LA
b Lo &
3 b o .—".-
L S e e
S

=3
- T
L oores

G e s
ERe : =

e
e s R ey
2l o, Seate

-

4
l.;:.-eluvd'
e e 424 et ol
et sy’ > * 11 P
"‘.._:'L,:" S
oh kg S ey
P i

Ve o E

et e e s

i

T e
G S i e
g RN Tt
w s s

Iy eaer ey

(37 i
i
- -

OBt
fm i

)
G













=

1 N
I\I III!H‘_l

I[II




i)
1,4*'1”4




THE

ANALYTICAL THEORY OF HEAT

BY

JOSEPH FOURIER.

.TRANSLATED, WITH NOTES,

BY

ALEXANDER FREEMAN, MA,

FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE.

EDITED FOR THE SYNDICS OF THE UNIVERSITY PRESS.

Cambridge :
AT THE UNIVERSITY PRESS.

LONDON: CAMBRIDGE WAREHOUSE, 17, PATERNOSTER ROW.

CAMBRIDGE: DEIGHTON, BELL, AND CO.
LEIPZIG: F. A. BROCKHAUS.

1878

[4U Rights reserved.]



(s

o

weon

.
.
Ve
.

o« vt
P .
- %
LA P

Tambridge:

PRINTED BY C. J. CLAY, M.A.,
AT THE UNIVERSITY PRESS.

\

v

N O, VD

Ly .
MEe=



PREFACE.

IN preparing this version in English of Fourier’s
celebrated treatise on Heat, the translator has followed
faithfully the French original. He has, however, ap-
pended brief foot-notes, in which will be found references
to other writings of Fourier and modern authors on
the subject : these are distinguished by the initials A. F.
The notes marked R. L. E. are taken from pencil me-
moranda on the margin of a copy of the work that
formerly belonged to the late Robert Leslie Ellis,
Fellow of Trinity College, and is now in the possession
of St John’s College. It was the translator's hope to
have been able to prefix to this treatise a Memoir
of Fourier’s life with some account of his writings;
unforeseen circumstances have however prevented its

completion in time to appear with the present work.
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Sir Wu TromsoN under the signature N.N., will be found in the Cambridge
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collected writings.

It examines the conditions, subject to which an arbitrary dis-

tribution of heat in an infinite solid, bounded by a plane, may be supposed to
have resulted, by conduction, in course of time, from some previous distribu-
[A.F.]

tion.
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PRELIMINARY DISCOURSE.

PRIMARY causes are unknown to us; but are subject to simple
and constant laws, which may be discovered by observation, the
study of them being the object of natural philosophy.

Heat, like gravity, penetrates every substance of the universe,
its rays occupy all parts of space. The object of our work is to
set forth the mathematical laws which this element obeys. The
theory of heat will hereafter form one of the most important
branches of general physics.

The knowledge of rational mechanics, which the most ancient
nations had been able to acquire, has not come down to us, and
the history of this science, if we except the first theorems in
harmony, is not traced up beyond the discoveries of Archimedes.
This great geometer explained the mathematical principles of
the equilibrium of solids and fluids. About eighteen centuries
elapsed before Galileo, the originator of dynamical theories, dis-
covered the laws of motion of heavy bodies. Within this new
science Newton comprised the whole system of the universe. The
successors of these philosophers have extended these theories, and
given them an admirable perfection: they have taught us that
the most diverse phenomena are subject to a small number of
fundamental laws which are reproduced in all the acts of nature.
It is recognised that the same principles regulate all the move-
ments of the stars, their form, the inequalities of their courses,
the equilibrium and the oscillations of the seas, the harmonic
vibrations of air and sonorous bodies, the transmission of light,
capillary actions, the undulations of fluids, in fine the most com-

 plex effects of all the natural forces, and thus has the thought
F. H. 1



2 THEORY OF HEAT.

of Newton been confirmed: quod tam paucis tam multa prostet
geometria gloriatur'.

But whatever may be the range of mechanical theories, they
do not apply to the effects of heat. These make up a special
order of phenomena, which cannot be explained by the principles
of motion and equilibrium. We have for a long time been in
possession of ingenious instruments adapted to measure many
of these effects; valuable observations have been collected; but
in this manner partial results only have become known, and
not the mathematical demonstration of the laws which include
them all.

I have deduced these laws from prolonged study and at-
tentive comparison of the facts known up to this time: all these
facts I have observed afresh in the course of several years with
the most exact instruments that have hitherto been used.

To found the theory, it was in the first place necessary to
distinguish and define with precision the elementary properties
which determine the action of heat. I then perceived that all the
phenomena which depend on this action resolve themselves into
a very small number of general and simple facts; whereby every
physical problem of this kind is brought back to an investiga-
tion of mathematical analysis. From these general facts I have
concluded that to determine numerically the most varied move-
ments of heat, it is sufficient to submit each substance to three
fundamental observations. Different bodies in fact do not possess
in the same degree the power to confuin heat, to receive or transmit
it across their surfaces, nor to conduct it through the interior of
their masses. These are the three specific qualities which our
theory clearly distinguishes and shews how to measure.

It is easy to judge how much these researches concern the
physical sciences and civil economy, and what may be their
influence on the progress of the arts which require the employ-
ment and distribution of heat. They have also a necessary con-
nection with the system of the world, and their relations become
known when we consider the grand phenomena which take place
near the surface of the terrestrial globe.

1 Philosophie naturalis principia mathematica. Auctoris prefatio ad lectorem.
Ac gloriatur geometria quod tam paucis principiis aliunde petitis tam multa
prestet. [A.T.]
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In fact, the radiation of the sun in which this planet is
incessantly plunged, penetrates the air, the earth, and the waters;
its elements are divided, change in direction every way, and,
penetrating the mass of the globe, would raise its mean tem-
perature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the
surface and expands through the sky.

Different climates, unequally exposed to the action of solar
heat, have, after an immense time, acquired the temperatures
proper to their situation. This effect is modified by several ac-
cessory causes, such as elevation, the form of the ground, the
neighbourhood and extent of continents and seas, the state of the
surface, the direction of the winds.

The succession of day and night, the alternations of the
seasons occasion in the solid earth periodic variations, which are
repeated every day or every year: but these changes become
less and less sensible as the point at which they are measured
recedes from the surface. No diurnal variation can be detected
at the depth. of about three metres [ten feet]; and the annual
variations cease to be appreciable at a depth much less than
sixty metres. The temperature at great depths is then sensibly
fixed at a given place: but it is not the same at all points of the
same meridian; in general it rises as the equator is approached.

The heat which the sun has communicated to the terrestrial
globe, and which has produced the diversity of climates, is now
subject to a movement which has become uniform. It advances
within the interior of the mass which it penetrates throughout,
and at the same time recedes from the plane of the equator, and
proceeds to lose itself across the polar regions.

In the higher regions of the atmosphere the air is very rare
and transparent, and retains but a minute part of the heat of
the solar rays: this is the cause of the excessive cold of elevated
places. The lower layers, denser and more heated by the land
and water, expand and rise up: they are cooled by the very
fact of expansion. The great movements of the air, such as
the trade winds which blow betwecen the tropics, are not de-
termined by the attractive forces of the moon and sun. Thke
action of these celestial hodies produces scarcely perceptible
oscillations in a fluid so rare and at so great a distance. It

1—2
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is the changes of temperature which periodically displace every
part of the atmosphere.

The waters of the ocean are differently exposed at their
surface to the rays of the sun, and the bottom of the basin
which contains them is heated very unequally from the poles
to the equator. These two causes, ever present, and combined
with gravity and the centrifugal force, keep up vast movements
in the interior of the seas. They displace and mingle all the
parts, and produce those general and regular currents which
navigators have noticed.

Radiant heat which escapes from the surface of all bodies,
and traverses elastic media, or spaces void of air, has special
laws, and occurs with widely varied phenomena. The physical
explanation of many of these facts is already known; the mathe-
matical theory which I have formed gives an exact measure of
them. It consists, in a manner, in a new catoptrics which
has its own theorems, and serves to determine by analysis all
the effects of heat direct or reflected.

The enumeration of the chief objects of the theory sufficiently
shews the nature of the questions which I have proposed to
myself. What are the elementary properties which it is requisite
to observe in each substance, and what are the experiments
most suitable to determine them exactly? If the distribution
of heat in solid matter is regulated by constant laws, what is
the mathematical expression of those laws, and by what analysis
may we derive from this expression the complete solution of
the principal problems? Why do terrestrial temperatures cease
to be variable at a depth so small with respect to the radius
of the earth? Every inequality in the movement of this planet
necessarily occasioning an oscillation of the solar heat beneath
the surface, what relation is there between the duration of its
period, and the depth at which the temperatures become con-
stant ?

What time must have elapsed before the climates could acquire
the different temperatures which they now maintain ; and what
are the different causes which can now vary their mean heat?
Why do not the annual changes alone in the distance of the
sun from the earth, produce at the surface of the earth very
considerable changes in the temperatures ?
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From what characteristic can we ascertain that the earth
has not entirely lost its original heat; and what are the exact
laws of the loss?

If, as several observations indicate, this fundamental heat
is not wholly dissipated, it must be immense at great depths,
and nevertheless it has no sensible influence at the present time
on the mean temperature of the climates. The effects which
are observed in them are due to the action of the solar rays.
But independently of these two sources of heat, the one funda-
mental and primitive, proper to the terrestrial globe, the other due
to the presence of the sun, is there not a more universal cause,
which determines the temperature of the heavens, in that part
of space which the solar system now occupies? Since the ob-
served facts necessitate this cause, what are the consequences
of an exact theory in this entirely new question; how shall we
be able to determine that constant value of the temperature of
space, and deduce from it the temperature which belongs to each
planet ?

To these questions must be added others which depend on
the properties of radiant heat. The physical cause of the re-
flection of cold, that is to say the reflection of a lesser degree
‘of heat, is very distinctly known ; but what is the mathematical
expression of this effect ?

On what general principles do the atmospheric temperatures
depend, whether the thermometer which measures them receives
the solar rays directly, on a surface metallic or unpolished,
or whether this instrument remains exposed, during the night,
under a sky free from clouds, to contact with the air, to radiation
from terrestrial bodies, and to that from the most distant and
coldest parts of the atmosphere ?

The intensity of the rays which escape from a point on the
surface of any heated body varying with their inclination ac-
cording to a law which experiments have indicated, is there not a
necessary mathematical felation between this law and the general
fact of the equilibrium of heat; and what is the physical cause of
this inequality in intensity ?

Lastly, when heat penetrates fluid masses, and determines in
them internal movements by continual changes of the temperature
and density of each molecule, can we still express, by differential
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equations, the laws of such a compound effect; and what is the
resulting change in the general equations of hydrodynamics ?

Such are the chief problems which I have solved, and which
have never yet been submitted to calculation. If we consider
further the manifold relations of this mathematical theory to
civil uses and the technical arts, we shall recognize completely
the extent of its applications. It is evident that it includes an
entire series of distinct phenomena, and that the study of it
cannot be omitted without losing a notable part of the science of
nature.

The principles of the theory are derived, as are those of
rational mechanics, from a very small number of primary facts,
the causes of which are not considered by geometers, but which
they admit as the results of common observations confirmed by all
experiment.

The differential equations of the propagation of heat express
the most general conditions, and reduce the physical questions to
problems of pure analysis, and this is the proper object of theory.
They are not less rigorously established than the general equations
of equilibrium and motion. In order to make this comparison
more perceptible, we have always preferred demonstrations ana-
logous to those of the theorems which serve as the foundation
of statics and dynamics. These equations still exist, but receive
a different form, when they express the distribution of luminous
heat in transparent bodies, or the movements which the changes
of temperature and density occasion in the interior of fluids.
The coefficients which they contain are subject to variations whose
exact measure is not yet known ; but in all the natural problems
which it most concerns us to consider, the limits of temperature
differ so little that we may omit the variations of these co-
efficients.

The equations of the movement of heat, like those which
express the vibrations of sonorous bodies, or the ultimate oscilla-
tions of liquids, belong to one of the most recently discovered
branches of analysis, which it is very important to perfect. After
having established these differential equations their integrals must
be obtained ; this process consists in passing from a common
expression to a particular solution subject to all the given con-
ditions. This difficult investigation requires a special analysis
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founded on new theorems, whose object we could mot in this
place make known. ‘The method which is derived from them
leaves nothing vague and indeterminate in the solutions, it leads
them up to the final numerical applications, a necessary condition
of every investigation, without which we should only arrive at
useless transformations.

The same theorems which have made known to us the
equations of the movement of heat, apply directly to certain pro-
blems of general analysis'and dynamics whose solution has for a
long time been desired.

Profound study of nature is the most fertile source of mathe-
matical discoveries. Not only has this study, in offering a de-
terminate object to investigation, the advantage of excluding
vague questions and calculations without issue; it is besides a
sure method of forming analysis itself, and of discovering the
elements which it concerns us to know, and which natural science
ought always to preserve: these are the fundamental elements
which are reproduced in all natural effects.

We see, for example, that the same expression whose abstract
properties geometers had considered, and which in this respect
belongs to general analysis, represents as well the motion of light
in the atmosphere, as it determines the laws of diffusion of heat
in solid matter, and enters into all the chief problems of the
theory of probability.

The analytical equations, unknown to the ancient geometers,
which Descartes was the first to introduce into the study of curves
and surfaces, are not restricted to the properties of figures, and to
those properties which are the object of rational mechanics; they
extend to all general phenomena. There cannot be a language
more universal and more simple, more free from errors and from
obscurities, that is to say more worthy to express the invariable
relations of natural things.

Considered from this point of view, mathematical analysis is as
extensive as nature itself; it defines all perceptible relations,
measures times, spaces, forces, temperatures ; this difficult science
is formed slowly, but it preserves every principle which it has once
acquired ; it grows and strengthens itself incessantly in the midst
of the many variations and errors of the human mind.

Its chief attribute is clearness; it has no marks to express con-
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fused notions. It brings together phenomena the most diverse,
and discovers the hidden analogies which unite them. If matter
escapes us, as that of air and light, by its extreme tenuity, if
bodies are placed far from us in the immensity of space, if man
wishes to know the aspect of the heavens at successive epochs
. separated by a great number of centuries, if the actions of gravity
and of heat are exerted in the interior of the earth at depths
which will be always inaccessible, mathematical analysis can yet
lay hold of the laws of these phenomena. It makes them present
and measurable, and seems to be a faculty of the human mind
destined to supplement the shortness of life and the imperfec-
tion of the senses; and what is still more remarkable, it follows
the same course in the study of all phenomena ; it interprets them
by the same language, as if to attest the unity and simplicity of
the plan of the universe, and to make still more evident that
unchangeable order which presides over all natural causes.

The problems of the theory of heat present so many examples
of the simple and constant dispositions which spring from the
general laws of nature; and if the order which is established in
these phenomena could be grasped by our senses, it would prodace
in us an impression comparable to the sensation of musical sound.

The forms of bodies are infinitely varied ; the distribution of
the heat which penetrates them seems to be arbitrary and confused;
but all the inequalities are rapidly cancelled and disappear as time
passes on. The progress of the phenomenon becomes more regular
and simpler, remains finally subject to a definite law which is the
same in all cases, and which bears no sensible impress of the initial
arrangement.

All observation confirms these consequences. The analysis
from which they are derived separates and expresses clearly, 1° the
general conditions, that is to say those which spring from the
natural properties of heat, 2° the effect, accidental but continued,
of the form or state of the surfaces; 8° the effect, not permanent,
of the primitive distribution.

In this work we have demonstrated all the principles of the
theory of heat, and solved all the fundamental problems. They
could have been explained more concisely by omitting the simpler
problems, and presenting in the first instance the most general
results; but we wished to shew the actual origin of the theory and
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its gradual progress. When this knowledge has been acquired
and the principles thoroughly fixed, it is preferable to employ at
once the most extended analytical methods, as we have done in
the later investigations. This is also the course which we shall
hereafter follow in the memoirs which will be added to this work,
and which will form in some manner its complement*; and by this
means we shall have reconciled, so far as it can depend on our-
selves, the necessary development of principles with the precision
which becomes the applications of analysis.

The subjects of these memoirs will be, the theory of radiant
heat, the problem of the terrestrial temperatures, that of the
temperature of dwellings, the comparison of theoretic results with
those which we have observed in different experiments, lastly the
demonstrations of the differential equations of the movement of

" heat in fluids.

The work which we now publish has been written a long time
since ; different circumstances have delayed and often interrupted
the printing of it. In this interval, science has been enriched by
important observations; the principles of our analysis, which had
not at first been grasped, have become better known; the results
which we had deduced from them have been discussed and con-
firmed. We ourselves have applied these principles to new
problems, and have changed the form of some of the proofs.
The delays of publication will have contributed to make the work
clearer and more complete.

The subject of our first analytical investigations on the transfer
of heat was its distribution amongst separated masses; these have
been preserved in Chapter III, Section II. The problems relative
to continuous bodies, which form the theory rightly so called, were
solved many years afterwards; this theory was explained for the
first time in a manuscript work forwarded to the Institute of
France at the end of the year 1807, an extract from which was
published in the Bulletin des Sciences (Société Philomatique, year
1808, page 112). We added to this memoir, and successively for-
warded very extensive notes, concerning the convergence of series,
the diffusion of heat in an infinite prism, its emission in spaces

1 These memoirs were never collectively published as a sequel or complement
to the Théorie Analytique de la Chaleur. But, as will be seen presently, the author
had written most of them before the publication of that work in 1822. [A.F.]

v
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void of air, the constructions suitable for exhibiting the chief
theorems, and the analysis of the periodic movement at the sur-
face of the earth. Our second memoir, on the propagation of
heat, was deposited in the archives of the Institute, on the 28th of
September, 1811. It was formed out of the preceding memoir and
the notes already sent in; the geometrical constructions and
those details of analysis which had no necessary relation to the
physical problem were omitted, and to it was added the general
equation which expresses the state of the surface. This second
work was sent to press in the course of 1821, to be inserted in
the collection of the Academy of Sciences. It is printed without
any change or addition ; the text agrees literally with the deposited
manuscript, which forms part of the archives of the Institute

In this memoir, and in the writings which preceded it, will be
found a first explanation of applications which our actual work

1 Tt appears as a memoir and supplement in volumes IV. and V. of the Mé-
moires de I'Académie des Sciences. For convenience of comparison with the table
of contents of the Analytical Theory of Heat, we subjoin the titles and heads of
the chapters of the printed memoir :

THEORIE DU MOUVEMENT DE LA CHALEUR DANS LES CORPS SOLIDES, PAR M.
Fourier. [Mémoires de U'Académie Royale des Sciences de UInstitut de France.
Tome IV, (for year 1819). Paris 1824.]

1. Eazxposition.

IL. Notions générales et définitions préliminaires.

III. Equations du mouvement de la chaleur.

IV. Du mouvement linéaire et varié¢ de la chaleur dans une armille,

V. De la propagation de la chaleur dans une lame rectangulaire dont les températures
sont constantes.

VI. De la communication de la chaleur entre des masses'disjointes.

VII. Du mouvement varié de la chaleur dans une sphére solide.

VIIL. Du mouvement varié de la chaleur dans un cylindre solide.

IX. De la propagation de la chaleur dans un prisme dont Vextrémité est assujettie
a une température constante.

X. Du mouvement varié de la chaleur dans un solide de forme cubique.

XL Du mouvement lindaire et varié de la chaleur dans les corps dont une dimension
est infinte.

SUITE DU MEMOIRE INTITULE: THEORIE DU MOUVEMENT DE LA CHALEUR DANS
LES CORPS SOLIDES; PAR M. FouriER. [Mémoires de U Académie Royale des Sciences
de UInstitut de France. Tome V. (for year 1820). Paris, 1826.]

XII. Des températures terrestres, et du mouvement de la chaleur dans Dintérieur
dune sphére»solide, dont la surface est assujettie & des changemens périodiques
de température.

XIIL.  Des lois mathématiques de U'équilibre de la chaleur rayonnante.

XIV. Comparaison des résultats de la théorie avec ceux de diverses expériences.
[A. F.]
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does not contain ; they will be treated in the subsequent memoirs*
at greater length, and, if it be in our power, with greater clear-
~mess. The results of our labours concerning the same problems
are also indicated in several articles already published. The
extract inserted in the Annales de Chimie et de Physique shews
the aggregate of our researches (Vol. I1L. page 850, year 1816).
We published in the Annales two separate notes, concerning
radiant heat (Vol. 1v. page 128, year 1817, and Vol. vI. page 259,
year 1817).

Several other articles of the same collection present the most
constant results of theory and observation ; the utility and the
extent of thermological knowledge could not be better appreciated
than by the celebrated editors of the Annales®.

In the Bulletin des Sciences (Société philomatique year 1818,
page 1, and year 1820, page 60) will be found an extract from
a memoir on the constant or variable temperature of dwellings,
and an explanation of the chief consequences of our analysis of
the terrestrial temperatures.

M. Alexandre de Humboldt, whose researches embrace all the
great problems of natural philosophy, has considered the obser-
vations of the temperatures proper to the different climates
from a novel and very important point of view (Memoir on Iso-
thermal lines, Societé d’Arcueil, Vol. 11L. page 462); (Memoir on
the inferior limit of perpetual snow, Annales de Chimie et de
Physique, Vol. v. page 102, year 1817). .

As to the differential equations of the movement of heat in
fluids® mention has been made of them in the annual history of
the Academy of Sciences. The extract from our memoir shews
clearly its object and principle. (dnalyse des travaux de I'Aca-
démie des Sciences, by M. De Lambre, year 1820.)

The examination of the repulsive forces produced by heat,
which determine the statical properties of gases, does not belong

! See note, page 9, and the notes, pages 11—13.

2 Gay-Lussac and Arago. See note, p. 13.

3 Mémoires de UAcadémie des Sciences, Tome XII., Paris, 1833, contain on pp.
507—514, Mémoire d’analyse sur le mouvement de la chaleur dans les jfluides, par M.
Fourier. Lu & UAcadémie Royale des Sciences, 4 Sep. 1820. It is followed on pp.
515—530 by Extrait des notes manuscrites conservées par Uauteur. The memoir
is signed Jh. Fourier, Paris, 1 Sep. 1820, but was published after the death of the
author. [A. F.]
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to the analytical subject which we have considered. This question
connected with the theory of radiant heat has just been discussed
by the illustrious author of the Mécanique céleste, to whom all
the chief branches of mathematical analysis owe important
discoveries. (Connaissance des Temps, years 1824-5.)

The new theories explained in our work are united for ever
to the mathematical sciences, and rest like them on invariable
foundations ; all the elements which they at present possess they
will preserve, and will continually acquire greater extent. Instru-
ments will be perfected and experiments multiplied. The analysis
which we have formed will be deduced from more general, that
is to say, more simple and more fertile methods common to many
classes of phenomena. For all substances, solid or liquid, for
vapours and permanent gases, determinations will be made of all
the specific qualities relating to heat, and of the variations of the
coefficients which express them'. At different stations on the
earth observations will be made, of the temperatures of the
ground at different depths, of the intensity of the solar heat and
its effects, constant or variable, in the atmosphere, in the ocean
and in lakes; and the constant temperature of the heavens proper
to the planetary regions will become known®. The theory itself

1 Mémoires de UAcadémie des Sciences, Tome VIII., Paris 1829, contain on
pp. 581-—622, Mémoire sur la Théorie Analytique de la Chaleur, par M. Fourier.
This was published whilst the author was Perpetual Secretary to the Academy.
The first only of four parts of the memoir is printed. The contents of all are
stated. I. Determines the temperature at any point of a prism whose terminal
temperatures are functions of the time, the initial temperature at any point being
a funetion of its distance from one end. II. Examines the chief consequences of
the general solution, and applies it to two distinct cases, aceording as the tempe-
ratures of the ends of the heated prism are periodic or not. III. Is historical,
enumerates the earlier experimental and analytical researches of other writers
relative to the theory of heat; considers the nature of the transcendental equations
appearing in the theory; remarks on the employment of arbitrary functions;
replies to the objections of M. Poisson; adds some remarks on a problem of the
motion of waves. IV. Extends the application of the theory of heat by taking
account, in the analysis, of variations in the specific coefficients which measure
the capacity of substances for heat, the permeability of solids, and the penetra-
bility of their surfaces. [A. F.]

2 Mémoires de VAcadémie des Sciences, Tome VII., Paris, 1827, contain on
Pp. 569—604, Mémoire sur les températures du globe terrestre et des espaces plané-
taires, par M. Fourier. The memoir is entirely descriptive ; it was read before the
Academy, 20 and 29 Sep. 1824 (dnnales de Chimie et de Physique, 1824, xxvir,
p. 136). [A.F.]
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will direct all these measures, and assign their precision. No
considerable progress can hereafter be made which is not founded
on experiments such as these; for mathematical analysis can
deduce from general and simple phenomena the expression of the
laws of nature; but the special application of these laws to very
complex effects demands a long series of exact observations.

The complete list of the Articles on Heat, published by M. Fourier, in the
Annales de Chimie et de Physique, Series 2, is as follows :

1816. III. pp. 350—375. Théorie de la Chaleur (Extrait). Description by the
author of the 4to volume afterwards published in 1822 without the chapters on
radiant heat, solar heat as it affects the earth, the comparison of analysis with
experiment, and the history of the rise and progress of the theory of heat.

1817. IV. pp. 128-—145. Note sur la Chaleur rayonnante. Mathematical
sketch on the sine law of emission of heat from a surface. Proves the author’s
paradox on the hypothesis of equal intensity of emission in all directions.

1817. VI. pp. 259—303. Questions sur la théorie physique de la chaleur
rayonnante. An elegant physical treatise on the discoveries of Newton, Pictet,
Wells, Wollaston, Leslie and Prevost.

1820. XIIL. pp. 418—438. Sur le refroidissement séculaire de la terre (Extrait).
Sketch of a memoir, mathematical and descriptive, on the waste of the earth's
initial heat. 4

1824, XXVIL pp. 136—167. Remarques générales sur les températures du globe
terrestre et des espaces planétaires. This is the descriptive memoir referred to
above, Mém. Acad. d. Se. Tome VII, .

1824, XXVIIL. pp. 236—281. Résumé théorique des propriétés de la chaleur
rayonnante, Elementary analytical account of surface-emission and absorption
based on the prineiple of equilibrium of temperature,

1825. XXVIIL pp. 337—365. Remarques sur la théorie mathématique de la
chaleur rayonnante. Elementary analysis of emission, absorption and reflection
by walls of enclosure uniformly heated. At p. 364, M. Fourier promises a Théorie
physique de la chaleur to contain the applications of the Théorie Analytique
omitted from the work published in 1822,

1828. XXXVIL pp. 291—315. Recherches expérimentales sur la faculté con-
ductrice des corps minces soumis a Uaction de la chaleur, et description d’un nouveau
thermometre de contact. A thermoscope of contact intended for lecture demonstra-
tions is also described. M. Emile Verdet in his Conférences de Physique, Paris,
1872. Part L p. 22, has stated the practical reasons against relying on the
theoretical indications of the thermometer of contact. [A. F.]

Of the three notices of memoirs by M. Fourier, contained in the Bulletin des
Sciences par la Société Philomatique, and quoted here at pages 9 and 11, the first
was written by M. Poisson, the mathematical editor of the Bulletin, the other two by
M. Fourier. [A.F.]



THEORY OF HEAT.

Lt ignem regunt numeri,—PraTol.

CHAPTER 1.

INTRODUCTION.

FIRST SECTION.
Statement of the Object of the Work.

1. THE effects of heat are subject to constant laws which
cannot be discovered without the aid of mathematical analysis.
The object of the theory which we are about to explain is to
demonstrate these laws; it reduces all physical researches on
the propagation of heat, to problems of the integral calculus
whose elements are given by experiment. No subject has more
extensive relations with the progress of industry and the natural
sciences; for the action of heat is always present, it penetrates
all bodies and spaces, it influences the processes of the arts,
and occurs in all the phenomena of the universe.

When heat is unequally distributed among the different parts
of a solid mass, it tends to attain equilibrium, and passes slowly
from the parts which are more heated to those which are less;
and at the same time it is dissipated at the surface, and lost
in the medium or in the void. The tendency to uniform dis-
tribution and the spontaneous emission which acts at the surface
of bodies, change continually the temperature at their different
points. The problem of the propagation of heat consists in

1 Cf. Plato, Timeus, 53, B.
8re 8" émexewpeiro koouclofar 70 wdy, wip mwpdrov kal viv Kkal dépa kal dwp
Sueaxnuarioaro [6 Oeds] eldeat Te kal dpfpots. [A. F.]
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determining what is the temperature at each point of a body
at a given instant, supposing that the initial temperatures are
known. The following examples will more clearly make known
the nature of these problems.

2. If we expose to the continued and uniform action of a
source of heat, the same part of a metallic ring, whose diameter
is large, the molecules nearest to the source will be first heated,
and, after a certain time, every point of the solid will have
acquired very nearly the highest temperature which it can attain.
This limit or greatest temperature is not the same at different
points ; it becomes less and less according as they become more
distant from that point at which the source of heat is directly
applied.

When the temperatures have become permanent, the source
of heat supplies, at each instant, a quantity of heat which exactly
compensates for that which is dissipated at all the points of the
external surface of the ring.

If now the source be suppressed, heat will continue to be
propagated in the interior of the solid, but that which is lost
in the medium or the void, will no longer be compensated as
formerly by the supply from the source, so that all the tempe-
ratures will vary and diminish incessantly until they have be-
come equal to the temperatures of the surrounding medium.

3. Whilst the temperatures are permanent and the source
remains, if at every point of the mean circumference of the ring
an ordinate be raised perpendicular to the plane of the ring,
whose length is proportional to the fixed temperature at that
point, the curved line which passes through the ends of these
ordinates will represent the permanent state of the temperatures,
and it.is very easy to determine by analysis the nature of this
line. It is to be remarked that the thickness of the ring is
supposed to be sufficiently small for the temperature to be
sensibly equal at all points of the same section perpendicular
to the mean circumference. When the source is removed, the
line which bounds the ordinates proportional to the temperatures
at the different points will change its form continually. 'The
problem consists in expressing, by one equation, the variable
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form of this curve, and in thus including in a single formula
all the successive states of the solid.

4. Let z be the constant temperature at a point m of the
mean circumference, & the distance of this point from the source,
that is to say the length of the arc of the mean circumference,
included between the point m and the point o which corresponds
to the position of the source; z is the highest temperature
which the point m can attain by virtue of the constant action
of the source, and this permanent tempemture z is a function
f(z) of the distance #. The first part of thel Broblem consists
in determining the function f(z) which represents the permanent
state of the solid.

Consider next the variable state which succeeds to the former
state as soon as the source has been removed; denote by ¢ the
time which has passed since the suppression of the source, and
by v the value of the temperature at the point m after the
time £. The quantity » will be a certain function ¥ (x, t) of
the distance # and the time ¢; the object of the@é@is to
discover this function F (=, t), of which we only know as yet
that the initial value is f (), so that we ought to have the
equation f (x) = F (=, o).

5. If we place a solid homogeneous mass, having the form
of a sphere or cube, in a medium maintained at a constant tem-
perature, and if it remains immersed for a very long time, it will
acquire at all its points a temperature differing very little from
that of the fluid. Suppose the mass to be withdrawn in order
to transfer it to a cooler medium, heat will begin to be dissi-
pated at its surface; the temperatures at different points of the
mass will not be sensibly the same, and if we suppose it divided
into an infinity of layers by surfaces parallel to its external sur-
face, each of those layers will transmit, at each instant, a certain
quantity of heat to the layer which surrounds it. If it be
imagined that each molecule carries a separate thermometer,
which indicates its temperature at every instant, the state of
the solid will from time to time be represented by the variable
system of all these thermometric heights. It is required to
express the successive states by analytical formule, so that we
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may know at any given instant the temperatures indicated by
each thermometer, and compare the quantities of heat which
flow during the same instant, between two adjacent layers, or
into the surrounding medinm,

6. If the mass is spherical, and we denote by « the distance
of a point of this mass from the centre of the sphere, by ¢ the
time which has elapsed since the commencement of the cooling,
and by v the variable temperature of the point m, it is easy to see
that all points situated at the same distance z from the centre
of the sphere have the same temperature . This quantity v is a
certain function F (z, t) of the radius # and of the time ¢ ; it must
be such that it becomes constant whatever be the value of «, when
we suppose ¢ to be nothing ; for by hypothesis, the temperature at
all points is the same at the moment of emersion. The/problem
consists in determining that function of  and ¢ which expresscs
\the value of v.

7. In the next place it is to be remarked, that during the
cooling, a certain quantity of heat escapes, at each instant, through
the external surface, and passes into the medium. The value of
this quantity is not constant; it is greatest at the beginning of the
cooling. If however we consider the variable state of the internal
spherical surface whose radius is «, we easily see that there must
be at each instant a certain quantity of heat which traverses that
surface, and passes through that part of the mass which is more
distant from the centre. This continuous flow of heat is variable
like that through the external surface, and both are quantities
comparable with each other ; their ratios are numbers whose vary-
ing values are functions of the distance z, and of the time ¢ which
has elapsed. It is required to determine these functions.

8. If the mass, which has been heated by a long immersion in
a medium, and whose rate of cooling we wish to calculate, is
of cubical form, and if we determine the position of each point m by
three rectangular co-ordinates z, y, 2, taking for origin the centre
of the cube, and for axes lines perpendicular to the faces, we see
that the temperature v of the point m after the time ¢, is a func-
tion of the four variables z, v, 2z, and ¢. The quantities of heat

F. H. 2



18 THEORY OF HEAT. [cHAP. 1.

which flow out at each instant through the whole external surface
of the solid, are variable and comparable with each other; their
ratios are analytical functions depending on the time ¢, the expres-
sion of which must be assigned.

9. Let us examine also the case in which a rectangular prism
of sufficiently great thickness and of infinite length, being sub-
mitted at its extremity to a constant temperature, whilst the air
which surrounds it is maintained at a less temperature, has at last
arrived at a fixed state which it is required to determine. All the
points of the extreme section at the base of the prism have, by
hypothesis, a common and permanent temperature. It is not the
same with a section distant from the source of heat; each of the
points of this rectangular surface parallel to the base has acquired
a fixed temperature, but this is not the same at different points of
the same section, and must be less at points nearer to the surface
exposed to the air. 'We see also that, at each instant, there flows
across a given section a certain quantity of heat, which always
remains the same, since the state of the solid has become constant.
The problem consists in determining the permanent temperature
at any given point of the solid, and the whole quantity of heat
which, in a definite time, flows aeross a section whose position is
given,

10. Take as origin of co-ordinates , y, 2, the centre of the
base of the prism, and as rectangular axes, the axis of the prism
itself, and the two perpendiculars on the sides: the permanent
temperature v of the point m, whose co-ordinates are z, y, 2, is
a function of three variables F (#, v, z): it has by hypothesis a
constant value, when we suppose 2 nothing, whatever be the values
of y and z. Suppose we take for the unit of heat that quantity
which in the unit of time would emerge from an area equal to a
unit of surface, if the heated mass which that area bounds, and
which is formed of the same substance as the prism, were continu-
ally maintained at the temperature of boiling water, and immersed
in atmospheric air maintained at the temperature of melting ice.

We see that the quantily of heat which, in the permanent
state of the rectangular prism, flows, during a unit of time, across
a certain section perpendicular to the axis, has a determinate ratio
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to the quantity of heat taken as unit. This ratio is not the same |

for all sections: it is a function ¢ (#) of the distance z, at which |

the section is situated. It is required to find an analytical expres-
sion of the function ¢ ().

11. The foregoing examples suffice to give an exact idea of
the different problems which we have discussed.

The solution of these problems has made us understand that
the effects of the propagation of heat depend in the case of every
solid substance, on three elementary qualities, which are, its capa-
city for heat, its own conducibility, and the exterior conducibility.

It has been observed that if two bodies of the same volume
and of different nature have equal temperatures, and if the same
quantity of heat be added to them, the increments of temperature
are not the same; the ratio of these increments is the ratio of
their capacities for heat. In this manner, the first of the three
specific elements which regulate the action of heat is exactly
defined, and physicists have for a long time known several methods
of determining its value. It is not the same with the two others;
their effects have often been observed, but there is but one exact
theory which can fairly distinguish, define, and measure them
with precision.

The proper or interior conducibility of a body expresses the
facility with which heat is propagated in passing from one internal
molecule to another. The external or relative conducibility of a
solid body depends on the facility with which heat penetrates the
surface, and passes from this body into a given medium, or passes
from the medium into the solid. The last property is modified by
the more or less polished state of the surface ; it varies also accord-
ing to the medium in which the body is immersed ; but the
interior conducibility can change only with the nature of the
solid.

These three elementary qualities are represented in our
formulee by constant numbers, and the theory itself indicates
experiments suitable for measuring their values. As soon as they
are determined, all the problems relating to the propagation of
heat depend only on numerical analysis. The knowledge of these
specific properties may be directly useful in several applications of
the physical sciences; it is besides an element in the study and

: 22

AV



20 THEORY OF HEAT. [cHAP. 1.

description of different substances. It is a very imperfect know-
ledge of bodies which ignores the relations which they have with
one of the chief agents of nature. In general, there is no mathe-
matical theory which has a closer relation than this with public
economy, since it serves to give clearness and perfection to the
practice of the numerous arts which are founded on the employ-
ment of heat.

12. The problem of the terrestrial temperatures presents
one of the most beautiful applications of the theory of heat; the
general idea to be formed of it is this. Different parts of the
surface of the globe are unequally exposed to the influence of the
solar rays; the intensity of their action depends on the latitude of
the place; it changes also in the course of the day and in the
course of the year, and is subject to other less perceptible in-
equalities. It is evident that, between the variable state of the
surface and that of the internal temperatures, a necessary relation
exists, which may be derived from theory. We know that, at a
certain depth below the surface of the earth, the temperature at a
given place experiences no annual variation: this permanent
underground temperature becomes less and less according as the
place is more and more distant from the equator. We may then
leave out of consideration the exterior envelope, the thickness of
which is incomparably small with respect to the earth’s radius,
and regard our planet as a nearly spherical mass, whose surface
is subject to a temperature which remains constant at all points
on a given parallel, but is not the same on another parallel. It
follows from this that every internal molecule has also a fixed tem-
perature determined by its position. The mathematical problem
consists in discovering the fixed temperature at any given point,
and the law which the solar heat follows whilst penetrating the
interior of the earth.

This diversity of temperature interests us still more, if we
consider the changes which succeed each other in the envelope
itself on the surface of which we dwell. Those alternations of
heat and cold which are reproduced every day and in the course of
every year, have been up to the present time the object of repeated
observations. These we can now submit to calculation, and from
a common theory derive all the particular facts which experience
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has taught us. The problem is reducible to the hypothesis that
every point of a vast sphere is affected by periodic temperatures ;
analysis then tells us according to what law the intensity of these
variations decreases according as the depth increases, what is the
amount of the annual or diurnal changes at a given depth, the
epoch of the changes, and how the fixed value of the underground
temperature is deduced from the variable temperatures observed
at the surface.

13. The general equations of the propagation of heat are
partial differential equations, and though their form is very simple
the known methods® do not furnish any general mode of integrat-
ing them; we could not therefore deduce from them the values
of the temperatures after a definite time. The numerical inter-
pretation of the results of analysis is however necessary, and it
is a degree of perfection which it would be very important to give
to every application of analysis to the natural sciences. So long
as it is not obtained, the solutions may be said to remain in-
complete and useless, and the truth which it is proposed to
discover is no less hidden in the formule of analysis than it was
in the physical problem itself. We have applied ourselves with
much care to this purpose, and we have been able to overcome
the difficulty in all the problems of which we have treated, and
which contain the chief elements of the theory of heat. There is
not one of the problems whose solution does not provide conve-
nient and exact means for discovering the numerical values of the
temperatures acquired, or those of the quantities of heat which

1 For the modern treatment of these equations consult

Partielle Differentialgleichungen, von B. Riemann, Braunschweig, 2nd Ed., 1876.
The fourth section, Bewegung der Wiirme in festen Korpern.

Cours de physique mathématique, par E. Matthieu, Paris, 1873, The parts
relative to the differential equations of the theory of heat.

The Functions of Laplace, Lamé, and Bessel, by I. Todhunter, London, 1875.
Chapters XXI. XXV.—XXIX. which give some of Lamé’s methods.

Conférences de Physique, par E. Verdet, Paris, 1872 [(Euvres, Vol. 1v. Part 1.].
Lecons sur la propagation de la chaleur par conductidilité. These are followed by
a very extensive bibliography of the whole subject of conduction of heat.

For an interesting sketch and application of Fourier’s Theory see

Theory of Heat, by Prof. Maxwell, London, 1875 [4th Edition]. Chapter XVIIL.
On the diffusion of heat by conduction,

Natural Philosophy, by Sir . Thomson and Prof. Tait, Vol. 1. Oxford, 1867.
Chapter VII. Appendix D, On the secular cooling of the earth. [A. F.]
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have flowed through, when the values of the time and of the
variable coordinates are known. Thus will be given not only the
differential equations which the functions that express the values
of the temperatures must satisfy; but the functions themselves
will be given under a form which facilitates the numerical
applications.

14. In order that these solutions might be general, and have
an extent equal to that of the problem, it was requisite that they
should accord with the initial state of the temperatures, which is
arbitrary. The examination of this condition shews that we may
develop -in convergent series, or express by definite integrals,
functions which are not subject to a constant law, and which
represent the ordinates of irregular or discontinuous lines. This
property throws a new light on the theory of partial differen-
tial equations, and extends the employment of arbitrary functions
by submitting them to the ordinary processes of analysis.

15. It still remained to compare the facts with theory. With
this view, varied and exact experiments were undertaken, whose
results were in conformity with those of analysis, and gave them
an authority which one would have been disposed to refuse to
them in a new matter which seemed subject to so much uncer-
tainty. These experiments confirm the principle from which we
started, and which is adopted by all physicists in spite of the
diversity of their hypotheses on the nature of heat.

16. Equilibrium of temperature is effected not only by way
of contact, it is established also between bodies separated from
each other, which are situated for a long time in the same region.
This effect 1s independent of contact with a medium; we have
observed it in spaces wholly void of air. To complete our theory
it was necessary to examine the laws which radiant heat follows,
on leaving the surface of a body. It results from the observations
of many physicists and from our own experiments, that the inten-
sities of the different rays, which escape in all directions from any
point in the surface of a heated body, depend on the angles which
their directions make with the surface at the same point. We
have proved that the intensity of a ray diminishes as the ray

.
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makes a smaller angle with the element of surface, and that it is
proportional to the sine of that angle’. This general law of
emission of heat which different observations had already indi-
cated, is a necessary consequence of the principle of the equilibrium
of temperature and of the laws of propagation of heat in solid
bodies.

Such are the chief problems which have been discussed in
this work; they are all directed to one object only, that is to
establish clearly the mathematical principles of the theory of heat,
and to keep up in this way with the progress of the useful arts,
and of the study of nature.

17. From what precedes it is evident that a very extensive
class of phenomena exists, not produced by mechanical forces, but
resulting simply from the presence and accumulation of heat.
This part of natural philosophy cannot be connected with dy-
namical theories, it has principles peculiar to itself, and is founded
on a method similar to that of other exact sciences. The solar
heat, for example, which penetrates the interior of the globe, dis-
tributes itself therein according to a regular law which does not
depend on the laws of motion, and cannot be determined by the
principles of mechanics. The dilatations which the repulsive
force of heat produces, observation of which serves to measure
temperatures, are in truth dynamical effects; but it is not these
dilatations which we calculate, when we investigate the laws of
the propagation of heat.

"~ 18. There are other more complex natural effects, which
depend at the same time on the influence of heat, and of attrac-
tive forces: thus, the variations of temperatures which the move-
ments of the sun occasion in the atmosphere and in the ocean,
change continually the density of the different parts of the air
and the waters. The effect of the forces which these masses obey
is modified at every instant by a new distribution of heat, and
it cannot be doubted that this cause produces the regular winds,
and the chief currents of the sea; the solar and lunar attractions
occasioning in the atmosphere effects but slightly sensible, and
not general displacements. It was therefore necessary, in order to

1 Mém. Acad. d. Sc. Tome V. Paris, 1826, pp. 179—213. [A. F.]
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submit these grand phenomena to calculation, to discover the
mathematical laws of the propagation of heat in the interior of
masses.

19. It will be perceived, on reading this work, that heat at-
tains in bodies a regular disposition independent of the original
distribution, which may be regarded as arbitrary.

In whatever manner the heat was at first distributed, the
system of temperatures altering more and more, tends to coincide
sensibly with a definite state which depends only on the form of
the solid. In the ultimate state the temperatures of all the points
are lowered in the same time, but preserve amongst each other the
same ratios: in order to express this property the analytical for-
mul® contain terms composed of exponentials and of quantities
analogous to trigonometric functions.

Several problems of mechanics present analogous results, such as
the isochronism of oscillations, the multiple resonance of sonorous
bodies. Common experiments had made these results remarked,
and analysis afterwards demonstrated their true cause. As to
those results which depend on changes of temperature, they could -
not have been recognised except by very exact experiments; but
mathematical analysis has outrun observation, it has supplemented
our senses, and has made us in a manner witnesses of regular and
harmonic vibrations in the interior of bodies.

20. These considerations present a singular example of the
relations which exist between the abstract science of numbers
and natural causes.

When a metal bar is exposed at one end to the constant action
of a source of heat, and every point of it has attained its highest
temperature, the system of fixed temperatures corresponds exactly
to a table of logarithms; the numbers are the elevations of ther-
mometers placed at the different points, and the logarithms are
the distances of these points from the source. In general heat
distributes itself in the interior of solids according to a simple law
expressed by a partial differential equation common to physical
problems of different order. The irradiation of heat has an evident
relation to the tables of sines, for the rays which depart from the
same point of a heated surface, differ very much from each other,
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and their intensity is rigorously proportional to the sine of the
angle which the direction of each ray makes with the element of
surface.

If we could observe the changes of temperature for every in-
stant at every point of a solid homogeneous mass, we should dis-
cover in these series of observations the properties of recurring
series, as of sines and logarithms; they would be noticed for
example in the diurnal or annual variations of temperature of
different points of the earth near its surface.

We should recognise again the same results and all the chief
elements of general analysis in the vibrations of elastic media, in
the properties of lines or of curved surfaces, in the movements of
the stars, and those of light or of fluids. Thus the functions ob-
tained by successive differentiations, which are employed in the
development of infinite series and in the solution of numerical
equations, correspond also to physical properties. The first of
these functions, or the fluxion properly so called, expresses in
geometry the inclination of the tangent of a curved line, and in
dynamics the velocity of a moving body when the motion varies; |
in the theory of heat it measures the quantity of heat which flows
at each point of a body across a given surface. ~Mathematical
analysis has therefore necessary relations with sensible phenomena ;
its object is not created by human intelligence; it is a pre-existent
element of the universal order, and is not in any way contingent
or fortuitous; it is imprinted throughout all nature.

21. Observations more exact and more varied will presently
ascertain whether the effects of heat are modified by causes which
have not yet been perceived, and the theory will acquire fresh
perfection by the continued comparison of its results with the
results of experiment; it will explain some important phenomena
which we have not yet been able to submit to calculation ; it will
shew how to determine all the thermometric effects of the solar
rays, the fixed or variable temperature which would be observed at
different distances from the equator, whether in the interior of
the earth or beyond the limits of the atmosphere, whether in the
ocean or in ditferent regions of the air. From it will be derived
the mathematical knowledge of the great movements which result
from the influence of heat combined with that of gravity. The
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same principles will serve to measure the conducibilities, proper or
relative, of different bodies, and their specific capacities, to dis-
tinguish all the causes which modify the emission of heat at the
surface of solids, and to perfect thermometric instruments.

The theory of heat will always attract the attention of ma-
thematicians, by the rigorous exactness of its elements and the
analytical difficulties peculiar to it, and above all by the extent
and usefulness of its applications; for all its consequences con-
cern at the same time general physics, the operations of the arts,
domestic uses and civil economy.

SECTION IIL
Preliminary definitions and general notions.

22. OF the nature of heat uncertain hypotheses only could be
formed, but the knowledge of the mathematical laws to which its
effects are subject is independent of all hypothesis ; it requires only
an attentive examination of the chief facts which common obser-
vations have indicated, and which have been confirmed by exact
experiments.

It is necessary then to set forth, in the first place, the general
results of observation, to give exact definitions of all the elements
of the analysis, and to establish the principles upon which this
analysis ought to be founded.

The action of heat tends to expand all bodies, solid, liquid or
gaseous; this is the property which gives evidence of its presence.
Solids and liquids increase in volume, if the quantity of heat which
they contain increases; they contract if it diminishes.

When all the parts of a solid homogeneous body, for example
those of a mass of metal, are equally heated, and preserve without
any change the same quantity of heat, they have also and retain
the same density. This state is expressed by saying that through-
out the whole extent of the mass the molecules have a common
and permanent temperature.

23. The thermometer is a body whose smallest changes of
volume can be appreciated ; it serves to measure temperatures by
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the dilatation of a fluid or of air. We assume the construction,
use and properties of this instrument to be accurately known.
The temperature of a body equally heated in every part, and
which keeps its heat, is that which the thermometer indicates
when it is and remains in perfect contact with the body in
question.

Perfect contact is when the thermometer is completely im-
mersed in a fluid mass, and, in general, when there is no point of
the external surface of the instrument which is not touched by one
of the points of the solid or liquid mass whose temperature is to be
measured. In experiments it is not always necessary that this con-
dition should be rigorously observed ; but it ought to be assumed
in order to make the definition exact.

24. Two fixed temperatures are determined on, namely: the
temperature of melting ice which is denoted by 0, and the tem-
perature of boiling water which we will denote by 1: the water is
supposed to be boiling under an atmospheric pressure represented
by a certain height of the barometer (76 centimetres), the mercury
of the barometer being at the temperature 0.

25. Different quantities of heat are measured by determining
how many times they contain a fixed quantity which is taken as
the unit. Suppose a mass of ice having a definite weight (a kilo-
gramme) to be at temperature 0, and to be converted into water at
the same temperature O by the addition of a certain quantity of
heat: the quantity of heat thus added is taken as the unit of
measure, Hence the quantity of heat expressed by a number C
contains C times the quantity required to disselve a kilogramme
of ice at the temperature zero into a mass of water at the same
zero temperature.

26. To raise a metallic mass having a certain weight, a kilo-
gramme of iron for example, from the temperature 0 to the
temperature 1, a new quantity of heat must be added to that
which is already contained in the mass. The number C which
denotes this additional quantity of heat, is the specific capacity of
iron for heat; the number C has very different values for different
substances. :
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27. If a body of definite nature and weight (a kilogramme of
mercury) occupies a volume V at temperature 0, it will oecupy a
greater volume V4 A, when it has acquired the temperature 1,
that is to say, when the heat which it contained at the tempera-
ture O has been increased by a new quantity C, equal to the
specific capacity of the body for heat. But if, instead of adding
this quantity C, a quantity zC is added (z being a number
positive or negative) the new volume will be V4 & instead
of V+A. Now experiments shew that if z is equal to %, the
increase of volume & is only half the total increment A, and
that in general the value of & is zA, when the quantity of heat
added is zC.

98. The ratio z of the two quantities 20’ and (' of heat added,

which is the same as the ratio of the two increments of volume & -

and A, is that which is called the temperature; hence the quantity
which expresses the actual temperature of a body represents the
excess of its actual volume over the volume which it would occupy
at the temperature of melting ice, unity representing the whole
excess of volume which corresponds to the boiling point of
water, over the volume which corresponds to the melting point
of ice.

29. The increments of volume of bodies are in general pro-
portional to the increments of the quantities of heat which -
produce the dilatations, but it must be remarked that this propor-
tion is exact only in the case where the bodies in question are
subjected to temperatures remote from those which determine
their change of state. The application of these results to all
liquids must not be relied on; and with respect to water in
particular, dilatations do not always follow augmentations of
heat.

In general the temperatures are numbers proportional to the
quantities of heat added, and in the cases considered by us,
these numbers are proportional also to the increments of
volume.

30. Suppose that a body bounded by a plane surface having
a certain area (a square metre) is maintained in any manner
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whatever at constant temperature 1, common to all its points,
and that the surface in question is in contact with air maintained
at temperature 0 : the heat which escapes continuously at the
surface and passes into the surrounding medium will be replaced
always by the heat which proceeds from the constant cause to
whose action the body is exposed; thus, a certain quantity of heat
denoted by A will flow through the surface in a definite time (a
minute).

This amount kA, of a flow continuous and always similar to
itself, which takes place at a unit of surface at a fixed temperature
is the measure of the external conducibility of the body, that is
to say, of the facility with which its surface transmits heat to the
atmospheric air.

The air is supposed to be continually displaced with a given
uniform velocity: but if the velocity of the current increased, the
quantity of heat communicated to the medium would vary also :
the same would happen if the densmy of the medium were
increased.

31. If the excess of the constant temperature of the body
over the temperature of surrounding bodies, instead of being equal
to 1, as has been supposed, had a less value, the quantity of heat
dissipated would be less than k. The result of observation is,
as we shall see presently, that this quantity of heat lost may be
regarded as sensibly proportional to the excess of the temperature
of the body over that of the air and surrounding bodies. Hence
the quantity % having been determined by one experiment in
which the surface heated is at temperature 1, and the medium at
temperature 0; we conclude that hz would be the quantity, if the
temperature of the surface were z, all the other circumstances
remaining the same. This result must be admitted when z is a
small fraction.

32. The value % of the quantity of heat which is dispersed
across a heated surface is different for different bodies; and it
varies for the same body according to the different states of the
surface. The effect of irradiation diminishes as the surface
becomes more polished; so that by destroying the polish of the
surface the value of h is considerably increased. A heated

Vels 3 = {(!!, Ay
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metallic body will be more quickly cooled if its external surface is
covered with a black coating such as will entirely tarnish its
metallic lustre.

33. The rays of heat which escape from the surface of a body
pass freely through spaces void of air; they are propagated also
in atmospheric air: their directions are not disturbed by agitations
in the intervening air: they can be reflected by metal mirrors
and collected at their foci. Bodies at a high temperature, when
plunged into a liquid, heat directly only those parts of the mass
with which their surface is in contact. The molecules whose dis-
tance from this surface is not extremely small, receive no direct
heat; it is not the same with aériform fluids; in these the rays of
heat are borne with extreme rapidity to considerable distances,
whether it be that part of these rays traverses freely the layers of
air, or whether these layers transmit the rays suddenly without
altering their direction.

34. When the heated body is placed in air which is main-
tained at a sensibly constant temperature, the heat communicated
to the air makes the layer of the fluid nearest to the surface of the
body lighter; this layer rises more quickly the more intensely it is
heated, and is replaced by another mass of cool air. A current
is thus established in the air whose direction is vertical, and
whose velocity is greater as the temperature of the body is higher.
For this reason if the body cooled itself gradually the velocity of
the current would diminish with the temperature, and the law
of cooling would not be exactly the same as if the body were
exposed to a current of air at a constant velocity.

35. When bodies are sufficiently heated to diffuse a vivid light,
part of their radiant heat mixed with that light can traverse trans-
parent solids or liquids, and is subject to the force which produces
refraction. The quantity of heat which possesses this faculty
becomes less as the bodies are less inflamed; it is, we may say,
insensiblefor very opaque bodies however highly they may be heated.
A thin transparent plate intercepts almost all the direct heat
which proceeds from an ardent mass of metal; but it becomes
heated in proportion as the intercepted rays are accumulated in
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it ; whence, if it is formed of ice, it becomes liquid; but if this
plate of ice is exposed to the rays of a torch it allows a sensible
amount of heat to pass through with the light.

36. We have taken as the measure of the external conduci-
bility of a solid body a coefficient &, which denotes the quantity of
heat which would pass, in a definite time (a minute), from the
surface of this body, into atmospheric air, supposing that the sur-
face had a definite extent (a square metre), that the constant
temperature of the body was 1, and that of the air 0, and that
the heated surface was exposed to a current of air of a given in-
variable velocity. This value of % is determined by observation.
The quantity of heat expressed by the coefficient is composed of
two distinct parts which cannot be measured except by very exact
experiments. One is the heat communicated by way of contact to
the surrounding air: the other, much less than the first, is the
radiant heat emitted. We must assume, in our first investigations,
that the quantity of heat lost does not change when the tempera-
tures of the hody and of the medium are augmented by the same
sufficiently small quantity.

37. Solid substances differ again, as we have already remarked,
by their property of being more or less permeable to heat; this
quality is their conducibility proper: we shall give its definition and
exact measure, after having treated of the uniform and linear pro-
pagation of heat. Liquid substances possess also the property of
transmitting heat from molecule to molecule, and the numerical
value of their conducibility varies according to the nature of the
substances : but this effect is observed with difficulty in liquids,
since their molecules change places on change of temperature. The
propagation gf heat in them depends chiefly on this continual dis-
placement, in all cases where the lower parts of the mass are most
exposed to the action of the source of heat. If, on the contrary,
the source of heat be applied to that part of the mass which is
highest, as was the case in several of our experiments, the transfer
of heat, which is very slow, does not produce any displacement,
at least when the increase of temperature does not diminish the
volume, as is indeed noticed in singular cases bordering on changes
of state.
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38. To this explanation of the chief results of observation, a
general remark must be added on equilibrium of temperatures;
which consists in this, that different bodies placed in the same re-
gion, all of whose parts are and remain equally heated, acquire also
a common ‘and permanent temperature.

Suppose that all the parts of a mass M have a common and
constant temperature @, which is maintained by any cause what-
ever: if a smaller body m be placed in perfect contact with the
mass M, it will assume the common temperature a.

In reality this result would not strictly occur except after an
infinite time : but the exact meaning of the proposition is that if
the body m had the temperature a before being placed in contact,
it would keep it without any change. The same would be the case
with a multitude of other bodies », p, ¢, » each of which was
placed separately in perfect contact with the mass 3/ : all would
acquire the constant temperature a. Thus a thermometer if suc-
cessively applied to the different bodies m, n, p, ¢, r would indicate
the same temperature.

39. The effect in question is independent of contact, and
would still occur, if every part of the body m were enclosed in
the solid M, as in an enclosure, without touching any of its parts.
For example, if the solid were a spherical envelope of a certain
thickness, maintained by some external cause at a temperature a,
and containing a space entirely deprived of air, and if the body m
could be placed in any part whatever of this spherical space, with-
out touching any point of the internal surface of the enclosure, it
would acquire the common temperature a, or rather, it would pre-
serve it if it had it alrcady. The result would be the same for
all the other bodies n, p, ¢, r, whether they were placed separately
or all together in the same enclosure, and whateverialso their sub-
stance and form might be.

40. Of all modes of presenting to ourselves the action of
heat, that which seems simplest and most conformable to observa-
tion, consists in comparing this action to that of light. Mole-
cules separated from one another reciprocally communicate, across

empty space, their rays of heat, just as shining bodies transmit
their light.
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If within an enclosure closed in all directions, and maintained
by some external cause at a fixed temperature a, we suppose dif-
ferent bodies to be placed without touching any part of the bound-
ary, different effects will be observed according as the bodies,
introduced into this space free from air, are more or less heated.
If, in the first instance, we insert only one of these bodies, at the
same temperature as the enclosure, it will send from all points of
its surface as much heat as it receives from the solid which sur-
rounds it, and is maintained in its original state by this exchange
of equal quantities.

If we insert a second body whose temperature b is less than a,
it will at first receive from the surfaces which surround it on
all sides without touching it, a quantity of heat greater than that
which it gives out: it will be heated more and more and will
absorb through its-surface more heat than in the first instance.

The initial temperature b continually rising, will approach with-
out ceasing the fixed temperature @, so that after a certain time
the difference will be almost insensible. The effect would be op-
posite if we placed within the same enclosure a third body whose
temperature was greater than a.

41. All bodies have the property of emitting heat through
their surface; the hotter they are the more they emit; the
intensity of the emitted rays changes very con51delably with the
state of the surface.

42. Every surface which receives rays of heat from surround-
ing bodies reflects part and admits the rest: the heat which is not
reflected, but introduced through the surface, accumulates within
the solid; and so long as it exceeds the quantity dissipated by
irradiation, the temperature rises.

43. The rays which tend to go out of heated bodies are
arrested at the surface by a force which reflects part of them into
the interior of the mass. The cause which hinders the incident
rays from traversing the surface, and which divides these rays into
two parts, of which one is reflected and the other admitted, acts in
the same manner on the rays which are directed from the interior
of the body towards external space.

F. H. 3
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If by modifying the state of the surface we increase the force
by which it reflects the incident rays, we increase at the same time
the power which it has of reflecting towards the interior of the
body rays which are tending to go out. The incident rays intro-
duced into the mass, and the rays emitted through the surface, are
equally diminished in gnantity.

44. If within the enclosure above mentioned a number of
bodies were placed at the same time, separate from each other
and unequally heated, they would receive and transmit rays of heat
so that at each exchange their temperatures would continually
vary, and would all tend to become equal to the fixed temperature
of the enclosure.

This effect is precisely the same as that which occurs when
heat is propagated within solid bodies; for the molecules which
compose these bodies are separated by spaces void of air, and
have the property of receiving, accumulating and emitting heat.
Each of them sends out rays on all sides, and at the same time
receives other rays from the molecules which surround it.

* 45. The heat given out by a point situated in the interior of
a solid mass can pass directly to an extremely small distance only;
it is, we may say, intercepted by the nearest particles; these parti-
cles only receive the heat directly and act on more distant points.
It is different with gaseous fluids; the direct effects of radiation
become sensible in them at very considerable distances.

46. Thus the heat which escapes in all directions from a part
of the surface of a solid, passes on in air to very distant points; but
is emitted only by those molecules of the body which are extremely
near the surface. A point of a heated mass situated at a very
small distance from the plane superficies which separates the mass
from external space, sends to that space an infinity of rays, but
they do not all arrive there; they are diminished by all that quan-
tity of heat which is arrested by the intermediate molecules of the
solid. The part of the ray actually dispersed into space becomes
less according as it traverses a longer path within the mass. Thus
the ray which escapes perpendicular to the surface has greater in-
tensity than that which, departing from the same point, follows
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an oblique direction, and the most oblique rays are wholly inter~
cepted.

The same consequences apply to all the points which are near
enough to the surface to take part in the emission of heat, from
which it necessarily follows that the whole quantity of heat which
escapes from the surface in the normal direction is very much
greater than that whose direction is oblique. We have submitted
this question to calculation, and our analysis proves that the in-
tensity of the ray is proportional to the sine of the angle which
the ray makes with the element of surface. Experiments had
already indicated a similar result.

47. This theorem expresses a general law which has a neces-
sary connection with the equilibrium and mode of action of heat.
If the rays which escape from a beated surface had the same in-
tensity in all directions, a thermometer placed at one of the points
of a space bounded on all sides by an enclosure maintained at a
constant temperature would indicate a temperature incomparably
greater than -that of the enclosure'. Bodies placed within this
enclosure would not take a common temperature, as is always
noticed; the temperature acquired by them would depend on the
place which they occupied, or on thelr form, or on the forms of
neighbouring bodies.

The same results would be observed, or other effects equally
opposed to common experience, if between the rays which escape
from the same point any other relations were admitted different
from those which we have enunciated. We have recognised this
law as the only one compatible with the general fact of the equi-
librium of radiant heat.

48. If a space free from air is bounded on all sides by a solid
enclosure whose parts are maintained at a common and constant
temperature a, and if a thermometer, having the actual tempera-
ture @, is placed at any point whatever of the space, its temperature
will continue without any change. It will receive therefore at
each instant from the inner surface of the enclosure as much heat
as it gives out to it. This effect of the rays of heat in a given
space is, properly speaking, the measure of the temperature: but

1 See proof by M. Fourier, 4nn. d. Ch. et Ph. Ser. 2, 1v. p. 128. [A.F.]
3—2
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this consideration presupposes the mathematical theory of radiant
heat.

If now between the thermometer and a part of the surface of
the enclosure a body M be placed whose temperature is a, the
thermometer will cease to receive rays from one part of the inner
surface, but the rays will be replaced by those which it will re-
ceive from the interposed body M. An easy calculation proves
that the compensation is exact, so that the state of the thermo-
meter will be unchanged. It is not the same if the temperature
of the body M is different from that of the enclosure. When
it is greater, the rays which the interposed body M sends to the
thermometer and which replace the intercepted rays convey more
heat than the latter; the temperature of the thermometer must
therefore rise. s

If, on the contrary, the intervening body has a temperature
less than a, that of the thermometer must fall; for the rays which
this body intercepts are replaced by those which it gives out, that
is to say, by rays cooler than those of the enclosure; thus the
thermometer does not receive all the heat necessary to maintain
its temperature a.

49. Up to this point abstraction has been made of the power
which all surfaces have of reflecting part of the rays which are
sent to them. If this property were disregarded we should have
only a very incomplete idea of the equilibrium of radiant heat.

Suppose then that on the inner surface of the enclosure, main-
tained at a constant temperature, there is a portion which enjoys,
in a certain degree, the power in question; each point of the re-
flecting surface will send into space two kinds of rays; the one go
out from the very interior of the substance of which the enclosure is
formed, the others are merely reflected by the same surface against
which they had been sent. But at the same time that the surface
repels on the outside part of the incident rays, it retains in the
inside part of its own rays. In this respect an exact compensation
1s established, that is to say, every one of its own rays which the
surface hinders from going out is replaced by a reflected ray of
equal intensity.

The same result would happen, if the power of reflecting rays
atfected in any degree whatever other parts of the enclosure, or the
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surface of bodies placed within the same space and already at
the common temperature.

Thus the reflection of heat does not disturb the equilibrium
of temperatures, and does not introdace, whilst that equilibrium
exists, any change in the law according to which the intensity of
rays which leave the same point decreases proportionally to the
sine of the angle of emission,

50. Suppose that in the same enclosure, all of whose parts
maintain the temperature a, we place an isolated body M, and
a polished metal surface R, which, turning its concavity towards
the body, reflects great part of the rays which it received from the
body; if we place a thermometer between the body 2 and the re-
flecting surface R, at the focus of this mirror, three different effects
will be observed according as the temperature of the body 2 is
equal to the common temperature a, or is greater or less.

In the first case, the thermometer preserves the temperature
@; it receives 1°, rays of heat from all parts of the enclosure not
hidden from it by the body M or by the mirror ; 2°, rays given out
by the body; 3° those which the surface B sends out to the focus,
whether they come from the mass of the mirror itself, or whether its
surface has simply reflected them ; and amongst the last we may
distinguish between those which have been sent to the mirror by
the mass M, and those which it has received from the enclosure,
All the rays in question proceed from surfaces which, by hypo-
thesis, have a common temperature a, so that the thermometer
is precisely in the same state as if the space bounded by the en-
closure contained no other body but itself.

In the second case, the thermometer placed between the heated
body M and the mirror, must acquire a temperature greater than
a. In reality, it receives the same rays as in the first hypothesis 5
but with two remarkable differences: ene arises from the fact that
the rays sent by the body J/ to the mirror, and reflected upon the
thermometer, contain more heat than in the first case. The other
difference depends on the faet that the rays sent directly by the
body M to the thermometer contain more heat than formerly.
Both causes, and chiefly the first, assist in raising the tempera-
ture of the thermometer.

In the third case, that is to say, when the temperature of the
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mass M is less than a, the temperature must assume also a tem-
perature less than a. In fact, it receives again all the varieties of
rays which we distinguished in the first case: but there are two
kinds of them which contain less heat than in this first hypothesis,
that is to say, those which, being sent out by the body 3/ are
reflected by the mirror upon the thermometer, and those which
the same body M sends to it directly. Thus the thermometer Hoes
not receive all the heat which it requires to preserve its original
temperature a. It gives out more heat than it receives. It is
inevitable then that its temperature must fall to the point at
which the rays which it receives suffice to compensate those which
it loses. This last effect is what is called the reflection of cold,
and which, properly speaking, consists in the reflection of too
feeble heat. The mirror intercepts a certain quantity of heat, and
replaces it by a less quantity.

-51. If in the enclosure, maintained at a constant temperature
@, a body 2/ be placed, whose temperature &’ is less than a, the
presence of this body will lower the thermometer exposed to its
rays, and we may remark that the rays sent to the thermometer
from the surface of the body J7, are in general of two kinds,
namely, those which come from inside the mass 2/, and those
which, coming from different parts of the enclosure, meet the sur-
face M and are reflected upon the thermometer. The latter rays
have the common temperature @, but those which belong to the
body M contain less heat, and these are the rays which cool the
thermometer. If now, by changing the state of the surface of the
bedy M, for example, by destroying the polish, we diminish the
power which it has of reflecting the incident rays, the thermo-
meter will fall still lower, and will assume a temperature a” less
than @. In fact all the conditions would be the same as in the
preceding case, if it were not that the body 2/ gives out a greater
quantity of its own rays and reflects a less quantity of the rays
which it receives from the enclosure; that is to say, these last rays,
which have the common temperature, are in part replaced by
cooler rays. Hence the thermometer no longer receives so much
heat as formerly.

If, independently of the change in the surface of the body 27,
we place a metal mirror adapted to reflect upon the thermometer
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the rays which have left 3/, the temperature will assume a value
@” less than @”. The mirror, in fact, intercepts from the thermo-
meter part of the rays of the enclosure which all have the tem-
perature @, and replaces them by three kinds of rays; namely,
1°, those which come from the interior of the mirror itself, and
which have the common temperature ; 2°, those which the different
parts of the enclosure send to the mirror with the same tempera-
ture, and which are reflected to the focus ; 3°, those which, coming
from the interior of the body 2 fall upon the mirror, and are
reflected upon the thermometer. The last rays have a tempera-
ture less than a; hence the thermometer no longer receives so
much heat as it received before the mirror was set up.

Lastly, if we proceed to change also the state of the surface of
the mirror, and by giving it a more perfect polish, increase its
power of reﬁectiﬁg heat, the thermometer will fall still lower. In
fact, all the conditions exist which occurred in the preceding case.
Only, it happens that the mirror gives out a less quantity of its
own rays, and replaces them by those which it reflects. Now,
amongst these last rays, all those which proceed from the interior
of the mass M are less intense than if they had come from the
interior of the metal mirror ; hence the thermometer receives still
less heat than formerly: it will assume therefore a temperature
a”” less than a”.

By the same principles all the known facts of the radiation of

heat or of cold are easily explained.

52. The effects of heat can by no means be compared with
those of an elastic fluid whose molecules are at rest.

It would be useless to attempt to deduce from this hypothesis
the laws of propagation which we have explained in this work,
and which all experience has confirmed. The free state of heat is
the same as that of light ; the active state of this element is then
entirely different from that of gaseous substances. Heat acts in
the same manner in a vacuum, in elastic fluids, and in liquid or
solid masses, it is propagated only by way of radiation, but its
sensible effects differ according to the nature of bodies.

53. Heat is the origin of all elasticity; it is the repulsive
force which preserves the form of solid masses, and the volume of
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liquids. In solid masses, neighbouring molecules would yield to
their mutual attraction, if its effect were not destroyed by the
heat which separates them.

This elastic force is greater according as the temperature is
higher ; which is the reason why bodies dilate or contract when
their temperature is raised or lowered.

54. The equilibrium which exists, in the interior of a solid
mass, between the repulsive force of heat and the molecular attrac-
tion, is stable ; that is to say, it re-establishes itself when disturbed
by an accidental cause. If the molecules are arranged at distances
proper for equilibrium, and if an external force begins to increase
this distance without any change of temperature, the effect of
attraction begins by surpassing that of heat, and brings back the
molecules to their original position, after a multitude of oscillations
which become less and less sensible. ]

A similar effect is exerted in the opposite sense when a me-
chanical cause diminishes the primitive distance of the molecules ;
such is the origin of the vibrations of sonorous or flexible bodies,
and of all the effects of their elasticity.

55. In the liquid or gaseous state of matter, the external
pressure is additional or supplementary to the molecular attrac-
tion, and, acting on the surface, does not oppose change of form,
but only change of the volume occupied. Analytical investigation
will best shew how the repulsive force of heat, opposed to the
attraction of the molecules or to the external pressure, assists in
the composition of bodies, solid or liquid, formed of one or more
elements, and determines the elastic properties of gaseous fluids;
but these researches do not belong to the object before us, and
appear in dynamic theories.

56. It cannot be doubted that the mode of action of heat
always consists, like that of light, in the reciprocal communication
of rays, and this explanation is at the present time adopted by
the majority of physicists; but it is not necessary to consider the
phenomena under this aspect in order to establish the theory of heat.
In the course of this work it will be seen how the laws of equili-
brium and propagation of radiant heat, in solid or liquid masses,
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can be rigorously demonstrated, independently of any physical
explanation, as the necessary consequences of common observations.

SECTION III.
Principle of the communication of heat.

57. We now proceed to examine what experiments teach us
concerning the communication of heat.

If two equal molecules are formed of the same substance and
have the same temperature, each of them receives from the other
as much heat as it gives up to it ; their mutual action may then be
regarded as null, since the result of this action can bring about no
change in the state of the molecules. If, on the contrary, the first
is hotter than the second, it sends to it more heat than it receives
from it ; the result of the mutual action is the difference of these
two quantities of heat. In all cases we make abstraction of
the two equal quantities of heat which any two material points
reciprocally give up; we conceive that the point most heated
acts only on the other, and that, in virtue of this action, the first
loses a certain quantity of heat which is acquired by the second.
Thus the action of two molecules, or the quantity of heat which
the hottest communicates to the other, is the difference of the two
-quantities which they give up to each other.

58. Suppose that we place in air a solid homogeneous body,
whose different points have unequal actual temperatures; each of
the molecules of which the body is composed will begin to receive
heat from those which are at extremely small distances, or will
communicate it to them. This action exerted during the same
instant between all points of the mass, will produce an infinitesi-
mal resultant change in all the temperatures: the solid will ex-
perience at each instant similar effects, so that the variations of
temperature will become more and more sensible.

Consider only the system of two molecules, 1 and n, equal and
extremely near, and let us ascertain what quantity of heat the
first can receive from the second during one instant: we may
then apply the same reasoning to all the other points which are
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near enough to the point m, to act directly on it during the first
instant.

The quantity of heat communicated by the point n to the
point m depends on the duration of the instant, on the very small
distance between these points, on the actual temperature of each
point, and on the nature of the solid substance ; that is to say, if
one of these elements happened to vary, all the other remaining
the same, the quantity of heat transmitted would vary also. Now
experiments have disclosed, in this respect, a general result: it
consists in this, that all the other circumstances being the same,
the quantity of heat which one of the molecules receives from the
other is proportional to the difference of temperature of the two
molecules. Thus the quantity would be double, triple, quadruple, if
everything else remaining the same, the difference of the tempera-
ture of the point n from that of the point m became double, triple,
or quadruple. To account for this result, we must consider that the
action of n onm is always just as much greater as there is a greater
difference between the temperatures of the two points: it is null,
if the temperatures are equal, but if the molecule » contains more
heat than the equal molecule m, that is to say, if the temperature
of m being v, that of n is v+ A, a portion, of the exceeding heat
will pass from n to m. Now, if the excess of heat were double, or,
which is the same thing, if the temperature of n were v + 24, the
exceeding heat would be composed of two equal parts correspond-
ing to the two halves of the whole difference of temperature 24 ;
each of these parts would have its proper effect as if it alone
existed : thus the quantity of heat communicated by » to m would
be twice as great as when the difference of temperature is only A.
This simultaneous action of the different parts of the exceeding
heat is that which constitutes the principle of the communication
of heat. It follows from it that the sum of the partial actions, or
the total quantity of heat which m receives from = is proportional
to the difference of the two temperatures.

59. Denoting by v and o the temperatures of two equal mole-
cules m and n, by p, their extremely small distance, and by d¢, the
infinitely small duration of the instant, the quantity of heat which
m receives from n during this instant will be expressed by
(v —v) ¢ (p).dt. We denote by ¢ (p) a certain function of the
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distance p which, in solid bodies and in liquids, becomes nothing
when p has a sensible magnitude. The function is the same for
every point of the same given substance ; it varies with the nature
of the substance.

60. The quantity of heat which bodies lose through their sur-
face is subject to the same principle. If we denote by o the area,
finite or infinitely small, of the surface, all of whose points have
the temperature v, and if @ represents the temperature of the
atmospheric air, the coefficient 2 being the measure of the ex-
ternal conducibility, we shall have ¢k (v — a) d¢ as the expression
for the quantity of heat which this surface o transmits to the air
during the instant dt.

‘When the two molecules, one of which transmits to the other
a certain quantity of heat, belong to the same solid, the exact
expression for the heat communicated is that which we have
given in the preceding article; and since the molecules are
extremely near, the difference of the temperatures is extremely
small. It is not the same when heat passes from a solid body into
a gaseous medium. But the experiments teach us that if the
difference is a quantity sufficiently small, the heat transmitted is
sensibly proportional to that difference, and that the number %
may, in these first researches’, be considered as having a constant
value, proper to each state of the surface, but independent of the
temperature.

61. These propositions relative to the quantity of heat com-
municated have been derived from different observations. We
see first, as an evident consequence of the expressions in question,
that if we increased by a common quantity all the initial tempe-
ratures of the solid mass, and that of the medium in which it is
placed, the successive changes of temperature would be exactly
the same as if this increase had not been made. Now this result
is sensibly in accordance with experiment; it has been admitted
by the physicists who first have observed the effects of heat.

1 More exact laws of cooling investigated experimentally by Dulong and Petit
will be found in the Journal de UEcole Polytechnique, Tome xI1. pp. 234—294,
Paris, 1820, or in Jamin, Cours de Physique, Legon 47. [A.F.]
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62. If the medium is maintained at a constant temperature,
and if the heated body which is placed in that medium has
dimensions sufficiently small for the temperature, whilst falling
more and more, to remain sensibly the same at all points of the
body, it follows from the same propositions, that a quantity of heat
will escape at each instant through the surface of the body pro-
portional to the excess of its actual temperature over that of the
medium. Whence it is easy to conclude, as will be seen in the
course of this work, that the line whose abscissee represent the
times elapsed, and whose ordinates represent the temperatures
corresponding to those times, is a logarithmic curve: now, ob-
servations also furnish the same result, when the excess of the
temperature of the solid over that of the-medium is a sufficiently
small quantity.

63. Suppose the medium to be maintained at the constant
temperature 0, and that the initial temperatures of different
points a, b, ¢, d &c. of the same mass are a, B3, v, 8 &c., that at the
end of the first instant they have become o), 8, «/, & &c., that at
the end of the second instant they have become «”, 87, 4", 8" &e.,
and so on. We may easily conclude from the propositions enun-
ciated, that if the initial temperatures of the same points had
been gz, gB, gv, 98 &c. (g being any number whatever), they
would have become, at the end of the first instant, by virtue of
the action of the different points, g2, g/, g7, 98 &c., and at the
end of the second instant, ga”, g8, gv”, ¢8" &c., and so on. For
instance, let us compare the case when the initial temperatures
of the points, a, b, ¢, d &c. were a, B, v, § &c. with that in which
they are 2a, 283, 2v, 28 &c., the medium preserving in both cases
the temperature 0. In the second hypothesis, the difference of
the temperatures of any two points whatever is double what it
was 1n the first, and the excess of the temperature of each point,
over that of each molecule of the medium, is also double; con-
sequently the quantity of heat which any molecule whatever
sends to any other, or that which it receives, is, in the second
hypothesis, double of that which it was in the first. The change
of temperature which each point suffers being proportional to the
quantity of heat acquired, it follows that, in the second case, this
change is double what it was in the first case. Now we have
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supposed that the initial temperature of the first point, which was
a, became o' at the end of the first instant; hence if this initial
temperature had been 22, and if all the other temperatures had
been doubled, it would have become 24’. The same would be the
case with all the other molecules 4, ¢, d, and a similar result
would be derived, if the ratio instead of being 2, were any number
whatever g. It follows then, from the principle of the communica-
tion of heat, that if we increase or diminish in any given ratio
all the initial temperatures, we increase or diminish in the same
ratio all the successive temperatures.

This, like the two preceding results, is confirmed by observa-
tion. It could not have existed if the quantity of heat which
passes from one molecule to another had not been, actually, pro-
portional to the difference of the temperatures.

64. Observations have been made with accurate instruments,
on the permanent temperatures at different points of a bar or of a
metallic ring, and on the propagation of heat in the same bodies
and in several other solids of the form of sphéres or cubes. The
results of these experiments agree with those which are derived
from the preceding propositions. They would be entirely differ-
ent if the quantity of heat transmitted from one solid molecule to
another, or to a molecule of air, were not proportional to the
excess of temperature. It is necessary first to know all the
rigorous consequences of this proposition; by it we determine the
chief part of the quantities which are the object of the problem.
By comparing then the caleculated values with those given by
numerous and very exact experiments, we can easily measure the
variations of the coefficients, and perfect our first researches.

SECTION 1IV.
On the uniform and linear movement of heat.

65. We shall consider, in the first place, the uniform move-
ment of heat in the simplest case, which is that of an infinite
solid enclosed between two parallel planes.

We suppose a solid body formed of some homogeneous sub-
stance to be enclosed between two parallel and infinite planes;
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the lower plane A4 is maintained, by any cause whatever, at a
constant temperature a; we may imagine for example that the
mass is prolonged, and that the plane 4 is a section common to
the solid and to the enclosed mass, and is heated at all its points
by a constant source of heat; the upper plane B is also main-
tained by a similar cause at a fixed temperature b, whose value is
less than that of @ ; the problem is to determine what would be
the result of this hypothesus if it were continued for an infinite
time,

If we suppose the initial temperature of all parts of this body
to be b, it is evident that the heat which leaves the source 4 will
be propagated farther and farther and will raise the temperature
of the molecules included between the two planes: but the tem-
perature of the upper plane being unable, according to hypothesis .
to rise above b, the heat will be dispersed within the cooler mass,
contact with which keeps the plane B at the constant temperature
b. The system of temperatures will tend more and more to a
final state, which it will never attain, but which would have the
property, as we shall proceed to shew, of existing and keeping
itself up without any change if it were once formed.

In the final and fixed state, which we are considering, the per-
manent temperature of a point of the solid is evidently the same
at all points of the same section parallel to the base; and we
shall prove that this fixed temperature, common to all the points
of an intermediate section, decreases in arithmetic progression
from the base to the upper plane, that is to say, if we represent
the constant temperatures @ and b by the ordinates 4« and BB

B B

Fa
59

A

b+

&

Fig, 1.
(see Fig. 1), raised perpendicularly to the distance A B between the

two planes, the fixed temperatures of the intermediate layers will
be represented by the ordinates of the straight line a8 which
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joins the extremities « and 3; thus, denoting by z the height of
an intermediate section or its perpendicular distance from the
plane 4, by e the whole height or distance 4B, and by v the
temperature of the section whose height is 2, we must have the

‘ b—a
equation v =qa +

z.

In fact, if the temperatures were at first established in accord-
ance with this law, and if the extreme surfaces 4 and B were
always kept at the temperatures ¢ and b, no change would
happen in the state of the solid. To convince ourselves of this,
it will be sufficient to compare the quantity of heat which would
traverse an intermediate section A’ with that which, during the
same time, would traverse another section B’

Bearing in mind that the final state of the solid is formed
and continues, we see that the part of the mass which is below
the plane 4’ must communicate heat to the part which is above
that plane, since this second part is cooler than the first.

Imagine two points of the solid, m and m/, very near to each
other, and placed in any manner whatever, the one m below the
plane A4’, and the other m’ above this plane, to be exerting their
action during an infinitely small instant: m the hottest point
will communicate to m’ a certain quantity of heat which will
cross the plane A'. Let =, 7, 2z be the rectangular coordinates
of the point m, and @', 3/, 2’ the coordinates of the point m’:
consider also two other points n» and =’ very near to each other,
and situated with respect to the plane B, in the same manner
in which m and m’ are placed with respect to the plane 4": that
is to say, denoting by ¢ the perpendicular distance of the two
sections A" and B, the coordinates of the point n will be =, ¥, 2+ ¢
and those of the point #', ', ¥/, &'+ §; the two distances mm’
and nn’ will be equal: further, the difference of the temperature
v of the point m above the temperature v of the point m’ will
be the same as the difference of temperature of the two points
n and #'. In fact the former difference will be determined by
substituting first z and then 2 in the general equation

b—a
'v=a+—e— 2,

and subtracting the second equation from the first, whence the
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result v—1o = b ; % (z—%). We shall then find, by the sub-

stitution of z+¢ and 2/ 4 ¢ that the excess of temperature of
the point n over that of the point »’ is also expressed by

b—a ;
3 (z—2".

It follows from this that the quantity of heat sent by the
point m to the point m’ will be the same as the quantity of heat
sent by the point = to the point «’, for all the elements which
concur in determining this quantity of transmitted heat are the
same. '

It is manifest that we can apply the same reasoning to every
system of two molecules which communicate heat to each other
across the section A’ or the section B’; whence, if we could
sum up the whole quantity of heat which flows, during the same
instant, across the section 4’ or the section B’, we should find
this quantity to be the same for both sections.

From this it follows that the part of the solid included be-
tween 4’ and B’ receives always as much heat as it loses, and
since this result is applicable to any portion whatever of the
mass included between two parallel sections, it is evident that
no part of the solid can acquire a temperature higher than that
which it has at present. Thus, it has been rigorously demon-
strated that the state of the prism will continue to exist just as it
was at first.

Hence, the permanent temperatures of different sections of a
solid enclosed between two parallel infinite planes, are represented
by the ordinates of a straight line «8, and satisfy the linear

b—a

equation v =a + 2.
66. By what precedes we see distinctly what constitutes
the propagation of heat in a solid enclosed between two parallel
and infinite planes, each of which is maintained at a constant
temperature. Heat penetrates the mass gradually across the
lower plane: the temperatures of the intermediate sections are
raised, but can never exceed nor even quite attain a certain
limit which they approach nearer and nearer: this limit or final
temperature is different for different intermediate layers, and
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decreases in arithmetic progression from the fixed temperature
of the lower plane to the fixed temperature of the upper plane.

The final temperatures are those which would have to be
given to the solid in order that its state might be permanent;
the variable state which precedes it may also be submitted to
analysis, as we shall see presently: but we are now considering
only the system of final and permanent temperatures. In the
last state, during each division of time, across a section parallel
to the base, or a definite portion of that section, a certain
quantity of heat flows, which is constant if the divisions of time
are equal. This uniform flow is the same for all the intermediate
sections ; it is equal to that which proceeds from the source, and
to that which is lost during the same time, at the upper surface
of the solid, by virtue of the cause which keeps the temperature
constant.

67. The problem now is to measure that quantity of heat
which is propagated uniformly within the solid, during a given
time, across a definite part of a section parallel to the base: it
depends, as we shall see, on the two extreme temperatures a
and b, and on the distance e between the two sides of the solid ;
it would vary if any one of these elements began to change, the
other remaining the same. Suppose a second solid to be formed
of the same substance as the first, and enclosed between two

b’
b
El o Ax /.
T
@ @

Fig. 2.

infinite parallel planes, whose perpendicular distance is ¢ (see
fig. 2): the lower side is maintained at a fixed temperature a/,
and the upper side at the fixed temperature &’ ; both solids are
considered to be in that final and permanent state which has
the property of maintaining itself as soon as it has been formed.

B, H. 4
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Thus the law of the temperatures is expressed for the first body
2z, and for the second, by the equa-

by the equation v =qa+ b; -

’

tion u=a + b > - 2, v in the first solid, and « in the second, being

the temperature of the section whose height is 2.

This arranged, we will compare the quantity of heat which,
during the unit of time traverses a unit of area taken on an
intermediate section L of the first solid, with that which during
the same time traverses an equal area taken on the section I’
of the second, e being the height common to the two sections,
that is to say, the distance of each of them from their own
base. We shall consider two very near points n and »' in the
first body, one of which n is below the plane L and the other
n’ above this plane : #, y, z are the co-ordinates of n: and &, ¥/, 2’
the co-ordinates of 7, e being less than 2/, and greater than z.

We shall consider also in the second- solid the instantaneous
action of two points p and p’, which are situated, with respect
to the section L/, in the same manner as the points n and »’ with
respect to the section L of the first solid. Thus the same co-
ordinates @, 3, 2, and &/, 3/, 2’ referred to three rectangular axes
in the second body, will fix also the position of the points p
and p's

Now, the distance from the point » to the point »’ is equal
to the distance from the point p to the point p’, and since the
two bodies are formed of the same substance, we conclude, ac-
cording to the principle of the communication of heat, that the
action of n on #/, or the quantity of heat given by n to #/, and
the action of p on p', are to each other in the same ratio as the
differences of the temperature v —v" and u — /.

Substituting » and then o in the equation which belongs to

the first solid, and subtracting, we find v—1o'= a'(z -2); we

e
have also by means of the second equation u—u' = {;—_;.’i (z— 2,

whence the ratio of the two actions in question is that of “_:Z’ to

al_bl
’

e
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We may now imagine many other systems of two molecules,
the first of which sends to the second across the plane L, a certain
quantity of heat, and each of these systems, chosen in the first
solid, may be compared with a homologous system situated in the
second, and whose action is exerted across the section L' we
can then apply again the previous reasoning to prove that the

a—-b  d-=V

ratio of the two actions is always that of to 7

Now, the whole quantity of heat which, during one instant,
crosses the section Z, results from the simultaneous action of a
multitude of systems each of which is formed of two points ;
hence this quantity of heat and that which, in the second solid,
crosses during the same instant the section I/, are also to each

other in the ratio of a._;_b b e—,b

It is easy then to compare with each other the intensities of
the constant flows of heat which are propagated uniformly in the
two solids, that is to say, the quantities of heat which, during
unit of time, cross unit of surface of each of these bodies. The

: - M ; —b
ratio of these intensities is that of the two quotients a,_e_ and

= —,b . If the two quotients are equal, the flows are the same,

whatever in other respects the values a, b, ¢, o', ¥, €, may be;
in general, denoting the first flow by ¥ and the second byl B
F a-b od-0

we shall have ey + 7

68. Suppose that in the second solid, the permanent tempera-
ture @’ of the lower plane is that of boiling water, 1; that the
temperature ¢ of the upper plane is that of melting ice, 0; that
the distance ¢ of the two planes is the unit of measure (a
metre); let us denote by K the constant flow of heat which,
during unit of time (a minute) would cross unit of surface in
this last solid, if it were formed oﬁ_g-giw{gg 7su3st‘gp_ce; K ex-
pressing a certain number of units of heat, that is to say'a certain
number of times the heat necessary to convert a kilogramme
of ice into water: we shall have, in general, to determine the

4—2
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constant flow ¥, in a solid formed of the same substance, the
equation % e or F=K%=° b .

The value of F denotes the quantity of heat which, during
the unit of time, passes across a unit of area of the surface taken
on a section parallel to the base.

Thus the thermometric state of a solid enclosed between two
parallel infinite plane sides whose perpendicular distance is e,
and which are maintained at fixed temperatures a and b, i
represented by the two equations:

a—b dv

v=a+b_az, and F'=K or F= K-

The first of these equations expresses the law according to
which the temperatures decrease from the lower side to the
opposite side, the second indicates the quantity of heat which,
during a given time, crosses a definite part of a section parallel
to the base.

69. We have taken this coefficient K, which enters into
the second equation, to be the measure of the specific conduci-
bility of each substance; this number has very different walues
for different bodies.

It represents, in general, the quantity of heat which, in a
homogeneous solid formed of a given substance and enclosed
| between two infinite parallel planes, flows, during one minute,
| across a surface of one square metre taken on a section parallel
.~ to the extreme planes, supposing that these two planes are main-
tained, one at the temperature of boiling water, the other at
the temperature of melting ice, and that all the intermediate
planes have acquired and retain a permanent temperature.

We might employ another definition of conducibility, since
we could estimate the capacity for heat by referring it to unit
of volume, instead of referring it to unit of mass. All these
definitions are equally good provided they are clear and pre-
cise.

We shall shew presently how to determine by observation the

value K of the conducibility or conductibility in different sub-
stances.
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70. In order to establish the equations which we have
cited in Article 68, it would not- be necessary to suppose the
points which exert their action across the planes to be at ex-
tremely small distances.

The results would still be the same if the distances of these
points had any magnitude whatever ; they would therefore apply
also to the case where the direct action of heat extended within
the interior of the mass to very considerable distances, all the
circumstances which constitute the hypothesis remaining in other
respects the same.,

We need only suppose that the cause which maintains the
temperatures at the surface of the solid, affects not only that
part of the mass which is extremely near to the surface, but that
a-b

e
will still represent in this case the permanent temperatures of
the solid. The true sense of this proposition is that, if we give
to all points of the mass the temperatures expressed by the
equation, and if besides any cause whatever, acting on the two
extreme lamine, retained always every onme of their molecules
at the temperature which the same equation assigns to them,
the interior points of the solid would preserve without any change
their initial state.

It we supposed that the action of a point of the mass could
extend to a finite distance ¢, it would be necessary that the
thickness of the extreme laminw, whose state is maintained by
the external cause, should be at least equal to e. But the
quantity e having in fact, in the natural state of solids, only
an inappreciable value, we may make abstraction of this thick-
ness; and it is sufficient for the external cause to act on each
of the two layers, extremely thin, which bound the solid. This
is always what must be understood by the expression, {o maintain
the temperature of the surface constant.

its action extends to a finite depth. The equation v =q — z

71. We proceed further to examine the case in which the
same solid would be exposed, at one of its faces, to atmospheric
air maintained at a constant temperature.

Suppose then that the lower plane preserves the fixed tem-
perature a, by virtue of any external cause whatever, and that
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the upper plane, instead of being maintained as formerly at a
less temperature b, is exposed to atmospheric .air maintained
at that temperature b, the perpendicular distance of the two
planes being denoted always by e: the problem is to determine
the final temperatures.

Assuming that in the initial state of the solid, the common
temperature of its molecules is b or less than b, we can readily
imagine that the heat which proceeds incessantly from the source
A penetrates the mass, and raises more and more the tempera-
tures of the intermediate sections; the upper surface is gradually
heated, and permits part of the heat which has penetrated the
solid to escape into the air. The system of temperatures con-
tinually approaches a final state which would exist of itself if
it were once formed; in this final state, which is that which
we are considering, the temperature of the plane B has a fixed
but unknown value, which we will denote by 3, and since the
lower plane A preserves also a permanent temperature a, the
system of temperatures is represented by the general equation

v=a-+

az, v denoting always the fixed temperature of the

section whose height is z. The quantity of heat which flows
during unit of time across a unit of surface taken on any section

whatever is kav;—@ , & denoting the interior conducibility.

We must now consider that the upper surface B, whose
temperature is B, permits the escape into the air of a certain
quantity of heat which must be exactly equal to that which
crosses any section whatever L of the solid. If it were not so,
the part of the mass included between this section I and the
plane B would not receive a quantity of heat equal to that
which it loses; hence it would not maintain its state, which is
contrary to hypothesis ; the constant flow at the surface is there-
fore equal to that which traverses the solid: now, the quantity
of heat which escapes, during unit of time, from unit of surface
taken on the plane B, is expressed by & (8—05), b being the

|. fixed temperature of the air, and & the measure of the conduci-
{ bility of the surface B; we must therefore have the equation

Ka:B =h (B -1), which will determine the value of 3.
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he (a — b)
he +k
whose second member is known ; for the temperatures @ and b

are given, as are also the quantities A, %, e.
Introducing this value of a—f into the general equation

From this may be derived ¢ ~8= , an equation

v=a+ B e_a'z, we shall have, to express the temperatures of any
: . : hz(a—10) . :
t f th h — gl
section of the solid, the equation a—wv he i 0 B which

known quantities only enter with the corresponding variables »
and 2. :

72. So far we have determined the final and permanent state
of the temperatures in a solid enclosed between two infinite and
parallel plane surfaces, maintained at unequal temperatures.
This first case is, properly speaking, the case of the linear and
uniform propagation of heat, for there is no transfer of heat in
the plane parallel to the sides of the solid; that which traverses
the solid flows uniformly, since the value of the flow is the same
for all instants and for all sections.

We will now restate the three chief propositions which result
from the examination of this problem; they are susceptible of a
great number of applications, and form the first elements of our
theory.

1st. If at the two extremities of the thickness e of the solid
we erect perpendiculars to represent the temperatures @ and 5
of the two sides, and if we draw the straight line which joins
the extremities of these two first ordinates, all the intermediate
temperatures will be proportional to the ordinates of this straight
line; they are expressed by the general equation @ — v=a—e_—bz,

v denoting the temperature of the section whose height is z.

2nd. The quantity of heat which flows uniformly, during
unit of time, across unit of surface taken on any section whatever
parallel to the sides, all other things being equal, is directly
proportional to the difference a—b of the extreme temperatures,
and inversely proportional to the distance e which separates

these sides. The quantity of heat is expressed by K a%lz, or
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- K %, if we derive from the general equation the value of

%Z which is constant; this umiform flow may always be repre-
sented, for a given substance and in the solid under examination,
by the tangent of the angle included between the perpendicular
e and the straight line whose ordinates represent the tempera-
tures.

3rd. One of the extreme surfaces of the solid being submitted
always to the temperature q, if the other plane is exposed to air
maintained at a fixed temperature 4; the plane in contact with
the air acquires, as in the preceding case, a fixed temperature 3,
greater than 3, and it permits a quantity of heat to escape into
the air across unit of surface, during unit of time, which is ex-
pressed by h(8—1b), h denoting the external conducibility of
the plane.

The same flow of heat A(8—0) is equal to that which
traverses the prism and whose value is K (a —8); we have there-

fore the equation & (8 — b) =K%=
of B.

B, which gives the value

SECTION YV,

Law of the permanent temperatures in a pmsm of small
thickness.

73. We shall easily apply the principles which have just
been explained to the following problem, very simple in itself,
but one whose solution it is important to base on exact theory.

A metal bar, whose form is that of a rectangular parallelo-
piped infinite in length, is exposed to the action of a source of
heat which produces a constant temperature at all points of its
extremity 4. It is required to determine the fixed temperatures
at the different sections of the bar.

The section perpendicular to the axis is supposed to be a
square whose side 2{ is so small that we may without sensible
error consider the temperatures to be equal at different points
of the same section. The air in which the bar is placed is main-
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tained at a constant temperature 0, and carried away by a
current with uniform velocity.

Within the interior of the solid, heat will pass successively
all the parts situate to the right of the source, and not exposed
directly to its action; they wﬂl be heated more and more, but
the temperature of each point will not increase beyond a certain
limit. This maximum teraperature is not the same for every
section ; it in general decreases as the distance of the section
from the origin increases: we shall denote by v the fixed tem-
perature of a section perpendicular to the axis, and situate at a
distance x from the origin 4. —

Before every point of the solid has attained its highest degree
of heat, the system of temperatures varies continually, and ap-
proaches more and more to a fixed state, which is that which
we consider. This final state is kept up of itself when it has
once been formed. In order that the system of temperatures
may be permanent, it is necessary that the quantity of heat
which, during unit of time, crosses a section made at a distance z
from the origin, should balance exactly all the heat which, during
the same time, escapes through that part of the external surface
of the prism which is situated to the right of the same section.
The lamina whose thickness is dir, and whose external surface
is 8ldx, allows the escape into the air, during unit of time, of
a quantity of heat expressed by 8Alv. dx, k being the measure of
the external conducibility of the prism. Hence taking the in-
tegral [8hlv.dx from x =0 to = o, we shall find the quantity
of heat which escapes from the whole surface of the bar during
unit of time; and if we take the same integral from 2 =0 to
x =, we shall have the quantity of heat lost through the part
of the surface included between the source of heat and the section
made at the distance z. Denoting the first integral by €, whose
value is constant, and the variable value of the second by
{8hlv.dx; the difference C— f8hlv.dxz will express the whole
quantity of heat which escapes into the air across the part of
the surface situate to the right of the section. On the other
hand, the lamina of the solid, enclosed between two sections
infinitely near at distances « and z +dz, must resemble an in-
finite solid, bounded by two parallel planes, subject to fixed
temperatures v and v+ dv, since, by hypothesis, the temperature

o £¢
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does not vary throughout the whole extent of the same section.
The thickness of the solid is da, and the area of the section is
40’: hence the quantity of heat which flows uniformly, during
unit of time, across a section of this solid, is, according to the

preceding principles, — élzfx\g—%, k being the specific internal con-

ducibility : we must therefore have the equation
¢ — 47 E = O~ [8hiv. dx,

TREEA 8. S
whence ™ {1} | Kl EF,-QkL

74. We should obtain the same result by considering the
equilibrium of heat in a single lamina infinitely thin, enclosed
between two sections at distances x and x+dx. In fact, the
quantity of heat which, during unit of time, crosses the first

section situate at distance z, is —4l27c\jv . To find that which

flows during the same time across the successive section situate
at distance x+ dx, we must in the preceding expression change

into «+ dx, which gives —40'k. [ 5 +d( ):I . If we subtract

the second expression from the first we shall find how much
heat is acquired by the lamina bounded by these two sections
during unit of time; and since the state of the lamina is per-
manent, it follows that all the heat acquired is dispersed into
the air across the external surface 8ldx of the same lamina: now
the last quantity of heat is 8hlvdz: we shall obtain therefore the
same equation
L d*v 2k
8hivdzx = 4U’kd ( ) , whence 2=

75. In whatever manner this equation is formed, it is
necessary to remark that the quantity of heat which passes into
the lamina whose thickness is d, has a finite value, and that

dv

its exact expression is — 4%k do" The lamina being enclosed

between two surfaces the ﬁrst of which has a temperature v,
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and the second a lower temperature v/, we see that the quantity
of heat which it receives through the first surface depends on
the difference v —', and is proportional to it : but this remark
is not sufficient to complete the calculation. The quantity in
question is not a differential : it has a finite value, since it is
equivalent to all the heat which escapes through that part of
the external surface of the prism which is situate to the right
of the section. To form an exact idea of it, we must compare
the lamina whose thickness is dr, with a solid terminated by
two parallel planes whose distance is e, and which are maintained
at unequal temperatures @ and b. The quantity of heat which
passes into such a prism across the hottest surface, is in fact
proportional to the difference a—3 of the extreme temperatures,
but it does not depend only on this difference: all other things
being equal, it is less when the prism is thicker, and in general

it is proportional to a_;{)' This is why the quantity of heat

which passes through the first surface into the lamina, whose
¥ v—v
dx

We lay stress on this remark because the neglect of it has
been the first obstacle to the establishment of the theory. If
we did not make a complete analysis of the elements of the
problem, we should obtain an equation not homogeneous, and,
a fortiori, we should not be able to form the equations which
express the movement of heat in more complex cases.

It was necessary also to introduce into the calculation the
dimensions of the prism, in order that we might not regard, as
general, consequences which observation had furnished in a par-
ticular case. Thus, it was discovered by experiment that a bar
of iron, heated at one extremity, could not acquire, at a distance
of six feet from the source, a temperature of one degree (octo-
gesimal’) ; for to produce this effect, it would be necessary for
the heat of the source to surpass considerably the point of fusion
of iron; but this result depends on the thickness of the prism
employed. If it had been greater, the heat would have been
propagated to a greater distance, that is to say, the point of
the bar which acquires a fixed temperature of one degree is

thickness is dw, is proportional to

1 Reaumur's Scale of Temperature. [A. F.]
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much more remote from the source when the bar is thicker, all
other conditions remaining the same. We can always raise by
one degree the temperature of one end of a bar of iron, by heating
the solid at the other end ; we need only give the radius of the
base a sufficient length: which is, we may say, evident, and
of which besides a proof will be found in the solution of the
problem (Art. 78).

76. The integral of the preceding equation is

ah J2

v=-Ade N u4 Bet™Nu,
A and B being two arbitrary constants; now, if we suppose the
distance « infinite, the value of the temperature v must be

tegral : thus the equation v= Ae™ :? represents the permanent
state of the solid ; the temperature at the origin is denoted by
the constant A, since that is the value of » when « is zero.

This law according to which the temperatures decrease
is the same as that given by experiment ; several physicists
have observed the fixed temperatures at different points of a
metal bar exposed at its extremity to the constant action of a
source of heat, and they have ascertained that the distances
from the origin represent logarithms, and the temperatures the
corresponding numbers.

infinitely small; hence the term Be does not exist in the in-

77. The numerical value of the constant quotient of two con-
secutive temperatures being determined by observation, we easily

deduce the value of the ratio z, for, denoting by v,, v, the tem-

peratures corresponding to the distances «,, #,, we have

2%
v TV AN b 2h  logw, —logw
=a I“'/“, whence «/f=_—° 1 2 2 I

2 &, —x,

I

(]

As for the separate values of % and k, they cannot be deter-
mined by experiments of this kind: we must observe also the
varying motion of heat.

78. Suppose two bars of the same material and different
dimensions to be submitted at their extremities to the same tem-
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perature 4 ; let I, be the side of a section in the first bar, and I,
in the second, we shall have, to express the temperatures of these
two solids, the equations

oh

v,=Ade “/”1 and v,= de N,

v,, in the first solid, denoting the temperature of a section made
at distance z,, and v,, in the second solid, the temperature of a
section made at distance x,.

When these two bars have arrived at a fixed state, the tem-
perature of a section of the first, at a certain distance from the
source, will not be equal to the temperature of a section of the
second at the same distance from the focus; in order that the
fixed temperatures may be equal, the distances must be different.
If we wish to compare with each other the distances z, and z,
from the origin up to the points which in the two bars attain
the same temperature, we must equate the second members of

sEAe )
these equations, and from them we conclude that w—‘ﬁ =] Thus

“

ek

the distances in question are to each other as the square roots of
the thicknesses.

79. If two metal bars of equal dimensions, but formed of
different substances, are covered with the same coating, which
gives them the same external conducibility’, and if they are
submitted at their extremities to the same temperature, heat will
be propagated most easily and to the greatest distance from the
origin in that which has the greatest conducibility. To compare
with each other the distances x, and x, from the common origin
up to the points which acquire the same fixed temperature, we
must, after denoting the respective conducibilities of the two
substances by k, and £,, write the equation

n‘/"ll—e . "f , whence 5;:%
2 2

Thus the ratio of the two conducibilities is that of the squares
of the distances from the common origin to the points thch
attain the same fixed temperature.

1 Ingenhousz (1789), Sur les métaux comme conducteurs de la chaleur. Journal
. de Physique, xxxIV., 68, 380. Gren’s Journal der Physik, Bd. 1. [A. F.]
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80. It is easy to ascertain how much heat flows during unit
of time through a section of the bar arrived at its fixed state:

o
this quantity is expressed by — ‘ﬂcl"’%, or 44./2khP. e_x“/%l , and

if we take its value at the origin, we shall have 44,/2khl° as the
measure of the quantity of heat which passes from the source
into the solid during unit of time; thus the expenditure of the
source of heat is, all other things bemcr equal, proportional to the
square root of the cube of the thmkness

We should obtain the same result on taking the integral
J8hlv . dx from x nothing to x infinite.

SECTION VL

On the heating of closed spaces.

81. We shall again make use of the theorems of Article 72
in the following problem, whose solution offers useful applications ;
it consists in determining the extent of the heating of closed
spaces.

Imagine a closed space, of any form whatever, to be filled with
atmospheric air and closed on all sides, and that all parts of the
boundary are homogeneous and have a common thickness ¢, so
small that the ratio of the external surface to the internal surface
differs little from unity. The space which this boundary termi-
nates is heated by a source whose action is constant ; for example,
by means of a surface whose area is o maintained at a constant
temperature a.

We consider here only the mean temperature of the air con-
tained in the space, without regard to the unequal distribution of
heat in this mass of air; thus we suppose that the existing causes
incessantly mingle all the portions of air, and make their tem-
peratures uniform.

We see first that the heat which continually leaves the source
spreads itself in the surrounding air and penetrates the mass of
which the boundary is formed, is partly dispersed at the surface,
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and passes into the external air, which we suppose to be main-
tained at a lower and permanent temperature . The inner air is
heated more and more: the same is the case with the solid
boundary : the system of temperatures steadily approaches a final
state which is the object of the problem, and has the property of
existing by itself and of being kept up unchanged, provided the
surface of the source ¢ be maintained at the temperature a, and
the external air at the temperature .

In the permanent state which we wish to determine the air
preserves a fixed temperature m; the temperature of the inner
surface s of the solid boundary has also a fixed value a; lastly, the
outer surface s, which terminates the enclosure, preserves a fixed
temperature b less than a, but greater than n. The quantities
g, a, 5, e and n are known, and the quantities m, @ and b are
unknown.

The degree of heating consists in the excess of the temperature
m over n, the temperature of the external air; this excess evi-
dently depends on the area o of the heating surface and on its
temperature a; it depends also on the thickness ¢ of the en-
closure, on the area s of the surface which bounds it, on the
facility with which heat penetrates the inner surface or that
which is opposite to it; finally, on the specific conducibility of
the solid mass which forms the enclosure : for if any one of these
elements were to be changed, the others remaining the same, the
degree of the heating would vary also. The problem is to deter-
mine how all these quantities enter into the value of m —n.

82. The solid boundary is terminated by two equal surfaces,
each of which is maintained at a fixed temperature; every
prismatic element of the solid enclosed between two opposite por-
tions of these surfaces, and the normals raised round the contour
of the bases, is therefore in the same state as if it belonged to an
infinite solid enclosed between two parallel planes, maintained at
unequal temperatures. All the prismatic elements which com-
pose the boundary touch along their whole length. The points
of the mass which are equidistant from the inner surface have
equal temperatures, to whatever prism they belong ; consequently
there cannot be any transfer of heat in the direction perpendicular
to the length of these prisms. The case is, therefore, the same
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as that of which we have already treated, and we must apply
to it the linear equations which have been stated in former
articles.

83. Thus in the permanent state which we are considering,
the flow of heat which leaves the surface o during a unit of time,
is equal to that which, during the same time, passes from the
surrounding air into the inner surface of the enclosure; it is
equal also to that which, in a unit of time, crosses an inter-
mediate section made within the solid enclosure by a surface
equal and parallel to those which bound this enclosure; lastly,
the same flow is again equal to that which passes from the solid
enclosure across its external surface, and is dispersed into the air,
If these four quantities of flow of heat were not equal, some
variation would necessarily occur in the state of the temperatures,
which is contrary to the hypothesis.

The first quantity is expressed by o (a—m)g, denoting by
g the external conducibility of the surface ¢, which belongs to
the source of heat.

The second is s (m —a)#h, the coefficient » being the measure
of the external conducibility of the surface s, which is exposed
to the action of the source of heat.

The third is s ; g
the conducibility proper to the homogeneous substance which
forms the boundary.

The fourth is s(b—n)I, denoting by H the external con-
ducibility of the surface s, which the heat quits to be dispersed
into the air. The coefficients A and /I may have very unequal
values on account of the difference of the state of the two surfaces
which bound the enclosure ; they are supposed to be known, as
also the coefficient K : we shall have then, to determine the three
unknown quantities m, @ and b, the three equations:

K, the coefficient K being the measure of

o(a—m)g=s(m—a)h,

a—Db

K,

cl@a—m)g=s

o(x—m)g=s(b—n)H.



SECT. V1.] HEATING OF CLOSED SPACES. 65

84. The value of m is the special object of the problem. It
may be found by writing the equations in the form

m—a=2 5 (a m),

a ge
L =zng<“-m)»

LTl s ek
b—n= 2 H(a m);
adding, we have m—n=(a—m)P,

denoting by P the known quantity = (.Q i H)

whence we conclude

9.9, )
) B e (k rtH
T3t g ge g\
ths (h xF H)
85. The result shews how m —n, the extent of the heating,
depends on given quantities which constitute the hypothesis.
We will indicate the chief results to be derived from it

m—n=(@a—n

1st. The extent of the heating m — n is directly proportional
to the excess of the temperature of the source over that of the
external air,

2nd: The value of m —n does not depend on the form of
the enclosure nor on its volume, but only on the ratiogof the

surface from which the heat proceeds to the surface which receives
it, and also on ¢ the thickness of the boundary.

If we double o the surface of the source of heat, the extent
of the heating does not become double, but increases according

to a certain law which the equation expresses.

1 These results were stated by the author in a rather different manner in the
extract from his original memoir published in the Bulletin par la Société Philo-
matique de Paris, 1818, pp. 1-—11. [A. F.]

F. H. 5
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3rd. All the specific coefficients which regulate the action
of the heat, that is to say, g, K, H and h, compose, with the

dimension e, in the value of m —n a single element %+g—§+ %,
whose value may be determined by observation.

If we doubled e the thickness of the boundary, we should
have the same result as if, in forming it, we employed a sub-
stance whose conducibility proper was twice as great. Thus the
employment of substances which are bad conductors of heat
permits us to make the thickness of the boundary small ; the

effect which is obtained depends only on the ratio K

4th. If the conducibility K is nothing, we find m-sn=a; °
that is to say, the inner air assumes the temperature of the
source : the same is the case if H is zero, or h zero. These con-
sequences are otherwise evident, since the heat cannot then be
dispersed into the external air,

5th. The values of the quantities g, H, h, K and «, which
we supposed known, may be measured by direct experiments,
as we shall shew in ‘the sequel; but in the actual problem, it
will be sufficient to notice the value of m —n which corresponds
to given values of o and of @, and this value may be used to
g5
iR I
tion m—n:(a—n)gp+(1 iz p) in which p denotes the co-

determine the whole coefficient by means of the equa-

efficient sought. We must substitute in this equation, instead
of g and «—mn, the values of those quantities, which we suppose

given, and that of m—mn which observation will have made
known. From it may be derived the value of p, and we may
then apply the formula to any number of other cases.

6th. The coefficient H enters into the value of m—mn In
the same manner as the coefficient h; consequently the state of
the surface, or that of the envelope which covers it, produces
the same effect, whether it has reference to the inner or outer
surface.

‘We should have considered it useless to take notice of these
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different consequences, if we were not treating here of entirely
new problems, whose results may be of direct use.

86. We know that animated bodies retain a temperature
sensibly fixed, which we may regard as independent of the tem-
perature of the medinm in which they live. These bodies are,
after some fashion, constant sources of heat, just as inflamed
substances are in which the combustion has become uniform.
We may then, by aid of the preceding remarks, foresee and
regulate exactly the rise of temperature in places where a great
number of men are collected together. If we there observe the
height of the thermometer under given circumstances, we shall
determine in advance what that height would be, if the number
of men assembled in the same space became very much greater.

In reality, there are several accessory circumstances which
modify the results, such as the unequal thickness of the parts
of the enclosure, the difference of their aspect, the effects which
the outlets produce, the unequal distribution of heat in the air.
We cannot therefore rigorously apply the rules given by analysis;
nevertheless these rules are valuable in themselves, because they
contain the true principles of the matter: they prevent vague
reasonings and useless or confused attempts.

87. If the same space were heated by two or more sources
of different kinds, or if the first inclosure were itself contained
in a second enclosure separated from the first by a mass of air,
we might easily determine in like manner the degree of heating
and the temperature of the surfaces.

If we suppose that, besides the first source o, there is a second
heated surface m, whose constant temperature is B3, and external
conducibility j, we shall find, all the other denominations being
retained, the following equation :

(a—n)og+(B—m)aj/e 1 1 T
s (k+2+1)

g + m) Oy gt l)
R (1{*1{*/1

m-—n=

If we suppose only one source o, and if the first enclosure is
itself contained in a second, &, %, K', H', ¢, representing the
59
Oo—a
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elements of the second enclosure which correspond to those of
the first which were denoted by s, h, K, H, e; we shall find,
p denoting the temperature of the air which surrounds the ex-
ternal surface of the second enclosure, the following equation :

(x—p) P
m _I) = __1 ——
The quantity P represents

(9,9 E) ge )
s<h+K+H+ <+](,+ :
We should obtain a similar result if we had three or a greater
number of successive enclosures; and from this we conclude that
these solid envelopes, separated by air, assist very much in in-

creasing the degree of heating, however small their thickness
may be,

88. To make this remark more evident, we will compare the
quantity of heat which escapes from the heated surface, with
that which the same body would lose, if the surface which en-
velopes it were separated from it by an interval filled with air.

If the body 4 be heated by a constant cause, so that its
surface preserves a fixed temperature 4, the air being maintained
at a less temperature a, the quantity of heat which escapes into
the air in the unit of time across a unit of surface will be
expressed by % (b— @), b being the measure of the external con-
ducibility. Hence in order that the mass may preserve a fixed
temperature b, it is necessary that the source, whatever it may
be, should furnish a quantity of heat equal to AS (b—a), S de-
noting the area of the surface of the solid.

Suppose an extremely thin shell to be detached from the
body 4 and separated from the solid by an interval filled with
air; and suppose the surface of the same solid 4 to be still
maintained at the temperature . 'We see that the air contained
between the shell and the body will be heated and will take
a temperature o' greater than a. The shell itself wiil attain
a permanent state and will transmit to the external air whose
fixed temperature is @ all the heat which the body loses. It
follows that the quantity of heat escaping from the solid will
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be hS (b—a’), instead of being 7S (b—a), for we suppose that
the new surface of the solid and the surfaces which bound the
shell have likewise the same external conducibility h. It is
evident that the expenditure of the source of heat will be less
than it was at first. The problem is to determine the exact ratio
of these quantities.

89. Let e be the thickness of the shell, m the fixed tempera-
ture of its inner surface, = that of its outer surface, and K its
internal conducibility. We shall have, as the expression of the
quantity of heat which leaves the solid through its surface,
hS (b—a').

As that of the quantity which penetrates the inner surface
of the shell, AS (@' —m).

As that of the quantity which crosses any section whatever
of the same shell, K§ ==,

Lastly, as the expression of the quantity which passes through
the outer surface into the air, 8 (n— a).

All these quantities must be equal, we have therefore the
following equations:

h(n—a):l-eg(m—n),

h(n—a) =" (d —m),
h(n—a)=h(b-a),
If moreover we write down the identical equation
h(n—a)=h(n—a),
and arrange them all under the forms

n—a=n-—aq
he
m—n=T{(n'—a),

a-m=n-—a,
b—-ad'=n-a,

we find, on addition,

b—a=(n—a) (3+’;—f,),
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The quantity of heat lost by the solid was %8 (b—a), when
its surface communicated freely with the air, it is now AS (b —a)
b—a

he
3+ ,

The first quantity is greater than the second in the ratio of
3+ %f« to L

In order therefore to maintain at temperature b a solid whose
surface communicates directly to the air, more than three times
as much heat is necessary than would be required to maintain
it at temperature b, when its extreme surface is not adherent
but separated from the solid by any small interval whatever filled
with air. :

If we suppose the thickness e to be infinitely small, the
ratio of the quantities of heat lost will be 3, which would also
be the value if K were infinitely great.

We can easily account for this result, for the heat being
unable to escape into the external air, without penetrating several
surfaces, the quantity which flows out must diminish as the
number of interposed surfaces increases; but we should have
been unable to arrive at any exact judgment in this case, if the
problem had not been submitted to analysis.

or hS (n—a), which is equivalent to ZS

.

90. We have not considered, in the preceding article, the
effect of radiation across the layer of air which separates the
two surfaces; nevertheless this circumstance modifies the prob-
lem, since there is a portion of heat which passes directly across
the intervening air. 'We shall suppose then, to make the object
of the analysis more distinct, that the interval between the sur-
faces is free from air, and that the heated body is covered by
any number whatever of parallel lamine separated from each
other. '

If the heat which escapes from the solid through its plane
superficies maintained at a temperature & expanded itself freely
in vacuo and was received by a parallel surface maintained at
a less temperature @, the quantity-which would be dispersed in
unit of time across unit of surface would be proportional to (b —a),
the difference of the two constant temperatures: this quantity
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would be represented by H (b —a), H being the value of the rela-
tive conducibility which is not the same as Z.

The source which maintains the solid in its original state must
therefore furnish, in every unit of time, a quantity of heat equal
to HS (b—a).

We must now determine the new value of this expenditure
in the case where the surface of the body is covered by several
successive laming separated by intervals free from air, supposing
always that the solid is subject to the action of any external
cause whatever which maintains its surface at the temperature b.

Imagine the whole system of temperatures to have become
fixed ; let m be the temperature of the under surface of the first
lamina which is consequently opposite to that of the solid, let n
be the temperature of the upper surface of the same lamina,
e its thickness, and K its specific conducibility ; denote also by
m,, n, my, n,, my, n, m, n, &c. the temperatures of the under
and upper surfaces of the different lamine, and by K, ¢, the con-
ducibility and thickness of the same laminz; lastly, suppose all
these surfaces to be in a state similar to the surface of the solid,
so that the value of the coefficient X is common to them.

The quantity of heat which penetrates the under surface of
a lamina corresponding to any suffix ¢ is H.S (n,_,—m,), that which

crosses this lamina is I%g(m,. —n;), and the quantity which escapes

from its upper surface is S (n,—m,,,). These three quantities,
and all those which refer to the other lamina are equal; we may
therefore form the equation by comparing all these quantities
in question with the first of them, which is S (b—m,); we shall
thus have, denoting the number of lamina by j:

b—m=b-m,,
m,— n, =%'f (b—m,),
n, —m,=0b—m,
m, — n, =177{_e ®- 777'1),

........................
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He
LN T (b—m),

n—a =b—m,.

Adding these equations, we find
b—a)=@-m)j(1+2)+ 1

The expenditure of the source of heat necessary to maintain
the surface of the body A at the temperature b is HS (b—a),
when this surface sends its rays to a fixed surface maintained at
the temperature a. The expenditure is /7S (b — m,) when we place
between the surface of the body 4, and the fixed surface maintained
at temperature a, a number j of isolated lamins; thus the quantity
of heat which the source must furnish is very much less in the
second hypotheses than in the first, and the ratio of the two

3 He\
51+ %)

laminz to be infinitely small, the ratio is % The expenditure
+1

quantities is If we suppose the thickness e of the

of the source is then inversely as the number of laminz which
cover the surface of the solid.

91. The examination of these results and of those which we
obtained when the intervals between successive enclosures were
occupied by atmospheric air explain clearly why the separation
of surfaces and the intervention of air assist very much in re-
taining heat.

Analysis furnishes in addition analogous consequences when
we suppose the source to be external, and that the heat which
emanates from it crosses successively different diathermanous
envelopes and the air which they enclose. This is what has
happened when experimenters have exposed to the rays of the
sun thermometers covered by several sheets of glass within which
different layers of air have been enclosed.

For similar reasons the temperature of the higher regions
of the atmosphere is very much less than at the surface of the

earth.
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In general the theorems concerning the heating of air in
closed spaces extend to a great variety of problems. It would
be useful to revert to them when we wish to foresee and regulate
temperature with precision, as in the case of green-houses, drying-
houses, sheep-folds, work-shops, or in many civil establishments,
such as hospitals, barracks, places of assembly.

In these different applications we must attend to accessory
circumstances which modify the results of analysis, such as the
unequal thickness of different parts of the enclosure, the intro-
duction of air, &c.; but these details would draw us away from
our chief object, which is the exact demonstration of general
principles.

For the rest, we have considered only, in what has just been
said, the permanent state of temperature in closed spaces. We
can in addition express analytically the variable state which
precedes, or that which begins to take place when the source of
heat is withdrawn, and we can also ascertain in this way, how
the specific properties of the bodies which we employ, or their
dimensions affect the progress and duration of the heating ; but
these researches require a different analysis, the principles of
which will be explained in the following chapters.

SECTION VIL
On the untform movement of heat in three dimensions.

92. Up to this time we have considered the uniform move-
ment of heat in one dimension only, but it is easy to apply the
same principles to the case in which heat is propagated uniformly
in three directions at right angles.

Suppose the different points of a solid enclosed by six planes
at right angles to have unequal actual temperatures represented
by the linear equation v=A4+ ax+by+ cz, x,y, 2, being the
rectangular co-ordinates of a molecule whose temperature is v.
Suppose further that any external causes whatever acting on the
six faces of the prism maintain every one of the molecules situated
on the surface, at its actual temperature expressed by the general
equation

v=A+ax+dy+cz.iieiiiiniiinininnns (a),
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we shall prove that the same causes which, by hypothesis, keep
the outer layers of the solid in their initial state, are sufficient
to preserve also the actual temperatures of every one of the inner
molecules, so that their temperatures do not cease to be repre-
sented by the linear equation. :

The examination of this question is an element of the
general theory, it will serve to determine the laws of the varied
movement of heat in the interior of a solid of any form whatever,
for every one of the prismatic molecules of which the body is
composed is during an infinitely small time in a state similar
to that which the linear equation (a) expresses. We may then,
by following the ordinary principles of the differential calculus,
easily deduce from the notion of uniform movement the general
equations of varied movement.

93. In order to prove that when the extreme layers of the
solid preserve their temperatures no change can happen in the
interior of the mass, it is sufficient to compare with each other
the quantities of heat which, during the same instant, cross two
parallel planes. A

Let b be the perpendicular distance of these two planes which
we first suppose parallel to the horizontal plane of # and y. Let
m and m' be two infinitely near molecules, one of which is above
the first horizontal plane and the other below it: let «, 7, z be
the co-ordinates of the first molecule, and &/, 3/, 2’ those of the
second. In like manner let M and M’ denote two infinitely
near ‘molecules, separated by the second horizontal plane and
situated, relatively to that plane, in the same manner as m and
m’ are relatively to the first plane; that is to say, the co-ordinates
of M are z, iy, z+ b, and those of M are &, 3/, 2/ + b. It is evident
that the distance mm’' of the two molecules m and m’ is equal
to the distance MM of the two molecules M and M’ ; further,
let » be the temperature of m, and ¢ that of m/, also let 7 and
V' be the temperatures of A/ and M, it is easy to see that the
two differences v—v" and V— V' are equal; in fact, substituting
first the co-ordinates of m and ' in the general equation

v=24»4 + ax+ by + cz,

we find v—v=ale-x)+b(y—y)+c(z—2),
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and then substituting the co-ordinates of M and M, we find also
V—V=a@x—-2)+bly—y)+c(z2~ 7). Now the quantity of
heat which m sends to m’ depends on the distance mm’, which
separates these molecules, and it is proportional to the difference
v—v of their temperatures. This quantity of heat transferred
may be represented by

g (v—v')de;

the value of the coefficient ¢ depends in some manner on the
distance mm’, and on the nature of the substance of whichk the
solid is formed, d¢ is the duration of the instant. The quantity
of heat transferred from M to M’, or the action of M on M’ is
expressed likewise by ¢ (V' — V") d¢, and the coefficient ¢ is the
same as in the expression ¢ (v—7') di, since the distance MM is
equal to mm’ and the two actions are effected in the same solid:
furthermore V'— ¥V’ is equal to v —7, hence the two actions are
equal.

If we choose two other points-n and #/, very near to each
other, which transfer heat across the first horizontal plane, we
shall find in the same manner that their action is equal to that
of two homologous points N and N’ which communicate heat
across the second horizontal plane. We conclude then that the
whole quantity of heat which crosses the first plane is equal to
that which crosses the second plane during the same instant.
We should derive the same result from the comparison of two
planes parallel to the plane of z and 2z or from the comparison
of two other planes parallel to the plane of y and 2. Hence
any part whatever of the solid enclosed between six planes at
right angles, receives through each of its faces as much heat as
it loses through the opposite face; hence no portion of the solid
can change temperature.

94. From this we see that, across one of the planes in
question, a quantity of heat flows which is the same at all in-
stants, and which is also the same for all other parallel sections.

In order to determine the value of this constant flow we
shall compare it with the quantity of heat which flows uniformly
in the most simple case, which has been already discussed. The
case is that of an infinite solid enclosed between two infinite
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planes and maintained in a constant state. We have secen that
the temperatures of the different points of the mass are in this
case represented by the equation v= 4 +cz; we proceed to prove
that the uniform flow of heat propagated in the vertical direction
in the infinite solid is equal to that which flows in the same
direction across the prism enclosed by six planes at right angles.
This equality necessarily exists if the coefficient ¢ in the equation
v= A + cz, belonging to the first solid, is the same as the coeffi-
cient ¢ in the more general equation v = 4 + ax + by + ¢z which
represents the state of the prism. In fact, denoting by I a
plane in this prism perpendicular to 2z, and by m and u two
molecules very near to each other, the first of which m is below
the plane I, and the second above this plane, let » be the
temperature of m whose co-ordinates are z, ¥, z, and w the
temperature of u whose co-ordinates are x +a, ¥y + 3, z+ . Take
a third molecule u’ whose co-ordinates are z—a, y— 8, 2+, and
whose temperature may be denoted by w’. We see that u and
u’ are on the same horizontal. plane, and that the vertical drawn
from the middle point of the line wy’, which jeins these two
points, passes through the point m, so that the distances mu and
mu' are equal. The aection of m on u, or the quantity of heat
which the first of these molecules sends to the other across the
plane H, depends on the difference » — w of their temperatures.
The action of m on px' depends in the same manner on the
difference v—w' of the temperatures of these molecules, since
the distance of m from u is the same as that of m from u'. Thus,
expressing by ¢ (v —w) the action of m on p during the unit of
time, we shall have ¢ (v— w') to express the action of m on u/,
q being a common unknown factor, depending on the distance
mu and on the nature of the solid. Hence the sum of the two
actions exerted during unit of time is ¢ (v — w + v — ).
If instead of @, 7, and ¢, in the general equation

v=A4+ax+by+cz,

we substitute the co-ordinates of m and then those of u and 4/,
we shall find
v—w=-—ax—bB~cy,

v—w'=+ax+bB —cy.
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The sum of the two actions of m on g and of m on g is there-
fore — 2gcy.

Suppose then that the plane H belongs to the infinite solid
whose temperature equation is v= A4 4 ¢z, and that we denote
also by m, p and p' those molecules in this solid whose co-
ordinates are w, y, z for the first, z+a, y + B, z + for the second,
and # —a,y— B, 2+ for the third: we shall have, as in the
preceding case, v — w+v—w'=—2¢y. Thus the sum of the two
actions of m on y and of m on y/, is the same in the infinite solid
as in the prism enclosed between the six planes at right angles.

We should obtain a similar result, if we considered the action
of another point n below the plane H on two others v and v/,
situated at the same height above the plane. Hence, the sum
of all the actions of this kind, which are exerted across the plane
H, that is to say the whole quantity of heat which, during unit
of time, passes to the upper side of this surface, by virtue of the
action of very near molecules which it separates, is always the
same in both solids.

95. In the second of these two bodies, that which is bounded
by two infinite planes, and whose temperature equation is
v=A + ¢z, we know that the quantity of heat which flows during
unit of time across unit of area taken on any horizontal section
whatever is — cK, ¢ being the coefficient of z, and K the specific
conducibility ; hence, the quantity of heat which, in the prism
enclosed between six planes at right angles, crosses during unit
of time, unit of area taken on any horizontal section whatever,
is also — ¢K, when the linear equation which represents the tem-
peratures of the prism is

v=A+ azx+ by + cz.

In the same way it may be proved that the quantity of heat
which, during unit of time, flows uniformly across unit of area
taken on any section whatever perpendicular to z, is expressed
by —aK, and that the whole quantity which, during unit of time,
crosses unit of area taken on a section perpendicular to y, is
expressed by — bK.

The theorems which we have demonstrated in this and the
two preceding articles, suppose the direct action of heat in the
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interior of the mass to be limited to an extremely small distance,
but they would still be true, if the rays of heat sent out by each
molecule could penetrate directly to a quite appreciable distance,
but it would be necessary in this case, as we have remarked in
Article 70, to suppose that the cause which maintains the tem-
peratures of the faces of the solid affects a part extending within
the mass to a finite depth.

SECTION VIII.
Measure of the movement of heat at a given point of a solid mass.

96. It still remains for us to determine one of the principal
elements of the theory of heat, which consists in defining and in
measuring exactly the quantity of heat which passes through
every point of a solid mass across a plane whose direction is given.

If heat is unequally distributed amongst the molecules of the
same body, the temperatures at_any point will vary every instant.
Denoting by ¢ the time which has elapsed, and by v the tem-
perature attained after a time ¢ by an infinitely small molecule
whose co-ordinates are @, ¥, z ; the variable state of the solid will be
expressed by an equation similar to the following v =F'(x, y, 2, ?).
Suppose the function F to be given, and that consequently we
can determine at every instant the temperature of any point
whatever ; imagine that through the point m we draw a hori-
zontal plane parallel to that of # and y, and that on this plane
we trace an infinitely small circle w, whose centre is at m ; it is
required to determine what is the quantity of heat which during
the instant d¢ will pass across the circle o from the part of the
solid which is below the plane into the part above it.

All points extremely near to the point m and under the plane
exert their action during the infinitely small instant d¢, on all
those which are above the plane and extremely near to the point
m, that is to say, each of the points situated on one side of this
plane will send heat to each of those which are situated on the
other side.

We shall consider as positive an action whose effect-is to
transport a certain quantity of heat above the plane, and as
negative that which causes heat to pass below the plane. The
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sum of all the partial actions which are exerted across the circle
w, that is to say the sum of all the quantities of heat which,
crossing any point whatever of this circle, pass from the part
of the solid below the plane to the part above, compose the flow
whose expression is to be found.

It is easy to imagine that this flow may not be the same
throughout the whole extent of the solid, and that if at another
point m’ we traced a horizontal circle » equal to the former, the
two quantities of heat which rise above these planes w and o’
during the same instant might not be equal: these quantities are
comparable with each other and their ratios are numbers which
may be easily determined. '

97. We know already the value of the constant flow for the
case of linear and uniform movement; thus in the solid enclosed be-
tween two infinite horizontal planes, one of which is maintained at
the temperature @ and the other at the temperature b, the flow of
heat is the same for every part of the mass; we may regard it as
taking place in the vertical direction only. The value correspond-
ing to unit of surface and to unit of time is K (aT—b)’ e denoting
the perpendicular distance of the two planes, and K the specific
conducibility : the temperatures at the different points of the
solid are expressed by the equation v=a — (g—:;—b ) 2.

When the problem is that of a solid comprised between six
rectangular planes, pairs of which are parallel, and the tem-
peratures at the different points are expressed by the equation

v=A+azx+by+cz,

the propagation takes place at the same time along the directions
of x, of y,of z; the quantity of heat which flows across a definite
portion of a plane parallel to that of # and y is the same through-
out the whole extent of the prism ;<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>