such that, with the usual notation,

O0p(x, y+Ay)  9¢(x, y)
oy oy

<e, when [Ay| =2,

the same 5 serving for all values of  in (a, ).
Let Ay satisfy this condition.

Then
J+28y)=fy) _[“ pl@ y+Ay)— B, Y) g
Ay Jo Ay
= [ 99 (, y—}—GA?/) dx, where 0<<0<1,
Ja oy
_[“o¢(z,9) j Op(w, y+0AY) o¢p(z,y)
). oy dot U[ oy oy J

Thus we have

@y +Ay)—[f(y) j .
| Ay w OY |

KL [agb(w ya;/I—GAJ) 8¢(af; y)]

<(a'—a)e, when |Ay| =y

And this establishes that Lt {f (ZH_AXJ; =/ (y>} exists and is
A/%O

equal to j 99 de at any point in (b, ).

II. Let f(y):j o (x, Y)W () dee, where ¢(x, y) and %b are as
w L, and (@) s bounded and integrable in (o, «).

Then f'(y) eaists and is equal to j ¢ Vr(2) de.

Let the upper bound of |y (z)] in (e, a) be M.
Then we find, as above, that

lf(i’/+A?/> J(y) j‘lg—Z;W//‘((L')dw1<]‘{((b,—Cb>€, when |Ay| =y

And the result follows.
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The theorems of this section show that if we have to differ-
entiate the integral Sa F(x,y)dx, where F(z,y) is of the form

¢ (@, y) or ¢p(x,y)r(x), and these functions satisfy the conditions
named above, we may put the symbol of differentiation under
the integral sign. In other words, we may reverse the order of
the two limiting operations involved without affecting the result.

It will be noticed that so far we are dealing with ordinary
integrals. The interval of integration is finite, and the function
has no points of infinite discontinuity in the interval.

79. Integration of the Integral.

Let f(y)=r b (x, Y)W (x) de, where ¢(x, y) s a& continwous

Sfunction of (x,y) m a=x=a', b=y =0V, and \(x) is bounded
and integrable i (a, ).

Then jy fy)dy= r dx r o (x, y)Jr(x)dy,
Yo @ Yo

where y,, y are any two points in (b, O).

Let Pz, y)= jy o (x, y) dy.
b
Then we know that %= o(x, v) [§49),

and 1t is easy to show that ®(x, ¥) is a continuous function of
(@, ) in the region e =x=a’, b=y =Vb.

a!

Now let g(y)= j B(, ) v (@) do.

a

From § 78, we know that
N L ‘
g(y) = _[ e (@) dec

=[" pe ) v de

«

Also ¢'() is continuous in the interval (b, 0') by §77.

Y a’
Therefore r g (y) cly—.—_—j dy j ¢ (2, Y) (@) de,

Y o

where y,, ¥ are any two points in (b, ).
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Y

ay [ pe g p)ds
=g()—9,)

Thus j

Y

= | 120, )= g1 v @) do

(™ /!

~|" [ jz ¢ (x, y) dy — ﬁo b (x, y) dyJ () de

J

= | gy

Thus we have shown that we may invert the order of integra-
tion with respect to @ and y in the repeated integral

r dx jy Fx, y) dy,
a Yo

when the integrand satisfies the above conditions; and in par-
ticular, since we may put \r(x)=1, when F(x, y) is a continuous
function of (x, ¥) in the region with which the integral deals.

80. In the preceding sections of this chapter the intervals
(a, @) and (b, b’) have been supposed finite, and the integrand
bounded in a =z =a’, b=y =b. The argument employed does
not apply to infinite integrals.

For example, the infinite integral

@»

I

converges when y =0, but it is discontinuous at y=0, since
J(y)=1 when y>0, and f(0)=0.

@0
Similarly . j sin 7y e~ @502 g
0

converges for all values of ¥, but it is discontinuous for every
positive and negative integral value of ¥, as well as for y =0.
Under what conditions then, it may be asked, will the infinite
integrals 2 o
j F(x,y)dx and j F(z, y)dz,

if convergent when b=vy =10, define continuous functions of ¥

in (b, 0)? And when can we differentiate and integrate under
the sign of integration ?
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In the case of infinite series, we have met with the same
questions and partly answered them [cf. §§68, 70, 71]. We
proceed to discuss them for both types of infinite integral. The
discussion requires the definition of the form of convergence of
infinite integrals which corresponds to uniform convergence in
infinite series.

81. Uniform Convergence of Infinite Integrals. We deal
first with the convergent infinite integral

j F(x, y) de,

(47

where F(x,y) is bounded in the region e =ax=a’, b=y =0, the

number ¢ being arbitrary.

w0

L. The integral j F(x, y) dx is sard to converge uniformly to its

a

value f(y) in the interval (b, b), if, any positive number e
having been chosen, as small as we please, there is a positive
number X such that

if(y)—ﬁF(x,y)dm.<e, when =X,

the same X serving for every y in (b, b").

And, just as in the case of infinite series, we have a useful test
for uniform convergence, corresponding to the general principle
of convergence (§15):

IL A mecessary and sufficient condition for the wuniform
convergence of the integral j F(x, y) de in the interval (b, ') is

that, if any positive number e has been chosen, as small as
we please, there shall be a positive number X such that

a7

jIF(oc, Y) dx'<e, when x">x' = X,

the same X serving for every y in (b, b).

The proof that IIL forms a necessary and sufficient condition
for the uniform convergence of the integral, as defined in I,
follows exactly the same lines as the proof in § 66 for the corre-
sponding theorem in infinite series.
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s

Further, it will be seen that if J F(x, y)dx converges uni-

12
formly in (b, 1), to the arbitrary positive number ¢ there corre-
sponds a positive number X such that

j F(z, ) dx

the same X serving for every y in (b, b).
The definition and theorem given above correspond exactly to
those for the series wy (@) +uy (@) + ...,

<e, when =X,

uniformly convergent in ¢ =z =0b; namely,

| R, (2) ]| <e, when n =y,
and | ,Ru(x)|<e, when n =y, for every positive integer p,
the same v serving for every value of @ in the interval («, D).

82. Uniform Convergence of Infinite Integrals (continued).
We now consider the convergent infinite integral

r Fia, y) da,

where the interval (a, ¢’) is finite, but the integrand is not
bounded in the region a=x=a’/,b=y=b". This case is more
complex than the preceding, since the points of infinite discon-
tinuity can be distributed in more or less complicated fashion
over the given region. We shall confine ourselves in our
definition, and in the theorems which follow, to the simplest
cage, which is also the most important, where the integrand
F(z,v) has points of infinite discontinuity only on certain lines
L=y, Aoy oo Uy (W= < Ay ... < a, =a’), and is bounded in the
given region, except in the neighbourhood of these lines.

This condition can be realised in two different ways. The
infinities may be at isolated points, or they may be distributed

right along the lines. .

. « dx B . -
Eg. (1) jo Jaty) when 0=y =b.

1
(ii)j a¥=te~%dx, when 0=y<1.
0
In the first of these integrals there is a single infinity in the

given  region, at the origin; in the second, there are infinities
right along the line =0 from the origin up to but not including

y=1.
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In the definitions and theorems which follow there is no need
for any distinction between the two cases.
Consider, first of all, the convergent integral

r F(x, v) de,

where F(x, y) has points of infinite discontinuity on x=«’, and
is bounded in a = =a'— £, b =y =V, where a<a'— <.

For this integral we have the following definition of uniform
convergence : |

L. The integral j

F(x, y)dx s sard to converge uniformly to

«

wts valwe f(y) an the interval (b, 1), if, any positive number e
having been chosen, as small as we please, there is a positive
number y swch that

on!

the same » serving for every y in (b, b).

a

-¢
F(x,y)dz|<e, when 0<E=y,

a

And, from this definition, the following test for uniform con-
vergence can be established as before:

II. A mecessary and sufficient condition for the uwniform con-
vergence of the integral j F(x,y)dx in the interval (b,b") 18 that,

if any positive number ¢ has been chosen, as small as we
please, there shall be « positive number y swch that

a - &
J‘ §,F(x’y>dw1<€, ’LUILe'n.()<§_=ﬂ< 5/;7]’

« -

the same » serving for every y in (b, b").

Also we see that if this infinite integral is uniformly con-
vergent im (b, V'), to the arbitrary positive nwmber e there will
correspond a positive number n such that

r Fx,y)de |<e, when 0<E=0,
&

a -
the same » serving for every y in (b, b).

The definition, and the above condition, require obvious modi-
fications when the points of infinite discontinuity lie on z=a,
instead of z=d’,
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And when they lie on lines z=a,, «,, ... a, in the given
region, by the definition of the integral it can be broken up into
several others in which F(z, y) has points of infinite discon-
tinuity only at one of the limits,

In this case the integral is said to converge uniformly in (b, 1),
when each of these integrals converges uniformly in that interval.

And, as before, if the integrand F(wx, ) has points of infinite
disecontinuity on z=«,, d,, ... @,, and we are dealing with the

@0

integral j F(x, ) dex, this integral must be broken up into several

integrals of the preceding type, followed by an integral of the
form discussed in §81.

The integral is now said to be uniformly convergent in (b, b")
when the integrals into which it has been divided are each
uniformly convergent in this interval.

83. Tests for Uniform Convergence. The simplest test for
the uniform convergence of the integral "’ F(z, y) dz, taking the

first type of infinite integral, corresponds to Weierstrass’s M-test
for the uniform convergence of infinite series (§67).

I Let F(x,y) be bounded in a=z=a, b=y=b" and in-

tegrable in (a,a’), where o' 18 arbitrary, for every y in (b, V).

N

Then the integral j. F(z,y)da will converge uniformly in (b, 1),

if there is a function u(x), independent of y, such that
(1) u(x)=0, when z=a;
(1) [F(x, )| =u(x), when x=a and b=yZ=';
and  (iil) j w(@) dz earists.
For, by (i) and (ii), when ¢’ >a'=a and b=y =10/,

!r F(x, y) cZw‘éj () de,

’
4

and, from (ii1), there is a positive number X such that
j () de<e, when o’ >a' = X.

These conditions will be satisfied if a"F(x,y) is bounded

when =, and b=y =b" for some constant n greater than 1.
C. I M
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CoroLLARY.  Let F(z, y)~</>(w (), where ¢z, y) is
bounded in x=a and b=y =V, and integrable in the interval

(a, '), where « is arbitrary, for every y in (b, b). Also let

j. () da be absolutely cbnvergent. Then j F(a,y)dx 1s wni-

Jormly convergent in (D, V).

L)

Ex. L [ . +y, jo e~ dx converge uniformly in y = 7,> 0.

0 x
Ex. 2. [ e ¥dax converges uniformly in 0 <y = ¥, where ¥ is an arbitrary
Jo

positive number.

D
cos 2y sin xy COS &Y 5 sin 2y ,
Ex. 3. [ i da, ﬁ e dz, [0 Tha? de, [0 T dv converge

uniformly for all values of 7, where n>0.

IL. Let ¢ (a, y) be bounded in x =Za, b=y =V, and a monotonic

Junction of x for every y in (b,b). Also let (z) be bounded
and mot change sign more than « finite number of times in

el

the arbitrary interval (a, a'),* and letj W (x) de exist.

Then j o (x, y) () de éonvewges uniformly in (b, 0).

This follows immediately from the Second Theorem of Mean
Value, which gives, subject to the conditions named above,

2 & X
| s v@dn=s@,) | p@dorgey | v e
where £ satisties a<<x'=£=a".

But ¢(z, y) is bounded in =« and b=y =1, and j Vr(z) da
converges. “
Thus it follows from the relation

| s v e
= ! b (', ) ! 1 ﬁ V() de ’ j:j”«// (@) da I

that J ¢ (@, y) Y (x) da converges uniformly in (b, b").

+i (2", y)

* This condition is borrowed from the enunciation in the Second Theorem of
Mean Value, as proved in §50. If a more general proof had been given, a
corresponding extension of II. would have been treated here.



AN ARBITRARY PARAMETER 179

1t is evident that vr(x) in this theorem may be replaced by
(e, ), if j Jr(2, ) de converges uniformly in (b, O).

(47

0 . N0
sin @ cos & :
Ex. [ e~ - dz, / e . dx(a > 0) converge uniformly in y =0.
0 ! N

IIL. Let ¢z, y) be a« monotonic function of x for each y in
(b, b), and tend uniformly to zero as x imcreases, y being kept
constamt. Also let Jr(x) be bounded and integrable in the arbi-
trary interval (a, '), and not change sign more than a finite

@
nwmber of times in such an interval. Further, let j () dae be
bounded im x = a, without converging as €—>x. °°

Then j ¢ (, Y) P (x) de is uniformly convergent in (b, b').

This follows at once from the Second Theorem of Mean Value,
as in II. Also it will be seen that v (x) may be replaced by

M
Yr(, y), if j Vr(x, y) de is bounded in e =a and b=y =b'*
' “
Ex. 1. / e~ sin & d, j e~ cos & da converge uniformly in y =v,> 0.
0 0

EBx. 2 [ sin. “/d nd / E}?ZCW dz both converge uniformly in y =1,>0
Jo ¢

and 1 ___-JO<U.
It can be left to the reader to enunciate and prove similar

theorems for the second type of infinite integral r F(x, y) de.

The most useful test for uniform convergence in this case is that
corresponding to I. above.

1
Ex. 1. [ V=1 d, [ a~Le " dx converge uniformly in 1>y =y, >0.
O N

Ex. 2. / sin xd@ converges uniformly in 0 <y =y, < 1.

84. Continuity of the Integral j F(x,y)dx. We shall now

«

consider, to begin with, the infinite integral j F(z, y) de, where

F(x, y) is bounded in the region « =ax=a/, b=y =0V, o' being
arbitrary. Later we shall return to the other form of infinite
integral in which the region contains points of infinite dis-
continuity.

*In Examples 1 and 2 of §88 illustrations of this theorem will be found.
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@»

Let f(g/)::j F (z, y) da, where F(x,y) is either a contimuous

Junction of (x, y) im v =rx=da, b=y =V, & being arbitrary, or
18 of the form ¢(x, y)\r(x), where ¢p(x, y) is continwous as above,
and (x) is bounded and integrable in the arbitrary interval
(at, ).

Also let j F(x, y) de converge uniformly in (b, ).

Then f(y) is a continuous function of y in (b, V).
Let the positive number e be chosen, as small as we please.
Then to ¢/3 there corresponds a positive number X such that

j F(x, y)dx

the same X serving for every ¥ in (b, IY).
But we have proved in §77 that, under the given conditions,

€
< 3 when =X

X A
j F(ax, y)dx is continuous in v in (b, 1)

Therefore, for some positive number 7,

ij(m, Y+ Ay)de— ij(cc, y) de J <§, when |Ay| =y
Also f(y)= ij(J), ) dx -+ j:: F(x, y)dz.

Thus fy+ A —f)=| | P, y+ay)de-| Fay)de|

+ ﬁ F(x, 3+ Ay dos — L Pz, y) da.

Also we have

j. F(x, y)dz
X

€
<3

and

LF(w, y+Ay)de <.
Therefore, finally, | |

Fly+An)—f)|<g+g+g

<e, when |Ay|=y.
Thus f(y) is continuous in (b, b").

85. Integration of the Integral j F(x, y)dx.

Let F(x, y) satisfy the same conditions as in § 84.
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y ® * y o
Then j dyj‘ F(zx, y)da;=j da;j F(x,y) dy,
Yo a

@ Yo

where 4, y are any two points in (b, ).
Let fQ)= j F(x,vy)d.

Then we have shown that under the given conditions f(y) is
continuous, and therefore integrable, in (b, ).

Also from §79, for any arbitrary interval (a, x), where x can
be taken as large as we please,

r dx .‘W F(x, vy) clyzjy dy r F(x,y)dex,

[0 Yo [22
Yo, Y being any two points in (b, ).
Therefore

r da jy F(x, y)de= Lt jy by J F(x, y) de,

a Yo L—>w Y
provided we can show that the limit on the right-hand exists.
But

r dy j Fx,v) d:c—_—jy dy j Fx,y) de— .r/ dy j F(x, y) d.
Yo « o /o

Yo i) £

Thus we have only to show that

w

Lt j/ dyj P, ) de=0.

a—>w Jyg a »
Of course we cannot reverse the order of these limiting pro-
cesses and write this as

Jy dy Lt J Fx, y) de,

Y L—p0
for we have not shown that this inversion would not alter the
result.

But we are given tha,tj
in (b, 0'). ¢

Let the positive number ¢ be chosen, as small as we please.
Then take ¢/(b"—0). T'o this number there corresponds a positive
number X such that

F(x, ) dx is uniformly convergent

j F(x, v)dx ' < ‘b—’g?)" when ==X,

the same X serving for every v in (b, ).
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It follows that

r dy j F(x, ) e
Yo &

if y,, o lie in (b, D).
In other words,

<e, when =X,

Lt [r dy j F(x, y) da;—J =0.

T—>» Yo x

And from the preceding remarks this establishes our result.

86. Differentiation of the Integral j F(x,y)dx.

«

Let F(x, y) be either a continwous function of (x,y) wn the
region a =x=a/, b=y =V, ' being arbitrary, or be of the form
P (0, y) (), where ¢(x,y) is continwous as above, and \Jr(x) s
bounded and integrable in the arbitrary interval (a, a’). Also

let F(x, y) have a partial differential coefficient %[f whach satis-
fies the same conditions. Y

Then, if the integfroclj F(x, y)dx converges to f(y), and the
integral j %I;dw converges uniformly in (b, 0), f(y) has a dif-

ferential coefficient at every point n (b, 1), and
, ?oF
F=| 55 e
We know from §84 that, on the assumption named above,
j o dy is a continuous function of y in (b, ¥').

Let sa=|

. Y
Then, by § 85,
n ® ol
Log(y) dy = j da LO e dy,

where 7,, i, are any two points in (b, b").

cle.

Let Yo=y and y,=y+Ay.
9+ A7 <L

then [ gty ay=| (P y+ Ay - Fe ) e,
Y «w

Therefore 9(&) Ay =f(y+Ay)—/(y),

n

where y=E=y+Ay and j(y)—;j F(z, y)dx.
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Thus g(é:-) ___f(y"I‘AA?/i; —j(?/>

But Lt g(£)=g(y), since g(x) is continuous.
Ay—>0
It follows that f(y) is differentiable, and that
o [(CoF
J (y)—L a—y‘d%
where ¥ is any point in (D, b).

o’

87. Properties of the Infinite Integralj F(x,y)dx. The

results of §§84-86 can be readily extended to the second type of
infinite integral. It will be sufficient to state the theorems
without proof. The steps in the argument are in each case

parallel to those in the preceding discussion. As before, the
region with which we deal is

c=cr=a, b=y=b.

I. Continuity of j F(zx, y)da.

Lot f()=|

discontinwity on certain lines (e.g., 2 =a,, d,, ... &,) between z=u
and x=a/, and is either a continwous function of (x, y), or the
product of « continwows function ¢(x, y) and a bounded and

integrable function V(x), except in the meighbourhood of the
sad, lines.

F(x,y)dx, where F(x,y) has points of infinite

[4/

22

Then, if j F(z, y) do is wniformly convergent in (b, 1), (1) is

a continuous function of y in (b, b").

II. Integration of the Integral J F(w, y) de.

Let F(x,y) satisfy the same conditions as in 1.
Then r dy ja F(x,y) dw:jw d jy F(x,y)dy,
Yo

Yo « ¢
where y,, y are any two points in (b, 0").

o
I11. Differentiation of the Integral j‘ F(x, ) de.

Let f(y)zr F(x, y)dx, where F(z,y) has points of wnfinite
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discontinuity on certain lines (e.g., =ad,, ,, ... &, ) between x=a
and z=a', and s either a continwous function of (x, y), or the
product of a continuous function ¢(x, y) and a bounded and
wtegrable function (), except wn the meighbourhood of the
sard lines.

v

Also let F(x,vy) have a partial differentinl coeﬁwzent of , whach
satisfies the same conditions. %

«

Further, let j F(x, y) dax converge, and j ’55 dx converge

unaformly in (b, ).

’

Then f'(y) exists and. is equal to r %dw wn (b, D).

(22

88. Applications of the preceding Theorems.

Ex. 1. 7o prove ./o sin. z’d%_z

(i) Let Ha)= j ¢- ax‘m‘”dz (6 =0).

This integrél converges uniformly when « =0. (Cf. § 83, 1IL.)
For e-+z/x is a monotonic function of # when 2> 0.
Thus, by the Second Theorem of Mean Value,

4

x” g-ax e—ar (& e—ax’ pult
f . sinx dr= p f sin x dx - 7 j ; sin @ d,
J L x’ .

where 0< o’ = £ =a".
Therefore

2 g — o e—ax
j sinzde| =",
2 X 5

W
L

e~ ax”

axl
fg sin & da

v
j,SIIl.fL‘dJ} +

v &£

e-ox' .

—, since

z

<4 =2 for all values of p and ¢,

q .
sina dw
JD

4 .
< —, since a=0.
&

It follows that <€ when "> =X,

j’w”e e bmde
x’ v
provided that X > 4/e, and this holds for every o greater than or equal to 0.
This establishes the uniform continuity of the integral, and from § 84
F(a) must be continuous in a = 0.
"Thus FO)=Lt | e~

a-—>0

. %lnoo Sln.ﬁ(;
fe. f SIN® 5 1 [ e-a@SDE g
0 X

&X a—>0 JO

sin z
daz,
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0
(ii) Again, the integral [ e~k sin & d

o

is uniformly convergent in a = a, > 0.
This follows as above, and is again an example of § 83, I1I.
Thus, by § 86, when « > 0,

o O SRy
F(a)—jo ’571(6 & —~ )dﬂo

0
= —j e-argina da.

But E%e ot (cos &+ a sinw)= —(a?+1)e- o sin 2.
Therefore F —axgin & :_,_1_‘.
|, e sin z da o
m ]
Thus 2l —_——— .,
F(“) a2+1
And Flo)= ——tan"la—i—ga
since Lt F(a)=0.%
¢ S g &)
Tt follows from (i) that j b“”d,l,zg.
Ex. 2. 7o prove
* cos ax sin o T,
- SINAY =T (L —e-a) (a==0).
0 1+x~d oo and | sarag =g (t-em) (=0

* If a formal proof of this is required, we might proceed as follows :

Let the arbitrary positive e be chosen, as small as we please.
ek}
. sina
Since J ¢~ 21X g converges uniformly in a == 0, there is a positive number
: 0 @

X such that { f‘” gz S g
X

0| <,

and this number X is independent of a.
Also we can choose x,, independent of a, so that

e sma,
e <
0

v . o "X gin @
sinx  [ésinx sin
But J e dx=e=o% f i dy e—ak / de,

<o xr xy X JE o

where vy = &= X.
And we know that -

(o sin @
" dw

(cf. p. 202).

sm L

Therefore | da| < 2mwe—aro,

i Jxg X

Thus we can choose 4 so large that

X
. Sinx
/ e~ da,l<~, when a= 4.
) X

It follows that

noo
sin @ €
j e ex 20 gy ‘)+ +-, when a=4.
0 x 3 3
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. Oavb
(i) Let Fay= [ .

The integral is uniformly convergent for every a, so that, by § 84, f(a) is
continuous for all values of a, and we can integrate under the sign of
integration (§ 85).

(ii) Let ¢(a)=iﬁajKa)du.

Then ¢(a) is a continuous function of « for all values of « (§ 49).

s f cos o
Also p(a)= f T+ — d
_[ sin ax
w15 a?) ™
(iii) Again, we know that /(o) will be equal to — / fov sin ax dx, if o
JO <

lies within an interval of uniform convergence of this integral.

But 51s monotonic when » = 1,and Lt ----;=0.
l e | +x~

~0

Thus we hav e, W hen .1}“> ,’L‘, Z 1
) _—
’ ! ~ol

17
A R @ & . & )
e SIN O A = [ sin o da + —— } sin ax da
[' 1+a? 1442 1y 14272 J¢ ’

+&
where ' = £ =a".
It follows that

f Cr i o dv___f’l___ “ sin & da + ! sin a dw
v 1+ Tl +x’2) a a(l—{—lf”)j
! 4o’
Therefore vdr|= "
0 v 1+ TS a(] %y

0

Thus / ﬂ%‘ sin ax da is uniformly convergent when o= — ay >0, and
JO )
N x o .
J(0)= fo a5 e da.

(iv) Now ¢@@=lfjnndw

Therefore ¢'(a)=F(a) A
‘rLl]d 915”(0') :j'/((I)—_: —_ /0 T _fo Sill ar dx
Thus P(a) = — jo ) [1 -3 i @2] Su; 0

R ) s .
sin oz sin ar
0 o 2(1+2%)

= -2+ ¢(a).
This result has been established on the understanding that o > 0.
(v) From (iv) we have .
qS(a)=Aea+Be-a+72~7—-, when o> 0.

But ¢(a) is continuous in « =0, and ¢(0)=0.
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Therefore Lt ¢(a)=0,
a—>0
and A+ DB+ g =0.

, . . . e !’ ™
Also ¢/(a) is continuous in « =0, and ¢ 0)=5-

Therefore 4-B- g =0.

It follows that Ad=0 and B=- 721

Thus (ﬁ(a)zg(l —e~a), when a>0.
And Jla)= gb’(a):ge-a, when o> 0.

Both these results obviously hold for a=0 as well.

Ex. 3. The Gamma Function I'(0)=| e *2"1dxr, n >0, and its derivatives.
0 ) )

(i) Zo prove I'(n) is unsformly convergent when N = n=n,>0, however large
N may be and however near zero n, may be.

o0
When n==1, the integral [ e~*2" 1 dx has to be examined for convergence
JO

only at the upper limit. When 0 <n <1, the integrand becomes infinite at
x=0. In this case we break up the integral into

1 AL
[ el dy + ,[1 e %" da.
JO

1
Take first the integral f e~ x" L du.
0
When O0<x <1, Fri=amt 0 if nZ=n,>0.
Therefore el = et if n=mn,>0.

1
It follows from the theorem which corresponds to §83, I. that jo e~ x" da
converges uniformly when % = ,> 0.

A
Again consider e~“a"tdx, n>0.

1 )
When x>1, ar =2V if O<n=JWN.
Therefore e~*x 1 =e V-1, if O<n=N.

It follows as above from §83, I. that ﬁ e~®2" 1 dx converges uniformly
for 0<n=2.N.

x*L
Combining these two results, we see that f e~"a~! dx converges uniformly
0

when N =n=n,>0, however large & may be and however near zero #,
may be.

(i) Zo prove 1IV(n)= jo e~ og x dz, n>0.
We know that Lt (2" log )=0, when »>0,

x—>0
so that the integrand has an infinity at =0 for positive values of # only
when 0<n=1.
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But when 0< o <1, el = el if n=mn,>0.

Therefore ezt log | =am—t|log x|, if n==n,>0.

And we have seen [Ex. 6, p. 119 Jthat [ a~1og xdx converges when
0<ny,=1.

It follows as above that f e~“a"'log & dx is uniformly convergent when
n=mn,>0.

Also for f i e~*2" 1 log & dz, we proceed as follows:

When ' e>1, =2V if O<n=2JN.

Therefore e~ og v = e~*x¥ ~tlog 2

log &

<e*z¥ since 27 <1 when 4>1.
x

€0
But jl e~*x¥ dx is convergent.
0

Thevefore /1 e~z log & da is uniformly convergent when 0 <n = V.

e o

Combining these two results, we see that f e~"2" ' log  dz is uniformly
JO

convergent when N = n=,> 0, however large /' may be and however near
zero 1, may be.
We are thus able to state, relying on §§ 86, 87, that

I'(n)= f e~*z"1log 2 dz for n>0.
0

It can be shown in the same way that the successive derivatives of I'(n)
can be obtained by differentiating under the integral sign.

Ex. 4. (i) 7o prove f Zog(] 2y cos & +y?) dx is ungformly convergent for any
interval of y (e.g. b=y =V'); and (ii) to deduoe t/wct/ log stn x de= —%m log 2.

(i) Since 1 —2y cosa+ y?=(y — cos x)*+sin’z, this expression is positive for
all values of z, 7, unless when 2 =mm and y=(-1)", m=0, +1, +2, etc., and
for these values it is zero.

It follows that the integrand becomes infinite at #=0 and w=7; in the
one case when y=1, and in the other when y= —1.

We consider first the infinity at «=0.

As the integrand is bounded in any strip 0 =« =X, where X<, for any
interval of  which does not include =1, we have only to examine the integral

]Ox log (1 -2y cos w+y?) duw

in the neighbourhood of 3 J L

Put =144, where | 2| =« and o is some positive number less than unity,
to be fixed more definitely later.

Since /'E]og(l — 2y cosx+y¥)dx

h? .
-/ 100< cosx+2(1+/)>d;v+aflog2(1+/e),
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it is clear that we need only discuss the convergence of the integral

"X h2 >
]0 ]oo< cosL+2(1+/) du.

Take a value of (0 <a < 1) such that ——

(1~0«)
Then 1> o? = P =0, since |A| =a.
2(1—a) =2(1+4)=—" =
9
: — cos—1 —
Now let [3=cos 201 —a)’
It will be seen that, when |2 =«
7,2
—cosx =1 —cos. =1,
0<l—<cosr=1 oosr+2(1+/l)__

provided that 0 < » = f3.
- Therefore, under the same conditions,

10/ os &+ A2
00( — COS & 2(1+/z

But the p-test shows that the integral

>‘<‘100(1—eos@)

B
/ log (1 —cosa)dx
JO
converges.

B h* >
It follows that ‘/O log (1 —cos v+ 20 +7) dx

converges uniformly for |2 |=a. [Cf, §83, I1.]
And therefore / log (1 — 2y cos v +2?) dx
J0
converges uniformly for any interval (b, ) of #.
The infinity at w== can be treated in the same way, and the uniform
convergence of the integral
fﬂ log (1 =2y cos x+3?) do
0

is thus established for a'ny interval (b, 0) of .

(it) Let Jy)= / Trlog (1 =2y cos w+y%) d.
We know from § 70 that 0
Fo)=0,  when [y]=1,
and JS(y)=mlogy? when |y|=>1.

But we have just seen that the integral converges uniformly for any finite
interval of #.
It follows from § 87, L., that

F)= Lt f)=0
and f(-1)= LEI'f(y)Z()'
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But /'(]):/ log2(1 —cosw)dw
0

=27 log 2+ 2/ log sin % d
o :

AT

:27rlog2+4/§10gsinxdx.
JO

AT

Thus / “logsinx do= —}mwlog2.¥
0

From f(—1)=0, we find in the same way that
. AT .
2
[) log cos @ dx= — 3} log 2,
a result which, of course, could have been deduced from the preceding.

89. The Repeated Integral / dx fb f(x, y)dy. It is not easy to deter-

mine general conditions under which the equation

A0 A

/

@

o
de| f(ay)dy=| dy| Floy)dr

)] Jh Ja
is satisfied.

The problem is closely analogous to that of term by term integration of an
infinite series between infinite limits. We shall discuss only a case some-
what similar to that in infinite series given in §76.

Let f(z, y) be a continuous function of (w,y) n x—a, y=b, and let the
wntegrals o o
O [ f@pde @ [y,

respectively, converge uniformly in the arbitrary intervals
[} ’ o/

b=y=V, a=a=d.

Also let the inteqral (iif) / dz / yf(x, ) dy
: Ja Jb
converge wniformly in y="0.

Then the integrals
j <ﬁx[ Sf(@,y)dy and / ‘¢yf'11m,y)d@
[ Jb Jb a

exist and are equal.

fale o}

Since we are given that (2, ) d2 converges uniformly in the arbitrary
g | J&Y N

[

interval b =y =10', we know from § 85 that

Y © z (Y
[ay[ s,pydo=[ de[’ f, gydy, when y>o.
b Ja a Jb
It follows that
/@/ﬂ%wW=Lt Mﬁﬂ@w@,
Yo Ja b

Yy—>nva

provided that the limit on the right-hand side exists.

* This integral was obtained otherwise in Ex. 4, p. 118,
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To prove the existence of this limit, it is sufficient to show that to the
arbitrary positive number e there corresponds a positive number 1" such that

:’ 0 ny/l .
f dx/ S, y) dy
a Jy!

But from the uniform convergence of

[“ae[" 7, dy
va b

in ¥ =b, we can choose the positive number X such that

A Y I €
!/ dx[ e, y) dg/\<§, when 2 =X, ... (1)
W Jb

the same X serving for every y greater than or equal to b.

<¢ when 3" >y’ =7,

Also we are given that [ | flw, y)dy
<b

is uniformly convergent in the arbitrary interval («, «).
Therefore we can choose the positive number ¥ so that

. ! € 1= Yy
,y)dy? <3(X~&>, when ¢'>4'=7,

the same Y serving for every z in (a, X).
!

Thus we have d.x

y) dy

< 53 when 9" > 7= Y. .coeirrieeens (2)

But it is clear that

fale o} *‘yl/ X _l/// D y/l oal ’_I/’
| dfv‘/y, f(%&')d?/:f“ dr ) f(x,.i/)dz/f/Y d%’fb Mz, ?/)df-/"“f\_ dxfb S, ) dy.

-

Therefore from (1) and (2) we have

dxf f(x

We have thus shown that

[ dg_/f fleyy)de= Lt / dm[yf(a:, WAY. v, cei(3)
14 a y-—>nda Jb

It remains to prove that

3'

<e when y' >y =7T.

~

Lt/ dx[ Sz y) dy = /wdx‘/b Fxy y) dy.

Y—>0

Let the limit on the left-hand side be /.

Then ¢ being any positive number, as small as we please, there is a
positive number ¥, such that

f / S, y)dy | <

Also, from the uniform convergence of

/ dx yf(x, y)dy, when y =0,
a b

e,’ when ¥y = V. coovvnnnnnnn (4)
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we know that there is a positive number X such that
~X/

f d"’f: S, ) dy — / 6 /d.v];y Fw, y) dy

the same X serving for every z greater than or equal to b.
Choose a number X’ such that X’= X >a.

<§, when X' X, ...... (5)

el

Then, from the uniform convergence of / flae,y)dy in any arbitrary .
Jb
interval, we know that there is a positive number ¥, such that
y N
| 7y [ty dy
the same ¥, serving for every x in (a, X').

X/ } Y X/ el ‘ € —
ths | [“ao[* fa, gy~ [Tde[ findy <5 when y =T ()
[ Vb @ b e

€ ' — 7
< 5(X —a)’ when y = ¥,

Now take a number ¥ greater than ¥; and T,.
Equations (4), (5) and (6) hold for this number ¥.
But

! - _/:wdfvf:f(m, y)dy l
n i U ¥
[[ao[ sepydy- [ @[ rw ]

X/ v X/ »© !
[ fopay- [T @ oo,
<4545, from (4), (5) and (6),
<&

This result holds for every number X’ greater than or equal to X.
Thus we have shown that

1= 1t (x| fgpdy=[ de| sy
@& L) 2 b

a—>w

=[i- [ de[ " f, gy ‘ +

Also, from (3), we have :

f dxf f(x,y)dy=f d.?/f fle,y) da
a b Jh Ja

under the conditions stated in the theorem.
It must be noticed that the conditions we have taken are suficient, but not
necessary. For a more complete discussion of the conditions under which the

integrals [ © » ©
dz | f(zy)dy, dy | f(# ) d=,
@ vb b “a

when they both exist, are equal, reference should be made to the works of
de la Vallée Poussin,* to whom the above treatment is due. A valuable dis-

* His investigations are contained in three memoirs, the first in Bruxelles, Ann.
Soc. scient., 17 ; the second in J. math., Paris, (Sér. 4) 8, 1892 ; and the third in
J. math., Paris, (Sér. 5) b,

See also Bromwich, London, Proc. Math. Soc. (Ser. 2), 1, 1903.
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cussion of the whole subject is also given in Pierpont’s Theory of Iunctions
of « Real Variable. The question is dealt with in Hobsows Z7%eory of
Punctions of « Real Variable, put from a more difficult standpoint.
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EXAMPLES ON CHAPTER VI.
Prove that jo e~*dz is uniformly convergent in a=«,>0, and that

is uniformly convergent in « =0, when b >0.

» :
sin a3 . . oo
2. Prove that f e 7 Y dw is uniformly convergent in y=—#,>0, and
0 o

sin 42 . . .
that [ e ——Q/——J«dx is uniformly convergent in y =0, when «>0.
Jo X

)
3. Prove that / e~ @zl cosdw is uniformly convergent in the interval
0
= a4y >0, when » =1, and in the interval @ =0, when 0<n<1.

4. Prove that j me““x”‘l sinzdz is uniformly convergent in the interval
a=a,>0, when 2 =20, and in the interval « =0, when —-1<n<1.
5. Using the fact that [ sin x/ dx is uniformly convergent in
7/——?/0<0 and  y =~ 2,<0,
show that f Sin LY COS 4% 7., g uniformly convergent in any interval of

z
which does not include y= + «.

6. Show that (i) | (1 —e0) 0 g,

© 7y
(ii) [0 gy (€OS @i — €08 bx) dr, bta,

w

are uniformly convergent for y =0
c. 1 N
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7. Discuss the uniform convergence of the integrals :
te] te)

[P tanTlay ey L o
rrrrrrrrrrrrrr 7 d, ) Y (.
M .jo ad(1—ay ™ (1) / (T 21— a) (i) / .
. Tav—1 . .
(iv) ; Iogxdx' (v)/O w*~log ay dv, n>0.

8. Show that differentiation under the integral sign is allowable in the
following integrals, and hence obtain the results that are given opposite each :

(1) ﬁme‘“ﬂdm:%\/g; joﬁ = g — ;77‘ 1.3 2“6(;’13;-1).
(ii )JO @C{ﬁcc a/a’ @=>0; looo(2 +;)n+1~721' ]—57—777%2:17_1)
(ii1) ﬁl z cl.,p:%~—_1*~—1, 7z,>7—1 ; ‘/01 a™( —log %))mdL“‘(L_*_”’;!)?n’“°
(iv) fo 1:_71@ dx:,)_ﬂ—_mr’ 0<n<l; /On %‘c " da :ﬂ: eo%rt ,_g_r

2 cos -

9. Establish the right to integrate under the integral sign in the following
integrals :

0
(1) [0 e~ dz; interval ¢ = @,>0.
i 0
(if) f e~*cos bx dx ; interval @ = a,>0, or any interval of b.
. =
0
(iii) f e~ sin b dx ; interval a = a,>0, or any interval of b.
0

’ 1
(iv) f x*da ; interval a = ay> —1.
' JO

10. Assuming that fo e~ "®sin bx dx=—%§2, >0, show that
/m e_fx — e 9% _l’q —lf
0

sin bz dx=tan A tan™lz, g > f>0.

Deduce that (1) f L™ Sin bo do= tan—l%.

(ii) [ ,Smf"’dngw, b>0.
JO r

11. Show that the integrals

a0
a . .
[ e~ cos br dr =54 / e~ sin b dx = a>0,
Jo a’+b Jo

b
a2+’
can be differentiated under the integral sign, either with regard to a or b,
and hence obtain the values of

10

o]
]. xe~" cos bx dx, [ ze~ " sin bx dx,
0 Jo

fale o)

»n
f %% cos b dz, / z?e~** 8in ba da.
0 J0
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12. Let fo=| L2088 sl

Show that f(y)= / sinay e da for all values of , and deduce that
J0
S =%1og (1 +77).
13. Let (@)= e *cos2vyde.
J0

[
Show that f'(y)= -2 /s re~*sin 22y da for all values of y.

On integrating by parts, it will be found that

S +2y1(y)=0.
From this result, show that f(y)=4./7 ¢, assuming that I'(3)=d/7.

Also show that /Ow dx fo " e=cos 2y dy = /Oy T () dy,

o . .
2 S1N 22, v
and deduce that f o= P2 Gy / e ¥ dy.
JO x JO

» »
14, Let U= {0 ey teos b de, V= [D e~ sin ba de,
where >0, n> 0. ‘
Make the following substitutions :
a=rcosf, b=rsinf, where —Ir<l<im,
o=y, Ur=u, Vr=v.

Then show that 2296 — 1, diﬁ = NAl.

From these it follows that C(f, & +n2u=0,

Deduce that w=1"(n)cosnf, v=1I"(n)sinnf.
Thus U=T @ "0, =Tl

Also show that, if 0<n<1, Lt U= {0 x" 1 eos ba du,

a—0

a—0

Lt V= [ ’ 2" Lsin b dz.
JO
And deduce that :

()f cosbx I‘(n)coq 2 (i) [ sin br
l n da —b-n—_’ 1 2 dzx

cos T (Tsina
= .
(111)/ \/2 /; N dx

[Compare G‘rlbson, Treatise on the Caleulus, p. 471.]
15. Prove that

o » . » »
, dax { e~sinwdy= / dy [ e~ sina dx,
Jo o . b Jo

where b is any positive number.

I'(n) sin ur
2
Z)n

’




CHAPTER VII

FOURIER'S SERIES

90. Trigonometrical Series and Fourier’'s Series. We have
already discussed some of the properties of infinite series whose
terms are functions of x, confining our attention chiefly to those
whose terms are continuous functions.

The trigonometrical series,

o+ (a; cos x+ b, sin ) 4 (a, cos 2x 4 by sin 2x) 4 ..., ...... (1)

where «,, a,, b, etc., are constants, is a special type of such series.
Let f(x) be given in the interval (—m, z). If bounded, let it
be integrable in this interval; if unbounded, let the infinite

integral r f () dx be absolutely convergent. Then

r f(@) cosna’dx’  and r f(&)sinna’ dx’

exist for all values of ». (§61, VI.)
The trigonometrical series (1) is called a Fourier’'s Series, when
the coefficients «,, «,, b,, ete., are given by

a0=~l—j f(x) cos na’dx’,
27 J (2)
]- T ’ ’ ’ ’ ]- m ’ . ’ ’
anzﬂ“» f(x") cos nx’da, bqlz;j f (@) sin na dw,J
2 -

and these coefficients are called Fourier’'s Constants for the
function f(x).

The important thing about the Fourier’s Series is that, when
f(x) satisfies very general conditions in the interval (—m, =),
the sum of this series is equal to f(x), or in special cases to

[ f(®+0)+f(x—0)], when « lies in this interval.
196
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If we assume that the arbitrary function f(z), given in the
interval (—, 7), can be expanded in a trigonometrical series of
the form (1), and that the series may be integrated term by
term after multiplying both sides by cos n or sin ne, we obtain
these values for the coefficients.

For, multiply both sides of the equation

f(x)=a,+(a, cos &+ b, sin &)+ (a, cos 2z + b, sin 2x) ...,

—T=R=T, (3)
by cos nz, and integrate from — 7 to 7.
- m
Then j f(x) cos nx de = ma,,
™ -7 by
since j COS X COS N& d =j sin ma cos na de =0,
- . -

when m, 1 are different integers, and

™
j - cos® nw du = .
-

Thus we have

("

= f(@) cos na’dx’, when n=1.

Vv -7

k.

And similarly,
b=’

f(a') sin na’da,

7r~ -
1 7
ty = ﬂj_” f(x)dx'.

Inserting these values in the series (3), the result may be written

f(x) - §17—r _“iﬁf(x’) da’ + 71_1- w; J‘W '(m’) cos n(x’—x) da’,

o andi( - Q’) _ T vevens (4)
This is the Fowrier’'s Series for f(x).

If the arbitrary function, given in (— 7, ), is an even function—
in other words, if f(x)=f(—x) when 0<a<m—the Fourier’s
Series becomes the Cosine Series:

f(x)= 1 r S da’+ 2 >’ cos na r f (@) cos e’ da,
m™Jo ™1 0

Again, if it is an odd function—u.e. if f(x)= —f(—x) when
0 <z <m—the Fourier’s Series becomes the Sine Series :

f(x)= 3—_ Z sin na rf(w’) sinnz'dye, 0ZexZw. ... (6)
(] 1 0
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The expansions in (5) and (6) could have been obtained in the
same way as the expansion in (3) by assuming a series in cosines
only, or a series in sines only, and multiplying by cosna or
sin nx, as the case may be, integrating now from 0 to .

Further, if we take the interval (—1, [) instead of (— =, 7), we
find the following’ expansions, corresponding to (4), (5) and (6):

f(oc)-—-z—lj J@)dx'+5 }_,j f(w)cos—(w—x)cla:

'—'Z: :l. ......(7)
, 1. ,0.,, 23 nm (. nw , .,
f@y=51 f@)dae'+5 D, cos ——a | f(a') cos - a'da,
lJo [ 4 L Jo l |
O=a=l ..... (8)

9 » A
f(w):%zsin@z—rmj f(az’)sinn—zrm’da;’, 0=a=l ......(9)
1 0

However, this method does not give a rigorous proof of these
very important expansions for the following reasons:

(i) We have assumed the possibility of the expansion of the
function in the series.

(i1) We have integrated the series term by term.

This would have been allowable if the convergence of
the series were uniform, since multiplying right through
by cosne or sinna does not affect the uniformity; but
this property has not been proved, and indeed is not
generally applicable to the whole interval in these ex-
pansions.

(ii1) The discussion does not give us any information as to the
behaviour of the series at points of discontinuity, if such
arise, nor does it give any suggestion as to the conditions
to which f(x) must be subject if the expansion is to hold.

Another method of obtaining the coefficients, due to Lagrange,*

may be illustrated by the case of the Sine Series.

Consider the curve
Y=, SIN T+, sin 24 ...+ a,_; sin (n— 1) .
We can obtain the values of the coefficients

(), oy vov (p_y,

* Lagrange, Guvres, 1. L., p. 533 ; Byerly, Fourier's Series, ete., p. 30.
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so that this curve shall pass through the points of the curve

y=f(x),

at which the abscissae are

™2 =1,
n mn n

n=
to the limit as n—>w, we have the values of the coefficients in
the infinite series

f(x)j=a,sinzc+a,sin 2+ ... .

In this way we find «,, «,, ... @,_, as functions of n. Proceeding

But this passage from a finite number of equations to an
infinite number requires more complete examination before the
results can be accepted. _

The most satisfactory method of discussing the possibility of
expressing an arbitrary function f(z), given in the interval
(—, m) by the cOrresponding Fouriet’s Series, is to take the series

o+ (g cos x4 by sin @) + (a, cos 2z + b, cos 2x) + ...,

where the constants have the values given in (2), and sum the
terms up to (o, cos na+b, sinnx); then to find the limit of this
sum, if i1t has a limit, as n—=.

In this way we shall show that when f(x) satisties very general
conditions, the Fourier’s Series for f(x) converges to f(z) at every
point in (—m, 7), where f(x) is continuous; that it converges to
Sf(@+0)+f(x—0)] at every point of ordinary discontinuity ;
also that it converges to L[ f(—7+0)+f(m—0)] at x= =+,
- when these limits exist.

Since the series is periodic in @ with period 27, when the sum
"is known in (—r, 7), it is also known for every value of .

If it is more convenient to take the interval in which f(z) is
detined as (0, 27), the values of the coefficients in the correspond-
ing expansion would be

1 27 . , ,
“0:27rj0 fa)d,

1 2w 1 2 A _
=" j f(@)cosna'da’, b,= - f(@)sinne’da’, n=1.
0 0

It need hardly be added: that the function f(x) can have
different analytical expressions in different parts of the given
interval. And in particular we can obtain any number of such
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expansions which will hold in the interval (0, 7), since we can
give f(x) any value we please, subject to the general conditions
we shall establish, in the interval (—, 0)

The following discussion of the possibility of the expansion
of an arbitrary function in the corresponding Fourier's Series
depends upon a modified form of the integrals by means of which
Dirichlet * gave the first rigorous proof that, for a large class of
functions, the Fourier’s Series converges to f{z). With the help
of the Second Theorem of Mean Value the sum of the series can
be deduced at once from these integrals, which we shall call
Dirichlet’s Integrals.

91. Dirichlet’s Integrals (First Form).

Lt j f(x) »Sl?%"‘?? do=Tf(+0), Lt

u—>m J0 : w—> w0
where 0<<a<<b.

When we apply the Second Theorem of Mean Value to the

integral jc’ sin @

= de, 0<Lb<¢,

[4 ] o
j fla) = dw=0,

(47

bl
1 (¢, 1.

dr=5| sinxede+- | sinada,
0" by ¢ Je

¢ gin @

we sce that j
"

where ' = £=¢. |
(¢ sine , | /1 1
Thus | SN = <_ _ﬁ)
us ‘L, - dwl_? b’+c’

4
<z

It follows that the integral
j e g,
0o @
is convergent. Its value has been found in § 88 to be &

: [ sin px b sin ux
The integrals oA qe and | PR g
J0 @ a X

can be transformed, by putting ue=2a’, into

[ gin o roginm 5
de, d,
) Jo X we L :
respectively.

*J. Math., Berlin, 4, p. 157, 1829, and Dove’s Repertoriwm der Physik, Bd. 1.,
p. 152, 1837. '
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It follows that
¢ o ® 41
Lt j S u dw-:j 'Smxdm-——{;w, 0<u,
0

w—>00 J0 X X
b o1 b 3
SNy *28In @
and Ltj B de= 1 j de=0, 0<a<b.
u—>w Jq XL u—>o J i &£

These results are special cases of the theovem that, when f(x)
satisfies certain conditions, given below,

j flo) S22 do =T f(+0), 0<a,

sin ,uoc

N,—>C/J

Lt f() dz=0, 0<a<b,

In the dlscussmn of thls theorem we shall, first of all, assume
that f(x) satisfies the conditions we have imposed upon ¢(x) in
the statement of the Second Theorem of Mean Value (§ 50); viz.,
it is to be bounded and monotonic (and therefore integrable) in
the interval with which we are concerned.

It is clear that smm,u,  satisfies the conditions imposed upon

V() in that theorem. It is bounded and integrable, and does
not change sign more than a finite number of times in the interval.
We shall remove some of the restrictions placed upon f(x) later.

I. Consider the integral
j f(x >sm,ua‘3 de, 0<a<<b.

From the Second Theorem of Mean Value

r f() do= f(a,+o>j do+f(b— 0)j Smw“x d,

‘where £ is some definite value of « in « =« =0.

Since f(z) is monotonic in « =z =0, the limits f(«+40) and
f(b—0) exist.

And we have seen that the limits of the integrals on the right-
-hand are zero as pu—> 0.

It follows that, under the conditions named above,

j_f( )S@ﬂ?d =0, when 0<<a<Cb.

sin pua sin ux

w—>w

I1. Consider the integral
jl f(x) Smm“ v de, 0.
0
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Put f(x)= qﬁ(m)—}— f(+0). The limit f(40) exists, since f(z) is
monotonic in 0 =z =a.

Then ¢(z) is monotonic and ¢(+0)=0.

Also

j S )Sm““d ~—j<+0)j s j ne Sinf’i@dx.

As p—oo the first integral on the right-hand has the limit {7
We shall now show that the second integral has the limit zero.

To prove this, it is sufficient to show that, to the arbitrary
positive numbet' e, there corresponds a positive number » such that

=
—= V.

Let us break up the mterval (0, @) into two parts, (0, ) and
(a, @), where « is chosen so that

| gb(a-——()) l < e/27r.
We can do this, since we are given that ¢(+0)=0, and thus
there is a positive number « such that

| p(2)| < /27, when 0<lz=a.
Then, by the Second Theorem of Mean Value,

j P() gb(a—O)j Smuwch

since ¢p(+0)=0, ¢ belng some definite value of # in 0 = = a.

sin ,ua,

But, in the curve J =SI%—O—3, x=0,
the successive waves have the same breadth and diminishing
amplitude, and the area between 0 and = is greater than that
between 7 and 27 in absolute value: that between 7= and 27 is
greater than that between 27 and 37, and so on ; since [sin x| goes
through the same set of values in each case, and 1/x diminishes
as « increases.

*gine , _ ["sinx
Thus j : x—(lw': de <,
0 0

whatever positive value @ may have.

7 gin @ ‘lsmm , P sin @
Also j dox = j dr — j — " dux,
P xr

0 .L’ 0

2
and each of the integrals on the right-hand is positive and less

than 7 for 0<p<q.
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Therefore Ju sin dwi < m, when 0=p <gq.
P
It follows that H (/)(fc)sm B o i<—><7r
€
<y
and this is independent of u.
But we have seen in L. that
sin z,
j P ()" “ =0, 0<a<a.
> n

Therefore, to the arbitrary posmve number ¢/2, there corresponds
‘a positive number v such that

j b(x) 1nuwd l<2, when u=

Also

H (@ )smua, é” gb( )sm,um } j¢( )smﬂc_o
Therefore

sm,uoc € €
j p()-— <§+§

< e, when pu=u.

Thus Lt j () S gy ),
pw—>w Jo &£
And, finally, under the conditions named above,
sin uw
Lt | )M do =T f(+0)
>

92. In the preceding section we have assumed that f(x) is
bounded and monotonic in the intervals (0, «) and (¢, b). We
shall now show that these restrictions may be somewhat relaxed.

L. Diricllet's Integrals still hold when f(x) is bounded, aund
the interval of integration can be broken wp into a finite nuwmber
of open partial intervals, in each of which f(x) is monotonic.”

This follows at once from the fact that under these conditions

we may write f(x)=F(x)— G (),

*This condition is sometimes, but less exactly, expressed by the phrase: f(x)
shall have only a finite number of maxima and minima in the interval.
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where F(z) and G(x) are positive, bounded, and monotonic in-
creasing in the interval with which we are concerned [cf. § 36].

This result can be obtained, as follows, without the use of the theorem
of §36 :
Let the interval (0, @) be broken up into the 2 open intervals,
0, @)y (@, ag)y ..y (Wp_y, @),
in each of which f(x) is bounded and monotonic.
Then, writing ;=0 and «,=a, we have

ﬁaf @) su; B 2 / sm ,uw, .

r=1 4 1

The first integral in this sum has the limit 7 j (+0), and the others have
the limit zero when p-—>w.
It follows that, under the given conditions,
Lt f Fay S E da =T f(+0), 0<a.
fr—>0
The proof that, under the same condltlons,
Lt j S *’““‘"L dor=0, 0<a<b,

>0
is practically contained in the above.

It will be seen that we have used the condition that the number of partial
intervals is finite, as we have relied upon the theorem that the limit of a sum
is equal to the sum of the limits.

IL. The integrals still hold for certain cases where a finite
nwmber of pownts of infinite discontinuity of f(x) (as defined
1 § 33) occur i the interval of integration.

We shall suppose that, when arbitrarily small neighbowrhoods
of these points of wnfinite discontinuity are excluded, the re-
mainder of the interval of integration can be broken wp into «
Jinite number of open partial intervals, in each of which f(a') 18
bounded and monotonic. |

Further, we shall assume that the infinite integral jf () dav s

absolutely convergent in the interval of imtegration, and that
w=0 is not a point of infinite discontinuity.
We may take first the case when an infinite discontinuity

Sin u drz, and

occurs at the upper limit b of the 1nteg1a1j f(x)
only there. “

b
Since we are given that j Jf(z) dx is absolutely convergent, we
@ ' B !

4

know that J f(x)

a

sin p sin ua | _ .
7

dx also converges, for

(a, b). And this convergence is uniform.
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To the arbitrary positive number ¢ there corresponds a positive
number y, which we take less than (0 —«), such that

<2, when 0<E=#, .cocounen. (1)

and the same 5 serves for all values of u.
But

Jf( )Smucql _J‘( e )Smym +j f( )qm,u.x 2)
And, by L above,

Ltj f()@ﬂ@ =0.

p—> 0

It follows that there is a pOSlthG number y such that
- .
j nf(cc) smx,ux dex ’ < %, when u=p. .cccevnvne. (3)
From (1), (2) and (3), we have at once

b Sin ue k €, €
Lf(x) - dx <3t3
<e, when u=y.
Thus we have shown that, with the conditions deseribed above,

Lt | fe)

A similar argument apphes to the case when an infinite dis-
continuity occurs at the lower limit @ of the integral, and only
there.

When there is an infinite discontinuity at a and at b, and only
there, the result follows from these two, since

_[f( )Smﬂmd jf( )SIDWCJ +Jf( )sm,ucc dr, a<e<b.

When an infinite discontinuity occurs between « and b we
proceed in the same way; and as we have assumed that the
number of points of infinite discontinuity is finite, we can break
up the given interval into a definite number of partial intervals,
to which we can apply the results just obtained.

Thus, under the conditions stated above in I1.,

sin ,ua,

2=0, 0<a<h.

Lt jgf( )Sm&xd =0, when 0 <a<<D.

>
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Further, we have assumed that =0 is not a point of infinite
discontinuity of f(x). Thus the interval (0, @) ean be broken up
into two intervals, (0, «) and (a, ¢), where f(2) is bounded in
(0, a), and satisties the conditions given in L of this section.in

(07 CL).
It follows that
sin ¥
1t | 7 M dn=T (4o,
p> 0
and we have just shown that |
Lt @ f(x) S1N wi da = 0.

p—w Ja
Therefore, under the conditions stated above in I,

Lt | f ) I G2 T F(4-0).

> v

93. Dirichlet’s Conditions. The results which we have ob-
tained in §§91, 92 can be conveniently expressed in terms of what
we shall call Dirichlet’s Conditions.

A function f(z) will be said to satisfy Dirichlet’s Conditions
in an interval («, b), in which it is defined, when it is subject to
one of the two following conditions:

(i) f(x) is bounded im (a, b), and the interval can be broken
wp mto a finite number of open partial intervals, in each
of whicl f(x) is monotonic.

(i1) f(x) has a finite number of points of wnfinite discontinwity
in the interval, but, when arbitrarily small neighbowr-
hoods of these points are excluded, f(x) is bounded in
the remainder of the interval, and this can be broken wp
imto a finite number of open partial intervals, in each of
which f(x) is monotonic. Fuwrther, the infinite integral
jb T(x) da 18 to be absolutely convergent.

We may now say that:
When f(x) satisfies Dirichlet’s Conditions in the intervals (0, a)
and («, b) o“espect@'vely, where 0< a<b, and f(+0) exists, then

Lt jf( 31nﬂa,dw___f(+0

and Lt j flx )smi,(ia_s e =0.

Voo
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It follows from the properties of monotonic functions (cf. § 34)
that except at the points, if any, where f(x) becomes infinite, or
oscillates infinitely, a function which satisties Dirichlet’s Con-
ditions, as defined above, can only have ordinary discontinuities.”
But we have not assumed that the function f(x) shall have
only a finite number of ordinary discontinuities. A bounded
function which is monotonic in an open interval can have
an infinite number of ordinary discontinuities in that interval
[cf. §34].

Perhaps it should be added that the conditions which Dirichlet
himself imposed upon the function f(x) in a given interval (a, )
were not so general as those to which we have given the name
Dirichlet's Conditions. He contemplated at first only bounded
functions, continuous, except at a finite number of ordinary dis-
continuities, and with only a finite number of maxima and
minima. Later he extended his results to the case in which
there are a finite number of points of infinite discontinuity in the

)
interval, provided that the infinite integral j f(z) d is absolutely
convergent. “

If the somewhat difficult idea of a function of bounded wvariation, due to
Jordan, is introduced, the statement of Dirichlet’s Conditions can be simpli-
fied. But, at least in this place, it seems unadvisable to complicate the
discussion by further reference to this class of function,

94. Dirichlet’s Integrals (Second Form).

1 [ e S de=T o), Lo [0 SR gy,

where 0<la<<b<m.

In the discussion of Fourier’s Series the integrals which we
shall meet are slightly ditferent from Dirichlet’s Integrals, the
properties of which we have just established.

* These conditions can be further extended so as to include a finite number
of points of oscillatory discontinuity in the neighbourhood of which the
function is bhounded [e.g. sin1/(x —¢) at w=c], or of continuity, with an infinite
number of maxima and minima in their neighbourhood [e.g. (x-¢)sin1/(x - ¢)
at x=c)].

This generalisation would also apply to the sections in which Dlrlohlet
Conditions are employed.
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The second type of integral-—and this is the one which Dirichlet
himself used in his classical treatment of Fourier's Series—1is

j“ F)S Sin @ iz, j b Fla) Sin ua e,

0 sin @ a sin @

where 0 <<a <<b<l.

We shall now prove that:

When f(x) satisfies Dirichlet's Conditions (as defined in §93)
i the intervals (0, a) and (a, b) respectively, where 0<a<b<r,
and f(+0) exists, then

mj CE

and | Lt Lf( )

Let us Suppoge that f(x) satlsﬁes the first of the two conditior
given in § 93 as Dirichlet’s Conditions:

f(z) is bounded, and the intervals (0, a) and (@, b) can be
broken up into a finite number of open partial intervals, in each
of which f(z) is monotonic.

Then, by § 36, we can write

f(2) =F(a) - G(2),
where F(z), G(x) are positive, bounded and monotonic increasing
in the interval with which we are concerned.

Then f(x) Sln,u,sc [ ()_ﬁ_ﬂ_ G () .w‘_]_sin,uac.

sin & Sm Sm & X

Sln ,u.(b

" da=T f(+0),

Sln ,ua?

dax=0.

But @/sin« is bounded, positive and monotonic increasing in

(0, @) or (a, b), when 0<la<<b<lm.*
Thus F(z) ——— and G(x) —— will both be bounded, positive
s @ S &

and monotonic increasing in the interval (0, a) or («, b), as the
case may be, provided that 0<<a<<b<.

It follows from § 91 that
Lo || f0) S 0= (P(+0)~ (+0)

=5/ (+0),

dx=0, when 0 <<a<b<m.

mnux

and 1 ja Sz )

* We asgsign to /sinx the value 1 at x=0.
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Next, let f(x) satisfy the second of the conditions given in §93,
and let /(4 0) exist.

We can prove, just as in § 92, 1L, that

b
Lt j flx )S;n'uxdm 0 When I<a<<b<lm.

n—>w

b
For we are given that j f(x) de is absolutely convergent, and
a

we know that «/sin x is bounded and integrable in («, b).

b .
It follows that J f(x) R

. sin @

is absolutely convergent; and the preceding proof [§ 92, IL] applies
*o the neighbourhood of the point, or points, of infinite discon-

:aity, when we write f(x) Siix in place of f(x).

Also, for the case Lt r f(x) SIN g dax,
0 SIm X

[Vl
we need only, as before, break up the interval (0, @) into (0, a)
and (a, @), where f(z) is bounded in (0, ), and from the results
.e have already obtained in this section the limit is found as

stated.

If it is desired to obtain the second form of Dirichlet’s Integrals without
the use of the theorem of § 36, the reader may proceed as follows :

(1) Let f(«) be positive, bounded and monotonic increasing in (0, a) and (&, b).

Then qn/i' o is so also, and ¢(2)= f(.z) 15 soalso, 0<a<b<r.

But, by §

Lt [“(0) " de=Tp(+0)=F f(+0)

M—>0
Therefore

sin PO g T

Lt [T ) Y de=F A+ 0)
Also

sin pw sin pa sin p2 o

]f()%mx *ff()lnfvd ff()smz o
Therefore Lt f( )qm B o =0.
. J—>0

(i1) Let f(x) be positive, bounded and monotonic decreasing.
Then for some value of ¢ the function ¢—f(«) is positive, bounded
and monotonic increasing.
C. I 0
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Also
@ . sin ua @ §in pa qln @
[, fe=Aan Sl dome [ S du [ fa) S

sin @ sin sin @

Using (i), the result follows.

(i) If f(«) is bounded and monotonic increasing, but not positive all the
time, by adding a constant we can make it positive, and proceed as
in (ii); and a similar remark applies to the case of the monotonic
decreasing function.

(iv) When f(x)is bounded and the interval can be broken up into a finite
number of open partial intervals in which it is monotonic, the result
follows from (i)-(iii).

(v) And if f(«) has a finite number of points of infinite discontinuity, as
stated in the second of Dirichlet’s Conditions, so far as these points
are concerned the proof is similar to that given above.

95. Proof of the Convergence of Fourier's Series. In the
opening sections of this chapter we have given the usual
elementary, but quite incomplete, argument, by means of which
‘the coeflicients in the expansion

f(x)=a,4(at, cosx+ b, sin z)+(a, cos 2x + b, sin 2z) + ...
—T=r=T
are obtained.

We now return to this question, which we approach in quite
a different way.

We take the Fourier’s Series

a,+(a, cos e+ b, sinx) 4+ (a, cos 2z + b, sin 2x) + ...,
where the coefficients are given by

1 N o
(oozﬂj_”f(m )dz', l
1 m / / / 1 T 4 s -/ 4
TS ;J_ f(@)cosnx'dx’, b,= = (") sin na’ da'.

We find the sum of the terms of this series up to cosnx and
sinnz, and we then examine whether this sum has a limit as
—>00 .

We shall prove that, when f(z) is given in the interval
(—m, ), and satisfies Dirichlet's Conditions in that interval,
this sum has a limit as n—>c0. It is equal to f(x) at any
point in —x<u<w, wheref(x) is continuous; and to

i f@+0)+/(2—-0)],

when there is an ordinary discontinwity at the point; and to
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HA=7m+0)+f(m=0)] at x=*m, when the limits f(mx—0)
and f(—m+0) exist.
Let
S, (z) =a,+ (a, cos x4 by sinx) + ... 4 (¢, cos nx4b, sin nz),
where a,, a,, b, ete., have the values given above.
Then we find, without difficulty, that

S (x) = ;)1 . | f(@)[14+2cos(2’ —a)4 ...+ 2cosn (' —z)] da
iy o
R sin -1~(2n+])(7(/ —-x) .,
=5 | _,,f(%) Snl@—a) da
R B %111 ,(%z—l—l)(m — ) 1.
Tor) S sin L@’ —a) b
L7, osind@n41)@ —a)
+g | Sy RAZFDEZD) g
Thus
1 (irtie sin (2n+1)a
I () — — 7, i
Sy =1 |7 -2 B D g,
N 1 j ~ b Flot2a) sin (on—I—l) dets oo (1)
) sin a

on changing the variable by the substitutions @’ —x = F2a.

If —7<<x<m and f(z) satisties Dirichlet’s Conditions in the
interval (—m, 7), f(x=¥F 2a) considered as functions of « in the
integrals of (1) satisfy Dirichlet’s Conditions in the intervals
0, 7+ Lx) and (0, Lw— 1) respectively, and these functions of
a have limits as a«—0, provided that at the point 2 with which
we are concerned f(x+0) and f(z—0) exist.

It follows from §94 that, when « lies between — 7 and 7+ and
f(xz—0) and f(x+0) both exist,

/ Eo Sy(z) = 1; [Z):rf(fc- —0) + 3:7 (2 + ())]
=} /(= 0)+f(e+0)]

giving the value f(x) at a point where f(z) is continuous.

We have yet to examine the cases = + .

In finding the sum of the series for ==, we must insert this
value for 2 in S, (2) before proceeding to the limit.

Thus  Sum)= L | flr—20) M EFDe g,

wJo S]ﬂa

since the second integral in (1) is zero.
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It follows that
- 2
S,n(w')::;l j J(m— Sln( n_l_l) da

m™Jo %lna
1 sm (2n+1)a
+; - gf sin a
1 sin (Qn—l—l)a
—WL J(mw—=2a) sin a

sin (2n+1)a

SIn ¢

¢
—|—1j f(—m+2a) da,
m™Jo

where £ is any number between 0 and .

We can apply the theorem of §94 to these integrals, if f(x)
satisfies Dirichlet’s Conditions in (—, =), and the limits f(7—0),
f(—m+0) exist. ,

Thus we have
Lt S,(7) %[f(—w-}—())—l—fw 0)]

>0

A cimilar discussion gives the same value for the sum at

x = — 7, which is otherwise obvious since the series has a period
2. |
Thus we have shown that when the arbilrary function f(x)
satisfies Dirichlet’s Conditions in the interval (— =, 7), and
1 m / 14
ao_ﬂj_wﬂm)dx, 1

1 . ,
Uy = — _‘. f(@') cos nax'da!, b,= 1 j f(2) sin na’ dz, J
w wJ -

the Foumer s Series
o+ (a, cos x40, sin ) + (a, cos 2x -+ b, sin 2x) + ...

conwverges to L[ f(@+0)+ fz—0)]
at every point in —x<ae<w where f(x+0) and f(x—0) exist;
and at x= 7 1t converges to
HA=7+0)+f(==0)],
when f(—x+0) and f(7—0) exist.*

*If the reader refers to § 101, he will see that, if f(x) is defined outside the

interval (-, ) by the equation f{x 4 2w)=/f(x), we can replace (1) by
sin ( 2n+ l)a sm 2n+1)a
u—[f -20) 202 v [ for2m TR g,

In this form we can apply the result of § 94 at once to every point in the closed
interval (-, ), except points of infinite discontinuity.
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There is, of course, no reason why the arbitrary function should be defined
by the same analytical expression in all the interval [cf. Ex. 2 below].

Also it should be noticed that if we first sum the series, and then let x
approach a point of ordinary discontinuity 2, we would obtain f(x,+0) or
J(2y—0), according to the side from which we approach the point. On the
other hand, if we insert the value ¢, in the terms of the series and then sum
the series, we obtain %[ f(a,+0)+/(x,—0)].

We have already pointed out more than once that when we speak of the
sum of the series for any value of 2, it is understood that we first insert this
value of & in the terms of the series, then find the sum of » terms, and
finally obtain the limit of this sum.

Ex. 1. Find a series of sines and cosines of multiples of & which will

™ . .
represent — ~ ¢ in the interval — 7 <aw <.

2 sinh 7
What is the sum of the series for 2= + 7 ?
| . 1T
Here fo)= ¢ and a,= / e*cosnvdy, n=—1.
2 sinh 7 2sinh7/-n

F1a. 16.
Integrating by parts,

™
(1+n2)| e*cosnvdr=(¢"—e¢ ™) cosnm.

iy

Therefore a, = (-1 ); )
14 n~

Also we find a,=4%.

11y ‘ — 1 [ LA 4
Slmll&l ly, b, = SIS ﬂ-j_,, ¢* sin ne dx

N
— —1 n—l'
1 —|—722( )

Therefore

e S CO%$+~—~1 sin%’)
2sinh7r 2 14127 T+120

+ +
TN TN
d

m@COSQQf*lTQQZSIHQL’)-{—

when —r<a< .
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When 2= + 7, the sum of the series is 7 coth 7, since

f(—=7+0)+f(m —0)== coth =.
In Fig. 16, the curves

Y
™ .
Y=g

2sinh 7

y:%+( ljlzco,' o;+1_:lusin x>+(...)+< li~;;cos3z,+l+gg,sm 3.@)

are drawn for the interval ( —m, 7).

It will be noticed that the expansion we have obtained converges very
slowly, and that more terms would have to be taken to bring the approxima-
tion curves [ 7=2S,(«)] near the curve of the given function in —7 <x <.

At x= + 7, the sum of the series is discontinuous. The behaviour of the
approximation curves at a point of discontinuity of the sum is examined in

Chapter IX.
Ex. 2. Find a series of sines and cosines of multiples of # which will
represent f(«) in the interval — 7 <a <, when
J(@)=0, —7m<w=0,)
J(@)=4mrua, O<x<7r.f

1 71 2
Here a z——f —rr =
07 9m e 4 16’
1 2 cos N dx L (cos nm—1)
« S cos ny dy=—;(cos nmr —
n= 4 An? !
w
f —qrasin ne dy = — ZﬁLCOS nir.

Therefore  f(2)= -1—6+ 5| —cosw +— sin (@J —osin2x+4 ...,
when —r<a <.
When o= + 7 the sum of the series is 17z% and we obtain the well-known
result, 2 1 1
3 =1+3—2+§+... .
Ex. 8. Find a series of sines and cosines of multiples of # which will
represent o +a% in the interval — 7 < <.

L[ (o) d =T
Here ty=5— / a?ydv= j prd =+,
O 9 S (ot T 3’
1/ 2 ("
= — f (24 2?) cos nw da= —j a?cosnx da,
) wJo
and, after integration by parts, we find that
4
(L= —; COS N1T.
n*
., Ly 2 .
Also, b,y=— f (2 +2?) sin ne de= ! £ 8in ne da,
w) mwto

which reduces to b,=(— 1)““17—@.
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Therefore

2
x+x2=%+4< —-cosx-l—%SiD b) —4<

when —r <o <.

%cos%;-}%sin Qx)-}-...,

When 2= + 7 the sum of the series is 7% and we obtain the well-known

result that 2 1 1
=14y tagtonn s

6 2273
96. The Cosine Series. Let f(xz) be given in the interval
(0, 7), and satisfy Dirichlet’s Conditions in that interval. Define
f(®) in —7 =x<<0 by the equation f(—z)=f(x). The function
thus defined for (—, 7) satisfies Dirichlet’s Conditions in this
interval, and we can apply to it the results of § 95.
But it is clear that in this case

ay= %K fa'yda leads to «,= 71—J: fx'yda,

ccn=~7l'J' (@' )cos na'dx’ leads to a,,,zg—r (@) cos nx'da’,
. mJo

and bn—_—lr f(@)sin nz'dx’ leads to b,=0.
(R

Thus the sine terms disappear from the Fourier’s Series for
this funection.

Also, from the way in which f(x) was defined in — 7 =2 <0
we have HLA(+0)+/(—0)]=F(+0),
and L=+ 0)+f = 0)] = f(r—0),
provided the limits f(+0) and f(7—0) exist.

In this case the sum of the series for x=0 is f(4+0), and for
w=n it is (7 —0).

It follows that, when f(x) is an arbitrary function satisfying

Dirichlet's Conditions wn the anterval (0, 7), the sum of the
Costne Series

lr . 2.2 r .
- ' Vdx' 4+ =5 cos nx x")eos nx’ da’
o) 18+ S cosma| i)

18 equal to H f(@+0)+f(x—0)]

«t every point between 0 and = where f(x40) and f(x—0) exist ;
and, when f(40) and f(x—0) exist, the sum 1s f(+0) at =0
and f(m—0) at x=.
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Thus, when f(x) is continuous and satisfies Dirichlet’s Con-
ditions in the interval (0, 7), the Cosine Series represents it in
this closed interval.

Ex. 1. Find a series of cosines of multiples of » which will represent = in
the interval (0, ).

1/
Here ty=— j @ da=4%m,
wJo
21" 2
and dp=—| wcosnrdy=-—,—(cosnr—1).
. alo i
T 4 1
Therefore L= — — [eos 2+ 5508 3 + :l, N=v=m.
~ 2 T 3
Since the sum of the series is zero at x=0, we have again
9
T 1 1
§=1+§2+5Q+ cie e
T i
t:q AP o
F:‘;’E:L: -H
0 i j
Fia. 17.
In Fig. 17, the lines  y=u, . O=w=m,)
Y=—x, —-T=0= O,f

and the approximation curve

4 1 1
3/:%_; <cosx+??cos.‘3w+—5—§008 5%‘), —r =w =,
are drawn.

J

IS I
ﬁ e e e e =

-2T 2m X

Fi1a. 18.
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Tt will be seen how closely this approximation curve approaches the lines

#= 4+ in the whole interval.

Since the Fourier’s Series has a period 2w, this series for unrestricted
values of & represents the ordinates of the lines shown in Fig. 18, the part
from the interval (—r, 7) being repeated indefinitely in both directions.

The sum is continuous for all values of .

Ex. 2. Find a series of cosines of multiples of & which will represent

f(x) in the interval (0, 7), where

f)=dra,  0Za = dm
f@)=tr@-a), <oz |
, 1 jim
Here a0=7—T~/O g da 4= [l Y (m — &) do =77,
2 (™ 2 (7
and == f Yma cos nw dw+ = / Jm(m — ) cosnr dx
T TJ)in

1
b ™

i [ reosnydy+% [ (m — &) cos nx du,

2J, i

W

ll

. . 1 2 nir
which gives @, = -5 51 4cosnw — 2 cos ynmr]= 3008 - sip2 7 4

g

s ()

X

TTT
T
1T

su

e
e
-]

=

S

(2)

Fic. 19.

Thus «, vanishes when n is odd or a multiple of 4.

. 2 1 1
Also j(x):;T—é—-Q[—2—2008230+@cos6x+...], O=az=m.

wh—-
’)

In Fig. 19, the lines y=jw2, 0
y=gm(m— z), T

A TTA
ll/\ A
—

r=
xr

[
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and the approximation curves

y=v5mE — 5 Cos 22,

1

< =
I 1 } O:.%'-_—_—ﬂ',
Y=1gT"— 5 C0s 20 — yg cos b,

are drawn.

It will be noticed that the approximation curves, corresponding to the
terms up to and including cos 62, approaches the given lines closely, except
at the sharp corner, right through the interval (0, 7).

1
|
)
1
!

!

' )

' | )

' 1 !

1 1 !
-2 -3 - -7 0 . T T Prs

: y 2 =
Fia. 20.

For unrestricted values of x the series represents the ordinates of the lines

shown in Fig. 20, the part from — 7 to 7= being repeated indefinitely in both
directions.

The sum 1is continuous for all values of a.

Ex. 3. Find a series of cosines of multiples of 2 which will represent f(x)
in the interval (0, ), where
Jf(2)=0, 0_—<:fx<%7r’l
JGm)=gm,
fy=im, dr<oZn]

1 7 1 /71 1

Here  ay=_["f(@)do= ;JQ [ grde=gm.
2 (m T 1 .

Also == { f(x)cos na dr= [ cos nw dx = — — sin nar.
ﬂ-vO .,%‘n' n

Thus flx)=tr—[cosw—Lcos3x+Lcosbr—~..], 0=aw=m,

since, when @ =4, the sum of the Fourier’s Series is [ /(37 +0)+/(E7 —0)].
From the values at =0 and z=1m, we have the well-known result,

+

n
i

ool

1

In Fig. 21, the graph of the given function, and the approximation curves
Y =4m —cos 2, ]\
Yy =1 —cos x4+ cos 3z,

0=wv=m,
y=1lr—cosa+%cos3x—1cos 5x,J

are drawn.
The points =0 and x=m are points of continuity in the sum of the series :
the point # =47 is a point of discontinuity.
The behaviour of the approximation curves at a point of discontinuity,
when #» is large, will be treated fully in Chapter IX. It will be sufficient
to say now that it is proved in § 117 that just before x=4r the approxima-



FOURIER’S SERIES 219

tion curve for a large value of % will have a minimum at a depth nearly 0-14
below y=0: that it will then ascend at a steep gradient, passing near the

point (§m, 37), and rising to a maximum just after x =47 at a height nearly
014 above 1. ’

(?/
(1)
sans x
L] m - :%#;r_
Y
(2)
2 v
; 11 HH 1 il
K4
fr i I g
(3)
: ] 4
Fic. 21

Ex. 4. Find a series of cosines of multiples of » which will represent f(x)
in the interval (0, 7), where

Jw)=3m,  O=a<inm,
- f(w)=0, ir<w<im,
(@)= —im jr<o=m J
Also fm=r,  fGm)= i
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. ey T
Here ay=%" de-1| de=0,
0 gm
3T ™
and (=% ] cos nw dw — 3 [ cos na dx
0 RE L

2 .. .
=z [sin Ina +sin Far)]

4 . 1
=_— SIN $N7T COS FNT.
3n <

Thus a, vanishes when 2 is even or a multiple of 3.
. 2./3 ,
And f(2)= J‘E/—[cos rx—lcosbrtlcosTe—Jeosllet..], 0=av=m

The points #=0 and 2= are points of continuity in the sum of the series.
The points 2=1r and #==%r are points of discontinuity.
Fig. 22 contains the graph of the given function, and the approximation

curves
23 )
Y=y cosa,

y= 2—‘:;3—, [cos & — L cos b,
23

Ny N T § o — L P <7
y="3 [cos @ — L cos ba4 1 cos Tx),

<
I
I
3

243
Y= } [cos @ — L cos b +1 cos 7o — {4 cos 11x], )

97. The Sine Series. Again let f(x) be given in the interval
(0, 7), and satisfy Dirichlet’s Conditions in that interval. Define
f(@) in —7 =x<C0 by the equation f(—x)= —f(x). The func-
tion thus defined for (—m, 7) satisfies Dirichlet’'s Conditions in
this interval, and we can apply to it the results of § 95.

But it is clear that in this case

b,= %jw f(@') sin nz’dx’ leads to b, = ;QJZ f(x') sin na’da’,

and that ¢, =0 when 1= 0.

Thus the cosine terms disappear from the Fourier’s Series.

Since all the terms of the series

b, sin x + b, sin 22+ ...

vanish when =0 and =, the sum of the series is zero at
these points.

It follows that, when f(z) s an arbitrary function satisfying
Durichlet’s Conditions wn the interval (0, 7), the swm of the Sine

Series, 2.2, . " : ,
— > sin nxj f(x') sin na’ d!,
w 1 0

18 equal to L f(@4+0)+f(x—0)]
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()

(2)

3)

(4)

]

T
T
1T

17
11

1T

Y

1

Fic. 22.
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at every point between 0 and = where f(x+0) and f(x—0) exist;
and, when =0 and & ==, the swm 1s zero.

It will be noticed that, when f(z) is continuous at the end-
points =0 and z =, the Cosine Series gives the value of the
function at these points. The Sine Series only gives the value
of f(xz) at these points if f(z) is zero there.

Ex. 1. Find a series of sines of multiples of # which will represent x in
the interval O<x <.

2 . n—1 2
Here b=~ / wsinnede=(-1)"""=.
T Jo n
Therefore z=2[sinw—Ltsin 2¢+4sinde—...], 0=w<w.
At x=7 the sum is discontinuous.
I+ y -
HH
sas
Fra. 23.
In Fig. 23, the line y=x, -—-T=x=m,
and the approximation curve
y=2[sinw—Lsin 2z +1sin3xr—Lsindw+1lsinbr], —-w=w=m,

are drawn.
The convergence of the series is so slow that this curve does not approach
y=x between — 7 and 7 nearly as closely as the corresponding approximation
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curve in the cosine series approached y= +2. If n is taken large enough
the curve y=.8,(») will be a wavy curve oscillating about the line y=ux
from —7 to 4=, but we would be wrong if we were to say that it descends

at a steep gradient from #= — 7 to the end of y=w=, and again descends from
the other end of y=u to x== at a steep gradient. As a matter of fact the
summit of the first wave is some distance below y=x at x= —m, and the

sammit of the last wave a corresponding distance above Yy=x at x=m when
n is large.

To this question we return in Chapter IX.

s 0

/--27?‘

]
A
’
1
i
1
]
'
1
]
!
-l
1
!
'
H
i
¥
]
i
'

__.._-_-_;l__-__,_
to
3

T1a. 24,

Since the Fourier’s Series has a period 2, this series for unrestricted
values of & represents the ordinates of the lines shown in Fig. 24, the part
from the open interval (-, ) being repeated indefinitely in both directions,
The points +, + 3, ... are points of discontinuity. At these the sum is zero.

Ex. 2. Find a series of sines of multiples of & which will represent /()
in the interval 0 =2 ==, where

J(w)y=4%me, 0=o=im \
fl@)=}m(z~2), Ir=a=m |
2 [y 9w .
Here bo==|" dmesinnede+> | lx(r-a)sinnede
TJo 4 T/im 4

im ™
=1 / wsinny de+1 [ (7 —2) sin nx de,
J0 JaT

which gives 0,= ! sin 7
WV g:) " n’“nz 2 .
Thus F(@)=sinz — 1 sin 824 - sin 5 —
u J(@)=sn & — o, sin 3w+ sin b — ...
Fig. 25 contains the lines 3=}, O=ow=

%77'7 }
y=ir(r—2), r=o=m
and the approximation curves '

y=sinz,

. 1 .
y=slnz— _, s 3z,

§2

. 1 . 1 .
Y=sin & — g, sin Sv+ pa S0 57,
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It will be noticed that the last of these curves approackes the given lines
closely, except at the sharp corner, right through the interval.

Yy
i
(1)
e prpE
AU N
I REY i - B B 1 1] -
Y _ -
: g
(2)
EE5%: Py e
H akuaEEasE
(3)
i

Fia. 25.

For unrestricted values of & the series represents the ordinates of the lines
shown in Fig. 26, the part from —z to 4+ being repeated indefinitely in
both directions.

The sum is continuous for all values of z.

/-2 37 - - 70
- !
1
1

:

nl3
3
<
5

N

5

g

Z 2

F1a. 26.
Ex. 3. Find a series of sines of multiples of # which will represent 7()
in the interval (0, 7), where
f(2)=0, 0=a<sm,
JGm) =3, l
f@)=3r, Ir<a< 7T,J
J(@r)=0.
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T,
Here b, = [ sin nx dx
1

JuT

1 nr
=-— 1| cos— —cosnmw
7 2

9 sin dnar sin n
T 4 4"

Therefore b, vanishes when » is a multiple of 4.
And f(r)=sinw—sin2z+1sin3z+1sinbe—Ltsinbzr+... O0=a=m.

(94
Fig. 27 contains the graph of the given function, and the approximation
curves
y=sin x,

Y =sin @ —sin 2a, U
. . . - ==,
y=sinz—sin 22+ 1 sin 3z,

y=sin & —sin 2z 44 sin 3o 4 1 sin Ha,
The points 2 =47 and x=m are points of discontinuity in the sum of the

series. The behaviour of the approximation curves for large values of % at
these points will be examined in Chapter IX.

Ex. 4. Find a series of sines of multiples of & which will represent f(x)
in the interval (0, =), where

fley=4m, O<w<<idm,

f(a)=0, tr<a<im,
fle)y=—im, ir<a<m. J
Also JO)=f(m)=0; [fEm)=tr; f@Er)=—-{r
Here b, =% / T sin na de — 3 / " sin na d
Jo JEm

~

[1 - cos knm — cos Fum + cos nr]

3n

8 cos? N e N
=-— CO8% — sIn< —-.

3n 2 6

Therefore @, vanishes when » is odd or a multiple of 6.
And  flx)=sin2x+3sindr+sin8r+1sin102+4..., 0=o .

The pointg =0, v=}m, ¥=37 and v=m are points cf discontinuity in the
sum of the series.
Fig. 28 contains the graph of the given function, and the approximation
curves
4 =sin 2z, \
y=sin 2z +% sin 4o,
y =sin 22+ sin 4o + } sin 8, J
y=sin 224§ sin 4z + § sin 82+ L sin 10z,
¢ I P
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98. Other Forms of Fourier’s Series. When the arbitrary
function is given in the interval (—I, ), we can change this
interval to (—, ) by the substitution w=7zx/l.

In this way we may deduce the following expansions from
those already obtained :

1( n o7 TS , nw, , S

ij_lf(w)dx +Z§1:j_lf(m)cos7~(m —x)da’, —l=x=I(...(1)

l

1 4 9 = , /
Zj f(x) (]00’+~Z—Zcos %—T%j f(a') cos qisz’dw’, O=w=I(..(2)
1 0

22, . N [ R —
Z‘ST: sin ~a:j0f(x)sm T da', 0= =10 ....ccooiivniini.n. (3)

When f(x) satisties Dirichlet’s Conditions in (=, 1), the sum of
the series (1) is equal to [ f(z+0)+f(x—0)] at every point in
—l<<w<l where f(z+0) and f(z—0) exist; and at = %1 its
sum is 4[f(—=1L+0)+ f(I—0)], when the limits f(— I+ 0) and
f(l—0) exist.

When f(z) satisties Dirichlet’s Conditions in (0, [), the sum of
the series (2) is equal to L[ f(x+0)-f(z—0)] at every point in
0<a<'l where f(x+0) and f(z—0) exist; and at =0 1its sum
is f(40), at @ =1 its sum is f({—0), when these limits exist.

When f(z) satisfies Dirichlet’s Conditions in (0, ) the sum ol
the series (3) is equal to [ f(x+40)+f(x—0)] at every point ir
0<w<l where f(x+0) and f(z—0) exist; and at =0 anc
x=1{ its sum 13 zero.

It is sometimes more convenient to take the interval in whicl
the arbitrary function is given as (0, 27). We may deduce th
corresponding series for this interval from that already founc
for (—m, ).

Consider the Fourier’s Series

%J_wF(m') da’ + 71—7_ 2;‘[_”

where F(x) satisfies Dirichlet’s Conditions in (—, 7).

Let w=x4a, w=7n+2 and [f(u)=F(u—mr)
Then we obtain the series for f(w),

F(x')cos n(x —ax)da,

1 “‘211' 1 @ jgﬂ '

- / d 7 - ,. ‘ /—— l /,

27 ) fw)du +7TZ ) Fw).cos n (' —w) du
for the interval (0, 27).
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On changing w into @, we have the series for f(x),
j f(x') da' 4 — Zj f(@)cosn(x' —x)da’, 0=a=27. ...(4)

The sum of the series (4) is [ f(x4+0)+f(x—0)] at every
point between 0 and 27 where f(x+40) and f(x—0) exist; and
at =0 and x= 27 its sum is

FLA(+0)+/ (27 —0)],

when these limits exist.

In (4), it is assumed that f(x) satisfies Dirichlet’s Conditions
in the interval (0, 27).

Again, it is sometimes convenient to take the interval in which
the function is defined as (¢, b). We can deduce the correspond-
ing series for this interval from the result just obtained.

Taking the series

1 o ’ / 1 (DW am ’ ’ /
2_7-1'}0 F(m)dm +;;L F(x)cosn(x' —x)dx, 0=a=2r,

we write ’lb:fb-l—(bt)a)w and  f(u)= F{wa(/ib_a“)]

Then for the interval ¢« =w =b we have the series for f(u),
1 b / / 2 - b / 2%71’ / /
b_g Lf(u ) dw + 5 ZL f(w') cos m(u — ) du’
On changing w into «, we obtain the series for f(z) in ¢ = =,
namely,

1 o, 2 2.(° . , 2n , , .
b._ELf(a;)clm +b—a§l;ja‘f(m ) cos b—q-_l;(tb —z)da’. ....(5)

The sum of the series (5) is [ f(z+0)+f(xz—0)] at every point
in a<lax<b where f(oc+0) and f(x—0) exist; and at z=a
and z=>5 its sum is 4 [f(a-{—O) +f(b—0)], when these limits exist.

Of course f(x) is again subject to Dirichlet’s Conditions in the
interval (a, b).

The corresponding Cosine Series and Sine Series are, respec-

tively,
vely (b—j-_—j f(@") da’ +b Ecos 5 (m——a)

j f(ac )cos

énd (b—— )Zsm )(90 a)j f(a)sm——(oc—a,)dw
a=x=0b.......(T7)

dd

(00 —a)dz, a=x=0,
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Ex. 1. Show that the series
%<sinﬂ+lsin §ﬂ+ >
s { 3 ;T

is equal to 1 when O<a <.

Ex. 2. Show that the series

r 1 . 925 Qmra
C?-{—?:(SIIITTCZCOS Z‘L—{*QSIII Z—P;C—(/COS %§£+>

is equal to ¢ when 0 <o << and to zero when a<a <.

Ex. 3. Show that the series

12 1 . . 2nw . % v
vl—H);_H’ +— 2 . m— 2(vg— ;) sin 7;7_% %7;9 + (209 — vy — v3) cos ?sz‘:ﬁ
is equal to v, when —l<z< - é,

{
., when —-<ao<—
Vg n 3 << 3

l
vy When §<x<l.

L

Ex. 4. Show that the series

2 in 3¢
sin z+sm +]

2 [sm x+ 5

represents (r — ) in the interval 0<<x < 27.

99. Poisson’s Discussion of Fourier's Series. As has been
mentioned in the introduction, within a few years of Fourier’s
discovery of the possibility of representing an arbitrary function
by what is now called its Fourier’s Series, Poisson discussed the
subject from a quite different standpoint.

He began with the equation

1 —2
1 —2rcos (' —x)+19?
where |1|<1, and he obtained, by integration,
1 [ 1 —?

ﬂj_"l — 21 cos (&' — )+ 12 (@) d

= 217_] f@)da' = ! Z 7 ”j_wf(a;’) cos n(x' —w) da’.

1

=142>" 1" cos n(e' —w),
1

Poisson proceeded to show that, as r—1, the integral on the
left-hand side of this equation has the limit f(z), supposing f(x)
continuous at that point, and he argued that f(z) must then be the
sum of the series on the right-hand side when »=1. Apart from
the incompleteness of his discussion of the questions connected
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with the limit of the integral as »-»1, the conclusion he sought
to draw is invalid until it is shown that the series does converge
when =1, and this, in fact, is the real difficulty. In accordance
with Abel’'s Theorem on the Power Series (§72), if the series

converges when 7 =1, its sum is continuous up to and including
r=1. In other words, if we write

F(r, x)= %—r | f")dax’ + 71—r i 7“"]71 J(&)eosn(x' —a)dx,
- 1 -

we know that, if (1, z) converges, then

Lt F(r,x)=F(1, ).
r—>1

But we have no right to assume, from the convergence of

Lt F(r, x),

r—>1
that F(1, x) does converge.

Poisson’s method, however, has a definite value in the treatment
of Fourier’s Series, and we shall now give a presentation of it on
the more exact lines which we have followed in the discussion of
series and integrals in the previous pages of this book.

100. Poisson’s Integral. The integral

}_fﬂ 1-—0% fyday |r <1,

27 1 — 27 cos (& — &) 412

is called Poisson’s Integral.
We shall assume that f(x) is either bounded and integrable in the interval
(—r, w), or that the infinite integral fﬁ J(x)dz is absolutely convergent.
— ,

122

J ’ .
Now we know that 19 cos G2

=142 r"cosnb
1

when |71 <1, and that this series is uniformly convergent for any interval
of 6, when » has any given value between —1 and +1.

— 7--4 .
It follows that Hﬂ_j 1=9n 00%(1, s da' =1,
and that

1 /= 12
2m {
277‘}—‘171"‘“27'008() ,L)+7‘f(x)(‘dl

1 [T 4 J 1 w‘ an [ ” Ng N “ N
_%J"ﬂf(t@)dx +;%7 J*ﬂj(.@)cosn(.@ z)ydz' ... (1)

under the limitations above imposed upon f(z). (Cf. §70, Cor. II., and
§74, 1.)
S I
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Now let us choose a number x between — 7 and 7 for which we wish the
sum of this series, or, what is the same thing, the value of Poisson’s Integral,

L Lo f()d.

27 ) w1 =27 cos (2 — )+

Denote this sum, or the integral, by /(», z).
Let us assume that, for the value of & chosen,
Lt [ f(o+t)+f(x—1)]
. t—>0
exists.
Also, let the function ¢(2') be defined when —r =a'= = by the equation
D) =f) =} Tt [0+ 1=
Then

F(,2)=} Lt [f(w+8)+f(@~0)]

1 [m 1 — 22 ) i
=or {f(«)y—-% x4t -]y da’
27rf—7r1—27'c03 (w’——x)+7'2‘j(%) = tI_fO [/l +0)+/ (=]
1 rm 1 —92
~=o_ A T R 2 A A A 4 S R R I R 2
27:3{-"1—27'cos(x’—;v)+73¢<"b)d" 2)
But we are given that Lt [ f(a+¢)+f(x—1)]
t—>0 :

exists.

Let the arbitrary positive number ¢ be chosen, as small as we please. Then
to /2 there will correspond a positive number 7 such that

| fet+ )+ flae—1)— tI—JI;O [fle+)+fle—1)] < %, ............... (3)
when 0 <t=n).

The number 7 fixed upon will be such that (?,—7), x+mn) does not go
beyond (-, 7).

Then

1 et 1—22

el N

QT‘L_,, 1—27cos (2 - .@-)_}_7.2 b (2) d
1 /m 1-—-

Tor), 1-2rcostts t —t)]dt

27 ), 1-2r COSt—H S Ppe+t)+p(ar—1)]
1 m 1 — 2

:271— 1o Cost+7,{/(1,+t)+7‘(x~zf)—— Lt [f(w+o)+f(e—1)]}de.

It follows that

et 1=

1 -2
' 2"1' g L—2rcos (2 —2)+7*  ple) dof

4 o 1— -9 cos ¢ 412 dt

<_§7 ™ 174
477,/_,r1——2'rcosl+7'2
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Also, when 0<rr<1,

217r<ff;n+j:tn>1—27’00‘1sz(79 ’1,)—}—7-'(!)(?})037
R NI

27— 1—2rcosn+?

1—4 , . ,
S Yida +4 . Lt 2+ + (e —1 :)
< g (g [ @) e+ Lt LA k) kA=)
1—72
S b“ ® 2 483 S 8PS I LSS 0PN REs et BeNVEIAIONesIsORe 5
< 1—29'c0s77+7'2x 1, say (%)
2 o )
But i ?1 " -, < 2(1—7) - if 0<r<1,
—2rcos )+ (1 —7)2 447 sin? Q)
1—#»
27‘si112g
1—9 €
And — <3
rsin?
. ' 1
provided that r > =
1+Zsu B

It follows that

1 (L-mo o m 1—92
- du €
QW(,/—n +.}x+n>1—2}‘008(b L)+7~¢(x) v 9’

......................... e (8)

if I1>r>

1—{—»—1 sin? 77

Combining (4) and (6), it will be seen that when any positive number e
has been chosen, as small as we please, there is a positive number p such that

Py @)= b Lt [+ 0+ e— 0] <e
when p=r<1, provided that fm the value of . considered Lt [j(z + )+ (v —1)]
exists.

We have thus established the following theorem :

Let 1(x), given in the interval (—m, m), be bounded and integrable, or have an
absolutely convergent tnfinite integral, wn this range. Then jfor any value of

zan —w<x<m for which Ltg [F(z+8)+ flw—0)]
t—> .

exists, Povsson’s Integral converges to that limat as =1 from below.

In particular, at a point of ordinary discontinwity of f(x), Poisson's Integral
converges to L[ A (@ +0)+f(=—0)],
and, at a pornt where f(x) s continuous, it converges to f(w).

It has already been pointed out that no conclusion can be drawn from this
as to the convergence, or non-convergence, of the Fourier’s Series at this
point. But if we know that the Fourier’s Series does converge, it follows

from Abel’s Theorem that it must converge to the limit to which Poisson’s
Integral converges as »—1.



234 FOURIER’S SERIES

We have thus the following theorem :

If f(x) is any function, given in (—~m, ), which is either bounded and

T
integrable, or has an absolutely convergent infinite integral f f(2)dz, then, at
-

any pont » in —w <z <mw at which the Fourier's Series is convergent, uts sum
must be equal.to

Lt [f@+0)+f(@-0),

t—>0

provided that this limit exists.

With certain obvious modifications these theorems can be made to apply
to the points —a and  as well as points between — 7 and =.

It follows immediately from this theorem that :

If all the Fourier's Conmstants are zero for « function, continuous in the
wmterval (—m, ), then the function vanishes identically.

If the constants vanish but the function only satisfies the conditions
ascribed to f(«) in the earlier theorems of this section, we can only infer that
the function must vanish at all points where it is continuous, and that at
points wheret Lt(;) [ f(z+1)+f(z—1t)], exists, this limit must be zero.

—

Further, if (a, b) is an interval in which f(2) is continuous, the same
number p, corresponding to the arbitrary e, may be chosen to serve all the
values of 2 in the interval (a, b); for this is true, first of the number » in
(3), then of A in (5), and thus finally of p.

1t follows that Poisson’s Integral converges as r—>1 uniformly to the value
J(&) in any interval (a, b) in which f(x) s continuous.®

This last theorem has an important application in connection with the
approximate representation of functions by finite trigonometrical series,t

101. Fejér's Theorem.}
Let f(x) be grven in the interval (—m, 7). If bounded, let it

be integrable ; if unbounded, let the infinite integral r f(z)dx

be absolutely convergent. Denote by s, the sum of the (n+1)
terms 1 )

T , 1 ) m , , N
Q;J’_”f(a, )+ Zj_wf(m ) cos (2 —x) da.
Also let Sn(.’l,‘>=80+81+/);/”+8n_1'

*It is assumed in this that f(a —0)=f(a)=Ff(a +0) and j(b - 0) =f(b)=/f(b+0).
Also f(x) is subject to the conditions given at the beginning of this section.

Cf. §107.

1 Cf., Pica-rd, Trasté d’ Analyse, (2¢éd.), T. 1., p. 275, 1905 ; Bocher, 4Ann. Math.,
Princeton, N.J. (Ser. 2), 7, p. 102, 1906 ; Hobson, loc. cit., p. T22.

1 Cf. Math. Ann.. Leipzig, 58, p. 51, 1904.
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Then at every point x in the interval —m<w<m at which
f(x+0) and f(x—0) exist,
Lt Su(z)=3[f(x+0)+/(z—0)].

=D

With the above notation,

1 cos n(z'—w)—cos (n+1)(2' ) , ,
n= 277-_[%][(> 1—cos(z' —z) da

Therefore
1 r 1 —cosn(x' — )

_,,f(x/) 1—cos(z' — )
_ 1 f@,)bm‘z}z’n(aj )

2nmw) . sin?d (' x)
1 (r+e sin*in(a’ —a)
=5,] wwf( ) S — ) da’ e n(1)

if f(x) is defined outside the interval (—, =) by the equation
J(@42m)=f(x).

Dividing the range of integration into (—w+4a,x) and
(x, = +a), and substituting @’ =x— 2a in the first, and o’=x4 2a
in the second, we obtain

s(@y_fﬁjf@;5m>$n”ad-+~mjf@H4meJ”9¢1“”“@)

Now suppose that @ is a point in (—a, w) at which f(z40)
and f(xz—0) exist. '

Let e be any positive number, chosen as small as we please.

Then to e there corresponds a positive number ; chosen less
than }7 such that

| f(x+2a)|—f(z+0)]|<<e¢ when 0<a=y.

Also
1 i, sin?‘nu sinZnag
n'n-_[oj( +29) sin®q j t sinq

sSin“na
_4@+mLSmada
1
+n j f(x+2a)

sinna
————f(az—l— ))j*"smwwda

sinq
- =1+ L+ 1L+1, say.* ceevininenn(3

*T'his discussion also applies when the upper limit of the integral on the left
is any positive number less than .

da
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Putting o, ;=4+cos2a+cosda+ ... +cos 2(n—1)q,

4 (cos 2(n—1)a—cos 2na)

we have o

nol 2 4(1 — cos 2q) ’
1 —cos 2na)
_y ¢
and Totort .ty = 2 (1—cos 2a)
, sin®na
2 Sin2a .
3w mena i
Thus da=2) (oy+o,+...4+0,-;) da
=inm,

since all the terms on the right-hand side disappear on integration
except the first in each of the ¢’s.

It follows that L,=1f(x+0). |
1 sm 1
Also 11,1 = ., | A+ 2a) — fle+0)| = ;fda
A et an
< € 18IN“Ma da

n), sin’a

e ("sin’na

< ﬁi o sinfq do
de v, (4)
) 1 sin®na
= e .
Further, |I,|= ’”L |f(x+2a)] S da
In
< st || e 20
’ 1 L , Z , 5
<m[£+2n]f(%)lcw .......................... ( )

™
But we are given that j | (&) dz’ converges, and we have
-

defined f(x) outside the interval (—=, ) by the equation
J(@+27)=f(@)

Let j” | f(@)|da' ==J, say.
Then we have || < )
U920 sinzn'
Also | 1,| < 277,51112 Nf@+0) ] (6)
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Combining these results, it follows from (3) that

20 S e o+ 0)

sin®q

1

2n Sln“

<let

AT+ @+ 0)[]-

Now let v be a positive integer such that

v sty AT+ f@40) |} <e ooroiirinniin(T)
Then
|t 20 L = A 0) < et be

<e when n—v.
In other words,

Lt Jj flw+2a) = sin’ it ~da=1f(x+0),

> VT

when f(x+0) exists.
In precisely the same way we find that

1

Lt Alirrﬂx Qa) sin” na da =1f(z—0),

n—>w nar

when f(z—0) exists.
Then, returning to (2), we have

Lt Sy(z)={[ f(x+0)+/(x—0)]

when f(z=+0) exist:

This proof applies also to the points ¢= +, when f(7—0)
and f(—m7+0) exist. Since we have defined f(x) outside the
interval (—, ) by the equation f(ax+427)=f(x), it is clear
that f(—7+0)=f(x+0) and f(—7x—0)=f(x—0).

In this way we obtain

Lt Su(xm)=3[f(=7+0)+f(7—0)],

n—>w

when f(—740) and f(7—0) exist.

CoroLrary. If f(x)is continuous in « ==, including the end-points,
when the arbitrary positive number € is chosen, the same » will do for all
values of # from a to b, including the end-points. Then, from (7), it follows
that the sequence of arithmetic means

Sl, Igg, ASB, e

converges uniformly to the sum f(z) tn the interval (a, D).
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[t is assumed in this statement that f(») is continuous at x=« and
x=b as well as in the interval (¢, 0); Ze. f(a—0)=f(a)=f(«+0), and
J(b=0)=7(b)=7(b+0).

102. Two Theorems on the Arithmetic Means. Before applying this
very important theorem to the discussion of Fourier’s Series, we shall prove
two theorems regarding the sequence of arithmetic means for any series

Wy Uy gt .
In this connection we adopt the notation
Sp=Uy+Usg+t ...+ Uy,

_SiHSt . s,
n

Sa
THEOREM 1. If the series  wi+uy+ug+ ...

converges and uts sum s s, then Lt S,= Lt s,=s.

N—>0 N—>0

We are given that the series

Uy g+ oyt
converges, and that its sum is s.

Thus, to the arbitrary positive number e there corresponds a positive
integer v such that |s—s,! <e when n=w.

Thus, with the usual notation,

R, |=|8u1p— 8.1 < 2¢ when 2= v, for every positive integer p.
» +p 3 3 >

Also it follows, from the definition of S, that, when 2>y,

—1
Sn—" 2L1+?62(1——1>+...+Iuy<1’_'vr >:|
n n
B v v+1 < n -l)
-~?LV+](.1 - /72> +u;/+2<1 — _’)Z ) + P, +7£n 1 ““‘n .

But (l—__lf), <1~V+1>’n.<1_7l—1>
7 7 7

are all positive and decreasing ; and

KSR L T S TN IR TR L T S S
are all less than 2¢ when 2 >v.
1t follows, as in § 50, that

/ T , — 1|
1“%1(1—%)'}‘“%2(1“%“)'f‘---'*‘“n(l‘wﬂ >E<Qe(1—£><e,when'n>1/.

'

v—1

.

Thus [§,— {?01 -{—162(1 - %) +. -Hcv(l - )} { < 2¢, when n> v.

Uo+ 200+ ...+ (v —1Duy | -
|22y . ( ) "l when 2> .
1

Thervefore |S,—s,|<2e+

But v being fixed, we can choose the positive integer & so that

T2 S TP N -1 N
(Mg ¥ 2y ¥ %+§V ) V»i<e, when 2 -7 N> .
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Therefore | S, —sv| <3¢, when 2= V>v.
But ls—s | <e
And 1S, —s|=|Sp—sv|+|s—5u|.
Therefore | S, —s|<4e, when n = V>v.
Thus Lt S,=s.

>0

TuroreM I1.%  ZLet the sequence of arithnetic means S, of the series

Uy UaF2UgF cor e (1)
converge to S.  Then, if a positive integer n, extsts such that

| u, | < Kn, when n>n,,

where K s some positive number independent of n, the series (1) converges and
its sum 1s S.

With the sanme notation as above, let ¢, =s, — S.

We have to prove that T4 ¢,=0.

Nn—>w

If ¢, has not the limit zero as n—> w, there must be a positive number %
such that there are an infinite number of the terms ¢, which satisfy eutler
(i) t, >4 or (ii) t, < — L.

We shall show that neither of these hypotheses can be admitted.

Take the former to be true, and let

Tp =ty 4ty + uu+ 1y

Then anfi =1, — S,

and Lt o,/n=0.

n—>w

Thus, to the arbitrary positive number ¢, there corresponds a positive
integer n; such that |o,/n]| <€, when n=n,.

Choose this number € so that 2/ +2< /% Ke.

Now let 2 be any positive integer greater than both 7, and 7, such that
ty>h.

Then, when »=0,1, 2, ..., |%u.| < K/n.

Y
R
P
1 R
\\
0 [~ X

Fia. 29,
Now plot the points P,, whose coordinates are (7, ¢,.,) in a Cartesian
diagram. Since f,4, 41— tyrr="1%n4r+1, the slope of the line .. is less

* This theorem was published by Hardy in London, Proc. Math. Soc. (Ser. 2), 8,
pp- 302-304, 1910. This proof, due to Littlewood, is given in Whittaker and
Watson, Modern Analysis, p. 157, 1920. Cf. also de la Vallée Poussin, loc.
cie. T. I1., §151. ‘
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in absolute value than tan—'XA/n. Therefore the points 7, P, P, ... lie
above the line y=4A--»tan §, where tan 0= A/n. ‘

Let P« be the last of the points I, P, P,, ..., which lies to the left of, or
upon, the line x=/ cot 0, so that k =/ cot f=/n/K.

Draw rectangles as shown in the diagram. The area of these rectangles

exceeds the area of the triangle bounded by the axes and y =/ —« tan 6.
Thus we have

Tk = On1=tp+ bug1+ oo + 4,0, > Fh%c0t =LA/ K.

But o, =~ S o Tnm | <[(m+ 1)+ (2~ 1)]e, since 1> n.

Therefore (k+2n—1)e> i /K.

But k =/hcot O=hn/K.

Thus hn| K= k> 5h*n|Ke—(2n—1).
Therefore n[h/K — 30 Ke+2]>1.

But hK ~L02 Ke+2<0.
Therefore n< !

LA Ke—h|K—-2°
But we have assumed that there are an infinite number of values of =
such that ¢,>/.

The hypothesis (i) thus leads to a contradiction ; and a precisely similar
argument shows that the hypothesis (ii) does the same.

174
+

Thus Lt ¢,=0,
N> 0
and 1t follows that Lt s,= Lt .S,,=S.
COROLLARY.
Let U (@) F 2o () F 2 (F)F oo v (1)

be a series whose terms are functions of x, and let the sequence of arithmetic
means S,(x) for the series converge wniformly to S(x) in an interval (a, b).
Then, if a positive integer n, exists such that

lun(2) | < K/n, when n>n,,
where K is independent of n and x, and the same n, serves for all values of x
in the interval, the series (1) converges uniformly to S(x) in (a, b).

. For, with the notation of the theorem just proved, if ¢,(z) does not tend
uniformly to zero through («, b), there must be a positive number 4, inde-
pendent of & and », such that an infinite sequence of values of n can be found
for which ¢,(2,)> %, or ¢,(x,)< —7% for some point x, in the interval; the
value of #, depends on the particular value of 2 under consideration.

We then find, as in the original theorem, that both these hypotheses are
inadmissible.

103. Fejér's Theorem and Fourier’s Series.* We shall now use Fejér's
Theorem to establish the convergence of Fourier’s Series under the limitations
imposed in our previous discussion ; that is we shall show that:

*Cf. Whittaker and Watson, loc. ¢it., p. 167, 1915, and the note on p. 263 below.
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When f(x) satisfies Dirichle's Conditions in the interval ( —m, m), and
1L 1 rw
I .@" Ci.’]/l 0, — — [ x' ; g l, K
y QWf—nf( yda!,  a, i —nf( ) cos na’ da’,

b= " fla)sinnatda! (n=1)

the sum of the series
ay+(a; cos x+ b, sin &)+ (a, cos 22 + by sin 22) + ...

s F[f(v4+0)+flx—0)] at every point in —w<w<w where f(x+0) and
J(&=0) exist; and at x= L the sum is [ f(—7+0)+f(m ~0)], when these
limats exust. . :

I. First, let f(z) be bounded in (-, 7) and otherwise satisfy Dirichlet’s
Conditions in this interval.

Then the interval (-, 7) can be broken up into a finite number (say p)
of open partial intervals in which f(#) is monotonic, and it follows at once
from the Second Theorem of Mean Value that each of these intervals con-
tributes to |a,| or |b,] a part less than 4M/nm, where | /()| <M in (-, 7).

Thus we have | ancos na+b,sin na | < 8pM|nw,

where M is independent of «.

It follows from Fejér’s Theorem, combined with Theorem II. of § 102,
that the Fourier’s Series

ay+(a,cos x4+ b sin )+ (a,cos 22 4 bysin 22) + ...

converges, and its sum is [ /(2 +0)+ /(2 —0)] at every point in —7 <z <7
at which f(x40) exist, and at o= +7 its sum is [ /(-7 +0)+f(x—0)],
provided that f( —#+0) and f(r —0) exist.

IT. Next, let there be a finite number of points of infinite discontinuity
in (=, ), but, when arbitrarily small neighbourhoods of these points are
excluded, let f(«) be bounded in the remainder of the interval, which can be
broken up into a finite number of open partial intervals in each of which f(x)

is monotonic. And in addition let the infinite integral fﬂ (&) da' be
absolutely convergent. o

In this case, let # be a point between —7 and 7 at which f(.x+0) and
f(x—0) exist. Then we may suppose it an internal point of an interval
(a, b), where b—a <<m, and f(x) is bounded in (a, b) and otherwise satisfies
Dirichlet’s Conditions therein.

b N
Let Ta, = [ f(&') cos na’ da’
Ja
, . n=1,
and b, = f f(2) sin na'da’
@ i
b
while 277'%':,[ f(&) da'.
J

Then, forming the arithmetic means for the series

ay +(a, cos x+b/sin &)+ (a, cos 2v + by'sin 22) + ...
C I Q
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we have, with the notation of § 101,

AS'n( )_ U+Sl+ +‘5"—

smﬁln( ' —x)
da’
27?/71'[ J) sin?}(2’ — )
1 ( pilemal sin?na b(o—a)
=— z—2a do + [ (2+2a
| S0 g et | (o 2a)
where 4(z—a) and 3(b — ) are each positive and less than $.
But it will be seen that the argument used in Fejér’s Theorem with regard

sin®na , |
— o s
sinfa =~ J

bln27za
sinZa,

to the integrals 1 rim
b 1
applies equally well when the upper limits of the integrals are positive and
less than L7.%
Therefore, in this case,

Lt Su(@)=3L/(+0)+ /e~ 0)]
And, as the terms (@, cos na+ b, sin na)
satisfy the condition of Theorem I1. of § 102, it follows that the series
@y +(a; cos 2+ bsin z) + («a, cos 22+ by’ sin 22) + ...

converges and that its sum is Lt S,(v).

N—>0

1
But (¢~ a))+ 2{(a, — a,)) cosnv + (b, — b)) sin na}
1

L [ s Seosnta -

1 f (el sind(@n+ 1) -2) ,
QTL/—w+x+./(; J) Qsml(r ) da ¥

__1[1” o sm(2n+1)a 1/ ql'1(9714’1)“
I %(x—a)f(x 2a) sin a, 1 f(T+2 @) sin d

By § 94 both of these integrals vanish in the limit as 7—>o0.
It follows that the series

x»DN
(g —ty)+ 24, — ) cos e + (b, — b, )sin na}
1

converges, and that its sum is zero.
But we have already shown that

e8]
ay + (a0, cos ne+ b,/ sin na)
1

converges, and that its sum is

[z +0)+f(z~0)].

*Cf. footnote, p. 235.
T Outside the interval (-, ) f(x) is defined by the equation f(x +2mr)=/(x).
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It follows, by adding the two series, that

fo o)
a,+ ; (@, cos 2+ b, sin na)
converges, and that its sum is

$[f(2+0)+f (= -0)]
at any point between —7 and 7 at which these limits exist.

When the limits f{ — 7 +0) and f(7 —0) exist, we can reduce the discussion
of the sum of the series for w= 4 to the above argument, using the
equation f(z+27)=f(2).

We can then treat »= + 7 as inside an interval («, b), as above.
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EXAMPLES ON CHAPTER VII

. N , 1
1. In the interval O<a< 3 f(z)= 1 [ —
. . [ 3
and in the interval << [, flr)=2— ZZ.

, N/ ( 2rz 1 6mw 1 107« )
Prove that f(.z)_~ﬂ_2 cos —y—+geos ——Fgzcos - . ).

2. The function J{x) is defined as follows for the interval (0, ) ;
Sf(zy=32, when 0 =a =1,
S(z)=3m, when lr<w<im,
S(x)=3(r—2), when (v =2 =m.
Show that
sin § (22— )7 sin (202 — 1)

‘ when O = =.
(20~ 1) ’ =
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3. Expand f(x) in a series of sines of multiples of 7o fa, given that
Jla)=mu, when 0 =2 =l«,

flay=m(a—2), when la é.’vé a.
4, Prove that

2nmra

si

Z 0

W—r==3 , when 0 <a <[,
T
Inma
2 008
and Al —x)2= 2t > ~— when 0=x=/.

[

5. Obtain an expansion in a mixed series of sines and cosines of multiples
of # which is zero between —m and 0,-and is equal to ¢* between 0 and w7,
and gives its values at the three limits.

6. Show that between the values —7 and +7 of » the following
expansions hold :

. 2 .
sin ma=— sin m
T

< sinrz  2sin2z  3sin 3
1 T ees |y

2t 22—m?2 0 32—mt
AY

< 1 +m COS 2 M COS 27 M Cos 3 >
- o R T eee |9
2m - 12—m? 22 —m? 3% —m?

2
COS M =— SIn M7

T
cosh mr 2 < 1 mcosa + m cos 2o M .Co8 3r )
sinhmar 7#\2m 124+m?%2 " 224m2  324m?2

7. Express 22 for values of « between —7 and 7 as the sum of a constant
and a series of cosines of multiples of x.
Prove that the locus represented by

2J( )n—l

sin 2 sin 2y =0

is two systems of lines at right angles dividing the plane of a, ¥ into
squares of area 72

8. Prove that
o 26 2 d( . nae @rg) nar
Y 3d+2 55\ @SIN - —RWECOS — ;- | COS — ¥

represents a series of circles of radius ¢ with their centres on the axis of @
at distances 2d apart, and also the portions of the axis exterior to the circles,
one circle having its centre at the origin.

9. A polygon is inscribed in a circle of radius o, and is such that the
alternate sides beginning at =0 subtend angles « and [3 at the centre of
the circle. Prove that the first, third, ... pairs of sides of the polygon may
be represented, except at angular points, by the polar equation

0
AN

_2 _
a+f

. b )
7=, SIN —— +a, Sin
ST
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[ cos nr sec ¢ dep
A+

et fB) . gy e
da 2(a +,8)
nr (204 5) ’8]0 m%becd)dcf)

where
. n
481 ———=— ﬂ-( Ccos =
+f3)
. Investi-

w: o)

Find a similar equation to represent the other sides
5 ¢ >

10. A regular hexagon has a diagonal lying along the axis of .
gate a trigonometrical series which shall represent the value of the ordinate

le)
of any point of the perimeter lying above the axis of #
11. If 0<w << 2w, prove that
m sinha(m—2) sinw  2sin2z 3sin3»
a“+15+ Zrar T gggr e

2 sinhaw
12. Prove that the equation in rectangular coordinates
y 1 3ra
08 —— — ...
K

1 2wy
ST Tg©

s

—T—§>

__/b+4/z(

represents a series of equal and similar parabolic arcs of height 4 and span
2k standing in contact along the axis of 2
13. The arcs of equal parabolas cut off by the latera recta of length 4« are
arranged alternately on opposite sides of a straight line formed by placing
‘ ing curve. Prove that

the latera recta end to end, so as to make an undulating curve

n——

the equation of the curve can be written in the form
1 371'3; 1 bra
Ga TES g T

._+_

T _ s
64a” "M da 33
14. If circles be drawn on the sides of a square as diameters, prove that

the polar equamoﬁ of the quatrefoil formed Dby the external semicircles

referred to the centre as origin, is
T =%+ cos 40 —J5cos 80+ 115 cos 1260 +...

da 2
where « is the side of the square
15. On the sides of a regular pentagon remote from the centre are

eg
described segments of circles which contain angles equal to that of the
prove that the equation to the cinquefoil thus obtained is
cos dnd

25m2—1

pentagon ;
™
mr=>Ha tan 5[1 -2X(-1)
1

72 .

A 4

I

@ being the radius of the circle circumscribing the pentagon

16. In the interval O<u< ;, Sl)
[
g<e<l, [fle)=

and in the interval
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Express the function by means of a series of sines and also by means of a
T
U
represented by the two series respectively for all values of # not restricted to

series of cosines of multiples of Draw figures showing the functions

lie between 0 and {. What are the sums of the series for the value = é?

17. A point moves in a straight line with a velocity which is initially ,
and which receives constant increments each equal to v at equal intervals T.
Prove that the velocity at any time ¢ after the beginning of the motion is

1 z G
+ut+ E 1 27”76,
2 T e 1n T

and that the distance traversed is
]; 2%7, i L , COS Qtﬂ- t. [See Ex. 4 above.]
18. A curve is formed by the positive halves of the circles

| (r—(4n+1)a)+y*=a?

and the negative halves of the circles
(v—(n—-1)a)y+y*=da?

n being an integer. Prove that the equation for the complete curve obtained
by Fourier’s method is

P 7 1 -
Y= 2 (=1)y= 18111<I\—»1~>7:—ff0 sin <;\—Q»>7;'Z N — 2 2da.

@ k=1 2

(?f+ )+

19. Having given the form of the curve y=f(x), trace the curves

Y= blIl?ﬁL} f(t)snntdt

\]lux \HLO

)-AMS »—-»NQ.

Y= sin(2r — 1)@} S(@)sin (20— 1)¢ dt,

and show what these become when the upper limit is 1 7 instead of 721

20. Prove that for all values of ¢ between 0 and % the value of the series
b

> 1 rrb . roma . rmat
> “sin sin —— 81n

7 A A

is zero for all values of & between 0 and b — «t and between at+0 and /, and

is Z for all values of & between b —at and af+ 0, when b<g—.

21. Find the sum of the series
1> sin 2nmrae
==y —=
T T n

12 sin(2n—D)rw
=r2 o1

1

b

and hence prove that the greatest integer in the positive number « is
represented by #-+u—8v% [See Ex. 1, p. 230, and Ex. 4 above.]
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22. If &, y, z are the rectangular coordinates of a point which moves so
that from y=0 to y=x the value of z is k(a? —2?), and from y=ux to y=a
the value of z is k(a?-#?), show that for all values of x and 2 between
0 and «, z may be expressed by a series in the form

. }77‘ . gri{y+t+a
o adid A AL

>4, . sin sm], Y y
Pt S a 2 «

and find the values of Ap,q for the different types of terms.

23. If f(z)-ism x, when O<J,‘_g,
and f(x) :%, when %< 2=y
prove that, when O=a<m,
f(.)f):SI'i—Sz'—S )
2 4 6 .
where Sl:l 381112) 3.—581114tv+5751n6x~...,

Sy,=sinz+1sin3v+Ltsinba+...,

Sy=sin 2+ L sin 62+ Lsin 100 +...,
and find the values of S}, §,, and .5; separately for values of » lying within
the assigned interval. [Cf. Ex. 1, p. 230.]

4 /. sin 3z sin by
. If 4 :'."< N X - o) —-)

24 f(2) (SN - —5 +2 52
2 < ) sin 22 511131: )
+-sine—-—"4""_ " -—... )

T 2 3

show that f(x) is continuous between 0 and 7, and that f(m—-0)=1. Also

show that f(x) has a sudden change of value 72“_ at the point 7; [See Ex.1,2,
pp. 222-3.]

25. Let
bm'%(Zn De o &sin(@n—1)w  6.2sin §(2n—1)wsin(@r - 1)w
()= 2 e B H @n—1) E
when Oéx = ‘
Show that J(+0)=f(7 - 0)= —im,
S +0) (4 = 0)= — b,

JET+0) = f(§r —0) =4 ;
also that J(O)=f(Am)=fGm)=f(m)=0.
Draw the graph of f(x) in the interval (0, 7). See Ex. 1, p.230, and Ex. 2
above.]



CHAPTER VIII

THE NATURE OF THE CONVERGENCE OF FOURIER'S
SERIES

104. The Order of the Terms. Before entering upon the
discussion of the nature of the convergence of the Fourier’s
Series for a function satisfying Dirichlet’s Conditions, we shall
show that in certain cases the order of the terms may be
determined easily.

I If f(x) is bounded and otherwise satisfies Dirichlet’'s Con-
ditions in the interval (—m, =), the coefficients in the Fowrier’s
Series for f(x) are less wn absolute value than K/n, where K s
some positive number imdependent of n.

: ™
Since Ty = j f(x) cos nx de,
™

and the interval may be broken up into a tinite number of open
partial intervals (¢, ¢,1,) in which f(z) is monotonic, it follows,
from the Second Theorem of Mean Value, that

Cpa-1
T, = Zj f(x) cos na dw
C?'

= 2{ fle,+ O)J.fr cos e da + f(cpy— O)J;mcos n cloc},
where £, isvsome deﬁ;lite number in (¢,, 0.,.+1).,
Thus < 2 2{] fe0) |+ fern—0)]}
it

mn

<

where p is the number of partial intervals and M is the upper
bound of | f(x)| in the interval (— =, 7).

Therefore ‘ | | << K/,

where K is some positive number independent of n.
248
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And similarly we obtain

D, | << K [n.

We may speak of the terms of this series as of the order 1/n.
When the terms are of the order 1/n, the series will, in general,
be only conditionally convergent, the convergence being due to
the presence of both positive and negative terms.

1L If f(x) 1s bounded and continwous, and otherwise satisfies
Dirichlet’'s Conditions in —7<a<w, while f(m—0)=f(—m+0),
and if f'(x) 18 bounded and otherwise satisfies Dirichlet's Con-
ditions im the same interval, the coefficients in the Fowrier’s
Series for f(x) are less in absolute valwe than K|n? where K s
some positive number independent of n.

In this case we can make f(z) continuous in the closed interval
(—m, 7) by giving to it the values f(—=#+0) and f(=—0) at
x= —7 and 7 respectively.

Then  7a,= r f(x) cos na dx
_! f(z) sin nx -—1—r f () sin ne dw
_%[ () sin 9@] n) nne da
S r f'(x) sin ne du.

LTS
But we have just seen that with the given conditions

r f(x) sin nx da

™

m

15 of the order 1/n.

It follows that |y | << X /2,
where K 1s some positive number independent of n.

A similar argument, in which it will be seen that the condition
Ff(7m—=0)=f(—7+0) is used, shows that

| b, | << K [0

Since the terms of this Fourier’s Series are of the order 1/n?
it follows that it is absolutely convergent, and also uniformly
convergent in any interval.

The above result can be generalised as follows: If the function
f(@) and its differential coefficients, wp to the (p—1)"*, are
bounded, continuous and otherwise satisfy Dirichlet's Con-
ditions vn the interval —r<ax<lmw, and

fA=7m+0)=f)(m=0), [r=0,1,...(p—=1)],
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and if the p™ differential coefficient is bounded and otherwise
satisfies Dirichlet’s Conditions in the same interval, the co-
efficients in the Fowrier’'s Series for f(x) will be less in absolute
value than K[n?+l, where K is some positive number inde-
wvendent of n.

105. Again suppose that the interval (-, 7) can be broken up into a
certain number of open partial intervals (—m, ¢)), (¢, ¢)y ... (Cmy T), N
each of which f(#) and f'(x) are bounded, continuous and otherwise satisfy
Dirichlet’s Conditions. Also let f”(x) be bounded and otherwise satisfy
Dirichlet’s Conditions in the whole interval.

In this case f(—7+0), ... f(c,+£0), ... f(w—=0) and f(—7+0), ...,
f(¢c. +£0), ... f/(w —0) exist, when » =m.

Also  7a,= { “ J(&) cosna da+ [ “ f(x)cosnxdo+ ...+ j " Sf(2) cos nx dar.

v v Cm

Integrating by parts, we find that

A, b,/
e PP PO P PR (1
Uy ="F = (1)
where wd,=Xsinne. flc,—0)—f(c,+0);
1
o )
and wb, = , S(x) sin nx dr.
J =T

Similarly, from the equation

 wh,= {Cl S(@)sinna da+ jmf(z) sinnrdr+... + /ﬂ.f(l,) sin ne d,
' S 1 “ Om

we find that

D o A oy i ereeiere et e eree et rer e e eraaa e eese et raa it aaaeens (2)

n o on
where
m

rB,= — X cosne,d f(c, —0) —fle.+0)} 4+ cos nmf f( — 7+ 0) — f(ar - O)}
1

and 7wa, = fﬁ J(2) cos na d.r.
-

In the same way we get

1 ’ [) " B oa ”
’ “«Ln n / n n
an == —— e b = — —y

H

2" n’ n N

where
m
rd,/ = sinned f/(e,—0)—f'(e.+0)},
T

D, = - %‘, cos ne,.d (e, —0) = f(c,+0)} +cos nar{ f(—m+0) — (7 — 0)},
™
and wa,’= [ J(x) cos nx dx,
J =T

wb, = j T f "(2) sin na da.
=T
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Thus an=i”'— %—-%,

b= B, " A,; bn‘) .

n n- n-

This result includes that of § 104 as a special case. It is also clear that
7| dul, 7| Bal, 7|4,/ and 7| B,/| are at most equal to the sum of the “jumps”
in f(2) and f'(z), as the case may be, including the points v= + as points
of discontinuity, when f(z —0)+f(—=+0), and f(m—0)+f(—7+0). And
under the given conditions «,” and b, are of the order 1/n.

The expressions for a, and b, can be used in determining the points at
which the sum of a given Fourier’s Series may be discontinuous.

Thus, if we are given the series

sin 2+ } sin 3z+Ltsindr+...,
and assume that it is a Fourier’s Series, and not simply a trigonometrical
series (cf. § 90), we see that
tn=0, b,=(1-cos nr)/2n.
So that (1) and (2) above would be satisfied if \
4,=0, B,=(1-cosnm)/2, a,/=0=0,.

Hence, if ¢;, ¢,, ... are the points of discontinuity,
md,=0=[sin ne{f(¢; — 0) — fe, +0)} +sin neyd fley — 0) = f(e; +0) )+ ... ]

Since this is true for all integral values of n, the numbers ¢, ¢,, ... would
need to be multiples of «; and, since ¢y, ¢, ... lie in the interval — 7= <a <,
¢;=0 and ¢y, ¢;, ... do not exist.

Substituting ¢;=0 in the equation for 75,,

(3 —3% cosnr)=cos nmw{f( —m+0)—f(w - 0)} +{f(+0)—f( = 0)}.
Since this is true for all integral values of 7,

b= (f(+0) —f(~ Ok =1/ = 0)~f(~ 7 +O)}.

Thus we see that, if the series is a Fourier’s Series with ordinary discon-
tinuities, f(2) has discontinuities at x=0and = + 7. Also, since @,/ =0,/=0,
we should expect f() to be a constant (say £) in the open interval (0, ),
and —Z in the open interval ( —m, 0).

As a matter of fact, the series is the Fourier’s Series for f(«), where

fa)= tr in O0<w<m,)
flz)=~}r in —r<<<O. [
106. Discussion of a case in which f(x) has an infinity in (-, =).

We have seen that Dirichlet’s Conditions include the possibility of f(«x)
having a certain number of points of infinite discontinuity in the interval,

subject to the condition that the infinite integral J " () de is absolutely
convergent. -
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Let us suppose that near the point a,, where — =< 2,<m, the function
J(x) is such that ()
J(@)="—=—
(w—w 0)
where O0<v<<1 and ¢(z) is monotonic to the right and left of »,, while
¢ (2,+0) do not both vanish.

In this case the condition for absolute convergence is satisfied.
Then, in determining @, and b,,, where

Ty = [ g f@ycosnadr and wb,= [" 7(2) sin na du,
o |

we break up the interval into

(=m )y (o,2), (#,B), and (S, ),
where (a, 3) is the interval in which f(#) has the given form. In (-, )
and (3, ) it is supposed that f(z) is bounded and otherwise satisfies
Dirichlet’s Conditions, and we know from §98 that these partial intervals
give to «, and b,, contributions of the order 1 [n.

The remainder of the integral, e.g. in «,, is given by the sum of
L [0 A0 B )

cosnwdr and Lt cos na d,

(@ —2y)” 80 Jor, 8 (¢ — @)
these limits being known to exist.

We take the second of these integrals, and apply to it the Second Theorem
of Mean Value.
Thus we have

B b () cos nw "B cos nw
————cos nw dr=¢(z +8j 2+ d,
/J:o+8(x—x0)" Py +9) w8 (0 — O)V ¢<B)/§ (v — U)V

where 2+ =§£ = .
Putting n(x —x,)=y, we obtain
B &
f _P(¥)_ cos s day= LI TO) =
2ok 8 (5 — )" nl=v Jus VG
PHB [ conlrtnn)
HRE M T

b b b sin
But f w—%)dj cow%/ C(Z;?/dl/—bmvu(,f Sl;uydy.

a yv
bsiny
kil
Jo

Also when «, b are positive,
b
f cos ¥ dyl’
Ha UY
are both less than definite numbers independent of ¢ and 4, when 0 <y < 1.
Thus, whatever positive integer » may be, and whatever value § may have,
subject to 0< d< B -y,
l ] <l>< )

>0 Ja

By 8) 1(E=0 cos ()

- cos na dv | < L' fnl-v,

where A’ is some positive number 111dependent of n and ¢



FOURIER’S SERIES 253

It follows that

-8 o
l Tt J _P(r)_ cosnw dr < K'[nt-v.
§—>0 Jao+8 (o —a,)Y i

A similar argument applies to the integral

2o— 8
] 0 *_qS (ﬂ@m cos n dr.

a  (z—ay)y
It thus appears that the coefficient of cosnz in the Fourier’s Series for the
given function f(z)is less in absolute value than A/nl-v, where A is some

positive number independent of # ; and a corresponding result holds with
regard to the coefficient of sin .

It is easy to modify the above argument so that it will apply to the case
when the infinity occurs at + 7.

107. The Uniform Convergence of Fourier’s Series. We
shall deal, first of all, with the case of the Fourier’s Series for
f(z), when f(z) is bounded in (—, #) and otherwise satisfies
Dirichlet’s Conditions. Later we shall discuss the case where a
finite number of points of infinite discontinuity are admitted.

It is clear that the Fourier’s Series for f(z) cannot be uniformly
convergent in any interval which contains a point of discon-
tinuity ; since uniform convergence, in the case of series whose
terms are continuous, involves continuity in the sum.

Let f(x) be bounded in the imterval (—m, ), and otherwise
satisfy Dwrichlet’s Conditions im that interval. Then the
Fourier's Series for f(x) converges uniformly to f(x) in any
wnterval which contains mneither in its interior nor at an end
any point of discontinuity of the function.

As before the bounded function f(z), satisfying Dirichlet’s
Conditions in (—m, 7), is defined outside that interval by the
equation

fle+2m) =)

Then we can express f(x) in any interval—e.g. (— 27, 27)—as
the difference of two functions, which we shall denote by F(z)
and G(z), where F(x) and G(x) are bounded, positive and
monotonic increasing. They are also continuous at all points
where f(x) is continuous [§ 36].

Let f(x) be continuous at « and b* and at all points in
a<<a<b, where, to begin with, we shall assume —7<Ca and b<lr.

Also let @ be any point in («, b).

*Thus fla+0)=F(a)=f(a—0) and fF(Ob+0)=,(b)=/(b~0).
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Then with the notation of §
sin & (2:@—]—1)(1, —ub)

1 |
Sn((b) C)T“’_Wf( ) Sln 1 (x ) d
=71_ . f\x + 2a) qm na (Za, where m=2n+41.%
Thus )
Suiz) = l b T(x—l— %) sn:lzna Ja
—%.j G2 +2a) SV 0 e D)

We shall now discuss the first mtegral in (1),

= sin ma
j‘_g F(m—l—?a) ;ﬁ’l - la,
e, j Flar-20) " 1 j " Fw—20) T g,
Let u be any number such that 0<lu<d7m
Then
j“ Flx+ 2(1) Sin ma da=F(x+ O)j " él??lq)(ia da
sin ma
L (F(z+20)— F(z+0)) 2™ da
j (o 20) = Fla+0)y 0" 1
I
=1 +1,+1;,88Y. .vereiiiinniinnnn(2)
We can replace F(x+0) by F(z), since F(x) is continuous at .
Now we know that j i gn_@ da=1m,
o Sina 2

since m or 2n+1 is an odd positive integer.
Thus L= 37 F (@) oo (3)
Also {F(x+2a)— F(z)} is bounded, positive and monotonic
increasing in any interval ; and giz_a is also bounded, positive and

monotonic increasing in 0<a =i

*We have replaced the limits — 7, 7 by — 7+, 7+ in the integral before
changing the variable from 2’ to a by the substitution '’ =a4-2a. Cf. §101.
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Therefore we can apply the Second Theorem of Mean Value to
the integral sin mu g
[ #”
e _ 2a)— F(z)r 4.
where o (a) [F(CU-F-«G) F(x)] Sin
It follows that

I,={F(z+2u)—F(z >} =

sin M

da,

*Sin ma
a

where 0 = £~ .
But we know that

jf* sm mna do = jm“ sinada <m ($91.)
& a m& @
Th 9 p B .
erefore | L, | <{F(x42u) — F( %)}SmM ORI ()
) £8in ma
, — — - /
Finally  7,= [F(z+24) F(a:)}L L g

37 sin ma

+{F(a+7)—F(x)} L/ g e

where u = &= L.

But, if 0<8< ¢ = 1,

¢ sin ma 1 x 1 (¢ .
. da=-—+———| sinmada+ sin ma da,
o Siha sin 6 J, sin ¢ J

where 0=y = ¢.

Therefore

j b gin ma
1Je SN «

la ; <%{cosec 0+ cosec ¢}

4
< > cosec 6.
It follows that

1 1,]<

[{F(e+2u) = F(2)} +{F(c+7)— F(x)}]

m sin y,

4K .
<msin,u’ eeen(D)
where K is some positive number, independent of m, and de-
pending on the upper bound of | f(x)| in (—=, 7).

Combining (3), (4) and (5), we see from (2) that

1j‘”F( +Za) Sm ma
-

0

da—lF( )1

<{F(m+2m Pl P )

sin gy M7 sinu
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A similar argument applies to the integral

j T F—2a) " g,
0
but in this case it has to be remembered that F'(xz—2a) is mono-
tonic decreasing as a increases from 0 to L.
The corresponding result for this integral is that

1j Plo—20)™

T

Sln ma

Cla — L (x)

< | Fo— zﬂ) F(w)| - S S (1)

sin * i sin w’
K as before being some positive number independent of m, and
depending on the upper bound of | f(z)|in (—=, 7).

Without loss of generality we can take K the same in (6)
and (7).

From (6) and (7) we obtain at once

1

;lrj.ﬂ F(oc—l—QOt)Slnma deo— F(%)‘
" SK
< o P42 = F@) |+ Fla=20) = F@) |} 4 o (8)
Similarly we find that
];l_j G+ Qa)gl‘ﬂ@ da— G(x)
" SK
<gin M E@H2)= G @)+ Ge=20) =G+ (9)
Thus, from (1),
714‘?” f(%+2a)gmma la—f(oc)\
<t A F@+20 = F(@) [+ Fla =20 = F (o)
+1G(2+2p)— C(0) [+ Gle— 2u) — G (2) [}
M S11L

Now F'(x) and G(z) are continuous in a< xz<b, and also when
r=qa and x=0.

Thus, to the arbitrary positive number e, there will correspond
a positive number u, (which can be taken less than }7) such that
Fla+20) - P@) |<e | Glat2u)— (@) |<e

when |u|=u, the same pu, serving for all values of = in

—x=0b. [Cf§32]



FOURIER’S SERIES 257

Also we know that u cosec . increases continuously from unity
to $7 as u passes from 0 to .

Choose u,, as above, less than 37, and put uw=pu, in the argu-
ment of (1) to (10). This is allowable, as the only restriction
upon u was that it must lie between 0 and L.

Then the terms on the right-hand side of (10), not including
16K /mm sin u,, are together less than 8¢ for all values of z in
(a, b).

So far nothing has been said about the number m, except that
it is an odd positive integer (2n-+1).

Let my be the smallest positive integer which satisfies the

inequality 16K

(@14 ) sin g, <©

As K, u, and ¢ are independent of z, so also is n,. We now
choose m (7.e. 2n+1) so that n = n,.
Then it follows from (10) that

| Sp(x) —f() |<<9¢, when n=mn,,

the same n, serving for every z in a =2 =b.

In other words, we have shown that the Fourier's Series con-
verges uniformly to f(z), under the given conditions, in the
interval (a, b).*

If f(—7+0)=f(7—0), we can regard the points +m, + 2m, etc., as points
at which f(z), extended beyond (~m, ) by the equation f(x+27)=f(x), is
continuous, for we can give to f( 4 ) the common value of f(—7+0) and

f(m—0).

*It may help the reader to follow the argument of this section if we take a
special case :

H.g. f(x)=0, —réml_/:(),\
Sx)=1, 0<x=m. |
Then we have: ‘
Interval. i) { F(z) G(x)
|
~r<<a<-m 1 1 0
-r=x=0 0 1 1
o<e=mnr 1 2 1
T =2nw 0 2 2

If 0<a=a=0b< w, the interval (@, 0) is an interval in which f(x) is
continuous.
C. 1 R
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The argument of the preceding section will then apply to the case in
which' —7 or 7 is an end-point of the interval (, b) inside and at the ends
of which f(#) is continuous.

108. The Uniform Convergence of Fourier's Series (continued). By
argument similar to that employed in the preceding section, it can be proved
that when f(2), bounded or not, satisfies Dirichlet’s Conditions in the
interval (-, 7), and f(2) is bounded in the interval (¢, ) contained within
(—m, m), then the Fourier’s Series for f(z) converges uniformly in any
interval (a, b) in the interior of (¢, b'), provided f(z) is continuous in (a, ),
including its end-points.

But, instead of developing the discussion on these lines, we shall now show
how the question can be treated by Fejér’s Arithmetic Means (cf. § 101),
and we shall prove the following theorem :

Let f(z), bounded or not, satisfy Dirichlet’'s Conditions in the interval (—, ),
and let it be continuous at a and b and in (a, b), where —mw =a and b=.
Then the Fourier’s Series for f(x) converges uniformly to f(x) in any interval
(a+ 6, b—0) contained within (a, b). |

Without loss of generality we may assume b—a =, for a greater interval
could be treated as the sum of two such intervals.

- b
Let Q= f f(a)de,

b
Ty = f f(&")cos na' dx
! n= 1.

b
and b, = f f(&')sinna' d,
a

Since f(#) is continuous at « and b and in (¢, b), it is also bounded in
(«, b), and we can use the corollary to Fejér’s Theorem (§101) and assert that
the sequence of Arithmetic Means for the series

w0
ay + 2 (a, cos nw + b, sin nx)
1

converges uniformly to f(z)in (a, b).

Also ' |a, cosnz+ b, sin ne | = (a,/*+ b, 3)2
But f(#) is bounded in (e, b) and satisfies Dirichlet’s Conditions therein.
Thus we can write J(2)=1I'(x)— G (),

where F'(2) and G(z) are bounded, positive and monotonic increasing
functions in (@, b). It follows that we can apply the Second Theorem of
Mean Value to the integrals

cos oS
f P() % nf dot, f () et
and we deduce at once that (a,%+0b, 2)‘12 < K/n,

where K is some positive number depending on the upper bound of | f(x)|
in (a, b).
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Then we know, from the corollary to Theorem II. § 102, that the series
y +>(a, cos na+ b, sin na)
1

converges uniformly to f(x)in («, b).

Let us now suppose & to be any point in the interval («+8§, b—38) lying
within the interval («, b).

With the usual notation

oway= " fa!)du,

™
ey, = f f(2") cos na' da
-

wb,= f " S(@')sinna' do'. )
-7
Tt follows, as in § 103, that

loe]
(ay = ay) + X{(ct, — @) cos nw 4 (b, — by sin nas}
1

18 equal to
¥ sin (2n+ 1 1 [t in (2n+1
LI fo-2ny™ N g L Y pepag Gty
T Ji(z—a) S o T -2) sin a

Sf(z) being defined outside the interval (—, 7) by the equation
fl+2m)=f(2).
Now f(x) is supposed to have not more than a finite number of points
(say m) of infinite discontinuity in (-, 7), and / " | f(2") | da’ converges.

We can therefore take intervals 2y, 2v,, ... 2y, enclosing these points,
the intervals being so small that

L | f(2) | da’ < 2e sindd, [r=1,2,...m]
e being any given positive number.
Consider the integral
[gn Fo—2a) sin (271 +1)a da,
JE (e —-a) S111 @
x, as already stated, being a point in (¢+8, b - 9).

As o passes from §(v—a) to §7, we may meet some or all of the m points
of discontinuity of the given function in f(x—2a). Let these be taken as the
centres of the corresponding intervals y;, v9, ... Y.

Also the smallest value of (v —a) is &.

sin (20 +1)a 1 [
m . __2 il S B/ 3 _ 3 ; 6
Phus [ fo=20 00 da!;m 5 w/yr | f (o —20) | da

1 , ,
“Zsin 0 f% [ f(a!)| de

<e. .
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When these intervals, such of them as occur, have been cut out, the integral

f’fﬂ flo—2 )mn (2n+4+Da da

He—-a) sin o

will at most consist of (m +1) separate integrals (Z,). [r=1,2, ... m+1.]
In each of these integrals (/,) we can take f(2 — 2a) as the difference of two
bounded, positive and monotonic increasing functions

F(z—2a) and G(x-—2a).

Then, confining our attention to (Z,), we see that
‘f(F sm(2n+1)ada

sin «
= l f(F— G){cosec 6/2 — (cosec §/2 — cosec a)} sin (2n + ])a da.
AR PAL ST I PAP

where J,=cosec 8/2/Fsin (2n+1)ada,

J,=cosec 8/2[0 sin (2n+1)a do,
J3=/F{cosec /2 — cosec a} sin (2 +1) . da,

J4=fG{cosec 8/2 — cosec a} 8in (2n + 1) a da.

But we can apply the Second Theorem of Mean Value to each of these
integrals, since the factor in each integrand which multiplies sin (22 +1)a is
monotonic.

It follows that |] <5

]+ ] cosec 18,

where K is some positive number independent of » and w, and depending
only on the values of f(x)in (—m, w), when the intervals 2y, 2y,, ... have
been removed from that interval.

Thus @+ 1) m K
5 sin (24 1a m-4+1) 4
J{%(x_a)f(x—Q «) sin o da (2n+ 1)&11118+
< (2m+1)e,

when (274 1) > K cosec §0.

Since this choice of % is independent of #, the integral converges uniformly
to zero as n—cc, when x lies in the interval (¢ +38, b - 8).

Similarly we find that

b sm(2n+ Da
2+ 2a) — - — da,
/%(b— b)f( “

converges uniformly to zero when « lies in this interval.
Thus the series

@
(ay—ay)+ Z{(an — ") cos nw + (b, — b,') sin na}
1

converges uniformly to zero in (a8, b—9).
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But we have shown that the series
e o}
a, + 2 (a, cos ne + b,/ sin nr)
1

converges uniformly to f(«) in (a, b).
Since the sum of two uniformly convergent series converges uniformly, we
see that 4 .
ay+ 2{a,, cos nx+ b, sin ne)
1

converges uniformly to f(2) in (a+3§, b—3).

109. Differentiation and Integration of Fourier’s Series. We have
scen that, when f(2) satisfies Dirichlet’s Conditions, the Fourier’s Series
for f(«) is uniformly convergent in the interior of any interval in which f(2)
is continuous. We may therefore integrate the series term by term within
such an interval, and equate the result to the integral of f(#) between the
same limits. And this operation may be repeated any number of times.

With regard to term by term differentiation, a similar statement would
obviously be untrue. We have shown that in certain general cases the order
of the terms is 1/n or 1/2% 1In the first alternative, it is clear that the series
we would obtain by term by term ditferentiation would not converge ; and
the same remark applies to the other, when second differential coefficients
are taken. ’

This difficulty does not occur in the application of Fourier’s Series to the
Jonduction of Heat. In this case the terms are multiplied by a factor
(e.g. e~rx*mt/a?)  which may be called a convergency factor, as it increases the
rapidity of the convergence of the series, and allows term by term differentia-
tion both with regard to + and ¢.

If f(x) is continwous in (—m, ) and f(—m)y=f(w), while f'(v) having only «
JSintte number of pownts of infinite discontinuity s absolutely integrable, the
Fourier’s Series for f'(v), whether it converges or not, is given by term to term
differentiation of that corresponding to f(x).

Let ay, ag, by, ..oy ayy af, b,...be the Fourier’s Constants for f(x)

and f'(x).
Then 271-(%:[# Slx)dw, 2ray = {W J(x)dr,

"~ ™
T, = j JS(@)cosnrde, wa, = [ S'(x) cos nw dz,
—r -
ete.
Integrating the expression for @, by parts, we see that

an’:%{f(n—)—f( — 1)} cos mr+:i/n S(2)sin na’ da/
i -

=nb,,

since we are given f{w)=jf( — ).
Also o) =0.
Similarly, starting with 0,/ and integrating by parts, we see that

b, = — na,.
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Thus the Fourier’s Series for f(#) is that which we obtain on differentiating
the series for f(x) term by term.

On the other hand, with the same assumptions, except that f{m)#f(— ),
the terms in the series for f'(2) are given by

ay =S fw)—f( ) \

|

an/:ﬁ_{f(ﬂ-) —f(— )} cos nmw +nb,, ([

I3
b, = —na,,. )

Thus the Fourier’s Series for f’(z) does not agree with that which we
obtain on term by term differentiation of the series for f(2).*

110. More General Theory of Fourier's Series. The questions treated

in this .chapter and the preceding may be looked at from another point of
view.

We may start with the Fourier’s Series

oyt (g cos 4Dy sin &)+ (@, €08 284+ by SN 22) 4+ ..oy vvveiiiniinin (1)
where 2ra,= fﬁ f(&')d,
-1

Ty = f T f(@)cos na'dofy,  wh,= { " f(&)sinna'd’,
- » ’_ﬂ-
the only condition imposed at this stage being that, if the arbitrary function
is bounded, it shall be integrable in (—m, m), and, if unbounded, the infinite

integral / " J(#) dz shall be absolutely convergent.

We then proceed to examine under what conditions the series (1) converges
for z=ux,.

It is not difficult to show that the behaviour of the series at x, depends only
on the nature of the function f(x) in the neighbourhood of x,.

Also a number of criteria have been obtained for the convergence of the
series at a, to L[ f(2,+0)+f(2,—0)], when these limits exist.t

Further, it has been shown that, if (a, b) be any interval contained in
(-, m), such that f(x) is continuous in (a, b), including the end-points, the
answer to the question whether the Fourier’s Series converges uniformly in (a, b),
or not, depends only wpon the nature of f(x) tn an interval (o, b'), which includes
(a, b) in its Tnterior, and exceeds it in length by an arbitrarily small amount.

Again it can be shown that, when f(z) has only a finite number of points of

. . . .. . B
nfinite discontinuity, while f " f(@)da converges absolutely, then j S(z) da,
. —T o

where —m = a<B =, is represented by the convergent series obtained by

* See also Gibson, Edimburgh, Proc. Math. Soc., 12, p. 47, et seq., 1894.
+ Cf. de la Vallée Poussin, loc. cet., T. I1., §§137-143.
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integrating the Fowrier’s Serves (1) term by term, no assumption being made as
regards the convergence of the original Fourier’s Series.

The reader who wishes to pursue the study of Fourier’s Series on these
lines is referred to the treatises of Hobson and de la Vallée Poussin.
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CHAPTER IX

THE APPROXIMATION CURVES AND GIBBSS
PHENOMENON IN FOURIER’S SERIES *

111. We have seen in §104 that, when f(x) is bounded and
continuous, and otherwise satisfies Dirichlet’s Conditions in
—mlelm, f(mr—0) being equal to f(—=+0), and f'(x) is
bounded and otherwise satisties Dirichlet’s Conditions in the
same interval, the coeflicients in the Fourier’s Series for f(x) are
of the order 1/n2 and the series is uniformly convergent in any
interval.

In this case the approximation curves

Y =Su(®)
in the interval —7 <@ <7 will nearly coincide with
y=f(),
when n is taken large enough.
As an example, let f(x) be the odd function defined in (—, )

as follows:  f(z)= —lx(r42), —7m=a=—lmn
f(x)=1me, —tr=x =i,
x)=im(m—ux), - lr=x=m.
f(w)=im(m—x), } =

The Fourier’s Series for f(z) in this case is the Sine Series
: 1 . 1 .
smm——g—zsm 393—}-5—2 Sin O — ...,
which is uniformly convergent in any interval.
The approximation curves

Y =sin ,
1

i

. )
32 SN o,

Y =sina —
: 1 . 1 .
Y =Sz =g, SIn Sm—!-gzsm o,

* This chapter is founded on a paper by the author in The American Journal
of Mathematics, 39, p. 185, 1917.
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are given in Fig. 80, along with 4 = (), for the interval (0, =),
and it will be seen how closely the last of these three approaches
the sum of the series right through the interval.

Y

(1)
§E§~ . X
:y j ¢
2w
(2)
1
Y
3)
= S
] ( 4
F16. 30.

Again, let f(x) be the corresponding even function :

f(m)————%ﬂ'('n'—l—%), -

=X = -y
f(@)= —}ma, —lr=x=0,
J(w)={mz, O=a=m
f(@)=tm(7m—2u), lr=x=7
The Fourier’s Series for f(x) in this case is the Cosine Series

1, 1 1 1
167 —-2{—2—2 COS 2w+62-cos 6x—l—ﬂ)—2(:os 10z + },

which is again uniformly convergent in any interval.
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The approximation curves
Y =% 2——%003 2,
Y= — 1 cos 2x — 5 cos G,
are given in Fig. 31, along with y =f(«), for the interval (0, =),
and again it will be seen how closely the second of these curves
approaches y = f(z) right through the interval.
K

1
11
1]

(1)

(2)

Fig. 31.

It will be noticed that in both these examples for large values
of n the slope of y =8, (x) nearly agrees with that of y=f(x),
except at the corners, corresponding to @= +}=, where f'(x) is
discontinuous. This would lead us to expect that these series
may be differentiated term by term, as in fact is the case.

112. When the function f(x) is given by the equation

f@)=a, —mlalr,
the corresponding Fourier’s Series is the Sine Series
2{sin ¢ — 1 sin 2+ L sin 3x— ...}.

The sum of this series is « for all values in the open interval
— r<x<m, and it 1s zero when ¢ = + 7.

This series converges uniformly in any interval (— 7r+é T —0)
contained within (— 7, 7) (ef. §107), and in such an interval, by
taking » large enough, we can make the approximation curves
oscillate about y =x as closely as we please.

Until 1899 it was wrongly believed that, for large values of n,
each approximation curve passed at a steep gradient from the
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point (— 7, 0) to a point near (—, — ), and then oscillated about
y=ua till @ approached the value 7, when the curve passed at a
steep gradient from a point near (7, #) to (7, 0). And to those who
did not properly understand what is meant by the sum of an
infinite series, the difference between the approximation curves

’ySSn(%>,
for large values of m, and the curve y= Lt S, (x) offered con-

siderable difficulty. g
In Flg 32, the ].il’]e ’y:,’]/‘ a,nd t,he curve

y=2(sinx— 1 sin 2w+ 1 9in 3z — 1 sin 4z 4 % sin 5a)
are drawn, and the diagram might seem to confirm the above

view of the matter—namely, that there will be a steep descent
y

T T
11

senss

Fic. 32.

near one end of the line, from the point (—7, 0) to near the
point (—m, —ar), and a corresponding steep descent near the
other end of the line. But it must be remembered that the
convergence of this series is slow, and that n=5 would not
count as a large value of =.
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113. In 1899 Gibbs, in a letter to Natwre,* pointed out that
the approximation curves for this series do, in fact, behave in
quite a different way at the points of discontinuity += in the
sum. He stated, in effect, that the curve y=78,(x), for large
values of 7, falls from the point (—, 0) at a steep gradient to a
TS x

point very nearly at a depth ZJ da below the axis of @, then

0
oscillates above and below y = close to this line until @ ap-

proaches 7, when it rises to a point very nearly at a height

QJ‘W i H;wdas above the axis of  and then falls rapidly to (=, 0).
0

The approximation curves, for large values of n, would thus
approach closely to the continuous curve in Fig. 33, instead of
the straight lines in Fig. 32, for the interval (— =, ).

/]

/

4

Fia. 33.

His statement was not accompanied by any proof. Though
the remainder of the correspondence, of which his letter formed
a part, attracted considerable attention, this remarkable observa-
tion passed practically unnoticed for several years. In 1900
Bocher returned to the subject in a memoir T on Fourier’s Series,

* Nature, 59, p. 606, 1899.

tAnn. Math., Princeton, N.J. (Ser. 2), 7, 1906.

See also a recent paper by Bocher in J. Math., Beriin, 144, 1914, entitled
“On Gibbs’s Phenomenon,”

Reference should also be made to Runge, Theorie w. Praxis der Reihen,
pp- 170-180, Leipzig, 1904. A certain series is there discussed, and the nature of
the jump in the approximation curves described; but no reference is made to
Gibbs, and the example seems to have been regarded as quite an isolated one.
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and greatly extended Gibbs’s result. He showed, among other
things, that the phenomenon which Gibbs had observed in the
case of this particular Fourier’s Series holds in general at ordinary
points of discontinuity. To quote his own words : *

If f(x) has the period 27 and in any finite interval has no
discontinwities other than a finite number of finite jumps, and
if it has « derivative which im any finite interval has no dis-
continuaities other than a finite number of finite discontinuities,
then as m becomes infinite the approvimation cuwrve 1y =S, (x)
approaches uniformly the continuous curve made wp of

(a) the discontinwous curve y = f(x),

(b) an wnfinite number of straight lines of finite lengths
parallel to the awxis of y and passing through the points a,, a,, ...
on the awis of x where the discontinwities of f(x) occur. If a is

any one of these points, the line in question extends between the
two points whose ordinates are

fa=0+ 22 v o= "0,

ko
where D is the magnitwde of the jump in f(x) at a,T and

P1=j MR dw= —02811.
-

1
- a, ‘ . a, A a,+2m

—

F1a. 34,

This theorem is illustrated in Fig. 34, where the amounts of
the jumps at a,, a, are respectively negative and positive. Until

*loc. cut., p. 131. tie. D=fla+0)-fla~0).
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Gibbs made his remark, it was supposed that the vertical lines
extend merely between the points whose ordinates are f(a=+0).
The series in the examples of Chapter VIIL. converge so slowly that
the approximation curves of Figs. 21-23, 27, 28 are of little use in this
connection.
114. The series on which Bécher founded his demonstration of
this and other extensions of Gibbs’s theorem is
sin x4+ sin 2e 41 sin 3 4.,
which, in the interval (0, 27) represents the function f(2) defined
as follows: F(OY=F(27)=0,
f@)y=4(r =), 0<a<or

In this case

Sﬂ(a))=sinm+%sin 2x+...+%sin nw

X
=j (cos a+cos 2a+ ... +cos na) da
0

r sin(n+4)a

in L
o sSInja

[t

da— .

I

[\

‘The properties of the maxima and minima of 8,(z) are not so
easy to obtain,* nor are they so useful in the argument, as those of

Ry(z) =4 (m —a)—S(w)
j"’ sin(n +4)a da

—1
o Sinia

2

:_—.l
2

~In his memoir Bocher dealt with the maxima and minima of
R,(x), and he called attention more than once to the fact that
the height of a wave from the curve y=f(x) was measured
parallel to the axis of y. This peint has been lost sight of
in some expositions of his work.
In the discussion which follows, the series
2(sinz+1sin3z+Lsinbr+...)
is employed.
In the interval (—m, 7) it represents the function f(z), defined
as follows: Ff(—7)=F(0)=F(7)=0,
@)= —1tr, —r<<a<0,
fy=1ir, 0<ax<m.

* Gronwall has discussed the properties of S,(x) for this series, and deduced
Gibbs’s Phenomenon for the first wave, and some other results. Cf. Math.
Ann., Leipzig, 72, 1912, Also Jackson, Palermo, Rend. Circ. mat., 32, 1911.
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The sum of the first % terms of the series is denoted by Sn (),
so that
Sy ()= 22 (27 sm (2r—1).

A number of mterestmg propertles of the turning points of
y=.,(z) are obtained by quite simple methods, and all the
features of Gibbs’s Phenomenon, as described by Bocher, follow
at once from these properties. -

It is, of course, not an unusual thing that the approximation
curves i =S, (), for a series whose terms are continuous functions
of x, differ considerably, even for large values of n, from the
curve y= Lt S, (#)=S(z). They certainly do so in the neigh-

>0
bourhood of a point where the sum of the series is discontinuous,

and they also may do so in the neighbourhood of a point where
the sum is continuous. This question we have already examined
in Chapter 1TI. - But, in passing, it may be remarked that when
f(x) satisfies Dirichlet’s Conditions, the approximation curves for
the corresponding Fourier’s Series will, for large values of =,
differ only slightly from the curve y=f(x) in the neighbourhood
of points at which f(z) is continuous, for we have shown that the
Fourier’s Series converges uniformly in any interval contained
within an interval in which f(z) is continuous.

The existence of maxima (or minima) of S,(x), the abscissae of
which tend towards @ as n increases (@ being a value of a for
which the sum of the series is discontinuous), while their
ordinates remain at a finite distance from f(a+0) and f(a—0), is
the chief feature of Gibbs’s Phenomenon in Fourier’s Series. And
it is most remarkable that its occurrence in Fourier’s Series
remained undiscovered till so recent a date.®

THE TRIGONOMETRICAL SUM

Sp(x)=2 (sm @ + sin 3+ .. + sm (2n—1) x)

115. If we define f(.)j) by the equa,tlons
f(=m) =f(0)=f(7r)=.0,
J(@)= , 0L, ‘
f(”v)“_ % cer —'7T<.’,E<0,
*Cf. also VVeyl. (i) ¢“ Die Gibbs’sche Erscheinung in der Theorie der Kugel-

Funktionen,” Pdlermo, Rend. Circ. mat., 29, 1910 ; (ii) «“Uber die Gibbs’sche
Erscheinung und verwandte Konvergenzphinomene,” bid., 30, 1910.
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the Fourier’s Series for f(z) in the interval — 7 = = 7 is
2(sin -+ sin 3+ 1 sin 5+ ...).

As stated above, we denote by S,(«) this sum up to and
including the term in sin (2n—1)x. Then

Sn(a&)=2j (cos & +cos 8z + ... +-cos (2n— 1)) (la’)=jx s 2na
0 o Slla

da.

Since S,(x) is an odd function, we need only consider the
interval 0 = = .

We proceed to obtain the properties of the maxima and minima
of this function S,(z).

I. Since, for any integer m,
sin (2m—1) (37 +a)=sin 2m —1) (37 —a'),
it follows from the series that S,(x) s symmetrical abowt x= 4,

and when =0 and == 1t 18 zero.

II. When 0 <z <, S,(x) 18 positive.

From (I) we need only consider 0 <z =47. We have

Z gin Qna 1 (2 gina
S, ()= ’ doa= — da, 0 <ux=im
Sin 2n ), . «a
sin —

9

-~

The denominator in the integrand is positive and continually
increases in the interval of integration. By considering the

. o . a o
successive waves in the graph of sin a cosec o the last of which

may or may not be completed, it is clear that the integral is
positive.

II1. The turning points of y=S,(x) are grven by
37 2n—1

-
By= g, W= s Ry = g T (maxima),
T,=—, @ 2m @ n—1 (minima).

= — 4 = * 00 —_— = WW
9 ' 4 n’ » M2n—1) — n
We have

Sin a dx sin &

® sin 2na dy sin 2nw
Y= da, and = -
0

The result follows at once.
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IV. As we proceed from x=0 to w=1tw, the heights of the
mazima continwally diminish, and the heights of the minima
continually increase, n being kept fized.

Y
2-
L
/N
/f\ { \X
[T\ Pain N AN L/ \ _.7[
gl mbi 7 NN T 95
YTl P i A\
amEA \
\
IL J
' 1
|
|
|
.51
|
{
7y T A 0 2 5

The curve y=S,(v), when 7 =6.

i, 35.

Consider two consecutive maxima in the interval 0 < = I,

' 2m — 2 . ..
namely, ML( WE% 17r> and S, <—-Wj;_17r>, m being a positive

=

integer less than or equal to {(n—1). We have

I9m —1 2 Cm-1)7r o
Sn <‘ /n:b ;l‘ 7T'> — S‘n < _m‘_t ! 77') 1 j ——Sln z CZOL

Zn 2% 272’ (2n1+1)1r . a
Sin - —
2n
1 2mm Si[l a Cm+1D) Sin a
= ——— Cla + (ja
2n _"('2m~1)7r . a i o u
SN —— SN —
2n ‘ 2n

The denominator in both integrands is positive and it con-
tinually increases in the interval 2m —1)7 Za=C@m+1) 75
also the numerator in the first is continually negative and
in the second continually positive, the absolute values for
elements at equal distances from (2m—1)7 and 2m= being the

samne.
C. I S
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Thus the result follows. Similarly for the minima, we have
to examine the sign of

() s (),

where m is a positive integer less than or equal to 1n.

V. The first mazimum to the right of =0 1s at m:% and

1ts height continually diminishes as n increases.  When n tends
to infinity, its limit is

”smxdm
Jo @&
Y

210
L // I~

2N TN AT T INATHOR

JAAN A V. P =N L AL .

ITTTANNL XD IR PR LA A JL

—LIRIOTH T SATY X KN o dpey v \ 9‘2

Y | ) N NAEdPaNAPa AT

iTare s \ N

] 1) N \ L
Ll T / \ 1
! Il/Z // _ \\ \\

N

[ \NVEAV M

f/ ‘ \& \\ L
& / N \%
_ %&1:

. A
FEEENZOEEE ARl -zl =

The curves y=.8,(«), when n=1, 2, 3, 4, 5 and 6.

Fie. 36.
We have . ‘
T 22 s1n 2na 1
»S’n<2%> L eina da= 5, j sin a cosec % da.
T S1(gm) - ( )
1us 7l+ 7/+2

= ”%ina<icose ¢ 0SeC ~— )d
"Lk 2 "9 T 2n+2” In+2/) "

Since afsin a continually increases from 1 to o, as a passes
from O to 7, it is clear that in the interval with which we have

to deal 1 o 1 0
o cosec om 2n+ 5 cosec 2 > 0.
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Tl T T
Phus S <2n) Suta <2(%—|— 1 >> 0
But, from (I), S, () is positive when 0 <<a <.

It follows that S, (-7
The value of this limit can be obtained by the method used by
Bocher for the integral j. sin (n—l— pa da.* But it is readily

o sina

obtained from the definition of the Definite Integral.

o [T an : 2n o 3
For D”<2%> 2<2n> = 2%+ S Sg, T
2n . 2n—1
+(2%/— D" on W}
2n 3 y " n :
_93 <sm mh h) ¥ <sm mh h>.

m=1 777//1/ m=1) ’i’)’l}b
2nh=n ah=mf

> tends to a limit as n tends to infinity.

Therefore
(" Ssin @ sin oc sina
Lt Sll <*_—> - 2\[ dﬂ’) —j j ””” — CZCB.
n—w  \27 0o X 0 T 0o &

VI. The result obtained in (V) for the first wave is a special
case of the following:

2r—1
| o ™
and its height continually dimanishes as m increases, r being
kept constant. When n tends to infinily, its limait is

j @r=Drgin x

The v maximum to the right of =0 is at x,._,=

- dx,
whach 18 greater than L.

. . . . T .
The v minimum to the right of x=0 is at x, =—m, and its
"

height continually increases as m increases, v being kept constant.
2 gin @

When n tends to infinity, its limit fisj dx, which is less
than L. 0

To prove these theorems we consider first the integral

mwr . 1 1
jo sin o <§—— COSEC — 2% 2 cosec 2n—|:2‘> da,

* Awn. Math., Princeton, N.J. (Ser. 2), 7, p. 124, Also Hobson, loc. cit.,
p. 649.
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m being a positive integer less than or equal to 2n—1, so that

0<§% < in the interval of integration.
1 a 1 a
Th =_— S —
en  F(a) o COSCCo, — g, g cosecy i) >0
in this interval. (Cf. (V).
Further,

F'(a)=

L COS = cosec? ! s = cosec? -
(2n+2)2°" 2 1290 2y, +2 T (20)2 P2 7 9y

= a~2{ % cos ¢ cosec? ¢p — % cos s cosec? ],
where ¢ =a/(2n+2) and \» =a/2n.

But ¢(¢ CcOS ¢ cosec? ¢)

= — ¢p cosec® p[ (1 Fcos ¢)>+2 cos ¢ (¢pFsin ¢)].

And the right-hand side of the equation will be seen to bhe
negative, choosing the upper 51gns for 0<<¢p<47 and the lower
for fr<<p<<m.

Therefore ¢?cos ¢ cosec?¢ diminishes as ¢ increases from 0 to 7.

It follows, from the expression for F’(a), that F’'(«)>0, and
F(a) increases with a in the interval of integration.

The curve

. 1 T 1
y_smm<%cose02—n~2n+geosec—+2> e, 0<<e<<mm,

thus consists of a succession of waves of length =, alternately
above and below the axis, and the absolute values of the ordi-
nates at points at the same distance from the beginning of each
wave continually increase.

It follows that, when m is equal to 2,4, ...,2(n—1), the
integral

jmqin <1 c—(i——l—emec )d
o gy O 9 T 9 e M gy o) da

is negative ; and, when m is equal to 1, 3, ..., 2n —1, this integral
is positive.

Returning to the maxima and minima, we have, for the +™
maximum to the right of =0,
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S«n(a}z:-—l) — Sn(%ar_1)

29t — 1 2)'——1
j’ 2n - gin 2na d j‘l(wl) sin2(n+1)a
pommnd - — a — \
o sin a o sin g
j‘(zr—l) Wsin ( 1 cosec 1 cosec d
= ol 5 — - — a.
0 21 2n  2n+4-2 2n+4 2>

Therefore, from the above argument, S, (@,._,) > 8, 11 (2. _y).
Also for the 7™ minimum to the right of =0, we have

81 (@) =S, = |
a’nd Sn(x%-) < S}L—}—l ('/L'Zr)‘

By an argument similar to that at the close of (V) we have

Li Sn(m)):jﬂr sin md *

N> 0

2T

sin a( 1 cosec. 1 cosec w)da
20 Qn 2n +2 2n 42 ’

It is clear that these limiting values are all greater than {= for
the maxima, and positive and less than {7 for the minima.

G1BBS’S PHENOMENON FOR THE SERIES
2 (sinz 41 sin 3z 4L sin Sz +...).

116. From the Theorems I.-VI. of § 115 all the features of
Gibbs’s Phenomenon for the series
2(sinx+ % sin 3z 41 sin S + ...)..., —T=r =,
follow immediately.
It is obvious that we need only examine the interval 0 =z = 7,
and that a discontinuity occurs at x=0.
For large values of n, the curve

y=8u(®),
where S,(z)=2 <sin x—l—% sin 3z 4 ... ++ —1:-— sin (2n—1) az> rises
at a steep gradient from the origin to its first maximum, which
dm>(bll5 V). The

curve, then, falls at a steep gradient, w1thout reaching the axis
of z(§ 115, IL), to its first minimum, which is very near, but

baow,unapdnt<mj”““1wdx>@:no VL). Tt then oscillates

qm X

is very near, but above, the point <0, f
0

0

* For the values of ﬁ " §}%§f dx, see Ann. Math., Princeton, N.J. (Ser. 2), 7,
p. 129.
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above and below the line y =4, the heights (and depths) of
the waves continually diminishing as we proceed from z=0 to
=37 (§ 115,1V.); and from e=Lw to z==, the procedure is
reversed, the curve in the interval 0 =« =7 being symmetrical
about x=17 (§ 115, I.).

The highest (or lowest) point of the 1" wave to the right of
x=0 will, for large values of m, be at a point whose abscissa is

72"77- (3 115, IIL.) and whose ordinate is very nearly

f"sm T de ($115, VL),

0

By increasing m the curve for 0 =z = = can be brought as
close as we please to the lines

nawr 3
=0, O<Q/<jsw dex,
0<aw<m y=4, :
©= ()<y<j PR e,
o @ J
J
T
2
O w X
Fia. 37.

We may state these results more definitely as follows :
(i) If e is any positive number, as small as we please, there is
a positive integer »" such that
| b —Su()| <e, when n=V, eSx=iw

This follows from the uniform convergence of the Fourier’s
Series for f(x), as defined in the beginning of this section, in an
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interval which does not includé, either in its interior or at an
end, a discontinuity of f(x) (cf.§$107).

(i1) Since the height of the first maximum to the right of =0

tends from above to j Six~ dax as n tends to infinity, there is a

0
positive integer »” such that

O<Sn<§7~:€> j §%Z——giala3<e, when n =",
0 @

(i11) Let »” be the integer next greater than ;r Then the
€

abscissa of the first maximum to the nght of =0, when n=y"
1s less than e.

It follows from (i), (ii) and (iii) that, if v is the greatest of the
positive integers v, v and v”, the curve y=5S,(x), when n =y,
behaves as follows:

It rises at a steep gradient from the origin to its first maximum,

.
T &

—_ sin @ s
which is above j o dx and within the rectangle
0o &

sin &

dx +e.

0<a<e, 0<y<j

After leaving this rectangle, in which there may be many oscilla-
tions about 9= {=, it remains within the rectangle

e<lem—e sT—elYdrte

Finally, it enters the rectangle

sin @

T—e<la<n, O<y<j = et

and the procedure in the first region is repeated.*

* The cosine series

%—[COS x—lcos3xl+leos 5w+...],
T 3 5

which represents 0 in the interval 0 = x< and = 5 in the interval 5 5 T<w=m, can

be treated in the same way as the series dlscussed in this article,
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G1BBS’S PHENOMENON FOR FOURIER’S SERIES IN GENERAL.

117. Let f(x) be a function with an ordinary discontinuity
when x =a, which satisfies Dirichlet’s Conditions in the interval
— T ==, '

Denote as usual by f(¢+0) and f(e—0) the values towards
which f(x) tends as @ approaches « from the right or left. It
will be convenient to consider f(«+0) as greater than f(«—0) in
the description of the curve, but this restriction is in no way
necessary.

Let d(x—a)= 22(2 )sm(% 1)(x—a).

-Then p(e—a)= Lm, when a<<ax<w+u,
p(r—a)=—4m, when —-7r—|—co<w<a,,]
H(+0)= 4

tm, p(=0)=—1im, J
$(0)= 0 and ¢p@)=¢(x+27).
Now put

1

(@) =f(@) =3 {f(@+0)+f(a -0} - {f(a+0)-f(a-0)} ¢ (2 - a),
and let f(x), when x=aq, be defined as }{f(¢+0)+f(a—0)}.

Then (a+0) =Y (e—0)=y(¢)=0, and () is continuous
at x=a.

The following distinct steps in the argument are numbered for
the sake of clearness:

(i) Since \r(x) 1s continuous at z=a and Y (a)=0, if ¢ is a
positive number, as small as we please, a number 5 exists such

that
|\b(@)|<— when |z—a |y

If » is not originally less than e, we can choose this part of 5
for our interval.

(ii) () can be expanded in a Fourier’s Series* this series
being uniformly convergent in an interval a =ax =3 contained
within an interval which includes neither within it nor as an
end-point any other discontinuity of f(xr) and ¢(zx—a) than
x=a (cf. §108). |

*If f(x) satisfies Dirichlet’s Conditions, it is clear from the definition of
¢ (@ —a) that ¢ (x) does so also.
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Let s,(x), ¢pp(x—a) and o, (z) be the sums of the terms up to
and including those in sin nz and cos nx in the Fourier’s Series

for f(x), p(x—a) and (). Then e being the positive number
of (i), as small as we please, there exists a positive integer v such
that |ou(z) —Pr(z) | < 2, when n =/,
the same ' serving for every z in a=z =0

Also Ian(w)fleO"a»(w)_“/f(x)"i‘wf(x)'<;L-i-i:%,
injz—a|=y if a<o—p<a<<at+n<B, and n=v.

(ii1) Now if m is even, the first maximum in ¢,(z—a) to the

In

-
n41"
either case there exists a positive integer »” such that the height
of the first maximum lies between
jw R | j "ein & N — e ——, when n=".
) @ v Tt 0)—f(a—0))
(iv) This first maximum will have its abscissa between ¢ and

. . w . . o s
right of z=« is at U8 g and if n is odd, it is at a-+
1

@+ », provided that %< 7.

Let v be the first positive integer which satisfies this in-
equality.

(v) In the interval a+5n=x =8, s,(z) converges uniformly
to f(xz). Therefore a positive integer »'" exists such that, when
qm, = Yliv) : :

=7 (@) —su(2) | <,
the same ') serving for every z in this interval.

Now, from the equation defining (),

. 1+ 0)— f(a—0
520 =@+ 0+ fa—0) + =D o )1, ),
It follows from (i)-(v) that if » is the first positive integer
greater than v/, v, v and ), the curve y=s,(x), when n =y, in
the interval @ = = 3, behaves as follows:
When x=q, it passes through a point whose ordinate is within

%Of F(f(a4+0)4 f(a—0)), and ascends at a steep gradient to
a point within e of

i {f(a+0)+f(a—0)} $HexD) ;ﬂ“ = jﬂ S%—x da

0
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This may be written

Fla+0)— fla+0)—f(a—0) j"" sin e,
T x

™

and, from Bocher’s table, referred to in § 115, we have

j 222 dw= —02811.
. X

It then oscillates about = f(«) till  reaches « + #, the character
of the waves being determined by the function ¢,(x—a), since

the term o,(x) only adds a quantity less than% to the ordinate.

And on passing beyond = a4+, the curve enters, and remains
within, the strip of width 2e enclosing y= f(z) from z=a+y to
T=[.

On the other side of the point @ a similar set of circumstances
can be established.

Writing D= f(e+0)— f(a—0), the crest (or hollow) of the
first wave to the left and right of =« tends to a height

DP, . DP,
| f(fb—o)‘l“;r—a J(a+0)— R
where P, —-:j i 1};33 da.
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Note.—The approximation curves

 &sin(2r—-1)x
At T

for n=1, 6, 11 and 16 can be obtained as lantern slides from the firm of

Martin Schilling, Berlin. The last of these illustrates Gibl’s Phenomenon
even more clearly than Fig. 35 above.



CHAPTER X
FOURIER’S INTEGRALS

118. When the arbitrary function f(x) satisfies Dirichlet’s
Conditions in the interval (=1, 1), we have seen in § 98 that the
sum of the series

QIL.[ (@) da +ZZJ )COSZLZLT( a —x)dr’ ... (1)

is equal to L[ f(x4+0)+f(x—0)] at every point in —{<lz<l
where f(z-+0) and f(z—0) exist; and that at o= %1 its sum
is [ f(—=14+0)+f(l—0)], when these limits exist.

Corresponding results were found for the series

4 ’
j f(a') da’ + ZZ cos j f(z") cos %Zrm’ da’, .l (2)
0
2
[

nm

> sin ——uc.r 2’) sin '%Zw' AX'y e, (3)
1
in the interval (0, {).

Fourier’s Integrals are definite integrals which represent the
arbitrary function in an unlimited interval. They are suggested,
but not established, by the forms these series appear to take as {
tends to infinity.

If [ is taken large enough, =/l may be made as small as we
please, and we may neglect the first term in the series (1),

and

assuming that j f(#) da is convergent. Then we may write
| 1.2, (¢ , nw, L,
as sz lf(m ) cos —l—(w —x) dx
[N 1 —_

- l , 7
%[Aajﬁl f(@') cos Aa(x'—z) da’+ Aa j | cos 2Aa(az’—-m) da’ + .. .:!,

where Aa=/l.
283
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“Assuming that this sum has a limit as {—», an assumption
which, of course, would have to be defended if the proof were to
be regarded as in any degree complete, its value would be

lj claj f(@) cos a(x' —a) da’,

TJo
and it would follow that

lr daji ) J(@) cos a (@' —a) dae’ = 5[ f(x+0)+f(z—0)],

TJo
— o w0,
when these limits exist.
In the same way we are led to the Cosine Integral and Sine
Integral corresponding to the Cosine Series and the Sine Series:

;) (* N 98]

"l dal f(&')cos ax cos ax’da’

TJo Jo
R (G URY LI AP

= da Of(a;’) sin ax sin ax’ dax’
— [ f@+0)+fz—0)],
when these limits exist.

It must be remembered that the above argument is not
a proof of any of these results. All that it does is to
suggest the possibility of representing an arbitrary function f(x),
given for all values of @, or for all positive values of «, by these
integrals.

We shall now show that this representation is possible,
pointing out in our proof the limitation the discussion imposes
upon the arbitrary function.

119. Let the arbitrary function f(x), defined for all valwes
of w, sutisfy Dirichlet’'s Conditions in any finite interval, and

1 addition let I f(2) dx be absolutely convergent.

Then
}%j daj f(@) cos a (@' —z) de' =5 f(x+0)+f(x—0)],
0 —»
at every point where f(x+0) and f(x—0) exist.
Having fixed upon the value of z for which we wish to

evaluate the integral, we can choose a positive number « greater
than « such that f(z') is bounded in the interval « =z =0,



FOURIER’S INTEGRALS 285

(7]
where b is arbitrary, andj | f(@)| do’ converges, since with our
a

definition of the infinite integral only a finite number of points
of infinite discontinuity were admitted (§ 60).

It follows that j f(x')cos a(x’ —x) da’

converges uniformly for every a, so that this integral is a con-
tinuous function of a (§§ 83, 84).

@w0

q

Therefore j daj f(@)cos a(x' —x)dx’ exists.
0 a

Also, by § 85,

*o]

r daj f(x)cos a(x —x)da = '[ da;’r f(2)cos a(x' —x) da
0 0

«

sin g (@
j e )—&——J (1)
But 2’ —x=a—x>0 in 2'=«, since we have chosen a>u.
And J | f(x)| d’ converges.
Therefore j IZ,%—U dxz’ also converges.

It follows that j F(x )sm Q(q m)

converges uniformly for every q.

Thus, to the arbitrary positive number e there corresponds a
positive number 4 >a, such that

j e )W da’ <€, when A'=Zzd4>«,.....(2)

the same A serving for every Value of ¢q.
But we know from 94 that

Tt L Fa )smq(a, )

q—%w

A-x
= Lt j flu+x) suzbqu d

g>w Ja-a

=0,

since f(w+x) satisties Dirichlet’s Conditions in the interval
(¢ —z, A —x), and both these numbers are positive.
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Thus we can choose the positive number @ so that

(4, asing@—w) ,
‘J“ J(@) g,(_x >dw <§, when g=0Q.......... (3)
It follows from (2) and (3) that

2 oasing(x'—x) , 0 _e €
J o R e <

when g = ().
Thus 4> j. f(x >s1n q(ac )dx =
and from (1), J daj J@)cosa(@ —x)de'=0. .oooviiiinnl. (4)
0 (47

But, by §87,
r olar (@) cos a(x' —x) da’ =
0 x

ra

d:c'r f (&) cos a(x' —x) da
0

J

e F@) sin q(z’' —x) do

4
Ja CB'—'w

(Po — x

=| flu+x) smugu d.

Yo

Letting g-»o0, we have

rdarf(az’) cos a(x' —x) dcc’zgf(w—}-O), ceevineennen(D)
0 z

when f(z+0) exists.
Adding (4) and (5), we have

j da_“ f(@)eosa(r' —x) dx’ = g—f(ca—{- 0), coerriiinnn (6)
0 z :
when f(z-+0) exists.
Similarly, under the given conditions,
j daf f(@') cos a(x' —x) da’ = 7érf(oc —0), oo (7)
0 ~® '
when f(x—0) exists.
Adding (6) and (7), we obtain Fourier’s Integral in the form
%rj ‘claj‘ S(@) cos a(x' —x) da’=§[ f(x+0)+f(xz—~0)]

0

for every point in —owo <z <, where Ff(z+0) and f(z—0)
exist.
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-120. More general conditions for f(x). In this section we shall show
that Fourier’s Integral formula holds if the conditions in any finite interval
remain as before, and the absolute convergence of the infinite integral

[N S(z) dz is replaced by the following conditions :

For some positive number and to the right of t, f(a') is bounded and mono-
tonic and Lt f(a")=0; and for some negative number and to the left of it, f(a')

al—>0

s bounded and monotonic and Lt f(2')=0.

af—>—x0
Having fixed upon the value of # for which we wish to evaluate the

integral, we can choose a positive number a greater than x, such that f(a’)
1s bounded and monotonic when &' = a and Lt f(&)=0.

Consider the integral f J(@)cosa(d —2)dz.
a
By the Second Theorem of Mean Value,

A// ,‘g Al/ ,
fA, S(&)eos a(a' —a)dz'=f(A") /A/ cos u (v —a)da' 4 f(A4") é cos a2 —2)dz’,

where a< A" = &= A",
Thus
[A”f(a;’) cos a(x' —x)da' = J(A) [ cos u du +f(A”) fa(A”—x)cos w dat.
= o Ja(d' -a) Ja(- )
Therefore
l[A” ol —x)da’ <ﬂf§(/—1ll for a =¢,>0.
0

But we are given that Lt f(«')=0.

It follows that _ ]a f(2")cos o2’ —2) da’

1s uniformly convergent for aZgn>O, and this integral represents a con-
tinuous function of « in a = ¢,.*
Also, by § 85,

q @D i , o8] /'Q
[ do [ J(&")cosa(a'—x)da' = [ da’' / J(@')cos a(a’ — ) da
Ja

S0

_/ F) (qmg(r ) %mgo(q—a)}d, ()

Z - o
But &' —x=a—2> 0 in the interval x’ = a, since we have chosen a greater
than a.

And /;:Df(,b)%mz(_ f 7 _S_MO(""__ dr

Z -

both converge.

* These extensions are due to Pringsheim. Cf. Math. Ann., Leipzig, 68, p. 367,
1910, and 71, p. 289, 1911. Reference should also be made to a paper by
W. H. Young in Edinburgh, Proc. R. Soc., 31, p. 559, 1911.
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Therefore, from (1),
[Q daf f{x')cos a(a’ —x)da
JGo 43
“ o oasing (@' —2) ,, [P . asingy(d —-2) , (
=/ fa)® --.g,( X ) s / f(x)——q‘ﬂi—Jd;r. (2)
a . e ‘“ (55

v -z
Now consider the integral

f( )sm qo( x) de.

From the Second Theorem of Mean Value,

A//
f sm 90(7 ) o

7 —
— ’ Sln 90( /l;') // fA” Slll QO(x o 7) 1/ .
=f(4 ). Py da’ +f(4 : e da'y ....(3)
where a < A" = &= A"
Also jé sin qmv '~ ) dof — /rlo(é—x) sin o du,
A s Qo(d'-z) U
the limits of the integral being both positive.
Therefore | [g S0 90( =) gl < (CF. §91.)
a—x
And similarly, ; [ “sin ZO(_T;—QM) |<7T.
Thus, from (3),
A//
I ) SLZ?(_Q‘—)MQ%MA) .................... (4)
1t follows that [ f(&) sin Q(}Lf-_i) da’
is uniformly convergent for ¢,= 0, and by § 84 it is continuous in this range.
Thus inEO . f(?")gln Zf)(_ (_ ) A =0, v, (5)
>0 &=
since the integral vanishes when g,=0.
Also from (2),
U R , ;[P asing(2—a) ,
./0 da‘,a( f(2')cos a2’ —x)du :‘/a f(z )——%(—-:—Q—~ da'. ... (6)

But we have already shown that the integral on the right-hand side of (6)
is uniformly convergent for g=0
Proceeding as in § 119, (2) and (3),* it follows that

Lt / o )sulg 77:) o

G » .

Thus, from ( f da f(@)cosa(r»q)oh =00 (7)

* Or we might use the Second Theorem of Mean Value as proved in § 58 for the
Infinite Integral.
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But we know from § 119 that

{ Cla[ J(2)ecos a(2 —7,) ;rf(w+0), ................... (8)
when this limit exists.
Thus lf da/ f(@)cos a(v —aydae' =5 f(z+0), «ooverriniiiiinnn (9)
™ Jo iy

when this limit exists.
Similarly, under the given conditions, we find that

71}[0 d“/_xw f(@)eos a(a =) =5f(7=0), oo (10)

when this limit exists. ]
Adding (9) and (10), our formula is proved for every point at which
f(z%£0) exist.

121. Other conditions for f(x). We shall now show that Fourier’s
Integral formula also holds when the conditions at +w of the previous
section are replaced by the following :

(1) For some positive number and to the right of it, and for some negative
number and to the left of it, f(«') is of the form g(')cos(Ax' +p),
where g(a') is bounded and monotonic in these intervals and has the
limit zero as &' + .

Also, (I1.) j g (;? )dx’ and j 6]5; )da:’ converge.

We have shown in §120 that when g(«') satisfies the conditions named
above in (I.), there will be a positive number @ greater than x such that

w0 ve]
[ da/ g(«')cos a(z'—x)dz' =0,
<0 a
But, if A is any positive number,

daf g (&) cos a(z —x)da’

/O)\da]“ g (7' )cosa(r —a)da +/ da/ g (@) cos a(#' — &) dr

I

wl»—a

//\Ada[wg )cogu(r—%)dv—l—[ da/ q(z ) cos a (&’ — &) da’

}...u

gf da/ﬂ (@) cos o’ — ) dv—l—j da g(fc)coc;a(oc~a:)d1

~—f da[ a')cos (a4 A) (7 — ) dv—i—/ do,f g(2')cos (o A) (& —z)d'.
Therefore

f da[ g(7) cos a(x' — &) da’
0 J '

=f daf g(2')ecos \(#' —x)cos a(x —x)de'=0 ....... (1)
0 @

C. I T
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Again we know, from § 120, that

0

f g(2")sin o’ — ) da’
J
is uniformly convergent for a = A,>0.

3% A
It follows that , ‘do, l g(&')sin a(x’ —2) da’
/\0 o .

exists, for A; > A,>0.
Also

/\1 * / '. 7 7.7
/ da { g (&) sin a2’ —2)de
Ao Ja

_ [ da f My () sin a(o —x)du (by § 84)
cos Ag(#' — &) cos Ay(2' —
:LL g(a f co8 Ao(# ) _cos A }dq

2 - JL—’I?

=/(;49(x')@_s_éq(%—x)dx~ [ gty g, o)

X — ' Y,

since both integrals converge.

But we are given that f M—) da’
converges ; and it follows that g (%‘
Ja o ’L

also converges, so that we know that
e cos Ao(2' — )
[ ") 2l =) g,

is uniformly convergent for Ay =0, and therefore continuous.

Thus T g( )COS/\O(Q/ — @) gt = q(vc)(bC
1\090 Z’ — X a 7 —_n
It follows from (2) that when A >0,
f da/ g(@')sina(v —a) do’ = [ ‘](”)dT j g(@)wch. (3)
0 Ja

« xr -

Also, as before, we find that, with the conditions imposed upon g(z'),*

Lt [ g(x )M___J dr'=0

A—>w Ja r —&
Therefore, from (2) and (3),

f, 4], 9("’“')Si“a(x'“~%‘)dx'=f g (@) 5N D (4)
JA Ja Ja

’ N ") a1 o / — wg(x’) s
and [ daf g@)sima@ —myde=[" L aw ... (5)

*This can be obtained at once from the Second Theorem of Mean Value, as
proved in § 58 for the Infinite Integral ; but it is easy to establish the result, as
in § 119, without this theorem.
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/\ D
Agaln, since L da j g()sinu(a’ —a)do’
[¢]
N YVl
exists, we have j do / g(@)sino(e' —x)da’=0. .ooviiiiiiiiin (6)
From (6), and the convergence of f da[ )sin a(2’ —2)da, it follows
that

f daf g(2")sin a(z’ —z) da’ — f daf g(2)sin a(2' —2)da’ =0,
A Ja A a
Thus

j da/ g(Z)sin(a+A)(z' —2) dv' — [ dafwg(.r’)sill(a~)\)(x’—x)dx’:O.
0 a 0 a »

Therefore j da. / g(@')sin A&’ —z)cos afr' —x)dz'=0. .. ..o..... (7)
0 Ja

Multiply (1) by cos (Ax+p) and (7) by sin (Az+ p) and subtract.
It follows that

[ da[ )g(x’)cos (AL + p)eosa(d' —x)de'=0. .....covennn. (8)
v0

And in the same way, with the conditions imposed upon ¢(2'), we have

fo da[ ag(x’)cos()&x’-}—y)cosa(x’--x)dx’z(). .............. (9)

These results, (8) and (9), may be written

j da | * f() cos (e — @) da =0, 1

[) a’-af:w Jla')eos a(z' —2) cl.fv’rzO,J

when f(#')=g(2') cos (A2’ +p) in (@, © ) and (— o, —d').
But we know that, when f(x) satisfies Dirichlet’s Conditions in ( —a’, a),

fow daf_aalf(x’) cos a (&' —x)dv =g[f(x+ 0)+f(x—0)], ......... (11)

when these limits exist. [Cf. §119 (5).]

Adding (10) and (11), we see that Fourier’s Integral formula holds, when
the arbitrary function satisfies the conditions imposed upon it in this section.

It is clear that the results just established still hold if we replace
cos (Az+p) in (I.) by the sum of a number of terms of the type

(y, COS (A2’ + phon)-

It can be proved * that the theorem is also valid when this sum is replaced

by an infinite series
2% c0s (A’ + pin),

when Za,, converges ab%olutelv and the constants A,, so far arbitrary, tend

to 1nﬁmty with 7.

* Cf. Pringsheim, Math. Ann., Leipzig, 68, p. 399.
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122. Fourier’s Cosine Integral and Sine Integral. In the
case when f(z) is given only for positive values of z, there are
two forms of Fourier's Integral which correspond to the Cosine
Series and Sine Series respectively.

I. In the first place, consider the result of §119, when f(2)

has the same values for negative values of z as for the corre-
sponding positive values of @: i.e. f(—x)=f(x), > 0.

Then da j' i (@) cos a(x'—x)dx’

n O

J o

da jw f(@)[cos a(@ +x)+ cos a(x —z)]da’

Y0

=— daj f(@')cos ax cos ax’dx.
0 0

It follows from §119 that when f(x) is defined for positive
values of x, and satisfies Dirichlet’s Conditions in any finite

wnterval, while j f(x)dx converges absolutely, then
0

7% Jw da rf(oc’) cos ax cos ax’ dx’ =% [ f(xz+0)+ f(z—0)],

0
at every point where f(x+0) and f(x—0) exist, and when £=0
the value of the integral is f(+0), if this lomit exists.
Also it follows from $§120 and 121 that the condition at
infinity may be replaced by either of the following :
(i) For some positive number and to the right of t, f(z)
shall be bounded and monotonic and 1t f(ax)=0;

a'—>w
or, (1) For some positive number and to the right of it, f(x')

shall be of the form g(«) cos(\&'+ p), where g(') s

bounded and monotonic and Lt ¢(x)=0. Also
x'—=>w

n x'
j g (90'2 da’ must converge.

II. In the next place, by taking f(—x)=f(x), x >0, we see
that, when f(x) 1s defined for positive values of x, and satisfies

Dirichlet’s Conditions in any finite interval, while j f(x)dx
converges absolutely, then 0

2~ 2 " . ;7
‘_J. (laj J (@) sin ax sin ax’da’ =L [ f(+0)+ f(z—0)],

TJo 0
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at every pownt where f(x+0) and f(x—0) exist, and when x=0
the integral is zevo.

Also it follows from §§120 and 121 that the condition at
infinity may be replaced by one or other of those given under I

It should be noticed that, when we express the arbitrary
function f(z) by any of Fourier’s Integrals, we must first decide
for what value of z we wish the value of the integral, and that
this value of # must be inserted in the integrand before the
integrations indicated are carried out (cf. § 62).

123. Fourier’s Integrals. Sommerfeld’s Discussion. In many of the
problems of Applied Mathematics in the solution of which Fourier’s Integrals
occur, they appear in a slightly different form, with an exponential factor
(e.g. e=«a*t) added. In these cases we are concerned with the limeting value
as t=>0 of the integral

R D ! p)e- kot oy
(l)(t)—ﬂ_fo da[f(.z)cosa(so z)e da,

o

and, so far as the actual physical problem is concerned, the value of the
wntegral for t=0 is not required.

Tt was shown, first of all by Sommerfeld,* that, when the limit on the
right-hand side exists, '

® 14
Lt - f o[ f(o#) cos aaf —)e=xeit dof =3[ fla+0) S~ O]
0 Ja

t—>0 T

when a << b,
=%f(a+0), when z=aqa,
=1f(b~0), when z=b,

the result holding in the case of any integrable function given in the
interval (a, b).

The case when the interval is infinite was also treated by Sommerfeld, but
it has been recently examined in much greater detail by Young.t It will be
sufficient in this place to state that, when the arbitrary function satisfies the
conditions at infinity imposed in §§120-122, Sommerfeld’s result still holds
for an infinite interval. -

However, it should be noticed that we cannot deduce the value of the
integral 1 7® . (o
— ’0 da}a J(&') cos a(2' —2)da’

T

from the above results. This would require the continuity of the function

w b
for ¢=0. ‘ P(1)= T /; da./a f(@') cos a(a' —x)e-roPt daf

o
We have come across the same point in the discussion of Poisson’s treat-
ment of Fourier’s Series. [Cf. §99.]

* Sommerteld, Die willkiirlichen Functionen i der mathematischen Physik, Diss.
Kénigsberg, 1891.
+ W. H. Young, loc. cit., Edinburgh, Proc. R. Soc., 31, 1911.
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EXAMPLES ON CHAPTER X.

1. Taking f(«) as 1 in Fourier's Cosine Integral when 0 <ax <1, and as
zero when 1 <, show that

A0 Lt \ )
:72__j SIN a cos o da, (0<z<1)
[

a
1 2 (7 sinacosax
2_;ﬁ ANELSOL o, (w=1)
2 [” s '
Oz—j SN G COS AT . (I<a).
m™Jo (04

2. By considering Fourier’s Sine Integral for -8 (3>0), prove that

a SIH ox T
{0 Ei B da =ge~ Bz,
and in the same way, from the Cosine Integral, prove that
f‘” cosar o
o a?+ [ 23

3. Show that the expression

%{zﬁ co <9r>92[ 2 cos v dv

ig equal to 22 when 0 =2 < a, and to zero when »>a.
4, ShOW tha,t gf 'Sin qx {/_&_}_ tan QSIII Qb '—;Sll]_ qa} dq
mwJo q gu

is the ordinate of a broken line running parallel to the axis of » from =0
to r=aqa, and from x=0> to 2=cc, and inclined to the axis of # at an angle «
between o=« and v=0.

5. Show that f(z)= :/!l—xl satisfies the conditions of §120 for Fourier’s
Integral, and verify independently that

ko J

da 1
— ] da [ cos ax cos a2’ —, = —— when 2> 0.
™ <0

NN
6. Show that f(: )——»~-~v~‘ satisfies the conditions of §121 for Fourier’s

Integral, and verify independently that
lj” f°° ., da' sina
= | da| sina’cosa(a’ — z)~~
kn 0 2]

X



APPENDIX I

PRACTICAL HARMONIC ANALYSIS AND PERIODOGRAM
ANALYSIS

1. Let y=f(x) be a given periodic function, with period. 2.
We have seen that, for a very general class of functions, we may
represent f(x) by its Fourier’s Series

o+ @, cos T+ ct, cos 2+ ...
+b, sin w+b, sin 2w+... )’

where g, a,, a,, ... b, b,, ... are the Fourier’s Constants for f(x).
We may suppose the range of @ to be 0 =x=27. If the period

- . COS COS
1s «, instead of 27, the terms oy 1@ are replaced by . 2n7a/a,
and the range becomes 0 =z =a.

However, in many practical applications, ¥ is not known
analytically as a function of x, but the relation between the
dependent and independent variables is given in the form of a
curve obtained by continuous observations. Or again, we may
only be given the values of y corresponding to isolated values of
z, the observations having been made at definite intervals. In
the latter case we may suppose that a continuous curve is drawn
through the isolated points in the plane of «, ¥. And in both
cases the Fourier's Constants for the function can be obtained
by mechanical means. One of the best known machines for the
purpose is Kelvin’s Harmonic Analyser.*

2. The practical questions referred to above can also be treated

* Such mechanical methods are described in the handbook entitled Modern
Instruments and . Methods of Calculation, published by Bell & Sons in connection

with the Napier Tercententary Meeting of 1914,
295
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by substituting for Fourier’s Infinite Series a trigonometrical
series with only a limited number of terms.
Suppose the value of the function given at the points
0, a, 2a, ... (m—1)a, where ma= 2.
Denote these points on the interval (0, 27) by
Loy Xy, gy +or Lot
and the corresponding values of y by
Yoo Yv» Yoo oo+ Y-
Let S,(x)=a,+a,cosx+a,cos 2x+ ... +a,cos mz} .
+b, sin x4+ b, sin 2z+ ... +0b, sin nx
If 2n+1=m, we can determine these 2n+41 constants so that
Sp(xs) =15, when s=0,1,2, ... 2n.

- The 2n+1 equations giving the values of ag, 4y, ... Gy, by, /.
are as follows :

o+ a,+ ... +a+... +a, 22/0\

ag+a, cosx, + ... +a, cos re,+... +a, CoSnx; | —y
. . . —J1
+b,sinx, +... +b,8inrw, +... +b,sinnw,

o+ @ty COS Ly, + ... &) COS Ty 4 ... + @, COS nwzn} _y
. . . Sy 7 1
+b,sin 2y, + ...+ b, sin 72,4+ ... + by, 8In 0wy,

Adding these equations, we see that

2n

(2n+1)a,= Z@/S:

§=0

J

since 14-cos ra+cos 2ra+ ... +cos 2nra=0,
and sin ra s 2ra 4 ... ~sin 2nra =0,
when 2n+4+1)a=2m.

Further, we know that
1+ cosra cossa+ cos 2ra cos 2sa
+...4cos 2nra cos 2nsa =0, s==7,
Ccos 7a 81 8o + cos 27a sin 2sa (r=1,2, ... n} .

4+ ... 4cos 2nra sin 2nsa =0, \s=1,2, )

And 1+4cos®ra+cos? 2ra+... +cos? 2nra =4 (2n+1).

It follows that, if we multiply the second equation by cos rz,,
the third by cosrz,, ete., and add, we have |

20

L(2n41)a,= D1, cos rsa.

§==0
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Similarly, we find that ‘
Y (2n+1)b,= i?% sin 7°sa.
A trigonometrical series of ( Qnil:l) terms has thus been formed,
whose sum takes the required values at the points

0, a, 2a, ... 2na, where 2n+1)a=2m.

It will be observed that as n—>w the values of ag, ¢, ... and b, b, ..
reduce to the integral forms for the coefficients, but as remarked in § 90, p. 199,
this passage from a finite number of equations to an infinite number requires
more careful handling if the proof is to be made rigorous.

3. For purposes of calculation, there are advantages in taking
an even number of equidistant points instead of an odd number.
Suppose that to the points

0, a, 2a, ... 2n—1)a, where na=m,
we have the corresponding values of v,

yO’ ?/1’ ?/2, v :Z/‘Z:L—-l'
In this case we can obtain the values of the 2n constants in
the expression

o+ @, cos X+ a, cos 2z+ ... + @,y cos (h—1) &+ a, cos nx)
+b, sin @+Db, sin 2z+ ... +b,_; sin (n— 1) J’
so that the sum shall take the values y,, v, ... 1,,_, at these 2n
points in (0, 27).
It will be found that

2n—1

ay= " D, Yscos rsa, if r=n
n =0
2n—1

a, = : . COS ST
N Z;y

1 2n-1

> yssinrsa
n $=0 4

/
> o= 7r/7’b.

b,

Runge * gave a convenient scheme for evaluating these con-
stants in the case of 12 equidistant points. This and a similar
table devised by Whittaker for the case of 24 equidistant points

* Zs. Math., Leipzig, 48, 1903, and 52, 1905,  Also Theorie w. Praxis der Reihen,
pp. 147-164, Leipzig, 1904,
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will be found in Tract No. 4 of the Edinburgh Mathematical
Tracts.*

4. This question may be looked at from another point of view.
Suppose we are given the values of 7, viz.

Yoo Yo Yoo oor Yu-vs
corresponding to the points
0, a, 2a,...(m—1)a, where ma=2m.
Denote these values of z, as before, by
Ly, Ty Lgy oo Ty
Let Sy () = tty+ @, oS T4ty €08 2+ ...+, COS NTY
+ b, sin z+ bysin 2z + ... + b, sinnz!

For a given value of m, on the understanding that m > 2n+1,1
the 2n+41 constants «,, a,,...a,, b, ... b, are to be determined
so that S, (x) shall approximate as closely as possible to
Yor Yis v+ Y1 6 Tys Ty, oo Ty

The Theory of Least Squares shows that the closest approxi-
mation will be obtained by making the function

m-1
Z (yb _' Sn (wa) )2;
§=0
regarded as a function of a, ay, ... a,, by, ... b,, @ minimum,

The conditions for a minimum, in this case, are:

m—1 ' N

(s— S, () =0
$=0
m-—1
Z (?/s“‘S‘n(xs))COprs:() p”:l, ‘2, L. m.
s=0
m—1
E (?/b - Sn (-’Eb) ) Sin ])(Z,‘S =()
s=0 )

It will be found, as in §2 above, that these equations lead to
the following values for the coefficients :

* Carse and Shearer, A Course in Fourier’s Analysis and Periodogram Analysts,
Edinburgh, 1915.

+If m < 2041, we can choose the constants in any number of ways so that
S, (x) shall be equal to ¥g, ¥ys ... Ym_1 &t Zg, Xy, ... Xy -1, for there are more con-
stants than equations. And if m=2n+1, we can choose the constants in one way
so that this condition is satisfied.
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m—1

m.CLO: E?/Sy

8§=0

r=1,2...n,
m odd.

s=0 |
=1

n—1

Ima, =11, 08 sa ]

imb,= Z 1Y 81N '8¢ J
$=0

But if m is even, the coefficient @, (when »=1m) is given by

m—1

My, = Z s COS 87T,
s=0

the others remaining as above.

In some cases, it is sufficient to find the terms up to cosx and sin @, viz.
o+ ay cos &+ by sin a.

The values of ay, @, and b,, which will make this expression approximate
most closely to

Yoy Y15 Yo5 oov Ym—1
at 0, o, 204 ... (m—1)o,, when mo=2m,

are then given by :

m—1

=2
mag=2 9,

§=0
m—1
Ima, =2 yscos sa,

s==0
m—1

Lmb, =2 ¥’ sin sa.
s=0

Tables for evaluating the coeflicients in such cases have been constructed by
Turner.*

5. In the preceding sections we have been dealing with a set
of observations known to have a definite period. The graph for
the observations would repeat itself exactly after the lapse of
the period ; and the function thus defined could be decomposed
into simple undulations by the methods just described.

But when the graph of the observations is not periodic, the
function may yet be represented by a sum of periodic terms
whose periods are Incommensurable with each other. The
gravitational attractions of the heavenly bodies, to which the
tides are due, are made up of components whose periods are not
commensurable. But in the tidal graph of a port the component

* Tables for Harmonic Analysis, Oxford University Press, 1913.
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due to each would be resolvable into simple undulations. A
method of extracting these trains of simple waves from the
record would allow the schedule of the tidal oscillations at the
port to be constructed for the future so far as these components
are concerned.

The usual method of extracting from a graph of length L, a
part that repeats itself periodically in equal lengths A is to cut
up the graph into segments of this length, and superpose them
by addition or mechanically. If there are enough segments, the
sum thus obtained, divided by the number of the segments,
approximates to the periodic part sought; the other oscillations
of different periods may be expected to contribute a constant to
the sum, namely the sum of the mean part of each.

6. The principle of this method is also used in searching for
hidden periodicities in a set of observations taken over a
considerable time. Suppose that a period 7' occurs in these
observations and that they are taken at equal intervals, there
being n observations in the period 7.

Arrange the numbers in rows thus:

’Lbo, ’Lbl, ’U/Z, ces Uu n—2, W, -1,
’U/n ’ ,u’n—H, un-}—?, e u’Zn -2, ,u".m ~1.
&ru’(m—l) 1, u(m -1) n+1, /u’(m—l) n+2, s ‘u/nm-z, /u’mn~l.

Add the vertical columns, and let the sums be
Uo; Ul, U*z; ter Un—?, U‘c-—l.

1

In the sequence U, U,, U,, ... U,_;, U, the component of
period 7' will be multiplied m-fold, and the variable parts of the
other components may be expected to disappear, as these will
enter with different phases into the horizontal rows, and the
rows are supposed to be numerous. The difference between the
greatest and least of the numbers Uy, U,, U, ...U,_,, U,_,
furnishes a rough indication of the amplitude of the component
of period T, if such exists; and the presence of such a period is
indicated by this difference being large. -

Let y denote the difference between the greatest and least of
the numbers U,, U,, U,, ... U,_,, U, _; corresponding to the trial
period . If y is plotted as a function of z, we obtain a “curve
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of periods.”” This curve will have peaks at the values of z
corresponding to the periodicities which really exist. When
the presence of such periods is indicated by the curve, the
statistics are then analysed by the methods above described.

This method was devised by Whittaker for the discussion of
the periodicities entering into the variation of variable stars.®
It is a modification of Schuster’s work, applied by him to the
discussion of the statistics of sunspots and other cosmical
phenomena.t To Schuster, the term “periodogram analysis” is
due, but the “curve of periods” referred to above is not identical
with that finally adopted by Schuster and termed periodograph
(or periodogram). .

For numerical examples, and for descriptions of other methods
of attacking this problem, reference may be made to the
Edinburgh Mathematical Tract, No. 4, already cited, and to
Schuster’s papers.

* Monthly Notices, R.4.8., T1, p. 686, 1911.
See also a paper by Gibb, ‘“The Periodogram Analysis of the Variation of
SS Cygni,” ibed., 74, p. 678, 1914,
1 The following papers may be mentioned :
Cambridge, Trans. Phil. Soc., 18, p. 108, 1900.
London, Phil. Trans. R. Soc., 208 (A), p. 69, 1906.
London, Proc. R. Soc., 77 (A), p. 136, 1906.
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C*w

=K—35Q?2'
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¢ 1 U
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Abel’s theorem on the power series, 146 ; extensions of, 149.
Absolute convergence, of series, 44 ; of integrals, 103.
Absolute value, 32.

Aggregate, general notion of, 29 ; bounded above (or on the right), 29 ; bounded
below (or on the left), 29; bounded, 30; upper and lower bounds of, 30 ;
- limiting points of, 31 ; Weierstrass’s theorem on limiting points of, 32.

Approximation curves for a series, 124. See also (fibbs’s phenomenon.

Bocher’s treatment of Gibbs’s phenomenon, 268.

Bounds (upper and lower), of an aggregate, 30; of f(x) in an interval, 50; of
f(x, y) in a domain, 72.

Bromwich’s theorem, 151.

Cesaro’s method of summing series (C1), 151, 238-240.

Change of order of terms, in an absolutely convergent series, 45 ; in a conditionally
convergent series, 47.

Closed interval, definition of, 49.

Conditional convergence of series, definition of, 45.

Continuity, of functions, 59; of the sum of a uniformly convergent series of
continuous functions, 135; of the power series (Abel’s theorem), 146; of
/ 4 f(z)da when f(x) is bounded and-integrable, 93; of ordinary integrals
Ja , .
involving a single parameter, 169 ; of infinite integrals involving a single
parameter, 179, 183.

Continuous functions ; theorems on, 60; integrability of, 84; of two variables,
73 ; non-differentiable, 77.

Continuum, arithmetical, 25 ; linear, 25.

Convergence, of sequences, 33 ; of series, 41 ; of functions, 51 ; of integrals, 98.
See also Absolute convergence, Conditional convergence, and Uniform convergence.

Cosine integral (Fourier’s integral), 284, 292.
Cosine series (Fourier’s series), 197, 215.

Darboux’s theorem, 79.

Dedekind’s axiom of continuity, 24.

Dedekind’s sections, 20.

Dedekind’s theory of irrational numbers, 18.
Dedekind’s theorem on the system of real numbers, 23.

Definite integrals containing an arbitrary parameter (Chapter VI.); ordinary
integrals, 169 ; continuity, integration and differentiation of, 169 ; infinite
integrals, 173 ; uniform convergence of, 174; continuity, integration and
differentiation of, 179.
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Definite integrals, ordinary (Chapter IV.); the sums S and s, 77; Darboux’s
theorem, 79 ; definition of upper and lower integrals, 81 ; definition of, 81;
necessary and sufficient conditions for existence, 82 ; some properties of, 87 ;
first theorem of mean value, 92 ; considered as functions of the upper limit, 93 ;
second theorem of mean value, 94. See also Derichlet’s integrals, Fourier’s
integrals, Infinite integrals and Poisson’s integral.

Differentiation, of series, 143 ; of power series, 148 ; of ordinary integrals, 170 ;
of infinite integrals, 182 ; of Fourier’s series, 261.

Dirichlet’s conditions, definition of, 206.

Dirichlet’s integrals, 200.

Discontinuity, of functions, 64 ; classification of, 65. See also Infinite dz’scontinuity
and Points of infinite discontinuity.

Divergence, of sequences, 37 ; of series, 41 ; of fﬁnctions, 51 ; of integrals, 98.

Fejér’s theorem, 234.
Fejér’s theorem and the convergence of Fourier’s series, 240, 258.
Fourier’s constants, definition of, 196.

Fourier’s integrals (Chapter X.); simple treatment of, 284; more general con-
ditions for, 287 ; cosine and sine integrals, 292 ; Sommerfeld’s discussion
of, 293.

Fourier’s series (Chapters VII. and VIIL); definition of, 196 ; Lagrange’s treat-
ment of, 198; proof of convergence of, under certain conditions, 210 ; for
even functions (the cosine series), 215; for odd functions (the sine series),
220 ; for intervals other than (—m, ), 228; Poisson’s discussion of, 230 ;
Fejér’s theorem, 234, 240 ; order of the terms in, 248 ; uniform convergence
of, 253 ; differentiation and integration of, 261 ; more general theory of, 262.

Functions of a single variable, definition of, 49 ; bounded in an interval, 50 ; upper
and lower bounds of, 50 ; oscillation in an interval, 50 ; limits of, 50; con-
tinuous, 59 ; discontinuous, 64 ; monotonic, 66 ; inverse, 68; integrable,
84 ; of bounded variation, 207.

Functions of several variables, 71.

General principle of convergence, of sequences, 34 ; of functions, 56.
Gibbs’s phenomenon in Fourier’s series (Chapter IX.); 264.

Hardy’s theorem, 239.
Harmonic analyser (Kelvin’s), 295.
Harmonic analysis (Appendix I.), 295.

Improper integrals, definition of, 113.
Infinite aggregate. Sece Aggregate.
Infinite discontinuity. See Points of infinite discontinuity.

Infinite integrals (integrand function of a single variable), integrand bounded and
interval infinite, 98 ; necessary and sufficient condition for convergence of,
100 ; with positive integrand, 101 ; absolute convergence of, 103 ; u-test for
Eonveé"gence of, 104 ; other tests for convergence of, 106 ; mean value theorems

or, 109.

Infinite integrals (integrand function of a single variable), integrand infinite, 111 ;
u-test and other tests for convergence of, 114 ; absolute convergence of, 115.

Infinite integrals (integrand function of two variables), definition of uniform con-
vergence of, 174; tests for uniform convergence of, 174; continuity, in-
tegration and differentiation of, 179.

Infinite sequences and series. See Sequences and Series.
Infinity of a function, definition of, 65.
Integrable functions, 84.
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Integration of integrals : ordinary, 172 ; infinite, 180, 183, 190.

Integration of series (ordinary integrals), 140 ; power series, 148 ; Fourier’s series,
261 ; (infinite integrals), 154.

Interval : open, closed, open at one end and closed at the other, 49.

Inverse functions, 68.

Irrational numbers. See Numbers.

Limits, of sequences, 33; of functions, 50; of functions of two variables, 72;
repeated, 127.

Limiting points of an aggregate, 31.
Lower integrals, definition of, 81.

Mean value theorems of the integral calculus ; first theorem (ordinary int?gral.s)’
92 ; (infinite integrals), 109 ; second theorem (ordinary integrals), 94 ; (infinite
integrals), 109.

Modulus. See Absolute value.

Monotonic functions, 66 ; admit only ordinary discontinuities, 67 ; integrability
of, 84.

Monotonic in the stricter sense, definition of, 39.
M-test for convergence of series, 134.
u~test for convergence of integrals, 104, 116.

Neighbourhood of a point, definition of, 52.

Numbers (Chapter I.) ; rational, 16 ; irrational, 17 ; Dedekind’s theory of irrational,
18 ; real, 21 ; Dedekind’s theorem on the system of real, 23 ; development of
the system of real, 25. See also Dedekind’ s axiom of continuity, and Dedekind’s
sectrons.

Open interval, definition of, 49.
Ordinary or simple discontinuity, definition of, 65.

Oscillation of a function in an interval, 50 ; of a function of two variables in a
domain, 72.

Oscillatory, sequences, 38 ; series, 41 ; functions, 52 ; integrals, 99.

Partial remainder (,R,), definition of, 42 ; (,Ry(z)), definition of, 123.
Periodogram analysis, 299. ,

Points of infinite discontinuity, definition of, 66.

Points of oscillatory discontinuity, definition of, 66.

Poisson’s discussion of Fourier’s series, 230.

Poisson’s integral, 231.

Power series ; interval of convergence of, 145; nature of convergence of, 146;
Abel’s theorem on, 146 ; integration and differentiation of, 148,

Proper integrals, definition of, 113.

Rational numbers and real numbers. See Numbers.
Remainder after » terms (£,,), definition of, 43 ; (B, (x)), 123.
Repeated limits, 127.

Repeated integrals, (ordinary), 172 ; (infinite), 180, 183, 190.

Sections. See Dedekind’s sections.

Sequences ; convergent, 33; limit of, 33 ; necessary and sufficient condition for
convergence of (general principle of convergence), 34 ; divergent and oscil-
latory, 37 ; monotonic, 39.
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Series : definition of sum of an infinite, 41 ; convergent, 41 ; divergent and oscil-
latory, 41 ; necessary and sufficient condition for convergence of, 42; with
positive terms, 43 ; absolute and conditional convergence of, 44 ; definition
of sum, when terms are functions of a single variable, 122; uniform con-
vergence of, 129 ; mnecessary and sufficient condition for uniform convergence
of, 132; Weierstrass’s M-test for uniform convergence of, 134; uniform
convergence and continuity of, 135 ; term by term differentiation and integra-
tion of, 140. See also Differentiation of series, Fourier’s series, Integration of
serves, Power series and Trigonometrical series.

Simple (or ordinary) discontinuity, definition of, 65.
Sine integral (Fourier’s integral), 284, 292.

Sine series (Fourier’s series), 197, 220.

Summable series (CI), definition of, 151.

Sums S and s, definition of, 77.

Trigonometrical series, 196.

Uniform continuity of a funection, 62.
Uniform convergence, of series, 129; of integrals, 174.
Upper integrals, definition of, 81..

Weierstrass’s non-differentiable continuous function, 77.
Weierstrass’s M~test for uniform convergence, 134.
Weierstrass’s theorem on limiting points to a bounded aggregate, 32.
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