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Preface. 
A eonvex function f may be ealled sublinear in the following sense~ 

if a linear function 1 is ~ f at the boundary points of an interval. 
then l::> f in the interior of that interval also. If we replaee the 
terms interval and linear function by the terms domain and harmonie 
function, we obtain a statement which expresses the eharacteristie 
property of subharmonie functions of two or more variables. This ge­
neralization, formulated and developed by F. RIEsz, immediately at­
tracted thc attention of many mathematieians, both on aeeount of its. 
intrinsie interest and on ac count of the wide range of its applications. 
If f (z) is an analytie function of the eomplex variable z = x + i y. 
then I f (z) I is subharmonie. The potential of a negative mass-distribu­
tion is subharmonie. In differential geometry, surfaees of negative 
eurvature and minimal surfaees ean be characterized in terms of sub­
harmonie funetions. The idea of a subharmonie function leads to 
significant applications and interpretations in the fields just referred 
to, and eonversely, every one of these fields is an apparently in­
exhaustible souree of new theorems on subharmonie funetions, either 
by analogy or by direct implication. The purpose of this report is. 
first to give a detailed aeeount of those facts which seem to eonsti­
tute the general theory of subharmonie functions, and second to pre­
sent aselected group of facts which seem to be weH adapted to iHu­
strate the relationships between subharmonie functions and other 
theories. Roughly, Chapters I, II, III, V, VI are devoted to the first 
purpose, while Chapters IV and VII are devoted to the second one_ 
The presentation is formulated for the ease of two independent vari­
ables, but both the methods and the results remain valid in the general 
ease, exeept for obvious modifications, unless the eontrary is explieitly 
stated. 

Sub harmonie funetions have a long and interesting history. F. RIESZ 
points out that various methods, due to POINCARE, PERRON, REMAK 
in potential theory and to HARTOGS and R. NEVANLINNA in the theory 
of functions of a eomplex variable, are based essentiaHy on the idea 
of a subharmonie function. The reader should consult RIESZ [4], [51 
for detailed historical referenees. Readers interested in the possibilities 
of applying subharmonie functions may read, for general information. 
RIESZ [4J, [5], BECKENBACH-RADO [1], [2], EVANS [4], FROSTMAN [1]. 



IV Preface. 

As it has been observed above, potentials of negative mass-distri­
butions are subharmonie functions, and essentially the converse is also 
true (see Chapter VI). Thus the theory of subharmonie functions may 
be interpreted as the study of such potentials based on a few charac­
teristic properties, while the methods of potential theory are based on 
the representation in terms of definite integrals. It is very probable that 
the range of the theory of subharmonie functions, interpreted in this 
manner, will be considerably extended in the near future. For instance, 
the sweeping-out process, which is fundamental in the recent develop­
me nt of the theory of the capacity of sets (cf. EVANS [4], FRosTMAN 
[1]) could be easily interpreted in terms of harmonie majorants of 
subharmonic functions. 

Historically, the first generalization of convex functions of a single 
variable is represented by the convex functions of several variables, 
characterized by the property of being sublinear on every straight 
segment within the domain of definition. While such functions are 
easily seen to be sub harmonie , their theory was developed in connec­
tion with problems of an entirely different type. For this reason, the 
theory of these functions will be included among the topics discussed 
by W. FENCHEL in a subsequent report of this series. 

The reviewer is indebted to G. C. EVANS and S. SAKS for valuable 
information which he had the privilege to use while preparing this 
report. 

The Ohio State University, March 1937. 

TIBOR RAD6. 
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Chapter 1. 

Definition and preliminary discussion 
of subharmonie functions. 

1 

1. 1. Let u (x, y) be a function in a domain G (connected open set), 
such that -00 < u < +00 in G. That is, -00 is an admissible value 
of u, while + 00 is not. Such a function is subharmonie in G if it 
satisfies the following conditions (RIESZ [5], part I, p.333). 

a) u is not identically equal to -00 in G. 
b) u is upper semi-continuous in G. That is, for every point (xo, Yo) 

inG and for every number A>U(Xo,yo) there exists a b=b(xo,yo,A»O 
such that u (x, y) < A for [(x ~ XO)2 + (y - yo)2]'/. < b. Observe that 
for u(xo,Yo) = -00 this condition implies that u(x,y) -->- -00 for 
(x, y) -->- (xo, Yo) . 

c) Let G' be any domain comprised in G together with its bound­
ary B'. Let H (x, y) be harmonie in G', continuous in G' + B', and 
H >- u on B'. Whenever these assumptions are satisfied, we also have 
H >- u in G f

• 

Superharmonie junctions are defined in a similar fashion. A function v 
is superharmonie in a domain G if the function u = -v is subharmonie 
there. In the sequel we shall state the· results only for subharmonie 
functions. In n-dimensional Euclidean space subharmonie functions 
are defined in exactly the same way as in the two-dimensional case. 
Clearly, a harmonie function is both subharmonie and superharmonie, 
and conversely. 

1.2. For the sake of accuracy let us observe that F. RIESZ assumed 
that 

a*) u> -00 on a set everywhere dense in G. 
The apparently weaker condition a) in 1. 1 was stated by EVANS [4], 
part I, p. 230. The following presentation, based partlyon unpublished 
remarks of G. C. EVANS, will show that conditions a), b), c) are equi­
valent to conditions a*), b), cl. 

1.3. Condition b) will be used in the following way. Let 5 be a 
closed set comprised in G. Then condition b) implies (HAHN [1]) that 
there exists a sequence of functions fJJk with the following properties. 
IX) fJJ" is continuous on S. ß) fJJk ~ u on 5, where the symbol ~ indicates 
that fJJl 2: fJJ2 >- .. '. Conversely, the existence of such a sequence fJJk> 

Ergebnisse der Mathematik. V/i. Rad6. 



2 I. Definition and preliminary discussion of subharmonic functions. [8 

for every choice of the closed set S in G, implies that u is upper semi­
continuous in G. Take now a domain G' which is comprised in G to­
gether with its boundary B'. By what precedes, we have on B' a se­
quence of continuous functions f{Jk such that f{Jk ">I. u on B'. Suppose that 
G' + B' is a Dirichlet region, that is a region such that for every con­
tinuous function t on B' there exists a function H which is harmonie 
in G', continuous in G' + B', and equal to t on B'. Denote by Hk the 
solution of the DIRICHLET problem for G' + B' with the boundary con­
dition Hk = f{Jk on B'. Then f{JI > f{J2 > ... implies that H I > H 2 > ... 
in G' + B'. Since Hk = f{Jk > u on B', it follows from condition c) in 
1.1 that Hk>u in G' + B'. Summing up: for every Dirichlet region 
G' + B' in G we have a sequence of functions Hk with the following 
properties. 1) Hk is continuous in G' + B'. 2) Hk is harmonie in G'. 
3) Hk > u in G' + B'. 4. Hk ">I. u on B'. 

According to a fundamental theorem of HARNACK (KELLOGG [1], 
Chapter X), the property H I > H 2 > ... implies that in G' the se­
quence Hk converges either to -00 everywhere or to a function h 
which is harmonie in G'. In the second case the convergence is uni­
form on every closed set in G'. The first case can be excluded as soon 
as u> -00 at a single point of G'. In the second case, Hk >u in 
G' + B' implies that h > u in G'. 

Remark. If u is continuous, we can take f{Jk = u, and h is then 
simply the solution of the Dirichlet problem for G' + B' with the 
boundary condition h = u on B'. In the sequel, the reader interested 
only in continuous subharmonie functiom.. should always consider this 
particular choice of f{Jk' The reader interested in the general case should 
glance through the sections 5.1 to 5.4 at this time. 

1. 4. In the sequel we shall use the following theorems on inte­
gration quite frequently. Let there be given, on some range S (curve, 
domain, etc.) a sequence of functions F n such that F n ',. F on Sand 

{Fn > A, where A is a finite constant independent of n (the inte­
S 
grals are taken in the sense of LEBESGUE). Then (see for instance 
SAKS [5J, p. 63 and p. 83) the limit function Fis also summable on S 

and we have jF = limfFn • 

s s 
Consider next a function t (x ,y) in a circular disc D: (x - XO)2 

+ (y - YO)2 <:: r2• Introducing polar coordinates we have 
r 2", 

ff f (x, y) dx dy = j jf (xo + (J cOSf{J, Yo + (J sinf{J) (J d(J df{J 
D 0 0 

r( 2", ) ! ft (xo + (J COSf{J, Yo + (J sinf{J) df{J (J d(J , 
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where we know, by a theorem of TONELLI (SAKS [5J, p. 75) that these 
formulas are eertainly valid if f (x, y) is measurable and > 0 in D. 
More generally, these formulas are valid if f is bounded in one diree­
tion, say f <S M on D, as it follows by applying the preeeding remark 
to the function M - f (quite exaetly, whenever one of the three 
integrals involved exists, the other two exist also and the three inte­
grals are equal to eaeh other). 

1.5. It will be eonvenient to use the following notations. C (xo, Yo; r), 
D (xo, Yo; r) will refer to the perimeter and to the interior respeetively 
of the eircle with eentre (xo,Yo) and radius r, while R(xo'yo; r1 ,r2) 

will refer to the interior of the eoneentrie ring bounded by the eircles 
C(xo,Yo; r1) and C(xo,Yo; r 2). If a function f, defined on C(xo,Yo; r), 
is summable as a function of the polar angle q; (where x = Xo + r eosq;, 
y = Yo + rsinq;), then we shall write 

2,. 

1 j' . L(f; xo,Yo; r) = - f(xo + reosq;,yo + rSlllq;) dm. 2;n; T 

o 

Similarly, if f is defined and summable on D (xo, Yo; r), we shall write 

A(f; xo' Yo; r) = -i-- (Jf(x, y) dxdy. 
r ;n;.J 

D 

We have the equivalent formula 

A(f; xo,Yo; r) = r21 ;n; fff(xo + ~,Yo + 1']) d~d1']. 
;' + 1}' < r' 

L (f; xo' Yo; r) and A (f; xo, Yo; r) are the integral means of f on 
C(xo,Yo; r) and D(xo'yo; r) respectively. 

1. 6. Throughout this Chapter u will denote a function whieh is 
subharmonie in a domain G. Suppose that the eircle C (xo, Yo; r) 
is eomprised in G together with its interior and also suppose that 
u(xo, Yo) > -,-00. Then L(u; xo, Yo; r) exists andu(xo, Yo) <L(u; xo, Yo; r) 
(RIESZ [5J, part 1, p. 324). To see this, take, as in 1.3, a sequenee 
Hk for the eireular dise bounded by C(xo,Yo; r). We have then 
u(xo,Yo) < Hdxo'Yo) and Hdxo,yo) = L(Hk; xo,Yo; r) (see KELLOGG 
[1J,p.82). Henee L(Hk;xo,yo;r)~u(xo,Yo»-oo. By 1.4 it 
follows that L (u; xo, Yo; r) exists and that 

u(xo,Yo) < limL(Hk; xo,Yo; r) = L(u; xo,Yo; r). 

1.7. Under the assumptions of 1. 6 let us eonsider the dise D (xo, Yo; r) 
bounded by C (xo, Yo; r). We ean then apply the resuIt of 1. 6 to 
C (xo' Yo; e) for 0< e < r, and we obtain by 1.4 

r r 

A( . . ) - 2fL( . .) d 2U(Xo,Yo)f d ( ) u, xo'Yo, r - r 2 U, xo,Yo, e (! (!::>- r 2 e (! = u xo, Yo . 
o 0 

1* 
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That is, if u(xo, Yo) > -00, then (RIESZ [5], part 11, p. 343) u is 
summable on every disc D (xo, Yo; r) completely interior to G and 
u(xo,Yo) :::; A(u; xo' Yo; r). 

1.8. While condition a) in 1. 1 states only that u> -00 for at 
least one point in G, it follows from 1. 7 (according to an unpublished 
remark of G. C. EVANS) that u> -00 on a set which is everywhere 
dense in G. Indeed, if u (xo, Yo) > -00, then the summability of u on 
the disc D(xo,Yo; r) implies that u> -00 on this disc with the pos­
sible exception of a set of two-dimensional LEBESGUE measure zero. 
Given then any other point (x', y') in G, we have clearly a finite 
number of discs D (Xb Yk; rk), k = 0, 1, ... , n, completely interior 
to G, such that (Xk+l' Yk+l) is a point of D(XbYk; rk) for which 
U(Xk+l'Yk+l) > -00, and such that D(xn,Yn; rn) contains (x',y'). By 
1. 7 we have u> -00 almost everywhere on these discs and hence we 
have in the vicinity of (x', y') points (x*, Y*) such that u (x*,Y*) > -00. 

1.9. u is summable on every disc D (xo, Yo; r) completely interior 
to G (RIESZ [5], part 11, p. 343; cf. 1. 2). Indeed, by 1. 8 we have 
some disc D (i, y; r) completely interior to G, such that u (x, y) > -00 

and such that D (xo, Yo; r) is comprised in D (i, ji; r). The assertion 
follows then immediately from 1. 7. 

1. 10. u is summable on every measurable set 5 completely interior 
to G (by completely interior we mean that the limit points of 5 are 
also comprised in G). Indeed, by the HEINE-BoREL theorem we can 
cover the set 5 + 5', where 5' is the set of the limit points of 5, by 
a finite number of discs completely interior to G, and the assertion 
follows then from 1. 9 (RIESZ [5], part 11, p. 344). 

1.11. u is summable, as a function of the polar angle, on every 
circle C(xo• Yo; r) comprised in G together with its interior (RIESZ [5], 
p. 334). This can be seen by the same reasoning as that used in 1. 6, 
since the assumption u (xo, Yo) > -00 was used there only to exclude 
the possibility Hk - -00, and this is excluded now by 1.8. 

1. 12. u is summable, as a function of the polar angle, on every 
circle C (xo• Yo; r) comprised in G, even if the interior of C (xo• Yo; r) 
is not comprised in G (RIESZ [5], part I, p. 338). To see this, take a 
circle C(xo,Yo; r1). r1 >r, such that the ringR(x~,yo; r,r1) is comprised 
in G together with its boundary. As in 1. 3. take a sequence Hk for 
this ring. By 1. 4 the theorem is proved if we show that the sequence 
L(Hk; xo,Yo; r) is bounded from below. 

Take any smooth JORDAN curve r in R(xo,Yo; r,r1) which encloses 
C(xo,Yo; r). Then the integral 

j iJHkd 
"' s. une 

r 

where n, refers to the outward normal of r, is independent of the 
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choiee of r (KELLOGG [1], p. 212). If we apply this to C(xo, Yo; e), 
r < e < r l , then it follows that 

d 
e de L(Hk ; xo,Yo; e) = a", 

and hence 
L(Hk; xo,Yo; e) = akloge + bk 

where ak and bk are constants. On account of the continuity of Hk in 
the closed ring this fonnula holds for r =::: e <:: r l . By 1.8 and 1. 3, Hk 
converges in the open ring R(xo,yo; r,rl ) to a harmonie function h, 
the convergence being uniform, in particular, on every circle C (xo, Yo; e), 
r<e<r l · Hence L(H",;xo,yo;e) ~L(h;xo,yo;e) for r<e<rl . 

That is, the sequence ak loge + bk has a finite limi.t for every e such 
that r < e < rl' Clearly, this implies that ak and bk converge to finite 
limits a and b respectively. Then we have L (H,,; xo, Yo; r) ~ a logr + b 
and this implies that the sequence L (H,,; xo, Yo; r) is bounded from 
below. 

1.13. Using the notations of 1.12, let us consider L (u; xo, Yo; e) as 
a function of e, r <:: e <:: rl' By the theorem of 1.12, L(u; xo, Yo; e) 
actually exists. We observe that by 1. 3 and 1. 4 we have 

L (u; xo, Yo; r) = limL(Hk; xo, Yo; r) = alogr + b, 

L (u; xo, Yo; rl) = limL (H,,; xo, Yo; rl) = a logrl + b. 

Considernowathirdcircle C(xo,yo;e), r<::e<::r1 • ThenL(u;xo,yo;e) 
<::L(H,,;xo,yo;e) since us;,Hk in the ring R(xo,yo;r,rl ). Hence 
L (u; xo, Yo; e) <:: lim L (Hk; xo, Yo; e) = a loge + b. As aloge + b is the 
(univocally determined) linear function of loge whieh is equal to 
L(u; xo,Yo; e) for e = rand e = r l , we have the following theorem 
(RIESZ [5], p. 338). 

If the circular ring 0 <:: er < (x - XO)2 + (y - YO)2 < e~ is com­
prised in G, then L (u; Xo, Yo; e) is a convex function of loge for 

el < e < e2' 
1.14. If we are willing to use somewhat more complicated tools. 

than in the preceding sections, then we can obtain the following more 
comprehensive result (BRELOT [1], p. 14). If r is any sufficiently 
smooth JORDAN curve in G, then u is summable on r as a function 
of the arc-length (it is not necessary to assurne that the interior of r 
is also comprised in G). We modify the proof of BRELOT slightly so 
as to obtain this theorem directly from the definition of a subharmo­
nie function as given in 1. 1. Let (xo, Yo) be a point in G such that 
u(xo,Yo) > -00, and assurne that r does not pass through (xo,Yo) 
[clearly, the case of curves passing through (xo, Yo) can be settled 
then immediately]. We choose a second smooth JORDAN curve r l such 
that the doubly connected domain G' bounded by rand r l is com­
prised in G together with its boundary, and such that (xo, Yo) is com-
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prised in G'. As in 1. 3, we take a sequenee Hk for G'. Sinee 
H 1 ::> H 2 ::> ... and sinee all these functions are eontinuous on 
G' + r + r l , we have a finite eonstant M such that u <: Hk <: M, 
k = 1, 2, ... , in G' + r + r l . If Qj' (x, y) denotes GREEN'S function 
for G' with pole at (xo, Yo), we have, by applying a general formula 
(KELLOGG [1], p.237) to the harmonie function Hk - M, 

1 f 8@' 1 J" 8@' Hk (xo , Yo) - M = 2n (Hk - M) an; ds + 2n (Hk - M] an; ds, 
r r 1 

where ni refers to the interior normal with respect to G'. We observe 
that aQj'joni has a positive minimum ft > 0 on r+ r l (cf. BRELOT [1], 
p.14). As Hk - M <: 0 on r + r l , it follows that 

Hk(xo,yo) - M <: :nf(Hk - M) ds. 
r 

As Hdxo, Yo) ::> u (xo, Yo), it follows finally that 

fHkds::> [u (xo , Yo) - M] 2n + Ml, 
- fI 

r 

where l is the length of r. That is, the sequence f Hkds is bounded 
r 

from below. By 1.3 and 1. 4 it follows then that u is summable on r 
as function of the are-Iength. 

1.15. Let G' be a domain comprised in G together with its bound­
ary B'. Suppose that His harmonie in G', continuous in G' + B' and 
H::>u on B'. By condition c) in 1.1 we have then H~u in G' also. 
We shall see now that the sign of equality holds either everywhere or 
nowhere in G' (RIESZ [5], p.331). Suppose there is some point (xo' Yo) 
in G' such that u (xo, Yo) = H (xo, Yo)' If r is small, we have then, 
by 1. 7, 

H(xo, Yo) = u(xo, Yo) <: A (u; xo' Yo; r) <: A(H; xo' Yo; r) = H(xo, Yo) . 

As u ~ H, this dearly implies that u == H in the vicinity of (xo, Yo) . 
That is, the set of points in G' where u = H is an open set. On 
ac count of the upper semi-continuity of u, the set of points in G' 
where u< H is also open. As the first one of these sets is not empty 
by assumption, the second one must be empty (since the connected 
open set G' cannot be the sum of two non-overlapping open sets). 
Hence u = H everywhere in G'. As u is upper semi-continuous and H 
1S continuous and ::>u in G' + B', it follows immediately that we have 
u = H on the boundary of G' also. 

1. 16. As an immediate corollary of the preceding theorem we note 
the fact that u cannot have a local maximum at a point (xo, Yo) in G, 
unless it reduces to a constant in the vicinity of (xo' Yo)' and that u 
cannot reach its absolute maximum in G unless it reduces to a con­
stant in G. 
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Chapter Ir. 

Integral means of subharmonie functions. 

2.1. If uis subharmonicin a domainG, then u(xo, Yo) < L(u;xo,Yo; r), 
u(xo,Yo) < A(u; Xo,Yo; r) for (xo,Yo) in G and for sufficiently small r 
(see 1. 6, 1. 7, 1. 9, 1.11). The question arises as to whether these re­
lations are characteristic for subharmonie functions. 

2. 2. Denote by K the elass of functions u which are defined 
in a given domain G and satisfy there the following conditions. 
IX) -00 < U < +00 and u =1= -00 in G. ß) u is upper semi-continuous 
in G. Denote by K I , K 2 , K 3 , K 4 the subelasses of K defined by the 
following additional requirements. A function u in K belongs to 
K I if for every point (xo, Yo) in G with u(xo, Yo) > -00 we have a 
e (xo, Yo) > ° such that for r < e (xo, Yo) the integral mean L(u; Xo ';Yo; r) 
exists and is :> u (xo, Yo). A function u in K belongs to K 2 if for 
every point (xo, Yo) in G with u(xo, Yo) > -00 there exists a sequ~nce 
r,.-+O, depending upon (xo,Yo), such that L(u;xo,yo;r,.) exists and 
is :> u (xo, Yo), n = 1, 2, . . .. The elasses K 3 , K 4 are defined in the 
same way in terms of the integral mean A(u; xo, Yo: r). 

2.3. On account of 1.6, 1.7, 1.9, 1. 11 every function which is 
subharmonic in G belongs to all four elasses K 1 , K 2 , K 3 , K 4 • Converse­
ly (LITTLEWOOD [1J, p. 189), a function u which belongs to any one 
of these elasses is subharmonie in G. Since conditions a) and b) of 
1. 1 are satisfied by assumption, we have to verify only the following 
fact: if G' is a domain comprised in G together with its boundary B', 
and if His continuous in G' + B', harmonie in G', and :>u on B', 
then H:> u in G' also. If this were not so, then the function u -H, 
which is c1early upper semi-continuous in G' + B', would reach a posi­
tive maximum M at an interior point (xo, Yo) of G' + B', and the set 
S of those points (x, y) in G' + B' where u - H = M would be a 
closed set interior to G' + B'. Since Sand B' are elosed sets, we have 
then on S a point (Xl' YI) whose distance from B' would be a mini­
mum. On every cirele C(XI,YI; r), with small r, we would have then 
a whole are Gr such that u - H< M on G,. Since u - H < Mon 
C (Xl' YI; r), it follows that 

L(u; Xl' YI; r) - H(xl , YI) = L(u -. H; Xl' YI; r) < M 
= U (Xl' YI) - H (Xl' YI) , 

and hence L (u; Xl' YI; r) < u (Xl' YI) for alt small values of r for which 
L(u; XI'YI; r) exists. A similar reasoning shows that A(u; XI'YI; r) 
< u (Xl' YI) for alt small values of r for which A (u; Xl' YI; r) exists. 
These conclusions are in obvious contradiction to the assumption that u 
belongs to one of the classes K I , K 2 , K 3 , K 4 • 
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2.4. If u is subharmonic in the domain G, then for fixed (xo' Yo) 
the integral mean L (u; Xo' Yo; 1') is an increasing function of 'I' as long 
as the circ1e C (xo, Yo; 1') is comprised in G together with its interior 
(RIESZ [5J, part I, p. 338). To see this, suppose C (xo, Yo; 1') satisfies 
the assumption of the theorem and take 1'1 < r. As in 1. 3, ,take a 
sequence Hk for the circular disc bounded by C (xo, Yo; 1'). We have 
then L(Hk; xo,Yo; 1') = Hk(xo,Yo) =L(Hk; xo,Yo; 1'1):> L(u; xo,Yo; 1'1)' 
By 1.3, 1.4 it follows for k -+ 00 that L(u; xo, Yo; 1'):> L(u; xo,Yo; 1'1)' 

2.5. We already observed (see 1. 13) that as long as the circ1e 
C(xo,Yo; 1') remains in a circular ring R(xo,Yo; 1'1,1'2) comprised in G, 
L(u; xo' Yo; 1') is a convex function of logr for 1'1< 'I' < 1'2 and for 
fixed (xo, Yo) . 

2. 6. Under the assumptions of 2. 5, L (u; Xo, Yo; 1') is a continuous 
function of r. Indeed, if 1'1< r' < r" < 1'2' then by reasons of upper 
semi-continuity u and therefore L (u; xo, Yo; 1') is bounded from above 
for r' <:: 'I' <:: 1''', and a convex function which is bounded from above 
is continuous. 

2. 7. Suppose u is subharmonie in a disc D (xo, Yo; r) . Then 
L (u; xo, Yo; 1') -+ U (xo' Yo) for 'I' -+ 0 (RIESZ [5J, part 11, p. 344). Indeed, 
for 'I' -+ 0 the upper semi-continuity of u implies that lim L (u; xo' Yo; 1') 
<::u(xo,Yo)' while by 1.6 we have limL(u;xo,Yu;r):>u(xo,Yo). 
Clearly, the reasoning remains valid for u (xo, Yo) = - 00 • 

2. 8. Similar theorems hold for 
r 

A(u; xo,Yo; 1') = ~fL(u; xo,Yo; (]) {]d{] , 

o 
where it is assumed that the circ1e C (xo, Yo; 1') is comprised together 
with its interior in a domain G where u is subharmonic. Since 
L (u; xo, Yo; e) is a continuous function of e for 0 <:: e <:: 'I' (see 2.6, 2.7), 
we can approximate the above integral by RIEMANN sums, and we 
obtain the relation (cf. MONTEL [2J, p.49) 

n 

A (u; xo' Yo; 1') = lim ~ 2~ L(u; xo' Yo; !!...r). 
n-+oo ~ n n 

k=1 

As L(u; xo,Yo; e) is an increasing function of e, it follows immediately 
that A(u; xo,Yo; 1'):::; L(u; xo,Yo; 1') (cf. 3.25). 

2.9. Under the assumptions of 2.8, A (u; xo, Yo; 1') is an increasing 
function of 'I' (RIESZ [5], part 11, p.344). This is obvious since the 
RIEMANN sums used in 2. 8 are increasing functions of 'I' by 2. 4. 

2.10. Under the assumptions of 2.8, we have A(u; xo,Yo; 1') -+u(xo, Yo) 
for 'I' -+ 0 (RIESZ [5J, part 11, p.344). The proof is the same as in 2.7. 

2.11. Under the assumptions of 2.8, A (u; xo' Yo; 1') is a convex 
function of logr (essentially MONTEL [2J, p.49). This is obvious since 
the RIEMANN sums used in 2. 8 are convex functions of logr by 2. 5. 



lvi 2.4 to 2.15 9 

2.12. We shall say that a function U is of dass PL in a domain G 
if u >- 0 and if v = logu is subharmonie there. It is understood that 
we put v = -00 for points where u = O. If u is of dass PL in G, 
then u is subharmonie in G (while the converse is obviously false). 
Indeed, the subharmonie character of v = logu dearly implies that u 
satisfies conditions ,a) and b) of 1. 1. Take then any point (xo, Yo) 
in G and a small r. As v is subharmonie by assumption, we have 
v(xo, Yo) <: L(v; xo' Yo; r) and consequently 

u (xo, Yo) = eV(x"y.) <: eL(v; x., y.;r) <: L (u; xo, Yo; r) . 

Henee u is subharmonie by 2.3. We used here the inequality 
2n 2n 

-~flogt(!p) d!p <: log~ft(!p) d!p, t >- 0, 
2n 2n 

o 0 

whieh is valid whenever the integrals involved have a meaning in the 
sense of LEBESGUE (for a very elegant proof, see RIESZ [7]). 

2. 13. If u =*= 0 is >- 0 and upper semi-continuous in G, then u is of 
dass PL there if and only if ueh is subharmonie for every ehoiee of h 
in every subdomain G' in whieh h is harmonie (BECKENBACH [1J, for 
eontinuous u; the following proof for general u is based on unpublished 
remarks of S. SAKS). The necessity of the condition being obvious by 
2. 12, let us prove that the condition is sufficient. Let G' be any 
domain eomprised in G together with its boundary B'. Let H be eon­
tinuous in G' + B', harmonie in G', and v = logu <: H on B'. By 
assumption ue-H is subharmonie in G', and ue- H is upper semi-eon­
tinuous even in G' + B', since u is upper semi-continuous and e- H > 0 
is continuous there. The reasoning of 1.15 applies therefore to ue- H 

and sinee ue- H <: 1 on B', we obtain ue-H <: 1 in G' and finally 
v = logu ::::: H in G'. That is, v = logu is subharmonie in G, sinee v 
dearly satisfies conditions a) and b) in 1. 1 also. 

2. 14. If ut ' u2 are subharmonie in G, then ut + u2 is dearly also 
subharmonie in G, while ut u2 will generally not be subharmonie there. 
On the other hand, the dass PLis dosed both under addition and 
multiplieation (PRIVALOFF [4J; the following proof is due to S. SAKS). 
That is, if ut , U 2 are of dass PL in G, then v = U t U 2 and w = U t + U 2 

are also of dass PL. For v this is obvious. As to w, consider any 
function h whieh is harmonie in a subdomain G' of G. By 2.13, u t eh 
and u2eh are subharmonie in G'. Henee uteh + u2eh = weh is also 
subharmonie in G'. By 2.13 it follows that logw is subharmonie in G. 

2.15. For fixed (xo, Yo) the function 

{
IOg[(X-xo)2+ (Y_YO)2Y'2 for (x,y)=I= (xo,Yo)' 

logr= logr(x, y; xo, Yo) = 
-00 for (x, y) = (xo' Yo) 

is a subharmonie funetion of (x, y) in the whole plane. This follows 
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from the fact that logr is harmonie for (x, y) =f (xo, Yo), while at 
(xo' Yo) both the value and the limit of logr are equal to -00. If 1X > 0 
is a eonstant, then 1X logr is dearly also subharmonie. That is, rlX is 
of dass PL in the whole plane, for 1X > o. In the ease of three in­
dependent variables, for instanee, we would have 

1 

r r(x,y,z; xo,yo,Zo) 

= 1- [(x - XO)2 + (y - 1YO)2 + (z - ZO)2]1/2 

-00 for (x,y,z) = (xo,yo,zo) 

as the simplest unbounded subharmonie funetion. 
2.16. If u is of dass PL in a ring R (xo, Yo; el' (22)' then 

10gL (u; xo' Yo; (2) is a eonvex function of loge for (21 < (2 < (22 

(RIESZ [5J, part I, p.339). To show that a function 1((2) has the 
property thatlog 1 ((2) is a eonvex function of log e, it is suffieientto show 
that (21X f(e) is a eonvex funetion of loge for every 1X>0 (see for instanee 
RIESZ [1J, p. 6). Let us take any 1X>0. Put r= [(X-XO)2+(Y-YO)2Y". 
Then, by 2. 15 and 2. 14, rlX u is of dass P L in the ring and henee, 
by 2.12, rlXu is subharmonie in the ring. By 2.5, L(urlX ; xo,Yo; e) 
= elX L (u; xo' Yo; e) is therefore a eonvex function of loge for 

(21< e < e2· 
2.17. If u is of dass PL in a dise D (xo, Yo; r), then 10gA (u; xo' Yo; r) 

is a eonvex function of logr for 0< r < r (essentially MONTEL [2J, 
p.48). This is obvious sinee the RIEMANN sums used in 2.8 have (by 
2.16) the property that their logarithms are eonvex functions of logr 
for 0< r< r. 

2.18. For various purposes it is important to approximate general 
sub harmonie functions by smooth subharmonie functions. We shall 
use the following terminology. A function 1 (x , y) is of dass K(O) in a 
domain G if it is eontinuous there, and it is of dass K(n) , n:> 1, if 
its derivatives of the first n orders are also eontinuous. 

2.19. Let u be subharmonie in a domain G. Consider a domain G' 
eontained in G together with its boundary B'. Put 

Ar(x, y; u) = A(u; x, y; r) = r21:rcI J u(x+~, y+ 1/) d~ d1J 
~2 + 1]2< r2 

(see RIESZ [5J, part II, p.343 and p.345 for historieal referenees eon­
eerning the use of these approximating functions in the theory of har­
monie and subharmonie functions). For r fixed and suffieiently small, 
Ar (x, y; u) is a function of (x, y) whieh is defined and eontinuous in G' 
(cf. 1.10). By 2.1 we have u(x, y) < Ar(x, y; u) in G'. As u is bounded 
from above on every dosed set in G, the theorem of TONELLI, referred 
to in 1.4, may be used to justify the ehanges in the order of integrations 
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which we are going to earry out. First, from u{x, y) <: Ar{x, y; u) we 
obtain by integration Ar, (x, y; u) <: Ar, (x, y; Ar) = Ar (x, y; Ar,). That 
is (see 2.3) Ar,(x,y; u) is subharmonie. If we put Ar"r.(x,y; u) 
= Ar. (x, y; Ar,) and so on, then it follows generally that for n::::: 1 
the function Ar"r., ... fn(X, y; u) is eontinuous and subharmonie in G' 
for small values of r1 , r2 , ••• , rn and that u (x, y) <: Ar,(x, y; u) 
<:Ar"r.(x,y;u) <: .... In partieular, if we put A~nl(x,y;u) 

= Ar, r, ... , r (x, y; u), then for small r the function A;:'I (x, y; u) is eon­
tinuous and subharmonie in G and we have there u (x, y) ::S A~n) (x, y; u). 

By 2.8 we have Ar(x, y; u) <: A.(x, y; u) for r ~ s. By repeated 
integration we obtain generally A~nl (x, y; u) <: A~n) (x, y; u) for r <: s. 
Finally, by the same reasoning as in 2. 7, we obtain A~I (x, y; u) -->- u (x, y) 
for r -->- O. 

2. 20. If t (x , y) is continuous in a domain G, then for fixed r the 
function Ar (x, y; t) = A (f; x, y; r) is easily seen to have eontinuous 
derivatives of the first order in the portion of G where it is defined. 
Indeed, the lour-step rule for differentiation leads immediately to the 
formulas 

2;r 

oAr(x,y;f) =·~jt(x+reoscp, y+ rsincp) eoscpdcp, 
OX rn 

o 
2.,; 

oAr(x, y; f) = _1_ jl (x + r eoscp, y + r sincp) sincp dcp , 
oy rn 

o 

which show the eontinuity of the first derivatives. If I itself has eon­
tinuous derivatives Ix = p, /y = q of the first order in G, then we 
have simply 

oA,(x,y; f) = A ( . P) oX rX,y, , oAr(x,y;f) -A ( .) oy - rx,y,q, 

and the preeeding argument shows that Ar (x, y; I) has eontinuous deriva­
tives of the seeond order. Generally , if I is of dass K (n), then Ar (x , y; I) 
is of dass K(n+l). Applying this to the funetion A;:'I(X,y; u) of 2.19, 
it follows that A~nl(x, y; u) is of dass K(n-l) in the portion of G in 
whieh it is defined. 

2.21. For easier referenee we sum up the preeeding remarks in the 
following approximation theorem. If u is subharmonie in a domain G, 
then the sequenee Ufl (x, y) = Ar~k(X, y; u), k = 1,2, ... , has the fol­
lowing properties. Let G' be any domain eomprised in G together 
with its boundary. Then for large k the function Ufl is defined, sub­
harmonie and of dass KI21 in G' and u~) \0. u in G'. 

Actually, the integral means A~I (x, y; u) are smoother than it 
appears from the preeeding statements. More preeise information eould 
be obtained easily from 6. 22. 
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2.22. For continuous u it follows from 2. 19 and 2. 20 that for 
large k the function u~) (x, y) = A~k (x, y; u) is already of class K(2) in 
G' and that u~) ~ u uniformly in G'. 

2. 23. Suppose that the fllnction u of 2. 21 happens to be harmonie 
in a domain G' comprised in G together with its boundary B'. Take 
any closed set 5 in G' and denote by <5 the shortest distance of 5 and 
of B'. Then for r< 1j(3 <5) we have, by the mean-value property 
of harmonic functions, ut~) = u on 5 and hence Llur) = 0 on 5, 
LI = 02/0 X 2 + o2joy2. 

2. 24. Denote by 5 a closed bounded set in the domain G in which 
u is subhatmonic. Then the functions ur) of 2. 21 satisfy for large k 
an inequality 

o ~ ffLlu~)(x, y) dxdy < M, 
s 

where M is a finite constant (RIESZ [5J, part H, p. 353). To see this, 
observe that 5 can be covered by a finite number of closed circular 
dises (HEINE-BoREL theorem) and that therefore it is sufficient to 
consider the case when 5 is a closed circlliar disc D, with radius r 
and centre (xo, Yo)' comprised in G. We have then by GREEN'S identity 

11A (3)( )d d _feu~) d =dL(u~);xo,Yo;r) 
LJUk x,v x y- -" s dl ,Cr=C(xo,yo;r). •. v~ ~r 

D er 

Denote by lk the common value of these expressions. Take r1 slightly 
larger thanr. WriteLk(r) for L(ur); xo, Yo; r) and L (r) for L(u; xo, Yo; r). 
Since Lk(r) is a convex function of logr by 2.5 and 2.21, we have 

I <::: Lk(r1 ) - Ldr) 
k - logr1 - logr 

By 2.21, 1. 4, 2.4 it follows for k ~ 00 that 

o ~ limI <::: L(r1 ) - L(r) < +00 
- k - logr1 - logr 

and the theorem is proved. 

Chapter HL 

Criteria and constructions for subharmonie 
functions. 

3.1. If u is of dass K(2) (see 2.18) in a domain G and if 
LI u = o2 u jox2 + a2ujoy2 > 0, then u is subharmonic. Similarly, if 
LI u < 0, then u is sllperharmonic. Suppose, for instance, that LI u > 0 
in G. Let G' be a domain comprised in G together with its bound­
ary B'. Sllppose that H is continuolls in G' + B', harmonie in G', 
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and >-uon B'. We have to show that H >- U in G' also. Suppose 
this is not true. Then v = U - H reaches its maximum at an interior 
point (xo, Yo), and we should have there Lt v <: 0, while by assumption 
Ltv = Ltu - LtH = Ltu > 0 in G. 

3.2. If u is of dass K(2) in G, then u is subharmonic in G if and 
only if Ltu >- 0 there (RIESZ [5J, part I, p. 335). Proof. Suppose first 
that u is subharmonie in G. If Lt u < 0 at some point (xo, Yo) of G, 
then u is superharmonie in a vicinity G' of (xo, Yo), on aecount of 3.1. 
Then u is both subharmonic and superharmonie in G', and henee 
(see 1. 1) u is harmonie there. This is impossible, since Lt u < 0 in 
the vieinity of (xo, Yo). Suppose second that LI u >- 0 in G. If 6 is a 
positive constant, then the function u* = u + 6(X2 + y2) satisfies the 
condition Ltu* > 0 in G. Henee u* is subharmonie in G by 3.1. For 
6 ~ 0 the function u* converges to u uniformly in G, and the 
subharmonic character of u is then a consequence of the following 
theorem. 

3.3. Let u be defined in a domain G. Suppose that there exists 
a sequence Uk with the following properties. If G' is any domain 
eomprised in G together with its boundary, then for large k the func­
tion Uk is defined and subharmonie in G' and Uk ~ u uniformly in G'. 
Then u is subharmonie in G. Briefly, the uniform limit of subhar­
monie functions is subharmonie (RIESZ [5J, part I, p.335). Observe 
first that the assumptions dearly imply the upper semi-continuity 
of u. If (xo, Yo) is any point in G, then we have, by 2. 1, for large k 
and small r, Uk(Xo,YO) <: L(Uk; xo,Yo; r) and for k ~ 00 it follows that 
u(xo,Yo) <: L(u; xo,Yo; r). The subharmonie eharacter of u follows 
then from 2. 3. 

3.4. If a, bare two real numbers, induding ± 00, then ~ will 
denote the larger one of a, b if a '* band the eommon value of a, b 
if a = b. Wehave then the theorem: if U 1 ' U2 are subharmonie in G, 
then their upper envelope u = ~ is also subharmonie in G 
(RIESZ [5J, part I, p. 335). Proof. u dearly satisfies conditions a) 
and b) in 1.1. Let C (xo, Yo; r) be any cirde eomprised in G together 
with its interior. As u1 and U 2 are upper semi-continuous, we have 
a finite eonstant M such that u1 < M, u2 < M on C(xo, Yo; r). We 
have then also u"< M on C (xo' Yo; r), while by definition u >- u1 . 

Thus u is comprised between two functions, namely U 1 and M, whieh 
are summable on C (xo, Yo; r) as functions of the polar angle. Henee u 
is also summable on C (xo, Yo; r) as a function of the polar angle. At 
(xo' Yo) we have either u = u1 or u = u2 • If u (xo, Yo) = u1 (xo, Yo), for 
instance, then u (xo, Yo) = u1 (xo, Yo) <: L (u1 ; xo' Yo; r) <: L (u; xo' Yo; r). 
Hence u is subharmonic by 2.3. A similar reasoning shows that the 
upper envelope of any finite number of subharmonie functions is sub­
harmonie. 
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3. 5. Let F denote a family of infinitely many functions which are 
subharmonie in a domain G. Suppose that F is anormal family (that 
is, every infinite sequenee of functions of F eontains a uniformly eon­
vergent subsequenee). If ü (x, y) denotes the largest duster-value of 
the values at (x, y) of all the functions of F, then ü(x, y) is subhar­
monie in G (MONTEL [2J, p. 38, for eontinuous funetions; MALCHAIR [1J, 
p. 11, for general subharmonic functions). The proof is similar to that 
in 3.4. 

3. 6. Let there be given, in a domain G, a sequenee U n with the 
following properties. If G' is any domain eomprised in G together 
with its boundary, then for large n the functions U n , un+!' ... are 
defined and subharmonie in G' and un :> Un+l :> ... in G'. Then either 
U n ...... - 00 in G or U n eonverges in G to ,a subharmonie funetion 
(RIESZ [5J, part I, p. 335; cf. 1. 2). Proof. Put limun = U and suppose 
that U =1= -00 in G. Clearly, -00 <::: U < +00 and U is upper semi­
eontinuous in G. Let (xo, Yo) be any point in G such that U (xo, Yo) > -00. 

We have then, for large n and small r, -00 <u(xo,Yo) <:::un(xo,Yo) 
<:::L(un;xo,yo;r) and this implies, by 1.4, that L(u;xo,yo;r) exists 
and is ~U (xo, Yo). Henee U is subharmonie by 2.3. 

3.7. Suppose that U is upper semi-eontinuous and -00 <::: U < +00 

in a domain G and that for every (xo, Yo) in G the integral mean 
L (u; xo, Yo; r) exists for small r. If 

-.- 1 
hm'2 (L(u; xo' Yo; r) - u(xo, Yo)) :> 0 
r-+O r 

for every point (xo, Yo) in G, then U is subharmonie in G (SAKS [3J, 
p. 190; this is a generalization of a theorem of BLASCHKE [1J on har­
monie functions). Proof. Observe that the function U n = U + x2jn, 
n a positive integer, belongs to the dass K 2 defined in 2.2 and apply 
2.3 and 3.6. A similar reasoning shows that if 

-.- 1 
hm 2 (A(u; xo,Yo; r) - u(xo,Yo)):::: 0 
r-+O r 

for every point (xo,Yo) in G, then U is subharmonie in G (SZPILRAJN [1J, 
p. 589). For further theorems of this type see the remarks of SAKS 
([4J, p. 382), and see also KOZAKIEWICZ ([1J, pp. 5-6). 

3. 8. Combining 2. 21, 3. 6 and 3. 2 we see that the dass of sub­
harmonie functions eonsists first of all functions with eontinuous 
seeond derivatives whieh satisfy the eondition LI = o2jox2 + o2joy2:> 0, 
and second of the limits of deereasing sequenees of such functions 
(limits == -00 being exduded). 

3.9. Similarly, by 2.22, the dass of continuous subharmonie 
functions eonsists first of the functions with LI :> 0 as before, and 
second of the uniform limits of such functions. 
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3. 10. If ul ' u2 ' •• " u,. are subharmonie in G and if IXI , lX2 ' ••• , IX,. 

are non-negative constants, then obviously IXI ul + IX2 u2 + ... + IX,. u,. 
is also subharmonie in G (RIESZ [5J, part I, p. 335). 

3.11. The next few theorems will be concerned with relations 
between subharmonie functions and convex functions. These theorems 
have the common feature that they can be proved by very simple 
computations if the functions involved are suffieiently smooth. It is 
then natural to treat the general case by approximation in terms of 
integral means (see 2.21). As a matter of fact, in the theory of sub­
harmonie functions this method of approximation was first used in 
connection with a problem of this type (the theorem discussed 
in 3.12). 

3. 12. Let u:> 0 be upper semi-continuous and < + 00 in a domain G. 
Then v = logu is subharmonie in G if and only if elXX + fJ.1/ u is sub­
harmonie there for every choiee of the constants IX, ß (MONTEL [2J, 
p.39 for smooth u; RAD6 [2J, for continuous u), Proof. The necessity 
of the condition follows immediately from 2.12. To prove the suffi­
ciency, suppose that eIXX+{Jl/u = w is subharmonie for every choice of 
the constants iX, ß and call this property the property (M). If u is 
positive and of dass K(2) in G, then we have Llw:> o. Explicitly: 

Llw = elXx+{J1/ [Llu + 2IXUx + 2ßUl/ + (iX2 + ß2)UJ:> 0 
for every choiee of iX, ß. As the quantity in the bracket is a quadratic 
function of iX,ß, we obtain readily the inequality uLlu- (u~+u~):>o. 
which shows that logu is subharmonie. Indeed, we have Lllogu 
= [uLlu - (u~ +u;)J/u2 • If u, still of dass K(2), satisfies only the 
condition u:> 0, consider first u,. = u + 1/n, n a positive integer, and 
apply 3.3. Suppose now that u has only the properties specified in the 
statement of the theorem. It follows then immediately that the func­
tion A~)(x,y; u) of 2.19 also possesses the property (M). As A~)(x,y; u) 
is of dass K(2), logA~)(x, y; u) is subharmonie by what precedes, and 
as logA~)(x, y; u) '" logu for r '" 0, the subharmonie character of logu 
follows by 3.6. 

3. 13. Suppose that j (t) is convex and increasing (and therefore 
continuous) for ~ < t < t2 and that u (x, y) is subharmonie in a do­
main G. If tl < u < t2 in G, then v = j(u) is subharmonic in G 
(MONTEL [2], p.42, for smooth functions; BRELOT [1], p.16, for the 
general case). Proof. If j and u are smooth, we have Llv=f'(u) (u;,+u:) 
+ t' (u) LI u :> 0, since t':> 0, t":> 0, LI u :> 0 by assumption. The 
general case can be treated either by approximation (BRELOT, 1. c.) 
or also directly as follows. Let (xo, Yo) be any point in G. Since u 
is subharmonic, we have u (xo, Yo) < L (u; xo, Yo; r) for small r. Since j 
is increasing, it follows that v(xo' Yo) = j(u(xo' Yo)) < j(L(u; xo, Yo; r)). 
Since j is convex, we have j (L(u; xo' Yo; r)) ~ L (f(U); xo, Yo; r) 
= L(v; xo,Yo; r) (see for instance P6LYA-SZEGÖ [1], p. 52, problem 71, 
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where the inequality is stated in a somewhat less general form). Thus 
v(xo,Yo) <L(v;xo,yo;r) and hence v is subharmonie by 2.3 (the 
further assumptions stated there being obviously satisfied in the 
present case). 

3.14. Suppose that ! (t) is convex and continuous for t1 < t < t2 

and that h (x ,y) is harmonie in a domain G. If t1 < h < t2 in G, then 
v == !(h) is subharmonie in G (see 3.13 for references). The proof is 
the same as in 3· 13. 

3.15. The theorem of 3.12 can be restated as follows. Suppose 
that v is upper semi-continuous in a domain G and satisfies there the 
conditions -oo<v<+oo, v$-oo. If elXx+ßv+v is subharmonie 
for every choice of the constants ex, ß, then v is subharmonie, and 
the converse is also true. KIERST (see SAKS [3J, p.187) raised the 
following question. For what functions !(t) is it true that whenever 
!(exx+ßY+v) is subharmonie for every choice of the constants ex, ß, 
then it follows that v is subharmonie. According to 3. 12, ! (t) = et is 
such a function. KIERST found the following curious theorem. If! (t) 
for -00 < t< +00 and v (x, y) for (x, y) in a domain G have con­
tinuous derivativesof the secondorder, if !,(t) >0, and if f(exx+ßy+v) 
is subharmonie in G for every choice of the constants ex, ß, then v is 
subharmonie in G. That is, if we restriet ourselves to smooth func­
tions, then every strict1y increasing function f (t) has the desired pro­
perty. Proof. Put w = f(exx + ßy + v). The assumption that w is 
subharmonie is expressed by the inequality 

L1 w = f" (ex x + ß y + v) [(v", + ex)2 + (vy + ß)2] + f'(ex x + ßy + v)L1 v :> O. 

Consider any point (xo, Yo) in G and choose ex = - v", (xo, Yo) , 
ß = - vy (xo, Yo)' As f' > 0, it follows that L1 v :> 0 at (xo, Yo)' Hence v 
is subharmonie by 3.2. It is not known at present whether the 
assumptions concerning the smoothness of fand v are necessary for 
the validity of the theorem. 

3. 16. SAKS [3J observed that the functions f (t) for which the theo­
rem of 3.15 is non-vacuous are less general than it would appear from 
the statement of that theorem. Suppose that 1) f (t) is continuous 
with its first and second derivatives for -00 < t< +00, 2) f' (t) > 0 
and 3) there exists, in some domain G, a function v (x, y) of dass K(2) 

such that f (ex x + ßy + v) is subharmonie for every choice of the con­
stants ex, ß. Then f(t) is convex. As in 3. 15, the proof follows by a 
simple discussion of the explicit expression of L1 f (ex x + ß y + v) . 
Again, it is not known whether the theorem remains true without the 
restrictions concerning the smoothness of fand v. SAKS (1. c.) modi­
fied the problem by introducing a third parameter y, and studied the 
situation where f(exx + ßy + y + v) is subharmonie for every choice 
of the constants ex, ß, y. He found that as a consequence of the 
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increased number of the parameters the assumptions concerning the 
derivatives of land. v can be dropped. He obtained the following 
theorem. Suppose that 1) I (t) is continuous for -00 < t < +00, 
2) v(x,y) is continuous in a domain G, and 3) t(IXX + ßy + 'Y + v) 
is subharmonic in G for every choice of the constants IX, ß, 'Y. Then 
I (t) is necessarily convex and furthermore one of the following four 
statements is true. 1. I (t) is constant. H. v (x, y) is harmonic. 
IH. v (x, y) is subharmonic in G and I (t) is increasing for -00 < I< +00 
[that is, I (tl) ~ I (t2) for t1 < t2J. IV. v (x, y) is superharmonic in G 
and I(t) is decreasing for -00 < t < +00. If I and v are sufficiently 
smooth, then this theorem can be proved by a simple argument simi­
lar to that used in 3. 15. The hope that the general case can be 
treated by approximations has not materialized so far. At any rate, the 
proof given by SAKS is essentially a direct proof. The ingenious details 
of the proof cannot be reproduced here. 

3.17. Suppose that 1) f(t) is continuous for t1 < t < t2, 2) hex, y) 
is harmonic in a domain G, 3) t1 < h < t2 in G, and 4) u = feh) is 
subharmonic in G. Then I (t) is convex in the interval m < t < M, 
where m and M denote the greatest lower bound and the least upper 
bound of h in G (MONTEL [2J, p. 43, under certain restrictions; SAKS [2J, 
for the general case). Proof. It is elearly assumed that h is not con­
stant. If the theorem is false, then there exists a linear function 
at + b such that g(t) = I(t) + at + b reaches a proper local maximum 
at a certain point to' m< to< M. That is, g(t) ~g(to) and g(t) is not 
constant in the vicinity of to. The function h takes on the value to 
at some point (xo, Yo) in G, since m< to < M, and h takes on all 
values t elose to to in the vicinity of (xo, Yo)' since h is not constant. 
The function u = geh) = feh) + ah + b has then a local maximum at 
(xo, Yo) without reducing to a constant in the vicinity of (xo, Yo)' On 
account of 1.16 this is however impossible since u is elearly subharmonic. 

3.18. We proceed to quote a few applications of the preceding 
theorems. Let u be subharmonic in a circular disc D (xo, Yo; e) . 
Put [(x - XO)2 + (y - YO)2Jl!2 = rand consider the function l (x, y) 
= L (u; X o' Yo; r). Then l (x, y) is constant on every cirele C (xo, Yo; r) , 
o < r < e, and we can write l (x, y) = Je (logr) . By 2.6, Je (logr) is a 
continuous, increasing and convex function of logr for 0< r < e. 
Hence, by 3: 13, l (x, y) is subharmonie in D (xo, Yo; e), except possibly 
at (xo, yo). To discuss the point (xo, Yo), observe that l (x, y) is con­
tinuous there by 2.6 and 2. 7, and that L(l; xo,Yo; a) = L(u; xo,Yo; a) 
:> u (xo, Yo) = l (xo, Yo) since u is subharmonic. Hence l (x ,y) is sub­
harmonic in D (xo, Yo; e) (essentially MONTEL [2J, p. 48). 

3. 19. Under the assumptions of 3. 18 the function a (x, y) 
= A(u; xo,Yo; r) is also subharmonic in D(xo,yo; e) (see reference in 
3.18). The proof is the same as in 3.18. 

Ergebnisse der Mathematik. V/1. Rado. 2 
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3.20. Under the assumptions of 3.18 the function u will reach a 
maximum M(r) on every cirde C (xo, Yo; r), 0< r < e. Put M(O) 
= u (xo, Yo) and consider the function f.1, (x, y) = M(r), r = [(x - xo)2 
+ (y - YO)2]112. Then f.1, (x, y) is subharmonie in D (xo, Yo; e) (essentially 
MONTEL [2], p. 41). On account of 3.14 this theorem is, except for 
minor details, a consequence of the fact that M(r) is a convex func­
tion of logr (essentially RIESZ [1]). To prove this property of M(r) 
take rl' r2 such that 0< rl < r2 < e. We have to show that 
M(r) <: a logr + b for rl < r< r2 , where a logr + b is the linear 
function of logr which takes on the values M(rl ) , M(ra) for r = rl' 
r = ra respectively. Consider the function H(x, y) = alog[(x - XO)2 

+ (y - YO)2]l!2 + b. Then H is harmonie and we have H ::> u on the 
boundary of the circular ring R(xo, Yo; rl. r2) by the definition of M(r) 
and of a,b. Hence (see 1.1, condition cl) we have also H::>u on 
C(xo, Yo; r) for rl < r < r2 and consequently M(r) ::;;;: alogr + b for 
r l < r < r2 • 

3.21. If in the statements of the theorems in 3.18 to 3.20 we 
assume that u is of dass P L (see 2.12), then it follows immediately 
that the functions l(x,y), a(x,y), f.1,(x,y) are also of dass PL (see 3.18 
to 3.20 for references). 

3.22. Suppose that 1) u =1= -00, 2) -00::;;;: u < +00 and 3) u is 
upper semi-continuous in a domain G. If u is a convex function of 
x for every fixed value of y and a convex function of y for every 
fixed value of x, then u is subharmonie in G (MONTEL [2J, p. 37, for 
continuous u; MALCHAIR [1], p. 7, for the general case). Proof. Take 
any cirde C (xo' Yo; r) comprised in G together with its interior. Take 
a sequence of functions gv such that gv is continuous and gv'" u for 
(x - XO)2 + (y - YO)2 = r2 (cf. 1. 3). The convexity properties of u 
and the inequality u <: gv imply that 

u (xo, Yo) <:: Hgv (xo + h, Yo + k) + gv (xo - h, Yo + k) + gv (xo - h, Yo - k) 

+ g .. (xo + h, Yo - k)] 

for h2 + k2 = r2 • Subdivide C (xo, Yo; r) into n equal ares by points 
(xo + hi , Yo + k i ), i = 1, ... , n. Write the preceding inequality for 
hi , k;, i = 1, ... , n . After addition, it follows for n -4- 00 that 
u(xo,yo) <:L(g .. ;xo,yo;r). By 1.4 this implies that L(u;xo,yo;r) 
exists and is ;;::::u(xo,Yo). Hence u is subharmonie by 2.·3. 

As a special case of the preceding theorem, a function u (x, y) is 
subharmonie if the surface z = u (x, y) is convex in the sense that it 
is intersected in a convex curve by every plane which is parallel to 
the z-axis. Functions u with this property were the first ones to be 
considered as generalizations of convex functions of a single variable. 
Subharmonie functions with such special convexity properties were 
studied in detail by MONTEL [3] and by VALIRON [1]. 
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3.23. If u > 0 is subharmonie in G, then for (X, > 1 the function 
v = u'" is also subharmonic, since t'" is increasing and convex if (X, > 1 
(cf. 3.13). More generally, if u1 ' ••• , un are subharmonie and >0 in 
G and if (X, > 1, then u = (ur + '" + U~)l/'" is also subharmonic. If 
u1 ' •.. , U n are of dass K(2), then the relation Llu > 0 reduces, by 
direct computation, to an inequality which is easily reeognized as an 
immediate eonsequenee of the inequality of SCHWARZ. In the general 
case the theorem follows then immediately by approximating U v ... , U n 

by integral means (see 2.21). 
3.24. If u is of dass P L in G (see 2.12), then it follows imme­

diately from 2.12 that u'" is subharmonie for (X, > O. Conversely, if 
u > 0 and u =1= 0 in G and if u'" is subharmonie for every (X, > 0, then 
u is of dass PL (cf. MONTEL [2J, p. 24). Indeed, Vn = n(u1!n - 1) is 
then dearly subharmonie for n = 1,2, ... , and vn "4 logu. Henee 
logu is subharmonie by 3. 6. 

3.25. We observed (see 2.8) that if tt is subharmonic in G, then 
we have A(u; xo, Yo; r) ::::: L (u; xo, Yo; r) whenever the cirde C (xo, Yo; r) 
is eomprised in G together with its interior. We shall eonsider now 
two theorems eoneerning the eharaeterization of subharmonie functions 
in terms of inequalities involving only integral means. To simplify 
the statements we restrict ourselves to the ease of eontinuous fune­
tions. We have then the theorem: if u is eontinuous in G, then u is 
subharmonic there if and only if A(u; xo, Yo; r) < L(u; xo, Yo; r) when­
ever the circ1e C (xo, Yo; r) is comprised in G together with its interior 
(BECKENBACH and RAD6 [2J, p. 668). By 2.8 the eondition is neeessary. 
To prove its suffieieney, assume first that u is of dass K(2). Let (xo, Yo) 
be any point in G. The TAYLOR expansion yields then L(u; xo, Yo; e) 
= Uo + t e2 (ro + to) + a1 , A (u; xo, Yo; e) = Uo + t e2 (ro + to) + a2 , 

where uo,ro,to are the values of u,Uxx,Uyy at (xo,Yo) , and a;je2 ~ 0 
fore--+O, i=1,2. The inequality A(u;xo,yo;e) <L(u;xo,yo;e) 
implies that ro + to :::;: 8 (a2 - a1)/e2 , and for e --+ 0 it follows that 
ro + to 2': O. Henee u is subharmonic by 3.2. If u is only eontinuous, 
then the theorem follows by approximating u by integral means (see 2.21). 

3.26. Similarly, if u is eontinuous and positive in G, then logu is 
subharmonie there if and only if [A(u2 ; xo,Yo; e)Jl/2::::: L(u; xo,Yo; e) 
whenever the eirc1e C(xo,Yo; e) is eomprised in G together with its 
interior (BECKENBACH and RAD6 [2], p. 665). The suffieieney of the 
eondition is proved by the method used in 3.25. To prove the ne­
eessity, suppose that logu is subharmonie in G. Take any eirde 
C (xo, Yo; e) eomprised in G together with its interior. Let h be 
the harmonie function in C (xo, Yo; e) which eoineides with logu on 
C (xo' Yo; e)· Denote by g the eonjugate harmonie funetion, and put 
1 (z) = eh+ig, Z = x + i y. Aeeording to a theorem of CARLEMAN [1], 
we have then [A(I 1 12 ; Xo, Yo; e)]1/2 < L (I 1 I; Xo Yo; e). Sinee 1I1 = eh, we 

2* 
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can write this inequality in the form [A(e2h ; xo, Yo; e)]li2 <: L (eh; xo,Yo; e). 
As logu is subharmonic, it follows that . 

[A(u2; xo,Yo; e)]112 <: [A(e2h ; xo,Yo; e)]1/2 <: L(eh; xo,Yo; e) = L(u; xo' Yo; e)· 

3.27. The preceding proof depends upon analytic functions of a 
complex variable and therefore it does not apply in the case of three 
or more independent variables. It is not known at present whether 
an analogous theorem holds in the case of more than two variables. 
Clearly, the theorems of 3.25 and 3.26 are contributions to the 
problem of characterizing subharmonic properties in terms of condi­
tions of the form 

[A(u"'; xo' Yo; e)]l/'" s:: [L(uP; xo, Yo; e)]llß. 
While the analogous problem for convex functions of a single variable 
was completely discussed (RAno [3]), the general problem for two or 
more variables seems to present serious difficulties. 

3. 28. If u is the limit of a sequence U n of subharmonie functions, 
then u is also subharmonie if either U n ~ u uniformly (see 3.3) or if 
U n \i. u (see 3.6). MAZURKIEWICZ raised the problem of characterizing 
those functions which are limits of subharmonie functions in the sense 
of convergence in the mean. This problem was solved by SZPILRAJN [1], 
whose work we shall review presently. 

3.29. A sequence of functions In converges in the mean to a func- . 
tion I in a domain G if for every domain G', comprised in G together 
with its boundary, the function In is defined and summable in G' for 

large n and jrll - Inl ~ 0 for n ~ 00. 

G' 

3.30. According to SZPILRAJN, a function u is almost subharmonie 
in a domain G if it satisfies the following conditions. a) u is summable 
on every measurable set completely interior to G. b) With the possible 
exception of a set of measure zero, we have u(xo' Yo) <: A(u; xo' Yo; 1') 

for every point (xo' Yo) in G and for every l' such that the circle 
C (xo, Yo; 1') is comprised in G together with its interior. 

3. 31. If a sequence Un of subharmonic functions converges in the 
mean to a function u in a domain G, then there exists in G a sub­
harmonie function u* such that u* = u almost everywhere in G. Proof. 
Take two domains G', G" with boundaries B', B" such that G' + B' C G" 
and G" + B" C G. We have then an 1'0> 0 such that for every point 
(xo, Yo) in G' and for l' < 1'0 the circle C (xo, Yo; 1') is comprised in G" 
together with its interior. Consider in G' the functions A,(x; y; u) and 
A,(x,y; un) (see 2.19). For fixed 1'<1'0 and for'large n we have in G' 

IA,(x,y; u) -A,(x,y;un) I <r;:n;f flu(x+t Y+l1) -un(x+t Y+l1) Id~dl1 
~+'1'<r' 
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The last integral converges to zero for fixed rand for n ->- 00, sinee 
u,. converges in the mean to u. Henee, for fixed r < r 0' Ar (x , y; un) 
eonverges to Ar (x, y; u) uniformly in G'. But Ar (x, y; un) is sub­
harmonie in G' (see 2.19). Hence (see ).3) Ar(x,y; u) is also subhar­
monie in G'. Finally, we have Ar. (x, y; un) <:: Ar. (x, y; un) for r1 < r 2 

by 2.9 and henee also Ar. (x, y; u) <:: Ar. (x, y; u). Consider now the se­
quenee ut (x, y) = A1/dx, y; u). By what precedes, this sequenee has the 
following properties. If G' is any. domain completely interior to G, 
then for large k the functions u~, u~ + 1, •.• are defined and sub­
harmonie in G and u~ > Ut+l > ... in G'. Henee, by 3.6, either 
ut ->- -00 in G or ut eonverges in G to a subharmonic function u*. 
On the other hand, ut ->- u almost everywhere in G by a well-known 
theorem of LEBESGUE. It follows that limut = u* is subharmonie 
in G and u* = u almost everywhere in G. 

3. 32. If u is almost subharmonie in a domain G, then u is the 
limit of subharmonie functions in the sense of eonvergenee in the mean. 
Proof. Consider again a pair of subdomains G', G" as in 3.31. For 
small fixed r the function Ar (x, y; u) = A (u; x, y; r) is then eontinuous 
in G" + B" and we have u (x, y) ::S Ar(x, y; u) almost everywhere in 
G" + B", by the definition of an almost subharmonie function. As a 
eonsequenee, the theorem of TONELLI, referred to in 1. 4, permits us 
to change the order of integrations neeessary to show, starting with 
the inequality u (x, y) <:: Ar (x, y; u), that Ar (x, y; u) is subharmonic. 
Finally, as it is well known, Ar (x, y; u) eonverges in the mean to u (x, y) 
for r ->- ° (see for instance MORREY [1], p. 687). Henee, if we put 
un(x,y) = A1/n(x,y; u), then the function Un is subharmonie and con­
verges in the mean to u, and the theorem is proved. 

3.33. Combining 3.30,3.31, 3.32 we obtain the following theorems 
(SZPILRAJN [1]). A function u is almost subharmonie in a domain G 
if and only if there exists in G a subharmonic function u* such that 
u = u* almost everywhere in G. - A function u is almost subharmon­
ic in a domain G if and only if it is the limit, in the sense of con­
vergence in the mean, of some sequence of subharmonie functions. 

3. 34, Suppose that a function u satisfies in a domain G condition 
a) in 3.30 and that instead of condition b) in 3.30 it satisfies the 
following weaker condition b*): With the possible exception of a set 
of measure zero, there exists for every point (xo,Yo) in Ga e(xo,Yo»O 
such that u(xo,Yo) <::A(u; xo,Yo; r) for r<e(xo,Yo)' Then it does 
notfollow that u is almost subharmonic in G (SZPILRAJN [1J). Example: 

( ) jlOg ~+~ for x2 + y2 > ° . u x,y = x y 

° for x2 + y2 = ° . 
3.35. We have the following corollary to ).33. If u is almost 

subharmonic in a domain G, then there exists exactly one subharmonic 
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function U* sueh that u=u* almost everywhere in G (SZPILRAJN [1J). 
This follows immediately from 2.10. 

3.36. It follows immediately from the definition of an almost sub­
harmonie function (see 3.30) that a continuous almost subharmonie 
function is subharmonie (SZPILRAJN [1]). 

3.37. As the reviewer eould not find in the literature explieit 
applieations of almost subharmonie functions, he takes the liberty to 
eall attention to the following fact. Let Un denote an increasing se­
quenee of subharmonie functions in a domain G, sueh that there exists 
a finite eonstant M for whieh f fUn< M, n = 1,2, ... , the integral 
being taken over G. By 1. 4 the function u = limun is then summable 
in G and eondition b) in 3. 30 is satisfied by u for every point of G. 
That is, the limit 01 an increasing sequence 01 subharmonie lunctions is 
almost subharmonie as soon as it is summable. In partieular, there 
exists then a sub harmonie function whieh differs from u at most at 
the points of a set of measure zero. 

Various important problems lead to inereasing sequenees of sub­
harmonie funetions. We mention only the study of the sweeping-out 
process in Potential Theory (see for instanee EVANS [4J, part II) and 
the study of the eonvergenee properties of power series of several 
eomplex variables (see MONTEL [2J, pp. 56-60 and the remarks in 
RIESZ [4J, p.90 eoneerning HARTOGS [1J). It seems that the use of 
almost subharmonie functions might be of advantage in sueh eases. 
In a general way, the dass of almost subharmonie functions presents 
the advantage of being dosed under a eonsiderably larger number of 
operations than the dass of subharmonie funetions. 

Chapter IV. 

Examples of subharmonie functions. 

4. 1. If u (x, y) is a solution of a differential equation of the form 
Llu=P, where P is a function of x, y, u, u"', ... ete., then u is sub­
harmonie in every.domain G in whieh Pis >0 (see 3.2). For various 
inferenees from this remark see BRELOT ([1J, pp. 52-55). 

4. 2. If h is harmonie in a domain G, then - h is also harmonie 
+ ~ r-----1 

there, and by 3.4 the functions h = h, 0 and Ihl = h, -h are sub-
harmonie. For IX >1 the funetion I h IIX is also subharmonie by 3.23. 
More generally , if h1 , ... , hn are harmonie, then for IX >1 the function 
U= (lh11 1X + ... + Ihni"')!!'" is subharmonie, on aeeount of 3.23. If 
1 (z) = h1 + i h2 , Z = x + i y, is an analytie function of the eomplex 
variable z, then III = (h~ + ~)1!2 is subharmonie by the preeeding 
remark. 
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4.3. As a matter of fact, III is of dass PL (see 2.12). This fol­
lows immediately from the remark that log I I I is harmonie at points 
whe:t;"e I =l= 0 and that the limit of log I I I is equal to -00 at points where 
I = o. The far-reaching implications of the preceding facts were first 
emphasized by F. RIESZ [1,3,4,5], whose papers contain also a number 
of historieal references. Subsequent papers by various authors (prac­
tically all the papers quoted in this report) contain many important 
applications of subharmonie functions in the theory of analytie func­
tions of a complex variable. MONTEL [2] and PRIVALOFF [3, 4] give 
particularly detailed presentations. 

4.4. If I = h1 + i h2 is an analytic function of the complex vari­
able z = x + i y, then hv h2 are called conjugate harmonie functions. 
The CAUCHy-RIEMANN equations yield the relations h~.,+h~.,=h~"+~,,, 
ht .,h2x + h1"h2" = 0 for pairs of conjugate harmonie functions. As a 
generalization, three functions u (x , y), v (x , y), w (x, y) are said to 
form a triple 01 eoniugate harmonie lunetions (BECKENBACH and RAD6 [1]) 
if the following conditions are satisfied. 1) u, v, ware harmonie. 
2) E = G, F = 0, where E = u; + v; + w; , G = u: + v~ + w;, 
F = u.,u" + v.,v" + w.,w". According to a theorem of WEIERSTRASS, 
the surface represented by the equations X = u (x , y), Y = v (x, y) , 
Z = w (x, y) is then a minimal surface (X, Y, Z are CARTEsian co­
ordinates), and conversely every minimal surface can be represented 
in this form. As a generalization of 4. 3 we have the following theo­
rem (BECKEN BACH and RAD6 [1], p.653). If u, v, w form a tripie of 
conjugate harmonie functions, then (u2 + V2+W2)1!2 is of dass PL (see 
2. 12). While the converse is false, it is true that if u, v, ware con­
tinuous in a domain G and if [(u + a)2 + (v + b)2 + (w + e)2Y/2 is of 
class P L for every choiee of the constants a, b, e, then u, v, 'W form 
a tripie of eonjugate harmonie functions (BECKEN BACH and RAD6 [1], 
p.654). The first theorem follows by an elementary discussion of ·the 
explicit expression for LI log (u2 + v2 + W 2)1/2. To prove the seeond 
theorem, observe that since [(u + a)2 + (v + b)2 + (w + e)2Y/2 is of dass 
PL, the function 1= (u + a)2 + (v+ b)2 + (w + e)2 is subharmonie 
by 3. 24. Let C (xo, Yo; r,) be any cirde comprised in G together with 
its interior. We have then l(xo'Yo):::=: L(f; xo,Yo; r). After some eom­
putation, this inequality leads to 

o :> u (xo, YO)2 + V (xo, YO)2 + w (xo' YO)2 - L (u2 + v2 + w2; xo, Yo; r) 

- 2a[L (u; Xo' yo; r) - u(xo, Yo] - ... - 2e[L(w; xo, yo; r) - w(xo, Yo)]. 

Clearly, if a linear function of a, b, e has a eonstant sign, the coeffi­
cients of a, b, e must vanish. Henee u (xo, yo) = L (u; xo' Yo; r) ,and 
thus u is harmonie (by the so-called eonverse of GAUSS' theorem; see 
KELLOGG [1], p.224 or combine 1.1 and 2.3). Similarly v and ware 
harmonie. Now that the derivatives of u, v, ware available, the rela-



24 IV. Examples of subharmonie functions. [30 

tions E = G, F = 0 (cf. 4.4) can be proved by an elementary dis­
cussion of the inequality L1log1 > O. 

4. 5. Subharmonic functions are related to surlaces 01 negative Gauss­
ian curvature as folIows. Let a surface 5 be given, in terms of CAR­
TEsian coordinates X, Y, Z, by equations of the form X = u (x, y) , 
Y=v(x,y), Z=w(x,y). Put E=u;,+v;,+w;" G=u;+v;+~, 
F = Uz u y + Vz vI! + WIIJ wy • Then the GAussian curvature K can be 
expressed, as it is weIl known, in terms of E, F, G. Suppose that 
E = G, F = 0 (that is, the surface 5 is 'given in terms of isothermic 
parameters). If we put E = G = J., then the expression for K in 
terms of E, F, G re duces to K = - (1/2J.) L1logJ.. As J. > 0, it follows 
that K < 0 if and only if L1log J. > 0, that is if and only if J. is of 
dass PL (see 2.12). See BECKENBACH and RAD6 [2] for various 
geometrical consequences of this relationship between subharmonic 
functions and surfaces of negative curvature. 

Suppose now only that J. is subharmonic. Then it does not follow 
that the GAussian curvature of the surface is < o. If however J. is 
subharmonic for every representation of the surface in terms of iso­
thermic parameters, then the GAussian curvature of the surface is 
< 0 (BECKENBACH [1]). This follows immediately from 2.13. This 
theorem has various interesting geometrical implications (see BECKEN­
BACH [1]). 

4.6. We shall consider presently subharmonic functions arising in 
Potential Theory (RIESZ [4,5] and EVANS [4]). We shall use the 
general notion of a positive mass-distribution (RADON [1]). Let us first 
recall some properties of the dass (B) of point-sets which are measur­
able in the sense of BOREL (BOREL [1], HAUSDORFF [1], KURATOWSKI [1]). 
The dass (B) can be characterized as the smallest one of all dasses K 
with the following properties. a) Every dosed set belongs to K. 
b) If 51' 52' ... , 5n , ••• is a finite or infinite sequence of sets belong­
ing to K, then 51 + 52 + ... and 5152", also belong to K. It 
follows easily that if a set 5 belongs to (B), then the complement of 5 
(the set of points not in 5) also belongs to (B). It is then immediate 
that the dass (B) can be also characterized as the smallest one of all 
classes K* with the following properties. IX) K* contains every set 
defined by two relations of the form Xl < X < x2 ' Yl < Y < Y2' ß) If 
51,52 belong to K*, then 5152 also belongs to K*. y) If 52 and 51 C 52 
belong to K*, then 52 - 51 also belongs to K*. 15) If 51' 52' ... , 5n , ..• 

is a finite or infinite sequence of non-overlapping sets belonging to K*, 
then 51 + 52 + ... also belongs to K*. The equivalence of these two 
definitions of the dass (B) has the following consequence. Denote 
by (~) the dass of all sets which possess a certain property ~. If 
it can be shown that (jß) satisfies the conditions IX), ß), y), 15), then 
we can assert that every set of dass (B) possesses the property ~. 
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4.7. Positive mass-distributions. In the sequel the letters E, e (with 
subscripts if necessary) will always refer to sets of dass (B). 

Given a bounded set E, let there be assigned to every subset e 
of E (induding the empty set and also E itself) a finite real number 
ft (e) such that the following conditions are satisfied. 1) ft (e) 2: O. 
2) If el , e2 , ••• is a finite or infinite sequence of non-overlapping sub­
sets of E, then ft(el + e2 + ... ) = ft(el ) + ft(e2) + .... 3) ft(O) = 0, 
where ft (0) denotes the number assigned to the empty set. These 
eonditions being satisfied, ft (e) is ealled a positive mass-distribution 
on E. That is, a positive mass-distribution ft(e) is a non-negative (and 
henee monotonie) absolutely additive set-function in the sense of 
RADON [1]. The theory of these set-Iunctions has been developed to 
a high degree of efficieney· by RADON and it seems that they are 
generally aecepted tools in dealing with problems in Potential Theory. 
We shall list presently a few facts concerning positive mass-distribu­
tions which will be used in the sequel. 

4.8. Let E* be a set containing the set E on which ft (e) is defined. 
Define, for subsets e* of E*, ft* (e*) = ft(e* E) (a product of two or 
more sets denotes the set of their eommon points). Clearly, ft* (e*) is 
a positive mass-distribution on E*. If e* CE, then ft* (e*) = ft (e*) , 
and if e* E = 0 then ft* (e*) = O. Roughly speaking, ft* vanishes 
outside of E and ft* is equal to ft on E. Using this remark, we ean 
always assume that ft is defined on some set E of a eonvenient type 
(the interior of a large eirde, for instance). RADON [1] assumes that 
ft is defined on an interval given by relations of the form Xl < % < %2 , 

Yl ~ Y < Y2' While such assumptions simplify the presentation of 
the proofs, for the applieations it is more eonvenient to state the 
theorems for a general set E of dass (B). 

4.9. If el C e2 , then clearly ft (eI) < ft (e2) • 

4.10. If el C e2 C . " and e = el + e2 + .. " then clearly ft (erl) --->- ft (e) . 
4. 11. Given a subset e of E, and an 8 > 0, we have a closed subset 

e' of e such that ft (e) - ft (e') < 8 (RADON [1], pp. 1313-1314). That 
is, ft (e) is the least upper bound of ft (e') for all closed subsets e' of e. 
This fundamental property is proved on the basis of the remark at 
the end of 4. 6. 

4. 12. Given a positive mass-distribution ft (e) on E, it might be 
possible to extend the definition of ft (e) to a class K* of subsets of E 
in such a way that the properties 1),2),3) in 4.7 and also the pro­
perty expressed by the theorem of 4. 11 remain valid for all the sets 
of the class K*. RADON [1] shows that in a certain sense there exists 
a largest class K* satisfying these eonditions, and he .calls this dass 
K* the natural range of definition for ft (e). For instanee, if ft (e) is 
the LEBESGUE measure of e, then the natural range of definition 
consists of all sets measurable in the sense of LEBESGUE. The theorem 
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of 4.11 expresses the important fact that the natural range of defini­
tion always indudes all sets of dass (B). In other words, the dass 
(B) is large enough to possess the dosure properties listed in 4. 6 and 
is also small enough to make valid the theorem of 4. 11. As stated 
in 4. 7, we consider only sets 01 class (B) in connection with positive 
mass-distributions. 

4.13. Let f11 (e) and f12 (e) be given on an open set E. If f11 (e) and 
#2 (e) have the same value for every open subset of E, then f11 == #2 
on E. Observe that f11' f12 have then the same value for all closed 
subsets also, and apply 4. 11. 

4.14. Let us denote generally by sand b the set of the interior 
points and of the boundary points respectively of a square. Then we 
have the following corollary to 4. 13. If f11 (e) and f12 (e) are given 
on an open set E, and if f11 (s) = f12 (s) whenever s + b is comprised 
in E, then f11 == f12 on E. This may be seen as follows. Denote by 
5 (~) the set of those points of E which are located on the line x = ~. 
If ~l' ... , ~n are distinct, then we have f11 (5 (~1)) + ... + f11 (5 (';n)) 

<f1(E). It follows immediately that f11(S(,;)) = 0, except possibly 
for a denumerable set of ';-values. The same holds for f12 (5(';)), and 
we have a similar statement in terms of the y-coordinate. It follows 
that we have a point (xo' Yo) with the following property. Denote by 
Dn the subdivision of the plane by means of the lines x = xo + k/2n, 

y = Yo + jf2n, k, j = 0, ±1, ... Let s + b be any dosed square of Dn • 

Then f11 (E b) = f12 (E b) = O. On account of 4.9, 4.10 and 4.13 the 
theorem follows now immediately if we approximate the open subsets 
of E by squares taken from Dn . 

4.15. The Stieltjes-Radon integral (RADON [1J, p. 1322). Let f1 (e) 
be a positive mass-distribution given on E. Denote by Q a variable 
point of E with coordinates (.;, 'Y)). We shall write Q = (.;, 'Y)) in the 
sense that we shall use whichever of the notations Q and (~, 'Y)) will 
be more convenient. Let I (Q) = t (.;, 'Y)) be a function which is uni­
lormly continuous on E. Subdivide E into a finite number of non­
overlapping subsets el , ... , en . Denote by bk the diameter of ek (that 
is, the least upper bound of the distances of pairs of points in ek) and 
by b the largest one of bl , ... , bn . We shall say that el , ... , en form 
a subdivision D of E with norm b. Pick a point Qk = (~ko 'Y)k) in ek, 
k = 1, ... , n, and form the sum E = E!(Qk) f1(ek) , k = 1, ... , n. In 
exactly the same way as in the case of the RIEMANN integral, it 
follows that the sum E approaches a limit, depending only upon I 
and f1, if the norm of the subdivision approaches zero. This 

limit is the STIELTJES-RADON integral ff(Q) dfl(eQ)' The symbol 
E 

eQ is used to avoid misunderstandings in case t depends upon fur-
ther variables. 
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4.16. Note that the STIELTJES-RADON integral is defined, for the 
time being, only for functions which are unilormly contiuuous on E. 
We shall consider later one of the various possible generalizations. It 
seems unnecessary to state explicitly all the simple properties of the 
STIELTJES-RADON integral which will be used in the sequel. As an 
example, we mention the following property. Suppose that E1 is 
a subset of E, such that p, (E1) = O. Put E 2 = E - E1 • Then 

JI(Q) dp,(eQ) = JI(Q) dp,(eQ)' This becomes obvious if we observe 
E E, 
that we can subdivide E1 and E 2 separately and that p, (E1) = 0 im­
plies p, (e1) = 0 for every subset e1 of E1 • 

4.17. An important special case of positive mass-distributions is 
obtained as follows. Let w(Q) = w(;,fj) be a non-negative summ­
able function on E. For convenience, we shall use notations like 
f f w (;, fj) d; dfj = f f w (Q) daQ' where the symbol daQ is to remind 
us of the variable of integration Q = (;, fj), of the area-element d; dfj, 
and also of the fact that we are dealing with a LEBESGUE integral, 
in contradistinction with STIELTJES-RADON integrals. Consider now 
the set-function p, (e) = f f w (Q) daQ on E. Obviously p, (e) is a positive 

e 

mass-distribution on E. We have, for every function I(Q) which is 

unilormly continuous on E, the relation fl (Q) dp, (eQ) = ffl(Q) w(Q) daQ. 
E E 

To see this, take a subdivision e1 , ..• , en of E, and use the uniform 
continuity of I in comparing the sums EI (Qk) p, (ek) and 

Eff(Q) w(Q) daQ = ff(Q) w(Q) daQ. 
ek E 

4.18. Given the positive mass-distribution p, (e) on E, we have to 
define the integral (potential of the negative mass-distribution -p,(e») 

- flog p1 dp, (eQ) . 
E 

The symbol PQ denotes the distance of the points P = (x, y) and 
Q = (;, fj), where Q varies on E and P varies in the whole plane. 
The existence and the properties of this potential will be discussed 
presently (cf. RIESZ [5], part 11; note that RIESZ uses a somewhat 
different definition of positive mass-distributions). 

4. 19. Let us put 
. {-lOg (i/PQ) 

l(P,Q) = l(x,y; ;,fj) = -00 
for P =10 Q, 
for P = Q. 

For fixed Q, l(P, Q) is clearly a subharmonic function of P and con­
versely. For fixed Q and P =10 Q, 1 (P, Q) is a harmonie function of P 
and conversely. 
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4.20. Put, for a> 0, 

{ 
l(P, Q) 

l(a) (P, Q) = [(a) (x, y; g, r;) = 
-log (1ja) 

for PQ > a, 

for PQ < a. 

[34 

For fixed Q, l(a) (P, Q) is a subharmonie funetion of P by 3.4, and 
eonversely. Clearly, l(a) (P, Q) is a eontinuous function of P and Q, 
and its eontinuity is uniform if P and Q vary on bounded sets. Also 
l(a) (P, Q) '>4 1 (P, Q) for a'>4 ° . 

4.21. Put, for r > 0, 
2n 

lr(P,Q) =lr(x,y; g,r;) =_1 fl(x+reosq;, y+rsinq;; g, r;)dq;. 
2n 

o 

We find by direet elementary eomputation theformula l,(P, Q) =[(r) (P, Q) 
(see 4.20). 

4. 22. Put, for r > ° and a > ° , 
2n 

l~)(P, Q) = l~)(x, y; g, 'YJ) = -1-f1(") (x + reosq;, y + rsinq;; g, r;) dq;. 
2n 

o 

By 4.20 and 4.21 we have then l~)(P, Q) '>4 lr (P, Q) for a'>40. Sinee 
l~) (P, Q) and 1r (P, Q) are eontinuous, it follows by a well-known theo­
rem of DINI (see for instanee P6LYA-SZEGÖ [1], p.225, problem 126) 
that 1~) (P, Q) -+lr(P, Q) for a-+O uniformly if P and Q vary on bounded 
sets (sinee such sets are eomprised in bounded closed sets). By 4.19 
to 4.21 we have for r + a < PQ the formula l~)(P, Q) = l(P, Q). 

4.23. We define now (cf. RIESZ [5J, part II and DANIELL [1]) 

u(P) = f1(P, Q)df-l(eQ) = - f1og;Qdf-l(eQ) = E~u(a)(p), 
E E 

where, for a > 0, 
u(a) (P) = f l(a) (P, Q) d f-l (eQ) . 

E 

Sinee l(a) (P, Q) is uniformly eontinuous if P and Q vary on bounded 
sets, u(a) (P) is a well-defined and eontinuous function of P in the 
whole plane. From f-l > ° it follows that u(a) (P) decreases if a > 0 
deereases, and thus u(P) = limu(a)(p) exists for every P, the value of 
u(P) being possibly equal to -CXl. We have -CXl < u(P) < +CXl, 

u(a) (P) '>4 u (P) for a'>4 0, and we ean assert also that u (P) is upper 
semi-eontinuous, sinee we obtained u (P) as the limit of a deereasing 
sequenee of eontinuous funetions. We shall see now that u(P) is sub­
harmonie. 

4.24. Put, for a > 0 and r> 0, 
2,. 

. 1 " 
ur;) (P) = u~~) (x, y) = 2 n j u(a) (x + r eosq;, y + r sinq;) dq; . 

o 
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Since l(a) (P, Q) is continuous (see 4. 20, 4. 23), we obtain by an ob­
viously permissible change in the order of integrations the formula 

U~l (P) = ! lt:l (P, Q) d f-t (eQ)' On account of 4. 22, Wl (P, Q) ~ lr (P, Q) 
E 

uniformly for 11-+ O. Hence ut:l (P) -+ ! lr (P, Q) d f-t (eQ) for 11-+ O. 
E 

4. 25. Since l(a) (P, Q) is a subharmonic function of P (see 4. 20) we 
have, by 2.3, Wl (P, Q) ~ l(a) (P, Q). Hence (see 4. 24), ut:l (P) ::> u(a) (P) . 
Thus u(a)(p) is subharmonic by 2.3. Suppose now that the point P 
has a positive distance 15 from the set E. For 11 < 15/2, r < 15/2 we 
have then by 4. 22 and 4. 24 

U';l (P) = f lt:l (P, Q) df-t (eQ) = f l (P, Q) df-t(eQ) = fl(a)(p, Q) df-t (eQ)=u(a) (P). 
E E E 

Consider then an open set 0 such that PQ > 15 > 0 for P in 0 and Q 
in E. By what precedes, we have for P in 0, r< 15/2, 11 < 15/2 the 

relations ut:l(P) = u(a)(p) and u(a)(p) = fl(P, Q) df-t(eQ)' The first 
E 

relation shows that u(a) (P) is harmonie in 0 (eonverse of GAuSS' 

theorem, see KELLOGG [1], p.224). The seeond relation shows that 
u(P)=limu(a)(P)=u(a)(P) in 0 for 11<15/2. Thus u(P) is also 
harmonie in O. 

4. 26. As u (P) is the limit of a decreasing sequence of subharmonie 
functions u~.'J.)(P), it follows by 3.6 that either u == -00 in the whole 
plane or u is subharmonie in the whole plane. The first ease is ex­
cluded by the remark that u is harmonie outside of a suffieiently large 
circle (see 4.25). Consequently the potential 

u(P) = - !log;gdf-t(eQ) 
E 

is subharmonie in the whole plane (RIESZ [5J, part II). In partieular 
(see 1. 10), u> -00 almost everywhere. 

4.27. Let EI be an open subset of E, such that f-t (EI) = O. Put 
Ez = E - EI' We have then (see 4. 16) 

u«J)(P) = !l(a)(p,Q)df-t(eQ) = fz(a)(p,Q) df-t(eQ) , 
E E, 

and consequently (see 4.23) 

u(P) = fl(P, Q) df-t(eQ)' 
E, 

Henee, on aceount of the remark at the end of 4. 25, u (P) is harmonie 
in EI' Summing up: the potential u(P) is harmonie on every open set 
which contains no mass. 
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4.28. As u(a) \0. u for a \0. 0, we have (see 1. 4, 4.24, 4.21, 4.23) 

L(u;x,y;r) =1imL(u(lJ);x,y;r) =limu~)(P) =flr(P,Q)dfl(eQ) 
a->-O a-->-O 

E 

= r l(r) (P, Q) d fl (eQ) = u(r) (x, y) . 
E 

[36 

These formulas throw a new light on the definition of the potential 
u (P) given in 4.23. 

4.29. Take a point Po = (xo, Yo) and choose r so large that the 
set E is completely interior to the cirde C (xo, Yo; r). For Q in E we 
have then PoQ < rand hence lr(Po, Q) = logr (see 4.21). It follows 
then by 4.28 that fl(E) logr = L(u; xo,Yo; r). 

4.30. On C (xo, Yo; r) we can use the derivatives of u, since u is 
harmonie there by 4.27. Let us write Cr for C(xo,Yo; r). We have 
then (on account of 4.29) the formula 

1 JOU d 2n on, ds = r dyL(u; xo,Yo; r) = fl(E). 
Cr 

4.31. Consider now any smooth JORDAN curve r, such that the 
set E is completely interior to r. We can choose then the cirde 
C (xo, Yo; r) of 4. 29 in such a way that r is endosed by C (xo, Yo; r) . 
As u is harmonie between and on these two curves, the line integral 
of 4. 30 has the same value for both curves. Hence, the total mass fl (E) 
can be expressed in terms of the potential u by the familiar formula 

1 rau fl (E) = 2 n. on, ds , 
T 

where r is any smooth JORDAN curve such that E is completely 
interior to r (RIESZ [5], part II). 

4.32. The problem of expressing the mass fl (e), for every subset 
of dass (B), in terms of the potential u will be considered in Chapter V. 

4.33. Let w(Q) = w (~, rJ) be a non-negative summable function 
on a bounded set E of dass (B). Consider the function (see 4.17 for 
notations) 

v(P) = -jjlog;Qw(Q)daQ' 
E 

This integral can be interpreted in various ways. One usual inter­
pretation is expressed by the formula (cf. 4.20) 

v(P) = limffl<lJl(P, Q) w(Q) daQ. 
,,->-0 

E 

By 4.17 and 4.23 it follows that 

v(P) = -!log;Qdfl(eQ) , 
E 
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where the positive mass-distribution f1 (e) is defined by f1 (e) = f w (T) daT. 
e 

That is, the potentials of mass-distributions with a summable nega­
tive density -w (~, 1J), as considered in Potential Theory, are included 
among the potentials of general negative mass-distributions - f1 (e) . 

4.34. Using the fact that potentials of negative mass-distributions 
are subharmonie, it is possible to construct sub harmonie functions with 
various types of diseontinuities (RIESZ [5J, part I, p.336; BRELOT [1], 
pp. 42-·-47; EVANS [5J, p.421). These examples show the great variety 
of new possibilities as compared with the one-dimensional ease of eon­
vex functions of a single variable. 

Chapter V. 

Harmonie majorants of subharmonie 
funetions. 

·5.1. Throughout this Chapter, u will denote a function whieh is 
subharmonie in a domain G. Consider a region G' + B' eomprised in 
G and a function H whieh is continuous in G' + B' and harmonie 
in G'. If H >- u on B', then H >- u in G' also, by the definition of a 
subharmonie function. Naturally, one will try to use a harmonie ma­
jorant H whieh is as small as possible. Suppose that G' + B' is a 
DIRICHLET region and suppose also that u is continuous. The solution 
Hof the DIRICHLET problem for G' with the boundary condition H = u 
on B' is then obviously the best harmonie majorant in G'. If how­
ever u 1S not eontinuous, then it is not clear that there exists a.har­
monie majorant in G' which should be considered the best. This situ­
ation lead to investigations which will be reviewed presently. 

5.2. Consider a DIRICHLET region G' + B' comprised in G. By 1. 3 
we have on B' a sequenee of continuous functions Cf!k such that Cf!k ~ u 
on B'. Denote by Hk the solution of the DIRICHLET problem for G' 
with the boundary condition Hk = Cf!k on B'. Then we have (see 1. 3) 
Hk >- Hk+! arid Hk >- u on G' + B', and therefore H" converges in G' 
to a harmonie function h >- u. 

5.3. The function h of 5.2 has the following property. Let H be 
continuous and >- u in G' + B' and harmonie in G'. Then H >- h in G' 
(RIESZ [5], part I, P.334). To see this, give any 8> O. As Cf!k '>l u 
< H + 8 and as Cf!k and H are eontinuous on the closed set B', it 
follows by the HEINE-BoREL theorem that we have a ~ = ~ (8) such 
that Cf!k< H + 8 on B' for k > ~. But Hk = Cf!k on B' and Hk is 
harmonie in G'. Henee Hk < H + 8 for k > ~. As 8 > 0 is arbitrary 
and Hk '>l h in G', it follows that h < H in G'. 
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5.4. The function h of 5.2 depends only upon the values of U 

on B' (RIESZ [5J, part I, pp. 333-334). Indeed, take a second sequence 
f{J~ and denote by Hk and h,' the corresponding harmonie functions. 
By 5.3 we have h < Hk and h' < Hk in G' and the theorem follows 
for k -+ 00. 

Consider now two functions uI ' u2 which are subharmonie in G and 
equal to each other on B'. As we can use then the same sequence f{Jk 

for both funetions, there eorresponds the same function h to U I and 
to u2 • 

The harmonie function h defined in 5. 2 will be ealled the best har­
monie majorant (B. H. M.) of U in G' (RIESZ [5J, part I, p. 334). By 
what precedes, U depends solely upon the values of U on the bound­
ary B' of G'. The term best harmonie majorant suggests various 
questions whieh will be eonsidered later in this chapter. It should be 
noted that a B. H. M. is only defined for DIRICHLET subregions G' + B'. 
If U is continuous on B', then we can use f{Jk = U as the sequenee 
leading to h, and it follows that in this special case h is simply the 
solution of the DIRICHLET problem for G' with the boundaryeondition 
h = u on B'. Another important special ease arises if G' + B' is a 
closed circular disc, while u is a general subharmonie function. The 
funetion Hk of 5.2 is then given in G' by the formula of PorssON. As 
the POISSON kernel is positive and f{Jk \0. u on B', we infer from 1. 4 
that h is also given by the formula of POISSON with u itself as 
the given boundary function. Clearly, a similar remark holds for 
DIRICHLET subregions with smooth boundaries. 

5.5. Consider in G three JORDAN curves Cl' C2 , C3 , eaeh of which 
is enclosed by the next one to the right, such that the three doubly 
connected domains D12 , D13 , D23 bounded by these curves are also 
comprised in G. Denote by hI2,kI3,h23 the B. H. M. of u in Dl2 , 

D13 , D23 respectively. Then hI3 - hl2 is non-negative in D12 and 
vanishes continuouslyon Cl' and hI3 - h23 is non-negative in D23 and 
vanishes continuously on Ca (RIESZ [5J, part I, p. 341). Proof. Con­
sider h13 - h12 , for instance. Take a sequence of continuous func­
tions f{Jt on Ci such that f{J% \0. u on Ci, i = 1,2,3. Denote by HP the 
solution of the DIRICHLET problem for DIa with the boundary con­
dition HP = f{J1 on Cl' HP = f{J% on C3 , and let H~2 have the same 
meaningwith respect to Dl2 • Finally, denote by C4 an auxiliary JORDAN 
curve in D12 whieh encloses Cl' Then the sequence Hk = H1 3 - H~2 
converges uniformlyon the boundary of the domain Du bounded by 
Cl and C4 and hence (see KELLOGG [1J, p. 248) this sequenee eonverges 
unijormly in Dl4 + Cl + C4 to a limit function h which is continuous 
in Du + Cl + C4 , equal to zero on Cl' and equal to h13 - h12 in D14 • 

This proves that h13 - h12 vanishes continuously on Cl' By 5.3 we 
have H~3"> h12 in Dl2 , and for k -+ 00 it follows that h13 "> hl2 in D12 • 
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If the interior of C2 is eomprised in G, and if we denote be h2 

the B. H. M. of u in the interior of C2 , then the same reasoning shows 
that h2 - h12 is non-negative in D12 and vanishes eontinuously on C2 • 

5.6. Let G' be a bounded domain with boundary B'. Using sub­
divisions of the plane into eongruent squares in a familiar fashion 
(KELLOGG [1J, p. 317), we obtain a sequenee of regions G~ + B~ whieh 
approximate G' in the following sense. a) G~ + B~ C G'. b) G~ + B~ 
C G~+l' e) For every closed set S in G' there exists an no = no (5) 
such that 5 is in G~ for n > no' d) B~ eonsists of a finite number 
of JORDAN eurves as smooth as desired (in partieular, G~ + B~ is a 
DIRICHLET region). The following statements are easy eonsequenees 
of the preeeding properties. e) Given 8> 0, denote by SE the set of 
those points in G' whose distanee from B' is less than 8. Then for 
every 8 > 0 there exists an m = m (8) such that B~ is eomprised in 
S. for n > m. f) The area of G~ eonverges to the area of G, and 
consequently the measure üf G' - G~ eonverges to zero. 

5.7. Given a subharmonie function u in a domain G, eonsider a 
domain G' eomprised in G. Suppose that there exists a function Ho 
whieh is harmonie and > u in G' (this assumption is c1early satisfied 
if the boundary of G' is also eomprised in G). Then there exists in 
G' a harmonie funetion h* such that 1) u <: h* in G' and 2) every 
function H whieh is harmonie and > u in G' is also > h* (RIESZ [5J, 
part II, p. 358). Proof. Approximate G' by a sequenee G~ + B~ as 
deseribed in 5. 6. Denote by hn the B. H. M. of u in G~. By 5. 3 we 
have u <: hn <: hn+! <: Ho in G~. It follows then from the theorem 
of HARNACK that the sequenee hn eonverges in G' to a function h* 
whieh is harmonie in G' and whieh satisfies there the inequalities 
u <: h* :"S: Ho. By 5.3 we have also hn <: H for every function H 
whieh is harmonie and > u in G' and for n --+ 00 it follows that 
h* <: H in G'. 

5.8. The harmonie function h* of 5.7 is obviously unique. It may 
be ealled the least harmonie majorant (L. H. M.) of u in G' (RIESZ [5], 
part II, p. 357). If G' + B' is a DIRICHLET region eomprised in G, 
then the B. H. M. hand the L. H. M. h* of u in G' both exist. Clear­
ly h* <: h. As h depends solely upon the values of u on B' and h* 
depends solely upon the values of u in G', it is not evident that h 
and h* should be identieal. The identity of hand h* was established 
for special types of subregions G' + B' by F. RIESZ ([5J, part I, p. 334) 
and by BRELOT ([1], p. 18). We shall see later in this Chapter that h 
and h* are always identieal. 

5.9. The majorants hand h* depend upon u and upon G'. Some 
aspects of this dependenee were investigated by MALCHAIR [2]. In the 
way of illustration we quote one of his results. Consider in a domain 
G a uniformly eonvergent sequenee of subharmonie funetions un • 
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Then the limit function u is also subharmonic by 3.3. Denote by 
G~ + B~ a sequenee of regions which approximate G in the sense of 
5.6, and by hn the B. H. M. of Un in G~. Then hn converges to the 
L. H. M. of u in G provided that this L. H. M. exists. The proof is 
similar to that in 5.7. 

5.10. A lemma on harmonie f~tnctions (RIESZ [5], part I, p. 341). 
Consider two JORDAN curves Cl' C2 such that Cl is enelosed by C2 , 

and denote by D the doubly connected domain bounded by these· 
curves. Let h be a function which is continuous on D + Cl + C2 and 
harmonie and non-negative in D. Take a smooth JORDAN curve r in 

D which eneloses Cl. If h=o on Cl' then!(ohjone)ds::> 0, and if 
r 

h = 0 on C2 , then !(oh/one) ds <: o. Proof. Special case. Suppose 
r 

that h = 0 on Cl' for instance, and suppose that Cl is sufficiently 
smooth. Then the first and second derivatives of h remain continuous 
on Cl' and the line integral has the same value for rand for Cl 
(KELLOGG [1J, p. 212). The integral taken on Cl is however obviously 
20. If h vanishes on C2 , and if C2 is sufficiently smooth, then the 
theorem is equally obvious. General case. Suppose that h = 0 on Cl' 
for instance. Take two smooth JORDAN curves C3 , C4 such that each 
of the curves C3 , Cl' r, C4 , C2 is enelosed by the next one to the right 
(C 3 being elose to Cl and C4 elose to C2). Denote by H34 the solution 
of the DIRICHLET problem for the domain bounded by C3 and C4 

with the boundary eondition H34 = 0 on C3 , H34 = h on C4 • Apply 
the special case of the theorem to H 34 - h in the domain between Cl 
and C4 , then to H34 in the domain between C3 and C4 , and eombine 
the resulting inequalities. The ease when h = 0 on C2 is discussed in 
a similar manner. 

5.11. F. RIESZ ([5J, part I) introdueed the following quantities in 
the study of subharmonic functions. Let u be subharmonie in a 
domain G. Take in Ga pair of JORDAN eurves Cl' C2 such that Cl 
is enelosed by C2 and the domain D l2 between Cl and C2 is com­
prised in G. Denote by hl2 the B. H. M. of u in D l2 and put 

F (Cl' C2 ; u) = _1_ ( 0:ch12 ds, 
2n., une 

r 
where r is a smooth JORDAN curve in D l2 whieh eneloses Cl' and ne 

refers to the outward normal of r. The quantity F(CI , C2 ; u) is 
elearly independent of r (see KELLOGG [1J, p. 212). If ul ' u2 are both 
subharmonic in G, then elearly 

F(CI , C2 ; ul ) + F(CI , C2 ; u2) = F(CI , C2 ; ul + u2)· 

5.12. If the interior of C2 is comprised in G, then F(C I , C2 ; u) ::> 0 
(RIESZ [5J, part I, p. 342). Proof. Denote by D}2 the domain be-
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tween Cl and C2 and by D 2 the interior of C2 • Let h12 and h2 be the 
B. H. M. of u in Du and D 2 respectively. Take a smooth JORDAN 

curve r in Du which encloses Cl' Then 

-1-f oh2 ds = 0 
237: on, ' 

r 

and hence, by 5.5 and 5.10, 

F(C C· ) = - _1_fO(h2 -hn ) d > 0 
l' 2' U 231: on, S = • 

r 

5.13. Take in G three JORDAN curves Cl' C2 , Ca such that Cl is 
enclosed by C2 , C2 is enclosed by Cs , and the domains Du, D l3 , D 23 

bounded by these curves are comprised in G. Then F(Cv C2 ; u) 
< F(Cl , Ca; u) < F(C2 , Cs; u) (RIESZ [5], part I, p.340). Proof. Take 
a smooth JORDAN curve r in Du which encloses Cl and denote by 
k12 , filS' k23 the B. H. M. of u in Du, DIa, D 23 respectively. Then 

F(C C ) F(C C ) 1 J' o(h13 - h12) d l' a; u - l' 2; u = 231: on, S, 

r 

and this integral is >0 by 5.5 and 5.10. The inequality F(Cl , C3 ; u) 
< F(C2 , Ca; u) is proved in a similar way. 

5.14. Consider the particular case when Cl and C2 are concentric 
circles with centre (xo, Yo) and radii rl and r2 > rl • Denote by ~2 the 
B. H. M. of u in the domain Du between Cl and C2 and by Cr the 
concentric circle with radius r, rl <r<r2 • Then (see 1. 5 for notations) 

d -
F(Cl , C2 ; u) = r drL(h12; xo,Yo; r). 

On the other hand, the reasoning used in 1. 12 and 1. 13 shows that 
L (kl2 ; xo' Yo; r) = a logr + b, where a logr + b is the linear function 
of logr which is equal to L(u; xo' Yo; rl ) for r = rl and to L(u; xo, Yo; r2) 

for r = r 2' Combining these relations, we obtain the formula (RIESZ [5], 
part I, p. 340) 

F(C C' u) = L(u; %0'''0; r2) - L(u; %0'''0; r1) 
l' 2' logr2 - logr1 

5. 15. The theorems of 2. 4 and 2. 5 appear now, on account of 
5.14, as special cases of the theorems of 5.12 and 5.13. 

5.16. Given a potential (cf. 4.23) 

u(P) = - flog;Qd#(eQ) , 
G 

where G is a bounded domain, there arises the problem to express the 
positive mass-distribution #(e) in terms of u. If the distribution #(e) 
is smooth, and if G' + B' is a region in G with smooth boundary B', 

3* 
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then the problem is solved by the classical formula (KELLOGG [1], 
pp. 155-156) 

fdG') = _1 ffLlu(x,y) dxdy = _1 f~U ds, 
2n 2n u~ 

G' B' 
where ne refers to the exterior normal with respect to G'. For a 
general fl(e) the problem was solved by G. C. EVANS in terms of a 
eertain function of eurves (EVANS [1J, p.271 and p.285). We shall 
diseuss tbis problem presently in terms of the quantities F(CI , C2 ; u) 
introduced by F. RIEsz. 

5.17. The potential u(P) of 5.16 is subharmonie in the whole plane 
(see 4.26) and therefore the preeeding theorems apply to u (P). Take 
two JORDAN eurves Cl' C2 , sueh that Cl is enclosed by C2 , and G is 
eompletely interior to Cl' By 4. 27 the potential u is harmonie on 
and between Cl and C2 and henee u is its own best harmonie majorant 
in the domain between Cl and C2• By 4.31 and 5.11 we obtain there­
fore for the total mass fl(G) the formula fl(G) = F(C I , C2 ; u). Con­
sider next two JORDAN eurves Cl' C2 such that Cl is enc10sed by C2 

and both eurves are eomprised· in a simply eonnected subdomain G' 
of G with fl(G') = O. Then, by 4.27, u is harmonie in G' and again u 
is its own harmonie majorant in the domain between Cl and C2 • If r 
is a smooth JORDAN eurve whieh encloses Cl and is enc10sed by C2 , 

then it follows from the preeeding remark that 

1 fOU 
F(Cv C2 ; u) = 2n on. ds = 0, 

r 
sinee u is harmonie in and on r (see KELLOGG [1], p.212). 

5.18. Take now five JORDAN eurves Cl' ... , Cs sueh that eaeh one 
is enclosed by the next one to the right. Denote by Di the interior 
of Ci, by Dij the domain between Ci and Cj, and by h;" hij the B. H. M. 
of u in D i , Dij respectively. We have then F(C I , C2 ; u) :S: fl(GDa) 
<: F(C4 , Cs; u) (RIESZ [5J, part Ir, pp. 331-335). 

5. 19. To prove the preeeding theorem, introduee on G the distri­
butions fl' (e) = fl (e G Da), fl" (e) = fl (e(G - GDa)) , and the eorrespond­
ing potentials (cf. 4.16) 

u'(P) = -flog ;Q dfl'(eQ} = -flog ;Q dfl(eQ} ' 
G GD, 

u"(P) = -flog ;Q dfl"(eQ) = -flog ;Q dfl(eQ). 
G G-GD, 

Then fl'(e) + fl"(e) = fl (e) and consequently u'(P) + u"(P) = u (P) . 
Henee (see 5.11) F(C I , C2 ; u') + F(C I , C2 ; u") = F(C I , C2 ; u). We 
have, by 5.17, F (Cl' C2 ; u") = 0 and F (C 4 , Cs; u') =fl'(G Da) =fl (G Da)' 
Repeated applieation of 5.13 yields F(C I , C2 ; u') <: F(C4 , Cs; u'). The 
inequality F (Cl' C2 ; u) :::; fl (G Da) follows by eombining these relations. 
The inequality fl(GDa) <: F(C4 , Cä ; u) is obtained in a similar fashion. 
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5. 20. Consider now a simply eonneeted domain G' comprised in G. 
Take a sequence of pairs of JORDAN curves C~, C~ in G' such that 
1) C~ is enclosed by C~ and 2) every closed set in G' is comprised in 
the interior of C~ for sufficiently large n. Then F(C~,C~;u)-#(G') 
(RIESZ [5], part II, p.336). This follows immediately from 5.18, 5.13 
and 4.10. 

5.21. By 5.20, #(G') is determined in terms of u whenever G' is 
a simply connected subdomain of G. A similar reasoning yields the 
determination of # (e) for multiply connected subdomains (RIESZ [5J, 
part II, p.336). 

5.22. From 5.20 and 4.14 we infer the following theorem. If 
#1 (e), #2 (e) are positive mass-distributions on a bounded domain G, 
and if the corresponding potentials 

u1 (P) = - flog ;Q d #1 (eQ) , u2 (P) = - flog ;Q d #2 (eQ) 
G G 

are equal to each other in G, then #1 (e) == #2 (e) (remember that we 
consider only subsets e of class (B)). For the sake of accuracy it 
should be observed that F. RIESZ ([5J, part II) considers positive mass­
distributions defined in a somewhat different manner. In particular, 
his # (e) is defined only for open sets e. The remark that the results 
of F. RIESZ include the preceding uniqueness theorem is due to EVANS 
([4], part II, p.203). 

5.23. A lemma on sequenees 01 harmonie lunetions (KELLOGG [1J, 
Chapter XI). Let G' + B' be a DIRICHLET region, and G~ + B~ a se­
quence approximating G' in the sense of 5.6. Denote by F a function 
which is continuous on G' +B', by h the solution of the DIRICHLET 
problem for G' + B' with the boundary condition h = F on B', and 
by hn the solution of the DIRICHLET problem for G~ with the bound­
ary condition hn = F on B~. Then hn approximates h in the follow­
ing sense. Given 8>0, we have an no = no (8) such that Ih-hnl<e 
in G~ + B~ for n > no. This follows by simple e-arguments from the 
maximum-minimum principle for harmonie functions. 

5.24. Remarks on the lormula 01 GREEN. Let g be continuous to­
gether with its derivatives of the first and second order in a domain G. 
Consider a region G' + B' comprised in G, such that B' consists of a 
finite number of non-intersecting smooth JORDAN curves. Take a point 
(xo, yo) in G', and take r small enough so that the closed circular disc 
with centre (xo, yo) and radius r is comprised in G'. Put (see 4.19 to 
4. 21 for notations) 

l(x,y) = l(x,y; xo,yo) , lr(x,y) = lr(x,y; xo,yo) , 
2,. 

g(r)(xo,Yo) = 2~fg(xo+rcostp, yo+rsintp)dtp. 
o 
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Denote by H the solution of the DIRICHLET problem for G' with the 
boundary condition H = Z on B', and by h the solution of the 
DIRICHLET problem for G' with the boundary condition h = g on B'. 
The functions H, Z, Zr depend also upon (xo, Yo), but this point will 
be kept fixed and therefore it is unnecessary to use notations like 
H (x, y; xo, Yo)' The function h is independent of (xo, Yo), and H, h, l 
are all independent of r. As g and B' are smooth, it is easy to justify 
the application of GREEN'S identity (KELLOGG [1J, p.215) in deriving 
the formula 

g(r) (xo,Yo) = - 2~ f f [lr(x, y) - H(x. y)J Llg(x, y) dx dy + h(xo, Yo) . 
G' 

5.25. For r -+ 0 we obtain the classical formula 

g(xo' Yo) = - 2~ jJ@(x,y; xo' Yo) Llg{x, y) dxdy + h(xo, Yo) , 
G' 

where @ = l - H is GREEN'S function for G' with pole at (xo' Yo)' 
Conversely, an integration leads back to the formula of 5.24 which 
is more convenient in some applications. 

5.26. Drop now the assumption that the boundary B' of G' is 
smooth and suppose only that G' + B' is a DIRICHLET region. Other­
wise, let all assumptions and notations stand as in 5.24. Then the 
lormula 01 5.24 still holds. This is easily proved, on the basis of 5.23, 
by applying the formula to a sequence of regions which approximate G' 
in the sense of 5. 6. 

5. 27. If the function g of 5. 26 is subharmonic in G, then the 
function h is the B. H, M. of g in G' (observe that g is continuous by 
assumption and use 5.4). 

5.28. We proceed to discuss the question raised in 5.8. We start 
with the following theorem. Let u be subharmonic in a domain G. 
Denote by G' + B' a DIRICHLET region comprised in G, and by h the 
B. H. M. of u in G'. Suppose that u is harmonie in G'. Then h = u 
in G' (RADO [4J). 

5. 29. To prove this theorem, consider the approximating functions 
U~I defined in 2.21. If G" + B" is a region such that G' + B' C G", 
G" + B" C G, then for large k the function U~I is defined in G" and is 
continuous there together with its derivatives of the first and second 
order. Also, U~I is subharmonic, and hence LI U~I > O. By 2. 24 we 
have 

o ~ 11 Llufl(X, y) dxdy < N 
G' 

where N is a finite constant. If 5 is any closed set in G', then we 
have u~) = u and LI u~~) = 0 on 5 for large k (see 2.23). Take now 
any point (xo, Yo) in G' and a small r. For large k, the function utl 
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is then harmonie on the c10sed cireular dise with eentre (xo, Yo) and 
radius r (see 2.23) and henee we have 

2'" 

_1_!u~1 (xo + r eos cp, Yo + r sincp) d cp = Ui31 (xo, Yo) = U (xo, Yo) . 
2", 

o 

5.30. Using the preeeding facts, we obtain from 5.26 the formula 

-U~I (xo, Yo) = - 21",! ![lr(X, y) - H(x, y)] LI U~I (x, y) dx dy + h~1 (xo, Yo), 
G' 

where hf) is the solution of the DIRICHLET problem for G' with the 
boundary eondition h~) = U~I on B'. 

5.31. As U~I is eontinuous and U~I '>. U on B' (see 2.21), we have 
h~~1 '>. h for k ~ 00, where h is the B. H. M. of U in G' (see 5.4). 

5. 32. Give now an B > 0·. Observe that lr - H is eontinuous on 
G' + B' and lr - H = l- H = 0 on B'. Henee we have a t5 > 0 such 
that Ilr - H I < B in G' - So, where So denotes the (c1osed) set of all 
those points in G' whose distanee from B' is ::> t5. We write now 

jf[lr(x, y) - H(x, y)] LI u~~) (x, y) dx dy =11+ 11 = 1~1 + 1~1. 
lf ~ lf-~ 

By 5.29 we have then 1111 = 0 and I 1~1 I< B N for large k. As B is 
arbitrary, it follows that the integral in the formula of 5.30 eonverges 
to zero. The term hZ1)(xo'yo) in that formula eonverges to h(xo,yo) 
(see 5.31). Thus the theorem of 5.28 follows from the formula of 
5.30 for k ~ 00. 

5. 33. Denote by G' + B' a region eomprised in the domain G in 
whieh u is subharmonie. Consider a function h' whieh is harmonie in 
G' and define in G a function u' as follows: u' = u in G - G' and 
-u' = h in G'. If u' is subharmonie in G, then let us say that h' is 
admissible for u in G'. We have then the theorem: if G' + B' is a 
DIRICHLET region eomprised in G, then there exists in G' exactly one 
harmonie function whieh is admissible for u in G' (RADO [4J). The fact 
that there exists at most one admissible harmonie function follows 
immediately from 5.28 and 5.4. The fact that there exists at least 
one follows from the next theorem. 

5. 34. If G' + B' is a DIRICHLET region eomprised in G, then the 
best harmonie majorant h of u in G' (see 5.4) is admissible for u 
in G' (EVANS [4J, part I, p. 2)7). This follows immediately from the 
definition of the best harmonie majorant. 

5.35. If G' + B' is a DIRICHLET region eomprised in G and if h 
and h* denote the B. H. M. and the L. H. M. of u in G', then Ti == h* 
(RADO [4J). On aeeount of 5.33 and 5.34 this will be proved if we 
show that h* is admissible for u in G', and this fact follows imme­
diately from 5.34 and from the relation u -::s: h* <: h. 
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Chapter VI. 

Representation of subharmonie functions 
in terms of potentials. 

6. 1. Every sufficiently smooth function v can be represented as 
a potential plus a harmonie function (KELLOGG [1J, p. 219). We shall 
formulate this fact in a form suitable for our purposes. Let v be 
continuous in a domain G together with its derivatives of the first 
and second order. Take a region G' + B' in G, such that B' consists 
of a finite number of non-intersecting smooth JORDAN curves. From 
GREENS identity we obtain the formula 

L(v; P; r) = 2131:f f1r(P, Q) J v (Q) daQ + h(P), P in G', r small, 
G' 

where 
h(P) = ~f(U(Q) 8t(P, Q) -l(P, Q) 8u(Q)) ds 

231: 8~ 8~ 
B' 

is harmonie in G' (see 1. 5, 4.19, 4.21, 4.17 for notations). 
6. 2. The harmonie function h of 6. 1 depends only upon the values 

of v on B' and in the vicinity of B' (see the explicit formula in 6.1). 
In particular, h is independent of r. For r ~ 0 we obtain (cf. 4.33) 

v(P) = fl(P, Q) dft(ed + h(P), P in G', 
G' 

where ft is the mass-distribution with density -(1j2n)Jv. 
6.3. It is a fundamental result of F. RIESZ that every subharmonie 

function admits of a representation of this form, regardless of its pos­
sible lack of smoothness. F. RIESZ ([5J, part II) gave two proofs for 
this theorem. We shall sketch a simplified version, due to G. C. EVANS 
([4J, part I, p. 237), of the second proof of RIEsz. 

6.4. Aselection theorem (special case of RADON [1], p. 1337; see 
also RIESZ [5], part II, p. 351). Let there be given on a closed set 5 
a sequence of positive mass-distributions ftk (e) such that ftk (5) is less 
than some finite constant independent of k. Then there exists a sub­
sequence ftkr and a positive mass-distribution ft (e) on 5, such that 

fl(Q) dftkr(eQ) ~ fl(Q) dft(eQ) 
s s 

for every function 1 (Q) which is continuous on 5. The subsequence 
fJkr is then said to converge weakly to fJ on 5. 

6. 5. Consider now a function U (x ,y) = U (P) which is subharmonie 
in a domain G. Take a region G' + B' comprised in G. Take an 
auxiliary region G" + B" such that G' + B' eGli, G" + B" C G and B" 
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eonsists of a finite number of smooth non-interseeting JORDAN eurves 
r;', i = 1,2, ... , f. Denote by D;' a narrow doubly eonneeted DIRI­
CHLET domain whieh eontains r[' in its interior and by hi the B. H. M. 
of u in D;'. Define a funetion u in G as follows: u = u in G - E D;' 
and u = hi in D;', i = 1, 2, ... , f. Then u is subharmonie in G (see 
5.34). Also, u is harmonie on B" and in the vieinity of B", and u = u 
in and near to G' + B'. 

6. 6. Consider now the functions U~I (x, y) = A 1!k (x, y; u) defined in 
2.21. We have by 6.1 the formula 

L (uf\ P; r) = 21,Jf1r(p, Q) Llull (Q) daQ + hdP) , 
G" 

P in G", klarge, r small. 

6.7. By 2.23 we have U~I = U on B" and in the vieinity of B". 
Hence hk is independent 0/ k, beeause hk depends only upon the values 
of U~I on and near to B" (see 6.2). We ean write therefore h instead 
of hk • 

6.8. DeHne, for large k, 

fik (e) = 21,J f LI u~) (Q) daQ, e C G" + B". 

We have then by GREEN'S identity 

1 (G" + B") = ~j.~:1 ds = ~ff)ü ds. 
I k 2:n an, 2:n on, 

B" B" 

Renee we ean apply the seleetion theorem of 6. 4 and we obtain on 
G" + B" a positive mass-distribution fl (e), such that a eertain sub­
sequenee "fik" eonverges weakly to fl on G" + B". 

6. 9. By 6. 7 and 4. 17 the formula of 6. 6 ean be written in the 
form 

L(U~~I; P; r) = flr(P, Q) dfldeQ) + h(P) , P in G", 
G"+B" 

sinee flk (B") is clearly equal to zero. For k = k., Y --+ 00 we obtain 
by 6. 8 and 2. 21 

L(u; P; r) = flr(P, Q) dfl(eQ) + h(P) , P in G". 
G"-j-B" 

For P in G' we have u = u by 6.5, and for r --+ 00 it follows by 2.7 
and 4. 23 that 

u(P) = fl(P, Q) dfl(eQ) + h(P) = f + J + h(P) 
G"+B" G' G"+B"-G' 

for P in G'. The seeond integral on the right is a harmonie function 
of P in G' (see 4.25). Henee we have the following theorem. 
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6. 10. If u is subharmonie in a domain G, and if G' is a domain 
eompletely interior to G, then there exists in G' a positive mass­
distribution ß (e) such that 

u (P) = -flog ;Q dß (eQ) + H(P) , P in G', 
G' 

where H is harmonie in G' (RIESZ [5], part II), 
6.11. We shall see now that the distribution ß(e) is unique. Put 

v (P) = -flog P~ dß (eQ) , P in G'. 
G' 

Take in G' any two JORDAN eurves Cl' C2 such that Cl is endosed by 
C2 and the interior of C2 is eomprised in G'. We have then (see 5.11) 
F(Cl , C2 ; u) = F(Cl , C2 ; v) + F(Cl , C2 ; H). But F(Cl , C2 ; H) = 0, 
sinee His harmonie in and on C2 • Henee F(C l , C2 ; v) is univoeally 
determined by u, and by 5.20 and 4.14 it follows that ß (e) is uni-
voeally determined on G'. . 

6.12. More generally, eonsider two domains Gi, G~ eompletely in­
terior to G, and denote by ßl (e) ,ß2 (e) the distributions whieh eorre­
spond to Ul ,U2 in the sense of 6.10 and 6.11. Then ßl(e) = ß2(e) for 
every set e of dass (B) whieh is eomprised in G~ G~ . This follows by 
a reasoning similar to that in 6. 11. 

6.13. Let G be a domain and /l (e) a set-function whieh is defined 
only for sets e whieh are completely interior to G (that is, the limit 
points of e are also eomprised in G; we only eonsider sets e whieh are 
measurable in the BOREL sense). If otherwise ,1 (e) possesses the pro­
perties required in 4.7, then /l (e) will be ealled a generalized positive 
mass-distribution on G. For such a distribution /l it might happen 
that the least upper bound of /l (e), for all sets e eompletely interior 
to G, is equal to -00. 

6.14. Let E be a set [measurable (B)J eompletely interior to G. 
Considered on E, the /l of 6.13 is dearly a positive mass-distribution 
in the original sense of 4.7. Henee we ean eonsider on E STIELTJES­

RADON integrals in terms of /l. 
6. 15. If u is subharmonie in a domain G, then there exists on G 

a univoeally determined generalized positive mass-distribution /l (e) 
(see 6.13), such that for every domain G' eompletely interior to G 
we have 

P in G', 

where h is harmonie in G' (RIESZ [5J, part II; cf. 5. 22). This follows 
immediately from 6.10 and 6.12. 

6.16. Consider a DIRICHLET region G' + B' and a point P in G'. Then 
GREEN'S function for G' with pole at P is defined by @ (P, Q) =log (1/PQ) 
- H(P, Q) where H(P, Q) is the solution of the DIRICHLET problem 
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for G' with the boundary eondition H(P, Q) = log (1/PQ) on B'. Con­
sider next a general bounded domain G. Approximate G by a sequenee 
Gn + Bn of DlRICHLET regions as explained in 5.6. If P is a point 
in G, then P will be in Gn for large n. GREEN'S function ®(P, Q) 
for G with pole at P is then defined by ® (P, Q) = lim®n(P, Q). 
® (P, Q) is a finite, positive and harmonie function of Q in G, exeept 
for Q = P, and we have ®(P, Q) = log(1/PQ) - H(P, Q), where 
H(P, Q) is a harmonie function of Q in G, even for Q = P (see KEL­
LOGG [1J, Chapter IX for information eoneerning GREEN'S funetion). 

6.17. Let there be given in a bounded domain G a positive mass­
distribution ~(e) in the generalized sense of 6.13. Consider 

Vk(P) = -f ®(P, Q) d~(eQ)' P in GII;, 
Gk 

where the sequenee GII; approximates G in the sense of 5.6. We have 
more explieitly (see 6.16) 

Vk(P) = -flog ;Q d~CeQ) + f H(P, Q) d~(eQ) . 
Gk Gk 

Thus Vk appears as the sum of a subharmonie function and of a har­
monie function. Henee VII; is subharmonie in Gk • Clearly Vk deereases 
if k inereases. By 3. 6, either VII; ---+ - 00 everywhere in G, or Vk eon­
verges to a subharmonie function V in G. In the latter ease we write 

v(P) = - f ®(P, Q) d~(eQ)' 
G 

On aeeount of its definition, this integral is therefore a subharmonie 
function of P whenever it exists. The value of the integral is easily 
seen to be independent of the sequenee GII;. 

6. 18. Consider now a function u whieh is subharmonie in the 
bounded domain G. Denote by ~ the generalized distribution whieh 
eorresponds to u in the sense of 6. 15. Then the integral of 6. 17 exists 
if and only if we have some harmonie function whieh is >u in G. If 
this eondition is satisfied then 

I ® (P, Q) d~ (eQ) <- h(P) - u(P) 
G 

for every harmonie function whieh is >u in G (RIESZ [5J, part II). 
Proof. Suppose first that we have a harmonie function h > u in G. 
Take a domain G' eompletely interior to G and introduee again the 
auxiliary region G" + B" and the auxiliary functions ü, Ü~I as in 6.5 
and 6. 6. Denote by ®';(P, Q) the function obtained from GREEN'S 
funetion for G" if we replaee l(P,Q) by l,(P,Q) (see 4.21). We have 
then by 5.24, 6.7, 6.8 the formula 

L (U~I; P; r) = - f ®';(P, Q) d ftk (eQ) + hll; (P), P in G", klarge, r small, 
G"+B" 
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where h,. is the solution of the DIRICHLET problem for G" with the 
boundary eondition h,. = ü~) on B". For P in G' it follows, by a rea­
soning similar to that in 6.5 to 6.9, that 

L(ü;P;1') = -J@~(P,Q)dp,(eQ) + h(P) , P in G', 
G"+B" 

where the harmonie function his determined by the eondition h = ü 
on B". It follows from the definition of ü (see 6. 5) that h < h in 
G" + B" and u < ü in G. We have therefore 

h(P) - L(u; P; 1') ::> h(P) - L(ü; P; 1') ~ J @~(P, Q) djl(eQ) ' 
G' 

sinee jl(e)=p,(e) on G', by 6.8, 6.9, 6.10, 6.15. Denote by@,(P,Q) 
the function obtained from GREEN'S funetion for G if we replaee 
l(P,Q) by l,(P,Q) (see 4.21). LetG"approaeh G in the sense of 5.6. 
Then @~ /' @, and by a well-known theorem ot DINI the eonvergenee 
is uniform on every closed set in G (and henee on every set eompletely 
interior to G), sinee @~ and @, are eontinuous. We obtain for G" ~ G 

the inequality h (P) - L (u; P; 1') ::> /@,(P, Q) d jl (eQ)' For l' ~ ° it 
G' 

follows, by 6.17, that h(P) -u(P) ::>/@(P,Q)djl(eQ) for P in G'. 
G' 

As G' is any domain eompletely interior to G, the preeeding inequality 

proves both the existenee of the integral J @ (P, Q) d jl (eQ) and the 
G 

inequality asserted in the theorem. Conversely, suppose that the 
preeeding integral exists. Consider the functions v,. of 6.17 relative 
to the distribution jl whieh eorresponds to the given subharmonie 
function u. By the definition of jl (see 6. 15) we have u (P) = v" (P) 
+ h,. (P) for P in G,., where h,. is harmonie in G,.. If k inereases, 
v,. deereases and henee h,. inereases. By the theorem of HARNACK, 
h,. ~ h* where either h* is == +00 in G or h* is harmonie in G. Clearly 
the first ease is ineompatible with our present assumptions. For 
k ~ 00 we obtain therefore (cf. 6. 17) 

u (P) = - J@ (P, Q) d jl (eQ) + h* (P), P in G. 
G 

But fl and @ are both positive, and henee h*::> u in G. The existenee 
of a harmonie majorant for u in G is proved. 

6.19. The harmonie function h* of the last formula of 6.18 is 
aetually the least harmonie majorant of u in G. Indeed, if h is any 
harmonie majorant of u in G, then we have by 6.18 

h* (P) = u(P) + J@(P,Q) djl(eQ) < u(P) + (h(P) - u(P» = h(P). 
G 
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We have therefore the theorem: If u is subharmonie in a bounded 
domain G and if there exists a harmonie majorant for u in G, then u 
can be represented in the form 

u(P) = -flJj(P,Q)djt(eQ) + h*(P) , P in G, 
G 

where h* is the least harmonie majorant of u in G and !l is a generalized 
positive mass-distribution on G (RIESZ [5J, part II). 

6.20. If u is a smooth subharmonie function, then the eorresponding 
distribution ean be expressed in terms of the LAPLAcian LI u (see 6.2 
and 6.11). It is then natural to expeet that the preeeding theorems 
can be diseussed in terms of the generalized LAPLAcians introdueed 
by various authors. It seems that no explieit diseussion was given as 
yet on this basis (cf. the remarks of F. RIESZ in WIENER [1J, p.7). 

6.21. In the light of the theorem of 6.10, the theory of subhar­
monie functions appears as a ehapter in potential theory. It is beyond 
the seope of this report to follow up the implieations of this situation. 
The reader desiring further information will find a wealth of inter­
esting material and a large number of referenees in FROSTMAN [1], 
EVANS [4], KELLOGG [1J. 

6.22. The theorem of 6.10 implies that the study of subharmonie 
functions in the small ean be based upon a study of the potential 
v (P) = flogPQ dft{eQ). In the way of illustration, we mention two 
results obtained in this manner. According to EVANS ([4], part I, 
pp. 233-235) the potential v (P) is an absolutely continuous function 
of x for almost every y and an absolutely eontinuous function of y 
for almost every x. As a eonsequenee, the partial derivatives v", and 
vy exist almost everywhere. It follows by further discussion that v'" 
and vy are summable on every bounded measurable set. The appliea­
tion to subharmonie functions is immediate on aceount of 6.10. 

6. 23. U sing the notations of 6.15, eonsider the integral mean 
AT(x,y; u) (see 2.19). As AT(x,y; u) is again subharmonic, it will 
give rise to a distribution f,T(e) in the sense of 6.15. It might be ex­
pected that p,T(e) will be smoother than the distribution jt(e) corres­
ponding to u itself. By means of 6.15 it follows from results of 
THOMPSON [1] that jt,(e) is a distribution with a summable density 
(J,(P) given by 

(JT(P) = r:n jt(C(r; Pi), 

where C(r; P) 'denotes the interior of the circle with centre P and 
radius r. The proof depends upon a discussion of changes in the order 
of integrations in iterated STIELTJES-RADON integrals. 
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Chapter VII. 

Analogies between harmonie and 
subharmonie funetions. 

[5Z 

7.1. The general theory of subharmonic functions, as sketched in 
the preceding Chapters, was based largely upon a few elementary pro­
perties of harmonic functions. Practically every paper quoted in this 
report contains interesting developments concerned with the implica­
tions of more involved properties of harmonic functions. The purpose 
of this Chapter is to give a picture of the results obtained in this 
direction. The reader will note that the proofs sketched in the sequel 
do not always apply in the case of more than two variables. Such 
situations lead to interesting problems, some of which seem to be quite 
difficult. As a first topic, we shall consider isolated singularities o{ 
subharmonie functions. If u is known to be subharmonic in the vicin­
ity of a point (xo, Yo), this point itself being excluded, then (xo, Yo) 
will be called an isolated singular point of u. Without loss of gene­
rality we can assurne that (xo, Yo) is the point 0 = (0,0). We shall 
review presently some results of BRELOT [1]. Various details of the 
following presentation are based on unpublished remarks of S. SAKS. 

7.2. (See 1. 5 for notations.) Put L(u; r) =L(u; 0,0; r) , l =ujlog (1 jr) t 

L(l;r) = L(u;r)jlog(1jr). By 2. 5, L(u;r) is a convex function of logr 
and hence of 10g(1jr) for small r. Using some simple properties of 
convex functions, we obtain a number of facts concerning L(u; r) and 
L(A; r) (BRELOT [1J, pp. 23-37), some of which we shall list now 
explicitly. 

7.3. For r-*O both L(u; r) and L(J.;r) converge to definite (not 
necessarily finite) limits which will be denoted by L(u; 0) and L(l; 0) 
respectively. For small values of r both L(u; r) and L(l; r) are monotonie, 
and for r">.O either L(u;r)/L(u;o) =+00 or L(u;r) ">.L(u;o) >-00, 
and either L(l; r) / L(l; 0) < +00 or L(A; r) ">. L(l; 0) > -00. Note 
that if L(u;r) increases for r">.O then always L(u;O) = +00, and if 
L(A; r) decreases for r">. 0 then always L(l; 0) > -00. 

+ 7.4. We shall use a to denote the greater one of the numbers a 
+ + 

and zero. Clearly a:::; a < lai and lai = 2a - a. 
7.5. Let us recall a few facts concerning isolated singularities of 

harmonie functions. If h (P) is harmonie in the vicinity of 0 with the 
possible exception of 0 itself, then we have the expansion (see KEL­
LOGG [1J, Chapter XII) 

00 

1 ~!Xn cosnrp + ßn sin nrp 
h(P) = ho(P) + rlog OP + ~ opn = ho(P) + h1 (P), 

n=l 
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where ho (P) is harmonie even at 0, h1 (P) is harmonie in the whole 
plane with the possible exeeption of 0, q; is the polar angle determined 
by x=OPeosq;, y=OPsinq;, and y, <Xn, ßn are eonstants. Suppose 
that h::> 0 in the vieinity of O. Then <Xn = ßn = 0 for n = 1,2, ... 
(see BRELOT [1] for referenees; see also RIESZ [5J, part II, p.350). 
Indeed, we have L(h eosnq;; r) = ho (0) + Y log (1/r) + '<xn/(2rn). Henee 
<Xn = 2limrnL(heosnq;; r), r-->-O. But IL(heosnq;; r)] :=;L(lhl; r) 
= L(h; r) = ho (0) + Y log (1/r) . Thus rnL(heosnq;; r) -->-0 for r-->-O, 
and henee <Xn = o. The eoeffieient ßn is diseussed in the same way. 

7.6. Until further notiee, u denotes a subharmonie funetion whieh 
has an isolated singularity at O. The following remark will be useful in 
the sequel. Consider, for small r", a eireular ring R: O<r' < (x2+y2)1/2<r", 
and denote by h the B. H. M. of u in R (see 5.4). Then (cf. 1.12, 
1.13) L(h; r) = L(h; 0,0; r) is a linear function alog(1/r) + b of 
log (1/r) all(~ we have a log (1fr') + b =L(u; r'), a log (1/r") + b=L(u; r"). 
Suppose we are given inequalities L(u;r') < Alog(1/r')+B, L(u;r") 
< A log (1/r") + B, where A, Bare eonstants. Clearly, it follows that 
L(h; r) ~ A log (1/r) + B for r' < r < r". 

7. 7. Sinee u is subharmonie in the vicinity of 0, the function 

iI, = u,o is also subharmonie there (see 3.4). We shall use the sym-
+ + 

bols L(u; r), L(A;r) in the sense of 7.2. 
7.8. We shall use V - 0 to denote a vieinity of 0, less 0 itself. 

It is assumed that u is subharmonie in V - 0 and on the boundary 
of V - 0, exeept for the point O. Vieinities of the form 0< X2+y2< (J2 

will be denoted by Ve - O. It will be understood that (J is so small 
+ + 

that L(u; r), L(A; r), L(u; r), L(A; r) are monotonie for 0 < r< (J (see 
7.3 and 7.7). 

7.9. Suppose that in a vieinity Ve-O we have a harmonie major­
ant H for u, and let H = Ho + H1 be the expansion of H (cf. 7.5). 
Let V - 0 be any vieinity whieh eontains Ve - O. Then u has in 
V - 0 a harmonie majorant of the form H 1 + const. This follows 
immediately from the faet that u is upper semi-eontinuous and H1 is 
eontinuous in V - 0 and on the boundary of V - 0, the point 0 being 
exc1uded. 

7.10. Generally there will not exist a harmonie majorant for u in 
the vieinity of O. However, if we have a harmonie majorant H(l) in 
a vieinity VI - 0, then we also have a harmonie majorant in any 
other vicinity V2 - 0 (BRELOT [1J, p.32). To see this, take a viein­
ity Ve - 0 eomprised both in VI - 0 and in V2 - O. Observe that 
H(1) is also a majorant in Ve - 0 and apply 7.9. 

7.11. Suppose u has a harmonie majorant in a vieinity Ve - O. 
Then (see 5.7) we have in Ve - 0 a L. H. M. h*. Let h* = ho + h1 

be the expansion of h* (see 7. 5). Consider now any vicinity V - 0 
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containing VI? - O. By 7.9 we have in V - 0 a harmonie majorant ii 
of the form h1 + eonst., and henee the L. H. M. h* of u in V - 0 
satisfies an inequality h* < h1 + eonst. in the vicinity of O. We have 
therefore 0 <:: h* - h* s ho + eonst. in the vieinity of O. Conse­

quently (cf. 7. 5) h* - h* is harmonie even at O. 
7.12. If hi, ht are the L. H. M. of u in the vicinities VI - 0, 

Vs - 0 respeetively, then hi - hl is harmonie even at 0 (BRELOT [1], 
p.32). Proof. Take a vieinity VI? - 0 comprised both in VI - 0 and 
in Vs - 0 and apply 7.11. 

7.13. Suppose that u has a harmonie majorant in a vicinity of O. 
By 7.6 we have then a L. H. M. for u in every vieip.ity V - 0 and 
by 7.11, 7.12, 7.5 the eonstants y, lXn, ßn have the same values in 
the expansions of all these least harmonie majorants. 

7.14. u has a harmonie majorant in the vicinity of 0 if and only 
if L(Ä.; 0) (see 7.3) is finite. If this condition is satisfied, then the 
constant y of 7.13 is equal to L(Ä; 0) (BRELOT [1J, p.32). Proof. The 
necessity of the eondition is obvious. To prove the suffieieney, assurne 
that L(Ä; 0) is finite. Give an 8> 0 and take a small 1'0 such that 
L(Ä;1') <L(l;o) +8 for 0<1'<1'0. Take any l' such that 0<1'<1'0 
and take a sequenee 1'n such that l' > 1'1> 1's > ... ->- O. Denote by hn 

the B. H. M. of u in the ring 1'n < (XS + y2)1/2 < 1'0. We have then 
L(u; 1'n) < (L(Ä.; 0) + 8) log (1j1'n) , L(u; 1'0) < (L(l; 0) + 8) log (1jro), and 
hence, by 7.6, L(hn ; r) < (L(l; 0) + 8) log (1j1') . This shows that hn 

cannot converge to +00 everywhere. By 5.5 we have hn+1::::' iin > u 
in the ring 1'n«x2+y2)1/2<ro. Henee, by the theorem of HARNACK, 
hn eonverges in Vr• - 0 to a harmonie function h* > u, and the exis­
tenee of a harmonie majorant is proved. By 5.7, h* is the L. H. M. 
of u in Vr• - O. Also, the] inequality L(hn ; 1') < (L(l; 0) + 8) log (1j1') 
implies that we have L(h*; r) <:: (L(Ä; 0) + 8) log(1j1')for 0< r < 1'0. 
To estimate the constant y (cf. 7.5, 7.13) in the expansion of h*, 
observe that 

L(h*· 1') 
Y = lim '<:: L(l; 0) + 8. 

r-+O log .!. 
l' 

On the otherhand, u <:: h* in 'Vr• - 0 and henee 

L(l; 0) = lim I_L_(u_; _1') <:: lim_L---,(_h*_;,.--r~) = y. 
r-+-O 1 1 r-+-O 1 1 

og; ogr 

As 8 is arbitrary, it follows that y = L (1; 0). 
7. 15. If u is bounded from above in the vicinity of 0, then u is 

subharmonie even at 0 (BRELOT [1], p.27). Instead of reproducing 
the proof of BRELOT, let us observe that this follows immediately from 
the theorems of 3.35 and 3.37 on almost subharmonie funetions. Indeed, 
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eonsider for n = 1,2, ... the function un(P) = u(P) - (1/n) log (1/0P) 
for P =1= 0, un (0) = -00. Clearly, u,. is subharmonie in a small disc 
D: x2 + y2 < r 2 , even at 0, since by assumption u < M in D - 0, 
where M is some finite constant. We have u,. < unH< M in D, 
since u"H (0) = -00. Hence, by 3.37, the limit function u* = lim u,. 
is almost subharmonie in D. We have therefore in D a subharmonie 
function u such that ü = u* almost everywhere in D. But u* = u 
in D - 0, and hence u = u in D - 0 by 3.35. As u is subharmonie 
even at 0, the theorem is proved. 

7.16. If.u has a harmonie majorant Hin the vieinity of 0, then 
v = u - H is subharmonie even at 0 (BRELOT [1], p.35). As v ~ 0 
in the vicini ty of 0, this follows immedia tel y from 7. 15. 

7.17. (See 7.2, 7.3, 7.7 for notations). If L(t,; 0) is finite, then 
u remains subharmonie at 0 (BRELOT [1], pp. 34-35). More generally, 

+ 
if L (J.; 0) = 0, then u remains subharmonie at 0 (SAKS, unpublished). 

Proof. By 7.7 and 7.14, it has a harmonie majorant in the vicinity 

of O. Denote by H* the least harmonie majorant of it in a vicinity 

Ve-O. Then H* > it > 0 and hence by 7.5 we have H*(P) = Ho(P) 
+ rlog(1/0P), where Ho is harmonie even at O. By 7.14 we have 

+ 
F= L(J.; 0), whieh is equal to zero by assumption. Hence H* is har-

monie even at O. Consequently t, is bounded from above in the vi­

cinity of O. As u < t" the theorem follows now by 7.15. 
7.18. The work of BRELOT contains a number of further results 

and applications which cannot be reproduced here. We shall review 
presently certain results concerned with generalizations of properties 
of harmonie functions in the vicinity of the boundary of the domain 
of definition. The first results in this direetion were obtained by 
LITTLEWOOD [2,3,4] and EVANS [2J. These results were later on ex­
tended by EVANS [3J and PRIVALOFF [1,2]. EVANS obtained his results 
by methods in Potential Theory. PRIVALOFF extended some results 
obtained by LITTLEWOOD in the special case of the eirc1e to more ge­
neral regions. In the way of illustration we shall give a few details 
concerning the work of LITTLEWOOD. 

7.19. We shall refer in the sequel to the inequality of HÖLDER: 
if t and g are non-negative functions, and if p > 0, q> 0 are exponents 
such that (1!P) + (1!q) = 1, then jfg < (jfP)l!P(jgq)1lq, whenever thc 
integrals involved exist in the LEBESGUE sense (for a particularly 
elegant proof, see RIESZ [6]). 

7.20. Suppose that u is subharmonie for x2 + y2 < 1 and that 
L(JuJp; 0,0; (2) < GP for /2 < 1, where Gis a constant and p> 1. lf u 
were harmonie, then these assumptions would imply the existence of 
a function w ( 8) such tha t u (/2 cos 8, /2 sin 8) ->- w ( 8) for /2 ->- 1 and 
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almost every 8, and 
2 ... 

jlu(ecos8,esin8) -w(8)lp d8-0 for e-1 
o 

/56 

(RIESZ [2]). In the case of a general subharmonie function LITTLE­
WOOD obtained the following results. 

7.21. Under the assumptions of 7.20 there exists a function w(8) 
such that 

2n 

jlu(e cos8, e sin8) - w(8) Ig d8- 0, e -1, 
o 

for every exponent 0< q < P (LITTLEWOOD [2]). Proof. On account 
of the inequality of HÖLDER it is sufficient to consider the case 
1 < q< p. Denote by hr the B. H. M. of u for x2 + y2 < 1'2. It 
follows by the inequality of HÖLDER from the formula of POISSON 
for h, (cf. 5.4) that hr satisfies an inequality of the same form as u. 
It follows that for l' - 1 the sequence h, cannot converge to +00-
everywhere. Hence (see 5. 7 and 1.4) there exists for u a L. H. M. 
h* in x2 + y2 < 1 which satisfies an inequality of the same form as u. 
By the theorem of F. RIESZ quoted in 7.20 we have therefore a func­
tion ·w( 8) such that 

2 ... 

jl h* (e cos8, e sin8) - w(8) Ip d8 - 0 
o 

for e - 1. As u <: h, ;1f h* for 1';1f 1, it follows from the preceding 
facts, by repeated application of the inequality of HÖLDER, that w (8} 
satisfies the theorem. 

7. 22. If u is subharmonic in x2 + y2 < 1 and L (i u I; 0, 0; e) < M 
for e<1 (M a finite constant), then limu((!cos8,(!sin8), (!-1~ 
exists and is finite for almost every 8 (LITTLEWOOD [3]). This theorem 
is related to the theorems in Chapter VI as folIows. Establish first 
the existence of the L. H. M. h* of u in x2 + y2 < 1 as in 5.21. Ob-

serve next that the assumption concerning u implies that L (~; 0,0; e} 
is also bounded for e< O. Hence, for the same reasons as in the 

case of u, there exists a L. H. M. H* for ~ in x2 + y2 < 1, and we 

have H* >- ~ >- 0, H* >- h* in x2 + y2 < 1. . By 6. 20 we have for u 
the representation 

u (P) = - j & (P, Q) d j'.t (eQ) + h* (P) = v (P) + h* (P) 
",'+11'<1 

forx2 + y2 < 1, where ® is GREEN'S function for the unit circ1e. We 
can write h* = H* - (H* - h*). Thus h* appears as the difference 
of two non-negative harmonie functions, and hence h* has adefinite 
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finite radial limit along almost every radius (see, for references cover­
ing also the case of more than two variables, GARRETT [1]). Thus the 
problem is reducedto the discussion of v(P). LITTLEWOOD shows 
that v (P) has a radial limit equal to zero for almost every radius. 
The proof depends upon a number of inequalities concerning GREEN'S 
function of the unit circle. 

7. 23. LITTLEWOOD constructed explicit examples which show that 
i) in the theorem of 7.21 the condition q < P cannot be replaced by 
q < p, 2) the theorem of 7.21 is not valid for q = p = 1, and 3) for 
0< P < 1 there does not exist, generally, a radial limit w(e), either 
in the sense of convergence almost everywhere 01' in the sense of 
convergence in the mean with respect to some exponent (LITTLE­
WOOD [4]). 

7.24. Theorems on harmonic functions may involve pairs 01 eon­
iugate harmonie lunetions, that is analytic runctions of a complex vari­
able. It is not clear apriori that such theorems can be extended 
to subharmonic functions of two or more variables. Questions of this 
type were discussed in considerable detail by PRIVALOFF, who gene­
ralized a number of theorems concerned with analytic functions of a 
complex variable (PRIVALOFF [3,4]). In the way of illustration, we 
quote two of his theorems for the case of three independent variables. 
Theorem. Let u be subharmonic in a domain G in three-dimensional 
EucLIDean space. Suppose that the boundary B of G can be divided 
into two parts BI' B2 in such a way that limu(P) < M", if P approa­
ches any point of B"" k = 1,2. Let G' + B' be a region comprised 
in G. Then there exist two constants sand t, 0< s < 1, 0< t < 1, 
depending only upon G and G' + B', such that in G' + B' we have 
u < tMI + (1 - t) M 2 if MI < M 2 and u::::;; s MI + (1 - s) M 2 if 
MI >- M 2 • Theorem. Let u be subharmonic in a domain G in three­
dimensional EucLIDean space. Suppose that there exists a finite con­
stant M such that lim u (P) :::: M if P approaches any point on the 
boundary of G, with the possible exception of a denumerable set of 
boundary points Q .. , n = 1,2,... At these exceptional points it is 
known that u(P) - a/(PQ .. ) _ -00 for every a> 0 if P approaches Q ... 
Then u < M in G (this wording, due to SAKS, is somewhat more 
general than the original wording of PRIVALOFF). Let us sketch a 
simple proof (due to SAKS) of the second theorem. Consider in G the 

00 

function u.(P)=U(P)-J:e/(2"PQ .. ), e>O. Clearly, the infinite 
.. =1 

series converges in G, the convergence being uniform in every region 
G' + B' C G. Hence, by 3. 3 and 2. 15, u. is subharmonic in G. 
Clearly, lim u. (P) ::::;; M if P approaches any boundary point of G. By 
1.15 we have therefore u.(P) < M in G. For P fixed and e - 0 it 
follows that u < M in G. 

4* 
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7.25. To illustrate results of a different type, we quote the follow­
ing theorem. Let r be a circle and C a convex curve strictly interior 
to r. Suppose that u is positive, continuous and subharmonie in and 
on r. Then 

juAds<4Iu!.ds for 1.>2, and juJ.ds< A~1juJ.ds for 1<1.<2, 
o r 0 r 
where A is an absolute constant (FRAZER [1]; this is a generalization 
of previous results of GABRIEL [1,2], who generalized earlier results 
of FEJER-RIESZ [1]. See also RIESZ [8J). Proof. We can clearly 
assume that r is the unit circle x2 + y2 = 1. Suppose first that 1. = 2. 
Denote by h the B. H. M. of u in r. In r we have an analytic func­
tion 1 (z) whose real part is equal to h, say 1 (z) = h + i h, z = x + i y. 
We call suppose that h(O) = h(O). If rr is a concentric circle with 
radius r, such that r is slightly less than 1, then we have by a theorem 
of GABRIEL [1] 

fl/12 dS < 2f1/12 ds . 
o rr 

We have ffi/(0)2 = 0, since h(O) = h(O). Using rr to express 1(0)2 
by the formula of CAUCHY, we obtain 

fh2ds = fh2ds. 
rr 1'r 

We can write now 

fU2ds s;,fh2ds ~fl/12ds <2flfl2ds = 4fh2ds;-.:j4fh2 ds = 4(u2ds, 
o 0 0 rr rr r r 
and the theorem is proved for the special case 1. = 2. If J. > 2, then 
apply the preceding result to UJ./2 which is subharmonie by 3.23. The 
case 1< J. < 2 is discussed in a similar fashion. For further theorems 
of this type see FRAZER [2,3,4]. 

7.26. Cle arly , the method used in 7.25 does not apply in the case 
of more than two variables. To illustrate a somewhat different situa­
tion, we consider a result obtained by SAKS [1] as a corollary to more 
general theorems. Denote by G a simply connected domain in the 
interior K of the unit circle x2 + y2 = 1. Let u be subharmonie in G 
and suppose that u (P) ->- -00 if u approaches any boundary point of 
Gwhich is interior to K. Then G == K. This theorem is closely related 
to recent results of EVANS [5]. The method of EVANS suggests the 
following proof. Define a function u as follows: u = u in G and 
u = -00 in K - G. Then u is subharmonie in K (see 1.1 and 2.3). 
Hence the set K - G cannot have interior points (see 1. 8). If K =1= G, 
then we can assume that the centre of K is not in G. Apply now 
the transformation w = Vi, z = x + i Y (cf. RADO [1], lemma on p. 2). 
As G is simply connected, we have a single-valued analytic branch of 
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iZ in G, and the transformation leads to a domain G' and a subhar­
monic function u', such that the assumptions of the theorem are 
satisfied by G' and u', a.nd such that K - G' does have interior points. 
This contradicts a preceding condusion, and the theorem is proved. 

SAKS goes on to show that the preceding theorem is not valid in 
three-dimensional space. Example: consider 

1 
"d 

u(x, y,z) = -j -f, r = [(x - S)2 + y2 + z2J12, 
o 

in the domain G consisting of all points (x,y, z) in x2 + y2 + Z2 < 1, 
except the points ° <: x < 1, Y = 0, z = 0. We have here one of the 
many instances where the existence of the transformations w = fZ 
leads to theorems in the plane which cannot be extended to spaces 
of higher dimensions. 
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Einzelpreis RM 13.80; Bandpreis RM 12.42 

4. Heft: Mathematische Grundlagen'forschung. Intuitionismus. 
Beweistheorie. Von A. Heyting. IV, 73 Seiten. 1934. 

Einzelpreis RM 8.75; Bandpreis RM 7.88 

5. Heft: Algebraic Sur'faces. By O. Zariski. V, 198 pages: 1935. 

Einzelpreis RM 22.75; Bandpreis RM 20.48 

Vierter Band: 

I. Heft: Algebren. Von M. Deuring. V, 143 Seiten. 1935. 

Einzelpreis RM 16.60; Bandpreis RM 14.94 

2. Heft: Gruppen von linearen Trans'formationen. Von B. L. 

van der Waerden. 111, 91 Seiten. 1935. 

Einzelpreis RM 8.80; Bandpreis RM 7.92 

3. Heft: Idealtheorie. Von W. Krull. VII, 152 Seiten. 1935. 

Einzelpreis RM 17.50; Bandpreis RM 15.75 

4. Heft: Diophantische Approximationen. Von I. F. Koksma. VIII, 

157 Seiten. 1936. Einzelpreis RM 18.40; Bandpreis RM 16.56 

Weitere Arbeiten, die in der Sammlung erscheinen werden: 

Konvexe Funktionen. Von W. Fenchel, Kopenhagen. 
Geometrische Optik. Von C. Caratheodory, München. 
Diophantische Gleichungen. Von Th. S k 0 I e m, Bergen. 
Ergodenproblem. Von E. Hopf, Leipzig. 
Werteverteilung endlich vieldeutiger analytischer Funktionen. Von E. U ll r ich. 

Gießen. 
Gruppentheorie. Von B. L. v. d. Waerden, Leipzig, und F. Levi. Ca1cutta. 
Dirichlet Series. Von E. Hille, New Haven, und F. Bohnenblust, Princeton. 
Dynamische Meteorologie. Von H. E r tel, Berlin. 
Geophysikalische Periodenuntersuchungen. Von J. Bar t e ls, Eberswalde. 
Metalogik und Metamathematik. Von A. Tarski, Warschau. 

Zu beziehen durch jede Buchhandlung. 




