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PREFACE

There still seems to be considerable interest in my paper on Symplectic
Geometry which appeared 21 years ago in the American Journal of Mathe-
matics. Since copies are no longer available, I am grateful to the editors of
Academic Press for this new publication.

A page of “Errata” has been added which includes corrections for a few
typographical errors and the revised value of a numerical constant.

I shall never forget the generous help from the Institute for Advanced
Study in Princeton which enabled me to continue my scientific work during
that critical time. This. reprint is dedicated to the memory of my friends
Oswald Veblen and Hermann Weyl.

Goettingen : CarL Lupwic SIEGEL
January 196/



ERRATA

Page 4, line 7. The value of c; is incorrect. Recently, U. Christian computed
¢s = 45/64 which agrees with a general formula for ¢, obtained some years
ago by F. Hirzebruch. A corresponding correction should be made on page 25
and page 58.

Page 11, Formula (11). Read r.#f < 1 instead of > 1.

Page 25, Formula (56). Read | ) |~ instead of | ) |*~.

Page 25, line 15. Read ¢; = 45/64.

Page 26, Formula (59). Read € instead of €.

Page 57, Formula (127). Read =* instead of =~

Page 58. Correct values of c¢;, x3 according to change on page 4.

Page 72, line 4. The last word is “properties’’



SYMPLECTIC GEOMETRY.*

By CarL Lupwic SIEGEL.

I. INTRODUCTION.

1. Our present knowledge concerning functions of several complex varia-
bles z;, * - -, 2n is much less far-reaching and complete than the classical
theory in the case m = 1. If we want to proceed further, it seems reasonable
to investigate, in the first place, a special class of analytic functions of m
variables found by the following considerations:

Let E be the Riemann surface of an analytic function of a single variable.
On account of the main theorem of uniformization, the universal covering
surface U of R can be conformally mapped onto a simple domain £, which is
either the unit-circle |z | < 1 or the finite z-plane or the complete z-plane.
The conformal mappings of E onto itself form a group Q of linear trans-
formations, and the fundamental group of R is faithfully represented by a sub-
group A of @, discontinuous in E. By the introduction of the uniformizing
parameter 2, the general theory of the analytic single-valued functions on R
is reduced to the theory of the automorphic functions with the group A.

The group Q is transitive, i. e., there exists for any two points 2z, and 2z,
of F an element of Q transforming z, into z,. Moreover, there exists for every
point 2z; of E an involution in © with the fixed point z,, i. e., an element of ©
identical with its inverse and transforming 2, into itself. Consequently F is a
symmetric space, in the notation of Elie Cartan. The domain F is bounded,
if we consider only the first case, the case of the unit-cirele | 2| < 1; it is well
known, that this occurs if and only if U has at least two frontier points.

A generalization of the theory of automorphic functions to the case of an
arbitrary number of variables requires the following three steps: 1) To deter-
mine all bounded simple domains F in the space of m complex variables, which
are symmetric spaces with respect to a group @ of analytic mappings. 2) To
investigate the invariant geometric properties of E, to find the discontinuous
subgroups A of © and to construct their fundamental domains. 3) To study
the field of automorphic functions in E with the group A.

The first step has been made by Cartan; he obtained explicitly 6 different
types of irreducible domains E, such that all other bounded simple symmetric

* Received February 27, 1942.



2 CARL LUDWIG SIEGEL.

analytic spaces can be derived from them by analytic mappings and topological
products.

We shall consider more closely the second step. We restrict our researches
to one of the six possible types, which is the most important for applications
to other branches of mathematics. In this case, the number m of complex
dimensions is $n(n 4+ 1), with integral n» == 1, the m variables form the ele-
ments z; =2 (1 =k =1=n) of a symmetric complex matrix 3 = (zu1)
with n» rows and FE consists of all points 8 for which the hermitian form

n n .

> (| w |2—>X ] %4 |?) in the auxiliary variables u,,: - -, u, is positive
k=1 =1

definite.

The third step has already been carried out, in a former publication, for
the special case of the modular group of degree n. It is possible to generalize
most of those results, but we shall not do so in the present paper.

2. Notations, definitions, results. All German letiers denote matrices
with complex elements; small German letters denote columns. The upper
indices p and ¢ in A#? designate the number p of rows and the number ¢ of
columns of the matrix % ; instead of A and a® we write more simply
AP and a®. If a,,- - -, ap are the diagonal elements of A® and if all other
elements are 0, we write A = [a,,- - -,ap]| and call ¥ a diagonal matrix.
The letter & denotes a unit matrix, and 0 denotes also a zero matrix. I{ B
is any matrix, B is the fransposed matrix and B the conjugate complex
matrix. We use the abbreviations BUB — A[B], B'AB — A{B}. The
inequality ¥ > 0 means that % — 9’ is the matrix of a positive definite her-
mitian form, i. e., A{r} > 0 for all £ 5= 0; obviously ¥ > 0 means in the case
of a real ¥, that A = A’ is the matrix of a positive definite quadratic form,
ie., Afr] > 0 for all real ¢ £ 0. The irace o(¥A) of a matrix AP — (ax1)

is defined by o (%) =§1 G

We denote by 8 = (2x:) a symmetric matrix with n rows and variable com-
plex elements 2z = 2 (1 <=k =<1=<n); 3 =% + 9, where X — $(8 + 3)
and 9 — (1/2i) (8 — 3) are the real and imaginary part of 3. The condition
& — 83 > 0 defines a bounded domain E which is obviously a generalization
of the unit-circle. On the other hand, the domain H defined by the inequality
9) > 0 is a generalization of the upper half-plane. It is well-known that the
transformation w = (az -+ b)/(cz + d) with real a,b,¢,d and ad —bc =1
is the most general analytic mapping of the upper half-plane onto itself. In
order to generalize this theorem, we have to introduce the symplectic group.
The homogeneous symplectic group €, consists of all real matrices
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A (n) %(n)

N =
Ein) Din)

satisfying the condition J[M] = F with

0 @(n)
% = (_ (SISO ) °

It is easily proved that the transformation

(1) B—= (A3 +B) (€3 + D)

maps the domain I onto itself. These transformations form the (inhomo-

geneous) symplectic group Q obtained by identifying I and — M.
THEOREM 1. Ewvery analytic mapping of H onto itself is symplectic.

The next four theorems generalize known properties of the Poincaré
model of non-euclidean geometry. For any two points 3,8, of H we define

R(8,8.) = (8—38)(8—38)*(B—51)(8—8.)™

THEOREM 2. There exists a symplectic transformation mapping a given
pair 8,8; of H into another given pair B, W, of H, if and only if the two
matrices R(3, 8,) and R(W, W,) have the same characteristic roots.

Let d3 = (dazxi) denote the matrix of the differentials dzy;. The quadratic
differential form

(?) ds* = 0(9d39dB)
is invariant under Q and defines a Riemann metric in H.

THEOREM 3. There exists exactly one geodesic arc connecting two arbi-
trary points 8, 8, of H; its length p is given by

14+ W
p2=0'<10g2 _—_l—fﬁi)
1 3 © Rk 2
1—9%*“4m<1§02k+1> :

THEOREM 4. All geodesics are symplectic images of the curves
B=1i[p? - -, p*], where pi,- - -, pn are arbitrary positive constants

with R = R(3, 3.) and

satisfying ﬁ log® pr = 1.
k=1

Let X = (a%:), 97 = (Yx:) and dv be the euclidean volume element in
the space with the n(n 4 1) rectangular cartesian coordinates zx;, Y
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(1=k=1=<n). It is easily shown that 2*»1/2dp is the volume element
for the symplectic metric (2).

THEOREM 5. The Euler characteristic of a closed manifold F with the
metric (2) 1is

(3) x=cn(_ 7.-)‘"(7!+1)/2f dv’
F
where ¢, denotes a positive rational number depending only upon n; in
. 45
particular ¢, =3, ¢, =%, ¢ = 256 -

The theorems 6 and 7 are concerned with the generalization of the
Fuchsian groups and their fundamental domains. Let A be a subgroup of the
symplectic group ©. Two points 3, B of H are called equivalent under A, if
(1) holds for a matrix M of A. The group A is discontinuous, if no set of
equivalent points has a limit point in H. A domain F in H is a fundamental
domain for A, if the images of F under A cover H without gaps and over-
lappings. A domain F is called a star, if there exists an inner point 8, of F
such that for every point 8 of F the whole geodesic arc between 3 and 3,
belongs to F.

THEOREM 6. A fundamental domain F of a discontinuous group A may
be chosen as a star bounded by analytic surfaces and such that every compact
domain in H is covered by a finite number of images of F under A.

A discontinuous group A is called of the first kind, if there exists a normal
fundamental domain ¥ having the following three properties: 1) Every com-
pact domain in H is covered by a finite number of images of F; 2) only a
finite number of images of F' are neighbors of F; 3) the integral

V(a) =L dv

converges. The space H is called compact relative to A, if there exists for
every infinite sequence of points 3x (k=1,2,3,---) in H a compact sequence
BW;, such that LWy is equivalent to Jr under A.

TuroreM 7. If H is compact relative to a discontinuous group A, then
A is of the first kind and has a compact normal fundamental domain.

Let us assume that a discontinuous group A has no fixed point in H,
i.e., that no transformatioh of A except the identical one has a fixed point
in H. Identifying equivalent frontier points of a fundamental domain F, we
obtain a closed manifold, if H is compact relative to A, The Euler number of
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this manifold is then given by Theorem 5. If H is not compact relative to A,
we obtain an open manifold. It is probable that Theorem 5 still holds good
for this open manifold, provided A is of the first kind ; it may easily be proved
that this is true in the case n =1.

The rest of the paper deals with two special classes of groups A defined
by arithmetical properties. The simplest and most important example of a
discontinuous subgroup of Q is given by the modular group T of degree n
consisting of all symplectic matrices M*» with rational integral elements.

TueoreM 8. The modular group of degree n is a discontinuous group
of the first kind.

Let K be a totally real algebraic number-field of degree h =1, K(\ —r)
a totally imaginary quadratic field over K and s a positive number in K such
that all other conjugates of s are negative. Let @™ be a skew-symmetric
matrix and @ a hermitian matrix, both with elements from K(V —r)
and non-singular. We assume that all conjugates of § except § and $ are
positive and that & and § are connected by the relation .‘{)@“55 =gs@®. Let
A(®, $) denote the group of matrices 11 with integral elements of K (V—r)
satisfying the two conditions G[U] =@ and H{U} = . Then there exists
a constant matrix € such that €UE = M is symplectic, and E*A(S, $)E
= A(®, $) is a subgroup of ©. The modular group T is a particular case of
these groups A(®, $), namely the case h =1, =, =, r=1.

TuEOREM 9. The group A(®, §) is discontinuous and of the first kind.
In the case h > 1, the space H is compact relative to: A(®, ).

For every ideal x of K(V—r), we denote by A«(®, ) the congruence
subgroup of A(®,$) defined by the condition W =€ (mod«), and by
A (B, ) = CA(B, )C the corresponding subgroup of A(S, H).

THEOREM 10. Let p be a prime ideal of K(\V — 1) and «x the least
power of p such that p is not divisible by «?, where p denotes the rational
prime number divisible by p. Then Ac(®, ) has no fized point in H.

On account of the theorems 5 and 10, the calculation of the integral
V(A) for A—A(G,9) is important. Applying the Gauss-Dirichlet method
from analytic number theory, we obtain in the case of the modular group of
degree n a curious connection with Riemann’s {-function. Using the abbre-
viation §(t) = = W/IT(£/2)¢ (1), so that £(¢) = £(1 — 1) is the functional
equation of ¢(%), we have
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TueorEM 11. The symplectic volume of the fundamental domain of the
modular group s

V(r) —2 knl £(2k).

This formula may be written in a different way, suggested by the results
of the analytic theory of quadratic forms. Consider a domain @ in the space
of the real skew-symmetric matrices " = (gx;), with the rectangular car-
tesian codrdinates ¢u: (1 ==k < ! = 2n), and denote by L the corresponding
part of the space of the real matrices 2**) defined by the condition J{R] =8,
the codrdinates in L being the 4n® elements of {. Obviously L is invariant
under any mapping 2 — MY with symplectic M. Let L, be a fundamental
domain in L with respect to the homogeneous modular group, and let v(L,),
(@) be the euclidean volumes of L, and ¢. We define

. (L)
where @ runs over a sequence of domains tending to the single point X. On
the other hand, let p be a rational prime number and E, the number of
modulo p incongruent integral solutions MM of the congruence J[M] =3
(mod p). Since there are, modulo p, exactly p**»-1) integral skew-symmetric
matrices £ and p*** integral matrices &, the expression

dp(r) —_ pn(2n+1)Ep—1

may be considered as the p-adic analogue of d,(T'). As a consequence of
Theorem 11, we obtain

THEOREM 12. Let p run over all prime numbers, then
do(T) =11 dy(T).
»

1t is possible to generalize this theorem for the case of an arbitrary group
A(®, ©) instead of T~

Two subgroups A and A, of Q are conjugate, if the relation A, = F'AY
holds for a symplectic matrix §. More generally, A and A, are called com-
mensurable, if they contain conjugate subgroups of finite index. It is impor-
tant, for the theory of automorphic functions, to know whether two given
groups A and A, are commensurable or not. LetA — A(®, §), A, = A(S,, ©)
and let K,, r,, s; have the same meaning for ®,, §, that K , 7, s have for &, §.

TuEoREM 13. The two groups A(®, H) and A&(S,, ©,) are commen-
surable if, and only if, K = K, and the ternary quadratic forms rse* — ry® -+ s2°
and 7,5, 2% — 1y + $:2° are equavalent in K.
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In the particular case n =2, another class of discontinuous subgroups
of @ is given by the theory of unifs of quinary quadratic forms. Let K be
again a totally real field of degree k. We consider a quadratic form Z[¢] of
5 variables with coefficients from K and assume that T r] has the signature
2, 8, whereas all other conjugates of T[] are definite. Let A(T) be the group
of all integral matrices U in K satisfying L[U] =, |1 | =1. On account
of the spin representation of the orthogonal group, either A(Z) itself or a
subgroup of index 2 is then isomorphic to a certain subgroup A(T) of Q.
Concerning these groups A(Z), there are analogues of the theorems 9, 10,
12, 13; in particular, analogous to Theorem 9, we have

THEOREM 14. The group A(X) s discontinuous and of the first kind.
In the case b > 1, the space H is compact relative to A(Z).

It would be interesting to seek discontinuous subgroups of © which are
not commensurable with any of the groups A(®, §) and A(T). In the case
n =1, we may start with an arbitrary polygon satisfying certain conditions,
and use the reflection method, but this simple geometric principle breaks
down for n > 1.
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4. The linear substitution z =1 maps the unit-circle 2%, < 1

onto the upper half-plane -211 (#—2) > 0. We shall prove that there is an

immediate generalization to the case n > 1.

Let 8, be a point of E, i. e., o= 8%, & — 808, > 0. If ¢ is a solution
of (€ — 8o)r =0, then T = Bof, ¥’ — 1’80 and consequently (€ — 803,) {t}
— T — 1808 =0, £ — 0. This proves | € — 8, | 5% 0 and the existence
of the matrix

(5) € + Bo) (€ —3o)* = 3B.
Obviously 3 = 8’ and

= (8—8) =H(€—8:)"((€ + 80) (€ —B8o) + (€ —Bo) (€ +50)) (€ —B)™
= (€ — 8:80) { (€ —B80)™} > 0;

hence 8 is a point of H. On the other hand, let 8 be an arbitrary point of H,

ie, 3—5, ii(g—-?,) > 0. Tf ¢ is a solution of (8- i€)r =0, then

85 =i, ¥8=—it and consequently 5 (8 — 8) (s} — 57 (¥'8F —¢'BE)

= —1'T=<0, t =0. This proves |8 4 € |40 and the existence of the
matrix

(6) (8 —1€) (8 + €)™ = Bo.
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Obviously 8o = 8/, and
€ — 8ufo —(8 i) ((8 +€) (§— i6)—(8 —i€) (B + i€)) (B —i6)™
—2(8—8){(8+i®)") >0;
hence 8, is a point of E. Moreover (6) follows from (5), and vice versa.

5. The homogeneous symplectic group Q, consists of all matrices

A B
- (¢ )
with real elements satisfying IVIM = J. Since J ! = — I, we have then
also MIWM = J; hence P’ is symplectic and
") AB’ = BY, CY = D¢, AY — BE' = €.

Let 8 be a point of H, i.e.,

%[‘2]=0, %%{g} > 0.

The matrices A8 + B =P, €3 4 D = satisfy
2(@)-(R) slEl-e &3{8}>e
FO=0%, o (FO—OB) >o.
Tt ¢ is & solution of D =0, then SF =0, Y =0, - (W —0) ) =0,
whence t =0, | Q| 4 0. This proves the existence of
(AB+B)(C3 + D) =PO"' =W,

with T =B, 2—1 (B—B){Q)} >0, 2—11 (W — W) > 0. Consequently the
fractional linear transformation

B—(AZ+B) (€3 + D) = (8¢ + D) (BY + )
maps H into itself. Since 3(—CW + W) = DW — B’ and

e [ —saf)
(8) Mt =M *‘(_@/ W)

we obtain | —E"W 4+ A" |40 and = (DW —B') (—C'W + A’)*; hence
H is mapped onto itseif.
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It is easily seen that two symplectic matrices I and M, define the same
symplectic mapping W — (AZ + B) (€8 + D)7, if and only if MW; =+ M.
Hence the inhomogeneous symplectic group @ is the factor group of £,
obtained by identifying I and — Pk,

We have

(i@"+ E)g _M’_%’)ﬂ)& (@ i@)=(@ 0

0 € 0 € C €+2/°
On the other hand | i€ + D | 7 0, since i€ is a point of H. This proves
|| — 1.

6. The fractional linear transformation (5) maps E onto H ; its matrix is
i€ €
e~(_¢ )

3R] =,

~(75 ¢):

Let 9% be an arbitrary symplectic matrix, i.e., J[M] =S, JI{W} =%
Then
A By
-1 - —_—
LHIRL = M, (@o SDO)

fulfills the conditions J[Mo] =, R{Mo} — &, whence F[W,] =, Fo

and satisfies

.

J{R} =R
with

5—3¢—(g o)
or more explicitly
(9) UBo—BA, AW, —BFo =€, € =B, D=L
The corresponding transformation
(10) Bo = (%sBo + Bo) (BoBo + o)~

maps E onto itself, and all these transformations form the group 2'QR = Qg.

We shall prove that Qg is transitive. Let 3, be any point of E, i.e.,
8o =8, € — 8,80 > 0. It is sufficient to prove the existence of a transforma-
tion (10) mapping 3, into 0. We choose %, such that 2[0(@2—80%0)‘5{' =
and define By = — A, Z,; then (9) is satisfied and (10) has obviously the
required property. Consequently Q is also transitive.
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A mapping of Qp has the fixed point 0, if and only if B, = 0; then U,
is unitary, by (9). Consequently this mapping has the particular form

QB0 == u’80u:

where Ul denotes an arbitrary unitary matrix, i. e., a matrix satisfying Wil — @.
Since (5) maps 0 into i€, the formula

B — & , 5—1&

|+ 6 3+@u

gives all symplectic transformations having i€ as a fixed point.

7. By the results of the preceding section, the proof of Theorem 1 is
reduced to the proof of the following statement: Let 8, — T, be an analytic
mapping of E onto ilself with the fized point 0; then B, =WZN with
unitary constant U.

Let 80 = (2x:) be an arbitrary point of ¥ and denote by n (A =1,---,n)
the characteristic roots of the hermitian matrix 8030; then r, = 0 and also
e < 1, by @—8080 > 0; we may assume 0 =r, <r,<--- =<1, <1. The
matrix 8 = ¢3, is again a point of E, if the complex scalar factor ¢ satisfies
the condition r,tf < 1. Let B == W(¢) be the image of B under the analytic
mapping 3o — W,. The elements of the matrix W are analytic functions of
the single complex variable ¢, for given 3,; they are regular in the circle
14tf < 1 and a fortiori in the unit-circle t# = 1. Consequently

(11) W W, (ralf > 1),
k=1

where the coefficients ;. are matrices depending only upon 3o. On the other
hand, T8 may be expressed as a power series in the variables ¢z, converging
for sufficiently small values of #f. Since this expansion is unique, the matrix
W, is exactly the aggregate of the terms of order ¥ in that power series.

o0
This proves, in particular, that the power series representation T, = B,
k=1

converges everywhere in E, if we do not split up the polynomials B, into

their single terms. _
Since 8o — W, maps F onto itself, we have & — WW > 0 for tf=—=1.

Integrating over that circle we obtain

1 . dt
;&ﬂ—dj(@—zw)7>o,

ti=1
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whence by (11)
(12) 6— S Bl >0

k=1
and in particular

(13) ¢ — BB/, >0.

The $n(n + 1) elements wi; (1 =k <1=1n) of W, — (ww:) are linear
functions of the independent variables z; (1 =k =<1=<n); let D be their
determinant. Since 2, is the linear part of the power series for 28,, the
functional determinant of the 3n(n + 1) independent elements of W, with
respect to the variables . is also D, at the point 8, =10. If we interchange
W, and o, the determinant D is replaced by D-*. In order to prove Theorem
1, we may therefore assume DD = 1.

Consider now the linear mapping 8,— I8,, with the determinant D. By
(13), the domain E is mapped onto a domain E; contained in E. Let v(E)
and v(E,) be the euclidean volumes of & and E,, the real and imaginary parts
of the z; being rectangular cartesian codrdinates. Then v(E,;) = DDv(E)
= v(E), whence DD =1, E, = E, and the boundary of E is mapped. onto
itself. We take 8, — WP with unitary 1 and B = [py,- - -, pu] ; obviously
8o is a boundary point of B, if —1=p, =1 (k=1,- - -,n) and at least
one pr = == 1. On the other hand, the determinant | € — 2,98, | is a poly-
nomial in py,- * -, p, Of total degree 2n. Since | € — %W,W, | vanishes on

the boundary of E, this polynomial is divisible by InI (1 — m?), of total
k=1

degree 2n. Moreover the constant terms in both polynomials have the value 1;
hence

(14) |@—%1§81|=|@_80801

for 8o = WP, where U is an arbitrary unitary matrix and P an arbitrary
real diagonal matrix. We use now the following lemma, the proof of which
will be given in Section 9.

LeMMA 1. Let 3 be a complex symmetric matriz and P the diagonal
matriz [q.},- - -, qud], where ¢, - -, qu denote the characteristic roots of 33.
There exists a unitary matric W such that 3 — WP,

On account of this lemma, the relationship (14) holds also identically in
Bo = (%1). Since W, is linear in all z;, we obtain

IA@_%I@I | =|/\@_8030|

identically in A. This proves that 8030 and 8,28, have the same characteristic
roots. Applying again Lemma 1, we find
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(15) B, =W3U
with unitary U.

By (12), the inequality € — 8,98, — W, W, > 0 holds for k=2,3, -
and every 3, in E. Choose, in particular, 8, = uexp+S with real sym-
metric &€ and 0 < » < 1. Then, by (15),

(1 —u?)€& — BBy > 0 (k=2,8,- - ");

hence By tends to 0, if u tends to 1, and Wy =0 for J, —expi© and
arbitrary real symmetric &. But B is analytic and consequently ;=0
also for 8, —exp S with complex symmetric &. This proves that By
vanishes identically.

8. In order to complete the proof of Theorem 1, we have to prove that
the unitary matrix I in (15) can be chosen as a constanti matrix. Let

(16) B, =W, (Bo) = 2 #aWsa
k=1
with constant matrices y; and define

(17) W, * = %1* (80) =k§‘zvcl§ikl$

whence B, — B,* (-80). Now 8,38, — € for 802—30 = ¢ and consequently
(18) B, (86)BW,*(8o!) =€

for 8, = exp #& with arbitrary real symmetric &. Since B, and 8,* are
analytic, we infer again that (18) is an identity in B,.

Putting zu =2 %0 (k=1,---,n), Ba—=[2," " ", %], Bo=80— B
and using the Taylor series in the neighborhood of 8, =0, we find

Bo ' =8 €+ BeB:) =8t — 8788+ - -
(B (81) + BWi(B2)) (B*(BrY) — BW*(8:7'8:8:.7) +- - ) =6,

hence in particular

(19) B, (8)B.*(8:7) =6,

(0) B, (8:)B*(8:7") = BWi(81) BW,* (8:78:8,7).
It follows from (16), (17) and (19) that

i w2 W, — €

k,1=1
with A =W (k=1,- - -, n), whence
(21) WA, =0 (k=%1).
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By (15), the matrix %9 has the characteristic roots 1,0, - -,0. Without
loss of generality, we may replace 8, by U,”®W,U,, for any constant unitary
matrix W,. On account of Lemma 1, we may therefore assume that
N, =1{1,0,---,0]. Then, by (1), the matrices ¥,,---, ¥, have the form

0 0
%[k:(() §B|k(n—1)) (k=2,- - -,n).
By induction, applying again Lemma 1 and (21), we may assume
Wi = [ 1, r2," °  , Okn] (k=1, -,n)

with ez =0(k 5= 1) and ex = 1; hence
(22) B, (81) = B
It follows from (20) and (22) that
B (8:) = BB*1(8.78:8.7) B,

whence
221 Wiy = 81%-{”81 (k = l)
Consequently
W, = (akzzkz)
with real ag; = ai and @ — 1. Since the matrix [+ 1,£1,- - -, = 1] is
unitary, we may, moreover, assume ¢,; =0 (I=2,- - -, n).

The expression |, | | 8o |™ is a rational function of the z; and has,
by (15), the constant absolute value 1; hence it is identically constant. On
the other hand, both determinants |%8;| and |B,| contain the term
2423 * -2y =2 with the same coefficient 1. This proves |, | =8|
The term (z.2:) 22,2 (I =2,- + -,n) has in | 8, | the coefficient — a,:?
and in | 3, | the coefficient — 1, hence a;; — 1. The term (z12x21) 22211210
(1 <k < 1) has then in | B, | the coefficient 2ax; and in | B, | the coefficient 2,
hence az; — 1 and W, = B,.

9. 1t remains to prove Lemma 1. There exists a unitary matrix U,
such that

88 = 21}

Then the matrix 3[U;*] = & is symmetric and I — P2 Let F, and ., be
the real and imaginary parts of § — &1 + iF.. Since B is real, we obtain
F1H2 = FoF1; consequently the two real symmetric matrices §; and $F. are
permutable. This proves the existence of a real orthogonal matrix © such that
F.[2] and F[D] are both diagonal matrices. Hence F[L] — R is also a diago-
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nal matrix [ry, -, 7] and RR —=P2[O]. The numbers r7, (k=1, -, n)
are therefore a permutation of g,,- - -, ¢n, and we may obviously ‘assume
T, = .

The diagonal matrix Wo=={s,, - -, sa] with sp=r2q- /% (k=1,---,n)
is unitary and P[U,] =R. Defining U — U,O'U;, we have P[U] = R[OWU,]
=3[W]=38; q.ed

10. Consider the symplectic mappings in the case n =1, i.e,,

az -+ b
w_cz—}—d

(23)

with real a, b, ¢, d and ad —bc=1. It is well-known that there exists a trans-
formation (23) mapping two given points 2,2, of the upper half-plane into
two other given points w, w, of the upper half-plane, if and only if B(z,2)

. B—21Z—72
— R(w, w,), where R(z,2,) denotes the cross-ratio z_zl E—-—zl- . Theorem 2
TR — 41

is the generalization to the case of an arbitrary n.
Let 3, 3: be two points of H and W, W, their images under the sym-
plectic mapping B = (AZ + B) (€3 + D)~* with the matrix M. We have

@ 8—8— 803 (3)-Bowm (3)

— (€8, + D)’ (W, —BW) (€8 + D),
(25) 8:—8 = (€8 + D) (B, — B) (€3 + D).
Now (8 — 8.) exists, since § — 3, is a point of H ; consequently

(8—8.)(8—8)" o
= (8:€" + D) (B —B,) (B —B,) (8. + D)™
Introducing the cross-ratio
R—9R(8,8:) = (8—8.)(8—8)(B—5)(8—38)"
and putting N* = RN(W, B,), Q = (€8, + D)’, we find
(26) R = QR*Q.

Hence the matrices R and R* have the same characteristic roots.
Choose in particular §, =1€, B=14¥ with L= 1[t, - -,{] and
1= =¢t=<---=t, Then R=1[ry,- - -,m] with

tr— 1\2
“‘=(tk+1) (k=1 n),
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whence 0=r,<r<-:-<r,<1 and
1—*—1’1}
27) t"_]__.r,ka'

In this case, the diagonal matrix ¥ is uniquely determined by the character-
istic roots ry,- - -, 1 of M. In order to complete the proof of Theorem 2,
we have only to prove ’ ‘

Lemma 2. Let B, 8, be two arbitrary points of H. There exists a sym-
plectic transformation mapping 8, 3, into 1T, 1€ with T = [, - -, ] and
1=Hh=L=- =ty

Since Q is transitive, we may already assume 3, =1i€. If T=1[¢,, -, tu]
with 1< 6, <6, <. -<¢, then (T—C)(T+E) =R =1[p1," - -, pul
with pp= (s —1) (& + 1)1 (k=1,- ", n),0=p=p.=-- - =p, <1,
and vice versa. By (5), (6) and the results of Section 6, we have only to
prove that there exists for every point 3 of E a unitary matrix W, satisfying
WBL =P={p, -, ] with0=p, = p,<- - = p, < 1. This follows
from Lemma 1: We choose II; = U~ and px — ¢ud; since ¢y, - -, g are the
characteristic roots of the hermitian matrix 83 and € — 83 > 0, we may
assume 0 =<=¢, <¢,=- ' ‘=g, <1, and p;," - -, p. have the required
property.

On account of the symplectic invariance of the characteristic roots
ry,0 - -, of M(B, B1), the diagonal elements & of T are given by (27).
This proves that those characteristic roots are always real numbers of the
interval 0 =r < 1.

I1I1. THE SYMPLECTIC METRIC.

11. We consider the cross-ratio
f—(3—8)(8—38)"(B—8)(8—38)"
as a function of 3,, for any given 8 in H. Since the two factors 8 — 3, and

8 — 38, vanish for 8, — 8, the second differential of R, at the point 8, = 3,
has the value

IR — 2d3(8 — B)d3(8 — 8)* = 3d39'd39,

where 9 denotes the imaginary part of 3 =% 4 ¢§). On the other hand, by
(26), the trace o(R) of R —=R(B,3:) is invariant under any cogredient
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symplectic transformation of the points 3, 3. Moreover d%(R) = (d*R),
and consequently the hermitian differential form

(28) ds* — o(9'd39d3)
is invariant under Q. Introducing X = (2z:) and § = (%), we obtain
(9) ds* = o(Y*dXYdx 4 P dPYdY)

and in particular, for 8§ = i€,
ds* = 3 (daow® + dyw?) + 2 2 (daw® + dyi®).
=1 K<t

Since Q is transitive in H, the quadratic differential form, ds® is obviously
positive definite everywhere in H.

Let us determine the most general quadratic differential invariant @ of the
symplectic group. On account of the transitivity of Q, we have only to find @
at the point 8 = i€ of H or, if we use the variable 3, = (8 —1€) (8 4 1€)™*
already defined in (6), at the point 3o ==0 of E. Then @ becomes a quadratic
form of the elements of & = d3, and & =d§,0 which is, by the result of
Section 6, invariant under all transformations & — W& with unitary U.
By Lemma 1, there exists for any complex symmetric & a unitary matrix U,
such that WU =P = [py," - -, pu] with veal g (k==1,- - -, n), where
the p? are the characteristic roots of ©&. This proves that Q is a quadratic
function of py,- -+, pa alone. Let k,,- -+, ks be a permutation of the num-
bers 1,- - -,n and ¢ (I=1,- - -,n) a fourth root of unity; then the
matrix I, of the substitution s;, > e;s; (I=1, - -,n) is unitary and W, B,
= [q1," * *, gn] With ¢t = e’, = == pi, (I=1,---,n). Hence @ is a sym-
metric polynomial in p.%,- - -, pa?,

Q= )\épﬁ — 20 (66)

with constant A. Consequently any quadratic differential invariant of the
symplectic group is a constant multiple of ds.

12. We are now interested in the properties of the geodesics for the
symplectic metric (28). In order to find the shortest arc connecting two
arbitrarily given points 3, and 3, of H, we have, by Lemma 2, only to investi-
gate the special case 3, = 1€, 82=i§=i[t1, L ISHSH=<- - <{,;
moreover, we may obviously assume 8, 5% 8., i. e, t» > 1. Let now 8 = 3(u)
be any curve connecting these two points in H and having a piecewise con-
tinuous tangent, 8(0) =€, 8(1) =14¥. We may put

P
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8 =%+ R0[D],

where & == [¢1," * *,¢a] With ¢x >0 (k=1,- - -,n) and © denotes a real
orthogonal matrix ; moreover X, £, £ have again piecewise continuous deriva-
tives; 0 =€, V=€, X=0foru=0;Q=T, O=C, X =0 foru=1.
This arc has the length

s= | d@398)an,

where the dot denotes differentiation with respect to u.
By (29), we have s == s,, where s, denotes the length of the curve

(30) 3 =[]

also connecting 3; and 3, and s > s,, if both curves do not coincide.

We use the abbreviation O£ — § — (fxr). Since O — €, we have
O = — O, and consequently F is skew-symmetric. Differentiating the
equation YL’ — L, we obtain

090 — 0 —FO + OF
09999 — 01D —FO 4+ OF) O (2 —§D + OF)
—§ 4 27§90 4+ 2000 — QFOF — FOIF0
—O007F0 — OF0 + 00F + FO L
o(P997Y) = 2(F) —20(FOFO?) + o(D00'Q)

_ < 2 (qk——ql)2 < g’i 2
(81) _k,%f“ @ +:§1(qk) )

On the other hand, the formula

(3 20— (@t )+ 3 (el — o)’

holds for ¢,2 4 c.2++ + - + ¢x* =1 and in particular with

Qk=%’ cx—p 7 log (k=1,---,n),
where
(33) p= (2 log® tx)? > 0.
k=1

By (31) and (32),

0= f (e + - - ~+c,.Q»)du=§1cklogtk=p,
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with the sign of inequality, if not all the three conditions

(34) fkl'(qk—'ql) =0 (k,l‘__l)' ""n):
(35) Qi — Qs =0 (k,1=1,- - -,n),
(36) S Qe = 0

k=1

are fulfilled. By (35),

log ¢x log gx = log & log ¢n (k=1,---,n),
whence
(37) e = Y (k=1,- - M)

with y =vy(u), y(0) =0, y(1) =1. By (36), the function y(u) is mono-
tone. By (34) and (37),
fe(ty— 1) =0 (k,1=1,---,n)
OV + TOY =0
(TD) — O'TO + OTOH—=0
DI =T;

consequently TO = O and, by (37), also QO —OQ. This proves, by (30),
that the minimum p of s is attained, if and only if 8 =1[{,7,- « -, &"],
where y(u) is a monotone function with y(0) =0, y(1) = 1. We may replace
v(%) by u and obtain the curve 8 =4[t,%,- -~ -, #,*] as the unique solution.
Introducing the length of arc ===pu, we have 8 —i[e%7,- - -, e%7] with
ck=ptlogt (k=1,---,n) and ¢,*+- - -+ e?=1.

13. Let 8 and 3, be again two arbitrary points of H. By (33) and the
results of Section 10, the symplectic distance p = p(3, B.) is given by

2 oo L 7
2 __ 2
(38) P _kgllog 1—rd°

where 7, * * + , 7, denote the characteristic roots of the cross-ratio ® = R(8, 8.).
Since

+ o) rk 2
and

k%r}c‘=a(9}’) (l=11 2, - ')’

)

we may write
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with

SES N o )2
log _—1—%5_4% Eoz__k-i-l .

By the results of this and the preceding section, Theorem 3 and Theorem 4
are completely proved.

14. 1In order to calculate the differential equation of the geodesics and
the tensor of curvature, we determine the first variation 8s. We consider any
curve 8 ==13(s) (0 =s=s,), where the parameter s denotes the length of

arc. Then a(@“f’,@'lé) =1 and
s5—1 | 80(97898)ds

Using the abbreviations 38‘1?} =B, 939" =B and denoting by R the
real part, we find

3o(98978) — 2Ro (B39 + (W) — 135)
89 =597 (33—38)9"
B — 9597 + 9759789 — 5 9(B 4+ B)9,

whence

ss=—R f (@3 +i8918)958) s
Consequently '
(39) 8—=—i39"8

is the differential equation of the geodesic lines.

It is easy to perform the integration without using Section 12. On account
of the symplectic invariance of the geodesics and the transitivity of Q, it is
sufficient to integrate (39) for the initial point 8 —4€ and an arbitrary
direction 8 =Q through this point; obviously o(®Q) — 1. By Section 6,
the mapping

(40)

8—i& , 3—i€

gre - Vgyre"

is symplectic for arbitrary unitary 1. Under this mapping, the direction &
through i€ is replaced by WIRN. By Lemma 1, we can determine U such that
WoU = i® —i[gs, ', gn] With 0 =g, = - - = g,; since o(8®) =1, we
have ¢:2 4 - - - 4 ga®=1. It is now sufficient to integrate (39) for the
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initial conditions § —i€, 8 =1i®. Obviously the solution is 8 =1 exp s@.
Consequently the most general geodesic line is

(B +B) (C + D) ==ifeme,- - -, 0],

where the left-hand side is an arbitrary symplectic transformation of 3
and ¢.,° * ', gn are arbitrary real numbers with 0=Sg,<- - -<g,,

g4 Fgi—1.

15. We shall now establish directly, without using Section 12, that
there exists exactly one geodesic through two arbitrarily given points 3, and
B:5% 38, of H. We may again assume 3, =, 8, =T =1i[ty,* - -, ],
1St <-.-<t,

p= (X log?tx)d > 0.
=1
Defining gx =plogt (k=1,- - -,n), we obtain the geodesic line
(41) 3 =1iexps@.

Since (40) is the most general symplectic mapping with the fixed point €,
any geodesic through this point has an equation

3—i€ _ exps§—€
8+1€ 7 cxps®+€
with unitary Wand §=1[2:,  * , hn), 0 =0, =< - Z hy, B2 - - + hu®=1.
If this curve goes also through the point 3 =+ of (41), we obtain

u (@ —%)2= ((ZE — exp so,‘{;)z u
¢+ € 4 exp 69

for a certain s, > 0, whence ¥ = exp $o8), $9 = p®, s =1p, = &. More-
over I and (exp $o® — €) (exp $0§ + €)* are permutable, hence also 1 and
(exp sQ — €) (exp s + €)-*. Putting s=p in (42), we find WU =E¢,
and consequently the geodesics (41) and (42) coincide.

This result proves again, by a general theorem from the calculus of
variations, that there exists exactly one shortest arc between two arbitrarily
given points of H.

u

(42)

16. By the minimum property of the geodesic are, the symplectic dis-
tance p(3:, 8:) satisfies the triangle inequality

#(81,8s) = p(81, B2) + (82 B)

for three arbitrary points 8., 8., 8; of H, and the sign of equality is true, if
and only if 3, is a point on the uniquely determined geodesic arc between 3,
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and Bs. Obviously p(3, 3:) is a continuous function of 8. If G is any com-
pact point set in H, then p(8, 8:) = ¢ for all 3 in G, where ¢ is a positive
constant depending only upon 3, and G. Let us prove that also the converse
statement is true: If ¢ is an arbitrary positive constant and 3, any given
point of H, then the inequality p(8, 8:) = ¢ defines a compact set G of points
8 in H. Tt is sufficient t6 prove this in the special case 3, =1€. By the
definition of the cross-ratio,

2R(B’ 1’@) = 80g01

where 8o = (8 — i€) (8 -} #€)* is the image of 3 under the transformation
(6) mapping H onto E. We infer from (38) that the characteristic roots 7%
of the hermitian matrix 802—30 satisfy an inequality

0<nmn=<=d<1 (k=1,--,n)

for all 8 with p(8, 8,) =c¢, where ¢ depends only upon c¢. Since an arbi-

trary symmetric matrix B, is a point of E, if the characteristic roots of B30
ere < 1, all limit points of the images 3, of the points 8 in G belong to ¥
again, and consequently @ is compact.

17. Let
(43) ds? = 3 gudndz

ks 1=1

be a Riemann metric in an m-dimensional space and let

m
T=— 2 {p%k}tpi'q (k=19' : '7m)
p,G=1

be the differential equations of the geodesics, so that {pg,k} denotes the
Christoffel symbol of the second kind. The Riemann tensor of curvature R is
obtained in the following way: Define two covariant differentials 8,ux and

8. by

(44) Sup = — 2 {pg, FYwdreg  (r=1,2);
then .

(45) R = kZl gklvk(8182 i 8281)’111 ==k, %,qulmW’vl81xp82xq,

where U, V1, 8,7y, 8:74 are the components of 4 covariant vectors.
In the case of the symplectic metric (28), the differential equations of
the geodesics are given by (39). Instead of (44), we may write now

2‘&81-11 == 11@'1&8 + 3r8’@‘1u (’l‘ = 1: 2)

with complex symmetric 1l = (uz1), and we obtain
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— 48,511 = (UY78,3 + 8,89711) 98,8 -+ 5,89 (UY 5,8 + &89~"U)

(46) 4(3:8; — 88, )U =FJU + NYP'YF,
where

(47) &= 818@*‘823 — 828?)_1813-
Introducing

(48) @ — uYPB — BYii

with complex symmetric 8 = (1), we find, by (28), (45) and (46),

4R = o(9BFYT + 9 FYUYB)

(49) .
=o(Y§YP6) = —o(JFPE).

In order to determine the Gaussian curvature, we have to take two arbi-
trary different directions 8,8 and 8,8 at the point 3 and to choose Il =8§,3,
B =28,8. Then

B——1(97'39'F) <0,

where the sign of equality is true only for § = 0. Consequently the curvature
is negative for 88978.8 5« 8289‘1813, and 0 otherwise.

nt1 ds®y

It may easily be seen, that the contracted tensor of curvature is )

hence we have an Einstein metric with cosmological term.

18. Allendoerfer and Fenchel proved independently the following gen-
eralization of the Gauss-Bonnet formula concerning the curvatura integra of
a closed two-dimensional surface. Let ¥ be a closed manifold with the Riemann
metric (43) and an even number m of dimefsions. For every permutation

ki, + -, km of the numbers 1,- - -, m we define e,... &, =1, if the permu-
tation is even, and — — 1, if the permutation is odd. Let g be the determinant
| gx: | and

(50) K =(2"/2gm )3 Reskz1112Ronatars  ** B il malm s .. Fom sem€lls. . Im-alms

where the summation is extended over all permutations k,,- - -, ks and
Ly - ,Ilmof 1,- -+, m; moreover let do be the volume element in the given
metric. Then the Euler characteristic of F has the value

(51) X = n-im /2 (ﬂg‘—l) f Kdo.
F

For practical purposes, the sum on the right-hand side of (50) may be
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calculated in the following manner: Determine the single terms of the
polynomial
Rm/Z — (ERklpqu‘kvlu*pv*q)m/z

and replace every product ¥V, " ° Uk, Ve ¥* 0%, 0 - ¥, 0%, by
€. . . km€ly. .. lme

In the case of the symplectic metric, the transitive group Q of isometric
mappings exists, and consequently the invariant K is constant in the whole
space H. In order to find this constant value, we may assume 8 — €. Writing
11*, B* instead of 8,3, 8.3, we obtain, by (47), (48) and (49),

R = 1o(290%)
with
9 = UL — B, OF — 1*B* — BH*,

where 11, B, U*, B* are indeterminate symmetric complex matrices. Hence

(52) By — 9-2» 2 Pty * " qulvq*klll . e q*kvlv (V _ 1’ 2’ .. )
with

n n

G = 3 (UnsTri — Varlir ), g* e = X (W% — v¥il* ),

r=1 r=1

where ki, 1, - *, kv, Iy run independently from 1 to n. We choose
_m__n(n+1)
V== 2 == '—2 .

Let us denote the v elements uy (1 =k =1=<mn) of U= (ux) in lexico-

graphic order by u.," - - uy, their conjugates by .1, * -, 4m, and introduce
the corresponding notation for the elements of %, U*, B*. Replacing every
term Uy W * * * Ugm Vgm 10 Qraty” © " Qiwlv DY €g,. .. g, We get the expression
2ty . . wwtv With
(53) Worly .. dovlv == 3€g; . . . gm>
where g1, * *,gm Tun over all permutations of 1, - -, m such that the m
conditions

Ukepry, = Ugap 1> Viprs = Vg (h =1, ,v)

have a solution ry,+ + -, 7. By (52), the sum of the right-hand side of (50)
has, for 8§ — i€, the positive integral value

54 On == 3?1, . . Tvive
(54)

Moreover g is the determinant of the quadratic form o(9d39d3) of the
variables dzi; and dzu (1 =Fk =1=n); hence

g . (_ 1)112-21»,



SYMPLECTIC GEOMETRY. 25

for 3 = i€, and consequently

oy Gn
(55) K— (— 12t
On the other hand,
(56) do = 27 ! @ l"'lkH (da:k;dyk;) = 2”‘"klIl (d.’tkldY[cz)
=1 =

with (¥Yw:) = 9. Since
-y R v-n n v -
=i (v + 1) —(—2—;5—'2 == (2"r"v 1),
we obtain, by (51), (55) and (56),

xmen(—mymr [,
F

where the positive rational number

N An
T (4 ) /2]
ig defined in (53), (54) and
(57) dv = H (dxkdem)
=9}

denotes the euclidean volume element in the space of X, 9.
We find by direct calculation a4, =1, @, =631, a; == 90-6! and there-

fore ¢, =14, co=14%, ¢cs = but a simple explicit formula for a, and ¢

256"
in the case of an arbitrary n is not known.
The proof of Theorem 5 is now accomplished.

IV. DISCONTINUOUS GROUPS.

19. A group of mappings of H onto itself is called discontinuous (in H),
if for every 3 of H the set of images of 8 has no limit point in H. Since H
can be covered by a countable number of compact domains, the number of
elements of a discontinuous group is either finite or countably infinite, We
shall assume, moreover, that the mappings are analytic. Then, by Theorem 1,
they form a subgroup A of the symplee{:ie group.

On the other hand, let us consider the definition of a discrete group. A
group of matrices M with real (or complex) elements is called discrete, if
every infinite sequence of different M diverges. It is obvious that a discon-
tinuous group of symplectic matrices is discrete. Let us now prove the con-
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verse of this statement. If A is a non-discontinuous group of symplectie

mappings
(58) 8*= (A3 +B) (CB +9)7,
we can find a point 3 of H and an infinite sequence of different matrices

HN B
- (¢ o)
in A, such that the corresponding sequence (58) tends to a limit 3%, in H.
Denoting by 9, 9*, 9*, the imaginary parts of 3, 8%, 8*,, we have, by (25),

(59) 9* = 9{(€E3 4+ 2)7}.

Now 9* is bounded, @) is fixed and ¥ > 0. By (59), the sequence of matrices
(€3 + D) is bounded ; moreover, the square of the absolute value of the
determinant | €8 + D | tends to the limit || | P*. |*; hence also
€8 4 D is bounded. Since € is the imaginary part of (€3 + D)P-* and
D= (€8 + D) — €3, the matrices €, D are bounded. It follows from
AB -+ B=3*(€8 4+ D) that also A and B are bounded. Consequently there
exists a converging subsequence of matrices M, and A is non-discrete.

20. For any point set P in H, we define the diameter 8(P) as the least
upper bound of the distance p(8, 83*), where 8 and 8* run independently
cver all points of P. The diameter is finite, if P is compact. The distance
p(P, P*) of two point sets P, P* in H is defined as the greatest lower bound
of the distance p(8, 83%), 8 running over P and 3* over P*. By the triangle
inequality,

(60) 8(P -+ P*) =< p(P, P¥) + 8(P) + 8(P*).

Let Dy, Ds, - - - be the elements of the discontinuous group A and let Dy
be the identity. We denote by Dy(P) = Py the image of the set P under
Dy (k=1,2,- - ). We assume now that P and another point set @ in H
are compact. We shall prove that the distance p(Q,Px) tends to infinity
with k. Let us first consider the case of two points Q = 3, P=3,. By
Section 16, the condition p(8, 8*) = ¢ defines, for arbitrarily given ¢ > 0
and variable 8*, a compact point set in H; hence the inequality p(8, 8x) =c¢
holds only for a finite number of indices k so that p(3, Bx) —> 0 for k— co.
Consider now the general case for P and Q. By (60),

p(@, Pu) = 8(Q + Pu) —8(Q) — 3(Px)-

Choosing a point 3 in @ and a point B, in P, we have §(Q + Px)
= p(8, 8x) — « and 8(Py) = 8(P), whence p(Q, Pi) — .



SYMPLECTIC GEOMETRY. 27

A point 3 of H is called a fixed point of A, if Dy(8) = 8 for at least
one index k¥ > 1. Let P be an arbitrary compact domain in H, e.g., the
domain p(8,4€) = 1. Since p(P, Pr) = o for k—> oo, there exists only a
finite number of values k, such that the equation Dy(8) == 8 has a solution
B in P. But this equation, for any k¥ > 1, defines an algebraic manifold in H,
and consequently we may construct a point of P which is not contained in
any of those manifolds; in other words, we may certainly construct a point
3. of H which is not a fixed point. The images 8x = Dx(38.:) of B, are then
all different one from another.

21. We denocte by F the set of all points 3 satisfying all the inequalities

(61) o(8,81) =0 (8,8 (k=2,3,- - ).

1t follows from this definition that F is closed, with respect to H; but F is
not necessarily compact. Let G — H — F be the complement of G in H and
let B be the frontier of ¥ and Fy — F'—'B the set of inner points of F.
Obviously, the set G consists of all points 3 satisfying the inequality
p(8, 81) > (38, Bx) for at least one value of k; hence all the points
82, 85, - belong to G.
Let us now consider a point 3 which fulfills all conditions

(62) P(S’ 81) <P(8) 8’0) (k=2: 3,- - ))

the point 8 =3, is an example. The differences p(8, 3x) —p(3,8:)
(k=2,3,---) are all positive and tend to infinity with k& and, consequently,
they have a positive minimum p. The points 8* of the geodesic sphere
p(8, 3%) < 3p form a neighborhood of 8. It follows from

p(8% 8e) —p(8* 8:) > (8, 8Be) —3p—p(8,8:) — 3 =0
(k=2’3:' ),

that all these points belong to F. ;Consequently 8 is a point of F,.

Consider next the case where all conditions (61) are fulfilled, with the
sign of equality for at least one index k¥ =1 > 1. Then B854 8;. Let 8* be
an arbitrary point on the geodesic arc joining 8 and 3, different from .

Since p(8, 81) =p (8, 3:) and 8.=%= 8:, the point 8* does not lie at the
same time on the geodesic arc between 3 and 8, so that

p(8,81) <p(8,8*%) +p(8* B1)-
On the other hand,

p(8;81) =p (8, 8*) + (8% B81),
and the inequality p(8*, 81) > p(8*, 8:) is proved. Consequently, the whole
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geodesic arc between 8 and 3; belongs to G, except the point 3 itself, which
is a point of F. This proves that 3 is a point of B. '‘Therefore F, consists of
all 3 satisfying (62) and B consists of all 3 wsatisfying (61) with at least
one sign of equality.

Let again 3 be a point of B, and choose a point 3* =% 3 on the geodesic
are joining 8 and 3,; then

p(8, 81) = (8, 8%) + (8% 81)-

Moreover
p(83,81) = p(8, 8Bx) =p(8,3*) + (8% Bx) (k=2,3,- - ),

where the sign of equality cannot be true in both places. Hence p(3*, 8:)
< p(8*, Bx), i.e.,, 3* is a point of F,. This proves that any geodesic ray
through 3, either lies completely in F or intersects B in exactly one point.
The domain F is a star formed by geodesic arcs through 3,.

The boundary B of F consists of parts of the analytic surfaces p(3, 38.)
= p(8, 8c) for certain values of k¥ > 1. It is not generally true that the
number of these values is finite. However, if we consider a compact domain
P in H, the distance p(P, 8x) tends to infinity with k; consequently only a
finite number of these bounding surfaces enter into P.

Let 8 be an arbitrary point of H. Since p(3, 8x) — oo, there exists a
positive integer r, such that

(63) p(8,8r) = (B, Br) (F=1,2--").

Then the point 3* = D,7*(8) satisfies the conditions (61). Consequently 3
is equivalent to a point of . On the other hand, a point 8 cannot satisfy
both conditions (62) and (63), for any > 1 and all k. It follows that no
point of F, is equivalent to any point of F, except to itself under the identical
mapping D.

Our results contain the proof of Theorem 6.

22, 1If the fundamental domain F is compact, then the boundary B
consists of a finite number of surfaces p(3, 81) = p(8, 8x). Now F depends
upon the initial point B;; we write more explicitly F — F(8,). We shall
prove that F(%*,) is compact, for an arbitrary initial point 3*,, if F(3:)
is compact.

The space H is called compact relative to A, if there exists for every
infinite sequence of points 3™, (k=1,%,: - ), in H at least one compact
sequence of images 8;,™ under A. Obviously this condition is satisfied, if
and only if there exists a compact domain G in H, such that every point 3
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of H has at least one image 3; in G. By the minimum property of F, this
domain is then also compact, and vice versa. Hence our assertion is proved.

In the classical case n — 1, the fundamental polygon F is compact, if
and only if all vertices are elliptic; it is well-known that the uniformization
of any field of algebraic functions of genus p > 1 leads to a discontinuous
group with the required property. From the algebraic point of view, the most
important discontinuous groups A, in the case m — 1, are, more generally,
those having a fundamental polygon with a finite number of elliptic or para-
bolic vertices. They constitute the Fuchsian groups of the first kind, and the
corresponding automorphic functions form algebraic function fields of a single
variable,

For arbitrary n, we say that a discontinuous group A is of the first kind,
if there exists a fundamental domain # with the following three properties:
1) Every compact domain in H is covered by a finite number of images of F;
2) only a finite number of images of ¥ are neighbors of F'; 3) the integral

(64) V(a) — f dv
F

converges. In the special case n =1, it is easily seen that this definition is
tantamount to the ordinary definition of Fuchsian groups of the first kind.

It is now clear that A is certainly of the first kind, if H is compact
relative to A; hence Theorem 7 is proved.

Let
A B
#-(¢ o)
be any symplectic matrix. Under the automorphism 83— (%8 + B) (€3 4+ D)
of H, a subgroup A of Q is replaced by MMAM, i. e., by a conjugate subgroup,
and a fundamental domain of A is mapped onto a fundamental domain of
MAM-L. Obviously all conjugate subgroups MAP* will be of the first kind,
if A itself is of the first kind.

23. Let us now assume that A has no fixed point in H. Then the images
Bx(k=1,2,- - ) of an arbitrary point 8, of H are all different from each
other, and the minimum of the distances p(8, 8:) (kK =2,3, - -) is a posi-
tive number 8§ — §(8:). The images of the geodesic sphere p(8, 8:) < 38
with the center 3, do not overlap.

Identifying equivalent points of I, we obtain a set H,. We may obviously
introduce the symplectic metric into H,, defining a neighborhood of 3, by
p(8,B:) < 48. Starting from a fundamental domain F of A, we obtain a
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model of H,, if we identify equivalent points on the boundary of F. Assume
now that H is compact relative to A. Then F may be considered as a closed
manifold with the symplectic metric. By Theorem 5, this manifold has the
Euler number

(65) X = Ca(— m) DY (4),

where V(A) denotes the symplectic volume (6) of F.

Probably the formula (65) is true for all groups A of the first kind,
provided A" has no fixed point in H. This is easily proved in the case n = 1.
The general proof of our suggestion would require a careful investigation of
the geodesics of infinite length in the fundamental domain.

V. HERMITIAN FORMS.

24. In the case n—1, we know three different methods of constructing
discontinuous groups of the first kind, namely an analytic, a geometric and
an arithmetic method. The analytic method starts with a Riemann surface
of finite genus and applies the theory of uniformization. The geometric method
uses the principle of reflection for a circular polygon with a finite number of
elliptic and parabolic vertices, the angles at the elliptic vertices being aliquot
parts of #. The arithmetic method depends upon the theory of units of indefi-
nite binary hermitian forms, in an imaginary quadratic ring over a totally
real algebraic number field of finite degree. It is not known to what extent
the analytic and the geometric method may be generalized ; however, we shall
show in the following sections, that there is a generalization of the arithmetic
method to the case of an arbitrary =.

LEMMA 3. Let §3 be a hermitian and & o non-singular skew-
symmetric matriz with complex elements. If

(66) 6% — 6,
then there exists a matriz € such that ${€} =iy and G[C] =T
Putting &1 =, we have F = €, by (66), whence
(§ + IAE) (§ + iAE) + (§ — iAE) (§ — iAE) =0

for any scalar A of absolute value 1. Choosing this A such that | § + i€ | 5% 0,
we obtain
F— €

Froe "
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with real T; consequently € — 1T = 2iA(F + €)™, [ € —iT | 540,

642
S—ig—m=
Let €, = A¥€ 4 1T), $: = ${6.}, &, = G[€,]; then
G719, — @1_1%@1 =1€; '51 =9 =10 =— 16, ——9:;

hence &, is pure imaginary and &, =—— i), real. There exists a real matrix
@€, satisfying @,[€,] =, and € = §,€, has the required property.

25. Let K be a totally real algebraic number field of finite degree & and
let K&, .-+, KM be its conjugate fields, K — K ), If is any positive number
of K, then the field Ko — K (V/—r), of degree 2k, is imaginary. We consider
a hermitian matrix § = §*») and a non-singular skew-symmetric matrix @,
both with elements in K,, and, we assume that the relationship

(67) H5G1§ — @

holds with a positive scalar factor s. Obviously s is then a number of K.
The matrices Il with integral elements in K, satisfying the two conditions

éu]—6, =29,

constitute a multiplicative group A = A(®,$). Applying Lemma 3 with
s3$ instead of &, we obtain a complex matrix €, such that G[€] =¥ and
H{€} = isty. Consequently the elements €UE = WM of the group CAC
=42y =Ay(0®, 9) satisfy J[WM] =3I and J{M} =3, whence JI[M] =5
and $t — M. This proves that A, is a subgroup of the homogeneous sym-
plectic group Q. Identifying W and —U, i.e., M and — M, we obtain a
subgroup A — A(®, $) of Q.

The matrix € is not uniquely determined.. If also ${€*} — 1s¥y¥ and
G[C*] =<y, then €-1€* =" is symplectic, and vice versa. Using &* instead
of €, we have to replace A by B-AB; hence the class of conjugate subgroups
BAB in Q is uniquely determined by & and £.

Obviously A (G, a$) = A(S, §) for any number a 5= 0 of K. Therefore
we may assume r and s to be integers. Henceforth we shall, moreover, assume
that r is totally positive and that all conjugates of § except $ and § are
positive. Let r; and the pair i, §: be the image of r and the pair §,$
under the isomorphism K — K (I=1,---,h). For any element Il of A,
we have $;:{ll;} = $:, where U, 1I; (I=1,---,k) denote the 2k conjugates
of W=1U,. Since §: is positive for I > 1, the matrices U,,- - -, Us are
bounded. If also U itself is bounded, then all conjugates of 1 are bounded.
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On the other hand, there exists only a finite number of integers in K, with
bounded conjugates. Consequently A and A, are discrete groups and, by
Section 19, the group A(®, &) is discontinuous.

It follows from (67) that § — — s&{@}. Since s is positive,  — §,
is necessarily the matrix of an indefinite hermitian form. Since £, is positive
for 1 > 1, the conjugates s.,- - -, s» of the positive number s =3, are all
negative.

The most important example of a group A(®, &) is provided by @ =5,
O =1, r=1, h =1. Then we may choose € = €, and A,(®, ) consists
of all symplectic matrices I with rational integral elements. We call this
group the homogeneous modular group of degree n and denote it by T,.
Identifying the elements 9% and — M of T, we obtain the (inhomogeneous)
modular group T.

26. Two subgroups A and A* of Q are called commensurable, if there
exist a subgroup A, of finite index in A and a subgroup A*, of finite index
in A%* such that A, and A*, are conjugate subgroups of Q. If A is a discon-
tinuous group of the first kind, then the same holds for A*, and we obtain
iV(A) = j*V (A*), where j and j* denote the indices of the subgroups A, and
A*;; consequently the quotient V(A)/V (A*) is a rational number.

It is easily seen that the property of commensurability is symmetric and
transitive ; therefore we may speak of a class of commensurable groups. We
have now the problem of deciding whether two groups A (®, §) and A(E*, *)
are commensurable or not. The complete answer is given by Theorem 13. In
this section we solve only a particular case of the problem: We assume that
®&* and $* are also matrices of the field K, and that they fulfill the condition

.{)*@—5*'183* — s@*
with the same factor s as in (67).

LeMMa 4. Let ¢y, - -, Con be 2n numbers of Ko, not all 0. There exists
a matriz €, = (1) in Ko, such that cu=cx (k=1,--,2n) and
S[€] = - If, moreover, ¢, 5= 0, we may choose ;1 =0 (I=2,- - -,%n).

Put ¢’y = (¢, - - - ¢n) and /o= (Cry1 * * * C2m). If ¢; =0, we choose in
K, a non-singular matrix Q) with the first row ¢’, and define

00—
@1 = (@’ 0 ) .
If ¢, 54 0, we choose in K, a non-singular matrix B with the first row ¢’
and a symmetric matrix & with the first column e, ; then
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6~ (s w)

has the required property. In the case ¢,550, we may obviously choose
(6.0 - - 0) as the first row of §".

Lemma 5. There exists a matriz €, in K, such that G[€;] = &* and
H{C.} = o*

The equation &[X] = ¥ has a solution X in K,; hence we may assume,
without loss of generality, that & = @* = . Moreover it is sufficient to
prove the lemma for the special case

o* = (g—g@)

Since none of the conjugates of — § is positive, it follows from Hasse’s
generalization of A. Meyer’s theorem, that the diophantine equation ${r} =
has g solution ¢ in K,. Applying Lemma 4 with (¢;- - - czn) = ¢, We con-
struct a matrix €, in K, which has the first column g and satisfies J[€;] =S
Then ${C,} has the first diagonal element 1. On the other hand, the condition
(67) means now

(68) HIH = — sJ.

For the proof of Lemma 5, we may therefore replace ${€.} again by $.

By Lemma 4, there exists a matrix €, in K, with the following three
properties: €, and § have the same first column; €, has the first row
(10 --0); J[C.] =3y Put € =,;; then also J[€;] ==, and the
two matrices 6,9 and &, have both the first column (10 - - - 0)’. Writing
again § instead of §{€;}, we obtain the decomposition

s=(%, o)
(n)—(o %1) $12 = 2 0&2)’ ©2=(§3 ‘gz)

By (68),
@1-6'_12 = @12%’1, @’12@'2 =‘_©2"-§12,
69" — £1291. = — s€, 919> — 912912 — —s€,

whence a =0, {— —3s, b =0, ¢ = 0. This contains, in particular, the proof
of the lemma for n = 1. If n > 1, the hermitian matrix

(%, ¥)
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fulfills the same conditions as §, with n—1 instead of n; and we may apply
induction with respect to n. Hence the lemma is proved.

Let €, be the matrix of Lemma 5 and choose a positive rational integer ¢,
such that the two matrices ¢€, and g€, have integral elements. Since the
integers of K, belong to a finite number of classes of residues modulo ¢2, the
elements 11 of A(@®, Q) satisfying W=& (mod ¢%) form a subgroup A, of
finite index. Consider now the subgroup A, consisting of all I 'with integral
€, UE, = N*. Obviously A, is contained in A,; consequently A, is a fortiori
of finite index in A (®,$). On the other hand, 1* is an element of A(&*, $*)
with the characteristic property that €U*@,* =1 is integral; hence the
group A¥; = €, YA€, is of finite index in A(@*, $*). If € is the matrix of
Section 25, we have A,(®, §) = €A (S, §)E, and we may define A, (G*, H*)
= &, A (B* $*)€, with €, = &,€. Then €A,8 =€, 1A*,€, is a com-
mon subgroup of A.(,H) and A(G*, $*), of finite indices. This proves
that A(®, ) and A(G*, $*) are commensurable.

27. The two conditions G[U] =& and H{U} = $ for the elements U
of A(®,$) may be written FI = UF and UG WS = €, with F— &$.

Let us consider the set B of all matrices B in K, which satisfy the condition
(69) &8 = BF.
Obviously R is a ring. By (67), the matrix

(70) B —G'B'E
ie again a solution of (69), and consequently (70) defines an anti-auto-
morphism of B. The elements 1 of A(®,$) are the integral elements B =1
of R with the property
(71) un =€,
By Lemma 5,
€ 0 0 s€
o6 =3 o6 = (g _%)—9% &se—(g 5 )-8
where €, is a matrix in K,. The elements B* = €, 1BE, of the ring R*
= E,1RE, satisfy F*B* — B*F*, whence

gr— (¥ D
2 P
with arbitrary matrices B, Q™ in K, Defining

isl/z@ 81/2@

91/261/4Q0 — ( et &
— — 1

), € =G,
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we obtain
(72) B[] =13, H{C} =isty,

(18) ©BC=pwre—( TR S B
— Vil 4 V¥ Wo— Vs,
with
. - 1 -
A =3B+ P), L=-——F=(2—9),
2V —r
-
Uy=—7= (B—P), LW=—3(2+2);
2V —r
consequently o, %, A,, A, are arbitrary matrices in K.
Consider now the generalized quaternion algebra A over K consisting of
the elements o — ape; | aie1 + @26z -+ 113, with arbitrary ao, a4, ¢z,05 in K,
where ¢, 1s the unit and €,% = rs¢,, €2 = — ¢y, €16, = — €26, — s€5. We denote
by & = (o€ — (i€; — Ba€s — ges the conjugate quaternion. There exists the
well-known representation of A, of degree 2, defined by

10 — (1 0
(74) €o=(0 1): €1=\/”'3(0 _1)a‘
— 01 —~f{0 1
52=\/r(_1 O)’ €3=\/8(1 0).
Then obviously

3
(75) 5172=k§%><ek,

where %z X ¢ denotes the Kronecker product of the matrices %y and e; and
consequently §*RE is the ring of all matrices M == (@) of n rows and
columns with arbitrary elements ox; of A.

By (70) and (73), the condition (71) may be expressed in the form

(76) MP — €
with
- - 3
M=C'BC = F' I =W X 66— > W% X w;
k=1

hence M, written as a quaternion matrix, is the transpose (&) of the con-
jugate (dx:) of M. By (72) and Section 25, the group A.(®, $) consists of
all matrices M of the form (75), such that (76) is satisfied and CME is
integral. On the other hand, the solutions of (76) with integral
(k=20,:--,3) in K constitute also a subgroup A,(r, s) of the homogeneous
symplectic group Q. It follows from the argument at the end of Section 26,
that the two groups A,(®, §) and Ay(r, s) are commensurable, The problem
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of the commensurability of two groups A(®, ) and A(®,, $H,) is therefore
reduced to the corresponding problem for A,(r,s) and As(ry, s:). The solution
will be given in Chapter I1X.

V. THE FUNDAMENTAL DOMAIN OF THE MODULAR GROUP.

28. We shall construct a fundamental F for any group A(®, $) and,
in particular, for the modular group I'. The application of the general method
of Chapter IV would lead to a rather complicated shape of the frontier of F,
and it would then be difficult to prove that A(®, §) is a group of the first
kind. Therefore we shall use another procedure applying the special arith-
metic properties of these groups.

LemyMa 6. The equation

G

defines a mapping of the space H of the matrices 3 =X 4 19) onto the space
8 of the symplectic positive symmetric matrices &. Any symplectic trans-
formation 8* = (A3 + B) (€8 + D) with the maitriz M induces in § the
transformation &* = S[M1].

Let
61 g12)
G = ,
(@ 12 @2

be an arbitrary point of S. Since & > 0, the inequality &, > 0 holds, whence
€, =9 > 0. Moreover &,&; = S,;8; and &,8;, —&,,2=, whence
—G,"8,,=X=¥%, €, =—9'% and S, =9 + P[X]. This proves
the first assertion of the lemma.

The relationship (77) can be written

(78) S[w] =97 [u—Xv] + J[v] = J*{u — 8}
with an arbitrary real column
e = (142).
For the symplectic transformation §* — X* 4 i9* — (AB 4 B) (€3 4 D)
we obtain, by (59),
P =93¢ + D}
P {u—B*} =P {(EZ + D)’ u— (UG + B) b} = P {u* — Bo*},
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where u* = @'u— B’ and v* = — €'u + A’'p. Now the second part of the
lemma follows from (8) and (78).

29. Let P be the space of all positive symmetric matrices T with
real elements. Any ¥ in P may be uniquely expressed as T — B[Q], where
B =1[p, " ', pn] is a diagonal matrix with p >0 (k=1,- - -, m) and
£ = (gx:) is a triangular matrix with g5y —0 for k> 1 and g —1. If ¢
is any positive number, the inequalities

(79) 0 < pr = tpra, —t=qu =t A<k<li=m)

define a compact domain Q(¢) in P, and any given compact set in P is con-
tained in @(¢) for sufficiently large values of {.

Let U denote the group of all different transformations T — Z[U],
where Il runs over the unimodular matrices, i. e., the matrices with rational
integral elements and determinant + 1. On account of Minkowski’s theory
of reduction, there exists in P a fundamental domain K with respect to U,
defined by a finite number of inequalities

(80) L,«(%)ZO (T=l,2,' : ‘:g):

where L.(Z) denotes a certain homogeneous linear function of the elements
of T with rational coefficients. A point T lies on the frontier of K if, and
only if, the conditions (80) are fulfilled with at least one sign of equality.
The images of B under U cover the whole space P without gaps and over-
lappings. Only a finite number of images enter into any compact part of P,
and only a finite number of images are neighbors of E.

Most of the results of the theory of reduction are simple consequences
of the following two known lemmata.

LemMA 7. There exists a positive number v, depending only upon m,
such that R is contained in Q(+1).

LeMMA 8. Let T, T, be two points of Qi) and let T, = T:[F],
where § is a matriz with rational integral elements fu;. Then

—r = fus=r (k,1=1,--,m),
where + is a positive number depending only upon ¢, m and the determinant
I & |

Let ¢4, - -, tm be the diagonal elements of a point T = B[] of R. Then

ni -1

ti= 3 pege® = pr(1+ 2 2 gr?) (l=1,--+,m)
k=1 k=1 Pi
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and pyp:- - - pm=|T|. By (79) and Lemma 7, the inequality
(81) I}itk<72|%|

jollows, where 7, depends only upon m.

30. The general method for constructing a fundamental domain with
respect to any discontinuous group A uses the minimum of the distance
p(8*, 8.), where 8, is given and 8* = (%8 -+ B) (€8 + D)-* runs over all
the images of 3 under A.

Let us now choose in particular 3, =A@, with a positive scalar factor A;
we shall investigate the asymptotic behavior of the distance p(8, 8:) for
»— 0. By (38), we have

p(8,8.) = Soge 1E,

where 7, - - -, r, denote the characteristic roots of the cross-ratio

R—(8—381)(B—38)"(B—8)(B—8)"=€C+2r"(8—38)+ .

If s, - -, 8, are the characteristic roots of the imaginary part § of 3, we
obtain

p=1—4sAt + - - - (k=1,---,n),
whenece

p*(8, NE) — kzl log? (7A) 4 (),

where w(A) is a power series in A-! without constant term. Consequently
lim (p(8,iA€) —ntlogr) —ntlog|P|™
A0

This suggests a consideration of the minimum of | §* |-

Denoting by the sign abs @ the absolute value of the determinant of a
matrix &, we have, by (59),

| 9* |t = |9 | abs (€8 4+ D)=

In order to obtain the minimum of | §* |, we have therefore to determine
the minimum of abs (€8 4+ D). The existence of this minimum is by no
means trivial ; we shall prove it now in the case of the modular group T

Let
¥ B (% B
9’*=(@ @) o= (. @)
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be two elements of the homogeneous modular group I'y and let

A B,
-1 = ==
MWD =M, ((6:1 591) .
We assume that the equation

(82) abs (€8 -+ D) = abs (6,8 + Do)

holds identically for all'8 in H. Introducing ('8 —%B')(— €8+ U’)
mstead of 8, we obtain the necessary and sufficient condition

(83) abs (6,8 + D,) = 1.

Since | €:8 + D, | is an analytic function of the elements z; of 8, we infer
that | €,8 + 9D, | =c, identically, for all complex symmetric matrices 3,
with a constant ¢ of absolute value 1. Putting 8 =0, we find |D, | =c.
On the other hand, the elements of ©, are rational integers ; consequently B,
is a unimodular matrix U and ¢ = =+ 1. Calculating the linear terms in the
identity | ©,7'€,8 + € | =1, we obtain o(D,'€,8) = 0. But the matrix
®,71€, is symmetric and therefore €, = 0.

Let now R, be any modular matrix with €, = 0. The general form is

w- BU
(84) M, = (0 u )
with unimodular W and integral symmetric B. Obviously (79) is satisfied,
and Py =P, M, with an arbitrary modular matrix M, gives the general
solution of (82). Then
(85) €, =1E, Do = UD.

It is also easily seen that MM, — MM has always the form (84), if the
second matrix rows (€D) and (€,D,) of two modular matrices M and P,
are connected by (85), with unimodular 1. The two pairs €, D and €,, D,
are called associate.

Denoting by 9* and §*, the imaginary parts of

8*—= (U8B +B) (€8 + D) and B* = (Ao + Bo) (€8 + Do),
we obtain, by (59),
(86) PH{BE + Do} =P [W] = J*.

Let 3 be a given point of H. For any modular matrix %, we choose a uni-
modular matrix U, such that P*[WW] = P*,* lies in the Minkowski domain
R of Section 29. We shall mow prove that abs (€,3 4 D,) tends to infinity,
if (€D,) runs over all second matrix rows of modular matrices with the
required property of §*,.
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Let 91, - -, yn denote the diagonal elements of §*,* and c;, d; the I-th
columns of &, D (I=1, - -,n). By (86),
P*o =P [XC + D] + D[C] 5
1 =97 [Xa + ] + I[a]

Consider all solutions €,, ®, of the inequality abs (€,3 + ¥,)? < a, where a
is an arbitrary positive constant. By (81) and (86),

(87) (I=1,---,n).

Hy <ma ||

by (87),
(88) ] =y, P [Xa + ] =y (=1, -,n),

and §7'[d;] =y, in the case ¢; =0. Since | €8 + D, | = 0, the columns
¢1, D, are not both 0; hence y, > y, where y is a positive number depending
cnly upon 9, and

yr < 7y [P [

By (88), we obtain only a finite number of pairs €o, Ds.

On account of (82), the existence of a modular transformation 3*
= (A3 + B) (€8 + D) with the minimum value of abs (€3 + D) is
established for any 8 in H. We determine again 11 by the condition that
9*-1[1] is a point of B and define 8% = (%3 + Bo) (€o3 + Do) !
= 8*[U*] + B, by (84), where B is an arbitrary symmetric matrix with
rational integral elements. We may choose B such that all elements of the
real part of 3%, lie in the interval — 3 <z << 1.

31. Let F be the set of all points 8 =% 49 of H satisfying the
following three conditions:

(89) abs (63 + D) =1

for all modular transformations 3* = (48 + B) (€3 4 D)*;

(90) Li(®) =0 (r=1, -, 9);
(91) T = — 3§, — =3 A=Ek=<I1=<n)

for the elements zx; of X. In (89), we shall omit the trivial case € =0,
since the corresponding condition abs (D) =1 holds identically for all 8.
By the result of the preceding section, the images of F under T' cover the
whole space H.

We write ' =P[Q] with B=1[ps,- - ", ], Q= (qu), =0
(1<I1<k=n), gu=1 (k=1,- - -,n) and define W™ — (ww:;) with
W =0 (k+1s£n+1), wu=1 (k+1=n-41),
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B0 porm): ©=( werm) B0 a)

By (77),
(92) @[%1] = sBl[&ax]

By Lemma 7 and (91), the absolute values of the elements of the triangular
matrix £, are less than a number depending only upon n. Denoting the
diagonal elements of B, by di,- - -, dan, We have

dkd -1

k+1

=pmpl, 1=k <n), —=p2 (k=n), = pamsp ., (n <k <2n).
By Lemma 7,
(93) 0 < dp = 71dpn (k5= n),

where r; depends only upon m = 2n.
We apply (89) for the particular modular transformation with

E=1) 0 0 0 0 0 G- 9
9‘=(0 0>’ SB=(0 —1)’ @=(o 1)’ gé’=(0 0)'

Denoting by @, +- iy, the last diagonal element of 8, we obtain the inequality
. + ¥ = 1. By (91), we have moreover #,> < }, whence y,2 = 3. But
P =P [Q], and consequently y, = p,?,

(94) 0 < dn= (4/3) dnn.

By (92), (93) and (94), ©[,] is contained in a domain Q(r;) of the
space P of positive symmetric neatrices with 2n rows, where r; depends only
upon #.

Consider now any modular transformation 3* = (%8 + 8) (€8 + D)
different from identity, i. e.,

A B
&IR=(@ @);éi@f,

and assume that 8 and 3* both are points of #. By Lemma 6, & = &*[It],
S[BW,] = S*[W,] [ W, MW, ].
Applying Lemma 8 with
T, =0C*B,], L,=C[BW,], §=BVBIMBW,, |F|=1,

we conclude that M belongs to a finite set of modular matrices M,, - - -, D,
independent of 8 and 3*.
On account of the minimum property of | 9 |, we have | @ | — | 9*|,
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whence abs (€3 + D) = 1. If € 540, then the sign of equality is true in
one of the conditions (89). If € — 0, then I has the form (84),

w- BU
2= u)

and §*t = P*[W]. In the case U= + &, the sign of equality is true in
one of the conditions (90). In the case W= + €, we have 3* =35+ B,
X* =X 4 B with integral symmetric 85~ 0, and then the sign of equality
holds in one of the conditions (91).

We have proved the following statement: If two points 8 and 8* of F
are equivalent under a modular transformation with the matrix M=~ = @,
then I is one of the matrices

%Is %8
%8=(@s @3) (s=1,---,h)
and the conditions
(95) abs (@&8‘}‘@3)21 (8=1)' : "h):
(96) Lr(g—l) =0 ("'=1;' : ‘:9),

are fulfilled with at least one sign of equality.

32. Since (95) is contained in (89), every point 3 of F satisfies (95),
(96) and (97). We prove, now, that the converse is true, namely, that all
the inequalities (89) follow from (95), (96) and (97). We shall demonstrate
at the same time, that then the stronger inequalities abs (€8 + D) >1
hold, if €, D is not associate with one of the pairs €, Ds (s=1,- - -, k).

LeMMA 9. Let 8—=2% + 19 be a point of H and 3r=2% + irY, with an
arbitrary scalar factor A. If (€D) is the second matriz row of any symplectic
matriz and € %0, then the inequality abs (€8x 4+ D) > abs (€8p + D)
holds for A > pn > 0.

The determinant | €3* + D | = ¢(A) is a polynomial in A. For any A
with positive real part, 8 is a point of H and consequently ¢(A) 54 0.
Moreover () =¢(-—X); hence all zeros of ¢(A) are pure imaginary.
This proves that for real A the expression abs (€8\ 4-9D)* is a polynomial
in A2 with real non-negative coefficients. It remains only to prove that this
polynomial is not identically constant.

Assume now that

abs (€3* 4 D) — abs (€8, + D) — abs (€X 4 D),
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identically in A. Then abs (€X + D) %0 and
(98) abs (9 + A (CX + D)€) = | Y |

Since (€X 4 D)€ is a real symmetric matrix and P > 0, there exists a real
matrix 8 and a diagonal matrix ® = [r,- - -, ], such that

(99) ' [R]1 =€, ((CX+D)'C)[R] =%
By (98) and (99),
IT (14 nx) —1

for all real values of A, and consequently |t = 0, € = 0, which is a contra-
diction. This completes the proof of the lemma.

We denote again by (€9) the second matrix rows of the modular
matrices. Let 8 be a point of H satisfying all conditions (95), (96) and
(97), and assume that the inequality abs (€8 + D) =1 holds for at least
one pair €, D, where € %0 and €, D is not associate with one of the pairs
G, Ds (s=1,- - -, k). By the result of Section 30, only a finite number of
non-associate pairs €, ® fulfill that inequality. By Lemma 9, there exists a
number A = 1, such that abs (€3\ + D) =1 for all €, D and abs (EZ\+ D)
=1 for € =€, D=D,, where €, =0 and €y, D, is not associate with one
of the pairs €,, ;. Since 3 has the real part X and L-(A @) = AL (9™),
all conditions (89), (90) and (91) are satisfied for 3 instead of 3 ; hence 3a
is a point of F. On the other hand, the expression abs (€8x + D) attains its
minimum 1 for € =€, ® =D, and consequently there exists a modular
transformation 8%\ = (AB\ + B) (EZr + D), such that €, D is associate
with €y, ©, and 8*, is a point of F. By Section 31, € =6,, D=9I,, and
this is a contradiction. Consequently abs (€3 + D) =1 for all €,D and
abs (€8 + D) > 1, if €70 and €, D is not associate with one of the pairs
€,y Ds.

33. By the result of the preceding section, F may be defined by the
inequalities (95), (96) and (97), in finite number. Obviously F is closed
relative to H. It follows from Lemma 9 and the linearity of the conditions
(96) and (97), that 3 is a frontier point of F, if, and only if, (95), (96) and
(97) are fulfilled with at least one sign of equality.

Let Fg, be the image of F under the modular transformation 3*
= (A8 + B) (C8 + D)* with the matrix M = = €. If F and Fy, have a
point 3* in common, then, by Section 31, M is one of the matrices
My, - - -, Ma, and B* is a frontier point of F. Consequently the images F,
cover H without overlappings, and # has only a finite number of neighbors.
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Consider any compact domain G in H, and let G, be the corresponding
domain in the space § of the matrices & defined in Lemma 6. There exists a
number ¢ depending only upon @, such that @, is contained in the domain
Q (1) of Section 29. We may choose ¢ = 74, where 75 was defined in Section 31.
Let 8* = (B + B) (€8 + D)~* be a common point of Fgy and G. Then 3
is a point of ¥ and the relationship &* — &[IR-*] holds for the corresponding
points &* and & of 8, by Lemma 6. It follows from the result of Section 31,
that the point G[W,] =CS*[ MW, ] lies in Q(¢). But also &* itself is a point
of @(%), and consequently, by Lemma 8, the matrix I belongs to a finite set.
This proves that only a finite number of images Fg, enter into the compact
domain G.

For the particular value 8 -=1€, we have | €3 + D | =c¢ 4 id, with
rational integers ¢, d not both 0. Consequently (89) is satisfied. Also (91)
holds, since X = 0. Moreover §* = € is a point of the Minkowski domain R.
Consequently 8 == is a point of F. By Lemma 9, the whole curve 3 = \€
(A=1) belongs to F. Since A may be arbitrarily large, the fundamental
domain F is not compact. Let G be any compact domain in H and consider
the finite set of modular matrices M, such that ¥, enters into G. The set of
images of G under the inverse mappings with the matrices IM* constitutes
again a compact domain G,. For sufficiently large values of A, the point A€
of F does not lie in Gy ; hence no image of this point lies in G. This proves
that the space H is not compact relative to the modular group I

By the results of Section 31, the matrices X and §* are bounded for all
B in F. On account of (57), the integral V(T') converges.

Theorem 8 is now completely proved.

VII. THE FUNDAMENTAL DOMAIN OF THE GROUP A(G, §).

34. Let K, be an algebraic number field, of finite degree g over the
field of rational numbers. Let ¢, of the conjugate fields be real and 2g¢.
imaginary, g =¢, -+ 2¢.. We denote the real conjugate fields by K,‘®
(e=1,- - -,¢.) and the pairs of conjugate complex conjugate fields by
K,® and K@% (a=g¢g,+1,- - -, g1+ g2). We consider g, positive sym-
metric matrices T, (=1, - -, g;) with real elements and g, positive her-
mitian matrices T, (a=g¢g:+ 1, * -, g1 + ¢g=) with complex elements, all
of m rows. We denote the systems of ¢, + g, matrices Tz (¢ =1,--+, g, + g2)
more shortly by & ; they form the points of a space P of 3g.m(m + 1) 4 g.m?
dimensions.

We have a unique decomposition T, = B.{Q.} with a diagonal matrix
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Bo= [, , pn®], @@ >0(k=1, -+, m), and a triangular matrix
La= (¢, ¢(*=0(k>1), g =1, where Qg is real fora=1,-- -, g..
If £ is any positive number > 1, the inequalities

0 < =ipl® (k< m), pl® = ip® (k=m)
abs ¢ (9 = ¢ k<

with «,8=1,- - -, g, -} g, define a compact domain Q(¢) in P.

A matrix U with integral elements in K, is called unimodular if the
determinant | 1| is an algebraic unit. The unimodular matrices 1(™ con-
stitute the unimodular group W in K, of degree m. The center C of U consists
of the matrices I = u€, where u is any root of unity in K,. We denote by U,
the factor group U/C. Let U, be the conjugate of U in K,©@. The trans-
formation Ty > Te{la} (a=1," - -, g1 + g2), or more shortly T - T{U},
maps the space P onto itself. This mapping is the identical one, if and only
if W is an element of C'; consequently the transformations ¥ — T{UN} give a
faithful representation of U,.

Minkowski’s theory of reduction of positive quadratic forms is concerned
with the case g == 1, the field of rational numbers. The generalization 1o the
case of an arbitrary field K, is due to P. Humbert. He obtained the following
results:

There exists in P a fundamental domain R with respect to U,, which is
the union of a finite number of convex pyramids. The faces of these pyramids
have equations of the form

(100) gli_gz (ﬂ,azaf)a + alaiaba) == 0)

where a, and b, are the conjugates of two columns a5~ 0 and 6540 in K,;
moreover a~Ab for every pure imaginary scalar factor A. Any compact
domain in P is covered by a finite number of images Ry of R, and R has
only a finite number of neighbors Ry;.

LemMa 10. There exists a finite set L of matrices & with integral ele-
ments in Ko and a positive number 4 depending only upon K, and m, such
that for every T in R the point T{RX} belongs to Q(r.), with at least one
of the set L.

Lemma 11. Let X and T{F} be two points of Q(t), where F is an
integral matriz in Ko, and let v be the norm of | & |. Then § belongs to a
finite set of matrices depending only upon Ko, m,t and v.

These statements are generalizations of the lemmata 7 and 8.
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35. We assume now that K, — K(\V/—r), where K is a totally real
algebraic number field of degree & and r a totally positive number of K ; then
g1=0, go="h. Let K@ (a=1,--- k) be the conjugates of K =K,
7. the conjugate of 7 in K@ and K,® =— K@ (\/—r,). In the notation
of Chapter V, § is a hermitian matrix and & is a skew-symmetric matrix,
both in K,, satisfying the condition (67). Let ©a, ®, be the conjugates of
9, % in K,* and s, the conjugate of s in K¥. We assumed moreover
§>0, 9. >0 for a=2,- - -, h; then s, <0 (a=2,- - -, k). The group
A=A(®,9) consists of all unimodular matrices I in K, which satisfy
G[W] =& and H{W} = . We have A, = CAE€, where € is a complex
matrix with G[€] = and H{€} = isty. Identifying W and — W, we
obtain the factor group A= A(®,H) of A, Obviously this group is not
changed, if we replace ®, $ by ¢@®, b9 with arbitrary positive rational numbers
a. b; consequently we may assume that @ and © have integral elements.

The matrix & of (77) is the general solution of & =& >0, I[6] =3,
J{&} =3J. Consequently

(101) T, — &6}
is the general solution of
(102) Y= il >0, %léﬂil = —— @5; T O, = ~19.
We define
(103) Lo = (— %a) 9. (a=2," - -, h);

then, by (67) and, (10),

(104) Te—=Ta>0, L=}, o= |" T}
(=1, -,h),

where [sal denotes the absolute value of s,. The matrices T,,- - -,y are
fixed, whereas ¥, depends upon the variable point 8 of H, by (77). The
space H is mapped onto a surface T, of n(n 4 1) dimensions, in the space B.
If 8 is any element of the group A, then the transformation T, — Lo {Wa '}
(¢=1, - -, k) maps T onto itself, and this mapping is the identical one,
if and only if B = = @; on the other hand, by Lemma 6, the corresponding
mapping in H is a symplectic transformation of 8, with the matrix ¢ = EWE
of the group A. ‘

For any point ¥ of T, there exists a unimodular matrix 1 = n 3 in K,
such that T{11} is a point of the domain B. By Lemma 10, we may choose a
matrix Q of the finite set L, such that & — T{UL} belongs to Q(r.). Putting

& — ®[UL], § — H{UL) we obtain, by (104),
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(105) £=3146), £—|s|"E1$;

we omit here and in the following formulae the index & which runs always
from 1 to &.

" Let B denote the matrix of the linear transformation i —> Tane
(=1, ---,2n). If ¢ =P{L} is the decomposition defined in Section 34,
then T-1{B} — P{B}{BO~'BV), and consequently the points | s |*E{B}
and £*{B} belong to a domain Q (5}, where 75 depends only upon K, n and s.
Moreover

|BG | = (—1)" | & |abs (UR)2, |BE|—=(—1)"|®| | UL

hence the norms of | B’ | and | BG | belong to a finite set. It follows now
from Lemma 11 and (105), that also the matrices & and .Sf) belong to a finite
set, independent of B, and the same holds good for G[U] =@[2‘1] and
o(m) = ${2).

Choose now a complete system of points 3, in H, such that the pairs
B[], ${Uo} with W, =g, are all different, and let V be the finite set of
the unimodular matrices 1, We denote by G(U,) the closed set of all points
8 of H, such that the corresponding point T of T lies in Eyy -1, and by G
the union of these G(U,); as U, runs over the elements of the set: V.

Let 8 be again an arbitrary point of H and 1 =l g. Then there exists a
uniquely determined U, in V, such that &[11,] = S[U] and ${U.} = H{U};
thus WU = W is an element of the group A. Since T{U} lies in B, the point
(W} = T{UNU,} is contained in By -1; hence 3 is mapped by the ele-
ment P = CWE of A into a point of G(U,). This proves that any 3 in H
is under A equivalent to at least one point of G'; we call this point a reduced
image of 3.

86. Let us assume that there exists in H a compact domain B, such that
Z{Ug} is a boundary point of R, relative to P, for all 3 in B. By Section 34,
the unimodular matrix U { belongs then to a finite set, and we infer from
(77), (100), (101), (103), that the expression p’S§ 4+ P'Sq has a constant
value in H, where p — €-*a and q'=6b with two columns a <0 and b4 0
in K,; moreover a==Ab for every pure imaginary scalar factor A. Replacing
9 by € + 9, we have the Taylor series

E—C+&+Gt- -, @l=(:2 —5) e:—(3y %)

in the neighborhood of §) = 0. It follows that the real part of 1’&S,§ vanishes
identically in the real symmetric matrices £ and 9. Since a = €p, b — €q
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and a4 Ab, for all pure imaginary values of A, we find easily a = v@r,
b — 18 with real r, 8 and complex scalar o %= 0.

On the other hand B[6] =, ${€} = V—s%, whence € — V— & GG,
We obtain, therefore,

oV —s9'Ga = va.
But &, 9 and as= 0 are in Ko = K(V—7r), hence

oV—s=uw(+9V—r);
§=§ + "‘772:

where £, 7 are numbers in K. Since 74 >0, 5o <0 (a=2,- - -, k), the
relationship (106) is only possible for A =1; then K is the field of rational
numbers.

It will be proved in Chapter IX, that A(@, §) is commensurable with
the modular group T, if and only if the diophantine equation (106) has a
rational solution &, %. In this case, however, the construction and the properties
of a fundamental domain for A follow in a simple way from the results of
Chapter VI. Therefore we exclude this case for the rest of the present chapter.

For every point 8, of H, there exists now a unimodular matrix I and a
sequence of points 3 tending to B,, such that the corresponding points T of T
are inner points of Ryj-1, relative to P.

(106)

37. We denote by F(11,) the closure of the set of inner points of G(ll,),
relative to H. If 3, is a point of G(11,) which does not belong to F (o),
then we use the result of the last section to construct a sequence of points
8 tending to 3,, such that they have as reduced images inner points of G(11),
where U is a certain matrix of the set V. Consequently 3, has a reduced image
in F(11), and any point of H is equivalent under A to at least one point in
one of the domains F(U,).

Let 8* be the image of 8 under the transformation % — €*WE of A
and let T*, T be the corresponding points in 7. We assume now theé existence
of an inner point 8 of F(11,), such that 8* is a point of F(11*,), where U*,
is also one of the matrices of the set V. By Section 36, this holds then even
under the further condition that £{1,} be an inner point of R, relative to P.
But T*{U*,} = T{U,} {U,'W*U*,} is again a point of B, and consequently
u*, = = B, G[U*] =G[U,], H{U*} = ${U.}. Now it follows from
the definition of V¥, that U*, = 1o, W == =+ €. This proves that F(U,) and
F(U*,) do not overlap, if Uo5~ 1¥,, and that the sum of the domains F(1,)
is a fundamental domain F of A.

Obviously every F(1l,) is bounded by a finite number of algebraic sur-
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faces, and F has the same property. It follows immediately from Section 34,
that any compact domain in H is covered by a finite number of images Fgy

of ¥ under A and that F has only a finite number of neighbors Fgy.

38. Let 3 be a point of F(U,) and & the corresponding point of S.
By (101) and (105),
(107) B = PH{Y{QR}),
where
=902, B(O) =L (LY —S(E L)
(108) B=1[ps" -, panls 0 < P = 7uprn (k=1,- - 5% —1)
Q= (), @a=0(k>1), gu=1, absga=r, (k<I).

Let d be the first diagonal element of §. Then

(109) mE = s1d?
and

2n N
(110) Hp— (=915,
by (107).

We assume now & > 1, i. e., K is not the field of rational numbers. Then
the conjugates of § in K@ (V—r,) (¢=2,- - -,h) are positive, and
consequently d=% 0. On the other hand, 11, and { belong to a finite set. It
follows from (108), (109), (110), that & is bounded for all 3 in the funda-
mental domain F. By (77), the matrices §*, 9 -+ 9[X], 97X are bounded,
hence also 9, | 9 |, X. This proves that F is compact.

In the remaining case h =1, F is not necessarily compact, and the proof
of the convergence of the volume integral V(A) requires more detailed esti-
mates. This proof may be given by the same method which leads to the
analogous result in the theory of units of indefinite quadratic forms; we omit
it here.

It is also not difficult to prove that the space H is compact relative to
A(®, ©), in the case h =1, if and only if n=1 and A is not commensurable
with the elliptic modular group, and then also F is compact.

39. The congruence subgroup A«(®, $) of A(®, ) consists of all ele-
ments of A satisfying B =€ (mod ), where « is a given ideal in K, Let
p be a prime ideal of K, and p the rational prime number which is divisible
by p; let « be a power of p, such that p is not divisible by «#-*, If the trans-
formation with the matrix €-*¥E £ + € has a fixed point in H, then W is
of finite order, since A is discontinuous in H.

4
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We shall prove that A«(®, §) containg no element of finite order except
€. Otherwise we may assume

Wr=¢, BW=CE+R R=0(modp*), R=0 (modp>?),

where ¢ is a rational prime number and p® divisible by x. Then

gl (%) R =0; Re=— ¢ (mod p%).
Since

¢ =0 (mod p*?),

we arrive at a contradiction.
The proofs of Theorems 9 and 10 are finished.

VIII. THE VOLUME OF THE FUNDAMENTAL DOMAIN OF
THE MODULAR GROUP.

40. In the interval 0 <z =<1, we consider an arbitrary monotone
function f(z), such that
1
(111) fy =0, | f@emde—=1;
[}

an example is f(z) =n(n+1) (1 —z). For =1, we put f(2) =0. Let 3
be a point of H and & the positive symmetric matrix defined in (77). For
any e > 0, we define

(112) ¢(e, 8) = X f(S[em]),
=0
where v Tuns over all lattice points = 0; this is a finite sum.

Lemma 12. If € tends to 0 through positive values and 3 is fized, then

i

lim ¢ (e, 8) ~m—D1"
On account of the definition of the integral, we have
lim ¢(¢ 8) — f £(Lal)da,
B[q]=1

where dq denotes the euclidean volume element in the space of the real vectors
g of 2n dimensions. Since the volume of the ellipsoid S[q] == is

J(z) =:—;—!a:" (z=0),
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we obtain

1
— @) g N
f #@tana ff() o — oyt f @ede—
Gla] =1 °
41. Let F be the fundamental domain of the modular group, in the space

H of 3=1% + 19, and denote by dv the euclidean volume element in the
space of X and 97, of n(n 4 1) dimensions.

LeMMa 13, There exists an integrable positive function g(8) of the
elements of B, independent of €, such that

(113) $(68)=g(8) (0<e=1)
and the integral

7"'5,[ g(8)dv

converges.

We denote by A(p,8) the number of lattice points w satisfying
&[] = p, where p is an arbitrary positive number. By (78),

Slw] =y lu—a] +90),  w—(}),

and consequently k(p, 8) is not larger than the number of integral solutions
u, b of

(114) Piu—Fo]=p, Yo]=
Put §* =B[Q] withP=[ps,- - -, pu] a0d Q = (gu1), e =0 (£ > 1),

g ==1, and let ux, w, 7 (k=1,- - -, n) denote the elements of the columns
u, b, v =2%p. The first condition (114) involves

pel(me—r) + X g —m)} =p (k=1,---,n);
this proves that the number of integral u is
n
=11 (1 + 2ptpd),
k=1
for any given b. On the other hand, the second condition (114) involves
k-1
2t (et X gran)* = p,
=1
where (g*i;) = &7 ; this proves that the number of integral v is

=TI (1 + 2pdp").
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It follows that
hie, 8) =1 (14 2 (p + 1) + 40).
Let yi,- - -, v4 denote positive numbers which depend only upon n. By
(93) and (94), we have pp < y1 (k=1,- - -, n), for all 8 in F; hence
(115) hip, 8) <ve(1+p)" I i

Now 0 =f(2) =f(0) (0==2z=1) and f(z) =0 (£ = 1) ; consequently we
infer from the definition (112) that

(116) ¢(6, 8) = ef(0)h(e2 B).
By (115) and (116),

(6 8) < F(0)y:(1 + ez)"illpk-% <JOwHat <=1,
We define ) )
9(8) = (O I pe¥;

then (113) is fulfilled and it remains only to prove the convergence of the
integral

Ye = H pk‘idv.
k=1
F
Instead of the elements Yz (K =1) of (Yw) =Y =P[Q], we introduce

the new variables pd (k=1,- - -,n) and gu (k <1l). The functional
determinant has the value

n
on H pkn~k+§,
k=1
whence
k3
Y= n I_I pk”“"dvl
B k=1
with

dv; = T1 daw T1 dagwa T dpid.
=1 K<t %

Since ¥, B, O are bounded in F, the convergence is obvious.
Applying a well-known theorem of integral calculus, we obtain from
Lemmata 12 and 13 the important

LemMa 14. The integral

9= [ (8= | f(S[w])dv
¥ (<) Ff( v m#oé
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converges and

.”.n

Eﬂ“0=ﬂn_nzgw”=(m_nz”

where Vo, = V(T) is the symplectic volume of the fundamental domain for
the modular group T' =T, of degree n.

42. We denote by W the set of all columns w(*®) with coprime integral
elements and by e the first column of the unit matrix €#); obviously e
belongs to W.

LEMmA 15. There exists a modular matriz M with the first column v,
if and only if w belongs to W.

The necessity of the condition is obvious, since ¥R has integral elements
and the determinant 1. Therefore we have only to prove the existence of a
modular matrix M satisfying MM — e, where 1 is a given column of the
set W.

Consider the column

1 u(n)
m m_=m1=(h(n) s

where I is an arbitrary modular matrix, and let w,v denote the greatest
common divisors of the n elements of u,b; we define u=0 or v=0if u=0
or p — 0. We choose now the matrix M, such that the sum u 4 v =w is as
small as possible. If u < v, we replace M, u, » by MY, —b, u and obtain the
case # > v, with the same value of w; hence we may assume u == v.

If v > 0, we determine a unimodular matrix U with the first row v~p’
and an integral column i, such that all elements of the column Uu—ovt—u,
have an absolute value =% (v/2); then the greatest common divisor u, of
these elements satisfies u; = (v/2) < u. Let T be an integral symmetric
matrix having t as its first column and

ur 'z
9»1 = (0 u, ) .

Since Wb — ve, and TW b — o1, where e; denotes the first column of the
unit matrix €™, we find

(%%J%=MHm=(m)

ey

But M, and MIN, are again modular matrices and u, + v < w, in contra-
diction to the minimum property of w.
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Consequently v =0 and u =1, the elements of 1y, being coprime. Let
U, be a unimodular matrix with the first row u’” and

e
s.mg_(o u)

Then (MIP,) s — e and IMP?, is unimodular, q. e. d.

We denote by A, the subgroup of T consisting of all modular matrices ¢
with the first column e. Obviously two arbitrary meodular matrices are then
and only then in the same left coset of A, relative to the homogeneous modular
group Ty, if they have the same first column. Applying Lemma 15, we find
the decomposition

Po = 2 WEmAl kil 2 Alw}{l:
wC W wCw P

where 1 runs over all elements of the set W and My, denotes .a modular
matrix with the first column w. We choose M_y, — — My, such that Wy,
and M_y;, give the same element of T. Let Fy, be the image of F under the

transformation ED?;; ; then the domains F'y, cover exactly twice a fundamental
domain F, of the group A;. On the other hand

§ retewnan =  #@telan,
F Fy

by Lemma 6. Using the abbreviation p — &[e] for the first diagonal element
of &, we obtain

> Slew])dv =2 f(p)dv.
mcwﬁj:f([])v Ff p)dv

Now we replace e by €/ and sum over all positive integers I; then lip runs
exactly over all lattice points 7 0, and we have

(117) () = 2e;§ q f(e12p) dv,
Fy

where ¢ (¢) is the function defined in Lemma 14.

43. Any element of A, has the form

0 * @ =k
6::(0 @1)’ =(* 591)'
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It follows from (7) that also
4%, =8, €%, =9¢, ALY,—B,6 =C;

(%, %,
T—\g, @1)

belongs to the homogeneous modular group of degree n—1. We define

1 0 0 0 0 0
9[2=(0 SJI1)’ 582=(0 551)’ @:2=(0 @1)’
10 (%, %,
@2=(0 @1), %2—(@2 @2):

. 4 (¥ B . —58’2) . (%[o 580)
Do = Wik, = ((3,' fb) (—— ¢, w,] \G& D/’
where

1 % %k 0 * D I
2:0=(0 @)’ sB"=("‘ 0)’ cS°"—'(0 0)’ °=(* @)

Since M, is symplectic, we have €D’ =D,E’;, whence €, = 0; moreover
2[0@’0 = @ and %o%lo = %0?*[’0 so that %[o == u', @o == U'l, %0 = zu_l with

1 0 b v
(119) 11=(a C&)’ %=(b 0)
and integral a, b, b.

On the other hand, if U and ¥ are defined by (119) with arbitrary

integral a, b, b, then
4 -1

(120) My == (})1 %3_1)
1s a modular matrix and I = M, WM, has again the form (118). It is obvious
that the matrices M, constitute a group A, which is isomorphic to the homo-
geneous modular group of degree n —1 and is a subgroup of A,. The left
cosets of A, relative to A, are of the form IM,A,, where MM, runs over all
matrices defined by (119) and (120).

This result enables us to construct another fundamental domain of A,.
Let 8 — (U8 + B2) (€28 4 D;)~* be the modular transformation with the
matrix M,. We decompose

o os=(g) 8-(03)
and obtain
68+8= (0 wgy9) B+2=(0 5 1a):

@8+9" = (4 (5,8, 4 2+):

kence

*
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consequently 81 (W81 4 B1) (€:8; + D,)? is the image of 8, under the
modular transformation with the matrix I, of degree n—1. For any J in
H, we determine I, such that 3, lies in the fundamental domain F; of the
modular group of degree n — 1. Since we may replace MM; by ~— 22, there
are always two different possibilities for the choice of the corresponding
element M, of A,.

We replace 3 again by 3 and consider now the modular transformation
3 — 8] + T with the matrix M,. By (119),

R HRr A = T ()

where % —}—i@———g. On account of the definition (77), the matrices
and & have the same first diagonal element p. Putting 9§ = (¥Yw) and
?)'1 = (f’kz), we obtain ¥, — Yi—pa (1=2,---,n), where as," * *, an
denote the elements of a. We determine first a, such that —(p/2) = Yu< p/R
(I=2,---,n), and then b, b, such that the elements &,; of the first row of %
satisfy — 1 =<2, <% (I=1,- - -,n).

It follows that any point of H has, relative to A;, an equivalent point in
the domain defined by the conditions
a2 8.CF, —(pR)=Yu<p/? (=2, ,n),

— =z =1 (=1,---,n).

On account of the ambiguity in the choice of M, this domain is not yet a
fundamental domain, of A,. Tt is transformed into itself by the particular

mapping 2u—> —2u (=2, * -, n), 2u—>2u, B8, —> 3,, obtained from
M, ——E, My— €. By the additional condition
(122) Y =0

together with (121), we obtain now a fundamental domain F* of A,.
In the special case n —1, the condition (122) does not exist, and (121)

reduces to — 3 <= z,, = 3.

44, By Lemma 6, the first element p of € is invariant under all trans-
formations of the group A,. Since F, and F* are both fundamental domains

of A;, we obtain

(123) f F(l2p) dv — f F(12p) do.
Fq F*

We use now the decomposition

?)=(<§] ) b el (n @)



SYMPLECTIC GEOMETRY. 57

where
(124) Dt =90 —ppy’

and 9, denotes the imaginary part of 8,. Infroducing as new variables the
elements p: (1=k=<1=<n—1) of 9, = () instead of the elements
Yiu (R=k=1I=<n) of §,, we obtain, by (124),

(125) dv= TI (dzd¥w)
1=ph=i<n

= I (doudp) 11 (dvud¥ ) = dv, I1 (dendY ),
W=<1<n =1 =1

2

where dv; is the symplectic volume element for 3; instead of 3; moreover
Y u=np.

Define 5o =1 for n =1 and — 2 for n > 1. By (111), (121), (122)
and, (125),

s ]
(126)  mn [ F(@Bp)AY =T [ pf(eTp)dp
F* 0
1

= Viy(el)2 f e () dT = Voy ()2,

[

where Vy.; is the volume V(T,) of the fundamental domain F, for the
modular group of degree n —1 and V,=1. By (117), (123) and (126),

¥(e) =2 Varl (2m),
independent of e. Lemma 14 leads now to the recursion formula
Va=2Rn(n —1) 127" (3n0) Vpy,
whence
(127) V,.=2’1jl{(k—1) L g (2k) ),

and Theorem 11 is proved.

45. By a well-known result of Euler,

Bax

R (%)L (k) — k)1

(k=1:2;' * )

where B, is the absolute value of the Bernoulli numbers

1 1 1 1
Bz—g, —De= 35> Be—zz‘, '—B8=_%3°"-

Thus we obtain the expression

24 n+ r (k_l)’
V/n’:—z" 1‘1!'”( 1)/2’!;]1: { W sz}
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and in particular

3 8 10
v, =T V, = ) -7 .
t 2 Vs 127575 7 Vs 200930625

Consider now the congruence subgroup T'»(p) of the modular group of
degree n, defined by M =€ (mod p), where p is a prime number, Its index
has the value

(128) jn(p) =T1p* (2 —1).

For p=~2, this group has. no fixed point in H, by Theorem 10. If Theorem 5
still holds good for the non-compact fundamental domain of T, (p), then this
open manifold has the Euler number
X = ta(—m) ™DV (p).
We denote by x.(p) the right-hand side of this hypothetic formula.
Using the values of ¢,, ¢3, c; giveniin Theorem 5, we find

6

3
€1V1='—"37r—!', Csz-——-———'g_!, 03V3=2:’r9!
and consequently
1 R 1
xi(p) =—gp(P*—1); x(p) =— g5 p*(p*—1) (p*—1),

x(p) = 5577 (0 — 1) (#* — 1) (#° — 1).

It is easily proved that these rational numbers are integers for all prime
numbers p; in particular x;(2) = —1, x2(2) = —1, xs(2) =2.

46. Let g=p° (a=1) be a power of a prime number p. For any
integral skew-symmetric matrix &, we denote by A,(®) the number of
integral solutions &, modulo ¢, of the congruence

(129) [R] = © (mod ¢).

In particular, 4¢(J) = B, is the order of the homogeneous modular group
modulo g, namely the number of incongruent solutions M of

(130) S[M] =3 (mod ).
1t is known that E, — j.(p) has the value (128), and more generally
Eq J— qn(2n+1) ﬁ (1 — p—Zk)'
=1

By (129) and (130), MM is also a solution of (1R9); we call it equiva-
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lent to &, relative to the group of the M. Since there are exactly E, matrices
in each class of equivalent solutions, the number of different classes of solu-
tions of (129) is 44(®)/E, On the other hand, the number of incongruent
skew-symmetric matrices & is ¢"*»1, and

2 4q(®) = ¢
O]

is the number of incongruent & The average number of classes of solutions is
therefore

(131) o 5 20

—T0 (1 —p ™) —d,
k=1

independent of the exponent a.
By Euler’s formula
) =T (A —p*)?*;  (s>1),
4

the result (127) may be written

= H dp’
?
where p runs over all prime numbers and
i *

Now the main formula in the analytic theory of quadratic forms suggests
that d, can be defined independently as a density connected with the real
solutions & of the equation J[R] = &. We shall prove that d, has the value
defined in (4); this is the statement of Theorem 12.

47. Let
(G @,
@_(—@'2 @sa)

be a real skew-symmetric matrix and

an  5=(_< 5, gom—(P ~I)-a

then §; — 3 (G, + ) +2—1i(@51 +®,) is hermitian and % — 3 (G, — 6%)

1 . .
+ 2 (8, — @,;) is complex skew-symmetric. For & =<, we have §, — €

and % = 0. We choose a neighborhood G of & =<, such that | §, |40
and that the characteristic roots b,,- - -, by of the matrix

(134) B — — UG, AH,
are of absolute value < 1, for all & C G.
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The series
(3
(135) %=2(‘)%’°
k=0 L
converges and satisfies the equation

W =C 4 B.
The characteristic roots of the matrix € 4B are 14+ (1 4+ b )¥s£0
(k=1,- - -,n). We define
(136) $=13(€C+ B)S:;
then | |40 and |29 —§. | 5<0.
LEMMA 16, The mairiz © is hermitian and

(137) $ + UAGA = §..

We have

BY — — UG, UG, — AW and B, — — AH,"A — $, B,
whence

§F=16.(C+ W) =3E+B)$: =9

and

1G9 — (6 + W) H, Y = — (€ + B)BY,

= (@E - S'2-%)*551 =28, —29,

q.e. d.

We define now

2 (3 %) c=(_3¢% _%éé-l%)

and obtain, by (133) and (137), R{€} =&, and

6 (150 %%lm) -(* DA o)

whence in particular | € | = 0.
48. We consider now the set L of real matrices 2 satisfying J[R]

=@ C G. Putting

1 —1 —1 S’B %
a  w-n=(2 E), we ~(£ %)==
we have
2 ¥(B) —5; BT — (6 — R

and consequently

(139) - (BD—2B) =5, PO—O%—0;



SYMPLECTIC GEOMETRY. 61

moreover
P =P —1P97%, D —0—3D¢X
By (133), (134), (135), (136) and (137), the neighborhood G of & =3y
it mapped onto a neighborhood G* of § =€, A =0 in the (H,A) space.
Since | § | 40, we have $ > 0. By (139), | Q|40 and

PO =8 =%+ P
isa point of H with the imaginary part § = ${Q'}. Then

(140) — (8—339[D )0, D — (€E—31PAR]D.

It follows, from (138) and (140), that L is mapped onto the set L* of the
(3,89,9%) space defined by the conditions 3 C H, (P{L}, ") C G*.

If
we(@ 2

is any modular matrix, then the mapping
(141) B3> (U8 + ) (B +D)*, Q- (M + M)

transforms L* into itself and leaves every point of G* invariant. We restrict
now 8 to the fundamental domain F of the modular group I. Since the par-
ticular mapping with M = — € leaves 3 invariant and changes £ into — &,
we obtain in L* a fundamental domain L*, for all mappings (141), if we
impose on £ a linear homogeneous condition, e. g., ¢(2 - {—1) =0; then L¥,
is defined by 8CF, ({0}, %) T G*, o(Q+ Q) =0. Let Lo be the
corresponding domain in L. Obviously L, is & fundamental domain in L
relative to the homogeneous modular group Ty, such that the images of Lo
under the mappings @ — ML cover L completely without gaps and over-
lappings.

Denote by v(L,) the euclidean volume of L,, the elements of & being
considered as rectangular cartesian coordinates, and by v(G) the euclidean
volume of G, where the elements of the skew-symmetric matrix & = J[{]
above the diagonal ave the coordinates. Theorem 12 asserts that

v(Lo)
(142) Gl_f& (@) == d,,

if @ runs over any sequence of neighborhoods tending to the single point 3,
with the value d, defined in (132). Obviously the left-hand; side of (142)
is the analogue of the expression in (131), for the real valuation instead of
the p-adic valuation.
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49. In order to simplify the notation, we introduce cartesian cotrdinates
for a matrix T(™ = (#x;) in the following way: If ¥ is arbitrarily real, we
choose the m? codrdinates & (k,1=1,- - -, m); if T is symmetric, we take
the 3m(m + 1) covrdinates {4 (1 <k <1=<m); if T is skew-symmetric,
we take the im(m — 1) cobrdinates t; (1 =%k <I1=<m). If T is complex,
we split

T—T i, L=3T+E), TL=g (@9,

and proceed in the same manner with the real part ¥, and the imaginary
part ¥,. In particular, a hermitian matrix ¥ has then the m? cobrdinates

- 1 -
e (k=1,"-,m), §(lu+t), 5(tu—ta) (ISkEJI=m).

In all these cases, we denote by d¥ the euclidean volume element in the space
of the coérdinates of <.
By (133), (138) and (140), we have

v(Lo) — f 48,  dR — dP.dD, — | .5, | dRID,
with "
R — Pt = (8 + $897A[D]) (€ —3PA[D])
In a sufficiently small neighborhood of % = 0, the power series
R=8—dH[Q]+- -
converges, whence
R~ 20 | QO [t dBdY, dD ~dD (A ->0).
It follows that
(L) ~ 2ntn-) f | O | dXIYIVIA (G > ).

L*g
We choose a real matrix €, such that &€, = 9. Then the condition
9{0} — $ is replaced by L0, — § with 0, =€, 0. Since

0, = |G, [dQ =Y |"dQ, [00]|—[00:] D]
we obtain

(143) v(Lo)~2"("'1’f ]@l-“d%d@-%f | .0, | d0,d% (G—3).
F (27:0.,%) C g*

On the other hand, by (133) and (136),
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w(G) = f 08,  d6 — dG,d6,d6, — 24 dg,dd,
4
6. ~do  (G-3);

hence
(144) (&) ~ 2D f ASdL.
(&%) Ca*
The first integral in (143) has the value V, = V(I'). By (132), (143) and
(144), the proof of (142) is reduced to the proof of the following lemma.

Lemuma 17. Let H, be a domain in the space of the positive hermitian
matrices and §* > 0; then

{145) fd£)=cn[.‘§* I'"fd.‘b, cn=fI—L.
= (B—1)!
QI C H, $C H,

We determine a matrix €* satisfying $*{€*} — € and replace Q, dQ by
6*Q, | 6*C* |*dD. Then we have only to prove (145) in the special case
H*=E€.

We apply induction and assume first n > 1. Let £, be a matrix having
the same first column q as © and | Q, | 5= 0; then

1
®=QO(O ; )

a0 — | D8, |** dadtdZ.

’ o _ . h S’o __ h 0 1 h_lblo
QOQO'—@O""(bO @o)—(o %0){ 0 @ }’

oo wo—o—( E)-( 91

we have

Introducing

h=qq, R—D—hdY,
B | =8| =|De0|, R=R{T}, d=TD+ht.
We replace t by the new variable » and obtain

(147)

dt — he-2ndp,
dQ = | D8, |*1h>2rdgdddZ.

Using (145) with n — 1, R,, T, N instead of n, H*, Q, £, we find

(148) f a2 —cn S 12680 2 [ Ry [rdada,
o'QCH,
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where the domain of integration for the variables g, d, ¢ is given by (146),
{147) and the condition § C H,. We take the new variable D instead of R,
with dD = dRN, and perform the integration over q, for fixed values of b
and ©. Now

f da=J(g) =75 g";  (9>0),

gi=g
whence
TS, S
-n —_— -n —_— 7”
(149) f Bt dq——f e (n_l)!f dh.
R <h=<h,
But " "
S |a-132-2n -n __ h1-n ,_‘”n___ __
IQOLDOI 1p2-2 ]%()ll = At 5 Cp-1 (n—l)! = Cpn

and consequently, by (148) and (149),

(150) fao—o { as.
QCH, $CH
It remains to prove (150) in the case n —1. Then it is contained in
formula (149) which holds good also in this case.

50. The relationship
do=11d,
4

constitutes another example of the integral formulae” of analytic number
theory which appear in the theory of class fields and in the theory of quadratic
forms. The formula also holds good in the case of an arbitrary group
A(®, ), if the densities d; and dy are defined in an analogous manner. But
we do not go into detail since the proof of this statement depends upon the
analytic theory of hermitian forms, of which no complete account has hitherto
been given.

We proved in Section 31, that the matrix 9 is bounded in the funda-
mental domain F of the modular group. Theorem 11 may be used for an
estimation of the maximum g, of |9 [ in F. It follows from (80), (90)
and (91), that F is contained in the domain ¥, defined by the conditions

19" <pm, 'CR, —}=ou=} A=k=1<n),
where R is the Minkowski domain of Section 29. Consequently the symplectic

volume of F, is equal to the euclidean volume of that part of B which is defined
by | | =< pm, TC R. By an important result of Minkowski, this volume is

2
n+1

(151) o 1T Grver () 2.
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Hence this number is an upper bound of V.. Using (127), we obtain the
estimation

w1 £ 2 -_——————I‘(k)z(zk)
(152) M = Vin,y n ! 2 = 6 wk];_z‘[ { L I‘(k/z){(k) }

and in particular
ad 8ar®

= 3/2 > 2> ___ - @
m=73, BT =35 B = 05350(3)°

LR

the exact value of u, being 2/3%. By Stirling’s formula, for n — oo,

logv,.=—g-(log %ﬁ_%) +0(1); logun> glog1z+0(n).

This proves that u, increases rapidly, as a function of n.

Let now 8 =2X - )" be an arbitrary point of H and let 8* = X* + i9*
= (A8 +B) (€3 + D) be the image of 3 under any modular transforma-
tion. By Section 30, the expression

| 9* [ —[ 9 [ abs (€3 + D)*

has its minimum value, if and only if 3* lies in . Hence u, is the maximum
of these minima, for the set of all 8 in H. A fortiori, there exists a matrix §
in H, such that the inequality

abs (63 + D) = |9 |

holds for all second matrix rows (€D) of modular matrices, where v, is the
number defined in (152). Writing 8 = BO*, we have

OB =0, 5 (BR—0%F) >0
and

abs (6 + DD)? = un 2—11 RS — R |.

IX, COMMENSURABLE GROUPS.

51. We proved in Chapter V that the group A,(®, $) is commensurable
with Ay(7,8). In order to demonstrate Theorem 13, we have now to discuss
the necessary and sufficient conditions for the commensurability of two groups
Ao (1, 8) and Ay(7y, 5:). We assumed that the numbers r and s are integers of
the totally real field K ; all conjugates of s except s itself are negative, whereas
r is totally positive. Obviously s generates the field K. The numbers 7, and s,
have the same properties with respect to the totally real field K,.

5
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With the groups A,(r,s) and Ay(r,s,) we associate the two quadratic
forms

Q(r,s) =rsz® —ry? + 82 and Q(ry,8) = 18:2,.% — 1y + 812,
in 3 variables.

Lemma 18. If Q(r,s) and Q(r,s) are equivalent in K, then K = K,
ond the groups Ay(7,s), Ao(7y, $1) are commensurable.

Under the assumption of the lemma, s, is certainly a number of K;
therefore K, K. Since all conjugates of Q(r, s) are negative definite except
Q(r,s) itself, the same holds good for Q(r,s;) considered as a quadratic
form in K ; consequently s, is also a generating number of K and K — K,.

Using the quaternion units «, ¢, €, ¢; defined in (74), we have @ (7, s)e
= (ze; + ye: + 2e:)% Let § — (fa1) be the matrix of the linear substitution
transforming @ (r, s) into Q(ry, s:) and let

3
=3 fne  (b—1,2,3).
=1
Then
"]12 = 1"1$:1€o, ")22 = —T1€, 7732 =S81€0, WP = —MNk (1 =kl 3)

and consequently there exists a real matrix (® satisfying

|2|=1, Qg = oy (k=1,2,8),
— {1 0 — 01 —f0 1
0 = Vs (0 _1), o=+ Vr (_1 0); o3=+ Vs (1 0

The elements of Aq(r, s) are defined by
M= X M =3,

with integral A (¢ =0,- - -,3) in K. Putting
(153) (€™ X F) (WWAs) = (B:,B:Bs)’, €W X L=9Q,

we obtain

M= Ao X +§1%k>< m = KIL{
with
(154) 21721=9Io><eo+§%k><wk,

and & is symplectic.
Let ¢ be an even positive rational integer, such that the matrix ¢§*/2rs

ig integral. If M =€ (mod ¢), then A, + Vrs¥,=E, Ay — Vs, =6,
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Vi, + Vv N, = 0, —V ;le 4V ;%3 =0, hence ¥, is integral and =0
{mod g/2rs) (k=1,2,3). By (153) and (154), Bi is also integral and
M, = @MY is an element of the group Ay(ry, s1). Consider now in Ay(r, s)
the subgroup of all M, such that M, is contained in Ay(ry,s;). Since this
subgroup A*, contains the congruence subgroup of A,(r,s), for the module g,
it is of finite index in Ao(r, s). On the other hand, A% Q consists of all M,
in Ag(ry, 8;), such that M = YM,R-? is an element of Ay(r,s); hence the
same argument shows that 8 A*,® is a subgroup of finite index in Ay (7, 81).
It follows that A,(r, s) and Aq(ry, s.) are commensurable.

52. On account of Lemma 18, the condition of Theorem 13 is sufficient
for the commensurability of A,(r,s) and A¢(ry, s:). It remains to prove that
this condition is also necessary, which is a little more difficult.

LemMma 19. Let a and b be two numbers of K, ab == 0 and K, an arbi-
lrary algebraic number field. There exists an integral number ¢ in K, such
that at* — b is not the square of a number of K, and a(at® —b) s totally
posttive.

We may obviously assume that @, b are integral and K C K,. We choose
n K a prime ideal A haying the following 3 properties: A is not divisible by
the square of a prime ideal of K, i.e.,’A is not a factor of the relative dis-
criminant of K, with respect to K ; 2ab is not divisivle by A; ab is a quadratic
residue modulo A in K. Then there exists an integer ¢ in K, such that at*—1b
iz divisible by A, but not by A%, and that, moreover, a(at®*—b) is totally
positive. Since at? — b is divisible by exactly the first power of a prime ideal
in K,, it cannot be a square number in K,.

LeMma 20. There exists a quadratic form Q(ro,s,) equivalent with
Q(r,s) n K and a quadratic form Q(ry, s2) equivalent with Q(ry,s,) in K,,
such that the field K* (7o, VS0, VT2, V'52) has the degree 16 relative to K*,
where K* is the union of the fields K and K,.

Using Lemma 19, we choose an infegral number ¢ in K, such that
142 — 8§ == 1, is totally positive and no square in K*. Then the quadratic form
Q(r,s) =rsz? —ry* 4 sz is equivalent with rsa® — roy® 4 rorsz® in K.
Applying again Lemma 19, we construct an integer uw in K, such that
rorsu? -+ rs — s, is no square in K*(V7,) and ss, is totally positive. Then
Q(r, s) is equivalent with Q(ro, 3,) in K and the field K*(\/7o, Vss) has the
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degree 4 relative to K*. We complete the proof of the lemma by using the
same argument for Q(ri,s,), K., K*(\/7s, Vso) instead of Q(r,s), K, K*.
By Lemmata 18 and 20, we can assume for the rest of the proof of

Theorem 13, that K *(\/7, \/'E, \/71, \/-s—l) has the degree 16 relative to the
union K* of K and K,.

LemMa 21. Let G4 be a subgroup of another group G, of finite index j.
For any element A of G, there ewists a positive rational integer ¢ = j, such
that A9 is an element of G..

Let Gy, G, - - -, G; be the right cosets of G, relative to G and consider
the j + 1 powers 4* (=20, - -,7). Then two of these powers A* and
4' (0=Fk <1=yj) lie in the same coset, and A9, with g—1—£%, is an
element of G, q.e. d.

53. LemMA 22. Let A* be a subgroup of A.(r,s) of finite index. Then
there ezists in A* a diagonal matriz B, such that all diagonal elements of B
are different one from another and that no conjugate of B, different from P
and P2, has a diagonal element in common with P.

Let & be the degree of the field K with the conjugates K*,- - - , K@
and K = K. The number of algebraic fundamental units in K is A —1.
The field K(V/7s) has the degree 2h; since it has 2 real conjugates and
k- — 1 pairs of conjugate complex conjugates, the number of algebraic funda-
mental units in K (\/?s‘) is h. Consequently there exists an algebraic unit
A=a-+ b\/r—s, where a and b are numbers of K, such that no power A?
(g==x=1,%£2,- - -) is a number of K.

Denoting by N the norm relative to K, we have N(A) = a® —rsb® —¢,
where ¢ is an algebraic unit in K, and N(¢A%?) = 1. We replace ¢'A? again
by A; then A is an algebraic unit in K(\/_r_é), no power A? (¢==+1,+2,---)
is a number of K, and N(A) =1, A'* —a—bV/7s. By Fermat’s theorem,
we may, moreover, assume A==1 (mod 2VE); hence a and b are integers
of K.

Let qi,- - -, g be different positive rational integers and let

SBI — [A‘h, e ’A(In].
Then the matrix

$. 0 . 1 1
SB=((, ;_Bl-l)=%(5—81+%1 ) X€°+2\/7r; (B.—P:7) X
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is an element of the group Aq(r,s). By Lemma 21, a certain power P¢ with
positive exponent ¢ lies in the subgroup A*. Replacing ggx (k=1,- - -,n)
by gx, we may assume that already B is an element of A*. The diagonal ele-
ments of B are A%, A% (k==1,- - -,n). Since the exponents gz, — qi are
all different and A is no root of unity, these diagonal elements are all different.

For any number ¢ of K, we denote by ¢'¥ the conjugate of ¢ in K¥.
The 2h conjugates of A% — a; & bpVrs are @' =+ b V(WD
(I=1,- - -,h). Since by~ 0 and rVs¥ < 0 for [=2,- - -, h, only the
two conjugates ax -+ bk\/;s: =A% and az— byc\/T_S.= A% are real. If a con-
jugate B* of P has a diagonal element in common with B, then the substi-
tution B — P* arises either from the identical mapping A— A or from
A=A, hence B* =P or P* =P, q.e. d.

We assume that the groups Ay(r,s) and A.(ri,s.) are commensurable;
we shall now first prove, that then K — K,. There exists a subgroup A* of
Ao(7, 8), of finite index, and a symplectic matrix R, such that R1A*R = A,
is a saubgroup of A.(ri,s:), of finite index. Henceforth we do not need the
existence of a symplectic matrix R with this property ; we have only to assume
that there is a non-singular matrix i with real or complex elements satisfying
A*¥R = RA, where A* and A, are subgroups of Ay(7,s) and Ag(r,s;), of
finite indices. Obviously we may then, moreover, assume that R lies in the
field K*(\/;, Vs, Vr, \/;;) == K,, of degree 16 over the union K* of K
and K.

Let B be the matrix of Lemma 22. Since B belongs to the subgroup A*
of Aq(r,s), the matrix RBR is an element of A, and lies therefore in the
field K 1(\/'?1, \/E). We consider any isomorphism A of K, which does not
change the numbers of K,(V 7—';, \/?1) Denoting the image under A by the
subscript A4, we have Ry 'PaRs = RPR; hence the matrix B = R,N\?
satisfies

(155) Pa — BPB-.

This proves that the diagonal matrices 4 and B have the same diagonal
elements, perhaps in different order. By Lemma 22, either P, ==P or
Ba=P. If a—}-b\/?g is a diagonal element of B, then b=£0 and
(a 4+ bV7s)a —a = b\/7s; whence (rs)s = rs.

On the other hand, rs generates K, since all conjugates of rs except rs
itself are negative. Consequently all numbers of K are invariant under 4.
This proves K C Kl(\/—'r—l, \/—s:) Since K*(\/—;‘:, \/?1) has the degree 4
relative to K*, the intersection of Kl(\/r—l, \/;1‘) and K* is K,. Therefore
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K C K,. Interchanging K and K,, we have also K, K; consequently
K = Kl.

54. We use the abbreviation

¢ ¢
c—(_E 9).

Lemma 23. There exisis an element M of A*, such that EME! =
1s a diagonal matriac with different diagonal elements.

Analogously to the proof of Lemma 22, we construct an algebraic unit
p=a+bVs in K(Vs), such that a,b are integers of K, a? —sb? =1
and all powers p? (¢ =+ 1, = 2, - -) are different one from another. Let
g1, * ', qn be different positive rational integers, Q, = [p%,- - - p%] and

Q0
Q=(o1 Q;‘)'

Q; + 9,70 —Qf‘)
Q,— 97 O+ 9

Then the matrix

5m=@~lm:=g(
4 1oy e
_%(QI_I_QI )X€o+2\/—s-(gl Ql )Xs

is an element of Ay(r,s). By Lemma 3, a power I = €*Q9C lies in A*.
Replacing Mo, OF by M, Q, we obtain the proof of Lemma 23.

Let again A denote an isomorphism of K (\/7, \/E, \/_r—l, \/?1) = K,
which leaves invariant all numbers of K (\/71-, \/?1). Analogous to (155),
we obtain

(156) Q4 — (CEBVE)Q(EBE™)

with the matrix £ of Lemma 23 and B — R,M. Consider in particular the
isomorphism 4, defined by V= — \/-:9_, Vr—> Vr and write more shortly
the subscript s instead of A,; then

Be =P, £, =8
By (155) the matrix R:R* — B has the form

3=(200 o)

where ©(0) and D(1) denote diagonal matrices; by (156), the matrix
EBE-* has the same form, whence
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ey e
(158) R —Ree = — (De(1)D(1) X )R,

D:(1)D(1) =—€.

Consider now the isomorphism 4, defined by Vr—— \/—1:, \/;—) \/-5;
then
s’Bf = SB—I’ Qf - Q,

and we obtain from (155) and (156) the formula

0 D(2
with a diagonal matrix ©(2), whence
(160) D,(2)D(R) = €.

Interchanging r, s and r;, s,, we find'in an analogous manner

asn Ra=%(_gtpy 0 )s F=R{gy 57),

(162) D(3)D(3) =—€, D(4H)Dn(4) =€
with diagonal matrices ©(3) and D(4). Moreover R,r, = Rr,r, whence
(163) (®n,R)D(R) X )R =R(D,(4)D'(4) X €).

Since |R |40 at least one element ry; of the first tow of R = (1)
is 20, We assume ;550 for I =yp, and define p = p,, if po=1n, and
P=po—mn, if p > n. Let a be the first diagonal element of D(2) and b be
the p-th diagonal element of ©(4). By (160), (162) and (163),

aar =1, bb,, =1, ab, = ba,,.

55. LemMA R4. There exists a number ¢ = 0 in K, satisfying

(164) ac = cr, be = ¢y,
If as%1, we define d=a—v;£1-, whence
_—=Vr_ —ar
df'—a,—-l— 1—a —ad;

if a=1, we define d =1. In both cases ad = d,. Putting % == f, we find
f.f’”l =1, '
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brd, bad bd

i
F—1

Let g = for f5£1, and g =1 for f=1. In both cases

fg=gfv gr=19,

and ¢ = dg has the required propetries.

Since there is an, arbitrary scalar factor 40 in R, we may replace R by
¢R, where ¢ is defined in Lemma 24. It follows from (159), (161) and (164),
that then ¢ and b are both replaced by 1.

Let « be the first diagonal element of D(1) and B the p-th diagonal
element of D(3). By (158) and (162),

(165) agy =—1, BB31=—1'
Calculating

Rre = mar, msrl = mrls, %rsl = mslr, Eersl = ma,r; and maa, = msls
by (157), (159) and (161), we obtain, moreover,
(166) Oy == — &, Ur, =, BT=B, B’”1=_B7 Ba81= aﬁ&'

By (165) and (166), the numbers u=aVr and v=BVr lie in
K (\/E, \/?;) and satisfy

Uy = — 7', ’I,"Ug1 = — 7'1, 'U’Uml == UV3s.

Defining w = w/u,, = v/vs, We have ws, — w™ = w,, and consequently w is a
number of the field K ( \/—s?l‘). Let r — Vs, /(w—1) for w41, and v =1
for w —1; in both cases = lies in K (Vss,) and 7, = 1, — wr. Then the
numbers p = wr and ¢ = vr satisfy

p31=’u31‘r@1=‘£"tﬁ'=u1‘=p, 0’,=’l)3'rs=%w-r=’v7=o',
pps == UTUTg = — TTTg, 00y, == UTVs,Tsy = — T1TTs,,
whence
p=E+9Vs, o=&+mVs, 1={+oVss,
(167) &£ —sp* = —r(P —ss10%), & — sy’ = — 1 (L —s$8:10%),

where £, %, &, m1, {, o are numbers of K which are not all 0.

We consider first the case w = 0. Performing the 3 linear substitutions
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T = 9Z3 + &Ys, y = &xs + snys, 2=12

o b 4 7 Bt

BT —8 BT se(mp—8) | 750 s

Ty = Sy + fl?/l, Y2 = &izy + MY, 22 = 21,
we obtain, by (167},

Q(r,8) =rs2® — ry? 4 527 = r(s9® — £2) (2% — sys®) + s2s®

r
== &'72—_52' (z%— $192%) + 8122 =82 — Yyt 8P =0Q(r, 8);

hence Q(r,s) and @(r,s,) are equivalent in K.
In the remaining case w = 0, we have

E—sof =—rf® and &%2—sppli=—nl

Consequently the diophantine equation @ (r, s) = 0 has the non-trivial solution
x=§, y=—sn, 2 —r{. Moreover it follows immediately from the signs of the
conjugates of r and s, that K is the field of rational numbers. Applying the
2 linear substitutions

x=ﬂ$2+f:’/2 y=§$2+5‘77y2

r¢ ’ r¢ ? E=2
s+ 1 s—1 s—1 s+1
T2 =T, Y2 = -2*; v+ % 23, 2y == %s Y1 + g; 21,
we obtain

Q(r,8) =3 —sy* + 52> = 1> — g  + 2.2 = Q(1, V)

hence Q(r,s) and @(1,1) are equivalent in K. Since the same holds for
Q(r1,5.) instead of Q(r,s), Q(r,s) and Q(ry, s) are also equivalent in K.
Theorem 13 is now completely proved. In the particular case

©1=%’ '61'__7:’%) 1'1=1, S1=1,
we have
A8, §:) =T and Q(r,s) =& —y + 2.

It follows that the group A(®, §) is then and only then commensurable with
the modular group, when the diophantine equation 22 4 ry?> = s has a solution
z,y in K.
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X. UNIT GROUPS OF QUINARY QUADRATIC FORMS.

56. For n > 2, the groups A(®,$) and their subgroups are the only
known examples of non-trivial discontinuous subgroups of the symplectic
group. However, in the case n — 2, another set of examples is provided by
the unit groups of certain quinary quadratic forms.

Consider the special quinary quadratic form

S[w] = wyw, — ws® + waws
and a complex column v satisfying
(168) S[w] =0, &{mw} > 0.
If ws =0, then wyw, =w;?® and w, W, + w,w, — 2w, > 0, whence w; %0,
(w15 — Wyl )2 — Wy, (W - Wety — RW,is) > 0,

which is impossible, the left-hand side being the square of & pure imaginary
quantity; consequently w;=%0. Introducing inhomogeneous coérdinates
w5y = § =1 + 4y, we infer from

— - 3—3]_ 1
Sls]—0 ad &[] =6 [1-2]—180 >0
the relationships

(169) 2122 — 532 = 24, Y1iYz2 — ?/32 > 0’

whence, in particular, 7, 5% 0. On the other hand, (168) follows again/from
(169), if we define v = w;3 with arbitrary w; 5= 0.

The matrices
[z %
8= (Za 22)

with ¥4, — ys> > 0 and 7, > 0 form the space H for n =2; let H be the
space defined by .. — s> > 0 and 3, < 0.

Consider now a real linear transformation  — B, such that &[] =0,
S{1} > 0 follows from (168). Since the equation S[w] = 0 is irreducible,
we conclude that &[B] =S, with a scalar factor A5£0. Consequently
B |40, and these transformations form a group. Since wy,- - -, w; are
homogeneous codrdinates, we may replace B by uB, for any scalar u=40.
But | uB | = p° | B |; hence we may assume | 8| =1 and S[B] =G.
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Put B — (vu) and @' —73—71 4 i). Then the fractional linear
substitution

5
z’vklzl

(170) fe=Z (k=1,2,3)
X vsizt

=1

with 2, = 2,2, — 2,2 and 2z; =— 1 transforms the space H either into itself or
into H. We are only interested in the substitutionsy which leave H invariant;
they form an invariant subgroup of index 2 in the whole group. We denote
this subgroup by Q(&).

Obviously we obtain the solution of (170) with respect to 2, 22, 25, if we
replace 8 by B and interchange 3,3. Hence (170) is a birational analytie
mapping of H onto itself. A simple calculation gives the functional
determinant

d (zAl) 22: é‘3) -

— 1. ~84p 8
(171) A aay — B # 0.

On account of Theorem 1, the transformation (170) is symplectic:
2 2

am (3 F)-8—@s+m©s+2, (5 5)—» AWM -3

57. Let us now start from an arbitrary symplectic transformation (172).

Defining
01
X,
Sz = (_ 1 0) b
we have J3.[F] = | & | J2 for any matrix F®, and consequently
(173) (CB+ D) =|€8+D|'N(BC + D)J.
Moreover

|8+ e | =1 & |+ |8 | + o (FF3™)
for any two matrices F:® and J,®, whence
(174) |98 +B | = %8| + | B | + o (UBIBX™)
(175) |68+ D|=1C8|+|D |+ o(EBHRDX).

We apply (173), (174) and (175) for the calculation of
8= (48 +B)(E3+D)* and |3|—=|UB+B| |C3+D|™~
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1t follows that

(176) B = (AVWI,D’ + BIBE’ + w.IFE + 0B, D") Je
(177) Wy = o (UBXB'Xe?) + | A | we + | B | ws

(178) s — o (EWX DY) + | €| wa + | D | ws

with
o-( %) o-(3
w;; WZ w3 wz
is a real linear substitution 1 — Bw mapping the domain S[w] =0,
S{mw} > 0 into itself. Hence |B|=v+40, |v'/5B|=1. Moreover, B
is not changed if we replace Y my — M. This proves the identity of Q(S)

and the symplectic group @, for n — 2. By (171) and (178), the functional
determinant of the transformation (172) has the value

(V—1/5il‘)5)—3w53 — Vs/s | 68 + @ !-3;

on the other hand, by (24), d8 = d8[€3 + D], which leads to the value
| €8 4 D |® of that functional determinant; consequently v—1, |8 | =1
and G[B] =6.

58. The formulae (176), (177), (178) and the identity of the groups
Q(S) and © can be demonsirated in another way, without using Theorem 1.

Let us first determine all skew-symmetric symplectic matrices ). We
have the conditions

A B ,
(179) @5:(@ SD)=—@5
(180) AP — BY, D =D, AD —BE —E.
By (179),

. w w
QI == Wﬁz, @ == W5%'2, % = %%2, @ = %2%’, QB == (u)1 w3)
8 2

with arbitrary wy,- « -, ws; by (180), w8 and w, are symmetric and
VWY W — (wows — 1)J. Hence either W is non-symmetric and then, neces-
sarily, @ = = J or W is symmetric and

(181) Wy W, — wy® = wws — 1.
Omitting in the second case the condition (181), we obtain the identity

(182) (38)2 — — G[w]E
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with
& — wa%z %%z IR — W, ws)
o %2% w532 ’ Ws Ws
and arbitrary wy,- - -, ws.
We substitute

(183) Wy=—Vy— V2 Wp==0—73 Ws=—70
3 Wy =— —Vy— Vs, Ws=7Vs— VUs;
then
X 9B WX
X® = 32 5152
(184) B = (_wﬁz _%%2)
— U3 Vy — VU 0 Vg — Vs
—_ ’Ul+'l)2 Vs —-1)4_*_1)5 0 =5v
- 0 vy + Us — v, vy + v, kgl ks
— Vg — Vs 0 v, — Vs Vs
5
S[w] =3 (— 1) n?,
k=1
(185) &= (—1)*€ (k=1,--+,5),
T = — T A=<k <1=<5),

by (182). The 16 products &, F:Fs%F* (e =0,1; k=1,- - -,4) form
a basis for the four-dimensional complete matric representation of the well-
known Clifford-Lipschitz algebra of order 16. The matrix §,F&:F:Fs is per-
mutable with all matrices of the algebra and has the square &, hence it is equal
to € or — €; by direct calculation we find the value € and therefore

(186) 8(5 = %18‘253%4-

Let now 1 — Bw be a real linear substitution with S[1] = S[iv] and
'8 | =1. We denote the matrix of the substitution (183) by { and put
LBL =R — (7). By (182) and (184), the matrices

(187) gk=§i’rlk$t (k=1,---,5)

satisfy again (185), and consequently their product is = €. It follows from
(185), (186) and the linear independence of the 16 products that

(188) §1§2§3g48:‘5 = l R l C=E¢;

hence (186) holds also for &% instead of Fp.
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Since the two representations generated by & and & are necessarily
equivalent, there exists a real matrix 3¢, such that

(189) e — MF M (k=1,- - -,5).

Moreover, by (184) and (187), the matrices I and ?5‘& are skew-symmetric,
and consequently (189) leads to

IMIFM — P IRIW Y k=1, -,5).

This proves that TMIW'J* is a scalar multiple of €. There is an arbitrary
real scalar factor in MM ; hence we may assume J[M] = = . Putting

N Do gig%z) 5 A

190 S = ( 27 —_ -1
( ) %2% W(;%z kgl,vk'\s %k’
we obtain

(191) & — = G[M]
or more explicitly

B2 z‘ssz) , (w% mz)

192 A~ =+ M .

( ) (%2QB wﬁ2 %2% ws%z T

On the other hand, if M is any real matrix satisfying J[M] == S,
then the matrix & in (191) is again a skew-symmetric solution of (182) and
consequently of the form (190), and (192) defines a real linear substitution
i — B with S[B] =& and |B| =1, by (188). We may replace M by
— I and obtain the same matrix B, but the pair M, — M is uniquely
determined by B.

Imposing on B the condition J[M] = + I, we obtain a subgroup of
index 2 in the group of all B; and this subgroup is isomorphic to the inhomo-
geneous symplectic group, by (192). If we write

, A B
w~(¢ )
and calculate the single terms in (192), we find exactly the formulae (176),
(177) and (178).

59. Let K be again a totally real algebraic number field of degree h.
Let T[v] be a quinary quadratic form with coefficients in K such that all
conjugates except T[p] itself are definite. We assume, moreover, that Z[b]
bas the signature 2,3, i.e., that T[b] can be transformed into — v,* + v.°
— v3®2 + v, — v5? by a real linear substitution. Then there exists also a real
matrix R, such that LT[N] = &.

Consider now the units of & in K, i.e., the integral matrices 1 in K
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satisfying T[U] =&. Since |U|=x1and | —U|=—|N|, we restrict
ourselves to the case |U|— -4 1. Then the matrix RUR —B satisfies
S[B] =&, | B| =1, and the corresponding substitution (170) transforms
H either into itself or into H. We consider only the matrices U with the
first property; they form a subgroup of index 2 or 1 in the whole group of
units with | U | =1; we denote it by A(Z), and by A(T) the isomorphic
subgroup of Q.

Let us first prove that A(T) is discontinuous. By Section 18, it is suffi-
cient to prove that A(Z) does not contain an infinite number of bounded
elements. Otherwise A(T) would also contain infinitely many bounded matrices
U, by (176), (177), (178) and U =NBVN". Since T[U] =T and all con-
jugates of J[b], except J[b] itself, are definite, all conjugates of these
matrices are bounded. Moreover their elements are integers, and this is a
contradiction.

We apply now the following results from the theory of units of quadratic
forms. Let Q be the space of real matrices £2¢*? satisfying

emw1>0, o —(g).

B, B,
%=(& &)

is a real solution of &[B] = &, with B, = B,®, then the mapping

1f

- (B2 +B,) (B + B,) !

transforms @ into itself. We restrict 8B to the matrices - UN, where U runs
over the units of & with | U | =1. Then there exists in @ a fundamental
domain @,, with respect to A(T), bounded by a finite number of algebraic
surfaces and having only a finite number of neighbors. Moreover the integral

(193) v(®) = [ |S[B] [0
Qo

has a finite value. As a matier of fact, a proof of these statements has been
published only in the case of the field of rational numbers, instead of a totally
real algebraic field K of arbitrary degree h; but the generalization of this
proof offers no difficulties.

60. In order to derive the corresponding results for the group A(Z)
and the space H, we have only to map @ onto H. If
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(194) 3=(z‘ z3)CH, 2=|81 =1,

23 22
we define

_ . _ Ty Y ‘-1_ i - 1 —32, .
=z, P = (Et))(l 0 ) -27:‘1/42 (33) (_]_ 24)’

then the elements of £ = (qu:) are

Qk1=';;/f, ka=—r (k=1,2,3)
and

SRl =5 sme[;, _¥]>o0;

Ys

hence £ is a point of Q. On the other hand, if £ is an arbitrary point of @,
we determine 2z, from the quadratic equation

(195) 1] %] =0
and put

(196) ‘B(zl‘)=a;
then

el =0, e —em{}>o

If we replace 2z, by the other root 2z, of (195), the column 3 is replaced by 3;
therefore we can choose the root z, of this quadratic equation, such that
3; > 0, and then (194) is satisfied.

In this way, the fundamental domain @, for A(%) in ¢ is mapped onto
a fundamental domain F for A(%) in H. It follows that F has only a finite
number of neighbors Fm, for the elements M of A(T), and that any compact
domain in H is covered by a finite number of images Fm; moreover F is
bounded by a finite number of algebraic surfaces. Putting 8 =% - ) and
mtroducing the new variables %X, § into (193), by (195) and (196), we obtain

v(%)=4J|Q|'3ﬁd@=4Jd£dy‘l.

This proves that F has a finite symplectic volume.

The latter result is not trivial in the case » =1, gince then H is not
compact relative to A(Z) ; this may be derived from the theorem of A. Meyer,
that an indefinite quinary quadratic form with rational coefficients is a zero
form. On the other hand, T[b] is not a zero form in K in the case h > 1,



SYMPLECTIC GEOMETRY. 81

since we assumed that the conjugates of L[v] are definite except T[] itself;
it can be proved as a simple consequence that then F is compact.

This is a sketch of the proof of Theorem 14; the details may be completed
according to the scheme of Chapter VII.

Consider now the invariant subgroup A«(Z) of A(Z), defined by the
condition N e==€ (mod «) for the units U of T, where « denotes, as in Theorem
10, a certain power of an arbitrary prime ideal. It follows from Section 39,
that A«(¥) has no fixed points in H. The subgroup A«(T) is of finite index
J in A(Z), and the union of j images Fa of F, for suitably chosen elements
I of A(T), constitutes a fundamental domain Fr of Ac(T). Since the domain
F, is compact in the case b > 1, it gives another example of a closed manifold
with the symplectic metric.

It is known that the volume »(¥) appears in the formula for the measure
of the genus of T. In this way an analogue of Theorem 12 might be found.

61l. We proved in Section 27, that A(®, §) is commensurable with a
group A(r,s) of symplectic quaternion matrices = I, We shall now derive
a corresponding result for the group A(T).

A matrix of rank r is called primative, if its elements are algebraic integers
and if the minors of degree r are relative prime. Let ,**) be a primitive
matrix of rank 2. Then the matrix J{BW,] = G = (gu:) is skew-symmetric
and has the rank 2; its elements are the minors of ,. It follows by an
application of Laplace’s theorem, that also & is primitive.

LemMa 25. Let &Y be a primitive skew-symmetric matriz of rank 2,
with elements from an algebratc number field K, Then there exists in K,
a primitive matriz W, such that J[W,] = @.

Since & is a primitive matrix of rank 2 and degree 4, with elements from
K,, we can determine in K, a unimodular matrix U,, such that the first two
columns of &, are zero. Moreover the matrix &[1,] is skew-symmetric and

again primitive ; hence
0 0
sl —< (g 3 )

where ¢ is an algebraic unit in K,. Obviously we may choose U,, such that
¢=1. Denoting by %, the matrix of the two last rows of U,™!, we obtain
the statement of the lemma.

For any skew-symmetric & = (gu1),

l @ l = (912934 — J13G24 + 914923)2
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and consequently
(197) G12934 — 13924 + G14g2s = 0,

if the rank of & is < 4. It follows from (197) that the 36 minors of ‘&, of
degree 2, have the values = gnigpy (1 =k <1=4; 1=p < g=4). This
proves that the skew-symmetric matrix @* is a primitive matrix of rank 2,
if and only if (197) holds and the six numbers g (1 =k <1=4) are
relative prime.

Let Bo = (€,2D,®) be the matrix of Lemma 25; then €,9, —D,¢",
= (¢1s + 924)2, and consequently the relationship €, %', = ©,€’; holds,
if and only if the condition
(198) 913+ g2a =0

is satisfied. Since Well, = (0€), the equation D', —BE, =€ has an
integral solution %o, B, in K, Then the matrices A, = M, — BoA'E, and
B = Bo — BW' Dy satisfy

9[1%'1 - %1%11 = %091’0(@1@11 - @1‘@,1 )2[0%’0;

9[1@’1 — §81‘(&,1 = @ i 550%,0(@1@,1 - ngﬁ),

and the matrix
(Y% B
(199) ﬂ’h—(@l 591)’

with integral elements in K, and the second matrix row 2B,, is symplectic,
if (198) is fulfilled.

62. We consider again the substitution fo — 8w with S[] = S[iw]
and | B | =1. We assume now that the elements v3; of B are integers in a
real algebraic field K, and that B=€ (mod 2). We define

G1a = Us1, G2z = — V52, {24 = 53, Gz = — 353, 1z = Vss, §za ™= Usse

Then (198) is satisfied, and also (197), as a consequence of &*[B'] =&,
Since | B | =1 and v, =0 (mod 2), the 6 numbers g (1=Fk <1=4)
are relative prime. By the results of the last section, the matrix I, of (199)
is symplectic with integral elements in K, and J.[€,D,] =& = (gxi), whence

5
(200) s = 3 vawr = o (CBIRDJ?) + | € | we + | D | ws.
=1
Let B, be the matrix of the linear transformation (176), (177), (178)

with M, instead of M. By (178) and (200), the matrices B and B, have the
same fifth row, hence (00001) is the fifth row of BB, —B,. Putting
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A B, )

%qu St 9}&2 == (@2 @2

we infer from (168) that
|D:| =1, [€]|=0 and o(CBID.I.?) = o(WD,E,) =0,

whence €, — 0 and %,®’; — €. The corresponding linear transformation (176)
takes the simpler form

(201) B — BW[W,] + 0B, Y,

Obviously 8B, is unimodular in K,, hence the same is true for the matrix
%B,, and the coefficients in (201) are integers. Let

a b
%=(c d)’

then a?, b%, ¢, d* are necessarily integers, hence also a, b, ¢, d. Moreover B,34’,
is integral and | ¥, | =1; hence B, is integral.. This proves that I — M, M,
has integral elements. Since | M | =1, these elements are relative prime.

On the other hand, by (176), (177) and (178), the elements of M satisfy
a system of algebraic equations with coefficients in K,, and the only solutions
of these equations are 3 and — M. It follows that ViM — §, where J is a
matrix in K, and { is a number 54 0 in K,.

Since V¢ is the greatest common divisor of the elements of &, the prin-
cipal ideal (f) is the square of an ideal « in K, Let A, =2FE, A,,- - -, 4,
denote the ambiguoud classes of ideals in K,, i.e., the classes 4 satisfying
A? = E, where F is the principal class. We choose an integral ideal oy in Ay
(=R, - -,g) and take @; = (1) ; then @®= (a) is a principal ideal and
a;=1. Let u,,- - -, u, be a complete system of fundamental units in K,
and denote by f; (I=1,- - -,2%) the 2%*' products (— 1)eu,- - - u,®
(x=0,1; k=0, - -,s), in particular f, = 1. The products af; are all
different; we denote them by ¢, - -, tm with m = 2#*'¢ and ¢, — a,f, — 1.
Obviously ¢ = f,v%, where ¢, is one of the numbers ¢,,- - -, %, and v is a
number in K,.

None of the numbers ¢, - -, %u is a square in K,. We choose now an
mntegral ideal w, in K, such that none of those numbers is a quadratic residue
modulo w,. If B=E (mod 2w,), then |D |=1, |A|=1, €=0, B=0,
by (176), (177) and (178). Moreover D' =€, and the coefficients of
BW[A'] — W are =0. Putting

_ a; Q2 . dl dz
%[——(as “4)’ 59_(613 d4)’
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we obtain
(302) a.’=1, gy=a=di=d, a=a=ds=d; =0 (mod 2uw,).
But \/t—q a, = is an integer in K,; hence z*=1; (mod wy), fg=1%,=1.

We have proved that I is an integral matrix in K,, if 8B is an integral
matrix in K, satisfying G[8] =6, | 8| =1 and B=¢ (mod 2u).

63. Let T[b] be the quinary quadratic form of Section §9. There exists
in K a matrix &, such that

TIR] = m(— pr? + 0.2 — qua® + 1502 — 105%)
with integral positive m, p, ¢, r, s. Putting
(pgs) ™t = my, pme=mi, qMs=—ms, TSMz=— 1My, TM;=— Ms,
we have
f[ my = r*m,*,

(203) =
- ﬂb_lmzz [gob] == 2 (_ 1 )vc—l’Ink'Ukz.
k=1

Let &, be the matrix of the linear substitution

(204) w1=—’U1\/‘m1—7f2\/m2, w2=’l‘1\/m1—vz\/m2, ’ws=—’l/‘3\/m3:
Wy =—vV1my— 05V ms, ws =0,V my— 05V ms

and let 2081-1 bl .SRI; then m_lmzz[ml] = @.
By (185) and (186), the matrices

‘Dtk=\%%k (k=1:"':5)
satisfy the conditions
Qi =—Qi R (1=k<<I=5), Q= (—1)""m€ (k=1,---,5),

(205) .
II & = rm.26.
k=1

Using the abbreviations
01 01 —1 0
[ N, — N, —
“"—(1 o)’ o (-—1 0)’ s ( 0 1)’
Vp=np Vs =p,, Vg = ps, Vr=ps,

we introduce the 16 linearly independent matrices
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3
0
—6G 0 Ja 0
B — m250,0.0; = p2 ( 0 @) s Be= 178@3 = p1p2 ('\53 ~ ) 3

X 0 N O
B (7Y L), o= (T 4)
o~ o
350 0 _ —J2 0
Br = ¢sQ; = paps ( 01 %1) , B = m2Q2 = pipops ( 0 ’ %2) >
0 —€ 0 —y
Bo = m 180,080, = ps (_ G 0 ) , Bio = M2 1p0 0, = pips (% 833) )
0 ¢ 03
=m _I‘Q«Q == Pg ( )) ‘———m“QQ = P ( '\53)
11 2 2A4e P2p4 _@ 0 S/sz 2 1344 P1p2p4 %3 s
0 %1 O %2)
= -1 o = == 1 Q« =
Piz = m21q010:0 = psps (__ %, 0 ) > Bre= pgls = p1psps (%2 0/’
[« 9]

0 — 0 3
é1315 = My M0 = P2p3p4 ( % \Sl) 5 sBm = my 200,000, — P1P2P3pP4 (% 85 )
51

0

Then any real matrix I * can be expressed in the form
16
(206) M =2 2P
k=1

with uniquely determined real scalar factors .

We denote the real algebraic number field K (Vp, Vg, VT, Vs) by K,.
Let wo be the ideal of the preceding section and choose in K an ideal » having
the corresponding properties with respect to K instead of K,. We put
4pgrsve, = p.

On account of (203) and (204), the elements of the matrix N, lie in K,.
Let f be an integer 4 0, such that fi, and fR,* are integral, and choose in
K an ideal v which is divisible by fu. We consider nhow the elements 11 of the
congruence subgroup Ayv(Z) of A(T) defined by condition ==& (mod v).
Then B=N,"UN, is an integral matrix in K, satisfying S[B] =
1B |=1and B==E (mod p). The corresponding symplectic matrices = M
form a subgroup A,(ZT) of A(T).

By Section 58, the pair I, — P is uniquely determined by the conditions

with
- 5
(208) Qp— 1_21 iy (k=1,---,5), (r) = Lo UL,

On account of the result of Section 62, the coefficients # in (206) are numbers
of K,. We apply any isomorphism of K, which leaves all numbers of K
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invariant and denote by %, Q% f)*k, z*;, the images of L, L, @k, zx. Then
(205) and (208) hold good with 2%, 0%, instead of Qg, £, and the same is
true for the relationship

Q% = J 1T = (:04) 0% (2:20,) (k=1,---,5).
1t follows that both matrices

16 16
M* = 3, 2% Py, Mo = 3 oP*
k=1 k=1
are solutions of (207), with Q% % instead of O, i, and consequently

ﬂ’?*=iﬂféo, T* =+ oy (k=1,"')16).
Putting

we have

o — ( Ty - Tops — Tzp2 — Taprpe (— s + Topr + Tp2 — $8P1P2)P3)
(— T5 — Tep1 + Trp2 + x&Ple)PS Ty — Topy — Tap2 ‘*‘ Tap1p2

D — ( Ty — Tap1 + Tapz — Taprp2 (xs + Tepr + Tap2 + $8P1P2)P3) .
(s — Zop1 + T2p2 — $8P1P2)P3 Ty + Topy + Tapz + Tapip2 ’

if we replace zx by (—-1)%zx.eps (K =1,- - -, 8), we obtain the expressions
for B, €. By (176), (177) and (178), B=0 (mod ) and €=0 (mod ),
hence g, - *, 1 are integers. Moreover (202) holds now for the module u
instead of 2w, ; consequently «,,- - -, s are also integers and z,*=1 (mod o).
Since | M | =1, the numbers &,,- * -, &;¢ are relative prime. We apply the
argument of Section 62 and conclude that the coefficients zx are numbers of
the field K.

Tet A(p, q,r,s) denote the group of all symplectic matrices + M with
integral @,,- - -,%6 in K. We have proved that A,(Z) is a subgroup of
A{p, q,7,8). On the other hand, if I is an element of A(p, ¢, 7, s) satisfying
=1, 24 =0 (mod f?) for k=2,- - -, 16, then B=E (mod f?), by (176),
(177) and (178), and U = RN, BN, is an element of the group A(Z). Con-
sequently the groups A(Z) and A(p,¢,7,s) are commensurable.

INSTITUTE FOR ADVANCED STUDY,
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