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PREFACE

Tae present volume is the outgrowth of the requirements
for students in engineering and science in Cornell University,
for whom a somewhat brief but adequate introdnetion to the
Caleulns 18 preseribed.

The guiding principle in the selection and presentation of
the topics in the following pages has been the ever increasing
preasure on the present-day curriculum, eapecially in applied
science, to limit the study of mathematics to a minimum of
time and to the topics that are deemed of most immediate use
to the professional course for which it is preparatory.

To what extent it 18 wise and justifiable to yield to this
pressure it is not our purpose to discuss. But the constantly
accumulating details in every pure and applied seience makes
this attitude a very natural one towards mathematics, as well
as towards several other subjects which are subsidiary to the
main object of the given course,

This desire to curtail mathematical training is strikingly
evidenced by the numercus recent books treating of Caleulus
for engineers, for chemists, or for various other professional
students. Such books have no doubt served a useful purpose
in various ways. But we are of the opinion that, in spite of
the unquestioned advantages of learning a new method by
means of its applieation to a specific field, a student wounld
ordinarily acquire too vague and inaccurate a command of the
fundamental ideas of the Caleulus by this one-sided presenta-

tion, While a snitable illustration may clear up the difficulties
3



4 PREFACE

of an abstract theory, too constant a dwelling among applica-
tions alone, especially from one point of view, is quite as likely
to prevent the learner fromn grasping the real significance of
a vital prineiple.

In recognition of the demand just referred to, we have made
special effort to present the Caleulus in as simple and direct
a form as possible consistent with aceuracy and thoroughness.
Among the different features of our treatment, we may single
out the following for notice.

The derivative is presented rigorously as a limit. This does
not seem to be a difficult idea for the stodent to grasp, espe-
cially when introduced by its geometrical interpretation as
the slope of the line tangent to the graph of the given func-
tion. For the student has already become familiar with this
notion in Analytic Geometry, and will easily see that the
analytic method is virtually equivalent to a particular case of
the process of differentiation employed in the Caleulus.

In order to stimulate the student’s interest, easy applications
of the Differential Caleulus to maxima and minima, tangents
and normals, inflexions, asymptotes, and curve tracing have
been introduced as soon as the formal processes of differentia-
tion have been developed. These are followed by a discuassion
of functions of two or more independent variables, before the
more diffieult subject of mfinite series is introduced.

In the chapter on expansion, no previous knowledge of series
is assuned, but eonditions for convergence are discussed, and
the eriteria for determining the interval of convergence of those
series that are usually met with in practice are derived.

A chapter on the evaluation of indeterminate forms and
threa chapters on geometric applications furnish ample illus-
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tration of the uzes of infinite =eriez in a wide ranpe of
problems.

By reason of its significance in applications, it does not seem
advisable to omit the important principle of rates. Arising
out of the familiar notion of velocity, it affords an early glimpsa
into applications of the Caleulus to Mechanics and Physics.
We do not propose to make the Calenlus a treatise on Mechanics,
as seems to be the tendency with some writers; but a final
chapter on applications to such topies of Mechanies as are easy
to comnprehend at this stage is thought advisable and sufficient.
Especially in treating of center of gravity, the formulas have
been derived in detail, first for » particles, and then, by a limit-
ing process, for a continuous mass, This was considered the
more desirable, as textbooks in applied mathematies frequently
lack in rigor in discussing the transition from discrete particles
to a continuous mass. Besides, the derivation of these formu-
las affords a very good application of the idea of the definite
integral as the limit of a sum. This idea has been freely and
congistently used in the derivation of all applied formulas in
the Integral Calenlus. However, as the formula for the length
of are in polar cobrdinates 1s especially diffienlt of derivation
by this method, we have deduced it from the corresponding
formula for rectangular codrdinates by a transformation of the
variable of integration.

In order to make the number of new ideas as few as possible,
the notions of infinitesimals and orders of infinitesimals have
been postponed to the last article on Duhamel’s principle.  This
principle seems to flow naturally and easily from the need of
completing the proof of the formulas for center of gravity.
The teacher may omit this article, but its presence should at
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least serve the important end of calling the attention of the
student to the fact that there is something yet to be done in
order to make the derivations complete.

Some teachers will undoubtedly prefer to do a minimum
amount of work in formal integration and use integral tables in
the chapters on the applications, For such the first chapter of
the Integral Caleulus might suffice for drill in pure integration.
The problems in this chapter are numerous, and, for the most
part, quite easy, and should furnish the stuodent & ready insight
into the essential principles of integration.

The characteristic features of the books on the Caleulus
previously published in this series have been retained. The
extensive use of these books by others, and a searching yearly
test in our own classroom experience convince us that any far-
reaching change could not be undertaken without endangering
the merits of the book. The changes that have been made are
either in the nature of a slight rearrangement, or of the addi-
tion of new illustrative material, particularly in the applications.

We wish to acknowledge our indebtedness to our colleagues,
who have added many helpful suggestions; to Professor I. P.
Chureh, of the College of Civil Engineering, for a number of
very useful problems in applications of integration (Bee Exs.
14-18, pp. 318320, and Exa. 6-7, pp. 323-324), and particu-
larly to Professor James MoMahon, who has carefully read all
the manuscript, assisted throughout in the proof reading, and
made many improvements in the text
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DIFFERENTIAL CALCULUS

_.'“H'E_'_

CHAFPTER 1
FUNDAMENTAL PRINCIPLES

1. Elementary definitions. A comstart number is one that
retaing the same value throughout an investigation in which it
oceurs. A variable number 18 one that changes from one value to
another during an investipation. 1f the variation of a number
can be assigned at will, the variable is called independent; if
the value of one number is determined when that of another is
known, the former is called a dependent variable. The depend-
ent variable is ealled also a _function of the independent variable.

E.g,32% 4vr— 1, cosz, are all functions of .

Funetions of one variable = will be denoted by the symbols
fi(z), ¢{x), ---, which are read as “ f of »," “ ¢ of x,” ete.; simi-
larly, functions of two variables, =, y, will be denoted by such
@XPressions as

. Sz, y)y F(xy )y -

When a variable approaches a constant in such a way that
the difference between the variable and the comstant may be-
come and remamn smaller than any fixed number, previously

assigned, the constant is called the limit of the variable,
' 15



16 MFFERENTIAL CALCTULUS

2. Illustration: Slope of a tangent to a curve. To obtain the
elope of the tangent to a eurve at a point # apon it, first take
the slope of the line joining P ={x, ) to another point (2., i)
upon the curve, then determine the limiting valoe of the slope
¥ — &
as the second point approaches to coincidence with the first,
always remaining on the curve,

Mm =

Ex. 1. Determine the slope of the tangent to the curve
¥, ey

s+h4+) abthe point (2, 4) upon it
Here, =12, y1="|'. Lt Ig:?-ll.il-,
k ya =4 + L, where b, k are so related that the
point (e, y2) liea on the curve.
S Thus 4 + E =2+ A,
or E=4h 4 A% (1)
The slope m = ¥ =¥ becomes
Iz — &)
Fia. 1 : 4+k-4_1L
2+ h -2 h
which from (1) may be written in the form
%: 4+ M @)

The ratic &: 4 measures the slope of the line joining (zy, ») to
(e, y2). When the second point approaches the first as a Hmiting
position, the first member of equation (2) assumes the indeterminate

form g, but the second member approaches the definite limit 4. Whaen

the two points approach coincidence, a definite slope 4 is ohtained,
which is that of the tangent to the curve y = 22 at the point (2, 4).

It may happen that &, & appear in both members of the equation
which defines the slope, a8 in the next example. i



FUNDAMENTAL PRINCIPLES 17

Ex. 2. Tf #*+ 3* = &% find the slope of the tangent at the point
(T1s 1)

¥
Sinee
4+ yi=ad (0t +(n+ =4y
hence 2hay 4+ A2 4+ 2 kyy +42= 1),
o bs
. 22 4+ &
f hich S=_="1T =,
e ™ "o+ k
To ghtain the Kmit of ’_;, put A, &
each equal to zero in the second member,® .
imE— _%1,
lllﬂlk- ¥

This step is more fully justified in the next article.
This result agrees with that obtained by elementary geome-
try. The slope of the radius to the circle o'+ y*=«a* through

the point (=, ¥,) is i—:, and the slope of the tangent is the nega-
tive reciprocal of that of the radius to the point of tangency,
gince the two lines are perpendicular.

3. Fundamental theorems concerning limita. The following
theorems are useful in the processes of the Caloulus,

Trrorem 1. If a variable a approaches zero as a limit, then
ka will also approach zero, k being any finite constant.

That is, if =10,
then . ke = 0.

Fr;.}r, let ¢ be any assigned number. . By hypothesis, « can be-
come less than E, hence ke can become less than c, the arbi-

" Wi ccarvanlsniae, th syl & will PTG e g L e

approaches & constant ag a limit; thus the symbolic form z =a is o be read
“ the varlable = approaches the constant a a8 a limit."

EL. CaL0,—2



18 DIFFERENTIAL CALCULUB

trary, assigned number, hence ke approaches zero as a limit.
(Definition of a limit.)
TaeorEM 2. Given any finite number n of variables

a 3, 7y each of which approaches zero as a limit, then their
20110 m]l approach zero as a limit. For the sum of the =

variables does not at any stage numerically exceed n times the
largest of them, which by Theorem 1 approaches zero.

Tueorem 3. If each of two variables approaches zero as a
limit, their product will approach zero as a limit. More gen-
erally, if one variable approaches zero as a limit, then its
product with any other variable having a finite limit will have
the limit zero, by Theorem 1.

Tarorem 4. If the sum of a finite number of variables is
variable, then the limit of their sum is equal to the sum of
their limits; ie.,

lim{z4+y+ ) =limz+lim y 4 -

For, if X = {1, ¥ =,
then E=a 4 &, Yy =048,y
wherein e =10, A=0,-; (Def. of limit)
hence By+ o = (@t b4 )+ (a4 ),
but e B4 =0, (Th. 2)

hence, from the definition of a limit,
lim{z+y+-)=a+d4+ - =limz+limy+ ---

Tarorem b. If the product of a finite number of variables
is variable, then the limit of their product is equal to the
product of their limits.

For, let o= % 40, y=b+§,
wherein =10, B=10,
go that limz=ua, lim y=A.
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Form the product
zy=(a+ a)(b + B)=ab + ab + fa+ «f.
Then lim zy =lim (ab + ab + Ba + af)
= ab + lim eb + lim Sa 4 lim «8 (Th. 2)
= ab. (Th. 1)
Hence  lim oy =Tim 2 - lim y.
In the case of a product of three variables =z, y, z, we have
lim zyz = lim =y - lim = ;[Thﬁ}
= lim = lim y lim =,
and so on, for any finite number of variables.

Turorem 6. If the quotient of two variables =, ¥ is vari-
able, then the limit of their quotient is equal to the quotient
of their limits, provided these limits are not both infinite or
not both zero.

For, since m=$y,
lim==1im§1im v, (Th. 5)
and hence lim 2 im 2,
y limy

4 Continuity of functions. When an independent variable =,
in passing from a to b, passes through every intermediate
value, it is called a continvows varidble. A function f{x) of an
independent variable = is said to be continuous at any value =,
or in the vicinity of x,, when f(=z,) is real, finite, and determi-
nate, and such that in whatever way = approaches =,

pie S@ =S(=).

From the definition of a limit it follows that corresponding
to a amall increment of the wariable, the increment of the
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function is also small, and that corresponding to any number
¢, previously assigned, another number & can be determined,
such that when & remains numerically less than 8 the differ-

i I (@ £ &) — f (@)

is numerically less than e

B.r-l——.__

1

]

A

1

1

i

i

H

iy £ w4

Fie. 3 Fisz. &

Thus, the funetion of Fig. 3 13 continuous between the values
x, and z; 4+ 3, while the functions of Fig. 4 and Fig. 5 are dis-
continuous. In the former of these two the function becomes
infinite at 2= ¢, while in the latter the difference between the
value of the funetion at e+ % and ¢c— & does not approach
zero with A&, but approaches the finite value AB as & ap
proaches zero.

When a funetion is continuous for every valoe of = between

a and b, it is said to be cohtinuous within the interval from a
to b.

3. Comparison of simultaneous increments of two related vari-
ables. The illustrations of Art. 2 sugpest the following general
procedure for comparing the changes of two related variables.
Starting from any fixed pair of values x,, ¥, represented graph-

ically by the abscissa and ordinate of a chosen point P on a
given curve whose equation is given, we change the values of
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x and ¥ by the addition of small amounts & and k respectively,
s0 chosen that the new values =, + & and y, 4 & shall be the
coordinates of a point F, on the
curve. The amount A added to =,
is called the increment of z and is
entirely arbitrary. Likewise, k is vtk
called the inerement of y; 1t 18 not
arbitrary but depends upon the '
value of &; its value can be caleu- 0Ol = =, th
lated when the equation of the curve Fa

¥)

is given, as is shown by equation (1). These increments are
not necessarily positive. In the case of continuous functions, &
may always be taken positive. The sign of k will then depend
upon the function under consideration. The slope of the line

P, P, is then E and the slope of the tangent line at P, is the
limit of E as h and consequently &k approach zero.

The determination of the limit of the ratio of k to A as & and
k approach zero is the fundamental problem of the Differential
Caleulus. The process is systematized in the following ar-
tieles. While the related variables are here represented by
ordinate and abscissa of a eurve, they may be any two related
magnitudes, such as space and time, or volume and pressure of
a gaa, ete.

6. Definition of a derivative. [If to a variable a small incre-
ment is given, and if the corresponding increment of a contin-
uous function of the variable is determined, then the limit of
the ratio of the inerement of the function to the inerement of
the variable, when the latter increment approaches the limit
zoro, is ealled the derivative of the function as to the variable
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That is, the derivative is the limit of ¥ a5 & approaches zero,

_ . h
e s 0 (%) '

~ For the purpose of obtaining a derivative in a given case it is
convenient to express the procesa in terms of the following steps:

1. Give a small increment to the variable.

2. Compute the resulting increment of the function.

3. Divide the increment of the function by the inerement of
the variable,

4. Obtain the limit of this quotient as the increment of the
variable approaches zero.

1. Process of differentiation. In the preceding illustrations,
the fixed values of » and of ¥ have been written with sub-
seripts to show that only the increments &, k& vary during the
algebraic process of finding the derivative, also to emphasize
the fact that the limit of the ratio of the simultaneous incre-
ments k, & depends upon the particular values which the
variables x, y have, when they are supposed to take these in-
erements. With this understanding the subscripts will hence-
forth be omitted. Moreover, the increments h, k& will, for
greater distinctness, be denoted by the symbols Az, Ay, read
“jnerement of x," *increment of 3."

If the four steps of Art. 6 are applied to the function
¥ = ¢(x), the results become

y+ A% = ¢ (2 + Ax),
Ay = (r+ Ax) — ¢ (x) = A (),
Ay (x4 ar)—¢(z)  Ad(x)
Ar— Az T Az T

Ax Ar Ax
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The operation here indicated is for brevity denoted by the
aymbol % , and the resulting derivative function by ¢'(Z); thus

i - 24 Azx) —@iz) ] _
:l_.:=d¢di#}=ﬁ£iﬂ{¢{ + ﬂ; ¢ ]}_,*{q,}‘

The new symbaol %#E is not (at the present stage at least) to

be looked npon as a quotient of two numbers dy, dx, but rather
as & gingle symbol used for the saske of brevity in place of
the expression “derivative of y with regard to =.”

The process of performing this indicated operation is ealled
the differentiation of ¢ (x) with regard to =

EXERCISES
Find the derivatives of the following functions with regard to x

L 22=2x; 2x; 3; 2. 5. 1.
2 35221 3. il
oL % 6. r® n being a positive integer.
1 x?
L OO .
4z 7 r+1
3 x
*I..t"'—ﬂ+1—n- B. o
9. y =vzr. [Puty® =z, and apply the rules.]
1“1- ﬂ':t_li

B. Differentiation of a function of a function. Suppose that y,
instead of being given directly as a function of z, is expressed
as a funetion of another variable w, which is itself expressed
as a function of = Let 1t be required to find the derivative
of y with regard to the independent variable mx.

Let y=f{w), in which » is a function of . 'When » changes
to the value =4 Ax, let w and y, under the given relations,
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change to the values u + Aw, ¥ + Ay. Then

Ay _Ay A
ﬁ:ﬂﬂu " Az’

hence, equating limits (Th. 5, Art. 3),

dy dy du_dfi{s) du
dz” dv dx dw dz

This result may be stated as follows :

The derivative of a funclion of u with regard to z is equal fo
the product of the derivative of the function with regard to w, and
the derivative of u with regard to z.

EXERCISES
1. Giveny=3u"—1, u="82"41; find 3
du
T:E —..H:r;
dy lf!
= E_mu 36x(3124 1)

2. Given y =3u® —4u + 5, u=2s"—05; find E'

if
3. Giveny =1, u =622z +4; find

1 » 3 o
1. Gi“n!=3“'+ﬂ_'uﬁ'“’ﬁ+;i= find ﬁ-



CHAPTER 1I

DIFFERENTIATION OF THE ELEMENTARY FORMS

In recent articles, the meaning of the symbol g—i was ex-

plained and illustrated ; and a method of expressing its value,
as a function of x, was exemplified, in cases in which y was a
simple algebraic function of z, by direct use of the definition.
This method is not always the most convenient one in the dif-
ferentiation of more complicated functions.

The present chapter will be devoted to the establishment of
some general rules of differentiation which will, in many cases,
save the trouble of going back to the definition.

The next five articles treat of the differentiation of algebraic
functions and of algebraie combinations of other differentiable
functions.

9. Differentiation of the product of a constant and a variable.

Let ' Y = Cu,
Then ¥+ Ay = c(u + Au),
Ay = c(u + Au)— cu = cAwu,
Ay 5 Au
‘ Az Az’
dy du
theref == C——
erefore iz = C da
Thus M) =C f!E . | (D
dx dax



CHAPTER II
DIFFERENTIATION OF THE ELEMENTARY FORMS

In recent articles, the meaning of the symbol :-—i Was 8X-

plained and illustrated ; and a method of expressing its value,
as a function of z, was exemplified, in cases in which y was &
simple algebraie funetion of =z, by direct use of the definition.
This method is not always the most convenient one in the dif-
ferentiation of more complicated functions.

The present chapter will be devoted to the establishment of
some general rules of differentiation which will, in many cases,
save the trouble of going back to the definition.

The next five articles treat of the differentiation of algebraie
functions and of algebraic combinations of other differentiable
functions.

9. Differentiation of the product of a constant and a variable.

Let Y = o,
Then ¥+ Ay = ¢(u 4 Au),
Ay = ¢(u 4 Au) — cu = cAu,
o P
Ax Az’
therefore - A2
Thus dicw) _ . (n
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The derivative of the product of a constant and o variable is
equal to the constant multiplied by the derivative of the variable.
10. Differentiation of a sum.
Let Y=u4v—10+4 .-
in which u, v, w, ... are functions of =
Then Y+ AY=tu+ Au4 v+ Av—w— Aw 4 ---,
Ay = Aw + Av — Aw 4 -,

dr~de ' dz dz "
& —du dv_dw.
Hence s I U B s S o e sl i ey (2

The derivative of the sum of @ finite number of fractions is
equal to the sum of their dertvalives.

Cor. If y=mwu-4¢, ¢ being a constant, then

YA Ay ==u 4 At -40]
hence Ay = Au,
de e

This last equation asserts that all functions which differ
from each other only by an additive constant have the same
derivative.

(zeometrically, the addition of a constant has the effect of
moving the curve y=u(x) parallel to the y-axis; this opera-
tion will obviously not change the slope at points that have
the same .

dy du  dc

From (2), E=E+—-,
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but from the fourth equation above, ’

BiF

= -3

=

hence, it follows that

=

EiF B2

The derivative of a constant is zero.

If the number of functions is infinite, Theorem 4 of Art. 3 may not
apply; that is, the limit of the sum may not be equal to the sum of
the limits, and hence the derivative of thea sum may not be equal to
the sum of the derivatives. Thus the derivative of an infinite series
cannot always be found by differentiating it term by term.

11. Differentiation of & prgduct.
Lot ¥ = uw, wherein w, v are both functions of =.

A e e g

Now let Ax approach zero, using Art. 3, Theorems 4, 5, and

noting that if E has a finite limit, then the limit of Av :_:)
is zero.
The result may be written in the form

“n it st ®

Then ‘:’E _ (u+au)(v+ Av)—uv _  Av Aw , Au o)

The dervivative of the product of two functions iz equal to the
sum of the products of the first factor by the derivative of the seo-
ond, and the second faclor by the derivative of the first,

This rule for differentiating a product of two functions may
be stated thus: Differentiate the product, treating the first
factor as constant, then treating the second factor as constant,
and add the two results.
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Cor. To find the derivative of the product of three functions
e,

Let ¥ = wem.

By (8), ‘*F —_ {uu)+uu“—“

(%

The result may be written in the form

ol ey Tl olu dy
5 —wh+w#+n& (4

By induction the following rule is at once derived :

The derivative of the product of aky finite number of factors is
equal to the sum of the products oblained by multiplying the de-
rivative of each factor by all the other factors.

12. Differentiation of a quotieat.

Let -;=E,u.uhut-h being functions of z.
t—l-.ﬁt_! ﬂ!_'.ﬂ_mr
Ay v+ Av L Ax Ax
L Az~ Bz v+ an)

Passing to the limit, we obtain the result

pdun _  de
L

The derivative of a fraction, the quotient of two funclions, 1s
equal to the denominator multiplied by the derivative of the nu-
meralor minus the numerator multiplied by the derivative of the
denominator, divided by the square of the denominator.
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13. Differentiation of a commensurable power of a function.

Let y=wu" in which % is a function of x. Then there are
three cases to consider :

1. n a positive integer.

2. n a negative integer.

3. n a commensurable fraction.

1. n a positive integer.

This is a particular case of (4), the factors w, », w, ... all
being equal. Thus

. du
.'_ﬂl = pua=1_.

dx i

2. n & negative integer.
Let # = —m, in which m is a positive integer.
1

Then y=u"=u =
m—1
and dy  —wmu™" du

T = T o h:f (E), H.'I'llﬂ.. nﬂﬂu |:l‘_l

e mu—m—ldj'.
= 5o
hence :':—: = g™} ':I_.:.

3. n a commensurable fraction.
Let n =L, where p, i are both integers, which may be either
q

positive or negative, g

Thm? y=u"= " 3
hence = ur,
' o d
— = — | WF};
and ; (¥%) ; (")
el i
; L e i
i.e. gyt P
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Solving for the required derivative, we obtain

dy _p oidu,
Az 4 &
hence ; %u’:nu"'fﬁ- (8)

The derivative of any commensuralle power of a funchion is
equal to the exponent of the power mulliplied by the power with
il expoment diminished by unily, mulliplied by the derivative of
the function.

Tt should be noticed that +/u = ud,

1

. |
- =,
[

el I du d /1 —1du
hence SRt A=
These theorems will be found suffiment for the differentia-
tion of any function that involves only the operations of addi-
tion, subtraction, multiplication, division, and involution in
which the exponent is an integer or commensurable fraetion.
The following examples will serve to illustrate the theo-
mmﬁ, and will show the combined application of the general
forms (1) to (6).
ILLUSTRATIVE EXAMPLES

1 y=32=2 gna 2.

x4+ 1
(:+1} L(3an— 2 — (32— L x4 1)
ify . ax
dz = z+ 1) © 7 H)
il as o
d—sfg-"‘—ll—d—:ﬁﬂ] 'E,'l (by 2)
= z. [b;,rl,ﬂ}

L3 +13=""=1. (by2
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Substitute these results in the exprassion for E‘E' Then

dy _(z+ 18— (829--2) B4 6x4 2
dx {2+ 1)% - (x4 1)F

2. u= (354 DVIF B, ﬁud:::

il

d d
— =324+ 2) = + 58 +0a2. 2 2). b
{ ]mfl 5sl 41 a{ﬂa"+ 2). (by &)

;T"mzin + 50

=1{1+5ﬂ}‘*d(1+5ﬁ) (by 6)
b

CVitbe
i{-‘h‘+2)_ﬂ=:, (by 6)

Substitute these values in the expression for Iﬂr"'- Then

du_5s(38742) o TTEA= iﬁa'+lﬂx

&~ yiibas VIiios
5 VigaZ vl . fin ddﬁ
V1 4+ ot — V1 — o
First, as a quotient,
i {vfl'i-?—ﬂ—ﬂf;(f1+zﬂ+ﬂ—ﬂ
dr (VI + 22 —vI_ o)

-

(VI+#+ w’l—:’]i{v’l e Y e
- (Vita-Vio)e A
2 (VIFE+ VI—H=AvizE+ LVITA ye)
dr T

Sviz@E=ta+at=la+m a4 oye

L +sH=2z (by2and6)
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Similarly for the other terme. Combining Lhe results, we have

dy _—2 e N
de :*(E+ ﬂT,q)

Ex. 3 may also be worked by first ralioualizing the denominator.

EXERCISES
Find the r-derivatives of Lhe following functions
1. y=x" 14. E{Enl+rl]m.
1' ’=I-.‘ 15' ’= —I_.. I.
3. y=cvr 14+ vl -2
9 ¥z 1 — a8
4 y=—0— 22, 1 - i
TVi s S y=Nazoy
5. y= Vi 17, gt 1,
£ =
6 y=(z+m" i 1
= 18. y = . — -
7. y=2"+a" (a+ )™ (b4 )"
& y=—">— 19, g 32242
vat - 4 .{;l.|.1'_ﬂ
,__,‘,=£_=+1?_ 20. y = 3(22 + D2 _ 3.
+4 21 y=dnw'-T.
10. y=(r+1)Ve+2d 22 y=4w—Gut4 12u— 3
11. ,=_"f":+E : 23, y =(1-3u?40u')(14u7)
va + vz 2%. y = ur.
12, y =L 7, 5. y= w4 d ol 42
I-"'-il! 26. ,= T ~
y= S (e + =)*
r4+vVl-—2 27. y = u're,

28. Given (n + )*=a® + Dha'z 4 10 a4+ 10 2% 4 Hasrt + 25
find {a + )* by differentiation.

29. Show that the slope of the tangent to the curve y = r* is pever
negative. Show where the slope increases or decreases.
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30. Given 3:* 4+ a%® = o™, find i—;y:: {1) by differentiating as to
r; (2) by differentiasting as to y; (3) by solving for y and differen-
tinting a8 to . Compare the results of the three methods,

31 Show that form (1), p. 25, is a special case of (8), p. 27.

32. At what point of the curve 9 = ax? is the slope 07 — 17 4 17¥

33. Trace the curve g = 2% + 32 4+ x - 1.

a4. ¥ =—5“ﬂ+.'i!F and w=>05x%—1; find d'__q,r

VT ul+ b dx

35. At what angle do the curves p*=12rand y*+2* + 6z - G =0
intersect !

14. Differentiation of implicit functions. When a functional
relation between x and y cannot be readily solved for w, the
preceding rules may be applied directly to the fmplicit function.
The derivative will usually eontain both » and 3 Thus the
derivative of an algebraic function, defined by equating a poly-
nomial in x and y to zero, may be obtained by the process illus-
trated in the following examples:

Ex. 1. Given the function g of z, defined by the equation
B4y -Hay+1=0,

d'_qr_
ilmiEi

Since di{.r“+y“u-’.'-n+l}=l},

I

henee bzt + 5 \"-"-FE—E —ﬁm'-:IE—ﬂ (by 2, )

2 ; ¥dx ¥ dr~ " Ll

- dy ; iy sty
Solving for {E,weubtam oS i

Ex. 2. zyt+a%y =1 Find j_i.

Fx. 3 z+o+{r—pP P+ (22-833)*=0. Find :_E

EL. CALe. —d
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15. Elementary transcendental functions. The following fune-
tions are called transcendental funetions :
Simple exponential functioms, conmisting of a constant
number raised to a power whose exponent is variable, as
4%, o* ;
the logarithmic functions, as log, », log, u;
the incommensurable powers of a variable, as 23, w;
the trigonometric functions, as sin u, cos ;
the inverse trigonometric functions, as sin™'w, tan~!z.

There are still other transeendental funetions, but they will
not be considered in this book.

The next four articles treat of the logarithmie, the two ex-
ponential functions, and the incommensurable power,

16. Differentiation of loga & and loga .

Let y=log, =
Then ¥+ Ay = log, (24 Ax),
Ay log,(z+ Ax) —log,x
Ax Az .
1 x4 Ax
=—1 :
L c-g,( : )

For convenience writing & for Az, and rearranging, we obtain

ay_1 =, (140
Ax = ﬁug_( +=¢

FACE

dy_1 tm s
whence dm-g:h;_“[lug“(l +£) ]
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E
To evaluate the expression (1 +'ii) when & =0, expand it
by the binomial theorem, supposing E to be a positive inte-
ger m.
The expansion may be written

N g Ly mm—1) 1  mm—1)m—2) 1
(1+m) e G P R S T R

which ¢an be put in the form

D) B2
14= 1 m 1 m m
(1+E) =141433 0408 o oves

b ga

Now as m becomes very large, the terms l, , ++ hecoma

m m
very small and m increases without limit as & approaches zero.

AB m=o0 the series approaches the limit
1,1 .1
14+14+—-4+=+—1+-
i+ttt

which will be discussed later.

The numerical value of this limit can be readily caleulated
to any desired approximation. This number is an important
congtant, which is deooted by the letter e, and is equal to
27182818 ...; thus

lim (1 +$)-=e= 27182818 ... *

S m =

® This method of obtaining ¢ i3 rather too brief to be rigorous; it assames
that i ia a positive Integer, bot that ia equivalent to restricting Ar o ap-
proach zero in & particular way, It also applies the theorems of limits to the
sum and product of an infinite number of terms. The proof g completed on
p- 315 of MeMahon and Snyder’s ** Differential Calenlos,™
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The number e is known as the natwral or Naperian baase ;
and logarithms to this base are called natural or Naperian log-
arithms. Natural logarithms will be written without a sub-
seript, a8 logz; for other bases a subscript, as in log, =, will
‘generally be used to designate the base. The logarithm of ¢ to
any base a is called the modwlus of the system whose base is a.

If the value , Vo (1 +ﬁ) = ¢ is substituted in the expres-
sion for :T:' the mult- is

1
S =z" log, e
More generally, by Art. 8,
li ] n:ﬂd'll-
T Joga e = 20 O (7)

In the particular case in which a =e¢,

1 odu
d:h'""uﬁ (8)

The derivative of the logarithm of a function is the product of
the derivative of the function and the modulus of the system of
logarithms, divided by the function.

17. Differentiation d}t]u simple exponential function.

Let Y- av.

Then log y = u log a.
Differentiating both members of this identity as to =, we obtain
L]
1 dy du
- #- loga ==, (by 8),
m= loga-y- <3
o

.= e
therefore Sz =lga-an-. - (9)
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In the particular case in which a = e,

df (787
E-ﬂ“—ﬂ“-ﬁn l:l“‘}

The derivative of an erponentiol function with a comstant bose
is equal to the product of the function, the natural logarithm of
the base, and the derivative of the exponent,

18. Differentiation of an incommensurable power.

Let y=u"
in which = is an incommensurable constant. Then
log ¥y = n log u,
ldy n du
ydr w de
ay_,.3,0%
dr w dx

This has the same form as (8), so that the qualifying word
“eommensurable " of Art. 13 ean now be omitted.

EXERCISES
Find the z derivatives of the following functions:
1. y=log(z+ a). 9, y = log V1 —
2. y=log (o +15) W §=vVa—idorlvre 1

3 y=log{422—- Tz +2). 1L y=log, (32 —v2 4+ 1)

iy l1+x
$.p=log-—. 12. y = log,, (2 + T 2)-
5 y:lﬂg:'-._.l'i-' :_:‘ 13‘ -’;:IDE::R'
o 14, 5 = ™.
6 y=xlogx 15 wss
= gba+b,
7. y=x"logz ¥

)
8. y=z"logz™ 16, y=elts,
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- va + vz
11-,—1+!=- ﬂ.r=lngfa‘_f:.
18, y= (1 — =%). “'I=h}; .

_ &5 - "
18. L ey 25. y = (log )%
20. y = log (&" — ). 0. 5=lﬂﬂﬂ1ﬂﬂﬂ)- :
1. y:lng[.:+¢"]. i?.g:rlﬂg;*
22. y=z"a". 28. y = glose,

The following functions can be easily differentiated by first taking
the logarithms of both members of the equations.

l 31. ,=M.
3, y= (x—1) V] — x*
c—DiE-t 32. y=2%a + 8 2)%a—22)"
_ V(= ya)?
30. y=2zvI—x(l +2). 33 f-%'
19. Limit of 229 s ® approaches 0. Before proceeding to

determine the derivatives of the trigonometric functions it is
necessary to prove the following lemma :
lim III'I @ = B
L1 ,’
BD  With Oas a center and 04 =r
ns radius, describe the circular
are AB. Let the tangent at A

¥ 4 meet OB produced in D; draw
Fra. 7 BC' perpendicular to O, catting
OAdin C. Let the angle 0AB =§ in radian measure,
then arc AB = rf,
OB < arc AB < AD, by geometry
Ve reind < rf < rtan d,

sin d < 0 < tan §.
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By dividing each member of these inequalities by siu @,

1 {_i{ sec d;
8in #

but sec # =1, when § =0,

lim @

= lim 8in @ _ 4
=0 gin

hence, 1, and 920 g

20. Differentiation of ain u.

Let Y = Bin .
Ay _sin (s + Aw)—sinu  Au
Then Rl e e

To evalvate the expression
ain (u + Au)— sinw,
we make use of the formulas for the sine of the sum and the

gine of the difference of two angles. Bines

sin (@ 4 ) = sin @ cos b+ cos a sin b,

sin (@ — b) = gin @ cos b — cos a sin b,

hence, by subtracting the second equation from the first,
sin (@ 4+ &) — sin (@ — ) = 2 cos ¢ sin b

This equation is true for all values of @ and of b. In particu-

lar, then, putting a+b=u+ Au

and a—h=mu,
that is, E=ii+%, and b:%*fl
we ohtain

zin (% + Au)— sin = 2 cos (u +ﬂ§) ain %,
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The expression !’nrﬂ:uynwhawﬁttminﬂnfm-m

- Bu
Bl —
AY _ oe H+ﬁu 2 Aw
rin T) B a2
2 .
. A
Bin —
. i
lience d-’:muu-lun 2 o
dz aw=0| Au |dr’
2
il olea
Lk = _— . 11
hence, by Art 19, dm'"' conn_— (11)

The derivative of the sine of a function is equal to the product
of the cosine of the function and the derivative of the function.

21. Differentiation of cos u.

Let y=mu-uin(§—~u).
dy__d (= _ )_ r_ e (r_
Then d::_{h:ﬂm (2 (1] {mﬂ.(ﬂ )#(2 1.:),
d — .d:—.
<% oo w = —sinu . (12)

The derivative of the cosine of a function iz equal fo minus the
product of the sine of the function and the derivative of the function.
22. Differentiation of tan w.

Let -1
oOS o
d : d
COB U+ — BINW —BIN & - —CO8
Then dy_ ow s (by &)
dx cos® u
m’u-d—"+ﬂn‘u-d—' du
= e T LW
cO8® u COs" 6
that is, 2 panu=pectu 2. (13)

dx dx
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The derivative of the tangent of o function i3 equal to the
product af the squore of the secant of the function and the deriva-
tive of the funclion.

Since the remaining elementary triponometric funetions
can be expressed as ratiomal functions of those already con-
sidered, their derivatives can be obtained by means of the
preceding rules. The results are

- —
{—ﬁmtﬂ— msudm, (14
B du.
d—mmu_..nmutanudm (16)
imu:—mﬂmu%~ {16}
EXERCISES
Find the s-derivativea of the following functions :
1 y=sinTx L
16. y = tan o=
3. y=cos bz F ;
: 17. y = ain nzAlD"Zx.
3. y=sinat 18, 'y = sin (u+ £)cos (u— ).
&, y=!fnﬂ'rﬂl}ﬂ:ﬁ. 18 !I’=Ein““+
5. y=mn'z GO mT
6. y=osin 5z 20. _ﬁr::‘.+lﬂgﬂﬂﬂ(t—i).
7. y=s5in*7T r. 21, y = sin (sin u).
8 y={tan"z—tan = 22, y = sin?e™.
9. y=sinrcoar. 23. y=sine-logz.
1Q. y = tan x 4 sec z. 24, y = Viin £
11, y =sain?fl — 2% 25. y=c?dr
12. y=lan{3—56z")"% 26. y=scc(dx - M)~
13, y=LE|.n5.1: - log (ren® ). 27, y:mt:’+aecw“ir.
14. y=logtan iz +{ =) 28, y =ain zy.
15. 3 =log sinVz. 29. y=tan(z 4+ ¥)-
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30, Find d% (cos u) directly from the definition of the derivative.
Also & (tan u).

31. Find ﬁ{cna ) from the relation sin?u + cos?u = 1.

23. Differentiation of sin—1 4

Let y=gin"'u.

Then sin ¥ = u,

and, by differentiating both members of this identity,

Yaz~ dx’
hence d_sz@H= 1 du
de eosydx  y+/1— gin'yde
; | T 1 du
ie. LL":-EI“ H_i-u"lu-u -

The ambiguity of sign accords with the fact that sin~'w is a
many-valued function of w, sinee, for any value of u between
— 1and 1, there is a series of angles whose sine is w: and, when »
receives an increase, some of these angles increase and some
din'u

decrease; hence, for some of them, iz positive, and

for some negative. It will be seen that, when sin—" « lies in
the first or fourth quarter, it increases with w, and, when in
the second or third, it decreases as u inereases. Hence, for the
angles of the first and fourth quarters,

vy 81, 1 du
ﬂﬂ!ﬂh‘ %= mm T +-.f|_uil'f-=l= (17)

In the other quarters the minus sign is to be used before
the radical.



DIFFERENTIATION OF THE ELEMENTARY FORMS 438

The derivatives of the other inverse trigonometric functions
can be easily obtained by the method employed in the present
article. The most important of the remaining ones are tan™ u,
sec lu;

2 pan—tu=— & gty =1 du

.t - 18

dax [k, 1+ uf dae (18)

[/ 4 s el —1 1 did

L oot — g lu=— 1 ___E¥ 18

dx dr wVali_g 4% an
EXERCISES

Find the z-derivatives of each of the following functions:

1l y=sin""2x% 16. y =tan z - tan-1xz.
2. y=cm VI - i, 17. y=ramn iz
3. y:ﬂin_l {:11‘--1}; 1E.|. y:ﬂh‘“_lt.
— mip=1 i
4. y=gin-1{3r—413). 19, i = e
; | GETRRT FrE_1
8 y=sin"? 2
i 20, y=seer 2t 1
6. y = VainIz -1
?- y= trlll_l E'I- 21. F=tﬂn_1£+ '\"I';
B. y = cos-1logz. = Vazr
9. y = sin~! {tan x). 22. y = coa”! i
1 e* 4 & F
10, y= -1
S 23. y = tan-1 (n tan z).
11, = coe-i. 24. y = cos~! (cos 2 1),
4
12, y= tﬂ.ﬂ-l(-—I---)n 258, HEI}"H_I (E'ﬂ-ﬂ-ﬂ-ﬂ:)r
; P |
{ 26. y = tan-! (VI + =* — z).
13, y=tan-'=-
g 27, y =2 tan-14/L—Z.
14. ¥ = sin~! v&in x. il 14z
e i
15, y = tan™! | — erRx 2B. H:tﬂll":}-‘:b+mu'lﬂb"—:

14 cosx Bt vl
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24 Table of fundamental forms.

accw) _ o,

dx ilx

B
2 (uvw) = 4 mﬂ+ mn":i
d wu ":EE"_.igg
dr v . vt '
4 —
Lo e
Leee Ll

_ﬁg;uf‘ =log a1 iﬂ'-:::;
{%!c' =a" x
i%;lhlil -uﬂulile£1
dimuﬂl =—ﬂlui:-
;Eiﬂu-t: =n-uF|tEEE-
itﬂ.i n—ﬂu’uﬁ:

(1)

(2)

(a)

(4)

(6)

()

(7

(8)

(")

(10)

(11)

(12)

(18)

(14)
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g

%mu =s0c 1 tan u . (16)
d;'fnmu =—mumtu§% (16)
é‘;ﬂlﬂ_lﬂ =—% eos 1w =ﬁ%- (17)
< tantu = —% mt‘1u=1—+':;%- (18)
%m"u=*ﬁm‘lu=“?;:i—__lg—:- (19

EXERCISES ON CHAPTER II

Find the r-derivatives of the following functions :

1. y=32452=-T. T
10. y=log =-
. & ) =
2. y=— 4 — — -
2 s T 11, y= ]—::’_
a. y=(r+8)vVz—3. V142t
& yuEviean 12. y=¢&"coa .
il
5. y=zlog sinx. Aot 508 l{;)
6 y=>vai—a. 14, y—tap-1_tEi0Z
a d 3+ Hoosx
7. y:c_jzz' I
x 15. F=(*+ﬂ]mﬂ'l£—#u_:.
8 y=tanlzz=tan {2z - 1). P
s ; 16. y:mt'lu
9, p=¢¥% u=lorsin . =

17. y=tan'z — 2 tan? z + log(sec' ).

18. y:zll{lg:+lng(1—.t].
3450082

19, y=cog-1" T "MV
¥ G4 Fensx
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0. 5=t (142)1 e

21. y=log{zr+vet—a?) 4 sec=1Z.
a

22. y=¢* u=lopgxz. 25 4+ 4=
23, p=logs e, s=pacr. 26. Pr=y+y. :
24 A4t —Bazy=0 27. zyt+ 'y =z + .

2B. y=s8in (2u—="T), u=logzt
29. By means of differentiation eliminate the constant p from the
equation y = pzi,
30. At what points is the tangent to the curve y =cos z parallel to
the z-axia?
31. Show that the r-derivative of tan=-1 I—_—EEH': 15 not a fune-
tion of z.

32. Find at what points of the ellipse & + %: = 1 the tangents cut
off equal intercepts on the axes. “

33. Find the poinls at which the slopa of the eurve y =tanz is
twice that of the line y==r.

34. Find the angle which the curves ¥y =#nz and y=¢co8x rake
with each other at their point of intersection.



CHAPTER III

SUCCESSIVE DIFFERENTIATION

25. Definition of nth derivativee When a given function
¥ = ¢(x) is differentiated with regard to x by the rules of
Chapter I, then the result g

S2=4'(2)

is & new function of # which may itself be differentiated by the

same rules, Thus, & iy
2(D)=g+@.

The left-hand member is usually abbreviated to d'y,n.nﬂ the
right-hand member to ¢"(x); that is,

g = ¢"(=).

Differentiating again and using a similar notation, we obtain
d () _y
T | =

du: _ Iﬁ"'{#},

and so on for any number of differentiations. Thus the sym-
d’y L3 @Xpreases that 4 is to be differentiated with regard to =,
and t.hat the resulting derivative is then to be differentiated.

@y . .. ] el
P indicates the performance of the operation =
; d (dfdy d’y

three times, :I':i:( d:(ﬁ)) In general, the symbol e TEANS

that ¥ 15 to be differentiated = tunes in succession with regard
to .

Similarly,

47
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Ex. 1. If y=21x%4 8ind x,
%Y _ 4144 200823,
ix

ﬂ:lﬂ;“—‘!ruinﬂ.r,

411
ﬂ':ﬂ'i:-‘—ﬂﬂﬂﬂﬂ:r,

ol

by "
E—E‘i + 16 5in2 .

If an implicit equation hetween z and y is given and the
derivatives of y with regard to = are required, it is not neces-
gary to solve the equation for either variable before perform-

ing the differentiation.

i
Ex. 2. Given x* + 3 + 4ary = 05 find d?;

d_x':*' + ¥ + 4aizy) =0,

o i o
{f_:‘ -I— -'-'\-F. -+ 4nnﬁzy — ﬂ.

ix‘-t—i—y’ Yy ia&-;h 4ty = 0.

The last equation is now to be solved 1 E:E,

dy  *+a'y uﬁr i
dr - ¥+ (1)
l'hi':'amur.mtmg again, we obtain

dty o fz® + oy
E'_E(?Jra&
(8 + 0%) 2 (@ 4 a%) — (o + a%) T (5" + o)
- P + o)
o om st ath) oo st o)
== G + az)
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The value of ﬂi from (1) is now to be substituted in the last
Ao
equation, and the resulting expression simplified. The final form
may ba written :

dty  2atry — 10a%%y® — a' (' 4 ) = 3% (= + )
dx® = (¥ + a'z)*

In like manner higher derivatives may be found.

26. Expression for the nth derivative in certain cases. For cer-
tain functions, a general expression for the nth derivative can
be readily obtained in terms of n.

a? o=
Ex. 1L TII y = e*, then %:g'_ rjﬂ:._-:, L7 PR

. : s
where n is any positive integer. 1 y = e9%, ngi = gness,

Ex.2. U ¥ = 8in I,
d—izum:.:: niu(.t-fg)_
)
If ¥ = 8in azr. :d;% = g*ain (ru. + ’E_T).

EXERCISES ON CHAPTER Il

1. y=38z4+ 06+ 3z—8; find % 5. y = tanx; find oty

et
' Wy
2. y=2a 432 +5; fnd 55, 6 y=evlogz; find 7.
3-y=£: find j:"'; 7. y = rtlog z; find %
—at_ L. fuq % _ secty: find Y.
I.y_.r:—:—i, find S ﬂ.;gr,_m"m,liudd:l

EL, CaL0.—4
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d'y _ 1 dy
9. y =logsinz; find 18. y = —1 find =
10. y = sinzcosz; find —= y 19. y = cosmzr; find "y
! dz*’ dan
z? d‘y 1 d
11. find s "y
S . (a + z)™’ dd:f:"
d n
12. y = z*log 23; find = sy 21. y = log(a + z)™; find jﬁ
d“y 2= 9pz: find Y
2,2 2
4. y= - . X 1. fui VY
1 log (¢* + e==) ; find 5 dxa 28, 5+5=1; find -5
2
15. y=(22— 3z + 3) *; ﬁndday 24..1:’+y3=3uzy;ﬁnd%
16. y = z*log z; find d‘y 25. e#tv = zy; find %
dan
17. y = ﬁnd d;r!: 26. y =1 + zev; find "gi’a
d%y _ody "
27. y = e*sinz; prove - QEE'I' 2y =0
i d%y dy |
= . A
28. y = azsinz; prove x 732 2:.."], + (22 4+ 2)y = 0.
29. y = ax**14 bz—™; prove zﬂ;"‘zz n(n+1)y.
30. y =(sin-1z)3; prove (1 —29) ¥ — 2% — o,
- P dz? dzx
et e " dy _1_ .4
3l. y= el PROVE = =1—94
dry
1
32. y=a2"1logz; ﬁnddx-
dy _ gdn-ly _dvty
33. y = z%=; prove ﬁd:::*—l = +2¢‘,
34. y = cos®z; find i

DIFFERENTIAL CALCULUS

dz»
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o ¥y
9. y=lﬂﬁ!lll.t, ﬁﬂd I?Eh:i.

i

10. y = sinxcosx; find i:*
o dly
11.5'_1 3 find g i

12. y = etloga?; find 7Y

Pty
find =y

14. y = log (e + ¢ ; find Z5-

13. y =sinrx;

15, g=(ﬂ—3=+ﬂ]aﬁ'ﬁnd

16. y=rlogx; find — d.r‘

18 y=_1; find 72

dxn
iy
19. y = cogmz; find g
1 . dry
5= @ro~ M
dy
2. y = log (a + =z)™; find x
d
23. y' = 2 pz; ﬂ.ﬂdﬁ
2l i 2y
3. — p -—1 fin dd.r’

dy i : @iy
T, 24 2% 4yt =Bazy; find o

a5, &t = zy; find :::H,

6. y=1 + zev; ﬂndﬁl

dy

o’
27. y=e"ginzr; prnwﬁj—ﬂﬁ-yﬂy:ﬂ,

a2y dy
1 i —= (2 4+ Py =1
28, ¥y =azrsnx; pl‘l:l'il'ﬂ:!-" I3 2z i £ Yy

dH
29. y = ax*tl4 b, prove z’ﬁg =n(n+ L}y

o
30. y =(sin-1x)?; prove (1 -:i}ﬁﬁ.-:—=2.

dr

e Sl d:
3L y=- o= ;[m&£=1—g’,

¥ —p=

32. y =+ 'logx; find E



CHAPTER 1V

MAXIMA AND MINIMA

27. Increasing and decreasing functione A fupction is said
to be dncreasing if it increases as the variable increases and
decreases as the variable decreases. A funection is said to be
decreasing if 1t decreases as the variable inereases and inereases
as the variable decreases. When the graph of the function is
known it will indicate whether the function is increasing or
deereasing for an assigned value of »; conversely, a knowledge
of the faet whether a function is increasing or decreasing is of
great assistance in drawing the graph. Usoally a function is
inereasing for certain values of # and decreasing for others.

28. Test for determining intervals of increasing and decreasing.
Let y=¢{x) be a continuous function having a derivative for
all values of = from a to . By the above definition ¥ is in-
greasing or deereasing at a point x;, according as

k= b+ ) — ()

has or has not the same sign as A, where & iz a sufficiently
small number. Hence ¢(r) is an increasing or a decreasing
funetion at the value 2, according as

% - [i!i?.ﬁ ﬁ;—*ﬂﬂ-l J — /()

13 positive or negative.
(1 ]
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Thus, the function ¥ = ¢z} is increasing, if ¢'(z) is positive;
if ¢'(x) is negative, the function is decreasing.

In order that a funetion shall change from an increasing
function to a deecreasing function or vice versa, it iz necessary
and sufficient that its derivative shall chanpe sign. M the
derivative is continuous, this can happen only when the deriva-
tive passes through the value zero. The derivative may also
change sign when it becomes infimite, and, notwithstanding
this discontinuity of the derivative, the original function may
still be continuous, TIn the graph of the function this requires
that at such & point the tangent to the loeus shall be parallel to
the y-axis. The process will be illustrated by a few examples.

Ex. Find the intervals in which the function

$(z) =229—92* + 12z — 8
is increasing or decreasing. The derivative ia
@'(x) = 027 — 1Bz + 12 = B(x — 1)(x — 2);

honee, a8 r passes from —ooto 1, the derived function ¢'(z) is posi-
tive and $({x) increases from ¢ —= )
to ¢{l), t.e. from p==mtop= —1;
as r passes from 1 to 2, @'(z) is nega-
tive, and ¢z} decreases from (1) to
(2}, ie. from — 1 to —2; and a8 =
passes from 2 to 4o, @'(r) in posi-
tive, and ¢(x) increases from ¢(2) to
(=), te&. from —2 to 4+ w. The
locus of the equation y=¢(z) is shown
in Fig. 8. At points where ¢/'(z) =10,
the function ¢z} is neither increas-
ing nor decreasing. At suoch points
the tangent is parallel to the axis of . Thus in this illustration, at
z =1, x = 2, the tangent is parallel to the z-axis

¥

1
:
|
]
!

e ————— e e = B

Fia. &
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EXERGCISES
1. Find the intervals of inereasing and decreasing for the function
pl(ri=r + 9714z 4,
Here ¢{I]-H:’+4r+1-('ix+1]{x

The function increases from r= —woto x= =1, denr&a.se.s from
r=—1ltox=—}; increases fromz= - jlor==.

2. Find the intervals of increasing and decreasing for the function
p=x' -2 4+ xr— 4,

and show where the curve is parallel to the r-axis.

3. At how many points can the slope of the tangent to the curve
y=2z'=3z141
bal? —17 Find the points.

4. Compute the angle at which the following curves intersect
y=dr -1, y=2z"+ 3.

29. Turning values of a function. It follows that the values
of x at which ¢ (z) ceases to inerease and begins to decrease
are those at which ¢'(zx) changes sign from positive to nega-
tive ; and that the values of x at which ¢ (z) ceases to decrease
and beging to inerease are those at which ¢'(x) changes its
sign from negative to positive. In the former case, ¢ (z} 13
sald to pass through a marimum, in the latter, a minimum,
value.

Ex, 1. Find the turning values of the function
r)=2r" -3 - 1214 4,
and exhibit the mode of yariation of the function by sketching the

e ¥ = $(2)-
Here pfo)=0z —6x— 12 =8(z+ 1)(r—2),
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hence ¢'(x) is negalive when x lies between — 1 and
+ 2, and positive for all other values of z. Thus ¢(x)
increases from r=— @ to x=— 1; decreases from
u‘\ Jx z=—1 toxr=2; and increases from r = 2 to r = @,
! Hence ¢(— 1) 18 a maximum value of ¢(z), and
$({2) & minimum,

The general form of the curve y = ¢(r) (Fig. 8)
may be inferred from the last statement, and from
the following simultansous values of z and y:

Fia. 8 =, =2 1.0, 1 2 3§ 4 m

y=—ew, 0, 11,4, -8, =16, —5 38, =
Ex. 2. Exhibit the variation of the

fonction (z)=(z—1+2, \/
especially its turning values. ¥

Sinee ¢f(z) =5 — >
GRS
henee ¢'{x) changes sign at z=1,
being npegative when =<1, infinita
if £ =1, and positive if £>>1. Thus
$({l)= 218 h minimum turning value G
of $(x). The graph of the function
ia a8 shown in Fig. 10, with a vertical tangent at the point (1, 2).
Ex. 3. Examine for maxima and minima the function
diz)=(z— 13T+ 1.
¥ |/ Here ¢'(z)=1_1
d ez —npt
hence ¢'(x) never changes sign, but is always
positive. There is sccordingly no turning
value. The curve y = () has a verti-
X . cal tangent at the point (1, 1), since :?Ii

Fra. 10

Fia, 11 is infinile when z=1. (Fig.11.)
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30. Critical values of the variable. It has been shown that
the necessary and sufficient condition for a turning valne of
¢ (x) is that ¢'(z) shall change its sign. Now a function
gan change its sign only when it passes through zero, as in
Ex. 1 (Art. 29), or when its reciprocal passes throngh zero,
as in Ex. 2. In the latter case it iz usual to say that the
furction passes through infinity. It is not true, conversely,
that a function always changes its sign in passing through
zero or infinity, e.g. #° and 7%

Nevertheleas all the values of x, at which ¢'(z) passes
throngh zero or infinity, are called eritical values of =z, be-
cause they are to be further examined to determine whether
#'(x) actually changes sign as z passes through each such
value ; and whether, in consequence, ¢ (xr) passes through a
turning value. :

For instance, in Ex. 1, the derivative ¢'(x) vanishes when
2 =—1,and when = 2, and it does not become infinite for
any finite value of z Thus the critical values are — 1, I,
both of which give turning values to ¢{x). Again, in
Exs. 2, 3, the critical value is =1, since it makes ()
infinite ; it gives a furning value to ¢(z) in Ex. 2, but not
in Ex. 3.

31. Method of determining whether &'(x) changes its sign in
passing through zero or infinity, Let a be a critical value of =;
in other words, let ¢'(a) be either zero or infinite, and let &
be a very small positive number, so that @ — & and a + h are
two numbers very close to a, and on opposite sides of it, In
order to determine whether ¢'(z) changes sign as = increases
throngh the value a, it is necessary only to compare the signs
of ¢'(a + k) and ¢'(a — A). If it is possible to take & so
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small that ¢'(a —A) is positive and ¢'{a + &) negative, then
¢'(x) changes sign as = passes through the value @, and
¢ (%) passes through a maximum value ¢(a). Similarly, if
$'(a — &) is negative and ¢'(s + A) positive, then ${z) passes
theough a minimum value ¢ (u). :

If ¢'(a— k) and &'(a + &) have the same sign, however
small & may be, then ¢ (@) is not a turning value of ¢ ().

Ex. Find the turning values of the function

d(r)=(z — 133z + 1)*
Here §()=2(z— 1) (x+ 1)+ Hz - 1)z + 1)°
=(z=1)z+ 1)¥5x—1)
Henee ¢¢'(z) becomes zero at x = — 1, §, and 1; it doea not become

infinite for any finite valua of =
Thus, the critical values are — 1, §, 1.

¥

+1-1

4 ki it

|
=
+

Fra. 12

When z has any value less than — 1, the three factors of ¢'(z)
take the signs — 4+ —, hence ¢'(z) id 4, and when z has a value
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between — 1 and ! they become — + —, and ¢'(z) is still + ; hence
#{— 1)=0 is not a tarning value of ¢(x).

When z has any value between § and 1, the signs are — + + and
¢'(z) is — ; hence $(}) is & maximum.

Finally, if * has any value greater than 1, the signs are + + +;
henes ¢'(z) changes sign from — to + a4 z inereases through 1, and
(1) = 0 is & minimum valoe of ¢g(x).

The general march of the function may be exhibited graphically
by tracing the curve y = ¢{x) (Fig. 12), using the foreguing results
and observing the following simultaneous values of r and y:

r=—w, —2, =1, 0, | 1, 2 =
y=—o —9, 0,1, 1.1+ 0,2, .

32.' Second method of determining whether $'() changes sign in
pasaing through zero. The following method may be employed
when the function and its derivatives are continuous in the
vicinity of the eritical value z=a.

Suppose, when z increases through the value a, that ¢'(z)
changes sign from positive through zero to negative Its
change from positive to zero is a decrease, and so is the change
from zero to negative; thus ¢'(z) is & decreasing function at
x = a, and hence its derivative ¢"(z) is negativeat z=a.

On the other hand, if ¢'(z) changes sign from negative
through zero to positive, it is an increasing function and ¢"(z)
is positive at z=a; hence:

The function $(z) has a mazimum value $(a), when $'(a) =0
and’ ¢''(a) is negative; ¢(z) has a minimum value $(a), when
¢'(a) =0 and ¢"(a) is positive.

It may happen, however, that ¢''(a) is also zero.

To detormine in this case whether ¢(x) has aturning value,
it is necessary to proceed to the higher derivatives. If (x) ia
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a maximum, $"(x) is negative just before vanishing, and
negative just after, for the reason given above; but the change
from negative to zero is an increase, and the change from zero
to negative is a decrease; thus ¢'(z) changes from inereasing
to decreasing as x passes through a. Hence ¢'"(z) changes
sign from positive through zero to negative, and it follows, as
before, that its derivative ¢™(x) is negative.

Thua ¢{a) is a maximum value of ¢(z) if ¢'(a) =10, ¢"(a} =0,
¢"(a) =0, ¢"(a) negative. Similarly, ¢(a) iz a minimum
value of ¢(z) if ¢'(e)=0, ¢'"(a) =0, ¢"(a) =0, and $"(a)
positive. ;

If it happens that ¢'"(a} =0, it is necessary to proceed to
atill higher derivatives to test for turning values. The result
may then be generalized as follows:

The function $(x) has o moerimum (or minimum) value af
x = a if one or more of the devivatives ¢'(a), ¢"(a), ¢""{x) vanish
and §f the firat one that does not vanish €8 of even order, and
negative (or positive).

Ex. Find the critical values in the example of Ark 31 by the
secomd method.

& (z) = (2+ 1) x—1)+2(z— 1} (z+ 1) (52— 1) +5(r=1) (z+1)?

=4{6x'+33—-8zx—1),

#7(1) =16, hence ¢(1) is & minimum value of ¢(x),
&"( — 1) = 0, hence it is necessary to find ¢"'(—1);

(2 =12(52+22—-1),
#" (= 1) = 24, henee ¢(— 1) is neither a maximum nor a minimum

value of $(z).

Again, ¢"(}) = 5(1 ~ 1)({ + 1)* ia negative, hence ¢(}) is & maxi-
mum value of ¢{x).
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33. The maxima and minima of any continuous function eccur
alternately. It has been seen that the maximum and minimum
values of a rational polynomial cccur alternately when the
variable is continually increased, or diminished.

This prineciple is true also in the case of every continuous
function of a single variable. For, let $(a), $(4) be two
maximum values of $(x), iu which @ is supposed less than
b. Then, when z=a 4 h, the function is decreasing; when
z=b— A, the function is increasing, A being taken sufficiently
small and positive. But in passing from a decreasing to an
increasing state, a continuous function must, at some inter-
mediate value of z, change from decreasing to increasing, that
is, must pass through a minimum. Hence, between two maxima
there must be at least one minimum.

It can be similarly proved that between two minima there
must be at least one maximum.

34. Simplifications that do not alter critical values. The work
of finding the critieal values of the variable, in the case of any
given function, may often be simplified by means of the follow-
ing self-evident principles.

1. When ¢ is independent of =, any value of x that gives a
turning value to ee(z), gives a turning value to 4(z) also; and
conversely. These two turning values are of the sama or
opposite kind according as ¢ is positive or negative.

2., Any value of z that gives a turning value to e+ ¢(x) gives
a turning value of the same kind to ¢(z) also; and conversely.

3. When n is independent of 2, any value of z that gives a
turning value to [¢(z)]* gives a turning value to ¢(z) also;
and conversely. These turning values are of the same or
opposite kind according as n[¢(x)]*" is positive or negative.
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EXERCISES

Find the critical values of z in the following functions, determine
the nature of the funetion at each, and obtain the graph of the funetion.

1. u=z(x*—1). 7. u=5412z 3229258
2. u=2s8—15s1 48624 g .- logzT '
3 ou=(xr—1)x-2)% 9. u=5ij"xmn‘r.
4 u=slnx 4 cosx. o
5 w=102X0, mrt:::“""—itl'
a-Bs 1w EENELD,
G u=x(z+ 1)*—Ah (zt=1){z—-2)

12. Show that a quadratic integral funetion always has one maxi-
mum, or oné minimum, but never both.

13. Show that a cubie integral funetion has in general both a
maximum and & minimom value, but may have neither.

14. Bhow that the function (z — b}g has neither 3 maximom nor
& minimum valua.

35. Geometric problems in maxima and minima. The theory
of the turning values of a function has important applications
in golving problems concerning geometri¢ maxima or minima,
f.e. the determination of the largest or the smallest value a
magnitude may have while satisfying eertain stated geometrie
conditions.

The first step 1= to express the magnitude in guestion
algebraically. If the resulting expression contains more than
one variable, the stated conditions will furnish enough relatious
between these variables, go that all the others may be expressed
in terms of one. The expression to be maximized or minimized,
being thus made a function of a single variable, can be treated
by the preceding rules.
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Ex. 1. Find the largest reclaugle whose perimeter is 100. Let s,
y denote the dimensions of any of the rectangles whose perimeter ia
100. The expression to be maximised is the area

" =1y, (M
in which the vartables z, ¥ are subjecl to the stated condition
2z4+2y=100,
£ y=80—x; {(2)
. henee the funclion to be maximized, expressed in terms of the single
variable 2, is o _ &(r) = 2(H0 = z)= S0z — 2. (3

The eritical value of z is found from the equation

d(z) =50 -2x=0
to be # =25, When z increasea through this value, ¢'(z) changes
wign from positive to negative, and hence ¢(r) is & maximum when
x =26, Equation (2} shows that the corresponding value of y ia 20,
Henee the maximum rectangle whose perimeter is 100 is the square
whose gide is 25.

Ex. 2. If, from & square piece of tin whose gide is a, a square be
cul out at each corner, find the side of the latter sguare in order Lhat
the remainder may form a box of maximum -
eapacity, with open top. ol = L

Let 2 be a side of each aguare cut out.
Then the bottom of the box will ba a aquare
whose side it ¢ = 2, and the depth of the box
will ba x.  Hence the volume is

v=z(a—21) __i r

which is to be made & maximum by varying =. T2
Here E: (a—21)! - dz(a—21)
= (a=2z){a -61x).

This derivative vanishes when I:}lﬂlvhm :=E- Tt will be
found, by applying the usual test, that = -:E gives v the minimum
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a . i . b
value zero, and that = =ﬁ gives it the maximum value ==. Ience

the side of the square to be cut out is one sixth the side of the given

BjuAre,

Ex. 3. Find the area of the greatest rectangle that can be inscribed
B in a given ellipse.’

P An inseribed ree-
tangle will evidently be
y rymmetric with regand -
2] a A  to the principal axes

of the ellipse.
Let a, b denote the
lengths of the semi-
" axes OA, OB (Fig. 14};
Fia. 14 let 2.z, 2 y be the dimen-

sions of an inseribed rectangle. Then the area is

u=4 Iy (1)
in which the variables x, ¥ may be regarded as the codrdinates of the
vertex I, and are therefore subject to the equation of the ellipse

F3
Sth=t @

It is geometrically evident that there is soms position of P for
which the inseribed rectangle i3 » maximum.

The elimination of y from (1), by means of (2), gives the function
of z to be maximized, _4b

= vl — 74, (3)

By Art. 34, the critical values of r are not altered if this funetion
i# divided by the constant 4—b. and then sgnared. Hence, the values
a.

of = which render v a maximum, give also a maximum value to the
{unction $(z) = 23Ha® — 27) = ae® — 1
Hera D {x)=2a% — 42 =2 x{a" -2 2%,
() =2a%— 12 £2;
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henee, by the usual tests, the critical values r = + :'% render c{x),

and therefore the area w, a maximum. The corresponding values of
y are given by (2), and the vertex P may be at any of the four points
denoted by a b

giving in each case the same maximum inscribed rectangle, whose
dimensiona are av'2, 5v2, and whose area is 2 ab, or half that of the
circumseribed rectangle. .

Ex. 4. Find the greatest evlinder that can be cut from a given
right cone, whose height is &, and the radius of whose base iz a.

Let the cone be generated by B
the revolution of the triangle OAR = /
(Fig. 15}, and the inscribed cylin-
der be generated by the revolution ©. z ! A
of the rectangle 4P,

Lat 0A =, AE =a, and let the \
ecodrdinates of * be (x, ). Then

Fia. 15

the funetion to be maximized is
wy?(h — z) subject to the relation ¥ = E
I
This expreasion becomes

[
F:% - 2%(h — ).

The eritical value of x is § &, and F:LEE

EXERCISES ON CHAPTER IV
1, What is the width of the rectangle of maximum area that can
be inseribed in a given right segment of a parabola?
2. Divide 10 into two parta such that the sum of their squares is

& minimuam.

3. Find the number that exceeds its square by the greatest pos-
sible quantity.
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4. What number added to ita reciprocal gives the least posaible
sum T

5. Given the slant height of a right cone; find its altitnde when
the volome is 3 maximom.

6. A rectangular plece of pasteboard 30 in. long and 14 in. wide
has & square c¢ut out at each corner. Find the side of this square so
that the remainder may forim a box of maximum contents

7. Find the altitude of the right eylinder of greatest volume in-
seribed in a sphere of radius r,

B, Determine the greatest rectangle that can be inseribed in a
given triangle whose buse is 20, and whose altitade is 2 q.

9. A rectangular eourt is to be built so as to contain a given area
¢?, and a wall already constructed is available for one of its sides.
Find its dimensions so that the expenss incurred in bullding the walls
for the other sides may be the least possible.

10. The volume of a cylinder of revolution being constant, find
the relation between its allitude and the radiue of its base when the
entire surface ia & minimuom.,

11. Assuming that the stiffness of a beam of rectangular cross
section varies directly as the bresdth and as the cube of the depth, what
must be the breadth of the stiffeat beam that ean be cut from a
log 18 in. in diameter?

12. A man who can row 4 mi. per hour, and can walk 5 mi. per
hour, is in & boat 8 mi. from the nearest point on a straight beach,
and wishes to reach in the shortest time a place on the shore 5 mi.
from this point. Where must he land ¥

13. If the cost per hour for the foel required to run a given
steamer is proportional-to the cube of her speed and is 20 an hour
for a speed of 10 knots, and if other expenses amount to #135 an hour,
find the moat economical rate at which to run her over a course .
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14. If the cost per hour of running & boat in still water is propor.
tional to the cube of the velocity, find the most economiecal rate at which
to run the stesmer upstream aguinst s current of @ miles per hour,

15. A Norman window counsists of a rectangle surmounted by o
semicirels.  If the perimeter of the window is given, what muet be its
proportions in order to admit aa much light as pomible?

16. Find the most economical proportions for a eylindrical dipper
which is to hold a pint

17. The gate in fromt of & man's house is 20 yd. from the car
track. - If the man walks at the rata of 4 mi. an hour and the car on
which he ia coming home is runming at the rate of 12 mi. an hour,
where ought he to get off in order to reach home as early as possible ?

18. How much water should be powred juto a cylindrical tin dip-
per in order to bring the center of gravity as low down as possible?
[Omit until after reading Art. 164.]

19. A statue 10 ft. high stands on & pedesial that is 50 ft. high.
How far ought & man whosa eyes are § {t. above the ground Lo stand
from the pedestal in onder that the statue may subtend the greatest
pomsibile angle ¥

20. The sum of the surfaces of a sphere and & cube is given. How
do their dimensions compare when the sum of their volumes is a
minimum ¥

21. An electric light Is to be plased directly over the eenter of a
eircular plot of grass 100 ft. in diameter. Asuming that the inten-
wity of light varies directly as the wine of the angle under which it
strikes an illuminated surface and inversely as the square of ite dis-
tanca from the surface, how high should the light be hung in ovder
that the most light possible shall fall on & walk along the circumfer-
ence of the plot?

22. Find the relation between length of cireular arc and radius, in
order that the area of & circular sector of a given perimeter shall be a
maximum.

EL. CALo.—0
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23. On the line joining the centers of two muteally external
spheres of radii r, R, find the distance of the point from the center of
the first sphere from which the maximum of spherical surface is visible.

24. The radius of a circular piece of paper is r. Find the aro of
the sector which must ba cut from it so that the remaining sector
may form the convex surface of a cone of maximum volume,

25. Describe a cirele with its center on a given circle so that the
length of the are intercepted within the given eircle shall be a maxi-
mum.

26. Throngh & given point within an angle draw a straight line
which shall eut off & minimum triangle.

2T7. What is the luugt.]fl of the axis, and the area, of the maximum
parabola which can be cut from a given right circnlar cone, given
that the area of the parabola is equal to two thirds of the product of
its buse and altitude? A parabola is cut from the cone by a plane
parallel to an element

28. Through the point (g, ) & line is drawn such that the part
intercepted between the rectangular codrdinate axes is a minimuam.
Find ita length.

29. The lower corner of a leaf, whose edge is a, is folded over so
as just to reach the inpver edge of the page. Find the width of the
part folded over when the length of the crease is a minimum. -

30. What is the length of the shortest line that can ba drawn tan-
gent to the ellipse }r' 4 a%® = a®® and having ils ends on the co-
ordinate axes

31. Given a point on the axias of the parabola 3 = 2 pr at a dis-
tance a from the vertex. Find the abecissa of the point of the curve
nearest to it

32. A wall 8 ft. high ia parallel to the front of & house and B fL
from it Find the length of the shortest ladder that will reach the
house if one end rests on the ground outside the wall.



MAXIMA AND MINIMA 61

- 33 Tt ia required to consiruct from two circular iron plates of
radius a & buoy, composed of two equal cones having a common base,
which shall have the greatest possible volume. Find the radius of

the base.

34. A waight W is to be raised b;nmmnfi'lnnr with forcs F
at one end and the point of support at the other. If the weight is
suspended from a point at a distance a from the point of support, and
the weight of the beam ia w pounds per linear foot, what should ba
the length of the lever in order that the foree required to lift the
weight shall be 3 minimum 7

35. A load is bauled up an inclined plans by a horizontal force; it
is required to find the inclination 8 of the plane so that the mechanical
efficiency mny be greatest, sssuming that the efficioncy 5 is defined by
the formula tan #

TGO+ 9)

where ¢ s the angle of friction; i.e tan ¢ = g, the coeflicient of fric-
tion between the load and the plane.

36. Ii the plane is of cast iron and the load is steel, and if the
coefficient of friction between these substances is u = 0.547, at what
angle @ is the efficiency of the inclined plane a maximum?

37. Prove that a conical tent of given capacity will require the
least amount of canvas when the beight is +2 times the radiun of
the base.

38, If given corrents ¢ and ¢' produce deflegtions & and a' in a
tangent galvanometer, so that tan «/tan Ihl:ﬂr that @ — «' ia
a maximum when & 4 «="

s« sl



CHAPTER V

RATES AND DIFFERENTIALS

36. Rates. Time as independent variable, Suppose a particle
P ig moving in any path, straight or curved, and let s be the
number of space units passed over in ¢ seconds. Then s may
be taken as the dependent vamnable, and ¢ as the independent
variable, The motion of P iz said to be uniform when equal
spaces are passed over in equal times. The number of space
units passed over in one secomd is called the velocity of F.
The velocity v is thus connected with the space s and the time
t by the formula o

i
The motion of P is said to be non-uniform when equal spaces
are not passed over in equal times. If #is the number of space
units passed over in ¢ seconds, then the average velocity during

these ¢t seconds is defined as f, If during the time At the num-
ber of space units As are described, then the average velocvity
during the time Af is E ]_The actual velocity of P at any in-

L

stant of time ¢ is the limit which the average velocity
approaches as At is made to approach zero as a limit. |

Thus U= Ao S —"E

AM=04a gt

is the actual veloeity of P at the time denoted by t. It is

evidently the number of space units that would be passed over
08
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in the next second if the velocity remained uniform from the
time ¢ to the time £ 4+ 1.

It may be observed that if the more general term, * rate
of change,” is substituted for the word valr.}uit.y,"' the above
statements will apply to any quantity that varies with the
time, whether it be length, volume, strength of current, or any
other function of the time. For instance, let the quantity of
an eleetric current be C at the time ¢, and C 4 AC at the time
t + At. Then the average rate of change of eurrent m the in-
terval Afis %; this is the average increase in eurrent-units
per second. And the aciual rate of change at the-instant de-

noted by ¢ is im AC_d€
Ar=0 3¢ < de

This is the number of current-units that would be gained in
the next second if the rate of gain were uniform from the time
¢ to the time ¢ 4 1. Sinece, hy Art. 8,

dy  dz
X

hmn&j—immum the ratio of the rates of change of ¥ and
of = .
1t follows that the result of differentiating

y=flz) (1)

may be written in either of the forms

D =r@, @

dy il
Y@ @)
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The Jatter form iz often convenient, and may also be obtained
directly from (1) by differentiating both sides with regard to
t. 1t may be read: the rate of change of y is f"(z) times the

rate of change of =
'  Returning to the illustration of a moving point P, let its

cotrdinates at time £ be x and . Then r{%’ measures the rate
of change of the z-codrdinate. _
Since velocity has been defined as the rate at which a point

is moving, the rate g may be called the velocity which the

point P has in the direction of the zaxis, or, more briefly, the
rcomponent of the velocity of P.

It was shown on p. 68 that the actual velocity at any instant
t is equal to the space that would be passed over in a unit of
time, provided the velocity were

‘;'ﬂzﬂ ¢ - uniform during that unit. Ae-
cordingly, the roomponent of

£ s velocity % may be represented

¥

by the distance P4 (Fig. 16)

which F* would pass over in the
. direction of the z-axis during a
unit of fame if the velocity remained uniform.

Fra. 16

Similarly % iz the g-component of the veloeity of P, and
may be represented by the distance PB.
The velocity f—; of P along the curve can be represented by

the distance FC, measured on the tangent line to the eurve at
F. It is evident from the parallelogram of velocities that P’
is the diagonal of the rectangle PA, PH.
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Since PC* = PA*+ PR, it follows that
tﬂ ‘I_ E ] d!. ‘l'l
E~@*d: - @

Ex. 1. If a point deseribea the straight live 3 + 4y =5, and if x
inereases A unita per second, find the rates of increase of y and of &

Sinoa y=1- lr'r
e %--1%
When ar _

= k,
s

it follows tha %:—u, ) VI B =k

Ex. 4. A point describes the parabola y? = 12 z in such & way that
when x = 3 the abscissa is increasing at the rate of 2 fl. per second ;
at what rate is y then increasing? Find also the rate of increase of a.

Sinoe =11z,
dy _ jatir
then Ey‘ﬂ 12 oy

honce when £=3 and 'fi = 2, it follows that %‘E =13,

i drt 3 dry® dyh¥ e
A -] == 21 . ha e RV
gnin, [:rﬁ') (dt) + (d:) num 2 +2 f. per second.

Ex. 3. A person is walking toward the foot of a tower on a hori-
zontal plane al the rate of 5 mi. per hour. AL what rale iz he ap-

proaching the top, which is 60 fi. high, when he ia B0 [t from the
bottom ¥
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Let x be the distance from the foot of the tower ab time 4 and y
the distance from the top at the same time. Then

2t 4 60% = 33,

and :E myﬂ-
af = i

When = is 80 ft, y 18 100 ft.; henece if ‘% is & mi. per hour,
'% ig 4 ni. per hour.

37. Abbreviated notation for rates. When, as in the above
examples, a time derivative is a factor of each member of an

equation, it 18 usnally convenient to write, instead of the
symbols F&?’ %’, the abbreviations dx and dy, for the rates of

change of the variables x and y. Thus the result of differen-

adng:” v=£(z) (1)
may be written in either of the forms
Y1), @)
dy _ e .
at = f{(z) Tl (3)
dy = f'(z)dz. (4)

It is to be observed that the last form is not to be regarded
as derived from equation (2) by separation of the symbeols, dy,

dr; for the derivative 5; has been defined as the result of

performing upon y an indicated operation represented by the
symbal E[Ii;‘ and thus the dy and dx of the symbol 3_: have
been given no separate meaning. The dy and dz of equation

(4) stand for the rates, or time derivatives, ‘g and {:uf OCEur-
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ring in (3), while the latter equation is itself obtained from
(1) by differentiation with regard Lo ¢, by Art. 8.

In case the dependence of y upon z is not indicated by a
functional operation f, equations (3), (1) take the form

dy _ dy de
dt  dodt’

dy
dﬂndtdl.

In the abbreviated notation, equation (4) of the last article
is written (ds)*= (d=z)*+ (dy)* or de =dzs 4 dy’.

Ex. 1. A pointdaseribing the parabola y? = 2 pr is moving at the
time { with a velocity of v fi. per second. Find the rate of increase
of the cotrdinates r and y at the same instant.

Differentiating Lhe given equation with regard to &, we oblain

wily = pdx.
But dzr, dy also salis{y the relation
dr! 4 dy® = o?;
hence, by solving these simullaneous equations, we oblain
de=—3 45 dy=—2F ——— w, in feet per second.
L T Vet
Ex. 2. A vertical wheael of radius 10 ft. is making b revolutions per

second about a fixed axis. Find the horizontul and vertical veloeilios
of & point on the circymference situated 0% from the horizental,

Binca z=10c0oa8, y= 10sin#,
then dr = — 10sin 6,  dy = 10 cos Hdf.
But df = 10 7 = 31.410 radians per second,
hence dr = — 314.16 sin § = — 157.08 fi. per second,
and dy = 314.16 coa § = 272.06 ft. per second.

Ex. 3. Trace the changes in the horizontal and vertical velocity
in & complete revolution.
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38. Differentials often substituted for rates. The symbols dz,
dy have been defined above as the rates of change of x and y
per second.

Sometimes, however, they may conveniently be allowed to
stand for any two numbers, large or small, that are prppor-
tional to these rates; the equatioms, being homogeneous in
them, will not be affected. It is usual in such cases to speak
of the numbers &= and dy by the more general name of differ-
entials ; they may then be either the rates themselves, or any
two numbers in the same ratio.

This will be especially convenient in problems in which the
time variable is not explicitly mentioned.

39. Theorem of mean value. Let f(z) be a continuous func-
tion of # which has a derivative. [t can then be represented
by the ordinates of a curve whose
b if equation is y = f(z).
" In Fig. 17, let
z= 0N, x4+ h=0R,
(z)=NH, fx+h)=RE
¥ Then f{x+ k) — f({z) = MK, and

o N R
Fia. 1T ﬂ*—“"—ﬂﬂ=g—ﬁ=mﬂﬂx

But at some point 8 between H and K the tangent to the
curve is parallel to the secant HK. Since the abscissa of 8 is
greater than x and less than z+ & it may be represented by
x40k, in which 6 is a positive number less than unity. The
alope of the tangent at S is then expressed by f'(x 4 64), hence

S+ 'F'}}_"r{m}=ffz+ ah),
L f.

from which Sz + by=f{x) + kf'(z + R).
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The theorein expressed by this formula is known as the
theorem of mean wilue,
If in this equation we put

Jlz 4y — fz) = dy, h = dz,

in which & i an arbitrary increment, then the relation between
the increment of the variable and the actual inerement of the
function will be expressed by the eguation

dy = [ '(x + Odx) dz,

whereas if dy, dx are regarded as differentials {dy not an
actual but a virtual inerement), then the relation becomes

dy = () dx,

This more clearly illustrates that the differential dy is de-
fined as the change that would take place in the funetion y,
correaponding to the actual change dx in the independent vari-
able =, provided the rate of change remained constant,

EXERCISES

1. When x increases from 45° to 45° 15, find the increaze of
loge 8in x, assuming that the ratio of the rates of change of the fune-
tion and the variable remains constant throughount the short interval.

Hera dy = logre e - cot zfe = 4343 eot zdr = 4348 o
Lat dr = .0047% (the number of radians in 15/).
Then. dy = 001880,
which is the approximate increment of log, sin .
Bt logosin 456 = — § 'Iug.% =— 150516,
therefore logy gin 457 15" = — .148620.

2. Show that log,=z increases more slowly than =z when
z = log,, &, that is x> 04343
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3. A man is walking at the rate of 5 mi. per hour towards the
foot of a tower 60 ft. high standing on a horizontal plane. At what
rate is the angle of elevation of the top chaugiog when be is 80 [t from
the foot of the tower?

4, An are light is hung 12 ft. directly above a straight horizontal
walk on which a man 5 [t. in height is walking, How fast is the man's
shadow lengthening when he is walking away from the light at the
rate of 168 ft. per minute?

5. At what point on the ellipse 16 * + 8§ 3% = 400 doea y decrease
at the same rate that © increases ¥

6. A vessel is sailing northwest at the rate of 10 mi. per hoar.
At what rate is ahe making north latitude ¥

7. In the parabola 3? = 12 z, find the point at which the ordinate
and abscissa are inereasing equally.

8. At what part of the first quadrant does the angle increase twice
as fast a8 its aine ?

9. Find the rate of change in the area of a square when the side
b 18 increasing at a fi. per aecond.

10. Tn the function y = 2 #* 4 6, what is the value of z at the point
where y inoreases 24 times as fast as o ¥

11. A circular plate of metal expands by heat w0 that its diam-
eter increasss uniformly at the rate of 2 in. per second. At what rate
ia the surface increasing when the diameter is 5 in.t

12. What is the value of = at the point at which 22 — 622+ 17z and
z® — 3 r change at the same rate ?

13. Find the points at which the rate of change of the ordinate
y=x'—82% 43 x4 b is equal to the rate of change of the slope of the
tangent to the curve.

14. The relation between s, the space through which a body falls,
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and ¢, the time of falling, is s =162 Show that the velocity is equal
to 32 L )

The rate of change of velocity is called aeceleration and iz denoted
by a.
J _dr _d%

dt @

Show that the acceleration of the falling body is & constant.

Hence

15. A body moves according to the law s = coa(at + ). Show Lhat
ita acoeleration is proportional to the space through which it has
meoved.

16. If a body is projected upwards in a vacuoum with an initial

velocity v, to what height wnII it rise, and what will L the time

ARE &+ 14'4*_”_1-"- & paren :-.culip. g
Df “t? "il. L o .:-.:'lu-'--'l-u-.ln-\.f;'r-‘r.lH.'_ T

17. A hudjr in pﬁ]mhd upwards with a velocity of a it ;mrsmam]
After what time will it return ?

18. If A is the area of & circle of radins =z, show that the circom-

ference ia E‘ Interpret this fact geometrically.

19. A point deseribing the circle x? + »* = 25 passes throngh (3, 4)
with a velocity of 20 ft. per second. Find its component velocities
parallel fo the axes.

20. Let a point P move with uniform velocity on acircle of radius
a with center 0; let A B be any diameter, and g the orthogonal projec-
tion of F* on AB. Find an expression for the velocity of @ in terms
of the angular velocity of I, and show how this velocity varies during
a revolotion of . The motion of the point @ along A K is called
harmdnic.

21. A point P moves along the cuarve y = % at the rate of 3 f& per
pecond. At what rate is the angle o, which the tangent to the curve
makes with the r-axis, increasing when P is passing throagh the
point (1, 1) 7
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DIFFERENTIAL OF AN AREA, ARC, VOLUME, AND
SURFACE OF REVOLUTION

40. Differential of an area. [f the coordinates of F are (=, y)
and those of @ (z 4 Ax, y+4 Ay), then

d MN= PR= Az, and PS§S = RQ=Ay.

g If the area OAPM is denoted by A,

o then A is evidently some function

g | of the abscissa r; also if area OAQN

x _is denoted by A4 Ad then the

0 M N aren MNQP is AA; it is the incre-
Fia. 18

ment taken by the function A, when
‘ # takes the increment Az. But MNQP lies between the
rectangles MR, M ; hence

yAz < AA < (y + Ay)As,

Ad
and H{E{y+ﬁy.

Therefore, when Az, Ay, A4 all approach zero,

Hence, if the ordinate and the area are expressed each as a
function of the abscissa, the derivative of the area funection

with regard to the abscissa is equal to the ordinate function.
T8
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In the notation of differentials we may say: The differentiol
of the area befween a cwrve and the axis of x is measured by the
product of the ordinate and the differential of .

dAd = ydz.

Ex. TIf the area included between a curve, the axis of r, and the

ordinate whose absoisaa is z, is given by the equation

A =3
find the equation of the curve,

i |
= =—— =gzt
BrE ¥ =

41. Differential of an arc. A segment of a straight line ia
measured by applying the unit of measure .E;mnﬂuaive]y to the
segment to be measured. In the case of a curve this is gen-
erally impossible. We define the length of a given curve
between two points wpon it as the limit of the sum of the
chords joining points on the curve when the lengths of these
chords approach the limit zero. We shall then assume that the
ratio of the are to the chord approaches the limit 1 when the
length of the chord approaches the limit zero. [Compare § 19.]

Let PQ be two points on the curve (Fig. 19); let =, y be the
godrdinates of P; o+ Ax, y+ Ay &
those of @; & the length of the arc
AP; 2+ As that of the are AQ. F
Draw the ordinates MP, ¥Q; and
draw PK parallel to M¥. Then

PR=‘.&:I:, RQ = Ay; are PQ=As. al Sk X
Henee chord PQ =~/(a x4 (Ay), o)

o)

As_ Az PQ_ As f | AyN
Therefore M-PQ Az PG 1+(M)
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Taking the limit of both members as Ar approaches zero

and putting .1:: iy 0 :a =1, we obtain

—\1 +(§§j’- (1)
Similarly, dr;;= Vi +G§)i+ (@)

Moreover, from Art. 36,

g|®

{IE 1: [I_E' 3 @1 . 3
() =(@) +(&)- )
or in the differential notation,
ds* = da* + dy’, {(4)
ds s
42 Trigonometric meaning of — e
; Ax_ Az PG PR
Since i F_Q 7 cos PG ait
it follows by taking the limit that
g = COS ¢,

wherein &, being the limit of the angle RP@, is the angle
which the tangent at the point (z, ¥) makes with the zaxia.

Bimilarly, E =fin ¢; whenes :;: = gee ¢, :T; = £8¢ .

v By using the idea of a rate or

dy differential, all these relations may
1w be conveniently exhibited by Fig.

i 20,
These results may also be de-

L yived from equations (1), (2) of
Art. 41, by putting 3::=t3'|1 .
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43. Differential of the volume of a solid of revolution. Let

the curve APQ (Fig. 21) revolve about the z-axis, and thus
generate a  surface of reve

lution ; let ¥ be the volume in- "
cluded between this surface, g
the plane gemerated by Lhe #
fixed ordinate at A, and the T A
plane generated by any ordinate x
MP Li' H N

Fus, 21

Let AV be the volume gener-
ated by the area PMNGQ. Then AV lies between the vol-
umes of the cylinders generated by the rectangles PMNE
and SMNQ; that is,

wfAr < AV < w(y + Ay Ax
Dividing by A=z amld taking limits, we obtain
d "
WV ity AV =ryda
44 Differential of a surface of revolution. Let § be the area

of the surface generated by the arc AP (Fig. 22), and A8 that
generated by the arc /¢, whose length is As.

Draw PQ",-QE parallel to OX

% o and equal in length to the are 76,
¥ 4 Then it may be assumed as an
A '3 \
axiom that the aren generated by
P} liea between the areas gen-
X T g
- S erated by PQ and FP'Q; de

Fio. o 2ayds < AS < 2w (y + Ay) As.

EL. cano,—Ii
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Ihviding by As and passing to the limit,

ds # &
a5 _as ds:_ L4 (W 2
de  ds dr ﬂ"\“+(rrm>' @

48 = ﬂry\fl (m)ﬁdm
45. Differential of arc in polar coirdinates. Let p, # be the
cobrdinates of P (Fig. 23); p+ Ap, 6 + Af those of @; g the
lemgth of the are AP ; As that of the

are PG ; draw PM perpendicular to
4. Then

PM = p sin A8,
MP=00Q—0OM=p+45p — pcos &b
=pll —cos A®) 4 Ap
P =2 pain® | A9+ Ap.
Hence POF = psin AF) + (2 psin® § Ad + Ap)?,

(a8) =("aa") +(ooimt 00 505"+ 30)°

Replacing the first member by kﬂ. M) passing to the

limit when Af=10, and putting lun :Q 1, lim _.h__:]’
lim E—l-;—i&— =1, we obtain

(ae) ="+ (@)
that is, 3_; = \‘ 4 (gg_)s
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In the rate or differential notation this formula may be
conveniently written .. __ ot + plift

46. Differential of area in polar codrdinates. Tet A be the
area of ONP (Fig, 24) measured from a fixed radius vector

QI to any other radius vec-
tor ‘OF; let A4 be the area of
OPQ. Draw ares PM, N,
with (Jas a center. Then the
area POQ lies between the
areas of the sectors OFM and | <

ONG; ie Fia. 24

4 praf < Ad < 1;';1:]!1 + Ap)°Ad.

Dividing by Af and passing to the limif, when Af=0, we

obtain

E: 1
dlg %F'

Henee, in the differential notation we may write the formula

2.

3.

4.

dA =} pdb.

EXERCISES ON CHAPTER VI
. de dAd d85 dV
L s i el H
In the parabola y? = 4 ax, find 7 B i
]:”'Iru:lﬂ and L for the ecircle x* 4 9* = a
dx iy

Find E for the curve & cosr = 1.

iz

Find the z-derivative of the volume of the cone generated by

ravolving the line y = ar about the axis of z.

5. Find the r-derivative of the volume of the ellipsoid of revalu-

* a '.': | - =
tion, formed by revolving °_ + EE = 1 about ils major axis
Lrs
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6. Int-henune.p:u'ﬁnd%

7. Given p=a(l +cos#); find ;1;

8. In pleos 2, aud:'T;.

9. The parabolie arc y* = 8 £ measured from the vertex toa variable

point F = (z, y) 1 revolving about the z-axis. 1f F moves along the

:-w-'--/ %& at the rate of 2 in. per second, what is the rate of increase
of the surface of revolution when P is passing through the point

({, i)? What is the rate of increase of the volume of revolution ?

10. The radinas veetor to the cardioid p =2 (1 — cos @) is rotating
about the origin with an angular velocity of 18° per second. Find
the rate at which the extremity P of the radios vector is moving along
the curve, taking the inch as unit of length. At what points of the
curve will P be moving fastest? slowest? Find the velocities at
these pointa.



CHAPTER VII

APPLICATIONS TO CURVE TRACING

47. Equation of tangent and normal. The function y= f(r)
may be represented by a plane curve. It will now be shown
how to obtain several of the properties of this curve by means
of the prineiples already established. The tangent line at a
point (2, %) on the curve passes through the point and has

the slope :-ﬁ, the symbol meaning that the colirdinates x,, v,

are substituted in the first derivative after the differentiation
has been performed. Its equation may be written in the form

r—:.=:—:§:{=—=.}- (1)

The normal to the curve at the point (z, ¥,) is the straight
line through this peoint, perpendicular to the tangent. Since
the slope of the normal is the negative reciprocal of that of
the tangent, its equation may be written in the form

=um.+%{y-r-]=ﬂ- (2)

48. Length of tamgent, normal, subtangent, subnormal, The
segments of the tangent and normal intercepted between the
point of tangency and the axis OX are called, respectively,
the tangent length and the sormal length, and their projections
on OX are called the subtangent and the submormal.

Eﬁ ¥
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¥ ¥
- o
Pl T
a) x O et X
e NP Y r T =
1
Fa. #5a Fro. 265

Thus, in Fig. 25, @, b let the tangent and normal to the curve PC
at P meet the axis OX in 7 and N, and let MP be the ordi-

nate of . Then gp g the tangent length,
FN the normal length,
TM the subtangent,
MN the subnormal.

These will be denoted, respectively, by ¢, n, r, v

Let the angle X T'F be denoted by ¢, and write tan ¢ = :%
1
Then Mh P A =VEFA =V P
de, + m

2 .rh,r
hiisi f Ly b= thyy g = E‘! ‘\‘I' + d—"‘-‘1)
— e = 175 —_— e g
oy d
(d:?.'.)

The subtangent is measured from the intersection of the
tangent to the foot of the ordinate; it is therefore positive
when the foot of the ordinate is to the right of the intersec-
tion of tangent. The subnormal is measured from the foot
of the ordinate to the intersection of normal, and is positive
when the normal cuts OX to the right of the foot of the ordi-
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nate, Both are therefore positive or negative, according as
¢ is acute or obtuse.

The expressions for +, » may be obtained also by finding
from equations (1), (2), Art. 47, the intercepts made by the
tangent and normal on the axis OX. The intercept of the
tangent subtracted from =z, gives r, and x, subtracted from
the intercept of the mormmal gives ».

Ex. Find the intereepts made npon the axes by the tangent al the
point (r, ¥,) on the curve vz + Vy = Va, and show that their sum
is constant.

" Differentiating the equation of the eurve, we obtain

1 1 dy
—— o =X =0,
vz " By da
Henee Lhe equation of the tungent s
—
'

The = intercept is x, + V¥, and the y intercept is ¥, + Vi,

henoe their sum is Vo + Vi =a

If a series of lines is drawn such that the sum of the intercepta of
each is the same constant, account being taken of the signs, the form
of the parabola to which they are all tangent can be readily seen.

EXERCISES
1. Find the equations of the tangent and the normal to the ellipse
™ . :
= + -:-: = 1 at the point (x,, ,). Compare the process with that em-
ployed in analytie geometry to ohtain the same results.
2. Find the equation of the tangent to the curve

Iz 4+u)= -
W o Az +y)=a'(z—y)
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3. Find the equations of Lhe tangent and normal at the point
{1, 4) on the curve y* = B 5%

4. Find the equations of the tangent and normal to each of the

following eurves at the point indicated :

() y = %, at the point for which z =24,

(8) ¥* =21 — 7% al the points for which r = 1.
{y) ¥*=4paz,al the point (p, 2p).
5. Find the value of the subtangent of ¥ =322 - 12 at z=4.
Compare the process with that given in analytic geometry.
6. Find the length of the tangent to the curve * =2z at 5 = 8.
7. Find the points at which the tangent is parallel to the axis
of , and at which it is perpendicular to that axis for each of the fol-
lowing curves : () az% 4 2hry + byt = 1.

8 y ===

B
(y) ¥*=2*2a—x)
8. Find the condition that the conies
art+ =], a2 +y'=1
shall cot at right anglea

9. Find theangle at which z* = g® 4 5 intersects 8% 4 18 * = 144.
Compare with Ex. 8,

10, Show that in the equilateral hyperbola 2 zy = o the area of
the triangle formed by a variable tangeut and the codrdinate axes is
sonsatant and eqoal to al,

11 Alihll:nghduﬂ.f: ﬂ:inl&rﬂtliz‘—!—ﬂf:“?
12. Determine the subnormal to the corve v = a='x
13. Find the values of x for which the tangent to the curve

yY=(z~a)z-2)
is parallel to the axis of z.
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14. Show that the subtangent of the hyperbola ry = a® is aqual to
the abscissa of the point of tangency, but opposite in sign.

15. Prove that the parabola ¥* = 4 ex has a constant subnormal.

16. Show analytically thak in the curve 22 4 y* = a% the length of
the normal is constant.

17. Show that in tha tractrix, the length of the tangent i1s comn-
stant, the equialion of the tractrix being

r=Vei— 4 Slog Eo YW Vel — o,

e+ Vel — yd

18, Show that the exponential curve y = ae® has a constant sub-
tangent.

19. Find the point on the parabola * =4 pr at which the angle
between the tangent and the line joining the point to the vertex shall
be & maximum.

49, Concavity upward and downward. A curve is said to be
concave dowmward in the vicinity of a point P when, for a
finite distance on each side of F, the curve is situated below

E
Fig. 3

the tangent drawn at that point, as in the ares AD, FH. It

is concove wpward when the curve lies above the tangent, as
in the ares DF, IK. |
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By drawing successive tangents to the curve, as in the fig-
ure, we easily see that if the point of eontact advances to the
right, the tangent swings in the positive direction of rotation
when the concavity is upward, and in the negative direction
when the coneavity is downward, Hence upward conoavity
may be called a positive bending of the curve, and downward
concavity, a negative bending.

A point at which the direction of bending changes con-
tinnously from positive to negative, or vice versa, as at F or
at ), is ecalled a point of inflerion, and the tangent at such a
point is called a stationary fangent.

The points of the curve that are situated just before and just
after the point of inflexion are thus on opposite sides of the
stationary tangent, and hence the tangent crosses the curve, as
at D, F, H.

50. Algebraic test for poaitive and negative bending. T.et the
inclination of the tangent line, measured from the positive end
of the zaxis toward the forward epd of the tangent, be denoted
by ¢. Then ¢ is an increasing or decreasing function of the
abscissa according as the bending is positive or negative; for

instance, in the arc AD, the angle ¢ diminishes from + 7

through zero to —E; in the are DF, ¢ increases from —E
through zero to %; in the are FI, ¢ decreases from 4 'E'thmugh

zero to — E; and in the are /7K, ¢ increases from —E through

to 4 X,
2010 +4

At a point of inflexion ¢ has evidently a tarning value which
is a maximum or a minimum, according as the coneavity changes
from upward to downward, or conversely.
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Thus in Fig. 26, ¢ is a maximum at F, and & minimum at D
and at .

Instead of recording the variation of the angle ¢, it ix gen-
erally convenient to consider the variation of the slope, tan ¢,
which is easily expressed as a funection of z by the equation

o
tan ¢ = d:.
Since tan ¢ is always an increasing function of ¢, it follows

that the slope function jg is an increasing or a decreasing

function of x, according as the coneavity is upward or down-
ward, and hence that its z-derivative is positive or negative.

Thus the bending of the eurve is in the positive or negative
direction of rotation, according as the function % 18 positive
or negative, '

At a point of inflexion the slope 3—1—: is & maximum or a

oy

minimuom, and therefore its derivative = changes sign from

positive to negative or from negative to positive. This latter
condition is evidently both necessary and sufficient in order that
the point (z, ¥) may be a point of inflexion on the given curve.

Henee, the cotirdinates of the points of inflexion on the eurve

y =flz)
may ha found by solving the equations
' f'@)=0, f'{z)=q,
and then testing whether f(x) changes its sign as x passes

through the eritieal values thus obtained. To any critical
value a that satisfies the test corresponds the point of inflexion

(i1, fla)).
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Ex. 1. For the carve

slope and of the ordinate.

Here

y=(z*-1)*
find the points of inflexion, and show the mode of variation of the

i ”
A =z -1),

[

Y = 432 —1),

henece the eritical values for inflexions amm z = 4 :i_l. It will Le seen

that as r increases throngh - J?lhmanddeﬁmhe changes sign

from positive to negative, hence there is an inflexion at which

the covcavity changes from upwand to downward. Similarly, at

T =+ % the concavily chauges [rom downward to upward. The
i

following numerical table will help to show the mode of variation of
the ordinate and of the slope, and the direction of bending.

dw

x i E
— + = .
-3 +9 -M
-] 1] (1]

1 4 B
vi|te v
0 1 0

1 4 8

-+ — % ——mm
Vil T | Tava
1 {l 1]

L - - 4+ o 4 an

e + ++ k&

++ =

As r increases from — @ la
- é the bending is positive, and

the slope continually increases from
— = through zero to a maximum

value £ 3 which i the slope of
3v3 5

the stationary tangent drawn al
1 4
the point (— i

As z continues to incrense from

o +L_. the bending I neg-

v 3

ative, and Lhe slope decreases from + iﬁ throogh zero o a minimoam
3

ulu_—p'_.wl:inhiul]u slope of the stationary tangent at

v

(+

1 ")
v B
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Finally, as x increases from + % to 4 oo, the bending ia positive

and the glope increases from the

valua —

ava

The values t=—1, 0, + 1, at
which the slope passes through zero,
correapond to turniog values of the

ordimabie.

Ex. 2. Examine for inflexions

the eurve
24+ 4=(y-—2)n

¥

Fua. 26

tlx?

— through zero to 4

—

¥

\/

X
Lo
In this oase
y=2+(+ 4%,
XS+
dz
ay _

2 2 |
= ﬁ{_':r-l- 4) .

Henee, at the point ( — 4, 2), E

and%m'e infinite. When z<{— 4,

i B positive, and when x> — 4, —f is negative.

Thus there is a point of inflexion at (—4, 2), at which the slope
is infinite, and the bending changes from the positive to the negative

dlirection.

Ex. 3. Consider the curve
=zt |
By _ 4, ‘*"f 1948,

T

At (0, ﬂ]l, i IE #ero, but the

iy
ol

never changes sign (Fig. 204,

eurve has no inflexion, for

l\_ﬁ_ﬂ_,/’/x

Foa. 29
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ol. Concavity and convexity toward the axis. A curve is
said to be convex or concave toward a line, in the vicinity of
a given point on the ewrve, aeccording as the tangent at the
point does or does not lie between the curve and the line, for
a finite distance on each side of the point of contact. '

k.____‘______-___,f’#--__--ﬁ-ﬁ"

Fro. #a Fia, 08

First, let the curve be convex toward the x-axis, as in the left-
hand figure, Then if y is positive, the bending is positive
and :Zy: is positive ; but if ¥ is negative, the bending iz nega-
tive and &y i8 negative, Hence in either case the produet

f
iy . e
—= 15 positive.
¥ o po

MNext, let the curve be coneave toward the z-axis, as in the

right-hand figure. Then if ¥ 15 positive, the bending 1s nega-

tive and g 18 negative; but 1f ¥ 15 negative, the bending ia

positive and g 18 positive. Thus in either caze the product
@y -

— is negative. Hence:
Y o {4

Ire the wicinily of a given point (x, y) the eurve i8 conver or
concave o the z-axis, according as the produect y % @ posifive or
negative.
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EXERCISES
1. Examine the curve y =2 — 3(x — 2)} for points of inflexion.
2. Show that the curve aly = z(a? — z%) has & point of inflexion
al the origin.

3. Find the points of inflexion on the curve y = — 28"

L o400
4. In the curve ay = r«, prove that the origin ia a point of in-
flexion il m and n are positive odd iutegers

5. Show that the curve y = csin X has an iofinite number of
i
points of inflexion lying on & straight line.
6. Show Lhat the curve y(z* + a®) = r has three points of inflexion
lying on & straight line ; find the equation of the line.

7. liy" = f(x) is the equation of a curve, prove that the abscissas
of ita pointa of inflexion satisfy the equation

LA =21 () - S1x)s
8. Draw the part of the curve af%y = i — ar® 4 2 a* near ita point
of inflexion, and find the equation of the staliooary tangent
9. Show that the curve y = z*» has no points of inflexion, n being
any positive integer. Sketch the curve.

10. Show that the carve (1 4+ 2*)y = | — = haa three points of in-
flexion, and that they lie in a straight line.

52. Hyperbolic and parabolic branches. When a curve has a
branch extending to infinity, the tangents drawn at successive
pointa of this branch may tend to coincide with a definite fixed
line, a8 in the familiar case of the hyperbola. On the other
hand, the successive tangents may move farther and farther out
of the field, as in the case of the parabola These two kinds
of infinite branches may be called hyperbolic and parabolic.

The character of each of the infinite branches of a curve can
always be determined when the equation of the curve is known.
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53. Definition of a rectilinear asymptote. If the tanpents at
successive points of a curve approach a fixed straight line as
a limiting position when the point of contaet moves further
and farther along any infinite branch of the given curve, then
the fixed line is called an asymptote of the curve. ,

This definition may be stated more briefly but less precisely
as follows: An asymptote to a curve is a tanpent whose point
of contact 18 at infinity, but which is not itself entirely at
infinity.

DETERMINATION OF ASYMPTOTES

54. Method of limiting intercepts. The equation of the tan-

gent at any point (z, ¥,) being

¥— Fl“ddm'—qr:{'-‘?“:ﬂ:

the intercepts made by this line on the cobirdinate axes are

h=ty —z
dmll

Ty =ty — g S0 {1}
el

Suppose the curve has a branch on which =2 and y = .
Then from (1} the limits can be found to which the intercepts
Ty Y approach as the cobrdinates x,, ¥, of the point of contact
tend to become infinite. 1f these limits are denoted by a, b,
the equation of the corresponding asymptote is

Ti=1,
-:1.+I||
Except in special cases this method is nsually too compli-
cated to be of practical use in determining the equations

of the asymptotes of a given curve. There are two other
methods, which together will always suffice to determine the
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asymptotes of curves whose equations involve only algebraie
functions. These may be called the methods of inspection
and of substitution.

55. Method of ingpection. Infinite ordinates, asymptotes parallel
to axes. When an algebraic equation in two cobrdinates » and
w is rationalized, cleared of fractions, and arranged according
to powers of one of the codrdinates, say w, it takes the form

ay” +(bx + Yyt - (dat - ex + T+ o W =0,
in which %, is a polynomial of the degree n in terms of the
other coordinate 2, and w,_, is of degree n — 1.

When any value is given to 2, the equation determines n
values for . _

Let it be required to find for what value of z the correspond-
ing ordinate ¥ has an infinite value.

For this purpose the following theorem from algebra will
be recalled :

(ziven an algebraic equation of degree n,

oy + By -+t + e =0

if ®=10, one root ¥ becomes infinite; if e=10 and §=10, two
roots ¥ become infinite; and in general if the coefficients of
each of the k& highest powers of y vanish, the equation will
have & infinite roots.

Suppose at first that the term in ¥ is present; in other
words, that the coefficient a is not zero. Then, when auy
finite value is given to =z, all of the n values of y are finite,
and there are aeccordingly no infinite ordinates for finite
values of the abscissa.

Next suppose that a is zero, and b, ¢, not zero. In this
case one value of y is infinite fur every finite value of =, and

BL. CALG,—T
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hence the curve passes through the point at infinity on the
Yy axis.
There 18 one particular value of z, namely, z= _TE, for

which an additional root of the equation in y becomes infimte,
For, when x has this value, the coefficient bx+ ¢ of the high-
eat power of ¥ remaining in the equation vanishes.

Geometrically, every line parallel to the y axis has one
point of intersection with the curve at infinity, but the line
br+4e¢=0 has two points of intersection with the curve at
infinity. A line having two coineident points of intersection
with a curve is 2 tangent to the eurve; and when the eoinci-
dent points are at infinity, but the line itself not altogether at
infinity, the tangent 1s an asymptote. Hence, an ordinate that
becomes infinite for a definite value of & is an asymptote.

Apgain, if not only a, but also & and ¢ are zero, there are
two values of x that make y infinite; namely, those values
of = that make da'4er4 =0 The equations of the
infinite ordinates are found by factoring this last eguation;
and 80 on.

Similarly, by arranging the equation of the ecurve according
to powers of z we can easily find what values of y give an
infinite value to =

Ex. 1. In the curve
2 sy oyt =t — 9 -5,

find the equation of the infinite ordivate, and determine the finite
point in which this line meets the curve.
This is a cubie equation in which the coefficlent of y® is zero.
Arranged in powers of y it is

¥+ 1) + 328 + (222 — 22 + §) =0.
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When r = — 1, the equation for 3 becomes
R - 5'9 +¥+ 2= '}l
the two roota of which are y ==, y= — 2; hence the equation of
the infinite ordinate ia x4+ 1 =0. The infinite ordinate meets the
curve again in the finite point (-1, - 2).

Since the term in x? iz present, there are no infinite values of
for finite values of .

Ex. 2. Show that the lines £ = a, and y = () are asymptotes to the
eurve a¥r = y(z — a)? {Fig. 31).

Q X

'\___,/

Ex. 3. Find the asymptotes of the curve 23y — a) + 2% = a®.

Fig. i1

56. Method of substitution. Oblique asymptotes. The as-
ymptotes that are not parallel to either axis can be found by
the method of substitution, which is applicable to all algebraie
eurves, and is of especial value when the equation is given in

the implieit form
Sz u)y=0. (1)

Consider the straight line
i = e 4 bj I:E:I'
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and let it be required to determine m and b so that this line
shall be an asymptote to the curve f(x, y) =0.

Since an asymptote is the limiting position of a line that
meets the eurve in two points that tend to coincide at infinity,
then, by making (1) and (2) simultaneous, the resulting equa-

tion in =,
Sz, mz4b)=0,

is to have two of its roots infinite. This requires that the
coefficients of the two highest powers of =z shall vanish.
These coefficients, equated to zero, furmish two equatioms
from which the required values of m and b can be determined.
These values, substituted in (2), will give the equation of an
asy m ptote.

Ex. 4. Find the asymptotes to the curve y* = x%(2a - 1),

In the first place, there are evidently uo asymptotes parallel to
either of the codrdinate axes, To determine the oblique asymptoles,
make the equation of the curve simultaneous with y = mx 4 &, and
eliminaie y. Then

(mz 4 b)*= 2%2a — z),
or, arranged in powers ol z,
(1 +m")z?+ (3 m% — 2a)z? + 3 bmx + 6 =1,
Lat m'+1=0 and A m%Bb— 2a="0

Than m==1, b=

hence y=-z4

in the equation of an asymplote.
The third intersection of this line with the given curve is found
2a

from the equation 3 mb¥z + ¥ =0, whence B
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'i'

Fia. 22

This is the only oblique asymptole, as the other roota of the equation
for m are imaginary.
Ex. 5. Find the asymptoles to the eurve y(a? + 2%) —a%(n — x).

¥

L) X
1 T —— =
Fia. 11
Hére the line y =0 is & horizontal asymplote by Art. 65, To find
the oblique asympiotes, put y = mz + b

Then (mz 4 b){a® + 2%) = a¥(a — 1),
te. mr? 4 br? 4 (ma® 4 a¥)z + (a% — a%) =0;
hence m=1>0, b=0, for an asymplote.

Thus the only asymplota is the line y = 0 already found.
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57. Number of asymptotes. The illustrations of the last
article show that if all the terms are present in the general
equation of an uth degree curve, then the equation for deter-
mining m is of the nth degree and there are accordingly =
values of m, real or imaginary. The equation for finding b is
usually of the first degree, but for certain eurves one or more
valoes of m may canse the coefficients of »* and x*=' both to
vanizl, irrespective of 5. In such cases any line whose equa-
tion is of the form y =m,x 4 ¢ will have two points at infinity
on the eurve independent of ¢; but by eqnating the coefficient
of 2*=* to zaro, two values of & ean be found such that the re-
sulting lines have three points at infinity in common with the
curve, These two lines are parallel; and it will be seen that
in each case in which this happens the equation defining m
has a double root, so that the total number of asymptotes is
not increased. Henee the total number of asymptotes, real
amd imaginary, is in general equal to the degree of the equation
of the eurve. i

This number must be reduced whenever a4 curve has a para-
bolic branch, since in this case a value of m which makes the

coefficient of 2* vanish does not correspond to any finite value
of b. :

Ex. 6. Find the asymptotes of the curve (z =)' =2x. The
equation in m is (m = 1} = 0. The coefficient of £* vanishes identi-
cally when m = 1; that of x is 3(m — 1}4? = 2 which cannot be made
to vanish for any finite value of b when m =1. The curve has no
asymptotes.

Ex. 7. Find ibe asymptotes of the curve

_(r—1)@ -
= — a3 B

and trace the curve. (Fig. 34.)
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¥

X
Fia. M
EXERCISES
Find the asymploles of each of the lollowing curves:
L win? - sN)=02x <) 7. (z 4 a)® =(g + b))
2 yi=t(z-a)z—30) it Hhotni s+
¥ —2ax 9. 2 4 sty = ot
3, oyt = a'(2" — ). 10. y(a? 4 3 a%)= .4,
b, - Jacy + =M.
4. y=u+rb::rj- s
) 12. 4 o = a'.
5 ¢ =aYa - z). 13. P — '+ ol =0
6. ﬂ:u 1)=2" 14. :'-,-":n‘l.r,r_

18. P4+ 23ty - =20 + 4 ' + 2ay+p=1.
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POLAR COURDINATES

58. When the equation of a ceurve is expressed in polar
cotrdinates, the veetorial angle & is usually regarded as the
independent variable. To determine .the divection of the
eurve at any point, it is most convenient to make use of the
angle between the tangent and the radius vector to the point
of tangenecy.

Let P, ) be two points on the
curve (Fig. 35). Join P, § with
the pole O, and drop a perpendie-
ular M from P on OQ. Letp,
8 he the cobrdinates of P; p 4 Ap,
8+ A8 those of @. Then the angle
POQ = Af; PM = psin Af; and
MQ=00—O0OM=p+Ap—p cos Af.

o p+ Ap — peos Af

When @ moves to coincidenee with F, the angle HQ.P
approaches as a limit the angle between the radius vector
and the tangent line at the point . This angle will be
designated by 4.

Thus tan g = , O p sin A5 .
: Ay by ey Y

But p{l — cos AF) =2 p sin® | Af,

psin Af
ag

lim
henece tan = ... 5 . d
- - sin § A4 | Ap

o et Mt
ANNSARTTINE T A
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Sinee m!’ig 0 E‘ﬂ[;iﬂéﬁ = 1, the preceding equation reduces to
dd
tan =f=p=.

V=% P (5

df

Ex. 1. A point deseribes a eircle of radivs p.
Prove that at any instant the are velocity ia p times

the angle velooity,
¢ ¢ ds _ B

@ P

Bty

Fr. 36

Ex. 2, When a point describes a given
curve, prove thatat any instant the velocity

9 has a radins component E‘ﬁ and a com-

it
ponent perpendicnlar to the radins vector
p':—f, and hence that
Fra. 3T ﬂnsizgf,singbzp%,mnnﬁ:,;ﬂl.
This furnishes & dynamioal proof of equation (3).
ay i)
59. Relation between o and FdF' If

the initial line is taken as the axis of z,

the tangent line at P makes an angle ¢
with this line.

Hence 4 ¢=4d;

60. Length of tangent, normal, polar subtangent, and polar sub-
normal. The portions of the tangent and normal intercepted
between the point of tangency P and the line throngh the pole
perpendicular to the radius vector OPF, are called the polor
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tangent length and the polar normal length ; their projections on
this perpendicular are called the polar subtangent and polar
subrormol,

Fic. 30 a Fro. 20 b

Thus, let the tangent and normal at P (Figs. 39 a, b) meet the
perpendicular to OF in the points N and M. | Then

PX is the polar tangent length,
FPM is the polar normal length,
0N is the polar subtangent,
OM is the polar subnormal.

They are all seen to be independent of the direction of the
initial line. The lengths of these lines will now be determined.

Since PN= OP - sec OFN = p sec § = py ,Ln(g_")'ﬂ
. P

i B |y o il
P p+(d),

0 [ 7Y
henee polar tangent length =, d’\!p’+(ﬁ).
Again, ON= OP tan OPN= p tan .,.:,,-E,

henee polar subtangent = Flg.
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PM =OP- csc OPN=pesc § =y +(%;)’,

hence polar normal length =\(,'+(5:5
L]

OM = OP cot ﬂPN=§§,

hence polar subnormal = g

The signs of the polar tangent length and polar normal
length are ambiguous dn account of the radical. The direc-

tion of the sublangent is determined by the sign of F*g
When :;': 18 positive, the distance ON should be measured to

the right, and when negative, to the left of an observer placed
at © and looking along OF; for when # increases with

™ ? is positive (Art. 28), and ¢ is an acute I.ng.'la (as in

Fig. 39 b); wh&nﬂdmmu,ima, @ is negative,
and ¢ is obtuse (Fig. 39 a).

EXERCISES
1. In the ourve p = a sin 8, find .

2. In the spiral of Archimedes p = afl, show that tan ¢ = § and
find the polar subtangent, polar normal, and polar subnormal. Trace
the curve.

3. Find for the curve p®=a®cos2 @ the values of all the expres-
sions trealed in this article.

4. Show that in the curve pf = a the polar subtangent s of econ-
stant length. Trace the curve

5. In the curve p=a(l — coa §), find ¢ and the polar subtangent.
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6. Show that in the curve p =5 - e?=ta the tangent makes a con-
stant angle @ with the radius vector. For this reason, this curve is
called the equiangular spiral.

7. Find the angle of intersection of the curves
p=a(l+ cosf), p= {1 — cosd).

8. In tha parabola p =« am‘ig, show that ¢ + = .

EXERCISES ON CHAPTER VIl

Trace the following curves. Find asymptotes, intervals of in-
creasing and deereasing ordinate and direction of bending, as well as
intercepts on Lhe axes.

L y=22 4228 -T2+ 1. 8 y==x

2 yv¥=r+22"-Tz + L. : 6 ay?=r* — bt
d. gy =(z*—1)% T. o —yi=2r
4 ¥4 3r=1. '

In the following curves find W, determine whether p can become
infinite, and obtain the (angular) intervals of increasing and decreas-

ing p.
B. p=acoa2fl 10, p=a(l - cos ).

i g
9. p=asinidd . F=ﬂmgi-



CHAPTER VIII

DIFFERENTIATION OF FUNCTIONS OF TWO VARIAELES

Thus far only funetions of a single variable have been con-
sidered. The present chapter will be devoted to the study of
functions of two independent variables z, y. They will be
represented by the symbeol

2 =ﬂ"‘l y)-
' If the simultaneouns values of the three variables =, y, # are
represented as the rectangular cotirdinates of a point in space,
the locus of all such points is a surface having the equation
z=flz, y).

61. Definition of continuity. A function 2 of = and y,
z = flz, y), is said to be continuous in the vicinity of any point
(a, &) when f(a, b} is real, finite, and determinate, and such
b 18, fla 4 bRy =f(a, B),
k=0
however k and k approach zero.
When a pair of values a, b exists at which any one of these

properties does not hold, the function is said to be discontinu-
ous at the point {a, b).

E.g., let i

H &

+¥.
— ¥

When r=0, then z= — 1 for every value of y; when y = 0 then
z= + 1 for every value of 2. In general, if y = mz,

zfl-'-_m'
l—m

109
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and z may be made to bave any value whatever at (0, 0) by giving an
appropriate valoe to m. .

Geometrically speaking, when the point (z, y) moves up to (G, 9),
the limiting value of the ordinate : depends upon the direction of
approach.

62. Partial differentiation. If in the function

z=f(xy¥)
a fixed value w, is given to y, then
z=f2, )
is a funetion of = only, and the rale of change in z cansed by a

change in x is expressed by

-
ds = d, (1)

in which g: iz obtained on the supposition that y is constant.

To indicate this fact without the qualifying verbal state-
ment, equation (1) will be written in the form

a: d
lze= Ed.‘l:. (2)
The symbol g’; represents the result obtained by differentiat-

ing 2 with regard to x, the variable y being treated as a eon-
stant; it is called the partiol derivative of 2 with regard to 2

From the definition of differentiation, Art. 6, the partial
derivative is the result of the indicated operation

H== 'llm ,r![n'+ﬂ=, y) — Az ¥)

dx Az

Similarly, the nymbul — repmunu the result obtained by
differentiating = with n-gnnl to ¥, Lhe variable = being treated
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as a constant; it is called the partial derivative of z with
regard to y.

The partial derivative of ¢ with regard to y is accordingly the
result of the indicated operation

=t A%y '-"'3'} =S ¥),
'ﬂy = Ay=0

d“-ﬂ._,‘h 1s called the parﬁﬂ! x-tdi fferential of z, and

#u%#iamﬂd the partial y-differential of z.

EXERCISES
du  du

L Given u=x*+ 32%" - T:y'.pmnthntzﬂ +_|:5 fu
2. Given u=tao1Y, show Ihat:a"'+ya’ =0,
I.unlng[ﬂ‘+el]*ﬂndg—£ g--:

du
. ; G 94 08
4 u=ginzy; fi ﬂ.l:+ﬂ';

du du
5. w=log (x4 vz* ?];indta—:"'lg

6. u=log (tan = + fan y + tan z); show Lhat
msxg‘+iun,a'+mﬂ=5_'=2.

dy iz
. gu  du 2
T u=log (x+ ¥); almwthi’f.a +ﬂy=?‘

8 lt-:.,:EL; ahnwthli:%+r% =u.
» ‘=("=]{5_I]{I_I'}llhﬂ'ih-llg'i'a—r'Fa“

.~ IR N
10. u= ) ﬁn'lhl-a: F z+y-1)u

11. u=log (r* + y* + =* — 3ryz) ; show that
du du gu_ 3
ar gy 02 z4y+4r
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B3. Total differential. If both z and y are allowed to vary
in the function z= f(z, y), the first question that naturally
arises is with regard to the meaning of the differential of .

Lat 2= i@, )
and s+ dz=f(z + Az, 3 + 4y)

be two values of the funection corresponding to the two pairs
of values of the variables =, ¥, and =, 4 Awx, ¥, + Ay.
The difference

Az =f{:5| + Az, ¥ +ﬁ¢r} _'I('Tl' )

may be regarded as composed of two parts, the first part being
the increment which z taked when x changes from =, to 2, + Az,
while ¥ remains constant (y =), and the second part being
the additional increment which 2z takes when y changes from
¥ to ¥+ Ay, while x remains constant (z==, 4 Az). The
increment Az may then be written

az = f(z, + Az, ¥, + Ay) — f{z, + Az, 1)

+ F iz + Az, 1) — fim, )

=S @+ Az, 3 + Ay) — [z + Az, 1) Ay
Ay
+I{II+M: Fﬂ _'.-r(:llm Ax.
Az
From the theorem of mean value, Art. 39, the last equation
may be written

Az = %f{-ﬁ. + 8Az, y) Az + ;Ef{ﬂ?l + azx, y, 4+ 6, ay)ay. (3)

It represents the actual inerement Az which the dependent
variable z takes when the independent variables = and y take
the increments Az and Ay.
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To illustrate, let z = f(x, y) be the equation of a surface (Fig. 40).
Lﬂ-ﬂll{lh vi), da=(z + ﬂ;.,ﬁ}. -I'III[-'IH + &z, wy + ﬂ.j},mﬂ]ll
AP\sf(xn )y AsPe=f(114 Ax, 31), AsPa=f (2 + Ax, 3 + Ay

QP =1 (x + Ax, ;1) - f (3, 1) = Az,
GPa=f(21 + Az, 3 + Ay) — f(2) + Az, 3y) = Az,
HaPa=f (21 + &z, 31 + By) — f (21, 1) = Baz + Asz = Az,

As the moving point P passes from I w

Py slong the plane curve PPy, the ordinate
takes Lthe increment

- (&
Bz = (ﬂr)ﬂ.:, | :
where the derivative is taken at the luler- RS

mediate point x =z, + Az, y =y (Arl. 39).
Similarly, as /> passea from Py to Py along

the plane curve PyP;, the ordinate talkes the A, / i
further increment A,
dz
-'ﬁl“ = ('_ a 1] "
a!) ¥ Fia. 40

where the derivative is taken at the intermediate point y = » + Ay,
= x; + Ar.
The sum of thess two partial incrementa gives the total inerement Az

In the preceding equation (3) let Ax, Ay, Az be replaced by
¢ dx, ¢+ dy, ¢.dz respectively, in which dz, dy are entirely

arbitrary. After removing the common factor ¢ let € approach
zero. The result is

& Efﬁi ¥ |! de + gr!aﬂ; W) dy. (4)

The differential dz defined by this equation is called the fotal
differential of 2. It is not an actual increment of 2, but the
intrément which z would take if its change continued uwniform
while 2 changed from =, to x, 4+ dz and y changed from y, to
!’l"‘l'dl"-

EL. CaLc,—8
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In other words, dz is the rate of clange of the variable 2
when the independent variables z wml y ehange simultane-
oudly at the rates of dz, dy respectively.

Equation (4) may be written in the form

Iﬁ:g%dz +g‘:|{ly=ﬂ,:l+tf_l,
from which the following theorem ean be stated ; the total dif-
Jerential of a function of two variables is equal to the swm of its
partial differentiols taken with regard to the separale variables,
or the total rate of change of 2 is equal to the sum of its par-
tinl rates.

The same method can be applied directly to functions of
three or more variables. Thus, if u is a funetion of the vari-

ables =, , 7, u=¢(x, ¥, 2),
O . B . 3P
th du=-Lo4 = d L -
£n u ax f +ﬂy ¥ <+ 3z
Ex.1. Given z = ary® + by + c2® 4 cy,
then iz = (ay? + 2 bry + 3 exPdz + (2 azy + be? + )y,
%, 2. Given u = tan™'¥, ghow that du = &dy — ydz
T Ii+ yﬂ

Ex. 3 Assuming the characteristic equation of a perfect gas,
ep = R, in which ¢ is volume, p pressure, | alsolute temperature, aml
i a constant, express each ol the differentials de, dp, df, in terms of
thet other twa,

Ex. 4. A particle moves on the spherical surface =% 4 3% 4 7= !
in a vertical meridian plane inclined at an angle of 80° to the =r-
plane. I the r<omponent of its velocity is "liﬂ feet par second when

& = 2, find the y-component and the z-component velocities,

Since z=vVal— g,

Vial—rt— e V-
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But since oz = {—’n, and the equation of the given meridian plape is

¥ = x tan 607, heuee dy = Vi dr = :,andy=‘1—1ﬂ- Therelore

= — 1o feet per second.
941 13 .
Ex. 5. A triangle has a base of 10t units and an altitude of f unita
The base is made to increase at the rate of 2 units and the altitude
to decrease at the eate of | unit. At what rate does the area change?

Ex. 8. A poiut on the hyperboloid 2% — 'f— ":—= =1 in the position

al
=2 y="12 movea go that  increases at the rate of 2 units per sec-
onid, while y decreases at the rate of 3 units per second. Find the
rate of change of =,

Ex. 7. If the area of a rectangle d = zy ia incorrectly measured

owing to a small error dr, «fy in the length of each side, how close
ig il A = zdy + yr to the actoal error in the area?

64. Total derivative, [f in the relation z=f(=, ¥), the vari-
ables =z, y are not independent, but both are functions of
another variable s, the process of the preceding article can
still be applied. The variable z is now a function of s, and
its derivative as to ¢ may be expressed in the form

de_dade 32 dy.
ds  drds ' Ay ds

In particular, if ¥ is not independent, but is a funetion of

x, then 8 may be chosen as @ itself, and the preceding equation

DR d_d by,

dx dx  dyde

If the functional relation between x and ¥ i1s given,

¥ =d{z),

b1
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then the same result will be obtained, whether E is deter-
mined by the present method, or y is first eliminated from the

=
R T

L] ¥
and the resulting equation is differentiated as to = The
method of this article frequently shortens the process.

It is here well to note the difference between l% and :T:

The former is the partial derivative of the functional expres-
sion for z with regard to =, on the supposition that y is ocon-
stant. The latter is the total derivative of z with regard to
z, when account is taken of the fact that y is itself a fune-
tion of o

In the former case the differentiation with regard to x is
merely explicit; in the latter it is both explicit and implicit.

Ex. 1. Givenz=vVA 1 g}, y=logz; find &=

dx
e . k.
e Viry Virpd
dy _1
dr z'
iz 4y
hence LIPS e
ile I\i’:id.’!
= - _L - dl__i
Ex. 2 Ifz=tan"' = and 4 £ 4 y* = 1, show that — = —.
2x idx ¥

65. Differentistion of implicit functions. If, in the relation
z=f(z, y), = is assumed to be constant, then

dre=0;
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hence %dﬁ+%d§=ﬂ, (1)
af

from which % - — :.-'_E (2)
ay

In all such cases either variable ia an implicit funetion of
the other, and thus the last equation furnishes a rule for
finding the derivative of an implicit function.

Ex. 1. Given z8 4+ 33 4 Sazy = ¢, find "ﬁ.

Sinee (3 x* + Eﬂy}+(ﬂy‘+ﬂur}‘£:ﬂ, %:-;i:u-i_::i.

Br. 2. f(ar 4 b)=c; L=afar+ty); Z=bf(ax+by);

dy __a
gz b

Ex. 3 Tlaz®42hey + byt + 2gr + 2fy +c=0, ﬁndj-i.

Ex. 4. Given r* — yi=¢, ﬂndj_i_
z

Ex. 5. If x increases at the rate of 2 inches per second as it passes
through the value x =13 inches, at what rate must y change when
y=1 inch in order that the function 2 xy?— 3% shall remain
constant?

If u=2xy?-3x%,
du_o.a_ 0 _ gy 3.
t.hen. F 24— 02y, 3 ¥
du dy
dy dz 2y —fzry it
F il S v e i
ay di

Sinee r=3, y=1, rI'T.r = 2, hence %ﬁ = — 2/ inches per second.

ol
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Ex. 6. n=r'4ry.v=loga y=e. Fihllj.

5

Ex. 7. w=siw(r—s),r=3lsa=4M Find '%.

Ex. 8. " —e“4+zy =10, Find dy
r

Ex. 8. sin (zy)— ¢** = 29y =0, Find j—-".

xr

It is to be noticed that the result of differentiating any implicit
function of z, y by the method of the present article will agree with
the vesult of differentintion according to the rules of Chapter 11

66. Geometric interpretation. (Geometrically, the equation
z = f(x, y) represents a surface. The equation y = y, defines
a plane parallel to the zz-cobrdinate plane. The two equations
treated simultaneously therefore define the plane section made

an the surface z = fTa, y) by the plane y = y,.  The derivative

?;l defines the slope of the tangent line to this curve at the
i

point (zy, ¥, #)-
Similarly, the plane z =2, euts the surface in a section

parallel to the yzcobrdinate plane. The slope of the tangent

line to this second curve is defined by E.. The equations of
these two lines are %

¥=1¥n *—’l-git{‘_r'l}r
T =1, =—=.-g~3'r:y—yﬂ-
L

They have the point (=, ¥, #,) in ¢common ; hence the two lines
will define & plane. The equation of any plane through the
first line will be of the form

. [= -z —E (== ==.J|_-|+ wl(y—m)= 0,
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and similarly, the equation of any plane through the secound
line will be of the form

[: s %{y ¥ y,}]+ o —2y)= 0.

These two equations will be identical when

N
st A

henece the equation of the plane containing both lines is

e e M
e (2 — )+ am{y th)-
It 18 called the tangent plane to the surface z = f{x, ¥) at the
point (2, ¥, ).
From the equation

— 9% 0
ds = Thdx + Sdy, (@)

it is seen that if z, y receive the arbitrary increments dz, dy,
then the increment @z is defined by the sums of the products
of these increments by the corresponding partial derivatives.
Thus, if de =2 —x, dy =y — Jpy, off = 2 — gz, it is seen that
the point (x, ¥, 2) always lies in the tangent plane fo the sur
face = = f=, y), however the increments dz and dy approach
wero,

Moreover, the equations of the line joining (=, ¥, ) to
#, + Ar, y, + Aw, 7; + Az on the surface will be of the form

2—x _¥—HhI=5

Ak Ay Az
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Now as Ax, Ay approach zero, the point always remaining .
on the surface, the line becomes a tangent in the limit, and its

equations are

5;¢51=HEFH1=EEE=1, (4)
wherein dx, dy depend upon the direction of approach, and dz
18 defined by (3).

But a tangent line to the surface is also tangent to any plane
section passing through the line, and the line (4) is seen to lie
in the tangent plane, hence:

The tangent lines fo all the plane sections of the surface

z = f{z, ¥) passing through the point (z,, , %) lie in the tangent
plane at that poind.

The line through (=, ¥, 2z,) perpendicular to the tangent
plane
o L
2 sl—atl{m ) + ayl(y )

is called the normal to the surface at the point (z, ¥, ). Its

nations ars
g & — Iy - ¥—th &—@

a2 a5 —1
dx, ath

If the equation of the surface is given in the implicit form
F(z, y, ) = 0, then since

aF

de 4+ 2y + 0% gy =
am—l—yd—kc!sﬂ

the equation of the tangent plane beeomes, if F(z, , 2)=F
£ S u—w+5ie—mn =0,

{ﬂ: )+
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and those of the normal are

X _y—W_E—5
aF, oF, aF,

ar, By, Oy

EXERCISES
1. SBhow that the plane z = 0 touches Lhe surface z = xy at (D, 0, 0).

2. Find the equation of the tangent plane to the paraboloid
2=2274 4 y* al the point (2, 1, 12).
3. Find the equations of ihe normal to the hyperbaloid
P4yt 4 2:0=6at (22 3)

4. Show that the normal at any point (zy; 31, 21) on the sphera
2 4 i 4 27 = 18 will pass through the cenler,

8. Find the equation of-the tangent plane at any poiot (x4, ¥y, 1)
of the sorface =1 + 1r’I +z =a! and show that the sum of the L]
of the intercepts which it makes on the codrdinale axes is constant.

6. Show that the volume of the tetrabedron ecut from the céor
dinate planes by any tangent plane to the surface ry=—a® is constant.

7. The sphere z*+ 3% +:*= 14 and the ellipsoid 32? +24* 4+ 22=20
pass through the point (—1,—2,—3). Determine the angle at
which their tangent planes at this point intersect.

8. How far distant from the origin is the tangent plane to the
ellipaoid =2 4 3 y? 4 2 22=0 at the point (2, —=1,1)?

9. Find the equation of the tangent plane and of the normal to
the cone 27 =2 27+ y® at (x;, gy, 1) on the surface. Show that the
plane will always pass throngh the vertex of the cone.

10. Find the equations of the tangent line to the circle
2424t =10,
z+e=0h,

L

at the point (2, 2+/3, 3).
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67. Successive partial differentiation. The expressious

o gfwhiﬁh were defined in Art. 62 are functions of both

ar’ dy
zand y. .

If :—3 15 differentiated partially as to =, the result is written

F
ke ok S
E::(ﬂ:c oz
This expression is called the second partial derivative of

z ns to x
Similarly, the results of the vperations indicated by

0 (o2 9 (dz\ 0 (3
dy \dx ) dx\dy )l dy\dy
. dz  dz = 2
are written ———, ———, —, respectively.
yad ey oy’ Peouvey
Beginning with the left, we call these expressions the
second partial derivative of 2 as to » and w», the second partial

derivative of z as to y and =, and the second partial derivative
of z as to y.

68. Order of differentiation indifferent.
Theorem. The successive partial derivabives

g8 Bx

dy dx’ dx dy
are equal for any values of 2 and ¥ in the vicinity of which
z and its first and second partial =~ and y-derivatives arve

continuons.
The truth of this theorem will e assumed. Tt should be

verified for special cases as in the following examples,
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Cor. It follows directly that unider eorresponding eonditions
the order of differentiation in the higher partial derivatives s
indifferent.

£g, S ET G
EXERCISES
1. Verify that ﬂi%_ ai:: when u = A,
2. Verifly that _.a.f_.a:'_ ﬂ?&r‘ when u = 2% 4+ .
3. Verify that af;! 2 af;:* when u =y log (1 + 73).

4. In Ex. % are there any exceplioval values of 'z, y for which the
relation in nob true?

8. Given u = (22 4 y0l, verify the I'nrmull.
f":F" +2xy i g 5 a"

6. Given u= (' + 3"z, show t.hn.h H:e expression in the left

member of the diferential equation in Ex. 5 is equal to L2

4

7. Given w = (224 »* 4 20}, Fuﬂl.hl.::: ::: g:—-ﬂp

8. Given u=sec (y+az) + tan (y — ox); prwathti_utﬂ"‘

oy’
e o= _ %
9. Given u=sin rcos y; verily t-lll-l'-a i g0 3x dy oz oy axt gyt

g
10. Given w = (4ab — e?)-l; pnwnthlntg':;l;‘=ﬂiﬂ*

B T - o dlu O _gdu
11. I u :+’.uhuwthn-t: +¥ﬂ:ﬂ_|r o

12, f‘im-—hg[:'+ﬂ pmnﬂ" g
13 "i={-l“+;l'}‘ show that the equation of Ex. § is satisfled.

14, Given u= (" + g+ + 0)"! +1-mwal"+g:+$ &E:i—m



CHAPTER IX

CHANGE OF VARIABLE

69. Interchange of dependent and independent variables. If
¥ is a continuous function of =, defined by the equatiom

Sz, y) =10, the symbol S—: represents the derivative of y with

regard to , when one exists. If x 1s regarded as & function of

3, defined by the same equation, the symbol ? represents the
L

derivative of = with regard to y, when one exists. It is re

quired to find the relation between dy and e
. e iy

Let , y change from the imitial values =, ¥, to the values
x, + Az, i + Ay, subject to the relation f{x, y) =0.
Then, since

-

&~

-

ls
=
=

it follows, by taking the limit, that
dy 1
2=z @
dy
Hﬂnlne, if y and = are connecled by a functional relation, the
derivative of ¥ with regard to x is the reciprocal of the devivative
of x with regard to y.
This process is known as changing the independent variable

from z to 3. The corresponding relations for the higher de-
124
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rivatives are less simple. They are obtained in the following

IMEALTET .

To express % in terms of j‘; LF; differentiate (1) as to x;
dy_d(Ll)_dfi)dy_afl) 1
dx® d::ld_ﬂ? dy|dz| dz dy|dx| dx
dy L dy dira' dy
e
d[1 mf
dy ('iy
dx
henece dy __ 2
dy
In a similar manner,
dzdr ( )
dy__dpdy_ \dy ©

)

70. Change of the dependent variable. If y is a function of

let it be required to express % %ﬁ, - in terms of d—E: %,

Suppose ¥ = ¢(z). Then
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] _E iz it n’z
ut R e O
Ilenee di'!" = ¢"'(z) ( ) + 'z {Fz )

The higher s-derivatives of y can be similarly expressed 1n
terms of r-derivatives of =

71. Change of the independent variable. Let y be a function
ol 2, and let both = and % be functions of 4 new variable ¢, It

15 required bo express jg in terms of !g, and g in terms of

i anmd "'Fi"'
il ife?
v Art 8, L]
d;,! it (1)
AT
i
dyde  drdy
hence %= il = T_ rf.t_ (=)
e il
(@)

In practical examples it is usually better to work by the
wethods here illustrated than to wse the resulting formulas.

7%. Simultaneous changes of dependent and of independent vari-
ables. Buppose, for example, that an equation involving =, w,
i
e
nto polar cobrdinates by means of the formnlas 2= p cos 6,
¥=p sin #.  Since the variables @ and y ire connected by some
equation (¥ being a function of ), we may regard x, », p as

. 18 given, and 1t 1s required to transform the equation
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funetious of 8. E.g., consider the furction

R-[H(g i 1‘

dat
From ArL 71, dy
rl'lr__ﬂ‘
e e

dé

dz 'y _dy &z
'y _ a6 de* e i
i (rl'::

and

Ry substituting these values in the expreasion for /2, it beeomes

o LG +Ga)]

dx Py lf_y_ﬁ

This iz in terms cf 4 new iﬁdupandunl: variable 8, We have
now to express these Sderivatives of x and y in terms of p

and @.
IFrom the relations @ = p cos #, y = p sin # we have

Ei'.t—_-.—_panl-ﬂ-l-mﬂgp d‘ I!I:Ill"-l-.ﬁllli"!E

e de’ o

$=—pma—zainﬂ$+ms*$,

iy

g =" sin 0+ 2 cos ﬂdp 4 win # Fo

ot riﬂ"
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4

Upon substituting these values in the last expression for R,

we obtain 3
o+
R= a4

Pﬂ 4 E(ETE) ﬁ

dag) ~ Fag

EXERCISES
1. Change the independent variable from = to = in the equation

210y +x%§+y=ﬂ, when x =+,

o g4
ﬂ:ﬂe‘f
dr sz !
dy Py e, _ du
detdst iz
Hemee ziﬂ "f—?- = oy =),
dxﬂ+:da:+y l}becurnesﬁﬂ+y U]

2. Interchange the function and the variable in the equation

3. Interchange r and y in the equation

)'ha
R
il x?

4. Change the independent variable from x to ¥ in the equation

ﬁ(ﬂ)g_*ﬂ‘fﬂ _ &y (EE)E: i,

dx drdr!  or?\dx

5. Change the dependent variable from y to z in the equation

diy 2(1 + y) [dv\? -
F_1+ i (ﬁ),whany-f-ﬂm:—
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6. Change the independent variable from z lo y in the equation

iu du
1I5+=#+u_ﬂ.-hn; log x.
7. T y in & funelion of =, and x> a function of the time r, express

Lhe y-aceeleration in terms of the r-acceleration, and the r-veloeity.

dy _ dydz

i dy _ dy d.

pance dt  dz di

']

I dy _dyd'z de 4 '!.!)*

- 2t dxdP T W i\l
5 i

Bl a{ ) ( .ﬂ “dt &’

henes 4y gy bt Sy (o)’

dft " dx det " de?\di

In the abbreviated notation for f-derivalives,

= Y
d‘r_d:n‘: +dl-[d':]‘.

8. Change the imll,-penduL variable from r to u in- Lhe squation

Ty, 2s= ¥ __ =0, when x = tanu.
T T4 id:: T i deiihy

9. Change the independent variable from z to ¢ in the equation

-ty dy =
i1 ﬂ}d.r' =< 0, when z = con L.

10. Show that the eguation

n""'l' dy =

remains unchanged in form by the sabstitulion x = i

EL. CALD.—1
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11. Interchange the variable and the funetion in the equation

aty (.’LE)’_ (*ﬁ!)‘_
s ilr ¥ del B
12. Change the dependent variable from g to z in the equation

Frb aly
..-:_E“-F{I_F}E-I-F!:n‘ when y = 2%

Change the independent variable from & to ¢ in the equations :

13, (l—r‘}%—:%—]—y:ﬂ, given T = cos L
14. fﬁ—g+3:“§:—;+ r:%+uzl}, given x = e
15. r"%{-u’yﬁl},::%.

::j—:—

16. Transform — h}r assuIming r = p o8 ﬂ, y=gp ain @.

17. G'l'ln.ru_:.' =T+ 808 y=d4+t*—dr Find S




CHAPTER X
EXPANSION OF FUNCTIONS

It is sometimes necessary to expand a given funetion in a
series of powers of the independent variable. For instance,
in order to compute and tabulate the successive numerical
values of sin z for different values of =, it is convenient to
have sin = developed in a series of powers of x with coeffi-
cients independent of z.

Simple cases of such development have been met with in
slgebra. For example, by the binomial theorem,

(a+ 2)"=a"+nu""'z + E%n'._ﬁu a*ta 4 -eg (1)

and again, by ordinary division,

1 =14+t 404 (2)
1—-=z

It is to be observed, however, that the series is a proper
representative of the fumetion only for values of = within a
certain interval. For instance, the identity in (1) holds
only, for values of x between —a and 4 a when n 15 not a
positive integer; and the identity in (2) holds only for values
of z between — 1 and 4 1. In each of these examples, if a
finite value outside of the stated limita is given to =z, the sum
of an infinite number of terms of the series will be infinite,

while the function in the first member will be finite.
131
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73. Convergence and divergence of series.®* An infinite series
is said to be convergent or divergent according as the sum of the
first » terma of the series does or does not approach a finite
limit when n is inereased without limit.

Those values of x for which a series of powers of = is' con-
vergent constitute the interval of convergence of the series.

For example, the sun of the first » terms of the geometric
SORES a4 az 40z’ 4oz’ 4 -

18 ﬂl=£1___ﬂ:j!
1—-=x

First let x be numerically less than wnity. Then when n is
taken sufficiently large, the term z* approaches zero;

Firioa lim &

L T

Next let z be numerically greater than unity. Then =* be-
comes infinite when = is infinite; hence, in this case

e 8, =o0.

= T

Thus the given series iz convergent or divergent according
a8 r 18 numerically less or greater than unity. The condition
for convergence may then be written

—1=xz=1,

and the interval of convergence is between — 1 and + 1.
Similarly the geometric series

1—8a4 02— 2T 2 4 oo,

* For an elementary, yot comprehensive and rigorous, treatment of this
Buhject, see Frofessor Osgood's ' Introdoction to Infinite Serles ™ (Harvard
Univeralty Press, 1897).
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whose common ratio is — 3 =, is convergent or divergent accord-
ing s 3 2 is numerieally less or greater than unity.

The condition for convergence is —1 << 32 < 1, and hence
the interval of convergence is between — § and + §.

74. General test for convergence.

Lt =y 4 vy g+ oo u 4w,y 4 o
be a series of positive terma having the property that u_;:.i < r
(r a fixed proper fraction) for all values of n that exceed a def-
inite integer k that can be assigned. We wish to prove that
under these conditions & is convergont. This is called the ratio
test for convergence. -

According to hypothesis we have the inequalities

!‘.iﬂ:,,:r’ EL-E{"rj E..:I"l{f’ ate,
Hy . Wy Uyip

By multiplying the first two equalities together we obtain
"fTH* <7 then, multiplying this result by the third of the
k
given inequalities wa dednce further “—":'-r::r"; and soon. These
results may be written in the form
Uy < Tty Moy < Ty, Ny o ity <00 ) Uy < 170,
Hence we have the inequality

8<wy+ugd oo uy vy vy vy 4

But' the series in the right member, which may be denoted by
&', can be put in the form

S =wmdmtec bbb P 404

=ty + by ety l—“'_;*
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The terms w,, tiy ---, u, being assumed finite, it follows that
&' is finite and hence 8, which is less than 8 also is finite,
Since & is fermed by the successive addition of positive terms,
it follows that the series § converges towards a definite finite
limit, ;

If the seriea § contauios an infinite number of negative, as
well as of positive, tering, it converges whenever the series
formed by the positive, or absslute, values of its terma con-
verges. The series is then said to be absolutely convergent.

In order to prove the preceding theorem, we obrerve that
the positive terms of S taken alone form a converging series,
whose limit will be denoted by 7, and the negative terms taken
alone will form a converging series whose limit will be denoted
by —N. Let S_ denote the sum of the first m terms of 8 and
suppose that these consist of p positive terms whose sum is
denoted by F, and of n negative terms whose sum is — N,
Then we have S_= J, — N,. Now when m becomes infinite,
p and n also become infinite, amd hence

Ev—- 3- i lim P—' “ﬂ H P N

nrm p=wm

Therefore, S is eonvergent.

When a series is convergent, but the series formed with
the absolute valuea of its terma is not convergent, the given
geries 18 said to be conditionally convergent.®

The absolute value of a real number u is its numorical value
taken positively, and is written | u |

If a series consists of terms that are alternately positive

* The appropriateness of this terminology is doeto the facl that the tarma
of sn absolutely convergent series can bo rearranged in any way, without
altsring the limit of the gum of the series ; and that this ks oot true of & con-
ditiooally convergent series. For a slmple proof, see Osgood, pp. 43, #.
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and negative, and if, after any definite term of the series, each
succeeding term is numerically less than the preceding one,
then the series is convergent.

For, suppose that beginning with the term w,, the series ia

F oy — Mgy Uy — Mgy Uy — e,

in which w,, v, ete, represent positive numbers and w, ., < u,,
Wypy < Mappy =ry Uy < ¥, for every value of m greater than k.
By grouping the Lerms in pairs, (M, — ;. 4), (W q— Uy4q)y -+, cach
of which is positive, it is seen that S" has a positive value,
which may be finite or infimite.

But 8' may also be written in the form

&' =Ny = [{"lﬂ == "l-rl} + (‘m_ "q.-H]' b e I

wherein the terms in brackets are all positive, hence 8 has a
value less than w, It therefore converges towards a definite
finite limit

It now follows that the approximate value of S" obtained by
algebraically adding w,, .., <+, n, differs from the true value
of the series by o number less than »_. This fact can be
shown in precisely the same way as that by which S' has just
been shown to have a value less than u,.

Ex. 1. Is the series I-—% +;—}_+ o o = 1]"'_‘:—‘+ s CON-
vergent ?

Since the terms are alternately positive and pegative and their
numerical values are always decreasing, it follows al onece from Lhe
preceding paragraph that this series is convergent. It will be found
later that ibs valoe is log 2.

Ex. 2 Prove the convergence of the series met with in Art. 18,

e 1 -
E — —_— S—_— i — wan
Hoitatatr - tat
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1 . Mg 1 :
mr u_+1_{“+]}1. Henes e Thia

ratio is less than § for all valoes of n greater than 2, and the ratio
condition for convergence is satisfied.

In this case u, =

Ex. 3. Prove the divergence of the Aarmenic series -

1 e | 1
] 1 Wi R O SR G
hgthz bk

The ratio u: us becomes greater than r when n iz sufficiently
large. By grouping the terms it inay be written in the form

L+ +G+D+R+I+HE+ P+
the smcceeding groups having 20, 2, - | 2= ... consecutive terms re-
spectively. The sum of the terms in any group is greater than j.
For,in the sth group the last term El" has the least value, and as there

are 2*=! terms in the group their sum is greater than 21 A _1
As there is an infinity of such groups, their sum is infinite, il

Ex. 4. Tha saries
1 gk | 1
S-—l+ +5-+ +n—’++ll

is convergent for p > 1.
Let the terms of § be grouped in the following manner:

11 1.1
= 2 3 ”
l+(w+3J ( +5f+m+?Jb ’

the nth group beginning with and containing 2= terma.

{*'P
The nth group is accordingly less than its first term multiplied by
; £ T |
the number of terms in the group, that is, < 2~-1. G @y
Hence we deduce the inequality

.S-r::l-l- 1 .pl—L'l'gp—j'l'”

the right member of which is a geometric series having E% a5 the

eommon ratio. Itis therefore convergent, and hence & is convergent,
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if ﬂ%{: 1. This inequality is satisfied for every value of p greater

than unity. Moreover, it was shown in Ex. 3 that for p = 1 the series

& 18 divergent. When p<Z1, § 8 divergent. For in that case

“_ﬁ:}ﬁr n i3 any positive integer (except 1), and therefore the

terms of § are greater than the corresponding terms of the harmonic
RETIER.

-

Hemnoa :

The necessary and sufficient condition that the series 1+ 1 4 % .
may converge is p = 1. -

1x. 5. Show that the serics — + 1 o L ; 1

i2tastia+ " Yammt ™

18 convergent.

T'his may be proved by comparison with Lhe series in Ex. 4 for the
particular ease p = 2,

Sinoe L <1, 1 = L 1 1 1

1-2 9.3 @'y .4 g ""n{n-r—I]{rF'm’

it follows that the value of the given series is leas than that of

1,1 1
e ks o T R

which is known to be convergent onaccount of the theorem deduced in
the preceding example.

Ex. 6. Examine for convergence the series whose nih term s ;:_ T
b ]
f 1 1
[Ilm-c. “=+1—n+£}"+1,]
n
Ex. 7. Examine for convergence the serica
12,8 (-1
275 10 T g1 T
Ex.8. Deterinine whether the series whose nth term is — : is
n? 4

convergent or not; the series whose general ferm is

nt 1’
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75. Interval of convergence. If the terms g, w, -+ of a given
series are functions of a variable x, then the series will usually
converge for some values of x and diverge for all others. In
such a case the problem is to determine the fmterval of conver-
geice, that is, the range of values of & for which the series is
convergent. The following examples will illustrate the method
of procedure.

Ex. 1. Deterimine the interval of convergence of the series
14+z 42224+ 307+ o0 4 AT 4 un

In this case u, = (n — 1)z ' and u_ ; = nz"

Ience, Bugy . = "

According to the ratio condition for convergence, it I8 necessary
that this ratio ghall be numerieally leas than 1 for all values of »

exceeding a fixed number & As n increases, the fraction —"

n ey
n.pprﬂ-a.uhau unity. Henee if | x| has any fixed valne les than 1, the
given series is absolutely convergent. The interval of convergence

is defined by the inequalities — 1 =z 1.

It is evident from the preceding example that the ratio eon-
dition for the absolute convergence of a series may be written

lim ﬂ“ 1
=

<t (3)

which iz especially convenient for application.

Ex. 2. TFind the interval of convergence of the series

14+2.2243-424+4 . 8224 5-1024 4 .-,
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Here the nth term w, is n22-%=1 and the (o + 1)th term u,,, is
{re+1) 2%2%;

Lience _(n+ 1) _(n+1)2x
t, wi=dgnld 5
therefore when n = @, Uptl = B g

It follows by (#) that the series is absolutely convergent when
—1<2x<1, and that the interval of convergence is between —
and + §. The series is evidently not convergent when z has either
of the extreme values.

Ex. 3. Find the interval of converpence of the series

:_- i }ﬂ I_::_u 1
PEPRRUS, o i o
1.3 3. d'+' »oT. ‘:t“ t @n-T)ze
Here Wear| _2m—1 G-t el Op ]
tiy T Og oyl gl I“""_ﬂn-l—l gt
i .
henca "limm H:—:' ::?‘3;

thus the eeries is absclutely convergent when ‘;:-n:'l, ie., when

— 8 < x=<_8, and the interval of coovergence is from —3 to <4 4.
The extreme values of x, in the present case, render the series con-
ditionally convergent.

Ex. 4. Determine the interval of convergence of the series

.~ R o e
§ 0 T Y % B i B OO
2r+41 {1‘-!+ X ) (2n-2)!

Since even powers of » are positive, the terma of this series are

alternately positive and negative. The term wu, ., is derived from u,

by multiplying it by For all values of n sueh that

¥
(2n—1)2n
this fraction is less than 1, we shall have the eondition | ey | << | w, |
and the series is convergent on account of the property of series with
alternately positive and negative terma.
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Ex. 5. Prove the convergence of the series
@ DHE D 1D 21

In this case Ju, | =="— (i+i+ +}.1'".)~ Notice that 'L“‘ | u,|

is not zero.  Tha series ia nevertheless oponvergent, but not a.]'_ts.u-lut.#l}

convergent. *f_‘,m.. Py ;,._..uuag_.."l:

Ex. 6. Determine the interval of convergence for the seriea

ol nz"
1-— e et i s it T e, -y
Fhg =gt F{—1) :

Ex. 7. Determine the interval of convergence for the series

boogee B o B e e W
=1 (x=1)" (z=1)" (x=1)" :

Ex. 8. Find the interval of convergence for the binomial series

L, afa—1) a{e—1)(a—2)
1 4 ax+ & %4 2 TET 24

in which a is any constant.

Ex. 9. Show that the series

LEEA T l(f)" l(f)‘_ l({)”

1“(3} b L 2 B\ 9 2

has the same interval of convergenes as Lhat of Ex. 3; but that the
extreme values of x render Lhe series absolutely convergent.

76. Remainder after n terms. The last article treated of
the interval of convergence of a given series withont reference
to the question whether or not it was the development of any
known function. ©On the other hand, the series that present
themselves in this chapter are the developments of given fune-
tions, and the first question that arises is concerning those values
of = for which the function is equivalent to its development.
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When a series has such a generating function, the difference
between the value of the function and the sum of the first n terms
of its development 1z called the remainder after n terms.  Accord-
ingly, if f{z)1s the function, S.(z) the sum of the first n terms
of the series, and K (z) the remainder obtained by subtracting

& () from fiz), then
@B SERBR p )= 5.0 + Rt
in which §,(x), B (x) are functions of n as well as of x

If HI"' R‘[:q:}z 0, then o 8.(T) :_fl::.'l::i;

nN=0 n—m

thus the limit of the series 8 (x} is the generating function
when the limit of the remainder is zero. Frequently this is
a sufficient tast for the convergence of a series.

Lf a series 18 expressed in integral powers of — a, the pre-
ceding conditions are to be modified by substituting = — a for
x; in other respects each eriterion is to be applied as before.

77. Maeclaurin’s expansion of a function in a power-series ®
It will now be shown that all the developments of functions
in power-series given in algebra and trigonometry are but
special cases of one general formmula of expansion.

It is proposed to find a formula for the expansion, in
ascending positive integral powers of @ —n, of any assigned
funetion which, with its successive derivatives, is continuous
in the vieinity of the value z = a.

The preliminary investigation will proceed on the hypothe-
sis that the assigned function f{z) has such a development,

* Named after Colin Maclaorin (IM8-1746), who puablished it in his
“ Treatise on Fluxiona' (1742); but be distinctly says it was koown by

Jamea Stirling (162-1770), who alse poblished it in his * Methodus Differ-
entialie "' (1730), and by Taylor (ase Art, TH).
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and that the latter can be treated as identical with the former
for all values of = within a eertain interval of equivalence that
ineludes the value 2 =a  From this hypothesis the coeffi-
cienta of the different powers of @ — & will be determined. It
will then remain to test the validity of the result by finding
the conditions that must be fulfilled, in order that the series
#0 obtained may be a proper representation of the generating
funetion.

Let the assumed identity be

flizy=A+ B(z—a) + Oz —a)'+ D(z—a)’

+E@—a)+, (1)

in which A, B, ¢, .-+ are undetermined eoefficients, indepen-
dent of =

Successive differentiation with regard to z supplies the
following additional identities, on the hypothesis that the
derivative of each series can be obtained by differentiating it
terin by term, and that it has some interval of equivalence
with its corresponding funetion :
S@)=B4+2C=z—a)+ 3ID(z—a)'+ 4 E(z—a)'+ .-
Sz = 2C +3-2D(x—a)+ 4&£-3E(z—a)'+
1" (@) = 3.2D +4.3.2E(z—a) 4

L L] - - " W [ ] ] L [ [ ] [ ]

If, now, the special value a is given to =, the following
equations will be obtained :

fla)=A4, f'(a)=B, ["(a)=2C, f*'(a)=3-2D, -

Hence, -
A=f(a), B=J"(a), c--”’_LI D= f_{_l
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The coefficienta in (1) are now determined, and the required
development 15

flx) =fia) + fia) (x—a) +f§,ﬂ£m —a)? +f—,;'-zﬁl (@ — a)s
. I&;%ﬂ Lm_ﬂ_jn+..., {2]

This is known as Maclourin's series, and the theorem ex-
pressed in the formula is called Maclaurin’s theorem.

Ex. 1. Expand log £ in powers of z — o, 2 hﬂlug pDBiti'I"'E
Here f(z) =log /(1) =1, f'(x) = - 5 f™"(x) =157 oy

forgey = EIia = i

£
Hence,  f(n) = log a, f'(a) = _. )= -~ _,.r"r,;ﬂ} - 1__'-=f

—1yYn — 1}
) = (—1) E'E“ }
and, by (2}, the required development is
Z L ay =L e ) otz — @) = s
lug:_lugu+a(x a) Euﬂ{: u}L+Hd.(r @)
s

The condition for the convergence of this series ia

(r=a) |
(n+1) aett

Ir —d

Iim
1=m

=1,

[z —aj<a,
0

Thia series may be called the development of log x in the vicinily of
x=a. Its development in the vieinity of £ = 1 has the simpler form

logz=x—1— {12+ 4(z—1)*—

which holds for values of = between 0 and 2.
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In using this seriea for the compulation of a table of logarithma
we may put for a any number whose logarithm is already koown, and
for r any number mear a in magnitude. It 15 a greal advantage to
keep r — a so small that the power-series in £ — a may be not merely
convergent, but may converge to its limit so rapidly that all powers of
z = a above the fourth or fifth may be neglected without l.fll'uctiﬂg the
desired degree of accuracy.

E.g., being given log 10 = 2.302585, suppose it is required to com-
pute log 11, log 12, .., log 20. Pota = 10,and r = 11. Then

log 11 =log 10+ = § ()" + §(Fa) "= 20 )* + 4070 )" = () "+ H( %) -

The numerical work may be tabulated in the following form:
+ 2URGRHN0
10000000 — 00500000
KL LIHHERN JOOOC2G00
D000 00000017
e — 00502617
240202043
L
2. 30THO526
Hence log 11 = 2307866 ..,

correct lo six places of decimals. To make sure of the sizth figure it
is well Lo carry the work Lo seven or eight figures. The remaining
terms of the seriea after §( &4 )7 cannot affect this resull, becanse their
sum 18 lesa than an infliite decreasing geometric progression whose
first term is }{ )" and whose ratio is ;. From the formula

i |
B
| I

it follows that the remainder is less than pee
To ealenlate log 12, log 13, -« we could now keep a = 10 and lat
x = 12, 13, .- snccesnively, but in order Lo secure rapid convergence it

is better Lo change the value of a, choosing for a the nearest nudhber
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whose logarithm has been found. Thus, in computing log 12 we can
use either of the two series

log 12 = log 10+ 4 — §(%)™+ K(&)* —
log 12 = log 11 + f — §(#)* 4 §()* = -

but it will be found that five terms of Lhe second furnish as close an
approximation as nine terms of the firsl. The practical advantage
of the step-bystep process will depond on how many of the intermedi-
ate values wo aclually require. If we are givem log 10 and wish to
eompate log 15, it may be easier to compule the latier directly with-
out determining the interobediate valoes.

Ex. 2. Develop fliz)=2*~ 2224+ 56z~ T in powers of £ — 1 and
use the result to compute £(1.02), £(1.01), £(.99), f(.88).

Fx. 3. Ievelop3¢*— 14y 4 7 in poworaof y — 2.

Ex. 4. Expand sin r in powers of £ — a and use the result to com-

pute gin 817
Let a = 830° £=31° In the formula
sinzr =sina 4 cosa(r - n}-!'.i:'.!i'{; —a)t — %(’ — ) oy

the difference r — a becomes 1° or 01745 radians, and the coeflicients
ol ila various powers are all known; sinee sin a = .5, cos a = B66025 tha
work is now reduced to nomerical ealoulation in which three terma
are sufficient to oblain the reault correct to six places of decimals.  In
genaral, to ealeulate sin r or cosx, ake for a the nearcat value for
which #in o, cos a are known.

The expansion of a fonction f(z) in & series of ascending
powers of x can be obtained at once from formula (2) by giv-
ing a the particalar value zero. The series then becomes

f®) = 1O + PO + EQat 4 (LT

BL. caLc,— 10
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Ex. 5. Expand sin z in powers of z, and find the interval of eon-
vergence of the series.

Heve fAr)=sinz, J{0) =0,
Sz} = coaz, =1
JF{r)=—sinz, £y =0, :
S(£)=— eosx, £ =—
f”{-!-‘}:ﬂ"lni', lI||"I'|-'{[I:'= 0,

friz)=conz, - =1,

+ +* 4 * + L] [ ] L] * L ] - L " L [ ]

Hanee, by (3),

N ]-:+‘ﬂ-z’—%:’+ﬂ-:‘+£—lx‘---;

thusa the required development ia

—pdag 1o 1 s ¥ il
sing=z— ot Lt - a4 "'{2:-;—1)1 e

To find the interval of convergence of the series, use the method
of Art. 4. The ratio of u, ., to u, is

Mgyj .  TWEl gl 3 .
e o+ (2a-1! 2n+1)2n

This ratio approaches the limik zero, when n becomes infinite, how-
ever large may be the fixed value assigned to z.  Thia limit being less
than unity, the series is convergeul for any finite value of =, and
henge the interval of convergence ia from =—o to + .

The preceding series may be used to compute the numerical value
of gin x for any given value of . It is rapidly convergent when x is
small. Take, for example, x = .5 radians. Then

- -5) (.5)°F (.5
B ) e {3 to5.4.5 2.3.4.5.86.7°% "
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= -E'r{Il,l]iH!m
Co= 208333
4+ D002604
— JMHMHILS
+ 000000
gin (.5) = 479256 -..

Show that the ratio of w, to w, is ;fy; and hence that the error in
stopping at u, I8 numerically less than wu, [gfs + (e 4+ -] that

18, < ghy uy
When r is not small, it is better Lo use the more general series in

powers of z — .

Ex. 6. Show that the development of eos x is

L g (- Dynigees
e R SR o

and that the interval of convergence is from — o to + .

Ex. 7. Develop the eaxponential functions o, =

Here
f(z)=a% f(z)=a" loga, /(x)=a*(loga)? -, F™(z)=a"(log a)";
hence (1) =1, f/(0)=log a, f'(O)=(log a@)*, -+, (D) =(log a)"

2 -
and a*=1 4 (log a)xr + ﬂgg%}-ﬂ_p et +L§;‘L;ﬂ+
.hﬁnﬂpﬂniﬂnﬂ.ﬂu,ﬁlll‘.n:r.
Then loga=loge=1,
' L ™
and E:=1+I+E_!+ﬂ+ €19 +m+ ]

These series are convergent for every finite value of =,

Ex. 8. Compute HF when r = .1.
Ex. 9. Compute 1{* when = = 2.01.
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Ex. 10. Ifining the hyperbolic cosine and the hyperbolic sine
by tlie equations

cosh r= {{e*+ ¢ =), sinhz = j(e* —e %),

prove iuﬂuh:: ginh x, i:a.inh:‘::1:s|:u;'l'|.1:,
dx dx

cosh 0 =1, sinh 0 = 0; and henee expand cosh ¢ and ginh z in powers
of z. Verily that coshx 4 sinhz = ¢%, and coshz — sinhz =e=
Compute cosh 2 and sinh 2 to four decimal places. Show that the
error made in stopping the series at any term is much less than the
last term used.

78. Taylor's series. If a funection of the sum of two num-
bers @ and = 18 given, f{a + ), it 18 frequently desir-
able to expand the function in powers of one of them,
BAY &

In the function f{e 4 ), a is to be regarded as constant, so
that, eonsidered as a function of =z, it may be expanded by
formula (3) of the preceding article. In that formula, the
constunt term in the expansion is the value which the fune-
tion has when » is made equal to zero, hence the first term
in the expansion of f(a +x) may be written f{a) In the
same manner the coefficients of the successive powers of =
are the corresponding derivatives of f{a 4 #) as to =, 1n which
z is put equal to zero after the differentiation has been per-
formed. The expansion may therefore be written

r )
fla+x)=Ffla)+ fla)xe + ;;“:r:i o ke -1-%&:’ + =
This seriea. from the name of its discoverer, is known as

Taylor's series, and the theorem expressed by the formula is
known as Taylor's theorem.



EXPANSION OF FUNCTIONS 149

Ex. 1. Expand sin {a 4 z) in powers of z.

Here Jila 4 x) = sin {a+z),
hence f(a) = din a,
and S(a) = eoa a,
Hence gin (& + 2) =sina + cosa-r— "0z P82

21 a1
Ex. 2. Compute sin 81°% by putting a = §0°.

EXERCISES
1. Expand tan z in powers of 2. Obtain thres terma

2. Compare the expansion of tan r with the quotient derived by
dividing the seriea for sin x by that for cos .

3. Find a limit for the error which oecurs in replacing coa r by
the first three terms of its expansion in powers of x when x = Jof a
radian.

3. Prove that log (z+ V1§ 29 =z — ""3-1 234 %---

2 24 1620 220
SRS e T o

6. Compute sin 1° correct to six places of decimals.

7. Expand v'1 — z¥in powers of x, and compare with the expan-
sion by the binomial theorem.

8. Expand cos x in powersof r — ;—'.

9. Expand £#+% in powers of k.

10. Arrange 3z* — Gx% 4 82 — B in powers of z — 2.
11. Expand log {z + &) in powers of k.
12. Arrange =* — 1 in powers of z 4 1.

nl T
13. Prove the binomial theorem (g + z)* = a4 - = E

Find the formn of the series when n is pot an integer, and determine
the interval of convergenca.
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14. Find 126 = v123 + 1 = 5v1 + {I5 to three places of deci-
mals by the binpmial theorem.

15. Find VI3H. = H’{f +?

16. Caleolate log 31.

17. What is the greatest value of m that will permit the approxi-
mation {1 + m)* =1 + 4 m with an error not exceading 001 ¢

18. Expand 1in powers of  — 1 and find the interval of con-

I

VErgenes.

79. Rolle'’s theorem. By Art. 76 a series can be the correct
representation of its generating funetion only when the re-
mainder after # terms can be made as small as desired by
taking n large enough. Before obtaining the form of this
remainder it is necessary to introduce the following lemma.

Rolle's theovem.  If f{z) and ita first derivative are continu-
ous for all values of = between a and &, and if f{a), F(#) both
vanish, then f(z) will vanish for some value of z between a

and . .
The proof follows immediately from the theorem of mean

valua (Art. 39). See Figure 41

80. Form of remainder in Maclaorin’s series. Let the re
mainder after n terms be de-

noted by K, (z, a), which s

- = a function of z and a as well
/ \ ag of n. Since each of the
U(u I X  suceeeding terms is divisible

¥

by (z — a)", K, may be con-
Fio. 41 veniently written in the form

Rn{I'l E} == _ ﬂ'} #.{:ml “‘}



EXPANSION OF FUNCTIORS 1561

The problem is now to determine ¢z, a) so that the
relation
[@)=f@+r @) -0+ @— a4 -
+«Mﬂ{:ﬂ u}ﬂ-l+4'{x'_1{3 }- {1}

(n — 1)!
may be an algebraic identity, in which the right-hand mem-

ber contains only the first » terms of the series, with the
remainder after n terms. Thus, by transposing,

&) — f(a) — 1 @)z — a) L. '-'“‘-';z ay —
Jﬂ_(z uj""“ 'ﬂﬁ_}(m ﬂ'}' {'2}

(h—1)
Let a new function, F(z), be defined as follows:

F)=f@)—f&)—SE)E ~32) -*%‘?w— 7~

e -tafe—. @

This function F{z) vanishes when z==x, as is seen by
inspeetion, and it also vanishes when z=a, since it then
becomes identical with the left-hand member of (2}; hence,
by Rolle’s theorem, its derivative F'(z) vanishes for some
value of z between = and a, say 5. But

F'(z) = — f'(2) + L (z) — (&)= = 2) + S (=) (= — 2) —

I:F_—__L::l}};{ £yt + ﬂa—f}ll{: — 2yt
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These terms cancel each other’in pairs except the last two;
hence

Binee F(z) vanishes when 2 = gz, it follows that
B, a) =" (z). (4)

In this expression z, lies between = and @, and may thus be

represented by g B )

where # is a positive proper fraction. Hence from (4)

¢ (2, a) ="a+0(z —a)],

and R, (z, a) =f{"1:l'1 +ﬂ5;:i:’— )] (z— a)~*

The complete form of the expansion of f(z) is then
£ix) = fla) + fia) iz —a) +ﬂﬂf-:‘—’ (& —a)? + -

; +H (x—a)y™-1 +:ift%m_4ﬁg=;gu (@—a)", (5)
in which n 1 any positive integer. The series may be carried
to any desired number of terms by increasing n, and the last
term in (&) gives the remainder (or error) after the first n
terms of the series. The symbol f™(a + 8 (x — a)) indicates
that f(x) is to be differentiated n times with regard to z, and
that x is then to be replaced by a 4 8(x —a).

* This form of the remainder was found by Lagrange (1T3-1813), who pub-
lished it in the Mémoires de I"Académie des Belonces & Berlin, 1772
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81. Another expression for the remainder. Instead of putting
R (z, a) in the form —a
(x, a) !_# - Iu:_l é (2, ),

it 18 sometimes convenient to write it
B (=x, o) = (z— o) ¢ (z, a).

FProceeding as before, we find the expression for F'(z),

In order for this to vanish when z = 2, it i8 necessary that

Bk ) = {{1-%&1'%_1 (x— &),

in which n=a+8(z—a) s—z=(z—a)l-6)
Heuce y(x, a)= e {“::""E{I";r “‘}},:1 8"z —ay*,
and Rz, @) =(1— E}" ™ + Bz — a)) (=

(»—1)1
An example of the use of this form of remainder is fur-
nished by the series for log » in powers of 2 — a, when x—a
13 negative, and also in the expansion of (a 4 x)™,
Ex.1. Find the interval of equivalence for the development of
log = in powers of  — a, when a is a positive number.

Here, from Art. 77, Ex. 1,
Finfx) = (—1}-—1'5";'}_',

, . |
honb, /e + bz —e)) = (~ ) G,

and, by Art 80,
P RO o £ o) PR ot ] R Sl S
Bo(z, a) nfu+ Hx —a))" n [u+ﬂ{.:—u}]

® This form of the rempinder was found by Caochy (17391857}, aod first
published imhis * Lecons sur le caleul infinitésimal " 1836.
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First let r — a be positive. Then when it lies between 0 and a, it
in numerically less than a + §(zx - a), since & is a positive proper
fraction ; hence when n = =@

[t —a) = 0 med Rute o) =0

Again, when = —a is negative and numerically less than a, the
s2cond form of the remainder must be employed. As befors

- _(=1*{n -1}]
Vi I'[ﬂ-l-ﬂ:—u}]_i{n..ﬂ{_l{j__ﬁj}:l

=l = gp-2. (=1 (x—u)"
hence Bz a) = (1~ 8 [a + 8(x —a)]*

o _._L__—{::—r}"
(1-#8) T T

__F[{ﬂ—n:}'-_-ﬂ{ﬂ-'i'} =l -z
v a—0(u - z) a—Ba-az)

The factor within the brackets ia numerically less than 1, hence
the (n — 1)th power can be made Jess thiun any given number, by tak-
ing n large enough. This is true for all values of = between 0 and a.

Therefore, log = and its development in powers of r— a are equiva-
lent within the interval of convergence of the series, that is, for all
values of z between 0 and 2 a.

Ex. 2. Bhow that the development of stin positive powers of
g — a holds for all values of = that make the series convergent; that
in, when z lies between 0 and 2 a.

If the function is expanded in powers of z, the complete
form will be

f(@)=10)+1"(0)z +{%Lf1=-+ "'EF_L*E} =

4 L200) ()
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for the first form of remainder, and

T@=fO+7 O+ Lt o 4 LG
M=

+ Ll{[ gyt - am (&)

—1)!

for the second form of remainder.
Bumilarly, tha complete form of Taylor's series (Art T8)

becomes
fa+a)=1@)+ @+ LD 4 o 4 {‘%ﬁ}
Lt ) @
.

for the first form of remainder, and

St =r@+r@e+ GDa o LB

M{l _ﬂ}i*T A (4}
(n—1)!1
for the second forw of remainder.

These forms are of no value for numerical computation
unless ' (x} can be determined, but may sometimes be used
to advantage to obtain & magximum error, corresponding to
amall values of n. It should be observed that when n=1,
the theorem of mean value results. (Art. 39.)

Ex. 3. Obtain the limit of error in retaining but two non-vanish-
ing terms in the expansion of log (r + V1 4 %) when z = L.

log (x+ V1 +1N=x2— _155_+|:g =i of 1]

2.3 |24
wherein y = fz. L+
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The next step ia to obtain tha larget and the smallest valoe which
the expression in brackets amtumes {or values of y within the interval
Oto }. For this purpose, consider the function

w3 ¥(3-247)
(1+39i :
du .

We find that ;f‘;' ia positive for all values of y between y =O0andy=1:

hence » has it largest value when y = }, and the corresponding valoe
of the last term is 000264,

Ex. 4. How many terms should be used in the expansion of e= in
powera of x to insure a result correct to four places of decimals when
z=}1

Ex. 5. In the expansion of logy (1 + z) in powers of £ how many
terms should be used in order to obtain the value of log, (1.8) cor-
rect to & decimals ?



CHAPTER XI

INDETERMINATE FORMS

82. Hitherto the values of a given function f(z), corresponding
to assigned values of the variable z, have been obtained by direct
substitution. The function may, however, involve the variable
i such a way that for certain values of the latter the correspond-
ing values of the function cannot be found by mere substitution.

For example, the funection

e—a"
sinx
for the value z = 0, assumes the form g. and the correspond-

ing value of the function is thus not directly determined. In
such a case the expression for the function is said to assumo
an indeterminate form for the assigned value of the variable.

The example just given illustrates the indeterminateness of
most frequent occurrence; namely, that in which the given
funetion is the quotient of two other functions that vanish for
the same value of the variable,

_ $()

Thus if f(x) )’
and: if, when r takes the special value a, the functions ¢(z)
and ¢(z) both vanish, then

_é(x) _0
f{n}-ﬁ;} ’

is indeterminate in form, and cannot be rendered determinate

without further transformation.
167
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B3. Indeterminate forms may have determinate wvalues A
case has already been noticed (Art. 2) in which an expression

that assumes the form gfur a certain value of its variable takes
a definite value, dependent upon the law of variation of It.hn

function in the vicinity of the assigned value of the variable.
As another example, consider the function

@—a'
z—a

!-

If this relation between = and y is written in the forms
y(x—a)=2"—a', (r—a}(ly—=x—a)=0,

it will be seen that it can be represented graphically, as in Fig.
42, by the pair of lines

g—a=10
Y

P/ y—a—a=0
Hence when z has the value of a, there
is an indefinite number of corresponding
/ ﬁl e points on the locus, all situated on the
line #=a; and accordingly for this
st value of = the function ¥ may have any

value whatever, and is therefore indeterminate.

When = has any value different from a, the corresponding
value of y is determined from the equation y=z +a. Now,
of the infinite number of different values of y correspouding
to x = a, there is one particular value AP which is continuous
with the series of values taken by y when z takes successive
values in the vicinity of #=a. This may be called the de-
terminate value of y when # =a. [t is obtained by putting
@ = a in the equation y= » 4 a, and is therefore y =2 a.
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This result may be stated without reference to a locus as
follows. When = =a, the function
z* — ot
T—a
is indeterminate, and has an infinite number of different
values ; but among these values there is one determinate value
which 18 continoous with the series of values taken by the

function as x increases through the value a; this determinate
or singular value may then be defined by

lim =& —a'

—

Ir=da T — il

In evaluating this limit the common factor z—a may be re-
moved from numerator and denominator, since this factor ia
not zgero while @ is different {rom @; hence the determinate
value of the function is

im 244,
e e 2a

Ex. 1. Find the determinate value, when = = 1, of the function

:-"+E:‘-_=H.r
38 -3 —-241

which, at the limit, takes the form g.

T'his expression may be written in the form
(s 4 D)2 — 1)
(ha* —1)(z - 1)

which reduces Lo ;': ﬂ‘:- Wheu z = 1, this becomes ;= a,

Ex.2 Evaluate the expression

4 ax? 4 air -I-__q:
= 4 Pr + az? 4+ ol

when £ & — a.
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Ex. 3. Doetermine the value of

2 —Trit 8414
43817z 4+ 14

when ¢ =2,

Ex. 4. Eraloats T— V& —= "':;—‘“

(Multiply both numerator and denominator by a + +va® — 3.]:

when z = (.

84. Evaluation by development. In some cases the common
vanishing factor can be best removed after expansion in series,
Ex. 1. Consider the function mentioned in Art 82,
e — g
ginx
When numerator and denominator are developed in powers of =,
the expression becomnmes

1+1+M+i—:+ (1—:+§; ;';I.+...)
t-—;‘;‘—:+
_21'+32[.r'+ -E+'§++-.
:—E+ 1—§+":

which has the determinate value 2, when x takes the valua zaro.

Ex. 2. Asanother example, evaloate, when = 0, the function
z —ain—tx
gin®x
By development it becomes

1 g
(I'*ie 3

-
Removing the common imtu-r, and then puiting x = 0, we obtain
e 1

) _1;'+...
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In these two examples the assigned value of x, for which the
indeterminateness occurs, is zero, and the developments are made
in powers of z. If the assigned value of 2 is some other number,
s @, then the development should be made in powers of z — a

Ex. 3. Evaluate, when :=E, the function

II'I:IISI-'
1—sinz
By putting = —g= B,z = T+ &, the expression becomes
T he AS
mos | — _ﬁ) — s —1 — e
(2+ _ —sinp __"TgT TG
s T 1 —cosk LI & A '
1 —sin(™ A) AL AN
E]"(EJ' YT TR T S
which becomes infinite when & = 0; that is, when = =%-
Hence Hin —@E =4 @,
=T 1 — wiux

sccording as b approaches zero from the negative or positive side.

85. Evaluation by Differentiation. Let the given function
be of the form '-E:FJ}, and suppose that f{a)=0, ¢{a)=0. It

is required to find :”I'L';g;

We assume that f(z), ¢(z) can be developed in the vieinity
of z = a, by expanding them in powers of x —a. Then

e T@@E -+ @ 0t

D pa) + # o) —a)+ —L“{m -

Jllay{a— ::}1—*"%1 (2 —a)! 4 -

Y@E-a+ Dt

EL. cane —11
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By dividing by # — o and then letting = = a, we obtain
im fz) _ S{&)
r=ag(n) ¢'(a)
By hypothesis the functions ("(a), ¢'(a) will both be finite.

T Sl _
If f'(a) =0, ¢'(a) =0, then = 0.

r fla
If fMay =0 a) = 0, then - e
7@ %0, '@ =0, then £
1f f(a) and ¢'(x) are both zero, the limiting value of ig}
is to be obtained by carrying Taylor's development one term
farther, removing the common factor {#— a)’, and then letting

x approach a. The result is :’;:Egi .

Similarly, if fa), M), S'(@); $la), ¢'(a), " (a) all vanish,
it i3 proved in the same manner that
lm fz) _ ")
=Etglz) ¢"(a)’
and 80 on, until a result iz obtained that is not indeterminate
in form.
Henee the rule:

To evaluate an expression of the form g, differentiate numer-
wtor and denominaior separately; subslitute the criticoad voalue of
x tn their derivatives; and equale the quotient of the derivatives
fo the indeterminate form.

Ex.1. Evaluate 1_—;_“'9 T
Put S =1-comf, H(H=F
Then JF(8) = siu b, (8 =28,

and Fom=n $'(0) =0.
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Thus, the function %%ﬂﬂ}i ia also indeterminate at # = 0. It is there-
f b bbain £.ob00,
ore necessary to obtain (0)
Accordingly, JF"(#) = cos 8, ' {f =2,
S0 =1, @ () = 2,
henca lim 1 —coa@ 1

—_

620" g 3

. lim a:-'-l-r"-j-ﬂrnn_t—l:
E-Iaﬂ- F'Il'l-d Eé“ _-]:" "

lim e 4 ¢ = 42008 x—4 _ lim o — g —Dginzx
x=10 b S x=0 e

_ lim &= e = —2eouzx
=10 19 2

_ lim = — g-= 4 Tyinz
T x=0 M

_ lim e*4e&* 4 2ooRx
= a0 4

&= R’

. lim *=—ginzcosx
Ex. 3. Find P

. lim zf — 278 — 4234 0 —§
i ; :
Ex Fm:iJ::l P |

In this example, show that z — 1 i3 & factor of both numerator and
denominator.

x =10 Fad

In applying this process to particular problems, the work
can often be shortened by evaluating a non-vanishing factor
in either numerator or denominator before performning the
differentiation.
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lim (z—4)"anz

Ex.6. Find o o"—"

The given expreasion may be wrilten

lim tan lim lim ta
gz 09" I:=n$ﬂ[='—d}i=éﬂ :’ .
=101 =10

In general, if f(z)=¢(z)x(=), and if ¢(a) =0, y(a)0,

¢(a) =0, then Im f(z ¥(@)
For e XY

lim (=) x(=) _ lim . lim $(Z) _ _ ¢'(a)
r=a $(x) I'=tlx{=] x = a¢(x) =) $'(a ;

" lim &in # coal =

Ex. 7. Fiud #i!{g—:._—'r.i

Ex. 8. Find lim (z—3)log(2 - I]_

x=1 min{xr — 1)
EXERCISES
Evaluate the following expressions :
3 locomr izt 9, Tier -3 swl
ginx z¥
- -
o sin #=0 8. hﬂr_!:‘:tm: when z=0,
-1
a. i when z= 1. ° . i i
iy " tan-'z )
4. b'_‘l. when = 0.
: 10, E“inr_i_ﬂwhun =10
5. u_“uwl:uau =1L fAyzlog(l—x)
wim b .
B ME*.&;:{L 11. hLl:n-n_I'hmI-:ﬂ,
z

There are other indeterminate forms than g- They are
® »—w, 1%



INDETERMINATE FORMS 165

86. Evaluation of the indeterminate form E

Let the funection fix) become ?_a when #=a. It 18 re-

$(x)
Ilm ﬂ_l
gquired to find = a'g(z)
This funetion ean be written
1
J(z) _¢(=
q‘.n{.t] I
flx)

which takes the form g when x=a, and can therefore be
evaluated by the preceding rule.

When 5.0, 1 d@)
Lima f{x} lim ¢(x J limy ['i'{m:l]!
r2ag(n) *=a 1 aza_ 1@
S () [A=)T*
_ lim [ Az} PPe(x) i
B P e 2
If both members are divided by 21T'uﬁ£%, when this limit
iz not 0 nor s, the equation becomes

_ lim f(z) /()
* = ag(z) f1(z)’

lim -"T__l} -ﬂ_]_
therefore

' ﬂ.: ] u[@(w} ‘{E} (2]
This is exactly the same reanlt as was obtained for the form
“: hence the procedure for evaluating the indeterminate forms

Sl =l=

‘l:g, i3 the same 1in both cases.
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When the true value of i{':ﬁ:’ is 0 or =0, equation (1) is salis-
0

fied, independent of the value of -;—:EE%; but {Z) still gives the

correct value. For, suppose lim vﬂ—l—-ﬂ' Consider thﬂ

function ¥ aelx)
Lo2] o e oy,
¢-(:3I (=)

which has the form % when == a, and has the determinate
value ¢, which is not zero, Henece by (2)
lin S(@)+cd(@) _L(0)+c¢' (@) _f@)
z=a  ¢(z) $la) '@
Therefore, by subtracting e,

lim Jf(2) _ (@)
x=ad(x) ¢'(a)

i 0 S@ _ o then T, j;{'f”;—’ 0, which ean be treated

as the previous case.

The forms 0-e0 and e —oo can usually be evaluated by
putting them in one or the other of the forms already dis-
cussed. In the case of the others, in which the indetermi-
nateness appears in the exponent, the logarithm of the
function can be reduced to one of the preceding forms.

EXERCISES
Evaluate the following expressions:

1. lo ai|‘15":r when r= 0. PR L
log &in = tan Sz

gec 3 &
gae O »

6. yvne when x =0
7. (oos ax)™" when z = 0.

r».IH m-q

R S 5, when z =7
cot

3. = when r = o,



CHAPTER XII
CONTACT AND CURVATURE

87. Order of contact. The points of intersection of the two
earves y=(x) y¥=ylx

are found by making the two equations simultaneous ; that is,
by finding those values of = for which

$lz)=y(z)-
Buppose ¥=a i8 ona value that satisfies this equation.
Then the point x=a, y = ¢{a)=y(u) is common to the curves.

If, moreover, the two curves have the same tangent at this
point, they are sald to touch each other, or to have contact

with each other. The values of ¥ and of E are thus the

same for both curves at the point in question, which requires

that i *{a} e 'P{ﬂ}i
$'(a) =y'(a).

If, in addition, the value of % is the same for each curve

at the point, then

¢'"(a) =¢"(a),
and  the curves are said to have a confact of the second order
with each other, provided ¢"'(a) == ¢'"(a).

If ¢(a) =¢(a), and all the derivatives up to the nth order
inclnsive are equal to each other, that is, ¢'(a) = ¢'(a),
$(a) = "(@) « (@) =§(a), but $"V(a) = ¢ a),
the curves are said to have contact of the nth order.

167
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88. Number of conditions implied by contact. If the equation
of the curve y = (x) is given, and it is required to determine
the equation of a second eurve y = () that shall have contact
of any given order with y=d¢(z) at a specified point, then,
from the definition given in the preceding article for contact
of the nth order, n 41 conditions must be imposed upon the
coefficients in ¢(£). The required eorve must therefore eon-
tain at least n+4 1 arbitrary constants in ovder to fulfill the
required conditions.

A straight line has two arbitrary constants, which can be
determined by two conditions; accordingly a straight line can
be drawn which touches a given curve at any specified point.
For if the equation of a line is written ¥ = mz 4 b, then

4y _ p, T¥
dhe dz?
hence, through any arbitrary point x=a on a given curve
3 =da(x), a line can be drawn which has contaet of the first
order with the curve, but which has not in general contact of
the second order; for the two conditions for first-order con-
tact are mi+ b = (),
mo=d' (1),
which are just sufficient to determine m and &,

In general no line can be drawn having contact of an order
higher than the first with a given eurve at a given point; but
there are certain special points at which this can be done
For example, the additional condition for second-order contact
i8 0 = ¢"'(a), which is satisfied when the point z=a i8 a
point of inflexion on the given curve y= ¢(x). (Art. 49)
Thus the tangent at a point of inflexion on a curve has contact
of the second order with the curve.

—_ul]';
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The equation of a circle has three independent constants.
It is therefore possible to determine a circle having contact of
the second order with a given curve at any assigned point.

The eguation of a parabola has four constants, hence a
parabola can be found which has contact of the third order
with the given curve at a given point.

The general equation of a eentral conic has five indopendent
constants, hence a conic can be found which has contact of the
fourth order with a given eurve at any specified point

As in the case of the tangent line, special points may be
found for which these curves have contact of higher order.

B9. Contact of odd and of even order,

TaroreM. At a point where two curves have contact of an
odd order they do not eross each other; but they do cross
where they have contact of an even onler.

For, let the curves y = $(z), y=y(z) have contact of the nth
order at the point whose abscissa is «a; and let y, ¥, be the
ordinates of thess curves at the point whose absecissa is a 4 &

Then v =d{a+h), yy=y{a+k),
and by Taylor's theorem
= d(a)+ ¢'@) -1+ 2D e

$(a) pey WM
. s fa #+{+1,-r(}+

o= (@) + ¥(a) - +*§;‘i‘-n’+ .-

'}’_] 4 LS| i
+ h {+1}* -y~ ia) +
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Since by hypothesis the two curves have contact of the nth
order at the point whose abacissa is a, hence

$la)=fla), ¢'la)=¢ a), -, p{a)=ya),

{nﬁ_l;_l;j!{'p'-l I-l'p]_:}-l— sas ,_lllr'u-l-l{a}_ .”]; |

but this expression, when % is sufficiently diminished, has the
same sign as At [t (@) — g ti(a) ]

Hence, 1f » i8 odd, 3, — p does not change sign when % is

and  p—y=

changed into — &, and thus the two curves do not eross each
other at the common point. On the other hand, if n is even,
# — ¥, changes sign with &; and therefore when the contact
is of even order the eurves cross each other at their common
point '

Geometrieally, we may say that two curves having contact
of the nth order pass through n 41 common points which
approach coineidence at the point of contact. For let y = ¢(x),
y = f(x) touch each other at » = a. This means that they have
two coincident points in common at (@, ¢(a)), and the condi-

tions to be satisfied are
¢(a)=y(a), ¢'(a)=y'(a).
If the curves also have a point in common for £ = a 4 &, then
p(a + y=y{a+ k).

Expanding by Taylor's series and making use of the preced-
ing conditions, we may cancel the common factor A% If now
this condition is still satisfied when & approaches zero, so that
the third point of intersection approaches the position of the
two coineident ones, then we must have the further condition
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#"(a)=¢"(a). Thus, three coincident points of intersection
imply contact of the second order. By repeating this argu-
ment the above theorem results.

For example, the tangent line usually lies entirely on one
side of the eurve, but at a point of inflexion the tangeunt erosses
the curve. ;

Again, the circle of second-order contact crosses the curve
except at the special points noted later, in which the circle
has contact of the third order.

EXERCISES
1. Find the order of contact of the curves
ty=cand y=z-1.
2. Find the order of contact of the eurves
z=yand =2y 4+1=0
3, Find the order of contact of Lhe curves
dy=x"—4dand £ -Qy=3 - 94
4. Determine the parabola baving ila axis parallel to the p-axis,
which has the closest possible contact with the eurve a®y = r* st the
point (a, a). (The equation of & parabolas having its axis parallel
to the g-axis ia of the form
y= Ax® + Bz 4 )

5. Ivtermine astralght line which has contact of the second order
with the curve y=2*—~8s8~ x4 D
6. Find the order of contact of
y=log(x—1)and s* -Gz 4+ 2y + 8=0
at the point (2, 0).
7. What must be the value of a in order that the curves
y=z+1+a(z-~1 audzy=3r-1
may have contact of the second order?
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8. Determine the parabola which has its axis parallel to the yaxis
and has contact of the sscond order with the hyperbola zy = 1 al the
point (1, 1).

9. Determine the point and order of contact of the curvea

(o) y=% y=06:2—0z44;
(B y=x, y=—0z-12x —H.

10. Determine the parabola which has its axis parallel to the y-axis,
passes through the point (0, 3), and has contact of the first order
with the curve y = 2 2% at the point (1, 2). Bimilarly for a parabola
having its axis parallel to the z-axis.

11. Show that the curve y = sinr has contact of the sixth order
with the curve gh, b

y=z - B + iﬁ
at the origin. Show that y =sinx, y = sioh :l.';*ha'ifa contact of the
seoond order ab the ordpin.  Draw these curves.

12. Find the order of contact of the curves y = cosz, y =cosh
at the point (0, 1). Bketch the curves.

13. Find the order of contact at the origin of the curvea

= tan = tanh IEBinhI.
¥ To- coah =

90. Circle of curvature. The circle that has contact of the
closest order with a given curve at a specified point is called
the osculating cirde or cirde of curvature of the curve at the
given point, The radius of this circle is called the radius of
curvatlure, and its center 18 called the center of curvature at the
assigned point.

91. Length of radius of curvature; coordinates of center of
curvature. Let the equation of a circle be

(X —a) + (¥ —fB)' = R, (1)
in which R is the radius, and e, 8 are the cobrdinates of the
center, the current coordinates being denoted by X, ¥ to dis-

* imf«-h;l".
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tinguish them from the codrdinates of a point on the given
curve,

It is required to determine R, a, g, so that this circle may
have contact of the second order with the given curve at the
point (2, ¥).

From (1), by successive differentiation, we deduce

dY
(X— ) +(Y—F) § L =0,
@

d¥\* Y

1f the circle (1) has contact of the second order al the point
(x, ¥) with the given curve, then when X =z it is necessary
that

Y=y,
dY_dy &Y ﬂ'] ()
iX dx' dX*

Substituting these expressions in (2), we obtain

@— o) +@—B% =0,

) )
14+(2) +0- —B5h=0,
whenee d dyy d_
r—ﬁ==—1+£.: [ ;_(,“i (5)
dz* : dz

and finally, by substitution in (1),

2 L& o
E'
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Ex. 1. For the curve y = sin z, show that & = r+4 col (1 +cos® 2),
B=—-2coszescxr, R= = (l4ocow’zr)?cscr. Find the nwmerical
values of @ and § when =0, %'. -;-'. ;. and locate the corresponding
points {(a, 8) on a drawing. Bkeleh roughly the path of this point
uk x varies. Write the equalion of the osculating circle for the point

— -:'. and for x = E Uraw Lbese eircles.

Ex. 2. For the curve y = 7% find &, 8, R in terms of . Compute
their numerical valuesat =1, .7, .5, 4, &. Show that R is a mini-
mum when z = — = 39 ..., and that the value of R is .57 ---.

vi5

92 Limiting intersection of mormsals. Let P=(x, ) and
F'= (r, y5) be two points on a given curve fix, ) =0. The
equations of the normals at these pointa are

dy,
g—x) 4+ (¥ — i) - =0
i:. ] Il. 1

- — )35 0.
(= —m) + (¥ h}ﬁ.
If (', B') is the point of intersection of these two lines, then
(=) + (B~ WG =0,
(e =2+ (B = w5l =0
Now consider the function ¥(2) of = defined by the equationa
V@ =E—a)+ (- B, S50 =0,

Since ¢(z)=0 and ¢§(x)=0, hence by Rolle’s theorem
(Art. 79) it follows that
: V(@) =0,
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in which ¥ is defined by the inequalities
Xy <2 F < Ty
Hence «f, 8 may be determined by the simultaneous
equations $(z) =0, ¢(x)=0.

When M= (=, ) approaches coincidence with the point
P={x, 1), then ¢'(x) = ¢'(x), and therefore from (4), the
point {(a', ") becomes the center of curvature, heuce:

The center of eurvature at a point P on a curve is the limiting
position of the point of intersection of the normal at P with the
normal at the point P, when /* approaches the position of P,

93.' Direction of radius of curvature. Sinee, at any point P

on the given curve, the value of gy is the same for the curve
T

and the osculating cirele for that point, it follows that they
have the same tangent and normal at P, and hence that the
radins of eurvature coincides with the normal. Apain, since

the value of :jii‘: 18 the same for both curves at P, it follows
x*

from Art. 50, that they have the same direction of bending
at that point, and hence that the center of curvature lies on
the concave side of the given eurve (Fig. 43).

It follows fromm this faet and Art. 87 that the osculating
cirele is the limiting position of a cirele passing through three
peints on the curve when these points move into coineidence,

The radivs of curvature is nsnally regarded as positive or
negative aceording as the bending of the curve iz positive or

negative (Art. 49), that is, according as the value of g i

positive or negative; hence, in the expression for R, the radi-
eal in the numerator is always to be given the positive sign.
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The sign of & changes as the point /* passes through & point
of inflexion on the given curve (Fig. 44). Itis evident from

the figure that in this case B passes through an infinite value;
aQ

Fia. 43 Fru. 44

for the circle through the points N, P, @ approaches coinei-

dence with the inflexional tangent when N and @ approach

coincidence with P, and the center of this circle at the same
time pagses to infinity.

94. Total curvature of a given arc; average curvature. The

total curvature of an are PQ (Fig. 45) in which the bending

is in one direction, is the angle through

which the tangent swings as the point

0 of eontact moves from the initial point

P to the terminal point ; or, in other

wordg, it is the angle between the tan-

gents at P and ¢, measured from the

former to the latter. Thus the total

curvature of a pgiven are is positive or negative according as

AP

Fra. 45

the bending is in the positive or negative direction of rotation.
The total curvature of an are divided by the length of the
are iz called the average curvature of the are. If the length of
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the are P{) is As centimeters, and if its total curvature is Ad

radians, then its average curvature is E radians per centimeter.

95. Measure of curvature at a given point. The measure of
the ewrvature of a given curve at a given point P ia the limit
which the average eurvature of the are PQ approaches when
the point € approaches coincidence with P.

Since the average curvature of the are PQ is E, the
measure of the eurvature at the point P is
lim & I'l"lfr
K= Ax=0 As dﬂ’

and may be regarded as the rate of deflection of the are from
the tangent estimated per unit of lenpth; or, as the ratio of
the angular velocity of the tangent to the linear velocity of the
point of contact.

To express « in terms of z, v, and the derivatives of ¥, we

d
bserve that tan ¢ =7,
obhsery n g o
whence b= tan—"!-i!"
d¢ _ d _dv
d ban™ =E
- ds ds( dx
il iy, dz
[ty I i [
dm(a“ dx) ds
&y
odx® 1
L T o
14(%Y &
+( 4
i
therefore = . 2 e B . [Art. 41.

R, AL, — 13
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96. Curvature of an arc of a circle. In the case of o circular

are the normals are radii;

Ag_ 1
h ] e + = - _1
BNce Ax =T+ A, e (1)
and therefore = l :

T

1t follows that the average curvature of all arcs of the same

circle is constant and equal to L radians per unit of length.
r

For example, in a circle of 2 feet radius the total curvature
of an are of 3 feet is § = 1.6 radians, and the average curva-
ture iz .5 radian per foot,

It also follows from (1) that in different eircles, arcs of the

same length have a total eurvature inversely proportional to
their radii.

Thus on a circumference of 1 meter radiug an arc of § decimeters
has a total curvature of .5 radian, and an sverage curvatore of .1
radian per decimeter ; but on & eiveumference of half o ineter radius,
the same length of are has a total curvature of 1 radian and an
average curvature of .2 radian per decimeter.

97. Curvature of osculating circle. A curve and its osculat-
in|.:_.-; cirele at P have the same measure of eurvature at that
point.

For, let «, x' be their respective measures of curvature at
the point of contact (x, ¥). Then from Art. 95,

dy
da’

e

L

K=
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But this is the reciprocal of the expression for the radius of
curvature (Eq. (6), p. 173); beuce

That ia: the measure of curvalure x at a point P is the recipro-
cal of the radiva of curvainvre R jor that point. Sinee a curve
and its osculating circle have the same radius of curvature
(Art. 90) at their point of contact, it follows from this result
that the measure of curvature is also the same for both; sx=«',

1t is on account of this property that the osculating circle
is called the circle of curvature. This is sometimes used as
the defining property of the eirele of curvature. The radius
of curvature-at P would then be defined as the radius of the
gircle whose measure of curvature is the same as that of the
given curve at the point /. Its valoe, as found from Art. 95
and Art. 96, accords with that given in Art. 9L

EXERCISES

1. Find the radius of curvature of the curve 3* = 4 ax at the origin.

2. Find the radius of curvature of the curve y* + =% + a(2*+ 3¥)
= a'y at the origin.

3. Find the radius of curvature of the curve ay = br? 4 criy at
the origin.

Find the center and the radius of ewrvalure for sach of the following
eurves at the point (z, y) and their numerical values at the special
point indicated. Find where the curvature is greatest and least on

each curve.

4. Reclangular hyperbola xg = m® at (m, m).
2 ¥ _
5. H}Pﬂf‘bﬂl; ™ 1 at {ﬂ, u}'
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6. General parabola a*-'y = == at (a, a).
7. Parabola v 4+ Vy = Va at (a, 0).
8. Hypoeyeloid z¥ + v/ = ad at the point at which z = .
9. Cimoid y* = x!

— L

= .
10. EIEEH‘IJZE{E'+ e s)atx=0

11. In what points of Lthe curve y = r* is the curvalure grealest?

98. Ilim:tﬂuiﬂth-lfthm;mhr-ullﬂhpﬂn
codrdinates. Using the notation of Art. 58, we have
¢=a+¢1
8 (1489
hence #——*n1= i‘dﬂ (1)
dé
14+%
=( ‘“) - [Art. 44,
[++(@&)]
But mn¢=p ) y = tan 'l[i}
dd

therefore, by differentiating as to # and reducing, we obtain
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which, substituted in (1), gives
F— F—E + 2(&)
dp
[+
Since x = %. it follows that

pe L7 H@)]

TPy g(i‘e)'

K=

dg? g

This result should be compared with that of Art. T2

When =1 is taken as dependent variable, the expres-
[]
sion for « assumes the simpler form

'(u+dﬂ,)
@7

Since at a point of inflexion x vanishes and changes sign,
henee the condition for a point of inflexion, expressed in polar

eodrdinates, is that » +$: shall vanish and change sign.

EXERCISES

Find the radius of curvature for each of the following curves:

1. p=d" 3 p=2acomfl—-a 5 ploe2f=

2 pl=atomd. 4 poeosi]f=a. 6 p=20a(l —coaf).
7. pf=a.
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EVOLUTES AND INVOLUTES

#9. Definition of an evolute. When the point F* moves along
the given curve, the center of corvature €' describes another
curve which is called the evolute of the first.

Let flz, y)=0 be the equation of the given curve. Then
the equation of the locus deseribed by the point C is found by
eliminating = and y from the three equations

A=, ¥)=0,

dy dy
148
o anie )
= & 3
dzt
1 +(g)'
P
fz®
and thus obtaining a relation between e, 8, the cofrdinates of
the center of curvature.
No general process of elimination can be given; the method
to be adopted depends upon the form of the given equation

Jf(=,y)=0.

Even when the elimination eannot be performed, the evolute
can be traced from point to point by computing successive
values of (a, 8) corresponding to successive values of (2, ¥).

Ex. 1. Find the evolate of the parabola ¥ = 4 pr.
1 d <] o 1
Hinea ¥ = E‘pl_r'l.l ﬂ—'irpl.: L E:‘IE: -'}plrl,
bence  z—a= — plrd(l 4 pr)2p el = - 2¢x 4 ),
snd  y—p= (14 pr)2pled = a(pid 4 platy;
therefore @ =2p 48z, f= -2,
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Fua. 46

The result of eliminating = between the last two equations is
& (a—2p)" = KpIB)
ey f{m— 2p)0 =27 pf,

which is the equation of the evolute of the parabola, @, # being the
gurrent cobedinates,

Use the expressions for & and # to compute their values, and to
loonte the points (o, 8) when x = 0, :E. p.

Ex. 2. Find the evolute of the allipse

&

ol i
atu=l (1)
x ] o kir
flers d—_l+ﬁ-—:_l'l. kﬁ:-;-,
y-=2
iy e _ —0f W\ _ =N =
df  at ,,:3:( +n';|r ﬂ.’.f'ﬂ"'l'ﬁ"i"} aig
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w hanes

T T .
b A (3 - (1§
Therefore -fim "'; ¥ (2)
Similarly, am®=Yo | (3)

at

On eliminating z, y belween (1), (2), (3), the equation of the
locus deseribed by (a, f) in

(@)l + @)1 = (@ — 9L (Fig. 51)
Use (2), (3) to locate various values of (a, 8), and trace the evolule.
Take a=24; a -iﬁg.

100. Properties of the evolute. The evolute has two im-
portant propertics that will now be established.

I. The normal to the curve is tangent to the evolute. The
relations connecting the cobrdinates (a, 8) of the center of
curvature with the codrdinates (=, ) of the corresponding
point on the curve are, by Art. 91,

2—at(y—B) =0, )
1+ +0-nTE=o. @

By differentiating (1} as to @, considering «, 8, y a8 functions

of @,we obtain dy\? @y da iy
IHE) +o-p-E-E 2=0 ®

Subtracting (3) from (2), we obtain

da
et @

d, dx
whenoe ﬁ__d_!b
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" But 28 is the slope of the tangent to the evolute at («, ),

and —3—5 is the slope of the normal to the given curve at
i)

(%, ). Hence these lines have the
same slope; but they pass through the
game point {e, ), therefore they are
coincident.

II. The difference befween two rodif
of curvature of the given curve, which
touch the evolute af the points O, O Fia. 47
(Fig. 47), is equal to the are (,Cy of the evolute.

Since B is the distance between the points (2, ¥), (= B8),

hence (z— )+ (y— f)'= A" (5)

When the point (x, ¥) moves along the given curve, the
point (e, #) moves along the evolute, and thus «, 8, B, y, are
all functions of x

Differentiation of (5) as to = gives

{m—aj(l +f—‘:)+{y—ﬁ]<g-g¥ =R§;—E; (6)

henece, subtracting (6) from (1), we obtain

@—a)2+ - pL=—nik M)

Again, from (1) and (4),

de  dB
fi5d i
z—a ¥—§8 )
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Hence, each of these fractions is equal to

V@& -
(d:r) + dx dx o

Ve-ayto—py .

in which o is the arc of the evolute. (Compare Art, 41.)

Next, multiplying numerator and denominator of the first
member of (8) by 2 — e, and those of the second member by
y— f, and combining wew numerators and denominators, we
find that each of the fractions in (8) is equal to

@0+ -k
@=a)+0—-87""

dR :
&

which equals —— by (7) and (5).

By combining with (9), we obtain

dx dr'
that is, di:'{cr + R)=0.
Thevefors o £ R = constant, (10)

wherein o is measured from a fixed point 4 on the evolute.
Now, let ), Cy be the oenters of curvature for the points
P,, Py on the given curve; let P,C,= R, F,C,= R,; and let
the arcs AC,, AC; be denoted by oy, o Then
ot By=ay+ R, by (10);
that is o—oy= + (Ry— R,);
henee, arc 0,C, = R,— R, - (11)
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Thus, in Fig. 48,
P]_LT' + G|LTt=PtE=
FyCy+ (40 = FyCy ete.

Hence, if a thread iz wrapped
around the evolute, and then 15 un-
wound, the free end of it can be
made to trace out the original eurve.
From this property the locus of the
centers of curvature of a piven
curve is called the evolwte of that curve, and the latter is called
the énvolute of the former,

When the string is unwound, each point of it deseribes 4
different involute; hence, any eurve has an infinite number
of involutes, but only one evolute. .

Any two of these involutes intercept a constant distance
on their eommon normal, and are called parallel ecurves on
aceonnt of this property.

Fia. 48

Ex. Find the length of that part of the evewute of the parab-
ola which lies inside the curve.

From Fig. 46 the required length is twice the difference between
the tangents CyF; and Py, both of which are normals to the
parabola.

To find the codrdinates of the point Py, write the equation of the
t:lmgeut.'tn the evolute at €, and find the other point at which it
intereects the parabola.

The codrdinates of (7, the point of intersection of the iwo eurves,
are (8 p, 4 pv'2), and the equation of the tangent at C, is

2 x — W2 y=—"tfp=0

This tangent intersects the parabola at the point (2p, — 2v2p),

which is P,. '



188 DIFFERENTIAL CALOULUS

The valne of the radins of curvature 1a 2{1'—:—_9}! » henee Py, =2p,
; vp
P05 = 63 p, hence the arc €,C, is 2 p(3v3 — 1), and the required

length of the evolute is therefore 4 p(3v3E — 1).

EXERCISES

Find the codrdinates of the eenter of eurvature for each of the
following curvesa:

L x?d gyt =al 3. y¥=ar

2. x=ﬂlww—\fﬂ‘-yﬂ &, y=£{e'_-|-e_i}.
el y ﬂ

Find the equations of the evelutes of the following eurves :
5. ry=al 6. aty? — ba?= — a% 7. £t + !.I'R . |

B. Show that the curvature of an ellipse is a minimum at the end
of the minor axis, and that the osculating circle at this point has con-
tact of the third order with the curve.

[N

Fra. 4%

This cirele of curvatore must be entirely ontaide the ellipee
(Fig. 49). For, consider two points Py, Py, one on each side of 5,
the end of the minor axis. At these points the curvature is greater
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than at B, hence these points must be farther from the tangent at B
than the circle of curvature, which has everywhere the same carva-
ture ns at S,

9. Similarly, show that the curvature at A, the end of the major
axiz, is & maximum, and that the cirele of curvature at 4 lies entirely
within the ellipse (Fig. 49).

10. Show how to sketch the circle of curvature for points between
A and B. The cirele of curvature for points between A and B has
three coincident pointa in common with the ellipse (Art. 83), benoe
the circle erosses the curve (Ari. 80). Let K, P, L be three poinls
on the are, such that K is nearest A and L nearest B. The cenler

B
L

=7

of eurvature for P lies on the normal to P, and on the concave aide
of the ourve. The circle orosses at P, lying outside of the ellipse at
K (on the side towards A), and inside the ellipse at L; for the bend-
ing of the ellipse increases from B to P and from P to K, while the
bending (eurvature) of the osculating cirele remains constant
(Fig. 50).

11. Two centers of curvature lie on every normal. Prove geo-
metrically that the normals to the curve are tangent to the evolute.
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12. Show that the entire length of the evolute of the ellipse is

JE a
1 (‘g— “E) [From equation (11) above, take B, R, as the radii of

curvature at the extremities of the major and minor axes.]

13. Ifi E is the center
of curvature at the vertex
A (Fig. 51), prove that
CE =ae?, in which e is
the eccentricity of the
ellipse; and henee Lhat
oD, CA, CF, CE form
a geonetric series whosa

eommon ratioig e. Show
also that DA, AF, I'E

forin a similar serjes.

14. If H ia the center
of ourvatore for B, show
that the point ff is with-

H out or within the ellijme,
Fia. 51 according a3 @ == or
< bv2, or according as £ > or <t L. Sketch the evolute when b = ?T{I'

15. Show by inspection of the figure that four real normals can
be drawn to the ellipse from any point within the evolute,
16. Find the parametric equations of the evolute of the cycloid
r=a(f —sind), y=a(l—cosd).



CHAPTER XIII
SINGULAR POINTS

101. Definition of a singular point. If the equation f{x, ¥) =0

is represented by a eurve, the derivative 3'_; when it has a

determinate value, measures the slope of the tangent at the
point (2, y). There may be certain points on the curve, how-
ever, at which the expression for the derivative assumes an
illusory or indeterminate form; and, in consequence, the slope
of the tangent at such a point cannot be directly determined
by the method of Art. 5. Such values of z, y are called sin-
guler valwes, and the corresponding pmnl:u. on the eurve are

called singular points.

102, Determination of singular points of algebraic curves
“When the equation of the curve is rationalized and cleared of
fractions, let it take the form f{=z, y =0.

This gives, by differentiation with regard to z, as in Art. 65,

a5 dy
oy
ar
whence :: % (1)

dy
% may become illusory, it is therefore neces-

dx
¥ 0 Yo 2
sary to have e Py (2)

1M

In order that
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Thus, to determine whether a given carve f{x, ¥)=0 has

singular points, put g—-g and % each equal to zero and solve
these equations for x and .

If any pair of values of zand y, so found, satisfy the equa-
tion f(, ¥) =0, the point determined by them is a singular
point on the curve.

To determine the appearance of the eurve in the yieinity
of a singular point (z,, %), evaluate the indeterminate form

iig
dy dx 0
iz~ a0
dy

by finding the limit approached continnously by the slope of
the tangent when x ==, ¥y =y,.

dafar
dy  deydr
dz d faf,

iz dy

& o

¥ Pf dy

dx*  dx dydz
T oy

dz 2l
at the point (2, ¥). %
This equation eleared of fractions gives, to determine the
slope at (m, ), the quadratic
8 (i & fdyy |, B
= == 2—(Z)4+ = =0
ay’(dm) g ﬂmﬂy(dx ol )
Thia guadratic equation has m general two roots. The
only exceptions occur when simultaneously, at the point in

question, #f A Fr
Sh=0, s =" 5=0 )

Hence

——
—_—

[Arts. 64, 85,
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in which case % is still indeterminate in form, and must be
evaluated as before. The result of the next evaluation is a
cubie in gi, which gives three values to the slope, unlesa all
the third partial derivatives vanish simultaneously at the
singular point.

The geometric interpretation of the two roots of equation
(3) will now be given, and similar principles will apply when
the quadratic is replaced by an equation of higher degree.

The two roots of (3) are real and distinet, real and coinci-
dent, or imaginary, according as
e 8L\ _%rsY

S \dzxdy/ arfay
is positive, zero, or negative. These three cases will be con-
sidered separately.

103. Muitiple polnts. First let /I be positive. Then at the
point (z, ¥) for which §£=ﬂ, gg: 0, there are two values of

the slope, and henee two distinet singular tangents. It fol-
lows from this that the curve goes through the point in two
directions, or, in other words, two branches of the eurve cross
at this point. Such a point is called a real double point of
the curve, or simply g node. The conditions, then, to be satis-
fied at a node (z, y,) are
S W =0, =0, T =0,
and H(z,, ») > 0.

Ex. FExamine for singular pointa the curve

3 -y -2 42V —Hy =\
KL carLc, — 13
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Hera g{:ﬂr—y+3ﬂ, gu;‘:—:—li-y—2=1-f+

The values z = 0, y = 0 will satisfy these three equations, hence

(1, 0) ir & singular point

: P o<, |
Sinen SL=0+0z=0at(0,0),
R
o dy '
B ol g s (00
E'_H" ¥ & {“! ]1-
T
7] X
Fra. 52

henes the equation determining the slope is, from (1),

A=A =

of which the roots are 1 and — §. It follows that (0, 0) is a doubla
point at which the tangents have the slopes 1, — 3.

Find the equation of the real asymptote, and the codrdinates of the
finite point in which it meeta the corve.

104. Cusps. Next let H=10. The two tangents are then
coincident, and there are two cases to consider. If the curve
recedes from the tangent in both directions from the point of
tangency, the singular point is called a facnode. Two distinet
branches of the curve touch each other at this point. (See
Fig. 53.)
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1f both branches of the curve recede from the tangent in
only one direction from the point of tangency, the point is
called a cusp.

Here again there are two cases to be distinguished. If the
branches recede from the point on opposite sides of the double
tangent, the cusp is said to be of the first kind ; if they recede
on the same side, it is called a cusp of the second kind.

The method of investigation will be illustrated by a few
examples.

Ex. 1. f(z, )= a%y® — afrt 4 25 =0,

g..£=..4qnzl+ﬂ:-; g—:zﬂu!yi

The point (0, 0) will satisfy f(z, y) =0, %:ﬂ, %: 0; hence it

is a singular point. Proeeeding to the second derivatives, we oblain

g=—lﬂa’:=+3l}:‘=ﬂat-(ﬂ,ﬂ},

¥

T _o,
azdf

ﬂ’.f o X

= 3 g
dy®
i
The two values of :Ei are there-

fore coincident, and each equal to Fia. 53

zero. From the form of the equation, the curve is evidently aym-

metrical with regard to both axes; hence the point (0, 0) is a tacnode.
Mo part of the curve can be at a greater distance from the y-axis

than + a, at which points 53 i3 infinite. The maximum value of ¥

corresponds to z =+ l:l"'u"'}. Betwean z =10, x =a\-"’i thers is a point
of inflexion (Fig. 53).
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Sketeh the curves oblained by giving larger and larger values to the

paramaler a.

Ex.2. finy)=y"—2=0;
A g B
a: :ﬂ'lay-ugy-r

llence the point (0, 0) is a singular point.

Further, %: —6x=0 at (0,0);
dx gy !
Therefore the two roots of the gquadralic equation defining :—E are
x

both equal to zero. 8o far, this case is exactly like the last one, but
here no part of the curve Lies to the left of the axis y. On the right
gide, the curve is symmetric with regard to the r-axis. As r increases,
y increases; there are no maxima nor minima, and no inflexions
{Fig. b4).

Ex. 3. Slny)=x* — 2az?y — axy? +a¥y? =0.
The poink (0, 0) is a singular point, and the roota of the quadratic
defining E'—: are both equal to zero, hence the origin is a cusp, and the
curpidal tangent ia the c-axis.

To show the form of the curve oear the cusp, solve the equation

for . Then
12 {1)

First suppose that a is positive.

When z is negative, p is imaginary; whanz =0, y = 0; when z i
positive, but less than o, ¥ has two positive values, therefore two
branches are above the raxis. When z = a, one branch becomes in-
finite, having the asymptote z = a; the other branch has the ordinate
i a. The origin is therefore a cusp of the second kind (Fig. 55).

Next supposa that o is negative. When z is positive, y is imagi-
rary; when r is negative, y ia real. The same reasoning as before
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shows that there is a cusp of the second kind in the second quarter,
with the raxis as a cuspidal tangent.
Fxamine the transition case in which a = Q.

: : ~ 4

Fio. 4 Fro. 65

s

X,

105. Conjugate points. Lastly, let /7 be negative. In this
case there are no real tangents; hence no pointa in the im-
mediate vicinity of the given point satisfy the equation of the
curve,

Such an isolated point is called a confugate point.

Ex. 1l f(z,¥)=ay®* -2+ ba? =10

Here (0, 0) is a singular point of the
locus, and at this point we find

bath roots being imaginary if o and &
hava the same sign.

To show the form of the curve, solve
the given equation for y.

— b
Then =4 PR Fmo. 56

and bence, if a and & are positive, thumnnllﬂljmhhmlh
eurve between r = 0 and x = b. Thus O is an isolated point (Fig. 50).
Examine the cases in which a or b is negative.
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These are the only singulaiities that algebraic eurves can
have, although complicated combinations of them may appear,
In each of the foregoing exawmples, the singular point was
(0, 0); but for any other point, the same reasoning will apply.

Ex. 2. flang)=2"+3pP-1dp -4x41Ty-3=0,

Y _op_4 Y_gpa 986,417
dr e dy ¥ ¥4 2

At the point (2, 1), £ =0, L0, ¥ _0; hence (2, 1) is
. : dx ay
& singular point.

o T T . (P . =
Also 6—5_21 a_:'e%-_“’ Eﬁ_lﬁy—ﬂﬂ, — — B at (2, 1).

Henge %: =4 % ; and thus the equations of the two tangents at the

node (2, 1Jarey -1=§{(z—2), g—1=—}{z—2)

When H is negative, the singular point is necessarily a con-
jugate point, but the converse is not always true. A singular
point may be a conjugate point when H=0. [Compare
Ex. 4 below. ]

EXERCISES ON CHAPTER XIII

Exzamine each of the following curves for multiple points and find
the equations of the tangents at each such point; also find the
asymptotes and sketch the curve

1. a%t = Byt 4 2yl

Fa
Qg -z

ﬂ.. ynz

3. zi 4yt = af; or, in rational form, (224 yt—a®)?+ 27 a%r%? = 0.

4. (2" — a¥) = 1,

5. y=a4z+bet+ exd; or,in rational form,
(y—a—z—be?)i—pigd = 1),
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When a curve has two parallel asymptotes it is said to have a node
at infinity in the direction of the parallel asymptotes Apply: to
Ex. 6.

6 (-4 +y=0

7 r*— 2ay*— 3a%F — 24 pat =0,

d yi=z{r+a)¥ a>=0; a'e_:ﬂ.

9. *—Jazy+y*=0. Find the asymptote and sketoh the curve.
10. = 2 + o5

131. Show that the curve y = z log r has a terminating point at the
origin. Fiod the minimum value of y and sketch the curve.

12, y=2Flogx.



CHAPTER XIV
ENVELOPES

106. Family of curves. The equation of a curve,

iz, y)=10,

usually involves, besides the variables # and y, certain coeffi-
cients that serve to fix the size, shape, and position of the
curve. The coefficienta are called constants with reference
to the variables = and y, but it has been seen in previous
chapters that they may take different values in different
problems, while the form of the equation iz preserved. ILet
« be one of these “constants.” Then if « is given a series
of numerieal values, and if the locus of the equation, corre-
sponding to each special value of « is traced, a series of curves
is obtained, all having the same general character, but differ-
ing somnewhat from each other in size, shape, or position. A
system of curves so obtained is called a family of curves.

For example, if &, & are fixed, and p is arbitrary, the equa-
tion (y—kP=2p(x—h) represents a family of parabolas,
each curve of which has the same vertex (A, k), and the same
axis y =k, but a different latus rectum. Again, if k is the
arbitrary constant, this equation represents a family of parab-
olas having parallel axes, the same latus rectum, and having
their vertices on the same line z = A

The presence of an arbitrary constant « in the equation of

a curve i3 indicated in functional notation by writing the
200
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equation in the form f(z, y, @)= 0. The quantity «, which
is constant for the same eurve but different for, different
curves, is called the parameter of the family. The equations
of two neighburing curves are then written

.ﬁ:rr ¥ “}=ﬂ! I;HI ¥, ﬂ+ﬂ}=ﬂ,
in which & is a small increment of &« These corves can be

brought as near to coincidence as desired by diminishing A.

107. Eavelope of a family of curves. A point of intersection
of two neighboring eurves of the family tends toward a limit-
ing position as the curves approach coincidence. The locus of
such limiting points of intersection is called the envelope of
the family.

Lt Sz, g, =0, flz,y, a4 h)=0 (1)
be two curves of the family, By the theorem of mean value
(Art. 39)

1@y a+R) = 1oy @) A (2 y, at0R),  (2)

which, on account of equation (1), reduces to

af
ﬁ{t' W, u+ﬂﬁ.} =,

Henee, it follows that in the limit, when h==0,
g{m. ¥, a)=10

is the equation of a curve passing through the limiting points
of intersection of the eurve (=, ¥, a) = 0 with its eonseeutive
carve. This determines for any assigned value of a« defimte
limiting points of intersection on the corresponding member of
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the family. The locas of all such points is then to be obtained
by eliminating the parameter « from the equations

1@ 0=0, Lz q=0

The resulting equation in = and y represents the fixed enve-
lope of the family.

108. The envelope touches every curve of the family.

I. Geometricad proof. Let A, B, O (Fig. 57) be three congee-
utive curves of the family ; let 4, Bintersect in F, and B, C'inter-
sect in @ When P, @ approach coincidence, P) will be the
direction of the tangent to the envelope at P; but since P,

W
4 B C
Fia. &7

are two points on B that approach coincidence, hence PQ is
also the direction of the tangent to B at P, and accordingly B
and the envelope have a common tangent at F. Similarly for
every curve of the family.

II. More rigorous analytical proof. Let ai fix, 9 @) =0
ic

be solved for a, in the form « = ¢{z, y). Then the equation

of the envelope is
Sz y dln ¥)) =0

Equating the total z-derivative to zero, we obtain

ar A dy ar(dd  apdyy ..
ﬂ:l:+ﬂy d.-n+ﬂ¢| ﬂ:+ﬂyd¢n 05
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but L =¥ 0, hence the slope of the tangent to the enve-

dd da
lope at the point (z, y) is given by
of L af dy _
ﬂ::+ﬂydm_ﬂ'

But this equation defines the direction of the tangent to the
curve f(z, y, a) = 0 at the same point, and therefore a limit-
ing point of intersection on any member of the family is a
point of contact of thia curve with the envelope.

Ex. Find the envelope of the family of lnes

y=me 4L, M
ohtained by varying m.
Differentiale (1) as to m,
dma—L. (2)

To eliminste = maltiply (2) by m and square ; square (1) and sul-
tract the fimt from the second. The envelope is found to be the
parabala P= dpz.

Draw the lineas (1) corresponding to
m=L234w m=-1,-9 -8 -4

109. Envelope of normals of a gives curve. The evolute
(Art. 99) was defined as the locus of the centers of curvature,
The center of curvature was shown to be the point of intersec-
tion of consecutive normals (Art. 92), whence by Art. 107 the
envelope of the normals is the evolute,

Ex. Find the envelope of the normals to the parabola y* = 4 pr.
The equation of the normal at (z,, 3.) is

y-g=g, ),
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or, eliminating & by means of the equation g,* =4 px,, we oblain
S, | ot | 1

The envelope of this line, when g, takes all values, is required.

Ditferentiate as to ¥, o8 x
8p' 2p

W= %E[I —2p)-

On substituting this value for y, in (1), the result,
ST py'=Hz—2p),

ia the equation of the required evolute. Show that this semicubical
parabola has a cusp at (2 p, 0). Trace the curve.

110. Two parametera, one equation of condition. In many
cages a family of curves may have two parameters which are
connected by an equation. For instance, the equation of the
normal to a given curve contains two parameters ,, ¥ which
. are connected by the equation of the curve. In such cases
one parameter may be eliminated by means of the given rela-
tion, and the other treated as before.

When the elimination is ditfieult to perform, both equations
may be differentiated as to one of the parameters, a, regard-
ing the other parameter 8 as a function of &. This gives four

equations from which «, 8, and %{E may be eliminated, the

resulting equation- being that of the desired envelope.
Ex. 1. Find the envelope of the line
¥ _1
AT

the sum of ita intercepts remaining constant.
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The two equations are = + E =1,
T

Differentiate both equations as to a;

—x_ ydh_
at  Pda ;
ik
I- a_;—u-
Eliminate b
it
Then -—:E.-, which reduces to
r ¥ 247
18 2 2L Shence a =i, b=vas
i e =i Whenoe a =Ver, b =Vey.
Therefore V4 vy =ve

is the equation of the desired envelope. [Compare Ex. p. 87.]
This aquation when rationalized ia

(x—9)1—2e(z+y) +c*=0.

By turning the cotrdinate axes through 457 show Lhat this repre-
sents a parabola whose axis bisects the angle between the origiual
axez, Show that the eurve touches both these axes Draw different
lines of the family, corresponding toa =4, b=4; a=5b=3; a=4§
b=2;a=T,0=1;a=8,0=0; ete.

Ex: 2. Find the envelope of the family of coaxial ellipses having
a constant area.
Hera :;:-I- g =1;
ab = 3,
For symmetry, regard a and b as functions of a single parameter ¢,
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Then by differentiation as to ¢,

s N8

= {},
a¥ dt M di

x|
hence pe L]

a=4xVE b=4yvV3
and the envelope is the pair of rectangular hyperbolas zy = & § &2
Y

Fua. 58

Norr. A family of curves may have no envelope; ie., consecutive
cnrves may not intersect; ¢.g., the family of concentric cireles =¥ +5*
=, obtained by giving r all posible valuea
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If every curve of a family has a node, and the node has
diffarent positions for different curves of the family, the enve-
lope will be composed of two (or more) eurves, one of which
ig the locus of the node.

Ex. Find the envelope of the system
S=E(y—=A)P+—xt=0,
in which X is a varying parametar.
Here g{ = — 2(y — A)= 0; by combining with f= 0 to eliminate
A, we obtain 2=0 r—1=0, 4+ 1=0.

From Art, 103 it is seen that the point
=0 y=Xx
i5 & node on f; moreover, the various corves of the family are ob-
tained by moving any one of them parallal to the p-axis. The lines
g—1=0z+1=0form the proper envalope, and x = 0 ia the locus
of the node.

EXERCISES ON CHAFTER XIV

Find the envalopa of each of the following familiea of corves;
draw to scale varions members of the family, and verify that the eu-
velope has been correctly found.

1. The family of straight lines zcosm + ysina = p, when « is a
paramatar.

2. A straight line of fixed length a moving with its extremitiea
in two rectangular axes.

3. Ellipses described with common centers and axes, and having
the sum of the semi-axes equal to c.

4. The straight lines having the product of their intercepts on
the codrdinate axes equal to 2,

5. The lines y— B =m(r — &)+ rv1 4+ m% m being a variable
parameter.
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6. A circle moving with its center on & parabola whos equation
is y' = 4 ar, and passing through the vertex of Lhe parabola

7. A perpendicular to any normal o the parabola §? =4 as,
drawn through the interseclion of the norimal with the z-axis

8. The family of circles whose diamelers are double ordinates of
the allipse Pr® + o = oW,

9. The circles which pass through the origin and have their
centars on the hyperbola 2% — ¢! = %

10. The family of straight lines y = 2 mr 4+ m*, m being the vari-

able parameter.

11. The ellipses whose axes coincide, and such that the distance
between the extramities of the major and minor axes is constant and
equal to k.

12. From a fixed point on the circumflerenea of & circla chords are
drawn, and on Lhese as diameters circles are deseribed.

13, With the point (z3, 1) on a given ellipse as center, an ellips
is described having its axes equal and parallel to those of the given
ellipse. Let (2, ) describe the given ellipsa.

14, Show that il the corner of a rectangular piece of paper is
folded down eo that the =som of the adges left unfolded is constant,
the crease will envelop a parabola.

15. In the “nodal family " (y — 2a)i=(r — a)*+ 8% — 3%, show
that the usnal process gives for envelope & somposite loous, made up
ol the “node-loous ” (a line) and the envelope proper (an ellipse).

16 The family of curves (y — x9) + a(zr — y) =0
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CHAPTER 1
GENERAL PRINCIPLES OF INTEGRATION

111. The fundamental problem. The fundamental problem
of the Differential Caleulus, as explaived in the preceding
pages, is this:

Given a function f{x) of an independent variable =, to deter-
mine ity derivative f'{x).

It ia now proposed to consider the inverse problem, viz. :
Given any function f'(z), to determine the function f(z) hav-
ing f'(z) for its derivative.

The solution of this inverse problem is one of the objects
of the Integral Calenlus.

The given funetion f'(z) is called the infegrand, the fune-
tion f(z) which is to be found is called the integral, and the
process gone through in order to obtain the unknown funetion
f(z) is called integration.

The operation and result of differentiation are symbolized

th ula
Ty 2 fz)=1'(a) M)
or, written in the notation of differentials,
df (z) = f(x)dz. (2)

EL. CiLe, — 14 200
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The operation of integration is indicated by prefixing the
SJ.'mbcllf to the funetion, or differential, whose integral it is

required to find. It is called the integral sign, or the sign af
integration. Accordingly, the formula of integration is written

R f@)= [ r@as.

Following long established usage, the differential, rather
than the derivative, of the unknown funetion f{r) is written
under the sign of integration. One of the advantages of so
doing is that the variable, with respect to which the integration
is performed, is explicitly mentioned. This is, of course, not
necessary when only one variable is involved, but it is essential
when several variables enter into the integrand, or when a
change of variable is made during the process of integration.

112. Integration by inspection. The most obvious aid to
integration is a knowledge of the rules and resnlts of differen-
tiation. It frequently happens that the required funetion f(x)
can be determined ai once by recollecting the resolt of some
previous differentiation.

For example, suppose it is required to find

fuus o o,

It will be recalled that cos x dx is the differential of sin x, and
thus the proposed integration is immediately effected; that is,

f-:.u:mz-:lz= Bin o

Again, suppose 1t 18 required to integrate

e



GENERAL PRINCIPLES OF INTEGRATION 211

in which n is any constant (except — 1). This problem sng-
gests the formula for differentiating a variable alfected by a
constant exponeut [(8), p. 44]. The formula referred to may

be written d pRi
i =
(n+ 1) =
a1
and hence we conclude, fﬁ" i = .
n+41

An exception to this result cccurs when n has the value — 1.
For in that case we deduce from (8), p. 44, the formula of

integration
fﬂ" da =fdi1: = log =
&

The method used in the above illustrations may be designated
as integration by inspection. This is, in fact, the only praetical
method available. The object of the varions devices suggested
in the subsequent pages is to transform the given integrand
or to separate it into simpler elements in such a way that the
method of inspection ean be applied.

113. The fundamental formulss of integration. When the
formulas of differentiation, pp. 4445, are borne in mind, the
method of inspection referred to in the preceding article leads
at once to the following fundamental integrals. Upon these,
sooner or later, every integration must be made to depend.
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1v. fﬂ“dﬂ:ﬂ-“.

V. fmudu=mu.

VL f!ﬂllﬁ dite =— cos ut,
VIL fum-‘ludu:tmu.
VIIL. jﬂﬂl‘ﬂdﬂ=—-ml;u.
IX. fﬂﬂ:ﬂhﬂ-ﬂ:dﬂ::ﬂ:m

X. fmnu col & i = — 0ac it

XI. J' d%__ _ gin—1 1w, or — cos—1 .
+v1—ud

du
. =tan—1 #, or — cot-1u,
X1l i i,

114. Certain general principles. In applying the above for-
mulas of integration certain principles which follow from the
rules of differentiation should be made use of.

(a) The integral of the sum of a finite number of functions is
equal to the sum of the integrals of the functions taken separately.

This follows from Art, 10.

For example,

' — 1 j‘n&n o
= fzidz— | —==—logmx
f x " “r:: = o B e B
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() A eonstant factor may be removed from one side of the
atgn of integration to the other.
For, since d{en) = ¢ du,

it follows that fﬂ dt=cu = chm:,

To illustrate, let it be required to integrate

fﬁ#’ﬁ&.

The numerical factor 5 is first placed outside the sign of
integration, after which formula I is applied. Accordingly,

fﬁfﬂm:ﬁfm‘dx—:%.

Apgain, supposze the integral
¥ dr
41
is to be found. We notice that if the numerator had an addi-
tional factor 2, it would be the exact differential of the
denominator, and formula IT would be applicable.  All that ia
required, then, in order to reduce the given integral to a known
form, iz to multiply inside the sign of integration by 2 and
outside by 4. This gives

ede _1 zde_ 1 (' 4+1) 1
211 2) il 2fdm=+1 =glog(¥+1)

In this connection it must not be forgotten that:

An expression containing the variable of integration cannot be
moved from one side of the sign of integration to the other.

(e) An arbitrary constant may be added lo the resull af
integralion.
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For, the derivative of a constant is zero and hence

du=du +c),
from whieh follows

Jduzfat{u+c}:u+c.'

This constant is called the constant of integration.

From the preceding remark it follows that the result of
integration is not unique, but that any number of functions
(differing from each other, however, only by an additive con-

stant) can be found, each of which has the same given expres-
sion as its derivative. [Compare Art. 10, Cor.]

Thus, any one of the functions »*—1, #+1, &+ a,
(x— a)(x 4+ a) may serve as a solution of the problem of inte-

grating J‘E & .

1t often happens that different methods of integration lead
to different results. All such differences, however, can occur
only in the constant terms.

For example,

fS{:ﬂ+l}’dﬂ:=3f{m+ 1d(z 4 1) = (e + 1)°
=#t+da'+3z+1

Integration of the terms separately gives
J‘Em’dm+fﬁﬂ:dm+ f.wa:=mt+3m=+3¢,

a result that agrees with the preceding except in the constant
term.
Again, from formula XII,

dr
——— =tan'x, or —cot 'z
f:-:"+1 %
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It does not follow from this that tan 'z is equal to —eot™' 2
But they can differ at most by an additive constant. In fact,
1t is known from trigonometry that

—ml;“‘::=ta.n“‘=:+k-a—+§,

in which & is any integer.
In a sunilar manner the different results in formula X1 can
be explained.

EXERCISES
Integrate the following :
1 {Vads. 11, J'“’“':‘fz.
oot x
[Hint. For the purposs of in-
tegration this may be written 12. lm_[' rds
COR T
j-.:& dr.]) .
&L
dz f 3
:- 'f:‘ !;Ia 13. j‘j: Iug I[ = Iug =] -
if_t. 1‘ ﬁ.r*dr_
3 |—. Z :
S Vi *+1
m 1] . = RN i,
Fol Bl LG 15. _rtau:d.r,[ — t]_
VI
5. j‘ (ol — My, 16. J'mt zd.
RSl e 2 P 17, (eoedz.
x
T, _f:{r-+ a2 dx. 18. j'a-': dx:
8. f(ax + Bz 15. f(a+bymtadr,
ilr
> J—JH,;.' 20. jcuu:;':rd_h

10. jﬂ 21. j’ain nrdz.

dgx — 1
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l4cos2x
y Tpagr| = N ——— = "z |,
23 _f-mu T rl: _f > }
23. Ialu‘x dr.  24. j-s-iul:m +n)xde. 25 j:: sin 29 dx.

26. jm-s':-:f.c[:j.l[l — gin® r)cos rd:]. a7, j.sin‘zd:i:.l

28. jtnn‘ x !h‘.[: j (sectx — 1}:!:]. 29. Ihn":mn*:rd;.
30. j' esc? (ar + b)dx. 31. I\-"n_u_l,.raﬂsn’.td:.
s (=]

33. j-se-c' T tan xofx.

34, tamn :|'.'|r||'_1.'r as dx

B0 T ol

[Hixnt. Divide numerator and denominator by a and then write

in the form d(—":) .
1
vi-(5)
36. _f_._ﬂ T:Eh' a7, j'ﬂﬂ’::‘ul. . (- Ifi -

_{x& '+:r|-5[ j'[:__’g}ﬂ

115. Integration by parts. If # and v are functions of =, the
rule for differentiating a product gives

d{uy) = v du 4 udy,
whence, by integrating and transposing terms, we have

fﬁdu:uuu t lus.
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This formula afords a most valuable method of integration,
known as integrotion by parts. By ita use a given integral is
made to depend on another integral, which in many eases is
of a simpler form and more readily integrable than the
original one.

Ex. 1. § tog xdz.
Amsume u=logz, de=dxr
Then d::d'—r, P=1rI

z
By substituting in the formula for integration by paris, we obtain,
Ilﬂg:d:: :Iogr—-!:h
. =rlogzr—zr=z(logz—1)
=={In|;'m—lngi]=:lng§.

Ex. 2. _[.-nw.:.
Amume u=x, dr =dzs.
Then du = dz, v =&,
and jﬂ'#::ﬂ'-jt‘#nf{:—l}.

Supposs Lthat a different choice had been made for w amnd de in the

present problem, say . _ . . cde

From this would follow .
¥
iy = " dlx, U=E'
o x1
and . j'm’d:_iﬂ--j'?em

It will be observed that the new integral I‘;—'e':[: is less simple in
form than the original one; hence the present choice of u and de
is not a fortunste one.

No general rule can be laid down for the selection of w and d».
Beveral trials may be necessary before s suitable one can be found.
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It is to be remarked, however, that de should be so chosen that its
integral may be as simple as possible, while » should be so chosen
that in differentiating it & material simplification is brought about
Thue in Ex. 1, by taking u=logx, the transcendental function is
made to dissppear by differentiation. In Ex. 2, the presence of either
x or ¢ prevents direct integration. The first factor & can be removed
by differentiation, and thus the choice u = x is uaturally sugpested.

Ex. 3. J,' 2ia* .,

From the preceding remark it is evident that the only cholee which
will simplify the integral is

u=3Y dv=0d"dr

Hoenes i =2xdr, 0= a” p
loga
and ‘f.ﬁ'r'r.‘..i: .., B 2 j.l:u"'-rf::.
logae loga

Apply the same method to the new integral, assuming

u=ur, ie =a%dr,
whenea i = iy, v = L8 L
loga
¥y o 1
and j-m ix i Iﬂgﬂj-n‘dx
_mx @ i
loga (loga)?

By substituting in the preceding formula, we have

§etoi = Ir:;u[ﬁ - 1:;: ® {Iu:u}‘]'
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EXERCISES
1. J‘ sin~! rdr. 7. j: cot-lxdz.
2. | ¢ tan- (") dx. 8 (rsin3zdr
3. j. z?eos odz, 9, j-ﬂ’ eo8 x dx.
4 j-z:"' log x dx. 10. je‘ sin rdz.
5. jﬂtan-lzdr. 11. I{:-nﬂ.rumﬂ rdr.
6. jne:: z tan x log cos z d'x. 12. j..r sec? xdx.

116. Integration by suobstitution. It is often necessary to
simplify a given differential f'{(z)dz by the introduction of a
new variable before integration can be effected. Except for
certain special classes of differentials (see, for example, Arts.
127-129) no general rule can be laid down for the guidanee of
the student in the use of this method, but some aid may be
derived from the hints contained in the problems which follow.

Ex. 1L J- L

VB—3

Introduce & new variable z by means of the sobstitution a?— 7=z

Diffarentiate and divide by — 2, whenee xdz= — J_: . Accordingly,

rdz Vit T b e
—— =— ==yl =2t = Va1
‘f‘v‘ui—r' 24 W2 Ej‘

The detaila required in carrying ont this substitution are so simple
that they can be omitted and the solution of the problam will then
take the following form :

ozt o rbaseeLf i net

1.,!'1,.15 o _a:i L
= —(a¥ — 7)Y,
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In this series of steps the last integral is obtained by multiplying
inside the sign of integration by — 2 and outside by —}§, the object
being to make the second factor the differential of a* — z% Think-
ing of the latter as a mew variable, the integrand contains this
variable affected by an exponent {— }) and multiplied by the differ-
ential of the variable, in which case formula I can be applied. :

Ex. 2. j"EE_‘ dx,
i

Assnme logz ==
Then LI
T
and j—g—rd: *-_‘rz oz = -— ﬂﬂE :_-}l

Here again it is not necessary to wrile out the details of the sub-
stitution, as it is easy to think of log = as a vew independent variable
and to perform the integration with respect to it. It is then readily
seen that the expression to be integrnted congigta of the variable

log  multiplied by its differential 9= —, and that the integration iz

accordingly reduced to an immediate apphuahnn of the first formula
of integration. Thus

j-lng: -d(log x) = ijﬂgif.

—1 ir
.3 ..
Ex. je" ey
Think of tan—!x as a new variable and apply formula IV, This _

gives L
.1.““_"1 pT = feme d(tan- x) = e,

Ex. 4. j‘ﬂm =1 :.*:.E:

Regard sin~'x as a new variable and —_"fi as the differential

of that variable. Apply formula I. V1 = x
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Ex. 5. [(z2+ 22+ 8)(x + dx.
Multiply and divide by 2. The integral then takes the form

%I(ﬂ+2:+3}-{2:+ 2)dx.

Observing that (22 4 2)dsc is the differential of £+ 22 4 3, and
using the latter expression as a new variable, we see that formula
I is directly applicable, leading to the result

Hat 4 2x 480

Ex. 6. j'lag coa (22 + 1) sin(2? + 1) - 2dz.
Make the subatitution 1] =0z
The given integral takes the form

%j.iug ©na 2 8in = dz.

Make a ascond change of variahle,
COBz = §.
Then gin z dz = — dy.
The transformed integral is
1
— E Ihgy dy,
to which the result of Ex. 1, p. 217, can be at once applied.
It will be observed that two substitutions which naturally snggest

themselves from the form of the integrand are made in succession.
The two together are obviously equivalent to the one transformation,

cos{x? 4 1} = y.
il il
Ex. 7. -f = Ex. B. L=+aﬂ‘

[Hist, Substitute u = az]
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Ex. 10 _fhr_:t

Ex. 9. 'f.-r v — g ﬂ’
[HinT. Substitute r = z 4 a.]

[Hl NT. Substitute r =§ ]

Ex. 11. jm u .,

Multiply and divide the integrand by cse u —cotinw. Tt will then

be seen that the integral has the form jfff
Another method wounld be to use the trigonometric formnla

sinuw = 2 8in EMEE,
EIH;* d ( )
whence jﬂﬂﬂ u i -_—f¢—u= j":"
9 gin Y cos =
in which { = tan E 2 2
Ex. 12. ‘fam i et
and use Ex. 11.

Putu=z-%
2
Solve the problem also by means of sobstitutions similar to those

used in the preceding example.

Fx. 13. _f Va — B dr. Ex. 15, (ezdr
gin® x
rdr Ex. 16. J. £2
Ex. 14 -{[:’— 1}' m’z + 2 gintx
Put tan x =

Ex. 17. Prove that @ = ‘::_} can be integrated by a substitution,
a+

when m i8 a positive integer.

117. Additional standard forms. The integrals in Exs. T, 8§,
11, 12 of the preceding article, and in Exs, 15, 16 of Art. 114,
are of such frequent ocenrrence that it is desirable to collect
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the results .of integration into an additional list of standard
forms. Two other very useful formulas are also ineluded, the

derivation of which we now give.

du
Integration of .
, = .rv‘uz-l-a

Maka the substitution
w AVl o=z

From this equation, we obtain, by differentiation,

@+—i—ﬁm=m;
w4 a

that is, VEFFa+u)— = d,
" ( )V’_ +a

(4T} dz iz
whence, — = .

Vul 4 a Vietatu 2

This gives, on integrating,

I

= log(u + ' + u).

du
Integration of e

The fraction

¥ — @
simpler fractions,

1 _171. 1 _ 1
w—o' 2a(ln—a utal

; Ay be written as the sum of

twao
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whose denominators are the factors of u* — a® Heance,

; du _ du
t{’—r.'.’ :1 "—a uda

1 1 H— L
| —ay—1 lop ——.
i og (& — a) ﬂEEu+a]:| 3o ﬂgﬂ-l—r.t
xmr [—%%_ — g ¥
Vai — 1 a
XIV. v,lj“T=lngcu+fw+a}
[ ]
" edu 1 L
V. u't+at a @
XVE [P =L ig k¢

XVIIL fmudu:-l-gmu=lugumu

XVIIL J‘ oot % dut = Tog sin 2.
XIX. fﬂﬂﬂ-dﬂ:=l|gfﬂnﬂ+hnu]=ln!1m{§+§)-
XX. fmudu:[u!(mu,_m“:|=|wmg-

118. Integrals of the forma

(Ax + B)dx Az + Bydx
axt +brte var' + bz + ¢

Such integrals occur so frequently that they deserve special
mention. The integration is facilitated by the substitution
of a new variable ¢ which reduces the affected quadratic
ar’® 4+ bx + ¢ to a pure quadratic of the form mi? + n. Thae
mode of proeedure will be readily understood from the follow-
ing illustrative problems.
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b zdr
Rk Sreraeey

The first stap is to complete the aquare of the r terms in the
denominator.  After the [actor 2 has been placed outside the integral
sign, the quadratic expression may be written

(Rrr+P+A-D=(E+1*+i
Now substitute o new variable ¢ in place of z+}. Since x = — | and
ir = df, we obtain for the new form of Lhe given integral

1p(e—3)edt _ 1 ,2eelt 10 de
2J P13 1) rE+d 4 # i

b 1 ag
1 (f“+- — —tan—t—
- 4) a6 v

=%1ﬂg(:~"+ :=+‘§)——Im“ FEl

2/ 9vh 5
Fx 4. f (22— 1)dz
VI4+2r— 309

Divide ont 3 [rom the denominator; sinee the coellicient of 22 i3

negative, put the = termain parentheses preceded by the negative sign
and complete the square. The integral then becomes

2z — 1dr
v'.s.[ vi—(z— 1)
Now make the substitution z — =1t Binee dx = dt, the integral
reduces Lo

e C R el e =
=—j‘$(‘4 tﬂ)i E—Iiﬁaiu—‘(%f)

=_'_\“ _._-:-—_-gﬂ__]'_g_]n—'l(gr !‘)
HEVE 2

:——"'I,JI]+2I—31.“‘—LE'I-II-_I(I1 1).
3v'3 2

EL. CALD, =16
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It is seen from the two preceding examples that the method
here used contains two essential steps:

(1} Completing the square of the = terms in a2’ 4 be 4-¢ ;

(2) Substituting @ new variable for the part in parentheses.

If the numerator of the new integral contains two te:rlms,
separate into two integrals and integrate each one separately.

EXERCISES
1. J‘L. 8, j' (22— Hyde
2aitdr+l NV
i
) A . A—— =
j‘ﬂ-r“—:!.t+ﬁ 9. jﬂill_t_ﬂ"‘__:-:fr.
3. j' _ dr ' [ Rationalize the numerator. ]
B4 4xr— 48
4 j' d= . 10. j’{ﬁ-:r-;ﬂ!rfa&.
3 - — b2
Vvilz — 9 — 24 +
dr n— I
5. — ’ 11. v/ dr.
j"l.-"".r_""-l-- Qx4 2 j‘ =
6 [ =4z . 12. j‘_JEI_Jr_lJ"‘_# _.
B e v—2zE _Bx-1
VE —dx— 418 VeBz—%z 31

119. Integrals of the forms

f__ dac s dax
(Ax+ B)vVaxs + b + ¢ (Ax+ BYvVari 1 bxr + ¢

Integrals of these types can be reduced to forms given in
the preceding article by means of the reciprocal substitution

1 dt

¥
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EXERCISES

1. —L' 7. j. i__'___

IVt gl (=4+2)v -2~ r_7
2 j‘ aE

PV — xd a. J-—

iy gd — pE

3 ax :

J‘."\"II;JII_ 'lI!—]- 1 9 j- "F:!'-_I-

ifx xivird —

(z+Dv2+2x 4+ 3

-J
5. j- _ dx . L j._ﬂl,,_,.rx=+ T
o

(z+ Dveig el

oz ! 11 j' e
(l—x)vIdZ—dx+ 1 (2z—1)vieE 3

EXERCISES ON CHAPTER |

1. Ie"e*d.l:. 7. jz{r:“—.:f]id::.
e

2 5 8 xdx
‘i'-l-.-[f' J‘{ﬁ + l}i

2R3 dx
g (24 :
j‘ﬁ:'+lﬂ.1'+ﬁ

ilx

8. ;
J"1|.l'.1:+l+"|.-"'.:—].

3. I-I-Id.r,

vV 10. Imaﬁrd::.
5 IL

vi_2zx 11. j&tﬂ-‘l:d:.
[

j-(f%}'j._: 12. j.ﬁ’ A % dE.
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ain E fdx
D an ol W 23. .- Wl
acosx + b 'fﬂ vl — log z
14, j- . &= i
VI == U
[Pute—= =] .
rdx . -1 coa ¢ df .
15. j j'\.’l+cﬂﬂ’ﬂ—ainﬂ
16. e — T 26, L-
'rfi-t.'* + 8 £% I#{lﬂg#:l=+ z
17. - aecx 19
j- g I : 2T, J‘(E—_-b—m) d-'l-'-
18 §xttan—lgrdz
‘f 28, j' {x — @) dr 2
19. 2z Vo' —al{x — a}*-{i';_taji
“I
Iz
1—sin # 29. f—
20. L+ma[ { —3 "'9] jﬂ\-’&z’+2:+1
df : s
21. I—cond 30. j.l::ng{m-p mﬁ
tan & df
2 a4 htan?d 31. _fﬂin z log tan x dz.

EEJ— [ j‘ gifi TdE
1+m1:..1' Bin T 4 cos x

zlj(uinx+ eod &) — (08 x — gin x) .
2 Bin x + cod =

= Je-SarEavl

[Another method would be to multiply numerator and denominator
by sin x{cos = — sin ) and express in terms of the double sngle.]




CHAPTER II
REDUCTION FORMULAS

120. In Arts. 118, 119 the integration of certain simple ex-
pressions containing an irrationality of the form a4 beyc
was explained. As was shown in Art. 118, the radieal can
be reduced to the form v + z¥ + @® by a change of variable,
It remains to show how the integration ean be performed in

in such cases as, for example,

Sovivian,

n being any integer.

_adz
ViFia

For this purpose it is convenient to consider a mora general
type of integral of which the preceding are apecial cases, viz.,

f (6 + ban)eda, (1)

in which m, n, p are any numbers whatever, integral or frac-
tional, positive or negative.

It is to be remarked in the first place that n ean, without
loss of generality, be regarded as positive. TFor, if n were
negative, say n = — n’, the integrand eould be written

E P— m ﬂi!""—[—ﬁ ._ ~pnl f
n:’(n+¢#) _:l:( e )-..’.-.1" (b + az*')

This expression, which is of the same type as a™(a - bz, is
such that the exponent of = inside the parentheses is positive.
s
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It will now be proved that an integral of the type (1) can in
general be reduced fo one of the four integrals

(@ Afx=ra+bepds, (0 Afzast beryde,

() A [en(a + barya, (d) A f 2%(a + ban rida,

plus an algebraie term of the form
Bt + bxm)e,

Here A, B, A, p are certain constants which will be deter-
mined presently.

Observe that in each of the four cases the integral to which
(1) is reduced is of the same type as (1), but that certain
changes have taken place in the exponents, viz.,

the exponent m of the monomial factor is increased or dimin-
18hed by =,

or, the exponent p of the binomial is increased or dimin-
ished by unity.

The values of A and u are determined by the following rule:

Compare the exponents of the monomial factors in the given
integral and in the integral to which @t is to be reduced. Select
the less of the two numbers and increase it by unity. The result
is the value of . In like manner, compare the exponents of the

binomial factors in the two integrals, select the less, and increase
it by unity. This gives p.

Thus, if it iz desired to reduce the given integral to
A f (@ + bas)*d,
first write down the formula

rm'{a + br*yrde = A 'r o™ a 4 br=yrdr 4+ Bri(a + hav)e,
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The exponents of the monomial factors in the two integrals
are m and m — n respectively, of which m — n is the less.
This, increased by unity, gives the value of A; that is,
A=m—mn-+1L

Again, the exponent of the binomial factor in each integral
is the same, namely p, so that there is no choice as o which of
the two is the less.  Inerease this number p by unity to obtain
the value of . Henee p=p+ 1.

The above formula may now be wrntten

f (a4 bav)rda
= Af:n""(:l + bk 4 Bam= a4 byt (2)

In order to determine the values of the unknown constants
A and B, simplify the equation by differentiating both mem-
bers. After being divided by = (a4 bx*)* the resulting
equation is reduced to '
z* = A+ Ba(m —n+ 1) + Bb(m + np + 1)2".

By equating coefficients of like powers of x in both members,
we find the values of A and B to be

e iy

bim +np+4 1)’ =b{m+np+1}'

When these values are substituted in formula (2), it becomes

[(2m(a +ba~yrda
_loam—n4l) (a. IO et (22 i
a "“7:‘-‘:'1‘|‘1"':F'+1]-1‘2:“l e Thehet b{m 4 ap + 1) 4]

Notice that the existence of formula (2) has been proved
by showing that values can be found for 4 and B which make
the two members of this equation identical.
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There 18 one case, however, in which this reduction is
impossible, viz., when
m+np+1=0,
for in that case A and B become infinite. [See Ex. 4, p. 235.]
In a similar manner the three following formulas may be
derived :

fﬂ:"{u-q—.'rz'}i’rt‘m
__bmgntapil) (oo : o L e 0
(w4 1) s aim+1) [E]
fa:‘(u+b:|:‘}’{b:
= —ﬂ.n'p o :I':ﬂﬂ;{-bf h. L
_m+nj:+1fr[ﬂ+b$}rwm+ m+np+1 L
Jortat by
_m+n+rp+1 g @ 4 byt
B Ll B

The cases in which the above reductions are impossible are,
For formulas [A] and [€], when m 4+ np41=10;
for formula [R] » when m41=0;
for formula [ ; when p4+1=0.

Ex. 1. j..r"u"'ﬁ“ g 7

If the monomial factor were x instead of 2% the integration could
easily be effected by using formula L. Sinee in Yhe present case
m=23 n=2 formula [A], which diminighes m by n, will redune_ the
above integral to one that can be direetly integrated.
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Instead of substituting in [A], as might readily be done, it is best
to apply to particular problems the same wode of procedure that was
used in deriving the general formula. There are two advantagea in
this, First, it makes the student independent of the formulas, and
socond, when several redoctions have to be mude in the same problem,
the work is generally shorter. [Ses Ex. 4.]

Accordingly amume

frar — b dz = 4 [z(at — ) dx 4 Brrg@ - )},

the valuesof A and p having been delermined by the previously given
rule.

Differentiate, and divide the resulting equation by r(e® — )%

This gives 2= A + B(2a® - 5,

from which, on equaking coeffieienta of like powers of x,

-l'1=2_fﬂ| ﬂ-—lt
B b

henos,
j'll-.a'—..-_ Fde ='-'T""j'.:u* — ) rdr — 1 2yat - )t

= M2a? + 3 (a® - )L

Ex. 2. j'v'—'ﬂ_z.-. —F .

By following the suggestions of Art. 118, this integral ean be re-
dueed to the form
j' Vi = 4 iz,
in whichz==2z - 1.
Amume

j' @E-tli=af@ -0V iy B=-9h

In determining A notice that m = 0 in both intagrals, so that
A=0+1=1 Abop=-}+1l=4§
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Ex. 8. f Viar —Hdz.

The mode of procedure of Ex. 2 may be followed. Another method
can also be used, as followa.
Un writing in the form

f#l@a -2tz

and observing that the integration of
I.t-i Za-2)"Vdx =j. - S

i —

can be performed (sea Ex. 10, p. 222}, it will be seen that integration
may be effected in the present case by reducing each of the exponents
m and p by unity. This is possible since n = 1 and m can accordingly
be diminished by 1. Hence assume

fA@a-nt d.:.:m_fz‘lfﬂu — ot dz 4 pd(2a -l

The exponent of the binomial in the new integral may be reducad
in turn by asauming :

J-.'E'-.l{:iﬂ - .1.'}!' dx = .*I""j..r_i (2a— :.'”'I_i dx + ﬂ""':;fﬂ‘u - ::ji.

When this expression is substituted for the integral in the second

member of the preceding equation, the result takes the form
T dx | i i

[ voar—2dz = Aj;ﬁ”_ﬂ—i- Bed@a— i+ od@a— o,
in which 4, B, € are written for brevity in the place of A'4", A'B",
B’ regpectively. The values of A, B, € are calenlated in the nsual
manner h}’ diffﬂrﬁlilﬁ.nﬁng‘, simplifying, and equating coefficienta of
like powers of x.

The method just given requires two reductions, and hence is less
suitable than that employed in Ex. 2, which requires but one reduction.

The rule for determining the values of A and x may now he
advantageously abbreviated. Let m, p be the exponents of the
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two factors in the given integral, and m', p’ the corresponding
exponents in the new integral. Of these two pairs, m, p and
m', p', one of the numbers in the one pair is less than the cor-
responding number in the other pair. This fact will be ex-
pressed briefly by saying that the one pair is less than the
other pair. With this understanding the preceding rule may
be expressed as follows:

Select the less of the two pairs of exponents m, p and m', p'.
Increase each number in the pair selected by unity. This gives
the pair of erponents A, p.

Ex. 4 |—
Icf+ anl
Asstime sncceasively

far@+ ayLae=Ar (ot 4 ayYaz 4 Basee + a7,
[t +aytar= 47 (2 + )V a5 B8 + ),
_f A+ aty VT dz =A™ j (22 4 a7 % iz + BV2( 4 any L,

These equations may be combined into the single lormula
§ o+ a7 Ve = 4 (04 o)y x4 Be(et + 0t
+ CoA(x 4 a%) + Da(ad 4 a9 L

"I‘Im:r values of the coefficients are found to be

A 1 1
1 = Y = 2 ;
A=-je B=3, C=-—, D=

Henece
foer s anFuaes 2 H3 g 4 VAT,

2z + a?
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In this example three rednctions were necessary; first, a reduction
of type [17], second, and third, a reduclion of type [A]. Can these
reductions be taken in any order?

The different possible arrangements of the order in which these
three reductions might sneceed each other are

(1} [4), (4}, 12T (2) [4] [P], [41: (3) [D], [4] (4],

of which number (3) was chosen in the solution of the problem. Of
the other two arrangements, (2) can be used, but (1) cannot. For,
after first applying [4] (which would be done in either case), the new

R
i j-x*{u*+ 278y,

If [A] were now applied it would be necessary to assume
j' rHat+ 2} dxr = A j’ (a*+ 2% ¥ 4 Br(a® 4+ 251

This equation, when differentiated and simplified, becomes
#=A+Ba®, °

a relation which it is clearly impossible to reduce to an identity by
equating coeficients of like powers of z, since there i8 no z? term in
the right member to correspond with the one in the left member. It
will be observed that this is the exceptional case mentioned on page
232, in whichm +np + 1 =10.

EXERCISES
1 ((ar—alas 5. f Var—Hds
2, j'ﬁ 6. j‘ﬁ
i} i
j(ﬂ'— :-I- 1]; 7. j-{rg_:._tuji

iz
Ve P
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—— d'_-._-
9, kvt oadr I b —E
f T
10. v ar — ldn 13. dE
j j[m" 4 4z 4 )2
Vigr — 1% -~
W L e L v
1 _f T - 14. j.'u"l 2x — xtdx
15. Show that

S@to=s m:nl— slarss 09 faimml

16, j"_ dx 18, j‘ sin @df
P — | ; (1+e am*ﬂ)!
[Substitute cos § = x.]
xdx

(+TF 20. j‘ el B

. I(“ + &:ﬂ):‘ 21§ -2l



CHAPTER III

INTEGRATION OF RATIONAL FRACTIONS

121. Decomposition of rational fractions. The object of the
present chapter is to show how to integrate fractiona of the
form biz)

p(z)’
wherein ¢(x) and ¢(z) are polynomials in =x.

The desired result is accomplished by the method of sepa-
rating the given fraction into a sum of terms of a simpler
kind, and integrating term by term.

If the degree of the numerator is equal to or greater than
the degree of the denominator, the indicated division can be
carried oot until a remainder is obtained which is of lower
degree than the denominator. Hence the fraction can be re-
duced to the form
¢(z) _ ty ... o J(®
aﬂmﬁl“m‘"'w * +¢_{1m}’
in which the degree of f(z) is less than that of ().

As to the remaminder fraction "E:{E%, it iz to be remarked in
x

the first place that the methods of the preceding articles are

sufficient to effect the integration of such simple fractions as

A A . Medn M4 N P+ @ (1)
r—a’ (z—a) ' Ptra’ (P+a) T D4mztn’

Now the sum of several such fractions is a fraction of the

kind under consideration, viz., one whose numerator iz of
238
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lower degree than its demominator. The guestion naturally
arises as to whether the eonverse is possible, that is: Can

every fraction % be separated into a sum of fractions of as

simple types as those given in (1)7

The answer is, yes.

Since the sum of several fractions has for its denominator
the least common multiple of the several denominators, it fol-

lows that i[ﬂ% can be separated into a sum of simpler frac-

tions, the denominators of these fractions must be divisors of
y(x). Now it is known from Algebra that every polynomial
¢ (2) having real coefficients (and only those having real coefli-
cients are to be considered in what follows) fs the product
of factors of either the first or the second degree, the eoefficients
of each factor being real.

This fact naturally leads to the discussion of four different
CASES.

I. When ¢(z) can be separated into real factors of the
first degree, no two alike.

Eg., ¥(z) = (z— a) (z — b)(z —¢).

II. When the real factors are all of the first degree, some
of which are repeated.

E.g., ¥ (2) = (x — a) (2 — b)*(x — c)*.

111. When some of the factors are necessarily of the see-
ond degree, but no two such are alike.

Eg., piz)=(F+a)(F+z41)(z—b)(z—c)"

IV. When second degree factors occur, some of which are
repeated.

Eg., ¥(z) = (& +a®P (& —z +1) (x— b).



240 INTEGRAL CALCULUS

122. Case I. Factors of the first degree, none repeated.
When () is of the form

y(z)=(z —a)(z—b)(z—c) - (z—n),

fiz) 4 B, C , . N
Assume ¢{m]—m—u+m—b+:ﬂ— + +I_ﬂ:

in which A, B, C, -+-; N are constants whose values are to be
determined by the condition that the sum of the terms in the
right-hand member shall be identical with the left-hand
membaer,

Tx. j‘.‘{f“— lr.z+:-'
—d:-|—E

Dividing numerator by denominalor, we oblain

A — ".lr"-|-.r x

B2 2 _grta

A I

e T e e

By clearing of fractions, we have
(1) r=A(z—-2) + B{z-1).

In arder that the two members of Lhis equation may be identical
it is necessary that the coefficients of like powers of r be the same in
l!MII.

Henes 1=4+8, 0=—-24 -1
from which - A=—-108=%2

Accordingly the given integral becomes

j'(.-,+r_1_ l—xjﬂ)dr——+]up;(x-—1] —2log(z—2)
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A shorter method of caleolating the coefficients can be wsed.
Since equation (1)} is an identity, it is true for all values of x. By
giving r the value 1 the equation reduces to 1 = A(—-1),or A =- 1.
Again, assume x = 2. Whenee 2 = B.

EXERCISES
(z% — ab) dx
% L=_ui -{{z—ﬁ[r—bj
1-3x a ofe
2 j' K. 5. :"*'? -1?4;"1"
(=3 — 12)ydx J- — )iz
Dtdz+ 8 (=% - %ﬁ:h‘l}

2 — F x4 e — ﬂb+bcd:
{x —a)(z— 0){z—e)

8, jﬂ{r + @)Yz + B)ldz.

(dxr+1)dr *dr
D%t 3xr— 2 A .[:'t+h-+|1
{x* + ah) dx iz
10. ; = L A R MR
0 j:{x—u]{:-}-ﬁ] j'ﬂ"x*—b’
{I+4'}d.l.' soc? ¢ olx
n (o te e W ) o
[Put tan z = ]

123. Case II. Factors of the first degree, some repeated

(hz?*—dx+1)dr
Ex. J. o

Amume
- 5x¥_Jr41 A ¥ii [ D
1 e 8. PR — i -
(1) {xr—1)* z 3:—1+ (x - 'IF+ {x—1)8

To justify this assnmpiion, observe that:

{a} In adding the fractions in the right-hand member, the least
common multipla of the denominators will be z(r — 1)% which is
identical with the denomiuator in the lefl-hand member,

EL. Cavrc.— 16
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(#) Further, the expressions z, r — 1, (z — 1)% (z — 1)" are the
only ones which can be asmumed as denominators of the partial
fractions, since these are Lhe only divisors of x(x — 1)* consiating of
powers of a prime factor,

(¢) When equation (1} is cleared of fractions, and the cogfficients
of like powers of ¥ in both members are equated, four equations are
obtained, exactly the right number from which to determine the four
unknown constants A, &, ', [

Instead of the methed just indicated in () for caleulating the
coeflicients, a more rapid process would be as follows.

By clearing of fractions, the identity (1) may be writlen

G- 3z 4 1=A(xz=1P+ Be(z—1)*4+ Cz(z- 1) 4+ Dr.

Putting z = 1 gives ut onee 3 = [},

Substitute for [ the valoe just found, snd transposs Lhe corre-

aponding term. This gives
5—C6z+ 1= A(x=1)"48B2(z -1+ Cx{x~-1).

It can be sean by inspection thal the right-hand member of the
resilt is divisible by £ — 1. As this relation is an identity, it follows
that the left-hand member is also divisible by # — |. When this
factor is removed from both members, the equation reduces to

Br—1=A(z—1)*+ Bz(x—1) 4 Cx.

Now pat x =1. Then C=4.
' Bubsatitute the value fonnd for , transpose, and divide by = - 1.
The result i 1 = A{r - 1) + Br.
By giving = the values 0 and 1 in succession, we find Uhal
A==1, B=1
Accordingly, we have
e e

z—=1 Bzxr-5
e x ‘2[:—1]‘
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EXERCISES
1. g i"l-"IE-'I!'+ l}dxr
J-{; - 1]‘21,; + 1) 2 I::{I + VIt
£ ¥ —hr -8
2. jm 5. FET dz,
rdr 2(z* + n'zr)dx
9. j{_‘f“ifﬂ & j‘x" — gt g b’
"
2+ t-"E _ ﬁ;;ﬂ
a4 ol ¢ (a+ 1)z +a
e j-_' - ra + x) o
(=" = 1)ix 1. ((=-1z+ 206)dx
» P j. (x — #)*

[Substitute » — 3 = 2.]

i
12, _f( o

[Substitute z — a =z 2.]

10. j‘{ﬂ.!.‘& + bx")—1dz.

124, Case ITI. Occurrence of quadratic factors, nome repeated.

(4224 dx 4 4)dx
s e j-{.r’+ D+ 22+ 2)
Assume
%), 424 5x 4 4 =.~Ir+ﬂ+ Cx4 D ;
(e I+ 22 +8) 2241 2+ 28+2

Then
(2) 427+ Sx+ $ =(Az+ B2+ 2z + D4 (C 4+ D)2+ 1)

By equating coefficients of like powers of x

0=4+ ¢, h=24428+
4=24+8+ D, 4 =204+ D,
from which A=1,B=2,C=—1,D=W4

Hence the given integral becomes
{ﬂ_ﬂ]rﬁx _j' zilr

24l o e

=2tan-'r+tan Yz + 1) 4 § log ﬁ-ﬁ
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To make clear the reasons for the assumption which was made eon-
cerning the form of equation (1), observe that since the [actors of the
donominator in the left member are £ + 1 and 7 4 2z 4 2, these
minst necessarily be the denominators in the right member. Also,
singe the numerator of the given fraction is of lower degree than ita
den ominator, the numerator of each partial fraction must be of lower
degree than its denominator. As the latter is of the second degree in
each case, the most general form for a numerator fulfilling this re-
quirernent (i.e., to be of lower degree than ita denominator) is an ex-
pression of the first degree such as Az 4 B, or Oz 4+ D,

Notioe, besides, that in equating the coeflicients of like powers of =
in oppogite membera of equation (2), four eqoations are obtained

which exactly suffice to determine the four unknown coefficients
A, B €, D

i
) f{x=+ =+ 2)

1 A B

We can assuma in this case
(et 4 19(z2 4+ 2) .-s=+l+ + 2

" For if we make the substitution z® = ¢, the given fraction becomes
s o which Case I is applicable.

1
{t+ 13t +2)

EXERCISES
1 J' 4drx i 5 j'-l_:'-l-::—ﬂ!d;::
4 4z i 4+ 22
rdr Lz
________ 5. , ]
(z+ 1)@+ 1) -fr-+:=+l
i rdr
4 ad 7 -f(:—n}i{xt-q-u'}*
{a? — T - B. j' (z% -I-E x4 Nefz
(2 4+ a®)(=* +p9) (x— 1)+ 2z +9)

2dx
> 'rii — 1)}z +1)
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125. Case 1V. Occurrence of quadratic factors, some repeated.
This case bears the same relation to Case III that Case 11
bears to Case I, and an exactly analogous mode of procedure ia
to be followed.

Db b Bl 4 4
Ex. j- 12y iz
A B e

2yt~ 4+ 8% 4+4_Ax+ B Cr+ D E:i:+F_
(z2+ 2)0 bk (224 2)% (=420

Whence, by clearing of fractions,
2pt— A p Bt A= (Az+ B) (4 234 (Cx+ D) (224 2) + Ez+ F. (1)
Instead of equating coefficients of like powers of =z, as might be

done, we may calculate the values of 4, B, C, .. by the following
briefer method.

Substitute for 2? the value —2, or, what is the same thing, let
= v — 2. This causes all the terma of the right member to drop
out except the last two, and equation (1) reduces to

—8vV-2=EVT2+F

By equating real and imaginary terms in both members, we obtain
_8=F, 0=F.
Subatitute the values found for F and Fin (1), and transposs the

correapouding terms.  Both members will then conlain the factor
#* 4 2. On striking this out the equation reduces to

2ef — P pdr+ 2 =(dz+ B)22+ )+ Cxr + D
Proceed as before by putting 22 =— 2. Whenes
4=CvV-24+D,
and therefore =0, +=1h
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Substitute these values, transpose, and divide by 22 + 2. This gives
2xr=1=Ar+ 8,
whanoe A=2 B=—1.
The given integral accordingly meduces to

delr Bz
oz + .f{{:.'+-.}}1 {;._i_l_g:.f

I‘ + .E’
The first term becomes

2xdr dx 1 x
— % - =1 48— — tan~l .
x4 2 x4 2 o ( ) 2 " W'

The sscond, integrated by the method of reduoetion (Chap. II),

gives S B
=42 V3 v
Finally, by using formula [ the last term is integrated immediately.
Henes

2

J‘."-'...-:‘—r‘+31‘|+4dz log (s* + 2) + 5
(

29 4 2 Farap
EXERCISES
.ﬂz_l *dz. s. ((=3z+2)dz
xd 4 1 =Xz 4 1)°
{z+a)4al 22t 4 Doty — 2
% .r {x? 4 a*)? ds. 5. (£? + a?)? fz.
j' LI AT - G j. r‘r.fr__
{1+ 2)(1 4 )% ) S 14 e

[Ex. & can also be integrated, and more easily, by meana of the
mabstitution 1 + #* = r.]

The prineciples used in the preceding cases in the assump-
tion of the partial fractions may be summed up as follows:

‘Each of the denominatars of the partial fractions conlatns one
amd ownly one of the prime factors of the given denominator.
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When a prime factor sccurs fo the nth power in the denominalor
af the given fraction, all of its different powers from the first to
the nth musi be used as denominaiors of the partial fraclions.

The numeralor of each of the assumed fractions is of degree
ane lower than the degree of the prime foctor whose power oevurs
in the corresponding denominalor.

128. Gemeral theorem. Since every rational fraction can be
integrated by first separating it, if necessary, into simpler frac-
tioms in accordance with some one of the cases considered
above, the important conclusion is at once deducible:

The inlegral of every rational algebraic fraction is expressible
in terms of algebraic, logarithmic, and inverse-trigonometric
JSunctions,



CHAPTER 1V

INTEGRATION BY RATIONALIZATION

At the end of the preceding chapter it was remarked that
avery rational algebraic funetion can be integrated. The
question as to the possibility of integrating irratiomal fune-
tions has next to be considered. This has already been
touched upon in Chapter 11, where a certain type of irrational
functions was treated by the method of reduction,

In the present chapter it is proposed to consider the sim-
plest cases of irrational functions, viz., those containing
Vaz+b and vax® 4 bx 4+ ¢, and to show how, by a process
of rationalization, every such funection ean be integrated.

127. Integration of fonctions containing the irrationality
vaxr+b When the integrand contains ~axz + b, that is,
the nth root of an expression of the first degree in x, but no
other irrationality, it can be reduced to a ratiopal form by
means of the substitution

Veare b=z
By (4
v23r g —1
Assume w2z 4+ 3d=gz
that is, x4 3 =2z
Then dxr=ziz,
ix zil=z
Iﬂa - —] =z+1 z—1
Yoo Jaarerime=

=vV2z 4 84+ log(vV2zF35-1).
245
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Ex. 2. j'l"'”i" e
+ x
It would appesr at first sight that thia integrand contains several
irrationalities, viz., v, vz, Vr. It is readily seen, however, that
they are all powers of vz, and henee the substitution Ve=2 will
rationalize the expression to be integrated.

EXERCIBES
1. . 4. .
'rt‘u".r_-i- 1 j-{.r, —1yvzr—12
dz
- —t
* j- 'E+1-"f_ '{{:_n-_ﬁ’}v"r_—u
3 j' B, Ii_kf-_'t;dr“
"-'\-".'ie.'w'l-l-: Ii+rh

When two irrationalities of the form “axr+b, Ver+4d
occur in the integrand, the first radical can be made to dis-
appear by the substitution

var4+b==z
The second radical then reduces to

\!E {*’ T ﬁ'} + 1']'.,
r ]
and the method of the next article can be applied.

128. Integration of expressions containing +ax! +br + e
Every expression containing ~'az®+ bz +¢, but no other
irratidnality, can be rationalized by a proper substitution.
Two cases are distinguished.

(a) When az® 4 bx + ¢ has real factors. We may then write
the quadratie expression in the factored form

az* 4 bz o= a(z — a)(z — B), (n
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in which « and 8 are real. Introduce a new variable f by
means of the formula

vVaxi 4 bx + o =t(x —a). (4}

Square both members of this equation and replace the left
member by means of (1). This gives

aj{z — a)(x — §) =z — )’

On canceling # — « and solving for 2 we obtain as the equa-

tion of transformation - wff —aff @
S Jﬁ — 2

Hence z (and therefore d) is rationally expressible in terms
of £, while the radical reduces to

al'! —a il e —
;[_F_ ﬂﬁ ] at{u _"::El @)
which is also rational in £ The substitntion of these expres-
sions in the proposed integrand gives a rational fraction which
may be treated by the methods of the preceding chapter.

(b When o, the coefficient of °, is positive.

Make the substitution

vari+ b +e=va x+ L (B

By squaring both members and solving for = we obtain

&—c
Ry ot 4
" b— 2+at 3

while the radical is expressible in the form

Vaf— bt +‘|.a"'E~:
‘?v‘rﬂ#—
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and hence the integrand becomes rational when expressed in
termns of L.

The only case that is not included in (a) or (b) is that in
which the factors of az® + bx 4 ¢ are 1maginary and the ecoeffi-
cient « is negative; the radical is then imaginary for all values
of 2. Although the integral can be obtained (in an imaginary
form) by either of the preceding substitutions, this case does
not arise in practical applications of the caleulus and will not
be considered further.

Ex. 1. j- dx .
b R N R |

Formula (B) gives
v 3z —1=x41i

whence, by solving for z, we obtain

and acsordingly dr = '_E-+ 2t +1 dt

S | 2 'I_
VPR ezl =t ik,
. 201 — 1)

When these expressions are subatituted in the above integral it

e icenie (—B4+2t+ 1)t

2(1 +n*

Tha.'lmrk of integrating may be facilitated by means of the trans-
formation ! + ¢ = z. The result, in terms of =, 18

s i
-Vl 4 Zr=1) + ~
f 1l—z++vzi4+ 22— 1

+2log(l — x4 v+ 2x-1).
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Er.g. [-Yltzds
(l-—x)vl—=x

By rationalizing either numerator or denominator we oblain
V1 — «* aa the radical part of the integrand.

Formula (A) gives 1 — 2 = i1 —z),

1+I=lp 1

whence 1”[1—1- (1}
142

o I,—'.'E_F’ (E.}

and hence, by differentiation,

Dax . .
Add 1 to both members of (2) and combine the two terma of the lelt
membar. The resalt is

= =41 (4)

1—=

Dividing (3) by (4), we have
de _ 2tdr (5)

Now multiply (1) and {5) together and integrale. Wa oblain
j' I|1 +x iz =J'E.E’.r.!'f

l—x 11—z a4 1

—glt&_ SN S

. *\lrl E 18N l—=x

EXERCISES
1. I dx
(1—=){1 —vVI—29
2. | : o
V3T — Bz + 1[VIa: — Bz + 1 +Vi(z — 1]
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We can rationalize also by means of a trigonometric substi-
tutivn, First reduce az®+ bx 4 e to the form + ¢ £ X% as in
Art. 118, and then make one of the following transformations:

In k* — ¢ put t =k sin §,
in #— & put ¢ = k sec 8,
in.£* 4 &* put ¢ =k tan 8.

Since v — £ — & is mmgma.r:,r, we shall exclude this case from
conzideration.

The resulting trigonometric functions ean then be integrated
by methods to be explained in the next chapter.

129. There i3 one case in which a different transformation
leads more rapidly to the desired result. If, after reducing
the terms under the radieal sign to one of the simple forms
mentioned in the preceding paragraph, the integrand can be
expressed as the product of tdt and a function containing only
even powers of ¢, then we may substitute

VEEt =z
For this gives B=4(2"1+ X
and tdt = +zdsz,

and henee the integral takes a rational form in =z

EXERCISES ON CHAPTER WV

1 -t“+-1rz]r£=
(T +2)v 1

[Notice that Art. 129 is applicable.]

PR L N Ea 'Y
ofr — eyl —(z —a)d Vet 142
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x
4. . B. _—
(T S s - Va1
5. J’ zdx ‘ g, ]_l_:.,.rzdx
(o +x)t 1+ /=
{E_az—ly:_ 16 iz
;J:wi.‘-:t-bﬂxi val— xt
7. j' I iz . 11 _'\n"ﬂ =—I’d.=_

(2% + a%) /2T g2

[Use trigonometric substitutions in the following exercizes.]

12. [Vo@i—2 s, [—%=
J' P -d:-'- j‘i:l'* + ,u?l]_i
13, _f—— 16, [¥YF+0T,
1'*1.-':!1 iy qﬂ ] ::5_ x.
14. 1y, (%
j{ﬂ+n9]i j{u:_.ﬂ}i‘



CHAPTER V

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

130. In regard to the integration of trigonometric funetions,
it is to be remarked in the first place that every rational wigo-
nometrie function ean be rationally expressed in terms of sine
and cosine.

It is sccordingly evident that such functions can be inte-
grated by means of the substitution

sinr=373

After the substitution has been effected, the integrand may

involve the irrationality
V1—2[ =cosz .

This can be removed by rationalization, as explained in the
preceding chapter, or the method of reduction may be employed.

The substitution cos z=2z will serve equally well.

It is usually easier, however, to integrate the trigonometrie
forms without any such previous transformation to algebraic
functions. The following articles treat of the cases of most
frequent occurrence,

is1. fnﬁ""at dux, J.m" x dax.

In this case n is supposed to be a positive integer.
If see™z dx is written in the form

sec™%z . sec’z de = (1 + tan® x)*~"i(tan z),
256
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the first integral becomes

f{t.un’at+ 1)=-'d(tan x).

If (tan’z41)"'is expanded by the binomial formula and
integrated term by term, the required result is readily
obtained.

In like manner,

J‘mn’"m dr = | csc®™ *z .caols dr

= f (cotiz 4 1y 'd(cot 2).

This last form can be integrated, as in the preceding case,
by expanding the binomial in the integrand.
The same method will evidently apply to integrals of the

form

ft.a.u':u sec™x dr, fmt'n: csc™r dir,

in which m is any number.

EXERCISES
iz (1 — eoa )0
x Ealss 5. :
-fl}nﬂ'.z -{ sin'c
6. j iz :
2. IWI dx. sindz coalr (coste — sinte)t
a. j‘nmﬂ:r dx. 7. j'd'—r [=j-tu.n".r sagtz o]
sin®r cosx

4. j"—r 8. _f"””’* .
minEr coufr sinte
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133. J‘m‘mu-"”"muhz, fm’#ul"’“zd::.

In these integrands n is & positive integer, or zero, so that
2n 41 is any positive odd integer, while m is unrestricted,
The first integral may be written in the form

fuac"'“wt.n.n"z- sec z tan 2 dx

=J.lun"':(nm'= — 1)d(see x),

which can be integrated after expanding (sec’s —1)* by the
binomial formula.
Similarly,

fm"m col™ iz dx =fr:-ar:"“== cot™z . csc xcot z dx

;-fm'"-:{uu':—- 1)*d(esc ).

EXERCISES
1. j-set:!;r tan®z Jdx. 5. !tl-ll'.l: iz,
2. Im':: cotbr dz. 6. I"-T:::I‘t [= j-ue::'":: tan"s Jx].
s v 7. (anxds.
4. jni.u:mt':rd_r. a IEM:-J':.

BL. care — 17
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133. f tan™x dx, f ootz dzx.
The first integral can be treated thus:

ftan‘:dm -uftnn"'-ta.n’xdz

=fhn“=(ﬂen‘x — 1}z

il E:'__';’ = ftl.n"":da'..

When n is a positive integer, the work of inlegration may
bé rapidly carried out by writing ¢ for brevity in place of tan =
and then putting £'dx in a different form by means of the
following "process.  First, divide * by ©*4+1; the quotient is a
polynomial of the form *— ¢4 *— ..., while the re-
mainder R is either + 1 or £ ¢ according as n is even or odd.
Then, since the dividend equals the product of divisor and
quotient plus the remainder, we have

P=Et—r et - L)+ 1)+ R

But since (tan®r 4 1)dz = sec"r dx = d(tan =)= d,
we have

J.m'“’ :Im=f(r--'-r-'+r-'— ---}dt+fﬁdm.
For example,

fhn‘:i:=f{l'—t'+l'-l}tﬂ+fds,

and fun':d: =f{l“ — 7 4 )t —fl'.l.n rdz
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The inhgrllfnut':hm be treated in a similar manner,
in case n is a positive integer.
For any value of n we have

fr.'.nt':: de= | ocot""x cot*zdx
=fnu'a""=[um’:n-1]d=

= cot*z cot**xde.
a=1
Since tan = and cot x are reciprocals of each other, the above
method is sufficient to integrate any integral power of tan » or
ool @,
Another method of procedure would be to make the substi-
tution tan x =z, whence

fm zh_fl+;'

If the exponent = is & Ernntiun,ujn=g the last integral

can be rationalized by the substitution 3 = u".
It is evident from this that any rational power of tangent
or cotangent can be integrated.

EXERCISES
1. Imt‘:d‘.r. 3. jiﬂ.tn x — oot )%dx.
2. j-llu'-:rd.:. L3 j{l.l.l‘l + tan**r)dz.

5. Imﬂ =z dx.
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When n is a positive integer show that

R T T SR il SRS R LS 7 R
2rn—1 2n -3

lanh:r._ tanin—2 &
2n 2n-—-90

+ o+ o (— 1)1 (] tan?z + log coa x).
134. J-a.iu""a: cos™ & dar.
(a) Either m or n a positive odd integer,

7. ftan"'*' zdx =

If one of the exponents, for example m, is a positive odd
integer, the given integral may be written

m—i
fa‘in“' = m‘zsinzd&::—f{l —reos'x) T cos®xd{cos x).

Since m 18 odd, m—1 iz even, and therefore m—1 ;0

positive integer. Hence the binomial can be expanded into
a finite number of terms, and thus the integration can be
easily completed.

Ex. (sinéxviooszdz.
According to the method just indicated this integral ean be re-
duced to
—j.ﬂill“ xv'cos z d{cos ) =—f{1— aos? x)i(cos 2)¥ d(cos x)
' =—imi:+;mim—ﬁmh"z.
EXERCISES

1. ja’m‘ xdz. 3. j"::i.:E: dz.

4. J’ gint .z dz ]
coe? xVoos

2. jsiu‘ z cort ¢ dz.

s: sindrar
V1 — cosx
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(¥) #% 4 n an even negative integer.
In this case the integral may be put in the form
BN L ot g el =fmu': gee— =+ o dy,
cos™
which ecan be integrated by Art. 131, since the exponent
— {m 4 n) of sec x is an even positive integer.
Ex. j- ﬁm?rfr.
Q* T
The integration is effeclted in the following ateps :

Jﬁ:ﬁd&' =j-t-:ﬂ.TliIE-E¢"I'-ﬂ..'l.'-
vioops x cost z

= J'tani z{tan® z 4 1} d (tan z)

= 2 tand 2(* + } tan®z).

EXERCISES :
coal T 4 j' iz :
1 Hin® rdI ; gintr cosd x
dx iz

2. . 3. =

Hin® x ‘{v’sinﬂ: cos® z
3 cos! ¢ dx 6. j‘mm !_::r

' ginfz cogn s p

{¢) Multiple angles.

‘When wm and n are both even positive integers, integration
may be effected by the use of multiple angles. The trigono-

metric formulas used for thia purpose are

sm”m—l—_E;B 22:,
Mm:“r_ﬂ;ﬂ?,
éin o o0 £ =" h A

2
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Ex. j'ai:u.* r cost rdx.

= Isin*:: oot r dr =j(m’n ¥ oos x)? oot x dr

:j'zfm‘*ﬂfl +nm!2:.|:d.m_
4 2 ;

=£j‘siu=2mﬁ: +ﬁjﬂn‘ﬂxumﬂ:d{ﬂ:}

ljl—msilr 1 5in®* 2
=t — " dr 4 —
B 2 T 3

=Ar—AEndx4 Aein? 2
EXERCISES

1. jnm': gin? z dx. a. jﬁn‘z cost r dx.,

2. j:i.in'i x oo’ x dx. 4. j(sin*a: ~ coit )t i,

sintz . (1l —cosfx), _ .
> j.um*:dr_j. cos? x dI-'.fl:mz 3 wod i,

(d) Reduction formulas. Integrate fﬂin"#ma‘zdm by parts,

taking u = cos™ 'z, dv= sin™z cos T dx,
sin=tg

whence du=—(n—1)cos" *zsin zdr, v= 2
m+ 1

and therefore

f Sin™y cos*z dy = sin" "y cos™ 2 e I (" gin=** cog™ 2z d.
m+ 1 w41 i

In the last term replace sin®x by 1 — cos's and separate the
integral into the two terms

fuin"z cos™ % dx —J-ain-m cos™r dz.
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Transpose the second integral and unite with the similar
integral in the left member. After dividing the resulting

M+ B e obtain the formula of reduction
m+1

equation by

J.ainha:mu"u:dm = sin™ rj":"il.-l=“+ A=l inime cos™tn do
m+4n m+4n

by means of which the exponent of the cosine factor may be

diminished or increased by 2 according as the integral in the

left member or that in the right member is taken as the given

integral.

In like manner a reduction formula may be deduced which
decreases or increases the exponent of the sine factor by 2.
The details are left to the student as an exercise. The
result 18

sin™ 'z ooty m—1

fuin'm cos"zr dr= — + sin®™*x pos™z dir.
m+n m 4

The two preceding formulas, when solved for the imtegrals
in the right members, and m (or a) increased by 2, become

f sin=z cosidr= — S0 2 C08TTIE \ mAn+2 (o a couttiods,
n+41 n+41

1 . sin'“z_puu"‘": m4+n42 . iy
J‘u}n“:: oos*rdx e + o BN cos"zda,

Whenever the values of m and n are such that one of the
three preceding cases, (a), (b), (¢), is applicable, the integration
can generally be performed more quickly by one of those
methods.
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EXERCISES
s jﬂin’:d:rr. 2. jﬂf}#xdx.

[lu Ex. 2 after one reduction, diminishing the exponent of cos x by
4, Art. 133 may be applied. ] ;

. ]
3. snt 'td.t.'- 3. j‘ : Wz ; 5. J‘n:m.-, :d'.r.
08 T rnd2 r

gin®

135. ehp
ﬂ+bmn.-1: u+ﬁalnm{: @+ pin nx+ cooB R

These forms ean be integrated by expressing them in terms of

the half angle and then in terms of tan 3;’-.

By making use of the trigonometric relations

- RO
coE? = 2= =1
E-fam 5 .

X i
co8 x = cos? = — gin?Z,
2 2

the denominator may be written in the form

ﬁ(m‘§+ ain® E] i 4(%’% — ain? E:],

which bedomes gin? s+ ﬂmu‘£ on collecting the terma; whenece

dx

S 9
24 dco8x ﬁn‘iﬂ—'ﬂnﬂa”%
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Now divide numerator and linlnmlnﬂnrbjmu'annlhuwinmild
that —';mmig. This gives

2
== IIII‘:I'(! I.n.nf}

X
Ex. 2. -fsu—.ina=+ =

Erp_hdmnminminlhulm

4sin 23 m-a—‘! (lhl’ a!'+||:||J||i'="‘)

Then, aflter dividing both terms of the fraction by cos? :I'—;, the given
integral becomes s i-l:ﬂ.:

LT oy

Now make the substitution ta‘ngf = t and apply Art. 118.

It will be observed from these two problems that the aim is
to put the denominator in the form of a homogencous quadratic
expression in sine and eosine functions. Then, when both terms
of the fraction are divided by the square of the cosine, the
denominator becomes quadratic in the tangent function while
the numerator can be expressed as the differential of the tangent.

EXERGISES

J“—'—'—- !. tlx s
h4deom2r (aginz + boosx)?

; dr dx
a. —_— . ! *
b= dsin = ¢ a'Ein®r 4+ M eost x

a s

II--*‘!IIIE.I‘ s l +cos*z

dr dar
4. ; a. .
j-ulin:+ﬁmu= 51+lin:r:+2ma-:



266 INTEGRAL CALCULUS

136. fﬂuﬂiﬂﬂiﬂdﬁ fﬁ"mmd.c

Integrate f &% gin ne de by parts, assuming

i = 8in ne, and dv = %= dx.
This gives :

e“sinmdz=1¢“ainum—5fﬁ"cmmdm (1)
% a

Integrate the same expression again, assuming this time

=&, dv=sinnxde
Then

fg"' sin n:nd'm:—!e“ [Ls 1S IJ-.E-I-Ef-E"" 008 RE dT. (2)
!
Multiply (1) hj = and (2) b}r and add. The integrals in

the right mamhara are ahmma’md, and the result is

fr’ﬂinnmd:n=ﬂ“m Hin we — i manm'}_
i - nt

By subtracting (1) from (2), the formula

J‘En m”ﬁh=e"{n Bin r:m+:‘rm:ra n)
i +n

s obtained.
EXERCISES ON CHAPTER V
1. Derive the reduction formula

j‘aﬂﬂ.‘rd::=h" ¥ sec™~iz n_ﬂj'm-r'—’.:dr
n—1 n—l

[Integrate by parts, taking u = seer~%z, dv = sectr dr.]

2. Derive
fnmd:=—mhrm“-_r”+“_ﬂ cac"~1r dr.
n=1 n—1
3. jv"!mn:d:_ . j“‘“rd;r
Bil x ¢0a T
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- 9, (Mn2z,,
cos x 8in' = ex
- )
[ j'm' iﬂ.t. 10, j-ehsin‘rd:.
dz . .
7. . . e sin 2 rain z de.
I{l—:}u’l-ﬂ 1. fersin
[Ful:-:::uuﬂﬂ]. [[Laser. 2ain 2rsiny = conx — cond z.]

B. j’r i unlgn‘:.

12. Show that

Iﬁnuﬂnhﬁ:’i“{" - i}:_ﬁn(¢+§E'

2a —b) Na +b)

Use the trigonomeltric formuls
sin @ ein B = feon{a — @)= cos(e + )]
13. Show that

’ _ _ oos d-___&E‘_Eﬂ+ﬁE+
jlmu cos br dxr = !{-{;‘_ 3 2a + )

14. Show that
bed _finfa—b)x  ain(a +h']_:__
§ oou az con bz dx a—b) | 2ath)
il
a3. j.'h.:“.:ﬂ:' 18, J‘liuznm': -—ﬂin':l:m:.
16. a0, i
J-n'nl.r I-n':rrnl‘:

17. _f{t..n x + oot x)® dx. a1 _f - “’; _f S

asinz+ beosx
w Sy m famste
[Hixr. Assume
asinz 4 booar= A(asinzr + Jeonz)+ B(axcosxr — fsinx)
and determina A and B by equating like terms. Treat Ex. 23 in
like mnnner]

njmiq. j‘sm.t-l-ud'

sin{z + &)

lﬂ..-l



CHAPTER VI

INTEGRATION AS A SUMMATION. AREAS

137. Areas. The problem of calculating the area bounded
by given straight or curved lines can be solved by means of
the Integral Calculus provided that the equations of the boun-
dary curves are known and satisfy certain restrictions.

Suppose it is required to determine the area limited by a
continuous are of 4 curve whose equation, in rectangular codr-

dinates, is written

¥ oA 1n the form
= y=r@@, (1)
by the two ordinates
¥=a and x=2=5, and

S iy by the zaxis; that
' h B
Ryt=meamneee A7 1E,_t @ area APQ
- {Fig. 59).
. £ We proceed as
A A Ay A0

follows. It is as-

ahs gamed in the first
place, for the sake of simplieity, that f(x) 1s always ncreasing
(or always decreasing) between #=a and & =48, so that a vari-
able point on the are PQ is continually rising (or falling) as
its abscissa = increases. Suppose, further, that every ordinate

between £ = o and x = b outs the are PQ in but one point. Let
208
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the interval 4 to B (Fig. 59) be divided into n equal intervals
Ady, Ay Ay -+, A B, each of length Az, so that

interval AB=b —a=mn- Az

At each of the points of division A, A, A, -, B erect ordi-
nates and suppose that these meet the eurve in the points
P, P, Py« ). Throogh the lattar points draw lines PR,
P R, BR, - P, , K, parallel to the z-axia.

A series of rectangles PA,, PA, --- is3 thus formed, each of
which lies entirely within the given area. These will ba re-
ferred to as the inlerior rectangles. By producing the lines
already drawn, a series of rectangles 84, 8,4, -+ 18 formed
which will be called the exterior rectungles. 1t i1s clear that
the given area will always be greater than the sum of the in-
terior rectangles and always less than the sum of the exterior,
or, expressed in a formula,

PA 4+ PAy+ o+ P, B< Area APQR < 84, + 8,4, 4 -
+ 5., 8. (2)

The difference between the sum of the exterior and the sum
of the interior rectangles is
SEy 4 SRy 4 - + 8,y B,=rectangle §,_, T= T'¢ . Azx. (3)
As we suppose the curve to be continmous between P and £,
the line T'¢ is of finite length.

If the number n of equal parts into which 4B is divided is
incre_a.ﬂﬂﬂ, the first sum in (2) increases in valoe and tha
gecond sum in (2) decreases. Moreover, as their difference
TQ - Az, given in (3), approaches the limit zero, it follows
that the limil of the sum of the exterior rectangles i3 equal fo the
fimit of the sum of the intevior reclongles when n = oo, that is,
when &z =10,
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Since the required area always has a value intermediate
between the two sums, it follows that the area 7s egual to the
limit of either sums. So that, for example, we have

area= M7 [PA 4+ Pdy+ - + P Bl . (4)

The second member of this equation may be expressed in
terms of the function f(x) which appears in the equation (1)
of the given curve. For,

area PA = AP.Az = f(n)Axz,

since AP is the ordinate y when z = a.
Similarly,
area P4, = AP, Ax = f{a + Ax) - Az,
area Pod,= AP,y Az = (a4 2 4Azr) - Az,

area P,_ B=A, P, ., Az =f(a+n—14ax)- Az
If these expressions are substituted in (4), it takes the form
area = ' [ f(a)+/(a+ Az)+ f(a+2a5)+ -
+f(a+n—1az)Jaz ®)

As it now stands, the formula just derived is of little prae-
tical value for computing areas. This is due to the fact that
there is no general method for caleulating the sum of the n
terms given in brackets in the second member of (5).

Fortunately, the value of the limit of this sum when n =
and Ax=0 can be caleulated by integration as we shall now
proceed to show.

138. Expression of area as a definite integral Denote the
function arising from the integration of f(z) by F(=x), that is,
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let Fx) = J" £(x) dz,.

or ‘i%ﬂ = f(z).

By definition of the derivative of F(x) we have

a:inii{} Fz+ ﬂ:j—F{:n} = F(z).
F(z+ Az)—F(z)

The gquotient = may be written in the form
B

J{x)+ e, in which ¢ approaches zero at the same time as Az,
otherwise the limit of the quotient when Az = 0 could not be
Sf{x). Trom this relation follows, on multiplying by Az,

F(o4 Az)—F(2)=f(2) - Av+ $ - Az, ®)

Next, in equation (6) substitute for = the successive values
@, @+ Ax, a4 2 Az, -, a4({n—1)Az.

We thus deduce the following series of n equations, in which
¢y, by -+ are nsed to denote the different values which ¢ may
take: Fla+ Ax)—F(a)=f{a) - Az + ¢, - Az,

F(a+2 8z)—Fla + Az)=f(a+Az) - Az + ¢y - Az,
Flat34z)—Flat2Az)=/(a+2Az). Az 2 ¢y - Az,

Fla+n—1-ar)—F(a+4+n—2. Ax)=f(a+n— 2  Ar)Ax
4 +fn—t.'ﬁ'x:i
Fla+nAzs)—Fla+n—1-Ax)=f(a4+n- 1 - Ax)Ax
+ ¢, - Ax.

Let these n equations be added; then all but two of the
terms in the left member of the sum caneal each other and the
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reault may be written
F(b)—F(m)=[f(a)+ f(a+a2)+ = + fla+7—1 - Ax)]Az
+ 1+ de 4 - + o JAz,
in which & 18 written for a 4+ n Az, since nAr=5b —a.

Now let Ax approach zero. The expression

(b1 + be 4 =+ + db,)Aw

vanishes at the limit. For, let & denote the positive valus of
the numerically largest term of the set @, dy, -, &, 3 then we
have evidently
Ky + s+ +d) A=< (#+®---(n terms)) Ar =nd - Ax
=ndzr-P=(0—a)- &

Hence, from the fact that E'i! @ =0 and that b — a is finite, it
follows from Art. 3 thak

b (g + s+ - $.) Az =0;
and therefore F(b) — fu)= E'I_j:.[ Sia) + f{a+ Ax) + ---
+f(a+n—1. Az)]ax. (N
Now the right member of this equation is exactly the ex-
pression previoualy derived for the area APQH; hence,
area APQB = F(#) — Fa). (8)

To compute the value of the right member of (8), first obtain
F{x) by integrating f () dr. Having determined F (x), substi-
tute the values b and o which z takes at the extremities of the
are bounding the given area and then subtract the second from
the first. This result may conveniently be represented by the

symbol j:.lf (@) dz,
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which indicates both the integration to be performed and the
gubatitution of the two limiting valoes a and & for = It is
called the definite integral of the function f(z) between the limits
a and b,

We thus obtain, as a final formula for area,

mAP@H=J:'ﬂa,—jdz. (9)

139. Generalization of the area formula. Instead of taking the
limit of the sum of the interior {or exterior) rectangles, a more
¥

I X
A x4, T A,

Fua. G

general procedure would be to take a series of intermediate
rectangles. TLet x, be any value of = between a and a 4 Ax,
any' value between a 4 Az and a+ 2 Az, ete.  Then f(x) Ax
would be the area of a rectangle KL A, A (Fig. 60) intermediate
between P, and S.4,; that is,

..PJ':I._ {f{ﬂ!‘.} Ax =T S“:]I'
Likewise PAy < f{z)Ar < 8,4, eto.

EL. canc. —18
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Henoce,
sum of interior rectangles < [ f(z) 4 f (x5) + ---]Az

< gum of exterior rectangles,
and therefore (cf. Fig. 5%),

area APQB = .a.Er:'uu Lr(ed+ fleg) + oo 4 flm,) ] A (109

This resnlt combined with (9) gives for the definite integral
the more general formula:

J;}{I}d"‘= aﬂzutﬂmu}+ﬂ%}+ - flx,) ] A (11)

140, Certain properties of definite integrals. From the defimi-
[}
tion of the defimte int&gralff{::}dm as the limit of a par-
ticular sum, certain important properties may be deduced.

(@) Inferchanging the limils a and b merely changes the zign
of the definife integral.

For, if = starts at the upper limit » and diminishes by the
addition of successive negative increments (— Ax), a change
of sign will occur in formula (7), giving

Fla)—F(®)= | 1 (z) da.

Henee,

[ r@ie=— ["f@a

() If ¢ is a number between a and b, then

[ te=[rEyat [ 1) @
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{¢) The Mean Value Theorem.

The area AP@H {Fig. 61), which represents the numerical
value of the definite integral may be expressed as follows.
Let an ordinate MN be drawn
in such a position that
area PSN = area NEG.

If £ denotes the value of x cor-
responding to the point N, then Ef A
MN = £(£), and /

¥

E
area APGRB = rectangle ASERB <
= MN . AB = f(£)}(b — a).
Henee, 2 - M ¥ X
b
S r@de =@ b-a), (12) Fia. 61

in which £ is some value of z between a and b, This result
18 known as the Mean Value Theorem (compare Art 39),
B
J(z)dx
and the ordinate f(£) = "-E;- — ig called the mean ovdinate
— @
between £ = a and 2 =254 This ia also called the mean value
of the fonction f(x) between these limits.
The theorem may be expressed in words as follows:
The value of the definite infegral

]
[ 1@z
ia equal to the product of the difference between the lmits by the

value of the function f(x) corresponding to a certain value z=§
betureen the limits of integration.

(d) It is frequently desirable to make a change of variable
in the definite integral in order to facilitate the work of inte-
gration. 1t is obvious, from the nature of the definite integral,
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that the limits of integration must be changed so that in the
new mtegral the limits shall be the values of the new variable
corresponding to those of the old variable.

Ex. Evaluate j;“'.-’n’ —zidr.

Make the change of variable z = a sln 8, whenee dx = a cos § 48,
and therefore

.E: viat— g9 d::ﬂ‘i‘m“ g 4.

Here the limits for the pew integral are determined by inspection
of the equation eonnecting z and 8, namely, sin § =%, It isseen that,

L1
as ¥ varies from O to 4, sin # varies from 0 to 1. This eorresponds to
a variation of # between the limita O and % The indefinite integral

by Are. 135 , sin26
i

The substitution of the limits gives the value "E;":.

141, Maclaprin's formula. As an application of the mean
valne theorem (Art. 140 (e)), we derive Maclaurin's formula
with the remainder term.

Let 5 and ¢ be independent variables. Huppose fla— (), to-
gether with its first n derivatives with respect to f to be
continuous within the interval 0 to . Then we have by inte-

gration i '
£ 1=yt =— (o #}:L = f(5)— fla—t,)

On the other hand if we integrate by parts, taking u = (s 1),
dv = dt, wa obtain

fif'iﬂ—ﬁ}ﬂhf’[-i—tj-i]: +J:Lf"{u-s}-sds
=f{u-h}-tl+£'fff{s-:].m:.
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[ntegrate the laat term by parts, taking v =5 "(s — ), dv =t di.
By successive applications of this process we deduce the
formula

S@) = fls —t)y=7"(s -t} +f"(s-- &)

' +1"s —t) Al e
21 a1

1 i
* {n—1) !f e e
By the mean value theorem we have
‘[ﬂflﬂl:a : I‘-] et =Jﬂﬂl{3_ ﬂ:ﬂ{ﬂtﬂ-—l . 'tll

in which # is a positive fraction and &, is the same as £ of
(12). Inserting this in the preceding equation and substituting
g=um, = x— a (hence & — f; = a) we obtain as & final form

f@=1t@) + @)@ —a)+L @ —ap + o
+ '::‘Tﬂl_—r;—}-,[f"’[z — Bz — a)){x—a)y™.

If we replace # by 1 — ¢, the remainder term takes the form
given on p. 153, with # written in the place of .

142. Remarks on the area formula. (a) It is noticed that
the formula

_ff{ﬂ}dh s [(@) + f(a+ Az)+ - 4 f(a+n—1. Az)]a

indicates two steps, —a summation, and a process of passing
to a limit. The differential f(z)dz which appears under the
integral sign may be regarded as representing the general
term f(x) Az of the series to be summed, while the process of
taking the limit of this aum is indicated by replacing Ax with
the differential dx and prefixing the sign of integration.
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The general term f{z) Az represents the area of an arbitrary
rectangle (of the set of interior rectangles) whose altitude is
the ordinate corresponding to an arbitrary x and whose width
ia Ax. 'This is called an element of area. The definite integral
may then be thought of as indicating the limit of the sum of
all contipuons elements of area between r=a and x =,

This notion of summation (followed by passing to the limit
Ax=1{)) is a very useful one in applying the caleulus to prob-
lemz of geometry, mechanies, and physies. In each case an
applieation of this notion consists in finding the general ex-
pression for an element of the given magnitude (element of
area, element of mass, element of moment of inertia, ete.) and
then indicating the two steps of summation and taking the
linit by changing Az to dx and prefixing the symbol * of the
definite integral. It must not be forgotten that in every case
it is necessary to prove that the limit of the sum gives pre-
cisely the desired result.t This we have already done in case
of the area formula.

(b) The element of area f(z). Axr is positive when the cor-
regponding rectangle is above the z-axis, since in that case f(x)
is positive, while Az is positive if b>a Accordingly, the

L]
formula [ f(z) dz gives @ positive value for an area above the

z-aais provided we take b > a.

Similar considerations show that the same formula gives a
negative value for an area below the r-axis.

{¢) If the curve y= f{x) crosses the r-axis between the two
points A, B, then the area consists of a positive part APC,

® This symbol originated historically from the initial of the word sum,

1 In aome cased the llmit of the som i naed as 2 definition of the magnitnda
in question, as, for example, in the definition of the length of are.  (Art. 151.)
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represented by the integral ‘fr Sz} dx, and a negative part CBEQ

represented by the integral ‘flj‘{m} dx. The sum of these two
integrals, which (by Art. 1408315 T p

b
equal to f f(x) dx, would accord-
3 A T B X

ingly give the algebraic sum of the O] 2-a © a-b
positive and the negative area. \L
(@) Some of the restrictions Fio.

placed upon the function f{x) in Art. 137 can be removed. In
the first place, suppose that f(z) is not always increasing (or

deereasing) as « increases from

a to b, Let ordinates be drawn

1(_\ at the maximum and minimum
4| A& =4 points of the given are P@ (Fig.

g e ™ §3). These divide the required
e area into several parts A', 4",

A" for each of which the ordinates satisfy the original condi-
tion of Art. 157, hence we conclude that

wea=A'+ A"+ 4" = [ (@) dat [ f () do+ [ f(ayda

= f ' f(x) dz, by Art. 140 ().

A discussion of the methods to be employed in ease f{x) be-
comés discontinuous, or is not singly valued in the assigned
interval, is postponed to Art. 143.

(¢) Bince f(z)=y, formula (9) may be written more briefly

area APQB=J:I3-:!=. (13)
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. (/) By exactly the same process used
in deriving (9), or (13), it may be shown
that the area A'P@B' (Fig. 64) bounded by
A P the curve PQ, the y-axis, and the two lines

= : X y=a', y=>1" is given by the formula.
W
area A'PQB =f x dy.
a’

(g) If it is required to find the area bounded by several
arcs such as PQ, QR, RS, ete. (Fig. 65), we may calculate by
formula (9) the simple areas
APQR, BQRC, ete,, and by
proper additions and sub-
tractions obtain the desired
area. Thus the area in Fig. 0
65 would be expressed by

[ r@ ae+ [ i@ o [ 1dayar— [ 1 (o) am

EXERCISES

¥ 1. Find the area bounded
N ot by the curve y = log x, the
P z-axis, and the ordinates

E=2z=58

Area APQB (Fig. 66) =
j;llﬂﬂ.'#-rf# =x(log r—l}]:‘

= 8(log 3 — 1} —2(Jog2 — 1)
—— = log A% — 1.

(=

* The symbol -]. Indicates that the valoes 3 and 2 are to be subatituted for

2
r in the expresston which precedes the symbol abd the second result sub-
tracted from the first,
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2. Find the area bounded by the aro of the parabola y* =4 pz
measured from the vertex to the point whose abgoisaa is a, the z-axis
and the ordinate x = a.

From the result show that the area of the parabola cut off by a
line perpendicular to the axis of the curve is two thirds the area of
the rectangle circumseribing this segment.

Moes this result hold good for all parabolas?

3. Find the area between the z-aris and one sami-undolation of
the curve y = 8N .

4. Find the area bounded by the semicubical parabola y? = 25 £
and the line z = 3.

5. Find the area bounded by the curve y2=4({z4-5)* and the y-axis.

6. Find the area bounded by the cubical parabola y = 2% tha
y-axis, and the line y = 1.

7. Find the area bounded by the curve z + #® = 2 and the codndi-
nate axes.

8. Find the area bounded by the parabola ¥ =2 2* and the line
y=2az
9. Find the area bounded by the parabola y=2® and the two linea
y=xand y=2x
10. Find by integration the area of the circle 2® 4 % =#%

11. Find the area between the curve y = z{z — 1){z — 3) and the
r-aXis.

12. Find the area bounded by the codrdinate axes, the witch
Ha?
S
find the area batwean the curve and the raxia

y= . and the ordinate z = z,. By increasing r; without limit,

13. Find the ares of the allipse :;:+£= 1.

14. Find the area included between the hyperbola zy = 36 and the
line z + y = 15.
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15. Find the area bounded by the logarithmic curve y = o7, the
r-axia, and the two ordinates z = x, = ;. Show that the result is
proportional to the difference between the ordinates.

16. Find the area between the eurve y = (z* — 1)(z® — 2) and the
T-AXis. .

17. Find the area cut off from the parabola (r — 1)*=y —1 by
the line y = =

18. Find the area of the ovul in the curve y!=(x — a)(z — )3,
given a < b,

19. Prove that the area of the curve a%?* = #/(2 a — £) is equal to
that of a circle of radius a. Draw figures of the two curves (center
of the cirole at the point (a, 0)) and compare.

20, Find the area of the loop of the curve y® = o4 + 2%

21. Given the curve of damped vibrations y = ¢ sinz. Show
that the areas contained between successive semi-undulations of the
curve, and the positive r-axis form o geometrical series of alternately
positive and negative terma.

Find the sum of this iufinite series and verify that the same result
may be obtained by integrating between the limits 0 and =o.

Find the total area included between the positive raxis and the
curve (changing the negative areas to positive).

22. Find the area bounded by the hyperbola zy = o the zaxis,
and the two ordinatea ¥ = a, r = na.

From the result obtained, prove that the area contained between
an infinite branch of the corve and its asymptote is infinite.

23. Find the area contained between the curves ' = r and £* = w.
24. Tuake the segment of the equilateral hyperbola =y = &%, he-

tween two points P and €. Show that the area between this are and
the z-axis is the same a3 that between the same arc and the y-axis

25. Find the area bounded by the parabola v 4 vy =Vva and
the cotrdinate axes.,



INTEGRATION A5 A SUMMATION. AREAS 284

26. Find the area between the curve 33(y* — 2)=x— 1 and Lhe
cobrdinate axes,

27. Find the ares common fo the two ellipsea

R
Bkl B4y

28. Find the area enclosed by the curves y =sin z, ¥ = cos z be-
tween two consecutive intersections,

29. Find the mean ordinate of the curve y = tan z between Lhe
limits 2 = 0 and I:_-{ﬂﬁcp.ﬂ?'dj

30. Find the mean value of the function sin r between the limiils

0 and ;; also of the funection ¢ =gin x.

31. Find the area of the loop of the curve

:ﬂﬂ_x.
y: a4 T

143. Precantions to be observed in evaluating definite integrals.
The method given above for determining plane areas in ree-
tangular cobrdinates involves two essential steps:

(1) To find the integral of the given function f{x};

(2) To substitute for = the two limiting values a and b, and
subtract the firat resnlt from the second.

Erroneous conelusions may be reached, however, by an in-
cantious application of this process. The case requiring par-
ticular attention is that in which f{z) becomes infinite for
some value of z between @ and b, or at ¢ or . When that
happens, a special investigation must be made. The method
of procedure will be brought out in the following examples.

Ex. 1. Find the area bounded by the curve y(zr — 1)2=g¢, the
cotrdinate axes, and the ordinate = = 2.
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A direct application of the formula gives

2 pdx -
=1 ————— o — ——2
are j;{r—l_]: r1es - bl

where the a;rmbn]]" is & sign of substitution, indieating that the

values b, a are to be inserted for r in the expression immediately
Pfue,mdi.ng the sign, and the second result aubtracted from the frat.
This result is incorrect. A glance at the equation of the curve

shows that f{:}[" l}"] becomes infinite for x=1. It is

¥

~

L

-—//

L

[ hesssasmmmmenm———sss -

it
H

1 =g X

Fia. 67
accordingly necessary to find the area OC'PA (Fig. 67) bounded by an
ordinate 4 P corresponding to a value x =2, which i3 less than l.
For this part of the area /(z) is finite and positive, and formula (9)
can be immediately applied, with the result

=’ F e Fe
ﬂL‘PAzI ede ¢ ] ——f e Dol
IR I o ) i e e

If now =’ is made to increase and approach 1 as & limit, the value
of the expression for the area will increase without limik

A like result is obtained for the area inecluded between the ordi-
nates r =1 and x = 2. Henee the required ares is infinita.

Ex. 2. Find the area limited by the curve y#(z — a®}* = 8 7% the
codrdinate axes, and the ordinate z =3 a.
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Emmj{.:}[_ —-! becomes infinite for £ = 4, it is necessary
(= — ah
in the first place to consider the area OFA (Fig. 68) and determine
1!
F P’
[ A aq oA B X
i T=3a
i
FiG. 68

what limit it approaches as AP approaches coincidence with the
ordinate £ = a. Accordingly
* 2xdr yi
OPA = —E0 __3(xt - g}
ares _E - -uﬂﬂ { a’) :I'
= B(z? — at¥ + 3af, I<z'<a

whence 1'"' g Larea OFPA]=3 al

I'n the same manoer, the area A' 38 has the valoe
M 2 rdx
" (2t —and
As ¢ diminishes towards a, the area inereases to the limiting value
fial. Hence, by adding the two results, the required area is found
to l""’[ gal + Gal =pal,

=6 af — 3(r2 — any}, a<z'< 3

The same result is found by a direct application of (8), viz.:

i&- 2zdr = 3(zr — u“}i- - 9 af,
(x* ag}i Jde
a0 that in this case an immediate nse of the area formula gives the

correct result.
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Some of the details in such problems as the two preceding
may be omitted. It is unnecessary first to put z = 2, a value
leas than the critical one, and, after integration and substitu-
tion of limits, to let ' approach the critical value as a limit.
For this is clearly equivalent to taking the eritical value at
once as the npper limit for the portion of the area to the left
of the infinite ordinate (or as the lower limit for the area to
the right of this ordinate).

Thus, in case of an infinite ordinate, the rule of procedure
becomes :

Calculate separately, by formula (9), the two portions of area on
each side of the infinite ordinate and add the two results. 1I one
of these portions is infinile, it is not necessary to calculate the
other; the required area is infinite,

The formula (%) for area has been deduced under the as-
sumption that the limits @ and b are finite. It may happen,
however, that the eurve y=f(#) approaches the z-axis as an
asymptote. It might then be required to determine the strip
of area extending to infinity between the curve and its asymp-
tote. The method of procedure for such a case will be ex-
plained in the following example.

Ex. 3. Find the area bounded by the curve y{z? 4+ 1)=1 and
the x-axis

ot =X
IFio. 09
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This curve being symmetrical with respect to the yaxis, it is
sufficient to caleculate the area in the first quadrant. As our formula
of iutegration docs nob take account of the ease b = o, we integrate
from 0 to =’ and in the result cause # to increase without limit
This limit will be defined to mean the area between the are in the positioe
quadrant, its asymplote, and the yuris. 1t ig evident that these steps in
the evaluation amount to a direct u.ppﬁnatin.n of the area formula,
using the limits ) and . The half area is, am::-rdinglju

o ‘11- =]
L 5 _ —':]u: n-1w — tan-10.

We are here confronted with the difficulty that the anti-tangent is
a many-valued funetion and thers iz a question as to which of its
values should be chosen. [t is necessary in such a ease to go back

and examine the limiting process just explained. The area OPQN is
equal to tan~'r' — tan-10. If ' approaches zero, this expression
should approach zero; and as =¥ inereases continuously tha area also
increases continnously.  Accordingly, whatever value we choose for
tan—10, the limit of tan—12' should be the value obtained by & continu-
gug increasa in this fun:tion as ' increases without limit. The sim-
plest valoe fortan—101ia 0. Tf tan—z' inerenses continuously from 0,
it roaches the limit g when z° becomes infinite. Hence

lim "
—Ipf _ tan-10y =X
; » _ (tan—" — tan—10) 3
If we choose tan—=nm, n any integer, then j__,l'. tan—lz' =n=zr + Eﬂ'

and the difference gives ; as befors.

Ex. 4. Find the area bounded by the curve y(z2 4+ n?)* = r and
Lhe positive r-axis

Ex. 5. Find the area bounded by the ourve y = tan-1z, the codrdi-
nale axes, and the line z = 1.

In this problem wa have to deal with a many-valued function of =
In fact, to each value of r corresponds an infinite number of values of
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tan-'z. The problem, accordingly, has an indefiniteness, which must
be removed by making some additional assumption.

The curve y =tan=!x consists of an infinite number of branches,
corresponding ordinates of which differ by integer multiples of .
Each branch is continuous for all finite
values of x (see Fig. 70). It is evidently
necessary to select one of these branches

for the boundary of the proposed area,
and discard all the others. Suoppose, Tor

4

example, the branch A 2 iz selected. The
ordinate to this branch has the value
r when z is zero, and ineremses con-

tinuously to ..__.+..H1Hm.|_m.m. a8 r increases

continuously to 1. Hence the required
Fia. 10 arca is

-ﬁ.ﬂ_..._ﬂn?..ﬂ gtan-lr— | bog(2? 4 :H.._

EXERCISES

1. Find the area bounded by the eurve y*(x — 1)= 1, the asymp-
fote x = 1, and the line r = 2.

2. Find the area bounded by the curve 3%z — 1}*=1 and its
asymptote, the r-axis.

3. Find the area bounded by the eurve of Ex. 2, the zaxis, and
the ordinate » = 2.

4. Find the area inclosed by the curve 2% = a%(y* — %) and its
asymptoteg .

5. Find the area bounded by the eurve a®z = y(x — a), the r-axis,
and the asymptote x=a.
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6. Find the area between the cissoid 49 =2_”'__ and its asymip-
bote £ = 2 n. =

7. Find the area between the curve pi(l — 2¥)=1 and ite
agymplotes.

144. Calculation of aresa when x and y are expressible in terms
of & third variable. When the rectangular cobrdinates of any
point of the boundary are of the required area are given as

funections of a third variable 8, we may subatitute in fhydz

the expressions for y and dz in terms of # and integrate be-
fween the corresponding new limita for # in accordance with
Art. 140 (d).

Arex of the eycloid. This curve is traced by a point P in
the circumference of a circle of radius r as the cirele rolls on
a straight line, without sliding.

b

It

oM 7] A X,
; Fra. 71
Let the point P be in contact with the given line at O when
the circle begins to roll. Suppose that an arbitrary are PQ
has rolled over the segment O@. TLet (x, ¥) denote the rec-
tangular codrdinates of P, and let # represent, in radian meas-

ure, the angle at the center €' subtending P ; then,
ﬂQ = Arg _F'f;' = .

EL, TALD, — 10
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Dropping a perpendicolar P/ on the line '), we hava

PR=rsng, RUC=rcosf.
Accordingly,

r=0M= GQ—HQ =rf—ranfd= r{ﬂ—ail:l ﬂ},
y=MP=0QCU—- BC=r—rcos @ =r{l —cosf).
These are called the two parametric equations of the cycloid,
# being a varying parameter. One complete arch of the cy-
cloid is generated as 6 varies from 0 Lo 2w, that is, a8 x varies
from 0 to 2 7. The maximum ordinate for this arc occurs at

@ = =r, and the are is symmetrical with respect to this ordinate.
The area inclosed by the are 014 and the x-axis is

frr w
“[ y!ﬁn=f (1l —cos @) - r(l —cos #)dd =3 .
The area is three times that of the rolling cirele.

EXERCISES

1. Find the area of the ellipse when r and y are expressed in
tarma of the sccentric angle, = acosd, ¥y = hain g

What is the meaning of the negative rign in the result?

2. Find the area of the hypocyeloid 24 +yt= at by expressing x
and g in the form x = a cos* 8, y = a zin* .
3. Find the area of the loop of the folium of Descartes
o Pt By =10
This area may be caleulated either by expressing x and y in the

form 5 8 _ap

il TR

oblained by putting y = f and solving for x and y, or by transform-
ing to polar codrdinates and using the polar formula for area, Art. 145.
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4. Find the area within the curve y®=(1 — 2)* by assuming
T=coo:f, y = ein? .

5. Find the area of {u:]i-]- |::.':|_i,r:||i = {a% = b"}i, the evolute of the
ellipse. (See Fig. b1, p.190.) Express ¥ and y in the form,

ax = (a? — b%) ain® 8, by = (o — B%) cos® .

145. Arveas in polar cobrdinates. Let PQ be an are of a curve
whose equation i8 given in polar codrdinates (p, #). It is re-
quired to find the area bounded Q
by this curve and the two as
signed radii OF and OQ.

Let 4 and B be any two
points of the curve with codrdi- D
nates (p, 8) and (p + Ap, 6+ Af)
respectively. Through A draw
an arc A of a circle with radiug
p and center €. The element of 1 R
area 0.AC is a sector of a circle © /
of angle Ad. The arc AC is, o 12
therefore, p A® and the sectorial area is L g"Af. The limit of
the sum of all such elements contained between OF and 0Q is

5) ot do. (14)

That this is the actual area sought remains to be proved by
showing that the sum of the elements of area has the required
area for its limit. This may be done by steps exactly analo-
gous to those nsed in Art 137, which would consist in
proving that the sum of all interior sectors, such as 0.AC, has
the same limit as the sum of all erierior sectors, such as QDB.
The details are left to the student as an exercise.
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EXERCISES

1. Find the area of the three loops of the curve p = asin 3 8.
From the symmetry of the figure it is seen that one sixth of the
htﬂmindam{hﬂuﬂtwhufmmﬂmg. Hence the area is

ufias.waan-h jaof Fa - mnmdh!i“—’.

This is one fourth the area of the circumscribing cirele.

2. Find the area of the lemniscats p* = a®cos2 8.

3. Find the area of the circle p = 2r con f.

4. Find the area of the eardioid p = r(1 — coz 8).

5. Find the area of the circle p = 10 sin 8.

6. Find the area bounded by the hyperbolic spiral pf = ¢ and
radii drawn to bwo arbitrary pointa (p,, 8,) and (pg, ;). Bhow that
the area is proportional to the differance between the radii.

7. Find the area of the four loops of the curve p = a sin 2 8.

8. Find the area of the loop in the spiral of Archimedes p = af
generated between the limits -;llld -I-%' for 8.

9. Find the area bounded by the lituus o* = i and two arbitrary
radii, making angles & and 6 with the polar axis

10. Find the area of one loop ol the curve p? = a' cos nfl.

11. The radius vector of the logarithmic spiral p = ¢~ starts at
the angle & =0 and rotates positively about the origin sn infinite
number of times. Determine the aren swept over by the radius
vootor.

12. Find the area of the curve p* = sin® @ coz 6.
13. Find the area within the curve p = cos?§.
14. Find the area of the innermost loop of the double spiral p =,

146. Approximate integration. The trapezcidal rule. As
shown in Art. 138, the numerical value of the definite integral



INTEGRATION AS A SUMMATION. AREAS 203

.[:g,rd.-u is the same as that of the area bounded by the corve
¥ = f(z), the zaxis, and the two ordinates z=4ea, a=5
When a, b, and the coefficients in f{z) are numerically given,
the approximate value of this area, and therefore of the defi-
nite integral, ean be found by adding the n terms of the series
[fla)+ fla + Az)+ - +fa+n—1.Azx)]Az. The close
ness of the approximation improves with increasing values of
n. A much more rapid method of approximation is now to be
considerad.

Instead of forming rectangles, P
as in Fig 09, p. 268, draw the By
chords PP, PPy, +--, P,_,§), thus
making trapezoidal elements of
area, APPA, APPA, ete. Fio. T
Denote the ordinates at A, Ay, Ay, -, 4, ;, Bby ¥, th, ¥ oy
Yoo ¥, Tespectively. Also for brevity write Az =Hh. Then
the areas of the several trapezoids are

APPA;, = §we + yOh,
AP P Ay = §h + yahy

AurFu 1 0B = Hyon + Wb

¥ P

oA A, A A FX

Hence, by adding, we obtain for the approximate value of
the definite integral the expression
! Vot ¥Un
LS T, |

This is known a8 the frapezoidal formule for the approximate
value of j:"yd;n and thizs method of computing its numerical
valoe is ealled the trapezoidal rule.
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147. Simpson's rule. With ikree ordinates. Instead of draw-
g the chords PP, PP, pass a parabola, having its axis ver-
tical, throogh the three points P, P, F; and determine the
area of the double strip bounded by the two ordinates y, w,
the z-axis, and the parabolio are. :

The equation of the parabola is of the form

For convenience take the origin at the foot of the middle
ordinate %,. Then the abscissas of the three ordinates may

be represented by — A&, O, 4+ A, and the area under the para-
bolic arc is given by the formula

£{k+ 1o + mat)iz = 2(6 4 2 mh).

This result can be expressed in a simple form in terms of the
three ordinates y, v, v, For,

W=k — Ik + mh?,
=k,
¥z =k + Th + mh?;
therefore, Yo+ ¥ =2k + 2 mh,
hence, bh4+2mb=w+ 49+ ¥
and, accordingly,
parabolic aves APPPds="(i+ 4+ (19)

This is Bimpson's parabolie formula for three ordinates.
With n ordinates. Tn like manner the area bounded by tho
two ordinates ¥, ¥, and a parabolic arc through Py, P, P, is

En+4pt) (16)



INTEGRATION AS A SBUMMATION. AREAS 205

and so on. If the number of ordinates wy, ¥, ---, ¥, 18 odd, we
obtain, by adding together the expressions (15), (16), etc.

;ll:yu +4m+ 2t A2+ o +Ey__5 + iy__l + ¥,.l
&
This is 8impson's formula for the approximate value of J- iy .

148. The limit of error in approximate integration. The ap-

proximate value obtained for f'f(z} dz by means of Simpson’s

formula differa from the true value b}r an amount which does

not exceed *  G—a) SR
180 :
in which f({) ia the value of the fourth derivative of f(z)
when x is given a certain value ¢ between @ and . The limit
of error for the trapezoidal rule is*
_ (p—a)S(OR
12
Bince £ iz not definitely koown, in applying the above
formulas to find the limit of error it is necessary to choose §
go that fv(£) or f'(£) has its greatest value in the interval
from a to . The result so obtained may be considerably
larger than would be given by the formula if £ were actually
known. In some cases the result will be so large as to give no
useful information in regard to the closeness of our approxi-
mation. In other cases it will be small enough to indicate
that the required degree of approxzimation has been attained.
For example, suppose it is required to evaluate

f”lﬂﬁ... Z b
. ox )

¥ Boa Margory, " Differenzenrachnong,” § 14, pp. 57, 58,




206 INTEGRAL CALCULUS

Since f(z) =x'logy®, we obtain by successive differentiation
Jr(zy =224 logyx— b0 M), M=log,, e=04i43, very nearly.
As we cannot readily determine by inspection the largest nu-
merical valne of /() in the interval 20 < = < 30, we obtain

tihE nexk dﬂﬂ?at' Vi f"{ﬂ;} o m4{ﬂ'?4_ M— 12.:' lﬂg}u m'}l'

The first factor 2™ is positive. The second factor takes a nega-
tive value for = =20 and hence f¥(x) is negative in the given
interval. Therefore, f1¥(x} i= a decreasing function for all the
values of * under consideration. But f™{x) is positive for
a= 30, and accordingly its greatest numerical value eccurs for
o= 20, which 18 ({20} = 0.000003.

The limit of error for Simpson’s formula is, therefore,

_ 10{0.000003) ., .
150 ht = — (D.0000002) A",

If we use 3 ordinates, then A=>5 and the error does not exceed
—0.0001+ ; that is, the error is less than two units in the fourth
place of decimals,
EXERCISES
In the following problems use Simpson's formula whenever an odd
number of ordinates is given. Determine the limit of error and,
when possible by direct integration, the exact error. Also evaluate

by using the trapezoidal rule, and compare the degree of accuracy
attained by the two different methods.

1. Evaluats j:.z“ dz by the trapezoidal rule, using 5 ordinates;
¥ ordinates.

In the case of 9 ordinates, n =8 and A=
n= (i:’gi- ye=1, = {H’- riey Mg = 42,

2. Prove that Simpson's rule gives the exact value of j:'.t" dx,

) tan (et 4 B2 4yr 4 Bz,

b=a 1

==

n "

=10
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3. Evaluate L‘m:n‘.:, wsing 3 ordinates; 5 ordinates; 7 ordi-
nates; O ordinates. Notice the yariation of error with increasing
values of n.

4. Evaluate Md:, using 5 ordinates,

i |

"FH Eﬂ-lult-e j. V1 & 2 dz, using 'I. ordinates ;| 7 ordinatas.

\
1"'\ 'L Evaluate j: log,, x d'x, using unit intervals.

—

8 Evaluste { "%

log e £
9. Evaluate L' VT — iz, uaing 6 ordinates.

10. Evaluate jnte‘*;:ﬂr, using 11 ordinates.
This integral (with any upper limit) is called the Probability Fnre-
gral since it plays an important rile in the theory of probabilities.

i I 11. Evaluate Ltﬂi — 3 sin?x dr, using 7 ordinates,

12. Evaluate L":‘luhh] the trapezoidal rule, using 11 ordinates.

13. Caloulate the valus of x from the formula ¥ = "~ %% using

1+ &
11 ordinates.
Datermine the error by comparison with the known value of .

14. Evaluate f Veos B df, taking 8§ at intervals 157 107, 0.

This, like Ex. 11, is an Elliptic Integral and cannot be integrated
by sny formula given in the present volume. It occurs in the prob-
lem of caleulating friction in journals (See “ Engineering Mathe-
matics ® by Prol. V. Kagarerory, Part I, p. 16. Wiley, 1912.)

15. Evaluate rlﬁ'ﬁ;ﬂf dz, using 3 ordinates.

=<
6. Evaluate L cos xdz, using 7 ordinates. I-: _ J‘E‘I‘t ;



CHAPTER VII

GEOMETRICAL AFPLICATIONS

149. Volumes by single integration. The volumes of varions
solids may easily be caloulated by a summation process exactly
similar to that used in computing areas. The following prob-
lems will make the mode of procedure clear.

Ex. 1. A woodman fells a tree 2 ft. in diameter, cotting hallway
throngh on each side. The lower face of each cut is horizontal and

£ ¢

P, Th

the upper face makes an angle of
40° with the lower. How much
wood doss he cut out?

The portion cut out on one side
forms a solid bounded by a eylindri-
cal surface whose equation may
be taken in the form =¥ 4+ y' = 1,
aod by two planes whoss intersec-
tion may be chosen for the y-axis
ITmagine this wedge-shaped solid
divided into thin plates by means
of planes parallel to the zs.plane
and at equal distances Ay. The

volume of an arbitrary plate PQRA'QR’ is approximately equal to
the ares of the triangular face multiplied by the thickness Ay.

v3

Area PQR = | RP - PQ = lﬂz?l’,
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since mlEEuHa\w, The element of volume is therafore

Vi
il
Since the figure is symmetrieal with respect to the zz-plane, if is suifi-
cient to caleulate the volome betwesn the limits 0 and 1 for § and

doubla tha result.
Tha litnit of th: sum of all elements of volume in the first cetant

is
S

That this limit is the volume %o be delermined may be seen on
observing that the element of volume falls short of the total amount
contained in the plate PQRF R’ by the prismatic pieca PN QM@
The sam of all these neglectad portions, in the first octant, in lem
than the volume of the maximum plate (having the rz-plane for base ),
and hence approaches zero as Ay diminishes.

Therefore the total volume of -ﬂnﬂ_.‘i_.‘r%n..n.

Ex. 2. Caleulate the volume in Ex. 1, by dividing the solid of
Fig. T4 with equidistant planes parallel to the y=-plane

Ex. 3. Find the volume of the ellipsoid

g, A
E+W+ndﬂ_:

Imagine the solid divided into s number of thin plates by means
of planes perpendicular to the r-axis and st equal distances Ar. Re-
gard the volume of each plate as approximately that of an elliptic
eylinder of altitude Az, whose base is the section of the ellipsoid by
one of the cutting planes. [f the equation of this plane is z = A,
the equation of the elliptic base of the plate is (in v, = codrdinates)
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T
gt a= ooy

Dividing by 1 _5, we obtain

yt " 1 o
Al ; 1 ,
w(1-%) (-3
The semiaxes of the ellipse are

&\ll -}:. c\'l -—'}i

Since the ares of the ellipse is the produet of the semiaxes multi-
plied by = (Ex. 13, p. 281), it follows that the area of the elliptic base

in r:'.ur(l -—‘L:). On replacing A by =, the element of volume may

b writlen

{1 - s

The sum of all such elements for values of = varying by equal
increments Ar between 0 and a differs from the volume of the half

ellipscid by a series of ring-shaped portions, the total sum of which
is lems than the volume of the maximum plate of the figure. It

readily follows from this that the total volame of the ellipsoid is
& r? !
Ei :ﬂn(l - ;i)d.r -.—-Hrullc.
Ex. 4. Solve Ex. 3 by taking Lhe cutting planes parallel to the z=-

plans and at equal distances Ay.

Ex. 5. Solve Ex. 3 by taking the cutting planes parallel to the
zy-plans.

Ex. 6. Find the volume of the portion of the elliptic paraboloid
-::+:—:=::cut.n!lhjﬂupllnu:= 1.
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Ex. 7. Find the volume of the elliptic cone :: + :Ti = (z —1)3 meas-
ured from the yz-plane as base to the vertex (1, 0, 0).

Ex. 8. Find the volume of a pyramid of altitude & and of base
area A. -

[Hixt. Take the base on the zy-plane, the altitude coinciding
with the z-axis. Cuotb the solid into thin plates by planes parallel to
the hase.]

Ex. 9. Given an ellipse :_:+ E:= 1. On the major axis a plane
rectangle ABCD a3 con- ¢ p D
structed perpendicular to l
the plane of the ellipse.
Through any point P of
the line 0 a plane is
constructed perpendicu- 5
lar to 0. The Lwo

points R and 8 in which A B
the latter plane meets the \U
gllipss are joined to P R

by straight lines. The Fao. 18

totality of all lines so determined forms a ruled surface called a conoid.
Given A = p, find the volume of the above conoid.

Ex. 10. A rectangle moves from a fixed point P parallel to itself,
one side varying a8 the distance from P, and the other as the square
of this distance. At the distance of 2 ft., the rectangle becomes a
square of 3 {t. on each side. What is the volume generated?

Ex. 11. The center of a square moves along a diameter of a given
gircle of radius a, the plane of the square being perpendicular Lo that
of the circle, and ita magnitude varying in such a way that two oppo-
sita vertices move on the eircumference of the circle. Find the vol-
ume of the solid generated.
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Ex. 12. A right cirenlar cone having an angle 2 § at the vertex has
its vertex on the surface of a sphere of radius a and its axis paming
through the center of the sphere. Find the volume of the portion of
the sphers which is exterior to the cone.

Ex. 13, Find the volume of the paraboloid I—: T g = z cut off bry the
o

plane =z = ¢.

Fx.14. A banister cap is bounded by two equal eylinders of revo-
lution of radius r whose axes intersect at right angles in the plane of
the base of the cap. Find the volume of the cap.

150. Volume of solil of revolution. Let the plane area,
bounded by an arc PQ of a given curve {referred to rectangular
axes) and the ordinates
¥ L. g at the extremities P and
" | @, be revolved about the
B 2 R w-axis. It is required to
I 1R .--.-.-..-E/.}ﬂ find the volume of the
o x  solid so generated.
M Ao An-i | B Let the figure 4APQB
ba divided into n strips
of width Ar by means
of the ordinates 4,P,
-"i-lPEr | A-—IF-—'I" In
revolving about the
z-axis, the rectangle APR,A, generates a cylinder of altitude

Ax, the area of whose base is = - AP. Hence

Fra. T6

volume of eylinder = . AP’ . Ax.

The volume of this eylinder is less than that gemerated by
the strip AFPF A, by the amount contained in the ring gen-
erated by the triangular piece PR,P;. Imagine this ring
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pushed in the direction of the waxis until it cccupies the posi-
tion of the ring generated by CDE. If every other neglected
portion (such as is generated by 2%_,F;R,) is treated in like
manner, it is evident that the sum is less than the volume
generated by the strip 4, ,F, @B, and henve has zero for
limit as Az approaches zero, Therefors the sum of then cylin-
ders generated by the interior rectangles of the plane, viz.

w (AP + AP 4 - + AP 1) An,

has for limit the volume required. But the limit of this sum
is the definite integral j:.qﬁi:l:, and hence

volume == | 3 dz.

The volume generated by revolution about the y-axis is found
by a like process to be expressed by the definite integral

*_I
T o dy,

in which a' and ' are the values of y at the extremities of the
given aro.

When the axis of revolution does not coincide with either of
the cotrdinate axes, a similar procedure will usually give at
once the element of volume.
Examples 1-3 will illustrate.

Ex. Find the volume of revo-
lution of the segment of the
parabola y% =z eut off by the
ling y = x, the axis of revolu-
tion being the given line.

Let 0Q be the axis, and P
any point of the parabolic arc. o Fia. T7 X




304 INTEGRAL CALCULUS

1 ¢ denotes the perpendicular distanee PR from P to 0@ and u the
length of the line R, then the element of volume is

¥ A,

The formulas of analytic geonetry for the distance from a point

to o line gives
l,=_|,|I—.-:|:_'|.-"'E—.1.-

V2 V2

in which (z, y) are the codrdinates of /. The second form for # is
obtained by substituting for y the expression given by the equation
of the parabola.
Since Au is measured on a line making an angle of 45" with the
r-uxis, it follows that As = v2 . Ax,
Hence the required volume is
rr(ﬂg_’; o I)E\"E'TII o
Vi 40,2
EXERCISES
1. A quadrant of a circle revolves about its chord. Find the

volume of the spindle so generated.
[HiwT. Take the equation of the circle in the form 2% 4 y* = r®
and the equation of the chord z + y = r.]

2. Find the volume of revolution of the segment of the ecircle
¥ 4+ 37 = r? cut off by the line r = a, this line being the axis of

revolution.

3, Find the volume of the truncated cone obtained by revolving
about the y-axis the segment of the line 3 x 4 y =5 between the

poiota (2, — 1) and (1, 2).
4. Find the volume generated by the revolution of the cissoid
o
¥= 2a—rx
What is the limit of this voloma as z, approaches 2a?

about the r-axia from the origin to the point (z,, 3,)-
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5. Find the volume obtained by revolving the entire cissoid about
its asymptote, the line £ = 2 a.

[HixT. The elemaent of volume ia w(2a— ) Ay. For the pur-
pose of integration express r and y in terme of a third variable ¢ by
means of the equations

e J
x=2asinit, y=2a e t]
' o0 |

6. Find the volume of the oblate spheroid obtaived by revolving

the ellipsa =I—:i-i- ¥ 1 about its minor axis.
af B2

7. Find the volume of the sphere obtained by revolving the
eircle 2% 4 (y — [)? = rd about the y-axis.

8. The arc of the hyperbola zy = &, extending from the vertex
lo infinity is revolved aboot its asymptote. Find the volume
generated.

What is the volume generated by revolving the same are about the
olher asymplote ?

9. Find the entire volume obtained by rotating the hypocycloid
=t 4 yi = af about either axis.

10. Find the volume obfained by the revolution of that part of
the parabola vz 4+ v =+ intercepted by the codrdinate axes about
one of those axes. :

11. Find the volome generated by the revolution of the witeh

8ot :

Y= AL g about the r-axis

12. Find the volume generated by the revolution of the witch
about the y-axis, taking the portion of the curve from the vertex
(z = 0) to the point {z, ).

What is the limit of this volume as the point (z,, y,} moves toward
infinity 7

EL. OALC, — 20
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13. Fiod the volume obtained by revolving a complete arch of
the cycloid = = a{# — &in @), y = a(l — cos @) about the r-axis.

Volume = rj:my" dr = -n'a*.[]h{l — cns )2 d0.

14, Find the volume obtained by revolving the mrd.inid
p=a{l —ecos ) about the polar axis.

Amumae r=poemsl, y= peind.
Then  dz = d{pecosf)=d[a{l - cos §)eos F]

=asin 8 —1 + 2cos ) 48,
Hence

volume = n—_fy"d;: - mlfuiua (1 — cos 8Y3(1 — 2 cos ) df.

151. Lengths of curves. Rectangular codrdinates. Let it be
required to determine the length of a continuons are P of a
curve whose equation is written in rectangular codrdinates
(=, ¥)-

It is first necessary to define what is meant by the length
of a curve. For this pur-
pose, suppose a series of
points Py, Py, «-, P, taken
on the arc P (Fig. 78), and
imagine the lengths of the
chords PP, I P, -+ to have
been determined. The limit
of the sum of these chords as
the length of each chord ap-
proaches zero will be taken,
in accordance with accepted
usage, as the definition of the length of the are P ;¥ that is,
arc Q) = Lt (chord PF, 4 chord PPy 4 +«« 4 chord P,_,@). (1)

¥ That this llmit is always the aame no matter how the points #; are chosen,
af long as the corve has a continnously turning tangent, and the dlstances

e o o o e e

Fia. TH
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This definition is immediately convertible into a formula
suitable for direct application.
For, let the points P, P, --- be 80 chosen that

PR, = PR, = ... = Az,
the lines PR, etc., being drawn parallel to the z-axis.

Denote by Ay the increment B,#, of . Then the length
of the chord PP, is

V{BZF ¥ (BpF =41 +(i_:): a.x=\{'1+(:_;)2a . (@)

Now EJE_ 18 the glope of PP, It is, therefore, equal to the

slope of that tangent to the are PP, which is parallel to the
chord. Tf (m, 3,) dencte the codrdinates of the point of con-
tact of this tangent line, then we have

Ay _dy,
Ar dx,

Henee the length of chord PP, may be expressed in the form
(=) Az, in which

Fy=y/1+(E2). ®)

P.P,=f(z;) Az, PyPy=f(z) Az, -,

in which x, is the abscissa of a certain point on the are PP,
and so for =, --.. When these expressions are substituted in
(1), 1t becomes

are PQ= 1™ [f(z)+f(a)+ - +f(z,)] Az

Py P are all made to tend towards zero, admits of rigorous proof. The
proof s, however, unsoitable for an elementary textbook. ({Bee Rouche at
Comberonssa, * Tralté de géomeétria," Part I, p. 1689, Paris, 1801).

Similarly
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But, by (11), p. 274, this limit is f 'f@)de. Substituting for
S(z) from (3), we obtain the formula

a.mpq_—;lj:ﬁ\fl +(£)z da, @

in which a and b are the abscissas of P and @, respectively.
Taking for PP, the second form in (2), namely,

W Ay,

we deduce in like manner

¥ =
amPQ=£ 1+(§) i,

in which a' and &' are the ordinates of P and €.

EXERCISES

1. Find the length of arc of the parabola y* = 4 pr measured from
the vertex to one extremity of the latus rectum.

; o
In this case Ezi :‘!JI_E,
hanea length of arc = | * b4+ 8 dz= T EYPR ge
B J; \{ x '£ Vil 4 px
2. Find the length of arc of the semicubical parabola ay* = 7

from the origin to the point whose abscizaa is %.

3. Find the langth of are of the eurve y = log cos x, measured
from the srigin to the point whoss abacissa ia % .

4. Find the entire length of the hypocyeloid s ¥ = al,
5. Find the length of arc of the circle 2? 4 * = #2
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6. Find the length of are of the catenary y:.;(e: +e_z} from
the point {0, a) to the point whose abscissa is a.
1

7. Find the length of arc of the curve y = +'2.‘:

limita z=1 and =2

betwean the

=",

8. Find the length of the logarithmic curve y =log z from =1
to z = V3,

9. Find the length of arc of the evolute of the ellipss

(an)¥+ (i) = (a?— 1.
10. Find the length of arc of the curve y = alog (o' — =) from

a
r=0tor= 5"

153. Lengthe of curves. Polar codrdinates. The polar
formulas for length of arc may be derived from those of the
previous article by transformation from rectangular to polar
coordinates.

Since s=pcosf, y =psind, we obtain by differentiating
with respect to @

e = ({E—i[gma-ﬂ—p sin E){!'ﬂ, dy:-(ﬁ gin 8 4 pﬂuaﬂ) ad,

hence
V1 +(;—"'£)ldz B e =\}(§;)’+ o dé.
T.'[.lﬁl'ﬂfnl'ﬂ the lenpth of arc is
arc Pﬂ—f \{’ ’+(E£E) (5)

the limits of integration being the values of ¢ at P and Q.
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If p instead of @ is tuken as the independent variable, we
deduce in like manner

" o dgn
PQ=["\1+(o )
the limits being the values of p at 7 and Q. I

EXERCISES

#

. mdl&hﬂhﬂ{mﬂmmﬂlhmkqﬁlﬂpzﬁ bt ween
the two points (p, 8,) and (py ), and show that it is proporiionsl
tw the difference of the two radii p; and g

2. Find the length of arc of the circle p = 2 @ sin 4.

3. Find the entire length of the cardioid g = a1 — cos #).

4. Find the length of the parabols p = a aauﬂg between the points
(py: 0,) nnd (p,, 8,).

5. Find the length of the spiral of Archimedes p = afl between
two arbitrary points.

6. Find the length of arc of the spiral p = # measured from
§=0tof=nr

7. Find the entire length of the curve p = cos? 8.
8. Find the entire length of the curve p = a ui:u"ga

9. Fiud the length of are of the ciasoid p = 2 a tan @ sin # between
the limits 0 and {

[Hiwvr. For the purpose of integration, express the integrand in
terms of sec § as the independent variable.]

153. Measurement of arcs by the ald of parametric representa-
ticn. Buppose the rectangular codrdinates of a point on a
given curve are expressed in terms of & third vuriablet. Then,
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dt

-fun fa= NG =

in which 8= are PQ, and ¢,, ¢ are the values of ¢ corresponding
to the points F and ¢. In like manner, if the polar cotirdi-
datea (p, §) are expressed in terms of ¢, the formula for length

2 , : ds __[fdend | Fdipy®
sinee in rectangular codrdinates 5 "‘\l(..'ﬁ) +(- ) (Art. 41),

wa have

of are is

- TNy OO

s_.‘[l Vll'uﬂ) +(_Pd'f) it
- s _ [T\ 1,00 ;
since m_\[(m +(,n.tu (Art. 45)

EXERCISES
1. Find the length of a complete arch of the eyeloid
r=uaft —8int), y=a(l — coui).
2. Find the length of the epicycloid
r=a(mcost — cosmt), ¥ = af{msint— sinmt)

o

fromi=01tot =
m—1

3. Fiud the length of arc of the hypoeycloid -.u:i + ,g.ri = ﬂi by ex-
pressing x and g in the form £ = a sint/f, ¥ = a cos¥ L.

4 Find the length of the involute of the circle
r=alcoal + tsint), y =a(sini— {cos i)
frome=0tot =1

5. Find the length of arc of the curve 27 — y¥ = al from (a 0}
to (IIF !,r.] by amuming = = a sec*t, y = a tan® L
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6. Find the length of arc of the curve z = ¢ 5in ¢, ¥y = efeoat frome
f=04toi=4

7. Find the length of arc of thecurve z=a + &, y =5 + # meas-
ured from the point ¢ = 0 to the point { = ¢,

154. Area of surface of revolution. Let AQ be a continnous
arc of & eurve whose equation is expressed in rectangular codrdi-
nates « and . If 13 required to
o determine a formula for the area
of the surface generated by revolv-

ing the are A€ about the z-axis.
It has been shown in Art. 44,
x p- 81, that if § denotes the area
of the surface generated by the
Fig. 19 rotation of AP (P being a variable
point with cotrdinates (z, %)), then AS satisfies the conditions

of inequality
ZwyAs < AS < 2 »(y + Ay) As. (6)

'.F

F

Let the are 4@ be divided into n equal parts of length As.
For each segment of arc there will be a set of condi‘ions such
az (6), the values of y, Ay, AS being in general different for
the different segments. Lot the n sets of inequalities thiis

obtained be added. In what follows, the symbol >, will be
used as an abbreviation of the expression, “The sum of the

n terms of the form.” Bince E A8 =8 (in which S now
denotes the entire surface generated by are AQ), we have

2w Y yAs <8< 2r3 (y+A4y) As (T)
Now let as (and hence Ay) approach zero, The first mem-
ber of (7} becomes 2 o | yds, which changes to
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3"[‘ 1+(g)’dr, or to 2w ,’\rf“*(::_,) dy,

on making x, or , the independent variable. The limit of the
last member of (7) may be written

a.‘.:'i‘u [ &=+ Ay Ax] ufyd: +- 1‘;:::2‘r Ay As.

The last term is zero. For, let § represent the maximum
value of Ay in any of the terms of z.ﬂ.yﬁl. Then follows

2AyAs <3 As=3-arc AQ,
and since § approaches zero, we conelude that lim E Ay As = 0,
Henoe limzym-:limzul+ny}ﬂ.s,
and therefore
dun ¥ F ¥ dary?
S=2«f y\||1+(i) '“"“.ﬁ WJI"'(;TE dy.

In like manner the area of the surface obtained by revolving
arc AQ about the yaxis is

Brfz\(I&—G—iTﬁ=ir£‘.r\[1@dy. )

EXERCISES
1. Find the suorface of the catemoid obtained by revolving the

uhplq;=§[es+=_:)lhﬂnt the y-axis, from r =010 z = a.
Since E:i{f:-t-:};
it follows that " §
2 e *y
1+(E) =.Ii._i'{_l_;
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hence, by using the first formula of (8), the required surface haa the
area

w":-.r{ez+ ¢ E:l dx.

2. Find the surface obtained by revolving about the gaxis the
quarter of the circle 24 @ + 22+ 2y + 1 =0 contained between
the points where it tonches the cotdrdinate axes.

3. Find the sarface penerated by revolving the parabola 3@ = 4 pr
about the r-axis from the origin to the point (p, 2 p).

4. Find the surface generated by the revolution about the y-axis of
the same are a8 in Ex. 3.

5. Find the surface generated by the revolution of the ellipse

2 2
atE=t

{a) about its major axia (the pra:nlnt.;a spheroid) ;
{#) about its minor axis (the oblale sphercid).

6. Find the surface generated by the revolution of the cardioid
p = afl + eos §) about the polar axis

Regarding the figure as referred in the first place to rectangular
axes such that z = p cos ¥, y = psin & we have

— — " 3 d_j
surface = 2 :-Iy da = 2 'j:_-, p gin fyp? +(£) db,

since ds =gt + (ﬁg)iﬂl by Art. 45.

7. Find the surface of the cone obtained by revolving that por-

tion of the line nf+ E = 1 which is intercepted by the codrdinate axes,

() about the z-axis; {#) about the y-axis.

8. Find the surface of the sphere obtained by revolving the circle
p =2 a cos § about the polar axis. [Cf. Ex. 6.]
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9. Find the sorface generated by the revolution of a completa
arch of the cyeloid = a(# - sin #), ¥ = a(l — coa #) about the r-axis.

10. Find the surface of the ring geperated by revolving the
circle 22 + (y — £)* = of, k> a, about the r-axis. Also find the vol-
ame of this ring.

11. Find the surface generated by the rotation of the involute

of the gircla '
r=acoal +isinf), y=a(sln{—{oodr)

abont the raxis from =0 tof =1,

155. Various geometrical problems leading to integration.

Ex. 1. A string A8 of length @ has a weight attached at B. The
other extremity A moves along a straight line O.X, drawing the weight

¥

0 A X
Fra. 80

in a rough horizontal plane XGF. The path traced by the point B
i ealled the tractriz.  'What i3 ita equation ?

Let G F be the initial position of the string and 4 B any intermedi-
aie position. Since at every instant the force is exerted on the weight
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B in the direction of the string J4, the molion of the point must be
in the same direction; that is, the direction of the traclrix at B is
the sume as that of the line BA and henoe BA is tangent to the curve.
Thlﬂpﬂnmiwbhahngmblmgthu(mmpﬁﬂ}

¥41 ¢ ;&) ,W—m

n'.'l:
Solving for %,nnhhh

!!.1P_—.E.
dy ¥
Integrating with respect 1o y gives
:=j'—!'“‘;-dy=~.@—:ﬁ-mg‘L-_f "‘:‘h+ c.

The constant of integration in determined by the assumption that

(0, a) is the starting point of the curve. Bubetituting these codrdi-
nates in the above equation, we find ' = 0.

Ex. 2 The equiangular spi-
ral is & curve so consbrucled
thal the angle betwoan the ra-
dins vector to any point and
the tangent at the same point
s constant. Find its equation.

¥

Ex. 3. Detoarmine the ourve

baving the property that the

¥ line drawn from tha foot of
ﬂl any ordinate of the curve per-
34/ pendicular to the correspond-

ing tangent is of constant
length a.
Fra. 81 If the angle which the
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tangent makes with the r-axis is denoted by @, it is st once evident
(Fig. 81) that
1 1

-

F VT g N+ ()

From this follows
T =log(y+Vy' —at)+ O
I

When the tangent is parallel to the raxis, the ordinate itself is the
perpendicular a.  If this ordinate is chosen lor the y-axis, the point
(0, @) is & point of the curve, and hence

ﬂ' = - I:W'.i-
The squation can accordingly be writtan

pevit-dl_ o (1)

a
From this follows, by taking the reciprocal of both members,

' —
¥4yt gt o

whence, on rationalizing the denominator,
y— vV —at .':, , (2)

[
Adding (1) and (2) and dividing by E, we obtain
l ¥= E {; + "-'!}r
which ia the equation of the catenary.

Ex. 4. Find the equation of the eurve for which the polar subnor-
mal is proportional to (is a times) the sine of the vectorial angle.
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Ex. 5. Find the equatiou, in mctangular codrdinates, of the curve
having the property that the subnormal for any point of the curve
is pruportional to the abscissa.

Ex. 6. Find the equation in polar codrdinates of the curve for
which the angle between the radius vector and the tangent is n times
the vectorial angle. What is the curve when n =17 When n = | ?

Ex. 7. Find the rectangular equation of the corve for which the
lhgg_ﬁ{ the tangent varies as the ordinate of the point of contact

Ex. 8 Find the equation of the curve for which the polar sub-
tangent is proportional to the length of the radius veotor.

Ex. 9. Find the volume generated by the revolution of the trac-
trix (see Ex. 1) about the positive raxis

Ex. 10. Find the area of the surfsce of the revolution deseribed
in Ex. 8.

Ex. 11. Find the length of the tractrix from the cusp (the point
{0, EI]] to the point EN TR

Ex.12. Derive the lollowing formulas for the length of arc s of &
twisted curve, in space of three dimensions, limited by the points
(=, ¥u 21}y (2 we, 22), the codrdinates being rectangular:

1= GV (ZF 4 (B) e N1+ (B (ZY
= N (&) e SN (BT (Z) 4 (G)

+Ex. 13. Using the formuls of Ex. 12, find the length of the helix
r=ao00sl, y=anint, z= N,
in which @ and b are constants, and ¢ is & varisble parameter.

Ex.14. A plate of steel is } inch thick and has the form of a right
segment of & parabola. It weighs 400 Ib. per eubic foot. Find the
total weight of a plate 20 in. brosd and 16 in. fong.

Take the equation of the parabols in the form 3 = 4px.  Since
¥= 15 when x = 16, we may find tha value of p by substituting these




GEOMETRICAL APPLICATIONS 319

coordinates in the assumed equation, namely, 4 p = 235, The area of
the parabolic plate is therafore

mh__-....__ £t dz aq. in.

The volums und hence the weight are now
readily obtaiuable

Ex. 15. A plate of wrooght iron of heavi- p
ness 480 |b. per cubic fool is | in. thick and
is bounded by thres straight edges at right
angles to aash other, as shown in the figure, 5
while the curved boundary is a hyperbola Fio. 82
with the equation (z + 5) y = 40, the base of the figure being on the
raxiz. Caloulate the weight.

Ex.16. A metal plate, in the form of an
equilateral triangle, is } in. thick and has an

altitode of 4 in. Any very narrow vertical \ﬂ\ X
Q/L_._/

strip, as AB, of length 2y and width Ax, is
of nearly uniform density. The density variea

from one atrip to another in such a way that Fra. &3
the weight y per cubic inch is determined by the condition
100
=020 {1
r= h -2 2+ uav
Find the weight of the plata.

[Hixr. Caleulate the weight of the strip A B, then take the limit
of the sum of all such strips con- ¥
tained in the figure.]

Ex. 17. A trapezoidal plate A BCD
is | in. thick. The weight y per eubic
inch is conslant along any vertical
line, but varies with r according to
the law

¥y= 0.05 ¥ oz. per cubiic inch.
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The first strip D4 18 4 in. from the origin. What altitude & must
be adopted for the trapezoid in order that the total weight of the
plate may be just three ounces?

Ex.18. The frustum of a paraboloid of revolution has vertical par-
alle] bases five inches apart.  The equation of the meridian curve, with
the inch as the _linu.u.r unit, is y = v'x. The heaviness v i8 constant
over a vertical plane section, but varies with r according to the law

y = 006100 — 2* Ib. per cubic inch. Find the total weight from
r=4t0z=0.



CHAFTER VIII
SUCCESSIVE INTEGRATION

156. Functions of a single variable Thus far we have con-
sidered the problem of finding the function y of = when E
only is given. It is now proposed to find y when its nth
derivative E is given.

The mode of procedure is evident. First find the funetion
Yy . dvy X _ ' g
o which has o for its derivative. Then, by integrating

the result, determine :;:‘:, and 8o on until after n successive

integrations the required result is found. As an arbitrary
constant should be added after each integration in order to
obtain the most general solution, the function y will contain
n arbitrary constants.

Ex. 1. Given %25.. find ¥

Integration of :1. with respecl Lo r gives

ﬂ=-. {Tt
A~ "aaT
A second integration gives,
d I w 5
;i=2_:+r't‘+cn
and finally y=jlogz+ J Cx® + Coxr + Cp

EL. oanc. —21 321
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The triple integration required in this example will be symbolized by

§5§ L

which will be called the triple integral of 11; with respect to z.

Ex. 2. Determine the curves having the property that the radius
of curvature at any point P is proportional to the cube of the secant
of the angle which the tangent at P makes with a fixed lina.

If a system of rectangular axes is chosen with the given line for
z-axis, it follows from equation (8), p. 173, and from Art 42, that

Lol

ax?

in which a is an arbitrary constant. This equation reduces to

_n.._ﬂ,_

ifx?
from which follows

y= I!u{dr}i = -:::[%i + Cur + E‘,}

7, and % being eonstants of integration. Hence the required curves
are the parabolas having axes parallel to the y-axis.

The existence of the two arbitrary constants €1, €5 In the preceding
equation makes it possible to impose further conditions. Suppose,
for example, it be required to determine the curve having the prop-
erty already specified, and having besides a maximom (or a minimum}
point at (1, 0). )

Since at such & point i—i =0, it follows that

0=a(l+ C),
whanea Ci=—1
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Also, by substituting (1, ) in the equation of the curve,
0 =a(} -1+ Cy),
from which C:=1

Accordingly the required corve is
a
¥ =ﬂf:. e 1}“,

Ex.3. Find the equation (in rectangular codrdinates) of the
curves having the property that the radius of curvature is equal to
the cube of the tangent length.

[Hixr. Take y as the independent variable.]

Ex. 4. A particle moves along a path in a plane such that the
slope of the line tangent at the moving point changes at a rate pro-
portional to the reciprocal of the abscissa of that point. Find the
equation of the ourve.

Ex. 5. A particle starting at reat from a point P moves under the
sction of a foree snch that the acceleration (ef. Ex. 14, p. 77) at each
instant of time is proportional to (is & times) the square root of the
time. How far will the particle move in the time ¢?

Ex. 6. In connection with a certain curve referred to rectangular
axes, we know in advange that it passes through a point 4 on the
y-axis at a distance 1.12 in, above the origin. It also passes through
a point B of the first quﬂrant which i at & distanee of 12 in. from
the p-axis, and the slope of the tangent to the curve at this point is
0.08. At each point P of the curve the second derivative of y sabis-
fles t!m relation

Ay _
L= 0.0012

It is required to find the general expression (in terms of ) of the
ordinate and the slope of the tangent line for any point P of the
curve. In particular, find the ordinate and slope when r =20 in.
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Ex. 7. For a cerlain curve A DN situated in the first quadranl we
have given -
100054 = 1.5 — 0276 z.
ds a

The point 4 has the cotrdinates (0, 0.04) and the abacisea of I is
10, Af the point 8 of the curve, whose ahacissa is 5, the alops of the
tangeut line Ia 0.002,

A pecond enrve DO ia tangent to the firsé at the point D), and lor
each point of it we know that

imf_j=m:~—mm

Find the equations of both curvea

157. Integration of functions of several warlables. When
functions of two or more variables are under consideration,
the process of differentiation can in general be performed
with respect to any one of the variables, while the others
are treated as constant during the differentiation. A repeti-
tion of this process gives rise to the notion of successive
partial differentiation with respect to one or several of the
variables involved in the given funetion. [Cf. Arts 62, 67.]

The reverse process readily suggests itself, and presents
the problem: Given a partial ( first, or higher) derivative of a
JSunotion of several variables with respect to one or more of these
wvariables, to find the orviginal function.

This problem is solved by means of the ordinary proocesses
of integration, but tha added constant of integration has a
new meaning. This can be made clear by an example.

Suppose % 18 an unknown function of = and y such that’

%- 2#""2!'.
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Integrate this with respect to = alone, treating y at the
same time as though it were constant. This gives

=0 4 2 oy 4 ¢,

in which ¢ is an added constant of integration. But since
y is regarded as constant during this integration, there is
nothing to prevent ¢ from depending on it. This depend-
enceé may be indicated by writing ¢(y) in the plase of ¢.
Hence the most general fumction having 2z+ 2y for its
partial derivative with respect to x 1s

=2 +2zy+ $y),

in which ¢{y) is an entirely arbitrary function of .
Again, suppose
g o

Ea}:ﬂ'.l

Integrating first with respect to y, = being treated as though
it were constant during this integration, we find

ou 1
523#+H=}‘

where ¢(x) is an arbitrary function of z, and is to be regarded
as an added constant for the integration with respeet to y.
Integrate the result with respeoct to », treating ¥ as constant.

Then
u = § &y + ¥(x). + o).

Here ®(y), the constant of integration with respect to =z,
is an arbitrary function of y, while

(@)= W) dn
Hince ¢(z) is an arbitrary funetion of 2, so also is ¥(z).
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158. Integration of a total differential. The total differential
of u function » depending on two variables has been defived
(Art. 63) by the formula

l'i"‘“ui:l=+ ug,r

du i .

The question now presents itself: Given a differential ex-
preasion of the form
Pdz + Qdy, (1)
wherein P and @ are functions of z and y, does there exist
a function w of the same variables haoing (1) for its total
differential # '
It is easy to see that in general such a function does not
pxist, For, in order that (1) may be a total differential of a
function w, it is evidently necessary that P and ¢ have the
forma

P_—- q-— {ﬂ'}

What relation, then, must exist between P and @ in order
that the conditions (2) may be satisfied? This is easily
found as follows. Differentiate the first equation of 2 with
respect to y, and the second with respect to 2. This givea

P _ ' AQ_
iy Ey 3z Oox e oy’
from which follows (Art. 08)
ar_a9
oy o (3
This is the relation sought.
The next step is to find the function « by integration. It
is easier to make this prooess clear by an illustration.
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Given (2z4+2y+ 2)dz+(2y+ 2z + 2)dy,
find the function & having this as its total differential.
Since P=2z42y+2 Q=2y+2z42

it is found by differentiation that
L
ay
henve the necessary relation (3) is satisfied.
From (2) it follows that

E:Eﬂ""*ﬂ""l <

Integrating this with respect to = alone gives
u==x'+ 2zy 4 2z 4 ¢{y). (1)
It now remains to determine the function ¢(¥) so that

2 and %E-E,

dur- =
ﬂ_y[_ Ql=2y4+2x42. (5)

Dnfferentiating (4) with respect to y alone gives |

=22+ 40,

where ¢'(y) denotes the derivative of ¢(y) with respeet to .
The comparison of this result with (5) gives

2y42x4+2=2a+ (),
or ¢'(N=2y+2 (6)
whenoe, by integrating with respect to v,
¢=y+2y+0C
in which € is an arbitrary constant with respect to both =

and y.
Hence o= 2oy4 224" +2y4+C
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EXERCISES

Detarmine in each of the following cases the function u having the
given expression for ita total differential :

1. ydz + xdy.
2. sin rcosy dr 4 cos zsin g dy.

3. ydr — xdy.

4. ydx — '“'I.
Tl

5. (32 — Bay)dr + (39 — Ban) dy.

6. _ll.l'd.t.' 'z xdy :
24y P+

T 224228+ 0)dx +(22 4+ o® — y) dy.
8 (HA+y+2 - )dr+(yfr— 2oy + 4y — 9 + D) dy.

159. Multiple integrals. The integration of eia-—: was con-
Y

sidered in Art. 157. 1f Fiz, y) is written for the given func-
tion, the required integration will be represented by the symbol

L =f F(=, !.I':I' dz dif,

and the function sought will be called the double integral of
F(z, ¥) with respect to = and .

Likewise f J‘J-F(m, v, 2)dx dy dz
will be called the triple integral of F{x, v, 2). It represents
the funetion w whose third partial derivative — 2" _ ig the
die dy Oz

given function F(x, y, 2). It will be understood in what fol-
lows that the order of integration is from left to right, that is,
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we integrate first with respect to the lefi-hand variable z, then

with respeet to y, and lastly with respect to =
Such integrals {double, triple, ete.) will be referred to in
zeneral as multiple integrals.

160. Definite multiple integrals. The idea of a multiple
integral may be further extended so as to include the notion
of a definite multiple integral in which limits of integration
may be assigned to each variable.

v
Thus the integral J‘ 'j: xy? dy de will mean that % is to

be integrated first with respect to ¥ between the limits 0 and 2,
This gives
2
f iyt dy = 4
L]

The result so obtained is to be integrated with respect to =
between the limits a and b, which leads to

Jastao= 4@ —a)

as the value of the given definite double integral.
In general the expression

.f f Je.wf*"iﬂf: y)dy de

will be used as the symbol of a definite double integral. Tt
will be understood that the integral signs with their attached
limits are always to be read from right to left, so that in the
above mtegral the limits for y are b and &', while those for =
are g and a'.

Since « is treated as constant in the infegration with re-
spect to #, the limita for y may be functions of = Consider,
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for example, the inhgn.l‘fl'c_:gdgh The first integra-
tion (with respect to y) gives

- P 3\ -
d -— —= = —— ]
J:;my J r[ﬂﬁ P 2) 2

By integrating this result with respect to = between limits O
and 1 the given integral is found to have the value — 4.

EXERCISES
Evaluate the following definite integrals :
1. L‘I*r cos (xyhdy dx. B. i-:’;mmp’ﬂh sdp .
2. | f, sdyds. 6. (| " Var—yrdzdy.
3 -E.ﬁl-:ﬂlrd::g* ", J‘ j" j’u :Hﬂ
R S VS

161. Plane areas by double integration. The area bounded
by o plane eurve (or by several ecurves) ean be readily ex-
pressed in the form of a definite double integral. An illus-
trative example will explain the method.

Ex. 1. Find by double integration the area of the circle
(r—a)f+(y -t ="

Imagine the given area divided into rectangles by a series of lines
parallal to the y-axis at equal distances Ar, and & series of lines
parallel to the r-axis at aqual distances Ay.

The area of one of thess metangles is Ay - Az This is ealled the
element of area. The sum of sll the rectangles interior to the circle *
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will ba lems than the hrea required by the amount contained in the
small subdivisions which border the circumnference of the circle.

All these neglected portions are contained within a ring bounded
by the given circle and a circle concentric with it, whose radiug
in lesn than r by the
length of diagonal of ¥
an element of area, - ~
that is, of radius /

r - VAT (AT / \
In other words, tha

amount neglected is
less than the ares of a 1 /
eircular ring whose

width ia A

V(a4 (ay)?
and which therefore |2 -1
spprosches gero simul- F1o. &

tanecusly with Az and Ay. Hence the arca of the cirele is the limit
of the sam of all the elements of ares included within it

To find the valee of the limit of this sum it i=s convenient
first to add together all the elemenis contained between two com-
secutive parallels. Let PP, be one ol these parallels having the
direction of the r-axis. Then y remains constant while = varies
from a — v —(y — 57 (the value of the abscissa at A) to
a4V <y = b) (the value at /). The limit, as Ar approaches
gero, of the sum n! rectangles in the strip from PPy is evidenotly

=%

: =)
' imit of sum (Ax + Az + )] = Ay} ™" ;
Ayl ( =8y Ve
Now find the limit of the sum of all such strips contained within
the eircle. This requires the determination of the limit of the sumn
of terms such as (1) for the different values of y corresponding to
the different strips. Since y begine at the lowest point A with the
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value b —r, and increasea to b + r, the valus rfached at B, the final
expression for the area is

S ety = o s

Integrating firat with reapect to = gives .

a4 (kP PN Sy g L
d = g LT = — 'hllIl i (LA b E_
-[--.—mp Bl e PR
This result is then integrated with respect to g, giving
.ﬂH v (v — Er]iul'gr (- b}\.-",i._ (¥ — ﬁ}:_l._ ,.-.'IH-“—I.L!" =a,
b=

If the summation had begun by adding the rectangles in a strip
parallel to the y-axis, and then adding all of these strips, the expres-
sion for the ares would take the form

j‘n-l-r j'h-l--...""rL.:':':'-_.;ii o
™ ey |
It is seen from the last result that the order of integration in a

double integral can be changed if the limits of integration are properly
modified at the same time,

Ex. 2. Find the area which is included between the two parabolas
y=0zand ¥=72-8z

Ex. 3. Find the arca belween p? = bz and y==.

Ex. 4. Find by double integration the area of the segment of the
cirele ¥ + 3 = 16 cut off by the line =z + y = 4.

Ex. 5. Find the area between the two curves
P =zand y = 1%,

Ex. 6. Find the area between the two curves
y“ = ¥ and y"‘ =,

Ex. 7. Find by double integration the area

of one loop of the polar curve p = a sin 2 6.
Imagine the area divided into small ele-
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ments by means of concentrie circles whose radii vary by equal
increments Ap and by means of radii druwn from the origin, the
angle between two consecutive radii baing Afl.  (See Fig. 86.)

The area of an arbitrary element may be expressed as the differ-
ence of two cirenlar sectors with a common angle Af and with radii
p+Ap and p respectivaly. That is,
element of area = ] (p + Ap)T A — | pP AR

=pABap + } AB (Ap)t
Th;:mm of all the complete elements within the loop may then be
represented by the formula

S0 a60+1 3 A0 (8p)
Reasoning precisely as in Ex. 1, we find. the limit of the first sum
to be
¥ faunzg
j:l j; pdp db.

The second sum may be written § Ap= Af Ap, hence ita limit is

}-timap- lim 3 a88p=1-0- ' [+ dpa0 =o0.

Following the anzlogy of Ex. 1, we can easily sea that all the
neglectad incomplete elements of area lie within a narrow baod along
the boundary of the given area, the width of which band approaches
0. Their sumn therefore approaches zero in passing to the limit.

It follows from the preceding discussion that the general formula
for area in polar codrdinates is

| §§ooss

the limita of integration being determined by the boundary of the
given ares.

Ex. 8. Find by double integration the area of the cardicid

p = afl — cos §).
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Ex. 9. Find the area of the lemniscate p? = a*e0s 2 8.

Ex. 10. Express by double integrals the three sreas between the
cardioid (Ex. 8) and the cirele p = a.

Ex. 11. Find by double integration the area of the triangle whoss
vartices have the rectangular obordinates (5, 2), (— 3, 8), (7, 8).

Ex. 12. Find the area eommon to the two circles
-8z 4+ 1 -By4+28=0,
*—B8ri+y-dy+16=0

162. Volumes. The volume bounded by one or more surfaces
can be expressed as a triple integral when the equations of the
bounding surfaces are given.

Let it be required to find the volume bounded by the surface
ABC (Fig. 87) whose equation is 2 = f(z, ¥}, and by the three
codrdinate planes.

Imagine the figure divided into small equal rectangular
parallelopipeds by means of three series of planes, the first
series parallel to the ya-plane at equal distances Az, the second
parallel to the z=-plane at equal distances Ay, and the third
parallel to the zyplane at equal distances Az. The volume
of such a rectangular solid is Az Ay Az; it is called the element
of volume. The limit of the sum of all such elements con-
tained in OA4BC is the volume required, provided that the
bounding surface ABC is continuons. For the sum of the
neglected incomplete elements, which border the surface, is
less than the volume of a shell whose outside boundary is
the given surface and whose thickness is v/[Az)*(Ay)"+ (Az)",
the diagonal of the element of volume. Hence the error ap-
proaches zero as the three increments diminish.

To effect this summation, add first all the elements in a
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vertical eolumn, This corresponds to integrating with respect
to # (@ and ¥ remaining constant) from zero to f(z, y). Then
add all such vertical columns eontained between two consecu-
tive planes parallel to the yz-plane (z remaining constant),
which corresponds to an integration with respect to ¥ from
y = 0 to the value attained on the boundary of the curve AB.

&
&
K
5
n<"x{
i
/
ﬂll L I} I L !
LATAF A
=
Pk’
F M
s
- Fu 47,

This value of y is found by solving the equation f{z, y)=10.
Finally, add all such plates for values of = varying from zero
to its value at 4. The result is expressed by the integral

-I::.[:H:J'[I‘![:.ﬂ.iz d_y da:,
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in which $(x) is the result of solving the equation f(z, y) =0
for y, and a is the r-codrdinate of A.

Ex. 1. Find the volume of the sphere of radius a.
The equation of hl;a sphere is

2+ y+ =
or 2=vva! — —

Sinee the cofrdinate planes divide the volume into elght equal
portions, it i sofficient to find the volume in the first octant and
multiply the resnlt by 8.

The volume being divided into equal rectangular solids as described
above, the integration with respect to = is equivalenl to finding the
limit of the sum of all the elemenis contained in any vertical eolumn.
The limits of the integration with respect to z are the values of 2
corresponding to the bollom and the top of such a column, namely,
: = 0,and 2 = via¥ — 2 — 3, ginee Lthe point at the top is on the sur-
face of the sphere.

The limits of integration with respect to y are foond to bey =0
(the value at the c-axis), and y = vVa? — ## (the value of y at the cir-
cumference of the circle a® — 22 — ¥ = 0, in which the spbere is cul
by the zy-plane).

Finally, the limiting values for r are zero and a, the latter being
the distance from the origin to the point in which the sphere inter-
secls the raxis. Hence

F[ = volume of sphere]= Bﬁ'j;f':"tj:}"’""l"’d: dy dx.
Integration with respect to z gives
V= H-Ellj:'ﬁ;':] Vet — 2 — yidyds;
then with respect to y and x,

V= Bj;‘d:[% VA E g+ T Pt ; f]vﬂ
- - o

ot _’lrﬂ"l
a E-L T(at— )z =27
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Ex. 2. Find the volume of one of the wedges cut from the eylinder
22 4+ y* = a* by the planes z = 0 and 2 = mx.

Ex. 3. Find the volume common to two right cirenlar eylinders
of the eame radius a whose axes intersect at right angles.

Ex. £ Find the volume of the cylinder (z— 1)*+(y—1)"=1
limited by the plane z = 0, and the hyperbolic paraboleid 2 = zy.
Ex. 5. Find the volume of the ellipsoid

N
— — = 1+
ﬁ+ﬁ+ﬂ

Ex. 6. Find the volume of that portion of the elliptic paraboloid
't

2] - -

at b
which is cud off by the plane 2 = 0.

Ex. 7. Find by triple integration the volume of the tetrahedron
formed by the three codrdinate planes and the plane z4+2y + 32 =1.

Ex. 8. Find the volume of the elliptic paraboloid 2 " + 32" =6=x
cut off by the plane x = 2.

PL. ChLD. — 28



CHAPTER IX

SOME APPLICATIONS OF INTEGRAL CALCULUS TO
PROBLEMS OF MECHANICS

163. Liquid pressure on a plane vertical wall The pressure
exerted by the liquid upon any point of a plane vertical wall
3 Sharfiace g I8 proportional to the depth

\ 1‘ / of that point below the sur
i ]

l faee of the fluid. Td ecalenlate
% v o the pressure upon the entire
wall we divide it into nar-
row horizontal strips of equal
areas Ad  Denote the breadth
bl of the kth strip PQ (Fig. 88),
counting from the top, by h,. The pressure exerted on the
kth strip is equivalent to the weight of a eolwon of Huid
standing on a baze of the same area A and havirg an
altitude intermediate between the least depth x= and the
greatest depth z 4 h; of points on the given strip. This
altitude may be represemted by =4 6.k, in which 4, has a
value between 0 and 1. 1If w denotes the weight of a cubie
umt of the fluid, the pressure on P is wiz 4+ 64) Ad
Summing the pressures for all the strips of the wall, we
obtain for the total pressure

Ew{z +0,h,) AA.
338
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In order to evaluate this sum we take itz limit as AA
approaches zero. This gives, by separating into two terms
and observing that w is constant,

w lim 3o Ad +w lim z‘tut. A

The second term reduces to zere.  For,

3600, AA=AAT 0h,< AA - H (since 6, < 1),

in which H denotes the total altitode of the wall; as A4 =0
the right member of this inequality approaches zero. Hence

pressure -wfmd.d.

In order to evaluate the integral, it is most convenient to
make x the variable of integration. Denote by y the width of
the wall at the depth . Then AA =y, Ax in which y, is a
certain value of ¥ betweeny and y4Ay. (Compare Art. 40.)
Dividing by At and passing to the limit we, obtain, since

limy,-y* dA .
oW

or in the differential notation, d4 = y dr. The substitution of
this in the above integral gives

' pressure == w | xy dx,

the limits of integration being the values of z at the top and
the bottom of the given wall or surface.

If the liquid is water and the unit of length is a foot, then
B = EE* Ib.
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EXERCISES _ .

1. Find the pressure on the end of a rectangular tank full of water
that is 10 ft. long, 8 ft. wide, and 5 [t deep.

2. A watermain 6 ft in diameter is8 halfl full of water. F:nd the
pressure on the gate that closes the main.

3. A vertical masonry dam in the form of & trapezoid is 200 ft.
long ab the surface of the water, 150 ft. long at the bottom, and 60
ft. high. What pressore must it withstand ?

4. A vertical cross section of a trough is & parabola with vertex
downwards, the latus rectum lying in the surface and being 4 ft.
long. Find the pressure on the end of the trough when it is full of
water.

5. One end of an unfinished watermain, 4 ft. in diameter, & closed
by a temporary bulkhead and the water is let in from the reservoir
Find the pressure on the bulkhead if its center iz 40 ft. below the
surface of the water in the reservoir.

164. Center of gravity. (1) For o system of n particles. Let
£, Py be two particles.of matter of masses (or weights) wm, and

B : e My respectively, and let =, =, be their
v @ F distances from a chosen poiot O on the
Fig. 89 straight line through them. There

exists & point P such that the segments PP and PP, are in-
versely proportional to the masses of the two poiots, that is,

PP _my (1)
PP, m

Leét @ represent the distance OPF. Then formula (1), expressed
in terms of the abscissas of the points, is

T—xy _ Ty
Ty — & iy’
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- =
e @

The point P is called the center of gravity, or, the center of
mass, of the aystem formed by the two points P, Fy 1f we
imagine the line P F; to consist of a rigid, weightleas rod
with the two given particles fastened at its extremities, and if
we suppose this object to rest on the point P as a base, it will
remain in equilibrium, without any tendency in either of the
end points to move downward under the force of gravity.

In other words, the system of two particles is equivalent, as
far as the action of gravity is conecerned, to a single particle,
of mase m, + my, placed at the point F.

Let P, be a third point of mass m, situated on the same line
with P, and F% Then the absoissa @ of the center of gravity
of the system of three points may be found by calculating the
center of gravity of the pair P; and P (the center of. gravity
for P, P,), the mass of P being taken as m, 4+ my the sum of
the masses of P, and P, This gives

MyTy + Mgy

+ +

i mmglf.+mﬁ+uﬁf.
(my 4 M)+ 0y My + My + My

In like manner the center of gravity for any number n of
parficles situated on a straight line is given by the formula

= _Thi+ma 4 o mz, )
my + Myt e o,

If the n particles are not on & straight line but are situated
in the shme plane at the pointa (=, %), (28 %)y -, (2, W)
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then the center of gravity of the system has its abacissa given
by (J4) and 1ts ordinate ¥ ia

j=mﬂ’1+ Molfy + -+ + :I':I'I.-._'!,I'._
My + Mg 4 e M,

If the = particles are not situated in one plane, there will
be a third and similar formula for 2.

{£¢) For a continuous solid. lmagine the solid divided up
inte small elements, precisely as in determining its volume, by
means of three series of planes parallel to the eodrdinate
planes and at distances Az, Ay, Az. 1f we regard any par-
ticular element as being very nearly of uniform density, then
the mass of an arbitrary element is approximately p Az Ay Az,
in which p is the weight of a cubic unit of homogeneous mat-
ter having the same density as the given element. This num-
ber p i8 usually called the demsity. For a finite number of
elements the rcotrdinate of the center of gravity is determined
approximately by (3) o the form

(g + pys + -+ + p@,) Ax Ay Az
(F1+p!+ e +P_]M&yﬂ.ﬁ-

¥

in which =, =, .- ara the abscisaas for the different elements
and p, py, -+ are their densities. The abscissa of the center of
gravity of the given eontiiuous solid is obtained by makiog
Ax, Ay, Az approach zero as a limit.* This gives

[
| J"f o deedy dz

* A proof of this statement will be found in Art. 166,
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the limits of integration being determined just as in ealeulat-
ing the volume of the solid. 1f the solid is homogeneous,
p is constant and cancels out of numerator and denominator.
Otherwise, it is a function of =, y, =

In precisely the sume manner the values of y and 2z are
obtained. The codrdinates of the center of gravity are thus
found to be

ol S fremven 5= ff frrinies
=l S i

in which p is the density at the point (z, y, 2) and M is the
total masa of the given solid, that is,

y:fffpdmym.

The cotirdinates of the center of gravity of a plane area are
found in like manner to be '

'i':_‘-H fptdﬂdy,ﬁ=$ffpyﬁd§, M= fpdsdg.

EXERCISES

In tha following problems p i understood to be constant unless
otherwise specified. The abbreviation C. G. will be used for “ center
of gravity.”

1. Find the C.G. of the tetrahedron whose faces are the thres
ebordinate planes and the plane r 4+ 2y + 32 = 6.

‘2. Find the C. G. of the volume bounded hy the codrdinate planes
the plane = + y = 1, and the surface z = ry.
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3. Find the C.G. of the volome bounded by the hyperboloid
’_.._E-:_;zludthnpuu:=t. k> a

“l

4. Find the C. G. of the semiellipsoid on the positive side of the
1
s

5. Find the C.G. of a thin hemispherical shell of (hickness A
boundad by two concentrie hamispheres of radii a and a 4 A.

6. A hemispherical iron bowl ol uniform thickness a is filled with
water. If the density of fron is seven times that of water, ind the
C. G., supposing the radius of the interior of the bowl to be r,

[Hiwr. Find the C.G. of Lthe iron bowl by means of Ex. 5. Find
the C. G. of the hemisphere ol water and combine the centers of grav-
ity of the iron and the water by means of (2).]

7. Show that the C. G. of u trisngular plate one inch thick is one
hall inch below the interseetion of the medians of the upper face.

' 8. Find the C.G. of a T-iron one inch thjnk, the vertical bar being
a inches wide and b inches high, and the horizontal bar a’ inches wide
and ¥ inches long.

9. Find the C. G. of asector of a eirele of radins a and angle #.

10. Find the C.G. of the segment of the circle 2* 4+ y* = r* cut off
by the line z=a, 0 <a<r.

11. Find the C.G. of the quadrant pf an ellipse.

12. Find the C.G. of the segment of an ellipse cut off by the
chord jbining the extremitios of the major and minor axes.

13. Find the C.G. of the area bounded by the parabola
ﬁ-l-"l{iln\l"';
and the line z4y=oa.
14. Prove that the volume of & solid of revolution is equal to the

product of the generating area by the length of path described by its
center of gravity.

ry-plane, the equation of the ellipsoidal surface being z_:+ gi' +
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15. Find the C. (. of an octant of an ellipsoidal mas.

16. Find the C. G. of the preceding mass when the density varies
directly as the distance from the plave z = 0.

17. Find the C. G. of an octant of a sphere. From this result find
the C. G of an octant of a spherical shell of thickness & and inner
rading a.

18. Find the C.G. of an octant of a sphere if the density varies
directly s the distance from the center of the sphere.

[Hiwr., Divide up into thin coneentric shells of equal thickness &,
the density of a parlicular shell being regarded as constant. Let A
denote the radins of an arbitrary shell, A the distance of its C. G. from
the origin, and m its mass. Caleulate A in terms of A by meana of
Ex. 17, measuring if on a line equally inclined to the =z, », = axes.
Then use the different values of A in place of y, 24, --., formula {3),
and paas to the limit.

19. Find the C.G. of a right eircular cone of altitude & and base-
radius r.

This problem can be solved by single integration if we suppose the
aolid divided up into thin plates of eqoal thickness by means of
planes parallel to the base. Then find the approximate expression
for the C. G. of auy plate, apply (3), and pass to the limit.

20. Find the C.G. of the portion of the elliptical cone

2 {z — 1)* between the vertex (0, 0, 1) and the zy-plane.

at B

21. A cone of vertical angle 2 8 has its vertex on the surface of a
sphere, its axis passing through the cemter of the sphere.

{a) Find the C.G. of the mass outside the cone and inside the
sphere.

(b) Find the C.G. of the mass inside the sphere and inside the
cone.
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165. Moment of Inertia. The moment of inertia of a small
particle of matter of mass m about an axis is defined as the
product of the mass by the square of the distance of the
particle from the axis. It measures the resistance of the par-
ticle to rotation about the axis. :

To find the moment of inertia of a homogeneous solid body,
immagine it divided up into small rectangular blocks (or ele-
ments) of dimensions Az, Ay, Az Then the moment of
inertia of a single element about the zaxis 18 approximately

o(¥ + #)az sy As,
in which p is the density, that is, it is the weight of a cubic
unit of the given solid. Summing up these elements over the
whole body and taking the limit of the sum, we find the
moment of inertia to be *

[ fr 2 +azayas (4)

the triple integral being extended over the entire solid, just
as was done in finding its volume.

If the solid is not homogeneous, then p is variable. Its
value at a specified point P of the given body is equal to the
weight of a homogenecus eubie unit of matter having the
same density throughout as the particle of matter at the point
F. It is a function of =, y, # which is to be determined by the
conditions of the given problem.

Similarly, the moment of inertia of a plane area about the
z-axis is defined as the limit of the sum of terms formed by
multiplying each element of area by the square of its distance
from the axis. This gives the formula

Jfvazay.

* Bea tha next artlels for a completion of the proof.
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EXERCISES

In the following problems M.T. is used for brevity to deuote
“moment of inertis.” Unless the contrary is stated, the body is
homogeneous and of density p.

1. Find the M. L. of a rectangular parallelopiped of dimensions a,
fi, & about an edpe a

Take three edges a, &, ¢ meeting in & common point as the =, y, =
axes, respectively. Then by formula (4) the M. L is

p!u.ﬁiﬁﬂl:y: + 29 dlx dy .

2. Find the M. 1. of a ciccular eylinder of radios ¢ sod altitude &
about its axis,

3. Find the M.T. of the cylinder of Fx. 2 aboot a line perpendicu-
lar to, and bisecting, the axia.

4. Find the M. 1. of a circular cone of altitude a and base-rading
r about ks axia.

[H ixtT. If the axis of the cone is taken for the r-axis and its vertex
at the origin, the equation of the conical surface is

r_oyaa
ad L
5. Find the M. I. of an elliplical right eylinder about ita longi-

tudinal axis, the axes of the elliptical bases being 22, 24 and the
altitude &.

6. Find the M.I. of the preceding solid about the minor axis of
an elliptical base.

7. Find the M.I. of the same body about a line bisecting the
longitudinal axis and parallel to the major axes of the elliptical
bases,
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8. Find the M. L of a sphere about a diameter. Hence find the
M.1. of a spherical shell of uniform thickness h about a diameter, as-
suming that the M. I, of a golid consisting of two parts is the sum of
the momenta of the separate parts.

9. Find the M.1. of a spherical solid of radius r about a diameter
if the density varies directly as the nth power of the distance from
the center.

[Hinr. Imagine the sphere divided into concentric shells of equal
thickness AX and denote by A the interior radius of any shell.  Using
the preceding problem, write down fhe element of M. I, that is, the
M. L of the shell of radius X and thicknes Ak Take the limit of
the sum of all such elements as AX =0. The required M.I. is thus
obtained by a single integration.]

10. Find the M. L. of a cube of edge a about its diagonal

[Hint. Take threefaces of the cube as codrdinate planes. Obtain
un expresgion for the square of the distance from any point (x, y, 2)
to the diagonal of the cubs that passea through the origin. This
multiplied by AxApAz, will be the element of M.I. Then take the
limit of the sum.]

11. Find the M. I. of & cylindrical shell, of longth a, about its
axis, the radius of the inper surface being r and that of the outer
aurfacs being .

12. Find the M. L. of a rectangle of sides a, & about the side &.

13. Find the M. 1. of a triangle of base b and altitude & about an
axis through a vertex parallel to the opposite side.

14. Find the M. 1. of a circle of radius a about & diameter.

166. Dubamel's Theorem. In order to complete the proof
of the formulas for center of gravity and moment of inertia,
we make use of the following theorem which is of very general
use in applications of the Integral Caloulus.
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Dunamer’s Teeorem.  Lef oy, @y, o=, o, be positive variables,
each of which approaches zero as n increases withow! limit, and
suppose that the sum o)+ a; 4+ - 4 &, approaches o finite lmit
asn=w. Let g, By -, B, be variables having the same prop-

erty as the o's and such that ",m E":l for k=1, 2, v+, 1
Than e .

“Ii_r:.nm (Bi+ Bat - +ﬁ.}=uli.=mm{u, tagt e )

Since ﬂ“:nlﬁ*=], we may write E: in the form 1+4¢, in
which ¢, approaches zero as n=o00. Henee,

Bi=a, + gy

and therefore 2 = E"l: + Ee,n:,.

Let e denote the positive value of the numerically greatest
term of the series g, €, -+~ ¢, Then we have the inequalities

— ey Sem S ey,

— ity = ity S ity

— e, S em < 4 e,
and by adding we obtain
—.f{m+-=r= + o+ w)E Dam < elm+ ot o +a).
Now let n increase without limit. Bince by hypothesis e=0

and (o + o5+ -+« + &) has a finite limit, it follows that the
first and last members of the preceding.inequalities vanish at
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the limit and therefore

_E.. Mn_mnm 0.
Hence __. £ M”m___ = :ﬁnﬂ M .

As an application of the above theorem, consider the’ sur
oecurring in the approximate formula for center of gravity,

(o + paes + o+ + pot ) AV
in which AV = Az Ay Az

Let p,', z,' be the minimum, and p,", z," the maximum values
of p,  in the kth element of volume. For brevity write

n'n AV =, p''n"AV =8
Then we have o S p AV E B,

hence, by taking the sum,

M_Hn x M%-H_,D.ﬁ.u.nlh_. M.m.r

But Bi_p “. which approaches 1 a8 n increases sinee p,', =’
£y P T

approach equality with p,", =,". Henece
lim MEM lim MP =lim M_ﬁ..#p_m

In obtaining this result no restriction is placed on =, and p,

® A varlable which hag zero sa a limit is often called an {nfnifesi-
mal. Hence o), ag, -+, o, are infinitesimals. If we writs §; = g, then
A HLE ey =0. When two Infinitesimals, 8 and a, are so related that
the ratio of & to a bas the limit =ero, then § is aaid to e infinitesimal with
respect to a, or it is called an infinitesimal of a highar order than a.

Binee, by Dubamel’s Theorem, lim ¥ {ay + 6, ) =lim T a;, this theorem is
gquivalent to saying that the limit of a sum of injinitesimals is not qfécted
by dropping from each term an infinifesitnal of a higher arder.
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except 2,/ S 2, S and p,' = p. <p,". We may accord-
ingly take for @ any wvalue of = in the kth element of
volume and for g, the value of p at the point whose abaecissa
is 2.  With that choice of p the formula lim Ept:ﬂ AV may be
expressed as a definite integral in the form given in Art. 164

In like manner we may prove that

g - +p_}ﬁF=fJ-fp{irdﬂtis,
and, in case of moment of inertia, that

lim Zp*{yf-l-zf)&?nfffpw + 2% dz dy d.

The details are laft to the student as an exereise.

Ex. By means of Dohamel's Theorem prove the formulas for area,
lougth of are, sorface of revolution, ete.
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14.

16.

FORMULAS FOR REFERENCE

I. TricoNOMETRIC

ginzeser=cosz secx=tanz cot x=1.

gin* @ 4 cos®x =1, tan’x 4+ 1 =sec’x, cot*z+1=cac’z

B0 &

tan ¥ =
GOB

0S8 &I
¥ 'E'-{I'l'i = .
b aln a

gin (2 £ ¥) =sinzcosy + cosx sin .

cos (Z £ ¥) = cos £cos y F sin ¢ sin y.

tan o + tan y
ta —_—— —
o (®+y) 1 F tan x tan y

sin 2 4 siny =2 sin § (2 + y) cos } (z — y).

sin x —sin y =2 cos (x4 y) sin } (z — y).
cos 4 co8 ¥y =2 cos § (x+ y)ecos }(z— ).

cosx —cos y=—2sin | (z+y) sin } (z — y).

gin2x=2ginxzcos

tanﬂ:n=—3m“:

1 — tan%s

+*

ain § 2 = {1 — cos ).
co8 |z = 1(1 4 cosz).

.82y =cog'zr —sin*r=2c*r—1=1—2 gin’m:

_]—'E‘.{EEEF

1—coszx gin =
tan m=1||| =
3 l14+cosx 14 cosx

462

~ gina.



17. 8In

18. sin

19.

20,

21,

23.

2%,

Jogry =logx + log.y.

FORMULAS S0

x+ T

o

)=:i:mﬂa:_, ma(m;];%)=:psin::,

)
)
=¥
):mt::. :}&t(—— ) tanz,
Eeu( ):ﬁﬂex cm(-— )—aem

tan [ 2+

bo !

Ta

— oot x, (m;l:;)=—mn#,

el @ 4

r.l-'-ﬂ.‘\‘

T csc @, csm(m ;q;%’)= + BOC .

bsl

":;'aT?u“

CO8 T, (—-— )-Hm#,

.--""""-.
hn‘—'I.

sin(r + ») =—sinx, cos{x + r)'=—cos s,
tan (x £ =) = tan x, cob(r + ») = cotm,

sec (@ + o) =— sec =, esc{x f v)=—cscm,
Binl (r — «) = 8in 2, 08 (v — x) = — cos x,

tan (r — )= —tan », cot (r —z =—cot z,

gee {r — x} = — s8¢ @, cse(r — 2} = cse @

gin(— #) =— sinx, cos(—a) = cos ,
tan (—z) = — tan =, cot(— x) =— cot
sec {— ) =gec &, ese(— T) =—C8C @

1. LocARITEMIC

25. log, z= ;Eg"‘:= log, xlog, b.

log, § =logz —log, ¥. h

log,z» = p log,z. 6. log, o= Eil'
27. log.a=1, log,1=0, log,0 =—an.

EL. canc, —33






ANSWERS

DIFFERENTIAL CALCULUS

Page 33. Art. 7

. 2x—9:2;0;1, 8. mre-1,
. Bx—4. 1. 4 3x
1 [ 4+1)°
§ ——— 1 —zxt
4 3 Rttt
i @+ 1P
44— —.
B B ]
a 2wz
2 10. —i:-t

Page 2¢. Art 8

1 2 ey
. Bu—4)82 3. —L(0z-2). & (ﬂuuﬁ {"";;.)
Page 32. Art 13
102, 2—fz—22
—Bx* (= +2)1
N 19, 3x+56,
vz vr+2
1 1 ~
VA ale 1. Va(Vi—va)
=1 2 vz (Vz + a) (Ve + vZ)?
-m:=_+ ﬂjq-—l. 19, 1
-1, V1 — 231 —x)
al 13 1

T x(l—2) 4 VI
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14.

16.

17.

18. —

18.

21.

ANBWERS
4u*+3:* 23, 80 a1 -I—ui}i'%:.
'lw: ilai .l. Il H + 'I::“
- 1 E—a
oy e
R 25, (ﬂu+ﬂ:u)%‘+aﬂ+¢ﬁ.
et ] G
(-1 4 e v oz ww
— 4 nzn-? " latz) (atzyeH
(x"=1)7 87 % urtwT® | o2t B 4 1yt
mb+x)+niat+ax) o o x
(@ +x)m+1 . (b + x)n+) m = bix _ bz .
3 oy LAV
AN 4 8
2z + = (0,0), (4, m)‘
56 22(2* + 1)1, 4 ..‘E..)
; ) (ﬂd. +2'H:
Eud—ﬁ
dz’ gq (210* 10 0)10x
du (7w 4+ 5)1
o = 86, At right angles at (3, £ 6).
Page 33. Art. 14
_pP gy 62z —3y) 42z —y)+1
2oy + B2z —-3y)+2z—y)—1
Page 37. Art. 18
1 T. nre-llogx 4zl
*+a 8. nzn-llogz™ 4 man-l
L X
ﬂ.m E— :_#-_1-
Bxe T 1
dzf—Tz 43 10. ‘
Siand vz + 1)
1-—- 11. l':lg,ﬂ' 1?:5'*-'—5-—1 .
ix 2VIF (B —vitr)
= 2x+7
log 2+ 1 1% logwe o r7a




= s p P

T.
8.
9.
10,
1l

ANSWERS
TS A 26,
xloge
aesF,
S a6,
—:ﬁ 7.
(14x) .
sl I
(14 e)
I—EWI -L
1 -yt
eret -
& —e"
14 e
T 4 & -
nz*lg® 4 r"a” log a.
.
va
viia — z)
il »
-.'n:l','_luun,g,:,'}'+
Page 41, Art,
Tooslx 13
= figin 6x. -
2z ooam 23, -
PooafzooEaxr —ain 2 zein x 18.
2 gin® z coa .
lﬂzﬂ-ﬁﬂl I""
JdsinTxomTx 17.
sec? z (tanz — 1) 18
3 sin?x cos®x — intx.
8eC x (tan x 4 #ad ). -
—=162(1—22%sln(l - 2207 o,
coa (1 — 227, .

357

:(t'-;l}i{l_ﬁ'+ 40z — 87)
2E-iez-gY

24+z—528

vi—=z

143220
(1—=f

bat(a + Bx)i(a ~ 2x)
(o + 2ax — 1227).

(x— Iq}fl b o ll_
{:—u}*

Zlanzeects — Jtanx
mec .
oot vz
2 v
1 ;o
—loga- . (a)-

nain-!za&in(n + 1)z

du
ooe dw——-
iz

mn sin=-1nx . col(m — )z
ool gn
- N
14 tanz




J08 ANSWERS

21, m{mu}m:"ﬂ_‘_ 2. —Bcesc?dzxpotd
R 28. B(4r — 8) soc (42 — 3)2
22. 2 ae™ Bin £ . 008 &=, tan (dx — 3)%.

BT, — 2 cagiy®y 096 ViElan Vi

23. 1. cos & - log x 4+ B0, 2/x,
gs _poeosxy
gq 008 ZF 1—x cos xy
gin x% 20, —ocec? (z 4 ).
Page 43. Art 23
1, = & 1 | i
v1—do 2velntx vl -2 1 -
Sy S g =t
vl —z? L b xvxl -1
o . —— L —. T E M 8
Vix— 98 2 V1 =(logz)? 1+
a 5 . o ¥OE 14, § V17 oz,
Vi V1— iz
—2 e, . 15. }
A o i £ 1
14 x# v1l—zxt
tan x *, r
- tan=<l —_— 17. sin-lx 4 ———-
18, soc?z :+1-|-:|:i o
18, ﬂun—‘._ a1 1 : a5 Z5inx =
1428 2vzix+1) Vi — dcosfx
— 4 —1
B .- ——
T ol O 2(1 + x%)
o 23 —— —1
P " costx + ntgint Vi—a
2 41 24 2. M. 0
Page 45. Exercises on Chaptar IT
1. 6x 4+ 16x% 4. L el
g —8_16 a? —zd
= o § logeinz 4 xeotz
3. Jx—1 g — gt

v -8 T at — xt



1.

11.

15.

16.

17.
18.

19.

o

I A

2(1 +27)
4 tan® x.
gz
(1—2zp
4
&4 Scoax

ANSWERS 359

8
|*:.

lan x4 "5 gac x lan x.

T — ay

ax — it

_inf43e
2xiy + 8

dzd 41

341

¥+ 2ay—1

1_Cxy—aof.
4008 (2logx? =T)

BE B B % B 2 ®BB B

Pages 49, 50 BExercises oo Chapter ITI

T2 x.
0.
a1

—

+ g

_ 8t
=
fapcts — daaclx

F L
e=logpr 4 ——=.
i T b

2log x4+ 8

8. Btan zaec? x (Jasectz — 1},
g Zcotzoanty.
10, 18 sin x cos x.
)
(1—z)®
48

13 —.
x

Ein x.

14 Bfen — e—=)

(e e

=



360 ANSWERS
u.BTT. g8,
8~
IT. o=, M.

= 13 |
18. =,
(x — 1)+ 26.
18 rnl-um.(m;t_p N.I T
) o
gg, (—1)*-(m+ n—T)!
T o{m—1)1(a 4 x)mn
o, M=D-@-D1 *
(a+ =)"
23, 4.

o

L}

3s

— ul?L+
o —aayt

—y[(E— 14 (=17
:E(i"'— ]}ﬂ- !

=y o
(2 —y)*
(n—11

x

gn-1 om(ﬂ::+ !g)_

Page 5@, Art. 28

2. Tre. from — oo to §; dee. from § to 1;

Ine. from 1 to 4 e; ¢

and 1.
3. Two. +latz=3+v; —latz=}+vy 4. +tant4.
Pags &0. Art 34
1 -1 ma; -]—-, min, 6 —1, TRt — }, min.
i % —2 min. ; 1, max.
2. 2, max.; 8, min, 8. ¢, max.
3. 2 min ; §, max. 9. Znx, min.; also tan-1 .4 V]
4 (n+ti)w max.; (Zn+4 })=, for lﬂglﬁ- in 2d and 3d
min. for all integral values quartar. (2n4 1),
of . tan-! & v, 1st and dth
' qnarier, Max,
B v 10. 2, min.; — 1, max.
Su44
1. z=."2 , md 4 dd i=0
= E{H-—l} +44m 4

Fages 63-67. Hzxarcises on Chapter IV
1. Two thirds the length of the sagment.

8. The paris are equal.

3. i | T
V3
4 1. 6. 3 inches.



8

10.
11.
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The side parallel to the wall is double each of the others
The altitude I8 equal to the diameter of the bass.
8 inches.

12. Ome mile from stopping point.

13.
14.
15.
16.

17.

19.

21.

L]

3
3
7.
8.

Most economical per hour at 15 knots.

§o.

The sltitede of the rectangle is equal to the radins,
The altitnde is equal to the radins of the base,

yards from the nearest point.

The diameter of the sphere equals the edge of the cube,

9 feet.

w2

Circular arc is double the radins.
o |

r‘!' + B

Arc =% t}{‘l—w"’i],

Angle at center of variable sirele defined by ¢ = eot 8.

The line shonld be bisected at the given point.

The altitode is § the slant height of the cone,

(! +ohi. iy w=g—p . ::meh
[ T3]

. I being the distance between the centers of the spheres,

3z 20 M.
{a 35. lan f = sec p—tan ¢-
a+ b 13, av§. 36. § = 35° 20,
N Pages 76, 77. Art. 39
About F 58/ per second. 6. (8, 48).
120 feet per minute, 6. At 5+v/2 miles per hour,
(8, 8). 9. 4 ab, 11. 5.

AL 60°, 10. 4 & 18 2.
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18,
18.

17. —-.

13.

1.

ANSWERS
1 and &. 18. 4 16, F 12 faet par aecond.
= o
=2 g =5, : . di.
61’ 53 ¥ gy e
@ 5. SB_mdi_nm per second.
16 VaTe
Page B83. Exercises on Chapter "E'I- '
‘¢G+‘t,ﬂ'&"u_=,4ru"u*+ﬂr.,4-ﬂ. - Mg i
i ¥y =
BOC . B. IE;{E;!—;E}. 7. vZap
a?
8 .
raizd, 8. pv1 +(log a) g
30w, 72 . 10. §sin @, B0°, 270°; 2, — 2.
Pages 87-89. Art. 48
r.1+u_1 b (glxt+2y=4da,

al b y—2x4+83ag=10.

e g Y e al (B 2y==4(x+1),
¥=n b*:i':: =) y=F2r+4+ &
¥=7 : (YV)y=x+p z+y-3p=0
Zy=0x—3, 0y+2x=20. b5 3 8. 410
{a) Parallel at points of intersection with ax + iy = 0.

FPerpendicular at pointa of Intersection with ke 4 by = 0.
(8) Parallel at [: = ”""i i perpendicular at z = 0.

() Parallel at (*T“, “";"‘) ; perpendicular at (0, 03; (2 &, 0).

1 1 1 1

B ke s =+ f.&. they musat be confocal.

a {i -El' bt .

% 1. ¥, 1. ¥
2 2 nT
ﬂ{:;ﬂ 19. (2p, :I:EP""EJ'

Page 95. Art. 51
An inflexion at x =y = 2.

L) (20 5) e esmeo
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368
8 loint of inflexion st (a, §a), tangent is =+,=’T“. Bending
changes from negative to positive. '

0.

T

- liﬂl.
T (aiv'i,—‘—rm“m)

Page 103. Art 57

y=hz=ag,r=-—a B. =0 twioe; ona parabollo
g=0x=2a,y=a,p=—a & h:uh "
y=4,y=—a; twoimaginary. ' :::';'t::f =,+,:,_,,+
o A4 D 1l. z 4+ ¥+ a=0; two imaginary.
y=—z+2: two imaginary. 12 y+==0; two imaginary.

3 18. x=0twice: =y, 2=— §.
e =1; one parabolic branch, 14, y—z p=—x; two imaginary.
rt==—a,y=—0b y=x+b—a 18. x4 2p=0z4y=Lixa—py=~1,

Page 107. Art. 60 1
¥ =
Pﬂnruhuugm:=§,?dumﬂ-v’?'+_ﬂ,ﬁhrmnm
=2 4430, =—pootd =£—,
¥ :I+ Sublangent P #, Tungeni T

Babnormal =_.‘M_ Normal =i
p P

] S A
i' ﬂﬂﬂn‘i mﬂ.

They have a common tangent at the pole ; elsewhers, ;

Page 111. Art 62
| B 4 (z+ y)cosxy. 5 L

Page 115. Art 63
} square units. 8. ;Qm T Differs by dedy.
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Page 117 Ast. 65

_arthydg s
hx+ by +F V-
. E g =¥
v & x
20 v y[cos (zy) — er — 27]
& ——]- 8.
4 W : e[z 4 e — coB (2y) ]
Page 121. Art 66
2 Br4B8y—r—-12=0 e o SRR |
ﬁ‘tl' |l fli
3. z_ﬂ=r._2=g_3. ", cm—i 15 . B —nﬂ.
B (. V119 VT
8 2 —zg =0 t—% ¥F—¥ 0
IE + Y — I F : T2y b =y

16, 2z +2vVidy+3:2=125 r4z=h
Pages 128-130. Ast. 72

a2 dr diz | dx
g TE_o,0_g 1. L Z =0
ae dy ey Y
{ @z :
[1+(%)=] 12. ﬂnd,z'+‘3(dx)
b == F(l—a2z E g =0,
dy i
'I'I‘;E 'li’#- I'EI.'-‘_' 13‘ ﬂ+y=ﬂ_
A T Y
& ay'ﬂ)du ;‘:
d" d L TP
5. d_:. L'.m-"i-l—ﬂ[: f} 14. :.!4',3+“ 0,
Jhu dy | 2dy Ul
B.F+u=[l_ 1. S¥+ Yt aty
d pt
8. -E_|_ w [, 18 —
dus ¥ \(F:.,.(éﬂ)"
26
a, ﬁ=[|.
de 17. —6

Page 137, Art. 74
6. Divergent. 7 Convergent. 8. Convergent in both cases,



10.

ANBWERS

_1{zél. 7. !zl}/ﬁ 8. —a<x<a
Page 145. Art 77
fimi={x— 1) +{z—1)7 + 4{x - 1)—8.
F{L02) == 2OT0602, F{101)=— 2.050800,
F(80) =— 3.088001, f(.98)=— 3070608,
Sy — B)i4 d(p— 3)— B 4, gin?1° = 51508,
Page 149. Art. 78
o 2
; I+E+Ezﬁ+ﬂ. 3. 000002,
p _ o o
. 17458, - P F =|j+.Ii'.

B RTE W  TI

2 zv 68/ 4\ @& 12

! u‘+ﬂ‘h+%k’+ﬁ.

16 + 24(x — 2} + 18 (x — B + S(z — )~
h A, K

3 ———t——— 4 R,
Il Ing:tr_+$ 21“+31-t 42‘+
12 —4{z4+1)+0{z+12=4(x+ 1004 (x4 1)\
14. 5.013. 18, 3 433087,
15. 11.0087. 17. 0147 ...,
18. 1={x—1+ (=12 (z=1F+ R, Otod
Pagea 159, 160. Art 83
y, 248 g 18 RS
2 L . 4. &
Pagea 163, 164. Art 85
2 i 6. £ B —4.

5
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0. =2,
LS b 81
3. 1 2
L8 = 10. -3
3. . L 11. §. :
Ing @
3 =y h 1.
Page 166. Art. 08
L 3. 0, L -}
0. 4 5 8 L
T e
Page 171. Art 89
+ First. 8. Second,
'I'hnrdnnutmm. 7. a=—1L
Third. 8. y=22_hHz 4 4
d2(x—a) = a(y — a). 9a. (-2, —8), First.
¥+ liz =10 #bh. (-2, —B), Becond.
V=—2"4+2z 48 Bz==3p0 4 Hy-—30
First 18. Second. &
Fage 179. Art 97
1#. - E"."""EJI. 8. nﬁiﬂ-!:}}
s n(n — 1)zy #(2a — z)!
o .
@+t y Meepl - WL
2 mt va
(eht — gy} 1 ( kool )
ab 8. 3(amy)t 3VE MV
) Page 181. Ast 58
pV 1+ (log a)* i
- g a(5—4coma)!
e 2 P=dcoad

ANSWERS

Page 164. Ast 85
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4 g b g 25
Va .
O 1 Mi.
at "

Page 188, Arst. 100

1. a=0, =0, " ¢=;_.g(r:-#-;),ﬂ=’l-

a4+ vai— _a
2 a=alog Tﬂnﬂ"" B {g+!]i_{l—,d'_]i={ld}l.

2
—_ & = '-
L a@ 1P a0y * (aa)d — (88)% = (a® + ¥
Saty ' 3 g 1. (a+ml 4 (-l =24l
1. a=a(# —sin@), B=a(l —oca V), F=0—mrx.

Pages 198, 199. HExerolses on Chapter XIII

L (0,0); ax 4 by =0. 8 Two nodes at Infinity ; the

mymplotes are x=y4+1, z4y=41.
2 (0,0); cusp of first kind, y=0. Y. (0, =)y (8 0); (=g, 00)

8. Four cusps of “first kind; the tangents are, respectively,

(0, +a), (£0,0); y=0,x=0 Viy +a)=+Vviz;
Uz +a)y=4+VvEy;
4. (0, 0); conjugate point with (z—a)=+Viy

real colncldent tangents, y = 0. 8. (~a,0); conjagate points.

5. (0, a); y=a-+xz; cusp of 9 (0,0); =0, py=0,
second kind. 10. (0, 0); is & tacnode ; y = 0.
12, Terminating point at (0, 0).

Pages 207, 208. Hxerclses on Chapter XIV

L o4 =5t T. y'=4a(2a—2z).

a =l 4yt =ql. B Mt (o 2y = P(a"+F).
8. pgd=c 0 (224 ) =42 - )

4 dzy=M 10. 18 + 272 =0
bo(z—a) 4 (y—-pt=r I yixtk=0

6 pPizr+2a)+==0 12, (P4p—ay)=al{z®+(y+a).

1L bt 4 a%t = d a'Ph.
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10.
11.

13.
14.
15.
16.

17T.

18.
19

INTEGERAL CALCULUS

Pages 215-216. Art 114

]:&.

il
a4 1

i i:l:!.

AW ueg
2m—1
ar— balzt 4+ gl — pan
4 1
22 3g°
1+ aty,
(ox + Byt
a{n + 1)
log {x + a).
1 log (2 ax — x%).
— log cob x.
— log (1 4 coax).
log (log x).
§log (=* + 1).
— log cos =,
log sin .,

L e,

a
1 &=,

(@ o bymtes
nlog(a4b)

& &in 2z,

Ologx 4+

2 8

2 8% B ESEE 8 88785 £ B B

ﬂ-lﬂﬂﬂﬂ:t.

i

z  8indx

i R

Fr gNnZx

2 4

—coa(m+n}z
m4i+n

— | cas 23,

gin xr — § 8infx.

— co8 X + § COE .

thn @ — T,

j tant e

_cll""“" (az + B).

— (oot z)E,

log tan x.
§ sect .

rain-1x4 V1 —xi
ertan—Tef — § log (1 4 &™), 4.

Page 219. Art 115

In-+'|
| log -
r|+l(l:|IE

308

3 Pginz+2xcosr—2ainez.
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|20 tan-1z—z2tlog (142%)) 9. §e(gin = 4 cos z),
sec ¥ [log cos x 4 17. 10. } e (sin x — coazx).
FI(=* 4 1) cot- = + x]. 11. jeoszsin2x — fcos Ereinm
b[8in3x— 3xcosdx]. 12. = tan z + log oos x.

Pages 220-222. Art. 116
{ (stn-lmd, 11. logtan .
} coa {284 1)[ 1—Iog vos (224 17] 2

B r
12 log tan {\§+;)-

18, — jar—amyl,
2 _ 1
=1 2z-—1)1

A
Zain?z
1

u

& 14, log{x—1) —
a

= 15.

10, aip-1T—% 18. —tan~!(+2 tan ),

10.

11

a '3

Page 226. Art. 118
1 VE(z 4+ 1)~ 1 3 —1jg==—19
- log . : R
2vE V(x4 1)+ 1] R L
1 tap8x=1 4. }sin-1(3x — 5),
v V1
Vil 4+ 224 2 —log(z + 1 +v2d + 2x + 2),
_f-ﬂ+2;+1+m—1ﬁ.
v
2x4+1
8

—vE—dx- 42+ Jain-)
2 g r—2 - L log(z +} +VBFIZ =]
IvaT p -2 - log(z + ==

jVitr—gas L gnate=l,

43 ]
Ilog (z—6) — § log (z —1).
. Vaz—a8 4+ Bam122—8,
£

i
EL CALD. =24
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T,
Langth of are, 306,
of evolute, 153,
of space corve, 515,
polar cobrdinates, H09,
rectangular  colndi-
nabas, 306
Limie, 15,
change of, In definlte
intagral, 276,
Limits, infinita, for defi-
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Partinl dorfvatdve, 110,
Polnt of inflexion, i,
Polar cotnd | G bes, 1.
suboormal, 106
snbtangent, 108,
Problam of differentisl
caleulus, 31.
of intogral calealus,
1

Bading of eurvature,
173

Rates, (8,

Rational fruotions, Inte-

of, i,

Ratjonalization, 248, 249,

Hectonglob, exterior mod
interior, S,
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