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PREFACE.

IN preparing this version in English of Fourier s

celebrated treatise on Heat, the translator has followed

faithfully the French original. He has, however, ap

pended brief foot-notes, in which will be found references

to other writings of Fourier and modern authors on

the subject : these are distinguished by the initials A. F.

The notes marked R. L. E. are taken from pencil me

moranda on the margin of a copy of the work that

formerly belonged to the late Robert Leslie Ellis,

Fellow of Trinity College, and is now in the possession

of St John s College. It was the translator s hope to

have been able to prefix to this treatise a Memoir

of Fourier s life with some account of his writings ;

unforeseen circumstances have however prevented its

completion in time to appear with the present work.

781452
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ADDENDUM. An article &quot;Ow the linear motion of heat, Part II.&quot;, written by

Sir WM THOMSON under the signature N.N., will be found in the Cambridge

Mathematical Journal, Vol. III. pp. 206211, and in Vol. I. of the Author s

collected writings. It examines the conditions, subject to which an arbitrary dis

tribution of heat in an infinite solid, bounded by a plane, may be supposed to

have resulted, by conduction, in course of time, from some previous distribu

tion. [A. F.]

MURSTON RECTORY, SITTINGBOURNE, KENT.

June 21st, 1888.



PEELIMINARY DISCOURSE.

PRIMARY causes are unknown to us; but are subject to simple

and constant laws, which may be discovered by observation, the

study of them being the object of natural philosophy.

Heat, like gravity, penetrates every substance of the universe,

its rays occupy all parts of space. The object of our work is to

set forth the mathematical laws which this element obeys. The

theory of heat will hereafter form one of the most important
branches of general physics.

The knowledge of rational mechanics, which the most ancient

nations had been able to acquire, has not come down to us, and

the history of this science, if we except the first theorems in

harmony, is not traced up beyond the discoveries of Archimedes.

This great geometer explained the mathematical principles of

the equilibrium of solids and fluids. About eighteen centuries

elapsed before Galileo, the originator of dynamical theories, dis

covered the laws of motion of heavy bodies. Within this new
science Newton comprised the whole system of the universe. The
successors of these philosophers have extended these theories, and

given them an admirable perfection: they have taught us that

the most diverse phenomena are subject to a small number of

fundamental laws which are reproduced in all the acts of nature.

It is recognised that the same principles regulate all the move
ments of the stars, their form, the inequalities of their courses,

the equilibrium and the oscillations of the seas, the harmonic

vibrations of air and sonorous bodies, the transmission of light,

capillary actions, the undulations of fluids, in fine the most com

plex effects of all the natural forces, and thus has the thought
F. H. 1
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of Newton been confirmed : quod tarn paucis tarn multa prcestet

geometria gloriatur\
But whatever may be the range of mechanical theories, they

do not apply to the effects of heat. These make up a special

order of phenomena, which cannot be explained by the principles

of motion and equilibrium. We have for a long time been in

possession of ingenious instruments adapted to measure many
of these effects; valuable observations have been collected

;
but

in this manner partial results only have become known, and

not the mathematical demonstration of the laws which include

them all.

I have deduced these laws from prolonged study and at

tentive comparison of the facts known up to this time : all these

facts I have observed afresh in the course of several years with

the most exact instruments that have hitherto been used.

To found the theory, it was in the first place necessary to

distinguish and define with precision the elementary properties

which determine the action of heat. I then perceived that all the

phenomena which depend on this action resolve themselves into

a very small number of general and simple facts
; whereby every

physical problem of this kind is brought back to an investiga

tion of mathematical analysis. From these general facts I have

concluded that to determine numerically the most varied move

ments of heat, it is sufficient to submit each substance to three

fundamental observations. Different bodies in fact do not possess

in the same degree the power to contain heat, to receive or transmit

it across their surfaces, nor to conduct it through the interior of

their masses. These are the three specific qualities which our

theory clearly distinguishes and shews how to measure.

It is easy to judge how much these researches concern the

physical sciences and civil economy, and what may be their

influence on the progress of the arts which require the employ
ment and distribution of heat. They have also a necessary con

nection with the -system of the world, and their relations become

known when we consider the grand phenomena which take place
near the surface of the terrestrial globe.

1
Phiiosophia naturalis principia mathematica. Auctoris prafatio ad lectorem.

Ac gloriatur geoinetria quod tarn paucis principiis aliunde petitis tarn multa

proestet. [A. F.]
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In fact, the radiation of the sun in which this planet is

incessantly plunged, penetrates the air, the earth, and the waters
;

its elements are divided, change in direction every way, and,

penetrating the mass of the globe, would raise its mean tem

perature more and more, if the heat acquired were not exactly

balanced by that which escapes in rays from all points of the

surface and expands through the sky.

Different climates, unequally exposed to the action of solar

heat, have, after an immense time, acquired the temperatures

proper to their situation. This effect is modified by several ac

cessory causes, such as elevation, the form of the ground, the

neighbourhood and extent of continents and seas, the state of the

surface, the direction of the winds.

The succession of day and night, the alternations of the

seasons occasion in the solid earth periodic variations, which are

repeated every day or every year: but these changes become

less and less sensible as the point at which they are measured

recedes from the surface. No diurnal variation can be detected

at the depth, of about three metres [ten feet] ;
and the annual

variations cease to be appreciable at a depth much less than

sixty metres. The temperature at great depths is then sensibly

fixed at a given place : but it is not the same at all points of the

same meridian
;
in general it rises as the equator is approached.

The heat which the sun has communicated to the terrestrial

globe, and which has produced the diversity of climates, is now

subject to a movement which has become uniform. It advances

within the interior of the mass which it penetrates throughout,
and at the same time recedes from the plane of the equator, and

proceeds to lose itself across the polar regions.

In the higher regions of the atmosphere the air is very rare

and transparent, and retains but a minute part of the heat of

the solar rays : this is the cause of the excessive cold of elevated

places. The lower layers, denser and more heated by the land

and water, expand and rise up : they are cooled by the very

fact of expansion. The great movements of the air, such as

the trade winds which blow between the tropics, are not de

termined by the attractive forces of the moon and sun. The

action of these celestial bodies produces scarcely perceptible

oscillations in a fluid so rare and at so great a distance. It

12
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is the changes of temperature which periodically displace every

part of the atmosphere.
The waters of the ocean are differently exposed at their

surface to the rays of the sun, and the bottom of the basin

which contains them is heated very unequally from the poles

to the equator. These two causes, ever present, and combined

with gravity and the centrifugal force, keep up vast movements

in the interior of the seas. They displace and mingle all the

parts, and produce those general and regular currents which

navigators have noticed.

Radiant heat which escapes from the surface of all bodies,

and traverses elastic media, or spaces void of air, has special

laws, and occurs with widely varied phenomena. The physical

explanation of many of these facts is already known ;
the mathe

matical theory which I have formed gives an exact measure of

them. It consists, in a manner, in a new catoptrics which

has its own theorems, and serves to determine by analysis all

the effects of heat direct or reflected.

The enumeration of the chief objects of the theory sufficiently

shews the nature of the questions which I have proposed to

myself. What are the elementary properties which it is requisite

to observe in each substance, and what are the experiments
most suitable to determine them exactly? If the distribution

of heat in solid matter is regulated by constant laws, what is

the mathematical expression of those laws, and by what analysis

may we derive from this expression the complete solution of

the principal problems ? Why do terrestrial temperatures cease

to be variable at a depth so small with respect to the radius

of the earth ? Every inequality in the movement of this planet

necessarily occasioning an oscillation of the solar heat beneath

the surface, what relation is there between the duration of its

period, and the depth at which the temperatures become con

stant ?

What time must have elapsed before the climates could acquire
the different temperatures which they now maintain; and what
are the different causes which can now vary their mean heat ?

Why do not the annual changes alone in the distance of the
sun from the earth, produce at the surface of the earth very
considerable changes in the temperatures ?
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From what characteristic can we ascertain that the earth

has not entirely lost its original heat; and what are the exact

laws of the loss ?

If, as several observations indicate, this fundamental heat

is not wholly dissipated, it must be immense at great depths,
and nevertheless it has no sensible influence at the present time

on the mean temperature of the climates. The effects which

are observed in them are due to the action of the solar rays.

But independently of these two sources of heat, the one funda

mental and primitive, proper to the terrestrial globe, the other due

to the presence of the sun, is there not a more universal cause,

which determines the temperature of the heavens, in that part
of space which the solar system now occupies? Since the ob

served facts necessitate this cause, what are the consequences
of an exact theory in this entirely new question; how shall we

be able to determine that constant value of the temperature of

space, and deduce from it the temperature which belongs to each

planet ?

To these, questions must be added others which depend on

the properties of radiant heat. The physical cause of the re

flection of cold, that is to say the reflection of a lesser degree

of heat, is very distinctly known
;
but what is the mathematical

expression of this effect ?

On what general principles do the atmospheric temperatures

depend, whether the thermometer which measures them receives

the solar rays directly, on a surface metallic or unpolished,

or whether this instrument remains exposed, during the night,

under a sky free from clouds, to contact with the air, to radiation

from terrestrial bodies, and to that from the most distant and

coldest parts of the atmosphere ?

The intensity of the rays which escape from a point on the

surface of any heated body varying with their inclination ac

cording to a law which experiments have indicated, is there not a

necessary mathematical relation between this law and the general

fact of the equilibrium of heat
;
and what is the physical cause of

this inequality in intensity ?

Lastly, when heat penetrates fluid masses, and determines in

them internal movements by continual changes of the temperature

and density of each molecule, can we still express, by differential
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equations, the laws of such a compound effect
;
and what is the

resulting change in the general equations of hydrodynamics ?

Such are the chief problems which I have solved, and which

have never yet been submitted to calculation. If we consider

further the manifold relations of this mathematical theory to

civil uses and the technical arts, we shall recognize completely

the extent of its applications. It is evident that it includes an

entire series of distinct phenomena, and that the study of it

cannot be omitted without losing a notable part of the science of

nature.

The principles of the theory are derived, as are those of

rational mechanics, from a very small number of primary facts,

the causes of which are not considered by geometers, but which

they admit as the results of common observations confirmed by all

experiment.
The differential equations of the propagation of heat express

the most general conditions, and reduce the physical questions to

problems of pure analysis, and this is the proper object of theory.

They are not less rigorously established than the general equations
of equilibrium and motion. In order to make this comparison
more perceptible, we have always preferred demonstrations ana

logous to those of the theorems which serve as the foundation

of statics and dynamics. These equations still exist, but receive

a different form, when they express the distribution of luminous

heat in transparent bodies, or the movements which the changes
of temperature and density occasion in the interior of fluids.

The coefficients which they contain are subject to variations whose

exact measure is not yet known ;
but in all the natural problems

which it most concerns us to consider, the limits of temperature
differ so little that we may omit the variations of these co

efficients.

The equations of the movement of heat, like those which

express the vibrations of sonorous bodies, or the ultimate oscilla

tions of liquids, belong to one of the most recently discovered

branches of analysis, which it is very important to perfect. After

having established these differential equations their integrals must
be obtained

;
this process consists in passing from a common

expression to a particular solution subject to all the given con
ditions. This difficult investigation requires a special analysis
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founded on new theorems, whose object we could not in this

place make known. The method which is derived from them
leaves nothing vague and indeterminate in the solutions, it leads

them up to the final numerical applications, a necessary condition

of every investigation, without which we should only arrive at

useless transformations.

The same theorems which have made known to us the

equations of the movement of heat, apply directly to certain pro
blems of general analysis a.nd dynamics whose solution has for a

long time been desired.

Profound study of nature is the most fertile source of mathe
matical discoveries. Not only has this study, in offering a de

terminate object to investigation, the advantage of excluding

vague questions and calculations without issue
;

it is besides a

sure method of forming analysis itself, and of discovering the

elements which it concerns us to know, and which natural science

ought always to preserve : these are the fundamental elements

which are reproduced in all natural effects.

We see, for example, that the same expression whose abstract

properties geometers had considered, and which in this respect

belongs to general analysis, represents as well the motion of light

in the atmosphere, as it determines the laws of diffusion of heat

in solid matter, and enters into all the chief problems of the

theory of probability.

The analytical equations, unknown to the ancient geometers,

which Descartes was the first to introduce into the study of curves

and surfaces, are not restricted to the properties of figures, and to

those properties which are the object of rational mechanics
; they

extend to all general phenomena. There cannot be a language
more universal and more simple, more free from errors and from

obscurities, that is to say more worthy to express the invariable

relations of natural things.

Considered from this point of view, mathematical analysis is as

extensive as nature itself; it defines all perceptible relations,

measures times, spaces, forces, temperatures ;
this difficult science

is formed slowly, but it preserves every principle which it has once

acquired ;
it grows and strengthens itself incessantly in the midst

of the many variations and errors of the human mind.

Its chief attribute is clearness
;

it has no marks to express con-
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fused notions. It brings together phenomena the most diverse,

and discovers the hidden analogies which unite them. If matter

escapes us, as that of air and light, by its extreme tenuity, if

bodies are placed far from us in the immensity of space, if man
wishes to know the aspect of the heavens at successive epochs

separated by a great number of centuries, if the actions of gravity

and of heat are exerted in the interior of the earth at depths
which will be always inaccessible, mathematical analysis can yet

lay hold of the laws of these phenomena. It makes them present
and measurable, and seems to be a faculty of the human mind

destined to supplement the shortness of life and the imperfec
tion of the senses

;
and what is still more remarkable, it follows

the same course in the study of all phenomena ;
it interprets them

by the same language, as if to attest the unity and simplicity of

the plan of the universe, and to make still more evident that

unchangeable order which presides over all natural causes.

The problems of the theory of heat present so many examples
of the simple and constant dispositions which spring from the

general laws of nature
;
and if the order which is established in

these phenomena could be grasped by our senses, it would produce
in us an impression comparable to the sensation of musical sound.

The forms of bodies are infinitely varied
;
the distribution of

the heat which penetrates them seems to be arbitrary and confused
;

but all the inequalities are rapidly cancelled and disappear as time

passes on. The progress of the phenomenon becomes more regular
and simpler, remains finally subject to a definite law which is the

same in all cases, and which bears no sensible impress of the initial

arrangement.
All observation confirms these consequences. The analysis

from which they are derived separates and expresses clearly, 1 the

general conditions, that is to say those which spring from the

natural properties of heat, 2 the effect, accidental but continued,
of the form or state of the surfaces

;
3 the effect, not permanent,

of the primitive distribution.

In this work we have demonstrated all the principles of the

theory of heat, and solved all the fundamental problems. They
could have been explained more concisely by omitting the simpler
problems, and presenting in the first instance the most general
results; but we wished to shew the actual origin of the theory and



PRELIMINARY DISCOURSE. 9

its gradual progress. When this knowledge has been acquired
and the principles thoroughly fixed, it is preferable to employ at

once the most extended analytical methods, as we have done in

the later investigations. This is also the course which we shall

hereafter follow in the memoirs which will be added to this work,
and which will form in some manner its complement *; and by this

means we shall have reconciled, so far as it can depend on our

selves, the necessary development of principles with the precision

which becomes the applications of analysis.

The subjects of these memoirs will be, the theory of radiant

heat, the problem of the terrestrial temperatures, that of the

temperature of dwellings, the comparison of theoretic results with

those which we have observed in different experiments, lastly the

demonstrations of the differential equations of the movement of

heat in fluids.

The work which we now publish has been written a long time

since
;
different circumstances have delayed and often interrupted

the printing of it. In this interval, science has been enriched by

important observations ;
the principles of our analysis, which had

not at first been grasped, have become better known
;
the results

which we had deduced from them have been discussed and con

firmed. We ourselves have applied these principles to new

problems, and have changed the form of some of the proofs.

The delays of publication will have contributed to make the work

clearer and more complete.

The subject of our first analytical investigations on the transfer

of heat was its distribution amongst separated masses
;
these have

been preserved in Chapter III., Section II. The problems relative

to continuous bodies, which form the theory rightly so called, were

solved many years afterwards ;
this theory was explained for the

first time in a manuscript work forwarded to the Institute of

France at the end of the year 1807, an extract from which was

published in the Bulletin des Sciences (Societe Philomatique, year

1808, page 112). We added to this memoir, and successively for

warded very extensive notes, concerning the convergence of series,

the diffusion of heat in an infinite prism, its emission in spaces

1 These memoirs were never collectively published as a sequel or complement
to the Theorie Analytiquc de la Chaleur. But, as will be seen presently, the author

had written most of them before the publication of that work in 1822. [A. F.]
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void of air, the constructions suitable for exhibiting the chief

theorems, and the analysis of the periodic movement at the sur

face of the earth. Our second memoir, on the propagation of

heat, was deposited in the archives of the Institute, on the 28th of

September, 1811. It was formed out of the preceding memoir and

the notes already sent in
;

the geometrical constructions and

those details of analysis which had no necessary relation to the

physical problem were omitted, and to it was added the general

equation which expresses the state of the surface. This second

work was sent to press in the course of 1821, to be inserted in

the collection of the Academy of Sciences. It is printed without

any change or addition
;
the text agrees literally with the deposited

manuscript, which forms part of the archives of the Institute \

In this memoir, and in the writings which preceded it, will be

found a first explanation of applications which our actual work

1 It appears as a memoir and supplement in volumes IV. and V. of the Me-
moircs de VAcademic des Sciences. For convenience of comparison with, the table

of contents of the Analytical Theory of Heat, we subjoin the titles and heads of

the chapters of the printed memoir :

THEORIE DU MOUVEMENT DE LA CHALEUR DANS LES CORPS SOLIDES, PAR M.
FOURIER. [Memoires de VAcademic Hoyale des Sciences de Vlnstitut de France.

Tome IV. (for year 1819). Paris 1824.]

I. Exposition.

II. Notions generales et definitions preliminaires.

III. Equations du mouvement de la chaleur.

IV. Du mouvement lineaire et varie de la chaleur dans une armille.

V. De la propagation de la chaleur dans une lame rectangulaire dont Us temperatures
sont constantes.

VI. De la communication de la chaleur entre des masses disjointes.

VII. Du mouvement varie de la chaleur dans une sphere solide.

VIII. Du mouvement varie de la chaleur dans un cylindre solide.

IX. De la propagation de la chaleur dans un prisme dont Vextremite est assujcttie
a une temperature constante.

X. Du mouvement varie de la chaleur dans un solide de forme cubique.
XI. Du mouvement lineaire et varie de la chaleur dans les corps dont une dimension

est infinie.

SUITE DU MEMOIRS INTITULE: THEORIE DU MOUVEMENT DE LA CHALEUR DANS
LES CORPS SOLIDES; PAR M. FOURIER. [Memoires de VAcademic Eoyale des Sciences
de rinstitut de France. Tome V. (for year 1820). Paris, 1826.]
XII. Des temperatures terrestres, et du mouvement de la chaleur dans Vinterieur

d une sphere solide, dont la surface est assujettie a des changemens periodiques
de temperature.

XIII. Des lois mathematiques de Vequilibre de la chaleur rayonnante.
XIV. Comparaison des resultats de la theorie avec ceux de diverses experiences

[A. P.]
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does not contain; they will be treated in the subsequent memoirs 1

at greater length, and, if it be in our power, with greater clear

ness. The results of our labours concerning the same problems
are also indicated in several articles already published. The
extract inserted in the Annales de Chimie et de Physique shews
the aggregate of our researches (Vol. in. page 350, year 1816).
We published in the Annales two separate notes, concerning
radiant heat (Vol. iv. page 128, year 1817, and Vol. vi. page 259,

year 1817).

Several other articles of the same collection present the most
constant results of theory and observation

;
the utility and the

extent of thermological knowledge could not be better appreciated
than by the celebrated editors of the Annales *.

In the Bulletin des Sciences (Societe philomatique year 1818,

page 1, and year 1820, page 60) will be found an extract from
a memoir on the constant or variable temperature of dwellings,
and an explanation of the chief consequences of our analysis of

the terrestrial temperatures.
M. Alexandre de Humboldt, whose researches embrace all the

great problems of natural philosophy, has considered the obser

vations of the temperatures proper to the different climates

from a novel and very important point of view (Memoir on Iso

thermal lines, Societe d Arcueil, Vol. ill. page 462) ; (Memoir on

the inferior limit of perpetual snow, Annales de Chimie et de

Physique, Vol. v. page 102, year 1817).

As to the differential equations of the movement of heat in

fluids
3 mention has been made of them in the annual history of

the Academy of Sciences. The extract from our memoir shews

clearly its object and principle. (Analyse des travaux de VAca

demie des Sciences, by M. De Lambre, year 1820.)

The examination of the repulsive forces produced by heat,

which determine the statical properties of gases, does not belong

1 See note, page 9, and the notes, pages 11 13.

-
Gay-Lussac and Arago. See note, p. 13.

3 Memoires de VAcademie des Sciences, Tome XII., Paris, 1833, contain on pp.

507514, Memoire d analyse sur le mouvement de la chaleur dans les fluides, par M.
Fourier. Lu a VAcademie Royale des Sciences, 4 Sep. 1820. It is followed on pp.

515 530 by Extrait des notes manuscrites conservees par Vavteur. The memoir

is signed Jh. Fourier, Paris, 1 Sep. 1820, but was published after the death of the

author. [A. F.]
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to the analytical subject which, we have considered. This question

connected with the theory of radiant heat has just heen discussed

by the illustrious author of the Mecanique celeste, to whom all

the chief branches of mathematical analysis owe important

discoveries. (Connaissance des Temps, years 1824-5.)

The new theories explained in our work are united for ever

to the mathematical sciences, and rest like them on invariable

foundations
;

all the elements which they at present possess they
will preserve, and will continually acquire greater extent. Instru

ments will be perfected and experiments multiplied. The analysis

which we have formed will be deduced from more general, that

is to say, more simple and more fertile methods common to many
classes of phenomena. For all substances, solid or liquid, for

vapours and permanent gases, determinations will be made of all

the specific qualities relating to heat, and of the variations of the

coefficients which express them 1
. At different stations on the

earth observations will be made, of the temperatures of the

ground at different depths, of the intensity of the solar heat and

its effects, constant or variable, in the atmosphere, in the ocean

and in lakes
;
and the constant temperature of the heavens proper

to the planetary regions will become known 2
. The theory itself

1 Hemoires de VAcademie des Sciences, Tome VIII., Paris 1829, contain on

pp. 581 622, Memoire sur la Theorie Analytique de la Chaleur, par M. Fourier.

This was published whilst the author was Perpetual Secretary to the Academy.
The first only of four parts of the memoir is printed. The contents of all are

stated. I. Determines the temperature at any point of a prism whose terminal

temperatures are functions of the time, the initial temperature at any point being

a function of its distance from one end. II. Examines the chief consequences of

the general solution, and applies it to two distinct cases, according as the tempe
ratures of the ends of the heated prism are periodic or not. III. Is historical,

enumerates the earlier experimental and analytical researches of other writers

relative to the theory of heat
; considers the nature of the transcendental equations

appearing in the theory ; remarks on the employment of arbitrary functions
;

replies to the objections of M. Poisson ; adds some remarks on a problem of the

motion of waves. IV. Extends the application of the theory of heat by taking

account, in the analysis, of variations in the specific coefficients which measure
the capacity of substances for heat, the permeability of solids, and the penetra

bility of their surfaces. [A. F.]
2 Memoircs de VAcademie des Sciences, Tome VII. , Paris, 1827, contain on

pp. 569 604, Memoire sur les temperatures du globe terrestre et des espaces plane-
taires, par M. Fourier. The memoir is entirely descriptive ; it was read before the

Academy, 20 and 29 Sep. 1824 (Annales de Chimie et de Physique, 1824, xxvu.

p. 136). [A. F.]
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will direct all these measures, and assign their precision. No
considerable progress can hereafter be made which is not founded

on experiments such as these
;

for mathematical analysis can

deduce from general and simple phenomena the expression of the

laws of nature
;
but the special application of these laws to very

complex effects demands a long series of exact observations.

The complete list of the Articles on Heat, published by M. Fourier, in the

Annales de Chimie et de Physique, Series 2, is as follows :

1816. III. pp. 350375. Theorie de la Chaleur (Extrait). Description by the

author of the 4to volume afterwards published in 1822 without the chapters on

radiant heat, solar heat as it affects the earth, the comparison of analysis with

experiment, and the history of the rise and progress of the theory of heat.

1817. IV. pp. 128 145. Note sur la Chaleur rayonnante. Mathematical

sketch on the sine law of emission of heat from a surface. Proves the author s

paradox on the hypothesis of equal intensity of emission in all directions.

1817. VI. pp. 259 303. Questions sur la theorie physique de la chaleur

rayonnante. An elegant physical treatise on the discoveries of Newton, Pictet,

Wells, TVollaston, Leslie and Prevost.

1820. XIII. pp. 418 438. Sur le refroidissement seculaire de la terre (Extrait).

Sketch of a memoir, mathematical and descriptive, on the waste of the earth s

initial heat.

1824. XXYII. pp. 136 167. Eemarques generates sur Ics temperatures du globe

terrestre et des espaces planetaires. This is the descriptive memoir referred to

above, Mem. Acad. d. Sc. Tome VII.

1824. XXYII. pp. 236 281. Eesume theorique des proprietes de la chaleur

rayonnante. Elementary analytical account of surface-emission and absorption

based on the principle of equilibrium of temperature.

1825. XXYIII. pp. 337 365. Eemarques sur la theorie mathematique de la

chaleur rayonnante. Elementary analysis of emission, absorption and reflection

by walls of enclosure uniformly heated. At p. 364, M. Fourier promises a Theorie

physique de la clialeur to contain the applications of the Theorie Analytique
omitted from the work published in 1822.

1828. XXXYII. pp. 291 315. Eecherches experimentales sur la faculte con-

ductrice des corps minces soumis a Vaction de la chaleur, et description d un nouveau

thermometre de contact. A thermoscope of contact intended for lecture demonstra

tions is also described. M. Ernile Yerdet in his Conferences de Physique, Paris,

1872. Part I. p. 22, has stated the practical reasons against relying on the

theoretical indications of the thermometer of contact. [A. F.]

Of the three notices of memoirs by M. Fourier, contained in the Bulletin des

Sciences par la Societe Philomatique, and quoted here at pages 9 and 11, the first

was written by M. Poisson, the mathematical editor of the Bulletin, the other two by
M. Fourier. [A. F.]



THEORY OF HEAT.

Et ignem rcgunt numeri. PLATO*.

CHAPTER I.

INTRODUCTION.

FIKST SECTION.

Statement of the Object of the Work.

1. THE effects of heat are subject to constant laws which

cannot be discovered without the aid of mathematical analysis.

The object of the theory which we are about to explain is to

demonstrate these laws
;

it reduces all physical researches on

the propagation of heat, to problems of the integral calculus

whose elements are given by experiment. No subject has more
extensive relations with the progress of industry and the natural

sciences
;

for the action of heat is always present, it penetrates
all bodies and spaces, it influences the processes of the arts,

and occurs in all the phenomena of the universe.

When heat is unequally distributed among the different parts
of a solid mass, it tends to attain equilibrium, and passes slowly
from the parts which are more heated to those which are less;

and at the same time it is dissipated at the surface, and lost

in the medium or in the void. The tendency to uniform dis

tribution and the spontaneous emission which acts at the surface

of bodies, change continually the temperature at their different

points. The problem of the propagation of heat consists in

1 Cf. Plato, Timaus, 53, B.

Sre 5
&amp;lt;?7rexeipetro
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[6 0eos] ddccrl re /cat dpiO/mois. [A. F.]
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determining what is the temperature at each point of a body
at a given instant, supposing that the initial temperatures are

known. The following examples will more clearly make known
the nature of these problems.

2. If we expose to the continued and uniform action of a

source of heat, the same part of a metallic ring, whose diameter
is large, the molecules nearest to the source will be first heated,

and, after a certain time, every point of the solid will have

acquired very nearly the highest temperature which it can attain.

This limit or greatest temperature is not the same at different

points ;
it becomes less and less according as they become more

distant from that point at which the source of heat is directly

applied.

When the temperatures have become permanent, the source

of heat supplies, at each instant, a quantity of heat which exactly

compensates for that which is dissipated at all the points of the

external surface of the ring.

If now the source be suppressed, heat will continue to be

propagated in the interior of the solid, but that which is lost

in the medium or the void, will no longer be compensated as

formerly by the supply from the source, so that all the tempe
ratures will vary and diminish incessantly until they have be

come equal to the temperatures of the surrounding medium.

3. Whilst the temperatures are permanent and the source

remains, if at every point of the mean circumference of the ring

an ordinate be raised perpendicular to the plane of the ring,

whose length is proportional to the fixed temperature at that

point, the curved line which passes through the ends of these

ordinates will represent the permanent state of the temperatures,

and it is very easy to determine by analysis the nature of this

line. It is to be remarked that the thickness of the ring is

supposed to be sufficiently small for the temperature to be

sensibly equal at all points of the same section perpendicular

to the mean circumference. When the source is removed, the

line which bounds the ordinates proportional to the temperatures

at the different points will change its form continually. The

problem consists in expressing, by one equation, the variable
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form of this curve, and in thus including in a single formula

all the successive states of the solid.

4. Let z be the constant temperature at a point m of the

mean circumference, x the distance of this point from the source,

that is to say the length of the arc of the mean circumference,

included between the point m and the point o which corresponds

to the position of the source; z is the highest temperature

which the point m can attain by virtue of the constant action

of the source, and this permanent temperature z_ isj*^
function

/(#) of the distance x. The first part of theC^roblemj consists

in determining the function f(x) which represents the permanent
state of the solid.

Consider next the variable state which succeeds to the former

state as soon as the source has been removed
;
denote by t the

time which has passed since the suppression of the source, and

by v the value of the temperature at the point m after the

time t. The quantity v will be a certain function F (x, t) of

the distance x and the time t\ the object of the
(pfoblem^is to

discover this function F (x, t), of which we only Imowas yet

that the initial value is f (x}, so that we ought to have the

equation f (.r)
= F (x, o).

5. If we place a solid homogeneous mass, having the form

of a sphere or cube, in a medium maintained at a constant tem

perature, and if it remains immersed for a very long time, it will

acquire at all its points a temperature differing very little from
that of the fluid. Suppose the mass to be withdrawn in order

to transfer it to a cooler medium, heat will begin to be dissi

pated at its surface
;
the temperatures at different points of the

mass will not be sensibly the same, and if we suppose it divided

into an infinity of layers by surfaces parallel to its external sur

face, each of those layers will transmit, at each instant, a certain

quantity of heat to the layer which surrounds it. If it be

imagined that each molecule carries a separate thermometer,
-which indicates its temperature at every instant, the state of

the solid will from time to time be represented by the variable

system of all these thermometric heights. It is required to

express the successive states by analytical formulae, so that we
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may know at any given instant the temperatures indicated by
each thermometer, and compare the quantities of heat which
flow during the same instant, between two adjacent layers, or

into the surrounding medium.

G. If the mass is spherical, and we denote by x the distance

of a point of this mass from the centre of the sphere, by t the

time which has elapsed since the commencement of the cooling,
and by v the variable temperature of the point m, it is easy to see

that all points situated at the same distance x from the centre

of the sphere have the same temperature v. This quantity v is a

certain function F (x, t} of the radius x and of the time t
;

it must
be such that it becomes constant whatever be the value of x, when
we suppose t to be nothing ;

for by hypothesis, the temperature at

all points is the same at the moment of emersion. The problem
consists in determining that function of x and t which expresses
the value of v.

7. In the next place it is to be remarked, that during the

cooling, a certain quantity of heat escapes, at each instant, through
the external surface, and passes into the medium. The value of

this quantity is not constant
;

it is greatest at the beginning of the

cooling. If however we consider the variable state of the internal

spherical surface whose radius is x, we easily see that there must
be at each instant a certain quantity of heat which traverses that

surface, and passes through that part of the mass which is more
distant from the centre. This continuous flow of heat is variable

like that through the external surface, and both are quantities

comparable with each other
;
their ratios are numbers whose vary

ing values are functions of the distance x, and of the time t which

has elapsed. It is required to determine these functions.

8. If the mass, which has been heated by a long immersion in

a medium, and whose rate of cooling we wish to calculate, is

of cubical form, and if we determine the position of each point mby
three rectangular co-ordinates x, y, z, taking for origin the centre

of the cube, and for axes lines perpendicular to the faces, we see

that the temperature v of the poiat m after the time t, is a func

tion of the four variables x, y, z, and t. The quantities of heat

F. H. 2



18 THEORY OF HEAT. [CHAP. I.

which flow out at each instant through the whole external surface

of the solid, are variable and comparable with each other
;
their

ratios are analytical functions depending on the time t, the expres

sion of which must be assigned.

9. Let us examine also the case in which a rectangular prism

of sufficiently great thickness and of infinite length, being sub

mitted at its extremity to a constant temperature, whilst the air

which surrounds it is maintained at a less temperature, has at last

arrived at a fixed state which it is required to determine. All the

points of the extreme section at the base of the prism have, by

hypothesis, a common and permanent temperature. It is not the

same with a section distant from the source of heat; each of the

points of this rectangular surface parallel to the base has acquired

a fixed temperature, but this is not the same at different points of

the same section, and must be less at points nearer to the surface

exposed to the air. We see also that, at each instant, there flows

across a given section a certain quantity of heat, which always

remains the same, since the state of the solid has become constant.

The problem consists in determining the permanent temperature

at any given point of the solid, and the whole quantity of heat

which, in a definite time, flows across a section whose position is

given.

10. Take as origin of co-ordinates DC, y, z, the centre of the

base of the prism, and as rectangular axes, the axis of the prism

itself, and the two perpendiculars on the sides : the permanent

temperature v of the point m, whose co-ordinates are #, y, z, is

a function of three variables F (x, y, z) : it has by hypothesis a

constant value, when we suppose x nothing, whatever be the values

of y and z. Suppose we take for the unit of heat that quantity

which in the unit of time would emerge from an area equal to a

unit of surface, if the heated mass which that area bounds, and

which is formed of the same substance as the prism, were continu

ally maintained at the temperature of boiling water, and immersed

in atmospheric air maintained at the temperature of melting ice.

We see that the quantity of heat which, in the permanent
state of the rectangular prism, flows, during a unit of time, across

a certain section perpendicular to the axis, has a determinate ratio
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to the quantity of heat taken as unit. This ratio is not the same
for all sections : it is a function $ (#) of the distance r, at which
the section is situated. It is required to find an analytical expres
sion of the function

&amp;lt;f&amp;gt; (#).

11. The foregoing examples suffice to give an exact idea of

the different problems which we have discussed.

The solution of these problems has made us understand that

the effects of the propagation of heat depend in the case of every
solid substance, on three elementary qualities, which are, its capa

city for heat, its own conducMity, and the exterior conducibility.
It has been observed that if two bodies of the same volume

and of different nature have equal temperatures, and if the same

quantity of heat be added to them, the increments of temperature
are not the same; the ratio of these increments is the, ratio of

their capacities for heat. In this manner, the first of the three

specific elements which regulate the action of heat is exactly

defined, and physicists have for a long time known several methods

of determining its value. It is not the same with the two others
;

their effects have often been observed, but there is but one exact

theory which can fairly distinguish, define, and measure them

with precision.

The proper or interior conducibility of a body expresses the

facility with which heat is propagated in passing from one internal

molecule to another. The external or relative conducibility of a

solid body depends on the facility with which heat penetrates the

surface, and passes from this body into a given medium, or passes

from the medium into the solid. The last property is modified by
the more or less polished state of the surface

;
it varies also accord

ing to the medium in which the body is immersed
;
but the

interior conducibility can change only with the nature of the

solid.

These three elementary qualities are represented in our

formulae by constant numbers, and the theory itself indicates

experiments suitable for measuring their values. As soon as they
are determined, all the problems relating to the propagation of

heat depend only on numerical analysis. The knowledge of these

specific properties may be directly useful in several applications of

the physical sciences
;

it is besides an element in the study and

22
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description of different substances. It is a very imperfect know

ledge of bodies which ignores the relations which they have with

one of the chief agents of nature. In general, there is no mathe

matical theory which has a closer relation than this with public

economy, since it serves to give clearness and perfection to the

practice of the numerous arts which are founded on the employ
ment of heat.

12. The problem of the terrestrial temperatures presents

one of the most beautiful applications of the theory of heat
;
the

general idea to be formed of it is this. Different parts of the

surface of the globe are unequally exposed to the influence of the

solar rays; the intensity of their action depends on the latitude of

the place ;
it changes also in the course of the day and in the

course of the year, and is subject to other less perceptible in

equalities. It is evident that, between the variable state of the

surface and that of the internal temperatures, a necessary relation

exists, which may be derived from theory. We know that, at a

certain depth below the surface of the earth, the temperature at a

given place experiences no annual variation: this permanent

underground temperature becomes less and less according as the

place is more and more distant from the equator. We may then

leave out of consideration the exterior envelope, the thickness of

which is incomparably small with respect to the earth s radius,

and regard our planet as a nearly spherical mass, whose surface

is subject to a temperature which remains constant at all points

on a given parallel, but is not the same on another parallel. It

follows from this that every internal molecule has also a fixed tem

perature determined by its position. The mathematical problem
consists in discovering the fixed temperature at any given point,

and the law which the solar heat follows whilst penetrating the

interior of the earth.

This diversity of temperature interests us still more, if we

consider the changes which succeed each other in the envelope
itself on the surface of which we dwell. Those alternations of

heat and cold which are reproduced everyday and in the course of

every year, have been up to the present time the object of repeated
observations. These we can now submit to calculation, and from

a common theory derive all the particular facts which experience
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has taught us. The problem is reducible to the hypothesis that

every point of a vast sphere is affected by periodic temperatures ;

analysis then tells us according to what law the intensity of these

variations decreases according as the depth increases, what is the

amount of the annual or diurnal changes at a given depth, the

epoch of the changes, and how the fixed value of the underground

temperature is deduced from the variable temperatures observed

at the surface.

13. The general equations of the propagation of heat are

partial differential equations, and though their form is very simple
the known methods l do not furnish any general mode of integrat

ing them; we could not therefore deduce from them the values

of the temperatures after a definite time. The numerical inter

pretation of the results of analysis is however necessary, and it

is a degree of perfection which it would be very important to give
to every application of analysis to the natural sciences. So long
as it is not obtained, the solutions may be said to remain in

complete and useless, and the truth which it is proposed to

discover is no less hidden in the formulas of analysis than it was

in the physical problem itself. We have applied ourselves with

much care to this purpose, and we have been able to overcome

the difficulty in all the problems of which we have treated, and

which contain the chief elements of the theory of heat. There is

not one of the problems whose solution does not provide conve

nient and exact means for discovering the numerical values of the

temperatures acquired, or those of the quantities of heat which

1 For the modern treatment of these equations consult

Partielle Differentialgleichungen, von B. Eiemann, Braunschweig, 2nd Ed., 1876.

The fourth section, Bewegung der Warme in festen Korpern.

Cours de physique mathematique, par E. Matthieu, Paris, 1873. The parts

relative to the differential equations of the theory of heat.

The Functions of Laplace, Lame, and Bessel, by I. Todhunter, London, 1875.

Chapters XXI. XXV. XXIX. which give some of Lame s methods.

Conferences de Physique, par E. Verdet, Paris, 1872 [(Euvres, Vol. iv. Part i.].

Legons sur la propagation de la chaleur par conductibilite. These are followed by
a very extensive bibliography of the whole subject of conduction of heat.

For an interesting sketch and application of Fourier s Theory see

Theory of Heat, by Prof. Maxwell, London, 1875 [4th Edition]. Chapter XVIII.

On the diffusion of heat by conduction.

Natural Philosophy, by Sir W. Thomson and Prof. Tait, Vol. i. Oxford, 1867.

Chapter VII. Appendix D, On the secular cooling of the earth. [A. F. ]
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have flowed through, when the values of the time and of the

variable coordinates are known. Thus will be given not only the

differential equations which the functions that express the values

of the temperatures must satisfy; but the functions themselves

will be given under a form which facilitates the numerical

applications.

14. In order that these solutions might be general, and have

an extent equal to that of the problem, it was requisite that they

should accord with the initial state of the temperatures, which is

arbitrary. The examination of this condition shews that we may

develop in convergent series, or express by definite integrals,

functions which are not subject to a constant law, and which

represent the ordinates of irregular or discontinuous lines. This

property throws a new light on the theory of partial differen

tial equations, and extends the employment of arbitrary functions

by submitting them to the ordinary processes of analysis.

15. It still remained to compare the facts with theory. With

this view, varied and exact experiments were undertaken, whose

results were in conformity with those of analysis, and gave them

an authority which one would have been disposed to refuse to

them in a new matter which seemed subject to so much uncer

tainty. These experiments confirm the principle from which we

started, and which is adopted by all physicists in spite of the

diversity of their hypotheses on the nature of heat.

16. Equilibrium of temperature is effected not only by way
of contact, it is established also between bodies separated from

each other, which are situated for a long time in the same region.

This effect is independent of contact with a medium; we have

observed it in spaces wholly void of air. To complete our theory
it was necessary to examine the laws which radiant heat follows,

on leaving the surface of a body. It results from the observations

of many physicists and from our own experiments, that the inten

sities of the different rays, which escape in all directions from any
point in the surface of a heated body, depend on the angles which

their directions make with the surface at the same point. We
have proved that the intensity of a ray diminishes as the ray
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makes a smaller angle with the element of surface, and that it is

proportional to the sine of that angle \ This general law of

emission of heat which different observations had already indi

cated, is a necessary consequence of the principle of the equilibrium
of temperature and of the laws of propagation of heat in solid

bodies.

Such are the chief problems which have been discussed in

this work; they are all directed to one object only, that is to

establish clearly the mathematical principles of the theory of heat,

and to keep up in this way with the progress of the useful arts,

and of the study of nature.

17. From what precedes it is evident that a very extensive

class of phenomena exists, not produced by mechanical forces, but

resulting simply from the presence and accumulation of heat.

This part of natural philosophy cannot be connected with dy
namical theories, it has principles peculiar to itself, and is founded

on a method similar to that of other exact sciences. The solar

heat, for example, which penetrates the interior of the globe, dis

tributes itself therein according to a regular law which does not

depend on the laws of motion, and cannot be determined by the

principles of mechanics. The dilatations which the repulsive

force of heat produces, observation of which serves to measure

temperatures, are in truth dynamical effects; but it is not these

dilatations which we calculate, when we investigate the laws of

the propagation of heat.

18. There are other more complex natural effects, which

depend at the same time on the influence of heat, and of attrac

tive forces: thus, the variations of temperatures which the move

ments of the sun occasion in the atmosphere and in the ocean,

change continually the density of the different parts of the air

and the waters. The effect of the forces which these masses obey

is modified at every instant by a new distribution of heat, and

it cannot be doubted that this cause produces the regular winds,

and the chief currents of the sea; the solar and lunar attractions

occasioning in the atmosphere effects but slightly sensible, and

not general displacements. It was therefore necessary, in order to

1 Mem. Acad. d. Sc. Tome V. Paris, 1826, pp. 179213. [A. F.]



24 THEORY OF HEAT. [CHAP. I.

submit these grand phenomena to calculation, to discover the

mathematical laws of the propagation of heat in the interior of

masses.

19. It will be perceived, on reading this work, that heat at

tains in bodies a regular disposition independent of the original

distribution, which may be regarded as arbitrary.

In whatever manner the heat was at first distributed, the

system of temperatures altering more and more, tends to coincide

sensibly with a definite state which depends only on the form of

the solid. In the ultimate state the temperatures of all the points

are lowered in the same time, but preserve amongst each other the

same ratios : in order to express this property the analytical for

mulae contain terms composed of exponentials and of quantities

analogous to trigonometric functions.

Several problems of mechanics present analogous results, such as

the isochronism of oscillations, the multiple resonance of sonorous

bodies. Common experiments had made these results remarked,

and analysis afterwards demonstrated their true cause. As to

those results which depend on changes of temperature, they could

not have been recognised except by very exact experiments ;
but

mathematical analysis has outrun observation, it has supplemented
our senses, and has made us in a manner witnesses of regular and

harmonic vibrations in the interior of bodies.

20. These considerations present a singular example of the

relations which exist between the abstract science of numbers
and natural causes.

When a metal bar is exposed at one end to the constant action

of a source of heat, and every point of it has attained its highest

temperature, the system of fixed temperatures corresponds exactly
to a table of logarithms ;

the numbers are the elevations of ther

mometers placed at the different points, and the logarithms are

the distances of these points from the source. In general heat

distributes itself in the interior of solids according to a simple law

expressed by a partial differential equation common to physical

problems of different order. The irradiation of heat has an evident

relation to the tables of sines, for the rays which depart from the

same point of a heated surface, differ very much from each other,
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and their intensity is rigorously proportional to the sine of the

angle which the direction of each ray makes with the element of

surface.

If we could observe the changes of temperature for every in

stant at every point of a solid homogeneous mass, we should dis

cover in these series of observations the properties of recurring

series, as of sines and logarithms ; they would be noticed for

example in the diurnal or annual variations of temperature of

different points of the earth near its surface.

We should recognise again the same results and all the chief

elements of general analysis in the vibrations of elastic media, in

the properties of lines or of curved surfaces, in the movements of

the stars, and those of light or of fluids. Thus the functions ob

tained by successive differentiations, which are employed in the

development of infinite series and in the solution of numerical

equations, correspond also to physical properties. The first of

these functions, or the fluxion properly so called, expresses in

geometry the inclination of the tangent of a curved line, and in

dynamics the velocity of a moving body when the motion varies
;

in the theory of heat it measures the quantity of heat which flows

at each point of a body across a given surface. Mathematical

analysis has therefore necessary relations with sensible phenomena ;

its object is not created by human intelligence; it is a pre-existent

element of the universal order, and is not in any way contingent
or fortuitous

;
it is imprinted throughout all nature.

21. Observations more exact and more varied will presently
ascertain whether the effects of heat are modified by causes which

have not yet been perceived, and the theory will acquire fresh

perfection by the continued comparison of its results with the

results of experiment ;
it will explain some important phenomena

which we have not yet been able to submit to calculation
;

it will

shew how to determine all the thermornetric effects of the solar

rays, the fixed or variable temperature which would be observed at

different distances from the equator, whether in the interior of

the earth or beyond the limits of the atmosphere, whether in the

ocean or in different regions of the air. From it will be derived

the mathematical knowledge of the great movements which result

from the influence of heat combined with that of gravity. The
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same principles will serve to measure the conducibilities, proper or

relative, of different bodies, and their specific capacities, to dis

tinguish all the causes which modify the emission of heat at the

surface of solids, and to perfect thermometric instruments.

The theory of heat will always attract the attention of ma

thematicians, by the rigorous exactness of its elements and the

analytical difficulties peculiar to it, and above all by the extent

and usefulness of its applications ;
for all its consequences con

cern at the same time general physics, the operations of the arts,

domestic uses and civil economy.

SECTION II.

Preliminary definitions and general notions.

22. OF the nature of heat uncertain hypotheses only could be

formed, but the knowledge of the mathematical laws to which its

effects are subject is independent of all hypothesis ;
it requires only

an attentive examination of the chief facts which common obser

vations have indicated, and which have been confirmed by exact

experiments.
It is necessary then to set forth, in the first place, the general

results of observation, to give exact definitions of all the elements

of the analysis, and to establish the principles upon which this

analysis ought to be founded.

The action of heat tends to expand all bodies, solid, liquid or

gaseous ;
this is the property which gives evidence of its presence.

Solids and liquids increase in volume^
if the quantity of heat which

they contain increases
; they contract if it diminishes.

When all the parts of a solid homogeneous body, for example
those of a mass of metal, are equally heated, and preserve without

any change the same quantity of heat, they have also and retain

the same density. This state is expressed by saying that through
out the whole extent of the mass the molecules have a common
and permanent temperature.

23. The thermometer is a body whose smallest changes of

volume can be appreciated ;
it serves to measure temperatures by
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the dilatation of a fluid or of air. We assume the construction,
use and properties of this instrument to be accurately known.
The temperature of a body equally heated in every part, and
which keeps its heat, is that which the thermometer indicates

when it is and remains in perfect contact with the body in

question.

Perfect contact is when the thermometer is completely im
mersed in a fluid mass, and, in general, when there is no point of

the external surface of the instrument which is not touched by one
of the points of the solid or liquid mass whose temperature is to be
measured. In experiments it is not always necessary that this con

dition should be rigorously observed
;
but it ought to be assumed

in order to make the definition exact.

24. Two fixed temperatures are determined on, namely : the

temperature of melting ice which is denoted by 0, and the tern-

perature of boiling water which we will denote by 1 : the water is

supposed to be boiling under an atmospheric pressure represented

by a certain height of the barometer (76 centimetres), the mercury
of the barometer being at the temperature 0.

25. Different quantities of heat are measured by determining
how many times they contain a fixed quantity which is taken as

the unit. Suppose a mass of ice having a definite weight (a kilo

gramme) to be at temperature 0, and to be converted into water at

the same temperature by the addition of a certain quantity of

heat : the quantity of heat thus added is taken as the unit of

measure. Hence the quantity of heat expressed by a number C
contains C times the quantity required to diaoolvo a kilogramme
of ice at the temperature zero into a mass of water at the same

zero temperature.

26. To raise a metallic mass having a certain weight, a kilo

gramme of iron for example, from the temperature to the

temperature 1, a new quantity of heat must be added to that

which is already contained in the mass. The number C which

denotes this additional quantity of heat, is the specific capacity of

iron for heat; the number C has very different values for different

substances.
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27. If a body of definite nature and weight (a kilogramme of

mercury) occupies a volume Fat temperature 0, it will oecupy a

greater volume F+ A, when it has acquired the temperature 1,

that is to say, when the heat which it contained at the tempera
ture has been increased by a new quantity C, equal to the

specific capacity of the body for heat. But if, instead of adding
this quantity C, a quantity zC is added (z being a number

positive or negative) the new volume will be F+ B instead

of F + A. Now experiments shew that if | is equal to J, the

increase of volume 8 is only half the total increment A, and

that in general the value of B is ^A, when the quantity of heat

added is zC.

28. The ratio z of the two quantities zG and C of heat added,

which is the same as the ratio of the two increments of volume 8

and A, is that which is called the temperature; hence the quantity
which expresses the actual temperature of a body represents the

excess of its actual volume over the volume which it would occupy
at the temperature of melting ice, unity representing the whole

excess of volume which corresponds to the boiling point of

water, over the volume which corresponds to the melting point
of ice.

29. The increments of volume of bodies are in general pro

portional to the increments of the quantities of heat which

produce the dilatations, but it must be remarked that this propor
tion is exact only in the case where the bodies in question are

subjected to temperatures remote from those which determine

their change of state. The application of these results to all

liquids must not be relied on; and with respect to water in

particular, dilatations do not always follow augmentations of

heat.

In general the temperatures are numbers proportional to the

quantities of heat added, and in the cases considered by us,

these numbers are proportional also to the increments of

volume.

30. Suppose that a body bounded by a plane surface having
a certain area (a square metre) is maintained in any manner
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whatever at constant temperature 1, common to all its points,
and that the surface in question is in contact with air maintained
at temperature : the heat which escapes continuously at the
surface and passes into the surrounding medium will be replaced

always by the heat which proceeds from the constant cause to

whose action the body is exposed; thus, a certain quantity of heat
denoted by h will flow through the surface in a definite time (a

minute).

This amount_ ^ of a flow continuous and always similar to

itself, which takes place at a unit of surface at a fixed temperature,
is the measure of the external conducibility of the body, that is

to say, of the facility with which its surface transmits heat to the

atmospheric air.

The air is supposed to be continually displaced with a given
uniform velocity : but if the velocity of the current increased, the

quantity of heat communicated to the medium would vary also :

the same would happen if the density of the medium were

iucrease
~

31. If the excess of the constant temperature of the body
over the temperature of surrounding bodies, instead of being equal
to 1, as has been supposed, had a less value, the quantity of heat

dissipated would be less than k. The result of observation is,

as we shall see presently, that this quantity of heat lost may be

regarded as sensibly proportional to the excess of the temperature
of the body over that of the air and surrounding bodies. Hence
the quantity h having been determined by one experiment in

which the surface heated is at temperature 1, and the medium at

temperature 0; we conclude that hz would be the quantity, if the

temperature of the surface were z, all the other circumstances

remaining the same. This result must be admitted when z is a

small fraction.

32. The value h of the quantity of heat which is dispersed

across a heated surface is different for different bodies; and it

varies for the same body according to the different states of the

surface. The effect of irradiation diminishes as the surface

becomes more polished; so that by destroying the polish of the

surface the value of h is considerably increased. A heated
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metallic body will be more quickly cooled if its external surface is

covered with a black coating such as will entirely tarnish its

metallic lustre.

33. The rays of heat which escape from the surface of a body

pass freely through spaces void of air; they are propagated also

in atmospheric air: their directions are not disturbed by agitations

in the intervening air: they can be reflected by metal mirrors

and collected at their foci. Bodies at a high temperature, when

plunged into a liquid, heat directly only those parts of the mass

with which their surface is in contact. The molecules whose dis

tance from this surface is not extremely small, receive no direct

heat; it is not the same with aeriform fluids; in these the rays of

heat are borne with extreme rapidity to considerable distances,

whether it be that part of these rays traverses freely the layers of

air, or whether these layers transmit the rays suddenly without

altering their direction.

34. When the heated body is placed in air which is main

tained at a sensibly constant temperature, the heat communicated

to the air makes the layer of the fluid nearest to the surface of the

body lighter; this layer rises more quickly the more intensely it is

heated, and is replaced by another mass of cool air. A current

is thus established in the air whose direction is vertical, and

whose velocity is greater as the temperature of the body is higher.
For this reason if the body cooled itself gradually the velocity of

the current would diminish with the temperature, and the law

of cooling would not be exactly the same as if the body were

exposed to a current of air at a constant velocity.

35. When bodies are sufficiently heated to diffuse a vivid light,

part of their radiant heat mixed with that light can traverse trans

parent solids or liquids, and is subject to the force which produces
refraction. The quantity of heat which possesses this faculty
becomes less as the bodies are less inflamed

;
it is, we may say,

insensiblefor very opaque bodies however highly theymaybe heated.

A thin transparent plate intercepts almost all the direct heat

which proceeds from an ardent mass of metal
;
but it becomes

heated in proportion as the intercepted rays are accumulated in



SECT. II.] PRELIMINARY DEFINITIONS. 31

it
; whence, if it is formed of ice, it becomes liquid ;

but if this

plate of ice is exposed to the rays of a torch it allows a sensible

amount of heat to pass through with the light.

36. We have taken as the measure of the external conduci-

bility of a solid body a coefficient h, which denotes the quantity of

heat which would pass, in a definite time (a minute), from the
surface of this body, into atmospheric air, supposing that the sur

face had a definite extent (a square metre), that the constant

temperature of the body was 1, and that of the air 0, and that
the heated surface was exposed to a current of air of a given in

variable velocity. This value of h is determined by observation.

The quantity of heat expressed by the coefficient is composed of

two distinct parts which cannot be measured except by very exact

experiments. One is the heat communicated by way of contact to

the surrounding air : the other, much less than the first, is the

radiant heat emitted. We must assume, in our first investigations,
that the quantity of heat lost does not change when the tempera
tures of the body and of the medium are augmented by the same

sufficiently small quantity.

37. Solid substances differ again, as we have already remarked,

by their property of being more or less permeable to heat
;
this

quality is their conducibility proper: we shall give its definition and
exact measure, after having treated of the uniform and linear pro

pagation of heat. Liquid substances possess also the property of

transmitting heat from molecule to molecule, and the numerical

value of their conducibility varies according to the nature of the

substances : but this effect is observed with difficulty in liquids,

since their molecules change places on change of temperature. The

propagation q heat in them depends chiefly on this continual dis

placement, in all cases where the lower parts of the mass are most

exposed to the action of the source of heat. If, on the contrary,
the source of heat be applied to that part of the mass which is

highest, as was the case in several of our experiments, the transfer

of heat, which is very slow, does not produce any displacement,
at least when the increase of temperature does not diminish the

volume, as is indeed noticed in singular cases bordering on changes
of state.
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38. To this explanation of the chief results of observation, a

general remark must be added on equilibrium of temperatures;

which consists in this, that different bodies placed in the same re

gion, all of whose parts are and remain equally heated, acquire also

a common and permanent temperature.

Suppose that all the parts of a mass M have a common and

constant temperature a, which is maintained by any cause what

ever: if a smaller body m be placed in perfect contact with the

mass M, it will assume the common temperature a.

In reality this result would not strictly occur except after an

infinite time : but the exact meaning of the proposition is that if

the body m had the temperature a before being placed in contact,

it would keep it without any change. The same would be the case

with a multitude of other bodies n, p, q, r each of which was

placed separately in perfect contact with the mass M : all would

acquire the constant temperature a. Thus a thermometer if suc

cessively applied to the different bodies m, n,p, q, r would indicate

the same temperature.

39. The effect in question is independent of contact, and

would still occur, if every part of the body m were enclosed in

the solid M, as in an enclosure, without touching any of its parts.

For example, if the solid were a spherical envelope of a certain

thickness, maintained by some external cause at a temperature a,

and containing a space entirely deprived of air, and if the body m
could be placed in any part whatever of this spherical space, with

out touching any point of the internal surface of the enclosure, it

would acquire the common temperature a, or rather, it would pre
serve it if it had it already. The result would be the same for

all the other bodies n, p, q, r, whether they were placed separately
or all together in the same enclosure, and whatever also their sub

stance and form might be.

40. Of all modes of presenting to ourselves the action of

heat, that which seems simplest and most conformable to observa

tion, consists in comparing this action to that of light. Mole
cules separated from one another reciprocally communicate, across

empty space, their rays of heat, just as shining bodies transmit

their light.
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If within an enclosure closed in all directions, and maintained

by some external cause at a fixed temperature a, we suppose dif

ferent bodies to be placed without touching any part of the bound

ary, different effects will be observed according as the bodies,

introduced into this space free from air, are more or less heated.

If, in the first instance, we insert only one of these bodies, at the

same temperature as the enclosure, it will send from all points of

its surface as much heat as it receives from the solid which sur

rounds it, and is maintained in its original state by this exchange
of equal quantities.

If we insert a second body whose temperature 6 is less than a,

it will at first receive from the surfaces which surround it on

all sides without touching it, a quantity of heat greater than that

which it gives out : it will be heated more and more and will

absorb through its surface more heat than in the first instance.

The initial temperature b continually rising, will approach with

out ceasing the fixed temperature , so that after a certain time

the difference will be almost insensible. The effect would be op

posite if we placed within the same enclosure a third body whose

temperature was greater than a.

41. All bodies have the property of emitting heat through

their surface; the hotter they are the more they emit; the

intensity of the emitted rays changes very considerably with the

state of the surface.

42. Every surface which receives rays of heat from surround

ing bodies reflects part and admits the rest : the heat which is not

reflected, but introduced through the surface, accumulates within

the solid; and so long as it exceeds the quantity dissipated by

irradiation, the temperature rises.

43. The rays which tend to go out of heated bodies are

arrested at the surface by a force which reflects part of them into

the interior of the mass. The cause which hinders the incident

rays from traversing the surface, and which divides these rays into

two parts, of which one is reflected and the other admitted, acts in

the same manner on the rays which are directed from the interior

of the body towards external space.

F. H. 3
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If by modifying the state of the surface we increase the force

by which it reflects the incident rays, we increase at the same time

the power which it has of reflecting towards the interior of the

body rays which are tending to go out. The incident rays intro

duced into the mass, and the rays emitted through the surface, are

equally diminished in quantity.

44. If within the enclosure above mentioned a number of

bodies were placed at the same time, separate from each other

and unequally heated, they would receive and transmit rays of heat

so that at each exchange their temperatures would continually

vary, and would all tend to become equal to the fixed temperature

of the enclosure.

This effect is precisely the same as that which occurs when

heat is propagated within solid bodies
;
for the molecules which

compose these bodies are separated by spaces void of air, and

have the property of receiving, accumulating and emitting heat.

Each of them sends out rays on all sides, and at the same time

receives other rays from the molecules which surround it.

* 45. The heat given out by a point situated in the interior of

a solid mass can pass directly to an extremely small distance only;

it is, we may say, intercepted by the nearest particles ;
these parti

cles only receive the heat directly and act on more distant points.

It is different with gaseous fluids
;
the direct effects of radiation

become sensible in them at very considerable distances.

46. Thus the heat which escapes in all directions from a part
of the surface of a solid, passes on in air to very distant points ;

but

is emitted only by those molecules of the body which are extremely
near the surface. A point of a heated mass situated at a very
small distance from the plan^ superficies which separates the mass
from external space, sends to that space an infinity of rays, but

they do not all arrive there; they are diminished by all that quan

tity of heat which is arrested by the intermediate molecules of the

solid. The part of the ray actually dispersed into space becomes
less according as it traverses a longer path within the mass. Thus

the ray which escapes perpendicular to the surface has greater in

tensity than that which, departing from the same point, follows
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an oblique direction, and the most oblique rays are wholly inter

cepted.

The same consequences apply to all the points which are near

enough to the surface to take part in the emission of heat, from

which it necessarily follows that the whole quantity of heat which

escapes from the surface in the normal direction is very much

greater than that whose direction is oblique. We have submitted

this question to calculation, and our analysis proves that the in

tensity of the ray is proportional to the sine of the angle which

the ray makes with the element of surface. Experiments had

already indicated a similar result.

47. This theorem expresses a general law which has a neces

sary connection with the equilibrium and mode of action of heat.

If the rays which escape from a heated surface had the same in

tensity in all directions, a thermometer placed at one of the points
of a space bounded on all sides by an enclosure maintained at a

constant temperature would indicate a temperature incomparably

greater than -that of the enclosure
1
. Bodies placed within this

enclosure would not take a common temperature, as is always

noticed; the temperature acquired by them would depend on the

place which they occupied, or on their form, or on the forms of

neighbouring bodies.

The same results would be observed, or other effects equally

opposed to common experience, if between the rays which escape

from the same point any other relations were admitted different

from those which we have enunciated. We have recognised this

law as the only one compatible with the general fact of the equi
librium of radiant heat.

48. If a space free from air is bounded on all sides by a solid

enclosure whose parts are maintained at a common and constant

temperature a, and if a thermometer, having the actual tempera
ture a, is placed at any point whatever of the space, its temperature
will continue without any change. It will receive therefore at

each instant from the inner surface of the enclosure as much heat

as it gives out to it. This effect of the rays of heat in a given

space is, properly speaking, the measure of the temperature : but

1 See proof by M. Fourier, Ann. d. Cli. et Ph. Ser. 2, iv. p. 128. [A. F.]

32
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this consideration presupposes the mathematical theory of radiant

heat.

If now between the thermometer and a part of the surface of

the enclosure a body M be placed whose temperature is a, the

thermometer will cease to receive rays from one part of the inner

surface, but the rays will be replaced by those which it will re

ceive from the interposed body M. An easy calculation proves
that the compensation is exact, so that the state of the thermo

meter will be unchanged. It is not the same if the temperature
of the body M is different from that of the enclosure. When
it is greater, the rays which the interposed body M sends to the

thermometer and which replace the intercepted rays convey more

heat than the latter; the temperature of the thermometer must

therefore rise.

If, on the contrary, the intervening body has a temperature
less than a, that of the thermometer must fall; for the rays which

this body intercepts are replaced by those which it gives out, that

is to say, by rays cooler than those of the enclosure; thus the

thermometer does not receive all the heat necessary to maintain

its temperature a.

49. Up to this point abstraction has been made of the power
which all surfaces have of reflecting part of the rays wrhich are

sent to them. If this property were disregarded we should have

only a very incomplete idea of the equilibrium of radiant heat.

Suppose then that on the inner surface of the enclosure, main

tained at a constant temperature, there is a portion which enjoys,
in a certain degree, the power in question ;

each point of the re

flecting surface will send into space two kinds of rays ;
the one go

out from the very interior of the substance of which the enclosure is

formed, the others are merely reflected by the same surface against
which they had been sent. But at the same time that the surface

repels on the outside part of the incident rays, it retains in the

inside part of its own rays. In this respect an exact compensation
is established, that is to say, every one of its own rays which the

surface hinders from going out is replaced by a reflected ray of

equal intensity.

The same result would happen, if the power of reflecting rays
affected in any degree whatever other parts of the enclosure, or the
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surface of bodies placed within the same space and already at
the common temperature.

Thus the reflection of heat does not disturb the equilibrium
of temperatures, and does not introduce, whilst that equilibrium
exists, any change in the law according to which the

intensity of
rays which leave the same point decreases

proportionally to the
sine of the angle of emission.

50. Suppose that in the same enclosure, all of whose parts
maintain the temperature a, we place an isolated body M, and
a polished metal surface R, which, turning its concavity towards
the body, reflects great part of the rays which it received from the
body; if we place a thermometer between the body IT and the re

flecting surface R, at the focus of this mirror, three different effects
will be observed according as the temperature of the body J/ is

equal to the common temperature a, or is greater or less.

In the first case, the thermometer preserves the temperature
a

;
it receives 1, rays of heat from all parts of the enclosure not

hidden from&quot; it by the bodyM or by the mirror
; 2, rays given out

by the body ; 3, those which the surface R sends out to the focus,
whether they come from the mass of the mirror itself, or whether its

surface has simply reflected them
; and amongst the last we may

distinguish between those which have been sent to the mirror by
the mass J/, and those which it has received from the enclosure.
All the rays in question proceed from surfaces which, by hypo
thesis, have a common temperature a, so that the thermometer
is precisely in the same state as if the space bounded by the en
closure contained 110 other body but itself.

In the second case, the thermometer placed between the heated

body M and the mirror, must acquire a temperature greater than
a. In reality, it receives the same rays as in the first hypothesis ;

but with two remarkable differences : one arises from the fact that
the rays sent by the body J/ to the mirror, and reflected upon the

thermometer, contain more heat than in the first case. The other
difference depends on the fact that the rays sent directly by the

body M to the thermometer contain more heat than formerly.
Both causes, and chiefly the first, assist in raising the tempera
ture of the thermometer.

In the third case, that is to say, when the temperature of the
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mass M is less than a, the temperature must assume also a tem

perature less than a. In fact, it receives again all the varieties of

rays which we distinguished in the first case : but there are two

kinds of them which contain less heat than in this first hypothesis,

that is to say, those which, being sent out by the body M, are

reflected by the mirror upon the thermometer, and those which

the same body M sends to it directly. Thus the thermometer floes

not receive all the heat which it requires to preserve its original

temperature a. It gives out more heat than it receives. It is

inevitable then that its temperature must fall to the point at

which the rays which it receives suffice to compensate those which

it loses. This last effect is what is called the reflection of cold,

and which, properly speaking, consists in the reflection of too

feeble heat. The mirror intercepts a certain quantity of heat, and

replaces it by a less quantity.

51. If in the enclosure, maintained at a constant temperature

a, a body M be placed, whose temperature a is less than a, the

presence of this body will lower the thermometer exposed to its

rays, and we may remark that the rays sent to the thermometer

from the surface of the body M, are in general of two kinds,

namely, those which come from inside the mass M, and those

which, coming from different parts of the enclosure, meet the sur

face M and are reflected upon the thermometer. The latter rays

have the common temperature a, but those which belong to the

body M contain less heat, and these are the rays which cool the

thermometer. If now, by changing the state of the surface of the

body M, for example, by destroying the polish, we diminish the

power which it has of reflecting the incident rays, the thermo

meter will fall still lower, and will assume a temperature a&quot; less

than a. In fact all the conditions would be the same as in the

preceding case, if it were not that the body M gives out a greater

quantity of its own rays and reflects a less quantity of the rays-

which it receives from the enclosure; that is to say, these last rays,

which have the common temperature, are in part replaced by
cooler rays. Hence the thermometer no longer receives so much
heat as formerly.

If, independently of the change in the surface of the body M,
we place a metal mirror adapted to reflect upon the thermometer
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the rays which have left M, the temperature will assume a value

a&quot; less than a&quot;. The mirror, in fact, intercepts from the thermo
meter part of the rays of the enclosure which all have the tem

perature a, and replaces them by three kinds of rays ; namely,
1, those which come from the interior of the mirror itself, and
which have the common temperature ; 2, those which the different

parts of the enclosure send to the mirror with the same tempera
ture, and which are reflected to the focus

; 3, those which, coming
from the interior of the body J/, fall upon the mirror, and are

reflected upon the thermometer. The last rays have a tempera
ture less than a

;
hence the thermometer no longer receives so

much heat as it received before the mirror was set up.

Lastly, if we proceed to change also the state of the surface of

the mirror, and by giving it a more perfect polish, increase its

power of reflecting heat, the thermometer will fall still lower. In

fact, all the conditions exist which occurred in the preceding case.

Only, it happens that the mirror gives out a less quantity of its

own rays, and replaces them by those which it reflects. Now,

amongst these last rays, all those which proceed from the interior

of the mass M are less intense than if they had come from the

interior of the metal mirror
;
hence the thermometer receives still

less heat than formerly : it will assume therefore a temperature
a&quot;&quot; less than a&quot; .

By the same principles all the known facts of the radiation of

heat or of cold are easily explained.

52. The effects of heat can by no means be compared with

those of an elastic fluid whose molecules are at rest.

It would be useless to attempt to deduce from this hypothesis

the laws of propagation which we have explained in this work,

and which all experience has confirmed. The free state of heat is

the same as that of light ;
the active state of this element is then

entirely different from that of gaseous substances. Heat acts in

the same manner in a vacuum, in elastic fluids, and in liquid or

solid masses, it is propagated only by way of radiation, but its

sensible effects differ according to the nature of bodies.

53. Heat is the origin of all elasticity ;
it is the repulsive

force which preserves the form of solid masses, and the volume of
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liquids. In solid masses, neighbouring molecules would yield to

their mutual attraction, if its effect were not destroyed by the

heat which separates them.

This elastic force is greater according as the temperature is

higher ;
which is the reason why bodies dilate or contract when

their temperature is raised or lowered.

54 The equilibrium which exists, in the interior of a solid

mass, between the repulsive force of heat and the molecular attrac

tion, is stable
;
that is to say, it re-establishes itself when disturbed

by an accidental cause. If the molecules are arranged at distances

proper for equilibrium, and if an external force begins to increase

this distance without any change of temperature, the effect of

attraction begins by surpassing that of heat, and brings back the

molecules to their original position, after a multitude of oscillations

which become less and less sensible.

A similar effect is exerted in the opposite sense when a me
chanical cause diminishes the primitive distance of the molecules

;

such is the origin of the vibrations of sonorous or flexible bodies,

and of all the effects of their elasticity.

55. In the liquid or gaseous state of matter, the external

pressure is additional or supplementary to the molecular attrac

tion, and, acting on the surface, does not oppose change of form,

but only change of the volume occupied. Analytical investigation

will best shew how the repulsive force of heat, opposed to the

attraction of the molecules or to the external pressure, assists in

the composition of bodies, solid or liquid, formed of one or more

elements, and determines the elastic properties of gaseous fluids
;

but these researches do not belong to the object before us, and

appear in dynamic theories.

56. It cannot be doubted that the mode of action of heat

always consists, like that of light, in the reciprocal communication

of rays, and this explanation is at the present time adopted by
the majority of physicists ;

but it is not necessary to consider the

phenomena under this aspect in order to establish the theory of heat.

In the course of this work it will be seen how the laws of equili

brium and propagation of radiant heat, in solid or liquid masses,
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can be rigorously demonstrated, independently of any physical

explanation, as the necessary consequences of common observations.

SECTION III.

Principle of the communication of heat

57. We now proceed to examine what experiments teach us

concerning the communication of heat.

If two equal molecules are formed of the same substance and
have the same temperature, each of them receives from the other

as much heat as it gives up to it
;
their mutual action may then be

regarded as null, since the result of this action can bring about no

change in the state of the molecules. If, on the contrary, the first

is hotter than the second, it sends to it more heat than it receives

from it
;
the result of the mutual action is the difference of these

two quantities of heat. In all cases we make abstraction of

the two equal quantities of heat which any two material points

reciprocally give up ;
we conceive that the point most heated

acts only on the other, and that, in virtue of this action, the first

loses a certain quantity of heat which is acquired by the second.

Thus the action of two molecules, or the quantity of heat which

the hottest communicates to the other, is the difference of the two

quantities which they give up to each other.

58. Suppose that we place in air a solid homogeneous body,
whose different points have unequal actual temperatures ;

each of

the molecules of which the body is composed will begin to receive

heat from those which are at extremely small distances, or will

communicate it to them. This action exerted during the same

instant between all points of the mass, will produce an infinitesi

mal resultant change in all the temperatures : the solid will ex

perience at each instant similar effects, so that the variations of

temperature will become more and more sensible.

Consider only the system of two molecules, m and n, equal and

extremely near, and let us ascertain what quantity of heat the

first can receive from the second during one instant : we may
then apply the same reasoning to all the other points which are
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near enough to the point m, to act directly on it during the first

instant.

The quantity of heat communicated by the point n to the

point m depends on the duration of the instant, on the very small

distance between these points, on the actual temperature of each

point, and on the nature of the solid substance
;
that is to say, if

one of these elements happened to vary, all the other remaining
the same, the quantity of heat transmitted would vary also. Now

experiments have disclosed, in this respect, a general result : it

consists in this, that all the other circumstances being the same,

the quantity of heat which one of the molecules receives from the

other is proportional to the difference of temperature of the two

molecules. Thus the quantity would be double, triple, quadruple, if

everything else remaining the same, the difference of the tempera
ture of the point n from that of the point m became double, triple,

or quadruple. To account for this result, we must consider that the

action of n on m is always just as much greater as there is a greater

difference between the temperatures of the two points : it is null,

if the temperatures are equal, but if the molecule n contains more

heat than the equal molecule m, that is to say, if the temperature
of in being v, that of n is v + A, a portion of the exceeding heat

will pass from n to m. Now, if the excess of heat were double, or,

which is the same thing, if the temperature of n were v + 2A, the

exceeding heat would be composed of two equal parts correspond

ing to the two halves of the whole difference of temperature 2A
;

each of these parts would have its proper effect as if it alone

existed : thus the quantity of heat communicated by n to m would

be twice as great as when the difference of temperature is only A.

This simultaneous action of the different parts of the exceeding
heat is that which constitutes the principle of the communication

of heat. It follows from it that the sum of the partial actions, or

the total quantity of heat which m receives from n is proportional

to the difference of the two temperatures.

59. Denoting by v and v the temperatures of two equal mole

cules m and n
t by pt

their extremely small distance, and by dt, the

infinitely small duration of the instant, the quantity of heat which

m receives from n during this instant will be expressed by

(v v)&amp;lt;f) (p) . dt. We denote by $ (p) a certain function of the
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distance p which, in solid bodies and in liquids, becomes nothing
when p has a sensible magnitude. The function is the same for

every point of the same given substance
;
it varies with the nature

of the substance.

60. The quantity of heat which bodies lose through their sur

face is subject to the same principle. If we denote by a- the area,

finite or infinitely small, of the surface, all of whose points have
the temperature v, and if a represents the temperature of the

atmospheric air, the coefficient h being the measure of the ex
ternal conducibility, we shall have ah (v a) dt as the expression
for the quantity of heat which this surface cr transmits to the air

during the instant dt.

When the two molecules, one of which transmits to the other

a certain quantity of heat, belong to the same solid, the exact

expression for the heat communicated is that which we have

given in the preceding article
;

and since the molecules are

extremely near, the difference of the temperatures is extremely
small. It is not the same when heat passes from a solid body into

a gaseous medium. But the experiments teach us that if the

difference is a quantity sufficiently small, the heat transmitted is

sensibly proportional to that difference, and that the number h

may, in these first researches
1

t
be considered as having a constant

value, proper to each state of the surface, but independent of the

temperature.

61. These propositions relative to the quantity of heat com
municated have been derived from different observations. We
see first, as an evident consequence of the expressions in question,

that if we increased by a common quantity all the initial tempe
ratures of the solid mass, and that of the medium in which it is

placed, the successive changes of temperature would be exactly

the same as if this increase had not been made. Now this result

is sensibly in accordance with experiment ;
it has been admitted

by the physicists who first have observed the effects of heat.

1 More exact la^vs of cooling investigated experimentally by Dulong and Petit

vrill be found in the Journal de VEcole Poll/technique, Tome xi. pp. 234294,
Paris, 1820, or in Jamin, Cours de Physique, Le$on 47. [A. F.]
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62. If the medium is maintained at a constant temperature,

and if the heated body which is placed in that medium has

dimensions sufficiently small for the temperature, whilst falling

more and more, to remain sensibly the same at all points of the

body, it follows from the same propositions, that a quantity of heat

will escape at each instant through the surface of the body pro

portional to the excess of its actual temperature over that of the

medium. Whence it is easy to conclude, as will be seen in the

course of this work, that the line whose abscissae represent the

times elapsed, and whose ordinates represent the temperatures

corresponding to those times, is a logarithmic curve : now, ob

servations also furnish the same result, when the excess of the

temperature of the solid over that of the- medium is a sufficiently

small quantity.

63. Suppose the medium to be maintained at the constant

temperature 0, and that the initial temperatures of different

points a, b, c, d &c. of the same mass are a, ft, y, B &c., that at the

end of the first instant they have become a
, ft , y, S &c., that at

the end of the second instant they have become
a&quot;, ft , 7&quot;,

8&quot; &c.,

and so on. We may easily conclude from the propositions enun

ciated, that if the initial temperatures of the same points had

been get, g/3, gy, g$ &c. (g being any number whatever), they
would have become, at the end of the first instant, by virtue of

the action of the different points, got. , gff, gy , g$ &c., and at the

end of the second instant, gen&quot;, g/3-, gy&quot;, gS&quot; &c., and so on. For

instance, let us compare the case when the initial temperatures
of the points, a, I, c, d &c. were a, ft, 7, B &c. with that in which

they are 2a, 2/5, 27, 2S &c., the medium preserving in both cases

the temperature 0. In the second hypothesis, the difference of

the temperatures of any two points whatever is double what it

was in the first, and the excess of the temperature of each point,
over that of each molecule of the medium, is also double

;
con

sequently the quantity of heat which any molecule whatever
sends to any other, or that which it receives, is, in the second

hypothesis, double of that which it was in the first. The change
of temperature which each point suffers being proportional to the

quantity of heat acquired, it follows that, in the second case, this

change is double what it was in the first case. Now we have
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supposed that the initial temperature of the first point, which was
a, became a at the end of the first instant

;
hence if this initial

temperature had been 2 a, and if all the other temperatures had
been doubled, it would have become 2 a . The same would be the
case with all the other molecules b, c, d, and a similar result

would be derived, if the ratio instead of being 2, were any number
whatever g. It follows then, from the principle of the communica
tion of heat, that if we increase or diminish in any given ratio

all the initial temperatures, we increase or diminish in the same
ratio all the successive temperatures.

This, like the two preceding results, is confirmed by observa

tion. It could not have existed if the quantity of heat which

passes from one molecule to another had not been, actually, pro
portional to the difference of the temperatures.

64. Observations have been made with accurate instruments,
on the permanent temperatures at different points of a bar or of a
metallic ring, and on the propagation of heat in the same bodies

and in several other solids of the form of spheres or cubes. The
results of these experiments agree with those which are derived

from the preceding propositions. They would be entirely differ

ent if the quantity of heat transmitted from one solid molecule to

another, or to a molecule of air, were not proportional to the

excess of temperature. It is necessary first to know all the

rigorous consequences of this proposition; by it we determine the

chief part of the quantities which are the object of the problem.

By comparing then the calculated values with those given by
numerous and very exact experiments, we can easily measure the

variations of the coefficients, and perfect our first researches.

SECTION IV.

On the uniform and linear movement of heat.

Go. We shall consider, in the first place, the uniform move

ment of heat in the simplest case, which is that of an infinite

solid enclosed between two parallel planes.

We suppose a solid body formed of some homogeneous sub

stance to be enclosed between two parallel and infinite planes;
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the lower plane A is maintained, by any cause whatever, at a

constant temperature a
;
we may imagine for example that the

mass is prolonged, and that the plane A is a section common to

the solid and to the enclosed mass, and is heated at all its points

by a constant source of heat; the upper plane B is also main

tained by a similar cause at a fixed temperature b, whose value is

less than that of a
;
the problem is to determine what would be

the result of this hypothesis if it were continued for an infinite

time,

If we suppose the initial temperature of all parts of this body
to be b, it is evident that the heat which leaves the source A will

be propagated farther and farther and will raise the temperature
of the molecules included between the two planes : but the tem

perature of the upper plane being unable, according to hypothesis
to rise above b

}
the heat will be dispersed within the cooler mass,

contact with which keeps the plane B at the constant temperature
b. The system of temperatures will tend more and more to a

final state, which it will never attain, but which would have the

property, as we shall proceed to shew, of existing and keeping
itself up without any change if it were once formed.

In the final and fixed state, which we are considering, the per
manent temperature of a point of the solid is evidently the same
at all points of the same section parallel to the base; and we
shall prove that this fixed temperature, common to all the points
of an intermediate section, decreases in arithmetic progression
from the base to the upper plane, that is to say, if we represent
the constant temperatures a and b by the ordinates AOL and Bj3

\

Fig. 1.

(see Fig. 1), raised perpendicularly to the distance AB between the

two planes, the fixed temperatures of the intermediate layers will

be represented by the ordinates of the straight line aft which
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joins the extremities a. and /3; thus, denoting by z the height of

an intermediate section or its perpendicular distance from the

plane A, by e the whole height or distance AB, and by v the

temperature of the section whose height is z, we must have the

b a
equation v = a -\

-- z.
6

In fact, if the temperatures were at first established in accord

ance with this law, and if the extreme surfaces A and B were

always kept at the temperatures a and b, no change would

happen in the state of the solid. To convince ourselves of this,

it will be sufficient to compare the quantity of heat which would

traverse an intermediate section A with that which, during the

same time, would traverse another section B .

Bearing in mind that the final state of the solid is formed

and continues, wre see that the part of the mass wrhich is below

the plane A must communicate heat to the part which is above

that plane, since this second part is cooler than the first.

Imagine two points of the solid, m and m, very near to each

other, and placed in any manner whatever, the one m below the

plane A ,
and the other m above this plane, to be exerting their

action during an infinitely small instant : m the hottest point
will communicate to m a certain quantity of heat which will

cross the plane A . Let x, y, z be the rectangular coordinates

of the point m, and x, y ,
z the coordinates of the point m :

consider also two other points n and n very near to each other,

and situated with respect to the plane B ,
in the same manner

in which m and m are placed with respect to the plane A : that

is to say, denoting by f the perpendicular distance of the two

sections A and J5
7

,
the coordinates of the point n will be x, y, z + f

and those of the point n
, x, y ,

z
f

+ % ;
the two distances mm

and nri will be equal : further, the difference of the temperature

v of the point m above the temperature v of the point m will

be the same as the difference of temperature of the two points

n and n . In fact the former difference will be determined by

substituting first z and then / in the general equation

b a

and subtracting the second equation from the first, whence the
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result v v =
&quot;&quot; a

(z z). We shall then find, by the sub-
Q

stitution of z + % and z + f, that the excess of temperature of

the point n over that of the point ri is also expressed by

Z&amp;gt; a ,

It follows from this that the quantity of heat sent by the

point m to the point m will be the same as the quantity of heat

sent by the point n to the point ri, for all the elements which

concur in determining this quantity of transmitted heat are the

same.

It is manifest that we can apply the same reasoning to every

system of two molecules which communicate heat to each other

across the section A or the section Bf

; whence, if we could

sum up the whole quantity of heat which flows, during the same

instant, across the section A or the section J9
,
we should find

this quantity to be the same for both sections.

From this it follows that the part of the solid included be

tween Af

and B receives always as much heat as it loses, and

since this result is applicable to any portion whatever of the

mass included between two parallel sections, it is evident that

no part of the solid can acquire a temperature higher than that

which it has at present. Thus, it has been rigorously demon

strated that the state of the prism will continue to exist just as it

was at first.

Hence, the permanent temperatures of different sections of a

solid enclosed between two parallel infinite planes, are represented

by the ordinates of a straight line a/3, and satisfy the linear

b a
equation v = a -\

--- z.
Q

66. By what precedes we see distinctly what constitutes

the propagation of heat in a solid enclosed between two parallel

and infinite planes, each of which is maintained at a constant

temperature. Heat penetrates the mass gradually across the

lower plane : the temperatures of the intermediate sections are

raised, but can never exceed nor even quite attain a certain

limit which they approach nearer and nearer : this limit or final

temperature is different for different intermediate layers, and
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decreases in arithmetic progression from the fixed temperature
of the lower plane to the fixed temperature of the upper plane.

The final temperatures are those which would have to be

given to the solid in order that its state might be permanent ;

the variable state which precedes it may also be submitted to

analysis, as we shall see presently: but we are now considering

only the system of final and permanent temperatures. In the

last state, during each division of time, across a section parallel

to the base, or a definite portion of that section, a certain

quantity of heat flows, which is constant if the divisions of time

are equal. This uniform flow is the same for all the intermediate

sections
;

it is equal to that which proceeds from the source, and

to that which is lost during the same time, at the upper surface

of the solid, by virtue of the cause which keeps the temperature
constant.

67. The problem now is to measure that quantity of heat

which is propagated uniformly within the solid, during a given

time, across a definite part of a section parallel to the base : it

depends, as we shall see, on the two extreme temperatures a

and b, and on the distance e between the two sides of the solid
;

it would vary if any one of these elements began to change, the

other remaining the same. Suppose a second solid to be formed

of the same substance as the first, and enclosed between two

I

Fig. 2.

infinite parallel planes, whose perpendicular distance is e (see

fig. 2) : the lower side is maintained at a fixed -temperature a ,

and the upper side at the fixed temperature &
;
both solids are

considered to be in that final and permanent state which has

the property of maintaining itself as soon as it has been formed.

F. H. 4



50 THEORY OF HEAT. [CHAP. I.

Thus the law of the temperatures is expressed for the first body

by the equation v = a H z, and for the second, by the equa
te

H a
tion u = a H -, z, v in the first solid, and u in the second, being

&

the temperature of the section whose height is z.

This arranged, we will compare the quantity of heat which,

during the unit of time traverses a unit of area taken on an

intermediate section L of the first solid, with that which during

the same time traverses an equal area taken on the section L
of the second, e being the height common to the two sections,

that is to say, the distance of each of them from their own

base. We shall consider two very near points n and ri in the

first body, one of which n is below the plane L and the other

ri above this plane : x, y, z are the co-ordinates of n : and x
f

, y ,
z

the co-ordinates of ri, e being less than z, and greater than z.

We shall consider also in the second solid the instantaneous

action of two points p and p, which are situated, with respect

to the section U, in the same manner as the points n and ri with

respect to the section L of the firsfc solid. Thus the same co

ordinates x, y, z, and of, y ,
z referred to three rectangular axes

in the second body, will fix also the position of the points p
and p .

Now, the distance from the point n to the point ri is equal

to the distance from the point p to the point p ,
and since the

two bodies are formed of the same substance, we conclude, ac

cording to the principle of the communication of heat, that the

action of n on ri, or the quantity of heat given by n to ri, and

the action of p on p , are to each other in the same ratio as the

differences of the temperature v v and u u.

Substituting v and then v in the equation which belongs to

the first solid, and subtracting, we findv v = (z /) ;
we

6

have also by means of the second equation u u=
-, (z z },

6

whence the ratio of the two actions in question is that of to

a -V
e
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We may now imagine many other systems of two molecules,
the first of which sends to the second across the plane L, a certain

quantity of heat, and each of these systems, chosen in the first

solid, may be compared with a homologous system situated in the
second, and whose action is exerted across the section L

; we
can then apply again the previous reasoning to prove that the

a ~ b a ~~
ratio of the two actions is always that of - - to

e e

Now, the whole quantity of heat which, during one instant,
crosses the section Z, results from the simultaneous action of a
multitude of systems each of which is formed of two points;
hence this quantity of heat and that which, in the second solid,
crosses during the same instant the section L , are also to each

other in the ratio of ^ to
a ~

_

e e

It is easy then to compare with each other the intensities of

the constant flows of heat which are propagated uniformly in the
two solids, that is to say, the quantities of heat which, during
unit of time, &quot;cross unit of surface of each of these bodies. The

ratio of these intensities is that of the two quotients
a^~ and

a -b
~i If the two quotients are equal, the flows are the same,

whatever in other respects the values a, b
} e, a, U, e, may be

;

in general, denoting the first flow by F and the second by F
t

we shall have == = ^~
-r-

a ~
.

68. Suppose that in the second solid, the permanent tempera
ture a of the lower plane is that of boiling water, 1

;
that the

temperature e of the upper plane is that of melting ice, 0; that

the distance e of the two planes is the unit of measure (a

metre); let us denote by K the constant flow of heat which,

during unit of time (a minute) would cross unit of surface in .

this last solid, if it were formed of a given substance
;
K ex- (

pressing a certain number of units of heat, that~is to say a certain

number of times the heat necessary to convert a kilogramme
of ice into water : we shall have, in general, to determine the

42
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constant flow F, in a solid formed of the same substance, the

F a-b w a-b
equation ^ - - or H A .

J\. & 6

The value of F denotes the quantity of heat which, during

the unit of time, passes across a unit of area of the surface taken

on a section parallel to the base.

Thus the thermometric state of a solid enclosed between two

parallel infinite plane sides whose perpendicular distance is e,

and which are maintained at fixed temperatures a and b, is

represented by the two equations :

b a a-b ^ T̂ dv
v = a + z t

and F=K- - or F=-K-^.

The first of these equations expresses the law according to

which the temperatures decrease from the lower side to the

opposite side, the second indicates the quantity of heat which,

during a given time, crosses a definite part of a section parallel

to the base.

69. We have taken this coefficient K, which enters into

the second equation, to be the measure of the specific conduci

bility of each substance
;
this number has very different values

for different bodies.

It represents, in general, the quantity of heat which, in a

homogeneous solid formed of a given substance and enclosed

between two infinite parallel planes, flows, during one minute,

across a surface of one square metre taken on a section parallel

to the extreme planes, supposing that these two planes are main

tained, one at the temperature of boiling water, the other at

the temperature of melting ice, and that all the intermediate

planes have acquired and retain a permanent temperature.

We might employ another definition of conducibility, since

we could estimate the capacity for heat by referring it to unit

of volume, instead of referring it to unit of mass. All these

definitions are equally good provided they are clear and pre
cise.

We shall shew presently how to determine by observation the

value K of the conducibility or conductibility in different sub

stances.
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70. In order to establish the equations which we have
cited in Article 68, it would not -be necessary to suppose the
points which exert their action across the planes to be at ex
tremely small distances.

^

The results would still be the same if the distances of these
points had any magnitude whatever

; they would therefore apply
also to the case where the direct action of heat extended within
the interior of the mass to very considerable distances, all the
circumstances which constitute the hypothesis remaining in other

respects the same.

We need only suppose that the cause which maintains the

temperatures at the surface of the solid, affects not only that

part of the mass which is extremely near to the surface, but that

its action extends to a finite depth. The equation V = a -
a ~ b

2
e

will still represent in this case the permanent temperatures of
the solid. The true sense of this proposition is that, if we give
to all points of the mass the temperatures expressed by the

equation, and if besides any cause whatever, acting on the two
extreme laminae, retained always every one of their molecules
at the temperature which the same equation assigns to them,
the interior points of the solid would preserve without any change
their initial state.

If we supposed that the action of a point of the mass could
extend to a finite distance e, it would be necessary that the
thickness of the extreme laminae, whose state is maintained by
the external cause, should be at least equal to e. But the

quantity e having in fact, in the natural state of solids, only
an inappreciable value, we may make abstraction of this thick

ness; and it is sufficient for the external cause to act on each
of the two layers, extremely thin, which bound the solid. This
is always what must be understood by the expression, to maintain
the temperature of the surface constant.

71. We proceed further to examine the case in which the

same solid would be exposed, at one of its faces, to atmospheric
air maintained at a constant temperature.

Suppose then that the lower plane preserves the fixed tem

perature a, by virtue of any external cause whatever, and that
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the upper plane, instead of being maintained as formerly at a

less temperature b, is exposed to atmospheric air maintained

at that temperature b, the perpendicular distance of the two

planes being denoted always by e : the problem is to determine

the final temperatures.

Assuming that in the initial state of the solid, the common

temperature of its molecules is b or less than b, we can readily

imagine that the heat which proceeds incessantly from the source

A penetrates the mass, and raises more and more the tempera
tures of the intermediate sections

;
the upper surface is gradually

heated, and permits part of the heat which has penetrated the

solid to escape into the air. The system of temperatures con

tinually approaches a final state which would exist of itself if

it were once formed; in this final state, which is that which

we are considering, the temperature of the plane B has a fixed

but unknown value, which we will denote by ft, and since the

lower plane A preserves also a permanent temperature a, the

system of temperatures is represented by the general equation

v = a + -

z, v denoting always the fixed temperature of the

section whose height is z. The quantity of heat which flows

during unit of time across a unit of surface taken on any section

whatever is fr
-

, % denoting the interior conducibility.

We must now consider that the upper surface B, whose

temperature is ft, permits the escape into the air of a certain

quantity of heat which must be exactly equal to that which

crosses any section whatever L of the solid. If it were not so,

the part of the mass included between this section L and the

plane B would not receive a quantity of heat equal to that

which it loses; hence it would not maintain its state, which is

contrary to hypothesis ;
the constant flow at the surface is there

fore equal to that which traverses the solid : now, the quantity
of heat which escapes, during unit of time, from unit of surface

taken on the plane B, is expressed by li(ft-b), b being the
fixed temperature of the air, and h the measure of the conduci

bility of the surface B\ we must therefore have the equation

V~T~
= h(@- b), which will determine the value of ft.
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From this may be derived a /3= p j-~ an equation
fl6 ~\~ K

whose second member is known
;
for the temperatures a and 6

are given, as are also the quantities h, ^, e.

Introducing this value of a- ft into the general equation

v = a + -
z, we shall have, to express the temperatures of any

section of the solid, the equation a v=-^~
j

-

,
in which

llG ~r~ rC

known quantities only enter with the corresponding variables v

and z.

72. So far we have determined the final and permanent state

of the temperatures in a solid enclosed between two infinite and

parallel plane surfaces, maintained at unequal temperatures.
This first case is, properly speaking, the case of the linear and
uniform propagation of heat, for there is no transfer of heat in

the plane parallel to the sides of the solid
;
that which traverses

the solid flaws uniformly, since the value of the flow is the same
for all instants and for all sections.

We will now restate the three chief propositions which result

from the examination of this problem ; they are susceptible of a

great number of applications, and form the first elements of our

theory.

1st. If at the two extremities of the thickness e of the solid

we erect perpendiculars to represent the temperatures a and b

of the two sides, and if we draw the straight line which joins
the extremities of these two first ordinates, all the intermediate

temperatures will be proportional to the ordinates of this straight

line
; they are expressed by the general equation a v = - -

z,
6

v denoting the temperature of the section whose height is z.

2nd. The quantity of heat which flows uniformly, during
unit of time, across unit of surface taken on any section whatever

parallel to the sides, all other things being equal, is directly

proportional to the difference a b of the extreme temperatures,
and inversely proportional to the distance e which separates

^a-6
these sides. The quantity of heat is expressed by K -

,
or
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K
,

if we derive from the general equation the value of

-v- which is constant; this uniform flow may always be repre

sented, for a given substance and in the solid under examination,

by the tangent of the angle included between the perpendicular

e and the straight line whose ordinates represent the tempera
tures.

3rd. One of the extreme surfaces of the solid being submitted

always to the temperature a, if the other plane is exposed to air

maintained at a fixed temperature b
;
the plane in contact with

the air acquires, as in the preceding case, a fixed temperature /?,

greater than b, and it permits a quantity of heat to escape into

the air across unit of surface, during unit of time, which is ex

pressed by h (/3 b) ,
h denoting the external conducibility of

the plane.

The same flow of heat h(/3 b) is equal to that which

traverses the prism and whose value is K(a ft)\ we have there

fore the equation h({3 ft)
= K

,
which gives the value

of

SECTION V.

Law of the permanent temperatures in a prism of small

thickness.

73. We shall easily apply the principles which have just
been explained to the following problem, very simple in itself,

but one whose solution it is important to base on exact theory.
A metal bar, whose form is that of a rectangular parallele

piped infinite in length, is exposed to the action of a source of

heat which produces a constant temperature at all points of its

extremity A. It is required to determine the fixed temperatures
at the different sections of the bar.

The section perpendicular to the axis is supposed to be a

square whose side 21 is so small that we may without sensible

error consider the temperatures to be equal at different points
of the same section. The air in which the bar is placed is main-
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tained at a constant temperature 0, and carried away by a

current with uniform velocity.

Within the interior of the solid, heat will pass successively
all the parts situate to the

right^of the source, and not exposed

directly to its action; they will be heated more and more, but

the temperature of each point will not increase beyond a certain

limit. This maximum temperature is not the same for every
section

;
it in general decreases as the distance of the section

from the origin increases : we shall denote by v the fixed tem

perature of a section perpendicular to the axis, and situate at a

distance x from the origin A
Before every point of the solid has attained its highest degree

of heat, the system of temperatures varies continually, and ap

proaches more and more to a fixed state, which is that which
we consider. This final state is kept up of itself when it has

once been formed. In order that the system of temperatures

may be permanent, it is necessary that the quantity of heat

which, during unit of time, crosses a section made at a distance x

from the origin, should balance exactly all the heat which, during
the same time, escapes through that part of the external surface

of the prism which is situated to the right of the same section.

The lamina whose thickness is dx, and whose external surface

is Sldx, allows the escape into the air, during unit of time, of

a quantity of beat expressed by Shlv . dx, h being the measure of

the external conducibility of the prism. Hence taking the in

tegral jShlv . dx from x = to x oo
,
we shall find the quantity

of heat wrhich escapes from the whole surface of the bar durino-

unit of time
;
and if we take the same integral from x = to

x = x, we shall have the quantity of heat lost through the part
of the surface included between the source of heat and the section

made at the distance x. Denoting the first integral by (7, whose

value is constant, and the variable value of the second by

jShlv.dx-, the difference C-/8hlv.dx will express the whole

quantity of heat which escapes into the air across the part of

the surface situate to the right of the section. On the other

hand, the lamina of the solid, enclosed between two sections

infinitely near at distances x and x + dx, must resemble an in

finite solid, bounded by two parallel planes, subject to fixed

temperatures v and v + dv, since, by hypothesis, the temperature
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does not vary throughout the whole extent of the same section.

The thickness of the solid is dx, and the area of the section is

4/
2

: hence the quantity of heat which flows uniformly, during
unit of time, across a section of this solid, is, according to the

preceding principles, 4Z
2A -=-

,
k being the specific internal con-

ducibility : we must therefore have the equation

V&quot;

whence ^
\\\

i

74. We should obtain the same result by considering the

equilibrium of heat in a single lamina infinitely thin, enclosed

between two sections at distances x arid x + dx. In fact, the

quantity of heat which, during unit of time, crosses the first

section situate at distance x, is 4/
2X -r- . To find that which

flows during the same time across the successive section situate

at distance x + dx, we must in the preceding expression change x

into x + dx, which gives 4Z
2
&. ^~ + d ~

. If we subtract
[dx \dxjj

the second expression from the first we shall find how much
heat is acquired by the lamina bounded by these two sections

during unit of time
;
and since the state of the lamina is per

manent, it follows that all the heat acquired is dispersed into

the air across the external surface Sldx of the same lamina : now
the last quantity of heat is Shlvdx : we shall obtain therefore the

same equation

07 7 7 ^727 7 A&A 1
^V 27?,

8/uvdx klkd -y- ,
whence -^5 = -=-= v.

\dxj dx2
kl

75. In whatever manner this equation is formed, it is

necessary to remark that the quantity of heat which passes into

the lamina whose thickness is dx, has a finite value, and that

its exact expression is 4&amp;lt;l

2k ^- . The lamina being enclosed

between two surfaces the first of which has a temperature v,
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and the second a lower temperature v , we see that the quantity
of heat which it receives through the first surface depends on

the difference v v
,
and is proportional to it : but this remark

is not sufficient to complete the calculation. The quantity in

question is not a differential : it has a finite value, since it is

equivalent to all the heat which escapes through that part of

the external surface of the prism which is situate to the right
of the section. To form an exact idea of it, we must compare
the lamina whose thickness is dx, with a solid terminated by
two parallel planes whose distance is e, and which are maintained

at unequal temperatures a and b. The quantity of heat which

passes into such a prism across the hottest surface, is in fact

proportional to the difference a b of the extreme temperatures,
but it does not depend only on this difference : all other things

being equal, it is less when the prism is thicker, and in general

it is proportional to . This is why the quantity of heat
^

which passes through the first surface into the lamina, whose

thickness is dx
}
is proportional to -= .

dx

We lay stress on this remark because the neglect of it has

been the first obstacle to the establishment of the theory. If

we did not make a complete analysis of the elements of the

problem, we should obtain an equation not homogeneous, and,

a fortiori, we should not be able to form the equations which

express the movement of heat in more complex cases.

It was necessary also to introduce into the calculation the

dimensions of the prism, in order that we might not regard, as

general, consequences which observation had furnished in a par
ticular case. Thus, it was discovered by experiment that a bar

of iron, heated at one extremity, could not acquire, at a distance

of six feet from the source, a temperature of one degree (octo-

gesimal
1

) ;
for to produce this effect, it would be necessary for

the heat of the source to surpass considerably the point of fusion

of iron; but this result depends on the thickness of the prism*

employed. If it had been greater, the heat would have been,

propagated to a greater distance, that is to say, the point of

the bar which acquires a fixed temperature of one degree is

1 Reaumur s Scale of Temperature. [A. F.J



60 THEORY OF HEAT. [CHAP. I.

much more remote from the source when the bar is thicker, all

other conditions remaining the same. We can always raise by
one degree the temperature of one end of a bar of iron, by heating

the solid at the other end
;
we need only give the radius of the

base a sufficient length : which is, we may say, evident, and

of which besides a proof will be found in the solution of the

problem (Art. 78).

76. The integral of the preceding equation is

A and B being two arbitrary constants
; now, if we suppose the

distance x infinite, the value of the temperature v must be
75

+x*
infinitely small; hence the term Be+x* w does not exist in the in-

/2k

tegral : thus the equation v = Ae~*^ u represents the permanent
state of the solid

;
the temperature at the origin is denoted by

the constant A
t
since that is the value of v when x is zero.

This law according to which the temperatures decrease

is the same as that given by experiment ;
several physicists

have observed the fixed temperatures at different points of a

metal bar exposed at its extremity to the constant action of a

source of heat, and they have ascertained that the distances

from the origin represent logarithms, and the temperatures the

corresponding numbers.

77. The numerical value of the constant quotient of two con

secutive temperatures being determined by observation, we easily

deduce the value of the ratio -; for, denoting by v
lt

v
a
the tem

peratures corresponding to the distances x^ x
2 ,
we have

v ~{*i-*tk/s -i /2h log v loof v9 ,,
~* = e v

**, whence A / --=- = & 1 * Jl.
v A/ k x x

As for the separate values of li and k, they cannot be deter

mined by experiments of this kind : we must observe also the

varying motion of heat.

78. Suppose two bars of the same material and different

dimensions to be submitted at their extremities to the same tern-
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perature A ;
let l

t
be the side of a section in the first bar, and 1

2

iii the second, we shall have, to express the temperatures of these

two solids, the equations

Vl
= Ae~

1

and v
9
=Ae~

i\, in the first solid, denoting the temperature of a section made
at distance x

lf
and v

z ,
in the second solid, the temperature of a

section made at distance x
z

.

When these two bars have arrived at a fixed state, the tem

perature of a section of the first, at a certain distance from the

source, will not be equal to the temperature of a section of the

second at the same distance from the focus
;

in order that the

fixed temperatures may be equal, the distances must be different.

If we wish to compare with each other the distances x^ and
x&amp;lt;2

from the origin up to the points which in the two bars attain

the same temperature, we must equate the second members of

these equations, and from them we conclude that -\ = j.
Thus

x
z 2

the distances in question are to each other as the square roots of

the thicknesses.

79. If two metal bars of equal dimensions, but formed of

different substances, are covered with the same coating, which

gives them the same external conducibility
1

,
and if they are

submitted at their extremities to the same temperature, heat will

be propagated most easily and to the greatest distance from the

origin in that which has the greatest conducibility. To compare
with each other the distances x

l
and x

z
from the common origin

up to the points which acquire the same fixed temperature, we

must, after denoting the respective conducibilities of the two

substances by k^ and &
2 ,

write the equation

/** /^ -r
2

I*

e-W^ = e
-Ww

f
whence ^ = p .

x
*

k
2

Thus the ratio of the two conducibilities is that of the squares
of the distances from the common origin to the points which

attain the same fixed temperature.
1
Ingenhousz (1789), Sur les mgtaux comme conducteurs de la chalenr. Journal

de Physique, xxxiv., 68, 380. Gren s Journal der Physik, Bd. I.&quot; [A. F.]
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80. It is easy to ascertain how much heat flows during unit

of time through a section of the bar arrived at its fixed state :

7 I2A

this quantity is expressed by 4K2

-y- ,
or kAjkhl*.e

* K
j and

if we take its value at the origin, we shall have bAjZkh? as the

measure of the quantity of heat which passes from the source

into the solid during unit of time
;
thus the expenditure of the

source of heat is, all other things being equal, proportional to the

square root of the cube of the thickness.

We should obtain the same result on taking the integral

fShlv . dx from x nothing to x infinite.

SECTION VI.

On the heating of closed spaces.

81. We shall again make use of the theorems of Article 72

in the following problem, whose solution offers useful applications ;

it consists in determining the extent of the heating of closed

spaces.

Imagine a closed space, of any form whatever, to be filled with

atmospheric air and closed on all sides, and that all parts of the

boundary are homogeneous and have a common thickness e, so

small that the ratio of the external surface to the internal surface

differs little from unity. The space which this boundary termi

nates is heated by a source whose action is constant
;
for example,

by means of a surface whose area is cr maintained at a constant

temperature a.

We consider here only the mean temperature of the air con

tained in the space, without regard to the unequal distribution of

heat in this mass of air
;
thus we suppose that the existing causes

incessantly mingle all the portions of air, and make their tem

peratures uniform.

We see first that the heat which continually leaves the source

spreads itself in the surrounding air and penetrates the mass of

which the boundary is formed, is partly dispersed at the surface,



SECT. VJ.] HEATING OF CLOSED SPACES. 63

and passes into the external air, which we suppose to be main
tained at a lower and permanent temperature n. The inner air is

heated more and more : the same is the case with the solid

boundary : the system of temperatures steadily approaches a final

state which is the object of the problem, and has the property of

existing by itself and of being kept up unchanged, provided the

surface of the source a be maintained at the temperature a, and
the external air at the temperature n.

In the permanent state which we wish to determine the air

preserves a fixed temperature m
;
the temperature of the inner

surface s of the solid boundary has also a fixed value a
; lastly, the

outer surface s, which terminates the enclosure, preserves a fixed

temperature b less than a, but greater than n. The quantities

cr, a, 5, e and n are known, and the quantities m, a and b are

unknown.

The degree of heating consists in the excess of the temperature
m over n

}
the temperature of the external air; this excess evi

dently depends on the area a of the heating surface and on its

temperature a
;

it depends also on the thickness e of the en

closure, on the area s of the surface which bounds it, on the

facility with which heat penetrates the inner surface or that

which is opposite to it
; finally, on the specific conducibility of

the solid mass which forms the enclosure : for if any one of these

elements were to be changed, the others remaining the same, the

degree of the heating would vary also. The problem is to deter

mine how all these quantities enter into the value of m n.

82. The solid boundary is terminated by two equal surfaces,

each of which is maintained at a fixed temperature; every

prismatic element of the solid enclosed between two opposite por
tions of these surfaces, and the normals raised round the contour

of the bases, is therefore in the same state as if it belonged to an

infinite solid enclosed between two parallel planes, maintained at

unequal temperatures. All the prismatic elements which com

pose the boundary touch along their whole length. The points

of the mass which are equidistant from the inner surface have

equal temperatures, to whatever prism they belong ; consequently
there cannot be any transfer of heat in the direction perpendicular
to the length of these prisms. The case is, therefore, the same
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as that of which we have already treated, and we must apply

to it the linear equations which have been stated in former

articles.

83. Thus in the permanent state which we are considering,

the flow of heat which leaves the surface cr during a unit of time,

is equal to that which, during the same time, passes from the

surrounding air into the inner surface of the enclosure
;

it is

equal also to that which, in a unit of time, crosses an inter

mediate section made within the solid enclosure by a surface

equal and parallel to those which bound this enclosure
; lastly,

the same flow is again equal to that which passes from the solid

enclosure across its external surface, and is dispersed into the air.

If these four quantities of flow of heat were not equal, some

variation would necessarily occur in the state of the temperatures,

which is contrary to the hypothesis.

The first quantity is expressed by a
(a. m) g, denoting by

g the external conducibility of the surface cr, which belongs to

the source of heat.

The second is s (m a) h, the coefficient h being the measure

of the external conducibility of the surface s, which is exposed

to the action of the source of heat.

The third is s K, the coefficient K being the measure of
6

the conducibility proper to the homogeneous substance which

forms the boundary.
The fourth is s(b n}H, denoting by H the external con

ducibility of the surface s, which the heat quits to be dispersed

into the air. The coefficients h and H may have very unequal
values on account of the difference of the state of the two surfaces

which bound the enclosure
; they are supposed to be known, as

also the coefficient K: we shall have then, to determine the three

unknown quantities m, a and 6, the three equations :

f N
a b r,a (a m) g = s-A,

G

cr (a
- m) g = s (b n) H.
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84. The value of m is the special object of the problem. It

may be found by writing the equations in the form

adding, we have m n =
(a.
- m) P,

denoting by P the known quantity
^
(|

-f^ -f
J^ J

;

whence we conclude

m 11 = a n

85. The result shews how m n, the extent of the heating,

depends on given quantities which constitute the hypothesis.
We will indicate the chief results to be derived from it \

1st. The extent of the heating m n is directly proportional
to the excess of the temperature of the source over that of the

external air.

2nd: The value of m n does not depend on the form of

the enclosure nor on its volume, but only on the ratio - of the

surface from which the heat proceeds to the surface which receives

it, and also on e the thickness of the boundary.
If we double cr the surface of the source of heat, the extent

of the heating does not become double, but increases according

to a certain law which the equation expresses.

1 These results \vere stated by the author in a rather different manner in the

extract from his original memoir published in the Bulletin par la Society Philo-

matique de Paris, 1818, pp. 111. [A. F.]

F. H. 5
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3rd. All the specific coefficients which regulate the action

of the heat, that is to say, g, K, H and h, compose, with the

dimension e, in the value of m n a single element f + 77+ fr&amp;gt;

whose value may be determined by observation.

If we doubled e the thickness of the boundary, we should

have the same result a&amp;gt;s if, in forming it, we employed a sub

stance whose conducibility proper was twice as great. Thus the

employment of substances which are bad conductors of heat

permits us to make the thickness of the boundary small; the

o
effect which is obtained depends only on the ratio -

.

4th. If the conducibility K is nothing, we find

that is to say, the inner air assumes the temperature of the

source : the same is the case if H is zero, or h zero. These con

sequences are otherwise evident, since the heat cannot then be

dispersed into the external air.

5th. The values of the quantities g, H, h, K and a, which

we supposed known, may be measured by direct experiments,
as we shall shew in the sequel ;

but in the actual problem, it

will be sufficient to notice the value of m n which corresponds
to given values of cr and of a, and this value may be used to

determine the whole coefficient
j-
+^ +

jj. , by means of the equa-
ii/ j\. jj.

tion m n (a n}-p~ (1 +- p] in which p denotes the co

efficient sought. We must substitute in this equation, instead

of - and a n, the values of those quantities, which we suppose
s

given, and that of m n which observation will have made
known. From it may be derived the value of p, and we may
then apply the formula to any number of other cases.

6th. The coefficient H enters into the value of m n in

the same manner as the coefficient h; consequently the state of

the surface, or that of the envelope which covers it, produces
the same effect, whether it has reference to the inner or outer

surface.

We should have considered it useless to take notice of these
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different consequences, if we were not treating here of entirely

new problems, whose results may be of direct use.

86. We know that animated bodies retain a temperature

sensibly fixed, which we may regard as independent of the tem

perature of the medium in which they live. These bodies are,

after some fashion, constant sources of heat, just as inflamed

substances are in which the combustion has become uniform.

We may then, by aid of the preceding remarks, foresee and

regulate exactly the rise of temperature in places where a great
number of men are collected together. If we there observe the

height of the thermometer under given circumstances, we shall

determine in advance what that height would be, if the number
of men assembled in the same space became very much greater.

In reality, there are several accessory circumstances which

modify the results, such as the unequal thickness of the parts
of the enclosure, the difference of their aspect, the effects which

the outlets produce, the unequal distribution of heat in the air.

We cannot therefore rigorously apply the rules given by analysis ;

nevertheless these rules are valuable in themselves, because they
contain the tine principles of the matter : they prevent vague

reasonings and useless or confused attempts.

87. If the same space were heated by two or more sources

of different kinds, or if the first inclosure were itself contained

in a second enclosure separated from the first by a mass of air,

we might easily determine in like manner the degree of heating
and the temperature of the surfaces.

If we suppose that, besides the first source u, there is a second

heated surface TT, whose constant temperature is y&, and external

conducibility j, we shall find, all the other denominations being

retained, the following equation :

\m n=- n^jfe t

I
t l\

K+H +
h)

_

s \& H h

If we suppose only one source a; and if the first enclosure is

itself contained in a second, s, h
,
K

,
H

, e, representing the

52
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elements of the second enclosure which correspond to those of

the first which were denoted by 5, h, K, H, e
;
we shall find,

p denoting the temperature of the air which surrounds the ex

ternal surface of the second enclosure, the following equation :

The quantity P represents

*
(9 9* +

7 r + j^^s \li K.

We should obtain a similar result if we had three or a greater

number of successive enclosures
;
and from this we conclude that

these solid envelopes, separated by air, assist very much in in

creasing the degree of heating, however small their thickness

may be.

88. To make this remark more evident, we will compare the

quantity of heat which escapes from the heated ^surface, with

that which the same body would lose, if the surface which en

velopes it were separated from it by an interval filled with air.

If the body A be heated by a constant cause, so that its

surface preserves a fixed temperature b, the air being maintained

at a less temperature a, the quantity of heat which escapes into

the air in the unit of time across a unit of surface will be

expressed by h (b a), h being the measure of the external con-

ducibility. Hence in order that the mass may preserve a fixed

temperature b, it is necessary that the source, whatever it may
be, should furnish a quantity of heat equal to hS (b a), S de

noting the area of the surface of the solid.

Suppose an extremely thin shell to be detached from the

body A and separated from the solid by an interval filled with

air; and suppose the surface of the same solid A to be still

maintained at the temperature b. We see that the air contained

between the shell and the body will be heated and will take

a temperature a greater than a. The shell itself will attain

a permanent state and will transmit to the external air whose

fixed temperature is a all the heat which the body loses. It

follows that the quantity of heat escaping from the solid will
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be hS(b aJ }, instead of being hS(b a), for we suppose that

the new surface of the solid and the surfaces which bound the

shell have likewise the same external conducibility h. It is

evident that the expenditure of the source of heat will be less

than it was at first. The problem is to determine the exact ratio

of these quantities.

89. Let e be the thickness of the shell, m the fixed tempera
ture of its inner surface, n that of its outer surface, and K its

internal conducibility. We shall have, as the expression of the

quantity of heat which leaves the solid through its surface,

hS(b-a ).

As that of the quantity which penetrates the inner surface

of the shell, hS (a
-
m).

As that of the quantity which crosses any section whatever

of the same shell. KS .

e

Lastly, as the expression of the quantity which passes through
the outer surface into the air, hS (n a).

All these quantities must be equal, we have therefore the

following equations :

rr

h (n a)
= (m ri),

h(n a)
= h (a m),

h(n-a)=h(b-a).

If moreover we write down the identical equation

k(n a)
= h(n a),

and arrange them all under the forms

n a = n a,

m-n =- (n-a)

I

b a = n a,

we find, on addition,
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The quantity of heat lost by the solid was hS(b a), when
its surface communicated freely with the air, it is now hS (6 a)

or hS(n a), which is equivalent to hS

The first quantity is greater than the second in the ratio of

In order therefore to maintain at temperature b a solid whose

surface communicates directly to the air, more than three times

as much heat is necessary than would be required to maintain

it at temperature Z&amp;gt;,

when its extreme surface is not adherent

but separated from the solid by any small interval whatever filled

with air.

If we suppose the thickness e to be infinitely small, the

ratio of the quantities of heat lost will be 3, which would also

be the value ifK were infinitely great.

We can easily account for this result, for the heat being
unable to escape into the external air, without penetrating several

surfaces, the quantity which flows out must diminish as the

number of interposed surfaces increases
;
but we should have

been unable to arrive at any exact judgment in this case, if the

problem had not been submitted to analysis.

90. We have not considered, in the preceding article, the

effect of radiation across the layer of air which separates the

two surfaces
;
nevertheless this circumstance modifies the prob

lem, since there is a portion of heat which passes directly across

the intervening air. We shall suppose then, to make the object

of the analysis more distinct, that the interval between the sur

faces is free from air, and that the heated body is covered by

any number whatever of parallel laminse separated from each

other.

If the heat which escapes from the solid through its plane

superficies maintained at a temperature b expanded itself freely

in vacuo and was received by a parallel surface maintained at

a less temperature a, the quantity which would be dispersed in

unit of time across unit of surface would be proportional to (b a),

the difference of the two constant temperatures : this quantity
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would be represented by H (b a), H being the value of the rela

tive conducibility which is not the same as h.

The source which maintains the solid in its original state must

therefore furnish, in every unit of time, a quantity of heat equal

toHS(b-a).
We must now determine the new value of this expenditure

in the case where the surface of the body is covered by several

successive laminae separated by intervals free from air, supposing

always that the solid is subject to the action of any external

cause whatever which .maintains its surface at the temperature b.

Imagine the whole system of temperatures to have become

fixed
;

let m be the temperature of the under surface of the first

lamina which is consequently opposite to that of the solid, let n

be the temperature of the upper surface of the same lamina,

e its thickness, and K its specific conducibility ;
denote also by

77&J,
n

lt
m

2 ,
n

2 ,
m

3 ,
??

3 ,
??i

4 , w4 , &c. the temperatures of the under

and upper surfaces of the different laminae, and by K} e, the con

ducibility and thickness of the same laminae; lastly, suppose all

these surfaces to be in a state similar to the surface of the solid,

so that the value of the coefficient H is common to them.

The quantity of heat which penetrates the under surface of

a lamina corresponding to any suffix i is HSfyi^mJ), that which

J7-Q
crosses this lamina is (mi~ n

i)f
an(^ the quantity which escapes

c

from its upper surface is HS(nt
m

i+l}.
These three quantities,

and all those which refer to the other laminae are equal ;
we may

therefore form the equation by comparing all these quantities

in question with the first of them, which is HS (b mj ;
we shall

thus have, denoting the number of laminae
\&amp;gt;yj :

He n
i
- n

i
=^ (

b ~

He ,, .-
n,
= (b

-
IflJ,



72 THEOKY OF HEAT. [CHAP. I.

He nm*- n
*=~K ^~ m^

rij
a = b m

1
.

Adding these equations, we find

The expenditure of the source of heat necessary to maintain

the surface of the body A at the temperature b is US (b a),

when this surface sends its rays to a fixed surface maintained at

the temperature a. The expenditure is HS (b m^ when we place

between the surface of the body A, and the fixed surface maintained

at temperature a, a numberj of isolated laminae; thus the quantity

of heat which the source must furnish is very much less in the

second hypotheses than in the first, and the ratio of the two

quantities is . If we suppose the thickness e of the

laminae to be infinitely small, the ratio is -. The expenditure
f+i

of the source is then inversely as the number of laminae which

cover the surface of the solid.

91. The examination of these results and of those which we

obtained when the intervals between successive enclosures were

occupied by atmospheric air explain clearly why the separation

of surfaces and the intervention of air assist very much in re

taining heat.

Analysis furnishes in addition analogous consequences when

we suppose the source to be external, and that the heat which

emanates from it crosses successively different diathermanous

envelopes and the air which they enclose. This is what has

happened when experimenters have exposed to the rays of the

sun thermometers covered by several sheets of glass within which

different layers of air have been enclosed.

For similar reasons the temperature of the higher regions

of the atmosphere is very much less than at the surface of the

earth.
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In general the theorems concerning the heating of air in

closed spaces extend to a great variety of problems. It would

be useful to revert to them when we wish to foresee and regulate

temperature with precision, as in the case of green-houses, drying-

houses, sheep-folds, work-shops, or in many civil establishments,
such as hospitals, barracks, places of assembly.

In these different applications we must attend to accessory
circumstances which modify the results of analysis, such as the

unequal thickness of different parts of the enclosure, the intro

duction of air, &c.
;
but these details would draw us away from

our chief object, which is the exact demonstration of general

principles.

For the rest, we have considered only, in what has just been

said, the permanent state of temperature in closed spaces. AVe

can in addition express analytically the variable state which

precedes, or that which begins to take place when the source of

heat is withdrawn, and we can also ascertain in this way, how
the specific properties of the bodies which we employ, or their

dimensions affect the progress and duration of the heating ;
but

these researches require a different analysis, the principles of

which will be explained in the following chapters.

SECTION VII.

On the uniform movement of heat in three dimensions.

92. Up to this time we have considered the uniform move

ment of heat in one dimension only, but it is easy to apply the

same principles to the case in which heat is propagated uniformly
in three directions at right angles.

Suppose the different points of a solid enclosed by six planes

at right angles to have unequal actual temperatures represented

by the linear equation v = A -f ax + by + cz, x, y, z, being the

rectangular co-ordinates of a molecule whose temperature is v.

Suppose further that any external causes whatever acting on the

six faces of the prism maintain every one of the molecules situated

on the surface, at its actual temperature expressed by the general

equation
v A -f ax + by + cz (a),
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we shall prove that the same causes which, by hypothesis, keep
the outer layers of the solid in their initial state, are sufficient

to preserve also the actual temperatures of every one of the inner

molecules, so that their temperatures do not cease to be repre

sented by the linear equation.

The examination of this question is an element of the

general theory, it will serve to determine the laws of the varied

movement of heat in the interior of a solid of any form whatever,

for every one of the prismatic molecules of which the body is

composed is during an infinitely small time in a state similar

to that which the linear equation (a) expresses. We may then,

by following the ordinary principles of the differential calculus,

easily deduce from the notion of uniform movement the general

equations of varied movement.

93. In order to prove that when the extreme layers of the

solid preserve their temperatures no change can happen in the

interior of the mass, it is sufficient to compare with each other

the quantities of heat which, during the same instant, cross two

parallel planes.

Let b be the perpendicular distance of these two planes which

we first suppose parallel to the horizontal plane of x and y. Let

m and m be two infinitely near molecules, one of which is above

the first horizontal plane and the other below it : let x, y, z be

the co-ordinates of the first molecule, and x, y
f

,
z those of the

second. In like manner let M and M denote two infinitely

near molecules, separated by the second horizontal plane and

situated, relatively to that plane, in the same manner as m and

m are relatively to the first plane ;
that is to say, the co-ordinates

ofM are a?, y, z + b, and those of M are x, y ,
z + b. It is evident

that the distance mm of the two molecules m and mf is equal
to the distance MM of the two molecules M and Mf

; further,

let v be the temperature of m, and v that of m, also let V and

V be the temperatures of M and Mf

, it is easy to see that the

two differences v v and V V are equal ;
in fact, substituting

first the co-ordinates of m and m in the general equation

v A + ax -f by + cz,

we find v v = a (x
- x) -f b (y y} + c (z z},
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and then substituting the co-ordinates ofM and J/
,
we find also

V V = a (x x) + b (y y) +c(z /). Now the quantity of

heat which m sends to m depends on the distance mm, which

separates these molecules, and it is proportional to the difference

v v of their temperatures. This quantity of heat transferred

may be represented by

q(v-v )dt;

the value of the coefficient q depends in some manner on the

distance mm, and on the nature of the substance of which the

solid is formed, dt is the duration of the instant. The quantity
of heat transferred from M to M t or the action of M on M is

expressed likewise by q (VV) dt, and the coefficient q is the

same as in the expression q (v v) dt, since the distance MM is

equal to mm and the two actions are effected in the same solid :

furthermore V V is equal to v v, hence the two actions are

equal.

If we choose two other points n and ri, very near to each

other, which transfer heat across the first horizontal plane, we
shall find in the same manner that their action is equal to that

of two homologous points N and N which communicate heat

across the second horizontal plane. We conclude then that the

whole quantity of heat which crosses the first plane is equal to

that which crosses the second plane during the same instant.

We should derive the same result from the comparison of two

planes parallel to the plane of x and z, or from the comparison
of two other planes parallel to the plane of y and z. Hence

any part whatever of the solid enclosed between six planes at

right angles, receives through each of its faces as much heat as

it loses through the opposite face
;
hence no portion of the solid

can change temperature.

94). From this we see that, across one of the planes in

question, a quantity of heat flows which is the same at all in

stants, and which is also the same for all other parallel sections.

In order to determine the value of this constant flow we

shall compare it with the quantity of heat which flows uniformly

in the most simple case, which has been already discussed. The

case is that of an infinite solid enclosed between two infinite
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planes and maintained in a constant state. We have seen that

the temperatures of the different points of the mass are in this

case represented by the equation v A + cz
;
we proceed to prove

that the uniform flow of heat propagated in the vertical direction

in the infinite solid is equal to that which flows in the same

direction across the prism enclosed by six planes at right angles.

This equality necessarily exists if the coefficient c in the equation

v = A + cz, belonging to the first solid, is the same as the coeffi

cient c in the more general equation v A + ax + ~by + cz which

represents the state of the prism. In fact, denoting by H a

plane in this prism perpendicular to z
t
and by m and

/JL
two

molecules very near to each other, the first of which m is below

the plane H, and the second above this plane, let v be the

temperature of m whose co-ordinates are x, y, z, and w the

temperature of
//,
whose co-ordinates are x -H a, y + /3. z + 7. Take

a third molecule fi whose co-ordinates are x a., y /3, # + y, and

whose temperature may be denoted by w. We see that
fju

and

fju
are on the same horizontal plane, and that the vertical drawn

from the middle point of the line fjup ,
which joins these two

points, passes through the point m, so that the distances mjj, and

mfjf are equal. The action of m on ^ or the quantity of heat

which the first of these molecules sends to the other across the

plane H, depends on the difference v - w of their temperatures.

The action of m on p depends in the same manner on the

difference v w of the temperatures of these molecules, since

the distance of m from
fju

is the same as that of m from /* . Thus,

expressing by q (v w) the action of m on
//, during the unit of

time, we shall have q (v w) to express the action of m on
fjf,

q being a common unknown factor, depending on the distance

nifjb and on the nature of the solid. Hence the sum of the two

actions exerted during unit of time is q (v w + v w
}.

If instead of x, y, and z
t
in the general equation

v = A + ax + by + cz,

we substitute the co-ordinates of m and then those of p and //,

we shall find

t? w = act 6/3 c%

v w = + ay. + bft cy.
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The sum of the two actions of m on
fj,

and of m on // is there

fore 2qcy.

Suppose then that the plane H belongs to the infinite solid

whose temperature equation is v = A + cz, and that we denote

also by m
t JJL

and p those molecules in this solid whose co

ordinates are x, y, z for the first, x + a, y + /3, z 4- 7 for the second,

and x a,y j3,z+y for the third : we shall have, as in the

preceding case, v-w + v-w = - 2cy. Thus the sum of the two

actions of m on
//-
and of m on p, is the same in the infinite solid

as in the prism enclosed between the six planes at right angles.

We should obtain a similar result, if we considered the action

of another point n below the plane H on two others v and v
,

situated at the same height above the plane. Hence, the sum

of all the actions of this kind, which are exerted across the plane

H, that is to say the whole quantity of heat which, during unit

of time, passes to the upper side of this surface, by virtue of the

action of very near molecules which it separates, is always the

same in both solids.

95. In the second of these two bodies, that which is bounded

by two infinite planes, and whose temperature equation is

v = A + cz, we know that the quantity of heat which flows during

unit of time across unit of area taken on any horizontal section

whatever is cK, c being the coefficient of z, and K the specific

conducibility ; hence, the quantity of heat which, in the prism

enclosed between six planes at right angles, crosses during unit

of time, unit of area taken on any horizontal section whatever,

is also - cK
y
when the linear equation which represents the tem

peratures of the prism is

v = A + ax + by + cz.

In the same way it may be proved that the quantity of heat

which, during unit of time, flows uniformly across unit of area

taken on any section whatever perpendicular to x, is expressed

by
- aK, and that the whole quantity which, during unit of time,

crosses unit of area taken on a section perpendicular to y, is

expressed by bK.

The theorems which we have demonstrated in this and the

two preceding articles, suppose the direct action of heat in the
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interior of the mass to be limited to an extremely small distance,

but they would still be true, if the rays of heat sent out by each

molecule could penetrate directly to a quite appreciable distance,

but it would be necessary in this case, as we have remarked in

Article 70, to suppose that the cause which maintains the tem

peratures of the faces of the solid affects a part extending within

the mass to a finite depth.

. SECTION VIII.

Measure of the movement of heat at a given point of a solid mass.

96. It still remains for us to determine one of the principal

elements of the theory of heat, which consists in defining and in

measuring exactly the quantity of heat which passes through

every point of a solid mass across a plane whose direction is given.

If heat is unequally distributed amongst the molecules of the

same body, the temperatures at
^ any point will vary every instant.

Denoting by t the time which has elapsed, and by v the tem

perature attained after a time t by an infinitely small molecule

whose co-ordinates are oc, y, z
;
the variable state of the solid will be

expressed by an equation similar to the following v = F(x, y, z, t).

Suppose the function F to be given, and that consequently we
can determine at every instant the temperature of any point

whatever; imagine that through the point m we draw a hori

zontal plane parallel to that of x and y, and that on this plane
we trace an infinitely small circle

,
whose centre is at m

;
it is

required to determine what is the quantity of heat which during

the instant dt will pass across the circle a&amp;gt; from the part of the

solid which is below the plane into the part above it.

All points extremely near to the point m and under the plane
exert their action during the infinitely small instant dt, on all

those which are above the plane and extremely near to the point

m, that is to say, each of the points situated on one side of this

plane will send heat to each of those which are situated on the

other side.

We shall consider as positive an action whose effect is to

transport a certain quantity of heat above the plane, and as

negative that which causes heat to pass below the plane. The
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sum of all the partial actions which are exerted across the circle

co, that is to say the sum of all the quantities of heat which,

crossing any point whatever of this circle, pass from the part
of the solid below the plane to the part above, compose the flow

whose expression is to be found.

It is easy to imagine that this flow may not be the same

throughout the whole extent of the solid, and that if at another

point m we traced a horizontal circle co equal to the former, the

two quantities of heat which rise above these planes o&amp;gt; and o&amp;gt;

during the same instant might not be equal : these quantities are

comparable with each other and their ratios are numbers which

may be easily determined.

97. We know already the value of the constant flow for the

case of linear and uniform movement; thus in the solid enclosed be

tween two infinite horizontal planes, one of which is maintained at

the temperature a and the other at the temperature b, the flow of

heat is the same for every part of the mass
;
we may regard it as

taking place in the vertical direction only. The value correspond

ing to unit of surface and to unit of time is K (
),6 denoting

the perpendicular distance of the two planes, and K the specific

conducibility : the temperatures at the different points of the

solid are expressed by the equation v a ( -
)

When the problem is that of a solid comprised between six

rectangular planes, pairs of which are parallel, and the tem

peratures at the different points are expressed by the equation

the propagation takes place at the same time along the directions

of x, of y, of z\ the quantity of heat which flows across a definite

portion of a plane parallel to that of x and y is the same through
out the whole extent of the prism ;

its value corresponding to unit

of surface, and to unit of time is cK, in the direction of z, it is

IK, in the direction of y, and aK in that of x.

In general the value of the vertical flow in the two cases which

we have just cited, depends only on the coefficient of z and on

the specific conducibility K\ this value is always equal to K-r-
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The expression of the quantity of heat which, during the in

stant dt, flows across a horizontal circle infinitely small, whose area

is
&&amp;gt;,

and passes in this manner from the part of the solid which is

below the plane of the circle to the part above, is, for the two cases

rr dv j,
in question, K

-^-
coat.

98. It is easy now to generalise this result and to recognise

that it exists in every case of the varied movement of heat ex

pressed by the equation v = F (x, y, z, t).

Let us in fact denote by x, y, z ,
the co-ordinates of this point

m, and its actual temperature by v. Let x + f, y + rj,
z -f f, be

the co-ordinates of a point JJL infinitely near to the point m, and

whose temperature is w
; f, r\, are quantities infinitely small added

to the co-ordinates x
, y ,

z
; they determine the position of

molecules infinitely near to the point m, with respect to three

rectangular axes, whose origin is at m, parallel to the axes of

x, y, and z. Differentiating the equation

=/ 0&amp;gt; y&amp;gt;

z
&amp;gt;

and replacing the differentials by f, rj, we shall have, to express

the value of w which is equivalent to v + dv, the linear equation

, dv ,. dv dv ^ , m . , dv dv dv fw = v + j- f + ~j- v + -7- ? ;
the coefficients v

, -y-, --,-, i- ,
are func-

dx dy dz . dx dy dz

tions of x, y, z, t, in which the given and constant values of, y } z,

which belong to the point m, have been substituted for x,
y&amp;gt;

z.

Suppose that the same point m belongs also to a solid enclosed

between six rectangular planes, and that the actual temperatures

of the points of this prism, whose dimensions are finite, are ex

pressed by the linear equation w = A + a + Irj + c
;
and that

the molecules situated on the faces which bound the solid are

maintained by some external cause at the temperature which is

assigned to them by the linear equation, f, rj, are the rectangular

co-ordinates of a molecule of the prism, whose temperature is w
t

referred to three axes whose origin is at m.

This arranged, if we take as the values of the constant coeffi

cients A, a, 6, c, which enter into the equation for the prism^ the

,.,. , dv dv dv
r

, . ,
,

, ,. ,,-p &amp;lt;..

quantities v
, -y- ,

-=-
,
-=-

,
which belong to the ditierential eqna-

cLoc dy cLz

tion
;
the state of the prism expressed by the equation
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,
,

dv dv dvw = v + -j + -T- *? + -j- ?ax *
dgp cfe

will coincide as nearly as possible with the state of the solid
;
that

is to say, all the molecules infinitely near to the point m will have

the same temperature, whether we consider them to be in the solid

or in the prism. This coincidence of the solid and the prism is

quite analogous to that of curved surfaces with the planes which

touch them.

It is evident, from this, that the quantity of heat which flows

in the solid across the circle co, during the instant dt, is the same
as that which flows in the prism across the same circle; for all the

molecules whose actions concur in one effect or the other, have

the same temperature in the two solids. Hence, the flow in

question, in one solid or the other, is expressed by K -=- wdt.

It would be K -=- codt, if the circle
o&amp;gt;,

whose centre is m, were

perpendicular to the axis of y, and K
-^- codt, if this circle were

perpendicular to the axis of x.

The value of the flow which we have just determined varies

in the solid from one point to another, and it varies also with

the time. We might imagine it to have, at all the points of a

unit of surface, the same value as at the point m, and to preserve
this value during unit of time

;
the flow would then be expressed

by K-j- , it would be K-j- in the direction of y, and K~
dz, dy dx

in that of x. We shall ordinarily employ in calculation this

value of the flow thus referred to unit of time and to unit of

surface.

99. This theorem serves in general to measure the velocity
with which heat tends to traverse a given point of a plane
situated in any manner whatever in the interior of a solid whose

temperatures vary with the time. Through the given point m,

a perpendicular must be raised upon the plane, and at every

point of this perpendicular ordinates must be drawn to represent
the actual temperatures at its different points. A plane curve

will thus be formed whose axis of abscissse is the perpendicular.

F. H. 6
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The fluxion of the ordinate of this curve, answering to the point

ra, taken with the opposite sign, expresses the velocity with

which heat is transferred across the plane. This fluxion of the

ordinate is known to be the tangent of the angle formed by
the element of the curve with a parallel to the abscissse.

The result which we have just explained is that of which

the most frequent applications have been made in the theory

of heat. We cannot discuss the different problems without

forming a very exact idea of the value of the flow at every point

of a body whose temperatures are variable. It is necessary to

insist on this fundamental notion
;
an example which we are

about to refer to will indicate more clearly the use which has

been made of it in analysis.

100. Suppose the different points of a cubic mass, an edge
of which has the length TT, to have unequal actual temperatures

represented by the equation v = cos x cos y cos z. The co

ordinates x, y, z are measured on three rectangular axes, whose

origin is at the centre of the cube, perpendicular to the faces.

The points of the external surface of the solid are at the actual

temperature 0, and it is supposed also that external causes

maintain at all these points the actual temperature 0. On this

hypothesis the body will be cooled more and more, the tem

peratures of all the points situated in the interior of the mass

will vary, and, after an infinite time, they will all attain the

temperature of the surface. Now, we shall prove in the sequel,

that the variable state of this solid is expressed by the equation

v = e~
9t cos x cos y cos z,

3/iT
the coefficient g is equal to

* 71
-^ *s ^ne specific conduci-

G . I)

bility of the substance of which the solid is formed, D is the

density and G the specific heat
;

t is the time elapsed.

We here suppose that the truth of this equation is admitted,

and we proceed to examine the use which may be made of it

to find the quantity of heat which crosses a given plane parallel

to one of the three planes at the right angles.

If, through the point m, whose co-ordinates are x, y, z, we
draw a plane perpendicular to z, we shall find, after the mode
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of the preceding article, that the value of the flow, at this point

and across the plane, is K
-j- ,

or Ke~3t cos x . cos y . sin z. The
clz

quantity of heat which, during the instant dt, crosses an infinitely

small rectangle, situated on this plane, and whose sides are

dx and dy, is

Ke* cos x cos y sin z dx dy dt.

Thus the whole heat which, during the instant dt, crosses the

entire area of the same plane, is

K e
gf sin z . dt / / cos x cos ydxdy;

the double integral being taken from x = ^
IT up to x = = TT,

and from y = - TT up to y = - TT. We find then for the ex-
*

pression of this total heat,

4 AV sin^.ok

If then we take the integral with respect to t, from t = to

t =
,
we shall find the quantity of heat which has crossed the

same plane since the cooling began up to the actual moment.

This integral is sin z (1 e~gt
),

its value at the surface is

so that after an infinite time the quantity of heat lost through

one of the faces is . The same reasoning being applicable

to each of the six faces, we conclude that the solid has lost by its

complete cooling a total quantity of heat equal to - - or SCD,
*J

since g is equivalent to -^^ . The total heat which is dissipated
C.L/

during the cooling must indeed be independent of the special

conducibility K, which can only influence more or less the

velocity of cooling.

C 2
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100. A. We may determine in another manner the quantity

of heat which the solid loses during a given time, and this will

serve in some degree to verify the preceding calculation. In

fact, the mass of the rectangular molecule whose dimensions are

dx, dy, dz, is D dx dy dz, consequently the quantity of heat

which must be given to it to bring it from the temperature to

that of boiling water is CD dx dy dz, and if it were required to

raise this molecule to the temperature v, the expenditure of heat

would be v CD dx dy dz.

It follows from this, that in order to find the quantity by
which the heat of the solid, after time t, exceeds that which

it contained at the temperature 0, we must take the mul

tiple integral 1 1 1 v CD dx dy dz, between the limits x = = iry

We thus find, on substituting for v its value, that is to say

~
9t

e cos x cos y cos z,

that the excess of actual heat over that which belongs to the

temperature is 8 CD (1 e~
gt

) ; or, after an infinite time,

8 CD, as we found before.

We have described, in this introduction, all the elements which

it is necessary to know in order to solve different problems

relating to the movement of heat in solid bodies, and we have

given some applications of these principles, in order to shew

the mode of employing them in analysis ;
the most important

use which we have been able to make of them, is to deduce

from them the general equations of the propagation of heat,

which is the subject of the next chapter.

Note on Art. 76. The researches of J. D. Forbes on the temperatures of a long

iron bar heated at one end shew conclusively that the conducting power K is not con

stant, but diminishes as the temperature increases. Transactions of the Eoyal

Society of Edinburgh, Vol. xxiu. pp. 133 146 and Vol. xxiv. pp. 73 110.

Note on Art. 98. General expressions for the flow of heat within a mass in

which the conductibility varies with the direction of the flow are investigated by
Lame in his Theorie Analytique de la Chaleur, pp. 1 8. [A. F.]



CHAPTER II.

EQUATIONS OF THE MOVEMENT OF HEAT.

SECTION I.

Equation of the varied movement of heat in a ring.

101. WE might form the general equations which represent
the movement of heat in solid bodies of any form whatever, and

apply them -to particular cases. But this method would often

involve very complicated calculations which may easily be avoided.

There are several problems which it is preferable to treat in a

special manner by expressing the conditions which are appropriate
to them; we proceed to adopt this course and examine separately
the problems which have been enunciated in the first section of

the introduction
;
we will limit ourselves at first to forming the

differential equations, and shall give the integrals of them in the

following chapters.

102. We have already considered the uniform movement of

heat in a prismatic bar of small thickness whose extremity is

immersed in a constant source of heat. This first case offered no

difficulties, since there was no reference except to the permanent
state of the temperatures, and the equation which expresses them
is easily integrated. The following problem requires a more pro
found investigation; its object is to determine the variable state

of a solid ring whose different points have received initial tempe
ratures entirely arbitrary.

The solid ring or armlet is generated by the revolution of

a rectangular section about an axis perpendicular to the plane of
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the ring (see figure 3), I is the perimeter of the section whose area

*s ^ tne coen&amp;lt;icien t h measures the external con-

ducibility, K the internal conducibility, the

specific capacity for heat, D the density. The line

oxos x&quot; represents the mean circumference of the

armlet, or that line which passes through the

centres of figure of all the sections; the distance

of a section from the origin o is measured by the

arc whose length is x\ R is the radius of the mean circumference.

It is supposed that on account of the small dimensions and of

the form of the section, we may consider the temperature at the

different points of the same section to be equal.

103. Imagine that initial arbitrary temperatures have been

given to the different sections of the armlet, and that the solid is

then exposed to air maintained at the temperature 0, and dis

placed with a constant velocity; the system of temperatures will

continually vary, heat will be propagated within the ring, and

dispersed at the surface: it is required to determine what will be

the state of the solid at any given instant.

Let v be the temperature which the section situated at distance

x will have acquired after a lapse of time t
;
v is a certain function

of x and t, into which all the initial temperatures also must enter :

this is the function which is to be discovered.

104. We will consider the movement of heat in an infinitely

small slice, enclosed between a section made at distance x and

another section made at distance x -f dx. The state of this slice

for the duration of one instant is that of an infinite solid termi

nated by two parallel planes maintained at unequal temperatures ;

thus the quantity of heat which flows during this instant dt across

the first section, and passes in this way from the part of the solid

which precedes the slice into the slice itself, is measured according
to the principles established in the introduction, by the product of

four factors, that is to say, the conducibility K, the area of the

section S, the ratio -=-
,
and the duration of the instant; its

dx

expression is KS
-j-

dt. To determine the quantity of heat
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which escapes from the same slice across the second section, and

passes into the contiguous part of the solid, it is only necessary
to change x into x 4- dx in the preceding expression, or, which is

the same thing, to add to this expression its differential taken

with respect to x
;
thus the slice receives through one of its faces

a quantity of heat equal to
KS-j-dt,

and loses through the

opposite face a quantity of heat expressed by

Tr. ~ -

-, -rr- n , ,- KS-j- dt - KS T-O dx dt.
dx dx

It acquires therefore by reason of its position a quantity of heat

equal to the difference of the two preceding quantities, that is

KSldxdt.
dx?

On the other hand, the same slice, whose external surface is

Idx and whose temperature differs infinitely little from v, allows

a quantity of heat equivalent to hlvdxdt to escape into the air;

during the instant dt\ it follows from this that this infinitely-

small part of the solid retains in reality a quantity of heat
72

represented by KS -^ dx dt - hlv dx dt which makes its tempe-
clx

rature vary. The amount of this change must be examined.

105. The coefficient C expresses how much heat is required
to raise unit of weight of the substance in question from tempe
rature up to temperature 1

; consequently, multiplying the

volume Sdx of the infinitely small slice by the density Z&amp;gt;,
to

obtain its weight, and by C the specific capacity for heat, we shall

have CDSdx as the quantity of heat which would raise the

volume of the slice from temperature up to temperature 1.

Hence the increase of temperature which results from the addition
J7

of a quantity of heat equal to KS -^ dx dt hlv dx dt will be

found by dividing the last quantity by CDSdx. Denoting there

fore, according to custom, the increase of temperature which takes

place during the instant dt by -,

y

dt, we shall have the equation
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7/7 TTr) j~Z$.
~~

~nf)&amp;lt;3 vv
CiU \JU UiOC L/X/AJ

We shall explain in the sequel the use which may be made of

this equation to determine the complete solution, and what the

difficulty of the problem consists in; we limit ourselves here to

a remark concerning the permanent state of the armlet.

106. Suppose that, the plane of the ring being horizontal,

sources of heat, each of which exerts a constant action, are placed

below different points m, n, p, q etc.
;
heat will be propagated in

the solid, and that which is dissipated through the surface being

incessantly replaced by that which emanates from the sources, the

temperature of every section of the solid will approach more and

more to a stationary value which varies from one section to

another. In order to express by means of equation (b) the law of

the latter temperatures, which would exist of themselves if they

were once established, we must suppose that the quantity v does

not vary with respect to t
}
which annuls the term -j-. We thus

have the equation

Ul V fill -I
-mif X\f T7-Q TIT &quot;J^V IfSf

-T~*
= ~T7 v

&amp;gt;

whence v = Me KS + Ne ,

ax AD

M and N being two constants
1
.

1 This equation is the same as the equation for the steady temperature of a

finite bar heated at one end (Art. 76), except that I here denotes the perimeter of

a section whose area is 8. In the case of the finite bar we can determine two

relations between the constants M and N : for, if V be the temperature at the

source, where # = 0, VM+N ,
and if at the end of the bar remote from the source,

where x = L suppose, we make a section at a distance dx from that end, the flow

through this section is, in unit of time,
- KS

,
and this is equal to the waste

of heat through the periphery and free end of the slice, hv(ldx + S) namely;

hence ultimately, dx vanishing,

=L ^ *

^
&amp;lt;*!.

IT, irr\ rfjJf1

Cf. Verdet, Conferences de Physique, p. 37. [A. F.]
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107. Suppose a portion of the circumference of the ring,

situated between two successive sources of heat, to be divided

into equal parts, and denote by v
lt

V
2 ,

V
3 , v4 , &c., the temperatures

at the points of division whose distances from the origin are

xv xv xv #4&amp;gt;

&c-j the relation between v and x will be given by
the preceding equation, after that the two constants have been

determined by means of the two values of v corresponding to

Ju
the sources of heat. Denoting by a the quantity e KS

, and

by X the distance x
2 x^ of two consecutive points of division,

we shall have the equations :

whence we derive the following relation -* = ax + a~A.

We should find a similar result for the three points whose

temperatures are v
2 ,
v
s ,
v
4 ,
and in general for any three consecutive

points. It follows from this that if we observed the temperatures
v

\&amp;gt;

vv v
s&amp;gt;

vv V
5
&c - f several successive points, all situated between

the same two sources m and n and separated by a constant

interval X, we should perceive that any three consecutive tempe
ratures are always such that the sum of the two extremes divided

by the mean gives a constant quotient ax + a~
A

.

108. If, in the space included between the next two sources of

lieat n and p, the temperatures of other different points separated

by the same interval X were observed, it would still be found that

for any three consecutive points, the sum of the two extreme

temperatures, divided by the mean, gives the same quotient

k*. 4. a-\ The value of this quotient depends neither on the

position nor on the intensity of the sources of heat.

109. Let q be this constant value, we have the equation

Vs$.-;
we see by this that when the circumference is divided into equal

parts, the temperatures at the points of division, included between
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two consecutive sources of heat, are represented by the terms of

a recurring series whose scale of relation is composed of two terms

q and 1.

Experiments have fully confirmed this result. We have ex

posed a metallic ring to the permanent and simultaneous action

of different sources of heat, and we have observed the stationary

temperatures of several points separated by constant intervals; we

always found that the temperatures of any three consecutive

points, not separated by a source of heat, were connected by the

relation in question. Even if the sources of heat be multiplied,

and in whatever manner they be disposed, no change can be

v ~\~ v
effected in the numerical value of the quotient

-1- 3
;

it depends

only on the dimensions or on the nature of the ring, and not on

the manner in which that solid is heated.

110. When we have found, by observation, the value of the

constant quotient q or
1

^
3

,
the value of ax may be derived

from it by means of the equation aA + ofA = q. One of the roots

is a\ and other root is a~\ This quantity being determined,

we may derive from it the value of the ratio ^, which is
J\.

o

j (log a)
2
. Denoting ax by co, we shall have o&amp;gt;

2

qw + 1 = 0. Thus
I

nr

the ratio of the two conducibilities is found by multiplying
L

by the square of the hyperbolic logarithm of one of the roots of

the equation o&amp;gt;

2

qa&amp;gt;
+ 1 = 0, and dividing the product by X2

.

SECTION II.

Equation of the varied movement of heat in a solid sphere.

111. A solid homogeneous mass, of the form of a sphere,

having been immersed for an infinite time in a medium main

tained at a permanent temperature 1, is then exposed to air which

is kept at temperature 0, and displaced with constant velocity :

it is required to determine the successive states of the body during
the whole time of the cooling.
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Denote by x the distance of any point whatever from the

centre of the sphere, and by v the temperature of the same point,

after a time t has elapsed ;
and suppose, to make the problem

more general, that the initial temperature, common to all points
situated at the distance x from the centre, is different for different

values of x
;
which is what would have been the case if the im

mersion had not lasted for an infinite time.

Points of the solid, equally distant from the centre, will not

cease to have a common temperature ;
v is thus a function of x

and t. When we suppose t = 0, it is essential that the value of

this function should agree with the initial state which is given,

and which is entirely arbitrary.

112. We shall consider the instantaneous movement of heat

in an infinitely thin shell, bounded by two spherical surfaces whose

radii are x and x + dx: the quantity of heat which, during an

infinitely small instant dt, crosses the lesser surface whose radius

is x, and so passes from that part of the solid which is nearest to

the centre into the spherical shell, is equal to the product of four

factors which are the conducibility K, the duration dt, the extent

^Trx
2
of surface, and the ratio -j- ,

taken with the negative sign ;

it is expressed by AKirx*
-j-

dt.

To determine the quantity of heat which flows during the

same instant through the second surface of the same shell, and

passes from this shell into the part of the solid which envelops it,

x must be changed into x + dx, in the preceding expression : that

ci i)

is to say, to the term KTTX* -T- dt must be added the differen

tial of this term taken with respect to x. We thus find

- tKvx* ^dt- IKtrd (x* ^} . dt
dx \ dxj

as the expression of the quantity of heat which leaves the spheri

cal shell across its second surface; and if we subtract this quantity

from that which enters through the first surface, we shall have

xz --} dt. This difference is evidently the quantity of
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heat which accumulates in the intervening shell, and whose effect

is to vary its temperature.

113. The coefficient C denotes the quantity of heat which is

necessary to raise, from temperature to temperature 1, a definite

unit of weight ;
D is the weight of unit of volume, ^Trx^dx is the

volume of the intervening layer, differing from it only by a

quantity which may be omitted : hence kjrCDx^dx is the quantity

of heat necessary to raise the intervening shell from temperature
to temperature 1. Hence it is requisite to divide the quantity

of heat which accumulates in this shell by 4 rjrCDx2dx) and we

shall then find the increase of its temperature v during the time

dt. We thus obtain the equation

Jr d(x
2

}
, _ K , \ dxj

~
CD x*dx

v 2 dv\
or -77

= TTT: I -r-a + -
-7-

/ (c).
5 x dxj ^

114. The preceding equation represents the law of the move
ment of heat in the interior of the solid, but the temperatures of

points in the surface are subject also to a special condition which

must be expressed. This condition relative to the state of the

surface may vary according to the nature of the problems dis

cussed : we may suppose for example, that, after having heated

the sphere, and raised all its molecules to the temperature of

boiling water, the cooling is effected by giving to all points in the

surface the temperature 0, and by retaining them at this tem

perature by any external cause whatever. In this case we may
imagine the sphere, whose variable state it is desired to determine,
to be covered by a very thin envelope on which the cooling agency
exerts its action. It may be supposed, 1, that this infinitely

thin envelope adheres to the solid, that it is of the same substance

as the solid and that it forms a part of it, like the other portions
of the mass

; 2, that all the molecules of the envelope are sub

jected to temperature Oby a cause always in action which prevents
the temperature from ever being above or below zero. To express
this condition theoretically, the function v, which contains x and t,
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must be made to become nul, when we give to x its complete
value X equal to the radius of the sphere, whatever else the value

of t may be. We should then have, on this hypothesis, if we

denote by &amp;lt;f&amp;gt; (x, t) the function of x and t, which expresses the

value of v, the two equations

jr
= -F^ ( -T-2 + -

3- ) , and 6 (X, t)
= 0.

dt \jj-J \(zx x cl/jcj

Further, it is necessary that the initial state should be repre

sented by the same function &amp;lt; (x, t) : we shall therefore have as a

second condition
(/&amp;gt; (x, 0)

= 1. Thus the variable state of a solid

sphere on the hypothesis which we have first described will be

represented by a function v, which must satisfy the three preceding

equations. The first is general, and belongs at every instant to

all points of the mass
;
the second affects only the molecules at

the surface, and the third belongs only to the initial state.

115. If the solid is being cooled in air, the second equation is

different
;

it must then be imagined that the very thin envelope
is maintained by some external cause, in a state such as to pro

duce the escape from the sphere, at every instant, of a quantity of

heat equal to that which the presence of the medium can carry

away from it.

Now the quantity of heat which, during an infinitely small

instant dt, flows within the interior of the solid across the spheri

cal surface situate at distance x, is equal to 4&amp;gt;K7rx
z

-^-
dt

;
and

this general expression is applicable to all values of x. Thus, by

supposing x =X we shall ascertain the quantity of heat which in

the variable state of the sphere would pass across the very thin

envelope which bounds it
;
on the other hand, the external surface

of the solid having a variable temperature, which we shall denote

by F, would permit the escape into the air of a quantity of heat

proportional to that temperature, and to the extent of the surface,

which is 4&amp;lt;7rX

2
. The value of this quantity is 4&amp;lt;h7rX

2
Vdt.

To express, as is supposed, that the action of the envelope

supplies the place, at every instant, of that which would result from

the presence of the medium, it is sufficient to equate the quantity

4&amp;gt;JnrX*Vdt to the value which the expression 4iKTrX* -_,- dt
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receives when we give to x its complete value X\ hence we obtain

the equation -,- = -jyV, which must hold when in the functions
dx A

Ct ?J

T and v we put instead of x its value X, which we shall denote
dx

dV
by writing it in the form K

~j- + h V 0.
doc

116. The value of -=- taken when x = X, must therefore have
dx

a constant ratio -+ to the value of v, which corresponds to the

same point. Thus we shall suppose that the external cause of

the cooling determines always the state of the very thin envelope,
C/1J

in such a manner that the value of ,
-- which results from this

dx

state, is proportional to the value of v, corresponding to x = X,

and that the constant ratio of these two quantities is
-^

. This

condition being fulfilled by means of some cause always present,

which prevents the extreme value of -y- from being anything else
CLX

but ^ v, the action of the envelope will take the place of that

of the air.

It is not necessary to suppose the envelope to be extremely

thin, and it will be seen in the sequel that it may have an

indefinite thickness. Here the thickness is considered to be

indefinitely small, so as to fix the attention on the state of the

surface only of the solid.

117. Hence it follows that the three equations which are

required to determine the function $ (x, t}
or v are the following,

dn

Tt~~

The first applies to all possible values of x and t
;
the second

is satisfied when x = X, whatever be the value of t; and the

third is satisfied when t = 0, whatever be the value of x.
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It might be supposed that in the initial state all the spherical

layers have not the same temperature : which is what would

necessarily happen, if the immersion were imagined not to have

lasted for an indefinite time. In this case, which is more general
than the foregoing, the given function, which expresses the

initial temperature of the molecules situated at distance x from

the centre of the sphere, will be represented by F (x) ;
the third

equation will then be replaced by the following, &amp;lt; (x, 0)
= F (x).

Nothing more remains than a purely analytical problem,
whose solution w7ill be given in one of the following chapters.
It consists in finding the value of v, by means of the general

condition, and the two special conditions to which it is subject.

SECTION III.

Equations of the varied movement of heat in a solid cylinder.

118. A solid cylinder of infinite length, whose side is per

pendicular -to its circular base, having been wholly immersed

in a liquid whose temperature is uniform, has been gradually

heated, in such a manner that all points equally distant from

the axis have acquired the same temperature ;
it is then exposed

to a current of colder air
;

it is required to determine the

temperatures of the different layers, after a given time.

x denotes the radius of a cylindrical surface, all of whose

points are equally distant from the axis
;
X is the radius of

the cylinder ;
v is the temperature which points of the solid,

situated at distance x from the axis, must have after the lapse

of a time denoted by t, since the beginning of the cooling.

Thus v is a function of x and t, and if in it t be made equal to

0, the function of x which arises from this must necessarily satisfy

the initial state, which is arbitrary.

119. Consider the movement of heat in an infinitely thin

portion of the cylinder, included between the surface whose

radius is x, and that whose radius is x + dx. The quantity of

heat which this portion receives during the instant dty from the

part of the solid which it envelops, that is to say, the quantity
which during the same time crosses the cylindrical surface
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whose radius is x, and whose length is supposed to be equal

to unity, is expressed by

dx

To find the quantity of heat which, crossing the second surface

whose radius is x + dx, passes from the infinitely thin shell into

the part of the solid which envelops it, we must, in the foregoing

expression, change x into x + dx, or, which is the same thing,

add to the term

2K7TX ys- dt,
dx

the differential of this term, taken with respect to x. Hence

the difference of the heat received and the heat lost, or the

quantity of heat which accumulating in the infinitely thin shell

determines the changes of temperature, is the same differential

taken with the opposite sign, or

*&..*(.*);
on the other hand, the volume of this intervening shell is Qirxdx,

and ZCDjrxdx expresses the quantity of heat required to raise

it from the temperature to the temperature 1, C being the

specific heat, and D the density. Hence the quotient

~
dx

ZCDwxdx

is the increment which the temperature receives during the

instant dt. Whence we obtain the equation

k - K (^ ld
JL\

*
T !

dt CD \da? x dx) \

120. The quantity of heat which, during the instant dt,

crosses the cylindrical surface whose radius is x
t being expressed

in general by 2Kirx
-j-

dt, we shall find that quantity which

escapes during the same time from the surface of the solid, by
making x =X in the foregoing value; on the other hand, the
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same quantity, dispersed into the air, is, by the principle of the

communication of heat, equal to %7rXhvJt
;
we must therefore

have at the surface the definite equation K-j- =hv. The

nature of these equations is explained at greater length, either

in the articles which refer to the sphere, or in those wherein the

general equations have been given for a body of any form what

ever. The function t? which represents the movement of heat in

an infinite cylinder must therefore satisfy, 1st, the general equa-
- dv K (tfv 1 dv\ , . .

tion ~r ~^T} [TJ ~*~
~
J~)

wnicn ^PP^es whatever x and t may

be; 2nd, the definite equation -^
v -f -j-

=
0, which is true, whatever

the variable t may be, when x X; 3rd, the definite equation
v = F(x). The last condition must be satisfied by all values

of r, when t is made equal to 0, whatever the variable x may
be. The arbitrary function F (x) is supposed to be known

;
it

corresponds to the initial state.

SECTION IV.

Equations of the uniform movement of heat in a solid prism

of infinite length.

121. A prismatic bar is immersed at one extremity in a

constant source of heat which maintains that extremity at the

temperature A ;
the rest of the bar, whose length is infinite,

continues to be exposed to a uniform current of atmospheric air

maintained at temperature 0; it is required to determine the

highest temperature which a given point of the bar can acquire.

The problem differs from that of Article 73, since we now W
take into consideration all the dimensions of the solid, which is

necessary in order to obtain an exact solution.

We are led, indeed, to suppose that in a bar of very small

thickness all points of the same section would acquire sensibly

equal temperatures ;
but some uncertainty may rest on the

results of this hypothesis. It is therefore preferable to solve the

problem rigorously, and then to examine, by analysis, up to what

point, and in what cases, we are justified in considering the

temperatures of different points of the same section to be equal.

F. H. 7
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122. The section made at right angles to the length of the

bar, is a square whose side is 2f, the axis of the bar is the axis

of x, and the origin is at the extremity A. The three rectangular

co-ordinates of a point of the bar are x
t y, z, and v denotes the

fixed temperature at the same point.

The problem consists in determining the temperatures which

must be assigned to different points of the bar, in order that

they may continue to exist without any change, so long as the

extreme surface A, which communicates with the source of heat,

remains subject, at all its points, to the permanent tempera
ture A

;
thus v is a function of x

t y, and z.

123. Consider the movement of heat in a prismatic molecule,

enclosed between six planes perpendicular to the three axes

of x, y, and z. The first three planes pass through the point m
whose co-ordinates are x, y, z, and the others pass through the

point m whose co-ordinates are x -f dx, y + dy, z-\- dz.

To find what quantity of heat enters the molecule during
unit of time across the first plane passing through the point m
and perpendicular to x

t
we must remember that the extent of the

surface of the molecule on this plane is dydz, and that the flow

across this area is, according to the theorem of Article 98, equal

to K
;
thus the molecule receives across the rectangle dydzdx

passing through the point m a quantity of heat expressed by

z
-j-

. To find the quantity of heat which crosses the

opposite face, and escapes from the molecule, we must substitute,

in the preceding expression, x + dx for x, or, which is the same

thing, add to this expression its differential taken with respect

to x only; whence we conclude that the molecule loses, at its

second face perpendicular to x, a quantity of heat equal to

dv fdv\A dydz ,
-- A dndzd -r- ;9 dx \dxj

we must therefore subtract this from that which enters at the

opposite face
;
the differences of these two quantities is

tr j j j fdv\A dydz a I

-j-
1

, or, A axdyd
\ctx/

d2
v

z -=-^dx
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this expresses the quantity of heat accumulated in the molecule

in consequence of the propagation in direction of x ; which ac

cumulated heat would make the temperature of the molecule

vary, if it were not balanced by that which is lost in some other

direction.

It is found in the same manner that a quantity of heat equal

to Kdz dx -T- enters the molecule across the plane passing

through the point m perpendicular to y, and that the quantity
which escapes at the opposite face is

Kdzdx -j
-- Kdzdx d (

-T-

) ,

dy \dy)

the last differential being taken with respect to y only. Hence

the difference of the two quantities, or Kdxdydz j-$, expresses
dy

the quantity of heat which the molecule acquires, in consequence
of the propagation in direction of y.

Lastly, it is proved in the same manner that the molecule

acquires, in consequence of the propagation in direction of z
t

a quantity of heat equal to Kdxdydz-j-j. Now, in order that
dz

there may be no change of temperature, it is necessary for the

molecule to retain as much heat as it contained at first, so that

the heat it acquires in one direction must baknce that

loses in another. Hence the sum of the three quanti

acquired must be nothing; thus we form the equation

d2
v cPv tfv _

da?d** dz
z
~

first, so that

hat which it

ities of heat

124 It remains now to express the conditions relative to the

surface. If we suppose the point m to belong to one of the faces

of the prismatic bar, and the face to be perpendicular to z, we

see that the rectangle dxdy, during unit of time, permits a

quantity of heat equal to Vh dx dy to escape into the air,

V denoting the temperature of the point m of the surface, namely
what

&amp;lt;f&amp;gt;
(x, y, z] the function sought becomes when z is made

equal to I, half the dimension of the prism. On the other hand,

the quantity of heat which, by virtue of the action of the

72
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molecules, during unit of time, traverses an infinitely small surface

G&amp;gt;,
situated within the prism, perpendicular to z

y is equal to

Kco-j-, according to the theorems quoted above. This ex-

pression is general, and applying it to points for which the co

ordinate z has its complete value I, we conclude from it that the

quantity of heat which traverses the rectangle dx dy taken at the

surface is -
Kdxdy-j-, giving to z in the function -7- its com

plete value I. Hence the two quantities Kdxdy-j-, and
CLZ

h dx dy v, must be equal, in order that the action of the molecules

may agree with that of the medium. This equality must also

exist when we give to z in the functions -y- and v the value I,

dz

which it has at the face opposite to that first considered. Further,

the quantity of heat which crosses an infinitely small surface co,

perpendicular to the axis of y, being Kco-j-, it follows that

that which flows across a rectangle dz dx taken on a face of the

(i rJ

prism perpendicular to y is - K dz dx -=-
, giving to y in the

J

function -y- its complete value I. Now this rectangle dz dx
dy

permits a quantity of heat expressed by hv dx dy to escape into

the air; the equation hv = K^- becomes therefore necessary,
t/

r/?j

when y is made equal to I or I in the functions v and -=- .

dy

125. The value of the function v must by hypothesis be

equal to A, when we suppose a? = 0, whatever be the values of

y and z. Thus the required function v is determined by the

following conditions: 1st, for all values of x
} y, z, it satisfies the

general equation

d^v
d*v d*v _

dtf
+

dy*
+

~dz*~

2nd, it satisfies the equation y^w + -r- = 0, when y is equal to
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I or I, whatever x and z may be, or satisfies* the equation

-pV + ^-
= 0, when z is equal to I or I, whatever x and y may

be
; 3rd, it satisfies the equation v = A, when x = 0, whatever

y and z may be.

SECTION Y.

Equations of the varied movement of heat in a solid cule.

126. A solid in the form of a cube, all of whose points have

acquired the same temperature, is placed in a uniform current of

atmospheric air, maintained at temperature 0. It is required to

determine the successive states of the body during the whole

time of the cooling.

The centre of the cube is taken as the origin of rectangular

coordinates; the three perpendiculars dropped from this point on

the faces, are the axes of x, y, and z
;
21 is the side of the cube,

v is the temperature to which a point whose coordinates are

x, y} z, is lowered after the time t has elapsed since the com

mencement of the cooling : the problem consists in determining
the function v, which depends on x, y, z and t.

127. To form the general equation which v must satisfy,

we must ascertain what change of temperature an infinitely

small portion of the solid must experience during the instant

dt, by virtue of the action of the molecules which are extremely

near to it. We consider then a prismatic molecule enclosed

between six planes at right angles; the first three pass through
the point m, whose co-ordinates are x, y, z, and the three others,

through the point m
,
whose co-ordinates are

x + dx, y + dy, z + dz.

The quantity of heat which during the instant dt passes into

the molecule across the first rectangle dy dz perpendicular to x,

is Kdy dz -T- dt, and that which escapes in the same time from

the molecule, through the opposite face, is found by writing

x-}- dx in place of x in the preceding expression, it is

- Kdy ^ ( -y-J dt. Kdy dzd(-^\ dt,
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the differential being taken with respect to x only. The quantity

of heat which during the instant dt enters the molecule, across

the first rectangle dz dx perpendicular to the axis of y, is

Kdzdx--.~dt, and that which escapes from the molecule during

the same instant, by the opposite face, is

Kdz dx 4- dt Kdz dx d
( -y- ) dt,

ay \dyJ

the differential being taken with respect to y only. The quantity

of heat which the molecule receives during the instant dt, through

its lower face, perpendicular to the axis of z, is Kdxdy-j-dt,dz

and that which it loses through the opposite face is

~Kdxdy^dt-Kdxdyd(~^dt,

the differential being taken with respect to z only.

The sum of all the quantities of heat which escape from the

molecule must now be deducted from the sum of the quantities

which it receives, and the difference is that which determines its

increase of temperature during the instant: this difference is

Kdij dz d -. dt + Kdz dx d dt + K dx dy d dt,

128. If the quantity which has just been found be divided by
that which is necessary to raise the molecule from the temperature

to the temperature 1, the increase of temperature which is

effected during the instant dt will become known. Now, the

latter quantity is CD dx dy dz : for C denotes the capacity of

the substance for heat; D its density, and dxdydz the volume

of the molecule. The movement of heat in the interior of the

solid is therefore expressed by the equation

dv K fd^v d^v d*v\
. / j_ .

i __ (fj\
7 t

~&quot; f1 7~\ I 7 *2 * I 2 I 7 I IW Ji

dt CD \dx dy* dz J
^
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129. It remains to form the equations which relate to the

state of the surface, which presents no difficulty, in accordance

with the principles which we have established. In fact, the

quantity of heat Avhich, during the instant dt
:
crosses the rectangle

dz dy, traced on a plane perpendicular to x
}

is K dy dz -v- dt.

This result, which applies to all points of the solid, ought to hold

when, the value of x is equal to I, half the thickness of the prism.

In this case, the rectangle dyds being situated at the surface, the

quantity of heat which crosses it, and is dispersed into the air

during the instant dt, is expressed by hvdydz dt, we ought there

fore to have, when x = l
}
the equation hv = K-j-. This con-

CL*k

dition must also be satisfied when x = I.

It will be found also that, the quantity of heat which crosses

the rectangle dz dx situated on a plane perpendicular to the axis

of y being in general Kdz dx -j- ,
and that which escapes at the

surface into &quot;the air across the same rectangle being hvdzdxdt,

we must have the equation hu + K-j-
= Q, when y l or L

U

Lastly, we obtain in like manner the definite equation

dz

which is satisfied when z = I or L

130. The function sought, which expresses the varied move

ment of heat in the interior of a solid of cubic form, must therefore

be determined by the following conditions :

1st. It satisfies the general equation

2nd. It satisfies the three definite equations

, ,

dx ay

which hold when x= 1, y = 1, z= 1;
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3rd. If in the function v which contains x, y, z, t, we make
t 0, whatever be the values of x, y, and z, we ought to have,

according to hypothesis, v = A, which is the initial and common
value of the temperature.

131. The equation arrived at in the preceding problem

represents the movement of heat in the interior of all solids.

Whatever, in fact, the form of the body may be, it is evident that,

by decomposing it into prismatic molecules, we shall obtain this

result. We may therefore limit ourselves to demonstrating in

this manner the equation of the propagation of heat. But in

order to make the exhibition of principles more complete, and

that we may collect into a small number of consecutive articles

the theorems which serve to establish the general equation of the

propagation of heat in the interior of solids, and the equations
which relate to the state of the surface, we shall proceed, in the

two following sections, to the investigation of these equations,

independently of any particular problem, and without reverting

to the elementary propositions which we have explained in the

introduction.

SECTION VI.

General equation of the propagation of heat in the interior of solids.

132. THEOREM I. If the different points of a homogeneous
solid mass, enclosed between six planes at right angles, have actual

temperatures determined by the linear equation

v = A ax by cz, (a),

and if the molecules situated at the external surface on the six

planes which bound the prism are maintained, by any cause what

ever, at the temperature expressed by the equation (a) : all the

molecules situated in the interior of the mass will of themselves

retain their actual temperatures, so that there will be no change in

the state of the prism.

v denotes the actual temperature of the point whose co

ordinates are x, y, z
; A, a, b, c, are constant coefficients.

To prove this proposition, consider in the solid any three

points whatever wJ//z, situated on the same straight line m^,
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which the point M divides into two equal parts ;
denote by

x, y, z the co-ordinates of the point Mt
and its temperature by

v, the co-ordinates of the point p by x + a, y + /3, z + y, and its

temperature by w, the co-ordinates of the point m by as a, y fi,

z y, and its temperature by u
t
we shall have

v = A ax ly cz,

whence we conclude that,

v w = az + 6/3 + cy, and u v = az + b/3 + cy ;

therefore v w = u v.

Now the quantity of heat which one point receives from

another depends on the distance between the two points and

on the difference of their temperatures. Hence the action of

the point M on the point //,
is equal to the action of m on M;

thus the point M receives as much heat from m as it gives up
to the point p.

We obtain the same result, whatever be the direction and

magnitude of the line which passes through the point J/, and

is divided into two equal parts. Hence it is impossible for this

point to change its temperature, for it receives from all parts

as much heat as it gives up.

The same reasoning applies to all other points ; hence no

change can happen in the state of the solid.

133. COROLLARY I. A solid being enclosed between two

infinite parallel planes A and B, if the actual temperature of

its different points is supposed to be expressed by the equation

v = lz, and the two planes which bound it are maintained

by any cause whatever, A at the temperature 1, and B at the

temperature ;
this particular case will then be included in

the preceding lemma, if we make A=l, a = 0, & = 0, c = 1.

134. COROLLARY II. If in the interior of the same solid

we imagine a plane M parallel to those which bound it, we see

that a certain quantity of heat flows across this plane during

unit of time
;
for two very near points, such as m and n, one
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of which is below the plane and the other above it, are unequally

heated; the first, whose temperature is highest, must therefore

send to the second, during each instant, a certain quantity of heat

which, in some cases, may be very small, and even insensible,

according to the nature of the body and the distance of the two

molecules.

The same is true for any two other points whatever separated

by the plane. That which, is most heated sends to the other

a certain quantity of heat, and the sum of these partial actions,

or of all the quantities of heat sent across the plane, composes

a continual flow whose value does not change, since all the

molecules preserve their temperatures. It is easy to prove that

this floiv, or the quantity of heat which crosses the plane M during

the unit of time, is equivalent to that luhich crosses, during the same

time, another plane N parallel to the first. In fact, the part of

the mass which is enclosed between the two surfaces M and

N will receive continually, across the plane M, as much heat

as it loses across the plane N. If the quantity of heat, which

in passing the plane M enters the part of the mass which is

considered, were not equal to that which escapes by the opposite

surface N, the solid enclosed between the two surfaces would

acquire fresh heat, or would lose a part of that which it has,

and its temperatures would not be constant; which is contrary to

the preceding lemma.

135. The measure of the specific conducibility of a given

substance is taken to be the quantity of heat which, in an infinite

solid, formed of this substance, and enclosed between two parallel

planes, flows during unit of time across unit of surface, taken

on any intermediate plane whatever, parallel to the external

planes, the distance between which is equal to unit of length,

one of them being maintained at temperature 1, and the other

at temperature 0. This constant flow of the heat which crosses

the whole extent of the prism is denoted by the coefficient K,
and is the measure of the conducibility.

136. LEMMA. If we suppose all the temperatures of the solid in

question under the preceding article, to be multiplied by any number

whatever g, so that the equation of temperatures is v = g gz,

instead of bsing v = 1 z, and if the two external planes are main-
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tained, one at the temperature g, and the other at temperature 0,

the constant flow of heat, in this second hypothesis, or the quantity
which during unit of time crosses unit of surface taken on an

intermediate plane parallel to the bases, is equal to the product

of the first flow multiplied by g.

In fact, since all the temperatures have been increased in

the ratio of 1 to g, the differences of the temperatures of any
two points whatever m and

//.,
are increased in the same ratio.

Hence, according to the principle of the communication of heat,

in order to ascertain the quantity of heat which in sends to ^
on the second hypothesis, we must multiply by g the quantity

which the same point m sends to
(JL

on the first hypothesis.

The same would be true for any two other points whatever.

Now, the quantity of heat which crosses a plane M results from

the sum of all the actions which the points m, m , m&quot;j m&quot;, etc.,

situated on the same side of the plane, exert on the points //.,

//, fju , fj!&quot;} etc., situated on the other side. Hence, if in the first

hypothesis the constant flow is denoted by K} it will be equal to

gK, wrhen we have multiplied all the temperatures by g.

137. THEOREM II. In a prism whose constant temperatures

are expressed by the equation v = A ax- by cz, and which

is bounded by six planes at right angles all of whose points are

maintained at constant temperatures determined by the preceding

equation, the quantity of heat which, during unit of time, crosses

unit of surface taken on any intermediate plane whatever perpen

dicular to z, is the same as the constant flow in a solid of the

same substance would be, if enclosed between two infinite parallel

planes, and for which the equation of constant temperatures is

v = c cz.

To prove this, let us consider in the prism, and also in the

infinite solid, two extremely near points m and p, separated

Fig. 4.

r

m h

by the plane M perpendicular to the axis of z
; ^ being above

the plane, and m below it (see fig. 4), and above the same plane
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let us take a point m such that the perpendicular dropped from

the point //,
on the plane may also be perpendicular to the

distance mm at its middle point h. Denote by x, y, z + h, the

co-ordinates of the point //,,
whose temperature is w, by x a, y /3,

z, the co-ordinates of m, whose temperature is v, and by a? -fa,

y + {3, z, the co-ordinates of m ,
whose temperature is v.

The action of m on
(JL,

or the quantity of heat which m sends

to
jju during a certain time, may be expressed by q(v w). The

factor q depends on the distance nip, and on the nature of the

mass. The action of m on
//,

will therefore be expressed by

q (v w) ;
and the factor q is the same as in the preceding

expression; hence the sum of the two actions of m on ft,
and

of m on
//-,

or the quantity of heat which
//,

receives from m and

from m, is expressed by

q (
v w -f v w}.

Now, if the points m, p, m belong to the prism, we have

w A ax by c (z -f h), v = A a (x a) b (y /3) cz,

and v = A - a (x + a)
- 6 (y + /3)

- cz
;

and if the same points belonged to an infinite solid, we should

have, by hypothesis,

w = c c(z+li) y v = c cz, and v = c cz.

In the first case, we find

q (v w + v w)
=

2qch,

and, in the second case, we still have the same result. Hence

the quantity of heat which
//,

receives from m and from m on

the first hypothesis, when the equation of constant temperatures
is v = A ax by cz, is equivalent to the quantity of heat

which p receives from m and from m when the equation of

constant temperatures is v = c cz.

The same conclusion might be drawn with respect to any three

other points whatever m, /// , m&quot;, provided that the second // be

placed at equal distances from the other two, and the altitude of

the isosceles triangle m /jf
m&quot; be parallel to z. Now, the quantity

of heat which crosses any plane whatever M, results from the sum
of the actions which all the points m, m , in&quot;,

in&quot; etc., situated on
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one side of this plane, exert on all the points /JL, //, /z&quot;, p&quot; , etc

situated on the other side : hence the constant flow, which, during
unit of time, crosses a definite part of the plane M in the infinite

solid, is equal to the quantity of heat which flows in the same time

across the same portion of the plane H in the prism, all of whose

temperatures are expressed by the equation

v = A ax by
- cz.

138. COROLLARY. The flow has the value cK in the infinite

solid, when the part of the plane which it crosses has unit of

surface. In the pi~ism also it has the same value cK or K -7- .

It is proved in the same manner, that the constant flow which takes

place, during unit of time, in the. same prism across unit of surfacet

on any plane whatever perpendicular to y, is equal to

dv
bK or K 3- :

&amp;lt;ty

and that which crosses a plane perpendicular to x lias the value

-.
dx

139. The propositions which we have proved in the preceding
articles apply also to the case in which the instantaneous action of

a molecule is exerted in the interior of the mass up to an appre
ciable distance. In this case, we must suppose that the cause

which maintains the external layers of the body in the state

expressed by the linear equation, affects the mass up to a finite

depth. All observation concurs to prove that in solids and liquids

the distance in question is extremely small.

140. THEOREM III. If the temperatures at the points of a

solid are expressed by the equation v = f (x, y, z, t), in which

a?, y, z are the co-ordinates of a molecule whose temperature is

equal to v after the lapse of a time t; the flow of heat which

crosses part of a plane traced in the solid, perpendicular to one of

the three axes, is no longer constant
;

its value is different for

different parts of the plane, and it varies also with the time. This

variable quantity may be determined by analysis.
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Let w be an infinitely small circle whose centre coincides with

the point m of the solid, and whose plane is perpendicular to the

vertical co-ordinate z
; during the instant dt there will flow across

this circle a certain quantity of heat which will pass from the

part of the circle below the plane of the circle into the upper

part. This flow is composed of all the rays of heat which depart
from a lower point arid arrive at an upper point, by crossing

a point of the small surface w. We proceed to shew that the

dv
expression of the value of the flow is K -7- &&amp;gt;dt.

Let us denote by x, y, z the coordinates of the point m whose

temperature is v
;
and suppose all the other molecules to be

referred to this point in chosen as the origin of new axes parallel

to the former axes : let f, 77, f, be the three co-ordinates of a point
referred to the origin m ;

in order to express the actual temperature
w of a molecule infinitely near to m, we shall have the linear

equation

, ,. dv dv . dvw-v + -r+i7-7 +-,-.* dx dy dz

The coefficients t/, j-n. -7, -r- are the values which are found
dx dy dz

by substituting in the functions
v,j-, -j-

, -T-, for the variables

x, y z, the constant quantities x
r

, y, z, which measure the dis

tances of the point m from the first three axes of x, y, and z.

Suppose now that the point m is also an internal molecule of

a rectangular prism, enclosed between six planes perpendicular to

the three axes whose origin is m
;
that w the actual temperature of

each molecule of this prism, whose dimensions are finite, is ex

pressed by the linear equation w = A + a% + brj + c and that the

six faces which bound the prism are maintained at the fixed tem

peratures which the last equation assigns to them. The state of

the internal molecules will also be permanent, and a quantity of

heat measured by the expression Kcwdt will flow during the

instant dt across the circle &&amp;gt;.

This arranged, if we take as the values of the constants

7 xi ,-,- dv dv dv ,, / j c ,1

A, a, 6, c, the quantities v
, -5 , -y- , -j- t

the fixed state of the
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prisrn will be expressed by the equation

, dv dv dvw = v +-T-+-7-^+ JT~?Idx *
dy dz

Thus the molecules infinitely near to the point m will have,

during the instant dt, the same actual temperature in the solid

whose state is variable, and in the prism whose state is constant.

Hence the flow which exists at the point m, during the instant dt,

across the infinitely small circle
&&amp;gt;,

is the same in either solid
;

it

is therefore expressed by K -7 codt.
CL2

From this we derive the following proposition

If in a solid whose internal temperatures vary with the time, by
virtue of the action of the molecules, we trace any straight line what

ever, and erect (see fig. o), at the different points of this line, the

ordinates pm of a plane curve equal to the temperatures of these

points taken at the same moment; the flow of heat, at each point p

of the straight line, will be proportional to the tangent of the angle
a. which the element of the curve makes with the parallel to the

alscissw ; that is to say, if at the point p we place the centre of an

Fig. 5.

infinitely small circle o&amp;gt; perpendicular to the line, the quantity of

heat which has flowed during the instant dt, across this circle, in

the direction in which the abscissae op increase, will be measured

by the product of four factors, which are, the tangent of the angle

a, a constant coefficient K, the area o&amp;gt; of the circle, and the dura

tion dt of the instant.

141. COROLLARY. If we represent by e the abscissa of this

curve or the distance of a point p of the straight line from a
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fixed point o, and by v the ordinate which represents the tem

perature of the point p, v will vary with the distance e and

will be a certain function /(e) of that distance; the quantity
of heat which would flow across the circle

o&amp;gt;, placed at the

point p perpendicular to the line, will be K -=- wdt, or

-Kf (e)a&amp;gt;dt,

denoting the function \/ by/ (e).
QJ.

We may express this result in the following manner, which

facilitates its application.

To obtain the actual flow of heat at a point p of a straight

line drawn in a solid, whose temperatures vary by action of the

molecules, we must divide the difference of the temperatures at

two points infinitely near to the point p by the distance between

these points. The flow is proportional to the quotient.

142. THEOHEM IV. From the preceding Theorems it is

easy to deduce the general equations of the propagation of heat.

Suppose the different points of a homogeneous solid of any

form whatever, to have received initial temperatures which vary

successively by the effect of the mutual action of the molecules,

and suppose the equation v = f (x, y, z, t) to represent the successive

states of the solid, it may now be shewn that v a function of four
variables necessarily satisfies the equation

dy K_ /d
2v dV dV\

dt
&quot;

CD Vdx
2 +

dy*
+
dzV

In fact, let us consider the movement of heat in a molecule

enclosed between six planes at right angles to the axes of x, y,

and z\ the first three of these planes pass through the point

m whose coordinates are x, y, z, the other three pass through
the point m, whose coordinates are x + dx, y + dy,z + dz.

During the instant dt, the molecule receives, across the

lower rectangle dxdy, which passes through the point m, a

quantity of heat equal to K dx dy -=- dt. To obtain the quantity

which escapes from the molecule by the opposite face, it is

sufficient to change z into z -f dz in the preceding expression,



SECT. VI.] GENEKAL EQUATIONS OF PROPAGATION. 113

that is to say, to add to this expression its own differential taken

with respect to z only ;
we then have

Kdx dtj -y- dt Kdx d u ^ dzJ dz * dz

as the value of the quantity which escapes across the upper

rectangle. The same molecule receives also across the first

rectangle dz dx which passes through the point m, a quantity

of heat equal to
K-j-

dz dx dt
;

and if we add to this ex

pression its owrn differential taken with respect to y only, we

find that the quantity which escapes across the opposite face

dz dx is expressed by

K-j- dz dx dt K .

^
dy dz dx dt.

y y

Lastly, the molecule receives through the first rectangle dy dz

a quantity of heat equal to K
-y- dy dz dt, and that which it

CiX

loses across the opposite rectangle which passes through m is

expressed by

,^ 777 -rr dX 7777
K-r dydzdtK -r dx dy dz dt.

We must now take the sum of the quantities of heat which

the molecule receives and subtract from it the sum of those

which it loses. Hence it appears that during the instant dt,

a total quantity of heat equal to

accumulates in the interior of the molecule. It remains only
to obtain the increase of temperature which must result from

this addition of heat.

D being the density of the solid, or the weight of unit of

volume, and C the specific capacity, or the quantity of heat

which raises the unit of weight from the temperature to the

temperature 1
;
the product CDdxdydz expresses the quantity

F. H. 8
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of heat required to raise from to 1 the molecule whose volume

is dx dydz. Hence dividing by this product the quantity of

heat which the molecule has just acquired, we shall have its

increase of temperature. Thus we obtain the general equation

^ - J^ (^ JL^ + &1

which is the equation of the propagation of heat in the interior

of all solid bodies.

143. Independently of this equation the system of tempera
tures is often subject to several definite conditions, of which no

general expression can be given, since they depend on the nature

of the problem.

If the dimensions of the mass in which heat is propagated are

finite, and if the surface is maintained by some special cause in a

given state
;
for example, if all its points retain, by virtue of that

cause, the constant temperature 0, we shall have, denoting the

unknown function v by (f&amp;gt; (x, y, z, t},
the equation of condition

(j&amp;gt; (x, y, 2, t)
=

;
which must be satisfied by all values of x, y, z

which belong to points of the external surface, whatever be the

value of t. Further, if we suppose the initial temperatures of the

body to be expressed by the known function F (x, y, z), we have

also the equation &amp;lt;f&amp;gt; (x, y, z, 0)
= F (x, y, z) ;

the condition ex

pressed by this equation must be fulfilled by all values of the

co-ordinates x, y} z which belong to any point whatever of the

solid.

144. Instead of submitting the surface of the body to a con

stant temperature, we may suppose the temperature not to be

the same at different points of the surface, and that it varies with

the time according to a given law
;
which is what takes place in

the problem of terrestrial temperature. In this case the equation

relative to the surface contains the variable t.

145. In order to examine by itself, and from a very general

point of view, the problem of the propagation of heat, the solid

whose initial state is given must be supposed to have all its

dimensions infinite; no special condition disturbs then the dif-
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fusion of heat, and the law to which this principle is submitted

becomes more manifest
;

it is expressed by the general equation

dt
~
CD

to which must be added that which relates to the initial arbitrary
state of the solid.

Suppose the initial temperature of a molecule, whose co

ordinates are x, y, z
}
to be a known function F(xt y, z} y

and denote

the unknown value v by &amp;lt;f&amp;gt; (x, y, z, t), we shall have the definite

equation
&amp;lt;f&amp;gt; (as, y, z, 0)

=F (x, y, 2) ;
thus the problem is reduced to

the integration of the general equation (A) in such a manner that

it may agree, when the time is zero, with the equation which con

tains the arbitrary function F.

SECTION VII.

General equation relative to the surface.

146. If the solid has a definite form, and if its original heat

is dispersed gradually into atmospheric air maintained at a con

stant temperature, a third condition relative to the state of the

surface must be added to the general equation (A) and to that

which represents the initial state.

We proceed to examine, in the following articles, the nature of

the equation which expresses this third condition.

Consider the variable state of a solid whose heat is dispersed

into air, maintained at the fixed temperature 0. Let o&amp;gt; be an

infinitely small part of the external surface, and p a point of
&&amp;gt;,

through which a normal to the surface is drawn
;
different points

of this line have at the same instant different temperatures.
Let v be the actual temperature of the point p,,

taken at a

definite instant, and w the corresponding temperature of a point v

of the solid taken on the normal, and distant from
//, by an in

finitely small quantity a. Denote by x, y, z the co-ordinates of

the point p, and those of the point v by x + &, y + &y, z + Sz
;

let/ (x, y, z)
= be the known equation to the surface of the solid,

and v =
&amp;lt;/&amp;gt; (x, y, z, f) the general equation which ought to give the

82
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value of v as a function of the four variables x, y, z, t. Differen

tiating the equation f(x, y, z)
=

0, we shall have

mdx 4- ndy -\-pdz ;

m, n, p being functions of x, y, z.

It follows from the corollary enunciated in Article 141, that

the flow in direction of the normal, or the quantity of heat which

during the instant dt would cross the surface
,
if it were placed

at any point whatever of this line, at right angles to its direction,

is proportional to the quotient which is obtained by dividing the

difference of temperature of two points infinitely near by their

distance. Hence the expression for the flow at the end of the

normal is

T^w v TK- codt]
GC

K denoting the specific conducibility of the mass. On the other

hand, the surface co permits a quantity of heat to escape into the

air, during the time dt, equal to hvcodt
;
h being the conducibility

relative to atmospheric air. Thus the flow of heat at the end of

the normal has two different expressions, that is to say :

hvcodt and K - codt
;

hence these two quantities are equal ;
and it is by the expression

of this equality that the condition relative to the surface is in

troduced into the analysis.

147. We have

,
. dv ^ dv ~ dvw v + ov = v + -y- ox + -j- oy -f- -j~ oz.
ax dy dz

Now, it follows from the principles of geometry, that the co

ordinates $x, &/, &z, which fix the position of the point v of the

normal relative to the point ^ satisfy the following conditions :

We have therefore

w
1 / dv dv dv\ &amp;lt;*-v = - (m-j- + n-j- + p^-) oz:
p\ dx dy

* dz
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we have also

,^-s Bi
a

&s
2 =-(m2

or a. = ^ &z
, denoting by q the quantity (m

2 + n* + p
2

)

&quot;

,

w vfdv dv
,

cfaA 1
hence - = [m -, + n-j-+p-j- 1- ;

a \ dx dy
L dzj q

consequently the equation

becomes the followin

dv dv

This equation is definite and applies only to points at the

surface
;

it is that which must be added to the general equation of

the propagation of heat (A), and to the condition which deter

mines the initial state of the solid
; m, n, p, q, are known functions

of the co-ordinates of the points on the surface.

148. The equation (B) signifies in general that the decrease of

the temperature, in the direction of the normal, at the boundary of

the solid, is such that the quantity of heat which tends to escape

by virtue of the action of the molecules, is equivalent always to

that which the body must lose in the medium.

The mass of the solid might be imagined to be prolonged,

in such a manner that the surface, instead of being exposed to the

air, belonged at the same time to the body which it bounds, and

to the mass of a solid envelope which contained it. If, on this

hypothesis, any cause whatever regulated at every instant the

decrease of the temperatures in the solid envelope, and determined

it in such a manner that the condition expressed by the equation

(B) was always satisfied, the action of the envelope would take the

1 Let .ZV be the normal,

the rest as in the text. [B. L. E.]

dv m dv
-7T7 = -T- + &c. ;

&amp;lt;LV q dx
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place of that of the air, and the movement of heat would be the

same in either case : we can suppose then that this cause exists,

and determine on this hypothesis the variable state of the solid
;

which is what is done in the employment of the two equations

(A) and (B).

By this it is seen how the interruption of the mass and the

action of the medium, disturb the diffusion of heat by submitting
it to an accidental condition.

149. We may also consider the equation (B), which relates

to the state of the surface under another point of view : but we
must first derive a remarkable consequence from Theorem in.

(Art. 140). We retain the construction referred to in the corollary

of the same theorem (Art. 141). Let x, y, z be the co-ordinates

of the point p, and

x+Sx, y + %, z + z

those of a point q infinitely near to p, and taken on the straight

line in question : if we denote by v and w the temperatures of the

two points p and q taken at the same instant, we have

, 5 ,

dv
,

dv 2 ,

dv
5,w = v 4- bv = v + -j- ox + -j- oy + -y- oz

;dx dy dz

hence the quotient

Sv dv 8x dv dy dv z
-5- = -j- -Z- + -J- * + j- -F&quot; i
be dx be dx ce dz ce

thus the quantity of heat which flows across the surface &amp;lt;y placed
at the point m, perpendicular to the straight line, is

dv Sx dv Sv dv Sz

7 r\

The first term is the product of K-j~ by dt and by CD -K-.
dx 06

The latter quantity is, according to the principles of geometry, the

area of the projection of co on the plane of y and z
;
thus the

product represents the quantity of heat which would flow across

the area of the projection, if it were placed at the point p perpen
dicular to the axis of x.



SECT. VII.] GENEKAL SURFACE EQUATION. 119

7 rs

The second term K -r- co ~- dt represents the quantity of

heat which would cross the projection of a), made on the plane of

x and z, if this projection were placed parallel to itself at the

point p.
7

rj

Lastly, the third term -K
-j-

co -~-dt represents the quantity

of heat which would flow during the instant dt, across the projec

tion of o&amp;gt; on the plane of so and y, if this projection were placed at

the point p, perpendicular to the co-ordinate z.

By this it is seen that the quantity of heat which flows across

every infinitely small part of a surface drawn in the interior of the

solid, can always be decomposed into three other quantities of flow,

which penetrate the three orthogonal projections of the surface, along

the directions perpendicular to the planes of the projections. The

result gives rise to properties analogous to those which have

been noticed in the theory of forces.

150. The quantity of heat which flows across a plane surface

ft&amp;gt;, infinitely small, given in form and position, being equivalent

to that which would cross its three orthogonal projections, it fol

lows that, if in the interior of the solid an element be imagined of

any form whatever, the quantities of heat which pass into this

polyhedron by its different faces, compensate each other recipro

cally: or more exactly, the sum of the terms of the first order,

which enter into the expression of the quantities of heat received

by the molecule, is zero
;
so that the heat which is in fact accumu

lated in it, and makes its temperature vary, cannot be expressed

except by terms infinitely smaller than those of the first order.

This result is distinctly seen when the general equation (A)
has been established, by considering the movement of heat in

a prismatic molecule (Articles 127 and 142) ;
the demonstration

may be extended to a molecule of any form whatever, by sub

stituting for the heat received through each face, that which its

three projections would receive.

In other respects it is necessary that this should be so : for, if

one of the molecules of the solid acquired during each instant a

quantity of heat expressed by a term of the first order, the varia

tion of its temperature would be infinitely greater than that of
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other molecules, that is to say, during each infinitely small instant

its temperature would increase or decrease by a finite quantity,

which is contrary to experience.

151. We proceed to apply this remark to a molecule situated

at the external surface of the solid.

Fig. 6.

a

Through a point a (see fig. 6), taken on the plane of x and y,

draw two planes perpendicular, one to the axis of x the other to

the axis of y. Through a point b of the same plane, infinitely

near to a, draw two other planes parallel to the two preceding

planes ;
the ordinates z, raised at the points a, b, c, d, up to the

external surface of the solid, will mark on this surface four points

a
,
b

,
c ,

d
,
and will be the edges of a truncated prism, whose base

is the rectangle abed. If through the point a which denotes the

least elevated of the four points a
,
b

, c, d
r

,
a plane be drawn

parallel to that of x and y, it will cut off from the truncated prism
a molecule, one of whose faces, that is to say ab c d

,
coincides

with the surface of the solid. The values of the four ordinates

aa , cc, dd
}
bb are the following :

aa
f

z,

77 i j
bb = z -f- -y- dx -f- -j- d&amp;gt;/.dx dy

J
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152. One of the faces perpendicular to x is a triangle, and

the opposite face is a trapezium. The area of the triangle is

1 , ch

and the flow of heat in the direction perpendicular to this surface

-y-
CLOO

being K -y- we have, omitting the factor dt,

dz

as the expression of the quantity of heat which in one instant

passes into the molecule, across the triangle in question.

The area of the opposite face is

1 j f dz ,
,

dz , dz , \- ay [ -j ax + -y- ax + -j~ ay ,

2 9
\dx dx dy

y
j

CM ?7

and the flow perpendicular to this face is also
K-J-, suppress

ing terms of the second order infinitely smaller than those of the

first; subtracting the quantity of heat which escapes by the second

face from that which enters by the first we find

Trdv dz j jK -7- -j- dx dy.
dx dx

This term expresses the quantity of heat the molecule receives

through the faces perpendicular to x.

It will be found, by a similar process, that the same molecule

receives, through the faces perpendicular to y, a quantity of heat

,
, vr dv dz , ,

equal to K
-^ j

dx dy.

The quantity of heat which the molecule receives through the

dv
rectangular base is K-j-dx dy. Lastly, across the upper sur

face a Vc d ,
a certain quantity of heat is permitted to escape,

equal to the product of hv into the extent co of that surface.

The value of o&amp;gt; is, according to known principles, the same as that

of dx dy multiplied by the ratio -
;
e denoting the length of the

normal between the external surface and the plane of x and ?/, and

fdz\* (dz
4- l-T- + (-

j \dy
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hence the molecule loses across its surface a b c d a quantity of

heat equal to hv dx dy
-

.

Now, the terms of the first order which enter into the expression

of the total quantity of heat acquired by the molecule, must cancel

each other, in order that the variation of temperature may not be

at each instant a finite quantity ;
we must then have the equation

dz dv dz , , dv
j j ^ j-
dx dx y

dy dy

, , dv , , \ , e , ,

ax dy r dx dy} hv-dxdy = 0,
*\ d* * *J z

he dv dz dv dz dv
or -==,v

-
-j- -j + -j -j

---
j- .K z dx dx dy dy dz

153. Substituting for -r- and -7- their values derived from& dx dy
the equation

mdx 4- ndy -\-pdz
= 0,

and denoting by q the quantity

(w +w +p
8

) ,

we have

dv dv dv

thus we know distinctly what is represented by each of the

terms of this equation.

Taking them all with contrary signs and multiplying them

by dx dy, the first expresses how much heat the molecule receives

through the two faces perpendicular to x, the second how much

it receives through its two faces perpendicular to y, the third

how much it receives through the face perpendicular to z, and

the fourth how much it receives from the medium. The equation

therefore expresses that the sum of all the terms of the first

order is zero, and that the heat acquired cannot be represented

except by terms of the second order.

154. To arrive at equation (B), we in fact consider one

of the molecules whose base is in the surface of the solid, as

a vessel which receives or loses heat through its different faces.

The equation signifies that all the terms of the first order which
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enter into the expression of the heat acquired cancel each other
;

so that the gain of heat cannot be expressed except by terms

of the second order. We may give to the molecule the form,

either of a right prism whose axis is normal to the surface of the

solid, or that of a truncated prism, or any form whatever.

The general equation (A), (Art. 142) supposes that all the

terms of the first order cancel each other in the interior of the

mass, which is evident for prismatic molecules enclosed in the

solid. The equation (B), (Art. 147) expresses the same result

for molecules situated at the boundaries of bodies.

Such are the general points of view -from which we may look

at this part of the theory of heat.

, dv K fd*v d*v &amp;lt;Fv\ ,,

The equation ^ =m (^ +
jf+&) represents the move-

ment of heat in the interior of bodies. It enables us to ascer

tain the distribution from instant to instant in all substances

solid or liquid ;
from it we may derive the equation which

belongs to each particular case.

In the two following articles we shall make this application

to the problem of the cylinder, and to that of the sphere.

SECTION VIII.

Application of the general equations.

155. Let us denote the variable radius of any cylindrical

envelope by r, and suppose, as formerly, in Article 118, that

all the molecules equally distant from the axis have at each

instant a common temperature ;
v will be a function of r and t

;

r is a function of y, z, given by the equation r
2 = y

z + z*. It is

evident in the first place that the variation of v with respect
73

to x is nul : thus the term -j-s must be omitted. We shall have
dx*

then, according to the principles of the differential calculus, the

equations

dv_dvdr , d*v _ d?v_ (dr\*
dv

Ty
~

dr Ty
J

~df~dr* [dy)
+
d

dv dv dr , d2
v

~r~
= i r aud ~ra

dz dr dz dzz

d*v fdr\* dv fd*r\= ~rr I ~5~ I +T~ I -i~ ;

dr* \dz) dr \dz*J
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whence

&amp;lt;Pv (Fv__d*v (fdr\* (dr\* .dvfd^r dfr

dy*
+

dz* dr2

\\cty)
+

\dz)
+

dr \dy*
+

In the second member of the equation, the quantities

dr dr d*r d*r

Ty Tz ~dtf 2? J

must be replaced by their respective values
;
for which purpose

we derive from the equation y
z + z* = rz

,

dr fdr\* d*ryT-r and 1=^-1 + r -j ,

dy \dyj dy*

dr fdr\* d*r
z = r-j- and 1 = +r-r-

,dz \dzj dz

and consequently

The first equation, whose first member is equal to r
2

, gives

the second gives, when we substitute for

fdr\* /AY
\dy)

+
(&)

its value 1,

If the values given by equations (b) and (c) be now substi

tuted in (a), we have

(Fv d?v dh Idv

dtf
+
dz*~drt +

r dr

Hence the equation which expresses the movement of heat

in the cylinder, is

dv_J?i(d^) ldv\
dt

~~

CD Ur2 *
r dr)

as was found formerly, Art. 119.
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We might also suppose that particles equally distant from

the centre have not received a common initial temperature ;

in this case we should arrive at a much more general equation.

156. To determine, by means of equation (A), the movement
of heat in a sphere which has been immersed in a liquid, we
shall regard v as a function of r and t

;
r is a function of x, y, z,

given by the equation

r being the variable radius of an envelope. We have then

dv dv dr , dz
v d z

v fdr\
z

dv d*r
j- -y- -r- and -r-

2
=

-i-g (

-=-
)
+ -y-

-=
,

au; ar dx dx dr \dxj dr dx

dv dv dr d z

v_d
zv/dr\ 2 dv d~r

dv _ dv dr , d2
v

__
d*v /dr\ 2 dv d*r~ a ~ +

Making these substitutions in the equation

dv_Jt_(d*v d*v &amp;lt;

dt~ CD(dx*
+

dy
z +

we shall have

dv K &amp;lt;Pv (dr\* dr\* dz\* dv (d

The equation x* + y
2 + z

2 = r
2

gives the following results
;

dr dr z

dr . fdr\* tfr
y r ~r~ and i = I -j- )

+ T -;-=zj

d-y \dy]

dr fdr\
z

tfr
z r-^~ and 1 = -^ + r -j-$ .

dz \dzj dz
z

The three equations of the first order give :
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The three equations of the second order give :

dr\*

dy *V dxz

dy*

and substituting for

_(dr\ fdr\
&quot;

\dx)
+
\dy)

+ T z + * +

dx

its value 1, we have

ffr

Making these substitutions in the equation (a) we have the

equation

~dt^UD
|&amp;lt;F

+
r

~&amp;lt;FJ

which is the same as that of Art. 114.

The equation would contain a greater number of terms, if we

supposed molecules equally distant from the centre not to have

received the same initial temperature.

We might also deduce from the definite equation (B), the

equations which express the state of the surface in particular

cases, in which we suppose solids of given form to communicate

their heat to the atmospheric air
;
but in most cases these equa

tions present themselves at once, and their form is very simple,

when the co-ordinates are suitably chosen.

SECTION IX.

General Remarks.

157. The investigation of the laws of movement of heat in

solids now consists in the integration of the equations which we
have constructed

;
this is the object of the following chapters.

We conclude this chapter with general remarks on the nature

of the quantities which enter into our analysis.
In order to measure these quantities and express them nume

rically, they must be compared with different kinds of units, five
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in number, namely, the unit of length, the unit of time, that of

temperature, that of weight, and finally the unit which serves to

measure quantities of heat. For the last unit, we might have

chosen the quantity of heat which raises a given volume of a

certain substance from the temperature to the temperature 1.

The choice of this unit would have been preferable in many
respects to that of the quantity of heat required to convert a mass

of ice of a given weight, into an equal mass of water at 0, without

raising its temperature. We have adopted the last unit only

because it had been in a manner fixed beforehand in several works

on physics ; besides, this supposition would introduce no change
into the results of analysis.

158. The specific elements which in every body determine

the measurable effects of heat are three in number, namely, the

conducibility proper to the body, the conducibility relative to the

atmospheric air, and the capacity for heat. The numbers which

express these quantities are, like the specific gravity, so many
natural characters proper to different substances.

We have already remarked, Art. 36, that the conducibility of

the surface would be measured in a more exact manner, if we had

sufficient observations on the effects of radiant heat in spaces

deprived of air.

It may be seen, as has been mentioned in the first section of

Chapter L, Art. 11, that only three specific coefficients, K, h, C,

enter into the investigation ; they must be determined by obser

vation
;
and we shall point out in the sequel the experiments

adapted to make them known with precision.

159. The number C which enters into the analysis, is always

multiplied by the density D, that is to say, by the number of

units of weight which are equivalent to the weight of unit of

volume ;
thus the product CD may be replaced by the coeffi

cient c. In this case we must understand by the specific capacity

for heat, the quantity required to raise from temperature to

temperature 1 unit of volume of a given substance, and not unit of

weight of that substance.

With the view of not departing from the common definition,

we have referred the capacity for heat to the weight and not to
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the volume
;
but it would be preferable to employ the coefficient c

which we have just denned
; magnitudes measured by the unit

of weight would not then enter into the analytical expressions :

we should have to consider only, 1st, the linear dimension x, the

temperature v, and the time t\ 2nd, the coefficients c, h, and K.

The three first quantities are undetermined, and the three others

are, for each substance, constant elements which experiment
determines. As to the unit of surface and the unit of volume,

they are not absolute, but depend on the unit of length.

160. It must now be remarked that every undetermined

magnitude or constant has one dimension proper to itself, and

that the terms of one and the same equation could not be com

pared, if they had not the same exponent of dimension. We have

introduced this consideration into the theory of heat, in order to

make our definitions more exact, and to serve to verify the

analysis; it is derived from primary notions on quantities; for

which reason, in geometry and mechanics, it is the equivalent

of the fundamental lemmas which the Greeks have left us with

out proof.

161. In the analytical theory of heat, every equation

expresses a necessary relation between the existing magnitudes

x, t, v, c, h, K. This relation depends in no respect on the choice

of the unit of length, which from its very nature is contingent,
that is to say, if we took a different unit to measure the linear

dimensions, the equation (E} would still be the same. Suppose
then the unit of length to be changed, and its second value to be

equal to the first divided by m. Any quantity whatever x which

in the equation (E) represents a certain line ab, and which, con

sequently, denotes a certain number of times the unit of length,

becomes inx, corresponding to the same length ab
;

the value t

of the time, and the value v of the temperature will not be

changed ; the same is not the case with the specific elements

h, K, c\ the first, h, becomes , ;
for it expresses the quantity of

i(Ylt

heat which escapes, during the unit of time, from the unit of sur

face at the temperature 1. If we examine attentively the nature

of the coefficient K, as we have defined it in Articles 68 and 135,
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TS-

we perceive that it becomes : for the flow of heat variesm
directly as the area of the surface, and inversely as the distance

between two infinite planes (Art. 72). As to the coefficient c

which represents the product CD, it also depends on the unit of

length and becomes
3 ;

hence equation (E) must undergo no

change when we write mx instead of x, and at the same time

-
, =

, 3 ,
instead of K, h, c - the number m disappears afterm m~ m

these substitutions : thus the dimension of x with respect to the

unit of length is 1, that of K is 1, that of h is 2, and that of c

is .3. If we attribute to each quantity its own exponent of di

mension, the equation will be homogeneous, since every term will

have the same total exponent. Numbers such as $, which repre
sent surfaces or solids, are of two dimensions in the first case,

and of three dimensions in the second. Angles, sines, and other

trigonometrical functions, logarithms or exponents of powers, are,

according to the principles of analysis, absolute numbers which do

not change with the unit of length ;
their dimensions must there

fore be taken equal to 0, which is the dimension of all abstract

numbers.

If the unit of time, which was at first 1, becomes -, the number
n

t will become nt, and the numbers x and v will not change. The

coefficients K, h, c will become ,
-

,
c. Thus the dimensions

n n

of x, t, v with respect to the unit of time are 0, 1, 0, and those of

K
t h, c are - 1,

-
1, 0.

If the unit of temperature be changed, so that the temperature
1 becomes that which corresponds to an effect other than the

boiling of water
;
and if that effect requires a less temperature,

which is to that of boiling water in the ratio of 1 to the number p-
v will become vp, x and t will keep their values, and the coeffi

cients K. h, c will become ,
-

.
-

.

P P P
The following table indicates the dimensions of the three

undetermined quantities and the three constants, with respect

to each kind of unit.

F. H. 9
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162. If we retained the coefficients C and D, whose product
has been represented by c, we should have to consider the unit of

weight, and we should find that the exponent of dimension, with

respect to the unit of length, is 3 for the density D, and

for G.

On applying the preceding rule to the different equations and

their transformations, it will be found that they are homogeneous
with respect to each kind of unit, and that the dimension of every

angular or exponential quantity is nothing. If this were not the

case, some error must have been committed in the analysis, or

abridged expressions must have been introduced.

If, for example, we take equation (6) of Art. 105,

dv _ K d*v hi

dt ~~GD ~da?~ CDS
V

we find that, with respect to the unit of length, the dimension of

each of the three terms is
;

it is 1 for the unit of temperature,

and 1 for the unit of time.

/ 2/2

In the equation v = Ae~x & of Art. 76, the linear dimen

sion of each term is 0, and it is evident that the dimension of the

exponent x A/ ^~
is always nothing, whatever be the units of

length, time, or temperature.



CHAPTER III.

PROPAGATION OF HEAT IN AN INFINITE RECTANGULAR SOLID.

SECTION I.

Statement of the problem.

163. PROBLEMS relative to the uniform propagation, or to

the varied movement of heat in the interior of solids, are reduced,

by the foregoing methods, to problems of pure analysis, and

the progress of this part of physics will depend in consequence

upon the advance which may be made in the art of analysis.

The differential equations which we have proved contain the

chief results of the theory ; they express, in the most general

and most concise manner, the necessary relations of numerical

analysis to a very extensive class of phenomena; and they
connect for ever with mathematical science one of the most

important branches of natural philosophy.
It remains now to discover the proper treatment of these

equations in order to derive their complete solutions and an

easy application of them. The following problem offers the

first example of analysis which leads to such solutions
;

it

appeared to us better adapted than any other to indicate the

elements of the method which we have followed.

164. Suppose a homogeneous solid mass to be contained

between two planes B and G vertical, parallel, and infinite, and

to be divided into two parts by a plane A perpendicular to the

other two (fig. 7) ;
we proceed to consider the temperatures of

the mass BAC bounded by the three infinite planes A
t B, C.

The other part BAC of the infinite solid is supposed to be a

constant source of heat, that is to say, all its points are main

tained at the temperature 1, which cannot alter. The two

92
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lateral solids bounded, one by the plane C and the plane A
produced, the other by the plane B and the plane A pro-

\c

duced, have at all points the constant temperature 0, some
external cause maintaining them always at that temperature;

lastly, the molecules of the solid bounded by A, B and C have

the initial temperature 0. Heat will pass continually from the

source A into the solid BAG, and will be propagated there in

the longitudinal direction, which is infinite, and at the same
time will turn towards the cool masses B and C, which will ab

sorb great part of it. The temperatures of the solid BAG will

be raised gradually : but will not be able to surpass nor even

to attain a maximum of temperature, which is different for

different points of the mass. It is required to determine the

final and constant state to which the variable state continually

approaches.

If this final state were known, and were then formed, it would

subsist of itself, and this is the property which distinguishes
it from all other states. Thus the actual problem consists in

determining the permanent temperatures of an infinite rect

angular solid, bounded by two masses of ice B and G, and a

mass of boiling water A
;
the consideration of such simple and

primary problems is one of the surest modes of discovering the

laws of natural phenomena, and we see, by the history of the

sciences, that every theory has been formed in this manner.

165. To express more briefly the same problem, suppose
a rectangular plate BA C, of infinite length, to be heated at its

base A, and to preserve at all points of the base a constant
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temperature 1, whilst each of the two infinite sides B and C,

perpendicular to the base A, is submitted also at every point

to a constant temperature 0; it is required to determine what

must be the stationary temperature at any point of the plate.

It is supposed that there is no loss of heat at the surface

of the plate, or, which is the same thing, we consider a solid

formed by superposing an infinite number of plates similar to

the preceding : the straight line Ax which divides the plate

into two equal parts is taken as the axis of x, and the co-ordinates

of any point m are x and y ; lastly, the width A of the plate

is represented by 21, or, to abridge the calculation, by IT, the

value of the ratio of the diameter to the circumference of a

circle.

Imagine a point m of the solid plate BA (7, whose co-ordinates

are x and y, to have the actual temperature v, and that the

quantities v, which correspond to different points, are such that

110 change can happen in the temperatures, provided that the

temperature of every point of the base A is always 1, and that

the sides B and C retain at all their points the temperature 0.

If at each point m a vertical co-ordinate be raised, equal to

the temperature v, a curved surface would be formed which

would extend above the plate and be prolonged to infinity.

We shall endeavour to find the nature of this surface, which

passes through a line drawn above the axis of y at a distance

equal to unity, and which cuts the horizontal plane of xy along

two infinite straight lines parallel to x.

166. To apply the general equation

di CD \dx
2

dy
2

d

we must consider that, in the case in question, abstraction is

72

made of the co-ordinate z, so that the term -y-n must be omitted
;

az

with respect to the first member -=-
,

it vanishes, since we wish to

determine the stationary temperatures ;
thus the equation which
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belongs to the actual problem, and determines the properties

of the required curved surface, is the following :

The function of a? and
y&amp;gt; &amp;lt;f&amp;gt; (x, y), which represents the per

manent state of the solid BA G, must, 1st, satisfy the equation

(a) ; 2nd, become nothing when we substitute J TT or + \ir for y,

whatever the value of x may be
; 3rd, must be equal to unity

when we suppose x = and y to have any value included between

J TT and + i TT.

Further, this function &amp;lt; (x, y) ought to become extremely

small when we give to x a very large value, since all the heat

proceeds from the source A.

167. In order to consider the problem in its elements, we

shall in the first place seek for the simplest functions of x

and y, which satisfy equation (a) ;
we shaTT then generalise the

value of v in order to satisfy all the stated conditions. By this

method the solution will receive all possible extension, and we
shall prove that the problem proposed admits of no other

solution.

Functions of two variables often reduce to less complex ex

pressions, when we attribute to one of the variables or to both

of them infinite values
;
this is what may be remarked in alge

braic functions which, in this particular case, take the form of

the product of a function of x by a function of y.

We shall examine first if the value of v can be represented

by such a product ;
for the function v must represent the state

of the plate throughout its whole extent, and consequently that

of the points whose co-ordinate x is infinite. We shall then

write v = F(x)f(y}\ substituting in equation (a) and denoting

by F&quot; (x) and by/ (y\ we shall have

(*) ,/ (y)_ .

we then suppose \^
= m and r^ =

m&amp;gt;&amp;gt;

m being any
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constant quantity, and as it is proposed only to find a particular

value of v, we deduce from the preceding equations F(x) = e~
mx

}

/(?/)= cos my.

168. We could not suppose m to be a negative number,

and we must necessarily exclude all particular values of v, into

which terms such as e
mx

might enter, m being a positive number,

since the temperature v cannot become infinite when x is in

finitely great. In fact, no heat being supplied except from the

constant source A
y only an extremely small portion can arrive

at those parts of space which are very far removed from the

source. The remainder is diverted more and more towards the

infinite edges B and C, and is lost in the cold masses which

bound them.

The exponent m which enters into the function e~&quot;

lr

cosmy
is unknown, and we may choose for this exponent any positive

number: but, in order that v may become nul on making

y = | TT or y = + |- TT, whatever x may be, m must be taken

to be one of the terms of the series, 1, 3, 5, 7, &c.
; by this

means the second condition will be fulfilled.

169. A more general value of v is easily formed by adding

together several terms similar to the preceding, and we have

le~
3x
cos

3j/ -f- ce~
5x
cos 5y + de~

lx
cos 7y + &c. . . f. . .

It is evident that the function v denoted by $ (x, y) satis!

the equation -^ +
-=- = 0, and the condition

&amp;lt;f&amp;gt; (x, J TT)
= 0.

A third condition remains to be fulfilled, which is expressed thus,

&amp;lt;f&amp;gt; (0, y)
= 1, and it is essential to remark that this result must

exist when we give to y any value whatever included between

\ TT and -f J TT. Nothing can be inferred as to the values

which the function
&amp;lt;f&amp;gt; (0, y) would take, if we substituted in place

of y a quantity not included between the limits J TT and -f J TT.

Equation (b) must therefore be subject to the following condition :

1 = a cos y + b cos 3^ + c cos 5y + d cos 7y + &c.

The coefficients, a, b, c, d, &c., whose number is infinite, are

determined by means of this equation.

The second member is a function of y, which is equal to 1
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so long as the variable y is included between the limits \ TT

and + ^ TT. It may be doubted whether such a function exists,

but this difficulty will be fully cleared up by the sequel.

170. Before giving the calculation of the coefficients, we

may notice the effect represented by each one of the terms of

the series in equation (b).

Suppose the fixed temperature of the base A^ instead of

being equal to unity at every point, to diminish as the point

of the line A becomes more remote from the middle point,

being proportional to the cosine of that distance
;
in this case

it will easily be seen what is the nature of the curved surface,

whose vertical ordinate expresses the temperature v or
fy (x, ?/).

If this surface be cut at the origin by a plane perpendicular
to the axis of x, the curve which bounds the section will have

for its equation v = a cos y ;
the values of the coefficients will

be the following :

a = a, Z&amp;gt;=0,
c = 0, d= 0,

and so on, and the equation of the curved surface will be

v = ae~
x
cos y.

If this surface be cut at right angles to the axis of y, the

section will be a logarithmic spiral whose convexity is turned

towards the axis; if it be cut at right angles to the axis of x,

the section will be a trigonometric curve whose concavity is

turned towards the axis.

It follows from this that the function -7-5- is always positive,
ctx

d*v
and

-^-3
is always negative. Now the quantity of heat which

a molecule acquires in consequence of its position . between two

others in the direction of x is proportional to the value of -^
ctoc

(Art. 123) : it follows then that the intermediate molecule receives

from that which precedes it, in the direction of x, more heat than

it communicates to that which follows it. But, if the same mole

cule be considered as situated between two others in the direction

of y, the function --
a being negative, it appears that the in-
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termediate molecule communicates to that which follows it more

heat than it receives from that which precedes it. Thus it

follows that the excess of the heat which it acquires in the direc

tion of x, is exactly compensated by that whicn&quot; it loses in the

direction of ?/. as the equation -^-2 + -y-2 =0 denotes. Thus
ax dy

then the route followed by the heat which escapes from the

source A becomes known. It is propagated in the direction

of x, and at the same time it is decomposed into two parts,

one of which is directed towards one of the edges, whilst the

other part continues to separate from the origin, to be decomposed
like the preceding, and so on to infinity. The surface which

we are considering is generated by the trigonometric curve which

corresponds to the base A, moved with its plane at right angles to

the axis of x along that axis, each one of its ordinates de

creasing indefinitely in proportion to successive powers of the

same fraction.

Analogous inferences might be drawn, if the fixed tempera
tures of the base A were expressed by the term

b cos 3y or c cos 5y, &c.
;

and in this manner an exact idea might be formed of the move

ment of heat in the most general case
;
for it will be seen by

the sequel that the movement is always compounded of a multi

tude of elementary movements, each of which is accomplished

as if it alone existed.

SECTION II.

First example of the use of trigonometric series in the theory

of heat.

171. Take now the equation

1 = a cos y + b cos oy + c cos oy + d cos 7y + &c.,

in which the coefficients a, b, c, d, &c. are to be determined.

In order that this equation may exist, the constants must neces-
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sarily satisfy the equations which are obtained by successive

differentiations
;
whence the following results,

1 = a cos y + b cos 3y + c cos 5y + d cos 1y -f &c.,

= a sin y + 3b sin 3y + 5c sin 5y + 7d sin 7y + &c.,

= a cos y + 3
2
& cos 3# + 5

2
c cos 5^ + 7

2
c cos 7?/ + &c.,

= a sin y + 3
3
6 sin 3y + 5

3
c sin oy + Td sin 7y + &c.,

and so on to infinity.

These equations necessarily hold when y = 0, thus we have

1 = a+ 5+ c+ cl+ e+ f+ 0+...&C.,

= a + 3
2

t&amp;gt; + 5
2
c + 7

2
d^ + 9

2
e + H 2

/+ ... &c.,

= a + 3
4
5 + 5

4
c + 7

4J+9 46+ ... &c.,

= a + 3
6
6 + 5

G
c + 7

6^+ ... &c.,

= a + 3
8
6 + 5

8
c -f . . . fec.,

&c.

The number of these equations is infinite like that of the

unknowns a, b, c, d, e, ... &c. The problem consists in eliminating

all the unknowns, except one only.

172. In order to form a distinct idea of the result of these

eliminations, the number of the unknowns a, b, c, d, ...&c., will

be supposed at first definite and equal to m. We shall employ
the first m equations only, suppressing all the terms containing

the unknowns which follow the m first. If in succession m
be made equal to 2, 3, 4, 5, and so on, the values of the un

knowns will be found on each one of these hypotheses. The

quantity a, for example, will receive one value for the case

of two unknowns, others for the cases of three, four, or successively

a greater number of unknowns. It will be the same with the

unknown 6, which will receive as many different values as there

have been cases of elimination
;
each one of the other unknowns

is in like manner susceptible of an infinity of different values.

Now the value of one of the unknowns, for the case in which

their number is infinite, is the limit towards which the values

which it receives by means of the successive eliminations tend.

It is required then to examine whether, according as the number

of unknowns increases, the value of each one of a, b, c, d ... &c.

does not converge to a finite limit which it continually ap

proaches.
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Suppose the six following equations to be employed :

1 = a + b + c + d + e + f + &c.,

= a + 3
2

Z&amp;gt; + 5
2
c +Td +9 2

e +H 2

/+&c.,
= a + 3

4
& + 5

4
c + Td + 9

4
e + ll 4

/ + &c.,

= a + 3
6
6 + 5

6
c + Td + 9

6
e + ll 6

/ -I- &c.,

= a + 3
8

-f 5
8
c + 7

8d + 9
8
e + ll 8

/ + &c
,

= a + 3
10
6 + 5

10
c + 7

wd + 9
10
e + ll 10

/ + &c.

The five equations which do not contain /are :

Il
2

=a(ll
2-l 2

)+ Z&amp;gt; (H
2-32

)+ c(H
2-5 2

)+ J(ll
2-72

)+ e(H
2-9 2

) ;

0=a(ll
2-l 2

)+3
6

6(ir-3
2

)+5
6

c(ll
2-5 2

)+7
6

cZ(ll
2-72

)+9
6

e(ll
2-92

),

0=a(ll
2

-r)+3
8

6(ir-3
2

)+5
8

c(ll
2-52

)+7
8

^(ir-7
2

)+9^(ll
2-9 2

).

Continuing the elimination we shall obtain the final equation
in a, which is :

a (ll
2 - 1

2

) (9
2 - 1

2

) (7
2 - 1

2

) (5
2 - 1

2

) (3
2 - I

2

)
= ll 2

. 9
2

. 7
2

. 5
2

. 3
2

. 1
2
.

173. If we had employed a number of equations greater

by unity, we should have found, to determine a, an equation

analogous to the preceding, having in the first member one

factor more, namely, 132
I
2

,
and in the second member 132

for the new factor. The law to which these different values of

a are subject is evident, and it follows that the value of a which

corresponds to an infinite number of equations is expressed thus :

32 52 7
2

92
,

/Vrp

_ 3 . 3 5.57.7 9.9 11 .11
~
2T4 476 6T8 8710 10TT2

Now the last expression is known and, in accordance with

&quot;Wallis* Theorem, wre conclude that a . It is required then

only to ascertain the values of the other unknowns.

174. The five equations which remain after the elimination

of / may be compared with the five simpler equations which

would have been employed if there had been only five unknowns.
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The last equations differ from the equations of Art. 172, in

that in them e, d, c, b, a are found to be multiplied respec

tively by the factors

n 2 -92 n -jT
2 ir- 5

2 ir-32 ir-r
&quot;

iv * ~iY~ n 1 ~~Tr~ ir

It follows from this that if we had solved the five linear

equations which must have been employed in the case of five

unknowns, and had calculated the value of each unknown, it

would have been easy to derive from them the value of the

unknowns of the same name corresponding to the case in which

six equations should have been employed. It would suffice to

multiply the values of e, d, c, b, a, found in the first case, by the

known factors. It will be easy in general to pass from the value

of one of these quantities, taken on the supposition of a certain

number of equations and unknowns, to the value of the same

quantity, taken in the case in which there should have been

one unknown and one equation more. For example, if the value

of e, found on the hypothesis of five equations and five unknowns,

is represented by E, that of the same quantity, taken in the case

II
2

of one unknown more, will be E-
2 . The same value,

j. JL y

taken in the case of seven unknowns, will be, for the same reason,

11* -9* 13 -9&quot;

and in the case of eight unknowns it will be

II 2
132 152

E
11* 9* 13*-9* &quot;15* -9&quot;

and so on. In the same manner it will suffice to know the

value of b, corresponding to the case of two unknowns, to derive

from it that of the same letter which corresponds to the cases

of three, four, five unknowns, &c. We shall only have to multiply
this first value of b by

5
2

7
2

9
2

.. &c.
5
2 -32

*7
2 -32

9
a -32
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Similarly if we knew the value of c for the case of three

unknowns, we should multiply this value by the successive factors

_r_ 9* ir
7*-5 2&amp;gt;

9
2 -5 2 ir-52

&quot;

We should calculate the value of d for the case of four unknowns

only, and multiply this value by

9
2 II 2 132

The calculation of the value of a is subject to the same rule,

for if its value be taken for the case of one unknown, and multi

plied successively by

3
2

5
2 T 9

2

3* -1 s &quot; 5^T2 r^V 9^T2

the final value of this quantity will be found.

175. The problem is therefore reduced to determining the

value of a in the case of one unknown, the value of b in the case

of two unknowns, that of c in the case of three unknowns, and so

on for the other unknowns.

It is easy to conclude, by inspection only of the equations and

without any calculation, that the results of these successive elimi

nations must be

176. It remains only to multiply the preceding quantities by

the series of products which ought to complete them, and which

we have given (Art. 174). We shall have consequently, for the
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final values of the unknowns a, b, c, d, e, f, &c., the following

expressions :

.

_ __ ___
6.8 4.10 2.12 2.16 4.18

1.1 3.3 5.5 7.7 11.11 13.13
f
8 . 10 6 . 12 4 . 14 2 . 16 2 . 20

*

4 . 22

1.1 3.3 5.5 7.7 9.9 1313 15.15

10 . 12 8 . 14 6 . 16 4 . 18 2 . 20 2 . 24
*

4 . 26

The quantity ^TT or a quarter of the circumference is equiva

lent, according to Wallis Theorem, to

2.2 4.4 6.6 8.8 10.10 12.12 14.14
1 . 3 3 . 5 577 77 9 ~97TT 11713 137T5
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If now in the values of a, b, c, d, &c., we notice what are the

factors which must be joined on to numerators and denominators

to complete the double series of odd and even numbers, we find

that the factors to be supplied are :

-=V- , y whence we conclude .

177. Thus the eliminations have been completely effected,

and the coefficients a, b
} c, d, &c., determined in the equation

1 = a cos y + b cos 3?/ + c cos 5y + d cos 7y + e cos 9# + &c.

The substitution of these coefficients gives the following equa
tion :

7T 1- = COS 7/
- COS

1 c 1 K 1
-f ^COS 5?/ ^COS /^/+7^ COS

o / 9
- &c.

The second member is a function of y, which does not change
in value when we give to the variable y a value included between

^TT and -f |TT.
It would be easy to prove that this series is

always convergent, that is to say that writing instead of y any
number whatever, and following the calculation of the coefficients,

we approach more and more to a fixed value, so that the difference

of this value from the sum of the calculated terms becomes less

than any assignable magnitude. Without stopping for a proof,

1 It is a little better to deduce the value of & in or, of c in &, &c. [E. L. E.]
2 The coefficients a, b, c, &c., might be determined, according to the methods

of Section vi.
, by multiplying both sides of the first equation by cos y, cos 3?/,

cos 5v, &c., respectively, and integrating from --Trto +^TT, as was done by& &

D. F. Gregory, Cambridge Mathematical Journal, Vol. i. p. 106. [A. F.]
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which the reader may supply, we remark that the fixed value

which is continually approached is JTT, if the value attributed

to y is included between and J-TT,
but that it is Jvr, if y is

included between \TT and |TT ; for, in this second interval, each

term of the series changes in sign. In general the limit of the

series is alternately positive and negative ;
in other respects, the

convergence is not sufficiently rapid to produce an easy approxima

tion, but it suffices for the truth of the equation.

178. The equation

,3
cos ox + - cos ox * cos 7% + &c.

O O /

belongs to a line which, having x for abscissa and y for ordinate, is

composed of separated straight lines, each of which is parallel to

the axis, and equal to the circumference. These parallels are

situated alternately above and below the axis, at the distance JTT,

and joined by perpendiculars which themselves make part of the

line. To form an exact idea of the nature of this line, it must be

supposed that the number of terms of the function

cos x 7. cos 3x + - cos 5x &c.
3 5

has first a definite value. In the latter case the equation

y = cos x - cos 3x + - cos ox &c.
o 5

belongs to a curved line which passes alternately above and below

the axis, cutting it every time that the abscissa x becomes equal
to one of the quantities 185

0,
g

7T, +
2

7T,
g

7T, &C.

According as the number of terms of the equation increases, the

curve in question tends more and more to coincidence with the

preceding line, composed of parallel straight lines and of perpen
dicular lines

;
so that this line is the limit of the different curves

which would be obtained by increasing successively the number of

terms.
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SECTION III.

Remarks on these series.

179. We may look at the same equations from another point
of view, and prove directly the equation

7 = cos x - cos 3.r 4-
- cos o.x ^ cos 7x +

Q
cos 9# &c.

The case where x is nothing is verified by Leibnitz series,

7T
1
11 11

7 =1 -
7,;
+ ^ - T= + 7:

- &C.
4 3 o / 9

We shall next assume that the number of terms of the series

cos x ^ cos 3# + -^ cos 5o: ^ cos fa + &c.
o o /

instead of being infinite is finite and equal to m. We shall con

sider the value of the finite series to be a function of x and m.

We shall express this function by a series arranged according to

negative powers of m; and it will be found that the value of

the function approaches more nearly to being constant and inde

pendent of x, as the number m becomes greater.

Let y be the function required, which is given by the equation

y = cosx- Q cos 3. + - cos ox-^ cos 7x+...-- -cos (2wi l)a?,o o / Jim 1

7?i, the number of terms, being supposed even. This equation
differentiated with respect to x gives

-r- = sin x sin 3# + sin ox sin 7x + ...

+ sin (2??i 3) x sin (2wi 1) x ;

multiplying by 2 sin Zx, we have

2 -y- sin 2# = 2 sin # sin 2# 2 sin 3j? sin 2# + 2 sin 5# sin 2^ ...
cfo

+ 2 sin (2m
-

3) or sin 2,z - 2 sin (2w - 1) x sin 2#.

F. H. 10
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Each term of the second member being replaced by the

difference of two cosines, we conclude that

- 2 -& sin 2# = cos (- a?)
- cos 3#

cos x + cos 5x

-}- cos 3# - cos 7x

cos 5# + cos 9x

-f cos (2i 5) a? - cos (2w 1) x

cos (2m 3x) -f cos (2m -f 1) #.

The second member reduces to

cos (2m + 1) x cos (2m 1) a-, or 2 sin 2marsiu .r
;

1 */ sin %
hence

180. We shall integrate the second member by parts, dis

tinguishing in the integral between the factor smZmxdx which

must be integrated successively, and the factor or sec x
COSX

which must be differentiated successively ; denoting the results

of these differentiations by sec x, sec&quot; x, sec
&quot;

x, ... &c., we shall

have

1 1
2y = const. ^-- cos 2?H# sec x + -

:, sin 2mx sec x
2.m 2m

I
4- o~* cos 2m# sec x -f i\&amp;gt;c.

;

thus the value of y or

cos x ;r cos 3x + - cos 5x ^ cos 7x + . . . cos (2m 1 ) .r,
3 o 7 2m - 1 ;

which is a function of x and m, becomes expressed by an infinite

series
;
and it is evident that the more the number m increases,

the more the value of y tends to become constant. For this

reason, when the number m is infinite, the function y has a

definite value which is always the same, whatever be the positive
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value of r, less than J-TT. Now, if the arc x be supposed nothing,

we have

1111
which is equal to JTT. Hence generally we shall have

1 111
- - 7T = COS X ^ COS 3x + - COS OX = COS
4 3 o 7

181. If in this equation we assume x = ~ _
, we find

-^L_-1
1 _i_ 1 1 JL A J:~
3~5&quot;7

+
9
+
lI 13 15

^
C

;

by giving to the arc x other particular values, we should find

other series, which it is useless to set down, several of which

have been already published in the works of Euler. If we

multiply equation (ft) by dx, and integrate it, we have

7TX . l-o 1 - r 1 * . fl
-T- = sm x ^ sin 3^ + ^ sm ^

T^&amp;gt;

sm tx + &c.
4* o o 7&quot;

Making in the last equation x = | TT, we find

a series already known. Particular cases might be enumerated

to infinity ;
but it agrees better with the object of this work

to determine, by following the same process, the values of the

different series formed of the sines or cosines of multiple arcs.

182. Let

y = sin x - ^ sin 2x +
^
sin 3# - 7 sin 4# . . .

1 1
-i
--- sin [m 1) x -- sin mr,m 1 7?i

m being any even number. We derive from this equation

-j-
= cos x cos 2# + cos ox cos 4fx . . . + cos (m 1) x cos mx

;

102
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multiplying by 2 sin x, and replacing each term of the second

member by the difference of two sines, we shall have

2 sin x -T- = sin (x + x) sin (x
-

x)

- sin (2a? + x) + sin (2x
-

a;)

+ sin (3# + a?)
sin (3a? x)

+ sin {(m 1) a? -
a;}

sin
{(??? -f 1) a? #}

- sin (m.r + #) -f sin (ma?
-

x) ;

and, on reduction,

2 sin a? --,- = sin x + sin w# sin (ma? + x} :

dx

the quantity sin mx - sin (?na; + a?),

or sin (wa? + J a? - Ja;)
- sin (ma? -f 4# + iar),

is equal to - 2 sin \x cos (wia; + Ja;) ;

we have therefore

dn 1 sinA-a?2
cos mx

sin a?

dy _ 1 cos (mx 4- i#) .

whence we conclude

or
&amp;lt;to 2 2 cos

1
f cos (mx -}-fa)

] 2 cos fa

If we integrate this by parts, distinguishing between the

factor r- or sec \x, which must be successively differentiated,
cos^x

and the factor cos(mx+fa], which is to be integrated several

times in succession, we shall form a series in which the powers

of m + ^ enter into the denominators. As to the constant it

is nothing; since the value of y begins with that of x.
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It follows from this that the value of the finite series

sin x
g
sin 2# +

^
sin 3x - sin 5x -f- p sin 7x . . .

-- sin mx

differs very little from that of \xy
when the number of terms

is very great ;
and if this number is infinite, we have th,e known

equation

^ x sin x ^ sin 2x + ^ sin 3x - 7 sin 4# -f -? sin 5# &c.
Zi o 4&amp;lt; o

From the last series, that which has been given above for

the value of JTT might also be derived.

183. Let now

y = ^
cos 2x ^ cos 4x + - cos 6x - . . .

COS ~m-~- COS ~&quot;tx2m -2

Differentiating, multiplying by 2 sin 2x
} substituting the

differences of cosines, and reducing, we shall have

ax cos x

f, r, i

or rj j r^ sm
(
2??i += c - \dx tan x + \dx 2

J J cosx

integrating by parts the last term of the second member, and

supposing

equation

y

we suppose x nothing, we find

supposing m infinite, we have y = c + log cos x. If in the

y = ^ cos 2x - -r cos x + - cos Qx-- cos So; + . . . &c.
Z T) o

therefore y = -
log 2 + 5 log cos ir.

Thus we meet with the series given by Euler,

log (2 cos #)
= cos x - - cos 2# -f

^
cos 3x - -j cos 4^ + &c.
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184. Applying the same process to tlie equation

y = sin #4- - sin 2x 4- ~ sin 5x 4 - sin 7x 4 &c.,
O D i

we find the following series, which has not been noticed,

-- TT = sin x 4 ^ sin ox 4 - sin ox 4 = sin 7x + -,- sin 9. 4- &c.
l

4 3 o 7

It must be observed with respect to all these series, that

the equations which are formed by them do not hold except

when the variable x is included between certain limits. Thus

the function

cos x -^ cos %x 4 v cos 5x ^ cos 7x + &c.
3 o i

is not equal to JTT, except when the variable x is contained

between the limits which we have assigned. It is the same

with the series

sin x - sin 2x 4- sin %x -r sin 4# 4 - sin ox &c.23 4 o

This infinite series, which is always convergent, has the value

\x so long as the arc x is greater than and less than TT. But

it is not equal to %x, if the arc exceeds TT; it has on the contrary

values very different from \x ;
for it is evident that in the in

terval from x TT to x = 2ir, the function takes with the contrary

sign all the values which it had in the preceding interval from

x = to x = TT. This series has been known for a long time,

but the analysis which served to discover it did not indicate

why the result ceases to hold when the variable exceeds TT.

The method which we are about to employ must therefore

be examined attentively, and the origin of the limitation to which

each of the trigonometrical series is subject must be sought.

185. To arrive at it, it is sufficient to consider that the

values expressed by infinite series are not known with exact

certainty except in the case where the limits of the sum of the

terms which complete them can be assigned ;
it must therefore

be supposed that we employ only the first terms of these series,

1 This may be derived by integration from to ir as in Art. 222. [R. L. E.]
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and the limits between which the remainder is included must
be found.

We will apply this remark to the equation

1 1 1
y = cos x - cos 3x + - cos ox ^ cos tx ...

3 o 7

~
2m - 3 2m - 1

The number of terms is even and is represented by m ;
from it

Zdy sin Zmx , . ,,
is derived the equation

= -
,
whence we may infer the

CtJO COS 00

value of y, by integration by parts. Now the integral fuvdx

may be resolved into a series composed of as many terms as

may be desired, u and v being functions of x. We may write, for

example,

I uvdx = c -f u I vdx =- \dx Ivdx + -j ., Idx I dxlvdx
J J dxj j dx J J J

an equation which is verified by differentiation.

Denoting sin 2mx by v and sec x by u, it will be found that

2// = c -T sec x cos 2mx +^r- 9 SQC X sin 2??^ + ^ o sec&quot;o; cos 2

K 7 sec&quot; x \

*-&?-** *)&amp;lt;

186. It is required now to ascertain the limits between which

the integral -^3 , I
[d(sQc&quot;x)

cos 2nix] which completes the series

is included. To form this integral an infinity of values must

be given to the arc x, from 0, the limit at which the integral

begins, up to oc, which is the final value of the arc
;
for each one

of these values of x the value of the differential d
(sec&quot; x) must

be determined, and that of the factor cos 2mx, and all the partial

products must be added : now the variable factor cos 2mx is

necessarily a positive or negative fraction; consequently the

integral is composed of the sum of the variable values of the

differential
fZ(scc&quot;.r), multiplied respectively by these fractions.
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The total value of tlie integral is then less than the sum of the

differentials d (sec
7

a?),
taken from x = up to or, and it is greater

than this sum taken negatively : for in the first case we replace

tlie variable factor cos 2mx by the constant quantity 1, and in

the second case we replace this factor by 1 : now the sum of

the differentials d
(sec&quot; x), or which is the same thing, the integral

{d (sec&quot; x), taken from x = 0, is sec&quot; x sec
;

sec&quot; x is a certain

function of x, and sec&quot;0 is the value of this function, taken on

the supposition that the arc x is nothing.

The integral required is therefore included between

+ (sec&quot;*e
sec&quot; 0) and

(sec&quot;
x sec&quot; 0) ;

that is to say, representing by k an unknown fraction positive or

negative, we have always

/ {d (sec&quot; x) cos 2mx] = k
(sec&quot;

x sec&quot; 0).

Thus we obtain the equation

2u c sec x cos 2mx + - sec x sin Zmx + 3 sec&quot;x cos Imx
2m 2m 2ra8

in which the quantity ^ 3 (sec&quot;
x sec&quot; 0) expresses exactly the

.- fib

sum of all the last terms of the infinite series.

187. If we had investigated two terms only we should have

had the equation

I i jc

2t/
= c-~ sec x cos Zmx + -^r, sec x sin 2mx + -^ z (sec x- sec O).

*/// _ y/6 ^ 7/&

From this it follows that we can develope the value of y in as

many terms as we wish, and express exactly the remainder of

the series
;
we thus find the set of equations

1 ^k
*2i/
= c x sec x cos 2mx-^ t (sec x sec 0),9 2 in %m

2 y c x sec x cos 2mx+ ^ = sec x sin 2mx \ ^7., (sec x sec 0),
2??^ 2 m 2 m v

2 y = c-- sec x cos %mx+ TT 5 sec # sin 2m^ 4- ^ 5 sec&quot; x cos 2m#
^w 2w 2 m

f &quot; /\\

Hr n~s (sec a; sec 0).
1. /72-
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The number k which enters into these equations is not the

same for all, and it represents in each one a certain quantity
which is always included between 1 and 1

;
m is equal to the

number of terms of the series

cos x - cos 3# + - cos 5x . . .
-^

cos (2m 1) xt

o 5 ~ili 1

whose sum is denoted by y.

188. These equations could be employed if the number m
were given, and however great that number might be, we could

determine as exactly as we pleased the variable part of the value

of y. If the number m be infinite, as is supposed, we consider

the first equation only; and it is evident that the two terms

which follow the constant become smaller and smaller; so that

the exact value of 2y is in this case the constant c; this constant

is determined by assuming x = in the value of y, whence we
conclude

-- = COS X = COS Sx + - COS DX ;= COS 7# + T: COS 9.E &C.
4 3 o 7 9

It is easy to see now that the result necessarily holds if the

arc x is less than \ir. In fact, attributing to this arc a definite

value X as near to JTT as we please, we can always give to in

a value so great, that the term -
(sec a; sec 0), which completes

the series, becomes less than any quantity whatever
;
but the

exactness of this conclusion is based on the fact that the term

sec x acquires no value which exceeds all possible limits, whence

it follows that the same reasoning cannot apply to the case in

which the arc x is not less than JTT.

The same analysis could be applied to the series which express

the values of Ja?, log cos x, and by this means we can assign

the limits between which the variable must be included, in order

that the result of analysis may be free from all uncertainty ;

moreover, the same problems may be treated otherwise by a

method founded on other principles
1
.

189. The expression of the law of fixed temperatures in

a solid plate supposed the knowledge of the equation

1 Cf. De Morgan s Eiff. and Int. Calculus, pp. 605 609. [A. F.]
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TT 1 1 1 - I
= cos x ;

r cos 3x -f -z cos 5# = cos / # +
g

cos 9u; &c.

A simpler method of obtaining this equation is as follows :

If the sum of two arcs is equal to JTT, a quarter of the

circumference, the product of their tangent is 1; we have there

fore in general

i
- TT arc tan u -f arc tan -

a

the symbol arc tan u denotes the length of the arc whose tangent

is u, and the series which gives the value of that arc is well

known
;
whence we have the following result :

If now we write e^&quot;
1 instead of u in equation (c),

and in equa

tion (d), we shall have

I /

- TT = arc tan ex
^~ L + arc tan e~x ^ ~ l

j

and j TT = cos x = cos ox + -- cos ox ^ cos 7x -}- -r- cos 9*i &c.
4 o o / 9

The series of equation (d) is always divergent, and that of

equation (b) (Art. 180) is always convergent; its value is JTT

or ITT.

SECTION IV.

General solution.

190. We can now form the complete solution of the problem

which we have proposed ; .for the coefficients of equation (b)

(Art. 1G9) being determined, nothing remains but to substitute

them, and we have

^ .= e~
x
cos y

- --
e~&quot;

x
cos 3y 4- - e~

Bx
cos 5y

- ^ e&quot;

7 r
cos 7.y + &c....(a).



SECT. IV.] COEXISTENCE OF PARTIAL STATES. 1,55

This value of v satisfies the equation -j
t + -^

=
;

it becomes

nothing when we give to y a value equal to \TT or JTT ; lastly,

it is equal to unity when x is nothing and y is included between

^TT and + |TT. Thus all the physical conditions of the problem
are exactly fulfilled, and it is certain that, if we give to each

point of the plate the temperature which equation (a) deter

mines, and if the base A be maintained at the same time at the

temperature 1, and the infinite edges B and C at the tempera
ture 0, it would be impossible for any change to occur in the

system of temperatures.

191. The second member of equation (a) having the form

of an exceedingly convergent series, it is always easy to deter

mine numerically the temperature of a point whose co-ordinates

os and y are known. The solution gives rise to various results

which it is necessary to remark, since they belong also to the

general theory.

If the point m, whose fixed temperature is considered, is very
distant from the origin A, the value of the second member of

the equation (a) will be very nearly equal to e~
x
cos y it reduces

to this term if x is infinite.

4
The equation v = - e~

x
cos y represents also a state of the

solid which would be preserved without any change, if it were

once formed
;
the same would be the case with the state repre-

4
sented by the equation v ^ e

3x
cos %y, and in general each

O7T

term of the series corresponds to a particular state which enjoys

the same property. All these partial systems exist at once in

that which equation (a) represents ; they are superposed, and

the movement of heat takes place with respect to each of them

as if it alone existed. In the state which corresponds to any
one of these terms, the fixed temperatures of the points of the

base A differ from one point to another, and this is the only con

dition of the problem which is not fulfilled
;
but the general state

which results from the sum of all the terms satisfies this special

condition.

According as the point whose temperature is considered is
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more distant from the origin, the movement of heat is less com

plex : for if the distance x is sufficiently great, each term of

the series is very small with respect to that which precedes it,

so that the state of the heated plate is sensibly represented by

the first three terms, or by the first two, or by the first only,

for those parts of the plate which are more and more distant

from the origin.

The curved surface whose vertical ordinate measures the

fixed temperature v, is formed by adding the ordinates of a

multitude of particular surfaces whose equations are

^ = e* cos y,

7~ = - K3*
cos 3# ^ =^&quot;

5*
cos 5yt

&c.

The first of these coincides with the general surface when x

is infinite, and they have a common asymptotic sheet,

If the difference v v
l
of their ordinates is considered to be

the ordinate of a curved surface, this surface will coincide, when x

is infinite, with that whose equation is ^irv2
= e~

Zx
cos 3y. All

the other terms of the series produce similar results.

The same results would again be found if the section at the

origin, instead of being bounded as in the actual hypothesis by
a straight line parallel to the axis of y, had any figure whatever

formed of two symmetrical parts. It is evident therefore that

the particular values

ae~
x
cos y, le~

3x
cos 3y, ce~

5x
cos 5y, &c.,

have their origin in the physical problem itself, and have a

necessary relation to the phenomena of heat. Each of them

expresses a simple mode according to which heat is established

and propagated in a rectangular plate, whose infinite sides retain

a constant temperature. The general system of temperatures
is compounded always of a multitude of simple systems, and the

expression for their sum has nothing arbitrary but the coeffi

cients a, b, c, d, &c.

192. Equation (a) may be employed to determine all the

circumstances of the permanent movement of heat in a rect

angular plate heated at its origin. If it be asked, for example,
what is the expenditure of the source of heat, that is to say,
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what is the quantity which, during a given time, passes across

the base A and replaces that which flows into the cold masses

B and (7; we must consider that the flow perpendicular to the

axis of y is expressed by K^-. The quantity which during

the instant dt flows across a part dy of the axis is therefore

and, as the temperatures are permanent, the amount of the flow,

during unit of time, is
K-j-dy.

This expression must be

integrated between the limits y = \-rr and y = 4- JTT, in order

to ascertain the whole quantity which passes the base, or which

is the same thing, must be integrated from y to y = JTT, and

the result doubled. The quantity -,- is a function of x and y,
CLJO

in which x must be made equal to 0, in order that the calculation

may refer to the base A, which coincides with the axis of y. The

expression for the expenditure of the source of heat is there

fore 2lfKj-dy}. The integral must be taken from y = Q to

y = ITT
; if, in the function

-j-
,
x is not supposed equal to 0,

but x = x, the integral will be a function of x which will denote

the quantity of heat which flows in unit of time across a trans

verse edge at a distance x from the origin.

193. If we wish to ascertain the quantity of heat which,

during unit of time, passes across a line drawn on the plate

parallel to the edges B and C, we employ the expression K -j~ ,

j

and, multiplying it by the element dx of the line drawn, integrate

with respect to x between the given boundaries of the line
;
thus

the integral If K -j- dx) shews how much heat flows across theA dy J

whole length of the line
;
and if before or after the integration

we make y = \TT, we determine the quantity of heat which, during
unit of time, escapes from the plate across the infinite edge C.

We may next compare the latter quantity with the expenditure
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of the source of heat; for the source must necessarily supply

continually the heat which flows into the masses B and C. If

this compensation did not exist at each instant, the system of

temperatures would be variable.

194. Equation (a) gives

K -

7

V =
(e~

x
cos y e~

sx
cos 3y + e~

rx
cos oy

-
e~&quot;

x
cos 7y + &c.);

CLJC 7T

multiplying by dy, and integrating from
2/
= 0, we have

- ( e~
x
sin y - e~

5x
sin 3y + - e~

5x
sin oy ^ e~

7*
sin 7y -f &c. ] .

If y be made = JTT, and the integral doubled, we obtain

87T/ 1 _sv 1 _.x 1

\e 4-^e fg +
7

as the expression for the quantity of heat which, during unit of

time, crosses a line parallel to the base, and at a distance x from

that base.

From equation (a) we derive also

K
-j-

= --
(e~

x
sin y e~

Bx
sin Sy + e~

zx
sin oy e~

lx
sin 7y + &c.) :

hence the integral I K I
-j- j

dx, taken from x = 0, is

r {(1
-

e~&quot;)
sin ?/

-
(1
-

e&quot;

3:

&quot;)

sin 3?/ + (1
-

e&quot;

*)
sin 5y

If this quantity be subtracted from the value which it assumes

when x is made infinite, we find

-
(

e~
x
sin y

- e~
3x

sin Sy + ^ e~*
x
sin oy &c.

) ;
7T \ O O /

and, on making ?/
=

j7r, we have an expression for the whole

quantity of heat which crosses the infinite edge C, from the

point whose distance from the origin is x up to the end of the

plate ; namely,
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which is evidently equal to half the quantity which in the same
time passes beyond the transverse line drawn on the plate at

a distance x from the origin. We have already remarked that

this result is a necessary consequence of the conditions of the

problem ;
if it did not hold, the part of the plate which is

situated beyond the transverse line and is prolonged to infinity

would not receive through its base a quantity of heat equal to

that which it loses through its two edges ;
it could not therefore

preserve its state, which is contrary to hypothesis.

195. As to the expenditure of the source of heat, it is found

by supposing x = in the preceding expression ;
hence it assumes

an infinite value, the reason for which is evident if it be remarked

that, according to hypothesis, every point of the line A has and

retains the temperature 1 : parallel lines which are very near

to this base have also a temperature very little different from

unity: hence, the extremities of all these lines contiguous to

the cold masses E and C communicate to them a quantity of

heat incomparably greater than if the decrease of temperature
were continuous and imperceptible. In the first part of the

plate, at the ends near to B or (7, a cataract of heat, or an

infinite flow, exists. This result ceases to hold when the distance

x becomes appreciable.

196. The length of the base has been denoted by TT. If we

assign to it any value 2^, we must write \ifj instead of y, and

77&quot; X
1

multiplying also the values of a? by
~

,
we must write JTT -.-

instead of x. Denoting by A the constant temperature of the

base, we must replace v by -r . These substitutions being made

in the equation (a), we have

v =
(

e&quot;&quot;** cos --. .
- e ~u cos 3 4~, + - e~ ~M cos 5 4,7

7T \ J.L Z.I 3 1

-^6 cos7^ + &c.J
().

This equation represents exactly the system of permanent

temperature in an infinite rectangular prism, included between

two masses of ice B and (7, and a constant source of heat.
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197. It is easy to see either by means of this equation, or

from Art. 171, that heat is propagated in this solid, by sepa

rating more and more from the origin, at the same time that it

is directed towards the infinite faces B and G. Each section

parallel to that of the base is traversed by a wave of heat which

is renewed at each instant with the same intensity: the intensity

diminishes as the section becomes more distant from the origin.

Similar movements are effected with respect to any plane parallel

to the infinite faces; each of these planes .is traversed by a con

stant wave which conveys its heat to the lateral masses.

The developments contained in the preceding articles would

be unnecessary, if we had not to explain an entirely new theory,

whose principles it is requisite to fix. With that view we add

the following remarks.

198. Each of the terms of equation (a) corresponds to only
one particular system of temperatures, which might exist in a

rectangular plate heated at its end, and whose infinite edges are

maintained at a constant temperature. Thus the equation
v = e~

x
cos y represents the permanent temperatures, when the

points of the base A are subject to a fixed temperature, denoted

by cos y. We may now imagine the heated plate to be part of a

plane which is prolonged to infinity in all directions, and denoting
the co-ordinates of any point of this plane by x and y, and the

temperature of the same point by v
t
we may apply to the entire

plane the equation v = e~
x
cos y ; by this means, the edges B and

G receive the constant temperature ;
but it is not the same

with contiguous parts BB and CO
; they receive and keep lower

temperatures. The base A has at every point the permanent

temperature denoted by cos y, and the contiguous parts AA have

higher temperatures. If we construct the curved surface whose

vertical ordinate is equal to the permanent temperature at each

point of the plane, and if it be cut by a vertical plane passing

through the line A or parallel to that line, the form of the section

will be that of a trigonometrical line whose ordinate represents
the infinite and periodic series of cosines. If the same curved

surface be cut by a vertical plane parallel to the axis of x, the

form of the section will through its whole length be that of a

logarithmic curve.
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199. By this it may be seen how the analysis satisfies the

two conditions of the hypothesis, which subjected the base to a

temperature equal to cosy, and the two sides B and C to the

temperature 0. When we express these t\vo conditions we solve

in fact the following problem : If the heated plate formed part of

an infinite plane, what must be the temperatures at all the points

of the plane, in order that the system may be self-permanent, and

that the fixed temperatures of the infinite rectangle may be those

which are given by the hypothesis ?

We have supposed in the foregoing part that some external

causes maintained the faces of the rectangular solid, one at the

temperature 1, and the two others at the temperature 0. This

effect may be represented in different manners; but the hypo
thesis proper to the investigation consists in regarding the prism
as part of a solid all of whose dimensions are infinite, and in deter

mining the temperatures of the mass which surrounds it, so that

the conditions relative to the surface may be always observed.

200. To ascertain the system of permanent temperatures in

a rectangular plate whose extremity A is maintained at the tem

perature 1, and the two infinite edges at the temperature 0, we

might consider the changes which the temperatures undergo,
from the initial state which is given, to the fixed state which is

the object of the problem. Thus the variable state of the solid

would be determined for all values of the time, and it might then

be supposed that the value was infinite.

The method which we have followed is different, and conducts

more directly to the expression of the final state, since it is

founded on a distinctive property of that state. We now proceed
to shew that the problem admits of no other solution than that

which we have stated. The proof follows from the following

propositions.

201. If we give to all the points of an infinite rectangular

plate temperatures expressed by equation (2), and if at the two

edges B and C we maintain the fixed temperature 0, whilst the

end A is exposed to a source of heat which keeps all points of the

line A at the fixed temperature 1; no change can happen in the

state of the solid. In fact, the equation -y-a + -=-$
= being

F. H. n
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satisfied, it is evident (Art. 170) that the quantity of heat which

determines the temperature of each molecule can be neither

increased nor diminished.

The different points of the same solid having received the

temperatures expressed by equation (a) or v =
&amp;lt;f*(x,y), suppose

that instead of maintaining the edge A at the temperature 1, the

fixed temperature be given to it as to the two lines B and C
;

the heat contained in the plate BAG will flow across the three

edges A, B, C, and by hypothesis it will not be replaced, so that

the temperatures will diminish continually, and their final and

common value will be zero. This result is evident since the

points infinitely distant from the origin A have a temperature

infinitely small from the manner in which equation (a) was

formed.

The same effect would take place in the opposite direction, if

the system of temperatures were v =
(f&amp;gt; (x, y), instead of being

v =
(j) (x, y) ;

that is to say, all the initial negative temperatures
would vary continually, and would tend more and more towards

their final value 0, whilst the three edges A, B, C preserved the

temperature 0.

202. Let v = $ (x, y) be a given equation which expresses

the initial temperature of points in the plate BA C, whose base A
is maintained at the temperature 1, whilst the edges B and C

preserve the temperature 0.

Let v = F(x, y} be another given equation which expresses
the initial temperature of each point of a solid plate BAG exactly
the same as the preceding, but whose three edges B, A, G are

maintained at the temperature 0.

Suppose that in the first solid the variable state which suc

ceeds to the final state is determined by the equation v =
(f&amp;gt;(x, y, t\

t denoting the time elapsed, and that the equation v = &amp;lt;3&amp;gt; (x, y, t)

determines the variable state of the second solid, for which the

initial temperatures are F(x, y}.

Lastly, suppose a third solid like each of the two preceding:
let v =f(x, y) + F(xt y) be the equation which represents its

initial state, and let 1 be the constant temperature of the base

A y
and those of the two edges B and C.
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We proceed to shew that the variable state of the third solid

is determined by the equation v =
(f&amp;gt;(x, y, t} + &amp;lt;!&amp;gt;(#, y, )

In fact, the temperature of a point m of the third solid varies,

because that molecule, whose volume is denoted by M, acquires
or loses a certain quantity of heat A. The increase of tempera
ture during the instant dt is

the coefficient c denoting the specific capacity with respect to

volume. The variation of the temperature of the same point in

the first solid is ~^ dt, and ^dt in the second, the letters

d and D representing the quantity of heat positive or negative

which the molecule acquires by virtue of the action of all the

neighbouring molecules. Now it is easy to perceive that A
is equal to d + D. For proof it is sufficient to consider the

quantity of heat which the point m receives from another point
m belonging &quot;to the interior of the plate, or to the edges which

bound it.

The point ??&,,
whose initial temperature is denoted by fv

transmits, during the instant dt, to the molecule m, a quantity of

heat expressed by qj.f^ f)dt t
the factor q l representing a certain

function of the distance between the two molecules. Thus the

whole quantity of heat acquired by in is S.q^f^f^jdt, the sign

2 expressing the sum of all the terms which would be found

by considering the other points m
z ,
m

5 ,
???

4
&c. which act on m

;

that is to say, writing q2,/2 or ^3,/3 ,
or q^ /4

and so on, instead of

qv fv In the same manner ^q l(Fl F)dt will be found to be

the expression of the whole quantity of heat acquired by the

same point in of the second solid
;
and the factor q l

is the same
as in the term 2$\C/i f)dt, since the two solids are formed of

the same matter, and the position of the points is the same; we
have then

d = *?,(./; -/)* and D =
Sfc(F,

-
F)dt,

For the same reason it will be found that

112

, A d T)
hence A = d + D and -^ = ;, -f -j-, .

cM cM cM
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It follows from this that the molecule m of the third solid

acquires, during the instant dt, an increase of temperature equal

to the sum of the two increments which the same point would

have gained in the two first solids. Hence at the end of the

first instant, the original hypothesis will again hold, since any
molecule whatever of the third solid has a temperature equal
to the sum of those which it has in the two others. Thus the

same relation exists at the beginning of each instant, that is to

say, the variable state of the third solid can always be represented

by the equation

203. The preceding proposition is applicable to all problems
relative to the uniform or varied movement oinea^7 It shews

that the movement can always be decomposed into several others,

each of which is effected separately as if it alone existed. This

superposition of simple effects is one of the fundamental elements

in the theory of heat. It is expressed in the investigation, by
the very nature of the general equations, and derives its origin

from the principle of the communication of heat.

Let now v &amp;lt; (x, y] be the equation (a) which expresses the

permanent state of the solid plate BAG, heated at its end A, and

whose edges B and C preserve the temperature i; the initial state

of the plate is such, according to hypothesis, that all its points

have a nul temperature, except those of the base A, whose tem

perature is 1. The initial state can then be considered as formed

of two others, namely : a first, in which the initial temperatures are

(j&amp;gt;(x, y), the three edges being maintained at the temperature 0,

and a second state, in which the initial temperatures are +
&amp;lt;j&amp;gt;(x,y),

the two edges B and C preserving the temperature 0, and the

base A the temperature 1; the superposition of these two states

produces the initial state which results from the hypothesis. It

remains then only to examine the movement of heat in each one

of the two partial states. Now, in the second, the system of tem

peratures can undergo no change ;
and in the first, it has been

remarked in Article 201 that the temperatures vary continually,

and end with being nul. Hence the final state, properly so called,

is that which is represented by v = $ (x, y] or equation (a).
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If this state were formed at first it would be self-existent, and

it is this property which has served to determine it for us. If the

solid plate be supposed to be in another initial state, the differ

ence between the latter state and the fixed state forms a partial

state, which imperceptibly disappears. After a considerable time,

the difference has nearly vanished, and the system of fixed tem

peratures has undergone no change. Thus the variable temper
atures converge more and more to a final state, independent of

the primitive heating.

204. We perceive by this that the final state is unique; for,

if a second state were conceived, the difference between the

second and the first would form a partial state, which ought to be

self-existent, although the edges A, B, C were maintained at the

temperature 0. Now the last effect cannot occur; similarly if we

supposed another source of heat independent of that which flows

from the origin A] besides, this hypothesis is not that of the

problem we.have treated, in which the initial temperatures are

nul. It is evident that parts very distant from the origin can

only acquire an exceedingly small temperature.

Since the final state which must be determined is unique, it

follows that the problem proposed admits no other solution than

that which results from equation (a). Another form may be

given to this result, but the solution can be neither extended nor

restricted without rendering it inexact.

The method which we have explained in this chapter consists

in formnig fiFst very simple particular values, which agree with

the .problem, and in rendering the solution more general, to the

intent that v or
&amp;lt;/&amp;gt; (as, y) may satisfy three conditions, namely :

It is clear that the contrary order might be followed, and the

solution obtained would necessarily be the same as the foregoing.

We shall not stop over the details, which are easily supplied,

when once the solution is known. We shall only give in the fol

lowing section a remarkable expression for the function
&amp;lt;/&amp;gt; (x, y]

whose value was developecTm a convergent series in equation (a).
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SECTION V.

Finite expression of the result of the solution^

205. The preceding solution might be deduced from the

d2
v d*v

integral of the equation -y~2 + -3-3
= O,

1 which contains imaginary

quantities, under the sign of the arbitrary functions. We shall

confine ourselves here to the remark that the integral

v=&amp;lt;!&amp;gt;(x+yj -T) +^r(x- W^T),
has a manifest relation to the value of v given by the equation

-T- = e~
x
cos y ^ e~

Zx
cos 3y -f ^ e~

5x
cos oy &c.

4 o 5

In fact, replacing the cosines by their imaginary expressions,

we have

- &c.
3 o

The first series is a function of x yJ\, and the second

series is the same function of x + yj 1.

Comparing these series with the known development of arc tan z

in functions of z its tangent, it is immediately seen that the first

is arc tan e if** f3r
\ and the second is arc tan e ^^

;
thus

equation (a) takes the finite form

~ = arc tan e
-
(x+v^ + arc tan e

-&amp;lt;*- v=r
&amp;gt;

In this mode it conforms to the general integral

v =
&amp;lt;t&amp;gt;(x

+yj~\) + ^(x-yj~^l) ......... (A),

the function $ (z) is arc tan
e~&quot;,

and similarly the function
i|r (z).

1 D. F. Gregory derived the solution from the form

Cumb. Math. Journal, Vol. I. p. 105. [A. F.]
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If in equation (B) we denote the first term of the second mem
ber by p and the second by q, we have

,
N

tan p -f tan a 2e~
x
cos y 2 cos ywhence tan (p + g) or -f- - == --
txf = -^ ;

1 tan p tan q 1 e e e

1 /2 cos y\ .f

whence we deduce the equation -TTV = arc tan
(

---
_-} ...(..(G).A \& e J

This is the simplest form under which the solution of the

problem can be presented.

206. This value of v or
c/&amp;gt; (x, y) satisfies the conditions relative

to the ends of the solid, namely, (/&amp;gt; (x, JTT)
=

0, and
(j&amp;gt; (0, y}

= 1
;

70 72

it satisfies also the general equation + -
2
=

0, since equa

tion ((7) is a transformation of equation (B). Hence it represents

exactly the system of permanent temperatures ;
and since that

state is unique, it is impossible that there should be any other

solution, either more general or more restricted.

The equation (C) furnishes, by means of tables, the value of

one of the three unknowns v, x, y}
when two of them are given; it

very clearly indicates the nature of the surface whose vertical

ordinate is the permanent temperature of a given point of the

solid plate. Finally, we deduce from the same equation the values

of the differential coefficients -=- and -y- which measure the velo-
ax ay

city with which heat flows in the two orthogonal directions
;
and

we consequently know the value of the flow in any other direction.

These coefficients are expressed thus,

dx

dv

It may be remarked that in Article 194 the value of -j- , and

that of
-j-

are given by infinite series, whose sums may be easily
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found, by replacing the trigonometrical quantities by imaginary

exponentials. We thus obtain the values of -3- and -r- which
ace ay

we have just stated.

The problem which we have now dealt with is the first which

we have solved in the theory of heat, or rather in that part of

the theory which requires the employment of analysis. It

furnishes very easy numerical applications, whether we make

use of the trigonometrical tables or convergent series, and it

represents exactly all the circumstances of the movement of

heat. We pass on now to more general considerations.

SECTION VI.

Development of an arbitrary function in trigonometric series.

207. The problem of the propagation of heat in a rect-

d 2
v d 2

v
angular solid has led to the equation -y-g + -=- =

;
and if it

be supposed that all the points of one of the faces of the solid

have a common temperature, the coefficients a, b, c, d
}

etc. cf

the series

a cos x + b cos 3x + c cos 5# 4- d cos 7x + ... &c.,

must be determined so that the value of this function may be

equal to a constant whenever the arc x is included between JTT

and + JTT. The value of these coefficients has just been assigned;
but herein we have dealt with a single case only of a more general

; problem, which consists in developing any function whatever in

an infinite series of sines or cosines of multiple arcs. This

problem is connected with the theory of partial differential

equations, and has been attacked since the origin of that analysis.

It was necessary to solve it, in order to integrate suitably the

equations of the propagation of heat; we proceed to explain

the solution.

We shall examine, in the first place, the case in which it is

required, to reduce into a series of sines of multiple arcs, a

function whose development contains only odd powers of the
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variable. Denoting such a function by &amp;lt; (x), we arrange the

equation

(j) (x)
= a sin x + b sin 2x -f c sin 3x + d sin 4&amp;lt;x -f . . . &c.,

in which it is required to determine the value of the coefficients

a, b, c, d, &c. First we write the equation ^
&amp;lt;^(^)

= ^Xo) + |V Xo)+^f Xo) +^^o) + ^xo)+..^W M
If. !_ l_ 2.

in which &amp;lt; (0), &amp;lt;&quot;(0), ^ &quot;(0),
&amp;lt;

lv

(0), &c. denote the values taken

by the coefficients

(x)
* c

dx dx* da? dx

when we suppose x in them. Thus, representing the develop
ment according to powers of x by the equation

we have
&amp;lt;j&amp;gt; (0)

= 0, and
&amp;lt;f&amp;gt; (0)

= A,

&c. &c.

If now we compare the preceding equation with the equation

&amp;lt;j)(x)

= a sin x + b sin 2x + c sin 3# + J sin 4&amp;lt;x + e sin 5^ -|- &c.,

developing the second member with respect to powers of x, we
have the equations

A = a + 2Z&amp;gt; + 3c + 4d + 5e + &c.,

= a + 2
3
6 + 3

3
c + tfd + 5

3
e + &c.,

(7= a + 2
5
^ + 3

5
c + 4

5
cZ + 5

5
e + &c.,

D = a + 2
7
6 + 3

7
c + 4 7d + 5

7
e + &c.,

These equations serve to find the coefficients a, b, c, d, e,

&c., whose number is infinite. To determine them, we first re

gard the number of unknowns as finite and equal to m
; thus

we suppress all the equations which follow the first m equations,
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and we omit from each equation all the terms of the second

member which follow the first m terms which we retain. The

whole number m being given, the coefficients a, b, c, d, e, &c. have

fixed values which may be found by elimination. Different

values would be obtained for the same quantities, if the number
of the equations and that of the unknowns were greater by one

unit. Thus the value of the coefficients varies as we increase

the number of the coefficients and of the equations which ought
to determine them. It is required to find what the limits are

towards which the values of the unknowns converge continually

as the number of equations increases. These limits are the true

values of the unknowns which satisfy the preceding equations
when their number is infinite.

208. We consider then in succession the cases in which we
should have to determine one unknown by one equation, two

unknowns by two equations, three unknowns by three equations,

and so on to infinity.

Suppose that we denote as follows different systems of equa

tions analogous to those from which the values of the coefficients

must be derived :

a^
= A^ a

a + 26
2
= A

a ,
a
3 + 2&

3 + 3c
3
= A

z ,

3c
4

3c
5

&c. &c......... . ................ (b).
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If now we eliminate the last unknown e
& by means of the

five equations which contain A
& ,
B

&)
C

5 , D5 , E.., &c., we find

a. (5
2 - I

2

) + 2\ (5
2 - 2

2

) + 3\ (5
2 - 3

2

)

a
5 (5

2 - I
2

) + 2
5

5 (5
2 - 2 2

) + 3
5
c
5 (5

2 - 3
2

)

o
5 (5

2 - I
2

) + 2
7

5 (5
2 - 22

) + 3V
5 (5

2 - 3
2

)

We could have deduced these four equations from the four

which form the preceding system, by substituting in the latter

instead of

c
4 , (5

2 -32

)c5 ,

rf
4f (5

2 -42

)c/5 ;

and instead of A
t ,

D
z

A^ B
b ,

B
t ,

5 Jf-C-.,

C
4I

5
(7. -/&amp;gt;.,

By similar substitutions we could always pass from the case

which corresponds to a number m of unknowns to that which

corresponds to the number m-f-1. Writing in order all the

relations between the quantities which correspond to one of the

cases and those which correspond to the following case, we shall

have

= c
s (5

2 - 3
2

), rf
4
= rf

5 (5
2 -42

),

&c............................ (c).
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We have also

&c. &c.............................. (d).

From equations (c) we conclude that on representing the un

knowns, whose number is infinite, by a, b, c, d, e, &c., we must

have

a

(3*
- 22

) (4
2 - 2

2

) (5
2 - 2

2

) (6
2 - 22

)
. . .

~

(4
a - 3

2

) (5
2 - 3

2

) (6
2 - 3

2

) (T
- 3

2

)
. . .

d =
(5*

_ 4
) (G

2 - 4
2

) (T
- 42

) (8
2 - 4

2

)
. . .

&c. &c (e).

209. It remains then to determine the values of a
lt

6
2 , c

8 ,

d
4 ,

e
e ,

&c.
;
the first is given by one equation, in which A enters;

the second is given by two equations into which A
2
B

Z enter; the

third is given by three equations, into which A
3
B

3
C

3
enter

;
and

so on. It follows from this that if we knew the values of

A
19

A
2
B

2 ,
A

3
B

3
C

3 , Af^CJ),..., &c.,

we could easily find a
x by solving one equation, a

2
&
2 by solving

two equations, a
3
b
3
c
3 by solving three equations, and so on : after

which we could determine a, b} c, d, e, &c. It is required then

to calculate the values of

..., &c,

by means of equations (d). 1st, we find the value of A
2

in

terms of A
%
and 5

2 ; 2nd, by two substitutions we find this value

of A
1
in terms of A

3
B

3
C

3 ; 3rd, by three substitutions we find the
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same value of A
l
in terms of J

4
J5

4
(7

4
Z)

4 , and so on. The successive

values of A are

A, =A\ 3
2

. 4
2 -

B, (2
2

. 32 + 2
2

. 4
2 + 3

2
. 4

2

) + &amp;lt;7

4 (2
2 + 3

2 + 42

)
- D

4 ,

^^J^2^2^2^ 2 -^^22 - 82 - 4^ 22 - 32 - 5^ 22 - 42 - 5^ 32 - 42 - 52
)

+ C
6 (2

2
. 3

2 + 2
2

. 4
2 + 2

2
.5

2 + 3
2
.4

2+ 3
2
.5

2 + 42
.5

2

)

- D
b (2

2 + 3
2 + 42 + 5

2

) +E6 , &c.,

the law of which is readily noticed. The last of these values,

which is that which we wish to determine, contains the quantities

A, B, C, D, E, &c., with an infinite index, and these quantities

are known
; they are the same as those which enter into equa

tions (a).

Dividing the ultimate value of A
: by the infinite product

22
.3

2
.4

2
.5

2
.6

2

...&c.,

we have

&quot; D
(.2*. 3&quot;. 4&quot;

+
2&quot;. 3&quot;. 5

a +
3&quot;. 4&quot;. 5&quot;

+ &C
7

E
.S .^.o1 + ^~4\ff +

&C
)
+ &C

The numerical coefficients are the sums of the products which

could be formed by different combinations of the fractions

1 i i i i Ac
I

2
2&quot; 3&quot; 5

2
6*&quot;

after having removed the first fraction
p.

If we represent

the respective sums of products by Plf Q x , R^ S
lt
T

I}
... &c., and

if we employ the first of equations (e) and the first of equa
tions (6), we have, to express the value of the first coefficient a,

the equation

22
.3

2
.4

2
.5

2
...

CQ l

- DR
V
+ ES

l

-
&c.,
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now the quantities Plt Q lf
E

lt
S

lt T^... &c. may be easily deter

mined, as we shall see lower down
;
hence the first coefficient a

becomes entirely known.

210. We must pass on now to the investigation of the follow

ing coefficients b, c, d, e, &c., which from equations (e) depend on

the quantities 6
2 ,

c
3 ,
d

4 , e
s ,

&c. For this purpose we take up

equations (6), the first has already been employed to find the

value of
ffj,

the two following give the value of 6
2 ,

the three

following the value of C
3 ,

the four following the value of d
4 ,
and

so on.

On completing the calculation, we find by simple inspection

of the equations the following results for the values of 6
2 ,

c
s ,

r7
4 ,

&c.

3c
3 (I

2 - 3
2

) (2
2 - 3

2

)
= A

3
l

2
. 2

2 - B
z (I

2 + 22

) + &amp;lt;7

3 ,

4&amp;lt;Z

4 (l
2 -42

)(2
2 -42

)(3
2 -42

)

= .4
4
l
2

. 2
2

. 3
2-^

4 (I
2

. 2
2
+ I

2
. 3

2 + 2
2
.3

2

) + C
4 (1

2 + 2
2
-f 3

2

)
-7&amp;gt;

4
,

&c.

It is easy to perceive the law which these equations follow
;

it remains only to determine the quantities A nBn ,
A

2
B

3
C

3 ,

A$f!v &c.

Now the quantities A.2B2
can be expressed in terms of A

3
B

3
C

3 ,

the latter in terms of A
4
B

4
C

4
D

4
. For this purpose it suffices to

effect the substitutions indicated by equations (d) ;
the successive

changes reduce the second members of the preceding equations
so as to contain only the AB CD, &c. with an infinite suffix,

that is to say, the known quantities ABCD, &c. which enter into

equations (a) ;
the coefficients become the different products

which can be made by combining the squares of the numbers

1*2*3*4*5* to infinity. It need only be remarked that the first

of these squares I
2

will not enter into the coefficients of the

value of a
t ;

that the second 2
2
will not enter into the coefficients

of the value of b.2 ;
that the third square 3

2
will be omitted only

from those which serve to form the coefficients of the value of c
3 ;

and so of the rest to infinity. We have then for the values of
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t&amp;gt;

2
c
3
d

4
e
5 , &c, and consequently for those of bcde, c., results entirely

analogous to that which we have found above for the value of

the first coefficient a^.

211. If now we represent by P2 , Q,, Pz , S2 , &c., the quantities

1+1+1+1.
I

2
3* 4* 5*

1*. 32
I
2

. 4
2

I
2

. 5
2 32

.

&c.,

which are formed by combinations of the fractions 1
,

1
,
1

,

2 ,

^5
... &c. to infinity, omitting ^ the second of these fractions

we have, to determine the value of b
2 ,

the equation

,
- &c.

Representing in general by Pn Qn
RnSn

... the sums of the

products which can be made by combining all the fractions

p &amp;gt;

2*
&amp;gt;

g2
&amp;gt; f ,

-^2

&quot;- to infinity, after omitting the fraction 1

only; we have in general to determine the quantities a
lt

6
2 ,

c

d
4 ,

e
s ..., &c., the following equations:

A-BP
l +CQl

-DB
l ., ,

^- . O . -T . O ...

A - P
2 + CQ2

- DR + ES - &c. = 2i ,-

&quot; 2
?

4-^=
l
a
.2 2

.3*.5.6..
~

&c.
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212. If we consider now equations (e) which give the values

of the coefficients a, 6, c, d, &c., we have the following results :

(2
2 - I

2

) (3
2 - I

2

) (4
2 - I

2

) (5
2 - I

2

) ...

22 .3
2
.4

2
.5

2
...

= A-BP
1
+ CQi - DE, + ESi

-
&c.,

(I
2 _ 2

2

) (3
2 -22

) (4
2 -22

) (5
2 -22

)...

1
2
.3*.4

2
.5

2
...

= A-BP,+ CQ.
- DR

2
+ ES

2
-

&c.,

3
2

) (2
2 - 3

2

) (4*
- 3

2

) (5*
- 3

2

) . . .

I
2

. 2
2
.4

2
.5

2
...

(1
_ 4) (2

2 - 42

) (3
2 - 42

) (5
2 - 42

)
. . .

I
2
.2

a
.3

2
.o

2
...

= A - BP, + 4
- D^

4 + ^ 4̂
-

&c.,

&c.

Remarking the factors which are wanting to the numerators

and denominators to complete the double series of natural

numbers, we see that the fraction is reduced, in the first equation
11 22 33

to =- . o ;
in the second to s T &amp;gt;

m ^ne third to -
.

^ ;
in the

4 4
fourth to -r .

^ ;
so that the products which multiply a, 2&, 3c,

4c, &c., are alternately ^ and It is only required then to

find the values of P&E&, P&R&, P
3Q3
^

3 3̂ ,
&c.

To obtain them we may remark that we can make these

values depend upon the values of the quantities PQRST, &c.,

which represent the different products which may be formed

with the fractions ^ , ^&amp;gt; -&&amp;gt; T2&amp;gt; ^2&amp;gt; 7&&amp;gt;

&c - without omit-
1 L O TT O O

ting any.

With respect to the latter products, their values are given

by the series for the developments of the sine. We represent

then the series
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+ 12 02 + -1 2 A9 + 92 02+02 J2 + 02 42
+ & (

J. . O l.T) Zi . O Zi.rr O.T

!&c
I
2

. 2
2

. 3* I
2

. 2
2

. 4* I
2

. 3
2

. 4
2 22

. 3
2

. 4
2

1
2
.2

2
.3

2
.4

2
2*.3

2
.4

2
.5

2 F.22
.3

2
.5

2 &amp;gt;

by P, Q, 5, 5, &c.

aj
3 x5 x7

The series sin# = # s + j^ ?= + &c.
3

|o
7

furnishes the values of the quantities P, Q, E, S, &c. In fact, the

value of the sine being expressed by the equation

we have

1

-g
+
|-|

+&ft

Whence we conclude at once that

213. Suppose now that P
w , QB ,

5B ,
/Sfn , &c., represent the

sums of the different products which can be made with the

fractions 2 , ^ , ^ , -^ , ^ , &c., from which the fraction -=
Z o TC O 71,

has been removed, n being any integer whatever
;

it is required
to determine Pn , Qn ,

E
n , Sn , &c., by means of P, Q, E, S, &c. If

we denote by

the products of the factors

1-
V

\ H.
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among which the factor (1 -
4) only has been omitted

;
it follows

that on multiplying by
(l
-

J^J
the quantity

we obtain 1 - qP + (f Q - fR + q*S
- &c.

This comparison gives the following relations :

&c.;

&c.

Employing the known values of P, Q, JR, ft and making ?i

equal to 1, 2, 3, 4, 5, &c. successively, we shall have the values of

P&RA, &c.
;
those of P

2QA^ &c -
5
those of P&3RA &c

214 From the foregoing theory it follows that the values

of a, b, c, d, e, &c., derived from the equations

a + 26 + 3c + 4d + 5e + &c. = -4,

a + 2
3
6 + 3

3
c + 43^ + 5

s
e + &c. = #,

a + 2
5
6 + 3

5
c + tfd + tfe + &c. = 0,

a + 27
6 + 3

7
c + 47

rf + 5
7
e + &c. = D,

a + 2
9
^ + 3

9
c +W + 5e + &c. = ^,

&c.,
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are thus expressed,

179

a- A B -

[7

1T* 1 7T
6

1 7T
4

1 7T
2

~ + -

(7

-lzL
6

^!^4

l 772 ^ x&amp;gt;

\ ^

[9
22

|7

+
24

[5&quot;&quot;2

6

|3

+
2V~

D^-lzL
4

^!^..!^
Vg 32

|5

+
34

[3
3V

, F /7r_

8

_^7r_
6

ITT*
j.

7r
2

.

1-1
2 * 6 8

&quot;

-D^.l^
4

, l^.n
l7 42

5
+
44

3 4V
|3

&c.

215. Knowing the values of a, b, c, d, e, &c., we can substitute

them in the proposed equation

&amp;lt; (x)
= a sin x + b sin 2# + c sin 3# + d sin 4;c + e sin ox + &c.,

and writing also instead of the quantities A, B, C, D, E, &c., their

122
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values (0), &amp;lt;J&amp;gt;&quot; (0), (

v

(0), &amp;lt;

vii

(0), &amp;lt;

lx

(0), &c., we have the general

equation

jjf

+ &C.

We may make use of the preceding series to reduce into

a series of sines of multiple arcs any proposed function whose

development contains only odd powers of the variable.

216. The first case which presents itself is that in which

4&amp;gt; (as)
=

?; we find then
&amp;lt;/&amp;gt; (0)

=
1, &amp;lt;&quot; (0)

= 0, &amp;lt;

v

() = 0, &c., and so

for the rest, We have therefore the series

x on = sin x n sin 2x + ^ sin 3x -r sin 4# + &c.,
4j

.

&quot; 2 o 4

which has been given by Euler.

If we suppose the proposed function to be x*, we shall have

&amp;lt; (0)
=

0, f &quot;(0)
=

[3, $ (0)
= 0,

&amp;lt;/&amp;gt; ((&amp;gt;)

=
0, &o.,

which gives the equation

- a? =
\7r

z -
-j=J

sin x - (TT* - L=
J

sin 2cc -}-

^7r

2 -
-^J g

sin 3ic -f &c.

(A).
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We should arrive at the same result, starting from the pre

ceding equation,

-x = sin x ^ sin 2# + ^ sin 3x - -r sin 4# + &c.
A A 6 *f

In fact, multiplying each member by dx, and integrating, we

have

C -r cos x ~a cos 2x -f ^ cos & -rs cos 4# -f &c. ;

4 .Z o 4*

the value of the constant (7 is

a series whose sum is known to be ~ -^ . Multiplying by dx the

two members of the equation

ITT2
X*

2
-

-T = co

and integrating we have

ITT2
X* 1 1

2
-

-T = cos a; - ^2 cos 2x +
-^

cos 3# - &c.,

If now we write instead of x its value derived from the

equation

^ # = sin a? TT sin 2# + ^ sin 3# -7 sin 4# + &c.,

we shall obtain the same equation as above, namely,

7T
2

We could arrive in the same manner at the development in

series of multiple arcs of the powers x5
, a?, x

9

, &c., and in general

every function whose development contains only odd powers of

the variable.

5-

217. Equation (A), (Art. 218), can be put under a simpler

form, which we may now indicate. We remark first, that part of

the coefficient of sin x is the series

* (0) + V&quot;(0) + #(0) + r (0) + &c,
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which represents the quantity -(/&amp;gt;(TT).
In fact, we have, in

general,

(0)*|*&quot;(0)+|*

&c.

Now, the function
&amp;lt;f&amp;gt;(x) containing by hypothesis only odd

powers, we must have
&amp;lt;(0)

= 0, &quot;(0)

=
0,

&amp;lt;/&amp;gt;

iv

(0)
=

0, and so on.

Hence

&amp;lt;f) (x)
=

x(j)(Q) + TK
&amp;lt;fi&quot; (0) + p

VW + &amp;lt;^ c&amp;lt;

j

a second part of the coefficient of sin x is found by multiplying

by Q the series

&amp;lt;T (0) + n&amp;gt;

3

^(0) + IF &amp;lt;/&amp;gt;

vli

(0) + ^ ^
lx

() + &c
-&amp;gt;

whose value is - $ (TT}. We can determine in this manner the
7T
r

different parts of the coefficient of sin#, and the components of

the coefficients of sin 2#, sin 3x, sin
4&amp;lt;x,

&c. We may employ for

this purpose the equations :

f (0) + * &quot;(0)
+

&amp;lt;^

V

(0) + &c. =

r (0) + ^(0) + &c. =

^ (&amp;gt;
^ &c-

= -
O 7T
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By means of these reductions equation (A) takes the following

form :

sn x -
J f (TT) + J &amp;lt;

iv

(7r)
-
J ^(TT) + &cj

- i sin 2*
{&amp;lt;/&amp;gt;

(TT)
- I

&amp;lt;&quot;

(TT) + 1 4&amp;gt;

lv

(TT)
- 1

&amp;lt;/&amp;gt;

+ &c.
J

sin 3*
(/&amp;gt; (TT)

- f (TT) + ^ (TT)
-

&amp;lt;^(TT)
+ &*

- sn * c W - ^ (T) + rW - ^W + &

(B);

or this,

5 a?)
= ^ (TT) ! sin x sin 2,r + sin 3x &c. h

&amp;lt;t&amp;gt;&quot; (TT) |
sin ^ ^ sin 2:c + ^ sin 3x &c.

[

[
^ o )

+
(/&amp;gt;

IV

(TT) -jsin
x

-^
sin 2x + ^ sin 3o? &c.

^

c/)

vl

(TT) ! sin x
-^

sin 2x +
^?

sin 3uC &c.
[

+ &c. (C).

218. We can apply one or other of these formulas as often as

we have to develope a proposed function in a series of sines of

multiple arcs. If, for example, the proposed function is e
x

e~*
t

whose development contains only odd powers of x, we shall have

1 (F . Q~* / 1 1 \

x TT - = f sin x
-^

sin 2# + sin 3^ &c.
J

^ *Vu (sin a; ^ sin 2ic + ^ sin 3a; &c.
)

*%
! i

*t*3 +
(
sm ^ B

sm 2ic + o5 sin 3x &c.
J

i

( sin x
yj

sin 2x + ^ sin 3, &c.
J
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Collecting the coefficients of sin x, sin 2x, sin 3#, sin 4*x, &c.,

I.i

have

and writing, instead of * + -* 7+ etc.. its value -,
-

, wen n* n5
tf ri* + 1

1 (e* e
x

) _ sin x sin 2x sin 3#

2
71

&quot;

e^-e^~1~11~
We might multiply these applications and derive from them

several remarkable series. We have chosen the preceding example
because it appears in several problems relative to the propagation
of heat.

219. Up to this point we have supposed that the function

whose development is required in a series of sines of multiple

arcs can be developed in a series arranged according to powers
of the variable x

t
and that only odd powers enter into that

series. We can extend the same results to any functions, even

to those which are discontinuous and entirely arbitrary. To esta

blish clearly the truth of this proposition, we must follow the

analysis which furnishes the foregoing equation (B), and examine

what is the nature of the coefficients which multiply sin a?,

sin 2x, sin 3#, &c. Denoting by
- the quantity which multiplies
ftr

-sin nx in this equation when n is odd, and smnx when n is
n n

even, we have

a =
&amp;lt;KT)

-
J *&quot;

+ J &amp;lt;fW - i * + &C.
Hi Hi It/

Considering s as a function of TT, differentiating twice, and

1 d?s
comparing the results, we find s + -$ ~r-2 =

&amp;lt;/&amp;gt; (TT) ;
an equation

ft Cv
r/r

which the foregoing value of 5 must satisfy.

1 dz
s

Now the integral of the equation s +-5 T~I =
&amp;lt;/&amp;gt; (#)&amp;gt;

m which s
f
ft CLtjG

is considered to be a function of a?, is

s a cos nx + b sin nx

4- n sin nx \ cos nx $ (x) dx n cos nx I sin nx (x) dx.
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If n is an integer, and the value of x is equal to TT, we have

s = n
\(f&amp;gt; (x) sinnxdx. The sign + must be chosen when n is

odd, and the sign when that number is even. We must make

x equal to the semi-circumference TT, after the integration in

dicated; the result may be verified by developing the term

|
(/&amp;gt; (x) sin nx dx, by means of integration by parts, remarking

that the function &amp;lt; (x) contains only odd powers of the vari

able x, and taking the integral from x = to x = TT.

We conclude at once that the term is equal to

o

If we substitute this value of - in equation (B), taking the

sign + when the term of this equation is of odd order, and the

sign when n is even, we shall have in general I $(x) sin nxdx

for the coefficient of sin?z#; in this manner we arrive at a very \

remarkable result expressed by the following equation :

7T(j&amp;gt;(x)

= since I sin x$(x) dx + sin 2x /sin 2#&amp;lt; (x) dx+&c.
J J

in/ic lsini#&amp;lt; (x) dx + &c..............f. (D), /

.

&quot;sX

the second member will always give the development required

for the function
&amp;lt;/&amp;gt;(#),

if we integrate from x = to # = 7r.
1

1 Lagrange had already shewn (Miscellanea Taurinensia, Tom. in., 1760,

pp. 260 1) that the function y given by the equation

y= 2 (iTV, sinXr-rr AX) sin xir + 2 (5TVr sin 2XrTr AX) sin 2xir
r=l r=l

+ 2 (iTYr sin 3Xr7r AX) sin 3xir + . . . + 2 (S^Yr sin nXrv AX ) sin nxir

receives the values F1} Y^, Y3...Yn corresponding to the values Xlt X2 ,
X

3...Xn of

x, where Xr
=

,
and AX .

Lagrange however abstained from the transition from this summation-formula

to the integration-formula given by Fourier.

Cf. Riemann s Gcsammclte Mathcmatische Werke, Leipzig, 1876, pp. 218220
of his historical criticism, Ucber die Darstellbarkeit einer Function durch eine

Trigonomctritche Reihe. [A. F.]
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220. We see by this that the coefficients a, b, c, d, e,f, &c.,

which enter into the equation

5 Tr&amp;lt;p (x) a sin x + b sin 2x + c sin 3x + d sin 4# + &c.,

and which we found formerly by way of successive eliminations,

are the values of definite integrals expressed by the general term

sin ix
(j&amp;gt; (x) dx}

i being the number of the term whose coefficient

is required. This remark is important, because it shews how even

entirely arbitrary functions may be developed in series of sines

of multiple arcs. In fact, if the function &amp;lt; (x) be represented

by the variable ordinate of any curve whatever whose abscissa

extends from x = to x TT, and if on the same part of the axis

the known trigonometric curve, whose ordinate is y sin x, be

constructed, it is easy to represent the value of any integral

term. We must suppose that for each abscissa x, to which cor

responds one value of $ (a?),
and one value of sin x, we multiply

the latter value by the first, and at the same point of the axis

raise an ordinate equal to the product $ (x) sin x. By this con

tinuous operation a third curve is formed, whose ordinates are

~those of the trigonometric curve, reduced in proportion to the

^ordinates of the arbitary curve which represents &amp;lt;(#).
This

done, the area of the reduced curve taken from x = to X = TT

gives the exact value of the coefficient of sin#; and whatever

the given curve may be which corresponds to $ (#), whether we

can assign to it an analytical equation, or whether it depends on

110 regular law, it is evident that it always serves to reduce

in any manner whatever the trigonometric curve; so that the

area of the reduced curve has, in all possible cases, a definite

value, which is the value of the coefficient of sin x in the develop

ment of the function. The same is the case with the following

coefficient b, or /&amp;lt; (x) sin 2xdx.

In general, to construct the values of the coefficients a, b, c, d, &c.,

\\e must imagine that the curves, whose equations are

y = sin x, y = sin Zx, y = sin Sx, y = sin 4#, &c.,

have been traced for the same interval on the axis of x, from
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x = to x = TT
;
and then that we have changed these curves by

multiplying all their ordinates by the corresponding ordinates of

a curve whose equation is y = &amp;lt;f&amp;gt;(x).

The equations of the re

duced curves are

y = sin x
cf&amp;gt; (x), y = sin 2x

&amp;lt;/&amp;gt; (x), y = sin 3x
&amp;lt;/&amp;gt; (x), &c.

The areas of the latter curves, taken from x = to x TT,

are the values of the coefficients a, 6, c, d, &c., in the equation

I
~ TT

&amp;lt;f&amp;gt; (x)
= a sin x + b sin 2a? + c sin 3x + d sin 4# + &c.

221. We can verify the foregoing equation (D), (Art. 220),

by determining directly the quantities a
lt 2 ,

a
3 ,

... a.
y &c., in the

equation

&amp;lt;

(a?)
= a

:
sin a? + a

2
sin 2# + a

3
sin 3x + . . . a, sinJic + &e.

;

for this purpose, we multiply each member of the latter equation

by sin ix dx, i being an integer, and take the integral from x =
to X = TT, whence we have

I
&amp;lt;f)(x)

sin ix dx = a
x

I sin x sin ix dx + 2 (sin
2# sm ix dx + &c.

+ aj I sinjx sin ix dx + ... &c.

Now it can easily be proved, 1st, that all the integrals, which

enter into the second member, have a nul value, except only the

term a
L

\ sin ix sin ixdx
; 2nd, that the value of Ismixsmixdx is

i-TT
;
whence we derive the value of a

i} namely

2 r
-

I
(f&amp;gt; (a?)

sin ix dx.

The whole problem is reduced to considering the value of the

integrals which enter into the second member, and to demon- -i

strating the two preceding propositions. The integral

2
I
sin jjc si 11 ixdx,
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taken from x = to x TT, in which i and j are integers, is

jj
sin (*

-
j) x - ^-.

sin (i + j) x + C.

Since the integral must begin when x = the constant C is

nothing, and the numbers i and j being integers, the value of the

integral will become nothing when OJ = TT; it follows that each

of the terms, such as

a
t

\ sin x sin ix da, a
2

1 sin 2x sin ix doc, a
3
(sin 5x sin ixdx

t &c.,

vanishes, and that this will occur as often as the numbers i and j
are different. The same is not the case when the numbers i and j

are equal, for the term - .sin (i j) x to which the integral re-

j

duces, becomes
-^ ,

and its value is TT. Consequently we have

2 I sin ix sin ix dx == TT
;

thus we obtain, in a very brief manner, the values of a
lt

a
z ,

a
3)

...

4 , &c., namely,

2 f 2 f

ttj
= - /( (#) sin # dr, a

2
= -

l&amp;lt; (x) sin 2

2 f 2 r

#
3
= -

I
c/&amp;gt; (a?)

sin 3# &e, a,
= -

\$(x) sin 10

Substituting these we have

%7r(f&amp;gt; (x)
= sin x I

&amp;lt;/&amp;gt; (a?)
sin # cZic + sin 2x

l(f) (x) sin 2# J^? + &c.

+ sin ix 1
(a?)

sin ixdx + &c.

222. The simplest case is that in which the given function

has a constant value for all values of the variable x included

between and TT
;
in this case the integral I sin ixdx is equal to

9
?, if the number i is odd, and equal to if the number i is even.
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Hence we deduce the equation

.j
TT = sin x +

g
sin 3# 4-

- sin 5# -f = sin 7x + &c., (N
t

which has been found before.

It must be remarked that when a function
&amp;lt;f&amp;gt;

(x) has been de

veloped in a series of sines of multiple arcs, the value of the series

a sin x -f & sin 2# + c sin 3x + d sin kx + &c.

is the same as that of the function $ (#) so long as the variable x

is included between and IT
;
but this equality ceases in general

to hold good when the value of x exceeds the number TT.

~

Suppose the function whose development is required to be x,

we shall have, by the preceding theorem,

2
irx = sin x I x sin x dx + sin 2x I x sin 2# dx

+ sin 3# I x sin 3# dx 4- &c.

The integral I x sin i#cfa? is equal to f T ;
the indices and TT,

/ z

which are connected with the sign I
,
shew the limits of the inte

gral ;
the sign -f must be chosen when i is odd, and the sign

when i is even. We have then the following equation,

^x = sin x = sin 2# + ^ sin 3# -j sin 4# + - sin 5^ &c.
25 v 4 o

223. We can develope also in a series of sines of multiple
arcs functions different from those in which only odd powers of

the variable enter. To instance by an example which leaves no

doubt as to the possibility of this development, we select the

function cos x, which contains only even powers of x
t and which it \

may be developed under the following form :

a sin x + 6 sin 2x + c sin 3# + d sin 4&amp;lt;x + e sin 5# + &c.,

*r
although in this series only odd powers of the variable enter.
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We have, in fact, by the preceding theorem,

- TT cos x sin x I cos x sin x dx + sin 2# I cos x sin 2# dx

4- sin 3x I cos x sin 3# cfce + &c.

The integral I cos x sin ix dx is equal to zero when i is an

odd number, and to . 2 _\ when i is an even number. Supposing

successively i = 2, 4, 6, 8, etc., we have the always convergent

seres

T TT cos x = = s sm 2# + ^ ? sin 4^ + K
&quot;7

sin
4 I . o o . o o . /

or,

This result is remarkable in this respect, that it exhibits the

development of the cosine in a series of functions, each one of

which contains only odd powers. If in the preceding equation x

be made equal to JTT, we find

This series is known (Introd. ad analysin. infiniL cap. x.).

224. A similar analysis may be employed for the development

of any function whatever in a series of cosines of multiple arcs.

Let
&amp;lt;(#)

be the function whose development is required, we

may write

&amp;lt; (x) a
Q
cos Ox + a

t
cos x + a

a
cos Zx + a

a
cos 3x + &c.

+ a
i cosix+&c........... (m).

If the two members of this equation be multiplied by cosjx,

and each of the terms of the second member integrated from

x = to x = TT
;

it is easily seen that the value of the integral

will be nothing, save only for the term which already contains

cosjx. This remark gives immediately the coefficient a,; it is

sufficient in general to consider the value of the integral

Icoajx cos ix dx,



SECT. VI.] DEVELOPMENT IN SERIES OF COSINES. 191

taken from x = to x IT, supposing j and i to be integers. We
have

This integral, taken from x = to x TT, evidently vanishes

whenever j and i are two different numbers. The same is not

the case when the two numbers are equal. The last term

sn -

becomes ~
,|

and its value is \TT, when the arc x is equal to 77%

If then we multiply the two terms of the preceding equation (m)

by cos ix, and integrate it from to TT, we have

&amp;lt;/&amp;gt; (X) COS IX dx = ^TTdi,

an equation which exhibits the value of the coefficient c^.

To find the first coefficient
,

it may be remarked that in

the integral

i t

dn (ji) x,

if j = and i = each of the terms becomes
^ , and the value

of each term is JTT ;
thus the integral I cosjx cos ix dx taken

from x = to x = TT is nothing when the two integers j and i

are different : it is \tr when the two numbers j and i are equal
but different from zero

;
it is equal to TT when j and i are each

equal to zero
;
thus we obtain the following equation,

1
f
v

[&quot; fir

2 Jo Jo Jo

+ cos 3# I
&amp;lt;/&amp;gt; (a?) cos 3# d# + &c. (n)\

J o

1 The process analogous to (A) in Art. 222 fails here
; yet we see, Art. 177, that

an analogous result exists. [B. L. E.]
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This and the preceding theorem suit all possible functions,

whether their character can be expressed by known methods of

analysis, or whether they correspond to curves traced arbitrarily.

225. If the proposed function whose development is required

in cosines of multiple arcs is the variable x itself
;
we may write

down the equation

1
TTX = a + ttj

cos x + a
2
cos Zx -f a3

cos ox+ ... + a
t
cos ix + &c.,

and we have, to determine any coefficient whatever a
it
the equa

tion a
t
= I x cos ix dx. This integral has a nul value when i is

o

2
an even number, and is equal to -^ when i is odd. We have at

the same time a = 7 ?r
2
. We thus form the following series,

1 A cos x . cos 3# , cos 5% . cos 7x
x = ~ TT 4 4 ^ 4 ^3 4 -^ &c.

2 7T d 7T O7T / 7T

We may here remark that we have arrived at three different

developments for x, namely,

1 1111- x sin x ^ sin 2x + - sin 3# -r sin ^x + - sin 5x &c.,
tj jb o

12. 2 2- x = - sin oj ^ sin 3^ + r^ sin 5^c - &c. (Art. 181),2 TT 3V 5V

112 2 2
^X =

jTT COSOJ ^ COS &amp;lt;$X -^ COS 5x &C.
2 4 TT 3V 5V

It must be remarked that these three values of \x ought not

to be considered as equal; with reference to all possible values of

x, the three preceding developments have a common value only
when the variable x is included between and JTT. The con

struction of the values of these three series, and the comparison of

the lines whose ordinates are expressed by them, render sensible

the alternate coincidence and divergence of values of these

functions.

To give a second example of the development of a function in

a series of cosines of multiple arcs, we choose the function sin a?,
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which contains only odd powers of the variable, and we may sup

pose it to be developed in the form

a -j- b cos x -f c cos 2x + d cos Sx -f &c.

Applying the general equation to this particular case, we find,

as the equation required,

1 . 1 cos 2# cos 4# cos
_ __.._..__..__

_&&amp;lt;..

Thus we arrive at the development of a function which con

tains only odd powers in a series of cosines in which only even

powers of the variable enter. If we give to a? the particular value

JTT, we find111111
5
7r==

2
+ rjr375 +

o\7- fT9 +

Now, from the known equation,

we derive

1

and also 1111
^ 7T = -&c.

2 3.5 7.9 11.13

Adding these two results we have, as above,111111 1
T 7T =

7^ + ^ ^ &quot;^ + ~
-^ ^ pr + TT r^ &C.

4 2 1.3 3.o o.7 7.9 9.11

226. The foregoing analysis giving the means of developing

any function whatever in a series of sines or cosines of multiple

arcs, we can easily apply it to the case in which the function to be

developed has definite values when the variable is included

between certain limits and has real values, or when the variable is

included between other limits. We stop to examine this particular

case, since it is presented in physical questions which depend on

partial differential equations, and was proposed formerly as an ex

ample of functions which cannot be developed in sines or cosines

F. H. 13
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of multiple arcs. Suppose then that we have reduced to a series of

this form a function whose value is constant, when x is included

between and a, and all of whose values are nul when x is in

cluded between a and IT. We shall employ the general equation

(D} y
in which the integrals must be taken from x = to x = TT.

The values of
&amp;lt;(.x)

which enter under the integral sign being

nothing from x = a to x = TT, it is sufficient to integrate from x

to x = a. This done, we find, for the series required, denoting by
h the constant value of the function,

1
f

l-cos2a
~7r&amp;lt;(#)

= h
&amp;lt;(I

cos a) sm x -\
--~- sin 2x

1 cos 3a .

_j
-- -- sm ^x + &C.

o

If we make /t = JTT, and represent the versed sine of the arc x

by versin x, we have

&amp;lt; (x]
= versin a sin a; + ^

versin 2a sin 2# + ^
versin 3a sin 3# + &C.

1

This series, always convergent, is such that if we give to x any
value whatever included between and a, the sum of its terms

will be ^TT ;
but if we give to x any value whatever greater than

a and less than 4?r, the sum of the terms will be nothing.

In the following example, which is not less remarkable, the

values of $ (x} are equal to sin - for all values of x included

between and a, and nul for values of as between a and TT. To

find what series satisfies this condition, we shall employ equa
tion

(Z&amp;gt;).

The integrals must be taken from x = to x = IT
;
but it is

sufficient, in the case in question, to take these integrals from

x = to x = a, since the values of
&amp;lt;f&amp;gt; (x) are supposed nul in the

rest of the interval. Hence we find

sin as sin 2a sin Zx sin 3a sin 3x
+ ~ +~- + &c

1 In what cases a function, arbitrary between certain limits, can be developed

in a series of cosines, and in what cases in a series of sines, has been shewn by

Sir W. Thomson, Cainb. Math. Journal, Vol. n. pp. 258262, in an article

signed P. Q. K., On Fourier s Expansions of Functions in Trigonometrical Series.
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If a be supposed equal to TT, all the terms of the series vanish,

except the first, which becomes -
, and whose value is sin x we

have then &amp;lt;#

227. The same analysis could be extended to the case in

which the ordinate represented by $(x) was that of a line com

posed of different parts, some of which might be arcs of curves

and others straight lines. For example, let the value of the func

tion, whose development is required in a series of cosines of

multiple arcs, be
\^\

-a?
}
from x = to x = JTT, and be nothing

from x = JTT to x = TT. We shall employ the general equation (n),
-

/*

and effecting the integrations within the given limits, we find
&quot;

that the general term 1
I

U^J
- x2

cos ixdx is equal to/-
3 when i

is even) to 4- ^ when i is the double of an odd number, and to
?,

-^
when i is four times an odd number. On the other hand, we
-I 3 -. ,.

3 ?
for the value of tte first term 9 fa&y&e. We have then

the following development :

2 cosa; cos %x cos oas cos
&amp;lt;

=

cos 2ic cos 4# cos 6#
~J

2^ 42 ~*

^2
&c -

The second member is represented b} a line composed of para
bolic arcs and straight lines.

228. In the same manner we can find the development of a

function of x which expresses the ordinate of the contour of a

trapezium. Suppose &amp;lt;f&amp;gt;(x)

to be equal to x from x = to x = a,

that the function is equal to a from x a. to x IT a, and lastly

equal to TT - x, from x = TT - a to x = IT. To reduce it to a series

?
* ^ * *^ tf*l&amp;gt; ^ n ) ,, 132
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of sines of multiple arcs, we employ the general equation (D).

The general term /&amp;lt; (x) sin ix dx is composed of three different

2
parts, and we have, after the reductions, -^sin ia for the coefficient

of sin ix, when i is an odd number
;
but the coefficient vanishes

when i is an even number. Thus we arrive at the equation

-7T(j)(x)
= 2\ sin a. sin x + ^ sin 3a sin 3# 4- ^

sin 5a sin 5x
Zi

(^
O O

+ 5=2 sin 7a sin 7# 4- &c.
[

(X).
1

If we supposed a = JTT, the trapezium would coincide with an

isosceles triangle, and we should have, as above, for the equa
tion of the contour of this triangle,

~ 7r&amp;lt;f&amp;gt;

(as)
= 2 (sin a? ^ sin 3# + ^ sin 5% ^ sin 7# + &c. k2

2 \ d / j

a series which is always convergent whatever be the value of x.

In general, the trigonometric series at which we have arrived,

in developing different functions are always convergent, but it

has not appeared to us necessary to demonstrate this here
;
for the

terms which compose these series are only the coefficients of terms

of series which give the values of the temperature ;
and these

coefficients are affected by certain exponential quantities which

decrease very rapidly, so that the final series are very convergent.
With regard to those in which only the sines and cosines of

multiple arcs enter, it is equally easy to prove that they are

convergent, although they represent the ordinates of discontinuous

lines. This does not result solely from the fact that the values

of the terms diminish continually ;
for this condition is not

sufficient to establish the convergence of a series. It is necessary

that the values at which we arrive on increasing continually the

number of terms, should approach more and more a fixed limit,

1 The accuracy of this and other series given by Fourier is maintained by

Sir W. Thomson in the article quoted in the note, p. 194.

2
Expressed in cosines between the limits and TT,

ITT&amp;lt;P ()=__{ cos.2a; + - cos Gx + ^-
cos Wx + &c.

)
.

o \ O O /

Cf. De Morgan s Diff. and Int. Calc., p. 622. [A. F.]



SECT. VI.] GEOMETRICAL ILLUSTRATION. 197

and should differ from it only by a quantity which becomes less

than any given magnitude: this limit is the value of the series.

Now we may prove rigorously that the series in question satisfy
the last condition.

229. Take the preceding equation (X) in which we can give
to x any value whatever; we shall consider this quantity as a

new ordinate, which gives rise to the following construction.

Having traced on the plane of x and y (see fig. 8) a rectangle

whose base OTT is equal to the semi-circumference, and whose

height is ?r
;
on the middle point m of the side parallel to the

base, let us raise perpendicularly to the plane of the rectangle
a line equal to |TT, and from the upper end of this line draw

straight lines to the four corners of the rectangle. Thus will be

formed a quadrangular pyramid. If we now measure from the

point on the shorter side of the rectangle, any line equal to a,

and through the end of this line draw a plane parallel to the base

OTT, and perpendicular to the plane of the rectangle, the section

common to this plane and to the solid will be the trapezium whose

height is equal to a. The variable ordinate of the contour of

this trapezium is equal, as we have just seen, to

^ sm 3a sm %x + 7z sm ^a sm
O O

(sin a sin x
7T \

It follows from this that calling x, y, z the co-ordinates of any

point whatever of the upper surface of the quadrangular pyramid
which we have formed, we have for the equation of the surface

of the polyhedron, between the limits

1 sin x sin y sin 3x sin 3^ sin 5x sin oy-TTZ = --
j2 32

-
^2
-^-
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This convergent series gives always the value of the ordinate

z or the distance of any point whatever of the surface from the

plane of x and y.

The series formed of sines or cosines of multiple arcs are

therefore adapted to represent, between definite limits, all possible

functions, and the ordinates of lines or surfaces whose form is

discontinuous. Not only has the possibility of these develop

ments been demonstrated, but it is easy to calculate the terms

of the series; the value of any coefficient whatever in the

equation

&amp;lt;j) (x)
= a

x
sin x -f &amp;lt;3

2
sin 2# + a

3
sin 3# + . . . -f at sin ix + etc.,

is that of a definite integral, namely,

2-
\d&amp;gt; (as) sin i

TT J

ix dx.

Whatever be the function &amp;lt; (x), or the form of the curve

which it represents, the integral has a definite value which may
be introduced into the formula. The values of these definite

integrals are analogous to that of the whole area I
(/&amp;gt; (x) dx in

cluded between the curve and the axis in a given interval, or to

the values of mechanical quantities, such as the ordinates of the

centre of gravity of this area or of any solid whatever. It is

evident that all these quantities have assignable values, whether

the figure of the bodies be regular, or whether we give to them

an entirely arbitrary form.

230. If we apply these principles to the problem of the motion

of vibrating strings, we can solve difficulties which first appeared
in the researches of Daniel Bernoulli. The solution given by this

geometrician assumes that any function whatever may always be

developed in a series of sines or cosines of multiple arcs. Now
the most complete of all the proofs of this proposition is that

which consists in actually resolving a given function into such a

series with determined coefficients.

In researches to which partial differential equations are ap

plied, it is often easy to find solutions whose sum composes a

more general integral ;
but the employment of these integrals

requires us to determine their extent, and to be able to dis-
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tinguish clearly the cases in which they represent the general

integral from those in which they include only a part. It is

necessary above all to assign the values of the constants, and

the difficulty of the application consists in the discovery of the

coefficients. J^is remarkable that we can express by convergent

series, and, as we shalPsee Tn the sequel, by definite integrals,

the ordinates of lines and surfaces which arenot subject to a

_
continuous law 1

. We see by this that we must admit into analysis

functionswKich have equal values, whenever the variable receives

any values whatever included between two given limits, even

though on substituting in these two functions, instead of the

variable, a number included in another interval, the results of

the two substitutions are not the same. The functions which

enjoy this property are represented by different lines, which

coincide in a definite portion only of their course, and offer a

singular species of finite osculation. These considerations arise

in the calculus of partial differential equations; they throw a new

light on this calculus, and serve to facilitate its employment in

physical theories.

231. The two general equations which express the develop
ment of any function whatever, in cosines or sines of multiple

arcs, give rise to several remarks which explain the true meaning
of these theorems, and direct the application of them.

If in the series

a + b cos x + c cos 2x + d cos 3# + e cos 4&amp;gt;x + &c.,

we make the value of x negative, the series remains the same
;

it t
^

also preserves its value if we augment the variable by any multiple
whatever of the circumference 2?r. Thus in the equation

-
TT&amp;lt; (x)

= x I
&amp;lt;/&amp;gt; (x) dx -f cos x

l(f&amp;gt; (x) cos xdx

+ cos 2#
Iff) (x) cos 2xdx + cos 3#

/&amp;lt;/&amp;gt; (x) cos Sxdx + &c....(i/),

the function $ is periodic, and is represented by a curve composed
of a multitude of equal arcs, each of which corresponds to an

1 Demonstrations have been supplied by Poisson, Deflers, Dirichlet, Dirksen,

Bessel, Hamilton, Boole, De Morgan, Stokes. See note, pp. 208, 209. [A. F.]
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interval equal to STT on the axis of the abscissae. Further, each of

these arcs is composed of two symmetrical branches, which cor

respond to the halves of the interval equal to 2?r,

Suppose then that we trace a line of any form whatever
&amp;lt;/&amp;gt;&amp;lt;a

(see fig. 9.), which corresponds to an interval equal to TT.

Fig. 9.

If a series be required of the form

a + b cos x + c cos 2% + d cos 3x -f &c.,

such that, substituting for x any value whatever X included be

tween and TT, we find for the value of the series that of the

ordinate
X&amp;lt;j&amp;gt;,

it is easy to solve the problem : for the coefficients

given by the equation (v) are

if 2-
l&amp;lt;f&amp;gt;(x) dx,

- 2 r

,
-

l(f&amp;gt; (x) cos xdx
t

&c.

These integrals, which are taken from x = to x TT, having

always measurable values like that of the area Ofon, and the

series formed by these coefficients being always convergent, there

is no form of the line
&amp;lt;&amp;lt;/&amp;gt;a,

for which the ordinate
X(j&amp;gt;

is not

exactly represented by the development

a -f &quot;b cos x -\- c cos 2# + d cos 3# -f e cos &c.

The arc
&amp;lt;(/&amp;gt;a

is entirely arbitrary ;
but the same is not the case

with other parts of the line, they are, on the contrary, determinate;

thus the arc &amp;lt;a which corresponds to the interval from to TT is

the same as the arc
&amp;lt;/&amp;gt;a

;
and the whole arc

a&amp;lt;pa
is repeated on

consecutive parts of the axis, whose length is 2?r.

We may vary the limits of the integrals in equation (v). If

they are taken from x = ?r to x = TT the result will be doubled :

it would also be doubled if the limits of the integrals were

and 27rr instead of being and TT. We denote in general by the
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i i
7T(f) (x)

=
^ &amp;lt;j&amp;gt; (x] dx+ cosx

ft

sign I an integral which begins when the variable is equal to a,
J a

and is completed when the variable is equal to b
;
and we write

equation (n) under the following form :

r*

(x) cos xdx -f cos 2x
(f&amp;gt; (x} cos 2xdx

Jo

[n
+ cos 3x $ (x) cos %xdx + etc........... (V).

J

Instead of taking the integrals from x = to x TT, we might
take them from x = to x = 2?r, or from x IT to x = TT; but in

each of these two cases,
TT&amp;lt;/&amp;gt; (x} must be written instead of JTT^ (a:)

in the first member of the equation.

232. In the equation which gives the development of any
function whatever in sines of multiple arcs, the series changes

sign and retains the same absolute value when the variable x

becomes negative; it retains its value and its sign when the

ariable is increased or diminished by any multiple whatever of /

Fig. 10.

v

the circumference 2?r. The are ^a (see fig. 10), which cor

responds to the interval from to TT is arbitrary; all the other

parts of the line are determinate. The arc
&amp;lt;/&amp;gt;(a,

which corresponds

to the interval from to TT, has the same form as the given arc

(fxfra ;
but it is in the opposite position. The whole arc

OLffxjxfxjxi is

repeated in the interval from TT to 3?r, and in all similar intervals.

We write this equation as follows :

-
TT&amp;lt;

(a;)
= sin x I

(f&amp;gt; (x) sin xdx + sin 2x I
&amp;lt;f&amp;gt; (x) sin Zxdx

2 Jo Jo

+ sin 3x I
(j&amp;gt; (x) sin 3xdx + &c.
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We might change the limits of the integrals and write

/2/r T+T r-n

I or I instead of I
;

J J _7T JO

but in each of these two cases it would be necessary to substitute

in the first member TT&amp;lt; (x) for
JTT&amp;lt; (x).

233. The function &amp;lt; (x) developed in cosines of multiple arcs,

is represented by a line formed of two equal arcs placed sym-

Fig. 11.

metrically on each side of the axis of y, in the interval from

TT to +TT (see fig. 11) ;
this condition is expressed thus,

The line which represents the function
i|r (x) is, on the contrary,

formed in the same interval of two opposed arcs, which is what is

expressed by the equation

Any function whatever F(x\ represented by a line traced

arbitrarily inTEe interval from TT to + TT, may always be divided

into two functions such as &amp;lt; (V) and
^H[g)

In fact, if the line

F F mFF represents the function F(x} }
and we raise at the point

o the ordinate om, we can draw through the point m to the right

of the axis om the arc mff similar to the arc mFF of the given

curve, and to the left of the same axis we may trace the arc mff
similar to the arc mFF

;
we must then draw through the point m

a line
&amp;lt;^&amp;lt;^m^ which shall divide into two equal parts the differ

ence between each ordinate ooF or xf and the corresponding
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ordinate of or x F . We must draw also the line -vJ/^ ChJ^ whose

ordinate measures the half-difference between the ordinate of

FF mFF and that of f f mff. This done the ordinate of the

lines FF mFF, and f f mff being denoted by F (x) and f(x)

respectively, we evidently have /(a?)
= F( x) ; denoting also the

ordinate of $ $m$$ by &amp;lt; (x), and that of iJrSJr Oi/nJr by ^ (x),

we have

F(x) = &amp;lt;j,
(x) + f (x) and f(x) = $(x}-^(x}=F (- x),

hence

&amp;lt; (x)
= i* + lF(- x) and + (*)

= * -
^(-*),

whence we conclude that

&amp;lt;$&amp;gt;(x)

= $(-x) and ^ (x)
= - ^ (- a?),

which the construction makes otherwise evident.

Thus the two functions
(/&amp;gt; (x) and

i|r (x), whose sum is equal to

F (at) may be developed, one in cosines of multiple arcs, and the

other in sines.

If to the first function we apply equation (v), and to the second

the equation (/x), taking the integrals in each case from x = - TT

to X = TT, and adding the two results, we have

2 /(*) ^ + cos x
|^{*)

cos ^^ + cos 2a?
/&amp;lt;/) (a;)

cos 2% dx + &c.

+ sin x^r(x} sin re dx + sin 2# ^(#) sin 2aj Ja; + &c.

The integrals must be taken from x = TT to x = IT. It may now

f+7r

be remarked, that in the integral I &amp;lt; (x) cos a? cfo we could,
J -IT

without changing its value, write (x) + -^ (a?)
instead of &amp;lt;&amp;gt;

(a?) :

for the function cos a? being composed, to right and left of the

axis of x
t
of two similar parts, and the function ^r (x) being, on the

r+Tr

contrary, formed of two opposite parts, the integral I ty(x) cos xdx
J -IT

vanishes. The same would be the case if we wrote cos 2a; or

cos 3a-, and in general cos ix instead of cos a?, i being any integer
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r+7T

from to infinity. Thus the integral I &amp;lt; (x) cos ix dx is the same
J -77

as the integral

r+ir r+n

I bfr (%) + ^ (
X
)J cos dx, or I F(x] cos ix dx.

J &quot;IT J -IT

r+T
It is evident also that the integral I ^(x) smixdx is equal

J -TT

/*+ /*+&quot;

to the integral I F(x] sin ixdx, since the integral I
&amp;lt;/&amp;gt;(#)

swi
J -7T J -TT

vanishes. Thus we obtain the following equation (p), which serves

to develope any function whatever in a series formed of sines and

cosines of multiple arcs :

cos x \ F[x] cos x dx + cos 2# I F(x] cos 2x dx + &c.

+ sin x \ F(x] sin x dx + sin 2x I F(x) sin 2x dx + &c.

234. The function F(x), which enters into this equation, is

represented by a line FF FF, of any form whatever. The arc

F F FF, which corresponds to the interval from. TT to +TT, is

arbitrary ;
all the other parts of the line are determinate, and the

arc FFFF is repeated in each consecutive interval whose length
is 27T. We shall make frequent applications of this theorem, and

of the preceding equations (ft)
and

(i/).

If it be supposed that the function F(x] in equation (p) is re

presented, in the interval from IT to + TT, by a line composed of

two equal arcs symmetrically placed, all the terms which contain

sines vanish, and we find equation (v). If, on the contrary, the

line which represents the given function F(x) is formed of two

equal arcs opposed in position, all the terms which do not contain

sines disappear, and we find equation (/x). Submitting the func

tion F(x) to other conditions, we find other results.

If in the general equation (p) we write, instead of the variable

x, the quantity
-

, x denoting another variable, and 2r the length
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of the interval which includes the arc which represents F(x}\

the function becomes F (
j,

which we may denote by /(#).

The limits x = TT and x = TT become = TT. = TT
;
we

r r

have therefore, after the substitution,

&amp;lt;p?

X [ . 7T# , 27T.T f ,, . 277-tf ,

-f cos TT - I f(x) cos dx-\- cos I/(x) cos c&e f etc.

x f ., N
. TTX j . 27r#

/*
,. . . 2?nr ,

+ sin TT - I /(a?) sin dx -f sm \f(x) sm d# + etc.

All the integrals must be taken like the first from x = r to

x = +r. If the same substitution be made in the equations (v)

and
(yu,),

we have

cos -- I f(x) cos dx

2?ra; /*/./ 27ra;
+ cos- -

\f(x) cos --

1 /., x . 7T5? F ~
f

2
r/W = sm

\ f(x^ J

In the first equation (P) the integrals might be taken from

from x = to x = 2r, and representing by x the whole interval 2r,

we should have *

1 It has been shewn by Mr J. O Kinealy that if the values of the arbitrary
function /(x) be imagined to recur for every range of x over successive intervals X,

we have the symbolical equation

and the roots of the auxiliary equation being

t ^J
^

,
7 = 0, 1, 2, 3... cc, [Turn over.
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x}dx (II)

27T03 f-, . ZTTX , 4-TnE f .. , 47nc , ,

-f cos
-yr-

I/(x) cos -TF- a# + cos
=^

I /(a?) cos
-^-

a# 4- &c.

. ZTTX f /. / N
. 27HB

7
. 4urx [ - , . . 47r# ,

p
-f sin TT- / (a?)

sin TT- a# + sin - v Ifw sin -^- a^ + &c.
JL J .A- -A- J &

235. It follows from that which has been proved in this sec

tion, concerning the development of functions in trigonometrical

series, that if a function f(x) be proposed, whose value in a de

finite interval from x = to x =X is represented by the ordinate

of a curved line arbitrarily drawn
;
we can always develope this

function in a series which contains only sines or only cosines, or

the sines and cosines of multiple arcs, or the cosines only of odd

multiples. To ascertain the terms of these series we must employ

equations (M), (N), (P).

The fundamental problems of the theory of heat cannot be

completely solved, without reducing to this form the functions

which represent the initial state of the temperatures.

These trigonometric series, arranged according to cosines or

sines of multiples of arcs, belong to elementary analysis, like the

series whose terms contain the successive powers of the variable.

The coefficients of the trigonometric series are definite areas, and

those of the series of powers are functions given by differentiation,

in which, moreover, we assign to the variable a definite value. We
could have added several remarks concerning the use and pro

perties of trigonometrical series
;
but we shall limit ourselves to

enunciating briefly those which have the most direct relation to

the theory with which we are concerned.

it follows that

f(x) =A + AI cos 1- ^ 2 cos 2 h^ 3
cos 3 + &c.

A A A

. 2-7TX _ STTX ITTX
+ B^ sin -r + B2 sin 2 - + B% sin 3 -r + &c.

A A A

The coefficients being determined in Fourier s manner by multiplying both

sides by . n
.

- and integrating from to X. (Philosophical Magazine, Augustsin A

1874, pp. 95, 9G). [A. F.j
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1st. The series arranged according to sines or cosines of mul

tiple arcs are always convergent ;
that is to say, on giving to the

variable any value whatever that is not imaginary, the sum of the

terms converges more and more to a single fixed limit, which is

the value of the developed function.

2nd. If we have the expression of a function f(x) which cor

responds to a given series

a + b cos x + c cos 2x + d cos 3# + e cos 4# + &c.,

and that of another function
&amp;lt;/&amp;gt; (a?), whose given development is

Q.+ ft cos x + 7 cos Zx + 8 cos 3x + e cos 4?x -f &c.,

it is easy to find in real terms the sum of the compound series

act + b/3 + cy -f dS + ee + &C.,
1

and more generally that of the series

ax + 6/3 cos x + cy cos 2# + cZS cos 3# + ee cos 4tx + &c.,

which is formed by comparing term by term the two given series.

This remark applies to any number of series.

3rd. The series
(5^) (Art. 234s) which gives the development

of a function F (x) in a series of sines and cosines of multiple arcs,

may be arranged under the form

+ cos x \ F(a) cos ado. + cos 2# I F (a) cos 2s&amp;gt;cZa -f &c.

+ sin x I F (a) sin acZa + sin 2x I F (a) sin 2adx + &c.

a being a new variable which disappears after the integrations.

We have then

+ cos x cos a + cos 2x cos 2a + cos 3# cos 3a + &c.

+ sin cc sin a + sin 2x sin 2a + sin Sx sin 3a + &c. ,

1 We shall have

fir

fJo t(x)&amp;lt;f&amp;gt;(x)dx=CMT+lT{bp+Cy+...}. [R. L. E.]
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or

F(x) = - I F(-J) doi
Ji
+ cos (x

-
a) + cos 2 (x

-
a) + &c.

j
.

Hence, denoting the sum of the preceding series by

2 cos i (x a)

taken from i = 1 to i = GO
,
we have

F(x)=- \F (a) d* \l + S cos i(x
-

a)! .

7TJ [Z J

The expression ^ + X cos i
(a? a) represents a function of #

2

and a, such that if it be multiplied by any function whatever F(oi),

and integrated with respect to a between the limits a = TT and

a = ?r, the proposed function jP(a) becomes changed into a like

function of x multiplied by the semi-circumference TT. It will be

seen in the sequel what is the nature of the quantities, such as

5 + 2cos*(# a), which enjoy the property we have just enun-
2

ciated.

4th. If in the equations (M), (N), and (P) (Art 234), which

on being divided by r give the development of a function f(x),

we suppose the interval r to become infinitely large, each term of

the series is an
infinitely smal^ element of an integral; the sum of

the series is then represented by a definite integral. When the

bodies have determinate dimensions, the arbitrary functions which

represent the initial temperatures, and which enter into the in

tegrals of the partial differential equations, ought to be developed

in series analogous to those of the equations (M), (N), (P) ;
but

\ these functions take the form of definite integrals, when the

dimensTons of the bodies are not determinate, as will be ex

plained in the course of this work, in treating of the free diffusion

of heat (Chapter IX.).

Note on Section VI. On the subject of the development of a function whose

values are arbitrarily assigned between certain limits, in series of sines and

cosines of multiple arcs, and on questions connected with the values of such

series at the limits, on the convergency of the series, and on the discontinuity

of their values, the principal authorities are

Poisson. Theorie mathematiqiie de la Chaleur, Paris, 1835, Chap. vn. Arts.

92 102, Sur la maniere d exprimcr les fonctions arbitraircs par des series de
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quantites periodiqucs. Or, more briefly, in his TraiU de Mecanique, Arts. 325328.
Poisson s original memoirs on the subject were published in the Journal de VEcole

Poll/technique, Cahier 18, pp. 417 489, year 1820, and Cahier 19, pp. 404509,
year 1823.

De Morgan, Differential and Integral Calculus. London, 1842, pp. 609 617.

The proofs of the developments appear to be original. In the verification of the

developments the author follows Poisson s methods.

Stokes, Cambridge Philosophical Transactions, 1847, Vol. VIH. pp. 533 556.

On the Critical i-alucs of the sums of Periodic Series. Section I. Mode of ascertain

ing the nature of the discontinuity of a function which is expanded in a series

of sines or cosines, and of obtaining the developments of the derived functions.

Graphically illustrated.

Thomson and Tait, Natural Philosophy, Oxford, 1867, Vol. I. Arts. 7577.
Donkin, Acoustics, Oxford, 1870, Arts. 72 79, and Appendix to Chap. rv.

Matthieu, Cours de Physique Mathematique, Paris, 1873, pp. 33 36.

Entirely different methods of discussion, not involving the introduction of

arbitrary multipliers to the successive terms of the series were originated by

Dirichlet, Crelle s Journal, Berlin, 1829, Band iv. pp. 157 169. Sur la con

vergence des series trigonome triques qui servent a rcpresenter une fonction arbitraire

entre les limites donnees. The methods of this memoir thoroughly deserve at

tentive study, but are not yet to be found in English text-books. Another memoir,
of greater length, by the same author appeared in Dove s Repertorium der Phyaik,

Berlin, 1837, Band i. pp. 152 174. Ueber. die Darstellung ganz willkuhrlicher

Functioncn durch Sinus- und Cosinusreihen. Von G. Lejeune Dirichlet.

Other methods are given by

Dirksen, Crelle s Journal, 1829, Band iv. pp. 170^178. Ueber die Convergenz
einer nach den Sinussen imd Cosinussen der Vielfachen eines Winkel* fortachreiten-

den Eeihe.

Bessel, Astronomische Nachrichten, Altona, 1839, pp. 230 238. Ueber den

Amdruck einer Function $ (x) durch Cosinusse und Sinusse der Vielfachen von x.

The writings of the last three authors are criticised by Biemann, Gesammelte

Mathematische Werke, Leipzig, 1876, pp. 221 225. Ueber die Darstellbarkeit einer

Function durch eine Trigonometrische Eeihe.

On Fluctuating Functions and their properties, a memoir was published by
Sir W. K. Hamilton, Transactions of the Royal Irish Academy, 1843, Vol. xix. pp.
264 321. The introductory and concluding remarks may at this stage be studied.

The writings of Deflers, Boole, and others, on the subject of the expansion
of an arbitrary function by means of a double integral (Fourier s Theorem) will

be alluded to in the notes on Chap. IX. Arts. 361, 362. [A. F.]

SECTION VII.

Application to the actual problem.

236. We can now solve in a general manner the problem of

the propagation of heat in a rectangular plate BAG, whose end A
is constantly heated, whilst its two infinite edges B and C are

maintained at the temperature 0.

F. H.
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Suppose the initial temperature at all points of the slab BAG
to be nothing, but that the temperature at each point in of the

edge A is preserved by some external cause, and that its fixed

value is a function f(x) of the distance of the point m from the

end of the edge A whose whole length is 2r; let v be the

constant temperature of the point m whose co-ordinates are x and

y, it is required to determine v as a function of x and y.

The value v = ae~mv sin mx satisfies the equation

HT
a and m being any quantities whatever. If we take m = i -

,

i being an integer, the value ae
*&quot;

r sin vanishes, when x = r,

whatever the value of y may be. We shall therefore assume, as a

more general value of v,

. -
.

-
.

v = a,e
r sin--\- a

t&amp;gt;

e r sin- + ae r sin --h &c.
r r r

If y be supposed nothing, the value of v will by hypothesis
be equal to the known function f(x). We then have

/., x
. . .

j (x)
=

a^ sin + &
2
sin --\- aa

sin --f- &c.

The coefficients a
lt
a

2 , 3 ,
&c. can be determined by means of

equation (M), and on substituting them in the value of v we have

1 -IT- . TTX ^ ,, N . 7TX , -2ir^ . %irX C -, , . 27T# 7

s rv = e r sm / /(a?) sm a^ + e f sin- f() sm --dx
2 r-7 r r J \ i T

o&quot; . V IM/ I // A * *V j| .0+ e r sin /f (x) sin dx + &c.

237. Assuming r = TT in the preceding equation, we have the

solution under a more simple form, namely

- jrv e^ sin x\f(x] sin #&amp;lt;& + e~
2y sin 2# !./(#) sin Zxdx

+ e~
5v sin 3^7 / f(x\ sin 3a?c?^ + &c /. (a

J-
7 w



SECT. VII.] APPLICATION OF THE THEORY. 211

or

l rn

-TTV = /(*) da. (e^ sin x sin a 4- e~
2v

sin 2x sin 2a* Jg

+ e~
5v sin 3^ sin 3x + &c.)

a is a new variable, which disappears after integration.

If the sum of the series be determined, and if it be substituted
in the last equation, we have the value of v in a finite form. The
double of the series is equal to

e~
v
[cos (x

-
a)
- cos (x + a)] + e~

Zy
[cos 2 (x

-
a)
- cos 2 (x + a)]

+ e~
zv

[cos 3
(a?
-

a)
- cos 3 (x 4 a)] + &c.

;

denoting by F (y,p) the sum of the infinite series

e~
v

cosp -f e~^ cos 2^ -f e*v cos
3/&amp;gt;

-f &a,

we find

TTl1 - f/W ^
-

We have also

,-(v+p\/-i)
g-to-pV-i)

J g-(i/+PV-l)

or F(yt p) = *P-
e
v

-2cos/?-fe-&amp;lt;&quot;

cos (# 4- a)
-

e&quot;

cos^?

whence

2 cos
(a? ct) 4- e

v
e

1 2 cos ^ -L ^ -j- &quot;~
v

or

-) + e^] [e
v - 2 cos

(

or, decomposing the coefficient into two fractions,

TTU =
fit f

-J ^
-i

J o

/()^^_ 2 cos
(a? -*) + &amp;gt;-&quot;

~
^-2cos(^+ a

) +^j
142
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This equation contains, in real terms under a finite form, the

integral of the equation -^ + -=-$ 0, applied to the problem of

the uniform movement of heat in a rectangular solid, exposed at

its extremity to the constant action of a single source of heat.

It is easy to ascertain the relations of this integral to the

general integral, which has two arbitrary functions; these func

tions are by the very nature of the problem determinate, and

nothing arbitrary remains but the function /(a), considered

between the limits a = and a = ?r. Equation (a) represents,

under a simple form, suitable for numerical applications, the same

value of v reduced to a convergent series.

If we wished to determine the quantity of heat which the solid

contains when it has arrived at its permanent state, we should

take the integral fdxfdy v from x to x = TT, and from y to

y = oo
;
the result would be proportianal to the quantity required.

In general there is no property of the uniform movement of heat

in a rectangular plate, which is not exactly represented by this

solution.

We shall next regard problems of this kind from another point

of view, and determine the varied movement of heat in different

bodies.



CHAPTER IV.

OF THE LINEAR AND VARIED MOVEMENT OF HEAT IN A RING.

SECTION I.

General solution of the problem.

238. THE equation which expresses the movement of heat

in a ring has been stated in Article 105
;

it is

dv _ K d 2
v hi ,7 N

dt~Cl)dx*~~CDS
V

The problem is now to integrate this equation : we may
write it simply

dv d*v ,

wherein k represents -=
,
and h represents yrrTa &amp;gt;

x denotes the

length of the arc included between a point m of the ring and the

origin 0, and v is the temperature which would be observed at

the point m after a given time t. We first assume v = e~ ht

ufx
7 72 V

u being a new unknown, whence we deduce -ji = k T~2 now this

equation belongs to the case in which the radiation is nul at

the surface, since it may be derived from the preceding equa
tion by making h = : we conclude from it that the different

points of the ring are cooled successively, by the action of the

medium, without this circumstance disturbing in any manner the

law of the distribution of the heat.

In fact on integrating the equation -77 = &-TT &amp;gt;

we should
dt (tx

find the values of u which correspond to different points of the
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ring at the same instant, and we should ascertain what the state

of the solid would be if heat were propagated in it without any
loss at the surface

;
to determine then what would be the state

of the solid at the same instant if this loss had occurred, it will

be sufficient to multiply all the values of u taken at different

points, at the same instant, by the same fraction e~ ht
. Thus the

cooling which is effected at the surface does not change the law

of the distribution of heat
;
the only result is that the tempera

ture of each point is less than it would have been without this

circumstance, and the temperature diminishes from this cause

according to the successive powers of the fraction e~ ht
.

239. The problem being reduced to the integration of the
7 72

equation -j-
= k , 2 ,

we shall, in the first place, select the sim-
dt dx*

plest particular values which can be attributed to the variable

u
;
from them we shall then compose a general value, and we

shall prove that this value is as extensive as the integral, which

contains an arbitrary function of or, or rather that it is this

integral itself, arranged under the form which the problem re

quires, so that there cannot be any different solution.

It may be remarked first, that the equation is satisfied if we

give to u the particular value aemt sin nx, m and n being subject

to the condition m Jen*. Take then as a particular value of

u the function e~ knH sin nx.

In order that this value may belong to the problem, it must

not change when the distance x is increased by the quantity 2?rr,

r denoting the mean radius of the ring. Hence Zirnr must be a
ft

multiple i of the circumference 2?r
;
which gives n = -

.

We may take i to be any integer; we suppose it to be

always positive, since, if it were negative, it would suffice to

change the sign of the coefficient a in the value ae~knH sin nx.

_ k
n

fa
The particular value ae r* sin could not satisfy the problem

proposed unless it represented the initial state of the solid. Now
7 or

on making t = 0, we find u = a sin : suppose then that the
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X
initial values of u are actually expressed by a sin-; that is to \

say, that the primitive temperatures at the different points are

proportional to the sines of angles included between the radii Vv

which pass through those points and that which passes through
the origin, the movement of heat in the interior of the ring will

Jet X
be exactly represented by the equation u ae r* sin -

,
and if

we take account of the loss of heat through the surface, we find

-(h + tyt . X
v = ae v *- sm -

.

r

In the case in question, which is the simplest of all those which

we can imagine, the variable temperatures preserve their primi
tive ratios, and the temperature at any point diminishes accord

ing to the successive powers of a fraction which is the same for

every point.

The same properties would be noticed if we supposed the

initial temperatures to be proportional to the sines of the double
/Vl

of the arc -
;
and in general the same happens when the given

n -v

temperatures are represented by a sin
,
i being any integer

whatever.

We should arrive at the same results on taking for the

particular value of u the quantity ae~ kn2tcos nx : here also we have

2mrr = 2V, and n -
;
hence the equation

-k% ix
u ae r cos

r

expresses the movement of heat in the interior of the ring if the

?

initial temperatures are represented by cos .

In all these cases, where the given temperatures are propor

tional to the sines or to the cosines of a multiple of the arc -
,

the ratios established between these temperatures exist con

tinually during the infinite time of the cooling. The same would
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be the case if the initial temperatures were represented by the

function a sin 1- b cos , i being any integer, a and b any co

efficients whatever.

240. Let us pass now to the general case in which the initial

temperatures have not the relations which we have just supposed,
but are represented by any function whatever F(x). Let us give

(x\

I ic\
-

)
,
so that we have F

(as) &amp;lt;j&amp;gt;

(
-

j
, and

imagine the function
&amp;lt;/&amp;gt;(-)

to be decomposed into a series of

sines or cosines of multiple arcs affected by suitable coefficients.

We write down the equation

*
p
sin (O

-
)
+ a, sin

(l

X
] + a

2
sin (2 *} + &c.

\ r) \ rj \ rj

I

+ & c

The numbers a
,
a

lt
a

a ..., 6
, ^, 6

2
... are regarded as known

and calculated beforehand. It is evident that the value of u will

then be represented by the equation

fc-

u =*

. X
a, sm -

-L

o, cos -

r*

sin 2 -

&amp;gt; cos 2-
2 r

.
&c.

x

In fact, 1st, this value of u satisfies the equation -7- = k -7-j,
dt d/x

since it is the sum of several particular values
; 2nd, it does not

change when we increase the distance x by any multiple whatever

of the circumference of the ring ; 3rd, it satisfies the initial state,

since on making t = 0, we find the equation (e). Hence all the

conditions of the problem are fulfilled, and it remains only to

multiply the value of u by e~ ht
.

241. As the time increases, each of the terms which compose
the value of u becomes smaller and smaller

;
the system of tem

peratures tends therefore continually towards the regular and con-



SECT. I.]
COMPLETE SOLUTION. 217

stant state in which the difference of the temperature u from the

constant b is represented by

x x\-
)a sm - + b cos - e

r rj

Thus the particular values which we have previously considered,

and from which we have composed the general value, derive their

origin from the problem itself. Each of them represents an

elementary state which could exist of itself as soon as it is sup

posed to be formed
;
these values have a natural and necessary

relation with the physical properties of heat.

To determine the coefficients
,
a

lt
a

2 , &c., 6
,
6
1?

&
2 , &c., we

must employ equation (II), Art. 234, which was proved in the

last section of the previous Chapter.

Let the whole abscissa denoted by X in this equation be 2?rr,

let x be the variable abscissa, and let f(x] represent the initial

state of the ring, the integrals must be taken from x = to

x = 2-Trr
;
we have then

*)
~
3//(

*

+ sinin
(3/

sisn

Knowing in this manner the values of a , 1 , a
2 , &c.,

b
,
b

t ,
b
2 , &c., if they be substituted in the equation we have

the following equation, which contains the complete solution of

the problem :

irrv

. x
sm -

r

COS-

kt

x r / 2t
sin 2 -

I
(
sin / (x) a

rj\ r *

cos 2 -
(
fcoB /(a?) dx

J

+ &al (E).



218 THEORY OF HEAT. [CHAP. IV.

All the integrals must be taken from x = to x = 2?rr.

The first term ^ \f(
x

]
dx

&amp;gt;

which serves to form the value of

v, is evidently the mean initial temperature, that is to say, that

.which each point would have it&quot; all the initial heat were distri

buted equally throughout.

242. The preceding equation (E) may be applied, whatever

the form of the given function f(x) may be. We shall consider

two particular cases, namely : 1st, that which occurs when the

ring having been raised by the action of a source of heat to its

permanent temperatures, the source is suddenly suppressed ; 2nd,

the case in which half the ring, having been equally heated

throughout, is suddenly joined to the other half, throughout which

the initial temperature is 0.

k1 We have seen previously that the permanent temperatures
of the ring are expressed by the equation v = az

x + bz~
x

;
the

value of quantity a being e KS
,
where I is the perimeter of the

generating section, and S the area of that section.

If it be supposed that there is but a single source of heat, the

equation -7- = must necessarily hold at the point opposite to

that which is occupied by the source. The condition aoL
x

boT
x=

will therefore be satisfied at this point. For convenience of calcu

lation let us consider the fraction
-yj

to be equal to unity, and let

us take the radius r of the ring to be the radius of the trigono

metrical tables, we shall then have v = ae
x + be~

x
;
hence th&amp;lt;~mitial

state of the ring is represented by the equation

v = le*(e*+*+e).

It remains only to apply the general equation (E), and de

noting by M the mean initial heat (Art. 241), we shall have

This equation expresses the variable state of a solid ring, which

having been heated at one of its points and raised to stationary
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temperatures/ cools in air after the suppression of the source of

heat.

243. In order to make a second application of the general

equation (E), we shall suppose the initial heat to be so distributed

that half the ring included between x = and x = TT has through
out the temperature 1, the other half having the temperature 0.

It is required to determine the state of the ring after the lapse of

a time t.

The function /(#), which represents the initial state, is in this

case such that its value is 1 so long as the variable is included

between and TT. It follows from this that we must suppose

f(x) = 1, and take the integrals only from x = to x = TT, the

other parts of the integrals being nothing by hypothesis. We
&quot;obtain first the following equation, which gives the development
of the function proposed, whose value is 1 from x = Q to X = TT and

nothing from x = TT to x = 2w,

f(x)
=

o + (
sm x + o s in %x + ^ sin oaj + = sin 7-z + &c.

)
.

A 7T \ O O / /

If now we substitute in the general equation the values which

we have just found for the constant coefficients, we shall have the

equation

x TTV = e~ ht t-77r + sin xe~ kt + ^$m 3xe~ kt +^ sin oxe~ 5ZJct + &c
2i \4 o o

which expresses the law according to which the temperature at

each point of the ring varies, and indicates its state after any

given time : we shall limit ourselves to the two preceding applica

tions, and add only some observations on the general solution

expressed by the equation^ (E).

244. 1st. If k is supposed infinite, the state of the ring is

expressed thus, 7rrv = e~ ht

^lf(x)dx) or, denoting by M the

mean initial temperature (Art. 241), v = e~MM. The temperature
at every point becomes suddenly equal to the mean temperature,
and all the different points retain always equal temperatures,
which is a necessary consequence of the hypothesis in which we

admit infinite conducibility.
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2nd. We should have the same result if the radius of the ring

were infinitely small.

3rd. To find the mean temperature of the ring after a time t

we must take the integral \f(x)dx from x = to x=%7rr, and

divide by 2?rr. Integrating between these limits the different

parts of the value of u, and then supposing x 2?rr, we find the

total values of the integrals to be nothing except for the first

term
;
the value of the mean temperature is therefore, after the

time t, the quantity e~MM. Thus the mean temperature of the

ring decreases in the same manner as if its conducibility were in

finite
;
the variations occasioned by the propagation of heat in the

solid have no influence on the value of this temperature.

In the three cases which we have just considered, the tem

perature decreases in proportion to the powers of the fraction e~h,

or, which is the same thing, to the ordinate of a logarithmic

curve, the abscissa being equal to the time which has elapsed.

This law has been known for a long time, but it must be remarked

that it does not generally hold unless the bodies are of small

dimensions. The previous analysis tells us that if the diameter of

a ring is not very small, the cooling at a definite point would not

be at first subject to that law
;
the same would not be the case

with the mean temperature, which decreases always in proportion
to the ordinates of a logarithmic curve. For the rest, it must not

be forgotten that the generating section of the ring is supposed to

have dimensions so small that different points of the same section

do not differ sensibly in temperature.

4th. If we wished to ascertain the quantity of heat which

escapes in a given time through the surface of a given portion of

the ring, the integral hi \ dt I vdx must be employed, and must

be taken between limits relative to the time. For example,
if we took and ZTT to be the limits of x, and 0, oo

, to be the

limits of t\ that is to say, if we wished to determine the whole

quantity of heat which escapes from the entire surface, during the

complete course of the cooling, we ought to find after the integra
tions a result equal to the whole quantity of the initial heat, or

QjrrM, M being the mean initial temperature.
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5th. If we wish to ascertain how much heat flows in a given

time, across a definite section of the ring, we must employ the

integral
- KS I dt -=-

, writing for
-y-

the value of that function,
J dx cLx

taken at the point in question.

245. Heat tends to be distributed in the ring according to

a law which ought to be noticed. The more the time which

has elapsed increases the smaller do the terms which compose
the value of v in equation (E) become with respect to those

which precede them. There is therefore a certain value of t for

which the movement of heat begins to be represented sensibly

by the equation
/ x x\ _Tct

u = an + (a. sin - 4- Z&amp;gt; cos -
)
e r-

.

\
l r rj

The same relation continues to exist during the infinite time

of the cooling. In this state, if we choose two points of the ring
situated at the ends of the same diameter, and represent their

respective distances from the origin by x
v
and #

2 ,
and their cor

responding temperatures at the time t by v
l
and v

z ;
we shall have

Vl
= Ja + (^ sin^-l-^ cos^-H e~^^~ ht

f , t - x
* , T,

X2\
-

v ~
1 ao+ a

i
sm + &i cos e

2

( \
l r rj

The sines of the two arcs and -f differ only in sign ;
the

or TT

same is the case with the quantities cos and cos ; hence
r r

thus the half-sum of the temperatures at opposite points gives
a quantity a e~

ht

,
which would remain the same if we chose two

points situated at the ends of another diameter. The quantity
a e~

ht
, as we have seen above, is the value of the mean tempera

ture after the time t. Hence the half-sum of the temperature
at any two opposite points decreases continually with the mean

temperature of the ring, and represents its value without sensible

error, after the cooling has lasted for a certain time. Let us
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examine more particularly in what the final state consists, which

is expressed by the equation

f / X
-L

X\ --} M
v = -\aQ+ f j

sin - + 6,
cos

-j
e &amp;lt;*&amp;gt; e~ ht

.

If first we seek the point of the ring at which we have the

condition
/7i \

a, sin - + b cos - = 0, or - = arc tan ( ) ,

r r r \aj

we see that the temperature at this point is at every instant

the mean temperature of the ring : the same is the case with

the point diametrically opposite ;
for the abscissa x of the latter

point will also satisfy the above equation

IT f r)

- = arc tan I
L

r \ a^

Let us denote by X the distance at which the first of these

points is situated, and we shall have

X
sin

* = - a
y;

cos
r

and substituting this value of b
lt
we have

cos
r

If we now take as origin of abscissae the point which corre

sponds to the abscissa X, and if we denote by u the new abscissa

x X, we shall have

= e~ ht a + sn - e

At .the origin, where the abscissa u is 0, and at the opposite

point, the temperature v is always equal to the mean tempera
ture

;
these two points divide the circumference of the ring into

two parts whose state is similar, but of opposite sign ;
each point

of one of these parts has a temperature which exceeds the mean

temperature, and the amount of that excess is proportional to

the sine of the distance from the origin. Each point of the
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other part has a temperature less than the mean temperature,

and the defect is the same as the excess at the opposite point.

This symmetrical distribution of heat exists throughout the whole

duration of the cooling. At the two ends of the heated half,

two flows of heat are established in direction towards the cooled

half, and their effect is continually to bring each half of the

ring towards the mean temperature.

246. - We may now remark that in the general equation which

gives the value of v, each of the terms is of the form

x x\ - &amp;lt;&amp;gt;

a, sin i - + b. cos i - } e
l

^.
r r)

We can therefore derive, with respect to each term, consequences

analogous to the foregoing. In fact denoting by X the distance

for which the coefficient

a. sin i \- b. cos i
r r

X
is nothing, we have the equation 6. = a

t
tan i

,
and this sub

stitution gives, as the value of the coefficient,

a being a constant. It follows from this that taking the point
whose abscissa is X as the origin of co-ordinates, and denoting

by u the new abscissa x X, we have, as the expression of the

changes of this part of the value of v, the function

ae~ smi-e

If this particular part of the value of v existed alone, so as to

make the coefficients of all the other parts nul, the state of the

ring would be represented by the function

i&quot;

ae~ hte~

**
.

,
.u\

r2 Sin (l
-

} ,

\ rj

and the temperature at each point would be proportional to the

sine of the multiple i of the distance of this point from the origin.

This state is analogous to that which we have already described :
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it differs from it in that the number of points which have always
the same temperature equal to the mean temperature of the ring

is not 2 only, but in general equal to 2i. Each of these points or

nodes separates two adjacent portions of the ring which are in

a similar state, but opposite in sign. The circumference is thus

found to be divided into several equal parts whose state is alter

nately positive and negative. The flow of heat is the greatest

possible in the nodes, and is directed towards that portion which

is in the negative state, and it is nothing at the points which are

equidistant from two consecutive nodes. The ratios which exist

then between the temperatures are preserved during the whole of

the cooling, and the temperatures vary together very rapidly in

proportion to the successive powers of the fraction

If we give successively to i the values 0, 1, 2, 3, &c., we shall

ascertain all the regular and elementary states which heat can

assume whilst it is propagated in a solid ring. When one of these

simple modes is once established, it is maintained of itself, and the

ratios which exist between the temperatures do not change; but

whatever the primitive ratios may be, and in whatever manner

the ring may have been heated, the movement of heat can be de

composed into several simple movements, similar to those which

we have just described, and which are accomplished all together

without disturbing each other. In each of these states the tempe
rature is proportional to the sine of a certain multiple of the dis

tance from a fixed point. The sum of all these partial temperatures,

taken for a single point at the same instant, is the actual tempera
ture of that point. Now some of the parts which compose this

sum decrease very much more rapidly than the others. It follows

from this that the elementary states of the ring which correspond

to different values of i, and whose superposition determines the

total movement of heat, disappear in a manner one after the

other. They cease soon to have any sensible influence on the

value of the temperature, and leave only the first among them to

exist, in which i is the least of all. In this manner we form an

exact idea of the law according to which heat is distributed in

a ring, and is dissipated at its surface. The state of the ring be

comes more and more symmetrical; it soon becomes confounded
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with that towards which it has a natural tendency, and which con

sists in this, that the temperatures of the different points become

proportional to the sine of the same multiple of the arc which

measures the distance from the origin. The initial distribution

makes no change in these results.

SECTION II.

Of the communication of heat between separate masses.

247. We have now to direct attention to the conformity of

the foregoing analysis with that which must be employed to de

termine the laws of propagation of heat between separate masses
;

we shall thus arrive at a second solution of the problem of the

movement of heat in a ring. Comparison of the two results will

indicate the true foundations of the method which we have fol

lowed, in integrating the equations of the propagation of heat in

continuous bodies. We shall examine, in the first place, an ex

tremely simple case, which is that of the communication of heat

between two equal masses.

Suppose two cubical masses m and n of equal dimensions and

of the same material to be unequally heated; let their respective

temperatures be a and b, and let them be of infinite conducibility.

If we placed these two bodies in contact, the temperature in each

would suddenly become equal to the mean temperature \ (a + 6).

Suppose the two masses to be separated by a very small interval,

that an infinitely thin layer of the first is detached so as to be

joined to the second, and that it returns to the first immediately
after the contact. Continuing thus to be transferred alternately,

and at equal infinitely small intervals, the interchanged layer
causes the heat of the hotter body to pass gradually into that

which is less heated; the problem is to determine what would be,

after a given time, the heat of each body, if they lost at their sur

face no part of the heat which they contained. We do not suppose
the transfer of heat in solid continuous bodies to be effected in a

manner similar to that which we have just described: we wish

only to determine by analysis the result of such an hypothesis.
Each of the two masses possessing infinite conducibility, the

quantity of heat contained in an infinitely thin layer, is sud-

F. H. - 15
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denly added to that of the body with which it is in contact; and a

common temperature results which is equal to the quotient of the

sum of the quantities of heat divided by the sum of the masses.

Let ft) be the mass of the infinitely small layer which is separated

from the hotter body, whose temperature is a; let a and ft be the

variable temperatures which correspond to the time t, and whose

initial values are a and Z&amp;gt;. When the layer co is separated from the

mass m which becomes m
&&amp;gt;,

it has like this mass the tempera
ture a, and as soon as it touches the second body affected with the

temperature /3, it assumes at the same time with that body a

temperature equal to . The layer a, retaining the last

temperature, returns to the first body whose mass is m co and

temperature a. We find then for the temperature after the second

contact

. /w/3 + aftA
a [m a)) + &&amp;gt;

v
\ m + co } c:m

orm m 4- G)

The variable temperatures a. and /3 become, after the interval

dt, a. -f (a ft} ,
and ft -f (a /3) ;

these values are found by
Tfl&amp;gt;

fITb

suppressing the higher powers of co. We thus have

the mass which had the initial temperature (3 has received in one

instant a quantity of heat equal to md@ or (a ft) co, which has

been lost in the same time by the first mass. We see by this

that the quantity of heat which passes in one instant from the

most heated body into that which is less heated, is, all other things

being equal, proportional to the actual difference of temperature
of the two bodies. The time being divided into equal intervals,

the infinitely small quantity co may be replaced by kdt, k being the

number of units of mass whose sum contains co as many times as

the unit of time contains dt, so that we have - = We thus
co dt

obtain the equations

dz = -(a-j3)~dt and d& = (a
- 0)

- dt.
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248. If \ve attributed a greater value to the volume w, which

serves, it may be said, to draw heat from one of the bodies

for the purpose of carrying it to the other, the transfer would

be quicker ;
in order to express this condition it would be

necessary to increase in the same ratio the quantity k which

enters into the equations. We might also retain the value

of G) and suppose the layer to accomplish in a given time a

greater number of oscillations, which again would be indicated

by a greater value of k. Hence this coefficient represents in some

respects the velocity of transmission, or the facility with which

heat passes from one of the bodies into the other, that is to say,

their reciprocal conducibility.

249. Adding the two preceding equations, we have

dz + d/3 = 0,

and if we subtract one of the equations from the other, we have

d*-d/3+2 (a-/3)
-

rft = 0, and, making a - =
;/,

7)1

Integrating and determining the constant by the condition that

_1M
the initial value is a - b, we have y = (a b) e m

. The differ

ence y of the temperatures diminishes as the ordinate of a loga

rithmic curve, or as the successive powers of the fraction e~m

As the values of a. and /?, we have

1 1 _?? 1 1 -***
a =-(a + l) ---(a-b} e

, ft
= -

(a + b) + ^ (
- b} e m

.

250. In the preceding case, we suppose the infinitely small

mass
&&amp;gt;, by means of which the transfer is effected, to be always

the same part of the unit of mass, or, which is the same thing,
we suppose the coefficient k which measures the reciprocal con

ducibility to be a constant quantity. To render the investigation
in question more general, the constant k must be considered

as a function of the two actual temperatures a. and ft. We should

then have the two equations dx. = -
(a
-

ft) dt, and

152
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&amp;lt;?=(-)-&amp;lt;#,m
in which k would be equal to a function of a and /?, which we

denote by &amp;lt;f&amp;gt; (a, /?). It is easy to ascertain the law which

the variable temperatures a and /3 follow, when they approach

extremely near to their final state. Let y be a new unknown

equal to the difference between a and the final value which is

^ (a + 6) or c. Let z be a second unknown equal to the difference
2

c p. We substitute in place of a and /3 their values c y and

c 2
; and, as the problem is to find the values of y and z,

when we suppose them very small, we need retain in the results

of the substitutions only the first power of y and z. We therefore

find the two equations,

k
-dy = -(z-y}^(c-y) c-z)dt

k
and dz (z y] $(c y, c z) dt,

tail

developing the quantities which are under the sign (/&amp;gt;

and omit

ting the higher powers of y and z. We find dy=(z y) $&amp;gt;dt,

and dz = (z y] &amp;lt;f&amp;gt;dt.

The quantity $ being constant, it
7?2&amp;gt;

follows that the preceding equations give for the value of the

difference z y,& result similar to that which we found above for

the value of a /3.

From this we conclude that if the coefficient k, which was

at first supposed constant, were represented by any function

whatever of the variable temperatures, the final changes which

these temperatures would experience, during an infinite time,

would still be subject to the same law as if the reciprocal con-

ducibility were constant. The problem is actually to determine

the laws of the propagation of heat in an indefinite number of

equal masses whose actual temperatures are different.

251. Prismatic masses n in number, each of which is equal
to m, are supposed to be arranged in the same straight line,

and affected with different temperatures a, b, c, d, &c.
; infinitely



SECT. II.] EQUAL PRISMATIC MASSES IN LINE. 229

thin layers, each of which has a mass co, are supposed to be

separated from the different bodies except the last, and are.

conveyed in the same time from the first to the second, from

the second to the third, from the third to the fourth, and so

on
; immediately after contact, these layers return to the masses

from which they were separated ;
the double movement taking ,

place as many times as there are infinitely small instants dt\ it I

is required to find the law to which the changes of temperature
r

-

are subject.

Let a, {$,%$,... co, be the variable values which correspond to

the same time t, and which have succeeded to the initial values

a, b, c, d, &c. When the layers co have been separated from the

n 1 first masses, and put in contact with the neighbouring

masses, it is easy to see that the temperatures become

a(m co) ft (m co) -f aco 7 (m co) + {3co

m o) m m
S (m co) + 70) ma)

m m + co

or,

a, /3 + (a-/3)^, 7+ (-7)^, * + (7- 8)^,
...

When the layers co have returned to their former places,

we find new temperatures according to the same rule, which

consists in dividing the sum of the quantities of heat by the sum
of the masses, and we have as the values of a, ft, 7, S, &c., after

the instant dt,

7+ - 7-7) &amp;gt;

&quot;&amp;gt; + (f
-

&amp;gt;)

The coefficient of is the difference of two consecutive dif-m
ferences taken in the succession a, /5, 7, ... -^, co. As to the first

and last coefficients of
, they may be considered also as dif

ferences of the second order. It is sufficient to suppose the term

a to be preceded by a term equal to a, and the term co to be
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followed by a term equal to ay. We have then, as formerly, on

substituting kdt for
&&amp;gt;,

the following equations :

252. To integrate these equations, we assume, according to

the known method,

Ajjflj, 2 , 3 ,
...

, being constant quantities which must be deter

mined. The substitutions being made, we have the following

equations :

k
ift
=

-(-i)&amp;gt;

JA = -{(s- a)-(a8
-a

1)},

k-

If we regard a
t
as a known quantity, we find the expression

for a
2
in terms of a

v
and A, then that of a

z
in a

2
and h

;
the same

is the case with all the other unknowns, a
4 ,

a
5 , &c. The first and

last equations may be written under the form

m

and ^ = (K+1
-

&amp;lt;O

- K - Ol-
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Retaining the two conditions a = a
x
and an = a^, the value

of
2
contains the first power of h, the value of a

3
contains the

second power of h, and so on up to a
B+1 ,

which contains the

nth

power of li. This arranged, aa+l becoming equal to an , we

have, to determine h, an equation of the nih

degree, and a
t
re

mains undetermined.

It follows from this that we shall find n values for A, and in

accordance with the nature of linear equations, the general value

of a is composed of n terms, so that the quantities a, /5, 7, ... &c.

are determined by means of equations such as

a = a/ + a/e* + a,V&quot; + &c.,

= a/* + &amp;lt;e*

&amp;lt; + a
8
V + &c,

7 = a/&amp;lt;
+ ay + a

8
V&quot; -f &c.

to = a + &quot; &amp;lt; + a V* + &c.

The values of h, ti, A&quot;,
&c. are n in number, and are equal to

the n roots of the algebraical equation of the nih

degree in h,

which has, as we shall see further on, all its roots real.

The coefficients of the first equation a
lf a/, a&quot;,

a&quot;
, &c., are

arbitrary ;
as for th&quot;e coefficients of the lower lines, they are deter

mined by a number n of systems of equations similar to the pre

ceding equations. The problem is now to form these equations.

253. Writing the letter q instead of
-j- ,

we have the fol-
A/

lowing equations

We see that these quantities belong to a recurrent series

whose scale of relation consists of two terms (q + 2) and - 1. We
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can therefore express the general term am by the equation

am
= A sin mu + B sin (m 1) u,

determining suitably the quantities A, B, and u. First we find

A and B by supposing m equal to and then equal to 1, which

gives a = B sin w, and a
l

= A sin it, and consequently

a
i / i\am = , sin ?WM r sin (m 1) u.

sin M

Substituting then the values of

a
,n&amp;gt; -! &amp;lt;W

&C -

in the general equation

M = m-lfe + 2
)-&amp;lt;V2 &amp;gt;

we find

sin mu =
(&amp;lt;

f 2) sin (m 1) M sin (m 2) w,

comparing which equation with the next,

sin mu 2 cos u sin (m 1) u sin (w 2) u,

which expresses a known property of the sines of arcs increasing

in arithmetic, progression, we conclude that q -f 2 = cos u, or

q = 2 versin w
;

it remains only to determine the value of the

arcw.

The general value of am being

-r-1- [sin ?m sin (m - 1) w],
sin u L

we must have, in order to satisfy the condition a
n+l

=^ an9 the

equation

sin (n -f 1) u sin u = sin ?m - sin (n 1) ut

TT
whence we deduce sin nu = 0, or u = i ,

TT being the semi-

circumference and i any integer, such as 0, 1, 2, 3, 4, ...
( 1) ;

thence we deduce the n values of q or -y- . Thus all the roots
K

of the equation in h, which give the values of h} ti, h&quot;,
li \ &c.

are real and negative, and are furnished by the equations
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A==-2-versinfo-Vm \ nj

T o ^
/-i ^

/*,
= 2 versin 1 -

,

7&amp;gt;i \ n)

H C\ &quot;*

I Ct &quot;

\

i = 2 versin 2 -
,

Z-
i 1 v s-\ *v I/ tv&quot;!1 1} = - 2 versin J (n - 1) - } .

771

Suppose then that we have divided the semi-circumference TT

into n equal parts, and that in order to form u, we take i of those

parts, i being less than n, we shall satisfy the differential equations

by taking a
l
to be any quantity whatever, and making

sin u sin Qu -? versin M .= .- = e
m

,

sin u

p Sin 2 It Sin Iw -^versinu
1 sin u

sin 3i sin 2u ~ versin

7 = a, :
- e

sin w

sin ?m sin (n V}u -^ versin w
w = a. :

^ J
e

m
sin u

As there are n different arcs which we may take for u,

namely,

A 7T -7T 7T ,
TN&quot;^0-

,
1 -

,
2 -

, , (n i)
-

,

71 71 W X
71

there are also n systems of particular values for a, fS, 7, &c.,

and the general values of these variables are the sums of the

particular values.

254 We see first that if the arc u is nothing, the quantities
which multiply a, in the values of a, j3, 7, &c., become all equal

., . sin u sin Oz
,

.. . .

to unity, since : takes the value 1 when the arc u
sin u

vanishes; and the same is the case with the quantities which are
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found in the following equations. From this. we conclude that

constant terms must enter into the general values of a, A 7, ... &&amp;gt;.

Further, adding all the particular values corresponding to

a, /3, 7, ... &c., we have

sin nu - verem u

a + /3+7 + &c. = flL e
r

;1 smu

an equation whose second member is reduced to provided the

arc u does not vanish
;
but in that case we should find n to be

the value of -
. We have then in general

sin u

a + /3 + 7 + &c. = na
l ;

now the initial values of the variables being a, b, c, &c., we must

necessarily have

na
l

= a + b + c + &c.
;

it follows that the constant term which must enter into each of

the general values of

a, ft, 7, ... ft) is -
(a + b + c + &c.),

that is to say, the mean of all the initial temperatures.

As to the general values of a, A 7, ...
G&amp;gt;, they are expressed

by the following equations :

, Sin U Sin Ou -^ venin u*

1
sin u

sin u&quot; sin Ow&quot;
- venm -

+ &c.,

1 sin 2 M sin M -^vewiuu_
(a + & + c + &c.) + a

1
--

s

--

Sill 2M Sin id - versln u

Sin 2Z*&quot; Sin u&quot; -^ vemin u&quot;

CI
-r ^- e

r

sin u

&c,
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1 sin 3it sin 2u -^versm.*

n v sin u

sin 3w sin 2w -^^

+ c,

sm

sin 3*&quot;

sin

&c.,

255. To determine the constants a, b, c, &amp;lt;#...&c., we must

consider the initial state of the system. In fact, when the time

is nothing, the values of a, /3, 7, &c. must be equal to a, 6, c, &c.;

we have then n similar equations to determine the n constants.

The quantities

sinw sinOw, sin2w sinw, sin3w sin2w, ...
,
sin nu sin (n 1) u,

may be indicated in this manner,

A sin OM, A sin w, A sin 2w, A sin ou, ... A sin
(?i 1) u

;

the equations proper for the determination of the constants are,

if the initial mean temperature be represented by C,

a = (7+ a + bt + q + &c.

, v A sin u A sin u A sin u&quot;
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The quantities a^ bl} q, dlt and C being determined by these

equations, we know completely the values of the variables

a, 0, 7, 3, ...co.

We can in general effect the elimination of the unknowns in

these equations, and determine the values of the quantities

a, b, c, d, &c.
;
even when the number of equations is infinite

;
we

shall employ this process of elimination in the following articles.

256. On examining the equations which give the general

values of the variables a, j3, 7 ......
o&amp;gt;,

we see that as the time

increases the successive terms in the value of each variable de

crease very unequally : for the values of u, u, u&quot;, u&quot;,
&c. being

- 7T 7T 7T , 7T p

1-, 2-, 3-, 4 -
, &c.,

n n n n

the exponents versin u, versin u, versin
u&quot;,

versin
u&quot;,

&c.

become greater and greater. If we suppose the time t to be

infinite, the first term of each value alone exists, and the tempera
ture of each of the masses becomes equal to the mean tempera

ture -
(a + b + c +...&G.). Since the time t continually increases,

IV

each of the terms of the value of one of the variables diminishes

proportionally to the successive powers of a fraction which, for the
2fc 2Jfc

versin u -- versin u

second term, is e
&quot;

,
for the third term e

n
,
and so on.

The greatest of these fractions being that which corresponds to

the least of the values of u, it follows that to ascertain the law

which the ultimate changes of temperature follow, we need con

sider only the two first terms; all the others becoming incom

parably smaller according as the time t increases. The ultimate

variations of the temperatures a, ft, 7, &c. are therefore expressed

by the following equations :

1 , 1 . Sin U - Sin Qu -versinu
a = - (a + b + c + &c. + a

n sin u

1
f

- - , Sill 2lt Sin U ~*~ versin

P=-(a + + c + &c.) + &amp;lt;LI

-
:
-- e

m
n ^

sin u

1,
7

- . S -

7 = -
(a + b + c + &c.) + cfj^n sm u
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257. If we divide the semi-circumference into n equal parts,

and, having drawn the sines, take the difference between two
consecutive sines, the n differences are proportional to the co-

_ versin u

efficients of e
r

,
or to the second terms of the values of

a, @, 7,...&). For this reason the later values of
, & y...w are

such that the differences between the final temperatures and the

mean initial temperature
-

(a + b + c + &c.) are always propor

tional to the differences of consecutive sines. In whatever

manner the masses have first been heated, the distribution of

heat is effected finally according to a constant law. If we
measured the temperatures in the last stage, when they differ

little from the mean temperature, we should observe that the

difference between the temperature of any mass whatever and the

mean temperature decreases continually according to the succes

sive powers of the same fraction
;
and comparing amongst them

selves the temperatures of the different masses taken at the same

instant, we should see that the differences between the actual

temperatures and the mean temperature are proportional to the

differences of consecutive sines, the semi-circumference having
been divided into n equal parts.

258. If we suppose the masses which communicate heat to each

other to be infinite in number, we find for the arc u an infinitely
small value

;
hence the differences of consecutive sines, taken on

the circle, are proportional to the cosines of the corresponding
, sin mu sin (m l)u. ,

arcs; for : is equal to cos mil, when the
sin \JL

arc u is infinitely small. In this case, the quantities whose tem

peratures taken at the same instant differ from the mean tempera
ture to which they all must tend, are proportional to the cosines

which correspond to different points of the circumference divided

into an infinite number of equal parts. If the masses which

transmit heat are situated at equal distances from each other on

the perimeter of the semi-circumference TT, the cosine of the arc at

the end of which any one mass is placed is the measure of the

quantity by which the temperature of that mass differs yet from
the mean temperature. Thus the body placed in the middle of

all the others is that which arrives most quickly at that mean
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temperature ;
those which are situated on one side of the middle,

all have an excessive temperature, which surpasses the mean

temperature the more, according as they are more distant from

the middle
;
the bodies which are placed on the other side, all

have a temperature lower than the mean temperature, and they
differ from it as much as those on the opposite side, but in con

trary sense. Lastly, these differences, whether positive or negative,

all decrease at the same time, proportionally to the successive

powers of the same fraction
;
so that they do not cease to be repre

sented at the same instant by the values of the cosines of the

same semi-circumference. Such in general, singular cases ex-

cepted, is the law to which the ultimate temperatures are subject.

The initial state of the system does not change these results. We
proceed now to deal with a third problem of the same kind as the

preceding, the solution of which will furnish us with many useful

remarks.

\.

259. Suppose n equal prismatic masses to be placed at equal

distances on the circumference of a circle. All these bodies,

enjoying perfect conducibility, have known actual temperatures,

different for each of them
; they do not permit any part of the

heat which they contain to escape at their surface
;
an infinitely

thin layer is separated from the first mass to be united to the

second, which is situated towards the right ;
at the same time a

parallel layer is separated from the second mass, carried from left

to right, and joined to the third; the same is the case with all the

other masses, from each of which an infinitely thin layer is sepa
rated at the same instant, and joined to the following mass.

Lastly, the same layers return immediately afterwards, and are

united to the bodies from which they had been detached.

Heat is supposed to be propagated between the masses by
means of these alternate movements, which are accomplished
twice during each instant of equal duration; the problem is to

find according to what law the temperatures vary : that is to say,

the initial values of the temperatures being given, it is required to^

ascertain after any given time the new temperature of each of the

masses.

We shall denote by a
iy
a

z ,
a
Jz,...a i

...o
Jn
the initial temperatures

whose values are arbitrary, and by av a
2 ,

a
s
...a

i
...&n the values of
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the same temperatures after the time t has elapsed. Each of the

quantities a is evidently a function of the time t and of all the

initial values a
lf

a
z ,

a
3
...an : it is required to determine the

functions a.

260. We shall represent the infinitely small mass of the layer

which is carried from one body to the other by a). We may
remark, in the first place, that when the layers have been separated
from the masses of which they have formed part, and placed re

spectively in contact with the masses situated towards the right,

the quantities of heat contained in the different bodies become

(ra G&amp;gt;)

a
t
+ a&amp;gt;an , (m CD) 2 -f a&amp;gt;zv (in o&amp;gt;)

a
3 + coy

2 , . . ., (m a&amp;gt;)

an

+ w^n-i &amp;gt; dividing each of these quantities of heat by the mass m,

we have for the new values of the temperatures

a
* + (**-t

~
Gi) * and a + (

a
-l
~ a

) ;

// V i/V

that is to say, to find the new state of the temperature after the

first contact, we must add to the value which it had formerly the

product of by the excess of the temperature of the body

from which the layer has been separated over that of the body to

which it has been joined. By the same rule it is found that the

temperatures, after the second contact, are

The time being divided into equal instants, denote by dt the

duration of the instant, and suppose o&amp;gt; to be contained in k

units of mass as many times as dt is contained in the units of

time, we thus have a&amp;gt;

= kdt. Calling Ja,, da2 ,
(fa

3 ...da.,...cfaH the
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infinitely small increments which the temperatures a
15 2,...a4

...an

receive during the instant dt, we have the following differential

equations :

Ja
2
= -dt

k
d*i = -dt

^-i = -^(a -2
- 2Vi +

&amp;lt;&amp;gt;&amp;gt;

Illi

&amp;lt;fe.^

~
&amp;lt;&(&amp;lt;.._, -2*.4 a,).

261. To solve these equations, we suppose in the first place,

according to the known method,

The quantities 6
t ,

6
2 ,

&
3 ,

... & are undetermined constants, as

also is the exponent li. It is easy to see that the values of

cij, ff
2 ,... B satisfy the differential equations if they are subject to

the following conditions :

(6 -26,

7/i

Let = -v- ,
we have, beginning at the last equation,

.
=

6.-, (2 + 2
)
- J
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It follows from this that we may take, instead of b
1,bz)

b
3 ,...

Z&amp;gt;

4.,...6n ,
the n consecutive sines which are obtained by dividing the

whole circumference 2?r into n equal parts. In fact, denoting the

T7&quot;

arc 2- by u, the quantities
iv

sin Qu, sin lu, sin 2w, sin 8w, ...
,
sin

(71 1) u,

whose number is n, belong, as it is said, to a recurring series

whose scale of relation has two terms, 2 cos u and 1 : so that

we always have the condition

sin iu = 2 cos u sin (i l)u sin (i 2) u.

Take then, instead of b
lt

b
2&amp;gt;

b
B ,... bn ,

the quantities

sin Ow, sin lu, sin 2w, . . . sin
.( !) u,

and we have

q + 2 = 2 cos u, q
= 2 versin it, or ^ = 2 versin .

Iv

We have previously written q instead of -=, so that the value
n/

2k 27T
of ^ is -- versin

; substituting in the equations these values

of b
t
and h we have

_2A* . 2JT

a = sin Oue m &quot; &quot; ^

_ verein

3
= sm zue

&quot; &quot;

a
n
= sm w

262. The last equations furnish only a very particular solu

tion of the problem proposed ;
for if we suppose t = we have, as

the initial values of a
1? 2 ,

a
3 ,

...
,
the quantities

sin OM, sin Iw, sin 2u, ... sin (n 1) M,

which in general differ from the given values a
lt

a
a ,

a
a) ...an :

but the foregoing solution deserves to be noticed because it ex

presses, as we shall see presently, a circumstance which belongs to

all possible cases, and represents the ultimate variations of the

F. H. 16
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temperatures. We see by this solution that, if the initial tem

peratures j,
a

2 ,
a

2 ,
... an ,

were proportional to the sines

27T -,
2-7T 27T . . -

N
2?T

sm ,
sin 1

,
sin 2

,
... sin (n

-
1) ,

n n n n

they would remain continually proportional to the same sines, and

we should have the equations

, 2& . 2&amp;lt;7T

where h = versin -m n

For this reason, if the masses which are situated at equal dis

tances on the circumference of a circle had initial temperatures

proportional to the perpendiculars let fall on the diameter

which passes through the first point, the temperatures would

vary with the time, but remain always proportional to those per

pendiculars, and the temperatures would diminish simultaneously
as the terms of a geometrical progression whose ratio is the

-S versin

fraction e
n n

.

263. To form the general solution, we may remark in the

first place that we could take, instead of &15
5
2 ,

b
3 , ... b n ,

the n

cosines corresponding to the points of division of the circumference

divided into n equal parts. The quantities cos Ou, cos \u, cos 2w,...

cos (n 1) u, in which u denotes the arc
,
form also a recurring

Yl

series whose scale of relation consists of two terms, 2 cos u and 1,

for which reason we could satisfy the differential equations by
means of the following equations,

- versin

otj
= cos Oue 7

,

KM
versin u

2
= cos lue

,

Zkt
versin u

a = cos 2ue m

n
=r cos (n l)ue
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Independently of the two preceding solutions we could select

for the values of b
t ,

b
z ,

6
3 , ... bn ,

the quantities

sin0.2w, sinl.2i*, sin2.2w, sin3.2w, ..., sin(ft-l)2w;

or else

cos0.2w, cosl.2w, cos2.2w, cos3.2w, ..., cos(?i l)2w.

In fact, each of these series is recurrent and composed of n

terms
;
in the scale of relation are two terms, 2 cos 2u and 1 ;

and if we continued the series beyond n terms, we should find n

others respectively equal to the n preceding.

In general, if we denote the arcs

2-7T 2?T 2-7T , . 2-7T

,
1

,
2

, ..., (w 1) , &c.,n n 1 n n

by u
lt
M

S ,
w

s , ..., WB ,
we can take for the values of b

lt
5
g , 6

3 ,
... bn

the w quantities,

sin Ow
4 ,

sin lw,., sin 2M
4 ,

sin 3w
4 , ..., sin (n 1) M, ;

or else

cos Qu
t)

cos lit., cos 2ttj, cos SM,, ..., cos
(?i 1) w4

.

The value of A corresponding to each of these series is given by the

equation

i 2&
/^ = versm w, .

771

We can give n different values to i, from i = 1 to i = n.

Substituting these values of b
lf

b
2 ,

b
3

... bn) in the equations
of Art. 261, we have the differential equations of Art. 260 satisfied

by the following results :

-^ versing -^rn
tfj
= sin Ott,

*

,
or

ofj
= cos

versin MJ

j ,

-
versinwj -^

3
= sin 2t*4 ,

a = cos 2u,e

/ i \ ~^ versin M* / t \ -^ versin w= sin (n 1) w 4
e , a

7i

= cos (n 1) M4
e

*

162
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264. The equations of Art. 260 could equally be satisfied by

constructing the values of each one of the variables a
x , aa , 8 , ... an

out of the sum of the several particular values which have been

found for that variable
;
and each one of the terms which enter

into the general value of one of the variables may also be mul

tiplied by any constant coefficient. It follows from this that,

denoting by Av BI}
A

2 ,
B

2 ,
A

3 ,
B

s ,
...*A

n)
Bn) any coefficients

whatever, we may take to express the general value of one of the

variables, a^j for example, the equation

/ r&amp;gt; \ ^n
versin M

i

of
wi+l

== (A i
sin mu

l
4 B^ cos muj e

versin 11%

+ (A* sin
mu&amp;gt;, 4- B cos mu) e

&quot;

-?**
versinw,,

+ (A n sin mun + Bn cos mun) e
7&amp;lt;

The quantities A
lt A^A 33

... A n ,
J5

X ,
J5

a ,
J5

8 ,
... Bn ,

which

enter into this equation, are arbitrary, and the arcs u
it
u

2,us , ... un

are given by the equations :

A 2?r - 2?r 2?r 27T

^ = 0-, ^
2
= 1-,

&quot;.

= 2-, ..., Wn =(^l)-.

The general values of the variables
cfj,

a
a ,

a
8 ,

... an are then

expressed by the following equations :

.
_

a
t
= (A l

sin Ow
t + Bl

cos OuJ e
5

sn w + cos

_ versin 3

sn w + cos
*

&c.;

_m versin

2
= (A^ sin lu^ + B^ cos IttJ e

- versin w2

4 (A 2
sin \u

z 4- B2
cos Iw

2)
e

1

~
versin %

+ (A a
sin lu

s 4 B
3
cos lnj e

+ &c.;
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a3
= (A t

sin
2t*, 4 Bl

cos zty
- versin ?&amp;lt;2

4- (^4 2
sin 2w

a 4 1?
3
cos 2w

2)
e

- ^ versin */
3

4 (J. 3
sin 2?/

3
4 #3

cos 2w
a)

e
f

+ &c.
;

an = (^ sin (n 1)^4- ^ cos (n 1) u
t ]

e
m

versin w2

+ [A a
sin (n

-
1) w

a
+ B

3
cos

(?i
-

1) u9 ]
e

- ?** versin 3

4 {-4.
sin (n 1) wa 4 Ba

cos
(*i 1) iij

e

4&c.

265. If we suppose the time nothing, the values av a
2,

cr
3,

. . . an

must become the same as the initial values a
lt
a
2,a3 ,

... an . We
derive from this n equations, which serve to determine the coeffi

cients Av BV-A 2 ,
B

2,
Ay B3

It will readily be perceived that

the number of unknowns is always equal to the number of equa
tions. In fact, the number of terms which enter into the value

of one of these variables depends on the number of different

quantities versin u
l}

versin w
2 , versing, &c., which we find on

dividing the circumference 2?r into n equal parts. Now the

2-7T 2-7T 2-7T

number of quantities versin ,
versin 1

,
versin 2

, &c.,n n n

is very much less than n, if we count only those that are

different. Denoting the number n by 2^ 4 1 if it is odd,

and by 2i if it is even, i 4 1 always denotes the number

of different versed sines. On the other hand, when in the

, .... . 2?r .
n

2-7T . 2-7T
p

series of quantities versin ,
versin 1

, versm 2
, &c.,n n n

9

we come to a versed sine, versin X , equal to one of the former

versin V ,
the two terms of the equations which contain this

versed sine form only one term
;
the two different arcs % and

x-, which, have the same versed sine, have also the same cosine,

and the sines differ only in sign. It is easy to see that the

arcs Ux and ux &amp;gt;,

which have the same versed sine, are such that
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the cosine of any multiple whatever of WA is equal to the cosine

of the same multiple of wA ,
and that the sine of any multiple

of % differs only in sign from the sine of the same multiple
of UK. It follows from this that when we unite into one the

two corresponding terms of each of the equations, the two un

knowns A^ and A A ,
which enter into these equations, are replaced

by a single unknown, namely A^ A^. As to the two unknown

B^ and BX they also are replaced by a single one, namely J5A + BX :

it follows from this that the number of unknowns is equal in all

cases to the number of equations ;
for the number of terms is

always i + 1. We must add that the unknown A disappears of

itself from the first terms, since it is multiplied by the sine of

a nul arc. Further, when the number n is even, there is found

at the end of each equation a term in which one of the unknowns

disappears of itself, since it multiplies a nul sine
;
thus the

number of unknowns which enter into the equations is equal

to 2 (i + 1) 2, when the number n is even
; consequently the

number of unknowns is the same in all these cases as the number

of equations.

266. To express the general values of the temperatures

a
i&amp;gt;

a
2 &amp;gt;

a
s

&quot; a
n&amp;gt;

tne fc&amp;gt;reg mg analysis furnishes us with the equa

tions

/ . 2-f A 27T\ -* verBinO
2
-?

a = [A. sin 0.0 H-^ cos 0.0 }e
m

1
\ n n /

f A 1
27r D i

2lT\
+ M 9 sm0.1 +_B2

cos0.1 }e
\ n n J

sin . 2 + B cos . 2 ~ e
n n

&c.,
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e

sn 2.1^
r
+ 7?

2 cos2.1^)/^
versinl ?

n n J

9.TT 9.ir\ J*M verein 2
n̂+ f^ 9

sin 2 . 2 +
3
cos 2 . 2

)
e~ -

v

V n n y

+ &c,

f A n 27T A 27T) -=*&amp;lt; versin
**

=
j
JjSin (n-1) + B

i
cos

( 1)0 \e m

.

2
sin (n 1) 1 - H^2

cos (n 1)1 \
e m *

&c

To form these equations, we must continue in each equation

the succession of terms which contain versin ,
versin 1

,

n n

versin 2
,

&c. until we have included every different versed

sine
;
and we must oniit all the subsequent terms, commencing

with that in which a versed sine appears equal to one of the

preceding.

The number of these equations is n. If n is an even number

equal to 2t, the number of terms of each- equation is i + 1
;

if n

the number of equations is an odd number represented by 2/+ 1,

the number of terms is still equal to i + I. Lastly, among the

quantities A I}
B

lt
A

2 , B^ &c., which enter into these equations,

there are some which must be omitted because they disappear of

themselves, being multiplied by nul sines.

267. To determine the quantities AV B^AV BV .A^BV &c.,

which enter into the preceding equations, we must consider the

initial state which is known : suppose t = 0, and instead of

a
lt 2 , 3 , &c., write the given quantities a

x ,
a

2 ,
a

3 , &c., which are

the initial values of the temperatures. We have then to determine

A
lf
B

lt
A

9 ,
B

2 ,
A

a ,
B

3 , &c., the following equations:
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a
x
=A

1
sin 0.0^&quot;+ A 9

sin 0.1 +A sin 0.2 + &c.
n w ?&

+ B. cos . + jR, cos . 1 + J5_ cos . 2 + &c.
?i w n

t
. - _ 2?r , - ^ 2?r . ._ 2?r n

2
= A

1
sin 1 . + A sin 1 . 1 + A. sin 1 . 2 + &c.

n n n

+ &ooai .0 + #2
cos 1 . 1 + K cos 1 . 2 + &c.

n n n

8
= A

l
sin 2 .

2- + 4
a
sin 2 . 1 + A 8

sin 2 . 2 + &c.

+ A cos 2 . + B.2 cos 2 . 1 + K cos 2 . 2 + &c.
n n n

/7T

w - 1)
-

268. In these equations, whose number is ??, the unknown

quantities are A
lt
B

lt
A

2 ,
B

2 ,
A

5 ,
B

s , &c., and it is required to

effect the eliminations and to find the values of these unknowns.

We may remark, first, that the same unknown has a different

multiplier in each equation, and that the succession of multipliers

composes a recurring series. In fact this succession is that of the

sines of arcs increasing in arithmetic progression, or of the cosines

of the same arcs
;

it may be represented by

sin Qu, sin lu, sin 2w, sin 3w, ... sin (n 1) u,

or by cos Qu, cos lu, cos 2w, cos Su, ... cos (n I) u.

/2?r\
The arc u is equal to i I

j
if the unknown in question is A.

+l

or B.
+1 . This arranged, to determine the unknown A

i+l by means
of the preceding equations, we must combine the succession of

equations with the series of multipliers, sin Ow, sin lu, sin 2u,

sin Su, ... sin (n l)u t
and multiply each equation by the cor

responding term of the series. If we take the sum of the equa-
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tions thus multiplied, we eliminate all the unknowns, except
that which is required to be determined. The same is the case

if we wish to find the value of B
i+l ;

we must multiply each

equation by the multiplier of B
i+1

in that equation, and then take

the sum of all the equations. It is requisite to prove that by
operating in this manner we do in fact make all the unknowns

disappear except one only. For this purpose it is sufficient to shew,

firstly, that if we multiply term by term the two following series

sin Qu, sin lu, sin 2u, sin 3u, ... sin (n 1) u,

sin Qv, sin lv, sin
2t&amp;gt;,

sin 3v, ... sin (n T)v,

the sum of the products

sin Qu sin Oy + sin lu sin lv + sin 2u, sin 2v + &c.

is nothing, except when the arcs u and v are the same, each

of these arcs being otherwise supposed to be a multiple of a part

of the circumference equal to --
; secondly, that if we multiply

term by term the two series

cos Qu, cos lu, cos 2u, ... cos (n 1) u,

cos Qv, cos lv, cos 2v, ... cos (n 1) v,

the sum of the products is nothing, except in the case when
u is equal to v

; thirdly, that if we multiply term by term the two
series

sin Qu, sin lu, sin 2u, sin Su, ... sin (n 1) u,

cos Qv, cos lv, cos 2y, cos 3v, ... cos (n 1) v,

the sum of the products is always nothing.

269. Let us denote by q the arc
, by pq the arc u, and by

vq the arc v
; ft and v being positive integers less than n. The

product of two terms corresponding to the two first series will

be represented by

sin jpq sin jvq, or - cos j (//,
-

v) q
-
^ cosj (&amp;gt;

+ v)q,

the letter j denoting any term whatever of the series 0, 1, 2, 3...
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(n 1); now it is easy to prove that if we give to j its n successive

values, from to (n 1), the sum

2
cos

(jj, v) q 4- cos 1 (fL v) q + ~ cos 2 (p v) q

+ = cos 3
(fjL v) q + . . . + ~ cos (n

-
1) (p

-
v) qA Z

has a nul value, and that the same is the case with the series

^
cos (JM + v) q + cos 1 (p + v) q + ^

cos 2 (p + v) q

+
2

cos 3 (/A + v) ^ + . . . +
g
cos (n ~ 1) (^ + &quot;)

In fact, representing the arc (p v)q by or, which is consequently
2-7T

a multiple of
,
we have the recurring series

cos Oa, cos 1#, cos 2z, . . . cos (w 1) a,

whose sum is nothing.

To shew this, we represent the sum by s, and the two terms of

the scale of relation being 2 cos a and 1, we multiply successively

the two members of the equation

s = cos Oa + cos 2a + cos 3a + . . . + cos (n 1) a

by 2 cos a and by + 1
;
then on adding the three equations we

find that the intermediate terms cancel after the manner of re

curring series.

If we now remark that not. being a multiple of the whole cir

cumference, the quantities cos (n 1.) a, cos (n 2) a, cos (n 3) a,

&c. are respectively the same as those which have been denoted

by cos
( a), cos

( 2a), cos
( 3a), ... &c. we conclude that

2s 25 cos a =
;

thus the sum sought must in general be nothing. In the same

way we find that the sum of the terms due to the development of

\ cos j (IJL -f v) q is nothing. The case in which the arc represented

by a is must be excepted ;
we then have 1 - cos a = 0; that is

to say, the arcs it and v are the same. In this case the term

J cos,/ (jj, + v) q still gives a development whose sum is nothing ;
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but the quantity J cosj (ft i&amp;gt;) q furnishes equal terms, each of

which has the value ^ ;
hence the sum of the products term by

term of the two first series is i n.

In the same manner we can find the value of the sum of the

products term by term of the two second series, or

S (cosjvq cosjvq) ;

in fact, we can substitute for cos jpq cosjvq the quantity

J cosj (fj,
-

v) q + % cosj (fjb + v) q,

and we then conclude, as in the preceding case, that 2 Jcosj(^+v)q
is nothing, and that 2,-J cosj (/it v) q is nothing, except in the case

where
//,
= v. It follows from this that the sum of the products

term by term of the two second series, or 2(cosj/j,qcosjvq), is

always when the arcs u and v are different, and equal to \n
when u = v. It only remains to notice the case in which the arcs

fiq and vq are both nothing, when we have as the value of

S (sinjfjiq sinjvq),

which denotes the sum of the products term by term of the two

first series.

The same is not the case with the sum 2(cosj/^ cosjvq) taken

when
/j.q

and vq are both nothing ;
the sum of the products term

by term of the two second series is evidently equal to n.

As to the sum of the products term by term of the two series

sin Ou, smlu, sin 2u, sin 3u, ... sin (n 1) u,

cos OM, cos lu, cos 2u, cos 3u, . . . cos (n 1) u t

it is nothing in all cases, as may easily be ascertained by the fore

going analysis.

270. The comparison then of these series furnishes the follow

ing results. If we divide the circumference 2?r into n equal

parts, and take an arc u composed of an integral number p of

these parts, and mark the ends of the arcs u, 2u, 3u, ... (n l)u, it

follows from the known properties of trigonometrical quantities

that the quantities

sin Qu, sin lu, sin 2u, sin 3w, ... sin (n l)u,
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or indeed

cos Ou, cos Iw, cos 2w, cos 3u, ... cos (n 1) u,

form a recurring periodic series composed of n terms : if we com-

27T

pare one of the two series corresponding to an arc u or
p. n

with a series corresponding to another arc v or v
,
and

multiply term by term the two compared series, the sum of the

products will be nothing when the arcs u and v are different. If

the arcs u and v are equal, the sum of the products is equal to |-/?,

when we combine two series of sines, or when we combine two

series of cosines
;
but the sum is nothing if we combine a series of

sines with a series of cosines. If we suppose the arcs u and v to

be nul, it is evident that the sum of the products term by term is

nothing whenever one of the two series is formed of sines, or when

both are so formed, but the sum of the products is n if the com

bined series both consist of cosines. In general, the sum of the

products term by term is equal to 0, or \n or n
;
known formulae

would, moreover, lead directly to the same results. They are pro
duced here as evident consequences of elementary theorems in

trigonometry.

271. By means of these remarks it is easy to effect the elimi

nation of the unknowns in the preceding equations. The unknown

A
v disappears of itself through having nul coefficients

;
to find B^

we must multiply the two members of each equation by the co

efficient of B
t
in that equation, and on adding all the equations

thus multiplied, we find

To determine A
2
we must multiply the two members of each

equation by the coefficient of A
9
in that equation, and denoting

the arc - -

by q, we have, after adding the equations together,
W9

a
l
sin 0^ 4- a2

sin Iq + a
s
sin 2q + . . . -f an sin (n l)q =

Similarly to determine B
a
we have

rtj
cos 0^ 4- az

cos 1 q + a
a
cos

2&amp;lt;/
f . . . + an cos (n

-
1) q

=
^ n
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In general we could find each unknown by multiplying the

two members of each equation by the coefficient of the unknown
in that equation, and adding the products. Thus we arrive at the

following results :

-ftf2 sin I-
77

-fasm2-^&quot; +&c. = 2a i sin(i-l)ln n n ^ n

2?r , 2?r - 2?r 2?r-- + GLCOS! +a3
cos2 + &c.= 2 i cos(z-l)!n n n J n

.2 +a3
cos2.2 -f &c. = 2a,f

cos (i-l)2
?i ?i

} n

+ 2
sinl.3 + a

3
sin2.3 +&c.=Sosin(*-l)3

71 71 ?i

s^^cos 0.3 +
2
cosl.3 +CLCOS2.3 + &c.= 2ai cos(i-l)3^2 7i 71 n J n

&c............................................. . ..................... (M).

To find the development indicated by the symbol %, \ve must

give to i its n successive values 1, 2, 3, 4, &c., and take the sum,
in which case we have in general

n . ^ . ,. 1N/ .
., N 2?r , n ,-&amp;gt; , . - s , . . . 2?r

g^=2asin(t-l)(;-l)
and ^B =s2aodB(i-l)(;-l) .

If we give to the integer^ all the successive values 1, 2, 3, 4,

&c. which it can take, the two formulae give our equations, and if

we develope the term under the sign 2, by giving to i its n values

1, 2, 3, ... n, we have the values of the unknowns A
l9

J$
lt
A

2,BZ ,

A
3 ,
B

3 , &c.j and the equations (ra), Art. 267, are completely solved.

272. &quot;We now substitute the known values of the coefficients

A
lt
B

lt
A

2 ,
B

2 ,
A

3,BS , &c., in equations (/A), Art. 266, and obtain

the following values :
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a=^N + JV e
* versin ^ + JVe * versin ^ + &c .

=
o + sn ^ + cos & e

+ (3/2 sin
2 + JV

2
cos qj 6

&amp;lt;versin ^ + &c.

=N + (M, sin 2ql
+ N

t
cos 2^) 6

* versin *

+ (Mz
sin 2g2 +^ cos 2g2)

6
&amp;lt; vershl * + &c.

. = JV + {,, sin
(j
-

1) ^ +^ cos (j
-

1) grj e

+ M sin - 1 + ^&quot; cos - 1 e
versin + &c.

n
= i o + sn 71 - q, + ,

cos n - Sl e

+ {Mz
sin

(
-

1) qz + JV; cos -
1) 2 }

e
* versin + &c.

In these equations

_ , 27T 27T Q 27T
e = e , ^y , 22

= 2
&amp;gt; ^= 3 &c.,

273. The equations which we have just set down contain the

complete solution of the proposed problem ;
it is represented by

the general equation

o,= -2a,+ -sin(j-l)~Sasin(i-l)-^-

2 .xSTT^ -.N^Tr&quot;!
-^

+ - cos ( i 1) 2a cos (i 1)n n n\

n n n

(e),
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in which only known quantities enter, namely, av a
2 ,

a-
3

... a
n ,

which are the initial temperatures, k the measure of the con-

ducibility, m the value of the mass, n the number of masses

heated, and t the time elapsed.

From the foregoing analysis it follows, that if several equal
bodies n in number are arranged in a circle, and, having received

any initial temperatures, begin to communicate heat to each other

in the manner we have supposed ;
the mass, of each body being

denoted by m, the time by t, and a certain constant coefficient by

k, the variable temperature of each mass, which must be a function

of the quantities t, m, and k, and of all the initial temperatures,
is given by the general equation (e). We first substitute instead

of j the number which indicates the place of the body whose

temperature we wish to ascertain, that is to say, 1 for the first

body, 2 for the second, &c.; then with respect to the letter i which

enters under the sign 2, we give to it the n successive values

1, 2, 3, ... n, and take the sum of all the terms. As to the

number of terms which enter into this equation, there must be

as many of them as there are different versed sines belonging to

the successive arcs

0^,1^,2^3^ &
n n n n

that is to say, whether the number n be equal to (2\ + 1) or 2\,

according as it is odd or even, the number of terms which enter

into the general equation is always \ + 1.

274. To give an example of the application of this formula,
let us suppose that the first mass is the only one which at first

was heated, so that the initial temperatures av a
2,
a
3

. . . an are all

nul, except the first. It is evident that the quantity of heat

contained in the first mass is distributed gradually among all the

others. Hence the law of the communication of heat is expressed

by the equation

1 2
. = - a

t -r - a. cos ( j 1) e m
} n * n l J n

2 2?T
+ - a

t
cos (j 1) 2 e

2 . 2?T -^
+ -

j
cos (j 1)3 e m n + &c.

tv 7&
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If the second mass alone had been heated and the tempera

tures
,,
a

3 , 4 ,
... an were nul, we should have

2
+ - a

2 jsin (j
-

1) sin

2vr 2?r)
+ cos (/I) cos ^e

&quot;

Vl/ 7 n w I

Bin2
n

^+ cos (7 -1)2 cos 2
Vi/

4-&C.,

and if all the initial temperatures were supposed nul, except

t
and a

2 ,
we should find for the value of a

j
the sum of the values

found in each of the two preceding hypotheses. In general it is

easy to conclude from the general equation (e), Art. 273, that in

order to find the law according to which the initial quantities of

heat are distributed between the masses, we may consider sepa

rately the cases in which the initial temperatures are mil, one only

excepted. The quantity of heat contained in one of the masses

may be supposed to communicate itself to all the others, regarding

the latter as affected with nul temperatures; and having made

this hypothesis for each particular mass with respect to the initial

heat which it has received, we can ascertain the temperature of

any one of the bodies, after a given time, by adding all the

temperatures which the same body ought to have received on

each of the foregoing hypotheses.

275. If in the general equation (e) which gives the value of

a
jt
we suppose the time to be infinite, we find

a,-
= - 2 ai} so that

each of the masses has, acquired the mean temperature ;
a result

which is self-evident.

As the value of the time increases, the first term - 2 &in

becomes greater and greater relatively to the following terms, or

to their sum. The same is the case with the second with respect

to the terms which follow it; and, when the time has become
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considerable, the value of
a,-

is represented without sensible error

by the equation,

1 2 f 2?r 2?r
a,-
= - 2tai 4-

- -tain (j -1) 2a
f

- sin (i 1)n n
{

n n

4 cos (j
-

1) 2a,- cos (i
-

1)
ft ?? ^

Denoting by a and 6 the coefficients of sin
( / - 1) and of

n

cos (j 1) ,
and the fraction e~~&amp;gt;*

m
&quot;*&quot;

by G&amp;gt;,
we have

7i

1 ( 2-7T 9^
o
;
= - 2 4 4- to sin (j

-
1) 4 6 cos (j

-
1)
~

w
(

n n

The quantities a and b are constant, that is to say, independent
of the time and of the letter j which indicates the order of the

mass whose variable temperature is
a,-.

These quantities are the

same for all the masses. The difference of the variable tempera

ture
a.j

from, the final temperature
- 2a

f
decreases therefore for

IV

each of the masses, in proportion to the successive powers of the

fraction &&amp;gt;. Each of the bodies tends more and more to acquire

the final temperature
- 2 a

it
and the difference between that

final limit and the variable temperature of the same body ends

always by decreasing according to the successive powers of a

fraction. This fraction is the same, whatever be the body whose

changes of temperature are considered
;

the coefficient of co* or

(a sin Uj 4 & cos HJ), denoting by KJ the arc
(j
-

1)
-

, may be put

under the form A sin (uj 4- B), taking A and B so as to have
a = A cos B, and b = A sin B. If we wish to determine the

coefficient of to* with regard to the successive bodies whose

temperature is aj+l) a
j+2) a

j+3&amp;gt; &c., we must add to HJ the arc

- or 2
,
and so on

;
so that we have the equationsn n

% - - 20; = A sin (B 4 %) to* + &c.
n

OLJ .

,

- - 2af
- = A sin [B 4 Uj 4 1

J
at 4- &c.

n \ n /

F. H. 17
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^+2
_ 2a . = A sm B + Uj + 2 co* + &c.

_ _ 2a . = A sin
(j3 + Uj + 3

)
CD* + &c.

276. We see, by these equations, that the later differences

between the actual temperatures and the final temperatures are

represented by the preceding equations, preserving only the first

term of the second member of each equation. These later differ

ences vary then according to the following law : if we consider

only one body, the variable difference in question, that is to say?

the excess of the actual temperature of the body over the final

and common temperature, diminishes according to the successive

powers of a fraction, as the time increases by equal parts ; and, if

we compare at the same instant the temperatures of all the

bodies, the difference in question varies proportionally to the suc

cessive sines of the circumference divided into equal parts. The

temperature of the same body, taken at different successive equal

instants, is represented by the ordinates of a logarithmic curve,

whose axis is divided into equal parts, and the temperature of

each of these bodies, taken at the same instant for all, is repre
sented by the ordinates of a circle whose circumference is divided

into equal parts. It is easy to see, as we have remarked before,

that if the initial temperatures are such, that the differences of

these temperatures from the mean or final temperature are pro

portional to the successive sines of multiple arcs, these differences

will all diminish at the same time without ceasing to be propor
tional to the same sines. This law, which governs also the initial

temperatures, will not be disturbed by the reciprocal action of the

bodies, and will be maintained until they have all acquired a

common temperature. The difference will diminish for each body

according to the successive powers of the same fraction. Such is

the simplest law to which the communication of heat between a

succession of equal masses can be submitted. When this law has

once been established between the initial temperatures, it is main

tained of itself; and when it does not govern the initial tempera

tures, that is to say, when the differences of these temperatures
from the mean temperature are not proportional to successive

sines of multiple arcs, the law in question tends always to be set
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up, and the system of variable temperatures ends soon by coin

ciding sensibly with that which depends on the ordinates of a

circle and those of a logarithmic curve.

Since the later differences between the excess of the tempera
ture of a body over the mean temperature are proportional to

the sine of the arc at the end of which the body is placed, it

follows that if we regard two bodies situated at the ends of the

same diameter, the temperature of the first will surpass the mean
and constant temperature as much as that constant temperature

surpasses the temperature of the second body. For this reason, if

we take at each instant the sum of the temperatures of two

masses whose situation is opposite, we find a constant sum, and

this sum has the same value for any two masses situated at the

ends of the same diameter.

277. The formulae which represent the variable temperatures
of separate masses are easily applied to the propagation of heat

in continuous bodies. To give a remarkable example, we will

determine the movement of heat in a ring, by means of the

general equation which has been already set down.

Let it be supposed that n the number of masses increases suc

cessively, and that at the same time the length of each mass

decreases in the same ratio, so that the length of the system has

a constant value equal to 2?r. Thus if n the number of masses

be successively 2, 4, 8, 16, to infinity, each of the masses will

be TT, -^, -r,
- &c. It must also be assumed that the

t 4 O

facility with which heat is transmitted increases in the same

ratio as the number of masses in\ thus the quantity which k

represents when there are only two masses becomes double when
there are four, quadruple when there are eight, and so on.

Denoting this quantity by g, we see that the number k must be

successively replaced by g, 2g, 4&amp;lt;g,

&c. K we pass now to the

hypothesis of a continuous body, we must write instead of m, the

value of each infinitely small mass, the element dx
;
instead of n,

2_
the number of masses, we must write ^ ;

instead of k write

n

172
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As to the initial temperatures a
lt
a

2,
a

3
...an , they depend on

the value of the arc x, and regarding these temperatures as the

successive states of the same variable, the general value a
t repre

sents an arbitrary function of x. The index i must then be

x
replaced by -y- . With respect to the quantities a

lt
a
g ,

a
3 , ...,

these are variable temperatures depending on two quantities
x and t Denoting the variable by v, we have v = $ (x, t).

The

index jt
which marks the place occupied by one of the bodies,

99

should be replaced by -y-. Thus, to apply the previous analysis to

the case of an infinite number of layers, forming a continuous

body in the form of a ring, we must substitute for the quanti
ties n, m, Ic, a

it i, a
j} /, their corresponding quantities, namely,

-y- , dx, ff . f(x\ -j- , 4&amp;gt;
(x. t\ -7- . Let these substitutions be

dx dx J ^ J) dx Y ^ &quot; dx

made in equation (e) Art. 273, and let
^

dx* be written instead

of versin dx, and i and j instead of i 1 and j 1. The first

term - 2o( becomes the value of the integral ~ \f(x) dx taken from
n %Tr)

J

07 = to 7=27r; the quantity sm(j-l)^ becomes smjdx or
n

sin x
;
the value of cos (/I) -y- is cos x

;
that of - 2a4

sin
(i 1)

-

dx ft n

is -\ f(x] sin JPC&P, the integral being taken from x = to x=2jr :

irj

and the value of -
2a^ cos (i

-
1)

-
r

is -If () cos # cZx, the

integral being taken between the same limits. Thus we obtain

the equation

-f -
(
sin x I / (x) sin xdx -f cos x If (x} cos xdx }e-

ffnt

fn\j J /

4-
- f sin 2# lf(x)sinZ cos

(E)
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and representing the quantity gir by k, we have

=
g \f(x)dx+ ( sin x \f(x) sin xdx+ cos x I /(a;) cos #cta

J
e w

+
(sin 20ma) sin 2#efo+cos2# //(#) cos 2#

dxj
e~^kt

TTV

+ &c.

278. This solution is the same as that which was given in the

preceding section, Art. 241
;

it gives rise to several remarks. 1st.

It is not necessary to resort to the analysis of partial differential

equations in order to obtain the general equation which expresses

the movement of heat in a ring. The problem may be solved for f

a definite number of bodies, and that number may then be sup- \

posed infinite. This method has a clearness peculiar to itself, and

guides our first researches. It is eas^afterwards to pass to a

more concise method by a process indicated naturally. We see

that the discrimination of the particular values, which, satisfying

the partial differential equation, compose the general value, is

derived from the known rule for the integration of linear differ

ential equations whose coefficients are constant. The discrimina

tion is moreover founded, as we have seen above, on the physical

conditions of the problem. 2nd. To pass from the case of separate
masses to that of a continuous body, we supposed the coefficient Jc

to be increased in proportion to n, the number of masses. This

continual change of the number k follows from what we have

formerly proved, namely, that the quantity of heat which flows

between two layers of the same prism is proportional to the value

of
y- ,

x denoting the abscissa which corresponds to the section,

and v the temperature. If, indeed, we did not suppose the co

efficient k to increase in proportion to the number of masses, but

were to retain a constant value for that coefficient, we should

find, on making n infinite, a result contrary to that which is

observed in continuous bodies. The diffusion of heat would be

infinitely slow, and in whatever manner the mass was heated, the

temperature at a point would suffer no sensible change during
a finite time, which is contrary to fact. Whenever we resort to

the consideration of an infinite number of separate masses which
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transmit heat, and wish to pass to the case of continuous bodies,

we must attribute to the coefficient k, which measures the yj^ocity

of transmission, a value proportional to the number of infinitely

small masses which compose the given body.

3rd. If in the last equation which we obtained to express the

value of v or &amp;lt; (#, i), we suppose t = 0, the equation necessarily

represents the initial state, we have therefore in this way the

equation (p), which we obtained formerly in Art. 233, namely,

+ sin as I f(x) sinxdx+ sin 2# I f(x) sin 2#dx + &c.

(*)&amp;lt;fo

J J

+ cos x \ f(x] cosxdx+ cos 2x I f(x) cos 2a?dx + &c.

Thus the theorem which gives, between assigned limits, the

development of an arbitrary function in a series of sines or cosines

of multiple arcs is deduced from elementary rules of analysis.

Here we find the origin of the process which we employed to

make all the coefficients except one disappear by successive in

tegrations from the equation

-f a^ sin x + a^ sin 2# + a
z
sin 3# + &c.

^ *
~~

+ b
t
cos x + 5a cos 2x + b

3
cos 3# + &c.

These integrations correspond to the elimination of the different

unknowns in equations (m), Arts. 267 and 271, and we see clearly

by the comparison of the two methods, that equation (B), Art. 279,

holds for all values of x included between and 2?r, without its

being established so as to apply to values of x which exceed those

limits.

279. The function (x, t) which satisfies the conditions of

the problem, and whose value is determined by equation (E),

Art. 277, may be expressed as follows :

+ {2sin3ic |^a/(a)sin3a4-2cos3^pa/(a)cos3a}e&quot;

32
^-f- &c.
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or 27T$ (x, t}
= Idxfty {I + (2 sin x sin a. + 2 cos x cos a) e~

w

+ (2 sin 2x sin 2a + 2 cos 2x cos 2a) e~22k*

+ (2 sin 3# sin 3a + 2 cos 3# cos 3 a) e&quot;

3^ + &c.}

=
fda/(a) [1 + 22 cos i (a

-
a?) e **^.

The sign 2 affects the number i, and indicates that the sum

must be taken from 4 = 1 to i = oo . We can also include the

first term under the sign 2, and we have

a?,
=

cfa/(a) 2 cos / (a
-

a?)
&amp;lt;rX

We must then give to i all integral values from co to + oc
;

which is indicated by writing the limits oo and + oo next to the

sign 2, one of these values of i being 0. This is the most concise

expression of the solution. To develope the second member of the

equation, we- suppose 4 = 0, and then i= 1, 2, 3, &c., and double

each result except the first, which corresponds to i = 0. When
t is nothing, the function &amp;lt; (x, t) necessarily represents the initial

state in which the temperatures are equal to / (x), we have there

fore the identical equation,

(B).

We have attached to the signs I and 2 the limits between

which the integral sum must be taken. This theorem holds

generally whatever be the form of the function / (x) in the in

terval from x = to x = 2?r
;
the same is the case with that which

is expressed by the equations which give the development of F (x\
Art. 235; and we shall see in the sequel that we can prove directly

the truth of equation (B) independently of the foregoing con

siderations.

280. It is easy to see that the problem admits of no solution

different from that given by equation (E), Art. 277. The function

&amp;lt;/&amp;gt;

(x, t)
in fact completely satisfied the conditions of the problem,

and from the nature of the differential equation -=- = k -, , no
dt da?
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other function can enjoy the same property. To convince our

selves of this we must consider that when the first state of the

solid is represented by a given equation v
1 =f(x) t

the fluxion -y1

is known, since it is equivalent to k ^ \ . Thus denoting by

#
2
or v

1 -\-Jc
-j-

1

dt, the temperature at the commencement of the

second instant, we can deduce the value of v
2
from the initial

state and from the differential equation. We could ascertain in

the same manner the values v
a ,

v
4 , ... vn of the temperature at

any point whatever of the solid at the beginning of each instant.

Now the function &amp;lt; (x, i) satisfies the initial state, since we have

&amp;lt;f)
(x, 0) =/(#). Further, it satisfies also the differential equation ;

consequently if it were differentiated, it would give the same

values for -
, -=f , -=/ , &c., as would result from successive

at at at

applications of the differential equation (a). Hence, if in the

function $ (x, t) we give to t successively the values 0, ft), 2o&amp;gt;,

3ft), &c., ft) denoting an element of time, we shall find the same

values v
lt

v
zi

v
s ,

&c, as we could have derived from the initial

state by continued application of the equation -y-
= k

-j 2 . Hence
at doo

every function ^r (x, f) which satisfies the differential equation and

the initial state necessarily coincides with the function
&amp;lt;f&amp;gt; (x, t) :

for such functions each give the same function of x, when in them

we suppose t successively equal to 0, co, 2&&amp;gt;,
3&) ... iw, &c.

We see by this that there can be only one solution of the

problem, and that if we discover in any manner a function ^ (x, t)

which satisfies the differential equation and the initial state, we
are certain that it is the same as the former function given by

equation (E).

281. The same remark applies to all investigations whose

object is the varied movement of heat; it follows evidently from

the very form of the general equation.

For the same reason the integral of the equation -rr = k^
can contain only one arbitrary function of x. In fact, when a
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value of v as a function of x is assigned for a certain value of

the time t, it is evident that all the other values of v which

correspond to any time whatever are determinate. We may
therefore select arbitrarily the function of x, which corresponds

to a certain state, and the general function of the two variables

x and t then becomes determined. The same is not the case

with the equation -^ + -7-5
= 0, which was employed in the

preceding chapter, and which belongs to the constant movement
of heat

;
its integral contains two arbitrary functions of x and y :

but we may reduce this investigation to that of the varied move

ment, by regarding the final and permanent state as derived from

the states which precede it, and consequently from the initial

state, which is given.

The integral which we have given

~
(dzf (a) 2e

-m cos * (a
-

a?)

contains one arbitrary function f(x), and has the same extent as

the general integral, which also contains only one arbitrary func

tion of x
;
or rather, it is this integral itself arranged in a form

suitable to the problem. In fact, the equation v
1 =f (x} represent

ing the initial state, and v =
&amp;lt;f&amp;gt; (x, t) representing the variable

state which succeeds it, we see from the very form of the heated

solid that the value of v does not change when x i%7r is written

instead of x, i being any positive integer. The function

^e -i
zkt cosl (a #)

satisfies this condition; it represents also the initial state when
we suppose t = 0, since we then have

(a) X cos i (a x),

an equation which was proved above, Arts. 235 and 279, and is

also easily verified. Lastly, the same function satisfies the differ

ential equation -=- = k -5-5 . Whatever be the value of t, the

temperature v is given by a very convergent series, and the different

terms represent all the partial movements which combine to form
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the total movement. As the time increases, the partial states of

higher orders alter rapidly, but their influence becomes inappre

ciable; so that the number of values which ought to be given to

the exponent i diminishes continually. After a certain time the

system of temperatures is represented sensibly by the terms which

are found on giving to i the values 0, + 1 and 2, or only

and 1, or lastly, by the first of those terms, namely, ~ Ida/ (at) ;

there is therefore a manifest relation between the form of the

solution and the progress of the physical phenomenon which has

been submitted to analysis.

282. To arrive at the solution we considered first the simple

values of the function v which satisfy the differential equation :

we then formed a value which agrees with the initial state, and

has consequently all the generality which belongs to the problem.
We might follow a different course, and derive the same solution

from another expression of the integral ;
when once the solution

is known, the results are easily transformed. If we suppose the

diameter of the mean section of the ring to increase infinitely, the

function &amp;lt;

(a?, t),
as we shall see in the sequel, receives a different

form, and coincides with an integral which contains a single

arbitrary function under the sign of the definite integral. The

latter integral might also be applied to the actual problem; but,

if we were limited to this application, we should have but a very

imperfect knowledge of the phenomenon; for the values of the

temperatures would not be expressed by convergent series, and

we could not discriminate between the states which succeed each

other as the time increases. The periodic form which the problem

supposes must therefore be attributed to the function which re

presents the initial state; but on modifying that integral in this

manner, we should obtain no other result than

0&amp;gt;

= IT- {&amp;lt;**/ () 2e-** cos i
(OL
-

x).
ATTJ

From the last equation we pass easily to the integral in

question, as was proved in the memoir which preceded this work.

It is not less easy to obtain the equation from the integral itself.

These transformations make the agreement of the analytical

results more clearly evident
;
but they add nothing to the theory,
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and constitute no different analysis. In oneofthe following

chapters we shall examine the different forms whicfT may be

assumed by the integral of the equation -r ^-r^^ the relations
dv dx

which they have to each other, and the cases in which they ought
to be employed.

To form the integral which expresses the movement of heat in

a ring, it was necessary to resolve an arbitrary function into a

series of sines and cosines of multiple arcs; the numbers which

affect the variable under the symbols sine and cosine are the

natural numbers 1, 2, 3, 4, &c. In the following problem the

arbitrary function is again reduced to a series of sines; but the

coefficients of the variable under the symbol sine are no longer
the numbers 1, 2, 3, 4, &c.: these coefficients satisfy a definite

equation whose roots are all incommensurable and infinite in

number.

Note on Sect. I, Chap. IV. Guglielmo Libri of Florence was the first to

investigate the problem of the movement of heat in a ring on the hypothesis of

the law of cooling established by Dulong and Petit. See his Memoire sur la

theorie de la chaleur, Crelle s Journal, Band VII., pp. 116131, Berlin, 1831.

(Read before the French Academy of Sciences, 1825. ) M. Libri made the solution

depend upon a series of partial differential equations, treating them as if they

were linear. The equations have been discussed in a different manner by
Mr Kelland, in his Theory of Heat, pp. 69 75, Cambridge, 1837. The principal

result obtained is that the mean of the temperatures at opposite ends of any
diameter of the ring is the same at the same instant. [A. F.]



CHAPTER V.

OF THE PROPAGATION OF HEAT IN A SOLID SPHERE.

SECTION I.

General solution.

283. THE problem of the propagation of heat in a sphere has

been explained in Chapter II., Section 2, Article 117; it consists

in integrating the equation

dv , fd*v 2 dv\

so that when x X the integral may satisfy the condition

,

ax

k denoting the ratio
,
and h the ratio

-^
of the two con-

ducibilities ;
v is the temperature which is observed after

the time t has elapsed in a spherical layer whose radius is a?;

X is the radius of the sphere ;
v is a function of x and t, which is

equal to F (x) when we suppose * = 0. The function F(x) is

given, and represents the initial and arbitrary state of the solid.

If we make y = vx, y being a new unknown, we have,

after the substitutions, ^f
= ^T^ : tnus we must integrate the

last equation, and then take , We shall examine, in the
sc

first place, what are the simplest values which can be attributed

to
if,

and then form a general value which will satisfy at the same
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time the differential equation, the condition relative to the

surface, and the initial state. It is easily seen that when these

three conditions are fulfilled, the solution is complete, and no

other can be found.

284. Let y emtu, u being a function of x, we have

First, we notice that when the value of t becomes infinite, the

value of v must be nothing at all points, since the body is com

pletely cooled. Negative values only can therefore be taken for

m. Now k has a positive numerical value, hence we conclude

that the value of u is a circular function, which follows from the

known nature of the equation

, &amp;lt;Fu

mu = k -j-s .

dx

Let u =A cos nx + B sin nx we have the condition m = k w2
.

Thus we can express a particular value of v by the equation

e -knH
v =- (A cos nx -f B sin nx\

so

where n is any positive number, and A and B are constants. We
may remark, first, that the constant A ought to be nothing ;

for

the value of v which expresses the temperature at the centre,

when we make x = 0, cannot be infinite
;
hence the term A cos nx

should be omitted.

Further, the number n cannot be taken arbitrarily. In fact,

if in the definite equation -j- + hv we substitute the value

of v, we find

nx cos nx + (hoc 1) sin nx = 0.

As the equation ought to hold at the surface, we shall suppose
in it x =X the radius of the sphere, which gives

Let X be the number 1
hX&amp;gt;

and nX e, we have -- = X.
tan e

We must therefore find an arc 6, which divided by its tangent
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gives a known quotient X, and afterwards take n = -^ . It is
JL

evident that there are an infinity of such arcs, which have a given
ratio to their tangent ;

so that the equation of condition

nX - I _ XT
, -vr- -L m.\.
tan nX

has an infinite number of real roots.

285. Graphical constructions are very suitable for exhibiting

the nature of this equation. Let u = tan e (fig. 12), be the equation

Fig. 12.

to a curve, of which the arc e is the abscissa, and u the ordinate
;

and let u = - be the equation to a straight line, whose co-ordinates
A

are also denoted by e and u. If we eliminate u from these two

equations, we have the proposed equation
- = tan e. The un-
A

known e is therefore the abscissa of the point of intersection of

the curve and the straight line. This curved line is composed of

an infinity of arcs
;

all the ordinates corresponding to abscissae1357
2

71
&quot;

2
71

&quot;

2
71

&quot;

2
71

&quot;

are infinite, and all those which correspond to the points 0, TT,

27T, STT, &c. are nothing. To trace the straight line whose

. 6

equation is u - =
j-^ f

we form the square oi coi, and
A, 1 ilJL

measuring the quantity hX from co to h, join the point h with

the origin 0. The curve non whose equation is utsm e has for
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tangent at the origin a line which divides the right angle into two

equal parts, since the ultimate ratio of the arc to the tangent is 1.

We conclude from this that if X or 1TiX is a quantity less than

unity, the straight line mom passes from the origin above the

curve non, and there is a point of intersection of the straight line

with the first branch. It is equally clear that the same straight
line cuts all the further branches mrn, H^TTH, &c. Hence the

equation = X has an infinite number of real roots. The
tan e

first is included between and
^,

the second between TT and

,
the third between STT and -^- ,

and so on. These roots
2t *2*

approach very near to their upper limits when they are of a very
advanced order.

286. If we wish to calculate the value of one of the roots,

for example, of the first, we may employ the following rule : write

down the two equations e = arc tan u and u = -
,
arc tan u de*

A&amp;lt;

noting the length of the arc whose tangent is u. Then taking

any number for u, deduce from the first equation the value of e
;

substitute this value in the second equation, and deduce another

value of u
;
substitute the second value of u in the first equation ;

thence we deduce a value of 6, which, by means of the second

equation, gives a third value of u. Substituting it in the first

equation we have a new value of e. Continue thus to determine

u by the second equation, and e by the first. The operation gives

values more and more nearly approaching to the unknown e, as is

evident from the following construction.

In fact, if the point u correspond (see fig. 13) to the arbitrary

value which is assigned to the ordinate u
;
and if we substitute

this value in the first equation e = arc tan u, the point e will

correspond to the abscissa which we have calculated by means

of this equation. If this abscissa e be substituted in the second

equation u = -
,
we shall find an ordinate u which corresponds

to the point u. Substituting u in the first equation, we find an

abscissa e which corresponds to the point e
;
this abscissa being
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then substituted in the second equation gives rise to an ordinate

w
,
which when substituted in the first, gives rise to a third

abscissa
e&quot;,

and so on to infinity. That is to say, in order to

represent the continued alternate employment of the two pre-

Fig. 13. Fig. 14.

ceding equations, we must draw through the point u a horizontal

line up to the curve, and through e the point of intersection draw

a vertical as far as the straight line, through the point of inter

section u draw a horizontal up to the curve, through the point of

intersection e draw a vertical as far as the straight line, and so on

to infinity, descending more and more towards the point sought.

287. The foregoing figure (13) represents the case in which

the ordinate arbitrarily chosen for u is greater than that which

corresponds to the point of intersection. If, on the other hand, we

chose for the initial value of u a smaller quantity, and employed

in the same manner the two equations e = arc tan u, u -
, weA

should again arrive at values successively closer to the unknown

value. Figure 14 shews that in this case we rise continually

towards the point of intersection by passing through the points

ueu e u&quot;
e&quot;,

&c. which terminate the horizontal and vertical lines.

Starting from a value of u which is too small, we obtain quantities

e e e&quot; e
&quot;,

&c. which converge towards the unknown value, and are

smaller than it
;
and starting from a value of u which is too great,

we obtain quantities which also converge to the unknown value,

and each of which is greater than it. We therefore ascertain
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successively closer limits between the which magnitude sought is

always included. Either approximation is represented by the

formula

=
. . . arc tan - arc tan

j

- arc tan f- arc tan -
)
I \.

When several of the operations indicated have been effected,

the successive results differ less and less, and we have arrived at

an approximate value of e.

288. We might attempt to apply the two equations

e = arc tan u and u = -
A.

in a different order, giving them the form u = tan e and e = \n.

We should then take an arbitrary value of e, and, substituting it

in the first equation, we should find a value of u, which being
substituted in the second equation would give a second value of

e; this new value of e could then be employed in the same

manner as the first. But it is easy to see, by the constructions

of the figures, that in following this course of operations we

depart more and more from the point of intersection instead of

approaching it, as in the former case. The successive values of e

which we should obtain would diminish continually to zero, or

would increase without limit. We should pass successively from

e&quot; to
u&quot;,

from u&quot; to e
,
from e to u

, from u to e, and so on to

infinity.

The rule which we have just explained being applicable to the

calculation of each of the roots of the equation

tan e

which moreover have given limits, we must regard all these roots

as known numbers. Otherwise, it was only necessary to be as

sured that the equation has an infinite number of real roots.

We have explained this process of approximation because it is

founded on a reinarkable construction, which may be usefully

employed in several cases, and which exhibits immediately the

nature and limits of the roots
;
but the actual application of the

process to the equation in question would be tedious
;

it would be

easy to resort in practice to some other mode of approximation.

F. H. 18
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289. We now know a particular form which may be given to

the function v so as to satisfy the two conditions of the problem.
This solution is represented by the equation

Ae~ knH sin nx , . sin nx
v - or v

, 2 .-Kn t

x nx

The coefficient a is any number whatever, and the number n is

nX
such that --Tr=lhX. It follows from this that if the

initial temperatures of the different layers were proportional to

the quotient
--

, they would all diminish together, retaining
fix

between themselves throughout the whole duration of the cooling

the ratios which had been set up ;
and the temperature at each

point would decrease as the ordinate of a logarithmic curve whose

abscissa would denote the time passed. Suppose, then, the arc e

being divided into equal parts and taken as abscissa, we raise at

each point of division an ordinate equal to the ratio of the sine to

the arc. The system of ordinates will indicate the initial tem

peratures, which must be assigned to the different layers, from the

centre to the surface, the whole radius X being divided into equal

parts. The arc e which, on this construction, represents the

radius X, cannot be taken arbitrarily; it is necessary that the

arc and its tangent should be in a given ratio. As there are

an infinite number of arcs which satisfy this condition, we might
thus form an infinite number of systems of initial temperatures,

which could exist of themselves in the sphere, without the ratios

of the temperatures changing during the cooling.

290. It remains only to form any initial state by means of

a certain number, or of an infinite number of partial states, each

of which represents one of the systems of temperatures which we

have recently considered, in which the ordinate varies with the

distance x, and is proportional to the quotient of the sine by the

arc. The general movement of heat in the interior of a sphere

will then be decomposed into so many particular movements, each

of which is accomplished freely, as if it alone existed.

Denoting by n
lt

n
a ,

n
3 , &c., the quantities which satisfy the

equation
--

^=1 hX, and supposing them to be arranged in
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order, beginning with the least, we form the general equa
tion

vx =a~ ltn?i sin njc + a
2
e~kn& sin w

2
# + a

3
e~ kna2t sin n

s
x + &c.

If t be made equal to 0, we have as the expression of the

initial state of temperatures

vx = a
x
sin n

t
x + a

z
sin n

2
x + a

z
sin n

3
x -f &c.

The problem consists in determining the coefficients a
lt

a
2 ,
a

3

&c., whatever be the initial state. Suppose then that we know
the values of v from x = to x = X, and represent this system of

values by F(x) ;
we have

F(x) = -
(ax

sin n^x + 2
sin njc + a

s
sin n

s
x + a

4
sin n^x + &C.)

1
. . . (e).

2.91. To determine the coefficient a
lt multiply both members

of the equation by x sin nx dx, and integrate from x = to x = X.

The integral Ismmx sin nx dx taken between these limits is

5 2 ( m sin nXcosmX+ n sin mJTcos wX).m n

If m and w are numbers chosen from the roots w
1 , w

2&amp;gt;

w
3 ,

&c., which satisfy the equation
- ^= 1 hX, we have
tan TL^\.

mX nX
tanmX t&

or m cos mX sin wX n sin wX cos wJT= 0.

We see by this that the whole value of the integral is nothing;

but a single case exists in which the integral does not vanish,

namely, when m = n. It then becomes
^ ; and, by application of

known rules, is reduced to

--
2 4sn

1 Of the possibility of representing an arbitrary function by a series of this

form a demonstration has been given by Sir W. Thomson, Camb. Math. Journal,

Vol. m. pp. 2527. [A, F.]

182
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It follows from this that in order to obtain the value of the

coefficient a
lt

in equation (e),
we must write

2 \x sin UjX F(x) dx a^\X -^~
sin

Zn^X] ,

the integral being taken from x = to so = X. Similarly we have

2 \x sin n
z
x F(x)dx=aAX^ sisn

In the same manner all the following coefficients may be deter

mined. It is easy to see that the definite integral 2 Ix sin nx F (x) dx

always has a determinate value, whatever the arbitrary function

F (x) may be. If the function F(x) be represented by the

variable ordinate of a line traced in any manner, the function

xF(x) sin nx corresponds to the ordinate of a second line which

can easily be constructed by means of the first. The area bounded

by the latter line between the abscissae x andxX determines

the coefficient a
it

i being the index of the order of the root n.

The arbitrary function F(x) enters each coefficient under the

sign of integration, and gives to the value of v all the generality

which the problem requires; thus we arrive at the following

equation

sin n^xlx sin n
%
xF (x} dx

J -

sin n
z
x Ix sin n

z
x F (x) dx-J- e-** + &c.

This is the form which must be given to the general integral

of the equation

in order that it may represent the movement of heat in a solid

sphere. In fact, all the conditions of the problem are obeyed.
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1st, The partial differential equation is satisfied
; 2nd, the quantity

of heat which escapes at the surface accords at the same time with

the mutual action of the last layers and with the action of the air

on the surface
; that is to say, the equation -?- + hx = 0, which

each part of the value of v satisfies when x X, holds also when

we take for v the sum of all these parts ; 3rd, the given solution

agrees with the initial state when we suppose the time nothing.

292. The roots n
lt

n
2 ,

7?
3 ,

&c. of the equation

nX _, ,_
7 V&quot;

1 /&-A.

tan nX.

are very unequal; whence we conclude that if the value of the

time is considerable, each term of the value of v is very small,

relatively to that which precedes it. As the time of cooling

increases, the latter parts of the value of v cease to have any
sensible influence

;
and those partial and elementary states, which

at first compose the general movement, in order that the initial

state may be represented by them, disappear almost entirely, one

only excepted. In the ultimate state the temperatures of the

different layers decrease from the centre to the surface in the

same manner as in a circle the ratios of the sine to the arc

decrease as the arc increases. This law governs naturally the

distribution of heat in a solid sphere. When it begins to exist,

it exists through the whole duration of the cooling. Whatever

the function F (x) may be which represents the initial state, the

law in question tends continually to be established ;
and when the

cooling has lasted some time, we may without sensible error

suppose it to exist.

293. We shall apply the general solution to the case in

which the sphere^ having been for a long time immersed in a

fluid, has acquired at all its points the same temperature. In

this case the function F(x) is 1, and the determination of the

coefficients is reduced to integrating x sin nx dx, from x = to

x =X : the integral is

sin nX nX cos nX
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Hence the value of each coefficient is expressed thus :

2 sin nX nX cos nX
n nX sinnX cos nX

the order of the coefficient is determined by that of the root n,

the equation which gives the values of n being

nX cos nX
.,

, v
: TF = 1 hX.

sin nX
We therefore find

JiX
a -

n nXcosec nX cos nX

It is easy now to form the general value which is given by the

equation

vx e~* Wl2&amp;lt; shifts ^

Denoting by e
t , e

2 ,
e
3 ,

&c. the roots of the equation

tan e

and supposing them arranged in order beginning with the least
;

replacing n^X, n
2X, n

Q
X

} &c. by e^ e
2 ,

6
3 , &c., and writing instead

TT 7

of k and h their values 7^ and -^ ,
we have for the expression of

Ox/ xx

the variations of temperature during the cooling of a solid sphere,

which was once uniformly heated, the equation

I*

C-w xV Ci ,

sm-^FX (.XK e
:
x e

1
cosec e

x
cos

e^

X
nn-fe

+ &c.
ea) 6 cosec 6 cos e

Note. The problem of the sphere has been very completely discussed by
Biemann, Partielle Differentialglelchungen, 6169. [A. F.]
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SECTION II.

Different remarks on this solution.

294&amp;lt;. We will now explain some of the results which may be

derived from the foregoing solution. If we suppose the coefficient

h, which measures the facility with which heat passes into the air,

to have a very small value, or that the radius X of the sphere is

very small, the least value of e becomes very small ;
so that the

,

- h v . , ,
,

equation
- = 1

-^
X is reduced to -=- = 1

e -273
63

ohX
or, omitting the higher powers of e, e

2 =
^- . On the other

hand, the quantity
--- cos e becomes, on the same hypothesis,

. ex

27 Y
SmX^ And the term is reduced to 1. On making theseK ex

X
_

8fr
t

substitutions in the general equation we have v = e
Ci)X

-f &c.

We may remark that the succeeding terms decrease very rapidly

in comparison with the first, since the second root n
9
is very much

greater than
;
so that if either of the quantities h or X has

a small value, we may take, as the expression of the variations
Sht

of temperature, the equation v = e
67&amp;gt;j:

. Thus the different

spherical envelopes of which the solid is composed retain a

common temperature during the whole of the cooling. The

temperature diminishes as the ordinate of a logarithmic curve, the

time being taken for abscissa
;

the initial temperature 1 is re-

_ *hA.

duced after the time t to e
CDX

. In order that the initial

temperature may be reduced to the fraction , the value of t

Y
must be ^y CD log m. Thus in spheres of the same material but
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of different diameters, the times occupied in losing half or the

same defined part of their actual heat, when the exterior con-

ducibility is very small, are proportional to their diameters. The
same is the case with solid spheres whose radius is very small

;

and we should also &quot;find the same result OB attributing to the

interior conducibility K a very great value. The statement holds
7 ~y

generally when the quantity -^
is vejy small.

,

We may regard

the quantity ^ as very small when the body which is being

cooled is formed of a liquid continually agitated, and enclosed in

a spherical vessel of small thickness. The hypothesis is in some

measure the same as that of perfect conducibility; the tem

perature decreases then according to the law expressed by the
Sht

equation v = e
C1JX

.

295. By the preceding remarks we see that in a solid sphere
which has been cooling for a long time, the temperature de

creases from the centre to the surface as the quotient of the sine

by the arc decreases from the origin where it is 1 to the end

of a given arc e, the radius of each layer being represented

by the variable length of that arc. If the sphere has a small

diameter, or if its interior conducibility is very much greater

than the exterior conducibility, the temperatures of the successive

layers differ very little from each other, since the whole arc e

which represents the radius X of the sphere is of small length.

The variation of the temperature v common to all its points
Sht

is then given by the equation v e
cux

. Thus, on comparing the

respective times which two small spheres occupy in losing half

or any aliquot part of their actual heat, we find those times

to be proportional to the diameters.

_ 3M

296. The result expressed by the equation v = e
CDX

belongs

only to masses of similar form and small dimension. It has been

known for a long time by physicists, and it offers itself as it were

spontaneously. In fact, if any body is sufficiently small for the

temperatures at its different points to be regarded as equal, it

is easy to ascertain the law of cooling. Let 1 be the initial
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temperature common to all points ;
it is evident that the quantity

of heat which flows during the instant dt into the medium

supposed to be maintained at temperature is hSvdt, denoting

by 8 the external surface of the body. On the other hand,

if C is the heat required to raise unit of weight from the tem

perature to the temperature 1, we shall have CDV for the

expression of the quantity of heat which the volume V of the

body whose density is D would take from temperature to

temperature 1. Hence
TT/TTT-

^s tne quantity by which the

temperature v is diminished when the body loses a quantity of

heat equal to hSvdt. We ought therefore to have the equation

hSvdt gp~ or v = e

If the form of the body is a sphere whose radius is X, we shall
-M

have the equation v = e
DX

.

297. Assuming that we observe during the cooling of the

body in question two temperatures v
l
and v

z corresponding to

the times t
t
and t

z, we have

hS _ log 0j log v
2

CDV~ t
t
-t

v

&quot;

7 Cf

We can then easily ascertain by experiment the exponent ,.

If the same observation be made on different bodies, and if

we know in advance the ratio of their specific heats G and C ,

we can find that of their exterior conducibilities h and h .

Reciprocally, if we have reason to regard as equal the values

h and h
r

of the exterior conducibilities of two different bodies,

we can ascertain the ratio of their specific heats. We see by
this that, by observing the times of cooling for different liquids
and other substances enclosed successively in the same vessel

whose thickness is small, we can determine exactly the specific

heats of those substances.

We may further remark that the coefficient K which measures
the interior conducibility does not enter into the equation
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Thus the time of cooling iu bodies of small dimension does not

depend on the interior conducibility ;
and the observation of these

times can teach us nothing about the latter property ;
but it

could be determined by measuring the times of cooling in vessels

of different thicknesses.

298. What we have said above on the cooling of a sphere
of small dimension, applies to the movement of heat in a thermo

meter surrounded by air or fluid. We shall add the following

remarks on the use of these instruments.

Suppose a mercurial thermometer to be dipped into a vessel

filled with hot water, and that the vessel is being cooled freely
in air at constant temperature. It is required to find the law

of the successive falls of temperature of the thermometer.

If the temperature of the fluid were constant, and the thermo

meter dipped in it, its temperature would change, approaching

very quickly that of the fluid. Let v be the variable temperature
indicated by the thermometer, that is to say, its elevation above

the temperature of the air
;
let u be the elevation of temperature

of the fluid above that of the air, and t the time corresponding
to these two values v and u. At the beginning of the instant

dt which is about to elapse, the difference of the temperature

of the thermometer from that of the fluid being v u, the variable

v tends to diminish and will lose in the instant dt a quantity

proportional to v u
;
so that we have the equation

dv = li (v u) dt.

During the same instant dt the variable u tends to diminish,

and it loses a quantity proportional to u, so that we have the

equation
du = Hudt.

The coefficient H expresses the velocity of the cooling of the

liquid in air, a quantity which may easily be discovered by ex

periment, and the coefficient h expresses the velocity with which

the thermometer cools in the liquid. The latter velocity is very

much greater than H. Similarly we may from experiment
find the coefficient h by making the thermometer cool in fluid

maintained at a constant temperature. The two equations

du = Hudt and dv = h (v u) dt,
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or u Ae~m and -j-
= hv + hAe~Ht

at

lead to the equation

v u = le~ ht + aHe~m
,

a and Z&amp;gt; being arbitrary constants. Suppose now the initial value

of v u to be A, that is, that the height of the thermometer

exceeds by A the true temperature of the fluid at the beginning
of the immersion; and that the initial value of u is E. We can

determine a and b, and we shall have

The quantity v u is the error of the thermometer, that is

to say, the difference which is found between the temperature
indicated by the thermometer and the real temperature of the

fluid at the same instant. This difference is variable, and the

preceding equation informs us according to what law it tends

to decrease. We see by the expression for the difference vu
that two of its terms containing e~u diminish very rapidly, with

the velocity which would be observed in the thermometer if it

were dipped into fluid at constant temperature. With respect
to the term which contains e~Ht,

its decrease is much slower,

and is effected with the velocity of cooling of the vessel in air.

It follows from this, that after a time of no great length the

error of the thermometer is represented by the single term

HE H
e-Ht orh-H h-H

299. Consider now what experiment teaches as to the values

of H and h. Into water at 8 5 (octogesimal scale) we dipped
a thermometer which had first been heated, and it descended

in the water from 40 to 20 degrees in six seconds. This ex

periment was repeated carefully several times. From this we
find that the value of e~h is Q 000042

1

;
if the time is reckoned

in minutes, that is to say, if the height of the thermometer be

E at the beginning of a minute, it will be #(0-000042) at the

end of the minute. Thus we find

ftlogl0
e = 4-376127l.

1
0-00004206, strictly. [A. F.]
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At the same time a vessel of porcelain filled with water heated

to 60 was allowed to cool in air at 12. The value of e~H in

this case was found to be 0*98514, hence that of Hlogi0
e is

O006500. We see by this how small the value of the fraction

e~h is, and that after a single minute each term multiplied by
e~M is not half the ten-thousandth part of what it was at the

beginning of the minute. We need not therefore take account

of those terms in the value of v u. The equation becomes

Hu Hu H IIu
v - u= h^n &quot; -&quot;r+a^T-

From the values found for H and A, we see that the latter

quantity h is more than 673 times greater than H, that is to

say, the thermometer cools in air more than 600 times faster

than the vessel cools in air. Thus the term -j is certainly less
fi

than the 600th part of the elevation of temperature of the water

above that of the air, and as the term ,
-^ -y is less than
n H fi

the 600th part of the preceding term, which is already very small,

it follows that the equation which we may employ to represent

very exactly the error of the thermometer is

Hu
V U = T

fl

In general if H is a quantity very great relatively to Ji, we

have always the equation
Hu

v u = -= .

/I

300. The investigation which we have just made furnishes

very useful results for the comparison of thermometers.

The temperature marked by a thermometer dipped into a

fluid which is cooling is always a little greater than that of the

fluid. This excess or error of the thermometer differs with the

height of the thermometer. The amount of the correction will

be found by multiplying u the actual height of the thermometer

by the ratio of H, the velocity of cooling of the vessel in air,

to h the velocity of cooling of the thermometer in the fluid. We
might suppose that the thermometer, when it was dipped into
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the fluid, marked a lower temperature. This is what almost

always happens, but this state cannot last, the thermometer

begins to approach to the temperature of the fluid
;
at the same

time the fluid cools, so that the thermometer passes first to the

same temperature as the fluid, and it then indicates a tempera
ture very slightly different but always higher.

300*. &quot;We see by these results that if we dip different thermo

meters into the same vessel filled with fluid which is cooling

slowly, they must all indicate very nearly the same temperature
at the same instant. Calling h, h

, h&quot;,
the velocities of cooling

of the thermometers in the fluid, we shall have

Hu Hu Hu
r IT* T~

as their respective errors. If two thermometers are equally

sensitive, that is to say if the quantities h and Ti are the same,

their temperatures will differ equally from those of the fluid.

The values -

of the coefficients h, h ,
h&quot; are very great, so that the

errors of the thermometers are extremely small and often in

appreciable quantities. We conclude from this that if a thermo

meter is constructed with care and can be regarded as exact, it

will be easy to construct several other thermometers of equal
exactness. It will be sufficient to place all the thermometers

which we wish to graduate in a vessel filled with a fluid which

cools slowly, and to place in it at the same time the thermometer

which ought to serve as a model
;
we shall only have to observe

all from degree to degree, or at greater intervals, and we must

mark the points where the mercury is found at the same time

in the different thermometers. These points will be at the

divisions required. We have applied this process to the con

struction of the thermometers employed in our experiments,

so that these instruments coincide always in similar circum

stances.

This comparison of thermometers during the time of cooling

not only establishes a perfect coincidence among them, and renders

them all similar to a single model
;
but from it we derive also the

means of exactly dividing the tube of the principal thermometer,

by which all the others ought to be regulated. In this way we
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satisfy the fundamental condition of the instrument, which is, that

any two intervals on the scale which include the same number of

degrees should contain the same quantity of mercury. For the

rest we omit here several details which do not directly belong to

the object of our work.

301. We have determined in the preceding articles the tem

perature v received after the lapse of a time t by an interior

spherical layer at a distance x from the centre. It is required
now to calculate the value of the mean temperature of the sphere,

or that which the solid would have if the whole quantity of heat

which it contains were equally distributed throughout the whole

mass. The volume of a sphere whose radius is x being Q ,

o

the quantity of heat contained in a spherical envelope whose

temperature is v, and radius x} will be vdl-^-J. Hence the

mean temperature is

PrS
J n

or

the integral being taken from x to x = X. Substitute for v

its value

e~ kniH sin n.x + e~ kn*H sin njx + e~kn ** sin njc -f etc.
X X X

and we shall have the equation

We found formerly (Art. 293)

2 sin ntX n,X cos n,X
a.=---i

.
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We have, therefore, if we denote the mean temperature by z,

f
- \o *K&amp;lt;iH , . N2 Kcft

= (sm 6,
- ^ cos ej

2

-fitx* , (sm e,
- 6

2
cos e

g) -^P
.4 e

3
26 - sin 2e

*
6

3
2e - sin 2e

an equation in which the coefficients of the exponentials are all

positive.

302. Let us consider the case in which, all other conditions

remaining the same, the value X of the radius of the sphere
becomes infinitely great

1
. Taking up the construction described

r
&quot;F&quot;

in Art. 285, we see that since the quantity ^- becomes infinite,

the straight line drawn through the origin cutting the different

branches of the curve coincides with the axis of x. We find then
for the different values of e the quantities TT, 2?r, Sir, etc.

_A !i!&amp;lt;

Since the term in the value of z which contains e CD x*

becomes, as the time increases, very much greater than the

following terms, the value of z after a certain time is expressed
J--T o

without sensible error by the first term only. The index -^=CD
KTTZ

being equal to
7^ya ,

we see that the final cooling is very slow

in spheres of great diameter, and that the index of e which

measures the velocity of cooling is inversely as the square of the

diameter.

303. From the foregoing remarks we can form an exact idea

of the variations to which the temperatures are subject during the

cooling of a solid sphere. The initial values of the temperatures

change successively as the heat is dissipated through the surface.

If the temperatures of the different layers are at first equal, or

if they diminish from the surface to the centre, they do not

maintain their first ratios, and in all cases the system tends more
and more towards a lasting state, which after no long delay is

sensibly attained. In this final state the temperatures decrease

1 Biemann has shewn, Part. Diff. gleich. 69, that in the case of a very large

sphere, uniformly heated initially, the surface temperature varies ultimately as the

square root of the time inversely. [A. F.]
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from the centre to the surface. If we represent the whole radius

of the sphere by a certain arc e less than a quarter of the

circumference, and, after dividing this arc into equal parts, take

for each point the quotient of the sine by the arc, this system of

ratios will represent that which is of itself set up among the

temperatures of layers of equal thickness. From the time when

these ultimate ratios occur they continue to exist throughout the

whole of the cooling. Each of the temperatures then diminishes

as the ordinate of a logarithmic curve, the time being taken for

abscissa. We can ascertain that this law is established by ob

serving several successive values z, z
, z&quot;,

z
&quot;

y etc., which denote

the mean temperature for the times t, t + , t + 2, t + 3, etc.
;

the series of these values converges always towards a geometrical
/ n

progression, and when the successive quotients -, , , -77-, ,
etc.

z z z

no longer change, we conclude that the relations in question are

established between the temperatures. When the diameter of the

sphere is small, these quotients become sensibly equal as soon as

the body begins to cool. The duration of the cooling for a given

interval, that is to say the time required for the mean tem

perature z to be reduced to a definite part of itself , increases

as the diameter of the sphere is enlarged.

304. If two spheres of the same material and different

dimensions have arrived at the final state in which whilst the

temperatures are lowered their ratios are preserved, and if we
wish to compare the durations of the same degree of cooling in

both, that is to say, the time which the mean temperature

of the first occupies in being reduced to , and the time inm
which the temperature z of the second becomes , we mustm
consider three different cases. If the diameter of each sphere is

small, the durations and are in the same ratio as the

diameters. If the diameter of each sphere is very great, the

durations and are in the ratio of the squares of the

diameters; and if the diameters of the spheres are included

between these two limits, the ratios of the times will be greater
than that of the diameters, and less than that of their squares.
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The exact value of the ratio has been already determined 1
.

The problem of the movement of heat in a sphere includes that

of the terrestrial temperatures. In order to treat of this problem
at greater length, we have made it the object of a separate

chapter
8
.

305. The use which has been made above of the equation

= X is founded on a geometrical construction which is very

well adapted to explain the nature of these equations. The con

struction indeed shows clearly that all the roots are real
;
at the

same time it ascertains their limits, and indicates methods for

determining the numerical value of each root. The analytical

investigation of equations of this kind would give the same results.

First, we might ascertain that the equation e X tan e = 0, in

which X is a known number less than unity, has no imaginary

root of the form m + njl. It is sufficient to substitute this

quantity for e
;
and we see after the transformations that the first

member cannot vanish when we give to m and n real values,

unless n is nothing. It may be proved moreover that there can

be no imaginary root of any form whatever in the equation

A e cos X sin e
e X tan e = 0. or = 0.

cose

In fact, 1st, the imaginary roots of the factor = do not
cose

belong to the equation e X tan e = 0, since these roots are all of

the form m + nj 1
; 2nd, the equation sin e - cos e = has

X

necessarily all its roots real when X is less than unity. To prove
this proposition we must consider sin e as the product of the

infinite number of factors

1 It is 9 : &=i*X* : e^Y 2
, as may be inferred from the exponent of the first

term in the expression for z, Art. 301. [A. F.]
2 The chapter referred to is not in this work. It forms part of the Suite du

inemorie sur la theorie du mouvement de la chaleur dans les corps solides. See note,

page 10.

The first memoir, entitled Theorie du mouvf.ment de la chaleur dans les corps

solides, is that which formed the basis of the Theorie analytique du mouvement de

la chaleur published in 1822, but was considerably altered and enlarged in that

work now translated. [A. F.]

F. H. 19
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and consider cos e as derived from sin e by differentiation.

Suppose that instead of forming sin e from the product of an

infinite number of factors, we employ only the m first, and denote

the product by &amp;lt;/&amp;gt;w (
6)* To find the corresponding value of cose,

we take

*. or $ ().

This done, we have the equation

*.W-*. () = o.

Now, giving to the number m its successive values 1, 2, 3, 4, &a
from 1 to infinity, we ascertain by the ordinary principles of

Algebra, the nature of the functions of e which correspond to

these different values of m. We see that, whatever m the number

of factors may be, the equations in e which proceed from them

have the distinctive character of equations all of whose roots

are real. Hence we conclude rigorously that the equation

in which X is less than unity, cannot have an imaginary root
1
.

The same proposition could also be deduced by a different analysis

which we shall employ in one of the following chapters.

Moreover the solution we have given is not founded on the

property which the equation possesses of having all its roots

real. It would not therefore have been necessary to prove
this proposition by the principles of algebraical analysis. It

is sufficient for the accuracy of the solution that the integral

can be made to coincide with any initial state whatever; for

it follows rigorously that it must then also represent all the

subsequent states.

1 The proof given by Eiemann, Part. Diff. Gleich. 67, is more simple. The
method of proof is in part claimed by Poisson, Bulletin de la Societe Philomatique,

Paris, 1826, p. 147. [A. F.].
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CHAPTER VI.

OF THE MOVEMENT OF HEAT IN A SOLID CYLINDER.

306. THE movement of heat in a solid cylinder of infinite

length, is represented by the equations

dv _ K (d*v ldv\ j A. T/_L ^- n
dt
~
CD (dtf

+
x d~x)

l K V h
~dx

which we have stated in Articles 118, 119, and 120. To inte

grate these equations we give to v the simple particular value

expressed by the equation v = ue~ mt
;
m being any number, and

jr
u a function of x. We denote by k the coefficient - which

enters the first equation, and by h the coefficient
-^

which enters

the second equation. Substituting the value assigned to v, we

find the following condition

m d zu 1 du
7- -j-j

~
-j-

fc axr x ctx

Next we choose for u a function of x which satisfies this

differential equation. It is easy to see that the function may
be expressed by the following series ^ 3

gx*
./ - 1 _ __I

2
I X-rn

qy*

g denoting the constant -r . We shall examine more particularly

in the sequel the differential equation from which this series

192
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is derived; here we consider the function u to be known, and
we have ue~ 01ct as the particular value of v.

The state of the convex surface of the cylinder is subject
to a condition expressed by the definite equation

which must be satisfied when the radius x has its total value X\
whence we obtain the definite equation

oa 9a 42 92
4,

2
fi
2

2 V * Tl U

thus the number $r
which enters into the particular value ue~ u

is not arbitrary. The number must necessarily satisfy the

preceding equation, which contains g and X.

We shall prove that this equation in g in which h and X
are given quantities has an infinite number of roots, and that

all these roots are real. It follows that we can give to the

variable v an infinity of particular values of the form ue~aM,

which differ only by the exponent g. We can then compose
a more general value, by adding all these particular values

multiplied by arbitrary coefficients. This integral which serves

to resolve the proposed equation in all its extent is given by
the following equation

v = a^e ^ 4- a2
w

2
e~^w 4- 3

w
3
e~^ 3&amp;lt; + &c.,

ffi&amp;gt; 9v 9a&amp;gt;

&Ct denote all the values of g which satisfy the definite

equation ;
uv u

z ,
u

s ,
&c. denote the values of u which correspond

to these different roots; a
l9

a
z ,

a
a , &c. are arbitrary coeffi

cients which can only be determined by the initial state of the

solid,

307. We must now examine the nature of the definite

equation which gives the values of g, and prove that all the roots

of this equation are real, an investigation which requires attentive

examination.
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In the series

l-* +|^ -^+&c. (

which expresses the value which u receives when x = X, we shall

replace *xy- by the quantity 0, and denoting this function of

by / (0) or y, we have

ffi /9
s

0*

y =/ (0)
= 1 - + *

&quot;

2*. 3 4a

the definite equation becomes

6* O3
6*

JiX
~~

2*
~^~

32 3*
&quot;&quot;

2* 3* 4*
~^~

^
*

ff* fj*
*

1 ~^ + 5
~

s + ia 2
~~ &C

/ (0) denoting the function -

Each value of ^ furnishes a value for #, by means of the

equation

and we thus obtain the quantities ^, ^r2 , gz , &c, which enter in

infinite number into the solution required.

The problem is then to prove that the equation

must have all its roots real. We shall
J&amp;gt;rove

in fact that the

equation f(&) has all its roots real, that the same is the

case consequently with the equation f (0) =0, and that it follows

that the equation

~)
has also all its roots real, A representing the known number

hX
2
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308. The equation
m m
92

~*- ^ ~^~ 2 * ^

on being differentiated twice, gives the following relation

We write, as follows, this equation and all those which may
be derived from it by differentiation,

&c.,

and in general

Now if we write in the following order the algebraic equation

JT= 0, and all those which may be derived from it by differentiation,

dX d*X

and if we suppose that every real root of any one of these equa
tions on being substituted in that which precedes and in that which

follows it gives two results of opposite sign ;
it is certain that the

proposed equation X = has all its roots real, and that conse

quently the same is the case in all the subordinate equations

-0 &cI
&quot;* v 7 t&amp;gt;

~&quot; / i o &quot;~~&quot;

V/j CX&amp;lt;V/

dx dx* dx*

These propositions are founded on the theory of algebraic equa

tions, and have been proved long since. It is sufficient to prove

that the equations

fulfil the preceding condition. Now this follows from the general

equation
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d l

y i,d
i+l
y ^d

i+
*u

w+v+v&+*%&-*
di+lv

for if we give to a positive value which makes the fluxion -^~i
CL\j

vanish, the other two terms -~ and -^~ receive values of opposite

sign. With respect to the negative values of 6 it is&quot;evident, from

the nature of the function /(#), that no negative value substituted

for 6 can reduce to nothing, either that function, or any of the

others which are derived from it by differentiation: for the sub

stitution of any negative quantity gives the same sign to all the

terms. Hence we are assured that the equation y = has all its

roots real and positive.

309. It follows from this that the equation / (0)
= or y =

also has all its roots real
;
which is a known consequence from the

principles of algebra. Let us examine now what are the suc

cessive values which the term 6 ~hl or receives when we give

to 6 values which continually increase from = to = GO . If a

7J

value of 6 makes y nothing, the quantity 6 becomes nothing
7

also
;

it becomes infinite when 6 makes y nothing. Now it

follows from the theory of equations that in the case in question,

every root of y = lies between two consecutive roots of y = 0,

and reciprocally. Hence denoting by #
t
and

3
two consecu

tive roots of the equation y = 0, and by #
2
that root of the

equation y = which lies between
l
and

3 , every value of 6 in

cluded between
l
and

2 gives to y a sign different from that

which the function y would receive if 6 had a value included be

tween
2
and

3
. Thus the quantity 6 is nothing when 0=0^ it

y

is infinite when =
2 ,
and nothing when

3
. The quantity

y
must therefore necessarily take all possible values, from to in

finity, in the interval from to
Z ,
and must also take all possible

values of the opposite sign, from infinity to zero, in the interval

from
2
to #

3
. Hence the equation A = necessarily has one

i/
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real root between
X
and

3
and since the equation y = has all its

roots real in infinite number, it follows that the equation A Q~
\j

has the same property. In this manner we have achieved the

proof that the definite equation

- -&c2

2 2
2
.4

2
2

2
.4

2
.62

in which the unknown is #, has all its roots real and positive. We
A proceed to continue the investigation of the function u and of the

\ differential equation which it satisfies.

310. From the equation y -f
^|

-f 6 -~ = 0, we derive the general

equation -jji
+ (i+ 1) J^TI

+ &^r^
=

0, and if we suppose = we

have the equation

d^y_ 1 y
dBi+l

i + ldOif

which serves to determine the coefficients of the different terms of

the development of the function/ (0), since these coefficients depend
on the values which the differential coefficients receive when the

variable in them is made to vanish. Supposing the first term to

be known and to be equal to 1, we have the series

_ _^ __ ____ _..

If now in the equation proposed

,
d*u

,
1 du -

gu + -r-z +--r = Q
dor x dx

x*
we make g^

=
0, and seek for the new equation in u and 0, re

garding u as a function of 0, we find

du d?u
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Whence we conclude

_ &c* 2

It is easy to ex^es^^e^lim of this series. To obtain the

result, develope as follows the function cos_(a^siii#) in cosines of

multiple arcs. We have by known transformations ^\

o i \ iw*^1 -ae-*V=l
,
-^ae^~l fcie-*^

2 cos (a sin x) e
*

e +e e^
,

and denoting e
x ~ l

by o&amp;gt;,

aw cut)&quot;
1 aw aw&quot;

1

2 cos (a sin #)
= e

*
e~

* + e~
a

e
2

.

Developing the second member according to powers of
&&amp;gt;,

we
find the term which does not contain w in the development of

2 cos (a sin x) to be

The coefficients of a)
1

,
o
3

,
a&amp;gt;

5

,
&c. are nothing, the same is the case

with the coefficients of the terms which contain of1

, o&amp;gt;~

3

, o&amp;gt;~

5

, &c. ;

the coefficient of aT2
is the same as that of o&amp;gt;

2

;
the coefficient of o&amp;gt;

4
is

4.6.8 22
. 4. 6. 8. 10

^

the coefficient of of
4
is the same as that of &&amp;gt;

4
. It is easy to express

the law according to which the coefficients succeed
;
but without

stating it, let us write 2 cos 2a? instead of
(o&amp;gt;

2 + o&amp;gt;~

2

),
or 2 cos 4# in

stead of
(ft)

4 + &)~
4

),
and so on : hence the quantity 2 cos (a sin x} is

easily developed in a series of the form

A + B cos 2x + Ccos 4# +D cos 6x + &c.,

and the first coefficient A is equal to

s fr
; , f t .*;.!.

if we now compare the general equation which we gave formerly

2
TT

&amp;lt;^&amp;gt;(a;)

=
^ l&amp;lt;f)(x)dx + cos #

|&amp;lt;^(a;)

cos a?(?ic + &c,

j f X
- 1 4

(
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with the equation

2 cos (a sin x) = A 4- B cos Zx + C cos 4# + &c.,

we shall find the values of the coefficients A, B, G expressed by
definite integrals. It is sufficient here to find that of the first

coefficient A. We have then

- A = -
I cos (a sin x) dx,

the integral should be taken from x = to x = TT. Hence the

value of the series 1 ^ + ^ T*
~
w~4? 6*

+ ^ c&amp;gt; *s ^iat ^ tne

definite integral dx cos (a sin x). We should find in the same
Jo

manner by comparison of two equations the values of the successive

coefficients B, G, &c.; we have indicated these results because they

are useful in other researches which depend on the same theory.

It follows from this that the particular value of u which satisfies

the equation

d*u Idu .If , /- . . 7

9U + j
+ ~

c

= 1S
-J

cos
( ^ sm *) fo*

the integral being taken from r = to r = TT. Denoting by q this

[dx
value of u, and making u = qS, we find S = a + & 2 &amp;gt;

and we have
J #2

as the complete integral of the equation gu + ^ 2 + -
-r- = 0,

u ==
|
a 4-6

|
T?
--

&amp;gt;2
/cos

(a;^ sin r) Jr.
j

a? in r J j
&amp;gt;

] Jcos (asjg sin r) dr\

a and & are arbitrary constants. If we suppose 6 = 0, we have,

as formerly,

u = I cos (x Jg sin r) dr.

With respect to this expression we add the following remarks.
^^_uijmjjuBjjpinwr

311. The equation

If&quot; /9
2

/9* /9
6

-
J

cos (^ sin w) c?M = 1 - ^ + ^-g
-
gi-pTgi

+ &c.
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verifies itself. We have in fact

Icos (0 sin
11)

du = Idu (l ^ 1 ,

^
\-

&c.J
;

and integrating from u to u TT, denoting by $
2 , S# 6̂ ,

&c.

the definite integrals

we have

Isirfudu, lsm*udu, I sin
6 u du, &c.,

f fl* fi* f)
6

(COS (0 Sin
tt) &amp;lt;?M

= 7T - W $
2 + rj S4

- w S
t
4- &C.,

j

it remains to determine $
2, 4̂ ,

S
6 ,

&c. The term sin
n
u, n being

an even number, may be developed thus

sin
n u A n + Bn cos 2u + Cn cos ku + &c.

Multiplying by du and integrating between the limits u = and

U = TT, we have simply I sin
n u du = An7r, the other terms vanish.

From the known formula for the development of the integral

powers of sines, we have

A -- - A -! LL* A -L 4 5 6
2
~~

22
1

~~

2
4

1 2 6
~

26
l 2 3

*

Substituting these values of S# S^, S& &c., we find

1 f 6
Z

6* QQ

-
J
cos (0 sin u) du=I-^ + ^fp

-
^ ^ ^ + &c.

We can make this result more general by taking, instead of

cos (t sin it), any function whatever
(/&amp;gt;

of t sin u.

Suppose then that we have a function
&amp;lt;j&amp;gt; (z) which may be

developed thus

we shall have

* 00 = &amp;lt; + f + f + f
&quot; + &c. ;

f t
3

(f&amp;gt; (t
sin u)

= $ + (/&amp;gt;

sin w + - $ sin
2 w + -5 c^&quot;

sin
3 w + &c.

X
and -

|dw &amp;lt;f&amp;gt; (* sin w) = &amp;lt;f&amp;gt; + A 6 + /S!2
&amp;lt;f&amp;gt;&quot; + S #

3 &amp;lt;#&amp;gt;

&quot;

-f &c. ,| (e).
7TJ 25 o
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Now, it is easy to see that the values of 8
lt
$

3 ,
$

5,
&c. are

nothing. With respect to $
2, $

4, SR)
&c. their values are the

quantities which we previously denoted by A# A# A
R ,
&c. For

this reason, substituting these values in the equation (e) we have

generally, whatever the function
&amp;lt;/&amp;gt; may be,

u) du

in the case in question, the function $ (z) represents cos z, and we

have
(j&amp;gt;

= 1,
&amp;lt;/&amp;gt;&quot;

= 1, &amp;lt;

iv =
1,

&amp;lt;/&amp;gt;*

=
1, and so on.

312. To ascertain completely the nature of the function/ (0),

and of the equation which gives the values of g, it would be

necessary to consider the form of the line whose equation is

which forms with the axis of abscissae areas alternately positive

and negative which cancel each other ;
the preceding remarks, also,

on the expression of the values of series by means of definite

integrals, might be made more general. When a function of the

variable x is developed according to powers of x, it is easy to

deduce the function which would represent the same series, if the

powers x, x*, x
3

, &c. were replaced by cos x, cos 2aj, cos 3x, &c. By
making use of this reduction and of the process employed in the

, second paragraph of Article 235, we obtain the definite integrals

which are equivalent to given series
;
but we could not enter upon

this investigation, without departing too far from our main object.

It is sufficient to have indicated the methods which have

enabled us to express the values of series by definite integrals.

We will add only the development of the quantity 6
fj^

in a

continued fraction.

313. The undetermined y orf(0) satisfies the equation
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whence we derive, denoting the functions

% tfy tfy o,
dO W dO&quot;

by y\ y&quot;&amp;gt; y &quot;&amp;gt; &c.,

-y =y + 0y&quot;
or g. =

_ __1-2-3-4-5- &c/

&c.;

whence we conclude

Thus the value of the function
&amp;gt; ,x

- which enters into the
7W)

definite equation, when expressed as an infinite continued

fraction, is

_0_ _ _0_ _0_ 6

1-2-3-4- 5-&C.&quot;

314. We shall now state the results at which we have up to
|

this point arrived.

If the variable radius of the cylindrical layer be denoted by x,

and the temperature of the layer by v, a function of a? and the

time t
;
the required function v must satisfy the partial differential

equation
dv _ , (d?v

1 dv
+

for v we may assume the following value

v = ue~mt
;

u is a function of a?, which satisfies the equation

m d?u 1 du
T w + -r-a-h- j- = 0.
K ax x ax
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7)1 X*
If we make =

,
and consider u as a function of x, we have

K u

du Q d*uu +
d~e

+ de^-
The following value

_i a
2

J* J*
4

_ &u 1 u + a
^2

02 ~r
2

2
3
2 42

satisfies the equation in u and 0, We therefore assume the value

of u in terms of x to be

- mo? m* a? m3 x3

~
I 2*&quot;

+ F 2
2
.1

2
~ ,77& * :c

the sum of this series is

the integral being taken from r = to r = TT. This value of v in

terms of x and m satisfies the differential equation, and retains a

finite value when x is nothing. Further, the equation hu +
-j-
=0

must be satisfied when x = X the radius of the cylinder. This

condition would not hold if we assigned to the quantity m any
value whatever

;
we must necessarily have the equation

2 &quot;1-2-3-4- 5- &c.

i&amp;gt;
. Vj m X*

in which denotes
-j- -^

.

This definite equation, which is equivalent to the following,

l fi^
*

&amp;gt; * \ fi ^V ^
Xr+ 2

~
2
~&quot;

2 + ~
*~ + 2

&quot;&quot;

&quot;

gives to 6 an infinity of real values denoted by V Z , 3 , &c. ;
the

corresponding values of m are

2 3

V2 &amp;gt; Y 2 JT2
&amp;lt;

&quot;

*

thus a particular value of v is expressed by

_2
2

Atf?i
f / x i-

Trv-e ~x*~ I cos f 2
-y,v^ sin
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We can write, instead of V one of the roots V 2 , 3, &c., and

compose by means of them a more general value expressed by
the equation

Z-kf9i r / x \

= a
l
e~ x*

I cos f 2
-^ Jul

sin
qjdq

g%#3 r

A-a / cos f 2^7^ sin c + &c.

!,
a

2,
a

3 ,
&c. are arbitrary coefficients : the variable q dis

appears after the integrations, which should be taken from q =
to q = TT.

315. To prove that this value of v satisfies all the conditions
f -,

&quot; WfJWM . IT- .^Sf^SJ*^ ****M&amp;gt;*iB-

oi the problem and contains the general solution, it remains only
to determine -the coefficients a

lf 2 ,
a
z , &c. from the initial state.

Take the equation

v = afm
^u^ + a

2
e~mit u

2 + a/r
m^ u

3 + &c.,

in which w
1?
w

2 ,
w

3 ,
&c. are the different values assumed by the

function u, or

- m xz m* x*
~ + ~

77?

when, instead of
-y-,

the values ^, ^2, ^3 ,
&c. are successively sub-

K

stituted. Making in it t = 0, wT
e have the equation

V =*
a^fj -f a2

u
2 + 3

w
3 + &c.,

in which F is a given function of x. Let &amp;lt; (x) be this function
;

if we represent the function u
i
whose index is i by &amp;gt;/r (xtjff^ we

have

^ (x)
= a^ (a? V^) + a.^ (x Jg} + a

3^ (a; v/^3) + &c.

To determine the first coefficient, multiply each member of

the equation by c^ dx, cr^ being a function of x, and integrate from

x = to x = X. We then determine the function
cr^ ,

so that after

the integrations the second member may reduce to the first tenn

only, and the coefficient a
l may be .found, all the other integrals
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having nul values. Similarly to determine the second coefficient

a
a,
we multiply both terms of the equation

&amp;lt;f&amp;gt; (x)
= a

zu^ + 2
w

2 + o
3
u

B -f &c.

by another factor &amp;lt;r

2 dx, and integrate from x = to x - X. The

factor &amp;lt;r

2
must be such that all the integrals of the second member

vanish, except one, namely that which is affected by the coefficient

* a
2
. In general, we employ a series of functions of x denoted by

&quot;i&amp;gt; &quot;2 s
^a wnicn correspond to the functions u

iy u# u
s ,

&c. ;

each of the factors cr has the property of making all the terms

which contain definite integrals disappear in integration except

one
;
in this manner we obtain the value of each of the coefficients

a,, GL, aa , &c. We must now examine what functions enjoy the
1 2 3 .^..I^IMB^B^^^^^^^ :.., .

J
-...

property in question.

316. Each of the terms of the second member of the equation

is a definite integral of the form a I audx u being a function of x

which satisfies the equation

m d?u 1 du _
~j~ U ~T&quot; ~7 n *l ~7~ ^
A; da? x dx

we have therefore alcrudx = -a |(--7^-fo -T~).
J m]\xdx dx J

Developing, by the method of integration by parts, the terms

du , d*u ,

, /V du , ~ (T C , /&amp;lt;r\

we have \- -^-dx = C+ u |wa-
Jicau; x ) \xj

, f c
2w , -p. &amp;lt;&* cZcr T c?V

7and I &amp;lt;7 7 o dx V } -^- a u-^ h |w -7, a#.
J ad? a,^ dx J dx^~

The integrals must be taken between the limits x = and

x = X, by this condition we determine the quantities which enter

into the development, and are not under the integral signs. To in

dicate that we suppose x = in any expression in x, we shall affect

that expression with the suffix a; and we shall give it the suffix

co to indicate the value which the function of x takes, when we

give to the variable x its last value X.
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Supposing x = in the two preceding equations we have

n n , / a\ in r\ fdu da\= C +
[
u -} and = D+-r &amp;lt;r w-y-1,

\ xj a \fc dxj a

thus we determine the constants C and D. Making then x =X in

the same equations, and supposing the integral to be taken from

x = to x = X, we have

du,

f d?u 7 fdu da\ fdu da\ f d2
cr .

and cr -y-. ax = -
7
a u -j-\ ( 7

a u -y- + lu -=-5 cZa7,
J ^ \dx dxja \dx dx] a J dx2

thus we obtain the equation

-
m C -. { ( d?(r \xj] 1

fdu da a\-
-j-

lo-udx = \u
-r-

i

- u T \dx + [-r- 0- U-J-+U-)k j J {
dx dx

) \dx dx x/v

fdu dcr o-\-
(-r &amp;lt;T-u-j- + u-} .

\dx dx xj a

p *(-d2
cr \x

317. If the quantity -^ 2
---r which multiplies u under the

sign of integration in the second member were equal to the pro

duct of cr by a constant coefficient, the terms

u ^f-? ) dx [ and I audx
dx j J

would be collected into one, and we should obtain for the required

integral laudx a value which would contain only determined quan

tities, with no sign of integration. It remains only to equate that

value to zero.

Suppose then the factor a to satisfy the differential equation of

,
the second order y cr + -y^

--4^- = in the same manner as the
K cix dx

function u satisfies- the equation

m d2
u 1 du

F. H. 20



306 THEORY OF HEAT. [CHAP. VI.

m and n being constant coefficients, we have

n m[ , fdu do- &amp;lt;r\ fdu do- o\
7 \ffudx =-7-0- u-j- +u-} -T-O- W-7- + M-) .

k J \dx dx x/v \dx dx x/ a

Between u and a a very simple relation exists, which is dis-

covered when in the equation 7;&quot;
+ :^

--
T~~

= we suPPose

cr = xs
;
as the result of this substitution we have the equation

n d*s Ids _
k

S
*~da?

+
xdx~&quot;&amp;gt;

which shews that the function s depends on the function u given

by the equation
m d*u 1 du

f.T u + -7~2 + ~ T~ = 0-
A; cZ^

2
cc rfa?

To find s it is sufficient to change m into n in the value of u
;

the value of u has been denoted by ^ (#A/ T; J
,
that of cr will

therefore be xty (xA/ -^ J
.

We have then

cZ?^ do- a-

-j- (7 U-j- + U-
dx dx x

=-Vf* (Vf)
t

(VS -V^ K/l^ (Vf)

the two last terms destroy each other, it follows that on making
x 0, which corresponds to the suffix a, the second member

vanishes completely. We conclude from this the following equa
tion

n m m
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It is easy to see that the second member of this equation is

always nothing when the quantities m and n are selected from

those which we formerly denoted by mv m^ m3 , &c.

We have in fact

W
and hX= .

comparing the values of /UT we see that the second member of the

equation (/) vanishes.

It follows from this that after we have multiplied by adx the

two terms of the equation

&amp;lt;#&amp;gt; (*0
= CW + a

a
w-

a + o,w8 + &c.,

and integrated each side from a? = to a; = X, in order that each of

the terms of the second member may vanish, it suffices to take

for a the quantity xu or x^r [A-r-J .

V V K J

We must except only the case in which n = m, when the value

of laudx derived from the equation (/) is reduced to the form -,

and is determined by known rules.

318. If A / -J-
=

/j,
and A/ T = v, we have

V A/ V A/
1

If the numerator and denominator of the second member are

separately differentiated with respect to v, the factor becomes, on

making fj,
= v

}

We have on the other hand the equation

d*u 1 du , itA+.-+-Pl
or ^4--T

202
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and also lix ^ + ^x^
f =

0,

or, hty + pfy =
;

hence we have

we can therefore eliminate the quantities -\Jr
and

ijr&quot;
from the

integral which is required to be evaluated, and we shall find as the

value of the integral sought

putting for
/JL

its value, and denoting by U
t
the value which the

function u or ^rlx A / y* )
takes when we suppose x = JT. The

V V K /

index i denotes the order of the root m of the definite equa

tion which gives an infinity of values of m. If we substitute

mt or

\319.
It follows from the foregoing analysis that we have the

, two equations

!
x

f-, fhX\*}X*U*b = and 2 -J~ I i

the first holds whenever the number i and J are different, and the

second when these numbers are equal.

Taking then the equation &amp;lt;j&amp;gt; (x) =a1
u

l
+ a

2
ii

2 + a
8
u

a
+ &c., in

which the coefficients av a
2 ,
a

3 ,
&c. are to be determined, we shall

find the coefficient denoted by a. by multiplying the two members

of the equation by xu
tdx, and integrating from x = to x X

;

the second member is reduced by this integration to one term

only, and we have the equation
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which gives the value of a
t
. The coefficients a

l9
a

2 ,
a

3 , . . . ap being
thus determined, the condition relative to the initial state expressed

by the equation &amp;lt;f&amp;gt;
(x)

= a^ + a
2
u

2 + a
3
u
s + &c., is fulfilled.

We can now give the complete solution of the proposed problem;
it is expressed by the following equation :

f-

J i
_

+ &C.

The function of a? denoted by u in the preceding equation is

expressed by

all the integrals with respect to # must be taken from a? = to

x X, and to. find the function u wer must integrate from q = to

&amp;lt;2

=
7r; (a?) is the initial value of the temperature, taken in the

interior of the cylinder at a distance # from the axis, which

function is arbitrary, and 6V 6
Z ,
6y &c. are the real and positive

roots of the equation

JLX-JL JL JL _L 6

&quot;2

~
F^ ^ 3 - 4^ 5-&c.

320. If we suppose the cylinder to have been immersed for

an infinite time in a liquid maintained at a constant temperature,
the whole mass becomes equally heated, and the function

(/&amp;gt; (x)

which represents the initial state is represented by unity. After

this substitution, the general equation represents exactly the

gradual progress of the cooling.

If t the time elapsed is infinite, the second member contains

only one term, namely, that which involves the least of all the

roots
lt 2 , V &c.; for this reason, supposing the roots to be

arranged according to their magnitude, and to be the least, the

final state of the solid is expressed by the equation
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From the general solution we might deduce consequences

similar to those offered by the movement of heat in a spherical

mass. We notice first that there are an infinite number of

particular states, in each of which the ratios established between

the initial temperatures are preserved up to the end of the cooling.

I When the initial state does not coincide with one of these simple

I states, it is always composed of several of them, and the ratios of

the temperatures change continually, according as the time increases.

In general the solid arrives very soon at the state in which the

temperatures of the different layers decrease continually preserving

the same ratios. When the radius X is very small 1
,
we find that

2ft

the temperatures decrease in proportion to the fraction e&quot; CDX.

If on the contrary the radius X is very large
2
, the exponent of

e in the term which represents the final system of temperatures
contains the square of the whole radius. We see by this what

influence the dimension of the solid has upon the final velocity of

cooling. If the temperature
3
of the cylinder whose radius is Xy

passes from the value A to the lesser value B, in the time T, the

temperature of a second cylinder of radius equal to X will pass
from A to B in a different time T . If the two sides are thin, the

ratio of the times T and Tf

will be that of the diameters. If, on

I
the contrary, the diameters of the cylinders are very great, the

1 ratio of the times T and T will be that of the squares of the

diameters.

1 When X is very small, Q=
-% &amp;gt;

from tlie equation in Art. 314.^ Hence

_ &kte 2hM

e
^ becomes e,

^
.

In the text, h is the surface conducibility.
2

&quot;When X is very large, a value of B nearly equal to one of the roots of the
B B B fi

quadratic equation 1= _ will make the continued fraction in Art. 314
i O 4 O

assume its proper magnitude. Hence 0=1-446 nearly, and

_?2to0 5 78ft*

e,
x*

becomes e
x*

.

The least root of /(0) = is 1-4467, neglecting terms after 4
.

3 The temperature intended is the mean temperature, which is equal to

[A. P.]



CHAPTER VII.

PROPAGATION OF HEAT IN A RECTANGULAR PRISM.

321. THE equation ^ + ^4 + j^
= 0, which we have stated

in Chapter II., Section iv., Article 125, expresses the uniform move
ment of heat in the interior of a prism of infinite length, sub
mitted at one end to a constant temperature, its initial tempera
tures being supposed nul. To integrate this equation we shall,

in the first place, investigate a particular value of v, remarking
that this function v must remain the same, when y changes sign
or when z changes sign ; an.d that its value must become infinitely

small, when the distance x is infinitely great. From this it is

easy to see that we can select as a particular value of v the

function ae~
mx

cos ny cos pz ;
and making the substitution we find

mz n3

p
z

0. Substituting for n and p any quantities what

ever, we have m = Jtf+p*. The value of v must also satisfy the

definite equation I v +
2~
= ^ when y = l or ~Z, and the equation

k
V +

~dz

= Wll6n Z = l r ~ l
(Cnapter II., Section IV., Article 125).

If we give to v the foregoing value, we have

n sin ny + 7 cos ny = Q and p sin pz + 7 cospz = 0,

hi hi
or

-j-

= pi tan pi, -r = nl tan nl.

We see by this that if we find an arc e, such that etane is equal

to the whole known quantity T I, we can take for n or p the quan-
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tity y. Now, it is easy to see that there are an infinite number

of arcs which, multiplied respectively by their tangents, give the

same definite product -j-,
whence it follows that we can find

K

for n or p an infinite number of different values.

322. If we denote by e
lt

e
2 ,

e
a ,

&c. the infinite number of

arcs which satisfy the definite equation 6 tan e =
^-

,
we can take

for n any one of these arcs divided by I. The same would be the

case with the quantity p ;
we must then take w2 = n2 + p

2
. If we

gave to n and p other values, we could satisfy the differential

equation, but not the condition relative to the surface. We can

then find in this manner an infinite number of particular values

of v, and as the sum of any collection of these values still satisfies

the equation, we can form a more general value of v.

Take successively for n and p all the possible values, namely,

^, -j, ^
3

,
&c. Denoting by a

lf
a

2 ,
a

3 , &c., 7&amp;gt;

1?
6
2 , 6

8 , &c., con

stant coefficients, the value of v may be expressed by the following

equation :

v = (al
e~x %2+%2

cos njj -f a
a

e&quot;

a ?+^ cos njj + &c.) \ cos n^z

4- (a^e~
x^ +n** cos n$ -f a -* ****+&quot;* cos njj + &c.) 5

2
cos n^z

+ (a^-*
V^2+W3

2

cos n 4- af-****+* cos n
zy -f &c.) b

a
cos n

3
z

+ &c.

323. If we now suppose the distance x nothing, every point of

the section A must preserve a constant temperature. It is there

fore necessary that, on making x 0, the value of v should be

always the same, whatever value we may give to y or to z
; pro

vided these values are included between and I. Now, on making
x 0, we find

v = (at
cos n^y + a

2
cos n

zy + a
3
cos n

3y + &c.)

x (^ cos n^z 4- &amp;gt;

2
cos n

zy -f &
3
cos n

zy + &c.).
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Denoting by 1 the constant temperature of the end A, assume

the two equations

1 = a
:
cos njj + 2

cos n
zy + a

3
cos ??

zy + &c
,

1 = \ cos n$ + b
2
cos v

2y + &
3
cos njj + &c.

It is sufficient then to determine the coefficients a
lf
a

a ,
a-

3 , &c.,

whose number is infinite, so that the second member of the equa
tion may be always equal to unity. This problem has already

been solved in the case where the numbers n
lt
n

3 ,
n

s ,
&c. form the

series of odd numbers (Chap. III., Sec. IL, Art. 177). Here

?ij,
n

2&amp;gt;

n
3 j &c. are incommensurable quantities given by an equa

tion of infinitely high degree.

324. Writing down the equation

1 = dj cos n^y + a
a
cos n$ + a

3
cos n.

Ay + &c.,

multiply the &quot;two members of the equation by cos n^y dy, and take

the integral from y = to y l. We thus determine the first

coefficient ar The remaining coefficients may be determined in a

similar manner.

In general, if we multiply the two members of the equation by
cos vy, and integrate it, we have corresponding to a single term

of the second member, represented by a cos nyt
the integral

a Icos ny cos vy dij or
^al

cos (n v) y dy + -^
a /cos (n + v) ydy,

sin (n
&quot;

&quot;)*
+^TV

sin (n +v]

and making y=-l t

a ((n 4- ii) sin (n v)l+(n v) sin (n -f-
v)J.\

a I
-~tf~?~ y

Now, every value of w satisfies the equation wtanw/ = T; the

same is the case with v, we have therefore

n tan vl = v tan z^Z
;

or n sin w cos vl v sin i/ cos ?z = 0.
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Thus the foregoing integral, which reduces to

-2
-

2 (
n sm nl cos vlv cos nl sin vl),

is nothing, except only in the case where n v. Taking then the

integral
a
jsin (n v)l sin (n + v) I]

2
[

n-v n + v J

we see that if we have n = v, it is equal to the quantity

sin 2

It follows from this that if in the equation

1 = a
i
cos 71$ + 2

cos n
2y + a

s
cos n

zy + &c.

we wish to determine the coefficient of a term of the second

member denoted by a cos nyy
we must multiply the two members

by cos ny dy, and integrate from y = to y L We have the

resulting equation

f
l * * A sin2nZ\ 1 .

cos nydy = -^a\l H -
1
= - sin nl,

Jo
y J 2 V 2 / fi

whence we deduce x ^
-

. _ 7
= - a. In this manner the coeffi-

2nl + sin 2nl 4

cients a^ a
2 ,

a
3 ,

&c. may be determined
;
the same is the case

with b
lt

6
2 , 6

3 , &c., which are respectively the same as the former

coefficients.

325. It is easy now to form the general value of v. 1st, it

d?v dzv d?v
satisfies the equation -Y-.+ T-^ + -T^ = O; 2nd. it satisfies the two

dx dy dz

conditions
k-j-

+ hv = 0, and
Jc-j-

+ hv 0; 3rd, it gives a constant

value to v when we make x 0, whatever else the values of y and

z may be, included between and Z; hence it is the complete
solution of the proposed problem.

We have thus arrived at the equation

cos n^y sin nj, cos n
zy sin n

s
l cos n

zy
in 2 2n7+ sin 2 2w^ + sin2w

C
J

1 _ sin n cos n~
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or denoting by 6
1}

e
2 ,

e
3 ,

&c. the arcs
nj.,

n
tl,

n
3l,

&c.

e.y . e9y . ey
sin e, cos -~ sin e

2
cos -~- sin e

3
cos

-y-
1

+_ + &c .

4 2e
x
+ sin e

l
2e

a + sin e
2

2e
3 + sin e

3

an equation which holds for all values of y included between

and I, and consequently for all those which are included between

and I, when x = 0.

Substituting the known values of a
l9

b
lt
a

a ,
&
2 ,
a

a ,
b
3 ,

&c. in

the general value of v, we have the following equation, which

contains the solution of the proposed problem,

v _ smnjcosnf fsmnjcoan.y y^~^ ,

4.4 2

sin njcosnjs / sin n^cosn.y v^TT^ , &c*
in 2?i

2
Z V 2^? + sin 2n^

sin w ? cos n.z f sin w.Z cos n. yj__s_ _ _I_i
~

g a

2/i
3
^ + sin 2n

2
l \ZriJ + sin 2/i^

+ &c.................................................... (E).

The quantities denoted by n
lt n^ n

B ,
&c. are infinite in

number, and respectively equal to the quantities j , j ,
,
3

, &c.
;

the arcs, e
1 ,

e
2 ,

e
g , &c., are the roots of the definite equation

hi
e tan e = -=- .

326. The solution expressed by the foregoing equation E is

the only solution which belongs to the problem ;
it represents the

general integral of the equation -^ + -^
2 + y-2

= 0, in which the

arbitrary functions have been determined from the given condi

tions. It is easy to see that there can be no different solution.

In fact, let us denote by -fy (as, y, z] the value of v derived from the

equation (E), it is evident that if we gave to the solid initial tem

peratures expressed by ty(x, y, z), no change could happen in the

system of temperatures, provided that the section at the origin
were retained at the constant temperature 1: for the equation

j-a + -5-5 + ~J~&amp;gt; being satisfied, the instantaneous variation of
dx dy dz&quot;
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the temperature is necessarily nothing. The same would not be

the case, if after having given to each point within the solid whose

co-ordinates are x, yt
z the initial temperature ty(x, y, z), we gave

to all points of the section at the origin the temperature 0. We
see clearly, and without calculation, that in the latter case the

state of the solid would change continually, and that the original

heat which it contains would be dissipated little by little into the

air, and into the cold mass which maintains the end at the tem

perature 0. This result depends on the form of the . function

ty(x, y, z), which becomes nothing when x has an infinite value as

the problem supposes.

A similar effect would exist if the initial temperatures instead

of being + ty (x, y, z) were -^ (#, y, z] at all the internal points

of the prism ; provided the section at the origin be maintained

always at the temperature 0. In each case, the initial tempera

tures would continually approach the constant temperature of the

medium, which is
;
and the final temperatures would all be nul.

327. These preliminaries arranged, consider the movement of

heat in two prisms exactly equal to that which was the subject of

the problem. For the first solid suppose the initial temperatures

to be + ^(a?, y, s), and that the section at origin A is maintained

at the fixed temperature 1. For the second solid suppose the

initial temperatures to be ^ (x, y, z), and that at the origin A
all points of the section are maintained at the temperature 0. It

is evident that in the first prism the system of temperatures can

not change, and that in the second this system varies continually

up to that at which all the temperatures become nul.

If now we make the two different states coincide in the same

solid, the movement of heat is effected freely, as if each system
alone existed. In the initial state formed of the two united

systems, each point of the solid has zero temperature, except the

points of the section A, in accordance with the hypothesis. Now
the temperatures of the second system change more and more,

and vanish entirely, whilst those of the first remain unchanged.
Hence after an infinite time, the permanent system of tempera
tures becomes that represented by equation E, or v = ^r(#, y, z].

It must be remarked that this result depends on the condition

relative to the initial state
;

it occurs whenever the initial heat
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contained in the prism is so distributed, that it would vanish

entirely, if the end A were maintained at the temperature 0.

328. We may add several remarks to the preceding solution.

1st, it is easy to see the nature of the equation e tan e =
-j-

;
we

need only suppose (see fig. 15) that we have constructed the curve

u = e tan e, the arc e being taken for abscissa, and u for ordinate.

The curve consists of asymptotic branches.

Fig. 15.

The abscissa? which correspond to the asymptotes are
^TT,357

o 71
&quot;

o 77
&quot;

9
71

&quot; &c
-&amp;gt;

those which correspond to points of intersec

tion are TT, 2?r, 3?r, &c. If now we raise at the origin an ordinate

equal to the known quantity ~r ,
and through its extremity draw

K.

a parallel to the axis of abscissa?, the points of intersection will

give the roots of the proposed equation e tan e =
-j-

. The con

struction indicates the limits between which each root lies. We
shall not stop to indicate the process of calculation which must be

employed to determine the values of the roots. Researches of

this kind present no difficulty.

329. 2nd. We easily conclude from the general equation (E)
that the greater the value of x becomes, the greater that term of

the value of v becomes, in which we find the fraction jT
&quot;1*&quot;* *l%

with respect to each of the following terms. In fact, n
l9

n
z ,

w
3 ,

&c. being increasing positive quantities, the fraction e~ rx
2nr

is
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greater than any of the analogous fractions which enter into the

subsequent terms.

Suppose now that we can observe the temperature of a point

on the axis of the prism situated at a very great distance x, and

the temperature of a point on this axis situated at the distance

x + 1, 1 being the unit of measure
;
we have then y 0, z = 0,

and the ratio of the second temperature to the first is sensibly

equal to the fraction e~ ^2ni\ This value of the ratio of the tem

peratures at the two points on the axis becomes more exact as the

distance x increases.

It follows from this that if we mark on the axis points each of

which is at a distance equal to the unit of measure from the pre

ceding, the ratio of the temperature of a point to that of the point

which precedes it, converges continually to the fraction e~^2ni z

;

thus the temperatures of points situated at equal distances end

by decreasing in geometrical progression. This law always holds,

whatever be the thickness of the bar, provided we consider points

situated at a great distance from the source of heat.

It is easy to see, by means of the construction, that if the

quantity called I, which is half the thickness of the prism, is very

small, n
{
has a value very much smaller than n

z , or ??
3 ,

&c.
;

it

follows from this that the first fraction e~
x^2ni*

is very much

greater than any of the analogous fractions. Thus, in the case in

which the thickness of the bar is very small, it is unnecessary to

be very far distant from the source of heat, in order that the tem

peratures of points equally distant may decrease in geometrical

progression. The law holds through the whole extent of the bar.

330. If the half thickness Z is a very small quantity, the

general value of v is reduced to the first term which contains

e-x\/zn^^ Thus the function v which expresses the temperature of

a point whose co-ordinates are x, y, and z, is given in this case by

the equation

(4
sin nl \

2
-x-Jzn?=, . .

7
cos ny cos nz e ,

2nl + sm 2nlJ

the arc e or nl becomes very small, as we see by the construction.

The equation e tan e =
j-

reduces then to e
2 = -r ;

the first value of
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e, or e
lf

is \J j- ; by inspection of the figure we know the values of

the other roots, so that the quantities e
lt

e
2 ,

e
8 , e

4 ,
e
6,

&c. are the

following A/ -j-
, TT, 27r, STT, 4-Tr, &c. The values of nv nv n3 , n^ ny &c.

are, therefore,

!_ /h 7T 27T 3?T

v^v & J i ~i

whence we conclude, as was said above, that if I is a very small

quantity, the first value n is incomparably greater than all the

others, and that we must omit from the general value of v all the

terms which follow the first. If now we substitute in the first

term the value found for n, remarking that the arcs nl and 2nl are

equal to their sines, we have

hl\ x /?

the factor A/
-j-

which enters under the symbol cosine being very

small, it follows that the temperature varies very little, for

different points of the same section, when the half thickness I is

very small. This result is so to speak self-evident, but it is useful

to remark how it is explained by analysis. The general solution

reduces in fact to a single term, by reason of the thinness of the

bar, and we have on replacing by unity the cosines of very small

A*
arcs v = e~

x* kl
,
an equation which expresses the stationary tempe

ratures in the case in question.

We found the same equation formerly in Article 76 ;
it is

obtained here by an entirely different analysis.

331. The foregoing solution indicates the character of the

movement of heat in the interior of the solid. It is easy to see

that when the prism has acquired at all its points the stationary

temperatures which we are considering, a constant flow of heat

passes through each section perpendicular to the axis towards the

end which was not heated. To determine the quantity of flow

which corresponds to an abscissa x, we must consider that the

quantity which flows during unit of time, across one element of
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the section, is equal to the product of the coefficient k, of the area

/75

dydzj of the element dt, and of the ratio -=- taken with the nega

tive sign. We must therefore take the integral k I dy I dz -=
,

from z = to z I, the half thickness of the bar, and then from

y = to y = I. We thus have the fourth part of the whole flow.

The result of this calculation discloses the law according to

which the quantity of heat which crosses a section of the bar

decreases
;
and we see that the distant parts receive very little

heat from the source, since that which emanates directly from it

is directed partly towards the surface to be dissipated into the air.

That which crosses any section whatever of the prism forms, if we

may so say, a sheet of heat whose density varies from one point

of the section to another. It is continually employed to replace

the heat which escapes at the surface, through the whole end of

the prism situated to the right of the section : it follows therefore

that the whole heat which escapes during a certain time from this

part of the prism is exactly compensated by that which penetrates

it by virtue of the interior conducibility of the solid.

To verify this result, we must calculate the produce of the flow

established at the surface. The element of surface is dxdy, and v

being its temperature, hvdxdy is the quantity of heat which

escapes from this element during the unit of time. Hence the

integral h\dx\dyv expresses the whole heat which has escaped

from a finite portion of the surface. We must now employ the

known value of v in yt supposing z = 1, then integrate once from

y = QiQy = l, and a second time from x = x up to x = oo . We
thus find half the heat which escapes from the upper surface of

the prism ;
and taking four times the result, we have the heat lost

through the upper and lower surfaces.

If we now make use of the expression h Ida) I dz v, and give to

y in v its value I, and integrate once from z = to z = l, and a

second time from x = to x = oo
;
we have one quarter of the heat

which escapes at the lateral surfaces.

The integral /? I dx \dy v, taken between the limits indicated gives
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. sin ml cos nl e~ x^mi+n
*,

and the integral h I dx Idz v gives

a
cos ml sin.

n vm2 + n

Hence the quantity of heat which the prism loses at its surface,

throughout the part situated to the right of the section whose
abscissa is x, is composed of terms all analogous to

sin ml cos nl + - cos ml sinin nl\ .

}

On the other hand the quantity of heat which during the same

time penetrates the section whose abscissa is x is composed of

terms analoous to

sin mlsiD.nl ;mn

the following equation must therefore necessarily hold

sin ml sin nl = . sin ml cos nl

H cos ml sin nl,

or k (m
z + ?i

2

)
sin ml sin nl= hm cos mZ sin nl + hn sin ml cos wZ ;

now we have separately,

km? sin ml cos wZ = ^/?i cos ml sin wZ,

m sin ml h
or i-

= 7 5

cos mZ k
we have also

A;?i
2
sin nl sin mZ = hn cos nZ sin mZ,

n sin ??Z A
or r = 7 .

cos ?iZ k

Hence the equation is satisfied. This compensation which is in

cessantly established between the heat dissipated and the heat

transmitted, is a manifest consequence of the hypothesis ;
and

analysis reproduces here the condition which has already been ex-

F. H. 21
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pressed; but it was useful to notice this conformity in a new

problem, which had not yet been submitted to analysis.

332. Suppose the half side I of the. square which serves as the

base of the prism to be very long, and that we wish to ascertain the

law according to which the temperatures at the different points of

the axis decrease
;
we must give to y and z mil values in the

general equation, and to I a very great value. Now the construc

tion shews in this case that the first value of e is
-^ ,

the second

-x- , the third
,
&c. Let us make these substitutions in the general2 2i

equation, and replace n^ nj, n
al, nj, &c. by their values Q,-~-,A 2t

f&amp;gt;

t-r X IT

--,~ }
and also substitute the fraction a for e&quot;

1 *
;
we then find

L L

-&C.

We see by this result that the temperature at different points

of the axis decreases rapidly according as their distance from the

origin increases. If then we placed on a support heated and

maintained at a permanent temperature, a prism of infinite height,

having as base a square whose half side I is very great; heat would

be propagated through the interior of the prism, and would be dis

sipated at the surface into the surrounding air which is supposed
to be at temperature 0. When the solid had arrived at a fixed

state, the points of the axis would have very unequal tempera-

tares, and at a height equal to half the side of the base the

temperature of the hottest point would be less than one fifth part

of the temperature of the base.



CHAPTER VIII.

OF THE MOVEMENT OF HEAT IN A SOLID CUBE.

333. IT still remains for us to make use of the equation

dv K /d?v d*v a

which represents the movement of heat in a solid cube exposed
to the action .of the air (Chapter II., Section v.). Assuming, in

the first place, for v the very simple value e~mt cosnx cospycosqz,
if we substitute it in the proposed equation, we have the equa
tion of condition m = k (n* +p* + q*), the letter k denoting the

TT-

coefficient . It follows from this that if we substitute for

n, p, q any quantities whatever, and take for m the quantity

k(n
z + p* + q

2

), the preceding value of v will always satisfy the

partial differential equation. We have therefore the equation
v = e

- k (n*+P* + q
2
)t cos nx cospycosqz. The nature of the problem

requires also that if x changes sign, and if y and z remain the

same, the function should not change ; and that this should also

hold with respect to y or z: now the value of v evidently satisfies

these conditions.

334. To express the state of the surface, we must employ the

following equations :

.(6).

212
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These ought to be satisfied when x a, or y a, or g a,

The centre of the cube is taken to be the origin of co-ordinates :

and the side is denoted by a.

The first of the equations (6) gives

+ e&quot;

mt n sin nx cospy cos qz + -^
cos nx cospy cos qz

= 0,

or + n tan nx + ^=0,K
an equation which must hold when x = a.

It follows from this that we cannot take any value what

ever for nt but that this quantity must satisfy the condition

nata&amp;gt;una -^a. We must therefore solve the definite equation
J\.

e tan e = -^a, which gives the value of e, and take n = -
. Now the

J\. &

equation in e has an infinity of real roots
;
hence we can find for

n an infinity of different values. We can ascertain in the same

manner the values which may be given to p and to q ; they are

all represented by the construction which was employed in the

preceding problem (Art. 321). Denoting these roots by n^n^n^ &c.;

we can then give to v the particular value expressed by the

equation
cos z

provided we substitute for n one of the roots nv n
z ,

n
3 , &c., and

select p and q in the same manner.

335. We can thus form an infinity of particular values of v,

and it evident that the sum of several of these values will also

satisfy the differential equation (a), and the definite equations ().

In order to give to v the general form which the problem requires,

we may unite an indefinite number of terms similar to the term

cos nx wspy cos qz.

The value of v may be expressed by the following equation :

v = (at
cos n^x e~ kn& + a

2
cos n

z
x e~kn^ + a

3
cos n

3
x e~ *&quot;& + &c.),

(bl
cos n^y Q-IM + ^ cos n^ e-kn?t _j_ 3

COs n$ e~kn*H + &c.),

(Cj cos n^z e~ kn^ + c
2
cos n

2
z er*&quot;** + c

8
cos n

sy e~ kn H + &c.).
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The second member is formed of the product of the three

factors written in the three horizontal lines, and the quantities
a

x ,
a

2 , 3 , &c. are unknown coefficients. Now, according to the

hypothesis, if t be made = 0, the temperature must be the same at

all points of the cube. We must therefore determine a
1}
a

2 ,
a

3 , &c.,

so that the value of v may be constant, whatever be the values of

x, y, and z, provided that each of these values is included between

a and a. Denoting by 1 the initial temperature at all points of

the solid, we shall write down the equations (Art. 323)

1 = a
:
cos n^x + a

2
cos n

z
x + a

a
cos n

s
x + &c.,

1 = &
x
cos n

ty + 6
a
cos n

2y + b
3
cos n^y + &c.,

1 = c
l
cos n^z + c

a
cos n

z
z + c

a
cos n

B
z + &c.,

in which it is required to determine a
lt
a
t , as , &c. After multi

plying each member of the first equation by cosnx, integrate

from # = to X CL-. it follows then from the analysis formerly

employed (Art. 324) that we have the equation

sin n^a cos n^x sin n^a cos n^x sin n
z
a cos njc

1 = i : ^T? r -f i : ^-s r + , :

gin tn^\
nja, )

+ &c.

Denoting by ^ the quantity ^
f 1 H

*

j,
we have

_ . sin n.a sin n.a sin n.a p
1 = cos njc -\ cos n^x H ^ cos n

s
x -f &c.

This equation holds always when we give to x a value included

between a and a,

From it we conclude the general value of v, which is given by
the following equation

/sin n.a ,. 2/
sin n a , ,. \

v = (
L cos n^x e~kni t

-f cos njc e~ kn* f + &c. )
,

(

s
- i- cos njje~

kniH ^ cos n$ e~ina^ +
&c.J,

/sin n CL , ,, sin nna
ros M z fi

~ kn* f
-I si cos n^z e
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336. The expression for v is therefore formed of three similar

functions, one of x, the other of y, and the third of z, which is

easily verified directly.

In fact, if in the equation

dt~

we suppose v XYZ\ denoting by X a function of x and t,

byY a function of y and t,
and by Z a function of z and t, we have

_ .
,

&quot; + + &quot; *W - F **-z&)
i ax i dY i dz
x&quot;^

+ rW +^^
which implies the three separate equations

~dt

~
d^ di

dy&quot;
dt~ dz

We must also have as conditions relative to the surface,

dV k V n^ +^ F==

whence we deduce =,=,.
dx K dy K dz K

It follows from this, that, to solve the problem completely, it is

// ?/ ri ?/

enough to take the equation -^
= k -^ ,

and to add to it the

equation of condition -p + ^u 0, which must hold when x = a.

We must then put in the place of a?, either T/ or #, and we shall

have the three functions X}
Y

} Z, whose product is the general

value of v.

Thus the problem proposed is solved as follows :

, ;

cos
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n
l}
w

2 ,
?i

g ,
&c. being given by the following equation

ha

in which e represents na and the value of
/x, is

2 V 2n^a }

In the same manner the functions
&amp;lt;f&amp;gt; (yy t), $ (z, t) are found.

337. We may be assured that this value of v solves the pro
blem in all its extent, and that the complete integral of the partial

differential equation (a) must necessarily take this form in order

to express the variable temperatures of the solid.

In fact, the expression for v satisfies the equation (a) and the

conditions relative to the surface. Hence the variations of tempe
rature which result in one instant from the action of the molecules

and from the &quot;action of the air on the surface, are those which we
should find by differentiating the value of v with respect to the

time t. It follows that if, at the beginning of any instant, the

function v represents the system of temperatures, it will still

represent those which hold at the commencement of the following

instant, and it may be proved in the same manner that the vari

able state of the solid is always expressed by the function v, in

which the value of t continually increases. Now this function

agrees with the initial state: hence it represents all the later

states of the solid. Thus it is certain that any solution which

gives for v a function different from the preceding must be wrong.

338. If we suppose the time t, which has elapsed, to have

become very great, we no longer have to consider any but the

first term of the expression for v
;
for the values nv n^ n

3, &c. are

arranged in order beginning with the least. This term is given

by the equation

/sin ??
1
a\

5

v =
( -) cos n^x cos n^y cos n^z

this then is the principal state towards which the system of tem

peratures continually tends, and with which it coincides without

sensible error after a certain value of t. In this state the tempe-
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rature at every point decreases proportionally to the powers of

the fraction e~ skn^-
}
the successive states are then all similar, or

rather they differ only in the magnitudes of the temperatures
which all diminish as the terms of a geometrical progression, pre

serving their ratios. We may easily find, by means of the pre

ceding equation, the law by which the temperatures decrease from

one point to another in direction of the diagonals or the edges of

the cube, or lastly of a line given in position. We might ascer

tain also what is the nature of the surfaces which determine the

layers of the same temperature. We see that in the final and

regular state which we are here considering, points of the same

layer preserve always equal temperatures, which would not hold

in the initial state and in those which immediately follow it.

During the infinite continuance of the ultimate state the mass is

divided into an infinity of layers all of whose points have a com

mon temperature.

339. It is easy to determine for a given instant the mean

temperature of the mass, that is to say, that which is obtained by

taking the sum of the products of the volume of each molecule

by its temperature, and dividing this sum by the whole volume.

We thus form the expression 1 1 1
3 % ,

which is that of the

mean temperature V. The integral must be taken successively

with respect to x, y, and z, between the limits a and a : v being

equal to the product XYZ} we have

thus the mean temperature is
fl-gpl &amp;gt;

since the three complete

integrals have a common value, hence

e-^+ Ac.
V nfl J PI \ n

t
a

The quantity na is equal to e, a root of the equation e tan e = -~
,

and
//,

is equal to x (l + 5 J
We have then, denoting the

different roots of this equation by 6
1}
e
a ,

e
8 , &c.,
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6,
is between and -

TT, e
2
is between TT and

,
e
3
between 2?r and

-
TT, the roots e

2 ,
6
g ,

e
4 ,
&c. approach more and more nearly to the

inferior limits TT, 2-Tr, 3-7T, &c., and end by coinciding with them
when the index i is very great. The double arcs 2e

l5
2e

2 ,
2e

3 , &c.,

are included between and TT, between 2?r and 3?r, between 4?r

and OTT
;
for which reason the sines of these arcs are all positive :

. . sin 2e, ..
,

sin 2e
p

. . .

the quantities 1 H - -
,
1 H ^

-2
, &c., are positive and included

16
1

^
2

between 1 and 2. It follows from this that all the terms which

enter into the value of ^V are positive.

340. We propose now to compare the velocity of cooling in

the cube, with that which we have found for a spherical mass.

We have seen that for either of these bodies, the system of tem

peratures converges to a permanent state which is sensibly attained

after a certain time
;
the temperatures at the different points of

the cube then diminish all together preserving the same ratios,

and the temperatures of one of these points decrease as the terms

of a geometric progression whose ratio is not the same in the two

bodies. It follows from the two solutions that the ratio for the
. 3 3 Je

sphere is e~
n
and for the cube e 2

. The quantity n is given by
the equation

cos na h
na -- = 1

^,&amp;lt;7,sm na K

a being the semi-diameter of the sphere, and the quantity e is given

by the equation e tan e =
-^a,

a being the half side of the cube.

This arranged, let us consider two different cases; that in

which the radius of the sphere and the half side of the cube are

each equal to a, a very small quantity ;
and that in which the

value of a is very great. Suppose then that the two bodies are of
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small dimensions; -^having a very small value, the same is the

case with e, we have therefore
-^
= e

2

,
hence the fraction

-3-Jfe -
e &amp;lt;*&amp;lt;* is equal to e cva .

Thus the ultimate temperatures which we observe are expressed in

_!^ TP . ,, . na cos na h
the form Ae CDa. If now in the equation :

-=1 -j^a, we
sin na K.

suppose the second member to differ very little from unity, we find

^ n*a
i ^ A - -W - --

-^= -^-, hence the fraction e is e cva.
JK. o

We conclude from this that if the radius of the sphere is very-

small, the final velocities of cooling are the same in that solid and

in the circumscribed cube, and that each is in inverse ratio of the

radius
;
that is to say, if the temperature of a cube whose half side

is a passes from the value A to the value B in the time t, a sphere

whose semi-diameter is a will also pass from the temperature A
to the temperature B in the same time. If the quantity a were

changed for each body so as to become a, the time required for

the passage from A to B would have another value t
,
and the

ratio of the times t and t would be that of the half sides a and a.

The same would not be the case when the radius a is very great :

for 6 is then equal to JTT, and the values of na are the quantities

TT, 27T, 3-7T, 4?r, &c.

We may then easily find, in this case, the values of the frac

tions e &
, e
^2

; they are e~^ and e~~&quot;* .

From this we may derive two remarkable consequences: 1st, when

two cubes are of great dimensions, and a and a are their half-

sides
;

if the first occupies a time t in passing from the temperature
A to the temperature B, and the second the time t for the same

interval
;
the times t and t will be proportional to the squares a2

and a z
of the half-sides. We found a similar result for spheres of

great dimensions. 2nd, If the length a of the half-side of a cube

is considerable, and a sphere has the same magnitude a for radius,

and during the time t the temperature of the cube falls from A to

B
}
a different time t will elapse whilst the temperature of the
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sphere is falling from A to JB, and the times t and t are in the

ratio of 4 to 3.

Thus the cube and the inscribed sphere cool equally quickly
when their dimension is small

;
and in this case the duration of

the cooling is for each body proportional to its thickness. If the

dimension of the cube and the inscribed sphere is great, the final

duration of the cooling is not the same for the two solids. This

duration is greater for the cube than for the sphere, in the ratio of

4 to 3, and for each of the two bodies severally the duration of the

cooling increases as the square of the diameter.

341. We have supposed the body to be cooling slowly in at

mospheric air whose temperature is constant. We might submit

the surface to any other condition, and imagine, for example, that

all its points preserve, by virtue of some external cause, the fixed

temperature 0. The quantities n, p, q, which enter into the value

of v under the symbol cosine, must in this case be such that cos nx
becomes nothing when x has its complete value a, and that the

same is the case with cos py and cos qz. If 2a the side of the

cube is represented by TT, 2?r being the length of the circumference

whose radius is 1
;
we can express a particular value of v by the

following equation, which satisfies at the same time the general

equation of movement of heat, and the state of the surface,

..
v = e cb cos x . cos y . cos z.

This function is nothing, whatever be the time t
t
when x or y or z

receive their extreme values + - or -
: but the expression for the

2i 2*

temperature cannot have this simple form until after a consider

able time has elapsed, unless the given initial state is itself

represented by cos x cos y cos z. This is what we have supposed
in Art. 100, Sect. Yin. Chap. I. The foregoing analysis proves the

truth of the equation employed in the Article we have j ust cited.

Up to this point we have discussed the fundamental problems
in the theory of heat, and have considered the action of that

element in the principal bodies. Problems of such kind and order

have been chosen, that each presents a new difficulty of a higher

degree. We have designedly omitted a numerous variety of
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intermediate problems, such as the problem of the linear movement

of heat in a prism whose ends are maintained at fixed temperatures,

or exposed to the atmospheric air. The expression for the varied

movement of heat in a cube or rectangular prism which is cooling

in an aeriform medium might be generalised, and any initial

state whatever supposed. These investigations require no other

principles than those which have been explained in this work,

A memoir was published by M. Fourier in the Memoires de VAcademic des

Sciences, Tome vii. Paris, 1827, pp. 605 624, entitled, Memoire sur la distinction des

racines imaginaires, et sur Vapplication des theoremes d analyse algebrique aux

equations transcendantes qui dependent de la theorie de la chaleur. It contains a

proof of two propositions in the theory of heat. If there be two solid bodies of

similar convex forms, such that corresponding elements have the same density,

specific capacity for heat, and conductivity, and the same initial distribution of

temperature, the condition of the two bodies will always be the same after times

which are as the squares of the dimensions, when, 1st, corresponding elements

of the surfaces are maintained at constant temperatures, or 2nd, when the tem

peratures of the exterior medium at corresponding points of the surface remain

constant.

For the velocities of flow along lines of flow across the terminal areas *, s of

corresponding prismatic elements are as u-v : u -v
,
where (u, v), (i/, 1/) are tem

peratures at pairs of points at the same distance A on opposite sides of s and s
;

and if n : n is the ratio of the dimensions, u-v : u -v =n :n. If then, dt, dt be

corresponding times, the quantities of heat received by the prismatic elements are

as sk (u -v) dt : s k (u
-

i/) dtf, or as n^n dt : itf ndt . But the volumes being as

n3
: n 3

,
if the corresponding changes of temperature are always equal we must have

n?n dt _ n 2ndt
dt__&amp;lt;n?_

ri*

:;
ra

3
r

&amp;lt;^&quot; ~^*
In the second case we must suppose H : H =ri: n. [A. F.]



CHAPTER IX.

OF THE DIFFUSION OF HEAT.

FIRST SECTION.

Of the free movement of heat in an infinite line.

342. HERE we consider the movement of heat in a solid

homogeneous mass, all of whose dimensions are infinite. The
solid is divided by planes infinitely near and perpendicular to a

common axis
;
and it is first supposed that one part only of the

solid has been heated, that, namely, which is enclosed between

two parallel planes A and B, whose distance is g ;
all other parts

have the initial temperature ;
but any plane included between

A and B has a given initial temperature, regarded as arbitrary,

and common to every point of the plane ;
the temperature is dif

ferent for different planes. The initial state of the mass being
thus defined, it is required to determine by analysis all the suc

ceeding states. The movement in question is simply linear, and

in direction of the axis of the plane ;
for it is evident that there

can be no transfer of heat in any plane perpendicular to the axis,

since the initial temperature at every point in the plane is the

same.

Instead of the infinite solid we may suppose a prism of very
small thickness, whose lateral surface is wholly impenetrable to

heat. The movement is then considered only in the infinite line

which is the common axis of all the sectional planes of the prism.

The problem is more general, when we attribute temperatures

entirely arbitrary to all points of the part of the solid which has
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been heated, all other points of the solid having the initial tem

perature 0. The laws of the distribution of heat in an infinite

solid mass ought to have a simple and remarkable character
;

since the movement is not disturbed by the obstacle of surfaces,

or by the action of a medium.

343. The position of each point being referred to three rect

angular axes, on which we measure the co-ordinates x, y, z, the

temperature sought is a function of the variables x, y, z, and of

the time t. This function v or &amp;lt; (x, y, z, t) satisfies the general

equation

dv _ K fd
z
v d*v dz

v\ , .

dt~ C7)(dx
2+

d^
+

dz
2
)

Further, it must necessarily represent the initial state which is

arbitrary; thus, denoting by F(x, y, z) the given value of the

temperature at any point, taken when the time is nothing, that is

to say, at the moment when the diffusion begins, we must have

&amp;lt;(*, y, z, 0)
=

F(x, y, z) (5).

Hence we must find a function v of the four variables x, y, z, t,

which satisfies the differential equation (a) and the definite equa
tion

(&).

In the problems which we previously discussed, the integral is

subject to a third condition which depends on the state of the

surface : for which reason the analysis is more complex, and the

solution requires the employment of exponential terms. The
form of the integral is very much more simple, when it need only

satisfy the initial state; and it would be easy to determine at

once the movement of heat in three dimensions. But in order to

explain this part of the theory, and to ascertain according to what
law the diffusion is effected, it is preferable to consider first the

linear movement, resolving it into the two following problems : we
shall see in the sequel how they are applied to the case of three

dimensions.

344. First problem : a part a b of an infinite line is raised at

all points to the temperature 1
;
the other points of the line are at

the actual temperature ;
it is assumed that the heat cannot be

dispersed into the surrounding medium; we have to determine
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what is the state of the line after a given time. This problem

may be made more general, by supposing, 1st, that the initial

temperatures of the points included between a and b are unequal
and represented by the ordinates of any line whatever, which we

shall regard first as composed of two symmetrical parts (see fig. 16);

Fig. 16.

2nd, that part of the heat is dispersed through the surface of the

solid, which is a prism of very small thickness, and of infinite

length.

-.JO*6 second
problem consists in determining the successive

states of a prismatic bar, infinite in length, one extremity of

which is submitted to a constant temperature. The solution of

these two problems depends on the integration of the equation

dv _ K tfv HL
dt~CDdxz CDS

V

(Article 105), which expresses the linear movement of heat, v is

the temperature which the point at distance x from the origin

must have after the lapse of the time t
; K, H, C, D, L, S, denote

the internal and surface conducibilities, the specific capacity for

heat, the density, the contour of the perpendicular section, and

the area of this section.

345. Consider in the first instance the case in which heat is

propagated freely in an infinite line, one part of which ab has

received any initial temperatures; all other points having the

initial temperature 0. If at each point of the bar we raise the

ordinate of a plane curve so as to represent the actual tempera
ture at that point, we see that after a certain value of the time t,

the state of the solid is expressed by the form of the curve.

Denote by v = F(x) the equation which corresponds to the given
initial state, and first, for the sake of making the investigation
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more simple, suppose the initial form of the curve to be composed
of two symmetrical parts, so that we have the condition

F(x)=F(-x}.

JL-i. HL -
CD~ CDS~

dt^in the equation ~rr k-j 2 hv, make v = e~ ht
u, and we have

du
-,
d*u

dt dz* Jc
v

\

Assume a particular value of u, namely, a cos qx e&quot;^
1

;
a and q

being arbitrary constants. Let q v q2 , q3 ,
&c. be a series of any

values whatever, and a
l9

a
2 ,

a
3 ,

&c. a series of corresponding

values of the coefficient Q, we have

u = a
l
cos fax) e~*&amp;lt;zi

2&amp;lt; + a
2
cos faai) e~kq^ + a

a
cos fax) e-^* + &c.

Suppose first that the values qlt q^, qs ,
&c. increase by infinitely

small degrees, as the abscissa q of a certain curve
;
so that they

become equal to dq, 2dq, 3dq&amp;gt;
&c.

; dq being the constant differen

tial of the abscissa; next that the values a^ a
2 ,
a

3 &amp;gt;

&c. are pro

portional to the ordinates Q of the same curve, and that they

become equal to Q^dq, Q^dq, Q3dq, &c., Q being a certain function

of q. It follows from this that the value of u may be expressed

thus :

u = Idq Q cos qx e~ ktjH
}

Q is an arbitrary function f(q), and the integral may be taken

from q Q to q=vo. The difficulty is reduced to determining

suitably the function Q.

346. To determine Q, we must suppose t in the expression

for u, and equate u to F (x). We have therefore the equation of

condition

If we substituted for Q any function of q, and conducted the

integration from q
= to q = oo, we should find a function of x :

it is required to solve the inverse problem, that is to say, to

ascertain whatranctioii of q, after being substituted for Q, gives
as the result the function F(x) t

a remarkable problem whose

solution demands attentive examination.
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Developing the sign of the integral, we write as follows, the

equation from which the value of Q must be derived :

F(x) = dq Qt
cos qjc + dqQz

cos qz
x + dqQ3

cos qz
x + &c.

In order to make all the terms of the second member dis

appear, except one, multiply each side by dxcosrx, and then

integrate with respect to x from x = to x mr, where n is an

infinite number, and r represents a magnitude equal to any one

of qlf qz , q3 , &c., or which is the same thing dq, 2dq, 3dq, &c. Let

q i
be any value whatever of the variable qf and q^ another value,

namely, that which we have taken for r; we shall have r =jdq,
and q = idq. Consider then the infinite number n to express how

many times unit of length contains the element dq, so that we

have n = -r- . Proceeding to the integration we find that the
dq

value of the integral Idx cos qx cos rx is nothing, whenever r and

q have different magnitudes ;
but its value is

^ UTT, when q = r.

This follows from the fact that integration eliminates from the

second member all the terms, except one
; namely, that which

contains qj or r. The function which affects the same term

is Qj, we have therefore

dx F (x) cos qx = dq Q}
^

nir,

and substituting for ndq its value 1, we have

cos qx.

Q (*&amp;gt;

We find then, in general, -^ = dxF(x)cosqx. Thus, to
2 Jo

determine the function Q which satisfies the proposed condition,

we must multiply the given function F(x) by dxcosqx, and in-

2

tegrate from x nothing to x infinite, multiplying the result by
-

;

that is to say, from the equation F(x] = ldqf(q) cos qx, we deduce

2 r

f(q}=-ld,jcF(x)cosqx, the function F(f) representing the

F. ii. 22
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initial temperatures of an infinite prism, of which an intermediate

part only is heated. Substituting the value of/(^) in the expres

sion for F (x}y
we obtain the general equation

F(x)=\ dqcosqxl dxF(x)cv$qx (e).A Jo Jo

347. If we substitute in the expression for v the value which

we have found for the function Q, we have the following integral,

which contains the complete solution of the proposed problem,
-v ^a

7I = e~u \ dq cos qx e~ kqH I dxF (x) cos qx.

.

The integral, with respect to #, being taken from x nothing

fcy* to x infinite, the result is a function of q\ and taking then the

integral with respect to q from q = to q
= oo

, we obtain for v a

function of x and t, which represents the successive states of the

solid. Since the integration with respect to x makes this variable

disappear, it may be replaced in the expression of v by any varia

ble a, the integral being taken between the same limits, namely
from a = to a = oo . We have then

!L_ _. e-u I fa cos gX e -kq*t I fa 2P(fl
).
cos qx,

Jo Jo

or = e~ ht
I dx F(a.) I dq e~ kqZf cos qx cos qy.a Jo Jo

\

The integration with respect to q will give a function of x
}

t and a, and taking the integral with respect to a we find a func-

^
tion of x and t only. In the last equation it would be easy to

effect the integration with respect to q, and thus the expression
of v would be changed. We can in general give different forms

to the integral of the equation

dv , d*v ,

dt
=k

dJ?~ hv
&amp;lt;$&quot;

they all represent the same function of x and t.

348. Suppose in the first place that all the initial tempera
tures of points included between a and b, from x = 1, to x 1,

have the common value 1, and that the temperatures of all the
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other points are nothing, the function F(x) will be given by this

condition. It will then be necessary to integrate, with respect to

x, from x to x = 1, for the rest of the integral is nothing

according to the hypothesis. We shall thus find

~ 2 sin q , irv , . C^dg ,
2

,= ----* and -TT
= e~M

I
e q cos qx sm a.

* 1 - JO 1
I^ The second member may easily be converted into a convergent

series, as will be seen presently ;
it represents exactly the state

of the solid at a given instant, and if we make in it t = 0, it ex

presses the initial state.

Thus the function I sin q cos qx is equivalent to unity, if
\

we give to x any value included between 1 and 1 : but this

function is nothing if to x any other value be given not included /

between 1 and 1. We see by this that discontinuous functions / /

also may be expressed by definite integrals.

349. In order to give a second application of the preceding

formula, let us suppose the bar to have been heated at one of its

points by the constant action of the same source of heat, and

that it has arrived at its permanent state which is known to be

represented by a logarithmic curve.

It is required to ascertain according to what law the diffusion

of heat is effected after the source of heat is withdrawn. Denoting

by F (x) the initial value of the temperature, we shall have

/HL

F(x) = Ae
A
^; A is the initial temperature of the point

most heated. To simplify the investigation let us make A = l,
TTT

and -^7=1. We have then F(x\e~
x
,
whence we deduceAo

Q = I dx e~
x
cos qx, and taking the integral from x nothing to x

innnite;;&amp;lt; =^j
-

3
. T

the following equation :

innnite;;&amp;lt; =^j
-

3
. Thus the value of v in x and t is given by

222
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350. If we make =0, we have ~ = I . JM which cor-
Jo 1 + 2

responds to the initial state. Hence the expression
-

I

^
-

is equal to e-
x

. It must be remarked that the function F(x),
which represents the initial state, does not change its value accord

ing to hypothesis when x becomes negative. The heat communi
cated by the source before the initial state was formed, is

propagated equally to the right and the left of the point 0, which

directly receives it: it follows that the line whose equation is

2 f^dqcoaqx . , f . i i ^ T-I
y = I =

2&quot;

1S composed ot two symmetrical branches whicii

are formed by repeating to right and left of the axis of y the part

of the logarithmic curve which is on the right of the axis of y, and

whose equation is y = e~
x

. We see here a second example of a

discontinuous function expressed by a definite integral. This

function -
I

^

C S

f^- is equivalent to e~
x when x is positive, but

it is e
x when x is negative

1
.

351. The problem of the propagation of heat in an infinite

bar, one end of which is subject to a constant temperature, is

reducible, as we shall see presently, to that of the diffusion of heat

in an infinite line; but it must be supposed that the initial heat,

instead of affecting equally the two contiguous halves of the solid,

is distributed in it in contrary manner; that is to say that repre

senting by F(x) the temperature of a point whose distance from

the middle of the line is x, the initial temperature of the opposite

point for which the distance is &, has for value F (x).

This second problem differs very little from the preceding, and

might be solved by a similar method: but the solution may
also be derived from the analysis which has served to determine

for us the movement of heat in solids of finite dimensions.

Suppose that a part ab of the infinite prismatic bar has been

heated in any manner, see fig. (16*), and that the opposite part

a/3 is in like state, but of contrary sign ;
all the rest of the solid

having the initial temperature 0. Suppose also that the surround-

1 Of. Biemann, Part. Diff. Glcich. 16, p. 34. [A. F.]
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ing medium is maintained at the constant temperature 0, and that

it receives heat from the bar or communicates heat to it through

Fig. 16*.

the external surface. It is required to find, after a given time t&amp;gt;

what will be the temperature v of a point whose distance from the

origin is x.

We shall consider first the heated bar as having a finite

length 2JT, and as being submitted to some external cause which

maintains its two ends at the constant temperature 0; we shall

then make JT= oc.

352. We first employ the equation

r

and makin v= e~ hf u we have

_ ,

dt
~

dx*&amp;gt;

the general value of u may be expressed as follows :

u = a
i
e~ k9iH sin gjc + agr*^ sin gjc + a

&
e
~*0& sin ga

x -f &c.

Making then x = X, which ought to make the value of v

nothing, we have, to determine the series of exponents g, the

condition sin gX= 0, or gX=i7r, i being an integer.

Hence

. ^u* =.
a^e sin

-^ + a
2
e sin =- + &c.

It remains only to find the series of constants a
lt

a
a , a

3 ,
&c.

Making t = we have

. . .

sin -.+ a sin -- + a
3
sin -- + xc.
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Let ~Y r, and denote F (x) or F(-
j by f(r) ;

we have

f(r) = j
sin r + 2

sin 2r + a
a
sin 3r -f &c.

2 r

Now, we have previously found a = -
\drf(r) sinir, the inte

gral being taken from r = to r = TT. Hence

The integral with respect to x must be taken from x = to

x =X Making these substitutions, we form the equation

sin

353. Such would be the solution if the prism had a finite

length represented by 2X. It is an evident consequence of the

principles which we have laid down up to this point; it remains

only to suppose the dimension X infinite. Let X= UTT, n being
an infinite number; also let q be a variable whose infinitely small

increments dgr are all equal ;
we write -7- instead of n. The general

term of the series which enters into equation (a) being

. ITTX , ..
sin -- ,

jpi
2
*

. ITTX ( , ..

sm^jdxF (x)

we represent by 3- the number i, which is variable and becomes

infinite. Thus we have

-v IT 1 . q
JL = -T-, n = -7- , fc=-j-.

dy dq dqr

Making these substitutions in the term in question we find

e~kqH sin gx\dxF (x) sin qx. Each of these terms must be divided

*7T

by X or v-, becoming thereby an infinitely small quantity, and
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the sum of the series is simply an integral, which must be taken

with respect to q from q = to q = oo . Hence

v - e~M \dqe-W* sin qx \dxF(x)smqx ......... (a),

the integral with respect to x must be taken from x = to x = oo.

We may also write

TTl) f
30

f_ Q-U \

dqe-Wt sm qx
I

* Jo Jo

7TV f
30

f
30

~^ Q
~u

\ d^F(^]\ dq e-
* Jo Jo

sm

or

Equation (a) contains the general solution of the problem;

and, substituting for F(x] any function whatever, subject or not

to a continuous law, we shall always be able to express the value

of the temperature in terms of x and t : only it must be remarked

that the function F(x) corresponds to a line formed of two equal

and alternate parts
1
.

354. If the initial heat is distributed in the prism in such a

manner that the line FFFF (fig. 17), which represents the initial

Fig. 17.

state, is formed of two equal ares situated right and left of

the fixed point 0, the variable movement of the heat is expressed

by the equation

TTV f
30

f
00

-_ = e~u I -d&F(a) I dq e~W cos qx cos ga.

Fig. 18.

If the line ffff (fig. 18), which represents the initial state, is

i That is to say, F(x)=-F(-x}. [A.F.]
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formed of two similar and alternate arcs, the integral which gives

the value of the temperature is

TTV
Too Too

= e~u
\ dxf(a) da e~ kqH sm qx sin

qa..
Jo Jo

If we suppose the initial heat to be distributed in any manner,

it will be easy to derive the expression for v from the two preced

ing solutions. In fact, whatever the function $ (x) may be, which

represents the given initial temperature, it can always be decom

posed into two others F (x) +/(#), one of which corresponds to the

line FFFF, and the other to the \iueffff, so that we have these

three conditions

F(x) = *(-*),/(*) = -/(- *), &amp;lt;}&amp;gt; () = F(x) +f(x).

We have already made use of this remark in Articles 233 and

234. We know also that each initial state gives rise to a variable

partial state which is formed as if it alone existed. The composi
tion of these different states introduces no change into the tem

peratures which would have occurred separately from each of

them. It follows from this that denoting by v the variable tem

perature produced by the initial state which represents the total

function
cf&amp;gt; (x), we must have

-. / r r_
e-uM fa g-*a^ COs qx I dot. F (a) cos qy.4 WO Jo

+ 1 dq e-**** sin. qx I da/(a) sin
qaj.

Jo Jo

If we took the integrals with respect to a between the limits

oo and + oo
,

it is evident that we should double the results.

We may then, in the preceding equation, omit from the first

member the denominator 2, and take the integrals with respect to

a in the second form a = oo toa = + oo. We easily see also

r+&amp;lt;x&amp;gt;
r+oo

that we could write I da $ (a) cos ga, instead of I da. F(a) cos qy. ;

J 00 J - 00

for it follows from the condition to which the function /(a) is sub

ject, that we must have

r+ao
= I daf(ot) cosqy.

J -oo
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We can also write

f+ao r+oo ? f**^

\
dj.

&amp;lt;f&amp;gt; (a) sin
qy.

instead of I dif(o.} ee*s qx,
J -oo J -oo

for we evidently have

0=
[ &quot;diFtynnqx,
J oo

We conclude from this

Too / r+oo

TTV = e~ ht
\ dq Q-W-t I da. $ (a) cos qy. cos qx
JO VJ - oo

+ 1 da&amp;lt; (ajsin^sinja;) ,

J -00 /

/oo /+

or, 7rv = e-M l dqe~
k&amp;lt;*H dx (a) cos ^ ( a),

JO J -oo

r+ oo Too

or, 7rv=e~ ht
\

dz&amp;lt;l&amp;gt;(oL)

I dqe-
k* 2t

cosq (x a).
J -oo Jo

355. The solution of this second problem indicates clearly

what the relation is between the definite integrals which we have

just employed, and the results of the analysis which we have

applied to solids of a definite form. When, in the convergent
series which this analysis furnishes, we give to the quantities

which denote the dimensions infinite values
;

each of the

terms becomes infinitely small, and the sum of the series is

nothing but an integral. We might pass directly in the same

manner and without any physical considerations from the different

trigonometrical series which we have employed in Chapter ill. to

definite integrals ;
it will be sufficient to give some examples of

these transformations in which the results are remarkable.

356. In the equation

7 TT = sin u + ^ sin 3z* + ~ sin ou + &c.
4 3 o

/yi

we shall write instead of u the quantity
-

;
x is a new variable,

and n is an infinite number equal to -=-
; q is a quantity formed by

the successive addition of infinitely small parts equal to dq. We
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shall represent the variable number i by
-J-

. If in the general

term . sin (2* + 1) -we put for i and n their values, the term
2^ + 1 n

becomes ^sin2&amp;lt;7#. Hence the sum of the series is \ ~sm2qx,
2q J $

the integral being taken from q
= to q

= oo
;
we have therefore

the equation \ IT = J I sin 2qx which is always true whatever
Jo %

be the positive value of x. Let 2qx = r, r being a new varia

ble, we have = and J TT = I
- sin r

;
this value of the defi

nite integral I sin r has been known for some time. If on

supposing r negative we took the same integral from r = to

r = oo
,
we should evidently have a result of contrary sign -J TT.

357. The remark which we have just made on the value of

the integral I sin r, which is J TT or \ TT, serves to make known

the nature of the expression

2 f^dqsi]

*h~^l
cos qxy

whose value we have already found (Article 348) to be equal to

1 or according as x is or is not included between 1 and 1.

&quot;We have in fact

I cos qx sin q
= J I sin ^ (x 4- 1) I sin q (x 1) ;

the first term is equal to J TT or J TT according as x + 1 is a

positive or negative quantity; the second J I sin q (x 1) is equal

to J TT or J TT, according as x 1 is a positive or negative quantity.
Hence the whole integral is nothing if x + 1 and x 1 have the

same sign ; for, in this case, the two terms cancel each other. But
if these quantities are of different sign, that is to say if we have at

the same time
x -f 1 &amp;gt; and x 1 &amp;lt; 0,
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the two terms add together and the value of the integral is J TT.

Hence the definite integral
1 - sin a cos qx is a function of x
vrJo q

equal to 1 if the variable x has any value included between 1 and

1
;
and the same function is nothing for every other value of x

not included between the limits 1 and 1.

358. We might deduce also from the transformation of series

into integrals the properties of the two expressions
2

2 r dq cos qx , 2 f qdq sin qx t

vJt 1 +
&amp;lt;f

FC W 1 + 2
2

the first (Art. 350) is equivalent to e~
x when x is positive, and to

e
x when x is negative. The second is equivalent to e~

x
if x is positive,

and to e
x

if x is negative, so that the two integrals have the

same value, when x is positive, and have values of contrary sign
when x is negative. One is represented by the line eeee (fig. 19),

the other by the line eeee (fig. 20).

Fig. 19. Fig. 20.

The equation

1 . TTX __ sin a sin x sin 2a sin 2# sin 3a sin 3x
&amp;gt;

olLL ^ o v &quot;T&quot; 2 V 2
&quot;

2 O52 2 ~1 O^Cij

which we have arrived at (Art. 226), gives immediately the integral

2 f dqsinqTTsmqx ,., 3 . . , . ..-
I ^ 2 ?

which expression is equivalent to sin x, if x

is included between and TT, and its value is whenever x ex

ceeds 7T.

1 At the limiting values of x the value of this integral is | ; Eiemann, 15.

2 Cf. Eiemann, 16.

3 The substitutions required in the equation are for
, dq for -, q for -.

We then have sin x equal to a series equivalent to the above integral for values of x

between and TT, the original equation being true for values of x between and a.

[A.F.]
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359. The same transformation applies to the general equation

TT
cf&amp;gt; (w)

= sin u Idu
&amp;lt;f&amp;gt;(u)smu+

sin 2w Idu $ (u) sin 2w + &c.

/y / /*\

Making w = -
,
denote $ (w) or $ (-) by /(a?), and introduce into

ft \%/

the analysis a quantity ^ which receives infinitely small incre

ments equal to dq, n will be equal to -j- and i to ~
; substituting

these values in the general term

. ix [dx . fx\ . ix
sin I d&amp;gt;

(

- sin
,n J n r

\nj n

we find dq smqx Idxf (x} sin qx. The integral with respect to u

is taken from u = to u = TT, hence the integration with respect to

x must be taken from x = to x = n?r, or from x nothing to x

infinite.

We thus obtain a general result expressed by the equation

Too Too

J /(*)&quot;* I djnnpj dxf(x)smqx (e),
^o ^o

for which reason, denoting by Q a function of q such that we have

f(u)=ldqQsmqu an equation in which /(it) is a given function,

2 f
we shall have Q = -

lduf(u) sinqu, the integral being taken from

u nothing to u infinite. We have already solved a similar problem

(Art. 346) and proved the general equation
Too /&amp;lt;*&amp;gt;

^irF(x} \ dqcosqxl dxF(x)cosqx (e),
*o Jo

which is analogous to the preceding.

360. To give an application of these theorems, let us suppose

f(x)=x
r
,
the second member of equation (e) by this substitution

becomes Idq sin qx Idx sin qx of.

The integral

jdx
sin qx x* or ^ Iqdx sin qx (qx}

r
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is equivalent to -^ldusmuu
r
,
the integral being taken from u

nothing to u infinite.

Let
fjL
be the integral

00

du sin u u
r

;

o

it remains to form the integral

L * rfj
I aq sin qx -^ LL, or LLX

\
du sin u i

J q J

denoting the last integral by v, taken from u nothing to u infinite,

we have as the result of two successive integrations the term

xr

fjiv. We must then have, according to the condition expressed

by the equation (e),

| 7T Of = fJLV
Xf

Or JJLV 7T
J

thus the product of the two transcendants

/*, r . , [
x du ._ . . .

I aww smw and I u sm w is ^TT.
Jo Jo u

For example, if r = - ^ ,
we find the known result

in the same manner we find

[ducosu
I -7^-

=
2Jo ^/u V 2

and from these two equations we might also conclude the following
1

,

f 1 -
I dqe~ q =

g -S/TT, which has been employed for some time.

361. By means of the equations (e) and (e)
we may solve the

following problem, which belongs also to partial differential

analysis. What function Q of the variable q must be placed under

1 The way is simply to use the expressions e~ = +cos ^-12+ */ -1 sin^/- 1 2,

transforming a and 6 by writing y* for t&amp;lt; and recollecting that \
-

Cf. 407. [R. I . E.]
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the integral sign in order that the expression I dqQe~ qx may be

equal to a given function, the integral being taken from q nothing
to q infinite

1
? But without stopping for different consequences,

the examination of which would remove us from our chief object,

we shall limit ourselves to the following result, which is obtained

by combining the two equations (e) and (e).

They may be put under the form

-
7rf(x)

= I dq sin qx I dzf (a) sin qx,A *

Jo Jo

1
/-co roo

and ~ TrF (x)
= I dq cos qx daF (a) cos qx.* Jo &quot;Jo

If we took the integrals with respect to a. from oo to -f oo,

the result of each integration would be doubled, which is a neces

sary consequence of the two conditions

/() = -/(-) and F(*)=F (-a).

We have therefore the two equations
-CO ,00

7rf(x)
= I dq sin qx I

dxf(&amp;lt;x)
sin qx,

Jo J-

,00 -00

and TrF (x)
=

I dq cos qx I r/aF(a) cos qx.
JO J-oo

We have remarked previously that any function $ (x) can

always be decomposed into two others, one of which F (x) satisfies

the condition F(x) F(x], and the other f(x) satisfies the

condition /(#) = /( x). We have thus the two equations

/+oo

/H-oo

dzF (a) sin ^a, and = I dxf(oL) cos qx,
-oo J -oo

1 To do this write x*J - 1 in f(x) and add, therefore

2
JQ,

cos qx dq =f (x J~l) +f(-x A^l),

which remains the same on writing
- x for x,

therefore Q = -
jdx [f(x,J~l} +f(-x J^l)] cos qx dx.

Again we may subtract and use the sine hut the difficulty of dealing with

imaginary quantities recurs continually. [R. L. E.]
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whence we conclude
/- -+00

TT [F(x) +/(#)] = TT&amp;lt;J&amp;gt; (x)
= dq sin qx \ cZa/(a) sin

qy.
JO&quot; J -oo

/. /+&amp;lt;

4- I dq cos # I dzF (a) cos ^or,
JO J - oo

and TT&amp;lt;

(a?)
= I d^ g in %% I dx(j&amp;gt; (a) sin qa.
JO J-oo

.00 -+W

+ dg cos
&amp;lt;?#

I
dz&amp;lt;j) (a) cos x,

Jo / -*

or w$(#) = | di&amp;lt;f&amp;gt;(a)l dq(8mqx6
J - 00 / t

&quot;*

or lastly
1

, f (*)
-&amp;gt;~ f d

*4&amp;gt; W f c!qcosq(x-a)
TTj-oo JO

&quot;

The integration with respect to q gives a function of x and

a, and the second integration makes the variable a disappear.

Thus the function represented by the definite integral Idqcosq (x a)

has the singular property, that if we multiply it by any function

&amp;lt;/&amp;gt; (a) and by dx, and integrate it with respect to a between infinite

limits, the result is equal to
TTCJ) (x) ;

so that the effect of the inte

gration is to change a into a?, and to multiply by the number IT.

362. We might deduce equation (E) directly from the theorem

1
Poisson, in his Memoire sur la Theorie des Ondes, in iheMemoires de VAcademic

dcs Sciences, Tome i. , Paris, 1818, pp. 85 87, first gave a direct proof of the theorem

1 00 -(-so

f(x)= - r dq r da e~k^ cos (gx
-
qa)f(a),

in which k is supposed to be a small positive quantity which is made equal to

after the integrations.

Boole, On the Analysis of Discontinuous Functions, in the Transactions of the

fioyal Irish Academy, Vol. xxi., Dublin, 1848, pp. 126130, introduces some ana

lytical representations of discontinuity, and regards Fourier s Theorem as unproved

unless equivalent to the above proposition.

Deners, at the end of a Note sur quelques integrates definies &c., in the Bulletin

des Sciences, Societe Philomatique, Paris, 1819, pp. 161 166, indicates a proof of

Fourier s Theorem, which Poisson repeats in a modified form in the Journal Pobj-

technique, Cahier 19, p. 454. The special difficulties of this proof have been

noticed by De Morgan, Differential and Integral Calculus, pp. 619, 628.

An excellent discussion of the class of proofs here alluded to is given by
Mr J. W. L. Glaisher in an article On sinac and cos oo

, Messenger of Mathematics,

Ser. i., Vol. v., pp. 232244, Cambridge, 1871. [A. F.]
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stated in Article 2:34, which gives the development of any func

tion F(x) in a series of sines and cosines of multiple arcs. We
pass from the last proposition to those which we have just demon

strated, by giving an infinite value to the dimensions. Each term

of the series becomes in this case a differential quantity
1
. Trans

formations of functions into trigonometrical series are some of the

elements of the analytical theory of heat; it is indispensable to

make use of them to solve the problems which depend on this

theory.

The reduction of arbitrary functions into definite integrals,

such as are expressed by equation (E), and the two elementary

equations from which it is derived, give rise to different conse

quences which are omitted here since they have a less direct rela

tion with the physical problem. We shall only remark that the

same equations present themselves sometimes in analysis under

other forms. We obtain for example this result

1 r r

&amp;lt;j&amp;gt;(x)=- drf (a) I dqcosq(x a) (E
f

)
TfJ JO

which differs from equation (E) in that the limits taken with

respect to a are and oo instead of being oo and + oo .

In this case it must be remarked that the two equations (E)
and (E ) give equal values for the second member when the

variable x is positive. If this variable is negative, equation (E
1

)

always gives a nul value for the second member. The same is

not the case with equation (E), whose second member is equiva
lent to

7T(j) (x), whether we give to x a positive or negative value.

As to equation (E )
it solves the following problem. To find a

function of x such that if x is positive, the value of the function

may be
&amp;lt;/&amp;gt; (x), and if x is negative the value of the function may

be always nothing
2
.

363. The problem of the propagation of heat in an infinite

line may besides be solved by giving to the integral of the partial

differential equation a different form which we shall indicate in

1
Eiemann, Part. Diff. Gleich. 32, gives the proof, and deduces the formulae

corresponding to the cases F (x)
= F

(
-

x).
2 These remarks are essential to clearness of view. The equations from which

(E) and its cognate form may be derived will be found in Todhunter s Integral

Calculus, Cambridge, 1862, 316, Equations (3) and (4). [A. F.]
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the following article. We shall first examine the case in which

the source of heat is constant.

Suppose that, the initial heat being distributed in any manner

throughout the infinite bar, we maintain the section A at a

constant temperature, whilst part of the heat communicated is dis

persed through the external surface. It is required to determine

the state of the prism after a given time, which is the object of the

second problem that we have proposed to ourselves. Denoting by
1 the constant temperature of the end A, by that of the medium,

W^
we have e

S as the expression of the final temperature of a

point situated at the distance x from this extremity, or simply
TTJ-

e~
x

j assuming for simplicity the quantity
-

y to be equal to unity.

Denoting by v the variable temperature of the same point after

the time t has elapsed, we have, to determine v, the equation

dvct*v HL

_

let now v = e~ Ks +u,

du K d*a HL ,

vehftve

dit , (TV
- = k

rr TT T

replacing by k and by h.

If we make u=e~ ht
u we have -,- Jc j-a : the value of u or

dt dxa

W
v e

Ks
is that of the difference between the actual and the

final temperatures ;
this difference u, which tends more and more

to vanish, and whose final value is nothing, is equivalent at first to

-W^
F(x)r-e *,

denoting by F (x) the initial temperature of a point situated at the

distance x. Let f(x) be the excess of the initial temperature over

F. H. !:}
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the final temperature, we must find for u a function which satisfies

the equation -r^k-r^ hu, and whose initial value is f(x), and
ctt cl/x

-x&amp;gt;J

T̂

final value 0. At the point A, or x = 0, the quantity v-e

has, by hypothesis, a constant value equal to 0. We see by this

that u represents an excess of heat which is at first accumulated in

the prism, and which then escapes, either by being propagated to

infinity, or by being scattered into the medium. Thus to represent

the effect which results from the uniform heating of the end A of

a line infinitely prolonged, we must imagine, 1st, that the line is

also prolonged to the left of the point A, and that each point

situated to the right is now affected with the initial excess of

temperature ; 2nd, that the other half of the line to the left of

the point A is in a contrary state
;
so that a point situated at the

distance - x from the point A has the initial temperature /(#) :

the heat then begins to move freely through the interior of the

bar, and to be scattered at the surface.

The point A preserves the temperature 0, and all the other

points arrive insensibly at the same state. In this manner we are

able to refer the case in which the external source incessantly com

municates new heat, to that in which the primitive heat is propa

gated through the interior of the solid. We might therefore solve

the proposed problem in the same manner as that of the diffusion

of heat, Articles 347 and 353; but in order to multiply methods of

solution in a matter thus new, we shall employ the integral under

a different form from that which we have considered up to this

point.

364. The equation -^
= k -7-3 is satisfied by supposing u equal

to e~
x
e
kt

. This function of x and t may also be put under the form

of a definite integral, which is very easily deduced from the known

value of ldqe~
q\ We have in fact *j7r=]dqe~

q
*, when the integral

is taken from = -coto = +oo. We have therefore also

J JT \dqe~
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b being any constant whatever and the limits of the integral the

same as before. From the equation

we conclude, by making 6
2 = kt

hence the preceding value of u or e~* e
kt

is equivalent to

we might also suppose u equal to the function

a and w being any two constants
;
and we should find in the same

way that this function is equivalent to

We can therefore in general take as the value of u the sum of an

infinite number of such values, and we shall have

+ &c.)

The constants a
lt
a

2 , a3 , &c., and nv n
z , n

s&amp;gt;

&c. being undetermined,

the series represents any function whatever of x 4- Zg_&amp;gt;Jkt ;
we have

therefore u= ldqe~
qi

^&amp;gt; (x + fyjkfy The integral should be taken

from 2
r = cotog ss+x, and the value of u will necessarily satisfy

the equation -j-
= k -y-j . This integral which contains one arbi

trary function was not known when we had undertaken our re

searches on the theory of heat, which were transmitted to the

Institute of France in the month of December, 1807: it has been

232
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given by M. Laplace
1

,
in a work which forms part of volume vui

of the Memoires de 1 Ecole Polytechnique ;
we apply it simply to

the determination of the linear movement of heat. From it we
conclude

,, f
+0

, 2JL/
y g-hti dqe-V([&amp;gt;(x +

J -00

when t = the value of u is F(x) e

hence

= r
J _

and &amp;lt;&amp;gt; x = =

Thus the arbitrary function which enters into the integral, is deter

mined by means of the given function /(a?), and we have the

following equation, which contains the solution of the problem,

/WL e~M f
+0

,

v = -^e
* + -7=- dqe-^f (x + Sta/ftj) , .

V 7T / _oo

it is easy to represent this solution by a construction.

365. Let us apply the previous solution to the case in which

all points of the line AB having the initial temperature 0, the end

A. is heated so as to be maintained continually at the tempera
ture 1. It follows from this that F (x) has a nul value when x

-x !^~L

differs from 0. Thus f(x} is equal to e
KS whenever x differs

from 0, and to when x is nothing. On the other hand it is

necessary that on making x negative, the value off(x) should change

sign, so that we have the condition /( x) f(x) We thus

know the nature of the discontinuous function f(x) t
it becomes

. -

e when x exceeds 0, and + e
KS when x is less than 0.

We must now write instead of x the quantity x + 2q^kt. To find

r+co vi
u orl dqe-* -. f(x+ %VAtf), we must first take the integral

from

= to

1 Journal de TEcole Polytechnique, Tome vm. pp. 235244, Paris, 1809.

Laplace shews also that the complete integral of the equation contains only one

arbitrary function, but in this respect he had been anticipated by Poisson. [A. F.J
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and then from

x + IqJkt = - oo to x + 2q*/ki
= 0.

For the first part, we have

*&amp;gt;

and replacing lc by its value -^ we have

VTT

-^-&amp;lt;
/S
/

or _ Ji

TT T r

Denoting the quantity q + by r the preceding expression

becomes

e~
Xlv^s ffu r

7= ecus \dre-
r
\

VTT J

this integral idre-^ must be taken by hypothesis from

* + 22y &quot;^

==0 to = 00,

/yi

or from a = -7= to a = oo
,

9

a;,
or from r = -__ to r =

iKi
VCD

The second part of the integral is

,
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or

or

VTT

denoting by r the quantity q A/

must be taken by hypothesis from

or from

from

-oo to

2

I jf+
&amp;gt; / XI- 6

VCD
The two last limits may, from the nature of the function e~ r&amp;lt;i

, be

replaced by these:

~HU . x
r
Kt
CD

r
, and r = oo .

It follows from this that the value of u is expressed thus :

/ffi PU r Q IHL iTLt r

u = e * KS e CDS dre&quot; e~w^ e ona
idre-^j

the first integral must be taken from

+ ,^- to r = oo
,

r =

and the second from

x
to r = co .
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Let us represent now the integral = Idre ^ from r = R to r = oo

JfJ
by T/T (R], and we shall have

HLt
_,

x
cDs+^jm

CD

y_ _HLt
hence u, which is equivalent to&quot; eTcDS

t
is expressed by

and

The function denoted by i/r (7?) has been known for some time,

and we can easily calculate, either by means of convergent series,

or by continued fractions, the values which this function receives,

when we substitute for R given quantities; thus the numerical

application of the solution is subject to no difficulty
1

.

1 The following references are given by Riemann:

Kramp. Analyse des refractions astronomiques et terrestres. Leipsic and Paris,

An. vii. 4to. Table I. at the end contains the values of the integral / e

from k= 0-00 to fc= 3 -00.

Legendre. Traite desfonctions elliptiques et des integrates Euleriennes. Tomen.
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366. IfH be made nothing, we have

This equation represents the propagation of heat in an infinite

bar, all points of which were first at temperature 0, except those at

the extremity which is maintained at the constant temperature 1.

We suppose that heat cannot escape through the external surface

of the bar
; or, which is the same thing, that the thickness of the

bar is infinitely great. This value of v indicates therefore the law

according to which heat is propagated in a solid, terminated by
an infinite plane, supposing that this infinitely thick wall has first

at all parts a constant initial temperature 0, and that the surface is

submitted to a constant temperature 1. It will not be quite
useless to point out several results of this solution.

Denoting by (7?) the integral ^ \dre~
r*

taken from r = to

JTTJ
r = 7?, we have, when R is a positive quantity,

hence

(- 5) ^&amp;gt; (JR)
= 20 CR) and t? = l-20/ ~

~CD,

developing the integral (R) we have

Paris, 1826. 4to. pp. 5201. Table of the values of the integral Jdx (log IV*.

The first part for values of Hog -
j
from 0-00 to 0-50; the second part for values

of x from 0-80 to $-00.

Encke. Astronomisches Jahrbuchfvr 1834. Berlin, 1832, 8vo. Table I. at the
2 ft

end gives the values of - / e~ tzdt from f= 0-00 to t= 2 QO. [A. F.]
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hence

1st, if we suppose x nothing, we find v = 1
; 2nd, if x not

&quot;being nothing, we suppose t = 0, the sum of the terms which

contain x represents the integral \dre~** taken from r = to r = oo
,

-
and consequently is equal to \J-jr; therefore v is nothing; 3rd,

different points of the solid situated at different depths cc
lt
xv #

3 ,

&c. arrive at the same temperature after different times t
lt

t
it

t
& ,

&c. which are proportional to the squares of the lengths x
lt

a?
2 ,
x

z ,

&c.; 4th, in order to compare the quantities of heat which during
an infinitely small instant cross a section S situated in the interior

of the solid &quot;at a distance x from the heated plane, we must take

the value of the quantity KS r and we have

thus the expression of the quantity -T- is entirely disengaged from

the integral sign. The preceding value at the surface of the
/
/Hf/}

T7&quot;

heated solid becomes S _ -
, which shews how the flow of heat

at the surface varies with the quantities C, D, K, t
;
to find how

much heat the source communicates to the solid during the lapse

of the time t, we must take the integral
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=- or

thus the heat acquired increases proportionally to the square root of

the time elapsed.

367. By a similar analysis we may treat the problem of the

diffusion of heat, which also depends on the integration of the

equation ~r:
= k

j-^
hv. Representing by f^x) the initial tem

perature of a point in the line situated at a distance x from the

origin, we proceed to determine what ought to be the temperature
of the same point after a time t. Making v = e~ ht

z, we have

-y-
= k -Tg- , and consequently z I dq e~ qt

^&amp;gt; (x + 2q Jkt). When
(it Ut J -oo

t 0, we must have

9 (
x

)
or

J GO

hence

e~ty

To apply this general expression to the case in which a part of

the line from x ato# = ais uniformly heated, all the rest of

the solid being at the temperature 0, we must consider that the

factorf(x+ 2q Jfo) which multiplies e~ qZ
has, according to hypo

thesis, a constant value 1, when the quantity which is under the

sign of the function is included between a and a, and that all

the other values of this factor are nothing. Hence the integral

Idq e-v* ought to be taken from x+2q Jkt = a to x + 2q JTt = a,

or from q= --j^.~ toq= . Denoting as above by -^ & (It)
**jkt *&amp;gt;Jkt VTT

the integral ldre~ rZ taken from r = R to r = oo
, we have

2jktn
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368. We shall next apply the general equation

7T J

to the case in which the infinite bar, heated by a source of

constant intensity 1, has arrived at fixed temperatures and is

then cooling freely in a medium maintained at the temperature
0. For this purpose it is sufficient to remark that the initial

_ XJ*
function denoted by f(x) is equivalent to e

v * so long as the

variable x which is under the sign of the function is positive,

and that the same function is equivalent to e^* when the

variable which is affected by the symbol/is less than 0. Hence

the first integral must be taken from

x + 2q-Jkt
= to x + fy-Jkt

= oo
,

and the second from

x + ZqjTtt
- - oo to x + 207^ = 0.

The first part of the value of v is

e~ht fie r _
. Q-X\ jfc&quot; {(JqQ ^Q ^fl^Jht

Jv J

or

or ^
.&quot;[dre-** ,

making r = g 4- ^/Ai. The integral should be taken from

2 = ^r to 2 = &amp;gt;

or from r = = to r
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The second part of the value of v is

n~-Tlt .- / ,-- /

-T^ex\f^ldq e-&amp;lt;? &&* or eV* dr e~*
;

making r = q JTti. The integral should be taken from

r = oo tor = Jfa--7= ,

_. /%

or from r = Jht -f
j=.

to r = co
,

&amp;gt;_

^y/
Kit

whence we conclude the following expression :

3C9. We have obtained (Art. 367) the equation

to express the law of diffusion of heat in a bar of small thickness,

heated uniformly at its middle point between the given limits

x = a, x + a.

We had previously solved the same problem by following a

different method, and we had arrived, on supposing a = 1, at

the equation

_lcos qx sin ^e-
2

^, (Art. 348).

To compare these two results we shall suppose in each x =
;

denoting again by ^{R} the integral ldre~ rZ taken from r =

to r = R, we have

_ 1 1 /o
:

~i 3

\&quot; 1 1 / a y )

+
5l; - &ft ;
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on the other hand we ought to have

v = ~ e~M I sin q e~ q
*kf

,

TT j q

or v =
[8

Now the integral Icfo&amp;lt;e~
w2 w2m taken from u = Q to u = oo has

a known value, m being any positive integer. We have in

general

Joo -2222 2 2 V*

The preceding equation gives then, on making q*kt
=

if,

T,
[2 /, u2

1 u* 1 \

\due~
u

1 1 15 Ti + fr 7T3-- &C. I ,

J V 3/.- o^ ;

v ii/_j_y 1
+ :C

13 ,/fc [2
5 z

This equation is the same as the preceding when we suppose
a. = 1. We see by this that integrals which we have obtained

by different processes, lead to the same convergent series, and
we arrive thus at two identical results, whatever be the value

of x.

We might, in this problem as in the preceding, compare the

quantities of heat which, in a given instant, cross different

sections of the heated prism, and the general expression of these

quantities contains no sign of integration ;
but passing by these

remarks, we shall terminate this section by the comparison of

the different forms which we have given to the integral of the

equation which represents the diffusion of heat in an infinite

line.

r&amp;gt;&amp;gt;-n
m , c ., ,. dll ^ d*ll

3/0. lo satisfy the equation ~r k
^ Z) we may assume

u = e~ff ekt
,

or in general u e~ n? en kt
,
whence we deduce easily

(Art. 364) the integral
r

u = I

1 Cf. Rieinann, 18.
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From the known equation

we conclude

-+00

N/7r = / dqe~(q+a)\ a being any constant; we have therefore
-

i, or

This equation holds whatever be the value of a. We may de-

velope the first member; and by comparison of the terms we shall

obtain the already known values of the integral ldqe~
q
*

q
n

. This

value is nothing when n is odd, and we find when n is an even

number 2w,

L 2.2.2.2...

371. We have employed previously as the integral of the

du , d?u ,,

equation -rr = k^ the expression

u a^-nW cos n^x + aj3~
n**kt cos n^x + a

a
e~n**kt cos n

B
x + &c.

;

or this,

u
a^e&quot;

n^kt sin n^x -h a2
e~ n**kt sin n

z
x + a

&
e~ n*lkt sin n

a
x + &c.

a,, a
2 ,

a
s) &c,, and Wj, w

a ,
n

B , &c., being two series of arbitrary

constants. It is easy to see that each of these expressions is

equivalent to the integral

(dq e~ q
*

sin n (x + 2q *Jkt), or Idq e~& cos n

In fact, to determine the value of the integral

r*30

dq e~^ sin
J 06
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we shall give it the following form

Idq e~ q
*

sin x cos 2q *Jkt +
jdy

e~^ cos x sin 2q ^ki
;

or else,

,P/ fe-M e
-t

4- /
da e~i cos x ft ._ ^ f

_ 1

./-* V2V-1 2V- I/

which is equivalent to

e-** sin x
(jdq

e-(9-
v-*0 2

+ i /^ e -(&amp;lt;/+ V-w&amp;gt;A

4- e-* cos a?

the integral ]dq ***=** taken from ? = - x to ^ = x is V^

we have therefore for the value ofthe integral (dqe-* sin (#+2? i/kt),

the quantity VTT e~
w sin

a?,- and in general

VTT ern2
*&amp;lt; sin w^ =

J ^ e~^ sin n(x + 2q V^) ,

we could determine in the same manner the integral
,+

I
c?2 e-3

3
cos n (x + 2^ ^S) ,

the value of which is V? e ^1 cos ?i#.

We see by this that the integral

e-W
(a, sin n.a? + \ cos

w.a?) + e~n* ki

(a, sin w
8
a; + 6

2
cos w^)

+ e-&quot;&quot;

2^
(aa sin w3

ic -f 6
3
cos up) -f &c.

is equivalent to

-i Cdq 9~* I*
1
Sin Wl (iC + 22 V^) + a

a
sin w, ( 4- 2^ VS) + &c.

|
v/7rj. (^ cos Wl (a: + 2j V^) + 6

8
cos 7i

a (x 4- 22 V^) 4- &cj
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The value of the series represents, as we have seen previously,

any function whatever of x + 2q? *Jkt
;
hence the general integral

can be expressed thus

= /

The integral of the equation
-^- &^ 2 may besides be pre

sented under diverse other forms 1
. All these expressions are

necessarily identical.

SECTION II.

Of the free movement of heat in an infinite solid.

372. The integral of the equation ,,
= -^ -j-9 (a) furnishes

immediately that of the equation with four variables

dv , , ,.........

as we have already remarked in treating the question of the pro

pagation of heat in a solid cube. For which reason it is sufficient

in general to consider the effect of the diffusion in the linear

case. When the dimensions of bodies are not infinite, the distri

bution of heat is continually disturbed by the passage from the

solid medium to the elastic medium; or, to employ the expres

sions proper to analysis, the function which determines the

temperature must not only satisfy the partial differential equa
tion and the initial state, but is further subjected to conditions

which depend on the form of the surface. In this case the integral

has a form more difficult to ascertain, and we must examine the

problem with very much more care in order to pass from the case

of one linear co-ordinate to that of three orthogonal co-ordinates :

but when the solid mass is not interrupted, no accidental condition

opposes itself to the free diffusion of heat. Its movement is the

same in all directions.

1 See an article by Sir \V. Thomson,
&quot; On the Linear Motion of Heat,&quot; Part I,

Camb. Math. Journal, Vol. in. pp. 170174. [A. F.]
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The variable temperature v of a point of an infinite line is

expressed by the equation

TT

a? denotes the distance between a fixed point 0, and the point m,
whose temperature is equal to v after the lapse of a time t. We
suppose that the heat cannot be dissipated through the external

surface of the infinite bar, and that the initial state of the bar is

expressed by the equation v=f(x). The differential equation,
which the value of v must satisfy, is

dt
~
CD dx*

But to simplify the investigation, we write

dv d*v

which assumes that we employ instead of t another unknown

i 4
Kt

equal to^ .

If in/ (oj),
a function of # and constants, we substitute X+%n*/t

for a:, and if, after having multiplied by -_ g-*
2

, we integrate with
VTT

respect to w between infinite limits, the expression

1 f+

^1 d?ie~na

satisfies, as we have proved above, the differential equation (b) ;

that is to say the expression has the property of giving the same

value for the second fluxion with respect to x} and for the first

fluxion with respect to t. From this it is evident that a function

of three variablesf (x, y, z) will enjoy a like property, if we substi

tute for x, y, z the quantities

provided we integrate after having multiplied by

dn
P -n* &L ,-* *3L f

-
q
*

j= e
, ,- e *

, ._ e *
.

VTT VTT VTT

F. H. 24
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In fact, the function which we thus form,

gives three terms for the fluxion with respect to t, and these three

terms are those which would be found by taking the second fluxion

with respect to each of the three variables so, y, z.

Hence the equation

v = TT 3 fdn
jdpjdq y +

gives a value of v which satisfies the partial differential equation

dv _ d*v d*v d*v .

~dt~dx^d^
2 +

^&quot;

373. Suppose now that a formless solid mass (that is to say
one which fills infinite space) contains a quantity of heat whose

actual distribution is known. Let v =F(x, y, z) be the equation
which expresses this initial and arbitrary state, so that the

molecule whose co-ordinates are x, y, z has an initial temperature

equal to the value of the given function F(x,y,z). We can

imagine that the initial heat is contained in a certain part of

the mass whose first state is given by means of the equation
v F(xy y, z), and that all other points have a nul initial tem

perature.

It is required to ascertain what the system of temperatures
will be after a given time. The variable temperature v must

consequently be expressed by a function
&amp;lt;j&amp;gt; (x, y, z, t) which ought

to satisfy the general equation (A) and the condition
&amp;lt;/&amp;gt; (x, y, z, 0)

= F(xt y, z}. Now the value of this function is given by the

integral

v = 7r

In fact, this function v satisfies the equation (A), and if in it we
make t = 0, we find

IT9 fdnjdp (dq e-W^+&F(x, y, z),

or, effecting the integrations, F (x, y, z).
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374. Since the function v or
c/&amp;gt; (x, y, z, t] represents the

initial state when in it we make t = 0, and since it satisfies the

differential equation of the propagation of heat, it represents also

that state of the solid which exists at the commencement of the

second instant, and making the second state vary, we conclude

that the same function represents the third state of the solid, and

all the subsequent states. Thus the value of v, which we have

just determined, containing an entirely arbitrary function of three

variables x, y, z, gives the solution of the problem ;
and we cannot

suppose that there is a more general expression, although other

wise the same integral may be put under very different forms.

Instead of employing the equation

we might give another form to the integral of the equation

-77 = -j-g ;
and it would always be easy to deduce from it the

ctt dx

integral which belongs to the case of three dimensions. The
result which we should obtain would necessarily be the same as

the preceding.

To give an example of this investigation we shall make use of

the particular value which has aided us in forming the exponential

integral.

Taking then the equation
-^-

=
^-j

... (b), let us give to v the

very simple value e~nH cosnx, which evidently satisfies the

differential equation (6). In fact, we derive from it
-j-
= rfv

d*v
and -y-g

= ri*v. Hence also, the integral
CUD

rV m
dn e~ nZt cosnx

belongs to the equation (6) ;
for this value of v is formed of the

sum of an infinity of particular values. Now, the integral

nx

242
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f3 Fri

is known, and is known to be equivalent to /-
/^

(see the follow

ing article). Hence this last function of x and t agrees also with

the differential equation (b).
It is besides very easy to verify

_1J

P 4

directly that the particular value -TF satisfies the equation in

question.

The same result will occur if we replace the variable x by

x a, a being any constant. We may then employ as a particular

Q-q)
2

value the function - &

-j= ,
in which we assign to a any value

whatever. Consequently the sum I dzf (a)
-

p also satisfies
J v t&amp;gt;

the differential equation (6) ;
for this sum is composed of an

infinity of particular values of the same form, multiplied by

arbitrary constants. Hence we can take as a value of v in the

//7) CM 7J

equation -j-
=

-3-- the following,
dt dx

A being a constant coefficient. If in the last integral we suppose

^ = j
2
, making also A ~r= ,

we shall have

1 f*
00

V/^-oo

We see by this how the employment of the particular values

or

leads to the integral under a finite form.
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375. The relation in which these two particular values are to

each other is discovered when we evaluate the integral
1

/

I

J

dn e ^t cos nx.

To effect the integration, we might develope the factor cos nx

and integrate with respect to n. We thus obtain a series which

represents a known development; but the result may be derived

more easily from the following analysis. The integral I dn e~n
*

cos nx

is transformed to I dp e~^
2

cos 2pu, by assuming r?t =p
2and nx = 2pu.

We thus have

/foo
1

/+&amp;gt; -J.

I dn e~nH cos nx = ^l dp e~& cos 2pu. A
J -oo *JtJ -

/r
^S

We shall now write ~S

Idpe~^cos2pu = ^ Idpe-^+fyu^-
1 + \ f&amp;lt;#p

e--p
a -

~ u*

Idpe^-

--u*

(dp e
-

V

Now each of the integrals which enter into these two terms is

equal to A/TT. We have in fact in general

and consequently

=
IJ -00

whatever be the constant b. We find then on making

b = T M s/^T, I^ e&quot;

9 cos 2#w = e~
tt V^

hence I dn e~nH cos nx = - ^ ,

j -oo *y^

1 The value is obtained by a different method in Todhunter s Integral Calcuhu,
375. [A. F.]



374 THEORY OF HEAT. [CHAP. IX.

and putting for u its value
=&amp;gt;
we have

2 V t

_
2

e *t ,~
dn ff~*** cos nx = VTT.

pt
Moreover the particular value

j=-
is simple enough to present

itself directly without its being necessary to deduce it from the

value e~nH cosnx. However it may be, it is certain that the

-& dv d*v
function

j=-
satisfies the differential equation -j-

=
-^

it is the

(j?~q)

6~~ ^t

same consequently with the function ^ ,
whatever the quan-

*Jt

tity a may be.

376. To pass to the case of three dimensions, it is sufficient

_&M?
to multiply the function of x and t, ^ , by two other similar

ijt

functions, one of y and t, the other of z and t\ the product will

evidently satisfy the equation

dv _ d*v d?v d?v

dt~d^ +
dy

z + d?

We shall take then for v the value thus expressed :

If now we multiply the second member by den, d$, dy, and by

any function whatever/ (a, /3, 7) of the quantities a, /6, 7, we find,

on indicating the integration, a value of v formed of the sum of an

infinity of particular values multiplied by arbitrary constants.

It follows from this that the function v may be thus ex

pressed :

M-oo ,.+00 -+00 ^3 (q-^)2+ (.8-y)
2
+(Y-g)

2

J-oo J-oo J -OP

This equation contains the general integral of the proposed

equation (A): the process which has led us to this integral oug^t^
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to be remarked since it is applicable to a great variety of cases
; (

it is useful chiefly when the integral must satisfy conditions \

relative to the surface. If we examine it attentively we perceive I

that the transformations which it requires are all indicated by f

the physical nature of the problem. We can also, in equation (j) t

change the variables. By taking

we have, on multiplying the second member by a constant co

efficient A,

v = 2
3A

fdnfdp fdq erW
+* +

f&amp;gt;f (x + 2n Jt, y + 2pji, z + 2$ Ji).

Taking the three integrals between the limits oo and -f oo,

and making t = in order to ascertain the initial state, we find

3

v = 23

^7r~2/(#, y, z). Thus, if we represent the known initial

temperatures by F (x, y, z), and give to the constant A the value

-s _.

2 TT 2, we arrive at the integral

8 r+x r+*&amp;gt; r+

v = 7r~2
dn\ dpi

J oo J oo J

which is the same as that of Article 372.

The integral of equation (A) may be put under several other

forms, from which that is to be chosen which suits best the

problem which it is proposed to solve.

It must be observed in general, in these researches, that two

functions $ (as, y, z, t) are the same when they each satisfy the

differential equation (A), and when they are equal for a definite

value of the time. It follows from this principle that integrals,

which are reduced, when in them we make t = 0, to the same

arbitrary function F(x, y, z), all have the same degree of generality;

they are necessarily identical.

The second member of the differential equation (a) was
jr

multiplied by^ ,
and in equation (6) we supposed this coefficient

equal to unity. To restore this quantity, it is sufficient to write



376 THEORY OF HEAT. [CHAP. IX.

Kt
TYT, instead of t, in the integral (i)

or in the integral (f). We
\jJLJ

shall now indicate some of the results which follow from these

equations.

377. The function which serves as the exponent of the

number e* can only represent an absolute number, which follows

from the general principles of analysis, as we have proved ex

plicitly in Chapter II., section IX. If in this exponent we replace
Tfj.

the unknown t by 7^, we see that the dimensions ofK} C,D and t,(jU

with reference to unit of length, being 1, 0, 3, and 0, the

Kt
dimension of the denominator -^ is 2 the same as that of each

term of the numerator, so that the whole dimension of the expo
nent is 0. Let us consider the case in which the value of t increases

more and more; and to simplify this examination let us employ
first the equation

which represents the diffusion of heat in an infinite line. Suppose
the initial heat to be contained in a given portion of the line,

from x = htox = +g, and that we assign to a? a definite value X
y

which fixes the position of a certain point m of that line. If the

time t increase without limit, the terms -r-r and - - which
4&amp;lt;t 4

enter into the exponent will become smaller and smaller absolute

_*
2

_ 2
_o? _ ft2

numbers, so that in the product e & e *t e & we can omit

the two last factors which sensibly coincide with unity. We thus

find

,,
N

daf(a)

This is the expression of the variable state of the line after a

very long time
;

it applies to all parts of the line which are less

distant from the origin than the point m. The definite integral

*2

* In such quantities as e~ * . [A. F.]
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+ff

dnf(d) denotes the whole quantity of heat B contained in the
-h

solid, and we see that the primitive distribution has no influence

on the temperatures after a very long time. They depend only
on the sum B, and not on the law according to which the heat has

been distributed.

378. If we suppose a single element co situated at the origin
to have received the initial temperature/ and that all the others

had initially the temperature 0, the product cof will be equal to
r+ff

the integral I
&amp;lt;fa/(a)

or B. The constant /is exceedingly great
J h

since we suppose the line co very small.

X*

The equation v = ._ .. cof represents the movement which
2 J TT *Jt

would take place, if a single element situated at the origin had
been heated. In fact, if we give to x any value a, not infinitely

X2

small, the function - will be nothing when we suppose t = 0.

The same would not be the case if the value of x were
_-

nothing. In this case the function receives on the contrarv

an infinite value when t = 0. We can ascertain distinctly the

nature of this function, if we apply the general principles of the

theory of curved surfaces to the surface whose equation is

e~ty

g
The equation v = ._ ._ a)f expresses then the variable tem-

perature at any point of the prism, when we suppose the whole

initial heat collected into a single element situated at the origin.

This hypothesis, although special, belongs to a general problem,

since after a sufficiently long time, the variable state of the solid is

always the same as if the initial heat had been collected at the

origin. The law according to which the heat was distributed, has
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much influence on the variable temperatures of the prism ;
but

this effect becomes weaker and weaker, and ends with being quite

insensible.

379. It is necessary to remark that the reduced equation (i/)

does not apply to that part of the line which lies beyond the point

m whose distance has been denoted by X.

In fact, however great the value of the time may be, we might
2CLJ

choose a value of x such that the term e
4* would differ sensibly

from unity, so that this factor could not then be suppressed. We
must therefore imagine that we have marked on either side of the

origin two points, m and m
,
situated at a certain distance X or

X, and that we increase more and more the value of the time,

observing the successive states of the part of the line which is

included between m and m. These variable states converge more

and more towards that which is expressed by the equation

Whatever be the value assigned to X, we shall always be able to

find a value of the time so great that the state of the line mom
does not differ sensibly from that which the preceding equation (y)

expresses.

If we require that the same equation should apply to other

parts more distant from the origin, it will be necessary to suppose
a value of the time greater than the preceding.

The equation (?/) which expresses in all cases the final state of

any line, shews that after an exceedingly long time, the different

points acquire temperatures almost equal, and that the temperatures
of the same point end by varying in inverse ratio of the square
root of the times elapsed since the commencement of the diffusion.

The decrements of the temperature of any point whatever always
become proportional to the increments of the time.

380. If we made use of the interal
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to ascertain the variable state of the points of the line situated at

a great distance from the heated portion, and in order to express

the ultimate condition suppressed also the factor e
4Jit

,
the

results which we should obtain would not be exact. In fact,

supposing that the heated portion extends only from a = to a=g
and that the limit g is very small with respect to the distance x of

the point whose temperature we wish to determine
;
the quantity

~~
4kf

whicn f rms the exponent reduces in fact to jy- ;
that

(a _ xf xz

is to say the ratio of the two quantities , and ^- approaches

more nearly to unity as the value of x becomes greater with

respect to that of a : but it does not follow that we can replace

one of these quantities by the other in the exponent of e. In

general the omission of the subordinate terms cannot thus take

place in exponential or trigonometrical expressions. The quanti
ties arranged under the symbols of sine or cosine, or under the

exponential symbol ey
are always absolute numbers, and we can

omit only the parts of those numbers whose value is extremely
small

;
their relative values are here of no importance. To decide

if we may reduce the expression

rg (a-*)2
_^_ rg

&/(*)*
** toe H eZa/(a),

Jo J o

we must not examine whether the ratio of x to a is very great,

but whether the terms 77- &amp;gt; -TTI are very small numbers. This

condition always exists when t the time elapsed is extremely great ;

/y*

but it does not depend on the ratio -
.

381. Suppose now that we wish to ascertain how much time

ought to elapse in order that the temperatures of the part of the

solid included between x and x = X, may be represented very

nearly by the reduced equation



380 THEORY OF HEAT. [CHAP. IX.

and that and g may be the limits of the portion originally

heated.

The exact solution is given by the equation

(a-*)2

r^a/(a)e- ** ,.

1} = i , i A / ,

Jo Zirkt

and the approximate solution is given by the equation

(y),

k denoting the value
^j^

of the conducibility. In order that the

equation (y) may be substituted for the preceding equation (i} )
it

2ax-a?

is in general requisite that the factor e *M
,
which is that which

we omit, should differ very little from unity ;
for if it were 1 or \

we might apprehend an error equal to the value calculated or to

the half of that value. Let then e &* 1 + w, to being a small

fraction, as ^^ or 77:7:7,; from this we derive the condition
LOO LOOO

a
2
\

I ,

J
=

a&amp;gt;,
or t

co

and if the greatest value g which the variable a can receive is

1 O3C

very small with respect to x, we have t = -
^y .

co ^i/2

We see by this result that the more distant from the origin

the points are whose temperatures we wish to determine by means

of the reduced equation, the more necessary it is for the value of

the time elapsed to be great. Thus the heat tends more and more

to be distributed according to a law independent of the primitive

heating. After a certain time, the diffusion is sensibly effected,

that is to say the state of the solid depends on nothing more than

the quantity of the initial heat, and not on the distribution which

was made of it. The temperatures of points sufficiently near to

the origin are soon represented without error by the reduced

equation (y}\ but it is not the same with points very distant from
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the source.* We can then make use of that equation only when
the time elapsed is extremely long. Numerical applications make
this remark more perceptible.

382. Suppose that the substance of which the prism is formed

is iron, and that the portion of the solid which has been heated is

a decimetre in length, so that g = O l. If we wish to ascertain

what will be, after a given time, the temperature of a point m
whose distance from the origin is a metre, and if we employ for

this investigation the approximate integral (y), we shall commit

an error greater as the value of the time is smaller. This error

will be less than the hundredth part of the quantity sought, if the

time elapsed exceeds three days and a half.

In this case the distance included between the origin and the

point in, whose temperature we are determining, is only ten times

greater than the portion heated. If this ratio is one hundred

instead of being ten, the reduced integral (y) will give the tem

perature nearly to less than one hundredth part, when the value

of the time elapsed exceeds one month. In order that the ap

proximation may be admissible, it is necessary in general, 1st that

2 2ft _ ft
2

the quantity
-
-^
- should be equal to but a very small fraction

4/Lfc

as T~AA or TAAA or ^ess
j 2nd, that the error which must follow

1UU

should have an absolute value very much less than the small

quantities which we observe with the most sensitive thermometers.

When the points which we consider are very distant from the

portion of the solid which was originally heated, the temperatures
which it is required to determine are extremely small

;
thus the

error which we should commit in employing the reduced equation

would have a very small absolute value; but it does not follow

that we should be authorized to make use of that equation. For

if the error committed, although very small, exceeds or is equal to

the quantity sought ;
or even if it is the half or the fourth, or an

appreciable part, the approximation ought to be rejected. It is

evident that in this case the approximate equation (y) would not

express the state of the solid, and that we could not avail ourselves

of it to determine the ratios of the simultaneous temperatures of

two or more points.
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383. It follows from this examination that we ought not to

1 W _(a-ff)

conclude from the integral v = 7= &amp;lt;fe/(a)
e ~4*

&quot;

that the

law of the primitive distribution has no influence on the tempera
ture of points very distant from the origin. The resultant effect

of this distribution soon ceases to have influence on the points

near to the heated portion; that is to say their temperature

depends on nothing more than the quantity of the initial heat,

and not on the distribution which was made of it : but greatness

of distance does not concur to efface the impress of the distribu

tion, it preserves it on the contrary during a very long time

and retards the diffusion of heat. Thus the equation

only after an immense time represents the temperatures of points

extremely remote from the heated part. If we applied it without

this condition, we should find results double or triple of the true

results, or even incomparably greater or smaller; and this would

not only occur for very small values of the time, but for great

values, such as an hour, a day, a year. Lastly this expression

would be so much the less exact, all other things being equal, as

the points were more distant from the part originally heated.

384. When the diffusion of heat is effected in all directions,

the state of the solid is represented as we have seen by the

integral

If the initial heat is contained in a definite portion of the solid

mass, we know the limits which comprise this heated part, and

the quantities a, /3, 7, which vary under the integral sign, cannot

receive values which exceed those limits. Suppose then that we
mark on the three axes six points whose distances are + X, + Yf +Z,
and X, Y, Z, and that we consider the successive states of

the solid included within the six planes which cross the axes at

these distances; we see that the exponent of e under the sign of
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/g? J_ 7/
2

_|_ 2
2\

integration, reduces to f ^- J,
when tlie value of the time

increases without limit. In fact, the terms such as
^,-

and
^r-

receive in this case very small absolute values, since the numera

tors are included between fixed limits, and the denominators

increase to infinity. Thus the factors which we omit differ

extremely little from unity. Hence the variable state of the

solid, after a great value of the time, is expressed by

The factor Idildft ldyf(z, /9, 7) represents the whole quantity

of heat B which the solid contains. Thus the system of tempera
tures depends .not upon the initial distribution of heat, but only
on its quantity. We might suppose that all the initial heat was

contained in a single prismatic element situated at the origin,

whose extremely small orthogonal dimensions were a)
lt

&&amp;gt;

2 ,
o&amp;gt;

3
. The

initial temperature of this element would be denoted by an

exceedingly great number /, and all the other molecules of the

solid would have a nul initial temperature. The product
G)

i
ft)

2
Ct)3/ ig equal in this case to the integral

Whatever be the initial heating, the state of the solid which

corresponds to a very great value of the time, is the same as if all

the heat had been collected into a single element situated at the

385. Suppose now that we consider only the points of the

solid whose distance from the origin is very great with respect

to the dimensions of the heated part ;
we might first imagine

that this condition is sufficient to reduce the exponent of e in

the general integral. The exponent is in fact
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and the variables a, /3, 7 are, by hypothesis, included between

finite limits, so that their values are always extremely small

with respect to the greater co-ordinate of a point very remote

from the origin. It follows from this that the exponent of e

is composed of two parts M+ p, one of which is very small

with respect to the other. But from the fact that the ratio

^ is a very small fraction, we cannot conclude that the ex

ponential eH+* becomes equal to eM,
or differs only from it by

a quantity very small with respect to its actual value. We must

not consider the relative values of M and
JJL,

but only the absolute

value of
yLt.

In order that we may be able to reduce the exact

integral (j) to the.equation

e
m

=jB

it is necessary that the quantity

2ao; + 2ffy + fyz
- a* - ft

2 -
7*

whose dimension is 0, should always be a very small number.

If we suppose that the distance from the origin to the point m,

whose temperature we wish to determine, is very great with

respect to the extent of the part which was at first heated,

we should examine whether the preceding quantity is always

a very small fraction . This condition must be satisfied to

enable us to employ the approximate integral

but this equation does not represent the variable state of that

part of the mass which is very remote from the source of heat.

It gives on the contrary a result so much the less exact, all

other things being equal, as the points whose temperature we

are determining are more distant from the source.

The initial heat contained in a definite portion of the solid

mass penetrates successively the neighbouring parts, and spreads
itself in all directions; only an exceedingly small quantity of

it arrives at points whose distance from the origin is very great.
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When we express analytically the temperature of these point?,

the object of the investigation is not to determine numerically

these temperatures, which are not measurable, but to ascertain

their ratios. Now these quantities depend certainly on the law

according to which the initial heat has been distributed, and the

effect of this initial distribution lasts so much the longer as the

parts of the prism are more distant from the source. But if the

terms which form part of the exponent, such as -rj- and -7-7-, have
4kt 4*kt

absolute values decreasing without limit, we may employ the

approximate integrals.

This condition occurs in problems where it is proposed to

determine the highest temperatures of points very distant from

the origin. We can demonstrate in fact that in this case the

values of the times increase in a greater ratio than the distances,

and are proportional to the squares of these distances, when the

points we are considering are very remote from the origin. It is

only after having established this proposition that we can effect

the reduction under the exponent. Problems of this kind are the

object of the following section.

SECTION III.

Of the highest temperatures in an infinite solid.

386. We shall consider in the first place the linear move
ment in an infinite bar, a portion of which has been uniformly

heated, and we shall investigate the value of the time which must

elapse in order that a given point of the line may attain its

highest temperature.

Let us denote by 2g the extent of the part heated, the middle

of which corresponds with the origin of the distances x. All the

points whose distance from the axis of y is less than g and greater

than g, have by hypothesis a common initial temperature f, and

all other sections have the initial temperature 0. We suppose
that no loss of heat occurs at the external surface of the prism, or,

which is the same thing, we assign to the section perpendicular to

the axis infinite dimensions. It is required to ascertain what will

F. H. 25
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be the time t which corresponds to the maximum of temperature
at a given point whose distance is x.

We have seen, in the preceding Articles, that the variable

temperature at any point is expressed by the equation

f-*p

-FT-

The coefficient k represents -^n ^ being the specific con-
Ox/

ducibility, C the capacity for heat, and D the density.

To simplify the investigation, make Jc = 1, and in the result

Tpi

write kt or - instead of t. The expression for v becomes

7 72 J7

This is the integral of the equation -=- = -y- . The function -y-
cfa oar cfo;

measures the velocity with which the heat flows along the axis of

the prism. Now this value of -y-- is given in the actual problem

without any integral sign. We have in fact

a x _!
p

or, effecting the integration,

^=_/_
dx 2

387. The function ~
z may also be expressed without the

(ll)

sign of integration: now it is equal to a fluxion of the first
order^-;

hence on equating to zero this value of -=-
,
which measures the

Uit

instantaneous increase of the temperature at any point, we have
the relation sought between x and t. We thus find

- 2 (* + ff~) f-^ ,

2
(
-~
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which gives

(x+V)* C*j^)
2

(%+g}6~ ~v = (x-g}e~ ;

whence we conclude

JWe have supposed
-
rrf^

= \. To restore the coefficient we

Kt
must write -^ instead of t, and we have

__ ff
CD x

~K~r

The highest temperatures follow each other according to the

law expressed by this equation. If we suppose it to represent the

varying motion of a body which describes a straight line, x being
the space passed over, and t the time elapsed, the velocity of

the moving body will be that of the maximum of temperature.

When the quantity g is infinitely small, that is to say when the

initial heat is collected into a single element situated at the

origin, the value of t is reduced to -
,
and by differentiation or

, Kt x*
development in series we find -^ =

.

(jD 2&amp;gt;

We have left out of consideration the quantity of heat which

escapes at the surface of the prism ;
wTe now proceed to take account

of that loss, and we shall suppose the initial heat to be contained

in a single element of the infinite prismatic bar.

388. In the preceding problem we have determined the

variable state of an infinite prism a definite portion of which was

affected throughout with an initial temperature f. We suppose
that the initial heat was distributed through a finite space from

x = to x = b.

We now suppose that the same quantity of heat If is contained

in an infinitely small element, from x = to x = a). The tempera-

252
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ture of the heated layer will therefore be
,
and from this follows

CO

what was said before, that the variable state of the solid is

expressed by the equation

fb e^t- J ~~ ht
(a) ;

this result holds when the coefficient -^ which enters into the
L/JJ

differential equation -=- =
-^= -^ z hv, is denoted by k. As to the

777
coefficient h, it is equal to

/^ rtc/ ;
S denoting the area of the

section of the prism, I the contour of that section, and H the

conducibility of the external surface.

Substituting these values in the equation (a) we have

f represents the mean initial temperature, that is to say, that

which a single point would have if the initial heat were distributed

equally between the points of a portion of the bar whose length

is /, or more simply, unit of measure. It is required to determine

the value t of the time elapsed, which corresponds to a maximum
of temperature at a given point.

To solve this problem, it is sufficient to derive from equation

(a) the value of -7- ,
and equate it to zero

;
we have

dv , x* lv

hence the value 0, of the time which must elapse in order that the

point situated at the distance x may attain its highest temperature,
is expressed by the equation
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To ascertain the highest temperature V, we remark that the

exponent of e~
l
in equation (a) is ht + -jy- Now equation (&)

#2
1 xz x2

1 1
gives fa = jf-

- ~
;
hence ht + 77-;

=
ny-,

- ~ , and putting for - its
&quot;rA-C 2 db/JC Zfff 2 I

/p2 l\
known value, we have ht + TT~,

= \/ T + 7 ^
2

; substituting this ex-
j^rCv y T /(J

ponent of e&quot;

1
in equation (a), we have

and replacing */#& by its known value, we find, as the expression
of the maximum V,

4/i 1
_1

X*

The equations (c) and (d) contain the solution of the problem ;

TTJ jr
let us replace h and k by their values

TT/T^
and

^7^ ;
let us also

-I Q
write 5 g instead of -=-

, representing by g the semi-thickness of the

prism whose base is a square. We have to determine Fand 6,

the equations

w e-
I*B ,l
V^^+i

These equations are applicable to the movement of heat in a

thin bar, whose length is very great. We suppose the middle of

this prism to have been affected by a certain quantity of heat bf
which is propagated to the ends, and scattered through the convex

surface. V denotes the maximum of temperature for the point
whose distance from the primitive source is a?; is the time

which has elapsed since the beginning of the diffusion up to the

instant at which the highest temperature V occurs. The coeffi-
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cients C, H, K, D denote the same specific properties as in the

preceding problems, and g is the half-side of the square formed by
a section of the prism.

389. In order to make these results more intelligible by a

numerical application, we may suppose that the substance of which

the prism is formed is iron, and that the side 2g of the square is

the twenty-fifth part of a metre.

We measured formerly, by our experiments, the values of H
and K

;
those of C and D were already known. Taking the metre

as the unit of length, and the sexagesimal minute as the unit of

time, and employing the approximate values of H, K} C, D, we

shall determine the values of V and 6 corresponding to a given

distance. For the examination of the results which we have in view,

it is not necessary to know these coefficients with great precision.

We see at first that if the distance x is about a metre and a

half or two metres, the term -^- #
2
,
which enters under the radical,

Kg

has a large value with reference to the second term -
. The ratio

of these terms increases as the distance increases.

Thus the law of the highest temperatures becomes more and

more simple, according as the heat removes from the origin. To
determine the regular law which is established through the whole

extent of the bar, we must suppose the distance x to be very

great, and we find

Kg
390. We see by the second equation that the time which corre

sponds to the maximum of temperature increases proportionally
with the distance. Thus the velocity of the wave (if however we

may apply this expression to the movement in question) is constant,

or rather it more and more tends to become so, and preserves this

property in its movement to infinity from the origin of heat.
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We may remark also in the first equation that the quantity

JJH
fe~* K9 expresses the permanent temperatures which the

different points of the bar would take, if we affected the origin

with a fixed temperature /, as may be seen in Chapter I.,

Article 76.

In order to represent to ourselves the value of V, we must

therefore imagine that all the initial heat which the source con

tains is equally distributed through a portion of the bar whose

length is b, or the unit of measure. The temperature /, which

would result for each point of this portion, is in a manner the

mean temperature. If we supposed the layer situated at the

origin to be retained at a constant temperature /during an infinite

time, all the layers would acquire fixed temperatures whose

_ Jw
general expression is fe K&

, denoting by x the distance of the

layer. These, fixed temperatures represented by the ordinates of

a logarithmic curve are extremely small, when the distance is

considerable ; they decrease, as is known, very rapidly, according
as we remove from the origin.

Now the equation (8) shews that these fixed temperatures,

which are the highest each point can acquire, much exceed the

highest temperatures which follow each other during the diffusion

of heat. To determine the latter maximum, we must calculate

the value of the fixed maximum, multiply it by the constant

/2jy\i i
number

( ^- ) j=- , and divide by the square root of the dis-W V^TT

tance x.

Thus the highest temperatures follow each other through the

whole extent of the line, as the ordinates of a logarithmic curve

divided by the square roots of the abscissae, and the movement of

the wave is uniform. According to this general law the heat

collected at a single point is propagated in direction of the length
of the solid.

391. If we regarded the conducibility of the external surface

of the prism as nothing, or if the conducibility K or the thickness

2g were supposed infinite, we should obtain very different results.
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We could then omit the term -=?- x~}
and we should have 1

K9

In this case the value of the maximum is inversely propor
tional to the distance. Thus the movement of the wave would

not be uniform. It must be remarked that this hypothesis is

purely theoretical, and if the conducibility H is not nothing, but

only an extremely small quantity, the velocity of the wave is not

variable in the parts of the prism which are very distant from the

origin. In fact, whatever be the value of H
t
if this value is given,

as also those of K and g, and if we suppose that the distance x

211
increases without limit, the term -~r xz

will always become much
&9

greater than J. The distances may at first be small enough for

2H
the term -=- #2

to be omitted under the radical. The times are
A#

then proportional to the squares of the distances
;
but as the heat

flows in direction of the infinite length, the law of propagation

alters, and the times become proportional to the distances. The

initial law, that is to say, that which relates to points extremely

near. to the source, differs very much from the final law which is

established in the very distant parts, and up to infinity : but, in

the intermediate portions, the highest temperatures follow each

other according to a mixed law expressed by the two preceding

equations (D) and ((7),

392. It remains for us to determine the highest temperatures

for the case in which heat is propagated to infinity in every direc

tion within the material solid. This investigation, in accordance

with the principles which we have established, presents no

difficulty.

When a definite portion of an infinite solid has been heated,

and all other parts of the mass have the same initial temperature 0,

heat is propagated in all directions, and after a certain time the

state of the solid is the same as if the heat had been originally

collected in a single point at the origin of co-ordinates. The time

1 See equations (D) and (C), article 388, making 6 = 1. [A. F.]
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which must elapse before this last effect is set up is exceedingly

great when the points of the mass are very distant from the origin.

Each of these points which had at first the temperature is

imperceptibly heated; its temperature then acquires the greatest

value which it can receive; and it ends by diminishing more and

more, until there remains no sensible heat in the mass. The

variable state is in general represented by the equation

V
=fdajdbfdo

e- ^ -/(o,M ......... (E).

The integrals must be taken between the limits

The limits a
lt + a

2 ,
b
lt + b

2 , c
1 , + c

2
are given; they

include the whole portion of the solid which was originally heated.

The function f(a, b, c) is also given. It expresses the initial

temperature of a point whose co-ordinates are a, b, c. The defi

nite integrations make the variables a, b, c disappear, and there

remains for v a function of x, y, z, t and constants. To determine

the time which corresponds to a maximum of v, at a given point

ra, we must derive from the preceding equation the value of -57:
at

we thus form an equation which contains 6 and the co-ordinates of

the point ra. From this we can then deduce the value of 6. If

then we substitute this value of 6 instead of t in equation (E), we
find the value of the highest temperature V expressed in x} y}

z

and constants.

Instead of equation (E) let us write

v = (da
fdb jdc Pf(a, b, c),

denoting by P the multiplier of f (a, b, c), we have

dt
=
~2 t+j

da db
)
dc

gs

393. We must now apply the last expression to points of the

solid which are very distant from the origin. Any point what
ever of the portion which contains the initial heat, having for co

ordinates the variables a, b, c, and the co-ordinates of the point m
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whose temperature we wish to determine being x, y, z, the square of

the distance between these two points is (a xf + (6 y)*+ (c z}
2

;

and this quantity enters as a factor into the second term of -7- .

Now the point m being very distant from the origin, it is

evident that the distance A from any point whatever of the heated

portion coincides with the distance D of the same point from the

origin ;
that is to say, as the point m removes farther and farther

from the primitive source, which contains the origin of co-ordinates,

the final ratio of the distances D and A becomes 1.

It follows from this that in equation (e) which gives the value

of ^ the factor (a
- xf + (b

- yf + (c
-

zf- may be replaced by
dt

$ 4. y* + or r
2

, denoting by r the distance of the point m from

the origin. We have then

dv = /r^__3A
dt

&quot; V
P 21)

or
ai \ti ziy

If we put for v its value, and replace t by -^. t
in order to

K
re-establish the coefficient fTn w^ica we na(^ supposed equal to 1,

we have

dv

GD

394. This result belongs only to the points of the solid whose

distance from the origin is very great with respect to the greatest

dimension of the source. It must always be carefully noticed that

it does not follow from this condition that we can omit the varia

bles a, b, c under the exponential symbol. They ought only to be

omitted outside this symbol. In fact, the term which enters under

the signs of integration, and which multiplies / (a, 6, c), is the
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product of several factors, such as

-a 2 2 ax -x*

Now it is not sufficient for the ratio - to be always a very

great number in order that we may suppress the two first factors.

If, for example, we suppose a equal to a decimetre, and x equal to

ten metres, and if the substance in which the heat is propagated is

iron, we see that after nine or ten hours have elapsed, the factor
2 ax

7 .

e CD is still greater than 2
;
hence by suppressing it we should

reduce the result sought to half its value. Thus the value of -r- ,

dt

as it belongs to points very distant from the origin, and for any
time whatever, ought to be expressed by equation (a). But it is

not the same if we consider only extremely large values of the

time, which increase in proportion to the squares of the distances :

in accordance with this condition we must omit, even under the

exponential symbol, the terms which contain a, b, or c. Now this

condition holds when we wish to determine the highest tempera
ture which a distant point can acquire, as we proceed to prove.

395. The value of
^-

must in fact be nothing in the case in

question ;
we have therefore

Thus the time which must elapse in order that a very distant

point may acquire its highest temperature is proportional to the

square of the distance of this point from the origin.

If in the expression for v we replace the denominator -^=-VjU

2
by its value r

2

, the exponent of e~
l which is
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may be reduced to ~
,
since the factors which we omit coincide with

L

unity. Consequently we find

V

V =

The integral Ida Idb ldcf(a, b, c) represents the quantity of

the initial heat : the volume of the sphere whose radius is r is

4
K 7rr

s

,
so that denoting by/ the temperature which each molecule

o

of this sphere would receive, if we distributed amongst its parts

all the initial heat, we shall have v = A/ $f.

The results which we have developed in this chapter indicate

the law according to which the heat contained in a definite portion
of an infinite solid progressively penetrates all the other parts
whose initial temperature was nothing. This problem is solved

more simply than that of the preceding Chapters, since by
attributing to the solid infinite dimensions, we make the con

ditions relative to the surface disappear, and the chief difficulty

consists in the employment of those conditions. The general
results of the movement of heat in a boundless solid mass are

very remarkable, since the movement is not disturbed by the

obstacle of surfaces. It is accomplished freely by means of the

natural properties of heat. This investigation is, properly

speaking, that of the irradiation of heat within the material

solid.

SECTION IV.

Comparison of the integrals.

396. The integral of the equation of the propagation of heat

presents itself under different forms, which it is necessary to com

pare. It is easy, as we have seen in the second section of this

Chapter, Articles 372 and 376, to refer the case of three dimen

sions to that of the linear movement
;

it is sufficient therefore to

integrate the equation

** JL &*
dt~~ CDdx*
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or the equation

dv d?v

To deduce from this differential equation the laws of the propa

gation of heat in a body of definite form, in a ring for example,
it was necessary to know the integral, and to obtain it under a

certain form suitable to the problem, a condition which could be

fulfilled by no other form. This integral was given for the first

time in our Memoir sent to the Institute of France on the

21st of December, 1807 (page 124, Art. 84) : it consists in the

following equation, which expresses the variable system of tem

peratures of a solid ring :

/.
(a).

R is the radius of the mean circumference of the ring ;
the integral

with respect to a. must be taken from a = to a. = ZnR, or, which

gives the same result, from a = irR to a = TrR
;

i is any integer,

and the sum 2) must be taken from i = oo to i= + x
;
v denotes

the temperature which would be observed after the lapse of a

time t, at each point of a section separated by the arc x from that

which is at the origin. We represent by v =F (x) the initial tem

perature at any point of the ring. We must give to i the succes

sive values

0, +1, +2, +3, &c., and -1, -2, - 3
5 &c.,

and instead of cos writeM
ix IOL . ix . la.

We thus obtain all the terms of the value of v. Such is the

form under which the integral of equation (a) must be placed, in

order to express the variable movement of heat in a ring (Chap. IV.,

Art. 241). We consider the case in which the form and extent of

the generating section of the ring are such, that the points of the

same section sustain temperatures sensibly equal. We suppose
also that no loss of heat occurs at the surface of the ring.
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397. The equation (a) being applicable to all values of R, we

can suppose in it R infinite
;
in which case it gives the solution of

the following problem. The initial state of a solid prism of

small thickness and of infinite length, being known and expressed

by v F(x) t
to determine all the subsequent states. Consider the

radius E to contain numerically n times the unit radius of the

trigonometrical tables. Denoting by q a variable which successively

becomes dq, 2dq, 3dq, ... idq, &c., the infinite number n may

be expressed by -y- ,
and the variable number i by -|-

. Making

these substitutions we find

v = ^- dq I dy. F (a) e~qH cos q (x a).

The terms which enter under the sign 2 are differential quan

tities, so that the sign becomes that of a definite integral ;
and

we have

-j

f +ao M-ao

v = x- doL F (a) I dq e-& cos (qx
-

qz) (@).
J-&amp;gt;7T J -oo J - oo

This equation is a second form of the integral of the equation

(QL) ;
it expresses the linear movement of heat in a prism of infinite

length (Chap. VII., Art. 354). It is an evident consequence of the

first integral (a).

398. We can in equation (/3) effect the definite integration

with respect to q-} for we have, according to a known lemma, which

we have already proved (Art. 375),

/.

I

J

+00

dz e~ z *

cos 2hz = e~ h
*

-00

Making then z* = (ft, we find

Jt

Hence the integral (/S) of the preceding Article becomes

r

JJ -
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If we employ instead of a another unknown quantity ft

making = ft we find

%Jt

(8).

This form (8) of the integral
l
of equation (a) was given in

Volume VIII. of the Memoires de VEcole Polytechnique, by M.Laplace,
who arrived at this result by considering the infinite series which

represents the integral.

Each of the equations (/3), (7), (8) expresses the linear diffusion

of heat in a prism of infinite length. It is evident that these are

three forms of the same integral, and that not one can be con

sidered more general than the others. Each of them is contained

in the integral (a) from which it is derived, by giving to R an

infinite value.infm

r s399. It is easy to develope the value of v deduced from

equation (a) in series arranged according to the increasing powers
of one or other variable. These developments are self-evident,

and we might dispense with referring to them; but they give rise

to remarks useful in the investigation of integrals. Denoting by

&amp;lt;j&amp;gt;,
&amp;lt;&quot;,

(f&amp;gt;&quot;,
&c., the functions -7- &amp;lt;(#), -j 2 $(#&quot;)&amp;gt; ~T~3 $(x}&amp;gt;

&c
-&amp;gt;

we

have i

dv /, , r 7 // T~&quot;* \^
-77
= v

,
and v = c + 1 at v

;

1 A direct proof of the equivalence of the forms

tt
t

F&amp;lt;f&amp;gt; (x + 2/3^) and e
dic2

$ (x), (see Art. 401),

has been given by Mr Glaisher in the Messenger of Mathematics, June 1876, p. 30.

Expanding &amp;lt;(&amp;gt;(x+2pJt) by Taylor s Theorem, integrate each term separately:

terms involving uneven powers of
&amp;gt;Jt vanish, and we have the second form

;

which is therefore equivalent to

]_
/*&amp;gt;

[3~
I da I

T
y- Jo

from which the first form may be derived as above. We have thus a slightly

generalized form of Fourier s Theorem, p. 351. [A. F.]
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here the constant represents any function of x. Putting for v&quot; its

value c&quot; + ldtv
iv

,
and continuing always similar substitutions, we

find

v = c+
jdt

v&quot;

\c&quot; +jdt (c

iv

+jdt vJ]
,

or v = c + tc&quot;+~d
v +

^G
+
^c

+ &c............. (I
7

).

In this series, c denotes an arbitrary function of x. If we wish

to arrange the development of the value of v, according to ascend

ing powers of #, we employ

d*v _ dv

dx*~dt

and, denoting by &amp;lt;

y
,

&amp;lt;

/y ,
&amp;lt;

//y , &c. the functions

d, d* d*

a* a?* df^ &c
-&amp;gt;

we have first v = a + bx + \dx \dx v
t ;

a and b here represent any

two functions of t. We can then put for v its value

a, + l&amp;gt;p
+ Idx Idx v

/f ;

and for v
ti

its value a
tl
+ b^x + Idx Idx v

4llt
and so on. By continued

substitutions

v= a + bx + \dx Idx v
t

= a + lx+ \dx\dx
\at

+ Ix 4- Idx Idx vJ

= a + bx+ldx \dx a
t
+ bx + Idx Idx (au + b

t
x -f \dx \dx v\

|
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or t; = a + -^ a t
+ r-r a 4- a + &c.

|2

-

|4
6

l a .................. (Z).O O

In this series, a and b denote two arbitrary functions of t.

If in, the series given by equation (^) we put, instead of

a and b, two functions
&amp;lt;/&amp;gt; (t) and -^ (f),

and develope them according

to ascending powers of t, we find only a single arbitrary function

of x, instead of two functions a and b. We owe this remark to

M. Poisson, who has given it in Volume vi. of the Memoires de

TEcole Polytechnique, page 110.

Reciprocally, if in the series expressed by equation (T) we de

velope the function c according to powers of x, arranging the

result with respect to the same powers of x, the coefficients of

these powers are formed of two entirely arbitrary functions of t
;

which can be easily verified on making the investigation.

400. The value of v, developed according to powers of t,

ought in fact to contain only one arbitrary function of x
;
for the

differential equation (a) shews clearly that, if we knew, as a

function of #, the value of v which corresponds to t = 0, the

other values of the function v which correspond to subsequent
values of t, would be determined by this value.

It is no less evident that the function v, when developed

according to ascending powers of x, ought to contain jwo com

pletely arbitrary functions of the variable t. In fact the dISerential

equation -7-3
=

-7- shews that, if we knew as a function of t the

value of v which corresponds to a definite value of x, we could

not conclude from it the values of v which correspond to all the

other values of x. It would be necessary in addition, to give as

a function of t the value of v which corresponds to a second value

of x
}
for example, to that which is infinitely near to the first. All

the other states of the function v, that is to say those which corre

spond to all the other values of x, would then be determined. The
differential equation (a) belongs to a curved surface, the vertical

ordinate of any point being v, and the two horizontal co-ordinates

F. H. 26
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x and and t. It follows evidently from this equation (a) that the

form of the surface is determined, when we give the form of the

vertical section in the plane which passes through the axis of x :

and this follows also from the physical nature of the problem ;
for

it is evident that, the initial state of the prism being given, all the

subsequent states are determined. But we could not construct

the surface, if it were only subject tcT passing through a curve

traced on the first vertical plane of i and v. It would be necessary

to know further the curve traced on a second vertical plane

parallel to the first, to which it may be supposed extremely near.

The same remarks apply to all partial differential equations, and

we see that the order of the equation does not determine in all

cases the number of the arbitrary functions.

401. The series (T) of Article 399, which is derived from the

equation
dv d?v

may be put under the form v = etD&amp;lt;i

&amp;lt;f&amp;gt; (x). Developing the ex-

d*

ponential according to powers of D, and writing -j-. instead of D\

considering i as the order of the differentiation, we have

Following the same notation, the first part of the series (X)

(Art. 399), which contains only even powers of x, may be expressed

under the form cos (x ,J D) &amp;lt;j&amp;gt; (t). Develope according to powers

of x, and write ^ instead of D\ considering i as the order of the

differentiation. The second part of the series (X) can be derived

from the first by integrating with respect to x, and changing the

function &amp;lt;

(t)
into another arbitrary function ty (t). We have

therefore

v = cos (tf^- !&amp;gt;)&amp;lt;/&amp;gt;()+
W

and -W= I *dx cos (xJ^
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This known abridged notation is derived from the analogy

which exists between integrals and powers. As to the use made

of it here, the object is to express series, and to verify them

without any development. It is sufficient to differentiate under

the signs which the notation employs. For example, from the

equation v = etl}
*

&amp;lt;f) (a?),
we deduce, by differentiation with respect

to t only,

which shews directly that the series satisfies the differential

equation (a). Similarly, if we consider the first part of the series

(X), writing

we have, differentiating twice with respect to x only,

Hence this value of v satisfies the differential equation (a).

We should find in the same manner that the differential

equation

gives as the expression for v in a series developed according to

increasing powers of y,

v cos (yD) $ (x).

We must develope with respect to y, and write
^-

instead of

D : from this value of v we deduce in fact,

? = --D COS

The value sin (yD} ty (x) satisfies also the differential equation;
hence the general value of v is

v = cos (yD) &amp;lt; (x) + W, where W= sin (yD) ty (x).

262
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402. If the proposed differential equation is

ifv dh efo / v

dt*-dtf
+

d?/
z

&quot;

and if we wish to express v in a series arranged according to

powers of t, we may denote by D&amp;lt; the function

S?* +^* ;

fPv
and the equation being -^

= Dv, we have

v = cos (t &amp;lt;J D) $ (x, y).

From this we infer that

-Ta -5-5 -7-5at dx* df

We must develope the preceding value of v according to powers

of t, write (n + -rni , instead of D , and then regard i as the ordern
of differentiation.

The following value \dt cos (t J- D) ^ (a?, #) satisfies the same

condition; thus the most general value of v is

jdt
cos (* 7^5) ^ (

x
, y] ;and

v is a function f(xy
y&amp;gt; f)

of three variables. If we make t = 0, we

have/= (a?, y, 0)
=

&amp;lt;

(a?, y) ;
and denoting ^/fe y, by/ (, y, &amp;lt;),

we have/ (a?, y, 0) = ^ (x, y}.

If the proposed equation is

the value of v in a series arranged according to powers of t will
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be v = cos (tD*) &amp;lt;j&amp;gt; (#,#), denoting^ by D; for we deduce from

this value

d*
572 -V = - -j-4 V.
dt dy?

The general value of v, which can contain only two arbitrary
functions of x and y, is therefore

v = cos (ZD
2

) (a?, y) + W,

and TF = f dt cos
(*Z&amp;gt;

2

) -^ (#, y).
Jo

Denoting u by /(a?, y, 0, and ^ by / (a;, y, ), we have to

determine the two arbitrary functions,

* & y) =/ (^ y* )&amp;gt;

and ^ (^ y) =/ te y&amp;gt; o).

403. If the proposed differential equation is

tfv d*v d*v _-

we may denote by D$ the function -y + -gj so that

or Z)
2

^&amp;gt;

can be formed by raising the binomial (-j-a + -p2
j
to the

second degree, and regarding the exponents as orders of differen-

d?v
tiation. Equation (e) then becomes -^ + D

z
v = 0; and the value

of v, arranged according to powers of t, is cos (tD)
&amp;lt;f&amp;gt; (x, y) ;

for

from this we derive

7 . ^
/, or ^^ + -y-4 + 2 , 2 , 2 + -7-4

= 0.
ar cfo cfar dx dy dy

The most general value of v being able to contain only two

arbitrary functions of x and ?/, which is an evident consequence of

the form of the equation, may be expressed thus :

v = cos (tD) &amp;lt;/&amp;gt; (x, y) + 1
dt cos (tD} f (#, y).
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The functions
&amp;lt;/&amp;gt;

and i/r
are determined as follows, denoting the

function v by /(a?, y, t),
and ^/ (x, y, t) by/ (x, y, t),

$ (*, y} =f (*, y&amp;gt; o), t fa y) =/x fa y. o).

Lastly, let the proposed differential equation be

dv_- = a 1-2 -y~4 c :r~6
dt dot? dx* dx6

the coefficients a, b, c&amp;gt;

d are known numbers, and the order of the

equation is indefinite.

The most general value of v can only contain one arbitrary

function of x
;

for it is evident, from the very form of the equa

tion, that if we knew, as a function of x, the value of v which

corresponds to t 0, all the other values of v, which correspond to

successive values of tt would be determined. To express v, we

should have therefore the equation v e tj)
^ (x).

We denote by D(f&amp;gt;
the expression

that is to say, in order to form the value of v, we must develop

according to powers of t, the quantity

a.*+ca6+ da.8+ &C.)

and then write
-^-

instead of a, considering the powers of a as orders
dx

of differentiation. In fact, this value of v being differentiated

with respect to t only, we have

dv detD ,
N

_. d*v , d*v d*v p

-T:
= ^r 9 () = -Dv = a

-j t + b -, 4 + c -j 6 + &c.
c?^ ai fic

2
dx* da?

It would be useless to multiply applications of the same process.

For very simple equations we can dispense with abridged expres
sions ;

but in general they supply the place of very complex in

vestigations. We have chosen, as examples, the preceding equa
tions, because they all relate to physical phenomena whose analytical

expression is analogous to that of the movement of heat. The two

first, (a) and
(b), belong to the theory of heat

;
and the three
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following (c), (d), (e), to dynamical problems; the last (/) ex

presses what the movement of heat would be in solid bodies, if

the instantaneous transmission were not limited to an extremely
small distance. We have an example of this kind of problem in

the movement of luminous heat which penetrates diaphanous
media.

404. We can obtain by different means the integrals of these

equations : we shall indicate in the first place that which results

from the use of the theorem enunciated in Art. 361, which we
now proceed to recal.

If we consider the expression

/+&amp;gt; /+&amp;lt; p
dy. $ (a) I d&amp;lt;

J - oo J -co
cos (px-pz), .................. (a)

we see that it represents a function of #; for the two definite

integrations with respect to a and p make these variables dis

appear, and a function of x remains. Thgjiataiir of the function

will evidently depend on that which we shall have chosen for

(j) (a). We may ask what the function
&amp;lt;f) (a), ought to be, in order

tffSTafter two definite integrations we may obtain a given function

f(x^. In general the investigation of the integrals suitable for

the expression of different physical phenomena, is reducible to

problems similar to the preceding. The object of these problems
is to determine the arbitrary functions under the signs of the

definite integration, so that the result of this integration may be

a given function. It is easy to see, for example, that the general

integral of the equation

dv d*v d4
v de

v d*v - ,

would be known if, in the preceding expression (), we could

determine &amp;lt; (a), so that the result of the eq^kion might be a

given functionf (x). In fact, we form directly a particular value

of v, expressed thus,

v = e~ mt
cospx,

and we find this condition,

m =
op* -f lp* + rp

6 + &c.
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We might then also take

v _ e-mt cos

giving to the constant a any value. We have similarly

v**fd*&amp;lt;j&amp;gt;
0) e-*(^+ 6*4+^6+&c) cos (px -pz).

It is evident that this value of v satisfies the differential equation

(/) ;
it is merely the sum of particular values.

Further, supposing t = 0, we ought to find for v an arbitrary

function of x. Denoting this function by/(#), we have

/ (x)
=

I dz
(f&amp;gt; (a) I dp cos (px p%).

Now it follows from the form of the equation (/), that the most

general value of v can contain only one arbitrary function of x.

In fact, this equation shews clearly that if we know as a function

of x the value of v for a given value of the time t, all the other

values of v which correspond to other values of the time, are

necessarily determined. It follows rigorously that if we know,
as a function of t and x, a value of v which satisfies the differential

equation; and if further, on making t = 0, this function of x and t

becomes an entirely arbitrary function of x, the function of x and

t in question is the general integral of equation (/). The whole

problem is therefore reduced to determining, in the equation

above, the function &amp;lt; (a), so that the result of two integrations

may be a given function /(#). It is only necessary, in order that

the solution may be general, that we should be able to take for

f(x) an entirely arbitrary and even discontinuous function. It is

merely required therefore to know the relation which must always
exist between the given function f(x) and the unknown function

&amp;lt;j&amp;gt; (a). Now this very simple relation is expressed by the theorem

of which we are speaking. It consists in the fact that when the

integrals are taken between infinite limits, the function &amp;lt; (a) is

~ / (a) ;
that is to say, that we have the equation

I r+oo /+

~fc.-l
&/(a)|^?r j - oo j -
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From this we conclude as the general integral of the proposed

equation (/),

u = -L [
efe/(^7T J -oo

405. If we propose the equation

which expresses the transverse vibratory movement of an elastic

plate
1

,
we must consider that, from the form of this equation, the

most general value of v can contain only two arbitrary functions

of x: for, denoting this value of v by f(x,t), and the function

-rf(x, t) by / (a?, t), it is evident that if we knew f(x, 0) and
cit

f (x, 0), that is to say, the values of v and - - at the first instant,
at

all the other values of v would be determined.

This follows also from the very nature of the phenomenon. In

fact, consider a rectilinear elastic lamina in its state of rest: x is

the distance of any point of this plate from the origin of co

ordinates; the form of the lamina is very slightly changed, by

drawing it from its position of equilibrium, in which it coincided

with the axis of x on the horizontal plane; it is then abandoned to

its own forces excited by the change of form. The displacement is

supposed to be arbitrary, but very small, and such that the initial

form given to the lamina is that of a curve drawn on a vertical

plane which passes through the axis of x. The system will suc

cessively change its form, and will continue to move in the vertical

plane on one side or other of the line of equilibrium. The most

general condition of this motion is expressed by the equation

d*v d4
v ,, . ,

a?+- ........................w -

Any point m, situated in the position of equilibrium at a

distance x from the origin 0, and on the horizontal plane, has, at

1 An investigation of the general equation for the lateral vibration of a thin

elastic rod, of which (d) is a particular case corresponding to no permanent

internal tension, the angular motions of a section of the rod being also neglected,

will be found in Donkiu s Acoustics, Chap. ix. 169177. [A.F.]
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the end of the time
,
been removed from its place through the

perpendicular height v. This variable flight v is a function of

x and t. The initial value of v is arbitrary; it is expressed by any
function

(/&amp;gt; (x). Now, the equation (d) deduced from the funda

mental principles of dynamics shews that the second fluxion

of v, taken with respect to ,-or
~

z ,
and the fluxion of the fourth

(Jut

d*v
order taken with respect to x, or

^ 4
are two functions of x and t,

which differ only in sign. We do not enter here into the special

question relative to the discontinuity of these functions; we have

in view only the analytical expression of the integral.

We may suppose also, that after having arbitrarily displaced

the different points of the lamina, we impress upon them very

small initial velocities, in the vertical plane in which the vibrations

ought to be accomplished. The initial velocity given to any

point m has an arbitrary value. It is expressed by any function

ty (x} of the distance x.

It is evident that if we have given the initial form of the

system or
&amp;lt;/&amp;gt; (x) and the initial impulses or ty (x), all the subse

quent states of the system are determinate. Thus the function

v oif(x,t), which represents, after anytime t, the corresponding

form of the lamina, contains two arbitrary functions &amp;lt; (x)

and
ijr (x).

To determine the function sought f(xt t),
consider that in the

equation

we can give to v the very simple value

u cos (ft cos qXj

or else u cos ft cos (qx &amp;lt;?a) ;

denoting by q and a any quantities which contain neither x nor t.

We therefore also have

u = I doL F(OL) Idq cos ft cos (qx q
1

*),
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F(OL) being any function, whatever the limits of the integrations

may be. This value of v is merely a sum of particular values.

Supposing now that t = 0, the value of v must necessarily

be that which we have denoted by/(#, 0) or
&amp;lt;f&amp;gt;

(x). We have

therefore

(f) (x)
= IdoL F (a) \dq cos (qx qx).

The function F (a) must be determined so that, when the two \

integrations have been effected, the result shall be the arbitrary I

j

function
&amp;lt;j&amp;gt; (x). Now the theorem expressed by equation (.6) shews J

that when the limits of both integrals are oo and + GO
,
we A

have

Hence the value of u is given by the following equation :

I /+
[+*&amp;gt;u = ^ dy.

&amp;lt;/&amp;gt; (a) I dq cos ft cos (qx qa).Air J -so J -oo

If this value of u were integrated with respect to t, the &amp;lt; in

it being changed to
^Jr,

it is evident that the integral (denoted

by W) would again satisfy the proposed differential equation (d),

and we should have

W=
27rj

d*^W fa
-

2 sin& cos
(&amp;lt;l

x - 2*)-

This value W becomes nothing when = 0; and if we take the

expression

dwdw i r
+

&quot;^

=
2^rJ

we see that on making t in it, it becomes equal to -^ (x).

The same is not the case with the expression -j- ;
it becomes -

nothing when t = 0, and u becomes equal to &amp;lt; (x) when t = 0.

It follows from this that the integral of equation (d) is

1 r+x r+ao

# = I
da&amp;lt;t&amp;gt;(a) \ dq cos ^^ cos (qx qz) + W= u + TF,

^7T J -oo J - x

and
1 .

j
Sin Q&quot;t COS (QX

i r&quot;

1
&quot;00

r
+ao

1
Tr=

g-
I rfaA|r (a) I dq ^
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In fact, this value of v satisfies the differential equation (d) ;

also when we make t 0, it becomes equal to the entirely arbitrary

function fy (x) ;
and when we make t = in the expression -7- ,

cLii

it reduces to a second arbitrary function ^r (as).
Hence the value

of v is the complete integral of the proposed equation, and there

cannot be a more general integral.

406. The value of v may be reduced to a simpler form by

effecting the integration with respect to q. This reduction, and

that of other expressions of the same kind, depends on the two

results expressed by equations (1) and (2), which will be proved
in the following Article.

dq cos^ cos qz = p-sin I-T + T) (1).* * * v
/:

Ciq sin q*t cos qz .-= sin f-r -T-
) (2).-** -^ /. \ ZL AiT 1

/ \ /

(k/ \ **/

From this we conclude

Denoting j- by another unknown p, we have

a = x + 2/,6 Jt, da. =

Putting in place of sin
(^

+ Afc2

J
its value

1

v
we have

u = -TT= f ^ (sin ^
2 + cos fS) &amp;lt;j&amp;gt; (OL + 2/4 V/) ........

( ).
V ^7T J -oo

We have proved in a special memoir that (5) or (8 ), the

integrals of equation (d), represent clearly and completely the

motion of the different parts of an infinite elastic lamina. They
contain the distinct expression of the phenomenon, and readily

explain all its laws. It is from this point of view chiefly that we
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have proposed them to the attention of geometers. They shew
how oscillations are propagated and set up through the whole

extent of the lamina, and how the effect of the initial displace

ment, which is arbitrary and fortuitous, alters more and more as

it recedes from the origin, soon becoming insensible, and leaving

only the existence of the action of forces proper to the system, the

forces namely of elasticity.

407. The results expressed by equations (1) and (2) depend
upon the definite integrals

I dx cos ce
2

,
and I dx sin x*

;

f-f-oo r-f-oo

g = I dx cos cc
2

,
and h = I dx sin a;

2
;

J ao J - ao

let

and regard g and h as known numbers. It is evident that in the

two preceding equations we may put y + b instead of x, denoting
by b any constant whatever, and the limits of the integral will be
the same. Thus we have

g = P*dy cos (y* + Zby + b
2

), h = (
^

dy sin (y
2 + 2by + 6

2

),J 00 J 00

= f di I
cos^ cos 2^ cos ^ ~~ cos ^

2
s*

J I sin y
2
sin 2by cos 6

8 - sin y
2
cos 2by sin b

2

)

Now it is easy to see that all the integrals which contain the

factor sin 2by are nothing, if the limits are &amp;lt;x&amp;gt; and + o&amp;gt;

; for

sin 2by changes sign at the same time as y. We have therefore

g = cos 6
a

I dy cos y
z
cos 2by

- sin b* I dy sin y* cos 2by ......... (a).

The equation in h also gives

h = id i
S^n y

*
cos 2^ cos ^ + cos y* cos ^y sm

J \ + cos y
2
sin 2by cos b

2
sin y

2
sin 26y sin

and, omitting also the terms which contain sin 2by, we have

h - cos &
2

J dy sin y
2
cos 2by + sin Z&amp;gt;

2
/ dy cos

2/

2
cos 2by........ (6).
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The two equations (a) and (b) give therefore for g and h the

two integrals

\dy sin y
z
cos 2&# and \dy cos ?/

2
cos 2%

which we shall denote respectively by A and B. We may now

make

sn cos &amp;gt;2

=

y
z = p

z

t,
and Zby

= pz ;
or i

we have therefore

fj&quot;t\dp cosp*t cos)2
= A, *Jt\dp si]

The values
1
of g and /& are derived immediately from the known

result

r+ oo

VTT = I dx e~ x*.

J -00

The last equation is in fact an identity, and consequently does

not cease to be so, when we substitute for # the quantity

The substitution gives

= r1
\dy

e &quot;^= f1
\dy

Thus the real part of the second member of the last equation

is N/TT and the imaginary part nothing. Whence we conclude

N/TT =
-j=

(\dy cos
y*+jdy

sin
y*)

,

1 More readily from the known results given in 360, viz.

fdusinu
/^ , du . ..

~~r~ = \/ o Let u = z
&amp;gt; % 1= =dz

&amp;gt;

then
x/w v 2 Ju

I e?2sins2=i \/ J. and I dzsinz*=2 I dzsiuz&quot;*= \/ J.
Jo

V 2
J-oo Jo

V 2

So for the cosine from p**^ /*
[B.L.B.]

/w ^ 2
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and =
\dy cos y* \dy siny

2

,

or

It remains only to determine, by means of the equations (a)

and (6), the values of the two integrals

I dy cos y
z
cos 2by and

| dy sin y* sin 2by.

They can be expressed thus :

A = I dy cos y* cos 2by = h sin 6
2 + g cos 5

2

,

B = I dy sin i/

2
cos 26^ = h cos 6

2- ^ sin b
2

;

whence we conclude

writing sin
^ , or cos

^
instead of i/

-
, we have

=^ s

ing4-|)
.................. (1)

and I dpsmtft cospz= -ILsmt
7

^^-}.., ,..(2)
/- 4 kt)

408. The proposition expressed by equation (B) Article 404,
or by equation (E) Article 361, which has served to discover the

integral (8) and the preceding integrals, is evidently applicable to

a very great number of variables. In fact, in the general equation

J
/+*&amp;gt; -+QO

or / 0) = 9- /
dP\ d* cos (px - p*)f (a),

A- V&amp;lt; . OO J ~ 3D



41 G THEORY OF HEAT. [CHAP. IX.

we can regard f(x) as a function of the two variables x and y.

The function /(a) will then be a function of a and y. We shall

now regard this function f (a, y) as a function of the variable y,

and we then conclude from the same theorem (B), Article 404,

1
f&quot;

1
&quot;00

f

that f(a, ;?/)
=

J^
/ (a, )

jdq
cos (qy

-

We have therefore, for the purpose of expressing any function

whatever of the two variables x and ?/, the following equation

y)
= **&f( $ cos (P*-

/+oo

J -00

We form in the same manner the equation which belongs to

functions of three variables, namely,

*, y, *)
= ** A 7)

jd/p
cos (_p# |&amp;gt;a) /Jg cos (^ - 0/9) I?r cos (r ry) .....(BBF),

each of the integrals being taken between the limits oo

and

It is evident that the same proposition extends to functions

which include any number whatever of variables. It remains to

show how this proportion is applicable to the discovery of the

integrals of equations which contain more than two variables.

409. For example, the differential equation being

we wish to ascertain the value of v as a function of (x, y, t), such

that
; 1st, on supposing t = 0, v or f(x, y, t) becomes an arbitrary

function &amp;lt;

(a?, y) of x and y\ 2nd, on making t = in the value

S/IJ

of --
y
or f (x,y y t), we find a second entirely arbitrary function
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From the form of the differential equation (c) we can infer

that the value of v which satisfies this equation and the two pre

ceding conditions is necessarily the general integral. To discover

this integral, we first give to v the particular value

v = cos mt cospx cos qy.

The substitution of v gives the condition m = Jp* + q*.

It is no less evident that we may write

v = cosp (x a) cos q (y ft) cos tJ$ -f (f,

or

v= I dx I d/3F (a, /3) I dp cos (px
-

pot) Idq cos (qy
-
q@) cos t Jp* + q*t

whatever be the quantities p, q, a, ft and F (a, @), which contain

neither x, y, nor t. In fact this value of t is merely the sum of

particular values.

If we suppose t = 0, v necessarily becomes $ (x} y). &quot;We have

therefore

(
x

&amp;gt; y)
=
jdzldP

F
(a , /3)

J
dp cos (px

-
POL)

jdq
cos (qy

-
q/3).

Thus the problem is reduced to determining F (a, /3), so that

the result of the indicated integrations may be &amp;lt; (x, y). Now, on

comparing the last equation with equation (BB), we find

*&amp;gt; y}
=

(*-} f k
f

+

^
&amp;lt;/&amp;gt; ( a&amp;gt; /S) f

+

\^7r/ J-ao J-x&amp;gt; J -
cos -

Hence the integral may be expressed thus :

We thus obtain a first part i of the integral; and, denoting

by W the second part, which ought to contain the other arbitrary

function
i/r (x, y), we have

v = u+ W,

F. H. 27
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and we must take W to be the integral ludt, changing only &amp;lt;&amp;gt;

into
A/T.

In fact, u becomes equal to
(f&amp;gt; (a?, y), when t is made

= 0; and at the same time W becomes nothing, since the integra

tion, with respect to t, changes the cosine into a sine.

Further, if we take the value of -7-, and make t = 0, the first

part, which then contains a sine, becomes nothing, and the

second part becomes equal to ty (x, y). Thus the equation

v = u + Wis the complete integral of the proposed equation.

We could form in the same manner the integral of the

equation

&amp;lt;Fv c?v d?v cFv

It would be sufficient to introduce a new factor

2^
cos (rz

-
ry) ,

and to integrate with respect to r and 7.

410. Let the proposed equation be
;r^ + -7-2

+
-7-*

$
;

it is
ctx cLy ctz

required to express v as a function f(x,y,z), such that, 1st,

f(x,y,Q) may be an arbitrary function $(#,#); 2nd, that on

making 2 = in the function -7- f(x,y,z) we may find a second
ctz

arbitrary function ^ (#, y). It evidently follows, from the form of

the differential equation, that the function thus determined will

be the complete integral of the proposed equation.

To discover this equation we may remark first that the equa
tion is satisfied by writing v =

cos^&amp;gt;#cos qij emz
,

the exponents

p and q being any numbers whatever, and the value of m being

We might then also write

v = cos (px-p*} cos (qy
-

q(3} (e
&amp;lt;v^+ i

-f
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or

t =
t, ft) jdpjdq

cos (px -pi) cos (qy
-

qft)

If 2 be made equal to 0, we have, to determine F(y, /3), the

following condition

( y)
=
jdzldft

F (a, /3) jdpjdq
cos (^ -_pa) cos (^ - qft) ;

and, on comparing with the equation (BB) t
we see that

we have then, as the expression of the first part of the integral,

^) 4P cos (Px -P*) d(l cos (^ ~ 2#)

The value of w reduces to
&amp;lt;/&amp;gt;

(x, y) when = 0, and the same

substitution makes the value of -j- nothing.dx

We might also integrate the value of u with respect to z, and

give to the integral the following form in which
i/r is a new

arbitrary function:

IF= ^) |

da.

jd/3
^r (a, ft)

Jdp
cos (^ -

pa) jdq
cos (jy

-
qft)

The value of TF becomes nothing when =
0, and the same

dW
substitution makes the function j~ equal to -^ (x, y). Hence

the general integral of the proposed equation is v = u + W.

411. Lastly, let the equation be

f
dt

* *-~*^dy*~
272
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it is required to determine v as a function/ (#, y, t), which satisfies

the proposed equation (e) and the two following conditions :

namely, 1st, the substitution t in f(x,yji) must give an

arbitrary function
&amp;lt;jf&amp;gt;

(x, y) ; 2nd, the same substitution in

f (x-, y, t) must give a second arbitrary function ty (x, y).
ctt

It evidently follows from the form of equation (e), and from

the principles which we have explained above, that the function v,

when determined so as to satisfy the preceding conditions, will be

the complete integral of the proposed equation. To discover this

function we write first,

v = cos px cos qy cos mt,

whence we derive

d*v 2 d*v 4 d* 22 d v= -. m*
v = tfv =

p*g*v
=^

dt dx* dor dy*
*

dy*

We have then the condition m=p* + q*. Thus we can write

v = cospx cos qy cos t (p* +
a

),

or v = cos (px px) cos (qy q/3) cos (p*t -1- q*t),

or v = ldz \dpF(z, j3) Idp \dq cos (px pot) cos (qy q/5)

cos (p
z
t + q*t).

When we make t = 0, we must have v =
&amp;lt;f&amp;gt;(x,y)\

which serves

to determine the function F
(a., /9). If we compare this with the

general equation (BB), we find that, when the integrals are taken

/ 1 \
2

between infinite limits, the value of F(a, ft) is I \

(f&amp;gt; (a, /8). We

have therefore, as the expression of the first part u of the

integral,

J
u = a cos ~ a cos ~

Integrating the value of w with respect to t, the second arbi

trary function being denoted by -\|r,
we shall find the other part

W of the integral to be expressed thus :
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W =
(^) fafa ^ (*, ft)fafa

COS (px -jpa) COS fe/
-

2/3)

sin
(jp

l + g*t)

If we make t = in u and in IF, the first function becomes

equal to $(&,y), and the second nothing; and if we also make

= in -j-u and in -=- W, the first function becomes nothing,

and the second becomes equal to ty (x,y) hence v = u +W is the

general integral of the proposed equation.

412. We may give to the value of u a simpler form by effect

ing the two integrations with respect to p and q. For this

purpose we use the two equations (1) and (2) which we have

proved in Art. 407, and we obtain the following integral,

Denoting by u the first part of the integral, and by W the

second, which ought to contain another arbitrary function, we
have

rt

TF=
Jo

dtu and v = u+ W.

If we denote by /-t
and v two new unknowns, such that we

have

a-x_
*

ft-y_
;* I7T

and if we substitute for a, /?, dz, d@ their values

#4-2^7^, y + 2vjit
2d

we have this other form of the integral,

We could not multiply further these applications of our

formulae without diverging from our chief subject. The preceding

examples relate to physical phenomena, whose laws were un

known and difficult to discover; and we have chosen them because
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the integrals of these equations, which have hitherto been

fruitlessly sought for, have a remarkable analogy with those which

express the movement of heat.

413. We might also, in the investigation of the integrals,

consider first series developed according to powers of one variable,

and sum these series by means of the theorems expressed by the

equations (B), (BB). The following example of this analysis,

taken from the theory of heat itself, appeared to us to be

worthy of notice.

We have seen, Art. 399, that the general value of u derived

from the equation
dv d*v

, N

dt=dj
...................... ......

(a)&amp;gt;

developed in series, according to increasing powers of the variable

t, contains one arbitrary function only of x
;
and that when de

veloped in series according to increasing powers of x, it contains

two completely arbitrary functions of t.

The first series is expressed thus :

v = t(*) + tJ2tW +
ft^4&amp;gt;W

+ to- --. ..... (T).

The integral denoted by (), Art. 397, or

v =
^- \ dy.

&amp;lt;j&amp;gt; (a) I dp e~pZ* cos (px ^?a),

represents the sum of this series, and contains the single arbitrary

function &amp;lt;

(as).

The value of v, developed according to powers of x, contains

two arbitrary functions f(t) and F(t), and is thus expressed :

There is therefore, independently of equation (/3), another

form of the integral which represents the sum of the last series,

and which contains two arbitrary functions, f(t) and F(f).
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It is required to discover this second integral of the proposed

equation, which cannot be more general than the preceding,

but which contains two arbitrary functions.

We can arrive at it by summing each of the two series which

enter into equation (X). Now it is evident that if we knew, in

the form of a function of x and t, the sum of the first series which

contains f(t), it would be necessary, after having multiplied it by
dx, to take the integral with respect to x, and to change f (t) into

F (t). We should thus find the second series. Further, it would

be enough to ascertain the sum of the odd terms which enter into

the first series : for, denoting this sum by /i,
and the sum of all

the other terms by v, we have evidently

[* [* dp=
I ax

\
dx -j- .

Jo Jo

It remains then to find the value of p. Now the function

f(t) may be thus expressed, by means of the general equation (B\

It is easy to deduce from this the values of the functions

It is evident that differentiation is equivalent to writing in

the second member of equation (5), under the sign I dp, the

respective factors p
2
, +p*, p

6
, &c.

We have then, on writing once the common factor cos (ptpz),

Thus the problem consists in finding the sum of the series

which enters into the second member, which presents no difficulty.

In fact, if y be the value of this series, we conclude

&amp;lt;?y 2 , p
4^ p

6^8

, i &amp;lt;2*y 5^=-/+- or
s?

= ~py-
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Integrating this linear equation, and determining the arbitrary

constants, so that, when x is nothing, y may be 1, and

dij fry d?i/

tx&amp;gt; dx2 d?

may be nothing, we find, as the sum of the series,

It would be useless to refer to the details of this investigation ;

it is sufficient to state the result, which gives, as the integral

sought,

v -
|cZa/(a) Idq q -jcos 2&amp;lt;?

2

(t a) (e^ + e~vx
)
cos qx

- sin 2^
2

(t
-

a) (&*
- e~ qx

]
sin gx } + W. .....

The term W is the second part of the integral; it is formed by

integrating the first part with respect to x, from x = to x = x,

and by changing / into F. Under this form the integral contains

two completely arbitrary functions f(t) and F
(t). If, in the value

of v, we suppose x nothing, the term W becomes nothing by

hypothesis, and the first part u of the integral becomes f(t}. If

we make the same substitution x = in the value of -r- it is
ax

evident that the first part -j- will become nothing, and that the
dx

dW
second, -j ,

which differs only from the first by the function

F being substituted for ft
will be reduced to F (t). Thus the

integral expressed by equation (00) satisfies all the conditions,

and represents the sum of the two series which form the second

member of the equation (X).

This is the form of the integral which it is necessary to select

in several problems of the theory of heat
1

;
we see that it is very

different from that which is expressed by equation (/3), Art. 897.

1 See the article by Sir W. Thomson, &quot;On the Linear Motion of Heat,&quot; Part II.

Art. 1. Camb. Math. Journal, Vol. III. pp. 2068. [A. F.]
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414. We may employ very different processes of investigation

to express, by definite integrals, the sums of series which repre

sent the integrals of differential equations. The form of these

expressions depends also on the limits of the definite integrals.

We will cite a single example of this investigation, recalling the

result of Art. 311. If in the equation which terminates that

Article we write x + 1 sin u under the sign of the function c,

we have

1

l&quot;du &amp;lt;j&amp;gt;(x
+ t sin u)

-+ (*);+a &amp;lt;/&amp;gt;&quot; (x) + =Ai^ (.r)
7T

.. o 4 .*

Denoting by v the sum of the series which forms the second

member, we see that, to make one of the factors 22

,
42

,
6

2

,
&c.

disappear in each term, we must differentiate once with respect

to t, multiply the result by t, and differentiate a second time with

respect to t. We conclude from this that v satisfies the partial

differential equation

d~v _l d^f dv\ d^v_(Fv Idv
dx*

~
1 It (

t

~dt) cU?~~d? +:tdt

We have therefore, to express the integral of this equation,

1 [
n

v = I du
(j&amp;gt; (x + 1 sin 11) + W.

The second part W of the integral contains a new arbitrary

function.

The form of this second part W of the integral differs very

much from that of the first, and may also be expressed by definite

integrals. The results, which are obtained by means of definite

integrals, vary according to the processes of investigation by which

they are derived, and according to the limits of the integrals.

415. It is necessary to examine carefully the nature of the

general propositions which serve to transform arbitrary functions :

for the use of these theorems is very extensive, and wre derive

from them directly the solution of several important physical

problems, which could be treated by no other method. The
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following proofs, which we gave in our first researches, are very

suitable to exhibit the truth of these propositions.

In the general equation

-i r+x&amp;gt; /+&amp;lt;

f(x) = -
I

cfaf (a) dp cos (py. -px) t

&quot; oo JO

which is the same as equation (B), Art. 404, we may effect the in

tegration with respect to p, and we find

a-x
We ought then to give to p, in the last expression, an infinite

value; and, this being done, the second member will express the

value of f(&). We shall perceive the truth of this result by
means of the following construction. Examine first the definite

C m vi /y*

integral I dx -
, which we know to be equal to JTT, Art. 356.

Jo x

If we construct above the axis of x the curve whose ordinate is

sin x, and that whose ordinate is -, and then multiply the ordinate
M&amp;gt;

of the first curve by the corresponding ordinate of the second, we

may consider the product to be the ordinate of a third curve

whose form it is very easy to ascertain.

Its first ordinate at the origin is 1, and the succeeding ordinates

become alternately positive or negative; the curve cuts the axis

at the points where x = TT, 2?r, 3?r, &c., and it approaches nearer

and nearer to this axis.

A second branch of the curve, exactly like the first, is situated

r sin x
to the left of the axis of y. The integral I dx is the area

Jo af

included between the curve and the axis of x, and reckoned from

x up to a positive infinite value of x.

00

The definite integral / dx ,
in which p is supposed to be

Jo &

any positive number, has the same value as the preceding. In

fact, let px = z
; the proposed integral will become I dz

, and,
Jo z

consequently, it is also equal to ^TT. This proposition is true,
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whatever positive number p may be. If we suppose, for example,

1A ,,
T

,. .sn ,

p = 10, the curve whose ordmate is - - has sinuosities veryx J

much closer and shorter than the sinuosities whose ordinate is

;
but the whole area from x = up to x = x is the same.x

Suppose now that the number p becomes greater and greater,
and that it increases without limit, that is to say, becomes infinite.

The sinuosities of the curve whose ordinate is
- are infinitely

ss

near. Their base is an infinitely small length equal to -
. That

being so, if we compare the positive area which rests on one

of these intervals -- with the negative area which rests on the

following interval, and if we denote by JTthe finite and sufficiently

large abscissa which answers to the beginning of the first arc,

we see that the abscissa a?, which enters as a denominator into

the expression of the ordinate, has no sensible variation in

the double interval
, which serves as the base of the two areas.

Consequently the integral is the same as if x were a constant

quantity. It follows that the sum of the two areas which succeed

each other is nothing.

The same is not the case wrhen the value of x is infinitely

small, since the interval has in this case a finite ratio to the
P

r 01 p T?*/1

value of x. We know from this that the integral / dx
,
in

Jo *

which we suppose^? to be an infinite number, is wholly formed out

of the sum of its first terms which correspond to extremely small

values of x. When the abscissa has a finite value X, the area

does not vary, since the parts which compose it destroy each other

two by two alternately. We express this result by writing

x
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The quantity ,
which denotes the limit of the second integral,

has an infinitely small value
;
and the value of the integral is the

same when the limit is co and when it is oo .

416. This assumed, take the equation

/, , N
sin p (a. x) . .-^, N

1 f
+

*)-]

Having laid down the. axis of the abscissae a, construct above

that axis the curve ff, whose ordinate is / (a). The form of

this curve is entirely arbitrary; it might have ordinates existing

only in one or several parts of its course, all the other ordinates

being nothing.

Construct also above the same axis of abscissae a curved line ss

whose ordinate is
,
z denoting the abscissa and p a very

great positive number. The centre of this curve, or the point

which corresponds to the greatest ordinate p, may be placed at the

origin of the abscissae a, or at the end of any abscissa whatever.

We suppose this centre to be successively displaced, and to be

transferred to all points of the axis of or, towards the right, depart

ing from the point 0. Consider what occurs in a certain position

of the second curve, when the centre has arrived at the point x,

which terminates an abscissa x of the first curve.

The value of x being regarded as constant, and a being the

only variable, the ordinate of the second curve becomes

sin p (a oc)

VL X

If then we link together the two curves, for the purpose of

forming a third, that is to say, if we multiply each ordinate of the

second, and represent the product by an ordinate of a third curve

drawn above the axis of a, this product is

, , . sinp (a a?)

** a x

The whole area of the third curve, or the area included between
this curve and the axis of abscissae, may then be expressed by

7 / / \ sin;? (a x)
J a-x
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Now the number p being infinitely great, the second curve has

all its sinuosities infinitely near
;
we easily see that for all points

which are at a finite distance from the point x, the definite

integral, or the whole area of the third curve, is formed of equal

parts alternately positive or negative, which destroy each other two

by two. In fact, for one of these points situated at a certain dis

tance from the point #, the value of /(a) varies infinitely little

when we increase the distance by a quantity less than . The

same is the case with the denominator a x, which measures that

distance. The area which corresponds to the interval is there-
P

fore the same as if the quantities /(a) and a a; were not variables.

Consequently it is nothing when a x is a finite magnitude.
Hence the definite integral may be taken between limits as near

as we please, and it gives, between those limits, the same result as

between infinite limits. The whole problem is reduced then to

taking the integral between points infinitely near, one to the left,

the other to the right of that where a x is nothing, that is to say
from OL = X co to a = x+ co, denoting by co a quantity infinitely

small. In this interval the function /(a) does not vary, it is

equal to/ (a?),
and may be placed outside the symbol of integra

tion. Hence the value of the expression is the product off(jc) by

[
J a x

taken between the limits a x = co, and a x = co.

Now this integral is equal to TT, as we have seen in the pre

ceding article
;
hence the definite integral is equal to irf(x) t whence

we obtain the equation

*/ \
1 r* j s / \

^ sin p (a. x} , .

/&amp;lt;*)

= 5z /
&amp;lt;**/&amp;lt;)

-
&quot;irjr &amp;lt;***)

O

-i) ...... (B).
J -co *

&quot;&quot;CO

417. The preceding proof supposes that notion of infinite

quantities which has always been admitted by geometers. It

would be easy to offer the same proof under another form, examin

ing the changes which result from the continual increase of the
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factory under the symbol sin/&amp;gt; (OL X). These considerations are

too well known to make it necessary to recall them.

Above all, it must be remarked that the function /(a?), to which

this proof applies, is entirely arbitrary, and not subject to a con

tinuous law. We might therefore imagine that the enquiry is

concerning a function such that the ordinate which represents it

has no existing value except when the abscissa is included between

two given limits a and b, all the other ordinates being supposed

nothing ;
so that the curve has no form or trace except above the

interval from x = a to x = b, and coincides with the axis of a in

all other parts of its course.

The same proof shews that we are not considering here infinite

values of x, but definite actual values. We might also examine on

the same principles the cases in which the function f(x) becomes

infinite, for singular values of x included between the given limits;

but these have no relation to the chief object which we have in

view, which is to introduce into the integrals arbitrary functions
;

it is impossible that any problem in nature should lead to the

supposition that the function f(x) becomes infinite, when we

give to a; a singular value included between given limits.

In general the function f(x) represents a succession of values

or ordinates each of which is arbitrary. An infinity of values being

given to the abscissa x, there are an equal number of ordinates

/ (x). All have actual numerical values, either positive or negative
or nul.

We do not suppose these ordinates to be subject to a common

law; they succeed each other in any manner whatever, and each of

them is given as if it were a single quantity.

It may follow from the very nature of the problem, and from

the analysis which is applicable to it, that the passage from one

ordinate to the following is effected in a continuous manner. But

special conditions are then concerned, and the general equation (B),

considered by itself, is independent of these conditions. It is

rigorously applicable to discontinuous functions.

Suppose now that the function f(x) coincides with a certain

analytical expression, such as sina, e~ x
\ or $ (x), when we give to

x a value included between the two limits a and b, and that all
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the values of f(x] are nothing when x is not included between a

and 6; the limits of integration with respect to a, in the preceding

equation (B\ become then a = a, a = 6; since the result is the same
as for the limits a = oc

,
a = oo

, every value of
&amp;lt;/&amp;gt; (a) being nothing

by hypothesis, when a is not included between a and b. We have
then the equation

The second member of this equation (B )
is a function of the

variable x\ for the two integrations make the variables a. andp dis

appear, and x only remains with the constants a and b. Now the

function equivalent to the second member is such, that on substitut

ing for x any value included between a and b, we find the same

result as on substituting this value of x in
&amp;lt;f&amp;gt; (x) ;

and we find a nul

result if, in the second member, we substitute for x any value not

included between a and b. If then, keeping all the other quantities

which form the second member, we replaced the limits a and b

by nearer limits a and &
,
each of which is included between a and

6, we should change the function of x which is equal to the second

member, and the effect of the change would be such that the

second member would become nothing whenever we gave to # a

value not included between d and 6
; and, if the value of x were

included between a and 6
,
we should have the same result as

on substituting this value of x in
&amp;lt;j&amp;gt;(x).

We can therefore vary at will the limits of the integral in the

second member of equation (B&quot;).
This equation exists always for

values of x included between any limits a and b, which we may
have chosen; and, if we assign any other value to x, the second

member becomes nothing. Let us represent &amp;lt;t&amp;gt;(x) by the variable

ordinate of a curve of which x is the abscissa
;
the second member,

whose value is /(a?), will represent the variable ordinate of a second

curve whose form will depend on the limits a and b. If these

limits are oc and + 20
, the two curves, one of which has

&amp;lt;j&amp;gt;(x)

for

ordinate, and the other f(x], coincide exactly through the whole

extent of their course. But, if we give other values a and b to these

limits, the two curves coincide exactly through every part of their

course which corresponds to the interval from x = a to x = b. To

right and left of this interval, the second curve coincides precisely
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at every point with the axis of x. This result is very remarkable,

and determines the true sense of the proposition expressed by

equation (B).

418. The theorem expressed by equation (II) Art. 234 must

be considered under the same point of view. This equation

serves to develope an arbitrary function / (x) in a series of sines or

cosines of multiple arcs. The function f(x) denotes a function

completely arbitrary, that is to say a succession of given values,

subject or not to a common law, and answering to all the values of

x included between and any magnitude X.

The value of this function is expressed by the following

equation,

*?y(*-lO (A).

The integral, with respect to a, must be taken between the

limits a = a, and a = 6
;
each of these limits a and I is any quantity

whatever included between and X. The sign 2 affects the

integer number i
t
and indicates that we must give to i every

integer value negative or positive, namely,

...-5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5,...

and must take the sum of the terms arranged under the sign 2.

After these integrations the second member becomes a function of

the variable x only, and of the constants a and b. The general

proposition consists in this : 1st, that the value of the second

member, which would be found on substituting for x a quantity
included between a and &, is equal to that which would be obtained

on substituting the same quantity for x in the function /(a?); 2nd,

every other value of x included between and X, but not included

between a and b, being substituted in the second member, gives a

mil result.

Thus there is no function f(x), or part of a function, which

cannot be expressed by a trigonometric series.

The value of the second member is periodic, and the interval

of the period is X, that is to say, the value of the second member
does not change when x + X is written instead of x. All its

values in succession are renewed at intervals X.
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The trigonometrical series equal to the second member is

convergent; the meaning of this statement is, that if we give to

the variable x any value whatever, the sum of the terms of the

series approaches more and more, and infinitely near to, a definite

limit. This limit is 0, if we have substituted for x a quantity
included between and X, but not included between a and ft;

but if the quantity substituted for x is included between a and b,

the limit of the series has the same value as f(x). The last

function is subject to no condition, and the line whose ordinate it

represents may have any form; for example, that of a contour

formed of a series of straight lines and curved lines. We see by
this that the limits a and b, the w^hole interval X, and the nature

of the function being arbitrary, the proposition has a very exten

sive signification ; and, as it not only expresses an analytical

property, but leads also to the solution of several important

problems in nature, it wras necessary to consider it under different

points of view, and to indicate its chief applications. We have

given several proofs of this theorem in the course of this work.

That which we shall refer to in one of the following Articles

(Art. 424) has the advantage of being applicable also to non-

periodic functions.

If we suppose the interval X infinite, the terms of the series

become differential quantities ;
the sum indicated by the sign 2

becomes a definite integral, as was seen in Arts. 353 and 355, and

equation (A) is transformed into equation (B). Thus the latter

equation (B) is contained in the former, and belongs to the case

in which the interval X is infinite: the limits a and b are then

evidently entirely arbitrary constants.

419. The theorem expressed by equation (B) presents also

divers analytical applications, which we could not unfold without

quitting the object of this work; but we will enunciate the

principle from which these applications are derived.

We see that, in the second member of the equation

the function f(x) is so transformed, that the symbol of the

function / affects no longer the variable &, but an auxiliary

F. H. 28
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variable a. The variable x is only affected by the symbol cosine.

It follows from this, that in order to differentiate the function/ (x)

with respect to x, as many times as we wish, it is sufficient to

differentiate the second member with respect to a under the

symbol cosine. We then have, denoting by i any integer number

whatever,

We take the upper sign when i is even, and the lower sign

when i is odd. Following the same rule relative to the choice

of sign

We can also integrate the second member of equation (Z?)

several times in succession, with respect to x\ it is sufficient to

write in front of the symbol sine or cosine a negative power
of p.

The same remark applies to finite differences and to summa
tions denoted by the sign 2, and in general to analytical operations

which may be effected upon trigonometrical quantities. The chief

characteristic of the theorem in question, is to transfer the general

sign of the function to an auxiliary variable, and to place the

variable x under the trigonometrical sign. The function f(x)

acquires in a manner, by this transformation, all the properties of

trigonometrical quantities ; differentiations, integrations, and sum
mations of series thus apply to functions in general in the same

manner as to exponential trigonometrical functions. For which

reason the use of this proposition gives directly the integrals

of partial differential equations with constant coefficients. In

fact, it is evident that we could satisfy these equations by par
ticular exponential values

;
and since the theorems of which we

are speaking give to the general and arbitrary functions the

character of exponential quantities, they lead easily to the expres
sion of the complete integrals.

The same transformation gives also, as we have seen in

Art. 413, an easy means of summing infinite series, when these

series contain successive differentials, or successive integrals of the
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same function
;
for the summation of the series is reduced, by

what precedes, to that of a series of algebraic terms.

420. We may also employ the theorem in question for the

purpose of substituting under the general form of the function a

binomial formed of a real part and an imaginary part. This

analytical problem occurs at the beginning of the calculus of

partial differential equations ;
and we point it out here since it

has a direct relation to our chief object.

If in the function f(x) we write \L + v 1 instead of #, the

result consists of two parts (b+Jlty. The problem is to

determine each of these functions
&amp;lt;/&amp;gt;

and ty in terms of
//.
and v.

We shall readily arrive at the result if we replace f(x) by the

expression

for the problem is then reduced to the substitution of /A + v I

instead of x under the symbol cosine, and to the calculation of the

real term and the coefficient of 1. We thus have

=/(/* + v J~l) =
~jdz (*)

fdp
cos [p (p

-
a) +pv

4~ pa/(a) I
cos ~* e pv + e

~
pv

l sn -

hence $ = |d/(a) [dp cos (pp -pz)

Thus all the functions f(x) which can be imagined, even those

which are not subject to any law of continuity, are reduced to the

form M -f-Nj 1, when we replace the variable x in them by the

binomial yu,+ v*J- 1.

282
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421. To give an example of the use of the last two formulae,

let us consider the equation -^ + -,
^
=

0, which relates to the

uniform movement of heat in a rectangular plate. The general

integral of this equation evidently contains two arbitrary func

tions. Suppose then that we know in terms of x the value of v

when y = 0, and that we also know, as another function of x, the

value of -7- when y = 0, we can deduce the required integral from

that of the equation

which has long been known; but we find imaginary quantities

under the functional signs : the integral is

v =
&amp;lt;/&amp;gt; (x + y^l) + &amp;lt; (x

-
2/7=3) + W.

The second part W of the integral is derived from the first by

integrating with respect to y, and changing &amp;lt;f&amp;gt;

into ^r.

It remains then to transform the quantities $(x + y J 1) and

$ (#
~~ yj~ i)&amp;gt;

m order to separate the real parts from the ima

ginary parts. Following the process of the preceding Article we

find for the first part u of the integral,

1 /+ r+ 30

u =
^-

I da/(a) I dp cos (px -pa) (e
00 ^ GO

and consequently

W= & F(a) cos (p
-
iw) (e-

-
e-)-

The complete integral of the proposed equation expressed in

real terms is therefore v = u + W ;
and we perceive in fact,

1st, that it satisfies the differential equation ; 2nd, that on making
y = in it, it gives v =f(x) ; 3rd, that on making y in the

function -7- ,
the result is F(x).
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422. We may also remark that we can deduce from equation

(B) a very simple expression of the differential coefficient of the

d l

[*
i
th

order, -T-j/OOi or of the integral I dxl

f(x).

The expression required is a certain function of x and of the

index i. It is required to ascertain this function under a form

such that the number i may not enter it as an index, but as a

quantity, in order to include, in the same formula, every case in

which we assign to i any positive or negative value. To obtain it

we shall remark that the expression

cos

^7^ . ITT
or cos r cos

-^ sin r sin -=-
,

4 A

becomes successively

- sin r,
- cos r, + sin r, + cos r, sin r, &c.,

if the respective values of i are 1, 2, 3, 4, 5, &c. The same results

recur in the same order, when we increase the value of i. In the

second member of the equation

cos x ~

we must now write the factor p* before the symbol cosine, and

add under this symbol the term -f- i- . We shall thus have

The number i, which enters into the second member, may be

any positive or negative integer. We shall not press these applica

tions to general analysis ;
it is sufficient to have shewn the use of

our theorems by different examples. The equations of the fourth

order, (d\ Art, 405, and (e), Art. 411, belong as we have said to

dynamical problems. The integrals of these equations were not

yet known when we gave them in a Memoir on the Vibrations of
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Elastic Surfaces, read at a sitting of the Academy of Sciences
1

,

Gth June, 1816 (Art. VI. 10 and 11, and Art. vii. 13 and 14).

They consist in the two formulae S and 8
,
Art. 40G, and in the two

integrals expressed, one by the first equation of Art. 412, the other

by the last equation of the same Article. We then gave several

other proofs of the same results. This memoir contained also the

integral of equation (c), Art. 409, under the form referred to in

that Article. &quot;With regard to the integral (/3/3) of equation (a),

Art. 413, it is here published for the first time.

423. The propositions expressed by equations (A) and (B ),

Arts. 418 and 417, may be considered under a more general point

of view. The construction indicated in Arts. 415 and 41 G applies

Sill f ?)j ^-^ 77 7
1

)

not only to the trigonometrical function - -

;
but suits

oc oc

all other functions, and supposes only that when the number p
becomes infinite, we find the value of the integral with respect to

a, by taking this integral between extremely near limits. Now
this condition belongs not only to trigonometrical functions, but is

applicable to an infinity of other functions. We thus arrive at

the expression of an arbitrary function f(x) under different very

remarkable forms
;
but we make no use of these transformations

in the special investigations which occupy us.

With respect to the proposition expressed by equation (A),

Art. 418, it is equally easy to make its truth evident by con

structions, and this was the theorem for which we employed them

at first. It will be sufficient to indicate the course of the proof.

1 The date is inaccurate. The memoir was read on June 8th, 1818, as appears
from an abstract of it given in the Bulletin dcs Sciences par la Societe Philomatique,

September 1818, pp. 129 136, entitled, Note relative mix vibrations des surfaces

elastiques et au mouvement des ondes, par M. Fourier. The reading of the memoir
further appears from the Analyse des travaux de VAcademic des Sciences pendant
Vannee 1818, p. xiv, and its not having been published except in abstract, from a

remark of Poissoii at pp. 150 1 of his memoir Sur les Equations aux differences

partielles, printed in the Memoires de VAcademie des Sciences, Tome in. (year 1818),

Paris, 1820. The title, Memoire sur les vibrations des surfaces glastiques, par
M. Fourier, is given in the Analyse, p. xiv. The object, &quot;to integrate several

partial differential equations and to deduce from the integrals the knowledge of the

physical phenomena to which these equations refer,&quot; is stated in the Bulletin,

p. ISO. LA. I
1

.]
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In equation (A), namely,

we can replace the sum of the terms arranged under the

sign 2 by its value, which is derived from known theorems.
We have seen different examples of this calculation previously,
Section III., Chap. in. It gives as the result if we suppose,
in order to simplify the expression, 2?r = X, and denote a-#
by r,

_-+.; . . . sin r
2j cos ir = cos ?r+ sin ir--.

-j
J versmr

We must then multiply the second member of this equation

by cZx/(a), suppose the number j infinite, and integrate from
a = - TT to a = + TT. The curved line, whose abscissa is a and
ordinate cos^V, being conjoined with the line whose abscissa is

a. and ordinate /(a), that is to say, when the corresponding
ordinates are multiplied together, it is evident that the area of

the curve produced, taken between any limits, becomes nothing
when the number j increases without limit. Thus the first term

cosjr gives a nul result.

The same would be the case with the term sinjr, if it were

not multiplied by the factor - ^ ;
but on comparing the

three curves which have a common abscissa a, and as ordinates
sm r

versin r

sin ?

,
we see clearly that the integral

c/a/(a) sinjV
versiii r

has no actual values except for certain intervals infinitely small,

namely, when the ordinate - becomes infinite. This will
versin ?*

take place if r or a x is nothing ;
and in the interval in which

a differs infinitely little from x, the value of /(a) coincides with

f(x). Hence the integral becomes

J
r sin Jr &amp;gt;

or 4/(.r)
j

~ sin jr,
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which is equal to 2irf(x) t
Arts. 415 and 350. Whence we con

clude the previous equation (A).

When the variable x is exactly equal to TT or + TT, the con

struction shews what is the value of the second member of the

equation (A), [|/(-7r) or ^/(TT)].

If the limits of integrations are not - TT and + TT, but other I

numbers a and b, each of which is included between TT and

+ TT, we see by the same figure what the values of x are, for which

the second member of equation (A) is nothing.

If we imagine that between the limits of integration certain

values of /(a) become infinite, the construction indicates in what

sense the general proposition must be understood. But we do

not here consider cases of this kind, since they do not belong

to physical problems.

If instead of restricting the limits TT and + TT, we give

greater extent to the integral, selecting more distant limits a

and b ,
we know from the same figure that the second member

of equation (A) is formed of several terms and makes the result

of integration finite, whatever the function /(#) may be.

We find similar results if we write 2?r y instead of r, the

limits of integration being X and + X.

It must now be considered that the results at which we

have arrived would also hold for an infinity of different functions

of sin jr. It is sufficient for these functions to receive values

alternately positive and negative, so that the area may become

nothing, when j increases without limit. We may also vary

the factor . -, as well as the limits of integration, and we
versm r

may suppose the interval to become infinite. Expressions of

this kind are very general, and susceptible of very different forms.

We cannot delay over these developments, but it was necessary

to exhibit the employment of geometrical constructions
;

for

they solve without any doubt questions which may arise on the

extreme values, and on singular values; they would not have

served to discover these theorems, but they prove them and guide

all their applications.
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424. We have yet to regard the same propositions under

another aspect. If we compare with each other the solutions

relative to the varied movement of heat in a ring, a sphere, a

rectangular prism, a cylinder, we see that we had to develope
an arbitrary function f(x) in a series of terms, such as

i&amp;lt;/&amp;gt; OvO +
&amp;lt;v (/v*0 + 3&amp;lt;!&amp;gt; (/vO + &c -

The function (, which in the second member of equation

(A) is a cosine or a sine, is replaced here by a function which

may be very different from a sine. The numbers filt //,2, //,3 , &c.

instead of being integers, are given by a transcendental equation,

all of whose roots infinite in number are real

The problem consisted in finding the values of the coefficients

a
\&amp;gt;

av a
s

- - - a i I they nave been arrived at by means of definite

integrations which make all the unknowns disappear, except one.

We proceed to examine specially the nature of this process, and

the exact consequences which flow from it.

In order to give to this examination a more definite object,

we will take as example one of the most important problems,

namely, that of the varied movement of heat in a solid sphere.

\Ve have seen, Art. 290, that, in order to satisfy the initial dis

tribution of the heat, we must determine the coefficients a
l}

a
a ,

r/-
s

... a
i?
in the equation

ocF(x)
= a

t
sin (^x) + a

2
sin

(JLL^X) -4- a
3
sin (p3x) + &c.......

(e).

The function F(x) is entirely arbitrary ;
it denotes the value

v of the given initial temperature of the spherical shell whose

radius is x. The numbers /^, /z-a
... p. are the roots

/^, of the

transcendental equation

X is the radius of the whole sphere; h is a known numerical co

efficient having any positive value. We have rigorously proved in

our earlier researches, that all the values of
fju

or the roots of the

equation (/) are real
1

. This demonstration is derived from the

1 The Mfrnoircs de VAcademic des Sciences, Toine x, Paris 1831, pp. 119 146,

contain Rcmarqiifs fjcncralc* sur Vapplication des principes dc Vanalyse algebriquc
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general theory of equations, and requires only that we should

suppose known the form of the imaginary roots which every equa
tion may have. We have not referred to it in this work, since its

place is supplied by constructions which make the proposition more

evident. Moreover, we have treated a similar problem analytically,

in determining the varied movement of heat in a cylindrical body

(Art. 308). This arranged, the problem consists in discovering

numerical values for a
lt
#

2 ,
a

g ,...af , &c., such that the second

member of equation (e) necessarily becomes equal to xF(x), when

we substitute in it for x any value included between and the

whole length X.

To find the coefficient ., we have multiplied equation (e) by
dx sin fi ta;,

and then integrated between the limits x 0, x = X,
and we have proved (Art. 291) that the integral

rX
I dx sin figc sin ^x
Jo

has a null value whenever the indices i and j are not the same;
that is to say when the numbers pi

and
/*,

are two different roots

of the equation (/). It follows from this, that the definite inte

gration making all the terms of the second member disappear,

except that which contains ait we have to determine this coefficient,

the equation
x ix
dx \x F (x\ sin pp] = a.l dx sin pp sin pp.

o Jo

Substituting this value of the coefficient a
t
in equation (e), we

derive from it the identical equation (e),

x
dot. a,F(a) s

r

I

Jo

r

I

d@ sin a& sin aB
Jo

aux equations transcendantes , by Fourier. The author shews that the imaginary

roots of sec x=Q do not satisfy the equation tance=0, since for them, tan#=
JN/

- 1.

The equation tan x = is satisfied only by the roots of sin x 0, which are all real.

It may be shewn also that the imaginary roots of sec #= do not satisfy the equation

x-mtsinx-Q, where m is less than 1, but this equation is satisfied only by the

roots of the equation f(x) = x cos x - m smx = 0, which are all real. For if

fr+1 (x), fr (x], fr-i(x), are three successive differential coefficients of f(x), the values

of x which make fr ()=0, make the signs of /r+1 (x) and /r-1 (x) different. Hence

by Fourier s Theorem relative to the number of changes of sign of f(x) and its

successive derivatives, /(.r) can have no imaginary roots. [A. F.j
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In the second member we must give to i all its values, that is to

say we must successively substitute for ^, all the roots p, of the

equation (/). The integral must be taken for a from a = to

a = X, which makes the unknown a disappear. The same is the

case with /3, which enters into the denominator in such a manner

that the term sin p.x is multiplied by a coefficient a. whose value

depends only on X and on the index i. The symbol S denotes

that after having given to i its different values, we must write

down the sum of all the terms.

The integration then offers a very simple means of determining
the coefficients directly; but we must examine attentively the

origin of this process, which gives rise to the following remarks.

1st. If in equation (e) we had omitted to write down part of

the terms, for example, all those in which the index is an even

number, we should still find, on multiplying the equation by
dx sin

fj,.x,
and integrating from x = to x = X, the same value of

an which has been already determined, and we should thus form

an equation which would not be true
;

for it would contain only

part of the terms of the general equation, namely, those whose

index is odd.

2nd. The complete equation (e) which we obtain, after having
determined the coefficients, and which does not differ from the

equation referred to (Art. 291) in which we might make =0 and

v =/(#), is such that if we give to x any value included between

and X, the two members are necessarily equal; but we cannot

conclude, as we have remarked, that this equality would hold, if

choosing for the first member xF (x) a function subject to a con

tinuous law, such as sin x or cos x, we were to give to x a value

not included between and X. In general the resulting equation

(e) ought to be applied to values of x, included between and ^Y.

Now the process which determines the coefficient a
t
does not

explain why all the roots ^ must enter into equation (e), nor

why this equation refers solely to values of a:, included between

and X.

To answer these questions clearly, it is sufficient to revert to

the principles which serve as the foundation of our analysis.

We divide the interval X into an infinite number n of parts
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equal to dx, so that we have ndx = X, and writingf (x) instead of

xF(x),wQ denote by /^/^jf. .../;.../, the values of/(#), which

correspond to the values dx, 2dx, Sdx, . . . idx . . . ndx, assigned to

x
;
we make up the general equation (e) out of a number n of

terms; so that n unknown coefficients enter into it, av a
2 , 3 ,

...

^...a^ This arranged, the equation (e) represents n equations

of the first degree, which we should form by substituting succes

sively for x, its n values dx, 2dx, 3dx,...ndx. This system of n

equations contains yj in the first equation, /2
in the second, /3

in

the third, fn in the n
ih

. To determine the first coefficient a
lt
we

multiply the first equation by a-
lt
the second by cr

2 ,
the third by

&amp;lt;7

3 ,
and so on, and add together the equations thus multiplied.

The factors &amp;lt;7

1}
cr

2 ,
o-

g ,
...o-

tt
must be determined by the condition,

that the sum of all the terms of the second members which contain

a
a
must be nothing, and that the same shall be the case with the

following coefficients a
a , c&

4 , ...an . All the equations being then

added, the coefficient a^ enters only into the result, and we have

an equation for determining this coefficient. We then multiply
all the equations anew by other factors p l , p2 , p3 ,...pn respectively,

and determine these factors so that on adding the n equations, all

the coefficients may be eliminated, except a
2

. We have then an

equation to determine a
2

. Similar operations are continued, and

choosing always new factors, we successively determine all the

unknown coefficients. Now it is evident that this process of elimi

nation is exactly that which results from integration between the

limits and X. The series &amp;lt;r

l ,
cr

2 ,
&amp;lt;r

3 ,...&amp;lt;rn of the first factors is

dx sin (fijdx), dx sin (p^dx), dx sin (pfidx) ...dx sin (^ndx). In

general the series of factors which serves to eliminate all the co

efficients except ait is dx sin (^dx), dx sin
(&amp;gt;. 2dr), dx sin (^ 3dx) . . .

dx sin (pjridx) ;
it is represented by the general term dx sin (^x),

in which we give successively to x all the values

dx, 2f&, %dx, . . . ndx.

We see by this that the process which serves to determine these

coefficients, differs in no respect from the ordinary process of elimi

nation in equations of the first degree. The number n of equations
is equal to that of the unknown quantities a

lf 2 ,
a

a
...an ,

and is

the same as the number of given quantities /,,/,,/,.../^ The
values found for the coefficients are those which must exist in
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order that the n equations may hold good together, that is to say

in order that equation (e) may be true when we give to x one of

these n values included between and X
;
and since the number

n is infinite, it follows that the first memberf (x) necessarily coin

cides with the second, when the value of x substituted in each

is included between and X.

The foregoing proof applies not only to developments of the

form

a sin jLs + sin x + a sin z# + . . . + a sin ,

it applies to all the functions &amp;lt; (frx) which might be substituted

for sin (/v&), maintaining the chief condition, namely, that the

integral f dx $ (pp) $ (/A/C) has a nul value when i and j are
Jo

different numbers.

If it be proposed to develope/(#) under the form

a, cos x a, cos 2j? a.cosix
+7 O +.-.+ / + &C.,

b sm x 6 sm 2x b cos ix

the quantities plf /z2 , ^3 ...^, &c. will be integers, and the con

dition

I ec cos f2wt .] sin f 2?rj -^J
= 0,

always holding when the indices i and j are different numbers, we

obtain, by determining the coefficients a
t , b

iy
the general equation

(II), page 206, which does not differ from equation (A) Art. 418.

425. If in the second member of equation (e) we omitted one

or more terms which correspond to one or more roots /^ of the

equation (/), equation (e) would not in general be true. To

prove this, let us suppose a term containing /^ and a, not to be

written in the second member of equation (e),
we might multiply

the n equations respectively by the factors

dxsm(fijda:) 9 dxsmfajZdx), dx sin
(//_. 3dar) . . . dx sin fondx) ;

and adding them, the sum of all the terms of the second members

would be nothing, so that not one of the unknown coefficients

would remain. The result, formed of the sum of the first members,
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that is to say the sum of the values /, /2 , /3 .../, multiplied

respectively by the factors

dx sin
(fjLjdx),

dx sin
(fjifidx],

dx sin (pfidx) . . . dx sin (^ndx),

would be reduced to zero. This relation would then necessarily

exist between the given quantities/, , /2 , /3 /; and they could not

be considered entirely arbitrary, contrary to hypothesis. If these

quantities /, f2 ,fs ---fn have any values whatever, the relation in

question cannot exist, and we cannot satisfy the proposed con

ditions by omitting one or more terms, such as a-
3
sin

(fijX)
in

equation (e).

Hence the function f(x) remaining undetermined, that is to

say, representing the system of an infinite number of arbitrary

constants which correspond to the values of x included between

and X, it is necessary to introduce into the second member of

equation (e) all the terms such as a. sinter), which satisfy the

condition

x
dx sin /Aft sin fifx 0,

o

the indices i and j being different; but if it happen that the

function /(*) is such that the n magnitudes /,/2,/3 -/ are

connected by a relation expressed by the equation

-x

dx sin fj,jxf(x)
= 0,

o

it is evident that the term c^sin/*^ might be omitted in the equa
tion (e).

Thus there are several classes of functions/ (x) whose develop

ment, represented by the second member of the equation (e),
does

not contain certain terms corresponding to some of the roots
JJL.

There are for example cases in which we omit all the terms

whose index is even; and we have seen different examples of this

in the course of this work. But this would not hold, if the func

tion /(a?) had all the generality possible. In all these cases, we

ought to suppose the second member of equation (e) to be com

plete, and the investigation shews what terms ought to be omitted,
since their coefficients become nothing.
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426. We see clearly by this examination that the function /(.r)

represents, in our analysis, the system of a number n of separate

quantities, corresponding to n values of x included between and

X, and that these n quantities have values actual, and consequently
not infinite, chosen at will. All might be nothing, except one,
whose value would be given.

It might happen that the series of the n values flt f2,fs .../
was expressed by a function subject to a continuous law. such as

x or x3

, sin#, or cos a-, or in general &amp;lt;j&amp;gt; (x) ;
the curve line 0(70,

whose ordinates represent the values corresponding to the abscissa

x, and which is situated above the interval from x = to x = X,
coincides then in this interval with the curve whose ordinate is

&amp;lt;/&amp;gt; (x), and the coefficients a
lt
a

8 ,
a

3
... an of equation (e) determined

by the preceding rule always satisfy the condition, that any value

of x included between and X, gives the same result when substi

tuted in
&amp;lt;p (x)-,

and in the second member of equation (e).

F(x) represents the initial temperature of the spherical shell

whose radius is x. &quot;We might suppose, for example, F(x) = bx,

that is to say, that the initial heat increases proportionally to the

distance, from the centre, where it is nothing, to the surface

where it is bX. In this case xF(x) or f(x) is equal to bx2

;
and

applying to this function the rule which determines the coeffi

cients, bx* would be developed in a series of terms, such as

a
l
sin fax) + a

2
sin fax) + a

z
sin fax) + ... + an sin fax).

Now each term sinQ^oj), when developed according to powers
of x, contains only powers of odd order, and the function bx* is

a power of even order. It is very remarkable that this function

bxz

, denoting a series of values given for the interval from

to X, can be developed in a series of terms, such as a
t
sin fax).

We have already proved the rigorous exactness of these

results, which had not yet been presented in analysis, and we
have shewn the true meaning of the propositions which express

them. We have seen, for example, in Article 223, that the

function cos# is developed in a series of sines of multiple arcs,

so that in the equation which gives this development, the first

member contains only even powers of the variable, and the second

contains only odd powers. Reciprocally, the function sin x, into
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which only odd powers enter, is resolved, Art. 225, into a series

of cosines which contain only even powers.

In the actual problem relative to the sphere, the value of

xF(x) is developed by means of equation (e). We must then,

as we see in Art. 290, write in each term the exponential factor,

which contains t, and we have to express the temperature v,

which is a function of x and t, the equation

x
dxsin (fai) aF(ca)

.. ...... (E).

sin
(/i 40) sin fo/3)

The general solution which gives this equation (E} is wholly

independent of the nature of the function F(x) since this function

represents here only an infinite multitude of arbitrary constants,

which correspond to as many values of x included between

and X.

If we supposed the primitive heat to be contained in a part

only of the solid sphere, for example, from x = to x = $X,
and that the initial temperatures of the upper layers were nothing,

it would be sufficient to take the integral

sin (^a )/(),

between the limits x = and x = ^X.

In general, the solution expressed by equation (E) suits all

cases, and the form of the development does not vary according to

the nature of the function.

Suppose now that having written sin x instead of F(x) we have

determined by integration the coefficients a
t)

and that we have

formed the equation

x sin x = a
t
sin

JJL^X + 2
sin

JJLZ
% + a

3
sin

JJL^X -f &c.

It is certain that on giving to x any value whatever included

between and X, the second member of this equation becomes

equal to a; since; this is a necessary consequence of our process.

But it nowise follows that on giving to a; a value not included

between and X, the same equality would exist. We see the

contrary very distinctly in the examples which we have cited, and,
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particular cases excepted, we may say that a function subject to a

continuous law, which forms the first member of equations of this

kind, does not coincide with the function expressed by the second

member, except for values of x included between and X.

Properly speaking, equation (e) is an identity, which exists

for all values which may be assigned to the variable x\ each

member of this equation representing a certain analytical function

which coincides with a known function f(x) if we give to the

variable x values included between and A7

&quot;. With respect to the

existence of functions, wThich coincide for all values of the variable

included between certain limits and differ for other values, it is

proved by all that precedes, and considerations of this kind are a

necessary element of the theory of partial differential equations.

Moreover, it is evident that equations (e) and (E) apply not

only to the solid sphere whose radius is X, but represent, one the

initial state, the other the variable state of an infinitely extended

solid, of which the spherical body forms part ;
and when in these

equations we give to the variable x values greater than X,

they refer to the parts of the infinite solid which envelops the

sphere.

This remark applies also to all dynamical problems which are

solved by means of partial differential equations.

427. To apply the solution given by equation (E) to the case

in which a single spherical layer has been originally heated, all

the other layers having nul initial temperature, it is sufficient to

take the integral \dj. sin (/^a) aF (a) between two very near limits,

a = r, and a = r + u, r being the radius of the inner surface of the

heated layer, and u the thickness of this layer.

We can also consider separately the resulting effect of the

initial heating of another layer included between the limits r + u

and r + 2u
;
and if we add the variable temperature due to this

second cause, to the temperature which we found when the first

layer alone was heated, the sum of the two temperatures is that

which would arise, if the two layers were heated at the same time.

In order to take account of the two joint causes, it is sufficient to

F. H. 29
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take the integral Ida sin (/i4ot) aF(a) between the limits a r and

a = r + 2w. More generally, equation (E) being capable of being

put under the form

f
x
j -vi \

v = I ay. . ctr (a) sin /^a
smW e

x
\ d/3 si

Jo
sn uj sn

we see that the whole effect of the heating of different layers is

the sum of the partial effects, which would be determined separately,

by supposing each of the layers to have been alone heated. The

same consequence extends to all other problems of the theory of

heat
;

it is derived from the very nature of equations, and the form

of the integrals makes it evident. We see that the heat con

tained in each element of a solid body produces its distinct effect,

as if that element had alone been heated, all the others having
nul initial temperature. These separate states are in a manner

superposed, and unite to form the general system of temperatures.

For this reason the form of the function which represents the

initial state must be regarded as entirely arbitrary. The definite

integral which enters into the expression of the variable tempera

ture, having the same limits as the heated solid, shows expressly

that we unite all the partial effects due to the initial heating of

each element.

428. Here we shall terminate this section, which is devoted

almost entirely to analysis. The integrals which we have obtained

are not only general expressions which satisfy the differential equa
tions

; they represent in the most distinct manner the natural effect

which is the object of the problem. This is the chief condition which

we have always had in view, and without which the results of in

vestigation would appear to us to be only useless transformations.

When this condition is fulfilled, the integral is, properly speaking,

the equation of the phenomenon; it expresses clearly the character

and progress of it, in the same manner as the finite equation of a

line or curved surface makes known all the properties of those

forms. To exhibit the solutions, we do not consider one form only
of the integral ;

we seek to obtain directly that which is suitable

to the problem. Thus it is that the integral which expresses the
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movement of heat in a sphere of given radius, is very different

from that which expresses the movement in a cylindrical body, or

even in a sphere whose radius is supposed infinite. Now each of

these integrals has a definite form which cannot be replaced by
another. It is necessary to make use of it, if we wish to ascertain

the distribution of heat in the body in question. In general, we
could not introduce any change in the form of our solutions, with

out making them lose their essential character, which is the repre

sentation of the phenomena.

The different integrals might be derived from each other,

since they are co-extensive. But these transformations require

long calculations, and almost always suppose that the form of the

result is known in advance. We may consider in the first place,

bodies whose dimensions are finite, and pass from this problem to

that which relates to an unbounded solid. We can then substitute a

definite integral for the sum denoted by the symbol S. Thus it is

that equations (a) and (/8), referred to at the beginning of this

section, depend upon each other. The first becomes the second,

when we suppose the radius R infinite. Reciprocally we may
derive from the second equation (ft) the solutions relating to

bodies of limited dimensions.

In general, we have sought to obtain each result by the shortest

way. The chief elements of the method we have followed are

these :

1st. We consider at the same time the general condition given

by the partial differential equation, and all the special conditions

which determine the problem completely, and we proceed to form

the analytical expression which satisfies all these conditions.

2nd. We first perceive that this expression contains an infinite

number of terms, into which unknown constants enter, or that

it is equal to an integral which includes one or more arbitrary

functions. In the first instance, that is to say, when the general

term is affected by the symbol S, we derive from the special con

ditions a definite transcendental equation, whose roots give the

values of an infinite number of constants.

The second instance obtains when the general term becomes an

infinitely small quantity ;
the sum of the series is then changed

into a definite integral.

292
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3rd. We can prove by the fundamental theorems of algebra,

or even by the physical nature of the problem, that the transcen

dental equation has all its roots real, in number infinite.

4th. In elementary problems, the general term takes the form

of a sine or cosine
;
the roots of the definite equation are either

whole numbers, or real or irrational quantities, each of them in

cluded between two definite limits.

In more complex problems, the general term takes the form of

a function given implicitly by means of a differential equation

integrable or not. However it may be, the roots of the definite

equation exist, they are real, infinite in number. This distinction

of the parts of which the integral must be composed, is very

important, since it shews clearly the form of the solution, and the

necessary relation between the coefficients.

5th. It remains only to determine the constants which depend
on the initial state; which is done by elimination of the unknowns

from an infinite number of equations of the first degree. We
multiply the equation which relates to the initial state by a

differential factor, and integrate it between defined limits, which

are most commonly those of the solid in which the movement is

effected.

There are problems in which we have determined the co

efficients by successive integrations, as may be seen in the memoir

whose object is the temperature of dwellings. In this case we

consider the exponential integrals, which belong to the initial

state of the infinite solid : it is easy to obtain these integrals
1

.

It follows from the integrations that all the terms of the second

member disappear, except only that whose coefficient we wish to

determine. In the value of this coefficient, the denominator be

comes nul, and we always obtain a definite integral whose limits

are those of the solid, and one of whose factors is the arbitrary

function which belongs to the initial state. This form of the result

is necessary, since the variable movement, which is the object of

the problem, is compounded of all those which would have existed

separately, if each point of the solid had alone been heated, and

the temperature of every other point had been nothing.

1 See section 11 of the sketch of this memoir, given by the author in the

Bulletin des Sciences par la Societe Pliilomatiqtie, 1818, pp. 111. [A. F.]
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When \ve examine carefully the process of integration which

serves to determine the coefficients, we see that it contains a

complete proof, and shews distinctly the nature of the results,

so that it is in no way necessary to verify them by other investi

gations.

The most remarkable of the problems which we have hitherto

propounded, and the most suitable for shewing the whole of our

analysis, is that of the movement of heat in a cylindrical body.
In other researches, the determination of the coefficients would

require processes of investigation which we do not yet know. But

it must be remarked, that, without determining the values of the

coefficients, we can always acquire an exact knowledge of the

problem, and of the natural course of the phenomenon which is

its object; the chief consideration is that of simple movements.

6th. When the expression sought contains a definite integral,

the unknown functions arranged under the symbol of integration

are determined, either by the theorems which we have given for

the expression of arbitrary functions in definite integrals, or by
a more complex process, several examples of which will be found

in the Second Part.

These theorems can be extended to any number of variables.

They belong in some respects to an inverse method of definite

integration ;
since they serve to determine under the symbols

I
and 2 unknown functions which must be such that the result of

j

integration is a given function.

The same principles are applicable to different other problems

of geometry, of general physics, or of analysis, whether the equa

tions contain finite or infinitely small differences, or whether they

contain both.

The solutions which are obtained by this method are complete,

and consist of general integrals. No other integral can be more

extensive. The objections which have been made to this subject

are devoid of all foundation
;
it would be superfluous now to discuss

them.

7th. We have said that each of these solutions gives the equa

tion proper to the plisnomenon, since it represents it distinctly
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throughout the whole extent of its course, and serves to determine

with facility all its results numerically.

The functions which are obtained by these solutions are then

composed of a multitude of terms, either finite or infinitely small :

but the form of these expressions is in no degree arbitrary; it is

determined by the physical character of the phenomenon. For

this reason, when the value of the function is expressed by a series

into which exponentials relative to the time enter, it is of

necessity that this should be so, since the natural effect whose

laws we seek, is really decomposed into distinct parts, corre

sponding to the different terms of the series. The parts express

so many simple movements compatible with the special conditions
;

for each one of these movements, all the temperatures decrease,

preserving their primitive ratios. In this composition we ought
not to see a result of analysis due to the linear form of the

differential equations, but an actual effect which becomes sensible

in experiments. It appears also in dynamical problems in which

we consider the causes which destroy motion
;
but it belongs

necessarily to all problems of the theory of heat, and determines

the nature of the method which we have followed for the solution

of them.

8th. The mathematical theory of heat includes : first, the exact

definition of all the elements of the analysis ; next, the differential

equations; lastly, the integrals appropriate to the fundamental

problems. The equations can be arrived at in several ways ;
the

same integrals can also be obtained, or other problems solved, by
introducing certain changes in the course of the investigation.

We consider that these researches do not constitute a method
different from our own

;
but confirm and multiply its results.

9th. It has been objected, to the subject of our analysis, that

the transcendental equations which determine the exponents having

imaginary roots, it would be necessary to employ the terms which

proceed from them, and which would indicate a periodic character

in part of the phenomenon; but this objection has no foundation,
since the equations in question have in fact all their roots real, and
no part of the phenomenon can be periodic.

10th. It has been alleged that in order to solve with certainty

problems of this kind, it is necessary to resort in all cases to a
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certain form of the integral which was denoted as general ;
and

equation (7) of Art. 398 was propounded under this designa
tion

;
but this distinction has no foundation, and the use of a

single integral would only have the effect, in most cases, of com

plicating the investigation unnecessarily. It is moreover evident

that this integral (7) is derivable from that which we gave in 1807
to determine the movement of heat in a ring of definite radius E

;

it is sufficient to give to R an infinite value.

llth. It has been supposed that the method which consists in

expressing the integral by a succession of exponential terms, and
in determining their coefficients by means of the initial state,

does not solve the problem of a prism which loses heat unequally
at its two ends

;
or that, at least, it would be very difficult to

verify in this manner the solution derivable from the integral (7)

by long calculations. We shall perceive, by a new examination,

that our method applies directly to this problem, and that a single

integration even is sufficient
1
.

12th. We have developed in series of sines of multiple arcs

functions which appear to contain only even powers of the variable,

cos a; for example. We have expressed by convergent series or

by definite integrals separate parts of different functions, or func

tions discontinuous between certain limits, for example that which

measures the ordinate of a triangle. Our proofs leave no doubt

of the exact truth of these equations.

13th. We find in the works of many geometers results and pro

cesses of calculation analogous to those which we have employed.
These are particular cases of a general method, which had not yet
been formed, and which it became necessary to establish in order

to ascertain even in the most simple problems the mathematical

laws of the distribution of heat. This theory required an analysis

appropriate to it, one principal element of which is the analytical

expression of separate functions, or of parts offunctions.

By a separate function, or part of a function, we understand a

function / (x) which has values existing when the variable x is

included between given limits, and whose value is always nothing,

if the variable is not included between those limits. This func

tion measures the ordinate of a line which includes a finite arc of

1 See the Memoir referred to in note 1, p. 12. [A. F.]
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arbitrary form, and coincides with the axis of abscissas in all the

rest of its course.

This motion is not opposed to the general principles of analysis;

we might even find the first traces of it in the writings of Daniel

Bernouilli, of Cauchy, of Lagrapge and Euler. It had always been

regarded as manifestly impossible to express in a series of sines

of multiple arcs, or at least in a trigonometric convergent series,

a function which has no existing values unless the values of the

variable are included between certain limits, all the other values

of the function being mil. But this point of analysis is fully

cleared up, and it remains incontestable that separate functions,

or parts of functions, are exactly expressed by trigonometric con

vergent series, or by definite integrals. We have insisted on this

consequence from the origin of our researches up to the present

time, since we are not concerned here with an abstract and isolated

problem, but with a primary consideration intimately connected

with the most useful and extensive considerations. Nothing has

appeared to us more suitable than geometrical constructions to

demonstrate the truth of these new results, and to render intelli

gible the forms which analysis employs for their expression.

14th. The principles which have served to establish for us the

analytical theory of heat, apply directly to the investigation of the

movement of waves in fluids, a part of which has been agitated.

They aid also the investigation of the vibrations of elastic laminae,

of stretched flexible surfaces, of plane elastic surfaces of very great

dimensions, and apply in general to problems which depend upon
the theory of elasticity. The property of the solutions which we

derive from these principles is to render the numerical applications

easy, and to offer distinct and intelligible results, which really

determine the object of the problem, without making that know

ledge depend upon integrations or eliminations which cannot be

effected. We regard as superfluous every transformation of the

results of analysis which does not satisfy this primary condition.

429. 1st. We shall now make some remarks on the differen

tial equations of the movement of heat.

If two molecules of the same body are extremely near, and are

at unequal temperatures, that ivhich is the most heated communicates
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directly to the other during one instant a certain quantity of heat;
which quantity is proportional to the extremely small difference of
the temperatures: that is to say, if that difference became double,

triple, quadruple, and all other conditions remained the same, the

heat communicated would be double, triple, quadruple.

This proposition expresses a general and constant fact, which
is sufficient to serve as the foundation of the mathematical theory.
The mode of transmission is then known with certainty, inde

pendently of every hypothesis on the nature of the cause, and
cannot be looked at from two different points of view. It is

evident that the direct transfer is effected in all directions, and
that it has no existence in fluids or liquids which are not diather-

manous, except between extremely near molecules.

The general equations of the movement of heat, in the

interior of solids of any dimensions, and at the surface of these

bodies, are necessary consequences of the foregoing proposition.

They are rigorously derived from it, as we have proved in our

first Memoirs in 1807, and we easily obtain these equations by
means of lemmas, whose proof is not less exact than that of the

elementary propositions of mechanics.

These equations are again derived from the same proposition,

by determining by means of integrations the whole quantity of

heat which one molecule receives from those which surround it.

This investigation is subject to no difficulty. The lemmas in

question take the place of the integrations, since they give directly

the expression of the flow, that is to say of the quantity of heat,

which crosses any section. Both calculations ought evidently to

lead to the same result; and since there is no difference in the

principle, there cannot be any difference in the consequences.

2nd. We gave in 1811 the general equation relative to the

surface. It has not been deduced from particular cases, as has

been supposed without any foundation, and it could not be; the

proposition which it expresses is not of a nature to be discovered

by way of induction; we cannot ascertain it for certain bodies and

ignore it for others; it is necessary for all, in order that the state

of the surface may not suffer in a definite time an infinite change.

In our Memoir we have omitted the details of the proof, since
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they consist solely in the application of known propositions. It

was sufficient in this work to give the principle and the result, as

we have done in Article 15 of the Memoir cited. From the same

condition also the general equation in question is derived by deter

mining the whole quantity of heat which each molecule situated

at the surface receives and communicates. These very complex
calculations make no change in the nature of the proof.

In the investigation of the differential equation of the move

ment of heat, the mass may be supposed to be not homogeneous,
and it is very easy to derive the equation from the analytical

expression of the flow; it is sufficient to leave the coefficient which

measures the conducibility under the sign of differentiation.

3rd. Newton was the first to consider the law of cooling of

bodies in air; that which he has adopted for the case in which the

air is carried away with constant velocity accords more closely

with observation as the difference of temperatures becomes less;

it would exactly hold if that difference were infinitely small.

Amontons has made a remarkable experiment on the establish

ment of heat in a prism whose extremity is submitted to a definite

temperature. The logarithmic law of the decrease of the tempera
tures in the prism was given for the first time by Lambert, of the

Academy of Berlin. Biot and Rumford have confirmed this law

by experiment
1
.

1 Newton, at the end of his Scala graduum caloris et frigoris, Philosophical

Transactions, April 1701, or Opuscula ed. Castillioneus, Vol. n. implies that when
a plate of iron cools in a current of air flowing uniformly at constant temperature,

equal quantities of air come in contact with the metal in equal times and carry
off quantities of heat proportional to the excess of the temperature of the iron

over that of the air
;
whence it may be inferred that the excess temperatures of

the iron form a geometrical progression at times which are in arithmetic progres

sion, as he has stated. By placing various substances on the heated iron, he

obtained their melting points as the metal cooled.

Amontons, Memoires de VAcademie [1703], Paris, 1705, pp. 205 6, in his

Remarques sur la Table de degres de Chaleur extraite des Transactions Philosophi-

ques 1701, states that he obtained the melting points of the substances experimented
on by Newton by placing them at appropriate points along an iron bar, heated to

whiteness at one end
;
but he has made an erroneous assumption as to the law

of decrease of temperature along the bar.

Lambert, Pyrometrie, Berlin, 1779, pp. 185 6, combining Newton s calculated

temperatures with Amontons measured distances, detected the exponential law
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To discover the differential equations of the variable movement
of heat, even in the most elementary case, as that of a cylindrical

prism of very small radius, it was necessary to know the mathe

matical expression of the quantity of heat which traverses an

extremely short part of the prism. This quantity is not simply

proportional to the difference of the temperatures of the two

sections which bound the layer. It is proved in the most rigorous

manner that it is also in the inverse ratio of the thickness of the

layer, that is to say, that if tivo layers of the same prism were un

equally thick, and if in the first the difference of the temperatures of
the two bases was the same as in the second, the quantities of heat

traversing the layers during the same instant would be in the inverse

ratio of the thicknesses. The preceding lemma applies not only to

layers whose thickness is infinitely small; it applies to prisms of

any length. This notion of the flow is fundamental
;
in so far as

we have not acquired it, we cannot form an exact idea of the

phenomenon and of the equation which expresses it.

It is evident that the instantaneous increase of the tempera-

of temperatures in a long bar heated at one end. Lambert s work contains a

most complete account of the progress of thermal measurement up to that time.

Biot, Journal des Mines, Paris, 1804, xvn. pp. 203 224. Eumford, Jlemoires

de VInstitut, Sciences Math, et Phys. Tome vi. Paris, 1805, pp. 106 122.

Ericsson, Nature, Vol. vi. pp. 106 8, describes some experiments on cooling

in vacuo which for a limited range of excess temperature, 10 to 100 Fah. shew

a very close approach to Newton s law of cooling in a current of air. These

experiments are insufficient to discredit the law of cooling in vacuo derived by
M. M. Dulong and Petit (Journal Poll/technique, Tome xi. or Ann. de Ch. et

de Ph. 1817, Tome vn.) from their carefully devised and more extensive range
of experiments. But other experiments made by Ericsson with an ingeniously

contrived calorimeter (Nature, Vol. v. pp. 505 7) on the emissive power of molten

iron, seem to shew that the law of Dulong and Petit, for cooling in vacuo, is

very far from being applicable to masses at exceedingly high temperatures giving

off heat in free air, though their law for such conditions is reducible to the former

law.

Fourier has published some remarks on Newton s law of cooling in his

Questions sur la theorie physique de la Chaleur rayonnante, Ann. de Chimie et de

Physique, 1817, Tome vi. p. 298. He distinguishes between the surface conduction

and radiation to free air.

Newton s original statement in the Scala graduum is
&quot; Calor quern ferrum

calefactum corporibus frigidis sibi contiguis dato tempore communicat, hoc est

Calor, quern ferrum dato tempore amittit, est ut Calor totus fern.&quot; This supposes

the iron to be perfectly conducible, and the surrounding masses to be at zero

temperature. It can only be interpreted by his subsequent explanation, as above.

[A. F.]
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ture of a point is proportional to the excess of the quantity of heat

which that point receives over the quantity which it has lost, and

that a partial differential equation must express this result : but

the problem does not consist in enunciating this proposition which

is the mere fact; it consists in actually forming the differential

equation, which requires that we should consider the fact in its

elements. If instead of employing the exact expression of the

flow of heat, we omit the denominator of this expression, we

thereby introduce a difficulty which is nowise inherent in the

problem; there is no mathematical theory which would not offer

similar difficulties, if we began by altering the principle of the

proofs. Not only are we thus unable to form a differential equa

tion; but there is nothing more opposite to an equation than a

proposition of this kind, in Avhich we should be expressing the

equality of quantities which could not be compared. To avoid

this error, it is sufficient to give some attention to the demon

stration and the consequences of the foregoing lemma (Art. 65,

66, 67, and Art. 75).

4th. With respect to the ideas from which we have deduced

for the first time the differential equations, they are those which

physicists have always admitted. We do not know that anyone
has been able to imagine the movement of heat as being produced
in the interior of bodies by the simple contact of the surfaces

which separate the different parts. For ourselves such a proposition

would appear to be void of all intelligible meaning. A surface of

contact cannot be the subject of any physical quality; it is neither

heated, nor coloured, nor heavy. It is evident that when one

part of a body gives its heat to another there are an infinity

of material points of the first which act on an infinity of points of

the second. It need only be added that in the interior of opaque

material, points whose distance is not very small cannot commu
nicate their heat directly; that which they send out is intercepted

by the intermediate molecules. The layers in contact are the only
ones which communicate their heat directly, when the thickness

of the layers equals or exceeds the distance which the heat sent

from a point passes over before being entirely absorbed. There is

no direct action except between material points extremely near,

and it is for this reason that the expression for the flow has the

form which we assign to it. The flow then results from an infinite
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multitude of actions whose effects are added
;
but it is not from

this cause that its value during unit of time is a finite and

measurable magnitude, even although it be determined only by
an extremely small difference between the temperatures.

When a heated body loses its heat in an elastic medium, or in

a space free from air bounded by a solid envelope, the value of the

outward flow is assuredly an integral; it again is due to the action

of an infinity of material points, very near to the surface, and we

have proved formerly that this concourse determines the law of

the external radiation
1
. But the quantity of heat emitted during

the unit of time would be infinitely small, if the difference of the

temperatures had not a finite value.

In the interior of masses the conductive power is incomparably

greater than that which is exerted at the surface. This property,

whatever be the cause of it, is most distinctly perceived by us,

since, when the prism has arrived at its constant state, the

quantity of heat which crosses a section during the unit of time

exactly balances that which is lost through the whole part of the

heated surface, situated beyond that section, whose temperatures
exceed that of the medium by a finite magnitude. When we take

no account of this primary fact, and omit the divisor in the

expression for the flow, it is quite impossible to form the differen

tial equation, even for the simplest case; a fortiori, we should be

stopped in the investigation of the general equations.

5th. Farther, it is necessary to know what is the influence of

the dimensions of the section of the prism on the values of the

acquired temperatures. Even although the problem is only that

of the linear movement, and all points of a section are regarded
as having the same temperature, it does not follow that we can

disregard the dimensions of the section, and extend to other prisms

the consequences which belong to one prism only. The exact

equation cannot be formed without expressing the relation

between the extent of the section and the effect produced at the

extremity of the prism.

We shall not develope further the examination of the principles

which have led us to the knowledge of the differential equations ;

1 Memoires de VAcadcmie des Sciences, Tome v. pp. 2048. Communicated

in 1811. [A. F.]
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we need only add that to obtain a profound conviction of the use

fulness of these principles it is necessary to consider also various

difficult problems; for example, that which we are about to in

dicate, and whose solution is wanting to our theory, as we have

long since remarked. This problem consists in forming the differ

ential equations, which express the distribution of heat in fluids

in motion, when all the molecules are displaced by any forces,

combined with the changes of temperature. The equations which

we gave in the course of the year 1820 belong to general hydro

dynamics; they complete this branch of analytical mechanics 1
.

430. Different bodies enjoy very unequally the property which

physicists have called conductibility or conducibility ,
that is to say,

the faculty of admitting heat, or of propagating it in the interior

of their masses. We have not changed these names, though they

1 See Memoires de VAcademic des Sciences, Tome xn. Paris, 1833, pp. 515530.
In addition to the three ordinary equations of motion of an incompressible

fluid, and the equation of continuity referred to rectangular axes in direction of

which the velocities of a molecule passing the point x, y, z at time t are u, v, w,
its temperature being 6, Fourier has obtained the equation

in which K is the conductivity and C the specific heat per unit volume, as

follows.

Into the parallelepiped whose opposite corners are (x, y, z), (x + Ax,y + Ay, z + Az),

the quantity of heat which would flow by conduction across the lower face AxAy,

if the fluid were at rest, would be -K-j- AxAy At in time At, and the gain by

convection + Cw Ax Ay At
;
there is a corresponding loss at the upper face Ax Ay ;

hence the whole gain is, negatively, the variation of (-K~,~+ Cwd) Ax Ay At with

respect to z, that is to say, the gain is equal to
(
K -^

- C - -

(w0) } Ax Ay Az At.

Two similar expressions denote the gains in direction of y and z
;
the sum of the

three is equal to (7 At Ax Ay Az, which is the gain in the volume Ax Ay Az

in time At : whence the above equation.
The coefficients K and C vary with the temperature and pressure but are

usually treated as constant. The density, even for fluids denominated incom

pressible, is subject to a small temperature variation.

It may be noticed that when the velocities u, v, w are nul, the equation
reduces to the equation for flow of heat in a solid.

It may also be remarked that when K is so small as to be negligible, the

equation has the same form as the equation of continuity. [A. F.j
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do not appear to us to be exact. Each of them, the first especially,

would rather express, according to all analogy, the faculty of being
conducted than that of conducting.

Heat penetrates the surface of different substances with more
or less facility, whether it be to enter or to escape, and bodies are

unequally permeable to this element, that is to say, it is propagated
in them with more or less facility, in passing from one interior

molecule to another. We think these two distinct properties

might be denoted by the names penetrability and permeability
1
.

Above all it must not be lost sight of that the penetrability of

a surface depends upon two different qualities : one relative to the

external medium, which expresses the facility of communication by
contact

;
the other consists in the property of emitting or admit

ting radiant heat. With regard to the specific permeability, it is

proper to each substance and independent of the state of the

surface. For the rest, precise definitions are the true foundation

of theory, but names have not, in the matter of our subject, the

same degree of importance.

431. The last remark cannot be applied to notations, which

contribute very much to the progress of the science of the Calculus.

These ought only to be proposed with reserve, and not admitted

but after long examination. That which we have employed re

duces itself to indicating the limits of the integral above and below

the sign of integration I
; writing immediately after this sign the

differential of the quantity which varies between these limits.

We have availed ourselves also of the sign S to express the

sum of an indefinite number of terms derived from one general

term in which the index i is made to vary. We attach this index

if necessary to the sign, and write the first value of i below, and

the last above. Habitual use of this notation convinces us of

1 The coefficients of penetrability and permeability, or of exterior and interior

conduction (h, K], \vere determined in the first instance by Fourier, for the case

of cast iron, by experiments on the permanent temperatures of a ring and on the

varying temperatures of a sphere. The value of by the method of Art. 110,

and the value of h by that of Art. 297. Mem. de I Acad. d. Se. Tome v. pp.

165, 220, 228. [A. F.]
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the usefulness of it, especially when the analysis consists of de

finite integrals, and the limits of the integrals are themselves the

object of investigation.

432. The chief results of our theory are the differential equa

tions of the movement of heat in solid or liquid bodies, and the

general equation which relates to the surface. The truth of these

equations is not founded on any physical explanation of the effects

of heat. In whatever manner we please to imagine the nature of

this element, whether we regard it as a distinct material thing

which passes from one part of space to another, or whether we

make heat consist simply in the transfer of motion, we shall always

arrive at the same equations, since the hypothesis which we form

must represent the general and simple facts from which the

mathematical laws are derived.

The quantity of heat transmitted by two molecules whose

temperatures are unequal, depends on the difference of these

temperatures. If the difference is infinitely small it is certain

that the heat communicated is proportional to that difference
;

all

experiment concurs in rigorously proving this proposition. Now
in order to establish the differential equations in question, we

consider only the reciprocal action of molecules infinitely near.

There is therefore no uncertainty about the form of the equations
which relate to the interior of the mass.

The equation relative to the surface expresses, as we have said,

that the flow of the heat, in the direction of the normal at the

boundary of the solid, must have the same value, whether we cal

culate the mutual action of the molecules of the solid, or whether

we consider the action which the medium exerts upon the envelope.

The analytical expression of the former value is very simple and

is exactly known ;
as to the latter value, it is sensibly proportional

to the temperature of the surface, when the excess of this tempera
ture over that of the medium is a sufficiently small quantity. In

other cases the second value must be regarded as given by a series

of observations; it depends on the surface, on the pressure and
on the nature of the medium

;
this observed value ought to form

the second member of the equation relative to the surface.

In several important problems, the equation last named is re-
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placed by a given condition, which expresses the state of the

surface, whether constant, variable or periodic.

433. The differential equations of the movement of heat are

mathematical consequences analogous to the general equations of

equilibrium and of motion, and are derived like them from the
most constant natural facts.

The coefficients c, h, k, which enter into these equations, must
be considered, in general, as variable magnitudes, which depend
on the temperature or on the state of the body. But in the appli
cation to the natural problems which interest us most, we may
assign to these coefficients values sensibly constant.

The first coefficient c varies very slowly, according as the tem

perature rises. These changes are almost insensible in an interval

of about thirty degrees. A series of valuable observations, due to

Professors Dulong and Petit, indicates that the value of the specific

capacity increases very slowly with the temperature.
The coefficient h which measures the penetrability of the sur

face is most variable, and relates to a very composite state. It

expresses the quantity of heat communicated to the medium,
whether by radiation, or by contact. The rigorous calculation of

this quantity would depend therefore on the problem of the move
ment of heat in liquid or aeriform media. But when the excess

of temperature is a sufficiently small quantity, the observations

prove that the value of the coefficient may be regarded as constant.

In other cases, it is easy to derive from known experiments a

correction which makes the result sufficiently exact.

It cannot be doubted that the coefficient k, the measure of the

permeability, is subject to sensible variations; but on this impor
tant subject no series of experiments has yet been made suitable

for informing us how the facility of conduction of heat changes with

the temperature
1 and with the pressure. We see, from the obser

vations, that this quality may be regarded as constant throughout
a very great part of the thermometric scale. But the same obser

vations would lead us to believe that the value of the coefficient

in question, is very much more changed by increments of tempera
ture than the value of the specific capacity.

Lastly, the dilatability of solids, or their tendency to increase

1 Reference is given to Forbes experiments in the note, p. 84. [A. F.j

F. H. 30
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in volume, is not the same at all temperatures : but in the problems
which we have discussed, these changes cannot sensibly alter the

precision of the results. In general, in the study of the grand
natural phenomena which depend on the distribution of heat, we

rely on regarding the values of the coefficients as constant. It is

necessary, first, to consider the consequences of the theory from

this point of view. Careful comparison of the results with those

of very exact experiments will then shew what corrections must be

employed, and to the theoretical researches will be given a further

extension, according as the observations become more numerous

and more exact. We shall then ascertain what are the causes

which modify the movement of heat in the interior of bodies,

and the theory will acquire a perfection which it would be im

possible to give to it at present.

Luminous heat, or that which accompanies the rays of light

emitted by incandescent bodies, penetrates transparent solids and

liquids, and is gradually absorbed within them after traversing an

interval of sensible magnitude. It could not therefore be supposed
in the examination of these problems, that the direct impressions
of heat are conveyed only to an extremely small distance. When
this distance has a finite value, the differential equations take a

different form
;
but this part of the theory would offer no useful

applications unless it were based upon experimental knowledge
which we have not yet acquired.

The experiments indicate that, at moderate temperatures, a

very feeble portion of the obscure heat enjoys the same property as

the luminous heat
;

it is very likely that the distance, to which is

conveyed the impression of heat which penetrates solids, is not

wholly insensible, and that it is only very small : but this occasions

no appreciable difference in the results of theory ;
or at least the

difference has hitherto escaped all observation.
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