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PREFACE

This book is intended to give a working knowledge of the
principles of Mechanics and to supply a foundation upon which
intelligent study of Strength of Materials, Stresses in Structures,
Machine Design, and other courses of more technical nature may
rest.

In the development of this subject, emphasis is put upon the
physical character of the ideas involved, while mathematics is
employed as a convenient tool for the determination and expres-
sion of quantitative relations. Analytical and graphical methods
are given together and each is interpreted in terms of the other.
While the principal stress is placed upon Mechanics as a science,
considerable attention is given to Mechanics as an art. In the
text, in some of the problems, and in many of the illustrative
examples, methods of calculation are suggested by means of
‘which accurate results may be most readily obtained.

The definitions of work and potential energy, together with the
solution of problems of statics by the method of virtual work
are given early. In the treatment of dynamics, the definitions
of kinetic energy and its application to the conditions of variable
motion are introduced as soon as possible.

In equations involving acceleration or energy, the common
commercial units are employed—the pound mass as the unit of
mass and the weight of the pound mass as the unit of force. In
order to clear up the confusion which results from the fact that
physicists use one set of units while some engineering writers
use another, Chapter XVIII is devoted to a discussion of the
various systems.

The author acknowledges his obligations to many of his col-
leagues who have assisted in the preparation of this book. P.
W. Ott of the Department of Mechanics checked the problems
of several chapters. S. A. Harbarger of the Department of
English read all the manuseript and assisted in the final revision.
Professor 0. E. Williams of the Department of Engineering
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NOTATION

Symbols frequently used in this book are:

a

owc‘c-'{hm

aQe

= linear acceleration; apparent moment arm; length of
balance beam; radius of circle; distance on ﬁgure

= a vector of length a. ;

= Area; a force (in few cases).

= breadth; base of triangle; a distance.

= a vector of length b.

= a force (in few cases).

a distance; a constant of the catenary; distance of center
of gravity of balance beam below central knife-edge.

a vector of length c.

integration constant; a force (in few cases).

diameter; a distance; pitch of screw; distance of central
knife-edge above end knife-edges; distance between
parallel axes.

a vector of length d.

= base of natural logarithms; a distance.

= electromotive force; modulus of elasticity.

= coefficient of friction.

= force; total force of friction.

= weight.

acceleration of gravity; a constant, 32.174.

height; height of triangle.

horsepower.

product of inertia.

= product of inertia for axes through center of gravity.

= horizontal force; horizontal vector.

= moment of inertia; electric current.

moment of inertia for akis through the center of gravity.

moment, of inertia with respect to the X axis.

moment of inertia with respect to the Y axis.

= maximum and minimum moments of inertia.

product of inertia.

= radius of gyration; a constant.

= radius of gyration for axis through the center of gravity.

= force which deforms a spring 1 foot; a constant; integration
constant; coefficient of discharge.

length; length of simple pendulum.

mass in pounds, grams, or kilograms.

mean effective pressure.

= moment.

It
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MECHANICS

CHAPTER I
FUNDAMENTAL IDEAS

1. Mechanics.—Mechanics is the science which treats of
the effect of forces upon the form or motion of bodies. The
science of mechanics is divided into statics and dynamics.
When the forces which act on a body are so balanced as to cause
no change in its motion, the problem of finding the relations of
these forces falls under the division of statics. When the forces
which act on a body cause some change in its motion, the problem
of finding the relation of the forces to the mass of the body
and to the change of its motion falls under the division of dy-
namics. The division of dynamics is frequently called kinetics.

Fia. 1.

2. Illustrations.—Fig. 1 is an example of a problem of statics.
The figure shows a 10-pound mass which is supported by two
spring balances. In Fig. 1, I, the balances are nearly vertical.
One balance reads a little less than 5 pounds and the other
" balance reads over 6 pounds. In Fig. 1, II, each balance makes
a large angle with the vertical. The right balance, which is
nearly horizontal, reads 13 pounds and the left balance reads
15 pounds. In this position, the reading of each balance is
greater than the entire weight which is supported by the two
balances. In each position, the balance which is the more nearly

1



g v iFin  MECHANICS [ART. 3
* vertical gives the larger reading. The problem of finding the
relation between the pulls which these balances exert and the
angles which they make with the vertical is a problem of statics.

In Fig. 2, the mass of 10 pounds is supported by one spring
balance and by a cord which runs over a pulley and carries a
mass of 8 pounds on its free end. This system will come to rest
in a definite position. If moved from this position, the system
will return to it after a few vibrations. The problem of finding
this position and the tension in the spring balance is a problem
of statics.

If the cord which runs over the pulley of Fig. 2 is cut or broken,
the 10-pound mass will swing back and forth as a pendulum and
will finally come to rest with the balance in a vertical position.

Fia. 2. * Fia. 3.

This final position is shown in Fig. 8. The 8-pound mass will
fall vertically downward with increasing speed. As the 10-
pound mass swings back and forth, the pull on the balance will
change. The problem of finding the position of either body at
any time after the cord has been severed, and the problem of
finding the pull of the spring balance are problems of dynamics.

3. Fundamental Quantities.—The problem of Fig. 2 involves
position and direction. These are properties of space. The
problem also involves the pull of the cord and of the spring
balance. These are forces. Every problem of statics involves
the two fundamental ideas of space and force. If a body of
different mass were used in place of the 10 pounds, the force
and space relations would be changed. In this problem, the
forces depend upon the masses. All problems of statics involve
force and space. Most problems of staties involve also mass.

A problem of dynamics differs from one of statics in the fact
that it involves the element of time.
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The four fundamental quantities of mechanics are space,
mass, force, and time. A problem of dynamics includes all four
of these quantltles A problem of statics may include all except
time.

Space, mass (or matter), force, and time are elementary.
None of them may be reduced to anything more simple. Con-
sequently, it is useless to attempt to define them. On the
other hand, everyone has a clear knowledge of these quantities.
This knowledge has been gained through one or more of his
senses as a part of the experience of his lifetime.

4. Standards and Units.—While space, mass, time, and force
can not be defined, they may all be measured. To measure
any quantity, it is necessary to have a wunit of measure. If
measurements are to be taken at diverse times and places, it is
necessary to have some standard wnit to which all other units are
referred. These units of measure were originally arbitrarily
chosen. Other units might have been selected just as well.
When a particular unit has once been adopted, however, it is
important that its value be preserved without change, in order
that physical measurements separated by wide intervals of time
may be accurately compared.

5. Length.—Space in one direction is length. There are two
official standards of length preserved by the Bureau of Standards
at Washington. These are the Standard Yard, which is praecti-
cally equal to the British Imperial Standard Yard, and the Stand-
ard Meter, which is a copy of the International Standard.

The length of the International Meter in terms of the wave
length of cadmium vapor light has been carefully determined by
Michelson. If this standard bar and the copies preserved by
various nations should undergo any change, the magnitude of the
variation may be found by a new comparison with the wave
length of this light.

The foot is the unit of length which is commonly used by
American engineers. A foot is one-third the length of the
Standard Yard. Physicists use the centimeter as the unit. In
countries where the metric system has been adopted, engineers
employ the meter as the unit of length.

Length measurements are generally made by means of the
sense of sight. Sometimes the sense of touch, the sense of hear-
ing, or the muscular sense is used in comparing two lengths.
The vision, however, is employed to get the actual reading,
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Space in one dimension is length; space in two dimensions
is area; space in three dimensions is volume.

The idea of space, including length and direction, is gained
by the child through the sense of touch, the muscular sense, and
the sense of sight. The sense of hearing also assists in deter-
mining direction.

The relation between the metric system and the inch is given
with sufficient accuracy for most purposes by

39.370 inches = 1 meter.
2.540 centimeters = 1 inch.

Problems

1. Calculate the length of a foot in centimeters and memorize the result.

2. Calculate the length of a meter in feet and memorize the result.

3. Find the length of a kilometer in feet and in miles and compare the
results with some reference book.

4. Express 100 meters in yards and 440 yards in meters.

6. By logarithms find the number of square inches and square feet in
one square meter. ’

6. A hectare is 100 meters square. Find the value of a hectare in acres.

7. Using five-place logarithms, find the number of cubic centimeters in
one cubic inch. Compare with some handbook.

8. A liter is a cubic decimeter. Find the relation between the liter and
the U. 8. liquid quart.

6. Time.—The standard of time measurement is the mean solar
day. The unit commonly employed in problems of mechanies is
the mean solar second. The subdivision of the solar day into
hours, minutes, and seconds is made by means of the vibration
of pendulumsor other mechanical devices. In making time meas-
urements, the senses of sight and hearing are used in connection
with these mechanical timepieces. =

The child gains his ideas of time from the succession of events
as revealed through any or all of his senses.

7. Matter and Mass.—From the mechanical standpoint, at
least, time and space are simple and easily measured. Time
possesses a single property, that of extent; space has extension
or length in three dimensions. Matter, on the other hand, pos-
sesses many properties, some one of which must be selected and
defined as measuring the amount of material in a given body.
Volume might be chosen as the measure of the quantity of mate-
rial. It is found, however, that the amount of a given material
in a given volume may be greatly changed by pressure. It is
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also found that equal volumes of different materials differ greatly
in their mechanical effects. It is evident, then, that some other
property must be selected to designate the amount of matter.

In Fig. 4, A represents a block of soft rubber resting on some
convenient support. In Fig. 4, IT, a body B has been placed on
this block of rubber. The length of the block is found to have
been shortened. If B is removed, the block A returns to its
original length. If a body C is now placed on A, thereis again
a change in length. If the changeinlength of A due to the body
C is the same as that due to the body

B, the bodies B and C are said to con- o c
tain equal amounts of material. The

amount of material (or matter) in a A A A
body, as thus defined is called the mass ] { 3

of the body. Two bodies have equal
masses if they produce equal deforma-
tions in a third body when they are applied to it in exactly the
same way. The ordinary spring balance is a common form of
a third body for the comparison of masses.

Instead of being supported on an elastic body, the bodies
B and C may be carried on the hand or shoulder of the observer.
The deformation of his muscles is accompanied by a sensation,
called the muscular sense, which enables him to judge roughly
“which body has the-greater mass.

A second method of measurement of mass is by means of
tnertta. This involves the conditions of change of motion and
will be considered in Chapter X VII.

The child gains an idea of mass in the mechanical way by means
of the muscular sense and the sense of touch as experienced when
he supports bodies free from the earth, stops them when moving,
or otherwise changes their motion. The concept of matter in
" general is gained through all the senses.

The pound is the common unit of mass. In the metric system
the unit is the kilogram. Physicists and chemists use chiefly
the gram. Units of mass are generally called “weights.” A
so-called 10-pound weight as used on a beam balance is a 10-
pound mass. =

To convert from the metric system to the avoirdupois system,
the relations are,

15432 grains = 1 gram,
453.6 grams = 1 pound.

Fic. 4,
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The official Standard Pound and Kilogram are preserved by
the Bureau of Standards:

Problems

1. Find the number of pounds in 1 kg. correct to four significant figures.
2. The mass of one cubic centimeter of water at 4°C. is practically one
gram. Find the mass of one cubic foot of water in pounds.

8. Force.—In Fig. 4, the rubber block A isshortened when the
body B is placed on it. The body B is said to exert a forece on
A at their surface of contact. The block A is also said to
exert a force on B in the opposite direction. Force is some-
thing which may exist between two bodies or between two
parts of the same body. Forces occur in pairs. There is a
force from the first body to the second body, and an equal and
opposite force from the second body to the first body. Newton
stated this fact in what is called the Third Law of Motion:
“Action and .reaction are equal and opposed to each other.”

A force always causes some change in the dimensions of a
body. A force always tends to produce some changein the motion
of the body upon which it acts, and does cause some change
unless it is balanced by an equal and opposite force acting on the
body, or by a number of forces equivalent to an equal and oppo-
site force.

Force is recognized and measured by means of the change in
the dimensions and form of elastic bodies, by the muscular sense,
and by the change in the motion of bodies of known mass.

9. Weight.—When the masses of two bodies are compared by
means of the muscular sensation experienced in lifting them, the
observer really gets a comparison of two forces. The comparison
of mass is indirect. If the observer were at the center of the
Earth, there would be no muscular sensation so long as there were
no change in the motion of the body. The Earth exerts a force
on all bodies. This foree is in the form of a pull directed toward
the center of the Earth. This pull or attraction is called the
wetght of the body. When a body is supported and thus pre-
vented from moving toward the earth, the support exerts a
force upward which is equal to the weight of the body.

When a physicistspeaks of the weight of a body, he always means
the force with which the Earth attracts the body. In the com-
mon use of the word, weight generally means mass. When one
says that the weight of a bar of iron is 16 pounds, he is usually
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thinking of the amount of iron and not of the force required to
lift it. Much confusion has resulted from the failure to designate
clearly which of these two meanings is intended.

10. .Relation of Mass to Weight.—The definition of mass in
Art. 7 may now be extended. Two bodies have equal masses if,
at a given point, they are attracted toward the Earth with equal force.
The determination of mass by means of a spring balance or a
beam ‘balance is accomplished indirectly by a comparison of
forces, with the tacit assumption that equal forces produce equal
effects. The first definition of mass is: The mass of a body is pro-
portional to its weight. If F, is the weight of the body in some
convenient unit, and m is its mass, the definition may be ex-
pressed algebraically by the equation,

F, = km, (1)

in which k is a constant. The numerical value of £ depends upon
the units used in expressing F,, and m. These units may be
so chosen that k is unity. If m is expressed in pounds of mass
and F, is in pounds of foree, then £ = 1, and

F, = m. : 2)

Equation (2) states that the mass of a body in pounds is equal to
its weight in pounds.! The word pound has two meanings in
mechanics. It may be used to designate the amount of material
(mass) or to express the force of attraction toward theEarth
(weight as meant by the physicist). In a similar way, the
weight of one kilogram of matter is one kilogram, and the weight
of one gram of matter is one gram. With the systems of units
in everyday use, k is unity. In some systems, k is not unity.
In the absolute system of units k¥ = g, and ¥, = mg. The weight
of a mass of m grams in that system is mg dynes.

The absolute systems of units are not used by engineers in
the solution of problems of statics. In all such problems,
Equation (2) applies. The weight of a body is numerically

equal to its mass. The absolute systems of units and a second

1 A formula is merely a brief statement of the relation of quantities.
The letters of a formula represent the number of units which express the
magnitude of the quantity. In the above equations, m represents the num-
ber of pounds, the number of kilograms, the number of tons, or the number
of grams of material in the body under consideration. Similarly F,repre-
sents the number of units of force in pounds, kilograms, tons, grams, poundals,
or dynes.
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definition of mass will be considered in this book in Chapters
XVII and XVIII.

11. Variation of Weight with Latitude and Altitude.—The
weight of a body at any given position varies as its mass. It
has been shown by experiment that the weight of a body varies
inversely as the square of its distance from the center of the
Earth. If the Earth were a sphere and did not rotate on its
axis, the weight of a body would be the same at all points at the
same level on its surface. Since the Earth is a sphoroid with its
polar radius about 13 miles shorter than its equatorial radius,
the weight of a body increases with latitude. While a pound
mass is an invariable quantity, the weight of a pound mass, as
measured by a spring balance, varies with the latitude. If two
masses have equal weights at one locality, their weights will be
equal at any other locality. Masses may be compared by weigh-
ing at any point. A spring balance, however, which has been
calibrated by means of a standard weight at one locality, can
not be used for the accurate determination of mass at another
locality. (No one would do so on account of the variation of the
spring, even if the force of gravity were constant.)

Since the practical units of force are determined from the
wetghts of the standard units of mass, it is necessary to choose
some standard location for the definition of these units of force.
The sea level at 45° latitude is taken as this standard location.

A pound force is defined as the weight of a pound mass at the
standard location. A pound mass will weigh 0.997 lb. at the
Equator and 1.003 lb. at the Poles on a spring balance which is
correct al the standard latitude. This difference, while impor-
tant in the determination of physical constants, is usually neg-
lected in engineering calculations.

T

Problems

1. Taking the equatorial diameter of the Earth as 8000 miles and the
polar diameter as 26 miles less, and neglecting the effect of the rotation of
the earth, what is the weight at the Pole of a body which weighs 1 pound
at the Equator, if both weighings are made on the same spring balance?

2. What is the relative change in the weight of a body when it is taken
from a point at the sea level to a point one mile higher?



CHAPTER 1II
QUANTITY AND CALCULATIONS

12. Representation of Quantity by Numbers.—There are
several ways of representing the magnitude of a quantity. The
most common method is by means of numbers, as 6 feet, 8 pounds,
10 seconds. A number expresses the magnitude of the quantity
in terms of the unit and means little to one who does not possess
a definite idea of the magnitude of the unit. Two such numbers
give a clear notion of the relative size of quantities without
conveying any information as to the actual size of either. Any-
one will know that 20 dekameters is twice 10 dekameters,
without having any idea as to the size or nature of a dekameter.
If he has learned that a dekameter is 10 meters and that a meter
is 3.28 feet, he will calculate that one dekameter is approximately -
2 rods and that 20 dekameters is nearly 40 rods, or he may reduce
to yards and think of 10 dekameters as a little over 100 yards.
A Frenchman, on the other hand, who thinks in the metric sys-
tem, must translate rods and yards into meters before he can
have a real idea of their meaning.

13. Representation of Quantity by Lines.—The relative
magnitudes of several quantities are frequently represented to
the eye by means of straight lines as in Fig. 5.
Economic data, such as the population and area
of countries and cities, the production and con-
sumption of commodities, etc., are commonly
shown in this way. These lines may be hori-
zontal, as in Fig. 5, or vertical with their lower
ends on the same horizontal line.

For most purposes such lines are merely used
to express magnitude to the eye. The necessary
calculations are made by means of numbers. The operation of
addition, however, may be performed conveniently with lines.
In Fig. 6, it is desired to find the sum of the quantities rep-
resented by the lines ab and cd. The lines are placed together

so0 as to. form one continuous line without overlapping. The total
9

L

Fia. 5.
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line thus formed is the sum of the lines. As may be seen from
Fig. 6, it is immaterial in what order the lines are placed together.

For subtraction, especially when the remainder is negative,
it is desirable to adopt some convention as to positive and nega-
tive direction. Horizontal lines extending toward the right
and vertical lines extending upward are regarded as positive.
In Fig. 6, the line ab runs from a to b. The left end, a, is called
the origin, and the right end, b, is called the ferminus. To find
ab + cd, the origin of the second line is placed at the terminus of

O sl 23
—— e —
01 234567538910
7+3
Fia. 7.
3210
o — e
l Ol 2345617 89 0
r—-—q 73
la b F1a. 8.
lC d
| c d ——C ==
| la b
ia A b I .
ab cd E—qd
! a b | e 4. B
[cc i me—
cdtab L-ab-cd——L—cd S|
Fic. 6. Fic. 9.

the first line. The sum of the two lines extends from the origin
of the first line to the terminus of the second line. This cor-
responds with ordinary addition of numbers. To get the sum of
7 + 3 begin at 7, which is the terminus of the first number, and
count forward 3 steps. This is shown graphically by Fig. 7.

Subtraction is the addition of a negative quantity. To get
7-3, begin at 7 and count backward 3 steps. This is shown by
Fig. 8. Toget ab—cd, begin at the terminus of ab and measure
the length of cd toward the left. This is shown in Fig. 9. The
arrows in Fig. 9 give the direction of the motion.

14. Vectors.—A quantity which has both magnitude and
direction is called a vector quantity. Force is an example of
this kind of quantity. In Fig. 10, ab, cd, and ef are vectors in the
plane of the paper. The vectors ab and ef are equal, since they
have the same direction and equal length.
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In the vector ab, the point @ is the origin and the point b is
the terminus. The vector is considered as extending from the
origin to the terminus, as is indicated by the arrow. The arrow
points from the origin and toward the terminus. The direction
of the arrow is the positive direction of the vector.

When a vector is represented by a
single letter, that letter is usually TV
printed in black face type. In Fig.

11, a and b represent two such vectors. =
The arrow shows the origin, terminus, e £
. Py ——*——
and direction.
Fic. 10.

A vector is described in words by
giving its direction and its length. When the plane of the
vector is known, a single angle is sufficient to designate its
direction. For instance, a given vector is 8 feet in length and
makes an angle of 35 degrees with the horizontal. When the
vectors under consideration are not all in the same plane, two
angles are required to express the direction of each vector. For
instance, a vector is 8feet in length and makes an'angle of 40
degrees with the vertical in a vertical plane which is north 25
degrees east. ;

When it is desirable to distinguish a quantity which has
magnitude but not direction from a vector, such a quantity is
called a scalar quantity. The mass of a body or the number of
individuals in a group is a scalar quantity. In an algebraic
formula in which only the magnitude of a vector is represented
by a letter while its direction is expressed in terms of angles, the

letter is printed in Italics in-

stead of in black face type.

/ / a force, which is a vector.
E When emphasis is put on
both the direction and mag-

nitude of the force, the letter is printed in black face type. When
in the same way as the addition of lines (Art 13). The origin of
the second vector is placed at the terminus of the first vector.
The line which extends from the origin of the first vector to
the terminus of the second vector is the sum of the two vectors.

Fig. 11.

In this book, a letter (such as
P or Q) is used to represent

only the magnitude is stressed, it is printed in Italics.
15. Addition of Vectors.—The addition of vectors is defined
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Fig. 11, 11, shows the addition of the vectors a and b to get their
sum a + b. Fig, 11, I1I, shows b 4 a. The vector a is first
in Fig. 11, I1, and the vector b is first in Fig. 11, III. Fig. 11,
IV, shows both additions in one diagram. The additions begin
at a common origin 0. Since the two lines a are equal and parallel
and the two lines b are also equal and parallel, the four lines
form a parallelogram. The diagonal of this parallelogram is
the vector sum and it is immaterial in what order the two vectors

are added. The sum of three vectors is

found in the same way. Fig. 12, II, repre-

sents the sum of three vectors. Fig. 12,

&7 I, may be regarded as a graphical statement

o of the vectors which are to be added. In

W g this figure all the vectors start from a com-
’ A mon origin. In Fig. 11, I, on the other
. 12, hand, the vectors a and b start from differ-

ent origins.

There are two methods of finding the vector sum. These
are the graphical method in which the lengths and angles are
measured, and the trigonometric (or algebraic) method in which
the lengths and angles are computed.

Problems

1. Given two vectors, a = 15 ft. at 0 degrees, b = 12 ft. at 40 degrees.
Solve graphically for the vector sum, a + b. Use the scale of 1 inch = 5
feet. Measure the vector sum and express the result in feet. Measure
the angle of the vector sum with the first vector and express the result in
degrees. Y

First construct the statement to scale as shown in Fig. 13, I. Then draw
ain Fig. 13, 11, equal and parallel to a of the statement. From the terminus
of a draw b equal and parallel to b of the statement.

2. Solve problem 1 for the vector sum b + a.

3. Find the sum of three vectors: 20 ft. at 0 degrees, 15 ft. at 45 degrees,
and 10 ft. at 110 degrees. Use the same scale as in Problem 1.

4. Find the vector sum of 16 ft. at 10 degrees and 20 ft. at 70 degrees.
Construct the 10-degree angle by means of its tangent. Construct the
60-degree angle by means of its chord. Measure the angle of the veector
sum by means of its chord and check by means of the sine of the angle which
the vector sum makes with a line at 90 degrees.

16. Components of a Vector.—The sum of two or more vectors
is frequently called the resultant vector and the vectors which
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are added are called components of the resultant. The process
of finding the resultant is called composition of vectors. The
process of finding the components is

called resolution. In Fig. 13, the vector vi >

a + b is the resultant of vectors a and 5

b, and the vectors a and b are com- . »
ponents of a + b. Eg. 13.

Problems

1. A vector of 25 ft. at 30 degrees is made up of two components. One
of these components makes an angle of 5 degrees with the reference line
and the other makes an angle of 45 degrees with the reference line. Find
these components graphically.

2. A vector of 20'ft. at 45 degrees is made up of a vector a at 20 degrees
and a vector b which is 12 ft. in length. Find the magnitude of a and the
direction of b. =% ]

The most important kind of resolution

of vectors is that in which each com-

b Pponent is formed by the orthographic

projection of the resultant upon a line

along the desired direction. In Fig. 14,

¢ is a vector which makes an angle 6

with— the horizontal. Its horizontal

component is a and its vertical com-

ponent is b. The lengths of these components are given by
the equations

_a ='ccos b,
b = ¢sin 6.

(In these equations, the letters a, b, and ¢ represent magnitudes
only. For that reason they are printed in Italics instead of in
black face type.)

Figure 15 shows two such orthographic components, which
with their resultant form a right triangle.

When the term component is used without c
qualification, the orthographic component is
generally meant. The process of finding the
orthographic component of a vector in a given

direction is called resolution in that direction. s g

Problems

Solve the following problems graphically and trigonometrically.
3. A vector of 60 ft. is north 27 degrees east. Find its component north
and its component east. Ans. 53.46 ft. north; 27.24 ft. east.
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4. A vector of 45.67 ft. is directed north 27° 07’ west. Find its component
north and its component. west by means of logarithmic functions.

6. Find the component of the vector of Problem 3 along a line which is
north 45 degrees east. Check by means of the sum of the components
along this direction of the east and north components as given in the answer
to Problem 3.

6. The horizontal component of a vector is 18.24 ft. and the vertical
component is 12.48 ft. By means of the tangent find the angle which the
vector makes with the horizontal. Then
find the length of the resultant vector by
means of the cosine (or secant) of this angle.
Check by projecting the horizontal and ver-
tical components upon the line of the re-
sultant and adding the components thus
found (Fig. 16).

7. The horizontal component of a vector
is 27.734 ft. The vertical component is
18.245 ft. Find the direction of the resultant
vector by means of the logarithmic tangent.
Find the magnitude of the resultant by means of the logarithmic cosine.
Check by projections as in Problem 16,

17. Computation of the Vector Sum.—Problem 6 of the pre-
ceding article is an example of the computation of the vector sum
when there are only two vectors to be added, and these vectors
are at right angles to each other. In Fig. 13, only two vectors
are to be added, but these are not at right angles to each other.
In this problem, the vector sum may be found by the formulas
for oblique-angled triangles. The unknown side may be com-
puted by the Law of Cosines and the angles then found by the
Law of Simes. Another method is to find first the unknown
anglés by means of the formula which expresses the relation of the
tangents of half the sum and half the difference of two angles to
the sum and difference of the sides opposite, and then to find
the unknown side by the Law of Sines. This last method permits
the use of logarithmic functions. Since neither of these methods
is convenient to apply when there are more than two vectors
to be added, it is best to learn a general method which is valid
for all cases of vectors in a single plane.

First, find the component of each vector in the direction of
some line in their plane. The algebraic sum of these components
is the component of the vector sum in this direction. Then find
the component of each vector in the direction of a second line
which is at right angles to the first direction. The algebraic
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sum of these components is the component of the vector sum
in this direction. These two algebraic sums represent the legs
of a right-angled triangle. The hypotenuse of this triangle
is the vector sum required. :

Figure 17 shows the addition of three vectors a, b, and ¢ in the
same plane. These vectors make angles of «, 8, and ~, respec-
tively with the horizontal line. If H is the algebraic sum of the
components of these vectors parallel to the horizontal line,

_H =acosa+ bcosB + cecosy.
If V is the algebraic sum of all the vertical components,

V =asina+ bsin B + csiny.

4
~
X
[
I
t
13 %
-
Q
| 4
S 4
X -awsa ’<—0605/6-4‘Ca757"
I H
I
Fig. 17.

The resultant vector is the vector sum of a horizontal vector of
length H and a vertical vector of length V. (Fig. 17, IIL.)

If 6 is the angle which the resultant vector.makes with the
horizontal,

- tan 0 ‘= g; . (1)

R =Hsectd = —, 2)
il el

v ,

B = o ®)

If H is greater than V, use Equation (2) to find R; if V is greater
than H, use Equation (3). The most accurate result is obtained
by this method.

It is not necessary that the direction of H should be horizontal. .
The resolution may be taken along any direction, and the resolu-
tion for V at right angles to the direction of H.
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Example

Find the direction and magnitude of the vector sum of 12 units at 18
degrees and 15 units at 50 degrees. .
The equation for the components at 0 degrees is,

H = 12 cos 18° + 15 cos 50°,
12 X 0.9511 = 11.4132
15 X 0.6428 9.6420

H = 21.0552
The equation for the components at 90 degrees is,

V = 12 sin 18° 4 15 sin 50°,
12 X 0.3090 = 3.7080

15 X 0.7660 = 11.4900
V =15.1980
15.1980
Tan g = 21.0552 = 0.7218,
6 = 35° 49",

21.0552 21.0552
= osd o O.aibg - 2%

Fic. 18.

Instead of taking resolutions along the lines at 0 degrees and 90 degrees,
resolve along the direction of the first vector and perpendicular to that
direction (Fig. 18). If the component of the vector sum along the first
direction is H’ and the component at right angles to this direction is V’,

H' =12 4 15 cos 32°,
H' =12 4 15 X 0.8480 = 12 4 12.7200 = 24.7200,
V' = 15sin 32° = 15 X 0.5299 = 7.9485.
7.9485
Tan 6 = 571.7—2@ = 0.3215Y
6 = 17° 49",

247200 _ 24.7200
T cos6  0.9520

This will be recognized as the method of computing oblique-angled triangles
by means of right triangles.

= 25.96 units.

The computation of the components in the foregoing ex-
ample has been carried to four decimal places, which gives
five or six significant figures in the resultant products. As
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only four-place trigonometric functions have been used, the
last figure or the last two figures may be incorrect. The last
figure of each product may well be dropped and the results
written H = 11.413 + 9.642 = 21.055. Many computers would
drop the last two figures and give H = 21.06. This, however,
should not be done. An error of unity in the last figure of 21.06
is greater relatively than an error of unity in the fourth place
of the cosines which are used in the computation. For accurate
work it is a good rule to carry the calculations one figure farther
than the data, and finally drop the last figure from the result.
This method prevents errors in the calculations, which may
greatly exceed the errors of the data.

In the foregoing example, it has been assumed that the length
of each vector is correct to four significant figures. In many
cases the degree of accuracy is expressed by the addition of
zeros. A length of 12 feet, which is correet to hundredths of a
foot, is written 12.00 ft. This, however, is not always done.

In these examples, it is also assumed that the angles are
c\o‘r’réct “to minutes. An angle which is given as 32° will be
understood to bé 32° 00.

Problems
1. Find the magnitude and direction of the resultant of 24.8 ft. at 0
degreés: and 22.8 ft. at 65 degrees. Ans. 40.16 ft. at 30° 58,
208 . 3
<
24 %
o >
25.6 )
o’ LI, y
% kH=9.33/ +
Fic. 19.

2. Find the magnitude and direction of the resultant of 24 units at 10
degrees, 32 units at 28 degrees, and 16 units at 70 degrees. Resolve along
0 degrees and 90 degrees.

3. Check Problem 2 by resolvmg along the line at 10 degrees and along
the line at 100 degrees.

2
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4. Find the direction and magnitude of the vector sum of 25.6 units at
12 degrees, 18.3 units at 56 degrees, 30.8 units at 98 degrees, and 21.4 units
at 123 degrees.

Where there are several vectors, it is convenient to arrange the solution
in tabular form.

Length Angle " Cosine Sine H comp. ¥V comp.
25.6 12° ©0.9781 0.2079 25.039 5.322
18.3 56° 0.5592 0.8290 10.233 15.171
30.8 98° —0.1392 0.9903 — 4,287 30.501
21.4 123° —0.5446 0.8387 —11.654 17.948

19.331 68.942
19.331 _
6 = 74° 20'.
68.942  68.942
~ sine 09628 Gt o

5. Solve Problem 4 by resolutions along 12 degrees and 102 degrees.
Ans. H' = 33.243; V' = 63.419; cotan ¢ = 0.5242.

6. Solve problem 1 for the vector sum by means of the law of cosines.
Then find the direction by the law of sines.

7. Find the vector sum of 24.62 units at 0 degrees and 18.28 units at 62
degrees. First, find the angles by means of the relations of the tangents
of half the sum and half the difference. Then find the magnitude of the
vector sum by the law of sines.

8. A vector of 24.6 units at 20 degrees and a vector of 16.8 units at an
unknown angle have a resultant of 12.4 units. Find the unknown directions
by means of the tangents of the half angles. -

18. Vector Difference.—Subtraction is the addition of a
negative quantity. If a negative quantity be regarded as
having direction, its direction is opposite to the direction of a
positive quantity. A negative vector is opposite tn direction to a
positive vector. If vector a = 4 feet at 20 degrees, — a = 4
feet at 200 degrees.

In Fig. 8, the number 3 is subtracted from 7 by counting
backwards three units from the terminus of 7. Ordinary addi-
tion and subtraction may be regarded as special cases of vector
addition and subtraction in which all the positive vectors are in
the same direction. Subtracting 3 is equivalent to adding — 3
or counting three units in the negative direction.

Figure 20shows two vectors, aandb. To get a — b, the vector
a is first drawn. From the terminus of vector a of Fig. 20, II,
the vector— b is drawn opposite.to the direction of vector b of
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Fig. 20,I. The vector ¢ from the origin of a to the terminus of
—b is the required difference.

a—b=nc,
a=c-+b.

Figure 20, ITI, shows another method of getting the same result.
If c=a—b,a=b+c. The vector ¢ is the vector which
must be added to vector b to get vector a. Vectors a and b
are drawn from the same origin and the terminus of b is joined to
the terminus of a. This vector ¢, with its origin at the terminus
of b and its terminus at the terminus of a, is the required differ-

ence. Fig. 20, IV, shows the two methods combined. The

vectors a.and b form the sides of a parallelogram. The diagonal
which starts at the origin of the first two vectors is the vector
sum. The other diagonal is the vector difference.

Problems

1. Given a vector a = 22 units at 0 degrees and a vector b = 22 units
at 30 degrees. Find b — a. Ans. b —a = 11.39 units at 105°.

2. A vector a = 17.28 ft. at 56° and a vector b = 27.34 ft. at 24 degrees.
Find a — b. Solve graphically, then solve trigonometrically.

3. A vector a = 12.4 ft. at 20°, a vector b = 17.2 ft. at 45°, and a vector
¢ =192 ft. at 64°. Find a + b — ¢. First solve graphically. Then
solve by resolutions as in Art. 17. Ans. 15.42 ft. at 356° 49’.

4. Check Problem 3 by resolutions along 20° and 110°.

6. In Problem 3, find a — b — ¢.

&
19. Vectors in Space.—A wvector in a plane may be specified
numerically by two quantities. These may be its length and
its angle with some axis, which correspond with polar codr-
dinates, or its components along two axes, which correspond
with Cartesian cotrdinates.
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To specify fully a vecfor in space requires three quantities.
These may be its length and two angles or its components along
three axes which are not all in one plane.

Figure 21 shows one way cf expressing the angles of a vector in
space. The vector of length I makes an angle 8 with the Y
axis, while the plane which passes through the vector and the
Y axis makes an angle & with the XY plane. This is equivalent
to co-latitude and longitude on a sphere. The Y axis may be
regarded as the polar axis of the sphere. The angle 8is equivalent
to the co-latitude and the angle ® is equivalent to the longitude.
These coordinates are called spherical codrdinates.

R
‘t\
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\\ \\
o\ e
MR 1 i \ \\ . N
\ {
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\>l'/ %‘t H ;_"
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Fig. 21. " Fie. 22.

If H is the component in the XZ plane and V is the component
parallel to the Y axis, Fig. 22,

H = lsin 8, (1)
V = lcos 8. (2)

If H,is the component along the X axis and H. is the component
along the Z axis,

H, = H cos® = lsin 3 cos @, . 3)
H, = Hsin ® = [sin B sin . 4)
~ Problems

1. A vector, 25 feet in length, makes an angle of 35 degrees with the
horizontal in a vertical plane which is south 25 degrees east. Find its
vertical component and its horizontal components east and south.

Ans, V = 14.34ft.; H, = 8.65 ft.; H, = 18.56 ft.
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2. A vector, 64.24 feet in length, is in a vertical plane which is north
37 degrees east. The elevation of the vector is 47 degrees. Find its com-
ponent north, its component east, and its component vertical.

3. The vertical component of a given vector is 25.6 feet. The horizontal
component east i3 16.8 feet. The horizontal component south is 14.4 feet.
Find the direction and magnitude of the vector.

20. Vectors by Direction Cosines.—A second method of
expressing the direction of a vector is by means of the angles
which it makes with two of the
coordinate axes. In Fig. 23, the Y
vector OP of length lis drawn as
the diagonal of a rectangular 1_‘
parallelopiped. Three edges of
this parallelopiped lie in the axes 5
of cooérdinates. The angle be- } %= Hx X

o

tween the vector and the X axis
is a. The angle between the vector  J
and the Y axis is 8; and the angle /~
between the vector and the Z axis
is y. These angles are the direction
angles of the vector, and their cosines
are called the direction cosines.

H, = lcos a; (1)
V =1 cos B; ! (2)
H, = lcos . 3)
Since I* = H! + V2?4 H: = I?(cos?a + cos?B + cos?y),
cos?a + cos?B8 + cos?y = 1 (4)

Fia. 23.

Equation (4) is a fundamental formula of solid analytic geometry.

In the statement of a problem, two of the direction angles
are given and the third is found by means of Equation (4).

It will be noted that Equation (2) is the same as Equation (2)
of Art. 19. One angle is measured in the same way in both
methods.

(In works of mathematical physies, the components which are
here written H,, V, and H, are written X, Y, and Z.) :

It is not necessary, of course, that these axes be horizontal

‘a.nd vertical. They may be taken in any convenient direction.
In most cases of practice, however, it is easiest to measure the
angles from a vertical line and from lines in the horizontal
plane. '
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Example

A vector, 30 feet in length, makes an angle of 70 degrees with the hori-
zontal axis east, and an angle of 65 degrees with the vertical axis. Find
its components along each of the coordinate axis.

cos?y = 1 — ¢os270° — cos? 65° = 1 — 0.1170 — 0.1786 = 0.7044;
2
cos?y =‘0.7044 3 oot ;OS 7;
cos 2y = 0.4088;
2y = 65°52, v = 32°56/.
The squares of the cosines of 70° and of 65° are most easily found by
means of the cosines of the double angles.

Problems

1. A vector 24 feet in length makes an angle of 65 degrees with the south
horizontal line and an angle of 60 degrees with the east horizontal line. The
direction of the vector is above the horizontal. Find its angle with the
vertical and find its components.

Ans. 8 = 60° 00’; H, = 16.97 ft.; H. = 12 ft.; V = 12 ft.

2. A vector 40 feet in length makes an angle of 67 degrees with the vertical
and an angle of 23 degrees with the east horizontal axis. Find its angle
with the south horizontal axis and find its components.

3. A vector 50 feet in length makes an angle of 25 degrees with the east
horizontal axis and an angle of 80 degrees with the vertical. Its direction
is east of south. Find its angle with the south horizontal axis and find its
components. Ans. y= 67°20’; H, = 45.32ft.; H, = 19.27 ft.; V = 8.68 ft.

4. The east component of a vector is 18 feet. The vertical component
is 20 feet. The length of the vector is 32 feet. Find the south component
and the direction angles.

21. Addition of Vectors in Space.—To compute the vector
sum of vectors in one plane, each vector is revolved along two axes
at right angles to each other. The sum of the components along
one axis forms one leg of a right-angled triangle, and the sum of
the components along the other axis forms the other leg of this
triangle. The hypotenuse of this triangle is the vector sum or
resultant of the separate vectors. (Art. 17.) Likewise, to find
the vector sum of a number of vectors in space, each vector is
resolved into three components along axes which are mutually at
right angles. The sum of the components along each axis forms
one edge of a rectangular parallelopiped. The diagonal of this
parallelopiped is the vector sum required.

Example

Find the vector sum of a vector 20 feet in length, which is elevated 40
degrees above the horizontal in a vertical plane north 25 degrees east, and
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a vector 30 feet in length, which is elevated 65 degrees in a vertical plane
north 55 degrees east.

Veotor. v Ha H,
20 12.856 13.883 6.475
30 27.189 7.272 10.386

40.045 21.155 16.861

In horizontal plane

can g LHe g 10801,
B =S 1. 15N
log tan ¢ = 9.90147; ¢ = 38° 33'.

P S BEURSIRED L T el = 7 0.
cos ¢
Tan g = 2095 . 100 tan § = 9.82960; 8 = 34° 02’
an b = 10.045’ °8 s LD = :

_ 40.045

Tﬁ-;-log R = 1.68415; R = 48.32 ft.

Problems

1. Find the vector sum of a vector 30 feet in length, which is elevated
60 degrees in a vertical plane north 35 degrees east; a vector 20 feet in length,
north 65 degrees east in a horizontal plane; and a vector 25 feet in length in
a north and south vertical plane at an angle of 36 degrees north of the
vertical.

Ans, V = 46.21 ft.; H, = 35.43 ft.; H. = 26.73 ft.; ¢ = 37°02"; H =
44.38 ft.; B = 43° 51; R = 64.08 ft. .

2. In Problem 1, find the angle which the resultant makes with each of
the three coérdinate axes.

3. Find the vector sum of the following vectors: a vector 20.66, feet in
length, which is elevated 32 degrees in a vertical plane north 16 degrees
east; a vector 12.84 feet in length, which is elevated 64 degrees in a vertical
plane north 30 degrees east; and a vector 18.62 feet in length, which is
elevated 40 degrees in a vertical plane north 45 degrees west.

Ans. V = 34.46 ft.; H, = 31.80 feet.; H, = — 2.44 ft.; R = 46.95 ft.
at an angle of 42° 47’ with the vertical in a plane north 4° 23’ west.

4. Find the vector sum of a vector 25 feet in length in the north east
quadrant at an angle of 64 degrees with the vertical and at an angle of 60
degrees with the north horizontal axis; and a vector 20 feet in length at an
angle of 40 degrees with the vertical in a vertical plane, which is north 36
degrees east.

22. Graphical Resolution of Vectors in Space.—Fig. 24 shows
the graphical method of finding the components of a vector
when the directions are given in spherical coordinates. The
vector of length ! makes an angle 8 with the vertical in a vertical
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plane at an angle ¢ with the XY vertical plane. The line OP,of
length [, is first drawn in the V plane at an angle 8 with the verti-
cal. Its projection on the Y axis gives
the V component, and its projection on
the X axis gives the length of the hori-
zontal component H. The line 0Q of
length H is revolved through an angle ¢ in
the horizontal plane to the position OQ'.
This line OQ’ gives the location and mag-
nitude of the horizontal component. The
component of 0Q’ along the X axis is H,
and the component along the Z axis is
H..

Problems

1. Solve Problem 1 of Art. 19 graphically to the scale of 1 inch = 5 feet.
Also find the component in each of the three planes.

2. A vector 20 feet in length makes an angle of 35 degrees with the hori-
zontal axis east. The vector is in a plane which makes an angle of 40 degrees
with the horizontal in the octant above the horizontal plane and north of
the east axis. Find the components of this vector along the east horizontal,
the north horizontal, and the vertical axis.

Figure 25 shows the graphical method of finding the compo-
nents of a vector when two of its direction angles are given. The

SPmﬁ'/e Flare

vector of length I makes an angle « with the X axis and an angle
B with the Y axis. In the V plane the line OP of length [ is first
constructed at an angle o with the X axis. Its projection on the

e
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X axis is the component H,. The line OP’ of length I is next
drawn at an angle 8 with the Y axis. Its projection onthe Y axis
is the component V. The intersection of the horizontal line
through P’ with the vertical line through P gives the point Q.
This point is the projection on the V plane of the terminus of the
vector in space. With OQ as a radius and O as a center, an arc
is described intersecting the X axis at Q’. With 7 as a radius and
O as a center, a second arc is described in the H plane. From @’
a line is drawn in the H plane perpendicular to the X axis. This
line intersects the arc of radius [ at the point P”’. Since OP"’
is the length of the vector, and 0Q’ is the length of its component
in the V plane, the line @’ P/, which completes the right triangle
OQ'P", is equal to the component H,. The line OR of length H
is the component in the H plane and the line OS is the component
in the profile plane. It is not necessary to find these last two
components, but it is sometimes desirable to have them.

Problems

3. Solve Problem 2 of Art. 20 graphically to the scale of 1 inch = 10 feet.
4. Solve Problem 3 of Art. 20 graphically to the scale of 1 inch = 10 feet.

23. Graphical Determination of the Vector Sum.—To find
the sum of several vectors in space by graphical methods, each
vector is first resolved into components along the three axes as
in Figs. 24 and 25. To avoid confusion it is often advisable
to make a separate drawing for the resolution of each vector.
The components along each' axis are added graphically and laid
off along the corresponding axis of the final diagram. If the direc-
tion of the vector sum is desired in spherical coérdinates, the
construction is that of Fig. 24 in the inverse order. If the direc-
tion angles of the vector sum are required, they may be obtained
by reversing the construction of Fig. 25.

Problems

1. Solve Problem 1 of Art. 21 graphically to the scale of 1 inch = 5 feet.
2. Solve Problem 2 of Art. 21 graphically to the scale of 1 inch = 5 feet.
3. Solve Problem 4 of Art. 21 graphically to the scale of 1 inch = 5 feet.

24. Product of Two Vectors.—There are two ways of multi-
plying two vectors. The result of one method is a vector and is
called the vector product of the two vectors. The result of the
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other method is a mere number without direction, and is called
scalar product of the two vectors.

If the length of vector a is a units and the length of vector b
is b units, and if the angle between the two vectors is 0,

scalar product.a. b = ab cos 6. Formula I.

Since b cos 6 is the length of the orthographie projection of vee-
tor b upon the line of vector a, the scalar product of two vectors
may be defined as numerically equal to the product of the magni-
tude of one vector multiplied by the magnitude of the projection
of the other vector upon its direction. Since

ab cos 6 = ba cos 0,

either vector may be regarded as projected upon the other.
When the angle between the two vectors is zero, their scalar
product is simply the product of their magnitudes. Scalar mul-
tiplication of vectors, when they are in the same direction, is
equivalent to multiplication of ordinary arithmetic, just as
addition of vectors in the same direction is equivalent to
addition of ordinary arithmetic.

The work done by a force, which is the produet of the magni-
tude of the force multiplied by the component of the displace-
ment in the direction of the force, is an example of a scalar
product.

The vector product of two vectors a and b is defined by the
equation

vector product a X b = ab sin §.  Formula II,

The vector product of two vectors is numerically equal to the
product of the length of one vector
multiplied by the component of the

q&},&} " 7 other vector perpendicular to its
¢ 5 direction.
v R e The vector product of two vectors
el @z,\\“ o is defined as a vector perpendicular
N to the plane of the two vectors which

e . are multiplied together. In the right-

handed system of coordinates, the direction of the angle between
the vectors and the direction of the vector product bear the
" same relation to each other as the direction of rotation and motion
of a right-handed screw. If the rotation from b to a in the XY
plane of Fig. 26, I, is ¢clockwise, the vector product b Xa is along
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the Z axis away from the observer. If the rotation from a to b
is counter-clockwise, the vector product a X b is dlrected along
the Z axis toward the observer.

The moment of a force, which is the product of the force
multiplied by the length of the component of the moment arm
perpendicular to the direction of the force, is an example of a
vector product.

There are several ways of indicating the multiplication of two
vectors. The most convenient one is that used by Gibbs:

Scalar product of ab = a.b,
which is read a dot b and is called the dot product.
Vector product of ab = a X b,

which is read a cross b and is called the cross product.

This method of writing the vector products has not come into
general use and is not employed in elementary texts on
mechanics.

Problems

1. Given vector a = 6 feet at 20° vector b = 4 feet at 45° find a.b,
a X b,and b X a.
Ans. a.b =21.75;a X b = 10.14 ft. toward the front;b Xa = —a X b.
2. A vector a = 16.4 feet at 0°, a vector b = 20.4 feet at 25°, and a vector
c = 18.2 feet at 65°. All these vectors are in one plane. Find a.b, a.c,
aXbaXcaXxXb+t+cXbaXb+aXe
Ans. a Xb4+c Xb=—97271t; aXb+4aXc=411.9 ft.

26, Summary,—The magnitude of a quantity may be repre-
sented by a number or by the length of a line.

A quantity which has magnitude and direction is called a
vector. A vector is represented by a line.

A vector in a plane may be expressed by two numbers. One
number gives its length and the other gives its angle with a known
line. A vector in a plane may also be expressed by means of
its projections on two lines.

A vector in space may be expressed by three numbers. Its
length may be given and its angle with two lines at right angles
with each other. These ang'es are called direction angles and
their cosines are direction cosines of the vector. The direction
angle with the third axis at right angles to the plane of these two
lines may be found by the relation of analytic geometry that the
sum of the squares of the three direction cosines is equal to unity.
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The direction of a vector in space may also be found by means of
its angle with one axis and the angle which the plane through the
vector and this axis makes with another reference plane through
the axis. This method is equivalent to co-latitude and longitude
and is sometimes called representation by spherical coérdinates.
A vector in space may also be expressed by means of its projec-
tions on three axis, only two of which are in any one plane.

The sum of two vectors is obtained by placing the origin of the
second vector at the terminus of the first vector. The required
sum is the vector which joins the origin of the first vector with
the terminus of the second. The vector sum is called the re-
sultant vector. .

Vectors which added together form a given vector are called
components of the given vector. The most important compo-
nents are those which are obtained by orthographic projection.

To calculate the vector sum of several vectors in space, each
vector is first resolved into its components along the three co-
ordinate axes. The sum of the components along any axis forms
one edge of a rectangular parallelopiped. The resultant vector
is the diagonal of this parallelopiped. If the vectors are in a
single plane, the parallelopiped is reduced to a rectangle, and
the resultant vector is the hypotenuse of the right-angled
triangle which forms one half of this rectangle.

To subtract a vector add an equal vector in the opposite
direction.

There are two kinds of products of vectors. The vector product
is the product of the length of the vectors multiplied by the sine of
the angle between them. This product is a vector and is normal
to the plane of the given vectors. The scalar product is the
product of the length of the vectors multiplied by the cosine of
the angle between them. This p oduct is a scalar quantity.
It has magnitude but not direction.



CHAPTER III
APPLICATION OF FORCE

26. Tension, Compression, and Shear.—Figure 27 shows a 10-
pound mass (a so-called 10-pound weight) supported by a cord,
which is fastened to a short horizontal beam at the top. The
- beam pulls upward on the cord at the top, and the 10-
pound mass pulls downward at the bottom. The cord
is said to be in fension. A body is in tension when
it is subjected to a pair of equal forces which are
along the same line, opposite in direction, and away
from each other. A body in tension is said to be
under tensile stress.

Figure 28 shows a 50-pound mass resting on a short
block. The block is subjected to a downward push of 50 pounds
at the top, and an upward push of 50 pounds (in addition to
its own weight) from the support at the bottom. The block is

in compression and is subjected to compressive stress.

ﬁl A body is in compression when it is subjected to a
pair of equal forces which are along the same line,
opposite in direction, and toward each other.
——-1 In Fig. 29, the weight tends to slide the right

Fre. 28.  portion of the block downward relatively to the left
portion. The block 4B is said to be in shear and subjected to
shearing stress. A body is in shear when it is subjected to a
pair of equal forces which are opposite in direction, and which
act along parallel planes. '

A body in tension is lengthened along the direction
of the foreces; a body in compression is shortened.

27, States of Matter.—Materials exist in one of
three forms, solid, liquid, or gaseous.

A block of steel or a block of ice is an example of
matter in the solid state. A solid may be supported Fre. 29.
against the force of gravity by a single force in one direction.
A block of ice resting on a table is supported by the reaction of
the table, which is a single force acting upward. A flexible cord,
on the other hand, can not be made to stand on the lower end,

X 29
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but may be supported on the side, or suspended from the upper
end, and, in these ways, fulfill the condition of support by a single
force in one direction.

If a block of ice is heated and changed into the liguid state,
it can no longer be supported by a single force upward, but must
be confined on all sides by walls which exert lateral pressure.

If the water is heated still further, so as to turn it into steam,
it comes into the gaseous state. It must now be confined at
the top, as well as at the sides and bottom, to prevent it from
expanding. )

A solid has a definite form and a definite volume; a liquid has a
definite volume but not a definite form; a gas has neither a
definite. form nor a definite volume.

A solid can resist tension, compression, or shear. A liquid
offers no resistance to shear and will support practically no ten-
sion. If confined so as to prevent lateral shear, a liquid or gas
will resist compression. The volume of a gas is greatly changed
by a small change of the compression; the volume of a liquid is
changed very little. A wiscous liquid offers some resistance to
shear, especially when the force is applied for a short time. Tar
at ordinary temperatures, and steel at red heat are viscous.®
Every liquid has some viscosity. It is, however, very small in
the case of water or alcohol, and relatively large in heavy oils.
A liquid with absolutely no viscosity is called an ideal perfect
fluid.

28. A Rigid Body.—A solid body, which suffers little change
of form when subjected to considerable force, is called a rigid
body. All bodies are elastic, so that
there is some change in form or dimen-

1 w sions when force is applied; but these
changes are frequently so small as to be
I w negligible, except for measurements re-

Frc. 30. quiring the greatest accuracy. Such

bodies are regarded as rigid. Fig. 30, I,

shows a beam supported at the middle with a load on each end.
The beam is somewhat bent, but the amount of bending may be
so small that the distance of the loads from the vertical line
through the support is not materially changed. Fig. 30, II, shows
a lighter beam, in which the amount of bending is sufficiently
great to change materially its form and dimensions. If, how-
ever, the beam be considered as it is now loaded, it may be

SR e )
g




CHAP. III] APPLICATION OF FORCE 31

regarded as a rigid body, but one of different form and dimensions
from that which it would have with a different loading.

In elementary calculations of Mechanics no allowance is made
for slight elastic deformations. In that branch of Mechanics
which is called Strength of Materials or Mechanics of Materials,
however, these deformations are taken into account.

29. A Flexible Cord.—Fig. 31,1, shows a stiff rope supported at
the middle. This rope has some rigidity. It is similar to a very
flexible beam. Fig. 31, I, shows a perfectly flexible cord. The

Fig. 31. Fic. 32.

cord takes the form of the support at the top and hangs vertically
downward at the ends. An ideal flexible cord offers no resistance
to bending. A flexible cord or rope can exert force only in the
form of tension in the direction of its length. When a flexible
cord forms a part of a structure or piece of apparatus, the position
and direction of the force which it exerts is definitely known.

In Fig. 32, two flexible cords are attached to the beam AB.
The direction of the tension exerted by each cord on the beam is
shown by the arrow; the position of the force in each is known
to be along its axis. On the other hand, the direction of the
force exerted by the beam at B can not be determined by in-
spection of the diagram, but must be calculated from the direction
and magnitude of the forces in the cords.

30. Equilibrium.—Fig. 33 shows a 10-pound
mass (an ordinary 10-pound weight) supported
by a flexible cord. If the mass is stationary
with respect to the earth, that is, if it is not swing-
ing as a pendulum or vibrating up and down on
an elastic support, it is said to be in equilibrium.
In order that a body may be in equilibrium, the
forces which act on it from other bodies must balance. Instead
of stating that the body is in equilibrium, it is frequently said
that the forces which act on the body are in equilibrium. A
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body in equilibrium is not necessarily stationary. It may be .
moving with constant speed in a straight line.

Two forces act on the 10-pound mass of Fig. 33. These are
the pull of the cord directed upward, and the pull of gravity,
acting from the earth through the ether, directed downward.
These two forces are equal in magnitude; that is, each is a force
of 10 pounds. They are opposite in direction and are exerted
along the same vertical line.

A body is in equilibrium when the forces in any direction are
balanced by the forces along the same line in the opposite
direction.

The attraction of the earth and the pull on the cord in Fig.
33 do not constitute action and reaction, as is
often erroneously assumed. There are two sets
of action and reaction involved in this equi-
librium. The pull of the earth on the body and
the pull of the body on the earth form one action
and reaction. The pull of the cord on the body
and the pull of the body on the cord form the
other. '

In Fig. 34, the knot at which the three cords
meet may be regarded as the body in equilibrium. The down-
ward pull of the cord from the 10-pound mass is balanced by the
combined upward pulls of the cords from the spring balances.

31. A Smooth Surface.—A. smooth surface is one which offers
no resistance to the motion of a body along it. The only force
which a smooth body can exert is normal to its surface. A body
in motion on a smooth, horizontal surface will continue to move
for an indefinite time with no diminution of speed.

No surface is perfectly smooth; there is always some friction.
Friction is a force at the surface of contact of two bodies which
resists the motion of one body along the surface of the other.
The friction between smooth ice and a polished steel runner, or
the friction between a metal shaft and a well lubricated bearing,
is small.

Figure 35 represents a horizontal surface upon which a body B
is placed. A flexible cord, which runs over a smooth pulley and
supports a weight P is attached to B. If there were no friction
at the pulley, the tension in the cord at B would be equal to the
weight of P. With some friction, the tension P’ is slightly less
than the weight of P. If the force P’ parallel to the surface is

Fig. 34.
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just sufficient to start the body in motion, this force is said to
be equal to the starting friction between the body and the surface
upon which it rests. If the force P’ is just sufficient to keep the
body moving with uniform speed after it has been started by
some additional force, then the force P’ is said to be equal to the
moving friction. The force of
friction is represented in Fig. 35
by the single-barbed arrow. This _
arrow indicates that the frie-
tion from the lower surface to
the body B is directed toward
the left. This is opposite to the
direction of the force P’. The Fia. 85.

friction of the body B upon the surface below it is directed toward
the right.

For the purpose of demonstrating the mechanics of ideal
frictionless surfaces, the moving body may be provided with
wheels or rollers, as in Fig. 36. This figure aporoximates
closely to the ideal condition of a smooth bar which rests on a
smooth horizontal floor and leans against a smooth vertical wall.

The subject of friction is continued in Chapter XII. For the
present, bodies will be assumed to be frictionless. The condition
of equilibrium for perfectly smooth bodies is approximately
midway between the limiting conditions of equilibrium for
rough bodies. .A 10-pound mass on a smooth plane, which makes
an angle of 30 degrees with the horizontal, may be held in equi-
librium by a force of 5 pounds parallel to the plane. If the plane
were not smooth, the body would still be held in equilibrium by
the 5-pound force, or by a force somewhat greater or somewhat

less than 5 pounds. If the coefficient of friction

were 0.1, as in Problem 10 of Art. 112, the body

would be held by any force parallel to the plane

between the limits of 4.134 pounds and 5.866 pounds.

The same mass may be held on a smooth plane by

Fia. 36 " a horizontal force of 5.77 pounds; and may be held
on a plane for which the coefficient of friction is

0.1 by any horizontal force between the limits of 4.74 pounds
and 7.19 pounds (Problem 11 Art. 112). In the first case, the
force which holds the body on the smooth plane is exactly mid-
way between the limiting forces for the rough plane; in the

second case, it deviates a little from the median value.
3
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32, A Smooth Hinge.—Two bodies are frequently connected
as in Fig. 37. A cylindrical pin passes through cylindrical holes
in each of the bodies B and C. The pin may be fixed in one of the
bodies but must be free toturn in the other. This form of connec-
tion is called a hinge. One body can rotate relatively to the other
in a plane which is perpendicular to the axis of the pin.  Ina smooth
hinge or pin-connection the force between the pin and the hollow
cylinder is normal to the curved surfaces at the line of contact.
The force is, therefore, along.a line through the axes of the pin
and.the hollow cylinder, and in a plane normal to these axes.

In Fig. 37, the hollow cylinder in body C is drawn much larger
than the pin 4. In practice the pin is made to fit the cylinder
with little clearance.

s :@ 3 @ =
F1g. 37. Fie. 38.

A body with a smooth hinge at each end, as in Fig. 38, is
called a link. A link transmits force in the direction of the line.
joining the two hinges.

33. Resultant and Equilibrant.—In Fig. 34, the upward pull
of the vertical cord is replaced at the knot A by the combined
pull of the cords which lead to the spring balances. The upward
pull in the vertical cord is equal to the resultant of the forces in
the other two cords. The downward pull of the vertical cord
at the knot, which balances the combined upward pull of the
other two cords, is called the equilibrant. The resultant of a com-
bination of forces is the single force whose effect on the equilib-
rium of a body is equivalent to that of the combination of forces.
The equilibrant of a combination of forces is the single force
which will balance these foreces and produce equilibrium. The
resultant of a set of forces is equal and opposite to their equi-
librant. Though the word equilibrant is not in general use, the
distinction between equilibrant and resultant must be kept
clearly in mind to avoid confusion.

In Art. 29, it was stated that the force in each flexible cord of
Fig. 32 is transmitted along the axis of the cord. In reality, the
force is transmitted in all parts of the cord. The resultant of all
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these forces is transmitted along the geometrical axis. In Art.
30, it was stated that the pull of gravity on the 10-pound mass is
vertically downward. In reality, every particle of the 10—
pound mass is attracted by every particle of the earth, so that
some of the force is nearly horizontal. The resultant of all these
forces is vertically downward.

The resultant pull of gravity on a body passes through a point
which is called the center of gravity or center of mass of the body.

Any system of forces in equilibrium may be divided into two
groups. The resultant of the forces of one group forms the
equilibrant for the resultant of the forces of the other group.
In Fig. 34, the pull from the left spring balance may be regarded
as combined with the downward force of 10 pounds. The resul-
tant of these two forces is equal and opposite to the pull from the
right spring balance. In like manner, the pull from the right
spring balance may be combined with the downward force of 10
pounds. The resultant of these two forces is balanced by the
pull from the left spring balance. The force in any one of the
‘cords of Fig. 34 serves as the equilibrant which balances the
resultant of the forces in the other two cords.

The forces which make up a resultant force are called com~-
ponents of the resultant.

In the calculation of problems of equilibrium, it is often possible
to use the resultant of a number of forces, instead of the separate
forces, and, in this way, to make the computations more simple,
without introducing any error in the result.

34. The Force Circuit.—In Fig. 27, the earth pulls downward on
the 10-pound mass. The force is transmitted from the earth
through the ether. The 10-pound mass pulls down on the hori-
zontal beam. The force is transmitted from the mass to the
beam in the form of tension in the cord. The beam pushes down
on the top of the post B C. The force is transmitted from the
top of the cord to the top of the post in the form of shear in the
horizontal beam. The force is transmitted as compression from
the top to the bottom of the post. It is next transmitted, toward
the left, in the base as shear. Finally it passes to the earth as
compression, and the resultant compression is vertical and
directly underneath the center of gravity of the 10-pound
mass.

35. The Free Body.—In a problem of equilibrium the forces
are considered which act on some definite body or portion of a
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body. This body or portion of a body is called the free body in
equilibrium. In Fig. 27, the 10-pound mass may be taken as the
free body. It is in equilibrium under the pull of the earth
downward and the pull of the cord upward. The cord may
likewise be taken as the free body in equilibrium under the pull
of the 10-pound mass and the pull of gravity on its own mass,
both of which are balanced by the upward pull of the beam A B.
The entire system of Fig. 27 may be taken as a free body. In
this case the weights of the parts of the system form one set of
external forces. These are balanced by the upward reaction at
the support.

In Fig. 35, the mass B may be regarded as the free body.
The forces which act on it are, (1) the force of gravity downward,
(2) the vertical reaction of the plane upward, (3) the horizontal
friction of the supporting plane toward the left, and (4) the
horizontal pull of the rope toward the right. Theforce of gravity,
or weight, is represented by the arrow marked W. The upward
reaction of the plane is represented by the arrow marked N.
Generally the arrow which represents the weight is drawn down-
ward from the body; in this case it is placed above the body and
drawn downward to it. This is done in order to avoid confusion
with the upward reaction N, which would fall on the same line
if both were drawn below the body. The friction from the
supporting plane to the body is represented by the single-barbed
arrow F; and the pull from the cord by the arrow P’. The
arrows must show the direction of the force exerted by the other
bodies or parts of a body upon the free body. If B is the free
body, F is toward the left and N is upward. If the supporting
plane were under consideration as the free body, then the friction
F from B to the plane would be toward the right, and the normal
N from B to the plane would be downward.

In considering a problem of equilibrium, it is absolutely
necessary to decide what body or portion of a body is to be
taken as the free body, and then to designate all the forces which
act on that free body.

36. Application of Forces.——In Fig. 34, the three cords meet
at a point at the knot A. Forces which meet at a point are
concurrent. All these cords lie in one vertical plane. Forces
in the same plane are coplanar. Fig. 34 is an illustration of
concurrent, coplanar forces.



CHAP. III] APPLICATION OF FORCE 37

In Fig. 39, the three forces do not meet at a point. They are
non-concurrent. All these forces lie in one plane. Fig. 39 is an
illustration of non-concurrent, coplanar forces.

Fia. 39.

In Fig. 40, there are four forces which meet at the point B.
They are concurrent. They do not all lie in one plane. They
are non-coplanar. Fig.40 is an illustration of concurrent, non-
coplanar forces.

In Fig. 41, the forces which act on the horizontal bar B do not
meet at one point and do not lie in one plane. Fig. 41 is an
llustration of non-concurrent, non-coplanar forces.

These four classes of the application of forces will be con-
sidered separately in the chapters which follow.

37. Resultant of Concurrent Forces.—A force has magnitude
and direction and a definite position. A vector has magnitude
and direction, so that it is natural to assume that a force may be
represented by a vector and that the resultant of two concurrent
forces may be represented by their vector sum. Experiments
show that this assumption is true, so that it may be stated as an
axiom, which has been amply verified by measurements: If
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two concurrent forces are represented by vectors, the resultant of the
Jforces is represented, in direction and magnitude, by the vector sum
of these two vectors. The two vectors and their resultant form a
triangle, Fig. 42, II, which is called the force triangle. The
resultant force passes through the point at which the two forces
are concurrent,—the point O of Fig. 42, 1.
Since the resultant of two concurrent
4y forces may be represented by their
vector sum, the resultant of three con-
\/ P current forces may be represented by

Q P :

R o t}.le' vector sum obtained by com-

At s, bining the resultant of the first two

forces with the third forece. The third

force may not be in the plane of the first two forces. When the

three forces are all in one plane, it is not necessary to draw the

resultant of the first two forces and then to draw the third

force. All three forces may be added at one time, as in Fig. 43.
The figure thus obtained is called the force polygon.

The vector sum of two vectors a and b may be drawn by addmg
vector b to vector a, or by adding vector a to vector b, as shown
in Fig. 11. If the addition is made in both orders, each starting
from the same origin, the figure obtained is a parallelogram. For
this reason, the method of finding the resultant of two forces by
means of their vector sum is often called the parallelogram law.
It is, however, entirely unnecessary to draw the parallelogram.
The' single triangle, which is one-half of the parallelogram, is
sufficient. Moreover, the use of par-
allelograms causes confusion when
three or more forces are involved in
the problem. It is best, therefore, to
consider the force triangle and the
force polygon, and to forget the
parallelogram.

The process of finding the resultant of two or more forces is
called the composition of forces, and the forces which make up
_the resultant are called its components.

38. Resolution of Forces.—The process of finding the compo-
nents of a force is resolution of the force. The force is said to be
resolved into its components. The most important case of resolu-
tion is that in which the components are at right angles to each
other. There may be two components at right angles to each

Resultant

Fia. 43.

o
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other in the same plane, or three components, any one of which
is perpendlcular to the plane of the other two. When the word
component is used, unless otherwise stated, a component of this
kind is meant. Frequently only one

component is considered. Fig. 44 sk P
shows a force P at an angle with the ,/
line AB. The component of the .==_%¢ i i
force P in the direction of the line Rissak oy iy 2
AB is equal in length to the ortho- S

graphic projection upon AB of the vector which represents
the force.

The process of finding the orthographic component of a force
in a given direction is called resolution in that direction.

39. Work.—Figure45represents abody Bacted onby a force P.
The force is applied at the point C, which is called its point of
application. The force may be exerted through a flexible cord,
which is tied to the body at the point of application. The body
moves to a second position while the force continues to act in the

same direction. The point

5 ¢ i A //P C moves a distance of s
\W @ e 1 units of length. This is
'fmmw g 7 the displacement of the

point of application. If the
body does not rotate, the
displacement of all parts is the same. If, however, there is any
rotation, the displacement of the point of application may be
different from that of other parts of the body.

If the displacement of the point of application of the force
makes an angle « with the direction of the force, the work done
by the force is defined by the equation,

work = P cos a s Formula III.

Since P cos « is the component of the force in the direction
of the displacement, the definition of work may be stated as
follows: The work of a force is the product of the displacement of
its point of application multiplied by the component of the force in
the direction of the displacement.

P cosas = Pscosa.

From the second member of this equation, work may be defined
as the product of the force multiplied by the component of the
displacement in the direction of the force.
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If the force is expressed in pounds and the displacement in
feet, the work is in foot-pounds. Other units of work are inch-
pounds, gram-centimeters, kilogram-meters, and ergs.

Both force and displacement are vectors. The product of two
vectors may be a third vector, or may be a scalar quantity,
which has magnitude but not direction. Work is a scalar prod-
uct, and is not a vector.

40. Classes of Equilibrium.—There are three kinds of equilib-
rium. These are called stable, unstable, and neutral or indifferent.

Figure 46 shows three cases of stableequilibrium. When a body
in stable equilibrium is displaced slightly from its position of

equilibrium by an additional force, it will return to that position
of equilibrium when the additional force ceases to act. In Fig.
46, I, the body is hung on a flexible cord. The body is in stable
equilibrium in position A. The cord is vertical and the center
of mass is directly under the point of support. If an additional
force is applied, which deflects the body to position B, it will
return to position A when the additional force is removed. In
the position of equilibrium the forces which act on the body are
its weight and the tension in the cord. When the body is
moved from position A to position B, no work is done by the
tension in the cord, since the displacement is perpendicular to
the direction of the force; negative work is done by the weight,
since the upward component of the displacement is opposite the
direction of the force of gravity. When a body in stable equi-
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librium is displaced slightly, the original forces which produce
equilibrium do negative work, and positive work must be done by
the additional forces to cause the displacement.

Figure 46, IT,shows a body on a smooth, curved surface which is
concave upward. The forces which produce equilibrium are the
weight of the body and the normal reaction of the surface. If
the surface is that of a sphere or circular cylinder, the conditions
are the same as those of a body suspended by a flexible cord.

Figure 46, 111, shows a body suspended from a smooth hinge
and attached to a cord which runs over a smooth pulley and
carries a second body Q. If the body is displaced toward the
right, the weight W does negative work and the pull in the cord
does positive work. It may be shown that the negative work is
the greater, and that the equilibrium is stable.

Figure 47 shows three cases of unstable equilibrium. Figure
47, I, shows a body on a smooth curved surface which isconcave

Fia. 47.

downward. If the bedy is moved slightly in either direction
from the position of equilibrium, it will not return, but will
continue to move in that direction. The vertical component of
the displacement is in the same direction as the force of gravity;
hence its weight does positive work when it is moved from the
position of equilibrium.

Figure 47, I1, shows a body supported on a smooth hinge which
directly under its center of mass. The motion is the same as -
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that of Fig. 47, I, when the surface is cylindrical. The body of
Fig. 47, 11, will rotate about the hinge until its center of mass is
directly under the point of support. It will then be in stable
equilibrium in the position of Fig. 46, I. In like manner, the
body of Fig. 47, I, will move to the position of Fig. 46, I1, pro-
vided the surface is continuous, and there is some arrangement to
keep it from falling off when below the center.

Figure 47, I1I, is similar to Fig. 46, III, but the equilibrium is
unstable. If displaced, it will rotate to the position of stable
equilibrium of Fig. 46, III.

Fic. 48.

Figure 48 shows two cases of neutral equilitbrium. The body re-
mains in equilibrium in any position. Figure 48, I, represents a
body on a smooth, horizontal plane surface. Nowork is done when
it is displaced, as the weight and the normal reaction of the sur-
face are both perpendicular to the direction of the displacement.

Figure 48, II, shows a body on a smooth inclined plane. The
body is supported by a cord which runs parallel to the plane and
exerts a constant pull . If the body is displaced on the plane,
the positive work of the force Q is.equal to the negative work of
the weight. If the body is displaced down the plane, the positive
work of the weight is equal to the negative work of the force Q.



CHAPTER IV
CONCURRENT CO-PLANAR FORCES

41. Resultant.—If the direction and magnitude of each of
several forces is represented by a vector, the direction and mag-
nitude of the resultant of these forces will be represented by the
vector sum of these vectors. As stated in Art. 37, this statement
may be regarded as an axiom which has been amply verified by
experiment. If these forces are concurrent at a ‘given point,
their resultant will pass through this point.

In Fig. 49, I, two flexible cords in a vertical plane are attached
to a beam at a point A. Each cord runs over a smooth pulley.

Fia. 49.

The left cord makes an angle of 35 degrees to the left of the
vertical, and supports a mass of 8 pounds; the right cord makes
an angle of 50 degrees to the right of the vertical, and supports
a mass of 12 pounds. If the pulleys are frictionless, the tension
of each cord at A will be equal to the mass which it supports.
Fig. 49, 11, is the space diagram representing the direction and
location of theseforces, which are concurrentat A. Figure49, III,
is the force polygon, which, in this case, is a triangle. To con-
struct the force triangle, point O is selected as the origin and a
line is drawn through this point parallel to the direction of the
force of 12 pounds in the space diagram. A length of 12 units,
from O to C, is measured in this line. The point C is the terminus
of the vector which represents the 12-pound force. From C
as the origin, a second vector, 8 units in length, is drawn parallel
to the direction of the force of 8 pounds in the space diagram.
43

<\
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The direction and magnitude of the resultant of these two forces
is given by the line O D which is drawn from the origin of the first
vector to the terminus of the second vector. Finally, through the
point of application of the forces on the space diagram, a broken
line is drawn parallel to the direction of the resultant OD of the

force triangle. This broken line gives the location of the line of
" action of the resultant force.

Problems

1. Find the magnitude and direction of the resultant of the following
forces in a horizontal plane: 20 pounds north 75 degrees east, 15 pounds
north 20 degrees east, and 8 pounds north 25 degrees west. Solve graphi-
cally to the scale of 1 inch = 5 pounds.

2. Two ropes in a vertical plane are attached to a fixed point. One rope,
which supports a mass of 40 pounds on the free end, runs over a smooth
pulley located 16 feet higher than the fixed point, and 7 feet to the left of
the vertical line through it. «The second rope, which supports a mass of
35 pounds, runs over a smooth pulley located 8 feet higher than the fixed
point, and 15 feet to the right of the vertical line through it. Construct
the space diagram to the scale of 1inch = 5feet. Then construct the force
triangle to the scale of 1 inch = 10 pounds. Measure the resultant in the
force triangle and express its magnitude in pounds and its angle with the
vertical in degrees and minutes. Draw a broken line in the space diagram
to show the line of action of the resultant force.

42, Calculation of Resultants and Components.—The re-
sultant of two forces may be calculated by means of the solution
of the force triangle.

Problems

1. Find the resultant of a force of 24 pounds and a force of 30 pounds
which makes an angle of 35 degrees with the direction of the 24-pound force,
Construct the force triangle and solve for the magnitude of the resultant
by means of the law of cosines. After the magnitude is found, calculate
the angle by means of the law of sines. ‘- Check all results by means of the
projections of the forces upon the line of action of the resultant.

2. A force of 234 pounds is north 24 degrees west, and a concurrent force
of 256 pounds is north 17 degrees east. Construct the force triangle and
solve for the direction of the resultant by means of the ratios of the sum
and difference of the sides and the tangents of one-half the sum and one-
half the difference of the angles opposite these sides. After all the angles
are found, calculate the side which represents the resultant by means of
the law of sines.

3. A force P makes an angle of 43 degrees to the right of the vertical.
A force Q, concurrent with it, has a magnitude of 84.26 pounds. The
resultant of these forces is a vertical force of 116.45 pounds. Find the



Cuap.1V] CONCURRENT CO-PLANAR FORCES 45

direction of the force Q and the magnitude of the force P, using logarithms.
Construct the force triangle to the scale of 1 inch = 20 pounds and compare
with the calculated results.

4. The resultant of two forces of 16 pounds and 24 pounds in a horizontal
plane is a force of 34 pounds north 10 degrees east. Find the direction of
the forces by means of the formula for the tangent of the half angle.

When it is desired to find the resultant of more than two forces,
the method of calculation by means of triangles is laborious.
To solve such problems each force is resolved along the direction
of two axes which are at right angles to each other. The sum
of the components of all these forces along one axis is the compo-
nent of the resultant along that axis, and the sum of the compc-
nents of all these forces along the other axisis the component of the
resultant along that axis. These two components of the resul-
tant form two sides of a right-angled triangle of which the resul-
tant is the hypotenuse. When the resultant of several forces is
to be found, the work may be arranged in tabular form, as was
shown in Problem 4 of Art. 17.

Problems

6. A horizontal force of 25 pounds is north 37 degrees east. Find the
east and north components.

Ans. East component = 15.05 Ib.; north component = 19.97 Ib.

6. A horizontal force of 46 pounds is north 22 degrees west. Find the
component north and the component east.

Ans. East component: = —17.23 1b.; north component = 42.65 1b.

7. A force of 24 pounds makes an angle of 20 degrees with the horizontal.
A concurrent force of 30 pounds in the same vertical plane makes an angle
of 64 degrees with the horizontal on the same side of the vertical. Find the
sum of the horizontal and the sum of the vertical components.

Ans. H =35.701b.; V = 35.17 1b.

8. Find the direction and magnitude of the resultant of the two forces of
Problem 7. : .

9. Solve Problem 8 by resolving along the line of the force of 24 pounds
and along a line perpendicular to the force of 24 pounds in the same vertical
plane.

10. Find the direction and magnitude of the resultant of 14 pounds north
27 degrees east, 15 pounds north 35 degrees west, and 18 pounds south
56 degrees west. Resolve east and north then check by resolutions along
some other pair of axes.

11. Solve Problem 1 of Art. 41 by means of resolutions, and compare
the results with the graphical solution.

12. Solve Problem 2 of Art. 41 and compare the results with the graphical
solution. \
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13. Find the direction and magnitude of the resultant of 24.2 pounds at
20 degrees, 17.8 pounds at 65 degrees, 22.5 pounds at 110 degrees, 12.6
pounds at 165 degrees, and 31.4 pounds at 234 degrees. Resolve along
0 degrees and 90 degrees and check by resolutions along 20 degrees and 110
degrees.

43. Equilibrium.—When a body is in equilibrium under the
action of two forces, these forces are equal, opposite, and along
the same line. If a body is in equilibrium under the action of
three forces, the resultant of any two of these forces must be
equal and opposite the third force, and must act along the same
line. Figure 50 shows three

oA e ® flexible cords attached to a
R T point. The resultant of the

P p forces P and Q is the force R.

The direction of R is opposite

I 101 the direction of the third force

T. Figure 50, II, shows the
force triangle for the resultant.
Figure 50, III, shows the triangle for the three forces in equi-
librium. The only difference between Fig. 50, II, and Fig. 50,
111, is the direction of one line. The resultant in Fig. 50, 1I,
extends from the origin of the vector P to the terminus of the
vector Q. The equilibrant in Fig. 50, III, extends from the
terminus of sector Q to the origin of vector P. This last vector
T is called the closing line.

When a body is in equilibrium under the action of several
concurrent forces, the resultant of all the forces is zero, as may
be seen from Fig. 50, I1II. The arrows which represent the
direction of the forces follow each other around theforce diagram
from the origin of the first vector to the terminus of the last
vector. The arrow on one side of each angle of the diagram
points toward the angle and the arrow on the other side of the
angle points away from it. The terminus of the last vector
coincides with the origin of the first. It is customary to say
that the force polygon closes when equilibrium exists.

To solve a problem of equilibrium of concurrent forces, -
that part of the force polygon which represents the known
forces is constructed first. If there is only one unknown
force, itis represented in the force polygon by the closing line,
which is drawn from the terminus of the last known force to the
origin of the first one. If there are two forces of known direction

Fia. 50.
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but of unknown magnitude, a line is drawn through the terminus of
the last known vector in the direction of one of these unknown
forces, and a line is drawn through the origin of the first known
vector in the direction of the other unknown force. The length
of each of these lines to their point or intersection represents the
required force.

Example

A 40-pound mass rests on a smooth inclined plane, which makes an angle
of 35 degrees with the horizontal. It is supported by a horizontal push of
12 pounds, and a pull P parallel to the plane. Find the force P and the
normal reaction.

Figure 51, I, is the space diagram showing the direction of all the forces.
The mass of 40 pounds is the free body in equilibrium. The arrows show
the direction of the forces
which act from other bodies
on the free body. The reac-
tion of the plane is upward at
an angle of 35 degrees with
the vertical. The pull of the
earth on the free body is a
downward force of 40 pounds.
The length of the lines in this
diagram is not necessarily pro-
portional to the magnitude of Fre. 51.
the forces.

Figure 51, IT, is the force polygon. The known forces are 40 pounds down-
ward and 12 pounds horizontal toward the right. As the first step in the
construction of the force polygon lay off AB 40 units in length. From B
draw the horizontal line BC 12 units in length. The arrow in AB is down-
ward foward ‘B, and the arrow in BC is to the right, directed away from B.
Through C draw a line parallel to the force P of the space diagram, and
through A draw a line parallel to the direction of the normal reaction. Ex-
tend these two lines till they intersect at D. The length of CD measures
the tension parallel to the inclined plane, and the length of DA represents
the normal reaction of the plane against the 40-pound mass. The arrow
in BC is toward C. The arrow in CD must by away from C toward D; the
corresponding direction in the space diagram is up the plane. The arrow
in DA is from D toward A.

Problems

1. Solve the example above graphically to the scale of 1 inch = 10 pounds:
with the horizontal force 20 pounds instead of 12 pounds.

2. A 20-pound mass on a 35 degree inclined plane is held in equilibrium
by a horizontal push of 5 pounds, and by a pull at an angle of 40 degrees
with the horizontal and an angle of 5 degrees with the plane. Solve for
this pull and the normal reaction to the scale of 1 inch = 5 pounds.
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3. A 50-pound mass is supported by 3 cords in the same vertical plane.
One cord makes an angle of 45 degrees to the left of the vertical. The
second cord makes an angle of 30 degrees to the right of the vertical. The
third cord runs horizontally toward the right and exerts a pull of 10 pounds.
Find the tension in the first two cords, graphically, to the scale of 1 inch =
10 pounds.

"4. A 40-pound mass is supported by two cords, one of which makes an
angle of 35 degrees to the right of the vertical, and the other exerts a pull of
25 pounds. Find the direction of the second cord and the tension in the
first one, graphically, to the scale of 1 inch = 10 pounds. There are two
solutions. Are both solutions possible with cords?

6. A 40-pound mass is supported by a cord and a rod hinged at the ends.
One of these makes an angle of 24 degrees to the right of the vertical, and
the other makes an angle of 85 degrees to the right of the vertical. Find
the tension in the cord and the compression in the rod.

a4/ Equilibrium by Resolutions.—The force diagram for con-
current, coplanar forces in equilibrium is a closed polygon.
If a closed polygon is projected upon any line in its plane, the
sum of the positive projections is equal to the sum of the nega-
tive projections, and the total projection is zero. It follows,
therefore, that when a set of forces are in equilibrium, the sum of

s

i
10 1b.
I

50[3”0. g
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the components of these forces along any direction is zero.
Fig. 52, 1, is the space diagram for Problem 3 of Art. 43 and
OABCO, in Fig. 52,11, is the force polygon. Figure 52, I1I, shows
the projections of the sides of the force potygon upon a line at an
‘angle of 10 degrees with the horizontal. The projections 0’4’,
A’'B’, and B’C’, éxtend from left to right. The projection C’0’,
extends from right to left to the point of beginning.

To solve a problem of equilibrium of concurrent forces by resolu-
tions, it is not necessary to draw the force polygon, as the com-
ponents may be calculated from the space diagram. However,
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always draw the space diagram and mark all the forces which act
on the free body.

Figure 53 shows the space diagram for four forces P;, Py, P,
and P4, which make angles a1, @2, a3, and ay, respectively, with the

Fic. 53.

horizontal line toward the right. The point at which the forces
meet is the free body. The components along the horizontal are
Py cos a1, P2 cos az, ete. If the forces are in equilibrium,

Plcosal+P200sa2+Pacosa3+Pcos4a4=O. (1)

If the forces of Fig. 53 make angles 81, B, 83, and B4 with a
second axis, the second condition of equilibrium is
PlCOS61+P200862+P300S63,+P400SB4 =104 (2)
Any number of equations may be written by changing the
direction of the axis of resolution. Since it will be shown later
that only two such equations can be independent, nothing is
gained by writing more than that number.

Example

A 40-pound mass is supported by three flexible cords in the same vertical
plane. One cord makes an angle of 35 degrees to the left of-the vertical
and exerts an unknown pull of P pounds. A second cord makes an angle
of 25 degrees to the right '
of the vertical and exerts
an unknown pull of @
pounds. The third cord
makes an angle of 80 de-.
grees to the right of the
vertical and exerts a pull
of 10 pounds. Find the
unknown forces by reso-
lutions.

The point O, Fig. 54, I, Fia.
at which all these cords
meet is the free body in equilibrium. Resolving horizontally and consnder-
ing components toward the right positive components,

10 cos 10_° + @ sin 25° — P sin 35° = 0, )]

4
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Resolving vertically and considering upward components positive,

10 sin 10° + @ cos 25° 4 P cos 35° = 40. 4)
Substituting the values of the trigonometric functions and transposing,

0.4226Q — 0.5736P = — 9.848 (3)
0.9063Q + 0.8192P = 40 — 1.736 = 38.264 6)

To eliminate @ multiply Equation (5) by 0.9063 and Equation (6) by 0.4226,
and subtract. .
—8.925,

0.4226 X 0.9063Q — 0.5199P =
0.4226 X 0.9063Q + 0.3462P = 16.170,
0.8661P = 25.095,
P = 2897 Ib. -

Substituting the value of P in Equation (5),

0.4226 @ = 28.97 X 0.5736 — 9.848 = 16.617 — 9.848 = 6.769.
@ = 16.02 Ib.

This method of horizontal and vertical resolution involves two unknowns
in each equation. Since the coefficients of these unknowns are sines and
cosines taken to four significant figures, considerable labor is required in
order to eliminate one unknown and solve the equations. It is better to
make the resolutions in such a way that one equation will contain only one
unknown. This may be done by resolving perpendicular to the direction
of the other unknown force, since the component of a force along a line
perpendicular to its direction is zero. In the above example resolve along
the broken line of Fig. 54, II, which is perpendicular to the direction of Q.
Since the force Q makes an angle of 25 degrees with the vertical, this line
perpendicular to Q makes an angle of 25 degrees with the horizontal. On
the right, this line makes an angle of 35 degrees with the direction of the
10-pound force and an angle of 65 degrees with the vertical line of the weight.
On the left it makes an angle of 30 degrees with the direction of the force P.
Giving the positive sign to the component toward the left, and putting the
negative terms on the right of the equality sign,

P cos 30° = 10 cos 35° + 40 sin 25°, )
0.866 P_= 10 X 0.8192 4 40 X 0.4226, ®)
0.866 P = 8.192 + 16.904 = 25.096,

P = 28.98.

The force Q may now be calculated by a resolution perpendicular to the
force P, or by substitution in Equation (5). After both P and Q are found,
both may be checked by substitution in Equation (6),

10 X 0.1736 = 1.736
16.03 X 0.9063 = 14.528
28.98 X 0.8192 = 23.740 :
40.004 — 40 = 0.004.
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Problems

(Draw the space diagram for each problem. Mark each force which acts on
the free body.)

1. A 60-pound mass is suspended by two cords, one of which makes an
angle of 32 degrees to the left of the vertical, and the other makes an angle
of 27 degrees to the right of the vertical. Find the tension in each cord
by a resolution perpendicular to the other cord, and check by a vertical
resolution. Ans. 31.78 Ib. at 32°; 37.09 1b. at 27°.

2. A 40-pound mass is held on a smooth inclined plane, which makes an
angle of 27 degrees with the horizontal, by means of a ecord parallel to the
plane. Find the tension in the cord by a resolution parallel to the plane,
and find the normal reaction of the plane. Check both by a vertical resolu-
tion. Ans. 18.16 1b. tension; 35.64 lb. normal pressure.

3. A 40-pound mass is held on a smooth inclined plane, which makes an
angle of 27 degrees with the horizontal, by means of a cord, which makes
an angle of 40 degrees with the horizontal. Find the tension in the cord
and the normal reaction and check.

Ans. 18.64 Ib. tension; 31.45 Ib. normal pressure.

4, A mass of m pounds is held on a smooth inclined plane, which makes
an angle # with the horizontal, by means of a cord parallel to the plane.
Find the tension in the cord and the normal reaction of the plane by resolu-
tions parallel and perpendicular to the plane, and check by a resolution
vertical. Ans. Tension = m sin 6; normal = m cos 6.

6. A mass of m pounds is held on a smooth inclined plane, which makes
an angle 6 with the horizontal, by means of a horizontal cord. Find the
tension in the cord and the normal reaction, and check.

Ans. Tension = mtan 8; normal = m sec 6.

y~ 6. Figure 55 shows a rod AB, 8 feet

in length, which is hinged at B and sup- ¢
ported in a horizontal position by a cord at
A. The cord is fastened to a point C,
which is 6 feet above the hinge B. A 60-
pound mass is suspended from A. Neg-
lecting the weight of the rod, and regard-
ing all forces as concurrent at A, find the 7
tension in the cord and the horizontal
reaction in the rod. Solve by vertical

and horizontal resolutions, and check by a m@e 1b.
resolution parallel to the cord. :

>
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When a force is unknown, both as to direction and magnitude,
it is best to consider this force as made up of two components
at right angles to each other, and find the magnitude of each
of these components separately. Next find the direction and
magnitude of their resultant, which is the force required. This
method is the same as the one for finding the resultant of a set
of concurrent forces.
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Example

A 50-pound mass is supported by two cords, one of which makes an angle
of 75 degrees to the right of the vertical and exerts
a pull of 30 pounds. Find the direction of the second

. cord and the tension which it exerts.

In Fig. 56, the unknown force Q at an unknown

# angle ¢ with the vertical may be regarded as made

up of a horizontal component H and a vertical

component V. Resolving horizontally,
50 E] o H = 30 cos 15° = 30 X 0.9659 = 28.977.
Fia. 56. Resolving vertically,
V =50 — 30 sin 15° = 50 — 30 X 0.2588 = 50 — 7.764 = 42.236,
' Tan ¢ = Zg:ggg = 0.6861,
6 = 34° 27', ‘
Q4223642236 _ . o :

cos 6 0.8246
Check by resolving parallel to Q,
' 50 cos 34° 27' + 30 sin 19° 27’ = Q,

50 X 0.8246 = 41.23
30 X 0.3330 = 9.99

51.22 = Q

Problems

7. A mass of 80 pounds is supported by three cords in the same vertical
plane. One cord exerts a pull of 20 pounds in a horizontal direction toward
the right. The second cord makes an angle of 35 degrees to the right of the
vertical and exerts a pull of 50 pounds. Find the direction of the third
cord and the tension which it exerts. Check.

8. A 50-pound mass is supported by two cords, one of which makes an
angle of 38 degrees to the right of the vertical, and the other exerts a pull
of 35 pounds. Find the tension in the first cord, and the direction of the
second. Check the results.

Ans. 23° 35 or 80° 25’ with the vertical; 22.74 1b. or 56.06 1b.

9. A mass of 100 pounds is supported by two cords, each of which makes
an angle of 55 degrees with the vertical. Find the tension in each by two
resolutions. Check.

10. Solve Problem 9 when each cord makes an angle of 80 degrees with
the vertical. Check by means of the force triangle drawn to the scale of
1 inch = 40 pounds. X

11. A mass of 80 pounds is supported by two cords, one of which exerts
a pull of 60 pounds; the other exerts a pull of 50 pounds. Find the direction
of each cord by horizontal and vertical resolutions.

Ans. The cord which pulls 60 pounds makes an angle of 38° 38’ with the
vertical. The other cord makes an angle of 48° 31’ with the vertical.
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45. Trigonometric Solution.—When three concurrent forces
are in equilibrium, the force polygon is a triangle. It is some-
times convenient to draw this triangle and calculate the un-
known forces or directions trigonometrically. This method is
especially desirable when two of the forces are perpendicular
to each other so that the force polygon is a right-angled triangle.
It is the best method when the forces are expressed literally in-
stead of numerically.. When the forces form an oblique-angled
triangle, and the known forces are given in numbers, the method
of resolutions is better.

Example

A 40-pound mass is supported by two cords, one of which is horizontal
and exerts a pull of 16 pounds. Find the direction of the second cord and
the tension which it exerts.

The force triangle, Fig. 57, is a right-
angled triangle of base 16 and altitude
40. Tan 6 = 0.4, P = 40 sec 6.

QA

Problems

(In these problems draw the space
diagram and the force diagram. Unless
it is desired to check by means of the -
graphical so}ution, it is nol necessary 40 Ib. 16 1b. |<-I6#-->l
that these diagrams be drawn to scale.

The force diagram must be drawn sepa- Fie. 57.
rate from the space diagram.)

1. Selve Problem 2 of Art. 44 by the trigonometric solution of the force
triangle.

2. Solve Problem 6 of Art. 44 by means of the force triangle.

3. Solve Problem 1 of Art. 44 by means of the oblique-angled force
triangle. Use the law of sines. Is the method shorter than that of two
resolutions?

L/ 4. A mass of m pounds is held on a smooth inclined plane, which makes
an angle o with the horizontal, by a rope which makes an angle g with the
horizontal. Find the tension in the rope and the normal reaction by means
of the solution of the force triangle.

3

m sin « m cos 8

Ans. Tension = ymormal’ Si=SisSoalu il
cos (¢ — ) cos (@ — B)

It sometimes happens that the force triangle is similar to a
triangle of the space diagram. In that case the magnitudes of the
forces are proportional to the corresponding lengths in the space
diagram.
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Example

Figure 58 shows a horizontal rod, 12 feet in length, which is hinged at the
left end A. A cord is attached to the right end B and fastened to a point C,
which is 8 feet above A. Neglecting the weight of the rod, find the ten-
sion in the cord and the compression in the rod when a load of 40 pounds
is placed at B.

N |

’(.

The force of 40 pounds in the force diagram is homologous to the length
of 8 feet in the space diagram. The ratio is § to 1. The horizontal push
in the rod is 5 X 12 = 60 pounds. In the space diagram the length BC is
4/208 = 14.422feet. The tension in the cord is 5 X 14.422 = 72.11 pounds.

" Problems

6. In Fig. 58, the cord BC is shortened until the point B is 2 feet higher
than A. Find the compression in the bar and the tension in the cord.
Ans. 60 1b.; 66.33 Ib.
6. If the length AB of Fig. 58 is constant and the point C is at a constant
distance directly above A, show that the compression in the rod will be the
same for any position of AB.

46. Number of Unknowns.—In each of the problems of the
equilibrium of concurrent, coplanar forces in the preceding
articles there have been two unknown quantities. These have
been: '

(1) An unknown magnitude and an unknown direction of one
force;

(2) An unknown magnitude of one force and an unknown
direction of another;

(3) Two unknown magnitudes;

(4) Two unknown directions.

With two unknowns, two independent equations are required to
solve each problem.

As far as the mechanics of the problem is concerned, there may
be only two unknowns in a problem of concurrent, coplanar
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forces in equilibrium. This may be shown in several ways. If
the problem is solved by resolutions, only two equations can be
written which are independent of each other. Fig. 59 shows a
force AB. Its orthographic component along a direction OC is
the length A.B,. Its orthographic component along another
direction OD is the length AsBs. If a third orthographic com-
ponent were drawn, its length could be expressed in terms of
A1B;, A3B,, and the angles. Consequently,

if three equations were written for a problem oy
of concurrent, coplanar forces, any one of / i 4
' these equations could be derived algebraically

from the other two, and would not be inde-  v¥
pendent. Since there can be only two inde- /_{* !
pendent equations for a problem of concurrent, © 4 5,
coplanar forces, it is evident that there may
be only two unknowns, unless conditions are given which are
not based upon mechaniecs.

The number of possible unknowns may be determined in a
different way from the geometry of the force polygon. All the
known forces may be represented in the force diagram by the
single vector of their resultant. The problem of equilibrium
involves the solution of a polygon of which this resultant vector
is one side. This polygon is a triangle for all problems which
may be solved from mechanical considerations. A triangle may
be solved in the following cases: !

1. One side and two angles given, with the length of two sides
unknown.

2. Two sides and the included angle given, with the magnitude
and direction of the third side unknown.

3. One side given together with the length of a second side
and the direction of the third side. The length of one side and
the direction of another are unknown.

4. The length of all sides given, with two directions unknown.
Some of these cases apparently have three unknowns. When
two angles of a triangle are given, the third angle is regarded
as known.

It is evident from the foregoing statements that a problem of
the equilibrium of concurrent, coplanar forces may have only
two unknown quantities. Sometimes it happens that there is a
greater number of unknowns. Such a problem can not be solved
completely unless additional conditions are given.
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Example

A body is in equilibrium under the action of three forces. These are:
a force of 40 pounds horizontally toward the right, a force P at an angle of
25 degrees to the left of the vertical, and a force Q of unknown direction
and magnitude. .

There are three unknowns, and an attempt at a graphical solution, Fig.
60, shows that it may be solved'in an infinite number of ways. Another
- condition must be added to make the problem definite. Let the force Q
of unknown direction be twice as great as the force P at 25 degrees to the left
of the vertical. This is an additional algebraic condition which does not
depend upon mechanics.

Q =2P (1)
Resolving horizontally and vertically,
’ P sin 25° + 2P sin § = 40, )]
P cos 25° = 2P cos 6, ) 3)
g8 e B e WS . B 15
2 2
Problems

1. In Fig. 60, let the force Q be three times the force P. Find the mag-
nitude of each force and the direction of Q.

Py Ans. P =12.191b.; Q = 36.57 1b.

2. Solve Problem 1 graphically.

3. A body is in equilibrium under
the action of four forces. These are:
a force of 40 pounds at O degrees, a
force Q at 110 degrees, a force P at 245
degrees, and a force equal to Q at 180
degrees. Solve graphically.

47. Moment of a Force.—Figure 61 shows a bar OB, which is
hinged at O and has a load P applied at B. The load tends to
turn the bar about the hinge,
and does turn it unless it is
balanced by a second force
tending to turn in the oppo- ..
site direction. In Fig. 61,
1, the turning effect of the
force is greater than in the
position of Fig. 61, II. In
the position of Fig. 61, III,
the force has no tendency to
turn the bar about the hinge.
In the other positions, the force P is said to exert a moment
on the bar about the hinge. The point about which moment

Fig. 61.
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is taken is called the origin of moments or the center of
moments.

Deﬁnition;ZThe moment of a force about a point in its plane is
the product of the magnitude of the force multiplied by the perpendicu-
lar distance from the poini to the line along which the force acts.

In Fig. 61, the moment of the force P is the product of the
force multiplied by the length OC. If the force is measured in
pounds and the distance in feet, the moment is expressed in
foot-pounds. - To distinguish moment from work, some writers
use pound-feet for moment and foot-pounds
for work. Though this distinction is desirable,
it has not come into general use.

The perpendicular distance from the origin
of moments to the line of action of the force is
the effective moment arm. The length OB, from
the origin of moments to the point of appli-
cation of the force, may be called the apparent
moment arm. If the length of the apparent mo-
ment arm is a a, Fig. 62, and the angle between
its direction and the direction of the force is e,

effective arm = ¢ sin « (1)
moment = P X @ sin a. Formula IV

Fia. 62.

Counter-clockwise moment is generally regarded as positive,
espe(na,lly in works of mathematical nature; and clockwise
moment 1s regarded as negatlve In algebraic equatlons, mo-
ment will be represented in thls B"ok by M'

Problems

1. A force of 60 pounds, at an angle of 25 degrees to the right of the ver-
tical, is applied to the right end of a bar, which is 3 feet in length. The bar
makes an angle of 80 degrees to the right of the vertical. Find the moment
of this force about the left end of the bar.

: 3 Ans. M = 147.45 foot-pounds.

2. Aforce of 12 pounds, at an angle of 20 degrees to the left of the vertical,
is applied to a point whose codrdinates are (4, 3). Find the moment of
this force about the origin of codrdinates. 3 !
. Ans. M = 57.42 foot-pounds.

3. Solve Problem 2 if the force is at an angle of 20 degrees to the right of
the vertical.

By changing the order of the letters of Formula IV, it may be
written,
M = Psin a X a. 2)
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The term P sin « is the component of the force perpendicular to
the direction of the apparent moment arm. Equation (2) gives
this second definition of moment: The moment of a force is the
product of the apparent arm multiplied by the component of the
force which is perpendicular to .

The first definition states that moment is the entire force
multiplied by the component of the arm; the second definition
states that moment is the product of the entire arm multiplied
by the component of the force.

Since force and apparent arm are vectors, moment is the prod-
uct of two vectors. It will be shown in Art. 108 that this product
is a vector.

48. Moment of Resultant.—If P,, P,, P3, etc. are forces which
make angles ai, as, a3, ete. with the apparent arm of length a,_
the sum of the moments of all these forces about the origin is

M = P; sin aya + P sin asa + P; sin aza = (P sin a; +
P, sin as 4+ P; sin as)a. The term P; sin a1 4+ Pp sin as +°
P, sin a3 + ete. in the above equation is the component of the
resultant force perpendicular to the apparent arm; conse-
quently, the moment of the resultant of several concurrent forces is
equal to the sum of the moments of separate forces.

When the moment of aforce is calculated by means of the com-
ponent perpendicular to the apparent arm, it is really calculated
by means of the moment of two components at right angles to
each other. From Fig. 62, II, the second component is P cos «
in the direction of the apparent arm. Since the line of action of
this component passes through the origin of moments, its mom-
ent is zero. The total moment is, then, the moment of the com-
ponent normal to the apparent arm.

It is often advisable to resolve both the force and the apparent
arm into components. This method is especially convenient
when the codrdinates of the ends of the apparent arm are given
instead of its length and direction.

Example

A force of 40 pounds at an angle of 25 degrees to the left of the vertical
is applied at the point whose codrdinates are (6, 2). Find the moment of
this force about the origin of codrdinates.
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First r'ncthod.
The apparent moment arm is OB, Fig. 63.
OB = 6.325 ft.
Tan 6=%;9 = 18° 26".
OC OB cos (25° — 6) = OB cos 6° 34’ = 6,325 X 0.9934 = 6.283 ft.
M = 40 X 6.283 = 251.32 foot-pounds

Second method.
) Resolving horizontally, Fig. 63, 11, y
16.904.

H = 40 X 0.4226
Resolving vertically,
: V = 40 X 0.9063 = 36.252. ¥
The effective arm of the horizontal component is the vertical length of 2
feet. The effective arm of the vertical component is the horizontal distance

of 6 feet. Both components turn counter-clockwise.

16.904 X 2 = 33.808
36.252X 6 = 217.512
251.320 foot-pounds.

Il
]

]

Problems

1. Solve the example above if the force makes an angle of 25 degrees to
the right of the vertical.

2. Aforce of 50 pounds at an angle of 15 degrees to the right of the vertical
is applied at the point (5, 4). Find the moment of this force about the
origin of cooérdinates, and also about the point (2, 2). P

A force may be regarded as applied at any point along its
line of action. The effective moment arm in Fig. 63, III, is the
same, whether the force is applied at B or D, or at any other
point along its line. If the force of 40 pounds be regarded as
applied at D, on the axis of X, the moment about O is the product
of the length OD multiplied by the vertical component of the
forde.
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Problems

8. Calculate the length OD of Fig. 63, I11, trigonometrically, and multi-
ply by the vertical component of the 40-pound force.

4. A force of 50 pounds at an angle of 40 degrees to the left of the vertical -
passes through the point (4, 4). Find its moment about the origin of
codrdinates. Solve by both methods of the example above. Also find the
intersection of its line of action with the X axis, and multiply the abscissa
of this point by the vertical component of the force. Find the intersection
with the Y axis and multiply the Y-intercept by the horizontal component.

6. A force of 10 pounds at an angle of 35 degrees to the left of the vertical
passes through the point (6, 5). Find its moment with respect to the point
(2, 2). Solve by means of the horizontal and vertical components. Solve
by the vertical component alone. Solve by the horizontal component alone.
Find the distance of the point (2, 2) from the line of action of the force.

6. Find the distance of the point (3, 5) from a line through the point
(6, 7) at an angle of 20 degrees to the left of the vertical. Solve by princi--
ples of moments.

7. A force of 20 pounds is applied along a line which passes through the
points (0, 6) and (8, 0). Find its moment about the origin of coérdinates.
Solve by the vertical component with the horizontal arm. Check by the
horizontal component with the vertieal arm.

49. Equilibrium by Moments.—Since the moment of the
resultant of a set of concurrent forces is equal to the sum of the
moments of the separate forces, and, since the resultant of a
set of forces in equilibrium is zero, it follows, that the sum of the
moments of a set of concurrent forces about any origin is zero when
the forces are in equilibrium. This affords another method of
solving a problem of the equilibrium of concurrent, coplanar
forces. The moment equation of equilibrium is

M = P;sin a; a + P; sin az a + P; sin a3 a + ete. =0. (1)
= (P, sin a; + P, sin a; + P; sin a3 + ete.) a = 0. (2)

The term in the parenthesis in Equation (2) is the sum of the
components, perpendicular to the apparent moment arm of
length a, of all the forces which act on the free body. It is
evident from this equation, after it has been divided by the
apparent arm, that a moment equation for concurrent forces is
equivalent to a resdtution perpendicular to the apparent arm.
In the solution of a problem of concurrent forces, a moment
equation is used, instead of a resolution equation, when it is
casier to calculate the length of the effective arm than it is to
resolve the force into its components. In astructure or machine
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the effective force may often be measured directly. Figure 64
represents a bar hinged at O and supporting a load P at B. The
bar is supported by a cord at B. It is desired to find the tension
in this cord. The three forces at B are the load P, the tension in
the cord T, and the compression along the bar. If moments are
taken about the hinge O, the line of action of the compression in
the bar passes through this point so that its moment is zero.
The moment of T in a counter-clock-
wise direction must be equal to the
moment of P in a clockwise direc-
tion. The effective moment arm of
T is the length OD, measured from O
perpendicular to the direction of the
cord. The moment arm of P is the
perpendicular distance from the hinge
to its line of action—the length OC of
Fig. 64. To find the perpendicular
distance from a point to a straight
line, it is only necessary to measure
the shortest distance. This may be
done with a tape-line or rule. In the actual machine or struc-
ture, it is much easier to measure these lengths than it is to
determine the angles necessary for resolution equations.
The moment equation for Fig. 64 is

T X OD = P X OC 3)

To find the compression in the bar of Fig. 64, moments may be
taken about some point in the line of the cord. The point G
may well be used as the center of moments.

Fia. 64.

Problems

1. A mass of 200 pounds is suspended by two cords, which are fastened
to the mass at a point A. One cord is attached to a fixed point, which is
5 feet higher than A and 8 feet to the left of the vertical line through it.
The second cord is attached to another point, which is 7 feet higher than
A and 4 feet to the right of the vertical line through it. Draw the space
diagram to scale. Find the tension in the left cord by moments about some
point in the line of the right cord, measuring the moment arms from the
drawing. Then find the tension in the right cord by moments about some
point in the line of the left cord. Check by moments about a point directly
over the load.

2. A 40-pound mass is supported by two cords, one of which is horizontal
and the other makes an angle of 23 degrees with the vertical. Find the
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tension in the horizontal cord by moments about some point in the line of
the other cord, computing the effective arm trigonometrically. Find the
tension in the other cord by resolutions.

3. In an arrangement similar to Fig. 64 the bar is weightless, is 6 feet
long, and makes an angle of 25 degrees with the horizontal. The cord is
attached to a fixed point E which is 5 feet above the hinge’0. Draw the
space diagram to the scale of 1 inch = 1foot. With the hinge as the origin
of moments, measure the effective arms on the space diagram and calculate
T when the load P is 60 pounds. Find the compression in the bar with
the origin of moments at G, at a distance of 1 foot from E. Also solve for
the compression with the origin of moments at E.

4. Solve Problem 3 by moments, calculating the arms instead of measuring
them.

6. Solve Problem 6 of Art. 44 by moments.

50. Conditions for Independent Equations.—In a problem of
concurrent, coplanar forces there are two independent equations.
These may be:

(1) Two resolution equations;
(2) Two moment equations;
(3) One resolution equation and one moment equation.

A moment equation is equivalent to a resolution perpendicular
to the line joining the origin of moments to the point of applica-
tion of the forces. If two moment equations are written, and
the line joining the point of application of the forees with one
origin of moments passes through the other origin of moments,
the equations will not be independent. KEach moment equation

‘will be equivalent to a resolution perpendicular to this line.

After the equations have been divided by the lengths of the
apparent moment arms, they are identical. When two
moment equations are written for a problem of concurrent, coplanar
forces, the two origins of moment and the point of application of the
forces must not lie in the same straight line. When one resolution
and one moment equation are written, the resolution must not be
perpendicular to the line joining the origin of moments with the
point of application of the forces.

A resolution perpendicular to the direction of an unknown force
eliminates that force. A moment about a point in the line of
action of an unknown force eliminates that force.

61. Connected Bodies.—It frequently happens that two points,
each of which is subjected to a set of concurrent forces, are con-
nected together by a single member, such as a cord or hinged rod.
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Each point is in equilibrium under the action of the external
forces and of the force in the connecting member.

In Fig. 65, the forces are concurrent at A and B. The member
which joins A to B exerts a downward pull T on B and an equal
upward pull on A. Including the
direction and magnitude of the un-
known tension T, there are four
unknowns at B. It is not possible
to solve for these unknowns by equi-
librium equations at B, unless the
number of unknowns is reduced to
two. At A, on the other hand, there
are only two unknowns, and the
problem may be solved. In prob- %
lems of this kind, begin at a point
where there are only two unknowns.

"The equilibrium at A may be
solved by one moment and one
resolution equation. If the length
AB is a and the angle with the vertical is §, moments about B
give,

10acos0=40asin0, _ (1)
tan 6 = 0.25; 9 = 14° 02'.

A vertical resolution gives,
Tcosd =40; T = 40sec 9 = 40 X 1.0307 = 41. 23. Ib.

The force T may be checked from the force triangle by means of
the square root of the sum of the squares of 10 and 40. This
method is convenient when the numbers are small. The trigo-
nometriec method is better for large numbers.

A closed curve has been drawn about the point A of Fig. 65.
This curve. encloses the joint, which is the free body. The
arrows inside the curve represent the direction of the forces
- which act on the free body. The arrow in the member AB points
upward, which shows that A B pulls upward on the joint. Since
AB pulls upward on the Jomt at A, the joint pulls downward on
AB. The stress in AB is tensile.

At joint B the tension in AB pulls downward. The direction
and magnitude of this tension are known. Its components are
10 pounds horizontally toward the left and 40 pounds vertically
downward. The force T at A is the equilibrant of the forces of
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10 pounds and 40 pounds. The force T at B is the resultant of
these two forces. The unknowns at B are now the forces P and
Q of known direction. The free body is now the joint B. Re-
solving perpendicular to Q -and using the components of T
instead of the resultant force,

P sin 70° 4 10 cos 40° = 40 sin 40° (2)

40 X 0.6428 = 25.712

—10 X 0.7660 = —7.660

09397 P = 18.052

P = 19.20 Ib.
Resolving vertically,
Q cos 40° + P cos 30° = 40 3)
0.7660Q = 40 — 19.20 X 0.8661 = 40 — 16.64 = 23.36
Q = 30.49 1b.

These results may be checked by horizontal resolution.

Problems

1. In Fig. 66, find the unknown forces at the right end by one moment
and one resolution equation or by two resolution equations. Put the arrows
showing the direction of the forces R and Q inside the closed curve.

Ans. R = 160 lb. compression; Q = 200 lb. tension.

Fia. 66.

2. Using the value of Q found in Problem 1 (or its components) find the
magnitude of the forces P and T at the top. Draw the arrows inside the
closed curve at this point to show the forces acting on the joint.

Ans. T = 241.7 lb. tension; P = 166.9 1b. tension; horizontal com-
ponent of P = 118.02 1b.
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3. At the left end, put arrows in the closed curve to give the direction of
the forces P and R. Find the horizontal and vertical components of the
hinge reaction S, and find the direction and magnitude of S.

Ans. H = 41.98 Ib. toward the right; V. = 118.02 1b. downward.
S = 125.3 Ib. at 19° 35’ with. the vertical.

4. Solve Problems 1, 2, and 3 if the force T is vertical.

6. Solve Problems 1, 2, and 3 if the force T makes an angle of 10 degrees
to the ri§ht of the vertical.

62. Bow’s Method.—The forces in a connected system are
often determined graphically. It is possible to begin at some
point at which there are only two unknowns and draw the force
polygon. The force in the member which joins this point with
a second point may then be used in the force polygon for that
point. Instead of drawing two lines for the force in the connect-
ing member, and making two separate force polygons, it is
better to draw this common line but once, and to connect the
two polygons into a single diagram. To avoid confusion in
complicated diagrams, a system of lettering the space diagram
and force diagram has been adopted by many workers in graphi-
cal statics. This is called, from the name of the inventor, Bow’s
method. Each letter in the space diagram represents an area
bounded by members which transmit force in the direction of
their length. The force in a '
given member is represented
by the two letters which the
member separates in the space
diagram. In the force dia-
gram, one of these letters is put
at each end of the line repre-
senting the force. In this % o o
book, Italic capitals will be
used on the space diagram and
lower case Italics on the force i
diagram. Space Diasram

In Fig. 67, the letter 4, on B Dt
the space diagram, represents the area to the left of the vertical
cord and below the horizontal cord. The letter B represents the
area above the horizontal cord and to the left of the cord at
30 degrees with the vertical. The horizontal cord in the space
diagram separates the area A from the area B. The line from ato

b in the force diagram represents the force in the horizontal cord.
5

Force Diagram
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To solve the problem graphically, the space diagram is first
drawn to scale and the spaces are lettered. The direction and
magnitude of the force in the vertical cord are known. To
represent the direction, an arrow pointing downward is placed
on this member in the space diagram. The force diagram is
begun by drawing a vertical line 40 units in length. Since the
vertical cord separates area A from area D, one end of this line
in the force diagram is marked a and the other end is marked d.
In Fig. 67, the letter a is put at the top. It would be just as
correct to put d at the top. An arrow is put in the forece diagram
to show the direction of the force in ad. Since the horizontal
cord separates area A from area B, the force in this member is ab.
A line of indefinite length is drawn horizontally through @ in the
force diagram. The third force at this joint is bd. Through the
point d of the force diagram, a line is now drawn parallel to the
cord which separates B from D in the space diagram. The inter-
section of this line through d with the horizontal line through a
gives the point b. The arrows are now placed in the force dia-
gram. Since the arrow in ad points toward d the arrow in db
must point from d toward b and the arrow in ba from b toward a.
Corresponding arrows are now drawn at the lower joint in the
space diagram. These ig shown in Fig. 68.

Figure 68 shows the final

G
\ / e diagram§ for b?th joints,
X{ | 5 while Fig. 67 gives the first
T ~—-3 steps in the construction of
/—[ : ¢ these diagrams. To avoid
—-w—f ./ confusion, the joints ‘are
A\..-;F.:-O‘Ib 5 R numbered 1 and 2. The
: arrows which show the direc-

Space Diagram Force Diagram
Fia. 68.

tions are marked with similar
numerals in the force diagram.
The arrows marked 1 in Fig. 68 are the same as those in the force
diagram of Fig. 67.

Since the force bd at the lower joint is upward, it must be
downward at the upper joint. An arrow pointing downward is
now placed on this member at the upper joint, as shown in Fig.
68. In the line bd of the force diagram a similar arrow is placed
and marked with the numeral 2. A line is then drawn through & -
parallel to the member BC of the space diagram, and a line is
drawn through d parallel to DC of the space diagram. The inter-
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section of these lines gives the point ¢. Since the arrow marked 2
in the force diagram is from b toward d, the arrow in de must point
from d toward ¢, and the arrow in ¢b must point from ¢ toward b.
Finally, the corresponding arrows are drawn at joint 2 of the
space diagram. i

The length of the lines on the final force diagram are now meas-
ured, and the results expressed in pounds. These figures are
frequently written in the space diagram. All the stresses in
Fig. 68 are tensile. In most problems, some stresses are tensile
and some are compressive. The character of the stress is
marked on the space diagram.

It is understood of course, that Fig. 67 is merely one step of
Fig. 68, drawn separately for clearness of explanation. In
solving the problems below, draw a single space diagram and a
single force diagram, as in Fig. 68. The numbered arrows are
not generally used. They afford, however, great help to begin-
ners. It is best to draw the space diagram accurately to scale.
The directions on the force diagram are found by drawing lines
parallel to the members of the space diagram.

Problems

1. Solve the example of Fig. 67 graphically to the scale of 1 inch = 10
pounds, marking d at the top and a at the bottom of the first vertical line.
Compare the final force diagram with that of Fig. 68. 4

2. Solve the example of Fig. 66 graphically to the scale of 1inch = 1 foot

Q

Diagram Space Dragram
Fra. 69.

in the space diagram, and 1 inch = 40 pounds in the force diagram. Scale
the force diagram and put the results in pounds on the space diagram, as
in Fig. 69. -

Nore.—The values of Fig. 69 were taken from the original drawing of
the force diagram, which has been reduced in scale for printing.

._'_i,,." c '\._i,./
16 T ib. 1207 Ib.
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3. The mast of a derrick is 15 feet long and the boom is 20 feet long.
One guy rope, in the same vertical plane as the boom, makes an angle of
30 degrees with the horizontal. The boom makes an angle of 15 degrees
with the horizontal and carries a load of 300 pounds. Find all internal
forces, the tension in the guy rope, and the horizontal and vertical compo-
nents of the reaction at the bottom ofthe mast. Use the scale of 1inch = 5
feet on the space diagram, and 1 inch = 100 pounds on the force
diagram.

3

s
L
3 \ ’>T:

b,/.?
iy

Fia. 70.

Note.—In an actual derrick, the boom is attached to the mast at some
distance above the bottom. The cable which supports the load runs parallel
to the boom, and increases the compression in that member. The boom is
lifted by several cables, which run over pulleys. The part of the cable
which comes down the mast increases the compression in that member.

4. Solve Problem 3 by moments and resolutions, beginning with the
right end of the boom as the first free body. Show that the compression
in the boom is the same, no matter what angle it makes with the horizontal.

(In the solution by moments and resolutions, it is convenient to represent
each force by a single letter, as H, V, P, etc., instead of by two letters as in
Bow’s method.)

6. Solve Problem 3 graphically when the boom is elevated to make an
angle of 45 degrees with the horizontal.

53. Summary;—The resultant of concurrent, coplanar forces
is their vector sum.

The graphical condition of equilibrium for a set of concurrent,
coplanar forces, is that the force diagram is a closed polygon.

A problem of the equilibrium of concurrent, coplanar forces
may be solved by any one of the following methods:

1. Construct the force polygon and determine the magnitude and
direction of each of the unknown forces by measurement.

2. Construct the force polygon and solve trigonometrically. This
method is convenient when the force polygon is a triangle, espe-
cially if it is a right-angled or an isosceles triangle.

3. Write two resolution equations. The sum of the components
along any direction 1s zero.
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4, Write two moment equations. The sum of the moments about
any point is zero. The two origins of moment and the point
of application of the forces must not lie in the same straight line.

5. Write one moment equation and one resolution equation. The
resolution must not be perpendicular to the straight line which
joins the origin of moments and the point of application of the
forces.

Jointed frames, in which the forces are parallel to the members
connecting the joints, may be solved as a series of problems of
concurrent forces. Begin with a joint at which there are only
two unknowns, and solve by any of the methods above. By
the use of Bow’s method of lettering, a problem of this kind may
be solved graphically, with all the forces on a single diagram.

A resolution perpendicular to the direction of an unknown
force eliminates that force. Moment about a point in the
line of action of an unknown force eliminates that force.

The moment of a force is the product of the magnitude of the
force multiplied by the component of the apparent arm perpendicu-
lar to it; or the product of the entire apparent arm multiplied
by the component of the force perpendicular to it. When the
codrdinates of the ends of the apparent arm are given, instead of
its length and direction, it is -advisable to resolve both the force
and the apparent arm into their components.

M = Vz — Hy, Formula V.

in which V and H are the components of the force and = and y
are the components of the arm. The component V is parallel to
y and the component H is parallel to z.

64. Miscellaneous Problems

1. .Find the direction and magnitude of the resultant of 24 pounds at 20
degrees, 30 pounds at 50 degrees, 20 pounds at 110 degrees, and 16 pounds
-at, 210 degrees. Solve by resolutions along one pair of axes at right angles
to each other.  Check by resolutions along a second pair of axes.

2. A mass of 50 pounds on a smooth inclined plane, which makes an
unknown angle with the horizontal, is held by a force of 18 pounds parallel
to the plane. Find the inclination of the plane and the normal reaction.

i/ 3. An unknown mass is placed on a smooth inclined plane which makes
an unknown angle with the horizontal. It is held in equilibrium by a force
of 18 pounds parallel to the plane, or by a force of 20 pounds at an angle
of 10 degrees above the horizontal. Find the mass of the body and the
inclination of the plane. Also find the normal reaction of the plane in each
case.
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4. Solve Problem 3 graphically.

6. A 40-pound mass slides on a smooth straight rod which makes an
angle of 25 degrees with the horizontal. It is attached by means of a
weightless cord to a mass of 20 pounds which slides on a second smooth
rod. This rod makes an angle of 35 degrees with the horizontal. The two
rods are in the same vertical plane and on opposite sides of the vertical.
Find the direction of the cord, the tension which it exerts, and the normal
reaction of each rod.

Figure 71, I1, shows the masses supported by two cords. The problem is
the same as that of Fig. 71, I, and the diagram is more convenient for a
graphical solution.

Considering the 40-pound mass as the free body in equilibrium, and

resolving horizontally,

1‘,,"“- : P sin 25° = Q cos 6. (1)

Z‘\; : -2’5-" Considering the ‘20-pound mass as the

, / free-body in equilibrium, and resolving
/% ——% 20 lb. v horizontally,

Q sin 35° = T cos 6. 2)

Fia. 71.

Combining Equations (1) and (2)

P sin 25° = @ sin 35°. 3)
Equation (3) is the same as if the forces P and Q were concurrent.
Resolving vertically,

Pecos 25° =40 — T sin 6, 4)
Q cos 35° = 20 4 T sin 4, (5)

from which
P cos 25° + @ cos 35° = 60. (6)

Equation (6) is the same as if all the external forces were concurrent.

Combining Equations (3) and (6), P = 39.74 lb.; Q = 29.28 Ib. Com-
bining Equations (1) and (4), 6 = 13° 23/, T = 17.23 1b. i

6. Letter Fig. 71, 11, by Bow’s method and solve graphically.

7. A mass of 5 pounds is supported by a cord AB, which is 2 feet long and

Wis fixed at A, and by a second cord which runs over a smooth pulley and

supports a mass of 3 pounds. The point (C of Fig. 72) at which the second
cord is tangent to the pulley is 4 feet from A in a horizontal direction.
Find the angle which AB makes with the horizontal when the system is
in equilibrium,
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Taking moments about A and eliminating trigonometrically, the equation
is found to be }
cos? § — 1.61 cos28 + 0.36 =0

This equation may be solved by the trigonometric method for the solution
of a cubie, or by the method of trial and error (see Art. 252). One root is
cos 8 = 0.5958. To get the remaining two roots of the cubie, divide the
equation by cos § — 0.5988, and solve the quadratic thus obtained.

Two of these roots are solutions of the problem of mechanies. (Construct
the space diagram for one of these.) The third root is a solution of the
mathematical equation but is impossible mechanically.

8. A 20-pound mass is supported by a cord AB which is 3 feet long, and
a second cord which runs over a smooth pulley 2 feet in diameter and sup-
ports a mass of 15 pounds. The axis of the pulley is 6 feet to the right and

1.5 feet above the point A, the upper end of the first cord. Find the posi-
tion of equilibrium.

The algebraic solution of this equation is difficult and involves the solu-
tion of an equation of higher degree by the method of trial and error. Itis
most easily solved by a combination of moments and graphics. With A4
as the center and with a radius of 3 feet, draw the arc FG, Fig. 73. Select
some point B on this arc and draw AB. From B draw a line tangent to
the pulley. The length AE drawn perpendicular to this tangent is the
moment arm of the 15-pound force. The moment arm of the 20-pound
force is AD. For equilibrium,

20AD = 15AE.

If the moment of the 20-pound force is too great, the angle 6 is too small.
Choose another point on the arc and repeat the process. Interpolate for
the final result.



CHAPTER V
NON-CONCURRENT CO-PLANAR FORCES

56. Resultant of Parallel Forces in the Same Direction.
Figure 74 shows a common case of parallel forcesin the same direc-
tion. The rigid beam ABC carries two loads, P and Q, which
are parallel forces. The equilibrant of these two forces is the
force S at B. The resultant of P and Q is a force at B, which is
equal and opposite to the equilibrant. The direction, magnitude,

F1c. 75. Fia. 76.

and position of the resultant may be found by first finding the
equilibrant.

To find the equilibrant, replace the rigid beam ABC of Fig.
74 by the jointed frame of Fig. 75. Neglecting the weight of the.
frame, the forces at each joint may be found by the methods for
concurrent forces. Figure 76, I, is the space diagram for Fig. 75.
Forsimplicity, each member isrepresented by asingleline. Figure

72
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76, II, shows the force diagram constructed by Bow’s method.
The angle « is assumed to be known and the angle 6 is assumed to
be unknown. Beginning at joint No. 1, construct the force tri-
angle acd. At joint No. 2, the direction of de is from left toward
right, and the magnitude of ¢b is known. The force triangle is
cbd. The direction of bd gives the unknown angle 6. At
joint No. 3, the direction and magnitude of the forces ad and
db are known. The line ba represents the equilibrant desired.

The force ba of triangle No. 3 is along the same line as the
forces P and Q, and is equal to their sum. The equilibrant of
two parallel forces is equal to the sum of the two forces, and is in
the opposite direction.

B Q810,00 o et o D

The resultant, which is equal and opposite the equilibrant, is
the algebraic sum of P and Q and has the same sign.
P+@Q=R 2
The force polygon of Fig. 76, 11, gives the direction and magni-
tude of the equilibrant, and, consequently, of the resultant.
There remains the problem of finding algebraically the position
of the equilibrant or resultant. This position is given graphi-
cally by the space diagram of Fig. 76, I. It is now desirable to
express this position in algebraic language. Extend the line S
of Fig. 76, I, till it intersects the line 1-2 at the point 4. Let
the distance from point 1 to point 4 be represented by z, the dis-
tance from point 2 to point 4 be represented by y, and the dis-
tance from point 3 to point 4 be represented by z. The triangle
1-3—4 of the space diagram is similar to the triangle dac of the
force diagram; and the triangle 24-3 of the space diagram is
similar to the triangle dcb of the force diagram. From the
homologous sides of 1-3—4 and dac,

T 2z

=P @
From the homologous sides of 2-4-3 and dcb,

JRICZ

>d(-: == Q (4)
From Equations (3) and (4),

z_Q. 2

Yo FL : (

Pz = Qy. Formula VI.

The angles « and 6 do not appear in any of the equationsabove.
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It is evident, therefore, that the magnitude, direction, and posi-
tion of the equilibrant (and resultant) are independent of the
form of the jointed frame. These are the same whether the
rigid body is a jointed frame, as in Fig. 75, or a single beam, as
in Fig. 74. The triangular frame is merely a convenient means
of finding the equilibrant.

This same result may be obtained by resolving the forces P
and Q, with one component of P equal and opposite to one com-
ponent of Q, and with these two components along the same line.
h These two components balance -
each other. The remaining
components intersect. Their
resultant at the point of inter-
section may 'be found by the
methods for concurrent forces.

In Fig. 77, a line is drawn
through the point 4 at right
angles to the direction of P and
Q. This line makes an angle ¢ with the direction of the line 1-2.
Multiplying both sides of Formula VI by cos ¢,

Pz cos ¢ = Qy cos ¢. (6)

Since z cos ¢ is the perpendicular distance from the point 4
to the line of the force P, the term P z cos ¢ is the moment of the
force P about the point 4 (or about any point in the line of the
equilibrant). Qy cos ¢ is, likewise, the moment of the force Q
about point 4. Equation (6) may be interpreted as follows:
The moment of one of the parallel forces about any point in the line
of the resultant is equal and opposite to the moment of the other force
about that point.

The moment of the result-
ant of two parallel forces
about any point in their
plane ¢s equal to the sum of
the moments of the two forces
about that point. This may
be proved from Fig. 78.
Take moments about the point O at a distance e from the line
of the force P measured in the direction of  and y. The
moment of the resultant about this point is

M, = R(e + z) cos ¢ = (Pe + Px + Qe 4+ Qx) cos ¢. (7)

Fic. 77.
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The sum of the moments of P and Q about that point is given by
the equation,

M = (Pe + Qe + Qz + Qy) cos ¢. (8)
Subtracting Equation (8) from Equation (7),
M. — M= (Px— Qy) cos ¢ 9)

Since Px = Qy, M, — M = 0,and M, = M. This equation
proves the proposition.

If there are three forces in the same direction, two of these
forces may be replaced by their resultant. This resultant is then
combined with the third force to get the resultant of all three.
This process may be continued indefinitely. The resultant of
any number of parallel forces in the same direction is equal to the
sum of the forces, and the moment of the resultant about any point
1s equal to the sum of the moments of the separate forces about that
point. When all the distances are measured along parallel lines,
‘the term cos ¢ may be omitted from the moment equation.

Example I
Two forces of 12 pounds and 18 pounds are parallel, in the same direction,
and 5 feet apart. Find the magnitude and position of their resultant.
Resultant = 12 4+ 18 = 30 lb.

Taking moments about a point in the line of [m i L A, >
the force of 12 pounds, Fig. 79, <= - - X 7]

12X 0= 0

18 X 5 =90 Y ¥

30z = 90 12 1b.
r= 3ft. 3 R
The resultant is a force of 30 pounds at a dis- R
tance of 3 feet from the force of 12 pounds. Fia. 79.
Example II

Given the following forces,.all of which are vertically downward: 8
pounds at 2 feet, 12 pounds at 5 feet, 16 pounds at 10 feet, 9 pounds at 12
feet, and 5 pounds at 14 feet. Find their resultant.

The solution is best arranged in this form:

Force, lb. Moment arm, ft. Moment, ft.-1b.
8 X 2 .16
12 5 60
16 10 160
9 12 108
5 14 70
50 414
50xr = 414

B F=R828° 1t .
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The resultant is 50 pounds at a distance of 8.28 feet from the line of the
8-pound force.
Problems

1. Check Example IT by moments about a point 2 feet from the 8-pound
force.

2. A weightless, horizontal bar is 12 feet long and carries 40 pounds at
the left end, 55 pounds 3 feet from the left end, 80 pounds 6 feet from
the left end, and 25 pounds at the right end. Find the magnitude of the
resultant and find its position by moments about the left end. Check by
moments about some other point.

3. A beam 20 feet long weighs 40 pounds. Its center of mass is 9 feet
from the left end. The beam is placed in a horizontal position and loaded
with 60 pounds on the left end, 50 pounds 6 feet from the left end, 80 pounds
4 feet from the right end, and 30 pounds on the right end. The beam rests
on a single support. Where must this support be placed?

4.. A weightless bar 5 feet long forms a part of a jointed frame as in Fig.
76. The bar is horizontal and carries a load of 60 pounds on the left end
and a load of 40 pounds on the right end. Solve graphically for the magni-
tude and position of the equilibrant. Make the angle « = 30° and use
the scale of 1 inch = 1 foot on the space diagram, and 1 inch = 20 pounds
on the force diagram.

6. Solve Problem 4 with a = 45°.

6. Check Problem 4 by moments.

7. The ends of a bar 5 feet in length are connected to the ends of a chain
which is 7 feet in length. A load of 50 pounds is hung on one end of the
bar and a load of 30 pounds is hung on the other end. The chain issuspended
from a-hook. What is the length of chain between the hook and the 30
potnd Wd if the bar hangs horizontal?

56./ Resultant of Parallel Forces in Opposite Directions.
In Fig. 76 or Fig. 77, the force Q may be regarded as the equilib-
rant of the forces P and S. Numerically

@=8S-—-P

The resultant of the forces P and S in opposite directions is
the force R, of Fig. 80. This resultant is equal and opposite the
S force Q. From the equations of the

preceding article, it is evident that the
R.'f sum of the moments of P, Q, and S
T = — about any point is zero. Since R; is
P equal and opposite to Q, the moment
of R; is equal to the sum of the mo-
ments of S and P taken with their proper signs. The moment
of the resultant of two parallel forces is equal to the sum of the
moments of the forces, whether the forces are in the same direction
or in opposite directions.

Fic. 80.
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Example ]

Find the magnitude and position of the resultant of a downward force of
8 pounds and an upward force of 18 pounds, the horizontal distance between
the lines of the two forces being 5 feet.

Taking moments about a point in the line of the 8-pound force, and giving
the negative sign to the downward force,

—8X0=0

18 X 5 = 90
10z = 90
z = 9ft.

The resultant is a force of 10 pounds at a distance of 9 feet from the force
of 8 pounds and 4 feet from the force of 18 pounds. The resultant is up-
ward. A downward force of 10 pounds along the same line would balance
the upward force of 18 pounds and the downward force of 8 pounds.

The resultant of any number of parallel forces is the algebraic
sum of the forces; the moment of the resultant about any point is
the algebraic sum of the moments of the several forces about that
point. 2

Example II

Find the resultant of 10 pounds down at 2 feet, 17 pounds down at 5
feet, 21 pounds up at 10 feet, 16 pounds down at 12 feet, and 12 pounds
down at 15 feet. Solve by moments about the 5-foot position. Call down-
ward direction positive, since most of the forces are downward. With
distances toward the right from the origin regarded as positive, clockwise
moment is now positive. -

Torce, 1b. . Arm, ft. Moment, ft.-1b.

10 -3 —30

17 0 0
—21 5 —105
16 7 112

12 10 120
34z = 97

T = 2.85 ft.
Problems

1. Solve Example II by moments about the 0-foot position.

2. Given the following vertical forces in the same vertical plane: 20
pounds down at 0 feet, 16 pounds up at 4 feet, 12 pounds up at 8 feet, and
10 pounds down at 10 feet. Find the magnitude and position of the re-
sultant and check.

3. A horizontal beam 20 feet in length weighs 240 pounds. Its center
of mass is at the middle of its length. It carries a load of 160 pounds 5 feet
from the left end, and a load of 120 pounds at the right end. The left end
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rests on a platform scale which reads 170 pounds. There is a second sup-
port near the right end. Where is it located, and what load does it carry?

4. By the graphical method, find the resultant of a downward force of
6 pounds and an upward force of 10 pounds at a distance of 4 inches apart.

57. Equilibrium of Parallel Co-planar Forces.—Since the
moment of the resultant of several parallel forces is equal to the
sum of the moments of the separate foreces, the moment of the
equilibrant is equal and opposite to this sum. Consequently, if
the body is in equilibrium, the algebraic sum of the moments of
all the forces is zero, and the sum of the forces is zero. These
relations may be expressed by the equations,

ZP = 0;
M = 0.

There are two unknowns. The problem may be solved by one
moment equation and one resolution parallel to the direction of
the forces. The resolution equation may be replaced by a second
moment equation.
Example .

A horizontal beam is 20 feet long. It weighs 240 pounds and its center
of mass is at the middle of its length. The beam is supported at the left
end and at 4 feet from the right end. It carries a load of 120 pounds 6 feet

from the left end, and a load of 160 pounds at the right end. Find the reac-
tion at each support.

Fic. 81.

Take moments about the left support, in order to eliminate the reaction
R,, Fig. 81. Call downward force positive and distance toward the right
positive.

Force, 1b. Arm, ft. Moment, ft.-lb.
240 10 2400
120 0 720
160 20 3200
520 6320
16R, = 6320,

R, = 3951b.
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Take moments about the right support and call distance toward the left
positive.

Force, lb. Arm, ft. Moment, ft.-lb.
240 6 1440
120 10 1200
160 —4 —640
520 2000
16R; = 2000,
R, = 1251b.

Check by vertical resolutions; 395 + 125 = 520 1b.

Problems

1. A horizontal beam 24 feet long, with its center of mass at the middle,
weighs 180 pounds. It is supported 4 feet from the left end and 2 feet from
the right end. It carries 144 pounds on the left end, 160 pounds 13 feet
from the left end, 162 pounds 6 feet from the right end, and 90 pounds on
the right end. Find the reactions at the supports and check.

2. The beam of Problem 1 is supported 2 feet from the left end. A second
support near the right end exerts an upward force of 400 pounds. Where is
this second support located, and what is the reaction of the left support?

3. A beam 20 feet long, with its center of mass at the middle of its length,
weighs 160 pounds. It is supported 5 feet from the left end and is held
down by a force one foot from the left end. The beam carries a load of
120 pounds on the right end. Find the reactions and check.

58. Condition of Stable Equilibrium.—When a body is in
equilibrium under the action of non-concurrent forces, insofar as
the equilibrium in that position is concerned, any one of the
forces may be regarded as applied to the body at any point along
its line of action. If, however, the equilibrium be disturbed,
either by a slight displacement of the body, or by a small change
in the magnitude of one of the forces, then the position of applica-

tion of the forces is the ele- S
ment which determines : /44"@/,
whether the body will take a - & W
new position with a small dis- B

placement, or will continue to
move through a greater dis-
tance. The position of ap- e o
plication of the forces determines whether the equilibrium is
stable, unstable, or neutral.

Figure 82 shows a rigid body which is supported at B andloaded
at A. A second load.Q acts along the line through C,, C and Ci.
If the body is in equilibrium in this position, it is in equilibrium
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whether the load is applied at C, at Cy, or at C.. The points
A, B, and C lie in a straight line, as shown in Fig. 83, 1. If the
beam is turned through an angle 6 from the horizontal position,
the moment arm of the force P becomes z cos # and the moment
arm of Q becomes y cos 8. In the original position of equilibrium

Pr = Qy;
consequently
Pz cos 0 = Q y cos 6.
e % There is the same relative change
e e w5, inthe moments of the two forces;
A= S C  therefore, the beam is in equi-

librium in the new position.
When a body is in equilibrium
under the action of three parallel
forces, if the points of application
of the three forces lie in a straight
line, the equilibrium ts neutral.
Figure 83, II, represents the
case in which the load is applied
at a point C; placed above the
line through A and B. The
broken lines illustrate the con-
dition when the beam is rotated
Frc. 83. ‘ in a clockwise direction about B.
The moment arm of Q becomes
longer and the moment arm of P becomes shorter. After the arm
BC has passed the horizontal position, the moment arm of Q
diminishes, but less rapidly than the effective arm of the force
P. If the forces P and Q in the original position produced equal
and opposite moments about B, the moment of Q in any one of
these new positions is greater than the moment of P, and the
beam continues to rotate about B through approximately 180
degrees to the position of stable equilibrium. The equilibrium
of Fig. 83, II, is unstable. If the beam had been rotated in the
opposite direction from the position of equilibrium, the same
condition would obtain and it would continue to rotate in that
direction. )
Figure 83, I1I, represents the case in which the loadisapplied at
C, placed below the line through A and B. When the beam is
rotated slightly from this position in a clockwise direction, the
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moment arm of P becomes a little longer and that of Q becomes
a little shorter. The beam will return to its original position
after displacement. The equilibrium is stable.

Example

Figure 84 represents a rectangular board in a vertical plane supported by a
smooth hinge at the middle. A load of 10 pounds is suspended from A,
and a load of Q pounds is sus-

pended from €. The board ro- Y |<j_ ----- 12%-==-3 >'< -------- y; eﬁ'~---l->-|

tates through an angle of 10 BEES mle J\r_:C,

degrees in a clockwise direction. A ]35(- :”%i o c
0 RS 'y

Find the load Q. ' . I : S |
Itis assumed that the center of AZQ—Y— :

mass is at the center of the board,

so that its weight exerts no mo- Fic. 84.

ment about the support in any position. Taking moments about the

support,

10 X 13 cos 12° 37 = Q X 13 cos 32° 37’; or
10 (12 cos 10° + 5 sin 10°) = Q (12 cos 10° — 5sin 10°)

Problems

1. In Fig. 84, the load at A, is 10 pounds and the load at C: is 12 pounds.
Find the position of equilibrium. Ans. The rotation is 12° 36’ clockwise.

2. Solve Problem 1 if the loads are 20 pounds and 22 pounds, respectively.

3. In Fig. 84, the board weighs 4 pounds and its center of mass is 2 inches
below the point of support. The load P is attached at A and the load Q at
C. The points 4, B, and C are in a horizontal straight line. Find the
position of equilibrium if P is 10 pounds and Q is 11 pounds and there is no
friction at B. Ans. Rotation = tan-!§ = 56° 19'.

4. Solve Problem 3 for loads of 5 pounds and 6 pounds, respectively.

5. In Fig. 84, the loads are suspended from A; and C;, which are 1 inch
above A and C, respectively. Find the position of equilibrium when P is
1 pound and Q is 2 pounds. Ans. Rotation = tan-12.4 = 67° 23",

6. Solve Problem 5 for loads of 4 pounds and 5 pounds.

7. In Fig. 84, a load of 10 pounds is applied at 4. and a load of 11 pounds
at C;. The board weighs 4 pounds and its center of mass is 2 inches below
B. Find the position of equilibrium. Ans. Rotation = 6° 04'.

8. Solve Problem 7 if the loads are 1 pound and 2 pounds.

59. Resultant of Non-parallel Forces Graphically.—Figure 85
shows three forces, which are supposed to be applied to a rigid
body. These forces are: 20 pounds at 80 degrees with the
horizontal, applied at the point (5, 0); 15 pounds at 75 degrees
with the horizontal, applied at the point (3, 2); and 12 pounds at
115 degrees with the horizontal toward the right, applied at the

6
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point (—2, 3). It is desired to find the magnitude and direction
of the resultant, and the position of the line along which it acts.

Figure 85, I, is theforce diagram. Theforces of 20 poundsand
15 pounds are laid off and their resultant is found. This resultant
isR;. Thenon the space diagram the lines of the 20-pound force
and the 15-pound force are extended till they interseet at B.
Through B a line is drawn parallel to the direction of R, of the

12# 15#
(-2,3) f
3
\
NG 7 (3,83
— ;
\ 1| 2| /3| 4 s
-4|=3]=-2] -I \\ R / 171 ¢s,
- /,’
-2 \\ 5 I
Vel o
Fig. 85.

force diagram. The resultant of the forces of 20 pounds and 15
pounds may be regarded as acting along this line. A vector
representing the force of 12 pounds is now added to R; of the
force diagram. The vector sum is R, which represents the direc-
tion and magnitude of the resultant of all three forces. On the
space diagram, the line of the 12-pound force is extended till it
intersects the line of R; at C. Through C a line is drawn parallel
to R of the force polygon. This line gives the position of the
resultant of all three forces.

Problem

Given the following forces: 20 pounds horizontal toward the right through
the point (2, 4); 25 pounds at an angle of 35 degrees to the right of the
vertical through the point (3, 3); 15 pounds vertical through the point (1, 3);
and 16 pounds at an angle of 45 degrees to the left of the vertical through
the point (—2, 2). Find the direction and magnitude of the resultant by
means of the force polygon, and find its position on the space diagram,
Use 1 inch = 5 pounds on the force diagram, and 1 inch = 2 units of length
on the space diagram. Measure the perpendicular distance from the point
(0, 0) to the line of the resultant.

60. Calculation of the Resultant of Non-parallel Forces.—The
force polygon of Fig. 85, II, is exactly the same as that for a set
of concurrent forces. It isevident, therefore, that the magnitude
and direction of the resultant of non-concurrent forces may be
calculated by the method of Art. 42. Each force is resolved into
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two components along a pair of axes at right angles to each other.
The sum of the components along one axis is taken as one side of
right-angled triangle. The sum of the components along the other
axis is taken as the other side of the same right-angled triangle.
The resultant is represented by the hypotenuse of his triangle.
The position of the line of action of this resultant is calculated
by moments. In Fig. 85, the force of 20 pounds and the force of
15 pounds may be regarded as concurrent at B. According to
Art. 48, the moment of R; about any point is equal to the sum of
the moments of the 20-pound force and the 15-pound force about
that point. The resultant R; may be regarded as concurrent
with the force of 12 pounds at C. The sum of the moments of
R; and the 12-pound force about any point is equal to the mo-
ment of the final resultant about that point. The moment about
any point of the resultant of a set of mon-concurrent, coplanar
forces is equal to the sum of the moments of the several forces about

that point.
Example

A rectangular board, Fig. 86, is 4 feet wide and 3 feet high. A force of
20 pounds, at an angle of 15 degrees with the horizontal toward the right,

45 ea¥
it g
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Fic. 86.

is applied at the lower right corner. A force of 24 pounds, at an angle of
30 degrees to the right of the vertical, is applied at the upper right corner.
A force of 16 pounds at an angle of 45 degrees to the left of the vertical is
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applied at the upper left corner. Find the magnitude and direction of the
resultant, and its distance from the lower left corner.
Resolving horizontally and vertically,

Force H component V component
20 19.318 5.176
24 12.000 20.784
16 —11.314 11.314

20.004 37.274

The resultant is the hypotenuse of the right-angled triangle of which the
base is 20.004 units and the altitude is 37.274 units. The resultant makes
an angle of 61° 47’ with the horizontal toward the right. Its magnitude is
42.30 pounds.

To find the location of the line of the resultant force on the space diagram,
moments are taken about the lower left corner of the board. Since the
horizontal and vertical components of the several forces have already been
computed, it is convenient to use these components in calculating the
moments.

The horizontal component of the 20-pound force and the vertical com-
ponent of the 16-pound force pass through the origin of moments so that
the moment of each of these components is zero.

V component of 20 Ib. 5.176 X 4 = 20.704
V component of 24 lb. 20.784 X 4 = 83.136
H component of 24 lb. 12.000 X 3 = — 36.000
H component of 16 1b. 11.314 X 3 = 33.942

M = 101.782 ft.-Ib..

101.782
ﬁS_O_ - 2.406 ft.

Figure 86, I1I, shows the location of the resultant. Since the resultant
makes an angle of 61° 47’ with the horizontal, a line perpendicular to it makes
an angle of 28° 13’ with the horizontal. To locate the resultant on the space
diagram, a line is first drawn through the lower left corner at an angle of
28° 13’ below the horizontal toward the right. A length of 2.406 feet is
measured off on this line from the origin of moments to the point B. The
moment is counter-clockwise and the resultant force is upward; hence the
moment arm must be measured toward the right from the corner of the
board. Through the point B, a line is drawn perpendicular to OB. The
resultant force is applied along this perpendicular line. If a smooth pin
were passed through the board at any point along this line, this pin would
hold the board in equilibrium, and the reaction at the point of contact
would be 42.30 pounds. The equilibrium would be stable, unstable or
neutral, depending upon the position of the pin in the line of action of the
resultant force. ;
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It is best to determine the sign of the moments by observing on the space
diagram whether the rotation is clockwise or counter-clockwise, rather than
by using the signs of the forces and effective arms. A horizontal force
toward the right applied to a vertical arm upward gives a clockwise moment.
A vertical force upward applied to a horizontal arm toward the right gives
a counter-clockwise moment. If counter-clockwise moment be taken as
positive,

= Vz — Hy,

in which V is the component of the force parallel to the Y axis, H is the
component of the force parallel to the X axis, x is the abscissa, and y is the
ordinate of some point in the line of action of the force. It is not necessary
that the X axis be horizontal and the Y axis vertical. The X axis may have
any direction and the Y axis be perpendicular to the X axis.

The student who prefers to make use of the signs of the forces and dis-
tances may employ the equation above, but he should also check his results
and visualize his problem by observing the direction of rotation on the space
diagram.

Instead of finding the perpendicular dlstance from the origin of moments
to the line of the resultant, the points of intersection of the resultant force
with the axes of codrdinates might have been calculated. Since the origin
of moments lies in the X axis, the moment of the horizontal component is
zero at the point where the line of the resultant cuts that axis.

101.782 = Vz,
in which z is the abscissa of the point of intersection with the X axis.
101.782
= 3ro74 = 2.731 ft.
Regarding the force as applied at the Y intercept,
101.782
J , = -—m = 5.088 ft.

The moment is counter-clockwise. A vertical force upward gives a counter-
clockwise moment when the point of application is to the right of the origin
of moments. A horizontal force toward the right gives a counter-clockwise
moment when the point of application is below the origin.

Problems

1. Solve the Example of Fig. 85 by resolutions and moments.

2. Solve the Problem of Art. 59 and compare with your graphlcal
solution.

3. Find the direction, magnitude, and the line of application of the resul-
tant of the following forces: 20 pounds, at 65 degrees to the right of the ver-
tical, through the point (2, 3); 16 pounds, at 20 degrees to the right of the
vertical, through the point (—2, 2); 12 pounds, at 40 degrees to the left of
the vertical, through the point (1, 5); and 18 pounds, at 110 degrees to the
left of the vertical,' through the point (-3, 2).
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The solution may be arranged in tabular form as was done with Problem
4 of Art. 17.

Force, | Angle, g Wiz —Hy
1b. deg. SaiLY SOBIC gn s & 4 (counter-clockwise +)
20 25 2/ 3 0.9063 0.4226 18.126 8.452 16.904 | —54.378
16 70 |[—2| 2 0.3420 0.9397 5.472 | 15.035 |—30.070 | —10.944
12 130 1| 5 |—0.6428 0.7660 |— 7.714 9.192 9.192 38.570
18 200 [(—3f 2 |—0.9397 |—0.3420 |—-16.915 |—6.156 18.468 33.830

— 1.031 | 26.523 14.494 7.078
14.494
Total moment iy, h s S e 21.572

The resultant force is 26.55 pounds at an angle of 2° 14’ to the left of the
vertical. The total moment is 21.572 units counter-clockwise. The resul-
tant force passes through a point at a distance of 0.812 units from the origin,
measured along a line which makes an angle of 2° 14’ above the horizontal
toward the right.

4. In Problem 3, find the point where the resultant cuts the X axis, by
dividing the total moment by the vertical component of the resultant force.

Ans. z = 0.813.

5. In Problem 3, find the point where the resultant cuts the Y axis.

6. In Problem 3, compute the moments about the point (2, 2), instead
of the origin, and find the points of intersection of the resultant force with
the lines ¢ = 2 and y = 2.

61. Equilibrium of Non-concurrent Forces.—A set or non-
concurrent forces acting on a rigid body may be divided into two
groups. In order that equilibrium may exist, two conditions
must be satisfied. These are:

1. The resultant of the forces of one group must be equal and
opposite to the resultant of all the other forces.

2. The resultant of the forces of one group must lie along the
same line as the resultant of all the other forces.

The first condition is identical with the condition of equilibrium
of concurrent forces. Stated graphically, this means that the
force polygon must close. Stated algebraically, this means that
the sum of the components of all the forces along any direction
is zero. Literally it is written,

P, cos ay + P; cos as + Pj cos a3 + ete. = 0, 1)
ZP cosa = 0. 2
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In the case of coplanar forces, two independent equations of this
kind may be written.

The resultant of one group of forces may be equal and opposite
to the resultant of all the other forces, but may not lie in the
same line. In the latter case, the moment of one group of forces
will not balance the moment of the other forces, and the forces
will rotate the body. The second condition is satisfied when
the sum of the moments of all the forces which act on the rigid
body is zero. This condition is expressed algebraically by the
equation

SME = 0= (3)

A problem of the equilibrium of non-concurrent, coplanar
forces may be solved by writing two resolution equations and one
moment equation. Since a moment equation may replace a resolu-
tion equation, any one of the following combinations may be
used:

1. One moment equation and two resolution equations.
2. Two moment equations and one resolution equation.
3. Three moment equations.

As in the case of concurrent forces, resolution perpendicular to
the liné of action of a force eliminates that force; moment about
a point in the line of action of a force eliminates that force.
Moment about the point of intersection of two forces eliminates
both of them. When two forces of unknown magnitude inter-
sect, it is advisable to begin the solution by writing the moment
equation about their point of intersection as the origin. Fre-
quently, both the direction and magnitude of one force are un-
known. If, however, some point on the line of action of this
force is known, it is advisable to take moments about this point.

Example

A bar AB, Fig. 87, is 20 feet long, weighs 60 pounds, and has its center
of mass 8 feet from A. The bar is hinged at A and supported by a cord at
B. The bar makes an angle of 15 degrees above the horizontal toward the
right, and the cord makes an angle of 35 degrees to the left of the vertical.
Find the tension in the cord and the direction and magnitude of the hinge
reaction at 4.

The free body is the entire bar AB. The forces which act on the free
body are its weight, the unknown tension in the cord at B, and the reaction
of the hinge at A. ~ The hinge reaction is unknown, 'as to both direction
and magnitude. ' ]
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Begin by writing a moment equation about the hinge 4, since this elimi-
nates two unknowns.

60 X 8 X cos 15° = P X 20 cos 20° 4)
24 X 0.9659 = 0. 9397P
P = 24.671b.

% %
A
¥ |8
/3l
T : H=i4.15#
s 60 lb. I
Fic. 87.

To find the direction and magnitude of the reaction at the hinge, it is
convenient to regard it as made up of a horizontal component H and a
vertical component V. Resolving horizontally,

H = Psin 35° = 14.15 1b. (5)
Resolving vertically,
V =60 — P cos 35° = 60 — 20.21 = 39.79 lb. (6)

From the force triangle, Fig. 87, II, the resultant reaction of the hinge is
found to be 42.23 pounds at an angle of 19° 35’ to the right of the vertical.
Check all results by moments about B,

60 X 12 cos 15° = 42.23 X 20 cos 34° 35’ (7

Problems

1. Complete the check of the Example above by substituting in Equa-
tion (7).

2. Solve the Example of Fig. 87 if the cord makes an angle of 35 degrees
to the right of the vertical. Check the result.

3. Consider the hinge reaction in Fig. 87 as made up of a component
parallel to AB and a component perpendicular to AB. Find the component
perpendicular to AB by moments about B. Find the component parallel
to AB by a resolution parallel to the bar. Calculate the resultant reaction
and check. .

4. A vertical door, Fig. 88, is 12 feet wide, 10 feet high, and weighs 360
pounds. The hinges are one foot from the top and bottom, respectively,
and are so placed that all the vertical load comes on the lower hinge. Find
the directién and magnitude of each hinge reaction.

vt B. A derrick mast is 30 feet long. - The boom is 50 feet long, is elevated
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20 degrees above the horizontal, and carries a load of 1200 f)ounds. A guy
rope attached to the top of the mast makes an angle of 35 degrees with the
horizontal. Considering the mast, boom, and the ropes which connect them
as a single rigid body, find the tension in the guy rope, and the direction
and magnitude of the reaction at the base due to the load of 1200 pounds.

6. A derrick mast is 15 feet long.
The boom is 20 feet long and is ele-
vated to a position in which the free
end is 16 feet from the top of the
mast. A guy rope in the same plane
as the boom and mast is attached to
a point at the same level as the bot-
tom of the mast, at a distance of 18
feet from the bottom. Find the ten-
sion in the guy rope and the hori-
zontal and vertical components of the -
reaction at the bottom of the mast
due to a load of 1600 pounds on the
end of the boom. Construct the space diagram to the scale of 1inch = 5
feet, and solve by measuring moment arms on the diagram.

7. In Problem 6, calculate the angles and the moment arms trigonomet-
rically, and solve by one moment and two resolution equations.

8. Solve Problem 6 for all forces by Bow’s method, drawing the lines in
the force diagram parallel to the corresponding members of the space
diagram.

9. Solve Problem 5 for all forces joint at a time by resolutions.

10. A bar AB, Fig. 89,!is 7 feet long, weighs 28 pounds, and has its center
of mass 3 feet from A. The end A is provided with a cylindrical roller,

=)

~

[eamamiaace S mmmmmmeem

L’%ﬂ&'—.

Fic. 89.

which allows it to move on a surface with little friction. The bar is placed
with the end 4 on a horizontal platform. It is supported by a cord BD

! The apparatus as shown in Fig. 89 is decidedly unstable. One of the
masses P or @ should be free to move only a short distance. The mass
might be placed on a second platform scale and the difference of weight
taken. To avoid lateral instability, the pulley at D should be to the right
of the vertical line through 4. -
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attached at B and held at A and by a second cord AC. Find the tension in
each cord and the reaction of the platform when the bar makes an angle
of 35 degrees with the horizontal and both cords are horizontal.
Ans. P =Q =17.141b.; R = 28 b,
11. Solve Problem 10 if AC is horizontal, BD makes an angle of 15 de-
grees with the horizontal, and the point D is higher than B.
Ans. Q = 12.831b.; P = 12.391b.; R = 24.681b.
12. Solve Problem 10 if AC is horizontal, BD makes an angle of 15 degrees
with the horizontal, and the point D is lower than B.
13. Solve Problem 10 if BD is perpendicular to AB, and also, if BD is
vertical.
14. In Fig. 89, the cords AC and BD are horizontal and the force P is 10
pounds. Find the angle which the bar makes with the horizontal.
15. A bar AB is 10 feet long, weighs 30 pounds, and has its center of mass
4 feet from A. The end A rests on a horizontal floor and the end B rests
against a vertical wall. Both ends are so constructed as to have practically
no friction. The bar is held hy a cord attached 1 foot from A. Find the
tension in the cord and the reactions at the floor and
at the wall when the bar makes an angle of 30 de-
grees with the vertical and the cord is horizontal.
In what respect does this differ from Problem 10?
16. Solve Problem 15 if the wall makes an angle
of 15 degrees with the vertical, away from the bar,
as shown in Fig. 90.

In order to eliminate two unknowns, it is advisable to take moments
about the point of intersection of the vertical line through A with the line
of the horizontal cord. It is best to use the horizontal and vertical com-
ponents of @ in this moment equation. A part of the solution is

30 X 4 sin 30° = Q(9 cos 30° cos 15° + 10 sin 30° sin 15°),
Q = 6.800 Ib,
P = @ cos 15° = 6.569 1b.

The student will verify these results and check by moments about 4. He
should find R by vertical resolution and check by moments about B.

17. The bar of Problem 15 is placed upon two inclined planes, Fig. 91.
The end A rests on a plane which makes an angle of 65 degrees to the left of
the vertical, and the end B rests on a plane which makes an angle of 50
degrees to the right of the vertical. Find the reaction of each plane and
the angle which the bar makes with the horizontal.

Compute the reactions by resolving parallel to the inclined planes. Then
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find the angle by moments about A. It is best to use the components of
the force P in the moment equation.

30 X 4cos 6 = Psin 40° X 10sin 6 4 P cos 40° X 10 cos 6,
12 = P (sin 40° tan 6 + cos 40°).
Check by moments about B. Ans. 6 = 8°07.

62. Condition for Independent Equations.—If {wo moment
equations of equilibrium are written for a problem of mon-concur-
rent, coplanar forces, and these equations are combined into a sin-
gle equation, the resulting equation s equivalent to a resolution
perpendicular to the line joining the two origins of moment.

In Fig. 92, A and B are taken as the two origins of moment.
The point B is the origin of coordinates and the,X axis is passed
through the point A. The distance between A and B is equal to
c. A force P; at an angle a; with the X axis passes through the

point (z1, 1) and a force P, at an angle a2 with the X axis passes
through the point (z, y2), etec. Taking moments about B,

2Py sin a;—y/P; cos ai + 22P; 8in ay — y2P2 cos ay + ete.
= 0. (1)

Taking moments about 4,

(z1 + ¢)Py sin a;— yiP; cos ay + (x2 + ¢)P; sin az — yoP; cos
as + ete = 0. (2)
Subtracting Equation (1) from Equation (2),

¢(P; sin a3 + P, sin a; + ete.) = 0. (3)
The term in the parenthesis of Equation (3) is the sum of the
components parallel to the Y axis; therefore, Equation (3) proves
the proposition.

If two moment equations are written and one resolution equa-
tion, and if the resolution is taken along a direction which is
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perpendicular to the line joining the two origins of moment, the
three equations will not be independent. If three moment equa-
tions are written, and if the three origins of moment lie on the
same straight line, the three equations will not be independent.

For concurrent, coplanar forces in equilibrium there are
two unknowns, and two independent equations may be written.
These may be:

(1) Two resolutions,

(2) One moment and one resolution.

(3) Two moments.

For non-concurrent, coplanar forces there are three unknowns,
and three independent equations may be written. These are
‘the same as the equations for concurrent forces with the addition
of one moment equation. If the forces are all parallel, there can
be only one independent resolution equation, and only two un-
known quantities.

When one resolution and one moment equation arewritten
for concurrent forces, the resolution must not be taken perpen-
dicular to the line which joins the origin of moments and the
point of application of the forces. When one resolution and fwo
moment equations are written for non-concurrent forces, the
resolution must not be taken perpendicular to the line which
joins the two origins of moment.

When two moment equations are written for concurrent forces,
the two origins of moment and the point of application of the
forces must not lie on the same straight line. When three
moment equations are written for non-concurrent forces, the
three origins of moment must not lie on the same straight line.

63. Direction Condition of Equilibrium.—When a body is in
equilibrium under the action of three non-concurrent forces,
in order that any one of these forces
may lie in the line of the resultant
of the other two forces, it is necessary
that all three forces intersect at a
single point. In Fig. 93, the bar
AB is hinged at A and supported

Fia. 93. by a cord at B. The vertical line
through the center of mass at the point C intersects the line of
the cord at D. In order that the bar may be in equilibrium, the
direction of the hinge reaction must be such that its line of action
shall pass through D. This relation is sometimes called the
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geometrical condition of equilibrium. In this book it will be
called the direction condition of equilibrium.

Example I

A horizontal bar 5 feet long, weighing 30 pounds, with its center of mass
2 feet from the left end, is supported by cords at the ends. The cord at
the left end makes an angle of 30° to the left of the vertical. Find the
direction of the cord at the right end. g

From the right-angled triangles of Fig. 94, P \f‘_ L

—_—e—— 3’ >
CD = 2 tan 60° = 3 tan 6, i oﬁ;___ﬂg/
2 X 1.7321 AN dcC o /B
tan o = =270 = 11547, i g Y
° na’ \*30_) %
0 = 49° 06’. N A
X \
The cord at the right end makes an angle \V,V ,/
of 40° 54’ to the right of the vertical. The D\‘L/
magnitude of the forces may be found by b s o

moments or resolutions.

The direction condition may take the place of one moment equation in
the solution of a problem of non-concurrent forces. The other necessary
equations may be resolutions.

This method of solution is especially valuable when only the direction
is required. In practical work it is often desirable to know the direction
. of a force, in order to put in a support in the best position. The engineer
should cultivate the habit of observing the direction of forces in actual
structures.

Problems

1. A horizontal beam, 12 feet long, with its center of mass 5 feet from the
left end, is supported by two posts. One post at the left end makes an
angle of 25 degrees to the right of the vertical. What should be the direc-
tion of the post at the right end in order that the compression in each post
shall be parallel to its length? Solve also if the second post is 2 feet from
the right end.

2. Solve Problem 1 if one post is at the left end and the other is 3 feet
from the left end.

3. A derrick boom is 20 feet long, makes an angle of 40 degrees with the
horizontal, and carries a load of 400 pounds. The mast is 12 feet long.
One guy rope, which is in the plane of the mast and boom, makes an angle
of 30 degrees with the horizontal. Find the direction of the reaction at
the bottom of the mast by means of the direction condition of equilibrium.
With this direction known, draw the force triangle for the three external
forces, which are the weight on the boom, the tension of the guy rope, and
the reaction at the bottom of the mast. Also solve completely by Bow’s
method for all external and internal forces. Compare the two diagrams.

4. A bar 7 feet long, with its center of mass 3 feet from the left end, is
supported by a rope at the left end which makes an angle of 30 degrees to
the left of the vertical, and a rope at the right end which makes an angle of
35 degrees to the right of the vertical. What angle does the bar make with
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the horizontal? If the bar weighs 60 pounds, what is the tension in each
rope?
From Fig. 95,
~ DF = DE + EF.
4 cos 6 tan 55° = 3 cos 6 tan 60° 4+ 7 sin 6; |

tan g = 4 180 55 = 31an 60° _ 4 737,

0 = 4°13'.

Fiac. 95.

By a resolution perpendicular to the direction of the rope at the left end,

5 Q cos 25° = 60 sin 30°,
Q = 30sec 25° = 30 X 1.1034 = 33.10 1b.

Check Q and 6 by moments about the left end. Solve for P by a resolution
equation and check.

5. Find the direction of the bar in Problem 17 of Art. 61 by means of the
direction condition of equilibrium. ¥
> 6. A bar 5 feet long, weighing 20 pounds, with its center of mass 2 feet
from one end, is placed across the inside of a hollow cylinder which is 6 feet
in diameter. The ends of the bar are frictionless. Find the position of
equilibrium and the normal reactions at the ends.

Ans. The bar makes an angle of 16° 47’ with the horizontal.

When a body is in equilibrium under the action of four forces,
the resultant of two of these forces must lie in the line of the
resultant of the other two forces. In order that this may happen,
the resultant of two of these foreces must pass through the inter-
section of the lines of action of the others.

Example II X

A ladder 20 feet long, weighing 40 pounds, with its center of mass 8 feet
from the lower end, rests on a smooth horizontal floor and leans against a
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smooth vertical wall. It is held from slipping by a horizontal force of 12
pounds at the bottom. Find the position of equilibrium.

" The resultant of the horizontal force and the vertical reaction at the
bottom must pass through the point D,
(Fig. 96), at which the vertical line
through the center of mass intersects
the horizontal line through the top of
the ladder. By vertical resolution, the
vertical reaction at the bottom is found
to be 40 pounds. The resultant of 40
pounds and 12 pounds makes an angle
with the vertical whose tangent is 0.3.
From the figure,

DE = 20sin 8 = 8 cos 6 cot o;

8
tan 6 = m = 1.3333,
6 = 53° 08'.

Problems

7. A bar 10 feet long, weighing 40 pounds, with its center of mass at the
middle, rests on a smooth horizontal floor and leans against a smooth vertical
wall. Tt is held by a horizontal pull of 10 pounds applied 2 feet from the
lower end. Find the reactions at the floor and at the wall by resolutions,
and find the angle which the bar makes with the vertical by means of the
direction condition of equilibrium. Ans.  21° 48’ with the vertical.

o 8. A bar ]2 feet long, with its center of mass 5 feet from the lower end,
rests on a smooth horizontal floor and leans against a wall which makes an
angle of 15 degrees with the vertical, away from the bar. The bar makes
an angle of 35 degrees with the vertical.- It is held by a horizontal force
applied 2 feet from the bottom. Determine the three unknown forces
graphically, using the direction condition of equilibrium to find the angles.

64. Trusses.—A truss is a jointed frame. Since a triangle is
the only jointed frame which retains its form when loaded, a
truss is made up of a connected series of triangular elements.

B c O

Ve G

Fic. 97.

Figure 97 shows a truss which is entirely supported from one end.
A truss supported at one end is called a cantilever truss. The dis-

s
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tances AB, BC, and CD, are panel lengths. The top of the
truss is called the top chord. The lower members, EF and FG,
comprise the bottom chord. Either chord may be one, continuous,
rigid body, but the calculations are made on the assumption that
each panel is a separate body which is pin-connected to the re-
mainder of the truss. ;

When loads are applied at the joints of a truss, the internal
stresses are calculated as a series of problems of concurrent forces.
Bow’s method is used for the graphical solution. The truss of
Fig. 97 may be calculated in this way, beginning at the right end,
where there are only two unknowns.

In most trusses, no point can be found at which there are only
two unknowns. It is then necessary to find first the external
reactions as a problem of non-concurrent forces. After these
reactions have been found, the forces at the separate joints are
calculated as a series of connected members.

Example

The truss shown in the diagram of Fig. 98 is supported at the left end on
rollers, thich make the reaction vertical. It is hinged at the right end.

4200#/-' : 4000# 2800#
x| B [ c
— 982 , W
X/ k- 25— AN - 2t--- \!
$ A 2
Ao | ¥ ; v 2\ 2
4 P K
-9t -g~- R fiin s F-> LANRRRNEER. WPt " L0
Y. Y.

Fic. 98.

The reaction at the right end has a horizontal component H and a vertical

component R,. Solve for the reactions and then solve for all the internal

forces. ]
Moments about the left support eliminate R; and H.

4200 X 15 = 63000
4000 X 21 = 84000
2800 X 33 = 92400
42R, = 239400

R, = 5700 1b.

It is best to use the components of the load of 4200 pounds when moments
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are taken about the hinge. The end posts are 15 feet in length. Sin 6 =
% = 0.8000; cos & = 0.6000. The force of 4200 pounds at right angles to

the end post makes an angle ¢ with the horizontal. The horizontal com-
ponent of 4200 pounds is 4200 X 0.8 = 3360 pounds. The vertical com-
ponent is 4200 X 0.6 = 2520 pounds. Using these components instead of
the 4200-pounds force, and taking moments about the right end of the truss,

2800 X 9 = 25200
4 4000 X 21 = 84000
2520 X 33 = 83160
i 192360 counter-clockwise,
3360 X 12 = 40320 clockwise,
42R, =152040

R, = 36201b.
Resolve vertically for a check,
5700 2520
3620 4000
2800
9320 = 9320

The horizontal component of the hinge reaction is obtained by a horizontal
resolution,.

H = 3360 lb.

This problem of non-concurrent, coplanar forces has now been solved by
two moments and one resolution and partly checked by a second resolution,
It might well be checked again by moments about the point of application
of the 4200-pound load, or about the middle of the top chord.

2520# 4o$o# 2800 #
B (e L
# E
3360 a ~ =
H J !
A G / /‘:?/ D
R v
7 PIAC TR 5 S N F3 SRR N > &, “N , ¥
/T'."\J: - _¢Y1~ t 3360#
3620% r 5700#

F1a. 99.

It is not best to use the components of the inclined forece in both moment
equations, for, if an error is made in the computation, the reactions will
check and still be incorrect.

Figure 99 shows the reactions for the truss of Fig. 98. The force of 4200
pounds is replaced by its components. If a force and its components are
written on the same diagram, one or the other should be enclosed in a

7

)

{
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parenthesis, or otherwise marked, on account of the danger of using both
the force and its components in the same equation.

With the external forces known, the internal forces may now be computed.
The algebraic method of solution, joint at a time, will be given first. This
will be followed by the graphical solution. Figure 99 has been lettered by
Bow’s method. Each force will be represented by two letters. (It is most
convenient in the algebraic method to use a single letter for each force.
The two letters, will be used here, however, in order to compare the results
more readily with the graphical solution.)

Beginning with joint No. 1 as the free body and resolving vertically,

ag sin § = 3620,

= %28—0’ ag = 4626 1b. compression.
Resolving horizontally,
gf = agcos 8 = 4525 X 0.6, gf = 2715 1b. tension.

The tension in GF might have been calculated by moments about joint No. 2,
of X 12 = 3620 X 9.

At joint No. 2, AG pushes upward. Its horizontal component at the top
is the same as at the bottom, or 2715 pounds. -Its vertical component is
3620 pounds. Resolving horizontally, '

bh = 3360 + 2715, bh = 6075 Ib. compression.
Resolving vertically, and assuming that gk pulls downward,

ag sin § = 2520 + gh,

gh = 3620 — 2520, gh = 1100 1b. tension.

Resolving vertically at joint No. 3,
hi sin 45° = gh = 1100,

hi = 1100 X 1.4142, hi = 1556 1b. compression.
Resolving horizontally, HI pushes toward the left and GF pulls toward the
left, consequently 77 must pull toward the right. The horizontal compo-
nent of the force in HI is the same as the vertical component;

if = 2715 4+ 1100, if = 3815 1b. tension.
Resolving vertically at joint No. 4,
7 sin 45° = 4000 — 1100 = 2900,

ij = 2900 X 1.4142, ij = 3701 1b. compression.
Resolving horizontally, assuming that ¢j is compression,

¢j = bh + hi cos 45° — ij cos 45°,

¢j = 6075 4 1100 — 2900, cj = 4275 1b. compression.
At joint No. 5,

kd cos 6 = ¢j = 4275,

kd = 06’ b kd = 7125 1b. compression.
Jk + 2800 = kdsin 6 = 7125 X 0.8, y
Jjk = 5700 — 2800, jk = 2900 Ib. tension.
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At joint No. 6,

jk = %j sin'45° = 29001b.
kf = if — ij cos 45° = 3815 — 2900, . kf = 915 Ib. tension.
At joint No. 7,
kdsin 0 = fe = R,
R, = 7125 X 0.8 = 5700 Ib.
kd cos @ — kf = de = H,
H = 4275 — 915 = 3360 Ib.

These last two results check the hinge reaction. The values of jk from joints
5 and 6 also check.

Figure 100 is the graphical solution for Fig. 98. The diagram
begins with af, the vertical reaction at the left end. The last
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point is k. This point should fall on the horizontal line 7gf,
in order that the line &f may be horizontal. On account of errors
in the drawing, the point k is slightly above igf. The distance
from k to the horizontal line is the closing error.

The external forces fa, ab, be, cd, de, and ¢f form a polygon.
A line representing an external force is recognized by the fact
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that it carries only one arrow. The external force polygon also
must close.

Problems

1. Draw the space diagram, Fig. 98, to the scale of 1 inch = 8 feet, or
1 inch = 10 feet. With the external reactions known from the above
example, draw the force diagram to the scale of 1 inch = 1000 pounds.
Draw all forces parallel to the corresponding lines on the space diagram.
Measure all lengths on the force diagram and put the values in pounds on
the space diagram.

2. Solve the above Example by Bow’s method, putting f at the top and
a at the bottom of the first line af. :

3. In Fig. 98, make the load in AB 2800 pounds, the load in BC 3200
pounds, and the load in CD 3500 pounds. Find the reactions and check.
Solve for all internal forces, joint at a time. Solve by Bow’s method to
the same scale as Problem 1.

It is a good plan to carry Bow’s method along with the algebraic
solution for the internal forces. Calculate the forces at a given
joint, and then draw the part of the force diagram for that joint.
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4. Figure 101 shows a roof truss hinged at the right end. Find the reac-
tions and check. Find all the internal forces joint at a time. Construct
a space diagram to the scale of 1 inch = 8 feet or 1 inch = 10 feet. Letter
and solve by Bow’s method to the scale of 1 inch = 500 pounds.

656. The Method of Sections.—It is often desirable to find the
stress in a few members of a truss or other structure. For this
purpose, the truss may be imagined to be cut at some surface
into two portions. Either of these portions may be regarded
as a free body in equilibrium under the action of the external
forces on its side of the surface, and of the internal forces which
cross the surface from the other portion. These internal forces
which cross the imaginary surface are external to the portion
under consideration. If there are not more than three unknown
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forces acting on the portion in question, these may be deter-
mined as a problem of non-concurrent forces.

Example

Figure 102 represents the truss of Fig. 99. Theexternal reactionsareknown.
The truss may be regarded as divided at the surface SR, which cuts the
members CJ, JI, and IF. The portion to the right of SR will be taken as
the free body This portion is shown separately in Fig. 102, II. The
forces which act on the free body are the known forces of 2800 pounds,
3360 pounds, and 5700 pounds, together with the unknown forces in the
members CJ, JI, and IF. The direction of each of these members is known;
hence, the unknowns are the magnitudes of the three forces.
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The members JI and IF intersect at joint No. 6. If moments are taken
about this joint, the only unknown is the force in CJ.

12 X ¢ = 9 X 5700, cj = 4276 Ib.

The reaction of 5700 pounds tends to turn the portion of the truss in a

counter-clockwise direction about joint No. 6. The force in CJ must turn
in the opposite direction. Consequently CJ must push toward the right.

cj = 4276 Ib. compression.

- The members JI and CJ intersect at joint No. 4, Fig. 102, I. If moments

are taken about this joint, the only unknown is the force in IF. (This

origin of moments is outside the portion under consideration. If a body is
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in equilibrium, the sum of the moments is zero for any origin whatever,
whether inside the body or entirely away from it.)

2800 X 12 = 33600

3360 X 12 = 40320
73920 clockwise,
5700 X 21 = 119700 counter-clockwise
if X 12 = 45780,

if = 3817 1b. tension.

Two of the unknowns have now been found by two moment equations.
The third unknown is best found by a vertical resolution,

17 sin 45° = 5700 — 2800 = 2900,
7j = 2900 cosec 45° = 2900 X 1.4142,
ij = 3701 1b. compression.

It is not at all necessary to make a separate drawing of the portion of the
truss which is taken as the free body. This has been done in Fig. 102, II,
in order to simplify the explanation. =~ Generally the original space diagram,
Fig. 102, 1, is employed and a section line is drawn across to indicate the
boundary of the portion in equilibrium.

The solution of a problem, joint at a time, may be regarded
as a special case of the method of sections. A single joint is cut
off as the free body and the forces are concurrent. The term,
“method of sections” is applied to cases like that of Fig. 102, II,
in which the forces on the free body are non-concurrent.

Problems

1. In Fig. 102, use the portion of the truss to the left of the section RS
as the free body and solve for the forces in CJ, JI, and IF. Take moments
about the same points as in the example above.

2. In Fig. 102, make a section VU, which cuts the members BH, HI,
and IF, and find the force in the members cut without using any other
internal forces. Solve first with the
portion to the left of the section as
the free body and check with the
portion to the right of the section as
the free body.

3. Make a section WX in Fig. 102,
separating the end post AG as a free
y body. Find the force in HG by a

R ek 5 G vertical resolution.
F 4. In Problem 3 of Art. 64, cal-
Fre. 103. culate the external reactions, and
then find bk and ki by sections without using any other internal forces.

5. In Fig. 103, find the reactions and check. Make a section through
BH, HG, and GF and find the forces in these members, without using any
other internal forces.
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Could you solve Problem 5 by means of a section through BH, HI, 1J,
and JF? Why?

6. Solve Problem 5 for all internal forces, joint at a time.

7. Solve Problem 5 for all internal forces by Bow’s method to the scale
of 1 inch = 400 pounds.

8. In Fig. 104, the loads in AB ¢ B ‘,
and BC are each 1200 pounds. ¥
Find the reactions. Find bf and /
fd by sections. Find all internal A
forces, joint at a time.

9. In Fig. 104, the load in 4B is [
800 pounds, and the load in BC is ,r v
1200 pounds. Find the reactions. D
Find bf and fd by sections. Check Fig. 104.
by a horizontal resolution.

10. In Fig. 105, find the reactions in BA, AF, and FE. Check. Find
¢i, ij, and je by sections. Begin at the right end and solve for all forces,
joint at a time. Begin at the right end and solve graphically.
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66. Jointed Frame with Non-concurrent Forces.—In the
jointed frames considered, the loads have been applied at the
joints; consequently the intervening members transmitted force
only in the direction of their length. A member to which only
two forces are applied, is called a two-force member. If the forces
arein equilibrium, they must lie along the same straight line, and
if they are applied at opposite ends of the member, the direction
of each force must be in the line of the member. A member to
which three forces are applied is called a three-force member.
It is not necessary that any of these forces be in the direction of
its length.

Example

Figure 106 shows two links which are connected to each other and to the
supports by smooth hinges. The left link carries a load of 30 pounds 1 foot
from the left end; the right link carries a load of 50 pounds at the middle.
The problem is to find the reactions of the supporting hinges and the in-

ternal reaction at the hinge which connects the links.
Equilibrium equations may be written for the two links separately, or
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for both together as a single free body. It is generally advisable to write
first the equations for the entire structure, and calculate as many external
forces as possible; then write equations for parts of the structure to obtain
the remainder.

The links and their support form a 3:4:5 triangle. Cos 6 = 0.6;sin 6 =
0.8; cos ¢ = 0.8; sin ¢ = 0.6.

The vertical component of the reaction at the left hinge is V1. The
vertical component of the reaction at the right hinge is V,. The horizontal
component at the left hinge is H;. The horizontal component at the right
hinge is H.,.

Fia. 106.

Taking moments about the left hinge,
5Vy = 30 X 0.6 + 50 X 3.4,

30 X 0.6 = 18
50 X 3.4 = 170
5V, = 188 V: = 37.61b
Taking moments about the right hinge,
50 X 1.6 = 80
30 X 4.4 = 132
5V, = 212 V. = 424 1b.

There are still two external forces, H, and H,. By horizontal resolution
these are known to be equal and opposite. All the possible equations for
a problem of non-concurrent forces have now been used and there is still
one unknown to be found. The vertical reactions depend entirely upon the
horizontal distances of the lines of the loads from the two supports and are
independent of the length of the links and the kind of connections between
them. ]
To find H,, the right link may be taken as the free body and a moment
equation written about the hinge which conneets the two links.
37.6 X 3.2 = 120.32 counter-clockwise,
50 X 1.6 80.00 clockwise,
2.4H, = 40.32, H, = 16.8 1b.
The horizontal reaction at the left hinge is 16.8 pounds toward the left.
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In Fig. 106, H; is the horizontal component of the force from the right
link to the left link, and Vs is the vertical component. Equal and opposite
forces act from the left link to the right link.

Using the left link as the free body and taking vertical resolutions,

Vi+ Vs =301b.
Vs = 30 — 424, V; = 12.41b. downward.

" If V,is the vertical component of the reaction of the left link on the right
link, a vertical resolution with the right link as the free body gives an equal
force in the opposite direction.

By horizontal resolutions, with either link as the free body, H; = 16.81b.
Both H; and V; may be.checked by moments about the left hinge with the
left link as the free body.

Problems

1. In Fig. 107, find the direction and magnitude of the reactions at the
supporting hinges, and the direction and magnitude of the force from the
inclined member to the horizontal member at the hinge which connects
them.

Ans. H1 = Hz ‘= Hs = 163.92 lb.;
Vi = 25.361b.; Va =.134.651b.; V5 = 34.64 Ib.;
R, = 165.9 1b. left 8° 48’ up;
R, = 212.1 Ib. right 39° 24’ up;
R; = 167.5 lb. right 11° 32" up.

(]

Fig. 107.

2. In Problem 1, find the location of the resultant of 100 pounds and 60
pounds by moments. Then, with the direction of R, known from the alge-
braic solution, find the direction of R, by means of the direction condition
of equilibrium of three forces. Finally, draw the force triangle and get

the magnitudes of R; and R.,.
3. In Fig. 108, find the direction and magnitude of the reaction at each

hinge.

A problem in which the members of a connected system are
subjected to non-concurrent forces may be changed into a
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external forces are concerned, the problem of Fig. 109, I, is
equivalent to the problem of Fig. 106.

In Fig. 109, I, single reactions have been drawn at each support, instead
of the horizontal and vertical components. These components, however,
might have been used. .

Figure 109, II, shows the graphical solution. At the lower joint, there are
two unknowns in the direction of the links. Beginning with the known
load of 35 pounds vertically downward, draw the force triangle dca. At the
right hinge, the unknowns are the direction and magnitude of the hinge
reaction. Lay off the line cb, 25 units in length, in a vertical direction.
The closing line ba gives the direction and magnitude of the hinge reaction.
The horizontal component of the hinge reaction is the force H, of Fig. 106,
and the vertical component is the force Vo The left reaction de is found
in a similar manner.

To find the direction and magnitude of the reaction at the lower hinge,
the load of 25 pounds is regarded as acting on the right link, and the load
of 10 as acting on the left link. The pin may be regarded as replaced by a
short link and an additional letter inserted in the space diagram. On the
force diagram measure 10 units downward from d to the point f. The broken
line af is the reaction at the pin.

Problems

4. In Problem 1, transfer the vertical loads to the joints and solve
graphically.

5. In Problem 3, Fig. 108, transfer the vertical loads to the joints and
solve graphically.

67. Summary.—The magnitude and direction of the resultant
of a set of non-concurrent, coplanar forces is the vector sum of
the forces. If the forces are all parallel, the vector sum is the
algebraic sum. In these respects, non-concurrent forces and
concurrent forces are alike. .

The location of the resultant is found from the condition that
the moment of the resultant about any point is equal to the
moment of the separate forces about that point.

For equilibrium, the force polygon must close, and the sum of
the moments about any point must be zero.

For the algebraic solution of a problem of the equilibrium of
non-concurrent, coplanar forces, three independent equations
are written. These may be:

1. One moment equation and two resolution equations.
2. Two moment equations and one resolution equation.
3. Three moment equations.



108 MECHANICS [ArT. 68

When two moment and one resolution equation are written,
the resolution must be not taken perendicular to the line which
joins the two origins of moment. When three moment equations
are written, the three origins of moment must not lie in the same
straight line.

When theforces are all parallel, there can be only two unknowns
and two independent equations. One of these equations must
be a moment equation.

The direction condition of equilibrium for three forces requires
that the lines of action of the forces must meet at a point. The
direction condition for four forces is that the resultant of two
of the forces must pass through the intersection of the other two.
A direction condition may replace a moment equation in the
solution of a problem of equilibrium. The direction conditions of
equilibrium are especially useful in problems in which angles are
to be found.

A resolution perpendicular to the direction of an unknown force
eliminates that force. A moment equation with respect to
a point in the line of action of an unknown force eliminates that
force. It is often desirable to take moments about the point of
intersection of two unknown forces, or about a point in the line of
action of a force whose direction and magnitude are both
unknown.

In a connected system, the entire system is first treated as the
free body and as many of the reactions as possible are calculated.
The parts of the system are then treated as free bodies. When
the free body is a single joint, the forces are concurrent. The
method of sections divides the system into two portions. Either
portion may be treated as the free body in equilibrium. The
forces which act on the portion are the external forces on its side
of the section, and the internal forces in the members which are
cut by the section.

68. Miscellaneous Problems

1. Two bodies, one of which weighs 20 pounds and the other 50 pounds,
are attached to the ends of a rope which runs over a smooth pulley. The
50-pound mass is in contact with a smooth plane which makes an angle of
15 degrees with the horizontal. Find the position of equilibrium, the reac-
tion of the plane, and the direction and magnitude of the resultant force on
the pulley.

2. In Problem 1, what is the maximum angle of the plane with the hori-
zontal in order that equilibrium may be possible?
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3. In Problem 1, both bodies are in contact with the plane. The per-
pendicular distance from the pulley to the plane is 5 feet. Neglecting the
dimensions of the pulley, find the minimum length of rope for possible
equilibrium.

4. A 20-pound mass is supported by two cords. One cord is 5 feet long
and has the upper end attached to a point A. The second cord runs over
a smooth pulley at the same level as the point A, and 5 feet therefrom, and
carries a load of 12 pounds. Find ‘the position of equilibrium, the tension
in the first cord, and the resultant force on the pulley. There are two possi-
ble solutions of the equations. What change must be made in the construec-
tion of the apparatus in order that both solutions may be mechanically
possible?

6. Solve Problem 4 if the pulley is 5 feet from A along a line which makes
an angle of 10 degrees with the horizontal. Write moments about A and
solve by trial and error.

Ans. The cord from A makes an angle of 29° 18’ with the vertical.

6. A bar 10 feet long, weighing 60 pounds, with its center of mass 6 feet
from the left end, is hinged at the left end and supported by means of a
rope at the right end. The right end is elevated 20 degrees above the
horizontal. The rope at the right end makes an angle of 35 degrees to the
left of the vertical. Find the tension in the rope and the direction and mag-
nitude of the hinge reaction by means of one moment equation and two
resolution equations. Check by a second moment equation.

7. Solve Problem 6 by means of the direction condition -of equilibrium.
Compare with the results of Problem 6.

8. A box is 5 feet long horizontally and 3 feet high. It weighs 240 pounds
and its center of mass is at the center. A force applied at the upper right
edge tips the box about the lower left edge. The force makes an angle of
25 degrees to the left of the vertical. If the friction is sufficient to prevent
sliding, what force will be required to start the box? X

Ans. 103.4 1b.

9. Solve Problem 8 graphically by means of the direction condition of
equilibrium.

10. In Problem 8, what is the direction and magnitude of the minimum
force at the upper right edge which will start to tip the box?

11. The box of Problem 8 is turned through an angle of 20 degrees. Find
the direction and magnitude of the smallest force at the upper right corner
which will hold it in this position?

12. A ladder 20 feet long, weighing 50 pounds, with its center of mass
8 feet from the lower end, stands on a smooth horizontal floor and leans
against a smooth, vertical wall. It is held from slipping by a horizontal
force at the floor. Find this force and the reaction at the floor and at the
wall when the ladder makes an angle of 25 degrees with the vertical.

13. The ladder of Problem 12 stands on a smooth horizontal floor and
leans against the edge of a wall 15 feet in height. It is held from slipping by
. a horizontal force at the bottom. Solve for the unknowns when the ladder
makes an angle of 30 degrees with the horizontal.

14. Solve Problem 12 if the horizontal force at the bottom of the ladder
is 16 pounds and the position is unknown.
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156. Solve Problem 12 if the horizontal force is 15 pounds and is applied
2 feet from the bottom of the ladder. Check your results by means of
the direction condition of equilibrium.
o 16. A beam 20 fect long, weighing 80 pounds, with its center of mass at
the middle, has its left end on a smooth plane which makes an angle of 60
degrees to the left of the vertical, and its right end on a smooth plane which
makes an angle of 70 degrees to the right of the vertical. The beam carries
a load of 60 pounds 5 feet from the left end, and a load of 100 pounds 4 feet
from the right end. Find the reactions of the planes and the angle which
the beam makes with the horizontal.

F1a. 110. Fra. 111.

“ 17. A bar 4 feet in length, weighing 50 pounds, with its center of mass at

the middle, has one end against a smooth vertical wall. The other end is

attached to a rope 5 feet in length which is fastened to a point in the wall.

Find the position of equilibrium, the reaction of the wall, and the tension
" in the rope. :

18. The bar AB, Fig. 110, has its center of mass at the middle of its length.
The end B is against a smooth wall which makes an angle of 10 degrees
with the vertical. The end A is supported by a rope. Find the direction
of the rope, the tension in it, and the reaction of the plane.

19. In Fig. 111, find all reactions and check. Find bk, kg, and gf by
sections. Find all forces joint at a time. With the reactions known, solve
by Bow’s method.



CHAPTER VI
COUPLES

69. Moment of a Couple.—In Fig. 112, P and Q are two
forces in opposite directions at a distance a apart. Their
equilibrant is the force Q — P at a distance x from Q. The
distance z is given by the equation,

(@ — Pz = Pa kD)
IfQ =P, Q — P =0, z = infinity.

Two equal and opposite forces acting on a body form a couple.
The forces of a couple have a moment about any point and tend
to produce rotation about any point. Since the forces are equal,
their resultant is zero. The forces of a couple do not produce
translation.

If the magnitude of each force is P and the distance between
the forces is a, the moment is Pa. The moment is the same with
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respect to any point in the plane of the forces. This statement
may be proved by Fig. 113. The point O, at a distance x from
the downward force of the couple, may be taken as the origin
of moments. The sum of the moments of the two forces about
this origin is

M= —Pz+ P(x+ a) = Pa 2)
The moment of the couple is the same, no matter what point is
taken as the origin. The moment of a couple is the product of
either force multiplied by the distance between the lines of action of
the two forces.

70. Equivalent Couples.—Two forces are equivalent if either
force may be balanced by a third force so that no translation is
produced in the body upon which the forces act. Two couples

111
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are equivalent if either couple may be balanced by a third couple
so that no rotation is produced in the body upon which the couples
act. These definitions may be stated briefly: Forces which are
balanced by the same force are equivalent. Couples which are
- balanced by the same couple are equivalent.

In order that two forces may produce equilibrium, the forces
must be equal, opposite, and along the same line. In order that
two couples may be in equilibrium, the magnitude of their mo-
ments must be equal, the direction of rotation must be opposite,
and the couples must lie in the same plane or in parallel planes.

It will now be proved that a given couple may be balanced by
a second couple in the same plane, provided the moments are
equal and opposite. If the moments are equal and opposite,
the forces may have any magnitude and may be placed at any
position in the plane. A couple may be made of an upward
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force of 6 pounds and a downward force of 6 pounds at a distance
of 4 feet to the right of the first force. The moment of this
couple is 24 foot-pounds clockwise. Any -counter-clockwise
couple of 24 foot-pounds in the same plane will . produce equilib-
rium. This second couple may be made of two horizontal
forees of 24 pounds at a distance of 1 foot apart, with theupper
force toward the left, or it may be made of two forces of 12
pounds at a distance of 2 feet apart, or of two forces of 8 pounds
at a distance of 3 feet, or of any other combination whose moment
is 24 foot-pounds counter-clockwise.

In Fig. 114, P; and P, are equal forces of magnitude P at a
distance a apart. These forces form a clockwise couple of magni-
tude Pa. A second pair of forces, Q; and Q., each of magnitude
Q, at a distance b apart, form a counter-clockwise couple of
moment @b. It will be proved that these couples produce .
equilibrium if the magnitude of the moment Pa is equal to the
magnitude of the moment Qb.
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Extend the lines of the forces until the line of the force P,
intersects the line of the force Qi and the line of the force P,
intersects the line of the force Q2. The resultant of the forces
P;and Q; at A isa force R;. The direction and magnitude of the
force R; are given by the vector diagram, E, F, G, of Fig. 114, II.
The resultant of P, and Q. at C is a force R;. The magnitude
and direction of R, are given by the lower force triangle of Fig.
114, 1I. Since P, is equal and opposite to P,, and Q; is equal and
opposite to Qg, it is evident from Fig. 114, II, that R, is equal and
opposite to Rp. If the resultant R;through A of the space dia-
gram falls on the same line as the resultant R, through C, the
forces will balance and the couples will be in equilibrium. This
condition is satisfied if the line of R; passes through the point C.

In the space triangle ABC, and the force triangle EFG, the
angle at B is equal to the angle at . If this angle is represented
by 6;

AB sin § = b, €))

BC sin ¢ = a, 2)

AB b

BC~a ®)
The triangles ABC and EFQ are similar if

AB EF

BC T FG b

and the resultant R; on the space diagram falls on the line AC.
Substituting from Equation (3)

DS RN
«"FGT Q. ®)
Pg = Qb (6)

Equation (6) states that the moments of the two couples are
equal, when ABC and EFG are similar.

Since the couple Pa may be balanced by any other couple of
equal moment and opposite direction in the same plane, it
follows that any. two couples in the same plane are equivalent if
moments are equal tn magnilude and sign.

If the moment Pa of Fig. 114 does not equal the moment @b,
the resultant R, will still be equal and opposite to the resultant
R,;. The two resultants will not, however, lie on the same line

but will form a new couple of moment Pa — @b.
8
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Problems

1. A couple is made up of a horizontal force of 12 pounds toward the
right and an equal force toward the left at a distance of 3 inches below the
first force. A second couple is made up of a force of 8 pounds upward at
an angle of 30 degrees to the right of the vertical and an equal force in the
opposite direction at a distance of 5 inches, so placed that the moment is
counter-clockwise. Draw a space diagram similar to Fig. 114 to the scale
of 1inch = 1inch. Construct the force diagram similar to EFG of Fig. 114
to the scale of 1 inch = 4 pounds, and find R;. Through A and C draw lines
parallel to R;. Measure the distance between these lines and multiply by
R:. Compare the product with the difference of the two moments.

2. Solve Problem 1 if the forces, of the second couple are so placed that
its moment is clockwise.

3. A clockwise couple is made up of two horizontal forces of 10 pounds
each at a distance of 6 inches from each other. A counter-clockwise couple
in the same plane is made up of two forces of 15 pounds each at a distance of
4 inches apart. Find their resultant graphically.

It will be shown in Art. 106 that couples in parallel planes
which are equal in magnitude and have the same signs are equiva-
lent.

71. Algebraic Addition of Couples.—Couples in the same plane
may be added graphically by methods of Art. 70. It will
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Fie. 115.

now be proved that the combined moment of two couples in
the same plane is the algebraic sum of the moments of the couples.
If Pa is one couple and @b is another couple in the same plane,
the resultant moment is Pa 4+ Qb when the moments are in the
same direction, and the resultant moment is Pa — Qb when the
moments are in opposite directions.

Qb
a
Qb may be replaced by a second couple Ra. The forces of the
second couple are R, and Ry, each of magnitude R. According
to Art. 70, this couple Ra may be placed anywhere in the plane of
the original couples. In Fig. 115, IT, the force R, is placed in the
line of the force P;, and the force R; is placed in the line of the

There are two couples in Fig. 115. If = R, the couple
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force P,. The resultant force in each of these lines is now P + R
and

M = (P + R)a = Pa+ Ra = Pa + Qb
This equation proves the proposition. Any number of couples
may be added in the same way.

Since the moment of a couple is the same about any point in
its plane, it might be regarded as self-evident that the combined
moment of several couples is the algebraic sum of the separate
moments. The proof here given is, however, more satisfactory
to most readers, than this brief statement.

72. Equilibrium by Couples.—In many problems of equilib-
rium, the forees may be grouped to form two equal and opposite
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couples in the same plane. Figure 116 represents an arrangement
for demonstrating the equilibrium of couples. A rigid body
is made up of a bar and a wheel fastened together. The bar
- is supported by a small cylinder which rolls on a plane surface.
The .reaction of the small cylinder is vertical. This reaction
together with the weight of the system forms one couple. Two
cords are passed partly around the wheel and fastened to it.
One cord runs horizontally toward the left and is attached to a
post. The second cord runs horizontally toward the right,
passes over a smooth pulley, and supports a mass of P pounds.
P=Tand R =W For equilibrium

Pa = Wb

The plane supporting the cylinder may be a platform scale.
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If the scale poise is set to equal the load W and the weight of
the small cylinder, the beam will be in balance when the cords
are_parallel.

Figure 117 shows a beam with loads P and Q near the ends

Fig. 117,

Neglecting the weight of the beam, the.reaction $ =P + Q.
The load P at the left end together with an equal amount of the
reaction at the middle forms a couple of moment Pa. The load
Q at the right end, together with the remainder of the reaction,
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forms an opposite couple of moment @b. For equilibrium these
couples are equal.

In Fig. 118, the two forces P and Q are not parallel. The
equilibrant S may be resolved into two components, which
are equal and opposite to P and Q, respectively. The beam
is then subjected to two couples of moments Pa and Qb.

Problems

1. What are the two equal couples in Fig. 96 of Art. 63?

2. What are the two equal couples of Fig. 88? .

3. In Fig. 89, when AC and BD are parallel, what are the two equivalent
couples?

73. Reduction of a Force and a Couple to a Single Force.—In
Fig. 119, I, there is a single force P, and a counter-clockwise
couple in the same plane made up of two equal forces Q, and
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Q. at a distance b apart. The moment of this couple is @b.
If Pa = @b, this couple may be replaced by a couple made up of
two equal forces P; and P; at a distance a apart. By Art. 70
these forces may be placed anywhere in the plane of the couple.
The force P; may be placed in the line of action of the single force
P, and the force P, at a distance a from that
line on the side which makes the moment Q.
counter-clockwise. The force P,, Fig. 119, k"q
II, balances the force P. The remaining force F/(
P,, at a distance a from the position of the force
P, replaces the force and the couple. T/(O /

A force and a couple in the same plane are & P,
equivalent to a single force. The direction and /
magnitude of the single force are the same as l/ ,/ L
those of the line of action of the original force.
Its distance from the line of action of the original
force is such that its moment about any point in that line is equal in
magnitude and sign to the moment of the original couple.

]

Fia. 119.

Example ‘

A vertical force of 20 pounds upward is applied at the point z = 4 ft.
A horizontal force of 5 pounds toward the right is applied at y = 2 ft. and
an equal horizontal force toward the left is applied at y = 12 ft. Find the
location of the single force which is equivalent to this force and couple.

The moment of the couple is 50 foot-pounds.

50
20 = 2.5 ft.

The single force is 20 pounds upward at a distance of 2.5 feet from the
vertical line through the point z = 4 ft. Since the couple is counter-
clockwise, the distance of 2.5 feet must be measured toward the right from
the line £ = 4 ft. The resultant force lies in the line z = 6.5 ft.

Problems

1. A force of 12 pounds, along the line z = 2 ft., is combined with a
couple made up of a horizontal force of 8 pounds toward the right, along
the line y = 1 ft., and an equal and opposite force, along the line y = 13 ft.
Find the location of the single force which is equivalent to the force and
the couple.

2. Solve Problem 1 graphically to the scale of 1 inch = 4 feet, and 1
inch = 8 pounds. Through the intersection of the line of action of the
vertical force with the line of action of one of the horizontal forces draw a
line parallel to the direction of their resultant. Through the intersection
of this line with the line of the third force on the space diagram, draw a
line parallel to the direction of the resultant of all three forces, .
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3. Find the single force which can be substituted for a horizontal force of
16 pounds directed toward the right and a clockwise couple of 48 foot-pounds.

Ans. 16 pounds towards the right through a point 3 ft. above the original
force.

o 4. An upward vertical force of 8 pounds acts along the Y-axis, and a
second upward vertical foree of 4 pounds acts along the line z = 6 ft. A
couple of 60 foot-pounds clockwise and a couple of 18 foot-pounds counter-
clockwise act on the body in the same plane with these forces. Find the
single force which will replace all of these.

74. Resolution of a Force into a Force and a Couple.—Figure
120 shows a single force P. It is desired to replace this force by
the force and a couple of moment Pa. In Fig. 120,

a ] C is a point at a distance a from the line of action

3 -0'77( of the force P. At C are applied two opposite forces,

p P; and P,, each of which is equal in magnitude to

/pz the force P, and along a parallel line. Since these

forces balance each other, they have no effect upon

the equilibrium of the body upon which they act.

The force Py and the force P form a couple of moment Pa.

The force Py, which is equal and parallel to the original force
P, stands alone as the single force required.

A single force may be replaced by an equal force in the same direc-
tion through any point in its plane, and a couple, the moment of
which 1s the same in magnitude and direction as the moment of
the original force about that point.

Fia. 120.

Problems

1. A force of 12 pounds upward acts at the point z = 3. Replace this
force by an equal force through the origin and a couple.

Ans. 12 pounds upward through the origin and a counter-clockwise
couple of 36 units. )

2. A force of 16 pounds at an angle of 45 degrees to the right of the

-vertical upward acts at the point z= 3 ft., y = 5 ft. Replace by a force
through the origin and a couple.

Ans. 16 pounds through the origin at an angle of 45 degrees to the right
of the vertical, and a counter-clockwise couple of 22.62 foot-pounds.

o 3. A force of 25 pounds at an angle of 25 degrees to the right of the
vertical is applied at the point x = 2 ft., y = 3 ft. and a force of 15 pounds
at an angle of 60 degrees to the right of the vertical is applied at the point
z =2 ft., y = 8 ft. Replace these by a single force at the origin and a
single couple.

Replace each force by a single force at the origin and a single couple.
Add the two couples and find the resultant of the two forces.
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The principles of this article afford a method of finding the
resultant of a set of non-concurrent, coplanar forces. Let
P,, P;, P3, etc be a set of forces in the same plane. Fach force
may be replaced by an equal force in the same direction applied
at some convenient point and a couple. Since all the forces are
now applied at the same point, they may be treated as concurrent
and their resultant found by means of the force polygon or cal-
culated by the methods of Art. 42. The couples may be added
algebraically. Their sum is a single couple.

The resultant of a set of non-concurrent forces in the same’
plane is equivalent to a single force and a single couple. Since
a force and a couple in the same plane may be reduced to a single
force by the methods of Art. 73, it follows that, in general, the
resultant of a set of non-concurrent, coplanar forces is a single
force. It sometimes happens that the resultant force is zero,
while the resultant couple is not zero. This resultant couple
can not be reduced to a single force.

A set of non-concurrent, coplanar forces may always be
reduced to a single force or to a single couple.

While the steps of the proof are different, the results of this
article are practically the same as the method of finding the
resultant, which is given in Art. 60.

76. Summary.—Two equal, opposite forces form a couple.
The moment of a couple is the product of either force multiplied
by the distance between them. The moment of a couple is the

- same with respect to any origin.

Two couples in the same plane are equivalent if their moments
are equal in magnitude and sign.

. The combined moment of several couples in the same plane is
the algebraic sum of the separate moments.

A force and a couple in the same plane may be replaced by a
single force which is equal in magnitude and direction to the
original foree, and is so located that its moment about any point
in the line of the original force is equal to the moment of the couple.

A single force may be replaced by an equal force in the same
direction through any point in its plane, and a couple whose
moment is equivalent to the moment of the force about that point.

A set of non-concurrent, coplanar forces may be replaced by a
single force and a single couple. These may be reduced to a
single force, except when the resultant force is zero. In this
case, the final resultant is a couple.



CHAPTER VII
GRAPHICS OF NON-CONCURRENT FORCES

76. Resultant of Parallel Forces.—In Art. 55, a method was
given for finding the resultant of parallel forces in the same direc-
tion. In Fig. 76, the rigid bar was assumed to be connected to
" two ropes or hinged rods, and the equilibrant was found as a
problem of connected bodies with concurrent forces. This proof
was given because it is concrete and because it fits the methods
of the preceding chapter. A more abstract proof is generally
used. This will now be given.

Figure 121, I, shows two parallel forces P and Q which are
applied to the ends of a rigid bar. The force P at the left end is
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resolved into two components R; and S, which are not at right
angles to each other. These are shown in the triangle at the
left of the bar. The component S is parallel to the bar. The
force Q at the right end is resolved into two components —S and
R;. The component —S is equal and opposite to thec omponent
S at the left end. On the space diagram, it is seen that the force
S balances the force —S and the components R; and R, remain to
act on the bar. The resultant of R; and R, must pass through
the intersection of the broken lines of the space diagram, which

are drawn parallel to the corresponding forces of the force tri-
120



Caar. VII] NON-CONCURRENT-FORCE 121

angles. Figure 121, IT shows the two force triangles combined,
as they are generally drawn. The components S and —S fall on
the same line. The resultant of R, and R, is the force P + Q,
in the direction of the original forces.

Figure 121, IIT, shows the usual method of construction for the
position of the resultant. The parallel forces are P and Q. It
is.not necessary to draw the body upon which they act, or to
consider the direction of the line which joins their point of appli-
cation. The force diagram is first drawn. The distances ab =
P and bc = @ are laid off on a vertical line. Then a point O is
selected to one side of this line, and connected to the points a, b,
and ¢ by lines ao, bo, and co. The figure thus obtained is the
same as the force diagram of Fig. 121, II. A point No. 1 is
chosen on the line of the force P and a line is drawn through it
parallel to ao and a second line parallel to bo. The line parallel
to bo is extended till it intersects the line of the force Q at the
point No. 2. Through point No. 2, a line is drawn parallel to
the ‘line co of the force diagram. The intersection -of the line
parallel to ao with the line parallel to co gives a point on the line
of the resultant. The resultant is equal and parallel to ac of
the force diagram.

The space diagram of Fig. 121, III is called a string polygon, or
funicular polygon. The solid lines of the drawing give the
directions which three connected strings could take when sup-
porting the loads P and Q at a definite distance apart. The
diagram is lettered by Bow’s method to correspond with the force
diagram of the figure. (The line P 4 @ does not represent a
force, but only the position of the resultant.) The arrows show
the directions required for equilibrium.

The point O of the force polygon of Fig. 121, III, is called the
" pole. The lines ao, bo, and co are rays. The position of the pole
may be chosen at any point. It should be so selected that lines
parallel to the rays will intersect at convenient positions on the
string polygon.

Problems

1. Two vertical loads of 15 pounds and 20 pounds are 6 inches apart.
Draw a force polygon to the scale of 1 inch = 5 pounds and put the pole 5
inches to the right of the load line. Draw the string polygon to the scale of
1 inch = 1 inch and find the distance of the resultant from the loads.
Check by moments. Change the position of the pole and solve again.

2. Solve Problem 1 with the pole to the left of the load line. Explain
the result.
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3. Draw the force polygon and the funicular polygon for three vertical
forces: 13 pounds downward at 0 feet, 10 pounds downward at 4 feet, and
18 pounds downward at 12 feet. Use scale of 1 inch = 5 pounds and 1
inch = 2 feet. Compare with Fig. 122 which is drawn for a different load-
ing. Locate the resultant force and check by moments.

4. Three weights of 10 pounds at O feet, 15 pounds at 4 feet, and 10
pounds at 8 feet, are connected by cords and supported by two cords. The
cords supporting the first and last weights make angles of 45 degrees with
the horizontal. Find the direction and length of the cords connecting the
weights.

6. Given three vertical loads: 12 pounds at O feet, 16 pounds at 5 feet,
and 20 pounds at 8 feet. Find the location of the resultant graphically and
check by moments. If the cord supporting the 12 pounds makes an angle
of 60 degrees to the left of the vertical, and the cord supporting the 20
pounds maks an angle 50 degrees to the right of the vertical, what is the
direction and length of the connecting cords?

a
N\
Line of

Force
Polygon
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77. Resultant of Non-parallel Forces.—Art. 59 gives a method
of finding the resultant of non-parallel forces graphically. It
frequently happens that some of the forces are so nearly parallel
that this method requires an extremely large space diagram to
get the intersections. In such a case the results are likely to be
inaccurate. In most cases of non-parallel forces, especially
when there are more than three forces, it is advisable to use the
method of Art. 76. This differs from the method of Art. 59
only in the fact that the first and last forces are resolved into
components, with one component of the first force equal and
opposite to one component of the last force, and acting along
the same line. By properly choosing the location of the pole
in the force diagram, the rays may be given such directions that
the forces which they represent will make large angles with the
directions of the applied loads on the space diagram. The
intersections will then be found accurately. :
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Example

A rectangular board in a vertical plane is 4 feet wide horizontally and
3 feet high. The board weighs 20 pounds and its center of mass is at the
center. A cord, 30 degrees to the left of the vertical downward is applied
at the lower left corner and exerts a pull of 12 pounds. A cord at the lower
right corner makes an angle of 15 degrees to the right of the vertical down-
ward and exerts a pull of 15 pounds. A cord at 45 degrees to the right of
the vertical downward is attached to the upper right corner and exerts a
pull 16 pounds. The board is held in equilibrium by a single cord. Find
the direction and location of this cord and the force which it exerts.

Figure 123 gives the solution. The original drawing was made
to the scale of 1inch = 1foot on the space diagram and 1 inch =
10 pounds on the force diagram. The space diagram, showing
the position and direction of the known forces, was first drawn.
Next, the load line abede of the force polygon was laid off. The
pole was taken 4 inches from the middle of the vertical line bc.
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This position makes the ray ao nearly normal to the direction
of the force ab, and the ray eo nearly normal to the force de, and
makes large angles between the rays and the forces which they
intersect. Next, a point<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>