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THE DISPERSION BY HYDROGEN-LIKE ATOMS IN
UNDULATORY MECHANICS

By BORIS PODOLSKY
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Communicated January 30, 1928

1. In view of the recent experimental determination of the dispersion
by atomic hydrogen' it seems interesting to apply the theory of dispersion
developed by Schrodinger2 to this case. In this paper we restrict ourselves
to an approximation in which terms of the order of relativistic correction
are neglected. For this purpose it is simpler to obtain our wave equation
by the operational method of Schrodinger3 and Eckart,4 as extended by
Epstein," for in this way we immediately obtain an equation free of rela-
tivistic terms.

2. We assume the incident light to be a plane polarized wave of fre-
quency v propagated along the Y axis, with the electric vector along Z,
the nucleus being situated at the origin. The field of the wave and of
the nucleus can be represented by a vector potential A and a scalar
potential 4. We take Ax = Ay = 0, Az = -c2F sin w(t - y/c)/w, and
4, = Kelr, where w = 27rP, Ke the charge of the nucleus, c the velocity of
light and F a constant, all quantities being in electrostatic units.
The corresp`onding Hamiltonian function is

1 (p2 + p2 + p2) + eF pz sin w(t - y/c) + e2F sin2 w(t - y/c) - Ke2/r
2, ,ux 2,uW2
where u = mass of the electron and p = (px, py, p.) its momentum. From
this we obtain by the method indicated5 the following equation for y6

V2+2Fh- sin w(t -y/c) + 2
P- F2 s2 w(t-y/c)-hv bz 87%e r s2 n-2

4, a- = 0
h It
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which, to the desired degree of approximation, reduces to

87r2 ,ue2Kic 4iri a = 2ieF Xsn' (1)
h2r h at hp 6z

where on the right we omitted terms in F2 and a factor e'Y1C since coy/c
is very small for light of visible frequencies and lower.
To solve equation (1) we let

= A(l, m, n) = A(l, m, n)e2"Eh/h[o(t,(l-m, n) + 0I'1(l, m, n)I (2)

where A (1, m, n) is a normalizing factor, and y0(l, m, n) satisfies the equation

V2po(1, m, n) + h- + Et) o(l, m, n) = 0. (3)

Then, to the desired order of approximation, equation (1) reduces to

V2#1(1, m, n) + 2 (- + EXlt'(l, m, n) , m,at =

2ieF o sin cot. (4)
hv ?)z

We now express 2i sin cot as the difference of two exponentials; then,
letting

ib(l, m, n) = e'6'ui(l, m, n) - e "u2(l, m, n) (5)
equating separately the coefficients of the two exponentials, and com-
bining the two resulting equations into one, we obtain

V2u(1mn) 8+ r +(Ele+E hpu(l,m,n) =

e
+ Et(l,6m,n)It2 r Ik' -hp' 6.z (6

where, as in the following, the upper sign goes with the subscript 1, the
lower with the subscript 2.

3. The next step in our process is to expand b+o/lz and u each into
a series of suitable functions. For this purpose it seems natural to use
the set of solutions of the equation of the unperturbed atom, i.e., the set
&o(l, m, n), as was done by Schrodinger.2 Unfortunately, this set is not
a complete orthogonal set unless a continuous range of complicated func-
tions corresponding to imaginary values of I are included. To avoid this
complication we follow a procedure analogous to that used by Epstein
for a similar purpose, i.e., we use for our expansion another set of functions,
T(l', m', n'), defined as follows

T(l', m', n') = eim'9P"'(cos O)Z(I', n', a)
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where Z(l', n', a) satisfies Schr6dinger's conditions of finiteness and the
differential equation

d2Z(l', n',Ia) + 2 dZ(1', n', a) _ (n'(n' + 1) + 2al'+ 2
dr2 r dr r2 r

Z(l', n', ra) = 0. (8)
We have, therefore,

V2T(l', m', n') - (a2 + 2a1'/r)T(l', m', n') = 0. (9)

It can be shown6 that T(l', m', n', a) thus defined, for any constant
real value of a, form a complete orthogonal set with respect to a function
decreasing rapidly with increasing r, such as rb6#o/bz. We shall assume
a to be negative. We may, therefore, write

rbiolbz = Ea(l', m', n')T(l', m', t') (10)
and

u =Eb(P!, m', n')T(P', m' n'.(1

It may be objected that since we do not know the properties of the
function u we may not write (11), as the set T(l', m', n') may not be com-
plete for this function. However, if to complete the expansion of u
we would add to the right member of (11) a sum of terms each of the
type cS, where the S's are functions different from the T's, we would find
that on account of inhomogeneity of equation (6) all c's must be zeros.
Thus the set of T's is sufficient.

Substituting (10), (11) and then (9) into (6) and equating the coeffi-
cients of corresponding T's, we obtain

b(l' Im 'In)a2 +- + h-2 + Elh4)] = eFa(l, i', nt')/hvr.
(12)

If we let
a 2 = -2u(Ej i hv)/h2 (13)

we find that (12) will be satisfied provided

b(l', m', n') = t7eFa(l', m', n')/2hv(1 + I'ia) (14)

where -1 = h2/4 2lue2K.
4. We normalize the solution of (8) in such a way that

Z(l',it', a = r"Iear(2ar)j
j=0 j!(l' - 1 - j)!(2n' + 1 + j)!; ' > it'. (15)

Except for a numerical coefficient and notation these functions are the
same as the x(s, a) functions used by Epstein,7 so that we may use the
relations obtained by him.
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The usual solution of (3) may be put in the form

to(l, m, n) = e'mPn'(cos 6)x(l, n) (16)
where

X(YO n) =17) _ r e; (-2r__71)_ (17)1=0 n!l-i - 1 - j)!(2n + 1 +)! (7
and

El= -27r2ue4K2/h212.

5. We are interested in the case of atoms in the normal state, i.e.,
the case when I = 1, m =n =0. In this case

a'0(l, 0, O)/az = -e r- cos 0/r

so that we can put m' = 0, n' = 1 and (10) reduces to

Go

r6&o(l, 0, 0)/b = cos 6 Yia(s, a)Z(s, 1, a) (18)
ss2

where
a(s, a) = -7i(1 + ar)S2(s + 1)!(2a)4/(l -at )S+2. (19)

We can now obtain the expression for y'l(1, 0, 0) if we note that now,
by (7), (11) and (14)

Ul = cos 0 E b(s, al)Z(s, 1, a,) = eF cos a(s, a)Z(s, 1, a1) (20)
s=2 2hv s=2 (1 + Salai) -

with a similar expression for U2. In equation (13) we are to take + for
a, and - for a2.

If we impose the normalizing condition that f 4(l, m, n)+(l, m, n)dr = 1
when integrated over the whole space, we obtain for A (1, m, n) of the
equation (2) an expression which gives A2(1, 0, 0) = 1/7rq3.

6. We can now compute the electric moments. We obtain M.,
M = , and

Ms- JZ4'(P O, 04y(1, O, O)dr

128e2v6 [ 4 c s(s2- 1)(2 + s-oal)(1 + ai,)2s-5=3-vF cos wo s=l2 (1 + s1ai)(l -

s4S(S2- 1)(2 + sfla2)(1 + a2il)_] (1
s=2 (+Sla2)( - 2)2S+5 j(1

Since this quantity M is also the leading term of the matrix M(l, m, n),
i.e., M(1, 0, 0), we have for the index of refraction n, the relation n2 - 1 =
4irMN/F cos wc, where N is the number of atoms per unit volume.
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Thus, we finally have

2 16Nh6 [(1-)2 S(S2- 1)(2 -sql) (1 -q, 2s
37r5e%3K436 L s=2 (sq-1)-1 + qJ

+(1 + 3)2 S(S2 - 1)(2 - sq2) I___2_ (22)s2 (sq2 - 1) 1
(22)

where = -hv/E = vvl = h3v/27r2K2Mue4, ql = V(1-,i), q2 = x/(l + ,B),
vi the ionization frequency of the atom.
We may first note that n2 - 1 becomes infinite when sq1 - 1 = 0,

or hv = -E1(l - 1/s2), i.e., when v corresponds to one of the absorbtion
frequencies of the atom in the normal state. Since q2 and s are each greater
than 1, sq2- 1 is never zero. Expanding in powers of 8 and of the wave-
length X we may write

n2- - 9Nh6 2 4n2-1 = 9Nh (1 + 1.47732 + 2.39(3+.)
327r5e6M3K4

9N'(I + 1.477C2/V2X2+ )-

When v = 0, these formula give n2 _ 1 = 9Nh6/32ir5e6%A,Y4, which is
in exact agreement with the result obtained for the dielectric constant
by Van Vleck,8 Epstein9 and Pauling.10

7. For hydrogen we put K = 1, and obtain

n2 -1 = 2.24 X 10-4(1 + 1.228 X 10-10/X2).

Substitution of numerical values into (22) gives the following
hv/Ei X IN A (n2 - 1) X 10'
0.30 3039 2.59
0.25 3647 2.47
0.20 4559 2.38
0.15 6079 2.31
0.10 9118 2.27
0.00 X 2.24

These results are not in a very good agreement with Langer's deter-
mination,' but the great experimental difficulties connected with this
measurement could account for the disagreement.

I wish to acknowledge my indebtedness to Professor Paul S. Epstein
for suggesting this problem and for helpful criticism. My thanks are
also due to C. F. Richter and B. Cassen of the California Institute of
Technology.
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Strutt2 found that the presence of two per cent of oxygen in nitrogen
was sufficient to practically destroy the active nitrogen afterglow. Re-
cently, Constantinides3 studied the changes produced in the afterglow
when foreign gases were introduced into the discharge itself and also when
gases were introduced into the afterglow. Among the gas studied was
oxygen and the results showed that oxygen caused changes in both the
color and in the duration of the active nitrogen afterglow. Both Strutt
and Constantinides found that, when the amount of oxygen present was
in proportion to the amount present in air, the afterglow produced was
a yellow-green afterglow whose spectrum was found to be continuous.
Sfrutt attributed this yellow-green afterglow to the reaction between
ozone and nitric oxide. Long exposures on this glow by the author gave
only the previously observed continuous spectrum and the OH band
at 3064 A. The absence of band emission indicates that there is no active
nitrogen present in this yellow-green glow. As far as the writer is aware
no experiments have been reported in which the active nitrogen afterglow
has been observed in discharge tubes containing air, and the purpose of
this note is to describe briefly some experiments in which active nitrogen
has been obtained in air discharge tubes.
The discharge tube was a bulb of about 12 cm. diameter having tungsten

electrodes. Air at 5 mm. pressure was pumped through the tube con-
tinuously through a capillary open to the atmosphere. No effort was
made to exclude either water or mercury vapors from the tube. The
discharge was excited by means of an induction coil giving a six-inch spark
that corresponds roughly to a voltage of 120,000. The discharge was
condensed and a spark gap was connected in series with the tube and the
condenser.
The glow was blue in color and changed to the ordinary yellow-green

glow with continuous spectrum if the spark gap was excluded. The
spectrum of the glow was photographed with a small Hilger quartz spectro-
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