


JRiddles in 

MATHEMATICS 
Ji 1800k of Paradoxes 

EUGENE P. NORTHROP 

D. VAN NOSTRAND COMPANY, INc. 

TORONTO 
PRINCETON, NEW JERSEY 

NEW YORK 
LONDON 



D. VAN NOSTRAND COMPANY, INC. 

120 Alexander St., Princeton, New Jersey (Principal office) 
24 West 40th Street, New York 18, New York 

D. VAN NOSTRAND COMPANY, LTD. 

358, Kensington High Street, London, W.14, England 

D. VAN NOSTRAND COMPANY (Canada), LTD. 

25 Hollinger Road, Toronto 16, Canada 

Copyright © 1944 

by 

D. VAN NOSTRAND COMPANY, INC. 

No reproduction in any form of this hook, in whole or in 
part (except for hrief quotation in critical articles or reviews), 
may he made without written authorization from the puhlishers. 

First Published March 1944 

096013a15 

PRINTED IN THE UNITED STATES OF AMERICA 



To 

18. U. n. 



Preface 

Popular interest in mathematics is unquestionably increas­
ing. Perhaps this is because of the fact that mathematics is 
a tool without which the applied sciences would cease to be 
sciences. On the other hand, the abstract aspect of mathe­
matics is beginning to attract a large following of people who, 
weary of the complexities of the human equation in everyday 
activities, turn in their leisure to the simplicities of the mathe­
matical equation. It is for these people that this book is 
written. Indeed, only two things are required of the prospec­
tive reader-an elementary training in mathematics, and an 
interest in matters mathematical. These two prerequisites 
are sufficient for an understanding of the first nine chapters of 
the book. The tenth-and last-chapter is specifically de­
signed for the reader with more technical equipment. 

Of all the problems dealt with in mathematics, paradoxes 
are among the most appealing and instructive. The appeal of 
a paradox is difficult to analyze in a word or two, but it prob­
ably arises from the fact that a contradiction comes as a com­
plete surprise in what is generally thought of as the only 
"exact" science. And a paradox is always instructive, for to 
unravel the troublesome line of reasoning requires a close 
scrutiny of the fundamental principles involved. In the light 
of these arguments it has seemed worth while to bring out a 
book devoted exclusively to some of the paradoxes which 
rna thematicians, both amateur and professional, have found 
disconcerting. 

The material for this book has been gathered from a wide 
variety of sources. Some of it has naturally appeared in 
other popular expositions of mathematics-such works as 
Ball's Mathematical Recreations and Essays, Steinhaus' Mathe­
matical Snapshots, and Kasner and Newman's Mathematics 
and the Imagination, to mention only three. If this is a fault, 
it is not the fault of the author, but of the material he is try-
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ing to present. An attempt is made, in the majority of in­
stances, to give references to original sources. This is not 
always possible, however, particularly when the same prob­
lem, in different forms, is to be found in a number of different 
places. 

The author wishes to express his thanks to all who have 
contributed to the development of this book. He is particu­
larly indebted to Mr. Henry C. Edgar, of the Hotchkiss 
School, for his painstaking study and criticism of the entire 
manuscript. Without his help many points, clear enough to 
the mathematician, would have remained obscure to the gen­
eral reader. Special thanks are also due the author's former 
teacher and colleague, Professor Einar Hille, of Yale Uni­
versity, who read and criticized the manuscript from the 
point of view of the mathematician. 

Chicago, Illinois 
January, 1944 

E. P. NORTHROP. 
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I 
.... 

What Is a 
Paradox? 

Two fathers and two sons leave town. This re­
duces the population of the town by three. False? No, true 
-provided the trio consists of father, son, and grandson. 

A bookworm starts at the outside of the front cover of 
volume I of a certain set of books and eats his way to the out­
side of the back cover of volume III. If each volume is one 
inch thick, he must travel three inches in all. True? No, 
false. A moment's study of the accompanying figure shows 
that he has only to make his way through volume II-a dis­
tance of one inch. 

FIG. 1 

A man says, "I am lying." Is his statement true? If so, 
then he is lying, and his statement is false. Is his statement 
false? If so, then he is lying, and his statement is true. 

The dictionaries define an island as "a body of land com­
pletely surrounded by water" and a lake as "a body of water 
completely surrounded by land." But suppose the northern 
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hemisphere were all land, and the southern hemisphere all 
water. Would you call the northern hemisphere an island. 
or would you call the southern hemisphere a lake? 

FIG. 2. If the northern hemisphere were all land and the southern hemisphere 
all water 

I t is of such brain-twisters as these that this book is com­
posed. There are paradoxes for everyone-from the person 
who left mathematics behind in school (or who was left behind 
in school by mathematics) to the professional mathematician, 
who is stilI bothered by such a problem as that of the liar. 

We shall use the word "paradox," by the way, in the sense 
in which it is used in these examples. That is to say, a para­
dox is anything which offhand appears to be false, but is actu­
ally true; or which appears to be true, but is actually false; or 
which is simply self-contradictory. From time to time it may 
appear that we are straying from this meaning. But be pa­
tient-what seems crystal-clear to you may leave the next 
person completely confused. 

* * * 
If you are among those who at this point are saying, "But 

we thought this book had to do with mathematical paradoxes 
-how about it?" then stay with us for a moment. If you are 
not interested in the answer to this question, you may as well 
skip to the next chapter. 

A closer look at the difficulties encountered in our first ex­
amples will show that they are simple cases of very real diffi­
culties encountered not only by the student of mathematics, 
but by the mature mathematician as well. 
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In the problem concerning fathers and sons, we find our­
selves searching here and there for some instance in which the 
conditions of the problem will be fulfilled. It seems at first 
as though such an instance cannot possibly exist-common 
sense and intuition are all against it. But suddenly, there it 
is-as simple a solution as can be. This sort of thing happens 
time and again in mathematical research. The mathema­
tician, working on the development of some theory or other, 
is suddenly confronted with a set of conditions which appear 
to be highly improbable. He begins looking for an example 
to fit the conditions, and it may be days, or weeks, or even 
longer, before he finds one. Frequently the solution of his 
difficulty is as simple as was ours-the kind of thing that 
makes him wonder why he hadn't thought of it before. 

The problem of the bookworm's journey is a nice example 
of the way in which reason can be led astray by hasty judg­
ment. The false conclusion is reached through failure to in­
vestigate carefully all aspects of the problem. There are 
many specimens of this sort-much more subtle ones, to be 
sure-in the literature of mathematics. A number of them 
enjoyed careers lasting many years before some doubting 
mathematician finally succeeded in discovering the trouble. 

The case of the self-contradicting liar is but one of a whole 
string of logical paradoxes of considerable importance. In­
vented by the early Greek philosophers, who used them 
chiefly to confuse their opponents in debate, they have in 
more recent times served to bring about revolutionary changes 
in ideas concerning the nature and foundations of mathe­
matics. In a later chapter we shall have more to say about 
problems of this kind. 

The island-and-Iake problem, which had to do with defini­
tions and reasoning from definitions, is really typical of the 
development of any mathematical theory. The mathemati­
cian first defines the objects with which he is going to work­
numbers, or points, or lines, or even just "elements" of an 
unspecified nature. He then lays down certain laws-"axi­
oms," he calls them, or "postulates" -which are to govern 
the behavior of the objects he has defined. On this foundation 
he builds, through a series of logical arguments, a whole struc-
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ture of mathematical propositions, each one resting on the 
conclusions established before it. He is not interested, by the 
way, in the truth of his definitions or axioms, but asks only 
that they be consistent, that is, that they lead to no real con­
tradiction in the propositions (such, for example, as the con­
tradiction in the problem of the liar). Bertrand Russell, in 
his Mysticism and Logic, has put what we are trying to say in 
the following words: "Pure mathematics consists entirely of 
assertions to the effect that if such and such a proposition is 
true of anything, then such and such another proposition is 
true of that thing. It is essential not to discuss whether the 
first proposition is really true, and not to mention what the 
anything is of which it is supposed to be true .... Thus mathe­
matics may be defined as the subject in which we never know 
what we are talking about, nor whether what we are saying 
is true." How is that, by the way, for a paradox? 



••• 

2 
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.A Pew 
Simple 
18rain-Teasers 

mANY of the anecdotes and problems of this 
chapter are fairly well known. All of them have probably 
appeared in print in some form or other and at some time or 
other, and a few are so common that they can be found in 
almost any book on mathematical puzzles and games. It is 
next to useless to try to trace them to their original sources­
most of them, like Topsy, "just growed."(l) 

* * * 
We shall begin with a couple of lessons in geography. The 

first concerns a man who, you will say, must have been a 
crank. He designed a square 
house with windows on all 
four sides, each window hav­
ing a view to the south. No 
bay windows (which would 
take care of three sides) or 
anything of that sort. Now 
how on earth can this be 
done? Where on earth would 
be more to the point, for 
there is indeed only one 
place where such a house can 
be built. Does that give it 
away? You've got it-it's 
the North Pole, of course, 
from which any direction is 
south. 

FIG. 3. Any direction from the 
North Pole is south 

(1) See page 247. Notes and references for all chapters will be found near the 
end of the book. They are inserted for the convenience of all who are interested in 
them, and can be ignored safely by all who are not. 

S 
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Without the foregoing discussion, the following problem 
strikes most people as quite paradoxical. A certain sports­
man, experienced in shooting small game, was out on his first 
bear hunt. Suddenly he spotted a huge bear about a hundred 
yards due east of him. Seized with panic, the hunter ran­
not directly away from the bear, but, in his confusion, due 
north. Having covered about a hundred yards, he regained 
his presence of mind, stopped, turned, and killed the bear­
who had not moved from his original position-by shooting 
due south. Have you all the data clearly in mind? Very well, 
then j what color was the bear? 

100 

N 

~E-~~ 
FIG. 4. Details of the bear hunt 

The same problem can be put in another, although per­
haps less startling, form. Where can a man set out from his 
house, walk five miles due south, five miles due west, and 
five miles due north-and find himself back home? 

* * * 
Charles L. Dodgson, better known to the general public 

as Lewis Carroll, the author of Alice in Wonderland, is recog­
nized by mathematicians and logicians as one of their own 
number. We are indebted to him for the following para­
dox, (2) as well as for several others which appear in later parts 
of the book. 
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We can agree, can we not, that the better of two clocks is 
the one that more often shows the correct time? Now sup­
pose we are offered our choice of two clocks, one of which 
loses a minute a day, while the other does not run at all. 
Which one shall we accept? Common sense tells us to take 
the one that loses a minute a day, but if we are to stick to our 
agreement, we shall have to take the one that doesn't run at 
all. Why? Well, the clock that loses a minute a day, once 
properly set, will have to lose 12 hours, or 720 minutes, before 
it is right again. And if it loses only a minute a day, it will 
take 720 days to lose 720 minutes. In other words, it is cor­
rect only once about every two years. But the clock that 
doesn't run at all is correct twice a day! 

* * * 
Apparently impossible results are frequently obtained 

through either too little attention to relevant details or too 
much attention to irrelevant ones. Let's look at a few prob­
lems of this kind. We shan't bother, by the way, to discuss 
their solutions here. 

A scatter-brained young lady once went into a jewelry 
store, picked out a ring worth $5, paid for it, and left. She 

FIG. 5. Equal in value or not? 

appeared at the store the next day and asked if she might 
exchange it for another. This time she picked out one worth 
$10, thanked the jeweler sweetly, and started to leave. He 
naturally demanded an additional $5. The young lady 
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indignantly pointed out that she had paid him $5 the day 
before, that she had just returned to him a $5 ring, and that 
she therefore owed him nothing. Whereupon she stalked 
out of the store and left the jeweler wildly counting on his 
fingers. 

Then there is the story of the young man who once found 
himself applying for a job. He told the manager that he 
thought he was worth $1500 a year to him. The manager 
apparently thought otherwise. "Look here," he said, "there 
are 365 days in the year. You sleep 8 hours a day, or a total 
of 122 days. That leaves 243. You rest 8 hours a day, or a 
total of 122 days. That leaves 121. You do no work for 52 
Sundays. That leaves 69 days. You have half a day off on 
52 Saturdays-a total of 26 days. That leaves 43. You have 
an hour off for lunch each day-a total of 15 days. That 
leaves 28. You have 2 weeks of vacation. That leaves 14 
days. And then come Fourth of July, Labor Day, Thanks­
giving, and Christmas. Do you think you're worth $1500 
to me for 10 working days?" 

A group of seven weary men once arrived at a small hotel 
and asked for accommodations for the night, specifying that 
they wanted separate rooms. The manager admitted that he 
had only six rooms left, but thought he might be able to put 
up his guests as they desired. He took the first man to the 
first room and asked one of the other men to stay there for a 
few minutes. He then took the third man to the second room, 
the fourth man to the third room, the fifth man to the fourth 
room, and the sixth man to the fifth room. Then he returned 
to the first room, got the seventh man, and showed him to the 
sixth room. Everyone was thus nicely taken care of. Or was 
he? 

If that last problem is too simple, as indeed it is, here is 
another about travelers and lodgings. Three men registered 
at a hotel and asked for connecting rooms. They were told 
of an available suite for which the charge was $30, and went 
up to look it over. Finding it satisfactory, they agreed to 
take it, and each man gave a $10 bill to the bellhop who ac­
companied them. He went down to the office to turn the 
money over to the cashier, and was met by the manager with 
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the news that there had been a mistake-the charge for the 
suite was $25 not $30. Consequently the bellhop was sent 
back with five $1 bills. On the way it occurred to him that 
$5 was going to be difficul t to divide among three men, that 
the men did not know the actual cost of the rooms anyway, 
and that they would be glad of any return on their money. 
So he pocketed two of the $1 bills and returned one to each of 
the three men. Now each of the men paid $9. Three times 
$9 is $27. The bellhop had $2 in his pocket. $27 plus $2 is 
$29, and the men originally handed over $30. Where is that 
other dollar? 

While we are on the subject of dollars, there is that very 
puzzling story having to do with foreign exchange. The gov­
ernments of two neighboring countries-let's call them 
Northia and Southia-had an agreement whereby a Northian 
dollar was worth a dollar in Southia, and vice versa. But one 
day the government of Northia decreed that thereafter a 
South ian dollar was to be worth but ninety cents in Northia. 
The next day the South ian government, not to be outdone, 
decreed that thereafter a Northian dollar was to be worth but 
ninety cents in Southia. Now a bright young man lived in a 
town which straddled the border between the two countries. 
He went into a store on the Northian side, bought a ten-cent 
razor, and paid for it with a Northian dollar. He was given a 
Southian dollar, worth ninety cents there, in change. He then 
crossed the street, went into a Southian store, bought a ten­
cent package of blades, and paid for it with the South ian 
dollar. There he was given a Northian dollar in change. 
When the young man returned home, he had his original dollar 
and his purchases. And each of the tradesmen had ten cents 
in his cash-drawer. Who, then, paid for the razor and blades? 

* * * 
One of the oldest paradoxes is that of the wealthy Arab who 

at death left his stable of seventeen beautiful horses to his 
three sons. He specified that the eldest was to have one half 
the horses, the next one third, and the youngest one ninth. 
The three young heirs were in despair, for they obviously 
could not divide seventeen horses this way without calling in 
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the butcher. They finally sought the advice of an old and 
wise friend, who promised to help them. He arrived at the 
stable the next day, leading one of his own horses. This he 
added to the seventeen and directed the brothers to make 
their choices. The eldest took one half of the eighteen, or 

nine; the next, one third of 
the eighteen, or six; and the 
youngest, one ninth of the 
eighteen, or two. When all 
seventeen of the original 
horses had been chosen, the 
old man took his own horse 
and departed. The catch? 
It's in the father's stipula­
tions. Either he was a poor 
arithmetician or he wanted to 
give his sons something to 

FIG. 6. The fractions,%. ~ and ~ think about. At any rate, the 
do not total 1 fractions one half, one third, 

and one ninth do not add up to unity-as they should if 
nothing is to be left over-but to seventeen eighteenths. 

* * * 
A large business firm was once planning to open a new 

branch in a certain city, and advertised positions for three 
clerks. Out of a number of applicants the personnel manager 
selected three promising young men and addressed them in 
the following way : "Your salaries are to begin at the rate of 
$1000 per year, to be paid every half-year. If your work is 
satisfactory, and we keep you, your salaries will be raised. 
Which would you prefer, a raise of $150 per year or a raise of 
$50 every half-year?" The first two of the three applicants 
eagerly accepted the first alternative, but the third young 
man, after a moment's reflection, took the second. He was 
promptly put in charge of the other two. Why? Was it 
because the personnel manager liked his modesty and appar­
ent willingness to save the company money? Not at all. As 
befitting his position, he actually received more salary than 
his companions. They had jumped to the conclusion that a 
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raise of $50 every half-year was equivalent to a raise of $100 
per year, but he had taken all of the conditions of the problem 
into consideration. He had lined up the two possibilities and 
had looked at the yearly salaries in this way: 

1st year: 
2nd year: 
3rd year: 
4th year: 

$150 raise yearly 

$500 + $500 = $1000 
575 + 575 = 1150 
650 + 650 = 1300 
725 + 725 = 1450 

$50 raise half-yearly 

$500 + $550 = $1050 
600 + 650 = 1250 
700 + 750 = 1450 
800 + 850 = 1650 

It was then immediately apparent to him that his salary in 
succeeding years would exceed theirs by $50, 100, 150,200,· .. , 
his raise each year exceeding theirs by $50. It was his alert­
ness of mind, and not his modesty, that impressed his new 
employer. 

* * * 
Most people are easily confused by problems involving 

average rates of speed. Try this one on your friends. 
A man drove his car 1 mile to the top of a mountain at the 

rate of 15 miles per hour. How fast must he drive 1 mile 
down the other side in order to average 30 miles per hour for 
the whole trip of 2 miles? 

------------------~v~------------------~ 
Average 30 m.p.h. for the 2 miles 

FIG. 7 

First let us look at it in this way: he would average 30 miles 
per hour for the whole trip if he drove the second mile at the 
rate of 45 miles per hour, for the average of 15 and 45 is 
(15 + 45)/2, or 30. 
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But now suppose we look at it in another way. Using our 
old friend, the relation "distance = rate X time," we note 
that the time required to drive 2 miles at the average rate of 
30 miles per hour is .%0 of an hour, or 4 minutes. Further­
more, the time required to drive 1 mile at the rate of 15 miles 
per hour is 715 of an hour, or again 4 minutes. In other words, 
our traveler must cover that second mile in 0 seconds flat! 

Which of these results are we to accept? The second is the 
correct one, and shows that considerable care must be used in 
averaging rates. The average rate for any trip is always 
found by dividing the total distance by the total time. In our 
first analysis, if the man drives one mile at 15 miles per hour 
and a second mile at 45 miles per hour, the times for those 
two miles are 715 and 'x5 of an hour respectively, or %5 of an 
hour in all. His average rate is thus 2/(4/45) or 22.5 miles per 
hour. This discussion should furnish a practical tip to those 
drivers who allow just so much time to get somewhere. They 
cannot average 50 miles per hour, for example, by going a cer­
tain number of miles at 40 miles per hour and the same num­
ber of miles at 60 miles per hour. On the other hand, they can 
average 50 by going 40 and 60 for the same number of hours. 
For if they maintain these respective rates for one hour each, 
they will have gone 100 miles in 2 hours. 

With the help of the above discussion you ought to be able 
to pick out the flaws in the following two arguments. If not, 
you will find their solutions in the Appendix toward the end of 
the book. 

PARADOX 1. A plane makes a trip from N ew York to 
Washington and back to New York. Call the distance be­
tween the two cities 200 miles and the speed of the plane 
100 miles per hour. Then the time required for the round trip, 
ignoring stops, is 4 hours. Now suppose there is a strong wind 
which blows throughout the entire trip with the same speed 
and in the same direction-from N ew York directly toward 
Washington, say. Then the tail wind on the way south will 
speed up the plane to the same extent that the head wind will 
retard it on the way north. In other words, both the average 
speed of the plane and the time for the round trip will be in­
dependent of the speed of the wind. But this means that the 
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plane can still make the trip in 4 hours even though the speed 
of the wind is greater than that of the plane, in which case the 
plane would be blown backward on the trip from Washington 
to New York! 

PARADOX 2. Each of two apple women had 30 apples for 
sale. The first sold hers at the rate of 2 for a nickel, the second 
at the rate of 3 for a nickel. At the end of the day their respec­
tive receipts were 75 cents and 50 cents, or $1.25 in all. The 

60 at 5 for 10f 

FIG. 8 

next day the women decided to do business together, so they 
pooled their 60 apples and sold them at the rate of 5 for a 
dime (2 for a nickel plus 3 for a nickel). Upon counting their 
joint receipts at the end of the day they were dismayed to 
find that they had only $1.20. They searched all about them 
for that other nickel, and wound up by bitterly accusing each 
other of having taken it. Where was it? 

* * * 
There are many problems in which the obvious solution is 

never the correct one. That is to say, what offhand appears 
to be true is false. The following four deserve mention, al­
though they are pretty well known. As in the case of the last 
two paradoxes, their correct solutions are given in the Ap­
pendix. 
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PARADOX 3. A clock strikes six in 5 seconds. How long 
does it take to strike twelve? No! The answer is not 10 
seconds. 

PARADOX 4. A bottle and its cork cost together $1.10. 
The bottle costs a dollar more than the cork. How much 
does the bottle cost? No! The answer is not $1.00. 

PARADOX 5. A frog is at the bottom of a 30-foot well. 
Each hour he climbs 3 feet and slips back 2. How many 
hours does it take him to get out? No! The answer is not 
30 hours. 

PARADOX 6. An express leaves New York for Boston at 
the same time that a local leaves Boston for New York. The 
express travels at the rate of 50 miles per hour, the local at 
the rate of 30 miles per hour. Which is farther from New 
York when they meet? No! The answer is not the express. 

* * * 
Two problems, similar to the last four, had better be taken 

up in detail here. 
A farmer's wife once drove to town to sell a basket of eggs. 

To her first customer she sold half her eggs and half an egg. 
To the second customer she sold half of what she had left and 
half an egg. And to the third customer she sold half of what 
she then had left and half an egg. Three eggs remained. How 
many did she start out with? Now the only thing which 
makes this problem paradoxical is this additional condition: 
she didn't break any eggs. It takes only a moment's reflection, 
though, to see that this condition will be fulfilled if she starts 
with an odd number of eggs. The answer is 31. 

And now for our second problem. Let's suppose that we 
have in one glass a certain quantity of water and in another 
glass an equal quantity of milk. We shall assume, by the way, 
that this is good, old-fashioned, unwatered milk. We take a 
teaspoonful of milk from the first glass, put it in the second, 
and stir. We then take a teaspoonful of the mixture from the 
second glass and put it back in the first glass. Now is there 
more water in the milk than milk in the water, or more milk 
in the water than water in the milk? 
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The people to whom this problem is proposed generally 
split up into two groups. On the one hand are those who sup­
port the first suggestion; on the other hand, those who support 

First 
step 

Second 
step 

Third 
step 

4 water 
1 milk 

(actually mixed) 

3 ~ milk 3 ~ water 
% water % milk 

(actually mixed) (actually mixed) 

FIG. 9. Details of the milk and water problem 

the second. Both are wrong. Why? Well, suppose for sim­
plicity that we start with 4 teaspoonfuls each of milk and 
water. If we put one teaspoonful of milk in the water, the 
resulting five teaspoonfuls of mixture is ?i milk and % water. 
When we transfer one teaspoon of the mixture to the glass of 
milk, we are returning ?i of a teaspoonful of milk-thus leav­
ing % of a teaspoonful of milk in the water-and are adding 
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% of a teaspoonful of water to the milk. Thus there are equal 
quantities-% of a teaspoonful-of milk in water and water 
in milk. Incidentally, it makes no difference whether or not 
we stir the mixture! Can you see why? 

* * * 
We conclude this chapter with a few puzzles involving 

family relationships. (3) Such puzzles are not, strictly speak­
ing, a part of mathematics, yet the type of reasoning required 
for their solution is closely akin to the type of reasoning some­
times used by the mathematician. 

Take this situation, for example. A big Indian and a little 
Indian are sitting on a fence. The little Indian is the son of 
the big Indian, but the big Indian is not the father of the little 
Indian. What relationship exists between the two? The 
answer is "mother and son," but most people fail to get it the 
first time they hear the story. Their failure can perhaps be 
traced to the fact that they learn, as children, about division 
of labor among Indians, and just naturally assume that the 
squaw doesn't have time to sit around on fences, whereas the 
brave has all the time in the world. The solution of this 
puzzle, then, requires the ability to dismiss fixed ideas and to 
look for new ones-a trait which is sometimes of great value 
to the mathematician. 

"Brothers and sisters have I none, 
But that man's father is my father's son" 

is a fairly well-known riddle and presents no great difficulties. 
If the speaker is, as he says, an only child, then "my father's 
son" is the speaker himself. And if "that man's father" is 
"my father's son," then "that man's father" is the speaker. 
Therefore "that man" is the son of the speaker. All of which 
not only sounds like a demonstration in geometry, but actually 
is like one. 

Then there is the complicated family gathering consisting 
of one grandfather, one grandmother, two fathers, two moth­
ers, four children, three grandchildren, one brother, two 
sisters, two sons, two daughters, one father-in-law, one 
mother-in-law, and one daughter-in-law. Let's count them 



Paradoxes for Everybody 

up. Twenty-three people, you say? No, only seven. There 
were two girls and a boy, their father and mother, and their 
father's father and mother. A detailed explanation here is 
literally too much for words. The most satisfactory thing to 
do is to sit down, write out a list of the seven people involved, 
and check off the twenty-three relationships. 

Surely you have heard of the man who once married his 
widow's sister. "Now that," you will reply, "is utterly im­
possible. After all, a man's widow does not exist until the man 
himself ceases to exist." Well, it all happened this way. 
When the man-let's call him John-was young, he married 
a girl named Anne. A few years later Anne died. But Anne 
had a sister, Betty, and John took her for his second wife. 
Then John died, making Betty his widow. Had not John 
once married Anne, his widow's sister? Sorry-the catch 
there was a grammatical one. We'll try not to do that again. 

In these days of relatively frequent divorces and remar­
riages it is quite possible for two men, totally unrelated, to 
have the same sister. A diagram will be of help here. 

Mrs. A-i-Mr. A 

Son (AA) 

Mr. A-i-Mrs. B 

Daughter (AB) 

Mrs. BTMr. C 

Son (BC) 

As is indicated, Mr. and Mrs. A had a son, AA. Mr. and 
Mrs. A were then divorced, and Mr. A proceeded to marry 
Mrs. B. These two had a daughter, AB. Mr. A was ap­
parently a difficult man to get along with, for it was not many 
years before his second wife divorced him and married Mr. C. 
A son, BC, was born of this last marriage. And now for the 
denouement. The two sons, AA and BC, have no common 
blood in their veins. They are therefore totally unrelated. 
Yet each of them is the brother of the daughter, AB, for AA 
and AB had the same father, Mr. A, and AB and BC had the 
same mother, Mrs. B.(4) 

Everyone has heard of the fallibility of lawmakers and of the 
laws they make. There is, for example, the choice gem said to 
have been produced by those who are responsible for railway 
traffic in one of our southwestern states. It ran something 
like this: "If two trains, traveling in opposite directions along 
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the same single track, shall meet one another, neither shall 
proceed until the other has withdrawn." 

But of all the laws that can lead to extraordinary situations, 
one of the best--or worst-comes from England. There, be­
tween 1907 and 1921, it was possible for a boy to be the legiti­
mate son of his father and, at the same time, the illegitimate 
son of his mother. For during that period of fourteen years 
it was legal for a man to marry the sister of his deceased wife, 
while it was not legal for a woman to marry the brother of her 
deceased husband. (6) And here is what might have happened: 

(brothers) 

(first marriage) 
John -----'--~---..:::.....:..----Sally 

James ---"'7"::---:------::---:---- Susan 
(first marriage) 

(sisters) 

The brothers John and James of our diagram took as their 
brides the sisters Sally and Susan. That is to say, John mar­
ried Sally and James married Susan. A few years later both 
J ames and Sally died, and John and Susan, after a decent 
period, were married. Then John was legally married to 
Susan, his former sister-in-law, but Susan was not legally 
married to John, her former brother-in-law. Consequently 
Charles, who was born of this union, was the legitimate son of 
his father and the illegitimate son of his mother. 

As a final complication we offer the strange case of two men 
each of whom was at the same time both nephew and uncle 
of the other. Impossible? No, though perhaps improbable. 
Here is one solution: 

Mr. Allen-i-Mrs. AllenTDick 

Tom Harry 

Mr. Black-i-Mrs. Black-i-Tom 

Dick George 
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In our diagram are Mr. and Mrs. Allen, who had a son Tom, 
and Mr. and Mrs. Black, who had a son Dick. Mr. Allen and 
Mr. Black both died. And Tom and Dick, after they were 
grown men, each married the other's mother. Dick and Mrs. 
Allen then had a son Harry, and Tom and Mrs. Black, a son 
George. Now consider the relationship between Harry and 
George. Since Harry is the brother of Tom, George's father, 
Harry must be George's uncle. On the other hand George is 
the brother of Harry's father, Dick, so Harry must be George's 
nephew. In exactly the same way George is Harry's uncle 
and nephew. 

But this way lies madness. Shall we go on to something 
less involved? 
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The mighty 
midget 2 and 
Other miracles 
(Paradoxes in :.Arithmetic) 

fiRITHMETI C is a storehouse of almost unbeliev­
able results. In a single chapter it is possible to discuss only 
a few of the surprises to be found in this subject, and for the 
most part we shall confine our attention to some of the re­
markable properties of the number 2. There is not much 
here that the mathematician will find startling-the results 
to be discussed are paradoxical to the nonmathematician in 
that he would probably pronounce them false, or at least 
highly improbable, if he were asked to give his snap judg­
ment on them. 

* * * 
SOME LARGE NUMBERS 

In these days of billion-dollar governmental loans and ap­
propriations, most of us have lost our respect for large num­
bers and are no longer able to appreciate their actual mag­
nitude. 

Just how big is a billion, anyway? Well, let's think for 
the moment of tiny cubical blocks a quarter of an inch on 
each edge. A billion such blocks would almost fill a room 
21 feet long, 21 feet high, and 21 feet wide. 

FIG. 10 
20 
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If spread out in a single layer, they would cover 53 baseball 
diamonds. 

~.,67'.67~~~~~~~~ 

~~~~~~~~.,.67~~ 

~~~~~~~~~~~ 

~~~~~~~~~~~ 

~~~a67~~~~~ 
FIG. 11 

And if arranged in a straight line, they would reach almost 
4000 miles-nearly the distance between N ew York and 
Berlin. 

FIG. 12 

Or let's think of a billion in connection with time. A billion 
seconds ago all people now thirty-one years old were not yet 
born. In 1903 only a billion minutes had elapsed since the 
birth of Christ. And a billion days ago man was just about 
to put in an appearance on this earth. 

Finally, if your peace of mind is still undisturbed at the 
thought of the present public debt, consider the fact that in 



22 The rt.7dighty rt.7didget 2 and Other rt.7diracles 

order to payoff a hundred billion dollars at the rate of one 
dollar a second, twenty-four hours a day, seven days a week, 
and fifty-two weeks a year, it would take about 3,180 years 
to complete the task! 

* * * 
Physicists, chemists, astronomers, and others who deal 

with large numbers use a very convenient notation in writing 
them. Note first that a billion is the product of nine 10's. 
That is to say, 

1,000,000,000= lOX lOX lOX lOX lOX lOX lOX lOX 10. 

Now if we denote the product of two 10's by 102, of three 10's 
by 103, of four 10's by 10\ and so on, then a billion, being the 
product of nine 10's, can be written as 109 • Again, four billion 
can be written as 4 X 109, or 4 with the decimal point moved 
nine places to the right; 34,870,000,000 as 3.487 X 1010, or 
3.487 with the decimal point moved ten places to the right; 
and so on. 

If we do not wish to be too exact, but merely want some 
idea of the magnitude of a number, we can say, since 3.487 is 
nearer to 3 than to 4, that 34,870,000,000 is "about" 3 X 1010. 
If we are after an even rougher approximation, we can say 
that 3 X 1010 is, "to the nearest power of 10," 1010. In other 
words, 3 X 1010 is nearer to 1 X 1010, or 1010, than to 
10 X 1010, or 1011. 

What of a number like 432? This is to be interpreted as 
4(32) = 49 , and not as (43)2 = 642. 

We can improve our familiarity with this notation by dis­
cussing the following problem. What is the largest number 
which can be written with three 2's? Some possibilities which 
immediately occur to us are 

222, 222, 222, and 222. 

The smallest of these is 222 = 24 = 16. Then come 222, and 
222 = 484. The largest is 222 = 4,194,304, or about 4 X 106• 

What if we use four 2's instead of three? The possibilities, 
arranged in order of increasing magnitude, are now 

2222, 2222, 2222, 2222, 2222, 222\ and 2222. 
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The respective values of the first six of these, to the nearest 
power of 10, are 

103, 10\ 105, 1029, 1067 , and 10145• 

But the last representation yields 24 ,194,304, or about 
101.260 ,000. This puts a mere billion to shame, being a billion 
multiplied by itself some 140,000 times! Did it ever occur to 
you that four simple 2's could ever amount to that much? 

* * * 
Figure 13 is an attempt to illustrate the fact that each per­

son now living had 2 parents, 4 grandparents, 8 great-

Fig. 13. A family tree in reverse 

grandparents, and so on. That is to say, one generation ago 
he had 2 ancestors. Two generations ago he had 4, or 2 X 2, 
or 22 ancestors. Three generations ago he had 8, or 2 X 2 X 2, 
or 23 ancestors. Four generations ago he had 16, or 2 X 2 X 
2 X 2, or 24 ancestors. And so on. In general, n generations 
ago he had 2 X 2 X 2· .. X 2 (the product of n twos), or 2n 

ancestors. Now suppose we assume there are 30 years to a 
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generation. Then only 600 years ago-20 generations back, 
that is---each one of us had 220, or 1,040,400 ancestors! 

Someone once used this argument to "prove" that six hun­
dred years ago there were over a million times as many people 
on this earth as there are today. It doesn't take a census 
expert to figure out his error. Can you find it? 

* * * 
The chain letter is an old evil which turns up in some form 

or other every few years. Consider the simple case in which 
a person sends a certain letter to two friends, requesting each 
of them to copy the letter and send it to two of their friends, 

1 ----'I -------~ 1---·'1 ~ -------- --------1 -·'1 1-.-:=-'1 1 -==--'1 L2l 
A A A A 

B -------I --,,,.'1 I --.-,,'1 ----- ....----....... r:::::o1 ~ r.=:;l r:::::'71 
L.:::::::.J ~ ~ ~ 

A A A A 
FIG. 14. The chain letter 

and so on. Then the first set consists of two, or 21 letters, the 
second set of four, or 22 letters, the third set of eight, or 23 
letters, and so on. Now how many sets of letters would have 
to be sent in order that everyone of the two billion men, 
women, and children in the world-literate or illiterate­
receive one and only one letter? It is not difficult to show 
that it would take no more than thirty sets! The thirtieth set 
alone would consist of 230 = 1,073,741,824 letters. 

The thirtieth power of 2 turns up again in the thrifty sav­
ings scheme whereby we put away one cent on the first day 
of the month, two (21) cents on the second day, four (22) cents 
on the third day, eight (23) cents on the fourth day, and so 
on-each day doubling the amount of the previous day. 
Noting that here the power of 2 in each case is one less than 
the number of the day, it is readily seen that on the thirty­
first of the month we should have to put away 230, or over a 
billion, cents-more, that is, than ten million dollars. The 
total amount saved would be about twice as much. 

* * * 
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You should by now be well prepared for the next problem­
a good one to try on your friends. Suppose we have a large 
sheet of very thin rice paper one one-thousandth of an inch 
thick, or a thousand sheets to the inch. We tear the paper in 
half and put the two pieces together, one on top of the other. 
We tear them in half and put the four pieces together in a 
pile, tear them in half and put the eigh t pieces together in a 
pile, and so on. If we tear and put together a total of fifty 
times, how high will the final stack of paper be? The usual 
responses are amusing. Some people suggest a foot, others 
go as high as several feet, and a few of the bolder ones throw 
caution to the winds and risk their reputation for sanity on a 
mile. All of them refuse to believe the correct answer, which 
is well over seventeen million miles! 

If you are among the unbelievers, you can work the prob­
lem out very simply as follows. As was indicated above, the 
first tear results in two, or 21, pieces of paper; the second tear 
in four, or 22, pieces; the third tear in eight, or 23 pieces; and 
so on. It is evident at once that after the fiftieth tear the 
stack will consist of 250 sheets of paper. Now 250 is about 
1,126,000,000,000,000. And since there are a thousand sheets 
to the inch, the stack will be 1,126,000,000,000 inches high. 
To get the height of the stack in feet, divide this number by 
12. And to get it in miles, divide the resulting number by 
5280. The final result, as we have said, is well over 17,000,000. 

* * * 
There are a number of ancient puzzle toys which are to be 

found even today in almost any toy shop. Among them is 
what is generally known as the "Tower of Hanoi." It consists 
of a horizontal board with three vertical pegs, as shown in 
Figure 15. On one of the pegs is arranged a series of disks of 
different sizes, the largest at the bottom, the next largest on 
top of that, and so on, up to the smallest at the top of the 
peg. The problem is to transfer all of the disks from the first 
peg to one of the others-say the third-in such a way that 
the final arrangement is the same as the original one. But 
only one disk is to be moved at a time, and no disk shall ever rest 
:m one smaller than itself. 
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For example, suppose the pegs are numbered I, II, and III, 
and the disks lettered A, B, C, D, ... , as in the figure. If 

II III 

FIG. 15. The Tower of Hanoi 

there are only 2 disks, A and B, then B can be shifted to II, 
A to III, and B to III. Thus 2 disks require 3, or 22 - 1 
transfers. If there are 3 disks, A, B, and C, proceed as fol­
lows: C to III, B to II, C to II, A to III, C to I, B to III, and 
C to III. Thus 3 disks require 7, or 23 - 1 transfers. In gen­
eral, it can be shown that if there are n disks, a minimum of 
2n - 1 transfers is required. The game can, of course, be 
played with disks of cardboard and imaginary pegs. Try it 
with 5 disks, which require 25 - 1 = 31 moves, and, as you 
become more proficient, with an even greater number of disks. 
Here's a helpful hint, by the way. If the number of disks is 
even, move the first disk to the peg numbered II; if it is odd, 
to III. 

The origin of the game is described by one author in the 
following way.(l) 

"In the great temple at Benares, beneath the dome which 
marks the center of the world, rests a brass plate in which are 
fixed three diamond needles, each a cubit high and as thick as 
the body of a bee. On one of these needles, at the creation, 
God placed sixty-four disks of pure gold, the largest disk rest­
ing on the brass plate, and the others getting smaller and 
smaller up to the top one. This is the Tower of Bramah. 
Day and night unceasingly the priests transfer the disks from 
one diamond needle to another according to the fixed and im­
mutable laws of Bramah, which require that the priest on 
duty must not move more than one disk at a time and that he 
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must place this disk on a needle so that there is no smaller 
disk beneath it. When the sixty-four disks shall have been 
thus transferred from the needle on which at the creation God 
placed them to one of the other needles, tower, temple, and 
Brahmins alike will crumble into dust, and with a thunder­
clap the world will vanish." 

In this case the number of transfers required is 264 - 1. 
If we assume that the priests worked on a 24-hour schedule, 
transferring disks at the rate of one a second and never making 
a mistake, it would take them about 5.82 X lOll years, or 
nearly six billion centuries, to complete the task. This world's 
end prophecy is one of the most optimistic on record! 

* * * 
The number 264 - 1 is connected also with the origin of 

chess. Legend has it that an ancient Shah of Persia was so 
impressed with the game that he ordered its inventor to ask 

1 2 -1 8 16 32 64 128 

" / 
, , , " i!!!!lil!l! 

" !!ZUlli" , , 
il!lllllUI I , . " H!!!!!!.I 

v \,,1 

FIG. 16. The chessboard and the grains of wheat 

whatever reward he desired. The inventor-probably a 
clever arithmetician-asked that he might have one grain of 
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wheat for the first square of a chessboard, two grains for the 
second square, four grains for the third square, eight grains 
for the fourth square, and so on, until all the squares of the 
board were accounted for. Now he was asking for 

1 + 2 + 22 + 23 + ... + 263 = 264 - 1 

grains of wheat. The Shah thought this a poor reward until 
his advisers worked out the problem for him. They found 
that 264 - 1 is about 1.84 X 1019• If it is assumed that there 
are 9000 grains of wheat to the pint, this figure amounts to 
some 3 X 1013 bushels, which is several thousand times the 
world's annual crop of wheat even today! 

If a second chessboard is placed next to the first, and if the 
scheme of doubling the number of grains for each successive 
square is continued, then the pile corresponding to the last 
square of the second board contains 2127 grains. If one grain 
is removed from this pile, there remain 

2127 - 1 
= 170,141,183,460,469,231,731,687,303,715,884,105,727. 

This number is the largest known prime number.(2) 

* * * 

SOME NUMBER THEORY 

The last problem brings us to some extraordinary proper­
ties of the number 2 which are rather different from those we 
have been considering. The investigation of prime numbers 
by both amateur and professional mathematicians has re­
sulted in a wealth of new material for research. We recall 
that a prime number is defined as a number which is exactly 
divisible by no numbers other than itself and 1. The first 
twelve prime numbers, for example, are 1, 2, 3, 5, 7, 11, 13, 
17, 19, 23, 29, and 31. The number 4 is not prime, for it is 
divisible by 2. Again, 6 is not prime, for it is divisible by 
both 2 and 3. 

Euclid, the great systematizer of geometry, proved around 
300 B.C. that the number of prime numbers is infinite. For 
.nany centuries attempts have been made to devise some sort 
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of formula which will generate prime numbers only. For 
example, the man who first ran across the formula n2 + n + 41 
must have thought he had something, for this expression 
yields a prime number when n is any whole number from 1 to 
39 inclusive. Thus if n is 1, the formula gives 43; if n is 2, 47; 
if n is 3,53; if n is 4, 61; and so on. But if n is 40, the formula 
gives 1681, which is divisible by 41, being (41)2. This ex­
ample illustrates the uselessness, in mathematics, of attempt­
ing to deduce a general conclusion from a few specific cases. 

In 1640 the French mathematician Fermat believed that 
he had found a formula generating prime numbers only. His 
suggestion was 22" + 1, where n is a whole number. The 
first five "Fermat numbers," as they are called, are 

220 + 1 = 21 +1 = 3, 

221 + 1 = 22 +1 = 5, 

222 + 1 = 24 + 1 = 17, 

22' + 1 = 28 + 1 = 257, 

(In connection with the first of these numbers, we must recall 
from algebra that any number raised to the Oth power is 1. 
See Appendix, page 230.) These are indeed all prime, yet 
Fermat later began to doubt the truth of his generalization to 
the effect that his formula will always yield a prime number. 
It was not until a hundred years later that Euler, a Swiss 
mathematician, found that the sixth Fermat number, 226 + 1 
=4,294,967,297, is the product of 641 and 6,700,417, and so 
is divisible by either. It has since then been verified that there 
are other Fermat numbers which are not prime. On the other 
hand, no one knows as yet whether Fermat's formula gives 
any primes other than the first five which we have seen. 

Fermat, could he but know it, might be consoled by the 
fact that no one has succeeded in the particular quest in which 
he failed. A formula that will generate prime numbers only 
has yet to be found. 

* * * 
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The expression 22" + 1 turned up with renewed historical 
importance toward the end of the eighteenth century. Any­
one who has taken a course in plane geometry knows, as did 
the ancient Greeks, that the circle can be divided by means 
of ruler and compasses into certain numbers of equal parts. 
For example, to divide a circle into 2 equal parts, it is neces­
sary only to draw a diameter. Each of the resulting semi-

>k 
!2 

4 7 
Division of the circle into 2, 4, 8" .. equal parts 

Division of the circle into 3, 6, 12" .. equal parts 

FIG. 17 

1 

circles can then be bisected, giving 4 equal parts; these can be 
bisected, giving 8 equal parts; and so on. The circle can be 
divided into 6 equal parts by starting at any point on the cir­
cumference and swinging successive arcs with radii equal to 
that of the circle. By taking every other point of division, 3 
equal parts are obtained. The 6 equal parts can be doubled 
to 12, the 12 doubled to 24, and so on. A third method, 
somewhat more complicated, results in a division of the circle 
into 5, and, through doubling, into 10, 20, 40, ... equal parts. 
The methods for 6 and 10 can be combined to give 15 equal 
parts. Again, the 15 can be doubled and redoubled by simply 
bisecting the arcs. We can state all we have been saying in 
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the following compact way. The circle can, by means of ruler 
and compasses, be divided into 3, 5, or 2n (n any whole number) 
equal parts, or any combination of these such as 3 X 5, 3 X 2n , 

5 X 2n, and 3 X 5 X 2n. 
For fear that this statement is a bit too compact, let us 

write out the first fifty whole numbers-beginning, of course, 
with 2-and circle all those included in the 3, 5, 2n combina­
tions. We then have the following array: 

00800 7 0 9 @ 11 

@ 13 14 00 17 18 19 § 21 

22 23 @ 25 26 27 28 29 0 31 

® 33 34 35 36 37 38 39 0 41 

42 43 44 45 46 47 ® 49 50 51 

As we have said, the general conclusion stated above was 
known to the ancient Greeks. For over two thousand years 
it remained unknown whether the circle could or could not 
be divided into 7, 9, 11, 13, 17, 19, 21, 23, 25, "', or any odd 
number of parts not covered in the 3, 5, 2n combinations. 
Note that we say odd number of parts. Even numbers need 
not be considered, because of the factor 2n. For example, the 
first un circled even number in our array is 14. Now if the 
circle can be divided into 7 equal parts, then a division into 
14 equal parts can be obtained by simply bisecting each of the 
arcs. Conversely, if a division into 14 equal parts is possible, 
then 7 equal parts can be obtained by simply taking every 
other point of division. 

In 1796 a young German mathematician, Gauss, finally 
settled the question for once and for all. He proved that it is 
possible to divide the circle into an odd number of equal parts if, 
and only if, the number is a prime Fermat number-a number oj 
the form 22n + 1, that is-or any combination of such numbers. 
Now the only known prime Fermat numbers are those we dis­
cussed in the last section: 3, 5, 17, 257, and 65,537. Conse­
quently the construction is possible not only for the odd num­
bers 3, 5, and 3 X 5, but also for 17, 257, 65,537, 3 X 17, 
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3 X 257, 3 X 65,537, 5 X 17, 5 X 257, and so on. But it is 
not possible for 7, 9, 11, 13, 19, 21, 23, 25, .... Thus, in our 
array of the first fifty numbers, we can now circle 17, 2 X 17 
or 34, and 3 X 17 or 51, but none of the others. 

The names of Fermat, Euler, and Gauss, mentioned in con­
nection with the last two problems, are among the great 
names in the history of mathematics. It is interesting to 
note that Fermat was an amateur in the subject. He was by 
profession a judge-a councillor for many years in the local 
parliament of the city of Toulouse. 

* * * 
Powers of 2 are involved in still another matter of histori­

cal interest. The early Greeks classified numbers not only as 
even or odd, prime or composite, but also as perfect, excessive, 
or defective. Consider the number 12. Its divisors, aside 
from 12, are 1, 2, 3,4, and 6. And the sum of these divisors 
is 16, which is greater than 12, the number itself. The num­
ber 12 is therefore said to be defective. 14, on the other hand, 
is excessive, for the sum of its divisors-l, 2, and 7-is 10, 
which is less than the number itself. But 6 is a perfect num­
ber, for the sum of its divisors-l, 2, and 3-is equal to the 
number itself. The next perfect number is 28. Its divisors 
are 1, 2,4,7, and 14. No odd numbers have ever been found 
to be perfect, although no one has ever been able to prove that 
there are none. 

Euclid proved that any number of the form 2n - 1 (2 n - 1), 
where n is a whole number, is perfect provided 2n - 1 is prime. 
The only values of n for which it is known that 2" - 1 is prime 
are the following twelve: 2, 3, 5, 7,13,17,19,31,61,89,107, 
and 127. Hence only twelve perfect numbers are known. 
The first six of these are 6, 28, 496, 8128, 33,550,336, and 
8,589,869,056. The difficulty in working with the larger ones 
is easily seen if we note that the last of them is given by 
2126(2127 - 1). The second factor, 2127 - 1, is the 39-digit 
number which appeared in connection with the two chess­
boards (page 28). This, multiplied by 2126, gives a number 
of 77 digits! (3) 

* * * 
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THE BINARY NUMBER SYSTEM 

As an introduction to the present section, let us consider a 
case of fallacious reasoning on the part of a beginner in arith­
metic. He started with the two identities 

9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45, 

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45, 

and subtracted the second identity from the first. The differ­
ence of the right-hand sides was O. Beginning to the left of 
the equality signs, he set out to subtract 9 from 1. To be able 
to do so, he had to borrow 1 from the 2 and subtract 9 from 
11. This gave 2. He then subtracted 8 from 1 (which was 2 
before 1 was borrowed in the last step), and to do so, he bor­
rowed 1 from the 3 and subtracted 8 from 11, which gave 3. 
Then he subtracted 7 from 2, borrowing 1 from the 4, and so 
on, proceeding always to the next step on the left. These 
operations, when completed, resulted in the conclusion that 

8 + 6 + 4 + 1 + 9 + 7 + 5 + 3 + 2 = 0, 

or that 45 = O. Where did our beginner go wrong? He seems 
to have done nothing different from what we do in subtract­
ing, say, 189 from 321. Let us look at this illustration in 
more detail. 

321 
-189 

132 

Here, in subtracting the first digits at the right, we borrow 1 
from the 2 and subtract 9 from 11. But do we really borrow 
1? We do not. When we write the number 321, we do not 
mean 3 + 2 + 1, but 3·100 + 2·10 + 1, or 3.102 + 2.101 

+1·10°. (From this point on we shall use the dot, " rather 
than the cross, X, to signify multiplication.) Again, 57,289 
means 5.104 + 7.103 + 2.102 + 8.101 + 9·10°. So when 
we think "borrow 1 from the 2," we actually borrow 1.101 

from 2.101 • And in the next step, when we borrow 1 from 3 
and subtract 8 from 11, we actually borrow 1.102 from 3.102 

and subtract 80 from 110, which yields 30, or 3· 101, which is 
the meaning of the "3" in the result. 
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This matter of "positional notation"-the convention 
whereby the significance of a digit is indicated by means of 
its position in the written number-was developed by the 
Hindus about the beginning of the sixth century A.D. It was 
one of the greatest advances ever made in mathematics. If 
you do not believe this, just try multiplying together two 
large numbers expressed in Roman numerals! It may be 
worth noting in this connection that the numerals generally 
called "Arabic" were actually an invention of the Hindus.(4) 

Probably our number system is based on the number 10 
because of the fact that man has ten fingers, which in early 
times he used (and still does use) as an aid in counting. There 
is really no reason why some number other than 10 should 
not be used as a base. I t has been suggested, for example, 
that the base 12 be adopted, since 12 is divisible by 2, 3, 4, 
and 6, whereas 10 is divisible only by 2 and 5. Arithmetic cal­
culation would be simpler with the base having the greater 
number of divisors. In the denary, or decimal, system (base 
10) we use the ten digits 0, 1, 2, 3,4, 5, 6, 7, 8, and 9. In the 
duodecimal system (base 12) we should have to invent sym­
bols to designate the tenth and eleventh digits. 

Would it not, someone may ask, be simpler to use a 
smaller base--one that would require fewer digits? Now the 
binary system (base 2) requires only the digits 0 and 1. Let 
us see what some of our denary numbers would look like in 
the binary scale. 

1 = 1.20 = 1 
2 = 1.21 + 0.20 = 10 
3= 1.21 + 1.20 = 11 
4= 1.22 + 0.21 + 0.20 = 100 
5= 1 . 22 + o· 21 + 1. 20 = 101 
6= 1.22 + 1.21 + 0.20 = 110 
7 = 1.22 + 1.21 + 1.20 = 111 
8= 1.23 + 0.22 + 0.21 + 0.20 = 1,000 
9= 1.23 + 0.22 + 0.21 + 1.20 = 1,001 

10 = 1.23 + 0.22 + 1.21 + 0.20 = 1,Oto 
11= 1.23 + 0.22 + 1.21 + 1.20 = 1,011 
12 = 1.23 + 1.22 + 0.21 + 0.20 = 1,100 
13 = 1.23 + 1.22 + 0.21 + 1.20 = 1,101 
14 = 1.23 + 1.22 + 1.21 + 0.20 = 1,110 
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1.23 + 1.22 + 1.21 + 1.20 = 
1.24 + 0.23 + 0.22 + 0.21 + 0.20 = 

35 
1,111 

10,000 

110,010 

100 = 1.26 + 1.26 + 0.24 + 0.23 + 1.22 + 0.21 + 0.20 = 1,100,100 

I t is evident at once that the disadvantage of this scale lies in 
the fact that it is laborious to write out a number even as 
small as our 100-the first three-digit number in the denary 
scale requires the use of seven digits in the binary scale. 

Some of us are probably wondering why we have gone into 
this matter anyway-the good old denary system we were 
brought up on seems to have advantages enough. Of what 
real use is a system such as the one with the base 2? We shall 
try to answer this question with two examples-one involving 
a method of calculation and the other a game. 

* * * 
A type of multiplication actually in use in the past requires 

no knowledge of the usual twelve multiplication tables other 
than that of the table of 2. Let us, for example, multiply 49 
by 85 by this method. Write down 49 at the head of one 
column and 85 at the head of another. Divide 49 by 2 and 
multiply 85 by 2, writing the results below the original num­
bers. Continue dividing by 2 in the first column and multi­
plying by 2 in the second. When an odd number is divided 
by 2, throwaway the remainder-this, strangely enough, leads 
to no errors. Stop when 1 is reached in the first column. 
The result is as follows: 

(Divide 
by 2) 

49 
24 
12 
6 
3 
1 

(Multiply 
by 2) 

85 
-1-1e-
-340-
-6-89-
1360 
2720 

4165 
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Now in the second column cross out all those numbers which 
are opposite an even number in the first column. Add the 
remaining numbers in the second column, and the correct 
result, 4165, is obtained. 

The workings of the method are easily seen if 49 is expressed 
in the binary scale. For then 

49·85 = (1.25 + 1.24 + 0.2 3 + 0.22 + 0.21 + 1·2°)·85 

= (32 + 16 + 0 + 0 + 0 + 1)·85 

= 2720 + 1360 + 0 + 0 + 0 + 85 

= 4165. 

Since 23 , 22, and 21 do not appear in the binary representation 
for 49,85 multiplied by 23 (680), by 22 (340), and by 21 (170) 
are not among the numbers to be added in the second column. 

* * * 
That the binary system can be used to definite financial 

advantage is shown in the following story. A poor young 
graduate student, brilliant in mathematics but inexperienced 
in the ways of the world, had saved up enough money to spend 
a year studying abroad. On the boat trip to Europe he fell 
in with a group of professional gamblers who in one evening 
of poker cleaned him of almost all his money. The next 
evening he again ran into the group, and another poker ses­
sion was suggested. The young man admitted modestly that 
he guessed he didn't know the game well enough. Perhaps 
the gentlemen would care to playa somewhat different game? 
The gamblers agreed to this readily, counting on their clever­
ness and their ability to cheat at almost anything. The young 
man laid out on the table a number of heaps of matches. . 

"Now," said he to one of the men, "you may pick up as 
many of the matches of anyone heap as you wish, from one 
match to all of the matches in that heap. I shall then do the 
same. We continue, playing alternately, until all of the 
matches are gone. Whoever has to pick up the last match 
loses the game." 

The rest of the story is easily imagined. The stakes were 
high, and by the end of the eve nine; the young man had not 
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only won back all of his own money, but had made enough to 
spend several years abroad. As a matter of fact, he was still 
there when last heard from! 

It takes a little time to explain how to force a win at this 
game, but some of us may want to see it through. Let's call 
the two players A and B and look at a few winning combina­
tions toward the end of the game. If A can succeed in forcing 
B to draw from anyone of the four situations shown in the 
diagram, he will win. 

Case 1 

1st pile I I 
2nd pile I I 
3rd pile 
4th pile 

Case 2 

III 
III 

Case 3 

III 
II 
I 

Case 4 

II 
II 
I 
I 

Case 1. (a) If B takes 1 match from the first pile, A takes 
ali of the second pile, leaving B to pick up the last match. 
(b) If B takes all of the first pile, A takes one match from the 
second pile, and again B picks up the last. 

Case 2. (a) If B takes 1 from the first pile, A takes 1 from 
the second and proceeds as in the first case. (b) If B takes 2 
from the first pile, A takes all of the second pile, and B picks 
up the last. (c) If B takes all of the first pile, A takes all but 
one of the second. 

Case 3. (a) If B takes 1 from the first pile, A takes the 
single match in the third pile and proceeds as in the first case. 
(b) If B takes 2 from the first pile, A takes 1 from the second 
pile. Then B takes 1, A takes 1, and B picks up the last. 
(c) If B takes all of the first pile, A takes all of the second. 
(d) If B takes 1 from the second pile, A takes 2 from the first 
pile. Then each take 1 and B takes the last. (e) If B takes 
all of the second pile, A takes all of the first pile. (f) If B 
takes the single match in the third pile, A takes 1 from the 
first pile and proceeds as in the first case. 

Case 4. (a) If B takes 1 from either of the first two piles, 
A takes all of the other of these piles. Then each takes 1 and 
B takes the last. (b) If B takes all of either of the first two 
piles, A takes 1 from the other of these piles. Then each takes 
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1 and B takes the last. (c) If B takes either of the single 
matches, A takes the other and proceeds as in the first case. 

These cases evidently do not represent all possible finisheE 
to the game, but will do for our purposes. Suppose now that 
we replace each pile of matches in the diagram by the number 
of matches in that pile, expressing the number in the binary 
scale. Recall from the table on page 34 that 1 is written as 
1·2° = 1,2asl·21 +0·2° = 10,and3asl·21 + 1·2° = 11. 
Then the diagram for the four cases considered becomes 

Case 1 Case 2 Case 3 Case 4 
1st pile 10 11 11 10 
2nd pile 10 11 10 10 
3rd pile 1 1 
4th pile 1 

20 22 22 22 

In each of the four cases the sum of the digits in each column 
has been written at the bottom. We note that the digits in 
each sum are even numbers, 0 (which is called "even" in 
mathematics) or 2-never an odd number such as 1 or 3. 
Herein lies the secret of the game. The explanation will be 
clearer if we introduce the term "coefficient." The number 
567 in the denary system means 5.102 + 6.101 + 7 ·10°. 
Here 7 is said to be the coefficient of 10°, 6 the coefficient of 
101, and 5 the coefficient of 102. Similarly, in the binary 
number 101, or 1· 22 + 0.21 + 1· 2°, the coefficient of 2° is 1, 
that of 21 is 0, and that of 22 is 1. 

Now if A knows the game and B does not, A can force a 
win at the very outset of the game in the following manner. 
He expresses in the binary scale the number of matches in 
each pile and adds all the coefficients of 2°, of 21, of 22, ... , 
of as high a power of 2 as appears in any of the numbers. 
He then removes as many matches from some pile or other as 
is necessary to leave the sum of the coefficients of each power 
of 2 an eren number. When B draws, he is bound to upset 
such an arrangement, and A repeats the process. The only 
exception to the rule is this: A must never leave an even num­
ber of piles containing only one match each. 
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In order to fix our ideas, let us work through one sample 
game completely. Suppose there are four piles, with 6 
matches in the first pile, 5 in the second and third, and 3 in 
the fourth. A is to draw first. The set-up is shown in the 
diagram, with, at the right, the number in each pile expressed 
in the binary scale, together with the sum of the coefficients 
of the various powers of 2. 

IIIIII IIIII IIIII III 

110 
101 
101 

11 

323 

Since the sums of the coefficients of 2° and 22 are odd, A must 
draw 3 matches from the first pile, leaving the arrangement 

III IIIII IIIII III 

11 
101 
101 

11 

224 

in which the sums of the coefficients of all the powers of 2 are 
even. Suppose B draws 4 matches from the second pile. 
Then the arrangement is 

III I IIIII III 

11 
1 

101 
11 

124 

A's move is then to draw 4 matches from the third pile, leaving 

III I / III 

11 
1 
1 

11 

24 
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Next suppose B takes all of the first pile, leaving the arrange­
ment 

I I III 

1 
1 

11 

13 

Now if A played according to rule, he would take all of the 
matches in the last pile. But this play would leave two piles 
of one match each-the exceptional case to be avoided. His 
correct play is to remove 2 from the last pile, leaving an odd 
number of piles of one each. A then goes on to win. The ex­
ceptional case is not difficult to avoid, for it can occur only 
late in the game at a time when the end can easily be seen by 
using common sense alone. 

This game pays large dividends in amusement for the small 
investment of time required to learn to express numbers in 
the binary scale and to add the coefficients rapidly. (5) 

* * * 

MIND-READING TRICKS 

The ability of a "mind-reader" to determine a number 
selected by someone in his audience is of the nature of a para­
dox to most people. We conclude this chapter with a few 
examples of tricks of this sort and shall show that they are 
based upon fairly simple arithmetical operations. Anyone 
interested in studying the subject further can find ample 
material elsewhere. (6) 

* * * 
The mind-reader (M) asks a man in his audience (A) to 

think of a number, multiply it by 5, add 6, multiply by 4, 
add 9, multiply by 5, and state the result. 

A chooses the number 12, calculates successively 60, 66, 
264, 273, 1365, and announces the last number. 

M subtracts 165 from this result, gets 1200, knocks off the 
two zeros, and tells A that 12 was the number he thought of. 



Paradoxes in ~rithmetic 41 

The trick is easily seen if put in arithmetical symbols. 
If the number A chooses is a, then the successive operations 
yield Sa, Sa + 6, 20a + 24, 20a + 33, and 100a + 165. 
When M is told this number, it is evident that he can deter­
mine a if he subtracts 165 and divides by 100-or cancels the 
last two digits, which are always zero. 

* * * 
If M desires to tell A the result without asking any ques­

tions, he must so arrange the various operations that the 
original number thought of drops out. Here is an example 
in which three unknown numbers are introduced and done 
away with. 

M: Think of a number. Add 10. Multiply by 2. Add the 
amount of change in your pocket. Multiply by 4. Add 20. 
Add 4 times your age in years. Divide by 2. Subtract twice 
the amount of change in your pocket. Subtract 10. Divide 
by 2. Su btract your age in years. Divide by 2. Subtract 
the original number you thought of. 

[A, who chooses the number 7, has 30 cents in his pocket, 
and is 20 years old, thinks: 7, 17,34,64,256,276,356, 17S, 
11S, lOS, 54, 34, 17, 10.] 

M: Your result is 10, is it not? 
A: Right! 
In this case, if we denote A's original number by a, the 

amount of change in his pocket by b, and his age in years bye, 
the successive operations give a, a + 10, 2a + 20, 2a + 20 
+b, Sa + SO + 4b, Sa + 100 + 4b + 4e, 4a + 50 + 2b + 2e, 
4a + 50 + 2e, 4a + 40 + 2e, 2a + 20 + e, 2a + 20, a + 10, 10. 
Problems of this type can be set up in any number of ways. 

* * * 
Many tricks of the kind we are discussing are based upon 

the principle of positional notation. Consider the following. 
M: Throw three dice and note the three numbers which 

appear. Operate on these numbers as follows: multiply the 
number on the first die by 2, add 5, multiply by 5, add the 
number on the second die, multiply by 10, add the number on 
the third die, and state the result. 



42 The rUdighty rUdidget 2 and Othe'f rUdiracles 

[A throws a 2, a 3, and a 4, and thinks: 4,9,45,48,480,484.] 
A: 484. 

[M subtracts 250 and gets 234.] M: The numbers thrown 
were 2, 3, and 4, were they not? 

A: Right! 
More generally, suppose the numbers thrown are a, b, and c 

respectively. Then the specified operations give, successively, 
2a, 2a + 5, tOa + 25, lOa + b + 25, lOOa + tOb + 250, 
tOOa + tOb + c + 250. If 250 be subtracted from this num­
ber, the result is tOOa + tOb + c, or a·10 2 + b·10 l + c·lo°, 
so that the digits which appear in the final number are a, b, 
and c. 

* * * 
Another trick, based on positional notation, enables the 

mind-reader to tell a person his age and the amount of change 
he has in his pocket. 

M: Multiply your age by 2, add 5, multiply the result by 50, 
add the amount of change in your pocket (less than $1.00), 
subtract the number of days in a year, and tell me the result. 

[A, who is 35 years old and has 76 cents in his pocket, 
thinks: 70, 75,3750, 3826, 3461.] A: 3461. 

[M adds 115 to this number and gets 3576.] M: Your age 
is 35 and you have 76 cents. 

A: Right: 
Suppose that A's age is a, and that the amount of change he 

has in his pocket is b. Then the operations specified by M 
yield, successively, 2a, 2a + 5, 100a + 250, tOOa + b + 250, 
and tOOa + b - 115. If 115 be added to this last number, 
the result is tOOa + b. Now if A's age is a two-digit number, 
then tOOa + b is a four-digit number. The first two of these 
four digits give the number a, and the last two digits the 
number b. 

* * * 
Here is a series of operations which always yields the same 

result. 
M: Take any three-digit number, whose first and last digits 

differ by more than 1, form a second number by reversing the 
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digits, and subtract the smaller number from the larger. To 
the resulting number add the number formed by reversing its 
digits. Remember the result. 

[A thinks: 853, 358, 853 - 358 = 495, 495 + 594 = 1089.] 
M: The result is 1089, is it not? A: Right! 
That the result is always 1089 can be seen from the follow­

ing general analysis: 
Suppose the digits of the three-digit number are a, b, and 

c, where a is greater than c. Then the number itself is a·102+ 
b·l0 + c, or 

100a + lOb + c. 

The number formed by reversing the digits of this first number 
1S 

100c + lOb + a. 

Subtracting the second of these numbers from the first yields 

100a - 100c + 0 + c - a. 

By means of subtracting 100 and adding 90 and 10, this num­
ber can be expressed as 

or 

100a - 100c - 100 + 90 + 10 + c - a, 

100(a - c - 1) + 90 + (10 + c - a). 

Reversing the digits of this number gives 

100(10 + c - a) + 90 + (a - c - 1). 

If now the last two numbers are added, all the a's and c's drop 
au t, leaving 

900 + 180 + 9, 
or 1089. 

* * * 
This example and the next two are concerned with certain 

properties of the number 9. 
M: Choose any three-digit number in which the first and 

last digits are unequal and form a second number by reversing 
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its digits. Subtract the smaller number from the larger and 
tell me the first digit of the result. 

[A thinks: 742, 247, 742 - 247 = 495.] A: The first digit 
is 4. 

M: The other two are 9 and 5, are they not? 
A: Right! 
In general suppose A's original number has the digits a, b, 

c, where a is greater than c. Then the number is 100a + lOb 
+c. Reversing the digits gives 100c + lOb + a. The differ­
ence is 99(a - c). It takes only a moment's reflection to 
verify the fact that a - c must be 1, 2, 3, 4, 5, 6, 7, 8, or 9. 
The only possible final numbers are therefore these numbers 
multiplied hy 99-that is to say, 99, 198, 297, 396, 495, 594, 
693, 792, 891. Now in all of these numbers (save the first) 
the middle digit is 9 and the sum of the first and last digits is 
also 9. Hence if the first is known, so then are the other two. 

* * * 
Among the various important properties of the number 9 

is the following, which we state without proof. If any number 
is a multiple of 9, the sum of its digits is also a multiple of 9 
(for example, 27, 54, 126, 234, 18,954). Let's see what use 
the mind-reader can make of this principle. 

M: Think of a number, affix a zero, subtract the original 
number, and add 54 (or any multiple of 9). In the resulting 
number strike out any digit except a 0, and read me the others. 

[A thinks: 5238, 52,380, 52,380 - 5238 = 47,142,47,142 + 
54 = 47,196, 41',196.] A: 4, 1, 9, and 6. 

[M adds these digits, gets 20, subtracts from the next great­
est multiple of 9-which is 27-and gets 7.] M: The missing 
digit is 7, is it not? 

A: Right! 
This trick is easy to understand if symbols are used. Sup­

pose A picks a three-digit number whose digits are a, b, and c. 
Then the number is 100a + lOb + c. Affixing a zero is equiv­
alent to multiplying by 10 and so gives 1000a + 100b + lOc. 
Subtracting the original number from this leaves 900a + 
90b + 9c. The multiple of 9 which is added can be denoted 
by 9k, whereupon the final number is 900a + 90b + 9c + 9k. 
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This number can be written as 9(100a + lOb + c + k), so it 
is evidently a multiple of 9. It follows from the principle 
stated above that the sum of the digits of this number must 
must also be a multiple of 9. Consequently the missing digit 
can always be determined by subtracting the sum of the others 
from the next greatest multiple of 9. 

* * * 
The trick we have just discussed can be made even more 

baffling in the following way: 
M: Think of a number, subtract the sum of its digits, mix 

up the digits of the resulting number in any way, add 31 
[M remembers that this number, divided by 9, leaves are· 
mainder of 4], strike out any digit except a 0, and give me 
the sum of the others. 

[A thinks: 1,234,567, 1,234,567-28=1,234,539, 5,923,143, 
5,923,174, -5;923,174,26.] A: 26. 

[M subtracts 4 (the remainder in dividing 31 by 9), gets 22, 
subtracts it from 27 (the next multiple of 9) and gets 5.] 
M: The missing digit is 5, is it not? 

A: Right! 
M can replace the number 31 by any number he pleases, 

provided he remembers the remainder obtained in dividing 
by 9, and subtracts this from the sum of the digits which A 
gives him before he subtracts that sum from the next multiple 
of 9. 

* * * 
Let's look at just one more example before we go on to other 

matters. 
M: Choose any prime number greater than 3, square it, 

'3.dd 17, divide by 12, and remember the remainder. 
[A thinks: 11, 121, 138, 11Yt2, 6.] 
M: The remainder is 6, is it not? 
A: Right! 
Here use is made of the fact-we state it without proof­

that any prime number greater than 3 is of the form 6n ±1, 
where n is a whole number. (The symbol ± means plus or 
minus.) Its square is then of the form 36n2 ± 12n + 1. 
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This number, when divided by 12, leaves a remainder of 1. 
Now M had A add 17, which, divided by 12, leaves a re­
mainder of 5. The final remainder must thus be 1 + 5, or 6. 

M can vary this trick by asking A to add a number whose 
remainder, in dividing by 12, is, say, k. Then the final 
remainder will always be 1 + k. 
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now You See It 
-now You (Don't 
(Paradoxes in ~eometry) 

.AMONG the simplest of all geometrical para­
doxes are the optical illusions, in which only the eye is fooled. 
Examples of this type are to be found in almost any elemen­
tary geometry book. They are used to warn the student 
against putting too much faith in the way a figure looks-a 
warning all too soon forgotten, as we shall see later in 
Chapter 6. 

Consider the examples shown in Figure 18. Surely the line 
segment BC of diagram (a) is longer than the line segment 
AB. But no--actual measurement shows that they are equal. 
Similarly, in diagram (b), AB and BC are equal, as are AC 

A 
E 

A 

B 
) 

(a) 

D 

B 
(c) 

c 

FIG. 18. Optical illusions 
47 
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and BD in (c). Again, arcs AB and CD in (d) are equal, 
although the arc without the chord appears to be the longer. 

(e) (f) 

FIG. 18 (cont.). Optical illusions 

\Vhat of the segments p, q, and r in (e)? Are they segments 
of parallel lines? Not at all-they are parts of the same 
straight line. In (f), the two shaded portions have equal 
areas. To prove this, note that if the radius of the largest 
circle is taken as 5, then the inner radius of the shaded ring 
is 4, and the radius of the shaded circle is 3. Hence the area 
of the shaded circle is 7rr2 = 7r. 32 = 97r square units, and the 
area of the shaded ring is 7r·52 - 7r·42 = 257r -167r = 97r 
square units. In (g) and (h), believe it or not, the lines AB 
and CD are parallel straight lines. 

* * * 

THE FIBONACCI SERIES 

Another well-known paradox of much the same sort in­
volves the dissection and rearrangement of a figure. It is a 
good example of the pitfalls of "experimental geometry," a 
topic generally discussed in the early stages of any course in 
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plane geometry. For example, the student is shown how to 
deduce experimentally the fact that the sum of the angles of 

FIG. 19. The sum of the angles of a triangle is 1800 

any triangle is a straight 
angle, or 180°. To do so, he 
makes a triangle of paper or 
cardboard, cuts off the three 
angles, and rearranges them 
as shown in Figure 19. Let 
us see to what sort of contra­
diction this method of proof, 
not backed up by sound logical 
argument, can lead. 

Suppose we take a square 
piece of paper and divide it 
into 64 small squares, as in a 
chessboard. We then cut it 
into two triangles and two 
trapezoids in the manner in­
dicated in Figure 20(a) and 
rearrange the parts as in Fig­
ure 20(b). Now the resulting 
rectangle has sides which are 
respectively S units and 13 
units long, so that its area 
is 5· 13 = 6S square units, 

...... r-... 
4 ...... r-... 3 

:-
/ 

II 
1 2 

I 

(a) 

PIIIII 
Q 

(b) 

P~ 
Q 

(c) 

FIG. 20. The dissection and rear­
rangement of a square 
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whereas the area of the original figure was 8·8 = 64 square 
units. Where did that additional square unit come from? 

The truth is that the edges of the parts 1, 2, 3, and 4 do not 
actually coincide along the diagonal PQ, but form a parallelo­
gram PSQR which is shown in exaggerated proportions in 
Figure 20(c). The area of this parallelogram is the elusive 
one square unit. The angle SP R is so small that the parallelo­
gram is never noticed unless the cutting and rearrangement 
are done with great care. Indeed, it is easy for those of us 
who remember our trigonometry to see from the figure that 
tan x = % = .3750 and tan y = % = 2.5. Therefore x = 
20.56°, y = 68.20°, and LSPR = 90° - (20.56° + 68.20°) 
=1.24°. 

This particular example (I) and its generalizations have en­
gaged the attention of a number of mathematicians, Lewis 
Carroll among them. It is based on the relation 5· 13 - 82 

= 1. (Recall that the dimensions of the original square were 
8 by 8, and those of the resulting rectangle, 5 by 13.) The 
numbers 5, 8, and 13 are consecutive terms of the Fibonacci 
series, 

0, 1, 1,2,3,5,8, 13,21,34,55,89, 144, .... 

Each term of this series, after the first two, is the sum of the 
preceding two terms. That is to say, 0 + 1 = 1, 1 + 1 = 2, 
1 + 2 = 3,2 + 3 = 5,3 + 5 = 8,5 + 8 = 13,8 + 13 = 21, 
and so on. The series is named after Fibonacci (Leonardo of 
Pisa), an Italian mathematician of the thirteenth century. 
Examples similar to ours can be constructed by using other 
sets of three consecutive terms, such as 

5·2 - 32 = 1, 13·34 - 2i2 = 1, 34·89 - 55 2 = 1, 

or 

52 - 3.8 1, 132 -8.21 1, 342 - 21· 55 1, 

* * * 
Although the Fibonacci series is not of any great importance 

in pure mathematics, the fact that it has been found to occur 
both in nature and in art is paradoxical enough to warrant 
investigation. 
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First let us examine the arrangement of leaves--or buds, or 
branches--on the stalk of a plant. Suppose we fix our atten­
tion on some leaf near the bottom of a stalk on which there 
is a single leaf at anyone point. If we number that leaf 0 

.4 

I~O 
2 3 2 

o 

2 

(0) (b) (d 
FIG. 21. The arrangement of leaves on a stalk 

and count the leaves up the stalk until we come to one which 
is directly over the original one, the number we get is gen­
erally some term or other of the Fibonacci series. Again, as 
we work up the stalk, let us count the number of times we 
revolve about it. This number, too, is generally a term of 
the series. 

If the number of revolutions is m, and if the number of 
leaves is n, we shall call the arrangement an "min spiral." 
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For example, Figure 21(a) shows a ~ spiral, as seen both 
from the side and from the top. The size of the stalk has 
been exaggerated so as to show more clearly the positions of 
the leaves. The arrangement in (b) can be called either a 
% or a % spiral, depending upon whether, looking down from 
the top, we wind about the stem in clockwise or counter­
clockwise fashion. In other words, if in the first case we make 
2 revolutions in counting 5 leaves, then we make % revolution 
in passing from one leaf to the next. Consequently we must 
make % revolution between leaves if we wind in the other 
direction. To fix our ideas, we shall agree to take the longer 
path and call this a % spiral. Then the arrangement shown 
in (c) is a %-not a %-spiral. Similar arrangements can be 
observed in a wide variety of plant growth-in pine cones, in 
the petals of a flower, in the leaves of a head of lettuce, and in 
the layers of an onion, to name but a few examples.(2) 

Note that the ratios with which we have been working­
~, %, %, and so on-are ratios of successive terms of the 
Fibonacci series. In order to study the significance of these 
ratios, we must turn back a couple of thousand years to the 
ancient Greek geometers. They were much interested in 
what they called the "golden section," or the division of a 
line in mean and extreme ratio. The point B of Figure 22 is 

A B c 
FIG. 22. The golden section: AB/BC = BC/AC 

said to divide the line A C in mean and extreme ratio if the 
ratio of the shorter segment to the longer is equal to the ratio 
of the longer segment to the whole line-that is, if ABIBC = 
B CIA C. It can be shown algebraically that either of these 
ratios has the numerical value (0 - 1)/2, which, to six 
decimal places, is equal to .618034. In other words, ABIBC 
=BCIAC = .618034. Let us denote this ratio by R. 

Now return to the Fibonacci series and consider the ratio 
of any term to the succeeding term. The following table gives 
the values of the first twelve of these ratios, calculated to six 
decimal places. 
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(1) 1/1 = 1.000000 
(3) 2/3 = .666667 
(5) 5/8 = .625000 
(7) 13/21 = .619048 
(9) 34/55 = .618182 

(11) 89/144 = .618056 

1 
.618034 

(2) 1/2 = .500000 
(4) 3/5 = .600000 
(6) 8/13 = .615385 
(8) 21/34 = .617647 

(10) 55/89 = .617978 
(12) 144/233 = .618026 

1 
.618034 

53 

The arrows indicate what is intuitively evident-that the 
column on the left consists of numbers which approach R 
through values greater than R, while the column on the right 
consists of numbers which approach R through values less 
than R. Consequently the Fibonacci series provides a sequence 
of whole numbers whose successive ratios are more and more 
nearly equal to the ratio R of the golden section. 

Consider next the rectangle shown in Figure 23(a). The 
dimensions of this rectangle have been so chosen that the 

L 

w 

(a) (b) 

FIG. 23. The .618034 rectangle and its division into a square and a second 
.618034 rectangle 

ratio of the width to the length is R. That is, W /L = .618034, 
or W = .618034L. If this rectangle is divided by a line into 
a square and a rectangle, as in diagram (b) of the same figure, 
the new rectangle is again one in which the ratio of the dimen­
sions is R. Figure 24 shows the result of the continued divi­
sion of each successive rectangle into a square and a rectangle, 
and shows also how a curve can be inscribed in the successive 
squares. This curve is known in mathematics as a "logarith­
mic spiral." (3) Remarkably enough, it is just the kind of 
spiral frequently found in the arrangements of seeds in flowers, 
in the shells of snails and other animals, and in certain cuts 
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of marble. (I t is true that a logarithmic spiral can be in­
scribed in any rectangle, but the construction is not as simple 
as in the case discussed here. A second reason for introducing 
the spiral through this particular rectangle is that the rec­
tangle itself will be mentioned shortly in another connection.) 

1 
FIG. 24. Further division of the .618034 rectangle into squares, and the 

inscribed logarithmic spiral 

One of the best examples of the occurrence in nature of the 
ratio R is to be found in the head of a sunflower, shown dia­
grammatically in Figure 25. The seeds are distributed over 
the head in spirals which radiate from the center of the head 
to the outside edge, unwinding in both clockwise and counter-

FIG. 25. Distribution of seeds in a sunflower head 

clockwise directions. Detailed study of these spirals has re­
sulted in the following conclusions: 

(1) The spirals are logarithmic spirals. 
(2) The number of clockwise spirals and the number of 

counterclockwise spirals are successive terms of the Fibonacci 
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series; and thus the ratio of the smaller of these numbers to 
the larger is what appears to be nature's best possible ap­
proximation to the ratio R of the golden section. 

The normal head-5 to 6 inches in diameter-will generally 
have 34 spirals unwinding in one direction and 55 in the other 
Smaller heads may have 2734 or 1%1 combinations, and ab­
normally large heads have been grown with 8%44 combina­
tions. The same phenomena can be observed, although per­
haps not so easily, in the heads of other flowers, such as 
daisies and asters. 

So much for the relation of the Fibonacci series to nature. 
What of its relation to art? It is said that psychological tests 
have established the fact that the rectangle most pleasing to 
the eye is the one shown in Figure 23-that is, one in which 
the ratio of the dimensions is R. This rectangle, together with 
the associated logarithmic spiral, is fundamental in the tech­
nique of what has come to be called "dynamic symmetry." 
The development of the technique is chiefly the work of Jay 
Hambidge, who first made an intensive study of its use in the 
design of Greek pottery, and then extended it to sculpture, 
painting, architectural decoration, and even to furniture and 
type display. (4) Dynamic symmetry has been used exten­
sively by a number of artists, among them George Bellows, 
the well-known American painter. 

The apparent aesthetic appeal of dynamic symmetry is 
perhaps due in part to the fact that the ratio .618034 is so 
universal a constant in nature. Is it because we, who are the 
judges of aesthetic appeal, are ourselves a part of nature? 
We had better leave that question to the philosopher and the 
psychologist, and get on with our own business. 

* * * 
SOME "CIRCULAR" PARADOXES 

Consider the two equal circular disks, A and B, of Figure 
26. If B is kept fixed and A is rolled around B without slip­
ping, how many revolutions will A have made about its own 
center when it is back in its original position? The answer, 
if obtained without the aid of actual disks, is almost invari-
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ably incorrect. I t is generally argued that since the circum­
ferences are equal, and since the circumference of A is laid 
out once along that of B, A must make 1 revolution about its 
own center. But if the experiment is tried with, say, two 
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FIG. 26. Rolling a disk about an equal disk 

coins of the same size, it will be found that A makes 2 revo­
lutions. This fact can be shown diagrammatically as follows: 

In Figure 27, let P be the extreme left-hand point of A 
when A is in its original position. A moment's thought will 

",.----- ....... ... ... " ... " .... / .... 
/ .... 

I ~ 

FIG. 27. The rolling disk at the half-way point 

make it clear that when A has completed half its circuit about 
B, the arc of the shaded portion of A will have been laid out 
along that of the shaded portion of B, and P will again be the 
extreme left-hand point of A. Hence A must have made 1 
revolution about its own center. The same argument holds 
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for the arcs of the unshaded portions of A and B when A has 
completed the second half of its circuit about B. 

* * * 
Sirrilar difficulties are encountered in the problem of a slab 

supported by rollers-a device frequently used in moving 
safes, houses, and other heavy objects. 

If the circumference of each roller in Figure 28 is 1 foot, 
how far forward will the slab have moved when the rollers 
have made 1 revolution? Again the usual argument is to the 
effect that the distance moved must be equal to the circum-

FIG. 28. The slab and roller problem 

ference of the rollers, or 1 foot. And again the correct answer 
is not 1 foot, but 2 feet. 

For suppose we resolve the motion into two parts. First 
think of the rollers lifted off the ground and supported at their 
centers. Then if the centers remain stationary, 1 revolution 
of the rollers will move the slab forward 1 foot. N ext think 
of the rollers on the ground and without the slab. Then 1 
revolution will carry the centers of the rollers forward 1 foot. 
H now we combine these two motions, it should be evident 
that 1 revolution of the rollers will carry the slab forward a 
distance of 2 feet. 

* * * 
In moving heavy objects by means of a slab and rollers, 

would it be possible to use rollers whose cross sections are not 
circles, but some other sort of curve? In other words, are 
circles the only curves of constant breadth? The intuitive 
answer is yes; the correct answer is no. 

By a curve of constant breadth we shall mean exactly what 
the slab-and-roller idea implies. That is to say, if such a 
curve is placed between and in contact with two fixed parallel 
lines, then it will remain in contact with the two fixed lines 
regardless of how it is turned. 
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The simplest curve of constant breadth-aside from the 
circle-is shown in Figure 29(a). To construct it, first draw 
the equilateral triangle AB C and denote the length of each of 
its sides by r. With A as center, and with radius r, draw the 
arc BC. With B as center, and with radius r, draw the arc 
CA. Finally, with C as center, and with radius r, draw the 
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(a) (b) 
FIG. 29. Curves of constant breadth 

arc AB. This curve can be made smooth by prolonging the 
sides of the triangle any distance-say s-as in Figure 29(b). 
Here the arcs DE, FG, and HI, with centers at A, B, and C 
respectively, are all drawn with radius Sj and the arcs EF, 
GH, and ID, with centers at C, A, and B respectively, are all 
drawn with radius r + s. 

FIG. 30 

In Figure 30, the second of these curves is shown placed 
between two fixed parallel lines. It is evident from the figure 
that the curve will remain in contact with the two lines re­
gardless of how it is turned, for the distance PQ between the 
highest and lowest points of the curve is always the sum of 
the two constant radii, sand r + s, and 50 is always the same. 
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I t is well to note that although any roller whose cross sec­

tion is a curve of constant breadth can be used in place of a 
circular roller for the moving of objects on a slab, a wheel in 
the shape of either of the curves of Figure 29 could never be 
used in place of a circular cart wheel or a circular gear. For 
these curves have no real center-no point, that is, which is 
equidistant from all points on the curve. The circle is the 
only curve which has this partic­
ular property. 

E 

B 

Curves of constant breadth 
need not be regular in shape, as 
were the two just examined. The 
irregular curve of Figure 31 is 
constructed as follows: With A as 
center, and with any radius AB, 
swing arc BC. With C as center, 
and with the same radius (the 
radius remains constant through­
out), swing AD. With D as FIG. 31. An irregular curve ot 

constant breadth 
center) swing CEo With E as 
center, swing .oF. With F as center, swing EG. With B as 
center, swing AG. (G is the point of intersection of the last 
two arcs.) Finally, with G as center, swing FB. This curve 
has corner points which can be rounded off by extending the 
IinesAB, AC, and the like, as was done in the transition from 
diagrams (a) to (b) in Figure 29.(5) 

* * * 
The large circle of Figure 32 has made 1 revolution in roll­

ing, without slipping, along the straight line from P to Q. 

FIG. 32 

The distance PQ is thus equal to the circumference of the 
large circle. But the small circle, fixed to the large one, has 



60 1{ow You See It-1X.ow You 'lJon't 

also made 1 revolution, so that the distance RS is equal to 
the circumference of the small circle. Since RS is equal to 
PQ, it follows that the circumferences of the two circles are equal! 

This puzzling contradiction, which dates back to the seven­
teenth century, (6) can be explained by the fact that although 
the large circle rolls without slipping, the small one "slips" 
in a certain sense. This behavior can be made clear by think­
ing of the circles as wheels, securely fastened together, and 
running on tracks as shown in Figure 33. If track b is lowered 

AB 

b~ ____________ ~ ____ ~~ ________________________________ ~ 
a~ ____________________________________ ~ 

FIG. 33 

so that it does not touch wheel B, then 1 revolution of the 
system on track a will carry the common center forward a 
distance equal to the circumference of A. If, on the other 
hand, track a is lowered so that it does not touch wheel A, 
then 1 revolution of the system on track b will carry the com­
mon center forward a distance equal to the circumference of B. 
Finally, suppose that each wheel rests on its corresponding 
track. Now the circumferences of the two wheels,are cen­
tainly not equal. Consequently, if wheel A rolls on track a 
without slipping, there must be some slipping between wheel B 
and track b. And if B rolls on b without slipping, there must 
be some slipping between A and a. I t follows that if each 
wheel were geared to its tracks, motion would be impossible. 

A further explanation of the paradox involves the notion of 
a curve called the "cycloid." This curve, shown in Figure 34, 
is the path traced by a fixed point M on the circumference of a 
circle as the circle rolls, without slipping, along a straight line. 

FIG. 34. The cycloid 
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A fixed point N inside the circle describes what is known as 
a "curtate cycloid." 

----y:; ~ 
FIG. 35. The curtate cycloid 

Returning to the problem of the two unequal circles, think 
of the motion of a fixed point M on the circumference or the 
large circle, and that of a corresponding point N on the cir" 
cumference of the small circle. As the large circle rolls from 
P to Q, M describes a cycloid, and N a curtate cycloid. A 
glance at Figure 36 makes it evident that although each wheel 

p Q 
FIG. 36 

makes only 1 revolution, the point M travels considerably 
farther than the point N. Only the common center of the 
circles travels a distance equal to the straight line PQ. 

* * * 
The cycloid has a number of remarkable properties, of 

which we note the following three. 
(1) The length of one arch of a cycloid is equal to the 

perimeter of a square circumscribed about the generating 
circle. 

R 

~ 
P Q 

FIG. 37. The cycloidal arch PRQ is equal in length to the perimeter of the 
square ABeD; the area of the shaded region under PRQ is three times that 

of the shaded circle 
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(2) The area under one arch of a cycloid is equal to three 
1 imes the area of the generating circle. 

(3) The "path of quickest descent" between two points is 
the arc of a cycloid. For example, suppose that A and B of 
Figure 38 are two points not in the same horizontal plane, 

A 

FIG. 38. A cycloidal arc is the path of quickest descent 

and suppose that two spheres are released simultaneously at 
A and allowed to roll from A to B. If the first rolls along a 
plane, and the second along a surface in the shape of an in­
verted cycloid, the second will arrive at B before the first, in 
spite of the fact that its path is longer and that it has to roll 
uphill before it gets to B. It can be shown further that if the 
plane from A to B is replaced by a curve of any other shape, 
the sphere which rolls along this surface will always arrive at 
B later than the one which rolls along the cycloid. 

This problem of the path of quickest descent, traditionally 
known as the "brachistochrone problem," was proposed to 
Jacob Bernoulli by his brother Johannes (see p. 187) in 1696. 
I t was not long before the methods devised for the solution of 
the problem developed into what is now called the "calculus 
of variations"-an important branch of mathematics dealing 
with all sorts of extremal problems. 

FIG. 39. The prolate cycloid 

A third member of the cycloid family is the "prolate cy­
cloid." This curve is the path traced by a fixed point 0 out­
side the rolling circle, but attached to it. Figure 39 shows 
that as the circle rolls to the right, the point 0 moves to the 
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left during a small part of its journey. It can thus be said 
that no matter how fast a train is moving forward, certain 
parts of the train-points on the flanges of the wheels-are 
moving backward! 

Incidentally, a nice paradox exists in connection with the 
naming of the curtate and prolate cycloids. We have labeled 
Figures 35 and 39 in accordance with the definitions given in 
the Encyclopaedia Britannica (14th edition, 1939). But ac­
cording to Webster's New International Dictionary (2nd edi­
tion, 1934), what we have called a curtate cycloid should be 
called a prolate cycloid and vice 
versa. In view of the fact that 
"curtate" is derived from "curtus," 
meaning "short," and "prolate" 
from "prolatus," meaning "pro­
longed," the terminology we have 
adopted would seem to be the obvi­
ous one, in spite of Webster. 

One other type of cycloid also de­
serves mention. The "hypocycloid" 

FIG. 40. The hypocycloid 
is the path of a fixed point P on the 
circumference of a circle which rolls around the interior of a 
larger, fixed circle. 

If, as in Figure 41 (a), the radius of the rolling circle is half 
that of the fixed circle, the point P simply moves back and 

(a) (b) 

FIG. 41. Transforming circular motion into straight-line motion 

forth along the diameter AB. Here, then, is a device by which 
circular motion can be transformed into straight-line motion. 
Figure 41 (b) shows the center C of the rolling circle attached 
to a revolving disk D, and a rod attached to the rolling circle 
at P. The rotation of the disk D causes the small circle to 
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roll about inside the large circle (which remains fixed), and 
this rotation in turn causes the rod to move back and forth 
in a straight line. 

* * * 

TOPOLOGICAL CURIOSITIES 

Let us meditate for a moment on the ordinary doughnut­
or cruller, depending upon the part of the country from which 
we come. Is that part which constitutes the hole inside or 
outside the doughnut? We generally avoid the wordy phrase 
used here and speak of "the hole in a doughnut," implying, 
however unconciously, that it is inside. But is the inside 
really inside or outside? If we go on to debate the question 
without first settling upon some sort of definition of "inside" 
and "outside," our argument is likely to be as fruitless as the 
argument as to whether the thing we are talking about is 
really a cruller or a doughnut. 

The problem of what constitutes the inside and the outside 
of a doughnut is the concern of the student of "topology," or 
"analysis situs" (literally, the analysis of situation, or posi­
tion). Ordinary plane and solid geometry are essentially 
quantitative, dealing as they do with the sizes of things­
the lengths of lines, the areas of surfaces, and the volumes of 
solids. Topology, on the other hand, is a kind of geometry 
which ignores sizes and concentrates on such qualitative 
questions as whether a certain point is inside, on, or outside a 
certain closed curve or surface. 

To be more specific, consider the circle shown in Figure 42. 
The student of plane geometry is interested in such things as 
the number of inches in the circumference of the circle, or in 
the number of inches in the distance from the center 0 to the 
point P, or in the number of square inches in the area of the 
circle. The topologist, on the other hand, is interested in this 
sort of question: The point P is inside the circle, the point Q 
on the circle, and the point R outside the circle. Now sup­
pose the circle is drawn on a sheet of rubber and then stretched 
and distorted in any way, shape, or manner-provided it is 
not torn. Does P still lie inside the curve? Does Q stilI lie 
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on the curve? Does R still lie outside the curve? The answer 
to all three of these questions is obviously yes, but this prob­
lem is an elementary one. 

The science of topology is relatively young. The first 
systematic work in the subject appeared about the middle of 

.R .R 

A circle The same circle distorted 

FIG. 42 

the nineteenth century. But in 1736, over a hundred years 
earlier, Euler published the first single result of any topologi­
cal consequence. Let us look at his problem. (7) 

In the German town of Konigsberg ran the river Pregel. 
In the river were two islands, connected with the mainland 

A 

"d"'~~~ 
--~~~ 

FIG. 43. The bridges of Konigsberg 

and with each other by seven bridges, as shown in Figure 43. 
A frequent topic of conversation in the town was whether or 
not it was possible for a person to set out for a walk from any 
point in the town, cross each bridge once and only once, and 
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return to his starting point. No one had ever found a way to 
do this, but on the other hand, no one had ever been able to 
prove that a way did not exist. Euler heard of the problem 
and went about its solution in a systematic manner. He 
noted-and here the topological method creeps in-that the 
problem is unchanged if the somewhat complicated figure 

A above is replaced by the simple _-c.... diagram in Figure 44. Then the 

3 

D+-------~----~ 

4 

c 

original problem is equivalent to 
this: is it possible to start at any 
point and trace this diagram 
with a pencil without lifting the 
pencil from the paper and with-
out retracing any portion of the 
diagram? Euler proved not only 
that this is impossible, but went 

FIG. 44. The Konigsberg problem on to establish additional results 
simplified 

for diagrams of a more general 
nature. Incidentally, the diagram above can be traced in the 
manner indicated if the bridge BD is replaced by one from A 
to C. 

Euler's problem can hardly be called paradoxical, but there 
are two reasons why it was worth discussing. First, it gives 
us some idea of the topological method, whereby a compli­
cated diagram i-s replaced by a simple one. In the second 
place, it indicates the general nature of a topological problem 
-one in which the essentials are unchanged by any distortion 
of the figure. But now, instead of going any further into a 
technical development of the subject, we shall look at some 
of the weird and startling problems which arise in it. For the 
most part we shall be dealing with what we always thought 
were simple ideas-ideas about which our intuition has never 
before led us astray. Perhaps we shall learn how unreliable 
a guide intuition can sometimes be. 

* * * 
The curve in Figure 45 is a complicated-looking affair, but 

a mathematician would call it a "simple closed curve," for it 
never crosses itself, and it divides the plane in which it lies 
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into two parts, one inside the curve and the other outside. 
Topologically speaking, it is equivalent to a circle, for it can 
be transformed into one by proper stretching. Figure 46, on 
the other hand, shows a closed curve which is not simple. 
At first thought we may be tempted to say that this curve 
divides the plane into an inside, consisting of the regions I 
and X, and an outside, O. But not so fast! Let us return for 

o 

FIG. 45. A simple closed curve FIG. 46. A closed curve that is 
not simple 

a moment to Figure 45. If we start at any point of the inside, 
I, and follow a path which cuts the curve at anyone point, we 
shall find ourselves at some point of the outside, O. This cor­
responds roughly to our intuitive idea of what constitutes the 
inside and the outside of a curve. Now, in Figure 46, if we 
start anywhere in I and follow a path which cuts the curve 
anywhere except between the points a and b, it is true that we 
find ourselves at some point of O. But what if our path cuts 
the curve between a and b, so that we arrive in X? If X is out­
side the curve, we ought to be able to get from X to 0 without 
again crossing the curve. And if X is inside the curve, we 
should have been able to get from I to X without crossing the 
curve the first time. Hence, relative to I, the region X is 
neither inside nor outside the curve. 

* * * 
So far we have been working with one-dimensional curves 

on a two-dimensional surface. We shall now step everything 
up one dimension and consider a similar problem involving 
two-dimensional surfaces in three-dimensional space. 
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A sphere is a good example of a "simple closed surface"­
a surface which divides all of space into two regions, one inside 
the sphere and the other outside. If we start at any point of 
the inside, I, and follow a path which cuts the surface at any 
one point, we arrive at the outside, 0, as in Figure 47(a). 

The surface whose cross section is shown in Figure 47(b) is 
constructed by taking a hollow sphere, soldering a hollow 
pipe to the outside of the sphere at A, cutting a hole in the 
sphere at B, and here soldering the other end of the pipe to 
the sphere. Thus the pipe is closed at A, and opens into the 

(a) (b) 
FIG. 47 

sphere at B. The surface formed by the sphere and the pipe 
is certainly a closed surface, but it is no longer a simple one. 
For what constitutes the inside, and what the outside? If we 
start from any point of I and follow a path which cuts the 
sphere anywhere except in the circle at A, we arrive at O. 
But if our path cuts the sphere in the circle at A, we follow 
the pipe around and again find ourselves inside the sphere. 
And if we follow the same path in reverse order, we are still 
inside the sphere. 

This problem is considerably more baffling than that of the 
curve in Figure 46. There we might at least have said that 
the curve has two separate insides, I and X, and one outside, 
O. But here the sphere and the pipe cannot be thought of as 
separate insides, for although they are separated at A, they 
run into one another at B. The best we can say is that the 
surface has an inside and an outside except for the small por­
tion of the sphere at A. 

Now look at the surface-called "Klein's bottle"-shown 
in Figure 48. We can construct this surface by taking one end 
of a hollow glass tube, bending it around, inserting it through 
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a hole in its side, and welding the two open ends together. 
The resulting surface is a closed surface, being unbroken in 
the usual sense at any point. For example, Figure 49(a) 
shows the cross section of an ordinary bottle. This surface is 

FIG. 48. "Klein's bottle"-a closed surfacE. with no inside 

an open one, being broken at the neck. Figure 49(b), on the 
other hand, is a cross section of the surface of Figure 48. This 
surface has no break like that at the neck of the bottle. To 
repeat, it is a closed surface. (In all cases, of course, the glass 
must be thought of as a true surface-one with no thickness.) 

(a) (b) 
FIG. 49 

Suppose we start anywhere and follow a path which cuts 
the surface at anyone point. We can, without again cutting 
the surface, return to the place from which we started. In 
other words, no matter where we penetrate the surface, we 
are still outside of it. This closed surface therefore has no 
inside whatever! (8) 

* * * 
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Most of the surfaces met with in everyday life are "bi­
lateral," or two-sided. A sheet of paper, for example, has 
two sides. If a fly were placed on one side, he could get to a 
point on the other side only by cutting through the paper­
how a fly could do this is beside the point-or by going over 
the edge. A sphere is a closed bilateral surface. The fly 
could crawl all over the outside, and could get to the inside 
only by going through the surface. But the closed surface of 
Figure 48 is "unilateral," or one-sided. A moment's thought 
will make it clear that the fly could crawl from anyone point to 
any other point without the inconvenience of cutting through. 

FIG. 50. An ordinary cylindrical 
strip (SI) 

FIG. 51. The Mobius strip (S2) 

Let us consider a simpler example of a unilateral surface­
one which is somewhat easier to construct. First take a long, 
narrow, rectangular strip of paper, and paste the ends to­
gether as shown in Figure 50. The result is a cylindrical sur­
face which has two sides and two edges. We shall refer to 
this strip as 51' 

Now, before pasting the ends of a similar strip together, 
give one of them a half-twist-a twist through 180°, that is. 
The resulting surface, called a "Mobius strip," is a one-sided 
surface with but one edge. An attempt has been made, in 
Figure 51, to show what this surface looks like, but you had 
better actually construct one if you want to study its proper­
ties in detail. To convince yourself that it has but one side, 
start at any point and draw a line down the middle. Keep 
on drawing, without lifting the pencil from the paper, until 
you return to the point from which you started. You will 
find that the single line has completely traversed what con­
stituted, before the ends were pasted together, the two sides 
of the original rectangular piece of paper. And to convince 
yourself that the Mobius strip has but one edge, start at any 
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point of the edge and follow it around, without crossing the 
paper, until you are back where you started. Again you will 
find that you have completely traversed what constituted, 
before the ends were pasted together, the two long edges of the 
original rectangular piece of paper. We shall, for convenience, 
call the Mobius strip S2. 

Finally, if one of the ends is turned through a full twist 
(through 360°) before pasting, the resulting surface, like SII 
has two sides and two edges. 
We shall refer to this strip, 
illustrated in Figure 52, as S3' 

And now get out your scis­
sors, for we have more to do. 
Suppose we cut the bilateral 
strip SI along a line midway 
between the edges. I t is not h . S FIG. 52. T e stnp 3 

difficult to see that we obtain 
two separate strips, identical with the original one except that 
they are only half as wide. But what if we cut the Mobius 
strip S2 in the same manner? Anyone who can predict the 
result before actually carrying out the experiment must have 
better than average intuitive powers. For the result is a 
single strip-not two-twice as long and half as wide as the 
Oliginalone. Furthermore, it is no longer unilateral, but is a 
bilateral strip of the type S3' And what if this strip S3 is cut 
down the middle? Here the result consists of two interlocked 
surfaces of the type S3, each of them equal in length to the 
strip from which they were cut, and half as wide. (9) 

For a final surprise, take a new strip S2-the unilateral 
Mobius strip-and cut it along a line which runs parallel to 
the edge and a third of the width of the strip from the edge. 
Keep cutting until you are back at the starting-point. The 
result? Two interlocked surfaces, one equal in length to the 
original strip, the other twice as long. The shorter one is 
again of type S2, the longer one of type S3' 

Try the experiments described and invent variations of 
your own. Predicting the results will give your intuition a 
good workout. 

* * * 
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Much of the early work in topology was concerned with the 
study of knots. As a matter of fact, anyone who has ever 
played with those puzzles consisting of interlocked wires, 
nails, rings, or strings can claim to have been, in a small way, 
a topologist. 

When is a closed curve knotted and when is it not knotted? 
("Not knotted" may be a bit confusing, particularly in oral 
discussion, but be consoled by the fact that we are not going 
into what Tait, an English mathematician, called the "knot­
tedness, beknottedness, and knotfulness" of knots!) A piece 

(a) 
(b) 

FIG. 53. Knotted or not knotted? 

of string with the ends tied together will do nicely for a closed 
curve. Then the curve, or string, is not knotted if it can be 
transformed into a single simple closed curve (see page 66) 
without cutting and retying. Otherwise it is knotted. For 
example, Figure 53(a) shows a string which is actually un­
knotted, while diagram (b) of the same figure shows one which 
is knotted in the simplest possible way. 

Our discussion of the Mobius strip and its various relatives 
can be pu t in terms of knots as follows. 

The two edges of a strip of type S1 are neither knotted nor 
interlocked. This strip, cut down the middle, falls into two 
separate parts. 

The single edge of a strip of type S2 is not knotted. This 
strip, cut down the middle, becomes a single unknotted strip 
of type S3' 

The two edges of a strip of type S3 are interlocked, but not 
knotted. When this strip is cut down the middle, it falls into 
two interlocked strips. 

If one end of the strip is turned through three half-twists 
(or 540°) before pasting, the resulting surface--call it S4-
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has one side and one knotted edge. For if this strip is cut 
down the middle, a single strip is obtained, as in a strip of 
type 52, but in this case the 
strip itself is knotted. As a 
matter of fact, the knot is of 
the type shown in Figure 
53(b). 

There are many examples 
of paradoxes which arise in the 
study of knots. The reader 
who is interest~d further in the 

FIG. 54. The strip 54 

subject is referred to other works.(lO) We shall content our­
selves with a description of only two more examples-both 
of them rather popular tricks. 

The first concerns our friends A and B, who appear in 
Figure 55. They are tied togetht'r in the following way. One 

A 8 

FIG. 55. The escape-artist's trick 

end of a piece of rope is tied about A's right wrist, the other 
about his left wrist. A second rope is passed around the first, 
and its ends are tied to B's wrists. How are A and B to free 
themselves without cutting one of the ropes? No amount of 
climbing in and around each other's rope will do it, but the 
solution is simple. B takes up a small loop near the middle 
of his own rope, passes it under the loop around A's right 
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wrist-on the inside of the wrist and in the direction from 
elbow to hand-and slips it over A's hand. He then passes it 
again under the loop around A's wrist-this time on the out­
side of the wrist and in the direction from hand to elbow­
and behold, his own rope can now be pulled free. 

The second of our two tricks has to do with the system of 
apparently interlocked loops and surfaces consisting of a man, 
his vest, and his coat. We should probably say offhand that 
it is impossible for a man to take off his vest without first 
removing his coat-without, that is, slipping his arms out of 
his coatsleeves. But you, or anyone else, call. do it by fol­
lowing these directions. Unbutton the vest and coat. Grasp 
the end of the left-hand sleeve and the lower left-hand corner 
of the coat firmly in the left hand and put that hand and arm 
through the left armhole of the vest, from outside to inside. 
This operation leaves the left armhole free, and over the left 
shoulder. Pull the vest around behind the neck. Now grasp 
the end of the right-hand sleeve and the lower right-hand 
comer of the coat firmly in the right hand and put that hand 
and arm through the left armhole, again from outside to 
inside. This operation leaves the vest attached to the body 
only by the right arm, which is now through both armholes 
of the vest. Finally, pass the vest down the inside of the right 
coatsleeve and out at the end. 

Warning! Use an old suit! 

* * * 
A number of topologists have spent a great deal of time 

and energy on the "four-color problem." Experience has 
taugh t mapmakers, both amateur and professional, that only 
four colors are needed to distinguish between the different 
countries of a plane or spherical map. Let us turn cartogra­
phers for a moment and look at a few examples of plane 
maps. 

A piece of land occupied by one, two, three, or four countries 
can obviously be taken care of with four colors or fewer. 
Perhaps we had better put one possible misunderstanding out 
of the way before it arises. I t may be argued that we need 
seven colors for the map in Figure 56. But one of the condi-
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tions of the problem is that two countries may be colored the 
same if they touch only at one point-not, however, if they 
touch along a line. Thus in the map under consideration we 
can get along with three colors, indicated in the figure by 
three distinctive shadings. 

Now consider Figure 57, which shows four countries, each 
of which touches the other three. I t is evident at once that 
four colors are necessary for the coloring of this map. No 

2 

4 

FIG. 56. Three colors suffice for 
this map of seven countries 

FIG. 57. Four colors are necessary 
for this map of four countries 

one, however, has yet been able to draw a map of jive countries, 
each of which touches the other four. 

Here is an excellent example of what is known as necessary 
and sufficient conditions in a mathematical problem. The map 
of Figure 57 furnishes proof of the fact that four colors are 
necessary. Yet the mere fact that no one has ever found a 
map for which four colors are not sufficient does not prove 
that four colors are sufficient. 

Although it is suspected that four colors are sufficient, the 
best result which has been proved to date is that five are suffi­
cient. It is remarkable that although the problem has been 
solved only in part for such simple surfaces as the plane and 
the sphere, it has been solved completely for much more com­
plicated surfaces. For example, it has been proved that seven 
colors are both necessary and sufficient for the coloring of a 
map on a "torus"-a doughnut, or, if you will, a cruller. 
An attempt is made in Figure 58 to show a torus upon which 
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seven regions, each of which touches the other six, have been 
laid out. (11) 

The four-color problem has fired the imagination and 
enthusiasm of many a mathematician. Scarcely a month 

FIG. 58. The "seven-color problem" of the torus 

goes by but that some mathematical journal or other carries 
an article either on the problem itself, or on problems which 
have arisen out of it. The real problem-that of the suffi­
ciency of four colors for a plane or spherical map-is still an 
open question. 

* * * 
We must not conclude, from what we have seen in our 

brief excursion into topology, that it is a subject made up 
entirely of useless, though interesting, games and puzzles. 
The introduction of topological methods has brought about 
startling advances not only in other branches of mathematics 
but in physics and chemistry as well. And to mention but 
one of the applications of topology to industry, the Bell Tele­
phone Laboratories have found a use for it in the classifica­
tion of electrical networks. No one dares prophesy the ulti­
mate usefulness of topology-it is as yet too young a science. 
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Thou Shalt not 
{j)ivide by Zero 
(Algebraic Fallacies) 

mOST of the paradoxes of the previous three chap­
ters were paradoxical in that they appeared to be false-or 
at least highly improbable-yet were actually true. In this 
chapter and the next we shall consider some results in algebra 
and geometry which appear to be true, yet which are actually 
false. Paradoxes of this type might better be called "fal­
lacies," since they are the result of fallacious logical reasoning. 

The very nature of the problems to be considered in Chap­
ters 5 and 6 necessitates the use of some of the more formal 
techniques of algebra and geometry. It may well be that a 
number of us will not find these two chapters as exciting as 
Chapters 7, 8, and 9. Such people can skip Chapters 5 and 6 
if they wish, although some of the material developed in these 
chapters will be used later on. At any rate, we shall try to 
keep in mind the fact that many of us have not seen the inside 
of a classroom for years, and for this reason we shall generally 
discuss in some detail the finer points upon which any par­
ticular argument may be based. 

Whenever there are groups of fallacies which involve the 
same error-such as division by zero, to name one of the most 
common-only one example of each group will be explained 
in full. The remaining examples of the group will then be 
enumerated either without explanation, or with at most a 
hint or two. We shall in this way have the satisfaction of 
discovering for ourselves where and how the difficulty occurs. 
If, however, our wits are not equal to the task, we can always 
refer to the Appendix for the solution. 

* * * 
No doubt everyone will recall the axioms, or assumptions, 

which are at the foundation of the study of arithmetic and 
77 
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which are consequently essential to any mathematical argu­
ment having to do with numbers. We probably remember 
them in some such sing-song fashion as this: "Equals plus or 
minus equals are equal; equals multiplied or divided by equals 
are equal; like powers or like roots of equals are equal; things 
equal to the same thing are equal to each other; and so on." 
Let us have a look at some applications-or rather misappli­
cations-of these axioms. 

PARADOX 1. 
1 cat has 4 legs; 

no (i.e., 0) cat has 3 legs. 

(1) 

(2) 

Adding the "equals" (1) and the "equals" (2), we conclude 
that 1 cat has 7 legs. 

PARADOX 2. 
2 pounds = 32 ounces; 

t pound = 8 ounces. 

(1) 

(2) 

Multiplying the equals (1) by the equals (2), we obtain 
1 pound = 256 ounces. 

PARADOX 3. 
1·0 = 2·0; 

0=0. 

Dividing the equals (1) by the equals (2) gives 1 = 2. 

PARADOX 4. 
(_a)2 = (+a)2, 

(1) 

(2) 

since the square of a negative quantity is positive. Extract­
ing the square root of both sides, we have -a = +a. 

PARADOX 5. 
i dollar = 25 cents. 

Extracting the square root of both sides of this expression 
gives 

vi dollar = V25 cents, 
or 

! dollar = 5 cents. 
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PARADOX 6. In attempting to solve the system of two equa­
tions in two unknowns: 

Ix + y = 1, 

x + y = 2, 

we are forced to the conclusion that, since 1 and 2 are equal 
to the same thing, they must be equal to each other-that is, 
1 = 2. 

Where are the errors? Paradox 1 is too obvious to spend 
any time on. As a matter of fact, we had to stretch our 
imagination a little in order to get "equals" out of the state­
ments (1) and (2). 

In Paradoxes 2 and 5 we performed the operations of multi­
plication and root extraction only on the numbers, and not on 
the units involved. Our conclusion in Paradox 2, for example, 
should have been 

1 (pound)2 = 256 (ounces) 2. 

Now a "square pound" is a rather difficult thing to visualize. 
It would be clearer if we used feet and inches. Our argument 
would then run as follows: 

2 feet = 24 inches; 

! foot = 6 inches. 

(1) 

(2) 

Therefore 1 square foot = 144 square inches-a result which 
is evidently correct. 

Paradox 3 reminds us rather forcibly of the fact that the 
axiom concerning "equals divided by equals" carries with it 
a rider to the effect that the divisors shall not be zero. We 
shall have more to say about this point before very long. 

Paradox 4 recalls another item which may well have been 
forgotten. In extracting a square root, both the positive and 
negative signs must be taken into consic!eration. That is to 
say, the expression in question yields the two correct identities 
+a = +a and -a = -a. Here is another matter which 
will receive more attention later on. 

Paradox 6 shows us that the axioms cannot be applied 
blindly to equations which are true only for certain values of 
the variables, or unknowns. The values of x and y for which 
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both of the equations (1) and (2) are true must be taken into 
account, and there are no values of x and y for which x + y 
= 1, and, at the same time, x + y = 2. 

Another misuse of the axioms might be of some value in the 
following instance. Suppose a man is accused by his indignant 
wife of having had too much to drink. He can maintain that 
it is undeniably true that a glass which is half full is equivalent 
to a glass which is half empty. That is, 72 full = 72 empty. 
But from this it follows-by multiplying both sides by 2-
that full = empty, so that every time our friend had drunk 
a full glass, he had had nothing at all to drink! The·chances 
for the success of this scheme are inversely proportional to 
the wife's intelligence. 

* * * 
Not only is it possible to observe the rules (after a fashion) 

and come out with incorrect results, but, as any teacher of 
mathematics will testify, it is often possible practically to 
annihilate the rules and still arrive at the correct conclusion. 
For example, it is quite true that if in the fractions 1%4 and 
2%5, the sixes are canceled from the numerators and denomi­
nators, the resulting fractions, 74 and %, are correct. Again, 
the exponents in the numerator and denominator of 
(1 + x)2/(1 - x2 ) can be canceled, and the correct result, 
(1 + x)/(l - x), obtained. 

The same sort of illegal cancellation was once used in the 
following proof m plane geometry. As in Figure 59, the 

p 0 R Q s 
I I I I I 

FIG. 59 

points P, 0, R, Q, and S are so marked off on a straight line 
that PO = OQ and OR/OQ = OQ/OS. It is then desired to 
prove that PR/RQ = PS/QS. This result, it was argued, 
must be true; for if the R's are canceled on the left of this 
last equation, and the S's on the right, the identity P /Q = 

P/Q results! But P/Q = P/Q is of course meaningless, sinc@. 
P and Q represent points, whereas P Rand RQ are magni­
tudes. 

* * * 
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A type of examination question which has recently become 
popular-at least with the examiners-is this: "If x be dimin­
ished, in what way does the fraction l/x change?"(l) The 
student is expected to answer that the value of the fraction 
increases, and the value of the problem is supposed to lie in 
the fact that it tests the student's feeling for what is known 
as "functional relationship." The expected reply appears 
reasonable enough, yet it leads to a contradiction if no further 
restrictions are put on the values assumed by x. For suppose 
x runs over the decreasing sequence 

···,5,3,1, -1, -3, -5, .... 

Then the corresponding values of l/x are 

... , -A-, l, 1, -1, -l, -t, 
Now it is true enough that V3 is greater than 7&, that 1 is 
greater than V3, that - V3 is greater than -1, and that -7& 
is greater than - V3. But must we conclude that -1 is 
greater than 1? 

The difficulty arises from our failure to examine carefully 
all possibilities before concluding that l/x increases as x de­
creases. We probably thought of letting x run over a decrea£­
ing sequence of positive numbers-such as ... , 5, 4, 3, 2, l­
in which case the value of l/x does increase. It also increases 
if x runs over a decreasing sequence of negative numbers, such 
as -1, -2, -3, -4, -5, .... These facts can be verified 
by a glance at the graph of l/x, shown in Figure 60. But the 
figure also shows that we cannot conclude that l/x increases 
as x runs over a decreasing sequence of both positive and nega­
tive numbers-there is a gap in the curve as x, in decreasing, 
passes through the value o. 

The same sort of negligence in defining carefully the range 
of permissible values which the variable or variables can 
assume-the "domain of definition," as it is frequently called 
-leads again to the paradoxical result that -1 is greater 
than 1 in the following instance. (2) 

Consider the proportion alb = c/d. It seems reasonable 
to assert that if the numerator of the first fraction is greater 
than that of the second, then the denominator of the first 
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fraction must be greater than that of the second. That is, if 
a is greater than c, then b is greater than d (as, for example, 
in the proportion 6/3 = 4/2). But now suppose that a = d 
= 1, and b = c = -1. Then the proportion becomes 1/-1 
= -1/1, a proportion which is unquestionably valid. But 
since the numerator 1 is greater than the numerator -1, we 
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FIG. 60. The graph of 1jx 

must conclude that the denominator -1 is greater than the 
denominator 1. In other words, 1 is both greater than -1 
and less than - 1 ! Here again we should have restricted 
a, b, c, and d to either positive numbers or negative numbers, 
not a mixture of both. 

* * * 
Almost everyone who has been exposed to elementary 

algebra has at one time or other been exposed to a proof that 
2 = 1. Such a proof is generally something of this sort: 

Assume that 
a = b. (1) 
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Multiplying both sides by a, 

a 2 = abo 

Subtracting b2 from both sides, 

a 2 - b2 = ab - b2• 

Factoring both sides, 

(a + b)(a - b) = b(a - b). 

Dividing both sides by a - b, 

a + b = b. 

(2) 

(3) 

(4) 

(5) 

If now we take a = b = 1, we conclude that 2 = 1. Or we 
can subtract b from both sides and conclude that a, which can 
be taken as any number, must be equal to zero. Or we can 
substitute b for a and conclude that any number is double 
itself. Our result can thus be interpreted in a number of 
ways, all equally ridiculous. 

It may well be that we remember not only this sort of proof, 
but also the point at which the error occurs. It is in step (5), 
where we divided both sides by a-b. Since a and b were 
originally assumed to be equal, we divided both sides by zero. 
Now why, you may well ask, can't we divide by zero? The 
answer involves the notion of consistency, which we discussed 
briefly toward the end of Chapter 1. There it was pointed 
out that the mathematician asks only that his axioms lead to 
no such contradictions as that 2 = 1. Let us look at this 
question in a little more detail. 

Division in mathematics is defined by means of multiplica­
tion. To divide a by b means to find a number x such that 
b·x = a, whence x = a/b. If b = 0, there are two different 
cases to discuss: that in which a is not zero, and that in which 
a is zero. Suppose we try to determine x in each of these 
cases. In the first we have x = a/O, or O·x = a. Now what 
number x, multiplied by 0, will give a, where a is any fixed 
number (not equal to zero), such as 3, or -5, or Ys? Since 
any number multiplied by 0 is 0, there is no such number x. 
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In the second case, where a is zero, we have x = 0/0, or 
O'x = O. Here any number x will do, since, as we have said, 
any number multiplied by zero is zero. Now the mathemati­
cian requires that the division of a by b yield a definite, 
unique ("single" is meant here--not "unusual"!) number as 
a result. And we have just seen that division by zero leads 
either to no number or to any number. Is it any wonder, 
then, that the mathematician has adopted the rule which some 
teachers refer to as the Eleventh Commandment, "Thou shalt 
not divide by zero"? 

Here are some other fallacies, all based on the illegal opera­
tion we have been discussing. Can you find the trouble your­
self? (You will find the solutions of all numbered paradoxes 
-PARADOX 1, PARADOX 2, and so on-in the Appendix. This 
remark applies both to this chapter and to the next.) 

PARADOX 1. To PROVE THAT ANY TWO UNEQUAL NUMBERS 

ARE EQUAL. (3) 

Suppose that 
a = b + e, (1) 

where a, b, and e are positive numbers. Then inasmuch as a 
is equal to b plus some number, a is greater than b. Multiply 
both sides by a-b. Then 

a2 - ab = ab + ae - b2 - be. (2) 

Subtract ae from both sides: 

a2 - ab - ae = ab - b2 - be. (3) 
Factor: 

a(a - b - e) = b(a - b - e). (4) 

Divide both sides by a - b - e. Then 

a = b. (5) 

Thus a, which was originally assumed to be greater than b, 
has been shown to be equal to b. 
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PARADOX 2. To PROVE THAT ALL POSITIVE WHOLE NUM· 

BERS ARE EQUAL.(4) 

By ordinary long division we have, for any value of x, 

x - 1 
--=1 
x - 1 ' 

x2 - 1 
1 = x + 1, 

x-

x3 - 1 
--- = x2 + X + 1, 
x - 1 

X4 - 1 
x _ 1 = x3 + x2 + X + 1, 

xn - 1 
--- = xn + xn- 1 + ... + x2 + X + 1. 
x - 1 

Now in all of these identities let x have the value 1. The right­
hand sides then assume the values 1, 2, 3,4, ... , n. The left­
hand sides are all the same. Consequently 1 = 2 = 3 = 4 = 
... = n. 

PARADOX 3. The following argument shows how the axi­
oms can be violated and the correct results still be obtained. (5) 

Let x have the value 3, so that 

x - 1 = 2. 

Adding 10 to the left-hand side only, 

x + 9 = 2. 

Multiplying both sides by x - 3, 

x2 + 6x - 27 = 2x - 6. 

Subtracting 2x - 6 from both sides, 

x2 + 4x - 21 = O. 
Factoring, 

(x + 7) (x - 3) = O. 

(1) 

(2) 

(3) 

(4) 

(5) 
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Dividing both sides by x + 7, 

x - 3 = 0, or x = 3, 

which is the value originally assigned to x. 

* * 

(6) 

Division by zero is sometimes fairly well disguised. For 
example, in the theory of proportions it is easy to establish 
the fact that if two fractions are equal, and if their numerators 
are equal, then their denominators are equal. That is, from 
alb = al c it can be inferred that b = c. That this inference 
is not valid if a = 0 can be seen by running through the 
argument in the general case. Given 

a a 
b =~. 

Multiply both sides by bc. Then 

ac = abo 
Divide both sides by a: 

c = b. 

But if a = 0, then this last step involves division by zero. 
Consider the following problem in this light.(6) It is desired 

to solve the equation 

x + 5 _ 5 = 4x - 40. 
x - 7 13 - x 

Combining the terms on the left-hand side, 

Simplifying, 

x + 5 - 5(x - 7) 
x-7 

4x - 40 
13 - x 

4x - 40 4x - 40 
= 7 - x 13 - x 

(1) 

(2) 

(3) 

Now since the numerators in (3) are equal, so also are the 
denominators. That is, 7 - x = 13 - x, or, upon adding x 
to both sides, 7 = 13. 

It may well be argued, "But how do we know that 4x - 40, 
the numerator on both sides of (3), is equal to zero?" This 
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question brings up another point which was briefly noted at 
the beginning of the present chapter. There it was pointed 
out that the axioms cannot be applied blindly to equations 
without taking into consideration the values of the variables 
for which the equations are true. Thus equation (1), unlike 
the initial equations in Paradox 2 above, is not an identity 
which is true for all values of x, but is an equation which is 
satisfied only for the value x = 10. To verify this statement, 
clear of fractions in (3), getting successively 

(13 - x)(4x - 40) = (7 - x)(4x - 40), 

(4x - 40)(13 - x - 7 + x) = 0, 

24(x - 10) = 0, 

x = 10. 

Consequently the only value of x for which the equation is 
true is x = 10, and this reduces the numerators in (3) to 
zero. 

In the following three problems (7) we shall have occasion 
to use certain properties of proportions. We recall them now 

for our convenience. If P. = :., then it follows that 
q s 

p-q r-s 
(A) =-

q s 

p r 
--=--
q-p s-r 

(B) 

p-r p r 
(C) - = - =-. 

q - s q s 

To prove the first, note that if P. = !. , then, subtracting 1 from 
q s 

both sides, P. - 1 = ~ - 1, whence p - q = r - s. The 
q s q s 

others can be proved similarly. 

PARADOX 1. Consider the proportion 

x+l 
a+b+l 

x - 1 
a+b-l 
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Applying property (A), we have 

or 

x + 1 - (a + b + 1) 
a+b+1 

x-a-b 
a+b+1 

x - 1 - (a + b -} 
a+b-1 

x-a-b 
a+b-l 

And applying property (B), 

x+1 x-1 
--~~~~~--~ = ----------------
a + b + 1 - (x + 1) a + b - 1 - (x - 1) , 

or 
x + 1 x - 1 

= 
a+b-x a+b-x 

In the first result the numerators are equal. So, then, are thE 
denominators. Hence a + b + 1 = a + b - 1, or +1 = -1. 
In the second result the denominators are equal. So, then, 
are the numerators. Hence x + 1 = x - 1, and again 
+1 = -1. 

PARADOX 2. Suppose that 

3x - b 3a - 4b 
3x - Sb 3a - 8b 

These fractions are obviously (?) different from unity. But if 
we apply property (C) we must conclude that 

3x - b - (3a - 4b) 3x - 3a + 3b 
3x - Sb - (3a - 8b)' or 3x _ 3a + 3b' or 1, 

is equal to each of the original fractions. That is to say, 

3x - b 3a - 4b 
-=-3x---S=b = 3a - 8b = 1. 

PARADOX 3. Consider the proportions 

x-a+c 
y-a+b 

b x+c a+b and ---- = ---. 
c y+b a+c 
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Applying property (C) to each, we have 

x-a-b+e b x-a-b+e a+b -------'-- = - and = --. 
y-a+b-e e y-a+b-e a+e 

Hence bje and (a + b)j(a + e) are each equal to a third frac­
tion without being equal to each other. 

* * * 
Before we leave the subject of equations which are not 

identities, let us look at an example or two of the way in 
which hidden contradictions in the equations can bring about 
contradictions in their solution. We had the very obvious 
case at the beginning of this chapter of the system of two simul-

" " I" 
y 

1"""-0x 

~~~ &,~. ~ 

" I" I'" " " "'- x 

" ~ "'-I" 
I" " "'-I" I'\. !" I' 

FIG. 61. The graphs of x + y = 1 and x + y = 2 are parallel straight lines 
and so have no points in common 

taneous equations in two unknowns, x + y = 1, x + y = 2. 
It was pointed out at the time that there are no values of x 
and y for which x + y is equal to both 1 and 2 at the same 
time. A graphical interpretation of this statement is given in 
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Figure 61. But here is an example which is not quite so 
obvious. 

[
2X + y = 8; y 

x=2--
2 

(1) 

(2) 

Substitute (2) in (1). It follows that 4 - y + y = 8, or 
4 = 8. To discover the trouble here it is only necessary to 
clear of fractions in (2) and to add y to both sides. The sys­
tem is then seen to be 

1
2X + y = 8; 

2x + y = 4. 

(1) 

(2) 

PARADOX. The following system of equations (8) is of 
what is known as the "homogeneous" type. We follow the 
usual method of solving such a system. 

j2x2 - 3xy + y2 = 4; 

x2 + 2xy - 3y2 = 9. 

(1) 

(2) 

Multiply both sides of (1) and (2) by 9 and 4 respectively. 
Since the resulting right-hand sides are equal, so also are the 
resulting left-hand sides. That is to say, 

Simplifying, 

2x2 - 5xy + 3y2 = O. 

Factoring, 

(2x - 3y)(x - y) = o. 

Now the product of two factors will be zero if either of the 
factors is zero. Hence 

2x - 3y = 0 or x - y = o. 

Each of these equations is to be solved simultaneously with 
either (1) or (2). Substituting y = 2x/3 in either, we obtain 
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the correct solutions x = 3, Y = 2 and x = -3, Y = -2. 
But if we substitute y = x in (1), we get 0 = 4; in (2), 0 = 9. 

* * * 
Using an argument which involved division by zero, we 

have already proved that any two unequal numbers are equal 
to each other (Paradox 1, page 84). Here is a different proof 
of the same proposition. (9) 

Let a and b be two unequal numbers, and let c be their 
arithmetic mean, or average (for example, if a = 2 and b = 4, 
then c = (a + b)j2 = 3). Then 

a+b 
-2- = c, or a + b = 2c. (1) 

Multiply both sides by a - b: 

a2 - b2 = 2ac - 2bc. (2) 

Add b2 - 2ac + c2 to both sides: 

a2 - 2ac + c2 = b2 - 2bc + c2. (3) 

Both sides of (3) are now perfect squares and can be written 
in the form 

Take the square root of both sides. Then 

a - c = b - c, 
or 

a = b. 

(4) 

(5) 

(6) 

We started with the assumption that a was not equal to band 
have come to the conclusion that a is equal to b. 

The difficulty is again one which was mentioned briefly at 
the beginning of this chapter. That is, in the extraction of a 
square root both signs must be taken into consideration, and 
the one which leads to a contradictory result such as ours 
must be rejected. In passing from step (4) to step (5), only 
the positive signs were used. Had we written (5) as a - c = 

- (b - c), we should have obtained our original expression, 
a + b = 2c. The whole argument was purposely made some-
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what involved. I t could have been done more obviously in 
this manner: 

a + b = 2c, 

a - c = c - b, 

(a - C)2 = (c - b)2, 

= (b - C)2, 

a - c = b - c, 

a = b. 

PARADOX. To PROVE (10) THAT n = n + 1. 

For any value of n, the identity 

(n + 1)2 = n2 + 2n + 1 

is true. Subtracting 2n + 1 from both sides, 

(n + 1)2 - (2n + 1) = n2 • 

Subtracting n(2n + 1) from both sides, 

(1) 

(2) 

(n + 1)2 - (2n + 1) - n(2n + 1) = n2 - n(2n + 1). (3) 

Adding (2n + 1)2/4 to both sides, 

(n + 1)2 - (n + 1) (2n + 1) + (2n + 1)2 
4 

= n2 _ n(2n + 1) + (2n + 1)2. (4) 
4 

Both members are now perfect squares, and can be written 

Extracting the square root of both sides, 

n + 1 - en i 1) = n - en i 1). (6) 

or, adding (2n + 1)/2 to both sides, 

n + 1 = n. 

* * * 
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If we think hard enough, we shall perhaps recall that in 
addition to the axioms concerning equalities, we once had to 
memorize a number of axioms concerning inequalities. They 
went something like this, did they not: "Unequals plus or 
minus equals are unequal in the same order; unequals multi­
plied or divided by equals are unequal in the same order; " 
and so on? Did someone say that the divisors must not be 
zero? Good. But does anyone remember any other condi­
tion we put on that same axiom? No one? Well, it's going 
to turn up in just a moment. First let us recall the symbols 
used. "a > b" means "a is greater than b" ; "a < b" means 
"a is less than b." And now to our business. (11) 

Assume that n and a are both positive integers. Then cer­
tainly 

2n - 1 < 2n. (1) 

Multiply both sides by - a. Then 

-2an + a < -2an. (2) 

Add 2an to both sides: 
+a < O. (3) 

But this means that a, which we specified was positive, is 
negative. Now does anyone remember that additional con­
dition? Right! It is to the effect that the quantities by 
which we multiply or divide both sides of an inequality shall 
be positive, and we multiplied by a negative number in step (2). 
Try th~ next two problems yourselves. 

PARADOX 1. To PROVE THAT ANY NUMBER IS GREATER 

THAN ITSELF. 

Assume that a and b are positive, and that 

a> b. 

Multiplying both sides by b, 

ab > b2 • 

Subtracting a2 from both sides, and factoring, 

a(b - a) > (b + a)(b - a). 

(1) 

(2) 

(3) 
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Dividing both sides by b - a, 

a > b + a. (4) 

Then since b is positive, not only is a greater than itself, but 
greater than any number greater than itself! 

PARADOX 2. To PROVE THAT Va > U. 

We must make use here of the following property of loga­
rithms: n·log (m) = log (m)n. We start with the inequality 

3 > 2. (1) 

Multiply both sides by log (~). Then 

3 . log (72) > 2 . log (72), (2) 
or 

log (72)3 > log (72)2. (3) 
Whence 

* * * 
A number of fallacious results arise in connection with 

imaginary numbers-that is to say, square roots of negative 
numbers. The term "imaginary" is unfortunate, but it is a 
term which has stuck with such numbers since they were first 
introduced. Until the beginning of the seventeenth century 
mathematicians worked for the most part with positive num­
bers only. Negative numbers were called "absurd" and 
"fictitious," and imaginary numbers were generally rejected 
as impossible. Actually, the number v'=T is no more imag­
inary than the number -1, which in turn is no more imaginary 
than the number 1. The concept of number is a complex 
one, (12) and we have no time to follow its complexities here, 
although we shall do so, in a small way, in Chapter 7. But 
as far as practicability is concerned, imaginary numbers have 
been found to be indispensable in such things as the develop­
ment of communication by radio, telegraph, and telephone, 
and in the development of modern electrical methods of 
prospecting for oil. 
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Imaginary numbers arose from the demand of the mathe­
matician that the equation x2 = a always have a solution. 
Thus, if x2 = 1 has a solution, why not x2 = -1? The 
square root of -1 is defined in the same way as the square 
root of any positive number. That is to say, V -1 is that 
number which, when squared, gives -1. (Compare with 
y'4, or 2, which, when squared, gives 4.) The square root of 
any negative number such as -a (where a is positive) can be 
written as the real number, va, times V -1, and for con­
venience V-1 is usually denoted by i. Thus 

V--a = V-l·Va = iva. 
Here we shall, for simplicity's sake, restrict our attention to 
positive square roots. 

A contradiction which every student runs into, when he is 
first introduced to imaginaries, occurs when he attempts to 
apply to them the usual rules for the multiplication of radi­
cals. He has learned that va· Vb = VCLb. For example, 
V2 . V3 = v'6. But this gives 

vCl·vCl = V(-l)(-l) = VI = 1; 

whereas, by definition, V-1. v=1 = -1. Hence -1 = 
+ 1. The only way out of this difficulty is to agree not to 
apply the ordinary rules for radicals to imaginary numbers. 
The difficulty is generally avoided by writing i for v=1 and 
replacing i 2 , wherever it appears, by - 1, its true value by 
definition. 

PARADOX 1. A SECOND PROOF (13) THAT -1 = +1. 
We have, successively, 

V-1 = V-1, 

~ ~1 = ~~1, 
VI v=1 

V-1 = vI ' 
VI·VI = V-1.V-1, 

1 = -1. 

(1) 

(2) 

(3) 

(4) 

(5) 
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PARADOX 2. A THIRD PROOF (14) THAT -1 = + 1. 

Consider the following, which is an identity for all values 
of x and y: 

vx=y = iVY=X. 
Substituting x = a, y = b, 

~=iVb-a. 

Substituting x = b, y = a, 

vr;-=a =i~. 
Multiplying (2) by (3), 

(1) 

(2) 

(3) 

~.vr;-=a = ~"2·Vb - a·~. (4) 

Dividing both sides by V a - band vr;-=a, 
1 = i2, 

or 
1 = -1. 

(5) 
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Seeing Is 
1Believing­
Perhaps 
(~eomet1f'ic Fallacies) 

THE fallacies of geometry are more remarkable 
than those of algebra in at least one respect, for the deception 
is not only of the mind, but of the eye as well. The diagrams 
in Figure 18 at the beginning of Chapter 4 showed how easy 
it is for the eye to mislead the mind. The examples in the last 
chapter furnished scant material for the eye, but did reveal 
that care must be used if the mind is not to lead itself astray. 
Formal deduction in geometry is to some extent a combina­
tion of seeing and reasoning, for in the proof of any theorem 
the logical processes of the mind are guided by and checked 
again-st what the eye sees in the figure. 

I t may be of interest to note that Euclid compiled a collec­
tion of exercises for the detection of fallacies, but unfortu­
nately this work has been lost. (I) 

* * * 
As our first example of one type of fallacious geometric 

reasoning we shall carry through a complete discussion of this 
remarkable theorem: 

To PROVE THAT ANY TRIANGLE IS ISOSCELES. (2) 

Let ABC be any triangle, as in Figure 62(a). Construct 
the bisector of L C and the perpendicular bisector of side AB. 
From G, their point of intersection, drop perpendiculars GD 
and GF to AC and BC respectively and draw AG and BG. 
Now in triangles CGD and CGF, L 1 = L 2 by construction 
and L 3 = L 4 since all right angles are equal. Furthermore 
the side CG is common to the two triangles. Therefore tri­
angles CGD and CGF are congruent-can be made to coin­
cide, that is. (If two angles and a side of one triangle are 
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equal respectively to two angles and a side of another, the 
triangles are congruent.) It follows that DG = GF. (Cor­
responding parts of congruent triangles are equal.) Then in 
triangles GDA and GFB, LS and L6 are right angles and, 
since G lies on the perpendicular bisector of AB, AG = GB. 
(Any point on the perpendicular bisector of a line is equi­
distant from the ends of the line.) Therefore triangles GDA 
and GFB are congruent. (If the hypotenuse and another side 
of one right triangle are equal respectively to the hypotenuse 

c 

A~------~=---------~~.B 

FIG. 62(a) 

and another side of a second, the triangles are congruent.) 
From these two sets of congruent triangles-CGD and CGF, 
and GDA and GFB-we have, respectively, 

CD = CF 
and 

DA = FE. 

(1) 

(2) 

Adding (1) and (2), we conclude that CA = CB, so that tri­
angle AB C is isosceles by definition. 

I t may be argued that we do not know that EG and CG 
meet within the triangle. Very well, then, we shall examine 
all other possibilities. The above proof, word for word, is 
valid in the cases wherein G coincides with E, or G is out­
side the triangle but so near to AB that D and F fall on CA 
and CB and not on CA and CB produced. These cases are 
illustrated in Figures 62(b) and (c). 

There remains the possibility, shown in Figure 62(d), in 
which G lies so far outside the triangle that D and F fall on 
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c 

AL-------~~------------~B 
G 

c 

c 

FIG. 62(b) 

G 
FIG. 62(c) 
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FIG. 62(d) 
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CA and CB produced. Again, as in the first case, triangles 
CGD and CGF are congruent, as are triangles GDA and GFB. 
And again CD = CF and DA = FB. But in the present 
case we must subtract these last two equations in order to 
have CA = CB. 

Finally, it may be suggested that CG and EG do not meet 
in a single point G, but either coincide or are parallel. A 
glance at Figure 62(e) shows that in either of these cases the 
bisector CP of angle C will be perpendicular to AB, so that 

c 

A~ ____ ~7~8~ ____________ ~B 
P 

FIG. 62(e) 

L 7 = L 8. Then L 1 = L 2, CP is common, and triangle 
APC is congruent to triangle BPC. Again CA = CB. 

I t certainly appears that we have exhausted all possibilities 
and that we must accept the obviously absurd conclusion 
that all triangles are isosceles. There is one more case, how­
ever, which may be worth investigating. Is it not possible 
for one of the points D and F to fall inside the triangle and for 
the other to fall outside? A correctly drawn figure will indicate 
that this possibility is indeed the only one. Furthermore we 
can prove it as follows: 

Circumscribe a circle about the triangle ABC, as in Figure 
62 (f). Since Ll = L2, CGmustbisectarcAB. (Ll and L2 
are inscribed angles and, being equal, must be measured by 
equal arcs.) But EG also bisects arc AB. (The perpendicular 
bisector of a chord bisects the arc of the chord.) I t follows 
that G lies on the circumscribed circle and that CAGB is an 
inscribed quadrilateral. Now L CAG + L CBG is a straight 
angle. (The opposite angles of an inscribed quadrilateral are 
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supplementary.) But if L CAG and L CBG were both right 
angles, D and F would coincide with A and B respectively; 
so the conclusion that CD = CF (a conclusion established in 
the first case) would reduce to CA = CB, which is contrary 
to our hypothesis that AB C is any triangle. Consequently 
one of the angles CAG and CBG must be acute and the other 
obtuse, which means that either D or F (D in the figure) 
must fall outside the triangle and the other inside. The rela-

G 

FIG. 62(f) 

tions CD = CF and DA = FB are true here, as they were in 
all of our other cases. But whereas CB = CF + FB, we 
now have CA = CD - DA, not CD + DA. 

This discussion has been lengthy, but it should have been 
instructive. It shows how easily a logical argument can be 
swayed by what the eye sees in the figure and so emphasizes 
the importance of drawing a figure correctly, noting with 
care the relative positions of points essential to the proof. 
Had we at the start actually constructed-by means of ruler 
and compasses-the angle bisector and the various perpen­
diculars, we should have saved ourselves a good deal of 
trouble. 

The following five fallacies are all concerned with the same 
pitfalls as the one we have just worked over in detail. Watch 
your step! 
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PARADOX 1. To PROVE THAT THERE ARE TWO PERPEN· 

DICULARS FROM A POINT TO A LINE. (3) 

FIG. 63 

Let any two circles intersect in Q and R. Draw diameters 
QP and QS and let PS cut the circles at M and N respectively, 
as in Figure 63. Then LPNQ and LSMQ are right angles. 
(An angle inscribed in a semicircle is a right angle.) Hence 
QM and QN are both perpendicular to PS. 

PARADOX 2. To PROVE THAT A RIGHT ANGLE IS EQUAL TO 

AN OBTUSE ANGLE. (4) 

D~\--======~~====:tC_E 
\ ~ I 
\ I 
\ I 
\ I 
\ 
\ I 

\ I 
\ I 
\ I 
\ I 
\ I 

\ I 
\ I 
\ I 
'- I \ G I 

P 
FIG. 64 

Let ABCD be any rectangle. Following Figure 64, draw 
through B a line BE outside the rectangle and equal in length 
to BC (hence to AD). Construct the perpendicular bisectors 
of DE and AB. Since these lines are perpendicular to non­
parallel lines, they must meet, as at P. Draw AP, BP, DP, 
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and EP. In triangles APD and BPE, AD = BE by con­
struction. Also AP = BP and DP = EP. (Any point in 
the perpendicular bisector of a line is equidistant from the 
ends' of the line.) Since the three sides of triangle APD are 
equal respectively to the three sides of triangle BPE, these 
triangles are congruent. Hence 

LDAP = LEBP. 
But 

L 1 = L2. 

(1) 

(2) 

(Angles opposite the equal sides of an isosceles triangle are 
equal.) Subtracting (2) from (1), we conclude that LDAG 
(given a right angle) is equal to LEBG (an obtuse angle by 
construction) . 

PARADOX 3. To PROVE (5) THAT 45° = 60°, OR THAT 3 = 4. 

On side AB of equi­
lateral triangle AB C as 
hypotenuse construct 
an isosceles right tri­
angle ABD. We shall 
prove that LAB C, 
which is 60°, is equal to 
LABD, which is 45°. 

On BC layoff BE 
equal to BD. Locate F, 

c 

the mid-point of AD, G ~~A \ I B 
and through E and F "" \ \ I , \ \ , 
draw a line which inter- '" \ \ ' 
sectsBA extended in G. '" \ \ ! 
Draw GD. Then con- ' ..... , \ \ I .......... \ \ , 
struct the perpendicular 
bisectors of G E and G D. 
Since GE and GD are 
not parallel, the perpen­
dicular bisectors must 
meet at some point, say 

""'- \ \ ,I , \1 
" ,I , 

..... " \\1 
'" ' 

K 
FIG. 65 

K. Connect K with G, D, E, and B. Our main job now is to 
show that triangles KDB and KEB are congruent. Note first 
that KG = KD and KG = KE. (Any point in the perpen-
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dicular bisector of a line is equidistant from the ends of the 
line.) Hence KD = KE. Furthermore, BD = BE by con­
struction, and BK is a common side. Therefore triangle KDB 
is congruent to triangle KEB, whence LKBD = LKBE. If 
now we subtract the common portion L KBA from each of 
these angles, we must conclude that LABD = LABC, or 
that 45° = 60°, or that 3 = 4. 

PARADOX 4. To PROVE THAT IF TWO OPPOSITE SIDES OF A 

QUADRILATERAL ARE EQUAL, THE REMAINING TWO SIDES MUST 

BE PARALLEL. (6) 

D P 
r"'~--------~r---------__ I ..... -............ ".,.",... "'.... ".--~ 

............ , .... 12~ 
~ ~4 
'" 0 .... 

/ l~ .......... 
/ I .......... 

/ \ "-I ........ 
'" I .... , 

'" I ........ ",'" I .... 
/ I ' .... 

/ I , B 

\Q 
R 

FIG. 66(a) 

Suppose the quadrilateral is ABCD, as shown in Figure 
66(a), with AD = BC. We shall prove that AB is parallel 
to DC. Erect the perpendicular bisectors of AB and DC. 
(In the figure, P and Q are the midpoints of DC and AB 
respectively.) If the perpendicular bisectors coincide or are 
parallel, then AB and DC, being perpendicular to the same 
line or to parallel lines, will be parallel, and the theorem is 
proved. So let us suppose that they meet at O. Draw OD, 
OC, OA, and OB. 

Now triangles DPO and CPO are congruent, since PO is 
common and, by construction, DP = PC and L DPO = 
L CPO. (If two sides and the included angle of one triangle 
are equal respectively to two sides and the included angle of 
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another, the triangles are congruent.) Therefore DO = CO. 
In precisely the same manner triangles AQO and BQO are 
congruent and AO = OB. Also AD was given equal to BC. 
Therefore triangles AOD and BOC are congruent. (If the 
three sides of one triangle are equal respectively to the three 
sides of another, the triangles are congruent.) It follows from 
the congruence of triangles DPO and CPO that L 1 = L 2, and 
from the congruence of triangles A OD and BOC that L 3 = L 4. 
Hence L 1 + L3 = L2 + L4. But if OR is the extension of 
PO, then Ll + L3 + LAOR = L2 + L4 + LBOR because 
each of these sums is equivalent to a straight angle. Subtract­
ing the first of these last two equations from the second, 
LAOR = LBOR. That is, PO extended bisects LAOB. 
On the other hand, from the congruence of triangles AQO and 
BQO it is evident that OQ bisects LAOB. Therefore PR and 
OQ must coincide, in which case AB and DC are both perpen­
dicular to the same straight line and so must be parallel. 

o 

L------------------Q~------------------------~B 

FIG. 66(b) 

If 0 lies outside the quadrilateral, as in Figure 66(b), we 
have L 1 = L 2, L 3 = L 4 precisely as before. But now 
Ll - L3 = L2 - L4, or LAOP = LBOP. That is, OP 
again bisects LAOB. But, as before, so also does OQ. There­
fore OP and OQ coincide and again AB is parallel to DC. 
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Finally, if 0 and P coincide, then by reasoning similar to 
what has gone before it is easy to show in Figure 66(c) that 

Q B 

FIG. 66(c) 

L3 = L4 and that LS = L6. Consequently L3 + LS = 

L 4 + L 6, or OQ is perpendicular to DC as well as to AB. 
Again AB and DC are parallel. A similar argument holds if 
o and Q coincide. 

PARADOX S. To PROVE THAT EVERY POINT INSIDE A 

CIRCLE MUST LIE ON THE CIRCUMFERENCE OF THE CIRCLE. (7) 

A I-------~--=----",-I-+c-=--D 

FIG. 67 

Let B be any point within the circle 0 of Figure 67. 
Through B draw diameter A C. Now locate point D on A C 
produced so that D divides AC externally in the same ratio 
that B divides A C internally-in other words, so that 



Geometric Fallacies 

AB/BC = AD/DC. Erect QP, the perpendicular bisector of 
BD, and draw OP and BP. 

If r denotes the radius of the circle, then AB = r + OB, 
BC = r - OB, AD = OD + r, and DC = OD - r. The 
proportion AB/BC = AD/DC can then be written 

r + OB OD + r 
r - OB OD - r 

(1) 

Clearing of fractions, 

(r + OB)(OD - r) = (r - OB)(OD + r). (2) 

Multiplying out and simplifying, 

OB.OD = r2. 
Now from the figure, 

and 
OB = OQ - BQ, 

OD = OQ + QD. 

(3) 

(4) 

(5) 

But since Q bisects BD, QD is equal to BQ, so that (5) can be 
written in the form 

OD = OQ +BQ. (6) 

Multiplying (4) by (6) and substituting r2 for OB ·OD on the 
left, 

r2 = OQ2 - BQ2. (7) 

Applying the Pythagorean theorem (the square of the hypot­
enuse of a right triangle is equal to the sum of the squares of 
the other two sides) to triangles OQP and BQP, we have 

Op2 = OQ2 + QP2, 

Bp2 = BQ2 + QP2. 

Subtracting (9) from (8), 

OP2 - Bp2 = OQ2 - BQ2. 

But OP = r. Therefore (to) can be written 

r2 _ BP2 = OQ2 _ BQ2. 

(8) 

(9) 

(10) 

(11) 
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Now replace the right-hand side of (11) by its value given in 
(7). Then 

or 
BP2 = 0, 

whence 
BP = 0. 

But if BP = 0, it follows that Band P must coincide, so that 
B, given as any interior point of the circle, must lie on the 
circumference of the circle. 

* * * 
The following group of problems is concerned with a type 

of fallacy which we discussed at length in Chapter 5. We 
shall perhaps recognize the error when it turns up. Consider 
the following theorem. 

To PROVE THAT TWO UNEQUAL LINES ARE EQUAL.(8) 

C 

A '------------~B 
FIG. 68 

Let AB C be any triangle and draw any line PQ parallel to 
AB. Then triangles ABC and PQC are similar. (If a line is 
drawn parallel to one side of a triangle and intersecting the 
other two sides, it cuts off a triangle similar to the given one.) 
Consequently 

AB AC 
PQ = PC· (1) 

(The corresponding sides of two similar triangles are propor­
tional by definition.) That is, 

AB·PC = AC·PQ. (2) 
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Multiply both sides by AB - PQ: 

AB2·PC - AB·PC·PQ = AB·AC·PQ - PQ2·AC. (3) 

Add AB·PC·PQ to both sides and subtractAB·AC·PQ from 
both sides: 

AB2·PC - AB·AC·PQ = AB·PC·PQ - PQ2·AC (4) 

Factor: 

AB(AB·PC - AC·PQ) = PQ(AB·PC - AC·PQ). (5) 

Divide both sides by AB· PC - A C· PQ. Then 

AB = PQ. (6) 

This proof is perhaps rather convincing. The figure is so 
simple that no error can lie in that direction, and the logical 
argument is straightforward enough to be-Oh, has someone 
found it? Correct! It's our old friend (or fiend), division by 
zero. In step (2) we established the fact that AB· PC = 

AC·PQ, and in step (6) we divided both sides of the equation 
by the difference of these two equal quantities. 

Some of us may have found this example a little obvious. 
What can those people say for the next two? 

PARADOX 1. To PROVE THAT A LINE SEGMENT IS EQUAL 

TO PART OF ITSELF.(9) 

c 

A B 
FIG. 69 

In any triangle ABC, suppose that angle A is acute and 
that angle C is greater than angle B. (These suppositions in 
no way restrict the choice of a triangle, but merely constitute 
directions for lettering Figure 69.) Construct LACD equal 
to LB and draw CE perpendicular to AB. We shall prove 
thatAB = AD. 
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In triangles ABC and ADC, LA is common, and LB = 
L A CD by construction. The triangles are therefore similar. 
(If two angles of one triangle are equal respectively to two 
angles of another, the triangles are similar.) It follows that 

L::,.ABC CB2 
L::,.ADC = CD2 • 

(1) 

(If two triangles are similar, their areas are to each other as 
the squares of any two corresponding sides.) Moreover, since 
CE is the common altitude of the two triangles, 

L::,.ABC 
=-. 

L::,.ADC AD 
AB 

(2) 

(The areas of two triangles with equal altitudes are to each 
other as their bases.) From (1) and (2) it follows that 

CB2 AB 
CD2 = AD· (3) 

Multiplying both sides of (3) by CD2 and dividing both sides 
byAB, 

CB2 CD2 

AB = AD· (4) 

Now a theorem which is not included in all elementary 
texts on plane geometry is the following: In any triangle the 
square of the side opposite an acute angle is equal to the sum of 
the squares of the other two sides minus twice the product of one 
of these sides times the projection of the other upon it. (In the 
figure AE is the projection of A C on AB. Incidentally, this 
theorem is the basis of the law of cosines in trigonometry.) 
Applying this theorem to each of the triangles ABC and ADC, 
we can substitute for CB2 and CD2 in (4) as follows: 

AC2 + AB2 - 2AB·AE 
AB 

AC2 + AD2 - 2AD.AE 
AD 

(5) 

Carrying out the indicated division, we can write (5) in the 
form 

AC2 AC2 
AB + AB - 2AE = AD + AD - 2AE. (6) 
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Adding 2AE to both sides and subtracting AB and AD from 
both sides, 

or 
AC2 - AB·AD 

AB 
AC2 - AB.AD 

AD 

(7) 

(8) 

Since the numerators of the fractions in (8) are equal, so also 
are the denominators. That is, AB = AD. 

PARADOX 2. To PROVE THAT THE SUM OF THE TWO PAR­

ALLEL SIDES OF A TRAPEZOID IS ZERO. (10) 

D~~P~ __ ~~ _________ ~ __________ ~ 

------------------
--------~ ________ L-______________ ~ 

E p q 

FIG. 70 

Denote the parallel sides of trapezoid AB CD by P and q as 
shown in Figure 70. Extend DC a distance q to F, and BA a 
distance p to E. Draw EF, DB, and A C; and denote AC, 
CH, ~nd HC, the segments into which A C is divided, by r, s, 
and t respectively. 

In triangles ABH and CDH, LHAB = LHCD and 
LHBA = LHDC. (If two paraIIellines are cut by a trans­
versal, the alternate interior angles are equal.) Hence tri­
angles ABH and CDH are similar. (If two angles of one tri­
angle are equal respectively to two angles of another, the 
triangles are similar.) Therefore 

DC HC E = __ . 
AB = HA' or q r + s (1) 

(By definition, the corresponding sides of two similar triangles 
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are proportional.) In exactly the same way it can be shown 
that triangle EAG is similar to triangle FCG and that 

AE AG P r 
CF = GC' or q = s + t' (2) 

From (1) and (2) it follows that 

p t r 
- = -- =--. 
q r+s s+t 

(3) 

Now apply to the second and third members of (3) one of the 
properties of proportions listed in Chapter 5. (Property C, 
page 87.) This operation gives 

'£ = t - r = t - r = - (r - t) = -1 (4) 
q r + s - (s + t) r - t r - t . 

From (4) we conclude that p = -q, or that p + q = O. In 
other words, the sum of the sides DC and AB of trapezoid 
AB CD is zero. 

* * 
A great deal of unnecessary writing is avoided in mathe­

matics by the use of reasoning by analogy. We made legiti­
mate use of this type of argument in step (2) of the last 
example when we said, "In exactly the same way it can be 
shown that···." But care must be used in applying it. 
Witness the following theorem: 

To PROVE (11) THAT Va + Vb = v2(a + b). 

In triangle ABC of Figure 71 denote by h the altitude from 
C to AB, and by p and q the segments into which AB is divided 
by the altitude. Now construct a line h' so that it will be 
parallel to h and will divide the triangle into two parts of 
equal area. Call the segments into which AB is divided by 
this line x and y respectively. Then 

2·6.AED = 6.ABC. (1) 

Since the area of a triangle is equal to one half the base times 
the altitude, (1) can be written 

2· !xh' = !(p + q)h. (2) 
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Now triangle AED is similar to triangle APe. (If a line is 
drawn parallel to one side of a given triangle and intersecting 

c 

A~====~==~E~F~==~B 
'-------.,vr------" ~ 

p q 

FIG. 71 

the other two sides, it cuts off a triangle similar to the given 
one.) Consequently 

(3) 

(By definition, the corresponding sides of two similar triangles 
are proportional.) Solving (3) for h' and substituting in (2), 

x2h P = l(p + q)h. (4) 

Dividing both sides of (4) by h, multiplying both sides by p, 
and extracting the square root of both sides, 

(5) 

(Here we are justified in taking only the positive sign with the 
square root, since x is a segment of positive length.) Now y 
bears the same relation to q that x bears to p. By similar 
reasoning, then, we have 

y = ~q(P i q) . (6) 

Adding (5) and (6) and replacing x + yon the left by p + q 
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(each of these quantities is identical with AB, the base of the 
original triangle), 

p + q = ~P(p i q) + ~q(P : q) (7) 

= vp+q( ~ +~)- (8) 

Dividing both sides of (8) by ~q, 

vp +q = ~ +~. 
Finally, substituting 2a for p and 2b for q, 

V2(a + b) = Va + Vb. 

(9) 

This result, of course, is ridiculous. The error occurred in 
step (6). We cannot reason about y as we did about x. 
We made use in (2) and (3) of the fact that x is the base of a 
triangle similar to triangle A FC, and y does not enjoy this 
property. In other words, y does not bear the same relation 
to q that x bears to p. 

Reasoning by analogy is safe enough if properly used, but 
even outside the field of mathematics it can lead, if misused, 
to results which are not only absurd, but sometimes dis­
astrous. 

* * * 
We conclude this chapter with two fallacies for those of us 

who have studied solid geometry. 

PARADOX 1. To PROVE (12) THAT THE SUM OF THE ANGLES 

OF A SPHERICAL TRIANGLE IS 180°. 

Let ABC be any spherical triangle. Choose any point P 
inside the triangle and pass great circles through P and A, B, 
and C respectively, dividing the original spherical triangle 
into three smaller ones. (See Figure 72.) Now call the sum 
of the angles of any spherical triangle x. Then the sum of the 
angles of the three small triangles is 3x. Included in this sum 
is the sum of the angles about the point P, or 360°. But the 
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sum of the angles of triangle ABC is equal to the sum of the 
angles of the three small triangles minus the sum of the angles 
at P. That is, x = 3x - 360, whence 2x = 360, or x = 180°. 
This conclusion contradicts a well-known theorem to the effect 

c 

B 

FIG. 72 

that the sum of the angles of a spherical triangle can be any­
thing between 180° and 540°. 

PARADOX 2. To PROVE THAT FROM A POINT OUTSIDE A 

PLANE AN INFINITE NUMBER OF PERPENDICULARS CAN BE 

DRAWN TO THE PLANE. (13) 

p 

FIG. 73 

In Figure 73 let P be any point outside of plane m. Choose 
any two points A and B in the plane, and on P A and P B as 
diameters construct two spheres. These spheres will intersect 
the plane m in two circles. (The intersection of a plane and a 
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sphere is a circle). And these two circles will intersect at two 
points, say C and D. Draw PC, PD, A C, AD, BC, and BD. 

Now think of a plane passed through P, A, and C. (Three 
points determine a plane.) This plane will intersect the sphere 
about PA in a circle, so that LPCA will be inscribed in a 
semicircle. Hence LPCA is a right angle. (An angle in­
scribed in a semicircle is a right angle.) LPCB is a right 
angle for the same reason. Therefore PC is perpendicular to 
both CA and CB, and so perpendicular to plane m. (If a line 
is perpendicular to each of two intersecting lines at their point 
of intersection, it is perpendicular to the plane of the two 
lines.) In exactly the same way it can be shown that PD is 
perpendicular to both DA and DB, and so perpendicular to 
plane m. But since there are an infinite number of choices 
for A and B, and since to each choice correspond two per­
pendiculars, there must be an infinite number of perpendicu­
lars from P to m. 
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Outward Bound 
(Paradoxes of 
the Infinite) 

POR well over two thousand years mathemati­
cians have been struggling with the infinite. They cannot 
afford to disregard it, for it is indispensable in much of their 
work. Yet in their attempts to understand it and to use it, 
they have run up against many contradictions. Some of these 
they have been able to overcome, while others are still causing 
them trouble. Indeed, the paradoxes enunciated by Zeno of 
Elea in the fifth century B.C. have never been settled to the 
complete satisfaction of all mathematicians. 

The infinite is an insidious sort of monster. It often turns 
up when least expected-when one's back is turned, so to 
speak. Then, too, it is sometimes difficult to recognize, for 
there is more than one breed of the monster. There is the 
infinite in algebra, the infinite in geometry, the infinitely 
small, the infinitely large, and so on. Again, there is not only 
one infinite, but a whole hierarchy of infinites. 

In a single chapter we cannot hope to cover material which 
has filled entire volumes. We shall go into the subject just 
far enough to be able to appreciate some of its remarkable 
paradoxes. Whenever possible, the reader will be referred to 
more detailed treatments of the varIOUS topics we discuss 
here. 

* * * 

THE INFINITE IN ARITHMETIC 

First let us consider what we shall mean by an infinite class, 
or group, or collection of things. For present purposes the 
following intuitive and rather loose definition will do. "An 
infinite class is one whose members cannot be counted in any 
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finite period of time, however long." Incidentally, we shall 
assume that the counting proceeds at a uniform rate--one 
member a second, let us say. Some of us will object to this 
definition on the ground that we use the finite to define the 
infinite, but we shall have to agree that everyone knows what 
"a finite period of time" means. 

We must not confuse the infinite with the very large finite. 
Think, for example, of the number of inhabitants of the earth 
at any particular instant, or the number of leaves on all the 
trees of the earth at any instant, or the number of blades of 
grass on the earth at any instant. These are all very large 
numbers, yet they are finite. That is to say, given sufficient 
patience and manpower, we could set out to count the mem­
bers of these large classes with the assurance that we could 
finish the job. Some twenty-one centuries ago Archimedes 
showed that he was able to distinguish between the infinite 
and the large finite when he estimated the number of grains of 
sand required to fill the then known universe. 

Where are we to find an example of an infinite class? Cer­
tainly not in our world of physical experience, which after all 
is a finite world. But wait. We have just spoken of counting 
the members of a large collection. What of the collection con­
sisting of the very numbers with which we count-the so­
called "natural numbers?" Here is a class which fulfills the 
requirements of our definition. For if we set out to count the 
natural numbers, 1, 2, 3, 4, 5, ... , can we not do so with the 
assurance that if we continue until we die, and pass the job 
on from generation to generation, neither we nor any of our 
descendants will ever exhaust the supply? The natural num­
bers, then, provide us with an infinite class with which we are 
fairly familiar. 

Before going any further, let us examine a few other ex­
amples of infinite classes, noting that they all arise out of the 
fundamental natural numbers. In each case the dots signify, 
of course, that the sequence goes on indefinitely, that is, 
without end. 

(1) All values of n2 , where n is a natural number: 

1, 4, 9, 16, 25, 36, 49, 64, 
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(2) All values of ! , where n is a natural number: 
n 

1 1 1 1 111 1 
1'2'3'4'5'6'7'8' 

(3) All values of 2n, where n is a natural number: 

2, 4, 8, 16, 32, 64, 128, 256, .... 

(4) All values of ;n , where n is a natural number: 

11111111 
2' 4' 8' 16' 32' 64' 128' 256' 

All of these classes have the property that their members 
cannot be exhausted by counting over any finite period of 
time, however long. 

* * * 
We are now in a position to consider the first of the para­

doxes of Zeno, mentioned briefly at the beginning of this 
chapter: Motion is impossible. The conclusion is startling, 
we must admit. And the argument is rather convincing. 
Let's look at it. 

To go from any point P to another point Q, we must first 
go half the distance from P to Q, then half the remaining dis­
tance, then half the distance then remaining, then half the 
distance then remaining, and so on. The "and so on" implies 
that the process can be repeated, and is to be repeated, an 
infinite number of times. Now regardless of how small the 
successive distances become, each one of them unquestionably 
requires a finite length of time to cover. And, argued Zeno, 
the sum of an infinite number of finite intervals of time must 
be infinite. Therefore we can never get from P to Q, however 
near together P and Q may be. 

A number of possible solutions of this paradox have been 
proposed. (1) The one we shall choose attributes the fallacy 
to the statement "the sum of an infinite number of finite 
intervals of time must be infinite." This statement is gen­
erally, but not always, true. First let us investigate the sum 
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of all the members of the infinite class in example (3) above. 
If we write 

2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + ... , 
it is evident at once that as we go on adding successive terms, 
the sum rapidly becomes larger and larger. Actually, it is not 

12 + 4 + 8 + 16 + 32 

r'IG. 74. The sum 2 + 4 + 8 + 16 + 32 + 64 +128 + 256·· ·increases 
without limit 

enough to say simply "larger and larger." We must be more 
precise. Let us note that by going out far enough in the 
series, we can make the sum of all the terms up to that point 
exceed any finite number, however large. This fact is indi­
cated graphically in Figure 74. For example, if someone names 
the finite number 1000, we can, by taking 9 terms, make the 
sum 1022. If he raises the bid to 1,000,000, we can make the 
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sum 1,048,574 by taking 19 terms. If he cares to go as high as 
1,000,000,000, we have only to take 29 terms to make the 
sum 1,073,741,822. No matter how large a finite number our 
imaginary adversary sees fit to choose, it is evident that we 
can always make our sum exceed his number by taking a suffi­
ciently large finite number of terms. This is what the mathe­
matician means when he says that "the sum of this infinite 
series is infinite." 

But now let us return to the problem of motion from one 
point to another. Suppose the distance from P to Q is 100 
yards, and that we walk at the rate of 100 yards per minute. 
Then the time required for the first stage of the journey­
half the distance from P to Q-is ~ minute; that for half the 
remaining distance, U minute; that for half the distance then 
remaining, Ys minute; that for half the distance then remain­
ing,7l6 minute; and so on. In other words, the time in minutes 
required to go from P to Q is the sum of the infinite series 

1111111 1 
"2 + "4 + "8 + 16 + 32 + 64 + 128 + 256 + .... 

(Note that this is the sum of all the members of the infinite 
class in example (4) above.) Is the sum of this infinite series 
infinite? As in our previous series, the sum does get larger 
and larger as we go on adding successive terms. But it is not 
true that we can make the sum exceed any large finite num­
ber which anyone cares to name. A glance at Figure 75 shows 
us intuitively that the sum approaches more and more nearly 
to 1, but never exceeds it. More precisely, if anyone names a 
finite number, however small, we can, by taking a sufficiently 
large number of terms, make the difference between our sum 
and 1 smaller than the named number. For example, if some-

one chooses the number 10~0' we can, by taking 10 terms, 

make the sum differ from 1 by 10~4· If he lowers the bid to 

1,00~,000 ' we can make the sum differ from 1 by 1,04!,576 

1 
by taking 20 terms. If he cares to go as low as 1,000,000,000 ' 
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we have only to take 30 terms to make the sum differ from 1 

by 1 Again we always have the better of our 
1,073,741,824 

1~'---------1--------~)1 

1 
2" 

1+1 1 1 1 1 
2" 4+8+16+32+64 

FIG. 75. The sum t + t + i + -h + fi + -h + rh + -d-u- ... approaches 
1 as a limit 

imaginary adversary. And again this is what the mathema­
tician means when he says that "the sum of this infinite series 
is 1." 

Consequently the time required to travel the 100 yards 
from P to Q is not infinite, but is 1 minute. Motion, we learn 
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with some relief, is not impossible. Here mathematics comes 
to our aid and backs up what everyday experience has taught 
us. 

* * * 
Zeno's second paradox involves the problem of Achilles and 

the tortoise. The argument in this case is to the effect that 
if Achilles gives the tortoise a head start, he can never over­
take him. For Achilles must always first get to the point 
from which the tortoise has just departed, and in this way 
the tortoise is always ahead. 

To clarify our ideas, let us suppose that Achilles gives the 
tortoise a start of 100 yards, that Achilles travels at the rate 
of 10 yards per second, and that the tortoise travels at the 
rate of 1 yard per second. Then Achilles travels the first 
100 yards in 10 seconds. In the meantime the tortoise has 
gone 10 yards. Achilles takes 1 second to cover that distance, 
while the tortoise advances 1 yard. Achilles covers that dis­
tance in 710 second, and the tortoise is still 710 yard ahead. 
And so on. Then the number of seconds which elapse before 
Achilles catches up with the tortoise is the sum of the infinite 
senes 

1 1 1 
10 + 1 + 10 + 100 + 1000 + .... 

For those of us who remember our formulas for geometric 
progressions, it is but a moment's labor to show that this sum 
is not infinite, but that it is 1176 seconds. 

* * * 
Within the last hundred years numerous criteria have been 

developed to determine whether a given series "diverges to 
infinity" or "converges to a finite limit"-that is, whether 
the sum of the series is infinite or a finite number.(2) We shall 
not go far into the technicalities of these criteria, but let us 
return for just a moment to the two series, 

2 + 4 + 8 + 16 + 32 + 64 + 128 + ... 
and 

1111111 
2 + 4 + "8 + 16 + 32 + 64 + 128 + .... 
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We have seen that the first of these diverges to infinity, 
while the second converges to 1. Can this difference be traced 
to the fact that the successive terms of the first get larger, 
while those of the second get smaller? Let us not jump too 
hastily to conclusions. This much is true: a necessary condi­
tion for convergence is that the successive terms decrease in 
size. That this condition is not sufficient is readily shown by 
the "harmonic series," 

1+1+!+1+1+1+!+!+!+ 
2 3 4 5 6 789 

1111111 
10 + 11 + 12 + 13 + 14 + 15 + 16 + .... 

This series can, by the insertion of parentheses, be written 
in the form 

N . 1. h 1 (1 1) . h (1 1) ow smce 31S greater t an 4' j +4 lS greater t an 4 +4 ; 

h . h 2 1 A· . 1 1 d 1 11 t at lS, greater t an 4' or "2. gam, smce 5" ' '6 ' an 'I are a 

greater than ~, the second group in parentheses is greater 

( 1 1 1 1) 4 1 
than '8 + '8 + '8 + '8 ' or '8' or "2. In the same way, the 

h· d . h 8 1 A d H h t lr group lS greater t an 16' or "2. n so on. ence t e 

sum of the series is greater than 

1 1 1 111 1 
1+-+-+-+-+ -+ -+-+ ... 

222 2 222 ' 

and so the series obviously diverges to infinity, although it 
does so very slowly. 
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The condition that the successive terms decrease in size is 

therefore not sufficient for the convergence of a series in which 
all the terms are positive. On the other hand, this condition 
is sufficient for the convergence of an "alternating series"­
one in which the terms are alternately positive and negative. 
This proposition we state without proof. For example, the 
senes 

1 1 1 1 1 111 
1--+---+---+---+--··· 

2 3 4 5 6 789 

converges to a finite limit. The value of this limit, to six 
decimal places,(3) is 0.693147 (actually, log. 2). 

* * * 
Certain isolated cases of infinite series had been studied by 

mathematicians from time to time, but it was not until the 
nineteenth century that infinite series as a whole, together 
with the general question of the infinite, began to be treated 
in a sound, logical manner. In 1851 appeared a small volume 
entitled The Paradoxes of the Infinite. It was the work of 
Bernard Bolzano, who did not live to see its publication. (4) 

vVe can perhaps appreciate what the best minds of the time 
were struggling with if we look at a few examples taken from 
Bolzano's book. 

Consider the series 

S = a - a + a - a + a - a + a - a + a - a + ... 

If we group the terms in one way, we have 

S = (a - a) + (a - a) + (a - a) + (a - a) + ... 

=0+0+0+0+··· 

= O. 

On the other hand, if we group the terms in a second way, we 
can write 

S = a - (a - a) - (a - a) - (a - a) - (a - a) _ ... 

=a-O-O-O-O-··· 

= a. 
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Again, by still another grouping, 

S = a - (a - a + a - a + a - a + ... ) 
= a - S. 

Therefore 2S = a, 
a 

or S = '2. 
Here, then, is an infinite series whose limit is apparently 

anyone of three quantities: 0, or a, or a/2. Today, using the 
definitions of convergence and divergence which we developed 
in connection with the Zeno paradox, we should say that this 
series neither converges to a finite limit, nor diverges to 
infinity. Noting that its sum oscillates between the values 0 
and a, we should simply class it as an "oscillating series" and 
agree that it has no fixed sum. But in the days before 
Bolzano ideas of convergence and divergence were not so 
clearly defined, and such a thing as an oscillating series pre­
sented real difficulties. Even Leibnitz-one of the master 
minds of the seventeenth century, and co-discoverer with 
Newton of the calculus-was befuddled by this particular 
series. He argued that since the limits 0 and a are equally 
probable, the correct limit of the series is the average value 
a/2. The method of grouping by which we arrived above at 
the limit a/2 is the work of a mathematician of the early 
nineteenth century. (6) 

Even more startling are the results to be obtained from this 
series in the special case in which a has the value 1. For 
example, by actual division we have, for any value of x, 

1 
l+x 

1 
1 - x + :x;3 - X4 + x6 - x7 + ... , 

1+x+x2 

1 
-----:-----:: = 1 - x + X4 - x5 + x8 - x9 + ... , 
1+x+x2 +x3 

1 
1+x+x2+x3 +x4 

and so on. Now let x have the value 1. All of the right-hand 
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sides reduce to the same number-that is to say, to the "sum" 
of the series 

1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + ... , 
while the left-hand sides become, respectively, ~, 31, %" 75, 
.... Consequently ~ = 31 = %' = 75 = ... = lin, where 
n is any natural number! As before, the correct argument is 
that the series 1 - 1 + 1 - 1 + 1 - 1 +. .. does not have 
a fixed sum, but that its sum oscillates between 0 and 1. 

Consider still another example of Bolzano's. Let 

S = 1 - 2 + 4 - 8 + 16 - 32 + 64 - 128 + .... 
Then 

S = 1 - 2(1 - 2 + 4 - 8 + 16 - 32 + 64 - ... ) 

= 1 - 2S. 

That is, 

3S = 1, 
1 

or S =-. 
3 

On the other hand, the original series can be written 

S = 1 + (-2 + 4) + (-8 + 16) + (- 32 + 64) + ... 
= 1 + 2 + 8 + 32 + 64 + ... , 

or S diverges to infinity. But again, we can write 

S = (1 - 2) + (4 - 8) + (16 - 32) + (64 - 128) + ... , 
=-1-4-16-64-···, 

or S diverges to negative infinity. 
These contradictions are to be explained by the fact that 

this series is not only an oscillating series, but is one which 
oscillates infinitely. The sum of the first two terms is -1; of 
the first three, 3; of the first four, - 5; and so on through the 
values 11, -21,43, -85,···. It is evident that as we go 
farther and farther out in the series, these partial sums jump 
from increasingly large positive numbers to increasingly large 
negative numbers. In a word, the series has no sum. 

* * * 
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I t is perhaps not so surprising that a series which fails to 
converge to a definite limit can be made to appear to converge 
to a number of different limits. But now consider the series 

1 1 111 1 1 
1--+---+---+---+··· 

234 5 6 78' 

which, as has already been pointed out, converges to the 
finite limit loge 2, or 0.693147. For simplicity we shall denote 
this limit by L. Then 

L=l-!+!_~+l_l+!_l+!-
23456 789 

1111111 
10 + 11 - 12 + 13 - 14 + 15 - 16 + .. '. 

Multiply both sides by 2: 

U=2-~+~-~+~-~+~-~+~-
2 3 456 789 

222 2 222 
10 + 11 - 12 + 13 - 14 + 15 - 16 + ... 

=2_1+~_1+~_!+~_1+~-
3 2 5 3 749 

1212121 
"5 + 11 - 6 + 13 - '7 + 15 - 8 + .. '. 

Now group terms with the same denominator. Then 

2L = (2 - 1) - 1 + (~ - !) - ! + 
233 4 

(~ - ~) - ~ + (~ - D - ~ + .. " 
or 

1 1 1 1 1 1 1 2L = 1 - - + - - - + - - - + -- - - + ... 
2345678 . 
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But the series on the right is the original series, and its limit 
is no longer L, but 2L. Moreover, if the operation of multi­
plying by two and collecting terms with the same denominator 
is repeated indefinitely, the series can evidently be summed 
not only to Land 2L, but also to 4L, 8L, 16L, . ... Here is a 
real dilemma-an infinite series which converges to a finite 
limit, 0.693147, yet which can, by proper rearrangements, be 
made to converge to 1.38629, or 2.77259, or 5.54518, and so 
on! (6) 

The difficulty arises from our attempt to apply to infinite 
series the processes of finite arithmetic. In finite arithmetic 
we go on the assumption that we can insert and remove 
parentheses at will, grouping terms in any way we please. 
In other words, we assume that A + B + C = (A + B) +C 
=A + (B + C). The contradictory results we obtained 
above show that this finite operation cannot be applied to 
infinite series in general. 

The question then arises, is it ever possible to rearrange and 
group the terms of a convergent infinite series with the assur­
ance that the limit will not be changed? The answer is yes­
provided the series is "absolutely convergent." An infinite 
series is absolutely convergent if not only the series itself con­
verges, but if the series formed by changing all minus signs to 
plus signs also converges. Thus every convergent series in 
which all terms are positive is absolutely convergent, and the 
criterion applies only to series in which there are negative 
terms. 

Let us return for a moment to our original series, 

1 1 1 1 1 1 1 1--+---+---+---+···. 
2 345 6 7 8 

If here we change all the min us signs to pI us, the series be­
comes the harmonic series, 

1 1 1 1 1 1 1 1 + - + - + - + - + - + - + - + ... 
2345678 I 

which, as we found on page 124, slowly but surely diverges. 
Consequently our series is not absolutely convergent, and so 
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it is not to be wondered at that we were able-through proper 
grouping-to make it converge to limits other than loge 2. 

If a series is convergent, but not absolutely convergent, it 
is said to be "simply convergent." The question of rearrang­
ing the terms of a simply convergent series was settled in 1854 
by the German mathematician Riemann, when he succeeded 
in proving the following remarkable theorem. (7) The terms of 
a simply convergent series can be so rearranged that the limit of 
the series is any specified finite number, or positive infinity, or 
negative infinity! 

We conclude this section with four additional examples of 
the weird results to be had by rearranging and grouping the 
terms of a simply convergent series. The first two are, essen­
tially, hut different forms of the paradox we have just dis­
cussed in detail. 

PARADOX 1. As before, denote by L the value of loge 2. 
Then (8) 

L=1-1+1_!+!_!+!-!+!-
2 3 4 5 6 789 

111 1 1 1 1 
10 + 11 - 12 + 13 - 14 + 15 - 16 + .... 

Grouping terms, first by twos and then by fours, 

L = ( 1 - ~) + (~ - ~) + G - ~) + 

(! - !) + (1 - -!.) + (~ - ~) +. . . (1) 
7 8 9 10 11 12 ' 

and 
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Dividing both sides of equation (1) by 2, and grouping terms 
by twos, we get 

(~ - ~) + (~ - ~) + . . . (3) 
10 12 14 16 . 

Adding, parenthesis by parenthesis, equations (2) and (3), 

(! + ~ - !) + (~ + ~ - !) + ... 
9 11 6 13 15 8 

1111111111 
= 1 - 2 +:3 - 4 + 5 - 6 + 7 - 8 + 9 - 10 + 11 .. ·· 

Therefore the sum of the series is both L and ~ L. 

PARADOX 2. As in the previous example, denote log. 2 by 
L. Then (9) 

111 1 111 
L = 1 - - + - - - + - - - + - - - + ... 

2345678 . 

Arranging positive terms in one group and negative terms in 
another, 

Now certainly 
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In other words, the sum of the series is both L and zero. 

PARADOX 3. It can be shown that the series 

1 1 1 1 
1.3+3.5+5.7+7.9+ ... 

is convergent. Call its sum M. We shall "prove" (10) that M 
is both 1 and ~. 

In the first place, the series can be written in the form 

M = (1 -~) + (~-~) + (~-!) + (! -~) + ... 13 35 57 79 . 

To verify this statement, note that the first term reduces to 
3 - 2 1 10 - 9 1 
iT ' or 1.3 ; the second term to 3.5 ' or 3.5 ; and so 

on. But if the parentheses are now removed, all terms after 
the first drop out. Therefore M = 1. 

On the other hand, the series can also be written in the form 

To verify this statement, note that the first term reduces to 
1 3-1 1 1 5-3 1 
'2 . iT' or 1.3 ; the second term to '2 . ~ , or 3.5 ; 

and so on. If now the parentheses are removed, we have 

1111111 
M = '2 - 6 + 6 - 10 + 10 - 14 + 14 - .... 

Again all terms after the first drop out, so that M = ~. 
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PARADOX 4. To PROVE THAT EVERY INFINITE SERIES, 

CONVERGENT OR NOT, CAN BE SUMMED TO ANY DESIRED 

NUMBER N. 

Consider the series 

We can write 

al = N + (al - N), 

a2 = - (al - N) + (al + a2 - N), 

aa = - (al + a2 - N) + (al + a2 + aa - N), 

a4 = -Cal + a2 + aa - N) + (al + a2 + aa + a4 - N), 

as = - (al + a2 + aa + a4 - N) + 
(al + a2 + aa + a4 + as - N), 

and so on indefinitely. Adding these equations, we have 

al + a2 + aa + a4 + as + ... 
= N + (al - N) - (al - N) + (al + a2 - N) 

- (al + a2 - N) + (al + a2 + aa - N) 

- (al + a2 + aa - N) + (al + a2 + aa + a4 - N) 

- (al + a2 + aa + a4 - N) + .. '. 
But, now, on the right-hand side of this equation, all terms 
after the first drop out when the parentheses are removed. 
Consequently the sum of the series on the left-hand side is N. 

* * * 
THE INFINITE IN GEOMETRY 

The following paradox appeared some three hundred years 
ago in GaliIeo's Dialogues Concerning Two New Sciences. (11) 

I t is typical of the confusion which at that time arose from 
attempts to work with the infinite in geometry. 
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Take any square ABCD and draw the diagonal BD, as in 
Figure 76. With B as center and with radius BC describe 
the quarter-circle CFA. Draw any line HE parallel to BC, 
intersecting the quarter-circle at F and the diagonal at G. 
With H as center construct circles with radii HG, HF, and 
HE respectively. 

FIG. 76. As HE approaches BC, the shaded circle shrinks to the point B 
and the shaded ring to the circumference of a circle with radius BC 

I t is not difficult to show that the area of the shaded circle 
is equal to that of the shaded ring. To do so, note first that 
triangle FBH is a right triangle. Consequently, by the well­
known Pythagorean theorem, B p2 = HB2 + H F2, or 

(1) 

But HE = BC, and, since BC and BF are radii of the same 
(quarter) circle, BC = BF. Hence HE and BF are equal. 
Again, HB = HG since they are also radii of the same circle. 
We can therefore replace, in equation (1), BF by HE and HB 
by HG, obtaining 

(2) 
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Multiplying both sides of equation (2) by 7r, 

7r·HG2 = 7r·HE2 - 7r·HF2. 

135 

The left-hand side of this equation represents the area of the 
shaded circle. The right-hand side, being the difference of 
the areas of the circles with radii HE and HF, represents the 
area of the shaded ring. 

Now think of letting HE move to the right and approach 
the position Be. As HE coincides with Be the shaded circle 
shrinks to the point B and the shaded ring shrinks to the cir­
cumference of a circle with HE (now Be) as radius. But since 
the areas of the shaded circle and the shaded ring are equal 
for any position of HE, we must conclude that a single point 
is equal to the circumference of a circle! 

Perhaps the solution of this paradox is obvious. It would 
be more obvious had we not cheated in the statement of the 
final conclusion. We should have said, "A single point is equal 
in area to the circumference of a circle." The circumference 
of a circle is a one-dimensional curve and can occupy no more 
area than a point, in spite of the fact that it consists of an 
infinitude of points. The areas of the circumference and of 
the point, both of them zero, are indeed equal. 

* * * 
The infinite in geometry continued to confuse mathematical 

minds long after Galileo. As late as 1834 an interesting but 
fallacious proof of the much-discussed "parallel postulate" of 
plane geometry was offered, apparently in good faith. (12) The 
postulate-assumption, that is-referred to is generally stated 
as follows: Through a given point outside a given line, one and 
only one line can be drawn parallel to the given line. For cen­
turies it was felt that this postulate could be proved in terms 
of the other postulates, but all attempts at such proofs were 
unsuccessful. Mathematicians finally began to suspect that 
this assumption was as fundamental as the others-as funda­
mental, for example, as the assumption that between two 
points one and only one straight line can be drawn. A few of 
the bolder spirits of the early nineteenth century began to 
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experiment with geometries in which this assumption was re­
placed by quite different assumptions, and out of the efforts 
of these pioneers arose the geometries now called "non­
Euclidean." 

The parallel postulate can be stated in a number of forms, 
each of them equivalent to the others. In the fallacious proof 
we are about to describe we shall use the form originally given 
by Euclid: If two straight lines are cut by a third in such a way 
that the sum of the interior angles on one side of the third line is 

D 

hi!&!ll 
Q 

z 

(a) (b) 
FIG. 77 

less than two right angles, then the two lines, if produced indefi­
nitely, will meet on that side. That is to say, if the sum 
of the angles ABC and BCD of Figure 77(a) is less than 
two right angles, then BA and CD, if produced, will ultimately 
meet. 

The hopeful geometer of 1834 set up the figure of diagram 
(b) to aid him in his proof. Through B he drew BY parallel 
to CD, and constructed angles ABN, NBD, DBP, and PBQ 
each equal to angle YBA. He correctly argued that whatever 
the size of angle YBA, he could, by constructing enough 
angles ABN, NBD, ... , finally arrive at one whose side (BQ 
in the figure) falls below the line BZ. Suppose there are n - 1 
such angles (there are four in the figure). He then marked off 
n - 1 segments, CE, EG, GJ, ... , each equal to BC, and 
through the points of division drew lines EF, GH, JK, ... , 
each parallel to CD. So far so good. But at this point he 
began to compare infinite areas. He maintained, for example, 
that the infinite area bounded on two sides by the infinite lines 
BY and BA is equal to the infinite area bounded on two sides 
by BA and EN. and that the infinite area bounded on three 
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sides by the line segment B C and the infinite lines B Y and CD 
is equal to the infinite area bounded on three sides by the line 
segment CE and the infinite lines CD and EF. Or, as he put 
it, the area YBA is equal to the area ABN, and the area 
YBCD is equal to the area DCEF. 

Let us assume for the moment that this argument and simi­
lar arguments about infinite areas are valid. The rest of the 
proof then runs: Area YBLM is equal to n times area YBCD, 
and area YBQ is equal to n times area YBA. But area YBLM 
is only a part of area YBZ, while area YBZ is in turn only a 
part of area YBQ. Hence n times area YBCD is less than 
area YBZ, which in turn is less than n times area YBA. That 
is to say, n·(YBCD) is less than n·(YBA), or YBCD is less 
than YBA. But if such is the case, AB must meet CD. For 
if AB did not meet CD, then YBCD would be equal to the 
sum of YBA and AB CD, and so would be greater than YBA. 

The catch in this innocent-looking proof lies, of course, in 
the fact that the areas involved are infinite. Of two finite 
areas, we can say that the first is less than, equal to, or greater 
than the second. But two infinite areas cannot be compared 
-we can say only that they are infinite. 

* * * 

The remainder of this section will be devoted for the most 
part to "limiting curves"-curves which are defined as the 
limit of an infinite sequence of polygons, that is, of an infinite 
sequence of figures made up of straight lines. The notion of 
a limiting curve is not new to any of us who have studied 
plane geometry. Let us recall briefly how as familiar a curve 
as the circle can be regarded as the limit of an infinite sequence 
of regular polygons. (A "regular polygon" is one with equal 
sides and equal angles.) 

In diagram (a) of Figure 78, a square has been constructed 
on the line segment AB as diagonal. Diagrams (b), (c), and 
(d) show, respectively, regular polygons of 2·4 or 8 sides, 
2·8 or 16 sides, and 2 ·16 or 32 sides. Let us denote these suc­
cessive polygons by Pi> P 2 , P a, and P 4 • By continuing indefi­
nitely to double the number of sides we obtain a sequence of 
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polygons, PI, P 2 , P 3 , P 4 , P 5 , P 6 , • • •• Now it is intuitively 
evident-and it can be proved rigorously-that this sequence 

A~---------7B A (-----------4B 

(a) (b) 

A I---------IB AI---------!B 

(c) (d) 

FIG. 78. The circle as the limit of a sequence of regular polygons 

of regular polygons approaches, as a limit, the circle whose 
diameter is AB. 

* * * 
Care must be used in appealing, as we have just done, to 

intuition. We stop to consider three problems in which intui­
tive arguments lead us wildly astray. The correct solutions 
of these problems are discussed in the Appendix. 

PARADOX 1. Consider the isosceles right triangle in Figure 
79(a). If each of the equal legs is 1 inch, then, by the Pythag­
orean theorem, the hypotenuse is v12 + 12 = vT+1 = V2 
inches. In diagram (b) the broken line is drawn, beginning 
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at the lower left-hand corner, by going up 34 inch, over ~, 
up ~, over ~, and up 34. Call this line L 1• In diagram (c) 
the number of "steps" is doubled, resulting in the broken line 
L 2 ; and in (d) redoubled, resulting in the broken line La. 
Continuing indefinitely the process of doubling the number 
of steps, we obtain a sequence of broken lines, Lh L 2 , La, L 4 , 

Ls, L6 , •••• This sequence of lines approaches, as a limit, 

(b) 

(c) (d) 
FIG. 79 

the hypotenuse of the original triangle. Consequently the 
length of the limiting line is v'2 inches. True? No, false. 
What is its length? 

PARADOX 2. A circle is constructed on a diameter AB, 
as in Figure 80(a). Call this curve C1• Now construct a 
curve consisting of two circles, each of diameter AB /2, as 
in diagram (b). These two circles can be thought of as a 
single curve, traced as indicated by the arrows. Call this 
curve C2• Curves Ca and C4 are shown in diagrams (c) and 
(d). They consist, respectively, of four circles, each of diam­
eter AB/4, and of eight circles, each of diameter AB/8. Con· 
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tinue indefinitely the process of doubling the number of 
circles and halving the diameters. The result is a sequence 
of curves, ClI C2 , C3 , C4 , C5 , C6 , •••• The limiting curve, 
being made up of infinitely small circles, is indistinguishable 
from the line segment AB. Now recall that in tracing each 

A t-----------!B 

(b) 

(a) 

FIG. 80 

curve we go from A to B and back to A. Hence the length of 
the limiting curve is 2 ·AB. True? No false. What is its 
length? 

PARADOX 3. In a circle of radius R inscribe a square, as 
in Figure S1(a), and on each side of the square as diameter 
construct a semicircle. Denote by C1 the curve formed by 
these semicircles. Now inscribe a regular octagon, as in dia­
gram (b), and denote by C2 the curve formed by the semi­
circles constructed on its sides. Continue indefinitely the 
process of doubling the number of sides of the polygons and 
constructing semicircles on the sides. The result is a sequence 
of curves, ClI C2 , C3 , C4 , C5 , C6 , •• " of which C3 and C4 are 
shown in diagrams (c) and Cd). The limiting curve, being 
made up of infinitely small semicircles, is indistinguishable 
from the original circle of radius R. Its length is therefore 
27rR. True? No, false. What is its length? 
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(a) (b) 

(c) (d) 
FIG. 81 

* * * 
We are now ready to consider some of the so-called "patho­

logical curves" to be found in mathematics-curves which 
have been constructed by mathematicians in their attempts 
to prove or disprove certain intuitive ideas. (13) Each of these 
curves will be defined, in much the same way that the circle 
was defined above, as the limit of a sequence of polygons, 
Ph P 2 , Pa, P 4 , P 5 , P6 , • • •• In none of the present instances, 
however, will it be possible, as it was in the case of the circle, 
actually to draw the limiting curve. We shall have to con­
tent ourselves with constructing only the first few polygons 
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of each sequence. The problem of picturing the ultimate 
curves must be left to our imaginations. 

The first item has been dubbed the "snowflake curve" be­
cause of the shape it assumes. P 11 the first polygon of the 
sequence, is the equilateral triangle of Figure 82(a). Divide 

(a) 

(b) 

(c) (d) 
FIG. 82 

each side of this triangle into three equal parts, construct a 
new equilateral triangle on the middle segment of each side, 
and do away with lines common to the old and new triangles. 
This results in P 2, the star-shaped polygon of diagram (b). 
To get P 3, trisect each side of this polygon, erect a new equi­
lateral triangle on the middle part of each side, and again get 
rid of lines common to the old polygon and the new triangles. 
Repeat the same process indefinitely. The result is a sequence 
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of polygons, P l , P 2 , P 3 , P 4, P s, P6 , ••• , of which the third and 
fifth members are shown in diagrams (c) and (d) respectively 
of Figure 82. 

The limit of this sequence of polygons is a truly remarkable 
curve: its length is infinite, yet the area it encloses is finite! To 
prove that the area is finite, think first of a circle circum­
scribed about the original triangle of diagram (a). Then note 
that at no subsequent stage of the development-as in dia­
grams (b), (c), and (d)-will the curve ever extend beyond 
this circle. Now consider the length of the curve. Suppose 
each side of the original equilateral triangle is 1 unit long. 
Then the perimeter of P l is 3 units. In constructing P 2 we 
added six lines of length 73 unit and subtracted-by doing 
away with-three lines of length 73 unit. Net result: we 
added 1 unit to the perimeter. That is to say, the length of 
P 2 is 3 + 1. In the same way, that of P 3 is 3 + 1 + (%); of 
P 4 , 3 + 1 + (%) + (%)2; and so on. The perimeter of the 
limiting curve is therefore the sum of the infinite series 

4 (4)2 (4)3 (4)4 3 + 1 +"3 + "3 + "3 + "3 + .... 

It is evident that the successive terms of this series increase 
in size and that the sum can be made as large as we please by 
taking a sufficiently large number of terms. Consequently, 
in accordance with our definition of infinite sum (page 121), 
the length of the limiting curve is infinite. 

* * * 
A few pages back it was pointed out that a line can occupy 

no area. This statement is true provided the line is finite in 
length. But mathematicians have succeeded in constructing 
a number of limiting curves which completely fill a given area! 
The following curve is one designed by the Polish mathe­
matician, W. Sierpmski.(14) 

The first member of the sequence is the polygon Pt. in­
scribed in a given square as shown in Figure 83(a). The 
square is then divided into four equal squares, and four poly­
gons, similar to Ph are joined together to form P 2, as in dia­
gram (b). To get P 3 each of the four squares is divided into 
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four more, and sixteen polygons, again similar to P 11 are 
joined together as in diagram (c). The same process, re­
peated, gives the polygon P 4 , shown in diagram (d). If the 
process is continued indefinitely, there results a sequence of 
polygons, PI, P 2 , P a, P 4 , P s, P6 , 

(b) 

FIG. 83 

This sequence of polygons approaches, as a limit, a certain 
curve. Now it can be rigorously shown that this curye passes 
through any specified point of the square in which it is in­
scribed. Consequently it must pass through every point of 
the square, and so must completely fill it. And if it is not 
enough of a blow to our intuitions to learn of a one-dimen­
sional curve which fills a two-dimensional square, it might 
be pointed out that the construction can be generalized to a 
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one-dimensional curve which completely fills a cube in three­
dimensional space, or even a "cube" in a space of any number 
of dimensions! 

* * * 
Before examining the next specimen, we must stop to define 

clearly what we shall mean by a "point of intersection" of a 
curve-that is, a point at which the curve crosses itself. 

A point is said to be an "end point" of p 

a curve if a small circle with the given 
point as center always cuts the curve once, 
however small the circle may be. If the 
arbitrarily small circle about the point 
cuts the curve twice, the point is called a 
"general point" of the curve. Finally, if 
the arbitrarily small circle about the point 
cuts the curve more than twice, the point 
is said to be a "point of intersection" of 
the curve. Thus, in the curve of Figure 84, 
P is an end point, Q is a general point, 
and Rand S are points of intersection. 

FIG. 84 

We can agree, can we not, that this definition coincides with 
our intuitive idea of a point of intersection? 

Relying further on intuition, we should undoubtedly say 
that it is impossible to construct a curve consisting only of 
points of intersection. That this is not the case was shown by 
Sierpinski in 1915. His example is constructed as follows: 

Divide an equilateral triangle into four congruent equi­
lateral triangles, shade the middle one, and draw in a heavy 
line as indicated in Figure 85(a). This heavy line is Lb the 
first of a sequence of broken lines. N ow divide each of the 
unshaded triangles into four congruent triangles, shade the 
middle one in each case, and draw in the heavy line of dia­
gram (b). This line is L 2 , the second of the sequence. Con­
tinue the process indefinitely, at each step dividing the un­
shaded triangles into four new ones, shading the middle one, 
and drawing the appropriate heavy line. Diagrams (c) and (d) 
show the third and fourth members of the resulting sequence 
of broken lines, Lb L 2 , La, L 4 , L 5 , L6 , 
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I t can be proved that the limit of this sequence is a curve 
of which every point-with the exception of the vertices of 
the original triangle-is a point of intersection according to 
our definition. Finally, if the original triangle is bent out of 
its plane so as to bring the three vertices together in a single 
point, then the curve crosses itself at every point! 

(a) (b) 

(c) (d) 
FIG. 85 

We must admit that this curve is not as easy for the imagi­
nation to picture as were the last two curves. The final con­
clusion will have to be accepted by the nonmathematician on 
faith. The mathematician, if he so desires, can go to the 
original source for the proof. (16) Incidentally, both this curve 
and the area-filling curve are, like the snowflake curve, infinite 
in length. 

* * * 
Let us return, for a moment or two, to the map shown in 

Figure 57, page 75. In this map there are four countries, 
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each of which touches the other three. For the most part, 
points on the boundaries between the countries are points 
common to two countries. There are only three points in the 
figure which are common to three countries. In order to be 
precise, we had better define what we mean by "a point com­
mon to two or more countries." We can do so in a manner 
similar to that in which we defined "point of intersection" in 
the last example. Thus we shall say that a point is common 
to two (or more) countries if an arbitrarily small circle about 
the point as center includes points of both (or all) countries. 
Here again is a definition which, if we stop to think of it, coin­
cides with our intuitive ideas. 

Common sense will tell us that points common to three 
countries must be, as they are in the map referred to, isolated 
points-in other words, that it is impossible for three countries 
to have a whole line of points in common. That this con­
clusion is false was shown by the Dutch mathematician 
Brouwer in 1909. (16) Only a mathematician would conceive 
the weird map we are about to describe, but here it is. 

In Figure 86(a) are countries A, B, and C, together with a 
nice section, D, of unclaimed territory. We shall assume that 
D is three miles long and one and one-half miles wide. Country 
A first claims all the land in D which lies more than ~ mile 
from the boundaries of D (diagram b). It is only reasonable, 
of course, to connect the new territory to the mother country 
by means of a narrow corridor, but the presence of this cor­
ridor will have no effect on the argument to follow. Country 
B then steps in and takes all of the remaining territory which 
lies more than 76 mile from the new boundaries of D (dia­
gram c). Country C, not to be outdone, annexes all of the 
remaining territory which lies more than VIs mile from these 
still newer boundaries of D (diagram d). But even now there 
remains quite a bit of unclaimed land, so they begin all over 
again. A claims all the land which lies more than U4 mile 
from what are now the boundaries of Dj B, all the land more 
than VI62 mile from these new boundaries; C, all the land more 
than 7<l:S6 mile from these still newer boundaries; and so on 
indefinitely. 
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In the limit, all of the original territory D will have been 
claimed. Furthermore this can be brought about in a finite 
length of time by assuming that the first annexation took place 
in half a year, the second in a quarter of a year, the third in an 
eighth of a year, and so on. For then the total time in years 

A 8 c A 8 c 

• • l~1t~;'fi 
.-..... , ................ . 

o 

(a) (b) 

FIG. 86 

required to fill the territory completely would be the sum of 
the infinite series, 

and this, as we have seen earlier in this chapter, comes to one 
year. 

What of the new map of the once unclaimed territory D? 
It is impossible to draw it, but this much can be said of it. 
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According to our definition of a point common to two or more 
countries, every boundary point is a point common to not only 
two, but to all three of the countries A, B, and C! 

* * * 

THE ARITHMETIC OF THE INFINITE 

At the beginning of this chapter the class consisting of all 
natural numbers, 

1,2,3,4, 5, 6, 7, ... , 

and the class consisting of the squares of all natural numbers, 

1, 4, 9, 16, 25, 36, 49, .. " 

were presented as examples of infinite classes. At that time 
it may have occurred to some of us to inquire whether or not 
there are "more" members of the first class than of the second. 
I t is certainly true that all of the members of the second class 
are members of the first, while there are many members of the 
first class which are not members of the second. Can it not 
therefore be said, in spite of the fact that both classes have an 
infinite number of members, that the infinitude of members in 
the first case is somehow or other "greater" than that in the 
second case? 

The very problem under consideration was discussed in 
1638 by Galileo in his Dialogues, a work to which we have 
already referred.(l7) He came to the conclusion that all we 
can say about the two classes is that each of them is infinite 
-the relations "equal," "greater," and "less" can be applied 
to finite classes, but not to infinite classes. There the matter 
rested until interest in it was reawakened, in 1851, by:Bolzano's 
book on the paradoxes of the infinite. But even Bolzano did 
not carry his investigations far enough. The possibility of 
comparing degrees of infinitude was finally realized by Cantor, 
a German mathematician, in 1873. Out of his work has grown 
that branch of mathematics called the "theory of aggregates" 
-a theory which leads to most extraordinary results. 

* * * 



Outward 'Bound 

In order to understand Cantor's processes of reasoning, we 
must begin with counting-an operation with which we should 
be fairly familiar. What do we do when we count the mem­
bers of a finite class of, say, forty-three objects? It is not 
enough to say that we point at each member successively and 
recite, "One, two, three, ... , forty-two, forty-three." The 
ability to perform this operation indicates a highly developed 
vocabulary of number words. We must go behind the opera­
tion of counting by means of words if we are to get at the 
fundamental process actually involved. 

Suppose that you are the leader of an expedition of forty­
three people, traveling in an uncivilized country where the 
vocabulary of number words is limited to "one," "two," 
"three," "four," and "many." (The existence of savage tribes 
whose number vocabulary is so limited is well known.) Sup­
pose further that you have gone on ahead to a village where 
you expect to spend the night, and that you are trying to 
make the village chief understand that you want food pre­
pared for forty-three people. Assuming that he understands 
you want food, how will you put over the idea of "forty­
three"? Very likely you will do it by making marks on a 
piece of paper, or on the ground--one mark corresponding to 
each member of the party. If a plate of food corresponding 
to each mark is then prepared, you can be sure that each 
member of the party will be fed. 

Thus the chief, with no word whatever for the number 
"forty-three," is able to count the number of people in the 
party, and the number of plates of food. To describe the 
process in somewhat more precise terms, you set up what is 
called a "one-to-one correspondence" between the members 
of your party and the marks on the paper. The correspond­
ence is "one-to-one" because corresponding to each person 
there is one mark, and, conversely, corresponding to each 
mark there is one person. The chief then sets up a one­
to-one correspondence between the marks and the plates of 
food. 

Here is counting in its simplest and most fundamental 
form-the setting up of a one-to-one correspondence between 
the members of two classes. The child who counts on his 
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fingers, the Chinese laundryman who reckons his accounts on 
the abacus, the billiards player who keeps score by means of 
counters-all of them, consciously or unconsciously, are count­
ing by means of one-to-one correspondences. 

Consider one more example. Suppose a theater contains a 
certain number of seats-the precise number is immaterial­
and suppose the box-office manager wants to know roughly 
how many people are in the audience. If he notes that every 
seat is filled and that there are no standees, then he knows 
that the number of people is equal to the number of seats. 
In other words, there is a one-to-one correspondence between 
people and seats. If, on the other hand, some of the seats are 
empty-if there are seats to which no people correspond­
then he knows that the number of people is less than the num­
ber of seats. Finally, if all the seats are filled and there are 
some people standing-if there are people to whom no seats 
correspond-then he knows that the number of people is 
greater than the number of seats. 

I t should be emphasized that the scheme by which any 
particular correspondence is set up is of no importance. In 
order to conclude that two classes of objects have the same 
number, it is necessary only to exhibit some sort of systematic 
method of establishing a one-to-one correspondence between 
their members. 

* * * 
The natural numbers, 1, 2, 3, 4, 5, ... are pure abstrac­

tions. We go about getting them in essentially the following 
way. Beginning with some very fundamental and familiar 
objects--our fingers, let us say-we denote by the symbol "1" 
the number of any class which can be put into one-to-one cor­
respondence with a single finger. (We should perhaps avoid 
the word "number" and use some other word, such as "plural­
ity" or "cardinality," but in doing so we should really be beg­
ging the question.) In the same way we denote by the symbol 
"2" the number of any class which can be put into one-to-one 
correspondence with a pair of fingers, by "5" the number of 
any class which can be put into one-to-one correspondence 
with all the fingers of one hand, and so on. 
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It was Cantor's idea to extend the notion of the sequence 
of finite numbers, 1, 2, 3, 4, 5, 6, ... , to a sequence of trans­
finite numbers. These might be denoted by A 10 A 2 , Aa, A 4 , 

As, A 6 , • ••• Just as the finite numbers were associated with 
certain model finite classes-we used our fingers---so the trans­
finite numbers must be associated with certain model infinite 
classes. The simplest and most fundamental of all infinite 
classes seems to be the class consisting of all the natural num­
bers. Consequently we denote by A 1 the number of any class 
which can be put into one-to-one correspondence with this 
particular class. Before attempting to find model classes 
with which to associate the other A's, let us investigate some 
classes which have the number AI. 

Think back to our original problem of the squares of all 
natural numbers. We can set up a one-to-one correspondence 
between them and the natural numbers in the following way: 

1, 2, 3, 

t t t 
1, 4, 9, 

4, 

t 
16, 

5, 
t 

25, 

6, 
t 

36, 

7, ... , 
t 

49, ... , 

n, ... 
t , 
n2 , ••• 

Now it is true that we cannot show, as we can in the case of 
two finite classes, the correspondence which exists between 
every member of the first class and the associated member of 
the second class, up to and including the last members of each 
class. There simply is no last member of either class. On the 
other hand, it should not be difficult for our minds to transcend 
this difficulty. For we know we are safe in saying that cor­
responding to every number (n) of the first class there is a 
number (n2) of the second, and, conversely, corresponding to 
every number (n2 ) of the second class there is a number (n) 
of the first. Consequently a one-to-one correspondence be­
tween the two classes does exist, and we are in a position to 
say that the class of the squares of all natural numbers has the 
transfinite number AI. 

Similarly the class of all even numbers has the transfinite 
number A 1. The correspondence in this case looks like this: 

1, 2, 

t t 
1., 4, 

3, 4, 
t t 
6, 8, 

5, 

t 
10, 

6, 
t 
12, 

7, 
t 
14, 

n, ... 

t 
2n, ..• 
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Again, the class of all odd numbers has the transfinite number 
A 11 for we can write 

1, 2, 3, 4, 5, 6, 7, n, 
t t t t t t t t 
1, 3, 5, 7, 9, 11, 13, 2n - 1, ... 

I t may already have dawned on some of us that something 
incredible is going on here. In each of the three examples 
discussed the class of natural numbers has been put into one­
to-one correspondence with a part of itself. In other words, 
we have been demonstrating that the whole is equal to part of 
itself! This verdict is a direct contradiction of the familiar 
assumption, first met with in geometry, that the whole is equal 
to the sum of its parts and is therefore greater than any of them. 
No doubt we have forgotten-if indeed it was ever pointed 
out to us-that this assumption refers to finite magnitudes. 
We are now working with infinite magnitudes for which the 
assumption, as we can see, is no longer a consistent one. 

The whole is equal to part of itself. If ever a conclusion 
violated common sense, this one is it. But go to the trouble 
of rereading the argument which leads to this conclusion. 
You must admit that there is nothing in the argument itself 
that violates common sense. As a matter of fact, the principle 
upon which the entire argument hinges is no more complicated 
or mysterious than the principle involved in ordinary count­
ing, for the two are identical. 

Moreover the conclusion that the whole may be equal to a 
part of itself can be turned to a useful purpose. At the be­
ginning of this chapter we rather vaguely described an infinite 
class as "one which cannot be exhausted by counting over any 
finite period of time." We can now, with Cantor, define an 
infinite class as "one which can be put into one-to-one cor­
respondence with a part of itself." 

One more point. The three examples cited lend weight to 
the argument that the class of natural numbers is the proper 
class with which to associate A 11 the smallest transfinite num­
ber. Note that in each of these examples the natural numbers 
were thinned out, yet the number of members of the resulting 
classes remained the same. The thinning-out process can be 
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carried on indefinitely, and always with the same result. Thus 
all of the classes 

4, 8, 12, 16, 20, 24, "', 4n, .. " 

8, 16, 24, 32, 40, 48, "', 8n, .. " 

100, 200, 300, 400, 500, "', lOOn, 

1010°,2.10100,3'1010°, "', n·1OlOO, "', 

have the same transfinite number as the class of all natural 
numbers. 

* * * 
Now let us turn our attention to the problem of finding an 

infinite class whose number is greater than A 1• One possibil­
ity that may suggest itself is the class of all rational numbers. 

We recall from algebra that a rational number is defined 
as one which can be written as the quotient of two whole 
numbers. For example, 2/3, -5/8, and 4/7 are rational num­
bers. It is at once evident that the class of rational numbers 
includes the class of natural numbers, for 1 can be expressed 
as 1/1, 2 as 2/1, 3 as 3/1, and so on. Again, all ordinary 
decimals are rational numbers, for such a decimal as 3.579 
can be written as 3579/1000. Finally, all repeating decimal!> 
are rational numbers, for 0.3333333 ... can be written as 1/3, 
0.3454545 ... as 19/55, 2.4272727 ... as 267/110, and so on. 
For convenience we shall restrict our attention to positive 
rationals. Consequently we shall be considering all numbers 
of the form p/q, where p and q are natural numbers. 

An important property of the rational numbers lies in the 
fact that they are "dense." By this it is meant that between 
any two rational numbers there are infinitely many other 
rational numbers. For example, between ° and 1 we can 
point to the numbers 

1 2 3 4 5 
2' 3' 4' 5' 6' 

between ° and ~, the numbers 

1 2 3 4 5 n 
3' 5' 7 ' 9' 11' 2n + l' ... ; 
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between 0 and U, the numbers 

1 
5 ' 

2 
9 ' 

3 
13 ' 

4 
17' 

5 
21' 

n 
, 4n + l' ... ; 
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and so on. Because of this property we might well expect the 
transfinite number of rational numbers to be greater than A 1. 

Cantor showed that this is not the case. His proof runs as 
follows: 

The class of all rational numbers can be arranged as shown 
in Figure 87. Note that in each horizontal row the successive 

7 
"5 

8 
"5 

5 
6 

7 
6" 

4 
'1 

5 
7 

6 
7 

8 
'[ 

3 
"8 

5 
8 

(%) 
7 
8" 

(~) 

FIG. 87. "Counting" the rational numbers 

denominators are 1, 2, 3,4, 5, 6, ... , while all the numerators 
in the first row are 1, all those in the second row are 2, all 
those in the third row are 3, and so on. Note also that every 
fraction in which the numerator and denominator have a com-
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mon factor has been enclosed in parentheses. If these par­
ticular fractions are deleted, then every rational number ap­
pears once and only once in the array. Following the path 
indicated by the arrows, a one-to-one correspondence can be 
set up between the natural numbers and the rational numbers 
by pairing with 1 the fraction 1/1, with 2 the fraction 2/1, 
with 3 the fraction 1/2, with 4 the fraction 1/3, with 5 the 
fraction 3/1, and so on, as indicated in the following scheme: 

1, 
t 
1 

2, 
t 
2 

3, 4, 
t t 
1 1 

5, 6, 7, 
t t t 
343 

8, 9, 
t t 
2 1 

10, 
t 
1 

11, 
t 
5 

12, 
t 
6 

13, ... 

t 
5 

1'1' 2' 3' l' l' 2' 3' 4' 5' l' l' 2' 

There may be some objection to the order, or rather the 
lack of order, in this set-up. It may be pointed out that the 
example involving the correspondence between the natural 
numbers and their squares was more convincing, in that the 
nth square could be expressed in terms of the nth natural 
number-that is, as n2• In the present example there is no 
such simple relationship between the nth natural number and 
the nth rational number. Granted. But anyone who raises 
this objection is forgetting an important point which was 
emphasized earlier-namely, that the particular way in which 
the correspondence is set up is immaterial. The important 
thing is simply to exhibit some sort of systematic way of pair­
ing the members of the two classes. A moment's reflection 
will make it evident that this has certainly been done here. 
We first arranged the rational numbers in an array in which 
every number appeared once and only once. We then indi­
cated the path which should be followed in pairing each 
rational number with a natural number. If we name any 
rational number at random we can, by going out far enough 
in the scheme, find the natural number which corresponds to 
it. Again, if we select a natural number at random we can, 
in the same way, find the rational number which corresponds 
to it. To every rational there corresponds one and only one 
natural, and to every natural there corresponds one and only 
one rational. The correspondence is therefore one-to-one, 
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and the fact that the class of positive rational numbers has 
the transfinite number A 1 has been established. 

* * * 
Our first attempt to find an infinite class whose number is 

greater than A 1 has been a vain one. No doubt a few of us 
are beginning to suspect that all infinite classes have the 
number A 1. Again Cantor was able to show how wrong our 
guesses-based on intuition-may be, for he succeeded in 
proving (18) that the transfinite number of the class of all real 
numbers is greater than AI. 

For our purposes we may define a real number as any num­
ber which is not imaginary-that is to say, which does not 
involve v=I. Thus the class of all real numbers includes 
not only the class of all rational numbers, but the class of all 
irrational numbers as well. Examples of irrational numbers 
are 0, ~, 7r, e, and log. 10. Such a number as V2 arises 
in geometry when we attempt to measure the hypotenuse of 
a right triangle each of whose other two sides is 1 unit long 
(see p. 138); the number ~ can be interpreted as a solution 
of the algebraic equation x3 = 5; the number 7r is indispen­
sable in the measurement of the circle, as is the number e in 
the study of the calculus; and so on. 

Before getting into Cantor's proof we had better make three 
observations. The first of these concerns the precise mean­
ing of "greater than" as applied to transfinite numbers. Re­
call the finite problem of the theater and the audience. There 
we found we could say that the number of people is greater 
than the number of seats if there are any standees-that is to 
say, if there are any people to whom no seats correspond. Inci­
dentally, we need point to only one standee in order to draw 
this conclusion. We shall use this same criterion in connec­
tion with infinite classes. Suppose we are attempting to set 
up a one-to-one correspondence between two infinite classes. 
If we find that to every member of the first class there cor­
responds a member of the second class, but that there are 
some members (there need be only one) of the second class to 
which no member of the first class corresponds, then we can 
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conclude that the transfinite number of the second class is 
greater than that of the first. 

The second observation concerns the possibility of finding 
a uniform representation for all real numbers. Such a repre­
sentation is furnished by nonterminating decimals. I t was 
pointed out, in connection with the definition of a rational 
number (page 154), that any repeating decimal is equivalent 
to a rational number. Conversely, every rational number is 
equivalent to a repeating decimal. Thus 1/3 can be expressed 
as 0.333333333···, 10/9 as 1.111111111···, 63/55 as 
1.145454545 ... , and 10/7 as 1.42857142857 .... Even such 
numbers as 3 and 5/2, which we would ordinarily write 
as the terminating decimals 3.0 and 2.5, can be written in 
nonterminating form as 2.999999999 ... and 2.499999999 .... 
Real numbers which are not rational-that is to say, irra­
tional numbers-can be expressed as nonterminating deci­
mals which do not repeat. Thus V2 can be expressed as 
1.414213562 ... , 7r as 3.141592654 ... , e as 2.718281828 ... 
(here the group "1828" appears to repeat, but does not do so 
after the first nine decimal places), loge 10 as 2.302585093 ... , 
and so on. 

Our third observation is to the effect that we shall restrict 
our attention to the real numbers between 0 and 1. We shall 
show later how to set up a correspondence between these 
numbers and all positive real numbers. 

And now for Cantor's proof. The gist of the argument is 
as follows. We shall assume that a one-to-one correspondence 
has been established between the natural numbers and the 
real numbers from 0 to 1. We shall then exhibit a number, 
also between 0 and 1, which cannot possibly be included in 
the scheme-in other words, a real number to which no natural 
number corresponds. 

In the assumed set-up let us denote the successive digits of 
the first real number, expressed as a nonterminating decimal, 
by at. a2, aa, a., as, ... , those of the second number by bl , 

b2 , ba, b., bs, ... , and so on. Then the correspondence be­
tween the numbers will look like Figure 88. Remember we 
are assuming that all real numbers between 0 and 1 appear in 
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the array at the right. We now construct a number, denoted 
by .ZIZ2ZaZ4ZsZ6Z7 ••• , in the following way. Proceeding along 
the diagonal line of the figure, we choose ZI different from all 
Z2 different from b2, Za different from Ca, Z4 different from d4, 

Zs different from es, and so on. 

Natural Real 
Number Nlimiier 

1 E ) 

2 ( ) 

3 ( ) 

4 ( ) 

5 E ) 

6 E ) 

7 " 
8 " ) 

E 

E ) 

" ) 

FIG. 88 

Now this new number obviously lies between 0 and 1. 
Furthermore it is not to be found anywhere in the array of 
real numbers, for it differs from the first number in the first 
decimal place, from the second number in the second decimal 
place, from the third number in the third decimal place, and 
so on. Consequently to this new number corresponds no 
natural number in the left-hand column. It follows that our 
assumption that the one-to-one correspondence could be estab­
lished is false, and that the transfinite number of the class of all 
reat numbers between 0 and 1 is greater than AI. 
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We shall denote this new transfinite number by the symbol 
C. We might be tempted to identify it with A 2 , the trans­
finite number next greater than A 1. That C and A2 are the 
same is perhaps true, yet no one has ever been able to prove 
it. In other words there may be a transfinite number greater 
than A 1 and at the same time less than C. The question is 
still an open one. (See note in Appendix, page 237.) 

* * * 
In order to show that the class of all positive real numbers 

also has the transfinite number C, we shall resort to a geo­
metrical demonstration which may be somewhat more con-

J2 e 7r 

01 I , II 1 I I ,I I ~R 

0 1 1 3 2 5 3 4 5 6 2" 2" 2" 
FIG. 89 

vincing than the rather abstract arithmetical demonstrations 
we have used so far. 

Anyone who has ever seen a graph knows how we can repre­
sent real numbers by means of points on a straight line. Using 
a half-line-since we are working with positive numbers only 
-we call the end point 0 and think of the line as extending 
indefinitely to the right, as in Figure 89. Dividing the line 
into equal segments of an arbitrary length, we label the suc­
cessive points of division with the numbers 1, 2, 3, 4, 5, 6, 7, 
. . .. The points midway between the points of division are 
labeled 1/2, 3/2, 5/2, 7/2, 9/2, ... , and so on. In the same 
way we associate any real number r with some particular 
point-namely, that point which is at a distance of r units 
from O. (The point 0 itself is associated with the number 0.) 
What we actually do, whether or not we have ever thought of 
it in this way, is to set up a one-to-one correspondence be­
tween the real numbers and the points of a line. 

Once the correspondence between the positive real numbers 
and the points of the half-line OR is established, the problem 
of showing that all positive real numbers can be put into one­
to-one correspondence with the real numbers between 0 and 1 
reduces to the problem of showing that all points of the half-
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line OR can be put into one-to-one correspondence with the points 
of the interval from 0 to 1. 

The second of these problems is handled in the following 
way. On the half-line OR construct the rectangle OLMN as 
shown in Figure 90. Make the length OL of the rectangle 1 
unit long; its height is immaterial. Let P be any point of OL. 
At P erect a line perpendicular to OL. This line meets the 
diagonal OM at S. Draw NS, and extend it to meet OR at Q. 
The point P of OL is thus paired with the point Q of OR. In 
exactly the same way, P l is paired with Qb P 2 with Q2, and 

~~~~~~--~--~--------------~~Q~2----~R 

FIG. 90 

so on. Conversely, given the point Q of OR, the correspond­
ing point P of OL can be located by drawing QN and dropping 
a perpendicular to OL from the point S at which QN meets 
OM. The correspondence is obviously one-to-one, for to 
every point of OL corresponds one and only one point of OR, 
and to every point of OR corresponds one and only one point 
of OL. 

Our argument not only proves that the class of all positive 
real numbers has the transfinite number C, but uncovers a 
new and startling paradox as well. For we have just shown 
that there are no more points in a line of infinite length than in a 
line segment one unit long! 

* * * 
If we set out to look for a transfinite number greater than 

C, it might occur to us to investigate the class consisting of 
all the points of a plane. For surely there are more points in 
a plane than in a line. But are there? We ought by this time 
to have learned to be suspicious of our intuitive guesses. 
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In order to work with points of a plane we extend the rela­
tionship between single real numbers and points of a line to a 
similar relationship between pairs of real numbers and points 
of a plane. Thus in Figure 91 the point PI' which is 2 units 
from OY and 3 units from OX, can be represented by the pair 
of real numbers (2, 3). Similarly, any point P of the plane 
can be made to correspond to the pair of real numbers (x, y), 

y 

k---,2 , .li (2,8) 

• P (:e,Y) 

o~--------~----------------~·X 
FIG. 91 

in which the first number represents the distance of P from 
OY in the direction of OX, and the second number the dis­
tance of P from OX in the direction of OY. The correspond­
ence is evidently one-to-one, for to every point there cor­
responds one and only one pair of numbers, and to every pair 
of numbers there corresponds one and only one point. (It is 
to be noted that since we are confining our attention to posi­
tive real numbers, we are restricted to those points which lie 
to the right of OY and above OX. The representation of 
points elsewhere in the plane involves the use of negative 
numbers.) 

Now in Figure 92 consider the square OLMN, each side of 
which is one unit long, and the line seoment as, which is also 
one unit long. We shall show that to every point P of the 
square there corresponds a point Q of the unit segment. 
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Let the point P be represented by the pair of numbers 
(x, y). Since both x and yare less than 1, they can be ex­
pressed (see page 158) as the nonterminating decimals, 

y = ·YIY2YaY4Y5Y6Y7YS .... 

Now from the successive digits of the numbers x and Y let us 
form the number 

y 

Nt------.,M 

.p (x,y) 
~I--~I------~I ----+)Z 
o Q S 

O.!------------!:L,..---~X 

FIG. 92 

(F()r example, if x = .3427427427 ... and Y = .6129846035 
... , then z = .36412279482476402375 .... ) This number 
certainly has a value between 0 and 1, and can therefore be 
represented by a point Q of the line segment as. That is to 
say, given the point P of the unit square, we can determine 
x and y, and therefore z, and so can locate the corresponding 
point Q of the unit segment. 

Our argument shows very simply that there are no more 
points in the unit square than in the unit line.(19) The proof 
can be extended to show that there are as many points in the 
unit line as in a plane of infinite extent. Indeed, if we wish 
to carry the argument stilI further, we can show that there 
are as many points in a line one inch long as in all of three­
dimensional space. Finally, if we wish to go to an extreme 
which appears to be utterly ridiculous, we can prove that 
there are as many points in a line a billionth of an inch long as 
there are in the whole of a space of 4, 5, 6, ... , n, or even A 1 

dimensions! (20) 

* * * 
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The problem of finding a class whose transfinite number is 
greater than C is somewhat more complicated than the prob­
lems we have so far tackled. And most of these have no doubt 
been complicated enough. We shall therefore content our­
selves with the statement that it has been proved that there 
is an infinitude of transfinite numbers, and that they can be 
arranged in order of increasing size. Just as there is no last­
or largest-natural number, so there is no last-or largest­
transfinite number. (21) 

Before leaving the transfinite numbers entirely, however, 
let us look at the results of certain arithmetical operations on 
them. If n is any finite natural number, and if A 1 and Care 
the transfinite numbers with which we are acquainted, then, 
incredible as it may seem, the following conclusions can be 
shown to be true. 

and so on. 

(A1)n = All 

(2)Al = (A I)Al = C, 

C + n = c, 
C+A 1 = C, 

C+ C = C, 

n·C = C, 

C·C = C, 

(c)n = C, 

(C)Al = c, 

(2)c = (C)c = a new transfinite number, 

* * * 
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We need not think, in closing this chapter, that we have 
seen the last of the infinite and its vagaries. In the following 
chapters-particularly the next two-there is ample evidence 
of the fact that the notion of infinity is one of the greatest 
enemies of the mathematician's peace of mind. 



..... 
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What itre 
the C9hances? 
(Paradoxes in Vrobability) 

IN 1654 the Chevalier de Mere, gambler and ama­
teur mathematician, proposed to Blaise Pascal a problem con­
cerning the division of stakes in a game of dice. Pascal com­
municated the problem to Fermat, and from the correspond­
ence (1) between these two men arose what has subsequently 
become the modern theory of probability. Thus did a simple 
gambler's problem give birth to a powerful technique which 
constitutes the very foundation of mathematical statistics, 
and, through statistics, of much of the mathematics of eco­
nomics and industry. 

Most mathematical theories, in the course of their develop­
ment, have suffered severely from what might well be called 
"growing pains." The theory of probability is no exception. 
Numerous contradictions have arisen and have led to bitter 
controversies over concepts of the most fundamental nature. 
I t is these contradictions with which we shall be concerned. 
In some instances we may not be able to arrive at an entirely 
satisfactory solution of the difficulty. A few of the problems 
involve high-powered ideas into which we shall not have 
time to go in detail, while others are still in dispute among 
even the better mathematicians. 

In order to see how easily misunderstandings may arise, 
consider the type of problem originally discussed by Pascal 
and Fermat. Suppose that two players, A and B, contribute 
equally to a stake of $60. They agree that the first player who 
makes 3 points shall win the entire stake. After A has won 
2 points, and B has won 1, they agree to stop. How should 
the stake of 60 dollars be divided? 

Offhand this problem appears to be very simple. We may 
well argue that since A has twice as many points as B, A's 
share should be twice B's. That is to say, A should take 

166 
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$40, and B $20. But now suppose they were to play the 
next point-the one they have agreed not to play. If A 
were to win this point, the whole stake of $60 would be his. 
If he were to lose, the score would then be 2 to 2, and they 
would split the $60 evenly. Thus A is sure of getting $30 
anyway. And assuming that he has an even chance of win­
ning the next point, his share of the remaining $30 should be 
half that amount. In other words, A should take $45, and 
B $15. 

I t is not difficult to see that the second solution is correct 
if A and B are to stick to their original agreement concerning 
the winning of the stake. Had they agreed to divide the stake 
in proportion to their scores at any stage of the game, the cor­
rect solution would of course be the first one. 

But we must not jump too quickly into the midst of diffi­
culties. We had better spend a few moments discussing some 
of the basic principles of probability, in order to prepare our­
selves for the troubles that lie ahead. 

* * 
Laplace, an eminent French mathematician of the late 

eighteenth and early nineteenth centuries, once described the 
theory of probability as nothing but "common sense reduced 
to calculation." Let us see to what extent the following anec­
dote justifies this description. 

Two college students are trying to decide how to pass an 
evening. They finally agree to let their decision rest on the 
toss of a coin. Heads, they go to the movies. Tails, they go 
out for beer. And if the coin stands on edge, they study! 

This story is not as trivial as it may seem, for we can learn 
much from it. Common sense, basing its judgment on past 
experience, tells us that the boys will be spared the necessity 
of studying. In other words we know instinctively that the 
coin will not stand on edge, but that it will come to rest with 
either heads or tails showing. Moreover, if the coin is a fair 
one-if it doesn't have heads, say, on both sides-we are 
morally certain that the possibility of heads and the possibil­
ity of tails are equally likely possibilities. 
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Now the theory of probability is based on the assumptions 
we make concerning such questions as these: What is the prob­
ability that the coin will stand on edge? What is the prob­
ability that it will show either heads or tails? What is the 
probability that it will show heads? What is the probability 
that it will show tails? 

In order to discuss these questions in mathematical terms, 
it is necessary to assign numerical values to the various prob­
abilities involved. Suppose for the moment that we denote 
by p the numerical value of the probability that the coin will 
show heads. Since it is equally likely that the coin will show 
tails, the probability of tails must also have the value p. But 
we are certain that the coin will show either heads or tails. 
Hence 2p must have the value of certainty-of the probabil­
ity that an event which is bound to occur will occur. We can 
choose for certainty any value we please. I t is customary, 
and convenient, to choose the value 1. That is to say, we 
assume that 2p = 1. Then the probability that the coin will 
show heads is Y2; that it will show tails, Y2; and that it will 
show either heads or tails, Y2 + Y2, or 1. 

We can generalize our definition of the measure of prob­
ability in the following way: Suppose that the number of ways 
in which a certain event can happen is h, and that the number of 
ways in which it can fail to happen is f. Suppose further that 
the ways in which the event can happen or fail to happen are all 
equally likely. Then the probability that the event will happen is 
hj (h + f), the probability that it will fail to happen isfj(h + f), 
and the probability that it will happen or fail to happen is 
hj(h + f) + fj(h + f) = (h + f)j(h + f) = 1. For example, 
suppose a single marble is to be drawn from a box containing 
3 red marbles and 7 white marbles. Then the probability of 
drawing a red marble is ~lo, that of drawing a white marble is 
~lo, and that of drawing a red marble or a white marble is 
%0 + YIo, or 1. 

In our example of the coin, the only question we have left 
unanswered is that which concerns the probability that the 
coin will stand on edge. We have agreed that the coin can­
not stand on edge, but that it must fall in either of two ways 
-with heads showing or with tails showing. That is to say, 
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the number of ways in which the coin can stand on edge is 0, 
and the number of ways in which this event can fail to happen 
is 2. Therefore the probability that the coin will stand on 
edge is %" or o. The same reasoning can be applied to the 
problem of the box of red and white marbles. Since there is 
no possible way of drawing a marble of any color other than 
red or white-say black-then the probability of drawing a 
black marble is o. 

To summarize our findings briefly, we shall say that the 
probability of the occurrence of an impossible event is 0, the 
probability of the occurrence of an event which is certain to 
occur is 1, and the probability of the occurrence of a doubtful­
but-nevertheless-possible event is some fraction between 0 
and 1. 

Now let us consider a few straightforward examples con­
cerning throws with dice. These examples will serve not only 
to fix in our minds the ideas just presented, but will also in­
troduce us to one or two elementary short-cuts which we may 
find useful later on. 

What is the probability of throwing a two with one throw of 
a single die? Since the die has six faces, anyone of which may 
turn up, there is a total of six equally likely ways in which the 
desired event can occur or fail to occur. There is only one 
way in which it can occur. Therefore the probability is ;!i. 

What is the probability of throwing a two or a three with 
one throw of a single die? Again there is a total of six ways 
in which the proposed event can occur or fail to occur. There 
are two ways in which it can occur. Therefore the probability 
is %, or 73'. The same result can be arrived at in another way. 
Noting that the probability of a two is ;!i, and that the prob­
ability of a three is ;!i, we can say that the probability of a 
two or a three is ~~ + ;!i, or 73'. This argument can be ex­
tended to the following general principle: If Ph P2, P3, ... , 
Pn are the respective probabilities of n mutually exclusive events, 
then the probability that one of the events will occur is the sum 
of these probabilities, or PI + P2 + P3 + ... + Pn. (The 
throwing of a two and the throwing of a three are mutually 
exclusive events since they cannot both happen in one throw 
with a single die.) 
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What is the probability of throwing two ones with one 
throw of a pair of dice? Since every number on the first die 
can be associated with 6 numbers on the second, and since 
there are 6 numbers on the first die, the dice can fall in anyone 

1st die 
r~ ______ --~A~--------~, 

DDDDD[J 
r:-llolr.:lr.:lr;:;lrr:l 
L:.J ~ l.!:...J l..!...:..I I..!:!..J I.!..!J 
~--------~v~--------~# 

2nd die 

1st die 
,, ________ ~A~ ________ ~, 

[2][2] [2][2][2][] 

[J r:lr.:lRr;:;lr::l 
~ ~ I..!-=..J l.!:.!J l..!...!.J 

,'--------~v~--------~' 

r 

2nd die 

1st die 
A 

~r;:;lr_7lr_7lr_7l8 
I.!.:.!J I.!.:.!..I I.!.:.!..I L.:..::J I.!.:.!J I.!.:.!J 

[J 1ol r71r--:lF.=lr::l 
~ ~ I..!...!J L:..:!J I.!..!J 

~~--------~vr--------~# 

2nd die 

1st die 
r~--------~A~--------~ 

D0DDO[] 
[J r:1r.=lR~r:TI 

L.:...JL.::...Jl..!...:..Il.!.:.!Jl..!...!.J 
~------~v~--------~# 

2nd die 

1st die 
r-______ ~A~ ______ ~ 

RF=lF=lF=lF=lR 
I.!...!J l.!.-!J l.!.-!J I.!..:..I I.!...!J L:..:.J 

r.lr:1r,;lr.:lr;:;lr::l 
LJ L.:...J t.:.:J I..!-=..J L.::!J l..!...!.J 
~~--------~v~--------~# 

2nd die 

1st die 
r~--------~A~--------~, 

r::Jr:TJr:TJr::lr::lr::l 
I..!..!.JI..!..!.JI..!..!.JI..!..!..II..!...!..IL!..!.I 

O I-lr.:lF=lr;:;lr::l 
L.:...J~I..!-=..JI.!.:.!..II.!....!.I 

~~--------~v~--------~# 
2nd die 

FIG. 93. There are 36 possible throws with a pair of dice 

of 6· 6 = 36 possible ways. This point is illustrated in detail 
in Figure 93. Of the 36 possibilities, only 1 is favorable­
that in which the number on both dice is one. Hence the 
probability of throwing "snake-eyes" is ~6. Note that this 
same result could have been obtained by the following argu­
ment. The probability that the first die turns up a one is 7ll, 
and the probability that the second die turns up a one is also 
7ll. Therefore the probability that both dice turn up ones is 



'Paradoxes in 'Probability 

(76') (76'), or ~6· In general we can say that if Pi! P2, Pa, ... , 
Pn are the respective probabilities of n independent events, then 
the probability that all n of the events will occur at once is the 
product of these probabilities, or (PI) (P2) (Pa) ... (Pn). (The 
throwing of a one with the first die and the throwing of a one 
with the second die are independent events because the first 
has no effect whatever on the second.) 

One more general point. Note that if P is the probability 
that a certain event will occur, then the probability that it will 
fail to occur is 1 - p. Thus, in our last problem, if ~6 is the 
probability of throwing 2 ones with a pair of dice, we can 
conclude that the probability of not throwing 2 ones is 
1 - (~6)' or 3%6. This result is easily verified by noting 
that if the event can happen in only 1 of 36 possible ways, 
then it can fail to happen in 35 of those 36 ways. 

* * * 
We are now ready to begin our excursion into the paradoxes 

of probability. Our first example is of some historical interest 
in that D'Alembert, a first-rate French mathematician of the 
eighteenth century, failed to solve it correctly. 

IN TWO TOSSES OF A SINGLE COIN, WHAT IS THE PROBABIL­

ITY THAT HEADS WILL APPEAR AT LEAST ONCE? 

Noting that heads on the first toss can be associated with 
either heads or tails on the second toss, and that tails on the 

1st toss 0 0 0 ,0 
2nd toss 0 0 0 0 

case case case case 
1 2 3 4 

FIG. 94. The four possible results of two tosses of a single coin 

first toss can similarly be associated with either heads or tails 
on the second toss, the total number of possible cases is 4, as 
indicated in Figure 94. Of these 4, the first 3 are favorable in 
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that they contain at least 1 head. Therefore the desired prob­
ability is %;. 

When this problem was proposed to D'Alembert in 1754, 
he argued as follows: (2) There are only 3 cases: heads on the 
first throw, or heads on the second throw, or heads not at all. 
Now 2 of these 3 cases-the first 2-are favorable. There­
fore the desired probability is %. 

I t does not take long to see why this second solution is 
wrong. D'Alembert's first case included the first two cases 
shown in Figure 94. In other words, "heads on the first 
throw" meant, to D'Alembert, "heads on the first throw re­
gardless of what happens on the second throw," whereas 
"heads on the second throw" meant "tails on the first throw 
followed by heads on the second throw." It is true of 
D'Alembert's system that one of his three possibilities must 
occur, and that the possibilities are mutually exclusive. The 
trouble is that they are not equally likely. It is evident at 
once from Figure 94 that "heads on the first throw regardless 
of what happens on the second throw" (cases 1 and 2) is twice 
as likely as "tails on the first throw and heads on the second" 
(case 3). 

The solutions of the following two problems, which involve 
difficulties similar to those just discussed, will be found in the 
Appendix. 

PARADOX 1. THREE COINS ARE TOSSED AT ONCE. WHAT 

IS THE PROBABILITY THAT ALL THREE COME DOWN ALIKE­

THAT IS TO SAY, THAT ALL THREE ARE EITHER HEADS OR 

TAILS? (3) 

(a) We can say with assurance that of the three coins 
tossed, two of them must come down alike-both heads or 
both tails. What of the third coin? The probability that it 
is heads is ~; that it is tails, also~. In either case the prob­
ability that it is the same as the other two is~. Conse­
quently the probability that all three are alike is ~. 

(b) But now suppose we use an argument involving the 
multiplicative and additive principles discussed earlier. For 
the moment let us fix our attention on heads. The probabil­
ity that the first coin is heads is ~; that the second is heads, ~; 
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and that the third is heads, Y2. Hence the probability that 
all three are heads is (Y2)( Y2)( Y2), or Ys. In exactly the same 
way, the probability that all three are tails is Ys. Therefore 
the probability that all three are alike-either heads or tails­
is Ys + Ys, or 3i. 

Which result are we to accept, Y2 or 3i? 

PARADOX 2. PETER AND PAUL (favorite characters with 
writers on probability) PLAY A GAME OF MARBLES. PETER 
HAS TWO MARBLES, PAUL ONE. THEY ROLL TO SEE WHICH 
COMES NEARER SOME FIXED POINT-SAY A STAKE SET IN THE 
GROUND. ASSUMING THAT THEY ARE EQUALLY SKILLFUL, 
WHAT IS THE PROBABILITY OF PETER'S WINNING? (4) 

(a) Since the players are equally skillful, all 3 marbles 
have the same chance of winning. But 2 of the 3 marbles are 
Peter's. Therefore the probability that Peter will win is %. 

(b) There are 4 possible cases. Of Peter's 2 marbles, both 
can be better than Paul's, or the first can be better and the 
second worse, or the second can be better and the first worse, 
or both can be worse. Of these 4 cases, the only one which 
makes Peter lose is the last-that in which both of his marbles 
are worse than Paul's. Hence the probability that Peter will 
win is ~. 

Which result are we to accept, % or ~? 

* * * 
A number of paradoxes were discussed by the French 

mathematician J. Bertrand in his Calcul des Probabilites, a 
scholarly treatise which appeared in 1889. One of these in 
particular has been used as an illustrative example in almost 
every subsequent textbook on probability. Generally known 
as "Bertrand's box paradox," it runs as follows.(6) 

THREE BOXES ARE IDENTICAL IN EXTERNAL APPEARANCE. 
THE FIRST BOX CONTAINS TWO GOLD COINS, THE SECOND CON­
TAINS TWO SILVER COINS, AND THE THIRD CONTAINS A COIN 
OF EACH KIND--ONE GOLD AND ONE SILVER. A BOX IS CHOSEN 
AT RANDOM. WHAT IS THE PROBABILITY THAT IT CONTAINS 
THE UNLIKE COINS? 
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This problem appears to be straightforward enough. There 
are 3 possible cases: gold-gold, silver-silver, and gold-silver. 
Since the boxes are identical in appearance, the 3 cases are 
equally likely. And of the 3 only i-the last-is favorable. 
Therefore the desired probability is 7§'. 

Granting that the solution just suggested is correct (which 
it is), what is to be done with the following argument? Sup­
pose we choose a box and remove one of the two coins in it. 
Regardless of whether this coin is gold or silver-it is not at 
all necessary to examine it-there are only 2 possible cases: 
the remaining coin is either gold or silver. In other words, it 
.is either like or unlike the coin that has been removed. Of 
the 2 specified possibilities, 1 is favorable. Hence the prob­
ability that the second coin is unlike the first is~. We are 
therefore led to the startling conclusion that the removal of 
one coin from one of the boxes raises the desired probability 
from 7§' to ~! There is certainly something wrong with this 
argument, for the mere removal of one coin does not increase 
our knowledge of the nature of the remaining coin. 

A number of solutions of this paradox have been proposed, 
and special techniques have been devised to take care of this 
difficulty and of similar difficulties. (6) Let us see if Bertrand's 
own ideas about the matter are sufficiently satisfactory. 

Bertrand maintained that, one coin having been removed, 
the possibilities subsequently specified are not equally likely. 
That is to say, if we suppose that the first coin removed is 
gold, the second coin is less likely to be silver than gold. 
Why? Well, for simplicity denote the box containing the two 
gold coins by Bgg, that containing the two silver coins by Baa, 
and that containing one of each by Bg.. Then if the first coin 
removed is gold, it must have come from either Bgll or Bg.­
it obviously could not have come from B... Now the chance 
that the first coin removed from Bgg is gold is evidently 1, or 
certainty; whereas the chance that the first coin removed 
from BgB is gold is~. Hence, if a gold coin has been drawn, 
it is less likely that it came from BgB than from Bgg. Con­
sequently the second coin is less likely to be silver than gold. 
In the same way, if the first coin is silver, it is less likely that 
it came from Bg. than from B •• , so that in this case the second 
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coin is less likely to be gold than silver. Regardless, then, of 
what the first coin is, the second coin is less likely to be unlike 
it than like it. It follows that the desired probability is not 
~, but less than~. The second solution of the problem is 
therefore incorrect, and our faith in the first solution is 
restored. 

* * * 

In all of the problems so far discussed the total number of 
possibilities-the number of ways in which the event under 
consideration can happen or fail to happen-has been finite. 
A host of contradictions arise when the number of possibili­
ties is infinite, as is the case in the next few examples. 

GIVEN A LINE SEGMENT AB AND ANY POINT P ON AB. 
A POINT OF AB IS CHOSEN AT RANDOM. WHAT IS THE PROB­

ABILITY THAT THE POINT CHOSEN IS P? 

Here the number of possibilities is evidently infinite, for it 
was shown in Chapter 7 that a line of finite length contains 
an infinite number of points. For the moment let us ignore 
the point P and consider a simpler problem. Suppose we 
divide the segment AB into 10 equal intervals, as in Figure 95. 

AI~~~~~~--~~l--~)--~~--~IB 
k 

FIG.9S 

When we say that a point of AB is :'chosen at random" we 
mean simply that all of the intervals are equally likely to con­
tain the point. Hence the probability that the point chosen 
lies in any specified interval-say the interval labeled k-is 
710. Similarly, if AB is divided into 100 equal intervals, the 
probability that the random point is contained in any speci­
fied interval is 7100. And so on. Note that in every case the 
probability is the ratio of the length of the interval to the 
length of the whole segment. We can safely generalize this 
notion and state the following principle. If a point is chosen 
at random on a line segment of length L, the probability that it 
falls in a specified interval of length k is kj L. 
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Let us see what happens when we try to apply this prin­
ciple to our original problem. For simplicity call the length 
of AB 10 inches. Now P, being a point, has no length. In 
other words, P occupies an "interval" of length zero. But 
the probability that the random point falls in an interval of 
length zero is %0, or o. And zero probability, as we saw 
earlier in the chapter, means that the event cannot occur. 
Therefore it is impossible for the random point to coincide 
with P. Since P is any given point of AB, it follows that the 
random point cannot coincide with any point of the line. 
Hence the random point is both a point of the line and yet 
not a point of the line--a nice dilemma! 

AI 
-4 1" I--

IB I • I 

I· 
p 

)1 10" 

FIG. 96 

~o get around the difficulty here we must attack the prob­
lem from the point of view of limits. a notion we discussed in 
connection with infinite series. First suppose we make P the 
midpoint of an interval of length 1 inch, as in Figure 96. 
Then the probability that the random point lies somewhere 
in this interval is ).10. If we make the interval 0.1 inch long, 
keeping P the mid-point as before, the probability is ).100. 
If we make the interval 0.01 inch, the probability is ).1000; 
if 0.001 inch, ).10,000; and so on indefinitely. 

Now the limit of the contracting interval is the point P 
itself. Consequently the probability that the random point 
coincides with P is the limit of the sequence of probabilities 
that the point lies somewhere in the interval at each successive 
stage of its contraction. If we continue, at each stage, to cut 
the interval down to ).10 of what it was, then the probability 
that the random point falls on P is the limit of the sequence 

1 1 1 1 1 1 
10' 100' 1,000' 10,000' 100,006' 1,-00-0,-00-0' 

The limit of this sequence, as we make the interval about P 
smaller and smaller, is zero. But this cbservation does not 
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necessarily mean that the probability ever is zero. It simply 
means that we can make the probability as near zero as we 
please by making the interval about P sufficiently small. 

At the risk of confusing the issue rather than clarifying it, 
let us look at a different, but more concrete, example. Sup­
pose that a box contains 1 red marble and 9 white marbles, 
and that a single marble is to be drawn. Then the probability 
of drawing the red marble is 710' If we increase the number 
of white marbles to 99, the probability of drawing the red one 
is 7100. If we increase the number of white marbles to 999, 
the probability is 71000. And so on. As we go on adding 
white marbles, the probability of drawing the single red one 
becomes smaller and smaller, and we can make it as small as 
we please by adding a sufficient number of white marbles. 
But the probability of drawing the red marble is never zero-­
the red marble is always there, and there is always some 
chance, however small, that it will be drawn. 

In a word, we must distinguish in our minds between "zero" 
on the one hand and "infinitely small," or "infinitesimal," on 
the other. We can then say that although the desired prob­
ability is, for all practical purposes, zero, it is, theoretically 
speaking, not zero but infinitesimal. This same distinction 
must be made whenever the number of favorable cases is 
finite and the number of possible cases is infinite. 

The contradictions encountered in the following two prob­
lems (7) can be handled in the manner just discussed. 

PARADOX 1. Since all even numbers are divisible by 2, the 
only even prime number is 2 itself. That is to say, the num­
ber of even primes is 1. But the total number of primes is 
infinite (see page 28). Therefore the probability that an 
arbitrary prime number is even is zero. This conclusion 
implies that it is impossible for a prime number to be even. 
Consequently the prime number 2 does not exist. 

PARADOX 2. The largest known prime number is 2127 - 1 
(see p. 28). Hence the number of known primes is finite. 
But the total number of primes is infinite. Therefore the 
probability that an arbitrary prime number is known is zero. 
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That is to say, it is impossible for a prime number to be known. 
Therefore no prime numbers are known. 

* * * 
The following problem (8) brings to light another difficulty 

which arises when the total number of cases is infinite. 

A REAL NUMBER-RATIONAL OR IRRATIONAL-BETWEEN 0 
AND 10 IS CHOSEN AT RANDOM. WHAT IS THE PROBABILITY 

THAT IT IS GREATER THAN 5? 

Using the technique we have developed in connection with 
a random point on a line, we divide a segment 10 units long 
into two intervals, each of length 5 units, as in Figure 97. 

o 

Favorable interval 

I) 

FIG. 97 

, 
I 

10 

Then the probability that the number chosen lies in the favor­
able interval is YIo, or 31. 

Let us, for a moment, look at a related problem. 

A REAL NUMBER-RATIONAL OR IRRATIONAL-BETWEEN 0 
AND 100 IS CHOSEN AT RANDOM. WHAT IS THE PROBABILITY 

THAT IT IS GREATER THAN 25? 

This time we divide a segment 100 units long into two inter­
vals, the first of length 25 units, the second of length 75 units, 
as in Figure 98. The favorable interval in this case is the 

Favorable interval 
r~------------------~' 
I I 

o 
FIG. 98 

second one. And the probability that the random number is 
greater than 25 is 7%00, or U. 

N ow consider the fact that every number between 0 and 25 
has a square root which lies between 0 and 5, and every num­
ber between 25 and 100 has a square root which lies between 
5 and 10. We can therefore interpret the results of our two 
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problems in this way: if a num-ber between 0 and 10 is chosen 
at random, the probability that it is greater than 5 is ~; 
whereas if the square of the number is chosen at random, the 
probability that the number is greater than 5 is %'! 

What is going on here? Should not the desired probability 
be the same regardless of whether the number or its square is 
chosen at random? Let us scrutinize the two problems more 
carefully. 

In the first problem we probably based our assumption that 
the two intervals were equally likely on the idea that the real 
numbers between 0 and 10 are evenly distributed along the 
line-that there are, so to speak, just as many real numbers 
between 0 and 5 as between 5 and 10. But now consider the 
squares of all such numbers. Every number in the interval 
o to 5 of Figure 97 has a square which lies in the interval 0 to 
25 of Figure 98; and every number in the interval 5 to 10 of 
Figure 97 has a square which lies in the interval 25 to 100 of 
Figure 98. There are, in other words, just as many real num­
"ers between 0 and 25 as between 25 and 100. (This idea is 
not a new one. In the last chapter we established the fact that 
there are as many points-corresponding to real numbers---on 
a line of finite length as on a line even of infinite length.) We 
are therefore led to the conclusion, whether we like it or not, 
that the intervals 0 to 25 and 25 to 100 are equally likely to 
contain a number picked at random between 0 and 100. 

But in the second problem we went on the assumption that 
the numbers between 0 and 100 are distributed evenly along 
the line and that there are, so to speak, three times as many 
numbers between 25 and 100 as between 0 and 25. That is to 
say, we assumed that the interval 25 to 100 is three times as 
likely to contain the random point as the interval 0 to 2.5. 
This assumption, after all, is a reasonable one. It is the one 
we should have made had we had no knowledge of the first 
problem, but had been thinking simply of a number picked 
at random between 0 and 100. 

The way out of all this confusion is not entirely clear. The 
difficulty is concerned with the proper choice of a set of equally 
likely cases, a matter on which the mathematicians them­
selves are not agreed. One group, following Bertrand, would 
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dismiss all such problems by pointing out that infinity is not 
a number and that we cannot describe, in terms of finite prob­
abilities, choices made at random from an infinitude of pos­
sibilities. This attitude indeed offers a way out, but not a 
very happy one, for it requires junking many results and 
techniques which have been found to be extremely useful. 

Perhaps the most satisfactory attitude for us to take is the 
pragmatic one. Granting, when the number of cases is infinite, 
that the choice of a set of equally likely cases is arbitrary, let 
us choose that set which common sense tells us is the most 
practical for the particular problem under consideration. 
Thus, in the two problems we have been discussing, the set 
used in the first problem certainly appears to be more practi­
cal for that problem than the set used in the second problem 
would be. What man of the street, confronted with the prob­
lem of determining the probability that a random number 
between 0 and 10 is greater than 5, would go off into calcula­
tions concerning the square of the random number and come 
out with the answer %;? The common-sense answer is ~. 

We shall see shortly that the pragmatic attitude is not 
alwctys entirely satisfactory, but the great argument in favor 
of it is the status of the theory of probability today. The 
theory is what it is because those who were responsible for its 
development were practical men who had the good common 
sense to make practical assumptions when they needed them. 
Had they stopped to wrangle over every theoretical point 
which arose, the theory might have died almost at birth. 
Instead, it has grown to be a powerful weapon of research in 
many fields. 

The following paradoxes (9) illustrate how difficult it fre­
quently is to decide what set of equally likely cases is the most 
workable in a given situation. 

PARADOX 1. Of a certain substance, it is known only that 
its specific volume lies between 1 and 3. It is therefore rea­
sonable to assume that its volume is as likely to lie between 
1 and 2 as between 2 and 3. 

But now consider the specific density of the substance. 
The volume and density are related by the formuia D = l/V. 
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Since the volume lies between 1 and 3, the density lies between 
1 and 73. And since we know nothing else about the density, 
it is reasonable to assume that it is as likely to lie between 1 
and % as between % and 73. Consequently the volume, 
which is the reciprocal of the density, is as likely to lie be­
tween 1 and % as between % and 3; that is to say, between 
1 and 1.5 as between 1.5 and 3. This conclusion, of course, 
contradicts our first conclusion that the volume is as likely to 
lie between 1 and 2 as between 2 and 3. 

PARADOX 2. A CHORD IS DRAWN AT RANDOM IN A GIVEN 

CIRCLE. WHAT IS THE PROBABILITY THAT THE CHORD IS 

LONGER THAN ONE SIDE OF THE EQUILATERAL TRIANGLE 

INSCRIBED IN THE CIRCLE? 

(a) In Figure 99, let ABC be the inscribed equilateral tri­
angle, and let DAE be tangent to the circle at A. The random 

FIG. 99 

chord can be thought of as drawn through A and any other 
point of the circle. Any chord lying within the shaded 60° 
angle BA C is longer than one side of the triangle, and is there­
fore a favorable case. Any chord lying within either of the 
60° angles BAD or CAE is shorter than one side of the tri­
angle. In other words, all possible cases lie within the 180° 
angle DAE, and all favorable cases within the 60° angle BAC. 
Consequently the desired probability is 6~80, or 73. The 
temporary fixing of the point A is of course no restriction, for 
the same argument would hold regardless of the position of A. 
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(b) Next think of the random chord as drawn perpendicular 
to the diameter AK through any point of AK, as in Figure 
100. It is easy to show that the distance from the center of 
the circle to any side of the triangle is equal to half the radius 
of the circle.(lO) In particular, OM is one half the radius OK, 
or one fourth the diameter AK. Now it is evident that if we 
layoff ON equal to OM, then any chord in the interval MN 
is greater than one side of the triangle. The random chord 
can be drawn through any point of AK. Chords which are 

B 

A 

K 

FIG. 100 

A 

FIG. 101 

longer than one side of the triangle are, as we have seen, those 
which lie in the interval MN-an interval whose length is half 
that of AK. Therefore the desired probability is~. The 
temporary fixing of the diameter AK is no restriction, as the 
same argument would apply for any other position of the 
diameter. 

(c) In Figure 101 a circle has been inscribed in the given 
equilateral triangle. As was pointed out in (b), the radius of 
the inscribed circle, OM, is half the radius of the original 
circle. Furthermore, a glance at the figure shows that if DE 
is any chord whose distance from the center is greater than 
OM, then DE is shorter than Be; whereas if FG is any chord 
whose distance from the center is less than OM, then FG is 
longer than Be. Finally, note that the distance of a chord 
from the center of the circle is measured by the distance of its 
mid-point from the center. Now the random chord can have 
as its mid-point any point within the large circle, and the mid-
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points of all chords having the desired property lie within the 
small circle. Hence the probability that the random chord is 
greater than one side of the equilateral triangle is the ratio of 
the area of the small circle to that of the large circle. If we 
denote the radius of the small circle by r, then the radius of 
the large circle is 2r, and the ratio in question is 7rr/7r(2r)2 = 
7rr/47rr2 = ~. 

Let us summarize briefly the results of this rather lengthy 
example. If we assume that the chord, passing through a 
point on the circumference of the circle, is as likely to make 
one angle with the tangent as another, then the probability 
is 73. If we assume that the chord, drawn perpendicular to 
a diameter of the circle, is as likely to pass through one point 
of the diameter as another, then the probability is~. Finally, 
if we assume that the mid-point of the chord is as likely to be 
one interior point of the circle as another, then the probability 
is~. What is the most practical set of equally likely cases 
here? One guess is as good as another. 

(The next two paradoxes involve some knowledge of solid 
geometry and trigonometry. They will be discussed briefly 
for the benefit of those who are acquainted with these sub­
jects.) 

PARADOX 3. A PLANE IS CHOSEN AT RANDOM IN SPACE. 

WHAT IS THE PROBABILITY THAT IT MAKES AN ACUTE ANGLE 

OF LESS THAN 45° WITH THE PLANE OF THE HORIZON? 

(a) The random plane can make any angle between 0° and 
909 with the plane of the horizon. Only angles between 0° 
and 45° are favorable. Therefore the probability is 4%0, 
or .5. 

(b) From the center of an arbitrary hemisphere of radius r, 
the plane of whose base is horizontal, draw a perpendicular 
to the random plane. Then to choose the plane at random is 
to choose at random the point where the perpendicular to the 
plane intersects the hemisphere. If the plane is to make an 
angle of less than 45° with the horizontal, the perpendicular 
must intersect the hemisphere at some point of a zone whose 
area IS 
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Then the desired probability is the ratio of the area of the 
zone to the area of the hemisphere. This ratio is 2 sin2 22.5°, 
or .293. 

PARADOX 4. Two POINTS ARE CHOSEN AT RANDOM ON THE 

SURFACE OF A SPHERE. WHAT IS THE PROBABILITY THAT THE 

DISTANCE BETWEEN THEM IS LESS THAN 10 MINUTES OF ARC? 

(a) Let one of the points be fixed, and through this point 
draw a fixed great circle. (These restrictions are only appar­
ent, for the argument to follow is valid for all choices of the 
first point and for all choices of a great circle through that 
point.) Now divide the great circle into 2160 equal arcs, each 
of length 10'. Favorable cases are those in which the second 
point lies in one or the other of the two arcs adjacent to the 
first point. Hence the desired probability is %160, or .000926. 

(b) The first point having been fixed, the second point can 
lie anywhere on the sphere. If the distance between the two 
points is to be less than 10', however, the second point must 
lie on a zone whose area is 

where r is the radius of the sphere. Therefore the desired 
probability is the ratio of this area to that of the sphere-that 
is to say, sin2 5', or .00000212. 

This example is remarkable in that the first result is more 
than 400 times as large as the second! 

* * * 
The last group of paradoxes showed how difficult it is to 

determine the correct set of equally likely cases whenever 
there happens to be more than one possible set. An even more 
fundamental problem is that which concerns the precise mean­
ing of "equally likely"-a notion which is essentially intuitive 
and difficult to define. Indeed, the proper definition of 
"equally likely cases" has split mathematicians into two op­
posing camps. On the one hand are the "insufficient rea­
sonists," who maintain that two cases are equally likely if 
there is no reason to think them otherwise. On the other 
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hand are the "cogent reasonists," who maintain that two 
cases are equally likely only if there is some definite reason to 
think them so. The distinction is in some ways a rather fine 
Jne. As a matter of fact, an insufficient reasonist might well 
be classed as a cogent reasonist on the ground that, to him, 
the most cogent reason for thinking two things equally likely 
is the absence of any reason for thinking them otherwise! (11) 

We who have been following the discussions of this chapter 
should probably be classed as insufficient reasonists because 
of the fact that we have spent very little time looking for good 
reasons why we should assume that two or more cases are 
equally likely. Consider, for example, the first of the last 
four paradoxes discussed-the one concerning volume and 
density. We were told that we knew nothing of a certain sub­
stance other than that its volume had some value between 1 
and 3. In the absence of all other information, we assumed 
that the volume was as likely to lie between 1 and 2 as between 
2 and 3. The cogent reasonist would never have let himself 
in for the difficulties we encountered in this problem, for at 
the very start he would have dismissed the problem as one 
which simply cannot be discussed. 

The classic example used by the cogent reasonist to con­
found the insufficient reasonist is the so-called "life on Mars 
paradox." We shall present this paradox in the form of a 
dialogue between the cogent reasonist (c. R) and the insuffi­
cient reasonist (I. R) 

C. R: Tell me, Mr. I. R, what in your opinion is the prob­
ability of life, in some form or other, on the planet Mars? 

I. R: Hm, let me see. Well, since I am totally ignorant of 
the answer, I shall have to assume that the possibilities of life 
and no life are equally likely. Therefore my answer is ~. 

C. R: Very good. But now let us look at the problem from 
another angle. What would you say is the probability of no 
horses on Mars? 

I. R.: Again I confess total ignorance, so again I must con­
clude ~. 

C. R: And the probability of no cows? 
1. R.: Again ~. 
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C. R.: And the probability of no dogs? 
I. R.: Again ~. 
[This sort of thing goes on for several minutes, while C. R. 

names, let us say, 17 more specific forms of life.] 
C. R.: Very well. But now we must conclude that the prob­

ability of all these things occurring at once-no horses and no 
cows and no dogs and none of the other 17 forms of life which 
I specified-is the product of the individual probabilities, or 
(~)(~)(~) ... to twenty terms. [If the reader has forgotten 
the principle involfJed here, he should refer back to page 171.] In 
other words, the probability that none of these twenty forms 
of life exists is (~)20, or 71.048.576. Am I right so far? 

I. R. (Beginning to understand the trouble for which he is 
headed): Why, yes, I am afraid you are. 

C. R.: Thank you. But if the probability that none of these 
forms of life exists is 71.048.576, what, may I ask, is the prob­
ability that at least one of them exists? 

I. R.: Unfortunately, I must confess that this probability 
is the difference between your result and i-that is to say, 
1,048,575/1.048.576. 

c.R.: And so, Mr. I.R., we are led to two results concerning 
the probability of life on Mars. One of these is .5, and the 
other is about .999999-very near to certainty. Surely one of 
the two must be wrong. Can it be that your principle of in­
sufficient reason is at fault? 

Poor Mr. I. R.! We have, of course, presented the dialogue 
as C. R. might have written it. Perhaps we can find some­
thing to say in defense of I. R. Note that the paradox is 
based on two assumptions. In both solutions it is necessary 
to assume that we have absolutely no information concerning 
the existence or nonexistence of life on Mars. And in the 
second solution it is necessary to assume that the occurrence 
of one form of life is absolutely independent of the occurrence 
of any other form of life-otherwise the multiplicative prin­
ciple used in the argument would not apply. It is true that 
both of these assumptions might be valid in a purely hypo­
thetical universe, but the knowledge we have of our own uni­
verse makes them ridiculous. Once again the question is one 
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of practicality. We do know something of the planet Mars, 
and we do know something of the dependence of one form of 
life on another. These two facts are sufficient to invalidate 
the argument of the cogent reasonist. 

Much the same sort of difficulty is involved in a problem, 
discussed by Bertrand, concerning weather predictions. (12) 

Suppose one forecaster predicts that it will be fair tomorrow, 
and the probability that he is wrong is 75. Suppose a second 
forecaster predicts the same, and the probability that he is 
wrong is also 75. Then the probability that both are wrong 
would appear to be (7&) (7&), or 725' 

But are the two predictions independent? Suppose the 
two forecasters have been educated at the same school, that 
they have adopted the same principles, and that they base 
their predictions on the same data. Then if one is wrong, 
the other will be wrong also, and the second factor of the above 
product is not 7&, but 1. In other words, the accord of the 
two predictions does not lessen the chance of error. 

To cap the argument, suppose that one predicts "rain" and 
the other "clear." Assuming that "rain" means "rain all 
day long" and that "clear" means "clear all day long," the 
probability that they are both right is not (U)(U), but, since 
the occurrence of this event is impossible, zero. 

Perhaps news of this sort should not be spread about. 
Wealthy people afflicted with interesting maladies may, if 
they hear of it, have less confidence than usual in the coinci­
dent opinions of their three or four expensive specialists. 

* * * 
One of the most famous of all probability paradoxes is, like 

the problem which opened this chapter, a gambling problem. 
This is the "St. Petersburg paradox," originally proposed by 
Nicolaus Bernoulli in a letter dated September, 1713. The 
original problem was modified by Daniel Bernoulli-nephew 
'of Nicolaus-and discussed at length by him in the Trans­
actions of the St. Petersburg Academy. Here it received its 
notoriety and its name. (It may be worth remarking, in 
passing, that the Bernoulli family produced eight mathe­
maticians in three generations!) 
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A COIN IS TOSSED UNTIL HEADS APPEARS. IF HEADS AP­

PEARS ON THE FIRST TOSS, THE BANK PAYS THE PLAYER $1. 
IF HEADS APPEARS FOR THE FIRST TIME ON THE SECOND TOSS, 

THE BANK PAYS $2. IF HEADS APPEARS FOR THE FIRST TIME 

ON THE THIRD TOSS, $4; ON THE FOURTH TOSS, $8; ON THE FIFTH 

TOSS, $16; AND SO ON. WHAT AMOUNT SHOULD THE PLAYER 

PAY THE BANK FOR THE PRIVILEGE OF PLAYING ONE GAME IN 

ORDER THAT THE GAME BE FAIR-THAT IS TO SAY, IN ORDER 

THAT NEITHER THE PLAYER NOR THE BANK HAVE AN ADVAN­

TAGE REGARDLESS OF HOW LONG THE GAME GOES ON? 

First let us be sure we know what is meant by a "fair game." 
Consider the following simple example. A player undertakes 
to throw a four with one throw of a single die. The bank 
agrees to pay him $1 if he succeeds. What amount should 
the player pay if the game is to be a fair one? 

In a single throw the probability of a four is obviously 76. 
Now we cannot infer from this that the player will throw 1 
four in exactly 6 throws. We can infer, however, that in 
a large number of throws-say 6000-a four will occur 
'lbout 1000 times, and that as we increase the number of 
throws, the ratio of the number of successes to the number of 
throws will approach more and more nearly to 76. (This is 
an application of a theorem enunciated by Jacob Bernoulli, 
brother of Nicolaus.) The player's "expectation," as it is 
called, is therefore 76 of $1 per game, and this amount is what 
he should pay the bank if neither he nor the bank is to have 
an advantage. 

One more example. Suppose the bank agrees to pay the 
player $1 if he gets a four on the first throw. If he fails, it 
will pay him a dollar if he gets a four on the second throw. 
What amount should the player pay the bank in this instance? 
As before, the player's expectation on the first throw is 76 of 
$1. His expectation on the second throw, however, is not 
76 of $1. He will collect on this throw only if he fails to collect 
on the first throw. Now the probability that he does not get 
a four on the first throw is %, and the probability that he does 
get a four on the second throw is 76. Hence the probability 
that he fails on the first and succeeds on the second is (%) (76), 



Paradoxes in Probability 

or %6' That is to say, his expectation on this throw is %6 ot 
$1. Finally, the player's chance of collecting on the first 
throw or the second throw is Y6 + %6, or IV36' His expecta­
tion in this game is therefore IV36 of $l-the amount he 
should pay if the game is to be fair. Note that here, as in 
any game of this kind, the total expectation is the sum of the 
expectations at each stage of the game. 

And now back to the original problem. Consider the first 
toss of the coin. The probability of heads is 72. The amount 
involved is $1. Therefore the expectation on this toss is 72 
of $1, or 72 dollar. Consider the second toss. The player 
will collect on this toss only if he throws tails on the first toss 
and heads on the second. The probability that this will hap­
pen is (72)(72), or X. The amount involved is $2. There­
fore the expectation on this toss is X of $2, or 72 dollar. 
Consider the third toss. The player will collect on this toss 
only if he throws tails on the first two tosses and heads on the 
third. The probability that this will happen is (72) (72) (72), or 
Ys. The amount involved is $4. Therefore the expectation 
on this toss is Ys of $4, or 72 dollar. 

To show that the expectation on every toss is 72 dollar, con­
sider the nth toss. The player will collect on this toss only if 
he throws tails on the first n - 1 tosses and heads on the nth. 
The probability that this event will happen is (72) (72) (72) 
... (72) to n factors, or 72n • Now the number of dollars in­
volved in the first toss is 1, or 2°; that in the second toss, 2, or 
21; that in the third toss, 4, or 22; that in the fourth toss 8, or 
23 ; and so on. Note that the number of dollars is always a 
power of 2, and that the power is always one less than the 
number of the toss. Hence the number of dollars involved in 
the nth toss is 2n - 1• Finally, then, the expectation on the nth 
toss is (72n ) (2 n - 1), or 2n - 1 /2 n , or 72 dollar. 

Since the total expectation is always the sum of the expecta­
tions at each stage of the game, the total expectation here is 

!+!+!+!+1+.!+ ... 
2 2 2 2 2 2 

dollars. Now recall that play is to continue until heads turns 
up. Theoretically there is no limit to the number of tails 
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which may appear before the first head appears, and this 
means that the above series is to be summed to infinity. But 
the sum of an infinite number of terms of this series is obvi­
ously infinite. It follows that the player must pay the bank an 
infinite amount of money for the privilege of Playing one game! 

This result is absurd. No one would ever think of paying 
any great amount for such an opportunity. Yet the mathe-' 
matics is correct. What is wrong, then? This question ha1\ 
been bothering mathematicians for some two hundred years, 
and as yet no one has found an answer acceptable to all con­
cerned. A number of solutions have been suggested.(13) Of 
these, the following one probably appeals most to common 
sense. 

There is nothing wrong with the result we arrived at pro­
vided there exists a bank which has infinite wealth and which 
is consequently in a position to pay the player no matter how 
late in the game the first head turns up. But such a bank 
obviously does not exist. Suppose, then, that we investigate 
the expectation in the case of a bank whose wealth is limited 
to $1,000,000. 

As before, the probability that a head first appears on the 
nth toss is ~n. If a head does appear on this toss, the bank 
pays 2n - 1 dollars provided this amount is less than $1,000,000. 
Otherwise it pays $1,000,000. That is to say, if Pn denotes 
the probability that a head first appears on the nth toss, and 
if an is the amount in dollars paid by the bank for a win on 
that toss, then the expectation on the nth toss is Pn . an, where 

1 ] Pn = 2n provided 2n- 1 is less than 1,000,000, 

an = 2n- 1 

Pn = ~n ]provided 2n- 1 is greater than 1,000,000. 

an = 1,000,000 

Now 219 is less than 1,000,000, while 220 is greater than 
1,000,000. It follows that the first set of conditions applies 
when n is less than or equal to 20, and the second set when n 
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is greater than 20. Therefore the total expectation in dollars 
is given by the expression 

1 1 1 1 
2 (1) + 22 (2) + i a (22) + 24 (23) + ... to twenty terms 

+ 2!1 (1,000,000) + 2!2 (1,000,000) + ... to infinity. 

Since each of the first twenty terms of this series has the value 
~, the sum of the first part of the series is 10. The second 
part is a geometric series, the sum of which can be obtained 
by an elementary algebraic formula. The value of this sum 
to four decimal places is .9536. The total expectation in the 
case of a $1,000,000 bank is thus seen to be $10.95, a not un­
reasonable amount to pay for the privilege of playing. 

While we are on the subject of gambling, here are two hints 
on how to win at roulette. They are included for the benefit 
of those who wish to take them for what they are worth. The 
author assumes no responsibility in connection with either 
of them! 

PARADOX 1. If you are willing to take a chance on losing 
$lO-but no more than $lO-proceed as follows. Put $10 
on red (or black) the first day. If you win, put $20 on red 
the second day. If you win, put $30 on red the third day. 
Contin ue as long as you win. I f you lose, stop at once and 
never play again. Then if you ever lose, you lose no more 
than $10. But if you continue to win, you will win 10, 20, 
30, ... , 10n dollars by stopping after the 1st, 2nd, 3rd, ... , 
nth day. 

PARADOX 2. If you wish always to be ahead of the bank, 
stick to one wheel and play consecutive games as follows: (14) 

Bet $1 on red. If you win, all well and good. If you lose, put 
$2 on red. If you then win, you are $1 ahead. If you lose, 
put $4 on red. If you then win, you are again $1 ahead. If 
you lose, put $8 on red. And so on. Keep betting until you 
win. Theoretically, of course, it is possible for the bank to 
wipe you out financially. Actually, however, runs of more 
than 10 or 12 successive blacks or reds are extremely rare, 
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and your stake at the twelfth play would be only $2048. 
\Vhen you do win you wiII, as before, be $1 ahead of the bank. 
You can then begin all over again. Simple, isn't it? 

* * * 
As a final example of the pitfalls of probability we shall 

consider an amusing paradox proposed by Lewis Carroll. (16) 

A BAG CONTAINS TWO COUNTERS AS TO WHICH NOTHING IS 

KNOWN SAVE THAT EACH IS EITHER BLACK OR WHITE. ASCER­

TAIN THEIR COLORS WITHOUT TAKING THEM OUT OF THE BAG. 

Carroll insisted that the answer is "one white, one black" 
by the following argument: We know that if a bag contains 
three counters, two being black and one white, the probability 
of drawing a black one is %, and no other state of things wiII 
give this probability. 

Now with two counters there are four equally likely cases: 
both counters can be black, or the first black and the second 
white, or the first white and the second black, or both white. 
For brevity we shall denote these cases by BB, BW, WB, and 
WW respectively. Since they are equally likely, and since 
one of them must represent the true situation, the probability 
of each is U. 

Add a black counter. Then, as before, the probabilities of 
BBB, BWB, WBB, and WWB are each U. Now note that 
in the case of BBB, the probability of drawing a black counter 
is 1; in that of BWB, %; in that of WBB, %; and in that of 
WWB, 73. Therefore the probability of drawing a black 
counter from the bag is 

1.!+~.!+~.!+!.! 
4343434 

3 2 2 1 8 2 
= 12 + 12 + 12 + 12 = 12' or 3 

But, as we have said before, the probability of drawing a 
black counter is % only if the bag contains two black counters 
and one white counter. Hence, before the black counter was 
added, the bag must have contained one white, one black! 
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I t does not take long to see that the adding of the black 
counter is little more than rigmarole designed to confuse the 
reader. For suppose we return to the original situation in­
volving only two counters. The possible cases are 

BB, BW, WB, WW; 

the probabilities of these cases are 

111 1 
4' 4' 4' 4' 

and the probabilities of drawing a black counter in the respec­
tive cases are 

1, 
1 1 
2' 2' 

o. 

By the same argument that was used before, the probability 
of drawing a black counter is, in the combined cases, 

11111 1211 4 1 
1 . 4 + 2 . 4; + 2 . 4 + 0 . 4 = 8 + 8 + 8 + 0 = 8' or 2 

But if the probability of drawing a black counter is ~, and if 
there are two counters in the bag, one must be white and the 
other black. 

The paradoxical conclusion does not, therefore, depend upon 
the' adding of a third counter. The fallacy lies in the third 
step-that in which the probabilities of drawing a black 
counter in the individual cases are combined to give a single 
probability. Perhaps the easiest way to convince ourselves 
of this fact is to carry through the argument for a bag con­
taining three counters. 

If there are three counters, each of which can be either black 
or white, the possible cases are 

BBB, BBW, BWB, WBB, BWW, WBW, WWB, WWW. 

Since there are eight equally likely cases, one of which must 
represent the true state of things, the probability of each is 

1 1 1 1 1 1 1 1 
8' 8' 8' 8' 8' 8' 8' 8 
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The probabilities of drawing a black counter in these cases 
are, respectively, 

2 2 
1, 3"' 3' 

2 1 
3' 3' 

1 
3' 

1 
3' 

o. 

If these probabilities are combined as before, the probability 
of drawing a black counter is 

1 .l + ~ . .! + ~ . ~ + ~ . ~ +.! . ~ + ~ . ~ + ~ . ~ + 0 . .! 
8383838383838 8 

3222111 
= 24 + 24 + 24 + 24 + 24 + 24 + 24 + 0 

12 1 
= 24' or 2' 

But if the probability of drawing a black counter is ~, the 
number of black counters must be equal to the number of 
white counters-a situation which simply cannot exist in the 
case of three counters. The same argument applied to any 
number of counters will always give the same result-~. 
Consequently the argument is not a valid one. 

* * * 
At least twice in this chapter remarks were made concerning 

the applicability of the theory of probability to other fields. 
A discussion of the role played by probability in the theoretical 
sciences-notably physics and chemistry-would lead us too 
far astray into technical matters. But a few words about its 
relation to the applied sciences may help to give us some idea 
of its importance in everyday activities. 

In economics, for example, statistical methods-and statis­
tics and probability are inseparable-have been found to be 
indispensable in the study of insurance, benefit and pension 
plans, market surveys, and demand and price fluctuations. 
Industry uses statistics extensively in such matters as the 
inspection of items manufactured in mass production, and the 
subsequent improvement of manufacturing processes. And 
even those engaged in modern warfare are finding probability 
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and statistics helpful in their attempts to increase the accuracy 
and effectiveness of their gunnery and bombing. 

Early in the eighteen hundreds Laplace-who was not only 
a mathematician, but also one of France's greatest astrono­
mers and physicists-hailed the theory of probability as "the 
most important object of human knowledge." This estimate 
may have seemed reckless at the time it was made, but these 
days it is beginning to seem somewhat more sound. 



...... 

9 .... 

Vicious C9ircles 
(Paradoxes in Logic) 

"mATHEMATICS and logic, historically speak­
ing, have been entirely distinct studies. Mathematics has 
been connected with science, logic with Greek. But both 
have developed in modern times: logic has become more math­
ematical and mathematics has become more logical. The con­
sequence is that it has now become wholly impossible to draw 
a line between the two; in fact, the two are one .. '. The proof 
of their identity is, of course, a matter of detail: starting with 
premises which would be universally admitted to belong to 
logic, and arriving by deduction at results which as obviously 
belong to mathematics, we find that there is no point at which 
a sharp line can be drawn, with logic to the left and mathe­
matics to the right." 

So wrote Bertrand Russell in 1919.(1) In spite of the fact 
that many mathematicians stilI refuse to admit the identity of 
mathematics and logic, there is, as Russell indicates, ample 
evidence of the fact that a close relationship does exist be­
tween the two subjects. Anyone fortunate enough to have 
studied plane geometry under the right kind of teacher is at 
least mildly aware of this relationship, although such matters 
are sadly neglected in most elementary courses. Certainly 
the connection between mathematics and logic is close enough. 
for contradictions in logic to have a disquieting effect on 
mathematics. 

The troublesome issues raised by the paradoxes of logic can 
for the most part be traced to one basic cause. Furthermore 
the paradoxes are, if not amusing, at least thought-provoking 
in themselves. We shall consequently examine them first 
with little regard for their mathematical significance, and 
shall then return to scrutinize them more carefully. 

* * * 196 
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The oldest of the logical paradoxes was discussed, in simpli­
fied form, at the very beginning of this book. I t dates back 
to the sixth century B.C. when Epimenides, the celebrated 
poet and prophet of Crete, is supposed to have made his 
famous remark, "All Cretans are liars." If we are to find 
anything paradoxical in this remark, we must rewrite it in 
the form "All statements made by Cretans are false." 

Now offhand this does not appear to be a particularly dan­
gerous verdict. I t resembles the idle exaggerations in which all 
of us indulge-such things as "All the stars are out tonight," 
"All the books that have appeared this season are worthless," 
and "All the storekeepers in this town are thieves." But 
"All statements made by Cretans are false" is much more 
than an idle exaggeration. Like the fabulous hoop snake, it 
suddenly turns and starts swallowing itself. The trouble 
begins when we consider the fact that Epimenides, who made 
this statement, is himself a Cretan. In that case, all state­
ments made by Epimenides are false. In particular, his state­
ment "All statements made by Cretans are false" is false, so 
that all statements made by Cretans are not false. 

We are now probably so bogged down in words that we 
don't know where we are. That, unfortunately, is one of the 
difficulties we encounter in all of these paradoxes. Their sig­
nificance is seldom apparent at first reading-they must be 
read and reread until they are clear. It will perhaps be of some 
help here to put the argument in a step-by-step form. Let's 
try it. 

(1) All statements made by Cretans are false. 
(2) Statement (1) was made by a Cretan. 
(3) Therefore statement (1) is false. 
(4) Therefore all statements made by Cretans are not false. 

Now statements (1) and (4) obviously cannot both be true, 
yet statement (4) follows logically from statement (1). Con­
sequently statement (1) is self-contradictory. 

* * * 
There is hardly a person living who has not made use, at 

some time or other, of the well-worn adage, "All rules have 
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exceptions." There are probably few people, however, who 
are aware of the fact that it is self-contradictory. 

The statement is, to all intents and purposes, a rule to the 
effect that all rules whatever have their exceptions. Now if 
all rules have exceptions, then this particular rule-' 'All rules 
have exceptions"-must have an exception. And what would 
an exception to this rule be? Why, the only thing it could be 
is a rule without an exception. And if a rule without an ex­
ception exists, then all rules do not have exceptions. 

But perhaps we had better resort once more to the step-by-
step argument. 

(1) All rules have exceptions. 
(2) Statement (1) is a rule. 
(3) Therefore statement (1) has exceptions. 
(4) Therefore all rules do not have exceptions. 

* * * 
Another paradox which has its foundation-real or legend­

ary-in antiquity concerns the sophist Protagoras, who lived 
and taught in the fifth century B.C. It is said that Pro­
tagoras made an arrangement with one of his pupils whereby 
the pupil was to pay for his instruction after he had won his 
first case. The young man completed his course, hung up the 
traditional shingle, and waited for clients. None appeared. 
Protagoras grew impatient and decided to sue his former pupil 
for the amount owed him. 

"For," argued Pro tago ras, "either I win this suit, or you 
win it. If I win, you pay me according to the judgment of 
the court. If you win, you pay me according to our agree­
ment. In either case I am bound to be paid." 

"Not so," replied the young man. "If I win, then by the 
judgment of the court I need not pay you. If you win, then 
by our agreement I need not pay you. In either case I am 
bound not to have to pay you." 

Whose argument was right? Who knows? 

* * * 
A stranger in town once asked the barber if he had much 

competition. "None at all," replied the barber. "Of all the 
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men in the village, I naturally don't shave any of those who 
shave themselves, but I do shave all those who don't shave 
themselves.' , 

This remark appears innocent enough until we stop to 
think of the plight of the barber. Does he shave himself or 
doesn't he? Let's suppose he does. Then he is to be classed 
with those who shave themselves. But the barber doesn't 
shave those who shave themselves. Therefore he does not 
shave himself. All right, then, let's suppose he does not shave 
himself. Then he is to be classed with those who don't shave 
themselves. But the barber shaves all those who don't shave 
themselves. Therefore he does shave himself. 

Here is an intolerable situation. For if the poor barber 
shaves himself, then he doesn't, and if he doesn't, he does. 
Even growing a beard won't help him! 

* * * 
If we care to do so we can express every integer in simple 

English, without the use of numerical symbols. For example, 
7 can be expressed as "seven," or as "the seventh integer," or 
as "the third odd prime." Again, 63 can be expressed as 
"sixty-three," or as "seven times nine." And 7396 can be 
expressed as "seven thousand three hundred ninety-six," or 
as "seventy-three hundred ninety-six," or as "eighty-six 
squared." 

I t is at once evident that to express each integer requires 
the use of a certain number of syllables. In general, the larger 
the number, the more syllables required. This generalization 
is not always true, however. For example, the thirty-nine 
digit number on page 28 can be expressed in five syllables as 
"the largest known prime." The important thing to note is 
that every integer requires a certain minimum number of 
syllables. 

Now let us divide all integers into two groups, the first to 
include all those which require a minimum of eighteen syllables 
or less, the second to include all those which require a mini­
mum of nineteen syllables or more. Consider the second 
group. Of all the members of this group, there certainly is 
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one which is the smallest. Just what integer constitutes this 
smallest member is beside the point. It is sufficient to note 
that "the least integer not nameable in fewer than nineteen 
syllables" is some specific number. 

But what of the phrase in quotation marks? It is certainly 
one way of expressing, in English, the smallest member of 
the second group. And this phrase requires only eighteen 
syllables-count them. In other words, the least integer not 
nameable in fewer than nineteen syllables can be named in 
eighteen syllables! 

* * * 
Consider next all the adjectives in the English language. 

Each adjective has a certain meaning. In some adjectives 
the meaning applies to the adjective itself; in others it does 
not. For example, "short" is a short word, but "long" is not 
a long word. "English" is an English word, but "French" is 
not a French word. "Single" is a single word, but "hyphen­
ated" is not a hyphenated word. "Polysyllabic" is a poly­
syllabic word, but "monosyllabic" is not a monosyllabic word. 
And so on. 

Since the meaning of an adjective must either apply to it­
self or not apply to itself, we can divide all adjectives into two 
groups accordingly. Thus, if the meaning of a given adjec­
tive applies to itself, we shall classify it as "autological." 
And if its meaning does not apply to itself, we shall classify it 
as "heterological." 

Now let us consider the word "heterologicaI." This word 
is certainly an adjective, and so it must be either autological 
or heterological. But if "heterological" is heterological, then 
this very statement-"heterological" is heterological-asserts 
that "heterological" applies to itself. And if it does apply to 
itself, then it must be autological, according to our definition 
of the word "autological." On the other hand, if "hetero­
logical" is autological, then this very statement-"hetero­
logical" is autological-asserts that "heterological," being 
autological and not heterological, does not apply to itself. 
And if it does not apply to itself, then it must be heterologi­
cal, according to our definition of the word "heterological." 
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The situation that confronts us is appalling. A given adjec­
tive must obviously be either autological or heterological­
it cannot be both autological and heterological. Yet we have 
just shown that if the adjective "heterological" is heterologi­
cal, it is not heterological, but autological; and if it is auto­
logical, it is not autological, but heterological! 

* * * 
But enough, for the moment, of examples. It is time that 

we stopped to think about the nature of the difficulties in­
volved in them, and to see in what way they affect mathe­
matics. 

Note first that there is one characteristic common to all of 
these paradoxes. They are concerned with statements about" all" 
of the members of certain classes of things, and either the state­
ments or the things to which the statements refer are themselves 
members of those classes. This common characteristic is not 
as obvious in some instances as in others. For this reason it 
will be well to review our examples briefly with an eye to 
recognizing the characteristic in each of them. 

"All statements made by Cretans are false." Since this is 
a statement made by a Cretan, it is itself a member of the 
class of all statements made by Cretans. Here the char­
acteristic is obvious, as it is in the case of "All rules have 
exceptions.' , 

The problem of Protagoras and his pupil is concerned with 
the class of all cases to be argued in court by the pupil. In­
cluded in this class is the case built around the class itself. 

The quandary of the village barber is concerned with the 
class of all men in the village who either shave themselves or 
do not shave themselves. Since the barber either shaves him­
self or does not shave himself, he is evidently a member of 
this class. 

The "least integer" problem involves the class of all English 
expressions denoting integers. The phrase "the least integer 
not nameable in fewer than nineteen syllables" is an English 
expression denoting an integer, and so is a member of the 
class in question. 
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Finally, in the last paradox discussed, the class of all adjec­
tives, autological or heterological, obviously includes the 
adjective "heterological." 

The vicious circle which arises when a statement is made 
about "all" the members of a certain class, and when the 
statement or the thing to which the statement refers is itself 
a member of that class, is difficult to avoid. Bertrand Russell, 
as early as 1906, tried to get around the difficulty by means of 
what he called the "theory of logical types." (2) He held that 
logical entities-statements, rules, things, and the like-are 
not all of one type, but fall into a hierarchy of types which are 
radically different, however similar they may appear to be. 
Moreover, whatever involves "all" of a certain class of things 
is not of the same type as the things themselves. Take the 
case of "All statements made by Cretans are false." The 
"statements" referred to are statements about things. The 
statement itself is not a statement about things, but a state­
ment about statements about things. I t is therefore a state­
ment of a different type, and so cannot be made to refer to 
itself. Hence it can lead to no contradiction. Similarly, in 
the rule, "All rules have exceptions," the "rules" referred to 
are rules about things, whereas the rule itself is not a rule 
about things, but a rule about rules about things. 

The theory of types, as described above, appears to be a 
safe and fairly simple means of escape from the troublesome 
vicious circles. Actually, however, the difficulties involved 
in the paradoxes are much more subtle than we have made 
them seem. (3) But rather than get any deeper into a discus­
sion of the efficacy of the theory of types, let us stop to con­
sider the following question-one which many of us have been 
waiting patiently to have answered. What have the logical 
paradoxes to do with mathematics? We shall try to answer this 
question by means of three more paradoxes. They are differ­
ent from those we have discussed in that they bear directly 
on mathematics, yet they are the same in that the contradic­
tions involved arise from what is essentially the same basic 
source. 

* * * 
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The first of our three paradoxes has to do with transfinite 
numbers, a subject we discussed in the last section of Chapter 
7. Recall that we examined two transfinite numbers in de­
tail: A 11 the number of natural numbers, and C, the number of 
real numbers. Recall further our remarking that Cantor 
proved conclusively that just as there is no greatest natural 
number, so there is no greatest transfinite number. His proof 
hinges, essentially, on one of the properties of transfinite num­
bers noted on page 164. That is to say, the number 2, raised 
to any transfinite power, always generates a new-and larger 
-transfinite number. Thus 2A l = C, 2c = a still larger 
transfinite, and so on. 

But now consider the class of all classes. And we mean ALL 
classes-all books, all chairs, all plants, all animals, all num­
bers (finite or transfinite, real or imaginary, rational or irra­
tiona!), all things which ever existed in this or any other uni­
verse, all ideas you or anyone else, living or dead, may ever 
have had-everything conceivable goes into this class. Now 
surely no class can ever have more members than this, the 
class of all classes. But if such is the case, then the transfinite 
number of this class is unquestionably the greatest transfinite 
number. Yet, as we have said, Cantor proved that there is 
no such thing as a greatest transfinite number! 

This paradox was brought to light by the Italian mathe­
matician, Burali-Forti, in 1897. As originally conceived and 
stated, (4) it involves a number of technical terms and ideas 
which for lack of space in Chapter 7 we neglected to develop. 
The nontechnical description given above is consequently by 
no means as accurate as it should be. The whole thing may 
seem to us to be a case of rather fine hair-splitting, but its 
importance to mathematics is indicated by the fact that when 
it first appeared it nearly brought about the collapse of the 
entire Cantorian theory. 

* * * 
The difficulties involved in our second paradox are similar 

to those we encountered in the autological-heterological con­
troversy. 
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Note first that classes are either members of themselves or 
not. For example, the class of all entities is itself an entity, 
while the class of all men is not a man. The class of all ideas 
is itself an idea, while the class of all stars is not a star. The 
class of all classes-the class we worked with in the last para­
dox-is itself a class, while the class of all books is not a book. 
And so on. 

Since any given class must be either a member of itself or 
not a member of itself, we can divide all classes into two groups 
accordingly. We shall denote by S the class of all self­
membered classes-that is, classes which are members of 
themselves. And we shall denote by N the class of all non­
self-membered classes-that is, classes which are not members 
of themselves. 

Now let us fix our attention on N. Since N is a class, it 
must be either self-membered or not. That is to say, N must 
be a member either of S, the class of all self-membered classes, 
or a member of N, the class of non-self-membered classes. If 
N is a member of N, then this very statement-N is a member 
of N-asserts that N is a member of itself. And if N is a 
member of itself, it must be a member of S, the class of all 
self-membered classes. On the other hand, if N is a member 
of S, then this very statement-N is a member of S-asserts 
that N, being a member of S, is not a member of itself, or N. 
And if N is not a member of itself, it must be a member of N, 
the class of all non-self-membered classes. 

Now obviously a given class must be either self-membered 
or non-self-membered-it cannot be both. In other words, a 
given class must be a member of either S or N-it cannot be 
a member of both Sand N. Yet we have just shown that if 
the class N is a member of N, it is not a member of N, but of 
S; and if N is a member of S, it is not a member of S, but of N! 

The same argument is usually presented by mathematicians 
and logicians in a much more compact form. This form may 
appeal to those of us who were confused by the wordiness of 
the argument as presented above. Let's try it. 

Denote any class by X, and, as before, the class of all non­
self-membered classes by N. Then the following statement 
is true. 
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X is a member of N if and only if X is not a member of X. 
That is to say, X is a member of the class of all non-self­
membered classes if and only if X is not a member of itself. 
Since X represents any class, and since N is a class, we may 
substitute N for X. The statement then reads 

N is a member of N if and only if N is not a member of N. 
Here again is what may seem to us to be a hair-splitting 

proposition as far as mathematics is concerned. Its signifi­
cance, however, is made apparent by the following historical 
note. Gottlob Frege, a German mathematician, had spent 
years in an attempt to put mathematics on a sound logical 
basis. His chief work was a two-volume treatise on the 
foundations of arithmetic, a treatise in which he used freely 
the notion of a class of all classes that have a given property. 
Some indication of the time he spent on this work is to be had 
from the fact that the first volume was published in 1893, the 
second in 1903. As the second volume was about to appear, 
Bertrand Russell sent Frege the paradox we have just dis­
cussed. Frege acknowledged the communication as follows 
at the end of his second volume. 

"A scientist can hardly meet with anything more unde­
sirable than to have the foundation give way just as the work 
is finished. In this position I was put by a letter from Mr. 
Bertrand Russell as the work was nearly through the press." 

Incidentally, Frege's use of the word "undesirable" makes 
his remark one of the great understatements of all time! 

* * * 
The third of the three paradoxes we set out to discuss is 

the so-called Richard paradox, (5) named for its originator, 
]. Richard, a French mathematician. 

Before getting into the main argument, let us consider a 
simple analogy. Suppose that our English vocabulary con­
sisted of only three words-say "see," "the," and "cat." 
Now it stands to reason that with such limitations we could 
never discuss any idea which requires more than three words. 
We could not, for example, develop any of the ideas we now 
have under consideration. This concl usion may appear to be 
childishly simple, but it will clarify the argument to follow. 
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Any system of symbolic logic, or mathematics, consists 
of a collection of formulas. Here we are using the word 
"formula" not in the restricted mathematical sense, but in 
the broadest sense. That is to say, a formula is any symbol 
(including letters of the alphabet, numbers, punctuation 
marks, and the like), or any word, or definition, or statement, 
or theorem-anything by which we express ideas. Now it is 
not difficult to show, using the notion of one-to-one corre­
spondences which we developed in connection with trans­
finite numbers, that it is possible to set up a one-to-one cor­
respondence between the class of all formulas of any given 
system and the class of all natural numbers. In other words, 
the class of all formulas has the transfinite number A 1• 

The Richard paradox then consists in what amounts to the 
following problem: How can any system of symbolic logic, in 
which the class of all formulas has the transfinite number A h 

be adequate for the discussion and development of any branch 
of mathematics that deals with classes whose transfinite num­
bers are greater than A 1? In particular, how can we even 
talk about the class of real numbers, whose transfinite num­
ber, C, has been proved to be greater than A 1? 

* * * 
I t must be emphasized again that the paradoxes of logic are 

not foolish problems with which the philosophically minded 
while away their time. It is true that they may have existed 
as such for hundreds of years. But when, at the beginning of 
the present century, Burali-Forti, Russell, and Richard 
dressed them up and paraded them in mathematical costumes, 
they started a revolution which is still very much in progress. 
I t is almost impossible to discuss-briefly and in nontechnical 
terms-what is going on in this revolution. But enough can 
be said to give us at least some idea of present trends. (6) 

Those who are engaged in laying the new foundations of 
mathematics can be roughly divided into the following three 
groups: (1) the logistic group, led by the Englishman, Ber­
trand Russell; (2) the axiomatic group, led by the German, 
David Hilbert; (3) the intuitionist group, led by the Dutch­
man, L. E. J. Brouwer. 
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The program of the logistic group is to reduce mathematics 
to symbolic logic. This fact might have been inferred from 
the passage quoted at the beginning of the present chapter. 
As we have already seen, Russell proposed the theory of types 
as a means of getting around the logical contradictions. The 
shortcomings of this particular technique have been recog­
nized, and repeated attempts have been made to modify it 
accordingly. It is still not entirely satisfactory. 

The program of the axiomatic group is to base all of mathe­
matics on a fundamental system of axioms, or assumptions. 
Such systems have been found for important parts ormathe­
matics, and it remains only to prove that the systems are 
consistent-that no contradictions can arise in results deduced 
from them. In the case of many of these systems it has been 
shown that any contradiction arising from the system would 
imply a contradiction in arithmetic. Thus the chief problem 
of the axiomatic group is that of proving that the axioms of 
arithmetic are consistent. No satisfactory proof of this has 
yet been found. 

Finally, the intuitionist group maintains that no mathe­
matical concept is admissible unless it can be constructed. 
That is to say, not only must the concept exist in name, but 
an actual construction must be exhibited for the thing which 
the concept represents. Now if the construction is to be an 
actual one, then it must consist of a finite number of steps­
or, as the Richard paradox indicates, of certainly no more 
than A 1 steps. And in that case we have no right to talk 
about such a thing as the class of all real numbers, whose 
transfinite number is greater than A l • This attitude is hardly 
satisfactory, for it means that many of the most powerful and 
useful methods of mathematics must be thrown overboard. 

Which of these three groups has the "best" policy? The 
answer is a matter of opinion. As in politics, each individual 
interested in the controversial issues must ally himself with 
that party whose platform seems to him the most reasonable. 
However dissimilar their paths may be, all three groups are 
working toward the same end-to establish all of mathe­
matics on an unassailably sound basis. No one can predict 
whether or not this ideal will ever be attained. But already 
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the controversies of the last few decades have brought forth 
entirely new fields of research, as well as new and effective 
methods in old fields. So as far as mathematics as a whole is 
concerned, the setbacks occasioned by the paradoxes of logic 
have been more than balanced by the advances resulting from 
their subsequent investigation. 
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not fOf the novice 
(Paradoxes in 
Higher mathematics) 

THE mathematics involved in the previous chapters 
has for the most part been of the type ordinarily covered in 
secondary-school courses. Whenever such was not the case 
-as, for example, in the last three chapters-an attempt was 
made to develop as much of the mathematical background as 
was necessary for an understanding of the problem at hand. 

This last chapter is designed for those whose work in mathe­
matics has extended beyond the elementary level. It consists 
of some twenty paradoxes concerned chiefly with the subjects 
of trigonometry, analytic geometry, and calculus. A knowl­
edge of these subjects will be assumed, and no attempt will 
be made to develop any of the necessary concepts or tech­
niques. Furthermore, the solutions of the various problems 
will not be discussed in the main body of the text. The reader 
will thus be given a chance to diagnose the difficulties him­
self-a procedure he should follow if he wishes to derive the 
maximum amount of pleasure and profit from the chapter. 
Since, however, such a procedure might conceivably lead to 
insomnia, nervousness, and general irritability, a complete 
discussion of each problem is offered in the Appendix. 

* * * 
GEOMETRY AND TRIGONOMETRY 

PARADOX 1. To PROVE THAT TWO NONPARALLEL LINES 

WILL NEVER MEET.(l) 

Let a and b of Figure 102 be two nonparallel lines. Draw 
a third line AB so that it makes equal angles with a and b. 
It is evident at once that since angles 1 and 2 are obtuse, a 
and b can have no point in common to the left of the trans-

209 
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versal AB. We need therefore consider only what happens 
to the right of AB. 

A C E 
I\.. 

G 

a 

2r 
B D F H 

h 

FIG. 102 

Mark off AC = BD = AB/2. Points C and D cannot 
coincide-as in Figure 103 (a)-for if they did, the sum of two 
sides of the resulting triangle would be equal to the third side. 

(a) 
FIG. 103 

Even less can the segments A C and BD have any other point 
in common-say the point S of Figure 103(b). For then the 
sum of two sides of the triangle ABS would be less than the 
third side. 
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Now draw CD and mark off CE = D F = CD /2. Reason­
ing exactly as before, we can show that the segments CE and 
DF have no point in common. We can therefore draw EF, 
mark off EG = FH = EF /2, and show that the segments 
EG and FH have no point in common. And so on. Since this 
same argument can be repeated indefinitely, we must con­
clude that the lines a and b will never meet. 

PARADOX 2. To PROVE THAT EVERY TRIANGLE IS ISOS­

CELES. 
Q 
II 

I I 
/...J 

/ C\ 
p I 2 I 
t" a I \ 
, >, / \ 
'l'C " b / I 
12', / \ 
\ '" \ I " I \ 

, I I , \ , , , \ 

\ \ 
, C c \ 
'2 '2 \ , 

B' 
c 

FIG. 104 

In Figure 104 let ABC be any triangle, and let a, b, and c be 
the sides opposite the angles A, B, and C respectively. Ex­
tend BC a distance b to P, and AC a distance a to Q. Draw 
AP andBQ. 

In triangle APC, AC = CP, so L CAP = L CPA. Further­
more L C of triangle ABC is an exterior angle of triangle APC. 
I t follows that L CAP = L CPA = ! L C. Similarly, L CQB 
= L CBQ = ! L C. Now apply the law of sines to triangles 
ABP and ABQ. In the first of these, 

BP a + b sin (A + ~) 
-=--= 
AB c . C 

(1) 
sm-

2 
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and in the second, 

AQ a+b sin (B +~) 
(2) -=--= AB c C 

sm-
2 

Therefore 

sin (A +~) sin (B +~) 
(3) 

C C 
sm-

2 
sm -

2 
or 

sin (A + ~) = sin (B + ~) , (4; 

whence 
C C A+ 2 =B+ 2 , (5) 

and 
A = B. (6) 

I t follows that a = b, and that the triangle is isosceles by 
definition. 

PARADOX 3. To PROVE (2) THAT 1 = 2. 

We have, successively, for all values of x, 

cos2 X = 1 - sin2 x, (1) 

(cos2 x)* = (1 - sin2 x)*, (2) 

cos3 x = (1 - sin2 x/\ (3) 

cos3 x + 3 = (1 - sin2 xY" + 3, (4) 

(cos3 x + 3)2 = [(1 - sin2 X)~2 + 3]2. (5) 

Let x have the value 71"/2. Then cos x = 0, sin x = 1, and 
(5) reduces to 

9 = 9, 
a true resul t. 
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But now let x have the value '11". Then cos x = -1, 
sin x = 0, and (5) reduces to 

22 = 42• 

That is to say, 2 = 4, or 1 = 2. 

PARADOX 4. To PROVE (3) THAT SIN X = 0 FOR ALL VALUES 

OF x. 

As is well known, the power-series expression for sin x con­
tains only odd powers of x. III other words, sin x can be 
written in the form 

sin x = alX + a2:r + aax5 + a4x7 +. ... (1) 

The coefficients all a2, aa, a4, ... can be determined in the 
following way. We know that 

sin2 x = 1 - cos2 x, 
whence 

sin x = (1 - cos2 x)J.i. (2) 

Since cos2 x ~ 1 for all values of x, the right-hand side of (2) 
can be expanded by the binomial theorem. This gives 

sin x = 1 - ! cos2 x-I cos4 X - l6 cos6 X - • • •• (3) 

But now think of the power-series expression for cos x. It 
contains only even powers of x. Consequently the right-hand 
side of (3) contains only even powers of x. In other words, 
the coefficients of the odd powers of x in (3) are all zero. It 
follows that all of the coefficients all a2, aa, a4, ... of (1) 
must vanish. That is to say, sin x = 0 for all values of x. 

PARADOX 5. In solid geometry the traditional approach 
to the measurement of a right circular cylinder is through 
regular prisms. The lateral surface of such a cylinder, for 
example, is defined as the limit of the lateral surface of a 
regular inscribed prism as the number of lateral faces is indefi­
nitely increased. Now it might be supposed that inscribed 
polyhedra other than regular prisms could be used equally 
well for the same purpose, provided, of course, that the num­
ber of faces be indefinitely increased and that the area of each 



214 1{ot for the 1{ovice 

face be made indefinitely small. Let us see whether or not 
this supposition is true in the following instance.(4) 

Consider a right circular cylinder whose radius is rand 
whose altitude is h. By means of planes parallel to the bases, 
divide the cylinder into 2n equal slices, each of altitude hl2n. 
One of these slices is shown in Figure 105. Divide the cir­
cumference of the lower base of this slice into 2m equal parts 
by the points A, B, C, D, E, .... Divide the circumference 
of the upper base into 2m equal parts by the points A I, B /, C/, 

FIG. 105 

D', E', ... , subject to the condition that A I lie on the same 
element of the cylinder as A, B' on the same element as B, C' 
on the same element as C, and so on. Finally, construct the 
polyhedron whose faces are the isosceles triangles AB'C, 
CB'D', D'CE, .... Do the same for each of the 2n slices. 

Now denote the area of each triangular face by s, and the 
sum of the areas of all the triangular faces of the entire poly­
hedron by S. Since to each slice there correspond 2m tri­
angles, and since there are 2n slices, it follows that 

S = 4mns. (1) 

To express S in terms of m, n, r, and h, proceed aB follows. 
Let P be the center of the lower base, and let Q be the point 
of intersection of PB and A C. Then 

s = AQ·B'Q. (2) 
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If we denote the angle APQ by a, 

AQ = r sin a, 
and 

B'Q = v' (BB')2 + (BQ)2 

Substituting (2), (3), and (4) in (1), 

S = 4mnr sin a ~ ::2 + 4r2 sin4 ~ 

Finally, noting that 2ma = 211", or that m = 1I"/a, 
written in the form 

Sln a ~ . a S = 211"r -- h2 + 16rn2 sm4 -. 
a 2 

(3) 

(4) 

(5) 

(5) can be 

(6) 

We are now in a position to consider the limit of S as m 
and n tend to infinity. 

(a) Let n = km = k1l"/a, where k is any fixed constant. 
Then certainly m and n tend to infinity as a tends to zero. 
Moreover the second quantity under the radical sign of equa­
tion (6) assumes a form which can be easily handled. That is 
to say, 

(7) 

Now the ratio of sin x to x tends to unity as x tends to zero. 
Hence the right-hand side of (7), because of the factor a2, 
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tends to zero as a tends to zero. Substituting (7) in (6) and 
passing to the limi t, we have 

lim S = 27rrh. 
«->0 

(b) But now suppose we let n = km2 = k~/a2. Then 

Substituting (8) in (6) and passing to the limit, 

lim S = 27rr Vh2 + r2P7r4• 
«->0 

(c) Finally, if we let n = km3 = k~/a3, we have 

(8) 

(9) 

and the quantity on the right, because of the factor m2, tends 
to infinity as a tends to zero. If, then, we substitute (9) in 
(6) and pass to the limit, 

lim S = co. 
«->0 

The radically different results obtained in cases (a), (b), 
and (c) are surprising, for in all three cases m and n were made 
to tend to infinity together. It is true that in (a) we took n 
as a multiple of m, in (b) as a multiple of m2 , and in (c) as a 
multiple of m3 , but it seems incredible that these slight differ­
ences can lead to such tremendous differences in the results. 
There is, of course, no fallacy in the argument here-nothing 
is violated except intuition. But the example shows em­
phatically that we cannot, without careful attention to details, 
define a curved surface as the limit of the surface of an in­
scribed polyhedron with increasingly many faces. 

* * * 
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PARADOX 1. 

ANALYTIC GEOMETRY 

To PROVE (6) THAT 7r = %. 

--------, 

(a) 

FIG. 106 

(b) 

I 
I 
I 

I 
I 
I 

The following two theorems are well known in the theory 
of conic sections. 

I. The area of the semiellipse in diagram (a) of Figure 106 
is 7rab/2, where 2a and 2b are the major and minor axes, 
respectively, of the ellipse. 

II. The area of the parabolic segment in diagram (b) of 
Figure 106-a segment cut off by a chord perpendicular to 
the axis of the parabola-is % that of the circumscribed 
rectangle. 

If now the major axis of the ellipse is allowed to increase 
without limit, the ellipse degenerates to a parabola, and the 
semiellipse becomes a parabolic segment. But theorems I 
and II above are true regardless of the dimensions of the 
curves. Therefore 

7rab 2 
- = - (a·2b) 
2 3 

Hence 
7r 4 8 
2 

or 7r = -. 
3' 3 



2 I 8 ?{ot for the ?{ovice 

PARADOX 2. To PROVE THAT A DIAMETER CUTS A CIRCLE 

IN ONLY ONE POINT.(S) 

The equations 
1 - t2 

X=1+t2' 

2t 
Y=1+t2 

(1) 

(2) 

are the parametric equations of a unit circle whose center is at 
the origin. This statement is easily verified by noting that 
equations (1) and (2), if squared and added, reduce imme­
diately to the equation x2 + y2 = 1. 

Consider the intersection of the x-axis and the circle. That 
is to say, substitute y = 0 in (2). Equation (2) then reduces 
to t = 0, which, substituted in (1), gives x = 1. Therefore 
the x-axis cuts the circle only at the point (1,0). 

Now by a proper choice of units and axes, any given circle 
can be made a unit circle, and any diameter of the given circle 
can be made to coincide with the x-axis. Hence any diameter 
of any circle cuts the circle in only one point. 

PARADOX 3. Consider the following problem.(7) A point 
P in three-dimensional Euclidean space is to be made collinear 
with two given points A and B. How many algebraic condi­
tions must be imposed on the coordinates of P? 

(a) Let Q and R be two arbitrary points subject only to the 
condition that A, B, Q, and R be not coplanar. Then if Pis 
to be collinear with A and B, it is necessary and sufficient that 
P be coplanar with A, B, and Q, and also with A, B, and R. 
Therefore two conditions are imposed on the coordinates of P. 

(b) Of the three distances AB, BP, and AP, it is necessary 
and sufficient that BP + AP = AB or AP + AB = BP or 
AB + BP = AP-i.e., that 

(-AB+BP+AP)(AB-BP+AP)(AB+BP-AP) =0. (1) 

The left-hand side of this equation can be rationalized by 
multiplying both sides by the nonvanishing factor - (AB + 
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BP + AP). If the resulting four factors on the left are multi­
plied together, equation (1) assumes the form 

(AB)4 + (BP)4 + (AP)4 - 2(BP)2(AP)2 

-2(AP)2(AB)2 - 2(AB)2(BP)2 = O. (2) 

The left-hand side of this equation is an unfactorable rational 
expression in the coordinates of P. Hence only one condition 
is imposed. 

Which of these two solutions is correct? 

* * * 
DIFFERENTIAL CALCULUS 

PARADOX 1. To PROVE THAT ANY TWO NUMBERS ARE 

EQUAL TO EACH OTHER. (8) 

Let us start with the relation 

x = a-b. 

If we multiply both sides of (1) by X, 

x2 = ax - bx. 

And if we square both sides of (1), 

x2 = a2 - 2ab + b2. 
From (2) and (3), 

ax - bx = a2 - 2ab + b2. 
That is, 

ax - a2 + ab = bx - ab + b2, 
or 

a(x - a + b) = b(x - a + b). 

(1) 

(2) 

(3) 

(4) 

If we divide both sides of (4) by the factor (x - a + b), we 
obtain a = b. But such an argument is obviously fallacious, 
for, since x = a - b, we are dividing both sides by zero. Very 
well, then, let us write 

a (x - a + b) = b (x - a + b) . 
(x - a + b) (x - a + b) 

(5) 

Now when x has the value a - b, equation (5) reduces to 
a(OjO) = b(OjO). In order to evaluate the indeterminate 



220 w..ot for the w..ovice 

quantity 0/0, we resort to a device frequently used for this 
purpose. That is to say, we make use of the fact that 

lim f(x) = lim f'(x). 
x~a g(x) X~a g'(x) 

If, then, we differentiate the numerators and denominators of 
the fractions in (5), we obtain 

a G) = b G), or a = b. 

PARADOX 2. To PROVE THAT ALL PROPER FRACTIONS HAVE 

THE SAME VALUE.(9) 

Let m and n be any two integers such that n is less than m. 
Then by ordinary long division, 

1 - xn 
1 m = 1 - xn + xm - xn+m + x2m - .. '. (1) 
-x 

Now let x have the value 1. The left-hand side of (1) assumes 
the indeterminate form 0/0. We can get around this diffi­
culty by differentiating numerator and denominator before 
passing to the limit. We then have 

. 1 - xn . -nxn- 1 n 
hm = hm =-. 
x~l 1 - xm x~l -mxm- 1 m 

But the limit, as x approaches 1, of the right-hand side of (1) 
is 1 - 1 + 1 - 1 + 1 - 1 +.... Therefore n/m, being 
equal to an expression which is independent of m and n, must 
always have the same value. 

PARADOX 3. Consider the triangle ABC of Figure 107. 
Suppose that AB is 12 inches long, and that the altitude CD 
is 3 inches long. Let us propose to find that point P on CD 
for which the sum of the distances of P from the three vertices 
is a minimum. (10) 

If we denote by S the sum of the distances of P from A, B, 
and C, and by x the length of DP, then the problem is that of 
finding the value of x that makes S a minimum. Now, 

S = CP +AP +PB. 
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But CP = 3 - x, and AP = PB = v' x2 + 36. Therefore 

S = 3 - x + 2v' x2 + 36, 
and 

dS = -1 + 2x 
dx v'x2 + 36 

Making dS/dx zero gives x = 20 = 3.464, and for this 
value of x, P lies outside the triangle on DC produced. Hence 

C 

A~--------------~D~------------~~B 

FIG. 107 

there- is no point on CD for which S is a minimum. Yet the 
problem appears to be straightforward enough. What is 
wrong? 

PARADOX 4. To PROVE THAT EVERY ELLIPSE IS A CIRCLE.(ll) 

Y 

--~~~------r----------r----~X 

FIG. 108 

Denote by a and e, respectively, the semi major axis and the 
eccentricity of the ellipse shown in Figure 108. It is well 
known that the length of the radius vector, drawn from the 
focus F to any point P of the ellipse, is given by the expression 

r = a + ex. 
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Now dr/dx = e, and since there are no values of x for which 
dr/dx vanishes, r has no maximum or minimum. But the 
only closed curve in which the radius vector has no maximum 
or minimum is the circle. Therefore every ellipse is a circle. 

* * * 
INTEGRAL CALCULUS 

PARADOX 1. To PROVE (12) THAT SIN x = 0 FOR ALL VALUES 

OF x. 

We know that sin 0 = 0, and also that sin 2mr = 0 for all 
integral values of n. Hence the area bounded by the curve 
y = sin x and the x-axis, between x = 0 and x = 2mr, is given 
by the definite integral of sin x from 0 to 2n7r. That is to say, 

12n .. 

A = sin xdx = 
o 

[ ]
2n .. 

-cos x 
o 

= -(cos2n7r - cosO) = -1 + 1 = O. 

But if there is no area between y = sin x and the x-axis, the 
curve must coincide with the aXiS. Hence sin x = 0 for all 
values of x. 

PARADOX 2. To PROVE THAT -1 = +1. 

We have 

JdX =J-dX. 
x -x 

Performing the indicated integration on both sides of (1), 

log x = log (-x), 
or 

x = -x, 
or 

1 = -1. 

(1) 

(2) 

PARADOX 3. To PROVE (13) THAT TAN X = ±i FOR ALL 

VALUES OF x. 

Consider the integral 

I = f sin x cos x dx. 
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If we think of cos x dx as d (sin x), then 

1= fsin x d (sin x) = ! sin2 x. (1) 

If, on the other hand, we think of sin x dx as -d (cos x), then 

I = - f cos x d (cos x) = -! cos2 x. (2) 

From (1) and (2), 
sin2 x = - cos2 X. 

Dividing both sides of (3) by cos2 x, we get 

tan2 x = -1. 
Therefore 

tan x = ± V-1 = ±i. 

(3) 

PARADOX 4. To PROVE THAT AN INFINITE AREA MAY GEN­

ERATE A SOLID OF REVOLUTION WHOSE VOLUME IS FINITE. 

y 

--~o+--~"'""""""'"'"""'""'"'"':l-----+-X 

FIG. 109 

The shaded area of Figure 109 is the area under the curve 
y = 1/x from x = 1 to x = k. This area, a function of k, is 
evaluated as follows. 

j kdX [ Jk A (k) = 1 --; = log x 1 = log k square units. 
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If the area is revolved about the x-axis, it generates a solid 
whose volume is 

V(k) = 7r lk ~~ = [ - ;I = 7r (1 - i) cubic units. 

Let k tend to infinity. Then 

lim A (k) = lim (log k) = 00, 
k ..... ., k ..... ., 

whereas 

lim V(k) lim [ 7r (1 - ~)] = 7r cubic units. 
k ..... ., k ..... ., 

* * * 
COMPLEX NUMBERS 

PARADOX 1. To PROVE (14) THAT 7r = O. 

For all val ues of 0, 

cos 0 = cos (27r + 0), 
and 

sin 0 = sin (27r + 0). 
Therefore 

cos 0 + i sin 0 = cos (27r + 0) + i sin (27r + 0), 
and 

(cos 0 + i sin O)i = [cos (27r + 0) + i sin (27r + oW. (1) 

Recall from De Moivre's theorem that (cos x + i sin x)n = 
cos nx + i sin nx. Hence (1) can be written in the form 

cos iO + i sin iO = cos i(27r + 0) + i sin i(27r + 0). (2) 

Now apply Euler's formula, cos x + i sin x = eix, to both 
sides of (2). We obtain 

Dividing both sides of this expression by e-211"-1J, 

e27r = 1. 

But e'" has the valup. 1 only when x is zero. Hence 27r = 0, 
and 7r = O. 
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PARADOX 2. To PROVE (16) THAT -1 = +1. 
Let x satisfy the equation eX = -1. Square both sides. 

Then e2x = 1. Now, as was noted only a few lines above, 
e2x is 1 only when 2x is zero. Hence 2x = 0, and x = O. Sub­
stitute this value of x in the original equation. Then eO = -1. 
But any number raised to the Oth power is + 1. In particular, 
~ = + 1. Consequently -1 = + 1. 

PARADOX 3. To PROVE THAT -1 = + 1. 

Consider the equation (_1)2 = + 1. Take the logarithm 
of both sides. Then log (_1)2 = log (1) = o. But log ( _1)2 
= 2 log (-1). Therefore 2 log (-1) = 0, and log (-1) = O. 
Consequently log (-1) = log (1), or -1 = + 1. 

PARADOX 4. Consider the following two linear homogene­
ous complex equations: 

(a + bi)(P + qi) + (e + di)(r + si) = 0, 

(a' + b'i)(p + qi) + (e' + d'i)(r + si) = O. 
(1) 

How many conditions must be fulfilled if the equations (1) 
are to be compatible? (16) 

(a) It is necessary and sufficient that the determinant of 
the coefficients vanish-that is, that 

(a + bi) 

(a' + b'i) 

(e + di) 
= O. 

(e' + d'i) 

This complex equation is equivalent to the two real equations, 

ae' - a'e = bd' - b'd 

ad' + be' = a'd + b'e. 

(b) The equations (1) are equivalent to the system 

ap - bq + er - ds = 0 

bp + aq + dr + es = 0 

a'p - b'q + e'r - d's = 0 

b'p + a'q + d'r + e's = O. 

(2) 

(3) 
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But in order that the equations (3) be compatible, it is neces­
sary and sufficient that 

a -b c -d 

b a d c 
= o. (4) 

a' -b' c' -d' 

b' a' d' c' 

This determinant yields, of course, a single real equation. 
Which of these two solutions is correct, the one that results 

in two equations, or the one that results in a single equation? 
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CHAPTER 2 

Pages 12-14 

PARADOX 1. It is incorrect to assume that "the tail wind on 
the way south will speed up the plane to the same extent that the 
head wind will retard it on the way north." Here we are again 
trying to get an average rate by averaging two rates maintained 
over equal distances. To analyze the problem, call the speed of 
the wind 50 miles per hour. Then the speed of the plane from New 
York to Washington is 100 + 50, or 150 miles per hour; from 
Washington to New York, 100 - 50, or 50 miles per hour. Hence 
the times for the trips down and back are 20%50, or %, and 20%0, 

or 4, hours respectively. It follows that the total time for the 
round trip is 5}3 hours, and that the average speed of the plane, 
in miles per hour, is 

total distance = 400 = 400 = 400 X 3 = 75 
total time 4 4 16 16 . -+ -

3 3 

PARADOX 2. The apple women made the error of calculating 
their average price rate by averaging their individual rates of % 
apples a cent and % apples a cent over the same number of apples. 
To guarantee the same receipts as those of the first day, they 
should have determined their price by dividing the total number 
of apples by the total number of cents-that is, 6%25 = 1%5 

apples a cent. They actually sold the apples at the rate of 3r2 = 
1%4 apples a cent. There's where the missing nickel went. 

PARADOX 3. The actual strokes occupy no appreciable length of 
time-the 5 seconds are accounted for by the 5 intervals between 
the 6 strokes. Between 12 strokes there are 11 intervals. Hence 
the correct answer is about 11 seconds. 

PARADOX 4. If the cost of the bottle were $1.00, and that of the 
cork 10 cents, then the bottle would cost only 90 cents more than 

229 
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the cork. Second thought readily supplies the correct answer: 
$1.05. 

PARADOX S. At least, the answer is not 30 hours unless the frog 
is so stupid that he doesn't know when he is well out of a well. At 
the end of 27 hours he is 3 feet from the top. During the 28th hour 
he climbs the remaining 3 feet, and he's out. 

PARADOX 6. Need we point out that if the lengths of the trains 
are neglected, then local and express are the same distance from 
New York when they meet? 

CHAPTER 3 

Page 29 

It was pointed out in Chapter 1 that in mathematics we are not 
concerned with the "truth" of our definitions or assumptions, but 
only with their consistency. The fact that any number (other 
than 0) raised to the Oth power is defined as 1 is a case in point. 
It is easy to visualize a2 as the product of two a's, a3 as the product 
of three a's, and so on. But what is to be done with aO? We obvi­
ously cannot visualize the product of zero--or no--a's! Now recall 
that if a is any number, and if m and n are positive whole numbers, 
then am·an = am+n. For example, 53 .54 = (5·5·5)(5·5·5·5) = 
5·5·5·5·5·5·5 = 57 = 53 +4. If we substitute 0 for m in this rule, 
we obtain aO. an = aO+n = an. Butif aO. an = an, we can divide both 
sides of this equation by an and obtain aO = 1. Hence we define aO 
as 1 for the sake of consistency in our mathematical processes. On the 
other hand, we cannot so define aO if a = 0, for the last step would 
involve division by On, or o. This particular point is discussed at 
length in Chapter s. 

CHAPTER 5 

Pages 84-85 

PARADOX 1. In step (1) it was assumed that a = b + c, or that 
a - b - c = o. We divided by a - b - c, or 0, to get equation (5). 

PARADOX 2. The left-hand side of each of the identities assumes 
the value % when 1 is substituted for x. This problem serves as 
additional evidence that % can be "any number." 

PARADOX 3. A case of division by zero in false whiskers. By 
adding 10 to the left-hand side, we changed the value of x to -7. 
Both sides of the equation were divided by x + 7-now O-in step 
(6). 
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Pages 87-89 

PARADOX 1. If the given equation is solved for x, it is found 
that x = a + b. Consequently the numerators in our first result, 
although equal, are zero-insufficient grounds for assuming that 
the denominators are equal. The second result is disposed of 
similarly. 

PARADOX 2. The solution for x is x = a-b. Hence the frac­
tion (3x - 3a + 3b)j(3x-3a + 3b) is of the form %. 

PARADOX 3. Here the solutions for x and yare 

x = a + b - c, 

y = a - b + c. 

These values reduce the fraction (x - a - b + c)j(y - a + b - c) 
to the form %. 

Pages 90-91 

This paradox arises from contradictions in the original equations, 
which might have been written in factored form as 

(x - y)(2x - y) = 4, 

(x - y)(x + 3y) = 9. 

It is now evident at once that these equations are not satisfied 
when x and yare equal. 

Page 92 

In passing from (5) to (6), only the positive signs were taken 
with the square roots. There is no contradiction if the negative 
sign is taken on the right, for then 

Pages 93-94 

1 

2 

PARADOX 1. It is assumed in step (1) that a > b. In step (4) 
both sides of the inequality are divided by b - a, a negative 
quantity. 

PARADOX 2. The logarithm of any number between 0 and 1 is 
negative, and in step (2) both sides of the inequality are multiplied 
by log (~). 
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Pages 95-96 

PARADOX 1. The error occurs in (3). Let's use our ~"s. Then 
(1) becomes i = i, and (3), iii = il1. Now (1) is true and (3) is 
false. For if (3) were true we should have, on clearing of fractions, 
i 2 = 1, whereas actually i 2 = -1. In passing from (2) to (3) we at­
tempted to apply to imaginary numbers the ordinary rule for 
division of radicals: Va7b = Va/0. 

PARADOX 2. This is one of the more insidious of the fallacies. 
The trouble all occurs in step (1). It seems reasonable enough to 

argue that Vx-=-; = v' (-l)(y - x) = i~, but this state­
ment is valid only when x - y is negative, so that y - x is positive. 
It is perhaps simpler if put this way: we have said that any imagi­
nary number such as ~ (and if this number is imaginary, a 

must be positive) can be written as iVa. We have not said that 

the real number Va can be written as i~, for this would give 
i 2 • Va, or - Va, an immediate contradiction. In the problem 
under consideration we can assume that a and b are not equal, for 
if they were equal, step (5) would involve division by zero. Then 
either a > b or b > a, which means that one or the other of the 
left-hand sides of (2) and (3) is a real number, and this fact invali­
dates the whole argument. 

CHAPTER 6 

Pages 102-108 

PARADOX 1. If the diameters are properly drawn, then the line 
PS will not cut the circles in two distinct points M and N, but will 

FIG. 110 

pass through R, as shown in Figure 110. To prove this, draw the 
diameters and connect R with P, S, and Q. Since angles PRQ and 
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SRQ are inscribed in semicircles, they are right angles. But their 
,urn must therefore be a straight angle, and this makes PRS 
a straight line. Finally, since between the two points P and S 
only one straight line can be drawn, this line must go through R. 

PARADOX 2. In Figure 111, properly drawn, it is readily seen 
mat the line PE falls outside the rectangle. Our proof for the 
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~quality of angles DAP and EBP is still valid, but it is now evident 
that the right angle CBG is no longer a part of the angle EBP. 

PARADOX 3. Similar to Paradox 2. If the figure were drawn 
correctly, it would be found that EK lies completely outside tri­
angle ABC. Although our proof that LDBK and LEBK are equal 
is still valid, the 600 angle ABC is no longer a part of LEBK. 

PARADOX 4. Similar to Paradox 2. The perpendicular bisectors 
actually meet outside the quadrilateral, as in Figure 66(b), but in 
such a way that the line OB lies completely outside as well. Hence, 
although LAOP = L1 - L3, LBOP = L2 + L4, not L2 - L4. 

PARADOX 5. Consider the original proportion AB IBC = AD IDC. 
Since B is the internal point of division of A C, and D the external 
JOint, it iii evident at once that AD must be greater than AB. It 
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follows (see page 82) that DC must be greater than BC. But in 
that case Q, the mid-point of BD, must lie outside the circle, so that 
the perpendicuiar bisector of BD does not intersect the circle at all. 
In other words there is no point P. Our proof breaks down com­
pletely when we first use P in step (8). 

Pages 109-112 

PARADOX 1. The fallacy here is a disguised case of division by 
zero. We conclude from step (8) that the denominators must be 
equal because the numerators are equal. But the numerators are 
zero, and this fact invalidates the conclusion. (See page 86.) To 
show that the numerators are zero, note that the triangles ABC and 
ADC are similar. Hence ACjAD = ABjAC, or AC2 = AB·AD. 
That is, AC2 - AB·AD = O. 

PARADOX 2. Suppose we solve (1) and (2) for rand t in terms 
of p, q, and s. From the equations in question we have 

pr - qt = -ps, 

qr - pt = ps. 

Adding (a) and (b), we have 

(p + q)r - (p + q)t = 0, 
or 

(p + q)(r - t) = o. 

(a) 

(b) 

The last equation will be satisfied if either of the two factors is zero. 
In (4) we disregarded the possibility that r - t might be zero, and 
so had to conclude that p + q is zero. Since p + q is not zero, r - t 
must be zero. Then, in (4), the fraction (t - r)j(r - t) becomes %, 
which is meaningless. 

Pages 114-116 

PARADOX 1. Since the sum of the angles of a spherical triangle 
can be anything between (but not including) 180° and 540°, we 
cannot assume, as we did, that the sum of the angles is the same 
(that is to say, x) for any triangle. 

PARADOX 2. This paradox is a rather ingenious one, for the 
correct figure is difficult to visualize, and the correct analysis is a 
bit lengthy, although it involves only fairly simple ideas. Let us 
fix our attention on PA and the associated sphere and circle. To 
locate the center of the circle in which the plane intersects the 
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sphere whose diameter is P A, drop a perpendicular OQ from the 
midpoint of PA-from the center of the sphere, that is-to the plane 
m, as in Figure 112. (The radius of a sphere, if perpendicular to a 

p 

m 

FIG. 112 

plane of intersection, passes through the center of the circle of inter­
section.) Then with Q as center and QA as radius draw the circle in 
m. But now drop a perpendicular PC from P to m and draw QC. 
Since AQC is the projection of the line PA on the plane, AQC will be 
a straight line. Furthermore, since AO and OP are radii of the same 
sphere, they are equal. But OQ is parallel to PC. (Two lines per­
pendicular to the same plane are parallel.) Therefore AQ = QC. 
(A line parallel to one side of a triangle divides the other two sides 
proportionally.) But this result means that C must lie on the circle 
of intersection, and AQC must be a diameter. 

If now we treat in the same way the circle formed by the plane 
and the sphere about PB as diameter, our situation in plane m will 

FIG. 113 

appear as in Figure 113. Draw AD and DB. We have already 
proved that if AC and BC are diameters, ABD must be a straight 
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line. (See discussion of Paradox 1, Ch. 6, page 232.) Now return to 
our original proof. We argued that since PC is perpendicular to 
the two intersecting straight lines A C and CB, it is perpendicular 
to plane m. True enough. But we applied the same argument to 
PD, thinking of AD and DB as intersecting straight lines. Since 
AD and DB are parts of one and the same line, PD need not be 
perpendicular to m, even though it is perpendicular to the line ADB. 
Finally, for different choices of A and B all of the circles of inter­
section pass through C, so that PC is a perpendicular common to 
all choices. The second intersection D is a varying point. In 
each case PD is peroendicular to the corresponding line ADB, but 
not to plane m. 

CHAPTER 7 

Pages 138-140 

PARADOX 1. The length of the limiting line appears to be -0 only 
because the limiting line appears to be the hypotenuse of the right 
triangle. Consider the first line, LlI shown in diagram (b) of 
Figure 79. It is evident at once that the sum of the horizontal seg­
ments is 1, and that the sum of the vertical segments is also 1. 
Hence the length of Ll is 2. But the same argument applies to L2 
and La, shown in diagrams (c) and (d). That is to say, in each of 
these cases the sum of the horizontal segments is 1, as is the sum 
of the vertical segments. Hence L2 and La, like L l , are each 2 units 
long. Now regardless of how many times the number of "steps" 
is doubled and redoubled, the sum of the horizontal segments re­
mains 1, and the sum of the vertical segments remains 1. Conse­
quently everyone of the broken lines L l , L 2, La, L4 , Ls, L 6 , ••• is 2 
units long. It follows that the length of the limiting line is also 2 
units, and not V2 units. 

PARADOX 2. Consider the curve ell shown in Figure 80(a). Since 
the circumference of a circle is equal to 11" times the diameter of the 
circle, the length of C1 is 1I"(AB). The curve C2 , in diagram (b), 
consists of two circles, each of diameter (AB) /2. The circumfer­
ence of each circle is 11" (A B) /2. Therefore the length of C2 is 
2·1I"(AB)/2, or 1I"(AB). The curve Ca, in diagram (c), consists of 
four circles, each of diameter (AB) /4. The circumference of each 
circle is 1I"(AB)/4. Therefore the length of Ca is 4·1I"(AB)/4, or 
1I"(AB). Similarly, the length of C4 is 8·1I"(AB)/8, or 1I"(AB). And 
so on. Consequently the length of everyone of the curves ClI C2, 

Ca, C4 , Cs, C6 , ••• is 1I"(AB). It follows that the length of the limit· 
ing curve is not 2(AB), but 1I"(AB). 
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PARADOX 3. Consider the curve Clo shown m Figure 81(a). This 
curve consists of four semicircles, each constructed on a side of the 
inscribed square. Since the circumference of a circle is equal to 7r 
times the diameter of the circle, the length of a semicircle is equal 
to Yz7r times the diameter of the semicircle. Hence the length of 
each semicircle in the figure is equal to Yz7r times one side of the 
square, and the length of the four semicircles is equal to Yz7r times 
the sum of the four sides of the square. If we denote the perimeter 
of the square by PI, we can express the length of CI compactly as 
7r. pIi2. Again, C2 is made up of eight semicircles, each constructed 
on one of the eight sides of the inscribed octagon of diagram (b). 
Hence the length of C2 is Yz7r times the sum of the eight sides of the 
octagon. Or, if we denote the perimeter of the octagon by P2, we 
can express the length of C2 as 7r. P2/2. In the same way the lengths 
of C3 and C4 can be expressed as 7r. P3/2 and 7r. P4/2, where P3 and 
P4 denote, respectively, the perimeters of the sixteen-sided and 
thirty-two-sided inscribed polygons of diagrams (c) and (d). There­
fore the lengths of the successive curves CII C2 , Ca, C4 , CS, C6 , 

are, respectively, 

7r 7r 
"2. Ps, "2. P6, ... , 

where PII P2, Pa, P4, Ps, P6, ... denote the perimeters of the succes­
sive inscribed polygons. But in introducing the notion of a limiting 
curve in general, it was pointed out that it can be proved rigorously 
that the sequence of inscribed polygons approaches the circle as a 
limit. That is to say, the limit of the sequence of perimeters PI, P2, 
P3, P4, Ps, P6, ... is the circumference of the circle, or 27rR. Con­
sequently the length of the limiting curve (which appears to ap­
proach the circumference of the circle) is not hR, but Yz7r times 
27rR, or 7r2R. 

Page 160 

Ever since Cantor's discovery of the transfinite numbers Al and 
C, mathematicians have been trying to find an infinite class whose 
transfinite number is greater than Al and less than C. All such 
attempts have been in vain. The question then arises whether or 
not the assumption that there is no transfinite number between 
Al and C is a consistent one-that is to say, whether or not it will 
ever lead to contradictory results. K. Gooel, an Austrian logician, 
has succeeded in proving the following theorem: 
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If the ordinary axioms-or assumptions-of the theory of aggregates 
are consistent, then the ordinary axioms, together with the assumption 
that there is no transfinite number between A 1 and C, are also con­
sistent. 

It is interesting to note further that G6del conjectures that the 
denial of the assumption in question would also be consistent. If 
this conjecture can ever be proved, it will mean that it will never be 
possible to decide, by means of the ordinary methods of the theory 
of aggregates, whether or not there exists a transfinite number 
greater than A 1 and less than C. 

CHAPTER 8 

Pages 172-173 

PARADOX 1. The first solution is wrong, the second right. The 
quickest way to settle the matter is to examine a diagram showing 
all possibilities. Such a diagram is given in Figure 114, from which 
it is easy to see that the three coins can be tossed in anyone of 
8 equally likely ways. Of these 8 ways only 2-the first and eighth 
-are favorable. Therefore the correct probability is %, or U. 

1st coin ® ® ® ® 0 CD CD 0 
2nd coin @ @ 0 0 @ (jj) CD 0 
3rd coin ® 0 @ 0 @ 0 @ 0 

case case case case case case case case 
1 2 3 4 5 6 7 8 

FIG. 114 

In the incorrect solution we argued that two of the coins must 
come down alike. Let us suppose, to fix our ideas, that these are 
heads. We then assumed that it is just as likely for the third coin 
to be like the first two as to be unlike them. A glance at the figure 
will show that this assumption is not valid. Two (or more) heads 
appear in 4 of the 8 possible cases-the first, second, third, and 
fifth. In only one of these 4 cases are all three coins heads. Con­
sequently it is three times as likely for the third coin to be unlike 
the other two as to be like them. 

PARADOX 2. Figure 115 shows that there are 6 possible results 
in the game. The marbles are shown diagrammatically-Peter's 
first marble on the left, his second on the right. The numbers on 
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the marbles indicate whether that particular marble placed first, 
second, or third in the game. In the fourth case, for example, 
Peter's second marble placed first, Paul's marble second, and Peter's 
first marble third. Peter wins in 4 of the 6 cases-all but the 
last 2. Therefore the correct probability is %, and not ~. 

Peter 00 00 00 00 00 00 
Paul000000 

case 
1 

case 
2 

case 
3 

FIG. 115 

case 
4 

case 
5 

case 
6 

Let us see what is wrong with the second solution suggested. 
Here it was argued that the following 4 cases are the onl r ones 
possible. (i) Both of Peter's better than Paul's. (ii) Peter s first 
better than Paul's and his second worse. (iii) Peter's second better 
than Paul's and his first worse. (iv) Both of Peter's worse than 
Paul's. Now compare these 4 cases, labeled with Roman numer­
als, with the 6 cases of Figure 115, labeled with Arabic numerals. 
We see that (i) includes (2) and (3), that (ii) is the same as (1), 
that (iii) is the same as (4), and that (iv) includes (5) and (6). 
Since cases (1) to (6) are equally likely, cases (i) to (iv) are not. 
Case (iv)-the only one which makes Peter lose-is more likely 
than either case (ii) or case (iii). 

CHAPTER 10 

Pages 209-213 

PARADOX 1. The statement that a and b will "never" meet is 
incorrect. Let us assume, in the figure which accompanies the 
problem, that AB = 1. Denote each of the equal angles ABD and 
BAC by (J. Since AC = BD = ~, the projection of either AC 
or BD on AB is (~) cos (J. Now CD, being parallel to AB, is 
equal in length to its own projection on AB. It is therefore easy 
to see that CD = 1 - cos (J. Similarly, EF = (1 - cos (J)2, 

GH = (1 - cos (J)3, •• '. In general, the length of the nth line 
drawn between a and b is (1 - cos (J)n. As the construction is 
"continued indefinitely," n tends to infinity. And, since 0 < cos (J 

< 1, 
lim (1 - cos (J)n = o. 
n-+O· 

Consequently a and b will "ultimately" meet. 
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PARADOX 2. In steps (4) and (5) we concluded, since 

sin (A + -V = sin (B + ~) , 
that 

c C 
A +- = B +-. 

2 2 

This conclusion is not necessarily true. That is to say, if sin x = 
sin y, x is not necessarily equal to y, but may be equal to the supple­
ment of y. This conclusion follows from the fact that 

sin y = sin(1800 - y) 

Thus, in place ot step (5) we may have 

A + ~ = 180° - (B +~)-
Adding B + (Cj2) to both sides of this equation, we obtain 

A + B + C = 180°, 
a true result. 

PARADOX 3. A case of failure to examine the double sign when 
extracting the square root in step (2). The left-hand side of (3) 
should be ± cos3 x, in which case (5) will read 

(± cos3 x + 3)2 = [(1 - sin X)~2 + 3]2. (5') 

The negative value of the term ± cos3 x must be taken when x has 
the value 7r. The relation (5') then reduces to 42 = 42, or 16 = 16. 

PARADOX 4. The fallacy here is the same as that noted in Para­
dox 3. Steps (2) and (3) should read, respectively, 

sin x = ± (1 - cos2 x)~, 

sin x = ± (1 - t cos2 X - t cos4 X - To cos6 X - ••• ). 

With the double sign, sin x is no longer an "even" function. 

Pages 217-218 

PARADOX 1. A case of misuse of infinity. If the major axis of 
the ellipse is allowed to increase without limit, the area in question 
-call it either a semielIipse or a parabolic segment-becomes 
infinite, and the relation 

is meaningless. 

7rab 2 
- = - (a·2b) 

2 3 
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PARADOX 2. The value of y is zero not only when t is zero, but 
also when t is infinite. To be more specific, equations (1) and (2) 
give 

lim x = -1, lim y = O. 
t-+ GO t-+ ao 

These observations account for the second point at which the x-axis 
intersects the circle-that is, the point (-1, 0). 

PARADOX 3. The first solution is correct. In order to see how 
the single equation (2) reduces to two equations, proceed as follows. 
Choose a system of rectangular coordinates so that the origin is at 
the given point A, and so that the x-axis passes through B. The 
coordinates of A, B, and P can then be taken, respectively, as 
(0,0,0), (b, 0, 0), and (x, y, z). Equation (2) reduces at once to 

y2 + Z2 = 0, 
or 

y = 0 and z = O. 

Hence two conditions are imposed on the coordinates of P. 

Pages 219-221 

PARADOX 1. The use of the theorem to the effect that 

lim f(x) = lim f'(x) 
X-+a g(x) x-+a g'(x) 

is not legitimate in this problem. The quantity x is not a vari­
able, but a constant. At the very beginning of the problem it was 
assumed that x = a -b. 

PARADOX 2. The trouble here lies not in the application of the 
theorem used in Paradox 1, but in the expression to which the right­
hand side of (1) reduces when x has the value 1-that is to say, in 
the series 1 - 1 + 1 - 1 + 1 - 1 + .... It was argued that this 
series always has the same value, the word "value" presumably 
referring to the sum of the series. But the series is an oscillating 
series, and so has no definite sum. (Compare this paradox with that 
on page 127, in which the series in question is used to "prove" that 
Y2 = 73 = 3i = U = .... ) 

PARADOX 3. If P is to lie on CD, x can assume values only between 
o and 3. The function dSjdx vanishes for no value of x in this 
range. Therefore the value of x for which S is a minimum cannot 
be found by makingdSjdx zero. For x in the range 0 to 3, S assumes 
a minimum value when x is 3. This fact can be verified by inspec­
tion either of the function S itself, or of its graph for 0 ~ x ~ 3. 
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I t is true that the function S is a minimum for x = 20. But 
in this case the distance CP, which is denoted by 3 - x, is negative. 

PARADOX 4. Similar to Paradox 3. The relation between r and x 
is linear, so there is obviously no value of x for which dr /dx vanishes. 
The permissible range of values for x runs from -a to +a. It can. 
readily be seen by inspection that r is a maximum when x = +a, 
and a minimum when x = -a. 

Pages 222-223 

PARADOX 1. For all integral values of n, it is true that sin 2mI' 
= 0, but it is also true that sin nx = O. The area bounded by 
y = sin x and the x-axis between 0 and 11' is equal numerically to 
the area bounded by the curve and the axis between 11' and 211', 
but these two areas are opposite in sign. It is easy to see that the 
area obtained by integration from 0 to 2n1l' consists of an equal 
number of positive and negative portions, and that the algebraic 
sum of these portions is zero. 

PARADOX 2. The fallacy here lies in the fact that the constant of 
integration was overlooked. If two functions are equal, it does 
not follow that their integrals are equal-they may differ by a con­
stant. Step (2) should read 

log x = log (-x) + C. 

The right-hand side of this relation reduces to the left-hand side if 
the value of C is taken as log (-1). That is to say, 

log (-x) + log (-1) = log (-x)(-l) 

= log x. 

PARADOX 3. Similar to Paradox 2. Substituting 1 - cos2 x for 
sin2 x in (1), 

1 
I = - (1 - cos2 x) 

2 

112 
= - - - cos x. 

2 2 

This result differs from the value of I as given in step (2) only by 
the constant Y2. 

PARADOX 4. There is no fallacy in the argument. The area 
under the curve is generated by the ordinate, l/x. As x increases 
without limit, l/x tends to zero, but so slowly that the entire area is 
infinite. The volume, on the other hand, is generated by the cross 
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section of the solid-a quantity proportional to 1/x2 • As x increases 
without limit, the quantity 1/X2 tends to zero much more rapidly 
than 1/x-rapidly enough, as a matter of fact, to make the entire 
volume finite. (Compare with the fact that the series 

11111 1 
"2+3"+4+5+6+"7+ ... 

diverges to infinity, whereas the series 

converges to a finite limit.) 

Pages 224-225 

PARADOX 1. De Moivre's theorem, 

(cos x + i sin xY' = cos nx + i sin nx, 

is valid only for real values of n. In the paradox under considera­
tion it was incorrectly assumed that this theorem could be applied 
when n has the value i. In addition, it is incorrect to argue that ell' 
has the value 1 only when x is zero. True enough for real values of 
x, but not for complex values. In order to verify this statement, 
substitute in Euler's formula, 

eix = cos x + i sin x, 

the value x = 2n7r. It is seen at once that e2n1ri has the value 1 
for all integral values of n. 

PARADOXES 2 AND 3. Similar to Paradox 1. Paradox 2 is the 
exponential form, and Paradox 3 the logarithmic form, of one and 
the same argument. By Euler's formula, the equations ell' = -1 
and e2x = 1 of Paradox 2 are satisfied if x = n7ri, where n is any 
integer. The equation e2x = 1 does not necessarily imply that 2x, 
and hence x, has the value zero. 

PARADOX 4. To show that the second solution reduces to the 
first, interchange the second and third rows of the determinant of 
equation (4). Then 

a -b c -d 

a' -b' c' -d' 
= o. 

b a d c 

b' a' d' c' 
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Now apply a theorem of Laplace on the development of deter­
minants. The result is the equation 

(ae' - a'e)2 + (bd' - b'd)2 + (ad' - a'd)2 

+ (be' - b'e)2 - 2(a'b - ab')(e'd - cd') = o. 
This equation can be written in the form 

[(ae' - a'e) - (bd' - b'd)]2 + [(ad' + be') - (a'd + b'e)F = o. 
Since a, b, e, d, a', b', e', and d' are all real quantities, this single 
equation is equivalent to the two equations 

ae' - a'e = bd' - b'd, 

ad' + be' = a'd + b'e. 

These equations are, of course, the equations (2) reached in the 
first solution. 
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notes and References 

CHAPTER 2 

1. Good source books for material of this sort are W. W. R. Ball, 
Mathematical Recreations and Essays, London (Macmillan), 1931 
(10th ed.), and W. Lietzmann, Lustiges und Merkwurdiges '/Jon 
Zahlen und Formen, Breslau (Hirt), 1930 (4th ed.). 

2. Lewis Carroll (C. L. Dodgson), Further Nonsense, New York 
(Appleton), 1926, pp. 91, 92. 

3. Some of these examples are to be found in H. E. Dudeney, 
Amusements in Mathematics, London (Nelson), 1917, pp. 8, 9. 

4. The author's attention has been called to the following actual 
~nstance of an even greater complication in the family of the second 
wife of Percy Bysshe Shelley, the famous English poet. 

Gilbert Mary William Mary Jane CI. -- -- -- -- alrmont 
Imlay I Wollstonecraft I Godwin I ? I '--1<11111 

Fanny Godwin Mary William ~ 
(illegitimate child) (Shelley's Jane Charles 

2nd wife) (Called Clair) 

5. Deceased Wife's Sister Act of 1907, and Deceased Brother's 
Widow Act of 1921. 

CHAPTER 3 

1. W. W. R. Ball, Mathematical Recreations and Essays, London 
(Macmillan), 1931 (lOth ed.), p. 229. This is Ball's version of 
de Parville's account in La Nature, Paris, 1884, part I, pp. 285, 286. 

2. The author is indebted to H. Steinhaus for this neat way of 
presenting the largest prime. See his Mathematical Snapshots, New 
York (Stechert), 1938, p. 12. In 1952 five still larger prime numbers 
of the form 2n - 1 were discovered by R. M. Robinson, using the 
SWAC (The National Bureau of Standard's Western Automatic 
Computer). They are 2521 - 1, 2607 - 1, 21279 - 1, 22203 - 1, and 
22281 - 1. The SWAC tested the last of these numbers in about 
an hour, roughly the equivalent of more than 60 years of work for 
a person using a desk calculator. 

2a. In accordance with the footnote on page 28, five additional 
perfect numbers, corresponding to n = 521, 607, 1279, 2203, and 
2281, are now known. The largest, 22280 (22281 - 1), is a number 
of 1372 digits. 

247 
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3. Information on such topics as Fermat's numbers, perfect 
numbers, and the division of the circle can be found in almost any 
history of mathematics. See, for example, D. E. Smith, A History 
of Mathematics, New York (Ginn), 1925. A good discussion of the 
first two of these three topics is to be found also in Ball, op. cit., 
pp.37-40. 

4. F. Cajori, A History of Elementary Mathematics, New York 
(Macmillan), 1914, pp. 1-18. 

5. For a complete discussion of the theory of this game-com­
monly called nim-see C. L. Bouton, Annals of Mathematics, series 
2, vol. 3 (1901-02), pp. 35-39. 

6. See, for example, Ball, op. cit., pp. 4-13; also W. Lietzmann, 
Lustiges und Merkwurdiges '/Jon Zahlen und Formen, Breslau (Hirt), 
1930 (4th ed.), pp. 153-169. Perhaps the best popular collection 
of mind-reading tricks involving numbers is to be found in R. V. 
Heath, Mathemagic, New York (Simon & Schuster), 1923. 

CHAPTER 4 

1. Compare W. W. R. Ball, Mathematical Recreations and Essays, 
London (Macmillan), 1931 (10th ed.), pp. 52-54. According to 
Ball, earliest reference to this paradox is Zeitschrift fur Mathematik 
und Physik, vol. 13 (1868), p. 162. See also American Mathematical 
Monthly, R. C. Archibald, vol. 25 (1918), p. 236; and W. Weaver, 
vol. 45 (1938), p. 234. 

2. See, for example, A. H. Church, On the Interpretation of 
Phenomena of Phyllotaxis, London (Oxford Press), 1920. 

3. The equation in polar coordinates of the logarithmic spiral is 
r = aB, or (J = loga r. 

4. Jay Hambidge has written a number of books on dynamic 
symmetry. Perhaps the best general discussion of the relation of the 
Fibonacci series to nature and to art is to be found in his Practical 
Applications of Dynamic Symmetry, New Haven (Yale Press), 1932. 
This book contains numerous illustrations of plant growths, shell 
spirals, and the like. 

5. For a complete discussion of curves of constant breadth, see 
H. Rademacher and O. Toeplitz, Von Zahlen und Figuren, Berlin 
(Springer), 1930, pp. 128-141. 

6. Galileo Galilei, Dialogues Concerning Two New Sciences, New 
York (Macmillan), 1914, pp. 20-26. This book is an English trans­
lation of the original Italian text, published in Leyden in 1638. 
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7. See, for example, W. W. R. Ball, op. cit., pp. 170-181, for this 
problem and some of its generalizations. 

8. This surface is discussed at length in D. Hilbert and S. Cohn­
Vossen, Anschauliche Geometrie, Berlin (Springer), 1932, pp. 271-
276. 

9. Good photographs of the Mobius strip and other strips dis­
cussed here are to be found in H. Steinhaus, Mathematical Snap­
shots, New York (Stechert), 1938, pp. 112-116. 

10. W. W. R. Ball, op. cit., pp. 321-336. See also, by the same 
author, String Figures, Cambridge (Heffer), 1921 (2nd ed.). 

11. Figure is from H. Steinhaus, op. cit., p. 118. 

CHAPTER 5 

1. W. F. White, A Scrap-Book of Elementary Mathematics, 
Chicago (Open Court), 1910 (2nd ed.), p. 88. 

2. J. R. D'Alembert, Opuscules Mathematiques, Paris, 1761, 
vol. 1, p. 201. 

3. W. Lietzmann, Trugschlilsse, Leipzig (Teubner), 1923 (3rd 
ed.), p. 8. 

4. W. Lietzmann, op. cit., p. 40. 
5. W. F. White, op. cit., p. 78. 
6. W. Lietzmann, op. cit., p. 14. 
7. E. Gelin, Mathesis, vol. 13 (1893), p. 224. 
S. W. Lietzmann, op. cit., pp. 14, 15. 
9. W. F. White, op. cit., p. 84. 

10. W. Lietzmann, op. cit., pp. 9, 10. 
11. The three following examples are from W. Lietzmann, op. cit., 

pp. 12, 13. 
12. See, for example, B. Russell, Introduction to Mathematical 

Philosophy, London (Allen & Unwin), 1919, pp. 1-19. 
13. W. F. White, op. cit., p. 85. 
14. W. W. R. Ball, Mathematical Recreations and Essays, London 

(Macmillan), 1931 (10th ed.), p. 30. Attributed to G. T. Walker. 

CHAPTER 6 

1. See, for example, T. L. Heath, The Thirteen Books of the 
Elements of Euclid, Cambridge (Univ. Press), 1926 (2nd ed.), vol. 1, 
p.7. 
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2. W. W. R. Ball, Mathematical Recreations and Essays, London 
(Macmillan), 1931 (10th ed.), p. 48. Ball's discussion is by no 
means as detailed as the one given here. 

3. See, for example, Hawkes, Luby, and Touton, New Plane 
Geometry, New York (Ginn), 1917, p. 405. 

4. W. W. R. Ball, op. cit., p. 45. 
5. W. W. R. Ball, op. cit., p. 49. 
6. M. Laisant, Mathesis, vol. 13 (1893), p. 224. 
7. P. Stackel, Archiv der Mathematik und Physik, series 3, vol. 

12 (1907), p. 370. 
8. Preussische Lehrerzeitung, about 1913. 
9. M. Coccoz, L'Illustration, Paris, Jan. 12, 1895. 

10. W. Lietzmann, Trugschliisse, Leipzig (Teubner), 1923 (3rd 
ed.), pp. 32, 33. 

11. W. Lietzmann, op. cit., pp. 31, 32. 
12. W. Lietzmann, op. cit., pp. 35, 36. 
13. G. Gille, Mathesis, vol. 29 (1909), p. 97. 

CHAPTER 7 

1. An exhaustive bibliography of researches concerning Zeno's 
paradoxes is to be found in an article by F. Cajori in American 
Mathematical Monthly, vol. 22 (1915), pp. 1-6, 292-297. 

2. For a technical discussion of the convergence and divergence 
of infinite series, refer to any good text on the subject-for example, 
T. J. B romwich, A n Introduction to the Theory of Infinite Series, 
London (Macmillan), 1908. 

3. The number e, an irrational number, is as important to 
calculus as the number 7r is to geometry. Its value to five decimal 
places is 2.71828. "loge 2" signifies the logarithm of 2 to the base e 
-the power to which e must be raised if the resulting number is 
to be equal to 2. The proof of the convergence of the series in 
question is given in T. J. Bromwich, op. cit., p. 51. 

4. Bernard Bolzano, Die Paradoxien des Unendlichen, published 
posthumously, edited by Fr. Pfihonsky, Leipzig (Reclam), 1851. 
Reprinted Leipzig (Meiner), 1920. 

5. A nnales de Mathematique, vol. 20 (1830), p. 364. Article 
signed "M.R.S." 

6. We shall see presently that the same series can be summed 
in other ways. W. W. R. Ball believes that this particular form 
of the paradox first appeared in his Algebra, Cambridge, 1890, p. 430. 
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7. For the proof of this theorem see, for example, T. J. Brom­
wich, op. cit., pp. 68-70. Although Riemann proved the theorem 
in 1854, it was not published until 1867. 

8. This form of the paradox is attributed to Dirichlet. 
9. G. Chrystal, Algebra, Edinburgh, 1889, vol. 2, p. 159. 

10. W. Lietzmann, Trugschlusse, Leipzig (Teubner), 1923 (3rd 
ed.), p. 43. 

11. GaIiIeo GaIilei, Dialogues Concerning Two New Sciences, 
New York (Macmillan), 1914, pp. 27-29. This book is a transla­
tion of the original Italian text, published in Leyden in 1638. 

12. Journal fur Mathematik, vol. 11 (1834), p. 198. 
13. The first two of the pathological curves discussed here were 

originally constructed as examples of nondifferentiable functions­
continuous functions whose graphs have no tangent at any point. 
The snowflake curve was designed by E. Kasner in 1901, and 
appears in his Mathematics and the Imagination, New York (Simon 
and Schuster), 1940. An exhaustive historical development and 
bibliography of such functions is to be found in A. N. Singh, The 
Theory and Construction of Non-Differentiable Functions, Lucknow 
(Kishore), 1935. 

14. W. Sierpinski, Bulletin de l'Academie des Sciences de Cracovie, 
A (1912), pp. 463-478. 

15. W. Sierpinski, Comptes Rendus de l'Academie des Sciences a 
Paris, vol. 160 (1915), p. 302. 

16. L. E. J. Brouwer, Mathematische Annalen, vol. 68 (1909), 
p. 427. Our construction is an adaptation, due to H. Hahn, of 
Brouwer's original construction. 

17. GaIiIeo GaIilei, op. cit., pp. 31-33. 
18. Proof of the fact that the number of rational numbers is AI, 

while the number of real numbers is greater than AI> is included 
in Cantor's first contribution to the theory of aggregates. See 
Journal fur Mathematik, vol. 77 (1874), pp. 258-262. 

19. It should be pointed out that the proof concerning the unit 
square and the unit line presents certain difficulties which were 
omitted for the sake of brevity. For example, our conclusion that 
"there are no more points in the unit square than in the unit line" 
is true, but we did not show that the number of points in the square 
is equal to the number of points in the line. In other words, we 
merely showed that to every point P of the square there corre­
sponds a unique point Q of the line. Certain modifications must 
be made in the representation of z if the converse is to be estab­
lished. These difficulties are discussed in, for example, F. Klein, 
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Elementary Mathematics from an Advanced Standpoint, New York 
(Macmillan), 1932, pp. 257-259. This book is a translation of 
the third German edition. 

20. Proof of these results was first given by Cantor in Journal 
fur Mathematik, vol. 84 (1878), pp. 242-258. 

21. That the number of transfinite numbers is infinite was first 
established by Cantor in Mathematische Annalen, vol. 21 (1883). 
Later he gave simpler proofs of this result and of some other pre­
vious results in Jahresberichte der Deutschen Mathematiker- Vereini­
gung, vol. 1 (1890-91), pp. 75-78. 

CHAPTER 8 

1. It is unfortunate that the first letter from Pascal to Fermat 
has been lost. A number of the later letters which passed between 
these two men can be found, translated into English, in D. E. 
Smith, A Source Book in Mathematics, New York (McGraw-Hill), 
1929, pp. 546-565. 

2. I. Todhunter gives an account of this in his History of the 
Theory of Probability, London (Macmillan), 1865, pp. 258, 259. 

3. F. Galton, Nature, vol. 49 (1894), pp. 365, 366. 
4. J. Bertrand, Calcul des Probabilites, Paris (Gauthier Villars), 

1889, pp. 3, 4. 
5. J. Bertrand, op. cit., pp. 2, 3. 
6. The problem can be solved by the use of Bayes' theorem. 

See, for example, T. C. Fry, Probability and Its Engineering Uses, 
New York (Van Nostrand), 1928, pp. 121, 122. 

7. Both examples are from W. Lietzmann, Trugschlusse, Leipzig 
(Teubner), 1923 (3rd ed.), p. 16. 

8. J. Bertrand, op. cit., p. 4. 
9. Paradox 1 is from J. von Kries, Die Principien der Wahrschein­

lichkeitsrechnung, Freiburg, 1886. Paradoxes 2, 3, and 4 are from 
Bertrand, op. cit., pp. 4-7. For further discussion of problems of 
this sort, see E. Czuber, Wahrscheinlichkeitsrechnung, Leipzig 
(Teubner), 1938 (5th ed.), pp. 80-118. 

10. This conclusion can be deduced from the following three 
theorems of plane geometry. (1) In any triangle the center of the 
circumscribed circle is the point of intersection of the perpendicular 
bisectors of the sides. (2) In an equilateral triangle the perpendicular 
bisector of any side coincides with the median to that side. (3) In 
any triangle the medians intersect in a point which is two thirds 
the distance from any vertex to the mid-point of the opposite side. 
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11. The principle of insufficient reason is discussed at length 
in J. M. Keynes, A Treatise on Probability, London (Macmillan), 
1921, pp. 41-64. 

12. J. Bertrand, op. cit., pp. 31, 32. 
13. See, for example, the discussion by R. E. Moritz, American 

Mathematical Monthly, vol. 30 (1923), pp. 14-18, 58-65. 
14. This is the St. Petersburg paradox in disguise. 
15. Lewis Carroll (c. L. Dodgson), Pillow Problems, London 

(Macmillan), 1894, p. 18. 

CHAPTER 9 

1. B. Russell, Introduction to Mathematical Philosophy, New 
York (Macmillan), 1920 (2nd ed.), p. 194. 

2. B. Russell, Revue de M etaphysique et de Morale, vol. 14 (1906), 
pp. 627-650. See also, by the same author, American Journal oj 
Mathematics, vol. 30 (1908), pp. 222-262. 

3. More detailed discussions of the logical paradoxes can be 
found in a number of places. See, for example, B. Russell and 
A. N. Whitehead, Principia Mathematica, Cambridge (Univ. Press), 
1935 (2nd ed.), vol. I, p. 60 ff.; C. I. Lewis and C. H. Langford, 
Symbolic Logic, New York (Century), 1932, pp. 438-485; and so on. 

4. C. Burali-Forti, Rendiconti del circolo matematico di Palermo, 
vol. 11 (1897), pp. 154-164. 

5. J. Richard, Revue generale des Sciences, vol. 16 (1905), p. 541. 
A less technical discussion of this paradox can be found in an article 
by A. Church, American Mathematical Monthly, vol. 41 (1934), 
pp. 356-361. 

6. An excellent discussion of trends in mathematics from the 
very beginning of the subject is to be found in E. T. Bell, The 
Development oj Mathematics, New York (McGraw-Hill), 1940. The 
first part (pp. 511-536) of the last chapter of this book is devoted 
to the most recent investigations into the foundations of mathe­
matics. See also T. Dantzig, Number, the Language oj Science, 
New York (Macmillan), 1930, pp. 224-248. 

CHAPTER 10 

1. This argument has been attributed to Proclus (fifth century 
A.D.). 

2. Mathesis, vol. 23 (1903), p. 133. 
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3. W. Lietzmann, Trugschliisse, Leipzig (Teubner), 1923 (3rd 
ed.), pp. 44, 45. 

4. Mathesis, vol. 10 (1890), pp. 222-224. Article signed "P.M." 
5. W. W. R. Ball, Mathematical Recreations and Essays, London 

(Macmillan), 1931 (10th ed.), p. 51. Attributed to R. Chartres. 
6. W. Lietzmann, op. cit., p. 37. 
7. J. L. Coolidge, American Mathematical Monthly, vol. 38 

(1931), pp. 222, 223. The solution given in the Appendix was sug­
gested by G. Bareis, same periodical, vol. 39 (1932), p. 29. 

8. W. Lietzmann, op. cit., pp. 45, 46. 
9. W. Lietzmann, op. cit., p. 42. 

10. W. Lietzmann, op. cit., pp. 47, 48. 
11. W. W. R. Ball, op. cit., p. 52. 
12. W. Lietzmann, op. cit., p. 49. 
13. W. Lietzmann, op. cit., pp. 50, 51. 
14. W. Lietzmann, op. cit., pp. 11, 12. 
15. Paradoxes 2 and 3 are both from W. W. R. Ball, op. cit .• 

p. 29. The second is attributed to Johannes Bernoulli. 
16. J. L. Coolidge, American Mathematical Monthly, vol. 21 

(1914), p. 184. The solution given in the Appendix was suggested 
by G. Loria, same periodical, same volume, p. 327. 
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parabola 
prolate cycloid 

Cycloid, 60-62 
curtate, 61, 63 
prolate, 62-63 
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Cylinder, circular, 213-216 
Czuber, E., 252 

D' Alembert,}. Ie R, 171,172,249 
Dantzig, T., 253 
Decimal number system, 34 
Decimals 

nonterminating, 158-159, 163 
repeating, 154 

Defective numbers, 32 
Definition, domain of, 81-82 
De Moivre, A., 224 
Denary number system, 34-35 
Density and volume, 180-181 
Dice throwing, 41-42, 169-171, 

188-189 
Dirichlet, P. G. L., 251 
Disks 

and pegs, 25-27 
rolling, 55-57, 59-63 

Dissection of square, 49-50 
Distorted figures, 97-108 
Divergent series, 123-127 
Division 

by zero, 79, 83-84, 86, 109 
of circle, 30-32, 248 

Dodgson, C. L., see Carroll, 
Lewis 

Dollars 
and cents, 78 
Northian and Southian, 9 

Domain of definition, 81-82 
Double sign in square root, 79, 

91-92 
Doughnut, 64, 75-76 
Drunkard,80 
Dudeney, H. E., 247 
Duodecimal number system, 34 
Dynamic symmetry, 55, 248 

Egg and a half, 14 
Eleventh Commandment, 84 
Ellipse, 217, 221 
Epimenides, 197 
Equations, systems of, 79, 89-

90,225 

Euclid, 28, 32, 97, 136 
Euler, L., 29, 32, 65-66, 224 
Exceptions to rules, 197-198 
Excessive numbers, 32 
Exponentials, 224-225 

Fallacies 
algebraic, 77-96 
geometric, 97-116 

Family relationships, 16-19, 241 
Fathers and sons, 1, 16 
Fermat numbers, 29, 31, 248 
Fermat, P., 29, 32, 166, 252 
Fibonacci (Leonardo of Pisa) , 50 
Fibonacci series, 48-55, 248 
Figures, distorted, 97-108 
Forecasters, weather, 187 
Foreign exchange, 9 
Foundations of mathematics, 

206-208, 253 
Four-color problem, 74-76 
Fractions, 80-82, 86-89, 220 
Frege, G., 205 
Frog in a well, 14 
Fry, T. C., 252 
Functional relationship, 81 

Galileo, 133, 135, 149, 248, 251 
Galton, F., 252 
Gambling, 166-167, 187-192 
Gauss, C. F., 31-32 
Gelin, E., 249 
Generations, 23-24 
Geography, 5-6 
Geometric fallacies, 97-116 
Geometric paradoxes, 47-76, 97-

116,133-149,209-211,213-
216 

Geometry, the infinite in, 133-149 
Gille, G., 250 
Godel, K., 237-238 
Golden section, 52-55 
Grains of wheat, 27-28 

Hahn, H., 251 
Hambidge, J., 55, 248 
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Hanoi, Tower of, 25-27 
Harmonic series, 124, 129 
Heath, R. V., 248 
Heath, T. L., 249 
Hemispheres, northern and 

southern, 2 
Heterological and autological, 

200-201 
Hilbert, D., 206, 249 
Horses, seventeen, 9-10 
Hotel accommodations, 8-9 
Hypocycloid, 63 

Illegal cancellation, 80 
Illegitimate son, 18 
Illusions, optical, 47-48 
Imaginary numbers, 94-96 

practical applications of, 94 
See also Complex numbers 

Impossibility of motion, 119-123 
I'ndians, 16 
Inequalities, 93-94 
Infinite classes, 117-119, 149-

164, 203, 206, 237 
Infinite series, 119-133, 148, 213, 

250 
See also Series 

Infinite, the 
arithmetic of, 149-165 
in arithmetic, 117-133 
in geometry, 133-149 
in probability, 175-184 
paradoxes of, 117-165 

In-laws, 16, 18 
Inside and outside, 64-69 
Insufficient reasonists, 184-187 
Integer, least, 199-200 
Island and lake, 1 
Isosceles triangles, 97-101, 211-

212, 220-221 

Jewelry, 7-8 

Kasner, E., iv, 251 
Keynes, J. M., 253 
Klein, F., 251 

Klein's bottle, 68-69 
Knots, 72-74 
Konigsberg bridges, 65-66 
Kries, J. von, 252 

Laisant, M., 250 
Lake and island, 1 
Langford, C. H., 253 
Laplace, P. S., 167, 195 
Large finite numbers, 20-28, 118 

notation for, 22 
Laws, paradoxical, 17-18 
Lawyer's suit, 198 
Leaf arrangements, 51-52 
Least integer, 199-200 
Leibnitz, G. W., 126 
Letters, chain, 24 
Lewis, C. I., 253 
Liars, 1, 197 
Lietzmann, W., 247, 248, 249, 

250, 251, 252, 254 
Life on Mars, 185-187 
Limiting curves, 137-146 
Limit of a series, 123-133 
Lines 

nonparallel, 209-211 
parallel, 48 
points of, 160-163, 251 
points of, random choice of, 

175-177 
Line segments, unequal, are 

equal, 108-111 
Logarithmic series, 125, 128-131 
Logarithmic spiral, 53-55, 248 
Logarithms, 94, 222, 225, 250 
Logical types, theory of, 202, 207 
Logic, paradoxes in, 196-208, 

253 
Loria, G., 254 

Map-coloring, 74-76 
Map, weird, 147-149 
Marbles, 168-169, 173, 177 
Mars, life on, 185-187 
Matches, piles of, 36-40 
Match game, 36-40 
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Mathematics 
foundations of, 206-208, 253 
Russell's definition of, 4 

Maxima and minima, 220-222 
Mere, Chevalier de, 166 
Milk and water, 14-16 
Mind-reading tricks, 40-46, 248 
Minima and maxima, 220-222 
Missing nickel, 13 
Misuse of axioms, 78-80, 85 
Mixture, milk and water, 14-16 
Mobius strip, 70-72, 249 
Moritz, R. E., 253 
Motion 

circular and straight-line, 63-64 
impossibility of, 119-123 
Zeno'sparadoxes, 119-123,250 

Multiplication, binary, 35-36 

Natural numbers, 118-119, 151-
154, 156, 158-159 

Nephews and uncles, 18-19 
Newton, I., 126 
Nickel, missing, 13 
Nim, game of, 36-40,248 
Nine, properties of, 43-45 
Nonparallel lines, 209-211 
Non-self-membered classes, 204-

205 
Nonterminating decimals, 158-

159, 163 
Northia and Southia, 9 
North Pole, 5-6 
Notation 

for large finite numbers, 22 
positional, 33-34, 41-42 

Numbers 
approximate, 22 
complex, 224-226 

See also imaginary 
defective, 32 
excessive, 32 
Fermat, 29, 31, 248 
imaginary, 94-96 

practical applications of, 94 
See also complex 

Numbers (Cont.) 
large finite, 20-28, 118 

notation for, 22 
natural, 118-119, 151-154, 

156, 158-159 
perfect, 32, 248 
prime, 28-29, 32, 45,177-178, 

247 
random choice of, 178-180 
rational, 154-157, 251 
real, 157-163, 251 
theory of, 28-32 
transfinite, 152-164, 203, 206, 

237-238, 251-252 
unequal, are equal, 78, 82-92, 

95-96, 219-220 
Number systems 

binary, 33-40 
decimal, 34 
denary, 34-35 
duodecimal, 34 

One-sided surfaces, 69-73 
One-to-one correspondence, 

150-163 
Optical illusions, 47-48 
Oscillating series, 126-127 
Ounces and pounds, 78 
Outside and inside, 64-69 

Paper 
stack of, 25 
strips, 70-73 

Parabola, 217 
Paradoxes 

algebraic, 77-96 
arithmetic, 7-15, 20-46, 117-

133, 149-165 
definition of, 2 
geometric, 47-76, 97-116,133-

149, 209-211, 213-216 
in analytic geometry, 217-

219 
in calculus, 219-224 
in logic, 196-208, 253 
in probability, 166-195 
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Paradoxes (Cont.) 
mathematical implications of, 

2-4, 202-208 
of the infinite, 117-165 
simple, 5-19 
topological, 64-76 
trigonometric, 211-213 

Parallel lines, 48 
Parallel postulate, 135-137 
Pascal, B., 166, 252 
Path of quickest descent, 62 
Pathological curves, 141-146, 

251 
Pegs and disks, 25-27 
Perfect numbers, 32, 248 
Perpendiculars 

from point to line, 102 
from point to plane, 115-116 

Piles of matches, 36-40 
Plane in space, random choice of, 

183-184 
Plane, points of a, 161-163, 251 
Plane trip, 12-13 
Points 

collinear, 218-219 
of a line, 160-163,251 
of a line, random choice of, 

175-177 
of a plane, 161-163, 251 
of a sphere, random choice of, 

184 
of intersection, curve of, 145-

146 
Polygons, sequences of, 137-146 
Positional notation, 33-34, 41-42 
Postulate, parallel, 135-137 
Postulates, see Axioms 
Pounds and ounces, 78 
Powers of two, 22-40 
Predictions, weather, 187 
Prihonsky, Fr., 250 
Prime numbers, 28-29, 32, 45, 

177-178,247 
Probability 

fundamentals of, 167-171 
paradoxes in, 166-195 

Probability (Cont.) 
practical applications of, 194-

195 
the infinite in, 175-184 

Proclus, 253 
Prolate cycloid, 62-63 
Prophecy, world's end, 27 
Proportions, 81-82, 86-89 

properties of, 87 
Protagoras, 198, 201 
Public debt, size of, 21-22 
Pythagorean theorem, 107, 134, 

138 

Quadrilateral, 104-106 
Quickest descent, curve of, 62 

Rademacher, H., 248 
Random choice 

of a chord in a circle, 181-183 
of a number, 178-180 
of a plane in space, 183-184 
of a point in a line, 175-177 
of points on a sphere, 184 

Rates, average, 11-13 
Ratio, 81-82, 86-89 

golden section, 52-55 
Rational numbers, 154-157, 251 
Real numbers, 157-163, 251 
Rearrangement of a series, 128-

133 
Reasoning by analogy, 112-114 
Rectangle, golden section, 53-

55 
Relationship, functional, 81 
Relationships, family, 16-19,247 
Repeating decimals, 154 
Richard, J., 205, 206, 207, 253 
Riemann, G. F. B., 130, 251 
Rings, 7-8 
Rollers and slab, 57, 59 
Rolling circles, 55-57, 59-63 
Rolling coins, 56 
Rolling disks, 55-57, 59-63 
Rope trick, 73-74 
Roulette, 191 
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Ruler and compass constructions, 
30-32 

Rules, exceptions to, 197-198 
Russell, B., 4,196,202,205,206, 

207, 249, 253 
Russell's definition of mathemat­

ics,4 

St. Petersburg, 187-191, 253 
Salaries, 8, 10-11 
Savings scheme, 24 
Section, golden, 52-55 
Seed arrangements, 53-55 
Self-membered classes, 204-205 
Sequences of polygons, 137-146 
Series 

absolutely convergent, 129-
130 

alternating, 125 
convergent, 123-133 
divergent, 123-127 
Fibonacci, 48-55, 248 
harmonic, 124, 129 
infinite, 119-133, 148,213,250 
limit of a, 123-133 
logarithmic, 125, 128-131 
oscillating, 126-127 
rearrangement of, 128-133 
simply convergent, 130 
sum of a, 119-133 

Seventeen horses, 9-10 
Shelley, P. B., 247 
Sierpinski, W., 143, 145, 251 
Sign, double, in square root, 79, 

91-92 
Simple closed curve, 66-67 
Simple closed surface, 68 
Simple paradoxes, 5-19 
Simply convergent series, 130 
Simultaneous equations, see Sys-

tems of equations 
'Sines and cosines, 212-213, 222-

223 
Singh, A. N., 251 
Sisters and brothers, 16, 17, 18, 

247 

Slab and rollers, 57, 59 
Smith, D. E., 248, 252 
Snowflake curve, 142-143, 251 
Son, illegitimate, 18 
Sons and fathers, 1, 16 
Space, plane of, random choice 

of, 183-184 
Speed, average, 11-12 
Sphere, 68 

points of, random choice of, 184 
Spherical angles, 114-115 
Spherical triangles, 114-11 5 
Spiral, logarithmic, 53-55, 248 
Square, dissection of, 49-50 
Square root, double sign in, 79, 

91-92 
Stackel, P., 250 
Stack of paper, 25 
Steinhaus, H., iv, 247,249 
Step curve, 138-139 
Strips, paper, 70-73 
Subtraction, fallacious, 33 
Suit, lawyer's, 198 
Sum of a series, 119-133 
Sunflower head, 54-55 
Surfaces 

bilateral, 70, 71 
one-sided, 69-73 
simple closed, 68 
two-sided, 70, 71 
unila teral, 69-73 
See also 

cylinder 
Klein's bottle 
Mobius strip 
sphere 
torus 

Syllables, 199-200 
Symmetry, dynamic, 55, 248 
Systems of equations, 79, 89-90. 
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Tait, P. G., 72 
Theory 

of logical types, 202, 207 
of numbers, 28-32 
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Throwing dice, 41-42, 169-171, 
188-189 

Todhunter, 1., 252 
Toeplitz, 0., 248 
Topological paradoxes, 64-76 
Topology 

nature of, 64-66 
practical applications of, 76 

Tortoise and Achilles, 123 
Torus, 75-76 
Tossing coins, 167-169, 171-173, 

188-191 
Tower of Hanoi, 25-27 
Trains 

express and local, 14 
parts moving backward, 63 

Transfinite numbers, 152-164, 
203, 206, 237-238, 251-252 

Trapezoid, 111-112 
Travelers, 8-9 
Trends in mathematics, 206-208, 

253 
Triangles 

isosceles, 97-101, 211-212, 
220-221 

spherical, 114-11 5 
Tricks 

coat and vest, 74 
mind-reading, 40-46, 248 
rope, 73-74 

Trigonometric paradoxes, 211-
213 

Trips 
automobile, 11-12 

Trips (Cont.) 
bookworm's, 1 
plane, 12-13 

Two, powers of, 22-40 
Two-sided surfaces, 70, 71 

Uncles and nephews, 18-19 
Unequal angles are equal, 102-

104 
Unequal line segments are equal, 

108-111 
Unequal numbers are equal, 78, 

82-92, 95-96, 219-220 
Unilateral surfaces, 69-73 
Units, operations on, 79 

Vicious circles, 202 
Village barber, 198-199 
Volume 

and density, 180-181 
of revolution, 223-224 

Water and milk, 14-16 
Weather predictions, 187 
Weaver, "V., 248 
Wheat, grains of, 27-28 
Whitehead, A. N., 253 
White, W. F., 249 
Widows and widowers, 17, 18 
World's end prophecy, 27 

Zeno, 117, 119, 123, 126,250 
Zero, division by, 79, 83-84, 86, 

109 


