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PKEFACE.

THE object of this Treatise is to place before the student

a complete series of those propositions in Hydrostatics,

the solutions of which can be effected without the aid of the

Differential Calculus, and to illustrate the theory by the

description of many Hydrostatic Instruments, and by the

insertion of a large number of examples and problems.
In doing this I have had in view the courses of prepara-

tion necessary for the first three days of the Examination for

the Mathematical Tripos, for some of the Examinations of the

University of London, of the Science and Art Department of

the Committee of Council on Education, of the Civil Service

Commission, and for various other Examinations in which

more or less knowledge of Hydrostatics is required.

As far as possible the whole of the propositions are

strictly deduced from the definitions and axioms of the

subject, but it is occasionally necessary to assume empirical

results, and these assumptions are distinctly pointed out.

I have thought it advisable, with a view to some of the

examinations above alluded to, to give an account of some

cases of fluid motion, and also to give an explanation of some

of the more important phenomena of sound
;
in each case I

have assumed, as the basis of reasoning, certain facts which

can be deduced from theory by an analytical investigation,
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but which it may be useful to the student to accept as

experimental results.

The Geometrical facts which are enunciated at the end

of the Introduction are such as can be demonstrated without

the aid of the Differential Calculus.

The slight historical notices appended to some of the

chapters are intended to mark the principal steps in the

progress of the science, and to assign to their respective

authors the exact value of the advances made at different

times.

For the present edition the text has been very carefully

revised, and many alterations and additions have been made.

In particular the chapters on the Motion of Fluids and

on Sound have been completely separated from the chapters

on the equilibrium of fluids, and, in the case of each set of

chapters, an uniform system of units has been maintained

throughout.
I am very much indebted to Mr A. W. Flux, Fellow of

St John's College, for valuable assistance in the revision of

proof-sheets, and for many useful suggestions.

I may add that a new edition of the book of solutions of

the examples and problems is in course of preparation, and

will, I hope, shortly be published.

W. H. BESANT.

ST JOHN'S COLLEGE,

March, 1892.
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ELEMENTARY HYDROSTATICS.

INTRODUCTION.

THE object of the science of Hydrostatics is to discuss

the mechanical properties of fluids, or to determine the

nature of the action which fluids exert upon each other and

upon bodies with which they are in contact, and to explain
and classify, under general laws, the varied phenomena
relating to fluids which are offered to the attention of an
observer. To effect this purpose it is necessary to construct

a consistent theory, founded upon observation and experi-
ment, from which, by processes of deductive reasoning, and
the aid of Geometry and Algebra, the explanations of

phenomena shall flow as consequences of the definitions and
fundamental properties assumed

;
the test of the theory will

be the coincidence with observed facts of the results of such

reasoning.
We shall assume in the following pages that the student

is acquainted with the elements of Plane Geometry, with
the simpler portions of Algebra and Trigonometry, and of

Statics, and, in the later chapters, with a few of the proper-
ties of Conic Sections, and certain results of Dynamics.

In dealing with any mechanical science, we may take as

the basis of our reasoning certain known laws, derived from

experiment, or we may deduce these laws from a set of

axioms and definitions, the axioms being the result of in-

ductive reasonings from observed facts. With our present

subject it is generally necessary to rest upon empirical laws,
but in some cases these laws can be deduced from the

B. E. H. 1



2 INTRODUCTION.

axiomatic definition of a fluid. For instance, in the first

chapter we have stated as experimental laws the principles
of the equality of pressure in all directions and the trans-

mission of pressure, but this formal statement of fact is

followed by a deduction of the laws, by strict reasoning, from

the axiomatic definition.

The idea of a varying fluid pressure and of the measure
of such pressure is one of the first which presents itself as

a difficulty ;
the student will perceive that it is a difficulty

of the same kind as the idea of varying velocity and its

measure. A body in motion with a changing velocity has,

at any instant, a rate of motion which can be appreciated
and measured

; and, in a similar manner, the pressure at any
point of a fluid can be conceived, and, by reference to proper
units, can be made the subject of calculation.

Some of the most important results of the science will

be found in the construction of Hydrostatic instruments
;
a

consideration of these instruments, many of which we shall

describe, will shew how universal are the practical applica-
tions of fluids, and that, while doing the hardest work of

levers and pullies, they at the same time assist in the most
delicate manipulations for determining weights and measures.

The Hydraulic Press and the Stereometer illustrate these

extreme applications of the properties of fluids.

The articles printed in smaller characters in the follow-

ing chapters may if necessary be omitted during a first

reading of the subject, and the Examination papers which
follow the first eight chapters are intended as a first course

of questions upon the chapters. The examples which follow

the Examination papers are somewhat more difficult, and
should be dealt with after the former have been studied and
discussed.

The following geometrical facts are assumed and em-

ployed in some of the examples.

The volume of a pyramid or of a cone is one-third of the

prism or cylinder on the same base and of the same altitude.

The volume of a sphere is f?rr
3

,
and its surface is 4?rr

2

,

r being the radius.

The volume of a paraboloid of revolution is one-half the

cylinder on the same base and of the same altitude.
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The surface of a cone is ?rr
2
cosec a, r being the radius q

the base and a. the semivertical angle. This may also

written 7rr\/ r
2 + h2

,
h being the altitude of the cone.

The area of an ellipse is Trab, 2a and 2b being the lengths

of its axes.

The area of the portion of a parabola cut off by any
ordinate is two-thirds of the rectangle, the sides of which are

the ordinate and corresponding abscissa.

The area of the portion of a parabola cut off by any chord

is two-thirds of the parallelogram formed by the chord, the

tangent parallel to the chord, and the diameters of the parabola

passing through the ends of the chord. The centroid of this

area lies on the diameter through the point of contact of the

tangent parallel to the chord, and divides the distance between

the point of contact and the middle point of the chord in the

ratio of three to two.

The area of the surface of a sphere contained between two

parallel planes which intersect or touch the sphere is equal to

the area, between the same planes, of the surface of the cir-

cumscribing cylinder, the axis of which is perpendicular to the

planes. Also the centroid of the surface is equidistant from
the planes.

The distance of the centroid of the volume of a hemisphere

from the centre of the sphere is three-eighths of the radius.

12



CHAPTER I.

DEFINITION OF A FLUID, COMPRESSIBILITY OF LIQUIDS, FLUID

PRESSURE, TRANSMISSION OF PRESSURE, EQUALITY OF
PRESSURE IN ALL DIRECTIONS, HYDROSTATIC BELLOWS,
HYDROSTATIC PARADOX, HYDRAULIC PRESSES, AND
SAFETY-VALVES.

1. IT is a matter of ordinary observation that fluids are

capable of exerting pressure.
A certain amount of effort is necessary in order to

immerse the hand in water, and the effort is much more
sensible when a light substance, such as a piece of wood or

cork, is held under water, the resistance offered to the

immersion being greater as the piece immersed is larger.
This resistance can only be caused by the fluid pressure

acting upon the surface of the body immersed.
If an aperture be made in the side of a vessel containing

water, and be covered by a plate so as to prevent the escape
of the water, a definite amount of force must be exerted in

order to maintain the plate in its position, and this force is

opposed to, and is a direct measure of, the pressure of the

water.

That the atmosphere when at rest exerts pressure is

shewn directly by means of an air-pump. Amongst many
experiments a simple one is to exhaust the air within a
receiver made of very thin glass ;

when the exhaustion has
reached a certain point depending on the strength of the

glass, the receiver will be shivered by the pressure of the

external air. The action of wind, the motion of a windmill,
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the propulsion of a boat by means of sails, and other familiar

facts offer themselves naturally as instances of the pressure
of the air when in motion.

2. All such substances as water, oil, mercury, steam,

air, or any kind of gas are called fluids, but in order to

obtain a definition of a fluid, we have to find a property
which is common to all these different kinds of substances,
and which does not depend upon any of the characteristics

by which they are distinguished from each other. This

property is found in the extreme mobility of their particles
and in the ease with which these particles can be separated
from the mass of fluid and from each other, no sensible

resistance being offered to the separation from a mass of

fluid of a portion whether large or small.

If a very thin plate be immersed in water, the resistance

to its immersion in the direction of its plane is so small as

to lead to the idea that a perfectly fluid mass is incapable
of exerting any tangential action, or, in other words, any
action of the nature of friction, such for instance as would be
exerted if the plate were pushed between two flat boards

held close to each other. Observations of such experiments
have led to the following definition :

A Fluid is a substance, such that a mass of it can be very

easily divided in any direction, and of which portions, how-
ever small

,
can be very easily separated from the whole

mass ;

And also to the statement of the fundamental property
of a fluid, viz. :

The Pressure of a fluid on any surface with which it is in

contact is perpendicular to the surface.

3. Fluids are of two kinds, liquid and gaseous, the

former being practically incompressible, while the latter, by
the application of ordinary force, can be easily compressed,
and, if the compressing force be removed or diminished, will

expand in volume.

Liquids are however really compressible, but to a slight

degree.

Experiments made by Canton in 1761, Perkins in 1819,



6 FLUID PRESSURE.

Oersted in 1823, Colladon and Sturm in 1829, and others,

have proved the compressibility of liquids.
The last two obtained the following results, employing a

pressure of one atmosphere, that is 14^ Ibs. on a square inch,

at the temperature 0.

Compression of unit of volume.

Mercury '000005

Distilled water '000049

deprived of air '000051

Sulphuric ether '000133

Moreover the decrease in volume, for the same liquid, is

proportional to the pressure.

If V be the original volume of a liquid, and V its

volume under a pressure p, V V is the decrease in the

V- V .

volume V, and therefore ^ *s the decrease in each unit

of volume.

Hence the law may be thus stated :

V-V
y^ ~P=W,

where
//,

is different for different fluids.

Thus for mercury, ifp be measured by taking one atmo-

spheric pressure as the unit, we have p,
= '000005. We shall

however, in all questions relating to equilibrium, consider

liquids as incompressible fluids.

Measure of fluid pressure.

4. The pressure of a fluid on a plane is measured, when
uniform over the plane, by the force exerted on an unit of

area.

Thus, if a vessel with a moveable base contain water, and
if it be necessary to employ a force of

GO Ibs. upwards to keep the base at rest,

then 60 Ibs. is the pressure of the water
on the base

; and, supposing the area of

the base to be 4 square inches, and that ~"~t~

a square inch is the unit of area, the

measure of the pressure at any point of the base is 15 Ibs.
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The pressure on a point of the base is of course zero
;
the

pressure at a point is used conventionally to express the

pressure on a square unit containing the point.
If the pressure be variable over the plane, as, for instance,

on the vertical side of a vessel, the pressure at any point is

measured by the pressure which would be exerted on an unit

of area, supposing the pressure over the whole unit to be
exerted at the same rate as it is at the point.

In order to measure the pressure of a fluid at any point
within its mass, imagine a small rigid plane placed so as to

contain the point, and conceive the fluid removed from one
side of the plane and the plane kept at rest by a force of

P Ibs. Then if a be the area of the plane, and the pressure
p

over it be uniform, is the pressure on each unit of area,

and this is usually represented by p.
If the pressure over the plane be variable, we may sup-

pose the area a made so small that the pressure shall be

sensibly uniform, and in this case P will be small as well

p
as a, but or p will measure the rate of pressure at the

cc

point.
Or we may say that p, the pressure at the point, i.e. the

p
rate of pressure per unit area, is the limiting value of

,

when a, and therefore P, are indefinitely diminished.

5. Transmission offluid pressure.

Any pressure, applied to the surface of a fluid, is trans-

mitted equally to all parts of the fluid.

If a closed vessel be filled with water, and if A and B be
two equal openings in the top of the vessel, closed by pistons,
it is found that any pressure

applied at A must be counter-

acted by an equal pressure at B
to prevent its being forced out,
and if C be a piston of different

size, it is found that the pressure

applied at G must bear to the pressure on A the ratio of



8 TRANSMISSION OF PllESSUKE.

the area of C to that of A, and that this is the case whether
the piston B exists or not.

Taking a more general case, if a vessel of any shape have
several openings closed by pistons,

kept at rest by suitable forces, it

will be found that any additional

force P applied to one piston will

require the application, to all the

other pistons, of additional forces,

which have the same ratio to P as

the areas of the respective pistons
have to that of the piston to which
P is applied.

6. To explain the reason of this equal transmission,

imagine a tube of uniform bore filled with water and closed

by pistons at A and B. Then it may be assumed as self-

evident, that any additional force applied at A will require
an equal additional force at B to counteract it and keep the

fluid at rest.

\
\

Now suppose in the figure that A and B are equal

pistons, and draw a tube of uniform bore and of any form

connecting the two, and imagine all the fluid except that

contained in the tube to be solidified. This will not affect

the equilibrium, inasmuch as the fluid pressure on the

surface of the tube is at all points perpendicular to the

surface whether the fluid be or be not solidified, and the

additional pressures pn A and B are equal as before.

Also, one piston (A) remaining fixed, the other (B) may
be placed with its plane in any direction, and it follows that

the pressure upon it is the same for all positions of its plane,

or, in other words, the pressure of the fluid is the same in

every direction. This proposition we shall enunciate in

a general manner in the next article.
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The experimental fact that the pressures on pistons of

different areas are proportional to those areas may be de-

duced as follows.

Suppose in a closed vessel two apertures be made in

which pistons are fitted, one being a square A, and the

other a plane area B, formed by placing together two,

three, or any number of squares equal to A
;
then the

additional pressure on each square being equal to the ad-

ditional pressure on A, the whole additional pressure will

be to the additional pressure on A as the area of B is to

that of A *.

7. The pressure at any point of a fluid is the same in

every direction.

It is intended by this statement to assert that if at any
point of a fluid a small plane area be placed containing the

point, the pressure of the fluid upon the plane at that point
will be independent of the position of the plane.

The second figure of Art. (5) will serve to illustrate the

meaning of the proposition. The aperture in which one of

the pistons is fitted may be so constructed as to allow of its

plane being changed ;
and it will be found that in any posi-

tion, the pressure, or additional pressure, upon the piston is

the same.

8. If a mass of fluid be at rest, any portion of it may be

contemplated as a separate body surrounded by fluid, which

presses upon its surface perpendicularly at all points.
It follows therefore, from the laws of statics, that the

resultant of the fluid pressures upon the portion considered

is equal and opposite to the resultant of the extraneous

forces, such as gravity or other attractive forces, which are

in action upon that portion.

9. The two principles of the equal transmission of pressure and of

the equality of pressure in all directions, for the truth of which we have

appealed to experience, can be deduced from the fundamental property
of a fluid, stated as an axiom in Art. (2).

*
If A and B be two pistons of any shape and size, they can be divided

into small areas of the same shape and size, and by making these areas small

enough, it will be seen that their numbers will be ultimately in the ratio of

the areas A and B.
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10. The equality ofpressure at any point in all directions.

We shall prove this for the case of fluids at rest under the action of

gravity, that is, for heavy fluids at rest.

Take a small rectangular wedge or prism of fluid, having its sides

horizontal and vertical, and its plane ends vertical, and let ABC be its

section by a vertical plane bisecting its length. This prism is at rest

under the action of gravity and of the pressures of the fluid on its ends
and sides. The ends are supposed to be perpendicular to the sides of

the prism ; hence, the pressures on these ends being perpendicular to

all the other forces must balance each other, and the pressures on the

sides AC, CB, BA, must balance the weight.

Taking d for the length of the wedge, a, b, c the sides of the triangle,
w for the weight of an unit of volume of the fluid, and p, p', p" for the

measures of the pressures on the sides AC, CB, BA, these pressures are

pbd, p'adj and p"dc,

and the weight is %abdw.

Hence resolving vertically and horizontally,

^abwp'a p"c cos B,

pb=p"c sin.Z?;

but a=c cos B, and b=c sin B
;

'

P=P"i an<^ P'
~p" ^bw.

If now we suppose the sides a, b indefinitely diminished, in which
case p, p' and p" will be the pressures in different directions at the

point (7, we shall have p'p", and therefore the three pressures are

equal *.

By turning the wedge round AC and changing the angle A and B it

will be seen that the proposition is true for all directions.

11. The transmission ofpressure.

Let A and B be two points in a fluid at rest, and about the

straight line AB as axis describe a cylinder having plane ends per-

pendicular to AB.

* In strictness p'pp" are the measures of the mean pressures on the sides

of the wedge, but a reference to Art. 4 on the measure of variable pressure
will shew why it is unnecessary to repeat an explanation already made.
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The equilibrium of the cylinder is maintained by the fluid pressures
on its ends, which are parallel to its axis, by the fluid pressures on its

curved surface, which are perpendicular to its axis, and by its weight.

Now resolving along AB, the difference of the pressures at A and B
must be equal to the resolved part of the weight in the direction BA,
and the weight remaining the same, any
change of pressure at A involves the same

change at B. Moreover, if fluid be contain-

ed in a vessel of any shape, and the straight
line A B do not lie entirely in the fluid, the

two points may be connected by a series of

straight lines such as ACDB, and any change
of pressure at A produces an equal change at

(7, and therefore, taking account of the pre-
vious article, the same change is produced at Z), and therefore at B.

12. The Hydrostatic Bellows is a machine illustrating
the principle of the transmissioa of fluid pressure.

B is the top of a cylinder having its sides made of leather,

and CA is a pipe leading into it.

If this vessel and the pipe be

filled with water and a pressure

applied at A, a very great weight

upon B may be raised by a small

pressure at A, the weight lifted

being greater in proportion to

the size of B.

Even without water weights

may be raised by simply blowing into the tube A.

13. The Hydrostatic Paradox.

Any quantity of liquid, however small, may be made to

support any weight, however large.

This is another mode of enunciating the same principle.
For in the previous figure we may suppose the tube GA
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extended vertically, and the pressure produced by pouring
in water to a considerable height, so as to produce a pres-
sure at A by means of the column of liquid above it. The
tube may be very thin, so that the pressure upon the section

A of the tube may be very small, but, as this pressure is

transmitted to every portion of the surface B, which is equal
to the section A, the force produced can be as large as we
please. To increase the upward force on B we must enlarge
the surface B, or increase the height of the column of liquid
in the tube, and the only limitation to the increase of the
force will be the want of sufficient strength in the pipe and

cylinder to resist the increased pressure. By making the

height BG very small, and the tube A of very small bore,
the quantity of liquid can be made as small as we please,
and hence the paradoxical statement made above.

Hydraulic Presses.

14. The transmission of fluid pressure is the principle

upon which Hydraulic or Hydrostatic Presses are con-

structed.

Thus, if Ay B be two pistons working in hollow cylinders
connected by a pipe (7, and filled with water, any force applied
to the piston B is transmitted to A

}
and the force upon A is

greater than the force on B in the ratio of the area of A
toR

This is a Hydraulic Press in its simplest form. Practically
it is requisite to have a reservoir from which more water can
be obtained by a pump, and we therefore defer the descrip-
tion of a complete Hydrostatic Press until the principle of

the Pump has been explained.
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The Safety-Valve.

15. In many machines, and especially in steam engines,
a very great fluid pressure may be produced, and the strength
of the machine may be very severely tried : in order to guard
against accidents arising from the bursting of the machine a

safety-valve is employed, which serves to indicate the exist-

ence of too large a pressure.
Various forms may be used, but the principle of the

safety-valve is simply that of the uniform transmission of

pressure in a fluid.

Thus if EG be one of the connecting tubes through which
the fluid passes, and D a small tube opening out of BC, the

pressure on a lid at the end of D will measure the fluid

pressure within, and if the lid be of a suitable weight, it will

be lifted when the pressure is

greater than the machine is in-

tended to bear. Suppose, for

instance, the greatest permis-
sible pressure of the fluid to be

500 Ibs. on a square inch, and
the sectional area of the tube

D to be -Jgth of a square inch, then a weight of -^ or

31J Ibs. will be lifted when the pressure exceeds 500 Ibs.

The weight employed may be diminished if the lid be

moveable about a hinge at A, and a weight w be placed
at some little distance from A.

Ex. 1. The cross section of the tube D is a square, the side of

which is one-fourth of an inch; the lid is moveable about the end A,
and a 5 Ibs. weight is attached to the lid at the distance of two inches

from the hinge.
In this case the resultant fluid pressure will act at the centre of the

square, and if the greatest fluid pressure on a square inch is equal to

the weight of x Ibs., we have a force equal to the weight of Ibs.

counterbalanced by the weight of 5 Ibs.
;

.-. ^ x i= 5x2, or #=1280.
lo o

Ex. 2. Taking the same square tube, but taking the distance A W
to be 2 inches, find the weight which will indicate a pressure on a

square inch equal to the weight of 3200 Ibs.
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16. It will be seen that in Hydrostatic presses, as in all

machines, the principle holds that what is gained in power is

lost in motion.

Thus, if there be two apertures in a closed vessel, fig.

Art. 5, and the piston B be forced down through any given
space, the piston A is forced upwards if the fluid be incom-

pressible, through a space which is less as the area of A
is greater.

This is a simple case of the principle of virtual work
which we proceed to demonstrate, as applied to incompres-
sible fluids.

Let A, B, (7,... be the areas of a number of pistons

working in cylindrical pipes fitted into the sides of a closed

vessel which is filled with fluid. Let the pistons be moved
in any manner so that the fluid remains in contact with

them, and a, b, c,... be the spaces through which they are

moved, these quantities being positive or negative, as the

pistons are pushed inwards or forced outwards.

Then, since the volume of fluid is the same as before, it

follows that

Aa + Bb + Cc+ ... = 0,

the positive portions, that is, the volumes forced in, being
balanced by the negative portions, or the volumes forced

out.

But if P, Q, It,... be the forces on each piston,

P:Q:R:...=A :B : G :...

.'. Pa + Qb + Rc + ... = 0;

or the sum of the products of each force into the space

through which its point of application is moved is equal to

zero; and observing that a, b, c,... are proportional to

infinitesimal displacements of the pistons, this is the equation
of virtual work

17. It is not to be imagined that there exists any
substance in nature exactly fulfilling the definition which
has been given of a fluid. Just as the ideas of a perfectly
smooth surface and a perfectly rigid body are formed from
observations of bodies of different degrees of rigidity, and
surfaces of different degrees of smoothness, so the idea of
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perfect fluidity is suggested. Nevertheless in the cases of

fluids at rest the theoretical properties of fluids derived

from this definition will be found to agree with facts, and

it is in cases of fluid motion that sensible discrepancies will

be found. Thus, a cup of tea set rotating will gradually
come to rest, proving the existence of a friction between the

liquid and the tea-cup, and also between the particles of the

liquid, since the dragging force is gradually communicated
from the outer to the inner portions. The motion of water

in inclined tubes also indicates the existence of a frictional

action amongst the particles of water.

18. Recognizing the fact that all fluids possess, more or less, the

characteristic of viscosity, we can give a definition which will include

fluids of all degrees of viscosity.

A fluid is an aggregation ofparticles which yield to the slightest effort
made to separate them from each other, if it be continued long enough.

It follows from this definition that in a fluid in equilibrium there

can be no tangential action, or shearing stress, and therefore that the

pressure on any surface in contact with the fluid is normal to that

surface.

Hence all theorems relating to the equilibrium of fluids are true for

fluids of any degree of viscosity.

EXAMINATION UPON CHAPTER I.

1. DISTINGUISH between compressible and incompressible fluids.

Are any liquids absolutely incompressible ?

2. State the property which is assumed as the basis of all reason-

ings upon fluid action.

3. Define the measure of fluid pressure.

4. It is found that the pressure is uniform over the whole of a

square yard of a plane area in contact with fluid, and that the pressure
on the area is equal to the weight of 13608 Ibs.

;
find the measure of

the pressure at any point, 1st, when the unit of length is an inch, 2nd,
when it is two inches.

5. The plane of a rectangle, in contact with fluid, is vertical, two
of its sides are horizontal, and it is known that at all points of the
same horizontal line the pressure is the same. The pressure on the

rectangle, for all values of A, is wbh (a+ h) where b is the width and h
the height of the rectangle ;

find the pressure at any point of the upper
side. (Art. 4.)
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6. A cylindrical pipe which is filled with water opens into another

pipe the diameter of which is three times its own diameter : if a force

of 20 Ibs. wt. be applied to the water in the smaller pipe, find the force

on the open end of the larger pipe, which is necessary to keep the

water at rest.

7. Account for the fact of the transmission of pressure through a

liquid.
Mention any direct practical application of this principle.

8. In a Hydrostatic Bellows (Art. 12), the tube A is th of an
inch in diameter, and the area B is a circle, the diameter of which is a

yard. Find the weight which can be supported by a pressure of 1 Ib.

on the water in A.

9. A safety-valve consists of a heavy rectangular lid which is

horizontal when it closes the aperture beneath it, and is moveable
about one side. The aperture being a square which has one side

coincident with the fixed side of the lid, find the maximum pressure
marked by the valve.

10. If the side of the aperture in the preceding question is a

quarter of an inch and if the side of the lid is two and a half inches,
find what must be the weight of the lid in order that a maximum
pressure equal to the weight of 800 Ibs. may be indicated.

11. Prove the principle of virtual work in the case of the sixth

question.

12. A triangular area ABC is exposed to fluid pressure, and it is

found that if any straight line PQ be drawn parallel to BC, and at a
distance x from A, the pressure on the area APQ is pa?\ find the

pressure at A, and also at any point of the line BC.

13. A plane area is exposed to fluid pressure, and it is found that

the pressure on any circular portion of the area, having its centre at a
fixed point, is proportional to the cube of its radius; prove that the

pressure at any point of the area is proportional to its distance from
the fixed point.

14. A strong cylindrical tube, one foot in diameter inside, and ten

feet in length, is filled with distilled water, and closed with a piston to

which a pressure of 10000 Ibs. is applied ;
shew that the resulting

compression of the water will be nearly ^th of an inch.

15. Let the tube in the preceding question be closed with the

exception of a circular aperture one inch in radius, and let there be
fitted to this aperture a straight tube of the same radius.

If a length of ten feet of this smaller tube is filled with water, and
if a pressure equal to the weight of 587r Ibs. is applied by a piston to

the outer surface of the water, prove that the piston will be forced in

through -87024 inches.



CHAPTER II.

DENSITY AND WEIGHT.

19. IN the classification of fluids the most prominent
division is between gases and liquids, or compressible and

incompressible fluids, as they are sometimes termed, and

under these two heads all fluids are naturally ranged. It

has been remarked already that the compressibility of liquids

is practically insensible, and for all ordinary purposes unim-

portant.
It will be found, however, that the theory of sound is

partly dependent on this compressibility, and it is therefore

of importance at once to recognize its existence.

There are many other characteristics which distinguish
fluids from each other, such as colour, degree of transparency,
chemical qualities, viscosity, &c., but in the theory of Hydro-
statics the characteristics which it is especially necessary to

consider are density and weight.

Density.

20. DEFINITION. The density of any uniform substance

is the mass of an unit of volume of the substance.

The mass of a body is the quantity of matter contained

in it, measured in terms of some standard unit.

In this country the standard unit of mass is taken to be

the quantity of matter contained in a Pound Avoirdupois.
The standard Pound Avoirdupois is really a lump of

platinum, which is kept under a glass case in certain offices

B. E. H. 2
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in London, and from which copies can be made. The mass

of a body is therefore the number of pounds avoirdupois
which it contains, and the density of a substance is the

number of pounds in an unit of volume.

For example it is known that the mass of a cubic foot

of water is 1000 oz., or 6 2 '5 Ibs., and it follows that, if we take

a foot as the unit of length, the density of water is 62*5.

Again it is known that the density of mercury is 13*568

times that of water
;
the density of mercury is therefore 848.

Under ordinary conditions of pressure and temperature,
the density of atmospheric air is to that of water in the ratio

of '0013 : 1, and therefore the mass of a cubic foot of air is

08125 lb., or. 1*3 oz., or 568*75 gr. It is to be borne in mind
that the pound avoirdupois contains sixteen ounces, and also

that it contains seven thousand grains.

21. IfM is the mass of a volume V of uniform substance,
the density of which is p, then, in accordance with the

definition, we have the equation

M= P V.

It will be seen that the measure of the mass of a body is an

absolutely fixed quantity, and is not in any way dependent
upon time or place.

22. In France, and on the Continent generally, the

metric system of units is adopted. In this system the unit

of mass is the Kilogramme, which represents the mass of one
Litre of water, that is, one thousand cubic centimetres of

water, at its maximum density.
One kilogramme is 1000 grammes, so that a gramme is

the mass of a cubic centimetre of water at its maximum
density.

The Pound Avoirdupois is 453*59265 grammes, so that

one kilogramme is, very nearly, 2 '2 Ibs.

The Pound Avoirdupois contains 7000 grains; one grain
is therefore very nearly '0648 grammes, or 64*8 milli-

grammes.
Again, the metre being 39*370432 inches, or 3-280869

feet, one foot contains 30*4797 centimetres, and one cubic

inch contains 16*387 cubic centimetres. Hence it follows
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that the litre is very nearly *0353 of a cubic foot, or 61

cubic inches.

It may be useful to place some of the relations between
the English and French measures of length and mass in a

tabular form.

Length, Area and Volume.

1 metre = 39*370432 inches.

1 centimetre = '393704

1 inch = 2-5400 cm.

1 foot = 30-4797 cm.

1 square inch = 6'4516 sq. cm.

1 square foot = 929'01 sq. cm.

1 cubic inch = 16 "387 cub. cm.

1 cubic foot = 28316 cub. cm.

Mass.

1 kilogramme = 2*2046212 Ibs.

- 15432-3484 grains.
1 grain

= '064799 grammes
1 oz. avoirdupois

= 28*34954

1 Ib. = 453-59265

Weight.

23. Weight and Intrinsic Weight.

The weight of a body is the force exerted upon it by the

action of gravity.
If a body, hanging freely, is supported by a single string,

the tension of the string is equal to its weight.
Thus, if a mass of one pound is held in the hand, or

supported by a string, the upward-force exerted by the

hand, or the tension of the string, is equal to the weight of

one pound.
Now, although the mass of a pound is an invariable

quantity, the weight of the pound is a variable force, being
both local and temporary ;

it is different at different places,

and, at the same place, it varies from time to time.

If a given mass, at a given place, say London for instance,
be suspended from a spring, it will be seen to stretch the

spring to a certain extent.

22
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If the mass be carried to a place nearer the equator than

London, the spring will be less extended, but if it be carried

northwards, the spring will be more extended.

In the former case the weight will be less, and in the

latter case greater than it is in London.

24. DEFINITION. The intrinsic weight of a substance is

the weight of an unit of volume of the substance, expressed in

terms of some standard unit of weight.

Hence if w represents the intrinsic weight of a substance,

and if W be the weight of the volume V of the substance,

we have the equation

If the standard unit of weight is taken to be the weight
of a pound at a particular place, then, at that place, the

numerical values of p and w will be the same.

Practically the difference due to change of locality is very

slight, the ratio of polar to equatoreal gravity being

32-2527 : 32'088.

When we say that p is the density of a substance, we
assert that the volume V of it contains pV units of mass.

When we say that w is the intrinsic weight of a substance

we assert that the action of gravity upon a volume V of it is

equivalent to wV units of force.

When we say that a portion of some substance weighs
x pounds, or y kilogrammes, we assert that the action of

gravity upon it is equivalent to the action of gravity upon
x pounds, or upon y kilogrammes.

In measuring the pressure of fluids upon surfaces, we
shall generally take the weight of a pound as the unit of

force.

25. In the previous articles we have considered homo-

geneous bodies only.
If the density be variable, and if it vary continuously

from point to point, we can determine the density at any
point by taking a small volume v of the substance containing
the point, and finding the mass m of this volume. The

expression m/v will be the mean density of the volume v, and
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the ultimate value of m/v, when v and therefore m, are

indefinitely diminished, will be the measure of the density at

the point.

26. In order to render more clear the mathematical con-

ception of a continuously varying substance, imagine a
number of homogeneous strata of equal thickness t placed
on each other, and suppose the density of the lowest stratum
to be p and of the highest p't

and of the intermediate strata

let the densities increase by successive additions from p to p.

If now we suppose the thickness of each stratum t to

become indefinitely small, and the number of intermediate
strata to become indefinitely large, while the densities of

the extreme strata p, p' remain the same, the densities of

the intermediate strata which are to increase from
p' to p

will differ from each other by infinitely small quantities,
and we can thus form an idea of a continuously varying
medium.

This mode of viewing continuity by means of disconti-

nuity is necessary for the purposes of mathematical calcu-

lation.

The atmosphere in a state of rest is a case in point, as

its density decreases continually as the height increases.

27. The density of a mixture may be determined by
the previous formula M= p V.

Thus, if volumes V, V, V",... of fluids whose densities

are p, p, p" . . . be mixed together, and if the mixture form
a homogeneous mass, and no change of volume occur from
chemical action, the whole mass

and the whole volume = V+ V + V" + . . .
= 2 ( V) ;

.*. the density of the mixture = ^ fv\

Specific Gravity.

28. DEFINITION. The specific gravity of a substance is the

ratio of the weight of any volume of the substance to the weight

of an equal volume of a standard substance.
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In other words the specific gravity is the ratio of the

density of the substance to the density of the standard

substance.

Hence, if 5 is the specific gravity of a substance, and if

W is the weight of a volume V of the substance, and w the

intrinsic weight of the standard substance we have the

equation W = wsV.

Distilled water, at the temperature 4 C., is generally
taken as the standard substance, and in that case the

weight, in Ibs. weight at the place, of the volume V cubic

feet is given by the equation
W= 62-55 V.

It will be seen that the ratio of the densities of two
different substances is the same as the ratio of their intrinsic

weights, and is also the same as the ratio of their specific

gravities.

29. To find the specific gravity of a mixture of given
volumes of any number of fluids, whose specific gravities are

given.

Let V,'V, V" ... be the volumes of fluids of which the

specific gravities are ,9, s
f

s",...

Then the weight of the mixture is

62-5 (sV + s'V' + s"V"+ ...}
or 62-5 2 (sV),

and therefore if a be the specific gravity of the mixture,

62-5 ov. 2 (7)= 62-5 2 (*F),

or <r = 27-5-
If by any chemical action the volume becomes U instead

of 2 (F), we shall then have

30. To find the specific gravity of a mixture when the

weights and the specific gravities of the components are given.

If W, W',... are the weights, and s, s',... the specific

gravities, the volumes are

1 W l_W_
62-5 s

'

62-5 s'
'"
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Hence, if <r is the specific gravity of the mixture.

or

31. The practical methods of determining the specific

gravities of solids, liquids, and gases will be discussed in a

future chapter.
For solids and liquids tables of specific gravity are usually

given with reference to distilled water at its maximum
density as the standard.

Gases and vapours are, however, generally referred to

atmospheric air at the same temperature and under the

same pressure as the gases themselves.

EXAMINATION UPON CHAPTER II.

1. Distinguish between the measures of mass, density, and specific

gravity.

2. Find the masses in Ibs., of a cubic yard and a cubic inch of

water, and also of a cubic yard and a cubic inch of mercury.

3. Find the number of grammes in a cubic foot of water, and in a
cubic foot of mercury.

4. Find what fraction of an ounce is the mass of a cubic centi-

metre of water.

5. If the mass of 10 cubic centimetres of a liquid is one gramme,
what is its density in pounds per cubic foot ?

6. The specific gravity of cork being -24, find what volume of water

weighs as much as a cubic yard of cork.

7. Find the specific gravity of an alloy of gold and copper in the

ratio of 11 : 1, the specific gravities being 19'4 and 8'84.

8. Equal volumes of two fluids whose specific gravities are 5 and 7

are mixed together ;
find the specific gravity of the mixture.

If equal weights of the same fluids are mixed together, find the

specific gravity of the mixture.

9. If a cubic inch of a standard substance weigh '45 of a lb., what
is the weight of a cubic yard of a substance of which the density is 5 ?
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10. Equal weights of two fluids, of which the densities are p and 2p,

are mixed together, and one-third of the whole volume is lost
;
find the

density of the resulting fluid.

11. Taking water as the standard, find the weight of a cubic yard
of a substance of which the specific gravity is -12.

12. A cubic inch of a substance weighs ^fifths of a Ib.
;
find its

specific gravity referred to water.

13. A mixture is formed of equal volumes of three fluids
;
the

densities of two are given and the density of the mixture is given ;
find

the density of the third fluid.

14. Volumes F, V of two fluids, the specific gravities of which are

o-, <r',
are mixed together, and the specific gravity of the mixture is s

;

find the change in volume.

EXAMPLES.

1. A mixture is formed of two fluids
;
the density p of the mixture,

the ratio, m : I of the volumes, and the ratio, n : 1 of the densities are

given ;
find the densities of the fluids.

2. Two fluids of equal volume and of densities p, 2p, lose one-

fourth of their whole volume when mixed together ;
find the density of

the mixture.

3. A mixture is formed of equal volumes of n fluids, the densities

of which are in the ratio of the numbers 1, 2, 3,...w; find the density of

the mixture. Also find the density of the mixture when the volumes
are in the ratio: 1st, of the numbers 1, 2, 3,...w, and 2nd, of the

numbers n, w-l,...3, 2, 1.

4. Having given the specific gravity o- of a mixture formed of

equal volumes of two fluids, and also the specific gravity o-' of a

mixture formed by taking a volume of one fluid double that of the

other, find the specific gravities of the fluids.

5. When a vessel is filled by means of equal volumes of two fluids,
the specific gravity of the compound is of what it would have been
if the vessel had been filled by means of equal weights of the fluids.

Compare the specific gravities of the two fluids.

6. If the true specific gravity of milk be 1*031, what quantity of
water must be mixed with 10 gallons of milk to reduce its specific

gravity to 1-021 ?

7. If the centimetre be the unit of length, and if a centimetre
cube of water be taken as the unit of mass and called a gramme, prove
that the number of grammes in the earth is 6'15 x 102r

,
the diameter of

the earth being taken to be l-275x!09 centimetres and the mean
density 5'67.
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8. If the weight of 28 grains is taken as the unit of weight, what
must be the unit of length in order that the numerical measure of the

weight of a body may be equal to the product of its volume and its

specific gravity ?

9. The mixture of a gallon of A with X
t
Ibs. of B has a specific

gravity trlt with X2
Ibs. of B a specific gravity o-2 ,

with X3 Ibs. of B a

specific gravity o-3 ;
find the specific gravities of A and B.

10. Two liquids are mixed together, first by weights in the

proportion of their volumes of equal weights, and secondly by volumes
in the proportion of their weights of equal volumes; compare the

specific gravities of the two mixtures.



CHAPTER III.

PRESSURE AT DIFFERENT POINTS OF A LIQUID AT REST,
SURFACE OF A LIQUID, LIQUIDS MAINTAINING THEIR

LEVEL, LIQUIDS IN A BENT TUBE, PRESSURES ON PLANE

SURFACES, WHOLE PRESSURE, CENTRE OF PRESSURE.

32. THE pressure of a liquid at rest is the same at all

points of the same horizontal plane.

Take a thin cylindrical portion AB of the liquid, having
its axis horizontal, and its

ends A, B vertical, and con-

sider the equilibrium of this

portion. We have then a body
AB kept at rest by the fluid

pressures on its curved surface, all of which are perpen-
dicular to the axis of the cylinder, by the pressures on
the two ends, which are horizontal, and by the weight of the

body.
If p and p' be the measures of the pressures at A and B,

and a the area of each end, which is taken to be very small

in order that the pressure may be sensibly uniform over the
whole of either end, the pressures on the ends are pa. and p'a,
and since these balance each other we have

P=P'-
This proof also holds good for the case of gases, and for

heterogeneous liquids.

33. To find the pressure at any given depth in a heavy
homogeneous liquid at rest.
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Taking any point P in the fluid, draw PA vertically to

the surface, and describe a thin cylinder
about PA with its base horizontal.

Then the portion of fluid PA is kept at

rest by the fluid pressure on the end P, its

weight, and the fluid pressures on the

curved surface, which are all horizontal.

Hence the fluid pressure on P must be

equal to the weight, and therefore, if a be the area of the

base, w the weight of an unit of volume, and p the pressure

atP,
pa.

= wo. . AP,

or p = w. AP
;

that is, the pressure at any depth varies as the depth below

the surface.

Similarly, if P and Q be any two points in the same
vertical line, it will be seen, by describing
a cylinder PQ, that the difference of the

pressures on the ends P and Q of the cylin-
der must be equal to the weight of the

cylinder.
Hence if p, p' be the pressures at P

and Q,

p'a pa = wa. . PQ,

or p' p = w . PQ ;

that is, the difference of the pressures at any two points varies

as the vertical distance between the points.

34. Let the cylinder of which AP is the axis be bounded at P by
a plane not horizontal, and let a' be its area, and 6 its

inclination to the horizon.
j^

Then for the equilibrium of the cylinder, taking ^^
p' as the pressure at P upon a', we have by resolving

vertically,

jp'a'cos 6=waAP,
but a= a' cos 6

;

.-. p'
= w. AP, which is independent of 6.

We thus have another proof of the proposition
that the pressure at any point is the same in all

directions.
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It may be perhaps objected to the proof of Art. 33 that the surface

at A is assumed to be horizontal. By making the cylinder AP a very
thin cylinder, that is, of very small radius, it will be seen that its

weight is sensibly waAP, and therefore that the proof does not depend
on any assumption as to the form of the surface.

Or, to reason more strictly, draw two horizontal planes through the

highest and lowest points B, A of the small portion
AB of the surface intercepted by the cylinder.

Then, if the radius of the cylinder be indefinitely

diminished, these two planes will coalesce.

If z and / be the heights above P of these

planes, the weight of the cylinder lies between

waz and waz',

and therefore p lies between

wz and wzf,

and ultimately when the planes coalesce,

35. Difference ofpressures at any two levels in an elastic

fluid.

We have already mentioned in Art. 20, that gases are

heavy bodies
; hence, by the same reasoning as in Art. (33),

if P and Q be two units of area in an elastic fluid, P being
vertically above Q, the difference of the pressures at P and
Q is equal to the weight of the column of fluid PQ. This
column is not of uniform density, and hence the law of
variation of the pressure at different levels in an elastic fluid

does not present itself in a simple form. Further information
will be found in Chapter V.

;
at this point we need only call

attention to the fact that the pressure decreases as we ascend
in an elastic fluid.

36. The surface of a liquid at rest is a horizontal plane.

Take two points P, Q, in the same horizontal plane,
within the liquid, and draw PA, QB
vertically to the surface.

Then pressure at P = w . AP,

pressure at Q = w . BQ,
and these are equal; therefore AP
and BQ are equal, and A, B are in

the same horizontal plane. Similarly
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any other point in the surface can be proved to be in the

same horizontal plane with A or B.

Or we might have argued that, since the pressures are

equal at all points of the same horizontal plane, conversely,
all points at which the pressures are equal are in the same
horizontal plane, and therefore all points in the surface, at

which the pressure is either zero, or equal to the atmospheric

pressure, must be in the same horizontal plane.

37. The pressure of the atmosphere is found to be about

14'73 Ibs. to a square inch, or very nearly 15 Ibs. We can

hence calculate the pressure upon any given area, and, if II

be the atmospheric pressure on the unit of area, the pressure
at a depth z of a fluid, the surface of which is exposed to

atmospheric pressure, will be

W2 + U.

38. Illustration. Take a hollow glass cylinder open at

both ends
;
in contact with the lower end, and closing that

end, place a heavy flat disc supported by a string passing up
the cylinder.

Holding the string, depress the cylinder in a vessel of

water, and it will be found that, at a certain

depth, the string may be loosened, and the

disc will remain in contact with the cylinder,

being supported by the pressure of the water

beneath.

If W be the weight of the disc and r the

radius of the cylinder, the requisite depth (x)
of the disc is given by the equation

W = wxirr*.

The presence or absence of the atmosphere
will not affect this depth, since the pressure of the atmosphere
downwards on the disc would be counteracted by the pressure

upwards, transmitted from the surface of the water.

39. If in Art. (32) the line AB do not lie entirely within

the fluid, we can still prove the truth of the proposition by
the aid of Art. (33).
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For A and B can be connected by horizontal and vertical

lines as AC, CD, DB, and

pressure at B
=

pressure at D w . BD
= pressure at C w . A C
=

pressure at A.

40. Hence it appears that all points on the surface of a

liquid, at which the pressure is either zero or is equal to the

constant atmospheric pressure, must be in the same horizontal

plane, and that this is true even though the continuity of

the surface be interrupted by the immersion of solid bodies,
or in any other way.

This sometimes appears under the form of the assertion

that liquids maintain their level, and an experimental illus-

tration may be employed as in the figure.

A number of glass vessels of different forms, all open into

a closed tube or vessel AB, and it is found that if water be

poured into any one of the tubes, it will, after filling the
tube AB, rise to exactly the same vertical height in every
one of the tubes, and if any portion be withdrawn from any
of the vessels, that the water will sink to its new position of

rest through the same vertical height in each.

An important practical illustration of this principle is

seen in the construction by which towns are supplied with
water. A reservoir is placed on a height, and pipes leading
from it carry the water to the tops of houses or to any point
which is not higher than the surface of the water in the
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reservoir, and these pipes may be carried under ground or

over a road, provided that no portion of a pipe is above the

original level.

41. The common surface -of two liquids that do not mix
is a horizontal plane.

Take two points P, Q in the lower fluid, both in the

same horizontal plane, and let vertical

lines PA, QB to the surface of the upper
fluid meet the common surface of the

fluids in C and D.

Then, if w' be the intrinsic weight
of the lower fluid, and w of the upper,

pressure at P = w' . CP + pressure at C

and pressure at Q = w' . QD -f w . DB
;

/. w'. CP + w. CA = w .QD + w.DB.
Also AB is horizontal, and therefore

.'. multiplying by w and subtracting,

or CP = QD, and therefore CD is horizontal.

42. If two liquids that do not mix together meet in a
bent tube, the heights of their upper
surfaces above their common surface
will be inversely proportional to their

intrinsic weights.

Let A and B be the two sur-

faces, C the common surface, and
w

t w', the intrinsic weights of the

liquids.
Let horizontal planes through A, B,

and C meet a vertical line in a, b, and

c, and take C' in the denser fluid in the

same horizontal plane as C.
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The pressure at G = w . be, and the pressure at G' w . ac,

and these are equal, by Art. 32
;

.*. w. be = w' . ac,

1 1
or be : ac=:,.w w

Since the densities are in the ratio of the intrinsic

weights, it follows that the heights of the upper surfaces

above the common surface are inversely as the densities of

the fluids.

43. Two fluids that do not mix are contained in the same
vessel ; it is required to find the pressure at a given depth in

the lower fluid.

Let P be the point in the lower fluid, PBA a vertical

line meeting the common surface in

B. Describe a small cylinder about

AP, and consider the equilibrium of

the fluid within it.

Then, if p be the pressure at P
and a. the sectional area of the cylinder,

w and w' being the intrinsic weights,

or p = w . AB + w' . BP.

This might have been at once inferred from the equation

p = w'. BP + pressure at B,

for the pressure at B = w . AB.
And in the same manner the pressure at any point .of

a mass of fluid containing any number of strata of different

densities can be determined.
If the surface A be subject to the atmospheric pres-

sure IT,

the pressure at P = w' . BP + w . AB + II.

44. We now proceed to consider two simple cases of the

pressure of a fluid on plane surfaces.

PROP. The pressure of a liquid on any horizontal area is

equal to the weight of a column of the liquid of which the area
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is the base and of which the height is equal to the depth of the

area below the surface.

For, if z be the depth, the pressure at every point is wz
;

.*. if K be the area, the pressure upon it = WZK,

and ZK is the volume of the column described.

It will be seen that this is independent of the form of

the vessel containing the fluid.

This result may also be obtained in the following
manner.

Draw through the boundary of K vertical lines to the

surface, and consider the equilibrium of the portion of fluid

enclosed. The pressure of the surrounding fluid is entirely

horizontal, and therefore the pressure on the base must be

equal to the weight of the fluid enclosed.

If the vessel be of the form indicated by the dotted line

so that the actual surface does not extend over the area K,
we may suppose the fluid extended over K by enlarging
the vessel, and the pressure at any point of K will not be

changed. Hence the above reasoning is applicable to this

case also.

Thus if a hollow cone, vertex upwards, be just filled with

water, and if r be the radius of the base and )i the height of

the cone, the pressure on the base = wmPh, that is, the weight
of the cylinder, of fluid on the same base as the cone, and of

the .same height.

45. A plane area in the form of a rectangle is just
immersed in liquid with one edge in the surface, and its plane
inclined at an angle to the vertical ; it is required to find the

pressure upon it.

B. E. H. 3
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Let the figure be a vertical section perpendicular to the

side b of the rectangle in the

surface, AB ( a) being the

section of the rectangle, and
draw a vertical plane BC
through the lower side B.

Then the weight of the fluid in

ABC is supported by the plane
AB, since the pressure on BC is horizontal.

Hence if R be the pressure on AB, perpendicular to its

plane,
R sin = weight of ABC= \w . AC.BC.b

= \wboj
1- sin 6 cos

;

/. R = ^wba* cos = wba . Ja cos 6,

that is, the pressure is the weight of a column of fluid of

which the rectangle is the base, and the height is equal to

the depth of the middle point of AB below the surface.

Since the direction of R makes an angle 6 with the

horizon, it follows that the horizontal component of R is

)a~ cos2
6.

Now the fluid in ABC is kept at rest by the horizontal

pressure on BC, by its weight, and by the reaction R.

Hence the pressure on BC = R cos 6 = fyuba? cos2 6

= w.ba cos . J cos

= w . (area BC) (depth of middle point of BC),

the same law as for AB.
This also appears from the value of R by putting 0.

The results thus obtained are generalized in the following
article in which a different method is adopted.

Whole Pressure.

4C. DEF. The whole pressure of a fluid on any surface
is the sum of all tlie normal pressures exerted by the fluid on

every portion of the surface.
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In the case of a plane, the pressure at every point is in

the same direction and the whole pressure is the same as

the resultant pressure. In the case of curved surfaces, the

whole pressure is merely the arithmetical sum of all the

pressures acting in various directions over the surface.

PROP. The whole pressure of a liquid on a surface is

equal to the weight of a column of liquid of which the base

is equal to the area of the surface, and the height is equal
to the depth of its centroid below the surface of the liquid.

Let the surface be divided into a great number of very
small areas a1} 2 ,

as ,... and let zlt z^ z3 ... be the depths
below the surface of the centroids of these areas. If the

areas be taken very small, each may be considered plane,
and the pressures upon them will be respectively

taking the pressure over each area to be uniform.

Hence the whole pressure
= w% (ous).

But, if z be depth of the centroid of the surface,

.'. whole pressure
= wz% (a)

= wzS, if S be the area of the surface,

and zS is the volume of the column described.

Ex. 1. A rectangle is immersed with two sides horizontal, the

upper one at a given depth (c), and its plane inclined at a given

angle (6) to the vertical.

Let a be the horizontal side, b the other side.

The depth of the centroid = J(2c+ b cos 0), and the whole pressure

Ex. 2. A vertical cylinder, radius r and height A, is filled with

fluid.

The surface = 2irrh, the depth of the centroid= |A, and therefore the

whole pressure= wnrA2
.

Ex. 3. A hollow cone, vertex downwards, is filled with water.

Let r be the radius, and h the height of the cone.

By cutting the cone down a generating line and unrolling it into a

plane, its surface forms the sector of a circle, of which the slant side is

the radius and the perimeter of the base is the arc.

* See Greaves's Statics, or Parkinson's Mechanics.

32
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But the area of a sector= \ (arc) (radius) ;

.-. the surface

Again, the surface of a cone is the ultimate form of the surface of a

pyramid formed by triangles, having the vertex of the cone as their

common vertex, and having for their bases the sides of a polygon
inscribed in the circle, and since the centroid of each triangle is at

a depth \h below the surface of the fluid, it follows that \h is the

depth of the centroid of the surface.

Hence the whole pressure= \wnrh'Jr*+ h*.

Ex. 4. The cylinder in Ex. 2, closed at both ends, is just filled

with liquid, and its axis is inclined at an angle 6 to the vertical.

The surface of the fluid is a horizontal plane through the highest

point of the cylinder, and the depth of G
h= - cos v+ r sin 0.

Hence the whole pressure on the curved surface is

wirrh (h cos 6+ 2r sin 0),

and the whole pressure including the plane ends is

w (nrh+ nr2
) (h cos 6+ 2r sin

ff).

Ex. 5. A cubical vessel is filled with two liquids of given densities,
the volume of each being the same, it is required to find the pressure
on the base and on any side of the vessel.

Let a be a side of the vessel, w, w' the intrinsic weights of the

upper and lower liquids, w' being taken greater than w.

The pressure on the base = the weight D B
of the whole fluid = w' - - + w .

The pressure on the portion BC
a2 a 1

To find the pressure on AC, replace
the liquid DC by an equal weight of the
lower liquid. This change will not affect

the pressure at any point of CA.
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If RD' be its surface,

and the depth of the centroid of AC below B'

a

hence the pressure on AC=w' .
-

.
-

( 1 + W
a3

and therefore the pressure on AB=(3w+vf) --
.

o

Centre of Pressure.

47. DEF. TAe centre of pressure of a plane area is the

point of action of the resultant fluid pressure upon the plane
area.

As a simple case, suppose a rectangle immersed in a

liquid with one side in the surface.

Divide the area into a number of

very small equal parts by equidistant
horizontal lines.

The pressure on each part will act at

its middle point and will be proportional
to the depth below the surface, and we
have to find the centre of a system of

parallel forces acting perpendicularly to

the plane at equidistant points of the line EF and propor-
tional to the distance from E.

This is evidently the same as finding the centroid of a

triangle of which E is the vertex and F the middle point of

the base. The centre of pressure therefore divides EF in the

ratio 2:1.
It will be seen that this result is independent of the

inclination of the plane of the rectangle to the vertical.

If a triangular area be immersed with its vertex in the

surface and its base horizontal, and be divided by equidistant
horizontal lines, the pressure on each strip will act at its

middle point and be proportional to the square of the distance

of that point from the vertex E.
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Hence if F be the middle point of the base, the centre of

pressure will be the same as the centroid of a solid cone,

vertex E and axis EF, and therefore divides EF in the

ratio 3:1.
If a triangular area be immersed

with its base in the surface, the pres-
sure on a strip will be proportional to

the product EN. NF, and consequently

proportional to the square of the ordi-

nate NP of a semi-circle described

upon EF as diameter. \ I/ Sp
The centre of pressure will therefore

be the middle point of EF.

48. We may also give the following general method,

applicable to the case of a plane area immersed in any
position.

Through the boundary line of the plane area draw vertical

lines to the surface and consider the equilibrium of the

liquid so enclosed
;
the reaction of the plane resolved ver-

tically, is equal to the weight of the liquid, which acts in

the vertical line through its centre of gravity ;
and the

point in which this line meets the plane is the centre of

pressure.

Bearing in mind the fact that the pressure is proportional
to the depth below the surface, it will be. seen that the depth
of the centre of gravity of the liquid thus enclosed is one
half of the depth of the centre of pressure of the plane
area.

49. If a plane be immersed vertically, and then turned,

through any angle, round its line of intersection with the

surface of the liquid, the pressures at all its points will be

changed in the same ratio.

It follows therefore that such a rotation will not affect

the position of the centre of pressure of any area upon the

plane.

50. If a plane area is immersed vertically to a given
depth, and if the position of its centre of pressure is known,
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we can determine the position of the centre of pressure for

any other given depth.
Let K be the position of the centre of pressure, when G,

the centroid of the area, is at the depth h.

If the depth is increased to hf, the increase of pressure on
the area A acts at G and is equal to

wA (h'
-

h).

Take the point K' in GK such that

or h'.GK' = h.GK;
then K' is the new centre of pressure.

51. The student will now be able to appreciate more

clearly the nature of fluid pressures, and to see that the

action of a fluid does not depend upon its quantity, but

upon the position and arrangement of its continuous portions.
It must be carefully borne in mind that the surface of an

inelastic fluid or liquid is always the horizontal plane drawn

through the highest point or points of the fluid, and that the

pressure depends only on the depth below that horizontal

plane.
Thus in the construction of dock-gates, or canal-locks, it is

not the expanse of sea outside which will affect the pressure,
but the height of the surface

; and, in considering the strength

required in the construction, the greatest height of the

surface due to tides must also be taken into account. Any
violent action due to rapid tides or storms is of course a

subject for separate consideration.

The same principle shews that in the construction of

dikes, or the maintenance of river-banks, the strength must
be proportional to the depth below the surface.
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EXAMINATION UPON CHAPTER III.

1. To what extent is the pressure on the base of a vessel affected

by pouring in more liquid ?

2. Find the pressure at a depth of 100 feet in a lake, 1st, neglect-

ing, 2nd, taking account of the atmospheric pressure.

3. Explain the statement that liquids maintain their level.

4. A reservoir of water is 200 feet above the level of the ground-
floor of a house

;
find the pressure of the water in a pipe at a height of

30 feet above the ground-floor.

5. Three liquids that do not. mix are contained in a vessel
; prove

that their common surfaces are horizontal, and find the pressure at any
depth in the lowest liquid.

6. An equilateral triangular area is immersed in water with a side

two feet in length in the surface
; find the pressure upon it.

7. Distinguish between whole pressure and resultant pressure.

8. A hollow cone, vertex upwards, is just filled with liquid; find

the whole pressure on its curved surface.

9. Prove that the depth of the centre of pressure of a plane area is

greater than the depth of the centre of gravity of the area.

10. Find the centre of pressure of a rectangular area immersed,
with plane vertical and two sides horizontal.

11. A rectangle has one side in the surface of a liquid; divide it

by a horizontal line into two parts on which the pressures are equal.

12. Divide the same rectangle by horizontal lines into n parts on
which the pressures are equal.

13. A triangle has its base horizontal and its vertex in the

surface; divide it by a horizontal line into two parts on which the

pressures are equal.

EXAMPLES.

1. Two equal vertical cylinders standing on a horizontal table are
connected together by a pipe passing close to the table, and are

partially filled with water. In contact with and above the water in

one cylinder is a closely-fitting piston of given weight ;
find its posi-

tion of equilibrium.



EXAMPLES. CHAPTER 111. 41

2. The upper surface of a vessel filled with water is a square
whose side is 2 feet 6 inches, and a pipe communicating with the
interior is filled with water to a height of 8 feet; find the weight
which must be placed on the lid of the vessel to prevent the water
from escaping.

3. A parallelogram is immersed in a liquid with one side in the

surface; shew how to draw a line from one extremity of this side

dividing the parallelogram into two parts on which the pressures arc

equal.

4. A fine tube ABC is bent so that the portions AS, BC are

straight and perpendicular to each other
;
the tube is placed so that

each branch is equally inclined to the vertical, and equal quantities of
two liquids, the densities of which are in the ratio of 2 : 1, are poured
into the respective branches

;
find the height above B of their common

surface.

5. A smooth vertical cylinder one foot in height and one foot in
diameter is filled with water, and closed by a heavy piston weighing
4 Ibs.

;
find the whole pressure on its curved surface.

6. If a ball, weighing 1 Ib. in water, be suspended in the water by
a string fastened to the piston, and if the height of the piston above
the base be still one foot, find the pressure at any depth and the whole

pressure on the curved surface.

7. A cylindrical vessel standing on a table contains water, and a

piece of lead of given size supported by a string is dipped into the

water; how will the pressure on the base be affected, (1) when the
vessel is full, (2) when it is not full ? and in the second case, what is

the amount of the change ?

8. A hollow cylinder closed at both ends is just filled with water
and held with its axis horizontal : if the whole pressure on its surface,

including the plane ends, be three times the weight of the fluid,

compare the height arid diameter of the cylinder.

9. A triangle ABC is immersed vertically in a liquid with the

angle C in the surface and the sides AC, BC equally inclined to the

surface
;
shew that the vertical through C divides the triangle into two

others, the fluid pressures upon which are as 63+362
:

3 + 3 2
6.

10. A vertical cylinder contains equal volumes of two liquids, the

intrinsic weight of the lower liquid being three times that of the upper
liquid ;

find the whole pressure on the curved surface, and prove that,
if the fluids be mixed together so as to become a homogeneous mass, the

whole pressure will be increased in the ratio of 4 to 3.

11. A triangle is immersed in a fluid with one of its sides in the
surface

;
find the position of a point within the triangle, such that, if it

be joined to the angular points, the triangle shall be divided into three

others, the fluid pressures upon which are equal.
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12. The side AD of a triangle ADC is in the surface of a fluid, and
a point D is taken in AC, such that the pressures on the triangles

BAD, BDC, are equal; find the ratio AD : DC.

13. The lighter of two fluids, whose specific gravities are as 2 : 3,

rests on the heavier, to a depth of four inches. A square is immersed
in a vertical position with one side in the upper surface

;
determine

the side of the square in order that the pressures on the portions in the
two fluids may be equal.

14. A vertical cylinder contains equal portions of three inelastic

fluids, of intrinsic weights, w, 2w, 3w, respectively, the lighter fluid

being uppermost, and the heavier fluid lowest
; compare the whole

pressures on the portions of the curved surface of the cylinder in

contact with the several fluids.

15. A fine tube, which is bent into the form of a circle, contains

given quantities of two different liquids; if the two together occupy
half the tube, determine the position of equilibrium.

16. The inclinations of the axis of a submerged solid cylinder to

the vertical in two different positions are complementary to each

other; P is the difference between the pressures on the two ends in

the one, and P in the other position : prove that the weight of the

displaced fluid is equal to

17. A vertical cylinder contains a quantity of fluid, whose depth
equals a diameter of the circular base. A sphere of four times the
intrinsic weight of the fluid and of the same radius as the cylinder is

placed upon the fluid and is supported by it: find the increase of

pressure sustained by the curved surface of the cylinder, the sphere
fitting it exactly.

18. Three fluids whose densities are in arithmetic progression, fill

a semicircular tube whose bounding diameter is horizontal. Prove
that the depth of one of the common surfaces is double that of the
other.

19. Prove that, as a plane area is lowered vertically in a liquid,
the centre of pressure approaches to, and ultimately coincides with, the
centre of gravity.

20. A circular area is just immersed vertically in water; prove
that, if the depth of its centre is doubled, the distance between its

centre and the centre of pressure will be halved.

21. A square lamina is just immersed vertically in water, and is

then lowered through a depth 6; if a is the length of the edge of the

square prove that the distance of the centre of pressure from the
centre of the square will be
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22. A lamina in the shape of a quadrilateral ABCD has the side

CD in the surface, and the sides AD, DC vertical and of lengths a, ft,

respectively. Prove that the depth of the centre of pressure is

2'

23. A vessel contains two liquids whose densities are in the ratio

of 1 to 14. A triangle is immersed vertically in the liquids so that its

base is in the surface of the upper liquid. If the pressures on the

portions in the two liquids be equal, prove that the areas of those

portions are as 8 to 1.

24. The depth of the water on one side of a rectangular ver-

tical floodgate is double that on the other. Supposing the gate to be
fastened at the angular points, find the pressures at these points.

25. A vertical cylinder contains equal quantities of two liquids;

compare their densities when the whole pressures of the two liquids on
the curved surface of the cylinder are in the ratio 1 : 3.

26. Compare the whole pressures on the curved surface and plane
base of a solid hemisphere, which is just immersed in water with its

base horizontal and downwards.

27. Find the centre of pressure of a square just immersed in a

liquid with one diagonal vertical.

28. Prove that whatever be the law of density of a liquid con-
tained in a right circular cone with its axis vertical and vertex upwards
the whole pressure is the same as if the fluid were mixed up so as
to become of uniform density.

29. Prove that the depth of the centre of pressure of a trapezium
immersed in water with the side a in the surface, and the parallel side
6 at a depth h below the surface is

h

30. A closed hollow cone is just filled with liquid, and is placed
with its vertex upwards and axis vertical

;
divide its curved surface by

a horizontal plane into two parts on which the whole pressures are

equal.
Also do the same when the vertex is downwards.

31. If three liquids which do not mix, and whose densities are

Pi? P-2i PSJ fiH a circular tube in a vertical plane, and if a, /3, y are the

angles which the radii to the common surfaces make with the vertical
diameter measured in the same direction, prove that

pl (cos ft
- cos

-y) + p2 (cos y
- cos a) + p3 (cos a

- cos j3)
= 0.

If there are equal quantities of each fluid, and if in addition the

weights on each side of the vertical diameter are equal, obtain an

equation to determine a, which refers to the highest point of junction.
Shew that it is satisfied by a= 30, and that therefore the densities are
in arithmetic progression.
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32. A solid triangular prism, the faces of which include angles
a, /3, y, is completely immersed in water with its edges horizontal

;
if

P, Q, R, be the pressures on the three faces, which are respectively
opposite to the angles a, /3, -y, prove that

P cosec a+ Q cosec /3 +R cosec y
is invariable so long as the depth of the centre of gravity of the prism
is unchanged.

33. A cubical vessel, standing on a horizontal plane, has one of its

vertical sides loose, which is capable of revolving about a hinge at the
bottom. If a portion of fluid equal in volume to one-fourth of the
cube be poured into the vessel, the loose side will rest at an inclination
of 45 to the horizon : compare the weight of the side with the weight
of the fluid in the vessel.

34. A cubical box, filled with water, has a close fitting heavy lid

fixed by smooth hinges to one edge; compare the tangents of the

angles through which the box must be tilted about the several edges of
its base, in order that the water may just begin to escape.

35. A cylindrical tumbler, containing water, is filled up with wine
;

after a time half the wine is floating on the top, half the water remains

pure at the bottom, and the middle of the tumbler is occupied by wine
and water completely mixed, the common surfaces being horizontal

planes ;
if the weight of the wine be two-thirds of that of the water, and

their densities be in the ratio of 11 : 12, prove that in this position the
whole pressure of the pure water on the curved surface of the tumbler
is equal to the whole pressure of the remainder of the liquid on the
tumbler.

36. A cone, with its axis inclined at an angle B to the vertical,
contains some water

;
it is turned till its axis is vertical. Shew that

the whole pressure is altered in the ratio cos 0:1.

37. An oblique cylinder standing on a horizontal plane, the

generating lines making an angle a with the vertical, is filled to a

height h with a weight W of liquid. Prove that the resultant pressure
on the curved surface of the cylinder is equivalent to a couple of
moment ^ Wh tan a, tending to upset the cylinder.



CHAPTER IV.

RESULTANT VERTICAL AND HORIZONTAL PRESSURE ON ANY
SURFACE, RESULTANT PRESSURE ON THE SURFACE OF
AN IMMERSED SOLID, CONDITIONS OF EQUILIBRIUM OF
A FLOATING BODY, THE CAMEL, METHOD OF REMOVING
WOODEN PILES, STABILITY OF EQUILIBRIUM, META-

CENTRE, BODIES FLOATING IN AIR, THE BALLOON.

52. PROP. To find the resultant vertical pressure of a

liquid on any surface.

Let PQ be a portion of surface in contact with a liquid
at rest, and through the bound-

ary line of PQ draw vertical

lines to the surface AB, thus

enclosing a mass of the liquid.
The pressure of the sur-

rounding liquid on this mass is

entirely horizontal, and it is

therefore clear that the weight
of the mass is entirely supported by the reaction of the

surface PQ.
Hence the vertical component of this reaction must be

equal to the weight of the mass ABQP.

By the previous Chapter this is true whether the curve

AB be really in the liquid, or only in the horizontal plane

through the highest point of the liquid, as in the figure.



46 RESULTANT VERTICAL PRESSURE.

Hence it follows that the resultant vertical pressure is the

weight of the superincumbent liquid.

The phrase superincumbent liquid must be interpreted,
in the second figure, as denoting the mass of liquid which

would occupy the space PAQB.

53. There are other cases which it is requisite to con-

sider.

Thus the liquid may press upwards on the surface.

In this case, let AB as before be the curve formed by
vertical lines round PQ, and ima-

gine the liquid within to be re- .A ?..

moved and the outside of PQ to be
under the pressure of a fluid of

which AB is the surface. It will

be seen that the pressure at any
point of PQ is the same as before

in magnitude, but opposite in direc-

tion, and the resultant vertical pressure is therefore the

same, only that it is now downwards, and by the previous
article it is equal to the weight of ABQP.

Hence the resultant vertical pressure upwards on PQ
is as before equal to the weight of the liquid above it, that

is, between PQ and the surface.

Or the pressure may be partly upwards and partly
downwards, as on PEQ.

Draw QQ' vertical, and consider the pressures on QEQ'
and Q'P separately.

By the same reasoning the vertical pressure on QEQ' is

downwards and equal to the weight
of the liquid contained between the
surface and the vertical plane QQ',
and the difference between this and
the upward vertical pressure on PQ'
is the resultant vertical pressure

*

downwards on the surface PQ.
In all cases the line of action of

the resultant vertical pressure is

the vertical through the centre of gravity of the superin-
cumbent liquid.
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54. PROP. To find the resultant horizontal pressure in a

given direction of a liquid on any surface.

Take a fixed vertical plane perpendicular to the given
direction, and draw horizontal lines

through the boundary of the sur-

face PQ, meeting the vertical plane
in the curve AB. The equilibrium
of the liquid thus enclosed is main-
tained by its own weight, by the

fluid pressures on its carved surface

which are all parallel to the vertical

plane, and by the fluid pressures
on the surfaces AB and PQ.

Hence the horizontal component of the reaction of PQ
must be equal to the pressure on AB, which can be found
from previous investigations, and the line of action will be
the horizontal line through the centre of pressure of AB.

55. We are now in a position to determine the resultant

pressure in direction and magnitude of a liquid on any
surface

;
for we can obtain separately the vertical and hori-

zontal pressures, and hence, by the principles of Statics,
determine the magnitude and direction of the resultant.

Ex. 1. A vessel in the form of an open semi-cylinder with its ends

vertical, is filled with water
;

it is required
to find the resultant pressure on either of

the portions into which it is divided by a
vertical plane through the axis of the

cylinder.
Let h be the length of the cylinder and a

its radius, and let the figure be a vertical

section through the middle point of its

length.
The resultant vertical pressure on AB

= the weight of the fluid OAB
7T

2

= wh
,
if w is the intrinsic weight of the water.

The resultant horizontal pressure on AB = i\\Q pressure on the
vertical section perpendicular to the plane of the paper, that is, on
a rectangle of which the sides are a and

/>,
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Hence the angle 0, at which the direction of the resultant pressure
is inclined to the horizon, is given by the equation

- Wira2h
4 7T

2"

Moreover, since the pressure at any point acts in a direction

passing through the axis of the cylinder, the resultant pressure acts

in a line through 0, and, if P0,5= tan- 1

f|Y,
the point P is the

centre of pressure of the curvilinear surface.

Ex. 2. A closed hemispherical vessel is just filled with liquid, and is

held ivith its plane base vertical.

Consider the equilibrium of the liquid, and observe that the

resultant horizontal and vertical pressures of the curved surface on

the liquid are respectively

wira3 and -wrra3
.

o

Hence, if is the inclination to the vertical of the line of action of

the resultant pressure of the curved surface on the liquid,

tan =
|

.

We can hence obtain the position of the centre of pressure of the

plane base.

For the lines of action of the resultant pressures of the curved

surface, of the weight, and of the resultant pressure of the plane
base must be concurrent, and therefore since the distance of the

centroid of the liquid from the centre of the sphere is three-eighths
of the radius, it follows that the depth of the centre of pressure of

the plane base below its centre is one-fourth of the radius.

Ex. 3. A hollow cone filled with water is held with its vertex
downwards

; it is required to determine the resultant pressure on
either of the portions into which it is divided by a vertical plane
through its axis.

Let a be the radius of the base and 2a the A

vertical angle.

The volume = i vcP cot a.
3

The resultant vertical pressure on the

portion AEVB

=
5 the weight of the fluid

= - wna3 cot a.
o
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The resultant horizontal pressure

= the pressure on the triangle A VB

= w . a2 cot a . -= a cot a
3

= - wo? cot2 a
;o

therefore the resultant pressure

a3 cot a -

and if B be the angle at which its direction is inclined to the horizon,

1

tan 6-

In general the determination of the line of action can only be

effected by means of the Integral Calculus, but in the first example
we were able to infer at once the position of the line of action, and in

some cases it may be determined by special geometrical contrivances.

As an example, the position of the line of action in this last case

will be obtained in Chapter XII. by the help of such a contrivance.

56. To find the resultant pressure of a liquid on the

surface of a solid either wholly or partially immersed.

Imagine the solid removed, and the space it occupied
in the liquid to be filled with the liquid. It is clear that

the resultant pressure on this liquid is the same as on the

original solid. The weight of this liquid is entirely supported

by the pressure of the surrounding liquid, and therefore the

resultant pressure is equal to the weight of the displaced

liquid, and acts vertically upwards in a line passing through
its centre of gravity.

This is sometimes expressed by saying that a solid

immersed in fluid loses as much of its weight as is equal
to the weight of the fluid it displaces, observing that the

above reasoning is equally applicable to the case of a body
immersed in elastic fluid.

57. A solid of given volume V, having for a part of its

surface a plane of given area A, is completely immersed in a

liquid; having given the depth z, of the centroid of this area

B. E. H, 4
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and its inclination, 0, to the vertical, it is required to find the

resultant pressure on the remainder of the surface of the

solid.

If the plane area is on the upper surface of the solid, as

in the figure, the resultant horizontal pressure on the plane
area is wAz cos 0, and the resultant vertical pressure, down-

wards, is wAz sin 6.

The resultant pressure on the whole surface is vertical

and is equal to wV\ .'. if X and F are the resultant horizon-
tal and vertical pressures on the rest of the surface, Y being
measured upwards,

X = wAz cos 0,

and Y wAz sin = w V.

If the plane area forms part of the lower boundary of the
surface of the solid, so that the vertical pressure is upwards,
the second equation will take the form

wAz sin 6 Y = wV,
Y being now measured downwards.

Hence the actual resultant pressure on the rest of the

surface, which is (X
2 + F2

)*,
is equal to

w [AW 2AzVsm 6 + F2

)*,
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the upper sign belonging to the first case, and the lower sign
to the second case.

58. To find the conditions of equilibrium of a floating

body.

We have shewn, in article (56), that the resultant pres-
sure of the liquid on the surface of the body is equal to the

weight of the displaced liquid, acting vertically upwards.
It follows therefore that, the body being supported en-

tirely by the liquid, the weight of the displaced liquid must
be equal to the weight of the body, and the centres of

gravity of both must be on the same vertical line.

These conditions also hold good when the body floats

partly immersed in two or more liquids, and are, for such

cases, established by precisely the same reasoning.

59. If a homogeneous body float in a liquid, its volume

will bear to the volume immersed the inverse ratio of the

specific gravities of the solid and liquid.

For if V, V be the volumes, and s, s' the specific gra-

vities,

62 . 5 Vs = the weight of the body
= the weight of the displaced fluid

= 62 . 5 V's',

/. V: V' = 8':s.

60. To find the conditions of equilibrium of a solid float-

ing in liquid and partly supported by a string.

First, let the solid be homogeneous and wholly immersed
;

then the centres of gravity of the solid and of the liquid

displaced will be the same, and the direction of the string
must be the vertical through the centre of gravity. Also

the tension = the weight of the body the weight lost

= V(s-s) x 62-5 Ibs. weight,

if 5, s' be the specific gravities of the solid and fluid.

Secondly, let the solid be homogeneous and partly im-
mersed.

42
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Let V be the part immersed, H its centre of gravity,
and G the centre of gravity of the body.

Draw vertical lines through H and G meeting the surface

in G and A, and let the direction of the string meet the

surface in B.

Then, if T be the tension, we have three equilibrating
forces acting in the vertical lines through A, B, and G

;

.-. T= 62-5 (Vs - FY) Ibs. weight,

and Vs.AB=V's .CB.

The second equation is the condition of equilibrium, and
the first gives the requisite tension.

The case in which a heterogeneous body is partly sup-

ported by a string may be left for the consideration of the

student.

61. The Camel. This is an apparatus for carrying a

ship over the bar of a river. It consists of four, or a greater
number, of watertight chests, which are filled with water,

placed in pairs on opposite sides of the ship, and attached to

the ship, or attached to each other by chains passing under
the keel. If the water be then pumped out, the vessel will

be lifted, and may be towed over the bar into deep water.

The lifting power of the camel is the weight of water

displaced by the chests, diminished by the weight of the

whole apparatus.

62. Removing wooden Piles. It is sometimes necessary
to remove entirely piles which have been driven down in
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deep water; for instance, the piles employed to keep out
water during the construction of a dock. After the water
has been allowed to flow within the piles, they are sawn oft

to a convenient depth, and a barge is floated over them and
filled with water. The barge is then attached by chains to

a pile, and the water pumped out
;
as the pumping proceeds

the barge is lifted, and the pile is forcibly drawn out. If the

operation take place in the sea, a great advantage is gained
by fastening the barge to the pile at low tide. The rise of

the tide will sometimes draw out the pile, but, if necessary,
additional force must be gained by pumping water out of the

barge.

63. We now proceed to exemplify the preceding pro-

positions by their application to some particular cases.

Ex. 1. A man, whose weight is the weight of 150 Ibs., and specific

gravity 1*1, just floats in water, the specific gravity of which is 1, by
the help of a quantity of cork. The specific gravity of cork being '24,
find its volume in cubic feet.

Let F be the volume of the cork, and V of the man, in cubic feet.

Then 62'5 (F(-24) + F'(M)} = weight of water displaced

= 62'5(F+F'),

or F(-76)=F'(-1).

Also 62-5 V (1 'I
)
= weight of man = 1 50,

F _24
ii?

,r -1 24 60 ,.and V= ----- x = ths of a cubic foot.
*7o 1 1 209

Ex. 2. A cylindrical piece of wood floats in water with its axis
vertical

;
find how much it will be depressed by placing a given

weight on the top of it.

If w be the weight placed on the top, it will be depressed through
such a space that the additional amount of displaced fluid has its

weight equal to w.

Now, if W be the weight of the cylinder, it is also the weight of
the fluid displaced by the cylinder, and therefore, if h be the depth of
the base of the cylinder originally, and x the depression,

w : W : : x : h
;
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If this value of x exceed the height of the cylinder originally above
the surface, it will be entirely immersed, and the possibility of equi-
librium will then depend on the density of the weight.

Ex. 3. An isosceles triangular lamina floats in liquid with its base

horizontal : it is required to find the position of equilibrium when the

base is above the surface.

Take p and p as the densities of the lamina and of the liquid, h as

the height of the triangle, and x the depth to which it is immersed.

Then, since the intrinsic weights of two bodies at the same place
are proportional to their densities, it follows that p' (volume of lamina)

=p (volume of fluid displaced); and therefore, similar triangles being

proportional to the squares of homologous sides, we have

and x= k * /

The second condition is obviously satisfied in this and the preceding
example.

Ex. 4. Can an isosceles triangular lamina float with its base
vertical in a liquid of twice its density ?

The first condition requires that half the triangle should bo

immersed, and therefore its vertex A
is in the surface.

Also, if G, H be the centres of

gravity,

AG=\AE, and AH=\AF,

F being the middle point of EC
;

.'. AG : AH :: AE : AF.

Hence Gil is parallel to EF, is therefore vertical, and both
conditions are satisfied.

Ex. 5. A cylinder floats with its axis vertical, partly immersed
in two liquids, the densities of the upper and lower liquids being

respectively p and 2p, and the density of the cylinder ^ ; find the

position of equilibrium of the cylinder, its length being twice the

depth of the upper fluid.

Let x be the length immersed in the lower fluid, k the area of
either end, and 2A the whole length.

Then, intrinsic weights being proportional to densities,

and .-. #=i //.

If the cylinder were just immersed, its density p would be such
that
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or p 2'
and x would then be equal to h.

Ex. 6. A cubical box, the volume of which is one cubic foot, is

three-fourths filled with water, and a leaden ball, the volume of which
is 72 cubic inches, is lowered into the water by a string ;

it is required
to find the increase of pressure on the base and on a side of the box.

The complete immersion of the lead will raise the surface ^ an inch,
since 144 square inches is the area of the surface.

The pressure on the base is therefore increased by the weight of
79

72 cubic inches of water, i.e. by the weight of -

|~
1000 oz., or 41-f oz.

The area of a side originally in contact with the fluid was '- of a

square foot,
o o

and the pressure was 1000 x - x - oz. wt., or 281^ oz. wt.,

o
~ ths of a foot being the depth of the centre of gravity,o

The new area is - + ,
or of a square foot

;

.-. the new pressure= 1000 x --
7 x ~ oz. wt.

24 48

= 313 r
5^ oz. wt.

The increase is therefore a little more than the weight of 32 oz.

Ex. 7. A solid hemisphere is moveable about the centre of its plane
base which is fixed in the surface of a liquid ; if the density of the liquid
be twice that of the solid, any position of the solid will be one of rest.

Hold the solid in the position ADB, DCE being the surface of the

liquid, and continue the sphere to the

surface E of the liquid.
Also make the angle DCF equal to

the angle ECB, the figure being a
vertical section through the centre C
of the hemisphere perpendicular to its

plane base.

Consider first the equilibrium of the
mass BCE of liquid ;

'this is maintained

by the normal pressures on the surface

BE, the reaction of the plane CB, and
the weight of the liquid.

Hence it follows that the moment of the reaction of CB about the
horizontal straight line through C perpendicular to the plane of the

figure is equal to the moment, about the same line, of the weight
of the liquid BCE. Next, considering the hemisphere, the wedge or
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lune FOB would be of itself in equilibrium, and therefore the moment
about C of the weight of ACF is equal to the moment of the fluid

pressure upon CB.
Now we have shewn that the moment of this fluid pressure about C

is equal to the moment about C of the weight of the mass CBE, and
it is easily seen that the horizontal distance from C of the centre of

gravity of BCE is equal to that of the centre of gravity of ACF.
Hence since the weight of ACF is equal to the weight of BCE,

it follows that the forces on the hemisphere equilibrate, and therefore,

releasing the hemisphere, it remains at rest.

The result of this problem has been practically employed in the

construction of an oil-lamp, called Cecil's Lamp, such that the surface

of the oil supplying the wick is always the same. DEB is a hemi-

spherical vessel containing oil, and ADB a hemisphere, the specific

gravity of which is half that of the oil
;
as the oil is consumed, ADB

turns round C, and CE is always the surface of the oil.

Stability of Equilibrium.

64. Imagine a floating body to be slightly displaced
from its position of equilibrium by turning it round so

that the line joining its centre of gravity with that of the

fluid displaced shall be inclined to the vertical. If the body
on being released return to its original position its equili-
brium is stable

; if, on the other hand, it fall away from that

position its original position is said to be one of unstable

equilibrium.

Metacentre. In the figure let G, H be the centres of
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gravity of the body and of the fluid originally displaced,
H' the centre of gravity of the fluid displaced in the new

position, and M the point where a vertical through H' meets
HG.

The resistance of the fluid acts vertically upwards in the

line H'M, and it is therefore evident that, if M be above G,
the action of the fluid will tend to restore the body to its

original position ; but, if M be below G, to turn the body
farther from its original position.

The position of the point M will in general depend on
the extent of displacement. If the displacement be very
small, that is, if the angle between GH and the vertical be

very small, the point M is called the metacentre, and the

question of stability is now reduced to the determination of

this point.
One of the most important problems in naval architecture

is to secure the ascendancy under all circumstances of the

metacentre over the centre of gravity.
This is effected by a proper form of the midship sections,

so as to raise the metacentre as much as possible, and by
ballasting so as to lower the centre of gravity, and the greater
the distance between the points G and M, the greater is the
steadiness of the vessel.

Moreover, the naval architect must have in view the

probability of large displacements, due to the rolling of the

vessel, and not merely the small movement which is con-

sidered in the determination of the metacentre.

65. In particular cases the metacentre can be sometimes
found by elementary methods, but its general determination
involves the application of the Integral Calculus.

In one case however its position is obvious. Let the
lower portion of the solid be spherical in form

;
then as

long as the portion immersed is spherical, the pressure of
the water at every point acts in the direction of the centre
of the sphere, and therefore the resultant pressure must
act in the vertical line through the centre (E) of the

sphere.
Now in the original position the centre of gravity of the

fluid displaced is evidently in the vertical through E, and
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therefore the centre of gravity of the body is in the vertical

through E.

Hence the point E is the metacentre.

Thus if any portion whatever be cut from a solid sphere
it will float in stable equilibrium with its curved surface

partly immersed.

66. Bodies floating in air.

The fact that air is heavy enables us to extend to

bodies, floating either wholly or partly in air, the laws of

equilibrium which have been established for bodies floating
in liquids.

Taking one case, if a body, lighter than water, float on
its surface, it displaces a certain quantity of water and
also a certain quantity of air

;
if we remove the body and

suppose its place filled by air and water, it is clear that

the weight of the displaced air and water is supported

by the resultant vertical pressures of the air and water
around it.

Hence the weight of the body must be equal to the

weight of the air and water it displaces, and the centre

of gravity of the air and water displaced mast be in the

same vertical line with the centre of gravity of the body.
In a similar manner, if a body float in air alone, its

weight must be equal to the weight of the air it displaces.

67. In order to illustrate the case of a body floating in

air and water, imagine that a piece of cork or some very

light substance is floating in a basin of water, that the whole
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is placed under the receiver of an air pump, and that the

receiver is, as far as is practically possible, exhausted of air.

The effect on the position of equilibrium of the cork is

determined by the fact that the weight of the cork is equal
to the sum of the weights of the air and water displaced, so

that, if the air be removed, more water must be displaced ;

the cork will therefore sink in the water.

This may also be shewn in the following manner.

In removing the air, we remove the downward pressure
of the air on the cork, and also the downward pressure of

the air on the surface of the water. This latter pressure is

transmitted through the water to the lower surface of the

cork, so that the forces on the cork are its weight, the down-

ward pressure of the air on its upper surface, the pressure
due to the water above, and the pressure of the air transmitted

through the water.

Hence, since the atmospheric pressure on the surface of

the water is greater than the atmospheric pressure at any

point above the surface of the water, (see Art. 76), it

follows that in removing the air from the receiver we remove

the downward and upward pressures on the cork, of which

the latter pressure is the greatest.
The cork will therefore sink in the water.

68. The Balloon. The ascent of a balloon depends on

the principle of the previous article. A balloon is a very

large envelope, made of silk, or some strong and light sub-

stance, and filled with a gas of less density than the air,

usually coal gas. A car is attached in which the aeronauts

are seated, and the weight of air displaced being greater
than the whole weight of the balloon and car, the balloon

ascends, and will continue ascending until the air around

is not of sufficient density to support its weight. In order

to descend, a valve is opened and a portion of the gas
allowed to escape.

The ascensional force on a balloon is the weight of the

air it displaces diminished by the weight of the balloon

itself.

69. If a body float in a liquid, the centre of gravity of

the liquid displaced is called the Centre of Buoyancy.
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If the body be moved about, so that the volume of

liquid displaced remains unchanged, the locus of the centre

of gravity of the displaced liquid is called the Surface of
Buoyancy.

Taking a simple case, suppose a triangular lamina
immersed with its plane vertical, and vertex beneath the

surface, and let the area APQ be constant. Through H the

centre of gravity of the area APQ, draw pHq parallel to PQ;
then the area Apq is constant, and therefore pq always
touches, at its middle point H, an hyperbola of which AB
and AC are the asymptotes. This hyperbola is the curve of

buoyancy. Now in the position of equilibrium, GH is ver-

tical, and is consequently perpendicular to pq.
The position of equilibrium is therefore determined by

drawing normals from G to the curve of buoyancy.
The problem then comes to the same thing as the

determination of the positions of equilibrium of a heavy
body, bounded by the surface of buoyancy, on a horizontal

plane.

70. It is a general theorem that the positions of equili-
brium of a floating body are determined by drawing normals

from the centre of gravity of the body to the surface of
buoyancy.

We give a proof for the case of a lamina with its plane
vertical, or, which is the same thing, of a prismatic or cylindri-
cal body with its flat ends vertical.
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Let PQ, pq cut off equal areas, so that the triangles PCp,
QCq are equal.

Then, if H be the centre

of gravity of PAQ, E and F
of PGp and QCq, take the

point K inFH produced such

that

KH:KF::QCq:QAP;
and in KE the pointH f

such

that A

KH':KE::PCp:pAq',
then H' is the centre of gravity of pAq.

Hence, since KH f

: KE : : KH : KF,

it follows that HH' is parallel to EF, and therefore, ultimately,
when the displacement is very small, HH' is parallel to PQ,
or, in other words, the tangent to the curve of buoyancy at

H is parallel to PQ.
Now, in the position of equilibrium, GH is vertical, and

is therefore normal, at the point H, to the curve of buoy-
ancy.

The metacentre having been defined as the point of inter-

section of the vertical through H' with the line HG, it follows

that the metacentre is the centre of curvature, at the point H,

of the curve of buoyancy.

EXAMINATION UPON CHAPTER IV.

1. Shew how to find the resultant vertical pressure of a liquid on a
surface

; 1st, when it acts upwards, 2nd, when it acts downwards.

2. Apply the preceding to find the resultant pressure on a solid

completely immersed.

3. A solid cono of metal, completely immersed in liquid, is

supported by a string ;
find the tension of the string.

4. State the conditions of equilibrium of a floating body.

5. A wooden plank floats in water, and a weight is placed at one
end of the plank ;

find the weight which, placed at a given distance

from the other end, will keep the plank in a horizontal position.
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6. Describe a method of removing piles in deep water.

7. A cylinder floats vertically in a fluid with 8 feet of its length
above the fluid

;
find the whole length of the cylinder, the specific

gravity of the fluid being three times that of the cylinder.

8. A body floats in one fluid with |ths of its volume immersed,
and in another with 4ths immersed

; compare the specific gravities of
the two fluids.

9. A cylinder of wood 3 feet in length floats with its axis vertical

in a fluid of twice its specific gravity ; compare the forces required to

raise it 6 inches and to depress it 6 inches.

10. Three equal rods are jointed together so as to form an

equilateral triangle, and the system floats in a liquid of twice the

density of the rods, with one rod horizontal and above the surface
;

find the position of equilibrium.

11. Explain what is meant by stability of equilibrium, and define
the metacentre.

12. A small iron nail is driven into a wooden sphere, and the

weight of the sphere is then half that of an equal volume of water
;

find its positions of equilibrium in water, and examine the stability of
the equilibrium.

13. A sphere of ice floats in water, and gradually melts
;
does its

centre rise or sink ?

14. A block of wood, the volume of which is 4 cubic feet, floats

half immersed in water
;

find the volume of a piece of metal, the

specific gravity of which is 7 times that of the wood, which, when
attached to the lower portion of the wood, will just cause it to sink.

15. A cylindrical block of wood is placed with its axis vertical in a
cylindrical vessel whose base is plane, and water is then poured in to
twice the height of the cylinder ; find the pressure of the wood on the
base of the vessel.

16. Two cylindrical vessels, containing different fluids, and standing
near each other on a horizontal plane, are connected by a fine tube,
which is close to the horizontal plane ;

when the communication is

opened between them, determine which of the fluids will flow from
its own vessel into the other, and find the condition that the equi-
librium may not be disturbed.

17. Two bodies of given size and given specific gravities are
connected by a string passing over a pulley, and rest completely
immersed in water

;
find the condition of equilibrium.
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NOTE ON CHAPTER IV.

The Principle of Archimedes. The enunciation and proof of the

proposition of Article (58) are due to Archimedes, and it is a remark-

able fact in the history of science, that no further progress was made
in Hydrostatics for 1800 years, and until the time of Stevinus, Galileo,
and Torricelli, the clear idea of fluid action thus expounded by
Archimedes remained barren of results.

An anecdote is told of Archimedes, which practically illustrates

the accuracy of his conceptions. Hiero, king of Syracuse, had a

certain quantity of gold made into a crown, and suspecting that the

workman had abstracted some of the gold and used a portion of

alloy of the same weight in its place, applied to Archimedes to

solve the difficulty. Archimedes, while reflecting over this problem
in his bath, observed the water running over the sides of the bath,
and it occurred to him that he was displacing a quantity of water

equal to his own bulk, and therefore that a quantity of pure gold

equal in weight to the crown would displace less water than the

crown, the volume of any weight of alloy being greater than that

of an equal weight of gold. It is related that he immediately ran
out into the streets, crying out evprjua ! evprjKa !

The two books of Archimedes which have come down to us,
" De

Us quce in liumido vehuntur" were first found in an old Latin MS.

by Nicholas Tartaglia, and edited by him in 1537. In the first of

these books it is shewn that the surface of water at rest must be a

sphere of which the centre is at the earth's centre, and various

problems are then solved relating to the equilibrium of portions of

spherical bodies. The second book contains the proposition of Art.

(58), and the solutions of a number of problems on the equilibrium
of paraboloids, some of which involve complicated geometrical con-

structions.

The authenticity of these books is confirmed by the fact that they
are referred to by Strabo, who not only mentions their title, but also

quotes the second proposition of the first book.

Slevinus and Galileo. The Treatise of Stevinus on Statics and

Hydrostatics, about 1585, follows that of Archimedes in the order

of thought. In this he shewed how to determine the pressure of a

liquid on the base and sides of a vessel containing it.

Galileo, in his Treatise on Floating Bodies, published in 1612,
states the Hydrostatic paradox, and explains why the floating of

bodies does not depend on their form.

EXAMPLES.

1. A uniform solid floats freely in a fluid of specific gravity twice

as great as its own
; prove that it will also float in equilibrium, if its

position be inverted.
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2. A block of ice, the volume of which is a cubic yard, is observed
to float with ^ths of its volume above the surface, and a small piece of

granite is seen embedded in the ice
;

find the size of the stone, the

specific gravities of ice and granite being respectively '918 and 2*65.

3. An isosceles triangular lamina floats with its base horizontal

and beneath the surface of a liquid of twice its density ;
find the

position of equilibrium.

4. A solid cone floats with its axis vertical in a liquid the density
of which is twice that of the cone

; compare the portions of the axis

immersed, 1st, when the vertex is upwards, 2nd, when it is downwards.

5. If WD w2 ,
w3 be the apparent weight of a body in three liquids,

the specific gravities of which are s
1 ,

s
2J

s
3 , prove that

W
l (S2

~ S
3) + U>2 (S3

~ S
l) +W3 (

5
1
- Sl)

= 0.

6. An equilateral triangular lamina suspended freely from A, rests

with the side AB vertical, and the side AC bisected by the surface of a

heavy fluid
; prove that the density of the lamina is to that of the

fluid as 15 to 16.

7. A vertical cylinder of density
- floats in two liquids, the

density of the upper liquid being p, and of the lower 2p ;
if the

length of the cylinder be twice the depth of the upper liquid, find

its position of rest.

8. A wooden rod is tipped with lead at one end
;

find the density
of a liquid in which it will float at any inclination to the vertical

;

the weight of the lead being half that of the rod, and its size being
neglected.

9. The weight of the unimmersed portion of a body floating in

water being given, find the specific gravity of the body, in order that
its volume may be the least possible.

10. A cylindrical glass cup weighs 8 oz., its external radius is

1J inches, and its height 4^ inches
;

if it be allowed to float in water
with its axis vertical, find what additional weight must be placed in it,

in order that it may sink.

11. A vessel in the form of half the above cylinder with both its

ends closed, floats in water, with its ends vertical
;

find the additional

weight which being placed in the centre of the vessel will cause it to be

totally immersed.

12. A uniform rod, whose weight is W, floats in water in a

position inclined to the vertical with a particle, of weight TF, attached

to its lower end
;
shew that, if the density of the water be four times

that of the rod, half the length of the rod will be immersed.

13. A uniform rod floats partly immersed in water, and supported
at one end by a string ; prove that, if the length immersed remain

unaltered, the tension of the string is independent of the inclination

of the rod to the vertical.
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14. A spherical shell, the internal and external radii of which are

given, floats half immersed in water
;

find its density compared with

the density of water.

15. A heavy hollow right cone, closed by a base without weight, is

completely immersed in a fluid, find the force that will sustain it with

its axis horizontal.

16. Find the position of equilibrium of a solid cone, floating with

its axis vertical and vertex upwards, in a fluid of which the density
bears to the density of the cone the ratio 27 : 19.

17. A rectangular lamina ABCD has a weight attached to the

point J5, and floats in water with its plane vertical and the diagonal
AC in the surface

; prove that the specific gravity of the fluid is three

times that of the lamina.

18. A solid paraboloid floats in a liquid with its axis vertical and
vertex downwards

; having given the densities of the paraboloid and
the liquid, find the depth to which the vertex is submerged.

19. A ship sailing from the sea into a river sinks two inches, but
after discharging 40 tons of her cargo, rises an inch and a half;
determine the weight of the ship and cargo together, the specific

gravity of sea-water being 1'025, and the horizontal section of the

ship for two inches above the sea being invariable.

20. A cylindrical vessel of radius r and height h is three-fourths

filled with water; find the largest cylinder of radius r' and specific

gravity -5 which can be placed in the water without causing it to

run over, the axes of the cylinders being vertical and r' less than r.

21. A hollow cylinder is just filled with water, and closed, and is

then held with its axis horizontal
;
find the direction and magnitude of

the resultant pressure on the lower half of the curved surface. Also,
if the cylinder be held with its axis vertical, find the direction and

magnitude of the resultant pressure on the same surface.

22. A solid cylinder, one end of which is rounded off in the form
of a hemisphere, floats with the spherical surface partly immersed :

find the greatest height of the cylinder which is consistent with

stability of equilibrium.

23. A body floating on an inelastic fluid is observed to have
volumes P1} P2 ,

P3 respectively above the surface at times when
the density of the surrounding air is px , p2 , p3 ;

shew that

Pt_~_P3 , l>3 -JPl , Pi
-
P2_ A

P ~T" P ' P
~

*i *a ^3

24. A hollow cubical box, the length of an edge of which is one

inch, and the thickness one-eighteenth of an inch, \vill just float in

water, when a piece of cork, of which the volume is 4-34 cubic inches,
and the specific gravity '5, is attached to the bottom of it. Find the

specific gravity of tin.

B. E. H. 5
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25. A steamer, loading 30 tons to the inch in the neighbourhood
of the water-line in fresh water, is found after a 10 days' voyage,

burning 60 tons of coal a day, to have risen 2 feet in sea water at

the end of the voyage ; prove that the original displacement of the

steamer was 5720 tons, taking a cubic foot of fresh water as 62'5

pounds and of sea water as 64 pounds.

26. A frustum of a right circular cone, cut off by a plane bisecting
the axis perpendicularly, floats with its smaller end in a fluid and
its axis just half immersed

; compare the densities of the cone and
fluid.

27. A solid cone and a solid hemisphere, which have their bases

equal, are united together, base to base, and the solid thus formed
floats in water with its spherical surface partly immersed ; find the

height of the cone in order that the equilibrium may be neutral.

28. Three uniform rods, joined so as to form three sides of a

square, have one of their free extremities attached to a hinge in

the surface of a fluid, and rest in a vertical plane with half the

opposite side out of the fluid
;
shew that the specific gravity of the

rods is to that of the fluid as 31 to 40.

29. A triangle ABC floats in a fluid with its plane vertical, the

angle E being in the surface of the fluid and the angle A not im-
mersed. Shew that the density of fluid : density of the triangle
: : sin B : sin A cos C.

30. A solid cone floats with its axis vertical and vertex downwards
in an inelastic fluid

; prove that, whatever be the density of the fluid,

supposing it greater than that of the solid, the. whole pressure on its

curved surface is the same.

31. Two fluids are in equilibrium, one upon the other, the lower
fluid having the greater specific gravity, and a solid cylinder, the

height of which is equal to the depth of the upper fluid, is immersed
with its axis vertical : the specific gravity of the cylinder being greater
than that of the upper fluid, find the position of equilibrium.

"What would be the effect of an increase in the density of the

upper fluid 1 Will the equilibrium be stable or unstable for a vertical

displacement ?

32. Two equal uniform rods AB, EG are freely jointed at B, and
are capable of motion about A, which is fixed at a given depth below
the surface of a uniform heavy fluid. Find the position in which both
rods will rest partly immersed, and shew that, in order that such a

position may be possible, the ratio of the density of the rods to the

density of the fluid must be less than -
.

y

33. An equilateral triangle, ABC, of weight W and specific gravity
o-,

is moveable about a hinge at A, and is in equilibrium when the

angle C is immersed in water and the side AB is horizontal. It is then
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turned about A in its own plane until the whole of the side BC is in

the water and horizontal
; prove that the pressure on the hinge in this

position

= 2

34. If a floating body be wholly immersed, but different parts of it

in any number of different liquids, shew that the specific gravities of

the solids and liquids may be supposed to be so altered as to make one
of the liquids a vacuum and another water without disturbing the

equilibrium.
A piece of iron (S.G. *7'8) floats partly in two liquids (s.G. *8 and

13*6) : find the specific gravity of a solid which would float similarly in

a vacuum and water. Hence find the ratio of the parts immersed.

35. Prove that a homogeneous solid, in the form of a right circular

cone, can float in a liquid of twice its own density with its axis hori-

zontal, and find, in that case, the whole pressure on the surface im-

mersed.

36. A solid cone is just immersed with a generating line in the

surface
;

if 6 be the inclination to the vertical of the resultant pressure
on the curved surface, prove that

(1 3 sin2a) . tan $ 3 sin a . cos a,

2a being the vertical angle of the cone.

37. A hollow sphere is just filled with liquid ;
find the line of

action and magnitude of the resultant pressure on either of the portions
into which it is divided by a vertical plane through its centre.

38. A sphere is divided by a vertical plane into two halves which
are hinged together at the lowest point, and it is just filled with

homogeneous liquid ;
find the tension of a string which ties together

the highest points of the two halves.

39. A right circular cone of height h and vertical angle 2a,
of uniform material, floats in water with axis vertical and vertex

downwards and a length h' of axis immersed. The cone is bisected by
a vertical plane through the axis, and the two parts are hinged
together at the vertex. Prove that the two halves will remain in

contact if h' > h sin2a.

40. A solid hemisphere is completely immersed with the centre of

its base at a given depth ;
if W be the weight of fluid it displaces, P

the resultant vertical pressure, and Q the resultant horizontal pressure,
on its curved surface, prove that for all positions of the solid

( W- P)
2+ Q2 is constant.

41. A hollow cone, filled with water and closed, is held with its

axis horizontal
;
find the resultant vertical pressure on the upper hall

of its curved surface.

52
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42. A solid cylinder which is completely immersed in water has

its centre of gravity at a given depth below the surface, and its axis

inclined at a given angle to the vertical
;

determine the resultant

horizontal and resultant vertical pressures upon its curved surface, and
the direction and magnitude of the resultant pressure on the curved

surface.

43. The vertical angle of a solid cone is 60
; prove that it can

float in a liquid with its vertex above the surface and its base touching
the surface, if the densities of the cone and the liquid are in the ratio

of 2\/2 - 1

44. A thin hollow cone closed by an equally thin base will remain
wherever it is placed entirely within a liquid ; prove that its vertical

angle is 2 cosec
~ 1

3.

45. The base of a vessel containing water is a horizontal plane,
and a sphere of less density than water is kept totally immersed by a

string fastened to the centre of a circular disc, which lies in contact

with the base. Find the greatest sphere of given density, and also the

sphere of given size and least density, which will not raise the disc.

46. In H.M.S. Achilles, a ship of 9000 tons displacement, it was
found that moving 20 tons from one side of the deck to the other, a
distance of 42 feet, caused the bob of a pendulum 20 feet long to move
through 10 inches. Prove that the metacentric height was 2*24 feet.



CHAPTER V.

ON AIR AND GASES.

ELASTICITY OF AIR, EFFECT OF HEAT, THERMOMETERS,
TORRICELLl'S EXPERIMENT, WEIGHT OF AIR, THE BARO-
METER AND ITS GRADUATION, THE RELATIONS BETWEEN
PRESSURE, DENSITY, AND TEMPERATURE, DETERMINATION
OF HEIGHTS BY THE BAROMETER, THE SIPHON, GRADU-
ATION OF A THERMOMETER, THE DIFFERENTIAL THER-
MOMETER.

71. THE pressure of an elastic fluid is measured exactly
in the same way as the pressure of a liquid, and it has been
mentioned before that the properties of equality of pressure
in all directions and of transmission of pressure are equally
true of liquids and gases.

There is however this difference between a gas and a

liquid, that the pressure of the latter is entirely due to its

weight, or to the application of some external pressure, while

the pressure of a gas, although modified by the action of

gravity, depends in chief upon its volume and temperature.
The action of a common syringe will serve to illustrate

the elasticity of atmospheric air. If the syringe be drawn
out and its open end then closed, a considerable effort will

be required to force in the piston to more than a small

fraction of the length of its range, and if the syringe be

air-tight, and strong enough, it will require the application
of very great power to force down the piston through nearly
the whole of its range. Moreover, this experiment with a
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syringe shews that the pressure increases with the compres-
sion, the air within the syringe acting as an elastic cushion.

If the piston after being forced in be let go, it will be driven

back, the air within expanding to its original volume.

Another simple illustration may be obtained by immers-

ing carefully in water an inverted glass cylinder. Holding the

cylinder vertical, fig. Art. 97, Ex. (2), it may be pressed down
in the water without much loss of air, and it will be seen

that the surface of the water within the vessel is below the

surface of the water outside. It is evident that the pressure
of the air within is equal to the pressure of the water at its

surface within the cylinder, which, as we have shewn before,

is equal to the pressure at the outside surface, increased by
the pressure due to the depth of the inner surface

;
hence

the air within, which has a diminished volume, has an
increased pressure.

72. Effect of heat. It is found that if the tempera-
ture be increased, the elastic force of a quantity of air or

gas which cannot change its volume is increased, but that

if the air can expand, while its pressure remains the same,
its volume will be increased.

To illustrate this, imagine an air-tight piston in a vertical

cylinder containing air, and let it be in equilibrium, the

weight of the piston being supported by the cushion of air

beneath.

Raise the temperature of the air in the cylinder; the

piston will then rise, or, if it be not allowed to rise, the force

required to keep it down will increase with the increase of

temperature.

73. Thermometer. As a general rule bodies expand
under the action of heat, and contract under that of cold,

and the only method of measuring temperatures is by ob-

serving the extent of the expansion or contraction of some
known substance.

For all ordinary temperatures mercury is employed, but
for very high temperatures a solid metal of some sort is the

most useful, and for very low temperatures, at which mercury
freezes, alcohol must be employed.
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74. The Mercurial Thermometer is formed of a thin glass
tube terminating in a bulb, and having its upper end

hermetically sealed. The bulb contains mercury
which also extends partly up the tube, and the

space between the mercury and the top of the tube

is a vacuum.
It must be observed that, as the glass expands

with an increase of temperature, as well as the

mercury, the apparent expansion is the difference

between the actual expansion and the expansion of

the glass.
In the Centigrade Thermometer the freezing

point is marked 0, and the boiling point 100, the

space between being divided into 100 equal parts,
called degrees.

In Fahrenheit's Thermometer the freezing point is

marked 32, and the boiling point 212
;
and in Reaumur's

the freezing point is 0, and the boiling point 80.

YD. To compare the scales of these Thermometers.

Let G, F and R be the numbers of degrees marking the

same temperature on the respective thermometers; then,
since the space between the boiling and freezing points must
in each case be divided in the same proportion by the mark
of any given temperature, we must have

C : F-32-.R:: 100 : 180 : 80

:: 5 : 9 : 4,

C F-32 R
or

9 ~4
it being taken for granted that the temperatures indicated

by the boiling point and the freezing point are the same in

all.

The method of filling the thermometer, and the defini-

tions of the freezing and boiling points, will be given at the

end of the chapter.

76. Pressure of the Atmosphere. Torricellis Experi-
ment.
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The action of the atmosphere was distinctly ascertained

by the experiment of Torricelli.

Taking a glass tube AB, 32 or

more inches in length, open at the

end A and closed at the end B, he

filled it with mercury, and then,

closing the end A, inverted the

tube, immersed the end A in a

cup of mercury, and then opened
the end A. The mercury was
observed to descend through a

certain space, leaving a vacuum
at the top of the tube, but rest-

ing with its surface at a height
of about 29 or 30 inches above

the surface of the mercury in the

cup.
It thus appears that the at-

mospheric pressure, acting on the

surface of the mercury in the cup,
and transmitted, as we have shewn
that such pressures must be transmitted, supports the column
of mercury in the tube, and provides us with the means of

directly measuring the amount of the atmospheric pressure.
In fact, the weight of the column of mercury in the tube

above the surface in the cup, is exactly equivalent to the

atmospheric pressure on an area equal to that of the section

of the tube. This is about 1 5 Ibs. weight on a square inch.

77. Air has weight. This may be directly proved by
weighing a flask filled with air; and afterwards weighing it,

when the air has been withdrawn by means of an air-pump.
The difference of the weights is the weight of the air con-

tained by the flask.

We are now in a position to account for the fact of at-

mospheric pressure. The earth is surrounded by a quantity
of air, the height of which is limited, as may be proved by
dynamical and other considerations

;
and if, above any hori-

zontal area, we suppose a cylindrical column extending to

the surface of the atmosphere, the weight of the column
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of air must be entirely supported by the horizontal area upon
which it rests, and the pressure upon the area is therefore

equal to the weight of the column of air.

According to this theory the pressure of the air must
diminish as the height above the earth's surface increases,

and, from experiments in balloons, and in mountain ascents,

this is found to be the case. As before, taking II for the

pressure at any given place, and w as the intrinsic weight of

the air, the pressure at the height z will be

II wz,

if we assume that the density, and therefore the intrinsic

weight of the air, is sensibly the same through the height z.

It should be noticed that II, measured in Ibs. wr

eight, is

the pressure upon the unit of area at the place.

78. It has been mentioned that the pressure of a gas depends
chiefly upon its volume and temperature, but it is implied in that
statement that the gas is confined within a limited space, for without
such a restriction the effect of its elasticity might be the unlimited

expansion and ultimate dispersion of the gas.
The action of gravity is equivalent to the effect of a compression of

the gas, and it is thus seen that the pressure of a gas is in fact due to

its weight, as in the case of a liquid.
It may be shewn in the same manner as for air that any other gas

has weight, and that the intrinsic weight is in general different for

different gases.
Carbonic acid gas, for instance, is heavier than air, and this is

illustrated by the fact that it can be poured, as if it were liquid, from
one jar to another.

The Barometer. A
79. This instrument, which is employed for

measuring the pressure of the atmosphere, con-

sists of a bent tube ABC, closed at A, and having
the end (7 open.

The height of the portion AB is usually
about 32 or 33 inches, and the portion. BC
is generally for convenience of much larger
diameter than AB. The tube contains a

quantity of mercury, and the portion AP above
the mercury is a vacuum.

If the plane of the surface in BC inter-

sect AB in Q, it is clear, since the pressure
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at all points of a horizontal plane is the same, that the

pressure at Q is the same as the atmospheric pressure,
which is transmitted from the surface at C to Q, and
therefore the atmospheric pressure supports the column of

mercury PQ. Hence the height of this column is a measure
of the atmospheric pressure, and if w be the intrinsic weight
of mercury, and IT the atmospheric pressure,

The density of mercury diminishes with an increase of

temperature, and it is an experimental result that, for an
increase of 1 centigrade, the expansion of mercury is

Trs-^rrth, or '00018018 of its volume
;
and therefore if crt be

5ooi)

the density at a temperature ,
and a- at a temperature 0,

<r =<r< (l + '000180180,

or, if 6 = '00018018, <TO
= <r

t (1 + 6t).

Hence, since the intrinsic weights are proportional to the

densities,

0t),

and therefore, if H is the pressure when the temperature is t

and when P Q is the height of the barometric column,

H = wt . P Q = WQ (1
-

6t) PQ
ftu and Wt being the intrinsic weights of

temperatures and t.

mercury at the

80. The average height of the barometric column at

the level of the sea is found to vary with the latitude, but
it is generally between 29 J and 30 inches. This height is

however subject to continuous variations
; during any one

day there is an oscillation in the column, and the mean

height for one day is itself subject to an annual oscillation,

independently of irregular and rapid oscillations due to high
winds and stormy weather. Usually the height of the

column is a maximum about 9 in the morning; it then
descends until 3 P.M., and again attains a maximum at 9 in

the evening.
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81. The Water Barometer. Any kind of liquid will

serve to measure the atmospheric pressure, but the great

density of mercury renders it the most convenient for the

purpose. If water were employed, it would be necessary
to have a tube of great length ;

in fact, as the density of

mercury is about 13'568 times that of water, the height of

the column of water would be about 331 feet.

82. Graduation of the Barometer. Suppose the column
of mercury to rise above P

(fig.
Art. 79) ;

then it is clear

that it descends below C in BC, and that the variation

in the height of the column is the sum of these two

changes.
Let k, K be the sectional areas of the tubes, and x the

ascent above P, or the apparent variation
;
then the descent

below C is -^
,
and the true variation is

kx
x +

-J-F,
or

Hence in graduation the distances actually measured
from the zero point must be marked larger in the ratio of

Again, since mercury expands rapidly with an increase of

temperature, and since the scale on which the graduations are

marked also expands, but not to the same extent, it is neces-

sary to reduce the reading of the barometer to what it would
be at some standard temperature.

This is usually taken to be the freezing point.
Let t be the temperature and h the observed height of

the barometer.

Also take x to represent the fractional part of a volume
of mercury which must be added to its volume for every
degree of increase of temperature, and take y to represent
the fractional part of its length by which the scale increases

for each degree of temperature, the values of x and y being
calculated for the particular thermometer in use.

Then the height which would have been observed had
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the mercury been at the freezing point will be given by the

formula,

for the Centigrade h Id (x y),

and for Fahrenheit h -h(t- 32) (x
-

y).

There is, further, a correction to be made for capillarity, the
effect of which is to make the circle of contact of the surface

of the mercury with the glass lower than it would be if the

surface were flat, instead of being convex, as it really is.

83. To find the atmosphere pressure on a square inch.

This we can determine at once by observing that it is

the weight of a cylindrical column of mercury of which
the base is a square inch and the height equal to that of

the barometric column.

The specific gravity of mercury is 13'568 times that of

water; hence the atmospheric pressure on a square inch,

taking 30 inches as the height of the barometer at the sea

level,
= 30 x 13-568 x 1000 -* 1728 oz. wt.

= 14-7 Ibs. wt.

This pressure varies from time to time, but is generally
between 14 J and 15 Ibs. wt.

Taking the latter value, the pressure on a square foot

would be equal to the weight of 19 cwt. 32 Ibs.

84. The height of the homogeneous atmosphere.

If the density of the atmosphere were the same through-
out the whole vertical column as it is at the sea level, its

height would be less than 5 miles.

To prove this, let cr, p be the densities of mercury arid

of air
; then, if h be the height of the barometer, the height

of the atmospheric column would be - h. Now, it has been
p

found that at the level of the sea, the ratio o~:p is about
10462 : ]

,
and if we take h to be 30 inches, we shall find that

the height is a little less than 5 miles.

85. The pressure of a given quantity of air, at a given

temperature, varies inversely as the space it occupies.
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V

The experimental proof of this law, due to Boyle and

Marriotte, is as follows.

A bent glass tube, the shorter branch of which can have

its end closed, is fixed to a graduated .

stand. Both ends being open, a little

mercury is poured in, which rests with

its surfaces P, P in the same horizontal

plane. The end A is now closed and
more mercury is poured in at B

;
the

effect is a compression of the air in AP,
the mercury rising to a height Q, which
is however below the surface R of the

mercury in BP.
After closing the end A the pressure

of the air is equal to the atmospheric

pressure, and when more mercury has

been poured in, the pressure of the air

in AQ is equal to that of the mercury
at Q, the same level in the longer
branch. This latter pressure is due to atmospheric pressure
on the surface R, and the weight of the column RQ.

If now the spaces AQ, AP be compared, which may be
effected by comparing the weights of the mercury they
would contain, and if the height h of the barometer be ob-

served, it will be found that space AP : space AQ :: h+QR : h.

But, taking II as the original pressure of the air in AP,
and IT as its pressure when compressed, and w as the
intrinsic weight of mercury,
E = wh, and IT - II + wQR = w(h + QR} ;

.*. IT : II :: space AP : space AQ,
and this proves the law for a compression of

air.

For a dilatation, employ a bent glass tube
of which both branches are long, and pour in

mercury to a height P; then close the end

A, and withdraw some of the mercury from
the branch B.

If Q and R are the new surfaces it will

be found that

space AP : space AQ :: h QR : h
;

V J
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but, if II" is the pressure of the air when dilated.

II" = Pressure at R - wQR = w (h
- QR\

and .'. II" : II :: space AP : space AQ.
In each case care must be taken to have the tempera-

tures the same at the beginning and at the conclusion of the

experiment.
Hence it follows that if p and p are the pressures of a

given mass of gas when its volumes are respectively V and F",

p: V'::V':V,
and therefore that, so long as the temperature is unchanged,

pV is constant.

Also since pV and p V equally represent the mass of the

gas, it follows that

p:p' ::p:p',

or that, for the same temperatures the pressure varies

directly as the density, a law which may be otherwise

expressed by means of the equation

86. Now the density of a given mass of gas at a given
volume is a quantity which is independent of time and place,
whereas p, representing the number of units of force exerted

by the gas upon an unit of area, is a quantity, the numerical
value of which depends upon locality.

It therefore follows that the value of k is dependent upon
locality.

Taking a foot as the unit of length, and p pounds as the
mass of a cubic foot of air close to the ground, the pressure
on a square foot is equal to the weight, at the place, of kp
pounds, and therefore it follows that k is the height, in feet,

at the place, of the homogeneous atmosphere.

87. Effect of a change of temperature.

If the pressure remain constant, an increase of temperature
of 1 centigrade, produces in a given mass of air an ex-

pansion '003665 of what its volume would be at centigrade
under the given pressure*.

* This law was first published by Dalton in 1801, and by Gay-Lussac in

1802, independently of Dalton. It appears however that it had been obtained,
some years before, by Charles,
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This experimental law, combined with the preceding,
enables us to express the relation between the pressure,

density, and temperature of a given mass of air or gas.

Imagine a quantity of air confined in a cylinder by a

piston to which a given force is

applied, and let the temperature
be C. Raise the temperature
to t : the piston will then be
forced out until the original
volume (F ) is increased by '003665 t . F or atVQ , desig-

nating the decimal by a. If V be the new volume, we have

and therefore, if p, p be the densities at the temperatures
*, 0, ro

Hence, p = kp =
Icp (1 -f at).

88. Absolute Temperature.

If we can imagine the temperature of a gas lowered until

its pressure vanishes, without any change of volume, we
arrive at what is called the absolute zero of temperature.

Assuming tQ to be this temperature on the centigrade

scale, we have 1 + at 0,

or to
= - 273.

In Fahrenheit's scale this is 459.

Hence p = kp (1 + at)
=

kpa. (t 1 )
=
kpaT,

if T be the absolute temperature.

Taking V as the volume of the gas, pV is constant, and
qj

~U"

therefore
*^

is constant
;

i.e. the product of the pressure and

volume is proportional to the absolute temperature.

The air Thermometer is a long straight tube of uniform bore closed
at its lower end, open at the upper end, and containing air or some other

gas, which is separated from the external air by a short column of

liquid.
This thermometer is very sensitive, but it has the disadvantage

that, as the atmospheric pressure is variable, no estimation can be
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made of the temperature without at the same time taking account of

the height of the barometer*.

89. Illustration. The effect of heat in the expansion of

air may be illustrated by a simple experiment.
Take a glass tube, open at one end, and ending in a bulb

at the other
;
immerse the open end in

water, and then apply the heat of a

lamp to the bulb. The air in the bulb

will expand, and will drive out a por-
tion of the water in the tube, arid may
drive out some air.

If the lamp be removed, the air

within will be cooled, and the water

will then rise in the tube to the same
level as before, or to a higher level.

90. Determination of heights by the barometer.

It is found both from theory'and from observation, that

the height of the barometric column depends on its altitude

above the sea level, and we are thus provided with a means
of directly inferring from observation the height of any given
station above the level of the sea.

For this purpose it is necessary to construct a formula

which shall connect the height of the barometer with the

height of its position above a given level, such as the sea

level.

A general formula would be somewhat complicated, and
difficult to obtain without the aid of the Integral Calculus,
since the atmospheric pressure depends on the temperature
and density of the air, which both vary with the height, and
ali^o on the intensity of gravity, which diminishes with an
increase of height.

We shall however construct a formula on the supposition
that the temperature and the force of gravity remain con-

stant : this will be practically useful for the determination of

comparatively small differences of altitude.

* See Chapter II. of Maxwell's Heat.
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91. If Of series of heights be taken in arithmetic pro-

gression, the densities of the air decrease in geometric pro-

gression.

Take a vertical column of the atmosphere of a given

height z, and let it be divided into n horizontal layers of

the same thickness, i.e.-, and suppose that p lt /o 2 , pi>->pn
Jt>

represent the densities of the successive layers, measuring

upwards.
These layers may be supposed each of the same density

throughout, and, if we take the temperature the same in all,

the pressures on the upper sides of the layers will be

kpi, kp.,,...kpn ,
k being the constant of variation, for the

particular temperature, of the place.
The difference between any two consecutive pressures

must be equal to the weight of the air between them, and if

the horizontal section of the column is the unit of area these

pressures are kpr^ and kpr .

Hence, taking the unit of force to be the weight of a

pound at the place, so that the numerical measures of the

density and the intrinsic weight are the same, we have the

equation

.. =
pr kn

that is, the densities diminish in geometric progression.

92. To find an expression for the difference of the

altitudes of two stations.

If z be this difference, we have from the preceding article,

putting 7 for

* + .kn

and po for the density immediately beneath the lowest layer
of air,

and therefore, p = y
n
pn .

B. E. H.
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Hence, if p', p be the corresponding pressures

p = 7y.
Let h', h be the observed altitudes of the barometer at

the higher and lower stations respectively.

Then J^Wh p

And lo l = TC l

I z~

-
k 2 n

Now the larger we make n, the more nearly our hy-

pothetical case approaches to the continuous variation of

the actual density of the air, and by taking n very large, we
obtain the approximate expression,

71 ^
z = k log p ,

h

observing that h' is less than h, that the temperature and
the force of gravity are supposed constant throughout the

height z, and that the numerical value assigned to k is its

value at the place at which the observations are taken *.

The Siphon.

93. The action of a siphon is an important practical
illustration of atmospheric pressure.

* In the preceding article we have, for the sake of simplicity, taken the
unit of force to be the weight of one pound at the place. If we had taken
the unit of force to be the weight of a pound at some standard place, we
should have had to introduce a symbol /j,, to express the number of units of

force in the weight of a pound at the place, and we should also have had to

employ the value of k, say k', at the standard place. In that case we should
have obtained

k' . h

But, since kp and k'p represent the same actual force in different units, it

follows that

V: ft:: /til;
and therefore the final result is the same as that given above.
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It is simply a bent tube ABC, which is open at both

ends. When filled with water, the ends are closed and the

siphon is then inverted, and one end C placed in water, the

other end A. being below the level of the surface of the

water.

If the end C be opened, it is clear that the pressure at

A is greater than the pressure at Q, which is equal to the

pressure at P, and therefore to the atmospheric pressure.

Hence, if the end A be unclosed, the water at A will

begin to flow out, and by so doing diminish the pressure in

the tube, and tend to form a vacuum in the upper portion of

the tube. But if the height of B above the surface of the

water be less than the height h of the water-barometer, the

atmospheric pressure will force the water up the tube, and
maintain a continuous flow through the end A, until either

the surface has fallen below C, or, if the siphon be long

enough, until it has descended so far that its deptli below B
is greater than h.

94. Methods offilling and graduating a Thermometer.

To fill the Thermometer with mercury a paper funnel is

fastened to the open end, and mercury poured into it
;
the

bulb is then heated over a spirit-lamp, a portion of the air in

the tube is thereby expelled, and if the bulb be cooled the

mercury descends in the tube. This process is repeated
until the air is completely expelled, and when the tube is

quite full and the mercury overflowing, the upper end is

hermetically sealed by means of a blow-pipe ; during the

subsequent cooling the mercury contracts and descends,

leaving a vacuum at the top of the tube *.

* This so-called vacuum is filled with the vapour of mercury.

62
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The freezing and boiling points are now to be deter-

mined.

The freezing point is obtained by immersing the bulb
and the lower portion of the tube in melting snow, and

marking the tube outside at the end of the mercurial column.
The boiling point is obtained by immersing the bulb in

the vapour of water boiling under a given atmospheric

pressure, and marking the tube as before.

The temperature of steam depends on the atmospheric

pressure, and it is therefore necessary to fix on some standard

pressure, and to define the boiling point as the temperature
of steam at that pressure. A barometric column of 30 inches

at the level of the sea is the usual standard.

For the Centigrade Thermometer, the boiling point, 100,
is the temperature of steam when the height of the baro-

metric column is 29*9218 inches (760 mm.), at the level of

the sea in latitude 45.

For some time after boiling the height of the mercury at the

freezing temperature is gradually increased, and it has been found
that it takes 4 or 5 years for the zero to attain its permanent position
after boiling.

95. Use of the Mercurial Thermometer limited.

Mercury freezes at a temperature of 40 C., and boils

at a temperature of about 350 C.
;

it is therefore necessary
for very high or very low temperatures to employ different

substances.

For very low temperatures spirit of wine is used, and
this liquid is generally employed in the construction of

minimum Thermometers.

High temperatures are compared by observing the ex-

pansion of bars of metal or other solid substances, and
various instruments, called pyrometers, have been constructed

for this purpose.

96. The differential Thermometer is constructed in two
different forms. In one form, of which the figure is a section,

a horizontal tube branches upwards into two short vertical

tubes ending in bulbs of equal size.

These bulbs contain air, and in the horizontal tube is

a small portion of some coloured liquid, by which the air in
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one bulb is separated from the air in the other. The

quantities of air are equal, so that when the bulbs have the

same temperature the bubble of liquid rests at the middle of

the tube : if however the temperatures be different, the

liquid will rest in a position nearer to the bulb of lower

temperature than to the other, since the air-pressure within

it will be less than that in the other.

In the other form of the differential thermometer, the

vertical portions, A, B, of the tube extend to a much greater

height, and the liquid fills the whole of the horizontal portion

of the tube, and also partly fills the vertical portion of the

tube.

The principle of the construction is the same, and the

difference consists in the graduation of the vertical portions,
instead of the horizontal portion of the tube.

On account of their great sensibility these thermometers
are extremely useful in detecting small differences of tempe-
rature.

In graduating the second of these instruments, allowance

must be made for the weight of the liquid, which is con-

tained in the vertical tubes.

97. Ex. 1. The same quantities of atmospheric air are contained in

two hollow spheres ; the internal radii being r, r' and the temperatures
t, t' respectively, compare the whole pressures on the surfaces.

Taking p, p as the densities, we have, since the masses are equal,
and the volumes in the ratio of r3 : r'

3
,

pH-pV1
.

If p, p' be the corresponding pressures,

}, p'
= kp'(l+at'\
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and the pressures on the surfaces are

47rr^>, and 47T/V,

which are in the ratio

r*p(l+at) : r"2p'(l+at'\

or

Ex. 2. A hollow cylinder, open at the top, is inverted, and partly
immersed in water ; it is required to find the height of the surface of the

water within the cylinder.

Take 6 for the length of the cylinder, and a for the length not

immersed.
Let x be the depth of the sur- v

face within below the surface with-

out, n, n' the pressures of the

atmospheric air and of the com-

pressed air in EC.
Then

II' : n :: b :
,
Art. 83,

and n'= pressure of the water at

the level C=

n a+x

If A be the height of the water-barometer, n= w/i, and

h+ x b

or .r
2+ (a+ h) x= (b

-
a) h.

This equation gives two values for x, one positive and the other

negative, the positive value being the one which belongs to the problem
before us. The negative value is the result of another problem, the

algebraical statement of which leads to the same quadratic equation.

Ex. 3. A small quantity of air is left in the upper part of a
barometer-tube ; it is required to determine the effect on the height of the

column.

Let a be the length of the upper part of the tube which the air

would occupy if its density were the same as that of the external air,

and x the space it actually occupies, when the height of a true

barometer is h.

If IT be the pressure of the external air, and n' of the air in the

space .r,

\
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Let k
f be the height of the faulty barometer, then

IX = u'h, and n' + u-h' = U.
;

h h' ah' a ...

.-. r =- or -r = !--...(!).h x h x

The column is therefore depressed
00

'

inches by (1).

Hence, if a be known, and h' and x be observed, the height of a true

barometer can be inferred.

If a be unknown, it can be found from the equation (1) by taking
simultaneous observations of

/*', x, and the height h of a true baro-

meter.

EXAMINATION ON CHAPTER V.

1. If Fahrenheit's Thermometer mark 40, what are the correspond-

ing marks of Reaumur's and the Centigrade ?

2. When the mercurial barometer stands at 30 inches, what is the

height of the barometer formed of a liquid of which the specific gravity
is 5-6 ?

3. The air contained in a cubical vessel, the edge of which is one

foot, is compressed into a cubical vessel of which the edge is one inch
;

compare the pressures on a side of each vessel.

4. The air in a spherical globe, one foot in diameter, is compressed
into another globe, 6 inches iii diameter, and the temperature is raised

by t ; compare the pressures of the air under the two conditions. Also

compare the pressures on the surfaces of the globes.

5. What would be the effect of making a small aperture at the

highest point of a siphon ?

6. If a barometer be held in a position not vertical, what would be
the effect on the length of the column of mercury ?

7. If the sum of the readings on Fahrenheit's and the centigrade
thermometer be zero for the same temperature, find the reading of each
thermometer.

8. At the top of a mountain the barometer stands at 25 inches
;

what would be the effect on the action of a siphon carried to the top ?

9. A siphon is filled with mercury, and held with its legs pointing

downwards, and the ends closed
;
what will be the effect of opening the

ends, 1st, when they are, and 2ndly, when they are not, in the same
horizontal plane ?
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10. A cylindrical vessel contains water
;
how will a change in the

height of the barometer affect the pressures on the base and curved

surfaces of the cylinder, and to what extent ?

11. A block of wood weighs, in air, exactly the same as a block of

iron ;
which is really the heavier ?

12. Examine the effects of making a small aperture, 1st, in the

longer branch, 2ndly, in the shorter branch of the tube of a barometer ?

13. Explain the uses, 1st, of the small hole which is made in the

lid of a teapot, 2ndly, of a vent-peg.

14. Supposing the air half exhausted in a pair of Magdeburgh
hemispheres, 1^ ft. in diameter, find the force required to separate

them, taking 15 Ibs. weight as the atmospheric pressure on a square
inch.

15. If a piece of glass float in the mercury within a barometer, will

the mercury stand higher or lower in consequence ?

16. Will any change in the action of a siphon be in any case

coincident with a fall in the barometer?

17. A weight, suspended by a string from a fixed point, is partially
immersed in water; will the tension of the string be increased or

diminished as the barometer rises?

18. A mass of air at temperature 50 C. and pressure 33j inches

of mercury, is compressed until its density is fths of what it was before,
its temperature at the same time falling to 16 C.

;
find the new pressure.

19. If a given body lose in air, when h is the height of the

barometer, the mth part of its weight, find what part of its weight it

will lose when h' is the height of the barometer.

20. Find the greatest height over which a liquid of specific gravity
fi'784 can be carried by means of a siphon when the barometer is at

30 inches.

21. A cannon is in the form of a cylinder 10 feet long. The powder
takes up 4 inches of this, and the pressure where the powder is exploded
is 10 tons on the square inch. Find, neglecting changes of temperature,
what will be the pressure as the ball is leaving the muzzle.

22. A certain volume of gas at C. is raised to 10 and its

pressure is increased in the ratio T03665 to 1
;
in what ratio is this

pressure further increased by an additional rise of 90 of temperature ?

23. When the barometer column is 760 millimetres, a litre of dry
air, at C., contains 1 '293187 grammes. Find the number of grammes
in V litres of dry air at t C., when h millimetres is the height of the
barometer.
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24. At a depth of 10 feet in a pond the volume of an air-bubble is

0001 of a cubic inch; find approximately what it will be when it

reaches the surface, if the height of the barometer is 30 inches, and the

specific gravity of mercury 13 '5.

25. If the specific gravity of air is '0013, and that of mercury
13'568, and if the height of the barometer is 30 inches, prove that,
a foot being the unit of length, the value of k is very nearly 26092.

NOTES ON CHAPTER V.

Thermometers were first constructed about the end of the sixteenth

century, but the name of the inventor is not certainly known.
The various scales were formed in the early part of the 18th century;

Fahrenheit's in 1714, at Dantzic
;
Reaumur's in 1731 ;

and the Centi-

grade by Celsius, a Swede, somewhat later.

The Aneroid Barometer. This instrument was invented by Vidi,
and is exceedingly useful in mountain ascents on account of its small
size and weight. Its construction depends on the varying effect of the

atmospheric pressure on a thin metallic plate closing an exhausted
chamber. A small metallic chamber, cylindrical in form, about an inch
in height, and 2 or 3 inches in diameter, and closed by an elastic metal

plate, is exhausted ; this is placed in a larger cylinder and the top of
the elastic plate is connected by a system of levers with the hand of a

graduated dial-face, so that any slight change of elevation or depression
at the centre of the metallic plate is magnified and rendered visible by
the motion of the hand.

Bourdon's Metallic Barometer, invented in 1850, is another instru-

ment of a similar kind *.

It consists of an elastic flattened tube, A BO, of metal, exhausted of

air, and bent very nearly into a circu-

lar form
;
the middle part B is fixed

and the rest of the tube is free. The
section of the tube is like an ellipse, D,
and it is found that if the atmospheric
pressure increase, the tube becomes
more curved, and the ends A, C \^_ ^sj
approach each other

;
and if it dimi-

nish, that the ends A, C separate.
Hence if these ends be connected with
the hand of a dial-face, the motion of the hand will mark the changes
of atmospheric pressure.

* The terra Aneroid is sometimes applied to this instrument.



90 TORRICELLI AND PASCAL.

If the tube ABC, instead of being a vacuum, be connected by a pipe
with the boiler of a steam-engine, or with any vessel containing air or

gas, it becomes a very convenient manometer (see Art. 114), and is in

fact sometimes used for this purpose on the engines of locomotives.

The Siphon. The general use of the siphon is to transfer liquids
from one vessel to another without moving either vessel. It is useful

in many other operations, such as draining a flooded field
;
and some

time ago large siphons, 140 feet in length and 3^ feet in diameter, were

constructed for the purpose of draining the lands flooded by the

inundation which occurred during the year 1862 on the eastern coast.

These siphons were set working successfully. The Times, Oct. 1, 1862.

The Magdeburgh Hemispheres. A practical demonstration of the

fact of atmospheric pressure was given by Otto von Guericke in 1654,
who constructed this apparatus.

It consists of two hollow hemispheres of brass, fitting each other

very accurately. A tube out of one of the hemispheres is

screwed on the plate of an air-pump, and, when the two
have been fitted together and the air exhausted, the stop-
cock is turned, the apparatus removed from the air-pump,
and a handle screwed on. Supposing the diameter of

the hemispheres to be 3 or 4 inches, it will be found that a

force of from 100 to 180 Ibs. wt. will be necessary to

separate them. The inventor employed hemispheres of

nearly a foot in diameter, and shewed that a strain of more
than 1500 Ibs. wt. was required to force them asunder.

Taking the diameter as one foot, we can calculate the requisite
force. The resultant pressure on one hemisphere is equal to the

air-pressure on a circle one foot in diameter, that is, upon an area of

36?r square inches. Making allowance for the fact that a perfect
vacuum cannot be obtained, we may take 14 Ibs. as approximately the

pressure on a square inch, and the pressure is 504 -n- or nearly 1583 Ibs.

wt.

Weight of the Air. Galileo measured the weight of the air by filling
a globe with compressed air, and then weighing the globe. He em-

ployed a syringe to force the air into the globe ; and, in order to find

the quantity of air, he placed the globe in an inverted glass receiver

filled with water, then opened it, and observed the amount of water

displaced.

Torricelli and Pascal. The experiment of Torricelli, described in

Art. (73), was made in the year 1643, one year after the death of

Galileo, who had remarked the fact that a pump -would not raise water
to a greater height than 32 or 33 feet, but was unable to account for it.

It was reserved for his pupil and successor, Torricelli, to explain the
real cause of the phenomenon, and his experiment was repeated and its

consequences were extended by Pascal a few years later.

Torricelli shewed that the pressure of the air supports the column of

mercury in a barometric tube
;
Pascal demonstrated that the weight of
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the air is the cause of the pressure. Amongst various experiments,
Pascal had a water-barometer constructed, but his most valuable idea

was a suggestion that the heights of a barometer, at the foot and at the

top of a mountain, should be compared. This was effected by his

friend Perier in 1648, who ascended the Puy de Dome in Auvergne, and
ascertained the fact of a fall of nearly 4 "inches in the barometer at

the top of the mountain. The observations were repeated in various

ways, on the roofs of houses, and in cellars, and it was thus rendered

clear that the weight of the air is the immediate cause of the existence

of the barometric column.
The two treatises of Pascal, De Ve'quilibre des liqueurs, et de la

pesanteur de la masse de Vair, contain the theory of the pressure of

fluids, and give complete explanations of the actions of siphons and

pumps, and of many common phenomena ;
the main object however

of these treatises is to demonstrate the unphilosophical character of the

old explanation that the abhorrence of nature to a vacuum accounted

for the rise of water in a pump, and that this abhorrence did not exist

beyond a rise of 32 feet.

It appears that Descartes was acquainted with the fact that air

has weight, and indeed he made a suggestion that the reason why
water will not rise beyond a certain height is the weight of the water

which counterbalances that of the air.

Balloon Ascents. The fall of the barometer in balloon ascents is a

means of determining the altitude attained.

In a balloon ascent by De Luc, the barometer at the greatest

height stood at 12 inches
;
but in a later balloon ascent by Mr Glaisher,

the column was seen to descend to less than 10 inches, implying a

height of nearly six miles
;
and it is probable, as the observations were

interrupted by the severity of the cold, and the rarity of the air, that

an altitude of more than six miles was attained. The Times, Sept. 9,

1862.

EXAMPLES.

1. THE temperature of the air in an extensible spherical envelope
is gradually raised t, and the envelope is allowed to expand till its

radius is n times its original length ; compare the pressure of the air in

the two cases.

2. A volume of air of any magnitude, free from the action of force,
and of variable temperature, is at rest : if the temperature at a series

of points within it be in arithmetical progression, prove that the

densities at these points are in harmonical progression.

3. A given mass of elastic fluid of uniform temperature is confined

in a smooth vertical cylinder by a piston of given weight ; neglecting
the weight of the fluid, shew how to find its volume,
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4. A piston moves freely in a closed air-tight cylinder, the axis of
which is vertical. When the piston is in the middle of the cylinder,
the air above and the air below are of the same density. Find the

position of equilibrium of the piston.

5. A vertical closed cylinder is half filled with water, the other

half being occupied by air of a given density and temperature ;
if the

temperature be raised
,
find the increase of the whole pressure on the

base, and on the curved surface of the cylinder.

6. If A, h' be the heights of the surface of the mercury in the tube

of a barometer above the surface of mercury in the cistern at two
different times, compare the densities of the air at those times, the

temperature being supposed unaltered.

7. A vertical cylinder, containing air, is closed by a piston, which
is tied by an elastic string fastened to its central point, and also to the

base of the cylinder. If when the piston is in equilibrium the string
have its natural length, determine the effect on the length of the string
of increasing the temperature of the air in the cylinder by a given
number of degrees.

8. If under an exhausted receiver a cylinder sinks to a depth equal
to three-fourths of its axis

;
find the alteration in the depth of immer-

sion when the air (specific gravity = '001 3) is admitted.

9. A body is floating in a fluid
;
a hollow vessel is inverted over it

and depressed : what effect will be produced in the position of the body,
(1) with reference to the surface of the fluid within the vessel, (2) with
reference to the surface of the fluid outside 1

10. A pipe 15 feet long, closed at the upper extremity, is placed
vertically in a tank of the same height ;

the tank is then filled with

water; shew that, if the height of the water-barometer be 33 feet

9 inches, the water will rise 3 feet 9 inches in the pipe.

11. A vessel, in the form of a prism, whose base is a regular
hexagon, is filled with air

; prove that, if every rectangular face of the

prism be capable of turning freely about its edges, and the prism
be then compressed so that its base becomes an equilateral triangle,
the pressure of the air within it will be increased in the ratio of
3 to 2.

12. A conical wine-glass is immersed, mouth downwards, in water;
how far must it be depressed in order that the water within the glass

may rise half way up it ?

13. A jar contains water in which a hollow rigid envelope open at

the bottom and partially filled with air just floats; the top of the jar is

closed by an elastic membrane, and a small space between it and the
water is filled with air; on pressing the membrane inwards the

envelope sinks
; explain this.
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14. A barometer is held suspended in a vessel of water by a

string attached to its upper end, so that a portion of the string is

immersed; find the height of the mercury and the tension of the

string.

15. A piston, the weight of which is equal to the atmospheric

pressure on one of its ends, is placed in the middle of a hollow cylinder
which it exactly fits, so as to leave a length a at each end tilled with

atmospheric air. The ends of the cylinder are then closed, and the

cylinder is placed with its axis inclined at an angle a to the vertical
;

shew that the piston will rest at a distance a{(l + sec2
a)i-sec a} from

its former position.

16. A cylinder, open at both ends, is half immersed in water, its

axis being vertical
;
the upper end is then closed, and the cylinder is

raised until its lower end is very near the surface of the water outside
;

find the height to which the water rises inside.

17. Two barometers of the same length and transverse section each

contain a small quantity of air
;
their readings at one time are h, ,

and
at another time

/*.',
k'

; compare the quantities of air in them.

18. A glass cylinder, 1 square inch in section, is filled with water

and inverted over a trough, so that its closed top stands 5 feet above

the level of the trough. 20 cubic inches of gas at 87 C. are allowed to

bubble into the cylinder, and to cool to 15 C. the temperature of the

room. What volume does the gas now occupy, the height of the water-

barometer being 32 feet? (Coefficient of dilatation of gas= of3 per

degree centigrade.)

19. A quantity of gas contained in a sphere is compressed into the

cube which can be inscribed in the sphere ; compare the whole pressure
on the surface of the cube and the sphere.

If gas in a cubical vessel is compressed into the sphere which can

be inscribed in the cube, the whole pressures on the two surfaces are

equal.

20. A right cylindrical vessel on a plane base contains a quantity
of gas, which is confined within it by a disc exactly similar and parallel
to the base; prove that the pressure on the curved surface of the

cylinder is independent of the position of the disc.

21. Assuming that a change from 30 inches to 27 inches in the

height of the barometer corresponds to an altitude of 2700 feet, find the

altitude corresponding to the height 21'87 inches of the barometer.

22. Having given that the specific gravity of air and mercury are

respectively -00129 and 13'596, and the height of the barometer 75'9

centimetres, prove that if the unit of force be taken to be the weight of

800 kilogrammes, the numerical value of the pressure of the air will be

almost exactly equal to that of its density, it being assumed that the

mass of a cubic centimetre of water is one gramme.
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23. Having given the equation pv=RT)
calculate in Fahrenheit's

scale of temperature the numerical value of R for a pound of air,

supposing that a cubic foot of air is '0763 of a pound at a temperature
of 62 F. when the barometer is 30 inches high ; taking an inch as the

unit of length, the weight of a pound as the unit of force, the density
of mercury relative to water as 13 '596, and 273 C. as the absolute

zero of temperature.

24. The readings of a faulty barometer containing some air are

29*4 and 29'9 inches, the corresponding readings of a correct instrument

being 29 '8 and 30 '4 inches respectively ; prove that the length of the
tube occupied by the air is 2 -9 inches when the reading of the barometer
is 29 inches, and find the corresponding correct reading.

25. If the height of the barometer vary from one end of a lake to

the other, shew that there will be a heaping up of the water on one side.

Find what will be the greatest rise above the mean level produced in a
circular lake of 100 miles diameter by a variation in the height of the

mercury of '001 inch per mile.

26. A barometer tube consists of three parts whose sections starting
from the lowest are A, B, C. The column consists partly of mercury
and partly of glycerine, so that for a certain atmospheric pressure the

glycerine just fills that part of the tube whose section is Z>. Shew that
if A : B : : B : C : : 1 : X, and if p is the ratio of the density of glycerine
to that of mercury, the sensitiveness of this barometer is greater than
that of a mercury barometer in the ratio 1 : X 4 \i X/z, the alteration

of level in the cistern being neglected.
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THE DIVIN*G-BELL, COMMON PUMP, LIFTING PUMP, FORCING

PUMP, FIRE-ENGINE, BRAMAH'S PRESS, AIR PUMPS, BARO-
METER GAUGE, SIPHON GAUGE, CONDENSER, MANOMETERS,
BARKER'S MILL, PIEZOMETER, HYDRAULIC RAM, AND
STEAM-ENGINE.

The Diving-Bell

98. THIS is a large bell-shaped vessel made of iron, open
at the bottom, and containing seats for several persons. Its

weight is greater than that of the water it would contain,

and, when lowered by a chain into the water, the air within

it is compressed, but will prevent the water from rising high
in the bell, and the persons seated within are thus enabled
to descend in safety to considerable depths.

When the surface of the water within the bell is at a

depth of 33 feet below the outer surface the bell will be
half filled with water, and the compression of the air would
of course increase with the depth, but the difficulty arising
from this compression is overcome by forcing fresh air from
above through a flexible tube opening under the mouth of

the bell. There are also contrivances for the expulsion of

the air when rendered impure.
Tension of the Chain. This is equal to the weight of

the bell diminished by the weight of water displaced by
the bell and the air within. It is therefore evident that

unless fresh air is forced in from above the tension of the

chain will increase as the bell descends.
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99. Supposing the bell cylindrical, and that no air is supplied from
above, it is required tojind the height to which the water rises in the bell.

If the bell be partially immersed, we fall upon a case already

considered, Ex. 2. Ch. v.

If the bell be wholly immersed, let

b represent the length of the cylinder, a
the depth of its top, and x the length

occupied by air.

The pressure of the air within=n -

and .'.if

and as before the positive value of x is i^rz
the one required.

If A be the area of the top of the

bell, and if we neglect its thickness, the

volume of water displaced is Ax, and
the tension of the chain

= weight of bell wAx.

The Common Pump.

100. The Pump most commonly in use is a Suction-

pump, of which the figure is a vertical

section.

AB, BG are two cylinders having a

common axis, IT is a piston moveable
over the space AB by means of a vertical

rod, connected with a handle, D is a spout
a little above A, and C the surface of the

water in which the lower part of the pump
is immersed : also in the piston, and at B,
are valves opening upwards.

Action of the Pump. Suppose the

piston at B and the pump filled with

ordinary atmospheric air
; raising the pis-

ton, the air in BC will open the valve J5,

and then, expanding as the piston rises, its

pressure will be less than that of the

atmosphere at G outside the pump; hence the atmospheric
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pressure on the surface of the water outside will force water

up the tube BG, until the pressure at G is equal to the

atmospheric pressure.
As the piston rises the water will rise in BC, the pressure

of the air above M keeping the valve M closed. When the

piston descends, the valve B closes, and the air in MB
becoming compressed will open the valve M, and escape

through it.

This process being repeated, the water will at length
ascend through the valve B, and at the next descent of the

piston will be forced through the valve M and be then lifted

to the spout D, through which it will flow.

The height BG must be less than the height (h) of the

water-barometer, or else the water will never rise to the

valve B.

It is not essential to the construction that there should

be two cylinders ;
a single cylinder, with a valve somewhere

below the lowest point of the piston-range will be sufficient,

provided the lowest point of the range be less than 33 feet

above the surface in the reservoir.

In each case the height above the water in the reservoir

of the piston-range should be considerably less than 33 feet
;

otherwise the quantity of water lifted by the piston at each

stroke will be small.

In the figure the tubes are represented as straight tubes
;

this is not necessary to the working of a pump, and the tube

below the piston-range may be of any shape, and may enter

the reservoir at any horizontal distance from the upper
portion of the pump.

101. Tension of the Piston-rod. If the water in BG has

risen to P when the piston is at M, the pressure II' of the

air in HP =
pressure of water at P = pressure at G w.PG

But if A be the area of the piston, the tension of the

rod is the difference between the atmospheric pressure above

and the pressure II '-4 below, i. e. (II IT) A, or wPG . A.

If one inch be taken as the unit of length, and if h be the

height in inches of the water barometer, wh is approximately

B. E. H. 7
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equal to the weight of 15 Ibs
,
and therefore the tension is

approximately equal to the weight of

pri
15 V' .4 Ibs.

h

102. To find the height through which the water rises during one

stroke of the piston.

Let P and Q be the surfaces of the water at the beginning and end
of an upward stroke of the piston, that is, while the piston is raised

from B to A.
The air which at the beginning of the stroke occupied the space BP

occupies at the end of it the space AQ ;
but the pressures are respec-

tively, if n= why

w(h-PC),w(h-QC).
Hence h- PC : h- QC :: vol. AQ : vol. BP.

If r, R be the radii of the cylinders (Fig. Art. 100),

vol. AQ= 7rR*. AB+Trr2
. BQ=7rR2AB+7r^(BC- QC),

vol. BP= <
rrr*.BP= 7rr*(BC-PC),

h-PC_IP.AB+rz (BC-QC)
h-QC~ r*(BC-PC)

'

and for any given value of PC this equation determines QC.

103. If the range of the piston be less than AB, as for instance

AEy then EC must be less than h. Moreover, a
limitation exists with regard to the position of E. >

For, if P be the surface of the water when the

piston M is at A, then as the piston descends, the
'

valve B will close, but the valve M will not be

opened until the pressure of the air in MB is greater
than the atmospheric pressure.

When M is at A the pressure of the air

=w(h-PC), and, unless the valve is opened be-
fore M arrives at E. the pressure of the air in

E

EB=w(h-PC)
AB

which must be greater than

w^ and therefore h . AE must be greater than
AB . PC. Hence, to ensure the opening of the
valve while the surface is below B, we must have

h.AE>AB.BC-,
i.e. AE must be at least the same fraction of AB
that BC is of h.

This condition, although in all cases necessary,
may not be sufficient.
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For, suppose that when Mis at J., the surface of the water is at

in which case the pressure of the air in AQ=w (hQC).
When the piston descends to E, the pressure in EQ

which must be greater than wh,

. QC.

The greatest value of AQ . QCis 2^^' an^ ' ' we mus^ ^ave

1

Since ~ACi > AB . BC, unless B is the middle point of AC,

it follows that this latter condition includes the preceding, which is

therefore in general insufficient.

These conditions must be also satisfied in the case of the pump
with a single cylinder.

104. Tendon of the rod when the pump is in full action.

In the figure of the previous Article, let CD=h\ then it will be

seen that, at each stroke, the volume DE of water is lifted, and there-

fore the tension of the rod when the piston is ascending will be

wA (h + JED) until the water begins to flow through the spout.
If A be on a level with the spout, all the water lifted will be

discharged, and, as the piston descends, the tension of the rod will

be wAh.

The Lifting Pump.
105. By means of this instrument, water can be lifted

to any height. It consists of two cylinders,
in the upper of which a piston M is

moveable
;
the piston-rod works through

an air-tight collar, and a valve opens
outwards at D leading into a vertical

tube. When the piston ascends, lifting

water, the valve D opens and water as-

cends in the tube; when the piston de-

scends the valve D closes, and every
successive stroke increases the quantity
of water in the tube. The only limitation

to the height to which water can be lifted

is that which depends on the strength of

the instrument, and the power by which
the piston is raised.

72
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Tension of the rod. If CK=h the piston lifts the volume BK at

each stroke, and, as the air is expelled before the machine is in full

action, the tension=wA . KB, until the water is lifted to the valve D.
The power applied to the piston-rod must be then increased until

the pressure of the water opens the valve D, that is, until the

pressure=w (h+FD}, F being the surface of the water in the tube.

The water will then be forced up the tube, the tension of the rod

increasing as the surface F ascends.

The Forcing Pump.

106. In this pump the piston M is solid, and
over the space AE. At B and D are

valves opening upwards, DF being a tube

leading out of AB.
When this pump is first set in action,

it works as a common pump, the air at

each descent of the piston being driven

through D, and the water rising in BC.
When however the water has risen through
B

y
the piston, descending, forces it through

D, and when the piston ascends, the valve

D closes and more water rises through B.

The next descent forces more water through
D, and it is obvious that water can be thus

forced upwards to any height consistent

with the strength of the instrument.

The stream which flows from the top of the tube

intermittent, but a continuous stream
can be obtained by employing a strong
air-vessel DL, out of which the vertical

tube passes upwards. The air in the

upper part of the vessel is condensed,
and exerts a varying, but continuous

pressure on the surface of the water
within the vessel, and if the size of the
vessel be suitable to that of the pump,
and to the rate of working it, the air

pressure will not have lost its force

before a new compression is applied to it,

and thus a continuous, although varying,
flow will be maintained.
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The Fire Engine.

107. The Fire Engine is only a modification of the

Forcing-pump with an air-

vessel, as just described.

Two cylinders are connec-

ted with the air-vessel, and
the pistons are worked by
means of a lever GEG', so that

while one ascends the other

descends. The vertical tube
out of the air-vessel has a n

[~

flexible tube of leather attach-

ed to it, by means of which the stream can be thrown in any
direction.

Bramalis Press.

108. This instrument is a practical application of the

principle of the transmission of fluid pressures.
In the figure, which represents a vertical section of the

instrument, A and C are two solid cylinders working in

air-tight collars
;
EB and FD are strong hollow cylinders

connected by a pipe BD ;
at B is a valve opening inwards,

and at D a valve opening upwards, a pipe from D communi-
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eating with a reservoir of water. M is a moveable platform,
on which the substance to be pressed is placed, and N is the

top of a strong frame
;
HKL is the lever working the

cylinder C, H being the fulcrum, and L the handle.

Action of the Press. Suppose the spaces EB, FD filled

with water, and C in its lowest position ;
on raising C, the

atmospheric pressure forces water from the reservoir into

FD, and when C is afterwards forced down, the valve D
closes, the valve B is opened, a portion of the water in FD is

driven into EB, and the cylinder A is then made to ascend.

A continued repetition of this process will produce any
required compression of the substance between M and N.

At G there is a plug which can be unscrewed when the

compression is completed.

The Force produced. If P be the power applied at the

handle L, the force on G downwards is P -^^ . Let r, R be

the radii of the cylinders C and A, and p the pressure of the

water,
TTT

then '

irr2p
= P HK>

HI R2

and the pressure on A = 7rR2

p = P y . .

It is obvious that by increasing the ratio of R to r, any
amount of pressure may be produced.

We have taken for granted in describing the action of

the press that the cylinders at first were full of water. If

this is not the case the water will be pumped up from the

reservoir by the action of the cylinder G, and whatever air

there may be within will be compressed until its pressure is

the same as that of the water.

Presses of this kind were employed in lifting into its

place the Britannia Bridge over the Menai Straits.

109. The portion G of the instrument is sometimes
called a Plunger Pole Pump, and an important part of the

machine is the construction of the water-tight collars at E
and F, as without these water under great pressure would
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force its way between the pole and the hollow cylinder in

which it works.

A circular aperture DE is made in the side of the

cylinder, and a piece of leather is doubled

over a metal ring within it. The figure
is a vertical section of the cylinder and

collar, and it will be seen that the water

pressing on the under side of the leather

keeps it in close contact with the side of

the cylinder, and the greater the pres-
sure the closer the contact, so that no

escape of water can possibly take place,
unless the leather be torn.

Hawksbee's Air-Pump.

110. Two cylinders, AB, A'B', are connected by pipes

leading from B and B' through G
with a receiver. Pistons MM are

worked in the cylinders by means
of a toothed wheel, and at B, B'

and in the pistons are valves open-

ing upwards.

Suppose M at its highest and
M'

at its lowest position, and turn

the wheel so that M descends and
M' ascends; the valve B closes

and the air in MB being com-

pressed flows through the valve M,
while the valve M' closes, and air

from the receiver flows through B'

into M' B'.

When the wheel is turned and
M' descends, the valve B' closes and the air in M B' flows

through M', while the valve M closes and air from the

receiver flows through B. At every stroke of the piston a

portion of the air in the receiver is withdrawn, and it is

evident that a degree of exhaustion may be thus obtained,
limited only by the weight of the valves which must be
lifted by the pressure of the air beneath.

Let A be the volume of the receiver, and B of either
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cylinder; p the density of atmospheric air and plf p.2 ,...pn the

densities in the receiver after 1, 2,...7i descents of the pistons.
After the first stroke the air which occupied the space A

will occupy the space A + B, and therefore

similarly pz (A +

.:fr(A +
and after n strokes

Hence if Hn be the pressure of the air in the receiver

after n strokes, and II of the atmospheric air,

n_P / A y
n
"

p -\A+B)
'

In working the instrument, the force required is that

which will overcome the friction, together with the difference

of the pressures on the under surfaces of the pistons, the

pressures on their upper surfaces being the same.

It will be seen that a perfect vacuum cannot be obtained

by this instrument, but, since the density decreases in

geometric progression as the number of strokes increases, a

very large proportion of the air can be withdrawn if the

instrument be constructed with sufficient care.

Smeatons Air-Pump.

111. This instrument consists of a cylinder AB in which
a piston is worked by a rod pass-

ing through an air-tight collar at

the top; a tube from B leads into

a glass receiver C, and at A and

B, and in the piston there are

valves opening upwards.

Supposing the receiver and

cylinder to be filled with atmo-

spheric air, and the piston at B
;

raising the piston, the air in AM
is compressed, opens the valve A,
and flows out through it, while at the same time a portion of
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the air in G flows through the valve B, so that when the

piston arrives at A, the air which at first occupied C now
fills both the receiver and the cylinder. When the piston
descends, the valves B and A close and the valve M opens ;

the air in AB passes above the piston, and as the piston
rises is forced through A, which is opened as soon as the

pressure in M becomes greater than the atmospheric pres-
sure. Thus at every stroke a portion of the air in the

receiver is forced out through A.
If p be the density of atmospheric air, pn the density in

the receiver after n strokes of the piston, and A, B the
volumes of the receiver and cylinder respectively, then, as in

the previous article,

observing that the volume of the connecting tube is neg-
lected.

An advantage of this instrument is that, the upper end
of the cylinder being closed, when the piston descends, the

valve A is closed by the external pressure, and the valve M
is then opened easily by the air beneath. Moreover, the

labour of working is diminished by the removal, during the

greater part of the stroke, of the atmospheric pressure on I/,

which is only exerted while the valve A is open during the

latter part of the ascent of the piston.
A greater degree of exhaustion may be obtained by

making the B aperture in the side of the

cylinder without a valve, and working the

piston, a solid one with or without a valve,
below the aperture B. The limitation arising
from the weight of the valve at B is thus

removed, and the only limitations left are

those which arise from the weight of the

valve at A, and the exact fitting of the

piston and receiver.



106 SIPHON GAUGE.

The Barometer Gauge.

112. The density of the air in the receiver of an air-

pump at any moment is shewn by
this instrument.

It is simply a barometric tube,
the upper end of which communicates
with the receiver, while the lower end
is immersed in a cup of mercury, so

that, as the pressure in the receiver

diminishes, the mercury will rise in

the tube.

If x be the altitude, PQ, of the

mercury in the gauge, and h the height c
-

of the barometer, the pressure of the

air in the receiver = wh wx, if w be the intrinsic weight of

mercury.
Hence the density in the receiver is to the density of

atmospheric air : : h x : h.

It is important to use this gauge for experiments re-

quiring strict accuracy, but for less important experiments a

siphon gauge may be used.

The Siphon Gauge.

113. This is a glass tube ABCD, the end D of which

can be screwed on a pipe communicating with c
the receiver.

The end A is closed and the portion AB
completely filled with mercury, which also fills

a small part BP of EC.
If AP be not more than 28 inches in length,

the tube AB will at first remain completely
filled, but as the exhaustion proceeds, the

mercury will sink in AB and rise in BC, and
if at any time x be the difference of the heights
in AB and BC, wx will be the pressure in the

9?

receiver, and the density will therefore be p j
.

li
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The Condenser.

114. This instrument is employed in the compression of

air.

A hollow cylinder AB has one end

screwed into the neck of a strong re-

ceiver 0; at B is a valve opening in-

wards, and a piston M also has a valve

opening inwards.

Suppose the cylinder and receiver

filled with atmospheric air and the piston
to be at A

; forcing the piston down, the

air in MB is compressed, and, opening
the valve B, is forced into the receiver.

When the piston is drawn back, the

valve B is closed by the air in the

receiver, and the valve M is opened by
the outer air which flows in and fills the

cylinder: this air is forced into the re-

ceiver at the next stroke, and at every

succeeding stroke the same quantity of

air is added to the receiver.

After n strokes, the volume of air of

density p, forced into the receiver, is A + nB, A being the

volume of the receiver and B of the cylinder ; hence, if pn be
its density,

pnA=p(A + nB), or ^ = l + n ~.
p A

Gauge of a Condenser. A glass tube AB, closed at the

end B, and connected with the condenser at the end A
contains atmospheric air in the portion BC, which is

separated from the air in the condenser by a drop of mer-

}

cury which rests at C before the compression commences.
As the condensation proceeds, the drop of mercury is forced

towards B
}
until the density in BC is the same as the

density in the condenser. Thus when the mercury is at

BCD the density = p
-

.
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Sprengel's Air-Pump.

115. A glass tube BD, which is longer than a barometer

tube, and is open at both ends, is

fixed in a vertical position. A
funnel is fitted closely to its

upper end and the lower end dips
into a glass vessel into which it

is fixed by means of a cork. This

vessel has a spout a little higher
than the lower end of the tube.

From the upper part of the tube

a lateral tube C branches off and
communicates with the receiver.

Mercury being poured into the

funnel, it runs down and closes

the lower end of the tube so that

no air can enter from below.

More mercury being poured
into the funnel, the process of

exhaustion begins, and the tube
BD is seen to be filled with

falling columns of mercury sepa-
rated by columns of air. Air and

mercury escape through the spout,
and the mercury is collected in

the basin E. This mercury can

be poured back into the funnel,

until the exhaustion is completed, and then the receiver

may be closed.

Manometer.

116. The term manometer is applied to any instrument

for measuring the pressure of condensed air or gas of any
kind, when its elastic force is greater than that of the

atmosphere. The gauge of a condenser, for instance, is a

manometer. The term however is sometimes applied to any
instrument, such as the barometer-gauge, for measuring the

elastic force of air or gas under any circumstances.
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The annexed figure represents a manometer, the principle
of which is nearly the same as that of

the gauge of a condenser.

AB is a vertical glass tube, closed at

the end A and containing dry air in the

part AP';
the tube ends in a strong

bulb B containing mercury, and from

this bulb a tube BG proceeds, leading to

the vessel which contains the condensed

air or gas. When the air in the tube G
is ordinary atmospheric air at a given

pressure, the mercury stands at the same
level CC* in both tubes, but when the

tube BG is connected with air or gas at

a higher pressure the mercury rises in

C'A, compressing the air above it, until

the pressure in PA is equal to the pres-
sure in EC diminished by the pressure
due to the column PEr

of mercury.

To find the relation between the pressure to be measured and the height

of the mercury.

Let n' represent the pressure in EC, and n" the pressure in PA
;

A C
then n"=n .

--
>
and

Let k, K be the sectional areas of the tubes AC', CE ;

E=^. and
li.

)+n ,

/ ax

=x, CE=. and PE'=x+
X
~,

li. K

where a=

or, if U
h>

This equation gives the ratio of the pressure required to the atmo-
spheric pressure.

The graduation of the instrument depends on the solution of the
equation ; thus, making A'= 2A, 3h, &c., the successive proper values of
x mark the altitudes for pressures of 2, 3,...atmospheres.
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117. The Siphon Manometer is a long glass tube ABC,
open at the end A, and communicating at

the end C with the gas or vapour, the

pressure of which is to be measured.

The tube contains mercury, and the

height of the mercury in AB above its

equilibrium level measures the excess of

the pressure in the part BG of the tube

above the atmospheric pressure.
Then if the mercury ascend to P in A B,

and descend to E in CB, GO' being the

original level, GE = G'P, and therefore, if

C'P = x, and IT = pressure in CB,

C'

or XI' II cc x.

A graduated scale is attached to the

tube AB, and, from the equation above, it

is seen that the length of C'P corresponding

to a pressure of n atmospheres, is h, if

h be the height of the barometer. Hence by giving suc-

cessive integral or fractional values to n, the graduation of

the scale can be effected.

The manometers we have now described are constructed

on purely hydrostatic principles, but there are others, de-

pending on different mechanical principles, and a very useful

one, from its portability, is Bourdons Metallic Manometer,
which has the additional advantage of not being fragile.

The construction of this instrument is briefly explained in

the notes appended to Chapter Y.

Barkers Mill.

118. ACB is a tube, capable of revolving about its axis

which is vertical, and having two or more horizontal tubes

BE, BD connected with it. G is a cup through which water

can be poured down the tube, and at D and E, in the sides

of BD and BE, orifices are made which open in opposite
directions. Suppose a stream of water to flow into G and

through the tubes; as the water flows through BD the
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pressures on the sides balance each other except at D, at

which part of the tube there is an uncornpensated pressure
on the side opposite the orifice, the effect of which is to turn

the tube CD round. The same effect is produced by the

water issuing at E, and a continued rotation of the instru-

ment is thus produced. By means of a toothed wheel at A
the instrument may be employed in communicating motion

to other machines, and in maintaining such motion.

The Piezometer.

119. This is an instrument for measuring ^ .

the compressibility of liquids.
A thermometer tube CD, open at the

end C, is enclosed in a strong glass vessel,

which also contains a condenser-gauge EF.

(See Art. 114.)
The liquid to be examined is poured into

CD, and a drop of mercury is then introduced
into CD so as to isolate the liquid, and the
vessel is filled with water and closed by a

piston. This piston A is moveable in the
neck of the vessel, and, by means of a screw

B, any required pressure can be produced.
The gauge EF measures the pressures, and
the compression of the liquid is obtained

by observing the space through which the

drop of mercury P is forced.

The area of a section of CD and the
volume of the bulb are found by weighing the

E
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quantities of mercury contained by the bulb and a portion
of the tube.

The Hydraulic Ram.

120. The fall of water from a small height produces
a momentum which by means of the Hydraulic Ram* is

utilized and made to produce the ascent of a column of

water to a much greater height.

The figure is a vertical section of the machine, AB being
the descending and FG the ascending column of water,
which is supplied from a reservoir at A. E is an air-vessel

with a valve at G, opening upwards ;
at D is a valve opening

downwards, and H is a small auxiliary air-vessel with a valve

K opening inwards.

The action of the Machine. The valve D will at first be

open in its lowest position, and if water descend from A, a

portion will flow through D, but the action on the valve will

soon close it, and the sudden check thus produced increases

the pressure ;
the valve G is lifted and water flows into the

vessel E
y
and condenses the air within

;
the reaction of the

air thus condensed forces water up the tube FG.

During this process the pressure of the water in the

large tube diminishes, and the valves G and D both fall
;

the fall of the latter produces a rush of water through the

opening D, followed by an increased flow down AB, the

result of which is again the closing of D, and a repetition

* Invented by Montgolfier.
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of the process just described, the water ascending higher
in FG, and finally flowing through G.

The action of the machine is assisted by the air-vessel U
in two ways, first, by the reaction of the air in H which is

compressed by the descending water, and secondly by the

valve K which affords supplies of fresh air. When the water

rises through C, the air in H suddenly expands, and its

pressure becoming less than that of the outer air, the valve

K opens, and a supply flows in, which compensates for the

loss of the air absorbed by the water and taken up the

column FG, or wasted through D. About a third of the

water employed is wasted, but the machine once set in

motion will continue in action for a long time provided the

supply in the reservoir be maintained.

The Atmospheric Steam-Engine.

121. This instrument, constructed by Newcomen soon

after the year 1700, was the first in which the oscillation of a

beam was maintained by the elastic force of steam.

A solid beam EGF, which is moveable about G, has its

ends arched
;
to these ends chains are attached which are

connected with the rod of a piston in a cylinder AB, and
with a rod supporting a weight P, this weight being less

than the atmospheric pressure on the piston. G is a pipe
connected with a boiler, B a pipe opening by a stop-cock,
and D is a pipe connected with a cistern of cold water.

B. E. H 8
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This engine was first used for working the pumps of

mines, and a rod Q attached to P is connected with the

piston-rod of a pump.
The stop-cocks at C and D are connected with the beam,

so that when M is at A, G is closed, and D opens, and when
M is at B, G opens and D is closed.

'

The stop-cock at B is

made to open when M descends to B, and to close imme-

diately after.

Action of the Engine. The pressure of the steam in the

boiler is a little greater than that of the atmosphere, and
when M is at B, G is open, and steam rushes into MB\
hence the weight P will cause the piston to ascend. When
M reaches A, G is closed, D is opened, and a jet of cold

water is thrown in, condensing the steam, and thereby

producing very nearly a vacuum below M. The pressure of

the air on the piston being greater than the weight P forces

the piston down, and when it has descended, G again opens,
and an oscillation of the piston is thus maintained.

As B opens when M descends to the lowest point of its

range the water flows out before the ascent.

In the actual engine constructed by Newcomen the stop-
cocks were turned by hand, but an attendant, left to work

them, invented the machinery by which the engine became

self-acting.

The Single-acting Steam-Engine.

122. In the atmospheric engine, the cooling of the

cylinder at each stroke of the piston causes a great loss of

power, for the steam on first entering the cylinder is par-

tially condensed, and its elastic force is therefore diminished.

One of Watt's first improvements was to produce the con-

densation in a separate vessel. The tube D was made to

communicate with a vessel containing cold water, the space
above the water being a vacuum. This vacuum could be

produced by filling the vessel with steam and then con-

densing it by cooling the vessel. When the piston is at A,
the stop-cock opens and the steam rushes into the vacuum,
and is therefore condensed by the cold water. A pump from
the condensing vessel was connected with the beam, so that
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the overplus of water arising from the condensed steam
would be drawn off as soon as formed. These two changes
in the atmospheric engine constitute the single-acting

engine, but the additional change of making the steam drive

the piston downwards as well as upwards, leads to the

double-acting engine, the type of most of the steam-engines
now in actual use.

Watt's Double-acting Steam-Engine.

123. The cylinder AB, in which the piston works, is

closed at both ends, the piston ranging from a to b. The
end of the piston-rod is connected by means of a jointed

parallelogram with the end E of the beam EOF, and the

end F of the beam is attached to the crank of the fly-wheel.
At G and D there are stop-cocks which are connected with

the fly-wheel, so that when M arrives at a, the steam flows

from the boiler through G into AM, and when M arrives at

82
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b, the steam flows through D into BM. In each case the

steam is shut off when M has passed over about one-third of

its range.
K, the condenser, is surrounded with cold water, and L is

a pump connected with it
;
a tube from K, not drawn in the

figure, is connected with G and D so that when steam from
the boiler flows into AM, the steam from MB flows into K,
and when steam from the boiler flows into MB, the steam
from AM escapes into K.

Supposing M to be at a, steam enters AM from the

boiler and forces the piston down, its expansive force being
sufficient to complete the piston-range after it is cut off; on

arriving at 6, the steam in AM escapes into K and is con-

densed, and fresh steam from the boiler enters MB, drives

the piston upwards, and then escapes into K and is con-

densed. The continued accumulation of water in K is

prevented by the pump L, by which it is drawn off at every
stroke.

The use of the fly-wheel is to maintain a continuous

motion, and prevent the irregularity which would arise from
the intermittent action of the piston.

Parallel 'motion. The parallelogram EQRS represents a

system of jointed rods, invented by Watt for the purpose of

making the end Q of the piston-rod move very nearly in a

vertical line. The point R is connected with a fixed centre

at P, and, by a proper adjustment of the lengths of the rods,

it is found that the point Q deviates very slightly from the

vertical during its motion.

A full account of the various contrivances for parallel
motion will be found in Professor Willis's Mechanism.

The High-Pressure Engine.

124. In the double-acting engine the pressure of the

steam need not be greater than the atmospheric pressure.
In the high-pressure engine it is many times greater, and
the steam instead of being condensed is let off into the open
air at each stroke. The condenser and air-pump are thus
rendered unnecessary, and the engine simplified. The

engines of locomotives on railways are high-pressure engines.
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These descriptions give the main principles on which the construc-

tions of steam-engines depend, but for the various forms in which these

principles are developed, and the innumerable details of the mechanism
connected with them, the reader must consult special treatises on the

subject, such as Dr Lardner's in Weale's series, Bourne's works on the

Steam-engine, or the excellent article in the Encydopcedia Britannica.

EXAMINATION UPON CHAPTER VI.

1. A diving-bell is lowered until the surface of the water within
is 66 feet below the outer surface

;
state approximately how much the

air is compressed.

2. If a small hole be made in the top of a diving-bell, will the
water flow in, or the air flow out?

3. To what height could mercury be raised by a pump ?

4. In a Bramah's Press, HK is 1 inch, HL is 4 inches, the
diameter of A is 4 inches, and that of C is half an inch

;
find the force

on A produced by a force of 2 Ibs. applied at L.

5. If the receiver be 4 times as large as the barrel of an air-pump,
find after how many strokes the density of the air is diminished one
half.

6. State any limitations which exist to the degree of exhaustion

producible by an air-pump.

7. What must be the height of a Siphon Manometer that it may
mark a pressure of 60 Ibs. on a square inch ?

8. The diameter of the piston of a Lifting pump is 1 foot, the

piston-range is 2 feet, and it makes 8 strokes per minute
;
find the

weight of water discharged per minute, supposing that the highest
level of the piston-range is less than 33 feet above the surface in the

reservoir, and that 33 feet is the height of the water-barometer.

9. If, in working the same pump, the lower level of the piston-

range be 31J feet above the surface in the reservoir, find the weight
discharged per minute.

10. In exhausting a receiver by an air-pump a cloud is sometimes
seen in the receiver

; explain the cause of this.

11. If the receiver and the barrel of an air-pump are in the

proportion of 4 to 1, find how much has been pumped out at the end of

the fifth stroke.

12. How would the tension of the rope of a diving-bell be affected

by opening a bottle of soda-water in the bell ?
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13. If a cylindrical diving-bell, height 5 feet, be let down till the

depth of its top is 19 feet, find the space occupied by the air, the
water-barometer standing at 33 feet.

14. A person seated in a diving-bell, which descends slowly,
observes an incompressible float on the level of the fluid within the
bell. What change in the plane of floatation of the float takes place in

the descent ?

NOTES ON CHAPTER VI.

Archimedes' Screw.

This instrument, one of the earliest hydraulic machines on record,
is employed for raising water, and depends for its action only on the

weight and mobility of the particles of water.

Let ABCD be a metal tube, bent into the form of a corkscrew, and
then held so that its axis is inclined to the vertical, and let it be
moveable about its axis. The axis is to be inclined so much to the

vertical, that a stone, inserted at J., will fall to
,
and after oscillating

rest at B. In the figure the tube is drawn as if wound round a cylinder
moveable about its axis.

If we turn the cylinder in direction of the arrows, B will ascend,
and the portions of the tube from B to C will successively take the
same positions as B relative to the axis of the cylinder ;

as they do so,
the stone at B will fall into those positions, and thus be gradually
passed along the tube. Instead of the stone, suppose water poured in

at A
;
the turning of the instrument will gradually raise the water

until it flows out at the upper end. If the end A be immersed in water,
a continued stream will ascend and flow out above.

Tradition assigns to Archimedes the credit of the invention of this

instrument, and it is certain that its use dates at least as far back as

the time of Archimedes. It was employed in Egypt in draining the
land after an inundation of the Nile.
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The point B at which the stone will rest is not underneath the

cylinder but on one side, the ascending side, and
between the middle and the under part of the surface

of the cylinder : this can be seen experimentally.

Speaking strictly, the point B lies between the
lowest generating line of the cylinder, and the genera-

ting line which lies halfway between the highest and
lowest generating lines.

The machine will not act unless the inclination of

the axis of the cylinder to the vertical be greater than
the pitch of the screw, i. e. the inclination of the thread of the screw to

a circular section of the cylinder. If these inclinations be equal, the

point B is on the side of the cylinder, on the middle generating line,

and the descending tangent BT is directed downwards at all other

points. To make this clear, take a cylinder, of which BFis a diameter;
let the dotted line represent a portion of the thread of a screw, BT
being the tangent at B, and turn the cylinder round BF, which is

supposed to be horizontal, until .57* is horizontal : the inclination of

the axis to the vertical is then equal to the pitch of the screw.

Turn the cylinder further, and if the screw mark the direction of a

tube, it is an Archimedes' screw, in a position to work freely in raising
water.

The Piezometer.

In the Annales de Chimw et de Physique, Vol. xxxi., 1851, a full

account is given, by M. Grassi, of experiments with this instrument on
the compressibility of water and some other liquids, and also on the

compressibility of glass : these experiments were a continuation of

M. Kegnault's on the compressibility of water and mercury.
The apparatus employed by M. Grassi is identical in principle with

the piezometer of the text, but differs in details. In one particular

point the difference is of practical importance ;
instead of producing

pressure by a screw, the pressure on the surface of the water is

produced by means of condensed air. The advantages gained are that

the pressure can be measured with greater precision, and that it can be

adjusted more easily, and changed more gradually.
The following are Grassi's final conclusions with regard to water :

(1) The compressibility of distilled water, deprived of air, varies

with the temperature, and diminishes as the temperature increases.

(2) For distilled water, the compression due to one atmosphere is

the same whatever be the pressure, provided the temperature remain
constant.
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EXAMPLES.

1. If P be the weight of a diving-bell, P of a mass of water the
bulk of which is equal to that of the material of the bell, and W of a

mass of water the bulk of which is equal to that of the interior of the

bell, prove that, supposing the bell to be too light to sink without force,
it will be in a position of unstable equilibrium, if pushed down until

the pressure of the enclosed air is to that of the atmosphere as W to

P-P.

2. After a very great number of strokes of the piston of an

air-pump the mercury stands at 30 inches in the barometer-gauge, the

capacity of the barrel being one-third that of the receiver, prove that

after 3 strokes the height of the mercury is very nearly 17 '34 inches.

3. A fine tube of glass, closed at the upper end, is inverted, and its

open end is immersed in a cup of mercury, within the receiver of a
condenser

;
the length of the tube is 15 inches, and it is observed that

after 3 descents of the piston the mercury has risen 5 inches
;
the

height of the barometer being 30 inches, find how far it will have risen

after four descents.

4. A diving-bell is immersed in water so that its top is at a depth
a below the surface, the height of the air in the bell being then #, and
the height of the water-barometer h. If now a bucket of water of

weight TF be drawn up into the bell, shew that the tension of the chain

. . Wx
is increased by*

5. A diving-bell is suspended at a fixed depth ;
a man who has

been seated in the bell suddenly falls into the water and floats.

Determine the effects on (1) the tension of the chain, (2) the level of

the water in the bell, (3) the amount of water in the bell.

6. If a cylindrical diving-bell, whose capacity is V cubic feet, be

sunk to such a depth that the water stands at th of its height, and be

then lowered at the uniform rate of n feet per second, prove that the
number of cubic feet of air at the atmospheric pressure which must be

pumped in per second in order that the water may always remain at

the same height will be ( 1 --
) T T

7

",
where h is the height of the water-

\ inj ii

barometer in feet.

V. The length of the lower pipe of a common pump above the

surface of the water is 10 feet, and the area of the upper pipe is 4 times
that of the lower : taking 33 feet as the height of the water-barometer,

prove that if at the end of the first stroke the water just rise into the

upper pipe, the length of the stroke must be very nearly 3 feet 7 inches,
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8. A cylindrical diving-bell, of height a, is furnished with a
barometer and lowered into a fluid : the heights of the mercury in the
barometer before and after immersion being h and h' respectively, shew
that the depth of the bottom of the bell below the surface of the fluid

is equal to
(~ + T;) (^' ^) where o- is the specific gravity of mercury,

and p that of the fluid.

9. A bent tube, the arms of which are vertical, and which is open
at one end and closed at the other, is partially filled with mercury, the

density of the air between the mercury and the closed end of the tube

being initially equal to that of the external air. If this tube be placed
within the receiver of an air-pump, investigate a formula for deter-

mining the difference of heights of the mercury, in the two arms of the

tube, after n strokes of the piston.

10. The valve in the piston of an air-pump being of given size and

weight, find at what point of the ?i
th descent the valve will be raised.

11. If A be the range of the piston of an air-pump, a its distance
from the top of the barrel in its highest position, /3 its distance from
the bottom in its lowest position, and p the density of the atmosphere ;

prove that the limiting density of the air in the receiver will be

12, In the 7^1 j

ih ascent of the piston of a Smeaton's air-pump,
find the position of the piston when the highest valve (whose weight
may be neglected) begins to open ;

and shew that then the tension of
the piston-rod : the pressure of the atmosphere on the piston

v .

! (
A

'A+B '

\A+B

13. A cylindrical diving-bell of internal volume v, is filled with air

at atmospheric pressure n and absolute temperature T, and is lowered
to a certain depth below the surface of water. Shew that if a small
rise (#) in the temperature and increase (y) in the atmospheric pressure
now take place, the apparent weight of the bell will be unaltered

2C *UV*

provided = %
,
v' being the volume of the air in the bell.

14. Air is uniformly forced into a condenser, the condenser con-
tains a gauge consisting of a drop of mercury C in a fine horizontal

glass tube : if A be the position of the mercury when the air is un-

compressed, B the end of the tube, prove that the ratio AC : CB
increases uniformly.

15. A condenser and a Smeaton's air-pump have equal barrels and
the same receiver, the volume of either barrel being one-twentieth of
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that of the receiver; shew that if the condenser be worked for

20 strokes, and then the pump for 14, the density of the air in the

receiver will be approximately unaltered.

16. If a condenser be fitted with a gauge formed by a tube con-

taining air which is separated from the air in the receiver by a drop of

mercury, the distances the drop of mercury has moved from its initial

position after 1, 2, 3...strokes are in harmonical progression.
If the piston do not reach to the bottom of the cylinder in which it

works, shew that after n strokes the pressure in the receiver is

.{J.
\F+-

where n is the pressure of the atmosphere and v, v+x are the least

and greatest volumes between the piston and bottom of the cylinder
and V is the volume of the receiver.



CHAPTER VII.

METHOD OF DETERMINING SPECIFIC GRAVITIES. SPECIFIC
GRAVITIES OF AIR AND WATER, THE HYDROSTATIC

BALANCE, THE COMMON HYDROMETER, SIKES'S, NICHOL-

SON'S, AND HARE'S HYDROMETERS, THE STEREOMETER.

To compare the specific gravities of air and water.

125. TAKE a large flask, which can be completely closed

by a stop-cock, and exhaust it by means of an air-pump.
Weigh the flask, and then permit the air to enter, and

weigh the flask again. Finally find the weight of the flask

when filled with water.

Let w be the weight of the exhausted flask, w', w" its

weights when filled with air and water
;

.*. w' w = weight of the air contained by the flask,

and w" w = water

Hence w' w and w" w being the weights of equal
volumes of air and water,

specific gravity of water : that of air : : w" w : w' w.

In the same manner the specific gravity of any gas can
be compared with that of water.

The specific gravity of water at 20'5 is about 768 times
that of air at under the pressure of 29*9 inches of mercury
at 0.

To compare the specific gravities of two fluids by weighing
the same volume of each.

Let w be the weight of a flask, w' its weight when filled
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with one fluid (A), and w" its weight when filled with the

other fluid (E).
Then

w w weight of the fluid A contained in the flask,

w" w B
;

.'. specific gravity of A : that of B :: w' w : w" w.

If the flask be not exhausted when its weight is determined, then,
for strict accuracy, w must be diminished by the weight of the air

which the flask contains.

126. To find the specific gravity of a solid broken into

smallfragments.

Put the broken pieces in a flask, fill the flask with water

and let its weight be then w"
;
let w be the weight of the

flask when filled with water, and w' the weight of the solid

in air.

Then

w" w weight of solid pieces weight of the water

they displace :

= w' weight of water displaced ;

therefore

w' +w w"= weight of water displaced,

, specific gravity of solid _ w
that of water w' + w w"

'

If we take account of the air displaced by the solid, its real weight
is greater than w' by the weight of air displaced. This weight must
therefore be added to w'.

The Hydrostatic Balance.

127. The hydrostatic balance is an ordinary balance,

having one of the scale-pans smaller than the other, and at

a less distance from the beam, so that weights immersed in

water may be suspended from it.

The following cases are examples of its use.
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(1) To compare the specific gravities of a solid and a

liquid.

Let w be the weight of the solid in air.

Place the liquid in a vessel, as in the figure, and suspend
the solid from the scale-pan.

Let w be the weight of the solid in the liquid,

.'. w w' is the weight lost by the solid, and is therefore

the weight of the liquid displaced by the solid, Art. (39) ;

and w,w w' are the weights of equal volumes of the

solid and liquid.

Hence,

specific gravity of solid : that of liquid : : w : w w.

If we take account of the air displaced by the solid, we must add to

w the weight of the air it displaces, since its true weight is diminished

by exactly this weight of air.

This remark applies also to the next two articles.

128. We have tacitly supposed the solid to be specifically heavier

than the liquid. If it be lighter it must be attached to a heavy body
of sufficient size and weight to make the two together sink in the

liquid.

Let w=the weight of the solid in air,

#=the weight in air of the heavy body attached to it,

o;'=the weight in the liquid of the heavy body,

7^= the weight in the liquid of the two together.

w'=the weight of liquid displaced by the two together, since

it is the weight lost.

x x'=*weight of liquid displaced by the heavy body.
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Hence

w'=weight of liquid displaced by the solid,

, . , 'specific gravity of solid w
and therefore r

. -r. = ,.

specific gravity of liquid w+& w

129. (2) To compare the specific gravities of two liquids.

Take a solid which is specifically heavier than either

liquid, and let w be its weight in air.

Let w' = weight of solid in one liquid (A),

and w" = the other liquid (B) ;

.*. w w' = weight of liquid A displaced by the solid,

w-w" = B
;

.

'

. specific gravity of A : that of B : : w w' : w w".

The Common Hydrometer.

130. The common hydrometer consists of a straight
stem ending in two hollow spheres B and C. A

This hydrometer is usually made of glass,
and the sphere C is loaded so that the instru-

ment will float with the stem vertical.

When the hydrometer is immersed and al-

lowed to float in a liquid, it displaces its own

weight of the liquid, and by observing the

positions of equilibrium in two liquids, the

volumes displaced are inferred, and the specific

gravities of the liquids can be compared.
Let K be the area of a section of the stem,

and v the volume of the instrument.

Suppose that when floating in a liquid (A)
the level D of the stem is in the surface, and
that in liquid (B) the level E is in the surface.

Then, since the specific gravities are in the ratio of the
intrinsic weights, it follows that if s and s are the specific

gravities of A and B respectively,

s (v
- K . AD) = S'(V-K. AE) ;

s v K . AE
'

's'
=
v-K.AD

'

E

B }--
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Sikes's Hydrometer.

131. This instrument differs from the common hydro-
meter in the shape of the stem, which is a flat

bar and very thin, so that it is exceedingly
sensitive. It is generally constructed of brass,

and is accompanied by a series of small weights
F, which can be slipped over the stem above

G so as to rest on C.

The use of the weights is to compensate
for the great sensitiveness of the instrument,
which would without the weights render it

applicable only to liquids of very nearly the

same density.

Suppose the instrument floating in a liquid

(A), with the level D of the stem in the sur-

face, and that w' is the weight on C. In a

liquid (B) let E be in the surface, and w" the

weight at G.

Let w be the weight of the instrument, v its volume, K

the section of the stem, v, v" the volumes of w', w", and s', s"

the specific gravities of the liquids.
Then w + w' = weight of fluid A displaced,

v + v' K . AD = volume of A displaced ;

.\w+u/ = 8'(v + v'-ie. AD) x (62-5) Ibs. weight.

Similarly

w + w"= s" (v + v" - K.AE) x (62'5) Ibs. weight,

s w + w' v + v" tc . AE
and therefore ~

f . , .

V+V K.AD
If the liquid (B) be the standard liquid, s" = 1, and s', the

specific gravity of (A) is at once determined.

Nicholsons Hydrometer.

132. The two hydrometers just described are used for

comparing the specific gravities of fluids
;
Nicholson's hydro-

meter can be also employed in comparing the specific

gravities of a solid and a fluid.
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It consists of a hollow vessel B, generally of brass, sup-

porting a cup A by a very thin stem, which is often

a steel wire, and having attached to it a heavy cup
0: on the stem connecting A and B a well-defined

mark D is made.
We proceed to explain the use of the instru-

ment in the two cases.

(1) To compare the specific gravities of two

liquids.

If w be the weight of the hydrometer, w the

weight which must be placed in A in order to

sink the instrument to the point D in a liquid of

specific gravity s', and w" the weight for a liquid
of specific gravity s", the weights of the liquids displaced
are respectively

lo + w' and w -f w".

Therefore, the volumes displaced being the same,

s' : s" \:w + w' : w+w".

(2) To compare the specific gravities of a solid and a

liquid.

Let iv be the weight which, placed in A
} causes the

instrument to sink to D in the liquid.
Place the solid in A, and let w' be the weight, placed in

A, which sinks the instrument to D.
Then place the solid in C, and let the weight w", placed

in A, sink the instrument to D.

Hence weight of solid w w',

and its weight in the liquid
= w w".

Hence the weight lost, which is the weight of the liquid

displaced by the solid, = w" w', and

.'. spec, gravity of solid : that of liquid :: w w' : w" w'.

If we take account of the air, we must, as before, add to w - w' the

weight of the air displaced by the solid.
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D

nm

K

Hare's Hydrometer.

133. This instrument is an application of the principle
of the barometer; it consists of two vertical

glass tubes leading out of a hollow vessel A,
which can be connected with an air-pump.

B and G are two cups in which the lower
ends of the tubes are immersed, and which
contain the two fluids to be compared.

Let the air in A be partially withdrawn,
so that its pressure is diminished from II the

atmospheric pressure to II'.

Then if D,E be the surfaces of the liquids
in the tubes, and F, G in the cups, the

weights of the columns DF and EG are each

equal to the difference between the atmo-

spheric pressure and the pressure of the air

in A.

Hence, if s, s be the specific gravities, which are propor-
tional to the intrinsic weights,

s.DF = s'.EG

.'. s:s'::EG: DF.

There is no absolute necessity for an air-pump, as a

partial vacuum may be obtained in several other ways.

The Stereometer.

134. The name stereometer* has been given to a

modified form, by Professor Miller, of Say's instrument for

measuring the volumes of small solids.

It consists of two glass tubes, PQ, DB, of equal diameter,
cemented into cylindrical cavities communicating with each
other at their lower ends in a piece of iron G.

Two apertures lead out of PQ and DB
} the one, K,

stopped with a screw and the other, L, having a stop-cock.

*
Prof. Miller, Phil. Trans. Part m. 1856.

B. E. H. 9
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M

The upper end of PQ opens into a cup F, the rim of

which is ground plane, so that it can be

closed and made air-tight by a well-greased

plate of glass. The tube PQ is graduated
by lines traced on the glass, and measured
downwards from a fixed point P.

The solid to be examined being placed in

F, mercury is poured into D, till its surface

rises to P, and the cup is then closed by the

plate of glass.
The stop-cock L is then opened and the

mercury allowed to escape till the difference

of the heights of the mercury in the tubes is

nearly equal to half the height of the mer-

cury in the barometer. Let M and C mark
the height in the tubes

;
and let u be the

volume of the air in F before the solid was

placed in it, v the volume of the solid, and
A the height of the barometer.

Then we have,

pressure at C : pressure at M :: h : h MC
;

but these pressures are inversely as the
volumes

;

-

Un
K 1

.'. if K. is the section of either tube,

u - v + K . PM : u - v :: h : h -

h-MC
and

The volume u can be found by a similar process, the cup
F being empty, and K is found by weighing the mercury
contained in a given length of the tube.

If the weight w of the solid v be determined, its specific

gravity s is given by the relation w = sv (62*5).

135. The screw K is used in the process of finding *. To do this,
the cup is taken off and the tube PQ closed

;
the tubes are then

inverted, the screw K taken out, and mercury is poured in through a
slender glass tube inserted in K

;
this precaution is taken in order to

prevent the formation of air-bubbles in PQ.
The end P is then opened and the mercury allowed to run into a

glass jar, in which it is weighed.
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A cubic inch of mercury at 16 weighs nearly 3429| grains, and
therefore if w be the weight of a column of mercury a inches in length,

from which K. is determined in square inches.

Say's instrument consisted of one tube PQ, the lower end being

open, so that it could be immersed in a cylindrical vessel of mercury.
The instrument was invented for the purpose of determining the

specific gravity of gunpowder : it can be employed in finding the specific

gravities of powders or soluble substances, for which the methods which

require immersion in water are inapplicable.

EXAMINATION UPON CHAPTER VII.

1. A solid, which is lighter than water, weighs 5 Ibs., in vacuo, and
when the solid is attached to a piece of metal, the whole weighs 7 Ibs. in

water ;
the weight of the metal in water being 9 Ibs., compare the

specific gravities of the solid and of water.

2. A solid weighing 25 Ibs., in vacuo, weighs 16 Ibs. in a liquid A, and
18 Ibs. in a liquid B ; compare the specific gravities of A and B.

3. The whole volume of a hydrometer is 5 cubic inches, and its

stem is one-eighth of an inch in diameter
;
the hydrometer floats in a

liquid A with one inch of the stern above the surface, and in a liquid />

with two inches above the surface
; compare the specific gravities of A

and B.

4. What volume of cork, specific gravity '24, must be attached to

6 Ibs. of iron, specific gravity 7 '6, in order that the whole may just float

in water ?

5. A body weighs 250 grains in a vacuum, 40 grains in water and
50 grains in spirit ;

find the specific gravities of the body and of the

spirit.

6. A Sikes's hydrometer floats in water with a given length (a) of

its stem not immersed
;

it is then placed in a liquid (A ), and when a

weight w, volume v', is placed on the lower end, it is found that the

length of stem not immersed is the same as before
; compare the specific

gravity of A with that of water.

7. If a piece of metal weigh in vacuum 200 grains more than in

water, and 160 grains more than in spirit, what is the specific gravity
of the spirit ?

8. A piece of metal which weighs 15 ounces in water is attached to

a piece of wood which weighs 20 ounces in vacuum, and the two together

weigh 10 ounces in water, find the specific gravity of the wood.

92-
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9. A piece of wood, which weighs 57 Ibs. in vacuo, is attached to a

bar of silver weighing 42 Ibs., and the two together weigh 38 Ibs. in

water
;
find the specific gravity of the wood, that of water being 1, and

that of silver 10'5.

EXAMPLES.

1. The apparent weight of a sinker, weighed in.water, is four times
the weight in vacuum of a piece of a material whose specific gravity is

required ;
that of the sinker and the piece together is three times that

weight. Shew that the specific gravity of the material is *5.

2. A hollow cubical metal box, the length of an edge of which is

one inch and the thickness one-eighteenth of an inch, will just float in

water, when a piece of cork, of which the volume is 4'84 cubic inches

and the specific gravity *5, is attached to the bottom of it. Find the

specific gravity of the metal.

3. A crystal of salt weighs 6 '3 grains in air
;
when covered with

wax, the specific gravity of which is '96, the whole weighs 8*22 grains
in air and 3'02 in water

;
find the specific gravity of salt.

4. A Nicholson's hydrometer weighs 6 oz., and it is requisite to

place weights of 1 oz. and 1^ oz. in the upper cup to sink the instru-

ment to the same point in two different liquids ; compare the specific

gravities of the liquids.

5. With the same hydrometer it is found that when a certain solid

is placed in the upper cup a weight of 1^ oz. must be placed in the

upper cup to sink the instrument in a liquid to a given depth ; and

that, when the solid is placed in the lower cup, a weight of 3 oz. must
be placed in the upper cup to sink the instrument to the same depth ;

compare the specific gravities of the solid and the liquid, the weight of
the solid being 2 oz.

6. A ring consists of gold, a diamond, and two equal rubies, it

weighs in vacuo 44^ grains, and in water 38| grains ;
when one ruby

is taken out it weighs 2 grains less in water. Find the weight of the

diamond, the specific gravity of gold being 16^, of diamond 3J, of ruby 3.

7. If the price of pure whisky be 16s. per gallon, and its specific

gravity be *75, what should be the price of a mixture of whisky and

water, which on gauging is found to be of specific gravity '8, the specific

gravity of water being 1 ?

8. A common hydrometer has a portion of its bulb chipped off*,

and, when placed in liquids of densities a, $, -y,
it indicates densities

</, /3', y respectively ;
find the relation l>etween these quantities.
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9. A hydrometer marks graduations a, b, c in liquids whose
densities are pj, p2 ,

^,3 respectively, prove that

b-c c-a -&_
Pi P2 Ps

10. The readings of a common hydrometer when immersed in

three different fluids are l
lt 2 , L, and the weights which must be

placed in the upper cup of a Nicholson's hydrometer in order to sink it

to the mark when placed in the different fluids are n\, w
z ,
w3 respec-

tively. Shew that

lA (wi
~ w

-i)
+ 1A (w -2

~ w^ + IA (
W

3
~ w

i)
= -

11. Supposing some light material, whose density is p, to be

weighed by means of weights of density p', the density of the atmo-

sphere when the barometer stands at 30 inches being unity; shew that,
if the mercury in the barometer fall one inch, the material will appear

to be altered by fr/^r? ^ of its former weight. Will it appear
(p i) (o(Jp 2J)

to weigh more or less ?

12. A heavy bottle is filled with a fluid A and weighed in each of
two other fluids J5, (7, the apparent weights being A^, A c ;

it is then
filled with the fluid B and weighed in C and A, the apparent weights
being Z?r ,

Ba \ lastly it is filled with fluid C'and weighed in the fluids A
and J?, the apparent weights being (7a ,

Cb : shew that
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MIXTURE OF GASES, VAPOURS, RADIATION, CONDUCTION AND
CONVECTION OF HEAT, DEW, HOAR-FROST, CLOUDS AND
RAIN, SEA AND LAND BREEZES, DEW-POINT, HYGRO-

METERS, DILATATION OF LIQUIDS, MAXIMUM DENSITY OF

WATEll, CONGELATION AND EBULLITION, SPECIFIC HEAT.

Mixture of Gases.

136. IF two liquids are mixed together in a vessel, and
if the vessel is left at rest, the two liquids, provided they do

not act chemically on each other, will gradually separate and

finally attain equilibrium with the heavier liquid lowest, and
the lighter liquid superposed upon it. But if two gases are

placed in communication with each other, even if the heavier

gas be below the other, they will rapidly intermingle until

the proportion of the two gases is the same throughout, and
the greater the difference of density the more rapidly will

the mixture be formed.

Take two different gases, having the same temperature
and pressure, and contained in separate vessels

; open a

communication between the vessels, and it will be found

that, unless a chemical action take place, the pressure of the

mixture will be the same as before, provided the temperature
be the same.

We can hence deduce the following proposition :

// two gases having the same temperature be mixed

together in a vessel of volume V, and if the pressures of the

gases when respectively contained in V, at tlie same tempera-
ture, be p and p', the pressure of the mixture will be p + p'.
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Suppose the gases separate ; change the volume of the

gas, of which the pressure is p' t
without change of tem-

perature, until its pressure is p ;
its volume will then be

V, by Mariotte's Law.

Now mix the two gases without change of volume, so

that the volume of the mixture is V+ V, or - ~ V\ by
P P

the preceding experimental fact, the pressure of the mixture
will be still p.

Compress the mixture till its volume is F, and when the

temperature is the same as before, the pressure, which varies

inversely as the volume, will be p +p
f

.

This result is equally true of the mixture of any number
of gases.

137. Two volumes, V, V, of different gases at the respec-
tive pressures p, p', are mixed together in a vessel of volume
U

;
it is required to find the pressure.

Change the volume of each gas to U; their pressures
will be respectively

V V

and therefore the pressure (-GJ) of the mixture will be

v r

Hence vU = pV+p'V.
If the absolute temperatures of the gases before mixture

are T and T', and if T is the absolute temperature, and U
the volume after mixture, the pressures of the gases will be

respectively

pV T p'V r

T *U' T '

U'

Hence OT, the pressure of the mixture, is the sum of these

quantities, and therefore

p'V
r '
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In the case of the mixture of any number of gases, we
have

In Art. (136) we have assumed that Mariotte's law is

true of a gas formed by the mixture of two gases ;
this can

be shewn by direct experiment, but is in fact already proved
in one case, by the original experiment with atmospheric air,

which is itself composed of several different gases. More-

over, the results of the two preceding propositions are borne

out by facts.

Vapours.

138. The term vapour is applied to those gaseous
bodies, such as steam, which can be liquefied at ordinary

pressures and temperatures. There is no difference between
the mechanical qualities, as distinguished from the chemical

qualities, of vapours and gases, the laws already stated of

gases being equally true of vapours within certain ranges of

temperature. In fact, there is every reason to believe that

all gases are the vapours of certain liquids, but those which
are looked upon as permanent gases require the application
of extreme cold and of very great pressure to reduce them to

a liquid form.

Professor Faraday found that carbonic acid, at the tem-

perature 11, was liquefied by a pressure of 20 atmo-

spheres*, but that, at the temperature 0, a pressure of

36 atmospheres was required to produce condensation.

In 1877, M. Pictet succeeded in liquefying oxygen by
subjecting it to a pressure of 300 atmospheres, and, at the

end of the same year, M. Cailletet effected the liquefaction
of nitrogen, atmospheric air, and hydrogen.

139. Formation of vapour. If water be introduced into

a space containing dry air, vapour is immediately formed,
and if the quantity of water be small, and the temperature

* An atmosphere denotes the pressure due to a column of mercury 29*9
inches in height.
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high, the whole of the water will be rapidly converted into

vapour, and in all cases the pressure of the air will be
increased by the pressure due to the vapour thus formed.

An increase of temperature, or an enlargement of the

space, increases the amount of vapour as long as the supply
of water remains

;
but if the water be removed, an increase

of temperature changes the pressure of the vapour in accord-

ance with the general laAV which regulates the connection

between pressure and temperature.
The formation of vapour does not in any way depend

upon the presence of air or upon its density, the only effect

which the air produces being a retardation of the time in

which the vapour is formed. If water be introduced into a

vacuum, it is instantaneously filled with vapour, but the

quantity of vapour is the same as if the space had been

originally filled with air.

Saturation. As long as the supply of water remains as a
source from which vapour can be produced, any given space
will be always saturated with vapour, that is, will contain

the maximum quantity of vapour for any temperature ;
but

if the temperature be lowered, a portion of the vapour will

be immediately condensed, and become visible in the form of

liquid.
The quantity of vapour by which any given space is

saturated is proportional to the space for any given tempe-
rature

;
it follows that the pressure, or elastic force, of the

vapour is independent of the space it saturates, and depends
only on the temperature. No definite law has been dis-

covered connecting the temperature and the elastic force of

vapour, but tables have been formed and empirical formula)

constructed for certain ranges of temperature.

140. The laws of the mixture of gases are equally true

of the mixture of vapours with each other, or of vapours
with gases, provided no condensation take place ; or, if any
condensation should take place, provided a proper allowance

be made for the loss of pressure incurred.

Thus all atmospheric air contains more or less aqueous
vapour, and if p be the pressure of dry air and CT of the

vapour in the atmosphere at any time, the actual atmo-

spheric pressure is p + &.
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141. Having given the pressures of a volume V of atmospheric air,

and of the vapour it contains, to find the volume of the air 'without its

vapour at the same pressure and temperature.

Let n be the atmospheric pressure, and or that of the vapour.
Then n - or is the pressure of the air alone when its volume is F

;

Hence its volume at a pressure n= - F.

142. Having given the volume V of a dry gas at a given temperature
under a pressure p, to find its volume under the same pressure, when
saturated with vapour.

Let GT be the pressure of the vapour.
Then the gas must be allowed to expand until its pressure is p - -&,

the supply of vapour being kept up. The pressure of the mixture is

/ft

then p. and the volume will be F.

p--sr

143. A gas contained in a closed vessel of volume V is in contact

with water, and its pressure at the temperature t is p ;
it is required

to determine its pressure when V is changed to V and t to t'.

Let zzr and GT' be the pressures of the vapour at the temperatures
t and t' respectively, and p' the required pressure.

Then p - ra- and p'
-

zzr' are the pressures of the gas alone, under the

two sets of conditions stated.

Hence, if p, p' be the densities of the gas,

p'
- -&'= Kp' (1+ at'),

also p V p'V ;

p' -st'_V 1 4- at'

p-tt
~

Y'
'

Y+at
'

whence p' is determined.
If (T, <r' be the densities of vapour under the two conditions,

and combining the two equations,

p' zcr' or

P-TZ
"

or'

FV
or ---

V(T

If ptzr'>p'izr, FV will exceed Fa-; i.e. more vapour will have been

absorbed by the gas, but if pw' <p'w, then FV will be less than Fo-,

and the gas must therefore, in changing its volume and temperature,
have lost a portion of its vapour.
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Radiation, Conduction, and Convection of Heat.

144. Radiation. All bodies give off heat from their

surfaces by what is called radiation, and receive heat by
radiation from other bodies. If two bodies at different

temperatures are placed near each other, it is an experi-
mental fact that the temperature of one will rise, and of the

other diminish until they are both the same.
In a similar manner, if a body is placed in a confined

space, the temperature of the body and of the boundary of

the space will gradually approximate, the one increasing and
the other decreasing till they are the same.

Difference of radiating power. Some bodies radiate heat

more freely than others, and the difference appears to

depend in great measure on the nature of the surfaces.

Thus the leaves of trees and woollen substances radiate heat

freely and rapidly, while the radiation from a polished metal

surface is very slight.

Generally if the reflecting power of a surface be increased

its radiating power is diminished.

145. Conduction and convection. There are two other

modes of transference of heat from one body to another.

Conduction is the term applied to the transference of heat

by contact, heat being transmitted through the successive

particles of a body, or from one body to another in contact

with it. Convection is the actual transference of heat by
the motion of fluids or other bodies from one position to

another
;
the heat thus conveyed away from one body may

be imparted by contact or radiation from the conveying body
to any other.

Thus the handle of a poker, inserted in the fire, is heated

by conduction, and in the process of warming rooms by hot

air or hot-water pipes the heat is obtained by convection.

There are great differences in the conducting powers of

different bodies
; liquids generally are weak conductors, but

metallic substances have large conducting powers.
The cold felt in placing the hand on a marble mantel-

piece is an instance of conduction, the heat being transferred

from the hand to the marble.



140 DEW.

Woollen substances, glass, and wood, conduct heat very

slowly, and this fact is practically taken advantage of in

many ways. A heated body rolled up in a woollen cloth

may be kept hot for a long time, and ice in a wooden pail,

wrapped round with a cloth, will melt very slowly, even in

a warm room.

Another instance of a body with very small conducting

power is sand
;
heat is transferred through it so slowly that

red-hot shot can be safely carried about in wooden barrows
filled with sand.

One of the many useful applications of the non-conduct-

ing powers of certain substances is in the construction of

Fire-proof Safes ; a safe of this kind is simply an iron box
enclosed within another somewhat larger, the space between

being filled up with some non-conducting substance.

146. The explanations above given of the saturating

density of vapour, and of the radiation of heat, will enable us

to account for many of the ordinary meteorological pheno-
mena, such as the formation of dew, and the fall of rain and
snow.

Formation of Dew. Any portion of atmospheric air

contains vapour in a greater or less degree, and may be
saturated with it

;
if so, the slightest fall of temperature will

produce condensation. If any solid in contact with the

atmosphere be cooled down until its temperature is below
that which corresponds to the saturation of the air around

it, condensation will take place, and the condensed vapour
will be deposited in the form of dew upon the surface of the

body.
This accounts for the dew with which the ground is

covered after a clear night.
Heat radiates from the ground, and from the bodies upon

it, and unless there are clouds from which the heat would be
radiated back, the surfaces are cooled and the vapour in the

stratum of the atmosphere immediately above condenses and
falls in small drops of water on the surface. Any kind of

covering will more or less prevent the formation of dew

beneath; very little dew, for instance, will be found under
the shade of large trees. It will be seen moreover that good
radiators are most abundantly covered with dew, very
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smooth surfaces being almost entirely free from it. This

is in accordance with the facts stated above of the radiation

of heat.

Hoar-Frost. If after the deposition of dew the tempera-
ture fall below the freezing-point, the dew is then frozen and
becomes hoar-frost.

The fogs seen at night on. low lying or marshy lands are

due to the same cause. The air is charged with moisture to

saturation, arid the cooling of the surface extends sometimes

through three or four feet of the atmosphere, producing a
thick fog close to the ground, while the air above is quite
clear.

147. Clouds and Ram. Clouds are formed by the

condensation of the vapour in the upper regions of the

atmosphere. The reduction of temperature requisite for

condensation may occur from several different causes
;
a

mass of air and vapour in motion may rise into a colder

region or may come into contact with a larger mass of colder

air, so that when the two are mingled together the tempe-
rature may not be sufficient to maintain the elasticity of the

vapour.
The fact that the clouds remain suspended may be ex-

plained in various ways. It seems highly probable that in

the process of condensation the vapour assumes the form of

small vesicles of water containing air, arid therefore not

necessarily of greater specific gravity than the medium in

which they are formed. Or, again, if the particles do de-

scend, they may, as they fall into a space in which the

temperature is higher, be gradually absorbed, and if new

vapour be formed above, the appearance of a stationary
cloud would consist with the fact of a continuous fall in the
constituent particles of the cloud itself.

The cloud which is often seen about the top of a moun-
tain is not unfrequently of this kind. A mass of warm air

charged with moisture travels past a mountain, and by
contact with it condensation is caused in that portion which
is near to the mountain. As the condensed vapour is drifted

away, it is again absorbed by the warm air around it, and
thus the apparently fixed cloud merely represents a state

through which the warm air passes, and from which it emerges.



1 42 WINDS.

If a cloud be very highly charged with moisture, and a

further reduction of temperature take place, the vapour
condenses still further into small drops, and descends in the

form of rain.

148. When vapour is being condensed, if the tempera-
ture fall below the freezing-point, snow is formed; and if

rain as it falls pass through a region of the air in which the

temperature is below the freezing-point, the drops of rain are

congealed and descend in the form of hail.

Fogs and mists are clouds formed near the earth's surface

and in contact with it. The light summer rain which
sometimes falls about sunrise or sunset without the appear-
ance of a cloud is due to the same cause, the air becoming
suddenly colder, and the vapour in consequence being
rapidly condensed.

149. Illustration. The phenomena of dew and hoar-

frost may be obtained on a small scale by simply putting ice

into a glass of water. The outside of the glass will soon be
covered with a delicate dew, which after a short time freezes,

and the glass is then covered with hoar-frost.

The explanations of the preceding articles will enable

an observer to account for most of the phenomena which

depend on the existence of aqueous vapour in the atmo-

sphere.

150. Sea and land breezes. Winds are partly due to

changes of temperature; if, for instance, the air in the

neighbourhood of any particular region become heated, it

will expand and rise, its place being filled by air from other

regions, and hence a wind towards the heated region.
In hot countries on the sea-coast it is noticed that

during the day the wind in general blows from the sea,

and during the night from the land. During the day the

land becomes heated and retains heat
;
hence the air above

it rises, and the cooler air flows in from the sea. But

during the night the land cools by radiation while the

temperature of the sea remains nearly the same
;
hence the

land breeze.
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Dew-Point and Hygrometers.

151. The dew-point is the temperature at which the

vapour in the atmosphere begins to condense.

To determine the dew-point a glass vessel must be cooled

until dew begins to be deposited upon it, and its temperature
must be then observed

; again, observe the temperature at

which the dew disappears ;
a mean between the two may be

taken as the dew-point.

152. Tension of vapour in the air. The phrase tension of

vapour is frequently employed to represent the pressure of

the vapour. If the dew-point be ascertained we can infer

the tension of the vapour in the air by means of the tables

before referred to of the relation between the temperature
and the saturating density.

For if if be the dew-point, and tx' the corresponding

pressure, t the temperature of the air, and OT the required

pressure
TV : TO-' : : 1 + at : I + cut',

and, the pressure being known, the quantity of vapour in

the atmosphere can be determined.

153. Hygrometers are instruments for determining the

quantity of vapour in the atmosphere, or, in other words, the

degree of saturation.

This is measured by the ratio of the tension of the

vapour in the air to the saturating tension.

Thus if, in the case of Art. (137), TO-" be the saturating

tension at the temperature , 7, is the measure required.
TO"

Hygrometers may be constructed of any substance which
is affected by the amount of moisture in the air, such as a

piece of cord which elongates as the quantity of vapour in

the air diminishes, or a piece of seaweed, which is exceedingly
sensitive to hygrometric changes in the atmosphere.

One of the hygrometers most in use is the wet and dry
bulb Thermometer. It consists of two mercurial thermo-
meters near each other, one of which is covered with muslin,
and kept constantly wet by letting a portion of the muslin
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drop in a cup of water. The moisture from the muslin

evaporates, and, as evaporation is always accompanied by
cooling, the wet bulb thermometer falls, and, the drier the

air is, the greater will be the difference between the two
thermometers. Empirical formulae and tables have been
constructed by means of which the tension of the vapour can

be inferred from the readings of the thermometers*.

Dilatation of Liquids.

154. In general, all solid and liquid bodies expand
under the action of heat, and contract when heat is with-

drawn. We have before had occasion to take account of

the expansion of mercury, which is within certain limits

proportional to the increase of temperature. This is also

the case with solid bodies, such as glass and steel.

For water and aqueous liquids generally, the rate of

expansion is not constant for a constant increase of tempera-
ture, but beyond a certain limit becomes more rapid as the

temperature rises.

Maximum density of water. It is a remarkable property
of water that its density is a maximum at a temperature of

about 4 C. or 40 F., and whether the temperature increases

or decreases from this point, the water expands in volume *(.

155. Freezing. When the temperature descends to

the freezing-point, a still further expansion takes place at

the moment of congelation. This is sufficiently proved by
the fact that ice floats in water, but it may also be rendered

very distinctly evident by a direct experiment. Fill a small

iron shell with water, and close the aperture with a wooden

plug ;
if the shell be then exposed to a freezing temperature,

the water within will freeze, and at the instant of congela
tion, the plug will be shot out with considerable violence

J.

Effect of Pressure. It is a remarkable fact that the

freezing-point of water is lowered by increase of pressure.

* See Mr Glaisher's pamphlet On the Wet and Dry Bulb Thermometer.

t The results of Playfair and Joule give 30>945C. as the temperature at

which the density is a maximum. Prof. Miller, Phil. Transactions, 185G.

The temperatures atwhich liquids freeze are different for different liquids,
but fixed for each liquid. Thus mercury freezes at a temperature - 40 C.
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This was predicted, from purely theoretical considerations,

by Professor James Thomson in 1849, and afterwards estab-

lished by direct experiment.

156. Formation of ice on the surface of a lake. It is

known that ice is formed much more rapidly on the surface

of shallow than on the surface of deep water
;
and this fact

we can now account for. As the air cools, the water at the

surface cools, and being contracted becomes heavier than the

water beneath. The surface strata then descend, and the

water from beneath rises and becomes cooled in its turn, and
this process will go on until the whole of the water has

attained its maximum density, after which it will remain

stationary, and the upper strata being further cooled will

expand and finally congeal. It is clear that the deeper the

water is the longer will be the time which elapses before the

whole of the water has attained its maximum density.

157. Ebullition. When heat is applied to water, it

expands gradually until, at a certain temperature, bubbles

are formed and steam is given off.

This temperature is the boiling-point, and it has been
mentioned before that it depends upon the atmospheric

pressure.
The bubbles are first formed by the expansion of the

air which water contains. If water be heated from below,
the lower strata expand and rise, the upper strata descend-

ing and becoming heated in succession, and air-bubbles

ascend. As the temperature increases, small bubbles of

vapour ascend, but do not always reach the surface, as

they may be condensed in the less heated strata above.

Finally, larger bubbles are formed, and, the whole mass

being heated, ascend to the surface and give off steam,
which becomes visible by a slight condensation in the air

above.

These bubbles are formed when the tension of their

vapour is equal to the pressure they sustain, and this ex-

plains why a diminution of atmospheric pressure permits
the process of ebullition at a lower temperature ; and, on
the other hand, that an increase of atmospheric pressure
raises the temperature of ebullition.

B. E. H. 10
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For instance, under a pressure of two atmospheres, the

boiling-point is raised 20 C., and, if the atmospheric pres-
sure be diminished one-half, the boiling-point is lowered

about 18.
This accounts for the fact that water boils at a low

temperature on the tops of mountains, and on high table-

lands.

Specific Heat.

158. It is found that a certain quantity of heat must
be expended in order to raise the temperature of a mass
of any substance by a given amount. The requisite quan-
tity of heat depends on the nature of the substance and
also on its mass, and for any particular substance it may
be at once assumed that the quantity of heat required to

raise the temperature one degree is directly proportional to

the mass of the substance.

In general, the amount of heat required to change the

temperature of a given mass from t to (t + 1) is the same
for all values of t.

Hence for the same substance the quantity of heat ex-

pended in changing the temperature from t to t'

cc t' t when the mass is given,

and oc the mass when t' t is given,

and therefore generally oc m (t
r

t) t
if m be the mass.

If this be taken equal to cm(t' t), c is called the spe-
cific heat of the substance, and it is the measure of the

amount of heat which will raise by 1 the temperature of the

unit of mass.

If two masses m, m, of the same substance, at tempera-
tures t, t', be mixed together, and if r be the tempera-
ture of the mixture, then, since the amount of heat lost by
one is gained by the other,

m(t-r) = m' (T
-

t'),

or mt + m't' (m + m') r.

159. For different substances the quantity c has dif-

ferent values
;
thus it is found that water requires about

28 times as much heat as mercury in order to change the
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temperature by a given amount, and the specific heat of

mercury is therefore less than that of water in the ratio of

1 : 28.

The specific heat of a gas must be considered from two
different points of view, for we may suppose the volume of

a gas constant, and investigate the amount of heat required
to raise the temperature 1, or we may suppose the pressure
constant, the latter supposition permitting the expansion of

the gas.
The specific heat in the second case exceeds the specific

heat in the first case by the amount of heat disengaged when
the gas is suddenly compressed into its original volume.

The specific heat of water is usually taken as the unit, and one of

the methods of finding the specific heat of a substance is by immersing
it in a given weight of water, and observing the temperature attained

by the two substances.

Thus, if M be the mass of a body, T its temperature, and C its

specific heat,
m' and m the masses of a vessel and of the water in it,

and t their

common temperature,
T the temperature of the whole after immersion, and '

the specific
heat of the vessel,

CM(T- T)
= m(r-t)+ Cfm' (T

-
t\

since the quantity of heat lost by the body is equal to that gained by
the water and the vessel.

If
' be known, this equation determines C

;
and C", if unknown,

can be found by pouring water of a known temperature into the vessel

at some other known temperature.
In general, if any number of substances be in thermal contact, and

if no heat is lost, the ultimate temperature is given by the equation

r2 (me) = 2 (tme).

160. latent Ifeat. It is found that in order to change the state of
a body, without changing its temperature, a certain amount of heat
must be expended. For instance, in order to convert ice into water,
heat must be applied to the ice, and the latent heat of ice is measured

by the amount of heat required to convert into water, without change
of temperature, one unit of mass of the ice.

102
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EXAMINATION UPON CHAPTER VIII.

1. A cubic foot of air having a pressure of 15 Ibs. on a square inch
is mixed with a cubic inch of compressed air, having a pressure of

60 Ibs. on a square inch
;

find the pressure of the mixture, when its

volume is 1729 cubic inches.

2. State the conditions under which a space is saturated with

vapour.

3. A vessel of water is left in a close room for some time
;
what

would be the effect of bringing a quantity of ice into the room ?

4. Explain the radiation, conduction, and convection of heat. Why
is a cloiidy sky not favourable to the deposition of dew ?

5. How do you account for the long trail of condensed steam which
often follows a locomotive in rainy weather ?

6. Explain why it is difficult to heat water from its upper surface.

7. If a piece of ice be put into a glass of water, the external surface

is soon covered with a fine dew
;
account for this fact.

8. Three gallons of water at 45 are mixed with six gallons at 90
;

what is the temperature of the mixture ?

9. At great altitudes it is sometimes found that a sensation of

discomfort is felt
;

the lips crack and the skin of the hands is

roughened ;
how do you account for these facts ?

Can you give any reason why an east wind in England sometimes

produces similar effects ?

10. Two volumes T7
,
V of different gases, at pressures p, p', and

temperature t are mixed together ;
the volume of the mixture is U

t
and

its temperature t',
determine the pressure.

11. Two vessels contain air having the same temperature t, but
different pressures p, p' \

the temperature of each being increased by
the same quantity, find which has its pressure most increased.

If the vessels be of the same size, and be allowed to communicate
with each other, find the pressure of the mixture at a temperature zero.

EXAMPLES.

1. A glass vessel weighing 1 Ib. contains 5 oz. of water at 20, and
2 oz. of iron at 100 is immersed

;
what is the temperature of the whole,

taking -2 as the specific heat of glass and '12 of iron ?

2. An ounce of iron at 120, and 2 oz. of zinc at 90, are thrown
into G oz. of water at 10 contained in a glass vessel weighing 10 oz. ;

what is the final temperature, taking *1 and -12 as the specific heats of

zinc and iron }
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3. The pressure of a quantity of air, saturated with vapour, is

observed
;
the mixture is then compressed into half its former volume,

and, after the temperature has been lowered until it becomes the same
as at first, the pressure is again observed

;
hence find what would be

the pressure of the air (occupying its original space) if it were deprived
of its vapour without having its temperature changed.

4. It is related of a place in Norway that a window of a ball-room

being suddenly thrown open, a shower of snow immediately fell over
the whole of the room. Account for this phenomenon.

5. A drop of water is introduced into the tube of a common
barometer which just does not evaporate at the higher of the tem-

peratures t^j tz .

Given that the elasticity of vapour increases geometrically as the

temperature increases arithmetically, shew that if Elt
&

2
^e tne errors

of the above barometer at temperatures ^, 2 ,
the common ratio of the

geometric progression for an increase of temperature of 1 in the case of

vapour of water is

1

e being the coefficient of expansion for mercury.

6. A closed cylinder contains a piston moveable by means of a rod

passing through an air-tight collar at the top of the cylinder. The
piston is held at a distance from the bottom of the cylinder equal
to one-third of its height, and vapour is introduced above and below
of a known pressure, the temperature of the cylinder being such as will

support vapour of twice the density without condensation. The piston
on being left to itself sinks through two-ninths of the height of the

cylinder. Prove that the weight of the piston is five-fourths of the

pressure of the vapour upon either side at first.

7. A flask is partially filled with water which is caused to boil

until the air is expelled, and then the flask is corked and allowed

for a short time to cool. The flask is then placed in cold water,
and it is found that the water in it recommences boiling. Explain
this phenomenon.

8. A mass of ice at C. is subjected to a pressure of 40 atmo-

spheres, without being allowed to give out or receive heat. Given that the

specific heat of ice at constant pressure is about half that of water, that
the latent heat of melting is 79, and that the freezing point is lowered
0075 of a degree for every atmosphere of pressure, shew that rather

less than yfojth of the mass will be melted.

9. An ounce Av. of silver, specific heat '06, at 40 F. is immersed
in 10 ounces of water at 100 F. Find the greatest amount of heat

that the silver can take up from the water
;
and shew that, if it were

all utilised in work, it could lift the silver about 921 yards.
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10. A gas saturated with vapour is at a pressure n. It is then

compressed without change of temperature to - th of its former volume,

and the pressure is then observed to be equal to n'. Shew that the

pressure of the vapour
nU - n'

''

n-l '

and that the pressure of the air in the original volume without its

vapour

= nj-n=
n-l *

11. A vertical cylinder is closed by an air-tight piston, and when
the piston is at the top of the cylinder it is filled with vapour at a

given pressure : if the temperature be such as would maintain vapour
of three times the density, find the least weight of the piston which
will not condense any of the vapour.

12. A quantity of ice at 30 F. thaws in the midst of a quantity of air

at 60 and reduces the temperature of the air 1 before the water begins
to evaporate. Taking the specific gravities of ice, water, and air to be

96, 1, '0013, and their specific heats -5, 1, "2375, and the latent heat of

liquefaction to be 144, find the ratio of the volumes of the ice and the



CHAPTER IX,

TENSION OF VESSELS CONTAINING FLUIDS.

161. IF a cylindrical vessel contain liquid, the pressure
of the liquid will produce a strain or tension in the substance

of which the vessel is formed. We may imagine the vessel

formed of some thin flexible substance, such as silk or paper,
and it is obvious that if this substance be not strong enough,
it will be torn asunder by the pressure of the liquid.

We proceed to investigate the relation between the

pressure and the tension produced by it.

Measure of tension. Imagine a hollow cylindrical vessel

formed of a thin flexible substance to be filled with a gas at

a given pressure, so that the tension may be the same

throughout.
Divide the surface along a generating line, length I,

and let T be the whole force required to keep the two parts

together ;

then, if T=tl, t is the tension along any unit of length.
If the cylinder be vertical and filled with water, so that

the pressure and therefore the tension vary at different

depths, then the tension t at any point, i.e. the rate of tension

T
per unit length, is the limiting value of -

,
where T is the

cc

tension across a length x of the generating line containing
the point, when x and therefore T are indefinitely diminished.

162. A vessel in the form of a circular cylinder with its

axis vertical contains fluid ; to find the relation between the

pressure and tension.
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r K Q'

The pressure being the same at all points of the same
horizontal plane, it follows that the tension

will be the same at all points of the same
horizontal section.

Let PQ, P'Q' be small portions of two
horizontal sections very near each other, PP'
and QQ being vertical. The dimensions of

PQ' are taken so small that the pressure and
tension at all points of it are sensibly the same.

Let p, t be the pressure and tension
;
then t . PP', t . QQ'

are the horizontal forces acting on the portion PQ' of the

surface at the middle points A, B of its ends, and these

forces must counterbalance the pressure of the liquid, which

isp.PP'.PQ.
This resultant pressure acts in the direction CE bisect-

ing the angle ACB, and the two tensions in the directions of

the tangents at P and Q.

Hence, resolving the forces in the direction CE,

.i .

2 r
=-

. PP'.PQ,

if r be the radius of the cylinder,

and /. t =pr.

If the cylinder contain a gaseous fluid of which the

pressure is sensibly the same throughout its mass, the
relation t = pr is true at every point, whether the axis be
vertical or not.
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This result can also be obtained by considering the

equilibrium of a semi-circular portion of thickness PP', for

the resultant pressure will be parallel to the tensions at the

two ends, and will be equal to the pressure on the projected
area 2r . PP', so that

2t . PP' = p . 2r . PP', or t =pr.

163. If the pressure is different at different points of

the arc which is the cross section of a cylindrical vessel, the

circular cylindrical form is not a form of equilibrium.
But, if we take r to be the radius of curvature at any

point E at which the pressure is p, it can be shewn, exactly
as in the previous article, that

t=pr.

Taking any cross section, the tension will be the same at

all points of this section, because the fluid pressure is normal

to the surface.

Hence, knowing the tension and the law of pressure, the

curvature at every point of the cross section is determined,
and the shape of the curve can be found.

For example consider the Lintearia, which is the form assumed by a

rectangular piece of a thin membrane, two opposite sides of which are

fastened to the sides of a box, while the other sides fit the box closely,
so that liquid can be poured in without escaping.

The figure is a section of the cylindrical surface so formed, by a

plane perpendicular to its generating
lines, BG being the surface of the

liquid.
The tension (i) along BAC is con-

stant, because the liquid pressure is

normal, and if r be the radius of

curvature at 7J

i.e. the curvature at P is proportional to the depth below the surface.
This curve is the same as the Elastica, the curve formed by a

bent rod, and is also, as will be seen subsequently, the same as the

Capillary curve.

164. A spherical surface contains gas at a given pressure,
it is required tojind the tension at any point
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From symmetry we may take the tension to be the same
at every point.

Moreover, if any line be drawn on the surface we may
assume that the tension between the two portions parted by
that line acts in a direction perpendicular to it.

Consider the equilibrium of a hemisphere, under the

action of the tension %7rrt, and of the resultant pressure,
which is equal to the pressure on a circular area of radius r;

we then have

27rrt = 7rr~p, or 2t =pr.
Hence it appears that a spherical vessel is twice as strong

as a cylindrical vessel of the same material and the same
radius.

165. We have not compared with each other the ten-

sions of vessels formed of substances of different thickness.

To do this it will be seen that for a given value of the

tension t, as we have measured it, the intrinsic stress of

any substance will be diminished by increasing the thickness.

Now if e be the thickness of any flexible lamina, and if

t = er, then r will be the tension of an unit of area of the

section, and for the comparison of different thicknesses, this

latter measure of tension must be employed.

Ex. A bar of metal one square inch in section can
sustain a weight of 1000 Ibs., and of this metal a cylinder
is made one-twentieth of an inch in thickness, and one foot in

diameter ; find the greatest fluid pressure ivhich the cylinder
can sustain.

In this case e ^ and r = 6
;

also the greatest possible value of r is 1000
;

= = 81 Ibs. wt.
r

Hence a force per square inch equal to the weight of

81 Ibs. is the greatest pressure which can be applied without

bursting the cylinder.

166. A conical vessel, formed of a flexible substance, is held by the

rim with its vertex downwards, and is jilted with liquid ; it is required to

find the tension at any point in the direction of the generating line

passing through the point.
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Let PP be a horizontal section of the cone,

along the section PP the tension is the

same at any point and is in the direction of

the generating line through that point.
Let then t be the tension, which is at all

points of the circle PP in a direction in-

clined at an angle a to the vertical, if 2a

be the vertical angle.
The vertical resultant of the tension on

the whole circle PPf

9
that is,2n- . PN . t cos a,

is equal to the resultant vertical pressure on
the surface POP'.

Now this pressure

= weight of fluid POP' + weight of fluid PQ

It is obvious that

and therefore if ON=x, and 0-E=h,

ZTT.V tan a . t cos a= WTT.V
Z tan 5

(f
+A-

or
1 sin a

"2
V
008s a

Since
2^2 2 (9/*

2 / 3A--- =o lY,r- [*--73 3 (10 \ 4

it follows that t has a maximum value when x .

4

A little consideration will shew that there is a horizontal tension at

all points along a generating line, in a direction perpendicular to that

line, but the investigation of this other tension would be beyond the

limits which must be assigned to an elementary course, and must
therefore be deferred to treatises taking a higher range.

EXAMPLES.

1. Two vertical cylinders of the same thickness and the same

material, contain equal quantities of water
; compare their greatest

tensions.

2. Two cylindrical boilers are constructed of the same material,
the diameter of one being three times that of the other, and the

thickness of the larger one twice that of the other
; compare tho

strengths of the boilers.
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3. A bar of metal, one-fourth of a square inch in section, can

support a weight of 1000 Ibs.
;

find the greatest fluid pressure which
a cylindrical pipe made of this metal can sustain, the diameter being
10 inches and the thickness one-tenth of an inch.

4. Equal quantities of the same material are formed into two thin

spherical vessels of given radii
; compare the greatest fluid pressures

they will sustain.

5. The natural radius of an elastic spherical envelope containing
air at atmospheric pressure is a, and, when a certain quantity of air is

forced into it, its radius is b. It is then placed under an exhausted
receiver and its radius becomes c. Find the quantity of air forced in,

supposing that the increase of tension of the envelope varies directly as

the increase of its surface.

6. The top of a rectangular box is closed by an uniform elastic

band, fastened at two opposite sides, and fitting closely to the other

sides
;
the air being gradually removed from the box, find the successive

forms assumed by the elastic band, and when it just touches the
bottom of the box, find the difference between the external and internal

atmospheric pressures.

7. A vertical cylinder formed of a flexible and inextensible material

contains water
;
find the tension at any point.

If this flexible cylinder be put into a square box, the width of which
is less than the diameter of the cylinder, and water be then poured in

to the same height as before, find the change in the tension at any
depth.

8. An elastic and flexible cylindrical tube contains ordinary atmo-

spheric air
;

if the ends be kept closed, and the pressure of the air

inside be increased by a given amount, find the increase in the radius

of the cylinder.
If the radius be doubled by a given increase of pressure, prove that

the modulus of elasticity is in that case twice the tension that would
have been produced in the cylinder, if inelastic, by the same increase

of pressure.

9. An inelastic flexible cylindrical vessel, closed rigidly at the top,
is filled with water, and the whole rotates uniformly about the axis of

the cylinder, which is vertical
;
find the tension at any point.

10. A cast-iron main, 9 inches in diameter internally, is employed
for the transmission of water to a reservoir at a height of 300 feet.

Find the least thickness of iron which can be employed, subject to the
condition that the tension of the metal shall not exceed 5 tons weight
per square inch, assuming that a cubic foot of water contains 62*5 Ibs.

11. The tensile strength of cast-iron being 16000 Ibs. weight per
square inch of section, find the thickness of a cast-iron water-pipe
whose internal diameter is 12 inches, that the stress upon it may be

only one-eighth of its ultimate strength when the head of water is

384 feet.
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12. Supposing the cylinders of a Bramah's Press made of the same

material, and the stress to be the same in each, what should be the

ratio of the thicknesses of the cylinders ?

13. A cylindrical vessel is formed of metal a inches thick, and a

bar of this metal of which the section is A square inches, will just bear

a weight W without breaking. If the cylinder be placed with its axis

vertical, find how much fluid can be poured into it without bursting it.

14. An elastic tube of circular bore is placed within a rigid tube

of square bore which it exactly fits in its unstretched state, the tubes

being of indefinite length ;
if there be no air between the tubes and air

of any pressure be forced into the elastic tube, shew that this pressure

is proportional to the ratio of the part of the elastic tube that is in

contact with the rigid tube to the part that is curved.

15. A spherical elastic envelope is surrounded by, and full of, air

at atmospheric pressure (n), when an equal amount is forced into it.

Prove that the tension at any point of the envelope then becomes

where r, r' denote the initial and final radii.

16. A hemispherical bag of radius c, supported at its rim, is filled

with water
; prove that, at the depth #, the tension in direction of the

meridian section is proportional to

17. A bag, in the form of a paraboloid, formed of thin flexible

substance, is supported by its rim, and is filled with water
;

find the
tension at any point in the direction of the tangent to the generating

parabola at that point. Hence prove that the tension in every direction

at the vertex =wak, if h is the depth of the bag, and 4a the latus

rectum.

18. If the same bag, when filled, be closed and inverted, prove that

the tension at any point P, in the direction of the generating parabola,
varies as AN. *JSP, A being the vertex of the bag, S the focus and AN
the depth of P below the vertex.

19. An elastic spherical envelope is surrounded by air saturated

with vapour. When the air within it is at a pressure of two atmo-

spheres it is found that its radius is twice its natural length, and again
the radius is three times its natural length when the envelope contains

77 times as much air as it would if open to the air
; assuming that the

tension at any point varies as the extension of the surface, prove that

one twenty-fifth of the pressure of the air is due to the vapour which it

contains.



CHAPTER X.

CAPILLARITY.

1G7. WHEN a glass tube, of very small bore, with its two
ends open, is dipped in water it is observed that the water
rises in the tube, and that it is in equilibrium with the surface

of the water inside at a higher level than the surface outside.

If the tube is dipped in mercury, it is found that the

mercury inside is in equilibrium at a lower level than the

mercury outside.

In either case, the ascent, or depression, is greater if the

experiment be made with tubes of smaller bore.

If the surface of water be examined close to the vertical

side of a vessel containing it, the surface will be found to be
curved upwards, the water appearing to cling to, and hang
from the wall, at a definite angle.

Phenomena of this kind, with others, such as those pre-
sented by drops of liquid, or by liquid films, are grouped
together as being instances of Capillary Action.

Consider the equilibrium
of a thin column of liquid

PQ y
as in the figure.

If H be the atmospheric
pressure, the pressure at Q

= Il-w.QN.
Hence, taking tc as the

cross section, the column PQ
is acted upon by gravity, by
the atmospheric pressure IIK

downwards, and by the pres-
sure (H w . QN) K upwards.



SURFACE TENSION. 159

The weight of the column PQ being w/c . PQ . K, it follows

that the resultant of these three forces is wPN/c downwards,
and this force must in some way be counterbalanced.

This suggests the theory of the existence of a surface

tension, the vertical resultant of which, acting on the upper

boundary, at P, of the column, will exactly counterbalance

the weight of the column PN.
Various facts support the idea of the existence of a

surface tension. The familiar experiment of gently placing
a needle on the surface of water, on which it will sometimes

float, is a case in point. The needle appears to be supported
on a thin membrane, which bends beneath its weight.

In summer weather insects may be seen on the surface of

water, apparently indenting, without breaking through, the

superficial membrane.
As the results of observation and experiment we can

state three laws relating to surface tension.

(1) At the bounding surface separating air from any
liquid, or between two liquids, there is a surface tension which

is the same at every point and in every direction.

(2) At the line of junction of the bounding surface of
a gas and a liquid with a solid body, or of the bounding

surface of two liquids with a solid body, the surface is

inclined to the surface of the solid body at a definite angle,

depending upon the nature of the solid and the liquids.

(3) The surface tension is independent of the curvature

of the surface, but, if the temperature be increased, it di-

minishes.

In the case of water in a glass vessel the angle is acute
;

in the case of mercury in a glass vessel it is obtuse. In the

first case the water is said to wet the glass ;
in the latter the

mercury does not wet the glass.
When three fluids are in contact with each other, as-

suming that they do not mix together, their bounding
surfaces will meet in a line, which may be straight or curved.

If we consider a short element of this line, there will be

three surface tensions, in planes passing through it, counter-

balancing each other; and therefore, if Tl}
r

l\, T3 are the

surface tensions between the three pairs, and a, ft, 7 the
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angles between their directions, the conditions of equilibrium
are that

7\ :T2 :T3 :: sin a : sin j3 : sin 7.

Rise of a liquid betiueen two plates.

168. Take the liquid to be such as to wet the plates, as

in the case of water and glass.
Let the first figure of Art. 167 represent a vertical section

perpendicular to the plates. If T is the surface tension, a

the angle of capillarity, h the mean rise, and d the distance

between the plates, we have, for the equilibrium of one unit

of breadth of the liquid,

so that h varies inversely as d.

Apparent attraction of the two plates to each other.

Since the pressure at any point of the surfaces of the glass

inside, which is above the level of the liquid outside, is less

than the atmospheric pressure, it follows that the resultant

horizontal force on each plate is inwards, and therefore the

plates, if allowed to move, will approach to and cling to each

other.
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If the liquid is such as not to wet the plates, as in

the case of mercury and glass, the plates will be pressed

outwards by atmospheric pressure and inwards by pressure

greater than the atmospheric pressure.

They will in this case apparently attract each other.

If however the liquid is such that it wets one plate and
not the other, the level of the wetted surface E inside will

A
- F

B. E. H. 11
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be below (7, that of the outside surface, and for the other

plate the level F will be above the level D.

The resultant horizontal force on each plate will be
outwards and the plates will apparently repel each other.

169. Rise of a liquid in a circular tube.

Taking the figure of page 158 as a section through the

axis, and r as the radius of the tube, we have

%7rrT cos a = WTrr^h,

and therefore h varies inversely as r.

It will be seen that the rise in a circular tube of radius r

is the same as the rise between two plates at a distance r.

In each case the pressure at any point of the suspended
column is less than the atmospheric pressure, and, if the

column were high enough, this pressure would merge into a

state of tension, which would still follow the law of fluid

pressure, of being the same, at any point, in every direction.

The rise of sap in trees may perhaps afford an instance of

this state of things.

The Capillary Curve is the form assumed by the

liquid near a vertical wall.

Let PN be the height above the level of the water of a

point P of this curve, and consider the equilibrium of the

column PQLN, taking one unit of breadth perpendicular to

the plane of the paper.

NLG

The resultant of the tensions at P and Q is in direction

of the normal at the middle point of PQ, and, if r be the

PQ
radius of curvature, it is equal to T . .
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The vertical component of this resultant being equal to

the weight of the column,

T.
r

where 6 is the inclination of the normal to the vertical
;

/. since NL PQ cos 0,

i.e. the curvature at P is proportional to PN.
This is the property which we found to be true of the

Lintearia, and which can be shewn to be also the character-

istic property of the Elastica.

171. Needle floating on the surface of water.

It is well known that a small needle, if placed gently on

the surface of still water, will float. The reason is that the

surface is slightly indented and that the surface tensions, at

the lines of contact of the needle with the surface, have a

vertical component.
The resultant of those tensions, combined with the

resultant pressure of the liquid, sustains the weight of the

needle.

c
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BD through B, the horizontal component of the tension at

P, together with the horizontal water-pressure on BD, is

equal to the surface tension at B.

Let h be the height of the axis of the needle above the
level surface of the water, c the radius of the needle, and 20
the angle POQ.
The area PAQMN= segment PAQ + rectangle PQMN\

segment PAQ = sector POQ - triangle POQ
and PQMN= 2 (triangle POQ) - h . 2c sin B

;

:. PAQMN= c
2 + c

2 sin cos 6 - 2ch sin 6.

Hence taking a as the acute angle of capillarity, and W
as the weight of the needle, the first condition gives the

equation, 2t sin (6 a) + we (cd + c sin 6 cos 6 2h sin. 6) = W,
and, from the second condition, we obtain

t cos (6 a) + w ~ (c cos 6 A)
2 =

t,
ft

or, 4tf sin2 -
(0
-

a) = w (c cos 6 h}\

It should be noticed that the surface of the needle must

be, as it usually is, somewhat oily or greasy, so that its

surface is not wetted by water. A highly polished needle will

sink at once.

If two needles are floating in water side by side and near
each other they will run together, the reason being, as in

the case of the two plates in Art. 168, that the liquid
between the needles is entirely above the outside level,

and therefore there is an excess of horizontal pressure
inwards.

Liquid Films.

172. Liquid Films possess the characteristic property
that the tension is the same at every point, and in every
direction.

It must be carefully noticed that, since a film has two

surfaces, the tension of the film is twice the surface tension

of the liquid.

Liquid films may be formed, and examined, by shaking
a clear glass bottle containing some viscous liquid, or by
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dipping a wire frame into a solution of soap and water, and

slowly drawing it out.

In this way films, apparently plane, can be obtained,

shewing that the action of gravity is unimportant in com-

parison with the tension of the film.

These films give way and break under the least tangen-
tial action, and we therefore infer that the tension across any
line is normal to that line.

We can hence deduce the property above stated. For,

considering a small triangular portion, the actual tensions

on the sides must be proportional to the lengths of the sides,

and therefore the measures of the three tensions are the

same.

If one part of the boundary of a plane film be a light

thread, we can prove that it will take the form of an arc of a

circle.

Since the tension of the film is at all points normal to

the thread, it follows that the tension, t, of the thread is

constant.

Let T be the intrinsic tension of the film, and consider

the element PQ of the thread
;
for equilibrium, if r be the

radius of curvature,

and therefore r is constant.

173. Energy of a plane film.

In drawing out a film a certain amount of work is

expended, and this represents the energy of the film.

Consider for instance a plane rectangular film ABCD,
bounded by wires, and imagine the wire CD moveable on AC

then releasing CD the film will draw CD towards AB, and
the work done, if t be the tension, will be t . CD . A C. But,
if S be the superficial energy per unit of area, the actual

energy is S.CD.AC;
;.8=t, .

i. e. the superficial energy per unit of area is equal to the
tension per unit of length. (Maxwell's Heat, Chapter xx.)
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174. Soap-bubbles.

If t is the tension of the film of a soap-bubble, and p the

difference between the internal and external air pressures,

2t=pr.

Energy of a soap-bubble.

The work done in expanding a soap-bubble from radius r

to a radius r slightly greater is

p . 47T/'
2

(r'
-

r), or 8-rrtr (r' r).

Hence the whole work done in the formation of a bubble

of radius c = S Sirtr (r r),

,
,

, .
, c , me

and, taking r r --- - and r =
,n n

this = Sjrtc^
a
= 4?rc2

,
when n is indefinitely increased,

and therefore the superficial energy = t.

Table of Surface Tensions.

In the following list of surface tensions the first column gives the
surface tensions in milligrammes weight per millimetre of length, and
the second column gives the tensions in grains weight per inch.

It will be observed that one milligramme per millimetre is the same

an grains per
~

inch, which is '392 gr. per inch.
* *

The first column is taken from a table by Van der Mensbrugghe,
and the second column is obtained from the first by means of the

multiplier '392.

Surface Tensions in French and English measures.

Distilled water at 20 0. 7'3 2 "86

Sulphuric ether T88 "737

Absolute alcohol 2*5 '97

Olive oil 3-5 1'37

Mercury 49-1 18*8

Solution of Marseilles soap,

1 of soap to 40 of water 2'83 I'll
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EXAMPLES.

1. Having given that in a glass tube '04 inch in diameter the

capillary elevation of water is 1*2 inch, and of alcohol *5 inch, find

what it will be for each liquid in a tube '25 inch in diameter, and in a
tube '05 inch in diameter.

2. In a glass tube '08 inch in diameter, the capillary depression of

mercury is '15 inch
;

find what it will be in a tube '025 inch in

diameter.

3. Two spherical soap-bubbles are blown, one from water, and the
other from a mixture of water and alcohol

;
if the tensions per linear

inch are equal to the weight of 2i grains and fy grain respectively, and
if the radii are f inch and 1J inch respectively^compare the differences,
in each case of the internal and external air pressures.

Also compare the quantities of atmospheric air contained in the

bubbles.

4. The superficial tensions of the surfaces separating water and

air, water and mercury, mercury and air, are respectively in the ratio

of the numbers, 81, 418, 540
;
what will be the effect of placing a drop

of water upon a surface of mercury ?

5. Explain why it is that a drop of oil, placed on the surface of

water, spreads out rapidly into a layer of extreme tenuity.

6. Prove that if a light thread with its ends tied together forms

part of the internal boundary of a plane liquid film the thread will

take the form of a circle.

7. If two soap-bubbles, of radii r and r', are blown from the same

liquid, and if the two coalesce into a single bubble of radius R, prove
that the tension of the bubble is to the atmospheric pressure in the

ratio of

ffi-^-r* to 2(r
2 -H/2-#2

).

8. If the pressure inside a soap-bubblo is pQ when its radius is r
,

4.

and if after a volume of air -no? at atmospheric pressure is forced
3

into it the pressure and radius become p and r find p and pQ
in terms

of a, r
,
r and the atmospheric pressure.

9. If water be introduced between two parallel plates of glass at

a very small distance d from each other, prove that the plates are

pulled together with a force equal to

2 At cos a
, _,

.

-j h /ft sin a,

A being the area of the film, and B its periphery.
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10. A soap-bubble is filled with a mass m of a gas the pressure of

which is Kp, p being its density. The radius of the bubble is a when it

is first placed in air. The temperature remaining unchanged, prove

that, for a slight increase or of the atmospheric pressure, the small

decrease x of the radius is given by the equation

where t is the tension of the film.

11. A small cube of volume a3
floats, with its upper face horizontal,

in a liquid such that its angle of contact with the surface of the cube
is obtuse and equal to TT O.

If w is the intrinsic weight of the liquid and w' of the cube, and if

ivc2 is the surface tension, prove that the cube will float if

uf c2

9 cosa.

12. Find the condition that a small cylinder may float in water,
the angle of capillarity being obtuse.

13. A cylindrical rod hangs down vertically so as to be partly
above and partly below the surface of a liquid resting in a large vessel.

Shew that its apparent weight is equal to its weight in air increased by
the (positive or negative) quantity by which the weight of the volume
of liquid drawn up above the plane level exceeds the weight of a

quantity of liquid equal in volume to the portion of the solid below
the plane level. Alter the statement to suit cases in which the solid

depresses the liquid.

14. Prove that, when liquid rises in a fine capillary tube, the

potential energy, which is thereby produced, of the liquid, is indepen-
dent of the radius of the tube.

15. Two spherical soap-bubbles, made from the same mixture of

,soap and water, are allowed to form a single soap-bubble ; prove that
a diminution of surface takes place, and an increase of volume, and
that the numerical expressions for the decrease and increase are in

a constant ratio to each other.

16. Two soap-bubbles are in contact
;

if r15 r
2
be the radii of the

outer surfaces, and r the radius of the circle in which the three surfaces

intersect, prove that



CHAPTER XL

THE EQUILIBRIUM OF FLUIDS UNDER THE ACTION OF ANY
GIVEN FORCES.

175. IN any field of force the measure of the force at

any point is the force which would be exerted upon the

unit of mass supposed to be concentrated at that point.
As in Art. (10), it can be shewn that the pressure at any

point is the same in all directions
;

for if we consider the

equilibrium of a very small prism, the forces at all points
of the prism will be ultimately equal and parallel, and the

case then becomes the same as that of a prism under the

action of gravity.

176. The measure of the force at a point, in a given
direction, multiplied by the density, is equal to the rate of
change, per unit of length, of the pressure in that direction.

If P be the point, take any length PQ in the direction

considered and describe a very thin cylinder about PQ.
The equilibrium of this cylinder is maintained by the

pressures on its ends and on its curved surface and by the

external forces in action.

Therefore the difference of the pressures on the ends
P and Q is equal to the force on the cylinder in the direc-

tion PQ. Hence, if K is the cross section, and if PQ is very
small, we may consider the density of the cylinder uniform,
and we may also take /, the resolved part of the force in the
direction PQ, to be the same at all points of PQ, we then

obtain, ifj; and^/ are the pressures,

so that

which is the rate of change of pressure.
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177. DEF. Surfaces of equal pressure are surfaces at

all points of which the magnitude of the pressure is the same.

Surfaces of equal pressure are at every point perpen-
dicular to the resulting force.

To prove this, consider two consecutive surfaces of equal
pressure containing between them a stratum of fluid, and let

a small circle be described about a point P in one surface,
and a portion of the fluid cut out by normals to that surface

through its circumference.

This small cylinder of fluid is kept at rest by the
external force and by the pressures on its ends and on its

circumference.

The pressures at all points of the circumference being
equal, the pressures on the two ends must be counter-
balanced by the external force, which must therefore act
in the direction of these pressures, i. e. perpendicular to the
surface of equal pressure.

Again, if d be the distance at P between the consecutive

surfaces, we have, as before,

ptcdf=(p'-p)fc,

f being the magnitude of the resultant force on unit mass,

so that pdoc-, and in the case of a homogeneous liquid,

d oc -

178. If in any field of force a particle be in contact
with a smooth surface, it will be in equilibrium if the
normal to the surface coincide with the direction of the
resultant force.

Surfaces of equilibrium are therefore at all points perpen-
dicular to the resultant force.

If a particle be moved over a surface of equilibrium no
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work is done again.st the force, and these surfaces are there-

fore surfaces of equal energy, or equipotejitial surfaces.

If a particle of mass unit be carried along the normal
from one surface to another the work done isy*. PQ, which is

the change of energy and is constant
;

.'.f.PQis constant.

Surfaces of equal pressure are also surfaces of equal

density ;

For pfd is constant and we have just shewn that fd is

constant, .'. p is constant.

EXAMPLES.

179. 1. A mats of liquid at rest under the action of a force to a

fixed point varying as the distance from that point.

The surfaces of equilibrium, and therefore of equal pressure, are

clearly concentric spheres, and the free

surface is a sphere.
To find the pressure at any point P,

take a thin cylindrical column from P to

the surface and observe that its equi-
librium is maintained by the pressure
at the end P counterbalancing the attrac-

tive force.

If K be the cross section, OP= r,

OA=a, and if fir be the force at the
distance r,

p<= force on the column AP

= pK (a
-

r] p , by Leibnitz's theorem
;

The Pressure on a diametral plane= Force on a hemisphere

2 3a=
pita*, n .

~ =

2. Liquid at rest under the action of forces to any number of centres

varying as the distances.
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It follows from Leibnitz's theorem that the resulting force is directed

to a fixed point and varies as the distance from that point ;
this case

is therefore the same as the preceding.

3. Heavy liquid at rest under the action of a force to a fixed point

varying as the distance from that point.

Taking /j.c
to represent the weight of unit mass, the resultant force

011 any element of the liquid is directed to a fixed point at a depth
c below the centre of force, and the surfaces of equal pressure are there-

fore spheres having this lower point as centre.

4. Liquid at rest under the attraction of a straight rod, the molecules

of which attract with forces varying inversely as the square of the dis-

tance.

If AB be the rod, it can be shewn by elementary geometry that the

direction of the resulting attraction at any point P bisects the angle
APB

;
from this it follows that the surfaces of equal pressure are

confocal spheroids, having their foci at A and B.

5. Liquid at rest under the action of gravity and of forces perpen-
dicular to the horizontal plane base of the vessel containing the liquid
and proportional to the distance from that base.

Let a be the height of the free surface above the base, and consider

the equilibrium of a vertical cylinder of liquid extending from the

surface to the depth a -z.

Then if p is the pressure at the height z above the base arid K the

cross-section of the cylinder, the equation of equilibrium is

PK.
=w (a

-
z) K+ p< (a

-
z) .

p. ^- ,

by Leibnitz's theorem
;

p w (a
-

z) + %[ip (a
2 - 2

).

6. Heavy homogeneous liquid, every particle of which attracts every
otJier with a force which varies as the distance, Jills a sphere ; find the

surfaces of equal pressure.

7. A sphere is filled with, fluid at rest but each particle of it is acted

on by a force tending to a point on the sphere and varying as the

distance. If the pressure at the other end of the diameter through this

point be zero, prove that the pressure at the given point is to the pressure
at the end of a perpendicular diameter as 2 : 1.

8. A mass of liquid is at rest on the outside of a sphere under the

action of forces such that the force on any clement m of the liquid is

directed to the centre of the sphere, and is equal to mf, where f is the same

for all the elements of the liquid. Prove that the resultant pressure on a
band of the sphere cut off by any two parallel planes is proportional
to the mass of a volume of the liquid which would be contained between

two coaxal cylinders whose radii are equal to the distances of the planes
from the centre of the sphere, and whose heights are each equal to the

depth of the given liquid.



CHAPTER XII.

SOLUTIONS OF VARIOUS PROBLEMS.

180. Centre of Pressure. A general expression can be obtained for

the depth of the centre of pressure of any plane area.
* Let the area be divided by horizontal lines into a number of very

small portions, and let a be the area of one of these portions and z its

depth below the surface.

Then the pressure upon it=wza, and if & be the depth of the centre

of pressure, we have by the usual formula for the centre of a system
of parallel forces,

_
'S.wza

~
2 (za)

'

w'S, (za) being the pressure on the whole area.

Ex. An isosceles triangle is immersed vertically, its base being
horizontal and its vertex A at a depth c below the surface.

Let AD=h
y

AN= . and NM='-,n n

the line AD being divided into n equal portions.

Then, drawing PP through N parallel to the base BC,

rh
,

A rh
PP'= 2 tan-, and z=c-\ ,

Taking the sum from r= l to r= n,

2 (A)-2 tan
|

Now sr =

and



174 CENTRE OF PRESSURE.

T> C

and making ?& infinite this becomes

Also 2 (was)
= the whole pressure

the depth of the centre of pressure

4 A2

K,

181. In the third Example of Art. 55 the actual line of action of

the fluid pressure may be found by a geometrical process.

Suppose OF, the altitude of the cone, divided into small equal
parts NN'i and let horizontal planes
through the points of division mark out
the surface of the semi-cone into a num-
ber of semicircular rings.

Let PN be the radius of one of these

rings ;
then the pressure at every point

of the ring, and therefore the resultant

pressure upon the ring, passes through
the point F in the axis, PF being the
normal at P.

Moreover, the pressure upon the ring
oc ON (surface of ring)

oc ON. PN,
oc ON. NV.
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But if EK be the normal at E,

ON.NV*EP.PV,
oc KF. FV.

Upon TTFas diameter describe a sphere, and let FQ be the ordinate

of the sphere perpendicular to KV;

and the pressure on the ring oc

Hence we have to find the centre of a number of parallel forces

acting at all points of KF and proportional to the areas of the sections

of the sphere passing through those points.
* This is clearly the same as the centre of gravity of the sphere, and

it is therefore the middle point of AT.
The line of action RS therefore passes through this middle point R

in the direction given by the equation

tan = -
tana,

where & is the inclination of RS to the horizon.

S is therefore the centre of pressure.
To find its position, we have

RM_RV-MV
~SM~ J/F.tana ;

RV TT

J/T-l=2 tan2a;

RV

But

SV= J/Fseca= '

182. Oiie asymptote of an hyperbola lies in the surface of a fluid',
it is required to find the depth of the centre of pressure of the area

included between the immersed asymptote, the curve, and two given
honzontal lines in the plane of the hyperbola.

Taking OA, OB as the axes, let PN, P'N' be two lines near each
other and parallel to OA.

The pressure on the small area PN'
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But ON.PNsma is the area of the parallelogram OMPN, the

constancy of which is a known property of the hyperbola.

Hence the pressure on PN' varies as its vertical thickness, and
therefore the depth of the centre of pressure of any finite area

contained between two horizontal lines, the curve and the asymptote,
is half the sum of the depths of the horizontal lines.

183. A triangular area is immersed with one angular point in the

surface ; it is required to find its centre of pressure.

Dividing the base EC into a large number of equal parts, the centre

of pressure of an elementary
triangle AP will be at a point -^_ G JD
R such that

P being the middle point of

the base of the elementary
triangle.

If AE^- AB, the centre of

pressure, A', of ABC will be on
the line EF parallel to BC.

Further, all the elementary
triangles being equal, the pressure on. AP will be proportional to the

depth of its centre of gravity, and therefore will vary as RG.
Hence it follows that A" is the same as the centre of gravity of the

frustum EF of a triangle, vertex G
y
and

or = _2 aE*+GE.GF+GF>
_,

1 BW+BD.CD+CD*.

If ^, y be the depths of B and C,

the depth of K=\
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We can now by the aid of Art. 50 find the depth, 2, of the centre of

pressure of a triangle ABC in terms of the depths a, /3, y of its angular
points.

Draw a horizontal plane through A and remove the liquid above
;

then, if z' be the depth of the centre of pressure below A,

,_1
2 /3 +y-2a

Replacing the liquid, and taking S for the area, we have a new
pressure wSa at the centre of gravity, and therefore

y ty /3+y-2a,. . e a-f/3+ y
<?- z=wS - - / w - -*-

If h, k, I be the depths of the middle points of the sides of the

triangle,

A similar method may be employed to find the centre of pressure of

a sector of a circle with its centre in the surface.

Taking the case of a sector with one bounding radius (c) in the

surface, divide the sector into a large number of small triangles ;
the

centres of pressure of these triangles will be on the arc of a circle of
o

radius '-
c, and it can be shewn, by the summation of a trigonometrical

series, that the depth of the centre of pressure is

3c 2n-sin2a
16 1-cosa '

2a being the angle of the sector.

184. A cylindrical vessel, open at the top, is inverted and pushed
down vertically in water ; the substance of the vessel being of greater

density than water, it is required to prove that, at a certain depth, it

will be in a position of equilibrium which for -vertical displacements is

unstable.

As the vessel is forced downwards the pressure of the water com-

presses the air within, and there must be some depth at which the air

will be so compressed that the weight of the water displaced by the

vessel and the air is exactly equal to the weight of the vessel and
air together. At this point there will be equilibrium ; but, if the

vessel be slightly lifted, the air within will expand, and the weight
of water displaced will be too great for equilibrium ;

hence the vessel

will ascend. If on the other hand it be slightly depressed, a further

compression of the air will take place, and the vessel will then descend.

185. A square lamina floats with its plane vertical, and one angular
point below the surface ; it is required to find its positions of equilibrium.

B. E. H. 1 2
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Let PQ be the surface of the liquid, G the centre of gravity of the

square, and // of the liquid displaced, E being the middle point of PQ.

Then, if OP= x, and OQ=y, and if
/>, a- be the densities of the

liquid and the lamina, and 2a the side of the square,

-
4:0-0?, or xy= 8 - a2 c2 suppose.

We have now to express the condition that Gil is vertical.

Draw HN perpendicular to OP
;

Then -x, and

Hence, if (7J/, HL be perpendicular and parallel to OP, the tangent
of the angle which JIG makes with OP

_GL_GM-HN
a
~Z y

~HL~ OM-ON
~
a_\ x

'

but this angle is the complement of OPQ, of which the cotangent
. x

or

This equation gives

and

The first result gives the symmetrical position of equilibrium, for

which x==*c.



SOLID CONE. 179

From the second,

Hence, if > c2
,

i.e. if
p~ > , there are two other positions of

equilibrium.

If - = -TT ,
it will be seen that these three positions coincide.

o" y

186. To find the vertical angle of a solid right cone on a circular
base which can float with its highest generating line horizontal.

Let the figure be a section of the cone through its axis AO, and let
AC be the horizontal generating line.

G being the centroid of the cone, produce
BG to D.

, DN EN , DN CN
Then _ =

,
an(i 777

=
fY)'

OG.BN=OA.CN,

and .-.



180 PROBLEMS.

If PN be the surface of the mercury within the vessel, and n' the

pressure of the air within,

n' volume AQM AM2

but 11'= II + w . A J\
T
j
and n= wh

; .

/<+# /45\ 2 A2

/r vv ^

Writing for y ,
this becomes

lo li

from which we find easily by trial z 9, and that this is the only real

root,

and .'.

188. A cylindrical vessel contains a given quantity of liuid. In
this fluid is placed another cylindrical vessel of half the diameter of

the first and containing half the quantity of fluid which is of half the

specific gravity of that in the first vessel. In this second vessel is

placed a third related to the second as the second is to the first
;
and

so on indefinitely. Find the distance between the surfaces of the first

and nth

fluids, neglecting the weights of the vessels.

Let w,
-
w,

-p
w, &c. be the intrinsic weights,

r, -r, 2 r, ...... the radii, and

k, /<!, Aa , ...... the heights of fluid in the respective cylinders.

2
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If 7rr
2/i= F, the whole weight of fluid in all the cylinders beginning

with the second

This whole weight is floating in the fluid of the first cylinder, and
therefore if z be the depth immersed of the second cylinder,

whence

Tr

~4~
=

3
w l ==

3

But the effect of this immersion is to raise the surface in the first

cylinder to a certain height x such that

or

The base of the second cylinder therefore just descends to the base

of the first, and the same is the ca*e with all the successive cylinders.
Hence the successive heights of the surfaces above the base are

and the required distance is

189. A straight tube ABCD of small bore is bent at B and C so as

to make ABC and BCD right angles, AB
being equal to CD. The tube thus formed
is moveable in a vertical plane about its

centre of gravity, and being placed with BC
horizontal and downwards, water is poured
in (at A or D] so that c is the length of BA
or CD occupied by the fluid. It is required
to determine the condition of stability.

Let 2?(7=2a, and take b as the distance
of G, the centre of gravity of the tube, from

Z?(7, and P, Q as the surfaces of the water.
Turn the tube through a small angle 6 so

that P', Q' are the new surfaces, and there-

fore
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If the moment of the weight of the water about G be in the

direction opposite to the displacement, the equilibrium will be stable.

Taking K as the area of a section of the tube, this moment

=w< {2ab sm0+ (c-a tan 6) EN -(c+ a tan 6} E'N'},

E, E' being the middle points of P'B, Q'C\ EN, EN' perpendiculars on
the new vertical through 6r, and FL perpendicular to EN.

But EN=LiV+BF cos B - EB sin

= b sin 6+a costf - (c-tan#) sin 0,

and E'N'= a cos $+ -
(c -+ a tan 6) sin 6 b sin 6.

Hence, supposing 6 very small, sin =
0, cos 6= 1, and the moment

= WK (ZabO+ 2bcd- c*0 -

and this is positive if

If c> 6, this leads to

to

If we suppose the ends A, D, joined by a continuance of the tube
and the figure ABCD to be a square, b= a, and the condition is simply

c<2,
so that in this case the equilibrium is always stable.

190. Particular cases of curves of buoyancy.

If the floating body be a plane lamina bounded, so far as regards
the immersed portions, by an elliptic arc, the curves of buoyancy are
similar and similarly situated concentric ellipses. This can be seen at
once by projecting, orthogonally, the elliptic arc into a circle.

If the centre of gravity of the lamina is situated on the axis of the

ellipse, there will be three positions of equilibrium, or only one,
according as the centre of gravity is above or below the centre of

curvature, at the end of the axis, of the curve of buoyancy, because
three normals can be drawn to the curve of buoyancy in the former
case and only one in the latter case.

Moreover this centre of curvature being the metacentre for the case
in which the axis of the ellipse is vertical, it follows that in the first



CURVES OF BUOYANCY. 183

case the central position of equilibrium will be unstable, and therefore

the other two will be positions of stable equilibrium, in accordance
with the law that positions of stable and unstable equilibrium occur

alternately.
If the boundary of the lamina be a parabolic arc, the curves of

buoyancy are arcs of an equal parabola.
To prove this, let QQ' be the line of floatation, PV the diameter

conjugate to the chord QQ', and QD the perpendicular upon PV.
The area immersed

-\rv.w.

But it is a known property of the parabola* that if A is the vertex

and S the focus,

and therefore, the area immersed being constant, it follows that QD
and P J

"
are both constant.

If 11 is the centroid of the displaced liquid,

and .'. PH\iA constant.

Hence the locus of //, which is the curve of buoyancy, is the same

parabola shifted to the right.

191. If the immersed portion of the lamina is a rectangle, we can

prove that the curve of buoyancy is a parabola.

If E is the middle point of the line of floatation Pty, any straight
line through E cuts oft' the same area.

Take // and //' as the centroids of the displaced liquid in the two

positions given by the figure, that is, when PQ and P'Q' are the lines of

floatation.

* See Geometrical Conies, Art. 46.
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Then if PQZa, and AE=c, and if H'N is perpendicular to

2ac.^TAr=-
2,

-
-atantf)6 J

= = a3 tan2
<9,o

and . a- 2 tan <9
-

= 5 a
3 tan 0.

o

Q'

Hence

and therefore the locus of //' is a parabola.
This is a particular case of the triangular prism of Art. G9, and, as

in that case, the curves of floatation and buoyancy are similar curves.

The curve of floatation is in fact a parabola with its vertex at J2,

and axis upwards, flattened into a straight line.

It may be remarked that, as the centre of similarity of the two
curves is moved off to infinity, the visible realization of this case as the

limiting case would require the application of a very powerful geo-
metrical microscope.

Since the latus rectum of the curve of buoyancy is 2a2
/3c it follows

that the radius of curvature at H is 2
/3c, and therefore there are three

positions of equilibrium, or only one, according as HG is greater or
less than 2

/3c. Further the centre of curvature being the metacentre,
the central position of equilibrium in the first case will be unstable,
and the other two will be positions of stable equilibrium.
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It may be useful to the student to work out this case without the
aid of the curve of buoyancy.

Thus, if K and L are the centroids of the triangles EQQ', EPP\
and if HN, KM, LM' are perpendicular to

the horizontal line through (7, and if GA =
?>,

and 0=the small angle QEQ\ the moment
about (?, tending to turn the rectangle back
to its original position,

>.<?*+!
GM'-2ac.GS

But

and

GM'=
^a+ EG.6,

GN=HG.B;
.'. the restorative moment is equal to

w (I a?0 - 2ac0 . NG\
,
which is positive if HG<~.

\6 J 5C

NOTE ON ART. 87.

The value of a is very nearly the same for all gases, and moreover
remains nearly the same for different pressures. M. Regnault has

investigated the values of a for different substances
;

for instance,
between and 100 he finds the value of a for carbonic acid gas
to be '003689. It has also been observed that the coefficients for

two gases separate more from each other when the pressure is very
much increased.

Ilegnault's results : values of a for

Air -003665.

Hydrogen -003667.

Nitrogen -003668.

Sulphuric Acid -003669.

Hydrochloric Acid... -003681.

Cyanogen -003682.

Carbonic Acid , .. -003689.
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NOTE ON ART. 158.

The following are approximate values of the specific heats of a few
substances.

Water 1-

Thermometer-glass... '198

Iron -114

Zinc -1

Mercury -03

Silver '06

Brass . . . -09.

SPECIFIC GRAVITIES.

The specific gravity of Water at 60 F. is taken to be the unit.

Diamond 3*52

Sulphur 2-

Iodine 4-94

Arsenic 5'959

Gold 19-4

Platina 21-53

Silver 10'5

Mercury 13-568

Copper 8-85

Tin 7-285
Lead 11-445

Zinc... 6-862

Nickel 8-38

Iron 7-844

Flint-glass 3'33

Plate-glass 2*5

Marble 2*716
Rock-salt 1-92

Ivory 1-917

Ice (at 0) 0-926

Sea-water 1 -027

Olive-oil 0-915

Alcohol 0-794
.Ether . .. 0-724

Ratios of the densities of gases and vapours of different substances to

that of atmospheric air at the same temperature and under the same

pressure.

Oxygen 1-103

Hydrogen 0'069

Nitrogen 0*976
Chlorine 2*44

Bromine 5-395

Iodine 8'701

Arsenic 10'365

Mercury 6*978

Water 0-62

Alcohol 1-613

Carbonic Acid 1 -524

Ammonia 0*591

Sulphurous Acid 2 *2 1 r

Sulphuric Acid 2 -763
jEther . . 2-586



MISCELLANEOUS PROBLEMS IN HYDROSTATICS.

1. A heavy rope, the density of which is double the density of

water, is held by one end, which is above the surface, the other end

being under water
;

find the tension at the middle point of the

immersed portion of rope.

2. A triangle ABO is immersed in a fluid, its plane being vertical,

and the side AB in the surface. If be the centre of the circum-

scribing circle, prove that pressure on triangle OCA : pressure on

triangle OCB :: sin 2B : sin 2A.

3. Water is gently poured into a vessel of any form
; prove that

when so much water has been poured in that the centre of gravity of

the vessel and water is in the lowest possible position, it will be in the

surface of the water.

4. If the cone be placed on its side on a horizontal table, compare
the whole pressures on the curved surface and the base.

5. A triangle ABC has its plane vertical and the side AB in the

surface of a liquid in which the triangle is immersed
;
divide it by

straight lines drawn from A into n triangles on each of which the

pressure shall be the same.

6. A solid displaces
-

,

- and - of its volume respectively when it

floats in 3 different fluids
;
find the volume it displaces when it floats

in a mixture formed, 1st, of equal volumes of the fluids, 2nd, of equal
weights of the fluids.

7. A float is made by attaching to a hemisphere (radius r) a con
of the same base, and axis of length 2n If this will float in a fluid

a cone

with the cone just immersed, and in a fluid B with the hemisphere just

immersed, compare the densities of A and B.

8. If mercury is gradually poured into a vessel of any form

containing water, prove that the centre of gravity of the mercury and
water will be in its lowest position when its height above the common
surface bears to the depth of water the ratio of the density of water to

that of mercury.
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9. A cylinder of density 2p floats with its axis vertical between
two liquids of densities p and 3p, its height being equal to the depth of

the upper liquid ; prove that the pressures on its ends are in the ratio

of 1 to 5.

10. A triangular area is wholly immersed in a liquid with one side

in the surface. Prove that the horizontal straight line in the plane of

the area through its centre of pressure divides it into two portions, the

pressures upon which are equal.

11. Shew that the centre of pressure of a parallelogram immersed
with one angular point in the surface and one diagonal horizontal lies

in the other diagonal and is at a depth equal to -^ of the depth of its

lowest point.

12. A parabolic lamina floats in a liquid with its axis vertical and
vertex downwards ; having given the densities, <r, p, and the height (A)
of the parabola, find the depth to which its vertex is immersed.

13. A heavy sphere, weight TF, is placed in a vertical cylinder,
filled with atmospheric air, which it exactly fits. Find the density of
the air in the cylinder when the sphere is in a position of permanent
rest, r being the radius and h the height of the cylinder.

14. A cone, of given weight and volume, floats in a given fluid

with its vertex downwards
;
shew that the surface of the cone in

contact with the fluid is least, when the vertical angle of the cone is

15. A hollow sphere is filled with fluid and a plane drawn through
the centre divides the surface into two parts, the total normal pressures
upon which are as m : 1

;
find the position of the plane and the greatest

and least values of m.

16. A uniform tube is bent into the form of a parabola, and

placed with its vertex downwards and axis vertical : supposing any
quantities of two fluids of densities p, p to be poured into it, and r, r'

to be the distances of the two free surfaces respectively from the focus,
then the distance of the common surface from the focus will be

rp-r'p'

17. If there be n fluids arranged in strata of equal thickness, and
the density of the uppermost be p, of the next 2p, and so on, that of

the last being np ;
find the pressure at the lowest point of the nth

stratum, and thence prove that the pressure at any point within a
fluid whose density varies as the depth is proportional to the square of

the depth.

18. A fine tube, bent into the form of an equilateral triangle with
its vertex upwards and base horizontal, contains equal quantities of
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two liquids, each liquid filling a length of the tube equal to a side of

the triangle. Prove that the height of the surface of the lighter fluid

above that of the heavier : the altitude of the triangle :: p
-
p :p' + p,

p and p' being the densities of the liquids.

19. A cylinder is filled with equal volumes of n different fluids

which do not mix
;
the density of the uppermost is p, of the next 2p,

and so on, that of the lowest being np : shew that the whole pressures
on the different portions of the curved surface of the cylinder are in

the ratios

I 2
: 2 2

: 32
: ...: n*.

20. Equal volumes of n fluids are disposed in layers in a vertical

cylinder, the densities of the layers, commencing with the highest,

being as 1 : 2 : ...... : n
;
find the whole pressure on the cylinder, and

deduce the corresponding expression for the case of a fluid in which the

increase of density varies as the depth.

Also, if the n fluids be all mixed together, shew that the pressure
on the curved surface of the cylinder will be increased in the ratio

21. A hollow cone floats with its vertex downwards in a cylindrical
vessel containing water. In the position of equilibrium the area of the

circle in which the cone is intersected by the surface of the fluid bears

to the base of the cylinder the ratio of 6 : 19. Prove that, if a volume
19

of water equal to ths of the volume originally displaced by the cone
o

be poured into the cone, and an equal volume into the cylinder, the

position in space of the cone will remain unaltered.

22. A. body is wholly immersed in a liquid and is capable of

motion about a horizontal axis. It is found that the total pressure of

the fluid on the surface is increased by A when the body is turned

through one right angle, and further increased by B when it is turned

through another right angle. Prove that the difference between the

greatest and least pressures on the surface is

23. A frustum of a right cone, formed by a plane parallel to the
base and bisecting the axis, is closed and filled with fluid by means of
a thin vertical pipe, which is also filled. If the top of this pipe be on
a level with the vertex of the cone, find the whole pressure on the
curved surface, and if this bear to the pressure on the base the ratio of

7 to 6, find the vertical angle of the cone.

24. If in the last example the base be removed, and the vessel

then placed on a horizontal plane, and filled to the top of the pipe, find

the least weight of the vessel wrhich will prevent its being lifted.

25. An open cylindrical vessel, axis vertical, contains water, and a
cone the radius of which is equal to that of the cylinder is placed in

the water vertex downwards. Prove that, jn the position of equili-
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briuiii, ii the density of the cone be one-eighth of the density of water,
the surface of the water will be raised above its original level through
a height equal to one-twenty-fourth the height of the cone.

26. A solid cone of wood (density a-) rests with its base on the

plane base of a large vessel, and water (density p) is then poured in to

a given height ;
B a piece of the same wood is then attached by a

string to the vertex of the cone so as to be wholly immersed
;
find

what the size of the piece must be in order that it may just raise the

cone.

27. An elliptic lamina floats with its plane vertical in a liquid ot

twice the density of the lamina, 1st, with its major axis vertical, 2ndly,
with its major axis horizontal

;
determine in each case whether the

equilibrium is stable or unstable, the lamina being displaced in its own

plane.

28. A regular tetrahedron has one of its faces removed and is

filled with fluid
;
the other faces, which are capable of moving round

the lowest point, are kept together by means of strings which join the

middle points of the horizontal edges of the vessel
;
shew that the

tension of the strings is to the weight of the fluid as \/3 to 4 \/2-

29. A number of weights of different densities are attached to

points of a thin weightless rod. Find the density of the fluid in which
it is possible for them to rest, when all 'are totally immersed.

If there be three weights Wlt W2 , W^ of densities p1? p2 , p3 ,

respectively, and #, y be the distances of W
lt

TF
3 from TF

2 ,
the middle

weight, shew that, in order that the system may rest in equilibrium in

any position when totally immersed in the corresponding fluid, the

following condition must hold true,

W
3 V>2 Pi/ Wl \P.3 P'2/

Ir
2 \Pl P/

30. Two heavy liquids rest in equilibrium, one on the top of the
other

;
one extremity of a heavy rod of length (a) is fixed at a given

depth (c) in the lower liquid, and the other end reaches into the upper
liquid. Find the positions of equilibrium, and determine whether they
are stable or unstable.

31. A glass cylindrical vessel is inverted and plunged into water
;

by inclining the vessel half the air is allowed to escape, and the

cylinder is then held vertically with the open end immersed and raised

until one-fourth only of its length is below the surface
;
find the height

of the water within.

32. A parallelogram is immersed in a fluid with a diagonal
vertical, one extremity of which is in the surface of the fluid. Through
this point lines are drawn dividing the parallelogram into three equal
parts. Compare the pressures on these three parts ; and, if P2

be the

pressure on the middle part, and 1\ P3 those on the other two, prove
that
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33. If a solid right cone whose angle is 2a be immersed in a liquid
with its vertex in the surface and axis vertical, prove that if P be the

whole pressure on the curved surface and base, and P1 the resultant

pressure,
P _ 2 + 3 sin a

P'
~

sin a

Also, determine this ratio when the axis is inclined at an angle 6 to

the vertical, being less than the complement of a.

34. Three faces of a regular tetrahedron, which rests with the

remaining face on a horizontal table, are heavy plates capable of

moving about their horizontal edges. If they fit accurately and the
tetrahedron be filled with fluid through a small hole at the vertex,
shew that it will hold together if the ratio of the weight of each plate
to the weight of the contained fluid be not less than 9 to 2.

35. A thin conical surface (weight W} just sinks to the surface of

a fluid when immersed with its open end downwards
;

but when
immersed with its vertex downwards a weight equal to mW must be

placed within it to make it sink to the .same depth as before. Shew
that if a be the length of the axis, and h the height of a column of the

fluid, the weight of which equals the atmospheric pressure,

36. A piston without weight fits into a vertical cylinder, closed at

its base and filled with air, and is initially at the top of the cylinder ;

water being poured slowly on the top of the piston, find how much can
be poured in before it will run over. Explain the case in which the

height of the cylinder is less than the height of the water barometer.

37. Within a cylinder of height a, open at the top, is placed
another cylinder of the same height, and half the content, closed at the

toj), and a quantity of mercury sufficient to fill the interior cylinder is

poured into the exterior. If x and y be the distances of the surfaces in

the two cylinders from the top, prove that

and find x and y ;
h being the height of the mercury barometer.

38. A plane rectangular lamina is bent into the form of a

cylindrical surface of which the transverse section is a rectangular
hyperbola. If it be now immersed in water so that first the transverse,

secondly the conjugate, axes of the hyperbolic sections be in the

surface, prove that the horizontal pressure on any the same immersed
surface will be in the two cases the same.

39. A double funnel formed by joining two equal hollow cones at

their vertices stands upon a horizontal plane with the common axis
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vertical, and fluid is poured in until its surface bisects the axis of the

upper cone. If the fluid be now on the point of escaping between the
lower cone and the plane, prove that the weight of either cone is to

that of the fluid it can hold as 27 : 16.

40. A square lamina ABCD, which is immersed in water, has the
side AB in the surface

;
draw a line BE to a point E in CD such that

the pressures on the two portions may be equal. Prove that, if this be
the case, the_distance between the centres of pressure : the side of the

square :: \/505 : 48.

41. A cubical vessel, having one of its vertical sides moveable
about a hinge in the base, is filled with water, the moveable side

inclining inwards
; prove that the tangent of its inclination to the

horizon is to unity as the weight of the side is to the weight of the
water contained by the vessel when the side is vertical.

42. A semicircular area is immersed in a liquid with its bounding
diameter in the surface

;
find the pressure on any portion of the area

contained between two radii, and find the area contained between the
surface and a radius such that the pressure upon it may be one-fourth
of the pressure upon the whole.

43. A vertical cylinder is filled with liquid ; find the centre of

pressure of the portion of its curved surface contained between two
vertical planes through the axis.

44. Find the centre of pressure of the surface contained between
two planes drawn through a radius of the top of the cylinder, and
through the extremities of that diameter of the base which is perpen-
dicular to the radius.

Also, find the centre of pressure of the same surface when the
cylinder is inverted.

45. A solid, in the form of a right pyramid, the base of which is a
regular polygon of n sides, is completely immersed in a liquid, with its
base vertical

;
find the direction and magnitude of the resultant pressure

on its inclined surfaces.

Solve the same question when the base is inclined to the vertical at
a given angle.

46. An oblique cone on a circular base is completely immersed in
water with its base vertical

;
find the resultant pressure on the curved

surface.

47. A vessel in the form of an oblique cone on a circular base is

held with its base horizontal and vertex downwards and is filled with
liquid ;

find the resultant pressure on the surface and its point of
action.

48. If a parabolic area be just immersed in water, and be turned
about in a vertical plane so that the surface is always a tangent, prove
that the centre of pressure of the part above a fixed horizontal plane
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lies in the diameter through the point of contact and at a given
distance from that point.

49. A portion of a right circular cone cut off by a plane through
the axis and a plane perpendicular to the axis is immersed in fluid with
the vertex in the surface, and axis vertical

;
shew that the resultant

horizontal pressure on any part of the curved surface intercepted
between two horizontal planes will pass through the centre of gravity
of the intercepted portion of the cone.

50. A hollow cylinder is closed at one end and open at the other,
and a fixed stop perpendicular to the axis divides the cylinder into two

equal parts cutting off the communication between the parts ; the

weight of the whole cylinder is half the weight of the water which it

would contain. Prove that if the cylinder be placed mouth downwards
in water the depth of the stop in the position of rest will be only half

as great as if a hole had been made in the stop.

51. If a thermometer plunged incompletely in a liquid whose

temperature is required indicate a temperature t,
and r be that of the

air, the column not immersed being ra degrees, prove that the correc-

tion to be applied is -
, being the expansion of mercury"" "

in glass for 1 of temperature, assuming that the temperature of the

mercury in each part is that of the medium which surrounds it.

52. A right circular cone is held in a liquid with its axis horizontal,
and the highest point C of its base in the surface. Find the magnitude
and direction of the resultant pressure on the curved surface, and
determine the angle of the cone when the line of action of this pressure,

(1) passes through C, (2) is parallel to a generating line.

53. Inside a solid sphere, formed of homogeneous substance, there
is a spherical hollow, which is half filled with liquid ; if the sphere
rests on a horizontal plane, prove that, in the position of stable

equilibrium, the spherical hollow will be in its highest position if the

density of the sphere is greater than twice the density of the liquid.

54. Given the height of the water barometer and the specific

gravity of mercury, find the height of the barometric column in a

cylindrical diving-bell at a given depth in water.

How will this height be affected if a block of wood be floated inside

the bell, first, if the wood comes from outside, secondly, if it falls from
a shelf in the interior.

55. A conical vessel, having its vertex downwards, is filled with
two liquids which do not mix, their common surface bisecting the axis

;

compare the whole pressures on the two portions of the surface.

56. A tube, in the form of an equilateral triangle, is filled with

equal volumes of three liquids, the densities of which are as 1 : 2 : 3
;

if the tube be held with one side horizontal, and the opposite angle

B. E. H. 13
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upwards, prove that the common surfaces of the liquids divide the sides

in the ratio 1 : 2.

57. An isosceles triangular prism, the vertical angle of which is a

right angle, floats in water with its edge horizontal, and its base above
the surface, find its positions of equilibrium.

58. A cone is totally immersed in a fluid, the depth of the centre

of its base being given. Prove that P, P', P', being the resultant

pressures on its convex surface, when the sines of the inclination of its

axis to the horizon are s, s', s", respectively,

pi (
g

> _ 5") + pi (
S
" _

,) + p"2 (,
_^= 0.

59. A hollow cone without weight, filled with liquid, is suspended
freely from a point in the rim of its base

; prove that the total pressures
on the curved surface and the base are in the ratio

l + llsin2a : 12sin3
a.

60. A hollow cone without weight, closed and filled with water, is

suspended from a point in the rim of its base
;

if $ be the angle which
the direction of the resultant pressure on the curved surface makes
with the vertical, and a the semi-vertical angle of the cone, prove that

COt =

61. A heavy uniform chain is suspended from its two ends under
water

; prove that its form will be the same as if suspended in air.

62. An open conical shell, the weight of which may be neglected,
is filled with water, and is then suspended from a point in the rim, and
allowed gradually to take its position of equilibrium ; prove that, if the

2
vertical angle be cos" 1 -

,
the surface of the water will divide the

8

generating line through the point of suspension in the ratio of 2 : 1.

63. A tube of small bore in the form of an ellipse is half filled with

equal volumes of two fluids which do not mix
;
find in what manner

the tube must be placed in order that the free surfaces of the two fluids

may be the extremities of the minor axis.

64. If any curved surface, having for its base a plane area A and

enclosing a volume V, be totally immersed in a fluid, find the resultant

pressure on the curved surface, when the depth of the centre of

gravity, and the inclination to the horizon, of the plane of the base are

given.
If P1} P2 ,

P3 ,
be these resultant pressures when the depths of the

centre of gravity of the base, in a fluid of intrinsic weight wt
are x, y, z

respectively, and the inclinations of the base to the horizon are the
same
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65. A heavy chain is suspended from two points and hangs partly
immersed in a fluid

;
shew that the curvatures of the portions just

inside and just outside the surface of fluid are as p
- a- : p, p and o-

being the densities of the chain and fluid.

66. A U tube of uniform bore with open ends of equal length has

mercury (s.g. 13*5) in its lower part and equal volumes of oil and water
in the separate tubes above the mercury. The ends are now closed and
as much mercury as would fill one inch of the tube is drawn off by a

tap at the bottom. If 30 inches is the height of the mercury barometer
and the lengths of the air columns in the two tubes before the mercury
is removed are 2 '25 inches and 2 -75 inches, prove that the difference in

level of the two mercury surfaces after the experiment is a little less

than three-fifths of an inch.

67. Two vessels contain air having the same pressure n but
different temperatures t, t'

;
the temperature of each being increased

by the same quantity, find which has its pressure more increased.

If the vessels be of the same size, and the air in one be forced into

the other, find the pressure of the mixture at a temperature zero.

68. The temperature of the air in an extensible spherical envelope
is gradually raised from to

,
and the envelope is allowed to expand

till its radius is n times its original length ; compare the pressures of

the air in the two cases.

69. A cylindrical vessel, closed at both ends, and placed so that its

axis is vertical, is half filled with mercury at a temperature C., the

remaining space being occupied by air at the same temperature. The

expansion of mercury between the temperatures and 100 C. being
018 of its original volume, and that of air *3665 of its original volume
for the same pressure, shew that if the temperature be raised to 20 C.

the pressure of the air will be increased in the ratio 1-0772 : 1.

70. The specific gravity of mercury compared with that of water
at 68 is 13-568 and at 212 is 13'704. If the expansion of mercury

between these points be th of its volume at the lower temperature,
t><7

find that of water between the same points.

71. A hemispherical bowl is filled with water
;

if the internal

surface be divided by horizontal planes into n portions, on each of

which the whole pressure is the same, and /^ be the depth of the r* of

these planes, prove that, hr tjn= a*jr, a being the radius.

72. If a lamina in the form of a regular hexagon be immersed in

liquid with one side in the surface, the depth of its centre of pressure
is to the depth of its centre of gravity as 23 to 18.

73. Find the centre of pressure upon a portion of a vertical

cylinder containing liquid, the portion being such as when unwrapped
to form an isosceles triangle, the base of which, when forming part of
the cylinder is horizontal, and the vertex at the surface of the fluid.

132
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74. A hollow coiie open at the top is filled with water
;
find the

resultant pressure on the portion of its surface cut off, on one side, by
two planes through its axis inclined at a given angle to each other

;

also determine the line of action of the resultant pressure, and shew

that, if the vertical angle be a right angle, it will pass through the
centre of the top of the cone.

75. Two equal light spheres of the same substance are attached by
strings of lengths r, i

j to a point in the bottom of a vessel of water

they are mutually repulsive and rest at a distance x from each other :

shew that the line joining them is inclined to the horizon at

r2 -/2

sin" 1

also if $ (x] be the repulsion

P being the excess of the fluid pressure over the weight of the sphere.

76. A cylindrical tube, containing air, is closed at one extremity
by a fixed plate, the other extremity being open ;

a piston just fitting
the tube slides within it, and the centres of the plate and piston are

connected by an elastic string, the modulus of elasticity of which is

equal to the atmospheric pressure on the piston ; prove that, if I be
the natural length of the string, and a its length when the air between
the piston and the fixed plate is in its natural state, I being less than a,
the length of the string in the position of equilibrium will be (a)i.

77. If the depths of the angular points of a triangle below the
surface of a fluid be a, 6, c, shew that the depth of the centre of

pressure below the centre of gravity is

78. Given that the centre of pressure of a disc of radius r, with
one point in the surface, is at a distance p from the centre, prove that
for a disc of radius R wholly immersed with its centre at a distance h
from the surface, the distance between the centre of the circle and the
centre of pressure ispR2

-r- hr.

79. If an air-pump be fitted with a barometer gauge of small
section *, and length , prove that at the end of the first stroke
the mercury will have risen a height

Bh

h being the height of the barometer.

80. A hemispherical shell is floating on the surface of a liquid, and
it is found that the greatest weight which can be attached to the rim
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is one-fourth of the weight of the hemisphere ; prove that the weight
of the liquid which would fill the hemisphere bears to the weight of the

hemisphere the ratio of

: 20\/5 - 28.

81. A cylindrical diving-bell fully immersed is in equilibrium
without a chain. Shew that if the exterior atmospheric pressure
increase slightly, the ratio of the distance moved through by the

bell if free to that moved through by the surface of the water in

the bell when held fixed is Hh+x* : #2
approximately ;

where H is

the height of the water barometer, h the height of the bell, and x
the length of that part of it which is filled with air.

82. A pyramid on a square base floats with its vertex downwards
and base horizontal in a liquid. The pyramid is bisected by a vertical

plane perpendicular to two sides of the base, and the two parts are

connected at the vertex by a hinge. Prove that the parts will remain
in contact if the ratio of the density of the pyramid to that of the

liquid exceed

3a2

where h is the height and 2a the side of the base.

83. If a plane regular pentagon be immersed so that one side is

horizontal and the opposite vertex at double the depth of that side,

prove that the depth of the centre of pressure upon the pentagon is

(29+ 3\/5)-r48,

where a is the depth of the lowest vertex.

84. If a quadrilateral lamina ABCD in which AB is parallel to CD
be immersed in water with the side AB in the surface, the centre of

pressure will be at the point of intersection of AC and BD if

85. Supposing a common hydrometer immersed in a liquid less

dense than water as far as the point to which it would sink in water,

prove that, if let go, it will sink through a distance 2w(!)/, w
being the weight of the hydrometer, k the section of its stem, and
s the specific gravity of the liquid, and the hydrometer being supposed
never to be entirely immersed.

86. A hollow paraboloidal vessel floats in water with a heavy
sphere lying in it, there being an opening at the vertex

;
the water

occupies the whole of the space between the vessel and the sphere.
If the resultant pressure on the sphere be equal to half the weight
of the water which would fill it, shew that the depth of the centre

of the sphere below the surface of the water is 4 2
/3c where 4a is

the latus rectum of the paraboloid, and c the distance of the plane
of contact from the vertex.
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87. Assuming that the weight of 100 cubic inches of air is 33

grains, when the height of the barometer is 30 inches, find the weight
of the air that leaves a room when the barometer falls one inch, the

room being 20 feet long 15 feet wide and 14 feet high.

88. A semicircle is immersed vertically in liquid with the diameter
in the surface

;
shew how to divide it into any number of sectors, such

that the pressure on each is the same.

89. A hollow closed vessel, in the shape of a cylinder surmounted

by a cone, is filled with fluid. If the axis of the cone be three times as

long as the axis of the cylinder, shew that the resultant pressure on the
surface of the cone will be the same in the two positions in which the

vessel can be placed with its axis vertical.

90. A small balloon containing air is immersed in water and has
100 grains of lead attached to it, the envelope of the balloon being of

the same density as the water. If at the temperature of the water and
the pressure of the atmosphere the balloon contain 1 cub. inch of air,

find the depth to which it must be immersed in the water in order to

be in a position of unstable equilibrium when the height of the water
barometer is 33 feet, it being given that the density of air : that of

water : that of lead as 1 : 800 : 9120.

91. If the reading of a common hydrometer when placed in fluid

at the same temperature as itself be #, and if, when it is placed in the

same fluid at a higher temperature than itself, its reading be at first x^ ,

but afterward the reading rise to #
2 ,

the ratio of the expansions of the
fluid and of the hydrometer for the same change of temperature is

x x
l : #2 #!.

92. A solid hemisphere of radius a and weight W is floating in

liquid, and at a point on the base at a distance c from the centre rests

a weight w : shew that the tangent of the inclination of the axis of the

hemisphere to the vertical for the corresponding position of equilibrium,

assuming the baso of the hemisphere entirely out of the fluid, is

8 C
% a W'

93. A cylinder has one end rounded off* in the form of a hemi-

sphere, the other pointed in the form of a cone
;

it floats with its axis

vertical in three fluids of which the specific gravities are as 3 : 2 : 1, in

the first case the base of the hemisphere, in the last the base of the

cone, is in the surface, find in what ratio the plane of floatation divides

the cylindrical part in the second case.

94. A flexible and elastic cylindrical tube is placed within a rigid
hollow prism, in the form of an equilateral triangle, which it just fits

when unstretched
;

if there be no air between the tube and the prism,
and if air at a given pressure be forced into the tube, find the extension
and the portion in contact with the sides of the prism.
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95. The readings of a perfect mercurial barometer are a and 3,
while the corresponding readings of a faulty one, in which there is

some air, are a and b : prove that the correction to be applied to any
reading c of the faulty barometer is

96. Nicholson's Hydrometer is used to determine the weight and

specific gravity of a solid and W and a- are the results when the effect

of the air is neglected ; prove that the actual weight is W{\ -fa/a- (1
-

a)}

(1
-

a/p), where a and p are respectively the specific densities of air and
of the material of the known weights employed.

97. A hollow vertical polygonal prism, open at both ends, rests

upon a horizontal plane, every two contiguous faces being moveable
about their common edge. Supposing the prism to be in equilibrium
when filled with liquid ; prove that

sma2 sma3

alt
oa ,...being the angles of a transverse section A^.^. . . AnA lt

and
ci> C2> c3 ,...denoting the lines A nA2 , A^A^ A ZA^...

98. A bridge of boats supports a plane rigid roadway AB in a
horizontal position. When a small moveable load is placed at G the

bridge is depressed uniformly ;
when the load is placed at a point C

the end A is unaltered in level ; when at D the end B is unaltered in

level
;
and when at P the point Q of the roadway is unaltered in level.

Prove that AG . GC=BG . GD=PG. GQ, and that the deflection

produced at a point R by a load at P is equal to the deflection produced
at P by the same load at R.

99. A thin conical shell, vertical angle 2a, is bounded by a plane
inclined at an angle 6 to the axis of the cone, and is closed by an

elliptic lamina of the same substance as the shell. If the shell is now
held under water with the axis of the cone horizontal, prove that the

whole pressures on the curved surface and on the elliptic base are in

the ratio of sin 6 to sin a.

Prove also that if a heavy particle, the weight of which is to the

weight of the shell and its case together in the ratio of tan a to

tan 6 tan a, is attached to that point of the elliptic base which is nearest

the vertex, the shell will float with the axis of the cone vertical, and
the elliptic base above the surface, in any liquid the density of which
exceeds a certain determinable density.

100. Two equal uniform rods AB, AC are rigidly connected at A,
and the system floats symmetrically with the point A downwards.

If a is the length of each rod, and c the length of each immersed,
prove that the equilibrium will be stable for a small angular displace-
ment in the vertical plane of the rods if

c (3
- cos o>) > a (1 -f cos ),

where <o is the angle BA C.



CHAPTER XIII.

UNITS OF FORCE AND WORK.

192. THROUGHOUT the whole of the preceding Chapters
we have employed, as the unit of force, the weight of a pound
at the place of observation or at some standard place.

For the next two Chapters we shall find it convenient to

adopt a different unit of force.

The British Absolute Unit of Force is defined to be that

force which, acting for one second upon a mass of one pound,
produces in that mass the velocity of one foot per second.

In other words it is the force which produces, when acting
on a mass of one pound, the unit of acceleration, taking a foot

and a second as the units of length and time.

The relation between force, mass, and acceleration is

therefore P Mf}
and it follows that if W is the weight

of a mass M
,

W-Mg.
The weight of a pound therefore is equivalent to g units

of force, so that the unit of force is roughly equal to the weight
of half an ounce.

This absolute unit of force is called the Poundal.

If the number of poundals equivalent to a force be known,
the number of pounds weight to which the force is equivalent
will be obtained if we divide the number of poundals by the

value of g, referred to a foot and a second as units, at the place
at which the force is in action.

193. If p is the density of a substance, and M the mass
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of a volume F, M= pV, and therefore if W is the weight of

the volume V,
W= gpV poimdals.

It will be seen that if we change the locality W and g are

changed in the same proportion, so that the equation is true

at any place, although the number of poundals in the weight
of the mass pV is dependent upon locality.

The value of g at the equator, when a foot and a second

are units of length and time, is 32*088, and at a place of

latitude X, g is given by the equation

g = (32-088) {1 + '005133 sin2

\],

so that the value of g at the North or South Pole, would be
32-2527*

For ordinary calculations, not requiring great accuracy,
the value of g usually adopted is 32'2, this being approxi-

mately the value in London and in Paris.

194. If in the preceding Chapters we had employed the

British absolute unit of force, the expressions for pressures,
whole pressures and resultant pressures would have been

slightly different in form, the difference being that gp would

appear in the place of w.

Thus, in Chapter III., if p is the pressure, in poundals, at

the depth z, we should have

and the expression for whole pressure, in poundals, would be

gpzS.

Also, in Art. 57, the expressions for the resultant horizontal

and resultant vertical pressure in poundals, would be

gpAz cos 0, and gp {
V + Az sin 6}.

Again, in Art. 77, the expression for atmospheric pressure
at the height z would be

II - gpz.

Finally, it must be noticed that the meaning of k in the

equation, p = kpQ ,
will be changed.

* Thomson and Tait's Natural Philosophy, Part i., page 226.
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Since the pressure of a given kind of gas, of a given
density, and at a given temperature, is independent of time
and place, it follows that when the pressure is measured
in absolute units of force, the quantity k is an absolute

constant, independent of time and place.
If then h is the height of the homogeneous atmosphere at

a place at which p is the density of the air, when the tem-

perature is C., gpji kp ,
so that k is g times the height,

in feet, of the homogeneous atmosphere.

Conversely the height of the homogeneous atmosphere, at

any place, is the quotient obtained when we divide the

numerical value of k by that of g at the place.
If t is the temperature, the equation is

gph = kp(l + at),

so that k (1 + at) is g times the height of the homogeneous
atmosphere.

Numerical value of k for atmospheric air.

Taking '0013 and 13*606 as the specific gravities of air

and mercury at the temperature C., and 30 inches as the

height of the barometer, the equation, ga-h
=

kp, becomes

32-2 x 13-606 x 62'5 x 2-5 = A? (-0013) x 62'5,

the unit of mass being a pound and the unit of force a

poundal.
We hence find that the value of k is about 840000.
The value of the absolute constant R in the equation,

pV=RT, must in a similar manner be determined, for

any particular gas, by experimental observations.

The C.G.S. system.

195. In France the system of units adopted is the

Centimetre-Gramme-Second system.

Taking a gramme for the unit of mass, the unit of force

is the force which produces, in one second, when acting on a

gramme the velocity of one centimetre per second. This is

the French absolute unit of force and is called the Dyne.
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In this case the equation,

asserts that the weight of M grammes is Mg dynes.
If the number of dynes equivalent to a force be known,

the number of grammes weight to which the force is equi-
valent will be found if we divide the number of dynes by
the value of </,

referred to a centimetre and a second as units

of length and time, at the place at which the force is in

action.

At the equator the value of g, referred to a foot and a

second is 32*088, and therefore, since one foot contains

30'4797 centimetres, the value of g t
referred to a centimetre

and a second is, approximately, 978*0326.

Hence it follows that, in latitude X,

g =(978-0326). {1 + '005133 sin2

X).

For ordinary calculations the value of g which is usually

employed is 981, which is very nearly its value in Paris and
in London.

196. The remarks of Art. 194 are equally applicable to

the case in which the French absolute unit of force is em-

ployed.
The expression gpz, for the pressure at the depth z, gives

in dynes, the pressure on a square centimetre; and the

expression gpzS gives the whole pressure, in dynes, on
the surface S, measured in square centimetres.

Also, if p is the density and p the pressure of a gas, the

equation, p =
kp, asserts that the pressure upon a square

centimetre is kp dynes, p being the number of grammes in

a cubic centimetre of the gas.

Taking h as the height in centimetres of the homogeneous
atmosphere at the place, the equation

gph = kp

shews that k is g times the height, in centimetres, of the

homogeneous atmosphere.

197. To find the number of dynes in a poundal, observe
that a pound is 453 '59265 grammes, and therefore that the

poundal produces, in one second, the velocity of one foot per
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second, that is, of 30*4797 centimetres per second, in a mass
of 453-59265 grammes.

Hence it follows that a poundal, acting for one second on
a mass of one gramme, would produce the velocity, in centi-

metres per second, measured by the number

(453-59265) x (30-4797).

This is approximately equal to 13825, which is therefore,

approximately, the number of dynes in a poundal.

It may be useful to place, in a tabular form, some numerical facts.

Taking g to be 32*2 when a foot and a second are units,

weight of 1 Ib. = 32*2 poundals
1 cwt. =3606-4
1 ton = 72128

,,1 kilogramme= 71

1 gramme = '071

Taking g to be 981 when a centimetre and a second are units,

weight of 1 gramme = 981 dynes
1 kilogramme= 981000
1 grain = 63'568 nearly.
1 pound = 445000

nearly.

1 cwt. = 49840000

Surface Tensions of Liquids.

The following table of surface tensions is taken from Quincke's
results.

The tensions are given, in degrees, for the temperature 20 C.
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Since the poundal is approximately equal to 13825 dynes we must
divide the numbers in the second, third and fourth columns by 13825,
in order to obtain the tensions in poundals.

If we take Mensbrugghe's results at the end of Chapter X., and
transform the gramme weights into dynes, we shall find, on comparing
the two tables that Quincke's give rather higher values for surface

tensions.

Work.

198. When a heavy body, lying on the ground, is lifted

to a given height, it is said that work is done by the lifting

force, and the measure of the work done is the product of the

numerical quantities measuring the force and the height.
If a body is displaced in any direction by a force in that

direction, the work done is measured by the quantity Px,
where P is the force, supposed to be exerted uniformly, and
x the space through which it is exerted.

If the direction of the force is not the same as the

direction of displacement, the work done is the product
of the displacement by the resolved part of the force in

that direction.

Thus if a heavy body on a smooth inclined plane is

dragged over the space x, up the line of greatest slope, by
a force acting in a direction inclined to the plane at the

angle 0, the work done will be the product of x, and the

component of the force parallel to the plane, and therefore

be represented by the expression Px cos 6.

In the British Isles, when the unit of force employed is

the weight of one pound, the unit of work is the foot-pound,
that is, it is the work done by a force of one pound weight
exerted through one foot.

In France, when the unit of force is the weight of a

kilogramme, the unit of work is the kilogramme-metre,
that is, it is the work done by a force equal to the weight
of one kilogramme exerted through one metre.

When we employ absolute units of force, the British unit

of work is the foot-poundal, that is, the work done by one

poundal exerted over one foot.

If we take the French absolute unit of force, that is, the

dyne, the French unit of work is the erg, which is the work
done by one dyne exerted over the space of one centimetre.
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If the element of time is introduced the rate of doing
work is called power.

The unit of Power employed by British Engineers is the

Horse-power. The Horse-power is the rate at which an agent
works which does 33000 footpounds per minute, or, 550 foot-

pounds per second.

In the C.G.S. system, taking a, joule to represent 10000000

ergs, the foot-pound is 1*356 joules.
In this system the unit of power is the Watt, which

is work at the rate of one joule per second.

Taking g to be 981, when a centimetre and a second are units, the

following table connects some of the various measures of work with the

erg.
one gramme-centimetre= 981 ergs.
one kilogramme-metre =98100000
one foot-pound =13560000
one foot-grain = 1937
one joule =10000000
one horse-power = 44748 joules per minute.

,,
= 745-8 Watts.

EXAMPLES.

Assume that g is 32 '2 when a foot and a second are units, and is 981
when a centimetre and a second are units.

1. Find in poundals per square foot, and in dynes per square
centimetre, the pressure at the depth of 100 feet in a lake, (1)

neglecting, (2) taking account of atmospheric pressure, assuming that
33 feet is the height of the water barometer.

2. A cubical box, the edge of which is one foot, is filled with equal
volumes of olive oil and alcohol, the specific gravities of which are '9

and '8
;
calculate in poundals the pressures on the base and on each

vertical side.

3. Taking the pressure of the atmosphere as equal to the weight of
14 Ibs. per square inch, find its value in dynes per square centimetre,
assuming that a gramme is '0022 of a pound, and that a metre is 39 '37
inches.

4. A solid hemisphere, of radius ten centimetres, is held with its

plane base vertical and just immersed in a liquid of density 13-568

grammes per cubic centimetre
;
find the expressions in dynes for the

resultant horizontal and resultant vertical pressures on its curved
surface.



EXAMPLES. 207

5. A cubic foot of air, the pressure of which is equal to the weight
of 15 Ibs. per square inch, is compressed slowly into a cubic inch

; find

the new pressure in poundals per square inch, and in dynes per square
centimetre.

6. The height of the barometer being 30 inches, and the specific

gravity of the mercury being 13 '568, calculate the pressure of the

atmosphere in poundals per square inch.

Also calculate the height of the barometer in centimetres, and the

pressure of the atmosphere in dynes per square centimetre.

7. A cylinder formed of flexible and inextensible material, closed

at both ends, contains gas at the pressure of 2T56 Ibs. weight per square
inch

; taking 15 Ibs. weight per square inch as the atmospheric pressure,
find the tension, in poundals, of the curved surface of the cylinder.

8. A soap-bubble of radius two centimetres is blown from a mixture
the surface tension of which is 80 dynes per centimetre, and another of

radius 2 '5 centimetres is blown from a mixture the surface tension of

which is 30 dynes per centimetre. Compare the excesses over atmo-

spheric pressures of the air pressures inside the bubbles. Also having
given that the pressure of the atmosphere is a megadyne per square
centimetre, compare the masses of air inside the bubbles.

9. A cylindrical block of wood, of height I and sectional area *, is

floating in a lake with its axis vertical. If it is pushed down very
slowly until it is just immersed, prove that the work done is

foot poundals, where p and a- denote the densities of the water and
wood.

10. If the block is floating in a cylindrical vessel of sectional area

K'J prove that the work done in slowly immersing it is, in foot poundals,

_l

11. A cylindrical block of iron of density <r, of height I and
sectional area K, stands with its axis vertical at the bottom of a lake, at

a place where h is the depth; if it is lifted slowly just above the

surface, the work done is, in foot poundals,
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ROTATING LIQUID.

199. WHEN liquid in a vessel is set rotating about a

vertical axis, it is known that the surface assumes a hollow

form
; by the help of a dynamical law we can determine

what this form is.

If a mass of liquid, contained in a vessel which rotates

uniformly about a vertical axis, rotates uniformly, as if rigid,
with the vessel, its surface is a paraboloid.

Every particle of the liquid moves uniformly in a hori-

zontal circle, and therefore, whatever the forces may be
which act on any particle, their resultant must be a horizontal

force tending to the centre of the circle, and equal to rao>2
r,

where r is the distance of the particle from the axis, m is its

mass, and o> is the angular velocity of the liquid*.
We assume from considerations of symmetry that the

surface is a surface of revolution.

Let AG be the vertical axis of revolution, and consider a

point P on the surface.

Round P as centre describe a very small

circle on the surface, and take this small

circular area as the base of a very thin circular

cylinder of liquid.
If m be the mass of the element of liquid,

thus imagined, the forces upon m will be its

weight, the atmospheric pressure on its surface,

the liquid pressure on the flat end, and the

liquid pressures on the curved surface.

These latter pressures, being equal to the

* Sec Garnett's Dynamics, or Loney's Dynamics.
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atmospheric pressure, balance each other, and it therefore

follows that the resultant of gravity, mg, and of the liquid

pressure, which is normal to the surface, is in the direction

PN, the perpendicular on the axis, and is equal to morr.

Let the normal at P meet the axis in G
; then, by the

triangle of forces

NG : PN :: mg : ma>*PN,

and .

Now NG is the subnormal, and it is known that in a

parabola the subnormal is constant, while it can also be
shewn that the parabola is the only curve which has this

property.
The vertical section in the figure is therefore a parabola

the latus rectum of which is 2(//a>
2
,
and the surface is a

paraboloid.
It will be seen that this result is independent of the form

of the containing vessel. The axis of rotation, in fact, may
be within or without the fluid, but in any case it will be the

axis of the paraboloidal surface.

If the vessel were a surface of revolution, having the axis

of rotation for its axis, it would not be necessary theoretically
that the vessel should rotate. However, by making it rotate

with the liquid, we get rid of the practical difficulty which
would in this case arise from the friction between the fluid

and the surface of the vessel.

200. To find the pressure at any point.

Take any point Q in the fluid, and describe a small vertical

prism having Q in its base, which is to be taken horizontal.

The prism PQ of liquid rotates uniformly under the

action of the pressure around it, but
its weight is entirely supported by
the pressure on its base.

Hence ifp be the pressure, arid p
the density, \ M

P=gp.PQ.
Now

PQ=OM- 0^= - ON,
~~j

B. E. II.
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and .'.
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1

and we thus obtain the pressure in terms of the horizontal

and vertical distances from the vertex of the paraboloid.
It must be observed that ON is measured upwards and

that if Q be lower than 0, the equation for p is

If a foot and a second are units of length and time, this

equation gives the pressure in poundals per square foot.

In order to obtain the pressure in pounds weight per

square foot, we must divide by the value of g at the place.
If we take a centimetre and a second as units, the

equation gives the pressure in dynes per square centimetre
;

and to obtain the pressure in grammes weight per square
centimetre we must divide by the value of g at the place.

201. To find the resultant vertical pressure of a rotating

liquid on any surface.

Let PQ be the surface, and
draw vertical lines from its

boundary to the surface
;
then

the weight of the included por-
tion PABQ of liquid being en-

tirely supported by PQ, it

follows that the resultant ver-

tical pressure on PQ is equal
to the weight of the liquid
above it.

If the surface PQ be pressed

upwards, as in the lower figure, then, continuing the free

surface AOP of the liquid, it can be

shewn, as in Art. (53), that the re-

sultant vertical pressure upwards on

PQ is equal to the weight of the fluid

which would be contained between the

paraboloidal surface, the surface PQ,
and vertical lines through the boundary
otPQ.
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202. DEF. A surface of equal pressure is the locus of

points at which the pressures are the same.

If lines be drawn vertically downwards from all points
of the surface equal to PQ (fig. Art. 200), it is clear that the

pressures at their ends will be the same as at Q ; and, as

these ends lie on the surface of a paraboloid equal to the

surface paraboloid, it follows that all surfaces of equal pressure
are in this case paraboloids.

203. Floating bodies. If a body float in a rotating mass
of fluid, in a position of relative equilibrium, it is evident by
the same reasoning, as in the case of a fluid at rest, that the

weight of the body must be equal to the weight of the fluid

displaced.

204. Figure of the Earth. A large portion of the earth's

surface is covered with water,

and, if it were not for the earth's

rotation, its surface would be a

sphere having its centre at the

centre of the earth.

For simplicity, imagine a

solid sphere surrounded by
water, and suppose the whole

to be in rotation about a dia-

meter GB of the sphere. Con-
sider an elementary portion P
of the water, which describes a circle of radius PN uniformly.
The attraction of the solid sphere in the direction PC,
combined with the resultant fluid pressure in direction of the

normal at P, arid the attraction of the water must have as

their resultant the force mco*PN in direction PN. Hence
the normal at P must be inclined, as in the figure, towards

the axis, and the form of the surface must be oblate.

Supposing the earth a large fluid mass, it is shewn by
mechanical considerations that the form would be an oblate

spheroid.
It is hence seen that the normal to the surface of still

water, that is, the vertical, at any point of the earth's surface

is not in direction of its centre, except at the poles and the

equator.

142
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205. Regarding the Earth as a solid sphere, let P be

the position of a pool of still water on its surface, and let

PG be the normal to its surface.

The forces on a particle of water at P are the resultant

fluid pressure in the direction of GP,
and the attraction of the earth in the

direction PG.
This resultant fluid pressure on the

particle is the force in direction of the

normal to the surface of the water

which is required to maintain the par-
ticle in its position, and is therefore

equal to its weight.
Since the resultant of these two

forces is in the direction PN, i.e.

parallel to GG, it follows that, if m is the mass of the particle,

mtfPN : mg :: CG : PG.

Let 6 represent the angle PGA, <f>
the angle PGA, and

T/T
the angle GPG ;

then we obtain, if a is the Earth's radius,

<
2a cos 6 : g : : sin ^ : sin 9.

Now if g is the acceleration due to gravity at the

equator, 289o>2a = g, so that ty is a very small angle, and
therefore neglecting the difference between gravity at the

equator and at the place,

= -~ sin 2$, approximately,
= ---- sn

or =
578

sn

The angle <f> being the latitude of the place this gives the

difference between the latitude and the angle PGA, which
latter angle is sometimes called the geocentric latitude.

EXAMPLES.

206. (1) A fine tube, ABCD, of which the equal branches AB, CD,
are vertical, BC being horizontal, is filled with liquid, and made to rotate

uniformly about the axis of AB ;
to find how much liquid willflow out of

the and D.
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The liquid will flow out until the surface in AB is the vertex of

a parabola passing through D, and having
its axis vertical and latus rectum equal to ^ D

If then be the vertex of the parabola,

In this case we have BO2 = -~
f.\*

This gives AO, and determines the

quantity required.
If however AO be greater than AB, the

surface of the liquid will be in BC, at P B
suppose.

O

,/

which determines the position of P.

(2) A straight tube AB, filled with liquid, is made to rotate uniformly
about a vertical axis through A ;

to find how much floivs out at B.

Let OAB= a, and imagine a parabola, latus rectum -^, to be drawn

touching the axis of the tube, and having
its axis coincident with the vertical through
A.

Then if P be the point of contact, all

the fluid above P will flow out.

To find P,

PNi ty. ON
~o>2

' (

=^ AN, since OA = ON,
0>

2

and

and

No fluid will flow out unless AP<AB, that is, unless

>-. COSct^
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It will be seen that P is the position of relative equilibrium of a

heavy particle in the rotating tube.

(3) Let the end B be closed and the tube AB, rotating as in Ex. (2),

be only partly filled with liquid ; it is required to find the circumstances

of relative equilibrium.

Let AC be the portion of tube filled with liquid (fig. of previous

article).
Draw the parabola touching in P as before : then, if C is below P,

change takes place, but if C is above P, the portion PC of liquid will

? to the upper end of the tube and remain there.

no chanj
flow

(4) A semicircular tube APB isfilled -with liquid and rotates uniformly
about the vertical diameter AB

;
it is required to find where a hole may be

made in the tube through which all the liquid will flow out.

Draw a parabola touching the tube and having its vertex in BA,

axis vertical, and latus rectum equal to -^ ,
and let P

be its point of contact.

Then, if an aperture be made at P, the whole of

the liquid, being above the paraboloidal surface, will

flow out through P.
To find its position we have

but PN*=CN.NT-y

.'. CN~
,
which determines P.

If a be the radius (CA) of the tube, and if w2< ^
,
T

then CN> CA, and the aperture must be made at A.

(5) In a mass of liquid, rotating about a vertical

axis, a very small sphere, of greater density than the

liquid, is immersed, and supported by a string fastened to a point in the

axis; it is required to find the position of relative equilibrium.

For one position of equilibrium it is evident that the string can
be vertical, but we can shew that the sphere may rest with the string
inclined at a certain angle (ff) to the vertical.

Let V be the volume of the sphere, r its distance from the axis in

the position of relative equilibrium, and p the density of the liquid.
To find the pressure of the liquid on the sphere, imagine it removed

and its place supplied by a portion V of the liquid ;

The resultant liquid pressure must support the weight gp V, and also

supply the horizontal pressure necessary to maintain the circular motion,
i.e. p VuPr.



EXAMPLES. 215

Hence if p be the density of the sphere, and t the tension of the

string, we must have, for equilibrium,

t sin 6+pVPrp FV,

and .'. tan#= .

9

The position is therefore the same as if the sphere and string were

in motion as a conical pendulum.
It will also be seen that the string coincides with the direction of the

normal to the surface of equal pressure which passes through the centre

of the sphere.

(6) A cylindrical vessel contains liquid, which rotates uniformly
about the axis of the cylinder; to find the whole pressure on its surface.

Let AOB be a vertical section of the surface, r the radius of the

cylinder.
We have shewn, Art. (200), that the pressure

varies as the depth below the surface, and in this B
case the level of the free surface is the same for all

points on the curved surface of the cylinder.
Hence the whole pressure on the curved surface

. AD . AD=nr . AD*.

O

A

Let h be the height of the liquid when at rest.

It is known that the volume of a paraboloid is half that of the

cylinder on the same base and of the same height, and therefore the

surface of the liquid at rest would bisect AN.

But ON*=AN, or r*= AN
;

<u^ tr

. .- .

2 4g

Hence the whole pressure is given in terms of h.

Also the pressure on the base is equal to the weight of the fluid, i.e.

NOTES ON CHAPTER XIV.

In Art. (199), we considered the motion of a particle of water in the

shape of a small thin cylinder.
The shape of the element is however quite immaterial, for an

element of any shape in the surface will lie between the free surface

and a consecutive surface of equal pressure, and the resultant pressure
of the liquid in any direction in the tangent plane will be zero.
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The Problem of rotating liquid may however be treated differently
in the following manner.

Let P be a point beneath the surface of the liquid and PN its

distance from the axis of revolution Az.

In the vertical plane ANP take a consecutive point Q on the surface

of equal pressure passing through P, the shape of which is to be deter-

mined.
Draw the vertical line through Q, and produce NP to meet it in R.

If we imagine QR to be the axis of a very thin cylinder, it will have
no vertical acceleration, and therefore the difference of the pressures at

Q&udR

which is also the difference of the pressures at P and R.

If now we imagine a very thin cylinder of which PR is the axis the

mass of liquid within this cylinder has the acceleration a>*PN in the

direction PN
;
and therefore, if K is the cross section of the cylinder,

or <JPR.PN=g.QR.
But, if PO is the normal to the surface of equal pressure at P, the

infinitesimal triangle PQR is similar to the triangle PGN, so that

QR :PR ::PN : NO,
and it follows at once that

Hence, the subnormal being constant, the curve is a parabola.
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The surfaces of equal pressure, including the free surface, are there-

fore paraboloids of revolution.

The question of the form of the surface of a rotating fluid appears
to have been first discussed by Daniel Bernoulli, in his Hydrodynamica,
which was published in 1 738. He there proves that the form is that of

a paraboloid, and five years after Clairaut, in his Figure de la Terre,

gives a similar proof, at the same time quoting Bernoulli.

From the remarks of Art. 17, it follows that the paraboloidal form
will be exactly true for viscous liquids rotating in the same manner.
The point of argument lies in the phrase, as if rigid, for, without this

condition, it would not be possible to imagine the liquid in a state of

equilibrium. It must not be inferred that the paraboloidal form is that

which would be assumed by a liquid set in rotation by ordinary
mechanical means. The internal friction of a liquid, communicated
from the surface of a rotating vessel may produce the effect, if the revo-

lution be maintained long enough.
Theoretically, we can imagine the effect produced by enclosing ice in

a strong vessel with a paraboloidal upper surface, making it rotate, and
then melting the ice by pressure, or otherwise. The melted ice would
retain the rotation as if rigid, and it might perhaps be possible to

procure an approximation to the paraboloidal surface.

If a cup of tea be rapidly stirred, a convex surface is produced,
having a hollow in the middle, but, in motion of this kind, the angular
velocity decreases at increasing distances from the centre, and there is

a constant change of the relative positions of the molecules of liquid.
This is the case of Rankine's free circular vortex, and its discussion

belongs to the domain of Hydrodynamics. (See Hydromechanics.)

EXAMPLES.

1. Liquid contained in a closed vessel rotates uniformly about
a vertical axis ; prove that the difference of the pressures at any two

points of the same horizontal line varies as the difference of the squares
of the distances of the two points from the axis of rotation.

2. A hollow paraboloid of revolution with its axis vertical and
vertex downwards is half filled with liquid. With what angular

velocity must it be made to rotate about its axis in order that the

liquid may just rise to the rim of the vessel ?

3. If a solid cylinder float in a liquid which rotates about a
vertical axis having its axis coincident with the axis of revolution,
determine the portion of its surface which is submerged, the dimen-
sions of the cylinder and the densities of the liquid and cylinder being
given.

4. An open vessel, containing two liquids which do not mix,
revolves uniformly round a vertical axis

;
find the form of the common

surface.
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5. A conical vessel open at the top and filled with liquid rotates

about its axis
;
find how much runs over, 1st, when o> is less, and, 2nd,

when a) is greater than ^ / T c t a, h being the height of the cone, and

a its semivertical angle.

6. A hemispherical bowl is filled with liquid, which is made to

rotate uniformly about the vertical radius of the bowl
;
find how much

runs over.

7. An elliptic tube, half full of liquid, revolves about a fixed

vertical axis in its own plane, with angular velocity o>
; prove that the

angle which the straight line joining the free surfaces of the liquid

makes with the vertical is tan -1
2 ,
where p is the perpendicular from

the centre on the axis.

8. A closed cylindrical vessel, height h and radius a, is just filled

with liquid, and rotates uniformly about its vertical axis; find the

pressures on its upper and lower ends, and the whole pressure on its

curved surface.

9. A hemispherical bowl, just filled with liquid, is inverted on a
smooth horizontal table, and rotates uniformly about its vertical

radius
;
find what its weight may be, in order that none of the liquid

may escape.

10. A cylindrical vessel, containing water, rotates uniformly about
its axis, which is vertical, the water rotating with it at the same rate

;

find the position of relative equilibrium of a small piece of cork which
is kept under water by a string fastened to a point in the side of the
vessel.

11. A vertical cylinder, of height h and radius a, is half full of

water, which rotates uniformly about the axis
; prove that the greatest

angular velocity which can be imparted to the water without causing
an overflow is \/Zgh-7-a.

12. A conical vessel, of height h and vertical angle 60, has its

axis vertical and is half filled with water
; prove that the greatest

angular velocity which the water can have without overflowing is

v/f-
13. A fine tube whose axis is of the form of three sides of a

square, each equal to a, is filled with fluid and made to rotate about a
vertical axis bisecting at right angles the middle side, prove that no
fluid will escape unless the angular velocity exceeds 2\/2^/a. If the

angular velocity have this value shew that the whole pressure on the
tube is two-thirds of what it would be if the fluid did not rotate at all.

14. A sphere (radius c) is just filled with water, and rotates about
a vertical diameter with angular velocity o>, such that 3c<o2= 2#; prove
that the pressure at any point of the surface of equal pressure which
cuts the sphere at right angles is 3<7pc/4, p being the density of water.
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15. A cylindrical vessel containing fluid is closed at the top by a

heavy lid capable of moving about a hinge at a point of its circum-

ference. If a be the radius of the cylinder, h its height, and if it be

made to rotate with angular velocity about its axis, which is

vertical, shew that the lid will just be raised by the fluid if the weight
of the fluid be to that of the lid as 2+ 62 : a2 - 62

,
where b is the radius

of the free part of the lid, provided that no part of the base of the

cylinder be left free from the fluid.

16. A circular tube of small section is half full of liquid and in the

surface at each side floats one of two small equal spheres which just fit

the tube. The tube rotates with angular velocity at about a vertical

diameter : find the pressure of the liquid at any point and shew that

for values of o> greater than a certain quantity the pressure is a

maximum at a depth ga>~
2 below the centre of the tube.

17. A hollow cylinder is filled with water and made to revolve about
a vertical axis attached to the centre of its upper plane face with a velo-

city sufficient to retain it at the same inclination to the axis. Find at

what point of the plane face a hole might be bored without loss of fluid.

18. A vertical cylinder, height h and radius a containing water
rotates with uniform angular velocity about its axis

;
if I/nth of the axis

of the cylinder was above the surface before the rotation was estab-

lished, prove that the greatest angular velocity, consistent with no

escape of the water, is

2 fjk
a V n*

19. An open hemispherical cup, filled with water, is placed on a
horizontal table, and the whole is made to rotate uniformly about its

vertical radius
; prove that the pressure on the table : the original

weight of liquid as 8*7
- 3<aV : 8*7.

20. A hollow vessel in the shape of a wedge of a cylinder, formed

by two planes through its axis, is filled with water and closed at the

top ;
it is then made to rotate uniformly about the axis, which is

vertical
;
find the pressure on the top, and the whole pressure on the

curved surface of the cylinder.

21. A weightless cone is very nearly filled with liquid and inverted
on a horizontal table

; the liquid is made to rotate with an angular
velocity o>, and the pressure required to keep the cone in contact with
the table is equal to three times the weight of the liquid ; prove that

3 hw2= ty cot2o,

where h is the height of the cone, and a the semivertical angle.

22. Assuming that a mass of liquid contained in a vertical

cylinder can rotate about the axis of the cylinder, under the action of

gravity only, in such a manner that the velocity at any point varies

inversely as the angular velocity of its distance from the axis of the

cylinder ;
find the form and position of the free surface.



CHAPTER XV.

THE MOTION OF FLUIDS.

207. IF an aperture be made in the base or the side of

a vessel containing liquid, it immediately flows out with a

velocity which is greater the greater the distance of the

aperture below the surface. The relation between the

velocity and the depth, taking the aperture to be small, was
discovered experimentally by Torricelli.

The following is Torricelli's Theorem :

If a small aperture be made in a vessel containing liquid,
the velocity with which the particles of fluid issue from the

vessel, into vacuum, is the same as if they had fallen from the

level of the surface to the level of the aperture ;

that is, if x be the depth of the aperture below the surface,
and v the velocity of the issuing particles,

The experimental proof of this is that if the aperture be
turned upwards, as in the figure, the par-
ticles of liquid will rise to the same level

as the surface of the liquid in the vessel.

Practically the resistance of the air and
friction in the conducting-tube destroy a

portion of this velocity, but experiments
tend to prove the truth of the law, which
moreover can be established as an approxi-
mate result of mathematical reasoning.
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Assuming the principle of energy*, we can give a theoreti-

ical proof of the theorem.

Let K be the area of the upper surface of the liquid, and

suppose that, during a short time, the height of the upper
surface is diminished by a small quantity y, so that Ky is the

volume which has flowed out through the orifice. Taking v

as the velocity of efflux, the kinetic energy which has issued

through the orifice is = pKyv
2
,
and if we neglect the kinetic

A

energy of the liquid in the vessel, this must be equal to the

loss of potential energy, which is gpKyx,

and /. v2 =
2gx.

Form of a jet of liquid. If the aperture be opened in any
direction not vertical, each particle of liquid having the same

velocity, will follow the same path, which by the laws of

Dynamics, is a parabola. Hence the form of the jet is a

parabola.

Contracted vein. If the aperture be made in the base of

a vessel, and if the base be of thin material, it is observed

that the issuing jet is not cylindrical, but that it contracts

for a short distance (a fraction of an inch) and then expands
afterwards contracting gradually as it descends, and finally

breaking into separate drops. The amount of contraction

depends on the thickness of the vessel, and the size and
form of the aperture.

The rate of Efflux is the rate at which the liquid flows out,
and this clearly depends both on the velocity of the issuing

particles, and the size of the aperture.
If k be the area of the aperture and v the velocity, then

in an unit of time a portion of liquid will have passed through
equal to a length v of a cylinder of which k is the base, and
therefore vk is the quantity which flows out in an unit of

time, that is, vk is the rate of efflux.

This is however not true unless the liquid issue from
a pipe of some length, in which case there is no contracted

vein. In general k must be taken as the section of the

contracted vein, it being found that the velocity at the

* See Maxwell's Matter and Motion.
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contracted vein is that which is given by Torricelli's

theorem.

208. Steady motion. When a fluid moves in such a

manner that, at any given point, the velocities of the suc-

cessive particles which pass the point are always the same,
the motion is said to be steady. Thus if a vessel having a

small aperture in its base be kept constantly full, the motion
is steady.

Motion through tubes of different size. The continuity of

a fluid leads to a simple relation between the

velocities of transit through successive tubes.

Thus if a liquid, after passing through a tube

AB, pass through CD, the tubes being full, it

is clear that during any given time the quan-
tity which passes a given plane AB in one

tube must be equal to the quantity which

passes any given plane CD in the other. Let

tc, K be the areas of these planes, arid v, v
f

the respective velocities at AB and CD. Then
tcv, K'V are the quantities which pass through
in an unit of time, and therefore

Kv = K'V'.

Hence, as the section of a mass of fluid decreases, its

velocity increases in the same proportion. For instance,
the stream of a river is more rapid at places where the

width of the river is diminished. This also accounts for

the gradual contraction of the descending jet of liquid,
Art. (207), for the velocity increases, and therefore the

section diminishes.

209. A cylindrical vessel containing liquid has a small

orifice in its base ; to find the velocity at the surface.

If the orifice be small and the surface large, the surface

will descend very slowly.

Let h be the height of the surface, then */2gh is approxi-

mately the velocity at the orifice. Take K for the area of

the base of the vessel, and K of the orifice.

Then, neglecting the change of velocity at the orifice in
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the unit of time, 'Jfyh is the quantity of liquid which passes

through the orifice, and therefore if V be the velocity at the

surface,

If the vessel be kept constantly full, the motion is steady
and the velocities are constant : hence the time in which a

quantity of liquid, equal in volume to the cylinder, would,

under these circumstances, flow through the orifice

It will be seen that this is only a rough approximation to

the actual facts of the case, but its insertion will serve to

illustrate the laws above mentioned.

210. Pressure of air in motion. Early in the 18th

century Hawksbee observed that if a current of air be

transmitted through a small box the air becomes rarefied.

This fact is illustrated by the following experiment.
Take a small straight tube, and at one end of it fix three

smooth wires parallel to the tube and projecting from its

edge, and let a flat disc be moveable on these wires, with its

plane perpendicular to the axis of the tube. Blow steadily
into the other end, and it will be found that the disc will not

be blown off, but will oscillate about a point at a short

distance from the end of the tube.

The reason of this apparent paradox is that the diminution

of the density of the air in motion diminishes the pressure on

the disc which would otherwise result from the continued

action of the air impinging upon it, and the result is that it

is balanced by the atmospheric pressure on the other side.

A full account of this experiment, and of other facts connected with

it, was given by Professor Willis in the third volume of the Cambridge

Philosophical Transactions.

A similar experiment was performed, in 1826, by M. Hachette, with

a stream of water, and it was found that the pressure of the water was

diminished by an increase of velocity.
It is worthy of remark that large ships of the Devastation class are

observed to sink more deeply in the water when their speed is in-

creased.
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In a series of papers in Nature, for November and December 1875,
Mr Fronde has given a number of experimental illustrations, with

explanations in general terms, of the connection between the pressure
and the kinetic energy of a liquid.

Liquid in moving vessels.

211. A cylindrical vessel, containing liquid, is raised

upwards with a given acceleration ; it is required to determine

the pressure at any point of the liquid,

Consider the motion of a thin vertical prism PQ of the

liquid, having its upper end P in the surface, and observe

that its vertical acceleration is caused by the pressure of the

liquid on the end Q, the atmospheric pressure on the end P,
and the weight of the prism.

If PQ = z, p = the pressure at Q, K = the area of a hori-

zontal section of the prism, and / = the given acceleration,
we obtain, by aid of the second law of motion,

= pK H/c pzicg ;

in poundals per square foot, or in dynes per square centi-

metre, according as the British or French absolute unit of

force is employed.

212. A box containing liquid slides down a smooth

inclined plane; when the liquid is in a state of relative

equilibrium it is required to find the pressure at any point
and the surfaces of equal pressure.

Every element of the liquid moves in a straight line with

the constant acceleration g sin a, and, since the forces on any
element are the resultant fluid pressure upon it and its

weight, it follows that the resultant of these forces is

mg sin a, parallel to the plane, m being the mass of the

element.

It is hence easy to see that the resultant fluid pressure

upon the element m is perpendicular to the plane and is

equal to mgcosa.
Whatever be the shape of the element, the resultant

fluid pressure upon it in the direction parallel to the plane
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is zero, and therefore it follows that the surfaces of equal

pressure are planes parallel to the inclined plane, and that

the surface of the liquid is a plane parallel to the inclined

plane.

Taking z as the depth of a point in the liquid below the

surface thus defined, and drawing a thin cylinder or prism
from the point to the surface, the liquid enclosed will have
no acceleration perpendicular to the inclined plane, and

therefore, by the second law of motion, the pressure on the

base of the prism will counterbalance the resolved part of

the weight of the prism and the atmospheric pressure on its

upper surface.

Hence if p is the pressure at the depth z and K the area

of the cross section of the prism,

PK Tltc -f gpZK cos a

or p = II 4- gpz cos a.

We can also determine the surfaces of equal pressure when
a box containing liquid is dragged up an inclined plane with

a constant acceleration.

Taking f for the acceleration, and assuming that the

liquid is in a state of relative equilibrium, it follows that the

resultant pressure of the liquid on an element m, and the

weight mg of the element have for their resultant the force

mf parallel to the plane in the upward direction.

B. E. H.
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If then 6 represent the inclination to the vertical of the
direction PK of the resultant fluid pressure on an element,
and if PA is perpendicular to PK, it follows, by resolving
the resultant force and the acting forces in the direction PA,
that

mf cos (a -f 6)
= mg sin 0,

and /. tan 6 [g +/sin a] =/cos a.

213. A closed vessel, in the form of a circular cylinder,
is just filled with liquid, and the whole system rotates, as if

rigid, uniformly about the axis of the cylinder ; neglecting
the action of gravity it is required to find the pressure at any
distancefrom the axis.

It is evident, if the cylinder is only just filled, that there

is no pressure at any point of the axis. Taking any point P
in the liquid, let PN be the perpendicular upon the axis,

and consider the motion of a very thin column of liquid

enclosing NP.
The pressures on the two ends of any small element of

mass m of this column are such that their difference is equal
to mo>V in the direction PN, r being the distance of m from

the axis.

The sum of all these differences is therefore equal to the

sum of the values of ra&>2r from N to P, and this sum, by
Leibnitz's theorem, is equal to

But the sum of all the differences is equal to the pressure on
the end P, i. e. is equal to pic ifp is the pressure at P.

Hence we find that p = ^pcoPNP*.
In the same manner if a closed vessel of any shape be

just filled with liquid, and if the whole system be made to

rotate as if rigid, about any fixed axis, which is entirely
outside the vessel, it can be shewn that the pressure at any
distance r from the axis is equal to

where a is the distance from the axis of the point on the

inside of the vessel which is nearest to the axis.
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Impulsive Action.

214. Imagine a closed vessel filled with liquid and

having an aperture in its surface fitted with a piston. Let

an impulse be applied to this piston ;
then assuming the

incompressibility of the liquid, it can be shewn by the same

reasoning as for finite pressures, that the impulse is trans-

mitted throughout the mass, and is, at any point, the same
in every direction.

The impulse at any point is measured in the same
manner as a finite pressure ;

that is, if OT be the impulsive

pressure at a point, -CT/C is the impulse on a small area K

containing the point.

A cylindrical vessel, containing liquid, is descending with

a given velocity and is suddenly stopped ; to find the impul-
sive action at any point.

The impulsive pressure at all points of the same hori-

zontal plane will be the same, and if cr be the pressure at a

depth #, and K the area of the base of the cylinder, WK. is the

impulse between the portion of the liquid above and below

the plane at a depth x, and this impulse evidently destroys,
and is therefore equal to, the momentum of the liquid mass

above, which is piexv.

Hence TZK = ptcxv,

and .*. -57 = pvx.

215. If a vessel of any shape, containing liquid, descend

vertically and be suddenly stopped, we can prove, by con-

sidering a small vertical prism of liquid, that the impulse at

any point varies as the depth below the surface of the liquid.

This being the case, it follows that the propositions

relating to whole pressure, and to resultant vertical and

horizontal pressures in Chapters III. and IV., are equally true

of impulsive pressures for the particular case in which the

motion destroyed is vertical. The question is really the

same if the vessel be made to ascend suddenly from rest, or

have its velocity suddenly changed.
Thus, if S is the area of any plane in the descending

vessel in contact with the liquid, and z the depth of its

152
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centroid below the free surface of the liquid, the resultant

impulse on the plane is pvzS.
Also for any surface the expression for the whole impulse

is pvzS.

Again the resultant vertical impulse on any surface will

be equal to the momentum of the mass of liquid contained

between vertical lines through the boundary of the surface

and the free surface of the liquid.
And further, the resultant horizontal impulse in a given

direction, on any curved surface, will be equal to the resul-

tant impulse on the projection of the given curved surface

on a vertical plane perpendicular to the given direction.

If a closed vessel, just filled with liquid, be moved in any
direction and suddenly stopped, the surfaces of equal impulse
will be planes perpendicular to the given direction, and the

free surface will be that plane which passes through the

extreme particles of the liquid in the rear of the motion.

If z is the distance of any point in the liquid from this

plane, the impulse at the point will be pvz, and all the

theorems above given are equally true of this case.

Ex. 1. A hollow sphere just filled ivith liquid is let fall upon a
horizontal plane.

The resultant impulse, downwards, on the lower half of the internal

surface

-
TT^I

= -

and the impulse, upwards, on the upper half

3

The resultant vertical impulse on either of the halves made by a
vertical plane= pvnr

3
,
and the resultant horizontal impulse =pV7rr

3
.

Ex. 2. In a closed vessel of liquid a ball of metal is suspended by a ver-

tical string fastened to the upper part of the vessel. Find the impulsive
tension of the string when the vessel is suddenly raised with a given velocity.

The resultant impulse of the liquid on the ball will be the same as
if its place were occupied by the liquid, and therefore will be equal to

the momentum of the ball of liquid.
If U be the volume, and v the velocity, this is pvU. But if p be

the density of the metal, the momentum of the ball is p'v 17, and this is

produced by the impulse of the liquid, and the tension T of the string.

Hence p'vU=pvU+T,
and T=(p'-p)vU.
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216. Pressure produced by a jet of liquid impinging on

a plane.

Imagine a vertical jet of water to fall with a given

velocity on a horizontal plane. If we assume that there is

no splashing and that the water flows away on the plane, the

vertical momentum of the jet will be destroyed on reaching
the plane.

Hence if p is the density of the water, v the velocity, and

K the cross section of the jet when it impinges on the hori-

zontal plane, the momentum destroyed in the unit of time is

p/CV . V Or pKV
2

.

This then being the rate at which momentum is being

destroyed is the measure of the pressure in the plane.

Taking a foot and a second as units of length and time,

the pressure is given in poundals.
If the jet fall on an inclined plane, the momentum per-

pendicular to the plane is destroyed.
Now the amount destroyed in the unit of time is

PKV . v cos a.

The pressure is therefore p/cv
2 cos a.

EXAMPLES.

1. A hollow cone, whose vertical angle is given, is filled with water

and placed with its base on a horizontal plane ;
determine a point in

its surface at which, an orifice being made, the issuing fluid will jus*
fall outside the base of the cone.

2. Through the plane vertical side of a vessel containing fluid,

small holes are bored in the circumference of a circle, which has its

highest point in the surface of the fluid
;
shew that the trace of the

issuing fluid on a horizontal plane through the lowest point of the circle

is two straight lines.

3. Two cylindrical vessels containing water are suspended with

their axes vertical to the ends of a string passing over a fixed smooth

pulley in a vertical plane ; neglecting the weights of the vessels,

compare the whole pressures, during the motion, on the curved surfaces

of the cylinders.

4. A hollow cone, vertex downwards, and containing liquid, is

attached to a string passing over a pulley and supporting at its other

end a given weight : determine the motion and find the whole pressure
of the fluid on the cone and also the resultant pressure.
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5. Two hollow cones, filled with water, are connected together by
a string attached to their vertices which passes over a fixed pulley;

prove that, during the motion, if the weights of the cones be neglected,
the total pressures on their bases will be always equal, whatever be the

forms and dimensions of the cones. If the heights of the cones be A, A',

and heights mk, nh' be unoccupied by water, the total normal pressures
on the bases during the motion will always be in the ratio

6. Two spherical shells of the same material and of thicknesses

proportional to their radii are each half filled with water. Prove
that when tied to the ends of a string slung over a smooth pulley,
and allowed to move, the resultant pressures of the water on the

spheres are equal.

7. A ball of lead is let fall in water
; assuming that the pressure of

the water is the same as if the ball were not in motion, find its velocity
at any given depth.

8. An Hydraulic Earn being in action, F, v are the mean velocities

of the falling and rising water, and n : 1 is the ratio of the sectional

areas of the pipes ; prove that the height to which the water is raised

is nF3
/2$"y, neglecting the waste of energy by friction or overflow.

9. When water is flowing along a pipe, the friction varies as the

square of the velocity and the surface of the pipe. If a velocity of

12 feet per second causes a friction of 1 Ib. per square foot of wetted

surface, what will be the friction on 1 mile of pipe 7 inches in diameter,
the water flowing at the rate of 3 ft. per second ? What will be the

loss of horse-power in transmitting energy through this pipe at this rate ?

10. If A is the area of the section of each pump of a fire engine, I

the length of the stroke, n the number of strokes per minute, and B
the area of section of the hose, find the mean velocity with which the

water rushes out.

11. A box containing water is projected up a rough inclined plane,
the inclination of which to the horizontal is greater than the angle of

friction
;
shew that the free surfaces of the fluid in its position of rest

relative to the box when going up and coming down are planes inclined

to one another at an angle equal to twice the angle of friction for the

box and the inclined plane.

12. A railway train, travelling with a given acceleration, arrives at

an incline, and, after ascending to a ridge, descends at the same incline

on the other side. Assuming that the pull of the engine and the

resistance are the same throughout, determine the levels of the water

surface in the boiler in going up and down the incline, and prove that

the difference of the levels is equal to the angle between the inclines.

13. Two smooth inclined planes are fixed back to back, and two
boxes containing liquid slide on the planes under gravity, the boxes

being connected by a fine string passing over a pulley at the vertex of
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the planes. Prove that the free surfaces of the liquids will be parallel
and equally inclined to the planes, if the weights of the boxes and the

liquids they contain are proportional to the cosecants of the angles
which the inclined planes make with the vertical.

14. A circular tube of fine bore, whose plane is vertical, contains

a quantity of heavy uniform fluid, which subtends an angle 2a at the

centre
;
a heavy spherical particle, just fitting the tube, is let fall from

the extremity of a horizontal radius; find the impulsive pressure at

any point of the fluid.

15. A cylindrical vessel containing inelastic fluid is descending
with a given velocity (v) and is suddenly stopped; its axis being

vertical, find the whole impulse on the curved surface.

16. A hollow cone, formed of flexible material, is filled with water,
and closed by a rigid circular plate. It is then let fall, with its axis

vertical and vertex upwards, on a horizontal plane ;
find the whole

impulse, and the resultant impulse, on the curved surface.

Determine also the impulsive tension, at any point, in the direction

of the generating line through the point.

17. A closed vessel is filled with water containing in it a piece of

cork which is free to move
;

if the vessel be suddenly moved forwards

by a blow, prove that the cork will shoot forwards relative to the water.

18. If the surface of the earth were a perfect sphere, prove that a

river flowing uniformly due south, in latitude 45, would be going up
an incline of, apparently 1 in 570, in consequence of the earth's rota-

tion.

19. Prove that the longitudinal tension per unit of length of a
flexible pipe of uniform bore, in the form of a circle, due to water

flowing through it with constant velocity v, is pv
2
,
where p is the mass

of water per unit of length of the pipe ;
and hence prove that if the

pipe be at rest in any curve under any forces, the equilibrium will not

be disturbed if the water in the pipe be flowing with constant velocity,
and that the tension at every point will be increased by pv

z
.

20. A bucket filled with water to the depth of a foot is suspended
from a balance. A small aperture is opened in its base which dis-

charges 4 Ibs. of water per minute at an angle of 45 with the vertical,
and simultaneously a stream of water is received by it which emerges
vertically from an aperture 8 feet above the free surface with a velocity
of 30 feet per second, and falls on a glass plate attached to the bucket

obliquely just above the free surface so that splashing is prevented, the

supply being such that the level in the bucket remains constant.

Prove that the balance indicates about -066 Ib. more than the weight
of the bucket and its contents.



CHAPTER XVI.

ON SOUND.

216 a. THE sensation which we call sound is produced by
a vibratory movement of the atmosphere ;

however it is first

caused, it finally affects the organs of hearing by means of

the air. A blow struck on any elastic body will produce
sound, and the more highly elastic the body is the more

easily will the sound be produced; a piece of metal when
struck will ring sharply while the same blow on a piece of

wood produces a dull sound of less intensity. A sound may
traverse intervening bodies and be finally imparted through
air which has no direct communication with the air in which
it originated.

The fact that air is necessary for the transmission of
sound may be shewn experimentally. Suspend a bell within

the receiver of an air-pump, and provide a means of striking
the bell from without, for instance, by a rod sliding in an

air-tight collar. Then proceed to exhaust the receiver, and
it will be found that as the exhaustion progresses, the sound
of the bell becomes fainter, and is finally lost altogether.

That there is an actual motion in the particles of air is

shewn by the transmission of sound through solid bodies,
and also by the fact that a musical note sounded on any
instrument will sometimes produce a sound, in unison with

it, from some other body not in contact with the instrument.

Velocity of Sound.

The rate at which sound travels depends on the tem-

perature of the atmosphere ;
it has been found experimentally
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that at the freezing temperature the velocity is about 1089
feet per second, and that at a temperature of 61 F., when
the height of the barometer is 29*8 inches, the velocity is

nearly 1118 feet per second. We may therefore take 1100
feet per second as the velocity of sound under average

atmospheric conditions.

Distance of a sounding body. Knowing the velocity
of sound, we can estimate the distance of a sounding body
whenever the production of sound is accompanied by the

production of light. The velocity of light is so great that its

transmission through all ordinary distances on the earth

may be considered instantaneous, and thus if a cannon be
fired from a ship at sea, the interval between seeing the

flash and hearing the report will determine the distance of the

ship. In the same manner the interval between a flash of

lightning and the thunder which follows it will determine
the distance of the cloud from which the flash is evolved.

The rolling of thunder may be accounted for in two ways.
A single explosion may accompany the lightning, in which
case a peal of thunder will be due to the reflection of the

sound by clouds in different directions, and will be in fact a

succession of echoes. Or the electric flash may pass rapidly
from cloud to cloud, and thus the sounds of a series of

explosions taking place almost at the same instant, but at

different distances from the spectator, will arrive in succes-

sion and produce a continuous peal. In this latter case the

peal is probably intensified and lengthened by echoes.

Velocity of sound through water. Sound is transmitted

with much greater velocity through water, and through
highly elastic solids, than through air. By experiments
made in the lake of Geneva, the velocity was found to be

4708 feet per second, when the temperature of the water
was 8 C. The rate of transmission through metallic sub-

stances is very much greater.

Velocity through gases. We have stated that the velocity
in air depends on the temperature, and not on the density.
In fact it depends on the value of k, which is different for

different gases, and therefore the velocities in gases differ

from each other. For instance, the velocity in hydrogen is
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nearly four times that in air at the same temperature, the

elasticity of hydrogen being much greater than that of air.

Transmission through the atmosphere. The various por-
tions of the atmosphere through which a sound passes, may
have different temperatures, and consequently the sound
will travel with a variable velocity. Moreover, the passage

through varying strata tends to disturb the vibrations and
to diminish the intensity. This accounts for the fact that

distant sounds are heard more distinctly at night than

during the day, the atmosphere being in general more

quiescent, and having a more equable temperature.

Sound Waves.

216 6. A wave is the term applied to any state of vibra-

tory motion which is transmitted progressively through the

particles of a body. The effect of dropping a stone in still

water is a familiar illustration
;
the rise and fall of the water

produced by the plunge of the stone travels outwards in an

expanding circle, while the particles of water merely rise

and fall in succession as the wave passes over them.
Thus a portion of the atmosphere being in any way set

in motion, the vibrations are communicated to the surround-

ing air, and the expanding spherical wave impinging on the

ear produces the sensation of sound.

The intensity of a sound diminishes as the distance of the

sounding body is increased. As a spherical wave expands,
its thickness remaining constant, the vibrations are commu-
nicated to larger masses of air, and, in accordance with a

general law of mechanics, the intensities of the vibrations

are diminished. The intensity in fact is diminished in the

inverse ratio of the square of the distance. This law how-
ever does not hold, if the sound be transmitted through
tubes or pipes. In such cases the intensity is very slowly
diminished.

Propagation of a Wave along a Straight Tube.

217. Consider a straight tube filled with air, and let a
disc AB at one end oscillate rapidly over the space aa.
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When the disc oscillates from A to a, it compresses the
air before it, and when the disc is at a, the compression has
traversed and extends over the space AC. This compression
travels along the tube with a constant velocity, and is called

the condensing wave.

(t'A. rf, C D 3

IB

As the disc returns from a to A, it rarefies the air behind

it; and this rarefaction extends over AC, while the previous

compression has been transferred to the space CD, and thus

a rarefying wave follows the condensing wave.

As the disc moves from A to a', another rarefying wave is

produced, and when the disc returns to A, a condensing
wave is produced, while during these two processes the first

condensing and rarefying waves have been transferred to EF
and DE respectively.

The disc having its greatest velocity at A, and coming to

rest at a and a', it is obvious that the condensation is

greatest at F, and diminishes gradually to E, where there

is no condensation, or where the density is the same as if the

air were at rest
;
from E to D the air is rarefied, and at D

the rarefaction is greatest; from D to G the rarefaction

decreases, and at G condensation commences and increases

to4
Thus a complete wave or undulation is formed, and if

the disc oscillate once only, a single wave will travel along
the tube taking successive positions as in the figure ;

if the

disc continue to vibrate, a succession of these waves will -be

produced and will follow each other 'continuously along the

tube. If these waves, on emergence from the tube, impinge
on the ear, the sensation produced will be that of a con-

tinuous and uniform sound.

The vibrations can be produced without the aid of the

disc, as, for instance, by blowing across the end of the tube.

It will be observed that the velocities of the vibrating

particles of air are zero at F and D, and greatest at E
and G.
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The length of a wave is the distance between any two

points at which the phases of vibration are the same, that is,

at which the velocities of the vibrating particles are the

same in direction and magnitude.

Motion of a Wave along a Stretched String.

218. In a similar manner, if a portion of a stretched

cord PQ be set in motion, a wave, or succession of waves,
will travel along the cord, and on arriving at Q will be

reflected and travel back again.

The string may vibrate somewhat in the form of the

curve ABODE, AE being the length of a wave, B and D the

points at which the displacement is greatest, and the velocity
zero, and A, G, and E the points at which the displacement
is zero and the velocity greatest.

In this case the vibration is perpendicular to the line in

which the wave travels, but its analogy with the case of the

tube is sufficiently evident.

The vibrations of the string are communicated to the air

and thereby conveyed to the ear.

Musical Sounds.

219. Any series of waves, following in close succession,

may produce a continued sound
;

if they are irregular in

magnitude, the result is a noise, but a musical note is

produced by a constant succession of equal waves.

Pitch, intensity, and quality. Notes may differ from
each other in three characteristics

; thus, a note may be

grave or acute, that is, its pitch may be high or low
;
and

the pitch of a note depends on the length of the constituent

wave, and is higher as the length of the wave is less. The

intensity of a sound depends on the extent of vibration of
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the particles of air, and its quality is a characteristic by
which notes of the same pitch and intensity are distin-

guished from each other. The quality of a note, or, as it

is sometimes called, its timbre, depends on the nature of the
instrument from which it is produced.

A further distinction of sounds is sometimes marked by
the word tone. Thus the tone of a flute differs from the
tone of other instruments, while two flutes may, and will in

general, produce sounds which differ in quality.

Sounds of different pitch travel with the same velocity.
This appears to be the case from the fact that if a musical

band be heard at a distance there is no loss of harmony, and
therefore there can be no sensible difference in the velocities

of the different sounds.

220. Reflection of waves in a tube of finite length. It is

found both by experiment and theory that a wave on

arriving at the end of a tube is reflected, whether the end
be open or closed, and travels back again, changed only in

intensity, to be again reflected at the other end.

This accounts for the resonance in a tube when the air

within it has been set in vibration.

221. Coexistence and interference of undulations.

Different sound waves travelling through the air traverse

each other without alteration either of pitch or intensity.
In other words, different undulations coexist without affect-

ing each other, and the actual vibration of any particle of

air is the sum or difference of the coexistent vibrations

which are at the same instant traversing the particle of

air.

A simple illustration of this coexistence may be seen by
dropping two stones in water. The expanding circular waves

intersect, and at the points of intersection it will be seen that

a depression and an elevation neutralize each other, and that

two depressions or two elevations at the same point increase

the amount of one or the other. If there be a sufficient

number of circular waves the points of greatest elevation

will be seen to lie in regular curves, as also those of de-
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pression, and of neutralization*. The vibrations in this case

being transverse to the direction of transmission of the wave
are different from those of sound waves, which are longi-
tudinal or in the direction of transmission, but the effect of

coexistence is the same in all cases.

The effect of coexistence in producing neutralization, or

increase of intensity, is called the interference of undulations,
and it must be observed that, while two sets of undulations

are physically independent of each other, their geometrical
resultant may be a form of undulation different from that of

either component, as in the case just referred to of the undu-
lations in the surface of water.

The Notes which can be produced from a Tube closed at

one end.

222. When a definite note is being sounded from a tube,
the air within the tube vibrates regularly, every particle

maintaining the same vibration, and there are certain points
of the tube at which the air remains at rest. These points,
or planes of division of the tube, are called nodes, and the

planes of maximum vibration are called loops.
The motion in fact is the same as if there were fixed

waves in the tube, and the nodes and loops are the points of

zero velocity and zero condensation.

The motion thus described is called steady motion, and
its existence is requisite to the continuance of a definite

note.

In the case of a tube closed at one end B, it is clear that

the end B must be a node, and since the end A is open its

* These curves are hyperbolas, for, if A and B
be the centres of disturbance, and P, P' the points
of intersection of two particular waves, AP and
BP increase uniformly with the time, and the
rate of increase of each is the same.

Hence, their difference is constant, and the
locus of P is an hyperbola of which A and B are
the foci. As other waves follow in succession the
series of such points will lie in confocal hyper-
bolas.
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density is sensibly that of the air outside, and we may take

it to be a loop.
It is therefore evident that the longest possible wave

for which the motion can be steady is four times the length
of AB

;
and the corresponding sound is the fundamental note

of the tube.

Further, AB may be any odd multiple of the distance

from a node to a loop, and if AB =
I, and X be the length of

a wave, we must have

or X=

Hence the notes which can be produced from AB have

for their wave lengths,

AJ & U
a

41, TT- , -JT- , &c.,
O u

and, if v be the velocity with which a wave traverses the

tube, the times of vibration are

42 4Z 41

~v '. 30' 5v'"'

and are therefore in the ratio of the fractions

1, , , ,
&c.

The Notes of a Tube open at both ends.

223. In this case each end is a loop, and there is there-

fore a node between
;
hence the greatest possible wave length

is twice the length of the tube, and further the length of

the tube must be some multiple of half the length of a

wave.

7
X 2Z

Hence I =m 5 ,
and X = .

2 m
The successive wave lengths are therefore

, 21 I 21
U, I, 3, g, -5,

&e.
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and the vibrations in the ratio of the fractions

111
2' 3' 4'"

It will be observed that the fundamental note of the

open tube is an octave higher than that of the closed tube

of the same length, the wave length for the former being
half that for the latter.

The Formation of Nodes and Loops.

224. Taking the case of a tube HK closed at the end K, the aerial

particles at the end K are permanently at rest, while those at A are in

a state of permanent vibration. We have stated, as an experimental
fact, that a series of waves travelling along HK in regular succession

are reflected at K and travel in the opposite direction ; and this fact

enables us to account for the existence of nodes and loops.
In order to give the required explanation we must first explain a

method of representing geometrically the state of motion of the aerial

particles in a wave.

Take AE as a wave length, and let the ordinates of the curve

ABODE represent the velocities of the several particles parallel to the
line AE; thus NP represents the velocity of the particle at N, NP
being drawn upwards when the velocity is in the direction AE, and
downwards when the velocity is in the opposite direction.

Hence, if two distinct sets of vibrations coexist along a line of aerial

particles, we can determine the resultant motion by drawing the two
curves for the two waves, and the algebraic sum of the ordinates at any
point will represent the resultant velocity at that point.

Imagine now a wave travelling along AS, and impinging on the

fixed end K
;
this wave will be reflected and will travel along BA with

reversed velocity.
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In the figure the dotted line B'C' will represent the reflected wave,
and the effect of the reflected wave is the same as that of a wave B'C'

travelling in the direction KA.
It will be seen from the figure that the velocities at K from the two

waves are always equal and opposite, and that the resultant velocity at

K is always zero, in accordance with the given conditions. In other

words, the effect of the fixed end K is replaced by the effect of a
reversed wave travelling in the opposite direction.

It will also be seen that there is a succession of points, 7f, Z, J/,... at

which the velocity is always zero and a succession K', L',... at which
the velocity varies between its greatest values in both directions, the
former set of points being nodes, and the latter loops.

Let a dotted line KPLQMR be drawn such that its ordinate at any
point is the algebraic sum of the ordinates corresponding to the
incident and reflected wave

;
this dotted line will represent the state of

vibration of the air in the tube at the instant considered, and it will be
observed that while the points K, L, J/,... are points of permanent rest,
all the intermediate points represent the positions of aerial particles
which vibrate steadily, their velocities being zero at regular intervals.

Thus, the opposing waves may be so placed that their extremities

(7, (f may coincide at K'
;
in the figure this will occur when the incident

waves have traversed the space CK', and the opposing waves the space
C'K', and at this instant the velocity at K' will be zero. Subsequently
the two waves travelling in opposite directions will produce at K' a

velocity double that of either, so that the velocity at K' will then be a

maximum, the interval of time being that during which the vibration
has traversed a space equal to one-fourth of a wave length.

It will be now clear that, if a permanent vibration be maintained at
the open end ff

t
a succession of nodes and loops will necessarily be

formed in the tube, provided that the wave length emitted from the
end H is such as to satisfy the condition of Art. (222). This condition
is that the wave length should be an odd submultiple of 4 times the

length of the tube.

In a similar manner, if KH be a tube open at both ends, it is found
that a wave or a set of waves travelling along HK are reflected at

/vT,

and traverse the tube in the direction HK. An important difference

however exists between the two cases
;
in the former case the end K

is a node, in the present case it is a loop, the particles of air vibrating
freely, and the density being the same (very nearly) as that of the
external air.

An analogous explanation will account in this case also for the
formation of nodes and loops.

In the case of the tube closed at K, the reflected wave on arriving at
H is partly emitted into the open air and partly reflected, thereby
reinforcing the new vibration which is at the instant being excited at

ffy and aiding to produce another series of waves which are again
reflected at K.

The effect which is thus produced on the ear is that of a sustained

note, the character of which depends on the material of which the tube
is formed, while its pitch and intensity depend solely on the lengths of

B. E. H. 16
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the constituent waves and the extent of the vibrations of the aerial

particles.

The Notes produced by a Vibrating Cord.

225. A stretched cord in a state of vibration may either

oscillate as a whole, figure (1), or in parts, as hi figures (2)
and (3), the curved lines representing the actual positions at

certain instants of the cord itself.

In any case the two ends are points of zero velocity or

nodes, and the wave corresponding to the fundamental note

has, for its length on the cord, twice the length of the cord.

In general, if the wave length on the cord be X', the

length I of the cord must be some multiple of ^ X',
ft

i
X/

i.e. l m~.

The velocity of propagation along the cord will depend on

its tension, thickness and density ;
and if v' be this velocity

\'
the time of vibration is -7 .

v

The pitch of the note produced is determined by the time

of vibration, and therefore, if X be the wave length produced
in air by the vibrations of the cord and thereby conveyed to

the ear as a sound, and v the velocity of propagation in air,

we shall obtain the note by the relation

v v

since the aerial vibrations are performed in the same time as

those of the cord.
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X 21
Hence =

-, ,

v mv

arid the wave lengths are

~
7
v ,v 21 v I v

e
2l
v"

l
v" 3?' 2?'

&a

These wave lengths give the series of harmonics pro-
ducible from the cord, and it should be observed that any
one may be produced alone, or any number of them may
exist simultaneously.

226. Vibration of rods. We know that sounds are pro-
duced by vibrating rods, and we can determine the series of

notes producible in any simple case by the considerations of

the preceding articles. A rod fixed at one end and free at

the other, will have for its fundamental note a wave length
four times its own length, the fixed end corresponding to a
node and the free end to a loop.

The analogy between a vibrating rod and a vibrating
column of air will be now seen, but attention must be paid
to the fact that the vibrations of air which produce sound
are longitudinal, while the vibrations of a string are trans-

versal, and those of a rod may be either transversal or longi-
tudinal.

A common instance occurs in the humming of a telegraph-

post, which is probably due to a series of longitudinal vibra-

tions traversing the post in a vertical direction.

The transmission of sound through water is analogous to

the trapsmission of sound by means of longitudinal vibrations

along a rod, and is treated theoretically in exactly the same
manner.

227. The pitch of a note produced by a vibrating cord

depends on the tension and substance of the cord, and is

heightened by an increase of tension ; and in a similar

manner the pitch of a note produced from a rod is found
to depend on its size and substance.

This is due to the fact that the rates of propagation of

vibrations depend on the characteristics above mentioned,
and thus a long wave length, traversing a cord or a rod very

162
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rapidly, may give rise to a short wave length in the aerial

vibrations which result from those of the cord or the rod, and
a high-pitched note be produced.

Unison and Harmony of Musical Notes.

228. The vibration number of a note is the number of

vibrations imparted to the air in the course of one second.

If n is the vibration number of a note, r the time of

vibration, X the wave length, and v the velocity of sound,
we have the relations

Two notes are said to be in 'unison when the times of

vibration, or the wave lengths, are the same for both.

The harmony of two notes consists in the recurrent

coincidence, at short intervals, of their constituent vibra-

tions
; thus, if a note and its octane be sounded, the vibration

belonging to the fundamental note coincides exactly with

two vibrations of the octave, and the two sounds are said to

be in harmony with each other.

More generally two notes are in harmony when a small

number of vibrations belonging to one of them coincides

exactly, in time, with a small number of the vibrations

belonging to the other. An instance of this is the harmony
of a note with its fifth in the diatonic scale, three vibrations

of the upper note being coincident with two of the lower

note.

229. Communication of vibrations. If two different

bodies can vibrate in unison or in harmony with each other,

that is, if their fundamental notes are either in unison or in

harmony, it is a known fact that when one is set vibrating,
the other, if not too far off, will vibrate also. The reason is

that the sound waves diverging from one body impinge on
the other, and when the vibrations of the latter can be in

harmony with those of the former, the slight vibration at

first established is maintained and intensified by the con-

tinued impulses of the same aerial vibration. Thus a person

singing or whistling in a room may sometimes hear notes

sounding from thin glass jars or metallic tubes, and these
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notes will always be in harmony with the note originally
sounded.

230. Seats. When a note of a pianoforte is sounded
a series of alternations is generally to be noticed in the

intensity of the sound, these alternations, which are called

beats, occurring at regular intervals.

This phenomenon depends on the fact that there are in

general two strings to each note, which are intended to be

exactly in unison with each other. Practically the unison is

seldom perfect, and hence the two sets of waves do not

exactly coincide with each other.

The intensities are however very nearly the same, and

hence, when the vibrations of the two waves oppose each

other, a diminution of the intensity results, but when they
are in the same direction the intensity is increased.

Suppose that r and r are the times of vibration of the

two notes
;
then if x vibrations of one coincide with x -f 1 of

the other, we have
TX = T (x+l),

or x

and .'.
-

,
is the interval between the instants of time at

r r

which the vibrations oppose each other, and is therefore the

period of the beats.

It follows that the number of beats in one second

TT T

which is the difference of the vibration numbers of the two
notes.

It is evident that the more nearly T and T' are equal to

each other, the longer is the period of the beats, and the less

the number of beats heard while the sound is perceptible.
Beats are also produced when two notes are very nearly

in harmony with each other
;
the explanation is the same as

for the simple beats above mentioned.

Tartini's Beats. Again, when two notes are actually in

concord, a note is sometimes heard in addition to the two



246 EFFECT OF MOTION.

notes, and of lower pitch than either. The vibrations of the

two notes coincide at regular intervals; these coincidences

are Tartini's beats, and the effect of a series of such beats,

at regular and rapidly recurring intervals, is that of a note

which is grave in comparison with the original notes. This

lower note is called a subharmonic of the two notes by which
it is produced.

For example, in the case of a perfect fifth every second

vibration of one note coincides with every third of the other,

and the effect produced is that of a note exactly one octave

below the lowest note of the concord.

In general, if in a certain fraction (r), of a second, one note

makes in vibrations and the other n, the period of vibration

of the resultant subharmonic is r, m and n being supposed
to be prime to each other.

231. Effect of motion upon the apparent pitch of a note.

It is well known as a matter of observation that, if an

express train passes a station at high speed, a note sounded
in the train appears to a listener at the station to be of

higher pitch as the train approaches the station, and of lower

pitch when the train is receding from the station.

To explain this fact we must bear in mind that the

apparent pitch of a note, to a listener, depends upon the

number of vibrations which enter his ear in one second.

Let n be the frequency, or vibration number, of the note

sounded in the passing train, and let u be the velocity of the

train per second, and v the velocity of sound per second.

TakingP as the position of the listener at the station, let A,
A' be positions passed by the approaching train at the interval

of one second, and B, B' positions passed by the receding
train at the interval of one second, so that AA BB' = u.

A A' P B B'

The time between the first and the nth succeeding
vibration arising at P
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v u
The listener then receives n vibrations in the time

v

and therefore he receives - vibrations in one second.
v 11

'77?J

Hence the apparent frequency of the note is - -
.

Again when the train has passed the station, the listener

receives n vibrations in the time

1
BP .u

1 H------ or 1 + -
.

V V V
??7J

The apparent frequency of the note heard is therefore- .

Next take the case in which the note is sounded at the

station and the listener is in the train.

Taking A for the station let PP* be the space passed
over by the approaching train, and QQ' by the receding
train, while the listener in the train receives n vibrations.

Q Q'

Then if t is the time from P to P',

,

AP' AP ut v
==!+ = 1 , and .*. t =

V V V V+U

The frequency of the apparent note is therefore n .

Again, for the receding train, if r is the time from

Q to w,
-

,
AQ' AQ .

,

ur v
T = l-f- ~ = 1H ,

and .'. r = .

V V V V U

The frequency of the apparent note is therefore n .

For instance, if the train is going 60 miles an hour, u = 88,

and, if the note sounded is the middle G, the frequency of

the apparent note to the listener in the train when approach-
1 1 *7&

ing the station is 264 x ^ ^ or 285
;

that is, the note is
1090

raised rather more than a semitone.
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NOTES.

Velocity of Sound.

A calculation from theoretical principles of this velocity was made

by Newton and again by Lagrange ;
the result obtained was about 916

feet per second.

This notable discrepancy between fact and theory remained un-

explained until Laplace remarked that the heat developed by the

sudden compression of the air would increase the elasticity, and there-

fore increase the calculated velocity.
New calculations were made, and the result is in complete accord-

ance with fact.

If we neglect the heat developed by the sudden compression of air,

the theoretical expression for the velocity of sound is *Jky
where k is

the ratio of the numerical values of the pressure and the density of air,

the pressure being measured in poundals per square foot, and the

density in pounds. Since k is approximately 840000, i.e. g times the

height of the homogeneous atmosphere, Art. (194), it will be seen that

its square root gives very nearly the number above mentioned.

If we take into account the heat developed by compression, the

theoretical expression is *Jky (l + a), where y is the coefficient intro-

duced by the consideration of such development, and t is the tempera-
ture.

The numerical value of y is about 1*41 4*.

Intensity of sound after traversing pipes. Experiments were made
by Biot with some water-pipes in Paris, and it was found that a

whispered conversation could be carried on through a pipe 3000 feet in

length.
The use of speaking-tubes in large houses is another illustration of

the fact mentioned in Art. (216).

Vibrating Cords. It is found that the velocity with which a wave
traverses a stretched cord is the same as the velocity which would be

acquired by a heavy body falling through a vertical space equal to half

that length of the cord the weight of which is equal to its tension. In
other words, if the weight of a length I of the cord be equal to its

tension, the velocity with which a wave travels along it is *Jgl.
The existence of nodes and loops in the case of a cord may be

practically manifested by placing on the vibrating cord small pieces of

paper, cut so as to rest on the cord
;
those which are placed at the

* See Lord Eayleigh's Sound, Chapter xi.
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nodes will remain on the cord, while those which are placed near the

loops will be thrown off.

The Monochord is a simple instrument for trying the experiments
just mentioned, and for testing other results of theory.
A cord fastened at one end is stretched over a sounding board, and

passing over a bridge is tightened by a weight at the other end
;
the

tension may be varied by changing the weight, and by means of
another bridge, moveable along the board, the length of the vibrating
portion may be diminished. The notes obtained for different lengths
and different tensions can be thus compared, and the wave lengths for

different notes can be directly measured.

Practical illustration of the interference of aerial vibrations. From
Art. (221) we can see that if two waves, exactly similar to each other,
travel in the same direction, and one be half a wave length behind or
before the other, the result will be a permanent quiescence of the aerial

particles along the direction in which the waves travel.

This has been shewn visibly by an experiment, which is due to

Mr Hopkins.
A straight tube AB branches off at the end B

into two portions BC, BD-, the end A is closed

by a tight membrane and fine sand is scattered
over the membrane. A vibrating plate of glass
is placed beneath C and D so that the two por-
tions immediately beneath C and D shall be in

opposite phases of vibration. The waves thus pro-
duced in CB and DB traverse these branches of
the tube, and arrive at B in opposite phases,
that is, one is the half of a wave length before
the other, and therefore there is theoretically no
resultant vibration in BA. Practically it is found
that the sand on A is undisturbed, but, if the plate J

be turned round, the sand is immediately thrown into
C

'

a state of violent commotion.

Beats. The theory of beats is given in Smith's Harmonics, pub-
lished in 1749. Tartini's treatise, in which the sounds called by his
name were first discussed, appeared in 1754.

The diatonic scale. The ordinary or diatonic scale consists of a
series of notes, for which the times of vibration are in the ratio of the
numbers in the following table :

CDEFGAB C,84323 8 1
'

9' 5' 4' 3' 5' 15' 2
;

or, in other words, the numbers of vibrations per second are in the
ratio of

9 5 4 3 5 15
' ' J.' 3> O' Q' ~Q~
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that is, of the numbers

24, 27, 30, 32, 36, 40, 45, 48.

As a matter of fact the actual number of vibrations corresponding
to the particular C employed as a central note varies in different places,
and from time to time. As an ordinary standard for the concert pitch
of this note C, the middle G as it is usually called, about 264 vibrations

per second are taken to constitute the note, and the vibration numbers
of the several notes of the diatonic scale are therefore

264, 297, 330, 352, 396, 440, 495, 528.

Taking 1100 feet per second as the velocity of sound, the wave

length for the middle C is 1100^-264 which is nearly 4-17 feet. This
note can therefore be produced by an open pipe 2 '08 feet in length or

by a stopped pipe of the length 1*04 feet.

It will be seen that if we take the ratio of each vibration number to

the one preceding it, we obtain the following series

9 10 16 9 10 9 16

8' ' 15' 8' 9
'

8' 15'

These ratios mark the intervals between the notes, and of these

intervals - and are called tones and is called a semi-tone.89 15

Chromatic scale. The diatonic scale is enlarged by the insertion of

five other notes, one between the first and second, one between the

second and third, one between the fourth and fifth, one between the
fifth and sixth, and the other between the sixth and seventh. This
scale is called the chromatic scale, and the notes inserted are such that,

roughly, the interval between each consecutive pair of notes is a semi-

tone.

The range of sounds appreciable by the human ear varies for

different persons, but in general extends over above nine octaves. A
series of aerial impulses will produce the impression of a continuous

note when they recur with such rapidity that the ear cannot appreciate
the succession of impulses, and it is found that this is the case for a

wave length of about 68 feet. On the other hand it has been found
that the highest note which is in general appreciable has about eight-
fifths of an inch for its wave length.

The frequencies, or vibration numbers of these notes are about
16 and 8250.

The general case of Art. (230), when the listener is in one train
y
and

the note is sounded in another train, may be treated as follows*.
Let the source of sound travel from A to B in I/nth of a second,

n being the frequency of the note.

Let the listener be at P when the commencement of a vibration

reaches him, and at Q when the vibration has completely entered 'his

ear, and take the time from P to Q to be l/mth of a second.

* This mode of treatment is due to Mr A. W. Flux.
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Then, u being the velocity of the source of sound and u' of the

listener,

AP PO
I f= the time from the sound leaving A to the listener's arrival

at _AB BQ__AB AP+BQ-AB
m

U V
~

U V
'

Hence, since PQ= ,
and AB = -

,

ra _ v - u'

n
~
v-u '

and therefore the frequency of the apparent note is

v-u'
n .

v-u

This expression, as will easily be seen, includes the four cases

previously given.

Algebraical representation of a vibration.

The displacement of a cycloidal pendulum from its position of rest

at the time t is represented by an expression of the form

asmin
(271^

4 aY

where T is the time of a complete oscillation.

If then we are given the time of vibration, r, for any kind of

vibratory movement, and a the extreme displacement of the moving
particle from its position of rest, the above expression may be

employed as representing the two most important characteristics of the

motion.
If n is the frequency of a note, the expression becomes

a sin (2nnt+ a).

In general the expression does not represent the exact position of

the moving particle, except at the point of greatest velocity, and at

the points of zero velocity, but it does enable us to express in a
calculable form the phenomena of interferences.

The mathematical principle employed is that the resultant of any
number of small displacements of the same kind is equal to their

algebraical sum.
Thus the two notes a sin %imt and a sin (^Trnt+ TT), when sounded
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together, destroy each other, and the result is silence, as in the

experiment described on a previous page.
If the two notes a sin (2irnt+a) and a sin (27m + /3) are sounded

together, the result is

representing the same note with a different intensity.
In a similar manner the resultant of two notes of the same

frequency, but of different intensities, will be the same note with a
different intensity, such notes would be represented by the expressions

a sin ^Trnt+ a) and b sin 27

This however presupposes that the timbre, or quality, of each note

is the same.
If the timbre is not the same, as for instance if one note is sounded

on a violin, and the other on a flute, the two would be heard as

separate sounds.

On the subjects of this chapter the student may consult, amongst
many other books, Spencer's Treatise on Music, in Weale's series,

Ganot's Physics, Deschanel's Natural Philosophy, Jamin's Cours de

Physique, Tyndall's Sound, Sedley Taylor's Treatise on Sound and

Music, the introductory chapter of Lord Rayleigh's Sound, and
Helmholtz's Tonempfindungen.



MISCELLANEOUS PROBLEMS. II.

1. A semicircle is immersed vertically in liquid with the diameter
in the surface

;
shew how to divide it into n sectors, such that the

pressure on each is the same.

2. A sphere is totally immersed in water, and a line is drawn from
the centre representing in magnitude and direction the resultant of the
fluid pressure on the surface of any hemisphere ; prove that the locus

of the extremity of this line is a sphere.

3. Prove that a thin uniform rod will float in a vertical position in

stable equilibrium in a liquid of n times its density, if a heavy particle

be attached to its lower end of weight greater than (\/n-l) times its

own weight.

4. A box is made of uniform material in the form of a pyramid
whose base is a regular polygon of n sides and whose slant sides are

equal isosceles triangles having a common vertex ;
each of these triangles

forms a lid which turns about a side of the polygon as a hinge, its weight
is w, and its plane makes with the vertical an angle ,

and when closed

the box is water-tight. It is filled with water of weight W and is

placed on a horizontal table, shew that nw must be greater than
o
-- TFcosec2 ^ or else the water will escape.
2i

5. A plane area is completely immersed in water, its plane being
vertical. It is made to descend in a vertical plane without any rotation

and with uniform velocity, shew that the centre of pressure approaches
the horizontal through the centre of gravity with a velocity which
is inversely proportional to the square of the depth of the centre of

gravity.

6. A diving bell is lowered in a lake until one half of it is filled with
water

; prove that, if d is the depth of the top of the bell below the

surface, the height of the bell is 2 (k d), where h is the height of the
water barometer.
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7. If a quadrilateral area be entirely immersed in water, and if

a, p, -y,
8 are the depths of its four corners, and h the depth of its cen-

troid, prove that the depth of its centre of pressure is

8. A canal of triangular section is constructed by placing two
continuous triangular prisms of concrete on a rough plane ;

if the
sections of the prisms be equal triangles ABC, A'B'C', having the angles
(7, (7, in contact and A, A', at the surface of the water, then shew that
tan Cshould be less than 2 tan A

,
and further the angle of friction between

the concrete and the ground must be greater than cot"1
{p cot jB+ (l +p)

cot C} ,
where p is the density of concrete.

9. A series of conical shells made of paper of weight w per unit
area have equal vertical angles 2a, and circular rims of radii a, 2a,...a
respectively. They stand one inside another, with their rims resting
on a slightly damped horizontal table. Within the smallest cone, and
between successive cones, are gases of such densities that each cone is

on the point of rising from the table, the damp surface of which exerts
a vertical capillary force < per unit length of rim. Find the pressures
of the respective gases, and shew that if all the rims except the outside
one become dry so that the gases mix, the outside cone will rise unless
held down by an additional force

Yg 7ra(n- 1) (3?0acoseca. n(nI) + 4ic (2tt-l)}.

10. A portion of a homogeneous elliptic cylinder, the eccentricity

of a right section of which is -
,
is bounded by one of the planes through

the latera recta of the cross sections and floats with its axis in the
surface of a liquid and no part of the bounding plane immersed.

Prove that the density of the liquid is to that of the cylinder as

8,1- 4- 3\/3 : GTT, and that there are three positions of equilibrium of which
two are unstable.

11. If the chamber of a diving bell, of height a, could contain a

weight W of water, and if the bell be lowered so that the depth of the

highest point is d, prove that when the temperature absolute T is raised

t, the tension of the supporting chain is diminished by

Wkat/aT {(h + d)
2
+4aA}*

nearly, h being the height of the water barometer.

12. A weightless inextensible envelope full of air floats in equi-
librium in the receiver of an air-pump ;

find the velocity of its descent

after n strokes of the piston, supposed instantaneous, and made at equal
intervals.
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13. If the volume of the receiver be n times that of the barrel, and
if v be the limit of the above velocity when n is infinite, and v

r the

velocity which would have been obtained in vacuo in the same time,
shew that v'=cv.

14. A bent tube ABC contains fluid, and the tube rotates uni-

formly with an angular velocity a> about the leg AB, which is vertical :

find the position of equilibrium of the fluid.

If I be the whole length of tube occupied by the fluid, and the angle

ABC=a, examine the case in which o>
2> |-7 cot

2 -
.

2ii 2

15. A spherical bubble of air ascends in water
; having given its

radius c at the depth 2/i, find its radius at the depth A, h being the

height of the water barometer.

16. Prove that the work done in pumping air into a diving bell

over and above the work done in compressing the air varies jointly as

the volume of the water displaced and the depth of the centroid of this

volume below the outer surface of the water.

17. A spherical shell is partly full of water at rest. If the water
be made to rotate about the vertical diameter, shew that the greatest

depression of the free surface exceeds its greatest elevation.

18. Liquid of density p is standing in a fixed smooth circular

cylinder with axis vertical and of radius a. This is made to revolve
about the axis with angular velocity o>, none of the base being exposed.
A paraboloidal solid of density or shaped just to fit the cavity in the

liquid is gently placed upon the surface so that its flat top just passes
through the highest rim of the liquid. If p><r, shew that before it

reaches its equilibrium position, the liquid rising round it (supposing
no interference with the base to take place), it must sink through a

depth

19. Two very small spheres, of the same size but different densities,
are connected by a fine string and immersed in a liquid which rotates

uniformly about a fixed axis, and is not acted upon by any external

forces ;
find their position of relative equilibrium.

20. Close to the base of a vertical cylinder there is a small aperture
turned upwards as in the figure, Art. (207), but instead of the surface in

the cylinder being free, a heavy piston rests upon it
; find the height to

which the jet rises.

21. Find the horse-power of an engine that can, in four hours, fill

a bath 50 feet in length, 20 feet in breadth, and 5 feet in depth, with
water raised on an average 12 feet, and elevate its temperature 6 F.

;

having given /= 772 foot-pounds, and that the useful work is half the
whole work expended by the engine.
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22. Shew that, if the height of the barometer vary from one end of

a lake to the other, there will result a heaping up of the water on one
side. Find what will be the greatest rise above the mean level produced
in a circular lake of 100 miles diameter by a variation in the height of

the mercury of '001 inch per mile.

23. The height of Niagara is 162 feet. Shew that the falling water

may be made to balance a column of water 324 feet high in a J-shaped
tube with its lower mouth under the fall.

24. A cylindrical bucket with water in it balances a mass M over a

pulley. A piece of cork, of mass m and specific gravity o-, is then tied

by a string to the bottom of the bucket so as to be wholly immersed.
Prove that the tension of this string will be

and that the pressure on the curved surface of the bucket will be greater
or less than before according as the volume of the cork has to the

volume of the water a ratio greater or less than

25. Two buckets containing water, the mass of each bucket with
the contained water being Jsf, balance each other over a smooth pulley.
Two pieces of wood of masses m, m\ and specific gravities <r, a-' are then
tied to the bottoms of the buckets so as to be wholly immersed, prove
that the tension of the string attached to the mass m is

26. If a jet of liquid flows out of a vessel prove that across a vena
contracta of area

,
at which the pressure would be increased by p if

the liquid were at rest, the quantity of liquid and the amount of

momentum which issue in the time t are respectively kt\/Zpp and

t, where /j
is the density of the liquid.

27. A hollow sphere, smooth inside, is filled with liquid ;
if the

sphere is made to revolve uniformly about a vertical axis with which it

is rigidly connected, find, at any instant, the surface of equal pressure.

28. A cylindrical aperture, smooth inside, cut through a solid

cylinder, with its axis parallel to that of the cylinder, is filled with

liquid, and closed so that no liquid can escape ;
the cylinder being

made to roll uniformly on a horizontal plane, find at any instant the
surfaces of equal pressure, and trace their changes through a whole
revolution of the cylinder.

29. If a mass of homogeneous liquid rotates about an axis and ia

acted upon by a force to a point in the axis varying inversely as the
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square of the distance, the curvatures of the meridian curve of the
free surface at the equator and pole are respectively l/a(l-m) and
(1 w6 3

/a
3
)/6, where a and b are the equatorial and polar radii and m

is the ratio of the centrifugal force to the attraction at the equator.

30. A vertical cylindrical vessel which is filled with water, has an

aperture bored in its side at the depth h below the surface of the water.
If K is the area of the surface of the water, and AC the area of the

aperture, prove that when the surface of the water has descended

through the distance #, the velocity u with which the surface is then

descending will be such that

u2
{xK

z+ (h
-
x] K2

} =#*2
{2hx

- x2
}.

31. A tuning fork held over a glass jar of a certain depth has its

sound greatly augmented ;
but a jar an inch deeper, or an inch shallower,

produces but a slight augmentation. Why is this the case ?

32. On clapping your hands near a long railing, a sound is heard

resembling that produced by the swift passage of a switch through the
air

;
state the cause of this sound.

33. A wooden sphere of radius r is held just immersed in a cylin-
drical vessel of radius R containing water, and is allowed to rise gently
out of the water

; prove that the loss of potential energy of the water
is T-rr(3jR

2 -2r2
)^3/2

2
J
W being the weight of water displaced by the

sphere.
If the sphere be allowed to rise until it is half out of the water,

prove that the loss of potential energy is to the loss in the previous case
in the ratio of

- 24/-2 : 48R2 - 32>-2.

If the sphere be left to itself when under water, and if we could

suppose the water to come at rest on the sphere leaving it, what would
be the velocity with which the sphere would shoot out ?

34. The times of the aerial vibrations constituting a note C, and
its fifth (7, are in the ratio 3:2; compare the times of the vibrations
of C and the fifth of G.

35. A wheel with 33 teeth strikes a card in spinning, and thereby
produces a note which is two octaves above the middle (7; find .the

number of revolutions of the wheel per second.

36. In a train, which is passing a station at the rate of 60 miles an
hour, a musical note is sounded. Assuming that the velocity of sound
is 1120 feet per second find how much the pitch of the note is raised, to

a listener at the station, as the train approaches the station, and how
much it is lowered when the train recedes from the station.

If the note be the fifteenth of the middle C\ find the vibration
numbers of the apparent notes.

B. E. H. 17



ANSWERS TO EXAMPLES.

CHAPTER I. EXAMINATION.

4. 10 Ibs. wt. and 42 Ibs. wt. 5. wa.

6. 180 Ibs. wt. 8. 82944 Ibs. wt.

CHAPTER II. EXAMINATION.

2. 1687-5, -0361689814, 22896, '49074.

3. 28316 and 384193 very nearly.

4. -0352736. 5. 6'2425. 6. 6'48 cub. ft.

7. 18-52. 8. 6 and 5f . 9. 104976.

10. 2P . 11. 202|. 12. 13.

13. 3<r-s'-s".

CHAPTER II. EXAMPLES.

mn+n , m+1
1.

-,- p and - -
p. 2. 2p.H

n+l
3.

-y- , g- , g-
. 4. 3o- -2o-, 4o--3o-

5. 3 : 1 . 6. 4-762 gallons. 8. of a foot.

CHAPTER III. EXAMINATION.

2. 43f
- Ibs. wt. per sq. inch. About 58 Ibs. wt.

4. 73J^| Ibs. wt. per sq. inch, neglecting atmospheric pressure.

6. wt. of 62-5 Ibs.
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10. If A is height of rectangle and a the depth of the upper side, the

depth of the c. P. is

2

3
'

11. Depth of line is --.
\M

12. Depths of lines are in the ratios 1 : ,/2 : ^3

13. Depth of line =~ h.

CHAPTER III. EXAMPLES.

2. 3125 Ibs.

3. The line divides the opposite side in the ratio of 3 : 1.

4. j= (whole length of liquid). 5. .

6 . 20+~ Ibs. 8. 1:1.
4

11. The point lies in the line from the vertex bisecting the base and

at a depth -^ (the depth of the vertex).

12. 1:^2-1. 13.
I (I + ^10) inches.

14. 1:4:9.
17. The increase= 14 (the weight of the fluid).

25. The densities are equal.

30. The depths are -^ h and \ h.

^ '- 2i

33. 4(5<s/2-7):3. 34. 3:6:4.

CHAPTER IV. EXAMINATION.

7. 12 feet. 8. 16 : 15. 9. The forces are equal.

14. ^ths of a cubic foot.

CHAPTER IV. EXAMPLES.

2. -- of a cubic yard. 4. -s/2 1 : 1 .

7. Jth of the cylinder is in the upper liquid.
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8. -
density of wood. 9. Half that of water.

10. ( -8
j
oz. wt. 14. r2 : 2 (r

3 - r'3
).

16. One-third of the axis is immersed.

18. h ./?
,
h being the height of the paraboloid.

19. 2186| tons wt. 22 - -75- 26 - 19:56.

27. . 41. whr*
(-D

CHAPTER V. EXAMINATION.

2. 727. 3. 1 : 12.

4. 1 : 8(1+ a*) and 1 : 2(1 + 0*).

7. llfand-llf. 14. 1909 Ibs. wt.

21. The weight of one-third of a ton. 24. -0004.

CHAPTER V. EXAMPLES.

1. l + o* : ns
. 6. h : h'.

8. Length above surface is changed in ratio 1 : '9987.

12. Seven times the height of the water barometer.

18. About 17 inches. 19. 1 : v/3.

21. 8100.

CHAPTER VI. EXAMINATION.

1. To one-third of its original volume. 4. 512 Ibs. wt.

5. Early in the 4th stroke. 8. -Ibs.
ID

9. Ibs. 13. Three feet.

CHAPTER VI. EXAMPLES.

3. 6'1 inches nearly.

9. If a is the length originally occupied by air, h the height of the

barometer, and p the density of atmospheric air, the difference x is

given by the equation
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CHAPTER VII. EXAMINATION.

1. 5 : 7. 2. 9 : 7. 3. 1280-Tr : 1280-
198 25 ,204
r805

ofacubicfoot - 5 -

2i
and

2T
4 4

*

5* "5*

CHAPTER VII. EXAMPLES.

2. 10-8 nearly. 3. 1*9 nearly. 4. 4:5.

5. 4:3. 6. The diamond contains 5J grains.

7. 124 shillings.

8. ya'p (/3
-

a) + y'a/3 (a'
-

/3')
=

yy' ('
-

ajS').

CHAPTER VIII. EXAMINATION.

1. IS Ibs. wt. 8. 75.

10. ^ n The air at greatest pressure.
C L-\-at

CHAPTER VIII. EXAMPLES.

1. 22VT\. 2. 13^.
3. The difference of the observed pressures.

CHAPTER IX.

1. Inversely as the radii. 2. 3 : 2.

3, 80 Ibs. wt. on a sq. inch. 4. r'
3

: r3 .

10. About th inch. 11. th inch.

CHAPTER X.

1. -096 and '04, '2, -48.

3. 288 : 35, and, n being the atmospheric pressure,
3
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4. 4:3 sin a.

5. Distances from B of points of division are in the ratios

1 : ^2 : A/3 : &c.

1 13
Q. - and

'

. 7. Densities are equal.o ob

15. The inclination to the horizon= cos" 1 2 1^. 23. 60.
1 + 771

24. The weight of the vessel must be at least
-^- (the weight of the

fluid).

30. If p, p' be the densities of the lower and upper liquids respec-
tively, a- the density of the rod, and 6 its inclination to the vertical,

a a--p
42. The inclination of the radius vector to the surface is 60.

43. The point lies in the central generating line, dividing it in the
ratio 2:1.

44. In the first case the point divides the central generating line in

the ratio 3:1; in the second it bisects the generating line.

55. If p be the density of the upper and p of the lower liquid, the

pressures are in the ratio 4p : 3p+ p'.

68. n*:I+at. 93. 1:4.

CHAPTER XIII.

1. 201250, 2990058-57, 267662'5 and, nearly, 3976778.

2. 1710-625, 820-15625. 3. 1002178 nearly.

4. 13310208;r, and two-thirds of this number.

5. 834624, 1788279069.

6. 474-05, 76-2, 1014237'8496.

7. 694'232r. 8. 10 : 3.

CHAPTER XIV.

2. If J= Latus Rectum, u>H=g.

3. Length submerged = - h+ ^ .
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77Ct CO

4. A paraboloid. . 6. .

8. -7rp
4
co

2
,

-

9. -
7rpa

4
co

2
-(-

-

CHAPTER XV.

1. The point divides the slant side in the ratio tan2 a : 4.

2. Shirk'. 10. ZnlAjB. 15.
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Pumps 9699
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Botating liquid 208, 216

Safety Valve 13

Siphon 82

Siphon guage 106

Sound, velocity of 248

Specific gravity 21

Stability 56

Steady Motion 222

Steam Engines .113 116
Surface Tensions 166, 204
Stereometer 129
Stevinus 63

Surface of still water 212
Tartini 245

Temperature of air 78

Tension 151

Thermometer 71

Torricelli 72,220
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