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Preface.

A convex function f may be called sublinear in the following sense:
if a linear function /is =/ at the boundary points of an interval,
then /= in the interior of that interval also. If we replace the
terms snterval and linear function by the terms domain and harmonic
function, we obtain a statement which expresses the characteristic
property of subharmonic functions of two or more variables. This ge-
neralization, formulated and developed by F. RiEsz, immediately at-
tracted the attention of many mathematicians, both on account of its
intrinsic interest and on account of the wide range of its applications.
If f(z) is an analytic function of the complex variable z=1x 4 ¢y,
then |f(z)| is subharmonic. The potential of a negative mass-distribu-
tion is subharmonic. In differential geometry, surfaces of negative
curvature and minimal surfaces can be characterized in terms of sub-
harmonic functions. The idea of a subharmonic function leads to
significant applications and interpretations in the fields just referred
to, and conversely, every one of these fields is an apparently in-
exhaustible source of new theorems on subharmonic functions, either
by analogy or by direct implication. The purpose of this report is
first to give a detailed account of those facts which seem to consti-
tute the general theory of subharmonic functions, and second to pre-
sent a selected group of facts which seem to be well adapted to illu-
strate the relationships between subharmonic functions and other
theories. Roughly, Chapters I, II, III, V, VI are devoted to the first
purpose, while Chapters IV and VII are devoted to the second one.
The presentation is formulated for the case of two independent vari-
ables, but both the methods and the results remain valid in the general
case, except for obvious modifications, unless the contrary is explicitly
stated.

Subharmonic functions have along and interesting history. F.RiEsz
points out that various methods, due to POINCARE, PERRON, REMAK
in potential theory and to HARTOGS and R. NEVANLINNA in the theory
of functions of a complex variable, are based essentially on the idea
of a subharmonic function. The reader should consult Riesz [4], [5}
for detailed historical references. Readers interested in the possibilities
of applying subharmonic functions may read, for general information,
Riesz [4], [5], BEckENBACH-RADO [1], [2], EvaNs [4], FrosTMAN [1].
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As it has been observed above, potentials of negative mass-distri-
butions are subharmonic functions, and essentially the converse is also
true (see Chapter VI). Thus the theory of subharmonic functions may
be interpreted as the study of such potentials based on a few charac-
teristic properties, while the methods of potential theory are based on
the representation in terms of definite integrals. It is very probable that
the range of the theory of subharmonic functions, interpreted in this
manner, will be considerably extended in the near future. For instance,
the sweeping-out process, which is fundamental in the recent develop-
ment of the theory of the capacity of sets (cf. Evans [4], FRoSTMAN
[1]) could be easily interpreted in terms of harmonic majorants of
subharmonic functions.

Historically, the first generalization of convex functions of a single
variable is represented by the convex functions of several variables,
characterized by the property of being sublinear on every straight
segment within the domain of definition. While such functions are
easily seen to be subharmonic, their theory was developed in connec-
tion with problems of an entirely different type. For this reason, the
theory of these functions will be included among the topics discussed
by W. FENCHEL in a subsequent report of this series.

The reviewer is indebted to G. C. Evans and S. Saks for valuable
information which he had the privilege to use while preparing this
report.

The Ohio State University, March 1937.
TiBOR RADO.
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Chapter I.

Definition and preliminary discussion
of subharmonic functions.

1.1. Let #(x,y) be a function in a domain G (connected open set),
such that —oo =< # << 400 in G. That is, —oo is an admissible value
of u, while 400 is not. Such a function is subkarmonic in G if it
satisfies the following conditions (RiEsz [5], part I, p. 333).

b) » is upper semi-continuous in G. That is, for every point (%, ,)
in G and for every number A>>u(%,,v,) there exists a 6=4(x,,v,,4)>0
such that u(x,y) <A for [(x — x5)2 + (¥ — ¥,)%]» << 8. Observe that
for u(x,,y,) = —oo this condition implies that #(x,y) > —oo for
(x,9) > (%9, )

c) Let G’ be any domain comprised in G together with its bound-
ary B’. Let H(x,y) be harmonic in G’, continuous in G’ 4 B’, and
H = u on B’. Whenever these assumptions are satisfied, we also have
H=wuin G’

Superharmonic functions are defined in a similar fashion. A function v
is superharmonic in a domain G if the function # = —v is subharmonic
there. In the sequel we shall state the results only for subharmonic
functions. In #-dimensional Euclidean space subharmonic functions
are defined in exactly the same way as in the two-dimensional case.
Clearly, a harmonic function is both subharmonic and superharmonic,
and conversely.

1. 2. For the sake of accuracy let us observe that F. RiEsz assumed
that

a*) u > —oo on a set everywhere dense in G.

The apparently weaker condition a) in 1.1 was stated by Evans [4],
part I, p.230. The following presentation, based partly on unpublished
remarks of G.C. Evans, will show that conditions a), b), c) are equi-
valent to conditions a*), b), c).

1. 3. Condition b) will be used in the following way. Let S be a
closed set comprised in G. Then condition b) implies (HARN [1]) that
there exists a sequence of functions ¢, with the following properties.
&) @i is continuous on S. f) ¢\ % on S, where the symbol \ indicates
that ¢, =@,=---. Conversely, the existence of such a sequence g,

Ergebnisse der Mathematik. V/1. Radé. 1



2 1. Definition and preliminary discussion of subharmonic functions. [8

for every choice of the closed set S in &, implies that # is upper semi-
continuous in G. Take now a domain G’ which is comprised in G to-
gether with its boundary B’. By what precedes, we have on B’ a se-
quence of continuous functions ¢y such that ¢; % on B’. Suppose that
G’ + B’ is a Dirichlet vegion, that is a region such that for every con-
tinuous function f on B’ there exists a function H which is harmonic
in G/, continuous in G’ 4 B’, and equal to f on B’. Denote by H; the
solution of the DIRICHLET problem for G’ + B’ with the boundary con-
dition H; = ¢ on B’. Then ¢, =@, ="-. implies that H,=H,= --.
in G+ B’. Since Hy = ¢ = # on B’, it follows from condition c¢) in
1.1 that Hy=u in G’ + B’. Summing up: for every Dirichlet region
G’'+ B’ in G we have a sequence of functions H; with the following
properties. 1) Hj is continuous in G’ + B’. 2) Hj is harmonic in G’.
3) Hr=wuin G'+ B’. 4. Hyxu on B’.

According to a fundamental theorem of HArNACK (KELLOGG [1],
Chapter X), the property H, = H, = --- implies that in G’ the se-
quence Hj, converges either to —oo everywhere or to a function 4
which is harmonic in G’. In the second case the convergence is uni-
form on every closed set in G’. The first case can be excluded as soon
as # > —oo at a single point of G’. In the second case, H; = # in
G’ + B’ implies that 7 = » in G”.

Remark. If u is continuous, we can take ¢ = #, and % is then
simply the solution of the Dirichlet problem for G’+ B’ with the
boundary condition % =# on B’. In the sequel, the reader interested
only in continuous subharmonic functions should always consider this
particular choice of ;. The reader interested in the general case should
glance through the sections 5.1 to 5.4 at this time.

1.4. In the sequel we shall use the following theorems on inte-
gration quite frequently. Let there be given, on some range S (curve,
domain, etc.) a sequence of functions F, such that F, W F on S and

fF,, = A, where A is a finite constant independent of # (the inte-

S .
grals are taken in the sense of LEBESGUE). Then (see for instance
Saks [5], p. 63 and p. 83) the limit function F is also summable on S

and we have /F = lim|F,.

Consider next a function f(x,y) in a circular disc D: (x — x,)?
+ (y — v,)? = #*. Introducing polar coordinates we have

r2n
fff(x,y) dxdy =f/f(xo + 0 cosg,y, + gsing) gdody
D 00

r/2n
=f<ff(xo + e cosg,y, + osing) d«P)ede,
0 \0
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where we know, by a theorem of TONELLI (Saks [5], p. 75) that these
formulas are certainly valid if f(x,y) is measurable and =0 in D.
More generally, these formulas are valid if f is bounded in one direc-
tion, say / = M on D, as it follows by applying the preceding remark
to the function M — f (quite exactly, whenever one of the three
integrals involved exists, the other two exist also and the three inte-
grals are equal to each other).

1.5. It will be convenient to use the following notations. C(x,,¥,; 7),
D (xy,v,; 7) will refer to the perimeter and to the interior respectively
of the circle with centre (x,,9,) and radius », while R(x,,v,; 71, 72)
will refer to the interior of the concentric ring bounded by the circles
C(%g,9e; 71) and C(xg, y; #5) . If a function f, defined on C (x,,y,; 7),
is summable as a function of the polar angle ¢ (where x = x, 4 7 cosg,
y = ¥, -+ 7sing), then we shall write

25

L(f; %,90; 7) = %;ff(xo + 7cose, y, + 7sing) de.
0
Similarly, if f is defined and summable on D (x,, v,; ), we shall write
Alf: %090 1) = g [ [106,9) dxdy
D
We have the equivalent formula

At 7,905 1) = o [ [10+ &9+ m) dgd.
gt <<s?
L{f; %y, vo; ¥) and A(f; %y, yo; 7) are the integral means of f on
C (%9, vo; 7) and D(x,, v; #) respectively.

1. 6. Throughout this Chapter # will denote a function which is
subharmonic in a domain G. Suppose that the circle C(x,,¥,;7)
is comprised in G together with its interior and also suppose that
%%y, Vo) > —o00. Then L(u; x,, v,; 7) exists and u (x,, vo) == L{(n; x4, ¥o; 7)
(Riesz [5], part I, p. 324). To see this, take, as in 1.3, a sequence
H, for the circular disc bounded by C(x,,y,; 7). We have then
u(%y,y0) = Hy(%,,) and Hy(xy,y,) = L(Hz; %9,%,;7) (see KELLOGG
1], p. 82). Hence L (Hy; xy,ve;7) == t4(x,, ¥y) > —00. By 1.4 it
follows that L (%; x,,%,; #) exists and that

u (%, ¥o) = Hm L (Hy; %y, ¥o; 7) = L(u; %, ¥; 7).
1.7. Under the assumptions of 1. 6 let us consider the disc D (x4, y,; 7)

bounded by C(x,,,; 7). We can then apply the result of 1.6 to
C (%9, ¥9; 0) for 0 < ¢ <7, and we obtain by 1.4
2 2 s 4
Au; %y, 99; 7) = 72[14(“} X9, Ye; 0) 0do = ‘M(I/VTZLO)/.QdQ = (%, Vo) -
0 0
1%
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That is, if #(xy, vy, > —oo, then (Riesz [5], part II, p. 343) u is
summable on every disc D(x,,v,; #) completely interior to G and
u (%, ¥o) = A(u; %5, Yo; 7) -

1.8. While condition a) in 1.1 states only that # > —oo for at
least one point in G, it follows from 1.7 (according to an unpublished
remark of G.C. Evans) that # > —oo on a set which is everywhere
dense in G. Indeed, if u(%,,y,) > —oo, then the summability of # on
the disc D (%4, ¥y; #) implies that # > —oo on this disc with the pos-
sible exception of a set of two-dimensional LEBESGUE measure zero.
Given then any other point (x,9") in G, we have clearly a finite
number of discs D(x,vi; %), #=0,1, ..., n, completely interior
to G, such that (%1, ¥&eq1) is a point of D(xg,y:; 7;) for which
% (%41, Yes1) > —oo, and such that D(x,,y,; 7») contains (¢/,y). By
1.7 we have # > —oo almost everywhere on these discs and hence we
have in the vicinity of (¥, ¥") points (x*, ¥*) such that « (x*,y*) > —o0.

1.9. «# is summable on every disc D (x,,v,; ) completely interior
to G (Riesz (5], part II, p. 343; cf. 1.2). Indeed, by 1.8 we have
some disc D (%,7%; 7) completely interior to G, such that #(x,y) > —oc
and such that D(x,,¥,; #) is comprised in D(x,y;7). The assertion
follows then immediately from 1.7.

1.10. # is summable on every measurable set S completely interior
to G (by completely interior we mean that the limit points of S are
also comprised in G). Indeed, by the HEINE-BOREL theorem we can
cover the set S + S’, where S’ is the set of the limit points of S, by
a finite number of discs completely interior to G, and the assertion
follows then from 1.9 (Riesz [5], part I, p.344).

1.11. » is summable, as a function of the polar angle, on every
circle C(%,y,; #) comprised in G together with its interior (Riesz [5],
p. 334). This can be seen by the same reasoning as that used in 1.6,
since the assumption % (x,, y,) > —oo was used there only to exclude
the possibility H; -~ —oo, and this is excluded now by 1.8.

1.12. » is summable, as a function of the polar angle, on every
circle C(%,,9,; ) comprised in G, even if the interior of C(x,,Yy; 7)
is not comprised in G (Rigsz [5], part I, p. 338). To see this, take a
circle C (%o, ¥o; #1), #; > 7, such that the ring R (x,, o; 7, 7,) is comprised
in G together with its boundary. As in 1.3, take a sequence H; for
this ring. By 1.4 the theorem is proved if we show that the sequence
L (Hy; %4, 9,; 7) is bounded from below.

Take any smooth JorDAN curve I' in R(x,, y,; 7,7;) which encloses
C (%9,v0; 7). Then the integral

0H,
/(‘)ne ds.
r

where #, refers to the outward normal of I', is independent of the
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choice of I' (KELrLoGG [1], p. 212). If we apply this to C(x,,%,; 0),
r < p < r;, then it follows that

eg%L(Hk; %) Vo5 @) = %
and hence
L (Hy; %5, 905 0) = i loge + by

where a; and b;, are constants. On account of the continuity of Hj in
the closed ring this formula holds for » <<p =7,. By 1.8 and 1.3, H;
converges in the open ring R (x,,Y; 7,7,) to a harmonic function %,
the convergence being uniform, in particular, on every circle C (x,, ¥4; 0) ,
r <o <r. Hence L(Hy; xy,%; 0) = L(k; %y, %0; 0) for 7 <o <r,.
That is, the sequence a;loge + b has a finite limit for every p such
that » < p << #;. Clearly, this implies that a; and b, converge to finite
limits @ and b respectively. Then we have L (Hy; %,,v,; ¥) > alogr + b
and this implies that the sequence L (Hj; x,,%,; #) is bounded from
below.

1.13. Using the notations of 1. 12, let us consider L (#; %y, ¥o; 0) as
a function of g, 7 =< p =< 7;. By the theorem of 1.12, L(u; %5, ¥,; 0)
actually exists. We observe that by 1.3 and 1.4 we have

L(u; %y, vy, v) = UmL (Hy; %y, ve; ¥) = alogr + b,

L(u; xq,¥o; 71) = UL (Hy; %y, Vo, 71) = alogr, + b.
Consider now a third circle C(x,,v,;0), r=p=7,. Then L (u; %y, ¥,; 0)
= L(Hy; %4, 90; 0) since u =< H; in the ring R(x,,y,; 7,7,). Hence
L(u; %y, vy; 0) = lim L (Hy; %y, 9y; 0) =aloge +b. As aloge + b is the
(univocally determined) linear function of logg which is equal to
L(u; xy,v,; 0) for o =7 and ¢ = r;, we have the following theorem
(Riesz [5], p.338).

If the circular ring 0 = o} << (¥ — %p)2 + (v — )2 < @3 is com-
prised in G, then L(u; x%,,9,; ¢) is a convex function of logp for
01 <o <@

1. 14. If we are willing to use somewhat more complicated tools,
than in the preceding sections, then we can obtain the following more
comprehensive result (BRELOT [1], p. 14). If I' is any sufficiently
smooth JORDAN curve in G, then # is summable on I as a function
of the arc-length (it is not necessary to assume that the interior of I’
is also comprised in G). We modify the proof of BrReLOT slightly so
as to obtain this theorem directly from the definition of a subharmo-
nic function as given in 1.1. Let (x,,, be a point in G such that
#(%y,¥p) > —oo, and assume that I" does not pass through (x,,v,)
[clearly, the case of curves passing through (x,,y,) can be settled
then immediately]. We choose a second smooth JorDAN curve I} such
that the doubly connected domain G’ bounded by I" and I is com-
prised in G together with its boundary, and such that (x,,y,) is com-
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prised in G’. As in 1.3, we take a sequence H; for G’. Since

H, = H,= .-- and since all these functions are continuous on
G'+TI'+ I, we have a finite constant M such that u < H, = M,
k=1,2,..., in G+ I+ Iy. If &(x,y) denotes GREEN’s function

for G” with pole at (%,,v,), we have, by applying a general formula
(KErLroGG [1], p.237) to the harmonic function H; — M,

Hy(sq,30) — M = 5o [ (Hy — M) 57 ds +—j (H— M50 d
r

where #; refers to the interior normal with respect to G’. We observe
that 0@’/0n; has a positive minimum g >0 on I+ I (cf. BReLoT [1],
p-14). As H,— M <0 on I'+ I, it follows that

Hito,30) — M = - [ (Hi— M) ds.
T
As Hy(xy,v,) = u(x4,9,), it follows finally that

/des = [, y0) — M) 2% + M1,

where [ is the length of I". That is, the sequence f Hyds is bounded

P
from below. By 1.3 and 1.4 it follows then that # is summable on I’
as function of the arc-length.

1.15. Let G’ be a domain comprised in G together with its bound-
ary B’. Suppose that H is harmonic in G’, continuous in G’ + B and
Hz=u on B’. By condition ¢) in 1.1 we have then H=# in G’ also.
We shall see now that the sign of equality holds either everywhere or
nowhere in G’ (R1Esz [5], p- 331). Suppose there is some point (x,, ¥,)
in G’ such that (%, y,) = H(%y,,). If # is small, we have then,
by 1.7,

H (%9, Yo) = 1 (%g, yo) = A (; %o, Y5 7) = A(H; %, %5 7) = H (%, ¥p) -
As uw << H, this clearly implies that # = H in the vicinity of (x,, y,) -
That is, the set of points in G’ where # = H is an open set. On
account of the upper semi-continuity of #, the set of points in G’
where » < H is also open. As the first one of these sets is not empty
by assumption, the second one must be empty (since the connected
open set G’ cannot be the sum of two non-overlapping open sets).
Hence # = H everywhere in G'. As u is upper semi-continuous and H
is continuous and =u in G’ - B’, it follows immediately that we have
# = H on the boundary of G also.

1.16. As an immediate corollary of the preceding theorem we note
the fact that # cannot have a local maximum at a point (%, ,) in G,
unless it reduces to a constant in the vicinity of (x,,y,), and that «
cannot reach its absolute maximum in G unless it reduces to a con-
stant in G.
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Chapter II.
Integral means of subharmonic functions.

2.1. If uis subharmonicin a domain G, then % (x,, vo) = L(#; %4,90; 7),
w(%y, Vo) = A(u; %4,9,; 7) for (xy,9,) in G and for sufficiently small »
(see 1.6, 1.7, 1.9, 1.11). The question arises as to whether these re-
lations are characteristic for subharmonic functions.

2.2. Denote by K the class of functions # which are defined
in a given domain G and satisfy there the following conditions.
&) —oo < u < +oo and # % —ooin G. f) u is upper semi-continuous
in G. Denote by K,, K,, K;, K, the subclasses of K defined by the
following additional requirements. A function # in K belongs to
K, if for every point (x,,%,) in G with u(x,,y,) > —oco we have a
0 (%5, vo) = 0 such that for 7 < o (%,, ¥,) the integral mean L(u; %o, o5 7)
exists and is =z u(x,,y,) . A function # in K belongs to K, if for
every point (%, ¥,) in G with u(x,,y,) > —oo there exists a sequence
o — 0, depending upon (%,,y,), such that L(u; %y, y,; 7,) exists and
is =u(xy,9,), #=1,2,.... The classes K,, K, are defined in the
same way in terms of the integral mean A(u; x4, v,: 7).

2.3. On account of 1.6, 1.7, 1.9, 1.11 every function which is
subharmonic in G belongs to all four classes K;, K,, K;, K,. Converse-
ly (LrrreewooD [1], p. 189), a function # which belongs to any one
of these classes is subharmonic in G. Since conditions a) and b) of
1.1 are satisfied by assumption, we have to verify only the following
fact: if G’ is a domain comprised in G together with its boundary B’,
and if H is continuous in ¢’ 4 B/, harmonic in G’, and =# on B,
then H = u in G’ also. If this were not so, then the function » — H,
which is clearly upper semi-continuous in G’ + B’, would reach a posi-
tive maximum M at an inferior point (x,,v,) of G'4 B, and the set
S of those points (¥,y) in G+ B’ where w — H = M would be a
closed set interior to G’ -+ B’. Since S and B’ are closed sets, we have
then on S a point (x;,y;) whose distance from B’ would be a mini-
mum. On every circle C (x;,v;; #), with small 7, we would have then
a whole arc o, such that « — H << M on o,. Since u — H =< M on
C (%, vy, 7), it follows that

L(u; 2,957 — H(xy,y) = L(w—H; %95 7) <M
= u(xy,y1) — H (%, 9),
and hence L (#; %, v,; #) << #(%;,v,) for all small values of » for which
L(u; x,,v,; 7) exists. A similar reasoning shows that A(x; x;,y,; 7)
< u(%;,y,) for all small values of 7 for which A(u; x,,v,; 7) exists.
These conclusions are in obvious contradiction to the assumption that «
belongs to one of the classes K, K,, K;, K,.
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2.4. If u is subharmonic in the domain G, then for fixed (x,, y,)
the integral mean L (#; x4, v,; #) is an increasing function of 7 as long
as the circle C(x,,%,; #) is comprised in G together with its interior
(Riesz [5], part I, p. 338). To see this, suppose C(x,,y,; #) satisfies
the assumption of the theorem and take #», <<#. As in 1.3, take a
sequence H; for the circular disc bounded by C(x,,v,; ?). We have
then L (Hy; %o, Yo; 7) = Hi (%0, Yo) = L (Hy; %o, %95 71) = L (; %, %95 71) -
By 1.3, 1.4 it follows for & — oo that L (u; x,, vo; 7) = L (%; %, %e; 1) -

2.5. We already observed (see 1.13) that as long as the circle
C (xg, ¥o; ) remains in a circular ring R (x,,,; #;,7,) comprised in G,
L(u; %y,5,; 7) is a convex function of logr for 7, << # <7, and for
fixed (x4, v,) -

2. 6. Under the assumptions of 2.5, L(u; %,,9,; #) is a continuous
function of 7. Indeed, if , <<# <7’ <C7,, then by reasons of upper
semi-continuity » and therefore L (#; x,, y,; 7) is bounded from above
for ¥ =7 < #”, and a convex function which is bounded from above
is continuous. '

2.7. Suppose # is subharmonic in a disc D(x,,,; 7). Then
L(u; %y, vy; 7) > u(x,,,) for r >0 (Rigsz [5], part I, p.344). Indeed,
for 7 — 0 the upper semi-continuity of # implies that lim L (#; %,, y,; 7)
= u(xy,%y), while by 1.6 we have LmL (%; x,,y,; #) = % (%, Vo) -
Clearly, the reasoning remains valid for u(x,, y,) = —oc.

2. 8. Similar theorems hold for

2
A(u; x9,995 7) = ﬁ/L(“; %, Yo; 0) 040,
0

where it is assumed that the circle C(x,,y,; #) is comprised together
with its interior in a domain G where # is subharmonic. Since
L(u; %y, 9,; 0) is a continuous function of g for 0 =p =7 (see 2.6, 2.7),
we can approximate the above integral by RIEMANN sums, and we
obtain the relation (cf. MONTEL [2], p. 49)
n
A(u; %y, Ye; 7) :Jiinoo Z%L(u; %o, Vo 37)

k=1
As L (u; x4,9; 0) 1s an increasing function of p, it follows immediately
that A (#; x4, v0; 7) = L(u; %y, v,; 7) (cf. 3.25).

2.9. Under the assumptions of 2.8, 4 (#; x,, v,; 7) is an increasing
function of » (Riesz [5], partIl, p.344). This is obvious since the
RIEMANN sums used in 2.8 are increasing functions of 7 by 2. 4.

2.10. Under the assumptions of 2.8, we have A (u; %y, Vo #) = % (%9, Vo)
for » > 0 (Riesz [5], partII, p.344). The proof is the same as in 2.7.

2.11. Under the assumptions of 2.8, A (u; %,,7,; 7) is a convex
function of logr (essentially MONTEL [2], p. 49). This is obvious since
the RIEMANN sums used in 2.8 are convex functions of logz by 2.5.
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2.12. We shall say that a function # is of class PL in a domain G
if 4= 0 and if v = log# is subharmonic there. It is understood that
we put v = —oo for points where » = 0. If u is of class PL in G,
then # is subharmonic in G (while the converse is obviously false).
Indeed, the subharmonic character of v =logu clearly implies that «
satisfies conditions a) and b) of 1.1. Take then any point (%, y,)
in G and a small ». As v is subharmonic by assumption, we have
v (%9, Vo) = L(v; %y, vo; #) and consequently

% (%, Vo) = €°Fo: W) = el @2, voi1) < L (0 %4, g3 7) -

Hence # is subharmonic by 2.3. We used here the inequality

27 27
1 1
é—njlogf(w)dwélogzt'/f(‘P)d(P, f=o,
0 0

which is valid whenever the integrals involved have a meaning in the
sense of LEBESGUE (for a very elegant proof, see Riesz [T]).

2.18. If # 3= 0 is =0 and upper semi-continuous in G, then # is of
class PL there if and only if ue* is subharmonic for every choice of %
in every subdomain G’ in which % is harmonic (BECKENBACH [1], for
continuous #; the following proof for general # is based on unpublished
remarks of S.Saks). The necessity of the condition being obvious by
2.12, let us prove that the condition is sufficient. Let G’ be any
domain comprised in G together with its boundary B’. Let H be con-
tinuous in G’ 4 B’, harmonic in G, and v = logu << H on B’. By
assumption #e~# is subharmonic in G’, and we~# is upper semi-con-
tinuous even in G’4 B’, since # is upper semi-continuous and ¢~¥ >0
is continuous there. The reasoning of 1.15 applies therefore to ue ¥
and since e % <1 on B’, we obtain ue~# =<1 in G’ and finally
v = logu = H in G’. That is, v = logu is subharmonic in G, since v
clearly satisfies conditions a) and b) in 1.1 also.

2.14. If u,, u, are subharmonic in G, then %, 4+ %, is clearly also
subharmonic in G, while %, #, will generally not be subharmonic there.
On the other hand, the class PL is closed both under addition and
multiplication (PRIVALOFF [4]; the following proof is due to S.SAks).
That is, if #,, u, are of class PL in G, then v =1wu,u, and w =u, 4 u,
are also of class PL. For v this is obvious. As to w, consider any
function 4 which is harmonic in a subdomain G’ of G. By 2.13, u, ¢
and u,e* are subharmonic in G’. Hence u e* + u,e* = we* is also
subharmonic in G’. By 2.1% it follows that logw is subharmonic in G.

2.15. For fixed (x,,v,) the function

log[(x — )2+ (v —9,)2]"* for (x,y)+ (%4, %),
—oo for (¥,y) = (%, ¥o)

is a subharmonic function of (x,v) in the whole plane. This follows

logr=1log7 (x,y; %y, yy) :{
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from the fact that logz is harmonic for (x,y) + (%,,7,), while at
(%0, ¥o) both the value and the limit of log# are equal to —eco. If x>0
is a constant, then «logz is clearly also subharmonic. That is, #* is
of class PL in the whole plane, for « > 0. In the case of three in-
dependent variables, for instance, we would have

1 1

v r(x,9,2; %, Vo, %)

1 !
TR Ty e O 32 F e Yas o),

—oo for (¥,9,2) = (%4, Ve, Z)

as the simplest unbounded subharmonic function.

2.16. If u is of class PL in a ring R(%,,%¥,; 01,0s), then
logL (#; %9,7,; 0) is a convex function of logp for p, << p < g,
(Resz [5], partI, p.339). To show that a function f(g) has the
property that logf (g) is a convex function of logg, it is sufficient to show
that o* f (o) is a convex function of logp for every &«>0 (see for instance
RiEsz [1], p. 6). Let us take any &>0. Put 7 = [(x— %)%+ (y — vo)*]*".
Then, by 2.15 and 2.14, 7*u% is of class PL in the ring and hence,
by 2.12, r*u is subharmonic in the ring. By 2.5, L(u7*; %y, y,; 0)
= 0*L(u; %y, Vo; @) is therefore a convex function of logp for
01 <o <@

2.17. If u is of class PL in a disc D (x,,¥,; #), then logA (u; x4,,; 7)
is a convex function of logz for 0 <7 <C# (essentially MONTEL [2],
p.48). This is obvious since the RIEMANN sums used in 2.8 have (by
2.16) the property that their logarithms are convex functions of logr
foro<<r<7.

2.18. For various purposes it is important to approximate general
subharmonic functions by smooth subharmonic functions. We shall
use the following terminology. A function f(¥,y) is of class K© in a
domain G if it is continuous there, and it is of class K®, n =1, if
its derivatives of the first # orders are also continuous.

2.19. Let # be subharmonic in a domain G. Consider a domain G’
contained in G together with its boundary B’. Put

A, y; ) = Al 2,95 7) = [ [ule+&, v+ agdy
Elpge
(see RiEsz [5], part1I, p.343 and p. 345 for historical references con-
cerning the use of these approximating functions in the theory of har-
monic and subharmonic functions). For 7 fixed and sufficiently small,
A, (x,y; u) is a function of (x,%) which is defined and continuous in G’
(cf. 1.10). By 2.1 we have u(x,y) = A4,(x,y; u) in G". As u is bounded
from above on every closed set in G, the theorem of ToNELLI, referred
toin 1.4, may be used to justify the changes in the order of integrations
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which we are going to carry out. First, from u(x,y) = A,(x,y; u) we
obtain by integration 4, (x,y; ) =< 4, (x,y; 4,) = A,(x,y; 4,). That
is (see 2.3) A, (x,y;u) is subharmonic. If we put A, ,(x,y;u)
= A, (x,v; 4,) and so on, then it follows generally that for #» =1
the function 4,,,,,,...,(%¥,y; ) is continuous and subharmonic in G’
for small values of 7, 7,, ..., #, and that u(x,y) = 4,(x,y; %)
= A4, ,nx, v;u) = .... In particular, if we put AP (x,y; )
= A, ,, .. (x,9;u), then for small » the function 4;"(x,y; ) is con-
tinuous and subharmonic in G and we have there u(x,y) < A® (x,y;u).

By 2.8 we have A,(x,y; u) = A,(x,v; u) for » <s. By repeated
integration we obtain generally A" (x,y; u) < AP (x,y; u) for » =s.
Finally, by the same reasoning as in 2. 7, we obtain A% (v, y;u) - u(x,y)
for r > 0.

2.20. If f(x,y) is continuwous in a domain G, then for fixed 7 the
function A4,(x,v; f) = A(f; x,v; #) is easily seen to have continuous
derivatives of the first order in the portion of G where it is defined.
Indeed, the four-step rule for differentiation leads immediately to the
formulas

27

04,.(x,v; 1 i

#M)_ :E[f(x—f—rcosqﬁ, y+ 7sing) cospdg,
0

0 T

_ﬁ%}]:ﬂ :%ﬁff(x-[—ycos(p, y+ 7sing) sinpde,
0

which show the continuity of the first derivatives. If f itself has con-
tinuous derivatives f, = p, f, = ¢ of the first order in G, then we
have simply

04,x,y; ) _

0A,(x,v;
o A (x,y: p), o4, x,y; ) _ 4

dy
and the preceding argument shows that 4, (x, v; f) has continuous deriva-
tives of the second order. Generally, if f is of class K™, then 4,(x,v;f)
is of class K®+1). Applying this to the function A" (x,y; u) of 2.19,
it follows that A% (x,y; u) is of class K®-1 in the portion of G in
which it is defined.

2.21. For easier reference we sum up the preceding remarks in the
following approximation theovem. If 4 is subharmonic in a domain G,
then the sequence u (x,y) = AP (v,y; ), £ =1,2, ..., has the fol-
lowing properties. Let G’ be any domain comprised in G together
with its boundary. Then for large £ the function «{ is defined, sub-
harmonic and of class K® in ¢ and # \\ » in G'.

Actually, the integral means AY(x, y; #) are smoother than it
appears from the preceding statements. More precise information could
be obtained easily from 6. 22.

A(%,9: 9,



12 II1. Criteria and constructions for subharmonic functions. [18

2.22. For continuous # it follows from 2. 19 and 2. 20 that for
large & the function u? (x,y) = A9, (%, y; u) is already of class K® in
G’ and that 4@ — « uniformly in G’.

2.23. Suppose that the function » of 2.21 happens to be karmonic
in a domain G’ comprised in G together with its boundary B’. Take
any closed set S in G’ and denote by § the shortest distance of S and
of B. Then for » <1/(30) we have, by the mean-value property
of harmonic functions, # =# on S and hence A#® =0 on S,
A = 02]0x2 4 02/0y2 .

2. 24. Denote by S a closed bounded set in the domain G in which
u is subhaimonic. Then the functions ) of 2. 21 satisfy for large %
an inequality

0<[fAu‘3) x,y)dxdy < M,

where M is a finite constant (Riesz [5], part II, p. 353). To see this,
observe that S can be covered by a finite number of closed circular
discs (HEINE-BOREL theorem) and that therefore it is sufficient to
consider the case when S is a closed circular disc D, with radius 7
and centre (x,, y,), comprised in G. We have then by GREEN’s identity

oud® dL R s ;
//Au‘?” (x,v)dxdy —/ e = (u;;“;fgoyyo ), Cy = C(x, Y05 7).

Denote by I the common value of these expressions. Take 7, slightly
larger than ». Write Ly (#) for L (4 ; x4, vo; 7) and L (#) for L (u; %y, ¥,; 7)-
Since Li(r) is a convex function of logz by 2.5 and 2. 21, we have
Li(ry) — Ly(7)

logr; — logy °

By 2.21, 1.4, 2.4 it follows for 2 — oo that

L(r)—L()
log;' — logr < e

I, =

0 <11mIk_

and the theorem is proved.

Chapter III.

Criteria and constructions for subharmonic
functions.

3.1. If u is of class K® (see 2.18) in a domain G and if
Au = 2u/0x® 4 6*ujdy* > 0, then u is subharmonic. Similarly, if
Au << 0, then u is superharmonic. Suppose, for instance, that 4% >0
in G. Let G’ be a domain comprised in G together with its bound-
ary B’. Suppose that H is continuous in G’ + B’, harmonic in G/,
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and =# on B’. We have to show that H = # in G’ also. Suppose
this is not true. Then v = »# — H reaches its maximum at an interior
point (%, ¥,), and we should have there Av = 0, while by assumption
Av=Au — AH = Au>01in G.

8.2. If u is of class K® in G, then # is subharmonic in G if and
only if Au = 0 there (RiEsz [5], part I, p. 335). Proof. Suppose first
that # is subharmonic in G. If Au < 0 at some point (x,,y,) of G,
then # is superharmonic in a vicinity G” of (%,,,), on account of 3.1.
Then # is both subharmonic and superharmonic in G’, and hence
(see 1.1) » is harmonic there. This is impossible, since du <0 in
the vicinity of (x,,y,). Suppose second that Ax=0in G. If¢isa
positive constant, then the function #* = u + &(x? 4 92) satisfies the
condition A#* > 0 in G. Hence #* is subharmonic in G by 3.1. For
¢ —> 0 the function #* converges to # uniformly in G, and the
subharmonic character of # is then a consequence of the following
theorem:.

3.3. Let u# be defined in a domain G. Suppose that there exists
a sequence u; with the following properties. If G’ is any domain
comprised in G together with its boundary, then for large %2 the func-
tion #; is defined and subharmonic in G" and #; — # uniformly in G
Then # is subharmonic in G. Briefly, the uniform limit of subhar-
monic functions is subharmonic (Riesz [5], part I, p. 335). Observe
first that the assumptions clearly imply the upper semi-continuity
of . If (x,,v,) is any point in G, then we have, by 2.1, for large &
and small 7, w; (%, yo) = L (#; %4, ¥y; #) and for £ — oo it follows that
#(%g,Ve) = L(u; %4,vy; #). The subharmonic character of # follows
then from 2.3.

3.4. If a,b are two real numbers, including 4- oo, then m will
denote the larger one of «,b if a4 4+ b and the common value of «, b
if a =5b. We have then the theorem: if u,, #, are subharmonic in G,
then their upper envelope # = %;, u, is also subharmonic in G
(Riesz [5], part I, p. 335). Proof. wu clearly satisfies conditions a)
and b) in 1.1. Let C(%,,v,; #) be any circle comprised in G together
with its interior. As #, and u, are upper semi-continuous, we have
a finite constant M such that w, << M, u, << M on C(xy,v,; 7). We
have then also u<C M on C(x,,Y,; ), while by definition # = u, .
Thus # is comprised between two functions, namely %, and M, which
are summable on C(%,,v,; #) as functions of the polar angle. Hence »
is also summable on C(x,, v,; 7) as a function of the polar angle. At
(%9, o) we have either u = u, or u = u,. If u(xy,y,) = uy(%,,%,), for
instance, then u(x,, vo) = uy (%, Vo) = L (1y; %o, ¥o; 7) = L (%] 24, 9,; 7).
Hence # is subharmonic by 2.3. A similar reasoning shows that the
upper envelope of any finite number of subharmonic functions is sub-
harmonic.
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8.5. Let F denote a family of infinitely many functions which are
subharmonic in a domain G. Suppose that F is a normal family (that
is, every infinite sequence of functions of F contains a uniformly con-
vergent subsequence). If %(x,y) denotes the largest cluster-value of
the values at (x,y) of all the functions of F, then %(x,y) is subhar-
monic in G (MONTEL [2], p. 38, for continuous functions; MALCHAIR [1],
p. 11, for general subharmonic functions). The proof is similar to that
in 3. 4.

3.8. Let there be given, in a domain G, a sequence #, with the
following properties. If G’ is any domain comprised in G together
with its boundary, then for large » the functions #,,#,,,, ... are
defined and subharmonic in G’ and #, = %, = --. in G’. Then either
#, > —o0 in G or u, converges in G to a subharmonic function
(Riesz [5], part I, p.335; cf. 1.2). Proof. Put limwu, = # and suppose
that # = —oo in G. Clearly, —oo =< # < 400 and # is upper semi-
continuousin G. Let (x,, ,) be any point in G such that « (%, y,) > —oo.
We have then, for large » and small 7, —oo << % (%, ¥o) = %y, (%, Vo)
= L (u,; %y, vy; #) and this implies, by 1.4, that L(u; %y, y,; 7) exists
and is =u(x,,y,). Hence # is subharmonic by 2. 3.

3.7. Suppose that # is upper semi-continuous and —oo = % << +o0
in a domain G and that for every (x,,9, in G the integral mean
L(u; xy,v,; 7) exists for small ». If

lim 5 (L(; %o, Yo3 ) — w(o, %) = O
for every point (x,,%,) in G, then # is subharmonic in G (SAks [3],
p- 190; this is a generalization of a theorem of BLASCHKE [1] on har-
monic functions). Proof. Observe that the function u, = u 4 x%/n,
# a positive integer, belongs to the class K, defined in 2.2 and apply
2.3 and 3.6. A similar reasoning shows that if

T 1
Lim 25 (A(w; %o, yo; 7) — #(%o, ¥p) = 0

for every point (x,,v,) in G, then # is subharmonic in G (SzriLRAJN [1],
p- 589). For further theorems of this type see the remarks of SAks
((4], p- 382), and see also Kozakiewicz ([1], pp. 5—6).

3.8. Combining 2.21, 3.6 and 3.2 we see that the class of sub-
harmonic functions consists first of all functions with continuous
second derivatives which satisfy the condition 4 = 62/0x2 4 62/0y2 =0,
and second of the limits of decreasing sequences of such functions
(limits =—oo being excluded).

8.9. Similarly, by 2.22, the class of comftnuons subharmonic
functions consists first of the functions with 4 = 0 as before, and
second of the uniform limits of such functions.



21y 3.5 to 8.13 15

3.10. If u,,%,, ..., #, are subharmonic in G and if &,,x,, ..., &,
are non-negative constants, then obviously o, u, + ay%y 4 -+ 4 &,y
is also subharmonic in G (Riesz [5], part I, p. 335).

3.11. The next few theorems will be concerned with relations
between subharmonic functions and convex functions. These theorems
have the common feature that they can be proved by very simple
computations if the functions involved are sufficiently smooth. It is
then natural to treat the general case by approximation in terms of
integral means (see 2.21). As a matter of fact, in the theory of sub-
harmonic functions this method of approximation was first used in
connection with a problem of this type (the theorem discussed
in 3.12).

3.12. Let % =0 be upper semi-continuous and <+ occina domain G.
Then v = log# is subharmonic in G if and only if e**+f¥y is sub-
harmonic there for every choice of the constants «, § (MONTEL [2],
p. 39 for smooth #; RaADO [2], for continuous #), Proof. The necessity
of the condition follows immediately from 2.12. To prove the suffi-
ciency, suppose that e*#+f¥y — w is subharmonic for every choice of
the constants «, 8 and call this property the property (M). If u is
positive and of class K@ in G, then we have Aw = 0. Explicitly:

Aw = e** Y [Au + 20u, + 2u, + (62 + p2)u] =0

for every choice of x, . As the quantity in the bracket is a quadratic
function of «, f, we obtain readily the inequality uAu — (u3+uZ) =0,
which shows that logu is subharmonic. Indeed, we have Alogu
=(udu — (4l 4 u2)]/u?. If u, still of class K®, satisfies only the
condition # =0, consider first , = #+ 1/n, # a positive integer, and
apply 3.3. Suppose now that # has only the properties specified in the
statement of the theorem. It follows then immediately that the func-
tion A% (x,y; u) of 2.19 also possesses the property (M). As A9 (x, y; u)
is of class K®), logA® (x,y; u) is subharmonic by what precedes, and
as logA®(x,y; u) \logu for »\ 0, the subharmonic character of logu
follows by 3. 6.

8.13. Suppose that f(f) is convex and increasing (and therefore
continuous) for # < ¢ <%, and that #(x,y) is subharmonic in a do-
main G. If # <wu <t in G, then v = f(#) is subharmonic in G
(MonTEL [2], p.42, for smooth functions; BRELOT [1], p. 16, for the
general case). Proof. If f and u are smooth, we have Adv=}"(u) (42 -+ ul)
+ /(@) Adu=0, since /=0, {"=0, 4u =0 by assumption. The
general case can be treated either by approximation (BreLort, 1.c.)
or also directly as follows. Let (x,,v,) be any point in G. Since #
is subharmonic, we have u(xy, y,) = L (#; %, v,; #) for small 7. Since f
is increasing, it follows that v(xy, vo) = f(#(%,, ¥o)) == f(L(4; %, ¥o; 7)) -
Since [ is convex, we have f(L(u; %y, yo; 7)) = L(f(u); %y, Yo; 7)
= L(v; %, ¥y; 7) (see for instance POLvA-SzEGE [1], p. 52, problem 71,
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where the inequality is stated in a somewhat less general form).” Thus
v (%, Vo) = L (v; %y, ¥o; ) and hence v is subharmonic by 2.3 (the
further assumptions stated there being obviously satisfied in the
present case).

3.14. Suppose that f(f) is convex and continuous for #, << ¢ <%,
and that %(x,y) is harmonic in a domain G. If ¢, <<k <4, in G, then
v = f(k) is subharmonic in G (see 3.13 for references). The proof is
the same as in 3.13.

8.15. The theorem of 3.12 can be restated as follows. Suppose
that » is upper semi-continuous in a domain G and satisfies there the
conditions —oo << v <C 400, vE=—oco. If e**+F¥+v is subharmonic
for every choice of the constants «, f, then v is subharmonic, and
the converse is also true., KIERST (see SaAKs [38], p.187) raised the
following question. For what functions f(f) is it true that whenever
f(xx+ Bv+ v) is subharmonic for every choice of the constants «, £,
then it follows that v is subharmonic. According to 3.12, f(f) = ¢’ is
such a function. KIERST found the following curious theorem. If f()
for —oo <t < +oo and v(x,y) for (v,y) in a domain G have con-
tinuous derivatives of the second order, if //(f)>0, and if f(xx+By-+v)
is subharmonic in G for every choice of the constants x, 8, then v is
subharmonic in G. That is, if we restrict ourselves to smooth func-
tions, then every strictly increasing function f(f) has the desired pro-
perty. Proof. Put w = f(ax 4 fy 4 v). The assumption that w is
subharmonic is expressed by the inequality

Aw={"(xx+ By +0) [(vz+ *)*+ (v, + B+ f(ex+ By +v)dv = 0.

Consider any point (x,,y,) in G and choose & = —uv, (%, ¥,),
B = —v,(%y,¥). As f >0, it follows that Av=0 at (x,,7,). Hence »
is subharmonic by 3.2. It is not known at present whether the
assumptions concerning the smoothness of f and v are necessary for
the validity of the theorem.

3.16. SAKs [3] observed that the functions f(f) for which the theo-
rem of 3.15 is non-vacuous are less general than it would appear from
the statement of that theorem. Suppose that 1) f(f) is continuous
with its first and second derivatives for —oo <<t <400, 2) f'() >0
and 3) there exists, in some domain G, a function v(x,y) of class K®
such that f(xx + By + v) is subharmonic for every choice of the con-
stants «, . Then f(¢) is convex. As in 3.15, the proof follows by a
simple discussion of the explicit expression of Af(xx 4 By 4 v).
Again, it is not known whether the theorem remains true without the
restrictions concerning the smoothness of f and v. SaAks (L.c.) modi-
fied the problem by introducing a third parameter y, and studied the
situation where f(xx + By + y + v) is subharmonic for every choice
of the constants «, B, ¥. He found that as a consequence of the
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increased number of the parameters the assumptions concerning the
derivatives of f and v can be dropped. He obtained the following
theorem. Suppose that 1) f(#) is continuous for —oo < f < +o0,
2) v(x,y) is continuous in a domain G, and 3) f(xx + By + ¢ + v)
is subharmonic in G for every choice of the constants «, 8, y. Then
f(#) is necessarily convex and furthermore one of the following four
statements is true. I. f(f) is constant. II. v(x,y) is harmonic.
III. v (x,v) is subharmonic in G and f(?) is increasing for —oo<<f <<+ o0
[that is, f(;) < f(%) for # <<4,]. IV. v(x,y) is superharmonic in G
and f(¢) is decreasing for —oo <{f<C+o0. If f and v are sufficiently
smooth, then this theorem can be proved by a simple argument simi-
lar to that used in 3.15. The hope that the general case can be
treated by approximations has not materialized so far. At any rate, the
proof given by SAKS is essentially a direct proof. The ingenious details
of the proof cannot be reproduced here.

8.17. Suppose that 1) f(#) is continuous for & < ¢ <4, 2) A(x,y)
is harmonic in a domain G, 3) 4, <h <t in G, and 4) u =f(h) is
subharmonic in G. Then f(#) is convex in the interval m <t << M,
where m and M denote the greatest lower bound and the least upper
bound of % in G (MONTEL [2], p. 43, under certain restrictions; Saxs [2],
for the general case). Proof. It is clearly assumed that % is not con-
stant. If the theorem is false, then there exists a linear function
at -+ b such that g(f) = f(¢) -+ a¢ + b reaches a proper local maximum
at a certain point #,, m < {,<< M. That is, g(f) =g (%) and g(¢) is not
constant in the vicinity of #,. The function # takes on the value ¢,
at some point (x,,v,) in G, since m <ty < M, and % takes on all
values ¢ close to £, in the vicinity of (x,,7,), since % is not constant.
The function u = g (k) = f(h) 4+ ah + b has then a local maximum at
(%9, vo) Without reducing to a constant in the vicinity of (x,,7,). On
account of 1.16 this is however impossible since #% is clearly subharmonic.

3.18. We proceed to quote a few applications of the preceding
theorems. Let # be subharmonic in a circular disc D (%, v,; 0)-
Put [(x — %)% + (¥ — 90)2]"®> = » and consider the function I(x,y)
= L(u; %y,%e; 7). Then I(x,v) is constant on every circle C (%, ¥o; 7),
0 <7<, and we can write /(x,y) = A(logr). By 2.6, i(log7) is a
continuous, increasing and convex function of logr for 0 <7 <g.
Hence, by 3:13, I(x, y) is subharmonic in D (%, y,; @), except possibly
at (%9,%,) - To discuss the point (x,,7,), observe that I(x,y) is con-
tinuous there by 2. 6 and 2. 7, and that L (/; %, ¥,; 0) = L(%; %4, Ve; 0)
= u (%, Vo) = L(%,y,) since # is subharmonic. Hence I/(x,y) is sub-
harmonic in D(x,, yo; @) (essentially MoNTEL [2], p. 48).

8.19. Under the assumptions of 3.18 the function a(x,v)
= A(u; %y,9,; 7) is also subharmonic in D (x,, y,; 0) (see reference in
3.18). The proof is the same as in 3. 18.

Ergebnisse der Mathematik. V/1. Radé. 2
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3.20. Under the assumptions of 3.18 the function # will reach a
maximum M(r) on every circle C(%,,%,;7), 0 <<7 <<p. Put M(0)
= u(xy,Y,) and consider the function u(x,y) = M(7), r = [(x — %,)2
+ (v — ¥0)2]"%. Then p(x,y) is subharmonic in D (x,, v,; 0) (essentially
MonTEL [2], p. 41). On account of 3.14 this theorem is, except for
minor details, a consequence of the fact that M(7) is a convex func-
tion of logr (essentially Riesz [1]). To prove this property of M(r)
take 7,7, such that 0<» <7,<<p. We have to show that
M(r) < alogr + b for r,<<v<7,, where alogr 4+ b is the linear
function of logr which takes on the values M(r), M(r,) for r =7,
7 = 7, respectively. Consider the function H(x,y) = alog[(x — x)?
4+ (v — v)2*2 4+ b. Then H is harmonic and we have H = # on the
boundary of the circular ring R (%, V,; #;.7,) by the definition of M(r)
and of a,b. Hence (see 1.1, condition c)) we have also H = % on
C(xy,vy; 7) for v, <7 <7, and consequently M(») < alogr + b for
r<r<t,.

38.21. If in the statements of the theorems in 3.18 to 3.20 we
assume that # is of class PL (see 2.12), then it follows immediately
that the functions I(x,y), a(x, ), u(x,vy) are also of class PL (see 3.18
to 3.20 for references).

3.22. Suppose that 1) # = —o0, 2) —c0 < u < 400 and 3) # is
upper semi-continuous in a domain G. If # is a convex function of
x for every fixed value of y and a convex function of y for every
fixed value of x, then # is subharmonic in ¢ (MoNTEL [2], p. 37, for
continuous #; MALCHAIR [1], p. 7, for the general case). Proof. Take
any circle C(%,,%,; ) comprised in G together with its interior. Take
a sequence of functions g, such that g, is continuous and g, # for
(x — %0)2 + (y — v0)2 =72 (cf. 1.3). The convexity properties of u
and the inequality # = g, imply that
(%, o) = Fl&v o+ 7, Yo+ k) + & (% —h, Yo+ k) + & (% — 1, yo — &)

+ & @ + A, yo — )]
for k% + k2 = ¢, Subdivide C(x,,¥,; #) into # equal arcs by points
(%o + Pi, v + ki), =1, ...,n. Write the preceding inequality for
ki, k;,,2=1,...,n. After addition, it follows for # — oo that
w(%y,ve) = L(g; %, % 7). By 1.4 this implies that L (u; %, y; 7)
exists and is =u(x,,9,) . Hence # is subharmonic by 2.3.

As a special case of the preceding theorem, a function «(x,y) is
subharmonic if the surface z = u(x,y) is convex in the sense that it
is intersected in a convex curve by every plane which is parallel to
the z-axis. Functions # with this property were the first ones to be
considered as generalizations of convex functions of a single variable.
Subharmonic functions with such special convexity properties were
studied in detail by Mo~TEL [3] and by VALIRON [1].
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8.28. If # = 0 is subharmonic in G, then for &« > 1 the function
v = u* is also subharmonic, since #* is increasing and convex if & >1

(cf. 3.13). More generally, if #,, ..., u, are subharmonic and =0 in
G and if & > 1, then u = (4§ + --- + uf)Y* is also subharmonic. If
Wy, ..., u, are of class K@, then the relation A« = 0 reduces, by

direct computation, to an inequality which is easily recognized as an
immediate consequence of the inequality of Scawarz. In the general
case the theorem follows then immediately by approximating u, ..., %,
by integral means (see 2.21).

3.24. If u is of class PL in G (see 2.12), then it follows imme-
diately from 2.12 that »* is subharmonic for &« > 0. Conversely, if
#=0 and # =0 in G and if »* is subharmonic for every &« > 0, then
u is of class PL (cf. MONTEL [2], p. 24). Indeed, v, = n(u'" — 1) is
then clearly subharmonic for » = 1,2, ..., and v, logu. Hence
log# is subharmonic by 3. 6.

3.25. We observed (see 2.8) that if # is subharmonic in G, then
we have A (u; %y, v,; ¥) = L (#; %y, vy; 7) Whenever the circle C (x,, yo; 7)
is comprised in G together with its interior. We shall consider now
two theorems concerning the characterization of subharmonic functions
in terms of inequalities involving only integral means. To simplify
the statements we restrict ourselves to the case of continuous func-
tions. We have then the theorem: if # is continuous in G, then # is
subharmonic there if and only if A(u; x4, v,; 7) = L(u; %y, ¥,; ¥) When-
ever the circle C(x,,9,; 7) is comprised in G together with its interior
(BeckeENBACH and RaDO [2], p. 668). By 2. 8 the condition is necessary.
To prove its sufficiency, assume first that » is of class K@. Let (%, ¥,)
be any point in G. The TAYLOR expansion yields then L (%; x4, ¥,; 0)
=ty + 10 (o +to) + 01, A(u; %, 50 0) = %y + F 0% (7o + b) + 02,
where u,,7,,%, are the values of u,u;,,u,, at (x,,9,), and o;/¢> > 0
for g >0, 1 =1,2. The inequality A(u; x,,¥,; 0) = L (u; %, 9,; 0)
implies that 7, + {, = 8(0, — 0y)/e%, and for g — 0 it follows that
7o + to = 0. Hence # is subharmonic by 3.2. If # is only continuous,
then the theorem follows by approximating # by integral means (see 2.21).

8.26. Similarly, if # is continuous and positive in G, then logu is
subharmonic there if and only if [A4(42; %y, ¥,; 0)1% = L(u; %4, ¥; 0)
whenever the circle C(x,,yo; o) is comprised in G together with its
interior (BECKENBACH and RADO [2], p. 665). The sufficiency of the
condition is proved by the method used in 3.25. To prove the ne-
cessity, suppose that logu is subharmonic in G. Take any circle
C(xy,%0; 0) comprised in G together with its interior. Let % be
the harmonic function in C(x,,y,; o) which coincides with log# on
C(%9,%o; 0). Denote by g the conjugate harmonic function, and put
f(z) = €%, 2 = x 4+ 7y. According to a theorem of CARLEMAN [1],
we have then [A(|f[%; %, yo; 0)]"* = L(|/]; %o ¥,; 0). Since |f| = ¢, we

2%
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can write this inequality in the form [4 (¢2%; x4, vo; 0)]Y2 == L (€*; x4, ¥, ; 0)-
As logu is subharmonic, it follows that
[A(; %0, 305 @)1 = [A(6*; %o, ¥o; @) = L(e"; %0, ¥0; 0) = L(u; %o, %03 0)-

3.27. The preceding proof depends upon analytic functions of a
complex variable and therefore it does not apply in the case of three
or more independent variables. It is not known at present whether
an analogous theorem holds in the case of more than two variables.
Clearly, the theorems of 3.25 and 3.26 are contributions to the
problem of characterizing subharmonic properties in terms of condi-
tions of the form

[A (w5 %o, yo; @)1 = [L(#; %, 90; @)1V
While the analogous problem for convex functions of a single variable
was completely discussed (Rapé [3]), the general problem for two or
more variables seems to present serious difficulties.

8.28. If # is the limit of a sequence #, of subharmonic functions,
then # is also subharmonic if either #, — # uniformly (see 3.3) or if
%y, % (see 3.6). Mazurkiewicz raised the problem of characterizing
those functions which are limits of subharmonic functions in the sense
of convergence in the mean. This problem was solved by SzpiLrAJN [1],
whose work we shall review presently.

3.29. A sequence of functions f, converges in the mean to a func-
tion f in a domain G if for every domain G’, comprised in G together
with its boundary, the function f, is defined and summable in G’ for

largenand'//[f—f,,[eo for #n — oo,
&

3.80. According to SzPILRAJN, a function # is almost subharmonic
in a domain G if it satisfies the following conditions. a) # is summable
on every measurable set completely interior to G. b) With the possible
exception of a set of measure zero, we have u(x,,vy) = A (%; %4, ¥o; 7)
for every point (x,,9,) in G and for every r such that the circle
C (%9, ve; 7) is comprised in G together with its interior.

3.31. If a sequence #, of subharmonic functions converges in the
mean to a function # in a domain G, then there exists in G a sub-
harmonic function #* such that #* =« almost everywhere in G. Proof.
Take two domains G’, G” with boundaries B’, B” such that G’ 4+B’CG”
and G”+ B” C G. We have then an 7, > 0 such that for every point
(%0, 90) in G’ and for 7 < 7, the circle C(x,,%,; #) is comprised in G”
together with its interior. Consider in G’ the functions 4,(x;v;#) and
A, (x,y; u,) (see 2.19). For fixed » <7, and for large #» we have in G’

|4, (e,930) — A, (5,93 ) | o [ [0t £ 9+ 0) — -6, ) | Ay
g+l

1
gﬂ.nff]u——u,J.
o
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The last integral converges to zero for fixed » and for # — oo, since
#, converges in the mean to #. Hence, for fixed » <<#,, 4,(x,y; u,)
converges to A,(x,y; w) uniformly in G’. But A4,(x,y;u,) is sub-
harmonic in G’ (see 2.19). Hence (see 3.3) 4,(x,y; #) is also subhar-
monic in G’. Finally, we have 4, (x,y; u,) = A,, (x,y; u,) for r; <7,
by 2.9 and hence also 4,, (x,y; u) = A4,,(x,y; #). Consider now the se-
quence u¥ (x,y) = Ay (%, y; u) . By what precedes, this sequence has the
following properties. If G’ is any domain completely interior to G,
then for large & the functions #f, #f,,, ... are defined and sub-
harmonic in G and #} = uf, ;= --- in G’. Hence, by 3.6, either
u¥ > —oo in G or #f converges in G to a subharmonic function #*,
On the other hand, #¥ — # almost everywhere in G by a well-known
theorem of LEBESGUE. It follows that lim#} = #* is subharmonic
in G and #* = u almost everywhere in G.

38.32. If # is almost subharmonic in a domain G, then # is the
limit of subharmonic functions in the sense of convergence in the mean.
Proof. Consider again a pair of subdomains G’, G” as in 3.31. For
small fixed 7 the function 4,(x,y; #) = A(u;x,y; 7) is then continuous
in G”+ B” and we have #(x,y) < A4,(»,y; #) almost everywhere in
G”+4 B”, by the definition of an almost subharmonic function. As a
consequence, the theorem of ToNELLI, referred to in 1.4, permits us
to change the order of integrations necessary to show, starting with
the inequality #(x,y) =< 4,(»,y; #), that 4,(x,y; ») is subharmonic.
Finally, as it is well known, 4,(x,y; #) converges in the mean to «(x, y)
for » > 0 (see for instance MoORREY [1], p. 687). Hence, if we put
Up(%,y) = Ay (%,y; u), then the function #, is subharmonic and con-
verges in the mean to #, and the theorem is proved.

8. 33. Combining 3. 30, 3. 31, 3.32 we obtain the following theorems
(SzpiLraJN [1]). A function # is almost subharmonic in a domain G
if and only if there exists in G a subharmonic function #* such that
# = u* almost everywhere in G. — A function # is almost subharmon-
ic in a domain G if and only if it is the limit, in the sense of con-
vergence in the mean, of some sequence of subharmonic functions.

3. 34. Suppose that a function u satisfies in a domain G condition
a) in 3.30 and that instead of condition b) in 3.30 it satisfies the
following weaker condition b*): With the possible exception of a set
of measure zero, there exists for every point (%,,y,) in G a p(%,, ¥,) >0
such that u(x,,y,) = A(#; x4, v,; 7) for 7 <<p(%,,v,).- Then it does
not follow that # is almost subharmonic in G (SzPILRAJN [1]). Example:

1
log —— 2 2 .
(£.9) og—5——5 for 224 92>0

0 for x2442=0.
3.35. We have the following corollary to 3.33. If # is almost
subharmonic in a domain G, then there exists exactly one subharmonic



22 IV. Examples of subharmonic functions. [28

function #* such that #=u* almost everywhere in G (SzPILrRAJN [1]).
This follows immediately from 2. 10.

3.36. It follows immediately from the definition of an almost sub-
harmonic function (see 3.30) that a conttnuous almost subharmonic
function is subharmonic (SzPiLrAJN [1]).

8.37. As the reviewer could not find in the literature explicit
applications of almost subharmonic functions, he takes the liberty to
call attention to the following fact. Let u, denote an increasing se-
quence of subharmonic functions in a domain G, such that there exists
a finite constant M for which f fu,, <M, n=1,2,..., the integral
being taken over G. By 1.4 the function # =1limu, is then summable
in G and condition b) in 3. 30 is satisfied by # for every point of G.
That is, the limit of an increasing sequence of subharmonic functions is
almost subharmonic as soon as i is summable. In particular, there
exists then a subharmonic function which differs from # at most at
the points of a set of measure zero.

Various important problems lead to increasing sequences of sub-
harmonic functions. We mention only the study of the sweeping-out
process in Potential Theory (see for instance Evans [4], part II) and
the study of the convergence properties of power series of several
complex variables (see MONTEL [2], pp. 56—60 and the remarks in
Riesz [4], p. 90 concerning HArTOGS [1]). It seems that the use of
almost subharmonic functions might be of advantage in such cases.
In a general way, the class of almost subharmonic functions presents
the advantage of being closed under a considerably larger number of
operations than the class of subharmonic functions.

Chapter IV.
Examples of subharmonic functions.

4.1. If u(x,y) is a solution of a differential equation of the form
Au=P, where P is a function of %, y, #, #,, ... etc., then # is sub-
harmonic in every.domain G in which P is =0 (see 3.2). For various
inferences from this remark see BRELOT ([1], pp. 52—55).

4.2. If % is harmonic in a domain G, then —#4 is also harmonic

there, and by 3.4 the functions A =h,0 and |h| =h, —h are sub-
harmonic. For &« =1 the function |4|* is also subharmonic by 3.23.
More generally, if 4, ..., A, are harmonic, then for a=1 the function
# = (|hy|* 4+ --- + |h,|*)Y* is subharmonic, on account of 3.23. If
f(2) =h +74<h,, z=2x+4 1y, is an analytic function of the complex
variable z, then |f| = (h{ 4+ A3)"* is subharmonic by the preceding
remark.
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4. 3. As a matter of fact, |f| is of class PL (see 2.12). This fol-
lows immediately from the remark that log|f| is harmonic at points
where f #+ 0 and that the limit of log|f| is equal to —oo at points where
f=0. The far-reaching implications of the preceding facts were first
emphasized by F.R1esz [1, 3, 4, 5], whose papers contain also a number
of historical references. Subsequent papers by various authors (prac-
tically all the papers quoted in this report) contain many important
applications of subharmonic functions in the theory of analytic func-
tions of a complex variable. MoONTEL [2] and PRIVALOFF [3,4] give
particularly detailed presentations.

4.4. If f= hy + ihy is an analytic function of the complex vari-
able 2 = x + 7y, then A,, A, are called conjugate harmonic functions.
The CAUCHY-RIEMANN equations yield the relations /3, + 43, =2, +42,,
highsy + hyyhs, = O for pairs of conjugate harmonic functions. As a
generalization, three functions #(x,y), v(x,¥), w(x,y) are said to
form a triple of conjugate harmowic functions (BECKENBACH and RADO [1])
if the following conditions are satisfied. 1) #, v, w are harmonic.
2) E=G, F=0, where E=ul+vi+ w2, G=u+ v5+ wi,
F = u,u, + v,vy + w,w,. According to a theorem of WEIERSTRASS,
the surface represented by the equations X =u(x,y), Y =v(x,v),
Z = w(x,v) is then a minimal surface (X, Y, Z are CARTESian co-
ordinates), and conversely every minimal surface can be represented
in this form. As a generalization of 4.3 we have the following theo-
rem (BECKENBACH and Rapé [1], p.653). If u, v, w form a triple of
conjugate harmonic functions, then (42 + v2+w?)"* is of class PL (see
2.12). While the converse is false, it is true that if %, v, w are con-
tinuous in a domain G and if [(# + a)2 + (v -+ b)2 + (w + ¢)2}* is of
class PL for every choice of the constants a, b, ¢, then #, v, w form
a triple of conjugate harmonic functions (BEcKENBACH and Rapé [1],
p. 654). The first theorem follows by an elementary discussion of ‘the
explicit expression for Alog(u? + v? 4 w?)®. To prove the second
theorem, observe that since [(# -+ a)2 + (v -+ )2 + (w -+ ¢)2]'? is of class
PL, the function f == (# + a)2 + (v + b)%2 4 (w + ¢)? is subharmonic
by 3.24. Let C(x,,v,; #) be any circle comprised in G together with
its interior. We have then f(x,, yo) = L(f; %4, ¥p; 7). After some com-
putation, this inequality leads to
0 = (%, Yo)® + v (%0, y0)® + w (%, ¥o)® — L (#? + v2 4 w?; x4, 9,5 7)

—2a[L(u; %y, Yo; 7) — (%, Yol — -+- — 2¢[L(w; %, yo;7) — w (%, ¥p)]-
Clearly, if a linear function of «, b, ¢ has a constant sign, the coeffi-
cients of @, b, ¢ must vanish. Hence u(%,, y) = L(%; %y,%,; 7), and
thus # is harmonic (by the so-called converse of GAuss’ theorem; see

KELLOGG [1], p. 224 or combine 1.1 and 2.3). Similarly v and w are
harmonic. Now that the derivatives of #, v, w are available, the rela-
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tions E =G, F =0 (cf. 4.4) can be proved by an elementary dis-
cussion of the inequality Alogf=o0.

4. 5. Subharmonic functions are related to surfaces of negative Gauss-
tan curvature as follows. Let a surface S be given, in terms of Car-
TEsian coordinates X,Y,Z, by equations of the form X = u(x,9),
Y=uv(x,9), Z=wx,y). Put E=0ul4 i+ w), G=ul+vl+wl
F =wu,u,+ v,v, + w,w,. Then the Gaussian curvature K can be
expressed, as it is well known, in terms of E, F,G. Suppose that
E = G, F = 0 (that is, the surface S is ‘given in terms of isothermic
parameters). If we put £ =G =1, then the expression for K in
terms of E, F, G reduces to K = —(1/24) Alogi. As >0, it follows
that K < 0 if and only if 4logl = 0, that is if and only if 1 is of
class PL (see 2.12). See BECKENBACH and RaDO [2] for various
geometrical consequences of this relationship between subharmonic
functions and surfaces of negative curvature.

Suppose now only that 4 is subharmonic. Then it does not follow
that the Gaussian curvature of the surface is =0. If however 1 is
subharmonic for every representation of the surface in terms of iso-
thermic parameters, then the GaAussian curvature of the surface is
=0 (BeckenBAcH [1]). This follows immediately from 2.13. This
theorem has various interesting geometrical implications (see BECKEN-
BACH [1]).

4.6. We shall consider presently subharmonic functions arising in
Potential Theory (Riesz [4,5] and Evans [4]). We shall use the
general notion of a positive mass-distribution (RaDON [1]). Let us first
recall some properties of the class (B) of point-sets which are measur-
able in the sense of BOREL (BOREL [1], HAUSDORFF [1], KURATOWSKI [1]).
The class (B) can be characterized as the smallest one of all classes K
with the following properties. a) Every closed set belongs to K.
b) If 5;,5,, ..., S,, ... is a finite or infinite sequence of sets belong-
ing to K, then S; +S,+ --- and S,S,--- also belong to K. It
follows easily that if a set S belongs to (B), then the complement of S
(the set of points not in S) also belongs to (B). It is then immediate
that the class (B) can be also characterized as the smallest one of all
classes K* with the following properties. &) K* contains every set
defined by two relations of the form %, < x <x,, v, =y <y,. f) If
S;,S; belong to K*, then S, S, also belongs to K*. y) If S, and S, C S,
belong to K*, then S, — S, also belongs to K*. §) If S;,S,, ..., S,,...
is a finite or infinite sequence of non-overlapping sets belonging to K*,
then S; 4+ S, + - -+ also belongs to K*. The equivalence of these two
definitions of the class (B) has the following consequence. Denote
by (%) the class of all sets which possess a certain property . If
it can be shown that () satisfies the conditions «), §), y), d), then
we can assert that every set of class (B) possesses the property .
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4.". Positive mass-distributions. In the sequel the letters E, e (with
subscripts if necessary) will always refer to sets of class (B).

Given a bounded set E, let there be assigned to every subset e
of E (including the empty set and also E itself) a finite real number
u(e) such that the following conditions are satisfied. 1) u(e) = 0.
2) If e, ¢,, ... is a finite or infinite sequence of non-overlapping sub-
sets of E, then p(e, + e+ ) = pu(e) + ple) + -+ 3) u(0) =0,
where u(0) denotes the number assigned to the empty set. These
conditions being satisfied, w(e) is called a positive mass-distribution
on E. That is, a positive mass-distribution wu(e) is a non-negative (and
hence monotonic) absolutely additive set-function in the sense of
RapoxN [1]. The theory of these set-functions has been developed to
a high degree of efficiency by RapoN and it seems that they are
generally accepted tools in dealing with problems in Potential Theory.
We shall list presently a few facts concerning positive mass-distribu-
tions which will be used in the sequel.

4.8. Let E* be a set containing the set £ on which u(e) is defined.
Define, for subsets e* of E*, u*(e*) = u(e*E) (a product of two or
more sets denotes the set of their common points). Clearly, u* (¢*) is
a positive mass-distribution on E*. If e* CE, then u*(e*) = u(e*),
and if e*E =0 then u*(e*) =0. Roughly speaking, u* vanishes
outside of E and p* is equal to u on E. Using this remark, we can
always assume that p is defined on some set E of a convenient type
(the interior of a large circle, for instance). RADON [1] assumes that
u is defined on an interval given by relations of the form x, =< x <=x,,
y, =¥ <<9y,. While such assumptions simplify the presentation of
the proofs, for the applications it is more convenient to state the
theorems for a general set E of class (B).

4.9. If ¢, Ce,, then clearly u(e,) = ule,) .

4.10. If ¢, Ce, C--- and e=¢; +¢,+ -, then clearly u(e,) —> p(e).

4.11. Given a subset ¢ of E, and an ¢ > 0, we have a closed subset
¢ of e such that u(e) — u(¢) << & (Rapbon [1], pp. 1313—1314). That
is, u(e) is the least upper bound of u(¢') for all closed subsets € of e.
This fundamental property is proved on the basis of the remark at
the end of 4. 6.

4.12. Given a positive mass-distribution w(¢) on E, it might be
possible to extend the definition of u(e) to a class K* of subsets of E
in such a way that the properties 1), 2), 3) in 4.7 and also the pro-
perty expressed by the theorem of 4.11 remain valid for all the sets
of the class K*. RADON [1] shows that in a certain sense there exists
a largest class K* satisfying these conditions, and he calls this class
K* the natural range of definition for u(¢). For instance, if u(e) is
the LEBESGUE measure of e, then the natural range of definition
consists of all sets measurable in the sense of LEBESGUE. The theorem
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of 4.11 expresses the important fact that the natural range of defini-
tion always includes all sets of class (B). In other words, the class
(B) is large enough to possess the closure properties listed in 4.6 and
is also small enough to make valid the theorem of 4.11. As stated
in 4.7, we consider only sets of class (B) in comnection with positive
mass-distributions.

4.13. Let u,(¢) and u,(e) be given on an open set E. If u,(e) and
U5 (e) have the same value for every open subset of E, then u, = p,
on E. Observe that u,,u, have then the same value for all closed
subsets also, and apply 4.11.

4.14. Let us denote generally by s and b the set of the interior
points and of the boundary points respectively of a square. Then we
have the following corollary to 4.13. If py(e) and p,(e) are given
on an open set E, and if u,(s) = p,(s) whenever s + b is comprised
in E, then u, =y, on E. This may be seen as follows. Denote by
S (&) the set of those points of E which are located on the line x = ¢.
If &, ..., &, are distinct, then we have u, (S(&) + -+ + 1, (S(&n)
= p(E). It follows immediately that u, (S(§)) = 0, except possibly
for a denumerable set of &-values. The same holds for w,(S(&€), and
we have a similar statement in terms of the y-coordinate. It follows
that we have a point (x,,y,) with the following property. Denote by
D, the subdivision of the plane by means of the lines x = x, + £/27,
y=19,+7/2" k,1=0,41,... Let s+ b be any closed square of D,.
Then p, (E b) = py(Eb) = 0. On account of 4.9, 4.10 and 4.13 the
theorem follows now immediately if we approximate the open subsets
of E by squares taken from D, .

4.15. The Stieltjes-Radon initegral (Rapow (1], p. 1322). Let u(e)
be a positive mass-distribution given on E. Denote by @ a variable
point of E with coordinates (£,7). We shall write Q = (£,7) in the
sense that we shall use whichever of the notations @ and (&, %) will
be more convenient. Let f(Q) = f(£,7) be a function which is wni-
formly continuous on E. Subdivide E into a finite number of non-

overlapping subsets ¢, ..., ¢,. Denote by d; the diameter of ¢ (that
is, the least upper bound of the distances of pairs of points in ¢;) and
by 6 the largest one of &y, ..., 6,. We shall say that ¢, ..., ¢, form

a subdivision D of E with norm 8. Pick a point Q = (&, n) in ¢,
E=1,...,n, and form the sum X = 2f(Qu) pu(ex), k=1,...,n. In
exactly the same way as in the case of the RIEMANN integral, it
follows that the sum X approaches a limit, depending only upon f
and p, if the norm of the subdivision approaches zero. This

limit is the StieLTJES-RADON integral ff(Q) du(eg). The symbol
B

¢q is used to avoid misunderstandings in case f depends upon fur-
ther variables.
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4.16. Note that the STIELTJES-RADON integral is defined, for the
time being, only for functions which are wuniformly contiumous on E.
We shall consider later one of the various possible generalizations. It
seems unnecessary to state explicitly all the simple properties of the
STIELTJES-RADON integral which will be used in the sequel. As an
example, we mention the following property. Suppose that E; is
a subset of E, such that u(E;)=0. Put E,=F —E;. Then

f 1(Q)duleq) = f f(Q)du(eg). This becomes obvious if we observe
E B,

that we can subdivide E; and E, separately and that w(E,) =0 im-
plies u(e;) = 0 for every subset ¢, of E,.

4.17. An important special case of positive mass-distributions is
obtained as follows. Let w(Q) = w(£,#) be a non-negative summ-
able function on E. For convenience, we shall use notations like
ffw(.f,n) dfdn:ffw(Q)daQ, where the symbol dag is to remind
us of the variable of integration Q = (&, ), of the area-element d&dn,
and also of the fact that we are dealing with a LEBESGUE integral,
in contradistinction with STIELTJES-RADON integrals. Consider now

the set-function u(e) = f / w(Q) dag on E. Obviously u(e) is a positive
e

mass-distribution on E. We have, for every function f(Q) which is
uniformly continuous on E , the relation f F(Q)du(eq) = j f Q) w(Q)dag.
B E

To see this, take a subdivision e,, ..., ¢, of E, and use the uniform
continuity of f in comparing the sums X7 (Qy) p () and

Z[1(Q) w(Q) dag = [1(Q) w(Q) daq.
ex E

4.18. Given the positive mass-distribution u(¢) on E, we have to
define the integral (potential of the negative mass-distribution — u(e))

— [1og pig duteq)-
E

The symbol P(Q denotes the distance of the points P = (x,y) and

Q = (&,7), where Q varies on E and P varies in the whole plane.

The existence and the properties of this potential will be discussed

presently (cf. Riesz [5], part II; note that RIESZ uses a somewhat
different definition of positive mass-distributions).

4.19. Let us put
| —log(1/PQ) for P40,
(B0 =1y = —o0 for P=0Q.

For fixed Q, I(P, Q) is clearly a subharmonic function of P and con-
versely. For fixed Q and P + @, I(P, Q) is a harmonic function of P
and conversely.
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4. 20. Put, for ¢ >0,

l(”)(P’Q)=l“”(x,y;§,17)={l(P’Q) for PQ=o,

—log(1jo) for PQ=o.

For fixed Q, 9 (P, Q) is a subharmonic function of P by 3.4, and
conversely. Clearly, 9 (P, Q) is a continuous function of P and @,
and its continuity is uniform if P and Q vary on bounded sets. Also
1@ (P, Q) \L(P, Q) for o\O.

4.21. Put, for » >0,

27
LP,Q)=1L(x,y; &, n) = ﬁ/l(x—{-f'cosq), y+rsing; &, n)d
0

We find by direct elementary computation the formula /, (P, Q) =1® (P, Q)
(see 4.20).
4.22. Put, for » >0 and ¢>0,

P,Q) =1 (x,y;&,m) —[l<") %+ rcosp,y -+ rsing; §,n)de

By 4.20 and 4.21 we have then I(P, Q) N/, (P, Q) for ¢ 0. Since
I2(P, Q) and I, (P, Q) are continuous, it follows by a well-known theo-
rem of DINI (see for instance POLYA-SzeGH [1], p.225, problem 126)
that i (P, Q) -1, (P, Q) for 6—0 unsformly if P and Q vary on bounded
sets (since such sets are comprised in bounded closed sets). By 4.19
to 4.21 we have for » + o << PQ the formula ! (P, Q) = I(P, Q).
4.23. We define now (cf. Rigsz [5], part IT and DanierL [1])

/z (P, Q) duleq) = flogPQ dpi(eq) = limu (P),

where, for ¢ >0,
o (P) = [1(P, Q) dpu eq) -
E

Since (P, Q) is uniformly continuous if P and ¢ vary on bounded
sets, 4 (P) is a well-defined and continuous function of P in the
whole plane. From u = 0 it follows that «(?)(P) decreases if ¢ >0
decreases, and thus #(P) = lim#(?)(P) exists for every P, the value of
u(P) being possibly equal to —oo. We have —oo =< u(P) < o0,
) (P) \u(P) for 0 x\0, and we can assert also that «(P) is upper
semi-continuous, since we obtained # (P) as the limit of a decreasing
sequence of continuous functions. We shall see now that «(P) is sub-
harmonic.
4. 24. Put, for ¢ >0 and » >0,

25

u? (P) = u® (x,y) */umchow y+7sing)dg.
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Since 1) (P, ) is continuous (see 4.20, 4.23), we obtain by an ob-
viously permissible change in the order of integrations the formula
u® (P) = / I°(P,Q)du(eg). On account of 4.22, I”(P,Q) - I.(P, Q)
E
uniformly for ¢ > 0. Hence «;” (P) — f L.(P,Q)du(eg) for 0.
B

4. 25. Since I (P, Q) is a subharmonic function of P (see 4.20) we
have, by 2.3, (P, Q) =) (P, Q). Hence (see 4.24), 4 (P) = u'(P).
Thus #( (P) is subharmonic by 2.3. Suppose now that the point P
has a positive distance § from the set E. For ¢ < /2, » < /2 we
have then by 4.22 and 4.24

w2 (P) = [19(P, Q) dp(eg)= [L(P, Q) dpu(eq)= [19(P, Q) d(eq)=u (P)..
E E E

Consider then an open set O such that PQ>d>0 for P in O and Q
in E. By what precedes, we have for P in 0, » << /2, o0 < d/2 the

relations % (P) = #(P) and #?)(P) = f I(P,Q)du(eq). The first
E

relation shows that #)(P) is harmonic in O (converse of Gauss’
theorem, see KELLOGG [1], p.224). The second relation shows that
#(P) = limu® (P) = 4@ (P) in O for o< /2. Thus #(P) is also
harmonic in O.

4.28. As u(P) is the limit of a decreasing sequence of subharmonic
functions #{) (P), it follows by 3.6 that either # = —oco in the whole
plane or # is subharmonic in the whole plane. The first case is ex-
cluded by the remark that # is harmonic outside of a sufficiently large
circle (see 4.25). Consequently the potential

[log au(eg)

s subharmownic in the whole plane (Riesz [5], part II). In particular
(see 1.10), # > —oo almost everywhere.

4.27. Let E, be an open subset of E, such that u(E;) =0. Put
E,=E — E,. We have then (see 4. 16)

w)(P) = [19(P, ) du(eg) = [1(P, Q) dpueq),
E E,
and consequently (see 4.23)
= [1P, Q) dpuleq).
E,

Hence, on account of the remark at the end of 4.25, #(P) is harmonic
in E,. Summing up: the potential u(P) is harmonic on every open set
which contains no mass.
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4.28. As @\ u for 6O, we have (see 1.4, 4.24, 4.21, 4.23)
L(w; x,y;7) = lUmL; x,y;7) = lirr}}u‘,‘”(P) Zflf(P: Q) du(eq)
E

>0
— [10(P, Q) dp(eq) = u(x, ).
E

These formulas throw a new light on the definition of the potential
u(P) given in 4. 23.

4.29. Take a point P, = (x,,v,) and choose » so large that the
set E is completely interior to the circle C(x,,y,; 7). For Q in E we
have then P,Q < and hence [,(P,, Q) =logr (see 4.21). It follows
then by 4.28 that u(E)logr = L(u; %y, vy; 7) -

4.30. On C(xy,v,; ?) we can use the derivatives of u, since u is
harmonic there by 4.27. Let us write C, for C(x,,%,; 7). We have
then (on account of 4.29) the formula

2% g—zds = rd%L(u; %y, Vo; 7) = u(E) .
o

4.31. Consider now any smooth JorRDAN curve I', such that the
set E is completely interior to I. We can choose then the circle
C (%9, ve; 7) Of 4.29 in such a way that I" is enclosed by C (%, vy; 7).
As # is harmonic between and on these two curves, the line integral
of 4. 30 has the same value for both curves. Hence, the total mass u(E)
can be expressed in terms of the potential # by the familiar formula

n(E) = ;= j—;‘ ds,

7
where I' is any smooth JorRDAN curve such that E is completely
interior to I' (Riesz (5], part II).

4.32. The problem of expressing the mass u(e), for every subset
of class (B), in terms of the potential # will be considered in Chapter V.

4.33. Let w(Q) = w(£,7) be a non-negative summable function
on a bounded set E of class (B). Consider the function (see 4.17 for
notations)

o(P) = —//1ogPLQw(Q)daQ.
E

This integral can be interpreted in various ways. One usual inter-
pretation is expressed by the formula (cf. 4.20)

— 1q (o) o
v(P) __}mégl (P,Q)w(Q)dag .
By 4.17 and 4. 23 it follows that

v(P) = — [log g5 du(eq)
E
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where the positive mass-distribution y (e) is defined by p (¢) = [ w(T)dag.
¢

That is, the potentials of mass-distributions with a summable nega-
tive density —w (£, ), as considered in Potential Theory, are included
among the potentials of general negative mass-distributions —pu(e).

4.34. Using the fact that potentials of negative mass-distributions
are subharmonic, it is possible to construct subharmonic functions with
various types of discontinuities (RiEsz [5], part I, p.336; BRELOT 1],
pp. 42—-47; Evans [5], p.421). These examples show the great variety
of new possibilities as compared with the one-dimensional case of con-
vex functions of a single variable.

Chapter V.

Harmonic majorants of subharmonic
functions.

*5.1. Throughout this Chapter, # will denote a function which is
subharmonic in a domain G. Consider a region G’ 4+ B’ comprised in
G and a function H which is continuous in G '+ B’ and harmonic
in . If H=wu on B’, then H = # in G’ also, by the definition of a
subharmonic function. Naturally, one will try to use a harmonic ma-
jorant H which is as small as possible. Suppose that G'4 B’ is a
DIRICHLET region and suppose also that # is continuous. The solution
H of the DirICHLET problem for G’ with the boundary condition H =
on B is then obviously the best harmonic majorant in G’. If how-
ever # is not continuous, then it is not clear that there exists a. har-
monic majorant in G which should be considered the best. This situ-
ation lead to investigations which will be reviewed presently.

5.2. Consider a DIRICHLET region G’ + B’ comprised in G. By 1.3
we have on B’ a sequence of continuous functions ¢; such that ¢ \ %
on B’. Denote by Hj the solution of the DIRICHLET problem for G’
with the boundary condition H; = ¢, on B. Then we have (see 1.3)
H,=H;,, and H; =u on '+ B’, and therefore H; converges in G’
to a harmonic function % = u.

5.8. The function % of 5.2 has the following property. Let H be
continuous and =u in G’4- B’ and harmonic in ¢’. Then H =% in G’
(Riesz [5], part I, p. 334). To see this, give any ¢ > 0. As ¢\ #%
< H + ¢ and as ¢ and H are continuous on the closed set B, it
follows by the HEINE-BOREL theorem that we have a x = x(g) such
that ¢ <H + ¢ on B for k>x. But H,= ¢, on B and H; is
harmonic in ¢’. Hence Hy << H + ¢ for k> x. As ¢ > 0 is arbitrary
and H, \ 4 in G, it follows that » =< H in G'.
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5.4. The function % of 5.2 depends only upon the values of u
on B’ (RiEsz [5], part I, pp. 333—334). Indeed, take a second sequence
@; and denote by Hj; and % the corresponding harmonic functions.
By 5.3 we have & = H}, and #' =< H, in G’ and the theorem follows
for £ — 0o.

Consider now two functions #,, #, which are subharmonic in G and
equal to each other on B’. As we can use then the same sequence ¢
for both functions, there corresponds the same function % to #, and
to u,.

The harmonic function % defined in 5.2 will be called the best har-
monic majorant (B. H. M.} of » in G" (Riesz [5], part I, p. 334). By
what precedes, # depends solely upon the values of # on the bound-
ary B’ of G'. The term best harmonic majorant suggests various
questions which will be considered later in this chapter. It should be
noted that a B. H. M. is only defined for DIRICHLET subregions G'+ B'.
If # is continuous on B’, then we can use ¢, = # as the sequence
leading to %, and it follows that in this special case % is simply the
solution of the DIRICHLET problem for G’ with the boundary condition
h=u on B’. Another important special case arises if G'+ B is a
closed circular disc, while # is a general subharmonic function. The
function H; of 5.2 is then given in G’ by the formula of PoIssoN. As
the PorssoN kernel is positive and ¢\ # on B’, we infer from 1.4
that 4 is also given by the formula of PoissoN with # itself as
the given boundary function. Clearly, a similar remark holds for
DIRICHLET subregions with smooth boundaries.

5.5. Consider in G three JorRDAN curves C,, C,, C3, each of which
is enclosed by the next one to the right, such that the three doubly
connected domains D,,, D;4, D,; bounded by these curves are also
comprised in G. Denote by k,, /4, hyy the B. H. M. of # in Di,,
D,5, D,g respectively. Then %, — h;, is non-negative in D,, and
vanishes continuously on C;, and /,; — /4,5 is non-negative in D,, and
vanishes continuously on C, (RiEsz [5], part I, p. 341). Proof. Con-
sider h,3 — hy,, for instance. Take a sequence of continuous func-
tions @i on C; such that g\ on C;, 7 =1,2,3. Denote by H}* the
solution of the DIRICHLET problem for D,, with the boundary con-
dition H}* = ¢} on C,;, Hi* = ¢} on C;, and let H}? have the same
meaning with respect to D;,. Finally, denote by C, an auxiliary JORDAN
curve in D,, which encloses C,;. Then the sequence Hj = H}* — H}?
converges uniformly on the boundary of the domain D,, bounded by
C, and C, and hence (see KELLOGG [1], p. 248) this sequence converges
uniformly in D;, + C, -+ C, to a limit function # which is continuous
in D,,+C, +C,, equal to zero on C,, and equal to k53— &, in Dy,.
This proves that 4,, — h,, vanishes continuously on C;. By 5.3 we
have H'*=h,, in D;,, and for k— oo it follows that h ,=h,, in D,,.
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If the interior of C, is comprised in G, and if we denote be };2
the B. H. M. of # in the interior of C,, then the same reasoning shows
that A, — h,, is non-negative in D,, and vanishes continuously on C,.

5.6. Let G’ be a bounded domain with boundary B’. Using sub-
divisions of the plane into congruent squares in a familiar fashion
(KeLLoGG [1], p. 317), we obtain a sequence of regions G, + B;, which
approximate G’ in the following sense. a) G, + B, CG. b) G, + B,
CGl,q1. c) For every closed set S in G’ there exists an ny, = 7,(S)
such that S is in G, for » > #n,. d) B, consists of a finite number
of JORDAN curves as smooth as desired (in particular, G), + B), is a
DIRICHLET region). The following statements are easy consequences
of the preceding properties. e) Given ¢ > 0, denote by S, the set of
those points in G’ whose distance from B’ is less than ¢. Then for
every £ > 0 there exists an m = m(e) such that B, is comprised in
S, for > m. f) The area of G) converges to the area of G, and
consequently the measure of G’ — G, converges to zero.

5.7. Given a subharmonic function # in a domain G, consider a
domain G’ comprised in G. Suppose that there exists a function H,
which is harmonic and =% in G’ (this assumption is clearly satisfied
if the boundary of G’ is also comprised in G). Then there exists in
G’ a harmonic function A* such that 1) # < A* in G’ and 2) every
function H which is harmonic and =# in G’ is also = #* (RiEesz [5],
part II, p. 358). Proof. Approximate G’ by a sequence G, + B, as
described in 5.6. Denote by %, the B.H.M. of # in G,. By 5.3 we
have % < hy, =< hp,; = Hy in G,. It follows then from the theorem
of HARNACK that the sequence %, converges in G’ to a function /*
which is harmonic in G’ and which satisfies there the inequalities
u < h* < H,. By 5.3 we have also %, = H for every function H
which is harmonic and =# in G and for #n - o it follows that
A*<H in G

5.8. The harmonic function #* of 5.7 is obviously unique. It may
be called the least harmonic majorant (L. H. M.) of % in ¢’ (Riksz [5],
part IT, p. 357). If G'+ B is a DIRICHLET region comprised in G,
then the B.H. M. % and the L. H. M. %* of % in G’ both exist. Clear-
ly #* =h. As k depends solely upon the values of # on B’ and A*
depends solely upon the values of # in G’, it is not evident that 4
and #* should be identical. The identity of % and A* was established
for special types of subregions G’ + B’ by F. Riesz ([5], part I, p. 334)
and by Breror ([1], p. 18). We shall see later in this Chapter that 4
and %* are always identical.

5.9. The majorants 4 and 4* depend upon # and upon G’. Some
aspects of this dependence were investigated by MALCHAIR [2]. In the
way of illustration we quote one of his results. Consider in a domain
G a uniformly convergent sequence of subharmonic functions .
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Then the limit function # is also subharmonic by 3.3. Denote by
G, + B, a sequence of regions which approximate G in the sense of
5.6, and by %, the B.H.M. of #, in Gj. Then h converges to the
L.H.M. of # in G provided that this L. H. M. exists. The proof is
similar to that in 5.7.

5.10. A lemma on harmonic functions (Riesz (5], part I, p. 341).
Consider two Jorpan curves C;, C, such that C, is enclosed by C,,
and denote by D the doubly connected domain bounded by these
curves. Let % be a function which is continuous on D + C; + C, and
harmonic and #non-negative in D. Take a smooth JorDAN curve I in
D which encloses C;. If =0 on C;, then /(8h/6ne) ds =0, and if

r
h=0 on C,, then f(@h/&ne)ds = 0. Proof. Special case. Suppose

r
that =0 on C,, for instance, and suppose that C, is sufficiently

smooth. Then the first and second derivatives of % remain continuous.
on C;, and the line integral has the same value for I" and for C,
(KELLOGG [1], p. 212). The integral taken on C, is however obviously
==0. If 4 vanishes on C,, and if C, is sufficiently smooth, then the
theorem is equally obvious. General case. Suppose that 2 =0 on C,,
for instance. Take two smooth JORDAN curves Cg, C, such that each
of the curves C,, C,, I, Cy, C, is enclosed by the next one to the right
(C; being close to C; and C, close to C,). Denote by Hy, the solution
of the DIRICHLET problem for the domain bounded by C, and C,
with the boundary condition H;, = 0 on C,,Hy, = % on C,. Apply
the special case of the theorem to Hy, — 4 in the domain between C,
and C,, then to Hj, in the domain between C; and C,, and combine
the resulting inequalities. The case when % = 0 on C, is discussed in
a similar manner.

5.11. F. Riesz ([5], part I) introduced the following quantities in
the study of subharmonic functions. Let # be subharmonic in a
domain G. Take in G a pair of JorDAN curves C,;, C, such that C;
is enclosed by C, and the domain D,, between C; and C, is com-
prised in G. Denote by hyy the B.H. M. of % in D,, and put

F(C,,Cy; u) = 2%] %}Zj s,
r

where I is a smooth JorRDAN curve in D;, which encloses C,, and #,
refers to the outward normal of I The quantity F(C,,C,;u) is
clearly independent of I' (see KELLOGG [1], p. 212). If u;,u, are both
subharmonic in G, then clearly
F(Cy, Cy; uy) -+ F(Cy, Cy; 1) = F(Cy, Co; 10y + 11y) .
5.12. If the interior of C, is comprised in G, then F(C,, C,; u) = 0
(Riesz [5], part I, p.342). Proof. Denote by D,, the domain be-
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tween C; and C, and by D, the interior of C,. Let hy, and h, be the
B.H.M. of # in D,, and D, respectively. Take a smooth JorRDAN
curve I' in D,, which encloses C;. Then

6h 1 6;; 2 _ .
/ 2 ds = 0, Ey/a—ée dS—-F(Cl,Cz:u)’
r

and hence, by 5.5 and 5.10,
6 —k )
F(Cy,Cy; ) = zﬂ/ 12 s = 0.

5.13. Take in G three JorDAN curves C,, C,, C; such that C, is
enclosed by C,, C, is enclosed by C;, and the domains D,,, D4, D,y
bounded by these curves are comprised in G. Then F(Cy,Cy; u)
= F(C,,Cs; u) = F(Cy, Cg; u) (Riesz [5], part I, p.340). Proof. Take
a smooth JorDAN curve I' in D;, which encloses C; and denote by
Bis, yg, hys the B.H. M. of u in D,,, D,,, D,, respectively. Then

F(Cy, Cy; w) — F(Cy, Cy; ) = 5 ‘”L‘;‘a;@ds :

r
and this integral is =0 by 5.5 and 5.10. The inequality F(C,, C3; %)
= F(C,, C;; u) is proved in a similar way.

5.14. Consider the particular case when C, and C, are concentric
circles with centre (x,,%,) and radii 7, and 7,>7,. Denote by &, the
B.H.M. of # in the domain D,, between C; and C, and by C, the
concentric circle with radius 7, 7, <<# <(#,. Then (see 1.5 for notations)

d —
F(Cy,Cysu) = ”%L(hm; %o, Yo 7) -

On the other hand, the reasoning used in 1.42 and 1.13 shows that
L (hyy; %4, 9,; 7) = alogr + b, where alogr + b is the linear function
of logr which is equal to L(u; %y, yo; #,) for r =7, and to L(u; %y, ¥o; 75)
for » =7,. Combining these relations, we obtain the formula (RiEsz [5],
part I, p. 340)

. . L(u; %, Y05 ¥2) — L(u; %y, ¥0; 7’1)
(C1,Cy5 %) = log7, — logv,

5.15. The theorems of 2.4 and 2.5 appear now, on account of
5.14, as special cases of the theorems of 5.12 and 5. 13.
5.16. Given a potential (cf. 4. 23)

u(P) = — [log 5y dn(eq),
G

where G is a bounded domain, there arises the problem to express the
positive mass-distribution u (¢) in terms of ». If the distribution u(e)
is smooth, and if G’4 B’ is a region in G with smooth boundary B’,

3*
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then the problem is solved by the classical formula (KELLoGG [1],
pp- 155—156)

1 1
= 7/ Au(x,y)dxdy =5

G B
where #, refers to the exterior normal with respect to G’. For a
general u(e) the problem was solved by G.C.Evaxs in terms of a
certain function of curves (EvANs [1], p. 271 and p.285). We shall
discuss this problem presently in terms of the quantities F(C,, C,; u)
introduced by F. RiEsz.

5.17. The potential % (P) of 5. 16 is subharmonic in the whole plane
(see 4.26) and therefore the preceding theorems apply to «»(P). Take
two JorDAN curves Cy, C,, such that C; is enclosed by C,, and G is
completely interior to C;. By 4.27 the potential # is harmonic on
and between C; and C, and hence # is its own best harmonic majorant
in the domain between C; and C,. By 4.31 and 5. 11 we obtain there-
fore for the total mass u(G) the formula u(G) = F(Cy, C,; u). Con-
sider next two JorRDAN curves C,, C, such that C; is enclosed by C,
and both curves are comprised-in a simply connected subdomain G’
of G with u(G) = 0. Then, by 4.27, # is harmonic in G’ and again
is its own harmonic majorant in the domain between C; and C,. If I
is a smooth JorDAN curve which encloses C; and is enclosed by C,,
then it follows from the preceding remark that

ou
F(Cl,Cz; %)= a_h—eds=0,
r
since # is harmonic in and on I" (see KELLOGG [1], p.212).
5.18. Take now five JorDAN curves C,, ..., C; such that each one

is enclosed by the next one to the right. Denote by D; the interior
of C;, by D;; the domain between C; and C;, and by &, ;; the B. H. M.
of u in D;, D;; respectively. We have then F(Cy,Cy; u) = p(GDy)
= F(C,,Cy; u) (Riesz [5], part II, pp. 331—335).

5.19. To prove the preceding theorem, introduce on G the distri-
butions p'(¢) =u(¢eGD,), p”(e) = p(e(G — GDy)), and the correspond-
ing potentials (cf 4.16)

o'( /logPQ = flog dueg) ,
6D,
1
2—/108P—Q ' (eq) :—flogp—gd#(eQ)-
¢ 6-6D;

Then pu'(e) + u”(e) = u(e) and consequently u'(P) + u”(P) = u(P).
Hence (see 5.11) F(C;,C,; #) + F(C,,Cy; ") = F(C,,Cq; u). We
have, by 5.17, F(C;,C,; u”)=0 and F(C,,Cy; )= (GD,;)=p(GD,).
Repeated application of 5.13 yields F(Cy, C,; #') < F(C,, C5; o). The
inequality F(C,, C,; #) = u(GD,) follows by combining these relations.
The inequality u (GD,) = F(C,, C;; %) is obtained in a similar fashion.
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5.20. Consider now a simply connected domain G’ comprised in G.
Take a sequence of pairs of JorDAN curves Cj, Cy in ¢’ such that
1) C,, is enclosed by C7 and 2) every closed set in G’ is comprised in
the interior of C), for sufficiently large #. Then F(C,C/;u)—> u(G")
(Riesz [5], part II, p.336). This follows immediately from 5. 18, 5.13
and 4. 10.

5.21. By 5.20, u(G’) is determined in terms of % whenever G’ is
a simply connected subdomain of G. A similar reasoning yields the
determination of u(e) for multiply connected subdomains (RiEsz [5],
part I, p. 336).

5.22. From 5.20 and 4.14 we infer the following theorem. If
ui(€), uy(e) are positive mass-distributions on a bounded domain G,
and if the corresponding potentials

u(P) = — [1og iy dm(ed) . y(P) = — [1og 55 dp(eo)
G G

are equal to each other in G, then y,(e) = puy(¢) (remember that we
consider only subsets e of class (B)). For the sake of accuracy it
should be observed that F. R1esz ([5], part II) considers positive mass-
distributions defined in a somewhat different manner. In particular,
his p(e) is defined only for open sets e. The remark that the results
of F. Riesz include the preceding uniqueness theorem is due to Evans
([4], part II, p.203).

5.23. A lemma on sequences of havmonic fumctions (KELLOGG [1],
Chapter XI). Let G’ + B’ be a DIRICHLET region, and G, + B, a se-
quence approximating G’ in the sense of 5. 6. Denote by F a function
which is continuous on G’ 4 B’, by % the solution of the DIRICHLET
problem for G’+4 B’ with the boundary condition 2 =F on B’, and
by 4, the solution of the DirICHLET problem for Gj with the bound-
ary condition %, = F on B,,. Then h, approximates % in the follow-
ing sense. Given ¢ >0, we have an ny, = n,(¢) such that |z — h,|<e
in G, -+ By, for n > n,. This follows by simple e-arguments from the
maximum-minimum principle for harmonic functions.

5.24. Remarks on the formula of GREEN. Let g be continuous to-
gether with its derivatives of the first and second order in a domain G.
Consider a region G’+ B’ comprised in G, such that B’ consists of a
finite number of non-intersecting smooth JorDAN curves. Take a point
(%e> ¥) in G’, and take 7 small enough so that the closed circular disc
with centre (%,,v,) and radius 7 is comprised in G’. Put (see 4.19 to
4.21 for notations)

Lx,y) =L,y %, %), L, y) =1L(x,y; %, ),

27
1 .
g (%9, y0) = ﬁfg(xﬁrcow, Yo+7sing) de.
0
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Denote by H the solution of the DIRICHLET problem for G’ with the
boundary condition H =1 on B, and by % the solution of the
DirICHLET problem for G” with the boundary condition # =g on B’.
The functions H, [, I, depend also upon (x,,%,), but this point will
be kept fixed and therefore it is unnecessary to use notations like
H(x,v; %y,v,) - The function % is independent of (x,,v,), and H, %, {
are all independent of . As g and B’ are smooth, it is easy to justify
the application of GREEN’s identity (KELLOGG [1], p.215) in deriving
the formula

1
80 (i, 30) = — 507 [ [ Lol 3) — H(w.9)) Ag(x,9) dwdy + hlso, 3o
o
5.25. For » -0 we obtain the classical formula
{7
g (%o, ¥o) = —ﬁ//@(x,y; %0, Y0) Ag(x,y) dxdy + h(x,,9,) ,
v

where & =1 — H is GREEN’s function for G’ with pole at (x,,y,).
Conversely, an integration leads back to the formula of 5.24 which
is more convenient in some applications.

5.26. Drop now the assumption that the boundary B’ of G’ is
smooth and suppose only that G’4 B’ is a DIRICHLET region. Other-
wise, let all assumptions and notations stand as in 5.24. Then the
formula of 5. 24 still holds. This is easily proved, on the basis of 5. 23,
by applying the formula to a sequence of regions which approximate G’
in the sense of 5.6.

5.27. If the function g of 5.26 is subharmonic in G, then the
function % is the B.H.M. of g in G’ (observe that g is continuous by
assumption and use 5. 4).

5.28. We proceed to discuss the question raised in 5.8. We start
with the following theorem. Let # be subharmonic in a domain G.
Denote by G’ 4- B’ a DIRICHLET region comprised in G, and by % the
B.H.M. of # in G’. Suppose that u is harmowic in G’. Then h=u
in G’ (Rapd [4]).

5.29. To prove this theorem, consider the approximating functions
uP defined in 2.21. If G” 4 B” is a region such that G'+ B'CG”,
G’ 4 B” C G, then for large % the function »® is defined in G” and is
continuous there together with its derivatives of the first and second
order. Also, #? is subharmonic, and hence A« = 0. By 2.24 we
have

0 gf/duf”(x,y) dxdy <N
&

where N is a finite constant. If S is any closed set in G’, then we

have uP =« and AuP =0 on S for large % (see 2.23). Take now

any point (%,,9,) in G’ and a small . For large &, the function #J
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is then harmonic on the closed circular disc with centre (x,,y,) and
radius 7 (see 2.23) and hence we have

27
1 ’ .
7;;/“?) (g + 7 cosg, yo + 7 sing) dg = ud (xy, yo) = (%, ¥o) -

6
5.380. Using the preceding facts, we obtain from 5.26 the formula

u (50, 90) = — 5 [ [Ty (r,9) — H(x, )] A (x,9) dx dy + 1 (30, o)
)

where A9 is the solution of the DIRICHLET problem for G’ with the
boundary condition AP = u on B’

5.81. As u{ is continuous and #{ \ % on B’ (see 2.21), we have
B\ h for k — oo, where % is the B. H. M. of # in G’ (see 5. 4).

5.32. Give now an & > 0. Observe that [, — H is continuous on
G+ B andl,—H=1—H=0 on B. Hence we have a 4 >0 such
that |l, — H| < e in G'— S5, where Ss denotes the (closed) set of all
those points in G" whose distance from B’ is = . We write now

[t 9) — Hie, 90 du (v, y) dxdy = [ [+ [[ =10 + 1.

& S5 @=8s
By 5.29 we have then If? =0 and [IP|<<eN for large k. As ¢ is
arbitrary, it follows that the integral in the formula of 5.30 converges
to zero. The term A (x,,y,) in that formula converges to % (x,, y,)
(see 5.31). Thus the theorem of 5.28 follows from the formula of
5.30 for & —> oo

5.83. Denote by G'+ B’ a region comprised in the domain G in
which # is subharmonic. Consider a function 4 which is harmonic in
G and define in G a function #  as follows: #'=# in G — G’ and
#'=h in ¢". If ' is subharmonic in G, then let us say that %" is
admissible for #w in G'. We have then the theorem: if G+ B is a
DirICHLET region comprised in G, then there exists in G’ exactly one
harmonic function which is admissible for # in G’ (RaD6 [4]). The fact
that there exists af most ome admissible harmonic function follows
immediately from 5.28 and 5.4. The fact that there exists af least
one follows from the next theorem.

5.34. If '+ B’ is a DIRICHLET region comprised in G, then the
best harmonic majorant 4 of u in G’ (see 5.4) is admissible for u
in G" (EvANs [4], part I, p. 237). This follows immediately from the
definition of the best harmonic majorant.

5.85. If G'+ B’ is a DIRICHLET region comprised in G and if &
and %* denote the B. H. M. and the L. H. M. of # in G’, then &= k*
{RADO [4]). On account of 5.33 and 5.34 this will be proved if we
show that A* is admissible for # in G’, and this fact follows imme-
diately from 5.34 and from the relation u < h* < & .
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Chapter VI.

Representation of subharmonic functions
in terms of potentials.

6.1. Every sufficiently smooth function v can be represented as
a potential plus a harmonic function (KELLOGG [1], p. 219). We shall
formulate this fact in a form suitable for our purposes. Let v be
continuous in a domain G together with its derivatives of the first
and second order. Take a region G+ B’ in G, such that B’ consists
of a finite number of non-intersecting smooth JORDAN curves. From
GREENS identity we obtain the formula

L(v; P;7) = 2%/[1,(1{ 0)4v(Q) dag + h(P), P in G, 7 small,
-

where

1 9I(P, Q) ou(Q
P = = [(u(@ 52 — 1P, ) 512 as
e
is harmonic in G’ (see 1.5, 4.19, 4..21, 4.17 for notations).
6.2. The harmonic function % of 6.1 depends only upon the values
of v on B and in the vicinity of B’ (see the explicit formula in 6. 1).
In particular, %4 is independent of 7. For » - 0 we obtain (cf. 4.33)

v(P) :[Z(P, 0)duleq) + h(P), Pin G,
P

where u is the mass-distribution with density — (1/2z) dv.

6.3. It is a fundamental result of F. Rigsz that every subharmonic
function admits of a representation of this form, regardless of its pos-
sible lack of smoothness. F. Rriesz ([5], part II) gave two proofs for
this theorem. We shall sketch a simplified version, due to G. C. EvaNs
([4], part I, p. 237), of the second proof of RiEsz.

6.4. A selection theovem (special case of RADON [1], p. 1337; see
also Rigsz [5], part I, p. 351). Let there be given on a closed set S
a sequence of positive mass-distributions uy(e) such that u(S) is less
than some finite constant independent of 2. Then there exists a sub-
sequence u;, and a positive mass-distribution u(e) on S, such that

[1@ dps,(e0) > [1(Q) dpe)
N N

for every function f(Q) which is continuous on S. The subsequence
Uz, is then said to converge weakly to p on S.

8. 5. Consider now a function # (x,y) = »(P) which is subharmonic
in a domain G. Take a region G - B’ comprised in G. Take an
auxiliary region G” -+ B” such that G'4+ B'CG”, G"+ B”CG and B”
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consists of a finite number of smooth non-intersecting JORDAN curves
I'7,i=1,2,...,7. Denote by D/ a narrow doubly connected Diri-
cHLET domain which contains I'/ in its interior and by %; the B. H. M.
of # in DY. Define a function # in G as follows: # = u in G — 2D}
and % =#; in DY, 4=1,2,...,7. Then # is subharmonic in G (see
5.34). Also, % is harmonic on B” and in the vicinity of B”, and # =«
in and near to G’ 4 B’.

8. 6. Consider now the functions #} (v, y) = A, (¥, y; u) defined in

2.21. We have by 6.1 the formula
- 1 —.
L@d; P;r) = 2_”//1,(13, 0) Aup (Q) dag + My (P),
o

P in G”, k large, 7 small.

8.7. By 2.23 we have % =u on B” and in the vicinity of B”.
Hence hy, is independent of k, because h;, depends only upon the values
of #? on and near to B” (see 6.2). We can write therefore % instead
of hk .

6. 8. Define, for large %,

frle) = 5 [[472 (@) dag, eCC”+B".

We have then by GREEN’s identity
c9a® —
6"+ B = o [T as = L [0% a.
B B”
Hence we can apply the selection theorem of 6.4 and we obtain on
G” + B” a positive mass-distribution u(e), such that a certain sub-
sequence u, converges weakly to u on G” - B”.
8.9. By 6.7 and 4.17 the formula of 6.6 can be written in the

form
L@p; P;7) = [4,(P, Q) dualeq) + h(P), Pin G,
G+ B”
since uy(B”) is clearly equal to zero. For k= k,, » > oo we obtain
by 6.8 and 2.21
L(u; P;r)=|1L(P,Q)duleg) + h(P), P in G".
¢ 5B”
For P in G’ we have u = u by 6.5, and for » — oo it follows by 2.7
and 4. 23 that
w(P) = [1(P,Q)dule)) + MP) = [+ [ +h(P)
6" +B” ¢ ¢"+B -
for P in G’. The second integral on the right is a harmonic function
of P in G (see 4.25). Hence we have the following theorem.
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6.10. If # is subharmonic in a domain G, and if ¢’ is a domain
completely interior to G, then there exists in G’ a positive mass-
distribution u(e) such that

u(P) = —flogj}Q du(eg) + H(P), Pin G,
¢

where H is harmonic in ¢’ (Riesz [5], part II).
6.11. We shall see now that the distribution u(e) is unique. Put

v(P) = —/1ogPiQ duleg), Pin G
2

Take in G’ any two JorRDAN curves C,, C, such that C, is enclosed by
C, and the interior of C, is comprised in G’. We have then (see 5. 11)
F(C,,Cy;u)=F(C,,Cy;v) + F(C,,Cy; H). But F(C,Cy; H)=0,
since H is harmonic in and on C,. Hence F(C,,C,; v) is univocally
determined by #, and by 5.20 and 4.14 it follows that u(e) is uni-
vocally determined on G'.

6.12. More generally, consider two domains G}, G; completely in-
terior to G, and denote by u,(e), u,(e) the distributions which corre-
spond to #,,#, in the sense of 6.10 and 6.11. Then u,(e) = u,(e) for
every set e of class (B) which is comprised in G{G;. This follows by
a reasoning similar to that in 6. 11.

6.13. Let G be a domain and g (e) a set-function which is defined
only for sets ¢ which are completely interior to G (that is, the limit
points of ¢ are also comprised in G; we only consider sets e which are
measurable in the BorEL sense). If otherwise si(e) possesses the pro-
perties required in 4.7, then g (e¢) will be called a gemeralized positive
mass-distribution on G. For such a distribution g it might happen
that the least upper bound of s (e), for all sets e completely interior
to G, is equal to —o0.

6.14. Let E be a set [measurable (B)] completely interior to G.
Considered on E, the u of 6.13 is clearly a positive mass-distribution
in the original sense of 4.7. Hence we can consider on E STIELTJES-
RaDON integrals in terms of pu.

6.15. If % is subharmonic in a domain G, then there exists on G
a univocally determined generalized positive mass-distribution g (e)
(see 6.13), such that for every domain G’ completely interior to G

we have 1 . - ’
w(P) = — [log oo dji(eg) + W(P), Pin G,
¢ 7

where % is harmonic in G’ (Rigsz [5], part II; cf. 5.22). This follows
immediately from 6.10 and 6. 12.

6.16. Consider a DIRICHLET region G’ B’ and a point P in G’. Then
"GREEN’s function for G’ with pole at P is defined by & (P, Q) =log (1/P Q)
— H(P, Q) where H(P, () is the solution of the DIRICHLET problem
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for G’ with the boundary condition H(P, Q) =log(1/PQ) on B’. Con-
sider next a general bounded domain G. Approximate G by a sequence
G, + B, of DIRICHLET regions as explained in 5.6. If P is a point
in G, then P will be in G, for large ». GREEN’s function & (P, Q)
for G with pole at P is then defined by @ (P, Q)= lim®,(P, Q).
® (P, Q) is a finite, positive and harmonic function of @ in G, except
for Q =P, and we have (P, Q) =1og(1/PQ) — H(P,(Q), where
H(P, Q) is a harmonic function of Q in G, even for Q = P (see KEL-
LoGG [1], Chapter IX for information concerning GREEN’s function).
6.17. Let there be given in a bounded domain G a positive mass-
distribution g (¢) in the generalized sense of 6.13. Consider

w(P) = —[6(P,Q)djie)), Pin Gy,
Gr

where the sequence G; approximates G in the sense of 5.6. We have
more explicitly (see 6.16)

w(P) = — [log g dji(eq) + [ H(P, Q) dfileq)
Gr Gr

Thus v; appears as the sum of a subharmonic function and of a har-
monic function. Hence v, is subharmonic in G,. Clearly v; decreases
if & increases. By 3.6, either v, —~ —oo everywhere in G, or v; con-
verges to a subharmonic function v in &¢. In the latter case we write
o(P) = —[®(P, Q) dji(eq) -
¢
On account of its definition, this integral is therefore a subharmonic
function of P whenever it exists. The value of the integral is easily
seen to be independent of the sequence Gy.

6.18. Consider now a function # which is subharmonic in the
bounded domain G. Denote by g the generalized distribution which
corresponds to # in the sense of 6.15. Then the integral of 6. 17 exists
if and only if we have some harmonic function which is =# in G. If
this condition is satisfied then

[6(P, Q) dji(eq) = h(P) — u(P)
&)

for every harmonic function which is =# in G (Riesz [5], part II).
Proof. Suppose first that we have a harmonic function 4 =« in G.
Take a domain G’ completely interior to G and introduce again the
auxiliary region G”+ B” and the auxiliary functions %, #9 as in 6.5
and 6.6. Denote by &(P, Q) the function obtained from GREEN’s
function for G” if we replace I(P, Q) by [, (P, Q) (see 4.21). We have
then by 5.24, 6.7, 6.8 the formula

L(@p; P;7)=— [6/(P, Q) dus(eq) +1(P), Pin G’ klarge, 7 small,
G+ B
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where /; is the solution of the DIRICHLET problem for G” with the
boundary condition ;= on B”. For P in G’ it follows, by a rea-
soning similar to that in 6.5 to 6.9, that

L(i; Pi7) = — [6/(P. Q) dpleg) + B(P), Pin ¢,
¢+ B”
where the harmonic function % is determined by the condition % =
on B”. It follows from the definition of # (see 6.5) that =4 in
G”+ B” and # = # in G. We have therefore

B(P) — L{w; P;7) = h(P) — L(i; P;7) = [6(P, Q) diileq)
)

since gi(¢) = pu(e) on G’, by 6.8, 6.9, 6.10, 6.15. Denote by @, (P, Q)
the function obtained from GREEN’s function for G if we replace
I(P, Q) by L,(P,Q) (see 4.21). Let G” approach G in the sense of 5.6.
Then ® #®, and by a well-known theorem ot DiNI the convergence
is uniform on every closed set in G (and hence on every set completely
interior to G), since @, and @, are continuous. We obtain for G"— G

the inequality %(P) — L(u;P;7) = [®,(P,Q)dfileg). For r—0 it
dr
follows, by 6.17, that A(P) — u(P) = [ ® (P, Q) dji(eg) for P in G’
G'r

As G’ is any domain completely interior to G, the preceding inequality
proves both the existence of the integral f & (P,Q)dp(eq) and the
é

inequality asserted in the theorem. Conversely, suppose that the
preceding integral exists. Consider the functions v, of 6.17 relative
to the distribution & which corresponds to the given subharmonic
function #. By the definition of g (see 6.15) we have u(P) = v;(P)
+ i (P) for P in G, where h; is harmonic in G;. If % increases,
v, decreases and hence %; increases. By the theorem of HARNACK,
Iy, — h* where either A* is =-+oo in G or A* is harmonic in G. Clearly
the first case is incompatible with our present assumptions. For
k— oo we obtain therefore (cf. 6.17)
u(P) = —[®(P, Q) dja(eq) + #*(P), PinG.
¢

But s and @ are both positive, and hence 4* =« in G. The existence
of a harmonic majorant for # in G is proved.

6.19. The harmonic function %#* of the last formula of 6.18 is
actually the least harmonic majorant of # in G. Indeed, if % is any
harmonic majorant of # in G, then we have by 6. 18

7i* (P) = u(P) +f(s5 (P, Q) djileq) = u(P) + (h(P) — u(P) = h(P).
G
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We have therefore the theorem: If # is subharmonic in a bounded
domain G and if there exists a harmonic majorant for # in &, then %
can be represented in the form

u(P) = —[6(P,0)dfi(eq) + W*(P), PinG,
Q

where 4% is the least harmonic majorant of # in G and g is a generalized
positive mass-distribution on G (Rigsz [5], part II).

6.20. If » is a smooth subharmonic function, then the corresponding
distribution can be expressed in terms of the LApLacian Au (see 6.2
and 6.11). It is then natural to expect that the preceding theorems
can be discussed in terms of the generalized Larracians introduced
by various authors. It seems that no explicit discussion was given as
yet on this basis (cf. the remarks of F. Riesz in WIENER [1], p. 7).

6.21. In the light of the theorem of 6.10, the theory of subhar-
monic functions appears as a chapter in potential theory. It is beyond
the scope of this report to follow up the implications of this situation.
The reader desiring further information will find a wealth of inter-
esting material and a large number of references in FrosTMAN [1],
Evaxs [4], KeLLoGa [1].

6.22. The theorem of 6.10 implies that the study of subharmonic
functions #n the small can be based upon a study of the potential
v(P) = f logPQdu(eg). In the way of illustration, we mention two
results obtained in this manner. According to Evans ([4], part I,
PP. 233—235) the potential v (P) is an absolutely continuous function
of x for almost every y and an absolutely continuous function of ¥
for almost every x. As a consequence, the partial derivatives v, and
v, exist almost everywhere. It follows by further discussion that v,
and v, are summable on every bounded measurable set. The applica-
tion to subharmonic functions is immediate on account of 6.10.

6.23. Using the notations of 6.15, consider the integral mean
Ax,y; u) (see 2.19). As A,(x,y; ) is again subharmonic, it will
give rise to a distribution @,(¢) in the sense of 6.15. It might be ex-
pected that g,(¢) will be smoother than the distribution fi(e) corres-
ponding to # itself. By means of 6.15 it follows from results of
THoMPsON [1] that g,(¢) is a distribution with a summable density
6,(P) given by

8,(P) = - A(C(r; P),

where C(r; P) 'denotes the interior of the circle with centre P and
radius 7. The proof depends upon a discussion of changes in the order
of integrations in iterated STIELTJES-RADON integrals.
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Chapter VIL

Analogies between harmonic and
subharmonic functions.

7.1. The general theory of subharmonic functions, as sketched in
the preceding Chapters, was based largely upon a few elementary pro-
perties of harmonic functions. Practically every paper quoted in this
report contains interesting developments concerned with the implica-
tions of more involved properties of harmonic functions. The purpose
of this Chapter is to give a picture of the results obtained in this
direction. The reader will note that the proofs sketched in the sequel
do not always apply in the case of more than two variables. Such
situations lead to interesting problems, some of which seem to be quite
difficult. As a first topic, we shall consider isolated singularities of
subharmonic functions. If u is known to be subharmonic in the vicin-
ity of a point. (xy,%,), this point itself being excluded, then (x,,y,)
will be called an isolated singular point of . Without loss of gene-
rality we can assume that (x,,7,) is the point O = (0,0). We shall
review presently some results of BReELOT [1]. Various details of the
following presentation are based on unpublished remarks of S.SAKs.

7.2. (See 1.5 for notations.) Put L(u;7)=L(x;0,0;7), A=u/log(1/r),
L(A;7) = L(u;7)[log(1/r). By 2.5, L(u;7) is a convex function of logr
and hence of log(1/r) for small . Using some simple properties of
convex functions, we obtain a number of facts concerning L(#;7) and
L(i;7») (Brerot [1], pp.23—37), some of which we shall list now
explicitly.

7.3. For »—>0 both L(#;7) and L(1;7) converge to definite (not
necessarily finite) limits which will be denoted by L(x;0) and L(1;0)
respectively. For small values of # both L(u;7) and L(4; 7) are monotonic,
and for #\ 0 either L(u;7) #L(#;0) =400 or L(u;7)\L(u;0) = —o0o,
and either L(A;7) #L(A;0)=-+o0 or L(d;7)NL(1;0) > —o0. Note
that if L({u;7) increases for » 0 then always L(%;0) = +oo, and if
L(1;7) decreases for »\0 then always L(Z;0) > —oo.

7.4. We shall use 4 to denote the greater one of the numbers a

+ +
and zero. Clearly ¢ < a =< |a| and |a| = 2a — a.

7.5. Let us recall a few facts concerning isolated singularities of
harmonic functions. If %(P) is harmonic in the vicinity of O with the
possible exception of O itself, then we have the expansion (see KEL-
L0oGG [1], Chapter XII)

B(P) = ho(P) + ylog oo + ] LN LISNG s (p) 1y (P,

n=1
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where %, (P) is harmonic even at O, %, (P) is harmonic in the whole
plane with the possible exception of O, ¢ is the polar angle determined
by ¥ =0Pcosp, y=O0Psing, and y, «,, B, are constants. Suppose
that 4 = 0 in the vicinity of O. Then &, =pg,=0 for n =1,2, ...
(see BreroT [1] for references; see also Riesz [5], part II, p.350).
Indeed, we have L(kcosng; #) = hy(0) + ylog(1/r) + «,/(27"). Hence
&, = 2lim# L(hcosng;7), r—>0. But |L(hcosne;r)| = L(|h|;7)
= L(h; 7) = hy(0) -+ ylog(1/r). Thus #"L(hcosng;r)—>0 for r >0,
and hence &, = 0. The coefficient 8, is discussed in the same way.

7.6. Until further notice, # denotes a subharmonic function which
has an isolated singularity at O. The following remark will be useful in
the sequel. Consider, for small 77, a circular ring R: 0<<#'<<(x2-+49?2)'*<7”,
and denote by % the B.H.M. of # in R (see 5.4). Then (cf. 1.12,
1.13) L(h;7) = L(h; 0,0;7) is a linear function alog(1/r) + b of
log(1/r) and we have alog(1/¥)+b=L(u;7"), alog(1/r")+b=L(u;7").
Suppose we are given inequalities L(u;#) = Alog(1/¥)+B, L(u;?")
= Alog(1/r") + B, where A, B are constants. Clearly, it follows that
L(h;7) = Alog(1)r) + B for ¥ <r </r".

7.7. Since # is subharmonic in the vicinity of O, the function

# =1, 0 is also subharmonic there (see 3.4). We shall use the sym-

bols L(;,rt; 7), L(Z; 7) in the sense of 7. 2.
7.8. We shall use V' — O to denote a vicinity of O, less O itself.
It is assumed that # is subharmonic in ¥V — O and on the boundary
of V— 0, except for the point 0. Vicinities of the form 0<Cx%4y2< o2
will be denoted by ¥, — 0. It will be understood that g is so small
+

that L(u;7), L(4;7), L(%fz;r), L(4;7) are monotonic for 0 << 7 << p (see
7.3 and 7.7).

7.9. Suppose that in a vicinity V,—O we have a harmonic major-
ant H for u, and let H = Hy + H, be the expansion of H (cf. 7.5).
Let V— O be any vicinity which contains V, — O. Then # has in
V — O a harmonic majorant of the form H,; + const. This follows
immediately from the fact that # is upper semi-continuous and H, is
continuous in ¥ — O and on the boundary of V' — O, the point O being
excluded.

7.10. Generally there will not exist a harmonic majorant for # in
the vicinity of 0. However, if we have a harmonic majorant H® in
a vicinity V; — O, then we also have a harmonic majorant in any
other vicinity ¥V, — O (BreLoT [1], p.32). To see this, take a vicin-
ity Vo, — O comprised both in V; — O and in V,— 0. Observe that
H® is also a majorant in V, — O and apply 7.9.

7.11. Suppose # has a harmonic majorant in a vicinity V, — O.
Then (see 5.7) we have in V, — O a L.H.M. A*. Let h* = hy+ b,
be the expansion of h* (see 7.5). Consider now any vicinity V — O
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containing ¥V, — 0. By 7.9 we have in V— 0 a harmonic majorant H
of the form %, + const., and hence the L.H.M. B of uin V—0
satisfies an inequality ﬁ* <C by -+ const. in the vicinity of 0. We have
therefore 0 = h* — h* < hy + const. in the vicinity of O. Conse-
quently (cf. 7.5) * — h* is harmonic even at O.

7.12. If h¥, h¥ are the L.H. M. of # in the vicinities V; — O,
V, — O respectively, then Af¥ — h¥ is harmonic even at O (Breror [1],
p.32). Proof. Take a vicinity V, — O comprised both in ¥; — O and
in V, — O and apply 7. 11.

7.13. Suppose that # has a harmonic majorant in a vicinity of O.
By 7.6 we have then a L. H. M. for # in every vicinity ¥V — O and
by 7.11, 7.12, 7.5 the constants y, «,, f, have the same values in
the expansions of all these least harmonic majorants.

7.14. » has a harmonic majorant in the vicinity of O if and only
if L(A;0) (see 7.3) is finite. If this condition is satisfied, then the
constant ¢ of 7.13 is equal to L(4;0) (BReLOT [1], p.32). Proof. The
necessity of the condition is obvious. To prove the sufficiency, assume
that L(4;0) is finite. Give an ¢ > 0 and take a small 7, such that

L(1;7) < L(4;0) + ¢ for 0 <7 <<7#,. Take any 7 such that 0 <<r <7,
and take a sequence 7, such that # >#, >7,> ... > 0. Denote by &,
the B.H.M. of # in the ring 7, << (x% + y%)'* <<7,. We have then
L(u;7,) < (L(A;0) 4+ ¢) log (1/ra) , L(u; 7o) < (L(1;0) + &) log(1/7,), and
hence, by 7.6, L(A";7) << (L(1;0) + ¢€)log(1/r). This shows that In
cannot converge to oo everywhere. By 5.5 we have h,, =h,=u
in the ring 7,<< (24 9?)"*<<7,. Hence, by the theorem of HARNACK,
h, converges in V, — O to a harmonic function 4* =u, and the exis-
tence of a harmonic majorant is proved. By 5.7, h* is the L.H. M.
of u in V,, — 0. Also, the| inequality L(h,;7) < (L(1;0) + &) log(1/r)
implies that we have L(#*;7) =< (L(4;0) + ¢€)log(1/7) for 0<r<<r,.
To estimate the constant y (cf. 7.5, 7.13) in the expansion of A*,
observe that

%* .
y=lim Z*50 10y 4e
r—>0
log —
v
On the other hand, # < 4* in 'V,, — O and hence
t . % .
L(1;0) = lim Z®1) = 1im TN
r->0 log— r->0 10g7

As ¢ is arbitrary, it follows that y = L(4;0).

7.15. If # is bounded from above in the vicinity of O, then « is
subharmonic even at O (BrReLoT [1], p.27). Instead of reproducing
the proof of BRELOT, let us observe that this follows immediately from
the theorems of 3.35 and 3.37 on almost subharmonic functions. Indeed,
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consider for n =1, 2, ... the function u, (P) = u(P) — (1/n) log (1/OP)
for P+ 0, #,(0) = —oo. Clearly, #, is subharmonic in a small disc
D:x? + y2 <2, even at O, since by assumption ¥ << M in D — O,
where M is some finite constant. We have u, <u,,; <M in D,

since #,,;(0) = —oo. Hence, by 3.37, the limit function #* = limu,,
is almost subharmonic in D. We have therefore in D a subharmonic
function # such that # = #* almost everywhere in D. But «* =u
in D — 0, and hence Z =% in D — O by 3.35. As u is subharmonic
even at O, the theorem is proved.

7.16. If. # has a harmonic majorant H in the vicinity of O, then
v = u — H is subharmonic even at O (BRreror [1], p.35). As v =0
in the vicinity of O, this follows immediately from 7. 15.

7.17. (See 7.2, 7.3, 7.7 for notations). If L(;/Lt; 0) is finite, then

# remains subharmonic at O (BReroT [1], pp. 34—35). More generally,
+

if L(A; 0) = 0, then # remains subharmonic at O (SAks, unpublished).
Proof. By 7.7 and 7.14, # has a harmonic majorant in the vicinity
of 0. Denote by H* the least harmonic majorant of % in a vicinity

V,— 0. Then H* = " = 0 and hence by 7.5 we have H*(P) = H,(P)
+ I'log(1/OP), where H, is harmonic even at 0. By 7.14 we have

I'= L(jl; 0), which is equal to zero by assumption. Hence H* is har-
monic even at 0. Consequently # is bounded from above in the vi-
cinity of 0. As u < %, the theorem follows now by 7.15.

7.18. The work of BRELOT contains a number of further results
and applications which cannot be reproduced here. We shall review
presently certain results concerned with generalizations of properties
of harmonic functions in the vicinity of the boundary of the domain
of definition. The first results in this direction were obtained by
LirtLEwooD (2, 3, 4] and Evans [2]. These results were later on ex-
tended by Evans [3] and PrRIvALOFF [1,2]. EvANs obtained his results
by methods in Potential Theory. PRIVALOFF extended some results
obtained by LITTLEWOOD in the special case of the circle to more ge-
neral regions. In the way of illustration we shall give a few details
concerning the work of LITTLEWOOD.

7.19. We shall refer in the sequel to the inequality of HOLDER:
if / and g are non-negative functions, and if >0, ¢ >0 are exponents
such that (1/p) 4 (1/g) = 1, then [fg = ([")'?([g")"4, whenever the
lintegrals involved exist in the LEBESGUE sense (for a particularly
elegant proof, see RIESZ [6]).

7.20. Suppose that # is subharmonic for #% 4 42 <1 and that
L(ju[P;0,0; 0) <GP for p <1, where G is a constant and p > 1. If u
were harmonic, then these assumptions would imply the existence of
a function w (@) such that u(pcos®,osin®) —»w(O) for p—>1 and
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almost every @, and
27
f{u(@ cos®,gsin@) — w(O)PdO—->0 for p—>1
0

(Riesz [2]). In the case of a general subharmonic function LiTTLE-
wooD obtained the following results. ‘

7.21. Under the assumptions of 7.20 there exists a function w(6)
such that

27
/]u(gcos@,gsin@) —w(0)#dO >0, p—1,
0

for every exponent 0 << ¢ << p (LITTLEwOOD [2]). Proof. On account
of the inequality of HOLDER it is sufficient to consider the case
1<<g<p. Denote by ﬁ, the B.H. M. of #» for x2 + 942 <72, It
follows by the inequality of HOLDER from the formula of Poisson
for 4, (cf. 5.4) that A, satisfies an inequality of the same form as u.
It follows that for 1 the sequence A, cannot converge to oo
everywhere. Hence (see 5.7 and 1.4) there exists for » a L.H.M.
h* in x% 4 y2 << 1 which satisfies an inequality of the same form as %.
By the theorem of F. Riesz quoted in 7.20 we have therefore a func-
tion-w (@) such that

27
f]h* (0 c0s0, psin®) — w(O) PdO > 0
0

for ¢ —>1. As w=h, # h* for 7 71, it follows from the preceding
facts, by repeated application of the inequality of HOLDER, that w (@)
satisfies the theorem.

7.22. If u is subharmonic in %% 4 y2 <1 and L(|#|; 0,0; 0) <M
for p <1 (M a finite constant), then limu(pcos®,psin®), ¢ — 1,
exists and is finite for almost every @ (LirtLEwooD [3]). This theorem.
is related to the theorems in Chapter VI as follows. Establish first
the existence of the L. H. M. 2* of # in #* + 92 <1 as in 5.21. Ob-
serve next that the assumption concerning # implies that L (i;; 0,0; o)
is also bounded for ¢ << 0. Hence, for the same reasons as in the

case of #, there exists a L. H.M. H* for % in a? + y2 <1, and we
have H*;ﬁgo, H* = h* in 2 + 92 << 1. By 6.20 we have for #
the representation
u(P) =—f@5(P» Q) dfileq) + h*(P) = v (P) + h*(P)
224yt <1
for x% 4+ 92 << 1, where & is GREEN’s function for the unit circle. We:

can write A* = H* — (H* — h*). Thus &* appears as the difference
of two non-negative harmonic functions, and hence #* has a definite
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finite radial limit along almost every radius (see, for references cover-
ing also the case of more than two variables, GARRETT [1]). Thus the
problem is reduced to the discussion of v(P). LITTLEWOOD shows
that v(P) has a radial limit equal to zero for almost every radius.
The proof depends upon a number of inequalities concerning GREEN’S
function of the unit circle.

7.23. LirTLEWOOD constructed explicit examples which show that
1) in the theorem of 7.21 the condition ¢ < p cannot be replaced by
g = p, 2) the theorem of 7.21 is not valid for ¢ = p =1, and 3) for
0 < p <1 there does not exist, generally, a radial limit w (@), either
in the sense of convergence almost everywhere or in the sense of
convergence in the mean with respect to some exponent (LITTLE-
woobD [4]).

7.24. Theorems on harmonic functions may involve pairs of con-
jugate harmonic functions, that is analytic functions of a complex vari-
able. It is not clear a priori that such theorems can be extended
to subharmonic functions of two or more variables. Questions of this
type were discussed in considerable detail by PrRivaLorF, who gene-
ralized a number of theorems concerned with analytic functions of a
complex variable (PRIVALOFF [3,4]). In the way of illustration, we
quote two of his theorems for the case of three independent variables.
Theorem. Let u# be subharmonic in a domain G in three-dimensional
EvucLipean space. Suppose that the boundary B of G can be divided
into two parts B,, B, in such a way that limu (P) < M, if P approa-
ches any point of By, k=1,2. Let G'4 B’ be a region comprised
in G. Then there exist two constants s and £, 0 <s <1, 0 <<£<C1,
depending only upon G and G’+ B, such that in G’ -+ B’ we have
w=tM,+(1—H)M, f Mi=M, and u=<sM,+(1—s)M, if
M, = M,. Theorem. Let u be subharmonic in a domain G in three-
dimensional EucLibean space. Suppose that there exists a finite con-
stant M such that limu(P) =< M if P approaches any point on the
boundary of G, with the possible exception of a denumerable set of
boundary points Q,,# =1,2,... At these exceptional points it is
known that u(P) — ¢/(PQ,) > —c for every ¢ >0 if P approaches Q,.
Then # == M in G (this wording, due to Saks, is somewhat more
general than the original wording of PRIVALOFF). Let us sketch a
simple proof (due to SAks) of the second theorem. Consider in G the

function u,(P) = u(P) —>¢/(2"PQ,), €¢>0. Clearly, the infinite
n=1

series converges in G, the convergence being uniform in every region
G+ B CG. Hence, by 3.3 and 2.15, %, is subharmonic in G.
Clearly, lim#u,(P) < M if P approaches any boundary point of G. By
1.15 we have therefore #,(P) = M in G. For P fixed and ¢ > 0 it
follows that #u << M in G.

4%
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7.25. To illustrate results of a different type, we quote the follow-
ing theorem. Let I'be a circle and C a convex curve strictly interior
to I. Suppose that u is positive, continuous and subharmonic in and
on I Then

/u’lds§4 wtds for 1 =2, and u’-dsg% wtds for 1<<1 <2,
¢ r ¢ r

where A is an absolute constant (FrRAzER [1]; this is a generalization
of previous results of GABRIEL [1,2], who generalized earlier results
of FEJER-RIEsz [1]. See also Riesz [8]). Proof. We can clearly
assume that I'is the unit circle ¥2 4 y%=1. Suppose first that 1 = 2.
Denote by 4 the B.H. M. of # in I. In I" we have an analytic func-
tion f(z) whose real part is equal to %, say f(z) =h+ih, z=x+1iy.
We can suppose that 4#(0) = k(0). If I', is a concentric circle with
radius 7, such that 7 is slightly less than 1, then we have by a theorem
of GABRIEL [1]

[Ilzds = 2f||ds.

We have %7(0)2 = 0, since 4#(0) = #(0). Using I, to express f(0)2
by the formula of CAUCHY, we obtain

jﬁzds = [hzds.
r, I,
We can write now

Jurds = [n2as < [|fpas =z2f|fpds = 4 [Ids — 4 [k ds = 4[urds,
¢ ¢ ¢ I T, r r

and the theorem is proved for the special case 1=2. If A>2, then
apply the preceding result to ##2% which is subharmonic by 3.23. The
case 1<C A << 2 is discussed in a similar fashion. For further theorems
of this type see FRAZER [2, 8, 4].

7.28. Clearly, the method used in 7. 25 does not apply in the case
of more than two variables. To illustrate a somewhat different situa-
tion, we consider a result obtained by Saks [1] as a corollary to more
general theorems. Denote by G a simply comnected domain in the
interior K of the unit circle #2 4 y2 = 1. Let # be subharmonic in G
and suppose that #(P) > —oo if # approaches any boundary point of
G which is interior to K. Then G = K. This theorem is closely related
to recent results of Evans [5]. The method of Evans suggests the
following proof. Define a function # as follows: # = # in G and
# = —oo in K — G. Then # is subharmonic in K (see 1.1 and 2.3).
Hence the set K — G cannot have ¢mferior points (see 1.8). If K %= G,
then we can assume that the centre of K is not in G. Apply now
the transformation w = ]/; , 2=2x+ iy (cf. RADO6 [1], lemma on p. 2).
As G is simply commected, we have a single-valued analytic branch of
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]/E in G, and the transformation leads to a domain G’ and a subhar-
monic function #/, such that the assumptions of the theorem are
satisfied by G’ and #’, and such that K — G’ does have interior points.
This contradicts a preceding conclusion, and the theorem is proved.
SAKs goes on to show that the preceding theorem is nof valid in

three-dimensional space. Example: consider

1

"ds

u(x,y,z) = v = [(x - 3)2 + y2 + 22]1'2;
0

in the domain G consisting of all points (x,v, 2) in 2% + y2 + 22 <1,
except the points 0 == ¥ <1, y = 0, 2 = 0. We have here one of the
many instances where the existence of the transformations w = ']L/E
leads to theorems in the plane which cannot be extended to spaces
of higher dimensions.
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